From ea46f42ee640928b92947bfb204c41a482d80937 Mon Sep 17 00:00:00 2001 From: root Date: Tue, 8 May 2012 18:39:56 -0500 Subject: Add all the source codes into the github. --- web/CGIDoc.html | 516 + web/GeneWikihelp.html | 62 + web/RIsample.html | 451 + web/account.html | 124 + web/arabidopsisCross.html | 91 + web/barleyCross.html | 80 + web/blatInfo.html | 108 + web/bug0.html | 1742 ++ web/conditionsofUse.html | 119 + web/copyright.html | 72 + web/correlationAnnotation.html | 158 + web/credit.html | 134 + web/cross.html | 209 + .../images/ui-bg_flat_100_eeeeee_40x100.png | Bin 0 -> 180 bytes .../images/ui-bg_flat_40_444444_40x100.png | Bin 0 -> 180 bytes .../images/ui-bg_flat_40_555555_40x100.png | Bin 0 -> 180 bytes .../images/ui-bg_glass_100_eeeeee_1x400.png | Bin 0 -> 107 bytes .../ui-bg_highlight-hard_100_eeeeee_1x100.png | Bin 0 -> 94 bytes .../ui-bg_highlight-hard_40_aaaaaa_1x100.png | Bin 0 -> 100 bytes .../ui-bg_highlight-soft_40_222222_1x100.png | Bin 0 -> 117 bytes .../images/ui-bg_inset-hard_45_cd0a0a_1x100.png | Bin 0 -> 123 bytes .../images/ui-bg_inset-hard_55_ffeb80_1x100.png | Bin 0 -> 144 bytes .../images/ui-bg_inset-hard_8_bbbbbb_1x100.png | Bin 0 -> 120 bytes .../images/ui-bg_inset-hard_8_eeeeee_1x100.png | Bin 0 -> 101 bytes .../images/ui-icons_222222_256x240.png | Bin 0 -> 4369 bytes .../images/ui-icons_4ca300_256x240.png | Bin 0 -> 5355 bytes .../images/ui-icons_bbbbbb_256x240.png | Bin 0 -> 5355 bytes .../images/ui-icons_ededed_256x240.png | Bin 0 -> 5355 bytes .../images/ui-icons_ffcf29_256x240.png | Bin 0 -> 4369 bytes .../images/ui-icons_ffffff_256x240.png | Bin 0 -> 4369 bytes web/css/custom-theme/jquery-ui-1.8.12.custom.css | 578 + web/css/general.css | 244 + web/css/import.css | 140 + web/css/menu.css | 203 + web/css/tab_style.css | 53 + web/css/tabbed_pages.css | 8 + web/css/tabs_0.gif | Bin 0 -> 238 bytes web/css/tabs_2.gif | Bin 0 -> 226 bytes web/css/thickbox.css | 163 + web/dataSharing.html | 80 + web/dbResults.html | 143 + web/dbdoc/AKXDGeno.html | 76 + web/dbdoc/AXBXAGeno.html | 149 + web/dbdoc/AXBXAPublish.html | 151 + web/dbdoc/B139_K_1206_M.html | 2012 +++ web/dbdoc/B139_K_1206_R.html | 2020 +++ web/dbdoc/B150_K_0406_R.html | 2016 +++ web/dbdoc/B150_K_1206_R.html | 233 + web/dbdoc/B1LI0809M5.html | 91 + web/dbdoc/B1LI0809R.html | 116 + web/dbdoc/B1MI0809M5.html | 90 + web/dbdoc/B1MI0809R.html | 90 + web/dbdoc/B30_K_1206_M.html | 2012 +++ web/dbdoc/B30_K_1206_R.html | 2016 +++ web/dbdoc/B30_K_1206_Rn.html | 2016 +++ web/dbdoc/B6BTBRF2Geno.html | 99 + web/dbdoc/B6BTBRF2Publish.html | 92 + web/dbdoc/B6D2F2Geno.html | 207 + web/dbdoc/B6D2ONCILM_0412.html | 206 + web/dbdoc/BDF2-1999Geno.html | 207 + web/dbdoc/BDF2-2005Geno.html | 11 + web/dbdoc/BHHBF2Geno.html | 207 + web/dbdoc/BRF2_M_0304_M.html | 245 + web/dbdoc/BRF2_M_0304_M_F.html | 246 + web/dbdoc/BRF2_M_0304_P.html | 252 + web/dbdoc/BRF2_M_0304_R.html | 241 + web/dbdoc/BRF2_M_0805_M.html | 246 + web/dbdoc/BRF2_M_0805_P.html | 254 + web/dbdoc/BRF2_M_0805_R.html | 243 + web/dbdoc/BR_M2_1106_R.html | 2876 +++ web/dbdoc/BR_U_0304_DPMMR.html | 402 + web/dbdoc/BR_U_0304_DPMR.html | 398 + web/dbdoc/BR_U_0304_R.html | 402 + web/dbdoc/BR_U_0304_RR.html | 402 + web/dbdoc/BR_U_0405_SS.html | 404 + web/dbdoc/BR_U_0805_M.html | 415 + web/dbdoc/BR_U_0805_P.html | 423 + web/dbdoc/BR_U_0805_R.html | 400 + web/dbdoc/BR_U_0903_DPM.html | 368 + web/dbdoc/BR_U_0903_DPMM.html | 367 + web/dbdoc/BR_U_0903_M.html | 366 + web/dbdoc/BR_U_0903_P.html | 367 + web/dbdoc/BR_U_0903_R.html | 368 + web/dbdoc/BR_U_1105_P.html | 266 + web/dbdoc/BR_U_1105_R.html | 252 + web/dbdoc/BR_U_1203_DPM.html | 356 + web/dbdoc/BR_U_1203_DPMM.html | 370 + web/dbdoc/BR_U_1203_DPMMR.html | 346 + web/dbdoc/BR_U_1203_DPMR.html | 345 + web/dbdoc/BR_U_1203_H2.html | 414 + web/dbdoc/BR_U_1203_H2BF.html | 410 + web/dbdoc/BR_U_1203_M.html | 416 + web/dbdoc/BR_U_1203_MR.html | 353 + web/dbdoc/BR_U_1203_P.html | 405 + web/dbdoc/BR_U_1203_PR.html | 398 + web/dbdoc/BR_U_1203_R.html | 385 + web/dbdoc/BR_U_1203_RR.html | 386 + web/dbdoc/BXD300Publish.html | 74 + web/dbdoc/BXDGeno.html | 252 + web/dbdoc/BXDMicroArray_template.html | 384 + web/dbdoc/BXDPublish.html | 104 + web/dbdoc/BXD_GLA_0911.html | 263 + web/dbdoc/BXHGeno.html | 129 + web/dbdoc/BXHPublish.html | 117 + web/dbdoc/BXSGeno.html | 173 + web/dbdoc/BXSPublish.html | 108 + web/dbdoc/BayXShaGeno.html | 120 + web/dbdoc/BayXShaPublish.html | 108 + web/dbdoc/Br_U_0303_M.html | 379 + web/dbdoc/Br_U_0503_M.html | 373 + web/dbdoc/Br_U_0603_M.html | 390 + web/dbdoc/Br_U_0803_M.html | 401 + web/dbdoc/CANDLE_NB_0711.html | 230 + web/dbdoc/CB_M_0104_M.html | 188 + web/dbdoc/CB_M_0104_P.html | 188 + web/dbdoc/CB_M_0104_R.html | 190 + web/dbdoc/CB_M_0204_P.html | 163 + web/dbdoc/CB_M_0204_R.html | 164 + web/dbdoc/CB_M_0305_M.html | 288 + web/dbdoc/CB_M_0305_P.html | 282 + web/dbdoc/CB_M_0305_R.html | 290 + web/dbdoc/CB_M_1003_M.html | 228 + web/dbdoc/CB_M_1004_M.html | 206 + web/dbdoc/CB_M_1004_P.html | 224 + web/dbdoc/CB_M_1004_R.html | 229 + web/dbdoc/CTB6F2Geno.html | 207 + web/dbdoc/CXBGeno.html | 164 + web/dbdoc/CXBPublish.html | 124 + web/dbdoc/ColXBurGeno.html | 119 + web/dbdoc/ColXBurPublish.html | 207 + web/dbdoc/ColXCviGeno.html | 119 + web/dbdoc/ColXCviPublish.html | 207 + web/dbdoc/DevNeocortex_ILM6.2P14RInv_1110.html | 143 + web/dbdoc/DevNeocortex_ILM6.2P14RInv_1111.html | 213 + web/dbdoc/DevNeocortex_ILM6.2P3RInv_1110.html | 194 + web/dbdoc/DevNeocortex_ILM6.2P3RInv_1111.html | 213 + web/dbdoc/DevNeucortex_ILM6.2P14RInv_1110.html | 143 + web/dbdoc/DevNeucortex_ILM6.2P3RInv_1110.html | 175 + web/dbdoc/DevStriatum_ILM6.2P14RInv_1110.html | 145 + web/dbdoc/DevStriatum_ILM6.2P14RInv_1111.html | 213 + web/dbdoc/DevStriatum_ILM6.2P3RInv_1110.html | 175 + web/dbdoc/DevStriatum_ILM6.2P3RInv_1111.html | 213 + web/dbdoc/EPFLMouseMuscleCDRMA1211.html | 211 + web/dbdoc/EPFLMouseMuscleHFDRMA1211.html | 211 + web/dbdoc/EPFLMouseMuscleRMA1211.html | 211 + web/dbdoc/EYE_M2_0406_R.html | 7313 ++++++++ web/dbdoc/EYE_M2_1105_M.html | 207 + web/dbdoc/EYE_M2_1105_P.html | 287 + web/dbdoc/EYE_M2_1105_R.html | 329 + web/dbdoc/Eye_AXBXA_1008_RankInv.html | 262 + web/dbdoc/Eye_M2_0406_M.html | 7313 ++++++++ web/dbdoc/Eye_M2_0406_P.html | 7313 ++++++++ web/dbdoc/Eye_M2_0608_R.html | 486 + web/dbdoc/Eye_M2_0906_R.html | 485 + web/dbdoc/Eye_M2_0908_R.html | 886 + web/dbdoc/Eye_M2_0908_R_MT.html | 82 + web/dbdoc/Eye_M2_0908_R_NB.html | 76 + web/dbdoc/Eye_M2_0908_R_NBD.html | 76 + web/dbdoc/Eye_M2_0908_R_ND.html | 76 + web/dbdoc/Eye_M2_0908_R_OB.html | 76 + web/dbdoc/Eye_M2_0908_R_OBD.html | 76 + web/dbdoc/Eye_M2_0908_R_OD.html | 76 + web/dbdoc/Eye_M2_0908_R_WT.html | 82 + web/dbdoc/Eye_M2_0908_WTWT.html | 210 + web/dbdoc/FT_2A_0605_Rz.html | 305 + web/dbdoc/FT_2A_0805_M.html | 306 + web/dbdoc/G2HEIONCRetILM6_0911.html | 4653 +++++ web/dbdoc/G2NEI_ILM_Retina_BXD_RI0410.html | 17412 +++++++++++++++++++ web/dbdoc/GCB_M2_0505_M.html | 172 + web/dbdoc/GCB_M2_0505_P.html | 207 + web/dbdoc/GCB_M2_0505_R.html | 207 + web/dbdoc/GN304_Iancu_Hitzemann.pdf | Bin 0 -> 947772 bytes web/dbdoc/GSE15222_F_A_RI_0409.html | 82 + web/dbdoc/GSE15222_F_N_RI_0409.html | 492 + web/dbdoc/GSE15222_F_RI_0409.html | 492 + web/dbdoc/GSE16780_UCLA_ML0911.html | 211 + web/dbdoc/GSE5281_F_RMA0709.html | 291 + web/dbdoc/GSE5281_F_RMA_Alzh_0709.html | 293 + web/dbdoc/GSE5281_F_RMA_N_0709.html | 292 + web/dbdoc/GSE5281_RMA0709.html | 269 + web/dbdoc/GenEx_BXD_liverEt_RMA_0111.html | 81 + web/dbdoc/GenEx_BXD_liverEt_RMA_0211.html | 111 + web/dbdoc/GenEx_BXD_liverEt_RMA_F_0111.html | 81 + web/dbdoc/GenEx_BXD_liverEt_RMA_F_0211.html | 111 + web/dbdoc/GenEx_BXD_liverEt_RMA_M_0111.html | 81 + web/dbdoc/GenEx_BXD_liverEt_RMA_M_0211.html | 113 + web/dbdoc/GenEx_BXD_liverSal_RMA_0111.html | 81 + web/dbdoc/GenEx_BXD_liverSal_RMA_0211.html | 115 + web/dbdoc/GenEx_BXD_liverSal_RMA_F_0111.html | 87 + web/dbdoc/GenEx_BXD_liverSal_RMA_F_0211.html | 113 + web/dbdoc/GenEx_BXD_liverSal_RMA_M_0111.html | 81 + web/dbdoc/GenEx_BXD_liverSal_RMA_M_0211.html | 114 + web/dbdoc/HBTRC-MLC_0611.html | 830 + web/dbdoc/HBTRC-MLC_AD_0611.html | 831 + web/dbdoc/HBTRC-MLC_HD_0611.html | 831 + web/dbdoc/HBTRC-MLC_N_0611.html | 831 + web/dbdoc/HBTRC-MLPFC_0611.html | 830 + web/dbdoc/HBTRC-MLPFC_AD_0611.html | 831 + web/dbdoc/HBTRC-MLPFC_HD_0611.html | 831 + web/dbdoc/HBTRC-MLPFC_N_0611.html | 831 + web/dbdoc/HBTRC-MLVC_0611.html | 830 + web/dbdoc/HBTRC-MLVC_AD_0611.html | 831 + web/dbdoc/HBTRC-MLVC_HD_0611.html | 831 + web/dbdoc/HBTRC-MLVC_N_0611.html | 831 + web/dbdoc/HC_M2CB_1005_M.html | 206 + web/dbdoc/HC_M2CB_1005_P.html | 207 + web/dbdoc/HC_M2CB_1005_R.html | 207 + web/dbdoc/HC_M2CB_1205_P.html | 80 + web/dbdoc/HC_M2CB_1205_R.html | 206 + web/dbdoc/HC_M2_0606_M.html | 70 + web/dbdoc/HC_M2_0606_MDP.html | 82 + web/dbdoc/HC_M2_0606_P.html | 635 + web/dbdoc/HC_M2_0606_R.html | 588 + web/dbdoc/HC_M2_1005_M.html | 545 + web/dbdoc/HC_M2_1005_P.html | 548 + web/dbdoc/HC_M2_1005_R.html | 545 + web/dbdoc/HC_M2_1205_P.html | 575 + web/dbdoc/HC_M2_1205_R.html | 571 + web/dbdoc/HC_M2_1206_R.html | 809 + web/dbdoc/HC_U_0303_M.html | 166 + web/dbdoc/HC_U_0304_R.html | 261 + web/dbdoc/HC_U_0903_M.html | 172 + web/dbdoc/HEIONCRetILM6_0911.html | 3914 +++++ web/dbdoc/HEIONCvsCRetILM6_0911.html | 211 + web/dbdoc/HEI_BXD_ONC_CTLRetina_0211.html | 165 + web/dbdoc/HEI_BXD_ONC_Retina_0211.html | 165 + web/dbdoc/HEI_BXD_ONCvsCTLRetina_0211.html | 165 + web/dbdoc/HLCF_0311.html | 213 + web/dbdoc/HLCM_0311.html | 213 + web/dbdoc/HLC_0311.html | 121 + web/dbdoc/HLC_0311_F.html | 112 + web/dbdoc/HLC_0311_M.html | 112 + web/dbdoc/HQFNeoc_0208_RankInv.html | 457 + web/dbdoc/HQFNeoc_1210_RankInv.html | 460 + web/dbdoc/HQFNeoc_1210v2_RankInv.html | 505 + web/dbdoc/HXBBXHGeno.html | 85 + web/dbdoc/HXBBXHPublish.html | 102 + web/dbdoc/HXBPublish.html | 95 + web/dbdoc/HXB_Adrenal_1208.html | 268 + web/dbdoc/HXB_Heart_1208.html | 301 + web/dbdoc/HXB_Liver_1208.html | 216 + web/dbdoc/HZI_0408_M.html | 207 + web/dbdoc/HZI_0408_R.html | 331 + web/dbdoc/Hipp_Illumina_1.html | 82 + web/dbdoc/Hipp_Illumina_1006.html | 216 + web/dbdoc/Hipp_Illumina_RankInv_0507.html | 471 + web/dbdoc/Hipp_Illumina_RankInv_1006.html | 402 + web/dbdoc/Hipp_Illumina_Rank_1006.html | 439 + web/dbdoc/Hipp_M430.RO_0706.html | 77 + web/dbdoc/Hippocampus_M430_PDNN_Sept05.html | 72 + web/dbdoc/Hippocampus_M430_V2_PDNN_Sept05.html | 770 + web/dbdoc/Human_1008.html | 128 + web/dbdoc/IBR_M_0106_P.html | 306 + web/dbdoc/IBR_M_0106_R.html | 441 + web/dbdoc/IBR_M_0204_M.html | 198 + web/dbdoc/IBR_M_0405_M.html | 268 + web/dbdoc/IBR_M_0405_P.html | 308 + web/dbdoc/IBR_M_0405_R.html | 273 + web/dbdoc/IBR_M_0606_R.html | 466 + web/dbdoc/IBR_M_1004_M.html | 163 + web/dbdoc/IBR_M_1004_P.html | 203 + web/dbdoc/IBR_M_1004_R.html | 200 + web/dbdoc/ILM_B_D_CNS_GI_avg_0508.html | 90 + web/dbdoc/ILM_B_D_CNS_GI_avg_0508.xls | Bin 0 -> 27526656 bytes web/dbdoc/ILM_B_D_avg_CNS_0508.html | 91 + web/dbdoc/ILM_B_D_avg_CNS_0508.xls | Bin 0 -> 32103936 bytes web/dbdoc/ILM_Retina_BXD_FM_RankInv1210.html | 82 + web/dbdoc/ILM_Retina_BXD_F_RankInv1210.html | 82 + web/dbdoc/ILM_Retina_BXD_M_RankInv1210.html | 82 + web/dbdoc/INIA_AmgCoh_0311.html | 273 + web/dbdoc/INIA_Amg_BLA_RMA_1110.html | 274 + web/dbdoc/INIA_Amg_BLA_RMA_F_1110.html | 82 + web/dbdoc/INIA_Amg_BLA_RMA_M_1110.html | 82 + web/dbdoc/INIA_Hyp_F_RMA_1110.html | 82 + web/dbdoc/INIA_Hyp_M_RMA_1110.html | 82 + web/dbdoc/INIA_Hyp_RMA_1110.html | 205 + web/dbdoc/INIA_MacFas_AMG_RMA_0110.html | 206 + web/dbdoc/INIA_MacFas_AMGc_RMA_0110.html | 79 + web/dbdoc/INIA_MacFas_AMGe_RMA_0110.html | 79 + web/dbdoc/INIA_MacFas_Ac_RMA_0110.html | 79 + web/dbdoc/INIA_MacFas_Ae_RMA_0110.html | 79 + web/dbdoc/INIA_MacFas_Hc_RMA_0110.html | 79 + web/dbdoc/INIA_MacFas_He_RMA_0110.html | 79 + web/dbdoc/INIA_MacFas_PfE_RMA_0110.html | 79 + web/dbdoc/INIA_MacFas_Pf_RMA_0110.html | 79 + web/dbdoc/INIA_MacFas_brain_RMA_0110.html | 79 + web/dbdoc/Illum_BXD_PBL_1108.html | 85 + web/dbdoc/Illum_BXD_Spl_1108.html | 213 + web/dbdoc/Illum_BXD_Thy_1108.html | 208 + web/dbdoc/Illum_LXS_Hipp_NOE_1008.html | 300 + web/dbdoc/Illum_LXS_Hipp_NON_1008.html | 480 + web/dbdoc/Illum_LXS_Hipp_NOS_1008.html | 278 + web/dbdoc/Illum_LXS_Hipp_RSE_1008.html | 221 + web/dbdoc/Illum_LXS_Hipp_RSS_1008.html | 92 + web/dbdoc/Illum_LXS_Hipp_loess0807.html | 355 + web/dbdoc/Illum_LXS_Hipp_loess_nb0807.html | 339 + web/dbdoc/Illum_LXS_Hipp_quant0807.html | 340 + web/dbdoc/Illum_LXS_Hipp_quant_nb0807.html | 340 + web/dbdoc/Illum_LXS_Hipp_rsn0807.html | 340 + web/dbdoc/Illum_LXS_Hipp_rsn_nb0807.html | 340 + web/dbdoc/Illum_Retina_BXD_RankInv0309.html | 10179 +++++++++++ web/dbdoc/Illum_Retina_BXD_RankInv0410.html | 14650 ++++++++++++++++ web/dbdoc/IoP_SPL_RMA_0509.html | 99 + web/dbdoc/JAX_CSB_L_0711.html | 373 + web/dbdoc/JAX_CSB_L_6C_0711.html | 371 + web/dbdoc/JAX_CSB_L_HF_0711.html | 371 + web/dbdoc/KIN_YSM_A1C_0711.html | 210 + web/dbdoc/KIN_YSM_AMY_0711.html | 210 + web/dbdoc/KIN_YSM_CBC_0711.html | 210 + web/dbdoc/KIN_YSM_CGE_0711.html | 210 + web/dbdoc/KIN_YSM_DFC_0711.html | 210 + web/dbdoc/KIN_YSM_DIE_0711.html | 210 + web/dbdoc/KIN_YSM_DTH_0711.html | 210 + web/dbdoc/KIN_YSM_FC_0711.html | 210 + web/dbdoc/KIN_YSM_HIP_0711.html | 210 + web/dbdoc/KIN_YSM_IPC_0711.html | 210 + web/dbdoc/KIN_YSM_ITC_0711.html | 210 + web/dbdoc/KIN_YSM_LGE_0711.html | 210 + web/dbdoc/KIN_YSM_M1C_0711.html | 210 + web/dbdoc/KIN_YSM_MD_0711.html | 210 + web/dbdoc/KIN_YSM_MFC_0711.html | 210 + web/dbdoc/KIN_YSM_MGE_0711.html | 210 + web/dbdoc/KIN_YSM_OC_0711.html | 210 + web/dbdoc/KIN_YSM_OFC_0711.html | 210 + web/dbdoc/KIN_YSM_PC_0711.html | 210 + web/dbdoc/KIN_YSM_S1C_0711.html | 210 + web/dbdoc/KIN_YSM_STC_0711.html | 210 + web/dbdoc/KIN_YSM_STR_0711.html | 210 + web/dbdoc/KIN_YSM_TC_0711.html | 210 + web/dbdoc/KIN_YSM_URL_0711.html | 210 + web/dbdoc/KIN_YSM_V1C_0711.html | 210 + web/dbdoc/KIN_YSM_VFC_0711.html | 210 + web/dbdoc/KIN_YSM_VF_0711.html | 210 + web/dbdoc/KI_2A_0405_M.html | 292 + web/dbdoc/KI_2A_0405_R.html | 290 + web/dbdoc/KI_2A_0405_Rz.html | 299 + web/dbdoc/LVF2_M_0704_M.html | 249 + web/dbdoc/LVF2_M_0704_R.html | 246 + web/dbdoc/LV_G_0106_B.html | 343 + web/dbdoc/LV_G_0106_F.html | 324 + web/dbdoc/LV_G_0106_M.html | 325 + web/dbdoc/LV_G_0704_A.html | 302 + web/dbdoc/LV_G_0704_ABF.html | 329 + web/dbdoc/LV_G_0704_R.html | 308 + web/dbdoc/LV_G_0704_RBF.html | 330 + web/dbdoc/LXSGeno.html | 110 + web/dbdoc/LXSPublish.html | 96 + web/dbdoc/Liver_95_AgilentFea.xls | Bin 0 -> 36895744 bytes web/dbdoc/Liver_95_UNCMD.xls | Bin 0 -> 35187712 bytes web/dbdoc/M430MicroArray_May03.html | 180 + web/dbdoc/M430MicroArray_October03.html | 185 + web/dbdoc/M430MicroArray_September03.html | 187 + .../M430MicroArray_SetAB_Batch12_January04.html | 222 + web/dbdoc/MA_M2F_0706_R.html | 2107 +++ web/dbdoc/MA_M2M_0706_R.html | 2108 +++ web/dbdoc/MA_M2_0706_P.html | 2098 +++ web/dbdoc/MA_M2_0706_R.html | 2083 +++ web/dbdoc/MA_M2_0806_P.html | 2106 +++ web/dbdoc/MA_M2_0806_R.html | 2099 +++ web/dbdoc/MA_M_0704_M.html | 197 + web/dbdoc/MA_M_0704_R.html | 196 + web/dbdoc/MDPGeno.html | 207 + web/dbdoc/MDPPublish.html | 104 + web/dbdoc/NCI_Agil_Mam_Tum_RMA_0409.html | 79 + web/dbdoc/NCI_Mam_Tum_RMA_0409.html | 83 + web/dbdoc/NCSU_DrosWB_LC_RMA_0111.html | 96 + web/dbdoc/Neocortex_M430_PDNN_Nov05.html | 72 + web/dbdoc/Neocortex_M430_V2_PDNN_Nov05.html | 225 + web/dbdoc/Neurotox_2009_eQTL.pdf | Bin 0 -> 1836230 bytes web/dbdoc/OHSU_HS-CC_ILMStr_0211.html | 90 + web/dbdoc/ONCRetILM6_0412.html | 206 + web/dbdoc/OXUKHS_ILMHipp_RI0510.html | 91 + web/dbdoc/OXUKHS_ILMLiver_RI0510.html | 87 + web/dbdoc/OXUKHS_ILMLung_RI0510.html | 86 + web/dbdoc/RTC_1106_R.html | 236 + web/dbdoc/RTHC_0211_R.html | 221 + web/dbdoc/SA_M2_0405_M.html | 232 + web/dbdoc/SA_M2_0405_MC.html | 235 + web/dbdoc/SA_M2_0405_P.html | 233 + web/dbdoc/SA_M2_0405_PC.html | 240 + web/dbdoc/SA_M2_0405_R.html | 227 + web/dbdoc/SA_M2_0405_RC.html | 231 + web/dbdoc/SA_M2_0405_RR.html | 227 + web/dbdoc/SA_M2_0405_SS.html | 207 + web/dbdoc/SA_M2_0905_M.html | 254 + web/dbdoc/SA_M2_0905_P.html | 257 + web/dbdoc/SA_M2_0905_R.html | 251 + web/dbdoc/SA_M2_1104_G.html | 489 + web/dbdoc/SA_M2_1104_M.html | 493 + web/dbdoc/SA_M2_1104_P.html | 493 + web/dbdoc/SA_M2_1104_R.html | 493 + web/dbdoc/STSPL_1107_R.html | 131 + web/dbdoc/SUH_Liv_RMA_0611.html | 362 + web/dbdoc/SXMGeno.html | 89 + web/dbdoc/SXMPublish.html | 441 + web/dbdoc/Striatum_Exon_0209.html | 193 + web/dbdoc/Striatum_Exon_0308.html | 77 + web/dbdoc/Striatum_Exon_0707.html | 491 + web/dbdoc/Striatum_Exon_0708.html | 77 + web/dbdoc/Striatum_M430_PDNN_Nov05.html | 226 + web/dbdoc/Striatum_M430_V2_PDNN_Nov05.html | 231 + web/dbdoc/Treg_R_1006.html | 2120 +++ web/dbdoc/U74Av2SScore_Apr05.html | 414 + web/dbdoc/UAB_DrosWB_LC_RMA_1009.html | 133 + web/dbdoc/UAB_DrosWB_LE_RMA_1009.html | 132 + web/dbdoc/UCLA_BDF2_LIVER_1999.html | 114 + web/dbdoc/UCLA_BHF2_ADIPOSE_0605.html | 95 + web/dbdoc/UCLA_BHF2_ADIPOSE_FEMALE.html | 207 + web/dbdoc/UCLA_BHF2_ADIPOSE_MALE.html | 207 + web/dbdoc/UCLA_BHF2_BRAIN_0605.html | 92 + web/dbdoc/UCLA_BHF2_BRAIN_FEMALE.html | 106 + web/dbdoc/UCLA_BHF2_BRAIN_MALE.html | 106 + web/dbdoc/UCLA_BHF2_LIVER_0605.html | 121 + web/dbdoc/UCLA_BHF2_LIVER_FEMALE.html | 107 + web/dbdoc/UCLA_BHF2_LIVER_MALE.html | 106 + web/dbdoc/UCLA_BHF2_MUSCLE_0605.html | 111 + web/dbdoc/UCLA_BHF2_MUSCLE_FEMALE.html | 106 + web/dbdoc/UCLA_BHF2_MUSCLE_MALE.html | 106 + web/dbdoc/UCLA_BHHBF2_ADIPOSE_2005.html | 104 + web/dbdoc/UCLA_BHHBF2_ADIPOSE_FEMALE.html | 105 + web/dbdoc/UCLA_BHHBF2_ADIPOSE_MALE.html | 106 + web/dbdoc/UCLA_BHHBF2_BRAIN_2005.html | 207 + web/dbdoc/UCLA_BHHBF2_BRAIN_FEMALE.html | 207 + web/dbdoc/UCLA_BHHBF2_BRAIN_MALE.html | 207 + web/dbdoc/UCLA_BHHBF2_LIVER_2005.html | 207 + web/dbdoc/UCLA_BHHBF2_LIVER_FEMALE.html | 207 + web/dbdoc/UCLA_BHHBF2_LIVER_MALE.html | 207 + web/dbdoc/UCLA_BHHBF2_MUSCLE_2005.html | 207 + web/dbdoc/UCLA_BHHBF2_MUSCLE_FEMALE.html | 204 + web/dbdoc/UCLA_BHHBF2_MUSCLE_MALE.html | 207 + web/dbdoc/UCLA_BXDBXH_CARTILAGE.html | 104 + web/dbdoc/UCLA_BXDBXH_CARTILAGE_V2.html | 216 + web/dbdoc/UCLA_BXD_CARTILAGE.html | 207 + web/dbdoc/UCLA_BXHBXD_CARTILAGE.html | 104 + web/dbdoc/UCLA_BXHBXD_CARTILAGE_V2.html | 207 + web/dbdoc/UCLA_BXH_CARTILAGE.html | 207 + web/dbdoc/UCLA_BXN_CARTILAGE.html | 127 + web/dbdoc/UCLA_BXN_CARTILAGE2.html | 77 + web/dbdoc/UCLA_CTB6B6CTF2_ADIPOSE_2005.html | 107 + web/dbdoc/UCLA_CTB6B6CTF2_ADIPOSE_FEMALE.html | 109 + web/dbdoc/UCLA_CTB6B6CTF2_ADIPOSE_MALE.html | 107 + web/dbdoc/UCLA_CTB6B6CTF2_BRAIN_2005.html | 113 + web/dbdoc/UCLA_CTB6B6CTF2_BRAIN_FEMALE.html | 106 + web/dbdoc/UCLA_CTB6B6CTF2_BRAIN_MALE.html | 106 + web/dbdoc/UCLA_CTB6B6CTF2_LIVER_2005.html | 111 + web/dbdoc/UCLA_CTB6B6CTF2_LIVER_FEMALE.html | 111 + web/dbdoc/UCLA_CTB6B6CTF2_LIVER_MALE.html | 111 + web/dbdoc/UCLA_CTB6B6CTF2_MUSCLE_2005.html | 110 + web/dbdoc/UCLA_CTB6B6CTF2_MUSCLE_FEMALE.html | 111 + web/dbdoc/UCLA_CTB6B6CTF2_MUSCLE_MALE.html | 111 + web/dbdoc/UCLA_CXBF2_ADIPOSE_2005.html | 89 + web/dbdoc/UCLA_CXBF2_BRAIN_2005.html | 92 + web/dbdoc/UCLA_CXBF2_LIVER_2005.html | 90 + web/dbdoc/UCLA_CXBF2_MUSCLE_2005.html | 88 + web/dbdoc/UIOWA_Eye_RMA_0906.html | 84 + web/dbdoc/UMCG_0907_Eryth.html | 92 + web/dbdoc/UMCG_0907_Eryth_ori.html | 93 + web/dbdoc/UMCG_0907_HemaStem.html | 92 + web/dbdoc/UMCG_0907_HemaStem_ori.html | 93 + web/dbdoc/UMCG_0907_Myeloid.html | 92 + web/dbdoc/UMCG_0907_Myeloid_ori.html | 93 + web/dbdoc/UMCG_0907_Pro.html | 92 + web/dbdoc/UMCG_0907_Pro_ori.html | 93 + web/dbdoc/UMUTAffyExon_0209_RMA.html | 254 + web/dbdoc/UMUTAffyExon_0209_RMA_MDP.html | 82 + web/dbdoc/UMUTAffyExon_0308_RMA.html | 77 + web/dbdoc/UMUTAffyExon_0708_RMA.html | 621 + web/dbdoc/UMUTAffyExon_0808_RMA.html | 81 + web/dbdoc/UTHSC_1107_RankInv.html | 253 + web/dbdoc/UTHSC_SPL_RMA_1010.html | 407 + web/dbdoc/UTHSC_SPL_RMA_1210.html | 379 + web/dbdoc/UTHSC_Str_RankInv_1210.html | 221 + web/dbdoc/UTHSC_Striatum_RankInv_1210.html | 219 + web/dbdoc/UTK_BXDSpl_VST_0110.html | 112 + web/dbdoc/UT_CEPH_RankInv0909.html | 291 + web/dbdoc/UT_HippRatEx_RMA_0709.html | 92 + web/dbdoc/UT_ILM_BXD_hipp_NOE_0909.html | 142 + web/dbdoc/UT_ILM_BXD_hipp_NON_0909.html | 173 + web/dbdoc/UT_ILM_BXD_hipp_NOS_0909.html | 133 + web/dbdoc/UT_ILM_BXD_hipp_RSE_0909.html | 133 + web/dbdoc/UT_ILM_BXD_hipp_RSS_0909.html | 130 + web/dbdoc/UT_VA_ILM_BXD_Islets_RInv1009.html | 79 + web/dbdoc/UT_VA_ILM_BXD_SpLeuc_RInv1009.html | 79 + web/dbdoc/VCUEtOH_0609_R.html | 95 + web/dbdoc/VCUEtOH_0806_R.html | 207 + web/dbdoc/VCUEtOH_1007_R.html | 207 + web/dbdoc/VCUEtOH_1206_R.html | 104 + web/dbdoc/VCUEt_vs_Sal_0806_R.html | 376 + web/dbdoc/VCUEtvsSal_0609_R.html | 93 + web/dbdoc/VCUSal_0609_R.html | 101 + web/dbdoc/VCUSal_0806_R.html | 207 + web/dbdoc/VCUSal_1006_R.html | 104 + web/dbdoc/VCUSal_1007_R.html | 207 + web/dbdoc/VCUSal_1206_R.html | 223 + web/dbdoc/VCUSalo_1007_R.html | 207 + web/dbdoc/VCU_PF_Air_0111_R.html | 208 + web/dbdoc/VCU_PF_AvE_0111_Ss.html | 212 + web/dbdoc/VCU_PF_Et_0111_R.html | 208 + web/dbdoc/VUBXDMouseMidBrainQ0212.html | 213 + web/dbdoc/VUBXDMouseMidBrainQ0212L1.html | 206 + web/dbdoc/VUBXDMouseMidBrainQ0212L10.html | 206 + web/dbdoc/VUBXDMouseMidBrainQ0212L11.html | 206 + web/dbdoc/VUBXDMouseMidBrainQ0212L12.html | 206 + web/dbdoc/VUBXDMouseMidBrainQ0212L13.html | 206 + web/dbdoc/VUBXDMouseMidBrainQ0212L14.html | 206 + web/dbdoc/VUBXDMouseMidBrainQ0212L2.html | 206 + web/dbdoc/VUBXDMouseMidBrainQ0212L3.html | 206 + web/dbdoc/VUBXDMouseMidBrainQ0212L4.html | 206 + web/dbdoc/VUBXDMouseMidBrainQ0212L5.html | 206 + web/dbdoc/VUBXDMouseMidBrainQ0212L6.html | 206 + web/dbdoc/VUBXDMouseMidBrainQ0212L7.html | 206 + web/dbdoc/VUBXDMouseMidBrainQ0212L8.html | 206 + web/dbdoc/VUBXDMouseMidBrainQ0212L9.html | 206 + web/dbdoc/VUBXDMouseMidBrainQ0512.html | 206 + web/dbdoc/data_analysis_fundamentals_manual.pdf | Bin 0 -> 740520 bytes web/dbdoc/downloadHelp.html | 60 + web/dbdoc/template.html | 207 + web/dbdoc/test.html | 84 + web/dbdoc/testimage.html | 436 + web/down.html | 55 + web/drosophilaCross.html | 73 + web/faq.html | 778 + web/favicon.ico | Bin 0 -> 1406 bytes web/footer.html | 44 + web/gghelp.html | 98 + web/glossary.html | 771 + web/header.html | 60 + web/heatmap.html | 64 + web/home.html | 183 + web/humanCross.html | 198 + web/images/AffyU74.pdf | Bin 0 -> 8787 bytes web/images/B6 punch image.png | Bin 0 -> 610909 bytes web/images/BEHN.head.gif | Bin 0 -> 4669 bytes web/images/Beth_Israel.jpg | Bin 0 -> 42173 bytes web/images/Beth_Israel.pdf | Bin 0 -> 5686 bytes web/images/CEL.gif | Bin 0 -> 1087 bytes web/images/CHP.gif | Bin 0 -> 834 bytes web/images/Contract.gif | Bin 0 -> 66 bytes web/images/CzechAca.gif | Bin 0 -> 3504 bytes web/images/D2 punch image.png | Bin 0 -> 454392 bytes web/images/DAT.gif | Bin 0 -> 1174 bytes web/images/Expand.gif | Bin 0 -> 78 bytes web/images/GCAT_logo_final.jpg | Bin 0 -> 2789 bytes web/images/MDC_Logo.gif | Bin 0 -> 1845 bytes web/images/NIEHS.gif | Bin 0 -> 28450 bytes web/images/ODE_logo_final.jpg | Bin 0 -> 2631 bytes web/images/PORTLANDVASEALROUND.jpg | Bin 0 -> 2287 bytes web/images/PythonPoweredAnimSmall.gif | Bin 0 -> 2958 bytes web/images/RPT.gif | Bin 0 -> 1255 bytes web/images/TXT.gif | Bin 0 -> 878 bytes web/images/Unc.gif | Bin 0 -> 4517 bytes web/images/VNATCrop.gif | Bin 0 -> 798 bytes web/images/add_collection1_final.jpg | Bin 0 -> 2439 bytes web/images/add_icon.jpg | Bin 0 -> 2615 bytes web/images/analogo.gif | Bin 0 -> 567 bytes web/images/arrowdown.gif | Bin 0 -> 844 bytes web/images/arrowdown2.gif | Bin 0 -> 166 bytes web/images/arrowdown3.gif | Bin 0 -> 1442 bytes web/images/asc.gif | Bin 0 -> 54 bytes web/images/bg.gif | Bin 0 -> 64 bytes web/images/biochem_logo.jpg | Bin 0 -> 9821 bytes web/images/blat.png | Bin 0 -> 35957 bytes web/images/blat2.gif | Bin 0 -> 17189 bytes web/images/blue.png | Bin 0 -> 152 bytes web/images/bluegradient.png | Bin 0 -> 353 bytes web/images/cds.gif | Bin 0 -> 3407 bytes web/images/checkblue.gif | Bin 0 -> 290 bytes web/images/checkgreen.gif | Bin 0 -> 290 bytes web/images/checkorange.gif | Bin 0 -> 290 bytes web/images/checkred.gif | Bin 0 -> 290 bytes web/images/checkyellow.gif | Bin 0 -> 290 bytes web/images/colorPanel.png | Bin 0 -> 5642 bytes web/images/compare_correlates2_final.jpg | Bin 0 -> 2722 bytes web/images/correlation_matrix1_final.jpg | Bin 0 -> 2620 bytes web/images/desc.gif | Bin 0 -> 54 bytes web/images/download.gif | Bin 0 -> 641 bytes web/images/edit_icon.jpg | Bin 0 -> 3258 bytes web/images/export2_final.jpg | Bin 0 -> 2452 bytes web/images/female.jpg | Bin 0 -> 606 bytes web/images/femaleb6by.jpg | Bin 0 -> 908 bytes web/images/find_icon.jpg | Bin 0 -> 3889 bytes web/images/genenetwork.gif | Bin 0 -> 5543 bytes web/images/genewiki_icon.jpg | Bin 0 -> 3494 bytes web/images/gnf.gif | Bin 0 -> 3289 bytes web/images/gron.jpg | Bin 0 -> 5446 bytes web/images/gtom_icon_final.jpg | Bin 0 -> 2319 bytes web/images/heatmap2_final.jpg | Bin 0 -> 2466 bytes web/images/history.gif | Bin 0 -> 1272 bytes web/images/html2.gif | Bin 0 -> 231 bytes web/images/imperialCollege.gif | Bin 0 -> 6720 bytes web/images/invert_selection2_final.jpg | Bin 0 -> 2458 bytes web/images/ipad_icon3.png | Bin 0 -> 6728 bytes web/images/loadingAnimation.gif | Bin 0 -> 5886 bytes web/images/logo.jpg | Bin 0 -> 14134 bytes web/images/logo_inra.gif | Bin 0 -> 2266 bytes web/images/male.jpg | Bin 0 -> 619 bytes web/images/mmicon.gif | Bin 0 -> 1020 bytes web/images/modify.gif | Bin 0 -> 157 bytes web/images/multiple_interval_mapping1_final.jpg | Bin 0 -> 3175 bytes web/images/naturalbig.jpg | Bin 0 -> 6508 bytes web/images/nciLogo-rev.jpg | Bin 0 -> 9353 bytes web/images/network_graph1_final.jpg | Bin 0 -> 3260 bytes web/images/new_user.gif | Bin 0 -> 1375 bytes web/images/nextsign.gif | Bin 0 -> 118 bytes web/images/nih.jpg | Bin 0 -> 1934 bytes web/images/partial_correlation_final.jpg | Bin 0 -> 2966 bytes web/images/plant1.jpg | Bin 0 -> 373352 bytes web/images/plant1_t.jpg | Bin 0 -> 28794 bytes web/images/plant2.jpg | Bin 0 -> 308701 bytes web/images/plant2_t.jpg | Bin 0 -> 32984 bytes web/images/plant3.jpg | Bin 0 -> 170875 bytes web/images/plant3_t.jpg | Bin 0 -> 34642 bytes web/images/plant4.jpg | Bin 0 -> 211258 bytes web/images/plant4_t.jpg | Bin 0 -> 32106 bytes web/images/probe_icon.jpg | Bin 0 -> 3480 bytes web/images/qmark.gif | Bin 0 -> 93 bytes web/images/qmarkBox.gif | Bin 0 -> 99 bytes web/images/qmarkBoxBlue.gif | Bin 0 -> 91 bytes web/images/qtlreaper.gif | Bin 0 -> 4060 bytes web/images/question_mark.gif | Bin 0 -> 774 bytes web/images/real-webqtllogo2.gif | Bin 0 -> 5851 bytes web/images/real-webqtllogo2beta.gif | Bin 0 -> 6245 bytes web/images/redgradient.png | Bin 0 -> 326 bytes web/images/remove_selection1_final.jpg | Bin 0 -> 2327 bytes web/images/rnaseq_icon.jpg | Bin 0 -> 4455 bytes web/images/rug.jpg | Bin 0 -> 5446 bytes web/images/search.gif | Bin 0 -> 704 bytes web/images/select_all.gif | Bin 0 -> 1010 bytes web/images/select_all2_final.jpg | Bin 0 -> 2402 bytes web/images/select_none2_final.jpg | Bin 0 -> 2153 bytes web/images/shadow/corner_bl.gif | Bin 0 -> 239 bytes web/images/shadow/corner_tr.gif | Bin 0 -> 232 bytes web/images/shadow/shadow.gif | Bin 0 -> 5485 bytes web/images/single.jpg | Bin 0 -> 58852 bytes web/images/single_t.jpg | Bin 0 -> 4710 bytes web/images/snp_icon.jpg | Bin 0 -> 3536 bytes web/images/sortdown.gif | Bin 0 -> 857 bytes web/images/sortdownon.gif | Bin 0 -> 78 bytes web/images/sortup.gif | Bin 0 -> 77 bytes web/images/sortupon.gif | Bin 0 -> 77 bytes web/images/spearman.gif | Bin 0 -> 411 bytes web/images/start.gif | Bin 0 -> 1326 bytes web/images/step1.gif | Bin 0 -> 758 bytes web/images/step2.gif | Bin 0 -> 826 bytes web/images/step3.gif | Bin 0 -> 818 bytes web/images/tair.gif | Bin 0 -> 3662 bytes web/images/th_back.gif | Bin 0 -> 830 bytes web/images/tjl_logo.gif | Bin 0 -> 1506 bytes web/images/tjl_logo_02.gif | Bin 0 -> 1365 bytes web/images/tooltip.js | 192 + web/images/trash.gif | Bin 0 -> 1109 bytes web/images/trash.jpg | Bin 0 -> 598 bytes web/images/upload/APOE_Pearson.gif | Bin 0 -> 105484 bytes web/images/upload/APOE_Rank.gif | Bin 0 -> 121898 bytes web/images/upload/APOE_Scatter.png | Bin 0 -> 102730 bytes web/images/upload/AXB_BXA_Eye_Sex.gif | Bin 0 -> 17207 bytes web/images/upload/AXB_Eye_Sex.gif | Bin 0 -> 132302 bytes .../Affero_General_Public_License_3_Logo.svg.png | Bin 0 -> 37678 bytes web/images/upload/BLATVerify1.png | Bin 0 -> 159643 bytes web/images/upload/BLATVerify2.png | Bin 0 -> 6152 bytes web/images/upload/BXD20.png | Bin 0 -> 630471 bytes web/images/upload/BXD_immunophenotypes_2010.pdf | Bin 0 -> 336435 bytes web/images/upload/Bailey_1971_Transplantation.pdf | Bin 0 -> 1953160 bytes web/images/upload/BannerGraph_2009.png | Bin 0 -> 29709 bytes web/images/upload/BannerGraphs.png | Bin 0 -> 29694 bytes web/images/upload/Barley_Search.png | Bin 0 -> 28350 bytes web/images/upload/Boon_H5N1_2009.pdf | Bin 0 -> 1187390 bytes web/images/upload/CITGLogo.png | Bin 0 -> 11962 bytes web/images/upload/Chrna1vsMyf6.gif | Bin 0 -> 59529 bytes web/images/upload/Congenic.png | Bin 0 -> 56578 bytes web/images/upload/Cord Blood Review 2010.pdf | Bin 0 -> 530376 bytes web/images/upload/Davies_Schalkwyk_2009.pdf | Bin 0 -> 483265 bytes web/images/upload/DdyvsXist_GENIAAA.png | Bin 0 -> 138690 bytes .../upload/DiCurzio_Goldowitz-2011_BXDAdrenals.pdf | Bin 0 -> 1635901 bytes web/images/upload/ExonStriatumSearch.png | Bin 0 -> 19220 bytes web/images/upload/GCAT.png | Bin 0 -> 106461 bytes .../upload/Gatti et al Physiol Genomics 2010.pdf | Bin 0 -> 5381740 bytes web/images/upload/Gatti_2010PhysiolGenomics.pdf | Bin 0 -> 5381740 bytes web/images/upload/GeneNetBanner2009.png | Bin 0 -> 15259 bytes web/images/upload/GeneNet_Banner.png | Bin 0 -> 20632 bytes web/images/upload/GeneNet_Banner2009b PM.png | Bin 0 -> 15274 bytes web/images/upload/GeneNet_Banner2009c.png | Bin 0 -> 15274 bytes .../upload/Gibson_Jones_2011_Spleen_Iron.pdf | Bin 0 -> 314066 bytes web/images/upload/Grin2BMap.png | Bin 0 -> 62604 bytes web/images/upload/HEIMED_Distrib.png | Bin 0 -> 17058 bytes web/images/upload/HQF_Drd1a_Striatum.gif | Bin 0 -> 173030 bytes web/images/upload/HSmice.jpg | Bin 0 -> 84627 bytes web/images/upload/HZi_sex.gif | Bin 0 -> 103591 bytes web/images/upload/Heimel_2008_BXDVisualCortex.pdf | Bin 0 -> 422804 bytes web/images/upload/Ilm103520706_May07RankInv.gif | Bin 0 -> 167413 bytes web/images/upload/IndelsinHc.png | Bin 0 -> 88459 bytes web/images/upload/Info.png | Bin 0 -> 6739 bytes .../Jackson_2011_Neuropsypharm_GalaninNicotine.pdf | Bin 0 -> 557511 bytes .../Jones et al 1999 Pharmacogenetics3-0.pdf | Bin 0 -> 660915 bytes .../upload/Jones et al 1999 Pharmacogenetics3.pdf | Bin 0 -> 660915 bytes web/images/upload/Jones_2003_NN1203.pdf | Bin 0 -> 230342 bytes web/images/upload/Jones_2008_Hippocampus.pdf | Bin 0 -> 313946 bytes web/images/upload/Jones_OfMiceandMen.pdf | Bin 0 -> 35763 bytes web/images/upload/Kcnj9_PFCMiles.gif | Bin 0 -> 76413 bytes web/images/upload/LXS_SscrMaxLOD.gif | Bin 0 -> 72699 bytes web/images/upload/Li_Burmeister_2005.pdf | Bin 0 -> 138708 bytes web/images/upload/LitCorSearch.png | Bin 0 -> 36002 bytes web/images/upload/MDP_Search.png | Bin 0 -> 26836 bytes web/images/upload/Mendelian_LXS.gif | Bin 0 -> 158484 bytes web/images/upload/Morahan_2008.pdf | Bin 0 -> 275132 bytes web/images/upload/Mountz2005.pdf | 4418 +++++ web/images/upload/MouseExonGeneNetwork.png | Bin 0 -> 227786 bytes web/images/upload/Mozhui_et_al_2007.doc | Bin 0 -> 2596352 bytes web/images/upload/NetworkGraph2009.png | Bin 0 -> 23663 bytes web/images/upload/NetworkLogo.png | Bin 0 -> 24670 bytes web/images/upload/New Interface.png | Bin 0 -> 224095 bytes web/images/upload/Nif.jpg | Bin 0 -> 4444 bytes web/images/upload/Nif.png | Bin 0 -> 4444 bytes web/images/upload/Normal_Plot.gif | Bin 0 -> 47289 bytes web/images/upload/PartialCorrelationExample1.png | Bin 0 -> 200277 bytes web/images/upload/PartialCorrelationSNP.png | Bin 0 -> 44405 bytes web/images/upload/PartialR_Icon.png | Bin 0 -> 12776 bytes web/images/upload/Peirce_Lu_2003.pdf | Bin 0 -> 1683603 bytes web/images/upload/Picture 3.png | Bin 0 -> 20081 bytes web/images/upload/Picture 4.png | Bin 0 -> 21259 bytes web/images/upload/Poot_2011.pdf | Bin 0 -> 223269 bytes web/images/upload/Porcu_Morrow_2011.pdf | Bin 0 -> 900920 bytes web/images/upload/PurkinjeCell.jpg | Bin 0 -> 80624 bytes web/images/upload/PythonLogo.png | Bin 0 -> 7685 bytes web/images/upload/Rosen_2003.pdf | Bin 0 -> 916746 bytes web/images/upload/SNPBrowserUpdate.png | Bin 0 -> 149486 bytes web/images/upload/SampleData.txt | 1 + web/images/upload/Sex_LXS_NOE.gif | Bin 0 -> 138028 bytes web/images/upload/Sex_LXS_NOS.gif | Bin 0 -> 131774 bytes web/images/upload/Sex_LXS_RSS.gif | Bin 0 -> 137191 bytes web/images/upload/SilverFig3_2.png | Bin 0 -> 61570 bytes web/images/upload/SilverFig3_6.png | Bin 0 -> 22017 bytes web/images/upload/Striatum_Illumina_SexTest.gif | Bin 0 -> 234436 bytes web/images/upload/Suwanwela-1.JBMR.10.pdf | Bin 0 -> 730311 bytes web/images/upload/Taylor_1973.pdf | Bin 0 -> 999745 bytes web/images/upload/Thomas_Auwerx_2009.pdf | Bin 0 -> 1463468 bytes web/images/upload/Tour_1_NR2B.png | Bin 0 -> 169797 bytes web/images/upload/Tour_2.png | Bin 0 -> 138986 bytes web/images/upload/Tour_3.png | Bin 0 -> 213589 bytes web/images/upload/Tour_4.png | Bin 0 -> 116237 bytes web/images/upload/Tutoral_Stats1.jpg | Bin 0 -> 119207 bytes web/images/upload/Tutorial-Correlation2.jpg | Bin 0 -> 335315 bytes web/images/upload/Tutorial_Correlation1.jpg | Bin 0 -> 46607 bytes web/images/upload/Tutorial_Correlation3.jpg | Bin 0 -> 226690 bytes web/images/upload/Tutorial_GO1.jpg | Bin 0 -> 294169 bytes web/images/upload/Tutorial_Map1.jpg | Bin 0 -> 259758 bytes web/images/upload/Tutorial_Map2.jpg | Bin 0 -> 163871 bytes web/images/upload/Tutorial_Stats2.jpg | Bin 0 -> 68009 bytes web/images/upload/Tutorial_TraitData1-0.jpg | Bin 0 -> 146552 bytes web/images/upload/Tutorial_TraitData1.jpg | Bin 0 -> 142216 bytes web/images/upload/Vazquez2007.pdf | Bin 0 -> 2002736 bytes web/images/upload/WBCs_MDP_female.gif | Bin 0 -> 115886 bytes web/images/upload/XistStriatumExonJul07.gif | Bin 0 -> 156684 bytes web/images/upload/Xist_LXS_Hipp.gif | Bin 0 -> 270577 bytes web/images/upload/Xist_in_GSE5281.gif | Bin 0 -> 309684 bytes web/images/upload/barley_QSM.png | Bin 0 -> 22571 bytes web/images/upload/gg_U74brain_FDR1_hwt.gif | Bin 0 -> 89680 bytes web/images/upload/gglogo1-0.gif | Bin 0 -> 4711 bytes web/images/upload/gglogo1.gif | Bin 0 -> 4711 bytes web/images/upload/gglogo1.png | Bin 0 -> 15059 bytes web/images/upload/image001.gif | Bin 0 -> 152169 bytes web/images/upload/image0010.gif | Bin 0 -> 212934 bytes web/images/upload/image0011.gif | Bin 0 -> 139498 bytes web/images/upload/image0012.gif | Bin 0 -> 212340 bytes web/images/upload/image001rev2.jpg | Bin 0 -> 176649 bytes web/images/upload/image002.gif | Bin 0 -> 212142 bytes web/images/upload/image002rev2.jpg | Bin 0 -> 204544 bytes web/images/upload/image003.gif | Bin 0 -> 153241 bytes web/images/upload/image003rev2.jpg | Bin 0 -> 212868 bytes web/images/upload/image004.gif | Bin 0 -> 211764 bytes web/images/upload/image005.gif | Bin 0 -> 212934 bytes web/images/upload/image006.gif | Bin 0 -> 137749 bytes web/images/upload/image007.gif | Bin 0 -> 150649 bytes web/images/upload/image008.jpg | Bin 0 -> 88482 bytes web/images/upload/image009.jpg | Bin 0 -> 62951 bytes web/images/upload/physical_chr10_map.gif | Bin 0 -> 62173 bytes web/images/upload/polar-bear-tongue-0.jpg | Bin 0 -> 24393 bytes web/images/upload/polar-bear-tongue-1.jpg | Bin 0 -> 24393 bytes web/images/upload/polar-bear-tongue-2.jpg | Bin 0 -> 24393 bytes web/images/upload/polar-bear-tongue-3.jpg | Bin 0 -> 24393 bytes web/images/upload/polar-bear-tongue-4.jpg | Bin 0 -> 24393 bytes web/images/upload/polar-bear-tongue.jpg | Bin 0 -> 24393 bytes web/images/upload/registered_with_nif_button.jpg | Bin 0 -> 2310 bytes web/images/upload/sort_by.gif | Bin 0 -> 31227 bytes web/images/upload/sort_by.png | Bin 0 -> 10289 bytes web/images/upload/tutorial_banner.jpg | Bin 0 -> 34273 bytes .../upload/wt_cdna_synthesis_amplification.jpg | Bin 0 -> 157427 bytes web/images/verify_icon.jpg | Bin 0 -> 2991 bytes web/images/waitAnima.gif | Bin 0 -> 4147 bytes web/images/waitAnima2.gif | Bin 0 -> 54013 bytes web/images/wcrest.gif | Bin 0 -> 3410 bytes web/images/webgestalt_icon_final.jpg | Bin 0 -> 2702 bytes web/images/webqtl-2.gif | Bin 0 -> 6631 bytes web/images/webqtl-3.gif | Bin 0 -> 3247 bytes web/images/webqtl.jpg | Bin 0 -> 14275 bytes web/images/webqtl.js | 19 + web/images/webqtlLogo.gif | Bin 0 -> 3761 bytes web/images/webqtlLogoWide.gif | Bin 0 -> 3822 bytes web/images/webqtl_search.gif | Bin 0 -> 1007 bytes web/images/webqtl_search.psd | Bin 0 -> 17425 bytes web/images/webqtllogo2.gif | Bin 0 -> 5851 bytes web/images/webqtllogo2.gif.old | Bin 0 -> 6245 bytes web/images/webqtllogo2archive.gif | Bin 0 -> 6280 bytes web/images/webqtllogo2beta.gif | Bin 0 -> 6245 bytes web/images/webqtllogo2beta2.gif | Bin 0 -> 6111 bytes web/images/webqtllogolinkout.gif | Bin 0 -> 2775 bytes web/images/x.gif | Bin 0 -> 158 bytes web/index.html | 8 + web/index.html.20110408 | 367 + web/index2.html | 57 + web/index3.html | 443 + web/index4.html | 184 + web/javascript/colorSel.js | 53 + web/javascript/correlationMatrix.js | 453 + web/javascript/dhtml.js | 319 + web/javascript/footer.js | 46 + web/javascript/header.js | 62 + web/javascript/jquery-1.5.2.min.js | 16 + web/javascript/jquery-ui-1.8.12.custom.min.js | 783 + web/javascript/jqueryFunction.js | 1115 ++ web/javascript/menu_items.js | 109 + web/javascript/menu_new.js | 396 + web/javascript/menu_tpl.js | 89 + web/javascript/networkGraph.js | 112 + web/javascript/searchtip.js | 64 + web/javascript/selectDatasetMenu.js | 1191 ++ web/javascript/sortTrait.js | 344 + web/javascript/svg.js | 326 + web/javascript/tabbed_pages.js | 32 + web/javascript/tablesorter.js | 1005 ++ web/javascript/thickbox.js | 319 + web/javascript/webqtl.js | 1346 ++ web/links.html | 490 + web/literatureCorrelation.html | 75 + web/manager.html | 72 + web/missing.html | 57 + web/mouseCross.html | 371 + web/pdf/Peirce_and_Lu_2004.pdf | Bin 0 -> 414511 bytes web/pdf/corr.tar | Bin 0 -> 30720 bytes web/pdf/nn0504-485.pdf | Bin 0 -> 186522 bytes web/pdf/webqtl.pdf | Bin 0 -> 880018 bytes web/phenotype_sop.html | 164 + web/policy.html | 56 + web/privacy.html | 86 + web/probeInfo.html | 82 + web/protocols.html | 542 + web/qmark.html | 122 + web/qtlreaper.html | 404 + web/ratCross.html | 83 + web/reference.html | 1332 ++ web/sample.txt | 1 + web/sample2.txt | 27 + web/searchHelp.html | 212 + web/snp/chr1 | 1002 ++ web/snp/chr10 | 1004 ++ web/snp/chr11 | 1003 ++ web/snp/chr12 | 1003 ++ web/snp/chr13 | 1003 ++ web/snp/chr14 | 1004 ++ web/snp/chr15 | 1003 ++ web/snp/chr16 | 1004 ++ web/snp/chr17 | 1004 ++ web/snp/chr18 | 1004 ++ web/snp/chr19 | 1004 ++ web/snp/chr2 | 1004 ++ web/snp/chr3 | 1004 ++ web/snp/chr4 | 1004 ++ web/snp/chr5 | 1004 ++ web/snp/chr6 | 1004 ++ web/snp/chr7 | 1003 ++ web/snp/chr8 | 1003 ++ web/snp/chr9 | 1003 ++ web/snp/chrX | 1004 ++ web/snpbrowser.html | 116 + web/statusandContact.html | 261 + .../WebQTLTour/WebQTLTour_files/filelist.xml | 1 + .../WebQTLTour/WebQTLTour_files/image001.png | Bin 0 -> 89923 bytes .../WebQTLTour/WebQTLTour_files/image002.jpg | Bin 0 -> 16889 bytes .../WebQTLTour/WebQTLTour_files/image003.png | Bin 0 -> 170364 bytes .../WebQTLTour/WebQTLTour_files/image004.jpg | Bin 0 -> 26925 bytes .../WebQTLTour/WebQTLTour_files/image005.png | Bin 0 -> 167160 bytes .../WebQTLTour/WebQTLTour_files/image006.jpg | Bin 0 -> 25748 bytes .../WebQTLTour/WebQTLTour_files/image007.png | Bin 0 -> 181908 bytes .../WebQTLTour/WebQTLTour_files/image008.jpg | Bin 0 -> 28315 bytes .../WebQTLTour/WebQTLTour_files/image009.png | Bin 0 -> 43967 bytes .../WebQTLTour/WebQTLTour_files/image010.jpg | Bin 0 -> 18268 bytes .../WebQTLTour/WebQTLTour_files/image011.png | Bin 0 -> 93557 bytes .../WebQTLTour/WebQTLTour_files/image012.jpg | Bin 0 -> 43404 bytes .../WebQTLTour/WebQTLTour_files/image013.png | Bin 0 -> 6378 bytes .../WebQTLTour/WebQTLTour_files/image014.jpg | Bin 0 -> 9705 bytes .../WebQTLTour/WebQTLTour_files/image015.png | Bin 0 -> 133723 bytes .../WebQTLTour/WebQTLTour_files/image016.jpg | Bin 0 -> 24946 bytes .../WebQTLTour/WebQTLTour_files/image017.png | Bin 0 -> 11547 bytes .../WebQTLTour/WebQTLTour_files/image018.jpg | Bin 0 -> 11957 bytes .../WebQTLTour/WebQTLTour_files/image019.png | Bin 0 -> 77242 bytes .../WebQTLTour/WebQTLTour_files/image020.jpg | Bin 0 -> 21314 bytes .../WebQTLTour/WebQTLTour_files/image021.png | Bin 0 -> 147882 bytes .../WebQTLTour/WebQTLTour_files/image022.jpg | Bin 0 -> 29967 bytes .../WebQTLTour/WebQTLTour_files/image023.png | Bin 0 -> 63746 bytes .../WebQTLTour/WebQTLTour_files/image024.jpg | Bin 0 -> 20181 bytes .../WebQTLTour/WebQTLTour_files/image025.png | Bin 0 -> 24674 bytes .../WebQTLTour/WebQTLTour_files/image026.jpg | Bin 0 -> 16078 bytes .../WebQTLTour/WebQTLTour_files/image027.png | Bin 0 -> 93995 bytes .../WebQTLTour/WebQTLTour_files/image028.jpg | Bin 0 -> 31290 bytes .../WebQTLTour/WebQTLTour_files/image029.png | Bin 0 -> 163553 bytes .../WebQTLTour/WebQTLTour_files/image030.jpg | Bin 0 -> 29287 bytes .../WebQTLTour/WebQTLTour_files/image031.png | Bin 0 -> 33766 bytes .../WebQTLTour/WebQTLTour_files/image032.jpg | Bin 0 -> 32802 bytes web/tutorial/WebQTLTour/index.html | 294 + web/tutorial/movies/index.html | 105 + web/tutorial/pdf/GN_Barley_Tutorial.pdf | Bin 0 -> 2643155 bytes web/tutorial/pdf/Peirce_and_Lu_2004.pdf | Bin 0 -> 414511 bytes web/tutorial/pdf/nn0504-485.pdf | Bin 0 -> 186522 bytes web/tutorial/pdf/webqtl.pdf | Bin 0 -> 880018 bytes web/tutorial/ppt/WebQTLDemo.htm | 4 + web/tutorial/ppt/WebQTLDemo_files/Slide0001.gif | Bin 0 -> 84653 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0002.gif | Bin 0 -> 74672 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0003.gif | Bin 0 -> 84956 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0004.gif | Bin 0 -> 87229 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0005.gif | Bin 0 -> 96903 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0006.gif | Bin 0 -> 88241 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0007.gif | Bin 0 -> 48620 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0008.gif | Bin 0 -> 88109 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0009.gif | Bin 0 -> 89546 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0010.gif | Bin 0 -> 163688 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0011.gif | Bin 0 -> 57501 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0012.gif | Bin 0 -> 61974 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0013.gif | Bin 0 -> 72197 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0014.gif | Bin 0 -> 78998 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0015.gif | Bin 0 -> 73962 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0016.gif | Bin 0 -> 67725 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0017.gif | Bin 0 -> 64447 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0018.gif | Bin 0 -> 63737 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0019.gif | Bin 0 -> 80544 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0020.gif | Bin 0 -> 90816 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0021.gif | Bin 0 -> 84356 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0022.gif | Bin 0 -> 72733 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0023.gif | Bin 0 -> 84809 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0024.gif | Bin 0 -> 56663 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0025.gif | Bin 0 -> 89928 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0026.gif | Bin 0 -> 53129 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0027.gif | Bin 0 -> 84525 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0028.gif | Bin 0 -> 70161 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0029.gif | Bin 0 -> 94533 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0030.gif | Bin 0 -> 64191 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0031.gif | Bin 0 -> 94226 bytes web/tutorial/ppt/WebQTLDemo_files/Slide0032.gif | Bin 0 -> 53154 bytes web/tutorial/ppt/WebQTLDemo_files/WebQTLDemo.ppt | Bin 0 -> 4592640 bytes web/tutorial/ppt/WebQTLDemo_files/blank_notes.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/endshow.htm | 1 + web/tutorial/ppt/WebQTLDemo_files/error.htm | 1 + web/tutorial/ppt/WebQTLDemo_files/filelist.xml | 1 + web/tutorial/ppt/WebQTLDemo_files/frame.htm | 43 + .../ppt/WebQTLDemo_files/fs_navigation_bar.htm | 84 + web/tutorial/ppt/WebQTLDemo_files/fullscr.gif | Bin 0 -> 1062 bytes web/tutorial/ppt/WebQTLDemo_files/fullscrClose.gif | Bin 0 -> 1013 bytes web/tutorial/ppt/WebQTLDemo_files/fullscreen.htm | 48 + web/tutorial/ppt/WebQTLDemo_files/master02.htm | 11 + web/tutorial/ppt/WebQTLDemo_files/master03.htm | 11 + .../ppt/WebQTLDemo_files/master03_background.gif | Bin 0 -> 39195 bytes .../ppt/WebQTLDemo_files/master03_stylesheet.css | 1 + web/tutorial/ppt/WebQTLDemo_files/master05.htm | 11 + .../ppt/WebQTLDemo_files/master05_background.gif | Bin 0 -> 39195 bytes .../ppt/WebQTLDemo_files/master05_stylesheet.css | 1 + web/tutorial/ppt/WebQTLDemo_files/narration.gif | Bin 0 -> 1166 bytes web/tutorial/ppt/WebQTLDemo_files/navbg.gif | Bin 0 -> 80 bytes .../ppt/WebQTLDemo_files/navigation_bar.htm | 91 + web/tutorial/ppt/WebQTLDemo_files/next_active.gif | Bin 0 -> 980 bytes .../ppt/WebQTLDemo_files/next_disabled.gif | Bin 0 -> 906 bytes web/tutorial/ppt/WebQTLDemo_files/notes_flag.gif | Bin 0 -> 1026 bytes web/tutorial/ppt/WebQTLDemo_files/outline.gif | Bin 0 -> 1038 bytes .../ppt/WebQTLDemo_files/outline_collapse.gif | Bin 0 -> 1038 bytes .../ppt/WebQTLDemo_files/outline_collapsed.htm | 5 + .../ppt/WebQTLDemo_files/outline_expand.gif | Bin 0 -> 1042 bytes .../ppt/WebQTLDemo_files/outline_expanded.htm | 5 + .../WebQTLDemo_files/outline_navigation_bar.htm | 37 + web/tutorial/ppt/WebQTLDemo_files/prev_active.gif | Bin 0 -> 976 bytes .../ppt/WebQTLDemo_files/prev_disabled.gif | Bin 0 -> 913 bytes web/tutorial/ppt/WebQTLDemo_files/script.js | 1379 ++ web/tutorial/ppt/WebQTLDemo_files/slide0001.htm | 25 + .../ppt/WebQTLDemo_files/slide0001_image001.gif | Bin 0 -> 23405 bytes .../ppt/WebQTLDemo_files/slide0001_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0002.htm | 25 + .../ppt/WebQTLDemo_files/slide0002_image002.gif | Bin 0 -> 46713 bytes .../ppt/WebQTLDemo_files/slide0002_image003.gif | Bin 0 -> 339 bytes .../ppt/WebQTLDemo_files/slide0002_image004.gif | Bin 0 -> 929 bytes .../ppt/WebQTLDemo_files/slide0002_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0003.htm | 25 + .../ppt/WebQTLDemo_files/slide0003_image005.gif | Bin 0 -> 59566 bytes .../ppt/WebQTLDemo_files/slide0003_image006.gif | Bin 0 -> 696 bytes .../ppt/WebQTLDemo_files/slide0003_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0004.htm | 25 + .../ppt/WebQTLDemo_files/slide0004_image007.gif | Bin 0 -> 67380 bytes .../ppt/WebQTLDemo_files/slide0004_image008.gif | Bin 0 -> 541 bytes .../ppt/WebQTLDemo_files/slide0004_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0005.htm | 25 + .../ppt/WebQTLDemo_files/slide0005_image009.gif | Bin 0 -> 84279 bytes .../ppt/WebQTLDemo_files/slide0005_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0006.htm | 25 + .../ppt/WebQTLDemo_files/slide0006_image010.gif | Bin 0 -> 38195 bytes .../ppt/WebQTLDemo_files/slide0006_image011.gif | Bin 0 -> 33957 bytes .../ppt/WebQTLDemo_files/slide0006_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0007.htm | 25 + .../ppt/WebQTLDemo_files/slide0007_image012.gif | Bin 0 -> 25562 bytes .../ppt/WebQTLDemo_files/slide0007_image013.gif | Bin 0 -> 3446 bytes .../ppt/WebQTLDemo_files/slide0007_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0008.htm | 25 + .../ppt/WebQTLDemo_files/slide0008_image014.gif | Bin 0 -> 65536 bytes .../ppt/WebQTLDemo_files/slide0008_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0009.htm | 25 + .../ppt/WebQTLDemo_files/slide0009_image015.gif | Bin 0 -> 73584 bytes .../ppt/WebQTLDemo_files/slide0009_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0010.htm | 25 + .../ppt/WebQTLDemo_files/slide0010_image016.gif | Bin 0 -> 146838 bytes .../ppt/WebQTLDemo_files/slide0010_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0011.htm | 25 + .../ppt/WebQTLDemo_files/slide0011_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0012.htm | 25 + .../ppt/WebQTLDemo_files/slide0012_image017.gif | Bin 0 -> 38116 bytes .../ppt/WebQTLDemo_files/slide0012_image018.gif | Bin 0 -> 1070 bytes .../ppt/WebQTLDemo_files/slide0012_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0013.htm | 25 + .../ppt/WebQTLDemo_files/slide0013_image019.gif | Bin 0 -> 21457 bytes .../ppt/WebQTLDemo_files/slide0013_image020.gif | Bin 0 -> 34118 bytes .../ppt/WebQTLDemo_files/slide0013_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0014.htm | 25 + .../ppt/WebQTLDemo_files/slide0014_image021.gif | Bin 0 -> 12836 bytes .../ppt/WebQTLDemo_files/slide0014_image022.gif | Bin 0 -> 36391 bytes .../ppt/WebQTLDemo_files/slide0014_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0015.htm | 25 + .../ppt/WebQTLDemo_files/slide0015_image023.gif | Bin 0 -> 23405 bytes .../ppt/WebQTLDemo_files/slide0015_image024.gif | Bin 0 -> 708 bytes .../ppt/WebQTLDemo_files/slide0015_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0016.htm | 25 + .../ppt/WebQTLDemo_files/slide0016_image025.gif | Bin 0 -> 255 bytes .../ppt/WebQTLDemo_files/slide0016_image026.gif | Bin 0 -> 268 bytes .../ppt/WebQTLDemo_files/slide0016_image027.gif | Bin 0 -> 268 bytes .../ppt/WebQTLDemo_files/slide0016_image028.gif | Bin 0 -> 924 bytes .../ppt/WebQTLDemo_files/slide0016_image029.gif | Bin 0 -> 369 bytes .../ppt/WebQTLDemo_files/slide0016_image030.gif | Bin 0 -> 181 bytes .../ppt/WebQTLDemo_files/slide0016_image031.gif | Bin 0 -> 178 bytes .../ppt/WebQTLDemo_files/slide0016_image032.gif | Bin 0 -> 178 bytes .../ppt/WebQTLDemo_files/slide0016_image033.gif | Bin 0 -> 178 bytes .../ppt/WebQTLDemo_files/slide0016_image034.gif | Bin 0 -> 713 bytes .../ppt/WebQTLDemo_files/slide0016_image035.gif | Bin 0 -> 723 bytes .../ppt/WebQTLDemo_files/slide0016_image036.gif | Bin 0 -> 799 bytes .../ppt/WebQTLDemo_files/slide0016_image037.gif | Bin 0 -> 799 bytes .../ppt/WebQTLDemo_files/slide0016_image038.gif | Bin 0 -> 318 bytes .../ppt/WebQTLDemo_files/slide0016_image039.gif | Bin 0 -> 303 bytes .../ppt/WebQTLDemo_files/slide0016_image040.gif | Bin 0 -> 310 bytes .../ppt/WebQTLDemo_files/slide0016_image041.gif | Bin 0 -> 689 bytes .../ppt/WebQTLDemo_files/slide0016_image042.gif | Bin 0 -> 290 bytes .../ppt/WebQTLDemo_files/slide0016_image043.gif | Bin 0 -> 884 bytes .../ppt/WebQTLDemo_files/slide0016_image044.gif | Bin 0 -> 420 bytes .../ppt/WebQTLDemo_files/slide0016_image045.gif | Bin 0 -> 193 bytes .../ppt/WebQTLDemo_files/slide0016_image046.gif | Bin 0 -> 177 bytes .../ppt/WebQTLDemo_files/slide0016_image047.gif | Bin 0 -> 178 bytes .../ppt/WebQTLDemo_files/slide0016_image048.gif | Bin 0 -> 178 bytes .../ppt/WebQTLDemo_files/slide0016_image049.gif | Bin 0 -> 178 bytes .../ppt/WebQTLDemo_files/slide0016_image050.gif | Bin 0 -> 177 bytes .../ppt/WebQTLDemo_files/slide0016_image051.gif | Bin 0 -> 236 bytes .../ppt/WebQTLDemo_files/slide0016_image052.gif | Bin 0 -> 807 bytes .../ppt/WebQTLDemo_files/slide0016_image053.gif | Bin 0 -> 625 bytes .../ppt/WebQTLDemo_files/slide0016_image054.gif | Bin 0 -> 622 bytes .../ppt/WebQTLDemo_files/slide0016_image055.gif | Bin 0 -> 699 bytes .../ppt/WebQTLDemo_files/slide0016_image056.gif | Bin 0 -> 585 bytes .../ppt/WebQTLDemo_files/slide0016_image057.gif | Bin 0 -> 722 bytes .../ppt/WebQTLDemo_files/slide0016_image058.gif | Bin 0 -> 207 bytes .../ppt/WebQTLDemo_files/slide0016_image059.gif | Bin 0 -> 476 bytes .../ppt/WebQTLDemo_files/slide0016_image060.gif | Bin 0 -> 184 bytes .../ppt/WebQTLDemo_files/slide0016_image061.gif | Bin 0 -> 878 bytes .../ppt/WebQTLDemo_files/slide0016_image062.gif | Bin 0 -> 987 bytes .../ppt/WebQTLDemo_files/slide0016_image063.gif | Bin 0 -> 286 bytes .../ppt/WebQTLDemo_files/slide0016_image064.gif | Bin 0 -> 456 bytes .../ppt/WebQTLDemo_files/slide0016_image065.gif | Bin 0 -> 423 bytes .../ppt/WebQTLDemo_files/slide0016_image066.gif | Bin 0 -> 482 bytes .../ppt/WebQTLDemo_files/slide0016_image067.gif | Bin 0 -> 365 bytes .../ppt/WebQTLDemo_files/slide0016_image068.gif | Bin 0 -> 267 bytes .../ppt/WebQTLDemo_files/slide0016_image069.gif | Bin 0 -> 355 bytes .../ppt/WebQTLDemo_files/slide0016_image070.gif | Bin 0 -> 360 bytes .../ppt/WebQTLDemo_files/slide0016_image071.gif | Bin 0 -> 205 bytes .../ppt/WebQTLDemo_files/slide0016_image072.gif | Bin 0 -> 353 bytes .../ppt/WebQTLDemo_files/slide0016_image073.gif | Bin 0 -> 252 bytes .../ppt/WebQTLDemo_files/slide0016_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0017.htm | 25 + .../ppt/WebQTLDemo_files/slide0017_image074.gif | Bin 0 -> 359 bytes .../ppt/WebQTLDemo_files/slide0017_image075.gif | Bin 0 -> 359 bytes .../ppt/WebQTLDemo_files/slide0017_image076.gif | Bin 0 -> 344 bytes .../ppt/WebQTLDemo_files/slide0017_image077.gif | Bin 0 -> 524 bytes .../ppt/WebQTLDemo_files/slide0017_image078.gif | Bin 0 -> 349 bytes .../ppt/WebQTLDemo_files/slide0017_image079.gif | Bin 0 -> 591 bytes .../ppt/WebQTLDemo_files/slide0017_image080.gif | Bin 0 -> 2527 bytes .../ppt/WebQTLDemo_files/slide0017_image081.gif | Bin 0 -> 2560 bytes .../ppt/WebQTLDemo_files/slide0017_image082.gif | Bin 0 -> 3129 bytes .../ppt/WebQTLDemo_files/slide0017_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0018.htm | 25 + .../ppt/WebQTLDemo_files/slide0018_image083.gif | Bin 0 -> 44856 bytes .../ppt/WebQTLDemo_files/slide0018_image084.gif | Bin 0 -> 1053 bytes .../ppt/WebQTLDemo_files/slide0018_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0019.htm | 25 + .../ppt/WebQTLDemo_files/slide0019_image085.gif | Bin 0 -> 49012 bytes .../ppt/WebQTLDemo_files/slide0019_image086.gif | Bin 0 -> 1243 bytes .../ppt/WebQTLDemo_files/slide0019_image087.gif | Bin 0 -> 1220 bytes .../ppt/WebQTLDemo_files/slide0019_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0020.htm | 25 + .../ppt/WebQTLDemo_files/slide0020_image088.gif | Bin 0 -> 73584 bytes .../ppt/WebQTLDemo_files/slide0020_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0021.htm | 25 + .../ppt/WebQTLDemo_files/slide0021_image089.gif | Bin 0 -> 15541 bytes .../ppt/WebQTLDemo_files/slide0021_image090.gif | Bin 0 -> 42029 bytes .../ppt/WebQTLDemo_files/slide0021_image091.gif | Bin 0 -> 1138 bytes .../ppt/WebQTLDemo_files/slide0021_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0022.htm | 25 + .../ppt/WebQTLDemo_files/slide0022_image092.gif | Bin 0 -> 31999 bytes .../ppt/WebQTLDemo_files/slide0022_image093.gif | Bin 0 -> 464 bytes .../ppt/WebQTLDemo_files/slide0022_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0023.htm | 25 + .../ppt/WebQTLDemo_files/slide0023_image094.gif | Bin 0 -> 53054 bytes .../ppt/WebQTLDemo_files/slide0023_image095.gif | Bin 0 -> 16912 bytes .../ppt/WebQTLDemo_files/slide0023_image096.gif | Bin 0 -> 1886 bytes .../ppt/WebQTLDemo_files/slide0023_image097.gif | Bin 0 -> 1002 bytes .../ppt/WebQTLDemo_files/slide0023_image098.gif | Bin 0 -> 1024 bytes .../ppt/WebQTLDemo_files/slide0023_image099.gif | Bin 0 -> 1028 bytes .../ppt/WebQTLDemo_files/slide0023_image100.gif | Bin 0 -> 1280 bytes .../ppt/WebQTLDemo_files/slide0023_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0024.htm | 25 + .../ppt/WebQTLDemo_files/slide0024_image101.gif | Bin 0 -> 4123 bytes .../ppt/WebQTLDemo_files/slide0024_image102.gif | Bin 0 -> 15567 bytes .../ppt/WebQTLDemo_files/slide0024_image103.gif | Bin 0 -> 12352 bytes .../ppt/WebQTLDemo_files/slide0024_image104.gif | Bin 0 -> 13120 bytes .../ppt/WebQTLDemo_files/slide0024_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0025.htm | 25 + .../ppt/WebQTLDemo_files/slide0025_image105.gif | Bin 0 -> 22360 bytes .../ppt/WebQTLDemo_files/slide0025_image106.gif | Bin 0 -> 43758 bytes .../ppt/WebQTLDemo_files/slide0025_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0026.htm | 25 + .../ppt/WebQTLDemo_files/slide0026_image107.gif | Bin 0 -> 707 bytes .../ppt/WebQTLDemo_files/slide0026_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0027.htm | 25 + .../ppt/WebQTLDemo_files/slide0027_image108.gif | Bin 0 -> 12270 bytes .../ppt/WebQTLDemo_files/slide0027_image109.gif | Bin 0 -> 32509 bytes .../ppt/WebQTLDemo_files/slide0027_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0028.htm | 25 + .../ppt/WebQTLDemo_files/slide0028_image110.gif | Bin 0 -> 29840 bytes .../ppt/WebQTLDemo_files/slide0028_image111.gif | Bin 0 -> 430 bytes .../ppt/WebQTLDemo_files/slide0028_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0029.htm | 25 + .../ppt/WebQTLDemo_files/slide0029_image112.gif | Bin 0 -> 70164 bytes .../ppt/WebQTLDemo_files/slide0029_image113.gif | Bin 0 -> 1150 bytes .../ppt/WebQTLDemo_files/slide0029_image114.gif | Bin 0 -> 571 bytes .../ppt/WebQTLDemo_files/slide0029_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0030.htm | 25 + .../ppt/WebQTLDemo_files/slide0030_image115.gif | Bin 0 -> 32944 bytes .../ppt/WebQTLDemo_files/slide0030_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0031.htm | 25 + .../ppt/WebQTLDemo_files/slide0031_image116.gif | Bin 0 -> 11192 bytes .../ppt/WebQTLDemo_files/slide0031_image117.gif | Bin 0 -> 51889 bytes .../ppt/WebQTLDemo_files/slide0031_image118.gif | Bin 0 -> 929 bytes .../ppt/WebQTLDemo_files/slide0031_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0032.htm | 25 + .../ppt/WebQTLDemo_files/slide0032_notes_pane.htm | 5 + web/tutorial/ppt/WebQTLDemo_files/slide0033.htm | 153 + web/tutorial/ppt/WebQTLDemo_files/slide0034.htm | 151 + web/tutorial/ppt/WebQTLDemo_files/slide0035.htm | 116 + web/tutorial/ppt/WebQTLDemo_files/slide0036.htm | 122 + web/tutorial/ppt/WebQTLDemo_files/slide0037.htm | 93 + web/tutorial/ppt/WebQTLDemo_files/slide0038.htm | 119 + web/tutorial/ppt/WebQTLDemo_files/slide0039.htm | 104 + web/tutorial/ppt/WebQTLDemo_files/slide0040.htm | 111 + web/tutorial/ppt/WebQTLDemo_files/slide0041.htm | 93 + web/tutorial/ppt/WebQTLDemo_files/slide0042.htm | 102 + web/tutorial/ppt/WebQTLDemo_files/slide0043.htm | 112 + web/tutorial/ppt/WebQTLDemo_files/slide0044.htm | 107 + web/tutorial/ppt/WebQTLDemo_files/slide0045.htm | 104 + web/tutorial/ppt/WebQTLDemo_files/slide0046.htm | 110 + web/tutorial/ppt/WebQTLDemo_files/slide0047.htm | 155 + web/tutorial/ppt/WebQTLDemo_files/slide0048.htm | 897 + web/tutorial/ppt/WebQTLDemo_files/slide0049.htm | 427 + web/tutorial/ppt/WebQTLDemo_files/slide0050.htm | 107 + web/tutorial/ppt/WebQTLDemo_files/slide0051.htm | 127 + web/tutorial/ppt/WebQTLDemo_files/slide0052.htm | 93 + web/tutorial/ppt/WebQTLDemo_files/slide0053.htm | 139 + web/tutorial/ppt/WebQTLDemo_files/slide0054.htm | 125 + web/tutorial/ppt/WebQTLDemo_files/slide0055.htm | 168 + web/tutorial/ppt/WebQTLDemo_files/slide0056.htm | 129 + web/tutorial/ppt/WebQTLDemo_files/slide0057.htm | 122 + web/tutorial/ppt/WebQTLDemo_files/slide0058.htm | 135 + web/tutorial/ppt/WebQTLDemo_files/slide0059.htm | 128 + web/tutorial/ppt/WebQTLDemo_files/slide0060.htm | 134 + web/tutorial/ppt/WebQTLDemo_files/slide0061.htm | 124 + web/tutorial/ppt/WebQTLDemo_files/slide0062.htm | 96 + web/tutorial/ppt/WebQTLDemo_files/slide0063.htm | 139 + web/tutorial/ppt/WebQTLDemo_files/slide0064.htm | 100 + web/tutorial/ppt/WebQTLDemo_files/slide0065.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0066.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0067.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0068.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0069.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0070.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0071.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0072.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0073.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0074.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0075.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0076.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0077.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0078.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0079.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0080.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0081.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0082.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0083.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0084.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0085.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0086.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0087.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0088.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0089.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0090.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0091.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0092.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0093.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0094.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0095.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/slide0096.htm | 34 + web/tutorial/ppt/WebQTLDemo_files/space.gif | Bin 0 -> 807 bytes web/tutorial/ppt/html/webqtl_demo2.ppt.htm | 4 + .../ppt/html/webqtl_demo2.ppt_files/Slide0001.gif | Bin 0 -> 75611 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0002.gif | Bin 0 -> 65191 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0003.gif | Bin 0 -> 64339 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0004.gif | Bin 0 -> 59695 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0005.gif | Bin 0 -> 88092 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0006.gif | Bin 0 -> 100241 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0007.gif | Bin 0 -> 72138 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0008.gif | Bin 0 -> 94020 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0009.gif | Bin 0 -> 75651 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0010.gif | Bin 0 -> 89999 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0011.gif | Bin 0 -> 76306 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0012.gif | Bin 0 -> 63979 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0013.gif | Bin 0 -> 62582 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0014.gif | Bin 0 -> 52478 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0015.gif | Bin 0 -> 79506 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0016.gif | Bin 0 -> 96427 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0017.gif | Bin 0 -> 74650 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0018.gif | Bin 0 -> 75611 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0019.gif | Bin 0 -> 65191 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0020.gif | Bin 0 -> 64339 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0021.gif | Bin 0 -> 59695 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0022.gif | Bin 0 -> 88092 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0023.gif | Bin 0 -> 100241 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0024.gif | Bin 0 -> 72138 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0025.gif | Bin 0 -> 94020 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0026.gif | Bin 0 -> 75651 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0027.gif | Bin 0 -> 89999 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0028.gif | Bin 0 -> 76306 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0029.gif | Bin 0 -> 73368 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0030.gif | Bin 0 -> 61907 bytes .../ppt/html/webqtl_demo2.ppt_files/Slide0031.gif | Bin 0 -> 51895 bytes .../html/webqtl_demo2.ppt_files/blank_notes.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/endshow.htm | 1 + .../ppt/html/webqtl_demo2.ppt_files/error.htm | 1 + .../ppt/html/webqtl_demo2.ppt_files/filelist.xml | 1 + .../ppt/html/webqtl_demo2.ppt_files/frame.htm | 43 + .../webqtl_demo2.ppt_files/fs_navigation_bar.htm | 84 + .../ppt/html/webqtl_demo2.ppt_files/fullscr.gif | Bin 0 -> 1062 bytes .../html/webqtl_demo2.ppt_files/fullscrClose.gif | Bin 0 -> 1013 bytes .../ppt/html/webqtl_demo2.ppt_files/fullscreen.htm | 48 + .../ppt/html/webqtl_demo2.ppt_files/master02.htm | 11 + .../ppt/html/webqtl_demo2.ppt_files/master03.htm | 11 + .../webqtl_demo2.ppt_files/master03_background.png | Bin 0 -> 3343 bytes .../webqtl_demo2.ppt_files/master03_stylesheet.css | 1 + .../ppt/html/webqtl_demo2.ppt_files/master05.htm | 11 + .../webqtl_demo2.ppt_files/master05_background.png | Bin 0 -> 3343 bytes .../webqtl_demo2.ppt_files/master05_stylesheet.css | 1 + .../ppt/html/webqtl_demo2.ppt_files/narration.gif | Bin 0 -> 1166 bytes .../ppt/html/webqtl_demo2.ppt_files/navbg.gif | Bin 0 -> 80 bytes .../html/webqtl_demo2.ppt_files/navigation_bar.htm | 91 + .../html/webqtl_demo2.ppt_files/next_active.gif | Bin 0 -> 980 bytes .../html/webqtl_demo2.ppt_files/next_disabled.gif | Bin 0 -> 906 bytes .../ppt/html/webqtl_demo2.ppt_files/notes_flag.gif | Bin 0 -> 1026 bytes .../ppt/html/webqtl_demo2.ppt_files/outline.gif | Bin 0 -> 1038 bytes .../webqtl_demo2.ppt_files/outline_collapse.gif | Bin 0 -> 1038 bytes .../webqtl_demo2.ppt_files/outline_collapsed.htm | 5 + .../html/webqtl_demo2.ppt_files/outline_expand.gif | Bin 0 -> 1042 bytes .../webqtl_demo2.ppt_files/outline_expanded.htm | 5 + .../outline_navigation_bar.htm | 37 + .../html/webqtl_demo2.ppt_files/prev_active.gif | Bin 0 -> 976 bytes .../html/webqtl_demo2.ppt_files/prev_disabled.gif | Bin 0 -> 913 bytes .../ppt/html/webqtl_demo2.ppt_files/script.js | 1343 ++ .../ppt/html/webqtl_demo2.ppt_files/slide0001.htm | 25 + .../webqtl_demo2.ppt_files/slide0001_image001.png | Bin 0 -> 105653 bytes .../webqtl_demo2.ppt_files/slide0001_image002.png | Bin 0 -> 2838 bytes .../slide0001_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0002.htm | 25 + .../webqtl_demo2.ppt_files/slide0002_image002.png | Bin 0 -> 220529 bytes .../webqtl_demo2.ppt_files/slide0002_image003.png | Bin 0 -> 890 bytes .../webqtl_demo2.ppt_files/slide0002_image004.png | Bin 0 -> 257 bytes .../webqtl_demo2.ppt_files/slide0002_image005.png | Bin 0 -> 257 bytes .../webqtl_demo2.ppt_files/slide0002_image006.png | Bin 0 -> 343 bytes .../webqtl_demo2.ppt_files/slide0002_image007.png | Bin 0 -> 1328 bytes .../webqtl_demo2.ppt_files/slide0002_image008.png | Bin 0 -> 168 bytes .../webqtl_demo2.ppt_files/slide0002_image009.png | Bin 0 -> 169 bytes .../webqtl_demo2.ppt_files/slide0002_image010.png | Bin 0 -> 169 bytes .../webqtl_demo2.ppt_files/slide0002_image011.png | Bin 0 -> 169 bytes .../webqtl_demo2.ppt_files/slide0002_image012.png | Bin 0 -> 347 bytes .../webqtl_demo2.ppt_files/slide0002_image013.png | Bin 0 -> 368 bytes .../webqtl_demo2.ppt_files/slide0002_image014.png | Bin 0 -> 354 bytes .../webqtl_demo2.ppt_files/slide0002_image015.png | Bin 0 -> 354 bytes .../webqtl_demo2.ppt_files/slide0002_image016.png | Bin 0 -> 906 bytes .../webqtl_demo2.ppt_files/slide0002_image017.png | Bin 0 -> 818 bytes .../webqtl_demo2.ppt_files/slide0002_image018.png | Bin 0 -> 868 bytes .../webqtl_demo2.ppt_files/slide0002_image019.png | Bin 0 -> 689 bytes .../webqtl_demo2.ppt_files/slide0002_image020.png | Bin 0 -> 582 bytes .../webqtl_demo2.ppt_files/slide0002_image021.png | Bin 0 -> 1025 bytes .../webqtl_demo2.ppt_files/slide0002_image022.png | Bin 0 -> 1365 bytes .../webqtl_demo2.ppt_files/slide0002_image023.png | Bin 0 -> 320 bytes .../webqtl_demo2.ppt_files/slide0002_image024.png | Bin 0 -> 168 bytes .../webqtl_demo2.ppt_files/slide0002_image025.png | Bin 0 -> 168 bytes .../webqtl_demo2.ppt_files/slide0002_image026.png | Bin 0 -> 168 bytes .../webqtl_demo2.ppt_files/slide0002_image027.png | Bin 0 -> 168 bytes .../webqtl_demo2.ppt_files/slide0002_image028.png | Bin 0 -> 166 bytes .../webqtl_demo2.ppt_files/slide0002_image029.png | Bin 0 -> 537 bytes .../webqtl_demo2.ppt_files/slide0002_image030.png | Bin 0 -> 373 bytes .../webqtl_demo2.ppt_files/slide0002_image031.png | Bin 0 -> 362 bytes .../webqtl_demo2.ppt_files/slide0002_image032.png | Bin 0 -> 451 bytes .../webqtl_demo2.ppt_files/slide0002_image033.png | Bin 0 -> 376 bytes .../webqtl_demo2.ppt_files/slide0002_image034.png | Bin 0 -> 360 bytes .../webqtl_demo2.ppt_files/slide0002_image035.png | Bin 0 -> 411 bytes .../webqtl_demo2.ppt_files/slide0002_image036.png | Bin 0 -> 170 bytes .../webqtl_demo2.ppt_files/slide0002_image037.png | Bin 0 -> 276 bytes .../webqtl_demo2.ppt_files/slide0002_image038.png | Bin 0 -> 169 bytes .../webqtl_demo2.ppt_files/slide0002_image039.png | Bin 0 -> 2399 bytes .../webqtl_demo2.ppt_files/slide0002_image040.png | Bin 0 -> 3236 bytes .../webqtl_demo2.ppt_files/slide0002_image041.png | Bin 0 -> 650 bytes .../webqtl_demo2.ppt_files/slide0002_image042.png | Bin 0 -> 285 bytes .../webqtl_demo2.ppt_files/slide0002_image043.png | Bin 0 -> 169 bytes .../webqtl_demo2.ppt_files/slide0002_image044.png | Bin 0 -> 275 bytes .../webqtl_demo2.ppt_files/slide0002_image045.png | Bin 0 -> 170 bytes .../webqtl_demo2.ppt_files/slide0002_image046.png | Bin 0 -> 271 bytes .../webqtl_demo2.ppt_files/slide0002_image047.png | Bin 0 -> 669 bytes .../webqtl_demo2.ppt_files/slide0002_image048.png | Bin 0 -> 234 bytes .../webqtl_demo2.ppt_files/slide0002_image049.png | Bin 0 -> 226 bytes .../webqtl_demo2.ppt_files/slide0002_image050.png | Bin 0 -> 245 bytes .../webqtl_demo2.ppt_files/slide0002_image051.png | Bin 0 -> 176 bytes .../webqtl_demo2.ppt_files/slide0002_image052.png | Bin 0 -> 516 bytes .../webqtl_demo2.ppt_files/slide0002_image053.png | Bin 0 -> 291 bytes .../slide0002_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0003.htm | 25 + .../webqtl_demo2.ppt_files/slide0003_image005.png | Bin 0 -> 3915 bytes .../webqtl_demo2.ppt_files/slide0003_image006.png | Bin 0 -> 77227 bytes .../webqtl_demo2.ppt_files/slide0003_image008.png | Bin 0 -> 3769 bytes .../webqtl_demo2.ppt_files/slide0003_image009.png | Bin 0 -> 118887 bytes .../webqtl_demo2.ppt_files/slide0003_image054.png | Bin 0 -> 237 bytes .../webqtl_demo2.ppt_files/slide0003_image055.png | Bin 0 -> 237 bytes .../webqtl_demo2.ppt_files/slide0003_image056.png | Bin 0 -> 1180 bytes .../webqtl_demo2.ppt_files/slide0003_image057.png | Bin 0 -> 1535 bytes .../webqtl_demo2.ppt_files/slide0003_image058.png | Bin 0 -> 1386 bytes .../webqtl_demo2.ppt_files/slide0003_image059.png | Bin 0 -> 393 bytes .../webqtl_demo2.ppt_files/slide0003_image060.png | Bin 0 -> 1659 bytes .../webqtl_demo2.ppt_files/slide0003_image061.png | Bin 0 -> 1659 bytes .../webqtl_demo2.ppt_files/slide0003_image062.png | Bin 0 -> 2042 bytes .../slide0003_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0004.htm | 25 + .../webqtl_demo2.ppt_files/slide0004_image010.png | Bin 0 -> 207348 bytes .../webqtl_demo2.ppt_files/slide0004_image012.png | Bin 0 -> 574 bytes .../webqtl_demo2.ppt_files/slide0004_image063.png | Bin 0 -> 89425 bytes .../webqtl_demo2.ppt_files/slide0004_image064.png | Bin 0 -> 3325 bytes .../webqtl_demo2.ppt_files/slide0004_image065.png | Bin 0 -> 3235 bytes .../slide0004_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0005.htm | 25 + .../webqtl_demo2.ppt_files/slide0005_image013.png | Bin 0 -> 244405 bytes .../webqtl_demo2.ppt_files/slide0005_image014.png | Bin 0 -> 2266 bytes .../webqtl_demo2.ppt_files/slide0005_image066.png | Bin 0 -> 167566 bytes .../webqtl_demo2.ppt_files/slide0005_image067.png | Bin 0 -> 16749 bytes .../webqtl_demo2.ppt_files/slide0005_image068.png | Bin 0 -> 10414 bytes .../webqtl_demo2.ppt_files/slide0005_image069.png | Bin 0 -> 2649 bytes .../webqtl_demo2.ppt_files/slide0005_image070.png | Bin 0 -> 2772 bytes .../slide0005_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0006.htm | 25 + .../webqtl_demo2.ppt_files/slide0006_image015.png | Bin 0 -> 351034 bytes .../webqtl_demo2.ppt_files/slide0006_image071.png | Bin 0 -> 129170 bytes .../webqtl_demo2.ppt_files/slide0006_image072.png | Bin 0 -> 189865 bytes .../slide0006_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0007.htm | 25 + .../webqtl_demo2.ppt_files/slide0007_image016.png | Bin 0 -> 133423 bytes .../webqtl_demo2.ppt_files/slide0007_image017.png | Bin 0 -> 11243 bytes .../webqtl_demo2.ppt_files/slide0007_image073.png | Bin 0 -> 12474 bytes .../webqtl_demo2.ppt_files/slide0007_image075.png | Bin 0 -> 51696 bytes .../slide0007_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0008.htm | 25 + .../webqtl_demo2.ppt_files/slide0008_image018.png | Bin 0 -> 14491 bytes .../webqtl_demo2.ppt_files/slide0008_image019.png | Bin 0 -> 14905 bytes .../webqtl_demo2.ppt_files/slide0008_image021.png | Bin 0 -> 11315 bytes .../webqtl_demo2.ppt_files/slide0008_image076.png | Bin 0 -> 249089 bytes .../webqtl_demo2.ppt_files/slide0008_image077.png | Bin 0 -> 26859 bytes .../slide0008_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0009.htm | 25 + .../webqtl_demo2.ppt_files/slide0009_image022.png | Bin 0 -> 66365 bytes .../webqtl_demo2.ppt_files/slide0009_image078.png | Bin 0 -> 64747 bytes .../webqtl_demo2.ppt_files/slide0009_image079.png | Bin 0 -> 129161 bytes .../webqtl_demo2.ppt_files/slide0009_image080.png | Bin 0 -> 8416 bytes .../slide0009_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0010.htm | 25 + .../webqtl_demo2.ppt_files/slide0010_image023.png | Bin 0 -> 65860 bytes .../webqtl_demo2.ppt_files/slide0010_image024.png | Bin 0 -> 8147 bytes .../webqtl_demo2.ppt_files/slide0010_image082.png | Bin 0 -> 18891 bytes .../webqtl_demo2.ppt_files/slide0010_image083.png | Bin 0 -> 55834 bytes .../webqtl_demo2.ppt_files/slide0010_image084.png | Bin 0 -> 64365 bytes .../webqtl_demo2.ppt_files/slide0010_image085.png | Bin 0 -> 197 bytes .../webqtl_demo2.ppt_files/slide0010_image086.png | Bin 0 -> 199 bytes .../slide0010_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0011.htm | 25 + .../webqtl_demo2.ppt_files/slide0011_image025.png | Bin 0 -> 288808 bytes .../webqtl_demo2.ppt_files/slide0011_image087.png | Bin 0 -> 64168 bytes .../webqtl_demo2.ppt_files/slide0011_image088.png | Bin 0 -> 71319 bytes .../slide0011_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0012.htm | 25 + .../webqtl_demo2.ppt_files/slide0012_image026.png | Bin 0 -> 122799 bytes .../slide0012_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0013.htm | 25 + .../webqtl_demo2.ppt_files/slide0013_image027.png | Bin 0 -> 244059 bytes .../slide0013_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0014.htm | 25 + .../webqtl_demo2.ppt_files/slide0014_image029.png | Bin 0 -> 33764 bytes .../webqtl_demo2.ppt_files/slide0014_image031.png | Bin 0 -> 34679 bytes .../webqtl_demo2.ppt_files/slide0014_image033.png | Bin 0 -> 6181 bytes .../slide0014_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0015.htm | 155 + .../webqtl_demo2.ppt_files/slide0015_image034.png | Bin 0 -> 222778 bytes .../webqtl_demo2.ppt_files/slide0015_image035.png | Bin 0 -> 18082 bytes .../slide0015_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0016.htm | 919 + .../webqtl_demo2.ppt_files/slide0016_image036.png | Bin 0 -> 284272 bytes .../slide0016_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0017.htm | 421 + .../ppt/html/webqtl_demo2.ppt_files/slide0018.htm | 115 + .../webqtl_demo2.ppt_files/slide0018_image037.png | Bin 0 -> 105653 bytes .../webqtl_demo2.ppt_files/slide0018_image038.png | Bin 0 -> 2838 bytes .../slide0018_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0019.htm | 155 + .../webqtl_demo2.ppt_files/slide0019_image039.png | Bin 0 -> 890 bytes .../webqtl_demo2.ppt_files/slide0019_image040.png | Bin 0 -> 257 bytes .../webqtl_demo2.ppt_files/slide0019_image041.png | Bin 0 -> 257 bytes .../webqtl_demo2.ppt_files/slide0019_image042.png | Bin 0 -> 343 bytes .../webqtl_demo2.ppt_files/slide0019_image043.png | Bin 0 -> 1328 bytes .../webqtl_demo2.ppt_files/slide0019_image044.png | Bin 0 -> 168 bytes .../webqtl_demo2.ppt_files/slide0019_image045.png | Bin 0 -> 169 bytes .../webqtl_demo2.ppt_files/slide0019_image046.png | Bin 0 -> 169 bytes .../webqtl_demo2.ppt_files/slide0019_image047.png | Bin 0 -> 169 bytes .../webqtl_demo2.ppt_files/slide0019_image048.png | Bin 0 -> 347 bytes .../webqtl_demo2.ppt_files/slide0019_image049.png | Bin 0 -> 368 bytes .../webqtl_demo2.ppt_files/slide0019_image050.png | Bin 0 -> 354 bytes .../webqtl_demo2.ppt_files/slide0019_image051.png | Bin 0 -> 354 bytes .../webqtl_demo2.ppt_files/slide0019_image052.png | Bin 0 -> 906 bytes .../webqtl_demo2.ppt_files/slide0019_image053.png | Bin 0 -> 818 bytes .../webqtl_demo2.ppt_files/slide0019_image054.png | Bin 0 -> 868 bytes .../webqtl_demo2.ppt_files/slide0019_image055.png | Bin 0 -> 689 bytes .../webqtl_demo2.ppt_files/slide0019_image056.png | Bin 0 -> 582 bytes .../webqtl_demo2.ppt_files/slide0019_image057.png | Bin 0 -> 1025 bytes .../webqtl_demo2.ppt_files/slide0019_image058.png | Bin 0 -> 1365 bytes .../webqtl_demo2.ppt_files/slide0019_image059.png | Bin 0 -> 320 bytes .../webqtl_demo2.ppt_files/slide0019_image060.png | Bin 0 -> 168 bytes .../webqtl_demo2.ppt_files/slide0019_image061.png | Bin 0 -> 168 bytes .../webqtl_demo2.ppt_files/slide0019_image062.png | Bin 0 -> 168 bytes .../webqtl_demo2.ppt_files/slide0019_image063.png | Bin 0 -> 168 bytes .../webqtl_demo2.ppt_files/slide0019_image064.png | Bin 0 -> 166 bytes .../webqtl_demo2.ppt_files/slide0019_image065.png | Bin 0 -> 537 bytes .../webqtl_demo2.ppt_files/slide0019_image066.png | Bin 0 -> 373 bytes .../webqtl_demo2.ppt_files/slide0019_image067.png | Bin 0 -> 362 bytes .../webqtl_demo2.ppt_files/slide0019_image068.png | Bin 0 -> 451 bytes .../webqtl_demo2.ppt_files/slide0019_image069.png | Bin 0 -> 376 bytes .../webqtl_demo2.ppt_files/slide0019_image070.png | Bin 0 -> 360 bytes .../webqtl_demo2.ppt_files/slide0019_image071.png | Bin 0 -> 411 bytes .../webqtl_demo2.ppt_files/slide0019_image072.png | Bin 0 -> 170 bytes .../webqtl_demo2.ppt_files/slide0019_image073.png | Bin 0 -> 276 bytes .../webqtl_demo2.ppt_files/slide0019_image074.png | Bin 0 -> 169 bytes .../webqtl_demo2.ppt_files/slide0019_image075.png | Bin 0 -> 2399 bytes .../webqtl_demo2.ppt_files/slide0019_image076.png | Bin 0 -> 3236 bytes .../webqtl_demo2.ppt_files/slide0019_image077.png | Bin 0 -> 650 bytes .../webqtl_demo2.ppt_files/slide0019_image078.png | Bin 0 -> 285 bytes .../webqtl_demo2.ppt_files/slide0019_image079.png | Bin 0 -> 169 bytes .../webqtl_demo2.ppt_files/slide0019_image080.png | Bin 0 -> 275 bytes .../webqtl_demo2.ppt_files/slide0019_image081.png | Bin 0 -> 170 bytes .../webqtl_demo2.ppt_files/slide0019_image082.png | Bin 0 -> 271 bytes .../webqtl_demo2.ppt_files/slide0019_image083.png | Bin 0 -> 669 bytes .../webqtl_demo2.ppt_files/slide0019_image084.png | Bin 0 -> 234 bytes .../webqtl_demo2.ppt_files/slide0019_image085.png | Bin 0 -> 226 bytes .../webqtl_demo2.ppt_files/slide0019_image086.png | Bin 0 -> 245 bytes .../webqtl_demo2.ppt_files/slide0019_image087.png | Bin 0 -> 176 bytes .../webqtl_demo2.ppt_files/slide0019_image088.png | Bin 0 -> 516 bytes .../webqtl_demo2.ppt_files/slide0019_image089.png | Bin 0 -> 291 bytes .../slide0019_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0020.htm | 113 + .../webqtl_demo2.ppt_files/slide0020_image090.png | Bin 0 -> 237 bytes .../webqtl_demo2.ppt_files/slide0020_image091.png | Bin 0 -> 237 bytes .../webqtl_demo2.ppt_files/slide0020_image092.png | Bin 0 -> 1180 bytes .../webqtl_demo2.ppt_files/slide0020_image093.png | Bin 0 -> 1535 bytes .../webqtl_demo2.ppt_files/slide0020_image094.png | Bin 0 -> 1386 bytes .../webqtl_demo2.ppt_files/slide0020_image095.png | Bin 0 -> 393 bytes .../webqtl_demo2.ppt_files/slide0020_image096.png | Bin 0 -> 1659 bytes .../webqtl_demo2.ppt_files/slide0020_image097.png | Bin 0 -> 1659 bytes .../webqtl_demo2.ppt_files/slide0020_image098.png | Bin 0 -> 2042 bytes .../slide0020_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0021.htm | 110 + .../webqtl_demo2.ppt_files/slide0021_image099.png | Bin 0 -> 89425 bytes .../webqtl_demo2.ppt_files/slide0021_image100.png | Bin 0 -> 3325 bytes .../webqtl_demo2.ppt_files/slide0021_image101.png | Bin 0 -> 3235 bytes .../slide0021_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0022.htm | 134 + .../webqtl_demo2.ppt_files/slide0022_image102.png | Bin 0 -> 167566 bytes .../webqtl_demo2.ppt_files/slide0022_image103.png | Bin 0 -> 16749 bytes .../webqtl_demo2.ppt_files/slide0022_image104.png | Bin 0 -> 10414 bytes .../webqtl_demo2.ppt_files/slide0022_image105.png | Bin 0 -> 2649 bytes .../webqtl_demo2.ppt_files/slide0022_image106.png | Bin 0 -> 2772 bytes .../slide0022_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0023.htm | 115 + .../webqtl_demo2.ppt_files/slide0023_image107.png | Bin 0 -> 129170 bytes .../webqtl_demo2.ppt_files/slide0023_image108.png | Bin 0 -> 189865 bytes .../slide0023_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0024.htm | 167 + .../webqtl_demo2.ppt_files/slide0024_image109.png | Bin 0 -> 12474 bytes .../webqtl_demo2.ppt_files/slide0024_image111.png | Bin 0 -> 51696 bytes .../slide0024_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0025.htm | 104 + .../webqtl_demo2.ppt_files/slide0025_image112.png | Bin 0 -> 249089 bytes .../webqtl_demo2.ppt_files/slide0025_image113.png | Bin 0 -> 26859 bytes .../slide0025_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0026.htm | 139 + .../webqtl_demo2.ppt_files/slide0026_image114.png | Bin 0 -> 64747 bytes .../webqtl_demo2.ppt_files/slide0026_image115.png | Bin 0 -> 129161 bytes .../webqtl_demo2.ppt_files/slide0026_image116.png | Bin 0 -> 8416 bytes .../slide0026_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0027.htm | 115 + .../webqtl_demo2.ppt_files/slide0027_image118.png | Bin 0 -> 18891 bytes .../webqtl_demo2.ppt_files/slide0027_image119.png | Bin 0 -> 55834 bytes .../webqtl_demo2.ppt_files/slide0027_image120.png | Bin 0 -> 64365 bytes .../webqtl_demo2.ppt_files/slide0027_image121.png | Bin 0 -> 197 bytes .../webqtl_demo2.ppt_files/slide0027_image122.png | Bin 0 -> 199 bytes .../slide0027_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0028.htm | 112 + .../webqtl_demo2.ppt_files/slide0028_image123.png | Bin 0 -> 64168 bytes .../webqtl_demo2.ppt_files/slide0028_image124.png | Bin 0 -> 71319 bytes .../slide0028_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0029.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0030.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0031.htm | 34 + .../slide0031_notes_pane.htm | 5 + .../ppt/html/webqtl_demo2.ppt_files/slide0032.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0033.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0034.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0035.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0036.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0037.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0038.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0039.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0040.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0041.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0042.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0043.htm | 93 + .../ppt/html/webqtl_demo2.ppt_files/slide0044.htm | 93 + .../ppt/html/webqtl_demo2.ppt_files/slide0045.htm | 118 + .../ppt/html/webqtl_demo2.ppt_files/slide0046.htm | 104 + .../ppt/html/webqtl_demo2.ppt_files/slide0047.htm | 93 + .../ppt/html/webqtl_demo2.ppt_files/slide0048.htm | 151 + .../ppt/html/webqtl_demo2.ppt_files/slide0049.htm | 155 + .../ppt/html/webqtl_demo2.ppt_files/slide0050.htm | 919 + .../ppt/html/webqtl_demo2.ppt_files/slide0051.htm | 421 + .../ppt/html/webqtl_demo2.ppt_files/slide0052.htm | 115 + .../ppt/html/webqtl_demo2.ppt_files/slide0053.htm | 155 + .../ppt/html/webqtl_demo2.ppt_files/slide0054.htm | 113 + .../ppt/html/webqtl_demo2.ppt_files/slide0055.htm | 110 + .../ppt/html/webqtl_demo2.ppt_files/slide0056.htm | 134 + .../ppt/html/webqtl_demo2.ppt_files/slide0057.htm | 115 + .../ppt/html/webqtl_demo2.ppt_files/slide0058.htm | 167 + .../ppt/html/webqtl_demo2.ppt_files/slide0059.htm | 104 + .../ppt/html/webqtl_demo2.ppt_files/slide0060.htm | 139 + .../ppt/html/webqtl_demo2.ppt_files/slide0061.htm | 112 + .../ppt/html/webqtl_demo2.ppt_files/slide0062.htm | 109 + .../ppt/html/webqtl_demo2.ppt_files/slide0063.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0064.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0065.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0066.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0067.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0068.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0069.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0070.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0071.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0072.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0073.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0074.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0075.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0076.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0077.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0078.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0079.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0080.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0081.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0082.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0083.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0084.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0085.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0086.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0087.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0088.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0089.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0090.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0091.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0092.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/slide0093.htm | 34 + .../ppt/html/webqtl_demo2.ppt_files/space.gif | Bin 0 -> 807 bytes .../webqtl_demo2.ppt_files/webqtl_demo2.ppt.ppt | Bin 0 -> 1422336 bytes web/tutorial/ppt/html/webqtl_demo2_part1.ppt.htm | 4 + .../webqtl_demo2_part1.ppt_files/Slide0001.gif | Bin 0 -> 89129 bytes .../webqtl_demo2_part1.ppt_files/Slide0002.gif | Bin 0 -> 88189 bytes .../webqtl_demo2_part1.ppt_files/Slide0003.gif | Bin 0 -> 79744 bytes .../webqtl_demo2_part1.ppt_files/Slide0004.gif | Bin 0 -> 99835 bytes .../webqtl_demo2_part1.ppt_files/Slide0005.gif | Bin 0 -> 87507 bytes .../webqtl_demo2_part1.ppt_files/Slide0006.gif | Bin 0 -> 99731 bytes .../webqtl_demo2_part1.ppt_files/Slide0007.gif | Bin 0 -> 74135 bytes .../webqtl_demo2_part1.ppt_files/Slide0008.gif | Bin 0 -> 72580 bytes .../webqtl_demo2_part1.ppt_files/Slide0009.gif | Bin 0 -> 46338 bytes .../webqtl_demo2_part1.ppt_files/Slide0010.gif | Bin 0 -> 53010 bytes .../webqtl_demo2_part1.ppt_files/Slide0011.gif | Bin 0 -> 87161 bytes .../webqtl_demo2_part1.ppt_files/Slide0012.gif | Bin 0 -> 52520 bytes .../webqtl_demo2_part1.ppt_files/Slide0013.gif | Bin 0 -> 102582 bytes .../webqtl_demo2_part1.ppt_files/Slide0014.gif | Bin 0 -> 83226 bytes .../webqtl_demo2_part1.ppt_files/Slide0015.gif | Bin 0 -> 79506 bytes .../webqtl_demo2_part1.ppt_files/Slide0016.gif | Bin 0 -> 96427 bytes .../webqtl_demo2_part1.ppt_files/Slide0017.gif | Bin 0 -> 74650 bytes .../webqtl_demo2_part1.ppt_files/Slide0018.gif | Bin 0 -> 52478 bytes .../webqtl_demo2_part1.ppt_files/Slide0019.gif | Bin 0 -> 51895 bytes .../webqtl_demo2_part1.ppt_files/blank_notes.htm | 5 + .../html/webqtl_demo2_part1.ppt_files/endshow.htm | 1 + .../html/webqtl_demo2_part1.ppt_files/error.htm | 1 + .../html/webqtl_demo2_part1.ppt_files/filelist.xml | 1 + .../html/webqtl_demo2_part1.ppt_files/frame.htm | 43 + .../fs_navigation_bar.htm | 84 + .../html/webqtl_demo2_part1.ppt_files/fullscr.gif | Bin 0 -> 1062 bytes .../webqtl_demo2_part1.ppt_files/fullscrClose.gif | Bin 0 -> 1013 bytes .../webqtl_demo2_part1.ppt_files/fullscreen.htm | 48 + .../html/webqtl_demo2_part1.ppt_files/master02.htm | 11 + .../html/webqtl_demo2_part1.ppt_files/master03.htm | 11 + .../master03_background.png | Bin 0 -> 3343 bytes .../master03_stylesheet.css | 1 + .../webqtl_demo2_part1.ppt_files/narration.gif | Bin 0 -> 1166 bytes .../html/webqtl_demo2_part1.ppt_files/navbg.gif | Bin 0 -> 80 bytes .../navigation_bar.htm | 91 + .../webqtl_demo2_part1.ppt_files/next_active.gif | Bin 0 -> 980 bytes .../webqtl_demo2_part1.ppt_files/next_disabled.gif | Bin 0 -> 906 bytes .../webqtl_demo2_part1.ppt_files/notes_flag.gif | Bin 0 -> 1026 bytes .../html/webqtl_demo2_part1.ppt_files/outline.gif | Bin 0 -> 1038 bytes .../outline_collapse.gif | Bin 0 -> 1038 bytes .../outline_collapsed.htm | 5 + .../outline_expand.gif | Bin 0 -> 1042 bytes .../outline_expanded.htm | 5 + .../outline_navigation_bar.htm | 37 + .../webqtl_demo2_part1.ppt_files/prev_active.gif | Bin 0 -> 976 bytes .../webqtl_demo2_part1.ppt_files/prev_disabled.gif | Bin 0 -> 913 bytes .../html/webqtl_demo2_part1.ppt_files/script.js | 1351 ++ .../webqtl_demo2_part1.ppt_files/slide0001.htm | 25 + .../slide0001_image001.png | Bin 0 -> 105653 bytes .../slide0001_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0002.htm | 25 + .../slide0002_image002.png | Bin 0 -> 220529 bytes .../slide0002_image003.png | Bin 0 -> 3915 bytes .../slide0002_image004.png | Bin 0 -> 4006 bytes .../slide0002_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0003.htm | 25 + .../slide0003_image005.png | Bin 0 -> 3915 bytes .../slide0003_image006.png | Bin 0 -> 77227 bytes .../slide0003_image008.png | Bin 0 -> 3769 bytes .../slide0003_image009.png | Bin 0 -> 118887 bytes .../slide0003_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0004.htm | 25 + .../slide0004_image010.png | Bin 0 -> 207348 bytes .../slide0004_image012.png | Bin 0 -> 574 bytes .../slide0004_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0005.htm | 25 + .../slide0005_image013.png | Bin 0 -> 244405 bytes .../slide0005_image014.png | Bin 0 -> 2266 bytes .../slide0005_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0006.htm | 25 + .../slide0006_image015.png | Bin 0 -> 351034 bytes .../slide0006_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0007.htm | 25 + .../slide0007_image016.png | Bin 0 -> 133423 bytes .../slide0007_image017.png | Bin 0 -> 11243 bytes .../slide0007_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0008.htm | 25 + .../slide0008_image018.png | Bin 0 -> 14491 bytes .../slide0008_image019.png | Bin 0 -> 14905 bytes .../slide0008_image021.png | Bin 0 -> 11315 bytes .../slide0008_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0009.htm | 25 + .../slide0009_image022.png | Bin 0 -> 66365 bytes .../slide0009_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0010.htm | 25 + .../slide0010_image023.png | Bin 0 -> 65860 bytes .../slide0010_image024.png | Bin 0 -> 8147 bytes .../slide0010_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0011.htm | 25 + .../slide0011_image025.png | Bin 0 -> 288808 bytes .../slide0011_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0012.htm | 25 + .../slide0012_image026.png | Bin 0 -> 122799 bytes .../slide0012_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0013.htm | 25 + .../slide0013_image027.png | Bin 0 -> 244059 bytes .../slide0013_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0014.htm | 25 + .../slide0014_image029.png | Bin 0 -> 33764 bytes .../slide0014_image031.png | Bin 0 -> 34679 bytes .../slide0014_image033.png | Bin 0 -> 6181 bytes .../slide0014_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0015.htm | 25 + .../slide0015_image034.png | Bin 0 -> 222778 bytes .../slide0015_image035.png | Bin 0 -> 18082 bytes .../slide0015_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0016.htm | 25 + .../slide0016_image036.png | Bin 0 -> 284272 bytes .../slide0016_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0017.htm | 25 + .../webqtl_demo2_part1.ppt_files/slide0018.htm | 25 + .../slide0018_image037.png | Bin 0 -> 105653 bytes .../slide0018_image038.png | Bin 0 -> 2838 bytes .../slide0018_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0019.htm | 153 + .../slide0019_notes_pane.htm | 5 + .../webqtl_demo2_part1.ppt_files/slide0020.htm | 172 + .../webqtl_demo2_part1.ppt_files/slide0021.htm | 129 + .../webqtl_demo2_part1.ppt_files/slide0022.htm | 140 + .../webqtl_demo2_part1.ppt_files/slide0023.htm | 128 + .../webqtl_demo2_part1.ppt_files/slide0024.htm | 93 + .../webqtl_demo2_part1.ppt_files/slide0025.htm | 134 + .../webqtl_demo2_part1.ppt_files/slide0026.htm | 130 + .../webqtl_demo2_part1.ppt_files/slide0027.htm | 93 + .../webqtl_demo2_part1.ppt_files/slide0028.htm | 104 + .../webqtl_demo2_part1.ppt_files/slide0029.htm | 93 + .../webqtl_demo2_part1.ppt_files/slide0030.htm | 93 + .../webqtl_demo2_part1.ppt_files/slide0031.htm | 93 + .../webqtl_demo2_part1.ppt_files/slide0032.htm | 118 + .../webqtl_demo2_part1.ppt_files/slide0033.htm | 104 + .../webqtl_demo2_part1.ppt_files/slide0034.htm | 93 + .../webqtl_demo2_part1.ppt_files/slide0035.htm | 151 + .../webqtl_demo2_part1.ppt_files/slide0036.htm | 112 + .../webqtl_demo2_part1.ppt_files/slide0037.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0038.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0039.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0040.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0041.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0042.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0043.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0044.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0045.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0046.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0047.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0048.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0049.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0050.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0051.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0052.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0053.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0054.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0055.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0056.htm | 34 + .../webqtl_demo2_part1.ppt_files/slide0057.htm | 34 + .../html/webqtl_demo2_part1.ppt_files/space.gif | Bin 0 -> 807 bytes .../webqtl_demo2_part1.ppt.ppt | Bin 0 -> 2306560 bytes web/tutorial/ppt/index.html | 90 + web/tutorial/ppt/ppt/webqtl_demo2.ppt | Bin 0 -> 1424384 bytes web/tutorial/ppt/ppt/webqtl_demo2_part1.ppt | Bin 0 -> 4206080 bytes web/upload.html | 61 + web/webqtl/.htaccess | 5 + web/webqtl/__init__.py | 0 web/webqtl/annotation/AnnotationPage.py | 39 + web/webqtl/annotation/HTMLBody.py | 32 + web/webqtl/annotation/__init__.py | 0 web/webqtl/base/GeneralObject.py | 71 + web/webqtl/base/__init__.py | 0 web/webqtl/base/admin.py | 88 + web/webqtl/base/cgiData.py | 70 + web/webqtl/base/cookieData.py | 52 + web/webqtl/base/footer.py | 6 + web/webqtl/base/header.py | 6 + web/webqtl/base/indexBody.py | 290 + web/webqtl/base/myCookie.py | 55 + web/webqtl/base/sessionData.py | 53 + web/webqtl/base/template.py | 123 + web/webqtl/base/templatePage.py | 222 + web/webqtl/base/webqtlCaseData.py | 54 + web/webqtl/base/webqtlConfig.py | 73 + web/webqtl/base/webqtlConfigLocal.py | 19 + web/webqtl/base/webqtlDataset.py | 160 + web/webqtl/base/webqtlFormData.py | 289 + web/webqtl/base/webqtlTrait.py | 581 + .../basicStatistics/BasicStatisticsFunctions.py | 174 + .../basicStatistics/BasicStatisticsPage_alpha.py | 348 + web/webqtl/basicStatistics/__init__.py | 0 .../basicStatistics/updatedBasicStatisticsPage.py | 150 + web/webqtl/cmdLine/__init__.py | 0 web/webqtl/cmdLine/cmdCompCorrPage.py | 49 + web/webqtl/cmdLine/cmdCorrelationPage.py | 53 + web/webqtl/cmdLine/cmdDirectPlotPage.py | 49 + web/webqtl/cmdLine/cmdHeatmapPage.py | 52 + web/webqtl/cmdLine/cmdIntervalMappingPage.py | 75 + web/webqtl/cmdLine/cmdMarkerRegressionPage.py | 47 + web/webqtl/cmdLine/cmdNetworkGraphPage.py | 49 + web/webqtl/cmdLine/cmdPartialCorrelationPage.py | 50 + web/webqtl/cmdLine/cmdQTLminerPage.py | 47 + web/webqtl/cmdLine/cmdShowAllPage.py | 50 + web/webqtl/cmdLine/cmdShowAllPage2.py | 55 + web/webqtl/cmdLine/cmdSnpBrowserResultPage.py | 47 + .../cmdLine/cmdTissueCorrelationResultPage.py | 47 + web/webqtl/cmdLine/procPage.py | 46 + web/webqtl/cmdLine/webqtlCmdLine.py | 176 + web/webqtl/collection/AddToSelectionPage.py | 695 + .../collection/AddUserInputToSelectionPage.py | 97 + web/webqtl/collection/BatchSubmitSelectionPage.py | 225 + web/webqtl/collection/DisplaySelectionPage.py | 51 + .../collection/ExportSelectionDetailInfoPage.py | 197 + web/webqtl/collection/ExportSelectionPage.py | 67 + web/webqtl/collection/ImportSelectionPage.py | 92 + web/webqtl/collection/RemoveSelectionPage.py | 108 + web/webqtl/collection/__init__.py | 0 .../compareCorrelates/MultipleCorrelationPage.py | 108 + web/webqtl/compareCorrelates/__init__.py | 0 web/webqtl/compareCorrelates/correlation.py | 359 + web/webqtl/compareCorrelates/htmlModule.py | 279 + web/webqtl/compareCorrelates/multitrait.py | 1121 ++ web/webqtl/compareCorrelates/trait.py | 1074 ++ web/webqtl/correlation/CorrelationPage.py | 1958 +++ web/webqtl/correlation/PartialCorrDBPage.py | 1359 ++ web/webqtl/correlation/PartialCorrInputPage.py | 484 + web/webqtl/correlation/PartialCorrTraitPage.py | 310 + web/webqtl/correlation/PlotCorrelationPage.py | 683 + web/webqtl/correlation/__init__.py | 0 web/webqtl/correlation/correlationFunction.py | 923 + .../correlationMatrix/CorrelationMatrixPage.py | 595 + .../correlationMatrix/TissueAbbreviationPage.py | 79 + .../correlationMatrix/TissueCorrelationPage.py | 673 + web/webqtl/correlationMatrix/__init__.py | 0 .../correlationMatrix/tissueCorrelationMatrix.py | 132 + web/webqtl/dataSharing/SharingBody.py | 290 + web/webqtl/dataSharing/SharingInfo.py | 98 + web/webqtl/dataSharing/SharingInfoAddPage.py | 47 + web/webqtl/dataSharing/SharingInfoDeletePage.py | 55 + web/webqtl/dataSharing/SharingInfoEditPage.py | 51 + web/webqtl/dataSharing/SharingInfoPage.py | 52 + web/webqtl/dataSharing/SharingInfoUpdatePage.py | 109 + web/webqtl/dataSharing/SharingListDataSetPage.py | 99 + web/webqtl/dataSharing/SharingPage.py | 40 + web/webqtl/dataSharing/__init__.py | 0 web/webqtl/dbFunction/__init__.py | 0 web/webqtl/dbFunction/webqtlDatabaseFunction.py | 265 + web/webqtl/externalResource/GCATPage.py | 101 + web/webqtl/externalResource/GoTreePage.py | 154 + web/webqtl/externalResource/ODEPage.py | 143 + web/webqtl/externalResource/__init__.py | 0 web/webqtl/geneWiki/AddGeneRIFPage.py | 635 + web/webqtl/geneWiki/__init__.py | 0 web/webqtl/genomeGraph/__init__.py | 0 web/webqtl/genomeGraph/cmdGenomeScanPage.py | 532 + web/webqtl/genomeGraph/genAllDbResultPage.py | 309 + web/webqtl/heatmap/Heatmap.py | 437 + web/webqtl/heatmap/__init__.py | 0 web/webqtl/heatmap/heatmapPage.py | 116 + web/webqtl/heatmap/heatmapPage_GN.py | 522 + web/webqtl/heatmap/slink.py | 141 + web/webqtl/intervalAnalyst/GeneUtil.py | 124 + web/webqtl/intervalAnalyst/IntervalAnalystPage.py | 405 + web/webqtl/intervalAnalyst/__init__.py | 0 web/webqtl/intervalMapping/IntervalMappingPage.py | 2454 +++ web/webqtl/intervalMapping/__init__.py | 0 web/webqtl/main.py | 699 + web/webqtl/maintainance/__init__.py | 0 web/webqtl/maintainance/addRif.py | 107 + web/webqtl/maintainance/checkInfoFile.py | 102 + web/webqtl/maintainance/genSelectDatasetJS.py | 637 + web/webqtl/maintainance/updateMenuJS.py | 127 + web/webqtl/management/GenoUpdate.py | 1279 ++ web/webqtl/management/__init__.py | 0 web/webqtl/management/assignUserToDatasetPage.py | 159 + web/webqtl/management/createUserAccountPage.py | 161 + web/webqtl/management/deletePhenotypeTraitPage.py | 196 + web/webqtl/management/editHeaderFooter.py | 200 + .../management/exportPhenotypeDatasetPage.py | 228 + web/webqtl/management/managerMainPage.py | 130 + .../CompositeMarkerRegressionPage.py | 211 + .../markerRegression/MarkerRegressionPage.py | 1626 ++ web/webqtl/markerRegression/__init__.py | 0 web/webqtl/misc/__init__.py | 0 web/webqtl/misc/editHtmlPage.py | 129 + web/webqtl/misc/uploadFilePage.py | 137 + web/webqtl/networkGraph/GraphPage.py | 46 + web/webqtl/networkGraph/ProcessedPoint.py | 49 + web/webqtl/networkGraph/__init__.py | 0 web/webqtl/networkGraph/nGraphException.py | 33 + web/webqtl/networkGraph/networkGraphPage.py | 335 + web/webqtl/networkGraph/networkGraphPageBody.py | 697 + web/webqtl/networkGraph/networkGraphUtils.py | 750 + web/webqtl/pairScan/CategoryGraphPage.py | 199 + web/webqtl/pairScan/DirectPlotPage.py | 430 + web/webqtl/pairScan/PairPlotPage.py | 314 + web/webqtl/pairScan/__init__.py | 0 web/webqtl/pubmedsearch/PubmedSearch.py | 58 + web/webqtl/pubmedsearch/PubmedSearchRe.py | 57 + web/webqtl/pubmedsearch/__init__.py | 0 web/webqtl/qtlminer/GeneUtil.py | 658 + web/webqtl/qtlminer/QTLminer.py | 1237 ++ web/webqtl/qtlminer/__init__.py | 0 web/webqtl/schema/ShowCommentPage.py | 123 + web/webqtl/schema/ShowSchemaPage.py | 194 + web/webqtl/schema/UpdateCommentPage.py | 101 + web/webqtl/schema/__init__.py | 0 web/webqtl/search/IndexPage.py | 41 + web/webqtl/search/SearchResultPage.py | 1237 ++ web/webqtl/search/TextSearchPage.py | 536 + web/webqtl/search/__init__.py | 0 web/webqtl/search/pubmedsearch.py | 12 + web/webqtl/showTrait/DataEditingPage.py | 1883 ++ web/webqtl/showTrait/ShowBestTrait.py | 195 + web/webqtl/showTrait/ShowProbeInfoPage.py | 486 + web/webqtl/showTrait/ShowTraitPage.py | 170 + web/webqtl/showTrait/__init__.py | 0 web/webqtl/showTrait/exportPage.py | 141 + web/webqtl/showTrait/testTraitPage.py | 36 + web/webqtl/snpBrowser/GeneAnnot.py | 124 + web/webqtl/snpBrowser/GeneListAnnot.py | 90 + web/webqtl/snpBrowser/__init__.py | 0 web/webqtl/snpBrowser/snpBrowserPage.py | 1259 ++ web/webqtl/snpBrowser/snpBrowserUtils.py | 71 + web/webqtl/snpBrowser/snpDetails.py | 101 + .../submitTrait/AddUserInputToPublishPage.py | 523 + web/webqtl/submitTrait/BatchSubmitPage.py | 142 + web/webqtl/submitTrait/CrossChoicePage.py | 233 + web/webqtl/submitTrait/VarianceChoicePage.py | 174 + web/webqtl/submitTrait/__init__.py | 0 web/webqtl/textUI/__init__.py | 0 web/webqtl/textUI/cmdClass.py | 224 + web/webqtl/textUI/cmdCorrelation.py | 325 + web/webqtl/textUI/cmdGeno.py | 118 + web/webqtl/textUI/cmdGet.py | 86 + web/webqtl/textUI/cmdHelp.py | 105 + web/webqtl/textUI/cmdInterval.py | 174 + web/webqtl/textUI/cmdMap.py | 144 + web/webqtl/textUI/cmdSearchGene.py | 70 + web/webqtl/textUI/cmdShowEditing.py | 50 + web/webqtl/updateTrait/DataUpdatePage.py | 738 + web/webqtl/updateTrait/__init__.py | 0 web/webqtl/user/__init__.py | 0 web/webqtl/user/userLogin.py | 84 + web/webqtl/user/userLogoff.py | 54 + web/webqtl/user/userPasswd.py | 73 + web/webqtl/user/userPasswdPage.py | 70 + web/webqtl/utility/AJAX_table.py | 153 + web/webqtl/utility/Plot.py | 1283 ++ web/webqtl/utility/TDCell.py | 42 + web/webqtl/utility/THCell.py | 44 + web/webqtl/utility/__init__.py | 0 web/webqtl/utility/svg.py | 1069 ++ web/webqtl/utility/webqtlUtil.py | 977 ++ web/whats_new.html | 1369 ++ 1962 files changed, 326808 insertions(+) create mode 100755 web/CGIDoc.html create mode 100755 web/GeneWikihelp.html create mode 100755 web/RIsample.html create mode 100755 web/account.html create mode 100755 web/arabidopsisCross.html create mode 100755 web/barleyCross.html create mode 100755 web/blatInfo.html create mode 100755 web/bug0.html create mode 100755 web/conditionsofUse.html create mode 100755 web/copyright.html create mode 100755 web/correlationAnnotation.html create mode 100755 web/credit.html create mode 100755 web/cross.html create mode 100755 web/css/custom-theme/images/ui-bg_flat_100_eeeeee_40x100.png create mode 100755 web/css/custom-theme/images/ui-bg_flat_40_444444_40x100.png create mode 100755 web/css/custom-theme/images/ui-bg_flat_40_555555_40x100.png create mode 100755 web/css/custom-theme/images/ui-bg_glass_100_eeeeee_1x400.png create mode 100755 web/css/custom-theme/images/ui-bg_highlight-hard_100_eeeeee_1x100.png create mode 100755 web/css/custom-theme/images/ui-bg_highlight-hard_40_aaaaaa_1x100.png create mode 100755 web/css/custom-theme/images/ui-bg_highlight-soft_40_222222_1x100.png create mode 100755 web/css/custom-theme/images/ui-bg_inset-hard_45_cd0a0a_1x100.png create mode 100755 web/css/custom-theme/images/ui-bg_inset-hard_55_ffeb80_1x100.png create mode 100755 web/css/custom-theme/images/ui-bg_inset-hard_8_bbbbbb_1x100.png create mode 100755 web/css/custom-theme/images/ui-bg_inset-hard_8_eeeeee_1x100.png create mode 100755 web/css/custom-theme/images/ui-icons_222222_256x240.png create mode 100755 web/css/custom-theme/images/ui-icons_4ca300_256x240.png create mode 100755 web/css/custom-theme/images/ui-icons_bbbbbb_256x240.png create mode 100755 web/css/custom-theme/images/ui-icons_ededed_256x240.png create mode 100755 web/css/custom-theme/images/ui-icons_ffcf29_256x240.png create mode 100755 web/css/custom-theme/images/ui-icons_ffffff_256x240.png create mode 100755 web/css/custom-theme/jquery-ui-1.8.12.custom.css create mode 100755 web/css/general.css create mode 100755 web/css/import.css create mode 100755 web/css/menu.css create mode 100755 web/css/tab_style.css create mode 100755 web/css/tabbed_pages.css create mode 100755 web/css/tabs_0.gif create mode 100755 web/css/tabs_2.gif create mode 100755 web/css/thickbox.css create mode 100755 web/dataSharing.html create mode 100755 web/dbResults.html create mode 100755 web/dbdoc/AKXDGeno.html create mode 100755 web/dbdoc/AXBXAGeno.html create mode 100755 web/dbdoc/AXBXAPublish.html create mode 100755 web/dbdoc/B139_K_1206_M.html create mode 100755 web/dbdoc/B139_K_1206_R.html create mode 100755 web/dbdoc/B150_K_0406_R.html create mode 100755 web/dbdoc/B150_K_1206_R.html create mode 100755 web/dbdoc/B1LI0809M5.html create mode 100755 web/dbdoc/B1LI0809R.html create mode 100755 web/dbdoc/B1MI0809M5.html create mode 100755 web/dbdoc/B1MI0809R.html create mode 100755 web/dbdoc/B30_K_1206_M.html create mode 100755 web/dbdoc/B30_K_1206_R.html create mode 100755 web/dbdoc/B30_K_1206_Rn.html create mode 100755 web/dbdoc/B6BTBRF2Geno.html create mode 100755 web/dbdoc/B6BTBRF2Publish.html create mode 100755 web/dbdoc/B6D2F2Geno.html create mode 100644 web/dbdoc/B6D2ONCILM_0412.html create mode 100755 web/dbdoc/BDF2-1999Geno.html create mode 100755 web/dbdoc/BDF2-2005Geno.html create mode 100755 web/dbdoc/BHHBF2Geno.html create mode 100755 web/dbdoc/BRF2_M_0304_M.html create mode 100755 web/dbdoc/BRF2_M_0304_M_F.html create mode 100755 web/dbdoc/BRF2_M_0304_P.html create mode 100755 web/dbdoc/BRF2_M_0304_R.html create mode 100755 web/dbdoc/BRF2_M_0805_M.html create mode 100755 web/dbdoc/BRF2_M_0805_P.html create mode 100755 web/dbdoc/BRF2_M_0805_R.html create mode 100755 web/dbdoc/BR_M2_1106_R.html create mode 100755 web/dbdoc/BR_U_0304_DPMMR.html create mode 100755 web/dbdoc/BR_U_0304_DPMR.html create mode 100755 web/dbdoc/BR_U_0304_R.html create mode 100755 web/dbdoc/BR_U_0304_RR.html create mode 100755 web/dbdoc/BR_U_0405_SS.html create mode 100755 web/dbdoc/BR_U_0805_M.html create mode 100755 web/dbdoc/BR_U_0805_P.html create mode 100755 web/dbdoc/BR_U_0805_R.html create mode 100755 web/dbdoc/BR_U_0903_DPM.html create mode 100755 web/dbdoc/BR_U_0903_DPMM.html create mode 100755 web/dbdoc/BR_U_0903_M.html create mode 100755 web/dbdoc/BR_U_0903_P.html create mode 100755 web/dbdoc/BR_U_0903_R.html create mode 100755 web/dbdoc/BR_U_1105_P.html create mode 100755 web/dbdoc/BR_U_1105_R.html create mode 100755 web/dbdoc/BR_U_1203_DPM.html create mode 100755 web/dbdoc/BR_U_1203_DPMM.html create mode 100755 web/dbdoc/BR_U_1203_DPMMR.html create mode 100755 web/dbdoc/BR_U_1203_DPMR.html create mode 100755 web/dbdoc/BR_U_1203_H2.html create mode 100755 web/dbdoc/BR_U_1203_H2BF.html create mode 100755 web/dbdoc/BR_U_1203_M.html create mode 100755 web/dbdoc/BR_U_1203_MR.html create mode 100755 web/dbdoc/BR_U_1203_P.html create mode 100755 web/dbdoc/BR_U_1203_PR.html create mode 100755 web/dbdoc/BR_U_1203_R.html create mode 100755 web/dbdoc/BR_U_1203_RR.html create mode 100755 web/dbdoc/BXD300Publish.html create mode 100755 web/dbdoc/BXDGeno.html create mode 100755 web/dbdoc/BXDMicroArray_template.html create mode 100755 web/dbdoc/BXDPublish.html create mode 100755 web/dbdoc/BXD_GLA_0911.html create mode 100755 web/dbdoc/BXHGeno.html create mode 100755 web/dbdoc/BXHPublish.html create mode 100755 web/dbdoc/BXSGeno.html create mode 100755 web/dbdoc/BXSPublish.html create mode 100755 web/dbdoc/BayXShaGeno.html create mode 100755 web/dbdoc/BayXShaPublish.html create mode 100755 web/dbdoc/Br_U_0303_M.html create mode 100755 web/dbdoc/Br_U_0503_M.html create mode 100755 web/dbdoc/Br_U_0603_M.html create mode 100755 web/dbdoc/Br_U_0803_M.html create mode 100755 web/dbdoc/CANDLE_NB_0711.html create mode 100755 web/dbdoc/CB_M_0104_M.html create mode 100755 web/dbdoc/CB_M_0104_P.html create mode 100755 web/dbdoc/CB_M_0104_R.html create mode 100755 web/dbdoc/CB_M_0204_P.html create mode 100755 web/dbdoc/CB_M_0204_R.html create mode 100755 web/dbdoc/CB_M_0305_M.html create mode 100755 web/dbdoc/CB_M_0305_P.html create mode 100755 web/dbdoc/CB_M_0305_R.html create mode 100755 web/dbdoc/CB_M_1003_M.html create mode 100755 web/dbdoc/CB_M_1004_M.html create mode 100755 web/dbdoc/CB_M_1004_P.html create mode 100755 web/dbdoc/CB_M_1004_R.html create mode 100755 web/dbdoc/CTB6F2Geno.html create mode 100755 web/dbdoc/CXBGeno.html create mode 100755 web/dbdoc/CXBPublish.html create mode 100755 web/dbdoc/ColXBurGeno.html create mode 100755 web/dbdoc/ColXBurPublish.html create mode 100755 web/dbdoc/ColXCviGeno.html create mode 100755 web/dbdoc/ColXCviPublish.html create mode 100755 web/dbdoc/DevNeocortex_ILM6.2P14RInv_1110.html create mode 100755 web/dbdoc/DevNeocortex_ILM6.2P14RInv_1111.html create mode 100755 web/dbdoc/DevNeocortex_ILM6.2P3RInv_1110.html create mode 100755 web/dbdoc/DevNeocortex_ILM6.2P3RInv_1111.html create mode 100755 web/dbdoc/DevNeucortex_ILM6.2P14RInv_1110.html create mode 100755 web/dbdoc/DevNeucortex_ILM6.2P3RInv_1110.html create mode 100755 web/dbdoc/DevStriatum_ILM6.2P14RInv_1110.html create mode 100755 web/dbdoc/DevStriatum_ILM6.2P14RInv_1111.html create mode 100755 web/dbdoc/DevStriatum_ILM6.2P3RInv_1110.html create mode 100755 web/dbdoc/DevStriatum_ILM6.2P3RInv_1111.html create mode 100755 web/dbdoc/EPFLMouseMuscleCDRMA1211.html create mode 100755 web/dbdoc/EPFLMouseMuscleHFDRMA1211.html create mode 100755 web/dbdoc/EPFLMouseMuscleRMA1211.html create mode 100755 web/dbdoc/EYE_M2_0406_R.html create mode 100755 web/dbdoc/EYE_M2_1105_M.html create mode 100755 web/dbdoc/EYE_M2_1105_P.html create mode 100755 web/dbdoc/EYE_M2_1105_R.html create mode 100755 web/dbdoc/Eye_AXBXA_1008_RankInv.html create mode 100755 web/dbdoc/Eye_M2_0406_M.html create mode 100755 web/dbdoc/Eye_M2_0406_P.html create mode 100755 web/dbdoc/Eye_M2_0608_R.html create mode 100755 web/dbdoc/Eye_M2_0906_R.html create mode 100755 web/dbdoc/Eye_M2_0908_R.html create mode 100755 web/dbdoc/Eye_M2_0908_R_MT.html create mode 100755 web/dbdoc/Eye_M2_0908_R_NB.html create mode 100755 web/dbdoc/Eye_M2_0908_R_NBD.html create mode 100755 web/dbdoc/Eye_M2_0908_R_ND.html create mode 100755 web/dbdoc/Eye_M2_0908_R_OB.html create mode 100755 web/dbdoc/Eye_M2_0908_R_OBD.html create mode 100755 web/dbdoc/Eye_M2_0908_R_OD.html create mode 100755 web/dbdoc/Eye_M2_0908_R_WT.html create mode 100644 web/dbdoc/Eye_M2_0908_WTWT.html create mode 100755 web/dbdoc/FT_2A_0605_Rz.html create mode 100755 web/dbdoc/FT_2A_0805_M.html create mode 100755 web/dbdoc/G2HEIONCRetILM6_0911.html create mode 100755 web/dbdoc/G2NEI_ILM_Retina_BXD_RI0410.html create mode 100755 web/dbdoc/GCB_M2_0505_M.html create mode 100755 web/dbdoc/GCB_M2_0505_P.html create mode 100755 web/dbdoc/GCB_M2_0505_R.html create mode 100755 web/dbdoc/GN304_Iancu_Hitzemann.pdf create mode 100755 web/dbdoc/GSE15222_F_A_RI_0409.html create mode 100755 web/dbdoc/GSE15222_F_N_RI_0409.html create mode 100755 web/dbdoc/GSE15222_F_RI_0409.html create mode 100755 web/dbdoc/GSE16780_UCLA_ML0911.html create mode 100755 web/dbdoc/GSE5281_F_RMA0709.html create mode 100755 web/dbdoc/GSE5281_F_RMA_Alzh_0709.html create mode 100755 web/dbdoc/GSE5281_F_RMA_N_0709.html create mode 100755 web/dbdoc/GSE5281_RMA0709.html create mode 100755 web/dbdoc/GenEx_BXD_liverEt_RMA_0111.html create mode 100755 web/dbdoc/GenEx_BXD_liverEt_RMA_0211.html create mode 100755 web/dbdoc/GenEx_BXD_liverEt_RMA_F_0111.html create mode 100755 web/dbdoc/GenEx_BXD_liverEt_RMA_F_0211.html create mode 100755 web/dbdoc/GenEx_BXD_liverEt_RMA_M_0111.html create mode 100755 web/dbdoc/GenEx_BXD_liverEt_RMA_M_0211.html create mode 100755 web/dbdoc/GenEx_BXD_liverSal_RMA_0111.html create mode 100755 web/dbdoc/GenEx_BXD_liverSal_RMA_0211.html create mode 100755 web/dbdoc/GenEx_BXD_liverSal_RMA_F_0111.html create mode 100755 web/dbdoc/GenEx_BXD_liverSal_RMA_F_0211.html create mode 100755 web/dbdoc/GenEx_BXD_liverSal_RMA_M_0111.html create mode 100755 web/dbdoc/GenEx_BXD_liverSal_RMA_M_0211.html create mode 100755 web/dbdoc/HBTRC-MLC_0611.html create mode 100755 web/dbdoc/HBTRC-MLC_AD_0611.html create mode 100755 web/dbdoc/HBTRC-MLC_HD_0611.html create mode 100755 web/dbdoc/HBTRC-MLC_N_0611.html create mode 100755 web/dbdoc/HBTRC-MLPFC_0611.html create mode 100755 web/dbdoc/HBTRC-MLPFC_AD_0611.html create mode 100755 web/dbdoc/HBTRC-MLPFC_HD_0611.html create mode 100755 web/dbdoc/HBTRC-MLPFC_N_0611.html create mode 100755 web/dbdoc/HBTRC-MLVC_0611.html create mode 100755 web/dbdoc/HBTRC-MLVC_AD_0611.html create mode 100755 web/dbdoc/HBTRC-MLVC_HD_0611.html create mode 100755 web/dbdoc/HBTRC-MLVC_N_0611.html create mode 100755 web/dbdoc/HC_M2CB_1005_M.html create mode 100755 web/dbdoc/HC_M2CB_1005_P.html create mode 100755 web/dbdoc/HC_M2CB_1005_R.html create mode 100755 web/dbdoc/HC_M2CB_1205_P.html create mode 100755 web/dbdoc/HC_M2CB_1205_R.html create mode 100755 web/dbdoc/HC_M2_0606_M.html create mode 100755 web/dbdoc/HC_M2_0606_MDP.html create mode 100755 web/dbdoc/HC_M2_0606_P.html create mode 100755 web/dbdoc/HC_M2_0606_R.html create mode 100755 web/dbdoc/HC_M2_1005_M.html create mode 100755 web/dbdoc/HC_M2_1005_P.html create mode 100755 web/dbdoc/HC_M2_1005_R.html create mode 100755 web/dbdoc/HC_M2_1205_P.html create mode 100755 web/dbdoc/HC_M2_1205_R.html create mode 100755 web/dbdoc/HC_M2_1206_R.html create mode 100755 web/dbdoc/HC_U_0303_M.html create mode 100755 web/dbdoc/HC_U_0304_R.html create mode 100755 web/dbdoc/HC_U_0903_M.html create mode 100755 web/dbdoc/HEIONCRetILM6_0911.html create mode 100755 web/dbdoc/HEIONCvsCRetILM6_0911.html create mode 100755 web/dbdoc/HEI_BXD_ONC_CTLRetina_0211.html create mode 100755 web/dbdoc/HEI_BXD_ONC_Retina_0211.html create mode 100755 web/dbdoc/HEI_BXD_ONCvsCTLRetina_0211.html create mode 100755 web/dbdoc/HLCF_0311.html create mode 100755 web/dbdoc/HLCM_0311.html create mode 100755 web/dbdoc/HLC_0311.html create mode 100755 web/dbdoc/HLC_0311_F.html create mode 100755 web/dbdoc/HLC_0311_M.html create mode 100755 web/dbdoc/HQFNeoc_0208_RankInv.html create mode 100755 web/dbdoc/HQFNeoc_1210_RankInv.html create mode 100755 web/dbdoc/HQFNeoc_1210v2_RankInv.html create mode 100755 web/dbdoc/HXBBXHGeno.html create mode 100755 web/dbdoc/HXBBXHPublish.html create mode 100755 web/dbdoc/HXBPublish.html create mode 100755 web/dbdoc/HXB_Adrenal_1208.html create mode 100755 web/dbdoc/HXB_Heart_1208.html create mode 100755 web/dbdoc/HXB_Liver_1208.html create mode 100755 web/dbdoc/HZI_0408_M.html create mode 100755 web/dbdoc/HZI_0408_R.html create mode 100755 web/dbdoc/Hipp_Illumina_1.html create mode 100755 web/dbdoc/Hipp_Illumina_1006.html create mode 100755 web/dbdoc/Hipp_Illumina_RankInv_0507.html create mode 100755 web/dbdoc/Hipp_Illumina_RankInv_1006.html create mode 100755 web/dbdoc/Hipp_Illumina_Rank_1006.html create mode 100755 web/dbdoc/Hipp_M430.RO_0706.html create mode 100755 web/dbdoc/Hippocampus_M430_PDNN_Sept05.html create mode 100755 web/dbdoc/Hippocampus_M430_V2_PDNN_Sept05.html create mode 100755 web/dbdoc/Human_1008.html create mode 100755 web/dbdoc/IBR_M_0106_P.html create mode 100755 web/dbdoc/IBR_M_0106_R.html create mode 100755 web/dbdoc/IBR_M_0204_M.html create mode 100755 web/dbdoc/IBR_M_0405_M.html create mode 100755 web/dbdoc/IBR_M_0405_P.html create mode 100755 web/dbdoc/IBR_M_0405_R.html create mode 100755 web/dbdoc/IBR_M_0606_R.html create mode 100755 web/dbdoc/IBR_M_1004_M.html create mode 100755 web/dbdoc/IBR_M_1004_P.html create mode 100755 web/dbdoc/IBR_M_1004_R.html create mode 100755 web/dbdoc/ILM_B_D_CNS_GI_avg_0508.html create mode 100755 web/dbdoc/ILM_B_D_CNS_GI_avg_0508.xls create mode 100755 web/dbdoc/ILM_B_D_avg_CNS_0508.html create mode 100755 web/dbdoc/ILM_B_D_avg_CNS_0508.xls create mode 100755 web/dbdoc/ILM_Retina_BXD_FM_RankInv1210.html create mode 100755 web/dbdoc/ILM_Retina_BXD_F_RankInv1210.html create mode 100755 web/dbdoc/ILM_Retina_BXD_M_RankInv1210.html create mode 100755 web/dbdoc/INIA_AmgCoh_0311.html create mode 100755 web/dbdoc/INIA_Amg_BLA_RMA_1110.html create mode 100755 web/dbdoc/INIA_Amg_BLA_RMA_F_1110.html create mode 100755 web/dbdoc/INIA_Amg_BLA_RMA_M_1110.html create mode 100755 web/dbdoc/INIA_Hyp_F_RMA_1110.html create mode 100755 web/dbdoc/INIA_Hyp_M_RMA_1110.html create mode 100755 web/dbdoc/INIA_Hyp_RMA_1110.html create mode 100644 web/dbdoc/INIA_MacFas_AMG_RMA_0110.html create mode 100755 web/dbdoc/INIA_MacFas_AMGc_RMA_0110.html create mode 100755 web/dbdoc/INIA_MacFas_AMGe_RMA_0110.html create mode 100755 web/dbdoc/INIA_MacFas_Ac_RMA_0110.html create mode 100755 web/dbdoc/INIA_MacFas_Ae_RMA_0110.html create mode 100755 web/dbdoc/INIA_MacFas_Hc_RMA_0110.html create mode 100755 web/dbdoc/INIA_MacFas_He_RMA_0110.html create mode 100755 web/dbdoc/INIA_MacFas_PfE_RMA_0110.html create mode 100755 web/dbdoc/INIA_MacFas_Pf_RMA_0110.html create mode 100755 web/dbdoc/INIA_MacFas_brain_RMA_0110.html create mode 100755 web/dbdoc/Illum_BXD_PBL_1108.html create mode 100755 web/dbdoc/Illum_BXD_Spl_1108.html create mode 100755 web/dbdoc/Illum_BXD_Thy_1108.html create mode 100755 web/dbdoc/Illum_LXS_Hipp_NOE_1008.html create mode 100755 web/dbdoc/Illum_LXS_Hipp_NON_1008.html create mode 100755 web/dbdoc/Illum_LXS_Hipp_NOS_1008.html create mode 100755 web/dbdoc/Illum_LXS_Hipp_RSE_1008.html create mode 100755 web/dbdoc/Illum_LXS_Hipp_RSS_1008.html create mode 100755 web/dbdoc/Illum_LXS_Hipp_loess0807.html create mode 100755 web/dbdoc/Illum_LXS_Hipp_loess_nb0807.html create mode 100755 web/dbdoc/Illum_LXS_Hipp_quant0807.html create mode 100755 web/dbdoc/Illum_LXS_Hipp_quant_nb0807.html create mode 100755 web/dbdoc/Illum_LXS_Hipp_rsn0807.html create mode 100755 web/dbdoc/Illum_LXS_Hipp_rsn_nb0807.html create mode 100755 web/dbdoc/Illum_Retina_BXD_RankInv0309.html create mode 100755 web/dbdoc/Illum_Retina_BXD_RankInv0410.html create mode 100755 web/dbdoc/IoP_SPL_RMA_0509.html create mode 100755 web/dbdoc/JAX_CSB_L_0711.html create mode 100755 web/dbdoc/JAX_CSB_L_6C_0711.html create mode 100755 web/dbdoc/JAX_CSB_L_HF_0711.html create mode 100755 web/dbdoc/KIN_YSM_A1C_0711.html create mode 100755 web/dbdoc/KIN_YSM_AMY_0711.html create mode 100755 web/dbdoc/KIN_YSM_CBC_0711.html create mode 100755 web/dbdoc/KIN_YSM_CGE_0711.html create mode 100755 web/dbdoc/KIN_YSM_DFC_0711.html create mode 100755 web/dbdoc/KIN_YSM_DIE_0711.html create mode 100755 web/dbdoc/KIN_YSM_DTH_0711.html create mode 100755 web/dbdoc/KIN_YSM_FC_0711.html create mode 100755 web/dbdoc/KIN_YSM_HIP_0711.html create mode 100755 web/dbdoc/KIN_YSM_IPC_0711.html create mode 100755 web/dbdoc/KIN_YSM_ITC_0711.html create mode 100755 web/dbdoc/KIN_YSM_LGE_0711.html create mode 100755 web/dbdoc/KIN_YSM_M1C_0711.html create mode 100755 web/dbdoc/KIN_YSM_MD_0711.html create mode 100755 web/dbdoc/KIN_YSM_MFC_0711.html create mode 100755 web/dbdoc/KIN_YSM_MGE_0711.html create mode 100755 web/dbdoc/KIN_YSM_OC_0711.html create mode 100755 web/dbdoc/KIN_YSM_OFC_0711.html create mode 100755 web/dbdoc/KIN_YSM_PC_0711.html create mode 100755 web/dbdoc/KIN_YSM_S1C_0711.html create mode 100755 web/dbdoc/KIN_YSM_STC_0711.html create mode 100755 web/dbdoc/KIN_YSM_STR_0711.html create mode 100755 web/dbdoc/KIN_YSM_TC_0711.html create mode 100755 web/dbdoc/KIN_YSM_URL_0711.html create mode 100755 web/dbdoc/KIN_YSM_V1C_0711.html create mode 100755 web/dbdoc/KIN_YSM_VFC_0711.html create mode 100755 web/dbdoc/KIN_YSM_VF_0711.html create mode 100755 web/dbdoc/KI_2A_0405_M.html create mode 100755 web/dbdoc/KI_2A_0405_R.html create mode 100755 web/dbdoc/KI_2A_0405_Rz.html create mode 100755 web/dbdoc/LVF2_M_0704_M.html create mode 100755 web/dbdoc/LVF2_M_0704_R.html create mode 100755 web/dbdoc/LV_G_0106_B.html create mode 100755 web/dbdoc/LV_G_0106_F.html create mode 100755 web/dbdoc/LV_G_0106_M.html create mode 100755 web/dbdoc/LV_G_0704_A.html create mode 100755 web/dbdoc/LV_G_0704_ABF.html create mode 100755 web/dbdoc/LV_G_0704_R.html create mode 100755 web/dbdoc/LV_G_0704_RBF.html create mode 100755 web/dbdoc/LXSGeno.html create mode 100755 web/dbdoc/LXSPublish.html create mode 100755 web/dbdoc/Liver_95_AgilentFea.xls create mode 100755 web/dbdoc/Liver_95_UNCMD.xls create mode 100755 web/dbdoc/M430MicroArray_May03.html create mode 100755 web/dbdoc/M430MicroArray_October03.html create mode 100755 web/dbdoc/M430MicroArray_September03.html create mode 100755 web/dbdoc/M430MicroArray_SetAB_Batch12_January04.html create mode 100755 web/dbdoc/MA_M2F_0706_R.html create mode 100755 web/dbdoc/MA_M2M_0706_R.html create mode 100755 web/dbdoc/MA_M2_0706_P.html create mode 100755 web/dbdoc/MA_M2_0706_R.html create mode 100755 web/dbdoc/MA_M2_0806_P.html create mode 100755 web/dbdoc/MA_M2_0806_R.html create mode 100755 web/dbdoc/MA_M_0704_M.html create mode 100755 web/dbdoc/MA_M_0704_R.html create mode 100755 web/dbdoc/MDPGeno.html create mode 100755 web/dbdoc/MDPPublish.html create mode 100755 web/dbdoc/NCI_Agil_Mam_Tum_RMA_0409.html create mode 100755 web/dbdoc/NCI_Mam_Tum_RMA_0409.html create mode 100755 web/dbdoc/NCSU_DrosWB_LC_RMA_0111.html create mode 100755 web/dbdoc/Neocortex_M430_PDNN_Nov05.html create mode 100755 web/dbdoc/Neocortex_M430_V2_PDNN_Nov05.html create mode 100755 web/dbdoc/Neurotox_2009_eQTL.pdf create mode 100755 web/dbdoc/OHSU_HS-CC_ILMStr_0211.html create mode 100644 web/dbdoc/ONCRetILM6_0412.html create mode 100755 web/dbdoc/OXUKHS_ILMHipp_RI0510.html create mode 100755 web/dbdoc/OXUKHS_ILMLiver_RI0510.html create mode 100755 web/dbdoc/OXUKHS_ILMLung_RI0510.html create mode 100755 web/dbdoc/RTC_1106_R.html create mode 100755 web/dbdoc/RTHC_0211_R.html create mode 100755 web/dbdoc/SA_M2_0405_M.html create mode 100755 web/dbdoc/SA_M2_0405_MC.html create mode 100755 web/dbdoc/SA_M2_0405_P.html create mode 100755 web/dbdoc/SA_M2_0405_PC.html create mode 100755 web/dbdoc/SA_M2_0405_R.html create mode 100755 web/dbdoc/SA_M2_0405_RC.html create mode 100755 web/dbdoc/SA_M2_0405_RR.html create mode 100755 web/dbdoc/SA_M2_0405_SS.html create mode 100755 web/dbdoc/SA_M2_0905_M.html create mode 100755 web/dbdoc/SA_M2_0905_P.html create mode 100755 web/dbdoc/SA_M2_0905_R.html create mode 100755 web/dbdoc/SA_M2_1104_G.html create mode 100755 web/dbdoc/SA_M2_1104_M.html create mode 100755 web/dbdoc/SA_M2_1104_P.html create mode 100755 web/dbdoc/SA_M2_1104_R.html create mode 100755 web/dbdoc/STSPL_1107_R.html create mode 100755 web/dbdoc/SUH_Liv_RMA_0611.html create mode 100755 web/dbdoc/SXMGeno.html create mode 100755 web/dbdoc/SXMPublish.html create mode 100755 web/dbdoc/Striatum_Exon_0209.html create mode 100755 web/dbdoc/Striatum_Exon_0308.html create mode 100755 web/dbdoc/Striatum_Exon_0707.html create mode 100755 web/dbdoc/Striatum_Exon_0708.html create mode 100755 web/dbdoc/Striatum_M430_PDNN_Nov05.html create mode 100755 web/dbdoc/Striatum_M430_V2_PDNN_Nov05.html create mode 100755 web/dbdoc/Treg_R_1006.html create mode 100755 web/dbdoc/U74Av2SScore_Apr05.html create mode 100755 web/dbdoc/UAB_DrosWB_LC_RMA_1009.html create mode 100755 web/dbdoc/UAB_DrosWB_LE_RMA_1009.html create mode 100755 web/dbdoc/UCLA_BDF2_LIVER_1999.html create mode 100755 web/dbdoc/UCLA_BHF2_ADIPOSE_0605.html create mode 100755 web/dbdoc/UCLA_BHF2_ADIPOSE_FEMALE.html create mode 100755 web/dbdoc/UCLA_BHF2_ADIPOSE_MALE.html create mode 100755 web/dbdoc/UCLA_BHF2_BRAIN_0605.html create mode 100755 web/dbdoc/UCLA_BHF2_BRAIN_FEMALE.html create mode 100755 web/dbdoc/UCLA_BHF2_BRAIN_MALE.html create mode 100755 web/dbdoc/UCLA_BHF2_LIVER_0605.html create mode 100755 web/dbdoc/UCLA_BHF2_LIVER_FEMALE.html create mode 100755 web/dbdoc/UCLA_BHF2_LIVER_MALE.html create mode 100755 web/dbdoc/UCLA_BHF2_MUSCLE_0605.html create mode 100755 web/dbdoc/UCLA_BHF2_MUSCLE_FEMALE.html create mode 100755 web/dbdoc/UCLA_BHF2_MUSCLE_MALE.html create mode 100755 web/dbdoc/UCLA_BHHBF2_ADIPOSE_2005.html create mode 100755 web/dbdoc/UCLA_BHHBF2_ADIPOSE_FEMALE.html create mode 100755 web/dbdoc/UCLA_BHHBF2_ADIPOSE_MALE.html create mode 100755 web/dbdoc/UCLA_BHHBF2_BRAIN_2005.html create mode 100755 web/dbdoc/UCLA_BHHBF2_BRAIN_FEMALE.html create mode 100755 web/dbdoc/UCLA_BHHBF2_BRAIN_MALE.html create mode 100755 web/dbdoc/UCLA_BHHBF2_LIVER_2005.html create mode 100755 web/dbdoc/UCLA_BHHBF2_LIVER_FEMALE.html create mode 100755 web/dbdoc/UCLA_BHHBF2_LIVER_MALE.html create mode 100755 web/dbdoc/UCLA_BHHBF2_MUSCLE_2005.html create mode 100755 web/dbdoc/UCLA_BHHBF2_MUSCLE_FEMALE.html create mode 100755 web/dbdoc/UCLA_BHHBF2_MUSCLE_MALE.html create mode 100755 web/dbdoc/UCLA_BXDBXH_CARTILAGE.html create mode 100755 web/dbdoc/UCLA_BXDBXH_CARTILAGE_V2.html create mode 100755 web/dbdoc/UCLA_BXD_CARTILAGE.html create mode 100755 web/dbdoc/UCLA_BXHBXD_CARTILAGE.html create mode 100755 web/dbdoc/UCLA_BXHBXD_CARTILAGE_V2.html create mode 100755 web/dbdoc/UCLA_BXH_CARTILAGE.html create mode 100755 web/dbdoc/UCLA_BXN_CARTILAGE.html create mode 100755 web/dbdoc/UCLA_BXN_CARTILAGE2.html create mode 100755 web/dbdoc/UCLA_CTB6B6CTF2_ADIPOSE_2005.html create mode 100755 web/dbdoc/UCLA_CTB6B6CTF2_ADIPOSE_FEMALE.html create mode 100755 web/dbdoc/UCLA_CTB6B6CTF2_ADIPOSE_MALE.html create mode 100755 web/dbdoc/UCLA_CTB6B6CTF2_BRAIN_2005.html create mode 100755 web/dbdoc/UCLA_CTB6B6CTF2_BRAIN_FEMALE.html create mode 100755 web/dbdoc/UCLA_CTB6B6CTF2_BRAIN_MALE.html create mode 100755 web/dbdoc/UCLA_CTB6B6CTF2_LIVER_2005.html create mode 100755 web/dbdoc/UCLA_CTB6B6CTF2_LIVER_FEMALE.html create mode 100755 web/dbdoc/UCLA_CTB6B6CTF2_LIVER_MALE.html create mode 100755 web/dbdoc/UCLA_CTB6B6CTF2_MUSCLE_2005.html create mode 100755 web/dbdoc/UCLA_CTB6B6CTF2_MUSCLE_FEMALE.html create mode 100755 web/dbdoc/UCLA_CTB6B6CTF2_MUSCLE_MALE.html create mode 100755 web/dbdoc/UCLA_CXBF2_ADIPOSE_2005.html create mode 100755 web/dbdoc/UCLA_CXBF2_BRAIN_2005.html create mode 100755 web/dbdoc/UCLA_CXBF2_LIVER_2005.html create mode 100755 web/dbdoc/UCLA_CXBF2_MUSCLE_2005.html create mode 100755 web/dbdoc/UIOWA_Eye_RMA_0906.html create mode 100755 web/dbdoc/UMCG_0907_Eryth.html create mode 100755 web/dbdoc/UMCG_0907_Eryth_ori.html create mode 100755 web/dbdoc/UMCG_0907_HemaStem.html create mode 100755 web/dbdoc/UMCG_0907_HemaStem_ori.html create mode 100755 web/dbdoc/UMCG_0907_Myeloid.html create mode 100755 web/dbdoc/UMCG_0907_Myeloid_ori.html create mode 100755 web/dbdoc/UMCG_0907_Pro.html create mode 100755 web/dbdoc/UMCG_0907_Pro_ori.html create mode 100755 web/dbdoc/UMUTAffyExon_0209_RMA.html create mode 100755 web/dbdoc/UMUTAffyExon_0209_RMA_MDP.html create mode 100755 web/dbdoc/UMUTAffyExon_0308_RMA.html create mode 100755 web/dbdoc/UMUTAffyExon_0708_RMA.html create mode 100755 web/dbdoc/UMUTAffyExon_0808_RMA.html create mode 100755 web/dbdoc/UTHSC_1107_RankInv.html create mode 100755 web/dbdoc/UTHSC_SPL_RMA_1010.html create mode 100755 web/dbdoc/UTHSC_SPL_RMA_1210.html create mode 100755 web/dbdoc/UTHSC_Str_RankInv_1210.html create mode 100755 web/dbdoc/UTHSC_Striatum_RankInv_1210.html create mode 100755 web/dbdoc/UTK_BXDSpl_VST_0110.html create mode 100755 web/dbdoc/UT_CEPH_RankInv0909.html create mode 100755 web/dbdoc/UT_HippRatEx_RMA_0709.html create mode 100755 web/dbdoc/UT_ILM_BXD_hipp_NOE_0909.html create mode 100755 web/dbdoc/UT_ILM_BXD_hipp_NON_0909.html create mode 100755 web/dbdoc/UT_ILM_BXD_hipp_NOS_0909.html create mode 100755 web/dbdoc/UT_ILM_BXD_hipp_RSE_0909.html create mode 100755 web/dbdoc/UT_ILM_BXD_hipp_RSS_0909.html create mode 100755 web/dbdoc/UT_VA_ILM_BXD_Islets_RInv1009.html create mode 100755 web/dbdoc/UT_VA_ILM_BXD_SpLeuc_RInv1009.html create mode 100755 web/dbdoc/VCUEtOH_0609_R.html create mode 100755 web/dbdoc/VCUEtOH_0806_R.html create mode 100755 web/dbdoc/VCUEtOH_1007_R.html create mode 100755 web/dbdoc/VCUEtOH_1206_R.html create mode 100755 web/dbdoc/VCUEt_vs_Sal_0806_R.html create mode 100755 web/dbdoc/VCUEtvsSal_0609_R.html create mode 100755 web/dbdoc/VCUSal_0609_R.html create mode 100755 web/dbdoc/VCUSal_0806_R.html create mode 100755 web/dbdoc/VCUSal_1006_R.html create mode 100755 web/dbdoc/VCUSal_1007_R.html create mode 100755 web/dbdoc/VCUSal_1206_R.html create mode 100755 web/dbdoc/VCUSalo_1007_R.html create mode 100755 web/dbdoc/VCU_PF_Air_0111_R.html create mode 100755 web/dbdoc/VCU_PF_AvE_0111_Ss.html create mode 100755 web/dbdoc/VCU_PF_Et_0111_R.html create mode 100755 web/dbdoc/VUBXDMouseMidBrainQ0212.html create mode 100644 web/dbdoc/VUBXDMouseMidBrainQ0212L1.html create mode 100644 web/dbdoc/VUBXDMouseMidBrainQ0212L10.html create mode 100644 web/dbdoc/VUBXDMouseMidBrainQ0212L11.html create mode 100644 web/dbdoc/VUBXDMouseMidBrainQ0212L12.html create mode 100644 web/dbdoc/VUBXDMouseMidBrainQ0212L13.html create mode 100644 web/dbdoc/VUBXDMouseMidBrainQ0212L14.html create mode 100644 web/dbdoc/VUBXDMouseMidBrainQ0212L2.html create mode 100644 web/dbdoc/VUBXDMouseMidBrainQ0212L3.html create mode 100644 web/dbdoc/VUBXDMouseMidBrainQ0212L4.html create mode 100644 web/dbdoc/VUBXDMouseMidBrainQ0212L5.html create mode 100644 web/dbdoc/VUBXDMouseMidBrainQ0212L6.html create mode 100644 web/dbdoc/VUBXDMouseMidBrainQ0212L7.html create mode 100644 web/dbdoc/VUBXDMouseMidBrainQ0212L8.html create mode 100644 web/dbdoc/VUBXDMouseMidBrainQ0212L9.html create mode 100644 web/dbdoc/VUBXDMouseMidBrainQ0512.html create mode 100755 web/dbdoc/data_analysis_fundamentals_manual.pdf create mode 100755 web/dbdoc/downloadHelp.html create mode 100755 web/dbdoc/template.html create mode 100755 web/dbdoc/test.html create mode 100755 web/dbdoc/testimage.html create mode 100755 web/down.html create mode 100755 web/drosophilaCross.html create mode 100644 web/faq.html create mode 100755 web/favicon.ico create mode 100644 web/footer.html create mode 100755 web/gghelp.html create mode 100755 web/glossary.html create mode 100644 web/header.html create mode 100755 web/heatmap.html create mode 100755 web/home.html create mode 100755 web/humanCross.html create mode 100755 web/images/AffyU74.pdf create mode 100755 web/images/B6 punch image.png create mode 100755 web/images/BEHN.head.gif create mode 100755 web/images/Beth_Israel.jpg create mode 100755 web/images/Beth_Israel.pdf create mode 100755 web/images/CEL.gif create mode 100755 web/images/CHP.gif create mode 100755 web/images/Contract.gif create mode 100755 web/images/CzechAca.gif create mode 100755 web/images/D2 punch image.png create mode 100755 web/images/DAT.gif create mode 100755 web/images/Expand.gif create mode 100755 web/images/GCAT_logo_final.jpg create mode 100755 web/images/MDC_Logo.gif create mode 100755 web/images/NIEHS.gif create mode 100755 web/images/ODE_logo_final.jpg create mode 100755 web/images/PORTLANDVASEALROUND.jpg create mode 100755 web/images/PythonPoweredAnimSmall.gif create mode 100755 web/images/RPT.gif create mode 100755 web/images/TXT.gif create mode 100755 web/images/Unc.gif create mode 100755 web/images/VNATCrop.gif create mode 100755 web/images/add_collection1_final.jpg create mode 100755 web/images/add_icon.jpg create mode 100755 web/images/analogo.gif create mode 100755 web/images/arrowdown.gif create mode 100755 web/images/arrowdown2.gif create mode 100755 web/images/arrowdown3.gif create mode 100755 web/images/asc.gif create mode 100755 web/images/bg.gif create mode 100755 web/images/biochem_logo.jpg create mode 100755 web/images/blat.png create mode 100755 web/images/blat2.gif create mode 100755 web/images/blue.png create mode 100755 web/images/bluegradient.png create mode 100755 web/images/cds.gif create mode 100755 web/images/checkblue.gif create mode 100755 web/images/checkgreen.gif create mode 100755 web/images/checkorange.gif create mode 100755 web/images/checkred.gif create mode 100755 web/images/checkyellow.gif create mode 100755 web/images/colorPanel.png create mode 100755 web/images/compare_correlates2_final.jpg create mode 100755 web/images/correlation_matrix1_final.jpg create mode 100755 web/images/desc.gif create mode 100755 web/images/download.gif create mode 100755 web/images/edit_icon.jpg create mode 100755 web/images/export2_final.jpg create mode 100755 web/images/female.jpg create mode 100755 web/images/femaleb6by.jpg create mode 100755 web/images/find_icon.jpg create mode 100755 web/images/genenetwork.gif create mode 100755 web/images/genewiki_icon.jpg create mode 100755 web/images/gnf.gif create mode 100755 web/images/gron.jpg create mode 100755 web/images/gtom_icon_final.jpg create mode 100755 web/images/heatmap2_final.jpg create mode 100755 web/images/history.gif create mode 100755 web/images/html2.gif create mode 100755 web/images/imperialCollege.gif create mode 100755 web/images/invert_selection2_final.jpg create mode 100755 web/images/ipad_icon3.png create mode 100755 web/images/loadingAnimation.gif create mode 100755 web/images/logo.jpg create mode 100755 web/images/logo_inra.gif create mode 100755 web/images/male.jpg create mode 100755 web/images/mmicon.gif create mode 100755 web/images/modify.gif create mode 100755 web/images/multiple_interval_mapping1_final.jpg create mode 100755 web/images/naturalbig.jpg create mode 100755 web/images/nciLogo-rev.jpg create mode 100755 web/images/network_graph1_final.jpg create mode 100755 web/images/new_user.gif create mode 100755 web/images/nextsign.gif create mode 100755 web/images/nih.jpg create mode 100755 web/images/partial_correlation_final.jpg create mode 100755 web/images/plant1.jpg create mode 100755 web/images/plant1_t.jpg create mode 100755 web/images/plant2.jpg create mode 100755 web/images/plant2_t.jpg create mode 100755 web/images/plant3.jpg create mode 100755 web/images/plant3_t.jpg create mode 100755 web/images/plant4.jpg create mode 100755 web/images/plant4_t.jpg create mode 100755 web/images/probe_icon.jpg create mode 100755 web/images/qmark.gif create mode 100755 web/images/qmarkBox.gif create mode 100755 web/images/qmarkBoxBlue.gif create mode 100755 web/images/qtlreaper.gif create mode 100755 web/images/question_mark.gif create mode 100755 web/images/real-webqtllogo2.gif create mode 100755 web/images/real-webqtllogo2beta.gif create mode 100755 web/images/redgradient.png create mode 100755 web/images/remove_selection1_final.jpg create mode 100755 web/images/rnaseq_icon.jpg create mode 100755 web/images/rug.jpg create mode 100755 web/images/search.gif create mode 100755 web/images/select_all.gif create mode 100755 web/images/select_all2_final.jpg create mode 100755 web/images/select_none2_final.jpg create mode 100755 web/images/shadow/corner_bl.gif create mode 100755 web/images/shadow/corner_tr.gif create mode 100755 web/images/shadow/shadow.gif create mode 100755 web/images/single.jpg create mode 100755 web/images/single_t.jpg create mode 100755 web/images/snp_icon.jpg create mode 100755 web/images/sortdown.gif create mode 100755 web/images/sortdownon.gif create mode 100755 web/images/sortup.gif create mode 100755 web/images/sortupon.gif create mode 100755 web/images/spearman.gif create mode 100755 web/images/start.gif create mode 100755 web/images/step1.gif create mode 100755 web/images/step2.gif create mode 100755 web/images/step3.gif create mode 100755 web/images/tair.gif create mode 100755 web/images/th_back.gif create mode 100755 web/images/tjl_logo.gif create mode 100755 web/images/tjl_logo_02.gif create mode 100755 web/images/tooltip.js create mode 100755 web/images/trash.gif create mode 100755 web/images/trash.jpg create mode 100755 web/images/upload/APOE_Pearson.gif create mode 100755 web/images/upload/APOE_Rank.gif create mode 100755 web/images/upload/APOE_Scatter.png create mode 100755 web/images/upload/AXB_BXA_Eye_Sex.gif create mode 100755 web/images/upload/AXB_Eye_Sex.gif create mode 100755 web/images/upload/Affero_General_Public_License_3_Logo.svg.png create mode 100755 web/images/upload/BLATVerify1.png create mode 100755 web/images/upload/BLATVerify2.png create mode 100755 web/images/upload/BXD20.png create mode 100755 web/images/upload/BXD_immunophenotypes_2010.pdf create mode 100755 web/images/upload/Bailey_1971_Transplantation.pdf create mode 100755 web/images/upload/BannerGraph_2009.png create mode 100755 web/images/upload/BannerGraphs.png create mode 100755 web/images/upload/Barley_Search.png create mode 100755 web/images/upload/Boon_H5N1_2009.pdf create mode 100755 web/images/upload/CITGLogo.png create mode 100755 web/images/upload/Chrna1vsMyf6.gif create mode 100755 web/images/upload/Congenic.png create mode 100644 web/images/upload/Cord Blood Review 2010.pdf create mode 100755 web/images/upload/Davies_Schalkwyk_2009.pdf create mode 100755 web/images/upload/DdyvsXist_GENIAAA.png create mode 100755 web/images/upload/DiCurzio_Goldowitz-2011_BXDAdrenals.pdf create mode 100755 web/images/upload/ExonStriatumSearch.png create mode 100755 web/images/upload/GCAT.png create mode 100755 web/images/upload/Gatti et al Physiol Genomics 2010.pdf create mode 100755 web/images/upload/Gatti_2010PhysiolGenomics.pdf create mode 100755 web/images/upload/GeneNetBanner2009.png create mode 100755 web/images/upload/GeneNet_Banner.png create mode 100755 web/images/upload/GeneNet_Banner2009b PM.png create mode 100755 web/images/upload/GeneNet_Banner2009c.png create mode 100755 web/images/upload/Gibson_Jones_2011_Spleen_Iron.pdf create mode 100755 web/images/upload/Grin2BMap.png create mode 100755 web/images/upload/HEIMED_Distrib.png create mode 100755 web/images/upload/HQF_Drd1a_Striatum.gif create mode 100755 web/images/upload/HSmice.jpg create mode 100755 web/images/upload/HZi_sex.gif create mode 100755 web/images/upload/Heimel_2008_BXDVisualCortex.pdf create mode 100755 web/images/upload/Ilm103520706_May07RankInv.gif create mode 100755 web/images/upload/IndelsinHc.png create mode 100755 web/images/upload/Info.png create mode 100755 web/images/upload/Jackson_2011_Neuropsypharm_GalaninNicotine.pdf create mode 100755 web/images/upload/Jones et al 1999 Pharmacogenetics3-0.pdf create mode 100755 web/images/upload/Jones et al 1999 Pharmacogenetics3.pdf create mode 100755 web/images/upload/Jones_2003_NN1203.pdf create mode 100755 web/images/upload/Jones_2008_Hippocampus.pdf create mode 100755 web/images/upload/Jones_OfMiceandMen.pdf create mode 100755 web/images/upload/Kcnj9_PFCMiles.gif create mode 100755 web/images/upload/LXS_SscrMaxLOD.gif create mode 100755 web/images/upload/Li_Burmeister_2005.pdf create mode 100755 web/images/upload/LitCorSearch.png create mode 100755 web/images/upload/MDP_Search.png create mode 100755 web/images/upload/Mendelian_LXS.gif create mode 100755 web/images/upload/Morahan_2008.pdf create mode 100755 web/images/upload/Mountz2005.pdf create mode 100755 web/images/upload/MouseExonGeneNetwork.png create mode 100755 web/images/upload/Mozhui_et_al_2007.doc create mode 100755 web/images/upload/NetworkGraph2009.png create mode 100755 web/images/upload/NetworkLogo.png create mode 100755 web/images/upload/New Interface.png create mode 100755 web/images/upload/Nif.jpg create mode 100755 web/images/upload/Nif.png create mode 100755 web/images/upload/Normal_Plot.gif create mode 100755 web/images/upload/PartialCorrelationExample1.png create mode 100755 web/images/upload/PartialCorrelationSNP.png create mode 100755 web/images/upload/PartialR_Icon.png create mode 100755 web/images/upload/Peirce_Lu_2003.pdf create mode 100755 web/images/upload/Picture 3.png create mode 100755 web/images/upload/Picture 4.png create mode 100755 web/images/upload/Poot_2011.pdf create mode 100755 web/images/upload/Porcu_Morrow_2011.pdf create mode 100755 web/images/upload/PurkinjeCell.jpg create mode 100755 web/images/upload/PythonLogo.png create mode 100755 web/images/upload/Rosen_2003.pdf create mode 100755 web/images/upload/SNPBrowserUpdate.png create mode 100755 web/images/upload/SampleData.txt create mode 100755 web/images/upload/Sex_LXS_NOE.gif create mode 100755 web/images/upload/Sex_LXS_NOS.gif create mode 100755 web/images/upload/Sex_LXS_RSS.gif create mode 100755 web/images/upload/SilverFig3_2.png create mode 100755 web/images/upload/SilverFig3_6.png create mode 100755 web/images/upload/Striatum_Illumina_SexTest.gif create mode 100755 web/images/upload/Suwanwela-1.JBMR.10.pdf create mode 100755 web/images/upload/Taylor_1973.pdf create mode 100755 web/images/upload/Thomas_Auwerx_2009.pdf create mode 100755 web/images/upload/Tour_1_NR2B.png create mode 100755 web/images/upload/Tour_2.png create mode 100755 web/images/upload/Tour_3.png create mode 100755 web/images/upload/Tour_4.png create mode 100755 web/images/upload/Tutoral_Stats1.jpg create mode 100755 web/images/upload/Tutorial-Correlation2.jpg create mode 100755 web/images/upload/Tutorial_Correlation1.jpg create mode 100755 web/images/upload/Tutorial_Correlation3.jpg create mode 100755 web/images/upload/Tutorial_GO1.jpg create mode 100755 web/images/upload/Tutorial_Map1.jpg create mode 100755 web/images/upload/Tutorial_Map2.jpg create mode 100755 web/images/upload/Tutorial_Stats2.jpg create mode 100755 web/images/upload/Tutorial_TraitData1-0.jpg create mode 100755 web/images/upload/Tutorial_TraitData1.jpg create mode 100755 web/images/upload/Vazquez2007.pdf create mode 100755 web/images/upload/WBCs_MDP_female.gif create mode 100755 web/images/upload/XistStriatumExonJul07.gif create mode 100755 web/images/upload/Xist_LXS_Hipp.gif create mode 100755 web/images/upload/Xist_in_GSE5281.gif create mode 100755 web/images/upload/barley_QSM.png create mode 100755 web/images/upload/gg_U74brain_FDR1_hwt.gif create mode 100755 web/images/upload/gglogo1-0.gif create mode 100755 web/images/upload/gglogo1.gif create mode 100755 web/images/upload/gglogo1.png create mode 100755 web/images/upload/image001.gif create mode 100755 web/images/upload/image0010.gif create mode 100755 web/images/upload/image0011.gif create mode 100755 web/images/upload/image0012.gif create mode 100755 web/images/upload/image001rev2.jpg create mode 100755 web/images/upload/image002.gif create mode 100755 web/images/upload/image002rev2.jpg create mode 100755 web/images/upload/image003.gif create mode 100755 web/images/upload/image003rev2.jpg create mode 100755 web/images/upload/image004.gif create mode 100755 web/images/upload/image005.gif create mode 100755 web/images/upload/image006.gif create mode 100755 web/images/upload/image007.gif create mode 100755 web/images/upload/image008.jpg create mode 100755 web/images/upload/image009.jpg create mode 100755 web/images/upload/physical_chr10_map.gif create mode 100755 web/images/upload/polar-bear-tongue-0.jpg create mode 100755 web/images/upload/polar-bear-tongue-1.jpg create mode 100755 web/images/upload/polar-bear-tongue-2.jpg create mode 100755 web/images/upload/polar-bear-tongue-3.jpg create mode 100755 web/images/upload/polar-bear-tongue-4.jpg create mode 100755 web/images/upload/polar-bear-tongue.jpg create mode 100755 web/images/upload/registered_with_nif_button.jpg create mode 100755 web/images/upload/sort_by.gif create mode 100755 web/images/upload/sort_by.png create mode 100755 web/images/upload/tutorial_banner.jpg create mode 100755 web/images/upload/wt_cdna_synthesis_amplification.jpg create mode 100755 web/images/verify_icon.jpg create mode 100755 web/images/waitAnima.gif create mode 100755 web/images/waitAnima2.gif create mode 100755 web/images/wcrest.gif create mode 100755 web/images/webgestalt_icon_final.jpg create mode 100755 web/images/webqtl-2.gif create mode 100755 web/images/webqtl-3.gif create mode 100755 web/images/webqtl.jpg create mode 100755 web/images/webqtl.js create mode 100755 web/images/webqtlLogo.gif create mode 100755 web/images/webqtlLogoWide.gif create mode 100755 web/images/webqtl_search.gif create mode 100755 web/images/webqtl_search.psd create mode 100755 web/images/webqtllogo2.gif create mode 100755 web/images/webqtllogo2.gif.old create mode 100755 web/images/webqtllogo2archive.gif create mode 100755 web/images/webqtllogo2beta.gif create mode 100755 web/images/webqtllogo2beta2.gif create mode 100755 web/images/webqtllogolinkout.gif create mode 100755 web/images/x.gif create mode 100755 web/index.html create mode 100755 web/index.html.20110408 create mode 100755 web/index2.html create mode 100755 web/index3.html create mode 100755 web/index4.html create mode 100755 web/javascript/colorSel.js create mode 100755 web/javascript/correlationMatrix.js create mode 100755 web/javascript/dhtml.js create mode 100644 web/javascript/footer.js create mode 100644 web/javascript/header.js create mode 100755 web/javascript/jquery-1.5.2.min.js create mode 100755 web/javascript/jquery-ui-1.8.12.custom.min.js create mode 100644 web/javascript/jqueryFunction.js create mode 100755 web/javascript/menu_items.js create mode 100755 web/javascript/menu_new.js create mode 100755 web/javascript/menu_tpl.js create mode 100755 web/javascript/networkGraph.js create mode 100755 web/javascript/searchtip.js create mode 100755 web/javascript/selectDatasetMenu.js create mode 100755 web/javascript/sortTrait.js create mode 100755 web/javascript/svg.js create mode 100755 web/javascript/tabbed_pages.js create mode 100755 web/javascript/tablesorter.js create mode 100755 web/javascript/thickbox.js create mode 100644 web/javascript/webqtl.js create mode 100755 web/links.html create mode 100755 web/literatureCorrelation.html create mode 100755 web/manager.html create mode 100755 web/missing.html create mode 100755 web/mouseCross.html create mode 100755 web/pdf/Peirce_and_Lu_2004.pdf create mode 100755 web/pdf/corr.tar create mode 100755 web/pdf/nn0504-485.pdf create mode 100755 web/pdf/webqtl.pdf create mode 100755 web/phenotype_sop.html create mode 100755 web/policy.html create mode 100755 web/privacy.html create mode 100755 web/probeInfo.html create mode 100755 web/protocols.html create mode 100755 web/qmark.html create mode 100755 web/qtlreaper.html create mode 100755 web/ratCross.html create mode 100644 web/reference.html create mode 100755 web/sample.txt create mode 100755 web/sample2.txt create mode 100755 web/searchHelp.html create mode 100755 web/snp/chr1 create mode 100755 web/snp/chr10 create mode 100755 web/snp/chr11 create mode 100755 web/snp/chr12 create mode 100755 web/snp/chr13 create mode 100755 web/snp/chr14 create mode 100755 web/snp/chr15 create mode 100755 web/snp/chr16 create mode 100755 web/snp/chr17 create mode 100755 web/snp/chr18 create mode 100755 web/snp/chr19 create mode 100755 web/snp/chr2 create mode 100755 web/snp/chr3 create mode 100755 web/snp/chr4 create mode 100755 web/snp/chr5 create mode 100755 web/snp/chr6 create mode 100755 web/snp/chr7 create mode 100755 web/snp/chr8 create mode 100755 web/snp/chr9 create mode 100755 web/snp/chrX create mode 100755 web/snpbrowser.html create mode 100755 web/statusandContact.html create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/filelist.xml create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image001.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image002.jpg create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image003.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image004.jpg create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image005.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image006.jpg create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image007.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image008.jpg create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image009.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image010.jpg create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image011.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image012.jpg create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image013.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image014.jpg create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image015.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image016.jpg create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image017.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image018.jpg create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image019.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image020.jpg create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image021.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image022.jpg create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image023.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image024.jpg create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image025.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image026.jpg create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image027.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image028.jpg create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image029.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image030.jpg create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image031.png create mode 100755 web/tutorial/WebQTLTour/WebQTLTour_files/image032.jpg create mode 100755 web/tutorial/WebQTLTour/index.html create mode 100755 web/tutorial/movies/index.html create mode 100755 web/tutorial/pdf/GN_Barley_Tutorial.pdf create mode 100755 web/tutorial/pdf/Peirce_and_Lu_2004.pdf create mode 100755 web/tutorial/pdf/nn0504-485.pdf create mode 100755 web/tutorial/pdf/webqtl.pdf create mode 100755 web/tutorial/ppt/WebQTLDemo.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0001.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0002.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0003.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0004.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0005.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0006.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0007.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0008.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0009.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0010.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0011.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0012.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0013.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0014.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0015.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0016.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0017.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0018.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0019.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0020.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0021.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0022.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0023.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0024.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0025.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0026.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0027.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0028.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0029.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0030.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0031.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/Slide0032.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/WebQTLDemo.ppt create mode 100755 web/tutorial/ppt/WebQTLDemo_files/blank_notes.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/endshow.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/error.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/filelist.xml create mode 100755 web/tutorial/ppt/WebQTLDemo_files/frame.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/fs_navigation_bar.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/fullscr.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/fullscrClose.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/fullscreen.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/master02.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/master03.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/master03_background.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/master03_stylesheet.css create mode 100755 web/tutorial/ppt/WebQTLDemo_files/master05.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/master05_background.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/master05_stylesheet.css create mode 100755 web/tutorial/ppt/WebQTLDemo_files/narration.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/navbg.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/navigation_bar.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/next_active.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/next_disabled.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/notes_flag.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/outline.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/outline_collapse.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/outline_collapsed.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/outline_expand.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/outline_expanded.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/outline_navigation_bar.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/prev_active.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/prev_disabled.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/script.js create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0001.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0001_image001.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0001_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0002.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0002_image002.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0002_image003.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0002_image004.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0002_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0003.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0003_image005.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0003_image006.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0003_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0004.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0004_image007.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0004_image008.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0004_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0005.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0005_image009.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0005_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0006.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0006_image010.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0006_image011.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0006_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0007.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0007_image012.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0007_image013.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0007_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0008.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0008_image014.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0008_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0009.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0009_image015.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0009_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0010.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0010_image016.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0010_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0011.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0011_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0012.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0012_image017.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0012_image018.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0012_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0013.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0013_image019.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0013_image020.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0013_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0014.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0014_image021.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0014_image022.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0014_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0015.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0015_image023.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0015_image024.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0015_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image025.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image026.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image027.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image028.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image029.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image030.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image031.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image032.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image033.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image034.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image035.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image036.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image037.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image038.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image039.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image040.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image041.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image042.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image043.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image044.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image045.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image046.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image047.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image048.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image049.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image050.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image051.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image052.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image053.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image054.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image055.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image056.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image057.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image058.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image059.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image060.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image061.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image062.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image063.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image064.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image065.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image066.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image067.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image068.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image069.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image070.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image071.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image072.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_image073.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0016_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0017.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0017_image074.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0017_image075.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0017_image076.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0017_image077.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0017_image078.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0017_image079.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0017_image080.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0017_image081.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0017_image082.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0017_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0018.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0018_image083.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0018_image084.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0018_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0019.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0019_image085.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0019_image086.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0019_image087.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0019_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0020.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0020_image088.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0020_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0021.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0021_image089.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0021_image090.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0021_image091.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0021_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0022.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0022_image092.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0022_image093.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0022_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0023.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0023_image094.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0023_image095.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0023_image096.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0023_image097.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0023_image098.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0023_image099.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0023_image100.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0023_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0024.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0024_image101.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0024_image102.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0024_image103.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0024_image104.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0024_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0025.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0025_image105.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0025_image106.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0025_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0026.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0026_image107.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0026_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0027.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0027_image108.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0027_image109.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0027_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0028.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0028_image110.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0028_image111.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0028_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0029.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0029_image112.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0029_image113.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0029_image114.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0029_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0030.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0030_image115.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0030_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0031.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0031_image116.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0031_image117.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0031_image118.gif create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0031_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0032.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0032_notes_pane.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0033.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0034.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0035.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0036.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0037.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0038.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0039.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0040.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0041.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0042.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0043.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0044.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0045.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0046.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0047.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0048.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0049.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0050.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0051.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0052.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0053.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0054.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0055.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0056.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0057.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0058.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0059.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0060.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0061.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0062.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0063.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0064.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0065.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0066.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0067.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0068.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0069.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0070.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0071.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0072.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0073.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0074.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0075.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0076.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0077.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0078.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0079.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0080.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0081.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0082.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0083.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0084.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0085.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0086.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0087.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0088.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0089.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0090.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0091.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0092.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0093.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0094.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0095.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/slide0096.htm create mode 100755 web/tutorial/ppt/WebQTLDemo_files/space.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0001.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0002.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0003.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0004.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0005.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0006.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0007.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0008.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0009.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0010.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0011.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0012.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0013.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0014.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0015.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0016.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0017.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0018.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0019.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0020.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0021.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0022.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0023.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0024.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0025.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0026.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0027.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0028.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0029.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0030.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0031.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/blank_notes.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/endshow.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/error.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/filelist.xml create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/frame.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/fs_navigation_bar.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/fullscr.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/fullscrClose.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/fullscreen.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/master02.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/master03.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/master03_background.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/master03_stylesheet.css create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/master05.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/master05_background.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/master05_stylesheet.css create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/narration.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/navbg.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/navigation_bar.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/next_active.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/next_disabled.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/notes_flag.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_collapse.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_collapsed.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_expand.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_expanded.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_navigation_bar.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/prev_active.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/prev_disabled.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/script.js create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0001.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0001_image001.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0001_image002.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0001_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image002.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image003.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image004.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image005.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image006.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image007.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image008.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image009.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image010.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image011.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image012.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image013.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image014.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image015.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image016.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image017.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image018.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image019.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image020.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image021.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image022.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image023.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image024.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image025.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image026.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image027.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image028.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image029.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image030.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image031.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image032.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image033.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image034.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image035.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image036.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image037.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image038.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image039.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image040.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image041.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image042.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image043.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image044.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image045.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image046.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image047.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image048.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image049.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image050.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image051.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image052.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image053.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image005.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image006.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image008.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image009.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image054.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image055.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image056.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image057.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image058.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image059.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image060.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image061.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image062.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image010.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image012.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image063.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image064.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image065.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image013.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image014.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image066.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image067.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image068.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image069.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image070.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_image015.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_image071.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_image072.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image016.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image017.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image073.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image075.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image018.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image019.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image021.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image076.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image077.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image022.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image078.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image079.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image080.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image023.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image024.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image082.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image083.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image084.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image085.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image086.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_image025.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_image087.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_image088.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0012.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0012_image026.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0012_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0013.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0013_image027.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0013_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_image029.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_image031.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_image033.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015_image034.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015_image035.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0016.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0016_image036.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0016_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0017.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018_image037.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018_image038.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image039.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image040.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image041.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image042.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image043.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image044.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image045.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image046.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image047.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image048.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image049.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image050.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image051.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image052.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image053.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image054.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image055.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image056.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image057.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image058.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image059.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image060.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image061.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image062.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image063.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image064.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image065.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image066.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image067.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image068.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image069.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image070.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image071.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image072.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image073.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image074.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image075.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image076.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image077.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image078.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image079.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image080.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image081.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image082.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image083.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image084.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image085.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image086.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image087.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image088.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image089.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image090.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image091.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image092.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image093.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image094.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image095.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image096.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image097.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image098.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_image099.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_image100.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_image101.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image102.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image103.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image104.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image105.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image106.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023_image107.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023_image108.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024_image109.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024_image111.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025_image112.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025_image113.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_image114.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_image115.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_image116.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image118.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image119.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image120.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image121.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image122.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028_image123.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028_image124.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0029.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0030.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0031.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0031_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0032.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0033.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0034.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0035.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0036.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0037.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0038.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0039.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0040.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0041.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0042.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0043.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0044.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0045.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0046.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0047.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0048.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0049.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0050.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0051.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0052.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0053.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0054.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0055.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0056.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0057.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0058.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0059.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0060.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0061.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0062.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0063.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0064.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0065.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0066.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0067.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0068.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0069.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0070.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0071.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0072.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0073.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0074.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0075.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0076.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0077.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0078.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0079.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0080.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0081.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0082.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0083.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0084.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0085.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0086.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0087.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0088.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0089.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0090.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0091.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0092.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0093.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/space.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2.ppt_files/webqtl_demo2.ppt.ppt create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0001.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0002.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0003.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0004.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0005.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0006.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0007.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0008.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0009.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0010.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0011.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0012.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0013.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0014.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0015.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0016.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0017.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0018.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0019.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/blank_notes.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/endshow.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/error.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/filelist.xml create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/frame.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fs_navigation_bar.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fullscr.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fullscrClose.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fullscreen.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master02.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master03.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master03_background.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master03_stylesheet.css create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/narration.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/navbg.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/navigation_bar.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/next_active.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/next_disabled.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/notes_flag.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_collapse.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_collapsed.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_expand.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_expanded.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_navigation_bar.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/prev_active.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/prev_disabled.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/script.js create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0001.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0001_image001.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0001_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_image002.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_image003.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_image004.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image005.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image006.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image008.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image009.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004_image010.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004_image012.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005_image013.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005_image014.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0006.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0006_image015.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0006_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007_image016.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007_image017.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_image018.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_image019.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_image021.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0009.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0009_image022.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0009_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010_image023.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010_image024.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0011.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0011_image025.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0011_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0012.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0012_image026.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0012_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0013.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0013_image027.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0013_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_image029.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_image031.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_image033.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015_image034.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015_image035.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0016.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0016_image036.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0016_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0017.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018_image037.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018_image038.png create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0019.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0019_notes_pane.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0020.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0021.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0022.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0023.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0024.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0025.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0026.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0027.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0028.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0029.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0030.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0031.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0032.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0033.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0034.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0035.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0036.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0037.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0038.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0039.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0040.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0041.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0042.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0043.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0044.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0045.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0046.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0047.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0048.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0049.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0050.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0051.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0052.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0053.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0054.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0055.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0056.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0057.htm create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/space.gif create mode 100755 web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/webqtl_demo2_part1.ppt.ppt create mode 100755 web/tutorial/ppt/index.html create mode 100755 web/tutorial/ppt/ppt/webqtl_demo2.ppt create mode 100755 web/tutorial/ppt/ppt/webqtl_demo2_part1.ppt create mode 100755 web/upload.html create mode 100755 web/webqtl/.htaccess create mode 100755 web/webqtl/__init__.py create mode 100755 web/webqtl/annotation/AnnotationPage.py create mode 100755 web/webqtl/annotation/HTMLBody.py create mode 100755 web/webqtl/annotation/__init__.py create mode 100755 web/webqtl/base/GeneralObject.py create mode 100755 web/webqtl/base/__init__.py create mode 100755 web/webqtl/base/admin.py create mode 100755 web/webqtl/base/cgiData.py create mode 100755 web/webqtl/base/cookieData.py create mode 100755 web/webqtl/base/footer.py create mode 100755 web/webqtl/base/header.py create mode 100755 web/webqtl/base/indexBody.py create mode 100755 web/webqtl/base/myCookie.py create mode 100755 web/webqtl/base/sessionData.py create mode 100644 web/webqtl/base/template.py create mode 100644 web/webqtl/base/templatePage.py create mode 100755 web/webqtl/base/webqtlCaseData.py create mode 100755 web/webqtl/base/webqtlConfig.py create mode 100755 web/webqtl/base/webqtlConfigLocal.py create mode 100755 web/webqtl/base/webqtlDataset.py create mode 100755 web/webqtl/base/webqtlFormData.py create mode 100644 web/webqtl/base/webqtlTrait.py create mode 100755 web/webqtl/basicStatistics/BasicStatisticsFunctions.py create mode 100755 web/webqtl/basicStatistics/BasicStatisticsPage_alpha.py create mode 100755 web/webqtl/basicStatistics/__init__.py create mode 100755 web/webqtl/basicStatistics/updatedBasicStatisticsPage.py create mode 100755 web/webqtl/cmdLine/__init__.py create mode 100755 web/webqtl/cmdLine/cmdCompCorrPage.py create mode 100755 web/webqtl/cmdLine/cmdCorrelationPage.py create mode 100755 web/webqtl/cmdLine/cmdDirectPlotPage.py create mode 100755 web/webqtl/cmdLine/cmdHeatmapPage.py create mode 100755 web/webqtl/cmdLine/cmdIntervalMappingPage.py create mode 100755 web/webqtl/cmdLine/cmdMarkerRegressionPage.py create mode 100755 web/webqtl/cmdLine/cmdNetworkGraphPage.py create mode 100755 web/webqtl/cmdLine/cmdPartialCorrelationPage.py create mode 100755 web/webqtl/cmdLine/cmdQTLminerPage.py create mode 100755 web/webqtl/cmdLine/cmdShowAllPage.py create mode 100755 web/webqtl/cmdLine/cmdShowAllPage2.py create mode 100755 web/webqtl/cmdLine/cmdSnpBrowserResultPage.py create mode 100755 web/webqtl/cmdLine/cmdTissueCorrelationResultPage.py create mode 100755 web/webqtl/cmdLine/procPage.py create mode 100755 web/webqtl/cmdLine/webqtlCmdLine.py create mode 100644 web/webqtl/collection/AddToSelectionPage.py create mode 100755 web/webqtl/collection/AddUserInputToSelectionPage.py create mode 100755 web/webqtl/collection/BatchSubmitSelectionPage.py create mode 100755 web/webqtl/collection/DisplaySelectionPage.py create mode 100755 web/webqtl/collection/ExportSelectionDetailInfoPage.py create mode 100755 web/webqtl/collection/ExportSelectionPage.py create mode 100755 web/webqtl/collection/ImportSelectionPage.py create mode 100755 web/webqtl/collection/RemoveSelectionPage.py create mode 100755 web/webqtl/collection/__init__.py create mode 100755 web/webqtl/compareCorrelates/MultipleCorrelationPage.py create mode 100755 web/webqtl/compareCorrelates/__init__.py create mode 100755 web/webqtl/compareCorrelates/correlation.py create mode 100755 web/webqtl/compareCorrelates/htmlModule.py create mode 100755 web/webqtl/compareCorrelates/multitrait.py create mode 100755 web/webqtl/compareCorrelates/trait.py create mode 100755 web/webqtl/correlation/CorrelationPage.py create mode 100755 web/webqtl/correlation/PartialCorrDBPage.py create mode 100755 web/webqtl/correlation/PartialCorrInputPage.py create mode 100755 web/webqtl/correlation/PartialCorrTraitPage.py create mode 100755 web/webqtl/correlation/PlotCorrelationPage.py create mode 100755 web/webqtl/correlation/__init__.py create mode 100755 web/webqtl/correlation/correlationFunction.py create mode 100755 web/webqtl/correlationMatrix/CorrelationMatrixPage.py create mode 100755 web/webqtl/correlationMatrix/TissueAbbreviationPage.py create mode 100755 web/webqtl/correlationMatrix/TissueCorrelationPage.py create mode 100755 web/webqtl/correlationMatrix/__init__.py create mode 100755 web/webqtl/correlationMatrix/tissueCorrelationMatrix.py create mode 100755 web/webqtl/dataSharing/SharingBody.py create mode 100755 web/webqtl/dataSharing/SharingInfo.py create mode 100755 web/webqtl/dataSharing/SharingInfoAddPage.py create mode 100755 web/webqtl/dataSharing/SharingInfoDeletePage.py create mode 100755 web/webqtl/dataSharing/SharingInfoEditPage.py create mode 100755 web/webqtl/dataSharing/SharingInfoPage.py create mode 100755 web/webqtl/dataSharing/SharingInfoUpdatePage.py create mode 100755 web/webqtl/dataSharing/SharingListDataSetPage.py create mode 100755 web/webqtl/dataSharing/SharingPage.py create mode 100755 web/webqtl/dataSharing/__init__.py create mode 100755 web/webqtl/dbFunction/__init__.py create mode 100755 web/webqtl/dbFunction/webqtlDatabaseFunction.py create mode 100755 web/webqtl/externalResource/GCATPage.py create mode 100755 web/webqtl/externalResource/GoTreePage.py create mode 100755 web/webqtl/externalResource/ODEPage.py create mode 100755 web/webqtl/externalResource/__init__.py create mode 100755 web/webqtl/geneWiki/AddGeneRIFPage.py create mode 100755 web/webqtl/geneWiki/__init__.py create mode 100755 web/webqtl/genomeGraph/__init__.py create mode 100755 web/webqtl/genomeGraph/cmdGenomeScanPage.py create mode 100755 web/webqtl/genomeGraph/genAllDbResultPage.py create mode 100755 web/webqtl/heatmap/Heatmap.py create mode 100755 web/webqtl/heatmap/__init__.py create mode 100755 web/webqtl/heatmap/heatmapPage.py create mode 100755 web/webqtl/heatmap/heatmapPage_GN.py create mode 100755 web/webqtl/heatmap/slink.py create mode 100755 web/webqtl/intervalAnalyst/GeneUtil.py create mode 100755 web/webqtl/intervalAnalyst/IntervalAnalystPage.py create mode 100755 web/webqtl/intervalAnalyst/__init__.py create mode 100644 web/webqtl/intervalMapping/IntervalMappingPage.py create mode 100755 web/webqtl/intervalMapping/__init__.py create mode 100644 web/webqtl/main.py create mode 100755 web/webqtl/maintainance/__init__.py create mode 100755 web/webqtl/maintainance/addRif.py create mode 100755 web/webqtl/maintainance/checkInfoFile.py create mode 100755 web/webqtl/maintainance/genSelectDatasetJS.py create mode 100755 web/webqtl/maintainance/updateMenuJS.py create mode 100755 web/webqtl/management/GenoUpdate.py create mode 100755 web/webqtl/management/__init__.py create mode 100755 web/webqtl/management/assignUserToDatasetPage.py create mode 100755 web/webqtl/management/createUserAccountPage.py create mode 100755 web/webqtl/management/deletePhenotypeTraitPage.py create mode 100755 web/webqtl/management/editHeaderFooter.py create mode 100755 web/webqtl/management/exportPhenotypeDatasetPage.py create mode 100755 web/webqtl/management/managerMainPage.py create mode 100755 web/webqtl/markerRegression/CompositeMarkerRegressionPage.py create mode 100755 web/webqtl/markerRegression/MarkerRegressionPage.py create mode 100755 web/webqtl/markerRegression/__init__.py create mode 100755 web/webqtl/misc/__init__.py create mode 100755 web/webqtl/misc/editHtmlPage.py create mode 100755 web/webqtl/misc/uploadFilePage.py create mode 100755 web/webqtl/networkGraph/GraphPage.py create mode 100755 web/webqtl/networkGraph/ProcessedPoint.py create mode 100755 web/webqtl/networkGraph/__init__.py create mode 100755 web/webqtl/networkGraph/nGraphException.py create mode 100755 web/webqtl/networkGraph/networkGraphPage.py create mode 100644 web/webqtl/networkGraph/networkGraphPageBody.py create mode 100644 web/webqtl/networkGraph/networkGraphUtils.py create mode 100755 web/webqtl/pairScan/CategoryGraphPage.py create mode 100755 web/webqtl/pairScan/DirectPlotPage.py create mode 100755 web/webqtl/pairScan/PairPlotPage.py create mode 100755 web/webqtl/pairScan/__init__.py create mode 100755 web/webqtl/pubmedsearch/PubmedSearch.py create mode 100755 web/webqtl/pubmedsearch/PubmedSearchRe.py create mode 100755 web/webqtl/pubmedsearch/__init__.py create mode 100755 web/webqtl/qtlminer/GeneUtil.py create mode 100755 web/webqtl/qtlminer/QTLminer.py create mode 100755 web/webqtl/qtlminer/__init__.py create mode 100755 web/webqtl/schema/ShowCommentPage.py create mode 100755 web/webqtl/schema/ShowSchemaPage.py create mode 100755 web/webqtl/schema/UpdateCommentPage.py create mode 100755 web/webqtl/schema/__init__.py create mode 100755 web/webqtl/search/IndexPage.py create mode 100644 web/webqtl/search/SearchResultPage.py create mode 100755 web/webqtl/search/TextSearchPage.py create mode 100755 web/webqtl/search/__init__.py create mode 100755 web/webqtl/search/pubmedsearch.py create mode 100644 web/webqtl/showTrait/DataEditingPage.py create mode 100755 web/webqtl/showTrait/ShowBestTrait.py create mode 100755 web/webqtl/showTrait/ShowProbeInfoPage.py create mode 100755 web/webqtl/showTrait/ShowTraitPage.py create mode 100755 web/webqtl/showTrait/__init__.py create mode 100755 web/webqtl/showTrait/exportPage.py create mode 100755 web/webqtl/showTrait/testTraitPage.py create mode 100755 web/webqtl/snpBrowser/GeneAnnot.py create mode 100755 web/webqtl/snpBrowser/GeneListAnnot.py create mode 100755 web/webqtl/snpBrowser/__init__.py create mode 100755 web/webqtl/snpBrowser/snpBrowserPage.py create mode 100755 web/webqtl/snpBrowser/snpBrowserUtils.py create mode 100755 web/webqtl/snpBrowser/snpDetails.py create mode 100755 web/webqtl/submitTrait/AddUserInputToPublishPage.py create mode 100755 web/webqtl/submitTrait/BatchSubmitPage.py create mode 100755 web/webqtl/submitTrait/CrossChoicePage.py create mode 100755 web/webqtl/submitTrait/VarianceChoicePage.py create mode 100755 web/webqtl/submitTrait/__init__.py create mode 100755 web/webqtl/textUI/__init__.py create mode 100755 web/webqtl/textUI/cmdClass.py create mode 100755 web/webqtl/textUI/cmdCorrelation.py create mode 100755 web/webqtl/textUI/cmdGeno.py create mode 100755 web/webqtl/textUI/cmdGet.py create mode 100755 web/webqtl/textUI/cmdHelp.py create mode 100755 web/webqtl/textUI/cmdInterval.py create mode 100755 web/webqtl/textUI/cmdMap.py create mode 100755 web/webqtl/textUI/cmdSearchGene.py create mode 100755 web/webqtl/textUI/cmdShowEditing.py create mode 100755 web/webqtl/updateTrait/DataUpdatePage.py create mode 100755 web/webqtl/updateTrait/__init__.py create mode 100755 web/webqtl/user/__init__.py create mode 100755 web/webqtl/user/userLogin.py create mode 100755 web/webqtl/user/userLogoff.py create mode 100755 web/webqtl/user/userPasswd.py create mode 100755 web/webqtl/user/userPasswdPage.py create mode 100755 web/webqtl/utility/AJAX_table.py create mode 100755 web/webqtl/utility/Plot.py create mode 100755 web/webqtl/utility/TDCell.py create mode 100755 web/webqtl/utility/THCell.py create mode 100755 web/webqtl/utility/__init__.py create mode 100755 web/webqtl/utility/svg.py create mode 100755 web/webqtl/utility/webqtlUtil.py create mode 100644 web/whats_new.html (limited to 'web') diff --git a/web/CGIDoc.html b/web/CGIDoc.html new file mode 100755 index 00000000..6f15b7e4 --- /dev/null +++ b/web/CGIDoc.html @@ -0,0 +1,516 @@ + +Scriptable Interface + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + +
+ + +

