1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
import json
import math
from redis import Redis
Redis = Redis()
from gn2.base.trait import create_trait, retrieve_sample_data
from gn2.base import data_set, webqtlCaseData
from gn2.utility import corr_result_helpers
from gn2.wqflask.oauth2.collections import num_collections
from scipy import stats
import numpy as np
import logging
logger = logging.getLogger(__name__)
class CorrScatterPlot:
"""Page that displays a correlation scatterplot with a line fitted to it"""
def __init__(self, params):
if "Temp" in params['dataset_1']:
temp_group = params['trait_1'].split("_")[2]
self.dataset_1 = data_set.create_dataset(
dataset_name="Temp", dataset_type="Temp", group_name=temp_group)
else:
self.dataset_1 = data_set.create_dataset(params['dataset_1'])
if "Temp" in params['dataset_2']:
temp_group = params['trait_2'].split("_")[2]
self.dataset_2 = data_set.create_dataset(
dataset_name="Temp", dataset_type="Temp", group_name=temp_group)
else:
self.dataset_2 = data_set.create_dataset(params['dataset_2'])
self.trait_1 = create_trait(
name=params['trait_1'], dataset=self.dataset_1)
self.trait_2 = create_trait(
name=params['trait_2'], dataset=self.dataset_2)
self.method = params['method']
primary_samples = self.dataset_1.group.samplelist
if self.dataset_1.group.parlist != None:
primary_samples += self.dataset_1.group.parlist
if self.dataset_1.group.f1list != None:
primary_samples += self.dataset_1.group.f1list
self.effect_plot = True if 'effect' in params else False
if 'dataid' in params:
trait_data_dict = json.loads(Redis.get(params['dataid']))
trait_data = {key:webqtlCaseData.webqtlCaseData(key, float(trait_data_dict[key])) for (key, value) in trait_data_dict.items() if trait_data_dict[key] != "x"}
trait_1_data = trait_data
trait_2_data = self.trait_2.data
# Check if the cached data should be used for the second trait instead
if 'cached_trait' in params:
if params['cached_trait'] == 'trait_2':
trait_2_data = trait_data
trait_1_data = self.trait_1.data
samples_1, samples_2, num_overlap = corr_result_helpers.normalize_values_with_samples(
trait_1_data, trait_2_data)
else:
samples_1, samples_2, num_overlap = corr_result_helpers.normalize_values_with_samples(
self.trait_1.data, self.trait_2.data)
self.data = []
self.indIDs = list(samples_1.keys())
vals_1 = []
for sample in list(samples_1.keys()):
vals_1.append(samples_1[sample].value)
self.data.append(vals_1)
vals_2 = []
for sample in list(samples_2.keys()):
vals_2.append(samples_2[sample].value)
self.data.append(vals_2)
slope, intercept, r_value, p_value, std_err = stats.linregress(
vals_1, vals_2)
if slope < 0.001:
slope_string = '%.3E' % slope
else:
slope_string = '%.3f' % slope
x_buffer = (max(vals_1) - min(vals_1)) * 0.1
y_buffer = (max(vals_2) - min(vals_2)) * 0.1
x_range = [min(vals_1) - x_buffer, max(vals_1) + x_buffer]
y_range = [min(vals_2) - y_buffer, max(vals_2) + y_buffer]
intercept_coords = get_intercept_coords(
slope, intercept, x_range, y_range)
rx = stats.rankdata(vals_1)
ry = stats.rankdata(vals_2)
self.rdata = []
self.rdata.append(rx.tolist())
self.rdata.append(ry.tolist())
srslope, srintercept, srr_value, srp_value, srstd_err = stats.linregress(
rx, ry)
if srslope < 0.001:
srslope_string = '%.3E' % srslope
else:
srslope_string = '%.3f' % srslope
x_buffer = (max(rx) - min(rx)) * 0.1
y_buffer = (max(ry) - min(ry)) * 0.1
sr_range = [min(rx) - x_buffer, max(rx) + x_buffer]
sr_intercept_coords = get_intercept_coords(
srslope, srintercept, sr_range, sr_range)
self.collections_exist = "False"
if num_collections() > 0:
self.collections_exist = "True"
self.js_data = dict(
data=self.data,
effect_plot=self.effect_plot,
rdata=self.rdata,
indIDs=self.indIDs,
trait_1=self.trait_1.dataset.name + ": " + str(self.trait_1.name),
trait_2=self.trait_2.dataset.name + ": " + str(self.trait_2.name),
samples_1=samples_1,
samples_2=samples_2,
num_overlap=num_overlap,
vals_1=vals_1,
vals_2=vals_2,
x_range=x_range,
y_range=y_range,
sr_range=sr_range,
intercept_coords=intercept_coords,
sr_intercept_coords=sr_intercept_coords,
slope=slope,
slope_string=slope_string,
intercept=intercept,
r_value=r_value,
p_value=p_value,
srslope=srslope,
srslope_string=srslope_string,
srintercept=srintercept,
srr_value=srr_value,
srp_value=srp_value
)
self.jsdata = self.js_data
def get_intercept_coords(slope, intercept, x_range, y_range):
intercept_coords = []
y1 = slope * x_range[0] + intercept
y2 = slope * x_range[1] + intercept
x1 = (y1 - intercept) / slope
x2 = (y2 - intercept) / slope
intercept_coords.append([x1, y1])
intercept_coords.append([x2, y2])
return intercept_coords
|