Overview + modify this page

+ +
GeneNetwork (GN) provides a scriptable interface that allows other services and web users to retrieve data, map QTLs, generate lists of covariates, or to link to the most appropriate page of data for a particular tissue or transcript. This page documents the GN scriptable interface. GN functions are invoked using commands, which usually takes the form of a URL beginning + +
+http://robot.genenetwork.org/webqtl/main.py?...
+ +
At the end of this type of command, after the question mark, you need to add a set of keywords and values separated by the = character, for example, cmd=get or probeset=100011_at. Keywords and values that GN will recognize are listed and explained in the table below. +
+ + +
The keyword-value pairs should be separated by the & character. A complete query might look like +
+cmd=get&probeset=100011_at&probe=all&format=column + +
+The order of the keyword-value pairs in the list is unimportant. However, the cmd keyword is required and its value determines what other keywords are required or allowed. In examples, we always use the cmd keyword first.
+ +
+Putting the whole query together results in a string that looks like http://robot.genenetwork.org/webqtl/main.py?cmd=get&probeset=100011_at&probe=all&format=column + +
+Although this command is shown on two lines of text, it is really just one line, and there should be no carriage return or line break. + +
+

Specific commands

+ +
cmd=genotype retrieves genotype data for any of the supported sets of recombinant inbred lines.
+ +
cmd=get or cmd=trait retrieves trait data from databases of published phenotypes or gene expression data. It can also retrieve marker genotypes as numerical codes for correlation searches. +
+ +
cmd=map retrieves trait data and searches for associations among BXD marker genotypes, returning marker names, regression coefficients and likelihood ratio statistics.
+ +
cmd=interval retrieves trait data and performs interval mappng, returning map positions of peak likelihood ratio statistic.
+ +
cmd=correlation retrieves trait data and searches for correlations with traits in another +(or the same) trait database. cmd=correlation and cmd=pearson use Pearson product-moment correlation. cmd=spearman uses Spearman rank-sum correlation.
+

Commands and Keywords

+ + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Function + + Command
+ keyword-value
+
+ Other keywords +
(bold keywords are required)
+
+ Allowed values +
[Comments or descriptions in square brackets]
+
Retrieve genotype datacmd=genotype
+ cmd=gen
risetaxb, bxa, + bxd, bxh, cxb
  chr (3)1, 2, + 3, ..., 19, X
  format (4)row, column
Example: http://robot.genenetwork.org/webqtl/main.py?cmd=genotype&riset=BXD&chr=1&format=column
 
Retrieve trait datacmd=get
+ cmd=trait
+ cmd=tra
probeset (1)[Probe or probeset identifier, trait record number + (for db=3), or marker name (for db=4)]
  db +Each database stored in GN is assigned a short code required to identify the particular database from which you would like to retrieve data. +
  probe (1)all pm mm
OR
+ [Affymetrix cell location code] (3)
  format (4)row, column
Example: http://robot.genenetwork.org/webqtl/main.py?cmd=get&probeset=98332_at&db=bra08-03MAS5&probe=119637&format=col
 
Single-marker regressioncmd=mapprobeset (1)[Probe or probeset identifier, trait record number + (for db=3) or marker name (for db=4)]
  db +Each database stored in GN is assigned a short code required to identify the particular database from which you would like to retrieve data. +
  probe (1)all
+ [Affymetrix cell location code] (2)
  returnnumber of LRS values to be reported; all LRS are reported if omitted
  sortlrs [sorts by descending pvalue]
+ [sorts by ascending position by default]
Example: http://robot.genenetwork.org/webqtl/main.py?cmd=map&probeset=98332_at&db=bra08-03MAS5&sort=lrs&return=20
 
QTL interval mappingcmd=interval
+ cmd=int
probeset (1)[Probe or probeset identifier, trait record number + (for db=3), or marker name (for db=4)]
  db +Each database stored in GN is assigned a short code required to identify the particular database from which you would like to retrieve data. +
  probe (1)[Affymetrix cell location code] (2)
  chr1, 2, + 3, ..., 19, X
  sortlrs [sorts by descending pvalue]
+ [sorts by ascending position by default]
Example: http://robot.genenetwork.org/webqtl/main.py?cmd=interval&probeset=98332_at&db=bra08-03MAS5&chr=1
 
Trait correlation searchcmd=correlation
cmd=cor
cmd=pearson
cmd=pea
cmd=spearman
cmd=spe
probeset (1)[Affymetrix probeset identifier, trait record number + (for db=3) or marker name (for db=4)]
  db +Each database stored in GN is assigned a short code required to identify the particular database from which you would like to retrieve data. +
  searchdb +Each database stored in GN is assigned a short code required to identify the particular database from which you would like to retrieve data. +
  probe (1)[Affymetrix cell location code] (2)
  return[Maximum number of correlations to be reported]
  sort

pvalue [sorts by ascending + pvalue]
+ [sorts by descending correlation by default]

  idyes [Includes NCBI Entrez Gene ID for each transcript in the output (for expression data only).]
only [Returns only NCBI Entrez Gene ID for each transcript (for expression data only).]
Example: http://robot.genenetwork.org/webqtl/main.py?cmd=cor&probeset=100001_at&probe=136415&db=bra08-03MAS5&searchdb=BXDPublish&return=500&sort=pvalue
 
Open Trait Data and Analysis Formcmd=show
+ cmd=shw
probeset (1)[Affymetrix probeset identifier, trait record number + (for db=3) or marker name (for db=4)]
  db +Each database stored in GN is assigned a short code required to identify the particular database from which you would like to retrieve data. +
  probe (1)[Affymetrix cell location code] (2)
Example: http://www.genenetwork.org/webqtl/main.py?cmd=show&db=HC_M2_0606_M&probeset=1415670_at&probe=269753
 
The script below is used to filter a list of probes or probe sets that target the same gene or transcript to find the single probe or probe set with highest expression and to then display the Statistics Page for that particular data. This script does not use the cgi-bin format.
Show Best Trait Data Statistics Pageparameters
+  
examples
+  
Notes
 gene=
refseq=
geneid=
database=
searchAlias=
gene=Rho
refseq=NM_145383
geneid=212541
database=Eye_M2_0906_R
searchAlias=1
There are three supported search term types: 1. Gene symbol, 2. RefSeq identifier, 3. Entrez gene identifier. Although not recommended, the string "&searchAlias=1" can be added at the end of the command to retrieve data using the alias of a proper gene symbol when the original does not work. Thus "gene=RP4" will resolve to "gene=Rho" only if you add "&searchAlias=1" at the end of the command. +
Each database stored in GN is assigned a short code required to identify the particular database from which you would like to retrieve data. +
Example 1: http://www.genenetwork.org/webqtl/main.py?FormID=showBest&gene=Rho&database=HC_M2_0606_P
Example 2: http://www.genenetwork.org/webqtl/main.py?FormID=showBest&refseq=NM_145383&database=HC_M2_0606_P
Example 3: http://www.genenetwork.org/webqtl/main.py?FormID=showBest&geneid=212541&database=HC_M2_0606_P
Example 4: http://www.genenetwork.org/webqtl/main.py?FormID=showBest&gene=RP4&database=HC_M2_0606_P&searchAlias=1
This script was originally written to allow connections from the NEIBank to GeneNetwork by H. Li and R. Williams (see News of April 25, 2007).
 
Search for gene datacmd=search
+ cmd=sch
+ gene
+ refseq
+ genbankid
+ +
The name or ID of the gene or protein to be searched, choose one and only one type of identifier
  alias [0 or 1] Whether to search for possible aliases (only when a gene name is supplied), optional, disabled by default (0)
  speciesOptional, only human, mouse and rat are supported now. Default is mouse if not specified.
  tissueOptional, if not specified, display traits from all available tissues. For tissue abbreviations, please check http://www.genenetwork.org/webqtl/main.py?cmd=help&topic=tissue
  format[html or text], Optional, if not specified, return result in HTML format
+ +Example 1 : + http://www.genenetwork.org/webqtl/main.py?cmd=sch&gene=ddx25
+ Example 2 : + http://www.genenetwork.org/webqtl/main.py?cmd=sch&refseq=NM_133594&species=rat
+ Example 3 : + http://www.genenetwork.org/webqtl/main.py?cmd=sch&genbankid=AW047046
+ Example 4 : + http://www.genenetwork.org/webqtl/main.py?cmd=sch&gene=GRTH&alias=1&species=rat&tissue=fat
+ Example 5 : + http://www.genenetwork.org/webqtl/main.py?cmd=sch&gene=Grin2b&tissue=hip&format=text +
 
+
+ +
+

Notes

+
    +
  1. A value is required for the probeset but not for probe keyword. With only probeset, commands will retrieve the average for the probeset from different average method. With probeset and probe=all, commands will retrieve data for all probes of that probeset; with probe, data for a single probe. If the specified probeset and probe are inconsistent, no data is returned.
  2. + +
  3. The Affymetrix cell location code is six characters. The first three characters are the column or x location, and the last three the row or y location; for example, 237198. If the column has less than three digits, it should be preceded by one or two X characters to make three characters. Similarly, the row should be prefixed with one or two Y characters, if necessary; for example, X24YY9 or XX8Y34.
  4. + +
  5. If chr is omitted, command will retrieve information for all chromosomes.
  6. + +
  7. If format is omitted, row formatting is the default.
  8. + +
+
+
+ + + +
+ + +
+ + + + + + + + + diff --git a/web/GeneWikihelp.html b/web/GeneWikihelp.html new file mode 100755 index 00000000..8e1a761b --- /dev/null +++ b/web/GeneWikihelp.html @@ -0,0 +1,62 @@ + +HTML Template + + + + + + + + + + + + + + + + + +
+ + + + + +
+

GeneWiki + modify this page

+ + +

GeneWiki enables you to enrich the annotation of genes. Many of the GeneNetwork (GN) data sets are made up of measruements of mRNA expression levels. User need to be able to incorporate notes and findings related to genes, proteins, and these transcripts. At present, GeneWiki is more of a "note taker" than a true Wiki, although it is possible for you (for better or for worse) to edit notes entered by other users. Please submit or edit a GeneWiki note. The current limitation is 250 letters per entry, although we are likely to increase this significantly. Your entry should be related to a gene, its transcripts, or proteins. When possible include PubMed identifiers and web resource links (URL addresses). Please ensure that the additions will have widespread use. + +

Use the "User Code" to enter either your initials or a code for annotations that will allow you to retrieve all genes data of a particular type rapidly. + +

To find your GeneWiki entries just preface your search term with "wiki=", for example "wiki=GENSAT" will retrieve all genes that have been annotated with a text that includes "GENSAT" somewhere in the entry. + +

+
+ + + +
+ + +
+ + + + + + + + + diff --git a/web/RIsample.html b/web/RIsample.html new file mode 100755 index 00000000..1cc2b5a8 --- /dev/null +++ b/web/RIsample.html @@ -0,0 +1,451 @@ + +Sample + + + + + + + + + + + + + + + + + + + +
+ + + + + +
+

Sample Data for Recombinant Inbred Lines modify this page

+ + +

AKXD

+ + + + + + + +
AKF186.080KAF195.164AKR/JXDBA/2J86.054AKXD179.302AKXD278.214
AKXD381.756AKXD685.433AKXD789.867AKXD886.466AKXD982.916AKXD1069.468
AKXD1182.407AKXD1278.792AKXD13XAKXD1497.081AKXD1575.130AKXD16X
AKXD18XAKXD2077.937AKXD2187.672AKXD2284.385AKXD2378.359AKXD2481.385
AKXD2592.183AKXD26XAKXD2791.071AKXD2894.072
+

Copy the following line to paste into the GeneNetwork entry box:

+86.080 95.164 X 86.054 79.302 78.214 81.756 85.433 89.867 86.466 82.916 69.468 82.407 78.792 X 97.081 75.130 X X 77.937 87.672 84.385 78.359 81.385 92.183 X 91.071 94.072 +

AXB

+ + + + + + +
ABF13.230BAF124.481C57BL/6J40.536A/J22.321AXB133.887AXB28.660
AXB35.920AXB423.882AXB551.178AXB632.964AXB757.287AXB8X
AXB92.031AXB1041.899AXB1130.097AXB1213.877AXB1317.021AXB1423.161
AXB1521.279AXB1714.422AXB19XAXB21XAXB2345.993AXB245.480
+

Copy the following line to paste into the GeneNetwork entry box:

+3.230 24.481 40.536 22.321 33.887 8.660 5.920 23.882 51.178 32.964 57.287 X 2.031 41.899 30.097 13.877 17.021 23.161 21.279 14.422 X X 45.993 45.480 + +

AXB/BXA

+ + + + + + + + + + +
ABF1-13.417BAF1-3.256C57BL/6JXA/JXAXB1-27.758AXB210.738
AXB3XAXB449.455AXB5XAXB610.560AXB7-1.457AXB87.837
AXB92.104AXB103.620AXB11XAXB12-4.933AXB13/1433.413AXB1516.036
AXB17XAXB18/19/20XAXB21-2.955AXB2315.773AXB24XBXA1-9.303
BXA235.737BXA427.019BXA73.783BXA8/17XBXA115.131BXA1217.545
BXA13XBXA14XBXA1625.085BXA18-12.820BXA2026.240BXA22-11.779
BXA23-10.043BXA243.757BXA2513.165BXA2611.837
+

Copy the following line to paste into the GeneNetwork entry box:

+-13.417 -3.256 X X -27.758 10.738 X 49.455 X 10.560 -1.457 7.837 2.104 3.620 X -4.933 33.413 16.036 X X -2.955 15.773 X -9.303 35.737 27.019 3.783 X 5.131 17.545 X X 25.085 -12.820 26.240 -11.779 -10.043 3.757 13.165 11.837 +

BXA

+ + + + + + +
BAF155.291ABF168.186C57BL/6J43.475A/J54.636BXA175.842BXA263.536
BXA4XBXA786.283BXA867.661BXA955.820BXA1175.330BXA1257.127
BXA1378.550BXA1460.350BXA16XBXA1859.133BXA2057.704BXA2261.872
BXA2356.111BXA2450.956BXA2559.813BXA2641.821
+

Copy the following line to paste into the GeneNetwork entry box:

+55.291 68.186 43.475 54.636 75.842 63.536 X 86.283 67.661 55.820 75.330 57.127 78.550 60.350 X 59.133 57.704 61.872 56.111 50.956 59.813 41.821 + +

BXD

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
B6D2F16.717D2B6F111.511C57BL/6JXDBA/2J20.201BXD1XBXD215.175
BXD5XBXD643.132BXD821.755BXD947.028BXD11XBXD1222.096
BXD1322.219BXD14XBXD15XBXD1635.218BXD1849.557BXD1934.263
BXD20XBXD218.783BXD2262.439BXD2340.449BXD24aXBXD24X
BXD2536.554BXD2729.903BXD2828.437BXD2914.894BXD305.665BXD3160.723
BXD3250.458BXD3316.857BXD3437.410BXD3535.857BXD3633.139BXD3742.392
BXD38XBXD3962.003BXD4028.797BXD4130.399BXD42XBXD43X
BXD4430.876BXD4522.120BXD48XBXD4928.619BXD50XBXD5116.156
BXD5241.392BXD5330.412BXD5426.209BXD5562.690BXD5623.878BXD5938.629
BXD6027.467BXD6123.630BXD62XBXD63-0.900BXD64XBXD6543.094
BXD6649.670BXD6716.654BXD6821.356BXD6920.465BXD7026.860BXD7129.422
BXD72XBXD7330.713BXD74XBXD7525.012BXD7638.874BXD7715.183
BXD7825.444BXD7960.408BXD8068.684BXD81XBXD8335.370BXD8434.561
BXD8546.055BXD8643.238BXD8772.431BXD8818.648BXD8932.317BXD9045.796
BXD9130.291BXD9256.081BXD93XBXD9411.133BXD9552.551BXD9620.704
BXD97XBXD9814.143BXD9950.821BXD10032.187BXD101XBXD102X
BXD103X
+ +

Copy the following line to paste into the GeneNetwork entry box:

+6.717 11.511 X 20.201 X 15.175 X 43.132 21.755 47.028 X 22.096 22.219 X X 35.218 49.557 34.263 X 8.783 62.439 40.449 X X 36.554 29.903 28.437 14.894 5.665 60.723 50.458 16.857 37.410 35.857 33.139 42.392 X 62.003 28.797 30.399 X X 30.876 22.120 X 28.619 X 16.156 41.392 30.412 26.209 62.690 23.878 38.629 27.467 23.630 X -0.900 X 43.094 49.670 16.654 21.356 20.465 26.860 29.422 X 30.713 X 25.012 38.874 15.183 25.444 60.408 68.684 X 35.370 34.561 46.055 43.238 72.431 18.648 32.317 45.796 30.291 56.081 X 11.133 52.551 20.704 X 14.143 50.821 32.187 X X X + +

BXH

+ + + + + + + +
BHF119.365HBF1XC57BL/6J20.976C3H/HeJ18.666BXH216.555BXH3X
BXH4XBXH619.989BXH718.800BXH817.671BXH915.891BXH10X
BXH1122.377BXH1215.515BXH1413.487BXH1922.060BXH20XBXH2116.232
BXH2213.894B6cC3-112.777
+

Copy the following line to paste into the GeneNetwork entry box:

+19.365 X 20.976 18.666 16.555 X X 19.989 18.800 17.671 15.891 X 22.377 15.515 13.487 22.060 X 16.232 13.894 12.777 +

CXB

+ + + + + +
CBF1XBCF184.812C57BL/6By53.113BALB/cBy84.655CXB152.194CXB282.001
CXB353.063CXB471.660CXB557.900CXB619.980CXB777.547CXB8X
CXB950.419CXB1060.208CXB1163.764CXB1272.970CXB13X
+

Copy the following line to paste into the GeneNetwork entry box:

+X 84.812 53.113 84.655 52.194 82.001 53.063 71.660 57.900 19.980 77.547 X 50.419 60.208 63.764 72.970 X +

ColXBur

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
ColXBurF186.426BurXColF181.796Col-083.611Bur-0XColXBur2XColXBur389.602
ColXBur4XColXBur574.701ColXBur778.680ColXBur9102.462ColXBur1079.515ColXBur1173.302
ColXBur12XColXBur1391.872ColXBur1463.728ColXBur1579.544ColXBur16XColXBur1771.446
ColXBur1952.104ColXBur2185.598ColXBur2287.408ColXBur24109.215ColXBur2668.489ColXBur2769.697
ColXBur30XColXBur3489.146ColXBur3560.115ColXBur3692.877ColXBur3886.557ColXBur40X
ColXBur4274.984ColXBur4385.691ColXBur44XColXBur4554.735ColXBur4676.603ColXBur48104.018
ColXBur5078.257ColXBur5475.838ColXBur5680.368ColXBur5779.908ColXBur5881.354ColXBur5980.371
ColXBur6060.664ColXBur6276.757ColXBur6369.128ColXBur6469.057ColXBur6661.558ColXBur6798.377
ColXBur7084.559ColXBur7372.296ColXBur7577.025ColXBur7666.074ColXBur77XColXBur7891.172
ColXBur8080.703ColXBur8186.337ColXBur8488.624ColXBur85115.288ColXBur8659.959ColXBur8770.448
ColXBur8966.183ColXBur9077.485ColXBur9161.492ColXBur9377.637ColXBur9484.862ColXBur9570.639
ColXBur9885.259ColXBur9981.044ColXBur10084.771ColXBur10176.092ColXBur10268.447ColXBur10344.485
ColXBur104XColXBur105XColXBur107XColXBur10874.015ColXBur10973.675ColXBur110X
ColXBur11155.311ColXBur11278.467ColXBur113XColXBur11467.632ColXBur115XColXBur11681.590
ColXBur117XColXBur11976.901ColXBur12078.602ColXBur121XColXBur12388.524ColXBur12691.911
ColXBur12863.051ColXBur13191.851ColXBur13385.429ColXBur13588.304ColXBur13692.845ColXBur13774.743
ColXBur13960.406ColXBur14192.780ColXBur14378.601ColXBur14494.333ColXBur146XColXBur14770.478
ColXBur14986.917ColXBur150XColXBur15170.604ColXBur153XColXBur15670.762ColXBur15988.885
ColXBur16157.360ColXBur16290.153ColXBur16359.923ColXBur16482.626ColXBur16577.882ColXBur16681.872
ColXBur16778.333ColXBur16881.740ColXBur17176.113ColXBur17270.134ColXBur17576.452ColXBur17688.382
ColXBur17987.972ColXBur18064.730ColXBur18185.527ColXBur18289.301ColXBur183XColXBur18464.664
ColXBur18677.125ColXBur18869.852ColXBur18976.279ColXBur19093.174ColXBur191106.754ColXBur19275.470
ColXBur19355.887ColXBur19469.538ColXBur19574.381ColXBur19678.254ColXBur19784.384ColXBur199X
ColXBur20092.910ColXBur20172.004ColXBur20285.801ColXBur20368.790ColXBur20486.159ColXBur20664.429
ColXBur20751.822ColXBur20978.426ColXBur210XColXBur211XColXBur21266.453ColXBur21449.674
ColXBur21587.867ColXBur22081.042ColXBur22161.831ColXBur22480.884ColXBur22575.923ColXBur22698.168
ColXBur227XColXBur22899.010ColXBur22941.371ColXBur23081.679ColXBur23156.569ColXBur23297.273
ColXBur23366.921ColXBur234XColXBur235XColXBur237XColXBur23856.426ColXBur24064.212
ColXBur24185.792ColXBur24392.350ColXBur24478.642ColXBur24567.386ColXBur24676.413ColXBur24982.843
ColXBur25094.898ColXBur25369.556ColXBur25492.595ColXBur25584.117ColXBur25684.396ColXBur258X
ColXBur26286.408ColXBur26586.185ColXBur26774.291ColXBur26985.267ColXBur27073.491ColXBur27273.626
ColXBur274XColXBur27590.401ColXBur276XColXBur27756.693ColXBur278XColXBur27986.087
ColXBur280XColXBur28194.440ColXBur28283.538ColXBur28480.609ColXBur28575.760ColXBur28881.487
ColXBur28990.361ColXBur29071.236ColXBur291XColXBur29271.223ColXBur29472.074ColXBur29666.259
ColXBur298XColXBur29967.194ColXBur30081.037ColXBur30172.476ColXBur30286.211ColXBur30360.468
ColXBur30499.154ColXBur30581.872ColXBur30789.122ColXBur30884.336ColXBur30956.036ColXBur31085.516
ColXBur31285.638ColXBur31472.055ColXBur31558.786ColXBur31798.698ColXBur318XColXBur319X
ColXBur32080.609ColXBur32165.670ColXBur32264.458ColXBur323XColXBur324XColXBur32587.841
ColXBur32663.861ColXBur327105.495ColXBur32873.193ColXBur329XColXBur33281.813ColXBur333X
ColXBur33570.215ColXBur336102.559ColXBur33765.508ColXBur33855.595ColXBur33996.415ColXBur34065.867
ColXBur341XColXBur34274.449ColXBur345XColXBur34695.642ColXBur34778.052ColXBur348X
ColXBur351XColXBur35269.129ColXBur35365.478ColXBur35468.365ColXBur35591.180ColXBur35682.515
ColXBur357XColXBur35866.475ColXBur362100.399ColXBur36493.756ColXBur36578.920ColXBur36777.854
ColXBur368XColXBur37090.768ColXBur37155.594ColXBur37258.092ColXBur37481.057ColXBur37686.560
ColXBur37970.603ColXBur38243.572ColXBur383XColXBur38469.098ColXBur38574.397ColXBur39677.067
ColXBur40079.709ColXBur40285.818ColXBur40468.245ColXBur40581.659ColXBur40674.852ColXBur40778.159
ColXBur40984.577ColXBur41288.073ColXBur41465.165ColXBur41961.200ColXBur42168.541ColXBur426106.419
ColXBur428XColXBur42969.113ColXBur430XColXBur43176.827ColXBur43671.710ColXBur438X
ColXBur44066.684ColXBur44498.421ColXBur44596.433ColXBur44682.713ColXBur44779.530ColXBur44975.040
ColXBur45085.939ColXBur45174.642ColXBur45281.053ColXBur453XColXBur45481.229ColXBur45563.465
ColXBur45672.799ColXBur45782.747ColXBur46085.203ColXBur46259.587ColXBur46364.888ColXBur46593.933
ColXBur46675.853ColXBur46757.487ColXBur468XColXBur47070.978ColXBur47378.393ColXBur47463.053
ColXBur476XColXBur47765.184ColXBur47880.508ColXBur479XColXBur48272.872ColXBur48590.816
ColXBur48783.841ColXBur48877.554ColXBur48988.124ColXBur49163.410ColXBur49261.068ColXBur49470.664
ColXBur49583.247ColXBur496XColXBur49786.745ColXBur49858.285ColXBur499XColXBur50286.225
ColXBur50375.802ColXBur50471.696ColXBur50769.241ColXBur50871.003ColXBur50987.434ColXBur51182.439
ColXBur51396.831ColXBur51463.159ColXBur51575.955ColXBur516XColXBur517XColXBur51890.438
ColXBur51981.736ColXBur52175.447ColXBur52467.302ColXBur525103.770ColXBur526XColXBur528X
ColXBur52983.869ColXBur53065.564ColXBur534102.949
+

Copy the following line to paste into the GeneNetwork entry box:

+86.426 81.796 83.611 X X 89.602 X 74.701 78.680 102.462 79.515 73.302 X 91.872 63.728 79.544 X 71.446 52.104 85.598 87.408 109.215 68.489 69.697 X 89.146 60.115 92.877 86.557 X 74.984 85.691 X 54.735 76.603 104.018 78.257 75.838 80.368 79.908 81.354 80.371 60.664 76.757 69.128 69.057 61.558 98.377 84.559 72.296 77.025 66.074 X 91.172 80.703 86.337 88.624 115.288 59.959 70.448 66.183 77.485 61.492 77.637 84.862 70.639 85.259 81.044 84.771 76.092 68.447 44.485 X X X 74.015 73.675 X 55.311 78.467 X 67.632 X 81.590 X 76.901 78.602 X 88.524 91.911 63.051 91.851 85.429 88.304 92.845 74.743 60.406 92.780 78.601 94.333 X 70.478 86.917 X 70.604 X 70.762 88.885 57.360 90.153 59.923 82.626 77.882 81.872 78.333 81.740 76.113 70.134 76.452 88.382 87.972 64.730 85.527 89.301 X 64.664 77.125 69.852 76.279 93.174 106.754 75.470 55.887 69.538 74.381 78.254 84.384 X 92.910 72.004 85.801 68.790 86.159 64.429 51.822 78.426 X X 66.453 49.674 87.867 81.042 61.831 80.884 75.923 98.168 X 99.010 41.371 81.679 56.569 97.273 66.921 X X X 56.426 64.212 85.792 92.350 78.642 67.386 76.413 82.843 94.898 69.556 92.595 84.117 84.396 X 86.408 86.185 74.291 85.267 73.491 73.626 X 90.401 X 56.693 X 86.087 X 94.440 83.538 80.609 75.760 81.487 90.361 71.236 X 71.223 72.074 66.259 X 67.194 81.037 72.476 86.211 60.468 99.154 81.872 89.122 84.336 56.036 85.516 85.638 72.055 58.786 98.698 X X 80.609 65.670 64.458 X X 87.841 63.861 105.495 73.193 X 81.813 X 70.215 102.559 65.508 55.595 96.415 65.867 X 74.449 X 95.642 78.052 X X 69.129 65.478 68.365 91.180 82.515 X 66.475 100.399 93.756 78.920 77.854 X 90.768 55.594 58.092 81.057 86.560 70.603 43.572 X 69.098 74.397 77.067 79.709 85.818 68.245 81.659 74.852 78.159 84.577 88.073 65.165 61.200 68.541 106.419 X 69.113 X 76.827 71.710 X 66.684 98.421 96.433 82.713 79.530 75.040 85.939 74.642 81.053 X 81.229 63.465 72.799 82.747 85.203 59.587 64.888 93.933 75.853 57.487 X 70.978 78.393 63.053 X 65.184 80.508 X 72.872 90.816 83.841 77.554 88.124 63.410 61.068 70.664 83.247 X 86.745 58.285 X 86.225 75.802 71.696 69.241 71.003 87.434 82.439 96.831 63.159 75.955 X X 90.438 81.736 75.447 67.302 103.770 X X 83.869 65.564 102.949 +

ColXCvi

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
ColXCviF1XCviXColF173.333Col-0XCviXColXCvi2XColXCvi5X
ColXCvi670.806ColXCvi870.581ColXCvi9XColXCvi1064.612ColXCvi1173.886ColXCvi1381.323
ColXCvi1468.613ColXCvi1683.932ColXCvi1796.655ColXCvi1974.324ColXCvi20XColXCvi2190.496
ColXCvi2276.099ColXCvi24XColXCvi2660.451ColXCvi27100.105ColXCvi2987.214ColXCvi31X
ColXCvi3248.564ColXCvi3367.860ColXCvi34XColXCvi3536.853ColXCvi3644.130ColXCvi3760.850
ColXCvi3849.578ColXCvi39109.328ColXCvi4153.094ColXCvi4241.863ColXCvi4460.785ColXCvi4557.468
ColXCvi46XColXCvi4720.333ColXCvi4847.379ColXCvi4970.800ColXCvi5073.952ColXCvi5172.413
ColXCvi5244.650ColXCvi53XColXCvi5544.089ColXCvi5689.223ColXCvi5757.940ColXCvi5850.259
ColXCvi5998.316ColXCvi6065.103ColXCvi61XColXCvi6279.099ColXCvi63XColXCvi6485.322
ColXCvi65XColXCvi6793.353ColXCvi6867.612ColXCvi6986.660ColXCvi7083.654ColXCvi7152.746
ColXCvi7376.976ColXCvi7466.315ColXCvi7690.552ColXCvi7764.673ColXCvi7897.827ColXCvi7972.141
ColXCvi8127.899ColXCvi82XColXCvi8375.900ColXCvi8445.326ColXCvi8575.701ColXCvi8771.879
ColXCvi8874.804ColXCvi9074.336ColXCvi9156.419ColXCvi9299.118ColXCvi9355.050ColXCvi9545.391
ColXCvi9674.487ColXCvi9721.395ColXCvi9879.836ColXCvi10070.434ColXCvi10181.539ColXCvi102X
ColXCvi10371.186ColXCvi105XColXCvi106XColXCvi107XColXCvi108100.839ColXCvi10992.278
ColXCvi110XColXCvi11268.880ColXCvi11382.205ColXCvi114XColXCvi11552.769ColXCvi117X
ColXCvi11896.092ColXCvi121XColXCvi12286.367ColXCvi123XColXCvi12484.731ColXCvi125X
ColXCvi12665.403ColXCvi12870.458ColXCvi13092.624ColXCvi13281.923ColXCvi13348.567ColXCvi134X
ColXCvi13684.483ColXCvi13761.649ColXCvi138XColXCvi13919.836ColXCvi14096.126ColXCvi14155.565
ColXCvi14365.694ColXCvi14573.209ColXCvi14676.722ColXCvi14762.397ColXCvi14962.327ColXCvi15085.371
ColXCvi15124.713ColXCvi155XColXCvi15679.829ColXCvi15776.791ColXCvi15899.588ColXCvi15917.111
ColXCvi16178.914ColXCvi16342.058ColXCvi165XColXCvi168XColXCvi16971.220ColXCvi17066.003
ColXCvi171XColXCvi17314.742ColXCvi17470.307ColXCvi17657.223ColXCvi17751.345ColXCvi17966.370
ColXCvi18086.986ColXCvi181XColXCvi18278.598ColXCvi183XColXCvi18469.586ColXCvi18586.650
ColXCvi18989.300ColXCvi190XColXCvi19156.016ColXCvi192105.668ColXCvi19473.054ColXCvi19537.722
ColXCvi19655.578ColXCvi19740.721ColXCvi19831.045ColXCvi19926.105ColXCvi200XColXCvi20170.935
ColXCvi202XColXCvi204XColXCvi20560.834ColXCvi207XColXCvi20869.756ColXCvi20967.272
ColXCvi21058.800ColXCvi21192.989ColXCvi21279.416ColXCvi213XColXCvi21573.759ColXCvi21654.120
ColXCvi217XColXCvi218XColXCvi22371.819ColXCvi224XColXCvi225XColXCvi22698.341
ColXCvi22760.007ColXCvi228XColXCvi22988.805ColXCvi23067.657ColXCvi23277.403ColXCvi23373.109
ColXCvi234XColXCvi23666.599ColXCvi23926.603ColXCvi24076.177ColXCvi24149.938ColXCvi24246.951
ColXCvi24355.514ColXCvi24563.754ColXCvi246106.860ColXCvi247XColXCvi24878.079ColXCvi25134.367
ColXCvi25256.646ColXCvi25337.459ColXCvi254115.658ColXCvi25552.067ColXCvi25779.500ColXCvi25865.723
ColXCvi25956.934ColXCvi260XColXCvi261XColXCvi26293.858ColXCvi264XColXCvi26761.436
ColXCvi26935.834ColXCvi27075.044ColXCvi27153.056ColXCvi272113.362ColXCvi27352.256ColXCvi275X
ColXCvi27672.560ColXCvi27771.829ColXCvi278XColXCvi279XColXCvi28075.741ColXCvi281X
ColXCvi283102.439ColXCvi28481.899ColXCvi28552.438ColXCvi28666.085ColXCvi28746.667ColXCvi28899.254
ColXCvi289XColXCvi29093.048ColXCvi29179.987ColXCvi29271.956ColXCvi29365.307ColXCvi29444.967
ColXCvi295113.752ColXCvi296XColXCvi297XColXCvi29873.109ColXCvi29954.521ColXCvi30077.854
ColXCvi301XColXCvi302XColXCvi30368.947ColXCvi30479.738ColXCvi30649.619ColXCvi30761.051
ColXCvi30966.817ColXCvi31086.391ColXCvi311XColXCvi313XColXCvi31523.086ColXCvi316X
ColXCvi31746.386ColXCvi31855.950ColXCvi319XColXCvi320XColXCvi321XColXCvi32372.310
ColXCvi324XColXCvi32655.797ColXCvi32968.413ColXCvi330111.218ColXCvi331XColXCvi33279.906
ColXCvi334XColXCvi33650.487ColXCvi33780.705ColXCvi33857.072ColXCvi33998.323ColXCvi34055.138
ColXCvi34156.178ColXCvi34268.459ColXCvi34475.590ColXCvi34571.098ColXCvi34675.692ColXCvi34758.741
ColXCvi348XColXCvi34950.566ColXCvi35042.695ColXCvi352109.343ColXCvi35320.802ColXCvi35563.678
ColXCvi356XColXCvi357113.026ColXCvi35850.160ColXCvi35970.499ColXCvi361XColXCvi36290.186
ColXCvi363XColXCvi365114.761ColXCvi36664.165ColXCvi36748.874ColXCvi376111.082ColXCvi37766.712
ColXCvi38097.395ColXCvi383XColXCvi38487.156ColXCvi38588.227ColXCvi38976.709ColXCvi390X
ColXCvi39176.788ColXCvi39263.166ColXCvi39451.079ColXCvi39786.278ColXCvi39887.553ColXCvi400X
ColXCvi40145.837ColXCvi40266.445ColXCvi40385.863ColXCvi40461.231ColXCvi405XColXCvi40684.430
ColXCvi40839.206ColXCvi40959.296ColXCvi410XColXCvi41178.126ColXCvi41397.319ColXCvi41675.197
ColXCvi41764.627ColXCvi41837.810ColXCvi41971.825ColXCvi42072.511ColXCvi42184.407ColXCvi422X
ColXCvi42379.691ColXCvi42461.574ColXCvi425XColXCvi42642.622ColXCvi42853.321ColXCvi430X
ColXCvi43157.455ColXCvi43375.498ColXCvi43563.848ColXCvi436XColXCvi438XColXCvi43959.431
ColXCvi44083.906ColXCvi44179.160ColXCvi44278.638ColXCvi44380.468ColXCvi44579.886ColXCvi446X
ColXCvi44779.102ColXCvi44879.980ColXCvi45064.920ColXCvi45183.068ColXCvi454XColXCvi45756.323
ColXCvi45984.409ColXCvi46129.576ColXCvi462XColXCvi46375.518ColXCvi464117.864ColXCvi465X
ColXCvi46766.195ColXCvi47058.567ColXCvi47194.209ColXCvi47262.802ColXCvi474XColXCvi47574.449
ColXCvi476107.651ColXCvi477106.828ColXCvi478XColXCvi47995.939ColXCvi48063.727ColXCvi481115.285
ColXCvi48436.665ColXCvi48915.206ColXCvi490XColXCvi49181.950ColXCvi492XColXCvi493X
ColXCvi49490.161ColXCvi49559.274ColXCvi49667.831ColXCvi49755.732ColXCvi49938.518
+

Copy the following line to paste into the GeneNetwork entry box:

+X 73.333 X X X X 70.806 70.581 X 64.612 73.886 81.323 68.613 83.932 96.655 74.324 X 90.496 76.099 X 60.451 100.105 87.214 X 48.564 67.860 X 36.853 44.130 60.850 49.578 109.328 53.094 41.863 60.785 57.468 X 20.333 47.379 70.800 73.952 72.413 44.650 X 44.089 89.223 57.940 50.259 98.316 65.103 X 79.099 X 85.322 X 93.353 67.612 86.660 83.654 52.746 76.976 66.315 90.552 64.673 97.827 72.141 27.899 X 75.900 45.326 75.701 71.879 74.804 74.336 56.419 99.118 55.050 45.391 74.487 21.395 79.836 70.434 81.539 X 71.186 X X X 100.839 92.278 X 68.880 82.205 X 52.769 X 96.092 X 86.367 X 84.731 X 65.403 70.458 92.624 81.923 48.567 X 84.483 61.649 X 19.836 96.126 55.565 65.694 73.209 76.722 62.397 62.327 85.371 24.713 X 79.829 76.791 99.588 17.111 78.914 42.058 X X 71.220 66.003 X 14.742 70.307 57.223 51.345 66.370 86.986 X 78.598 X 69.586 86.650 89.300 X 56.016 105.668 73.054 37.722 55.578 40.721 31.045 26.105 X 70.935 X X 60.834 X 69.756 67.272 58.800 92.989 79.416 X 73.759 54.120 X X 71.819 X X 98.341 60.007 X 88.805 67.657 77.403 73.109 X 66.599 26.603 76.177 49.938 46.951 55.514 63.754 106.860 X 78.079 34.367 56.646 37.459 115.658 52.067 79.500 65.723 56.934 X X 93.858 X 61.436 35.834 75.044 53.056 113.362 52.256 X 72.560 71.829 X X 75.741 X 102.439 81.899 52.438 66.085 46.667 99.254 X 93.048 79.987 71.956 65.307 44.967 113.752 X X 73.109 54.521 77.854 X X 68.947 79.738 49.619 61.051 66.817 86.391 X X 23.086 X 46.386 55.950 X X X 72.310 X 55.797 68.413 111.218 X 79.906 X 50.487 80.705 57.072 98.323 55.138 56.178 68.459 75.590 71.098 75.692 58.741 X 50.566 42.695 109.343 20.802 63.678 X 113.026 50.160 70.499 X 90.186 X 114.761 64.165 48.874 111.082 66.712 97.395 X 87.156 88.227 76.709 X 76.788 63.166 51.079 86.278 87.553 X 45.837 66.445 85.863 61.231 X 84.430 39.206 59.296 X 78.126 97.319 75.197 64.627 37.810 71.825 72.511 84.407 X 79.691 61.574 X 42.622 53.321 X 57.455 75.498 63.848 X X 59.431 83.906 79.160 78.638 80.468 79.886 X 79.102 79.980 64.920 83.068 X 56.323 84.409 29.576 X 75.518 117.864 X 66.195 58.567 94.209 62.802 X 74.449 107.651 106.828 X 95.939 63.727 115.285 36.665 15.206 X 81.950 X X 90.161 59.274 67.831 55.732 38.518 +

HXB/BXH

+ + + + + + + + + + + +
HSRBNF1XBNHSRF1110.970BN103.647HSRXHXB195.829HXB271.340
HXB381.214HXB484.313HXB584.561HXB785.557HXB9XHXB1093.835
HXB13XHXB14115.679HXB1576.394HXB1698.644HXB17100.860HXB18104.404
HXB19112.601HXB20XHXB21XHXB22XHXB23XHXB2498.467
HXB25112.805HXB2697.550HXB2798.958HXB2992.283HXB30108.442HXB3186.856
BXH2113.232BXH382.573BXH5XBXH695.615BXH8105.352BXH994.706
BXH10124.284BXH1183.186BXH12118.284BXH1397.330
+

Copy the following line to paste into the GeneNetwork entry box:

+X 110.970 103.647 X 95.829 71.340 81.214 84.313 84.561 85.557 X 93.835 X 115.679 76.394 98.644 100.860 104.404 112.601 X X X X 98.467 112.805 97.550 98.958 92.283 108.442 86.856 113.232 82.573 X 95.615 105.352 94.706 124.284 83.186 118.284 97.330 +

LXS

+ + + + + + + + + + + + + + + + + + + + + +
LSF159.080SLF146.315ISS89.437ILSXLXS287.309LXS349.741
LXS529.860LXS767.335LXS8XLXS9104.213LXS1061.870LXS1371.085
LXS14XLXS1680.798LXS19XLXS2258.115LXS23XLXS2464.420
LXS2547.660LXS2668.383LXS2857.528LXS3164.030LXS3266.204LXS34X
LXS3594.490LXS36XLXS3858.276LXS3981.920LXS4175.662LXS4261.559
LXS4373.410LXS4689.329LXS48XLXS4994.447LXS50XLXS51X
LXS5287.750LXS5469.750LXS5567.351LXS5646.252LXS59XLXS60X
LXS61XLXS6279.158LXS6462.349LXS6657.914LXS68100.818LXS70X
LXS7269.898LXS7369.886LXS7582.810LXS7683.441LXS7880.507LXS7994.317
LXS8078.117LXS8463.942LXS86XLXS87XLXS8841.933LXS8963.637
LXS9053.676LXS9289.219LXS93XLXS9465.297LXS96XLXS9788.863
LXS9870.588LXS99XLXS100XLXS10188.272LXS10271.937LXS10389.508
LXS10767.748LXS110XLXS11276.419LXS11475.163LXS115101.519LXS11744.045
LXS12286.552LXS12379.804LXS12457.391
+

Copy the following line to paste into the GeneNetwork entry box:

+59.080 46.315 89.437 X 87.309 49.741 29.860 67.335 X 104.213 61.870 71.085 X 80.798 X 58.115 X 64.420 47.660 68.383 57.528 64.030 66.204 X 94.490 X 58.276 81.920 75.662 61.559 73.410 89.329 X 94.447 X X 87.750 69.750 67.351 46.252 X X X 79.158 62.349 57.914 100.818 X 69.898 69.886 82.810 83.441 80.507 94.317 78.117 63.942 X X 41.933 63.637 53.676 89.219 X 65.297 X 88.863 70.588 X X 88.272 71.937 89.508 67.748 X 76.419 75.163 101.519 44.045 86.552 79.804 57.391 +

SXM

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
SMF160.066MSF176.919Steptoe80.007Morex122.832SM00185.447SM00288.062
SM003109.343SM00485.448SM00593.848SM00688.088SM00774.384SM009X
SM01079.413SM011XSM01263.176SM01367.292SM01495.236SM015100.175
SM01695.854SM02085.318SM02176.069SM02269.545SM023101.730SM02486.738
SM025104.185SM027XSM03099.637SM031104.924SM03291.376SM03597.924
SM03968.766SM04092.028SM04178.341SM04288.592SM04391.877SM04469.152
SM04592.461SM04671.237SM04884.772SM05088.102SM05488.222SM05585.507
SM05682.430SM05754.067SM058103.709SM05999.459SM06173.284SM062112.320
SM06380.569SM06461.621SM06591.106SM06780.536SM06898.238SM069105.188
SM07083.539SM07173.012SM07265.179SM07389.942SM07482.730SM07581.212
SM07698.461SM077XSM07892.924SM07983.156SM080XSM08175.906
SM08282.791SM08366.846SM08490.377SM08593.533SM087XSM08876.276
SM08989.148SM09188.640SM092111.512SM09384.960SM09488.671SM09795.766
SM09883.985SM09989.837SM10394.652SM10478.434SM105XSM11097.923
SM11298.163SM116XSM12082.223SM12474.239SM12599.338SM126X
SM12792.884SM129102.170SM13075.796SM13172.122SM132XSM13378.205
SM13472.410SM135XSM13669.277SM13794.258SM13980.377SM14083.032
SM14193.925SM14294.571SM14394.105SM14487.311SM145XSM14661.540
SM14772.827SM14983.806SM15086.658SM15181.326SM15280.121SM153X
SM154XSM15595.189SM156112.248SM15785.789SM158107.116SM15975.457
SM160XSM16188.097SM162XSM16480.016SM165XSM166102.909
SM16772.578SM16873.490SM16959.753SM170XSM17177.510SM172X
SM17380.194SM17485.298SM17698.453SM177101.402SM179XSM18082.275
SM181112.517SM182XSM183106.892SM18480.431SM18569.175SM186118.565
SM18777.768SM18887.048SM18987.716SM19370.069SM19485.238SM196X
SM19793.252SM198XSM19983.500SM20078.391
+

Copy the following line to paste into the GeneNetwork entry box:

+60.066 76.919 80.007 122.832 85.447 88.062 109.343 85.448 93.848 88.088 74.384 X 79.413 X 63.176 67.292 95.236 100.175 95.854 85.318 76.069 69.545 101.730 86.738 104.185 X 99.637 104.924 91.376 97.924 68.766 92.028 78.341 88.592 91.877 69.152 92.461 71.237 84.772 88.102 88.222 85.507 82.430 54.067 103.709 99.459 73.284 112.320 80.569 61.621 91.106 80.536 98.238 105.188 83.539 73.012 65.179 89.942 82.730 81.212 98.461 X 92.924 83.156 X 75.906 82.791 66.846 90.377 93.533 X 76.276 89.148 88.640 111.512 84.960 88.671 95.766 83.985 89.837 94.652 78.434 X 97.923 98.163 X 82.223 74.239 99.338 X 92.884 102.170 75.796 72.122 X 78.205 72.410 X 69.277 94.258 80.377 83.032 93.925 94.571 94.105 87.311 X 61.540 72.827 83.806 86.658 81.326 80.121 X X 95.189 112.248 85.789 107.116 75.457 X 88.097 X 80.016 X 102.909 72.578 73.490 59.753 X 77.510 X 80.194 85.298 98.453 101.402 X 82.275 112.517 X 106.892 80.431 69.175 118.565 77.768 87.048 87.716 70.069 85.238 X 93.252 X 83.500 78.391 +
+ +
+
+ + + +
+ +
+ + + + + + + + + diff --git a/web/account.html b/web/account.html new file mode 100755 index 00000000..ea340644 --- /dev/null +++ b/web/account.html @@ -0,0 +1,124 @@ + +User Login + + + + + + + + + + + + + + + + + + + +
+ + + + +
+

About User Account

+
+ + Access to some GN resources is restricted and is limited to users with IDs and passwords. If +you have restricted access data in GN then you should already have an account. Once a user +account has been set up for you, you will be able to login, logoff, change your password, +etc. by completing the form to the right.

+ Please contact Robert W. Williams by email if you have problems accessing +restricted data sets. +
+
+

Manage Your Account (case sensitive)

+

    1. User Login:

+
+
+ + + + + + + + + + + + + + + + + +
Name:
Password:
+ + +
Click here to logoff
+
+
+ +
+

    2. Change Password:

+
+
+ + + + + + + + + + + + + + + + + + + + + + +
Name:
Password:
New Password:
Retype
New Password:
+ + +
+
+ +
+
+
+ + + +
+ +
+ + + + + + + + + diff --git a/web/arabidopsisCross.html b/web/arabidopsisCross.html new file mode 100755 index 00000000..bc255585 --- /dev/null +++ b/web/arabidopsisCross.html @@ -0,0 +1,91 @@ + +Arabidopsis Cross Information + + + + + + + + + + + + + + + + + + + +
+ + + +
+

Arabidopsis Cross Information modify this page

+ + +     +Bay-0 x Shahdara (BXS): + +
+The Bay-0 x Shahdara genetic reference population of 420 recombinant inbred lines (RIL) was created by Olivier Loudet and Sylvain Chaillou between 1997 and 2000 at the INRA in Versailles, France. It is one of the largest publically available Arabidopsis RIL sets and more than 10 times larger than most rodent RILs. Arabidopsis is commonly known as mustard weed, and is one of the favored model organisms used by geneticists and developmental biologists. This plant has a genome consisting of five chromsomes and a total of 125 megabases of DNA, equivalent in length to a single human chromosome. However, the genome is nonetheless rich and contains approximately 26,000 genes. Full sequence data are available for this species. (The Col-0 accession was sequenced.) + +

Please site the following publication when using the Bay-0 x Shahdara (BXS) data sets: + +

+Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F (2002) Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theoretical and Applied Genetics 104:1173-1184 (pdf) +
+ +

The original set of 420 RILs were derived from a cross between Bay-0 (accession N954) and Shahdara (accession N929); two accessions obtained from the NASC European Arabidopsis Stock Centre. Bay-0 and Shahdara were chosen because of their well characterized genetic, geographical, and ecological differences. Lines were propagated by single seed descent through the sixth generation (F6) without selection. One plant per line was then used for genotyping (420 RILs x 38 markers) and selfed to obtain F7 seeds. F8 seed stock generated by bulk multiplication of F7 plants are available for analysis for 411 of these RILs. Data sets in WebQTL include up to 415 BXS accessions and the two parental stock.

+ +

How to obtain these lines: The entire extant set of 411 lines was donated to the NASC and ABRC in 2002 and is available (Stock number N57920 and CS57920) for £450 / US $720 (academic fee). + +

A core set of 18 lines are also available from the NASC and and ABRC (stock numbers N57922 and CS57922) for £25 / US $40 (academic fee). This "Core-Pop18" set is not intended for systems genetics, but rather is used to evaluate trait variability and transgression. This set includes the parental accessions. + +

Single lines may also be purchased directly from NASC for £2.25 each plus £8.50 per order and from ABRC for US $4 per order (prices current as of April 2005). + +

Please contact Olivier Loudet at loudet@versailles.inra.fr if you have further questions on the availability of seed stock and comments or questions on the genotype or phenotype data sets deposited in the GeneNetwork. +

+ +

Note on nomenclature: The widely accepted names of these accessions have the form: Bay-0 x Shahdara - 1, Bay-0 x Shahdara - 2, Bay-0 x Shahdara - 432, etc. In the GeneNetwork we have shortened this long form to BXS001, BXS002, BXS432. + +

For more information on the Bay-0 x Shadara Arabidopsis thaliana cross, the genotypic data, the genetic maps, and the trait data please visit the INRA Versailles QTL Arabidopsis site. + +

For more background on the history, generation, and use of RILs as genetic reference populations for systems genetics please see Silver (1995). Additional useful literature links are provided in the References link at the top center of this page. +

+ +
+ + +

    About this file:

+

The file started, April 12, 2005 by Olivier Loudet and RWW. Last update RWW, April 15, 2005.

+
+
+
+
+ + + +
+ +
+ + + + + + + + + diff --git a/web/barleyCross.html b/web/barleyCross.html new file mode 100755 index 00000000..106d0e9c --- /dev/null +++ b/web/barleyCross.html @@ -0,0 +1,80 @@ + +Barley SM Cross Information + + + + + + + + + + + + + + + + + + + +
+ + + +
+

Barley Cross Information modify this page

+ +     +Steptoe x Morex (SxM):
+
+

A population of 150 doubled haploid lines developed from the Steptoe x Morex cross by the Hordeum bulbosum method. The parents, Steptoe and Morex, were selected for their diversity of agronomic traits, Steptoe is high yielding, broadly adapted six-rowed feed-type barley. Morex is midwestern also six-rowed cultivar that has been for long time considered as the American malting industry standard.

+

Please cite the following publication when using the Steptoe x Morex (SxM) data sets:
+ Kleinhofs et al (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet (1993) 86:705-712

+

How to obtain these lines:
+ Seeds of the parents and DHLs are available from:
+ Patrick M. Hayes
+ Department of Crop and Soil Science
+ 109 Crop Science Building
+ Oregon State University
+ Corvallis, OR 97331-3002

+
+ + +Q21861 x SM89010 (QSM): PLEXdb BarleyBase Experiment BB64: Genetic regulation of gene expression of barley in response to stem rust.
+
+

A population of 75 doubled haploid lines developed from a cross of Q21861 and SM89010 Hordeum bulbosum accessions used to study resistance to Pgt isolate TTKS stem rust. Data on this cross from Roger Wise and colleagues (rpwise@iastate.edu, moscou@iastate.edu). For more details please link to PLEXdb at http://www.plexdb.org/modules/PD_browse/popup_experiment_desc.php?experiment_id=1149# +

+

    About this file:

+
+

The file started, July 13, 2006 by RWW. Last update AD, Jan 15, 2010.

+ + +
   
+
+
+ + + +
+ +
+ + + + + + + + + + diff --git a/web/blatInfo.html b/web/blatInfo.html new file mode 100755 index 00000000..7389f1a4 --- /dev/null +++ b/web/blatInfo.html @@ -0,0 +1,108 @@ + +HTML Template + + + + + + + + + + + + + + + + +
+ + + + + + +
+

BLAT Specificity, Scores, and the Verify Location Button + modify this page

+ + +

BLAT Specificity provides a simple estimate of the quality of the alignment (specificity) of a group of probes on an array to a specific gene target. Values typically ranges from about 0.5 to 10, and higher values are better. Values less than 2 indicate that a probe sequence is not highly specific to one location in the genome. These probes may still be prefectly usable. Remember, you are interested in alignment to coding sequence (mRNA), but the BLAT function actually tests the entire genome, including regions that are almost never expressed. + +

Specificity is computed as a simple ratio between the top (or correct) BLAT score to the second best (or incorrect) alignment. When the second BLAT score is low or null (no second-best alignment), then we declare a specificity value of 10 (great specificity). When the correct alignment is second best (this is not rare), then we declare the BLAT specificity to be 0.5. Values of 0.5 to 1.0 typically mean that probes have several possible matches across the whole genome. + +

BLAT Score provide an estimate of the number of nucleotides that align well to one region of the genome. The maximum number can equal the length of the probe or probe set. For Affymetrix probe sets this number will usually be between 60 and 260. For Illumina and Agilent probes this number will typically be between 40 and 60. + +

You can replicate the BLAT analysis by clicking on the Verify function button (one of the large square icons on Trait Data and Analysis page). This button triggers a new request to align the probe sequences to the most recent assembly of the genome using the UCSC Genome Browser Blat function. For example if you click on this button while viewing Affymetrix probe set 1421393_at, the following long and tedious command will be sent by GeneNetwork to the UCSC Genome Browser (this string of text is called a "get" command): + +

+ +

http://genome.ucsc.edu/cgi-bin/hgBlat?org=mouse&db=mm8&type=0&sort=0&output=0&userSeq=%3E +
1421393_at_A%0ACGCTACTGGTCGGTTGACAAGCTCGGGCGCTGGTAGCTG +
GGACTACCTGCCTCAGCTGCTCGCACGACGGCCTAGACGGTGGCTGGTGGGCGCCT +
CCGCGCTGTGGTTGTCCGCGACCGCACGCGCGCGGCGGGTGGCTGGGACCTCGCG +
TTCGCTGGAGGACCTGAGCTCCTGCCCACGGGCTCCAGCCTGGAGTCCGAGGTATGA +%0A%3E
Probe_121277%0ACGCTACTGGTCGGTTGACAAGCTCG%0A%3E +
Probe_X66255%0ACTACTGGTCGGTTGACAAGCTCGGG%0A%3E +
Probe_X70307%0AGCGCTGGTAGCTGGGACTACCTGCC%0A%3E +
Probe_256627%0ATCAGCTGCTCGCACGACGGCCTAGA%0A%3E +
Probe_567263%0ACTGCTCGCACGACGGCCTAGACGGT%0A%3E +
Probe_X58653%0ATAGACGGTGGCTGGTGGGCGCCTCC%0A%3E +
Probe_481305%0AGCGCTGTGGTTGTCCGCGACCGCAC%0A%3E +
Probe_X36299%0AGCGCGCGGCGGGTGGCTGGGACCTC%0A%3E +
Probe_164119%0AACCTCGCGTTCGCTGGAGGACCTGA%0A%3E +
Probe_692403%0AGAGGACCTGAGCTCCTGCCCACGGG%0A%3E +
Probe_333261%0ACTCCAGCCTGGAGTCCGAGGTATGA%0A +
+

+ +

A BLAT Search Results window will appear that lists the best matches of this sequence in the genome; in this case on mouse Chr 7 at 45.700822 Mb. + +

+

+ + +

Legend: The first Verify output page from the Genome Browser lists the best genomic matches to the sequence of Affymetrix probe set 1421393_at. The best match has a score of 201 out of 207 nucleotides. One poor alignment (score of 25) is also given for the whole probe set to Chr 8 (an intron in Nfix. The individual probes are also listed and they have perfect scores, given their short length (25 of 25).

+
+ +

To the far left of the BLAT Search Results page you will see links that are labeled browser. Click on the top line and you will see a small segment of the genome that matches the sequence on the array. Click on the 10x zoom out button in order to see a bit more of the chromosome and the genes in the local region. + + +

+

+ + +

Legend: A typical Verify output page from the Genome Browser shows the alignment of Affymetrix probe set 1421393_at and its constituent set of eleven short (25 nucleotide) probes. The probe set is aligning to the negative strand (reading from right to left). The corresponding part of the Grin2d gene is shown in blue toward the bottom (the last exon and 3' untranslated region).

+
+ + + + +

+

+

+
+ + + +
+ +
+ + + + + + + + + \ No newline at end of file diff --git a/web/bug0.html b/web/bug0.html new file mode 100755 index 00000000..bb57a4aa --- /dev/null +++ b/web/bug0.html @@ -0,0 +1,1742 @@ +

Bug Report Form +modify this page

+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 228, in __init__
+    LRSArray = _genotype.permutation(strains = _strains, trait = _vals, nperm=fd.nperm)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 228, in __init__
+    LRSArray = _genotype.permutation(strains = _strains, trait = _vals, nperm=fd.nperm)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 493, in __init__
+    self.cursor.execute(item)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+ProgrammingError: (1064, "You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ' Table1.Name=Table3.Name , Table2.Name=Table3.Name  GROUP BY Table1.Name) as Com' at line 1")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 493, in __init__
+    self.cursor.execute(item)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+ProgrammingError: (1064, "You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ' Table1.Name=Table3.Name , Table2.Name=Table3.Name  GROUP BY Table1.Name) as Com' at line 1")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 494, in __init__
+    self.cursor.execute(item)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+ProgrammingError: (1064, "You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ' Table1.Name=Table3.Name , Table2.Name=Table3.Name  GROUP BY Table1.Name) as Com' at line 1")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 160, in ?
+    from searchPage import *
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 539
+     i += 1
+     ^
+ SyntaxError: invalid syntax
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 160, in ?
+    from searchPage import *
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 577
+     i += 1
+     ^
+ SyntaxError: invalid syntax
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 160, in ?
+    from searchPage import *
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 577
+     i += 1
+     ^
+ SyntaxError: invalid syntax
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 160, in ?
+    from searchPage import *
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 554
+     SearchText.append(HT.Italic('match the term '), Id='green'))
+                                                                ^
+ SyntaxError: invalid syntax
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 160, in ?
+    from searchPage import *
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 555
+     ttext.append(HT.Italic('match the term '), Id='green'))
+                                                           ^
+ SyntaxError: invalid syntax
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 86, in __init__
+    self.dbPrefix = map(lambda X: X.prefix, self.dbInfos)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 86, in 
+    self.dbPrefix = map(lambda X: X.prefix, self.dbInfos)
+AttributeError: 'NoneType' object has no attribute 'prefix'
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 86, in __init__
+    self.dbPrefix = map(lambda X: X.prefix, self.dbInfos)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 86, in 
+    self.dbPrefix = map(lambda X: X.prefix, self.dbInfos)
+AttributeError: 'NoneType' object has no attribute 'prefix'
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 86, in __init__
+    self.dbPrefix = map(lambda X: X.prefix, self.dbInfos)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 86, in 
+    self.dbPrefix = map(lambda X: X.prefix, self.dbInfos)
+AttributeError: 'NoneType' object has no attribute 'prefix'
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 86, in __init__
+    self.dbPrefix = map(lambda X: X.prefix, self.dbInfos)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 86, in 
+    self.dbPrefix = map(lambda X: X.prefix, self.dbInfos)
+AttributeError: 'NoneType' object has no attribute 'prefix'
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 86, in __init__
+    self.dbPrefix = map(lambda X: X.prefix, self.dbInfos)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 86, in 
+    self.dbPrefix = map(lambda X: X.prefix, self.dbInfos)
+AttributeError: 'NoneType' object has no attribute 'prefix'
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 86, in __init__
+    self.dbPrefix = map(lambda X: X.prefix, self.dbInfos)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 86, in 
+    self.dbPrefix = map(lambda X: X.prefix, self.dbInfos)
+AttributeError: 'NoneType' object has no attribute 'prefix'
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 493, in __init__
+    self.cursor.execute(item)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+ProgrammingError: (1064, "You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'GROUP BY Table1.Name) as CombineTable WHERE ProbeSet.Id = ProbeSetXRef.ProbeSetI' at line 1")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 493, in __init__
+    self.cursor.execute(item)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+ProgrammingError: (1064, "You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'GROUP BY Table1.Name) as CombineTable WHERE ProbeSet.Id = ProbeSetXRef.ProbeSetI' at line 1")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 493, in __init__
+    self.cursor.execute(item)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+ProgrammingError: (1064, "You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'GROUP BY Table1.Name) as CombineTable WHERE ProbeSet.Id = ProbeSetXRef.ProbeSetI' at line 1")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 228, in __init__
+    LRSArray = _genotype.permutation(strains = _strains, trait = _vals, nperm=fd.nperm)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 493, in __init__
+    self.cursor.execute(item)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+ProgrammingError: (1064, "You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'GROUP BY Table1.Name) as CombineTable WHERE ProbeSet.Id = ProbeSetXRef.ProbeSetI' at line 1")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 494, in __init__
+    self.cursor.execute(item)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+ProgrammingError: (1064, "You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'GROUP BY Table1.Name) as CombineTable WHERE ProbeSet.Id = ProbeSetXRef.ProbeSetI' at line 1")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 146, in ?
+    page3 = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 358, in __init__
+    gifmap = self.plotIntMapping(intCanvas, _LRSResult, _bootResult, fd, offset = (75, 120, 80, 10))
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2374, in plotIntMapping
+    additiveStep = (additiveScale[1]-additiveScale[0])/additiveScale[2]
+TypeError: unsubscriptable object
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 146, in ?
+    page3 = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 358, in __init__
+    gifmap = self.plotIntMapping(intCanvas, _LRSResult, _bootResult, fd, offset = (75, 120, 80, 10))
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2374, in plotIntMapping
+    additiveStep = (additiveScale[1]-additiveScale[0])/additiveScale[2]
+TypeError: unsubscriptable object
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 146, in ?
+    page3 = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 226, in __init__
+    LRSArray = _genotype.permutation(strains = _strains, trait = _vals, variance = _vars, nperm=fd.nperm)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 146, in ?
+    page3 = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 358, in __init__
+    gifmap = self.plotIntMapping(intCanvas, _LRSResult, _bootResult, fd, offset = (75, 120, 80, 10))
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2374, in plotIntMapping
+    additiveStep = (additiveScale[1]-additiveScale[0])/additiveScale[2]
+TypeError: unsubscriptable object
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 228, in __init__
+    LRSArray = _genotype.permutation(strains = _strains, trait = _vals, nperm=fd.nperm)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/cgi-bin/Yanhua/main.py", line 170, in ?
+    page = ShowDatabasePage(fd)
+  File "/node_apps/www/cgi-bin/Yanhua/dataPage.py", line 930, in __init__
+    fd.readGenotype()
+  File "/node_apps/www/cgi-bin/Yanhua/DataForm.py", line 132, in readGenotype
+    self.genotype_1.read(os.path.join(CONFIG_genodir, self.RISet + '.geno'))
+SystemError: The given file doesn't exist
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 170, in ?
+    page = ShowDatabasePage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/dataPage.py", line 882, in __init__
+    fd.readGenotype()
+  File "/home/hqli/public_html/cgi-bin/beta/DataForm.py", line 131, in readGenotype
+    self.genotype_1.read(os.path.join(CONFIG_genodir, self.RISet + '.geno'))
+SystemError: The given file doesn't exist
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/cgi-bin/Yanhua/main.py", line 170, in ?
+    page = ShowDatabasePage(fd)
+  File "/node_apps/www/cgi-bin/Yanhua/dataPage.py", line 930, in __init__
+    fd.readGenotype()
+  File "/node_apps/www/cgi-bin/Yanhua/DataForm.py", line 132, in readGenotype
+    self.genotype_1.read(os.path.join(CONFIG_genodir, self.RISet + '.geno'))
+SystemError: The given file doesn't exist
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/cgi-bin/Yanhua/main.py", line 170, in ?
+    page = ShowDatabasePage(fd)
+  File "/node_apps/www/cgi-bin/Yanhua/dataPage.py", line 930, in __init__
+    fd.readGenotype()
+  File "/node_apps/www/cgi-bin/Yanhua/DataForm.py", line 132, in readGenotype
+    self.genotype_1.read(os.path.join(CONFIG_genodir, self.RISet + '.geno'))
+SystemError: The given file doesn't exist
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 33, in ?
+    fd = FormData(formdata)
+  File "/node_apps/www/cgi-bin/DataForm.py", line 99, in __init__
+    f1, self.mpolar, self.ppolar = ParInfo[self.RISet]
+KeyError: 'BDF2-2005'
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 33, in ?
+    fd = FormData(formdata)
+  File "/node_apps/www/cgi-bin/DataForm.py", line 99, in __init__
+    f1, self.mpolar, self.ppolar = ParInfo[self.RISet]
+KeyError: 'BDF2-2005'
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 170, in ?
+    page = ShowDatabasePage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/dataPage.py", line 882, in __init__
+    fd.readGenotype()
+  File "/home/hqli/public_html/cgi-bin/beta/DataForm.py", line 131, in readGenotype
+    self.genotype_1.read(os.path.join(CONFIG_genodir, self.RISet + '.geno'))
+SystemError: The given file doesn't exist
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 160, in ?
+    from searchPage import *
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 495
+     print item, 
+ ^ + SyntaxError: invalid syntax + +
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 228, in __init__
+    LRSArray = _genotype.permutation(strains = _strains, trait = _vals, nperm=fd.nperm)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 228, in __init__
+    LRSArray = _genotype.permutation(strains = _strains, trait = _vals, nperm=fd.nperm)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 2815, in __init__
+    LRSResult = _genotype.regression(_strains, _vals)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 228, in __init__
+    LRSArray = _genotype.permutation(strains = _strains, trait = _vals, nperm=fd.nperm)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 228, in __init__
+    LRSArray = _genotype.permutation(strains = _strains, trait = _vals, nperm=fd.nperm)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 228, in __init__
+    LRSArray = _genotype.permutation(strains = _strains, trait = _vals, nperm=fd.nperm)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 228, in __init__
+    LRSArray = _genotype.permutation(strains = _strains, trait = _vals, nperm=fd.nperm)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 146, in ?
+    page3 = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 228, in __init__
+    LRSArray = _genotype.permutation(strains = _strains, trait = _vals, nperm=fd.nperm)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 136, in ?
+    page = editHtmlPage(fd)
+  File "/node_apps/www/cgi-bin/upddataPage.py", line 1060, in __init__
+    fp = open(fileName, 'wb')
+IOError: [Errno 2] No such file or directory: '/node_apps/www/html/webqtl//webqtl/main.py'
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 2815, in __init__
+    LRSResult = _genotype.regression(_strains, _vals)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 228, in __init__
+    LRSArray = _genotype.permutation(strains = _strains, trait = _vals, nperm=fd.nperm)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/beta/intervalPage.py", line 2815, in __init__
+    LRSResult = _genotype.regression(_strains, _vals)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 146, in ?
+    page3 = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 358, in __init__
+    gifmap = self.plotIntMapping(intCanvas, _LRSResult, _bootResult, fd, offset = (75, 120, 80, 10))
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2374, in plotIntMapping
+    additiveStep = (additiveScale[1]-additiveScale[0])/additiveScale[2]
+TypeError: unsubscriptable object
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 146, in ?
+    page3 = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 358, in __init__
+    gifmap = self.plotIntMapping(intCanvas, _LRSResult, _bootResult, fd, offset = (75, 120, 80, 10))
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2374, in plotIntMapping
+    additiveStep = (additiveScale[1]-additiveScale[0])/additiveScale[2]
+TypeError: unsubscriptable object
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2815, in __init__
+    LRSResult = _genotype.regression(_strains, _vals)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+NameError: name 'MultipleIntMappingPage' is not defined
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 435, in __init__
+    self.cursor.execute(item)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+OperationalError: (1139, "Got error 'parentheses not balanced' from regexp")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 73, in ?
+    page = ResultsPage(fd)
+  File "/node_apps/www/cgi-bin/resultPage.py", line 153, in __init__
+    resultstable = self.GenReport(fd, _genotype, _strains, _vals, _vars)
+  File "/node_apps/www/cgi-bin/resultPage.py", line 163, in GenReport
+    qtlresults = _genotype.regression(strains = _strains, trait = _vals)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 73, in ?
+    page = ResultsPage(fd)
+  File "/node_apps/www/cgi-bin/resultPage.py", line 153, in __init__
+    resultstable = self.GenReport(fd, _genotype, _strains, _vals, _vars)
+  File "/node_apps/www/cgi-bin/resultPage.py", line 163, in GenReport
+    qtlresults = _genotype.regression(strains = _strains, trait = _vals)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 140, in ?
+    page2 = CorrelationPage(fd)
+  File "/node_apps/www/cgi-bin/correlationPage.py", line 116, in __init__
+    self.cursor.execute(query)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+ProgrammingError: (1146, "Table 'db_webqtl.ProbeSetXRef' doesn't exist")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 140, in ?
+    page2 = CorrelationPage(fd)
+  File "/node_apps/www/cgi-bin/correlationPage.py", line 116, in __init__
+    self.cursor.execute(query)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+ProgrammingError: (1146, "Table 'db_webqtl.ProbeSetXRef' doesn't exist")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 124, in ?
+    page=CorrelationPage(fd)
+  File "/node_apps/www/cgi-bin/correlationPage.py", line 116, in __init__
+    self.cursor.execute(query)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+ProgrammingError: (1146, "Table 'db_webqtl.ProbeSetXRef' doesn't exist")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 124, in ?
+    page=CorrelationPage(fd)
+  File "/node_apps/www/cgi-bin/correlationPage.py", line 116, in __init__
+    self.cursor.execute(query)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+OperationalError: (1017, "Can't find file: './db_webqtl/ProbeSetXRef.frm' (errno: 13)")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2815, in __init__
+    LRSResult = _genotype.regression(_strains, _vals)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 146, in ?
+    page3 = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 358, in __init__
+    gifmap = self.plotIntMapping(intCanvas, _LRSResult, _bootResult, fd, offset = (75, 120, 80, 10))
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2374, in plotIntMapping
+    additiveStep = (additiveScale[1]-additiveScale[0])/additiveScale[2]
+TypeError: unsubscriptable object
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2815, in __init__
+    LRSResult = _genotype.regression(_strains, _vals)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2815, in __init__
+    LRSResult = _genotype.regression(_strains, _vals)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 160, in ?
+    from searchPage import *
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 16
+     thekeys = fd.keys
+           ^
+ SyntaxError: invalid syntax
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 160, in ?
+    from searchPage import *
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 16
+     for key in fd.keys:
+       ^
+ SyntaxError: invalid syntax
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 160, in ?
+    from searchPage import *
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 16
+     for akey in fd.formdata.keys:
+       ^
+ SyntaxError: invalid syntax
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 160, in ?
+    from searchPage import *
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 17
+     print fd.formdata.keys
+         ^
+ SyntaxError: invalid syntax
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 160, in ?
+    from searchPage import *
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 17
+     print 'fd.formdata.keys'
+         ^
+ SyntaxError: invalid syntax
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 160, in ?
+    from searchPage import *
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 16
+     self.database = fd.formdata.getvalue('database', '')
+        ^
+ SyntaxError: invalid syntax
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 16, in __init__
+    print fd.formdata.keys.length
+AttributeError: 'function' object has no attribute 'length'
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 16, in __init__
+    print length(fd.formdata.keys)
+NameError: global name 'length' is not defined
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 16, in __init__
+    print len(fd.formdata.keys)
+TypeError: len() of unsized object
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 16, in __init__
+    print len(fd.formdata.list())
+TypeError: 'list' object is not callable
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 16, in __init__
+    print len(fd.formdata.getlist())
+TypeError: getlist() takes exactly 2 arguments (1 given)
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 16, in __init__
+    print fd.formdata.getkeys()
+  File "/usr/src/build/475206-i386/install/usr/lib/python2.3/cgi.py", line 533, in __getattr__
+    raise AttributeError, name
+AttributeError: getkeys
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 18, in __init__
+    print fd.formdata.getValue('database')
+  File "/usr/src/build/475206-i386/install/usr/lib/python2.3/cgi.py", line 533, in __getattr__
+    raise AttributeError, name
+AttributeError: getValue
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 170, in ?
+    page = ShowDatabasePage(fd)
+  File "/node_apps/www/cgi-bin/dataPage.py", line 945, in __init__
+    nstrains = [[None]] * len(traitdata)
+TypeError: len() of unsized object
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 303, in ?
+    page = cmdCorrelation(fd)
+  File "/node_apps/www/cgi-bin/TextUI.py", line 433, in __init__
+    self.readDB()
+  File "/node_apps/www/cgi-bin/TextUI.py", line 555, in readDB
+    self.cursor.execute(query)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+OperationalError: (1054, "Unknown column 'LocusID' in 'field list'")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 303, in ?
+    page = cmdCorrelation(fd)
+  File "/node_apps/www/cgi-bin/TextUI.py", line 433, in __init__
+    self.readDB()
+  File "/node_apps/www/cgi-bin/TextUI.py", line 555, in readDB
+    self.cursor.execute(query)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+OperationalError: (1054, "Unknown column 'LocusID' in 'field list'")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 170, in ?
+    page = ShowDatabasePage(fd)
+  File "/node_apps/www/cgi-bin/dataPage.py", line 872, in __init__
+    fd.RISet = self.cursor.fetchall()[0][0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 170, in ?
+    page = ShowDatabasePage(fd)
+  File "/node_apps/www/cgi-bin/dataPage.py", line 872, in __init__
+    fd.RISet = self.cursor.fetchall()[0][0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 170, in ?
+    page = ShowDatabasePage(fd)
+  File "/node_apps/www/cgi-bin/dataPage.py", line 872, in __init__
+    fd.RISet = self.cursor.fetchall()[0][0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 170, in ?
+    page = ShowDatabasePage(fd)
+  File "/node_apps/www/cgi-bin/dataPage.py", line 872, in __init__
+    fd.RISet = self.cursor.fetchall()[0][0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 170, in ?
+    page = ShowDatabasePage(fd)
+  File "/node_apps/www/cgi-bin/dataPage.py", line 872, in __init__
+    fd.RISet = self.cursor.fetchall()[0][0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 170, in ?
+    page = ShowDatabasePage(fd)
+  File "/node_apps/www/cgi-bin/dataPage.py", line 872, in __init__
+    fd.RISet = self.cursor.fetchall()[0][0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 170, in ?
+    page = ShowDatabasePage(fd)
+  File "/node_apps/www/cgi-bin/dataPage.py", line 872, in __init__
+    fd.RISet = self.cursor.fetchall()[0][0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 170, in ?
+    page = ShowDatabasePage(fd)
+  File "/node_apps/www/cgi-bin/dataPage.py", line 872, in __init__
+    fd.RISet = self.cursor.fetchall()[0][0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 77, in __init__
+    self.databaseCrosses, self.databaseCrossIds= self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 303, in ?
+    page = cmdCorrelation(fd)
+  File "/node_apps/www/cgi-bin/TextUI.py", line 433, in __init__
+    self.readDB()
+  File "/node_apps/www/cgi-bin/TextUI.py", line 555, in readDB
+    self.cursor.execute(query)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+OperationalError: (1054, "Unknown column 'LocusID' in 'field list'")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 303, in ?
+    page = cmdCorrelation(fd)
+  File "/node_apps/www/cgi-bin/TextUI.py", line 433, in __init__
+    self.readDB()
+  File "/node_apps/www/cgi-bin/TextUI.py", line 555, in readDB
+    self.cursor.execute(query)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+OperationalError: (1054, "Unknown column 'LocusID' in 'field list'")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 303, in ?
+    page = cmdCorrelation(fd)
+  File "/node_apps/www/cgi-bin/TextUI.py", line 433, in __init__
+    self.readDB()
+  File "/node_apps/www/cgi-bin/TextUI.py", line 555, in readDB
+    self.cursor.execute(query)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+OperationalError: (1054, "Unknown column 'LocusID' in 'field list'")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 303, in ?
+    page = cmdCorrelation(fd)
+  File "/node_apps/www/cgi-bin/TextUI.py", line 433, in __init__
+    self.readDB()
+  File "/node_apps/www/cgi-bin/TextUI.py", line 555, in readDB
+    self.cursor.execute(query)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+OperationalError: (1054, "Unknown column 'LocusID' in 'field list'")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 303, in ?
+    page = cmdCorrelation(fd)
+  File "/node_apps/www/cgi-bin/TextUI.py", line 433, in __init__
+    self.readDB()
+  File "/node_apps/www/cgi-bin/TextUI.py", line 555, in readDB
+    self.cursor.execute(query)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+OperationalError: (1054, "Unknown column 'LocusID' in 'field list'")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 303, in ?
+    page = cmdCorrelation(fd)
+  File "/node_apps/www/cgi-bin/TextUI.py", line 433, in __init__
+    self.readDB()
+  File "/node_apps/www/cgi-bin/TextUI.py", line 555, in readDB
+    self.cursor.execute(query)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+OperationalError: (1054, "Unknown column 'LocusID' in 'field list'")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 303, in ?
+    page = cmdCorrelation(fd)
+  File "/node_apps/www/cgi-bin/TextUI.py", line 433, in __init__
+    self.readDB()
+  File "/node_apps/www/cgi-bin/TextUI.py", line 566, in readDB
+    self.cursor.execute(query)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+OperationalError: (1054, "Unknown column 'LocusID' in 'field list'")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 303, in ?
+    page = cmdCorrelation(fd)
+  File "/node_apps/www/cgi-bin/TextUI.py", line 433, in __init__
+    self.readDB()
+  File "/node_apps/www/cgi-bin/TextUI.py", line 555, in readDB
+    self.cursor.execute(query)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+OperationalError: (1054, "Unknown column 'LocusID' in 'field list'")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 303, in ?
+    page = cmdCorrelation(fd)
+  File "/node_apps/www/cgi-bin/TextUI.py", line 433, in __init__
+    self.readDB()
+  File "/node_apps/www/cgi-bin/TextUI.py", line 555, in readDB
+    self.cursor.execute(query)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+OperationalError: (1054, "Unknown column 'LocusID' in 'field list'")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 112, in ?
+    page = ClusterTreePage(fd)
+  File "/node_apps/www/cgi-bin/correlationPage.py", line 1148, in __init__
+    qtlresult = fd.genotype.regression(strains = _strains, trait = _vals)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 228, in __init__
+    LRSArray = _genotype.permutation(strains = _strains, trait = _vals, nperm=fd.nperm)
+IndexError: the length of the strain list and the value list are different, 
+or they are less than 8 
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 358, in __init__
+    gifmap = self.plotIntMapping(intCanvas, _LRSResult, _bootResult, fd, offset = (75, 120, 80, 10))
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2374, in plotIntMapping
+    additiveStep = (additiveScale[1]-additiveScale[0])/additiveScale[2]
+TypeError: unsubscriptable object
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 358, in __init__
+    gifmap = self.plotIntMapping(intCanvas, _LRSResult, _bootResult, fd, offset = (75, 120, 80, 10))
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2374, in plotIntMapping
+    additiveStep = (additiveScale[1]-additiveScale[0])/additiveScale[2]
+TypeError: unsubscriptable object
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 358, in __init__
+    gifmap = self.plotIntMapping(intCanvas, _LRSResult, _bootResult, fd, offset = (75, 120, 80, 10))
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2374, in plotIntMapping
+    additiveStep = (additiveScale[1]-additiveScale[0])/additiveScale[2]
+TypeError: unsubscriptable object
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 358, in __init__
+    gifmap = self.plotIntMapping(intCanvas, _LRSResult, _bootResult, fd, offset = (75, 120, 80, 10))
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2374, in plotIntMapping
+    additiveStep = (additiveScale[1]-additiveScale[0])/additiveScale[2]
+TypeError: unsubscriptable object
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 358, in __init__
+    gifmap = self.plotIntMapping(intCanvas, _LRSResult, _bootResult, fd, offset = (75, 120, 80, 10))
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2374, in plotIntMapping
+    additiveStep = (additiveScale[1]-additiveScale[0])/additiveScale[2]
+TypeError: unsubscriptable object
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 136, in ?
+    page = editHtmlPage(fd)
+  File "/node_apps/www/cgi-bin/upddataPage.py", line 1060, in __init__
+    fp = open(fileName, 'wb')
+IOError: [Errno 13] Permission denied: '/node_apps/www/html/webqtl//dbdoc/HC_M2_1005_P.html'
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 56, in __init__
+    indId, indName, indFullName, indConfid = self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 56, in __init__
+    indId, indName, indFullName, indConfid = self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 56, in __init__
+    indId, indName, indFullName, indConfid = self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 56, in __init__
+    indId, indName, indFullName, indConfid = self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 56, in __init__
+    indId, indName, indFullName, indConfid = self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 56, in __init__
+    indId, indName, indFullName, indConfid = self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 57, in __init__
+    indId, indName, indFullName, indConfid = self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/home/hqli/public_html/cgi-bin/beta/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/home/hqli/public_html/cgi-bin/beta/searchPage.py", line 57, in __init__
+    indId, indName, indFullName, indConfid = self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "/node_apps/www/webqtl/main.py", line 162, in ?
+    page = SearchResultPage(fd)
+  File "/node_apps/www/cgi-bin/searchPage.py", line 56, in __init__
+    indId, indName, indFullName, indConfid = self.cursor.fetchall()[0]
+IndexError: tuple index out of range
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 519, in __init__
+    mainAreas = self.plotIntMappingALEX_TEST(intCanvas, _LRSResult, _bootResult, fd, geneTable=geneTableMain, offset= (self.WIDTH_LEFT_OFFSET_DEFAULT, self.WIDTH_RIGHT_OFFSET_DEFAULT, self.HEIGHT_TOP_OFFSET_DEFAULT, self.HEIGHT_BOTTOM_OFFSET_DEFAULT), zoom = 1)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 1786, in plotIntMappingALEX_TEST
+    geneCol.loadGenesOnChr(chrName, self.cursor, self.diffCol, self.startMb, self.endMb, fd.identification)
+  File "/node_apps/www/cgi-bin/GeneCollection.py", line 88, in loadGenesOnChr
+    cursor.execute("SELECT count(id) FROM SNP_perlegen where mb > %f and mb < %f and chr = '%s' and %s=1" % (gene[4]-0.002, gene[5]+0.002, tempChr, diffCol))
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+ProgrammingError: (1146, "Table 'db_webqtl.SNP_perlegen' doesn't exist")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 519, in __init__
+    mainAreas = self.plotIntMappingALEX_TEST(intCanvas, _LRSResult, _bootResult, fd, geneTable=geneTableMain, offset= (self.WIDTH_LEFT_OFFSET_DEFAULT, self.WIDTH_RIGHT_OFFSET_DEFAULT, self.HEIGHT_TOP_OFFSET_DEFAULT, self.HEIGHT_BOTTOM_OFFSET_DEFAULT), zoom = 1)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 1786, in plotIntMappingALEX_TEST
+    geneCol.loadGenesOnChr(chrName, self.cursor, self.diffCol, self.startMb, self.endMb, fd.identification)
+  File "/node_apps/www/cgi-bin/GeneCollection.py", line 88, in loadGenesOnChr
+    cursor.execute("SELECT count(id) FROM SNP_perlegen where mb > %f and mb < %f and chr = '%s' and %s=1" % (gene[4]-0.002, gene[5]+0.002, tempChr, diffCol))
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+ProgrammingError: (1146, "Table 'db_webqtl.SNP_perlegen' doesn't exist")
+
+
+


+ +

Bug Report


Traceback (most recent call last):
+  File "./cmdLine.py", line 120, in ?
+    page = MultipleIntMappingPage(fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 2733, in __init__
+    IntMappingPage.__init__(self,fd)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 519, in __init__
+    mainAreas = self.plotIntMappingALEX_TEST(intCanvas, _LRSResult, _bootResult, fd, geneTable=geneTableMain, offset= (self.WIDTH_LEFT_OFFSET_DEFAULT, self.WIDTH_RIGHT_OFFSET_DEFAULT, self.HEIGHT_TOP_OFFSET_DEFAULT, self.HEIGHT_BOTTOM_OFFSET_DEFAULT), zoom = 1)
+  File "/node_apps/www/cgi-bin/intervalPage.py", line 1786, in plotIntMappingALEX_TEST
+    geneCol.loadGenesOnChr(chrName, self.cursor, self.diffCol, self.startMb, self.endMb, fd.identification)
+  File "/node_apps/www/cgi-bin/GeneCollection.py", line 88, in loadGenesOnChr
+    cursor.execute("SELECT count(id) FROM SNP_perlegen where mb > %f and mb < %f and chr = '%s' and %s=1" % (gene[4]-0.002, gene[5]+0.002, tempChr, diffCol))
+  File "/usr/lib/python2.3/site-packages/MySQLdb/cursors.py", line 137, in execute
+    self.errorhandler(self, exc, value)
+  File "/usr/lib/python2.3/site-packages/MySQLdb/connections.py", line 33, in defaulterrorhandler
+    raise errorclass, errorvalue
+ProgrammingError: (1146, "Table 'db_webqtl.SNP_perlegen' doesn't exist")
+
+
+


+ + diff --git a/web/conditionsofUse.html b/web/conditionsofUse.html new file mode 100755 index 00000000..80104817 --- /dev/null +++ b/web/conditionsofUse.html @@ -0,0 +1,119 @@ + +WebQTL Usage Conditions and Limitations + + + + + + + + + + + + + + + + + + +
+ + + +
+

Usage Conditions and Limitations modify this page

+ + +
+Software license: GeneNetwork source code is available under the GNU Affero General Public License, version 3 (AGPLv3). Source is written in Python, C, and JavaScript. Please contact RW Williams for a status report and access to code. A SourceForge repository is planned for Fall 2010. + +

+The QTL Reaper module of GeneNetwork that is used by several mapping modules of GeneNetwork is available under the GNU General Public License at SourceForge. + +

+AGPL License + +

+ +
+Data sets that have been incorporated in the GeneNetwork belong to individuals, groups, and companies listed in the Status and Contacts page. Many data sets are still being generated and analyzed, and the data contributors have often agreed to remove protection and let other investigators view, share, and analyze data. We request that those of you analyzing these data and preparing publications do your best of acknowledge the original data sources. Please contact Robert W. Williams if you have questions regarding the status of data and what group to acknowledge. + +

If your work relies heavily on the GeneNetwork please consider acknowledging the grants that provide substantial support for this project (see bottom of all web pages). Please review the annotated References for relevant citations. For further details on use and citation of data in papers please read the section below on Academic, educational, and not-for-profit institutional use. +

+ +
+Commercial use of open GeneNetwork data sets is allowed. If GeneNetwork is useful to you and your company then we would like to enlist you as a corporate sponsor. Any use GeneNetworkdoes not include a license to any patent rights that any of the data providers may have that are independent of the database itself. +

+ + +
+The Standard Disclaimers of Warranties. The use of GeneNetwork and data sets is provided free of charge. GeneNetwork is an experimental resource and all users should know that GeneNetwork contains coding and data errors--most of which are still unknown to data providers and programmers. As a result we do not and cannot provide any warranty regarding data or results generated using GeneNetwork. Please contact Robert W. Williams (email link at the bottom of each web page) if you suspect that data or results are erroneous. + +

The University of Tennessee (UT), its trustees, directors, officers, employees, and affiliates make no representation and extend no warranties of any kind, either express or implied, including warranties of correctness, accuracy, fitness for a particular purpose, merchantability, validity of patent rights claims (issued or pending), the absence of latent or other defects, whether or not discoverable. In no event shall UT or its trustees, directors, officers, employees, or affiliates be liable for incidental or consequential damages of any kind, including economic damage or injury to property and lost profits, regardless of whether UT, its trustees, directors, officers, employees, and affiliates shall be advised, shall have other reason to know, or in fact shall know of the possibility of the foregoing. +

+ + +
+Large data sets. Data sets that have not been used in full publications will generally not be available for bulk downloading, redistribution, or analysis by other groups or in other databases without prior written agreement of those who generated the data. It is often possible to obtain access to entire unpublished data sets or large subsets of data on a collaborative basis. Please contact the data owner. + +

This restriction on bulk analysis is removed after component databases have led to full publications. Access to full data sets is available at our Data Sharing Zone. + + +

+ +Academic, educational, not-for-profit institutional use, or for-profit users. + +All public data in the GeneNetwork are currently available for analyses with the expectation that the particular data sources and providers will be acknowledged and cited appropriately in works or publications. Some data sets are still being generated, revised, expanded, or error-checked. We therefore recommend contacting groups who are generating these data. They will be able to help you analyze, interpret, and confirm results. +

+ +
+Acknowledgement is appropriate when (1) data taken from GeneNetwork play a minor or supporting role in a study or work, and (2) when you do not need assistance with the interpretation or analysis of the data, and (3) when data are used for research or educational purposes only. Data contributors usually annotate data sets (see the INFO pages), but some of these experiments are complex, and the annotation is often not complete. We recommend contacting the individuals and groups who generated data. +

+ +
+Co-authorship is appropriate to consider when data taken from GeneNetwork play a pivotal role in a study or when the interpretation or findings require insight into experimental details and statistical design (the metadata). +

+ + +
+Disclaimer. The data providers make no guarantees or warranties as to the accuracy or completeness of or results to be obtained from accessing and using information from The GeneNetwork. We will not be liable to any user or anyone else for any inaccuracy, error or omission, regardless of cause, in the data contained in The GeneNetwork databases or any resulting damages. In addition, the data providers do not warrant that the databases will meet your requirements, be uninterrupted, or error-free. Data providers expressly exclude and disclaim all expressed and implied warranties of merchantability and fitness for a particular purpose. Data providers shall not be responsible for any damage or loss of any kind arising out of or related to your use of the databases, including without limitation data loss or corruption, regardless of whether such liability is based in tort, contract, or otherwise. +

+ + +
Information about this text file:

+ + +

This text file originally generated by RWW, March 2004. Updated by RWW, Nov 12, 2004; Dec 4, 2004; April 27, 2005; Sept 1, 2005; Sept 13, 2010. + + +

+

+ +

+
+
+ + + +
+ +
+ + + + + + + + + diff --git a/web/copyright.html b/web/copyright.html new file mode 100755 index 00000000..e8b0ebc7 --- /dev/null +++ b/web/copyright.html @@ -0,0 +1,72 @@ + +Warranty Disclaimer and Copyright Notice + + + + + + + + + + + + + + + + + + + +
+ + + +
+

Warranty Disclaimer and Copyright Notice modify this page

+
+ THE INFORMATICS CENTER FOR NEUROGENETICS MAKES NO REPRESENTATION ABOUT THE + SUITABILITY OR ACCURACY OF THIS SOFTWARE OR DATA FOR ANY PURPOSE, AND MAKES NO + WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND FITNESS FOR A + PARTICULAR PURPOSE OR THAT THE USE OF THIS SOFTWARE OR DATA WILL NOT INFRINGE ANY + THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS, OR OTHER RIGHTS. THE SOFTWARE AND + DATA ARE PROVIDED "AS IS". +
+
+ This software and data are provided to enhance knowledge and encourage progress in the + scientific community and are to be used only for research and educational purposes. Any + reproduction or use for commercial purpose is prohibited without the prior express written + permission of The Informatics Center for Neurogenetics. + +
+
+ Copyright ©2003 by The Informatics Center for Neurogenetics, + University of Tennessee Health Science Center
+ All Rights Reserved
+

+
+
+ + + +
+ +
+ + + + + + + + + diff --git a/web/correlationAnnotation.html b/web/correlationAnnotation.html new file mode 100755 index 00000000..f7882dbc --- /dev/null +++ b/web/correlationAnnotation.html @@ -0,0 +1,158 @@ + +Correlation Page Annotation + + + + + + + + + + + + + + + + + + +
+ + + +
+ +

Explanations of Different Types of Correlations + +modify this page

+ + + +

Literature Correlations

+ +

Literature correlations are calculated using the Semantic Gene Organizer (SGO). The SGO software uses a concept-based vector space model called latent semantic indexing (LSI) to automatically extract gene-gene relations from titles and abstracts in MEDLINE citations (Homayouni et al. 2005). + +

These LSI literature correlations are all positive and range from 0 to 1. They were computed in mid 2005 using the complete PubMed collection. They were recomputed in 2007 by Dr. Ramin Homayouni and colleagues and entered into GeneNetwork by Nick Furlotte. + +

Vector space modeling is a classical information retrieval technique used to identify conceptually related documents, whereby the semantic structure of a document is represented as a vector in word space and the degree of similarity between documents is calculated by the angle between document vectors. LSI improves retrieval by using a singular value decomposition (or principal component analysis) to create a subspace of concepts in which text documents are represented as vectors. + +

Each gene is represented as a vector in word or concept space. The cosine of the angle between the query gene vector and all other gene vectors is used to rank related genes. The distribution of cosine values ranges between 1 and -1, where a value of 1 denotes the highest similarity. + +

An important advantage of LSI over other vector-based retrieval methods is that relations can be derived even if a direct link between genes has not been established in the literature. The fewer factors that are used for query matching, the more conceptual the relations, and vice versa. Therefore, genes may be conceptually related even if they have not been studied together directly. This utility of LSI makes it ideal for investigating the functional significance of gene associations identified in discovery oriented genomic studies. + +

SGO literature correlation values may be used to rapidly identify known relations between co-regulated genes and the latent relations between co-regulated genes based on current literature. + +

+

Methods + +

Gene abstract documents are first compiled using titles and abstracts in MEDLINE citations cross-referenced for each mouse gene and its human and rat homologs. These gene documents were assembled and parsed into a dictionary of terms (tokens) and weighted frequencies that are required for the term-by-gene document (sparse) matrix. In effect, each gene document is viewed as a bag of words upon which operations can be performed. There are a number of different word weighting schemes that can be used in vector space modeling (Baeza-Yates and Ribeiro-Neto, 1999). The aim of any scheme is to measure similarity within a document while at the same time measuring the dissimilarity of a gene document from the other gene documents. In SGO, we use a log entropy weighting scheme to decrease the weight of high frequency words, while giving distinguishing words higher weights (Berry and Browne, 1999). + +

Term and document vectors for the LSI model deployed by SGO were generated by truncating the singular value decompisition (SVD) of the term-by-gene document matrix to s factors (i.e., only s columns of the orthogonal matrices U and V are used). LSI therefore produces a rank-reduced space in which to compare two gene documents at different conceptual levels. In practice, the maximum number of factors is limited by the number of documents in the collection. Fewer factors may be used for broad (more conceptual) comparisons, whereas a larger number of factors may be used for specific (more literal) comparisons. Other studies have demonstrated that for large documents collections the optimal number of factors is approximately 300 (Landauer et al., 2004). + +

For more information on SGO please refer to https://grits.eecs.utk.edu/sgo/sgo.html + +

+ +

Tissue Correlation

+ + +

The tissue correlation is an estimate of the similarity of expression of two genes or transcripts across different cells, tissues, or organs. Tissue correlations were generated by analyzing gene expression in multiple tissues taken from single animals (C57BL/6J, DBA/2J mice, and BN rats). Both Pearson product-moment correlations and Spearman rank order correlations have been computed for all pair of genes using data from a set of tissue samples. Both correlation types -- r and rho -- as well as their associated p value are displayed in Trait Correlation pages to the far right. While we used mouse tissues to compute the tissue correlations, we display these values even in tables generated for rat and human transcripts and gene. + +

This tissue correlation analysis was carried out by Drs. Xusheng Wang, Lu Lu, and Robert W. Williams at the University of Tennessee Health Science Center in collaboration with Illumina Inc. (Jan and Feb 2008) using the MouseWG-6 v2.0 array. The GN interface was created by Xiaodong Zhou. We generated data from approximately 60 samples. The correlations in GeneNetwork were computed for a subset of 25 tissues or tissue pools that have moderately independent expression patterns. We merging many CNS samples into a single pooled value. We also merged data for ileum, jejunum, and duodenum. + +

In many cases, the expression of a single gene is estimated by multiple probes or probe sets, multiple exons, or alternative transcripts. In the case of the Illumina array that we used, there are typically two to three probes per gene and all may be equally valid estimates of different aspects of the expression of a gene. To provide an approximate first-order summary of joint expression of genes across tissues we simply selected that probe associated with the single highest estimate of expression averaged across multiple tissues. +[Dec 2008, RWW]. + + +    + + +

Tissue Correlations: Pearson's r and Spearman's rho

+ + +

Conventional Pearson product-moment correlations (r) or Spearman rank order correlations (rho) were computed across approximately 25 different organs and tissue types. The rank order correlations will be less dependent on the distribution of expression estimates or the particular set of 25 tissue types. + +

The Tissue P (r) is the probability associated with the Pearson product-moment correlation. The Tissue P (rho) is the corresponding probability associated with the Spearman rank order statistic. Both P values are currently computed for an n of 25 organs and tissue types. The rank order correlation will be more conservative. This p value may be appropriate if the bivariate distribution of points across the plots is normally distributed in both x and y axes. + + + +

Sample Correlation: Pearson's r

+ +

Pearson' s Sample Correlation, r, is computed using trait values measured across a population of genetically diverse cases (individuals or strains). This is the Pearson's r value computed across cases or samples. The correlation is generated by a combination of shared genetic, environmental, and experimental factors. In other words, this is a correlation of phenotypes across a population. It is only a good estimate of a genetic correlation when developmental, environmental, technical, and error variance in the sample is low. In the case of sets of recombinant inbred strains it is possible to reduce non-genetic sources of variance by pooling samples and by resampling genetically identical individuals. + + +

p Value of Sample Correlation (Pearson's r): The p value associated with the Pearson product-moment correlation type described above. The p value takes into account differences in the sample size. Correlations and traits are usually ranked with the smallest p value (most significant) on the top. + + +

Sample Correlation: Spearman's Rank Order, rho

Spearman's Sample Correlation, rho, is computed using trait values measured across a population of genetically diverse cases (individuals or strains). This is the Spearman rank order correlation (called rho rather than r) that has been computed across the samples. This correlation is not unduly affected by outliers, and should also generally be used when sample size is small (less than 20). Correlation is generated by a combination of genetic, environmental, and experimental factors. It is only a good estimate of a genetic correlation when developmental, environmental, technical, and error variance in the sample is low. In the case of sets of recombinant inbred strains it is possible to reduce non-genetic sources of variance by pooling samples and by resampling genetically identical individuals. + + +

p Value of Sample Correlation (Spearman's rho): The p value associated with the Spearman rand order correlation type described above. The p value takes into account differences in the sample size. Correlations and traits are usually ranked with the smallest p value (most significant) on the top. + + + + + + + + +

+
+ + + + + + + + + + + + + + +
+ + Map Manager + + + Service initiated June 15, 2001. + Page maintained by + Hongqiang Li, + Fan Zhang, and + Robert W. Williams. Site built by Jintao Wang, + Kenneth Manly, RWW, and many colleagues. + + Python Powered +
+
    +
  • NIAAA Integrative Neuroscience Initiative on Alcoholism (U01AA13499, U24AA13513) +
  • + A Human Brain Project funded jointly by the NIDA , NIMH, and NIAAA (P20-DA 21131) +
  • NCI MMHCC (U01CA105417) +
  • Biomedical Informatics Research Network (BIRN), NCRR (U24 RR021760) +
+
+ +
+ + + + + + + diff --git a/web/credit.html b/web/credit.html new file mode 100755 index 00000000..29a8d0c4 --- /dev/null +++ b/web/credit.html @@ -0,0 +1,134 @@ + +Credit + + + + + + + + + + + + + + + + + +
+ + + +
+ + + + + + + + +
+
+

Web site design and coding modify this page

+ +

Published and Unpublished Phenotype Data

+ + +

Genotype / Genomic Data

+ +
+
+
+ + + +
+
+
+
    +

    +
    +

    +
  1. UTHSC: Department of Anatomy & Neurobiology, + University of Tennessee Health Science Center, Memphis, TN, USA
  2. +
  3. GNF: Genomics Institute of the Novartis Research + Foundation, San Diego, CA, USA
  4. +
  5. UAB: Department of Medicine, University of Alabama + at Birmingham, Birmingham, AL, USA
  6. +
  7. UNC: Department of Genetics, University of North + Carolina, NC, USA
  8. +
  9. RUG: Department of Stem Cell Biology, + University of Groningen, Groningen, The Netherlands
  10. +
  11. OHSU: Department of Behavioral Neuroscience, + Oregon Health Science University, Portland, OR, USA
  12. +
+
+
+
+
+ + + +
+ +
+ + + + + + + + + diff --git a/web/cross.html b/web/cross.html new file mode 100755 index 00000000..a30c11e5 --- /dev/null +++ b/web/cross.html @@ -0,0 +1,209 @@ + +HTML Template + + + + + + + + + + + + + + + + + +
+ + + + + +
+ +

Mouse Cross Information modify this page

+     +AKXD: + +
+The AKXD recombinant inbred (RI) strains are derived from AKR/J (AK) and DBA/2J (D). All of these strains were made by Benjamin A. Taylor.

+ +

All of the AKXD data in WebQTL is from an experiment by Kent Hunter and colleagues. WebQTL does not yet include a Phenotypes database for this strain set.

+ +

How to obtain these strains: These strains are now cryopreserved. To rederive these strains please contact the Jackson Laboratory and see http://jaxmice.jax.org/jaxmicedb/html/rcbinbred.shtml. +

+ +
+     +AXB/BXA: + +

+The AXB and BXA set of recombinant inbred (RI) strains were derived from a reciprocal cross between A/J (A) and C57BL/6J (B). Both parental strains have been sequenced, making this a particularly powerful set of RI strains for functional and genetic analyses. Data acquired using AXB and BXA subsets should be combined; the only difference being the polarity of intercross matings that generated (A x B)F1s and (B x A)F1s. AXB and BXA strains were all produced by Muriel Nesbitt at UCSD in the mid and late 1970s and first used in the early 1980s (Skamene et al., 1984; Peleg and Nesbitt, 1984; Marshal and Paigen, 1993). The set was imported into The Jackson Laboratory by Beverly Paigen (Pgn) in the early 1990s. As of 2004, approximately 25 viable and fully independent AXB/BXA strains are available.

+ +

Approximately 100 traits are currently included in the AXBXA Phenotypes database (Nov 2004). +

+ +

Several nominally independent strains in the AXB and BXA sets are very closely related. These duplicates should not be used without special statistical precaution. The most obvious option is to combine and average data from these strains except when their phenotypes differ significantly (Taylor 1996; Williams et al., 2001). + +
+
AXB13=AXB14: 92% identity +
AXB18=AXB19=AXB20: 97 to 99% identity +
BXA8=BXA17: 99.8% identity +

+ +

How to obtain these strains: Please see http://jaxmice.jax.org/jaxmicedb/html/rcbinbred.shtml. +

+ +
+     +BXD: + +

+The BXD set of recombinant inbred (RI) strains were derived by crossing C57BL/6J (B) and DBA/2J (D) and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). These new strains have roughly twice the number of recombinations of conventional F2-derived RI straons. The new BXD strains are available now from Lu Lu and colleagues.

+ +

The mitochondrial DNA of all BXD strains were typed by Jing Gu and Shuhua Qi (Nov 2004) using DNAs obtained from the Jackson Laboratory (BXD1 through 42) or from the UTHSC colony. This typing relied on a SNP marker identified by Jan Jiao in Weikuan Gu's laboratory at basepair position 9461 in the reference C57BL/6J mitochondrial sequence. Most strains have inherited mitochondria from C57BL/6J. However, the following strains have mitochondria with a DBA/2J allele at the UT-M-9461 SNP: BXD32, 61, 74, 76, 82, 89, 90, 91, 95, and BXD99. The only surprise in this list is that BXD32/TyJ has a DBA/2J mitochondrial genotype.

+ +

Approximately 680 traits are currently included in the BXD Phenotypes database (Nov 2004).

+ + +

How to obtain these strains: Please see http://jaxmice.jax.org/jaxmicedb/html/rcbinbred.shtml. +

+ +
+ + +     +BXH: +
+

+The BXH set were made by crossing female C57BL/6J (B) with male C3H/HeJ (H) mice. Benjamin Taylor created the initial 12 BXH recombinant inbred strains at The Jackson Laboratory in 1969. A second set of eight BXH strains were initiated by Linda Siracusa at the Kimmel Cancer Center in 1995. She selected for tyrosinase-negative albinos and her strains should not be used to map on Chr 7. Four of these new BXH strains are now also available from The Jackson Laboratory. The following are the old and new symbols for the four recent additions: + +

    +
  • BXHA1/Sr = BXH20/Kcc +
  • BXHA2/Sr = BXH21/Kcc +
  • BXHB2/Sr = BXH22/Kcc +
  • BXHE1/Sr = B6cC3-1/Kcc (backcrossed to B6 and a recombinant congenic) +
+ +

Approximately 135 traits are currently included in the BXH Phenotype database (Nov 2004).

+ +

How to obtain these strains: Please see http://jaxmice.jax.org/jaxmicedb/html/rcbinbred.shtml. +

+ +
+ + +     + +CXB: +
+The CXB set is the first, oldest, and smallest group of mouse recombinant inbred strains. The materal strain is BALB/cBy and the paternal strain is C57BL/6By. They have been used extensively by immunologists and neurogeneticists. A total of 13 of these strains are now available.

+ +

Over 450 traits are now included in the CXB Phenotype database (Nov 2004).

+ + +

How to obtain these strains: Please see http://jaxmice.jax.org/jaxmicedb/html/rcbinbred.shtml. +

+
+ + +    LXS: + +

+The parental strains of the LXS recombinant inbred (RI) set are Inbred Long-Sleep (ILS) and Inbred Short-Sleep (ISS) strains. These parental strains have been phenotyped intensively by behavioral geneticists and neuropharmacologists for a decade. The LXS RI set has an intriguing history and trace back to an 8-way cross initiated in the 1950s by Gerald McClearn, the dean of mouse behavior genetics.

+ +

The LXS panel has recently been genotyped at 330 microsatellite markers, and this panel can already be used to map Mendelian and quantitative trait loci.

+ +

This is a new RI panel and only a small number of traits are currently included in the LXS Phenotype database (Nov 2004).

+ + +

For information on the availability of the LXS strains please contact Beth Bennett. +

+
+ + +     +B6D2F2: +
+ +

+Fifty-six Filial generation 2 (F2) mice were generated by crossing C57BL/6J (B6) and DBA/2J (D2) stock from the Jackson Laboratory. The F1s were mated reciprocally to create B6D2F2 and D2B6F2 progeny. At present , WebQTL includes one large microarray data set (Affymetrix M430) for the entire brain of these F2 progeny.

+ +

+For further information, please contact John Belknap, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland VA Medical Center, Portland, OR 97239.

+
+ + + +     +B6BTBRF2: + +
+This cross consists of a subset of 60 F2 progeny generated by crossing C57BL/6J and BTBR strains. All of these cases are homozygous for the spontaneous obese mutation in the leptin gene (Lep-ob/ob). Metabolic function, liver mRNA expression (Agilent platform), and other physiological and molecular traits related to type 2 diabetes and obesity were quantified. Liver gene expression data were generated by Hong Lan and Alan Attie at The University of Wisconsin-Madison. Please contact Drs. Alan Attie regarding use of this data set in publications or projects. +
+ +     + +MDP: +
+The Mouse Diversity Panel is simply a composite of common and wild inbred strains and even some isogenic F1 hybrids.

+ +

Over 1000 traits were downloaded from the Mouse Phenome Database at The Jackson Laboratory in June 2006 and implemented in GeneNetwork July 2006.

+ +

When using the MPD please cite this URL: +http://www.jax.org/phenome. This is the MPD's best known location and is usually preferable to the longer dynamic system URLs that may appear in URL address fields. + + +

Publications: + +

Grubb SC, Churchill GA, Bogue MA (2004) A collaborative database of inbred mouse strain characteristics. Bioinformatics. 20:2857-9. PMID: 15130929 + +

Bogue MA, Grubb SC (2004) The mouse phenome project. Genetica 122:71-74. PMID: 15619963 + +

To cite specific phenotyping data in the MPD, a format similar to this may be used. (Please be sure you have read and agree with our user agreement for taking and using MPD data.) + +

Investigators. Project Title. MPD accession#. Mouse Phenome Database Web Site, The Jackson Laboratory, Bar Harbor, Maine USA. World Wide Web (URL: http://www.jax.org/phenome, month and year of download ). + +

Example: +

Wahlsten D, Crabbe JC. Comparative study of activity, anxiety, motor learning, and spatial learning in two laboratories. MPD:108. Mouse Phenome Database Web Site, The Jackson Laboratory, Bar Harbor, ME USA. World Wide Web (URL: http://www.jax.org/phenome, July 2004). + +

Each phenotyping project in the MPD is assigned an accession number having the format MPD:NNN, where NNN is an integer. Accession numbers are displayed in the projects index and the individual project detail pages. + + +

How to obtain these strains: Please see http://jaxmice.jax.org/jaxmicedb/html/inbred.shtml. +

+
+ +

    About this file:

+

The file started, Nov 5, 2004 by RWW. Last update by RWW, Nov 6, 2004. EJC June 6, 2005. RWW, July 13, 2006

+
+
+ + + +
+ +
+ + + + + + + + + diff --git a/web/css/custom-theme/images/ui-bg_flat_100_eeeeee_40x100.png b/web/css/custom-theme/images/ui-bg_flat_100_eeeeee_40x100.png new file mode 100755 index 00000000..e44f861b Binary files /dev/null and b/web/css/custom-theme/images/ui-bg_flat_100_eeeeee_40x100.png differ diff --git a/web/css/custom-theme/images/ui-bg_flat_40_444444_40x100.png b/web/css/custom-theme/images/ui-bg_flat_40_444444_40x100.png new file mode 100755 index 00000000..d6304c78 Binary files /dev/null and b/web/css/custom-theme/images/ui-bg_flat_40_444444_40x100.png differ diff --git a/web/css/custom-theme/images/ui-bg_flat_40_555555_40x100.png b/web/css/custom-theme/images/ui-bg_flat_40_555555_40x100.png new file mode 100755 index 00000000..4ab994eb Binary files /dev/null and b/web/css/custom-theme/images/ui-bg_flat_40_555555_40x100.png differ diff --git a/web/css/custom-theme/images/ui-bg_glass_100_eeeeee_1x400.png b/web/css/custom-theme/images/ui-bg_glass_100_eeeeee_1x400.png new file mode 100755 index 00000000..534d202f Binary files /dev/null and b/web/css/custom-theme/images/ui-bg_glass_100_eeeeee_1x400.png differ diff --git a/web/css/custom-theme/images/ui-bg_highlight-hard_100_eeeeee_1x100.png b/web/css/custom-theme/images/ui-bg_highlight-hard_100_eeeeee_1x100.png new file mode 100755 index 00000000..7c77ea7e Binary files /dev/null and b/web/css/custom-theme/images/ui-bg_highlight-hard_100_eeeeee_1x100.png differ diff --git a/web/css/custom-theme/images/ui-bg_highlight-hard_40_aaaaaa_1x100.png b/web/css/custom-theme/images/ui-bg_highlight-hard_40_aaaaaa_1x100.png new file mode 100755 index 00000000..a7aeeb0a Binary files /dev/null and b/web/css/custom-theme/images/ui-bg_highlight-hard_40_aaaaaa_1x100.png differ diff --git a/web/css/custom-theme/images/ui-bg_highlight-soft_40_222222_1x100.png b/web/css/custom-theme/images/ui-bg_highlight-soft_40_222222_1x100.png new file mode 100755 index 00000000..bf6ed53b Binary files /dev/null and b/web/css/custom-theme/images/ui-bg_highlight-soft_40_222222_1x100.png differ diff --git a/web/css/custom-theme/images/ui-bg_inset-hard_45_cd0a0a_1x100.png b/web/css/custom-theme/images/ui-bg_inset-hard_45_cd0a0a_1x100.png new file mode 100755 index 00000000..718aa117 Binary files /dev/null and b/web/css/custom-theme/images/ui-bg_inset-hard_45_cd0a0a_1x100.png differ diff --git a/web/css/custom-theme/images/ui-bg_inset-hard_55_ffeb80_1x100.png b/web/css/custom-theme/images/ui-bg_inset-hard_55_ffeb80_1x100.png new file mode 100755 index 00000000..8e7b4fc0 Binary files /dev/null and b/web/css/custom-theme/images/ui-bg_inset-hard_55_ffeb80_1x100.png differ diff --git a/web/css/custom-theme/images/ui-bg_inset-hard_8_bbbbbb_1x100.png b/web/css/custom-theme/images/ui-bg_inset-hard_8_bbbbbb_1x100.png new file mode 100755 index 00000000..84cf728e Binary files /dev/null and b/web/css/custom-theme/images/ui-bg_inset-hard_8_bbbbbb_1x100.png differ diff --git a/web/css/custom-theme/images/ui-bg_inset-hard_8_eeeeee_1x100.png b/web/css/custom-theme/images/ui-bg_inset-hard_8_eeeeee_1x100.png new file mode 100755 index 00000000..b67db458 Binary files /dev/null and b/web/css/custom-theme/images/ui-bg_inset-hard_8_eeeeee_1x100.png differ diff --git a/web/css/custom-theme/images/ui-icons_222222_256x240.png b/web/css/custom-theme/images/ui-icons_222222_256x240.png new file mode 100755 index 00000000..b273ff11 Binary files /dev/null and b/web/css/custom-theme/images/ui-icons_222222_256x240.png differ diff --git a/web/css/custom-theme/images/ui-icons_4ca300_256x240.png b/web/css/custom-theme/images/ui-icons_4ca300_256x240.png new file mode 100755 index 00000000..0c9c4d32 Binary files /dev/null and b/web/css/custom-theme/images/ui-icons_4ca300_256x240.png differ diff --git a/web/css/custom-theme/images/ui-icons_bbbbbb_256x240.png b/web/css/custom-theme/images/ui-icons_bbbbbb_256x240.png new file mode 100755 index 00000000..9d71edb0 Binary files /dev/null and b/web/css/custom-theme/images/ui-icons_bbbbbb_256x240.png differ diff --git a/web/css/custom-theme/images/ui-icons_ededed_256x240.png b/web/css/custom-theme/images/ui-icons_ededed_256x240.png new file mode 100755 index 00000000..608e09d6 Binary files /dev/null and b/web/css/custom-theme/images/ui-icons_ededed_256x240.png differ diff --git a/web/css/custom-theme/images/ui-icons_ffcf29_256x240.png b/web/css/custom-theme/images/ui-icons_ffcf29_256x240.png new file mode 100755 index 00000000..c066ff2a Binary files /dev/null and b/web/css/custom-theme/images/ui-icons_ffcf29_256x240.png differ diff --git a/web/css/custom-theme/images/ui-icons_ffffff_256x240.png b/web/css/custom-theme/images/ui-icons_ffffff_256x240.png new file mode 100755 index 00000000..42f8f992 Binary files /dev/null and b/web/css/custom-theme/images/ui-icons_ffffff_256x240.png differ diff --git a/web/css/custom-theme/jquery-ui-1.8.12.custom.css b/web/css/custom-theme/jquery-ui-1.8.12.custom.css new file mode 100755 index 00000000..13d6c54f --- /dev/null +++ b/web/css/custom-theme/jquery-ui-1.8.12.custom.css @@ -0,0 +1,578 @@ +/* + * jQuery UI CSS Framework 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Theming/API + */ + +/* Layout helpers +----------------------------------*/ +.ui-helper-hidden { display: none; } +.ui-helper-hidden-accessible { position: absolute !important; clip: rect(1px 1px 1px 1px); clip: rect(1px,1px,1px,1px); } +.ui-helper-reset { margin: 0; padding: 0; border: 0; outline: 0; line-height: 1.3; text-decoration: none; font-size: 100%; list-style: none; } +.ui-helper-clearfix:after { content: "."; display: block; height: 0; clear: both; visibility: hidden; } +.ui-helper-clearfix { display: inline-block; } +/* required comment for clearfix to work in Opera \*/ +* html .ui-helper-clearfix { height:1%; } +.ui-helper-clearfix { display:block; } +/* end clearfix */ +.ui-helper-zfix { width: 100%; height: 100%; top: 0; left: 0; position: absolute; opacity: 0; filter:Alpha(Opacity=0); } + + +/* Interaction Cues +----------------------------------*/ +.ui-state-disabled { cursor: default !important; } + + +/* Icons +----------------------------------*/ + +/* states and images */ +.ui-icon { display: block; text-indent: -99999px; overflow: hidden; background-repeat: no-repeat; } + + +/* Misc visuals +----------------------------------*/ + +/* Overlays */ +.ui-widget-overlay { position: absolute; top: 0; left: 0; width: 100%; height: 100%; } + + +/* + * jQuery UI CSS Framework 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Theming/API + * + * To view and modify this theme, visit http://jqueryui.com/themeroller/?ffDefault=Verdana,%20Arial,%20sans-serif&fwDefault=bold&fsDefault=1.2em&cornerRadius=0px&bgColorHeader=eeeeee&bgTextureHeader=06_inset_hard.png&bgImgOpacityHeader=8&borderColorHeader=eeeeee&fcHeader=eeeeee&iconColorHeader=bbbbbb&bgColorContent=eeeeee&bgTextureContent=01_flat.png&bgImgOpacityContent=100&borderColorContent=000000&fcContent=222222&iconColorContent=222222&bgColorDefault=555555&bgTextureDefault=01_flat.png&bgImgOpacityDefault=40&borderColorDefault=000000&fcDefault=ffffff&iconColorDefault=ededed&bgColorHover=444444&bgTextureHover=01_flat.png&bgImgOpacityHover=40&borderColorHover=000000&fcHover=ffffff&iconColorHover=ffffff&bgColorActive=eeeeee&bgTextureActive=01_flat.png&bgImgOpacityActive=100&borderColorActive=000000&fcActive=000000&iconColorActive=222222&bgColorHighlight=ffeb80&bgTextureHighlight=06_inset_hard.png&bgImgOpacityHighlight=55&borderColorHighlight=ffde2e&fcHighlight=363636&iconColorHighlight=4ca300&bgColorError=cd0a0a&bgTextureError=06_inset_hard.png&bgImgOpacityError=45&borderColorError=9e0505&fcError=ffffff&iconColorError=ffcf29&bgColorOverlay=aaaaaa&bgTextureOverlay=04_highlight_hard.png&bgImgOpacityOverlay=40&opacityOverlay=30&bgColorShadow=222222&bgTextureShadow=03_highlight_soft.png&bgImgOpacityShadow=40&opacityShadow=25&thicknessShadow=6px&offsetTopShadow=-8px&offsetLeftShadow=-8px&cornerRadiusShadow=6px + */ + + +/* Component containers +----------------------------------*/ +.ui-widget { font-family: Verdana, Arial, sans-serif; font-size: 1.2em; } +.ui-widget .ui-widget { font-size: 1em; } +.ui-widget input, .ui-widget select, .ui-widget textarea, .ui-widget button { font-family: Verdana, Arial, sans-serif; font-size: 1em; } +.ui-widget-content { border: 1px solid #000000; background: #eeeeee url(images/ui-bg_flat_100_eeeeee_40x100.png) 50% 50% repeat-x; color: #0000DD; } +.ui-widget-content a { color: #0000DD; } +.ui-widget-header { border: 1px solid #eeeeee; background: #eeeeee url(images/ui-bg_inset-hard_8_eeeeee_1x100.png) 50% 50% repeat-x; color: #eeeeee; font-weight: bold; } +.ui-widget-header a { color: #eeeeee; } + +/* Interaction states +----------------------------------*/ +.ui-state-default, .ui-widget-content .ui-state-default, .ui-widget-header .ui-state-default { border: 1px solid #000000; background: #555555 url(images/ui-bg_flat_40_555555_40x100.png) 50% 50% repeat-x; font-weight: bold; color: #ffffff; } +.ui-state-default a, .ui-state-default a:link, .ui-state-default a:visited { color: #ffffff; text-decoration: none; } +.ui-state-hover, .ui-widget-content .ui-state-hover, .ui-widget-header .ui-state-hover, .ui-state-focus, .ui-widget-content .ui-state-focus, .ui-widget-header .ui-state-focus { border: 1px solid #000000; background: #444444 url(images/ui-bg_flat_40_444444_40x100.png) 50% 50% repeat-x; font-weight: bold; color: #ffffff; } +.ui-state-hover a, .ui-state-hover a:hover { color: #ffffff; text-decoration: none; } +.ui-state-active, .ui-widget-content .ui-state-active, .ui-widget-header .ui-state-active { border: 1px solid #000000; background: #eeeeee url(images/ui-bg_flat_100_eeeeee_40x100.png) 50% 50% repeat-x; font-weight: bold; color: #000000; } +.ui-state-active a, .ui-state-active a:link, .ui-state-active a:visited { color: #000000; text-decoration: none; } +.ui-widget :active { outline: none; } + +/* Interaction Cues +----------------------------------*/ +.ui-state-highlight, .ui-widget-content .ui-state-highlight, .ui-widget-header .ui-state-highlight {border: 1px solid #ffde2e; background: #ffeb80 url(images/ui-bg_inset-hard_55_ffeb80_1x100.png) 50% bottom repeat-x; color: #363636; } +.ui-state-highlight a, .ui-widget-content .ui-state-highlight a,.ui-widget-header .ui-state-highlight a { color: #363636; } +.ui-state-error, .ui-widget-content .ui-state-error, .ui-widget-header .ui-state-error {border: 1px solid #9e0505; background: #cd0a0a url(images/ui-bg_inset-hard_45_cd0a0a_1x100.png) 50% bottom repeat-x; color: #ffffff; } +.ui-state-error a, .ui-widget-content .ui-state-error a, .ui-widget-header .ui-state-error a { color: #ffffff; } +.ui-state-error-text, .ui-widget-content .ui-state-error-text, .ui-widget-header .ui-state-error-text { color: #ffffff; } +.ui-priority-primary, .ui-widget-content .ui-priority-primary, .ui-widget-header .ui-priority-primary { font-weight: bold; } +.ui-priority-secondary, .ui-widget-content .ui-priority-secondary, .ui-widget-header .ui-priority-secondary { opacity: .7; filter:Alpha(Opacity=70); font-weight: normal; } +.ui-state-disabled, .ui-widget-content .ui-state-disabled, .ui-widget-header .ui-state-disabled { opacity: .35; filter:Alpha(Opacity=35); background-image: none; } + +/* Icons +----------------------------------*/ + +/* states and images */ +.ui-icon { width: 16px; height: 16px; background-image: url(images/ui-icons_222222_256x240.png); } +.ui-widget-content .ui-icon {background-image: url(images/ui-icons_222222_256x240.png); } +.ui-widget-header .ui-icon {background-image: url(images/ui-icons_bbbbbb_256x240.png); } +.ui-state-default .ui-icon { background-image: url(images/ui-icons_ededed_256x240.png); } +.ui-state-hover .ui-icon, .ui-state-focus .ui-icon {background-image: url(images/ui-icons_ffffff_256x240.png); } +.ui-state-active .ui-icon {background-image: url(images/ui-icons_222222_256x240.png); } +.ui-state-highlight .ui-icon {background-image: url(images/ui-icons_4ca300_256x240.png); } +.ui-state-error .ui-icon, .ui-state-error-text .ui-icon {background-image: url(images/ui-icons_ffcf29_256x240.png); } + +/* positioning */ +.ui-icon-carat-1-n { background-position: 0 0; } +.ui-icon-carat-1-ne { background-position: -16px 0; } +.ui-icon-carat-1-e { background-position: -32px 0; } +.ui-icon-carat-1-se { background-position: -48px 0; } +.ui-icon-carat-1-s { background-position: -64px 0; } +.ui-icon-carat-1-sw { background-position: -80px 0; } +.ui-icon-carat-1-w { background-position: -96px 0; } +.ui-icon-carat-1-nw { background-position: -112px 0; } +.ui-icon-carat-2-n-s { background-position: -128px 0; } +.ui-icon-carat-2-e-w { background-position: -144px 0; } +.ui-icon-triangle-1-n { background-position: 0 -16px; } +.ui-icon-triangle-1-ne { background-position: -16px -16px; } +.ui-icon-triangle-1-e { background-position: -32px -16px; } +.ui-icon-triangle-1-se { background-position: -48px -16px; } +.ui-icon-triangle-1-s { background-position: -64px -16px; } +.ui-icon-triangle-1-sw { background-position: -80px -16px; } +.ui-icon-triangle-1-w { background-position: -96px -16px; } +.ui-icon-triangle-1-nw { background-position: -112px -16px; } +.ui-icon-triangle-2-n-s { background-position: -128px -16px; } +.ui-icon-triangle-2-e-w { background-position: -144px -16px; } +.ui-icon-arrow-1-n { background-position: 0 -32px; } +.ui-icon-arrow-1-ne { background-position: -16px -32px; } +.ui-icon-arrow-1-e { background-position: -32px -32px; } +.ui-icon-arrow-1-se { background-position: -48px -32px; } +.ui-icon-arrow-1-s { background-position: -64px -32px; } +.ui-icon-arrow-1-sw { background-position: -80px -32px; } +.ui-icon-arrow-1-w { background-position: -96px -32px; } +.ui-icon-arrow-1-nw { background-position: -112px -32px; } +.ui-icon-arrow-2-n-s { background-position: -128px -32px; } +.ui-icon-arrow-2-ne-sw { background-position: -144px -32px; } +.ui-icon-arrow-2-e-w { background-position: -160px -32px; } +.ui-icon-arrow-2-se-nw { background-position: -176px -32px; } +.ui-icon-arrowstop-1-n { background-position: -192px -32px; } +.ui-icon-arrowstop-1-e { background-position: -208px -32px; } +.ui-icon-arrowstop-1-s { background-position: -224px -32px; } +.ui-icon-arrowstop-1-w { background-position: -240px -32px; } +.ui-icon-arrowthick-1-n { background-position: 0 -48px; } +.ui-icon-arrowthick-1-ne { background-position: -16px -48px; } +.ui-icon-arrowthick-1-e { background-position: -32px -48px; } +.ui-icon-arrowthick-1-se { background-position: -48px -48px; } +.ui-icon-arrowthick-1-s { background-position: -64px -48px; } +.ui-icon-arrowthick-1-sw { background-position: -80px -48px; } +.ui-icon-arrowthick-1-w { background-position: -96px -48px; } +.ui-icon-arrowthick-1-nw { background-position: -112px -48px; } +.ui-icon-arrowthick-2-n-s { background-position: -128px -48px; } +.ui-icon-arrowthick-2-ne-sw { background-position: -144px -48px; } +.ui-icon-arrowthick-2-e-w { background-position: -160px -48px; } +.ui-icon-arrowthick-2-se-nw { background-position: -176px -48px; } +.ui-icon-arrowthickstop-1-n { background-position: -192px -48px; } +.ui-icon-arrowthickstop-1-e { background-position: -208px -48px; } +.ui-icon-arrowthickstop-1-s { background-position: -224px -48px; } +.ui-icon-arrowthickstop-1-w { background-position: -240px -48px; } +.ui-icon-arrowreturnthick-1-w { background-position: 0 -64px; } +.ui-icon-arrowreturnthick-1-n { background-position: -16px -64px; } +.ui-icon-arrowreturnthick-1-e { background-position: -32px -64px; } +.ui-icon-arrowreturnthick-1-s { background-position: -48px -64px; } +.ui-icon-arrowreturn-1-w { background-position: -64px -64px; } +.ui-icon-arrowreturn-1-n { background-position: -80px -64px; } +.ui-icon-arrowreturn-1-e { background-position: -96px -64px; } +.ui-icon-arrowreturn-1-s { background-position: -112px -64px; } +.ui-icon-arrowrefresh-1-w { background-position: -128px -64px; } +.ui-icon-arrowrefresh-1-n { background-position: -144px -64px; } +.ui-icon-arrowrefresh-1-e { background-position: -160px -64px; } +.ui-icon-arrowrefresh-1-s { background-position: -176px -64px; } +.ui-icon-arrow-4 { background-position: 0 -80px; } +.ui-icon-arrow-4-diag { background-position: -16px -80px; } +.ui-icon-extlink { background-position: -32px -80px; } +.ui-icon-newwin { background-position: -48px -80px; } +.ui-icon-refresh { background-position: -64px -80px; } +.ui-icon-shuffle { background-position: -80px -80px; } +.ui-icon-transfer-e-w { background-position: -96px -80px; } +.ui-icon-transferthick-e-w { background-position: -112px -80px; } +.ui-icon-folder-collapsed { background-position: 0 -96px; } +.ui-icon-folder-open { background-position: -16px -96px; } +.ui-icon-document { background-position: -32px -96px; } +.ui-icon-document-b { background-position: -48px -96px; } +.ui-icon-note { background-position: -64px -96px; } +.ui-icon-mail-closed { background-position: -80px -96px; } +.ui-icon-mail-open { background-position: -96px -96px; } +.ui-icon-suitcase { background-position: -112px -96px; } +.ui-icon-comment { background-position: -128px -96px; } +.ui-icon-person { background-position: -144px -96px; } +.ui-icon-print { background-position: -160px -96px; } +.ui-icon-trash { background-position: -176px -96px; } +.ui-icon-locked { background-position: -192px -96px; } +.ui-icon-unlocked { background-position: -208px -96px; } +.ui-icon-bookmark { background-position: -224px -96px; } +.ui-icon-tag { background-position: -240px -96px; } +.ui-icon-home { background-position: 0 -112px; } +.ui-icon-flag { background-position: -16px -112px; } +.ui-icon-calendar { background-position: -32px -112px; } +.ui-icon-cart { background-position: -48px -112px; } +.ui-icon-pencil { background-position: -64px -112px; } +.ui-icon-clock { background-position: -80px -112px; } +.ui-icon-disk { background-position: -96px -112px; } +.ui-icon-calculator { background-position: -112px -112px; } +.ui-icon-zoomin { background-position: -128px -112px; } +.ui-icon-zoomout { background-position: -144px -112px; } +.ui-icon-search { background-position: -160px -112px; } +.ui-icon-wrench { background-position: -176px -112px; } +.ui-icon-gear { background-position: -192px -112px; } +.ui-icon-heart { background-position: -208px -112px; } +.ui-icon-star { background-position: -224px -112px; } +.ui-icon-link { background-position: -240px -112px; } +.ui-icon-cancel { background-position: 0 -128px; } +.ui-icon-plus { background-position: -16px -128px; } +.ui-icon-plusthick { background-position: -32px -128px; } +.ui-icon-minus { background-position: -48px -128px; } +.ui-icon-minusthick { background-position: -64px -128px; } +.ui-icon-close { background-position: -80px -128px; } +.ui-icon-closethick { background-position: -96px -128px; } +.ui-icon-key { background-position: -112px -128px; } +.ui-icon-lightbulb { background-position: -128px -128px; } +.ui-icon-scissors { background-position: -144px -128px; } +.ui-icon-clipboard { background-position: -160px -128px; } +.ui-icon-copy { background-position: -176px -128px; } +.ui-icon-contact { background-position: -192px -128px; } +.ui-icon-image { background-position: -208px -128px; } +.ui-icon-video { background-position: -224px -128px; } +.ui-icon-script { background-position: -240px -128px; } +.ui-icon-alert { background-position: 0 -144px; } +.ui-icon-info { background-position: -16px -144px; } +.ui-icon-notice { background-position: -32px -144px; } +.ui-icon-help { background-position: -48px -144px; } +.ui-icon-check { background-position: -64px -144px; } +.ui-icon-bullet { background-position: -80px -144px; } +.ui-icon-radio-off { background-position: -96px -144px; } +.ui-icon-radio-on { background-position: -112px -144px; } +.ui-icon-pin-w { background-position: -128px -144px; } +.ui-icon-pin-s { background-position: -144px -144px; } +.ui-icon-play { background-position: 0 -160px; } +.ui-icon-pause { background-position: -16px -160px; } +.ui-icon-seek-next { background-position: -32px -160px; } +.ui-icon-seek-prev { background-position: -48px -160px; } +.ui-icon-seek-end { background-position: -64px -160px; } +.ui-icon-seek-start { background-position: -80px -160px; } +/* ui-icon-seek-first is deprecated, use ui-icon-seek-start instead */ +.ui-icon-seek-first { background-position: -80px -160px; } +.ui-icon-stop { background-position: -96px -160px; } +.ui-icon-eject { background-position: -112px -160px; } +.ui-icon-volume-off { background-position: -128px -160px; } +.ui-icon-volume-on { background-position: -144px -160px; } +.ui-icon-power { background-position: 0 -176px; } +.ui-icon-signal-diag { background-position: -16px -176px; } +.ui-icon-signal { background-position: -32px -176px; } +.ui-icon-battery-0 { background-position: -48px -176px; } +.ui-icon-battery-1 { background-position: -64px -176px; } +.ui-icon-battery-2 { background-position: -80px -176px; } +.ui-icon-battery-3 { background-position: -96px -176px; } +.ui-icon-circle-plus { background-position: 0 -192px; } +.ui-icon-circle-minus { background-position: -16px -192px; } +.ui-icon-circle-close { background-position: -32px -192px; } +.ui-icon-circle-triangle-e { background-position: -48px -192px; } +.ui-icon-circle-triangle-s { background-position: -64px -192px; } +.ui-icon-circle-triangle-w { background-position: -80px -192px; } +.ui-icon-circle-triangle-n { background-position: -96px -192px; } +.ui-icon-circle-arrow-e { background-position: -112px -192px; } +.ui-icon-circle-arrow-s { background-position: -128px -192px; } +.ui-icon-circle-arrow-w { background-position: -144px -192px; } +.ui-icon-circle-arrow-n { background-position: -160px -192px; } +.ui-icon-circle-zoomin { background-position: -176px -192px; } +.ui-icon-circle-zoomout { background-position: -192px -192px; } +.ui-icon-circle-check { background-position: -208px -192px; } +.ui-icon-circlesmall-plus { background-position: 0 -208px; } +.ui-icon-circlesmall-minus { background-position: -16px -208px; } +.ui-icon-circlesmall-close { background-position: -32px -208px; } +.ui-icon-squaresmall-plus { background-position: -48px -208px; } +.ui-icon-squaresmall-minus { background-position: -64px -208px; } +.ui-icon-squaresmall-close { background-position: -80px -208px; } +.ui-icon-grip-dotted-vertical { background-position: 0 -224px; } +.ui-icon-grip-dotted-horizontal { background-position: -16px -224px; } +.ui-icon-grip-solid-vertical { background-position: -32px -224px; } +.ui-icon-grip-solid-horizontal { background-position: -48px -224px; } +.ui-icon-gripsmall-diagonal-se { background-position: -64px -224px; } +.ui-icon-grip-diagonal-se { background-position: -80px -224px; } + + +/* Misc visuals +----------------------------------*/ + +/* Corner radius */ +.ui-corner-tl { -moz-border-radius-topleft: 0px; -webkit-border-top-left-radius: 0px; border-top-left-radius: 0px; } +.ui-corner-tr { -moz-border-radius-topright: 0px; -webkit-border-top-right-radius: 0px; border-top-right-radius: 0px; } +.ui-corner-bl { -moz-border-radius-bottomleft: 0px; -webkit-border-bottom-left-radius: 0px; border-bottom-left-radius: 0px; } +.ui-corner-br { -moz-border-radius-bottomright: 0px; -webkit-border-bottom-right-radius: 0px; border-bottom-right-radius: 0px; } +.ui-corner-top { -moz-border-radius-topleft: 0px; -webkit-border-top-left-radius: 0px; border-top-left-radius: 0px; -moz-border-radius-topright: 0px; -webkit-border-top-right-radius: 0px; border-top-right-radius: 0px; } +.ui-corner-bottom { -moz-border-radius-bottomleft: 0px; -webkit-border-bottom-left-radius: 0px; border-bottom-left-radius: 0px; -moz-border-radius-bottomright: 0px; -webkit-border-bottom-right-radius: 0px; border-bottom-right-radius: 0px; } +.ui-corner-right { -moz-border-radius-topright: 0px; -webkit-border-top-right-radius: 0px; border-top-right-radius: 0px; -moz-border-radius-bottomright: 0px; -webkit-border-bottom-right-radius: 0px; border-bottom-right-radius: 0px; } +.ui-corner-left { -moz-border-radius-topleft: 0px; -webkit-border-top-left-radius: 0px; border-top-left-radius: 0px; -moz-border-radius-bottomleft: 0px; -webkit-border-bottom-left-radius: 0px; border-bottom-left-radius: 0px; } +.ui-corner-all { -moz-border-radius: 0px; -webkit-border-radius: 0px; border-radius: 0px; } + +/* Overlays */ +.ui-widget-overlay { background: #aaaaaa url(images/ui-bg_highlight-hard_40_aaaaaa_1x100.png) 50% top repeat-x; opacity: .30;filter:Alpha(Opacity=30); } +.ui-widget-shadow { margin: -8px 0 0 -8px; padding: 6px; background: #222222 url(images/ui-bg_highlight-soft_40_222222_1x100.png) 50% top repeat-x; opacity: .25;filter:Alpha(Opacity=25); -moz-border-radius: 6px; -webkit-border-radius: 6px; border-radius: 6px; }/* + * jQuery UI Resizable 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Resizable#theming + */ +.ui-resizable { position: relative;} +.ui-resizable-handle { position: absolute;font-size: 0.1px;z-index: 99999; display: block; + /* http://bugs.jqueryui.com/ticket/7233 + - Resizable: resizable handles fail to work in IE if transparent and content overlaps + */ + background-image:url(data:); +} +.ui-resizable-disabled .ui-resizable-handle, .ui-resizable-autohide .ui-resizable-handle { display: none; } +.ui-resizable-n { cursor: n-resize; height: 7px; width: 100%; top: -5px; left: 0; } +.ui-resizable-s { cursor: s-resize; height: 7px; width: 100%; bottom: -5px; left: 0; } +.ui-resizable-e { cursor: e-resize; width: 7px; right: -5px; top: 0; height: 100%; } +.ui-resizable-w { cursor: w-resize; width: 7px; left: -5px; top: 0; height: 100%; } +.ui-resizable-se { cursor: se-resize; width: 12px; height: 12px; right: 1px; bottom: 1px; } +.ui-resizable-sw { cursor: sw-resize; width: 9px; height: 9px; left: -5px; bottom: -5px; } +.ui-resizable-nw { cursor: nw-resize; width: 9px; height: 9px; left: -5px; top: -5px; } +.ui-resizable-ne { cursor: ne-resize; width: 9px; height: 9px; right: -5px; top: -5px;}/* + * jQuery UI Selectable 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Selectable#theming + */ +.ui-selectable-helper { position: absolute; z-index: 100; border:1px dotted black; } +/* + * jQuery UI Accordion 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Accordion#theming + */ +/* IE/Win - Fix animation bug - #4615 */ +.ui-accordion { width: 100%; } +.ui-accordion .ui-accordion-header { cursor: pointer; position: relative; margin-top: 1px; zoom: 1; } +.ui-accordion .ui-accordion-li-fix { display: inline; } +.ui-accordion .ui-accordion-header-active { border-bottom: 0 !important; } +.ui-accordion .ui-accordion-header a { display: block; font-size: 1em; padding: .5em .5em .5em .7em; } +.ui-accordion-icons .ui-accordion-header a { padding-left: 2.2em; } +.ui-accordion .ui-accordion-header .ui-icon { position: absolute; left: .5em; top: 50%; margin-top: -8px; } +.ui-accordion .ui-accordion-content { padding: 1em 2.2em; border-top: 0; margin-top: -2px; position: relative; top: 1px; margin-bottom: 2px; overflow: auto; display: none; zoom: 1; } +.ui-accordion .ui-accordion-content-active { display: block; } +/* + * jQuery UI Autocomplete 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Autocomplete#theming + */ +.ui-autocomplete { position: absolute; cursor: default; } + +/* workarounds */ +* html .ui-autocomplete { width:1px; } /* without this, the menu expands to 100% in IE6 */ + +/* + * jQuery UI Menu 1.8.12 + * + * Copyright 2010, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Menu#theming + */ +.ui-menu { + list-style:none; + padding: 2px; + margin: 0; + display:block; + float: left; +} +.ui-menu .ui-menu { + margin-top: -3px; +} +.ui-menu .ui-menu-item { + margin:0; + padding: 0; + zoom: 1; + float: left; + clear: left; + width: 100%; +} +.ui-menu .ui-menu-item a { + text-decoration:none; + display:block; + padding:.2em .4em; + line-height:1.5; + zoom:1; +} +.ui-menu .ui-menu-item a.ui-state-hover, +.ui-menu .ui-menu-item a.ui-state-active { + font-weight: normal; + margin: -1px; +} +/* + * jQuery UI Button 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Button#theming + */ +.ui-button { display: inline-block; position: relative; padding: 0; margin-right: .1em; text-decoration: none !important; cursor: pointer; text-align: center; zoom: 1; overflow: visible; } /* the overflow property removes extra width in IE */ +.ui-button-icon-only { width: 2.2em; } /* to make room for the icon, a width needs to be set here */ +button.ui-button-icon-only { width: 2.4em; } /* button elements seem to need a little more width */ +.ui-button-icons-only { width: 3.4em; } +button.ui-button-icons-only { width: 3.7em; } + +/*button text element */ +.ui-button .ui-button-text { display: block; line-height: 1.4; } +.ui-button-text-only .ui-button-text { padding: .4em 1em; } +.ui-button-icon-only .ui-button-text, .ui-button-icons-only .ui-button-text { padding: .4em; text-indent: -9999999px; } +.ui-button-text-icon-primary .ui-button-text, .ui-button-text-icons .ui-button-text { padding: .4em 1em .4em 2.1em; } +.ui-button-text-icon-secondary .ui-button-text, .ui-button-text-icons .ui-button-text { padding: .4em 2.1em .4em 1em; } +.ui-button-text-icons .ui-button-text { padding-left: 2.1em; padding-right: 2.1em; } +/* no icon support for input elements, provide padding by default */ +input.ui-button { padding: .4em 1em; } + +/*button icon element(s) */ +.ui-button-icon-only .ui-icon, .ui-button-text-icon-primary .ui-icon, .ui-button-text-icon-secondary .ui-icon, .ui-button-text-icons .ui-icon, .ui-button-icons-only .ui-icon { position: absolute; top: 50%; margin-top: -8px; } +.ui-button-icon-only .ui-icon { left: 50%; margin-left: -8px; } +.ui-button-text-icon-primary .ui-button-icon-primary, .ui-button-text-icons .ui-button-icon-primary, .ui-button-icons-only .ui-button-icon-primary { left: .5em; } +.ui-button-text-icon-secondary .ui-button-icon-secondary, .ui-button-text-icons .ui-button-icon-secondary, .ui-button-icons-only .ui-button-icon-secondary { right: .5em; } +.ui-button-text-icons .ui-button-icon-secondary, .ui-button-icons-only .ui-button-icon-secondary { right: .5em; } + +/*button sets*/ +.ui-buttonset { margin-right: 7px; } +.ui-buttonset .ui-button { margin-left: 0; margin-right: -.3em; } + +/* workarounds */ +button.ui-button::-moz-focus-inner { border: 0; padding: 0; } /* reset extra padding in Firefox */ +/* + * jQuery UI Dialog 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Dialog#theming + */ +.ui-dialog { position: absolute; padding: .2em; width: 300px; overflow: hidden; } +.ui-dialog .ui-dialog-titlebar { padding: .4em 1em; position: relative; } +.ui-dialog .ui-dialog-title { float: left; margin: .1em 16px .1em 0; } +.ui-dialog .ui-dialog-titlebar-close { position: absolute; right: .3em; top: 50%; width: 19px; margin: -10px 0 0 0; padding: 1px; height: 18px; } +.ui-dialog .ui-dialog-titlebar-close span { display: block; margin: 1px; } +.ui-dialog .ui-dialog-titlebar-close:hover, .ui-dialog .ui-dialog-titlebar-close:focus { padding: 0; } +.ui-dialog .ui-dialog-content { position: relative; border: 0; padding: .5em 1em; background: none; overflow: auto; zoom: 1; } +.ui-dialog .ui-dialog-buttonpane { text-align: left; border-width: 1px 0 0 0; background-image: none; margin: .5em 0 0 0; padding: .3em 1em .5em .4em; } +.ui-dialog .ui-dialog-buttonpane .ui-dialog-buttonset { float: right; } +.ui-dialog .ui-dialog-buttonpane button { margin: .5em .4em .5em 0; cursor: pointer; } +.ui-dialog .ui-resizable-se { width: 14px; height: 14px; right: 3px; bottom: 3px; } +.ui-draggable .ui-dialog-titlebar { cursor: move; } +/* + * jQuery UI Slider 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Slider#theming + */ +.ui-slider { position: relative; text-align: left; } +.ui-slider .ui-slider-handle { position: absolute; z-index: 2; width: 1.2em; height: 1.2em; cursor: default; } +.ui-slider .ui-slider-range { position: absolute; z-index: 1; font-size: .7em; display: block; border: 0; background-position: 0 0; } + +.ui-slider-horizontal { height: .8em; } +.ui-slider-horizontal .ui-slider-handle { top: -.3em; margin-left: -.6em; } +.ui-slider-horizontal .ui-slider-range { top: 0; height: 100%; } +.ui-slider-horizontal .ui-slider-range-min { left: 0; } +.ui-slider-horizontal .ui-slider-range-max { right: 0; } + +.ui-slider-vertical { width: .8em; height: 100px; } +.ui-slider-vertical .ui-slider-handle { left: -.3em; margin-left: 0; margin-bottom: -.6em; } +.ui-slider-vertical .ui-slider-range { left: 0; width: 100%; } +.ui-slider-vertical .ui-slider-range-min { bottom: 0; } +.ui-slider-vertical .ui-slider-range-max { top: 0; }/* + * jQuery UI Tabs 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Tabs#theming + */ +.ui-tabs { position: relative; padding: .2em; zoom: 1; } /* position: relative prevents IE scroll bug (element with position: relative inside container with overflow: auto appear as "fixed") */ +.ui-tabs .ui-tabs-nav { margin: 0; padding: .2em .2em 0; } +.ui-tabs .ui-tabs-nav li { list-style: none; float: left; position: relative; top: 1px; margin: 0 .2em 1px 0; border-bottom: 0 !important; padding: 0; white-space: nowrap; } +.ui-tabs .ui-tabs-nav li a { float: left; padding: .5em 1em; text-decoration: none; } +.ui-tabs .ui-tabs-nav li.ui-tabs-selected { margin-bottom: 0; padding-bottom: 1px; } +.ui-tabs .ui-tabs-nav li.ui-tabs-selected a, .ui-tabs .ui-tabs-nav li.ui-state-disabled a, .ui-tabs .ui-tabs-nav li.ui-state-processing a { cursor: text; } +.ui-tabs .ui-tabs-nav li a, .ui-tabs.ui-tabs-collapsible .ui-tabs-nav li.ui-tabs-selected a { cursor: pointer; } /* first selector in group seems obsolete, but required to overcome bug in Opera applying cursor: text overall if defined elsewhere... */ +.ui-tabs .ui-tabs-panel { display: block; border-width: 0; padding: 1em 1.4em; background: none; } +.ui-tabs .ui-tabs-hide { display: none !important; } +/* + * jQuery UI Datepicker 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Datepicker#theming + */ +.ui-datepicker { width: 17em; padding: .2em .2em 0; display: none; } +.ui-datepicker .ui-datepicker-header { position:relative; padding:.2em 0; } +.ui-datepicker .ui-datepicker-prev, .ui-datepicker .ui-datepicker-next { position:absolute; top: 2px; width: 1.8em; height: 1.8em; } +.ui-datepicker .ui-datepicker-prev-hover, .ui-datepicker .ui-datepicker-next-hover { top: 1px; } +.ui-datepicker .ui-datepicker-prev { left:2px; } +.ui-datepicker .ui-datepicker-next { right:2px; } +.ui-datepicker .ui-datepicker-prev-hover { left:1px; } +.ui-datepicker .ui-datepicker-next-hover { right:1px; } +.ui-datepicker .ui-datepicker-prev span, .ui-datepicker .ui-datepicker-next span { display: block; position: absolute; left: 50%; margin-left: -8px; top: 50%; margin-top: -8px; } +.ui-datepicker .ui-datepicker-title { margin: 0 2.3em; line-height: 1.8em; text-align: center; } +.ui-datepicker .ui-datepicker-title select { font-size:1em; margin:1px 0; } +.ui-datepicker select.ui-datepicker-month-year {width: 100%;} +.ui-datepicker select.ui-datepicker-month, +.ui-datepicker select.ui-datepicker-year { width: 49%;} +.ui-datepicker table {width: 100%; font-size: .9em; border-collapse: collapse; margin:0 0 .4em; } +.ui-datepicker th { padding: .7em .3em; text-align: center; font-weight: bold; border: 0; } +.ui-datepicker td { border: 0; padding: 1px; } +.ui-datepicker td span, .ui-datepicker td a { display: block; padding: .2em; text-align: right; text-decoration: none; } +.ui-datepicker .ui-datepicker-buttonpane { background-image: none; margin: .7em 0 0 0; padding:0 .2em; border-left: 0; border-right: 0; border-bottom: 0; } +.ui-datepicker .ui-datepicker-buttonpane button { float: right; margin: .5em .2em .4em; cursor: pointer; padding: .2em .6em .3em .6em; width:auto; overflow:visible; } +.ui-datepicker .ui-datepicker-buttonpane button.ui-datepicker-current { float:left; } + +/* with multiple calendars */ +.ui-datepicker.ui-datepicker-multi { width:auto; } +.ui-datepicker-multi .ui-datepicker-group { float:left; } +.ui-datepicker-multi .ui-datepicker-group table { width:95%; margin:0 auto .4em; } +.ui-datepicker-multi-2 .ui-datepicker-group { width:50%; } +.ui-datepicker-multi-3 .ui-datepicker-group { width:33.3%; } +.ui-datepicker-multi-4 .ui-datepicker-group { width:25%; } +.ui-datepicker-multi .ui-datepicker-group-last .ui-datepicker-header { border-left-width:0; } +.ui-datepicker-multi .ui-datepicker-group-middle .ui-datepicker-header { border-left-width:0; } +.ui-datepicker-multi .ui-datepicker-buttonpane { clear:left; } +.ui-datepicker-row-break { clear:both; width:100%; } + +/* RTL support */ +.ui-datepicker-rtl { direction: rtl; } +.ui-datepicker-rtl .ui-datepicker-prev { right: 2px; left: auto; } +.ui-datepicker-rtl .ui-datepicker-next { left: 2px; right: auto; } +.ui-datepicker-rtl .ui-datepicker-prev:hover { right: 1px; left: auto; } +.ui-datepicker-rtl .ui-datepicker-next:hover { left: 1px; right: auto; } +.ui-datepicker-rtl .ui-datepicker-buttonpane { clear:right; } +.ui-datepicker-rtl .ui-datepicker-buttonpane button { float: left; } +.ui-datepicker-rtl .ui-datepicker-buttonpane button.ui-datepicker-current { float:right; } +.ui-datepicker-rtl .ui-datepicker-group { float:right; } +.ui-datepicker-rtl .ui-datepicker-group-last .ui-datepicker-header { border-right-width:0; border-left-width:1px; } +.ui-datepicker-rtl .ui-datepicker-group-middle .ui-datepicker-header { border-right-width:0; border-left-width:1px; } + +/* IE6 IFRAME FIX (taken from datepicker 1.5.3 */ +.ui-datepicker-cover { + display: none; /*sorry for IE5*/ + display/**/: block; /*sorry for IE5*/ + position: absolute; /*must have*/ + z-index: -1; /*must have*/ + filter: mask(); /*must have*/ + top: -4px; /*must have*/ + left: -4px; /*must have*/ + width: 200px; /*must have*/ + height: 200px; /*must have*/ +}/* + * jQuery UI Progressbar 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Progressbar#theming + */ +.ui-progressbar { height:2em; text-align: left; } +.ui-progressbar .ui-progressbar-value {margin: -1px; height:100%; } \ No newline at end of file diff --git a/web/css/general.css b/web/css/general.css new file mode 100755 index 00000000..7a54e7b8 --- /dev/null +++ b/web/css/general.css @@ -0,0 +1,244 @@ +@import url(import.css); + +body +{ + font-family : verdana, geneva, lucida, 'lucida grande', arial, helvetica; + font-weight : Normal; +} + +Blockquote { + margin : 14px 18px 14px 18px; +} + +/*Font size*/ +.fs10 {font-size : 10px} +.fs11 {font-size : 11px} +.fs12 {font-size : 12px} +.fs13 {font-size : 13px} +.fs14 {font-size : 14px} +.fs15 {font-size : 15px} +.fs16 {font-size : 16px} +.fs17 {font-size : 17px} + +/*Font Weight*/ +.fwb {font-weight : Bold} +.fwn {font-weight : Normal} + +/*Font Style*/ +.fsI {font-style : Italic} + +/*Font family*/ +.ffv {font-family : verdana, geneva, lucida, 'lucida grande', arial, helvetica;} +.ffl {font-family : lucida, verdana, 'lucida grande', helvetica, arial, geneva;} +.ffmono {font-family : "CourierNew", Courier, mono;} + +/*Color*/ +.cr {color : #f00} +.cg {color : #0f0} +.cdg {color : darkgreen} +.cb {color : #00f} +.c222 {color : #222} +.c999 {color : #999} +.c00d {color : #00d} +.cori {color : #CC9933} +.crb {color : royalblue} +.cw {color : #fff} +.cbl {color : #000000} +.cydull {color : #cfcf32} +.cdefault {color : #503A7D} + +/*backColor*/ +.cbr {background-color : #f00} +.cbg {background-color : #0f0} +.cbdg {background-color : darkgreen} +.cbb {background-color : #00f} +.cb222 {background-color : #222} +.cbg22t {background-color : #FF6} +.cbg22c {background-color : #5CB3FF} +.cbg2C {background-color : #1569C7} +.cbg22a {background-color : #F66} +.cbg22g {background-color : #CF9} +.cb00d {background-color : #00d} +.cb222 {background-color : #222} +.cbeee {background-color : #eee} +.cbori {background-color : #CC9933} +.cbrb {background-color : royalblue} +.cbdb {background-color : #2D2DB5} +.cbw {background-color : #fff} +.cbydull {background-color : #cfcf32} +.cbrdull {background-color : #c33232} +.cbgdull {background-color : #32c332} +.cbbdull {background-color : #1569C7} +.cbpdull {background-color : #c332c3} +.cbccc {background-color : #ccc} +.cbddf {background-color : #ddf} + +.nowrap {white-space: nowrap;} + +/*Table Cell*/ +.collap {border-collapse : collapse;} + +TH.header { + background-image: url(/images/bg.gif); + background-color: #4169E1; + cursor: pointer; + background-repeat: no-repeat; + background-position: center left; + padding-left: 20px; + margin-left: -1px; +} +TH.headerSortUp { + background-image: url(/images/desc.gif); + background-color: #4169E1; +} +TH.headerSortDown { + background-image: url(/images/asc.gif); + background-color: #4169E1; +} + +TD, P {color : #222222; font-size : 13px} +TD.b1 {border : 1px solid #999999; padding : 3px;} +TH.b1 {border : 1px solid #999999; padding : 3px;} +TD.bt1 {border-top : 1px solid #999999; padding : 3px;} +TD.bb1 {border-bottom : 1px solid #999999; padding : 3px;} + +.b2 {border : 2px solid royalblue; padding : 3px;} + +.bd1 {border : 1px dashed #999999; padding : 6px;} + +TD.outlier {background-color : yellow;} + +TR.alt td { + background: #e6e8fa; +} + +TR.over td { + background: #82CFFD; +} + +/*Table Row*/ +.toggleShowHide { color : #0000DD; cursor: pointer;} +.invisible {display: none;} + +/*Link*/ +A.font_black:link {color: #000000; text-decoration : None} +A.font_black:active {color: #000000; text-decoration : None} +A.font_black:hover {color: #000000; text-decoration : None} +A.font_black:visited {color: #000000; text-decoration : None} + +A {font-family : lucida, 'lucida grande', verdana, helvetica, arial, geneva; + font-weight : Bold; font-size : 13px; text-decoration : None} + +A:link, A:visited {color : #0000DD; text-decoration : None} + +A:active {color : #FF0000; text-decoration : None} + +A:hover {color : #FF0000; text-decoration : None} + +A.background_grey {background:#dddddd;padding:2;} + +A.non_bold {font-weight : Normal; color : #0000DD;} + +/*Border Style*/ +.solidBorder {border : 1px solid #CCCCCC; padding : 2px;} +.doubleBorder {border : double #AAAAAA; padding : 2px;} + +/*Title style*/ +.title {font-weight:Bold; color:#222222; font-size:16px} + +.subtitle {font-family : lucida, verdana, 'lucida grande', helvetica, arial, geneva; + font-weight:Bold; font-size:14px; color:#000082} + +.sectionheader {font-family : arial, verdana, 'lucida grande', helvetica, lucida, geneva; + font-weight:Bold; font-size:14px; vertical-align: middle; display:block; color:#000000; background-color:#DDDDDD; line-height:24px; height:24px;} + +/*drop shadow*/ +#v3 .wrap1 {background:url(/images/shadow/shadow.gif) right bottom no-repeat;} +#v3 .wrap2 {background:url(/images/shadow/corner_bl.gif) -12px 100% no-repeat;} +#v3 .wrap3 { + padding:0 9px 9px 0; + background:url(/images/shadow/corner_tr.gif) 100% -12px no-repeat;} + + +/*steal from google*/ + + .tabsTableBox { + width:100%; + border-spacing:0; + border-collapse:collapse; + margin-top:5px; + font-size:smaller; + text-align:center; + } + .tabsTableBox td { + padding-right:5px; + padding-left:5px; + padding-bottom:3px; + } + +/*For making the Custom Strain box in snpBrowser.py a default width, instead of looking weird always*/ +.customBoxWidth { + width: 143px; +} + .selectedBox { + border-top:1px solid #676767; + border-right:1px solid #676767; + border-left:1px solid #676767; + width:80; + font-weight:bolder; + color:#3366cc; + font-size:12px; + } + .unselectedBox { + background-color:#dddddd; + border-top:1px solid #aaaaaa; + width:80; + border-right:1px solid #aaaaaa; + border-left:1px solid #aaaaaa; + border-bottom:1px solid #676767; + font-size:12px; + } + + .spacerTabBox { + border-bottom:1px solid #676767; + width:5px; + } + + .emptyTabBox { + border-bottom:1px solid #676767; + } + +/*For font color of 'Get Any' and 'Combined' in the main page*/ +.searchtip +{ +color: #999999; +} + + +/*For font style and color of commands and keywords in the scriptable interface page*/ +.keywords +{ +font-family : "CourierNew", Courier, mono; +font-size : 15px; +color : #0000FF; +font-weight : Normal +} +/*For RIsample.html page*/ +.strains +{ +border:1px solid #999999; +border-top:1px solid #940; +border-bottom:1px solid #940; +padding:5; +background-color:#ddf; +font-family:verdana; +} +.values +{ +border:1px solid #999999; +border-top:1px solid #940; +border-bottom:1px solid #940; +padding:5; +background-color:#eee; +font-family:courier; +} diff --git a/web/css/import.css b/web/css/import.css new file mode 100755 index 00000000..9ed71bd7 --- /dev/null +++ b/web/css/import.css @@ -0,0 +1,140 @@ +textarea, select { border-width:1; border-style:groove} +textarea:focus {background-color :#FFFF00} +input:focus {background-color :#FFFF77} +/*input[type="button"] { -moz-border-radius:25px } +input[type="submit"] { -moz-border-radius:25px } +*/ + +textarea +{ + border-color : #222222; + background-color : white; + font-family : verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size : 13px; + BORDER-WIDTH: 1px; + BORDER-STYLE: solid; + BORDER-COLOR: #999999; +} + +select + { + PADDING: 1px; + BORDER-WIDTH: 1px; + BORDER-STYLE: solid; + BORDER-COLOR: #999999; + background-color: #f5f5f5; + color: #333366; + font-family: lucida, verdana, geneva, 'lucida grande', arial, helvetica, sans-serif; + FONT-SIZE: 12px; + FONT-STYLE: Italic; + } + +input + { + PADDING: 1px; + BORDER-WIDTH: 1px; + BORDER-STYLE: solid; + BORDER-COLOR: #999999; + BACKGROUND-COLOR: #ffffff; + color: #333366; + font-family: lucida, verdana, geneva, 'lucida grande', arial, helvetica, sans-serif; + FONT-SIZE: 12px; + FONT-STYLE: Italic; + } + +input.checkbox + { + BORDER-WIDTH: 0px; + /*BORDER: 1px solid royalblue; + position: absolute; + clip: rect(2 16 16 2);*/ + } + +input.button + { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size : 11px; + font-weight : bold; + FONT-STYLE: normal; + background-color : royalblue; + color : white; + margin: auto; + padding: 1px; + border-style: outset; + border-width: 2px; + border-color: #dcdcdc #696969 #696969 #dcdcdc; + width: auto; + } + +input.toggle + { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size : 11px; + font-weight :bold; + FONT-STYLE: normal; + background-color : royalblue; + color : white; + margin: auto; + padding: 1px; + border-style: outset; + border-width: 2px; + border-color: #dcdcdc #696969 #696969 #dcdcdc; + width: auto; + } + +input.buttonlarger + { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size : 13px; + font-weight : bold; + FONT-STYLE: normal; + background-color : royalblue; + color : white; + margin: auto; + padding: 7px; + border-style: outset; + border-width: 3px; + border-color: #dcdcdc #696969 #696969 #dcdcdc; + width: auto; + } + +input.buttonsmaller + { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size : 9px; + font-weight : bold; + background-color : royalblue; + color : white; + margin: auto; + padding: 1px; + border-style: outset; + border-width: 2px; + border-color: #dcdcdc #696969 #696969 #dcdcdc + } + +input.buttongray + { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size : 12px; + font-weight : bold; + background-color : #999999; + color : white; + margin: auto; + padding: 1px; + border-style: outset; + border-width: 2px; + border-color: #dcdcdc #696969 #696969 #dcdcdc; + width: auto + } + + + +input.button:hover +{ + color : yellow; + border-style: inset; + border-color: #696969 #dcdcdc #dcdcdc #696969 +} + +/**/ + diff --git a/web/css/menu.css b/web/css/menu.css new file mode 100755 index 00000000..56b3719b --- /dev/null +++ b/web/css/menu.css @@ -0,0 +1,203 @@ +/* --- menu styles --- +note: + not all browsers render styles the same way so try out your style sheet + on different browsers before publishing; +*/ +/* level 0 inner */ +.m0l0iout { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size: 12px; + font-weight: Bold; + padding: 4px; + color: #0000DD; +} +.m0l0iover { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size: 12px; + font-weight: Bold; + padding: 4px; + color: #FFFFFF; +} + +/* level 0 outer */ +.m0l0oout { + font-size: 12px; + font-weight: Bold; + border : 1px solid #FFFFFF; + background: #ddddff; +} +.m0l0oover { + font-size: 12px; + font-weight: Bold; + border : 1px solid #FFFFFF; + background: #4F8EB6; +} + +/* level 1 inner */ +.m0l1iout { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size: 12px; + font-weight: Normal; + text-decoration: none; + padding: 4px; + color: #000082; +} +.m0l1iover { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size: 12px; + font-weight: Bold; + text-decoration : none; + padding: 3px; + color: #ffffff; + border : 1px solid #000000; + margin : 2px; + background: #4F8EB6; +} + +/* level 1 outer */ +.m0l1oout { + text-decoration : none; + border : 1px solid #999999; + background: #EEEEEE; +} +.m0l1oover { + text-decoration : none; + border : 1px solid #999999; + background: #EEEEEE; +} + +/* level 2 inner */ +.m0l2iout { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size: 12px; + font-weight: Normal; + text-decoration: none; + padding: 4px; + color: #000082; +} + +.m0l2iover { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size: 12px; + font-weight: Bold; + text-decoration: none; + padding: 3px; + color: #ffffff; + border : 1px solid #000000; + margin : 2px; + background: #4F8EB6; +} + +/* level 2 outer */ +.m0l2oout { + text-decoration : none; + border : 1px solid #999999; + background: #EEEEEE; +} +.m0l2oover { + text-decoration : none; + border : 1px solid #999999; + background: #EEEEEE; +} + +/* level 3 inner */ +.m0l3iout { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size: 12px; + font-weight: Normal; + text-decoration: none; + padding: 4px; + color: #000082; +} + +.m0l3iover { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size: 12px; + font-weight: Bold; + text-decoration: none; + padding: 3px; + color: #ffffff; + border : 1px solid #000000; + margin : 2px; + background: #4F8EB6; +} + +/* level 3 outer */ +.m0l3oout { + text-decoration : none; + border : 1px solid #999999; + background: #EEEEEE; +} +.m0l3oover { + text-decoration : none; + border : 1px solid #999999; + background: #EEEEEE; +} + +/* level 4 inner */ +.m0l4iout { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size: 12px; + font-weight: Normal; + text-decoration: none; + padding: 4px; + color: #000082; +} + +.m0l4iover { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size: 12px; + font-weight: Bold; + text-decoration: none; + padding: 3px; + color: #ffffff; + border : 1px solid #000000; + margin : 2px; + background: #4F8EB6; +} + +/* level 4 outer */ +.m0l4oout { + text-decoration : none; + border : 1px solid #999999; + background: #EEEEEE; +} +.m0l4oover { + text-decoration : none; + border : 1px solid #999999; + background: #EEEEEE; +} + +/* level 5 inner */ +.m0l5iout { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size: 12px; + font-weight: Normal; + text-decoration: none; + padding: 4px; + color: #000082; +} + +.m0l5iover { + font-family: verdana, geneva, lucida, 'lucida grande', arial, helvetica, sans-serif; + font-size: 12px; + font-weight: Bold; + text-decoration: none; + padding: 3px; + color: #ffffff; + border : 1px solid #000000; + margin : 2px; + background: #4F8EB6; +} + +/* level 5 outer */ +.m0l5oout { + text-decoration : none; + border : 1px solid #999999; + background: #EEEEEE; +} +.m0l5oover { + text-decoration : none; + border : 1px solid #999999; + background: #EEEEEE; +} \ No newline at end of file diff --git a/web/css/tab_style.css b/web/css/tab_style.css new file mode 100755 index 00000000..66806900 --- /dev/null +++ b/web/css/tab_style.css @@ -0,0 +1,53 @@ +ul.tabs { + margin: 0; + padding: 0; + float: left; + list-style: none; + height: 32px; /*--Set height of tabs--*/ + border-bottom: 1px solid #999; + border-left: 1px solid #999; + width: 100%; +} +ul.tabs li { + float: left; + margin: 0; + padding: 0; + height: 31px; /*--Subtract 1px from the height of the unordered list--*/ + line-height: 31px; /*--Vertically aligns the text within the tab--*/ + border: 1px solid #999; + border-left: none; + margin-bottom: -1px; /*--Pull the list item down 1px--*/ + overflow: hidden; + position: relative; + background: #e0e0e0; +} +ul.tabs li a { + text-decoration: none; + color: #000; + display: block; + font-size: 1.2em; + padding: 0 20px; + border: 1px solid #fff; /*--Gives the bevel look with a 1px white border inside the list item--*/ + outline: none; +} +ul.tabs li a:hover { + background: #ccc; +} +html ul.tabs li.active, html ul.tabs li.active a:hover { /*--Makes sure that the active tab does not listen to the hover properties--*/ + background: #fafafa; + border-bottom: 1px solid #fafafa; /*--Makes the active tab look like it's connected with its content--*/ +} + +.tab_container { + border: 1px solid #999; + border-top: none; + overflow: hidden; + clear: both; + float: left; + width: 100%; + background: #fafafa; +} +.tab_content { + padding: 20px; + font-size: 1.2em; +} \ No newline at end of file diff --git a/web/css/tabbed_pages.css b/web/css/tabbed_pages.css new file mode 100755 index 00000000..cb41c044 --- /dev/null +++ b/web/css/tabbed_pages.css @@ -0,0 +1,8 @@ +#gallery {font:11px verdana,arial,sans-serif; width:1280px; padding:15px 0 0 0; line-height:15px;} +#gallery div.off {color:#000; height:33px; margin-right:2px; line-height:33px; padding:0 20px; float:left; background:url(tabs_0.gif) repeat-x left bottom; border:1px solid #ddd; border-bottom-color:#000; cursor:pointer; position:relative; z-index:20;} +#gallery div.on {color:#c00; padding:0 20px; margin-right:2px; margin-top:1px; float:left; background:url(tabs_2.gif) repeat-x left bottom; border:1px solid #000; cursor:pointer; border-bottom:0; height:33px; line-height:32px; position:relative; z-index:100;} + +div.hide {display:none; width:0; overflow:hidden;} +div.show {clear:left; background:#fff; width:1280px; margin-top:0; top:-1px; border:1px solid #000;padding:20px; position:relative; z-index:50; font:11px verdana, arial, sans-serif; line-height:18px;} +div.show img {float:left; margin:0 10px 10px 0;} +.clear {clear:both;} \ No newline at end of file diff --git a/web/css/tabs_0.gif b/web/css/tabs_0.gif new file mode 100755 index 00000000..23a57ffd Binary files /dev/null and b/web/css/tabs_0.gif differ diff --git a/web/css/tabs_2.gif b/web/css/tabs_2.gif new file mode 100755 index 00000000..5be6dd07 Binary files /dev/null and b/web/css/tabs_2.gif differ diff --git a/web/css/thickbox.css b/web/css/thickbox.css new file mode 100755 index 00000000..d24b9bed --- /dev/null +++ b/web/css/thickbox.css @@ -0,0 +1,163 @@ +/* ----------------------------------------------------------------------------------------------------------------*/ +/* ---------->>> global settings needed for thickbox <<<-----------------------------------------------------------*/ +/* ----------------------------------------------------------------------------------------------------------------*/ +*{padding: 0; margin: 0;} + +/* ----------------------------------------------------------------------------------------------------------------*/ +/* ---------->>> thickbox specific link and font settings <<<------------------------------------------------------*/ +/* ----------------------------------------------------------------------------------------------------------------*/ +#TB_window { + font: 12px Arial, Helvetica, sans-serif; + color: #333333; +} + +#TB_secondLine { + font: 10px Arial, Helvetica, sans-serif; + color:#666666; +} + +#TB_window a:link {color: #666666;} +#TB_window a:visited {color: #666666;} +#TB_window a:hover {color: #000;} +#TB_window a:active {color: #666666;} +#TB_window a:focus{color: #666666;} + +/* ----------------------------------------------------------------------------------------------------------------*/ +/* ---------->>> thickbox settings <<<-----------------------------------------------------------------------------*/ +/* ----------------------------------------------------------------------------------------------------------------*/ +#TB_overlay { + position: fixed; + z-index:100; + top: 0px; + left: 0px; + height:100%; + width:100%; +} + +.TB_overlayMacFFBGHack {background: url(macFFBgHack.png) repeat;} +.TB_overlayBG { + background-color:#000; + filter:alpha(opacity=75); + -moz-opacity: 0.75; + opacity: 0.75; +} + +* html #TB_overlay { /* ie6 hack */ + position: absolute; + height: expression(document.body.scrollHeight > document.body.offsetHeight ? document.body.scrollHeight : document.body.offsetHeight + 'px'); +} + +#TB_window { + position: fixed; + background: #ffffff; + z-index: 102; + color:#000000; + display:none; + border: 4px solid #525252; + text-align:left; + top:50%; + left:50%; +} + +* html #TB_window { /* ie6 hack */ +position: absolute; +margin-top: expression(0 - parseInt(this.offsetHeight / 2) + (TBWindowMargin = document.documentElement && document.documentElement.scrollTop || document.body.scrollTop) + 'px'); +} + +#TB_window img#TB_Image { + display:block; + margin: 15px 0 0 15px; + border-right: 1px solid #ccc; + border-bottom: 1px solid #ccc; + border-top: 1px solid #666; + border-left: 1px solid #666; +} + +#TB_caption{ + height:25px; + padding:7px 30px 10px 25px; + float:left; +} + +#TB_closeWindow{ + height:25px; + padding:11px 25px 10px 0; + float:right; +} + +#TB_closeAjaxWindow{ + padding:7px 10px 5px 0; + margin-bottom:1px; + text-align:right; + float:right; +} + +#TB_ajaxWindowTitle{ + float:left; + padding:7px 0 5px 10px; + margin-bottom:1px; +} + +#TB_title{ + background-color:#e8e8e8; + height:27px; +} + +#TB_ajaxContent{ + clear:both; + padding:2px 15px 15px 15px; + overflow:auto; + text-align:left; + line-height:1.4em; +} + +#TB_ajaxContent.TB_modal{ + padding:15px; +} + +#TB_ajaxContent p{ + padding:5px 0px 5px 0px; +} + +#TB_load{ + position: fixed; + display:none; + height:13px; + width:208px; + z-index:103; + top: 50%; + left: 50%; + margin: -6px 0 0 -104px; /* -height/2 0 0 -width/2 */ +} + +* html #TB_load { /* ie6 hack */ +position: absolute; +margin-top: expression(0 - parseInt(this.offsetHeight / 2) + (TBWindowMargin = document.documentElement && document.documentElement.scrollTop || document.body.scrollTop) + 'px'); +} + +#TB_HideSelect{ + z-index:99; + position:fixed; + top: 0; + left: 0; + background-color:#fff; + border:none; + filter:alpha(opacity=0); + -moz-opacity: 0; + opacity: 0; + height:100%; + width:100%; +} + +* html #TB_HideSelect { /* ie6 hack */ + position: absolute; + height: expression(document.body.scrollHeight > document.body.offsetHeight ? document.body.scrollHeight : document.body.offsetHeight + 'px'); +} + +#TB_iframeContent{ + clear:both; + border:none; + margin-bottom:-1px; + margin-top:1px; + _margin-bottom:1px; +} diff --git a/web/dataSharing.html b/web/dataSharing.html new file mode 100755 index 00000000..354d9967 --- /dev/null +++ b/web/dataSharing.html @@ -0,0 +1,80 @@ + +Data Sharing Policy + + + + + + + + + + + + + + + + + +
+ + + +
+

Data Sharing Policy modify this page

+ +
+ +For a summary of the NIH Guidelines on data sharing see http://grants.nih.gov/grants/policy/data_sharing/data_sharing_guidance.htm. This document provides guidelines primarily intended for those who are acquiring data and metadata obtained as part of large scale NIH-funded projects (greater than $500,000 in direct costs in any one year). Contributors to The GeneNework and WebQTL are at the vanguard in terms of data sharing and have made data sets available within days of acquisition, transformation, and error-checking. "Sharing" however is not equivalent to "free distribution." We anticipate reciprocal contributions from you in the form of one or more of the following: acknowledgement of data sources and use of The GeneNetwork and WebQTL, communication with and possible collaboration with our colleagues who have provided data, suggestions for improvements, and best of all, contributions of new data sets. We hope that you will contribute to the annotation, use, and extension of these data sets in ways that are rewarding to all who are involved. +

+ +
+Wellcome Trust-NIH data sharing recommentations. +An excellent set of recommendations on Data Sharing from Large-scale Biological Research Projects have been assembled with the help of The Wellcome Trust (January 2003, Ft. Lauderdale meeting). These Data Sharing Policies have been adopted in large part by the Encode project. Like GeneNetwork, Encode is a distributed effort by many investigators to integrate a variety of data into a common knowledgebase. Both documents are worth reading by if you are using the GeneNetwork for publications. They may also be particularly helpful for groups considering submitting data sets to the GeneNetwork. +

+ + +
+Please see http://datasharing.net/ for a series of cogent and succinct abstracts on the practice and ethics of data sharing. We particularly recommend reviewing Data Sharing IV. + +

+ +
+NIH data sharing conditions. + +Data sets generated primary or exclusively using NIH funds covered under the Data Sharing Policy (effective after October 2003) will be made available as open resources to academic and non-profit organizations for their own research purposes in a timely manner. "Timely" means no later than the acceptance date for publication of the main findings derived from the relevant data set. In the case of Affymetrix and other high-throughput genomic screening methods, the data release will include (when available) the original images, probe-level data, probe set data, and report files. + +

+ +
Information about this text file:

+

This text file originally generated by RWW, March 2004. Updated by RWW, Nov 12, 2004; Sept 1, 2005. +

+
+ +

+
+
+ + + +
+ +
+ + + + + + + + + diff --git a/web/dbResults.html b/web/dbResults.html new file mode 100755 index 00000000..835c8372 --- /dev/null +++ b/web/dbResults.html @@ -0,0 +1,143 @@ + +GenomeGraph / The GeneNetwork + + + + + + + + + + + + + + + + + + +
+ + + + +
+

Introduction + modify this page

+ + +
+ +GenomeGraph is designed to help discover genetic sources of variation in trait and transcript expression at a global level. Choose a database and click on the Mapping button. The y-axis marks the physical locations of genes from which transcripts are synthesized. In contrast, the x-axis plots the locations of the highest LRS values associated with each trait or transcript; in essence, the location of the best QTL. The false discovery rate (FDR) can be tuned from 1 (all data shown) to values between 0.1 and 0.01 (only transcripts with significant QTLs shown). + +

Note that many data set results are still being computed. You may encounter an "in progress" message. + +

For a more complete explanation see Chesler, Lu and colleagues (2005), or the GenomeGraph Help page. +

+ +
+

Choose Data Set

+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+

Choose Species

+
+ + +
+

Group

+
+ + +
+

Type

+
+ + +
+

Database

+
+ + +
+ + + +
+ + + +
+
+
+
+ + + +
+ +
+ + + + + + + + + + diff --git a/web/dbdoc/AKXDGeno.html b/web/dbdoc/AKXDGeno.html new file mode 100755 index 00000000..3e558b5a --- /dev/null +++ b/web/dbdoc/AKXDGeno.html @@ -0,0 +1,76 @@ + +HTML Template + + + + + + + + + + + + + + + + + +
+ + + + + + + +
+

AKXD Genotypes +modify this page

+ + +

Download the entire AKXD genotype file used in GeneNetwork (n = 1352 markers with useful strain distribution pattens from a total of 5448 informative markers). We have modified the orginal Wellcome-CTC genotypes by adding selected microsatellite markers. We have also curate the data and have removed somewhat improbable double-recombinant haplotypes and by imputing genotypes for a few untyped strains using very tightly linked markers. This genotype "smoothing" may remove some genuine recombinations and may result in linkage maps that will be very slightly conservative. + + +

+
+ + + + + + + +
+ + + + + +
+ + + + + + + + + + diff --git a/web/dbdoc/AXBXAGeno.html b/web/dbdoc/AXBXAGeno.html new file mode 100755 index 00000000..11daf8b2 --- /dev/null +++ b/web/dbdoc/AXBXAGeno.html @@ -0,0 +1,149 @@ + +Genotype / WebQTL + + + + + + + + + + + + + + + + + +
+ + + +
+

+ +AXB/BXA Genotypes Database + + modify this page

+ + +

    Summary:

+ +

+

Download the entire AXB/BXA genotype file used in GeneNetwork (n = 2446 unique strain distribution patterns based on a total of 8514 informative markers). We have modified the orginal Wellcome-CTC genotypes by adding selected microsatellite markers. We have also curate the data and have removed somewhat improbable double-recombinant haplotypes and by imputing genotypes for a few untyped strains using very tightly linked markers. This genotype "smoothing" may remove some genuine recombinations and may result in linkage maps that will be very slightly conservative.

+
+ + +

    About the cases used in these studies:

+ +

+The AXB and BXA recombinant inbred strains were derived from a reciprocal cross between A/J (A) and C57BL/6J (B6 or B). Both parental strains have been sequenced, making this a particularly powerful set of RI strains for functional and genetic analyses. Data acquired using AXB and BXA subsets should be combined; the only difference being the polarity of intercross matings that generated (A x B)F1s and (B x A)F1s. AXB and BXA strains were all produced by Muriel Nesbitt at UCSD in the mid and late 1970s and first used in the early 1980s (Skamene et al., 1984; Peleg and Nesbitt, 1984; Marshal and Paigen, 1993). The set was imported into The Jackson Laboratory by Beverly Paigen (Pgn) in the early 1990s. As of 2004, approximately 25 viable and fully independent AXB/BXA strains are available. +

+ + +

Several nominally independent strains in the AXB and BXA sets are very closely related. These duplicates should not be used without special statistical precaution. The most obvious option is to combine and average data from these strains except when their phenotypes differ significantly (Taylor 1996; Williams et al., 2001). + +
+
AXB13=AXB14: 92.74% identity in an analysis of 8429 markers. AXB14/PgnJ (JAX001684) was renamed AXB13a/PgnJ (see JAXNotes issue number 504, Winter 2006). +
AXB18=AXB19=AXB20: 97 to 99% identity (AXB18 to AXB19 = 98.16% identity, AXB18 to AXB20 = 95.72% identity, AXB19 to AXB20 = 97.34% identity n an analysis of 8429 markers). AXB18 (JAX001686) was renamed AXB19a; AXB19 (JAX001687) was NOT renamed and is still AXB19, and AXB20 (JAX001688) was renamed AXB19b (see JAXNotes issue number 504, Winter 2006). +
BXA8=BXA17: 99.79% identity in an analysis of 8429 markers. BXA17 has been discarded as a strain. The orginal BXA17 was lost between 1989 and 1990. (Updated from Williams et al. 2001; see JAXNotes issue number 504, Winter 2006).). +

+
+ + +

    About the genotypes associated with these strains:

+ +

+Please see The Genetic Structure of Recombinant Inbred Mice.

+
+ + +

    About the acquisition these data:

+

Published phenotypes were obtained through a literature search of all PubMed indexed journals. Whenever possible, exact values of graphically represented data were obtained from the authors. In all other cases graphs were measured using a vernier caliper. Additional published and unpublished phenotypes were submitted directly by investigators. These records have Record ID numbers less than 1. +

+ + +

The special AXB/BXA genotype data set that we use in GeneNetwork may be download as a "AXBXA.geno" file and opened with any text editor or even a spreadsheet program. This file is tab-delimited and includes the approximately centimorgan and basepair (megabasepair) location of the marekers, as well as the genotypes. Genotypes for several sets of strains have been combined. To obtain the original uncombined genotypes, please link to http://www.well.ox.ac.uk/mouse/INBREDS/ . +

+ + +

    How to obtain these strains:

+

Please see http://jaxmice.jax.org/jaxmicedb/html/rcbinbred.shtml +

+

+

+ + +

    Submitting data and reporting errors:

+

The utility of the AXB/BXA phenotype database increases significantly as each new phenotype is incorporated. To submit new data or report errors, please contact Elissa J. Chesler and Robert W. Williams at University of Tennessee Health Science Center

+ + +

    Acknowledgments:

+

+The initial construction of this phenotype database was performed with the help of Ryan McNeive, Nathan Copeland, and Mary-Kathleen Sullivan at University of Tennessee Health Sciences Center with support by a Human Brain Project to RWW. The extension and curation of these RI phenotype files is managed by Elissa J. Chesler.

+ + +

    References:

+

+

+Peleg L, Nesbitt MN (1984) Genetic control of thymus size in inbred mice. J Hered. 75:126-130. +

+

+Skamene E, James SL, Meltzer MS, Nesbitt MN (1984) Genetic control of macrophage activation for killing of extracellular targets. J Leukoc Biol 35:65-69. +

+

+Sampson SB, Higgins DC, Elliot RW, Taylor BA, Lueders KK, Koza RA, Paigen B (1998) An edited linkage map for the AXB and BXA recombinant inbred mouse strains. Mamm Genome 9:688-694. +

+

+Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant inbred mice: High-resolution consensus maps for complex trait analysis. Genome Biology 2:RESEARCH0046. +

+ + +

    Information about this text file:

+

This text file was originally written by EJC, March 2004. Updated by RWW, October 30, 2004, EJC June 6, 2005. +

+ + + +
+
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/AXBXAPublish.html b/web/dbdoc/AXBXAPublish.html new file mode 100755 index 00000000..bfef0c03 --- /dev/null +++ b/web/dbdoc/AXBXAPublish.html @@ -0,0 +1,151 @@ + +Publish Phenotype / WebQTL + + + + + + + + + + + + + + + + + +
+ + + +
+

+ +AXB/BXA Published Phenotypes Database + + modify this page

+ + +

    Summary:

+ +

+This AXB/BXA Phenotype Database includes published trait data for up to 27 recombinant inbred strains. Data were collected and curated at the University of Tennessee Health Science Center (UTHSC) starting in 2000. New traits are still being added.

+
+ + +

    About the cases used in these studies:

+ +

+The AXB and BXA recombinant inbred strains were derived from a reciprocal cross between A/J (A) and C57BL/6J (B6 or B). Both parental strains have been sequenced, making this a particularly powerful set of RI strains for functional and genetic analyses. Data acquired using AXB and BXA subsets should be combined; the only difference being the polarity of intercross matings that generated (A x B)F1s and (B x A)F1s. AXB and BXA strains were all produced by Muriel Nesbitt at UCSD in the mid and late 1970s and first used in the early 1980s (Skamene et al., 1984; Peleg and Nesbitt, 1984; Marshal and Paigen, 1993). The set was imported into The Jackson Laboratory by Beverly Paigen (Pgn) in the early 1990s. As of 2004, approximately 25 viable and fully independent AXB/BXA strains are available. +

+ +

Several nominally independent strains in the AXB and BXA sets are very closely related. These duplicates should not be used without special statistical precaution. The most obvious option is to combine and average data from these strains except when their phenotypes differ significantly (Taylor 1996; Williams et al., 2001). + +
+
AXB13=AXB14: 92% identity +
AXB18=AXB19=AXB20: 97 to 99% identity +
BXA8=BXA17: 99.8% identity +

+ +

AXB18/PgnJ is now referred to as AXB19a/PgnJ (JAX stock number 001686) +

AXB20/PgnJ is now referred to as AXB19b/PgnJ (JAX stock number 001688) +

+ + +

    About the genotypes associated with these strains:

+ +

+Please see The Genetic Structure of Recombinant Inbred Mice.

+
+ + +

    About the acquisition these data:

+

Published phenotypes were obtained through a literature search of all PubMed indexed journals. Whenever possible, exact values of graphically represented data were obtained from the authors. In all other cases graphs were measured using a vernier caliper. Additional published and unpublished phenotypes were submitted directly by investigators. These records have Record ID numbers less than 1. +

+ + +

The entire AXB/BXA phenotypes Filemaker Pro database may be searched online at http://www.nervenet.org/main/databases.html. +

+ + +

    How to obtain these strains:

+

Please see http://jaxmice.jax.org/jaxmicedb/html/rcbinbred.shtml +

+

+

+ + +

    Submitting data and reporting errors:

+

The utility of the AXB/BXA phenotype database increases significantly as each new phenotype is incorporated. To submit new data or report errors, please contact Elissa J. Chesler and Robert W. Williams at University of Tennessee Health Science Center

+ + +

    Acknowledgments:

+

+The initial construction of this phenotype database was performed with the help of Ryan McNeive, Nathan Copeland, and Mary-Kathleen Sullivan at University of Tennessee Health Sciences Center with support by a Human Brain Project to RWW. The extension and curation of these RI phenotype files is managed by Elissa J. Chesler.

+ + +

    References:

+

+

+Peleg L, Nesbitt MN (1984) Genetic control of thymus size in inbred mice. J Hered. 75:126-130. +

+

+Skamene E, James SL, Meltzer MS, Nesbitt MN (1984) Genetic control of macrophage activation for killing of extracellular targets. J Leukoc Biol 35:65-69. +

+

+Sampson SB, Higgins DC, Elliot RW, Taylor BA, Lueders KK, Koza RA, Paigen B (1998) An edited linkage map for the AXB and BXA recombinant inbred mouse strains. Mamm Genome 9:688-694. +

+

+Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant inbred mice: High-resolution consensus maps for complex trait analysis. Genome Biology 2:RESEARCH0046. +

+ + +

    Information about this text file:

+

This text file was originally written by EJC, March 2004. Updated by RWW, October 30, 2004, EJC June 6, 2005. +

+ + + +
+
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/B139_K_1206_M.html b/web/dbdoc/B139_K_1206_M.html new file mode 100755 index 00000000..04d32b7b --- /dev/null +++ b/web/dbdoc/B139_K_1206_M.html @@ -0,0 +1,2012 @@ + +GN INFO on: Barley 150 Embryo mRNA (Apr06) + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+ +

Affymetrix data set from SCRI, April - December 2006 + +modify this page

Accession number: GN124

+

Barley1 Embryo MAS 5.0 SCRI (Dec 06) - integrated probe set value for each gene has been calculated using MAS 5.0 algorithm which uses pixel values from both, PM and MM probes. Descriptions of probe set signal calculation can be found on this page below, section 'About Data Processing'. +

+

    Summary:

+ +
+

The SCRI barley data set provides estimates of mRNA abundance in doubled haploid recombinant lines of cultivated barley. Embryo-derived tissues at four days after imbibition (150 lines) and seedling leaves at 12 days after imbibition (subset of 34 lines) and three biological replicates of each parental cultivar (Steptoe and Morex) for each tissue were used for the isolation of total RNA and hybridization to the Barley1 22K GeneChip. +

+ +

    About the lines used to generate this set of data:

+
+

The SM cross was originally made to map barley grain quality traits; Steptoe is high-yielding barley cultivar used for animal feeding, but Morex has good malting barley characteristics (Hayes et al 1993). Many agronomic quality traits have been mapped using this population (for the lists see BeerGenes web-site http://gnome.agrenv.mcgill.ca/bg/). + +

The sample used in this study consists of 150 Steptoe x Morex doubled haploid recombinant lines (Kleinhofs et al. 1993) was used to obtain embryo-derived tissue. For the seedling leaf tissue a subset of 35 lines was used. This subset was selected based on evenly spaced crossovers along each of seven barley chromosomes. The expression data of 11 DH lines has been removed from both, embryo and leaf, leaving for the analysis 129 lines with embryo expression data and a subset of 30 lines with seedling leaf expression data. The lines were removed from the analysis after error checking; discrepancies with genotyping data were found. We left all 150 lines in the embryo Apr06 data set and the full data set is available from the ArrayExpress. The following table lists line IDs and corresponding CEL file IDs, also indicating:
+1) +pedigree; shows the direction of the cross that was used to produce the original F1. The parental plants were given letter codes of A - Z. For example, SM1 was derived from an F1 that was generated by crossing Steptoe plant "B" as a female with Morex plant "F" as a male.
+2) +'minimapper' subset - MINI;
+3) lines that have expression data removed - ERROR: + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order # Line ID Permanent Oregon ID Cross direction
CEL file names
Mini-mapper set Error check
embryo data-set leaf data-setembryo data-setleaf data-set
1 SM001 2907001 Steptoe/Morex(BxF) AD_SCRI_82.CEL OK
2 SM002 2907002 Steptoe/Morex(BxF) AD_SCRI_1.CEL OK
3 SM003 2907003 Morex/Steptoe(CxF) AD_SCRI_19.CEL OK
4 SM004 2907004 Morex/Steptoe(CxF) AD_SCRI_3.CEL 0521-1_SetA1.CEL SMmini OK OK
5 SM005 2907005 Steptoe/Morex(BxH) AD_SCRI_88.CEL OK
6 SM006 2907006 Morex/Steptoe(CxF) AD_SCRI_48.CEL OK
7 SM007 2907007 Steptoe/Morex(BxH) AD_SCRI_35.CEL 0521-2_SetA2.CEL SMmini OK OK
8 SM009 2907009 Steptoe/Morex(BxF) AD_SCRI_2.CEL OK
9 SM010 2907010 Morex/Steptoe(IxE) AD_SCRI_42.CEL OK
10 SM011 2907011 Steptoe/Morex(QxG) AD_SCRI_10.CEL OK
11 SM012 2907012 Morex/Steptoe(CxF) AD_SCRI_45.CEL 0521-3_SetA3.CEL SMmini ERROR ERROR
12 SM013 2907013 Morex/Steptoe(IxE) AD_SCRI_78.CEL 0521-4_SetA4.CEL SMmini ERROR ERROR
13 SM014 2907014 Steptoe/Morex(BxH) AD_SCRI_18.CEL OK
14 SM015 2907015 Steptoe/Morex(BxH) AD_SCRI_5.CEL OK
15 SM016 2907016 Steptoe/Morex(BxH) AD_SCRI_21.CEL OK
16 SM020 2907020 Steptoe/Morex(OxJ) AD_SCRI_77.CEL OK
17 SM021 2907021 Morex/Steptoe(IxE) AD_SCRI_30.CEL OK
18 SM022 2907022 Morex/Steptoe(IxE) AD_SCRI_31.CEL 0521-5_SetA5.CEL SMmini OK OK
19 SM023 2907023 Steptoe/Morex(BxH) AD_SCRI_32.CEL OK
20 SM024 2907024 Morex/Steptoe(IxE) AD_SCRI_33.CEL 0521-6_SetA6.CEL SMmini OK OK
21 SM025 2907025 Morex/Steptoe(CxF) AD_SCRI_34.CEL OK
22 SM027 2907027 Steptoe/Morex(OxJ) AD_SCRI_12.CEL 0521-7_SetA7.CEL SMmini OK OK
23 SM030 2907030 Morex/Steptoe(IxE) AD_SCRI_79.CEL OK
24 SM031 2907031 Steptoe/Morex(OxJ) AD_SCRI_16.CEL OK
25 SM032 2907032 Morex/Steptoe(IxE) AD_SCRI_13.CEL OK
26 SM035 2907035 Morex/Steptoe(CxF) AD_SCRI_15.CEL ERROR
27 SM039 2907039 Morex/Steptoe(CxF) AD_SCRI_41.CEL OK
28 SM040 2907040 Steptoe/Morex(BxH) AD_SCRI_83.CEL OK
29 SM041 2907041 Steptoe/Morex(OxJ) AD_SCRI_11_redo.CEL 0521-8_SetA8.CEL SMmini OK OK
30 SM042 2907042 Morex/Steptoe(CxF) AD_SCRI_57.CEL OK
31 SM043 2907043 Morex/Steptoe(JxE) AD_SCRI_49.CEL 0521-9_SetA9.CEL SMmini OK OK
32 SM044 2907044 Steptoe/Morex(OxJ) AD_SCRI_50.CEL 0521-10_SetA10.CEL SMmini OK OK
33 SM045 2907045 Steptoe/Morex(BxH) AD_SCRI_51.CEL OK
34 SM046 2907046 Steptoe/Morex(OxJ) AD_SCRI_52.CEL 0521-11_SetA11.CEL SMmini OK OK
35 SM048 2907048 Steptoe/Morex(BxF) AD_SCRI_53.CEL ERROR
36 SM050 2907050 Morex/Steptoe(IxE) AD_SCRI_46.CEL OK
37 SM054 2907054 Morex/Steptoe(CxF) AD_SCRI_60.CEL OK
38 SM055 2907055 Steptoe/Morex(OxJ) AD_SCRI_55.CEL OK
39 SM056 2907056 Steptoe/Morex(BxH) AD_SCRI_23.CEL OK
40 SM057 2907057 Morex/Steptoe(CxF) AD_SCRI_24.CEL OK
41 SM058 2907058 Steptoe/Morex(BxF) AD_SCRI_22.CEL OK
42 SM059 2907059 Steptoe/Morex(BxH) AD_SCRI_27.CEL OK
43 SM061 2907061 Morex/Steptoe(LxF) AD_SCRI_81.CEL 0521-12_SetA12.CEL SMmini OK OK
44 SM062 2907062 Morex/Steptoe(CxF) AD_SCRI_44.CEL OK
45 SM063 2907063 Steptoe/Morex(OxJ) AD_SCRI_40.CEL 0521-13_SetA13.CEL SMmini OK OK
46 SM064 2907064 Morex/Steptoe(CxF) AD_SCRI_87_redo.CEL OK
47 SM065 2907065 Morex/Steptoe(CxF) AD_SCRI_54.CEL OK
48 SM067 2907067 Steptoe/Morex(OxJ) AD_SCRI_73.CEL OK
49 SM068 2907068 Steptoe/Morex(OxG) AD_SCRI_56.CEL ERROR
50 SM069 2907069 Steptoe/Morex(BxH) AD_SCRI_71.CEL OK
51 SM070 2907070 Steptoe/Morex(BxF) AD_SCRI_64.CEL OK
52 SM071 2907071 Steptoe/Morex(BxH) AD_SCRI_58.CEL OK
53 SM072 2907072 Morex/Steptoe(CxF) AD_SCRI_59.CEL OK
54 SM073 2907073 Steptoe/Morex(BxF) AD_SCRI_74.CEL 0521-14_SetA14.CEL SMmini OK ERROR
55 SM074 2907074 Morex/Steptoe(CxF) AD_SCRI_25.CEL 0521-15_SetA15.CEL SMmini OK OK
56 SM075 2907075 Steptoe/Morex(QxG) AD_SCRI_120.CEL OK
57 SM076 2907076 Steptoe/Morex(BxF) AD_SCRI_112.CEL OK
58 SM077 2907077 Morex/Steptoe(CxF) AD_SCRI_142.CEL OK
59 SM078 2907078 Steptoe/Morex(BxF) AD_SCRI_86.CEL OK
60 SM079 2907079 Morex/Steptoe(CxF) AD_SCRI_153.CEL 0521-16_SetA16.CEL SMmini OK ERROR
61 SM080 2907080 Steptoe/Morex(BxF) AD_SCRI_107.CEL OK
62 SM081 2907081 Morex/Steptoe(CxF) AD_SCRI_105.CEL OK
63 SM082 2907082 Steptoe/Morex(BxF) AD_SCRI_97.CEL OK
64 SM083 2907083 Steptoe/Morex(BxF) AD_SCRI_89.CEL OK
65 SM084 2907084 Morex/Steptoe(CxF) AD_SCRI_155.CEL OK
66 SM085 2907085 Morex/Steptoe(IxE) AD_SCRI_149.CEL 0521-17_SetA17.CEL SMmini OK OK
67 SM087 2907087 Steptoe/Morex(OxJ) AD_SCRI_113.CEL OK
68 SM088 2907088 Morex/Steptoe(CxF) AD_SCRI_93.CEL 0521-18_SetA18.CEL SMmini OK OK
69 SM089 2907089 Steptoe/Morex(OxJ) AD_SCRI_148.CEL 0521-19_SetA19.CEL SMmini OK OK
70 SM091 2907091 Morex/Steptoe(CxF) AD_SCRI_110.CEL OK
71 SM092 2907092 Steptoe/Morex(OxJ) AD_SCRI_7.CEL OK
72 SM093 2907093 Steptoe/Morex(BxF) AD_SCRI_122.CEL OK
73 SM094 2907094 Morex/Steptoe(CxF) AD_SCRI_150.CEL OK
74 SM097 2907097 Morex/Steptoe(CxF) AD_SCRI_158.CEL OK
75 SM098 2907098 Morex/Steptoe(CxF) AD_SCRI_121.CEL OK
76 SM099 2907099 Steptoe/Morex(QxG) AD_SCRI_137.CEL OK
77 SM103 2907103 Morex/Steptoe(IxE) AD_SCRI_156.CEL OK
78 SM104 2907104 Steptoe/Morex(BxH) AD_SCRI_70.CEL ERROR
79 SM105 2907105 Morex/Steptoe(IxE) AD_SCRI_69.CEL OK
80 SM110 2907110 Morex/Steptoe(CxF) AD_SCRI_75.CEL ERROR
81 SM112 2907112 Steptoe/Morex(BxF) AD_SCRI_84.CEL OK
82 SM116 2907116 Morex/Steptoe(CxF) AD_SCRI_117.CEL 0521-20_SetA20.CEL SMmini OK OK
83 SM120 2907120 Steptoe/Morex(OxJ) AD_SCRI_138.CEL OK
84 SM124 2907124 Steptoe/Morex(BxF) AD_SCRI_146.CEL OK
85 SM125 2907125 Morex/Steptoe(IxE) AD_SCRI_43.CEL OK
86 SM126 2907126 Steptoe/Morex(OxJ) AD_SCRI_144_redo.CEL OK
87 SM127 2907127 Steptoe/Morex(BxH) AD_SCRI_129.CEL OK
88 SM129 2907129 Steptoe/Morex(OxJ) AD_SCRI_132.CEL OK
89 SM130 2907130 Morex/Steptoe(CxF) AD_SCRI_101.CEL 0521-21_SetA21.CEL SMmini OK OK
90 SM131 2907131 Steptoe/Morex(OxJ) AD_SCRI_102.CEL OK
91 SM132 2907132 Steptoe/Morex(QxG) AD_SCRI_4_redo.CEL OK
92 SM133 2907133 Morex/Steptoe(CxF) AD_SCRI_157.CEL OK
93 SM134 2907134 Morex/Steptoe(IxE) AD_SCRI_159.CEL OK
94 SM135 2907135 Steptoe/Morex(BxF) AD_SCRI_72.CEL 0521-22_SetA22.CEL SMmini OK OK
95 SM136 2907136 Steptoe/Morex(QxG) AD_SCRI_123.CEL 0521-23_SetA23.CEL SMmini OK OK
96 SM137 2907137 Steptoe/Morex(BxH) AD_SCRI_39.CEL OK
97 SM139 2907139 Morex/Steptoe(CxF) AD_SCRI_133.CEL OK
98 SM140 2907140 Morex/Steptoe(CxF) AD_SCRI_134.CEL 0521-24_SetA24.CEL SMmini OK OK
99 SM141 2907141 Steptoe/Morex(BxH) AD_SCRI_136.CEL 0521-25_SetA25.CEL SMmini OK OK
100 SM142 2907142 Morex/Steptoe(IxE) AD_SCRI_6.CEL OK
101 SM143 2907143 Steptoe/Morex(BxH) AD_SCRI_145.CEL OK
102 SM144 2907144 Steptoe/Morex(BxF) AD_SCRI_103.CEL OK
103 SM145 2907145 Steptoe/Morex(QxG) AD_SCRI_108.CEL OK
104 SM146 2907146 Morex/Steptoe(BxF) AD_SCRI_91.CEL 0521-26_SetA26.CEL SMmini OK OK
105 SM147 2907147 Steptoe/Morex(OxJ) AD_SCRI_139.CEL OK
106 SM149 2907149 Steptoe/Morex(BxF) AD_SCRI_131.CEL ERROR
107 SM150 2907150 Morex/Steptoe(CxF) AD_SCRI_37.CEL OK
108 SM151 2907151 Morex/Steptoe(IxE) AD_SCRI_28.CEL OK
109 SM152 2907152 Steptoe/Morex(BxH) AD_SCRI_9_redo.CEL 0521-27_SetA27.CEL SMmini OK OK
110 SM153 2907153 Steptoe/Morex(BxH) AD_SCRI_135.CEL OK
111 SM154 2907154 Steptoe/Morex(BxH) AD_SCRI_114.CEL OK
112 SM155 2907155 Steptoe/Morex(BxH) AD_SCRI_119.CEL 0521-28_SetA28.CEL SMmini OK OK
113 SM156 2907156 Steptoe/Morex(BxH) AD_SCRI_140.CEL OK
114 SM157 2907157 Morex/Steptoe(CxF) AD_SCRI_106_redo.CEL OK
115 SM158 2907158 Morex/Steptoe(CxF) AD_SCRI_65.CEL OK
116 SM159 2907159 Morex/Steptoe(IxE) AD_SCRI_168.CEL OK
117 SM160 2907160 Steptoe/Morex(OxJ) AD_SCRI_47.CEL 0521-29_SetA29.CEL SMmini OK ERROR
118 SM161 2907161 Steptoe/Morex(BxH) AD_SCRI_76.CEL ERROR
119 SM162 2907162 Morex/Steptoe(CxF) AD_SCRI_147.CEL OK
120 SM164 2907164 Steptoe/Morex(OxJ) AD_SCRI_128.CEL OK
121 SM165 2907165 Steptoe/Morex(BxH) AD_SCRI_143.CEL OK OK
122 SM166 2907166 Morex/Steptoe(CxF) AD_SCRI_115.CEL OK
123 SM167 2907167 Steptoe/Morex(BxH) AD_SCRI_127.CEL 0521-30_SetA30.CEL SMmini OK OK
124 SM168 2907168 Steptoe/Morex(BxH) AD_SCRI_130.CEL OK
125 SM169 2907169 Morex/Steptoe(CxF) AD_SCRI_118.CEL 0521-31_SetA31.CEL SMmini OK OK
126 SM170 2907170 Steptoe/Morex(BxF) AD_SCRI_151.CEL OK
127 SM171 2907171 Steptoe/Morex(BxF) AD_SCRI_165.CEL ERROR
128 SM172 2907172 Steptoe/Morex(OxJ) AD_SCRI_152.CEL ERROR
129 SM173 2907173 Steptoe/Morex(OxJ) AD_SCRI_104.CEL 0521-32_SetA32.CEL SMmini OK OK
130 SM174 2907174 Steptoe/Morex(BxH) AD_SCRI_154.CEL OK
131 SM176 2907176 Morex/Steptoe(CxF) AD_SCRI_141.CEL OK
132 SM177 2907177 Morex/Steptoe(CxF) AD_SCRI_111.CEL 0521-33_SetA33.CEL SMmini OK OK
133 SM179 2907179 Morex/Steptoe(CxF) AD_SCRI_166.CEL OK
134 SM180 2907180 Morex/Steptoe(IxE) AD_SCRI_161.CEL OK
135 SM181 2907181 Morex/Steptoe(IxE) AD_SCRI_162.CEL OK
136 SM182 2907182 Morex/Steptoe(CxF) AD_SCRI_163.CEL OK
137 SM183 2907183 Morex/Steptoe(CxF) AD_SCRI_164.CEL OK
138 SM184 2907184 Morex/Steptoe(IxE) AD_SCRI_160.CEL 0521-34_SetA34.CEL SMmini OK OK
139 SM185 2907185 Morex/Steptoe(IxE) AD_SCRI_167.CEL OK
140 SM186 2907186 Morex/Steptoe(IxE) AD_SCRI_62.CEL OK
141 SM187 2907187 Morex/Steptoe(IxE) AD_SCRI_61.CEL OK
142 SM188 2907188 Morex/Steptoe(CxF) AD_SCRI_63.CEL OK
143 SM189 2907189 Steptoe/Morex(QxG) AD_SCRI_80.CEL OK
144 SM193 2907193 Morex/Steptoe(IxE) AD_SCRI_36.CEL OK
145 SM194 2907194 Steptoe/Morex(OxJ) AD_SCRI_29.CEL OK
146 SM196 2907196 Steptoe/Morex(BxF) AD_SCRI_26.CEL OK
147 SM197 2907197 Steptoe/Morex(BxF) AD_SCRI_85.CEL OK
148 SM198 2907198 Morex/Steptoe(IxE) AD_SCRI_8.CEL OK
149 SM199 2907199 Steptoe/Morex(BxF) AD_SCRI_20.CEL OK
150 SM200 2907200 Morex/Steptoe(IxE) AD_SCRI_38.CEL 0521-35_SetA35.CEL SMmini OK OK
parent Steptoe AD_SCRI_17.CEL 0521-36_SetA36.CEL
parent Steptoe AD_SCRI_66.CEL 0521-37_SetA37.CEL
parent Steptoe AD_SCRI_68.CEL 0521-38_SetA38.CEL
parent Morex AD_SCRI_116.CEL 0521-39_SetA39.CEL
parent Morex AD_SCRI_14.CEL 0521-40_SetA40.CEL
parent Morex AD_SCRI_67.CEL 0521-41_SetA41.CEL
+

+ + +

    About tissues used to generate this set of data:

+ +
+

Plant material according to the current plant ontologies: Embryo-derived tissues: whole plant (PO:0000003) at the development stage 1.05-coleoptile emerged from seed (GRO:0007056); Seedling leaves: primary shoot (PO:0006341) at the developmental stage 2.02-first leaf unfolded (GRO:0007060) (Druka et al. 2006). + +

To obtain embryo-derived tissue, growth room#2, AN building, SCRI, with the standard laboratory bench positioned in the middle of the room was used to germinate sterilized seeds. Seeds were placed between three layers of wet 3MM filter paper in the 156 10 mm Petri plates. Thirty to fifty seeds per line (per Petri plate) were used. Germination was in the dark, 16 hours at 17 deg C and 8 hours at 12 deg C. After 96 hours, embryo-derived tissue (mesocotyl, coleoptile, and seminal roots) from three grains was dissected and flash frozen in the liquid nitrogen. Germination and collection was repeated two more times. Complete randomization of the Petri plates was done for each germination event. Tissues from all three germinations (collections) were bulked before RNA isolation. Three replicates of the parental cultivars were germinated for each collection. +

To obtain seedling leaves, three Microclima 1000 growth chambers (Snijders Scientific B.V., Tilburg, Holland) were used for the experiment. Each cabinet accomodated 40 (13x13 cm) pots. Humidity was set to 70%, with light conditions for 16 hours light at 17C and 8 hours dark at 12C. The cycle started at 10 am with lights on. Light intensity was 337-377 mmol m-2 s-1, measured at the beginning of the experiment, 11 cm from the light source. Measurement was done using Sky Quantium light sensor at 15oC. Plants were placed 55 cm from the light source (from the bulb to the surface of the vermiculite). Ten sterilized seeds per pot were planted and 3 pots per genotype / per cabinet were used. After 12 days, leaf blade and sheath from 5-7 the same size plants was cut off, bulked and flash frozen in the liquid nitrogen. + +

+

+ +
+

RNA Sample Processing: +

Trizol RNA isolation and RNeasy clean up protocol for whole plants (embryo-derived tissue dissected from 4 days old germinating grains) and the seedling leaves (12 days after planting). +


+☐ Grind tissue (9 embryos) with a mortar and pestle in liquid nitrogen
+☐ Add 5 ml TRIzol (pre-heated to 60oC) to all samples, vortex until all the tissue is thawed, place in the 60oC waterbath..
+☐ Incubate samples at 60oC for 10 minutes, vortexing three times.
+☐ Centrifuge @ 4000 x rpm @ 4C for 30 minutes (in Eppendorf 5810R).
+☐ While centrifuging, label new set of 15 ml tubes
+☐ Transfer supernatant to 15 ml centrifuge tube
+☐ Add 1 ml of chloroform. Vortex the sample until color shade is uniform at least 5
+seconds, and incubate at room temperature for 5 minutes.
+☐ Centrifuge @ 4000 x rpm for 30 minutes @ 4oC.
+☐ While centrifuging, label new 15 ml tubes
+☐ Collect the upper aqueous layer (there will be about 3 mls) and transfer to a new 15 ml tube.
+☐ Add 0.6 volumes (2 ml) of isopropanol, mix gently, incubate at room temperature for 20 minutes.
+☐ Centrifuge @ 4000 rpm for 30 minutes @ 4oC.
+☐ Wash the pellet with 10 ml of cold 75% ethanol. Swirl & centrifuge at
+4000 rpm for 15 minutes @ 4oC.
+☐ Discard supernatant, centrifuge for 5 min, remove the rest of the ethanol
+☐ Air-dry the pellet for 10 minutes, inverted on a kimwipe.
+☐ Dissolve pellet in 400 ul of DEPC-treated H2O. Resuspend by pipeting up & down a
+few times.
+☐ Add 2 ul SuperaseIn. Incubate at 60oC for 10 minutes to resuspend.
+☐ Set water bath to 37oC.
+☐ Add 50 ul 10X DnaseI Buffer, 45 ul H2O and 5 ul of DnaseI, incubate at 37oC for 1 hr.
+☐ Prepare Buffer RLT (Rneasy Clean-up Midi Kit) by adding b-mercaptoethanol (10ul/1ml RLT).
+☐ Add 2.0 ml Buffer RLT to the RNA prep and mix thoroughly.
+☐ Add 1.4 ml ethanol (96-100%) to the diluted RNA. Mix thoroughly.
+☐ Label 15 ml tubes from the kit and place midi columns in them
+☐ Apply sample to a Midi column, close tube gently and centrifuge for 20 min at 3000 rpm.
+☐ Discard the flow-through.
+☐ Add 2.5 ml Buffer RPE to the RNA easy column, close the centrifuge tube gently,
+incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm. Discard the flow-through.
+☐ Add another 2.5 ml Buffer RPE to the RNeasy column. Close the centrifuge tube
+gently, incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm, remove flow-through
+☐ Centrifuge again for another 5 min.
+☐ Label new 15 ml tubes from the kit.
+☐ Transfer the RNA easy column to a new tube and pipet 250 ul volume of
+RNase-free water directly onto the RNeasy silica-membrane incubate for 1 min
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ To the same tube add again 250 ul H2O, incubate for 1 min.
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ Label two sets of 1.5 ml Eppendorf tubes.
+☐ Transfer 490 ul to the one tube and 10 ul to another one. Use 10 ul tube for the RNA
+

+

Detailed descriptions of these procedures can be found under the ArrayExpress (http://www.ebi.ac.uk/aerep/?) protocol P-MEXP-4631 (Caldo et al. 2004). + +

Replication and Sample Balance: +

3 independent replicates of both parental cultivars Steptoe and Morex were generated for both tissues, embryo and seedling leaf. +

Experimental Design and Batch Structure: + +

+ + + +

    Downloading complete data set:

+
+

The following are ArrayExpress (http://www.ebi.ac.uk/aerep/?) experiment IDs: +E-TABM-111 (leaf, 41 chips) and E-TABM-112 (embryo derived, 156 chips).

+
+ + +

    About the array platform:

+ +
+

Affymetrix 22K Barley1 GeneChip probe array (http://www.affymetrix.com/products/arrays/specific/barley.affx ; Affymetrix product #900515 GeneChip Barley Genome Array) representing 21,439 non-redundant Barley1 exemplar sequences was derived from worldwide contribution of 350,000 high-quality ESTs from 84 cDNA libraries, in addition to 1,145 barley gene sequences from the National Center for Biotechnology Information non-redundant database (Close et al 2004). Abbreviated annotations were created based on the exemplar sequence homology by Arnis Druka using data from the Harvest (http://harvest.ucr.edu/) data depository. + +

+ + +

    About data processing:

+
+ + + + + + + + + + + + + + + + + +
Types of the expression data-sets
Data processing description
Barley1 Embryo gcRMA SCRI (Dec 06)
+Barley1 Leaf gcRMA SCRI (Dec 06)

 

+

The Affymetrix' CEL files that were generated using MAS 5.0 Suite were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) and processed using the RMA algorithm.

+

 

Barley1 Embryo MAS 5.0 SCRI (Dec 06)
+Barley1 Leaf MAS 5.0 SCRI (Dec 06)

 

+

The MAS 5.0 values were calculated from the DAT files using Affymetrix' MAS 5.0 Suite.

+

 

Barley1 Embryo0 gcRMA SCRI (Apr 06)
+Barley1 Leaf gcRMAn SCRI (Dec 06)

The Affymetrix' CEL files were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) software and processed using the RMA algorithm. Per-chip and per-gene normalization was done following the standard GeneSpring procedure (citation of the GeneSpring normalization description): + +

    +
  1. Values below 0.01 were set to 0.01. +
  2. Each measurement was divided by the 50.0th percentile of all measurements in that sample. +
  3. Each gene was divided by the median of its measurements in all samples. If the median of the raw values was below 10 then each measurement for that gene was divided by 10 if the numerator was above 10, otherwise the measurement was thrown out. +
+
+ + + +

    Data source acknowledgment:

+ +
+

Plant maintenance, tissue collection, RNA isolation, and data submission to ArrayExpress was done at SCRI by Arnis Druka with support from BBSRC/SEERAD grant + + +SCR/910/04 + +'The genetics of gene expression in barley' to Michael Kearsey (University of Birmingham, UK) and Robbie Waugh (SCRI, UK). Probe synthesis, labeling and hybridization were performed according to manufacturer’s protocols (Affymetrix, Santa Clara, CA) at the Iowa State University GeneChip Core facility (Rico Caldo and Roger Wise). ArrayExpress (EBI, UK) team members Tim Rayner, Helen Parkinson, and Alvis Brazma are acknowledged for excellent help with data submission to ArrayExpress. +

+ +

    Contact address:

+
+

Arnis Druka +
+Genetics Programme +
+Scottish Crop Research Institute +
+Invergowrie, Dundee DD2 5DA +
+Angus, Scotland, United Kingdom +
+Tel +44 01382 562731
+Fax +44 01382 568587
+adruka@scri.sari.ac.uk

+
+ +

    References:

+
+ +

Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schreiber A, Wise R, Close T, Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall D, Waugh R. (2006) An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics, Jul;6(3):202-11. + +

Kleinhofs A, Kilian A, Saghai Maroof M, Biyashev R, Hayes P, Chen F, Lapitan N, Fenwick A, Blake T, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu BH, Sorrells M, Heun M, Franckowiak J, Hoffman D, Skadsen R, Steffenson B (1993) A molecular, isozyme, and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705-712. + +

Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16:2514-2528. + +

Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP. (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960-968. + +

Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392-401 + +

+ + +

+ +

    About this text file:

+
+

+This text file originally generated by Arnis Druka on May 8, 2006. Modified Aug1 by AD. Entered by RWW Aug 4, 2006. Modified by AD Jan 29, 2007, Feb 01, 2007.

+
+ + + + +

+ +
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/B139_K_1206_R.html b/web/dbdoc/B139_K_1206_R.html new file mode 100755 index 00000000..c5d4f0d6 --- /dev/null +++ b/web/dbdoc/B139_K_1206_R.html @@ -0,0 +1,2020 @@ + +GN INFO on: Barley 150 Embryo mRNA (Apr06) + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+ +

Affymetrix data set from SCRI, April - December 2006 + +modify this page

Accession number: GN128

+

Barley1 Embryo gcRMA SCRI (Dec 06) - integrated probe set value for each gene has been calculated using RMA algorithm (Irizarry et al 2003). RMA ignores MM probe signals. Descriptions of probe set signal calculation can be found on this page below, section 'About Data Processing'. + +

+ + +

    Summary:

+ +
+

The SCRI barley data set provides estimates of mRNA abundance in doubled haploid recombinant lines of cultivated barley. Embryo-derived tissues at four days after imbibition (150 lines) and seedling leaves at 12 days after imbibition (subset of 34 lines) and three biological replicates of each parental cultivar (Steptoe and Morex) for each tissue were used for the isolation of total RNA and hybridization to the Barley1 22K GeneChip (GEO GPL1340). For updated annotation of the Barley1 22k array see PLEXdb. + +

+ +

    About the lines used to generate this set of data:

+
+

The SM cross was originally made to map barley grain quality traits; Steptoe is high-yielding barley cultivar used for animal feeding, but Morex has good malting barley characteristics (Hayes et al 1993). Many agronomic quality traits have been mapped using this population (for the lists see BeerGenes web-site http://gnome.agrenv.mcgill.ca/bg/). + +

The sample used in this study consists of 150 Steptoe x Morex doubled haploid recombinant lines (Kleinhofs et al. 1993) was used to obtain embryo-derived tissue. For the seedling leaf tissue a subset of 35 lines was used. This subset was selected based on evenly spaced crossovers along each of seven barley chromosomes. The expression data of 11 DH lines has been removed from both, embryo and leaf, leaving for the analysis 129 lines with embryo expression data and a subset of 30 lines with seedling leaf expression data. The lines were removed from the analysis after error checking; discrepancies with genotyping data were found. We left all 150 lines in the embryo Apr06 data set and the full data set is available from the ArrayExpress. The following table lists line IDs and corresponding CEL file IDs, also indicating:
+1) +pedigree; shows the direction of the cross that was used to produce the original F1. The parental plants were given letter codes of A - Z. For example, SM1 was derived from an F1 that was generated by crossing Steptoe plant "B" as a female with Morex plant "F" as a male.
+2) +'minimapper' subset - MINI;
+3) lines that have expression data removed - ERROR: + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order # Line ID Permanent Oregon ID Cross direction
CEL file names
Mini-mapper set Error check
embryo data-set leaf data-setembryo data-setleaf data-set
1 SM001 2907001 Steptoe/Morex(BxF) AD_SCRI_82.CEL OK
2 SM002 2907002 Steptoe/Morex(BxF) AD_SCRI_1.CEL OK
3 SM003 2907003 Morex/Steptoe(CxF) AD_SCRI_19.CEL OK
4 SM004 2907004 Morex/Steptoe(CxF) AD_SCRI_3.CEL 0521-1_SetA1.CEL SMmini OK OK
5 SM005 2907005 Steptoe/Morex(BxH) AD_SCRI_88.CEL OK
6 SM006 2907006 Morex/Steptoe(CxF) AD_SCRI_48.CEL OK
7 SM007 2907007 Steptoe/Morex(BxH) AD_SCRI_35.CEL 0521-2_SetA2.CEL SMmini OK OK
8 SM009 2907009 Steptoe/Morex(BxF) AD_SCRI_2.CEL OK
9 SM010 2907010 Morex/Steptoe(IxE) AD_SCRI_42.CEL OK
10 SM011 2907011 Steptoe/Morex(QxG) AD_SCRI_10.CEL OK
11 SM012 2907012 Morex/Steptoe(CxF) AD_SCRI_45.CEL 0521-3_SetA3.CEL SMmini ERROR ERROR
12 SM013 2907013 Morex/Steptoe(IxE) AD_SCRI_78.CEL 0521-4_SetA4.CEL SMmini ERROR ERROR
13 SM014 2907014 Steptoe/Morex(BxH) AD_SCRI_18.CEL OK
14 SM015 2907015 Steptoe/Morex(BxH) AD_SCRI_5.CEL OK
15 SM016 2907016 Steptoe/Morex(BxH) AD_SCRI_21.CEL OK
16 SM020 2907020 Steptoe/Morex(OxJ) AD_SCRI_77.CEL OK
17 SM021 2907021 Morex/Steptoe(IxE) AD_SCRI_30.CEL OK
18 SM022 2907022 Morex/Steptoe(IxE) AD_SCRI_31.CEL 0521-5_SetA5.CEL SMmini OK OK
19 SM023 2907023 Steptoe/Morex(BxH) AD_SCRI_32.CEL OK
20 SM024 2907024 Morex/Steptoe(IxE) AD_SCRI_33.CEL 0521-6_SetA6.CEL SMmini OK OK
21 SM025 2907025 Morex/Steptoe(CxF) AD_SCRI_34.CEL OK
22 SM027 2907027 Steptoe/Morex(OxJ) AD_SCRI_12.CEL 0521-7_SetA7.CEL SMmini OK OK
23 SM030 2907030 Morex/Steptoe(IxE) AD_SCRI_79.CEL OK
24 SM031 2907031 Steptoe/Morex(OxJ) AD_SCRI_16.CEL OK
25 SM032 2907032 Morex/Steptoe(IxE) AD_SCRI_13.CEL OK
26 SM035 2907035 Morex/Steptoe(CxF) AD_SCRI_15.CEL ERROR
27 SM039 2907039 Morex/Steptoe(CxF) AD_SCRI_41.CEL OK
28 SM040 2907040 Steptoe/Morex(BxH) AD_SCRI_83.CEL OK
29 SM041 2907041 Steptoe/Morex(OxJ) AD_SCRI_11_redo.CEL 0521-8_SetA8.CEL SMmini OK OK
30 SM042 2907042 Morex/Steptoe(CxF) AD_SCRI_57.CEL OK
31 SM043 2907043 Morex/Steptoe(JxE) AD_SCRI_49.CEL 0521-9_SetA9.CEL SMmini OK OK
32 SM044 2907044 Steptoe/Morex(OxJ) AD_SCRI_50.CEL 0521-10_SetA10.CEL SMmini OK OK
33 SM045 2907045 Steptoe/Morex(BxH) AD_SCRI_51.CEL OK
34 SM046 2907046 Steptoe/Morex(OxJ) AD_SCRI_52.CEL 0521-11_SetA11.CEL SMmini OK OK
35 SM048 2907048 Steptoe/Morex(BxF) AD_SCRI_53.CEL ERROR
36 SM050 2907050 Morex/Steptoe(IxE) AD_SCRI_46.CEL OK
37 SM054 2907054 Morex/Steptoe(CxF) AD_SCRI_60.CEL OK
38 SM055 2907055 Steptoe/Morex(OxJ) AD_SCRI_55.CEL OK
39 SM056 2907056 Steptoe/Morex(BxH) AD_SCRI_23.CEL OK
40 SM057 2907057 Morex/Steptoe(CxF) AD_SCRI_24.CEL OK
41 SM058 2907058 Steptoe/Morex(BxF) AD_SCRI_22.CEL OK
42 SM059 2907059 Steptoe/Morex(BxH) AD_SCRI_27.CEL OK
43 SM061 2907061 Morex/Steptoe(LxF) AD_SCRI_81.CEL 0521-12_SetA12.CEL SMmini OK OK
44 SM062 2907062 Morex/Steptoe(CxF) AD_SCRI_44.CEL OK
45 SM063 2907063 Steptoe/Morex(OxJ) AD_SCRI_40.CEL 0521-13_SetA13.CEL SMmini OK OK
46 SM064 2907064 Morex/Steptoe(CxF) AD_SCRI_87_redo.CEL OK
47 SM065 2907065 Morex/Steptoe(CxF) AD_SCRI_54.CEL OK
48 SM067 2907067 Steptoe/Morex(OxJ) AD_SCRI_73.CEL OK
49 SM068 2907068 Steptoe/Morex(OxG) AD_SCRI_56.CEL ERROR
50 SM069 2907069 Steptoe/Morex(BxH) AD_SCRI_71.CEL OK
51 SM070 2907070 Steptoe/Morex(BxF) AD_SCRI_64.CEL OK
52 SM071 2907071 Steptoe/Morex(BxH) AD_SCRI_58.CEL OK
53 SM072 2907072 Morex/Steptoe(CxF) AD_SCRI_59.CEL OK
54 SM073 2907073 Steptoe/Morex(BxF) AD_SCRI_74.CEL 0521-14_SetA14.CEL SMmini OK ERROR
55 SM074 2907074 Morex/Steptoe(CxF) AD_SCRI_25.CEL 0521-15_SetA15.CEL SMmini OK OK
56 SM075 2907075 Steptoe/Morex(QxG) AD_SCRI_120.CEL OK
57 SM076 2907076 Steptoe/Morex(BxF) AD_SCRI_112.CEL OK
58 SM077 2907077 Morex/Steptoe(CxF) AD_SCRI_142.CEL OK
59 SM078 2907078 Steptoe/Morex(BxF) AD_SCRI_86.CEL OK
60 SM079 2907079 Morex/Steptoe(CxF) AD_SCRI_153.CEL 0521-16_SetA16.CEL SMmini OK ERROR
61 SM080 2907080 Steptoe/Morex(BxF) AD_SCRI_107.CEL OK
62 SM081 2907081 Morex/Steptoe(CxF) AD_SCRI_105.CEL OK
63 SM082 2907082 Steptoe/Morex(BxF) AD_SCRI_97.CEL OK
64 SM083 2907083 Steptoe/Morex(BxF) AD_SCRI_89.CEL OK
65 SM084 2907084 Morex/Steptoe(CxF) AD_SCRI_155.CEL OK
66 SM085 2907085 Morex/Steptoe(IxE) AD_SCRI_149.CEL 0521-17_SetA17.CEL SMmini OK OK
67 SM087 2907087 Steptoe/Morex(OxJ) AD_SCRI_113.CEL OK
68 SM088 2907088 Morex/Steptoe(CxF) AD_SCRI_93.CEL 0521-18_SetA18.CEL SMmini OK OK
69 SM089 2907089 Steptoe/Morex(OxJ) AD_SCRI_148.CEL 0521-19_SetA19.CEL SMmini OK OK
70 SM091 2907091 Morex/Steptoe(CxF) AD_SCRI_110.CEL OK
71 SM092 2907092 Steptoe/Morex(OxJ) AD_SCRI_7.CEL OK
72 SM093 2907093 Steptoe/Morex(BxF) AD_SCRI_122.CEL OK
73 SM094 2907094 Morex/Steptoe(CxF) AD_SCRI_150.CEL OK
74 SM097 2907097 Morex/Steptoe(CxF) AD_SCRI_158.CEL OK
75 SM098 2907098 Morex/Steptoe(CxF) AD_SCRI_121.CEL OK
76 SM099 2907099 Steptoe/Morex(QxG) AD_SCRI_137.CEL OK
77 SM103 2907103 Morex/Steptoe(IxE) AD_SCRI_156.CEL OK
78 SM104 2907104 Steptoe/Morex(BxH) AD_SCRI_70.CEL ERROR
79 SM105 2907105 Morex/Steptoe(IxE) AD_SCRI_69.CEL OK
80 SM110 2907110 Morex/Steptoe(CxF) AD_SCRI_75.CEL ERROR
81 SM112 2907112 Steptoe/Morex(BxF) AD_SCRI_84.CEL OK
82 SM116 2907116 Morex/Steptoe(CxF) AD_SCRI_117.CEL 0521-20_SetA20.CEL SMmini OK OK
83 SM120 2907120 Steptoe/Morex(OxJ) AD_SCRI_138.CEL OK
84 SM124 2907124 Steptoe/Morex(BxF) AD_SCRI_146.CEL OK
85 SM125 2907125 Morex/Steptoe(IxE) AD_SCRI_43.CEL OK
86 SM126 2907126 Steptoe/Morex(OxJ) AD_SCRI_144_redo.CEL OK
87 SM127 2907127 Steptoe/Morex(BxH) AD_SCRI_129.CEL OK
88 SM129 2907129 Steptoe/Morex(OxJ) AD_SCRI_132.CEL OK
89 SM130 2907130 Morex/Steptoe(CxF) AD_SCRI_101.CEL 0521-21_SetA21.CEL SMmini OK OK
90 SM131 2907131 Steptoe/Morex(OxJ) AD_SCRI_102.CEL OK
91 SM132 2907132 Steptoe/Morex(QxG) AD_SCRI_4_redo.CEL OK
92 SM133 2907133 Morex/Steptoe(CxF) AD_SCRI_157.CEL OK
93 SM134 2907134 Morex/Steptoe(IxE) AD_SCRI_159.CEL OK
94 SM135 2907135 Steptoe/Morex(BxF) AD_SCRI_72.CEL 0521-22_SetA22.CEL SMmini OK OK
95 SM136 2907136 Steptoe/Morex(QxG) AD_SCRI_123.CEL 0521-23_SetA23.CEL SMmini OK OK
96 SM137 2907137 Steptoe/Morex(BxH) AD_SCRI_39.CEL OK
97 SM139 2907139 Morex/Steptoe(CxF) AD_SCRI_133.CEL OK
98 SM140 2907140 Morex/Steptoe(CxF) AD_SCRI_134.CEL 0521-24_SetA24.CEL SMmini OK OK
99 SM141 2907141 Steptoe/Morex(BxH) AD_SCRI_136.CEL 0521-25_SetA25.CEL SMmini OK OK
100 SM142 2907142 Morex/Steptoe(IxE) AD_SCRI_6.CEL OK
101 SM143 2907143 Steptoe/Morex(BxH) AD_SCRI_145.CEL OK
102 SM144 2907144 Steptoe/Morex(BxF) AD_SCRI_103.CEL OK
103 SM145 2907145 Steptoe/Morex(QxG) AD_SCRI_108.CEL OK
104 SM146 2907146 Morex/Steptoe(BxF) AD_SCRI_91.CEL 0521-26_SetA26.CEL SMmini OK OK
105 SM147 2907147 Steptoe/Morex(OxJ) AD_SCRI_139.CEL OK
106 SM149 2907149 Steptoe/Morex(BxF) AD_SCRI_131.CEL ERROR
107 SM150 2907150 Morex/Steptoe(CxF) AD_SCRI_37.CEL OK
108 SM151 2907151 Morex/Steptoe(IxE) AD_SCRI_28.CEL OK
109 SM152 2907152 Steptoe/Morex(BxH) AD_SCRI_9_redo.CEL 0521-27_SetA27.CEL SMmini OK OK
110 SM153 2907153 Steptoe/Morex(BxH) AD_SCRI_135.CEL OK
111 SM154 2907154 Steptoe/Morex(BxH) AD_SCRI_114.CEL OK
112 SM155 2907155 Steptoe/Morex(BxH) AD_SCRI_119.CEL 0521-28_SetA28.CEL SMmini OK OK
113 SM156 2907156 Steptoe/Morex(BxH) AD_SCRI_140.CEL OK
114 SM157 2907157 Morex/Steptoe(CxF) AD_SCRI_106_redo.CEL OK
115 SM158 2907158 Morex/Steptoe(CxF) AD_SCRI_65.CEL OK
116 SM159 2907159 Morex/Steptoe(IxE) AD_SCRI_168.CEL OK
117 SM160 2907160 Steptoe/Morex(OxJ) AD_SCRI_47.CEL 0521-29_SetA29.CEL SMmini OK ERROR
118 SM161 2907161 Steptoe/Morex(BxH) AD_SCRI_76.CEL ERROR
119 SM162 2907162 Morex/Steptoe(CxF) AD_SCRI_147.CEL OK
120 SM164 2907164 Steptoe/Morex(OxJ) AD_SCRI_128.CEL OK
121 SM165 2907165 Steptoe/Morex(BxH) AD_SCRI_143.CEL OK OK
122 SM166 2907166 Morex/Steptoe(CxF) AD_SCRI_115.CEL OK
123 SM167 2907167 Steptoe/Morex(BxH) AD_SCRI_127.CEL 0521-30_SetA30.CEL SMmini OK OK
124 SM168 2907168 Steptoe/Morex(BxH) AD_SCRI_130.CEL OK
125 SM169 2907169 Morex/Steptoe(CxF) AD_SCRI_118.CEL 0521-31_SetA31.CEL SMmini OK OK
126 SM170 2907170 Steptoe/Morex(BxF) AD_SCRI_151.CEL OK
127 SM171 2907171 Steptoe/Morex(BxF) AD_SCRI_165.CEL ERROR
128 SM172 2907172 Steptoe/Morex(OxJ) AD_SCRI_152.CEL ERROR
129 SM173 2907173 Steptoe/Morex(OxJ) AD_SCRI_104.CEL 0521-32_SetA32.CEL SMmini OK OK
130 SM174 2907174 Steptoe/Morex(BxH) AD_SCRI_154.CEL OK
131 SM176 2907176 Morex/Steptoe(CxF) AD_SCRI_141.CEL OK
132 SM177 2907177 Morex/Steptoe(CxF) AD_SCRI_111.CEL 0521-33_SetA33.CEL SMmini OK OK
133 SM179 2907179 Morex/Steptoe(CxF) AD_SCRI_166.CEL OK
134 SM180 2907180 Morex/Steptoe(IxE) AD_SCRI_161.CEL OK
135 SM181 2907181 Morex/Steptoe(IxE) AD_SCRI_162.CEL OK
136 SM182 2907182 Morex/Steptoe(CxF) AD_SCRI_163.CEL OK
137 SM183 2907183 Morex/Steptoe(CxF) AD_SCRI_164.CEL OK
138 SM184 2907184 Morex/Steptoe(IxE) AD_SCRI_160.CEL 0521-34_SetA34.CEL SMmini OK OK
139 SM185 2907185 Morex/Steptoe(IxE) AD_SCRI_167.CEL OK
140 SM186 2907186 Morex/Steptoe(IxE) AD_SCRI_62.CEL OK
141 SM187 2907187 Morex/Steptoe(IxE) AD_SCRI_61.CEL OK
142 SM188 2907188 Morex/Steptoe(CxF) AD_SCRI_63.CEL OK
143 SM189 2907189 Steptoe/Morex(QxG) AD_SCRI_80.CEL OK
144 SM193 2907193 Morex/Steptoe(IxE) AD_SCRI_36.CEL OK
145 SM194 2907194 Steptoe/Morex(OxJ) AD_SCRI_29.CEL OK
146 SM196 2907196 Steptoe/Morex(BxF) AD_SCRI_26.CEL OK
147 SM197 2907197 Steptoe/Morex(BxF) AD_SCRI_85.CEL OK
148 SM198 2907198 Morex/Steptoe(IxE) AD_SCRI_8.CEL OK
149 SM199 2907199 Steptoe/Morex(BxF) AD_SCRI_20.CEL OK
150 SM200 2907200 Morex/Steptoe(IxE) AD_SCRI_38.CEL 0521-35_SetA35.CEL SMmini OK OK
parent Steptoe AD_SCRI_17.CEL 0521-36_SetA36.CEL
parent Steptoe AD_SCRI_66.CEL 0521-37_SetA37.CEL
parent Steptoe AD_SCRI_68.CEL 0521-38_SetA38.CEL
parent Morex AD_SCRI_116.CEL 0521-39_SetA39.CEL
parent Morex AD_SCRI_14.CEL 0521-40_SetA40.CEL
parent Morex AD_SCRI_67.CEL 0521-41_SetA41.CEL
+

+ + +

    About tissues used to generate this set of data:

+ +
+

Plant material according to the current plant ontologies: Embryo-derived tissues: whole plant (PO:0000003) at the development stage 1.05-coleoptile emerged from seed (GRO:0007056); Seedling leaves: primary shoot (PO:0006341) at the developmental stage 2.02-first leaf unfolded (GRO:0007060) (Druka et al. 2006). + +

To obtain embryo-derived tissue, growth room#2, AN building, SCRI, with the standard laboratory bench positioned in the middle of the room was used to germinate sterilized seeds. Seeds were placed between three layers of wet 3MM filter paper in the 156 10 mm Petri plates. Thirty to fifty seeds per line (per Petri plate) were used. Germination was in the dark, 16 hours at 17 deg C and 8 hours at 12 deg C. After 96 hours, embryo-derived tissue (mesocotyl, coleoptile, and seminal roots) from three grains was dissected and flash frozen in the liquid nitrogen. Germination and collection was repeated two more times. Complete randomization of the Petri plates was done for each germination event. Tissues from all three germinations (collections) were bulked before RNA isolation. Three replicates of the parental cultivars were germinated for each collection. +

To obtain seedling leaves, three Microclima 1000 growth chambers (Snijders Scientific B.V., Tilburg, Holland) were used for the experiment. Each cabinet accomodated 40 (13x13 cm) pots. Humidity was set to 70%, with light conditions for 16 hours light at 17C and 8 hours dark at 12C. The cycle started at 10 am with lights on. Light intensity was 337-377 mmol m-2 s-1, measured at the beginning of the experiment, 11 cm from the light source. Measurement was done using Sky Quantium light sensor at 15oC. Plants were placed 55 cm from the light source (from the bulb to the surface of the vermiculite). Ten sterilized seeds per pot were planted and 3 pots per genotype / per cabinet were used. After 12 days, leaf blade and sheath from 5-7 the same size plants was cut off, bulked and flash frozen in the liquid nitrogen. + +

+

+ +
+

RNA Sample Processing: +

Trizol RNA isolation and RNeasy clean up protocol for whole plants (embryo-derived tissue dissected from 4 days old germinating grains) and the seedling leaves (12 days after planting). +


+☐ Grind tissue (9 embryos) with a mortar and pestle in liquid nitrogen
+☐ Add 5 ml TRIzol (pre-heated to 60oC) to all samples, vortex until all the tissue is thawed, place in the 60oC waterbath..
+☐ Incubate samples at 60oC for 10 minutes, vortexing three times.
+☐ Centrifuge @ 4000 x rpm @ 4C for 30 minutes (in Eppendorf 5810R).
+☐ While centrifuging, label new set of 15 ml tubes
+☐ Transfer supernatant to 15 ml centrifuge tube
+☐ Add 1 ml of chloroform. Vortex the sample until color shade is uniform at least 5
+seconds, and incubate at room temperature for 5 minutes.
+☐ Centrifuge @ 4000 x rpm for 30 minutes @ 4oC.
+☐ While centrifuging, label new 15 ml tubes
+☐ Collect the upper aqueous layer (there will be about 3 mls) and transfer to a new 15 ml tube.
+☐ Add 0.6 volumes (2 ml) of isopropanol, mix gently, incubate at room temperature for 20 minutes.
+☐ Centrifuge @ 4000 rpm for 30 minutes @ 4oC.
+☐ Wash the pellet with 10 ml of cold 75% ethanol. Swirl & centrifuge at
+4000 rpm for 15 minutes @ 4oC.
+☐ Discard supernatant, centrifuge for 5 min, remove the rest of the ethanol
+☐ Air-dry the pellet for 10 minutes, inverted on a kimwipe.
+☐ Dissolve pellet in 400 ul of DEPC-treated H2O. Resuspend by pipeting up & down a
+few times.
+☐ Add 2 ul SuperaseIn. Incubate at 60oC for 10 minutes to resuspend.
+☐ Set water bath to 37oC.
+☐ Add 50 ul 10X DnaseI Buffer, 45 ul H2O and 5 ul of DnaseI, incubate at 37oC for 1 hr.
+☐ Prepare Buffer RLT (Rneasy Clean-up Midi Kit) by adding b-mercaptoethanol (10ul/1ml RLT).
+☐ Add 2.0 ml Buffer RLT to the RNA prep and mix thoroughly.
+☐ Add 1.4 ml ethanol (96-100%) to the diluted RNA. Mix thoroughly.
+☐ Label 15 ml tubes from the kit and place midi columns in them
+☐ Apply sample to a Midi column, close tube gently and centrifuge for 20 min at 3000 rpm.
+☐ Discard the flow-through.
+☐ Add 2.5 ml Buffer RPE to the RNA easy column, close the centrifuge tube gently,
+incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm. Discard the flow-through.
+☐ Add another 2.5 ml Buffer RPE to the RNeasy column. Close the centrifuge tube
+gently, incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm, remove flow-through
+☐ Centrifuge again for another 5 min.
+☐ Label new 15 ml tubes from the kit.
+☐ Transfer the RNA easy column to a new tube and pipet 250 ul volume of
+RNase-free water directly onto the RNeasy silica-membrane incubate for 1 min
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ To the same tube add again 250 ul H2O, incubate for 1 min.
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ Label two sets of 1.5 ml Eppendorf tubes.
+☐ Transfer 490 ul to the one tube and 10 ul to another one. Use 10 ul tube for the RNA
+

+

Detailed descriptions of these procedures can be found under the ArrayExpress (http://www.ebi.ac.uk/aerep/?) protocol P-MEXP-4631 (Caldo et al. 2004). + +

Replication and Sample Balance: +

3 independent replicates of both parental cultivars Steptoe and Morex were generated for both tissues, embryo and seedling leaf. +

Experimental Design and Batch Structure: + +

+ + + +

    Downloading complete data set:

+
+

The following are ArrayExpress (http://www.ebi.ac.uk/aerep/?) experiment IDs: +E-TABM-111 (leaf, 41 chips) and E-TABM-112 (embryo derived, 156 chips).

+
+ + +

    About the array platform:

+ +
+

Affymetrix 22K Barley1 GeneChip probe array (http://www.affymetrix.com/products/arrays/specific/barley.affx ; Affymetrix product #900515 GeneChip Barley Genome Array) representing 21,439 non-redundant Barley1 exemplar sequences was derived from worldwide contribution of 350,000 high-quality ESTs from 84 cDNA libraries, in addition to 1,145 barley gene sequences from the National Center for Biotechnology Information non-redundant database (Close et al 2004). Abbreviated annotations were created based on the exemplar sequence homology by Arnis Druka using data from the Harvest (http://harvest.ucr.edu/) data depository. + +

+ + +

    About data processing:

+
+ + + + + + + + + + + + + + + + + +
Types of the expression data-sets
Data processing description
Barley1 Embryo gcRMA SCRI (Dec 06)
+Barley1 Leaf gcRMA SCRI (Dec 06)

 

+

The Affymetrix' CEL files that were generated using MAS 5.0 Suite were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) and processed using the RMA algorithm.

+

 

Barley1 Embryo MAS 5.0 SCRI (Dec 06)
+Barley1 Leaf MAS 5.0 SCRI (Dec 06)

 

+

The MAS 5.0 values were calculated from the DAT files using Affymetrix' MAS 5.0 Suite.

+

 

Barley1 Embryo0 gcRMA SCRI (Apr 06)
+Barley1 Leaf gcRMAn SCRI (Dec 06)

The Affymetrix' CEL files were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) software and processed using the RMA algorithm. Per-chip and per-gene normalization was done following the standard GeneSpring procedure (citation of the GeneSpring normalization description): + +

    +
  1. Values below 0.01 were set to 0.01. +
  2. Each measurement was divided by the 50.0th percentile of all measurements in that sample. +
  3. Each gene was divided by the median of its measurements in all samples. If the median of the raw values was below 10 then each measurement for that gene was divided by 10 if the numerator was above 10, otherwise the measurement was thrown out. +
+
+ + + +

    Data source acknowledgment:

+ +
+

Plant maintenance, tissue collection, RNA isolation, and data submission to ArrayExpress was done at SCRI by Arnis Druka with support from BBSRC/SEERAD grant + + +SCR/910/04 + +'The genetics of gene expression in barley' to Michael Kearsey (University of Birmingham, UK) and Robbie Waugh (SCRI, UK). Probe synthesis, labeling and hybridization were performed according to manufacturer’s protocols (Affymetrix, Santa Clara, CA) at the Iowa State University GeneChip Core facility (Rico Caldo and Roger Wise). ArrayExpress (EBI, UK) team members Tim Rayner, Helen Parkinson, and Alvis Brazma are acknowledged for excellent help with data submission to ArrayExpress. +

+ +

    Contact address:

+
+

Arnis Druka +
+Genetics Programme +
+Scottish Crop Research Institute +
+Invergowrie, Dundee DD2 5DA +
+Angus, Scotland, United Kingdom +
+Tel +44 01382 562731
+Fax +44 01382 568587
+adruka@scri.sari.ac.uk

+
+ +

    References:

+
+ +

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003 Apr;4(2):249-64.
+
Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schreiber A, Wise R, Close T, Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall D, Waugh R. (2006) An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics, + + +Jul;6(3):202-11. + +

Kleinhofs A, Kilian A, Saghai Maroof M, Biyashev R, Hayes P, Chen F, Lapitan N, Fenwick A, Blake T, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu BH, Sorrells M, Heun M, Franckowiak J, Hoffman D, Skadsen R, Steffenson B (1993) A molecular, isozyme, and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705-712. + +

Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16:2514-2528. + +

Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP. (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960-968. + +

Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392-401 + +

+ + +

+ +

    About this text file:

+
+

+This text file originally generated by Arnis Druka on May 8, 2006. Modified Aug1 by AD. Entered by RWW Aug 4, 2006. Modified by AD Jan 29, 2007, Feb 01, 2007.

+
+ + + + +

+ +
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/B150_K_0406_R.html b/web/dbdoc/B150_K_0406_R.html new file mode 100755 index 00000000..f44b41f8 --- /dev/null +++ b/web/dbdoc/B150_K_0406_R.html @@ -0,0 +1,2016 @@ + +GN INFO on: Barley 150 Embryo mRNA (Apr06) + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+ +

Affymetrix data set from SCRI, April - December 2006 + +modify this page

Accession number: GN114

+

Barley1 Embryo0 gcRMA SCRI (Apr 06) - integrated probe set value for each gene has been calculated using RMA algorithm (Irizarry et al 2003). RMA ignores MM probe signals. Descriptions of probe set signal calculation can be found on this page below, section 'About Data Processing'. +

+

    Summary:

+ +
+

The SCRI barley data set provides estimates of mRNA abundance in doubled haploid recombinant lines of cultivated barley. Embryo-derived tissues at four days after imbibition (150 lines) and seedling leaves at 12 days after imbibition (subset of 34 lines) and three biological replicates of each parental cultivar (Steptoe and Morex) for each tissue were used for the isolation of total RNA and hybridization to the Barley1 22K GeneChip. +

+ +

    About the lines used to generate this set of data:

+
+

The SM cross was originally made to map barley grain quality traits; Steptoe is high-yielding barley cultivar used for animal feeding, but Morex has good malting barley characteristics (Hayes et al 1993). Many agronomic quality traits have been mapped using this population (for the lists see BeerGenes web-site http://gnome.agrenv.mcgill.ca/bg/). + +

The sample used in this study consists of 150 Steptoe x Morex doubled haploid recombinant lines (Kleinhofs et al. 1993) was used to obtain embryo-derived tissue. For the seedling leaf tissue a subset of 35 lines was used. This subset was selected based on evenly spaced crossovers along each of seven barley chromosomes. The expression data of 11 DH lines has been removed from both, embryo and leaf, leaving for the analysis 129 lines with embryo expression data and a subset of 30 lines with seedling leaf expression data. The lines were removed from the analysis after error checking; discrepancies with genotyping data were found. We left all 150 lines in the embryo Apr06 data set and the full data set is available from the ArrayExpress. The following table lists line IDs and corresponding CEL file IDs, also indicating:
+1) +pedigree; shows the direction of the cross that was used to produce the original F1. The parental plants were given letter codes of A - Z. For example, SM1 was derived from an F1 that was generated by crossing Steptoe plant "B" as a female with Morex plant "F" as a male.
+2) +'minimapper' subset - MINI;
+3) lines that have expression data removed - ERROR: + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order # Line ID Permanent Oregon ID Cross direction
CEL file names
Mini-mapper set Error check
embryo data-set leaf data-setembryo data-setleaf data-set
1 SM001 2907001 Steptoe/Morex(BxF) AD_SCRI_82.CEL OK
2 SM002 2907002 Steptoe/Morex(BxF) AD_SCRI_1.CEL OK
3 SM003 2907003 Morex/Steptoe(CxF) AD_SCRI_19.CEL OK
4 SM004 2907004 Morex/Steptoe(CxF) AD_SCRI_3.CEL 0521-1_SetA1.CEL SMmini OK OK
5 SM005 2907005 Steptoe/Morex(BxH) AD_SCRI_88.CEL OK
6 SM006 2907006 Morex/Steptoe(CxF) AD_SCRI_48.CEL OK
7 SM007 2907007 Steptoe/Morex(BxH) AD_SCRI_35.CEL 0521-2_SetA2.CEL SMmini OK OK
8 SM009 2907009 Steptoe/Morex(BxF) AD_SCRI_2.CEL OK
9 SM010 2907010 Morex/Steptoe(IxE) AD_SCRI_42.CEL OK
10 SM011 2907011 Steptoe/Morex(QxG) AD_SCRI_10.CEL OK
11 SM012 2907012 Morex/Steptoe(CxF) AD_SCRI_45.CEL 0521-3_SetA3.CEL SMmini ERROR ERROR
12 SM013 2907013 Morex/Steptoe(IxE) AD_SCRI_78.CEL 0521-4_SetA4.CEL SMmini ERROR ERROR
13 SM014 2907014 Steptoe/Morex(BxH) AD_SCRI_18.CEL OK
14 SM015 2907015 Steptoe/Morex(BxH) AD_SCRI_5.CEL OK
15 SM016 2907016 Steptoe/Morex(BxH) AD_SCRI_21.CEL OK
16 SM020 2907020 Steptoe/Morex(OxJ) AD_SCRI_77.CEL OK
17 SM021 2907021 Morex/Steptoe(IxE) AD_SCRI_30.CEL OK
18 SM022 2907022 Morex/Steptoe(IxE) AD_SCRI_31.CEL 0521-5_SetA5.CEL SMmini OK OK
19 SM023 2907023 Steptoe/Morex(BxH) AD_SCRI_32.CEL OK
20 SM024 2907024 Morex/Steptoe(IxE) AD_SCRI_33.CEL 0521-6_SetA6.CEL SMmini OK OK
21 SM025 2907025 Morex/Steptoe(CxF) AD_SCRI_34.CEL OK
22 SM027 2907027 Steptoe/Morex(OxJ) AD_SCRI_12.CEL 0521-7_SetA7.CEL SMmini OK OK
23 SM030 2907030 Morex/Steptoe(IxE) AD_SCRI_79.CEL OK
24 SM031 2907031 Steptoe/Morex(OxJ) AD_SCRI_16.CEL OK
25 SM032 2907032 Morex/Steptoe(IxE) AD_SCRI_13.CEL OK
26 SM035 2907035 Morex/Steptoe(CxF) AD_SCRI_15.CEL ERROR
27 SM039 2907039 Morex/Steptoe(CxF) AD_SCRI_41.CEL OK
28 SM040 2907040 Steptoe/Morex(BxH) AD_SCRI_83.CEL OK
29 SM041 2907041 Steptoe/Morex(OxJ) AD_SCRI_11_redo.CEL 0521-8_SetA8.CEL SMmini OK OK
30 SM042 2907042 Morex/Steptoe(CxF) AD_SCRI_57.CEL OK
31 SM043 2907043 Morex/Steptoe(JxE) AD_SCRI_49.CEL 0521-9_SetA9.CEL SMmini OK OK
32 SM044 2907044 Steptoe/Morex(OxJ) AD_SCRI_50.CEL 0521-10_SetA10.CEL SMmini OK OK
33 SM045 2907045 Steptoe/Morex(BxH) AD_SCRI_51.CEL OK
34 SM046 2907046 Steptoe/Morex(OxJ) AD_SCRI_52.CEL 0521-11_SetA11.CEL SMmini OK OK
35 SM048 2907048 Steptoe/Morex(BxF) AD_SCRI_53.CEL ERROR
36 SM050 2907050 Morex/Steptoe(IxE) AD_SCRI_46.CEL OK
37 SM054 2907054 Morex/Steptoe(CxF) AD_SCRI_60.CEL OK
38 SM055 2907055 Steptoe/Morex(OxJ) AD_SCRI_55.CEL OK
39 SM056 2907056 Steptoe/Morex(BxH) AD_SCRI_23.CEL OK
40 SM057 2907057 Morex/Steptoe(CxF) AD_SCRI_24.CEL OK
41 SM058 2907058 Steptoe/Morex(BxF) AD_SCRI_22.CEL OK
42 SM059 2907059 Steptoe/Morex(BxH) AD_SCRI_27.CEL OK
43 SM061 2907061 Morex/Steptoe(LxF) AD_SCRI_81.CEL 0521-12_SetA12.CEL SMmini OK OK
44 SM062 2907062 Morex/Steptoe(CxF) AD_SCRI_44.CEL OK
45 SM063 2907063 Steptoe/Morex(OxJ) AD_SCRI_40.CEL 0521-13_SetA13.CEL SMmini OK OK
46 SM064 2907064 Morex/Steptoe(CxF) AD_SCRI_87_redo.CEL OK
47 SM065 2907065 Morex/Steptoe(CxF) AD_SCRI_54.CEL OK
48 SM067 2907067 Steptoe/Morex(OxJ) AD_SCRI_73.CEL OK
49 SM068 2907068 Steptoe/Morex(OxG) AD_SCRI_56.CEL ERROR
50 SM069 2907069 Steptoe/Morex(BxH) AD_SCRI_71.CEL OK
51 SM070 2907070 Steptoe/Morex(BxF) AD_SCRI_64.CEL OK
52 SM071 2907071 Steptoe/Morex(BxH) AD_SCRI_58.CEL OK
53 SM072 2907072 Morex/Steptoe(CxF) AD_SCRI_59.CEL OK
54 SM073 2907073 Steptoe/Morex(BxF) AD_SCRI_74.CEL 0521-14_SetA14.CEL SMmini OK ERROR
55 SM074 2907074 Morex/Steptoe(CxF) AD_SCRI_25.CEL 0521-15_SetA15.CEL SMmini OK OK
56 SM075 2907075 Steptoe/Morex(QxG) AD_SCRI_120.CEL OK
57 SM076 2907076 Steptoe/Morex(BxF) AD_SCRI_112.CEL OK
58 SM077 2907077 Morex/Steptoe(CxF) AD_SCRI_142.CEL OK
59 SM078 2907078 Steptoe/Morex(BxF) AD_SCRI_86.CEL OK
60 SM079 2907079 Morex/Steptoe(CxF) AD_SCRI_153.CEL 0521-16_SetA16.CEL SMmini OK ERROR
61 SM080 2907080 Steptoe/Morex(BxF) AD_SCRI_107.CEL OK
62 SM081 2907081 Morex/Steptoe(CxF) AD_SCRI_105.CEL OK
63 SM082 2907082 Steptoe/Morex(BxF) AD_SCRI_97.CEL OK
64 SM083 2907083 Steptoe/Morex(BxF) AD_SCRI_89.CEL OK
65 SM084 2907084 Morex/Steptoe(CxF) AD_SCRI_155.CEL OK
66 SM085 2907085 Morex/Steptoe(IxE) AD_SCRI_149.CEL 0521-17_SetA17.CEL SMmini OK OK
67 SM087 2907087 Steptoe/Morex(OxJ) AD_SCRI_113.CEL OK
68 SM088 2907088 Morex/Steptoe(CxF) AD_SCRI_93.CEL 0521-18_SetA18.CEL SMmini OK OK
69 SM089 2907089 Steptoe/Morex(OxJ) AD_SCRI_148.CEL 0521-19_SetA19.CEL SMmini OK OK
70 SM091 2907091 Morex/Steptoe(CxF) AD_SCRI_110.CEL OK
71 SM092 2907092 Steptoe/Morex(OxJ) AD_SCRI_7.CEL OK
72 SM093 2907093 Steptoe/Morex(BxF) AD_SCRI_122.CEL OK
73 SM094 2907094 Morex/Steptoe(CxF) AD_SCRI_150.CEL OK
74 SM097 2907097 Morex/Steptoe(CxF) AD_SCRI_158.CEL OK
75 SM098 2907098 Morex/Steptoe(CxF) AD_SCRI_121.CEL OK
76 SM099 2907099 Steptoe/Morex(QxG) AD_SCRI_137.CEL OK
77 SM103 2907103 Morex/Steptoe(IxE) AD_SCRI_156.CEL OK
78 SM104 2907104 Steptoe/Morex(BxH) AD_SCRI_70.CEL ERROR
79 SM105 2907105 Morex/Steptoe(IxE) AD_SCRI_69.CEL OK
80 SM110 2907110 Morex/Steptoe(CxF) AD_SCRI_75.CEL ERROR
81 SM112 2907112 Steptoe/Morex(BxF) AD_SCRI_84.CEL OK
82 SM116 2907116 Morex/Steptoe(CxF) AD_SCRI_117.CEL 0521-20_SetA20.CEL SMmini OK OK
83 SM120 2907120 Steptoe/Morex(OxJ) AD_SCRI_138.CEL OK
84 SM124 2907124 Steptoe/Morex(BxF) AD_SCRI_146.CEL OK
85 SM125 2907125 Morex/Steptoe(IxE) AD_SCRI_43.CEL OK
86 SM126 2907126 Steptoe/Morex(OxJ) AD_SCRI_144_redo.CEL OK
87 SM127 2907127 Steptoe/Morex(BxH) AD_SCRI_129.CEL OK
88 SM129 2907129 Steptoe/Morex(OxJ) AD_SCRI_132.CEL OK
89 SM130 2907130 Morex/Steptoe(CxF) AD_SCRI_101.CEL 0521-21_SetA21.CEL SMmini OK OK
90 SM131 2907131 Steptoe/Morex(OxJ) AD_SCRI_102.CEL OK
91 SM132 2907132 Steptoe/Morex(QxG) AD_SCRI_4_redo.CEL OK
92 SM133 2907133 Morex/Steptoe(CxF) AD_SCRI_157.CEL OK
93 SM134 2907134 Morex/Steptoe(IxE) AD_SCRI_159.CEL OK
94 SM135 2907135 Steptoe/Morex(BxF) AD_SCRI_72.CEL 0521-22_SetA22.CEL SMmini OK OK
95 SM136 2907136 Steptoe/Morex(QxG) AD_SCRI_123.CEL 0521-23_SetA23.CEL SMmini OK OK
96 SM137 2907137 Steptoe/Morex(BxH) AD_SCRI_39.CEL OK
97 SM139 2907139 Morex/Steptoe(CxF) AD_SCRI_133.CEL OK
98 SM140 2907140 Morex/Steptoe(CxF) AD_SCRI_134.CEL 0521-24_SetA24.CEL SMmini OK OK
99 SM141 2907141 Steptoe/Morex(BxH) AD_SCRI_136.CEL 0521-25_SetA25.CEL SMmini OK OK
100 SM142 2907142 Morex/Steptoe(IxE) AD_SCRI_6.CEL OK
101 SM143 2907143 Steptoe/Morex(BxH) AD_SCRI_145.CEL OK
102 SM144 2907144 Steptoe/Morex(BxF) AD_SCRI_103.CEL OK
103 SM145 2907145 Steptoe/Morex(QxG) AD_SCRI_108.CEL OK
104 SM146 2907146 Morex/Steptoe(BxF) AD_SCRI_91.CEL 0521-26_SetA26.CEL SMmini OK OK
105 SM147 2907147 Steptoe/Morex(OxJ) AD_SCRI_139.CEL OK
106 SM149 2907149 Steptoe/Morex(BxF) AD_SCRI_131.CEL ERROR
107 SM150 2907150 Morex/Steptoe(CxF) AD_SCRI_37.CEL OK
108 SM151 2907151 Morex/Steptoe(IxE) AD_SCRI_28.CEL OK
109 SM152 2907152 Steptoe/Morex(BxH) AD_SCRI_9_redo.CEL 0521-27_SetA27.CEL SMmini OK OK
110 SM153 2907153 Steptoe/Morex(BxH) AD_SCRI_135.CEL OK
111 SM154 2907154 Steptoe/Morex(BxH) AD_SCRI_114.CEL OK
112 SM155 2907155 Steptoe/Morex(BxH) AD_SCRI_119.CEL 0521-28_SetA28.CEL SMmini OK OK
113 SM156 2907156 Steptoe/Morex(BxH) AD_SCRI_140.CEL OK
114 SM157 2907157 Morex/Steptoe(CxF) AD_SCRI_106_redo.CEL OK
115 SM158 2907158 Morex/Steptoe(CxF) AD_SCRI_65.CEL OK
116 SM159 2907159 Morex/Steptoe(IxE) AD_SCRI_168.CEL OK
117 SM160 2907160 Steptoe/Morex(OxJ) AD_SCRI_47.CEL 0521-29_SetA29.CEL SMmini OK ERROR
118 SM161 2907161 Steptoe/Morex(BxH) AD_SCRI_76.CEL ERROR
119 SM162 2907162 Morex/Steptoe(CxF) AD_SCRI_147.CEL OK
120 SM164 2907164 Steptoe/Morex(OxJ) AD_SCRI_128.CEL OK
121 SM165 2907165 Steptoe/Morex(BxH) AD_SCRI_143.CEL OK OK
122 SM166 2907166 Morex/Steptoe(CxF) AD_SCRI_115.CEL OK
123 SM167 2907167 Steptoe/Morex(BxH) AD_SCRI_127.CEL 0521-30_SetA30.CEL SMmini OK OK
124 SM168 2907168 Steptoe/Morex(BxH) AD_SCRI_130.CEL OK
125 SM169 2907169 Morex/Steptoe(CxF) AD_SCRI_118.CEL 0521-31_SetA31.CEL SMmini OK OK
126 SM170 2907170 Steptoe/Morex(BxF) AD_SCRI_151.CEL OK
127 SM171 2907171 Steptoe/Morex(BxF) AD_SCRI_165.CEL ERROR
128 SM172 2907172 Steptoe/Morex(OxJ) AD_SCRI_152.CEL ERROR
129 SM173 2907173 Steptoe/Morex(OxJ) AD_SCRI_104.CEL 0521-32_SetA32.CEL SMmini OK OK
130 SM174 2907174 Steptoe/Morex(BxH) AD_SCRI_154.CEL OK
131 SM176 2907176 Morex/Steptoe(CxF) AD_SCRI_141.CEL OK
132 SM177 2907177 Morex/Steptoe(CxF) AD_SCRI_111.CEL 0521-33_SetA33.CEL SMmini OK OK
133 SM179 2907179 Morex/Steptoe(CxF) AD_SCRI_166.CEL OK
134 SM180 2907180 Morex/Steptoe(IxE) AD_SCRI_161.CEL OK
135 SM181 2907181 Morex/Steptoe(IxE) AD_SCRI_162.CEL OK
136 SM182 2907182 Morex/Steptoe(CxF) AD_SCRI_163.CEL OK
137 SM183 2907183 Morex/Steptoe(CxF) AD_SCRI_164.CEL OK
138 SM184 2907184 Morex/Steptoe(IxE) AD_SCRI_160.CEL 0521-34_SetA34.CEL SMmini OK OK
139 SM185 2907185 Morex/Steptoe(IxE) AD_SCRI_167.CEL OK
140 SM186 2907186 Morex/Steptoe(IxE) AD_SCRI_62.CEL OK
141 SM187 2907187 Morex/Steptoe(IxE) AD_SCRI_61.CEL OK
142 SM188 2907188 Morex/Steptoe(CxF) AD_SCRI_63.CEL OK
143 SM189 2907189 Steptoe/Morex(QxG) AD_SCRI_80.CEL OK
144 SM193 2907193 Morex/Steptoe(IxE) AD_SCRI_36.CEL OK
145 SM194 2907194 Steptoe/Morex(OxJ) AD_SCRI_29.CEL OK
146 SM196 2907196 Steptoe/Morex(BxF) AD_SCRI_26.CEL OK
147 SM197 2907197 Steptoe/Morex(BxF) AD_SCRI_85.CEL OK
148 SM198 2907198 Morex/Steptoe(IxE) AD_SCRI_8.CEL OK
149 SM199 2907199 Steptoe/Morex(BxF) AD_SCRI_20.CEL OK
150 SM200 2907200 Morex/Steptoe(IxE) AD_SCRI_38.CEL 0521-35_SetA35.CEL SMmini OK OK
parent Steptoe AD_SCRI_17.CEL 0521-36_SetA36.CEL
parent Steptoe AD_SCRI_66.CEL 0521-37_SetA37.CEL
parent Steptoe AD_SCRI_68.CEL 0521-38_SetA38.CEL
parent Morex AD_SCRI_116.CEL 0521-39_SetA39.CEL
parent Morex AD_SCRI_14.CEL 0521-40_SetA40.CEL
parent Morex AD_SCRI_67.CEL 0521-41_SetA41.CEL
+

+ + +

    About tissues used to generate this set of data:

+ +
+

Plant material according to the current plant ontologies: Embryo-derived tissues: whole plant (PO:0000003) at the development stage 1.05-coleoptile emerged from seed (GRO:0007056); Seedling leaves: primary shoot (PO:0006341) at the developmental stage 2.02-first leaf unfolded (GRO:0007060) (Druka et al. 2006). + +

To obtain embryo-derived tissue, growth room#2, AN building, SCRI, with the standard laboratory bench positioned in the middle of the room was used to germinate sterilized seeds. Seeds were placed between three layers of wet 3MM filter paper in the 156 10 mm Petri plates. Thirty to fifty seeds per line (per Petri plate) were used. Germination was in the dark, 16 hours at 17 deg C and 8 hours at 12 deg C. After 96 hours, embryo-derived tissue (mesocotyl, coleoptile, and seminal roots) from three grains was dissected and flash frozen in the liquid nitrogen. Germination and collection was repeated two more times. Complete randomization of the Petri plates was done for each germination event. Tissues from all three germinations (collections) were bulked before RNA isolation. Three replicates of the parental cultivars were germinated for each collection. +

To obtain seedling leaves, three Microclima 1000 growth chambers (Snijders Scientific B.V., Tilburg, Holland) were used for the experiment. Each cabinet accomodated 40 (13x13 cm) pots. Humidity was set to 70%, with light conditions for 16 hours light at 17C and 8 hours dark at 12C. The cycle started at 10 am with lights on. Light intensity was 337-377 mmol m-2 s-1, measured at the beginning of the experiment, 11 cm from the light source. Measurement was done using Sky Quantium light sensor at 15oC. Plants were placed 55 cm from the light source (from the bulb to the surface of the vermiculite). Ten sterilized seeds per pot were planted and 3 pots per genotype / per cabinet were used. After 12 days, leaf blade and sheath from 5-7 the same size plants was cut off, bulked and flash frozen in the liquid nitrogen. + +

+

+ +
+

RNA Sample Processing: +

Trizol RNA isolation and RNeasy clean up protocol for whole plants (embryo-derived tissue dissected from 4 days old germinating grains) and the seedling leaves (12 days after planting). +


+☐ Grind tissue (9 embryos) with a mortar and pestle in liquid nitrogen
+☐ Add 5 ml TRIzol (pre-heated to 60oC) to all samples, vortex until all the tissue is thawed, place in the 60oC waterbath..
+☐ Incubate samples at 60oC for 10 minutes, vortexing three times.
+☐ Centrifuge @ 4000 x rpm @ 4C for 30 minutes (in Eppendorf 5810R).
+☐ While centrifuging, label new set of 15 ml tubes
+☐ Transfer supernatant to 15 ml centrifuge tube
+☐ Add 1 ml of chloroform. Vortex the sample until color shade is uniform at least 5
+seconds, and incubate at room temperature for 5 minutes.
+☐ Centrifuge @ 4000 x rpm for 30 minutes @ 4oC.
+☐ While centrifuging, label new 15 ml tubes
+☐ Collect the upper aqueous layer (there will be about 3 mls) and transfer to a new 15 ml tube.
+☐ Add 0.6 volumes (2 ml) of isopropanol, mix gently, incubate at room temperature for 20 minutes.
+☐ Centrifuge @ 4000 rpm for 30 minutes @ 4oC.
+☐ Wash the pellet with 10 ml of cold 75% ethanol. Swirl & centrifuge at
+4000 rpm for 15 minutes @ 4oC.
+☐ Discard supernatant, centrifuge for 5 min, remove the rest of the ethanol
+☐ Air-dry the pellet for 10 minutes, inverted on a kimwipe.
+☐ Dissolve pellet in 400 ul of DEPC-treated H2O. Resuspend by pipeting up & down a
+few times.
+☐ Add 2 ul SuperaseIn. Incubate at 60oC for 10 minutes to resuspend.
+☐ Set water bath to 37oC.
+☐ Add 50 ul 10X DnaseI Buffer, 45 ul H2O and 5 ul of DnaseI, incubate at 37oC for 1 hr.
+☐ Prepare Buffer RLT (Rneasy Clean-up Midi Kit) by adding b-mercaptoethanol (10ul/1ml RLT).
+☐ Add 2.0 ml Buffer RLT to the RNA prep and mix thoroughly.
+☐ Add 1.4 ml ethanol (96-100%) to the diluted RNA. Mix thoroughly.
+☐ Label 15 ml tubes from the kit and place midi columns in them
+☐ Apply sample to a Midi column, close tube gently and centrifuge for 20 min at 3000 rpm.
+☐ Discard the flow-through.
+☐ Add 2.5 ml Buffer RPE to the RNA easy column, close the centrifuge tube gently,
+incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm. Discard the flow-through.
+☐ Add another 2.5 ml Buffer RPE to the RNeasy column. Close the centrifuge tube
+gently, incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm, remove flow-through
+☐ Centrifuge again for another 5 min.
+☐ Label new 15 ml tubes from the kit.
+☐ Transfer the RNA easy column to a new tube and pipet 250 ul volume of
+RNase-free water directly onto the RNeasy silica-membrane incubate for 1 min
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ To the same tube add again 250 ul H2O, incubate for 1 min.
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ Label two sets of 1.5 ml Eppendorf tubes.
+☐ Transfer 490 ul to the one tube and 10 ul to another one. Use 10 ul tube for the RNA
+

+

Detailed descriptions of these procedures can be found under the ArrayExpress (http://www.ebi.ac.uk/aerep/?) protocol P-MEXP-4631 (Caldo et al. 2004). + +

Replication and Sample Balance: +

3 independent replicates of both parental cultivars Steptoe and Morex were generated for both tissues, embryo and seedling leaf. +

Experimental Design and Batch Structure: + +

+ + + +

    Downloading complete data set:

+
+

The following are ArrayExpress (http://www.ebi.ac.uk/aerep/?) experiment IDs: +E-TABM-111 (leaf, 41 chips) and E-TABM-112 (embryo derived, 156 chips).

+
+ + +

    About the array platform:

+ +
+

Affymetrix 22K Barley1 GeneChip probe array (http://www.affymetrix.com/products/arrays/specific/barley.affx ; Affymetrix product #900515 GeneChip Barley Genome Array) representing 21,439 non-redundant Barley1 exemplar sequences was derived from worldwide contribution of 350,000 high-quality ESTs from 84 cDNA libraries, in addition to 1,145 barley gene sequences from the National Center for Biotechnology Information non-redundant database (Close et al 2004). Abbreviated annotations were created based on the exemplar sequence homology by Arnis Druka using data from the Harvest (http://harvest.ucr.edu/) data depository. + +

+ + +

    About data processing:

+
+ + + + + + + + + + + + + + + + + +
Types of the expression data-sets
Data processing description
Barley1 Embryo gcRMA SCRI (Dec 06)
+Barley1 Leaf gcRMA SCRI (Dec 06)

 

+

The Affymetrix' CEL files that were generated using MAS 5.0 Suite were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) and processed using the RMA algorithm.

+

 

Barley1 Embryo MAS 5.0 SCRI (Dec 06)
+Barley1 Leaf MAS 5.0 SCRI (Dec 06)

 

+

The MAS 5.0 values were calculated from the DAT files using Affymetrix' MAS 5.0 Suite.

+

 

Barley1 Embryo0 gcRMA SCRI (Apr 06)
+Barley1 Leaf gcRMAn SCRI (Dec 06)

The Affymetrix' CEL files were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) software and processed using the RMA algorithm. Per-chip and per-gene normalization was done following the standard GeneSpring procedure (citation of the GeneSpring normalization description): + +

    +
  1. Values below 0.01 were set to 0.01. +
  2. Each measurement was divided by the 50.0th percentile of all measurements in that sample. +
  3. Each gene was divided by the median of its measurements in all samples. If the median of the raw values was below 10 then each measurement for that gene was divided by 10 if the numerator was above 10, otherwise the measurement was thrown out. +
+
+ + + +

    Data source acknowledgment:

+ +
+

Plant maintenance, tissue collection, RNA isolation, and data submission to ArrayExpress was done at SCRI by Arnis Druka with support from BBSRC/SEERAD grant + + +SCR/910/04 + +'The genetics of gene expression in barley' to Michael Kearsey (University of Birmingham, UK) and Robbie Waugh (SCRI, UK). Probe synthesis, labeling and hybridization were performed according to manufacturer’s protocols (Affymetrix, Santa Clara, CA) at the Iowa State University GeneChip Core facility (Rico Caldo and Roger Wise). ArrayExpress (EBI, UK) team members Tim Rayner, Helen Parkinson, and Alvis Brazma are acknowledged for excellent help with data submission to ArrayExpress. +

+ +

    Contact address:

+
+

Arnis Druka +
+Genetics Programme +
+Scottish Crop Research Institute +
+Invergowrie, Dundee DD2 5DA +
+Angus, Scotland, United Kingdom +
+Tel +44 01382 562731
+Fax +44 01382 568587
+adruka@scri.sari.ac.uk

+
+ +

    References:

+
+ +

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003 Apr;4(2):249-64.
+
Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schreiber A, Wise R, Close T, Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall D, Waugh R. (2006) An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics, + + +Jul;6(3):202-11. + +

Kleinhofs A, Kilian A, Saghai Maroof M, Biyashev R, Hayes P, Chen F, Lapitan N, Fenwick A, Blake T, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu BH, Sorrells M, Heun M, Franckowiak J, Hoffman D, Skadsen R, Steffenson B (1993) A molecular, isozyme, and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705-712. + +

Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16:2514-2528. + +

Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP. (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960-968. + +

Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392-401 + +

+ + +

+ +

    About this text file:

+
+

+This text file originally generated by Arnis Druka on May 8, 2006. Modified Aug1 by AD. Entered by RWW Aug 4, 2006. Modified by AD Jan 29, 2007, Feb 01, 2007.

+
+ + + + +

+ +
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/B150_K_1206_R.html b/web/dbdoc/B150_K_1206_R.html new file mode 100755 index 00000000..40c534c8 --- /dev/null +++ b/web/dbdoc/B150_K_1206_R.html @@ -0,0 +1,233 @@ + +Barley 150 Embryo mRNA (Dec06) + + + + + +GN INFO on: Barley 150 Embryo mRNA (Apr06) + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+ +

Genetics of mRNA abundance in barley +
Affymetrix RMA data set from SCRI, December 2006 + + modify this page

+ + +

    Summary:

+ +
+

PRELIMINARY TEXT: The December 2006 SCRI barley data set was generated to provide estimates of mRNA abundance in doubled haploid recombinant lines of cultivated barley. Embryo-derived tissues at four days after imbibition (150 lines) and seedling leaves at 12 days after imbibition (subset of 34 lines) and three biological replicates of each parental cultivar (Steptoe and Morex) for each tissue were used for the isolation of total RNA and hybridization to the Barley1 22K GeneChip. + +

ARNIS: Please revise and update this text. I copied the April 2006 data and have NOT made any modifications below. + +

+ +

    About the lines used to generate this set of data:

+ +
+

The SM cross was originally made to map barley grain quality traits; Steptoe is high-yielding barley cultivar used for animal feeding, but Morex has good malting barley characteristics (Hayes et al 1993). Many agronomic quality traits have been mapped using this population (for the lists see BeerGenes web-site http://gnome.agrenv.mcgill.ca/bg/). + +

The sample used in this study consists of 150 Steptoe x Morex doubled haploid recombinant lines (Kleinhofs et al. 1993) was used to obtain embryo-derived tissue. For the seedling leaf tissue a subset of 35 lines was used. This subset was selected based on evenly spaced crossovers along each of seven barley chromosomes. The following are the IDs of the 35 line subset: +

+SM004 SM007 SM012 SM013 SM022 SM024 SM027 SM041 SM043 SM044 SM046 SM061 SM063 SM073 SM074 SM079 SM085 SM088 SM089 SM116 SM130 SM135 SM136 SM140 SM141 SM146 SM152 SM155 SM160 SM167 SM169 SM173 SM177 SM184 SM200. + +

Line SM073 has been removed from the analysis of the leaf tissue because it appeared to be a duplicate of SM074, but the data are available from the ArrayExpress. + +

The following classical phenotypes have also been deposited in GeneNetwork in the Phenotype file. Full descriptions of the phenotyping procedures are available from Hayes et al. (1993): + +

    +
  1. Grain yield (MT/ha) +
  2. Lodging (%) +
  3. Height (cm) +
  4. Heading date (days after January 1) +
  5. Grain protein (%) +
  6. Alpha amylase (20 Deg units) +
  7. Diastatic power (Deg) +
  8. Malt extract (%) +
+ +

Agronomic and malting quality traits were measured in 16 and 9 environments, respectively. The phenotype data files are coded for each environment as follows: +Environment # + +

+
…_01 Crookston, Minnesota +
…_02 Ithaca, New York +
…_03 Guelph, Ontario +
…_04 Pullman, Washington +
…_05 Brandon, Manitoba +
…_06 Outlook, Saskatchewan +
…_07 Goodale, Saskatchewan +
…_08 Saskatoon, Saskatchewan +
…_09 Tetonia, Idaho +
…_10 Bozeman, Montana (irrigated) +
…_11 Bozeman, Montana (dryland) +
…_12 Aberdeen, Idaho +
…_13 Klamath Falls, Oregon +
…_14 Pullman, Washington +
…_15 Bozeman, Montana (irrigated) +
…_16 Bozeman, Montana (dryland) +
+
+ + +

    About tissues used to generate this set of data:

+ +
+

Plant material according to the current plant ontologies: Embryo-derived tissues: whole plant (PO:0000003) at the development stage 1.05-coleoptile emerged from seed (GRO:0007056); Seedling leaves: primary shoot (PO:0006341) at the developmental stage 2.02-first leaf unfolded (GRO:0007060) (Druka et al. 2006). + +

To obtain seedling leaves, three Microclima 1000 growth chambers (Snijders Scientific B.V., Tilburg, Holland) were used for the experiment. Each cabinet accomodated 40 (13x13 cm) pots. Humidity was set to 70%, with light conditions for 16 hours light at 17C and 8 hours dark at 12C. The cycle started at 10 am with lights on. Light intensity was 337-377 mmol m-2 s-1, measured at the beginning of the experiment, 11 cm from the light source. Measurement was done using Sky Quantium light sensor at 15oC. Plants were placed 55 cm from the light source (from the bulb to the surface of the vermiculite). Ten sterilized seeds per pot were planted and 3 pots per genotype / per cabinet were used. After 12 days, leaf blade and sheath from 5-7 the same size plants was cut off, bulked and flash frozen in the liquid nitrogen. + +

To obtain embryo-derived tissue, growth room#2, AN building, SCRI, with the standard laboratory bench positioned in the middle of the room was used to germinate sterilized seeds. Seeds were placed between three layers of wet 3MM filter paper in the 156 10 mm Petri plates. Thirty to fifty seeds per line (per Petri plate) were used. Germination was in the dark, 16 hours at 17 deg C and 8 hours at 12 deg C. After 96 hours, embryo-derived tissue (mesocotyl, coleoptile, and seminal roots) from three grains was dissected and flash frozen in the liquid nitrogen. Germination and collection was repeated two more times. Complete randomization of the Petri plates was done for each germination event. Tissues from all three germinations (collections) were bulked before RNA isolation. Three replicates of the parental cultivars were germinated for each collection. + +

+ +
+

RNA Sample Processing: +

Detailed descriptions of these procedures can be found under the ArrayExpress (http://www.ebi.ac.uk/aerep/?) protocol P-MEXP-4631 (Caldo et al. 2004). + +

Replication and Sample Balance: + +

Experimental Design and Batch Structure: + +

+ + + +

    Downloading all data:

+
+

The following are ArrayExpress (http://www.ebi.ac.uk/aerep/?) experiment IDs: +E-TABM-111 (leaf, 41 chips) and E-TABM-112 (embryo derived, 156 chips). Line SM073 was not used in this GeneNetwork data set because it is suspected replicate of SM074. +

+
+ + +

    About the array platform:

+ +
+

Affymetrix 22K Barley1 GeneChip probe array (http://www.affymetrix.com/products/arrays/specific/barley.affx ; Affymetrix product #900515 GeneChip Barley Genome Array) representing 21,439 non-redundant Barley1 exemplar sequences was derived from worldwide contribution of 350,000 high-quality ESTs from 84 cDNA libraries, in addition to 1,145 barley gene sequences from the National Center for Biotechnology Information non-redundant database (Close et al 2004). Abbreviated annotations were created based on the exemplar sequence homology by Arnis Druka using data from the Harvest (http://harvest.ucr.edu/) data depository. + +

+ + +

    About data processing:

+ +
+

The CEL files were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) software and processed using the RMA algorithm. Per-chip and per-gene normalization was done following the standard GeneSpring procedure (citation of the GeneSpring normalization description): +

    +
  1. Values below 0.01 were set to 0.01. +
  2. Each measurement was divided by the 50.0th percentile of all measurements in that sample. +
  3. Each gene was divided by the median of its measurements in all samples. If the median of the raw values was below 10 then each measurement for that gene was divided by 10 if the numerator was above 10, otherwise the measurement was thrown out. +
+
+ + + +

    Data source acknowledgment:

+ +
+

Plant maintenance, tissue collection, RNA isolation, and data preparation for submission to GeneNetwork was done at SCRI by Arnis Druka with support from BBSRC/SEERAD grant to Prof. Michael Kearsey (University of Birmingham, UK) and Dr. Robbie Waugh (SCRI, UK). Probe synthesis, labeling and hybridization were performed according to manufacturer’s protocols (Affymetrix, Santa Clara, CA) at the Iowa State University GeneChip Core facility (Rico Caldo and Roger Wise). ArrayExpress (EBI, UK) team members Tim Rayner, Helen Parkinson, and Alvis Brazma are acknowledged for excellent help with data submission to Arrayexpress. +

+ +

    Contact address:

+
+
Arnis Druka +
Genetics Programme +
Scottish Crop Research Institute +
Invergowrie, Dundee DD2 5DA +
Angus, Scotland, United Kingdom +
Tel +44 01382 562731 +
adruka@scri.sari.ac.uk +
+ +

    References:

+
+ +

Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schreiber A, Wise R, Close T, Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall D, Waugh R. (2006) An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics, in press. + +

Kleinhofs A, Kilian A, Saghai Maroof M, Biyashev R, Hayes P, Chen F, Lapitan N, Fenwick A, Blake T, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu BH, Sorrells M, Heun M, Franckowiak J, Hoffman D, Skadsen R, Steffenson B (1993) A molecular, isozyme, and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705-712. + +

Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16:2514-2528. + +

Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP. (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960-968. + +

Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392-401 + +

+ + +

+ +

    About this text file:

+

+This text file originally generated by Arnis Druka on May 8, 2006. Modified Aug1 by AD. Entered by RWW Aug 4, 2006. +

+ + + + +

+ +
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/B1LI0809M5.html b/web/dbdoc/B1LI0809M5.html new file mode 100755 index 00000000..272fba39 --- /dev/null +++ b/web/dbdoc/B1LI0809M5.html @@ -0,0 +1,91 @@ + + +Barley1 Leaf INOC Pgt TTKS (aka isolate Ug99) MAS5 (Aug09) + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + +

Barley1 Leaf INOC Pgt TTKS (aka isolate Ug99) MAS5 (Aug09) (accession number: GN235) + modify this page

+ +

+Paper is being submitted for publication.

+
+ + +
Acknowledgment of Data Use and Disclaimer: +
+ +

Availability of this data and information does not constitute scientific publication. We request that information derived from it not be published prior to our publication without permission (see below) or 12 months from the time of display whichever is the sooner.

+ +Our policy is to release data in a timely and prompt manner to aid the progress of research in plant-pathogen interactions. However, it is not intended to allow others to preempt our scientific publications by rushing to publication in advance of our own efforts. +

+ + +
+
+ + + + + + +
+
    + +
+
+ +
+ + + + + + + + + + diff --git a/web/dbdoc/B1LI0809R.html b/web/dbdoc/B1LI0809R.html new file mode 100755 index 00000000..2dd1b5d8 --- /dev/null +++ b/web/dbdoc/B1LI0809R.html @@ -0,0 +1,116 @@ + +Barley1 Leaf INOC Pgt TTKS (aka isolate Ug99) RMA (Aug09) + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + +

Barley1 Leaf INOC Pgt TTKS (aka isolate Ug99) RMA (Aug09) (accession number: GN236) + +modify this page

+
+ +

+Leaf mRNA data was generated by Roger Wise and colleagues. Please reference the key publications below that describes these data and the experimental design in more detail: + +

Moscou MJ, Lauter N, Steffenson B, Wise RP (2011) Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons. PLoS Genet 7:e1002208 +PDF + +

Data were entered into GeneNetwork by Roger Wise, Rob Williams, and colleagues. All MIAME-compliant GeneChip profiling data are available as accession BB64 at the PLEXdb expression resource for plants and plant pathogens (www.plexdb.org), accession GSE20416 at NCBI-GEO, as well as accessions GN235, GN236, GN237, GN238 at GeneNetwork (www.genenetwork.org). + +

+Abstract +
+Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host–pathogen interaction with enhancement of R-gene mediated resistance. + +

+ +

Corresponding data on Q/SM resistance to UG99 infection has been generated by Brian Steffenson. The key publication on phenotyping is (not yet entered into GeneNetwork) + +

Steffenson BJ, Jin Y, Brueggeman RS, Kleinhofs A, Sun Y (2009) Resistance to stem rust race TTKSK maps to the rpg4/Rpg5 complex of chromosome 5H of barley. Phytopathology 99:1135-41 + + +

+ + + + + + +
+
+ + + + + + +
+
    + +
+
+ +
+ + + + + + + + + + diff --git a/web/dbdoc/B1MI0809M5.html b/web/dbdoc/B1MI0809M5.html new file mode 100755 index 00000000..08348cee --- /dev/null +++ b/web/dbdoc/B1MI0809M5.html @@ -0,0 +1,90 @@ + + +Barley1 Leaf MOCK Pgt TTKS MAS5 (Aug09) + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + +

Barley1 Leaf MOCK Pgt TTKS MAS5 (Aug09) (accession number: GN237) + modify this page

+

+Paper is being submitted for publication.

+
+ + +
Acknowledgment of Data Use and Disclaimer: +
+ +

Availability of this data and information does not constitute scientific publication. We request that information derived from it not be published prior to our publication without permission (see below) or 12 months from the time of display whichever is the sooner.

+ +Our policy is to release data in a timely and prompt manner to aid the progress of research in plant-pathogen interactions. However, it is not intended to allow others to preempt our scientific publications by rushing to publication in advance of our own efforts. +

+ + +
+
+ + + + + + +
+
    + +
+
+ +
+ + + + + + + + + + diff --git a/web/dbdoc/B1MI0809R.html b/web/dbdoc/B1MI0809R.html new file mode 100755 index 00000000..7cd917fc --- /dev/null +++ b/web/dbdoc/B1MI0809R.html @@ -0,0 +1,90 @@ + + +Barley1 Leaf MOCK Pgt TTKS RMA (Aug09) + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + +

Barley1 Leaf MOCK Pgt TTKS RMA (Aug09) (accession number: GN238) + modify this page

+

+Paper is being submitted for publication.

+
+ + +
Acknowledgment of Data Use and Disclaimer: +
+ +

Availability of this data and information does not constitute scientific publication. We request that information derived from it not be published prior to our publication without permission (see below) or 12 months from the time of display whichever is the sooner.

+ +Our policy is to release data in a timely and prompt manner to aid the progress of research in plant-pathogen interactions. However, it is not intended to allow others to preempt our scientific publications by rushing to publication in advance of our own efforts. +

+ + +
+
+ + + + + + +
+
    + +
+
+ +
+ + + + + + + + + + diff --git a/web/dbdoc/B30_K_1206_M.html b/web/dbdoc/B30_K_1206_M.html new file mode 100755 index 00000000..96691fb1 --- /dev/null +++ b/web/dbdoc/B30_K_1206_M.html @@ -0,0 +1,2012 @@ + +GN INFO on: Barley 150 Embryo mRNA (Apr06) + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+ +

Affymetrix data set from SCRI, April - December 2006 + +modify this page

Accession number: GN127

+

Barley1 Leaf MAS 5.0 SCRI (Dec 06) - integrated probe set value for each gene has been calculated using MAS 5.0 algorithm which uses pixel values from both, PM and MM probes. Descriptions of probe set signal calculation can be found on this page below, section 'About Data Processing'. +

+

    Summary:

+ +
+

The SCRI barley data set provides estimates of mRNA abundance in doubled haploid recombinant lines of cultivated barley. Embryo-derived tissues at four days after imbibition (150 lines) and seedling leaves at 12 days after imbibition (subset of 34 lines) and three biological replicates of each parental cultivar (Steptoe and Morex) for each tissue were used for the isolation of total RNA and hybridization to the Barley1 22K GeneChip (GEO GPL1340). +

+ +

    About the lines used to generate this set of data:

+
+

The SM cross was originally made to map barley grain quality traits; Steptoe is high-yielding barley cultivar used for animal feeding, but Morex has good malting barley characteristics (Hayes et al 1993). Many agronomic quality traits have been mapped using this population (for the lists see BeerGenes web-site http://gnome.agrenv.mcgill.ca/bg/). + +

The sample used in this study consists of 150 Steptoe x Morex doubled haploid recombinant lines (Kleinhofs et al. 1993) was used to obtain embryo-derived tissue. For the seedling leaf tissue a subset of 35 lines was used. This subset was selected based on evenly spaced crossovers along each of seven barley chromosomes. The expression data of 11 DH lines has been removed from both, embryo and leaf, leaving for the analysis 129 lines with embryo expression data and a subset of 30 lines with seedling leaf expression data. The lines were removed from the analysis after error checking; discrepancies with genotyping data were found. We left all 150 lines in the embryo Apr06 data set and the full data set is available from the ArrayExpress. The following table lists line IDs and corresponding CEL file IDs, also indicating:
+1) +pedigree; shows the direction of the cross that was used to produce the original F1. The parental plants were given letter codes of A - Z. For example, SM1 was derived from an F1 that was generated by crossing Steptoe plant "B" as a female with Morex plant "F" as a male.
+2) +'minimapper' subset - MINI;
+3) lines that have expression data removed - ERROR: + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order # Line ID Permanent Oregon ID Cross direction
CEL file names
Mini-mapper set Error check
embryo data-set leaf data-setembryo data-setleaf data-set
1 SM001 2907001 Steptoe/Morex(BxF) AD_SCRI_82.CEL OK
2 SM002 2907002 Steptoe/Morex(BxF) AD_SCRI_1.CEL OK
3 SM003 2907003 Morex/Steptoe(CxF) AD_SCRI_19.CEL OK
4 SM004 2907004 Morex/Steptoe(CxF) AD_SCRI_3.CEL 0521-1_SetA1.CEL SMmini OK OK
5 SM005 2907005 Steptoe/Morex(BxH) AD_SCRI_88.CEL OK
6 SM006 2907006 Morex/Steptoe(CxF) AD_SCRI_48.CEL OK
7 SM007 2907007 Steptoe/Morex(BxH) AD_SCRI_35.CEL 0521-2_SetA2.CEL SMmini OK OK
8 SM009 2907009 Steptoe/Morex(BxF) AD_SCRI_2.CEL OK
9 SM010 2907010 Morex/Steptoe(IxE) AD_SCRI_42.CEL OK
10 SM011 2907011 Steptoe/Morex(QxG) AD_SCRI_10.CEL OK
11 SM012 2907012 Morex/Steptoe(CxF) AD_SCRI_45.CEL 0521-3_SetA3.CEL SMmini ERROR ERROR
12 SM013 2907013 Morex/Steptoe(IxE) AD_SCRI_78.CEL 0521-4_SetA4.CEL SMmini ERROR ERROR
13 SM014 2907014 Steptoe/Morex(BxH) AD_SCRI_18.CEL OK
14 SM015 2907015 Steptoe/Morex(BxH) AD_SCRI_5.CEL OK
15 SM016 2907016 Steptoe/Morex(BxH) AD_SCRI_21.CEL OK
16 SM020 2907020 Steptoe/Morex(OxJ) AD_SCRI_77.CEL OK
17 SM021 2907021 Morex/Steptoe(IxE) AD_SCRI_30.CEL OK
18 SM022 2907022 Morex/Steptoe(IxE) AD_SCRI_31.CEL 0521-5_SetA5.CEL SMmini OK OK
19 SM023 2907023 Steptoe/Morex(BxH) AD_SCRI_32.CEL OK
20 SM024 2907024 Morex/Steptoe(IxE) AD_SCRI_33.CEL 0521-6_SetA6.CEL SMmini OK OK
21 SM025 2907025 Morex/Steptoe(CxF) AD_SCRI_34.CEL OK
22 SM027 2907027 Steptoe/Morex(OxJ) AD_SCRI_12.CEL 0521-7_SetA7.CEL SMmini OK OK
23 SM030 2907030 Morex/Steptoe(IxE) AD_SCRI_79.CEL OK
24 SM031 2907031 Steptoe/Morex(OxJ) AD_SCRI_16.CEL OK
25 SM032 2907032 Morex/Steptoe(IxE) AD_SCRI_13.CEL OK
26 SM035 2907035 Morex/Steptoe(CxF) AD_SCRI_15.CEL ERROR
27 SM039 2907039 Morex/Steptoe(CxF) AD_SCRI_41.CEL OK
28 SM040 2907040 Steptoe/Morex(BxH) AD_SCRI_83.CEL OK
29 SM041 2907041 Steptoe/Morex(OxJ) AD_SCRI_11_redo.CEL 0521-8_SetA8.CEL SMmini OK OK
30 SM042 2907042 Morex/Steptoe(CxF) AD_SCRI_57.CEL OK
31 SM043 2907043 Morex/Steptoe(JxE) AD_SCRI_49.CEL 0521-9_SetA9.CEL SMmini OK OK
32 SM044 2907044 Steptoe/Morex(OxJ) AD_SCRI_50.CEL 0521-10_SetA10.CEL SMmini OK OK
33 SM045 2907045 Steptoe/Morex(BxH) AD_SCRI_51.CEL OK
34 SM046 2907046 Steptoe/Morex(OxJ) AD_SCRI_52.CEL 0521-11_SetA11.CEL SMmini OK OK
35 SM048 2907048 Steptoe/Morex(BxF) AD_SCRI_53.CEL ERROR
36 SM050 2907050 Morex/Steptoe(IxE) AD_SCRI_46.CEL OK
37 SM054 2907054 Morex/Steptoe(CxF) AD_SCRI_60.CEL OK
38 SM055 2907055 Steptoe/Morex(OxJ) AD_SCRI_55.CEL OK
39 SM056 2907056 Steptoe/Morex(BxH) AD_SCRI_23.CEL OK
40 SM057 2907057 Morex/Steptoe(CxF) AD_SCRI_24.CEL OK
41 SM058 2907058 Steptoe/Morex(BxF) AD_SCRI_22.CEL OK
42 SM059 2907059 Steptoe/Morex(BxH) AD_SCRI_27.CEL OK
43 SM061 2907061 Morex/Steptoe(LxF) AD_SCRI_81.CEL 0521-12_SetA12.CEL SMmini OK OK
44 SM062 2907062 Morex/Steptoe(CxF) AD_SCRI_44.CEL OK
45 SM063 2907063 Steptoe/Morex(OxJ) AD_SCRI_40.CEL 0521-13_SetA13.CEL SMmini OK OK
46 SM064 2907064 Morex/Steptoe(CxF) AD_SCRI_87_redo.CEL OK
47 SM065 2907065 Morex/Steptoe(CxF) AD_SCRI_54.CEL OK
48 SM067 2907067 Steptoe/Morex(OxJ) AD_SCRI_73.CEL OK
49 SM068 2907068 Steptoe/Morex(OxG) AD_SCRI_56.CEL ERROR
50 SM069 2907069 Steptoe/Morex(BxH) AD_SCRI_71.CEL OK
51 SM070 2907070 Steptoe/Morex(BxF) AD_SCRI_64.CEL OK
52 SM071 2907071 Steptoe/Morex(BxH) AD_SCRI_58.CEL OK
53 SM072 2907072 Morex/Steptoe(CxF) AD_SCRI_59.CEL OK
54 SM073 2907073 Steptoe/Morex(BxF) AD_SCRI_74.CEL 0521-14_SetA14.CEL SMmini OK ERROR
55 SM074 2907074 Morex/Steptoe(CxF) AD_SCRI_25.CEL 0521-15_SetA15.CEL SMmini OK OK
56 SM075 2907075 Steptoe/Morex(QxG) AD_SCRI_120.CEL OK
57 SM076 2907076 Steptoe/Morex(BxF) AD_SCRI_112.CEL OK
58 SM077 2907077 Morex/Steptoe(CxF) AD_SCRI_142.CEL OK
59 SM078 2907078 Steptoe/Morex(BxF) AD_SCRI_86.CEL OK
60 SM079 2907079 Morex/Steptoe(CxF) AD_SCRI_153.CEL 0521-16_SetA16.CEL SMmini OK ERROR
61 SM080 2907080 Steptoe/Morex(BxF) AD_SCRI_107.CEL OK
62 SM081 2907081 Morex/Steptoe(CxF) AD_SCRI_105.CEL OK
63 SM082 2907082 Steptoe/Morex(BxF) AD_SCRI_97.CEL OK
64 SM083 2907083 Steptoe/Morex(BxF) AD_SCRI_89.CEL OK
65 SM084 2907084 Morex/Steptoe(CxF) AD_SCRI_155.CEL OK
66 SM085 2907085 Morex/Steptoe(IxE) AD_SCRI_149.CEL 0521-17_SetA17.CEL SMmini OK OK
67 SM087 2907087 Steptoe/Morex(OxJ) AD_SCRI_113.CEL OK
68 SM088 2907088 Morex/Steptoe(CxF) AD_SCRI_93.CEL 0521-18_SetA18.CEL SMmini OK OK
69 SM089 2907089 Steptoe/Morex(OxJ) AD_SCRI_148.CEL 0521-19_SetA19.CEL SMmini OK OK
70 SM091 2907091 Morex/Steptoe(CxF) AD_SCRI_110.CEL OK
71 SM092 2907092 Steptoe/Morex(OxJ) AD_SCRI_7.CEL OK
72 SM093 2907093 Steptoe/Morex(BxF) AD_SCRI_122.CEL OK
73 SM094 2907094 Morex/Steptoe(CxF) AD_SCRI_150.CEL OK
74 SM097 2907097 Morex/Steptoe(CxF) AD_SCRI_158.CEL OK
75 SM098 2907098 Morex/Steptoe(CxF) AD_SCRI_121.CEL OK
76 SM099 2907099 Steptoe/Morex(QxG) AD_SCRI_137.CEL OK
77 SM103 2907103 Morex/Steptoe(IxE) AD_SCRI_156.CEL OK
78 SM104 2907104 Steptoe/Morex(BxH) AD_SCRI_70.CEL ERROR
79 SM105 2907105 Morex/Steptoe(IxE) AD_SCRI_69.CEL OK
80 SM110 2907110 Morex/Steptoe(CxF) AD_SCRI_75.CEL ERROR
81 SM112 2907112 Steptoe/Morex(BxF) AD_SCRI_84.CEL OK
82 SM116 2907116 Morex/Steptoe(CxF) AD_SCRI_117.CEL 0521-20_SetA20.CEL SMmini OK OK
83 SM120 2907120 Steptoe/Morex(OxJ) AD_SCRI_138.CEL OK
84 SM124 2907124 Steptoe/Morex(BxF) AD_SCRI_146.CEL OK
85 SM125 2907125 Morex/Steptoe(IxE) AD_SCRI_43.CEL OK
86 SM126 2907126 Steptoe/Morex(OxJ) AD_SCRI_144_redo.CEL OK
87 SM127 2907127 Steptoe/Morex(BxH) AD_SCRI_129.CEL OK
88 SM129 2907129 Steptoe/Morex(OxJ) AD_SCRI_132.CEL OK
89 SM130 2907130 Morex/Steptoe(CxF) AD_SCRI_101.CEL 0521-21_SetA21.CEL SMmini OK OK
90 SM131 2907131 Steptoe/Morex(OxJ) AD_SCRI_102.CEL OK
91 SM132 2907132 Steptoe/Morex(QxG) AD_SCRI_4_redo.CEL OK
92 SM133 2907133 Morex/Steptoe(CxF) AD_SCRI_157.CEL OK
93 SM134 2907134 Morex/Steptoe(IxE) AD_SCRI_159.CEL OK
94 SM135 2907135 Steptoe/Morex(BxF) AD_SCRI_72.CEL 0521-22_SetA22.CEL SMmini OK OK
95 SM136 2907136 Steptoe/Morex(QxG) AD_SCRI_123.CEL 0521-23_SetA23.CEL SMmini OK OK
96 SM137 2907137 Steptoe/Morex(BxH) AD_SCRI_39.CEL OK
97 SM139 2907139 Morex/Steptoe(CxF) AD_SCRI_133.CEL OK
98 SM140 2907140 Morex/Steptoe(CxF) AD_SCRI_134.CEL 0521-24_SetA24.CEL SMmini OK OK
99 SM141 2907141 Steptoe/Morex(BxH) AD_SCRI_136.CEL 0521-25_SetA25.CEL SMmini OK OK
100 SM142 2907142 Morex/Steptoe(IxE) AD_SCRI_6.CEL OK
101 SM143 2907143 Steptoe/Morex(BxH) AD_SCRI_145.CEL OK
102 SM144 2907144 Steptoe/Morex(BxF) AD_SCRI_103.CEL OK
103 SM145 2907145 Steptoe/Morex(QxG) AD_SCRI_108.CEL OK
104 SM146 2907146 Morex/Steptoe(BxF) AD_SCRI_91.CEL 0521-26_SetA26.CEL SMmini OK OK
105 SM147 2907147 Steptoe/Morex(OxJ) AD_SCRI_139.CEL OK
106 SM149 2907149 Steptoe/Morex(BxF) AD_SCRI_131.CEL ERROR
107 SM150 2907150 Morex/Steptoe(CxF) AD_SCRI_37.CEL OK
108 SM151 2907151 Morex/Steptoe(IxE) AD_SCRI_28.CEL OK
109 SM152 2907152 Steptoe/Morex(BxH) AD_SCRI_9_redo.CEL 0521-27_SetA27.CEL SMmini OK OK
110 SM153 2907153 Steptoe/Morex(BxH) AD_SCRI_135.CEL OK
111 SM154 2907154 Steptoe/Morex(BxH) AD_SCRI_114.CEL OK
112 SM155 2907155 Steptoe/Morex(BxH) AD_SCRI_119.CEL 0521-28_SetA28.CEL SMmini OK OK
113 SM156 2907156 Steptoe/Morex(BxH) AD_SCRI_140.CEL OK
114 SM157 2907157 Morex/Steptoe(CxF) AD_SCRI_106_redo.CEL OK
115 SM158 2907158 Morex/Steptoe(CxF) AD_SCRI_65.CEL OK
116 SM159 2907159 Morex/Steptoe(IxE) AD_SCRI_168.CEL OK
117 SM160 2907160 Steptoe/Morex(OxJ) AD_SCRI_47.CEL 0521-29_SetA29.CEL SMmini OK ERROR
118 SM161 2907161 Steptoe/Morex(BxH) AD_SCRI_76.CEL ERROR
119 SM162 2907162 Morex/Steptoe(CxF) AD_SCRI_147.CEL OK
120 SM164 2907164 Steptoe/Morex(OxJ) AD_SCRI_128.CEL OK
121 SM165 2907165 Steptoe/Morex(BxH) AD_SCRI_143.CEL OK OK
122 SM166 2907166 Morex/Steptoe(CxF) AD_SCRI_115.CEL OK
123 SM167 2907167 Steptoe/Morex(BxH) AD_SCRI_127.CEL 0521-30_SetA30.CEL SMmini OK OK
124 SM168 2907168 Steptoe/Morex(BxH) AD_SCRI_130.CEL OK
125 SM169 2907169 Morex/Steptoe(CxF) AD_SCRI_118.CEL 0521-31_SetA31.CEL SMmini OK OK
126 SM170 2907170 Steptoe/Morex(BxF) AD_SCRI_151.CEL OK
127 SM171 2907171 Steptoe/Morex(BxF) AD_SCRI_165.CEL ERROR
128 SM172 2907172 Steptoe/Morex(OxJ) AD_SCRI_152.CEL ERROR
129 SM173 2907173 Steptoe/Morex(OxJ) AD_SCRI_104.CEL 0521-32_SetA32.CEL SMmini OK OK
130 SM174 2907174 Steptoe/Morex(BxH) AD_SCRI_154.CEL OK
131 SM176 2907176 Morex/Steptoe(CxF) AD_SCRI_141.CEL OK
132 SM177 2907177 Morex/Steptoe(CxF) AD_SCRI_111.CEL 0521-33_SetA33.CEL SMmini OK OK
133 SM179 2907179 Morex/Steptoe(CxF) AD_SCRI_166.CEL OK
134 SM180 2907180 Morex/Steptoe(IxE) AD_SCRI_161.CEL OK
135 SM181 2907181 Morex/Steptoe(IxE) AD_SCRI_162.CEL OK
136 SM182 2907182 Morex/Steptoe(CxF) AD_SCRI_163.CEL OK
137 SM183 2907183 Morex/Steptoe(CxF) AD_SCRI_164.CEL OK
138 SM184 2907184 Morex/Steptoe(IxE) AD_SCRI_160.CEL 0521-34_SetA34.CEL SMmini OK OK
139 SM185 2907185 Morex/Steptoe(IxE) AD_SCRI_167.CEL OK
140 SM186 2907186 Morex/Steptoe(IxE) AD_SCRI_62.CEL OK
141 SM187 2907187 Morex/Steptoe(IxE) AD_SCRI_61.CEL OK
142 SM188 2907188 Morex/Steptoe(CxF) AD_SCRI_63.CEL OK
143 SM189 2907189 Steptoe/Morex(QxG) AD_SCRI_80.CEL OK
144 SM193 2907193 Morex/Steptoe(IxE) AD_SCRI_36.CEL OK
145 SM194 2907194 Steptoe/Morex(OxJ) AD_SCRI_29.CEL OK
146 SM196 2907196 Steptoe/Morex(BxF) AD_SCRI_26.CEL OK
147 SM197 2907197 Steptoe/Morex(BxF) AD_SCRI_85.CEL OK
148 SM198 2907198 Morex/Steptoe(IxE) AD_SCRI_8.CEL OK
149 SM199 2907199 Steptoe/Morex(BxF) AD_SCRI_20.CEL OK
150 SM200 2907200 Morex/Steptoe(IxE) AD_SCRI_38.CEL 0521-35_SetA35.CEL SMmini OK OK
parent Steptoe AD_SCRI_17.CEL 0521-36_SetA36.CEL
parent Steptoe AD_SCRI_66.CEL 0521-37_SetA37.CEL
parent Steptoe AD_SCRI_68.CEL 0521-38_SetA38.CEL
parent Morex AD_SCRI_116.CEL 0521-39_SetA39.CEL
parent Morex AD_SCRI_14.CEL 0521-40_SetA40.CEL
parent Morex AD_SCRI_67.CEL 0521-41_SetA41.CEL
+

+ + +

    About tissues used to generate this set of data:

+ +
+

Plant material according to the current plant ontologies: Embryo-derived tissues: whole plant (PO:0000003) at the development stage 1.05-coleoptile emerged from seed (GRO:0007056); Seedling leaves: primary shoot (PO:0006341) at the developmental stage 2.02-first leaf unfolded (GRO:0007060) (Druka et al. 2006). + +

To obtain embryo-derived tissue, growth room#2, AN building, SCRI, with the standard laboratory bench positioned in the middle of the room was used to germinate sterilized seeds. Seeds were placed between three layers of wet 3MM filter paper in the 156 10 mm Petri plates. Thirty to fifty seeds per line (per Petri plate) were used. Germination was in the dark, 16 hours at 17 deg C and 8 hours at 12 deg C. After 96 hours, embryo-derived tissue (mesocotyl, coleoptile, and seminal roots) from three grains was dissected and flash frozen in the liquid nitrogen. Germination and collection was repeated two more times. Complete randomization of the Petri plates was done for each germination event. Tissues from all three germinations (collections) were bulked before RNA isolation. Three replicates of the parental cultivars were germinated for each collection. +

To obtain seedling leaves, three Microclima 1000 growth chambers (Snijders Scientific B.V., Tilburg, Holland) were used for the experiment. Each cabinet accomodated 40 (13x13 cm) pots. Humidity was set to 70%, with light conditions for 16 hours light at 17C and 8 hours dark at 12C. The cycle started at 10 am with lights on. Light intensity was 337-377 mmol m-2 s-1, measured at the beginning of the experiment, 11 cm from the light source. Measurement was done using Sky Quantium light sensor at 15oC. Plants were placed 55 cm from the light source (from the bulb to the surface of the vermiculite). Ten sterilized seeds per pot were planted and 3 pots per genotype / per cabinet were used. After 12 days, leaf blade and sheath from 5-7 the same size plants was cut off, bulked and flash frozen in the liquid nitrogen. + +

+

+ +
+

RNA Sample Processing: +

Trizol RNA isolation and RNeasy clean up protocol for whole plants (embryo-derived tissue dissected from 4 days old germinating grains) and the seedling leaves (12 days after planting). +


+☐ Grind tissue (9 embryos) with a mortar and pestle in liquid nitrogen
+☐ Add 5 ml TRIzol (pre-heated to 60oC) to all samples, vortex until all the tissue is thawed, place in the 60oC waterbath..
+☐ Incubate samples at 60oC for 10 minutes, vortexing three times.
+☐ Centrifuge @ 4000 x rpm @ 4C for 30 minutes (in Eppendorf 5810R).
+☐ While centrifuging, label new set of 15 ml tubes
+☐ Transfer supernatant to 15 ml centrifuge tube
+☐ Add 1 ml of chloroform. Vortex the sample until color shade is uniform at least 5
+seconds, and incubate at room temperature for 5 minutes.
+☐ Centrifuge @ 4000 x rpm for 30 minutes @ 4oC.
+☐ While centrifuging, label new 15 ml tubes
+☐ Collect the upper aqueous layer (there will be about 3 mls) and transfer to a new 15 ml tube.
+☐ Add 0.6 volumes (2 ml) of isopropanol, mix gently, incubate at room temperature for 20 minutes.
+☐ Centrifuge @ 4000 rpm for 30 minutes @ 4oC.
+☐ Wash the pellet with 10 ml of cold 75% ethanol. Swirl & centrifuge at
+4000 rpm for 15 minutes @ 4oC.
+☐ Discard supernatant, centrifuge for 5 min, remove the rest of the ethanol
+☐ Air-dry the pellet for 10 minutes, inverted on a kimwipe.
+☐ Dissolve pellet in 400 ul of DEPC-treated H2O. Resuspend by pipeting up & down a
+few times.
+☐ Add 2 ul SuperaseIn. Incubate at 60oC for 10 minutes to resuspend.
+☐ Set water bath to 37oC.
+☐ Add 50 ul 10X DnaseI Buffer, 45 ul H2O and 5 ul of DnaseI, incubate at 37oC for 1 hr.
+☐ Prepare Buffer RLT (Rneasy Clean-up Midi Kit) by adding b-mercaptoethanol (10ul/1ml RLT).
+☐ Add 2.0 ml Buffer RLT to the RNA prep and mix thoroughly.
+☐ Add 1.4 ml ethanol (96-100%) to the diluted RNA. Mix thoroughly.
+☐ Label 15 ml tubes from the kit and place midi columns in them
+☐ Apply sample to a Midi column, close tube gently and centrifuge for 20 min at 3000 rpm.
+☐ Discard the flow-through.
+☐ Add 2.5 ml Buffer RPE to the RNA easy column, close the centrifuge tube gently,
+incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm. Discard the flow-through.
+☐ Add another 2.5 ml Buffer RPE to the RNeasy column. Close the centrifuge tube
+gently, incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm, remove flow-through
+☐ Centrifuge again for another 5 min.
+☐ Label new 15 ml tubes from the kit.
+☐ Transfer the RNA easy column to a new tube and pipet 250 ul volume of
+RNase-free water directly onto the RNeasy silica-membrane incubate for 1 min
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ To the same tube add again 250 ul H2O, incubate for 1 min.
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ Label two sets of 1.5 ml Eppendorf tubes.
+☐ Transfer 490 ul to the one tube and 10 ul to another one. Use 10 ul tube for the RNA
+

+

Detailed descriptions of these procedures can be found under the ArrayExpress (http://www.ebi.ac.uk/aerep/?) protocol P-MEXP-4631 (Caldo et al. 2004). + +

Replication and Sample Balance: +

3 independent replicates of both parental cultivars Steptoe and Morex were generated for both tissues, embryo and seedling leaf. +

Experimental Design and Batch Structure: + +

+ + + +

    Downloading complete data set:

+
+

The following are ArrayExpress (http://www.ebi.ac.uk/aerep/?) experiment IDs: +E-TABM-111 (leaf, 41 chips) and E-TABM-112 (embryo derived, 156 chips).

+
+ + +

    About the array platform:

+ +
+

Affymetrix 22K Barley1 GeneChip probe array (http://www.affymetrix.com/products/arrays/specific/barley.affx ; Affymetrix product #900515 GeneChip Barley Genome Array) representing 21,439 non-redundant Barley1 exemplar sequences was derived from worldwide contribution of 350,000 high-quality ESTs from 84 cDNA libraries, in addition to 1,145 barley gene sequences from the National Center for Biotechnology Information non-redundant database (Close et al 2004). Abbreviated annotations were created based on the exemplar sequence homology by Arnis Druka using data from the Harvest (http://harvest.ucr.edu/) data depository. + +

+ + +

    About data processing:

+
+ + + + + + + + + + + + + + + + + +
Types of the expression data-sets
Data processing description
Barley1 Embryo gcRMA SCRI (Dec 06)
+Barley1 Leaf gcRMA SCRI (Dec 06)

 

+

The Affymetrix' CEL files that were generated using MAS 5.0 Suite were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) and processed using the RMA algorithm.

+

 

Barley1 Embryo MAS 5.0 SCRI (Dec 06)
+Barley1 Leaf MAS 5.0 SCRI (Dec 06)

 

+

The MAS 5.0 values were calculated from the DAT files using Affymetrix' MAS 5.0 Suite.

+

 

Barley1 Embryo0 gcRMA SCRI (Apr 06)
+Barley1 Leaf gcRMAn SCRI (Dec 06)

The Affymetrix' CEL files were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) software and processed using the RMA algorithm. Per-chip and per-gene normalization was done following the standard GeneSpring procedure (citation of the GeneSpring normalization description): + +

    +
  1. Values below 0.01 were set to 0.01. +
  2. Each measurement was divided by the 50.0th percentile of all measurements in that sample. +
  3. Each gene was divided by the median of its measurements in all samples. If the median of the raw values was below 10 then each measurement for that gene was divided by 10 if the numerator was above 10, otherwise the measurement was thrown out. +
+
+ + + +

    Data source acknowledgment:

+ +
+

Plant maintenance, tissue collection, RNA isolation, and data submission to ArrayExpress was done at SCRI by Arnis Druka with support from BBSRC/SEERAD grant + + +SCR/910/04 + +'The genetics of gene expression in barley' to Michael Kearsey (University of Birmingham, UK) and Robbie Waugh (SCRI, UK). Probe synthesis, labeling and hybridization were performed according to manufacturer’s protocols (Affymetrix, Santa Clara, CA) at the Iowa State University GeneChip Core facility (Rico Caldo and Roger Wise). ArrayExpress (EBI, UK) team members Tim Rayner, Helen Parkinson, and Alvis Brazma are acknowledged for excellent help with data submission to ArrayExpress. +

+ +

    Contact address:

+
+

Arnis Druka +
+Genetics Programme +
+Scottish Crop Research Institute +
+Invergowrie, Dundee DD2 5DA +
+Angus, Scotland, United Kingdom +
+Tel +44 01382 562731
+Fax +44 01382 568587
+adruka@scri.sari.ac.uk

+
+ +

    References:

+
+ +

Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schreiber A, Wise R, Close T, Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall D, Waugh R. (2006) An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics, Jul;6(3):202-11. + +

Kleinhofs A, Kilian A, Saghai Maroof M, Biyashev R, Hayes P, Chen F, Lapitan N, Fenwick A, Blake T, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu BH, Sorrells M, Heun M, Franckowiak J, Hoffman D, Skadsen R, Steffenson B (1993) A molecular, isozyme, and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705-712. + +

Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16:2514-2528. + +

Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP. (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960-968. + +

Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392-401 + +

+ + +

+ +

    About this text file:

+
+

+This text file originally generated by Arnis Druka on May 8, 2006. Modified Aug1 by AD. Entered by RWW Aug 4, 2006. Modified by AD Jan 29, 2007, Feb 01, 2007.

+
+ + + + +

+ +
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/B30_K_1206_R.html b/web/dbdoc/B30_K_1206_R.html new file mode 100755 index 00000000..47f82001 --- /dev/null +++ b/web/dbdoc/B30_K_1206_R.html @@ -0,0 +1,2016 @@ + +GN INFO on: Barley 150 Embryo mRNA (Apr06) + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+ +

Affymetrix data set from SCRI, April - December 2006 + +modify this page

Accession number: GN125

+

Barley1 Leaf gcRMA SCRI (Dec 06) - integrated probe set value for each gene has been calculated using RMA algorithm (Irizarry et al 2003). RMA ignores MM probe signals. Descriptions of probe set signal calculation can be found on this page below, section 'About Data Processing'. +

+

    Summary:

+ +
+

The SCRI barley data set provides estimates of mRNA abundance in doubled haploid recombinant lines of cultivated barley. Embryo-derived tissues at four days after imbibition (150 lines) and seedling leaves at 12 days after imbibition (subset of 34 lines) and three biological replicates of each parental cultivar (Steptoe and Morex) for each tissue were used for the isolation of total RNA and hybridization to the Barley1 22K GeneChip. +

+ +

    About the lines used to generate this set of data:

+
+

The SM cross was originally made to map barley grain quality traits; Steptoe is high-yielding barley cultivar used for animal feeding, but Morex has good malting barley characteristics (Hayes et al 1993). Many agronomic quality traits have been mapped using this population (for the lists see BeerGenes web-site http://gnome.agrenv.mcgill.ca/bg/). + +

The sample used in this study consists of 150 Steptoe x Morex doubled haploid recombinant lines (Kleinhofs et al. 1993) was used to obtain embryo-derived tissue. For the seedling leaf tissue a subset of 35 lines was used. This subset was selected based on evenly spaced crossovers along each of seven barley chromosomes. The expression data of 11 DH lines has been removed from both, embryo and leaf, leaving for the analysis 129 lines with embryo expression data and a subset of 30 lines with seedling leaf expression data. The lines were removed from the analysis after error checking; discrepancies with genotyping data were found. We left all 150 lines in the embryo Apr06 data set and the full data set is available from the ArrayExpress. The following table lists line IDs and corresponding CEL file IDs, also indicating:
+1) +pedigree; shows the direction of the cross that was used to produce the original F1. The parental plants were given letter codes of A - Z. For example, SM1 was derived from an F1 that was generated by crossing Steptoe plant "B" as a female with Morex plant "F" as a male.
+2) +'minimapper' subset - MINI;
+3) lines that have expression data removed - ERROR: + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order # Line ID Permanent Oregon ID Cross direction
CEL file names
Mini-mapper set Error check
embryo data-set leaf data-setembryo data-setleaf data-set
1 SM001 2907001 Steptoe/Morex(BxF) AD_SCRI_82.CEL OK
2 SM002 2907002 Steptoe/Morex(BxF) AD_SCRI_1.CEL OK
3 SM003 2907003 Morex/Steptoe(CxF) AD_SCRI_19.CEL OK
4 SM004 2907004 Morex/Steptoe(CxF) AD_SCRI_3.CEL 0521-1_SetA1.CEL SMmini OK OK
5 SM005 2907005 Steptoe/Morex(BxH) AD_SCRI_88.CEL OK
6 SM006 2907006 Morex/Steptoe(CxF) AD_SCRI_48.CEL OK
7 SM007 2907007 Steptoe/Morex(BxH) AD_SCRI_35.CEL 0521-2_SetA2.CEL SMmini OK OK
8 SM009 2907009 Steptoe/Morex(BxF) AD_SCRI_2.CEL OK
9 SM010 2907010 Morex/Steptoe(IxE) AD_SCRI_42.CEL OK
10 SM011 2907011 Steptoe/Morex(QxG) AD_SCRI_10.CEL OK
11 SM012 2907012 Morex/Steptoe(CxF) AD_SCRI_45.CEL 0521-3_SetA3.CEL SMmini ERROR ERROR
12 SM013 2907013 Morex/Steptoe(IxE) AD_SCRI_78.CEL 0521-4_SetA4.CEL SMmini ERROR ERROR
13 SM014 2907014 Steptoe/Morex(BxH) AD_SCRI_18.CEL OK
14 SM015 2907015 Steptoe/Morex(BxH) AD_SCRI_5.CEL OK
15 SM016 2907016 Steptoe/Morex(BxH) AD_SCRI_21.CEL OK
16 SM020 2907020 Steptoe/Morex(OxJ) AD_SCRI_77.CEL OK
17 SM021 2907021 Morex/Steptoe(IxE) AD_SCRI_30.CEL OK
18 SM022 2907022 Morex/Steptoe(IxE) AD_SCRI_31.CEL 0521-5_SetA5.CEL SMmini OK OK
19 SM023 2907023 Steptoe/Morex(BxH) AD_SCRI_32.CEL OK
20 SM024 2907024 Morex/Steptoe(IxE) AD_SCRI_33.CEL 0521-6_SetA6.CEL SMmini OK OK
21 SM025 2907025 Morex/Steptoe(CxF) AD_SCRI_34.CEL OK
22 SM027 2907027 Steptoe/Morex(OxJ) AD_SCRI_12.CEL 0521-7_SetA7.CEL SMmini OK OK
23 SM030 2907030 Morex/Steptoe(IxE) AD_SCRI_79.CEL OK
24 SM031 2907031 Steptoe/Morex(OxJ) AD_SCRI_16.CEL OK
25 SM032 2907032 Morex/Steptoe(IxE) AD_SCRI_13.CEL OK
26 SM035 2907035 Morex/Steptoe(CxF) AD_SCRI_15.CEL ERROR
27 SM039 2907039 Morex/Steptoe(CxF) AD_SCRI_41.CEL OK
28 SM040 2907040 Steptoe/Morex(BxH) AD_SCRI_83.CEL OK
29 SM041 2907041 Steptoe/Morex(OxJ) AD_SCRI_11_redo.CEL 0521-8_SetA8.CEL SMmini OK OK
30 SM042 2907042 Morex/Steptoe(CxF) AD_SCRI_57.CEL OK
31 SM043 2907043 Morex/Steptoe(JxE) AD_SCRI_49.CEL 0521-9_SetA9.CEL SMmini OK OK
32 SM044 2907044 Steptoe/Morex(OxJ) AD_SCRI_50.CEL 0521-10_SetA10.CEL SMmini OK OK
33 SM045 2907045 Steptoe/Morex(BxH) AD_SCRI_51.CEL OK
34 SM046 2907046 Steptoe/Morex(OxJ) AD_SCRI_52.CEL 0521-11_SetA11.CEL SMmini OK OK
35 SM048 2907048 Steptoe/Morex(BxF) AD_SCRI_53.CEL ERROR
36 SM050 2907050 Morex/Steptoe(IxE) AD_SCRI_46.CEL OK
37 SM054 2907054 Morex/Steptoe(CxF) AD_SCRI_60.CEL OK
38 SM055 2907055 Steptoe/Morex(OxJ) AD_SCRI_55.CEL OK
39 SM056 2907056 Steptoe/Morex(BxH) AD_SCRI_23.CEL OK
40 SM057 2907057 Morex/Steptoe(CxF) AD_SCRI_24.CEL OK
41 SM058 2907058 Steptoe/Morex(BxF) AD_SCRI_22.CEL OK
42 SM059 2907059 Steptoe/Morex(BxH) AD_SCRI_27.CEL OK
43 SM061 2907061 Morex/Steptoe(LxF) AD_SCRI_81.CEL 0521-12_SetA12.CEL SMmini OK OK
44 SM062 2907062 Morex/Steptoe(CxF) AD_SCRI_44.CEL OK
45 SM063 2907063 Steptoe/Morex(OxJ) AD_SCRI_40.CEL 0521-13_SetA13.CEL SMmini OK OK
46 SM064 2907064 Morex/Steptoe(CxF) AD_SCRI_87_redo.CEL OK
47 SM065 2907065 Morex/Steptoe(CxF) AD_SCRI_54.CEL OK
48 SM067 2907067 Steptoe/Morex(OxJ) AD_SCRI_73.CEL OK
49 SM068 2907068 Steptoe/Morex(OxG) AD_SCRI_56.CEL ERROR
50 SM069 2907069 Steptoe/Morex(BxH) AD_SCRI_71.CEL OK
51 SM070 2907070 Steptoe/Morex(BxF) AD_SCRI_64.CEL OK
52 SM071 2907071 Steptoe/Morex(BxH) AD_SCRI_58.CEL OK
53 SM072 2907072 Morex/Steptoe(CxF) AD_SCRI_59.CEL OK
54 SM073 2907073 Steptoe/Morex(BxF) AD_SCRI_74.CEL 0521-14_SetA14.CEL SMmini OK ERROR
55 SM074 2907074 Morex/Steptoe(CxF) AD_SCRI_25.CEL 0521-15_SetA15.CEL SMmini OK OK
56 SM075 2907075 Steptoe/Morex(QxG) AD_SCRI_120.CEL OK
57 SM076 2907076 Steptoe/Morex(BxF) AD_SCRI_112.CEL OK
58 SM077 2907077 Morex/Steptoe(CxF) AD_SCRI_142.CEL OK
59 SM078 2907078 Steptoe/Morex(BxF) AD_SCRI_86.CEL OK
60 SM079 2907079 Morex/Steptoe(CxF) AD_SCRI_153.CEL 0521-16_SetA16.CEL SMmini OK ERROR
61 SM080 2907080 Steptoe/Morex(BxF) AD_SCRI_107.CEL OK
62 SM081 2907081 Morex/Steptoe(CxF) AD_SCRI_105.CEL OK
63 SM082 2907082 Steptoe/Morex(BxF) AD_SCRI_97.CEL OK
64 SM083 2907083 Steptoe/Morex(BxF) AD_SCRI_89.CEL OK
65 SM084 2907084 Morex/Steptoe(CxF) AD_SCRI_155.CEL OK
66 SM085 2907085 Morex/Steptoe(IxE) AD_SCRI_149.CEL 0521-17_SetA17.CEL SMmini OK OK
67 SM087 2907087 Steptoe/Morex(OxJ) AD_SCRI_113.CEL OK
68 SM088 2907088 Morex/Steptoe(CxF) AD_SCRI_93.CEL 0521-18_SetA18.CEL SMmini OK OK
69 SM089 2907089 Steptoe/Morex(OxJ) AD_SCRI_148.CEL 0521-19_SetA19.CEL SMmini OK OK
70 SM091 2907091 Morex/Steptoe(CxF) AD_SCRI_110.CEL OK
71 SM092 2907092 Steptoe/Morex(OxJ) AD_SCRI_7.CEL OK
72 SM093 2907093 Steptoe/Morex(BxF) AD_SCRI_122.CEL OK
73 SM094 2907094 Morex/Steptoe(CxF) AD_SCRI_150.CEL OK
74 SM097 2907097 Morex/Steptoe(CxF) AD_SCRI_158.CEL OK
75 SM098 2907098 Morex/Steptoe(CxF) AD_SCRI_121.CEL OK
76 SM099 2907099 Steptoe/Morex(QxG) AD_SCRI_137.CEL OK
77 SM103 2907103 Morex/Steptoe(IxE) AD_SCRI_156.CEL OK
78 SM104 2907104 Steptoe/Morex(BxH) AD_SCRI_70.CEL ERROR
79 SM105 2907105 Morex/Steptoe(IxE) AD_SCRI_69.CEL OK
80 SM110 2907110 Morex/Steptoe(CxF) AD_SCRI_75.CEL ERROR
81 SM112 2907112 Steptoe/Morex(BxF) AD_SCRI_84.CEL OK
82 SM116 2907116 Morex/Steptoe(CxF) AD_SCRI_117.CEL 0521-20_SetA20.CEL SMmini OK OK
83 SM120 2907120 Steptoe/Morex(OxJ) AD_SCRI_138.CEL OK
84 SM124 2907124 Steptoe/Morex(BxF) AD_SCRI_146.CEL OK
85 SM125 2907125 Morex/Steptoe(IxE) AD_SCRI_43.CEL OK
86 SM126 2907126 Steptoe/Morex(OxJ) AD_SCRI_144_redo.CEL OK
87 SM127 2907127 Steptoe/Morex(BxH) AD_SCRI_129.CEL OK
88 SM129 2907129 Steptoe/Morex(OxJ) AD_SCRI_132.CEL OK
89 SM130 2907130 Morex/Steptoe(CxF) AD_SCRI_101.CEL 0521-21_SetA21.CEL SMmini OK OK
90 SM131 2907131 Steptoe/Morex(OxJ) AD_SCRI_102.CEL OK
91 SM132 2907132 Steptoe/Morex(QxG) AD_SCRI_4_redo.CEL OK
92 SM133 2907133 Morex/Steptoe(CxF) AD_SCRI_157.CEL OK
93 SM134 2907134 Morex/Steptoe(IxE) AD_SCRI_159.CEL OK
94 SM135 2907135 Steptoe/Morex(BxF) AD_SCRI_72.CEL 0521-22_SetA22.CEL SMmini OK OK
95 SM136 2907136 Steptoe/Morex(QxG) AD_SCRI_123.CEL 0521-23_SetA23.CEL SMmini OK OK
96 SM137 2907137 Steptoe/Morex(BxH) AD_SCRI_39.CEL OK
97 SM139 2907139 Morex/Steptoe(CxF) AD_SCRI_133.CEL OK
98 SM140 2907140 Morex/Steptoe(CxF) AD_SCRI_134.CEL 0521-24_SetA24.CEL SMmini OK OK
99 SM141 2907141 Steptoe/Morex(BxH) AD_SCRI_136.CEL 0521-25_SetA25.CEL SMmini OK OK
100 SM142 2907142 Morex/Steptoe(IxE) AD_SCRI_6.CEL OK
101 SM143 2907143 Steptoe/Morex(BxH) AD_SCRI_145.CEL OK
102 SM144 2907144 Steptoe/Morex(BxF) AD_SCRI_103.CEL OK
103 SM145 2907145 Steptoe/Morex(QxG) AD_SCRI_108.CEL OK
104 SM146 2907146 Morex/Steptoe(BxF) AD_SCRI_91.CEL 0521-26_SetA26.CEL SMmini OK OK
105 SM147 2907147 Steptoe/Morex(OxJ) AD_SCRI_139.CEL OK
106 SM149 2907149 Steptoe/Morex(BxF) AD_SCRI_131.CEL ERROR
107 SM150 2907150 Morex/Steptoe(CxF) AD_SCRI_37.CEL OK
108 SM151 2907151 Morex/Steptoe(IxE) AD_SCRI_28.CEL OK
109 SM152 2907152 Steptoe/Morex(BxH) AD_SCRI_9_redo.CEL 0521-27_SetA27.CEL SMmini OK OK
110 SM153 2907153 Steptoe/Morex(BxH) AD_SCRI_135.CEL OK
111 SM154 2907154 Steptoe/Morex(BxH) AD_SCRI_114.CEL OK
112 SM155 2907155 Steptoe/Morex(BxH) AD_SCRI_119.CEL 0521-28_SetA28.CEL SMmini OK OK
113 SM156 2907156 Steptoe/Morex(BxH) AD_SCRI_140.CEL OK
114 SM157 2907157 Morex/Steptoe(CxF) AD_SCRI_106_redo.CEL OK
115 SM158 2907158 Morex/Steptoe(CxF) AD_SCRI_65.CEL OK
116 SM159 2907159 Morex/Steptoe(IxE) AD_SCRI_168.CEL OK
117 SM160 2907160 Steptoe/Morex(OxJ) AD_SCRI_47.CEL 0521-29_SetA29.CEL SMmini OK ERROR
118 SM161 2907161 Steptoe/Morex(BxH) AD_SCRI_76.CEL ERROR
119 SM162 2907162 Morex/Steptoe(CxF) AD_SCRI_147.CEL OK
120 SM164 2907164 Steptoe/Morex(OxJ) AD_SCRI_128.CEL OK
121 SM165 2907165 Steptoe/Morex(BxH) AD_SCRI_143.CEL OK OK
122 SM166 2907166 Morex/Steptoe(CxF) AD_SCRI_115.CEL OK
123 SM167 2907167 Steptoe/Morex(BxH) AD_SCRI_127.CEL 0521-30_SetA30.CEL SMmini OK OK
124 SM168 2907168 Steptoe/Morex(BxH) AD_SCRI_130.CEL OK
125 SM169 2907169 Morex/Steptoe(CxF) AD_SCRI_118.CEL 0521-31_SetA31.CEL SMmini OK OK
126 SM170 2907170 Steptoe/Morex(BxF) AD_SCRI_151.CEL OK
127 SM171 2907171 Steptoe/Morex(BxF) AD_SCRI_165.CEL ERROR
128 SM172 2907172 Steptoe/Morex(OxJ) AD_SCRI_152.CEL ERROR
129 SM173 2907173 Steptoe/Morex(OxJ) AD_SCRI_104.CEL 0521-32_SetA32.CEL SMmini OK OK
130 SM174 2907174 Steptoe/Morex(BxH) AD_SCRI_154.CEL OK
131 SM176 2907176 Morex/Steptoe(CxF) AD_SCRI_141.CEL OK
132 SM177 2907177 Morex/Steptoe(CxF) AD_SCRI_111.CEL 0521-33_SetA33.CEL SMmini OK OK
133 SM179 2907179 Morex/Steptoe(CxF) AD_SCRI_166.CEL OK
134 SM180 2907180 Morex/Steptoe(IxE) AD_SCRI_161.CEL OK
135 SM181 2907181 Morex/Steptoe(IxE) AD_SCRI_162.CEL OK
136 SM182 2907182 Morex/Steptoe(CxF) AD_SCRI_163.CEL OK
137 SM183 2907183 Morex/Steptoe(CxF) AD_SCRI_164.CEL OK
138 SM184 2907184 Morex/Steptoe(IxE) AD_SCRI_160.CEL 0521-34_SetA34.CEL SMmini OK OK
139 SM185 2907185 Morex/Steptoe(IxE) AD_SCRI_167.CEL OK
140 SM186 2907186 Morex/Steptoe(IxE) AD_SCRI_62.CEL OK
141 SM187 2907187 Morex/Steptoe(IxE) AD_SCRI_61.CEL OK
142 SM188 2907188 Morex/Steptoe(CxF) AD_SCRI_63.CEL OK
143 SM189 2907189 Steptoe/Morex(QxG) AD_SCRI_80.CEL OK
144 SM193 2907193 Morex/Steptoe(IxE) AD_SCRI_36.CEL OK
145 SM194 2907194 Steptoe/Morex(OxJ) AD_SCRI_29.CEL OK
146 SM196 2907196 Steptoe/Morex(BxF) AD_SCRI_26.CEL OK
147 SM197 2907197 Steptoe/Morex(BxF) AD_SCRI_85.CEL OK
148 SM198 2907198 Morex/Steptoe(IxE) AD_SCRI_8.CEL OK
149 SM199 2907199 Steptoe/Morex(BxF) AD_SCRI_20.CEL OK
150 SM200 2907200 Morex/Steptoe(IxE) AD_SCRI_38.CEL 0521-35_SetA35.CEL SMmini OK OK
parent Steptoe AD_SCRI_17.CEL 0521-36_SetA36.CEL
parent Steptoe AD_SCRI_66.CEL 0521-37_SetA37.CEL
parent Steptoe AD_SCRI_68.CEL 0521-38_SetA38.CEL
parent Morex AD_SCRI_116.CEL 0521-39_SetA39.CEL
parent Morex AD_SCRI_14.CEL 0521-40_SetA40.CEL
parent Morex AD_SCRI_67.CEL 0521-41_SetA41.CEL
+

+ + +

    About tissues used to generate this set of data:

+ +
+

Plant material according to the current plant ontologies: Embryo-derived tissues: whole plant (PO:0000003) at the development stage 1.05-coleoptile emerged from seed (GRO:0007056); Seedling leaves: primary shoot (PO:0006341) at the developmental stage 2.02-first leaf unfolded (GRO:0007060) (Druka et al. 2006). + +

To obtain embryo-derived tissue, growth room#2, AN building, SCRI, with the standard laboratory bench positioned in the middle of the room was used to germinate sterilized seeds. Seeds were placed between three layers of wet 3MM filter paper in the 156 10 mm Petri plates. Thirty to fifty seeds per line (per Petri plate) were used. Germination was in the dark, 16 hours at 17 deg C and 8 hours at 12 deg C. After 96 hours, embryo-derived tissue (mesocotyl, coleoptile, and seminal roots) from three grains was dissected and flash frozen in the liquid nitrogen. Germination and collection was repeated two more times. Complete randomization of the Petri plates was done for each germination event. Tissues from all three germinations (collections) were bulked before RNA isolation. Three replicates of the parental cultivars were germinated for each collection. +

To obtain seedling leaves, three Microclima 1000 growth chambers (Snijders Scientific B.V., Tilburg, Holland) were used for the experiment. Each cabinet accomodated 40 (13x13 cm) pots. Humidity was set to 70%, with light conditions for 16 hours light at 17C and 8 hours dark at 12C. The cycle started at 10 am with lights on. Light intensity was 337-377 mmol m-2 s-1, measured at the beginning of the experiment, 11 cm from the light source. Measurement was done using Sky Quantium light sensor at 15oC. Plants were placed 55 cm from the light source (from the bulb to the surface of the vermiculite). Ten sterilized seeds per pot were planted and 3 pots per genotype / per cabinet were used. After 12 days, leaf blade and sheath from 5-7 the same size plants was cut off, bulked and flash frozen in the liquid nitrogen. + +

+

+ +
+

RNA Sample Processing: +

Trizol RNA isolation and RNeasy clean up protocol for whole plants (embryo-derived tissue dissected from 4 days old germinating grains) and the seedling leaves (12 days after planting). +


+☐ Grind tissue (9 embryos) with a mortar and pestle in liquid nitrogen
+☐ Add 5 ml TRIzol (pre-heated to 60oC) to all samples, vortex until all the tissue is thawed, place in the 60oC waterbath..
+☐ Incubate samples at 60oC for 10 minutes, vortexing three times.
+☐ Centrifuge @ 4000 x rpm @ 4C for 30 minutes (in Eppendorf 5810R).
+☐ While centrifuging, label new set of 15 ml tubes
+☐ Transfer supernatant to 15 ml centrifuge tube
+☐ Add 1 ml of chloroform. Vortex the sample until color shade is uniform at least 5
+seconds, and incubate at room temperature for 5 minutes.
+☐ Centrifuge @ 4000 x rpm for 30 minutes @ 4oC.
+☐ While centrifuging, label new 15 ml tubes
+☐ Collect the upper aqueous layer (there will be about 3 mls) and transfer to a new 15 ml tube.
+☐ Add 0.6 volumes (2 ml) of isopropanol, mix gently, incubate at room temperature for 20 minutes.
+☐ Centrifuge @ 4000 rpm for 30 minutes @ 4oC.
+☐ Wash the pellet with 10 ml of cold 75% ethanol. Swirl & centrifuge at
+4000 rpm for 15 minutes @ 4oC.
+☐ Discard supernatant, centrifuge for 5 min, remove the rest of the ethanol
+☐ Air-dry the pellet for 10 minutes, inverted on a kimwipe.
+☐ Dissolve pellet in 400 ul of DEPC-treated H2O. Resuspend by pipeting up & down a
+few times.
+☐ Add 2 ul SuperaseIn. Incubate at 60oC for 10 minutes to resuspend.
+☐ Set water bath to 37oC.
+☐ Add 50 ul 10X DnaseI Buffer, 45 ul H2O and 5 ul of DnaseI, incubate at 37oC for 1 hr.
+☐ Prepare Buffer RLT (Rneasy Clean-up Midi Kit) by adding b-mercaptoethanol (10ul/1ml RLT).
+☐ Add 2.0 ml Buffer RLT to the RNA prep and mix thoroughly.
+☐ Add 1.4 ml ethanol (96-100%) to the diluted RNA. Mix thoroughly.
+☐ Label 15 ml tubes from the kit and place midi columns in them
+☐ Apply sample to a Midi column, close tube gently and centrifuge for 20 min at 3000 rpm.
+☐ Discard the flow-through.
+☐ Add 2.5 ml Buffer RPE to the RNA easy column, close the centrifuge tube gently,
+incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm. Discard the flow-through.
+☐ Add another 2.5 ml Buffer RPE to the RNeasy column. Close the centrifuge tube
+gently, incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm, remove flow-through
+☐ Centrifuge again for another 5 min.
+☐ Label new 15 ml tubes from the kit.
+☐ Transfer the RNA easy column to a new tube and pipet 250 ul volume of
+RNase-free water directly onto the RNeasy silica-membrane incubate for 1 min
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ To the same tube add again 250 ul H2O, incubate for 1 min.
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ Label two sets of 1.5 ml Eppendorf tubes.
+☐ Transfer 490 ul to the one tube and 10 ul to another one. Use 10 ul tube for the RNA
+

+

Detailed descriptions of these procedures can be found under the ArrayExpress (http://www.ebi.ac.uk/aerep/?) protocol P-MEXP-4631 (Caldo et al. 2004). + +

Replication and Sample Balance: +

3 independent replicates of both parental cultivars Steptoe and Morex were generated for both tissues, embryo and seedling leaf. +

Experimental Design and Batch Structure: + +

+ + + +

    Downloading complete data set:

+
+

The following are ArrayExpress (http://www.ebi.ac.uk/aerep/?) experiment IDs: +E-TABM-111 (leaf, 41 chips) and E-TABM-112 (embryo derived, 156 chips).

+
+ + +

    About the array platform:

+ +
+

Affymetrix 22K Barley1 GeneChip probe array (http://www.affymetrix.com/products/arrays/specific/barley.affx ; Affymetrix product #900515 GeneChip Barley Genome Array) representing 21,439 non-redundant Barley1 exemplar sequences was derived from worldwide contribution of 350,000 high-quality ESTs from 84 cDNA libraries, in addition to 1,145 barley gene sequences from the National Center for Biotechnology Information non-redundant database (Close et al 2004). Abbreviated annotations were created based on the exemplar sequence homology by Arnis Druka using data from the Harvest (http://harvest.ucr.edu/) data depository. + +

+ + +

    About data processing:

+
+ + + + + + + + + + + + + + + + + +
Types of the expression data-sets
Data processing description
Barley1 Embryo gcRMA SCRI (Dec 06)
+Barley1 Leaf gcRMA SCRI (Dec 06)

 

+

The Affymetrix' CEL files that were generated using MAS 5.0 Suite were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) and processed using the RMA algorithm.

+

 

Barley1 Embryo MAS 5.0 SCRI (Dec 06)
+Barley1 Leaf MAS 5.0 SCRI (Dec 06)

 

+

The MAS 5.0 values were calculated from the DAT files using Affymetrix' MAS 5.0 Suite.

+

 

Barley1 Embryo0 gcRMA SCRI (Apr 06)
+Barley1 Leaf gcRMAn SCRI (Dec 06)

The Affymetrix' CEL files were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) software and processed using the RMA algorithm. Per-chip and per-gene normalization was done following the standard GeneSpring procedure (citation of the GeneSpring normalization description): + +

    +
  1. Values below 0.01 were set to 0.01. +
  2. Each measurement was divided by the 50.0th percentile of all measurements in that sample. +
  3. Each gene was divided by the median of its measurements in all samples. If the median of the raw values was below 10 then each measurement for that gene was divided by 10 if the numerator was above 10, otherwise the measurement was thrown out. +
+
+ + + +

    Data source acknowledgment:

+ +
+

Plant maintenance, tissue collection, RNA isolation, and data submission to ArrayExpress was done at SCRI by Arnis Druka with support from BBSRC/SEERAD grant + + +SCR/910/04 + +'The genetics of gene expression in barley' to Michael Kearsey (University of Birmingham, UK) and Robbie Waugh (SCRI, UK). Probe synthesis, labeling and hybridization were performed according to manufacturer’s protocols (Affymetrix, Santa Clara, CA) at the Iowa State University GeneChip Core facility (Rico Caldo and Roger Wise). ArrayExpress (EBI, UK) team members Tim Rayner, Helen Parkinson, and Alvis Brazma are acknowledged for excellent help with data submission to ArrayExpress. +

+ +

    Contact address:

+
+

Arnis Druka +
+Genetics Programme +
+Scottish Crop Research Institute +
+Invergowrie, Dundee DD2 5DA +
+Angus, Scotland, United Kingdom +
+Tel +44 01382 562731
+Fax +44 01382 568587
+adruka@scri.sari.ac.uk

+
+ +

    References:

+
+ +

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003 Apr;4(2):249-64.
+
Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schreiber A, Wise R, Close T, Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall D, Waugh R. (2006) An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics, + + +Jul;6(3):202-11. + +

Kleinhofs A, Kilian A, Saghai Maroof M, Biyashev R, Hayes P, Chen F, Lapitan N, Fenwick A, Blake T, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu BH, Sorrells M, Heun M, Franckowiak J, Hoffman D, Skadsen R, Steffenson B (1993) A molecular, isozyme, and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705-712. + +

Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16:2514-2528. + +

Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP. (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960-968. + +

Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392-401 + +

+ + +

+ +

    About this text file:

+
+

+This text file originally generated by Arnis Druka on May 8, 2006. Modified Aug1 by AD. Entered by RWW Aug 4, 2006. Modified by AD Jan 29, 2007, Feb 01, 2007.

+
+ + + + +

+ +
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/B30_K_1206_Rn.html b/web/dbdoc/B30_K_1206_Rn.html new file mode 100755 index 00000000..f6059a47 --- /dev/null +++ b/web/dbdoc/B30_K_1206_Rn.html @@ -0,0 +1,2016 @@ + +GN INFO on: Barley 150 Embryo mRNA (Apr06) + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +
+ +

Affymetrix data set from SCRI, April - December 2006 + +modify this page

Accession number: GN126

+

Barley1 Leaf gcRMAn SCRI (Dec 06) - integrated probe set value for each gene has been calculated using RMA algorithm (Irizarry et al 2003). RMA ignores MM probe signals. Descriptions of probe set signal calculation can be found on this page below, section 'About Data Processing'. +

+

    Summary:

+ +
+

The SCRI barley data set provides estimates of mRNA abundance in doubled haploid recombinant lines of cultivated barley. Embryo-derived tissues at four days after imbibition (150 lines) and seedling leaves at 12 days after imbibition (subset of 34 lines) and three biological replicates of each parental cultivar (Steptoe and Morex) for each tissue were used for the isolation of total RNA and hybridization to the Barley1 22K GeneChip. +

+ +

    About the lines used to generate this set of data:

+
+

The SM cross was originally made to map barley grain quality traits; Steptoe is high-yielding barley cultivar used for animal feeding, but Morex has good malting barley characteristics (Hayes et al 1993). Many agronomic quality traits have been mapped using this population (for the lists see BeerGenes web-site http://gnome.agrenv.mcgill.ca/bg/). + +

The sample used in this study consists of 150 Steptoe x Morex doubled haploid recombinant lines (Kleinhofs et al. 1993) was used to obtain embryo-derived tissue. For the seedling leaf tissue a subset of 35 lines was used. This subset was selected based on evenly spaced crossovers along each of seven barley chromosomes. The expression data of 11 DH lines has been removed from both, embryo and leaf, leaving for the analysis 129 lines with embryo expression data and a subset of 30 lines with seedling leaf expression data. The lines were removed from the analysis after error checking; discrepancies with genotyping data were found. We left all 150 lines in the embryo Apr06 data set and the full data set is available from the ArrayExpress. The following table lists line IDs and corresponding CEL file IDs, also indicating:
+1) +pedigree; shows the direction of the cross that was used to produce the original F1. The parental plants were given letter codes of A - Z. For example, SM1 was derived from an F1 that was generated by crossing Steptoe plant "B" as a female with Morex plant "F" as a male.
+2) +'minimapper' subset - MINI;
+3) lines that have expression data removed - ERROR: + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order # Line ID Permanent Oregon ID Cross direction
CEL file names
Mini-mapper set Error check
embryo data-set leaf data-setembryo data-setleaf data-set
1 SM001 2907001 Steptoe/Morex(BxF) AD_SCRI_82.CEL OK
2 SM002 2907002 Steptoe/Morex(BxF) AD_SCRI_1.CEL OK
3 SM003 2907003 Morex/Steptoe(CxF) AD_SCRI_19.CEL OK
4 SM004 2907004 Morex/Steptoe(CxF) AD_SCRI_3.CEL 0521-1_SetA1.CEL SMmini OK OK
5 SM005 2907005 Steptoe/Morex(BxH) AD_SCRI_88.CEL OK
6 SM006 2907006 Morex/Steptoe(CxF) AD_SCRI_48.CEL OK
7 SM007 2907007 Steptoe/Morex(BxH) AD_SCRI_35.CEL 0521-2_SetA2.CEL SMmini OK OK
8 SM009 2907009 Steptoe/Morex(BxF) AD_SCRI_2.CEL OK
9 SM010 2907010 Morex/Steptoe(IxE) AD_SCRI_42.CEL OK
10 SM011 2907011 Steptoe/Morex(QxG) AD_SCRI_10.CEL OK
11 SM012 2907012 Morex/Steptoe(CxF) AD_SCRI_45.CEL 0521-3_SetA3.CEL SMmini ERROR ERROR
12 SM013 2907013 Morex/Steptoe(IxE) AD_SCRI_78.CEL 0521-4_SetA4.CEL SMmini ERROR ERROR
13 SM014 2907014 Steptoe/Morex(BxH) AD_SCRI_18.CEL OK
14 SM015 2907015 Steptoe/Morex(BxH) AD_SCRI_5.CEL OK
15 SM016 2907016 Steptoe/Morex(BxH) AD_SCRI_21.CEL OK
16 SM020 2907020 Steptoe/Morex(OxJ) AD_SCRI_77.CEL OK
17 SM021 2907021 Morex/Steptoe(IxE) AD_SCRI_30.CEL OK
18 SM022 2907022 Morex/Steptoe(IxE) AD_SCRI_31.CEL 0521-5_SetA5.CEL SMmini OK OK
19 SM023 2907023 Steptoe/Morex(BxH) AD_SCRI_32.CEL OK
20 SM024 2907024 Morex/Steptoe(IxE) AD_SCRI_33.CEL 0521-6_SetA6.CEL SMmini OK OK
21 SM025 2907025 Morex/Steptoe(CxF) AD_SCRI_34.CEL OK
22 SM027 2907027 Steptoe/Morex(OxJ) AD_SCRI_12.CEL 0521-7_SetA7.CEL SMmini OK OK
23 SM030 2907030 Morex/Steptoe(IxE) AD_SCRI_79.CEL OK
24 SM031 2907031 Steptoe/Morex(OxJ) AD_SCRI_16.CEL OK
25 SM032 2907032 Morex/Steptoe(IxE) AD_SCRI_13.CEL OK
26 SM035 2907035 Morex/Steptoe(CxF) AD_SCRI_15.CEL ERROR
27 SM039 2907039 Morex/Steptoe(CxF) AD_SCRI_41.CEL OK
28 SM040 2907040 Steptoe/Morex(BxH) AD_SCRI_83.CEL OK
29 SM041 2907041 Steptoe/Morex(OxJ) AD_SCRI_11_redo.CEL 0521-8_SetA8.CEL SMmini OK OK
30 SM042 2907042 Morex/Steptoe(CxF) AD_SCRI_57.CEL OK
31 SM043 2907043 Morex/Steptoe(JxE) AD_SCRI_49.CEL 0521-9_SetA9.CEL SMmini OK OK
32 SM044 2907044 Steptoe/Morex(OxJ) AD_SCRI_50.CEL 0521-10_SetA10.CEL SMmini OK OK
33 SM045 2907045 Steptoe/Morex(BxH) AD_SCRI_51.CEL OK
34 SM046 2907046 Steptoe/Morex(OxJ) AD_SCRI_52.CEL 0521-11_SetA11.CEL SMmini OK OK
35 SM048 2907048 Steptoe/Morex(BxF) AD_SCRI_53.CEL ERROR
36 SM050 2907050 Morex/Steptoe(IxE) AD_SCRI_46.CEL OK
37 SM054 2907054 Morex/Steptoe(CxF) AD_SCRI_60.CEL OK
38 SM055 2907055 Steptoe/Morex(OxJ) AD_SCRI_55.CEL OK
39 SM056 2907056 Steptoe/Morex(BxH) AD_SCRI_23.CEL OK
40 SM057 2907057 Morex/Steptoe(CxF) AD_SCRI_24.CEL OK
41 SM058 2907058 Steptoe/Morex(BxF) AD_SCRI_22.CEL OK
42 SM059 2907059 Steptoe/Morex(BxH) AD_SCRI_27.CEL OK
43 SM061 2907061 Morex/Steptoe(LxF) AD_SCRI_81.CEL 0521-12_SetA12.CEL SMmini OK OK
44 SM062 2907062 Morex/Steptoe(CxF) AD_SCRI_44.CEL OK
45 SM063 2907063 Steptoe/Morex(OxJ) AD_SCRI_40.CEL 0521-13_SetA13.CEL SMmini OK OK
46 SM064 2907064 Morex/Steptoe(CxF) AD_SCRI_87_redo.CEL OK
47 SM065 2907065 Morex/Steptoe(CxF) AD_SCRI_54.CEL OK
48 SM067 2907067 Steptoe/Morex(OxJ) AD_SCRI_73.CEL OK
49 SM068 2907068 Steptoe/Morex(OxG) AD_SCRI_56.CEL ERROR
50 SM069 2907069 Steptoe/Morex(BxH) AD_SCRI_71.CEL OK
51 SM070 2907070 Steptoe/Morex(BxF) AD_SCRI_64.CEL OK
52 SM071 2907071 Steptoe/Morex(BxH) AD_SCRI_58.CEL OK
53 SM072 2907072 Morex/Steptoe(CxF) AD_SCRI_59.CEL OK
54 SM073 2907073 Steptoe/Morex(BxF) AD_SCRI_74.CEL 0521-14_SetA14.CEL SMmini OK ERROR
55 SM074 2907074 Morex/Steptoe(CxF) AD_SCRI_25.CEL 0521-15_SetA15.CEL SMmini OK OK
56 SM075 2907075 Steptoe/Morex(QxG) AD_SCRI_120.CEL OK
57 SM076 2907076 Steptoe/Morex(BxF) AD_SCRI_112.CEL OK
58 SM077 2907077 Morex/Steptoe(CxF) AD_SCRI_142.CEL OK
59 SM078 2907078 Steptoe/Morex(BxF) AD_SCRI_86.CEL OK
60 SM079 2907079 Morex/Steptoe(CxF) AD_SCRI_153.CEL 0521-16_SetA16.CEL SMmini OK ERROR
61 SM080 2907080 Steptoe/Morex(BxF) AD_SCRI_107.CEL OK
62 SM081 2907081 Morex/Steptoe(CxF) AD_SCRI_105.CEL OK
63 SM082 2907082 Steptoe/Morex(BxF) AD_SCRI_97.CEL OK
64 SM083 2907083 Steptoe/Morex(BxF) AD_SCRI_89.CEL OK
65 SM084 2907084 Morex/Steptoe(CxF) AD_SCRI_155.CEL OK
66 SM085 2907085 Morex/Steptoe(IxE) AD_SCRI_149.CEL 0521-17_SetA17.CEL SMmini OK OK
67 SM087 2907087 Steptoe/Morex(OxJ) AD_SCRI_113.CEL OK
68 SM088 2907088 Morex/Steptoe(CxF) AD_SCRI_93.CEL 0521-18_SetA18.CEL SMmini OK OK
69 SM089 2907089 Steptoe/Morex(OxJ) AD_SCRI_148.CEL 0521-19_SetA19.CEL SMmini OK OK
70 SM091 2907091 Morex/Steptoe(CxF) AD_SCRI_110.CEL OK
71 SM092 2907092 Steptoe/Morex(OxJ) AD_SCRI_7.CEL OK
72 SM093 2907093 Steptoe/Morex(BxF) AD_SCRI_122.CEL OK
73 SM094 2907094 Morex/Steptoe(CxF) AD_SCRI_150.CEL OK
74 SM097 2907097 Morex/Steptoe(CxF) AD_SCRI_158.CEL OK
75 SM098 2907098 Morex/Steptoe(CxF) AD_SCRI_121.CEL OK
76 SM099 2907099 Steptoe/Morex(QxG) AD_SCRI_137.CEL OK
77 SM103 2907103 Morex/Steptoe(IxE) AD_SCRI_156.CEL OK
78 SM104 2907104 Steptoe/Morex(BxH) AD_SCRI_70.CEL ERROR
79 SM105 2907105 Morex/Steptoe(IxE) AD_SCRI_69.CEL OK
80 SM110 2907110 Morex/Steptoe(CxF) AD_SCRI_75.CEL ERROR
81 SM112 2907112 Steptoe/Morex(BxF) AD_SCRI_84.CEL OK
82 SM116 2907116 Morex/Steptoe(CxF) AD_SCRI_117.CEL 0521-20_SetA20.CEL SMmini OK OK
83 SM120 2907120 Steptoe/Morex(OxJ) AD_SCRI_138.CEL OK
84 SM124 2907124 Steptoe/Morex(BxF) AD_SCRI_146.CEL OK
85 SM125 2907125 Morex/Steptoe(IxE) AD_SCRI_43.CEL OK
86 SM126 2907126 Steptoe/Morex(OxJ) AD_SCRI_144_redo.CEL OK
87 SM127 2907127 Steptoe/Morex(BxH) AD_SCRI_129.CEL OK
88 SM129 2907129 Steptoe/Morex(OxJ) AD_SCRI_132.CEL OK
89 SM130 2907130 Morex/Steptoe(CxF) AD_SCRI_101.CEL 0521-21_SetA21.CEL SMmini OK OK
90 SM131 2907131 Steptoe/Morex(OxJ) AD_SCRI_102.CEL OK
91 SM132 2907132 Steptoe/Morex(QxG) AD_SCRI_4_redo.CEL OK
92 SM133 2907133 Morex/Steptoe(CxF) AD_SCRI_157.CEL OK
93 SM134 2907134 Morex/Steptoe(IxE) AD_SCRI_159.CEL OK
94 SM135 2907135 Steptoe/Morex(BxF) AD_SCRI_72.CEL 0521-22_SetA22.CEL SMmini OK OK
95 SM136 2907136 Steptoe/Morex(QxG) AD_SCRI_123.CEL 0521-23_SetA23.CEL SMmini OK OK
96 SM137 2907137 Steptoe/Morex(BxH) AD_SCRI_39.CEL OK
97 SM139 2907139 Morex/Steptoe(CxF) AD_SCRI_133.CEL OK
98 SM140 2907140 Morex/Steptoe(CxF) AD_SCRI_134.CEL 0521-24_SetA24.CEL SMmini OK OK
99 SM141 2907141 Steptoe/Morex(BxH) AD_SCRI_136.CEL 0521-25_SetA25.CEL SMmini OK OK
100 SM142 2907142 Morex/Steptoe(IxE) AD_SCRI_6.CEL OK
101 SM143 2907143 Steptoe/Morex(BxH) AD_SCRI_145.CEL OK
102 SM144 2907144 Steptoe/Morex(BxF) AD_SCRI_103.CEL OK
103 SM145 2907145 Steptoe/Morex(QxG) AD_SCRI_108.CEL OK
104 SM146 2907146 Morex/Steptoe(BxF) AD_SCRI_91.CEL 0521-26_SetA26.CEL SMmini OK OK
105 SM147 2907147 Steptoe/Morex(OxJ) AD_SCRI_139.CEL OK
106 SM149 2907149 Steptoe/Morex(BxF) AD_SCRI_131.CEL ERROR
107 SM150 2907150 Morex/Steptoe(CxF) AD_SCRI_37.CEL OK
108 SM151 2907151 Morex/Steptoe(IxE) AD_SCRI_28.CEL OK
109 SM152 2907152 Steptoe/Morex(BxH) AD_SCRI_9_redo.CEL 0521-27_SetA27.CEL SMmini OK OK
110 SM153 2907153 Steptoe/Morex(BxH) AD_SCRI_135.CEL OK
111 SM154 2907154 Steptoe/Morex(BxH) AD_SCRI_114.CEL OK
112 SM155 2907155 Steptoe/Morex(BxH) AD_SCRI_119.CEL 0521-28_SetA28.CEL SMmini OK OK
113 SM156 2907156 Steptoe/Morex(BxH) AD_SCRI_140.CEL OK
114 SM157 2907157 Morex/Steptoe(CxF) AD_SCRI_106_redo.CEL OK
115 SM158 2907158 Morex/Steptoe(CxF) AD_SCRI_65.CEL OK
116 SM159 2907159 Morex/Steptoe(IxE) AD_SCRI_168.CEL OK
117 SM160 2907160 Steptoe/Morex(OxJ) AD_SCRI_47.CEL 0521-29_SetA29.CEL SMmini OK ERROR
118 SM161 2907161 Steptoe/Morex(BxH) AD_SCRI_76.CEL ERROR
119 SM162 2907162 Morex/Steptoe(CxF) AD_SCRI_147.CEL OK
120 SM164 2907164 Steptoe/Morex(OxJ) AD_SCRI_128.CEL OK
121 SM165 2907165 Steptoe/Morex(BxH) AD_SCRI_143.CEL OK OK
122 SM166 2907166 Morex/Steptoe(CxF) AD_SCRI_115.CEL OK
123 SM167 2907167 Steptoe/Morex(BxH) AD_SCRI_127.CEL 0521-30_SetA30.CEL SMmini OK OK
124 SM168 2907168 Steptoe/Morex(BxH) AD_SCRI_130.CEL OK
125 SM169 2907169 Morex/Steptoe(CxF) AD_SCRI_118.CEL 0521-31_SetA31.CEL SMmini OK OK
126 SM170 2907170 Steptoe/Morex(BxF) AD_SCRI_151.CEL OK
127 SM171 2907171 Steptoe/Morex(BxF) AD_SCRI_165.CEL ERROR
128 SM172 2907172 Steptoe/Morex(OxJ) AD_SCRI_152.CEL ERROR
129 SM173 2907173 Steptoe/Morex(OxJ) AD_SCRI_104.CEL 0521-32_SetA32.CEL SMmini OK OK
130 SM174 2907174 Steptoe/Morex(BxH) AD_SCRI_154.CEL OK
131 SM176 2907176 Morex/Steptoe(CxF) AD_SCRI_141.CEL OK
132 SM177 2907177 Morex/Steptoe(CxF) AD_SCRI_111.CEL 0521-33_SetA33.CEL SMmini OK OK
133 SM179 2907179 Morex/Steptoe(CxF) AD_SCRI_166.CEL OK
134 SM180 2907180 Morex/Steptoe(IxE) AD_SCRI_161.CEL OK
135 SM181 2907181 Morex/Steptoe(IxE) AD_SCRI_162.CEL OK
136 SM182 2907182 Morex/Steptoe(CxF) AD_SCRI_163.CEL OK
137 SM183 2907183 Morex/Steptoe(CxF) AD_SCRI_164.CEL OK
138 SM184 2907184 Morex/Steptoe(IxE) AD_SCRI_160.CEL 0521-34_SetA34.CEL SMmini OK OK
139 SM185 2907185 Morex/Steptoe(IxE) AD_SCRI_167.CEL OK
140 SM186 2907186 Morex/Steptoe(IxE) AD_SCRI_62.CEL OK
141 SM187 2907187 Morex/Steptoe(IxE) AD_SCRI_61.CEL OK
142 SM188 2907188 Morex/Steptoe(CxF) AD_SCRI_63.CEL OK
143 SM189 2907189 Steptoe/Morex(QxG) AD_SCRI_80.CEL OK
144 SM193 2907193 Morex/Steptoe(IxE) AD_SCRI_36.CEL OK
145 SM194 2907194 Steptoe/Morex(OxJ) AD_SCRI_29.CEL OK
146 SM196 2907196 Steptoe/Morex(BxF) AD_SCRI_26.CEL OK
147 SM197 2907197 Steptoe/Morex(BxF) AD_SCRI_85.CEL OK
148 SM198 2907198 Morex/Steptoe(IxE) AD_SCRI_8.CEL OK
149 SM199 2907199 Steptoe/Morex(BxF) AD_SCRI_20.CEL OK
150 SM200 2907200 Morex/Steptoe(IxE) AD_SCRI_38.CEL 0521-35_SetA35.CEL SMmini OK OK
parent Steptoe AD_SCRI_17.CEL 0521-36_SetA36.CEL
parent Steptoe AD_SCRI_66.CEL 0521-37_SetA37.CEL
parent Steptoe AD_SCRI_68.CEL 0521-38_SetA38.CEL
parent Morex AD_SCRI_116.CEL 0521-39_SetA39.CEL
parent Morex AD_SCRI_14.CEL 0521-40_SetA40.CEL
parent Morex AD_SCRI_67.CEL 0521-41_SetA41.CEL
+

+ + +

    About tissues used to generate this set of data:

+ +
+

Plant material according to the current plant ontologies: Embryo-derived tissues: whole plant (PO:0000003) at the development stage 1.05-coleoptile emerged from seed (GRO:0007056); Seedling leaves: primary shoot (PO:0006341) at the developmental stage 2.02-first leaf unfolded (GRO:0007060) (Druka et al. 2006). + +

To obtain embryo-derived tissue, growth room#2, AN building, SCRI, with the standard laboratory bench positioned in the middle of the room was used to germinate sterilized seeds. Seeds were placed between three layers of wet 3MM filter paper in the 156 10 mm Petri plates. Thirty to fifty seeds per line (per Petri plate) were used. Germination was in the dark, 16 hours at 17 deg C and 8 hours at 12 deg C. After 96 hours, embryo-derived tissue (mesocotyl, coleoptile, and seminal roots) from three grains was dissected and flash frozen in the liquid nitrogen. Germination and collection was repeated two more times. Complete randomization of the Petri plates was done for each germination event. Tissues from all three germinations (collections) were bulked before RNA isolation. Three replicates of the parental cultivars were germinated for each collection. +

To obtain seedling leaves, three Microclima 1000 growth chambers (Snijders Scientific B.V., Tilburg, Holland) were used for the experiment. Each cabinet accomodated 40 (13x13 cm) pots. Humidity was set to 70%, with light conditions for 16 hours light at 17C and 8 hours dark at 12C. The cycle started at 10 am with lights on. Light intensity was 337-377 mmol m-2 s-1, measured at the beginning of the experiment, 11 cm from the light source. Measurement was done using Sky Quantium light sensor at 15oC. Plants were placed 55 cm from the light source (from the bulb to the surface of the vermiculite). Ten sterilized seeds per pot were planted and 3 pots per genotype / per cabinet were used. After 12 days, leaf blade and sheath from 5-7 the same size plants was cut off, bulked and flash frozen in the liquid nitrogen. + +

+

+ +
+

RNA Sample Processing: +

Trizol RNA isolation and RNeasy clean up protocol for whole plants (embryo-derived tissue dissected from 4 days old germinating grains) and the seedling leaves (12 days after planting). +


+☐ Grind tissue (9 embryos) with a mortar and pestle in liquid nitrogen
+☐ Add 5 ml TRIzol (pre-heated to 60oC) to all samples, vortex until all the tissue is thawed, place in the 60oC waterbath..
+☐ Incubate samples at 60oC for 10 minutes, vortexing three times.
+☐ Centrifuge @ 4000 x rpm @ 4C for 30 minutes (in Eppendorf 5810R).
+☐ While centrifuging, label new set of 15 ml tubes
+☐ Transfer supernatant to 15 ml centrifuge tube
+☐ Add 1 ml of chloroform. Vortex the sample until color shade is uniform at least 5
+seconds, and incubate at room temperature for 5 minutes.
+☐ Centrifuge @ 4000 x rpm for 30 minutes @ 4oC.
+☐ While centrifuging, label new 15 ml tubes
+☐ Collect the upper aqueous layer (there will be about 3 mls) and transfer to a new 15 ml tube.
+☐ Add 0.6 volumes (2 ml) of isopropanol, mix gently, incubate at room temperature for 20 minutes.
+☐ Centrifuge @ 4000 rpm for 30 minutes @ 4oC.
+☐ Wash the pellet with 10 ml of cold 75% ethanol. Swirl & centrifuge at
+4000 rpm for 15 minutes @ 4oC.
+☐ Discard supernatant, centrifuge for 5 min, remove the rest of the ethanol
+☐ Air-dry the pellet for 10 minutes, inverted on a kimwipe.
+☐ Dissolve pellet in 400 ul of DEPC-treated H2O. Resuspend by pipeting up & down a
+few times.
+☐ Add 2 ul SuperaseIn. Incubate at 60oC for 10 minutes to resuspend.
+☐ Set water bath to 37oC.
+☐ Add 50 ul 10X DnaseI Buffer, 45 ul H2O and 5 ul of DnaseI, incubate at 37oC for 1 hr.
+☐ Prepare Buffer RLT (Rneasy Clean-up Midi Kit) by adding b-mercaptoethanol (10ul/1ml RLT).
+☐ Add 2.0 ml Buffer RLT to the RNA prep and mix thoroughly.
+☐ Add 1.4 ml ethanol (96-100%) to the diluted RNA. Mix thoroughly.
+☐ Label 15 ml tubes from the kit and place midi columns in them
+☐ Apply sample to a Midi column, close tube gently and centrifuge for 20 min at 3000 rpm.
+☐ Discard the flow-through.
+☐ Add 2.5 ml Buffer RPE to the RNA easy column, close the centrifuge tube gently,
+incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm. Discard the flow-through.
+☐ Add another 2.5 ml Buffer RPE to the RNeasy column. Close the centrifuge tube
+gently, incubate for 3 min
+☐ Centrifuge for 10 min at 3000 rpm, remove flow-through
+☐ Centrifuge again for another 5 min.
+☐ Label new 15 ml tubes from the kit.
+☐ Transfer the RNA easy column to a new tube and pipet 250 ul volume of
+RNase-free water directly onto the RNeasy silica-membrane incubate for 1 min
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ To the same tube add again 250 ul H2O, incubate for 1 min.
+☐ Centrifuge for 5 min at 3000 rpm.
+☐ Label two sets of 1.5 ml Eppendorf tubes.
+☐ Transfer 490 ul to the one tube and 10 ul to another one. Use 10 ul tube for the RNA
+

+

Detailed descriptions of these procedures can be found under the ArrayExpress (http://www.ebi.ac.uk/aerep/?) protocol P-MEXP-4631 (Caldo et al. 2004). + +

Replication and Sample Balance: +

3 independent replicates of both parental cultivars Steptoe and Morex were generated for both tissues, embryo and seedling leaf. +

Experimental Design and Batch Structure: + +

+ + + +

    Downloading complete data set:

+
+

The following are ArrayExpress (http://www.ebi.ac.uk/aerep/?) experiment IDs: +E-TABM-111 (leaf, 41 chips) and E-TABM-112 (embryo derived, 156 chips).

+
+ + +

    About the array platform:

+ +
+

Affymetrix 22K Barley1 GeneChip probe array (http://www.affymetrix.com/products/arrays/specific/barley.affx ; Affymetrix product #900515 GeneChip Barley Genome Array) representing 21,439 non-redundant Barley1 exemplar sequences was derived from worldwide contribution of 350,000 high-quality ESTs from 84 cDNA libraries, in addition to 1,145 barley gene sequences from the National Center for Biotechnology Information non-redundant database (Close et al 2004). Abbreviated annotations were created based on the exemplar sequence homology by Arnis Druka using data from the Harvest (http://harvest.ucr.edu/) data depository. + +

+ + +

    About data processing:

+
+ + + + + + + + + + + + + + + + + +
Types of the expression data-sets
Data processing description
Barley1 Embryo gcRMA SCRI (Dec 06)
+Barley1 Leaf gcRMA SCRI (Dec 06)

 

+

The Affymetrix' CEL files that were generated using MAS 5.0 Suite were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) and processed using the RMA algorithm.

+

 

Barley1 Embryo MAS 5.0 SCRI (Dec 06)
+Barley1 Leaf MAS 5.0 SCRI (Dec 06)

 

+

The MAS 5.0 values were calculated from the DAT files using Affymetrix' MAS 5.0 Suite.

+

 

Barley1 Embryo0 gcRMA SCRI (Apr 06)
+Barley1 Leaf gcRMAn SCRI (Dec 06)

The Affymetrix' CEL files were imported into the GeneSpring GX 7.3 (Agilent Technologies, Palo Alto, CA) software and processed using the RMA algorithm. Per-chip and per-gene normalization was done following the standard GeneSpring procedure (citation of the GeneSpring normalization description): + +

    +
  1. Values below 0.01 were set to 0.01. +
  2. Each measurement was divided by the 50.0th percentile of all measurements in that sample. +
  3. Each gene was divided by the median of its measurements in all samples. If the median of the raw values was below 10 then each measurement for that gene was divided by 10 if the numerator was above 10, otherwise the measurement was thrown out. +
+
+ + + +

    Data source acknowledgment:

+ +
+

Plant maintenance, tissue collection, RNA isolation, and data submission to ArrayExpress was done at SCRI by Arnis Druka with support from BBSRC/SEERAD grant + + +SCR/910/04 + +'The genetics of gene expression in barley' to Michael Kearsey (University of Birmingham, UK) and Robbie Waugh (SCRI, UK). Probe synthesis, labeling and hybridization were performed according to manufacturer’s protocols (Affymetrix, Santa Clara, CA) at the Iowa State University GeneChip Core facility (Rico Caldo and Roger Wise). ArrayExpress (EBI, UK) team members Tim Rayner, Helen Parkinson, and Alvis Brazma are acknowledged for excellent help with data submission to ArrayExpress. +

+ +

    Contact address:

+
+

Arnis Druka +
+Genetics Programme +
+Scottish Crop Research Institute +
+Invergowrie, Dundee DD2 5DA +
+Angus, Scotland, United Kingdom +
+Tel +44 01382 562731
+Fax +44 01382 568587
+adruka@scri.sari.ac.uk

+
+ +

    References:

+
+ +

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003 Apr;4(2):249-64.
+
Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, Rostoks N, Schreiber A, Wise R, Close T, Kleinhofs A, Graner A, Schulman A, Langridge P, Sato K, Hayes P, McNicol J, Marshall D, Waugh R. (2006) An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics, + + +Jul;6(3):202-11. + +

Kleinhofs A, Kilian A, Saghai Maroof M, Biyashev R, Hayes P, Chen F, Lapitan N, Fenwick A, Blake T, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu BH, Sorrells M, Heun M, Franckowiak J, Hoffman D, Skadsen R, Steffenson B (1993) A molecular, isozyme, and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705-712. + +

Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16:2514-2528. + +

Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP. (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960-968. + +

Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392-401 + +

+ + +

+ +

    About this text file:

+
+

+This text file originally generated by Arnis Druka on May 8, 2006. Modified Aug1 by AD. Entered by RWW Aug 4, 2006. Modified by AD Jan 29, 2007, Feb 01, 2007.

+
+ + + + +

+ +
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/B6BTBRF2Geno.html b/web/dbdoc/B6BTBRF2Geno.html new file mode 100755 index 00000000..351bc8d0 --- /dev/null +++ b/web/dbdoc/B6BTBRF2Geno.html @@ -0,0 +1,99 @@ + +M430 RMA Liver F2 Aug05 / GeneNetwork + + + + + + + + + + + + + + + + + +
+ + + + + +
+

+ +(B6 x BTBR)F2-ob/ob Genotype Database modify this page

+

    Summary:

+ +
+

+The Genotype database of August 2005 lists genotypes for 194 MIT microsatellite markers and 110 F2 animals used in combination with the Phenotypes and Liver transcriptome databases for mapping quantitative trait loci. To review a complete list of these genotypes type in the wildcard character * in the ANY search field. You can also search more selectively for markers using this general syntax Mb=(Chr1 50 150) to find all markers on Chr 1 between 50 and 150 Mb. This marker set includes genotypes for all 60 selected animals whose liver mRNAs were quantified using the Affymetrix M430A and B arrays, as well as an additional 50 F2 ob/ob animals from the same cross. +

+
+ +

    About the cases used to generate this set of data:

+ +
The 110 F2-ob/ob mice were from a mapping panel that we created to map diabetes related physiological phenotypes (Stoehr et al. 2000). These F2-ob/ob mice were also used to map mRNA abundance traits derived by quantitative real-time RT-PCR (Lan et al. 2003). The sixty F2-ob/ob mice that were used to generate microarray-derived mRNA abundance traits were selected from the 110 mice based on a selective phenotyping algorithm (Jin et al. 2004). The F2-ob/ob mice were housed at weaning at the University of Wisconsin-Madison animal care facility on a 12-h light/dark cycle. Mice were provided Purina Formulab Chow 5008 (6.5% fat) and acidified water ad libitum. Mice were killed at 14 weeks of age by CO2 asphyxiation after a 4-hour fast. The livers, along with other tissues, were immediately foil wrapped and frozen in liquid nitrogen, and subsequently transferred to -80 °C freezers for storage.
+ +

    About the marker set:

+
All 110 mice were genotyped at 194 MIT microsatellite markers separated an average of approximately 10 cM apart across the entire genome (Y chromsome, excepted). The maximum distance between markers wass less than 30 cM. The genotyping error-check routine implemented within R/qtl (Broman et al. 2003) showed no likely errors at p <0.01 probability. + + +
+ + +

    Data source acknowledgment:

+
This project was supported in part by NIH/NIDDK 5803701, NIH/NIDDK 66369-01 and American Diabetes Association 7-03-IG-01 to Alan D. Attie, USDA CSREES grants to the University of Wisconsin-Madison to Brian S. Yandell, and HHMI grant A-53-1200-4 to Christina Kendziorski. +
+ + + +

    Information about this text file:

+

This text file originally generated by RWW and Alan Attie, August 20, 2005. +

+ +
+
+ + + + + + + +
+ + + + + +
+ + + + + + + + + + diff --git a/web/dbdoc/B6BTBRF2Publish.html b/web/dbdoc/B6BTBRF2Publish.html new file mode 100755 index 00000000..01fb4969 --- /dev/null +++ b/web/dbdoc/B6BTBRF2Publish.html @@ -0,0 +1,92 @@ + +M430 RMA Liver F2 Aug05 / GeneNetwork + + + + + + + + + + + + + + + + + +
+ + + + + +
+

+ +(B6 x BTBR)F2-ob/ob Phenotype Database modify this page

+

    Summary:

+ +
+

+The Phenotypes database of August 2005 provides quantitative trait data for 24 phenotypes from a set of 110 F2 animals generated by crossing strains C57BL/6J and BTBR. All F2s are homozygous for the obese (ob) allele of leptin (Lep) on Chr 6. Data were generated at the University of Wisconsin by Alan Attie and colleagues (Stoehr et al. 2000; Lan et al. 2003). This data release complement the liver transcriptome data described in the paper of Lan and colleagues (in submission, 2005). Traits include body weight, insulin and blood sugar levels, and rtPCR results. To review a complete list of the 24 phenotypes simply type in the wildcard character * in the ANY search field. This data set includes values for all 60 selected animals whose liver mRNA has been quantified using the Affymetrix M430A and B arrays, as well as an addition 50 F2 ob/ob animals from the same cross. +

+
+ +
The 110 F2-ob/ob mice were chosen from a larger mapping panel that we created to map diabetes related physiological phenotypes (Stoehr et al. 2000). All 110 of this subsetwere used to map mRNA abundance traits derived by quantitative real-time RT-PCR (Lan et al. 2003). +

+
+ +

    Data source acknowledgment:

+
This project was supported in part by NIH/NIDDK 5803701, NIH/NIDDK 66369-01 and American Diabetes Association 7-03-IG-01 to Alan D. Attie, USDA CSREES grants to the University of Wisconsin-Madison to Brian S. Yandell, and HHMI grant A-53-1200-4 to Christina Kendziorski. +
+ + + +

    Information about this text file:

+

This text file originally generated by RWW and Alan Attie, August 20, 2005. +

+ +
+
+ + + + + + + +
+ + + + + +
+ + + + + + + + + + diff --git a/web/dbdoc/B6D2F2Geno.html b/web/dbdoc/B6D2F2Geno.html new file mode 100755 index 00000000..6cfc88f4 --- /dev/null +++ b/web/dbdoc/B6D2F2Geno.html @@ -0,0 +1,207 @@ + + +Genotypes B6D2F2 Genotypes + + + + + + + + + + + + + + + + + + + + + +
+ + +
+

Genotypes B6D2F2 Genotypes modify this page

+

Waiting for the data provider to submit their info file

+ +

Summary:

+ +
+

+SUBTITLE. Some text here

+ + +
+ + +

About the cases used to generate this set of data:

+ +
+ +

Some text here

+ + +
+ + +

About the tissue used to generate this set of data:

+ +
+

Some text here

+

+ + + + +
+ + + + +
IndexTubeIDGroupStrainAgeSexSource
1R2595E.1GDP129S1/SvImJ59FUTHSC RW
+ +
+

+

+ +

About downloading this data set:

+
+

Some text here

+
+ + +

About the array platfrom:

+
+

Some text here

+ +
+ + +

About data values and data processing:

+ +
+

Some text here

+

+ + + + +
+ + + + + +
IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
+ +
+

+

+ + +

Data source acknowledgment:

+
+ +

Some text here

+
+ + + +

Information about this text file:

+
+

Some text here

+
+ + +

GEO Series Data: This section to be used for GEO submission of the whole series of arrays

+
+

GSE Series +

Status +

Title +

Organism(s) +

Experiment type +

Summary + +

Overall design +

Contributor(s) + +

Citation(s) + +

+
Submission date +
Contact name +
E-mails +
Phone +
FAX +
URL +
Organization name +
Department(s) +
Laboratory(s) +
Street address +
City +
State/province +
ZIP/Postal code +
Country + + +

Platforms +

Samples + + +

+ + + + +
+
+ + + + + + +
+
    + +
+
+ +
+ + + + + + + + + + diff --git a/web/dbdoc/B6D2ONCILM_0412.html b/web/dbdoc/B6D2ONCILM_0412.html new file mode 100644 index 00000000..4757a5af --- /dev/null +++ b/web/dbdoc/B6D2ONCILM_0412.html @@ -0,0 +1,206 @@ + + + + + +B6D2 ONC Illumina v6.1 (Apr12) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
  + + + + + + +
+ + + + + + + + + WebQTL +
+
 
+ + + + + +
+   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
+
+ + + +

B6D2 ONC Illumina v6.1 (Apr12) RankInv **modify this page

+ + Accession number: GN386

+

+ This page will be updated soon. +

+ + +
+
+ + + + + + + + + + + + + + +
+ + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
+ GeneNetwork support from: + +
+      +
+
+ + + + + + + + + + diff --git a/web/dbdoc/BDF2-1999Geno.html b/web/dbdoc/BDF2-1999Geno.html new file mode 100755 index 00000000..70123867 --- /dev/null +++ b/web/dbdoc/BDF2-1999Geno.html @@ -0,0 +1,207 @@ + + +BDF2-1999 Genotypes + + + + + + + + + + + + + + + + + + + + + +
+ + +
+

BDF2-1999 Genotypes modify this page

+

Waiting for the data provider to submit their info file

+ +

Summary:

+ +
+

+SUBTITLE. Some text here

+ + +
+ + +

About the cases used to generate this set of data:

+ +
+ +

Some text here

+ + +
+ + +

About the tissue used to generate this set of data:

+ +
+

Some text here

+

+ + + + +
+ + + + +
IndexTubeIDGroupStrainAgeSexSource
1R2595E.1GDP129S1/SvImJ59FUTHSC RW
+ +
+

+

+ +

About downloading this data set:

+
+

Some text here

+
+ + +

About the array platfrom:

+
+

Some text here

+ +
+ + +

About data values and data processing:

+ +
+

Some text here

+

+ + + + +
+ + + + + +
IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
+ +
+

+

+ + +

Data source acknowledgment:

+
+ +

Some text here

+
+ + + +

Information about this text file:

+
+

Some text here

+
+ + +

GEO Series Data: This section to be used for GEO submission of the whole series of arrays

+
+

GSE Series +

Status +

Title +

Organism(s) +

Experiment type +

Summary + +

Overall design +

Contributor(s) + +

Citation(s) + +

+
Submission date +
Contact name +
E-mails +
Phone +
FAX +
URL +
Organization name +
Department(s) +
Laboratory(s) +
Street address +
City +
State/province +
ZIP/Postal code +
Country + + +

Platforms +

Samples + + +

+ + + + +
+
+ + + + + + +
+
    + +
+
+ +
+ + + + + + + + + + diff --git a/web/dbdoc/BDF2-2005Geno.html b/web/dbdoc/BDF2-2005Geno.html new file mode 100755 index 00000000..7a19ad0b --- /dev/null +++ b/web/dbdoc/BDF2-2005Geno.html @@ -0,0 +1,11 @@ + + + + +Untitled Document + + + + + + diff --git a/web/dbdoc/BHHBF2Geno.html b/web/dbdoc/BHHBF2Geno.html new file mode 100755 index 00000000..4f3e4ca3 --- /dev/null +++ b/web/dbdoc/BHHBF2Geno.html @@ -0,0 +1,207 @@ + + +BHHBF2 Genotypes + + + + + + + + + + + + + + + + + + + + + +
+ + +
+

BHHBF2 Genotypes modify this page

+

Waiting for the data provider to submit their info file

+ +

Summary:

+ +
+

+SUBTITLE. Some text here

+ + +
+ + +

About the cases used to generate this set of data:

+ +
+ +

Some text here

+ + +
+ + +

About the tissue used to generate this set of data:

+ +
+

Some text here

+

+ + + + +
+ + + + +
IndexTubeIDGroupStrainAgeSexSource
1R2595E.1GDP129S1/SvImJ59FUTHSC RW
+ +
+

+

+ +

About downloading this data set:

+
+

Some text here

+
+ + +

About the array platfrom:

+
+

Some text here

+ +
+ + +

About data values and data processing:

+ +
+

Some text here

+

+ + + + +
+ + + + + +
IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
+ +
+

+

+ + +

Data source acknowledgment:

+
+ +

Some text here

+
+ + + +

Information about this text file:

+
+

Some text here

+
+ + +

GEO Series Data: This section to be used for GEO submission of the whole series of arrays

+
+

GSE Series +

Status +

Title +

Organism(s) +

Experiment type +

Summary + +

Overall design +

Contributor(s) + +

Citation(s) + +

+
Submission date +
Contact name +
E-mails +
Phone +
FAX +
URL +
Organization name +
Department(s) +
Laboratory(s) +
Street address +
City +
State/province +
ZIP/Postal code +
Country + + +

Platforms +

Samples + + +

+ + + + +
+
+ + + + + + +
+
    + +
+
+ +
+ + + + + + + + + + diff --git a/web/dbdoc/BRF2_M_0304_M.html b/web/dbdoc/BRF2_M_0304_M.html new file mode 100755 index 00000000..3fcf4ee5 --- /dev/null +++ b/web/dbdoc/BRF2_M_0304_M.html @@ -0,0 +1,245 @@ + +OHSU/VA B6D2F2 Brain mRNA M430A MAS5(Mar04) RMA / WebQTL + + + + + + + + + + + + + + + + + + + + +
+

+ +OHSU/VA B6D2F2 Brain mRNA M430A MAS5 Database (March/04 Freeze) modify this page

Accession number: GN31

+ +

    Summary:             + +

+This March 2004 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A microarrays. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

+
+ + + +

    About the cases used to generate this set of data:

+ +

Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

+ +

The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

+
+ +

    About the tissue used to generate these data:

+ +

Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A array. +

+ +

    About the arrays:

+

All 56 430A arrays used in this project were purchased at one time and had the same Affymetrix lot number. + +The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

+ + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order
+
+
+CaseID +
+
ArrayID
+
+
+Side +
+
+
+CageID +
+
+
+Sex +
+
1
20
FL10
L
H1
F
2
2
FL11
L
H2
F
3
5
FL12
L
H3
F
4
63
FL13
L
H4
F
5
6
FL14
L
K2
F
6
10
FL15
L
Q2
F
7
52
FL2
L
E1
F
8
53
FL3
L
E2
F
9
42
FL4
L
E3
F
10
31
FL5
L
E4
F
11
14
FL6
L
F1
M
12
48
FL7
L
F2
F
13
60
FL8
L
F3
M
14
54
FL9
L
F4
F
15
35
FR10
R
K3
F
16
11
FR11
R
O1
F
17
21
FR12
R
O2
F
18
23
FR13
R
Q1
F
19
15
FR14
R
Q3
F
20
4
FR15
R
Q4
F
21
41
FR2
R
A2
F
22
44
FR3
R
A3
F
23
37
FR4
R
C1
F
24
8
FR5
R
C2
F
25
19
FR6
R
C3
F
26
40
FR7
R
C4
F
27
62
FR8
R
D2
M
28
39
FR9
R
D3
F
29
13
ML1
L
B1
M
30
22
ML10
L
L2
M
31
38
ML11
L
L4
M
32
43
ML12
L
M1
M
33
58
ML13
L
N2
M
34
7
ML14
L
R1
M
35
30
ML15
L
R3
M
36
46
ML3
L
G1
M
37
57
ML4
L
G2
M
38
51
ML5
L
I1
M
39
27
ML6
L
I2
M
40
50
ML7
L
J2
M
41
16
FL1
L
O2
M
42
3
ML9
L
L1
M
43
47
MR10
R
R2
M
44
56
MR11
R
S1
M
45
1
MR12
R
S2
M
46
55
MR13
R
T1
M
47
34
MR14
R
U1
M
48
25
MR15
R
U2
M
49
59
MR2
R
J1
M
50
32
MR3
R
M2
M
51
24
MR4
R
M3
M
52
12
MR5
R
M4
M
53
9
MR6
R
N1
M
54
36
MR7
R
N3
M
55
28
MR8
R
P1
M
56
33
MR9
R
P2
M
+
+ +

    About the marker set:

+ +

The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi. +

+ + +

    About data processing:

+ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + +
    +
  • Step 1: We added an offset of 1 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
  • Step 2: We took the log2 of each probe signal. + +
  • Step 3: We computed the Z score for each signal within array. + +
  • Step 4: We multiplied all Z scores by 2. + +
  • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
  • Step 6: We computed the arithmetic mean of the values for the set of microarrays for each of the individual strains. +
+ +

+Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+
+ + +

    About the chromosome and megabase position values:

+ +
The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

+ + +

    Data source acknowledgment:

+

This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372. +

+Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA. +

+ + +

    References:

+

Hitzemann, R, McWeeney, S, Harrington, S, Malmanger, B, Lawler, M, Belknap, JK (2004) Brain gene expression among four inbred mouse strains: The development of an analysis strategy for the integration of QTL and gene expression data. Submitted. +

+

Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15. +

+

Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610. +

+

Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821. +

+ +

    Information about this text file:

+

This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004, EJC June 21, 2005. +

+ + + +

+ +
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/BRF2_M_0304_M_F.html b/web/dbdoc/BRF2_M_0304_M_F.html new file mode 100755 index 00000000..de2ca439 --- /dev/null +++ b/web/dbdoc/BRF2_M_0304_M_F.html @@ -0,0 +1,246 @@ + +OHSU/VA B6D2F2 Brain mRNA M430A MAS5(Mar04) RMA / WebQTL + + + + + + + + + + + + + + + + + + + + +
+

+ +OHSU/VA B6D2F2 Brain mRNA M430A MAS5 Database (March/04 Freeze) modify this page

+ +

    Summary:             + +

+This March 2004 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix U74Av2 microarrays. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

+
+ + + +

    About the cases used to generate this set of data:

+ +

Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

+ +

The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

+
+ +

    About the tissue used to generate these data:

+ +

Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A array. +

+ +

    About the arrays:

+

All 56 430A arrays used in this project were purchased at one time and had the same Affymetrix lot number. + +The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

+ + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order
+
+
+ CaseID +
+
ArrayID
+
+
+ Side +
+
+
+ CageID +
+
+
+ Sex +
+
1
20
FL10
L
H1
F
2
2
FL11
L
H2
F
3
5
FL12
L
H3
F
4
63
FL13
L
H4
F
5
6
FL14
L
K2
F
6
10
FL15
L
Q2
F
7
52
FL2
L
E1
F
8
53
FL3
L
E2
F
9
42
FL4
L
E3
F
10
31
FL5
L
E4
F
11
14
FL6
L
F1
M
12
48
FL7
L
F2
F
13
60
FL8
L
F3
M
14
54
FL9
L
F4
F
15
35
FR10
R
K3
F
16
11
FR11
R
O1
F
17
21
FR12
R
O2
F
18
23
FR13
R
Q1
F
19
15
FR14
R
Q3
F
20
4
FR15
R
Q4
F
21
41
FR2
R
A2
F
22
44
FR3
R
A3
F
23
37
FR4
R
C1
F
24
8
FR5
R
C2
F
25
19
FR6
R
C3
F
26
40
FR7
R
C4
F
27
62
FR8
R
D2
M
28
39
FR9
R
D3
F
29
13
ML1
L
B1
M
30
22
ML10
L
L2
M
31
38
ML11
L
L4
M
32
43
ML12
L
M1
M
33
58
ML13
L
N2
M
34
7
ML14
L
R1
M
35
30
ML15
L
R3
M
36
46
ML3
L
G1
M
37
57
ML4
L
G2
M
38
51
ML5
L
I1
M
39
27
ML6
L
I2
M
40
50
ML7
L
J2
M
41
16
FL1
L
O2
M
42
3
ML9
L
L1
M
43
47
MR10
R
R2
M
44
56
MR11
R
S1
M
45
1
MR12
R
S2
M
46
55
MR13
R
T1
M
47
34
MR14
R
U1
M
48
25
MR15
R
U2
M
49
59
MR2
R
J1
M
50
32
MR3
R
M2
M
51
24
MR4
R
M3
M
52
12
MR5
R
M4
M
53
9
MR6
R
N1
M
54
36
MR7
R
N3
M
55
28
MR8
R
P1
M
56
33
MR9
R
P2
M
+
+ +

    About the marker set:

+ +

The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi. +

+ + +

    About data processing:

+ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + +
    +
  • Step 1: We added an offset of 1 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
  • Step 2: We took the log2 of each probe signal. + +
  • Step 3: We computed the Z score for each signal within array. + +
  • Step 4: We multiplied all Z scores by 2. + +
  • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
  • Step 6: We computed the arithmetic mean of the values for the set of microarrays for each of the individual strains. +
+ +

+Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+
+ + +

    About the chromosome and megabase position values:

+ +
The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

+ + +

    Data source acknowledgment:

+

This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372. +

+Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA. +

+ + +

    References:

+

Hitzemann, R, McWeeney, S, Harrington, S, Malmanger, B, Lawler, M, Belknap, JK (2004) Brain gene expression among four inbred mouse strains: The development of an analysis strategy for the integration of QTL and gene expression data. Submitted. +

+

Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15. +

+

Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610. +

+

Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821. +

+ +

    Information about this text file:

+

This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004. +

+ + + +

+ +
+ + + + + + +
+ + + + +
+ + + + + + + + + + + + diff --git a/web/dbdoc/BRF2_M_0304_P.html b/web/dbdoc/BRF2_M_0304_P.html new file mode 100755 index 00000000..b095a310 --- /dev/null +++ b/web/dbdoc/BRF2_M_0304_P.html @@ -0,0 +1,252 @@ + +OHSU/VA B6D2F2 Brain mRNA M430A (Mar04) PDNN / WebQTL + + + + + + + + + + + + + + + + + + + + +
+ + +

OHSU/VA B6D2F2 Brain mRNA M430A PDNN Database (March/04 Freeze)

+ +

Summary         modify this page

Accession number: GN33

+ +

+This March 2004 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A microarrays. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the Position-Dependent Nearest Neighbor (PDNN) method developed by Zhang and colleagues (2003. To simplify comparison between transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units. + +This data set was run as a single large batch with careful consideration to balancing samples by sex, age, and environment. + +

+ + + +

    About the cases used to generate this set of data:

+ +

Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

+ +

The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

+
+ +

    About the tissue used to generate these data:

+ +

Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A array. +

+ +

    About the arrays:

+

All 56 430A arrays used in this project were purchased at one time and had the same Affymetrix lot number. + +The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

+ + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order
+
+
+CaseID +
+
ArrayID
+
+
+Side +
+
+
+CageID +
+
+
+Sex +
+
1
20
FL10
L
H1
F
2
2
FL11
L
H2
F
3
5
FL12
L
H3
F
4
63
FL13
L
H4
F
5
6
FL14
L
K2
F
6
10
FL15
L
Q2
F
7
52
FL2
L
E1
F
8
53
FL3
L
E2
F
9
42
FL4
L
E3
F
10
31
FL5
L
E4
F
11
14
FL6
L
F1
M
12
48
FL7
L
F2
F
13
60
FL8
L
F3
M
14
54
FL9
L
F4
F
15
35
FR10
R
K3
F
16
11
FR11
R
O1
F
17
21
FR12
R
O2
F
18
23
FR13
R
Q1
F
19
15
FR14
R
Q3
F
20
4
FR15
R
Q4
F
21
41
FR2
R
A2
F
22
44
FR3
R
A3
F
23
37
FR4
R
C1
F
24
8
FR5
R
C2
F
25
19
FR6
R
C3
F
26
40
FR7
R
C4
F
27
62
FR8
R
D2
M
28
39
FR9
R
D3
F
29
13
ML1
L
B1
M
30
22
ML10
L
L2
M
31
38
ML11
L
L4
M
32
43
ML12
L
M1
M
33
58
ML13
L
N2
M
34
7
ML14
L
R1
M
35
30
ML15
L
R3
M
36
46
ML3
L
G1
M
37
57
ML4
L
G2
M
38
51
ML5
L
I1
M
39
27
ML6
L
I2
M
40
50
ML7
L
J2
M
41
16
FL1
L
O2
M
42
3
ML9
L
L1
M
43
47
MR10
R
R2
M
44
56
MR11
R
S1
M
45
1
MR12
R
S2
M
46
55
MR13
R
T1
M
47
34
MR14
R
U1
M
48
25
MR15
R
U2
M
49
59
MR2
R
J1
M
50
32
MR3
R
M2
M
51
24
MR4
R
M3
M
52
12
MR5
R
M4
M
53
9
MR6
R
N1
M
54
36
MR7
R
N3
M
55
28
MR8
R
P1
M
56
33
MR9
R
P2
M
+
+ +

    About the marker set:

+ +

The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi. +

+ + +

    About data processing:

+ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + +
    +
  • Step 1: We added an offset of 1 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
  • Step 2: We took the log2 of each probe signal. + +
  • Step 3: We computed the Z score for each signal within array. + +
  • Step 4: We multiplied all Z scores by 2. + +
  • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
  • Step 6: We computed the arithmetic mean of the values for the set of microarrays for each of the individual strains. +
+ +

+Probe set data: The uncorrected, untransformed CEL files were subject to probe (low) level processing using both the RMA (Robust Multiarray Average; Irizarry et al. 2003) and PDNN (Position Dependent Nearest Neighbor; Zhang et al. 2003) methods because these two performed the best of four methods tested in a recent four inbred strain comparison using the M430A chip on whole brain samples (Hitzemann et al, submitted). RMA was implemented by the Affy package (11/24/03 version) within Bioconductor (http://www.bioconductor.org) and PDNN by the PerfectMatch v. 2.1 program from Li Zhang (PDNN ). For sake of comparison with other data sets, MAS 5 files have also been generated. + +

To better compare data sets, the same simple steps (1 through 6 above) were applied to PDNN and RMA values. Every microarray data set therefore has a mean expression of 8 units with a standard deviation of 2 units. A 1-unit difference therefore represents roughly a 2-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+ + +
+ + +

    About the chromosome and megabase position values:

+ +
The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

+ + +

    Data source acknowledgment:

+

This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372. +

+Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA. +

+ + +

    References:

+

Hitzemann, R, McWeeney, S, Harrington, S, Malmanger, B, Lawler, M, Belknap, JK (2004) Brain gene expression among four inbred mouse strains: The development of an analysis strategy for the integration of QTL and gene expression data. Submitted. +

+

Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15. +

+

Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610. +

+

Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821. +

+ +

    Information about this text file:

+

This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004. +

+ + + +

+ +
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/BRF2_M_0304_R.html b/web/dbdoc/BRF2_M_0304_R.html new file mode 100755 index 00000000..21c66713 --- /dev/null +++ b/web/dbdoc/BRF2_M_0304_R.html @@ -0,0 +1,241 @@ + +OHSU/VA B6D2F2 Brain mRNA M430A (Mar04) RMA / WebQTL + + + + + + + + + + + + + + + + + + + + +
+ + +

OHSU/VA B6D2F2 Brain mRNA M430A RMA Database (March/04 Freeze) modify this page

Accession number: GN32

+ +

+This March 2004 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A microarrays. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the RMA protocol and are presented with secondary normalization to an average expression value of 8 units. To simplify comparison between transforms, RMA values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run as a single large batch with effort to balance samples by sex, age, and environment. +

+ + +

    About the cases used to generate this set of data:

+ +

Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

+ +

The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

+
+ +

    About the tissue used to generate these data:

+ +

Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A array. +

+ +

    About the arrays:

+

All 56 430A arrays used in this project were purchased at one time and had the same Affymetrix lot number. + +The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

+ + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order
+
+
+CaseID +
+
ArrayID
+
+
+Side +
+
+
+CageID +
+
+
+Sex +
+
1
20
FL10
L
H1
F
2
2
FL11
L
H2
F
3
5
FL12
L
H3
F
4
63
FL13
L
H4
F
5
6
FL14
L
K2
F
6
10
FL15
L
Q2
F
7
52
FL2
L
E1
F
8
53
FL3
L
E2
F
9
42
FL4
L
E3
F
10
31
FL5
L
E4
F
11
14
FL6
L
F1
M
12
48
FL7
L
F2
F
13
60
FL8
L
F3
M
14
54
FL9
L
F4
F
15
35
FR10
R
K3
F
16
11
FR11
R
O1
F
17
21
FR12
R
O2
F
18
23
FR13
R
Q1
F
19
15
FR14
R
Q3
F
20
4
FR15
R
Q4
F
21
41
FR2
R
A2
F
22
44
FR3
R
A3
F
23
37
FR4
R
C1
F
24
8
FR5
R
C2
F
25
19
FR6
R
C3
F
26
40
FR7
R
C4
F
27
62
FR8
R
D2
M
28
39
FR9
R
D3
F
29
13
ML1
L
B1
M
30
22
ML10
L
L2
M
31
38
ML11
L
L4
M
32
43
ML12
L
M1
M
33
58
ML13
L
N2
M
34
7
ML14
L
R1
M
35
30
ML15
L
R3
M
36
46
ML3
L
G1
M
37
57
ML4
L
G2
M
38
51
ML5
L
I1
M
39
27
ML6
L
I2
M
40
50
ML7
L
J2
M
41
16
FL1
L
O2
M
42
3
ML9
L
L1
M
43
47
MR10
R
R2
M
44
56
MR11
R
S1
M
45
1
MR12
R
S2
M
46
55
MR13
R
T1
M
47
34
MR14
R
U1
M
48
25
MR15
R
U2
M
49
59
MR2
R
J1
M
50
32
MR3
R
M2
M
51
24
MR4
R
M3
M
52
12
MR5
R
M4
M
53
9
MR6
R
N1
M
54
36
MR7
R
N3
M
55
28
MR8
R
P1
M
56
33
MR9
R
P2
M
+
+ +

    About the marker set:

+ +

The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi. +

+ + +

    About data processing:

+ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + +
    +
  • Step 1: We added an offset of 1 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
  • Step 2: We took the log2 of each probe signal. + +
  • Step 3: We computed the Z score for each signal within array. + +
  • Step 4: We multiplied all Z scores by 2. + +
  • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
  • Step 6: We computed the arithmetic mean of the values for the set of microarrays for each of the individual strains. +
+ +

+Probe set data: The uncorrected, untransformed CEL files were subject to probe (low) level processing using both the RMA (Robust Multiarray Average; Irizarry et al. 2003) and PDNN (Position Dependent Nearest Neighbor; Zhang et al. 2003) methods because these two performed the best of four methods tested in a recent four inbred strain comparison using the M430A chip on whole brain samples (Hitzemann et al, submitted). RMA was implemented by the Affy package (11/24/03 version) within Bioconductor (http://www.bioconductor.org) and PDNN by the PerfectMatch v. 2.1 program from Li Zhang (PDNN ). For sake of comparison with other data sets, MAS 5 files have also been generated. + +

To better compare data sets, the same simple steps (1 through 6 above) were applied to PDNN and RMA values. Every microarray data set therefore has a mean expression of 8 units with a standard deviation of 2 units. A 1-unit difference therefore represents roughly a 2-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+ + +
+ + +

    About the chromosome and megabase position values:

+ +
The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

+ + +

    Data source acknowledgment:

+

This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372. +

+Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA. +

+ + +

    References:

+

Hitzemann, R, McWeeney, S, Harrington, S, Malmanger, B, Lawler, M, Belknap, JK (2004) Brain gene expression among four inbred mouse strains: The development of an analysis strategy for the integration of QTL and gene expression data. Submitted. +

+

Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15. +

+

Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610. +

+

Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821. +

+ +

    Information about this text file:

+

This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004. +

+
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/BRF2_M_0805_M.html b/web/dbdoc/BRF2_M_0805_M.html new file mode 100755 index 00000000..6dac1b85 --- /dev/null +++ b/web/dbdoc/BRF2_M_0805_M.html @@ -0,0 +1,246 @@ + +OHSU/VA B6D2F2 Brain mRNA M430 MAS5(August 05) RMA / WebQTL + + + + + + + + + + + + + + + + + + + + +
+

+ +OHSU/VA B6D2F2 Brain mRNA M430 MAS5 Database (August/05 Freeze) modify this page

Accession number: GN76

+ +

    Summary:             + +

+This August 2005 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A and M430B microarray pairs. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

+
+ + + +

    About the cases used to generate this set of data:

+ +

Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A&B Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

+ +

The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

+
+ +

    About the tissue used to generate these data:

+ +

Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A and 430B array pairs. +

+ +

    About the arrays:

+

All 56 430A&B arrays used in this project were purchased at one time and had the same Affymetrix lot number. + +The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

+ + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order
+
+
+CaseID +
+
ArrayID
+
+
+Side +
+
+
+CageID +
+
+
+Sex +
+
1
20
FL10
L
H1
F
2
2
FL11
L
H2
F
3
5
FL12
L
H3
F
4
63
FL13
L
H4
F
5
6
FL14
L
K2
F
6
10
FL15
L
Q2
F
7
52
FL2
L
E1
F
8
53
FL3
L
E2
F
9
42
FL4
L
E3
F
10
31
FL5
L
E4
F
11
14
FL6
L
F1
M
12
48
FL7
L
F2
F
13
60
FL8
L
F3
M
14
54
FL9
L
F4
F
15
35
FR10
R
K3
F
16
11
FR11
R
O1
F
17
21
FR12
R
O2
F
18
23
FR13
R
Q1
F
19
15
FR14
R
Q3
F
20
4
FR15
R
Q4
F
21
41
FR2
R
A2
F
22
44
FR3
R
A3
F
23
37
FR4
R
C1
F
24
8
FR5
R
C2
F
25
19
FR6
R
C3
F
26
40
FR7
R
C4
F
27
62
FR8
R
D2
M
28
39
FR9
R
D3
F
29
13
ML1
L
B1
M
30
22
ML10
L
L2
M
31
38
ML11
L
L4
M
32
43
ML12
L
M1
M
33
58
ML13
L
N2
M
34
7
ML14
L
R1
M
35
30
ML15
L
R3
M
36
46
ML3
L
G1
M
37
57
ML4
L
G2
M
38
51
ML5
L
I1
M
39
27
ML6
L
I2
M
40
50
ML7
L
J2
M
41
16
FL1
L
O2
M
42
3
ML9
L
L1
M
43
47
MR10
R
R2
M
44
56
MR11
R
S1
M
45
1
MR12
R
S2
M
46
55
MR13
R
T1
M
47
34
MR14
R
U1
M
48
25
MR15
R
U2
M
49
59
MR2
R
J1
M
50
32
MR3
R
M2
M
51
24
MR4
R
M3
M
52
12
MR5
R
M4
M
53
9
MR6
R
N1
M
54
36
MR7
R
N3
M
55
28
MR8
R
P1
M
56
33
MR9
R
P2
M
+
+ +

    About the marker set:

+ +

The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi. +

+ + +

    About data processing:

+ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + +
    +
  • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. +
  • Step 2: We took the log base 2 of each probe signal. + +
  • Step 3: We computed the Z scores for each probe signal. + +
  • Step 4: We multiplied all Z scores by 2. + +
  • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
  • Step 6a: The 430A and 430B arrays include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes provide a way to calibrate expression of the A and B arrays to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
  • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. +
+ +

+Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+
+ + +

    About the chromosome and megabase position values:

+ +
The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium March 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

+ + +

    Data source acknowledgment:

+

This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372. +

+Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA. +

+ + +

    References:

+

Hitzemann, R, McWeeney, S, Harrington, S, Malmanger, B, Lawler, M, Belknap, JK (2004) Brain gene expression among four inbred mouse strains: The development of an analysis strategy for the integration of QTL and gene expression data. Submitted. +

+

Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15. +

+

Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610. +

+

Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821. +

+ +

    Information about this text file:

+

This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004, EJC June 21, 2005. +

+ + + +

+ +
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/BRF2_M_0805_P.html b/web/dbdoc/BRF2_M_0805_P.html new file mode 100755 index 00000000..3a8cd67f --- /dev/null +++ b/web/dbdoc/BRF2_M_0805_P.html @@ -0,0 +1,254 @@ + +OHSU/VA B6D2F2 Brain mRNA M430 (Aug05) PDNN / GeneNetwork + + + + + + + + + + + + + + + + + + + + +
+ + +

OHSU/VA B6D2F2 Brain mRNA M430 PDNN Database (August/05 Freeze)

+ +

Summary         modify this page

Accession number: GN78

+ +

+This August 2005 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A and M430B microarray pairs. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the Position-Dependent Nearest Neighbor (PDNN) method developed by Zhang and colleagues (2003. To simplify comparison between transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units. + +This data set was run as a single large batch with careful consideration to balancing samples by sex, age, and environment. + +

+ + + +

    About the cases used to generate this set of data:

+ +

Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A&B Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

+ +

The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

+
+ +

    About the tissue used to generate these data:

+ +

Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A array. +

+ +

    About the arrays:

+

All 56 430A&B arrays used in this project were purchased at one time and had the same Affymetrix lot number. + +The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

+ + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order
+
+
+CaseID +
+
ArrayID
+
+
+Side +
+
+
+CageID +
+
+
+Sex +
+
1
20
FL10
L
H1
F
2
2
FL11
L
H2
F
3
5
FL12
L
H3
F
4
63
FL13
L
H4
F
5
6
FL14
L
K2
F
6
10
FL15
L
Q2
F
7
52
FL2
L
E1
F
8
53
FL3
L
E2
F
9
42
FL4
L
E3
F
10
31
FL5
L
E4
F
11
14
FL6
L
F1
M
12
48
FL7
L
F2
F
13
60
FL8
L
F3
M
14
54
FL9
L
F4
F
15
35
FR10
R
K3
F
16
11
FR11
R
O1
F
17
21
FR12
R
O2
F
18
23
FR13
R
Q1
F
19
15
FR14
R
Q3
F
20
4
FR15
R
Q4
F
21
41
FR2
R
A2
F
22
44
FR3
R
A3
F
23
37
FR4
R
C1
F
24
8
FR5
R
C2
F
25
19
FR6
R
C3
F
26
40
FR7
R
C4
F
27
62
FR8
R
D2
M
28
39
FR9
R
D3
F
29
13
ML1
L
B1
M
30
22
ML10
L
L2
M
31
38
ML11
L
L4
M
32
43
ML12
L
M1
M
33
58
ML13
L
N2
M
34
7
ML14
L
R1
M
35
30
ML15
L
R3
M
36
46
ML3
L
G1
M
37
57
ML4
L
G2
M
38
51
ML5
L
I1
M
39
27
ML6
L
I2
M
40
50
ML7
L
J2
M
41
16
FL1
L
O2
M
42
3
ML9
L
L1
M
43
47
MR10
R
R2
M
44
56
MR11
R
S1
M
45
1
MR12
R
S2
M
46
55
MR13
R
T1
M
47
34
MR14
R
U1
M
48
25
MR15
R
U2
M
49
59
MR2
R
J1
M
50
32
MR3
R
M2
M
51
24
MR4
R
M3
M
52
12
MR5
R
M4
M
53
9
MR6
R
N1
M
54
36
MR7
R
N3
M
55
28
MR8
R
P1
M
56
33
MR9
R
P2
M
+
+ +

    About the marker set:

+ +

The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi. +

+ + +

    About data processing:

+ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + +
    +
  • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. +
  • Step 2: We took the log base 2 of each probe signal. + +
  • Step 3: We computed the Z scores for each probe signal. + +
  • Step 4: We multiplied all Z scores by 2. + +
  • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
  • Step 6a: The 430A and 430B arrays include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes provide a way to calibrate expression of the A and B arrays to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
  • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
+
+

+Probe set data: The uncorrected, untransformed CEL files were subject to probe (low) level processing using both the RMA (Robust Multiarray Average; Irizarry et al. 2003) and PDNN (Position Dependent Nearest Neighbor; Zhang et al. 2003) methods because these two performed the best of four methods tested in a recent four inbred strain comparison using the M430A chip on whole brain samples (Hitzemann et al, submitted). RMA was implemented by the Affy package (11/24/03 version) within Bioconductor (http://www.bioconductor.org) and PDNN by the PerfectMatch v. 2.3 program from Li Zhang (PDNN ). For sake of comparison with other data sets, MAS 5 files have also been generated. + +

To better compare data sets, the same simple steps (1 through 6 above) were applied to PDNN and RMA values. Every microarray data set therefore has a mean expression of 8 units with a standard deviation of 2 units. A 1-unit difference therefore represents roughly a 2-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+ + +
+ + +

    About the chromosome and megabase position values:

+ +
The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium March 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

+ + +

    Data source acknowledgment:

+

This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372. +

+Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA. +

+ + +

    References:

+

Hitzemann, R, McWeeney, S, Harrington, S, Malmanger, B, Lawler, M, Belknap, JK (2004) Brain gene expression among four inbred mouse strains: The development of an analysis strategy for the integration of QTL and gene expression data. Submitted. +

+

Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15. +

+

Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610. +

+

Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821. +

+ +

    Information about this text file:

+

This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004. +

+ + + +

+ +
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/BRF2_M_0805_R.html b/web/dbdoc/BRF2_M_0805_R.html new file mode 100755 index 00000000..51faa4d1 --- /dev/null +++ b/web/dbdoc/BRF2_M_0805_R.html @@ -0,0 +1,243 @@ + +OHSU/VA B6D2F2 Brain mRNA M430 (Aug05) RMA / WebQTL + + + + + + + + + + + + + + + + + + + + +
+ + +

OHSU/VA B6D2F2 Brain mRNA M430 RMA Database (August/05 Freeze) modify this page

Accession number: GN77

+ +

+This August 2005 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A and M430B microarray pairs. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the RMA protocol and are presented with secondary normalization to an average expression value of 8 units. To simplify comparison between transforms, RMA values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run as a single large batch with effort to balance samples by sex, age, and environment. +

+ + +

    About the cases used to generate this set of data:

+ +

Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A and M430B Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

+ +

The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

+
+ +

    About the tissue used to generate these data:

+ +

Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A and 430B arraya. +

+ +

    About the arrays:

+

All 56 430A&B arrays used in this project were purchased at one time and had the same Affymetrix lot number. + +The table below lists the arrays by Case ID, Array ID, Side, Cage ID and Sex.

+ + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Order
+
+
+CaseID +
+
ArrayID
+
+
+Side +
+
+
+CageID +
+
+
+Sex +
+
1
20
FL10
L
H1
F
2
2
FL11
L
H2
F
3
5
FL12
L
H3
F
4
63
FL13
L
H4
F
5
6
FL14
L
K2
F
6
10
FL15
L
Q2
F
7
52
FL2
L
E1
F
8
53
FL3
L
E2
F
9
42
FL4
L
E3
F
10
31
FL5
L
E4
F
11
14
FL6
L
F1
M
12
48
FL7
L
F2
F
13
60
FL8
L
F3
M
14
54
FL9
L
F4
F
15
35
FR10
R
K3
F
16
11
FR11
R
O1
F
17
21
FR12
R
O2
F
18
23
FR13
R
Q1
F
19
15
FR14
R
Q3
F
20
4
FR15
R
Q4
F
21
41
FR2
R
A2
F
22
44
FR3
R
A3
F
23
37
FR4
R
C1
F
24
8
FR5
R
C2
F
25
19
FR6
R
C3
F
26
40
FR7
R
C4
F
27
62
FR8
R
D2
M
28
39
FR9
R
D3
F
29
13
ML1
L
B1
M
30
22
ML10
L
L2
M
31
38
ML11
L
L4
M
32
43
ML12
L
M1
M
33
58
ML13
L
N2
M
34
7
ML14
L
R1
M
35
30
ML15
L
R3
M
36
46
ML3
L
G1
M
37
57
ML4
L
G2
M
38
51
ML5
L
I1
M
39
27
ML6
L
I2
M
40
50
ML7
L
J2
M
41
16
FL1
L
O2
M
42
3
ML9
L
L1
M
43
47
MR10
R
R2
M
44
56
MR11
R
S1
M
45
1
MR12
R
S2
M
46
55
MR13
R
T1
M
47
34
MR14
R
U1
M
48
25
MR15
R
U2
M
49
59
MR2
R
J1
M
50
32
MR3
R
M2
M
51
24
MR4
R
M3
M
52
12
MR5
R
M4
M
53
9
MR6
R
N1
M
54
36
MR7
R
N3
M
55
28
MR8
R
P1
M
56
33
MR9
R
P2
M
+
+ +

    About the marker set:

+ +

The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi. +

+ + +

    About data processing:

+ +
Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + +
    +
  • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. +
  • Step 2: We took the log base 2 of each probe signal. + +
  • Step 3: We computed the Z scores for each probe signal. + +
  • Step 4: We multiplied all Z scores by 2. + +
  • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
  • Step 6a: The 430A and 430B arrays include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes provide a way to calibrate expression of the A and B arrays to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
  • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
+
+

+Probe set data: The uncorrected, untransformed CEL files were subject to probe (low) level processing using both the RMA (Robust Multiarray Average; Irizarry et al. 2003) and PDNN (Position Dependent Nearest Neighbor; Zhang et al. 2003) methods because these two performed the best of four methods tested in a recent four inbred strain comparison using the M430A chip on whole brain samples (Hitzemann et al, submitted). RMA was implemented by the Affy package (11/24/03 version) within Bioconductor (http://www.bioconductor.org) and PDNN by the PerfectMatch v. 2.3 program from Li Zhang (PDNN ). For sake of comparison with other data sets, MAS 5 files have also been generated. + +

To better compare data sets, the same simple steps (1 through 6 above) were applied to PDNN and RMA values. Every microarray data set therefore has a mean expression of 8 units with a standard deviation of 2 units. A 1-unit difference therefore represents roughly a 2-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

+ + +
+ + +

    About the chromosome and megabase position values:

+ +
The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium March 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

+ + +

    Data source acknowledgment:

+

This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372. +

+Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA. +

+ + +

    References:

+

Hitzemann, R, McWeeney, S, Harrington, S, Malmanger, B, Lawler, M, Belknap, JK (2004) Brain gene expression among four inbred mouse strains: The development of an analysis strategy for the integration of QTL and gene expression data. Submitted. +

+

Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15. +

+

Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610. +

+

Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821. +

+ +

    Information about this text file:

+

This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004. +

+
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/BR_M2_1106_R.html b/web/dbdoc/BR_M2_1106_R.html new file mode 100755 index 00000000..05d714bc --- /dev/null +++ b/web/dbdoc/BR_M2_1106_R.html @@ -0,0 +1,2876 @@ + +UCHSC BXD Whole Brain M430 2.0 November 2006 RMA + + + + + + + + + + + + + + + + + +
+ + + +
+ + +

UCHSC BXD Whole Brain M430 2.0 November 2006 RMA + + modify this page

Accession number: GN123

+ +

+A +PhenoGen Informatics data set. Please cite: Saba L, Bhave SV, Grahame N, Bice P, Lapadat R, Belknap J, Hoffman PL, Tabakoff B (2006) Candidate genes and their regulatory elements: alcohol preference and tolerance. Mammalian Genome 17:669-688 Full Text PDF Version, Full Text HTML Version + +

+ + +

    Summary:

+ +

+This November 2006 data freeze provides estimates of mRNA expression in whole brains of BXD recombinant inbred strains and 20 common inbred strrains measured using Affymetrix MOE 430 v2 micorarrays. Data were generated at the University of Colorado at Denver and Health Science Center (UCDHSC) by Dr. Boris Tabakof and colleague. Single whole brain samples were hybridized to 248 individual arrays. Data were processed using the RMA protocol followed by a secondary quantile normalization at the probe set level and a scale and location adjustment to ensure an average expression level of 8 units and a standard deviation of 2 units for easy comparison to other transforms.

+ + +

The +PhenoGen Informatics web site provides additional analytic tools and transforms associated with these data. + +

+ +

    About the cases used to generate this set of data:

+ +

+This data set includes estimates of gene expression for 50 genetically uniform lines of mice: C57BL/6J (B6 or simply B), DBA/2J (D2 or D), 30 BXD recombinant inbred (RI) strain derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations, and 18 other inbred strains of mice available from the Jackson Laboratory. All mice used were naïve males from 70-90 days old. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. Another significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

In this mRNA expression database we generally used stock obtained directly from The Jackson Laboratory between 2003 and 2005.

+ +

    About the tissue used to generate these data:

+ +

+Naïve male mice were euthanized by CO2 exposure, and whole brains were removed and frozen on dry ice. Brains were stored at -70 deg C until used. The RNeasy Midi kit for lipid-rich tissues (Qiagen, Valencia, CA) was used to extract total RNA, and the RNeasy Mini kit (Qiagen) was used for cleanup. Biotin-labeled cRNA was obtained by in vitro transcription of the double-stranded cDNA that was originally synthesized from the total RNA. Each whole brain sample of biotin-labeled cRNA was fragmented and hybridized to a separate oligonucleotide array. After hybridization, the chips were stained with streptavidin-phycoerythrin conjugate and scanned using an Affymetrix GeneArray scanner. +

+ +

+++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
StrainSample NumberScale
+factor
Average
+background
AbsentMarginalPresentAffy-bActinAffy-GAPH
BXD110.34365.5745.5%4.1%50.4%1.330.74
BXD120.36268.2646.9%4.5%48.6%1.300.76
BXD130.37566.1946.9%4.2%48.9%1.270.77
BXD140.40857.1645.0%4.0%51.1%1.270.80
BXD210.27060.5344.0%4.1%51.8%1.520.87
BXD220.28067.5745.0%4.2%50.8%1.310.75
BXD230.29567.0345.2%4.1%50.7%1.340.76
BXD240.20999.8650.0%4.7%45.3%1.240.73
BXD250.24673.2846.2%4.3%49.5%1.340.73
BXD510.24975.3447.3%4.4%48.3%1.340.73
BXD520.30670.1147.5%4.5%47.9%1.310.77
BXD530.26564.8044.8%4.3%50.9%1.330.74
BXD540.28266.0445.5%4.2%50.4%1.410.76
BXD550.21671.8746.0%3.9%50.1%3.071.01
BXD610.29466.7245.8%4.3%49.9%1.380.75
BXD620.30462.8345.8%4.2%50.0%1.250.72
BXD630.30161.8045.3%4.3%50.5%1.270.76
BXD650.27367.0444.4%4.2%51.4%1.320.76
BXD660.27266.3945.4%4.3%50.3%1.320.75
BXD810.20781.9044.0%3.9%52.1%1.330.74
BXD820.25470.1944.0%3.9%52.0%1.320.72
BXD830.30072.6146.0%4.0%50.0%1.300.74
BXD840.45752.6339.5%3.3%57.2%1.140.79
BXD850.38155.0941.2%3.4%55.4%1.120.79
BXD910.34990.3248.5%4.1%47.4%1.380.78
BXD920.24186.6651.2%4.8%44.0%1.380.75
BXD930.28467.2147.2%4.3%48.5%1.330.78
BXD940.30364.4746.9%4.5%48.6%1.320.77
BXD950.35159.4047.4%4.4%48.2%1.410.80
BXD960.31263.4146.3%4.4%49.4%1.390.76
BXD1110.26761.8544.6%4.3%51.1%1.360.75
BXD1120.31763.7645.3%4.3%50.4%1.290.79
BXD1130.30659.3544.8%4.2%51.0%1.330.79
BXD1140.22398.8451.1%4.6%44.3%1.320.73
BXD1150.29265.0345.4%4.0%50.5%1.380.78
BXD1210.35754.5042.5%3.7%53.8%1.150.76
BXD1220.37955.0542.7%3.7%53.6%1.150.76
BXD1230.34756.3443.2%3.9%52.9%1.170.74
BXD1240.54165.1643.1%3.4%53.6%1.080.79
BXD1250.17896.0443.4%4.0%52.7%1.290.74
BXD1260.23467.3243.0%3.9%53.0%1.310.75
BXD1270.25568.4142.7%4.2%53.2%1.500.76
BXD1310.28559.5145.8%4.2%49.9%1.220.75
BXD1320.27567.1944.9%4.2%50.9%1.290.76
BXD1330.27766.0545.7%4.2%50.2%1.380.79
BXD1340.21482.7348.6%4.5%46.9%1.400.78
BXD1350.23771.7346.0%4.3%49.7%1.290.77
BXD1360.30857.5847.2%4.2%48.6%1.330.74
BXD1420.37258.4246.8%4.4%48.8%1.190.74
BXD1430.35457.3945.0%4.2%50.8%1.200.72
BXD1440.29664.9645.7%4.4%49.9%1.200.69
BXD1450.25766.4644.9%4.4%50.8%1.240.72
BXD1460.41854.0347.4%4.1%48.5%1.100.74
BXD1510.39658.7743.6%3.9%52.5%1.330.78
BXD1520.270151.4252.7%4.7%42.6%1.360.73
BXD1530.36670.2644.7%3.9%51.4%1.290.79
BXD1540.40753.4043.6%4.1%52.4%1.380.79
BXD1610.38848.9843.7%4.1%52.2%1.410.79
BXD1620.35355.4843.7%4.0%52.3%1.440.82
BXD1630.33961.6045.3%4.2%50.5%1.420.80
BXD1640.24095.1550.4%4.7%44.9%1.390.73
BXD1650.27070.6346.3%4.3%49.4%1.450.75
BXD1660.28172.9947.0%4.2%48.8%1.400.77
BXD1810.38459.7845.4%4.0%50.6%1.120.71
BXD1820.28893.6749.5%4.4%46.1%1.150.70
BXD1830.28689.6445.2%4.1%50.8%1.270.71
BXD1840.29469.8544.0%4.1%51.8%1.260.70
BXD1850.41759.8047.0%4.3%48.7%1.150.72
BXD1860.37365.3045.9%4.3%49.8%1.180.74
BXD1910.36459.3546.7%4.2%49.1%1.270.73
BXD1920.41959.7746.8%4.1%49.1%1.230.74
BXD1930.30362.6646.0%4.4%49.6%1.300.74
BXD1940.28091.0051.8%4.5%43.7%1.320.68
BXD1950.30366.1847.1%4.5%48.4%1.330.72
BXD1960.38963.6147.5%4.4%48.1%1.280.73
BXD2110.35075.9344.9%3.9%51.3%1.290.77
BXD2120.33859.0043.8%4.0%52.1%1.290.77
BXD2130.30459.9444.9%4.0%51.2%1.440.77
BXD2140.23594.4451.0%4.8%44.2%1.350.73
BXD2150.31064.2246.9%4.2%48.9%1.420.77
BXD2210.36358.1045.3%3.9%50.8%1.240.80
BXD2220.38555.5844.5%4.0%51.5%1.280.80
BXD2230.34561.0346.8%4.3%48.9%1.350.81
BXD2240.24285.3653.6%4.8%41.6%1.350.75
BXD2250.31662.0247.3%4.5%48.2%1.400.77
BXD2260.32566.3847.5%4.3%48.2%1.290.78
BXD2310.27675.9945.3%4.1%50.6%1.270.75
BXD2320.33381.7647.9%4.0%48.1%1.280.78
BXD2330.275102.4647.4%3.9%48.8%1.300.77
BXD2340.178115.8350.2%4.7%45.2%1.380.73
BXD2350.25892.3847.6%4.2%48.2%1.320.77
BXD2360.25688.2346.3%4.1%49.5%1.310.74
BXD2410.34871.6944.9%4.1%51.1%1.250.74
BXD2420.32474.0544.3%4.0%51.7%1.230.80
BXD2430.40164.0845.6%4.0%50.4%1.080.74
BXD2440.24682.8445.7%4.3%50.0%1.200.75
BXD2460.38954.2844.3%4.2%51.5%1.200.67
BXD2710.50750.0843.6%3.9%52.5%1.480.81
BXD2720.46851.2944.0%3.7%52.3%1.440.90
BXD2730.52649.6743.5%3.9%52.6%1.290.94
BXD2740.53748.9243.5%3.8%52.8%1.460.91
BXD2810.28451.5844.6%4.2%51.2%1.260.80
BXD2820.32250.1644.9%4.3%50.8%1.210.76
BXD2830.39750.9745.9%4.2%49.9%1.140.78
BXD2840.33074.2651.4%4.6%44.0%1.260.72
BXD2850.28452.3444.3%4.4%51.3%1.320.73
BXD2860.34957.1447.8%4.5%47.7%1.300.79
BXD2910.42258.6844.0%3.7%52.3%1.420.86
BXD2930.40058.7243.1%3.8%53.2%1.310.89
BXD2950.36561.7946.9%4.3%48.8%1.380.91
BXD3110.37951.1045.8%4.3%50.0%1.130.75
BXD3120.33348.6443.7%4.1%52.2%1.220.71
BXD3130.51947.7148.2%4.3%47.5%1.130.72
BXD3140.24375.2448.6%4.8%46.6%1.230.71
BXD3150.32553.1946.9%4.6%48.6%1.220.75
BXD3160.32046.9844.5%4.3%51.2%1.240.74
BXD3210.25670.4345.4%3.9%50.8%1.830.87
BXD3220.28867.4444.5%4.1%51.4%1.340.77
BXD3230.36158.1344.4%4.0%51.6%1.360.77
BXD3240.36761.3944.7%4.1%51.2%1.400.78
BXD3250.32468.0445.6%4.3%50.1%1.390.75
BXD3260.26695.4950.8%4.5%44.6%1.410.73
BXD3310.34461.6544.9%3.9%51.2%1.380.82
BXD3320.35661.0444.7%4.1%51.2%1.440.79
BXD3340.38559.9244.1%3.9%52.0%1.380.82
BXD3410.29791.1352.1%4.6%43.3%1.340.70
BXD3420.50851.7944.8%3.9%51.3%1.420.76
BXD3430.28485.3350.7%4.6%44.7%1.510.72
BXD3440.29761.9544.9%4.1%51.0%1.360.77
BXD3450.51656.0246.3%4.0%49.7%1.330.74
BXD3460.54554.4645.2%3.8%51.0%1.490.87
BXD3610.43562.7448.1%4.0%47.8%1.360.73
BXD3620.33371.2448.8%4.3%46.8%1.440.72
BXD3630.32072.9748.3%4.3%47.4%1.380.74
BXD3640.39173.5849.5%4.2%46.3%1.250.75
BXD3810.30387.6839.2%3.3%57.5%1.080.82
BXD3820.34361.3939.7%3.2%57.1%1.120.82
BXD3830.45367.1941.2%3.4%55.4%1.110.83
BXD3840.42464.3641.6%3.5%55.0%1.110.82
BXD3910.35764.3647.3%4.3%48.3%1.330.78
BXD3920.33260.2346.5%4.2%49.3%1.410.80
BXD3930.33165.2746.2%4.2%49.6%1.320.75
BXD3940.36262.6045.5%4.0%50.5%1.280.80
BXD3950.34758.9746.1%4.3%49.7%1.290.79
BXD3960.32763.1246.2%4.3%49.6%1.290.77
BXD4010.37160.0145.2%4.1%50.7%1.320.77
BXD4020.24584.6949.1%4.5%46.4%1.330.72
BXD4030.32464.1746.8%4.3%48.8%1.340.73
BXD4040.28063.9745.1%4.2%50.7%1.480.74
BXD4050.27169.4045.9%4.3%49.8%1.330.74
BXD4060.30759.9945.5%4.2%50.4%1.370.76
BXD4210.42453.9145.1%4.1%50.8%1.540.83
BXD4220.21692.3446.7%4.3%49.1%1.440.76
BXD4230.24984.5245.7%4.1%50.2%1.520.80
BXD4250.23685.2946.2%4.0%49.8%1.380.77
DBA/2J10.31379.6946.8%4.2%49.0%1.240.72
DBA/2J20.29482.2746.5%4.2%49.3%1.270.73
DBA/2J30.34978.5847.8%4.3%47.8%1.310.73
DBA/2J40.38972.0248.0%4.3%47.7%1.210.77
DBA/2J50.36266.7346.5%4.4%49.1%1.230.75
DBA/2J60.34179.8846.7%4.0%49.4%1.330.74
C57BL/6J10.29482.8446.7%4.1%49.2%1.230.76
C57BL/6J20.24280.4043.1%4.1%52.8%1.290.76
C57BL/6J30.250110.9047.8%4.0%48.2%1.320.76
C57BL/6J40.289101.8847.5%4.1%48.4%1.180.75
C57BL/6J50.299114.5948.7%4.1%47.3%1.130.74
C57BL/6J60.251105.9045.8%3.8%50.4%1.300.76
129P3/J10.49659.2641.9%3.5%54.5%1.280.79
129P3/J20.55050.8342.0%3.7%54.3%1.160.78
129P3/J30.44356.0843.0%3.8%53.3%1.220.73
129P3/J40.52158.9244.8%3.8%51.4%1.300.74
129P3/J50.50358.2644.9%3.8%51.3%1.320.74
129S1/SvImJ10.31166.7647.8%3.9%48.3%2.040.97
129S1/SvImJ20.26257.6344.5%3.9%51.6%1.610.81
129S1/SvImJ30.32262.6745.3%3.8%50.9%1.700.83
129S1/SvImJ40.185119.0250.2%4.4%45.5%1.660.75
A/J10.45351.8542.6%3.6%53.8%1.200.73
A/J20.39656.6145.9%3.9%50.2%1.210.76
A/J30.42162.3447.0%4.1%48.8%1.290.72
A/J40.50861.5248.2%4.1%47.7%1.220.74
AKR/J10.33154.7041.7%3.9%54.4%1.220.74
AKR/J20.46455.4644.1%3.7%52.1%1.300.76
AKR/J40.44453.6247.6%4.0%48.4%1.230.71
AKR/J50.43958.6247.4%4.3%48.3%1.230.70
BALB/cByJ10.33675.4950.0%4.1%45.9%1.540.82
BALB/cByJ20.28067.9347.1%4.3%48.7%1.430.76
BALB/cByJ30.31273.7747.7%4.1%48.2%1.790.92
BALB/cByJ40.26279.9746.1%4.1%49.8%1.380.79
BALB/cByJ50.27681.3246.3%4.1%49.6%1.340.79
BALB/cJ10.59154.2543.2%3.5%53.3%1.150.80
BALB/cJ20.34650.3639.9%3.3%56.8%1.200.77
BALB/cJ30.33352.7940.4%3.7%55.9%1.250.77
BALB/cJ50.49554.7845.0%3.7%51.3%1.150.72
BTBR T+tf/J30.31562.8346.4%4.1%49.5%1.380.78
BTBR T+tf/J40.24390.1251.6%4.8%43.6%1.310.75
BTBR T+tf/J50.29471.2146.6%4.3%49.0%1.410.77
BTBR T+tf/J60.26867.5346.6%4.2%49.2%1.320.75
BTBR T+tf/J10.37055.4045.7%4.1%50.2%1.410.75
BTBR T+tf/J20.48850.8947.2%4.2%48.6%1.360.75
C3H/HeJ10.51159.2043.3%3.4%53.3%1.170.83
C3H/HeJ20.40579.4941.3%3.3%55.5%1.180.83
C3H/HeJ30.45459.4741.7%3.5%54.9%1.160.81
C3H/HeJ40.44856.2841.5%3.5%55.0%1.160.79
C3H/HeJ50.38950.1741.1%3.6%55.2%1.240.79
C58/J10.33656.6646.0%4.2%49.8%1.290.73
C58/J20.37258.6146.7%4.3%49.0%1.210.71
C58/J30.36664.5846.8%4.2%49.0%1.200.72
C58/J40.37152.7245.3%4.1%50.6%1.240.72
CAST/EiJ10.46755.7447.1%3.8%49.1%1.390.79
CAST/EiJ20.54550.2946.8%3.8%49.4%1.340.84
CAST/EiJ30.46955.0847.4%4.0%48.5%1.320.76
CAST/EiJ40.39083.0553.0%4.4%42.6%1.360.72
CBA/J10.29267.2544.9%4.0%51.2%1.220.76
CBA/J20.34761.9946.4%4.0%49.7%1.250.82
CBA/J30.30562.1646.3%4.3%49.4%1.310.75
CBA/J40.30364.8246.5%4.0%49.5%1.340.76
CBA/J50.31364.1545.3%4.1%50.7%1.370.78
CBA/J60.36556.8445.6%4.1%50.4%1.310.76
FVB/NJ10.49763.9944.2%3.5%52.3%1.330.79
FVB/NJ20.47555.2444.8%3.8%51.4%1.330.74
FVB/NJ30.52756.0742.6%3.5%53.9%1.310.86
FVB/NJ40.44762.5641.7%3.5%54.8%1.240.82
KK/HIJ10.30993.5449.6%4.3%46.1%1.570.74
KK/HIJ20.29863.2448.0%4.4%47.6%1.370.72
KK/HIJ40.22393.0344.7%4.0%51.3%1.390.74
KK/HIJ50.153136.6751.9%4.6%43.5%1.240.71
MOLF/EiJ10.33967.1149.1%4.3%46.6%1.550.83
MOLF/EiJ20.31980.7349.1%4.2%46.7%1.520.78
MOLF/EiJ30.38069.0349.1%4.2%46.7%1.290.82
MOLF/EiJ40.23895.1948.7%4.1%47.2%1.350.79
NOD/LtJ10.35678.4249.1%4.2%46.7%1.350.76
NOD/LtJ20.42259.7147.4%4.0%48.5%1.250.73
NOD/LtJ30.37777.8449.8%4.0%46.2%1.240.75
NOD/LtJ40.53560.8650.6%4.4%45.0%1.280.74
NOD/LtJ50.33674.5846.6%3.9%49.5%1.320.72
NZW/LacJ20.44250.3144.6%4.1%51.3%1.330.82
NZW/LacJ30.33156.8644.2%4.0%51.7%1.600.78
NZW/LacJ40.33855.2344.1%4.0%51.9%1.310.78
NZW/LacJ50.35156.9049.3%4.3%46.5%1.300.75
PWD/PhJ10.44457.6547.2%3.9%48.9%1.620.78
PWD/PhJ20.32867.5847.3%4.2%48.5%1.360.76
PWD/PhJ30.32273.9047.5%4.0%48.5%1.460.81
PWD/PhJ40.27175.7946.1%4.0%50.0%1.390.79
PWD/PhJ50.191144.7357.7%5.0%37.3%1.360.67
SJL/J10.52854.5841.1%3.4%55.4%1.160.80
SJL/J30.66356.2141.8%3.3%55.0%1.220.75
SJL/J40.64652.9640.5%3.2%56.3%1.130.81
SJL/J50.63961.9144.8%3.4%51.9%1.370.79

+
+ +

    About the array platform:

+ +

+Affymetrix MOE430v2 GeneChip: The expression data were generated using 248 MOE430v2 arrays. The chromosomal locations of MOE430v2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6). This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

+ + +

    About data processing:

+

+Probe set data: The expression data were processed by Laura Saba (UCDHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed within the rma function in R. This data set includes further normalization to produce final estimates of expression that can be compared directly to the other transforms.

+ + +

This includes an initial quantile normalization on the RMA normalized probe set data followed by a transformation to force an array average of 8 units and stabilized standard deviation of 2 units within each array. Please see Bolstad and colleagues (2003) for a helpful comparison of RMA and two other methods of processing Affymetrix array data sets. +

+ +

Expression estimates (strain averages) range from a low of about 3.8 for probe set 1457109_x_at to a high of 15 for Gapdh (probe set 1418625_s_at). The mean expression of 8.0 actually represents a relatively low value of expression (roughly 250 on the original scale) because it is the average of all transcripts on the array, including those that are not expressed. Nonetheless, it is possible to obtain good signal down to very low values. For example, probe set 1437432_a_at (Trim12) has an average expression of 4.56 (extremely low), but it still is associated with a strong QTL (LRS of 45) precisely at the location of the parent gene (Chr 7 at 104 Mb). This demonstrates unequivocally that the small strain differences in expression of Trim12 measured by probe set 1437432_a_at is not noise but is generated by true allelic differences in Trim12 mRNA binding to the arrays. + +

    Data source acknowledgment:

+

Data was generated with funds from NIAAA for Gene Array Technology Center (AA013162) and from the NIAAA Integrated Neuroinformatics Resource for Alcoholism (AA013524).

+ +

    Information about this text file:

+

This text file originally generated by RWW, YHQ, August for UTHSC Brain mRNA U74Av2 (Aug05) RMA. Updated for UC Denver Whole Brain M430v2 BXD (Nov06) RMA Data by LMS, November 2006. Updated by RWW, Feb 2008. +

+ +
+
+ + + + + + +
+ + + + +
+ + + + + + + + + + + diff --git a/web/dbdoc/BR_U_0304_DPMMR.html b/web/dbdoc/BR_U_0304_DPMMR.html new file mode 100755 index 00000000..359bb646 --- /dev/null +++ b/web/dbdoc/BR_U_0304_DPMMR.html @@ -0,0 +1,402 @@ + +U74Av2 dChip PMMM Original March04 / WebQTL + + + + + + + + + + + + + + + + + +
+ + +
+ + +

+ +UTHSC Brain mRNA U74Av2 (Mar04) dChip PMMM Orig + + modify this page

Accession number: GN30

+ +

    Summary:

+ +

+This March 2004 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 100 arrays. Data were processed using the dChip protocol of Li and Wong and are presented without further modification (the original Perfect Match-Mismatch transform data set: PMMM Orig). In general, the dChip transforms do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HWT1PM) for this particular application. +

+
+ + +

    About the cases used to generate this set of data:

+ +

+This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

+ +

BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

+ +

In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

+ + +
+The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. +
+ + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Strain + +
+Age +
+
Strain + +
+Age +
+
+
+8 Wks +
+
+
+20 Wks +
+
+
+52 Wks +
+
+
+8 Wks +
+
+
+20 Wks +
+
+
+52 Wks +
+
C57BL/6J (B6)DBA/2J (D2) 
B6D2F1 (F1) BXD1 
BXD2BXD5  
BXD6  BXD8 
BXD9BXD11 
BXD12 BXD13  
BXD14 BXD15 
BXD16 BXD18
BXD19BXD21 
BXD22 BXD23  
BXD24  BXD25 
BXD27  BXD28
BXD29  BXD31 
BXD32BXD33 
BXD34 BXD38   
BXD39  BXD40  
BXD42    BXD67 (F8)   
BXD68 (F9)       
+ + +

    How to download these data:

+

+All standard Affymetrix file types (DAT, CEL, RPT, CHP, TXT) can be downloaded for this data set by selecting the strain names in the table above and then selecting the appropriate file, or download the particular transform in an Excel work book with both individual arrays and strain means and SEMs. Please refer to the Usage Conditions and Limitations page and the References page for background on appropriate use and citations of these data. +

+ + +

    About the samples used to generate these data:

+ +

+Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

+ + +

    About the array platform:

+ +

+Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

+ + +

    About data processing:

+ +
Probe set data: The expression data were transformed by Cheng Li (Harvard University). The original expression values in the CEL files produced by MAS 5 were read into dChip to generate PM and PMMM data sets. + +

When necessary, we computed the arithmetic mean for technical replicates and treated these as single samples. We then computed the arithmetic mean for the set of 2 to 5 biological replicates for each strain. +

+ +
+ +

    About the array probe set names:

+

+Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

+ +
  • _f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • _s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • _g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • _r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • _i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • _st (sense target): Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + +

        Data source acknowledgment:

    + +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    This text file originally generated by RWW and EJC, March 2004. Updated by RWW, October 29, 2004. +

    + + + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_0304_DPMR.html b/web/dbdoc/BR_U_0304_DPMR.html new file mode 100755 index 00000000..85a59b1d --- /dev/null +++ b/web/dbdoc/BR_U_0304_DPMR.html @@ -0,0 +1,398 @@ + +U74Av2 dChip PM Original March04 / WebQTL + + + + + + + + + + + + + + + + + +
    + + +
    + + +

    + +UTHSC Brain mRNA U74Av2 (Mar04) dChip PM Orig + + modify this page

    Accession number: GN29

    + + +

        Summary:

    + +

    +This March 2004 data freeze provides estimate of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 100 arrays. Data were processed using the dChip protocol of Li and Wong and are presented without further modification (Perfect Match: PM Orig). For this application, the dChip transforms do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM). +

    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. +
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    + +

        How to download these data:

    +

    +All standard Affymetrix file types (DAT, CEL, RPT, CHP, TXT) can be downloaded for this data set by selecting the strain names in the table above and then selecting the appropriate file, or download the particular transform in an Excel work book with both individual arrays and strain means and SEMs. Please refer to the Usage Conditions and Limitations page and the References page for background on appropriate use and citations of these data. +

    + +

        About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        About data processing:

    + +
    Probe set data: The expression data were transformed by Cheng Li (Harvard University). The original expression values in the CEL files produced by MAS 5 were read into the dChip to generate the PM transform and the PMMM transform data sets. Probe set data are averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples. This data set does not include further normalization.

    + +
    + + +

        About the array probe set names:

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match (PM) probes and 16 mismatch controls (MM). Each set of these probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target): Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, March 2004. Updated by RWW, October 29, Nov 5, 2004. +

    + + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_0304_R.html b/web/dbdoc/BR_U_0304_R.html new file mode 100755 index 00000000..cb8b911b --- /dev/null +++ b/web/dbdoc/BR_U_0304_R.html @@ -0,0 +1,402 @@ + +U74Av2 RMA March04 / WebQTL + + + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    UTHSC Brain mRNA U74Av2 (Mar04) RMA + + modify this page

    Accession number: GN106

    + + + +

        Summary:

    + +

    +This March 2004 data freeze provides estimates of mRNA expression in brains of adult BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 100 arrays. Data were processed using the RMA protocol and are presented without further modification (RMA Orig). +

    +
    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current data set (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. All animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. + + + + +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    + +

        How to download these data:

    +

    +All standard Affymetrix file types (DAT, CEL, RPT, CHP, TXT) can be downloaded for this data set by selecting the strain names in the table above and then selecting the appropriate file, or download the particular transform in an Excel work book with both individual arrays and strain means and SEMs. Please refer to the Usage Conditions and Limitations page and the References page for background on appropriate use and citations of these data. +

    + + +

        About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, and the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and to download indivdiual data files. You can also click on the individual symbols (males or females) to view the array image. +

    + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify UCSC and Verify Emsembl links in the Trait Data and Editing Form (see buttons to the right side of the Location line). +

    + + +

        About data processing:

    + +

    +Probe set data: The expression data were processed by Bing Zhang (Oak Ridge National Laboratory) and Yanhua Qu (UTHSC). The original CEL files produced by the Affymetrix analysis software were read into the R environment (Ihaka and Gentleman 1996). Data were normalized using the Robust Multichip Average (RMA) method of background correction, quantile normalization, and summarization of cell signal intensity (Irrizary et al. 2003). Probe set intensities were log2 transformed. Probe set data are averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples. This data set does not include further normalization ("RMA Orig" as in original). Please see Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets. +

    + + +

        About the array probe set names:

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match (PM) probes and 16 mismatch controls (MM). Each set of these probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target) : Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, March 2004. Updated by RWW, Oct 29, Nov 6, 2004. +

    + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/BR_U_0304_RR.html b/web/dbdoc/BR_U_0304_RR.html new file mode 100755 index 00000000..c769bb22 --- /dev/null +++ b/web/dbdoc/BR_U_0304_RR.html @@ -0,0 +1,402 @@ + +U74Av2 RMA Original March04 / WebQTL + + + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    UTHSC Brain mRNA U74Av2 (Mar04) RMA Orig + + modify this page

    Accession number: GN28

    + + + +

        Summary:

    + +

    +This March 2004 data freeze provides estimates of mRNA expression in brains of adult BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 100 arrays. Data were processed using the RMA protocol and are presented without further modification (RMA Orig). +

    +
    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current data set (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. All animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. + + + + +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    + +

        How to download these data:

    +

    +All standard Affymetrix file types (DAT, CEL, RPT, CHP, TXT) can be downloaded for this data set by selecting the strain names in the table above and then selecting the appropriate file, or download the particular transform in an Excel work book with both individual arrays and strain means and SEMs. Please refer to the Usage Conditions and Limitations page and the References page for background on appropriate use and citations of these data. +

    + + +

        About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, and the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and to download indivdiual data files. You can also click on the individual symbols (males or females) to view the array image. +

    + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify UCSC and Verify Emsembl links in the Trait Data and Editing Form (see buttons to the right side of the Location line). +

    + + +

        About data processing:

    + +

    +Probe set data: The expression data were processed by Bing Zhang (Oak Ridge National Laboratory) and Yanhua Qu (UTHSC). The original CEL files produced by the Affymetrix analysis software were read into the R environment (Ihaka and Gentleman 1996). Data were normalized using the Robust Multichip Average (RMA) method of background correction, quantile normalization, and summarization of cell signal intensity (Irrizary et al. 2003). Probe set intensities were log2 transformed. Probe set data are averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples. This data set does not include further normalization ("RMA Orig" as in original). Please see Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets. +

    + + +

        About the array probe set names:

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match (PM) probes and 16 mismatch controls (MM). Each set of these probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target) : Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, March 2004. Updated by RWW, Oct 29, Nov 6, 2004. +

    + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/BR_U_0405_SS.html b/web/dbdoc/BR_U_0405_SS.html new file mode 100755 index 00000000..233e0889 --- /dev/null +++ b/web/dbdoc/BR_U_0405_SS.html @@ -0,0 +1,404 @@ + +

    U74Av2 SScore April 05 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + + + + + +
    + + +

    + +UTHSC Brain mRNA U74Av2 (Apr05) SScore + + modify this page

    Accession number: GN63

    +

        Summary:

    + +

    +This April 05 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n = 3) to 100 arrays. Data were processed using the S-score software of Zhang et al. 2002 and Kerns et al. 2003. The S- score method centers expression of every probe set at 0. The signal values are therefore strain deviations in Z score units from the grand mean based on all arrays. +

    +
    + + +

        About the cases used to generate this set of data:

    +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. +
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    + + + +

        How to download these data:

    +

    +All standard Affymetrix file types (DAT, CEL, RPT, CHP, TXT) can be downloaded for this data set by selecting the strain names in the table above and then selecting the appropriate file, or download the particular transform in an Excel work book with both individual arrays and strain means and SEMs. Please refer to the Usage Conditions and Limitations page and the References page for background on appropriate use and citations of these data. +

    + + +

         + +About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + + +

         +About the array platform:

    + +
    +

    +Affymetrix U74Av2 GeneChip Annotation: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium March 2005 (mm6) assembly. This BLAT analysis is performed by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify UCSC and Verify Emsembllinks in the Trait Data and Editing Form (see buttons to the right side of the Location line). + +You can download the original BLAT output file that we have generated for the U74Av2 platform. The GeneNetwork includes a filtered subset of these data. + + +

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match (PM) probes and 16 mismatch controls (MM). Each set of these probe has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target) : Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + +

        About data processing:

    +
    +Probe set data: The expression data were processed by RWW and Yanhua Qu at UTHSC to generate MAS 5 CEL files. These were then analyzed using the S-score algorithm (Zhang et al., 2002; Kerns et al., 2003) by Robnet Kerns and Michael Miles (Virginia Commonwealth University). The original CEL files produced by the Affymetrix analysis software were normalized for whole chip intensity and read into a version of the S-score software that produces an averaged CEL file across all arrays. This aveCEL was then used as the denominator to produce S-scores by pairwise analysis of all arrays. Probe set data are averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples. This data set does not include further normalization. + +

    Regarding the S-score (from the Miles Lab web site): "The significance-score algorithm (S-score) was developed in our laboratory by Dr. Li Zhang. This produces a score for a comparison of the expression of a gene between two samples (e.g. control and "treated"). The S-score produces a robust measure of expression changes by weighting oligonucleotide pairs according to their signal strength above empirically determined noise levels. The procedure produces scores centered around "0" (no change) with a standard deviation of 1. Thus, scores >2 or <-2 from a single comparison have, on average, a 95% chance of being "real changes" in terms of the chip hybridization. This does not, however, imply that they are biologically reproducible." + +

    + + +

         + +Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    +This text file originally generated by RWW, KFM, and Mike Miles, April 14, 2005. Updated by RWW, April 15, 2005. + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_0805_M.html b/web/dbdoc/BR_U_0805_M.html new file mode 100755 index 00000000..009903be --- /dev/null +++ b/web/dbdoc/BR_U_0805_M.html @@ -0,0 +1,415 @@ + +U74Av2 MAS5 August05 / WebQTL + + + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    +UTHSC Brain mRNA U74Av2 (Aug05) MAS5 + modify this page

    Accession number: GN80

    + +

        Summary:

    + +

    +This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM). +

    +
    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. +
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    + +

        How to download these data:

    +

    +All standard Affymetrix file types (DAT, CEL, RPT, CHP, TXT) can be downloaded for this data set by selecting the strain names in the table above and then selecting the appropriate file, or download the particular transform in an Excel work book with both individual arrays and strain means and SEMs. Please refer to the Usage Conditions and Limitations page and the References page for background on appropriate use and citations of these data. +

    + + + +

        About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). + +

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target) : Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. +
      +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization for the log base 2 values for the total set of 97 arrays (all seven batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We corrected for technical variance introduced by seven batches at the probe level. To do this we determined the ratio of the batch mean to the mean of all seven batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each of the seven batches is the same. + +
    • Step 7: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replciates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, source of animals, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for these variables. + +
    + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 97 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    +This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004. + + +

    + + + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_0805_P.html b/web/dbdoc/BR_U_0805_P.html new file mode 100755 index 00000000..7e577dd5 --- /dev/null +++ b/web/dbdoc/BR_U_0805_P.html @@ -0,0 +1,423 @@ + +U74Av2 PDNN August05 / WebQTL + + + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    + +UTHSC Brain mRNA U74Av2 (Aug05) PDNN + + modify this page

    Accession number: GN81

    + +

        Summary:

    + +

    +This August 2005 data freeze provides estimate of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 250 brain samples from 33 strains were hybridized in small pools (n=3) to 83 arrays. Data were processed using the PDNN method of Zhang. To simplify comparison between transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units. +

    +
    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), the B6D2 F1 intercross progeny, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. +
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    + + +

        How to download these data:

    +

    +All standard Affymetrix file types (DAT, CEL, RPT, CHP, TXT) can be downloaded for this data set by selecting the strain names in the table above and then selecting the appropriate file, or download the particular transform in an Excel work book with both individual arrays and strain means and SEMs. Please refer to the Usage Conditions and Limitations page and the References page for background on appropriate use and citations of these data. +

    + +

        About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + +

        About data processing:

    +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization for the log base 2 values for the total set of 97 arrays (all seven batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We corrected for technical variance introduced by seven batches at the probe level. To do this we determined the ratio of the batch mean to the mean of all seven batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each of the seven batches is the same. + +
    • Step 7: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replciates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, source of animals, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for these variables. + +
    + +
    Probe set data: The expression data were transformed by Li Zhang (MD Anderson Cancer Center). The original expression values in the Affymetrix CEL files were read into PerfectMatch to generate the normalized PDNN data set.

    + +

    PDNN values of each array were subsequently normalized to a achieve a mean value of 8 units and a variance of 2 units.

    + +

    When necessary, we computed the arithmetic mean for technical replicates and treated these as single samples. We then computed the arithmetic mean for the set of 2 to 5 biological replicates for each strain. +

    +
    + + +

        About the array probe set names:

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + + + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target): Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, August 2005. +

    + + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_0805_R.html b/web/dbdoc/BR_U_0805_R.html new file mode 100755 index 00000000..ec5c623b --- /dev/null +++ b/web/dbdoc/BR_U_0805_R.html @@ -0,0 +1,400 @@ + +U74Av2RMA August05 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + + +

    UTHSC Brain mRNA U74Av2 (Aug05) RMA + + modify this page

    Accession number: GN82

    + + + +

        Summary:

    + +

    +This August 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the RMA protocol and are presented with secondary normalization to an average expression value of 8 units. The variance of each array has been stabilized to 2 units for easy comparison to other transforms (see below). +

    +
    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current data set (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    + + +

        About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 97 such pooled samples were arrayed: 73 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 97 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium Mar 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        About data processing:

    +
    Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. +
      +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization for the log base 2 values for the total set of 97 arrays (all seven batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We corrected for technical variance introduced by seven batches at the probe level. To do this we determined the ratio of the batch mean to the mean of all seven batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each of the seven batches is the same. + +
    • Step 7: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replciates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, source of animals, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for these variables. +
    +

    +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL are the averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples.

    + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized variance of 2 units within each array). Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets. +

    + +

        About the array probe set names:

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target) : Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, August 2005. +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_0903_DPM.html b/web/dbdoc/BR_U_0903_DPM.html new file mode 100755 index 00000000..9b1af8b9 --- /dev/null +++ b/web/dbdoc/BR_U_0903_DPM.html @@ -0,0 +1,368 @@ + +U74Av2 dChip PM August03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + +
    + +

    U74Av2 dChip PM Database (August/03 Freeze) modify this page

    Accession number: GN22

    + +

        About the mice used to map microarray data:

    + +
    The set of animals used for mapping (a mapping panel) consists of 30 groups of genetically uniform mice of the BXD type. The parental strains are C57BL/6J (B6 or B) and DBA/2J (D2 or D). The first generation hybrid is labeled F1. The F1 hybrids were made by crossing B6 females to D2 males. + +All other lines are recombinant inbred strains derived from C57BL/6J and DBA/2J crosses. BXD2 through BXD32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Dr. Taylor, but they were generated in the 1990s. Lines BXD67 and BXD68 are two partially inbred advanced recombinant strains (F8 and F9) that are part of a large set of BXD-Advanced strains being produced by Drs. Robert Williams, Lu Lu, Guomin Zhou, Lee Silver, and Jeremy Peirce. There will eventually be ~45 of these strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html. +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2) 
    B6D2F1 (F1) BXD1 
    BXD2BXD5  
    BXD6  BXD8 
    BXD9BXD11 
    BXD12 BXD13  
    BXD14 BXD15 
    BXD16 BXD18
    BXD19BXD21 
    BXD22 BXD23  
    BXD24  BXD25 
    BXD27  BXD28
    BXD29  BXD31 
    BXD32BXD33 
    BXD34 BXD38   
    BXD39  BXD40  
    BXD42    BXD67   
    BXD68       
    +

        About the tissue used to generate these data:

    +

    Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 83 arrays were used: 67 were female pools and 16 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year). +

    + +

        About data processing:

    + +
    Probe set data from the .TXT file: These .TXT files +were generated using the dChip +including perfect match data. +
      +
    • Step 1: We added an offset of 1 to the .TXT expression values +for each cell to ensure that all values could be logged without +generating negative values. +
    • Step 2: We took the log base 2 of each cell. +
    • Step 3: We computed the Z-score for each cell. +
    • Step 4: We multiplied all Z scores by 2. +
    • Step 5: We added 8 to the value of all Z-scores. The consequence +of this simple set of transformations is to produce a set of Z-scores +that have a mean of 8, a variance of 4, and a standard deviation +of 2. The advantage of this modified Z-score is that a two-fold +difference in expression level corresponds approximately to a 1 +unit difference. +
    • Step 6: We computed the arithmetic mean of the values for the +set of microarrays for each of the individual strains. +
    +

    Every microarray data set therefore has a mean expression of 8 with +a standard deviation of 2. A 1-unit difference therefor represents +roughly a two-fold difference in expression level. Expression levels +below 5 are usually close to background noise levels.

    +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        About the array probe set names:

    +
    In addition to the _at (anti-sense target) and _st (sense target) probe set name designations, there are other designations that reflect special characteristics of a particular probe set based on probe design and selection crieteria. These designaions are listed below. +

    Probe set name designations

    +
  • _f_at (sequence family): Includes probes that target identical and/or slightly polymorphic regions of different transcripts.

  • +
  • _s_at (similarity constraint): Probes all target common sequences found in multiple transcripts.

  • +
  • _g_at (common groups): Some of the probes target identical sequences and some target unique sequences regions .

  • +
  • _r_at (rules dropped): "Designates sequences for which it was not possible to pick a full set of unique probes using Affymetrix' probe selection rules. Probes were picked after dropping some of the selection rules."

  • +
  • _i_at (incomplete): "Designates sequences for which there are fewer than the required numbers of unique probes specified in the design."

  • +Most of the descriptions for the probe set ID extensions above were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +
    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_0903_DPMM.html b/web/dbdoc/BR_U_0903_DPMM.html new file mode 100755 index 00000000..108dbe25 --- /dev/null +++ b/web/dbdoc/BR_U_0903_DPMM.html @@ -0,0 +1,367 @@ + +U74Av 2dChip PMMM August03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + +
    + +

    U74Av2 dChip PMMM Database (August/03 Freeze) modify this page

    Accession number: GN24

    + +

        About the mice used to map microarray data:

    + +
    The set of animals used for mapping (a mapping panel) consists of 30 groups of genetically uniform mice of the BXD type. The parental strains are C57BL/6J (B6 or B) and DBA/2J (D2 or D). The first generation hybrid is labeled F1. The F1 hybrids were made by crossing B6 females to D2 males. + +All other lines are recombinant inbred strains derived from C57BL/6J and DBA/2J crosses. BXD2 through BXD32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Dr. Taylor, but they were generated in the 1990s. Lines BXD67 and BXD68 are two partially inbred advanced recombinant strains (F8 and F9) that are part of a large set of BXD-Advanced strains being produced by Drs. Robert Williams, Lu Lu, Guomin Zhou, Lee Silver, and Jeremy Peirce. There will eventually be ~45 of these strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html. +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)♂♂♂DBA/2J (D2)♂♂♀ 
    B6D2F1 (F1)♀ ♀ BXD1♀♀ 
    BXD2BXD5♂♂♀  
    BXD6    BXD8♂♀ 
    BXD9BXD11♀♀ 
    BXD12 BXD13  
    BXD14 ♀♀BXD15 
    BXD16 BXD18
    BXD19BXD21♀♀♂♂ 
    BXD22♀♀ BXD23  
    BXD24♀♀  BXD25♀♀ ♀♀  
    BXD27  ♀♀BXD28
    BXD29  BXD31♀♀♀♀ 
    BXD32♂♀BXD33♂♀ 
    BXD34♂♀ BXD38♂♀♀   
    BXD39♂♀   BXD40♂♂♀   
    BXD42♂♂ ♀   BXD67♀ ♀   
    BXD68♀ ♀      
    +

        About the tissue used to generate these data:

    +

    Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 83 arrays were used: 67 were female pools and 16 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year). +

    + +

        About data processing:

    + +
    Probe set data from the .TXT file: These .TXT files +were generated using the dChip +including perfect match and Missmatch data. +
      +
    • Step 1: We added an offset of 5000 to the .TXT expression values +for each cell to ensure that all values could be logged without +generating negative values. +
    • Step 2: We took the log base 2 of each cell. +
    • Step 3: We computed the Z-score for each cell. +
    • Step 4: We multiplied all Z scores by 2. +
    • Step 5: We added 8 to the value of all Z-scores. The consequence +of this simple set of transformations is to produce a set of Z-scores +that have a mean of 8, a variance of 4, and a standard deviation +of 2. The advantage of this modified Z-score is that a two-fold +difference in expression level corresponds approximately to a 1 +unit difference. +
    • Step 6.1: We computed the arithmetic mean of the values for the +set of microarrays for each of technical duplicate for the individual +strains. +
    • Step 6.2: We computed the arithmetic mean of the values for the +set of microarrays for each of the individual strains. +
    +

    Every microarray data set therefore has a mean expression of 8 with +a standard deviation of 2. A 1-unit difference therefor represents +roughly a two-fold difference in expression level. Expression levels +below 5 are usually close to background noise levels.

    +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        About the array probe set names:

    +
    In addition to the _at (anti-sense target) and _st (sense target) probe set name designations, there are other designations that reflect special characteristics of a particular probe set based on probe design and selection crieteria. These designaions are listed below. +

    Probe set name designations

    +
  • _f_at (sequence family): Includes probes that target identical and/or slightly polymorphic regions of different transcripts.

  • +
  • _s_at (similarity constraint): Probes all target common sequences found in multiple transcripts.

  • +
  • _g_at (common groups): Some of the probes target identical sequences and some target unique sequences regions .

  • +
  • _r_at (rules dropped): "Designates sequences for which it was not possible to pick a full set of unique probes using Affymetrix' probe selection rules. Probes were picked after dropping some of the selection rules."

  • +
  • _i_at (incomplete): "Designates sequences for which there are fewer than the required numbers of unique probes specified in the design."

  • +Most of the descriptions for the probe set ID extensions above were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +
    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_0903_M.html b/web/dbdoc/BR_U_0903_M.html new file mode 100755 index 00000000..4a8f61b3 --- /dev/null +++ b/web/dbdoc/BR_U_0903_M.html @@ -0,0 +1,366 @@ + +U74Av2 MAS5 September03 / WebQTL + + + + + + + + + + + + + + + + + + + +
    + + + +
    +

    U74Av2 MAS5 Database (September/03 Freeze) modify this page

    Accession number: GN13

    + +

        About the mice used to map microarray data:

    + +
    The set of animals used for mapping (a mapping panel) consists of 30 groups of genetically uniform mice of the BXD type. The parental strains are C57BL/6J (B6 or B) and DBA/2J (D2 or D). The first generation hybrid is labeled F1. The F1 hybrids were made by crossing B6 females to D2 males. + +All other lines are recombinant inbred strains derived from C57BL/6J and DBA/2J crosses. BXD2 through BXD32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Dr. Taylor, but they were generated in the 1990s. Lines BXD67 and BXD68 are two partially inbred advanced recombinant strains (F8 and F9) that are part of a large set of BXD-Advanced strains being produced by Drs. Robert Williams, Lu Lu, Guomin Zhou, Lee Silver, and Jeremy Peirce. There will eventually be 45 of these strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html. +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)♂♂♂DBA/2J (D2)♂♂♀ 
    B6D2F1 (F1)♀ ♀ BXD1♀♀ 
    BXD2BXD5♂♂♀  
    BXD6    BXD8♂♀ 
    BXD9BXD11♀♀ 
    BXD12 BXD13  
    BXD14 ♀♀BXD15 
    BXD16 BXD18
    BXD19BXD21♀♀♂♂ 
    BXD22♀♀ BXD23  
    BXD24♀♀  BXD25♀♀ ♀♀  
    BXD27  ♀♀BXD28
    BXD29  BXD31♀♀♀♀ 
    BXD32♂♀BXD33♂♀ 
    BXD34♂♀ BXD38♂♀♀   
    BXD39♂♀   BXD40♂♂♀   
    BXD42♂♂ ♀   BXD67♀ ♀   
    BXD68♀ ♀      
    +

        About the tissue used to generate these data:

    +

    Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 83 arrays were used: 67 were female pools and 16 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year). +

    + +

        About data processing:

    + +
    Probe set data from the .TXT file: These .TXT files +were generated using the MAS 5.0. +
      +
    • Step 1: We added an offset of 1.0 to the .TXT expression values +for each cell to ensure that all values could be logged without +generating negative values. +
    • Step 2: We took the log base 2 of each cell. +
    • Step 3: We computed the Z-score for each cell. +
    • Step 4: We multiplied all Z scores by 2. +
    • Step 5: We added 8 to the value of all Z-scores. The consequence +of this simple set of transformations is to produce a set of Z-scores +that have a mean of 8, a variance of 4, and a standard deviation +of 2. The advantage of this modified Z-score is that a two-fold +difference in expression level corresponds approximately to a 1 +unit difference. +
    • Step 6: We computed the arithmetic mean of the values for the +set of microarrays for each of the individual strains. +
    +

    Every microarray data set therefore has a mean expression of 8 with +a standard deviation of 2. A 1-unit difference therefor represents +roughly a two-fold difference in expression level. Expression levels +below 5 are usually close to background noise levels.

    +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 (mm4) Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        About the array probe set names:

    +
    In addition to the _at (anti-sense target) and _st (sense target) probe set name designations, there are other designations that reflect special characteristics of a particular probe set based on probe design and selection crieteria. These designaions are listed below. +

    Probe set name designations

    +
  • _f_at (sequence family): Includes probes that target identical and/or slightly polymorphic regions of different transcripts.

  • +
  • _s_at (similarity constraint): Probes all target common sequences found in multiple transcripts.

  • +
  • _g_at (common groups): Some of the probes target identical sequences and some target unique sequences regions .

  • +
  • _r_at (rules dropped): "Designates sequences for which it was not possible to pick a full set of unique probes using Affymetrix' probe selection rules. Probes were picked after dropping some of the selection rules."

  • +
  • _i_at (incomplete): "Designates sequences for which there are fewer than the required numbers of unique probes specified in the design."

  • +Most of the descriptions for the probe set ID extensions above were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +
    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. +

    + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_0903_P.html b/web/dbdoc/BR_U_0903_P.html new file mode 100755 index 00000000..26c5ddb4 --- /dev/null +++ b/web/dbdoc/BR_U_0903_P.html @@ -0,0 +1,367 @@ + +U74Av2 PDNN August03 / WebQTL + + + + + + + + + + + + + + + + + + + +
    + + + +
    +

    U74Av2 PDNN Database (August/03 Freeze) modify this page

    Accession number: GN16

    + +

        About the mice used to map microarray data:

    + +
    The set of animals used for mapping (a mapping panel) consists of 30 groups of genetically uniform mice of the BXD type. The parental strains are C57BL/6J (B6 or B) and DBA/2J (D2 or D). The first generation hybrid is labeled F1. The F1 hybrids were made by crossing B6 females to D2 males. + +All other lines are recombinant inbred strains derived from C57BL/6J and DBA/2J crosses. BXD2 through BXD32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Dr. Taylor, but they were generated in the 1990s. Lines BXD67 and BXD68 are two partially inbred advanced recombinant strains (F8 and F9) that are part of a large set of BXD-Advanced strains being produced by Drs. Robert Williams, Lu Lu, Guomin Zhou, Lee Silver, and Jeremy Peirce. There will eventually be ~45 of these strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html. +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)♂♂♂DBA/2J (D2)♂♂♀ 
    B6D2F1 (F1)♀ ♀ BXD1♀♀ 
    BXD2BXD5♂♂♀  
    BXD6    BXD8♂♀ 
    BXD9BXD11♀♀ 
    BXD12 BXD13  
    BXD14 ♀♀BXD15 
    BXD16 BXD18
    BXD19BXD21♀♀♂♂ 
    BXD22♀♀ BXD23  
    BXD24♀♀  BXD25♀♀ ♀♀  
    BXD27  ♀♀BXD28
    BXD29  BXD31♀♀♀♀ 
    BXD32♂♀BXD33♂♀ 
    BXD34♂♀ BXD38♂♀♀   
    BXD39♂♀   BXD40♂♂♀   
    BXD42♂♂ ♀   BXD67♀ ♀   
    BXD68♀ ♀      
    +

        About the tissue used to generate these data:

    +

    Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 83 arrays were used: 67 were female pools and 16 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year). +

    + +

        About data processing:

    + +
    Probe set data from the .TXT file: These .TXT files +were generated using the PDNN. +
      +
    • Step 1: We added an offset of 1.0 to the .TXT expression values +for each cell to ensure that all values could be logged without +generating negative values. +
    • Step 2: We took the log base 2 of each cell. +
    • Step 3: We computed the Z-score for each cell. +
    • Step 4: We multiplied all Z scores by 2. +
    • Step 5: We added 8 to the value of all Z-scores. The consequence +of this simple set of transformations is to produce a set of Z-scores +that have a mean of 8, a variance of 4, and a standard deviation +of 2. The advantage of this modified Z-score is that a two-fold +difference in expression level corresponds approximately to a 1 +unit difference. +
    • Step 6: We computed the arithmetic mean of the values for the +set of microarrays for each of the individual strains. +
    +

    Every microarray data set therefore has a mean expression of 8 with +a standard deviation of 2. A 1-unit difference therefor represents +roughly a two-fold difference in expression level. Expression levels +below 5 are usually close to background noise levels.

    +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        About the array probe set names:

    +
    In addition to the _at (anti-sense target) and _st (sense target) probe set name designations, there are other designations that reflect special characteristics of a particular probe set based on probe design and selection crieteria. These designaions are listed below. +

    Probe set name designations

    +
  • _f_at (sequence family): Includes probes that target identical and/or slightly polymorphic regions of different transcripts.

  • +
  • _s_at (similarity constraint): Probes all target common sequences found in multiple transcripts.

  • +
  • _g_at (common groups): Some of the probes target identical sequences and some target unique sequences regions .

  • +
  • _r_at (rules dropped): "Designates sequences for which it was not possible to pick a full set of unique probes using Affymetrix' probe selection rules. Probes were picked after dropping some of the selection rules."

  • +
  • _i_at (incomplete): "Designates sequences for which there are fewer than the required numbers of unique probes specified in the design."

  • +Most of the descriptions for the probe set ID extensions above were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +
    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. +

    + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_0903_R.html b/web/dbdoc/BR_U_0903_R.html new file mode 100755 index 00000000..1732dea5 --- /dev/null +++ b/web/dbdoc/BR_U_0903_R.html @@ -0,0 +1,368 @@ + +U74Av2RMA August03 / WebQTL + + + + + + + + + + + + + + + + + + + +
    + + + +
    +

    U74Av2RMA Database (August/03 Freeze) modify this page

    Accession number: GN19

    + +

        About the mice used to map microarray data:

    + +
    The set of animals used for mapping (a mapping panel) consists of 30 groups of genetically uniform mice of the BXD type. The parental strains are C57BL/6J (B6 or B) and DBA/2J (D2 or D). The first generation hybrid is labeled F1. The F1 hybrids were made by crossing B6 females to D2 males. + +All other lines are recombinant inbred strains derived from C57BL/6J and DBA/2J crosses. BXD2 through BXD32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Dr. Taylor, but they were generated in the 1990s. Lines BXD67 and BXD68 are two partially inbred advanced recombinant strains (F8 and F9) that are part of a large set of BXD-Advanced strains being produced by Drs. Robert Williams, Lu Lu, Guomin Zhou, Lee Silver, and Jeremy Peirce. There will eventually be ~45 of these strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html. +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)♂♂♂DBA/2J (D2)♂♂♀ 
    B6D2F1 (F1)♀ ♀ BXD1♀♀ 
    BXD2BXD5♂♂♀  
    BXD6    BXD8♂♀ 
    BXD9BXD11♀♀ 
    BXD12 BXD13  
    BXD14 ♀♀BXD15 
    BXD16 BXD18
    BXD19BXD21♀♀♂♂ 
    BXD22♀♀ BXD23  
    BXD24♀♀  BXD25♀♀ ♀♀  
    BXD27  ♀♀BXD28
    BXD29  BXD31♀♀♀♀ 
    BXD32♂♀BXD33♂♀ 
    BXD34♂♀ BXD38♂♀♀   
    BXD39♂♀   BXD40♂♂♀   
    BXD42♂♂ ♀   BXD67♀ ♀   
    BXD68♀ ♀      
    +

        About the tissue used to generate these data:

    +

    Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 83 arrays were used: 67 were female pools and 16 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year). +

    + +

        About data processing:

    + +
    Probe set data from the .TXT file: These .TXT files +were generated using the PDNN. +
      +
    • Step 1: We added an offset of 1.0 to the .TXT expression values +for each cell to ensure that all values could be logged without +generating negative values. +
    • Step 2: We took the log base 2 of each cell. +
    • Step 3: We computed the Z-score for each cell. +
    • Step 4: We multiplied all Z scores by 2. +
    • Step 5: We added 8 to the value of all Z-scores. The consequence +of this simple set of transformations is to produce a set of Z-scores +that have a mean of 8, a variance of 4, and a standard deviation +of 2. The advantage of this modified Z-score is that a two-fold +difference in expression level corresponds approximately to a 1 +unit difference. +
    • Step 6: We computed the arithmetic mean of the values for the +set of microarrays for each of the individual strains. +
    +

    Every microarray data set therefore has a mean expression of 8 with +a standard deviation of 2. A 1-unit difference therefor represents +roughly a two-fold difference in expression level. Expression levels +below 5 are usually close to background noise levels.

    +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        About the array probe set names:

    +
    In addition to the _at (anti-sense target) and _st (sense target) probe set name designations, there are other designations that reflect special characteristics of a particular probe set based on probe design and selection crieteria. These designaions are listed below. +

    Probe set name designations

    +
  • _f_at (sequence family): Includes probes that target identical and/or slightly polymorphic regions of different transcripts.

  • +
  • _s_at (similarity constraint): Probes all target common sequences found in multiple transcripts.

  • +
  • _g_at (common groups): Some of the probes target identical sequences and some target unique sequences regions .

  • +
  • _r_at (rules dropped): "Designates sequences for which it was not possible to pick a full set of unique probes using Affymetrix' probe selection rules. Probes were picked after dropping some of the selection rules."

  • +
  • _i_at (incomplete): "Designates sequences for which there are fewer than the required numbers of unique probes specified in the design."

  • +Most of the descriptions for the probe set ID extensions above were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +
    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. +

    + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_1105_P.html b/web/dbdoc/BR_U_1105_P.html new file mode 100755 index 00000000..536ee133 --- /dev/null +++ b/web/dbdoc/BR_U_1105_P.html @@ -0,0 +1,266 @@ + +U74Av2 PDNN November 2005 / WebQTL + + + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    + +UTHSC Brain mRNA U74Av2 (Nov05) PDNN + + modify this page

    Accession number: GN95

    + +

        Summary:

    + +

    +NEW AND MORE RIGOROUS QUALITY CONTROL. This November 2005 data freeze provides estimate of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 200 brain samples from 32 strains were hybridized in small pools (n=3) to 75 arrays. Data were processed using the PDNN method of Zhang. To simplify comparison between transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units. +

    +
    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 32 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), the B6D2 F1 intercross progeny, and 29 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. +
    + + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    ID tube ID strainagesexscale factorbackground averagepresentabsentmarginalAFFX-b-ActinAFFX-Gapdhchip by
    1S172F1C57BL/6J197F4.258
    77.85
    0.4060.5660.0291.190.78DP
    2S337F1C57BL/6J400F13.85
    48.52
    0.3070.6680.0251.210.87DP
    3S092F1C57BL/6J79M4.242
    73.54
    0.4060.5670.0271.540.87DP
    4S092F2C57BL/6J79M3.397
    69.95
    0.3410.6360.0241.941TS
    5S169F1DBA/2J71F5.409
    82.14
    0.3740.5980.0281.640.84DP
    6S286F1DBA/2J146F7.153
    58.85
    0.380.5930.0271.340.84DP
    7S101F1DBA/2J224M12.767
    73.57
    0.4640.5190.0171.770.85DP
    8S098F1DBA/2J224M6.463
    73.6
    0.4430.5380.0191.760.82DP
    9S238F1B6D2F162F4.413
    66.75
    0.40.5760.0251.260.86DP
    10S191F1B6D2F168F5.946
    79.59
    0.3660.6090.0251.540.9DP
    11S273F1B6D2F1182F6.343
    56.54
    0.3890.5840.0271.680.93DP
    12S233F1BXD158F5.693
    61.85
    0.4270.5480.0251.650.81DP
    13S280F1BXD1396F8.435
    57.1
    0.3690.6010.031.530.94DP
    14S342F1BXD1139F8.106
    52.79
    0.3770.5960.0271.330.86DP
    15UT701F1BXD2142F3.502
    49.39
    0.3160.6610.0241.710.82TS
    16S011F1BXD264M9.868
    111.34
    0.3560.6230.021.650.9DP
    17S340F1BXD2361F8.769
    51.87
    0.3950.5780.0271.740.83DP
    18UT744BXD556F2.927
    55.02
    0.3690.6090.0211.60.95TS
    19UT728F1BXD571M1.94
    60.54
    0.3550.6230.0231.460.86TS
    20UT746F1BXD5 71M5.451
    51.81
    0.2790.7010.021.540.78Ts
    21S378F1BXD661F11.907
    64.64
    0.3340.640.0262.271.02DP
    22S167F1BXD872F5.004
    67.36
    0.3970.5760.0271.260.78DP
    23S343F1BXD8143F8.388
    108.64
    0.2230.7510.0261.440.82DP
    24S193F1BXD9432F4.356
    65.64
    0.4330.5430.0242.421.06DP
    25S270F1BXD9173F6.365
    58.9
    0.3880.5840.0281.950.97DP
    26S009F1BXD979M5.54
    108.74
    0.4190.5640.0171.490.87DP
    27S194F1BXD11441F5.918
    60.19
    0.410.5640.0262.541.08DP
    28S234F1BXD1151F13.033
    51.65
    0.340.6310.0281.470.84DP
    29UT745F1BXD1197F3.28
    71.75
    0.3140.6660.0211.981.02TS
    30S281F1BXD12413F6.338
    57.37
    0.4110.5630.0251.890.94DP
    31S607F1BXD12178M4.064
    104.51
    0.3570.6190.0241.730.81DP
    32UT748F1BXD1386F1.67
    73.3
    0.3940.5850.0211.720.96TS
    33S195F1BXD14412F5.228
    63.85
    0.3980.5740.0281.821.06DP
    34UT705F1BXD14190F4.838
    41.24
    0.3290.6510.021.891.76TS
    35UT706F1BXD14134F9.609
    42.32
    0.2130.770.0171.421.02TS
    36S382F1BXD16354F15.561
    59.63
    0.3070.6670.0272.060.98DP
    37S334bF1BXD1857F13.787
    52.44
    0.3010.6740.0251.840.94DP
    38S362F2BXD18376F7.121
    76.92
    0.3680.6060.0261.770.88DP
    39S606F1BXD18200M4.381
    57.38
    0.4270.5420.0311.560.9DP
    40S236F1BXD1956F4.935
    59.44
    0.3740.5990.0261.290.84DP
    41S271F1BXD19163F4.705
    64.74
    0.4250.5460.0291.680.84DP
    42UT743F1BXD2164F2.996
    49.56
    0.3910.5870.0221.120.83TS
    43UT740F1BXD21 67F5.069
    49.3
    0.2880.6910.0211.820.87TS
    44S120F2BXD21236M4.765
    51.11
    0.4320.5430.0251.820.87DP
    45S170F1BXD22176F5.278
    72.7
    0.390.5820.0281.450.8DP
    46S383F1BXD22363F6.689
    53.68
    0.4030.570.0281.940.93DP
    47UT815F1BXD2388F4.964
    50.33
    0.310.6690.021.530.75TS
    48S283F1BXD24394F5.714
    52.6
    0.4210.5520.0271.660.85DP
    49S384F1BXD25355F4.931
    55.46
    0.450.5270.02420.91DP
    50S373F1BXD2574F3.81
    55.67
    0.4720.5040.0241.490.76DP
    51S376F2BXD25198F9.208
    46.29
    0.4290.5460.0252.180.83DP
    52S532F1BXD2590F9.489
    47.05
    0.4060.5670.0271.640.84DP
    53S197F1BXD28427F7.854
    57.94
    0.3650.6090.0262.421.14DP
    54S171F1BXD28192F15.407
    59.24
    0.3210.6530.0261.370.82DP
    55S381F1BXD2846F4.924
    57.61
    0.4390.5350.0261.970.93DP
    56S284F1BXD29416F5.16
    54.1
    0.4470.530.0232.611.19DP
    57S344F1BXD31139F7.434
    60.53
    0.3830.5920.0261.240.8DP
    58S198F1BXD3198F3.634
    76.61
    0.4140.5580.0281.730.97DP
    59S336bF1BXD3170F15.326
    49.99
    0.2950.6810.0241.410.85DP
    60S534F2BXD31262F8.057
    52.88
    0.4120.5610.0261.740.9DP
    61S272F1BXD32178F7.488
    76.4
    0.340.6350.0251.690.87DP
    62S341F2BXD32365F7.82
    56.4
    0.3750.5980.0271.660.83DP
    63Z621F1BXD32218M2.227
    54.86
    0.4670.5070.02621.6DP
    64Z633F1BXD33124F1.515
    75.52
    0.4690.5060.0252.211.13DP
    65UT704F1BXD33184F4.242
    47.71
    0.3390.6420.0192.190.97TS
    66Z632F1BXD33124M2.446
    64.45
    0.4380.5380.0243.221.59DP
    67UT747F1BXD3869F2.111
    61.16
    0.4040.5750.0211.670.78TS
    68UT780BXD38 55F5.97
    47.19
    0.2970.6830.021.450.81TS
    69UT749F1BXD3869M1.15
    84.52
    0.4350.5440.0211.480.82TS
    70S598F1BXD39119F3.619
    117.44
    0.3080.6620.031.560.73DP
    71S603-IFIBXD4066M5.426
    83.22
    0.3810.5940.0251.420.74DP
    72Z640F1BXD42109M1.935
    60.72
    0.4440.5290.0271.920.96DP
    73UT767F1BXD6757F1.688
    58.3
    0.4030.5750.0221.950.82TS
    74S536F1BXD6779F3.886
    98.34
    0.3580.6160.0261.650.92TS
    75UT768F1BXD68276M2.627
    79.2
    0.320.6590.021.691.07TS
    +
    +
    + + +

        How to download these data:

    +

    +All standard Affymetrix file types (DAT, CEL, RPT, CHP, TXT) can be downloaded for this data set by selecting the strain names in the table above and then selecting the appropriate file, or download the particular transform in an Excel work book with both individual arrays and strain means and SEMs. Please refer to the Usage Conditions and Limitations page and the References page for background on appropriate use and citations of these data. +

    + +

        About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 75 such pooled samples were arrayed: 58 from females and 17 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 75 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium March 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + +

        About data processing:

    + +
    Probe set data: The expression data were transformed by Yanhua Qu. The original expression values in the Affymetrix CEL files were read into PerfectMatch to generate the normalized PDNN data set.

    + +

    PDNN values of each array were subsequently normalized to a achieve a mean value of 8 units and a variance of 2 units.

    + +

    When necessary, we computed the arithmetic mean for technical replicates and treated these as single samples. We then computed the arithmetic mean for the set of 2 to 5 biological replicates for each strain. +

    +
    + + +

        About the array probe set names:

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + + + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target): Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, December 2003. Updated by YHQ, November, 2005. +

    + + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_1105_R.html b/web/dbdoc/BR_U_1105_R.html new file mode 100755 index 00000000..2500bde6 --- /dev/null +++ b/web/dbdoc/BR_U_1105_R.html @@ -0,0 +1,252 @@ + +U74Av2RMA November05 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + + +

    UTHSC Brain mRNA U74Av2 (Nov05) RMA + + modify this page

    Accession number: GN96

    + + + +

        Summary:

    + +

    +This November 2005 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 200 brain samples from 32 strains were hybridized in small pools (n=3) to 75 arrays. Data were processed using the RMA protocol and are presented with secondary normalization to an average expression value of 8 units. The variance of each array has been stabilized to 2 units for easy comparison to other transforms (see below). +

    +
    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 32 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 29 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current data set (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
    + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    ID tube ID strainagesexscale factorbackground averagepresentabsentmarginalAFFX-b-ActinAFFX-Gapdhchip by
    1S172F1C57BL/6J197F4.258
    77.85
    0.4060.5660.0291.190.78DP
    2S337F1C57BL/6J400F13.85
    48.52
    0.3070.6680.0251.210.87DP
    3S092F1C57BL/6J79M4.242
    73.54
    0.4060.5670.0271.540.87DP
    4S092F2C57BL/6J79M3.397
    69.95
    0.3410.6360.0241.941TS
    5S169F1DBA/2J71F5.409
    82.14
    0.3740.5980.0281.640.84DP
    6S286F1DBA/2J146F7.153
    58.85
    0.380.5930.0271.340.84DP
    7S101F1DBA/2J224M12.767
    73.57
    0.4640.5190.0171.770.85DP
    8S098F1DBA/2J224M6.463
    73.6
    0.4430.5380.0191.760.82DP
    9S238F1B6D2F162F4.413
    66.75
    0.40.5760.0251.260.86DP
    10S191F1B6D2F168F5.946
    79.59
    0.3660.6090.0251.540.9DP
    11S273F1B6D2F1182F6.343
    56.54
    0.3890.5840.0271.680.93DP
    12S233F1BXD158F5.693
    61.85
    0.4270.5480.0251.650.81DP
    13S280F1BXD1396F8.435
    57.1
    0.3690.6010.031.530.94DP
    14S342F1BXD1139F8.106
    52.79
    0.3770.5960.0271.330.86DP
    15UT701F1BXD2142F3.502
    49.39
    0.3160.6610.0241.710.82TS
    16S011F1BXD264M9.868
    111.34
    0.3560.6230.021.650.9DP
    17S340F1BXD2361F8.769
    51.87
    0.3950.5780.0271.740.83DP
    18UT744BXD556F2.927
    55.02
    0.3690.6090.0211.60.95TS
    19UT728F1BXD571M1.94
    60.54
    0.3550.6230.0231.460.86TS
    20UT746F1BXD5 71M5.451
    51.81
    0.2790.7010.021.540.78Ts
    21S378F1BXD661F11.907
    64.64
    0.3340.640.0262.271.02DP
    22S167F1BXD872F5.004
    67.36
    0.3970.5760.0271.260.78DP
    23S343F1BXD8143F8.388
    108.64
    0.2230.7510.0261.440.82DP
    24S193F1BXD9432F4.356
    65.64
    0.4330.5430.0242.421.06DP
    25S270F1BXD9173F6.365
    58.9
    0.3880.5840.0281.950.97DP
    26S009F1BXD979M5.54
    108.74
    0.4190.5640.0171.490.87DP
    27S194F1BXD11441F5.918
    60.19
    0.410.5640.0262.541.08DP
    28S234F1BXD1151F13.033
    51.65
    0.340.6310.0281.470.84DP
    29UT745F1BXD1197F3.28
    71.75
    0.3140.6660.0211.981.02TS
    30S281F1BXD12413F6.338
    57.37
    0.4110.5630.0251.890.94DP
    31S607F1BXD12178M4.064
    104.51
    0.3570.6190.0241.730.81DP
    32UT748F1BXD1386F1.67
    73.3
    0.3940.5850.0211.720.96TS
    33S195F1BXD14412F5.228
    63.85
    0.3980.5740.0281.821.06DP
    34UT705F1BXD14190F4.838
    41.24
    0.3290.6510.021.891.76TS
    35UT706F1BXD14134F9.609
    42.32
    0.2130.770.0171.421.02TS
    36S382F1BXD16354F15.561
    59.63
    0.3070.6670.0272.060.98DP
    37S334bF1BXD1857F13.787
    52.44
    0.3010.6740.0251.840.94DP
    38S362F2BXD18376F7.121
    76.92
    0.3680.6060.0261.770.88DP
    39S606F1BXD18200M4.381
    57.38
    0.4270.5420.0311.560.9DP
    40S236F1BXD1956F4.935
    59.44
    0.3740.5990.0261.290.84DP
    41S271F1BXD19163F4.705
    64.74
    0.4250.5460.0291.680.84DP
    42UT743F1BXD2164F2.996
    49.56
    0.3910.5870.0221.120.83TS
    43UT740F1BXD21 67F5.069
    49.3
    0.2880.6910.0211.820.87TS
    44S120F2BXD21236M4.765
    51.11
    0.4320.5430.0251.820.87DP
    45S170F1BXD22176F5.278
    72.7
    0.390.5820.0281.450.8DP
    46S383F1BXD22363F6.689
    53.68
    0.4030.570.0281.940.93DP
    47UT815F1BXD2388F4.964
    50.33
    0.310.6690.021.530.75TS
    48S283F1BXD24394F5.714
    52.6
    0.4210.5520.0271.660.85DP
    49S384F1BXD25355F4.931
    55.46
    0.450.5270.02420.91DP
    50S373F1BXD2574F3.81
    55.67
    0.4720.5040.0241.490.76DP
    51S376F2BXD25198F9.208
    46.29
    0.4290.5460.0252.180.83DP
    52S532F1BXD2590F9.489
    47.05
    0.4060.5670.0271.640.84DP
    53S197F1BXD28427F7.854
    57.94
    0.3650.6090.0262.421.14DP
    54S171F1BXD28192F15.407
    59.24
    0.3210.6530.0261.370.82DP
    55S381F1BXD2846F4.924
    57.61
    0.4390.5350.0261.970.93DP
    56S284F1BXD29416F5.16
    54.1
    0.4470.530.0232.611.19DP
    57S344F1BXD31139F7.434
    60.53
    0.3830.5920.0261.240.8DP
    58S198F1BXD3198F3.634
    76.61
    0.4140.5580.0281.730.97DP
    59S336bF1BXD3170F15.326
    49.99
    0.2950.6810.0241.410.85DP
    60S534F2BXD31262F8.057
    52.88
    0.4120.5610.0261.740.9DP
    61S272F1BXD32178F7.488
    76.4
    0.340.6350.0251.690.87DP
    62S341F2BXD32365F7.82
    56.4
    0.3750.5980.0271.660.83DP
    63Z621F1BXD32218M2.227
    54.86
    0.4670.5070.02621.6DP
    64Z633F1BXD33124F1.515
    75.52
    0.4690.5060.0252.211.13DP
    65UT704F1BXD33184F4.242
    47.71
    0.3390.6420.0192.190.97TS
    66Z632F1BXD33124M2.446
    64.45
    0.4380.5380.0243.221.59DP
    67UT747F1BXD3869F2.111
    61.16
    0.4040.5750.0211.670.78TS
    68UT780BXD38 55F5.97
    47.19
    0.2970.6830.021.450.81TS
    69UT749F1BXD3869M1.15
    84.52
    0.4350.5440.0211.480.82TS
    70S598F1BXD39119F3.619
    117.44
    0.3080.6620.031.560.73DP
    71S603-IFIBXD4066M5.426
    83.22
    0.3810.5940.0251.420.74DP
    72Z640F1BXD42109M1.935
    60.72
    0.4440.5290.0271.920.96DP
    73UT767F1BXD6757F1.688
    58.3
    0.4030.5750.0221.950.82TS
    74S536F1BXD6779F3.886
    98.34
    0.3580.6160.0261.650.92TS
    75UT768F1BXD68276M2.627
    79.2
    0.320.6590.021.691.07TS
    +
    +
    + + +

        About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 75 such pooled samples were arrayed: 58 from females and 17 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 75 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium March 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        About data processing:

    + +

    +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL are the averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples.

    + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized variance of 2 units within each array). Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets. +

    + +

        How to download these data:

    +

    +All standard Affymetrix file types (DAT, CEL, RPT, CHP, TXT) can be downloaded for this data set by selecting the strain names in the table above and then selecting the appropriate file, or download the particular transform in an Excel work book with both individual arrays and strain means and SEMs. Please refer to the Usage Conditions and Limitations page and the References page for background on appropriate use and citations of these data. +

    + +

        About the array probe set names:

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target) : Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, March 2004. Updated by RWW, November 30, 2005. +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_1203_DPM.html b/web/dbdoc/BR_U_1203_DPM.html new file mode 100755 index 00000000..e786e627 --- /dev/null +++ b/web/dbdoc/BR_U_1203_DPM.html @@ -0,0 +1,356 @@ + +U74Av2 dChip PM December03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + +
    + +

    U74Av2 dChip PM Database (December/03 Freeze) modify this page

    Accession number: GN23

    + +

        About the mice used to map microarray data:

    + +
    The set of animals used for mapping (a mapping panel) consists of 30 groups of genetically uniform mice of the BXD type. The parental strains are C57BL/6J (B6 or B) and DBA/2J (D2 or D). The first generation hybrid is labeled F1. The F1 hybrids were made by crossing B6 females to D2 males. + +All other lines are recombinant inbred strains derived from C57BL/6J and DBA/2J crosses. BXD2 through BXD32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Dr. Taylor, but they were generated in the 1990s. Lines BXD67 and BXD68 are two partially inbred advanced recombinant strains (F8 and F9) that are part of a large set of BXD-Advanced strains being produced by Drs. Robert Williams, Lu Lu, Guomin Zhou, Lee Silver, and Jeremy Peirce. There will eventually be 45 of these strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html. +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    +

        About the tissue used to generate these data:

    +

    Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 100 arrays were used: 74 were female pools and 26 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year). you can select the strain symbol in the table above to review some details about the specific cases. You can also click on the individual symbols (males or females) to view the array image. +

    + +

        About data processing:

    + +
    Probe set data: The expression values +were generated using the dChip +including perfect match data. +
      +
    • Step 1: We added an offset of 1 to the expression values +for each cell to ensure that all values could be logged without +generating negative values. +
    • Step 2: We took the log base 2 of each cell. +
    • Step 3: We computed the Z-score for each cell. +
    • Step 4: We multiplied all Z scores by 2. +
    • Step 5: We added 8 to the value of all Z-scores. The consequence +of this simple set of transformations is to produce a set of Z-scores +that have a mean of 8, a variance of 4, and a standard deviation +of 2. The advantage of this modified Z-score is that a two-fold +difference in expression level corresponds approximately to a 1 +unit difference. +
    • Step 6.1: We computed the arithmetic mean of the values for the +set of microarrays for each of technical duplicate for the individual +strains. +
    • Step 6.2: We computed the arithmetic mean of the values for the +set of microarrays for each of the individual strains. +
    +

    Every microarray data set therefore has a mean expression of 8 with +a standard deviation of 2. A 1-unit difference therefor represents +roughly a two-fold difference in expression level. Expression levels +below 5 are usually close to background noise levels.

    +
    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. +

    + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_1203_DPMM.html b/web/dbdoc/BR_U_1203_DPMM.html new file mode 100755 index 00000000..34306275 --- /dev/null +++ b/web/dbdoc/BR_U_1203_DPMM.html @@ -0,0 +1,370 @@ + +U74Av2 dChip PMMM December03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + +
    + +

    U74Av2 dChip PMMM Database (December/03 Freeze) modify this page

    Accession number: GN25

    + +

        About the mice used to map microarray data:

    + +
    The set of animals used for mapping (a mapping panel) consists of 30 groups of genetically uniform mice of the BXD type. The parental strains are C57BL/6J (B6 or B) and DBA/2J (D2 or D). The first generation hybrid is labeled F1. The F1 hybrids were made by crossing B6 females to D2 males. + +All other lines are recombinant inbred strains derived from C57BL/6J and DBA/2J crosses. BXD2 through BXD32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Dr. Taylor, but they were generated in the 1990s. Lines BXD67 and BXD68 are two partially inbred advanced recombinant strains (F8 and F9) that are part of a large set of BXD-Advanced strains being produced by Drs. Robert Williams, Lu Lu, Guomin Zhou, Lee Silver, and Jeremy Peirce. There will eventually be ~45 of these strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html. +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    +

        About the tissue used to generate these data:

    +

    Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 100 arrays were used: 74 were female pools and 26 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year). you can select the strain symbol in the table above to review some details about the specific cases. You can also click on the individual symbols (males or females) to view the array image. +

    + +

        About data processing:

    + +
    Probe set data: The expression values +were generated using the dChip +including perfect match and Missmatch data. +
      +
    • Step 1: We added an offset of 5000 to the expression values +for each cell to ensure that all values could be logged without +generating negative values. +
    • Step 2: We took the log base 2 of each cell. +
    • Step 3: We computed the Z-score for each cell. +
    • Step 4: We multiplied all Z scores by 2. +
    • Step 5: We added 8 to the value of all Z-scores. The consequence +of this simple set of transformations is to produce a set of Z-scores +that have a mean of 8, a variance of 4, and a standard deviation +of 2. The advantage of this modified Z-score is that a two-fold +difference in expression level corresponds approximately to a 1 +unit difference. +
    • Step 6.1: We computed the arithmetic mean of the values for the +set of microarrays for each of technical duplicate for the individual +strains. +
    • Step 6.2: We computed the arithmetic mean of the values for the +set of microarrays for each of the individual strains. +
    +

    Every microarray data set therefore has a mean expression of 8 with +a standard deviation of 2. A 1-unit difference therefor represents +roughly a two-fold difference in expression level. Expression levels +below 5 are usually close to background noise levels.

    +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 (mm4) Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        About the array probe set names:

    +
    In addition to the _at (anti-sense target) and _st (sense target) probe set name designations, there are other designations that reflect special characteristics of a particular probe set based on probe design and selection crieteria. These designaions are listed below. +

    Probe set name designations

    +
  • _f_at (sequence family): Includes probes that target identical and/or slightly polymorphic regions of different transcripts.

  • +
  • _s_at (similarity constraint): Probes all target common sequences found in multiple transcripts.

  • +
  • _g_at (common groups): Some of the probes target identical sequences and some target unique sequences regions .

  • +
  • _r_at (rules dropped): "Designates sequences for which it was not possible to pick a full set of unique probes using Affymetrix' probe selection rules. Probes were picked after dropping some of the selection rules."

  • +
  • _i_at (incomplete): "Designates sequences for which there are fewer than the required numbers of unique probes specified in the design."

  • +Most of the descriptions for the probe set ID extensions above were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +
    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. +

    + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_1203_DPMMR.html b/web/dbdoc/BR_U_1203_DPMMR.html new file mode 100755 index 00000000..ea0d93d6 --- /dev/null +++ b/web/dbdoc/BR_U_1203_DPMMR.html @@ -0,0 +1,346 @@ + +U74Av2dChip Raw PMMM December03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    U74Av2dChip Raw PMMM Database (December/03 Freeze) modify this page

    Accession number: GN27

    + +

        About the mice used to map microarray data:

    + +
    The set of animals used for mapping (a mapping panel) consists of 30 groups of genetically uniform mice of the BXD type. The parental strains are C57BL/6J (B6 or B) and DBA/2J (D2 or D). The first generation hybrid is labeled F1. The F1 hybrids were made by crossing B6 females to D2 males. + +All other lines are recombinant inbred strains derived from C57BL/6J and DBA/2J crosses. BXD2 through BXD32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Dr. Taylor, but they were generated in the 1990s. Lines BXD67 and BXD68 are two partially inbred advanced recombinant strains (F8 and F9) that are part of a large set of BXD-Advanced strains being produced by Drs. Robert Williams, Lu Lu, Guomin Zhou, Lee Silver, and Jeremy Peirce. There will eventually be ~45 of these strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html. +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    +

        About the tissue used to generate these data:

    +

    Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 100 arrays were used: 74 were female pools and 26 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year). you can select the strain symbol in the table above to review some details about the specific cases. You can also click on the individual symbols (males or females) to view the array image. +

    + +

        About data processing:

    + +
    Probe set raw data from the .TXT file: These .TXT files +were generated using the dChip +including perfect match and Mismatch data.
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 (mm4) Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        About the array probe set names:

    +
    In addition to the _at (anti-sense target) and _st (sense target) probe set name designations, there are other designations that reflect special characteristics of a particular probe set based on probe design and selection crieteria. These designaions are listed below. +

    Probe set name designations

    +
  • _f_at (sequence family): Includes probes that target identical and/or slightly polymorphic regions of different transcripts.

  • +
  • _s_at (similarity constraint): Probes all target common sequences found in multiple transcripts.

  • +
  • _g_at (common groups): Some of the probes target identical sequences and some target unique sequences regions .

  • +
  • _r_at (rules dropped): "Designates sequences for which it was not possible to pick a full set of unique probes using Affymetrix' probe selection rules. Probes were picked after dropping some of the selection rules."

  • +
  • _i_at (incomplete): "Designates sequences for which there are fewer than the required numbers of unique probes specified in the design."

  • +Most of the descriptions for the probe set ID extensions above were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +
    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. +

    + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_1203_DPMR.html b/web/dbdoc/BR_U_1203_DPMR.html new file mode 100755 index 00000000..cd62bd15 --- /dev/null +++ b/web/dbdoc/BR_U_1203_DPMR.html @@ -0,0 +1,345 @@ + +U74Av2 dChip PM Original December03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + +
    + +

    U74Av2 dChip PM Original Database (December/03 Freeze) modify this page

    Accession number: GN26

    + +

        About the mice used to map microarray data:

    + +
    The set of animals used for mapping (a mapping panel) consists of 30 groups of genetically uniform mice of the BXD type. The parental strains are C57BL/6J (B6 or B) and DBA/2J (D2 or D). The first generation hybrid is labeled F1. The F1 hybrids were made by crossing B6 females to D2 males. + +All other lines are recombinant inbred strains derived from C57BL/6J and DBA/2J crosses. BXD2 through BXD32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Dr. Taylor, but they were generated in the 1990s. Lines BXD67 and BXD68 are two partially inbred advanced recombinant strains (F8 and F9) that are part of a large set of BXD-Advanced strains being produced by Drs. Robert Williams, Lu Lu, Guomin Zhou, Lee Silver, and Jeremy Peirce. There will eventually be ~45 of these strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html. +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    +

        About the tissue used to generate these data:

    +

    Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 100 arrays were used: 74 were female pools and 26 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year). you can select the strain symbol in the table above to review some details about the specific cases. You can also click on the individual symbols (males or females) to view the array image. +

    + +

        About data processing:

    + +
    Probe set original data from the .TXT file: These .TXT files +were generated using the dChip +including perfect match data.
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 (mm4) Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        About the array probe set names:

    +
    In addition to the _at (anti-sense target) and _st (sense target) probe set name designations, there are other designations that reflect special characteristics of a particular probe set based on probe design and selection crieteria. These designaions are listed below. +

    Probe set name designations

    +
  • _f_at (sequence family): Includes probes that target identical and/or slightly polymorphic regions of different transcripts.

  • +
  • _s_at (similarity constraint): Probes all target common sequences found in multiple transcripts.

  • +
  • _g_at (common groups): Some of the probes target identical sequences and some target unique sequences regions .

  • +
  • _r_at (rules dropped): "Designates sequences for which it was not possible to pick a full set of unique probes using Affymetrix' probe selection rules. Probes were picked after dropping some of the selection rules."

  • +
  • _i_at (incomplete): "Designates sequences for which there are fewer than the required numbers of unique probes specified in the design."

  • +Most of the descriptions for the probe set ID extensions above were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +
    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_1203_H2.html b/web/dbdoc/BR_U_1203_H2.html new file mode 100755 index 00000000..5a59ec6c --- /dev/null +++ b/web/dbdoc/BR_U_1203_H2.html @@ -0,0 +1,414 @@ + +

    U74Av2 RMA Original March04 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + + + + + +
    + + +

    + +UTHSC Brain mRNA U74Av2 (Dec03) HWT1PM + + modify this page

    Accession number: GN12

    +

        Summary:

    + +

    +RECOMMENDED BRAIN DATA SET. This December 2003 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 100 arrays. Data were processed using a new method called the Heritability Weighted Transform (HWT) developed by Kenneth F. Manly and Robert W. Williams. Our initial results demonstrate that the HWT1PM transform generates estimates of gene expression that yield more significant QTLs than RMA, dChip, PDNN, or MAS 5. +

    +
    + + +

        About the cases used to generate this set of data:

    +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. +
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    + + + +

        How to download these data:

    +

    +All standard Affymetrix file types (DAT, CEL, RPT, CHP, TXT) can be downloaded for this data set by selecting the strain names in the table above and then selecting the appropriate file, or download the particular transform in an Excel work book with both individual arrays and strain means and SEMs. Please refer to the Usage Conditions and Limitations page and the References page for background on appropriate use and citations of these data. +

    + + +

         + +About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + + +

         +About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify UCSC and Verify Emsembllinks in the Trait Data and Editing Form (see buttons to the right side of the Location line). + +

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match (PM) probes and 16 mismatch controls (MM). Each set of these probe has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target) : Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + +

        About data processing:

    +
    + + +

    HWT1PM is an acronym for heritability weighted transform version 1, perfect match probes only.

    + +

    Most Affmetrix transforms generate a single consensus estimate of expression based on as many as 32 probes that hybridize with variable selectivity to the target transcript. Each probe could be given an equal weight to derive a consensus estimate of expression (essentially one vote per probe). However, the hybridization performance of probes and their ability to generate a biologically meaningful estimate of mRNA level is highly variable and idiosyncratic; depending on melting temperature, stacking energy, the mixture of background transcripts, and characteristics of reactions used to extract mRNA and to generated labeled cRNA. A simple way to evaluate the performance of probes is to compute their heritabiity within a large data set.

    + +

    Heritability is essentially the ratio of genetic variance to the total variance. A highly informative probe is one with little variability within strain but a great deal of variability among strains; essentially the main effect of "strain" in an analysis of variance (ANOVA). Heritability estimated in this way is necessary but not sufficient to define a QTL. To define a QTL, the variation must also correlate with genotypes at some genomic location(s). + +We have studied 35 strains and can therefore estimate the "between-strain variance." We have also typically performed three biological replicates within strain. Therefore, we can estimate genetic and non-genetic sources of variance. In our study we have minimized non-genetic variance by pooling samples and by rearing all mice in a standard laboratory environment. We are in a good position to estimate these two variance components and compute the heritability of the 490,000 probes on the U74Av2 array. All of these estimates, both for the perfect match (PM) and mismatch (MM) probes, are provided in the PROBE INFORMATION table associated with every transcript (click on the work "Probe" in any of the TRAIT DATA pages). + +

    Estimation of Heritability: Individual probe intensities from Affymetrix U74Av2 microarrays were log2-transformed and normalized to a standard array-wide mean of 8 units and a standard deviation of 2 units as described for several other data sets (e.g., UTHSC Brain mRNA U74Av2 (Dec03) MAS5).

    + +

    For each probe, the mean squared deviations within strains (MSw) and the mean square deviation between strains (MSb) were calculated by ANOVA. Raw heritability was estimated as (MSb-MSw)/(n x MSt), where n is the average number of replicates per strain (usually 3) and MSt is total variance in the 100 array data set. These particular raw heritability estimates are provided in the PROBE INFORMATION table for each transcript (click on the blue word "Probe" in any of the TRAIT DATA pages and then scroll to the far right column labeled 100brains h2). Note, these raw heritabilities may have negative values because they are calculated from the difference of two estimates subject to sampling error.

    + +

    Adjusted heritability was derived from raw heritability by assigning values of 0 and 1, respectively, to raw heritability values below 0.0 or above 1.0. Weights for each probe were calculated by dividing the adjusted heritability by the mean adjusted heritability for all probes in the probeset. In essence this divides the 16 total votes (there are 16 PM probes per probe set) on the basis of their heritability scores. For example. If 8 of the probes had a heritability of 0.5, 4 had a heritability of 0.25, and 4 had a heritability of 0, then these three groups would get weights of 1.6, 0.8, and 0, respectively in generating the consensus estimate of expression level. Expression estimates for each probe set were calculated as the weighted average of those probe-specific means, using the heritability weights just described. The final expression estimates for each strain were calculated as an unweighted average of all biological replicates within each strain. +

    + +

    General Comment: From a statistical point of view the 100 arrays data set we are working with has four dimensions. The first dimension is genetic, and is formed by the set of genetically distinct inbred strains (n = 35) and their genotypes. The second dimension in non-genetic and is represented by the replicate samples within each isogenic line. The third dimension is formed by the multiple probes that make up each probe set. There are up to 32 probes per probe set, but in this transform we have focused attention only on the 16 PM probes. Finally, the fourth dimension is represented by the 12422 probe sets that target different transcripts. For genetic analysis and QTL mapping, dimensions 2 and 3 must be collapsed into single estimate of mean gene expression for each strain that can be compared with genotypes (dimension 1). Heritability is determined by the relative expression variance contributed by dimensions 1 and 2. The HWT1PM method uses the information from dimensions 1 and 2 to define weights that allow dimension 3 to be collapsed using a weighted average. Dimension 2 is still collapsed using a simple average.

    +
    + + +

         + +Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    +This text file originally generated by RWW and KFM, December 2003. Updated by RWW, Oct 31, Nov 6, 2004 and by KFM Nov 8, 2004. + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_1203_H2BF.html b/web/dbdoc/BR_U_1203_H2BF.html new file mode 100755 index 00000000..8608cbd5 --- /dev/null +++ b/web/dbdoc/BR_U_1203_H2BF.html @@ -0,0 +1,410 @@ + +

    U74Av2 RMA Original March04 / WebQTL + + + + + + + + + + + + + + + + + + + +
    + + + +
    + + +

    + +UTHSC Brain mRNA U74Av2 (Dec03) HWT1PM + +modify this page

    +

        Summary:

    + +

    +RECOMMENDED BRAIN DATA SET. This December 2003 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 100 arrays. Data were processed using a new method called the Heritability Weighted Transform (HWT) developed by Kenneth F. Manly and Robert W. Williams. Our initial results demonstrate that the HWT1PM transform generates estimates of gene expression that yield more significant QTLs than RMA, dChip, PDNN, or MAS 5. +

    +
    + + +

        About the cases used to generate this set of data:

    +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. +
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    + Age +
    +
    Strain + +
    + Age +
    +
    +
    + 8 Wks +
    +
    +
    + 20 Wks +
    +
    +
    + 52 Wks +
    +
    +
    + 8 Wks +
    +
    +
    + 20 Wks +
    +
    +
    + 52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2) 
    B6D2F1 (F1) BXD1 
    BXD2BXD5  
    BXD6  BXD8 
    BXD9BXD11 
    BXD12 BXD13  
    BXD14 BXD15 
    BXD16 BXD18
    BXD19BXD21 
    BXD22 BXD23  
    BXD24  BXD25 
    BXD27  BXD28
    BXD29  BXD31 
    BXD32BXD33 
    BXD34 BXD38   
    BXD39  BXD40  
    BXD42    BXD67 (F8)   
    BXD68 (F9)       
    + + +

         + +About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + + +

         +About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify UCSC and Verify Emsembllinks in the Trait Data and Editing Form (see buttons to the right side of the Location line). + +

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match (PM) probes and 16 mismatch controls (MM). Each set of these probe has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target) : Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + +

        About data processing:

    +
    + + +

    HWT1PM is an acronym for heritability weighted transform version 1, perfect match probes only.

    + +

    Most Affmetrix transforms generate a single consensus estimate of expression based on as many as 32 probes that hybridize with variable selectivity to the target transcript. Each probe could be given an equal weight to derive a consensus estimate of expression (essentially one vote per probe). However, the hybridization performance of probes and their ability to generate a biologically meaningful estimate of mRNA level is highly variable and idiosyncratic; depending on melting temperature, stacking energy, the mixture of background transcripts, and characteristics of reactions used to extract mRNA and to generated labeled cRNA. A simple way to evaluate the performance of probes is to compute their heritabiity within a large data set.

    + +

    Heritability is essentially the ratio of genetic variance to the total variance. A highly informative probe is one with little variability within strain but a great deal of variability among strains; essentially the main effect of "strain" in an analysis of variance (ANOVA). Heritability estimated in this way is necessary but not sufficient to define a QTL. To define a QTL, the variation must also correlate with genotypes at some genomic location(s). + +We have studied 35 strains and can therefore estimate the "between-strain variance." We have also typically performed three biological replicates within strain. Therefore, we can estimate genetic and non-genetic sources of variance. In our study we have minimized non-genetic variance by pooling samples and by rearing all mice in a standard laboratory environment. We are in a good position to estimate these two variance components and compute the heritability of the 490,000 probes on the U74Av2 array. All of these estimates, both for the perfect match (PM) and mismatch (MM) probes, are provided in the PROBE INFORMATION table associated with every transcript (click on the work "Probe" in any of the TRAIT DATA pages). + +

    Estimation of Heritability: Individual probe intensities from Affymetrix U74Av2 microarrays were log2-transformed and normalized to a standard array-wide mean of 8 units and a standard deviation of 2 units as described for several other data sets (e.g., UTHSC Brain mRNA U74Av2 (Dec03) MAS5).

    + +

    For each probe, the mean squared deviations within strains (MSw) and the mean square deviation between strains (MSb) were calculated by ANOVA. Raw heritability was estimated as (MSb-MSw)/(n x MSt), where n is the average number of replicates per strain (usually 3) and MSt is total variance in the 100 array data set. These particular raw heritability estimates are provided in the PROBE INFORMATION table for each transcript (click on the blue word "Probe" in any of the TRAIT DATA pages and then scroll to the far right column labeled 100brains h2). Note, these raw heritabilities may have negative values because they are calculated from the difference of two estimates subject to sampling error.

    + +

    Adjusted heritability was derived from raw heritability by assigning values of 0 and 1, respectively, to raw heritability values below 0.0 or above 1.0. Weights for each probe were calculated by dividing the adjusted heritability by the mean adjusted heritability for all probes in the probeset. In essence this divides the 16 total votes (there are 16 PM probes per probe set) on the basis of their heritability scores. For example. If 8 of the probes had a heritability of 0.5, 4 had a heritability of 0.25, and 4 had a heritability of 0, then these three groups would get weights of 1.6, 0.8, and 0, respectively in generating the consensus estimate of expression level. Expression estimates for each probe set were calculated as the weighted average of those probe-specific means, using the heritability weights just described. The final expression estimates for each strain were calculated as an unweighted average of all biological replicates within each strain. +

    + +

    General Comment: From a statistical point of view the 100 arrays data set we are working with has four dimensions. The first dimension is genetic, and is formed by the set of genetically distinct inbred strains (n = 35) and their genotypes. The second dimension in non-genetic and is represented by the replicate samples within each isogenic line. The third dimension is formed by the multiple probes that make up each probe set. There are up to 32 probes per probe set, but in this transform we have focused attention only on the 16 PM probes. Finally, the fourth dimension is represented by the 12422 probe sets that target different transcripts. For genetic analysis and QTL mapping, dimensions 2 and 3 must be collapsed into single estimate of mean gene expression for each strain that can be compared with genotypes (dimension 1). Heritability is determined by the relative expression variance contributed by dimensions 1 and 2. The HWT1PM method uses the information from dimensions 1 and 2 to define weights that allow dimension 3 to be collapsed using a weighted average. Dimension 2 is still collapsed using a simple average.

    +
    + + +

         + +Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    +This text file originally generated by RWW and KFM, December 2003. Updated by RWW, Oct 31, Nov 6, 2004 and by KFM Nov 8, 2004. + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_1203_M.html b/web/dbdoc/BR_U_1203_M.html new file mode 100755 index 00000000..15565a84 --- /dev/null +++ b/web/dbdoc/BR_U_1203_M.html @@ -0,0 +1,416 @@ + +U74Av2 MAS5 December03 / WebQTL + + + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    +UTHSC Brain mRNA U74Av2 (Dec03) MAS5 + modify this page

    Accession number: GN14

    + +

        Summary:

    + +

    +This December 2003 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 100 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM). +

    +
    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. +
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    + +

        How to download these data:

    +

    +All standard Affymetrix file types (DAT, CEL, RPT, CHP, TXT) can be downloaded for this data set by selecting the strain names in the table above and then selecting the appropriate file, or download the particular transform in an Excel work book with both individual arrays and strain means and SEMs. Please refer to the Usage Conditions and Limitations page and the References page for background on appropriate use and citations of these data. +

    + + + +

        About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). + +

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target) : Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. +
      +
    • Step 1: We added an offset of 1.0 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log2 of each cell signal intensity. + +
    • Step 3: We computed the Z score for each of these log2 cell signal intensity values within a single array. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added a constant of 8 units to the value of the Z score. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8 units, a variance of 4 units, and a standard deviation of 2 units. The advantage of this modified Z score is that a two-fold difference in expression level corresponds roughly to 1 unit. + +
    • Step 6: We computed the arithmetic mean of the values for the set of microarrays for each strain. We have not corrected for variance introduced by sex, age, source of animals, or any possible interaction. We have not corrected for background beyond that implemented by Affymetrix in generating the CEL file. +
    + + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 100 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    +This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004. + + +

    + + + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_1203_MR.html b/web/dbdoc/BR_U_1203_MR.html new file mode 100755 index 00000000..f1fe4419 --- /dev/null +++ b/web/dbdoc/BR_U_1203_MR.html @@ -0,0 +1,353 @@ + +U74Av2Mas5 Original December03 / WebQTL + + + + + + + + + + + + + + + + + + + +
    + + + +
    +

    U74Av2 Mas5 Original Database (December/03 Freeze) modify this page

    Accession number: GN15

    + +

        About the mice used to map microarray data:

    + +
    Original Affmetrix values without logarithm or standardization. The set of animals used for mapping (a mapping panel) consists of groups of genetically uniform mice of the BXD type. The parental strains are C57BL/6J (B6 or B) and DBA/2J (D2 or D). The first generation hybrid is labeled F1. The F1 hybrids were made by crossing B6 females to D2 males. + +All other lines are recombinant inbred strains derived from C57BL/6J and DBA/2J crosses. BXD2 through BXD32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Dr. Taylor, but they were generated in the 1990s. Lines BXD67 and BXD68 are two partially inbred advanced recombinant strains (F8 and F9) that are part of a large set of BXD-Advanced strains being produced by Drs. Robert Williams, Lu Lu, Guomin Zhou, Lee Silver, and Jeremy Peirce. There will eventually be ~45 of these strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html. +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    +

        How to download these data:

    +

    +All standard Affymetrix file types (DAT, CEL, RPT, CHP, TXT) can be downloaded for this data set by selecting the strain names in the table above and then selecting the appropriate file, or download the particualr transform in an Excel wok book with both individual arrays and strain means. Please refer to the Usage Conditions and Limitations page and the References page for background on appropriate use and citations of these data. +

    + +

        About the tissue used to generate these data:

    +

    Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 100 arrays were used: 74 were female pools and 26 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year). you can select the strain symbol in the table above to review some details about the specific cases. You can also click on the individual symbols (males or females) to view the array image. +

    + +

        About data processing:

    + +
    Probe set original data from the .CHP file: These .CHP files +were generated using the MAS 5.0.
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 (mm4) Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        About the array probe set names:

    +
    In addition to the _at (anti-sense target) and _st (sense target) probe set name designations, there are other designations that reflect special characteristics of a particular probe set based on probe design and selection crieteria. These designaions are listed below. +

    Probe set name designations

    +
  • _f_at (sequence family): Includes probes that target identical and/or slightly polymorphic regions of different transcripts.

  • +
  • _s_at (similarity constraint): Probes all target common sequences found in multiple transcripts.

  • +
  • _g_at (common groups): Some of the probes target identical sequences and some target unique sequences regions .

  • +
  • _r_at (rules dropped): "Designates sequences for which it was not possible to pick a full set of unique probes using Affymetrix' probe selection rules. Probes were picked after dropping some of the selection rules."

  • +
  • _i_at (incomplete): "Designates sequences for which there are fewer than the required numbers of unique probes specified in the design."

  • +Most of the descriptions for the probe set ID extensions above were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +
    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. +

    + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_1203_P.html b/web/dbdoc/BR_U_1203_P.html new file mode 100755 index 00000000..8cbb700b --- /dev/null +++ b/web/dbdoc/BR_U_1203_P.html @@ -0,0 +1,405 @@ + +U74Av2 PDNN December03 / WebQTL + + + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    + +UTHSC Brain mRNA U74Av2 (Dec03) PDNN + + modify this page

    Accession number: GN17

    + +

        Summary:

    + +

    +This December 2003 data freeze provides estimate of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 100 arrays. Data were processed using the PDNN method of Zhang. To simplify comparison between transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units. +

    +
    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), the B6D2 F1 intercross progeny, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. +
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    + + +

        How to download these data:

    +

    +All standard Affymetrix file types (DAT, CEL, RPT, CHP, TXT) can be downloaded for this data set by selecting the strain names in the table above and then selecting the appropriate file, or download the particular transform in an Excel work book with both individual arrays and strain means and SEMs. Please refer to the Usage Conditions and Limitations page and the References page for background on appropriate use and citations of these data. +

    + +

        About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + +

        About data processing:

    + +
    Probe set data: The expression data were transformed by Li Zhang (MD Anderson Cancer Center). The original expression values in the Affymetrix CEL files were read into PerfectMatch to generate the normalized PDNN data set.

    + +

    PDNN values of each array were subsequently normalized to a achieve a mean value of 8 units and a variance of 2 units.

    + +

    When necessary, we computed the arithmetic mean for technical replicates and treated these as single samples. We then computed the arithmetic mean for the set of 2 to 5 biological replicates for each strain. +

    +
    + + +

        About the array probe set names:

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + + + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target): Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004. +

    + + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_1203_PR.html b/web/dbdoc/BR_U_1203_PR.html new file mode 100755 index 00000000..2d488e41 --- /dev/null +++ b/web/dbdoc/BR_U_1203_PR.html @@ -0,0 +1,398 @@ + +U74Av2PDNN Original December03 / WebQTL + + + + + + + + + + + + + + + + + + + +
    + + + +
    + + +

    +UTHSC Brain mRNA U74Av2 (Dec03) PDNN Orig + + modify this page

    Accession number: GN18

    + +

        Summary:

    + +

    +This December 2003 data freeze provides estimate of mRNA expression in brains of adult BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 100 arrays. Data were processed using the PDNN method of Zhang. This PDNN file provides the original values without addtional normalization. + +

    +
    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), the B6D2 F1 intercross progeny, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. +
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    + +

        How to download these data:

    +

    +All standard Affymetrix file types (DAT, CEL, RPT, CHP, TXT) can be downloaded for this data set by selecting the strain names in the table above and then selecting the appropriate file, or download the particualr transform in an Excel wok book with both individual arrays and strain means. Please refer to the Usage Conditions and Limitations page and the References page for background on appropriate use and citations of these data. +

    +

        About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        About data processing:

    + +
    Probe set data: The expression data were transformed by Li Zhang (MD Anderson Cancer Center). The original expression values in the Affymetrix CEL files were read into PerfectMatch to generate the normalized PDNN data set.

    + +

    These PDNN values were not further normalized.

    + +

    When necessary, we computed the arithmetic mean for technical replicates and treated these as single samples. We then computed the arithmetic mean for the set of 2 to 5 biological replicates for each strain. +

    +
    + + +

        About the array probe set names:

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target): Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, December 2003. Updated by RWW, October 29, 2004. +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_1203_R.html b/web/dbdoc/BR_U_1203_R.html new file mode 100755 index 00000000..3754a930 --- /dev/null +++ b/web/dbdoc/BR_U_1203_R.html @@ -0,0 +1,385 @@ + +U74Av2RMA December03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + + +

    UTHSC Brain mRNA U74Av2 (Dec03) RMA + + modify this page

    Accession number: GN20

    + + + +

        Summary:

    + +

    +This December 2003 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 100 arrays. Data were processed using the RMA protocol and are presented with secondary normalization to an average expression value of 8 units. The variance of each array has been stabilized to 2 units for easy comparison to other transforms (see below). +

    +
    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current data set (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    + + +

        About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        About data processing:

    + +

    +Probe set data: The expression data were processed by Bing Zhang (Oak Ridge National Laboratory) and Yanhua Qu (UTHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL are the averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples.

    + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized variance of 2 units within each array). Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets. +

    + +

        About the array probe set names:

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target) : Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, March 2004. Updated by RWW, October 30, 2004. +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BR_U_1203_RR.html b/web/dbdoc/BR_U_1203_RR.html new file mode 100755 index 00000000..e0f57d57 --- /dev/null +++ b/web/dbdoc/BR_U_1203_RR.html @@ -0,0 +1,386 @@ + +U74Av2RMA December03 / WebQTL + + + + + + + + + + + + + + + + + + + +
    + + + +
    + + + +

    UTHSC Brain mRNA U74Av2 (Dec03) RMA + modify this page

    Accession number: GN21

    + + + +

        Summary:

    + +

    +This December 2003 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 100 arrays. Data were processed using the RMA protocol with subsequent normalization to a mean signal intensity of 8. +

    +
    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current data set (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    + + +

        About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        About data processing:

    + +

    +Probe set data: The expression data were processed by Bing Zhang (Oak Ridge National Laboratory) and Yanhua Qu (UTHSC). The original CEL files produced by the Affymetrix analysis software were read into the R environment (Ihaka and Gentleman 1996). Data were normalized using the Robust Multichip Average (RMA) method of background correction, quantile normalization, and summarization of cell signal intensity (Irrizary et al. 2003). Probe set intensities were log2 transformed. Probe set data are averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples. This data set does not include further normalization ("RMA Orig" as in original). Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets. +

    + + +

        About the array probe set names:

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target): Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, March 2004. Updated by RWW, October 30, 2004. +

    + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/BXD300Publish.html b/web/dbdoc/BXD300Publish.html new file mode 100755 index 00000000..d1175074 --- /dev/null +++ b/web/dbdoc/BXD300Publish.html @@ -0,0 +1,74 @@ + +BXD300 Publish / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    BXD300(?extended) Published Database + + modify this page

    + + + +

        Summary:

    + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BXDGeno.html b/web/dbdoc/BXDGeno.html new file mode 100755 index 00000000..71260e82 --- /dev/null +++ b/web/dbdoc/BXDGeno.html @@ -0,0 +1,252 @@ + +BXD Genotype / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    BXD Genotypes Database + + modify this page

    + + +

        Coming Soon:

    +
    +The BXD genotype file is being upgraded in 2010-2011 using the new high density Affymetrix array developed in the laboratories of Drs. Fernando Pardo-Manuel de Villena (University of North Carolina) and Gary Churchill (The Jackson Laboratory). This cutting-edge research tool, produced by Affymetrix, provides more than 100 times the SNP coverage than any other available mouse genotyping platform, permitting high resolution mapping and genomic analysis. (580,000 high quality SNPs of 623,124 SNPs and 916,269 invariant probes. + +

    Yang H, Ding Y, Hutchins LN, Szatkiewicz J, Bell TA, Paigen BJ, Graber JH, Pardo-Manuel de Villena, F, Churchill GA (2009) A customized and verstatile high density genotyping array for the mouse. Nat Methods 6:663-666 + + + +

    JAX® Mouse Diversity Genotyping Array + +

    New genotype array key features. This genotyping array can simultaneously assay over 620,000 phylogenetically informative SNPs. SNPs are spaced approximately one every 4.3kb across the genome and were selected to be highly polymorphic among characterized mouse strains. Genotypes called from analysis of the array data are highly reliable. From an internal study of two strains, genotypes from 99.7% of the polymorphic SNPs that had genotypes in the NCBI dbSNP database had matching genotypes from the Diversity Array. + + +

    + + + + +

        Synposis:

    + + +
    +The BXD genotype file used from June 2005 through 2011 exploits a set of 3796 markers typed across 88 extant and extinct BXD strains (BXD1 through BXD100). The mean interval between informative markers is about 0.7 Mb. This genotype file includes all markers, both SNPs and microsatellites, with unique strain distribution patterns (SDPs), as well as pairs of markers for those SDPs represented by two or more markers. In those situations where three or more markers had the same SDP, we retained only the most proximal and distal marker in the genotype file. This particular file has also been smoothed to eliminate genotypes that are likely to be erroneous. We have also conservatively imputed a small number of missing genotypes (usually over very short intervals). Smoothing genotypes is this way reduces the total number of SDPs and also lowers the rate of false discovery. However, this procedure also may eliminate some genuine SDPs. + +

    The smoothed BXD genotype data file can be downloaded from + +
    GeneNetwork at the URL http://www.genenetwork.org/genotypes/BXD.geno.
    + +

    Please Note: For a limited number of markers and strains, the genotypes of BXDs have been called heterozygous. This is usually done over comparatively short intervals in some of the newer strains that may not have been fully inbred when they were initially genotyped. Use of the genotype file above in external software packages such as R/QTL, requires careful treatment of this issue to prevent bias in empirical significance thresholds. It is recommended to treat these rare heterozygous loci as missing data and ensure that only the additive effects of B vs. D alleles are estimated by these packages. (note from Elissa Chesler, Dec 2010). + + +

    + + + +

        Source of Genotypes:

    + +
    +

    In collaboration with members of the CTC (Richard Mott, Jonathan Flint, and colleagues), we have helped genotype a total of 480 strains using a panel of 13,377 SNPs. These SNPs have been combined with our previious microsatellite genotypes to produce new consensus maps for the new expanded set of BXD using the latest mouse genome assembly as a reference frame for marker order (Mouse Build 36 - UCSC mm8). The order of markers given in the BXD genotype file is essentially the same as that given in Build 36. (Files were updated from mm6 to mm8 in January 2007.). + +

    A total of 88 strains were genotyped using the full set of SNPs, and 7482 of these were informative. Informative in this sense simply means that the C57BL/6J and DBA/2J parental strains have different alleles. To reduce false positive errors when mapping using this ultra dense map, we have eliminated most single genotypes that generate double-recombinant haplotypes that are most commonly produced by typing errors ("smoothed" genotypes). For this reason, the genotypes used in the GeneNetwork differ from those downloaded directly from Richard Mott's web site at the Wellcome Trust, Oxford. + +

    +We have genotyped all available BXD strains from The Jackson Laboratory. BXD1 through BXD32 were produced by Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were produced by Taylor in the 1990s (Taylor et al., 1999). All BXD strains with numbers higher than BXD42 (BXD43 through BXD100) were generated by Lu Lu and Robert Williams at UTHSC, and by Jeremy Peirce and Lee Silver at Princeton University. We thank Guomin Zhou for generating the advanced intercross stock used to produce most of these advanced RI strains both at UTHSC and Princeton. + + + +There are approximately 48 of these advanced BXD strains, each of which archives approximately twice the recombinations present in a typical F2-derived recombinant inbred strain (Peirce et al. 2003). +

    + + + +

        Mapping Algorithm:

    + +
    +

    Due to the very high density of markers, the mapping algorithm used to map BXD data sets has been modified and is a mixture of simple marker regression, linear interpolation, and standard Haley-Knott interval mapping. When two adjacent markers have identical SDPs, they will have identical linkage statistics, as will the entire interval between these two markers (assuming complete and error-free haplotype data for all strains). On a physical map the LRS and the additive effect values will therefore be constant over this physical interval. Between neighboring markers that have different SDPs and that are separated by 1 cM or more, we use a conventional interval mapping method (Haley-Knott) combined with a Haldane estimate of genetic distance. When the interval is less than 1 cM, we simply interpolate linearly between markers based on a physical scale between those markers. The result of this mixture mapping algorithm is a linkage map of a trait that has an unusal profile that is particular striking on a physical (Mb) scale, with many plateaus, abrupt linear transitions between plateaus, and a few regions with the standard graceful curves typical of interval maps.

    +
    + + +

        Archival Genotypes:

    + +
    +Archival BXD Genotype file: Prior to July 2005, the marker genotypes used to map all BXD data sets consisted of a set of 779 markers described by Williams and colleagues (2001) that also included a small number of additional SNPs from Tim Wiltshire and Mathew Pletcher (GNF, La Jolla), new microsatellite markers generated by Grant Morahan and Jing Gu (Msw type markers), and a few CTC markers by Jing Gu. This old marker data set was made obsolete by the ultra high density Illumina SNP genotype data generated Spring, 2005. The old genotype file is still available for use on the Archive site. +
    + + +

        Download Genotypes:

    +
    +The entire BXD genotype data set used for mapping traits can be downloaded at www.genenetwork.org/genotypes/BXD.geno.

    +
    + + + + + + + + + + + + + +

        Acknowledgments:

    + +
    +The great majority of SNP genotypes were generated at Illumina with support from the Wellcome Trust to JF and RM, a Human Brain Project grant to RWW (P20-MH 62009 and IBN-0003982), and by the NIAAA INIA Genotyping Core (U24AA13513). Genotypes for Mit and Msw markers were generated by Jing Gu and Lu Lu with support from NIH (P20-MH 62009). Markers for the Msw set were designed by Grant Morahan, Keith Satterley. Gnf SNP genotypes were generated by Tim Wiltshire and Mathew Pletcher. The selection of markers to included in the final file was carried out by Jing Gu and Robert W. Williams. +
    + + +

        Reference:

    + +
    +

    Dietrich WF, Katz H, Lincoln SE (1992) A genetic map of the mouse suitable for typing in intraspecific crosses. Genetics 131:423-447. +

    + +

    +Taylor BA, Wnek C, Kotlus BS, Roemer N, MacTaggart T, Phillips SJ (1999) Genotyping new BXD recombinant inbred mouse strains and comparison of BXD and consensus maps. +Mamm Genome 10:335-348. +

    + +

    +Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant inbred mice: High-resolution consensus maps for complex trait analysis. Genome Biology 2:RESEARCH0046 +

    + +

    +Wiltshire T, Pletcher MT, Batalov S, Barnes SW, Tarantino LM, Cooke MP, Wu H, Smylie K, Santrosyan A, Copeland NG, Jenkins NA, Kalush F, Mural RJ, Glynne RJ, Kay SA, Adams MD, Fletcher CF (2003) Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc Natl Acad Sci USA 100:3380-3385. +

    + +
    +

    This text file was originally written by Jeremy Peirce (August 21, 2003). Updated August 22, 2003 by RW/JP/LL. Updated October 19, 2004 by RW. Updated extensively July 26, 2005 by RW. +

    + + + +

    +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BXDMicroArray_template.html b/web/dbdoc/BXDMicroArray_template.html new file mode 100755 index 00000000..c8bf4488 --- /dev/null +++ b/web/dbdoc/BXDMicroArray_template.html @@ -0,0 +1,384 @@ + +BXD Microarray August03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    BXD Brain mRNA U74Av2 Database (August/03 Freeze) modify this page

    + +

        About the mice used to map microarray data:

    + +
    The set of animals used for mapping (a mapping panel) consists of 30 groups of genetically uniform mice of the BXD type. The parental strains are C57BL/6J (B6 or B) and DBA/2J (D2 or D). The first generation hybrid is labeled F1. The F1 hybrids were made by crossing B6 females to D2 males. + + All other lines are recombinant inbred strains derived from C57BL/6J and DBA/2J crosses. BXD2 through BXD32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Dr. Taylor, but they were generated in the 1990s. Lines BXDA12 and BXDA20 are two partially inbred advanced recombinant strains (F8 and F9) that are part of a large set of BXD-Advanced strains being produced by Drs. Robert Williams, Lu Lu, Guomin Zhou, Lee Silver, and Jeremy Peirce. There will eventually be ~45 of these strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html. +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    + Age +
    +
    Strain + +
    + Age +
    +
    +
    + 8 Wks +
    +
    +
    + 20 Wks +
    +
    +
    + 52 Wks +
    +
    +
    + 8 Wks +
    +
    +
    + 20 Wks +
    +
    +
    + 52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2) 
    B6D2F1 (F1) BXD1 
    BXD2BXD5  
    BXD6  BXD8 
    BXD9BXD11 
    BXD12 BXD13  
    BXD14 BXD15 
    BXD16 BXD18
    BXD19BXD21 
    BXD22 BXD23  
    BXD24  BXD25 
    BXD27  BXD28
    BXD29  BXD31 
    BXD32BXD33 
    BXD34 BXD38   
    BXD39  BXD40  
    BXD42    BXDA12   
    BXDA20       
    +

        About the tissue used to generate these data:

    +

    Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 83 arrays were used: 67 were female pools and 16 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year). +

    + +

        About data processing:

    + +
    Probe (cell) level data from the .CEL file: These .CEL values produced by MAS 5.0 are the 75% quantiles from a set of 36 pixel values per cell (the pixel with the 12th highest value represents the whole cell). +
      +
    • Step 1: We added an offset of 1.0 to the .CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z-score for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z-scores. The consequence of this simple set of transformations is to produce a set of Z-scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z-score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We computed the arithmetic mean of the values for the set of microarrays for each of the individual strains. We have not (yet) corrected for variance introduced by sex, age, or a sex-by-age interaction. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the .CEL file. +
    +Probe set data from the .TXT file: These .TXT files were generated using the MAS 5.0. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Feb 2002 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank John Hogenesch (GNF) and Rob Edwards (UTHSC) for help in extracting and generating these position data.
    + +

        Resolving Gene Identify and Position Problems:

    + +
    Users should confirm the identity and positions of probe sets. Probe sets that are intended to target transcripts from a single gene occasionally map to different chromosomes; for example, two probe sets supposedly target the thyroid hormone alpha receptor (Thra): probe sets 99076_at and 99077_at map to Chr 14 at 13.556 Mb and Chr 11 at 99.537 Mb, respectively. One of these must be wrong and since Thra maps to Chr 11 rather than Chr 14, it is likely that 99076_at is mismapped or mislabeled as Thra. To determine which problem is more likely, please re-BLAT the perfect match probe sequence. This is usually quite simple. Just paste all of the perfect match probes into a single BLAT query. For example, to test probe set 99076, paste this sequence into the BLAT query window:
    + +
    +GTTAG ACTTT TTCAT CTGCC AAGTC TTTAG TAAGT GACCT 
    +ACCTA CAGGG TGACC TACCT ACAGG CTTAG AGATT ACCTA
    +CAGGC TTAGA GATCA TGGTA AGATT CATGA ACAAC ACCCC
    +GTGCA GATTC ATGAA CAACA CCCCG TGCCG TAACG ACATT
    +AAGAA CCTGC TTTAT AACTT GTTGC TACAG GATTT GAACC
    +AGGAT TTGAA CTTCT GTGGT ACAGA CTTCT GTGGT ACAGT
    +TAGGA GAGCC TTCTG TGGTA CAGTT AGGAG AGCTG GTGTG
    +TCTGT CATTC AGTAG GGACC TGTCA TTCAG TAGGG ACCAT
    +AACTC TGTCA TTCAG TAGGG ACCAT AACTA TTCAG TAGGG
    +ACCAT AACTG CTGCG CTTAC GTTCA GTGGG TATGG CTTTG
    +TGAAT TCTTT ACATG ATAGC ATTC
    + +
    (NOTE: BLAT is insensitive to sequence overlap and extra spaces. The sequence above is a concatenation of all PM probes without any concern for probe overlap. The Perfect Match sequences are available on WebQTL by selecting the link� on� the Trait Data and Editing window).
    + +
    This will return this BLAT Search Results

    + +
    + +
    This confirms that the probe set maps to Chr 14 (a score of 219 is good). However if you click on the browser link in the BLAT Search Results window you will see that the gene that these probes target is actually BC008556 (a nuclear receptor subfamily 1, group D, member 2 gene), not Thra. The Chr 19 hit with a score of 171 can be discounted since it does not correspond to a known transcript.
    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. +

    + +

        Reference:

    +

    Williams RW, Shou S, Lu L, Qu Y, Manly KF, Wang J, Chesler E, Hsu HC, Mountz J, Threadgill DW (2002) Massively parallel QTL mapping of microarray data reveals mouse forebrain transcriptional networks. Soc. Neurosci Abst. +

    +

    Williams RW, Manly KF, Shou S, Chesler E, Hsu HC, Mountz J, Wang J, Threadgill DW, Lu L (2002) Massively parallel complex trait analysis of transcriptional activity in mouse brain. International Mouse Genome Conference 16: 46 +

    +

    +Manly KF, Wang J, Shou S. Qu Y, Chesler E, Lu L, Hsu HC, Mountz JD, Threadgill D, Williams RW (2002) QTL mapping with microarray expression data. International Mouse Genome Conference 16: 88. +

    +

    Wang J, Williams RW, Manly KF (2003) WebQTL: Web-based complex trait analysis. Neuroinformatics 1: 299-308.. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BXDPublish.html b/web/dbdoc/BXDPublish.html new file mode 100755 index 00000000..6918ee7f --- /dev/null +++ b/web/dbdoc/BXDPublish.html @@ -0,0 +1,104 @@ + +Publish Phenotype / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    BXD Published Phenotypes Database modify this page

    + + +

        Summary:

    +

    +The BXDs are a large and well characterized set of strains for which a remarkable variety of phenotype data has already been acquired. Both parental strains, C57BL/6J and DBA/2J, have been almost fully sequenced. + +

    + + +

        About the subjects

    +

    +The BXD recombinant inbred strains were derived from crosses between C57BL/6J (B6 or B) and DBA/2J (D2 or D). BXD1 through BXD32 were produced by Benjamin Taylor starting in the late 1970s at The Jackson Laboratory. BXD33 through BXD42 were also produced by Taylor, but they were generated in the 1990s. Strains BXD43 and BXD99 are a new set of advanced recombinant strains produced by Robert W. Williams, Lu Lu, Lee Silver, and Jeremy Peirce in the late 1990s and early 2000s (Peirce et al. 2004). +

    +

    The first generation hybrid is labeled F1. The F1 hybrids were made by crossing B6 females to D2 males. +

    +

    +Each study uses mice either purchased directly from vendors or bred in house. For additional details about a particular study, PubMed links from each record point to the original abstract and papers where available on-line. +

    + + +

        About the acquisition these data:

    +

    Published phenotypes were obtained through a search of all PubMed indexed journals. Whenever possible, exact values of graphically represented data were obtained from the authors. In other cases graphs were measured using calipers. Additional published and unpublished phenotypes were submitted directly from investigators. +

    The entire BXD phenotypes FilemakerPro database may be searched online at http://www.nervenet.org. +

    + + +

        Submitting data and Reporting +Errors:

    +

    To submit data or report errata, contact Dr. Robert W. Williams via email to rwilliam@uthsc.edu.

    + + +

        Acknowledgments:

    +

    Drs. John C. Crabbe and John K. Belknap have greatly assisted us in the curation of many alcohol and drug related phenotypes collected at Oregon Health Sciences Center. The initial construction of this database was performed by Ryan McNieve and Nathan Copeland at University of Tennessee Health Sciences Center.

    + +

        About this file:

    +

    The file started, Oct 31, 2004 by RWW. Last update by RWW, Dec 9, 2009.

    + + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BXD_GLA_0911.html b/web/dbdoc/BXD_GLA_0911.html new file mode 100755 index 00000000..6b272bf8 --- /dev/null +++ b/web/dbdoc/BXD_GLA_0911.html @@ -0,0 +1,263 @@ + + + +BXD Glaucoma Affy M430 2.0 Trial (Sep11) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    BXD Glaucoma Affy M430 2.0 Trial (Sep11) RMA **modify this page

    + + Accession number: GN360

    +

    + This is an experimental glaucoma gene expression data set of retinal tissue entered into GeneNetwork by Dr. Eldon Geisert and Robert Williams in which BXD strains have been "highjacked" with experimental and control expression data generated by Dr. Simon John at the Jackson Laboratory. These data were entered into GeneNetwork Sept 20, 2011. Each strain corresponds to a particular retinal sample as shown below: + +
      +
    1. BXD1 D2-Gpnmb+ control rep1 (retina) +
    2. BXD2 D2-Gpnmb+ control rep2 (retina) +
    3. BXD5 D2-Gpnmb+ control rep3 (retina) +
    4. BXD6 D2-Gpnmb+ control rep4 (retina) +
    5. BXD8 D2-Gpnmb+ control rep5 (retina) +
    6. BXD9 D2-Gpnmb+ control rep6 (retina) +
    7. BXD11 D2-Gpnmb+ control rep7 (retina) +
    8. BXD12 D2-Gpnmb+ control rep8 (retina) +
    9. BXD13 D2-Gpnmb+ control rep9 (retina) +
    10. BXD14 D2-Gpnmb+ control rep10 (retina) +
    11. BXD15 No or early 1 rep1 (retina) +
    12. BXD16 No or early 1 rep2 (retina) +
    13. BXD18 No or early 1 rep3 (retina) +
    14. BXD19 No or early 1 rep4 (retina) +
    15. BXD20 No or early 1 rep5 (retina) +
    16. BXD22 No or early 1 rep6 (retina) +
    17. BXD23 No or early 1 rep7 (retina) +
    18. BXD25 No or early 1 rep8 (retina) +
    19. BXD27 No or early 1 rep9 (retina) +
    20. BXD28 No or early 1 rep10 (retina) +
    21. BXD29 No or early 2 rep1 (retina) +
    22. BXD30 No or early 2 rep2 (retina) +
    23. BXD31 No or early 2 rep3 (retina) +
    24. BXD32 No or early 2 rep4 (retina) +
    25. BXD33 No or early 2 rep5 (retina) +
    26. BXD34 No or early 2 rep6 (retina) +
    27. BXD35 No or early 2 rep7 (retina) +
    28. BXD36 No or early 2 rep8 (retina) +
    29. BXD37 No or early 2 rep9 (retina) +
    30. BXD38 No or early 2 rep10 (retina) +
    31. BXD39 Moderate rep1 (retina) +
    32. BXD40 Moderate rep2 (retina) +
    33. BXD41 Moderate rep3 (retina) +
    34. BXD42 Moderate rep4 (retina) +
    35. BXD43 Moderate rep7 (retina) +
    36. BXD44 Moderate rep8 (retina) +
    37. BXD45 Moderate rep9 (retina) +
    38. BXD48 Moderate rep10 (retina) +
    39. BXD49 Severe rep1 (retina) +
    40. BXD50 Severe rep2 (retina) +
    41. BXD51 Severe rep3 (retina) +
    42. BXD52 Severe rep4 (retina) +
    43. BXD53 Severe rep5 (retina) +
    44. BXD54 Severe rep6 (retina) +
    45. BXD55 Severe rep7 (retina) +
    46. BXD56 Severe rep8 (retina) +
    47. BXD59 Severe rep9 (retina) +
    48. BXD60 Severe rep10 (retina) + +
    + +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/BXHGeno.html b/web/dbdoc/BXHGeno.html new file mode 100755 index 00000000..497616b2 --- /dev/null +++ b/web/dbdoc/BXHGeno.html @@ -0,0 +1,129 @@ + +BXH Genotype / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    BXH Genotypes Database (Dec 2001) + + modify this page

    + + +

        Summary:

    + +

    +This BXH genotype data set is taken directly from Williams and colleagues (2001) without modification. +

    +
    + + + +

        About the genotypes used in these studies:

    + +
    The BXH genotype data set consists of 472 MIT CA-repeat dinucleotide microsatellite markers that were typed at UTHSC from 1998 through 2000. The file is taken directly from Williams and colleagues (2001) without any significant modification in genotypes. This order of markers has been updated to conform with the March 2005 assembly of the mouse genome (Build 34 or UCSC mm6). The entire BXH genotypes data set may be downloaded. +
    + + +

        About the marker sets:

    + +
    Mit
    + +Mit markers, described by William Dietrich and colleagues (1992), are the most widely used of the three marker sets. These markers typically consist of regions of repeated dinucleotides (so-called CA repeat microsatellites) that vary in length among strains. The CA repeat polymorphisms are flanked by unique sequence that can be used to design polymerase chain reaction (PCR) primers that will selectively amplify the intervening variable region. While many of the Mit markers have been typed in the BXD strain set by a number of investigators, the genotypes used here are those reported in the consensus map created by Williams and colleagues (2001). + +
    +
    Mit marker names: D + (Chr of Marker) + Mit + (Order Found)
      +
    • D indicates that the marker is a DNA segment. +
    • Mit indicates that the marker was identified at the Massachusetts Institute of Technology. +
    • Order Found indicates the order in which the markers were identified.
    +
    + +
    Gnf +
    Gnf markers are single nucleotide polymorphisms (SNPs) identified between B6 and D2 by genomic sequence sampling. Polymorphisms were typed by Mathew Pletcher and Tim Wiltshire using the Sequenom MassEXTEND system (Wiltshire et al., 2003) For BXD8 as well as BXD67 and BXD68, genotypes were ofteninferred from flanking markers. Each of the genotyping reactions was set up in duplicate. Physical positions were determined for each marker and integrated with previous BXD RI mapping data based on a combination of physical and genetic positions. Unsupported double crossovers were verified by manual inspection to ensure accuracy of calls. A full list of SNPs identified in the sequence sampling can be found at http://www.gnf.org/SNP. +
    +
    Gnf marker names: S + (Chr of Marker) + Gnf + (Mb position)
      +
    • S indicates the marker is a SNP +
    • Gnf indicates that the marker originated at the Genomics Institute of the Novartis Research Foundation. +
    • Mb position may include decimal values.
    +
    + +
    Msw + +
    Msw markers are variable length tracts of nucleotide repeats designed and tested by Grant Morahan, Keith Satterley, Robert W. Williams, and Jing Gu. In contrast to the variable CA repeats of Mit markers, the Msw markers exploit polymorphisms in tri- tetra-, penta-, and hexa-nucleotide repeats. Msw markers were typed by Shuhua Qi and Jing Gu at UTHSC using previously described methods (Williams et al. 2001). Genotypes for BXD67 and BXD68 were often inferred from flanking markers. Physical positions were determined for each marker by BLAT analysis of the microsatellite sequence against the most recent assembly of the mouse genome (currently mm5 of May 2004) and integrated with previous BXD RI mapping data based on a combination of physical and genetic positions. +
    + +
    Msw marker names: D + (Chr of Marker) + Msw + (Mb Position)
      +
    • D indicates that the marker is a DNA segment Msw indicates the marker source. +
    • Mb Position is marker position to the nearest megabase. +
    • Mb position may include decimal values and, in rare cases, a letter suffix (a or b) if alternative primers were used to amplify the same repeat. +
    + + +

        Acknowledgments:

    +
    +Genotypes for the Mit and Msw marker sets were determined by Jing Gu. +
    + +

        Reference:

    +

    +Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant inbred mice: High-resolution consensus maps for complex trait analysis. Genome Biology 2:RESEARCH0046 +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BXHPublish.html b/web/dbdoc/BXHPublish.html new file mode 100755 index 00000000..c263b2a1 --- /dev/null +++ b/web/dbdoc/BXHPublish.html @@ -0,0 +1,117 @@ + +Publish Phenotype / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    + +BXH Published Phenotypes Database + + modify this page

    + +

        Summary:

    + +

    +This BXH Phenotype Database includes published trait data for up to 20 recombinant inbred strains. Data were collected and curated at the University of Tennessee Health Science Center (UTHSC) starting in 2000.

    +
    + + +

        About the cases used in these studies:

    + +

    +The BXH set were made by crossing female C57BL/6J (B6 or B) with male C3H/HeJ (C3) mice. Benjamin Taylor created the initial 12 BXH recombinant inbred strains at The Jackson Laboratory in 1969. A second set of eight BXH strains were initiated by Linda Siracusa at the Kimmel Cancer Center in 1995. She selected for tyrosinase-negative albinos and her strains should not be used to map on Chr 7. Four of these new BXH strains are now also available from The Jackson Laboratory. The following are the old and new symbols for the four recent additions: + +

      +
    • BXHA1/Sr = BXG20/Kcc +
    • BXHA2/Sr = BXH21/Kcc +
    • BXHB2/Sr = BXH22/Kcc +
    • BXHE1/Sr = B6cC3-1/Kcc (backcrossed to B6 and a recombinant congenic) +
    +
    + +

        About data acquisition:

    + +

    Published phenotypes were obtained through a literature search of PubMed-indexed journals. When possible, exact values of graphically represented data were obtained from the authors. In other cases graphs were measured using a vernier caliper. Some published and unpublished phenotypes were submitted directly by investigators. Unpublisehd phenotypes usually have Record ID numbers less than 1.

    + +

    Each study has used mice purchased from The Jackson Laboratory or bred in-house. When available, PubMed links connect to abstracts and papers.

    + +

    A BXH phenotypes Filemaker Pro database (current through to September 2004) can be searched online at http://www.nervenet.org/main/databases.html.

    + +

    How to obtain these strains: Please see http://jaxmice.jax.org/list/cat481378.html. +

    + +
    + + +

        Submitting data and reporting +mistakes:

    + +

    The utility of this data set increases multiplicatively as each new phenotype is added. To submit data or report mistakes, please contact Elissa J. Chesler and Robert W. Williams at the University of Tennessee Health Science Center.

    + + +

        Acknowledgments:

    +

    The initial construction of this database was performed by Ryan McNeive, Nathan Copeland and Mary-Kathleen Sullivan at University of Tennessee Health Sciences Center.

    + +

        Information about this text file:

    +

    This text file originally generated by EJC, March 2004. Updated by RWW, October 30, 2004. +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BXSGeno.html b/web/dbdoc/BXSGeno.html new file mode 100755 index 00000000..dd9ea76f --- /dev/null +++ b/web/dbdoc/BXSGeno.html @@ -0,0 +1,173 @@ + +BXD Genotype / WebQTL + + + + + + + + + + + + + +
    + + + +
    + +

    BXD Genotypes Database (August 2003) + + modify this page

    + + +

        Summary:

    + +

    +This BXD genotype data set is currently used to map all BXD phenotypes, including over 600 phenotypes in the Published Phenotypes database and all BXD array data sets. This genotype file is a superset of that described by Williams and colleagues (2001) and includes some new SNPs from Tim Wiltshire and Mathew Pletcher, new microsatellite markers generated by Grant Morahan and Jing Gu (Msw), and a few CTC markers by Jing Gu. +

    +
    + + + +

        About the genotypes used in these studies:

    + +
    WebQTL mapping algorithms rely on genotypes for the BXD strains that include both microsatellite markers (labeled Mit and Msw) and single nucleotide polymorphisms (labeled Gnf). The current set of markers (n = 779) have been carefully error-checked. Closely linked genetic markers often have the same strain distribution pattern (SDP) across the BXD strains. For computational efficiency, we only use a single marker associated with each SDP. +
    + +
    We have genotyped all available BXD strains from The Jackson Laboratory. BXD1 through BXD32 were produced by Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were produced by Taylor in the 1990s (Taylor et al., 1999). All BXD strains with numbers higher than BXD42 were generated by Lu Lu and Robert Williams at UTHSC and by Jeremy Peirce and Lee Silver at Princeton University. We thanks Guomin Zhou for generating the advanced intercross stock used to produce most of these advanced RI strains. There are approximately 48 of these advanced BXD strains, each of which archives approximately twice the recombinations present in typical F2-derived RI strains (Peirce et al. 2003). +
    + +
    Marker-strain pairs for which we were missing genotypes were often inferred from flanking markers. In marker sets lacking genotypes for a particular strain, a note is included to that effect in the marker set description below. +
    + + +

        About the marker sets:

    + +
    Mit
    + +Mit markers, described by William Dietrich and colleagues (1992), are the most widely used of the three marker sets. These markers typically consist of regions of repeated dinucleotides (so-called CA repeat microsatellites) that vary in length among strains. The CA repeat polymorphisms are flanked by unique sequence that can be used to design polymerase chain reaction (PCR) primers that will selectively amplify the intervening variable region. While many of the Mit markers have been typed in the BXD strain set by a number of investigators, the genotypes used here are those reported in the consensus map created by Williams and colleagues (2001). + +
    +
    Mit marker names: D + (Chr of Marker) + Mit + (Order Found)
      +
    • D indicates that the marker is a DNA segment. +
    • Mit indicates that the marker was identified at the Massachusetts Institute of Technology. +
    • Order Found indicates the order in which the markers were identified.
    +
    + +
    Gnf +
    Gnf markers are single nucleotide polymorphisms (SNPs) identified between B6 and D2 by genomic sequence sampling. Polymorphisms were typed by Mathew Pletcher and Tim Wiltshire using the Sequenom MassEXTEND system (Wiltshire et al., 2003) For BXD8 as well as BXD67 and BXD68, genotypes were ofteninferred from flanking markers. Each of the genotyping reactions was set up in duplicate. Physical positions were determined for each marker and integrated with previous BXD RI mapping data based on a combination of physical and genetic positions. Unsupported double crossovers were verified by manual inspection to ensure accuracy of calls. A full list of SNPs identified in the sequence sampling can be found at http://www.gnf.org/SNP. +
    +
    Gnf marker names: S + (Chr of Marker) + Gnf + (Mb position)
      +
    • S indicates the marker is a SNP +
    • Gnf indicates that the marker originated at the Genomics Institute of the Novartis Research Foundation. +
    • Mb position may include decimal values.
    +
    + +
    Msw + +
    Msw markers are variable length tracts of nucleotide repeats designed and tested by Grant Morahan, Keith Satterley, Robert W. Williams, and Jing Gu. In contrast to the variable CA repeats of Mit markers, the Msw markers exploit polymorphisms in tri- tetra-, penta-, and hexa-nucleotide repeats. Msw markers were typed by Shuhua Qi and Jing Gu at UTHSC using previously described methods (Williams et al. 2001). Genotypes for BXD67 and BXD68 were often inferred from flanking markers. Physical positions were determined for each marker by BLAT analysis of the microsatellite sequence against the most recent assembly of the mouse genome (currently mm5 of May 2004) and integrated with previous BXD RI mapping data based on a combination of physical and genetic positions. +
    + +
    Msw marker names: D + (Chr of Marker) + Msw + (Mb Position)
      +
    • D indicates that the marker is a DNA segment Msw indicates the marker source. +
    • Mb Position is marker position to the nearest megabase. +
    • Mb position may include decimal values and, in rare cases, a letter suffix (a or b) if alternative primers were used to amplify the same repeat. +
    + + +

        Acknowledgments:

    +
    +Genotypes for the Mit and Msw marker sets were determined by Jing Gu and + +Lu Lu. Markers for the Msw set were designed by Grant Morahan, Keith + +Satterley. Gnf SNP genotypes were generated by Tim + +Wiltshire and Mathew Pletcher. The selection of markers to included in the final file was carried out + +by Jing Gu. + +This text file was originally written by Jeremy Peirce (August 21, + +2003). Updated August 22, 2003 by RW/JP/LL. Updated October 19, 2004 by RW. + + +
    + +

        Reference:

    +

    Dietrich WF, Katz H, Lincoln SE (1992) A genetic map of the mouse suitable for typing in intraspecific crosses. Genetics 131:423-447. +

    + + +

    + + +Taylor BA, Wnek C, Kotlus BS, Roemer N, MacTaggart T, Phillips SJ (1999) Genotyping new BXD recombinant inbred mouse strains and comparison of BXD and consensus maps. +Mamm Genome 10:335-348. +

    + +

    +Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant inbred mice: High-resolution consensus maps for complex trait analysis. Genome Biology 2:RESEARCH0046 +

    + +

    + +Wiltshire T, Pletcher MT, Batalov S, Barnes SW, Tarantino LM, Cooke MP, Wu H, Smylie K, Santrosyan A, Copeland NG, Jenkins NA, Kalush F, Mural RJ, Glynne RJ, Kay SA, Adams MD, Fletcher CF (2003) Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc Natl Acad Sci USA 100:3380-3385. +

    +
    + + +
    + +

    +

    + +
    +

    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BXSPublish.html b/web/dbdoc/BXSPublish.html new file mode 100755 index 00000000..53cc37a2 --- /dev/null +++ b/web/dbdoc/BXSPublish.html @@ -0,0 +1,108 @@ + +Publish Phenotype / WebQTL + + + + + + + + + + + + + +
    + + + +
    +

    Arabidopsis Bay-0 x Shahdara RIL Published Phenotypes Database modify this page

    + + +

        Summary:

    +

    +The Bay-0 x Shahdara genetic reference population of 420 recombinant inbred lines (RIL) was created by Olivier Loudet and Sylvain Chaillou between 1997 and 2000 at the INRA in Versailles, France. It is currently one of the largest publically available Arabidopsis RIL sets. + +

    + + +

        About the subjects:

    +

    +The original set of RILs were derived from a cross between Bay-0 (accession N954) and Shahdara (accession N929); two accessions obtained from the NASC European Arabidopsis Stock Centre. Bay-0 and Shahdara were chosen because of their well characterized genetic, geographical, and ecological differences. Lines were propagated by single seed descent through the sixth generation (F6) without selection. One plant per line was then used for genotyping (420 RILs x 38 markers) and selfed to obtain F7 seeds. F8 seed stock generated by bulk multiplication of F7 plants are available for analysis for 411 of these RILs. WebQTL includes data for as many as 415 Bay-0 x Shahdara accessions and the two parental stock. +

    +
    + +

        About the acquisition these data:

    +

    The current phenotype database contains 14 published traits for Loudet et al. (2002), as well as one experimental phenotype data set (Loudet and colleagues, personal communication, April 2005). Please site the following publication when using these Bay-0 x Shahdara data: +

    + +
    +Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F (2002) Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theoretical and Applied Genetics 104:1173-1184 (pdf) +
    + + +

        Submitting data and reporting errors:

    +

    To submit additional data sets please contact either Olivier Loudet at loudet@versailles.inra.fr or Rob Williams at rwilliam@nb.utmem.edu.

    + + +

        Acknowledgments:

    +

    Supported by the INRA program in Arabidopsis genetics to O. Loudet.

    + +

        About this file:

    +

    The file started April 21, 2005 by RWW. Last update by RWW, April 21, 2005.

    +
    +
    + + +
    + + + + +
    +

    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BayXShaGeno.html b/web/dbdoc/BayXShaGeno.html new file mode 100755 index 00000000..62b74e0d --- /dev/null +++ b/web/dbdoc/BayXShaGeno.html @@ -0,0 +1,120 @@ + +BXD Genotype / WebQTL + + + + + + + + + + + + + +
    + + + +
    + +

    Arabidopsis Bay X Sha Genotypes Database + + modify this page

    + + +

        Summary:

    + +

    + +

    The Bay-0 x Shahdara genetic reference population consists of 420 recombinant inbred lines (RIL). This set was created by Olivier Loudet and Sylvain Chaillou between 1997 and 2000 at the INRA in Versailles, France. This plant has a genome consisting of five chromsomes and a total of 125 megabases of DNA, equivalent in length to a single human chromosome. However, the genome is nonetheless rich and contains approximately 26,000 genes. Full sequence data are available for this species. (The Col-0 accession was sequenced.) +

    + +

    The 420 RILs were derived from a cross between Bay-0 (accession N954) and Shahdara (accession N929); two accessions obtained from the NASC European Arabidopsis Stock Centre. Bay-0 and Shahdara were chosen because of their well characterized genetic, geographical, and ecological differences. Lines were propagated by single seed descent through the sixth generation (F6) without selection. One plant per line was then used for genotyping (420 RILs x 38 markers) and selfed to obtain F7 seeds. F8 seed stock generated by bulk multiplication of F7 plants are available for analysis for 411 of these RILs. Data sets in WebQTL include up to 415 BXS accessions and the two parental stock. +

    + +
    + +

        About the genotypes used in these studies:

    + +
    +This Bay x Sha Arabidopsis genotype data set is described in Loudet and colleagues (2002). This marker data set consists of 38 markers for 420 strains. It is used to map QTLs for phenotypes listed in the BayxSha Published Phenotypes data set. + +

    Download the BayXSha genotype data set. +

    + + + + + +

        Reference:

    + +
    +Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F (2002) Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theoretical and Applied Genetics 104:1173-1184 (pdf) +
    + + +

        Acknowledgments and File History

    +
    + +

    This text file was originally written by Robert Williams and Olivier Loudet (March 8, 2006). Updated March 8, 2006 by OL. +

    + + +

    + +

    +
    + + +
    + +

    +

    + +
    +

    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/BayXShaPublish.html b/web/dbdoc/BayXShaPublish.html new file mode 100755 index 00000000..091b660f --- /dev/null +++ b/web/dbdoc/BayXShaPublish.html @@ -0,0 +1,108 @@ + +Publish Phenotype / WebQTL + + + + + + + + + + + + + +
    + + + +
    +

    Arabidopsis Bay-0 x Shahdara RIL Published Phenotypes Database modify this page

    + + +

        Summary:

    +

    +The Bay-0 x Shahdara genetic reference population of 420 recombinant inbred lines (RIL) was created by Olivier Loudet and Sylvain Chaillou between 1997 and 2000 at the INRA in Versailles, France. It is currently one of the largest publically available Arabidopsis RIL sets. + +

    + + +

        About the subjects:

    +

    +The original set of RILs were derived from a cross between Bay-0 (accession N954) and Shahdara (accession N929); two accessions obtained from the NASC European Arabidopsis Stock Centre. Bay-0 and Shahdara were chosen because of their well characterized genetic, geographical, and ecological differences. Lines were propagated by single seed descent through the sixth generation (F6) without selection. One plant per line was then used for genotyping (420 RILs x 38 markers) and selfed to obtain F7 seeds. F8 seed stock generated by bulk multiplication of F7 plants are available for analysis for 411 of these RILs. WebQTL includes data for as many as 415 Bay-0 x Shahdara accessions and the two parental stock. +

    +
    + +

        About the acquisition these data:

    +

    The current phenotype database contains 14 published traits for Loudet et al. (2002), as well as one experimental phenotype data set (Loudet and colleagues, personal communication, April 2005). Please site the following publication when using these Bay-0 x Shahdara data: +

    + +
    +Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F (2002) Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theoretical and Applied Genetics 104:1173-1184 (pdf) +
    + + +

        Submitting data and reporting errors:

    +

    To submit additional data sets please contact either Olivier Loudet at loudet@versailles.inra.fr or Rob Williams at rwilliams@uthsc.edu.

    + + +

        Acknowledgments:

    +

    Supported by the INRA program in Arabidopsis genetics to O. Loudet.

    + +

        About this file:

    +

    The file started April 21, 2005 by RWW. Last update by RWW, April 21, 2005.

    +
    +
    + + +
    + + + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Br_U_0303_M.html b/web/dbdoc/Br_U_0303_M.html new file mode 100755 index 00000000..68e20608 --- /dev/null +++ b/web/dbdoc/Br_U_0303_M.html @@ -0,0 +1,379 @@ + +BXD Microarray March03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + + +

    +UTHSC Brain mRNA U74Av2 (Mar03) MAS5 + modify this page

    Accession number: GN3

    + +

        Summary:

    + +

    +This March 2003 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. This file is outdated and users are encouraged to use a more recent data set. All data were generated at the University of Tennessee Health Science Center (UTHSC). Samples from 31 strains were hybridized in small pools (n=3) to 92 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. In general, MAS 5 does not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM). +

    +
    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. +
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)♂♂♂  DBA/2J (D2)♂♂♀  
    B6D2F1 (F1)♀ ♀ BXD1♀♀ 
    BXD2♀♀ BXD6
    BXD8♂♀ BXD9
    BXD11 BXD12 ♂♀
    BXD14 ♀♀BXD15 
    BXD16♀♀ BXD18
    BXD19BXD21 ♂♂ 
    BXD22♀♀ BXD24♀♀ 
    BXD25♀♀♀♀ BXD27  ♀♀
    BXD28BXD29 
    BXD31♀♀♀♀ BXD32♂♀
    BXD33♂♀ BXD34♂♀ 
    BXD39♂♀ BXD40♂♂♀♀  
    BXD42♂♂♀   BXD67  
    BXD68 (F9)♀♀         
    +
    + + + +

        About the tissue used to generate these data:

    +

    Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 83 arrays were used: 67 were female pools and 16 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year). +

    + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. +
      +
    • Step 1: We added an offset of 1.0 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log2 of each cell signal intensity. + +
    • Step 3: We computed the Z score for each of these log2 cell signal intensity values within a single array. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added a constant of 8 units to the value of the Z score. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8 units, a variance of 4 units, and a standard deviation of 2 units. The advantage of this modified Z score is that a 2-fold difference in expression level corresponds roughly to 1 unit. + +
    • Step 6: We computed the arithmetic mean of the values for the set of microarrays for each strain. We have not corrected for variance introduced by sex, age, source of animals, or any possible interaction. We have not corrected for background beyond that implemented by Affymetrix in generating the CEL file. +
    + +Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to the noise level.
    + +

        About the array probe set names:

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target): Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    +This text file originally generated by RWW, EJC, and YHQ, March 2003. Updated by RWW, October 30, 2004. + + +

    +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Br_U_0503_M.html b/web/dbdoc/Br_U_0503_M.html new file mode 100755 index 00000000..4d54a52e --- /dev/null +++ b/web/dbdoc/Br_U_0503_M.html @@ -0,0 +1,373 @@ + +BXD Microarray May03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + + +

    UTHSC Brain mRNA U74Av2 (May03) MAS5 + + modify this page

    Accession number: GN4

    + +

        Summary:

    + +

    +This May 2003 freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. New users are encouraged to use one of the more recent data sets (December 2003 or March 2004). Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 33 strains were hybridized in small pools (n=3) to 97 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. In general, these MAS 5 transforms do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM). +

    +
    + +

        About the cases used to generate this set of data:

    + +
    The set of animals used for mapping (a mapping panel) consists of 30 groups of genetically uniform mice of the BXD type. The parental strains are C57BL/6J (B6 or B) and DBA/2J (D2 or D). The first generation hybrid is labeled F1. The F1 hybrids were made by crossing B6 females to D2 males. + +All other lines are recombinant inbred strains derived from C57BL/6J and DBA/2J crosses. BXD2 through BXD32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Dr. Taylor, but they were generated in the 1990s. Lines BXD67 and BXD68 are two partially inbred advanced recombinant strains (F8 and F9) that are part of a large set of BXD-Advanced strains being produced by Drs. Robert Williams, Lu Lu, Lee Silver, and Jeremy Peirce. There will eventually be ~45 of these strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html. +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)♂♂♂DBA/2J (D2)♂♂♀ 
    B6D2F1 (F1)♀ ♀ BXD1♀♀ 
    BXD2BXD5♂♀  
    BXD6BXD8♂♀ 
    BXD9BXD11♀♀ 
    BXD12 ♂♀BXD13  
    BXD14 ♀♀BXD15 
    BXD16♀♀ BXD18
    BXD19BXD21♂♂ 
    BXD22♀♀ BXD24♀♀ 
    BXD25♀♀♀♀ BXD27    ♀♀
    BXD28BXD29 
    BXD31♀♀♀♀ BXD32♂♀
    BXD33♂♀ BXD34♂♀ 
    BXD39♂♀ BXD40♂♂♀♀  
    BXD42♂♂ ♀    BXD67  
    BXD68 (F9)♀ ♀       
    + +

        About the tissue used to generate these data:

    +

    Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 97 arrays were used: 74 were female pools and 23 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year). +

    + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by MAS 5 are the 75% quantiles from a set of 36 pixel values per cell (the pixel with the 12th highest value represents the whole cell). +
      +
    • Step 1: We added an offset of 1.0 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log2 of each cell. + +
    • Step 3: We computed the Z score for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We computed the arithmetic mean of the values for the set of microarrays for each of the individual strains. We have not corrected for variance introduced by sex, age, or a sex-by-age interaction. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. +
    +Probe set data from the .TXT file: These .TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a 2-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers were initially determined by BLAT analysis using the Mouse Genome Sequencing Consortium OCT 2003 Assembly (see http://genome.ucsc.edu/). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        About the array probe set names:

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target): Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    +This text file originally generated by RWW, EJC, and YHQ, May 2003. Updated by RWW, October 30, 2004. + + +

    + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Br_U_0603_M.html b/web/dbdoc/Br_U_0603_M.html new file mode 100755 index 00000000..7e7694b7 --- /dev/null +++ b/web/dbdoc/Br_U_0603_M.html @@ -0,0 +1,390 @@ + +BXD Microarray June03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + + +

    + +UTHSC Brain mRNA U74Av2 (Jun03) MAS5 + + modify this page

    Accession number: GN2

    + +

        Summary:

    + +

    +This June 2003 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. New users are encouraged to use one of the more recent data sets (March 2004). Data were generated at the University of Tennessee Health Science Center (UTHSC). Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 34 strains were hybridized in small pools (n=3) to 99 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. In general, these MAS 5 transforms do not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM). +

    +
    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 34 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), B6D2 F1 intercross progeny, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for more than 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. +
    + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)♂♂♂DBA/2J (D2)♂♂♀ 
    B6D2F1 (F1)♀ ♀ BXD1♀♀ 
    BXD2BXD5♂♀  
    BXD6BXD8♂♀ 
    BXD9BXD11♀♀ 
    BXD12 ♂♀BXD13  
    BXD14 ♀♀BXD15 
    BXD16♀♀ BXD18
    BXD19BXD21♂♂ 
    BXD22♀♀ BXD24♀♀ 
    BXD25♀♀♀♀ BXD27    ♀♀
    BXD28BXD29 
    BXD31♀♀♀♀ BXD32♂♀
    BXD33♂♀ BXD34♂♀ 
    BXD38♂♀  BXD39♂♀ 
    BXD40♂♂♀♀   BXD42♂♂ ♀   
    BXD67 (F8)   BXD68 (F9)♀ ♀  
    +
    + +

        About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 99 such pooled samples were arrayed: 75 from females and 24 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. +

    + + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 99 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. +
      +
    • Step 1: We added an offset of 1.0 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log2 of each cell signal intensity. + +
    • Step 3: We computed the Z score for each of these log2 cell signal intensity values within a single array. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added a constant of 8 units to the value of the Z score. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8 units, a variance of 4 units, and a standard deviation of 2 units. The advantage of this modified Z score is that a two-fold difference in expression level corresponds roughly to 1 unit. + +
    • Step 6: We computed the arithmetic mean of the values for the set of microarrays for each strain. We have not corrected for variance introduced by sex, age, source of animals, or any possible interaction. We have not corrected for background beyond that implemented by Affymetrix in generating the CEL file. +
    + + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
    + + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target): Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    +This text file originally generated by RWW, EJC, and YHQ, June 2003. Updated by RWW, October 30, 2004. + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Br_U_0803_M.html b/web/dbdoc/Br_U_0803_M.html new file mode 100755 index 00000000..c4e36fbc --- /dev/null +++ b/web/dbdoc/Br_U_0803_M.html @@ -0,0 +1,401 @@ + +BXD Microarray August03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + + +

    +UTHSC Brain mRNA U74Av2 (Aug03) MAS5 + + modify this page

    Accession number: GN1

    + +

        Summary:

    + +

    +This August 2003 freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. This is data set includes six arrays which are of marginal quality. New users are encouraged to use one of the more recent data sets (December 2003 or March 2004) from which these six arrays have been excluded. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 106 arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. In general, the MAS 5 transform does not perform as well as RMA, PDNN, or the new heritability weighted transforms (HW1PM). +

    +
    + + +

        About the cases used to generate this set of data:

    + +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. Note that this table includes six arrays dropped from the December 2003 data sets (BXD6, n=2; BXD12, BXD16, BXD40, and BXD67, n=1 each). +
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Age +
    +
    Strain + +
    +Age +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    +
    +8 Wks +
    +
    +
    +20 Wks +
    +
    +
    +52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2) 
    B6D2F1 (F1) BXD1 
    BXD2BXD5  
    BXD6BXD8 
    BXD9BXD11 
    BXD12 BXD13  
    BXD14 BXD15 
    BXD16 BXD18
    BXD19BXD21 
    BXD22 BXD23  
    BXD24  BXD25 
    BXD27  BXD28
    BXD29  BXD31 
    BXD32BXD33 
    BXD34 BXD38   
    BXD39  BXD40  
    BXD42    BXD67 (F8)  
    BXD68 (F9)       
    +

        About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + + +

        About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: Probe signal intensity estimates in the Affymetrix CEL files are the 75% quantile value taken from a set of 36 (6x6) pixels per probe cell in the DAT image file. +
      +
    • Step 1: We added an offset of 1.0 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log2 of each cell signal intensity. + +
    • Step 3: We computed the Z score for each of these log2 cell signal intensity values within a single array. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added a constant of 8 units to the value of the Z score. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8 units, a variance of 4 units, and a standard deviation of 2 units. The advantage of this modified Z score is that a 2-fold difference in expression level corresponds roughly to 1 unit. + +
    • Step 6: We computed the arithmetic mean of the values for the set of microarrays for each strain. We have not corrected for variance introduced by sex, age, source of animals, or any possible interaction. We have not corrected for background beyond that implemented by Affymetrix in generating the CEL file. +
    + + +Probe set data from the CHP file: Probe set estimates of expression were initially generated using the standard Affymetrix MAS 5 algorithm. The CHP values were then processed following precisely the same six steps listed above to normalize expression and stabilize the variance of all 106 arrays. The mean expression within each array is therefore 8 units with a standard deviation of 2 units. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the background noise level. While a value of 8 unit is nominally the average expression, this average includes all those transcripts with negligible expression in the brain that would often be eliminated from subsequent analysis (so-called "absent" and "marginal" calls in the CHP file).
    + + +

        About the array probe set names:

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target): Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    +This text file originally generated by RWW, EJC, and YHQ, August 2003. Updated by RWW, October 30, 2004. + + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/CANDLE_NB_0711.html b/web/dbdoc/CANDLE_NB_0711.html new file mode 100755 index 00000000..424e6eff --- /dev/null +++ b/web/dbdoc/CANDLE_NB_0711.html @@ -0,0 +1,230 @@ + + + +CANDLE Newborn Cord ILMv6.3 (Jun11) QUANT ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    CANDLE Newborn Cord ILMv6.3 (Jun11) QUANT **modify this page

    + + Accession number: GN324

    +

    +The CANDLE Study is a large multidisciplinary study of early child development that involves genetic, genomic, environmental, and large-scale behavioral evaluation of children and their families from the second trimester of development through to 4 years of age. The full study involves more than 1000 children and their mothers and fathers. +

    +For information on genomic and genetic studies related to CANDLE, please contact: Drs. Ronald M. Adkins (radkins1 at uthsc.edu) and Julia Krushkal (jkrushka at uthsc.edu). +

    +For information on the overall design of CANDLE, please contact: Dr. Frances A. Tylavsky (ftylavsk at uthsc.edu). +

    +Summary from The Urban Child Institute: "The primary goal of the CANDLE study is to study factors that affect brain development in young children. To this end, the current study will test specific hypotheses regarding factors that may negatively influence cognitive development in children. Participants in this cohort study will include 1,500 mother-child dyads, recruited during the second trimester of pregnancy and followed from birth to age 3. Data on a wide range of possible influences on children's cognitive outcomes will be collected from numerous sources, including questionnaires, interviews, psychosocial assessments, medical chart abstraction, environmental samples from the child's home environment, blood and urine samples from the mother, cord blood, and placental tissue. The primary outcomes of the current study are those associated with a poor cognitive outcome in the child. Outcomes will be measured using standardized cognitive assessments conducted at 12 months, 24 months, and 36 months of age. Epidemiological, clinical, and laboratory-based research may be undertaken using data from the project, with sub-studies including, but not limited to, molecular genetics, environmental exposure assessments, and micronutrient deficiency analyses. Results of this cohort study may provide information that will ultimately lead to improvements in the health, development, and well-being of children in Shelby County, Tennessee through interventions and policy enforcement and/or development. Full participant recruitment and complete data collection began in November 2006.." +

    +Associated References: +

      +
    1. Adkins RM, Thomas F, Tylavsky FA, Krushkal J (2011) Parental ages and levels of DNA methylation in the newborn are correlated. BMC Med Genet. 2011 Mar 31;12:47.
    2. +
    3. Adkins RM, Krushkal J, Tylavsky FA, Thomas F (2011) Racial differences in gene-specific DNA methylation levels are present at birth. Birth Defects Res A Clin Mol Teratol. 2011 Feb 9. doi: 10.1002/bdra.20770.
    4. +
    +

    +

    Data Owner: Dr. Ron Adkins, UTHSC Department of Pediatrics +

    Data set entered June 7, 2011 by Arthur Centeno. +

    Expression data generated by the UTHSC Molecular Resources Center with funding from the Centeir for Integrative and Translational Genomics +

    Data processing by Drs. Ron Adkins and Julia Krushkal +

      +
    1. background subtraction (using Illumina's GenomeStudio) +
    2. VST transform (using lumi in Bioconductor) +
    3. quantile normalization (also using lumi) +
    4. [any outliers that did not pass QC were removed using sample clustering, MA plots, boxplots, etc.] +correction for batch effects using COMBAT +
    +

    Please refer to information provided by Dr. Adkins with the data that specifies exactly which of these steps (or all of them) were included in the final data set that he provided to you. +

    +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/CB_M_0104_M.html b/web/dbdoc/CB_M_0104_M.html new file mode 100755 index 00000000..f5fbb3bd --- /dev/null +++ b/web/dbdoc/CB_M_0104_M.html @@ -0,0 +1,188 @@ + +M430 Microarray SetAB January04 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    SJUT M430 Cerebellum MAS5 Database (January/04 Freeze) modify this page

    Accession number: GN8

    + +

        About the mice used to map microarray data:

    + +
    The set of mouse strains used for mapping (a mapping panel) consists of groups of genetically unique BXD recombinant inbred strains. The ancestral strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6, and 1.5x coverage for D by Celera Genomics). Chromosomes of the two parental strains are recombined randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXD67, BXD68, etc. are BXD Advanced recombinant inbred strains that are part of a large set now being produced by Drs. Lu Lu, Guomin Zhou, Lee Silver, Jeremy Peirce, and Robert Williams. There will eventually be 45 of these BXD strains. For additional background on recombinant inbred strains, +please see http://www.nervenet.org/papers/bxn.html. +
    + +

        About the tissue used to generate these data:

    +
    The January04 data were processed in two large batches. The first batch (the May03 data set) consisted of samples from 20 samples and 20 strains run on Affymetrix MOE 430A and MOE430B GeneChip pairs (40 arrays total). The second batch of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of brain tissue (intact whole cerebellum) taken from three adult animals usually of the same age. RNA was extracted at UTHSC and all samples were processed at the Hartwell Center (SJCRH, Memphis). We will eventually achieve a sample with good, but not perfect, balance of samples by sex and age. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSample_nameBatchID
    B6D2F1M127766-C12
    B6D2F1M94S347-1C11
    C57BL/6JF116773-C12
    C57BL/6JM109S054-1C21
    DBA/2JF71S175-1C11
    DBA/2JF91782-C12
    BXD1F57813-C12
    BXD2F142751-C11
    BXD2F78774-C12
    BXD5F56802-C12
    BXD5M71752-C11
    BXD6F92719-C11
    BXD8F72S173-1C11
    BXD9M86737-C11
    BXD11F441S200-1C11
    BXD11M92790-C12
    BXD12F130776-C12
    BXD12M64756-C12
    BXD14F190794-C12
    BXD14M91758-C12
    BXD16F163750-C11
    BXD19F61772-C12
    BXD21F116711-C11
    BXD21M64803-C12
    BXD22F65S174-1C11
    BXD23F88814-C12
    BXD24F71805-C12
    BXD24M71759-C12
    BXD25M90S429-1C11
    BXD28F113785-C12
    BXD28F427S203-1C11
    BXD29F82777-C12
    BXD29M76714-C12
    BXD29M76714-C11
    BXD31F142816-C12
    BXD32F62778-C12
    BXD32M218786-C12
    BXD33F184793-C12
    BXD33M124715-C11
    BXD34F56725-C11
    BXD34M91789-C12
    BXD38F55781-C12
    BXD38M65761-C12
    BXD39M165723-C11
    BXD40F56718-C11
    BXD40F56718-C12
    BXD40M73812-C12
    BXD42F100799-C12
    BXD42M97709-C11
    +
    +
    + +

        About data processing:

    + +
    Probe (cell) level data from the .CEL file: These .CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      +
    • Step 1: We added an offset of 1.0 to the .CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z scores for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B GeneChips include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: We corrected for technical variance introduced by two large batches. Means separated by tow batchs for each gene are corrected same with the data of 13 common strains in these two batches. + +
    • Step 8: Finally, We compute the arithmetic mean of the values for the set of microarrays for each strain. In this data set we have relatively modest numbers of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the .CEL file. We expect to add statistical controls and adjustments for these variables in a subsequent versions of WebQTL. + +
    +Probe set data from the .TXT file: These .TXT files were generated using the MAS 5.0. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    +Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include:
      +
    • Tom Curran +
    • Dan Goldowitz +
    • Kristin Hamre +
    • Lu Lu +
    • Peter McKinnon +
    • Jim Morgan +
    • Clayton Naeve +
    • Richard Smeyne +
    • Robert Williams +
    • The Center of Genomics and Bioinformatics at UTHSC +
    • The Hartwell Center at SJCRH +
    +
    + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/CB_M_0104_P.html b/web/dbdoc/CB_M_0104_P.html new file mode 100755 index 00000000..d9e791a9 --- /dev/null +++ b/web/dbdoc/CB_M_0104_P.html @@ -0,0 +1,188 @@ + +M430 Microarray SetAB January04 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    SJUT M430 Cerebellum PDNN Database (January/04 Freeze) modify this page

    Accession number: GN41

    + +

        About the mice used to map microarray data:

    + +
    The set of mouse strains used for mapping (a mapping panel) consists of groups of genetically unique BXD recombinant inbred strains. The ancestral strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6, and 1.5x coverage for D by Celera Genomics). Chromosomes of the two parental strains are recombined randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXD67, BXD68, etc. are BXD Advanced recombinant inbred strains that are part of a large set now being produced by Drs. Lu Lu, Guomin Zhou, Lee Silver, Jeremy Peirce, and Robert Williams. There will eventually be 45 of these BXD strains. For additional background on recombinant inbred strains, +please see http://www.nervenet.org/papers/bxn.html. +
    + +

        About the tissue used to generate these data:

    +
    The January04 data were processed in two large batches. The first batch (the May03 data set) consisted of samples from 20 samples and 20 strains run on Affymetrix MOE 430A and MOE430B GeneChip pairs (40 arrays total). The second batch of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of brain tissue (intact whole cerebellum) taken from three adult animals usually of the same age. RNA was extracted at UTHSC and all samples were processed at the Hartwell Center (SJCRH, Memphis). We will eventually achieve a sample with good, but not perfect, balance of samples by sex and age. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSample_nameBatchID
    B6D2F1M127766-C12
    B6D2F1M94S347-1C11
    C57BL/6JF116773-C12
    C57BL/6JM109S054-1C21
    DBA/2JF71S175-1C11
    DBA/2JF91782-C12
    BXD1F57813-C12
    BXD2F142751-C11
    BXD2F78774-C12
    BXD5F56802-C12
    BXD5M71752-C11
    BXD6F92719-C11
    BXD8F72S173-1C11
    BXD9M86737-C11
    BXD11F441S200-1C11
    BXD11M92790-C12
    BXD12F130776-C12
    BXD12M64756-C12
    BXD14F190794-C12
    BXD14M91758-C12
    BXD16F163750-C11
    BXD19F61772-C12
    BXD21F116711-C11
    BXD21M64803-C12
    BXD22F65S174-1C11
    BXD23F88814-C12
    BXD24F71805-C12
    BXD24M71759-C12
    BXD25M90S429-1C11
    BXD28F113785-C12
    BXD28F427S203-1C11
    BXD29F82777-C12
    BXD29M76714-C12
    BXD29M76714-C11
    BXD31F142816-C12
    BXD32F62778-C12
    BXD32M218786-C12
    BXD33F184793-C12
    BXD33M124715-C11
    BXD34F56725-C11
    BXD34M91789-C12
    BXD38F55781-C12
    BXD38M65761-C12
    BXD39M165723-C11
    BXD40F56718-C11
    BXD40F56718-C12
    BXD40M73812-C12
    BXD42F100799-C12
    BXD42M97709-C11
    +
    +
    + +

        About data processing:

    + +
    Probe (cell) level data from the .CEL file: These .CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      +
    • Step 1: We added an offset of 1.0 to the .CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z scores for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B GeneChips include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: We corrected for technical variance introduced by two large batches. Means separated by tow batchs for each gene are corrected same with the data of 13 common strains in these two batches. + +
    • Step 8: Finally, We compute the arithmetic mean of the values for the set of microarrays for each strain. In this data set we have relatively modest numbers of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the .CEL file. We expect to add statistical controls and adjustments for these variables in a subsequent versions of WebQTL. + +
    +Probe set data: The expression data were generated by PDNN method. The original expression values in .CEL files were read into the PerfectMatch. There were normalized using the PDNN method of background correction and normalization. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    +Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include:
      +
    • Tom Curran +
    • Dan Goldowitz +
    • Kristin Hamre +
    • Lu Lu +
    • Peter McKinnon +
    • Jim Morgan +
    • Clayton Naeve +
    • Richard Smeyne +
    • Robert Williams +
    • The Center of Genomics and Bioinformatics at UTHSC +
    • The Hartwell Center at SJCRH +
    +
    + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/CB_M_0104_R.html b/web/dbdoc/CB_M_0104_R.html new file mode 100755 index 00000000..9464121b --- /dev/null +++ b/web/dbdoc/CB_M_0104_R.html @@ -0,0 +1,190 @@ + +M430 Microarray SetAB January04 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    SJUT M430 Cerebellum RMA Database (January/04 Freeze) modify this page

    Accession number: GN40

    + +

        About the mice used to map microarray data:

    + +
    The set of mouse strains used for mapping (a mapping panel) consists of groups of genetically unique BXD recombinant inbred strains. The ancestral strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6, and 1.5x coverage for D by Celera Genomics). Chromosomes of the two parental strains are recombined randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXD67, BXD68, etc. are BXD Advanced recombinant inbred strains that are part of a large set now being produced by Drs. Lu Lu, Guomin Zhou, Lee Silver, Jeremy Peirce, and Robert Williams. There will eventually be 45 of these BXD strains. For additional background on recombinant inbred strains, +please see http://www.nervenet.org/papers/bxn.html. +
    + +

        About the tissue used to generate these data:

    +
    The January04 data were processed in two large batches. The first batch (the May03 data set) consisted of samples from 20 samples and 20 strains run on Affymetrix MOE430A and MOE430B GeneChip pairs (40 arrays total). The second batch of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of brain tissue (intact whole cerebellum) taken from three adult animals usually of the same age. RNA was extracted at UTHSC and all samples were processed at the Hartwell Center (SJCRH, Memphis). We will eventually achieve a sample with good, but not perfect, balance of samples by sex and age. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSample_nameBatchID
    B6D2F1M127766-C12
    B6D2F1M94S347-1C11
    C57BL/6JF116773-C12
    C57BL/6JM109S054-1C21
    DBA/2JF71S175-1C11
    DBA/2JF91782-C12
    BXD1F57813-C12
    BXD2F142751-C11
    BXD2F78774-C12
    BXD5F56802-C12
    BXD5M71752-C11
    BXD6F92719-C11
    BXD8F72S173-1C11
    BXD9M86737-C11
    BXD11F441S200-1C11
    BXD11M92790-C12
    BXD12F130776-C12
    BXD12M64756-C12
    BXD14F190794-C12
    BXD14M91758-C12
    BXD16F163750-C11
    BXD19F61772-C12
    BXD21F116711-C11
    BXD21M64803-C12
    BXD22F65S174-1C11
    BXD23F88814-C12
    BXD24F71805-C12
    BXD24M71759-C12
    BXD25M90S429-1C11
    BXD28F113785-C12
    BXD28F427S203-1C11
    BXD29F82777-C12
    BXD29M76714-C12
    BXD29M76714-C11
    BXD31F142816-C12
    BXD32F62778-C12
    BXD32M218786-C12
    BXD33F184793-C12
    BXD33M124715-C11
    BXD34F56725-C11
    BXD34M91789-C12
    BXD38F55781-C12
    BXD38M65761-C12
    BXD39M165723-C11
    BXD40F56718-C11
    BXD40F56718-C12
    BXD40M73812-C12
    BXD42F100799-C12
    BXD42M97709-C11
    +
    +
    + +

        About data processing:

    + +
    Probe (cell) level data from the .CEL file: These .CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      +
    • Step 1: We added an offset of 1.0 to the .CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z scores for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B GeneChips include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: We corrected for technical variance introduced by two large batches. Means separated by tow batchs for each gene are corrected same with the data of 13 common strains in these two batches. + +
    • Step 8: Finally, We compute the arithmetic mean of the values for the set of microarrays for each strain. In this data set we have relatively modest numbers of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the .CEL file. We expect to add statistical controls and adjustments for these variables in a subsequent versions of WebQTL. + +
    +Probe set data: These expression data +were generated by RMA method. The raw expression values in .CEL files were read into the R environment (Ihaka a +nd Gentleman, 1996). These were normalized using the RMA method of background correction and normalization (Irrizary et al, 2003). The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    +Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include:
      +
    • Tom Curran +
    • Dan Goldowitz +
    • Kristin Hamre +
    • Lu Lu +
    • Peter McKinnon +
    • Jim Morgan +
    • Clayton Naeve +
    • Richard Smeyne +
    • Robert Williams +
    • The Center of Genomics and Bioinformatics at UTHSC +
    • The Hartwell Center at SJCRH +
    +
    + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/CB_M_0204_P.html b/web/dbdoc/CB_M_0204_P.html new file mode 100755 index 00000000..cd8bdc44 --- /dev/null +++ b/web/dbdoc/CB_M_0204_P.html @@ -0,0 +1,163 @@ + +M430 Microarray brain February04 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    INIA M430 brain PDNN Database (February/04 Freeze) modify this page

    Accession number: GN42

    + +

        About the mice used to map microarray data:

    + +
    We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera). Chromosomes of the two parental strains have been recombined and fixed randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXD43, BXD67, BXD68, etc. are BXD recombinant inbred strains that are part of a large set produced by Drs. Lu Lu and Jeremy Peirce. There are approximately 45 of these new BXD strains. For additional background on recombinant inbred strains please see Peirce et al. 2004. +
    + +

        About the tissue used to generate these data:

    +
    The INIA M430 brain Database (February04) consists of 30 Affymetrix MOE 430A and MOE430B GeneChip microarray pairs. Each AB pair of arrays was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter and colleagues at the University of Memphis. Before running the main batch of 30 pairs of array, we ran four "test" samples (one male and one female pool from each of the two parental strains, C57BL/6J and DBA/2J). The main batch of 30 array pairs includes the same four samples (in other words we have four technical replicates between the test and the main batches), two F1 hybrid sample (each run two times for a within-batch technical replication), and 22 BXD strains. The February04 data set therefore consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. We should note that the four technical replicates between batches were eventually combined with a correction for a highly significant batch effect. This was done at both the probe and probe set levels to "align" the test batch values with the two main batches. (The ratio of the probe average in the four test arrays to the average of the same probe in the four corresponding main batch arrays was used as a correction factor.) The F1 within-batch technical replicates were simply averaged. In the next batch we will reverse the sex of the BXD samples to achieve a balance with at least 22 BXD strains with one male and one female sample each. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSample_nameResult date
    B6D2F1F127919-F1Jan04
    B6D2F1F127919-F2Jan04
    B6D2F1M127920-F1Jan04
    B6D2F1M127920-F2Jan04
    C57BL/6JF65903-F1Nov03
    C57BL/6JF65903-F2Jan03
    C57BL/6JM66906-F1Nov03
    C57BL/6JM66906-F2Jan04
    DBA/2JF60917-F1Nov03
    DBA/2JF60917-F2Jan04
    DBA/2JM60918-F1Nov03
    DBA/2JM60918-F2Jan04
    BXD1F95895-F1Jan04
    BXD5M71728-F1Jan04
    BXD6M92902-F1Jan04
    BXD8F72S167-F1Jan04
    BXD9M86909-F1Jan04
    BXD12M64897-F1Jan04
    BXD13F86748-F1Jan04
    BXD14M91912-F1Jan04
    BXD18F108771-F1Jan04
    BXD19F56S236-F1Jan04
    BXD21F67740-F1Jan04
    BXD23F88815-F1Jan04
    BXD24M71913-F1Jan04
    BXD25F74S373-F1Jan04
    BXD28F79910-F1Jan04
    BXD29F76693-F1Jan04
    BXD32F93898-F1Jan04
    BXD33M77915-F1Jan04
    BXD34M72916-F1Jan04
    BXD36M77926-F1Jan04
    BXD38M69731-F1Jan04
    BXD42M97936-F1Jan04
    +
    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the .CEL file: These .CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      +
    • Step 1: We added an offset of 1.0 to the .CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z scores for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B GeneChips include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: We corrected for technical variance introduced by two batches. Means separated by tow batchs for each gene are corrected same with the data of two common strains in these two batches. + +
    • Step 8: Finally, we compute the arithmetic mean of the values for the set of microarrays for each strain. In this data set we have modest numbers of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the .CEL file. We expect to add statistical controls and adjustments for these variables in subsequent versions of WebQTL. + +
    +
    Probe set data: The expression data were generated by PDNN method. The original expression values in .CEL files were read into the PerfectMatch. There were normalized using the PDNN method of background correction. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.. +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 (mm4) Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    +Data were generated with funds from multiple data sources including NIAAA INIA support to RWW and Thomas Sutter, an NIMH Human Brain Project, and the Dunavant Chair of Excellence, University of Tennessee Health Science Center. All arrays were processed at the University of Memphis by Dr. Thomas Sutter and colleagues with support of the INIA Bioanalytical Core. +
    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/CB_M_0204_R.html b/web/dbdoc/CB_M_0204_R.html new file mode 100755 index 00000000..9c6d5c20 --- /dev/null +++ b/web/dbdoc/CB_M_0204_R.html @@ -0,0 +1,164 @@ + +M430 Microarray brain February04 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    INIA M430 brain RMA Database (February/04 Freeze) modify this page

    Accession number: GN43

    + +

        About the mice used to map microarray data:

    + +
    We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera). Chromosomes of the two parental strains have been recombined and fixed randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXD43, BXD67, BXD68, etc. are BXD recombinant inbred strains that are part of a large set produced by Drs. Lu Lu and Jeremy Peirce. There are approximately 45 of these new BXD strains. For additional background on recombinant inbred strains please see Peirce et al. 2004. +
    + +

        About the tissue used to generate these data:

    +
    The INIA M430 brain Database (February04) consists of 30 Affymetrix MOE 430A and MOE430B GeneChip microarray pairs. Each AB pair of arrays was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter and colleagues at the University of Memphis. Before running the main batch of 30 pairs of array, we ran four "test" samples (one male and one female pool from each of the two parental strains, C57BL/6J and DBA/2J). The main batch of 30 array pairs includes the same four samples (in other words we have four technical replicates between the test and the main batches), two F1 hybrid sample (each run two times for a within-batch technical replication), and 22 BXD strains. The February04 data set therefore consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. We should note that the four technical replicates between batches were eventually combined with a correction for a highly significant batch effect. This was done at both the probe and probe set levels to "align" the test batch values with the two main batches. (The ratio of the probe average in the four test arrays to the average of the same probe in the four corresponding main batch arrays was used as a correction factor.) The F1 within-batch technical replicates were simply averaged. In the next batch we will reverse the sex of the BXD samples to achieve a balance with at least 22 BXD strains with one male and one female sample each. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSample_nameResult date
    B6D2F1F127919-F1Jan04
    B6D2F1F127919-F2Jan04
    B6D2F1M127920-F1Jan04
    B6D2F1M127920-F2Jan04
    C57BL/6JF65903-F1Nov03
    C57BL/6JF65903-F2Jan03
    C57BL/6JM66906-F1Nov03
    C57BL/6JM66906-F2Jan04
    DBA/2JF60917-F1Nov03
    DBA/2JF60917-F2Jan04
    DBA/2JM60918-F1Nov03
    DBA/2JM60918-F2Jan04
    BXD1F95895-F1Jan04
    BXD5M71728-F1Jan04
    BXD6M92902-F1Jan04
    BXD8F72S167-F1Jan04
    BXD9M86909-F1Jan04
    BXD12M64897-F1Jan04
    BXD13F86748-F1Jan04
    BXD14M91912-F1Jan04
    BXD18F108771-F1Jan04
    BXD19F56S236-F1Jan04
    BXD21F67740-F1Jan04
    BXD23F88815-F1Jan04
    BXD24M71913-F1Jan04
    BXD25F74S373-F1Jan04
    BXD28F79910-F1Jan04
    BXD29F76693-F1Jan04
    BXD32F93898-F1Jan04
    BXD33M77915-F1Jan04
    BXD34M72916-F1Jan04
    BXD36M77926-F1Jan04
    BXD38M69731-F1Jan04
    BXD42M97936-F1Jan04
    +
    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the .CEL file: These .CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      +
    • Step 1: We added an offset of 1.0 to the .CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z scores for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B GeneChips include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: We corrected for technical variance introduced by two batches. Means separated by tow batchs for each gene are corrected same with the data of two common strains in these two batches. + +
    • Step 8: Finally, we compute the arithmetic mean of the values for the set of microarrays for each strain. In this data set we have modest numbers of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the .CEL file. We expect to add statistical controls and adjustments for these variables in subsequent versions of WebQTL. + +
    +
    Probe set data: These expression data +were generated by RMA method. The raw expression values in .CEL files were read into the R environment (Ihaka a +nd Gentleman, 1996). These were normalized using the RMA method of background correction and normalization (Irrizary et al, 2003). The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 (mm4) Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    +Data were generated with funds from multiple data sources including NIAAA INIA support to RWW and Thomas Sutter, an NIMH Human Brain Project, and the Dunavant Chair of Excellence, University of Tennessee Health Science Center. All arrays were processed at the University of Memphis by Dr. Thomas Sutter and colleagues with support of the INIA Bioanalytical Core. +
    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/CB_M_0305_M.html b/web/dbdoc/CB_M_0305_M.html new file mode 100755 index 00000000..dc6ff14a --- /dev/null +++ b/web/dbdoc/CB_M_0305_M.html @@ -0,0 +1,288 @@ + +M430 Microarray SetAB March05 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    SJUT Cerebellum mRNA M430 (Mar05) MAS5 modify this page

    Accession number: GN54

    + +

        Summary:

    + +
    +

    +This March 2005 data freeze provides estimates of mRNA expression in adult cerebellum of 48 lines of mice including 45 BXD recombinant inbred strains, C57BL/6J, DBA/2J, and F1 hybrids. Data were generated by a consortium of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Cerebellar samples were hybridized in small pools (n = 3) to Affymetrix M430A and B arrays. This particular data set was processed using the Microarray Suite 5 (MAS 5) protocol. To simplify comparisons among transforms, MAS5 values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. +

    +
    + + +

        About the cases used to generate this set of data:

    + +
    +We have exploited a set of BXD recombinant inbred strains. All BXD lines are derived crossed between C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D parental strains have been almost fully sequenced (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems) and data for 1.75 millioin B vs D SNPs are incorporated into WebQTLs genetic maps for the BXDs. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004).

    + +

    Most BXD animals were generated in-house at the University of Tennessee Health Science Center by Lu Lu and Robert Williams using stock obtained from The Jackson Laboratory between 1999 and 2004. All BXD strains with numbers above 42 are new advanced intecross type BXDs (Peirce et al. 2004) that are current available from UTHSC. Additional cases were provided by Glenn Rosen, John Mountz, and Hui-Chen Hsu. These cases were bred either at The Jackson Laboratory (GR) or at the University of Alabama (JM and HCH). +

    + + + +

        About the tissue used to generate this set of data:

    + +

    The March 2005 data set consists of a total of 102 array pairs (Affymetrix 430A and 430B) from 49 different genotypes. Each sample consists of whole cerebellum taken from three adult animals of the same age and sex. Two sets of technical replicates (BXD14 n = 2; BXD29 n = 3) were combined before generating group means; giving a total of 101 biologically independent data sets. The two reciprocal F1s (D2B6F1 and B6D2F1) were combined to give a single F1 mean estimate of gene expression. 430A and 430B arrays were processed in three large batches. The first batch (May03 data) consists of 17 samples from 17 strains balanced by sex (8M and 9F). The second batch consists of 29 samples, and includes biological replicates, 2 technical replicates, and data for 9 new strains. The third batch consists of 56 samples, and also includes biological replicates, 2 technical replicates, and data for 15 additional strains. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from both sexes for each strain. Six of 48 genotypes are still represented by single samples: BXD5, BXD13, BXD20, BXD23, BXD27 are female-only strains, whereas BXD25, BXD77, BXD90 are male-only. Ten strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 1M), B6D2F1 (1F 2M), BXD2 (2F 1M), BXD11 (2F 1M), BXD28 (2F 1M), BXD40 (2F 1M), BXD51 (1F 2M), BXD60 (1F 2M), BXD92 (2F 1M). + +

    The age range of samples is relatively narrow. Only 18 samples were taken from animals older than 99 days and only two samples are older than 7 months of age. BXD11 includes an extra (third) 441-day-old female sample and the BXD28 includes an extra 427-day-old sample.

    + +

    RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai.

    + +

    All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

    + +
    + +
    +The table below summarizes information on strain, sex, age, sample name, and batch number.
    + + + + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexAge
    SampleName
    BatchID
    Source
    1C57BL/6JF116
    R0773C
    2
    UAB
    2C57BL/6JM109
    R0054C
    1
    JAX
    3C57BL/6JM71
    R1450C
    3
    UTM DG
    4DBA/2JF71
    R0175C
    1
    UAB
    5DBA/2JF91
    R0782C
    2
    UAB
    6DBA/2JM62
    R1121C
    3
    UTM RW
    7B6D2F1F60
    R1115C
    3
    UTM RW
    8B6D2F1M94
    R0347C
    1
    JAX
    9B6D2F1M127
    R0766C
    2
    UTM JB
    10D2B6F1F57
    R1067C
    3
    UTM RW
    11D2B6F1M60
    R1387C
    3
    UTM RW
    12BXD1F57
    R0813C
    2
    UAB
    13BXD1M181
    R1151C
    3
    UTM JB
    14BXD2F142
    R0751C
    1
    UAB
    15BXD2F78
    R0774C
    2
    UAB
    16BXD2M61
    R1503C
    3
    HarvardU GR
    17BXD5F56
    R0802C
    2
    UMemphis
    18BXD6F92
    R0719C
    1
    UMemphis
    19BXD6M92
    R0720C
    3
    UMemphis
    20BXD8F72
    R0173C
    1
    UAB
    21BXD8M59
    R1484C
    3
    HarvardU GR
    22BXD9F86
    R0736C
    3
    UMemphis
    23BXD9M86
    R0737C
    1
    UMemphis
    24BXD11F441
    R0200C
    1
    UAB
    25BXD11F97
    R0791C
    3
    UAB
    26BXD11M92
    R0790C
    2
    UMemphis
    27BXD12F130
    R0776C
    2
    UAB
    28BXD12M64
    R0756C
    2
    UMemphis
    29BXD13F86
    R1144C
    3
    UMemphis
    30BXD14F190
    R0794C
    2
    UAB
    31BXD14F190
    R0794C
    3
    UAB
    32BXD14M91
    R0758C
    2
    UMemphis
    33BXD14M65
    R1130C
    3
    UTM RW
    34BXD15F60
    R1491C
    3
    HarvardU GR
    35BXD15M61
    R1499C
    3
    HarvardU GR
    36BXD16F163
    R0750C
    1
    UAB
    37BXD16M61
    R1572C
    3
    HarvardU GR
    38BXD19F61
    R0772C
    2
    UAB
    39BXD19M157
    R1230C
    3
    UTM JB
    40BXD20F59
    R1488C
    3
    HarvardU GR
    41BXD21F116
    R0711C
    1
    UAB
    42BXD21M64
    R0803C
    2
    UMemphis
    43BXD22F65
    R0174C
    1
    UAB
    44BXD22M59
    R1489C
    3
    HarvardU GR
    45BXD23F88
    R0814C
    2
    UAB
    46BXD24F71
    R0805C
    2
    UMemphis
    47BXD24M71
    R0759C
    2
    UMemphis
    48BXD25M90
    R0429C
    1
    UTM RW
    49BXD27F60
    R1496C
    3
    HarvardU GR
    50BXD28F113
    R0785C
    2
    UTM RW
    51BXD28M79
    R0739C
    3
    UMemphis
    52BXD29F82
    R0777C
    2
    UAB
    53BXD29M76
    R0714C
    1
    UMemphis
    54BXD29M76
    R0714C
    2
    UMemphis
    55BXD29M76
    R0714C
    3
    UMemphis
    56BXD31F142
    R0816C
    2
    UAB
    57BXD31M61
    R1142C
    3
    UTM RW
    58BXD32F62
    R0778C
    2
    UAB
    59BXD32M218
    R0786C
    2
    UAB
    60BXD33F184
    R0793C
    2
    UAB
    61BXD33M124
    R0715C
    1
    UAB
    62BXD34F56
    R0725C
    1
    UMemphis
    63BXD34M91
    R0789C
    2
    UMemphis
    64BXD36F64
    R1667C
    3
    UTM RW
    65BXD36M61
    R1212C
    3
    UMemphis
    66BXD38F55
    R0781C
    2
    UAB
    67BXD38M65
    R0761C
    2
    UMemphis
    68BXD39F59
    R1490C
    3
    HarvardU GR
    69BXD39M165
    R0723C
    1
    UAB
    70BXD40F56
    R0718C
    2
    UMemphis
    71BXD40M73
    R0812C
    2
    UMemphis
    72BXD42F100
    R0799C
    2
    UAB
    73BXD42M97
    R0709C
    1
    UMemphis
    74BXD43F61
    R1200C
    3
    UTM RW
    75BXD43M63
    R1182C
    3
    UTM RW
    76BXD44F61
    R1188C
    3
    UTM RW
    77BXD44M58
    R1073C
    3
    UTM RW
    78BXD45F63
    R1404C
    3
    UTM RW
    79BXD45M93
    R1506C
    3
    UTM RW
    80BXD48F64
    R1158C
    3
    UTM RW
    81BXD48M65
    R1165C
    3
    UTM RW
    82BXD51F66
    R1666C
    3
    UTM RW
    83BXD51M62
    R1180C
    3
    UTM RW
    84BXD51M79
    R1671C
    3
    UTM RW
    85BXD60F64
    R1160C
    3
    UTM RW
    86BXD60M61
    R1103C
    3
    UTM RW
    87BXD60M99
    R1669C
    3
    UTM RW
    88BXD62M61
    R1149C
    3
    UTM RW
    89BXD62M60
    R1668C
    3
    UTM RW
    90BXD69F60
    R1440C
    3
    UTM RW
    91BXD69M64
    R1197C
    3
    UTM RW
    92BXD73F60
    R1276C
    3
    UTM RW
    93BXD73M77
    R1665C
    3
    UTM RW
    94BXD77M62
    R1424C
    3
    UTM RW
    95BXD85F79
    R1486C
    3
    UTM RW
    96BXD85M79
    R1487C
    3
    UTM RW
    97BXD86F58
    R1408C
    3
    UTM RW
    98BXD86M58
    R1412C
    3
    UTM RW
    99BXD90M74
    R1664C
    3
    UTM RW
    100BXD92F62
    R1391C
    3
    UTM RW
    101BXD92F63
    R1670C
    3
    UTM RW
    102BXD92M59
    R1308C
    3
    UTM RW
    +
    +
    + +

        About the array platform :

    +
    +

    Affymetrix Mouse Genome 430A and B array pairs: The 430A and B array pairs consist of 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430 2.0 series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

    +
    + + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization for the log base 2 values for the total set of 104 arrays (all three batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We corrected for technical variance introduced by three large batches at the probe level. To do this we determined the ratio of the batch mean to the mean of all three batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each of the three batches is the same. + +
    • Step 7a: The 430A and 430B arrays include a set of 100 shared probe sets (a total of 2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the 430A and 430B arrays to a common scale. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression correction to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a small offset. The result of this step is that the mean of the 430A expression is fixed at a value of 8, whereas that of the 430B chip is typically reduced to 7. The average of the merged 430A and 430B array data set is approximately 7.5. + +
    • Step 7b: We recentered the merged 430A and 430B data sets to a mean of 8 and a standard deviation of 2. This involved reapplying Steps 3 through 5. + +
    • Step 8: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replciates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, source of animals, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for these variables. + +
    + + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium March 2005 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    +Data were generated with funds contributed by members of the UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include:
      +
    • Tom Curran +
    • Dan Goldowitz +
    • Kristin Hamre +
    • Lu Lu +
    • Peter McKinnon +
    • Jim Morgan +
    • Clayton Naeve +
    • Richard Smeyne +
    • Robert Williams +
    • The Center of Genomics and Bioinformatics at UTHSC +
    • The Hartwell Center at SJCRH +
    +
    + +

        Information about this text file:

    +

    +This text file originally generated by RWW and YHQ, March 21, 2005. Updated by RWW, March 23, 2005; RWW April 8. + + + + +

    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/CB_M_0305_P.html b/web/dbdoc/CB_M_0305_P.html new file mode 100755 index 00000000..4941ad88 --- /dev/null +++ b/web/dbdoc/CB_M_0305_P.html @@ -0,0 +1,282 @@ + +M430 Microarray SetAB March05 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    SJUT Cerebellum mRNA M430 (Mar05) PDNN modify this page

    Accession number: GN55

    + +

        Summary:

    + +
    +

    +This March 2005 data freeze provides estimates of mRNA expression in adult cerebellum of 48 lines of mice including 45 BXD recombinant inbred strains, C57BL/6J, DBA/2J, and F1 hybrids. Data were generated by a consortium of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Cerebellar samples were hybridized in small pools (n = 3) to Affymetrix M430A and B arrays. Data were processed using the Position-Dependent Nearest Neighbor (PDNN) method developed by Zhang and colleagues (2003). To simplify comparison between transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. +

    +
    + + +

        About the cases used to generate this set of data:

    + +
    +We have exploited a set of BXD recombinant inbred strains. All BXD lines are derived crossed between C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D parental strains have been almost fully sequenced (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems) and data for 1.75 millioin B vs D SNPs are incorporated into WebQTLs genetic maps for the BXDs. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004).

    + +

    Most BXD animals were generated in-house at the University of Tennessee Health Science Center by Lu Lu and Robert Williams using stock obtained from The Jackson Laboratory between 1999 and 2004. All BXD strains with numbers above 42 are new advanced intecross type BXDs (Peirce et al. 2004) that are current available from UTHSC. Additional cases were provided by Glenn Rosen, John Mountz, and Hui-Chen Hsu. These cases were bred either at The Jackson Laboratory (GR) or at the University of Alabama (JM and HCH). +

    + + + +

        About the tissue used to generate this set of data:

    + +

    The March 2005 data set consists of a total of 102 array pairs (Affymetrix 430A and 430B) from 49 different genotypes. Each sample consists of whole cerebellum taken from three adult animals of the same age and sex. Two sets of technical replicates (BXD14 n = 2; BXD29 n = 3) were combined before generating group means; giving a total of 99 biologically independent data sets. The two reciprocal F1s (D2B6F1 and B6D2F1) were combined to give a single F1 mean estimate of gene expression. 430A and 430B arrays were processed in three large batches. The first batch (May03 data) consists of 17 samples from 17 strains balanced by sex (8M and 9F). The second batch consists of 29 samples, and includes biological replicates, 2 technical replicates, and data for 10 new strains. The third batch consists of 56 samples, and also includes biological replicates, 2 technical replicates, and data for 15 additional strains. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from both sexes for each strain. Six of 48 genotypes are still represented by single samples: BXD5, BXD13, BXD20, BXD23, BXD27 are female-only strains, whereas BXD25, BXD77, BXD90 are male-only. Ten strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 1M), B6D2F1 (1F 2M), BXD2 (2F 1M), BXD11 (2F 1M), BXD28 (2F 1M), BXD36 (1F 1M), BXD40 (2F 1M), BXD51 (1F 2M), BXD60 (1F 2M), BXD92 (2F 1M). + +

    The age range of samples is relatively narrow. Only 18 samples were taken from animals older than 99 days and only two samples are older than 7 months of age. BXD11 includes an extra (third) 441-day-old female sample and the BXD28 includes an extra 427-day-old sample.

    + +

    RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai.

    + +

    All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

    + +
    + +
    +The table below summarizes informaton on strain, sex, age, sample name, and batch number.
    + + + + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexAge
    SampleName
    BatchID
    Source
    1C57BL/6JF116
    R0773C
    2
    UAB
    2C57BL/6JM109
    R0054C
    1
    JAX
    3C57BL/6JM71
    R1450C
    3
    UTM DG
    4DBA/2JF71
    R0175C
    1
    UAB
    5DBA/2JF91
    R0782C
    2
    UAB
    6DBA/2JM62
    R1121C
    3
    UTM RW
    7B6D2F1F60
    R1115C
    3
    UTM RW
    8B6D2F1M94
    R0347C
    1
    JAX
    9B6D2F1M127
    R0766C
    2
    UTM JB
    10D2B6F1F57
    R1067C
    3
    UTM RW
    11D2B6F1M60
    R1387C
    3
    UTM RW
    12BXD1F57
    R0813C
    2
    UAB
    13BXD1M181
    R1151C
    3
    UTM JB
    14BXD2F142
    R0751C
    1
    UAB
    15BXD2F78
    R0774C
    2
    UAB
    16BXD2M61
    R1503C
    3
    HarvardU GR
    17BXD5F56
    R0802C
    2
    UMemphis
    18BXD6F92
    R0719C
    1
    UMemphis
    19BXD6M92
    R0720C
    3
    UMemphis
    20BXD8F72
    R0173C
    1
    UAB
    21BXD8M59
    R1484C
    3
    HarvardU GR
    22BXD9F86
    R0736C
    3
    UMemphis
    23BXD9M86
    R0737C
    1
    UMemphis
    24BXD11F441
    R0200C
    1
    UAB
    25BXD11F97
    R0791C
    3
    UAB
    26BXD11M92
    R0790C
    2
    UMemphis
    27BXD12F130
    R0776C
    2
    UAB
    28BXD12M64
    R0756C
    2
    UMemphis
    29BXD13F86
    R1144C
    3
    UMemphis
    30BXD14F190
    R0794C
    2
    UAB
    31BXD14F190
    R0794C
    3
    UAB
    32BXD14M91
    R0758C
    2
    UMemphis
    33BXD14M65
    R1130C
    3
    UTM RW
    34BXD15F60
    R1491C
    3
    HarvardU GR
    35BXD15M61
    R1499C
    3
    HarvardU GR
    36BXD16F163
    R0750C
    1
    UAB
    37BXD16M61
    R1572C
    3
    HarvardU GR
    38BXD19F61
    R0772C
    2
    UAB
    39BXD19M157
    R1230C
    3
    UTM JB
    40BXD20F59
    R1488C
    3
    HarvardU GR
    41BXD21F116
    R0711C
    1
    UAB
    42BXD21M64
    R0803C
    2
    UMemphis
    43BXD22F65
    R0174C
    1
    UAB
    44BXD22M59
    R1489C
    3
    HarvardU GR
    45BXD23F88
    R0814C
    2
    UAB
    46BXD24F71
    R0805C
    2
    UMemphis
    47BXD24M71
    R0759C
    2
    UMemphis
    48BXD25M90
    R0429C
    1
    UTM RW
    49BXD27F60
    R1496C
    3
    HarvardU GR
    50BXD28F113
    R0785C
    2
    UTM RW
    51BXD28M79
    R0739C
    3
    UMemphis
    52BXD29F82
    R0777C
    2
    UAB
    53BXD29M76
    R0714C
    1
    UMemphis
    54BXD29M76
    R0714C
    2
    UMemphis
    55BXD29M76
    R0714C
    3
    UMemphis
    56BXD31F142
    R0816C
    2
    UAB
    57BXD31M61
    R1142C
    3
    UTM RW
    58BXD32F62
    R0778C
    2
    UAB
    59BXD32M218
    R0786C
    2
    UAB
    60BXD33F184
    R0793C
    2
    UAB
    61BXD33M124
    R0715C
    1
    UAB
    62BXD34F56
    R0725C
    1
    UMemphis
    63BXD34M91
    R0789C
    2
    UMemphis
    64BXD36F64
    R1667C
    3
    UTM RW
    65BXD36M61
    R1212C
    3
    UMemphis
    66BXD38F55
    R0781C
    2
    UAB
    67BXD38M65
    R0761C
    2
    UMemphis
    68BXD39F59
    R1490C
    3
    HarvardU GR
    69BXD39M165
    R0723C
    1
    UAB
    70BXD40F56
    R0718C
    2
    UMemphis
    71BXD40M73
    R0812C
    2
    UMemphis
    72BXD42F100
    R0799C
    2
    UAB
    73BXD42M97
    R0709C
    1
    UMemphis
    74BXD43F61
    R1200C
    3
    UTM RW
    75BXD43M63
    R1182C
    3
    UTM RW
    76BXD44F61
    R1188C
    3
    UTM RW
    77BXD44M58
    R1073C
    3
    UTM RW
    78BXD45F63
    R1404C
    3
    UTM RW
    79BXD45M93
    R1506C
    3
    UTM RW
    80BXD48F64
    R1158C
    3
    UTM RW
    81BXD48M65
    R1165C
    3
    UTM RW
    82BXD51F66
    R1666C
    3
    UTM RW
    83BXD51M62
    R1180C
    3
    UTM RW
    84BXD51M79
    R1671C
    3
    UTM RW
    85BXD60F64
    R1160C
    3
    UTM RW
    86BXD60M61
    R1103C
    3
    UTM RW
    87BXD60M99
    R1669C
    3
    UTM RW
    88BXD62M61
    R1149C
    3
    UTM RW
    89BXD62M60
    R1668C
    3
    UTM RW
    90BXD69F60
    R1440C
    3
    UTM RW
    91BXD69M64
    R1197C
    3
    UTM RW
    92BXD73F60
    R1276C
    3
    UTM RW
    93BXD73M77
    R1665C
    3
    UTM RW
    94BXD77M62
    R1424C
    3
    UTM RW
    95BXD85F79
    R1486C
    3
    UTM RW
    96BXD85M79
    R1487C
    3
    UTM RW
    97BXD86F58
    R1408C
    3
    UTM RW
    98BXD86M58
    R1412C
    3
    UTM RW
    99BXD90M74
    R1664C
    3
    UTM RW
    100BXD92F62
    R1391C
    3
    UTM RW
    101BXD92F63
    R1670C
    3
    UTM RW
    102BXD92M59
    R1308C
    3
    UTM RW
    +
    + +
    + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization for the log base 2 values for the total set of 104 arrays (all three batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We corrected for technical variance introduced by three large batches at the probe level. To do this we determined the ratio of the batch mean to the mean of all three batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each of the three batches is the same. + +
    • Step 7a: The 430A and 430B arrays include a set of 100 shared probe sets (a total of 2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the 430A and 430B arrays to a common scale. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression correction to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a small offset. The result of this step is that the mean of the 430A expression is fixed at a value of 8, whereas that of the 430B chip is typically reduced to 7. The average of the merged 430A and 430B array data set is approximately 7.5. + +
    • Step 7b: We recentered the merged 430A and 430B data sets to a mean of 8 and a standard deviation of 2. This involved reapplying Steps 3 through 5. + +
    • Step 8: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replciates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, source of animals, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for these variables. + +
    +Probe set data: The expression data were processed by Yanhua Qu (UTHSC) using the Position-Dependent Nearest Neighbor (PDNN) method developed by Zhang and colleagues (2003). The normalized CEL files were read into the PerfectMatch. The same simple steps described above were also applied to the initial PDNN probe set expression estimates. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    +Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include:
      +
    • Tom Curran +
    • Dan Goldowitz +
    • Kristin Hamre +
    • Lu Lu +
    • Peter McKinnon +
    • Jim Morgan +
    • Clayton Naeve +
    • Richard Smeyne +
    • Robert Williams +
    • The Center of Genomics and Bioinformatics at UTHSC +
    • The Hartwell Center at SJCRH +
    +
    + +

        Information about this text file:

    +

    +This text file originally generated by RWW and YHQ, March 21, 2005. Updated by RWW, March 23, 2005. + + + + + + +

    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/CB_M_0305_R.html b/web/dbdoc/CB_M_0305_R.html new file mode 100755 index 00000000..55753750 --- /dev/null +++ b/web/dbdoc/CB_M_0305_R.html @@ -0,0 +1,290 @@ + +M430 Microarray SetAB March05 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    SJUT Cerebellum mRNA M430 (Mar05) RMA modify this page

    Accession number: GN56

    + +

        Summary:

    + +
    +

    +This March 2005 data freeze provides estimates of mRNA expression in adult cerebellum of 48 lines of mice including 45 BXD recombinant inbred strains, C57BL/6J, DBA/2J, and F1 hybrids. Data were generated by a consortium of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Cerebellar samples were hybridized in small pools (n = 3) to Affymetrix M430A and B arrays. Data were processed using the RMA protocol. To simplify comparison between transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. +

    +
    + + +

        About the cases used to generate this set of data:

    + +
    +We have exploited a set of BXD recombinant inbred strains. All BXD lines are derived crossed between C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D parental strains have been almost fully sequenced (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems) and data for 1.75 millioin B vs D SNPs are incorporated into WebQTLs genetic maps for the BXDs. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004).

    + +

    Most BXD animals were generated in-house at the University of Tennessee Health Science Center by Lu Lu and Robert Williams using stock obtained from The Jackson Laboratory between 1999 and 2004. All BXD strains with numbers above 42 are new advanced intecross type BXDs (Peirce et al. 2004) that are current available from UTHSC. Additional cases were provided by Glenn Rosen, John Mountz, and Hui-Chen Hsu. These cases were bred either at The Jackson Laboratory (GR) or at the University of Alabama (JM and HCH). +

    + + + + +

    +

    Legend: Santiago Ramón y Cajal. 1899 drawing of two Purkinje cells (A) and five granule cells (B). These are the two major cell types that generate expression signal in this data set.

    +
    + + +

        About the tissue used to generate this set of data:

    + +

    The March 2005 data set consists of a total of 102 array pairs (Affymetrix 430A and 430B) from 49 different genotypes. Each sample consists of whole cerebellum taken from three adult animals of the same age and sex. Two sets of technical replicates (BXD14 n = 2; BXD29 n = 3) were combined before generating group means; giving a total of 101 biologically independent data sets. The two reciprocal F1s (D2B6F1 and B6D2F1) were combined to give a single F1 mean estimate of gene expression. 430A and 430B arrays were processed in three large batches. The first batch (May03 data) consists of 17 samples from 17 strains balanced by sex (8M and 9F). The second batch consists of 29 samples, and includes biological replicates, 2 technical replicates, and data for 9 new strains. The third batch consists of 56 samples, and also includes biological replicates, 2 technical replicates, and data for 15 additional strains. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from both sexes for each strain. Six of 48 genotypes are still represented by single samples: BXD13, BXD20, BXD27 are female-only strains, whereas BXD25, BXD77, BXD90 are male-only. Ten strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 1M), B6D2F1 (1F 2M), BXD2 (2F 1M), BXD11 (2F 1M), BXD28 (2F 1M), BXD40 (2F 1M), BXD51 (1F 2M), BXD60 (1F 2M), BXD92 (2F 1M). + +

    The age range of samples is relatively narrow. Only 18 samples were taken from animals older than 99 days and only two samples are older than 7 months of age. BXD11 includes an extra (third) 441-day-old female sample and the BXD28 includes an extra 427-day-old sample.

    + +

    RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai.

    + +

    All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

    + +
    + +
    +The table below summarizes informaton on strain, sex, age, sample name, and batch number.
    + + + + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexAge
    SampleName
    BatchID
    Source
    1C57BL/6JF116
    R0773C
    2
    UAB
    2C57BL/6JM109
    R0054C
    1
    JAX
    3C57BL/6JM71
    R1450C
    3
    UTM DG
    4DBA/2JF71
    R0175C
    1
    UAB
    5DBA/2JF91
    R0782C
    2
    UAB
    6DBA/2JM62
    R1121C
    3
    UTM RW
    7B6D2F1F60
    R1115C
    3
    UTM RW
    8B6D2F1M94
    R0347C
    1
    JAX
    9B6D2F1M127
    R0766C
    2
    UTM JB
    10D2B6F1F57
    R1067C
    3
    UTM RW
    11D2B6F1M60
    R1387C
    3
    UTM RW
    12BXD1F57
    R0813C
    2
    UAB
    13BXD1M181
    R1151C
    3
    UTM JB
    14BXD2F142
    R0751C
    1
    UAB
    15BXD2F78
    R0774C
    2
    UAB
    16BXD2M61
    R1503C
    3
    HarvardU GR
    17BXD5F56
    R0802C
    2
    UMemphis
    18BXD6F92
    R0719C
    1
    UMemphis
    19BXD6M92
    R0720C
    3
    UMemphis
    20BXD8F72
    R0173C
    1
    UAB
    21BXD8M59
    R1484C
    3
    HarvardU GR
    22BXD9F86
    R0736C
    3
    UMemphis
    23BXD9M86
    R0737C
    1
    UMemphis
    24BXD11F441
    R0200C
    1
    UAB
    25BXD11F97
    R0791C
    3
    UAB
    26BXD11M92
    R0790C
    2
    UMemphis
    27BXD12F130
    R0776C
    2
    UAB
    28BXD12M64
    R0756C
    2
    UMemphis
    29BXD13F86
    R1144C
    3
    UMemphis
    30BXD14F190
    R0794C
    2
    UAB
    31BXD14F190
    R0794C
    3
    UAB
    32BXD14M91
    R0758C
    2
    UMemphis
    33BXD14M65
    R1130C
    3
    UTM RW
    34BXD15F60
    R1491C
    3
    HarvardU GR
    35BXD15M61
    R1499C
    3
    HarvardU GR
    36BXD16F163
    R0750C
    1
    UAB
    37BXD16M61
    R1572C
    3
    HarvardU GR
    38BXD19F61
    R0772C
    2
    UAB
    39BXD19M157
    R1230C
    3
    UTM JB
    40BXD20F59
    R1488C
    3
    HarvardU GR
    41BXD21F116
    R0711C
    1
    UAB
    42BXD21M64
    R0803C
    2
    UMemphis
    43BXD22F65
    R0174C
    1
    UAB
    44BXD22M59
    R1489C
    3
    HarvardU GR
    45BXD23F88
    R0814C
    2
    UAB
    46BXD24F71
    R0805C
    2
    UMemphis
    47BXD24M71
    R0759C
    2
    UMemphis
    48BXD25M90
    R0429C
    1
    UTM RW
    49BXD27F60
    R1496C
    3
    HarvardU GR
    50BXD28F113
    R0785C
    2
    UTM RW
    51BXD28M79
    R0739C
    3
    UMemphis
    52BXD29F82
    R0777C
    2
    UAB
    53BXD29M76
    R0714C
    1
    UMemphis
    54BXD29M76
    R0714C
    2
    UMemphis
    55BXD29M76
    R0714C
    3
    UMemphis
    56BXD31F142
    R0816C
    2
    UAB
    57BXD31M61
    R1142C
    3
    UTM RW
    58BXD32F62
    R0778C
    2
    UAB
    59BXD32M218
    R0786C
    2
    UAB
    60BXD33F184
    R0793C
    2
    UAB
    61BXD33M124
    R0715C
    1
    UAB
    62BXD34F56
    R0725C
    1
    UMemphis
    63BXD34M91
    R0789C
    2
    UMemphis
    64BXD36F64
    R1667C
    3
    UTM RW
    65BXD36M61
    R1212C
    3
    UMemphis
    66BXD38F55
    R0781C
    2
    UAB
    67BXD38M65
    R0761C
    2
    UMemphis
    68BXD39F59
    R1490C
    3
    HarvardU GR
    69BXD39M165
    R0723C
    1
    UAB
    70BXD40F56
    R0718C
    2
    UMemphis
    71BXD40M73
    R0812C
    2
    UMemphis
    72BXD42F100
    R0799C
    2
    UAB
    73BXD42M97
    R0709C
    1
    UMemphis
    74BXD43F61
    R1200C
    3
    UTM RW
    75BXD43M63
    R1182C
    3
    UTM RW
    76BXD44F61
    R1188C
    3
    UTM RW
    77BXD44M58
    R1073C
    3
    UTM RW
    78BXD45F63
    R1404C
    3
    UTM RW
    79BXD45M93
    R1506C
    3
    UTM RW
    80BXD48F64
    R1158C
    3
    UTM RW
    81BXD48M65
    R1165C
    3
    UTM RW
    82BXD51F66
    R1666C
    3
    UTM RW
    83BXD51M62
    R1180C
    3
    UTM RW
    84BXD51M79
    R1671C
    3
    UTM RW
    85BXD60F64
    R1160C
    3
    UTM RW
    86BXD60M61
    R1103C
    3
    UTM RW
    87BXD60M99
    R1669C
    3
    UTM RW
    88BXD62M61
    R1149C
    3
    UTM RW
    89BXD62M60
    R1668C
    3
    UTM RW
    90BXD69F60
    R1440C
    3
    UTM RW
    91BXD69M64
    R1197C
    3
    UTM RW
    92BXD73F60
    R1276C
    3
    UTM RW
    93BXD73M77
    R1665C
    3
    UTM RW
    94BXD77M62
    R1424C
    3
    UTM RW
    95BXD85F79
    R1486C
    3
    UTM RW
    96BXD85M79
    R1487C
    3
    UTM RW
    97BXD86F58
    R1408C
    3
    UTM RW
    98BXD86M58
    R1412C
    3
    UTM RW
    99BXD90M74
    R1664C
    3
    UTM RW
    100BXD92F62
    R1391C
    3
    UTM RW
    101BXD92F63
    R1670C
    3
    UTM RW
    102BXD92M59
    R1308C
    3
    UTM RW
    +
    +
    + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization for the log base 2 values for the total set of 104 arrays (all three batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We corrected for technical variance introduced by three large batches at the probe level. To do this we determined the ratio of the batch mean to the mean of all three batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each of the three batches is the same. + +
    • Step 7a: The 430A and 430B arrays include a set of 100 shared probe sets (a total of 2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the 430A and 430B arrays to a common scale. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression correction to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a small offset. The result of this step is that the mean of the 430A expression is fixed at a value of 8, whereas that of the 430B chip is typically reduced to 7. The average of the merged 430A and 430B array data set is approximately 7.5. + +
    • Step 7b: We recentered the merged 430A and 430B data sets to a mean of 8 and a standard deviation of 2. This involved reapplying Steps 3 through 5. + +
    • Step 8: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replciates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, source of animals, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for these variables. + +
    +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL are the averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized standard deviation of 2 units within each array). Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets. + + +

    + + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    +Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include:
      +
    • Tom Curran +
    • Dan Goldowitz +
    • Kristin Hamre +
    • Lu Lu +
    • Peter McKinnon +
    • Jim Morgan +
    • Clayton Naeve +
    • Richard Smeyne +
    • Robert Williams +
    • The Center of Genomics and Bioinformatics at UTHSC +
    • The Hartwell Center at SJCRH +
    +
    + +

        Information about this text file:

    +

    +This text file originally generated by RWW and YHQ, March 21, 2005. Updated by RWW, March 23, 2005. + + + + +

    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/CB_M_1003_M.html b/web/dbdoc/CB_M_1003_M.html new file mode 100755 index 00000000..4fc8e4af --- /dev/null +++ b/web/dbdoc/CB_M_1003_M.html @@ -0,0 +1,228 @@ + +M430 Microarray October03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    SJUT mRNA M430 (Oct03) MAS5 + + modify this page

    Accession number: GN9

    + + + +

        Summary:

    + +

    +This October 2003 freeze provides estimates of mRNA expression in cerebellum of 26 adult BXD recombinant inbred strains, as well as C57BL/6J, DBA/2J, and their F1 hybrid, measured using the Affymetrix M430A and B microarrays. Data were generated by a small consortium of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run in two large batches with careful consideration to balancing samples by sex and age. Eighteen strains have been profiled using two or three independent samples. All other strains were sampled once. +

    +
    + + +

        About the cases used to generate this set of data:

    + +
    We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems). Chromosomes of the two parental strains have been recombined and fixed randomly in the many different BXD strains. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine.

    + +

    In this mRNA expression data set we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + + +

        About the tissue used to generate these data:

    + +

    The October 2003 data set was processed in two large batches. The first batch (the May 2003 data set) consists of 20 pooled samples from 20 strains run on pairs of Affymetrix 430A and 430B arrays (40 arrays total). The second batch consists of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of whole cerebellum taken from three adult animals of the same age and sex. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.

    + +

    RNA was extracted at UTHSC by Zhiping Jia and Hongtao Zhai.

    + +

    All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

    + +
    + +
    +The table below summarizes informaton on strain, sex, age, sample name, and batch number.
    + + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSampleIDBatch
    B6D2F1M127766-C12
    B6D2F1M94S347-1C11
    C57BL/6JF116773-C12
    C57BL/6JM109S054-1C21
    DBA/2JF71S175-1C11
    DBA/2JF91782-C12
    BXD1F57813-C12
    BXD2F142751-C11
    BXD2F78774-C12
    BXD5F56802-C12
    BXD5M71752-C11
    BXD6F92719-C11
    BXD8F72S173-1C11
    BXD9M86737-C11
    BXD11F441S200-1C11
    BXD11M92790-C12
    BXD12F130776-C12
    BXD12M64756-C12
    BXD14F190794-C12
    BXD14M91758-C12
    BXD16F163750-C11
    BXD19F61772-C12
    BXD21F116711-C11
    BXD21M64803-C12
    BXD22F65S174-1C11
    BXD23F88814-C12
    BXD24F71805-C12
    BXD24M71759-C12
    BXD25M90S429-1C11
    BXD28F113785-C12
    BXD28F427S203-1C11
    BXD29F82777-C12
    BXD29M76714-C12
    BXD29M76714-C11
    BXD31F142816-C12
    BXD32F62778-C12
    BXD32M218786-C12
    BXD33F184793-C12
    BXD33M124715-C11
    BXD34F56725-C11
    BXD34M91789-C12
    BXD38F55781-C12
    BXD38M65761-C12
    BXD39M165723-C11
    BXD40F56718-C11
    BXD40F56718-C12
    BXD40M73812-C12
    BXD42F100799-C12
    BXD42M97709-C11
    +
    +
    + +

        About the array platform:

    + +
    Affymetrix Mouse Expression 430 GeneChip set: The expression data were generated using 430A and 430B arrays. Chromosomal positions of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      +
    • Step 1: We added a constant offset of 1 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log2 of each cell signal level. + +
    • Step 3: We computed the Z scores for each cell within its array. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8 units, a variance of 4 units, and a standard deviation of 2 units. + +
    • Step 6a: The 430A and 430B GeneChips include a set of 100 shared probe sets that have identical sequences. These 100 probe sets and 2200 probes provide a good way to adjust expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array (the A array contains the more commonly expressed transcripts). To bring the two arrays into numerical alignment, we regressed Z scores of the common set of 2200 probes to obtain linear regression corrections to rescale the 430B arrays to values that match the 430A array. This involved multiplying all 430B Z scores by the slope of the regression and adding a very small offset (the regression intercept). The result of this adjustment is that the mean of the 430A array expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. + +
    • Step 6b: We recentered the entire combined set of 430A and 430B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: No batch correction was applied. + +
    • Step 8: Finally, we compute the arithmetic mean of the values for the set of microarrays for each strain. In this data set we have only a very modest number of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that this data set does not provide any correction for variance introduced by differences in sex, age, tissue source, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We expect to add statistical controls and adjustments for these variables in subsequent versions of WebQTL. + +
    +Probe set data from the CHP file: These CHP files were generated using MAS 5. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the noise level. +
    + + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    +Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include:
      +
    • Tom Curran +
    • Dan Goldowitz +
    • Kristin Hamre +
    • Lu Lu +
    • Peter McKinnon +
    • James Morgan +
    • Clayton Naeve +
    • Richard Smeyne +
    • Robert W. Williams +
    • The Center of Genomics and Bioinformatics at UTHSC +
    • The Hartwell Center at SJCRH +
    +
    + +

        Information about this text file:

    +

    +This text file originally generated by RWW and YHQ, September 2003. Updated by RWW, October 30, 2004. + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/CB_M_1004_M.html b/web/dbdoc/CB_M_1004_M.html new file mode 100755 index 00000000..7fff987a --- /dev/null +++ b/web/dbdoc/CB_M_1004_M.html @@ -0,0 +1,206 @@ + +M430 Microarray SetAB October05 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    SJUT M430 Cerebellum RMA Database (October/04 Freeze) modify this page

    Accession number: GN44

    + +

        About the mice used to map microarray data:

    + +
    The set of mouse strains used for mapping (a mapping panel) consists of groups of genetically unique BXD recombinant inbred strains. The ancestral strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6, and 1.5x coverage for D by Celera Genomics). Chromosomes of the two parental strains are recombined randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXD67, BXD68, etc. are BXD Advanced recombinant inbred strains that are part of a large set now being produced by Drs. Lu Lu, Guomin Zhou, Lee Silver, Jeremy Peirce, and Robert Williams. There will eventually be 45 of these BXD strains. For additional background on recombinant inbred strains, +please see http://www.nervenet.org/papers/bxn.html. +
    + +

        About the tissue used to generate these data:

    +
    The October04 data set was processed in two large batches. The first batch (the May 2003 data set) consists of samples from 20 samples and 20 strains run on pairs of Affymetrix 430A and 430B arrays (40 arrays total). The second batch consists of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of whole cerebellum taken from three adult animals of the same age and sex. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.

    + +

    RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai.

    + +

    All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

    + +
    + +
    +The table below summarizes informaton on strain, sex, age, sample name, and batch number.
    + + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSampleIDBatch
    B6D2F1M127766-C12
    B6D2F1M94S347-1C11
    C57BL/6JF116773-C12
    C57BL/6JM109S054-1C21
    DBA/2JF71S175-1C11
    DBA/2JF91782-C12
    BXD1F57813-C12
    BXD2F142751-C11
    BXD2F78774-C12
    BXD5F56802-C12
    BXD5M71752-C11
    BXD6F92719-C11
    BXD8F72S173-1C11
    BXD9M86737-C11
    BXD11F441S200-1C11
    BXD11M92790-C12
    BXD12F130776-C12
    BXD12M64756-C12
    BXD14F190794-C12
    BXD14M91758-C12
    BXD16F163750-C11
    BXD19F61772-C12
    BXD21F116711-C11
    BXD21M64803-C12
    BXD22F65S174-1C11
    BXD23F88814-C12
    BXD24F71805-C12
    BXD24M71759-C12
    BXD25M90S429-1C11
    BXD28F113785-C12
    BXD28F427S203-1C11
    BXD29F82777-C12
    BXD29M76714-C12
    BXD29M76714-C11
    BXD31F142816-C12
    BXD32F62778-C12
    BXD32M218786-C12
    BXD33F184793-C12
    BXD33M124715-C11
    BXD34F56725-C11
    BXD34M91789-C12
    BXD38F55781-C12
    BXD38M65761-C12
    BXD39M165723-C11
    BXD40F56718-C11
    BXD40F56718-C12
    BXD40M73812-C12
    BXD42F100799-C12
    BXD42M97709-C11
    +
    +
    + +

        About the array platform:

    + +
    Affymetrix Mouse Expression 430 GeneChip set: The expression data were generated using 430A and 430B arrays. Chromosomal positions of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      +
    • Step 1: We added a constant offset of 1 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log2 of each cell signal level. + +
    • Step 3: We computed the Z scores for each cell within its array. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8 units, a variance of 4 units, and a standard deviation of 2 units. + +
    • Step 6a: The 430A and 430B arrays include a set of 100 shared probe sets that have identical probe sequences. These 100 probe sets and 2200 probes provide a good way to adjust expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array (the A array contains the more commonly expressed transcripts). To bring the two arrays into numerical alignment, we regressed Z scores of the common set of 2200 probes to obtain linear regression corrections to rescale the 430B arrays to values that match the 430A array. This involved multiplying all 430B Z scores by the slope of the regression and adding a very small offset (the regression intercept). The result of this adjustment is that the mean of the 430A array expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. + +
    • Step 6b: We recentered the combined set of 430A and 430B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: We corrected for technical variance introduced by running two large batches. Individual probe means for the two batches (n = 20 and 29 samples, respectively) were calcuated separately. Probe values of the smaller batch (1) were then adjusted by multiplying batch 2 probe estimates by the Batch_2/Batch_1 ratio of the averages for that probe. + +
    • Step 8: Finally, we compute the arithmetic mean of the values for the set of microarrays for each strain. In this data set we have only a very modest number of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that this data set does not provide any correction for variance introduced by differences in sex, age, tissue source, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We expect to add statistical controls and adjustments for these variables in subsequent versions of WebQTL. + +
    +Probe set data: These expression data +were generated by MAS5 method. We fixed the .CEL files with the above Step 6. The raw expression values in the fixed .CEL files were read into the R environment (Ihaka a +nd Gentleman, 1996). These were normalized using the MAS5 method of background correction and normalization. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    +Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include:
      +
    • Tom Curran +
    • Dan Goldowitz +
    • Kristin Hamre +
    • Lu Lu +
    • Peter McKinnon +
    • Jim Morgan +
    • Clayton Naeve +
    • Richard Smeyne +
    • Robert Williams +
    • The Center of Genomics and Bioinformatics at UTHSC +
    • The Hartwell Center at SJCRH +
    +
    + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/CB_M_1004_P.html b/web/dbdoc/CB_M_1004_P.html new file mode 100755 index 00000000..c5072a54 --- /dev/null +++ b/web/dbdoc/CB_M_1004_P.html @@ -0,0 +1,224 @@ + +M430 Microarray SetAB January04 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    SJUT Cerebellum mRNA M430 (Oct04) PDNN + + modify this page

    Accession number: GN45

    + + + +

        Summary:

    + +

    +The October 2004 freeze provides estimates of mRNA expression in cerebellum of adult BXD recombinant inbred mice measured using Affymetrix M430 short oligomer microarrays. Data were generated by a small consortium of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Cerebellar samples from BXD strains were hybridized in small pools (n=3) to 430A and 430B arrays. Data were processed using the Position-Dependent Nearest Neighbor (PDNN) method developed by Zhang and colleagues (2003). To simplify comparison between transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units.

    +
    + + +

        About the cases used to generate this set of data:

    + +
    We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems). Chromosomes of the two parental strains have been recombined and fixed randomly in the many different BXD strains. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004).

    + +

    In this mRNA expression data set we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + + +

        About the tissue used to generate these data:

    + +

    The October04 data set was processed in two large batches. The first batch (the May 2003 data set) consists of samples from 20 samples and 20 strains run on pairs of Affymetrix 430A and 430B arrays (40 arrays total). The second batch consists of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of whole cerebellum taken from three adult animals of the same age and sex. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.

    + +

    RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai.

    + +

    All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

    + +
    + +
    +The table below summarizes informaton on strain, sex, age, sample name, and batch number.
    + + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSampleIDBatch
    B6D2F1M127766-C12
    B6D2F1M94S347-1C11
    C57BL/6JF116773-C12
    C57BL/6JM109S054-1C21
    DBA/2JF71S175-1C11
    DBA/2JF91782-C12
    BXD1F57813-C12
    BXD2F142751-C11
    BXD2F78774-C12
    BXD5F56802-C12
    BXD5M71752-C11
    BXD6F92719-C11
    BXD8F72S173-1C11
    BXD9M86737-C11
    BXD11F441S200-1C11
    BXD11M92790-C12
    BXD12F130776-C12
    BXD12M64756-C12
    BXD14F190794-C12
    BXD14M91758-C12
    BXD16F163750-C11
    BXD19F61772-C12
    BXD21F116711-C11
    BXD21M64803-C12
    BXD22F65S174-1C11
    BXD23F88814-C12
    BXD24F71805-C12
    BXD24M71759-C12
    BXD25M90S429-1C11
    BXD28F113785-C12
    BXD28F427S203-1C11
    BXD29F82777-C12
    BXD29M76714-C12
    BXD29M76714-C11
    BXD31F142816-C12
    BXD32F62778-C12
    BXD32M218786-C12
    BXD33F184793-C12
    BXD33M124715-C11
    BXD34F56725-C11
    BXD34M91789-C12
    BXD38F55781-C12
    BXD38M65761-C12
    BXD39M165723-C11
    BXD40F56718-C11
    BXD40F56718-C12
    BXD40M73812-C12
    BXD42F100799-C12
    BXD42M97709-C11
    +
    +
    + +

        About the array platform:

    + +
    Affymetrix Mouse Expression 430 GeneChip set: The expression data were generated using 430A and 430B arrays. Chromosomal positions of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      +
    • Step 1: We added a constant offset of 1 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log2 of each cell signal level. + +
    • Step 3: We computed the Z scores for each cell within its array. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8 units, a variance of 4 units, and a standard deviation of 2 units. + +
    • Step 6a: The 430A and 430B arrays include a set of 100 shared probe sets that have identical probe sequences. These 100 probe sets and 2200 probes provide a good way to adjust expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array (the A array contains the more commonly expressed transcripts). To bring the two arrays into numerical alignment, we regressed Z scores of the common set of 2200 probes to obtain linear regression corrections to rescale the 430B arrays to values that match the 430A array. This involved multiplying all 430B Z scores by the slope of the regression and adding a very small offset (the regression intercept). The result of this adjustment is that the mean of the 430A array expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. + +
    • Step 6b: We recentered the combined set of 430A and 430B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: We corrected for technical variance introduced by running two large batches. Individual probe means for the two batches (n = 20 and 29 samples, respectively) were calcuated separately. Probe values of the smaller batch (1) were then adjusted by multiplying batch 2 probe estimates by the Batch_2/Batch_1 ratio of the averages for that probe. + +
    • Step 8: Finally, we compute the arithmetic mean of the values for the set of microarrays for each strain. In this data set we have only a very modest number of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that this data set does not provide any correction for variance introduced by differences in sex, age, tissue source, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We expect to add statistical controls and adjustments for these variables in subsequent versions of WebQTL. +
    + + +Probe set data: The expression data were generated by PDNN method. The original expression values in CEL files were read into the PerfectMatch. There were normalized using the PDNN method of background correction and normalization. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + + +

        Data source acknowledgment:

    +
    +Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include:
      +
    • Tom Curran +
    • Dan Goldowitz +
    • Kristin Hamre +
    • Lu Lu +
    • Peter McKinnon +
    • Jim Morgan +
    • Clayton Naeve +
    • Richard Smeyne +
    • Robert Williams +
    • The Center of Genomics and Bioinformatics at UTHSC +
    • The Hartwell Center at SJCRH +
    +
    + + +

        Information about this text file:

    +

    +This text file originally generated by RWW and YHQ, September 2004. Updated by RWW, October 30, 2004. +

    + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/CB_M_1004_R.html b/web/dbdoc/CB_M_1004_R.html new file mode 100755 index 00000000..a1053140 --- /dev/null +++ b/web/dbdoc/CB_M_1004_R.html @@ -0,0 +1,229 @@ + +M430 Microarray SetAB January04 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    SJUT Cerebellum mRNA M430 (Oct04) RMA + + modify this page

    Accession number: GN46

    + + + +

        Summary:

    + +

    +The October 2004 freeze provides estimates of mRNA expression in cerebellum of adult BXD recombinant inbred mice measured using Affymetrix microarrays. Data were generated by a group of investigators at St. Jude Children's Research Hospital (SJ) and the University of Tennessee Health Science Center (UT). Cerebellar samples from BXD strains were hybridized in small pools (n=3) to pairs of 430A and 430B arrays. Data were processed using the RMA protocol and are presented with secondary normalization to an average expression value of 8 units. The variance of each array has been stabilized to 2 units for easy comparison to other transforms (see below). This data set was run in two large batches with careful consideration to balancing samples by sex and age, and a correction for a batch effect. +

    +
    + + +

        About the cases used to generate this set of data:

    + +
    We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems). Chromosomes of the two parental strains have been recombined and fixed randomly in the many different BXD strains. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004).

    + +

    In this mRNA expression data set we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + + +

        About the tissue used to generate these data:

    + +

    The October04 data set was processed in two large batches. The first batch (the May 2003 data set) consists of samples from 20 samples and 20 strains run on pairs of Affymetrix 430A and 430B arrays (40 arrays total). The second batch consists of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of whole cerebellum taken from three adult animals of the same age and sex. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years.

    + +

    RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai.

    + +

    All samples were subsequently processed at the Hartwell Center Affymetrix laboratory at SJCRH by Jay Morris.

    + +
    + +
    +The table below summarizes informaton on strain, sex, age, sample name, and batch number.
    + + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSampleIDBatch
    B6D2F1M127766-C12
    B6D2F1M94S347-1C11
    C57BL/6JF116773-C12
    C57BL/6JM109S054-1C21
    DBA/2JF71S175-1C11
    DBA/2JF91782-C12
    BXD1F57813-C12
    BXD2F142751-C11
    BXD2F78774-C12
    BXD5F56802-C12
    BXD5M71752-C11
    BXD6F92719-C11
    BXD8F72S173-1C11
    BXD9M86737-C11
    BXD11F441S200-1C11
    BXD11M92790-C12
    BXD12F130776-C12
    BXD12M64756-C12
    BXD14F190794-C12
    BXD14M91758-C12
    BXD16F163750-C11
    BXD19F61772-C12
    BXD21F116711-C11
    BXD21M64803-C12
    BXD22F65S174-1C11
    BXD23F88814-C12
    BXD24F71805-C12
    BXD24M71759-C12
    BXD25M90S429-1C11
    BXD28F113785-C12
    BXD28F427S203-1C11
    BXD29F82777-C12
    BXD29M76714-C12
    BXD29M76714-C11
    BXD31F142816-C12
    BXD32F62778-C12
    BXD32M218786-C12
    BXD33F184793-C12
    BXD33M124715-C11
    BXD34F56725-C11
    BXD34M91789-C12
    BXD38F55781-C12
    BXD38M65761-C12
    BXD39M165723-C11
    BXD40F56718-C11
    BXD40F56718-C12
    BXD40M73812-C12
    BXD42F100799-C12
    BXD42M97709-C11
    +
    +
    + +

        About the array platform:

    + +
    Affymetrix Mouse Expression 430 GeneChip set: The expression data were generated using 430A and 430B arrays. Chromosomal positions of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      +
    • Step 1: We added a constant offset of 1 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log2 of each cell signal level. + +
    • Step 3: We computed the Z scores for each cell within its array. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8 units, a variance of 4 units, and a standard deviation of 2 units. + +
    • Step 6a: The 430A and 430B arrays include a set of 100 shared probe sets that have identical probe sequences. These 100 probe sets and 2200 probes provide a good way to adjust expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array (the A array contains the more commonly expressed transcripts). To bring the two arrays into numerical alignment, we regressed Z scores of the common set of 2200 probes to obtain linear regression corrections to rescale the 430B arrays to values that match the 430A array. This involved multiplying all 430B Z scores by the slope of the regression and adding a very small offset (the regression intercept). The result of this adjustment is that the mean of the 430A array expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. + +
    • Step 6b: We recentered the combined set of 430A and 430B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: We corrected for technical variance introduced by running two large batches. Individual probe means for the two batches (n = 20 and 29 samples, respectively) were calcuated separately. Probe values of the smaller batch (1) were then adjusted by multiplying batch 2 probe estimates by the Batch_2/Batch_1 ratio of the averages for that probe. + +
    • Step 8: Finally, we compute the arithmetic mean of the values for the set of microarrays for each strain. In this data set we have only a very modest number of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that this data set does not provide any correction for variance introduced by differences in sex, age, tissue source, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We expect to add statistical controls and adjustments for these variables in subsequent versions of WebQTL. +
    + + +

    +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL are the averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples.

    + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized variance of 2 units within each array). Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets. +

    + + +

        Data source acknowledgment:

    +
    +Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include:
      +
    • Tom Curran +
    • Dan Goldowitz +
    • Kristin Hamre +
    • Lu Lu +
    • Peter McKinnon +
    • Jim Morgan +
    • Clayton Naeve +
    • Richard Smeyne +
    • Robert Williams +
    • The Center of Genomics and Bioinformatics at UTHSC +
    • The Hartwell Center at SJCRH +
    +
    + + +

        Information about this text file:

    +

    +This text file originally generated by RWW and YHQ, September 2004. Updated by RWW, October 31, 2004. +

    + + + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/CTB6F2Geno.html b/web/dbdoc/CTB6F2Geno.html new file mode 100755 index 00000000..7bf278b0 --- /dev/null +++ b/web/dbdoc/CTB6F2Geno.html @@ -0,0 +1,207 @@ + + +CTBF2 Genotypes + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    CTBF2 Genotypes modify this page

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/CXBGeno.html b/web/dbdoc/CXBGeno.html new file mode 100755 index 00000000..83618ec0 --- /dev/null +++ b/web/dbdoc/CXBGeno.html @@ -0,0 +1,164 @@ + +CXB Genotype / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    CXB Genotypes Database (July 2005) + + modify this page

    + + +

        Summary:

    + +

    + + + +This CXB genotype data set still consists of 1384 SNP and microsatellite markers with unique strain distribution patterns. This file is used to map all CXB phenotype data sets including approximately 500 phenotypes in the CXB Phenotypes database and 45,000 Hippocampal mRNA expression phenotypes. The present genotype file supercedes an older microsatellite file (405 markers).

    + + + +

        About the genotypes used in these studies:

    + +
    WebQTL mapping algorithms rely on genotypes for the CXB strains that include both microsatellite markers (labeled Mit and Msw) and single nucleotide polymorphisms (labeled Gnf). The current set of markers (n = 1384) have been carefully error-checked. Closely linked genetic markers often have the same strain distribution pattern (SDP) across the CXB strains. For computational efficiency, we only use a single marker associated with each SDP. The CXB set is so small that markers on different chromosomes occasionally have almost precisely the same SDP. This produces high non-syntenic association and false linkage between variance in phenotypes and genotypes. Please examine the correlation coeffients of markers close to interest loci with ALL other markers to evaluate the risk of non-syntenic association. +
    + +
    We have genotyped all available CXB strains from The Jackson Laboratory. The entire CXB genotypes data may be downloaded. +
    + +
    Marker-strain pairs for which we were missing genotypes were often inferred from flanking markers. In marker sets lacking genotypes for a particular strain, a note is included to that effect in the marker set description below. +
    + + +

        About the marker sets:

    + +
    Mit
    + +Mit markers, described by William Dietrich and colleagues (1992), are the most widely used of the three marker sets. These markers typically consist of regions of repeated dinucleotides (so-called CA repeat microsatellites) that vary in length among strains. The CA repeat polymorphisms are flanked by unique sequence that can be used to design polymerase chain reaction (PCR) primers that will selectively amplify the intervening variable region. While many of the Mit markers have been typed in the BXD strain set by a number of investigators, the genotypes used here are those reported in the consensus map created by Williams and colleagues (2001). + +
    +
    Mit marker names: D + (Chr of Marker) + Mit + (Order Found)
      +
    • D indicates that the marker is a DNA segment. +
    • Mit indicates that the marker was identified at the Massachusetts Institute of Technology. +
    • Order Found indicates the order in which the markers were identified.
    +
    + +
    Gnf +
    Gnf markers are single nucleotide polymorphisms (SNPs) identified between B6 and D2 by genomic sequence sampling. Polymorphisms were typed by Mathew Pletcher and Tim Wiltshire using the Sequenom MassEXTEND system (Wiltshire et al., 2003). Each of the genotyping reactions was set up in duplicate. Physical positions were determined for each marker and integrated with previous BXD RI mapping data based on a combination of physical and genetic positions. Unsupported double crossovers were verified by manual inspection to ensure accuracy of calls. A full list of SNPs identified in the sequence sampling can be found at http://www.gnf.org/SNP. +
    +
    Gnf marker names: S + (Chr of Marker) + Gnf + (Mb position)
      +
    • S indicates the marker is a SNP +
    • Gnf indicates that the marker originated at the Genomics Institute of the Novartis Research Foundation. +
    • Mb position may include decimal values.
    +
    + + +

    + +Notes on Nomenclature: The CXB set is the first and oldest group of RI strains of any species. The materal strain is BALB/cBy and the paternal strain is C57BL/6By. Eleven CXB strains were produced at the National Institutes of Health by Donald Bailey (By) starting in 1959, and eight are still extant. After moving to The Jackson Laboratory in 1967, an additional set of five strains were created with the help of Jo Hilgers (Hi). The strains are now labeled numerically. The following are the old strain symbols for CXB1 through CXB7: +

      +
    • CXB1 = CXBD +
    • CXB2 = CXBE +
    • CXB3 = CXBG +
    • CXB4 = CXBH +
    • CXB5 = CXBI +
    • CXB6 = CXBJ +
    • CXB7 = CXBK (has a 3' UTR polymorphism in mu opioid receptor; PMID: 16708053) +
    +
    + + + +

        Acknowledgments:

    +
    +Genotypes for the Mit and Msw marker sets were determined by Jing Gu and + +Lu Lu. Gnf SNP genotypes were generated by Tim + +Wiltshire and Mathew Pletcher. The selection of markers to included in the final file was carried out + +by Jing Gu. + +This text file was originally written by Jeremy Peirce (August 21, + +2003). Updated August 22, 2003 by RW/JP/LL. Updated July 31, 2005 by RW. + + +
    + +

        Reference:

    +

    Dietrich WF, Katz H, Lincoln SE (1992) A genetic map of the mouse suitable for typing in intraspecific crosses. Genetics 131:423-447. +

    + +

    +Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant inbred mice: High-resolution consensus maps for complex trait analysis. Genome Biology 2:RESEARCH0046 +

    + +

    +Wiltshire T, Pletcher MT, Batalov S, Barnes SW, Tarantino LM, Cooke MP, Wu H, Smylie K, Santrosyan A, Copeland NG, Jenkins NA, Kalush F, Mural RJ, Glynne RJ, Kay SA, Adams MD, Fletcher CF (2003) Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc Natl Acad Sci USA 100:3380-3385. + + +

    +

    +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/CXBPublish.html b/web/dbdoc/CXBPublish.html new file mode 100755 index 00000000..07f49ff9 --- /dev/null +++ b/web/dbdoc/CXBPublish.html @@ -0,0 +1,124 @@ + +Publish Phenotype / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    + +CXB Published Phenotypes Database + + modify this page

    + +

        Summary:

    + +

    +This CXB Phenotype Database includes published trait data for up to 13 recombinant inbred strains. Data were collected and curated at the University of Tennessee Health Science Center (UTHSC) starting in 2000.

    +
    + + +

        About the cases used in these studies:

    + +

    + +The CXB set is the first and oldest group of RI strains of any species. The materal strain is BALB/cBy and the paternal strain is C57BL/6By. Eleven CXB strains were produced at the National Institutes of Health by Donald Bailey (By) starting in 1959, and eight are still extant. After moving to The Jackson Laboratory in 1967, an additional set of five strains were created with the help of Jo Hilgers (Hi). The strains are now labeled numerically. The following are the old strain symbols for CXB1 through CXB7: +

      +
    • CXB1 = CXBD +
    • CXB2 = CXBE +
    • CXB3 = CXBG +
    • CXB4 = CXBH +
    • CXB5 = CXBI +
    • CXB6 = CXBJ +
    • CXB7 = CXBK (has a 3' UTR polymorphism in mu opioid receptor; PMID: 16708053) +
    +
    + + + +

        About data acquisition:

    + +

    Published phenotypes were obtained through a literature search of PubMed-indexed journals. When possible, exact values of graphically represented data were obtained from the authors. In other cases graphs were measured using a vernier caliper. Some published and unpublished phenotypes were submitted directly by investigators. Unpublisehd phenotypes usually have Record ID numbers less than 1.

    + +

    Each study has used mice purchased from The Jackson Laboratory or bred in-house. When available, PubMed links connect to abstracts and papers.

    + +

    A CXB phenotypes Filemaker Pro database (current through to September 2004) can be searched online at http://www.nervenet.org/main/databases.html.

    + +

    How to obtain these strains: Please see http://jaxmice.jax.org/jaxmicedb/html/rcbinbred.shtml +

    + +
    + + +

        Submitting data and reporting +mistakes:

    + +

    The utility of this data set increases multiplicatively as each new phenotype is added. To submit data or report mistakes, please contact Elissa J. Chesler and Robert W. Williams at the University of Tennessee Health Science Center.

    + + +

        Acknowledgments:

    +

    The initial construction of this database was performed by Ryan McNeive, Nathan Copeland and Mary-Kathleen Sullivan at University of Tennessee Health Sciences Center.

    + +

        Information about this text file:

    +

    This text file originally generated by EJC, March 2004. Updated by RWW, October 30, 2004. +

    + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/ColXBurGeno.html b/web/dbdoc/ColXBurGeno.html new file mode 100755 index 00000000..e49931c3 --- /dev/null +++ b/web/dbdoc/ColXBurGeno.html @@ -0,0 +1,119 @@ + +BXD Genotype / WebQTL + + + + + + + + + + + + + +
    + + + +
    + +

    Arabidopsis Col X Bur Genotypes Database + + modify this page

    + + +

        Summary:

    + +

    + +

    The Col x Bur genetic reference population consists of approximately 347 recombinant inbred lines (RIL). This set was created by Olivier Loudet and colleagues between 2003 and 2006 at the INRA in Versailles, France. Arabidopsis has a genome consisting of five chromsomes and a total of 125 megabases of DNA, equivalent in length to a single human chromosome. However, the genome is nonetheless rich and contains approximately 26,000 genes. Full sequence data are available for this species. (The Col-0 accession was sequenced.) +

    + +

    The RILs were derived from a cross between Col-0 (Columbia, USA, accession N1092) and Bur-0 (Burren, Ireland, accession N1028); two accessions obtained from the NASC European Arabidopsis Stock Centre. Col and Bur were chosen because of their well characterized genetic, geographical, and ecological differences. Lines were propagated by single seed descent through the sixth generation (F6) without selection. One plant per line was then used for genotyping (347 RILs x 87 markers) and selfed to obtain F7 seeds. F8 seed stock generated by bulk multiplication of F7 plants are available for analysis. Data sets in WebQTL include up to 415 ColXBur accessions and the two parental stock. +

    + +
    + +

        About the genotypes used in these studies:

    + +
    +This production of the ColXBur Arabidopsis genotype data set is described in Loudet and colleagues (in progress). This marker data set consists of 87 markers for all strains. It is used to map QTLs for phenotypes listed in the ColXBur Published Phenotypes data set. + +

    Download the ColXBur genotype data set. +

    + + + + +

        Reference:

    + +
    +Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F (2002) Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theoretical and Applied Genetics 104:1173-1184 (pdf) +
    + + +

        Acknowledgments and File History

    +
    + +

    This text file was originally written by Robert Williams and Olivier Loudet (March 8, 2006). Updated March 8, 2006 by OL. +

    + + +

    + +

    +
    + + +
    + +

    +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/ColXBurPublish.html b/web/dbdoc/ColXBurPublish.html new file mode 100755 index 00000000..826d1b19 --- /dev/null +++ b/web/dbdoc/ColXBurPublish.html @@ -0,0 +1,207 @@ + + +ColXBur Published Phenotypes + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    ColXBur Published Phenotypes modify this page

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/ColXCviGeno.html b/web/dbdoc/ColXCviGeno.html new file mode 100755 index 00000000..7b87ae9c --- /dev/null +++ b/web/dbdoc/ColXCviGeno.html @@ -0,0 +1,119 @@ + +BXD Genotype / WebQTL + + + + + + + + + + + + + +
    + + + +
    + +

    Arabidopsis Col X Cvi Genotypes Database + + modify this page

    + + +

        Summary:

    + +

    + +

    The Col x Cvi genetic reference population consists of approximately 367 recombinant inbred lines (RIL). This set was created by Olivier Loudet and colleagues between 2003 and 2006 at the INRA in Versailles, France. Arabidopsis has a genome consisting of five chromsomes and a total of 125 megabases of DNA, equivalent in length to a single human chromosome. However, the genome is nonetheless rich and contains approximately 26,000 genes. Full sequence data are available for this species. (The Col-0 accession was sequenced.) +

    + +

    The RILs were derived from a cross between Col-0 (Columbia, USA, accession N1092) and Cvi-0 (Cape Verde Island, accession N902); two accessions obtained from the NASC European Arabidopsis Stock Centre. Col-0 and Cvi-0 were chosen because of their well characterized genetic, geographical, and ecological differences. Lines were propagated by single seed descent through the sixth generation (F6) without selection. One plant per line was then used for genotyping (367 RILs x 90 markers) and selfed to obtain F7 seeds. F8 seed stock generated by bulk multiplication of F7 plants are available for analysis. +

    + +
    + +

        About the genotypes used in these studies:

    + +
    +This production of the ColXCvi Arabidopsis genotype data set is described in Loudet and colleagues (in progress). This marker data set consists of 90 markers for most strains. It is used to map QTLs for phenotypes listed in the ColXCvi Published Phenotypes data set. + +

    Download the ColXCvi genotype data set. +

    + + + + +

        Reference:

    + +
    +Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F (2002) Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theoretical and Applied Genetics 104:1173-1184 (pdf) +
    + + +

        Acknowledgments and File History

    +
    + +

    This text file was originally written by Robert Williams and Olivier Loudet (March 8, 2006). Updated March 8, 2006 by OL. +

    + + +

    + +

    +
    + + +
    + +

    +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/ColXCviPublish.html b/web/dbdoc/ColXCviPublish.html new file mode 100755 index 00000000..5f617cdb --- /dev/null +++ b/web/dbdoc/ColXCviPublish.html @@ -0,0 +1,207 @@ + + +ColXCvi Published Phenotypes + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    ColXCvi Published Phenotypes modify this page

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/DevNeocortex_ILM6.2P14RInv_1110.html b/web/dbdoc/DevNeocortex_ILM6.2P14RInv_1110.html new file mode 100755 index 00000000..1226038f --- /dev/null +++ b/web/dbdoc/DevNeocortex_ILM6.2P14RInv_1110.html @@ -0,0 +1,143 @@ + +BIDMC/UTHSC Dev Neocortex P14 ILMv6.2 (Nov10) RankInv ** + + + + + + + + + + + + + + + + + + +
    + + + + + +

    BIDMC/UTHSC Dev Neocortex P14 ILMv6.2 (Nov10) RankInv ** +modify this page

    Accession number: GN275

    + + +
    +

    Summary:

    +

    The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment. +

    All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high). +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10). +

    Users of these mouse neocortex data may also find the following complementary resources and papers useful: +

    Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex. +

    A movie of the dissection of the brain by Dr. Glenn Rosen. +ABOUT THE NEOCORTEX +

    +

    About the strains used to generate this set of data

    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006). + +

    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexStrainAgeBatch IDSample IDTube ID
    1BXD1P1415448576045_B252
    2BXD2P1455452241006_C356
    3BXD5P1435384138058_D282
    4BXD6P1485237939010_B134
    5BXD8P1475384138020_E178
    6BXD9P1445452241007_C150
    7BXD11P1475384138021_A145
    8BXD12P1485448576010_E448
    9BXD13P1435384138048_E190
    10BXD14P1445452241023_E464
    11BXD15P1445452241031_B532
    12BXD16P1455452241004_D200
    13BXD18P1475384138017_C398
    14BXD19P1445452241007_F217
    15BXD20P1435452241034_C459
    16BXD21P1465452241033_A339
    17BXD24aP1435384138058_B261
    18BXD27P1415448576045_D306
    19BXD28P1465452241035_C540
    20BXD29P1455452241017_E508
    21BXD31P1485448576011_C564
    22BXD32P1415448576045_F414
    23BXD34P1465452241033_B361
    24BXD36P1465452241035_A492
    25BXD38P1425384138041_E330
    26BXD39P1425384138049_A524
    27BXD40P1455452241006_D381
    28BXD42P1475384138016_B444
    29BXD51P1485448576011_F628
    30BXD61P1425384138049_C572
    31BXD70P1415448576044_C591
    32BXD73P1425384138049_F612
    +

    + +

    Animals and Tissue Used to Generate This Set of Data:

    +

    All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum. +

    All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. +

    +

    Sample Processing:

    +

    Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

    +

    Experimental Design and Batch Structure:

    +

    This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

    +

    Data Source Acknowledgements:

    +

    +

    + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/DevNeocortex_ILM6.2P14RInv_1111.html b/web/dbdoc/DevNeocortex_ILM6.2P14RInv_1111.html new file mode 100755 index 00000000..63446214 --- /dev/null +++ b/web/dbdoc/DevNeocortex_ILM6.2P14RInv_1111.html @@ -0,0 +1,213 @@ + + + + + +BIDMC/UTHSC Dev Neocortex P14 ILMv6.2 (Nov11) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    BIDMC/UTHSC Dev Neocortex P14 ILMv6.2 (Nov11) RankInv **modify this page

    + + Accession number: GN375

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/DevNeocortex_ILM6.2P3RInv_1110.html b/web/dbdoc/DevNeocortex_ILM6.2P3RInv_1110.html new file mode 100755 index 00000000..ec3f12c3 --- /dev/null +++ b/web/dbdoc/DevNeocortex_ILM6.2P3RInv_1110.html @@ -0,0 +1,194 @@ + +BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** + + + + + + + + + + + + + + + + + + +
    + + + + + +

    BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** +modify this page

    Accession number: GN274

    + + +
    +

    Summary:

    + +

    IN PROGRESS: Data generated by Dr. Glenn D. Rosen and colleagues + +

    The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment. + +

    Some of these data were used in + +
    Gaglani SM, Lu L, Williams RW, Rosen GD (2009) The genetic control of neocortex volume and covariation with patterns of gene expression in mice. BMC Neuroscience 10:44 + +Full Text HTML Version, +Full Text PDF Version + + +

    All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high). + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10). + +

    Users of these mouse neocortex data may also find the following complementary resources and papers useful: + +

    Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex. + +

    A movie of the dissection of the brain by Dr. Glenn Rosen. +ABOUT THE NEOCORTEX +

    +

    About the strains used to generate this set of data

    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

    + +

    Animals and Tissue Used to Generate This Set of Data:

    + +

    All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum. +

    All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn D. Rosen and colleagues. + + +

    +

    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexStrainAgeBatch IDSample IDTube ID
    1BXD1P325384138018_F236
    2BXD1P335384138058_A239
    3BXD2P325384138018_C168
    4BXD2P315448576044_F167
    5BXD5P375384138020_A273
    6BXD5P345452241022_C267
    7BXD6P335384138048_A107
    8BXD6P345452241007_A108
    9BXD8P365384138009_A113
    10BXD8P375384138021_C115
    11BXD9P355452241004_F289
    12BXD9P345452241022_D288
    13BXD11P385237939010_A117
    14BXD11P315448576044_D120
    15BXD12P365384138009_B130
    16BXD12P375384138021_B132
    17BXD13P375384138020_F161
    18BXD13P355452241004_C164
    19BXD14P355452241004_B158
    20BXD14P365452241033_D424
    21BXD15P335452241008_C437
    22BXD15P345452241023_D438
    23BXD16P335384138048_D170
    24BXD16P345452241007_D172
    25BXD18P385448576010_A390
    26BXD18P315448576045_E392
    27BXD19P385237939010_E210
    28BXD19P315448576045_A211
    29BXD20P355452241017_B439
    30BXD20P365452241033_E441
    31BXD21P375384138021_F341
    32BXD21P365384138053_F315
    33BXD24aP385237939012_B251
    34BXD24aP375384138020_B250
    35BXD27P385237939012_D298
    36BXD27P315448576045_C300
    37BXD28P325384138049_B550
    38BXD28P315448576029_F548
    39BXD29P325384138047_F502
    40BXD29P315448576029_D501
    41BXD31P355452241024_D579
    42BXD31P365452241035_D582
    43BXD32P355452241006_F407
    44BXD32P365452241033_C408
    45BXD34P385237939012_F345
    46BXD34P345452241022_F355
    47BXD36P375384138016_A429
    48BXD36P385448576010_D430
    49BXD38P325384138041_F327
    50BXD38P335384138058_E328
    51BXD39P375384138016_E515
    52BXD39P355452241024_A518
    53BXD40P325384138041_C373
    54BXD40P335452241008_A375
    55BXD42P335452241008_E485
    56BXD42P345452241023_F486
    57BXD51P355452241024_F621
    58BXD51P365452241035_F622
    59BXD61P345452241031_C554
    60BXD61P335452241034_A552
    61BXD70P325384138049_D590
    62BXD70P315448576044_B589
    63BXD73P325384138049_E603
    64BXD73P385448576011_E605
    +
    +

    +

    Sample Processing:

    +

    Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

    +

    Experimental Design and Batch Structure:

    +

    This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

    +

    Data Source Acknowledgements:

    +

    +

    + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/DevNeocortex_ILM6.2P3RInv_1111.html b/web/dbdoc/DevNeocortex_ILM6.2P3RInv_1111.html new file mode 100755 index 00000000..5663ac52 --- /dev/null +++ b/web/dbdoc/DevNeocortex_ILM6.2P3RInv_1111.html @@ -0,0 +1,213 @@ + + + + + +BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov11) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov11) RankInv **modify this page

    + + Accession number: GN374

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/DevNeucortex_ILM6.2P14RInv_1110.html b/web/dbdoc/DevNeucortex_ILM6.2P14RInv_1110.html new file mode 100755 index 00000000..1226038f --- /dev/null +++ b/web/dbdoc/DevNeucortex_ILM6.2P14RInv_1110.html @@ -0,0 +1,143 @@ + +BIDMC/UTHSC Dev Neocortex P14 ILMv6.2 (Nov10) RankInv ** + + + + + + + + + + + + + + + + + + +
    + + + + + +

    BIDMC/UTHSC Dev Neocortex P14 ILMv6.2 (Nov10) RankInv ** +modify this page

    Accession number: GN275

    + + +
    +

    Summary:

    +

    The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment. +

    All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high). +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10). +

    Users of these mouse neocortex data may also find the following complementary resources and papers useful: +

    Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex. +

    A movie of the dissection of the brain by Dr. Glenn Rosen. +ABOUT THE NEOCORTEX +

    +

    About the strains used to generate this set of data

    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006). + +

    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexStrainAgeBatch IDSample IDTube ID
    1BXD1P1415448576045_B252
    2BXD2P1455452241006_C356
    3BXD5P1435384138058_D282
    4BXD6P1485237939010_B134
    5BXD8P1475384138020_E178
    6BXD9P1445452241007_C150
    7BXD11P1475384138021_A145
    8BXD12P1485448576010_E448
    9BXD13P1435384138048_E190
    10BXD14P1445452241023_E464
    11BXD15P1445452241031_B532
    12BXD16P1455452241004_D200
    13BXD18P1475384138017_C398
    14BXD19P1445452241007_F217
    15BXD20P1435452241034_C459
    16BXD21P1465452241033_A339
    17BXD24aP1435384138058_B261
    18BXD27P1415448576045_D306
    19BXD28P1465452241035_C540
    20BXD29P1455452241017_E508
    21BXD31P1485448576011_C564
    22BXD32P1415448576045_F414
    23BXD34P1465452241033_B361
    24BXD36P1465452241035_A492
    25BXD38P1425384138041_E330
    26BXD39P1425384138049_A524
    27BXD40P1455452241006_D381
    28BXD42P1475384138016_B444
    29BXD51P1485448576011_F628
    30BXD61P1425384138049_C572
    31BXD70P1415448576044_C591
    32BXD73P1425384138049_F612
    +

    + +

    Animals and Tissue Used to Generate This Set of Data:

    +

    All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum. +

    All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. +

    +

    Sample Processing:

    +

    Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

    +

    Experimental Design and Batch Structure:

    +

    This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

    +

    Data Source Acknowledgements:

    +

    +

    + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/DevNeucortex_ILM6.2P3RInv_1110.html b/web/dbdoc/DevNeucortex_ILM6.2P3RInv_1110.html new file mode 100755 index 00000000..94f342d9 --- /dev/null +++ b/web/dbdoc/DevNeucortex_ILM6.2P3RInv_1110.html @@ -0,0 +1,175 @@ + +BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** + + + + + + + + + + + + + + + + + + +
    + + + + + +

    BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** +modify this page

    Accession number: GN274

    + + +
    +

    Summary:

    +

    The Neocortex Developmental data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment. +

    All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the Striatal Developmental Transcriptome data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high). +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Developmental data set, xxxx probes have LRS values >46 (LOD >10). +

    Users of these mouse neocortex data may also find the following complementary resources and papers useful: +

    Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex. +

    A movie of the dissection of the brain by Dr. Glenn Rosen. +ABOUT THE NEOCORTEX +

    +

    About the strains used to generate this set of data

    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

    + +

    Animals and Tissue Used to Generate This Set of Data:

    +

    All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum. +

    All animals used in this study were either 3 or 14 days of age. A pool of dissected neocortical tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. +

    +

    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexStrainAgeBatch IDSample IDTube ID
    1BXD1P325384138018_F236
    2BXD1P335384138058_A239
    3BXD2P325384138018_C168
    4BXD2P315448576044_F167
    5BXD5P375384138020_A273
    6BXD5P345452241022_C267
    7BXD6P335384138048_A107
    8BXD6P345452241007_A108
    9BXD8P365384138009_A113
    10BXD8P375384138021_C115
    11BXD9P355452241004_F289
    12BXD9P345452241022_D288
    13BXD11P385237939010_A117
    14BXD11P315448576044_D120
    15BXD12P365384138009_B130
    16BXD12P375384138021_B132
    17BXD13P375384138020_F161
    18BXD13P355452241004_C164
    19BXD14P355452241004_B158
    20BXD14P365452241033_D424
    21BXD15P335452241008_C437
    22BXD15P345452241023_D438
    23BXD16P335384138048_D170
    24BXD16P345452241007_D172
    25BXD18P385448576010_A390
    26BXD18P315448576045_E392
    27BXD19P385237939010_E210
    28BXD19P315448576045_A211
    29BXD20P355452241017_B439
    30BXD20P365452241033_E441
    31BXD21P375384138021_F341
    32BXD21P365384138053_F315
    33BXD24aP385237939012_B251
    34BXD24aP375384138020_B250
    35BXD27P385237939012_D298
    36BXD27P315448576045_C300
    37BXD28P325384138049_B550
    38BXD28P315448576029_F548
    39BXD29P325384138047_F502
    40BXD29P315448576029_D501
    41BXD31P355452241024_D579
    42BXD31P365452241035_D582
    43BXD32P355452241006_F407
    44BXD32P365452241033_C408
    45BXD34P385237939012_F345
    46BXD34P345452241022_F355
    47BXD36P375384138016_A429
    48BXD36P385448576010_D430
    49BXD38P325384138041_F327
    50BXD38P335384138058_E328
    51BXD39P375384138016_E515
    52BXD39P355452241024_A518
    53BXD40P325384138041_C373
    54BXD40P335452241008_A375
    55BXD42P335452241008_E485
    56BXD42P345452241023_F486
    57BXD51P355452241024_F621
    58BXD51P365452241035_F622
    59BXD61P345452241031_C554
    60BXD61P335452241034_A552
    61BXD70P325384138049_D590
    62BXD70P315448576044_B589
    63BXD73P325384138049_E603
    64BXD73P385448576011_E605
    +
    +

    +

    Sample Processing:

    +

    Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

    +

    Experimental Design and Batch Structure:

    +

    This data set consists arrays processed in 8 groups over a 2 month period (from July-August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

    +

    Data Source Acknowledgements:

    +

    +

    + + + +
    + + + + + + + + + + +
    +
      + +
    +
    + + + + + + + + + + + + + + diff --git a/web/dbdoc/DevStriatum_ILM6.2P14RInv_1110.html b/web/dbdoc/DevStriatum_ILM6.2P14RInv_1110.html new file mode 100755 index 00000000..1e176355 --- /dev/null +++ b/web/dbdoc/DevStriatum_ILM6.2P14RInv_1110.html @@ -0,0 +1,145 @@ + +BIDMC/UTHSC Dev Striatum P14 ILMv6.2 (Nov10) RankInv ** + + + + + + + + + + + + + + + + + + +
    + + + + + +

    BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** +modify this page

    Accession number: GN277

    + + +
    +

    Summary:

    +

    The BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment. +

    All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high). +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this data set, xxxx probes have LRS values >46 (LOD >10). +

    Users of these mouse striatum data set may also find the following complementary resources and papers useful: +

    A movie of the dissection of the brain by Dr. Glenn Rosen. +www.rosenlab.net/Movie/P3.mov
    +www.rosenlab.net/Movie/P14.mov + +

    +

    About the strains used to generate this set of data

    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

    + +

    Animals and Tissue Used to Generate This Set of Data:

    +

    All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Care was taken to assure that samples were comprised of the dorsal striatum, although it is possible that ventral striatum (accumbens) was occasionally included. +

    All animals used in this study were either 3 or 14 days of age. A pool of dissected striatal tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. +

    +

    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexStrainAgeBatch IDSample IDTube ID
    1BXD1P1445452241022_A240
    2BXD2P1435384138058_F353
    3BXD5P1485237939012_C275
    4BXD6P1415448576044_E139
    5BXD8P1465384138009_D174
    6BXD8P1465384138009_E175
    7BXD9P1465384138009_C155
    8BXD11P1485237939010_C142
    9BXD12P1415448576029_B452
    10BXD13P1425384138018_D187
    11BXD14P1455452241017_C468
    12BXD15P1435452241034_B528
    13BXD16P1445452241007_E194
    14BXD18P1425384138047_A393
    15BXD19P1485237939010_F225
    16BXD20P1425384138047_D455
    17BXD21P1475384138021_E319
    18BXD24aP1465384138053_C258
    19BXD27P1425384138041_B303
    20BXD28P1455452241024_B536
    21BXD29P1435452241008_F504
    22BXD31P1475384138017_D559
    23BXD32P1485448576010_C410
    24BXD34P1475384138017_A365
    25BXD36P1455452241017_D488
    26BXD38P1455452241006_B335
    27BXD39P1415448576029_E520
    28BXD40P1445452241023_A377
    29BXD42P1465452241033_F472
    30BXD51P1475384138017_F626
    31BXD61P1415448576044_A568
    32BXD70P1445452241031_E597
    33BXD73P1435452241034_E608
    +
    +

    +

    Sample Processing:

    +

    Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

    +

    Experimental Design and Batch Structure:

    +

    This data set consists arrays processed in 8 groups over a 2 month period (from July �August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

    +

    Data Source Acknowledgements:

    +

    +

    + + + +
    + + + + + + + + + + +
    +
      + +
    +
    + + + + + + + + + + + + + + diff --git a/web/dbdoc/DevStriatum_ILM6.2P14RInv_1111.html b/web/dbdoc/DevStriatum_ILM6.2P14RInv_1111.html new file mode 100755 index 00000000..19fdaa39 --- /dev/null +++ b/web/dbdoc/DevStriatum_ILM6.2P14RInv_1111.html @@ -0,0 +1,213 @@ + + + + + +BIDMC/UTHSC Dev Striatum P14 ILMv6.2 (Nov11) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    BIDMC/UTHSC Dev Striatum P14 ILMv6.2 (Nov11) RankInv **modify this page

    + + Accession number: GN377

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/DevStriatum_ILM6.2P3RInv_1110.html b/web/dbdoc/DevStriatum_ILM6.2P3RInv_1110.html new file mode 100755 index 00000000..6d7fdb07 --- /dev/null +++ b/web/dbdoc/DevStriatum_ILM6.2P3RInv_1110.html @@ -0,0 +1,175 @@ + +BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** + + + + + + + + + + + + + + + + + + +
    + + + + + +

    BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** +modify this page

    Accession number: GN276

    + + +
    +

    Summary:

    +

    The BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv ** data set provides estimates of mRNA expression during two developmental ages (postnatal days 3 and 14) in the cerebral cortex from 32 BXD strains. All samples are from normal animals raised and bred in a standard laboratory environment. +

    All samples were processed using 32 Illumina Sentrix v6.2 BeadArray slides. All samples passed stringent quality control and error checking. This data set is a companion to the BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv ** data set and was processed using identical methods and the same strains. This data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high). +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this data set, xxxx probes have LRS values >46 (LOD >10). +

    Users of these mouse striatum data set may also find the following complementary resources and papers useful: +

    A movie of the dissection of the brain by Dr. Glenn Rosen. +www.rosenlab.net/Movie/P3.mov
    +www.rosenlab.net/Movie/P14.mov + +

    +

    About the strains used to generate this set of data

    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 28 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 4 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006).

    + +

    Animals and Tissue Used to Generate This Set of Data:

    +

    All animals were raised at Beth Israel Deaconess Medical Center in SPF facilities from stock obtained from either Jackson Laboratory or UTHSC. All mice were killed by decapitation. Whole brain dissections were performed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Care was taken to assure that samples were comprised of the dorsal striatum, although it is possible that ventral striatum (accumbens) was occasionally included. +

    All animals used in this study were either 3 or 14 days of age. A pool of dissected striatal tissue from three naive animals of the same strain and age were collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. +

    +

    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexStrainAgeBatch IDSample IDTube ID
    1BXD1P385237939012_A232
    2BXD1P315448576016_C234
    3BXD2P375384138020_C230
    4BXD2P365384138053_A228
    5BXD5P365384138053_D270
    6BXD5P355452241004_E268
    7BXD6P325384138018_A102
    8BXD6P315448576016_A101
    9BXD8P335384138048_B110
    10BXD9P325384138041_A280
    11BXD9P335384138058_C278
    12BXD11P325384138018_B121
    13BXD11P335384138048_C123
    14BXD12P355452241004_A127
    15BXD12P345452241007_B125
    16BXD13P385237939010_D181
    17BXD13P315448576016_B183
    18BXD14P355452241017_A420
    19BXD14P345452241023_C419
    20BXD15P375384138016_C475
    21BXD15P385448576010_F476
    22BXD16P365384138009_F204
    23BXD16P375384138020_D205
    24BXD18P375384138017_B388
    25BXD18P335452241008_B385
    26BXD19P325384138018_E212
    27BXD19P335384138048_F213
    28BXD20P325384138047_C431
    29BXD20P315448576029_A431
    30BXD21P355452241006_A311
    31BXD21P345452241022_E309
    32BXD24aP365384138053_B247
    33BXD24aP345452241022_B244
    34BXD27P375384138021_D294
    35BXD27P365384138053_E293
    36BXD28P375384138016_F543
    37BXD28P385448576011_B545
    38BXD29P375384138016_D495
    39BXD29P385448576011_A498
    40BXD31P345452241031_D577
    41BXD31P335452241034_D575
    42BXD32P355452241006_E402
    43BXD32P345452241023_B401
    44BXD34P325384138041_D348
    45BXD34P315448576016_E347
    46BXD36P325384138047_B417
    47BXD36P335452241008_D418
    48BXD38P385237939012_E321
    49BXD38P315448576016_D322
    50BXD39P355452241017_F511
    51BXD39P345452241031_A512
    52BXD40P385448576010_B368
    53BXD40P315448576016_F371
    54BXD42P325384138047_E481
    55BXD42P315448576029_C479
    56BXD51P345452241031_F616
    57BXD51P335452241034_F615
    58BXD61P355452241024_C555
    59BXD61P365452241035_B557
    60BXD70P375384138017_E584
    61BXD70P385448576011_D585
    62BXD73P355452241024_E600
    63BXD73P365452241035_E601
    +
    +

    +

    Sample Processing:

    +

    Samples were processed by Lorne Rose and colleagues in the Illumina Core at UTHSC between July and August 2010. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols.

    +

    Experimental Design and Batch Structure:

    +

    This data set consists arrays processed in 8 groups over a 2 month period (from July �August 2010). All groups consisted of 24 samples. All arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Lorne Rose. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below.

    +

    Data Source Acknowledgements:

    +

    +

    + + + +
    + + + + + + + + + + +
    +
      + +
    +
    + + + + + + + + + + + + + + diff --git a/web/dbdoc/DevStriatum_ILM6.2P3RInv_1111.html b/web/dbdoc/DevStriatum_ILM6.2P3RInv_1111.html new file mode 100755 index 00000000..152a5e43 --- /dev/null +++ b/web/dbdoc/DevStriatum_ILM6.2P3RInv_1111.html @@ -0,0 +1,213 @@ + + + + + +BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov11) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov11) RankInv **modify this page

    + + Accession number: GN376

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/EPFLMouseMuscleCDRMA1211.html b/web/dbdoc/EPFLMouseMuscleCDRMA1211.html new file mode 100755 index 00000000..fcbbd54f --- /dev/null +++ b/web/dbdoc/EPFLMouseMuscleCDRMA1211.html @@ -0,0 +1,211 @@ + + + + +EPFL/LISP BXD CD Muscle Affy Mouse Gene 1.0 ST (Dec11) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    EPFL/LISP BXD CD Muscle Affy Mouse Gene 1.0 ST (Dec11) RMA **modify this page

    + + Accession number: GN379

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/EPFLMouseMuscleHFDRMA1211.html b/web/dbdoc/EPFLMouseMuscleHFDRMA1211.html new file mode 100755 index 00000000..8d65ccfa --- /dev/null +++ b/web/dbdoc/EPFLMouseMuscleHFDRMA1211.html @@ -0,0 +1,211 @@ + + + + +EPFL/LISP BXD HFD Muscle Affy Mouse Gene 1.0 ST (Dec11) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    EPFL/LISP BXD HFD Muscle Affy Mouse Gene 1.0 ST (Dec11) RMA **modify this page

    + + Accession number: GN380

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/EPFLMouseMuscleRMA1211.html b/web/dbdoc/EPFLMouseMuscleRMA1211.html new file mode 100755 index 00000000..3635426d --- /dev/null +++ b/web/dbdoc/EPFLMouseMuscleRMA1211.html @@ -0,0 +1,211 @@ + + + + +EPFL/LISP BXD Muscle Affy Mouse Gene 1.0 ST (Dec11) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    EPFL/LISP BXD Muscle Affy Mouse Gene 1.0 ST (Dec11) RMA **modify this page

    + + Accession number: GN378

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/EYE_M2_0406_R.html b/web/dbdoc/EYE_M2_0406_R.html new file mode 100755 index 00000000..80cd684f --- /dev/null +++ b/web/dbdoc/EYE_M2_0406_R.html @@ -0,0 +1,7313 @@ + +HEIMED M430 Microarray Eye RMA November05 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    + +Hamilton Eye Institute Mouse Eye M430v2 (April06) RMA Data Set modify this page

    Accession number: GN107

    + +

        Summary:

    + +
    +

    +SUPERCEDED EYE DATA SET. The HEIMED April 2006 data set provides estimates of mRNA expression in whole eyes of 71 lines of young adult mice generated using 132 Affymetrix M430 2.0 arrays. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools; one male, one female, for each straion. This data set was processed using the RMA protocol. To simplify comparison among different transforms, RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.

    +
    + + +

        About the cases used to generate this set of data:

    + +
    +We used a set of 55 BXD recombinant inbred strains, 14 conventional inbred strains including C57BL/6J (B6) and DBA/2J (D2), and their reciprocal F1s. BXD strains were generated by crossing C57BL/6J with DBA/2J. The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D2). Physical maps in WebQTL incorporate approximately 2 million B6 vs D2 SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD1 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. + +

    Please note that BXD24/TyJ (JAX stock number 000031) used in this study is also known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 stock that has now been rederived, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control. + +

    BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

    + + +

    Mouse Diversity Panel (MDP). In addition to the BXD strains, we have profiled a MDP consisting 14 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) have been included in the MDP. Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) also carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene. + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase-negative albino (c) mutant + + +
    3. BALB/cByJ +
           Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list. A tyrosinase-negative albino (c) mutant + + +
    4. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list. Important to note for this Eye dataset, C3H/HeJ is a Pdeb6 mutant with near total photoreceptor loss at maturity. + +
    5. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    6. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    7. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    8. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    9. LG/J +
          Paternal parent of the LGXSM panel + +
    10. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    11. NZO/HlLtJ +
          Collaborative Cross strain + +
    12. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    13. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    14. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    15. B6D2F1 and D2B6F1, aka F1 in some graphs and tables +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J. These reciprocal F1 can be used to detect some imprinted genes. +
    + + + +

        About the tissue used to generate this set of data:

    + +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube. + +

    Each array was hybridized with a pool of RNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

    + +Dissecting and preparing eyes for RNA extraction +

      +
    1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below). +
    2. Store RNA in 75% ethanol at –80 deg. C until use. +
    + +

    Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue) +
    2. allowed the homogenate to stand for 5 min at room temperature +
    3. added 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    4. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min +
    5. centrifuged at 12,000 G for 15 min +
    6. transfered the aqueous phase to a fresh tube +
    7. added 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    8. vortexed and allowed sample to stand at room temperature for 5-10 min +
    9. centrifuged at 12,000 G for 10-15 min +
    10. removed the supernatant and washed the RNA pellet with 75% ethanol +
    11. stored the pellet in 75% ethanol at -80 deg C until use +
    + + +

    Sample Processing. Samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center lead by Drs. John Stuart and Weikuan Gu. All processing steps were performed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use (one third roughly) or were immediately used for hybridization. + +

    Dealing with Ocular Pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. The key determinant of this interesting effect is the Tyrp1 (brown) locus on Chr 4 at about 80 Mb. Loci on Chr 4 that map at this location should be considered with skepticism and reviewed carefully. To address this problem Yan Jiao purified total RNA a second time using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204). This was done for 8 colored samples (R2534E2, R2578E2, R1441E2, R2537E2, R2536E2, R2589E2, R2539E2) in the first batch of arrays (the November 05 data set) of which 5 were finally included in this data set (cases in which the strain ID is labeled with asterisks in the table). This same protocol was used for all samples in the second batch added in April 2006. + + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. The first and second batches of array data, collectively represents a reasonably well balanced sample of males and females belonging to 62 strains, but without within-strain-by-sex replication. Six strains are represented only by male sample pools (BXD15, 28, 29, 55, 98, and DBA/2J. Four strains are represented only by a female pool sample (BXD1, 27, 73 and 86). Please use the probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males) as quantitative surrogates for the sex balance in this data set. + + +

    Batch Structure: This data set consists of a two batches: the original batch that makes up the November 2005 data set and a new batch of 63 arrays (R0857E through R2649E, and R2682E through R2742E, non-consecutive identifiers) run in January 2006 by Dr. Yan Jiao. The arrays in the two batches are from two different lots. All arrays in the second batch were from Lot 4016879 (expiration date 12.28.06). We started working with a total of 140 arrays that passed initial crude quality control based on RNA quality and initial Affymetrix report file information such as 3'/5' ratio, scale factor, and percent present calls. A total of 130 arrays were finally approved for inclusion in this April 2006 data set. The complex normalization procedure is described below. + +

    The table below summarizes information on strain, age, sex, original CEL filename, Affymetrix quality control values, and source of mice. Columns labeled "PDNN 2Z outlier" and "RMA 2Z outlier" list the fraction of probe sets with values that deviated more than 2 z units from the mean. Scale factor, background average, present, absent, marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files. + +

    IN PROGRESS: PLEASE NOTE THAT THIS TABLE IS NOW BEING UPDATED TO INCLUDE BATCH 2 OF EARLY 2006. + +

    + + + ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    ID +

    tube ID

    +
    +

    group_type

    +
    +

     Strain

    +
    +

    age

    +
    +

     Sex

    +
    +

    original

    +

    CEL

    +

    filename

    +
    +

    PDNN

    +

    2Z

    +

    outlier

    +
    +

    RMA

    +

    2Z

    +

    outlier

    +
    +

    scale

    +

    factor

    +
    +

    background

    +

    average

    +
    +

    present

    +
    +

    absent

    +
    +

    marginal

    +
    +

    AFFX-b-

    +

    ActinMur(3'/5')

    +
    +

    AFFX-

    +

    GapdhMur(3'/5')

    +
    +

    Source

    +
    +

    1

    +
    +

    R2533E1

    +
    +

    GDP

    +
    +

    129S1/SvImJ

    +
    +

    60

    +
    +

    M

    +
    +

    R2533E.CEL

    +
    +

    0.025

    +
    +

    0.028

    +
    +

    2.11

    +
    +

    94

    +
    +

    57.90%

    +
    +

    40.50%

    +
    +

    1.60%

    +
    +

    1.37

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    2

    +
    +

    R2595E1

    +
    +

    GDP

    +
    +

    129S1/SvImJ

    +
    +

    59

    +
    +

    F

    +
    +

    R2595E.CEL

    +
    +

    0.033

    +
    +

    0.036

    +
    +

    1.79

    +
    +

    115

    +
    +

    61.00%

    +
    +

    37.50%

    +
    +

    1.50%

    +
    +

    1.46

    +
    +

    0.77

    +
    +

    UTM RW

    +
    +

    3

    +
    +

    R0754E2

    +
    +

    GDP

    +
    +

    A/J

    +
    +

    60

    +
    +

    M

    +
    +

    R0754E.CEL

    +
    +

    0.027

    +
    +

    0.03

    +
    +

    2.72

    +
    +

    86

    +
    +

    59.80%

    +
    +

    38.70%

    +
    +

    1.50%

    +
    +

    1.36

    +
    +

    0.76

    +
    +

    JAX

    +
    +

    4

    +
    +

    R2546E1

    +
    +

    GDP

    +
    +

    A/J

    +
    +

    66

    +
    +

    F

    +
    +

    R2545E.CEL

    +
    +

    0.024

    +
    +

    0.029

    +
    +

    1.99

    +
    +

    96

    +
    +

    58.60%

    +
    +

    39.70%

    +
    +

    1.70%

    +
    +

    1.47

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    5

    +
    +

    R2601E1

    +
    +

    GDP BXD

    +
    +

    B6D2F1

    +
    +

    73

    +
    +

    F

    +
    +

    R2601E.CEL

    +
    +

    0.007

    +
    +

    0.008

    +
    +

    2.55

    +
    +

    92

    +
    +

    58.90%

    +
    +

    39.60%

    +
    +

    1.50%

    +
    +

    1.44

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    6

    +
    +

    R2602E1

    +
    +

    GDP BXD

    +
    +

    B6D2F1

    +
    +

    73

    +
    +

    M

    +
    +

    R2602E.CEL

    +
    +

    0.003

    +
    +

    0.008

    +
    +

    2.60

    +
    +

    84

    +
    +

    59.70%

    +
    +

    38.80%

    +
    +

    1.50%

    +
    +

    1.37

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    7

    +
    +

    R1672E1

    +
    +

    GDP

    +
    +

    BALB/cByJ

    +
    +

    83

    +
    +

    M

    +
    +

    R1672E.CEL

    +
    +

    0.043

    +
    +

    0.039

    +
    +

    2.22

    +
    +

    111

    +
    +

    59.90%

    +
    +

    38.60%

    +
    +

    1.50%

    +
    +

    1.26

    +
    +

    0.80

    +
    +

    JAX

    +
    +

    8

    +
    +

    R1676E1

    +
    +

    GDP

    +
    +

    BALB/cByJ

    +
    +

    83

    +
    +

    F

    +
    +

    R1676E.CEL

    +
    +

    0.083

    +
    +

    0.085

    +
    +

    2.69

    +
    +

    98

    +
    +

    58.90%

    +
    +

    39.60%

    +
    +

    1.50%

    +
    +

    1.46

    +
    +

    0.74

    +
    +

    JAX

    +
    +

    9

    +
    +

    R2581E1

    +
    +

    BXD

    +
    +

    BXD11

    +
    +

    65

    +
    +

    F

    +
    +

    R2581E.CEL

    +
    +

    0.009

    +
    +

    0.021

    +
    +

    1.94

    +
    +

    89

    +
    +

    62.10%

    +
    +

    36.40%

    +
    +

    1.60%

    +
    +

    1.55

    +
    +

    0.81

    +
    +

    UTM RW

    +
    +

    10

    +
    +

    R2543E1

    +
    +

    BXD

    +
    +

    BXD12

    +
    +

    63

    +
    +

    M

    +
    +

    R2543E.CEL

    +
    +

    0.018

    +
    +

    0.017

    +
    +

    1.61

    +
    +

    118

    +
    +

    58.60%

    +
    +

    39.90%

    +
    +

    1.60%

    +
    +

    1.43

    +
    +

    0.77

    +
    +

    UTM RW

    +
    +

    11

    +
    +

    R2586E1

    +
    +

    BXD

    +
    +

    BXD13

    +
    +

    60

    +
    +

    F

    +
    +

    R2586E.CEL

    +
    +

    0.259

    +
    +

    0.258

    +
    +

    2.01

    +
    +

    74

    +
    +

    56.40%

    +
    +

    42.00%

    +
    +

    1.60%

    +
    +

    2.85

    +
    +

    3.81

    +
    +

    Glenn

    +
    +

    12

    +
    +

    R2557E1

    +
    +

    BXD

    +
    +

    BXD14

    +
    +

    60

    +
    +

    F

    +
    +

    R2557E.CEL

    +
    +

    0.012

    +
    +

    0.027

    +
    +

    1.83

    +
    +

    99

    +
    +

    62.50%

    +
    +

    36.10%

    +
    +

    1.40%

    +
    +

    1.31

    +
    +

    0.78

    +
    +

    Glenn

    +
    +

    13

    +
    +

    R2567E1

    +
    +

    BXD

    +
    +

    BXD16

    +
    +

    60

    +
    +

    M

    +
    +

    R2567E.CEL

    +
    +

    0.048

    +
    +

    0.058

    +
    +

    2.24

    +
    +

    82

    +
    +

    56.70%

    +
    +

    41.60%

    +
    +

    1.70%

    +
    +

    1.37

    +
    +

    0.75

    +
    +

    Glenn

    +
    +

    14

    +
    +

    R2559E1

    +
    +

    BXD

    +
    +

    BXD18

    +
    +

    59

    +
    +

    M

    +
    +

    R2559E.CEL

    +
    +

    0.01

    +
    +

    0.012

    +
    +

    1.65

    +
    +

    104

    +
    +

    60.80%

    +
    +

    37.70%

    +
    +

    1.50%

    +
    +

    1.27

    +
    +

    0.78

    +
    +

    Glenn

    +
    +

    15

    +
    +

    R2560E1

    +
    +

    BXD

    +
    +

    BXD19

    +
    +

    60

    +
    +

    F

    +
    +

    R2560E.CEL

    +
    +

    0.009

    +
    +

    0.012

    +
    +

    1.79

    +
    +

    98

    +
    +

    60.90%

    +
    +

    37.50%

    +
    +

    1.60%

    +
    +

    1.35

    +
    +

    0.80

    +
    +

    Glenn

    +
    +

    16

    +
    +

    R2597E1

    +
    +

    BXD

    +
    +

    BXD2

    +
    +

    61

    +
    +

    M

    +
    +

    R2597E.CEL

    +
    +

    0.005

    +
    +

    0.012

    +
    +

    2.37

    +
    +

    94

    +
    +

    60.30%

    +
    +

    38.30%

    +
    +

    1.50%

    +
    +

    1.34

    +
    +

    0.77

    +
    +

    Glenn

    +
    +

    17

    +
    +

    R2584E1

    +
    +

    BXD

    +
    +

    BXD20

    +
    +

    59

    +
    +

    F

    +
    +

    R2584E.CEL

    +
    +

    0.011

    +
    +

    0.017

    +
    +

    2.07

    +
    +

    84

    +
    +

    59.30%

    +
    +

    39.10%

    +
    +

    1.60%

    +
    +

    1.40

    +
    +

    0.76

    +
    +

    Glenn

    +
    +

    18

    +
    +

    R2541E2

    +
    +

    BXD

    +
    +

    BXD21

    +
    +

    61

    +
    +

    M

    +
    +

    R2541E2.CEL

    +
    +

    0.049

    +
    +

    0.084

    +
    +

    2.63

    +
    +

    125

    +
    +

    56.00%

    +
    +

    42.40%

    +
    +

    1.50%

    +
    +

    1.29

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    19

    +
    +

    R2553E1

    +
    +

    BXD

    +
    +

    BXD22

    +
    +

    58

    +
    +

    F

    +
    +

    R2553E.CEL

    +
    +

    0.004

    +
    +

    0.01

    +
    +

    1.95

    +
    +

    111

    +
    +

    59.90%

    +
    +

    38.50%

    +
    +

    1.50%

    +
    +

    1.28

    +
    +

    0.76

    +
    +

    Glenn

    +
    +

    20

    +
    +

    R2558E1

    +
    +

    BXD

    +
    +

    BXD23

    +
    +

    60

    +
    +

    F

    +
    +

    R2558E-2.CEL

    +
    +

    0.018

    +
    +

    0.027

    +
    +

    1.91

    +
    +

    115

    +
    +

    59.90%

    +
    +

    38.80%

    +
    +

    1.40%

    +
    +

    1.20

    +
    +

    0.82

    +
    +

    Glenn

    +
    +

    21

    +
    +

    R2589E2

    +
    +

    BXD

    +
    +

    BXD24

    +
    +

    59

    +
    +

    M

    +
    +

    R2589E2.CEL

    +
    +

    0.132

    +
    +

    0.176

    +
    +

    2.61

    +
    +

    112

    +
    +

    57.50%

    +
    +

    40.90%

    +
    +

    1.60%

    +
    +

    1.24

    +
    +

    0.80

    +
    +

    Glenn

    +
    +

    22

    +
    +

    R2573E1

    +
    +

    BXD

    +
    +

    BXD25

    +
    +

    67

    +
    +

    F

    +
    +

    R2573E-2.CEL

    +
    +

    0.055

    +
    +

    0.063

    +
    +

    3.15

    +
    +

    72

    +
    +

    57.90%

    +
    +

    40.70%

    +
    +

    1.40%

    +
    +

    1.77

    +
    +

    0.97

    +
    +

    UAB

    +
    +

    23

    +
    +

    R2562E1

    +
    +

    BXD

    +
    +

    BXD29

    +
    +

    60

    +
    +

    M

    +
    +

    R2562E.CEL

    +
    +

    0.007

    +
    +

    0.01

    +
    +

    1.65

    +
    +

    116

    +
    +

    59.90%

    +
    +

    38.40%

    +
    +

    1.70%

    +
    +

    1.37

    +
    +

    0.79

    +
    +

    Glenn

    +
    +

    24

    +
    +

    R2598E1

    +
    +

    BXD

    +
    +

    BXD31

    +
    +

    61

    +
    +

    M

    +
    +

    R2598E.CEL

    +
    +

    0.006

    +
    +

    0.013

    +
    +

    1.99

    +
    +

    106

    +
    +

    60.90%

    +
    +

    37.60%

    +
    +

    1.50%

    +
    +

    1.27

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    25

    +
    +

    R2563E1

    +
    +

    BXD

    +
    +

    BXD32

    +
    +

    63

    +
    +

    F

    +
    +

    R2563E.CEL

    +
    +

    0.023

    +
    +

    0.025

    +
    +

    1.55

    +
    +

    102

    +
    +

    61.90%

    +
    +

    36.70%

    +
    +

    1.40%

    +
    +

    1.50

    +
    +

    0.80

    +
    +

    UTM RW

    +
    +

    26

    +
    +

    R2542E1

    +
    +

    BXD

    +
    +

    BXD33

    +
    +

    67

    +
    +

    F

    +
    +

    R2542E.CEL

    +
    +

    0.058

    +
    +

    0.062

    +
    +

    2.13

    +
    +

    97

    +
    +

    56.50%

    +
    +

    41.80%

    +
    +

    1.60%

    +
    +

    1.91

    +
    +

    0.93

    +
    +

    UTM RW

    +
    +

    27

    +
    +

    R2585E1

    +
    +

    BXD

    +
    +

    BXD34

    +
    +

    60

    +
    +

    M

    +
    +

    R2585E.CEL

    +
    +

    0.024

    +
    +

    0.032

    +
    +

    2.64

    +
    +

    75

    +
    +

    58.30%

    +
    +

    40.00%

    +
    +

    1.70%

    +
    +

    1.25

    +
    +

    0.77

    +
    +

    Glenn

    +
    +

    28

    +
    +

    R2532E1

    +
    +

    BXD

    +
    +

    BXD38

    +
    +

    62

    +
    +

    M

    +
    +

    R2532E.CEL

    +
    +

    0.002

    +
    +

    0.006

    +
    +

    2.04

    +
    +

    94

    +
    +

    59.80%

    +
    +

    38.70%

    +
    +

    1.50%

    +
    +

    1.37

    +
    +

    0.80

    +
    +

    UTM RW

    +
    +

    29

    +
    +

    R2574E1

    +
    +

    BXD

    +
    +

    BXD39

    +
    +

    70

    +
    +

    F

    +
    +

    R2574E.CEL

    +
    +

    0.003

    +
    +

    0.008

    +
    +

    1.98

    +
    +

    91

    +
    +

    61.20%

    +
    +

    37.30%

    +
    +

    1.50%

    +
    +

    1.39

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    30

    +
    +

    R2590E1

    +
    +

    BXD

    +
    +

    BXD40

    +
    +

    60

    +
    +

    M

    +
    +

    R2590E.CEL

    +
    +

    0.007

    +
    +

    0.012

    +
    +

    2.71

    +
    +

    77

    +
    +

    59.10%

    +
    +

    39.30%

    +
    +

    1.50%

    +
    +

    1.40

    +
    +

    0.77

    +
    +

    Glenn

    +
    +

    31

    +
    +

    R2596E1

    +
    +

    BXD

    +
    +

    BXD42

    +
    +

    59

    +
    +

    M

    +
    +

    R2596E.CEL

    +
    +

    0.016

    +
    +

    0.03

    +
    +

    2.63

    +
    +

    108

    +
    +

    59.00%

    +
    +

    39.60%

    +
    +

    1.50%

    +
    +

    1.24

    +
    +

    0.80

    +
    +

    Glenn

    +
    +

    32

    +
    +

    R2605E1

    +
    +

    BXD

    +
    +

    BXD43

    +
    +

    79

    +
    +

    M

    +
    +

    R2607E.CEL

    +
    +

    0.006

    +
    +

    0.01

    +
    +

    1.82

    +
    +

    131

    +
    +

    60.50%

    +
    +

    38.20%

    +
    +

    1.30%

    +
    +

    1.32

    +
    +

    0.80

    +
    +

    UTM RW

    +
    +

    33

    +
    +

    R2594E1

    +
    +

    BXD

    +
    +

    BXD44

    +
    +

    63

    +
    +

    F

    +
    +

    R2594E.CEL

    +
    +

    0.014

    +
    +

    0.024

    +
    +

    1.77

    +
    +

    117

    +
    +

    59.80%

    +
    +

    38.80%

    +
    +

    1.40%

    +
    +

    1.35

    +
    +

    0.85

    +
    +

    UTM RW

    +
    +

    34

    +
    +

    R2592E1

    +
    +

    BXD

    +
    +

    BXD45

    +
    +

    62

    +
    +

    M

    +
    +

    R2592E.CEL

    +
    +

    0.005

    +
    +

    0.011

    +
    +

    1.85

    +
    +

    106

    +
    +

    60.10%

    +
    +

    38.60%

    +
    +

    1.30%

    +
    +

    1.43

    +
    +

    0.85

    +
    +

    UTM RW

    +
    +

    35

    +
    +

    R2606E1

    +
    +

    BXD

    +
    +

    BXD48

    +
    +

    78

    +
    +

    M

    +
    +

    R2606E.CEL

    +
    +

    0.007

    +
    +

    0.015

    +
    +

    2.56

    +
    +

    106

    +
    +

    58.90%

    +
    +

    39.70%

    +
    +

    1.40%

    +
    +

    1.35

    +
    +

    0.83

    +
    +

    UTM RW

    +
    +

    36

    +
    +

    R2591E1

    +
    +

    BXD

    +
    +

    BXD5

    +
    +

    60

    +
    +

    F

    +
    +

    R2591E.CEL

    +
    +

    0.052

    +
    +

    0.014

    +
    +

    1.70

    +
    +

    136

    +
    +

    58.50%

    +
    +

    40.00%

    +
    +

    1.50%

    +
    +

    1.33

    +
    +

    0.78

    +
    +

    Glenn

    +
    +

    37

    +
    +

    R2603E1

    +
    +

    BXD

    +
    +

    BXD51

    +
    +

    66

    +
    +

    F

    +
    +

    R2603E.CEL

    +
    +

    0.007

    +
    +

    0.02

    +
    +

    2.49

    +
    +

    115

    +
    +

    57.70%

    +
    +

    40.80%

    +
    +

    1.50%

    +
    +

    1.24

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    38

    +
    +

    R2570E1

    +
    +

    BXD

    +
    +

    BXD6

    +
    +

    65

    +
    +

    F

    +
    +

    R2570E.CEL

    +
    +

    0.013

    +
    +

    0.017

    +
    +

    1.99

    +
    +

    87

    +
    +

    58.50%

    +
    +

    40.00%

    +
    +

    1.50%

    +
    +

    1.46

    +
    +

    0.76

    +
    +

    UTM RW

    +
    +

    39

    +
    +

    R2534E2

    +
    +

    BXD

    +
    +

    BXD61

    +
    +

    70

    +
    +

    F

    +
    +

    R2534E2.CEL

    +
    +

    0.03

    +
    +

    0.058

    +
    +

    2.47

    +
    +

    118

    +
    +

    57.90%

    +
    +

    40.60%

    +
    +

    1.50%

    +
    +

    1.42

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    40

    +
    +

    R2611E1

    +
    +

    BXD

    +
    +

    BXD64

    +
    +

    68

    +
    +

    M

    +
    +

    R2611E.CEL

    +
    +

    0.067

    +
    +

    0.068

    +
    +

    2.29

    +
    +

    92

    +
    +

    58.00%

    +
    +

    40.50%

    +
    +

    1.50%

    +
    +

    1.57

    +
    +

    1.06

    +
    +

    UTM RW

    +
    +

    41

    +
    +

    R2583E1

    +
    +

    BXD

    +
    +

    BXD65

    +
    +

    60

    +
    +

    M

    +
    +

    R2583E.CEL

    +
    +

    0.027

    +
    +

    0.03

    +
    +

    2.49

    +
    +

    70

    +
    +

    56.90%

    +
    +

    41.50%

    +
    +

    1.60%

    +
    +

    1.67

    +
    +

    1.01

    +
    +

    UTM RW

    +
    +

    42

    +
    +

    R2536E2

    +
    +

    BXD

    +
    +

    BXD66

    +
    +

    64

    +
    +

    F

    +
    +

    R2536E2.CEL

    +
    +

    0.067

    +
    +

    0.139

    +
    +

    2.74

    +
    +

    109

    +
    +

    56.10%

    +
    +

    42.30%

    +
    +

    1.70%

    +
    +

    1.28

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    43

    +
    +

    R2551E1

    +
    +

    BXD

    +
    +

    BXD68

    +
    +

    67

    +
    +

    F

    +
    +

    R2551E.CEL

    +
    +

    0.294

    +
    +

    0.291

    +
    +

    2.49

    +
    +

    92

    +
    +

    54.30%

    +
    +

    44.10%

    +
    +

    1.60%

    +
    +

    2.91

    +
    +

    1.55

    +
    +

    UTM RW

    +
    +

    44

    +
    +

    R2593E1

    +
    +

    BXD

    +
    +

    BXD69

    +
    +

    59

    +
    +

    F

    +
    +

    R2593E.CEL

    +
    +

    0.027

    +
    +

    0.038

    +
    +

    1.67

    +
    +

    128

    +
    +

    59.20%

    +
    +

    39.50%

    +
    +

    1.30%

    +
    +

    1.47

    +
    +

    0.92

    +
    +

    UTM RW

    +
    +

    45

    +
    +

    R2537E2

    +
    +

    BXD

    +
    +

    BXD70

    +
    +

    59

    +
    +

    M

    +
    +

    R2537E2.CEL

    +
    +

    0.049

    +
    +

    0.092

    +
    +

    2.93

    +
    +

    99

    +
    +

    58.00%

    +
    +

    40.50%

    +
    +

    1.60%

    +
    +

    1.29

    +
    +

    0.75

    +
    +

    UTM RW

    +
    +

    46

    +
    +

    R2565E1

    +
    +

    BXD

    +
    +

    BXD75

    +
    +

    61

    +
    +

    F

    +
    +

    R2565E.CEL

    +
    +

    0.118

    +
    +

    0.124

    +
    +

    1.79

    +
    +

    102

    +
    +

    58.00%

    +
    +

    40.50%

    +
    +

    1.50%

    +
    +

    2.31

    +
    +

    3.47

    +
    +

    UTM RW

    +
    +

    47

    +
    +

    R2538E1

    +
    +

    BXD

    +
    +

    BXD8

    +
    +

    77

    +
    +

    F

    +
    +

    R2538E.CEL

    +
    +

    0.033

    +
    +

    0.056

    +
    +

    1.91

    +
    +

    102

    +
    +

    61.20%

    +
    +

    37.30%

    +
    +

    1.50%

    +
    +

    1.52

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    48

    +
    +

    R2579E1

    +
    +

    BXD

    +
    +

    BXD80

    +
    +

    65

    +
    +

    F

    +
    +

    R2579E.CEL

    +
    +

    0.013

    +
    +

    0.026

    +
    +

    2.42

    +
    +

    72

    +
    +

    59.20%

    +
    +

    39.40%

    +
    +

    1.50%

    +
    +

    1.73

    +
    +

    0.82

    +
    +

    UTM RW

    +
    +

    49

    +
    +

    R2540E1

    +
    +

    BXD

    +
    +

    BXD87

    +
    +

    63

    +
    +

    M

    +
    +

    R2540E.CEL

    +
    +

    0.014

    +
    +

    0.034

    +
    +

    2.33

    +
    +

    93

    +
    +

    61.10%

    +
    +

    37.40%

    +
    +

    1.40%

    +
    +

    1.22

    +
    +

    0.81

    +
    +

    UTM RW

    +
    +

    50

    +
    +

    R2545E1

    +
    +

    BXD

    +
    +

    BXD89

    +
    +

    67

    +
    +

    M

    +
    +

    R2546E.CEL

    +
    +

    0.266

    +
    +

    0.257

    +
    +

    1.67

    +
    +

    105

    +
    +

    56.20%

    +
    +

    42.30%

    +
    +

    1.50%

    +
    +

    3.60

    +
    +

    9.84

    +
    +

    UTM RW

    +
    +

    51

    +
    +

    R2569E1

    +
    +

    BXD

    +
    +

    BXD9

    +
    +

    67

    +
    +

    M

    +
    +

    R2569E.CEL

    +
    +

    0.256

    +
    +

    0.239

    +
    +

    1.75

    +
    +

    87

    +
    +

    55.10%

    +
    +

    43.40%

    +
    +

    1.50%

    +
    +

    2.82

    +
    +

    3.14

    +
    +

    UTM RW

    +
    +

    52

    +
    +

    R2578E2

    +
    +

    BXD

    +
    +

    BXD90

    +
    +

    61

    +
    +

    F

    +
    +

    R2578E2.CEL

    +
    +

    0.041

    +
    +

    0.062

    +
    +

    2.79

    +
    +

    92

    +
    +

    58.60%

    +
    +

    39.80%

    +
    +

    1.60%

    +
    +

    1.52

    +
    +

    0.77

    +
    +

    UTM RW

    +
    +

    53

    +
    +

    R2554E1

    +
    +

    BXD

    +
    +

    BXD96

    +
    +

    67

    +
    +

    M

    +
    +

    R2554E.CEL

    +
    +

    0.005

    +
    +

    0.008

    +
    +

    2.18

    +
    +

    93

    +
    +

    60.20%

    +
    +

    38.30%

    +
    +

    1.50%

    +
    +

    1.46

    +
    +

    0.77

    +
    +

    UTM RW

    +
    +

    54

    +
    +

    R2577E1

    +
    +

    BXD

    +
    +

    BXD97

    +
    +

    55

    +
    +

    M

    +
    +

    R2577E.CEL

    +
    +

    0.065

    +
    +

    0.069

    +
    +

    2.07

    +
    +

    77

    +
    +

    59.50%

    +
    +

    39.10%

    +
    +

    1.40%

    +
    +

    1.87

    +
    +

    1.29

    +
    +

    UTM RW

    +
    +

    55

    +
    +

    R1700E1

    +
    +

    GDP

    +
    +

    C3H/HeJ

    +
    +

    83

    +
    +

    F

    +
    +

    R1700E.CEL

    +
    +

    0.152

    +
    +

    0.168

    +
    +

    2.98

    +
    +

    69

    +
    +

    60.80%

    +
    +

    37.90%

    +
    +

    1.40%

    +
    +

    1.48

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    56

    +
    +

    R1704E1

    +
    +

    GDP

    +
    +

    C3H/HeJ

    +
    +

    83

    +
    +

    M

    +
    +

    R1704E.CEL

    +
    +

    0.154

    +
    +

    0.165

    +
    +

    2.58

    +
    +

    88

    +
    +

    60.10%

    +
    +

    38.60%

    +
    +

    1.30%

    +
    +

    1.38

    +
    +

    0.84

    +
    +

    UTM RW

    +
    +

    57

    +
    +

    R0872E2

    +
    +

    GDP BXD

    +
    +

    C57BL/6J

    +
    +

    66

    +
    +

    M

    +
    +

    R0872E.CEL

    +
    +

    0.014

    +
    +

    0.023

    +
    +

    3.13

    +
    +

    89

    +
    +

    58.90%

    +
    +

    39.60%

    +
    +

    1.50%

    +
    +

    1.30

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    58

    +
    +

    R2607E1

    +
    +

    GDP BXD

    +
    +

    C57BL/6J

    +
    +

    67

    +
    +

    F

    +
    +

    R2605E.CEL

    +
    +

    0.008

    +
    +

    0.018

    +
    +

    2.43

    +
    +

    115

    +
    +

    58.60%

    +
    +

    40.00%

    +
    +

    1.40%

    +
    +

    1.31

    +
    +

    0.76

    +
    +

    UTM RW

    +
    +

    59

    +
    +

    R2564E1

    +
    +

    GDP

    +
    +

    CAST/Ei

    +
    +

    64

    +
    +

    F

    +
    +

    R2564E.CEL

    +
    +

    0.124

    +
    +

    0.105

    +
    +

    1.94

    +
    +

    89

    +
    +

    58.50%

    +
    +

    39.90%

    +
    +

    1.60%

    +
    +

    1.60

    +
    +

    0.77

    +
    +

    JAX

    +
    +

    60

    +
    +

    R2580E1

    +
    +

    GDP

    +
    +

    CAST/Ei

    +
    +

    64

    +
    +

    M

    +
    +

    R2580E.CEL

    +
    +

    0.123

    +
    +

    0.109

    +
    +

    2.09

    +
    +

    95

    +
    +

    58.20%

    +
    +

    40.10%

    +
    +

    1.70%

    +
    +

    1.40

    +
    +

    0.76

    +
    +

    JAX

    +
    +

    61

    +
    +

    R2600E1

    +
    +

    GDP BXD

    +
    +

    D2B6F1

    +
    +

    72

    +
    +

    F

    +
    +

    R2600E.CEL

    +
    +

    0.008

    +
    +

    0.02

    +
    +

    2.47

    +
    +

    95

    +
    +

    58.10%

    +
    +

    40.20%

    +
    +

    1.70%

    +
    +

    1.41

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    62

    +
    +

    R2604E1

    +
    +

    GDP BXD

    +
    +

    D2B6F1

    +
    +

    69

    +
    +

    M

    +
    +

    R2604E.CEL

    +
    +

    0.005

    +
    +

    0.014

    +
    +

    2.66

    +
    +

    90

    +
    +

    59.40%

    +
    +

    39.20%

    +
    +

    1.50%

    +
    +

    1.28

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    63

    +
    +

    R2572E1

    +
    +

    GDP BXD

    +
    +

    DBA/2J

    +
    +

    65

    +
    +

    M

    +
    +

    R2572E.CEL

    +
    +

    0.091

    +
    +

    0.106

    +
    +

    2.41

    +
    +

    79

    +
    +

    55.50%

    +
    +

    42.90%

    +
    +

    1.60%

    +
    +

    1.37

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    64

    +
    +

    R2636E1

    +
    +

    GDP

    +
    +

    KK/HIJ

    +
    +

    64

    +
    +

    F

    +
    +

    R2636E.CEL

    +
    +

    0.044

    +
    +

    0.043

    +
    +

    2.61

    +
    +

    93

    +
    +

    58.90%

    +
    +

    39.50%

    +
    +

    1.50%

    +
    +

    1.39

    +
    +

    0.76

    +
    +

    UTM RW

    +
    +

    65

    +
    +

    R2637E1

    +
    +

    GDP

    +
    +

    KK/HIJ

    +
    +

    64

    +
    +

    M

    +
    +

    R2637E.CEL

    +
    +

    0.056

    +
    +

    0.036

    +
    +

    2.19

    +
    +

    103

    +
    +

    59.40%

    +
    +

    39.00%

    +
    +

    1.50%

    +
    +

    1.30

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    66

    +
    +

    R0999E1

    +
    +

    GDP

    +
    +

    LG/J

    +
    +

    57

    +
    +

    F

    +
    +

    R0999E.CEL

    +
    +

    0.021

    +
    +

    0.023

    +
    +

    2.45

    +
    +

    82

    +
    +

    59.40%

    +
    +

    39.10%

    +
    +

    1.50%

    +
    +

    1.38

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    67

    +
    +

    R1004E1

    +
    +

    GDP

    +
    +

    LG/J

    +
    +

    65

    +
    +

    M

    +
    +

    R1004E.CEL

    +
    +

    0.025

    +
    +

    0.028

    +
    +

    2.44

    +
    +

    92

    +
    +

    58.70%

    +
    +

    39.80%

    +
    +

    1.50%

    +
    +

    1.38

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    68

    +
    +

    R1688E1

    +
    +

    GDP

    +
    +

    NOD/LtJ

    +
    +

    66

    +
    +

    F

    +
    +

    R1688E.CEL

    +
    +

    0.028

    +
    +

    0.033

    +
    +

    2.66

    +
    +

    98

    +
    +

    58.60%

    +
    +

    39.90%

    +
    +

    1.50%

    +
    +

    1.26

    +
    +

    0.80

    +
    +

    JAX

    +
    +

    69

    +
    +

    R2566E1

    +
    +

    GDP

    +
    +

    NOD/LtJ

    +
    +

    76

    +
    +

    M

    +
    +

    R2566E-2.CEL

    +
    +

    0.036

    +
    +

    0.04

    +
    +

    3.03

    +
    +

    69

    +
    +

    59.80%

    +
    +

    38.80%

    +
    +

    1.50%

    +
    +

    1.38

    +
    +

    0.75

    +
    +

    UTM RW

    +
    +

    70

    +
    +

    R2535E1

    +
    +

    GDP

    +
    +

    NZO/H1LtJ

    +
    +

    62

    +
    +

    F

    +
    +

    R2535E.CEL

    +
    +

    0.037

    +
    +

    0.062

    +
    +

    1.89

    +
    +

    86

    +
    +

    60.40%

    +
    +

    38.20%

    +
    +

    1.40%

    +
    +

    1.41

    +
    +

    0.85

    +
    +

    JAX

    +
    +

    71

    +
    +

    R2550E1

    +
    +

    GDP

    +
    +

    NZO/HILtJ

    +
    +

    96

    +
    +

    M

    +
    +

    R2550E.CEL

    +
    +

    0.025

    +
    +

    0.029

    +
    +

    1.79

    +
    +

    87

    +
    +

    60.70%

    +
    +

    37.80%

    +
    +

    1.50%

    +
    +

    1.52

    +
    +

    0.82

    +
    +

    JAX

    +
    +

    72

    +
    +

    R2634E1

    +
    +

    GDP

    +
    +

    PWD/PhJ

    +
    +

    62

    +
    +

    F

    +
    +

    R2635E.CEL

    +
    +

    0.126

    +
    +

    0.114

    +
    +

    3.29

    +
    +

    90

    +
    +

    55.90%

    +
    +

    42.50%

    +
    +

    1.60%

    +
    +

    1.57

    +
    +

    0.81

    +
    +

    JAX

    +
    +

    73

    +
    +

    R2635E1

    +
    +

    GDP

    +
    +

    PWD/PhJ

    +
    +

    62

    +
    +

    M

    +
    +

    R2634E.CEL

    +
    +

    0.15

    +
    +

    0.137

    +
    +

    3.72

    +
    +

    80

    +
    +

    54.20%

    +
    +

    44.10%

    +
    +

    1.70%

    +
    +

    1.53

    +
    +

    0.85

    +
    +

    JAX

    +
    +

    74

    +
    +

    R2544E1

    +
    +

    GDP

    +
    +

    PWK/PhJ

    +
    +

    63

    +
    +

    F

    +
    +

    R2544E.CEL

    +
    +

    0.174

    +
    +

    0.175

    +
    +

    2.20

    +
    +

    108

    +
    +

    54.90%

    +
    +

    43.50%

    +
    +

    1.70%

    +
    +

    1.36

    +
    +

    0.82

    +
    +

    JAX

    +
    +

    75

    +
    +

    R2549E1

    +
    +

    GDP

    +
    +

    PWK/PhJ

    +
    +

    83

    +
    +

    M

    +
    +

    R2549E.CEL

    +
    +

    0.103

    +
    +

    0.087

    +
    +

    2.28

    +
    +

    84

    +
    +

    57.30%

    +
    +

    41.20%

    +
    +

    1.50%

    +
    +

    1.57

    +
    +

    0.83

    +
    +

    JAX

    +
    +

    76

    +
    +

    R2368E1

    +
    +

    GDP

    +
    +

    WSB/EI

    +
    +

    67

    +
    +

    F

    +
    +

    R2368E.CEL

    +
    +

    0.041

    +
    +

    0.047

    +
    +

    2.57

    +
    +

    86

    +
    +

    59.50%

    +
    +

    39.10%

    +
    +

    1.40%

    +
    +

    1.29

    +
    +

    0.74

    +
    +

    UTM RW

    +
    +

    77

    +
    +

    R2704E

    +
    +

    BXD

    +
    +

    BXD1

    +
    +

    59

    +
    +

    F

    +
    +

    R2704E.CEL

    +
    +

    0.029

    +
    +

    0.03

    +
    +

    2.066

    +
    +

    139.61

    +
    +

    56.60%

    +
    +

    41.90%

    +
    +

    1.50%

    +
    +

    1.31

    +
    +

    0.81

    +
    +

    GU

    +
    +

    78

    +
    +

    R2612E

    +
    +

    BXD

    +
    +

    BXD11

    +
    +

    70

    +
    +

    M

    +
    +

    R2612E.CEL

    +
    +

    0.101

    +
    +

    0.112

    +
    +

    1.83

    +
    +

    142.03

    +
    +

    58.20%

    +
    +

    40.50%

    +
    +

    1.40%

    +
    +

    1.78

    +
    +

    0.81

    +
    +

    GU

    +
    +

    79

    +
    +

    R2742E

    +
    +

    BXD

    +
    +

    BXD12

    +
    +

    71

    +
    +

    F

    +
    +

    R2742E.CEL

    +
    +

    0.073

    +
    +

    0.077

    +
    +

    2.127

    +
    +

    134.14

    +
    +

    57.00%

    +
    +

    41.60%

    +
    +

    1.40%

    +
    +

    1.64

    +
    +

    0.78

    +
    +

    GU

    +
    +

    80

    +
    +

    R1086E

    +
    +

    BXD

    +
    +

    BXD23

    +
    +

    55

    +
    +

    M

    +
    +

    R1086E.CEL

    +
    +

    0.043

    +
    +

    0.034

    +
    +

    2.233

    +
    +

    125.05

    +
    +

    58.60%

    +
    +

    39.90%

    +
    +

    1.50%

    +
    +

    1.43

    +
    +

    0.77

    +
    +

    GU

    +
    +

    81

    +
    +

    R2716E

    +
    +

    BXD

    +
    +

    BXD15

    +
    +

    60

    +
    +

    M

    +
    +

    R2716E.CEL

    +
    +

    0.035

    +
    +

    0.037

    +
    +

    2.015

    +
    +

    150.83

    +
    +

    56.40%

    +
    +

    42.10%

    +
    +

    1.60%

    +
    +

    1.42

    +
    +

    0.81

    +
    +

    GU

    +
    +

    82

    +
    +

    R2711E

    +
    +

    BXD

    +
    +

    BXD16

    +
    +

    61

    +
    +

    F

    +
    +

    R2711E.CEL

    +
    +

    0.032

    +
    +

    0.021

    +
    +

    1.953

    +
    +

    118.53

    +
    +

    59.00%

    +
    +

    39.60%

    +
    +

    1.50%

    +
    +

    1.45

    +
    +

    0.8

    +
    +

    GU

    +
    +

    83

    +
    +

    R2720E

    +
    +

    BXD

    +
    +

    BXD18

    +
    +

    59

    +
    +

    F

    +
    +

    R2720E.CEL

    +
    +

    0.014

    +
    +

    0.019

    +
    +

    2.32

    +
    +

    99.93

    +
    +

    59.50%

    +
    +

    39.00%

    +
    +

    1.50%

    +
    +

    1.33

    +
    +

    0.77

    +
    +

    GU

    +
    +

    84

    +
    +

    R2713E

    +
    +

    BXD

    +
    +

    BXD19

    +
    +

    60

    +
    +

    M

    +
    +

    R2713E.CEL

    +
    +

    0.055

    +
    +

    0.021

    +
    +

    1.67

    +
    +

    120.82

    +
    +

    60.20%

    +
    +

    38.30%

    +
    +

    1.50%

    +
    +

    1.45

    +
    +

    0.8

    +
    +

    GU

    +
    +

    85

    +
    +

    R1231E

    +
    +

    BXD

    +
    +

    BXD2

    +
    +

    64

    +
    +

    F

    +
    +

    R1231E.CEL

    +
    +

    0.044

    +
    +

    0.037

    +
    +

    2.197

    +
    +

    138.73

    +
    +

    57.30%

    +
    +

    41.30%

    +
    +

    1.40%

    +
    +

    1.41

    +
    +

    0.77

    +
    +

    GU

    +
    +

    86

    +
    +

    R2731E

    +
    +

    BXD

    +
    +

    BXD20

    +
    +

    60

    +
    +

    M

    +
    +

    R2731E.CEL

    +
    +

    0.017

    +
    +

    0.019

    +
    +

    1.825

    +
    +

    147

    +
    +

    59.00%

    +
    +

    39.50%

    +
    +

    1.50%

    +
    +

    1.4

    +
    +

    0.8

    +
    +

    GU

    +
    +

    87

    +
    +

    R2702E

    +
    +

    BXD

    +
    +

    BXD21

    +
    +

    59

    +
    +

    F

    +
    +

    R2702E.CEL

    +
    +

    0.009

    +
    +

    0.008

    +
    +

    1.811

    +
    +

    128.65

    +
    +

    59.40%

    +
    +

    39.10%

    +
    +

    1.40%

    +
    +

    1.26

    +
    +

    0.8

    +
    +

    GU

    +
    +

    88

    +
    +

    R2700E

    +
    +

    BXD

    +
    +

    BXD22

    +
    +

    59

    +
    +

    M

    +
    +

    R2700E.CEL

    +
    +

    0.01

    +
    +

    0.015

    +
    +

    1.858

    +
    +

    102.96

    +
    +

    61.50%

    +
    +

    37.10%

    +
    +

    1.30%

    +
    +

    1.48

    +
    +

    0.79

    +
    +

    GU

    +
    +

    89

    +
    +

    R1128E

    +
    +

    BXD

    +
    +

    BXD14

    +
    +

    65

    +
    +

    M

    +
    +

    R1128E.CEL

    +
    +

    0.037

    +
    +

    0.038

    +
    +

    2.366

    +
    +

    118.39

    +
    +

    57.30%

    +
    +

    41.30%

    +
    +

    1.40%

    +
    +

    1.45

    +
    +

    0.81

    +
    +

    GU

    +
    +

    90

    +
    +

    R2719E

    +
    +

    BXD

    +
    +

    BXD24

    +
    +

    123

    +
    +

    F

    +
    +

    R2719E.CEL

    +
    +

    0.112

    +
    +

    0.111

    +
    +

    1.47

    +
    +

    140.38

    +
    +

    61.50%

    +
    +

    37.20%

    +
    +

    1.30%

    +
    +

    1.38

    +
    +

    0.79

    +
    +

    GU

    +
    +

    91

    +
    +

    R2683E

    +
    +

    BXD

    +
    +

    BXD25

    +
    +

    58

    +
    +

    M

    +
    +

    R2683E.CEL

    +
    +

    0.068

    +
    +

    0.068

    +
    +

    1.777

    +
    +

    115.64

    +
    +

    58.30%

    +
    +

    40.30%

    +
    +

    1.40%

    +
    +

    2.01

    +
    +

    0.79

    +
    +

    GU

    +
    +

    92

    +
    +

    R2703E

    +
    +

    BXD

    +
    +

    BXD27

    +
    +

    60

    +
    +

    F

    +
    +

    R2703E.CEL

    +
    +

    0.008

    +
    +

    0.012

    +
    +

    1.263

    +
    +

    134.78

    +
    +

    62.60%

    +
    +

    36.10%

    +
    +

    1.40%

    +
    +

    1.44

    +
    +

    0.78

    +
    +

    GU

    +
    +

    93

    +
    +

    R2721E

    +
    +

    BXD

    +
    +

    BXD28

    +
    +

    60

    +
    +

    M

    +
    +

    R2721E.CEL

    +
    +

    0.04

    +
    +

    0.048

    +
    +

    2.065

    +
    +

    157.39

    +
    +

    56.10%

    +
    +

    42.40%

    +
    +

    1.50%

    +
    +

    1.31

    +
    +

    0.81

    +
    +

    GU

    +
    +

    94

    +
    +

    R1258E

    +
    +

    BXD

    +
    +

    BXD31

    +
    +

    57

    +
    +

    F

    +
    +

    R1258E.CEL

    +
    +

    0.037

    +
    +

    0.036

    +
    +

    2.063

    +
    +

    117.09

    +
    +

    59.00%

    +
    +

    39.50%

    +
    +

    1.50%

    +
    +

    1.54

    +
    +

    0.78

    +
    +

    GU

    +
    +

    95

    +
    +

    R1216E

    +
    +

    BXD

    +
    +

    BXD32

    +
    +

    76

    +
    +

    M

    +
    +

    R1216E.CEL

    +
    +

    0.05

    +
    +

    0.049

    +
    +

    2.23

    +
    +

    111.99

    +
    +

    58.80%

    +
    +

    39.80%

    +
    +

    1.40%

    +
    +

    1.35

    +
    +

    0.79

    +
    +

    GU

    +
    +

    96

    +
    +

    R857E

    +
    +

    BXD

    +
    +

    BXD33

    +
    +

    77

    +
    +

    M

    +
    +

    R857E.CEL

    +
    +

    0.078

    +
    +

    0.108

    +
    +

    1.737

    +
    +

    113.98

    +
    +

    61.90%

    +
    +

    36.70%

    +
    +

    1.30%

    +
    +

    1.6

    +
    +

    0.77

    +
    +

    GU

    +
    +

    97

    +
    +

    R859E

    +
    +

    BXD

    +
    +

    BXD90

    +
    +

    72

    +
    +

    M

    +
    +

    R859E.CEL

    +
    +

    0.028

    +
    +

    0.02

    +
    +

    1.847

    +
    +

    152.22

    +
    +

    57.90%

    +
    +

    40.70%

    +
    +

    1.40%

    +
    +

    1.36

    +
    +

    0.77

    +
    +

    GU

    +
    +

    98

    +
    +

    R1207E

    +
    +

    BXD

    +
    +

    BXD66

    +
    +

    83

    +
    +

    M

    +
    +

    R1207E.CEL

    +
    +

    0.017

    +
    +

    0.012

    +
    +

    1.681

    +
    +

    136.86

    +
    +

    60.40%

    +
    +

    38.10%

    +
    +

    1.50%

    +
    +

    1.45

    +
    +

    0.77

    +
    +

    GU

    +
    +

    99

    +
    +

    R2710E

    +
    +

    BXD

    +
    +

    BXD38

    +
    +

    55

    +
    +

    F

    +
    +

    R2710E.CEL

    +
    +

    0.033

    +
    +

    0.031

    +
    +

    2.112

    +
    +

    122.1

    +
    +

    58.80%

    +
    +

    39.80%

    +
    +

    1.40%

    +
    +

    1.37

    +
    +

    0.78

    +
    +

    GU

    +
    +

    100

    +
    +

    R2695E

    +
    +

    BXD

    +
    +

    BXD39

    +
    +

    59

    +
    +

    M

    +
    +

    R2695E.CEL

    +
    +

    0.018

    +
    +

    0.016

    +
    +

    1.638

    +
    +

    122.7

    +
    +

    60.80%

    +
    +

    37.80%

    +
    +

    1.50%

    +
    +

    1.42

    +
    +

    0.8

    +
    +

    GU

    +
    +

    101

    +
    +

    R2699E

    +
    +

    BXD

    +
    +

    BXD40

    +
    +

    59

    +
    +

    F

    +
    +

    R2699E.CEL

    +
    +

    0.014

    +
    +

    0.015

    +
    +

    1.827

    +
    +

    105.23

    +
    +

    61.70%

    +
    +

    36.90%

    +
    +

    1.40%

    +
    +

    1.42

    +
    +

    0.81

    +
    +

    GU

    +
    +

    102

    +
    +

    R2696E

    +
    +

    BXD

    +
    +

    BXD42

    +
    +

    58

    +
    +

    F

    +
    +

    R2696E.CEL

    +
    +

    0.01

    +
    +

    0.017

    +
    +

    1.622

    +
    +

    118.95

    +
    +

    62.00%

    +
    +

    36.60%

    +
    +

    1.50%

    +
    +

    1.53

    +
    +

    0.79

    +
    +

    GU

    +
    +

    103

    +
    +

    R943E-2

    +
    +

    BXD

    +
    +

    BXD64

    +
    +

    56

    +
    +

    F

    +
    +

    R943E-2.CEL

    +
    +

    0.024

    +
    +

    0.021

    +
    +

    1.591

    +
    +

    141.34

    +
    +

    60.10%

    +
    +

    38.40%

    +
    +

    1.50%

    +
    +

    1.32

    +
    +

    0.76

    +
    +

    GU

    +
    +

    104

    +
    +

    R967E

    +
    +

    BXD

    +
    +

    BXD48

    +
    +

    64

    +
    +

    F

    +
    +

    R967E.CEL

    +
    +

    0.101

    +
    +

    0.052

    +
    +

    1.948

    +
    +

    130.95

    +
    +

    57.30%

    +
    +

    41.20%

    +
    +

    1.50%

    +
    +

    1.63

    +
    +

    0.81

    +
    +

    GU

    +
    +

    105

    +
    +

    R2714E

    +
    +

    BXD

    +
    +

    BXD5

    +
    +

    58

    +
    +

    M

    +
    +

    R2714E.CEL

    +
    +

    0.047

    +
    +

    0.014

    +
    +

    1.404

    +
    +

    144.35

    +
    +

    60.60%

    +
    +

    37.90%

    +
    +

    1.50%

    +
    +

    1.43

    +
    +

    0.79

    +
    +

    GU

    +
    +

    106

    +
    +

    R1042E

    +
    +

    BXD

    +
    +

    BXD51

    +
    +

    62

    +
    +

    M

    +
    +

    R1042E.CEL

    +
    +

    0.028

    +
    +

    0.027

    +
    +

    2.352

    +
    +

    104.12

    +
    +

    58.70%

    +
    +

    39.90%

    +
    +

    1.40%

    +
    +

    1.53

    +
    +

    0.82

    +
    +

    GU

    +
    +

    107

    +
    +

    R2690E

    +
    +

    BXD

    +
    +

    BXD55

    +
    +

    65

    +
    +

    M

    +
    +

    R2690E.CEL

    +
    +

    0.081

    +
    +

    0.067

    +
    +

    1.887

    +
    +

    164.01

    +
    +

    56.10%

    +
    +

    42.30%

    +
    +

    1.60%

    +
    +

    1.43

    +
    +

    0.8

    +
    +

    GU

    +
    +

    108

    +
    +

    R2694E

    +
    +

    BXD

    +
    +

    BXD6

    +
    +

    58

    +
    +

    M

    +
    +

    R2694E.CEL

    +
    +

    0.012

    +
    +

    0.018

    +
    +

    1.983

    +
    +

    97.23

    +
    +

    61.60%

    +
    +

    37.10%

    +
    +

    1.30%

    +
    +

    1.39

    +
    +

    0.82

    +
    +

    GU

    +
    +

    109

    +
    +

    R975E

    +
    +

    BXD

    +
    +

    BXD70

    +
    +

    64

    +
    +

    F

    +
    +

    R975E.CEL

    +
    +

    0.028

    +
    +

    0.024

    +
    +

    1.841

    +
    +

    137.97

    +
    +

    58.00%

    +
    +

    40.50%

    +
    +

    1.40%

    +
    +

    1.36

    +
    +

    0.79

    +
    +

    GU

    +
    +

    110

    +
    +

    R2684E

    +
    +

    BXD

    +
    +

    BXD61

    +
    +

    62

    +
    +

    M

    +
    +

    R2684E.CEL

    +
    +

    0.031

    +
    +

    0.032

    +
    +

    2.01

    +
    +

    131.03

    +
    +

    57.00%

    +
    +

    41.50%

    +
    +

    1.50%

    +
    +

    1.34

    +
    +

    0.78

    +
    +

    GU

    +
    +

    111

    +
    +

    R994E

    +
    +

    BXD

    +
    +

    BXD43

    +
    +

    60

    +
    +

    F

    +
    +

    R994E.CEL

    +
    +

    0.013

    +
    +

    0.014

    +
    +

    1.966

    +
    +

    113.12

    +
    +

    60.80%

    +
    +

    37.80%

    +
    +

    1.40%

    +
    +

    1.66

    +
    +

    0.8

    +
    +

    GU

    +
    +

    112

    +
    +

    R2610E

    +
    +

    BXD

    +
    +

    BXD44

    +
    +

    68

    +
    +

    M

    +
    +

    R2610E.CEL

    +
    +

    0.013

    +
    +

    0.009

    +
    +

    1.814

    +
    +

    142.91

    +
    +

    59.00%

    +
    +

    39.50%

    +
    +

    1.50%

    +
    +

    1.35

    +
    +

    0.8

    +
    +

    GU

    +
    +

    113

    +
    +

    R2689E

    +
    +

    BXD

    +
    +

    BXD65

    +
    +

    63

    +
    +

    F

    +
    +

    R2689E.CEL

    +
    +

    0.008

    +
    +

    0.008

    +
    +

    1.721

    +
    +

    142.44

    +
    +

    59.90%

    +
    +

    38.60%

    +
    +

    1.50%

    +
    +

    1.38

    +
    +

    0.76

    +
    +

    GU

    +
    +

    114

    +
    +

    R2727E

    +
    +

    BXD

    +
    +

    BXD69

    +
    +

    65

    +
    +

    M

    +
    +

    R2727E.CEL

    +
    +

    0.01

    +
    +

    0.008

    +
    +

    1.578

    +
    +

    143.86

    +
    +

    60.30%

    +
    +

    38.30%

    +
    +

    1.40%

    +
    +

    1.34

    +
    +

    0.77

    +
    +

    GU

    +
    +

    115

    +
    +

    R2726E

    +
    +

    BXD

    +
    +

    BXD68

    +
    +

    64

    +
    +

    M

    +
    +

    R2726E.CEL

    +
    +

    0.125

    +
    +

    0.025

    +
    +

    1.811

    +
    +

    153.09

    +
    +

    58.70%

    +
    +

    39.80%

    +
    +

    1.50%

    +
    +

    1.39

    +
    +

    0.78

    +
    +

    GU

    +
    +

    116

    +
    +

    R2732E

    +
    +

    BXD

    +
    +

    BXD45

    +
    +

    63

    +
    +

    F

    +
    +

    R2732E.CEL

    +
    +

    0.039

    +
    +

    0.036

    +
    +

    2.154

    +
    +

    122.45

    +
    +

    56.50%

    +
    +

    42.10%

    +
    +

    1.40%

    +
    +

    1.8

    +
    +

    0.83

    +
    +

    GU

    +
    +

    117

    +
    +

    R2709E

    +
    +

    BXD

    +
    +

    BXD8

    +
    +

    61

    +
    +

    M

    +
    +

    R2709E.CEL

    +
    +

    0.012

    +
    +

    0.011

    +
    +

    1.99

    +
    +

    99.79

    +
    +

    60.90%

    +
    +

    37.60%

    +
    +

    1.50%

    +
    +

    1.42

    +
    +

    0.76

    +
    +

    GU

    +
    +

    118

    +
    +

    R2686E

    +
    +

    BXD

    +
    +

    BXD80

    +
    +

    61

    +
    +

    M

    +
    +

    R2686E.CEL

    +
    +

    0.046

    +
    +

    0.05

    +
    +

    2.342

    +
    +

    119.63

    +
    +

    56.00%

    +
    +

    42.60%

    +
    +

    1.50%

    +
    +

    1.38

    +
    +

    0.79

    +
    +

    GU

    +
    +

    119

    +
    +

    R2692E

    +
    +

    BXD

    +
    +

    BXD85

    +
    +

    63

    +
    +

    F

    +
    +

    R2692E.CEL

    +
    +

    0.006

    +
    +

    0.007

    +
    +

    1.423

    +
    +

    160.87

    +
    +

    60.20%

    +
    +

    38.30%

    +
    +

    1.40%

    +
    +

    1.46

    +
    +

    0.79

    +
    +

    GU

    +
    +

    120

    +
    +

    R2715E

    +
    +

    BXD

    +
    +

    BXD85

    +
    +

    91

    +
    +

    M

    +
    +

    R2715E.CEL

    +
    +

    0.007

    +
    +

    0.008

    +
    +

    1.488

    +
    +

    142.6

    +
    +

    61.20%

    +
    +

    37.30%

    +
    +

    1.40%

    +
    +

    1.5

    +
    +

    0.78

    +
    +

    GU

    +
    +

    121

    +
    +

    R1405E

    +
    +

    BXD

    +
    +

    BXD86

    +
    +

    58

    +
    +

    F

    +
    +

    R1405E.CEL

    +
    +

    0.053

    +
    +

    0.052

    +
    +

    2.351

    +
    +

    119.34

    +
    +

    56.40%

    +
    +

    42.20%

    +
    +

    1.40%

    +
    +

    1.64

    +
    +

    0.81

    +
    +

    GU

    +
    +

    122

    +
    +

    R2724E

    +
    +

    BXD

    +
    +

    BXD87

    +
    +

    63

    +
    +

    F

    +
    +

    R2724E.CEL

    +
    +

    0.013

    +
    +

    0.019

    +
    +

    1.906

    +
    +

    113.71

    +
    +

    60.70%

    +
    +

    37.90%

    +
    +

    1.40%

    +
    +

    1.45

    +
    +

    0.79

    +
    +

    GU

    +
    +

    123

    +
    +

    R1451E

    +
    +

    BXD

    +
    +

    BXD34

    +
    +

    61

    +
    +

    F

    +
    +

    R1451E.CEL

    +
    +

    0.01

    +
    +

    0.009

    +
    +

    1.843

    +
    +

    140.05

    +
    +

    59.00%

    +
    +

    39.50%

    +
    +

    1.50%

    +
    +

    1.42

    +
    +

    0.81

    +
    +

    GU

    +
    +

    124

    +
    +

    R1433E

    +
    +

    BXD

    +
    +

    BXD89

    +
    +

    63

    +
    +

    F

    +
    +

    R1433E.CEL

    +
    +

    0.029

    +
    +

    0.026

    +
    +

    2.241

    +
    +

    115.86

    +
    +

    57.70%

    +
    +

    40.80%

    +
    +

    1.50%

    +
    +

    1.41

    +
    +

    0.78

    +
    +

    GU

    +
    +

    125

    +
    +

    R2733E

    +
    +

    BXD

    +
    +

    BXD96

    +
    +

    67

    +
    +

    F

    +
    +

    R2733E.CEL

    +
    +

    0.024

    +
    +

    0.054

    +
    +

    1.7

    +
    +

    113.99

    +
    +

    62.10%

    +
    +

    36.60%

    +
    +

    1.30%

    +
    +

    1.4

    +
    +

    0.78

    +
    +

    GU

    +
    +

    126

    +
    +

    R2649E

    +
    +

    BXD

    +
    +

    BXD97

    +
    +

    74

    +
    +

    F

    +
    +

    R2649E.CEL

    +
    +

    0.029

    +
    +

    0.032

    +
    +

    2.343

    +
    +

    119.04

    +
    +

    57.50%

    +
    +

    41.20%

    +
    +

    1.40%

    +
    +

    1.53

    +
    +

    0.8

    +
    +

    GU

    +
    +

    127

    +
    +

    R2688E

    +
    +

    BXD

    +
    +

    BXD98

    +
    +

    67

    +
    +

    M

    +
    +

    R2688E.CEL

    +
    +

    0.032

    +
    +

    0.03

    +
    +

    1.772

    +
    +

    145.24

    +
    +

    58.50%

    +
    +

    40.00%

    +
    +

    1.50%

    +
    +

    1.48

    +
    +

    0.81

    +
    +

    GU

    +
    +

    128

    +
    +

    R877E

    +
    +

    BXD

    +
    +

    BXD13

    +
    +

    76

    +
    +

    M

    +
    +

    R877E.CEL

    +
    +

    0.026

    +
    +

    0.067

    +
    +

    1.558

    +
    +

    125.63

    +
    +

    61.20%

    +
    +

    37.50%

    +
    +

    1.20%

    +
    +

    1.42

    +
    +

    0.81

    +
    +

    GU

    +
    +

    129

    +
    +

    R1397E-re

    +
    +

    BXD

    +
    +

    BXD75

    +
    +

    58

    +
    +

    M

    +
    +

    R1397E-re.CEL

    +
    +

    0.032

    +
    +

    0.01

    +
    +

    1.449

    +
    +

    189.71

    +
    +

    59.60%

    +
    +

    39.00%

    +
    +

    1.40%

    +
    +

    1.39

    +
    +

    0.82

    +
    +

    GU

    +
    +

    130

    +
    +

    R2779E

    +
    +

    BXD

    +
    +

    BXD73

    +
    +

    64

    +
    +

    F

    +
    +

    R2779E.CEL

    +
    +

    0.012

    +
    +

    0.038

    +
    +

    1.746

    +
    +

    121.11

    +
    +

    59.60%

    +
    +

    39.00%

    +
    +

    1.40%

    +
    +

    1.5

    +
    +

    0.8

    +
    +

    GU

    +
    +

    131

    +
    +

    R2708E

    +
    +

    BXD

    +
    +

    BXD9

    +
    +

    60

    +
    +

    F

    +
    +

    R2708E.CEL

    +
    +

    0.024

    +
    +

    0.045

    +
    +

    1.966

    +
    +

    126.46

    +
    +

    57.70%

    +
    +

    40.70%

    +
    +

    1.50%

    +
    +

    1.4

    +
    +

    0.84

    +
    +

    GU

    +
    +

    132

    +
    +

    R2547E1

    +
    +

    GDP

    +
    +

    WSB/Ei

    +
    +

    67

    +
    +

    M

    +
    +

    R2547E.CEL

    +
    +

    0.041

    +
    +

    0.039

    +
    +

    2.14

    +
    +

    90

    +
    +

    58.20%

    +
    +

    40.10%

    +
    +

    1.60%

    +
    +

    1.32

    +
    +

    0.77

    +
    +

    UTM RW

    +
    + +
    + +

        About downloading this data set:

    +
    +

    This data set is not yet available as a bulk download. Please contact Robert W. Williams to request special data access.

    +
    + + +

        About the array platfrom:

    +
    +

    Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the two batches together in RMA. + + +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of arrays using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 7: Finally, when appropriate, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. + +
    + +

    After RMA processing all arrays were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (C3H/HeJ and BXD24) and samples from wild subspecies such as CAST/Ei, PWD/Ph, and PWK/Ph. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. We tended to keep arrays that "conformed" to the expectation. The assumption in these cases is that anomolous data are much more likely due to experimental problem and errors than to informative biological variation. Approximately 8 arrays total were discarded in batches 1 and 2 combined. + +

    After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc. + +

    We then categorized arrays into XXX major "technical groups" depending on expression patterns as noted in scatterplots. This process of defining technical groups was done in DataDesk by manually "typing" arrays. These technical groups are apparently due to subtle within-batch effect that we do not yet understand and that cannot be corrected by quantile normalization. These XXX major technical groups are not obviously related to strain, sex, age, or any other known biological effect or variable. They are also not obviously related to any of the Affymetrix QC data types (3'/5' ratios, gain, etc.). Once the technical groups were defined, we forced the means of each probe set in the XX technical groups to the same value. This simple process partially removes a technical error of unknown origin in large expression array data sets. + +

    We reviewed the final data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of 140 arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g. 1000) represented the QTL harvest for the full data set. We then dropped a single array from the data set (n = 139 arrays), recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 950 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs (1000-950). Values ranged from -90 (good0 to +38 (bad). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a final method to polish a data set. By applying this procedure we discovered that a set of XX (7?) arrays could be excluded while simultaneously improving the total number of QTLs with values above 50. + +

    During this final process we discovered that nearly XX arrays in the second batch had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of very high quality. + + + +

        Data source acknowledgment:

    +
    +Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant. All arrays were processed at the VA Medical Center, Memphis by Weikuan Gu. +
    + +

        Information about this text file:

    +

    This text file originally generated by RWW, May 26, 2006. Updated by RWW, May 27, 2006. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/EYE_M2_1105_M.html b/web/dbdoc/EYE_M2_1105_M.html new file mode 100755 index 00000000..08cfc781 --- /dev/null +++ b/web/dbdoc/EYE_M2_1105_M.html @@ -0,0 +1,207 @@ + + +Eye M430v2 (Nov05) MAS5 + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    Eye M430v2 (Nov05) MAS5 modify this page

    Accession number: GN92

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/EYE_M2_1105_P.html b/web/dbdoc/EYE_M2_1105_P.html new file mode 100755 index 00000000..a803d650 --- /dev/null +++ b/web/dbdoc/EYE_M2_1105_P.html @@ -0,0 +1,287 @@ + +M430 Microarray Eye PDNN Nov05 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    + +Eye M430v2 (November05) PDNN modify this page

    Accession number: GN94

    + +

        Summary:

    + +
    +

    +CAUTION: DO NOT USE THIS PDNN TRANSFORM of the HEIMED EYE Database. USE RMA INSTEAD. This April 2005 data freeze provides estimates of mRNA expression in adult eye from 50 lines of mice including C57BL/6J, DBA/2J, their F1 hybrids, and 47 BXD recombinant inbred strains. Data were generated at UTHSC. Samples were hybridized in small pools (n = 3) to Affymetrix M430 2.0 arrays. This particular data set was processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. +

    +
    + + + +

        About the cases used to generate this set of data:

    + +
    +We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D). Physical maps in WebQTL incorporate approximately 2 million B vs D SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

    + +

    All stock was obtained originally from The Jackson Laboratory between 1998 and 2003. Most BXD animals were born and housed at the University of Tennessee Health Science Center. Some cases were bred at the University of Memphis (Douglas Matthews) or the University of Alabama (John Mountz and Hui-Chen Hsu). +

    + + +

        About the tissue used to generate this set of data:

    + +
    The INIA M430 brain Database (April05) consists of 105 Affymetrix 430A and 430B microarray pairs. Each pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai at UTHSC. + +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube. The body was sprayed lightly with 70% ethanol to wet the hair. the following standard approach was used to extract the brain: + +

      +
    1. Using small surgical scissors make an incision under the skin on the dorsal side of the neck. Cut the skin overlying the skull close to the midsagittal plane towards the nose. Pull and reflect the skin to expose the entire dorsal skull. +
    2. Slip the points of the scissors through into the cisterna magna just caudal to the cerebellum and gently enlarge this opening until is it possible to cut through the skull overlying the cerebellum. +
    3. Cut rostrally through the skull along the midsagittal line almost all the way to the nasal opening, taking care not to damage the dorsal surface of the brain. +
    4. Approximately midway along this incision, make a lateral cut. Repeat along the incision and peel back the resulting strips of skull. +
    5. Using small forceps, free the olfactory bulbs rostrally and ventrally, taking care to retain their connection to the rest of the forebrain. +
    6. Gently lift the brain from the base the skull starting from the olfactory bulbs, pulling the brain toward a nearly vertical position. Cut the optic and trigeminal nerves. Separate the brain from the spinal cord about 2 mm distal to the medulla. +
    7. Spread the hemispheres of the forebrain gently with forceps and then cut from dorsal to ventral using a straight scalpel, separating the hemispheres from each other (but not from the cerebellum). Take care to retain both paraflocculi. +
    + +At this point the protocol divides. If tissue is to be saved for RNA extraction at a later time, the whole brain is placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. Step 7 is still very important because RNAlater may not fully penetrate the forebrain if the lobes are not separated. If tissue is to be used for immediate RNA extraction, one lobe of the forebrain is removed for processing and the rest of the brain is stored in RNAlater.

    + +Dissecting and preparing forebrain and midbrain for RNA extraction +

      +
    1. Remove the left or right hemisphere of the forebrain and midbrain (referred to here as the forebrain for simplicity), either fresh or preserved in RNAlater by cutting from the caudal border of the inferior colliculus on the dorsal side and extending the cut ventrally to the basis pedunculi and the pons (cut just rostral of the pons) on the ventral side. See steps 7 and 8 here +
    2. Place tissue for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below). +
    3. Store RNA in 75% ethanol at –80 deg. C until use. +
    + + + +

    Total RNA was extracted with RNA STAT-60 (Tel-Test) according to the manufacturer’s instructions. Briefly we: +

      +
    1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue) +
    2. allowed the homogenate to stand for 5 min at room temperature +
    3. added 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    4. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min +
    5. centrifuged at 12,000 G for 15 min +
    6. transfered the aqueous phase to a fresh tube +
    7. added 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    8. vortexed and allowed sample to stand at room temperature for 5-10 min +
    9. centrifugeed at 12,000 G for 10-15 min +
    10. removed the supernatant and washed the RNA pellet with 75% ethanol +
    11. stored the pellet in 75% ethanol at -80 deg C until use +
    + + +

    Sample Processing. Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence, The University of Memphis, lead by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, samples were quality control checked for RNA purity using 260/280 ratios (samples had to be greater than 1.8, but the majority were 1.9 or higher). RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8, based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II RT (Invitrogen Inc.). The Enzo LIfe Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nt is required). Those samples that passed both QC steps (10% usually fail) were then sheared using a fragment buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use or were immediately injected onto the array. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. We have not yet achieved this goal. Ten of 45 strains are still represented by single sex samples: BXD2 (F), BXD8 (F), BXD15 (F), BXD18 (F), BXD25 (F), BXD29 (F), BXD33 (M), BXD45 (F), BXD77 (M), and BXD90 (M). Eleven strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 2M), B6D2F1 (2F 2M) + D2B6F1 (1F 1M), BXD6 (2F 1M), BXD13 (2F 1M), BXD14 (1F 2M), BXD28 (2F 1M), BXD34 (1F 2M), BXD36 (1F 2M), BXD38 (1F 2M), BXD42 (1F 2M). + +

    Batch Structure: Before running the first batch of 30 pairs of array (dated Jan04), we ran four test samples (Nov03). The main batch of 30 includes the four test samples (four technical replicates). The Nov03 data was combined with the Jan04 data and was treated as a single batch that consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. The second large batch was run February 2005 (Feb05) and consists of 71 pairs of arrays. Batch effects were corrected at the individual probe level as described below. + + +

    The table below summarizes information on tubeID, group_type, strain, age, sex, original CEL filename, and source of mice. + +

    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Idtube IDgroup typeStrainagesexoriginal CEL filenamePDNN 2Z outlierRMA 2Z outlierscale factorbackground averagepresentabsentmarginalAFFX-b-ActinMur(3'/5')AFFX-GapdhMur(3'/5')source
    1R2607E1GDP BXDC57BL/6J67FR2605E.CEL0.0050.0092.428115.120.5860.40.0141.310.76UTM RW
    2R0872E2GDP BXDC57BL/6J66MR0872E.CEL0.0130.0123.12888.580.5890.3960.0151.30.79UTM RW
    3R2572E1GDP BXDDBA/2J65MR2572E.CEL0.0410.0512.40679.070.5550.4290.0161.370.79UTM RW
    4R2601E1GDP BXDB6D2F173FR2601E.CEL0.0030.0042.54591.960.5890.3960.0151.440.78UTM RW
    5R2602E1GDP BXDB6D2F173MR2602E.CEL0.0010.0042.59984.440.5970.3880.0151.370.78UTM RW
    6R2600E1GDP BXDD2B6F172FR2600E.CEL0.0030.0082.4794.750.5810.4020.0171.410.78UTM RW
    7R2604E1GDP BXDD2B6F169MR2604E.CEL0.0030.0072.65789.630.5940.3920.0151.280.79UTM RW
    8R2597E1BXDBXD261MR2597E.CEL0.0030.0072.37493.560.6030.3830.0151.340.77Glenn
    9R2591E1BXDBXD560FR2591E.CEL0.0510.0091.7136.480.5850.40.0151.330.78Glenn
    10R2570E1BXDBXD665FR2570E.CEL0.0020.0061.98786.730.5850.40.0151.460.76UTM RW
    11R2538E1BXDBXD877FR2538E.CEL0.0370.0281.905101.980.6120.3730.0151.520.79UTM RW
    12R2569E1BXDBXD967MR2569E.CEL0.0140.0271.75387.360.5510.4340.0152.823.14UTM RW
    13R2581E1BXDBXD1165FR2581E.CEL0.0060.0121.94188.550.6210.3640.0161.550.81UTM RW
    14R2543E1BXDBXD1263MR2543E.CEL0.0360.0071.605117.690.5860.3990.0161.430.77UTM RW
    15R2586E1BXDBXD1360FR2586E.CEL0.0200.0352.00673.610.5640.420.0162.853.81Glenn
    16R2557E1BXDBXD1460FR2557E.CEL0.0140.0171.8398.760.6250.3610.0141.310.78Glenn
    17R2567E1BXDBXD1660MR2567E.CEL0.0160.0252.23982.350.5670.4160.0171.370.75Glenn
    18R2559E1BXDBXD1859MR2559E.CEL0.0350.0061.654103.680.6080.3770.0151.270.78Glenn
    19R2560E1BXDBXD1960FR2560E.CEL0.0260.0071.79298.330.6090.3750.0161.350.8Glenn
    20R2584E1BXDBXD2059FR2584E.CEL0.0030.0072.0783.820.5930.3910.0161.40.76Glenn
    21R2541E2BXDBXD2161MR2541E2.CEL0.0490.0362.625125.080.560.4240.0151.290.78UTM RW
    22R2553E1BXDBXD2258FR2553E.CEL0.0030.0051.952111.30.5990.3850.0151.280.76Glenn
    23R2558E1BXDBXD2360FR2558E-2.CEL0.0130.0151.908114.530.5990.3880.0141.20.82Glenn
    24R2589E2BXDBXD2459MR2589E2.CEL0.0980.0982.606112.190.5750.4090.0161.240.8Glenn
    25R2573E1BXDBXD2567FR2573E-2.CEL0.0090.0183.15371.880.5790.4070.0141.770.97UAB
    26R2562E1BXDBXD2860FR2562E.CEL0.0030.0051.649116.350.5990.3840.0171.370.79Glenn
    27R2561E1BXDBXD2960FR2561E.CEL0.0190.0291.95293.320.5830.4020.0152.191Glenn
    28R2598E1BXDBXD3161MR2598E.CEL0.0030.0061.989106.480.6090.3760.0151.270.78UTM RW
    29R2563E1BXDBXD3263FR2563E.CEL0.0080.0111.547101.520.6190.3670.0141.50.8UTM RW
    30R2542E1BXDBXD3367FR2542E.CEL0.0100.0162.12897.080.5650.4180.0161.910.93UTM RW
    31R2585E1BXDBXD3460MR2585E.CEL0.0070.0142.6475.130.5830.40.0171.250.77Glenn
    32R2532E1BXDBXD3862MR2532E.CEL0.0020.0032.03893.650.5980.3870.0151.370.8UTM RW
    33R2574E1BXDBXD3970FR2574E.CEL0.0010.0041.98190.640.6120.3730.0151.390.78UTM RW
    34R2590E1BXDBXD4060MR2590E.CEL0.0040.0072.70877.30.5910.3930.0151.40.77Glenn
    35R2596E1BXDBXD4259MR2596E.CEL0.0130.0172.632108.460.590.3960.0151.240.8Glenn
    36R2605E1BXDBXD4379MR2607E.CEL0.0030.0061.817131.220.6050.3820.0131.320.8UTM RW
    37R2594E1BXDBXD4463FR2594E.CEL0.0040.0091.766117.330.5980.3880.0141.350.85UTM RW
    38R2592E1BXDBXD4562MR2592E.CEL0.0020.0041.85106.160.6010.3860.0131.430.85UTM RW
    39R2606E1BXDBXD4878MR2606E.CEL0.0030.0102.556106.160.5890.3970.0141.350.83UTM RW
    40R2603E1BXDBXD5166FR2603E.CEL0.0030.0092.488115.160.5770.4080.0151.240.79UTM RW
    41R2534E2BXDBXD6170FR2534E2.CEL0.0300.0282.473117.760.5790.4060.0151.420.79UTM RW
    42R2611E1BXDBXD6468MR2611E.CEL0.0130.0222.29291.990.580.4050.0151.571.06UTM RW
    43R2583E1BXDBXD6560MR2583E.CEL0.0050.0102.49270.430.5690.4150.0161.671.01UTM RW
    44R2536E2BXDBXD6664FR2536E2.CEL0.0390.0652.74108.620.5610.4230.0171.280.79UTM RW
    45R2551E1BXDBXD6867FR2551E.CEL0.0370.0392.49392.380.5430.4410.0162.911.55UTM RW
    46R2593E1BXDBXD6959FR2593E.CEL0.0080.0131.672127.60.5920.3950.0131.470.92UTM RW
    47R2537E2BXDBXD7059MR2537E2.CEL0.0460.0442.9398.660.580.4050.0161.290.75UTM RW
    48R2565E1BXDBXD7561FR2565E.CEL0.0090.0171.79101.680.580.4050.0152.313.47UTM RW
    49R2579E1BXDBXD8065FR2579E.CEL0.0050.0102.41972.130.5920.3940.0151.730.82UTM RW
    50R2540E1BXDBXD8763MR2540E.CEL0.0130.0162.33393.150.6110.3740.0141.220.81UTM RW
    51R2545E1BXDBXD8967MR2546E.CEL0.0460.0461.667104.760.5620.4230.0153.69.84UTM RW
    52R2578E2BXDBXD9061FR2578E2.CEL0.0330.0342.78592.270.5860.3980.0161.520.77UTM RW
    53R2554E1BXDBXD9667MR2554E.CEL0.0040.0042.17793.020.6020.3830.0151.460.77UTM RW
    54R2577E1BXDBXD9755MR2577E.CEL0.0190.0162.0776.580.5950.3910.0141.871.29UTM RW
    55R2595E1GDP129S1/SvImJ59FR2595E.CEL0.0170.0211.792115.390.610.3750.0151.460.77UTM RW
    56R2533E1GDP129S1/SvImJ60MR2533E.CEL0.0210.0132.10793.550.5790.4050.0161.370.78UTM RW
    57R2546E1GDPA/J66FR2545E.CEL0.0180.0141.98995.590.5860.3970.0171.470.78UTM RW
    58R0754E2GDPA/J60MR0754E.CEL0.0140.0162.71885.630.5980.3870.0151.360.76JAX
    59R1676E1GDPBALB/cByJ83FR1676E.CEL0.0420.0412.68598.370.5890.3960.0151.460.74JAX
    60R1672E1GDPBALB/cByJ83MR1672E.CEL0.0220.0222.216110.520.5990.3860.0151.260.8JAX
    61R1700E1GDPC3H/HeJ83FR1700E.CEL0.0900.0922.97868.770.6080.3790.0141.480.78UTM RW
    62R1704E1GDPC3H/HeJ83MR1704E.CEL0.0860.0892.58188.290.6010.3860.0131.380.84UTM RW
    63R2564E1GDPCAST/Ei64FR2564E.CEL0.0780.0641.93788.890.5850.3990.0161.60.77JAX
    64R2580E1GDPCAST/Ei64MR2580E.CEL0.0760.0672.08994.640.5820.4010.0171.40.76JAX
    65R2636E1GDPKK/HIJ64FR2636E.CEL0.0230.0262.6193.10.5890.3950.0151.390.76UTM RW
    66R2637E1GDPKK/HIJ64MR2637E.CEL0.0390.0202.189102.780.5940.390.0151.30.79UTM RW
    67R0999E1GDPLG/J57FR0999E.CEL0.0120.0122.44882.090.5940.3910.0151.380.79UTM RW
    68R1004E1GDPLG/J65MR1004E.CEL0.0130.0152.43891.710.5870.3980.0151.380.79UTM RW
    69R1688E1GDPNOD/LtJ66FR1688E.CEL0.0170.0192.66497.650.5860.3990.0151.260.8JAX
    70R2566E1GDPNOD/LtJ76MR2566E-2.CEL0.0190.0253.03169.440.5980.3880.0151.380.75UTM RW
    71R2550E1GDPNZO/HlLtJ96MR2550E.CEL0.0230.0151.79487.160.6070.3780.0151.520.82JAX
    72R2535E1GDPNZO/HlLtJ62FR2535E.CEL0.0460.0251.89385.670.6040.3820.0141.410.85JAX
    73R2634E1GDPPWD/PhJ62FR2635E.CEL0.0770.0693.29289.80.5590.4250.0161.570.81JAX
    74R2635E1GDPPWD/PhJ62MR2634E.CEL0.0880.0813.72280.050.5420.4410.0171.530.85JAX
    75R2544E1GDPPWK/PhJ63FR2544E.CEL0.1060.1002.196107.510.5490.4350.0171.360.82JAX
    76R2549E1GDPPWK/PhJ83MR2549E.CEL0.0650.0482.27583.80.5730.4120.0151.570.83JAX
    77R2368E1GDPWSB/EiJ67FR2368E.CEL0.0250.0282.56785.70.5950.3910.0141.290.74UTM RW
    78R2547E1GDPWSB/EiJ67MR2547E.CEL0.0320.0212.13590.040.5820.4010.0161.320.77UTM RW
    +
    +
    + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430v2: The 430A and B array pairs collectively consist of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are essentially duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequence as the 430 2.0 series. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the 430 2.0.

    +
    + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the two batches (n = 34 and n = 71 array pairs) at the probe level. To do this we calculated the ratio of each batch mean to the mean of both batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each batch is the same. + +
    • Step 7a: The 430A and 430B arrays include a set of 100 shared probe sets (a total of 2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the 430A and 430B arrays to a common scale. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression correction to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a small offset. The result of this step is that the mean of the 430A expression is fixed at a value of 8, whereas that of the 430B chip is typically reduced to 7. The average of the merged 430A and 430B array data set is approximately 7.5. + +
    • Step 7b: We recentered the merged 430A and 430B data sets to a mean of 8 and a standard deviation of 2. This involved reapplying Steps 3 through 5. + +
    • Step 8: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, source of animals, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + + +

        Data source acknowledgment:

    +
    +Support for acquisition of microarray data were generously provided by the NIAAA and its INIA grant program to RWW, Thomas Sutter, and Daniel Goldowitz (U01AA013515, U01AA013499-03S1, U01AA013488, U01AA013503-03S1). Support for the continued development of the GeneNetwork and WebQTL was provided by a NIMH Human Brain Project grant (P20MH062009). All arrays were processed at the University of Memphis by Thomas Sutter and colleagues with support of the INIA Bioanalytical Core. +
    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004; April 7, 2005; RNA/tissue preparation protocol updatedby JLP, Sept 2, 2005; Sept 26, 2005. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/EYE_M2_1105_R.html b/web/dbdoc/EYE_M2_1105_R.html new file mode 100755 index 00000000..25a9369d --- /dev/null +++ b/web/dbdoc/EYE_M2_1105_R.html @@ -0,0 +1,329 @@ + +HEIMED M430 Microarray Eye RMA November05 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    + +Hamilton Eye Institute Mouse Eye M430v2 (November05) RMA Data Set modify this page

    Accession number: GN93

    + +

        Summary:

    + +
    +

    +SUPERCEDED EYE DATASET. The HEIMED November 2005 data set provides estimates of mRNA expression in whole eyes of 63 lines of mice without significant biological replication. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). Pooled RNA samples were hybridized to Affymetrix M430 2.0 arrays. This particular data set was processed using the RMA protocol. To simplify comparison among different transforms, RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.

    +
    + + +

        About the cases used to generate this set of data:

    + +
    +We have used a set of 14 conventional inbred strains, reciprocal F1s between C57BL/6J (B6 or B) and DBA/2J D2 (or D), and 47 BXD recombinant inbred strains. The BXD strains were generated by crossing C57BL/6J with DBA/2J. The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D). Physical maps in WebQTL incorporate approximately 2 million B vs D SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD1 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. + +

    Please note that BXD24/TyJ (JAX stock number 000031) used in this study is also known as BXD24b/TyJ and has complete retinal degeneration. BXD24a/TyJ, a 1988 F80 stock that has now been rederived, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control. + +

    BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

    + + + + +

    Mouse Diversity Panel (MDP). In addition to the BXD strains, we have profiled a MDP consisting 14 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) also carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene. + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase-negative albino (c) mutant + + +
    3. BALB/cByJ +
           Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list. A tyrosinase-negative albino (c) mutant + + +
    4. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list. Important to note for this Eye dataset, C3H/HeJ is a Pdeb6 mutant with near total photoreceptor loss at maturity. + +
    5. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    6. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    7. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    8. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    9. LG/J +
          Paternal parent of the LGXSM panel + +
    10. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    11. NZO/HILtJ +
          Collaborative Cross strain + +
    12. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    13. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    14. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    15. B6D2F1 and D2B6F1, aka F1 in some graphs and tables +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J +
    + + + +

        About the tissue used to generate this set of data:

    + +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube. + +

    Each array was hybridized with a pool of RNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

    + +Dissecting and preparing eyes for RNA extraction +

      +
    1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below). +
    2. Store RNA in 75% ethanol at –80 deg. C until use. +
    + +

    Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue) +
    2. allowed the homogenate to stand for 5 min at room temperature +
    3. added 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    4. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min +
    5. centrifuged at 12,000 G for 15 min +
    6. transfered the aqueous phase to a fresh tube +
    7. added 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    8. vortexed and allowed sample to stand at room temperature for 5-10 min +
    9. centrifuged at 12,000 G for 10-15 min +
    10. removed the supernatant and washed the RNA pellet with 75% ethanol +
    11. stored the pellet in 75% ethanol at -80 deg C until use +
    + + +

    Sample Processing. Samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center lead by Drs. John Stuart and Weikuan Gu. All processing steps were performed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use (one third roughly) or were immediately used for hybridization. + +

    Dealing with Ocular Pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations of brown and beige colored mice tend to have faint residual pigmentation that does affect hybridization signal. The key determinant of this interesting effect is the Tyrp1 (brown) locus on Chr 5 at about 80 Mb. Loci on Chr 4 that map at this location should be considered with skepticism and reviewed carefully. To address this problem Yan Jiao purified total RNA a second time using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204). This was done for 8 colored samples (R2534E2, R2578E2, R1441E2, R2537E2, R2536E2, R2589E2, R2539E2), of which 5 were finally included in this data set (cases in which the strain ID is labeled with asterisks in the table). + + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. The current first batch of array data, represents a balanced sample of males and females, but without within-strain replication. We expect to add roughly 100 additional samples inthe next few months. + +

    Batch Structure: This data set consists of a single batch. The great majority of arrays are from a single lot. + +

    The table below summarizes information on strain, age, sex, original CEL filename, several quality control values, and source of mice. Columns labeled "PDNN 2Z outlier" and "RMA 2Z outlier" list the fraction of probe sets with values that deviated more than 2 z units from the mean. Scale factor, background average, present, absent, marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files. +

    + + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Idtube IDgroup typeStrainagesexoriginal CEL filenamePDNN 2Z outlierRMA 2Z outlierscale factorbackground averagepresentabsentmarginalAFFX-b-ActinMur(3'/5')AFFX-GapdhMur(3'/5')source
    1R2607E1GDP BXDC57BL/6J67FR2605E.CEL0.0050.0092.428115.120.5860.40.0141.310.76UTM RW
    2R0872E2GDP BXDC57BL/6J66MR0872E.CEL0.0130.0123.12888.580.5890.3960.0151.30.79UTM RW
    3R2572E1GDP BXDDBA/2J65MR2572E.CEL0.0410.0512.40679.070.5550.4290.0161.370.79UTM RW
    4R2601E1GDP BXDB6D2F173FR2601E.CEL0.0030.0042.54591.960.5890.3960.0151.440.78UTM RW
    5R2602E1GDP BXDB6D2F173MR2602E.CEL0.0010.0042.59984.440.5970.3880.0151.370.78UTM RW
    6R2600E1GDP BXDD2B6F172FR2600E.CEL0.0030.0082.4794.750.5810.4020.0171.410.78UTM RW
    7R2604E1GDP BXDD2B6F169MR2604E.CEL0.0030.0072.65789.630.5940.3920.0151.280.79UTM RW
    8R2597E1BXDBXD261MR2597E.CEL0.0030.0072.37493.560.6030.3830.0151.340.77Glenn
    9R2591E1BXDBXD560FR2591E.CEL0.0510.0091.7136.480.5850.40.0151.330.78Glenn
    10R2570E1BXDBXD665FR2570E.CEL0.0020.0061.98786.730.5850.40.0151.460.76UTM RW
    11R2538E1BXDBXD877FR2538E.CEL0.0370.0281.905101.980.6120.3730.0151.520.79UTM RW
    12R2569E1BXDBXD967MR2569E.CEL0.0140.0271.75387.360.5510.4340.0152.823.14UTM RW
    13R2581E1BXDBXD1165FR2581E.CEL0.0060.0121.94188.550.6210.3640.0161.550.81UTM RW
    14R2543E1BXDBXD1263MR2543E.CEL0.0360.0071.605117.690.5860.3990.0161.430.77UTM RW
    15R2586E1BXDBXD1360FR2586E.CEL0.0200.0352.00673.610.5640.420.0162.853.81Glenn
    16R2557E1BXDBXD1460FR2557E.CEL0.0140.0171.8398.760.6250.3610.0141.310.78Glenn
    17R2567E1BXDBXD1660MR2567E.CEL0.0160.0252.23982.350.5670.4160.0171.370.75Glenn
    18R2559E1BXDBXD1859MR2559E.CEL0.0350.0061.654103.680.6080.3770.0151.270.78Glenn
    19R2560E1BXDBXD1960FR2560E.CEL0.0260.0071.79298.330.6090.3750.0161.350.8Glenn
    20R2584E1BXDBXD2059FR2584E.CEL0.0030.0072.0783.820.5930.3910.0161.40.76Glenn
    21R2541E2BXDBXD2161MR2541E2.CEL0.0490.0362.625125.080.560.4240.0151.290.78UTM RW
    22R2553E1BXDBXD2258FR2553E.CEL0.0030.0051.952111.30.5990.3850.0151.280.76Glenn
    23R2558E1BXDBXD2360FR2558E2.CEL0.0130.0151.908114.530.5990.3880.0141.20.82Glenn
    24R2589E2BXDBXD24-rd*59MR2589E2.CEL0.0980.0982.606112.190.5750.4090.0161.240.8Glenn
    25R2573E1BXDBXD2567FR2573E2.CEL0.0090.0183.15371.880.5790.4070.0141.770.97UAB
    26R2562E1BXDBXD2860FR2562E.CEL0.0030.0051.649116.350.5990.3840.0171.370.79Glenn
    27R2561E1BXDBXD2960FR2561E.CEL0.0190.0291.95293.320.5830.4020.0152.191Glenn
    28R2598E1BXDBXD3161MR2598E.CEL0.0030.0061.989106.480.6090.3760.0151.270.78UTM RW
    29R2563E1BXDBXD3263FR2563E.CEL0.0080.0111.547101.520.6190.3670.0141.50.8UTM RW
    30R2542E1BXDBXD3367FR2542E.CEL0.0100.0162.12897.080.5650.4180.0161.910.93UTM RW
    31R2585E1BXDBXD3460MR2585E.CEL0.0070.0142.6475.130.5830.40.0171.250.77Glenn
    32R2532E1BXDBXD3862MR2532E.CEL0.0020.0032.03893.650.5980.3870.0151.370.8UTM RW
    33R2574E1BXDBXD3970FR2574E.CEL0.0010.0041.98190.640.6120.3730.0151.390.78UTM RW
    34R2590E1BXDBXD4060MR2590E.CEL0.0040.0072.70877.30.5910.3930.0151.40.77Glenn
    35R2596E1BXDBXD4259MR2596E.CEL0.0130.0172.632108.460.590.3960.0151.240.8Glenn
    36R2605E1BXDBXD4379MR2607E.CEL0.0030.0061.817131.220.6050.3820.0131.320.8UTM RW
    37R2594E1BXDBXD4463FR2594E.CEL0.0040.0091.766117.330.5980.3880.0141.350.85UTM RW
    38R2592E1BXDBXD4562MR2592E.CEL0.0020.0041.85106.160.6010.3860.0131.430.85UTM RW
    39R2606E1BXDBXD4878MR2606E.CEL0.0030.0102.556106.160.5890.3970.0141.350.83UTM RW
    40R2603E1BXDBXD5166FR2603E.CEL0.0030.0092.488115.160.5770.4080.0151.240.79UTM RW
    41R2534E2BXDBXD61*70FR2534E2.CEL0.0300.0282.473117.760.5790.4060.0151.420.79UTM RW
    42R2611E1BXDBXD6468MR2611E.CEL0.0130.0222.29291.990.580.4050.0151.571.06UTM RW
    43R2583E1BXDBXD6560MR2583E.CEL0.0050.0102.49270.430.5690.4150.0161.671.01UTM RW
    44R2536E2BXDBXD66*64FR2536E2.CEL0.0390.0652.74108.620.5610.4230.0171.280.79UTM RW
    45R2551E1BXDBXD6867FR2551E.CEL0.0370.0392.49392.380.5430.4410.0162.911.55UTM RW
    46R2593E1BXDBXD6959FR2593E.CEL0.0080.0131.672127.60.5920.3950.0131.470.92UTM RW
    47R2537E2BXDBXD70*59MR2537E2.CEL0.0460.0442.9398.660.580.4050.0161.290.75UTM RW
    48R2565E1BXDBXD7561FR2565E.CEL0.0090.0171.79101.680.580.4050.0152.313.47UTM RW
    49R2579E1BXDBXD8065FR2579E.CEL0.0050.0102.41972.130.5920.3940.0151.730.82UTM RW
    50R2540E1BXDBXD8763MR2540E.CEL0.0130.0162.33393.150.6110.3740.0141.220.81UTM RW
    51R2545E1BXDBXD8967MR2546E.CEL0.0460.0461.667104.760.5620.4230.0153.69.84UTM RW
    52R2578E2BXDBXD90*61FR2578E2.CEL0.0330.0342.78592.270.5860.3980.0161.520.77UTM RW
    53R2554E1BXDBXD9667MR2554E.CEL0.0040.0042.17793.020.6020.3830.0151.460.77UTM RW
    54R2577E1BXDBXD9755MR2577E.CEL0.0190.0162.0776.580.5950.3910.0141.871.29UTM RW
    55R2595E1GDP129S1/SvImJ59FR2595E.CEL0.0170.0211.792115.390.610.3750.0151.460.77UTM RW
    56R2533E1GDP129S1/SvImJ60MR2533E.CEL0.0210.0132.10793.550.5790.4050.0161.370.78UTM RW
    57R2546E1GDPA/J66FR2545E.CEL0.0180.0141.98995.590.5860.3970.0171.470.78UTM RW
    58R0754E2GDPA/J60MR0754E.CEL0.0140.0162.71885.630.5980.3870.0151.360.76JAX
    59R1676E1GDPBALB/cByJ83FR1676E.CEL0.0420.0412.68598.370.5890.3960.0151.460.74JAX
    60R1672E1GDPBALB/cByJ83MR1672E.CEL0.0220.0222.216110.520.5990.3860.0151.260.8JAX
    61R1700E1GDPC3H/HeJ83FR1700E.CEL0.0900.0922.97868.770.6080.3790.0141.480.78UTM RW
    62R1704E1GDPC3H/HeJ83MR1704E.CEL0.0860.0892.58188.290.6010.3860.0131.380.84UTM RW
    63R2564E1GDPCAST/Ei64FR2564E.CEL0.0780.0641.93788.890.5850.3990.0161.60.77JAX
    64R2580E1GDPCAST/Ei64MR2580E.CEL0.0760.0672.08994.640.5820.4010.0171.40.76JAX
    65R2636E1GDPKK/HIJ64FR2636E.CEL0.0230.0262.6193.10.5890.3950.0151.390.76UTM RW
    66R2637E1GDPKK/HIJ64MR2637E.CEL0.0390.0202.189102.780.5940.390.0151.30.79UTM RW
    67R0999E1GDPLG/J57FR0999E.CEL0.0120.0122.44882.090.5940.3910.0151.380.79UTM RW
    68R1004E1GDPLG/J65MR1004E.CEL0.0130.0152.43891.710.5870.3980.0151.380.79UTM RW
    69R1688E1GDPNOD/LtJ66FR1688E.CEL0.0170.0192.66497.650.5860.3990.0151.260.8JAX
    70R2566E1GDPNOD/LtJ76MR2566E2.CEL0.0190.0253.03169.440.5980.3880.0151.380.75UTM RW
    71R2550E1GDPNZO/HlLtJ96MR2550E.CEL0.0230.0151.79487.160.6070.3780.0151.520.82JAX
    72R2535E1GDPNZO/HlLtJ62FR2535E.CEL0.0460.0251.89385.670.6040.3820.0141.410.85JAX
    73R2634E1GDPPWD/PhJ62FR2635E.CEL0.0770.0693.29289.80.5590.4250.0161.570.81JAX
    74R2635E1GDPPWD/PhJ62MR2634E.CEL0.0880.0813.72280.050.5420.4410.0171.530.85JAX
    75R2544E1GDPPWK/PhJ63FR2544E.CEL0.1060.1002.196107.510.5490.4350.0171.360.82JAX
    76R2549E1GDPPWK/PhJ83MR2549E.CEL0.0650.0482.27583.80.5730.4120.0151.570.83JAX
    77R2368E1GDPWSB/EiJ67FR2368E.CEL0.0250.0282.56785.70.5950.3910.0141.290.74UTM RW
    78R2547E1GDPWSB/EiJ67MR2547E.CEL0.0320.0212.13590.040.5820.4010.0161.320.77UTM RW
    +
    +
    + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are essentially duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contain the same probe sequence as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of arrays using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 7: Finally, when appropriate, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. + +
    + + +

        Data source acknowledgment:

    +
    +Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant. All arrays were processed at the VA Medical Center, Memphis by Weikuan Gu. +
    + +

        Information about this text file:

    +

    This text file originally generated by RWW, Nov 4, 2005. Updated by RWW, Nov 5, 2005. Modified Nov 7 with help of Y. Jiao. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Eye_AXBXA_1008_RankInv.html b/web/dbdoc/Eye_AXBXA_1008_RankInv.html new file mode 100755 index 00000000..96bf2f33 --- /dev/null +++ b/web/dbdoc/Eye_AXBXA_1008_RankInv.html @@ -0,0 +1,262 @@ + +Eye AXBXA Illumina V6.2(Oct08) RankInv + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + +

        Eye AXBXA Illumina V6.2(Oct08) RankInv + +modify this page + +

        Accession number: GN210

    + + +

        Summary:

    + +
    +

    +FINAL RECOMMENDED AXB/BXA EYE DATA SET. The Eye AXBXA Illumina Illumina V6.2 (Oct08) data set provides estimates of mRNA expression for whole eyes of 28 strains of mice, including 26 AXB/BXA recombinant inbred strains, and two parental strains, A/J and C57BL/6J. All eye samples were obtained from normal adult control animals raised in a standard laboratory environment at the Jackson Laboratory. We used the Illumina Sentrix MouseWG-6 v2 BeadChip (despite the nomenclature, this is actually the third version of the Illumina Mouse-6 platform). + + +

    Users of these mouse eye data may also find the following complementary resources extremely useful: +

      +
    1. NEIBank collection of ESTs and SAGE data +
    2. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases +
    3. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5. +
    4. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0. +
    + +
    + +

        About the cases used to generate this set of data:

    + +
    + +

    A total of 54 pooled whole eye samples were processed using approximately 10 Illumina Sentrix Mouse WG-6 v2 oligomer BeadChip slides. All 10 slides and a total of 54 samples passed stringent quality control and error checking. This particular data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed. Variance of each array was stabilized to 4 units (SD of 2 units) and recentered to a mean of 8. values range from a low of 6.3 (e.g., ILMN_1225143, no expression) to a high of about 19.7 for ILMN_2772482 (Crygd, extremely highly expressed). Data were entered by Arthur Centeno, Hongqiang Li, Robert W. Williams, and Lu Lu, October 1, 2008. + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10. In this data set, 255 probes have LRS values >46 (LOD >10). The maximum LOD score achieved in this data set is 27.7 for Zfp330 (LRS of 127.9 using ILMN_2825109). + +

    The probe ILMN_2475156 can be used to check sex assignment. With three exceptions, all 28 strains are represented by one male sample and one female sample. The three exceptions are are follows: both AXB13/14 cases are males, BXA25 is represented by a single male sample or a mixed sex sample, and BXA11 is represented by a single female sample. + + +

    + + +

    Legend: Bar chart of the expression of Xist probe ILMN_2475156 in the AXB/BXA eye data set. This probe is used to check sex. Strains represented by equal numbers of male and female arrays (usually one of each) should have intermediate values and a high error term. Strains represented only by males will have very low values (for example, AXB13/14 is represented by only one male) and strains represented by only females will have very high expression (for example, BXA11 is represented by only one female). +

    + + +

        About the strains used to generate this set of data:

    + +

    The AXB/BXA genetic reference panel of recombinant inbred strains consists of just about 26 fully independent strains. All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006). +

    + + +

        About the animals and tissue used to generate this set of data:

    + +

    AXB/BXA animals were obtained directly from The Jackson Laboratory. Animals were housed at UTHSC before sacrifice. Mice were killed by cervical dislocation and eyes and brains were removed and placed in RNAlater. + +

    Animals used in this study were between 51 and 90 days of age (see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase. +

    + +
    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between August 2008 and September 2008. All processing steps were performed by Dr. David Li. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (approximately 10% failed and new RNA samples had to be acquired and processed) were immediately used on BeadChips. The slides were hybridized and washed following standard Illumina protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from 25 of the 28 strains. Three strains are represented by samples from a single sex. + +

    Experimental Design and Batch Structure: This data set consists arrays processed September 2008 and all arrays in this data set were processed using a single protocol by a single operator. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute in September 2008. Details on sample assignment to slides and batches is provide in the table below. +

    + +

        Data Table 1:

    + +
    + +
    +

    This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, number of animals in each sample pool (pool size), slide ID, slide position (A through F), batch by slide number (1 or 2), and Source of animals.

    + +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexTube IDStrainAgeSexPool sizeSlide IdSlide PositionBatch IdSource
    1R4893E1A/J59F04252491010A1JAX
    2R4982E1A/J79M24252491006A1JAX
    3R4894E1A/J59M04252491011A1JAX
    4R3655E1A/J86M04252491031A2JAX
    5R4897E1AXB190F04252491005C1JAX
    6R5005E1AXB156M04252491008A1JAX
    7R5001E1AXB1063F24252491008B1JAX
    8R5002E1AXB1063M24252491021B1JAX
    9R4891E1AXB1263F04252491009A1JAX
    10R4999E1AXB1257M24252491005D1JAX
    11R5000E1AXB1357M24252491008C1JAX
    12R5003E1AXB1563F24252491005E1JAX
    13R4963E1AXB1563M24252491031B1JAX
    14R3661E1AXB1989F04252491008D1JAX
    15R4962E1AXB1962M04252491005F1JAX
    16R4975E1AXB279F24252491006C1JAX
    17R4976E1AXB279M24252491021C1JAX
    18R4973E1AXB2366F24252491009E1JAX
    19R4972E1AXB2366M24252491006D1JAX
    20R4959E1AXB24100F24252491006E1JAX
    21R4960E1AXB24100M24252491019A1JAX
    22R4994E1AXB454F24252491031C1JAX
    23R5007E1AXB454M24252491006F1JAX
    24R4995E1AXB561F24252491021F1JAX
    25R4996E1AXB561M24252491009F1JAX
    26R4997E1AXB660F24252491010C1JAX
    27R4998E1AXB660M24252491021D1JAX
    28R4958E1AXB852F24252491019D1JAX
    29R4957E1AXB852M24252491010D1JAX
    30R4991E1BXA154F24252491010E1JAX
    31R4990E1BXA154M24252491009B1JAX
    32R4980E1BXA1152F04252491020A1JAX
    33R5006E1BXA1248F24252491011C2JAX
    34R4993E1BXA1248M24252491031D1JAX
    35R4968E1BXA1361F24252491011D1JAX
    36R4969E1BXA1361M24252491008E1JAX
    37R4966E1BXA1456F24252491031E1JAX
    38R4967E1BXA1456M24252491011E1JAX
    39R4970E1BXA1651F24252491011F1JAX
    40R5004E1BXA1651M24252491031F1JAX
    41R4981E1BXA250F24252491008F1JAX
    42R4965E1BXA254M04252491020B1JAX
    43R4984E1BXA2454F24252491021E1JAX
    44R4974E1BXA2454M24252491019C1JAX
    45R4988E1BXA2570M04252491020F1JAX
    46R4964E1BXA2654F04252491019B1JAX
    47R3636E1BXA2687M04252491009D1JAX
    48R4977E1BXA465F04252491020C1JAX
    49R3638E1BXA487M04252491019E1JAX
    50R4978E1BXA765F24252491019F1JAX
    51R4979E1BXA765M24252491021A1JAX
    52R5008E1BXA852F24252491020E1JAX
    53R4983E1BXA852M24252491020D1JAX
    54R5012E1C57BL/6J87F24252491006B1UTHSC RW
    55R5010E1C57BL/6J87F24252491011B1UTHSC RW
    56R5011E1C57BL/6J79M24252491005B1UTHSC RW
    57R5009E1C57BL/6J79M24252491010B1UTHSC RW
    + + + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact RW Williams if you have any questions on the use of these open data.

    +
    + + + +

        About the array platform:

    +
    +

    Illumina Sentrix MouseWG-6 v2 BeadChip: This array consists of 45,281 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology. + + +

    ANNOTATION: In the summer of 2008, Xusheng Wang and Robert W. Williams reannotated all three Illumina Mouse 6 BeadChips, including the array used to process the AXB/BXA eye samples. This new annotation is now incorporated into GeneNetwork. The annotation file can be accessed at http://www.genenetwork.org/share/annotations/, by selecting "Illumina Mouse WG-6 v2.0 (GPL6887)". + +

    Position data for the 50-mer Illumina probe sequences were aligned to the mm8 mouse genome build by Xusheng Wang as part of his master annotation of all Illumina mouse arrays. Manual annotation of this array was usually done by RW Williams.

    +
    + +

        About data processing:

    + +
    +

    This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation. + + + +

    + + + + +

        Data source acknowledgment:

    +
    + +

    All array data were generated with funds from Dr. Benjamin Reese to RW Williams and Lu Lu as part of NIH NEI grant EY011087 (Dispersion Patterns for Retinal Neuroblasts). Arrays were scanned in the UTHSC NEI Vision Core with support from P30 EY013080. Some informatics support, including annotation of the array, was provided by NIDA and NIAAA grants to RWW and LL (NIH U01AA13499, U24AA13513 Lu Lu, PI). + + + + +

    + +

        About this text file:

    +

    +Data uploaded by Arthur Centeno, Oct 1, 2008. This text file originally generated by RWW on Oct 10, 2008. Updated by RWW, May 11, 2009, May 26, 2009. + + +

    + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Eye_M2_0406_M.html b/web/dbdoc/Eye_M2_0406_M.html new file mode 100755 index 00000000..ecfb623d --- /dev/null +++ b/web/dbdoc/Eye_M2_0406_M.html @@ -0,0 +1,7313 @@ + +HEIMED M430 Microarray Eye RMA November05 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    + +Hamilton Eye Institute Mouse Eye M430v2 (April06) MAS5 Data Set modify this page

    Accession number: GN109

    + +

        Summary:

    + +
    +

    +(Preliminary documentation: Please compare to PDNN data set of the same data). The HEIMED April 2006 MAS5 data set provides estimates of mRNA expression in whole eyes of 71 lines of young adult mice generated using 132 Affymetrix M430 2.0 arrays. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools; one male, one female, for each straion. This data set was processed using the MAS5 protocol. To simplify comparison among different transforms, MAS5 values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.

    +
    + + +

        About the cases used to generate this set of data:

    + +
    +We used a set of 55 BXD recombinant inbred strains, 14 conventional inbred strains including C57BL/6J (B6) and DBA/2J (D2), and their reciprocal F1s. BXD strains were generated by crossing C57BL/6J with DBA/2J. The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D2). Physical maps in WebQTL incorporate approximately 2 million B6 vs D2 SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD1 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. + +

    Please note that BXD24/TyJ (JAX stock number 000031) used in this study is also known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 stock that has now been rederived, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control. + +

    BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

    + + +

    Mouse Diversity Panel (MDP). In addition to the BXD strains, we have profiled a MDP consisting 14 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) have been included in the MDP. Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) also carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene. + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase-negative albino (c) mutant + + +
    3. BALB/cByJ +
           Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list. A tyrosinase-negative albino (c) mutant + + +
    4. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list. Important to note for this Eye dataset, C3H/HeJ is a Pdeb6 mutant with near total photoreceptor loss at maturity. + +
    5. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    6. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    7. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    8. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    9. LG/J +
          Paternal parent of the LGXSM panel + +
    10. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    11. NZO/HlLtJ +
          Collaborative Cross strain + +
    12. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    13. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    14. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    15. B6D2F1 and D2B6F1, aka F1 in some graphs and tables +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J. These reciprocal F1 can be used to detect some imprinted genes. +
    + + + +

        About the tissue used to generate this set of data:

    + +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube. + +

    Each array was hybridized with a pool of RNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

    + +Dissecting and preparing eyes for RNA extraction +

      +
    1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below). +
    2. Store RNA in 75% ethanol at –80 deg. C until use. +
    + +

    Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue) +
    2. allowed the homogenate to stand for 5 min at room temperature +
    3. added 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    4. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min +
    5. centrifuged at 12,000 G for 15 min +
    6. transfered the aqueous phase to a fresh tube +
    7. added 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    8. vortexed and allowed sample to stand at room temperature for 5-10 min +
    9. centrifuged at 12,000 G for 10-15 min +
    10. removed the supernatant and washed the RNA pellet with 75% ethanol +
    11. stored the pellet in 75% ethanol at -80 deg C until use +
    + + +

    Sample Processing. Samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center lead by Drs. John Stuart and Weikuan Gu. All processing steps were performed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use (one third roughly) or were immediately used for hybridization. + +

    Dealing with Ocular Pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. The key determinant of this interesting effect is the Tyrp1 (brown) locus on Chr 4 at about 80 Mb. Loci on Chr 4 that map at this location should be considered with skepticism and reviewed carefully. To address this problem Yan Jiao purified total RNA a second time using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204). This was done for 8 colored samples (R2534E2, R2578E2, R1441E2, R2537E2, R2536E2, R2589E2, R2539E2) in the first batch of arrays (the November 05 data set) of which 5 were finally included in this data set (cases in which the strain ID is labeled with asterisks in the table). This same protocol was used for all samples in the second batch added in April 2006. + + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. The first and second batches of array data, collectively represents a reasonably well balanced sample of males and females belonging to 62 strains, but without within-strain-by-sex replication. Six strains are represented only by male sample pools (BXD15, 28, 29, 55, 98, and DBA/2J. Four strains are represented only by a female pool sample (BXD1, 27, 73 and 86). Please use the probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males) as quantitative surrogates for the sex balance in this data set. + + +

    Batch Structure: This data set consists of a two batches: the original batch that makes up the November 2005 data set and a new batch of 63 arrays (R0857E through R2649E, and R2682E through R2742E, non-consecutive identifiers) run in January 2006 by Dr. Yan Jiao. The arrays in the two batches are from two different lots. All arrays in the second batch were from Lot 4016879 (expiration date 12.28.06). We started working with a total of 140 arrays that passed initial crude quality control based on RNA quality and initial Affymetrix report file information such as 3'/5' ratio, scale factor, and percent present calls. A total of 130 arrays were finally approved for inclusion in this April 2006 data set. The complex normalization procedure is described below. + +

    The table below summarizes information on strain, age, sex, original CEL filename, Affymetrix quality control values, and source of mice. Columns labeled "PDNN 2Z outlier" and "RMA 2Z outlier" list the fraction of probe sets with values that deviated more than 2 z units from the mean. Scale factor, background average, present, absent, marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files. + +

    IN PROGRESS: PLEASE NOTE THAT THIS TABLE IS NOW BEING UPDATED TO INCLUDE BATCH 2 OF EARLY 2006. + +

    + + + ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    ID +

    tube ID

    +
    +

    group_type

    +
    +

     Strain

    +
    +

    age

    +
    +

     Sex

    +
    +

    original

    +

    CEL

    +

    filename

    +
    +

    PDNN

    +

    2Z

    +

    outlier

    +
    +

    RMA

    +

    2Z

    +

    outlier

    +
    +

    scale

    +

    factor

    +
    +

    background

    +

    average

    +
    +

    present

    +
    +

    absent

    +
    +

    marginal

    +
    +

    AFFX-b-

    +

    ActinMur(3'/5')

    +
    +

    AFFX-

    +

    GapdhMur(3'/5')

    +
    +

    Source

    +
    +

    1

    +
    +

    R2533E1

    +
    +

    GDP

    +
    +

    129S1/SvImJ

    +
    +

    60

    +
    +

    M

    +
    +

    R2533E.CEL

    +
    +

    0.025

    +
    +

    0.028

    +
    +

    2.11

    +
    +

    94

    +
    +

    57.90%

    +
    +

    40.50%

    +
    +

    1.60%

    +
    +

    1.37

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    2

    +
    +

    R2595E1

    +
    +

    GDP

    +
    +

    129S1/SvImJ

    +
    +

    59

    +
    +

    F

    +
    +

    R2595E.CEL

    +
    +

    0.033

    +
    +

    0.036

    +
    +

    1.79

    +
    +

    115

    +
    +

    61.00%

    +
    +

    37.50%

    +
    +

    1.50%

    +
    +

    1.46

    +
    +

    0.77

    +
    +

    UTM RW

    +
    +

    3

    +
    +

    R0754E2

    +
    +

    GDP

    +
    +

    A/J

    +
    +

    60

    +
    +

    M

    +
    +

    R0754E.CEL

    +
    +

    0.027

    +
    +

    0.03

    +
    +

    2.72

    +
    +

    86

    +
    +

    59.80%

    +
    +

    38.70%

    +
    +

    1.50%

    +
    +

    1.36

    +
    +

    0.76

    +
    +

    JAX

    +
    +

    4

    +
    +

    R2546E1

    +
    +

    GDP

    +
    +

    A/J

    +
    +

    66

    +
    +

    F

    +
    +

    R2545E.CEL

    +
    +

    0.024

    +
    +

    0.029

    +
    +

    1.99

    +
    +

    96

    +
    +

    58.60%

    +
    +

    39.70%

    +
    +

    1.70%

    +
    +

    1.47

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    5

    +
    +

    R2601E1

    +
    +

    GDP BXD

    +
    +

    B6D2F1

    +
    +

    73

    +
    +

    F

    +
    +

    R2601E.CEL

    +
    +

    0.007

    +
    +

    0.008

    +
    +

    2.55

    +
    +

    92

    +
    +

    58.90%

    +
    +

    39.60%

    +
    +

    1.50%

    +
    +

    1.44

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    6

    +
    +

    R2602E1

    +
    +

    GDP BXD

    +
    +

    B6D2F1

    +
    +

    73

    +
    +

    M

    +
    +

    R2602E.CEL

    +
    +

    0.003

    +
    +

    0.008

    +
    +

    2.60

    +
    +

    84

    +
    +

    59.70%

    +
    +

    38.80%

    +
    +

    1.50%

    +
    +

    1.37

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    7

    +
    +

    R1672E1

    +
    +

    GDP

    +
    +

    BALB/cByJ

    +
    +

    83

    +
    +

    M

    +
    +

    R1672E.CEL

    +
    +

    0.043

    +
    +

    0.039

    +
    +

    2.22

    +
    +

    111

    +
    +

    59.90%

    +
    +

    38.60%

    +
    +

    1.50%

    +
    +

    1.26

    +
    +

    0.80

    +
    +

    JAX

    +
    +

    8

    +
    +

    R1676E1

    +
    +

    GDP

    +
    +

    BALB/cByJ

    +
    +

    83

    +
    +

    F

    +
    +

    R1676E.CEL

    +
    +

    0.083

    +
    +

    0.085

    +
    +

    2.69

    +
    +

    98

    +
    +

    58.90%

    +
    +

    39.60%

    +
    +

    1.50%

    +
    +

    1.46

    +
    +

    0.74

    +
    +

    JAX

    +
    +

    9

    +
    +

    R2581E1

    +
    +

    BXD

    +
    +

    BXD11

    +
    +

    65

    +
    +

    F

    +
    +

    R2581E.CEL

    +
    +

    0.009

    +
    +

    0.021

    +
    +

    1.94

    +
    +

    89

    +
    +

    62.10%

    +
    +

    36.40%

    +
    +

    1.60%

    +
    +

    1.55

    +
    +

    0.81

    +
    +

    UTM RW

    +
    +

    10

    +
    +

    R2543E1

    +
    +

    BXD

    +
    +

    BXD12

    +
    +

    63

    +
    +

    M

    +
    +

    R2543E.CEL

    +
    +

    0.018

    +
    +

    0.017

    +
    +

    1.61

    +
    +

    118

    +
    +

    58.60%

    +
    +

    39.90%

    +
    +

    1.60%

    +
    +

    1.43

    +
    +

    0.77

    +
    +

    UTM RW

    +
    +

    11

    +
    +

    R2586E1

    +
    +

    BXD

    +
    +

    BXD13

    +
    +

    60

    +
    +

    F

    +
    +

    R2586E.CEL

    +
    +

    0.259

    +
    +

    0.258

    +
    +

    2.01

    +
    +

    74

    +
    +

    56.40%

    +
    +

    42.00%

    +
    +

    1.60%

    +
    +

    2.85

    +
    +

    3.81

    +
    +

    Glenn

    +
    +

    12

    +
    +

    R2557E1

    +
    +

    BXD

    +
    +

    BXD14

    +
    +

    60

    +
    +

    F

    +
    +

    R2557E.CEL

    +
    +

    0.012

    +
    +

    0.027

    +
    +

    1.83

    +
    +

    99

    +
    +

    62.50%

    +
    +

    36.10%

    +
    +

    1.40%

    +
    +

    1.31

    +
    +

    0.78

    +
    +

    Glenn

    +
    +

    13

    +
    +

    R2567E1

    +
    +

    BXD

    +
    +

    BXD16

    +
    +

    60

    +
    +

    M

    +
    +

    R2567E.CEL

    +
    +

    0.048

    +
    +

    0.058

    +
    +

    2.24

    +
    +

    82

    +
    +

    56.70%

    +
    +

    41.60%

    +
    +

    1.70%

    +
    +

    1.37

    +
    +

    0.75

    +
    +

    Glenn

    +
    +

    14

    +
    +

    R2559E1

    +
    +

    BXD

    +
    +

    BXD18

    +
    +

    59

    +
    +

    M

    +
    +

    R2559E.CEL

    +
    +

    0.01

    +
    +

    0.012

    +
    +

    1.65

    +
    +

    104

    +
    +

    60.80%

    +
    +

    37.70%

    +
    +

    1.50%

    +
    +

    1.27

    +
    +

    0.78

    +
    +

    Glenn

    +
    +

    15

    +
    +

    R2560E1

    +
    +

    BXD

    +
    +

    BXD19

    +
    +

    60

    +
    +

    F

    +
    +

    R2560E.CEL

    +
    +

    0.009

    +
    +

    0.012

    +
    +

    1.79

    +
    +

    98

    +
    +

    60.90%

    +
    +

    37.50%

    +
    +

    1.60%

    +
    +

    1.35

    +
    +

    0.80

    +
    +

    Glenn

    +
    +

    16

    +
    +

    R2597E1

    +
    +

    BXD

    +
    +

    BXD2

    +
    +

    61

    +
    +

    M

    +
    +

    R2597E.CEL

    +
    +

    0.005

    +
    +

    0.012

    +
    +

    2.37

    +
    +

    94

    +
    +

    60.30%

    +
    +

    38.30%

    +
    +

    1.50%

    +
    +

    1.34

    +
    +

    0.77

    +
    +

    Glenn

    +
    +

    17

    +
    +

    R2584E1

    +
    +

    BXD

    +
    +

    BXD20

    +
    +

    59

    +
    +

    F

    +
    +

    R2584E.CEL

    +
    +

    0.011

    +
    +

    0.017

    +
    +

    2.07

    +
    +

    84

    +
    +

    59.30%

    +
    +

    39.10%

    +
    +

    1.60%

    +
    +

    1.40

    +
    +

    0.76

    +
    +

    Glenn

    +
    +

    18

    +
    +

    R2541E2

    +
    +

    BXD

    +
    +

    BXD21

    +
    +

    61

    +
    +

    M

    +
    +

    R2541E2.CEL

    +
    +

    0.049

    +
    +

    0.084

    +
    +

    2.63

    +
    +

    125

    +
    +

    56.00%

    +
    +

    42.40%

    +
    +

    1.50%

    +
    +

    1.29

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    19

    +
    +

    R2553E1

    +
    +

    BXD

    +
    +

    BXD22

    +
    +

    58

    +
    +

    F

    +
    +

    R2553E.CEL

    +
    +

    0.004

    +
    +

    0.01

    +
    +

    1.95

    +
    +

    111

    +
    +

    59.90%

    +
    +

    38.50%

    +
    +

    1.50%

    +
    +

    1.28

    +
    +

    0.76

    +
    +

    Glenn

    +
    +

    20

    +
    +

    R2558E1

    +
    +

    BXD

    +
    +

    BXD23

    +
    +

    60

    +
    +

    F

    +
    +

    R2558E-2.CEL

    +
    +

    0.018

    +
    +

    0.027

    +
    +

    1.91

    +
    +

    115

    +
    +

    59.90%

    +
    +

    38.80%

    +
    +

    1.40%

    +
    +

    1.20

    +
    +

    0.82

    +
    +

    Glenn

    +
    +

    21

    +
    +

    R2589E2

    +
    +

    BXD

    +
    +

    BXD24

    +
    +

    59

    +
    +

    M

    +
    +

    R2589E2.CEL

    +
    +

    0.132

    +
    +

    0.176

    +
    +

    2.61

    +
    +

    112

    +
    +

    57.50%

    +
    +

    40.90%

    +
    +

    1.60%

    +
    +

    1.24

    +
    +

    0.80

    +
    +

    Glenn

    +
    +

    22

    +
    +

    R2573E1

    +
    +

    BXD

    +
    +

    BXD25

    +
    +

    67

    +
    +

    F

    +
    +

    R2573E-2.CEL

    +
    +

    0.055

    +
    +

    0.063

    +
    +

    3.15

    +
    +

    72

    +
    +

    57.90%

    +
    +

    40.70%

    +
    +

    1.40%

    +
    +

    1.77

    +
    +

    0.97

    +
    +

    UAB

    +
    +

    23

    +
    +

    R2562E1

    +
    +

    BXD

    +
    +

    BXD29

    +
    +

    60

    +
    +

    M

    +
    +

    R2562E.CEL

    +
    +

    0.007

    +
    +

    0.01

    +
    +

    1.65

    +
    +

    116

    +
    +

    59.90%

    +
    +

    38.40%

    +
    +

    1.70%

    +
    +

    1.37

    +
    +

    0.79

    +
    +

    Glenn

    +
    +

    24

    +
    +

    R2598E1

    +
    +

    BXD

    +
    +

    BXD31

    +
    +

    61

    +
    +

    M

    +
    +

    R2598E.CEL

    +
    +

    0.006

    +
    +

    0.013

    +
    +

    1.99

    +
    +

    106

    +
    +

    60.90%

    +
    +

    37.60%

    +
    +

    1.50%

    +
    +

    1.27

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    25

    +
    +

    R2563E1

    +
    +

    BXD

    +
    +

    BXD32

    +
    +

    63

    +
    +

    F

    +
    +

    R2563E.CEL

    +
    +

    0.023

    +
    +

    0.025

    +
    +

    1.55

    +
    +

    102

    +
    +

    61.90%

    +
    +

    36.70%

    +
    +

    1.40%

    +
    +

    1.50

    +
    +

    0.80

    +
    +

    UTM RW

    +
    +

    26

    +
    +

    R2542E1

    +
    +

    BXD

    +
    +

    BXD33

    +
    +

    67

    +
    +

    F

    +
    +

    R2542E.CEL

    +
    +

    0.058

    +
    +

    0.062

    +
    +

    2.13

    +
    +

    97

    +
    +

    56.50%

    +
    +

    41.80%

    +
    +

    1.60%

    +
    +

    1.91

    +
    +

    0.93

    +
    +

    UTM RW

    +
    +

    27

    +
    +

    R2585E1

    +
    +

    BXD

    +
    +

    BXD34

    +
    +

    60

    +
    +

    M

    +
    +

    R2585E.CEL

    +
    +

    0.024

    +
    +

    0.032

    +
    +

    2.64

    +
    +

    75

    +
    +

    58.30%

    +
    +

    40.00%

    +
    +

    1.70%

    +
    +

    1.25

    +
    +

    0.77

    +
    +

    Glenn

    +
    +

    28

    +
    +

    R2532E1

    +
    +

    BXD

    +
    +

    BXD38

    +
    +

    62

    +
    +

    M

    +
    +

    R2532E.CEL

    +
    +

    0.002

    +
    +

    0.006

    +
    +

    2.04

    +
    +

    94

    +
    +

    59.80%

    +
    +

    38.70%

    +
    +

    1.50%

    +
    +

    1.37

    +
    +

    0.80

    +
    +

    UTM RW

    +
    +

    29

    +
    +

    R2574E1

    +
    +

    BXD

    +
    +

    BXD39

    +
    +

    70

    +
    +

    F

    +
    +

    R2574E.CEL

    +
    +

    0.003

    +
    +

    0.008

    +
    +

    1.98

    +
    +

    91

    +
    +

    61.20%

    +
    +

    37.30%

    +
    +

    1.50%

    +
    +

    1.39

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    30

    +
    +

    R2590E1

    +
    +

    BXD

    +
    +

    BXD40

    +
    +

    60

    +
    +

    M

    +
    +

    R2590E.CEL

    +
    +

    0.007

    +
    +

    0.012

    +
    +

    2.71

    +
    +

    77

    +
    +

    59.10%

    +
    +

    39.30%

    +
    +

    1.50%

    +
    +

    1.40

    +
    +

    0.77

    +
    +

    Glenn

    +
    +

    31

    +
    +

    R2596E1

    +
    +

    BXD

    +
    +

    BXD42

    +
    +

    59

    +
    +

    M

    +
    +

    R2596E.CEL

    +
    +

    0.016

    +
    +

    0.03

    +
    +

    2.63

    +
    +

    108

    +
    +

    59.00%

    +
    +

    39.60%

    +
    +

    1.50%

    +
    +

    1.24

    +
    +

    0.80

    +
    +

    Glenn

    +
    +

    32

    +
    +

    R2605E1

    +
    +

    BXD

    +
    +

    BXD43

    +
    +

    79

    +
    +

    M

    +
    +

    R2607E.CEL

    +
    +

    0.006

    +
    +

    0.01

    +
    +

    1.82

    +
    +

    131

    +
    +

    60.50%

    +
    +

    38.20%

    +
    +

    1.30%

    +
    +

    1.32

    +
    +

    0.80

    +
    +

    UTM RW

    +
    +

    33

    +
    +

    R2594E1

    +
    +

    BXD

    +
    +

    BXD44

    +
    +

    63

    +
    +

    F

    +
    +

    R2594E.CEL

    +
    +

    0.014

    +
    +

    0.024

    +
    +

    1.77

    +
    +

    117

    +
    +

    59.80%

    +
    +

    38.80%

    +
    +

    1.40%

    +
    +

    1.35

    +
    +

    0.85

    +
    +

    UTM RW

    +
    +

    34

    +
    +

    R2592E1

    +
    +

    BXD

    +
    +

    BXD45

    +
    +

    62

    +
    +

    M

    +
    +

    R2592E.CEL

    +
    +

    0.005

    +
    +

    0.011

    +
    +

    1.85

    +
    +

    106

    +
    +

    60.10%

    +
    +

    38.60%

    +
    +

    1.30%

    +
    +

    1.43

    +
    +

    0.85

    +
    +

    UTM RW

    +
    +

    35

    +
    +

    R2606E1

    +
    +

    BXD

    +
    +

    BXD48

    +
    +

    78

    +
    +

    M

    +
    +

    R2606E.CEL

    +
    +

    0.007

    +
    +

    0.015

    +
    +

    2.56

    +
    +

    106

    +
    +

    58.90%

    +
    +

    39.70%

    +
    +

    1.40%

    +
    +

    1.35

    +
    +

    0.83

    +
    +

    UTM RW

    +
    +

    36

    +
    +

    R2591E1

    +
    +

    BXD

    +
    +

    BXD5

    +
    +

    60

    +
    +

    F

    +
    +

    R2591E.CEL

    +
    +

    0.052

    +
    +

    0.014

    +
    +

    1.70

    +
    +

    136

    +
    +

    58.50%

    +
    +

    40.00%

    +
    +

    1.50%

    +
    +

    1.33

    +
    +

    0.78

    +
    +

    Glenn

    +
    +

    37

    +
    +

    R2603E1

    +
    +

    BXD

    +
    +

    BXD51

    +
    +

    66

    +
    +

    F

    +
    +

    R2603E.CEL

    +
    +

    0.007

    +
    +

    0.02

    +
    +

    2.49

    +
    +

    115

    +
    +

    57.70%

    +
    +

    40.80%

    +
    +

    1.50%

    +
    +

    1.24

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    38

    +
    +

    R2570E1

    +
    +

    BXD

    +
    +

    BXD6

    +
    +

    65

    +
    +

    F

    +
    +

    R2570E.CEL

    +
    +

    0.013

    +
    +

    0.017

    +
    +

    1.99

    +
    +

    87

    +
    +

    58.50%

    +
    +

    40.00%

    +
    +

    1.50%

    +
    +

    1.46

    +
    +

    0.76

    +
    +

    UTM RW

    +
    +

    39

    +
    +

    R2534E2

    +
    +

    BXD

    +
    +

    BXD61

    +
    +

    70

    +
    +

    F

    +
    +

    R2534E2.CEL

    +
    +

    0.03

    +
    +

    0.058

    +
    +

    2.47

    +
    +

    118

    +
    +

    57.90%

    +
    +

    40.60%

    +
    +

    1.50%

    +
    +

    1.42

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    40

    +
    +

    R2611E1

    +
    +

    BXD

    +
    +

    BXD64

    +
    +

    68

    +
    +

    M

    +
    +

    R2611E.CEL

    +
    +

    0.067

    +
    +

    0.068

    +
    +

    2.29

    +
    +

    92

    +
    +

    58.00%

    +
    +

    40.50%

    +
    +

    1.50%

    +
    +

    1.57

    +
    +

    1.06

    +
    +

    UTM RW

    +
    +

    41

    +
    +

    R2583E1

    +
    +

    BXD

    +
    +

    BXD65

    +
    +

    60

    +
    +

    M

    +
    +

    R2583E.CEL

    +
    +

    0.027

    +
    +

    0.03

    +
    +

    2.49

    +
    +

    70

    +
    +

    56.90%

    +
    +

    41.50%

    +
    +

    1.60%

    +
    +

    1.67

    +
    +

    1.01

    +
    +

    UTM RW

    +
    +

    42

    +
    +

    R2536E2

    +
    +

    BXD

    +
    +

    BXD66

    +
    +

    64

    +
    +

    F

    +
    +

    R2536E2.CEL

    +
    +

    0.067

    +
    +

    0.139

    +
    +

    2.74

    +
    +

    109

    +
    +

    56.10%

    +
    +

    42.30%

    +
    +

    1.70%

    +
    +

    1.28

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    43

    +
    +

    R2551E1

    +
    +

    BXD

    +
    +

    BXD68

    +
    +

    67

    +
    +

    F

    +
    +

    R2551E.CEL

    +
    +

    0.294

    +
    +

    0.291

    +
    +

    2.49

    +
    +

    92

    +
    +

    54.30%

    +
    +

    44.10%

    +
    +

    1.60%

    +
    +

    2.91

    +
    +

    1.55

    +
    +

    UTM RW

    +
    +

    44

    +
    +

    R2593E1

    +
    +

    BXD

    +
    +

    BXD69

    +
    +

    59

    +
    +

    F

    +
    +

    R2593E.CEL

    +
    +

    0.027

    +
    +

    0.038

    +
    +

    1.67

    +
    +

    128

    +
    +

    59.20%

    +
    +

    39.50%

    +
    +

    1.30%

    +
    +

    1.47

    +
    +

    0.92

    +
    +

    UTM RW

    +
    +

    45

    +
    +

    R2537E2

    +
    +

    BXD

    +
    +

    BXD70

    +
    +

    59

    +
    +

    M

    +
    +

    R2537E2.CEL

    +
    +

    0.049

    +
    +

    0.092

    +
    +

    2.93

    +
    +

    99

    +
    +

    58.00%

    +
    +

    40.50%

    +
    +

    1.60%

    +
    +

    1.29

    +
    +

    0.75

    +
    +

    UTM RW

    +
    +

    46

    +
    +

    R2565E1

    +
    +

    BXD

    +
    +

    BXD75

    +
    +

    61

    +
    +

    F

    +
    +

    R2565E.CEL

    +
    +

    0.118

    +
    +

    0.124

    +
    +

    1.79

    +
    +

    102

    +
    +

    58.00%

    +
    +

    40.50%

    +
    +

    1.50%

    +
    +

    2.31

    +
    +

    3.47

    +
    +

    UTM RW

    +
    +

    47

    +
    +

    R2538E1

    +
    +

    BXD

    +
    +

    BXD8

    +
    +

    77

    +
    +

    F

    +
    +

    R2538E.CEL

    +
    +

    0.033

    +
    +

    0.056

    +
    +

    1.91

    +
    +

    102

    +
    +

    61.20%

    +
    +

    37.30%

    +
    +

    1.50%

    +
    +

    1.52

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    48

    +
    +

    R2579E1

    +
    +

    BXD

    +
    +

    BXD80

    +
    +

    65

    +
    +

    F

    +
    +

    R2579E.CEL

    +
    +

    0.013

    +
    +

    0.026

    +
    +

    2.42

    +
    +

    72

    +
    +

    59.20%

    +
    +

    39.40%

    +
    +

    1.50%

    +
    +

    1.73

    +
    +

    0.82

    +
    +

    UTM RW

    +
    +

    49

    +
    +

    R2540E1

    +
    +

    BXD

    +
    +

    BXD87

    +
    +

    63

    +
    +

    M

    +
    +

    R2540E.CEL

    +
    +

    0.014

    +
    +

    0.034

    +
    +

    2.33

    +
    +

    93

    +
    +

    61.10%

    +
    +

    37.40%

    +
    +

    1.40%

    +
    +

    1.22

    +
    +

    0.81

    +
    +

    UTM RW

    +
    +

    50

    +
    +

    R2545E1

    +
    +

    BXD

    +
    +

    BXD89

    +
    +

    67

    +
    +

    M

    +
    +

    R2546E.CEL

    +
    +

    0.266

    +
    +

    0.257

    +
    +

    1.67

    +
    +

    105

    +
    +

    56.20%

    +
    +

    42.30%

    +
    +

    1.50%

    +
    +

    3.60

    +
    +

    9.84

    +
    +

    UTM RW

    +
    +

    51

    +
    +

    R2569E1

    +
    +

    BXD

    +
    +

    BXD9

    +
    +

    67

    +
    +

    M

    +
    +

    R2569E.CEL

    +
    +

    0.256

    +
    +

    0.239

    +
    +

    1.75

    +
    +

    87

    +
    +

    55.10%

    +
    +

    43.40%

    +
    +

    1.50%

    +
    +

    2.82

    +
    +

    3.14

    +
    +

    UTM RW

    +
    +

    52

    +
    +

    R2578E2

    +
    +

    BXD

    +
    +

    BXD90

    +
    +

    61

    +
    +

    F

    +
    +

    R2578E2.CEL

    +
    +

    0.041

    +
    +

    0.062

    +
    +

    2.79

    +
    +

    92

    +
    +

    58.60%

    +
    +

    39.80%

    +
    +

    1.60%

    +
    +

    1.52

    +
    +

    0.77

    +
    +

    UTM RW

    +
    +

    53

    +
    +

    R2554E1

    +
    +

    BXD

    +
    +

    BXD96

    +
    +

    67

    +
    +

    M

    +
    +

    R2554E.CEL

    +
    +

    0.005

    +
    +

    0.008

    +
    +

    2.18

    +
    +

    93

    +
    +

    60.20%

    +
    +

    38.30%

    +
    +

    1.50%

    +
    +

    1.46

    +
    +

    0.77

    +
    +

    UTM RW

    +
    +

    54

    +
    +

    R2577E1

    +
    +

    BXD

    +
    +

    BXD97

    +
    +

    55

    +
    +

    M

    +
    +

    R2577E.CEL

    +
    +

    0.065

    +
    +

    0.069

    +
    +

    2.07

    +
    +

    77

    +
    +

    59.50%

    +
    +

    39.10%

    +
    +

    1.40%

    +
    +

    1.87

    +
    +

    1.29

    +
    +

    UTM RW

    +
    +

    55

    +
    +

    R1700E1

    +
    +

    GDP

    +
    +

    C3H/HeJ

    +
    +

    83

    +
    +

    F

    +
    +

    R1700E.CEL

    +
    +

    0.152

    +
    +

    0.168

    +
    +

    2.98

    +
    +

    69

    +
    +

    60.80%

    +
    +

    37.90%

    +
    +

    1.40%

    +
    +

    1.48

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    56

    +
    +

    R1704E1

    +
    +

    GDP

    +
    +

    C3H/HeJ

    +
    +

    83

    +
    +

    M

    +
    +

    R1704E.CEL

    +
    +

    0.154

    +
    +

    0.165

    +
    +

    2.58

    +
    +

    88

    +
    +

    60.10%

    +
    +

    38.60%

    +
    +

    1.30%

    +
    +

    1.38

    +
    +

    0.84

    +
    +

    UTM RW

    +
    +

    57

    +
    +

    R0872E2

    +
    +

    GDP BXD

    +
    +

    C57BL/6J

    +
    +

    66

    +
    +

    M

    +
    +

    R0872E.CEL

    +
    +

    0.014

    +
    +

    0.023

    +
    +

    3.13

    +
    +

    89

    +
    +

    58.90%

    +
    +

    39.60%

    +
    +

    1.50%

    +
    +

    1.30

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    58

    +
    +

    R2607E1

    +
    +

    GDP BXD

    +
    +

    C57BL/6J

    +
    +

    67

    +
    +

    F

    +
    +

    R2605E.CEL

    +
    +

    0.008

    +
    +

    0.018

    +
    +

    2.43

    +
    +

    115

    +
    +

    58.60%

    +
    +

    40.00%

    +
    +

    1.40%

    +
    +

    1.31

    +
    +

    0.76

    +
    +

    UTM RW

    +
    +

    59

    +
    +

    R2564E1

    +
    +

    GDP

    +
    +

    CAST/Ei

    +
    +

    64

    +
    +

    F

    +
    +

    R2564E.CEL

    +
    +

    0.124

    +
    +

    0.105

    +
    +

    1.94

    +
    +

    89

    +
    +

    58.50%

    +
    +

    39.90%

    +
    +

    1.60%

    +
    +

    1.60

    +
    +

    0.77

    +
    +

    JAX

    +
    +

    60

    +
    +

    R2580E1

    +
    +

    GDP

    +
    +

    CAST/Ei

    +
    +

    64

    +
    +

    M

    +
    +

    R2580E.CEL

    +
    +

    0.123

    +
    +

    0.109

    +
    +

    2.09

    +
    +

    95

    +
    +

    58.20%

    +
    +

    40.10%

    +
    +

    1.70%

    +
    +

    1.40

    +
    +

    0.76

    +
    +

    JAX

    +
    +

    61

    +
    +

    R2600E1

    +
    +

    GDP BXD

    +
    +

    D2B6F1

    +
    +

    72

    +
    +

    F

    +
    +

    R2600E.CEL

    +
    +

    0.008

    +
    +

    0.02

    +
    +

    2.47

    +
    +

    95

    +
    +

    58.10%

    +
    +

    40.20%

    +
    +

    1.70%

    +
    +

    1.41

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    62

    +
    +

    R2604E1

    +
    +

    GDP BXD

    +
    +

    D2B6F1

    +
    +

    69

    +
    +

    M

    +
    +

    R2604E.CEL

    +
    +

    0.005

    +
    +

    0.014

    +
    +

    2.66

    +
    +

    90

    +
    +

    59.40%

    +
    +

    39.20%

    +
    +

    1.50%

    +
    +

    1.28

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    63

    +
    +

    R2572E1

    +
    +

    GDP BXD

    +
    +

    DBA/2J

    +
    +

    65

    +
    +

    M

    +
    +

    R2572E.CEL

    +
    +

    0.091

    +
    +

    0.106

    +
    +

    2.41

    +
    +

    79

    +
    +

    55.50%

    +
    +

    42.90%

    +
    +

    1.60%

    +
    +

    1.37

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    64

    +
    +

    R2636E1

    +
    +

    GDP

    +
    +

    KK/HIJ

    +
    +

    64

    +
    +

    F

    +
    +

    R2636E.CEL

    +
    +

    0.044

    +
    +

    0.043

    +
    +

    2.61

    +
    +

    93

    +
    +

    58.90%

    +
    +

    39.50%

    +
    +

    1.50%

    +
    +

    1.39

    +
    +

    0.76

    +
    +

    UTM RW

    +
    +

    65

    +
    +

    R2637E1

    +
    +

    GDP

    +
    +

    KK/HIJ

    +
    +

    64

    +
    +

    M

    +
    +

    R2637E.CEL

    +
    +

    0.056

    +
    +

    0.036

    +
    +

    2.19

    +
    +

    103

    +
    +

    59.40%

    +
    +

    39.00%

    +
    +

    1.50%

    +
    +

    1.30

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    66

    +
    +

    R0999E1

    +
    +

    GDP

    +
    +

    LG/J

    +
    +

    57

    +
    +

    F

    +
    +

    R0999E.CEL

    +
    +

    0.021

    +
    +

    0.023

    +
    +

    2.45

    +
    +

    82

    +
    +

    59.40%

    +
    +

    39.10%

    +
    +

    1.50%

    +
    +

    1.38

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    67

    +
    +

    R1004E1

    +
    +

    GDP

    +
    +

    LG/J

    +
    +

    65

    +
    +

    M

    +
    +

    R1004E.CEL

    +
    +

    0.025

    +
    +

    0.028

    +
    +

    2.44

    +
    +

    92

    +
    +

    58.70%

    +
    +

    39.80%

    +
    +

    1.50%

    +
    +

    1.38

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    68

    +
    +

    R1688E1

    +
    +

    GDP

    +
    +

    NOD/LtJ

    +
    +

    66

    +
    +

    F

    +
    +

    R1688E.CEL

    +
    +

    0.028

    +
    +

    0.033

    +
    +

    2.66

    +
    +

    98

    +
    +

    58.60%

    +
    +

    39.90%

    +
    +

    1.50%

    +
    +

    1.26

    +
    +

    0.80

    +
    +

    JAX

    +
    +

    69

    +
    +

    R2566E1

    +
    +

    GDP

    +
    +

    NOD/LtJ

    +
    +

    76

    +
    +

    M

    +
    +

    R2566E-2.CEL

    +
    +

    0.036

    +
    +

    0.04

    +
    +

    3.03

    +
    +

    69

    +
    +

    59.80%

    +
    +

    38.80%

    +
    +

    1.50%

    +
    +

    1.38

    +
    +

    0.75

    +
    +

    UTM RW

    +
    +

    70

    +
    +

    R2535E1

    +
    +

    GDP

    +
    +

    NZO/H1LtJ

    +
    +

    62

    +
    +

    F

    +
    +

    R2535E.CEL

    +
    +

    0.037

    +
    +

    0.062

    +
    +

    1.89

    +
    +

    86

    +
    +

    60.40%

    +
    +

    38.20%

    +
    +

    1.40%

    +
    +

    1.41

    +
    +

    0.85

    +
    +

    JAX

    +
    +

    71

    +
    +

    R2550E1

    +
    +

    GDP

    +
    +

    NZO/HILtJ

    +
    +

    96

    +
    +

    M

    +
    +

    R2550E.CEL

    +
    +

    0.025

    +
    +

    0.029

    +
    +

    1.79

    +
    +

    87

    +
    +

    60.70%

    +
    +

    37.80%

    +
    +

    1.50%

    +
    +

    1.52

    +
    +

    0.82

    +
    +

    JAX

    +
    +

    72

    +
    +

    R2634E1

    +
    +

    GDP

    +
    +

    PWD/PhJ

    +
    +

    62

    +
    +

    F

    +
    +

    R2635E.CEL

    +
    +

    0.126

    +
    +

    0.114

    +
    +

    3.29

    +
    +

    90

    +
    +

    55.90%

    +
    +

    42.50%

    +
    +

    1.60%

    +
    +

    1.57

    +
    +

    0.81

    +
    +

    JAX

    +
    +

    73

    +
    +

    R2635E1

    +
    +

    GDP

    +
    +

    PWD/PhJ

    +
    +

    62

    +
    +

    M

    +
    +

    R2634E.CEL

    +
    +

    0.15

    +
    +

    0.137

    +
    +

    3.72

    +
    +

    80

    +
    +

    54.20%

    +
    +

    44.10%

    +
    +

    1.70%

    +
    +

    1.53

    +
    +

    0.85

    +
    +

    JAX

    +
    +

    74

    +
    +

    R2544E1

    +
    +

    GDP

    +
    +

    PWK/PhJ

    +
    +

    63

    +
    +

    F

    +
    +

    R2544E.CEL

    +
    +

    0.174

    +
    +

    0.175

    +
    +

    2.20

    +
    +

    108

    +
    +

    54.90%

    +
    +

    43.50%

    +
    +

    1.70%

    +
    +

    1.36

    +
    +

    0.82

    +
    +

    JAX

    +
    +

    75

    +
    +

    R2549E1

    +
    +

    GDP

    +
    +

    PWK/PhJ

    +
    +

    83

    +
    +

    M

    +
    +

    R2549E.CEL

    +
    +

    0.103

    +
    +

    0.087

    +
    +

    2.28

    +
    +

    84

    +
    +

    57.30%

    +
    +

    41.20%

    +
    +

    1.50%

    +
    +

    1.57

    +
    +

    0.83

    +
    +

    JAX

    +
    +

    76

    +
    +

    R2368E1

    +
    +

    GDP

    +
    +

    WSB/EI

    +
    +

    67

    +
    +

    F

    +
    +

    R2368E.CEL

    +
    +

    0.041

    +
    +

    0.047

    +
    +

    2.57

    +
    +

    86

    +
    +

    59.50%

    +
    +

    39.10%

    +
    +

    1.40%

    +
    +

    1.29

    +
    +

    0.74

    +
    +

    UTM RW

    +
    +

    77

    +
    +

    R2704E

    +
    +

    BXD

    +
    +

    BXD1

    +
    +

    59

    +
    +

    F

    +
    +

    R2704E.CEL

    +
    +

    0.029

    +
    +

    0.03

    +
    +

    2.066

    +
    +

    139.61

    +
    +

    56.60%

    +
    +

    41.90%

    +
    +

    1.50%

    +
    +

    1.31

    +
    +

    0.81

    +
    +

    GU

    +
    +

    78

    +
    +

    R2612E

    +
    +

    BXD

    +
    +

    BXD11

    +
    +

    70

    +
    +

    M

    +
    +

    R2612E.CEL

    +
    +

    0.101

    +
    +

    0.112

    +
    +

    1.83

    +
    +

    142.03

    +
    +

    58.20%

    +
    +

    40.50%

    +
    +

    1.40%

    +
    +

    1.78

    +
    +

    0.81

    +
    +

    GU

    +
    +

    79

    +
    +

    R2742E

    +
    +

    BXD

    +
    +

    BXD12

    +
    +

    71

    +
    +

    F

    +
    +

    R2742E.CEL

    +
    +

    0.073

    +
    +

    0.077

    +
    +

    2.127

    +
    +

    134.14

    +
    +

    57.00%

    +
    +

    41.60%

    +
    +

    1.40%

    +
    +

    1.64

    +
    +

    0.78

    +
    +

    GU

    +
    +

    80

    +
    +

    R1086E

    +
    +

    BXD

    +
    +

    BXD23

    +
    +

    55

    +
    +

    M

    +
    +

    R1086E.CEL

    +
    +

    0.043

    +
    +

    0.034

    +
    +

    2.233

    +
    +

    125.05

    +
    +

    58.60%

    +
    +

    39.90%

    +
    +

    1.50%

    +
    +

    1.43

    +
    +

    0.77

    +
    +

    GU

    +
    +

    81

    +
    +

    R2716E

    +
    +

    BXD

    +
    +

    BXD15

    +
    +

    60

    +
    +

    M

    +
    +

    R2716E.CEL

    +
    +

    0.035

    +
    +

    0.037

    +
    +

    2.015

    +
    +

    150.83

    +
    +

    56.40%

    +
    +

    42.10%

    +
    +

    1.60%

    +
    +

    1.42

    +
    +

    0.81

    +
    +

    GU

    +
    +

    82

    +
    +

    R2711E

    +
    +

    BXD

    +
    +

    BXD16

    +
    +

    61

    +
    +

    F

    +
    +

    R2711E.CEL

    +
    +

    0.032

    +
    +

    0.021

    +
    +

    1.953

    +
    +

    118.53

    +
    +

    59.00%

    +
    +

    39.60%

    +
    +

    1.50%

    +
    +

    1.45

    +
    +

    0.8

    +
    +

    GU

    +
    +

    83

    +
    +

    R2720E

    +
    +

    BXD

    +
    +

    BXD18

    +
    +

    59

    +
    +

    F

    +
    +

    R2720E.CEL

    +
    +

    0.014

    +
    +

    0.019

    +
    +

    2.32

    +
    +

    99.93

    +
    +

    59.50%

    +
    +

    39.00%

    +
    +

    1.50%

    +
    +

    1.33

    +
    +

    0.77

    +
    +

    GU

    +
    +

    84

    +
    +

    R2713E

    +
    +

    BXD

    +
    +

    BXD19

    +
    +

    60

    +
    +

    M

    +
    +

    R2713E.CEL

    +
    +

    0.055

    +
    +

    0.021

    +
    +

    1.67

    +
    +

    120.82

    +
    +

    60.20%

    +
    +

    38.30%

    +
    +

    1.50%

    +
    +

    1.45

    +
    +

    0.8

    +
    +

    GU

    +
    +

    85

    +
    +

    R1231E

    +
    +

    BXD

    +
    +

    BXD2

    +
    +

    64

    +
    +

    F

    +
    +

    R1231E.CEL

    +
    +

    0.044

    +
    +

    0.037

    +
    +

    2.197

    +
    +

    138.73

    +
    +

    57.30%

    +
    +

    41.30%

    +
    +

    1.40%

    +
    +

    1.41

    +
    +

    0.77

    +
    +

    GU

    +
    +

    86

    +
    +

    R2731E

    +
    +

    BXD

    +
    +

    BXD20

    +
    +

    60

    +
    +

    M

    +
    +

    R2731E.CEL

    +
    +

    0.017

    +
    +

    0.019

    +
    +

    1.825

    +
    +

    147

    +
    +

    59.00%

    +
    +

    39.50%

    +
    +

    1.50%

    +
    +

    1.4

    +
    +

    0.8

    +
    +

    GU

    +
    +

    87

    +
    +

    R2702E

    +
    +

    BXD

    +
    +

    BXD21

    +
    +

    59

    +
    +

    F

    +
    +

    R2702E.CEL

    +
    +

    0.009

    +
    +

    0.008

    +
    +

    1.811

    +
    +

    128.65

    +
    +

    59.40%

    +
    +

    39.10%

    +
    +

    1.40%

    +
    +

    1.26

    +
    +

    0.8

    +
    +

    GU

    +
    +

    88

    +
    +

    R2700E

    +
    +

    BXD

    +
    +

    BXD22

    +
    +

    59

    +
    +

    M

    +
    +

    R2700E.CEL

    +
    +

    0.01

    +
    +

    0.015

    +
    +

    1.858

    +
    +

    102.96

    +
    +

    61.50%

    +
    +

    37.10%

    +
    +

    1.30%

    +
    +

    1.48

    +
    +

    0.79

    +
    +

    GU

    +
    +

    89

    +
    +

    R1128E

    +
    +

    BXD

    +
    +

    BXD14

    +
    +

    65

    +
    +

    M

    +
    +

    R1128E.CEL

    +
    +

    0.037

    +
    +

    0.038

    +
    +

    2.366

    +
    +

    118.39

    +
    +

    57.30%

    +
    +

    41.30%

    +
    +

    1.40%

    +
    +

    1.45

    +
    +

    0.81

    +
    +

    GU

    +
    +

    90

    +
    +

    R2719E

    +
    +

    BXD

    +
    +

    BXD24

    +
    +

    123

    +
    +

    F

    +
    +

    R2719E.CEL

    +
    +

    0.112

    +
    +

    0.111

    +
    +

    1.47

    +
    +

    140.38

    +
    +

    61.50%

    +
    +

    37.20%

    +
    +

    1.30%

    +
    +

    1.38

    +
    +

    0.79

    +
    +

    GU

    +
    +

    91

    +
    +

    R2683E

    +
    +

    BXD

    +
    +

    BXD25

    +
    +

    58

    +
    +

    M

    +
    +

    R2683E.CEL

    +
    +

    0.068

    +
    +

    0.068

    +
    +

    1.777

    +
    +

    115.64

    +
    +

    58.30%

    +
    +

    40.30%

    +
    +

    1.40%

    +
    +

    2.01

    +
    +

    0.79

    +
    +

    GU

    +
    +

    92

    +
    +

    R2703E

    +
    +

    BXD

    +
    +

    BXD27

    +
    +

    60

    +
    +

    F

    +
    +

    R2703E.CEL

    +
    +

    0.008

    +
    +

    0.012

    +
    +

    1.263

    +
    +

    134.78

    +
    +

    62.60%

    +
    +

    36.10%

    +
    +

    1.40%

    +
    +

    1.44

    +
    +

    0.78

    +
    +

    GU

    +
    +

    93

    +
    +

    R2721E

    +
    +

    BXD

    +
    +

    BXD28

    +
    +

    60

    +
    +

    M

    +
    +

    R2721E.CEL

    +
    +

    0.04

    +
    +

    0.048

    +
    +

    2.065

    +
    +

    157.39

    +
    +

    56.10%

    +
    +

    42.40%

    +
    +

    1.50%

    +
    +

    1.31

    +
    +

    0.81

    +
    +

    GU

    +
    +

    94

    +
    +

    R1258E

    +
    +

    BXD

    +
    +

    BXD31

    +
    +

    57

    +
    +

    F

    +
    +

    R1258E.CEL

    +
    +

    0.037

    +
    +

    0.036

    +
    +

    2.063

    +
    +

    117.09

    +
    +

    59.00%

    +
    +

    39.50%

    +
    +

    1.50%

    +
    +

    1.54

    +
    +

    0.78

    +
    +

    GU

    +
    +

    95

    +
    +

    R1216E

    +
    +

    BXD

    +
    +

    BXD32

    +
    +

    76

    +
    +

    M

    +
    +

    R1216E.CEL

    +
    +

    0.05

    +
    +

    0.049

    +
    +

    2.23

    +
    +

    111.99

    +
    +

    58.80%

    +
    +

    39.80%

    +
    +

    1.40%

    +
    +

    1.35

    +
    +

    0.79

    +
    +

    GU

    +
    +

    96

    +
    +

    R857E

    +
    +

    BXD

    +
    +

    BXD33

    +
    +

    77

    +
    +

    M

    +
    +

    R857E.CEL

    +
    +

    0.078

    +
    +

    0.108

    +
    +

    1.737

    +
    +

    113.98

    +
    +

    61.90%

    +
    +

    36.70%

    +
    +

    1.30%

    +
    +

    1.6

    +
    +

    0.77

    +
    +

    GU

    +
    +

    97

    +
    +

    R859E

    +
    +

    BXD

    +
    +

    BXD90

    +
    +

    72

    +
    +

    M

    +
    +

    R859E.CEL

    +
    +

    0.028

    +
    +

    0.02

    +
    +

    1.847

    +
    +

    152.22

    +
    +

    57.90%

    +
    +

    40.70%

    +
    +

    1.40%

    +
    +

    1.36

    +
    +

    0.77

    +
    +

    GU

    +
    +

    98

    +
    +

    R1207E

    +
    +

    BXD

    +
    +

    BXD66

    +
    +

    83

    +
    +

    M

    +
    +

    R1207E.CEL

    +
    +

    0.017

    +
    +

    0.012

    +
    +

    1.681

    +
    +

    136.86

    +
    +

    60.40%

    +
    +

    38.10%

    +
    +

    1.50%

    +
    +

    1.45

    +
    +

    0.77

    +
    +

    GU

    +
    +

    99

    +
    +

    R2710E

    +
    +

    BXD

    +
    +

    BXD38

    +
    +

    55

    +
    +

    F

    +
    +

    R2710E.CEL

    +
    +

    0.033

    +
    +

    0.031

    +
    +

    2.112

    +
    +

    122.1

    +
    +

    58.80%

    +
    +

    39.80%

    +
    +

    1.40%

    +
    +

    1.37

    +
    +

    0.78

    +
    +

    GU

    +
    +

    100

    +
    +

    R2695E

    +
    +

    BXD

    +
    +

    BXD39

    +
    +

    59

    +
    +

    M

    +
    +

    R2695E.CEL

    +
    +

    0.018

    +
    +

    0.016

    +
    +

    1.638

    +
    +

    122.7

    +
    +

    60.80%

    +
    +

    37.80%

    +
    +

    1.50%

    +
    +

    1.42

    +
    +

    0.8

    +
    +

    GU

    +
    +

    101

    +
    +

    R2699E

    +
    +

    BXD

    +
    +

    BXD40

    +
    +

    59

    +
    +

    F

    +
    +

    R2699E.CEL

    +
    +

    0.014

    +
    +

    0.015

    +
    +

    1.827

    +
    +

    105.23

    +
    +

    61.70%

    +
    +

    36.90%

    +
    +

    1.40%

    +
    +

    1.42

    +
    +

    0.81

    +
    +

    GU

    +
    +

    102

    +
    +

    R2696E

    +
    +

    BXD

    +
    +

    BXD42

    +
    +

    58

    +
    +

    F

    +
    +

    R2696E.CEL

    +
    +

    0.01

    +
    +

    0.017

    +
    +

    1.622

    +
    +

    118.95

    +
    +

    62.00%

    +
    +

    36.60%

    +
    +

    1.50%

    +
    +

    1.53

    +
    +

    0.79

    +
    +

    GU

    +
    +

    103

    +
    +

    R943E-2

    +
    +

    BXD

    +
    +

    BXD64

    +
    +

    56

    +
    +

    F

    +
    +

    R943E-2.CEL

    +
    +

    0.024

    +
    +

    0.021

    +
    +

    1.591

    +
    +

    141.34

    +
    +

    60.10%

    +
    +

    38.40%

    +
    +

    1.50%

    +
    +

    1.32

    +
    +

    0.76

    +
    +

    GU

    +
    +

    104

    +
    +

    R967E

    +
    +

    BXD

    +
    +

    BXD48

    +
    +

    64

    +
    +

    F

    +
    +

    R967E.CEL

    +
    +

    0.101

    +
    +

    0.052

    +
    +

    1.948

    +
    +

    130.95

    +
    +

    57.30%

    +
    +

    41.20%

    +
    +

    1.50%

    +
    +

    1.63

    +
    +

    0.81

    +
    +

    GU

    +
    +

    105

    +
    +

    R2714E

    +
    +

    BXD

    +
    +

    BXD5

    +
    +

    58

    +
    +

    M

    +
    +

    R2714E.CEL

    +
    +

    0.047

    +
    +

    0.014

    +
    +

    1.404

    +
    +

    144.35

    +
    +

    60.60%

    +
    +

    37.90%

    +
    +

    1.50%

    +
    +

    1.43

    +
    +

    0.79

    +
    +

    GU

    +
    +

    106

    +
    +

    R1042E

    +
    +

    BXD

    +
    +

    BXD51

    +
    +

    62

    +
    +

    M

    +
    +

    R1042E.CEL

    +
    +

    0.028

    +
    +

    0.027

    +
    +

    2.352

    +
    +

    104.12

    +
    +

    58.70%

    +
    +

    39.90%

    +
    +

    1.40%

    +
    +

    1.53

    +
    +

    0.82

    +
    +

    GU

    +
    +

    107

    +
    +

    R2690E

    +
    +

    BXD

    +
    +

    BXD55

    +
    +

    65

    +
    +

    M

    +
    +

    R2690E.CEL

    +
    +

    0.081

    +
    +

    0.067

    +
    +

    1.887

    +
    +

    164.01

    +
    +

    56.10%

    +
    +

    42.30%

    +
    +

    1.60%

    +
    +

    1.43

    +
    +

    0.8

    +
    +

    GU

    +
    +

    108

    +
    +

    R2694E

    +
    +

    BXD

    +
    +

    BXD6

    +
    +

    58

    +
    +

    M

    +
    +

    R2694E.CEL

    +
    +

    0.012

    +
    +

    0.018

    +
    +

    1.983

    +
    +

    97.23

    +
    +

    61.60%

    +
    +

    37.10%

    +
    +

    1.30%

    +
    +

    1.39

    +
    +

    0.82

    +
    +

    GU

    +
    +

    109

    +
    +

    R975E

    +
    +

    BXD

    +
    +

    BXD70

    +
    +

    64

    +
    +

    F

    +
    +

    R975E.CEL

    +
    +

    0.028

    +
    +

    0.024

    +
    +

    1.841

    +
    +

    137.97

    +
    +

    58.00%

    +
    +

    40.50%

    +
    +

    1.40%

    +
    +

    1.36

    +
    +

    0.79

    +
    +

    GU

    +
    +

    110

    +
    +

    R2684E

    +
    +

    BXD

    +
    +

    BXD61

    +
    +

    62

    +
    +

    M

    +
    +

    R2684E.CEL

    +
    +

    0.031

    +
    +

    0.032

    +
    +

    2.01

    +
    +

    131.03

    +
    +

    57.00%

    +
    +

    41.50%

    +
    +

    1.50%

    +
    +

    1.34

    +
    +

    0.78

    +
    +

    GU

    +
    +

    111

    +
    +

    R994E

    +
    +

    BXD

    +
    +

    BXD43

    +
    +

    60

    +
    +

    F

    +
    +

    R994E.CEL

    +
    +

    0.013

    +
    +

    0.014

    +
    +

    1.966

    +
    +

    113.12

    +
    +

    60.80%

    +
    +

    37.80%

    +
    +

    1.40%

    +
    +

    1.66

    +
    +

    0.8

    +
    +

    GU

    +
    +

    112

    +
    +

    R2610E

    +
    +

    BXD

    +
    +

    BXD44

    +
    +

    68

    +
    +

    M

    +
    +

    R2610E.CEL

    +
    +

    0.013

    +
    +

    0.009

    +
    +

    1.814

    +
    +

    142.91

    +
    +

    59.00%

    +
    +

    39.50%

    +
    +

    1.50%

    +
    +

    1.35

    +
    +

    0.8

    +
    +

    GU

    +
    +

    113

    +
    +

    R2689E

    +
    +

    BXD

    +
    +

    BXD65

    +
    +

    63

    +
    +

    F

    +
    +

    R2689E.CEL

    +
    +

    0.008

    +
    +

    0.008

    +
    +

    1.721

    +
    +

    142.44

    +
    +

    59.90%

    +
    +

    38.60%

    +
    +

    1.50%

    +
    +

    1.38

    +
    +

    0.76

    +
    +

    GU

    +
    +

    114

    +
    +

    R2727E

    +
    +

    BXD

    +
    +

    BXD69

    +
    +

    65

    +
    +

    M

    +
    +

    R2727E.CEL

    +
    +

    0.01

    +
    +

    0.008

    +
    +

    1.578

    +
    +

    143.86

    +
    +

    60.30%

    +
    +

    38.30%

    +
    +

    1.40%

    +
    +

    1.34

    +
    +

    0.77

    +
    +

    GU

    +
    +

    115

    +
    +

    R2726E

    +
    +

    BXD

    +
    +

    BXD68

    +
    +

    64

    +
    +

    M

    +
    +

    R2726E.CEL

    +
    +

    0.125

    +
    +

    0.025

    +
    +

    1.811

    +
    +

    153.09

    +
    +

    58.70%

    +
    +

    39.80%

    +
    +

    1.50%

    +
    +

    1.39

    +
    +

    0.78

    +
    +

    GU

    +
    +

    116

    +
    +

    R2732E

    +
    +

    BXD

    +
    +

    BXD45

    +
    +

    63

    +
    +

    F

    +
    +

    R2732E.CEL

    +
    +

    0.039

    +
    +

    0.036

    +
    +

    2.154

    +
    +

    122.45

    +
    +

    56.50%

    +
    +

    42.10%

    +
    +

    1.40%

    +
    +

    1.8

    +
    +

    0.83

    +
    +

    GU

    +
    +

    117

    +
    +

    R2709E

    +
    +

    BXD

    +
    +

    BXD8

    +
    +

    61

    +
    +

    M

    +
    +

    R2709E.CEL

    +
    +

    0.012

    +
    +

    0.011

    +
    +

    1.99

    +
    +

    99.79

    +
    +

    60.90%

    +
    +

    37.60%

    +
    +

    1.50%

    +
    +

    1.42

    +
    +

    0.76

    +
    +

    GU

    +
    +

    118

    +
    +

    R2686E

    +
    +

    BXD

    +
    +

    BXD80

    +
    +

    61

    +
    +

    M

    +
    +

    R2686E.CEL

    +
    +

    0.046

    +
    +

    0.05

    +
    +

    2.342

    +
    +

    119.63

    +
    +

    56.00%

    +
    +

    42.60%

    +
    +

    1.50%

    +
    +

    1.38

    +
    +

    0.79

    +
    +

    GU

    +
    +

    119

    +
    +

    R2692E

    +
    +

    BXD

    +
    +

    BXD85

    +
    +

    63

    +
    +

    F

    +
    +

    R2692E.CEL

    +
    +

    0.006

    +
    +

    0.007

    +
    +

    1.423

    +
    +

    160.87

    +
    +

    60.20%

    +
    +

    38.30%

    +
    +

    1.40%

    +
    +

    1.46

    +
    +

    0.79

    +
    +

    GU

    +
    +

    120

    +
    +

    R2715E

    +
    +

    BXD

    +
    +

    BXD85

    +
    +

    91

    +
    +

    M

    +
    +

    R2715E.CEL

    +
    +

    0.007

    +
    +

    0.008

    +
    +

    1.488

    +
    +

    142.6

    +
    +

    61.20%

    +
    +

    37.30%

    +
    +

    1.40%

    +
    +

    1.5

    +
    +

    0.78

    +
    +

    GU

    +
    +

    121

    +
    +

    R1405E

    +
    +

    BXD

    +
    +

    BXD86

    +
    +

    58

    +
    +

    F

    +
    +

    R1405E.CEL

    +
    +

    0.053

    +
    +

    0.052

    +
    +

    2.351

    +
    +

    119.34

    +
    +

    56.40%

    +
    +

    42.20%

    +
    +

    1.40%

    +
    +

    1.64

    +
    +

    0.81

    +
    +

    GU

    +
    +

    122

    +
    +

    R2724E

    +
    +

    BXD

    +
    +

    BXD87

    +
    +

    63

    +
    +

    F

    +
    +

    R2724E.CEL

    +
    +

    0.013

    +
    +

    0.019

    +
    +

    1.906

    +
    +

    113.71

    +
    +

    60.70%

    +
    +

    37.90%

    +
    +

    1.40%

    +
    +

    1.45

    +
    +

    0.79

    +
    +

    GU

    +
    +

    123

    +
    +

    R1451E

    +
    +

    BXD

    +
    +

    BXD34

    +
    +

    61

    +
    +

    F

    +
    +

    R1451E.CEL

    +
    +

    0.01

    +
    +

    0.009

    +
    +

    1.843

    +
    +

    140.05

    +
    +

    59.00%

    +
    +

    39.50%

    +
    +

    1.50%

    +
    +

    1.42

    +
    +

    0.81

    +
    +

    GU

    +
    +

    124

    +
    +

    R1433E

    +
    +

    BXD

    +
    +

    BXD89

    +
    +

    63

    +
    +

    F

    +
    +

    R1433E.CEL

    +
    +

    0.029

    +
    +

    0.026

    +
    +

    2.241

    +
    +

    115.86

    +
    +

    57.70%

    +
    +

    40.80%

    +
    +

    1.50%

    +
    +

    1.41

    +
    +

    0.78

    +
    +

    GU

    +
    +

    125

    +
    +

    R2733E

    +
    +

    BXD

    +
    +

    BXD96

    +
    +

    67

    +
    +

    F

    +
    +

    R2733E.CEL

    +
    +

    0.024

    +
    +

    0.054

    +
    +

    1.7

    +
    +

    113.99

    +
    +

    62.10%

    +
    +

    36.60%

    +
    +

    1.30%

    +
    +

    1.4

    +
    +

    0.78

    +
    +

    GU

    +
    +

    126

    +
    +

    R2649E

    +
    +

    BXD

    +
    +

    BXD97

    +
    +

    74

    +
    +

    F

    +
    +

    R2649E.CEL

    +
    +

    0.029

    +
    +

    0.032

    +
    +

    2.343

    +
    +

    119.04

    +
    +

    57.50%

    +
    +

    41.20%

    +
    +

    1.40%

    +
    +

    1.53

    +
    +

    0.8

    +
    +

    GU

    +
    +

    127

    +
    +

    R2688E

    +
    +

    BXD

    +
    +

    BXD98

    +
    +

    67

    +
    +

    M

    +
    +

    R2688E.CEL

    +
    +

    0.032

    +
    +

    0.03

    +
    +

    1.772

    +
    +

    145.24

    +
    +

    58.50%

    +
    +

    40.00%

    +
    +

    1.50%

    +
    +

    1.48

    +
    +

    0.81

    +
    +

    GU

    +
    +

    128

    +
    +

    R877E

    +
    +

    BXD

    +
    +

    BXD13

    +
    +

    76

    +
    +

    M

    +
    +

    R877E.CEL

    +
    +

    0.026

    +
    +

    0.067

    +
    +

    1.558

    +
    +

    125.63

    +
    +

    61.20%

    +
    +

    37.50%

    +
    +

    1.20%

    +
    +

    1.42

    +
    +

    0.81

    +
    +

    GU

    +
    +

    129

    +
    +

    R1397E-re

    +
    +

    BXD

    +
    +

    BXD75

    +
    +

    58

    +
    +

    M

    +
    +

    R1397E-re.CEL

    +
    +

    0.032

    +
    +

    0.01

    +
    +

    1.449

    +
    +

    189.71

    +
    +

    59.60%

    +
    +

    39.00%

    +
    +

    1.40%

    +
    +

    1.39

    +
    +

    0.82

    +
    +

    GU

    +
    +

    130

    +
    +

    R2779E

    +
    +

    BXD

    +
    +

    BXD73

    +
    +

    64

    +
    +

    F

    +
    +

    R2779E.CEL

    +
    +

    0.012

    +
    +

    0.038

    +
    +

    1.746

    +
    +

    121.11

    +
    +

    59.60%

    +
    +

    39.00%

    +
    +

    1.40%

    +
    +

    1.5

    +
    +

    0.8

    +
    +

    GU

    +
    +

    131

    +
    +

    R2708E

    +
    +

    BXD

    +
    +

    BXD9

    +
    +

    60

    +
    +

    F

    +
    +

    R2708E.CEL

    +
    +

    0.024

    +
    +

    0.045

    +
    +

    1.966

    +
    +

    126.46

    +
    +

    57.70%

    +
    +

    40.70%

    +
    +

    1.50%

    +
    +

    1.4

    +
    +

    0.84

    +
    +

    GU

    +
    +

    132

    +
    +

    R2547E1

    +
    +

    GDP

    +
    +

    WSB/Ei

    +
    +

    67

    +
    +

    M

    +
    +

    R2547E.CEL

    +
    +

    0.041

    +
    +

    0.039

    +
    +

    2.14

    +
    +

    90

    +
    +

    58.20%

    +
    +

    40.10%

    +
    +

    1.60%

    +
    +

    1.32

    +
    +

    0.77

    +
    +

    UTM RW

    +
    + +
    + +

        About downloading this data set:

    +
    +

    This data set is not yet available as a bulk download. Please contact Robert W. Williams to request special data access.

    +
    + + +

        About the array platfrom:

    +
    +

    Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the standard MAS5 protocol. + + +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: (This set NOT used for this MAS 5 data set). We performed a quantile normalization of the log base 2 values for the total set of arrays using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 7: Finally, when appropriate, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. + +
    + +

    After MAS5 processing all arrays were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (C3H/HeJ and BXD24) and samples from wild subspecies such as CAST/Ei, PWD/Ph, and PWK/Ph. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. We tended to keep arrays that "conformed" to the expectation. The assumption in these cases is that anomolous data are much more likely due to experimental problem and errors than to informative biological variation. Approximately 8 arrays total were discarded in batches 1 and 2 combined. + +

    After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc. + +

    We then categorized arrays into XXX major "technical groups" depending on expression patterns as noted in scatterplots. This process of defining technical groups was done in DataDesk by manually "typing" arrays. These technical groups are apparently due to subtle within-batch effect that we do not yet understand and that cannot be corrected by quantile normalization. These XXX major technical groups are not obviously related to strain, sex, age, or any other known biological effect or variable. They are also not obviously related to any of the Affymetrix QC data types (3'/5' ratios, gain, etc.). Once the technical groups were defined, we forced the means of each probe set in the XX technical groups to the same value. This simple process partially removes a technical error of unknown origin in large expression array data sets. + +

    We reviewed the final data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of 140 arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g. 1000) represented the QTL harvest for the full data set. We then dropped a single array from the data set (n = 139 arrays), recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 950 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs (1000-950). Values ranged from -90 (good0 to +38 (bad). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a final method to polish a data set. By applying this procedure we discovered that a set of XX (7?) arrays could be excluded while simultaneously improving the total number of QTLs with values above 50. + +

    During this final process we discovered that nearly XX arrays in the second batch had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of very high quality. + + + +

        Data source acknowledgment:

    +
    +Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant. All arrays were processed at the VA Medical Center, Memphis by Weikuan Gu. +
    + +

        Information about this text file:

    +

    This text file originally generated by RWW, May 26, 2006. Updated by RWW, May 27, 2006. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Eye_M2_0406_P.html b/web/dbdoc/Eye_M2_0406_P.html new file mode 100755 index 00000000..d5942c51 --- /dev/null +++ b/web/dbdoc/Eye_M2_0406_P.html @@ -0,0 +1,7313 @@ + +HEIMED M430 Microarray Eye RMA November05 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    + +Hamilton Eye Institute Mouse Eye M430v2 (April06) PDNN Data Set modify this page

    Accession number: GN108

    + +

        Summary:

    + +
    +

    +RECOMMENDED EYE DATA SET (Preliminary documentation). The HEIMED April 2006 data set provides estimates of mRNA expression in whole eyes of 71 lines of young adult mice generated using 132 Affymetrix M430 2.0 arrays. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools; one male, one female, for each straion. This data set was processed using the PDNN protocol. To simplify comparison among different transforms, PDNN values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units.

    +
    + + +

        About the cases used to generate this set of data:

    + +
    +We used a set of 55 BXD recombinant inbred strains, 14 conventional inbred strains including C57BL/6J (B6) and DBA/2J (D2), and their reciprocal F1s. BXD strains were generated by crossing C57BL/6J with DBA/2J. The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D2). Physical maps in WebQTL incorporate approximately 2 million B6 vs D2 SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD1 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. + +

    Please note that BXD24/TyJ (JAX stock number 000031) used in this study is also known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 stock that has now been rederived, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control. + +

    BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

    + + +

    Mouse Diversity Panel (MDP). In addition to the BXD strains, we have profiled a MDP consisting 14 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) have been included in the MDP. Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) also carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene. + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase-negative albino (c) mutant + + +
    3. BALB/cByJ +
           Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list. A tyrosinase-negative albino (c) mutant + + +
    4. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list. Important to note for this Eye dataset, C3H/HeJ is a Pdeb6 mutant with near total photoreceptor loss at maturity. + +
    5. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    6. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    7. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    8. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    9. LG/J +
          Paternal parent of the LGXSM panel + +
    10. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    11. NZO/HlLtJ +
          Collaborative Cross strain + +
    12. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    13. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    14. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    15. B6D2F1 and D2B6F1, aka F1 in some graphs and tables +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J. These reciprocal F1 can be used to detect some imprinted genes. +
    + + + +

        About the tissue used to generate this set of data:

    + +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube. + +

    Each array was hybridized with a pool of RNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

    + +Dissecting and preparing eyes for RNA extraction +

      +
    1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below). +
    2. Store RNA in 75% ethanol at –80 deg. C until use. +
    + +

    Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue) +
    2. allowed the homogenate to stand for 5 min at room temperature +
    3. added 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    4. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min +
    5. centrifuged at 12,000 G for 15 min +
    6. transfered the aqueous phase to a fresh tube +
    7. added 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    8. vortexed and allowed sample to stand at room temperature for 5-10 min +
    9. centrifuged at 12,000 G for 10-15 min +
    10. removed the supernatant and washed the RNA pellet with 75% ethanol +
    11. stored the pellet in 75% ethanol at -80 deg C until use +
    + + +

    Sample Processing. Samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center lead by Drs. John Stuart and Weikuan Gu. All processing steps were performed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use (one third roughly) or were immediately used for hybridization. + +

    Dealing with Ocular Pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. The key determinant of this interesting effect is the Tyrp1 (brown) locus on Chr 4 at about 80 Mb. Loci on Chr 4 that map at this location should be considered with skepticism and reviewed carefully. To address this problem Yan Jiao purified total RNA a second time using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204). This was done for 8 colored samples (R2534E2, R2578E2, R1441E2, R2537E2, R2536E2, R2589E2, R2539E2) in the first batch of arrays (the November 05 data set) of which 5 were finally included in this data set (cases in which the strain ID is labeled with asterisks in the table). This same protocol was used for all samples in the second batch added in April 2006. + + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. The first and second batches of array data, collectively represents a reasonably well balanced sample of males and females belonging to 62 strains, but without within-strain-by-sex replication. Six strains are represented only by male sample pools (BXD15, 28, 29, 55, 98, and DBA/2J. Four strains are represented only by a female pool sample (BXD1, 27, 73 and 86). Please use the probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males) as quantitative surrogates for the sex balance in this data set. + + +

    Batch Structure: This data set consists of a two batches: the original batch that makes up the November 2005 data set and a new batch of 63 arrays (R0857E through R2649E, and R2682E through R2742E, non-consecutive identifiers) run in January 2006 by Dr. Yan Jiao. The arrays in the two batches are from two different lots. All arrays in the second batch were from Lot 4016879 (expiration date 12.28.06). We started working with a total of 140 arrays that passed initial crude quality control based on RNA quality and initial Affymetrix report file information such as 3'/5' ratio, scale factor, and percent present calls. A total of 130 arrays were finally approved for inclusion in this April 2006 data set. The complex normalization procedure is described below. + +

    The table below summarizes information on strain, age, sex, original CEL filename, Affymetrix quality control values, and source of mice. Columns labeled "PDNN 2Z outlier" and "RMA 2Z outlier" list the fraction of probe sets with values that deviated more than 2 z units from the mean. Scale factor, background average, present, absent, marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files. + +

    IN PROGRESS: PLEASE NOTE THAT THIS TABLE IS NOW BEING UPDATED TO INCLUDE BATCH 2 OF EARLY 2006. + +

    + + + ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    ID +

    tube ID

    +
    +

    group_type

    +
    +

     Strain

    +
    +

    age

    +
    +

     Sex

    +
    +

    original

    +

    CEL

    +

    filename

    +
    +

    PDNN

    +

    2Z

    +

    outlier

    +
    +

    RMA

    +

    2Z

    +

    outlier

    +
    +

    scale

    +

    factor

    +
    +

    background

    +

    average

    +
    +

    present

    +
    +

    absent

    +
    +

    marginal

    +
    +

    AFFX-b-

    +

    ActinMur(3'/5')

    +
    +

    AFFX-

    +

    GapdhMur(3'/5')

    +
    +

    Source

    +
    +

    1

    +
    +

    R2533E1

    +
    +

    GDP

    +
    +

    129S1/SvImJ

    +
    +

    60

    +
    +

    M

    +
    +

    R2533E.CEL

    +
    +

    0.025

    +
    +

    0.028

    +
    +

    2.11

    +
    +

    94

    +
    +

    57.90%

    +
    +

    40.50%

    +
    +

    1.60%

    +
    +

    1.37

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    2

    +
    +

    R2595E1

    +
    +

    GDP

    +
    +

    129S1/SvImJ

    +
    +

    59

    +
    +

    F

    +
    +

    R2595E.CEL

    +
    +

    0.033

    +
    +

    0.036

    +
    +

    1.79

    +
    +

    115

    +
    +

    61.00%

    +
    +

    37.50%

    +
    +

    1.50%

    +
    +

    1.46

    +
    +

    0.77

    +
    +

    UTM RW

    +
    +

    3

    +
    +

    R0754E2

    +
    +

    GDP

    +
    +

    A/J

    +
    +

    60

    +
    +

    M

    +
    +

    R0754E.CEL

    +
    +

    0.027

    +
    +

    0.03

    +
    +

    2.72

    +
    +

    86

    +
    +

    59.80%

    +
    +

    38.70%

    +
    +

    1.50%

    +
    +

    1.36

    +
    +

    0.76

    +
    +

    JAX

    +
    +

    4

    +
    +

    R2546E1

    +
    +

    GDP

    +
    +

    A/J

    +
    +

    66

    +
    +

    F

    +
    +

    R2545E.CEL

    +
    +

    0.024

    +
    +

    0.029

    +
    +

    1.99

    +
    +

    96

    +
    +

    58.60%

    +
    +

    39.70%

    +
    +

    1.70%

    +
    +

    1.47

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    5

    +
    +

    R2601E1

    +
    +

    GDP BXD

    +
    +

    B6D2F1

    +
    +

    73

    +
    +

    F

    +
    +

    R2601E.CEL

    +
    +

    0.007

    +
    +

    0.008

    +
    +

    2.55

    +
    +

    92

    +
    +

    58.90%

    +
    +

    39.60%

    +
    +

    1.50%

    +
    +

    1.44

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    6

    +
    +

    R2602E1

    +
    +

    GDP BXD

    +
    +

    B6D2F1

    +
    +

    73

    +
    +

    M

    +
    +

    R2602E.CEL

    +
    +

    0.003

    +
    +

    0.008

    +
    +

    2.60

    +
    +

    84

    +
    +

    59.70%

    +
    +

    38.80%

    +
    +

    1.50%

    +
    +

    1.37

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    7

    +
    +

    R1672E1

    +
    +

    GDP

    +
    +

    BALB/cByJ

    +
    +

    83

    +
    +

    M

    +
    +

    R1672E.CEL

    +
    +

    0.043

    +
    +

    0.039

    +
    +

    2.22

    +
    +

    111

    +
    +

    59.90%

    +
    +

    38.60%

    +
    +

    1.50%

    +
    +

    1.26

    +
    +

    0.80

    +
    +

    JAX

    +
    +

    8

    +
    +

    R1676E1

    +
    +

    GDP

    +
    +

    BALB/cByJ

    +
    +

    83

    +
    +

    F

    +
    +

    R1676E.CEL

    +
    +

    0.083

    +
    +

    0.085

    +
    +

    2.69

    +
    +

    98

    +
    +

    58.90%

    +
    +

    39.60%

    +
    +

    1.50%

    +
    +

    1.46

    +
    +

    0.74

    +
    +

    JAX

    +
    +

    9

    +
    +

    R2581E1

    +
    +

    BXD

    +
    +

    BXD11

    +
    +

    65

    +
    +

    F

    +
    +

    R2581E.CEL

    +
    +

    0.009

    +
    +

    0.021

    +
    +

    1.94

    +
    +

    89

    +
    +

    62.10%

    +
    +

    36.40%

    +
    +

    1.60%

    +
    +

    1.55

    +
    +

    0.81

    +
    +

    UTM RW

    +
    +

    10

    +
    +

    R2543E1

    +
    +

    BXD

    +
    +

    BXD12

    +
    +

    63

    +
    +

    M

    +
    +

    R2543E.CEL

    +
    +

    0.018

    +
    +

    0.017

    +
    +

    1.61

    +
    +

    118

    +
    +

    58.60%

    +
    +

    39.90%

    +
    +

    1.60%

    +
    +

    1.43

    +
    +

    0.77

    +
    +

    UTM RW

    +
    +

    11

    +
    +

    R2586E1

    +
    +

    BXD

    +
    +

    BXD13

    +
    +

    60

    +
    +

    F

    +
    +

    R2586E.CEL

    +
    +

    0.259

    +
    +

    0.258

    +
    +

    2.01

    +
    +

    74

    +
    +

    56.40%

    +
    +

    42.00%

    +
    +

    1.60%

    +
    +

    2.85

    +
    +

    3.81

    +
    +

    Glenn

    +
    +

    12

    +
    +

    R2557E1

    +
    +

    BXD

    +
    +

    BXD14

    +
    +

    60

    +
    +

    F

    +
    +

    R2557E.CEL

    +
    +

    0.012

    +
    +

    0.027

    +
    +

    1.83

    +
    +

    99

    +
    +

    62.50%

    +
    +

    36.10%

    +
    +

    1.40%

    +
    +

    1.31

    +
    +

    0.78

    +
    +

    Glenn

    +
    +

    13

    +
    +

    R2567E1

    +
    +

    BXD

    +
    +

    BXD16

    +
    +

    60

    +
    +

    M

    +
    +

    R2567E.CEL

    +
    +

    0.048

    +
    +

    0.058

    +
    +

    2.24

    +
    +

    82

    +
    +

    56.70%

    +
    +

    41.60%

    +
    +

    1.70%

    +
    +

    1.37

    +
    +

    0.75

    +
    +

    Glenn

    +
    +

    14

    +
    +

    R2559E1

    +
    +

    BXD

    +
    +

    BXD18

    +
    +

    59

    +
    +

    M

    +
    +

    R2559E.CEL

    +
    +

    0.01

    +
    +

    0.012

    +
    +

    1.65

    +
    +

    104

    +
    +

    60.80%

    +
    +

    37.70%

    +
    +

    1.50%

    +
    +

    1.27

    +
    +

    0.78

    +
    +

    Glenn

    +
    +

    15

    +
    +

    R2560E1

    +
    +

    BXD

    +
    +

    BXD19

    +
    +

    60

    +
    +

    F

    +
    +

    R2560E.CEL

    +
    +

    0.009

    +
    +

    0.012

    +
    +

    1.79

    +
    +

    98

    +
    +

    60.90%

    +
    +

    37.50%

    +
    +

    1.60%

    +
    +

    1.35

    +
    +

    0.80

    +
    +

    Glenn

    +
    +

    16

    +
    +

    R2597E1

    +
    +

    BXD

    +
    +

    BXD2

    +
    +

    61

    +
    +

    M

    +
    +

    R2597E.CEL

    +
    +

    0.005

    +
    +

    0.012

    +
    +

    2.37

    +
    +

    94

    +
    +

    60.30%

    +
    +

    38.30%

    +
    +

    1.50%

    +
    +

    1.34

    +
    +

    0.77

    +
    +

    Glenn

    +
    +

    17

    +
    +

    R2584E1

    +
    +

    BXD

    +
    +

    BXD20

    +
    +

    59

    +
    +

    F

    +
    +

    R2584E.CEL

    +
    +

    0.011

    +
    +

    0.017

    +
    +

    2.07

    +
    +

    84

    +
    +

    59.30%

    +
    +

    39.10%

    +
    +

    1.60%

    +
    +

    1.40

    +
    +

    0.76

    +
    +

    Glenn

    +
    +

    18

    +
    +

    R2541E2

    +
    +

    BXD

    +
    +

    BXD21

    +
    +

    61

    +
    +

    M

    +
    +

    R2541E2.CEL

    +
    +

    0.049

    +
    +

    0.084

    +
    +

    2.63

    +
    +

    125

    +
    +

    56.00%

    +
    +

    42.40%

    +
    +

    1.50%

    +
    +

    1.29

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    19

    +
    +

    R2553E1

    +
    +

    BXD

    +
    +

    BXD22

    +
    +

    58

    +
    +

    F

    +
    +

    R2553E.CEL

    +
    +

    0.004

    +
    +

    0.01

    +
    +

    1.95

    +
    +

    111

    +
    +

    59.90%

    +
    +

    38.50%

    +
    +

    1.50%

    +
    +

    1.28

    +
    +

    0.76

    +
    +

    Glenn

    +
    +

    20

    +
    +

    R2558E1

    +
    +

    BXD

    +
    +

    BXD23

    +
    +

    60

    +
    +

    F

    +
    +

    R2558E-2.CEL

    +
    +

    0.018

    +
    +

    0.027

    +
    +

    1.91

    +
    +

    115

    +
    +

    59.90%

    +
    +

    38.80%

    +
    +

    1.40%

    +
    +

    1.20

    +
    +

    0.82

    +
    +

    Glenn

    +
    +

    21

    +
    +

    R2589E2

    +
    +

    BXD

    +
    +

    BXD24

    +
    +

    59

    +
    +

    M

    +
    +

    R2589E2.CEL

    +
    +

    0.132

    +
    +

    0.176

    +
    +

    2.61

    +
    +

    112

    +
    +

    57.50%

    +
    +

    40.90%

    +
    +

    1.60%

    +
    +

    1.24

    +
    +

    0.80

    +
    +

    Glenn

    +
    +

    22

    +
    +

    R2573E1

    +
    +

    BXD

    +
    +

    BXD25

    +
    +

    67

    +
    +

    F

    +
    +

    R2573E-2.CEL

    +
    +

    0.055

    +
    +

    0.063

    +
    +

    3.15

    +
    +

    72

    +
    +

    57.90%

    +
    +

    40.70%

    +
    +

    1.40%

    +
    +

    1.77

    +
    +

    0.97

    +
    +

    UAB

    +
    +

    23

    +
    +

    R2562E1

    +
    +

    BXD

    +
    +

    BXD29

    +
    +

    60

    +
    +

    M

    +
    +

    R2562E.CEL

    +
    +

    0.007

    +
    +

    0.01

    +
    +

    1.65

    +
    +

    116

    +
    +

    59.90%

    +
    +

    38.40%

    +
    +

    1.70%

    +
    +

    1.37

    +
    +

    0.79

    +
    +

    Glenn

    +
    +

    24

    +
    +

    R2598E1

    +
    +

    BXD

    +
    +

    BXD31

    +
    +

    61

    +
    +

    M

    +
    +

    R2598E.CEL

    +
    +

    0.006

    +
    +

    0.013

    +
    +

    1.99

    +
    +

    106

    +
    +

    60.90%

    +
    +

    37.60%

    +
    +

    1.50%

    +
    +

    1.27

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    25

    +
    +

    R2563E1

    +
    +

    BXD

    +
    +

    BXD32

    +
    +

    63

    +
    +

    F

    +
    +

    R2563E.CEL

    +
    +

    0.023

    +
    +

    0.025

    +
    +

    1.55

    +
    +

    102

    +
    +

    61.90%

    +
    +

    36.70%

    +
    +

    1.40%

    +
    +

    1.50

    +
    +

    0.80

    +
    +

    UTM RW

    +
    +

    26

    +
    +

    R2542E1

    +
    +

    BXD

    +
    +

    BXD33

    +
    +

    67

    +
    +

    F

    +
    +

    R2542E.CEL

    +
    +

    0.058

    +
    +

    0.062

    +
    +

    2.13

    +
    +

    97

    +
    +

    56.50%

    +
    +

    41.80%

    +
    +

    1.60%

    +
    +

    1.91

    +
    +

    0.93

    +
    +

    UTM RW

    +
    +

    27

    +
    +

    R2585E1

    +
    +

    BXD

    +
    +

    BXD34

    +
    +

    60

    +
    +

    M

    +
    +

    R2585E.CEL

    +
    +

    0.024

    +
    +

    0.032

    +
    +

    2.64

    +
    +

    75

    +
    +

    58.30%

    +
    +

    40.00%

    +
    +

    1.70%

    +
    +

    1.25

    +
    +

    0.77

    +
    +

    Glenn

    +
    +

    28

    +
    +

    R2532E1

    +
    +

    BXD

    +
    +

    BXD38

    +
    +

    62

    +
    +

    M

    +
    +

    R2532E.CEL

    +
    +

    0.002

    +
    +

    0.006

    +
    +

    2.04

    +
    +

    94

    +
    +

    59.80%

    +
    +

    38.70%

    +
    +

    1.50%

    +
    +

    1.37

    +
    +

    0.80

    +
    +

    UTM RW

    +
    +

    29

    +
    +

    R2574E1

    +
    +

    BXD

    +
    +

    BXD39

    +
    +

    70

    +
    +

    F

    +
    +

    R2574E.CEL

    +
    +

    0.003

    +
    +

    0.008

    +
    +

    1.98

    +
    +

    91

    +
    +

    61.20%

    +
    +

    37.30%

    +
    +

    1.50%

    +
    +

    1.39

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    30

    +
    +

    R2590E1

    +
    +

    BXD

    +
    +

    BXD40

    +
    +

    60

    +
    +

    M

    +
    +

    R2590E.CEL

    +
    +

    0.007

    +
    +

    0.012

    +
    +

    2.71

    +
    +

    77

    +
    +

    59.10%

    +
    +

    39.30%

    +
    +

    1.50%

    +
    +

    1.40

    +
    +

    0.77

    +
    +

    Glenn

    +
    +

    31

    +
    +

    R2596E1

    +
    +

    BXD

    +
    +

    BXD42

    +
    +

    59

    +
    +

    M

    +
    +

    R2596E.CEL

    +
    +

    0.016

    +
    +

    0.03

    +
    +

    2.63

    +
    +

    108

    +
    +

    59.00%

    +
    +

    39.60%

    +
    +

    1.50%

    +
    +

    1.24

    +
    +

    0.80

    +
    +

    Glenn

    +
    +

    32

    +
    +

    R2605E1

    +
    +

    BXD

    +
    +

    BXD43

    +
    +

    79

    +
    +

    M

    +
    +

    R2607E.CEL

    +
    +

    0.006

    +
    +

    0.01

    +
    +

    1.82

    +
    +

    131

    +
    +

    60.50%

    +
    +

    38.20%

    +
    +

    1.30%

    +
    +

    1.32

    +
    +

    0.80

    +
    +

    UTM RW

    +
    +

    33

    +
    +

    R2594E1

    +
    +

    BXD

    +
    +

    BXD44

    +
    +

    63

    +
    +

    F

    +
    +

    R2594E.CEL

    +
    +

    0.014

    +
    +

    0.024

    +
    +

    1.77

    +
    +

    117

    +
    +

    59.80%

    +
    +

    38.80%

    +
    +

    1.40%

    +
    +

    1.35

    +
    +

    0.85

    +
    +

    UTM RW

    +
    +

    34

    +
    +

    R2592E1

    +
    +

    BXD

    +
    +

    BXD45

    +
    +

    62

    +
    +

    M

    +
    +

    R2592E.CEL

    +
    +

    0.005

    +
    +

    0.011

    +
    +

    1.85

    +
    +

    106

    +
    +

    60.10%

    +
    +

    38.60%

    +
    +

    1.30%

    +
    +

    1.43

    +
    +

    0.85

    +
    +

    UTM RW

    +
    +

    35

    +
    +

    R2606E1

    +
    +

    BXD

    +
    +

    BXD48

    +
    +

    78

    +
    +

    M

    +
    +

    R2606E.CEL

    +
    +

    0.007

    +
    +

    0.015

    +
    +

    2.56

    +
    +

    106

    +
    +

    58.90%

    +
    +

    39.70%

    +
    +

    1.40%

    +
    +

    1.35

    +
    +

    0.83

    +
    +

    UTM RW

    +
    +

    36

    +
    +

    R2591E1

    +
    +

    BXD

    +
    +

    BXD5

    +
    +

    60

    +
    +

    F

    +
    +

    R2591E.CEL

    +
    +

    0.052

    +
    +

    0.014

    +
    +

    1.70

    +
    +

    136

    +
    +

    58.50%

    +
    +

    40.00%

    +
    +

    1.50%

    +
    +

    1.33

    +
    +

    0.78

    +
    +

    Glenn

    +
    +

    37

    +
    +

    R2603E1

    +
    +

    BXD

    +
    +

    BXD51

    +
    +

    66

    +
    +

    F

    +
    +

    R2603E.CEL

    +
    +

    0.007

    +
    +

    0.02

    +
    +

    2.49

    +
    +

    115

    +
    +

    57.70%

    +
    +

    40.80%

    +
    +

    1.50%

    +
    +

    1.24

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    38

    +
    +

    R2570E1

    +
    +

    BXD

    +
    +

    BXD6

    +
    +

    65

    +
    +

    F

    +
    +

    R2570E.CEL

    +
    +

    0.013

    +
    +

    0.017

    +
    +

    1.99

    +
    +

    87

    +
    +

    58.50%

    +
    +

    40.00%

    +
    +

    1.50%

    +
    +

    1.46

    +
    +

    0.76

    +
    +

    UTM RW

    +
    +

    39

    +
    +

    R2534E2

    +
    +

    BXD

    +
    +

    BXD61

    +
    +

    70

    +
    +

    F

    +
    +

    R2534E2.CEL

    +
    +

    0.03

    +
    +

    0.058

    +
    +

    2.47

    +
    +

    118

    +
    +

    57.90%

    +
    +

    40.60%

    +
    +

    1.50%

    +
    +

    1.42

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    40

    +
    +

    R2611E1

    +
    +

    BXD

    +
    +

    BXD64

    +
    +

    68

    +
    +

    M

    +
    +

    R2611E.CEL

    +
    +

    0.067

    +
    +

    0.068

    +
    +

    2.29

    +
    +

    92

    +
    +

    58.00%

    +
    +

    40.50%

    +
    +

    1.50%

    +
    +

    1.57

    +
    +

    1.06

    +
    +

    UTM RW

    +
    +

    41

    +
    +

    R2583E1

    +
    +

    BXD

    +
    +

    BXD65

    +
    +

    60

    +
    +

    M

    +
    +

    R2583E.CEL

    +
    +

    0.027

    +
    +

    0.03

    +
    +

    2.49

    +
    +

    70

    +
    +

    56.90%

    +
    +

    41.50%

    +
    +

    1.60%

    +
    +

    1.67

    +
    +

    1.01

    +
    +

    UTM RW

    +
    +

    42

    +
    +

    R2536E2

    +
    +

    BXD

    +
    +

    BXD66

    +
    +

    64

    +
    +

    F

    +
    +

    R2536E2.CEL

    +
    +

    0.067

    +
    +

    0.139

    +
    +

    2.74

    +
    +

    109

    +
    +

    56.10%

    +
    +

    42.30%

    +
    +

    1.70%

    +
    +

    1.28

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    43

    +
    +

    R2551E1

    +
    +

    BXD

    +
    +

    BXD68

    +
    +

    67

    +
    +

    F

    +
    +

    R2551E.CEL

    +
    +

    0.294

    +
    +

    0.291

    +
    +

    2.49

    +
    +

    92

    +
    +

    54.30%

    +
    +

    44.10%

    +
    +

    1.60%

    +
    +

    2.91

    +
    +

    1.55

    +
    +

    UTM RW

    +
    +

    44

    +
    +

    R2593E1

    +
    +

    BXD

    +
    +

    BXD69

    +
    +

    59

    +
    +

    F

    +
    +

    R2593E.CEL

    +
    +

    0.027

    +
    +

    0.038

    +
    +

    1.67

    +
    +

    128

    +
    +

    59.20%

    +
    +

    39.50%

    +
    +

    1.30%

    +
    +

    1.47

    +
    +

    0.92

    +
    +

    UTM RW

    +
    +

    45

    +
    +

    R2537E2

    +
    +

    BXD

    +
    +

    BXD70

    +
    +

    59

    +
    +

    M

    +
    +

    R2537E2.CEL

    +
    +

    0.049

    +
    +

    0.092

    +
    +

    2.93

    +
    +

    99

    +
    +

    58.00%

    +
    +

    40.50%

    +
    +

    1.60%

    +
    +

    1.29

    +
    +

    0.75

    +
    +

    UTM RW

    +
    +

    46

    +
    +

    R2565E1

    +
    +

    BXD

    +
    +

    BXD75

    +
    +

    61

    +
    +

    F

    +
    +

    R2565E.CEL

    +
    +

    0.118

    +
    +

    0.124

    +
    +

    1.79

    +
    +

    102

    +
    +

    58.00%

    +
    +

    40.50%

    +
    +

    1.50%

    +
    +

    2.31

    +
    +

    3.47

    +
    +

    UTM RW

    +
    +

    47

    +
    +

    R2538E1

    +
    +

    BXD

    +
    +

    BXD8

    +
    +

    77

    +
    +

    F

    +
    +

    R2538E.CEL

    +
    +

    0.033

    +
    +

    0.056

    +
    +

    1.91

    +
    +

    102

    +
    +

    61.20%

    +
    +

    37.30%

    +
    +

    1.50%

    +
    +

    1.52

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    48

    +
    +

    R2579E1

    +
    +

    BXD

    +
    +

    BXD80

    +
    +

    65

    +
    +

    F

    +
    +

    R2579E.CEL

    +
    +

    0.013

    +
    +

    0.026

    +
    +

    2.42

    +
    +

    72

    +
    +

    59.20%

    +
    +

    39.40%

    +
    +

    1.50%

    +
    +

    1.73

    +
    +

    0.82

    +
    +

    UTM RW

    +
    +

    49

    +
    +

    R2540E1

    +
    +

    BXD

    +
    +

    BXD87

    +
    +

    63

    +
    +

    M

    +
    +

    R2540E.CEL

    +
    +

    0.014

    +
    +

    0.034

    +
    +

    2.33

    +
    +

    93

    +
    +

    61.10%

    +
    +

    37.40%

    +
    +

    1.40%

    +
    +

    1.22

    +
    +

    0.81

    +
    +

    UTM RW

    +
    +

    50

    +
    +

    R2545E1

    +
    +

    BXD

    +
    +

    BXD89

    +
    +

    67

    +
    +

    M

    +
    +

    R2546E.CEL

    +
    +

    0.266

    +
    +

    0.257

    +
    +

    1.67

    +
    +

    105

    +
    +

    56.20%

    +
    +

    42.30%

    +
    +

    1.50%

    +
    +

    3.60

    +
    +

    9.84

    +
    +

    UTM RW

    +
    +

    51

    +
    +

    R2569E1

    +
    +

    BXD

    +
    +

    BXD9

    +
    +

    67

    +
    +

    M

    +
    +

    R2569E.CEL

    +
    +

    0.256

    +
    +

    0.239

    +
    +

    1.75

    +
    +

    87

    +
    +

    55.10%

    +
    +

    43.40%

    +
    +

    1.50%

    +
    +

    2.82

    +
    +

    3.14

    +
    +

    UTM RW

    +
    +

    52

    +
    +

    R2578E2

    +
    +

    BXD

    +
    +

    BXD90

    +
    +

    61

    +
    +

    F

    +
    +

    R2578E2.CEL

    +
    +

    0.041

    +
    +

    0.062

    +
    +

    2.79

    +
    +

    92

    +
    +

    58.60%

    +
    +

    39.80%

    +
    +

    1.60%

    +
    +

    1.52

    +
    +

    0.77

    +
    +

    UTM RW

    +
    +

    53

    +
    +

    R2554E1

    +
    +

    BXD

    +
    +

    BXD96

    +
    +

    67

    +
    +

    M

    +
    +

    R2554E.CEL

    +
    +

    0.005

    +
    +

    0.008

    +
    +

    2.18

    +
    +

    93

    +
    +

    60.20%

    +
    +

    38.30%

    +
    +

    1.50%

    +
    +

    1.46

    +
    +

    0.77

    +
    +

    UTM RW

    +
    +

    54

    +
    +

    R2577E1

    +
    +

    BXD

    +
    +

    BXD97

    +
    +

    55

    +
    +

    M

    +
    +

    R2577E.CEL

    +
    +

    0.065

    +
    +

    0.069

    +
    +

    2.07

    +
    +

    77

    +
    +

    59.50%

    +
    +

    39.10%

    +
    +

    1.40%

    +
    +

    1.87

    +
    +

    1.29

    +
    +

    UTM RW

    +
    +

    55

    +
    +

    R1700E1

    +
    +

    GDP

    +
    +

    C3H/HeJ

    +
    +

    83

    +
    +

    F

    +
    +

    R1700E.CEL

    +
    +

    0.152

    +
    +

    0.168

    +
    +

    2.98

    +
    +

    69

    +
    +

    60.80%

    +
    +

    37.90%

    +
    +

    1.40%

    +
    +

    1.48

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    56

    +
    +

    R1704E1

    +
    +

    GDP

    +
    +

    C3H/HeJ

    +
    +

    83

    +
    +

    M

    +
    +

    R1704E.CEL

    +
    +

    0.154

    +
    +

    0.165

    +
    +

    2.58

    +
    +

    88

    +
    +

    60.10%

    +
    +

    38.60%

    +
    +

    1.30%

    +
    +

    1.38

    +
    +

    0.84

    +
    +

    UTM RW

    +
    +

    57

    +
    +

    R0872E2

    +
    +

    GDP BXD

    +
    +

    C57BL/6J

    +
    +

    66

    +
    +

    M

    +
    +

    R0872E.CEL

    +
    +

    0.014

    +
    +

    0.023

    +
    +

    3.13

    +
    +

    89

    +
    +

    58.90%

    +
    +

    39.60%

    +
    +

    1.50%

    +
    +

    1.30

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    58

    +
    +

    R2607E1

    +
    +

    GDP BXD

    +
    +

    C57BL/6J

    +
    +

    67

    +
    +

    F

    +
    +

    R2605E.CEL

    +
    +

    0.008

    +
    +

    0.018

    +
    +

    2.43

    +
    +

    115

    +
    +

    58.60%

    +
    +

    40.00%

    +
    +

    1.40%

    +
    +

    1.31

    +
    +

    0.76

    +
    +

    UTM RW

    +
    +

    59

    +
    +

    R2564E1

    +
    +

    GDP

    +
    +

    CAST/Ei

    +
    +

    64

    +
    +

    F

    +
    +

    R2564E.CEL

    +
    +

    0.124

    +
    +

    0.105

    +
    +

    1.94

    +
    +

    89

    +
    +

    58.50%

    +
    +

    39.90%

    +
    +

    1.60%

    +
    +

    1.60

    +
    +

    0.77

    +
    +

    JAX

    +
    +

    60

    +
    +

    R2580E1

    +
    +

    GDP

    +
    +

    CAST/Ei

    +
    +

    64

    +
    +

    M

    +
    +

    R2580E.CEL

    +
    +

    0.123

    +
    +

    0.109

    +
    +

    2.09

    +
    +

    95

    +
    +

    58.20%

    +
    +

    40.10%

    +
    +

    1.70%

    +
    +

    1.40

    +
    +

    0.76

    +
    +

    JAX

    +
    +

    61

    +
    +

    R2600E1

    +
    +

    GDP BXD

    +
    +

    D2B6F1

    +
    +

    72

    +
    +

    F

    +
    +

    R2600E.CEL

    +
    +

    0.008

    +
    +

    0.02

    +
    +

    2.47

    +
    +

    95

    +
    +

    58.10%

    +
    +

    40.20%

    +
    +

    1.70%

    +
    +

    1.41

    +
    +

    0.78

    +
    +

    UTM RW

    +
    +

    62

    +
    +

    R2604E1

    +
    +

    GDP BXD

    +
    +

    D2B6F1

    +
    +

    69

    +
    +

    M

    +
    +

    R2604E.CEL

    +
    +

    0.005

    +
    +

    0.014

    +
    +

    2.66

    +
    +

    90

    +
    +

    59.40%

    +
    +

    39.20%

    +
    +

    1.50%

    +
    +

    1.28

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    63

    +
    +

    R2572E1

    +
    +

    GDP BXD

    +
    +

    DBA/2J

    +
    +

    65

    +
    +

    M

    +
    +

    R2572E.CEL

    +
    +

    0.091

    +
    +

    0.106

    +
    +

    2.41

    +
    +

    79

    +
    +

    55.50%

    +
    +

    42.90%

    +
    +

    1.60%

    +
    +

    1.37

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    64

    +
    +

    R2636E1

    +
    +

    GDP

    +
    +

    KK/HIJ

    +
    +

    64

    +
    +

    F

    +
    +

    R2636E.CEL

    +
    +

    0.044

    +
    +

    0.043

    +
    +

    2.61

    +
    +

    93

    +
    +

    58.90%

    +
    +

    39.50%

    +
    +

    1.50%

    +
    +

    1.39

    +
    +

    0.76

    +
    +

    UTM RW

    +
    +

    65

    +
    +

    R2637E1

    +
    +

    GDP

    +
    +

    KK/HIJ

    +
    +

    64

    +
    +

    M

    +
    +

    R2637E.CEL

    +
    +

    0.056

    +
    +

    0.036

    +
    +

    2.19

    +
    +

    103

    +
    +

    59.40%

    +
    +

    39.00%

    +
    +

    1.50%

    +
    +

    1.30

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    66

    +
    +

    R0999E1

    +
    +

    GDP

    +
    +

    LG/J

    +
    +

    57

    +
    +

    F

    +
    +

    R0999E.CEL

    +
    +

    0.021

    +
    +

    0.023

    +
    +

    2.45

    +
    +

    82

    +
    +

    59.40%

    +
    +

    39.10%

    +
    +

    1.50%

    +
    +

    1.38

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    67

    +
    +

    R1004E1

    +
    +

    GDP

    +
    +

    LG/J

    +
    +

    65

    +
    +

    M

    +
    +

    R1004E.CEL

    +
    +

    0.025

    +
    +

    0.028

    +
    +

    2.44

    +
    +

    92

    +
    +

    58.70%

    +
    +

    39.80%

    +
    +

    1.50%

    +
    +

    1.38

    +
    +

    0.79

    +
    +

    UTM RW

    +
    +

    68

    +
    +

    R1688E1

    +
    +

    GDP

    +
    +

    NOD/LtJ

    +
    +

    66

    +
    +

    F

    +
    +

    R1688E.CEL

    +
    +

    0.028

    +
    +

    0.033

    +
    +

    2.66

    +
    +

    98

    +
    +

    58.60%

    +
    +

    39.90%

    +
    +

    1.50%

    +
    +

    1.26

    +
    +

    0.80

    +
    +

    JAX

    +
    +

    69

    +
    +

    R2566E1

    +
    +

    GDP

    +
    +

    NOD/LtJ

    +
    +

    76

    +
    +

    M

    +
    +

    R2566E-2.CEL

    +
    +

    0.036

    +
    +

    0.04

    +
    +

    3.03

    +
    +

    69

    +
    +

    59.80%

    +
    +

    38.80%

    +
    +

    1.50%

    +
    +

    1.38

    +
    +

    0.75

    +
    +

    UTM RW

    +
    +

    70

    +
    +

    R2535E1

    +
    +

    GDP

    +
    +

    NZO/H1LtJ

    +
    +

    62

    +
    +

    F

    +
    +

    R2535E.CEL

    +
    +

    0.037

    +
    +

    0.062

    +
    +

    1.89

    +
    +

    86

    +
    +

    60.40%

    +
    +

    38.20%

    +
    +

    1.40%

    +
    +

    1.41

    +
    +

    0.85

    +
    +

    JAX

    +
    +

    71

    +
    +

    R2550E1

    +
    +

    GDP

    +
    +

    NZO/HILtJ

    +
    +

    96

    +
    +

    M

    +
    +

    R2550E.CEL

    +
    +

    0.025

    +
    +

    0.029

    +
    +

    1.79

    +
    +

    87

    +
    +

    60.70%

    +
    +

    37.80%

    +
    +

    1.50%

    +
    +

    1.52

    +
    +

    0.82

    +
    +

    JAX

    +
    +

    72

    +
    +

    R2634E1

    +
    +

    GDP

    +
    +

    PWD/PhJ

    +
    +

    62

    +
    +

    F

    +
    +

    R2635E.CEL

    +
    +

    0.126

    +
    +

    0.114

    +
    +

    3.29

    +
    +

    90

    +
    +

    55.90%

    +
    +

    42.50%

    +
    +

    1.60%

    +
    +

    1.57

    +
    +

    0.81

    +
    +

    JAX

    +
    +

    73

    +
    +

    R2635E1

    +
    +

    GDP

    +
    +

    PWD/PhJ

    +
    +

    62

    +
    +

    M

    +
    +

    R2634E.CEL

    +
    +

    0.15

    +
    +

    0.137

    +
    +

    3.72

    +
    +

    80

    +
    +

    54.20%

    +
    +

    44.10%

    +
    +

    1.70%

    +
    +

    1.53

    +
    +

    0.85

    +
    +

    JAX

    +
    +

    74

    +
    +

    R2544E1

    +
    +

    GDP

    +
    +

    PWK/PhJ

    +
    +

    63

    +
    +

    F

    +
    +

    R2544E.CEL

    +
    +

    0.174

    +
    +

    0.175

    +
    +

    2.20

    +
    +

    108

    +
    +

    54.90%

    +
    +

    43.50%

    +
    +

    1.70%

    +
    +

    1.36

    +
    +

    0.82

    +
    +

    JAX

    +
    +

    75

    +
    +

    R2549E1

    +
    +

    GDP

    +
    +

    PWK/PhJ

    +
    +

    83

    +
    +

    M

    +
    +

    R2549E.CEL

    +
    +

    0.103

    +
    +

    0.087

    +
    +

    2.28

    +
    +

    84

    +
    +

    57.30%

    +
    +

    41.20%

    +
    +

    1.50%

    +
    +

    1.57

    +
    +

    0.83

    +
    +

    JAX

    +
    +

    76

    +
    +

    R2368E1

    +
    +

    GDP

    +
    +

    WSB/EI

    +
    +

    67

    +
    +

    F

    +
    +

    R2368E.CEL

    +
    +

    0.041

    +
    +

    0.047

    +
    +

    2.57

    +
    +

    86

    +
    +

    59.50%

    +
    +

    39.10%

    +
    +

    1.40%

    +
    +

    1.29

    +
    +

    0.74

    +
    +

    UTM RW

    +
    +

    77

    +
    +

    R2704E

    +
    +

    BXD

    +
    +

    BXD1

    +
    +

    59

    +
    +

    F

    +
    +

    R2704E.CEL

    +
    +

    0.029

    +
    +

    0.03

    +
    +

    2.066

    +
    +

    139.61

    +
    +

    56.60%

    +
    +

    41.90%

    +
    +

    1.50%

    +
    +

    1.31

    +
    +

    0.81

    +
    +

    GU

    +
    +

    78

    +
    +

    R2612E

    +
    +

    BXD

    +
    +

    BXD11

    +
    +

    70

    +
    +

    M

    +
    +

    R2612E.CEL

    +
    +

    0.101

    +
    +

    0.112

    +
    +

    1.83

    +
    +

    142.03

    +
    +

    58.20%

    +
    +

    40.50%

    +
    +

    1.40%

    +
    +

    1.78

    +
    +

    0.81

    +
    +

    GU

    +
    +

    79

    +
    +

    R2742E

    +
    +

    BXD

    +
    +

    BXD12

    +
    +

    71

    +
    +

    F

    +
    +

    R2742E.CEL

    +
    +

    0.073

    +
    +

    0.077

    +
    +

    2.127

    +
    +

    134.14

    +
    +

    57.00%

    +
    +

    41.60%

    +
    +

    1.40%

    +
    +

    1.64

    +
    +

    0.78

    +
    +

    GU

    +
    +

    80

    +
    +

    R1086E

    +
    +

    BXD

    +
    +

    BXD23

    +
    +

    55

    +
    +

    M

    +
    +

    R1086E.CEL

    +
    +

    0.043

    +
    +

    0.034

    +
    +

    2.233

    +
    +

    125.05

    +
    +

    58.60%

    +
    +

    39.90%

    +
    +

    1.50%

    +
    +

    1.43

    +
    +

    0.77

    +
    +

    GU

    +
    +

    81

    +
    +

    R2716E

    +
    +

    BXD

    +
    +

    BXD15

    +
    +

    60

    +
    +

    M

    +
    +

    R2716E.CEL

    +
    +

    0.035

    +
    +

    0.037

    +
    +

    2.015

    +
    +

    150.83

    +
    +

    56.40%

    +
    +

    42.10%

    +
    +

    1.60%

    +
    +

    1.42

    +
    +

    0.81

    +
    +

    GU

    +
    +

    82

    +
    +

    R2711E

    +
    +

    BXD

    +
    +

    BXD16

    +
    +

    61

    +
    +

    F

    +
    +

    R2711E.CEL

    +
    +

    0.032

    +
    +

    0.021

    +
    +

    1.953

    +
    +

    118.53

    +
    +

    59.00%

    +
    +

    39.60%

    +
    +

    1.50%

    +
    +

    1.45

    +
    +

    0.8

    +
    +

    GU

    +
    +

    83

    +
    +

    R2720E

    +
    +

    BXD

    +
    +

    BXD18

    +
    +

    59

    +
    +

    F

    +
    +

    R2720E.CEL

    +
    +

    0.014

    +
    +

    0.019

    +
    +

    2.32

    +
    +

    99.93

    +
    +

    59.50%

    +
    +

    39.00%

    +
    +

    1.50%

    +
    +

    1.33

    +
    +

    0.77

    +
    +

    GU

    +
    +

    84

    +
    +

    R2713E

    +
    +

    BXD

    +
    +

    BXD19

    +
    +

    60

    +
    +

    M

    +
    +

    R2713E.CEL

    +
    +

    0.055

    +
    +

    0.021

    +
    +

    1.67

    +
    +

    120.82

    +
    +

    60.20%

    +
    +

    38.30%

    +
    +

    1.50%

    +
    +

    1.45

    +
    +

    0.8

    +
    +

    GU

    +
    +

    85

    +
    +

    R1231E

    +
    +

    BXD

    +
    +

    BXD2

    +
    +

    64

    +
    +

    F

    +
    +

    R1231E.CEL

    +
    +

    0.044

    +
    +

    0.037

    +
    +

    2.197

    +
    +

    138.73

    +
    +

    57.30%

    +
    +

    41.30%

    +
    +

    1.40%

    +
    +

    1.41

    +
    +

    0.77

    +
    +

    GU

    +
    +

    86

    +
    +

    R2731E

    +
    +

    BXD

    +
    +

    BXD20

    +
    +

    60

    +
    +

    M

    +
    +

    R2731E.CEL

    +
    +

    0.017

    +
    +

    0.019

    +
    +

    1.825

    +
    +

    147

    +
    +

    59.00%

    +
    +

    39.50%

    +
    +

    1.50%

    +
    +

    1.4

    +
    +

    0.8

    +
    +

    GU

    +
    +

    87

    +
    +

    R2702E

    +
    +

    BXD

    +
    +

    BXD21

    +
    +

    59

    +
    +

    F

    +
    +

    R2702E.CEL

    +
    +

    0.009

    +
    +

    0.008

    +
    +

    1.811

    +
    +

    128.65

    +
    +

    59.40%

    +
    +

    39.10%

    +
    +

    1.40%

    +
    +

    1.26

    +
    +

    0.8

    +
    +

    GU

    +
    +

    88

    +
    +

    R2700E

    +
    +

    BXD

    +
    +

    BXD22

    +
    +

    59

    +
    +

    M

    +
    +

    R2700E.CEL

    +
    +

    0.01

    +
    +

    0.015

    +
    +

    1.858

    +
    +

    102.96

    +
    +

    61.50%

    +
    +

    37.10%

    +
    +

    1.30%

    +
    +

    1.48

    +
    +

    0.79

    +
    +

    GU

    +
    +

    89

    +
    +

    R1128E

    +
    +

    BXD

    +
    +

    BXD14

    +
    +

    65

    +
    +

    M

    +
    +

    R1128E.CEL

    +
    +

    0.037

    +
    +

    0.038

    +
    +

    2.366

    +
    +

    118.39

    +
    +

    57.30%

    +
    +

    41.30%

    +
    +

    1.40%

    +
    +

    1.45

    +
    +

    0.81

    +
    +

    GU

    +
    +

    90

    +
    +

    R2719E

    +
    +

    BXD

    +
    +

    BXD24

    +
    +

    123

    +
    +

    F

    +
    +

    R2719E.CEL

    +
    +

    0.112

    +
    +

    0.111

    +
    +

    1.47

    +
    +

    140.38

    +
    +

    61.50%

    +
    +

    37.20%

    +
    +

    1.30%

    +
    +

    1.38

    +
    +

    0.79

    +
    +

    GU

    +
    +

    91

    +
    +

    R2683E

    +
    +

    BXD

    +
    +

    BXD25

    +
    +

    58

    +
    +

    M

    +
    +

    R2683E.CEL

    +
    +

    0.068

    +
    +

    0.068

    +
    +

    1.777

    +
    +

    115.64

    +
    +

    58.30%

    +
    +

    40.30%

    +
    +

    1.40%

    +
    +

    2.01

    +
    +

    0.79

    +
    +

    GU

    +
    +

    92

    +
    +

    R2703E

    +
    +

    BXD

    +
    +

    BXD27

    +
    +

    60

    +
    +

    F

    +
    +

    R2703E.CEL

    +
    +

    0.008

    +
    +

    0.012

    +
    +

    1.263

    +
    +

    134.78

    +
    +

    62.60%

    +
    +

    36.10%

    +
    +

    1.40%

    +
    +

    1.44

    +
    +

    0.78

    +
    +

    GU

    +
    +

    93

    +
    +

    R2721E

    +
    +

    BXD

    +
    +

    BXD28

    +
    +

    60

    +
    +

    M

    +
    +

    R2721E.CEL

    +
    +

    0.04

    +
    +

    0.048

    +
    +

    2.065

    +
    +

    157.39

    +
    +

    56.10%

    +
    +

    42.40%

    +
    +

    1.50%

    +
    +

    1.31

    +
    +

    0.81

    +
    +

    GU

    +
    +

    94

    +
    +

    R1258E

    +
    +

    BXD

    +
    +

    BXD31

    +
    +

    57

    +
    +

    F

    +
    +

    R1258E.CEL

    +
    +

    0.037

    +
    +

    0.036

    +
    +

    2.063

    +
    +

    117.09

    +
    +

    59.00%

    +
    +

    39.50%

    +
    +

    1.50%

    +
    +

    1.54

    +
    +

    0.78

    +
    +

    GU

    +
    +

    95

    +
    +

    R1216E

    +
    +

    BXD

    +
    +

    BXD32

    +
    +

    76

    +
    +

    M

    +
    +

    R1216E.CEL

    +
    +

    0.05

    +
    +

    0.049

    +
    +

    2.23

    +
    +

    111.99

    +
    +

    58.80%

    +
    +

    39.80%

    +
    +

    1.40%

    +
    +

    1.35

    +
    +

    0.79

    +
    +

    GU

    +
    +

    96

    +
    +

    R857E

    +
    +

    BXD

    +
    +

    BXD33

    +
    +

    77

    +
    +

    M

    +
    +

    R857E.CEL

    +
    +

    0.078

    +
    +

    0.108

    +
    +

    1.737

    +
    +

    113.98

    +
    +

    61.90%

    +
    +

    36.70%

    +
    +

    1.30%

    +
    +

    1.6

    +
    +

    0.77

    +
    +

    GU

    +
    +

    97

    +
    +

    R859E

    +
    +

    BXD

    +
    +

    BXD90

    +
    +

    72

    +
    +

    M

    +
    +

    R859E.CEL

    +
    +

    0.028

    +
    +

    0.02

    +
    +

    1.847

    +
    +

    152.22

    +
    +

    57.90%

    +
    +

    40.70%

    +
    +

    1.40%

    +
    +

    1.36

    +
    +

    0.77

    +
    +

    GU

    +
    +

    98

    +
    +

    R1207E

    +
    +

    BXD

    +
    +

    BXD66

    +
    +

    83

    +
    +

    M

    +
    +

    R1207E.CEL

    +
    +

    0.017

    +
    +

    0.012

    +
    +

    1.681

    +
    +

    136.86

    +
    +

    60.40%

    +
    +

    38.10%

    +
    +

    1.50%

    +
    +

    1.45

    +
    +

    0.77

    +
    +

    GU

    +
    +

    99

    +
    +

    R2710E

    +
    +

    BXD

    +
    +

    BXD38

    +
    +

    55

    +
    +

    F

    +
    +

    R2710E.CEL

    +
    +

    0.033

    +
    +

    0.031

    +
    +

    2.112

    +
    +

    122.1

    +
    +

    58.80%

    +
    +

    39.80%

    +
    +

    1.40%

    +
    +

    1.37

    +
    +

    0.78

    +
    +

    GU

    +
    +

    100

    +
    +

    R2695E

    +
    +

    BXD

    +
    +

    BXD39

    +
    +

    59

    +
    +

    M

    +
    +

    R2695E.CEL

    +
    +

    0.018

    +
    +

    0.016

    +
    +

    1.638

    +
    +

    122.7

    +
    +

    60.80%

    +
    +

    37.80%

    +
    +

    1.50%

    +
    +

    1.42

    +
    +

    0.8

    +
    +

    GU

    +
    +

    101

    +
    +

    R2699E

    +
    +

    BXD

    +
    +

    BXD40

    +
    +

    59

    +
    +

    F

    +
    +

    R2699E.CEL

    +
    +

    0.014

    +
    +

    0.015

    +
    +

    1.827

    +
    +

    105.23

    +
    +

    61.70%

    +
    +

    36.90%

    +
    +

    1.40%

    +
    +

    1.42

    +
    +

    0.81

    +
    +

    GU

    +
    +

    102

    +
    +

    R2696E

    +
    +

    BXD

    +
    +

    BXD42

    +
    +

    58

    +
    +

    F

    +
    +

    R2696E.CEL

    +
    +

    0.01

    +
    +

    0.017

    +
    +

    1.622

    +
    +

    118.95

    +
    +

    62.00%

    +
    +

    36.60%

    +
    +

    1.50%

    +
    +

    1.53

    +
    +

    0.79

    +
    +

    GU

    +
    +

    103

    +
    +

    R943E-2

    +
    +

    BXD

    +
    +

    BXD64

    +
    +

    56

    +
    +

    F

    +
    +

    R943E-2.CEL

    +
    +

    0.024

    +
    +

    0.021

    +
    +

    1.591

    +
    +

    141.34

    +
    +

    60.10%

    +
    +

    38.40%

    +
    +

    1.50%

    +
    +

    1.32

    +
    +

    0.76

    +
    +

    GU

    +
    +

    104

    +
    +

    R967E

    +
    +

    BXD

    +
    +

    BXD48

    +
    +

    64

    +
    +

    F

    +
    +

    R967E.CEL

    +
    +

    0.101

    +
    +

    0.052

    +
    +

    1.948

    +
    +

    130.95

    +
    +

    57.30%

    +
    +

    41.20%

    +
    +

    1.50%

    +
    +

    1.63

    +
    +

    0.81

    +
    +

    GU

    +
    +

    105

    +
    +

    R2714E

    +
    +

    BXD

    +
    +

    BXD5

    +
    +

    58

    +
    +

    M

    +
    +

    R2714E.CEL

    +
    +

    0.047

    +
    +

    0.014

    +
    +

    1.404

    +
    +

    144.35

    +
    +

    60.60%

    +
    +

    37.90%

    +
    +

    1.50%

    +
    +

    1.43

    +
    +

    0.79

    +
    +

    GU

    +
    +

    106

    +
    +

    R1042E

    +
    +

    BXD

    +
    +

    BXD51

    +
    +

    62

    +
    +

    M

    +
    +

    R1042E.CEL

    +
    +

    0.028

    +
    +

    0.027

    +
    +

    2.352

    +
    +

    104.12

    +
    +

    58.70%

    +
    +

    39.90%

    +
    +

    1.40%

    +
    +

    1.53

    +
    +

    0.82

    +
    +

    GU

    +
    +

    107

    +
    +

    R2690E

    +
    +

    BXD

    +
    +

    BXD55

    +
    +

    65

    +
    +

    M

    +
    +

    R2690E.CEL

    +
    +

    0.081

    +
    +

    0.067

    +
    +

    1.887

    +
    +

    164.01

    +
    +

    56.10%

    +
    +

    42.30%

    +
    +

    1.60%

    +
    +

    1.43

    +
    +

    0.8

    +
    +

    GU

    +
    +

    108

    +
    +

    R2694E

    +
    +

    BXD

    +
    +

    BXD6

    +
    +

    58

    +
    +

    M

    +
    +

    R2694E.CEL

    +
    +

    0.012

    +
    +

    0.018

    +
    +

    1.983

    +
    +

    97.23

    +
    +

    61.60%

    +
    +

    37.10%

    +
    +

    1.30%

    +
    +

    1.39

    +
    +

    0.82

    +
    +

    GU

    +
    +

    109

    +
    +

    R975E

    +
    +

    BXD

    +
    +

    BXD70

    +
    +

    64

    +
    +

    F

    +
    +

    R975E.CEL

    +
    +

    0.028

    +
    +

    0.024

    +
    +

    1.841

    +
    +

    137.97

    +
    +

    58.00%

    +
    +

    40.50%

    +
    +

    1.40%

    +
    +

    1.36

    +
    +

    0.79

    +
    +

    GU

    +
    +

    110

    +
    +

    R2684E

    +
    +

    BXD

    +
    +

    BXD61

    +
    +

    62

    +
    +

    M

    +
    +

    R2684E.CEL

    +
    +

    0.031

    +
    +

    0.032

    +
    +

    2.01

    +
    +

    131.03

    +
    +

    57.00%

    +
    +

    41.50%

    +
    +

    1.50%

    +
    +

    1.34

    +
    +

    0.78

    +
    +

    GU

    +
    +

    111

    +
    +

    R994E

    +
    +

    BXD

    +
    +

    BXD43

    +
    +

    60

    +
    +

    F

    +
    +

    R994E.CEL

    +
    +

    0.013

    +
    +

    0.014

    +
    +

    1.966

    +
    +

    113.12

    +
    +

    60.80%

    +
    +

    37.80%

    +
    +

    1.40%

    +
    +

    1.66

    +
    +

    0.8

    +
    +

    GU

    +
    +

    112

    +
    +

    R2610E

    +
    +

    BXD

    +
    +

    BXD44

    +
    +

    68

    +
    +

    M

    +
    +

    R2610E.CEL

    +
    +

    0.013

    +
    +

    0.009

    +
    +

    1.814

    +
    +

    142.91

    +
    +

    59.00%

    +
    +

    39.50%

    +
    +

    1.50%

    +
    +

    1.35

    +
    +

    0.8

    +
    +

    GU

    +
    +

    113

    +
    +

    R2689E

    +
    +

    BXD

    +
    +

    BXD65

    +
    +

    63

    +
    +

    F

    +
    +

    R2689E.CEL

    +
    +

    0.008

    +
    +

    0.008

    +
    +

    1.721

    +
    +

    142.44

    +
    +

    59.90%

    +
    +

    38.60%

    +
    +

    1.50%

    +
    +

    1.38

    +
    +

    0.76

    +
    +

    GU

    +
    +

    114

    +
    +

    R2727E

    +
    +

    BXD

    +
    +

    BXD69

    +
    +

    65

    +
    +

    M

    +
    +

    R2727E.CEL

    +
    +

    0.01

    +
    +

    0.008

    +
    +

    1.578

    +
    +

    143.86

    +
    +

    60.30%

    +
    +

    38.30%

    +
    +

    1.40%

    +
    +

    1.34

    +
    +

    0.77

    +
    +

    GU

    +
    +

    115

    +
    +

    R2726E

    +
    +

    BXD

    +
    +

    BXD68

    +
    +

    64

    +
    +

    M

    +
    +

    R2726E.CEL

    +
    +

    0.125

    +
    +

    0.025

    +
    +

    1.811

    +
    +

    153.09

    +
    +

    58.70%

    +
    +

    39.80%

    +
    +

    1.50%

    +
    +

    1.39

    +
    +

    0.78

    +
    +

    GU

    +
    +

    116

    +
    +

    R2732E

    +
    +

    BXD

    +
    +

    BXD45

    +
    +

    63

    +
    +

    F

    +
    +

    R2732E.CEL

    +
    +

    0.039

    +
    +

    0.036

    +
    +

    2.154

    +
    +

    122.45

    +
    +

    56.50%

    +
    +

    42.10%

    +
    +

    1.40%

    +
    +

    1.8

    +
    +

    0.83

    +
    +

    GU

    +
    +

    117

    +
    +

    R2709E

    +
    +

    BXD

    +
    +

    BXD8

    +
    +

    61

    +
    +

    M

    +
    +

    R2709E.CEL

    +
    +

    0.012

    +
    +

    0.011

    +
    +

    1.99

    +
    +

    99.79

    +
    +

    60.90%

    +
    +

    37.60%

    +
    +

    1.50%

    +
    +

    1.42

    +
    +

    0.76

    +
    +

    GU

    +
    +

    118

    +
    +

    R2686E

    +
    +

    BXD

    +
    +

    BXD80

    +
    +

    61

    +
    +

    M

    +
    +

    R2686E.CEL

    +
    +

    0.046

    +
    +

    0.05

    +
    +

    2.342

    +
    +

    119.63

    +
    +

    56.00%

    +
    +

    42.60%

    +
    +

    1.50%

    +
    +

    1.38

    +
    +

    0.79

    +
    +

    GU

    +
    +

    119

    +
    +

    R2692E

    +
    +

    BXD

    +
    +

    BXD85

    +
    +

    63

    +
    +

    F

    +
    +

    R2692E.CEL

    +
    +

    0.006

    +
    +

    0.007

    +
    +

    1.423

    +
    +

    160.87

    +
    +

    60.20%

    +
    +

    38.30%

    +
    +

    1.40%

    +
    +

    1.46

    +
    +

    0.79

    +
    +

    GU

    +
    +

    120

    +
    +

    R2715E

    +
    +

    BXD

    +
    +

    BXD85

    +
    +

    91

    +
    +

    M

    +
    +

    R2715E.CEL

    +
    +

    0.007

    +
    +

    0.008

    +
    +

    1.488

    +
    +

    142.6

    +
    +

    61.20%

    +
    +

    37.30%

    +
    +

    1.40%

    +
    +

    1.5

    +
    +

    0.78

    +
    +

    GU

    +
    +

    121

    +
    +

    R1405E

    +
    +

    BXD

    +
    +

    BXD86

    +
    +

    58

    +
    +

    F

    +
    +

    R1405E.CEL

    +
    +

    0.053

    +
    +

    0.052

    +
    +

    2.351

    +
    +

    119.34

    +
    +

    56.40%

    +
    +

    42.20%

    +
    +

    1.40%

    +
    +

    1.64

    +
    +

    0.81

    +
    +

    GU

    +
    +

    122

    +
    +

    R2724E

    +
    +

    BXD

    +
    +

    BXD87

    +
    +

    63

    +
    +

    F

    +
    +

    R2724E.CEL

    +
    +

    0.013

    +
    +

    0.019

    +
    +

    1.906

    +
    +

    113.71

    +
    +

    60.70%

    +
    +

    37.90%

    +
    +

    1.40%

    +
    +

    1.45

    +
    +

    0.79

    +
    +

    GU

    +
    +

    123

    +
    +

    R1451E

    +
    +

    BXD

    +
    +

    BXD34

    +
    +

    61

    +
    +

    F

    +
    +

    R1451E.CEL

    +
    +

    0.01

    +
    +

    0.009

    +
    +

    1.843

    +
    +

    140.05

    +
    +

    59.00%

    +
    +

    39.50%

    +
    +

    1.50%

    +
    +

    1.42

    +
    +

    0.81

    +
    +

    GU

    +
    +

    124

    +
    +

    R1433E

    +
    +

    BXD

    +
    +

    BXD89

    +
    +

    63

    +
    +

    F

    +
    +

    R1433E.CEL

    +
    +

    0.029

    +
    +

    0.026

    +
    +

    2.241

    +
    +

    115.86

    +
    +

    57.70%

    +
    +

    40.80%

    +
    +

    1.50%

    +
    +

    1.41

    +
    +

    0.78

    +
    +

    GU

    +
    +

    125

    +
    +

    R2733E

    +
    +

    BXD

    +
    +

    BXD96

    +
    +

    67

    +
    +

    F

    +
    +

    R2733E.CEL

    +
    +

    0.024

    +
    +

    0.054

    +
    +

    1.7

    +
    +

    113.99

    +
    +

    62.10%

    +
    +

    36.60%

    +
    +

    1.30%

    +
    +

    1.4

    +
    +

    0.78

    +
    +

    GU

    +
    +

    126

    +
    +

    R2649E

    +
    +

    BXD

    +
    +

    BXD97

    +
    +

    74

    +
    +

    F

    +
    +

    R2649E.CEL

    +
    +

    0.029

    +
    +

    0.032

    +
    +

    2.343

    +
    +

    119.04

    +
    +

    57.50%

    +
    +

    41.20%

    +
    +

    1.40%

    +
    +

    1.53

    +
    +

    0.8

    +
    +

    GU

    +
    +

    127

    +
    +

    R2688E

    +
    +

    BXD

    +
    +

    BXD98

    +
    +

    67

    +
    +

    M

    +
    +

    R2688E.CEL

    +
    +

    0.032

    +
    +

    0.03

    +
    +

    1.772

    +
    +

    145.24

    +
    +

    58.50%

    +
    +

    40.00%

    +
    +

    1.50%

    +
    +

    1.48

    +
    +

    0.81

    +
    +

    GU

    +
    +

    128

    +
    +

    R877E

    +
    +

    BXD

    +
    +

    BXD13

    +
    +

    76

    +
    +

    M

    +
    +

    R877E.CEL

    +
    +

    0.026

    +
    +

    0.067

    +
    +

    1.558

    +
    +

    125.63

    +
    +

    61.20%

    +
    +

    37.50%

    +
    +

    1.20%

    +
    +

    1.42

    +
    +

    0.81

    +
    +

    GU

    +
    +

    129

    +
    +

    R1397E-re

    +
    +

    BXD

    +
    +

    BXD75

    +
    +

    58

    +
    +

    M

    +
    +

    R1397E-re.CEL

    +
    +

    0.032

    +
    +

    0.01

    +
    +

    1.449

    +
    +

    189.71

    +
    +

    59.60%

    +
    +

    39.00%

    +
    +

    1.40%

    +
    +

    1.39

    +
    +

    0.82

    +
    +

    GU

    +
    +

    130

    +
    +

    R2779E

    +
    +

    BXD

    +
    +

    BXD73

    +
    +

    64

    +
    +

    F

    +
    +

    R2779E.CEL

    +
    +

    0.012

    +
    +

    0.038

    +
    +

    1.746

    +
    +

    121.11

    +
    +

    59.60%

    +
    +

    39.00%

    +
    +

    1.40%

    +
    +

    1.5

    +
    +

    0.8

    +
    +

    GU

    +
    +

    131

    +
    +

    R2708E

    +
    +

    BXD

    +
    +

    BXD9

    +
    +

    60

    +
    +

    F

    +
    +

    R2708E.CEL

    +
    +

    0.024

    +
    +

    0.045

    +
    +

    1.966

    +
    +

    126.46

    +
    +

    57.70%

    +
    +

    40.70%

    +
    +

    1.50%

    +
    +

    1.4

    +
    +

    0.84

    +
    +

    GU

    +
    +

    132

    +
    +

    R2547E1

    +
    +

    GDP

    +
    +

    WSB/Ei

    +
    +

    67

    +
    +

    M

    +
    +

    R2547E.CEL

    +
    +

    0.041

    +
    +

    0.039

    +
    +

    2.14

    +
    +

    90

    +
    +

    58.20%

    +
    +

    40.10%

    +
    +

    1.60%

    +
    +

    1.32

    +
    +

    0.77

    +
    +

    UTM RW

    +
    + +
    + +

        About downloading this data set:

    +
    +

    This data set is not yet available as a bulk download. Please contact Robert W. Williams to request special data access.

    +
    + + +

        About the array platfrom:

    +
    +

    Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the PDNN protocol. + + +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of arrays using the same initial steps used by the PDNN transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 7: Finally, when appropriate, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. + +
    + +

    After PDNN processing all arrays were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (C3H/HeJ and BXD24) and samples from wild subspecies such as CAST/Ei, PWD/Ph, and PWK/Ph. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. We tended to keep arrays that "conformed" to the expectation. The assumption in these cases is that anomolous data are much more likely due to experimental problem and errors than to informative biological variation. Approximately 8 arrays total were discarded in batches 1 and 2 combined. + +

    After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original PDNN procedure, etc. + +

    We then categorized arrays into XXX major "technical groups" depending on expression patterns as noted in scatterplots. This process of defining technical groups was done in DataDesk by manually "typing" arrays. These technical groups are apparently due to subtle within-batch effect that we do not yet understand and that cannot be corrected by quantile normalization. These XXX major technical groups are not obviously related to strain, sex, age, or any other known biological effect or variable. They are also not obviously related to any of the Affymetrix QC data types (3'/5' ratios, gain, etc.). Once the technical groups were defined, we forced the means of each probe set in the XX technical groups to the same value. This simple process partially removes a technical error of unknown origin in large expression array data sets. + +

    We reviewed the final data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of 140 arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g. 1000) represented the QTL harvest for the full data set. We then dropped a single array from the data set (n = 139 arrays), recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 950 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs (1000-950). Values ranged from -90 (good0 to +38 (bad). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a final method to polish a data set. By applying this procedure we discovered that a set of XX (7?) arrays could be excluded while simultaneously improving the total number of QTLs with values above 50. + +

    During this final process we discovered that nearly XX arrays in the second batch had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of very high quality. + + + +

        Data source acknowledgment:

    +
    +Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant. All arrays were processed at the VA Medical Center, Memphis by Weikuan Gu. +
    + +

        Information about this text file:

    +

    This text file originally generated by RWW, May 26, 2006. Updated by RWW, May 27, 2006. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Eye_M2_0608_R.html b/web/dbdoc/Eye_M2_0608_R.html new file mode 100755 index 00000000..cc05b67e --- /dev/null +++ b/web/dbdoc/Eye_M2_0608_R.html @@ -0,0 +1,486 @@ + +HEIMED M430 Microarray Eye RMA September06 / GN + + + + + + + + + + + + + + + + + +
    + + + +
    +

    + +Hamilton Eye Institute Mouse Eye M430v2 (Sept06) RMA Data Set modify this page

    Accession number: GN162

    + +

        Summary:

    + +
    +

    +RECOMMENDED EYE DATA SET. The HEIMED September 2006 RMA fixed data set provides estimates of mRNA expression in whole eyes of 84 lines of young adult mice generated using approximately 175 Affymetrix M430 2.0 arrays. This data set corrects probable errors in strain assignment that affected strains BXD2, BXD31, BXD89, and A/J. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools; one male, one female, for each strain. This data set was processed using the RMA protocol. To simplify comparison among different transforms, RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units. Values range from a low of 4.78 (Tcf15, probe set 1420281_at) to a high of 15.47 (crystallin gamma C, Crygc, probe set 1422674_s_at). Even probe sets with comparatively low expression can provide reliable data. For example probe set 1440397_at (Cacna2d1) has expression of only 5.5, but is associated with a cis QTL with an LRS of 79. This indicates a high signal to noise ratio and the detection of significant strain variation of the correct transcript.

    +
    + +
    + +

    An additional set of strains will be added in early fall 2008 to complete the HEIMED data set. We will be adding data for the following strains: + +

      +
    1. Three additional BXD strains (67 total). The three new strains are BXD56, BXD71, and BXD99. +
    2. More arrays for the parental strains, C57BL/6J and DBA/2J, and their reciprocal F1s (n = 4) +
    3. Ten new common strains of mice. The Mouse diversity panel will include a total of 29 strains (n = 27 strains plus B6 and D2 +
    4. Seven KO lines (Rpe65, Nyx (NOB), Gabbr1, Gnb1, Gabra1, Gpr19, and Clcn3) +
    +
    +
    + +
    +

    Users of these mouse eye data may also find the NEIBank collection of ESTs and SAGE data of substantial utility. +

    + +

        About the cases used to generate this set of data:

    + +
    +We used a set of 64 BXD recombinant inbred strains, 18 conventional inbred strains including C57BL/6J (B6) and DBA/2J (D2), and their reciprocal F1s. BXD strains were generated by crossing C57BL/6J with DBA/2J. The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D2). Physical maps in WebQTL incorporate approximately 2 million B6 vs D2 SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD1 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. + +

    Please note that BXD24/TyJ (JAX stock number 000031) used in this study is also known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 stock that has now been rederived, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control. + +

    BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

    + + +

    Mouse Diversity Panel (MDP). In addition to the BXD strains, we have profiled a MDP consisting 18 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: + +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) have been included in the MDP. Twelve MDP strains have been sequenced or resequenced by Perlegen for the NIEHS (see the GeneNetwork SNP Browser for data, details, and a link to Perlegen Inc excellent data resources and browser). + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) also carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene. (JAX Stock Number: 002448) + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase-negative albino (c) mutant + + +
    3. BALB/cByJ +
           Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list. A tyrosinase-negative albino (c) mutant. (JAX Stock Number: 001026) + +
    4. BXSB/MpJ +
           A strain with interesting autoimmune disease associated with glomerulonephritis. (JAX Stock Number: 000740) + +
    5. C3H/HeJ +
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list. Important to note for this Eye dataset, C3H/HeJ is a Pdeb6 mutant with near total photoreceptor loss at as early as postnatal day 30. + +
    6. C57BL/6J +
          Sequenced by NIH/NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    7. CAST/EiJ (please note in an early data release, we listed CAST/Ei and CAST/EiJ as two different strains) +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list (JAX Stock Number: 000928). + +
    8. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    9. FVB/NJ +
          Sequenced by Perlegen/NIEHS and Celera; most common strain used to make transgenic mice due to large and easily injected oocyte; Phenome Project A list (JAX Stock Number: 001800). + +
    10. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    11. LG/J +
          Paternal parent of the LGXSM panel + +
    12. MOLF/EiJ +
          A wild strain derived from the M. musculus molossinus subspecies of mice that has retinal degeneration affecting photoreceptors. There appears to have been some genetic contamination or admixture of this strain with conventional inbred strains in the very recent past (F. Pardo, personal communication to RWW, August 2006) (JAX Stock Number: 000550). + +
    13. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    14. NZO/HlLtJ +
          Collaborative Cross strain + +
    15. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    16. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    17. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list (JAX Stock Number: 001145). + +
    18. B6D2F1 and D2B6F1, aka F1 in some graphs and tables +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J. These reciprocal F1 can be used to detect some imprinted genes. +
    + + + +

        About the tissue used to generate this set of data:

    + +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube. + +

    Each array was hybridized with a pool of RNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

    + +Dissecting and preparing eyes for RNA extraction +

      +
    1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below). +
    2. Store RNA in 75% ethanol at –80 deg. C until use. +
    + +

    Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue) +
    2. allowed the homogenate to stand for 5 min at room temperature +
    3. added 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    4. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min +
    5. centrifuged at 12,000 G for 15 min +
    6. transfered the aqueous phase to a fresh tube +
    7. added 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    8. vortexed and allowed sample to stand at room temperature for 5-10 min +
    9. centrifuged at 12,000 G for 10-15 min +
    10. removed the supernatant and washed the RNA pellet with 75% ethanol +
    11. stored the pellet in 75% ethanol at -80 deg C until use +
    + + +

    Sample Processing. Samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center lead by Drs. John Stuart and Weikuan Gu. All processing steps were performed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use (one third roughly) or were immediately used for hybridization. + +

    Dealing with Ocular Pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. The key determinant of this interesting effect is the Tyrp1 (brown) locus on Chr 4 at about 80 Mb. Loci on Chr 4 that map at this location should be considered with skepticism and reviewed carefully. To address this problem Yan Jiao purified total RNA a second time using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204). This was done for 8 colored samples (R2534E2, R2578E2, R1441E2, R2537E2, R2536E2, R2589E2, R2539E2) in the first batch of arrays (the November 05 data set) of which 5 were finally included in this data set (cases in which the strain ID is labeled with asterisks in the table). This same protocol was used for all samples in the second and third batches added in April 2006 and September 2006. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. The three batches of arrays included in this September data set, collectively represent a reasonably well balanced sample of males and females belonging to 84 strains, but without within-strain-by-sex replication. Three strains are represented only by male sample pools (A/J, BXD29, BXD48). One strain is represented only by a female pool sample (BXD89). Please use the probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males) as quantitative surrogates for the sex balance in this data set. + +

    Batch Structure: This data set consists of a three batches: the original batch that makes up the November 2005 data set (n = XXX), a second batch of 63 arrays (R0857E through R2649E, and R2682E through R2742E, non-consecutive identifiers) run in January 2006 by Dr. Yan Jiao; and a third batch of 41 arrays (XXXX through YYYYY) run in August 2006 by Dr. Yan Jiao. The arrays in the first batches are from different lots. +All arrays in the first batch were from Lot YYYYY (expiration date XX.YY.ZZ). +All arrays in the second batch were from Lot 4016879 (expiration date 12.28.06). +All NN arrays in the third batch were from Lot XXXXX (expiration date XX.YY.ZZ). + +We started working with a total of approximately 190 (???) arrays that passed initial crude quality control based on RNA quality and initial Affymetrix report file information such as 3'/5' ratio, scale factor, and percent present calls. A total of 177 (???) arrays were finally approved for inclusion in this September 2006 data set. The complex normalization procedure is described below. + +

    The table below summarizes information on strain, age, sex, original CEL filename, Affymetrix quality control values, and source of mice. Columns labeled "PDNN 2Z outlier" and "RMA 2Z outlier" list the fraction of probe sets with values that deviated more than 2 z units from the mean. Scale factor, background average, present, absent, marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files. + +

    IN PROGRESS: PLEASE NOTE THAT THIS TABLE IS NOW BEING UPDATED TO INCLUDE BATCHES 2 and 3 OF EARLY and MID 2006. + +

    + + + ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    ID +

    tube ID

    +
    +

    group_type

    +
    +

     Strain

    +
    +

    age

    +
    +

     Sex

    +
    +

    original

    +

    CEL

    +

    filename

    +
    +

    PDNN

    +

    2Z

    +

    outlier

    +
    +

    RMA

    +

    2Z

    +

    outlier

    +
    +

    scale

    +

    factor

    +
    +

    background

    +

    average

    +
    +

    present

    +
    +

    absent

    +
    +

    marginal

    +
    +

    AFFX-b-

    +

    ActinMur(3'/5')

    +
    +

    AFFX-

    +

    GapdhMur(3'/5')

    +
    +

    Source

    +
    1R2533E1GDP129S1/SvImJ60MR2533E.CEL0.0250.0282.119457.90%40.50%1.60%1.370.78UTM RW
    2R2595E1GDP129S1/SvImJ59FR2595E.CEL0.0330.0361.7911561.00%37.50%1.50%1.460.77UTM RW
    3R0754E2GDPA/J60MR0754E.CEL0.0270.032.728659.80%38.70%1.50%1.360.76JAX
    4R2546E1GDPA/J66FR2545E.CEL0.0240.0291.999658.60%39.70%1.70%1.470.78UTM RW
    5R2601E1GDP BXDB6D2F173FR2601E.CEL0.0070.0082.559258.90%39.60%1.50%1.440.78UTM RW
    6R2602E1GDP BXDB6D2F173MR2602E.CEL0.0030.0082.68459.70%38.80%1.50%1.370.78UTM RW
    7R1672E1GDPBALB/cByJ83MR1672E.CEL0.0430.0392.2211159.90%38.60%1.50%1.260.8JAX
    8R1676E1GDPBALB/cByJ83FR1676E.CEL0.0830.0852.699858.90%39.60%1.50%1.460.74JAX
    9R2704EBXDBXD159FR2704E.CEL0.0290.032.066139.6156.60%41.90%1.50%1.310.81GU
    10R2581E1BXDBXD1165FR2581E.CEL0.0090.0211.948962.10%36.40%1.60%1.550.81UTM RW
    11R2612EBXDBXD1170MR2612E.CEL0.1010.1121.83142.0358.20%40.50%1.40%1.780.81GU
    12R2543E1BXDBXD1263MR2543E.CEL0.0180.0171.6111858.60%39.90%1.60%1.430.77UTM RW
    13R2742EBXDBXD1271FR2742E.CEL0.0730.0772.127134.1457.00%41.60%1.40%1.640.78GU
    14R2586E1BXDBXD1360FR2586E.CEL0.2590.2582.017456.40%42.00%1.60%2.853.81Glenn
    15R877EBXDBXD1376MR877E.CEL0.0260.0671.558125.6361.20%37.50%1.20%1.420.81GU
    16R2557E1BXDBXD1460FR2557E.CEL0.0120.0271.839962.50%36.10%1.40%1.310.78Glenn
    17R1128EBXDBXD1465MR1128E.CEL0.0370.0382.366118.3957.30%41.30%1.40%1.450.81GU
    18R2716EBXDBXD1560MR2716E.CEL0.0350.0372.015150.8356.40%42.10%1.60%1.420.81GU
    19R2567E1BXDBXD1660MR2567E.CEL0.0480.0582.248256.70%41.60%1.70%1.370.75Glenn
    20R2711EBXDBXD1661FR2711E.CEL0.0320.0211.953118.5359.00%39.60%1.50%1.450.8GU
    21R2559E1BXDBXD1859MR2559E.CEL0.010.0121.6510460.80%37.70%1.50%1.270.78Glenn
    22R2720EBXDBXD1859FR2720E.CEL0.0140.0192.3299.9359.50%39.00%1.50%1.330.77GU
    23R2560E1BXDBXD1960FR2560E.CEL0.0090.0121.799860.90%37.50%1.60%1.350.8Glenn
    24R2713EBXDBXD1960MR2713E.CEL0.0550.0211.67120.8260.20%38.30%1.50%1.450.8GU
    25R2597E1BXDBXD261MR2597E.CEL0.0050.0122.379460.30%38.30%1.50%1.340.77Glenn
    26R1231EBXDBXD264FR1231E.CEL0.0440.0372.197138.7357.30%41.30%1.40%1.410.77GU
    27R2584E1BXDBXD2059FR2584E.CEL0.0110.0172.078459.30%39.10%1.60%1.40.76Glenn
    28R2731EBXDBXD2060MR2731E.CEL0.0170.0191.82514759.00%39.50%1.50%1.40.8GU
    29R2541E2BXDBXD2161MR2541E2.CEL0.0490.0842.6312556.00%42.40%1.50%1.290.78UTM RW
    30R2702EBXDBXD2159FR2702E.CEL0.0090.0081.811128.6559.40%39.10%1.40%1.260.8GU
    31R2553E1BXDBXD2258FR2553E.CEL0.0040.011.9511159.90%38.50%1.50%1.280.76Glenn
    32R2700EBXDBXD2259MR2700E.CEL0.010.0151.858102.9661.50%37.10%1.30%1.480.79GU
    33R2558E1BXDBXD2360FR2558E-2.CEL0.0180.0271.9111559.90%38.80%1.40%1.20.82Glenn
    34R1086EBXDBXD2355MR1086E.CEL0.0430.0342.233125.0558.60%39.90%1.50%1.430.77GU
    35R2589E2BXDBXD2459MR2589E2.CEL0.1320.1762.6111257.50%40.90%1.60%1.240.8Glenn
    36R2719EBXDBXD24123FR2719E.CEL0.1120.1111.47140.3861.50%37.20%1.30%1.380.79GU
    37R2573E1BXDBXD2567FR2573E-2.CEL0.0550.0633.157257.90%40.70%1.40%1.770.97UAB
    38R2683EBXDBXD2558MR2683E.CEL0.0680.0681.777115.6458.30%40.30%1.40%2.010.79GU
    39R2703EBXDBXD2760FR2703E.CEL0.0080.0121.263134.7862.60%36.10%1.40%1.440.78GU
    40R2721EBXDBXD2860MR2721E.CEL0.040.0482.065157.3956.10%42.40%1.50%1.310.81GU
    41R2562E1BXDBXD2960MR2562E.CEL0.0070.011.6511659.90%38.40%1.70%1.370.79Glenn
    42R2598E1BXDBXD3161MR2598E.CEL0.0060.0131.9910660.90%37.60%1.50%1.270.78UTM RW
    43R1258EBXDBXD3157FR1258E.CEL0.0370.0362.063117.0959.00%39.50%1.50%1.540.78GU
    44R2563E1BXDBXD3263FR2563E.CEL0.0230.0251.5510261.90%36.70%1.40%1.50.8UTM RW
    45R1216EBXDBXD3276MR1216E.CEL0.050.0492.23111.9958.80%39.80%1.40%1.350.79GU
    46R2542E1BXDBXD3367FR2542E.CEL0.0580.0622.139756.50%41.80%1.60%1.910.93UTM RW
    47R857EBXDBXD3377MR857E.CEL0.0780.1081.737113.9861.90%36.70%1.30%1.60.77GU
    48R2585E1BXDBXD3460MR2585E.CEL0.0240.0322.647558.30%40.00%1.70%1.250.77Glenn
    49R1451EBXDBXD3461FR1451E.CEL0.010.0091.843140.0559.00%39.50%1.50%1.420.81GU
    50R2532E1BXDBXD3862MR2532E.CEL0.0020.0062.049459.80%38.70%1.50%1.370.8UTM RW
    51R2710EBXDBXD3855FR2710E.CEL0.0330.0312.112122.158.80%39.80%1.40%1.370.78GU
    52R2574E1BXDBXD3970FR2574E.CEL0.0030.0081.989161.20%37.30%1.50%1.390.78UTM RW
    53R2695EBXDBXD3959MR2695E.CEL0.0180.0161.638122.760.80%37.80%1.50%1.420.8GU
    54R2590E1BXDBXD4060MR2590E.CEL0.0070.0122.717759.10%39.30%1.50%1.40.77Glenn
    55R2699EBXDBXD4059FR2699E.CEL0.0140.0151.827105.2361.70%36.90%1.40%1.420.81GU
    56R2596E1BXDBXD4259MR2596E.CEL0.0160.032.6310859.00%39.60%1.50%1.240.8Glenn
    57R2696EBXDBXD4258FR2696E.CEL0.010.0171.622118.9562.00%36.60%1.50%1.530.79GU
    58R2605E1BXDBXD4379MR2607E.CEL0.0060.011.8213160.50%38.20%1.30%1.320.8UTM RW
    59R994EBXDBXD4360FR994E.CEL0.0130.0141.966113.1260.80%37.80%1.40%1.660.8GU
    60R2594E1BXDBXD4463FR2594E.CEL0.0140.0241.7711759.80%38.80%1.40%1.350.85UTM RW
    61R2610EBXDBXD4468MR2610E.CEL0.0130.0091.814142.9159.00%39.50%1.50%1.350.8GU
    62R2592E1BXDBXD4562MR2592E.CEL0.0050.0111.8510660.10%38.60%1.30%1.430.85UTM RW
    63R2732EBXDBXD4563FR2732E.CEL0.0390.0362.154122.4556.50%42.10%1.40%1.80.83GU
    64R2606E1BXDBXD4878MR2606E.CEL0.0070.0152.5610658.90%39.70%1.40%1.350.83UTM RW
    65R967EBXDBXD4864FR967E.CEL0.1010.0521.948130.9557.30%41.20%1.50%1.630.81GU
    66R2591E1BXDBXD560FR2591E.CEL0.0520.0141.713658.50%40.00%1.50%1.330.78Glenn
    67R2714EBXDBXD558MR2714E.CEL0.0470.0141.404144.3560.60%37.90%1.50%1.430.79GU
    68R2603E1BXDBXD5166FR2603E.CEL0.0070.022.4911557.70%40.80%1.50%1.240.79UTM RW
    69R1042EBXDBXD5162MR1042E.CEL0.0280.0272.352104.1258.70%39.90%1.40%1.530.82GU
    70R2690EBXDBXD5565MR2690E.CEL0.0810.0671.887164.0156.10%42.30%1.60%1.430.8GU
    71R2570E1BXDBXD665FR2570E.CEL0.0130.0171.998758.50%40.00%1.50%1.460.76UTM RW
    72R2694EBXDBXD658MR2694E.CEL0.0120.0181.98397.2361.60%37.10%1.30%1.390.82GU
    73R2534E2BXDBXD6170FR2534E2.CEL0.030.0582.4711857.90%40.60%1.50%1.420.79UTM RW
    74R2684EBXDBXD6162MR2684E.CEL0.0310.0322.01131.0357.00%41.50%1.50%1.340.78GU
    75R2611E1BXDBXD6468MR2611E.CEL0.0670.0682.299258.00%40.50%1.50%1.571.06UTM RW
    76R943E-2BXDBXD6456FR943E-2.CEL0.0240.0211.591141.3460.10%38.40%1.50%1.320.76GU
    77R2583E1BXDBXD6560MR2583E.CEL0.0270.032.497056.90%41.50%1.60%1.671.01UTM RW
    78R2689EBXDBXD6563FR2689E.CEL0.0080.0081.721142.4459.90%38.60%1.50%1.380.76GU
    79R2536E2BXDBXD6664FR2536E2.CEL0.0670.1392.7410956.10%42.30%1.70%1.280.79UTM RW
    80R1207EBXDBXD6683MR1207E.CEL0.0170.0121.681136.8660.40%38.10%1.50%1.450.77GU
    81R2551E1BXDBXD6867FR2551E.CEL0.2940.2912.499254.30%44.10%1.60%2.911.55UTM RW
    82R2726EBXDBXD6864MR2726E.CEL0.1250.0251.811153.0958.70%39.80%1.50%1.390.78GU
    83R2593E1BXDBXD6959FR2593E.CEL0.0270.0381.6712859.20%39.50%1.30%1.470.92UTM RW
    84R2727EBXDBXD6965MR2727E.CEL0.010.0081.578143.8660.30%38.30%1.40%1.340.77GU
    85R2537E2BXDBXD7059MR2537E2.CEL0.0490.0922.939958.00%40.50%1.60%1.290.75UTM RW
    86R975EBXDBXD7064FR975E.CEL0.0280.0241.841137.9758.00%40.50%1.40%1.360.79GU
    87R2779EBXDBXD7364FR2779E.CEL0.0120.0381.746121.1159.60%39.00%1.40%1.50.8GU
    88R2565E1BXDBXD7561FR2565E.CEL0.1180.1241.7910258.00%40.50%1.50%2.313.47UTM RW
    89R1397E-reBXDBXD7558MR1397E-re.CEL0.0320.011.449189.7159.60%39.00%1.40%1.390.82GU
    90R2538E1BXDBXD877FR2538E.CEL0.0330.0561.9110261.20%37.30%1.50%1.520.79UTM RW
    91R2709EBXDBXD861MR2709E.CEL0.0120.0111.9999.7960.90%37.60%1.50%1.420.76GU
    92R2579E1BXDBXD8065FR2579E.CEL0.0130.0262.427259.20%39.40%1.50%1.730.82UTM RW
    93R2686EBXDBXD8061MR2686E.CEL0.0460.052.342119.6356.00%42.60%1.50%1.380.79GU
    94R2692EBXDBXD8563FR2692E.CEL0.0060.0071.423160.8760.20%38.30%1.40%1.460.79GU
    95R2715EBXDBXD8591MR2715E.CEL0.0070.0081.488142.661.20%37.30%1.40%1.50.78GU
    96R1405EBXDBXD8658FR1405E.CEL0.0530.0522.351119.3456.40%42.20%1.40%1.640.81GU
    97R2540E1BXDBXD8763MR2540E.CEL0.0140.0342.339361.10%37.40%1.40%1.220.81UTM RW
    98R2724EBXDBXD8763FR2724E.CEL0.0130.0191.906113.7160.70%37.90%1.40%1.450.79GU
    99R2545E1BXDBXD8967MR2546E.CEL0.2660.2571.6710556.20%42.30%1.50%3.69.84UTM RW
    100R1433EBXDBXD8963FR1433E.CEL0.0290.0262.241115.8657.70%40.80%1.50%1.410.78GU
    101R2569E1BXDBXD967MR2569E.CEL0.2560.2391.758755.10%43.40%1.50%2.823.14UTM RW
    102R2708EBXDBXD960FR2708E.CEL0.0240.0451.966126.4657.70%40.70%1.50%1.40.84GU
    103R2578E2BXDBXD9061FR2578E2.CEL0.0410.0622.799258.60%39.80%1.60%1.520.77UTM RW
    104R859EBXDBXD9072MR859E.CEL0.0280.021.847152.2257.90%40.70%1.40%1.360.77GU
    105R2554E1BXDBXD9667MR2554E.CEL0.0050.0082.189360.20%38.30%1.50%1.460.77UTM RW
    106R2733EBXDBXD9667FR2733E.CEL0.0240.0541.7113.9962.10%36.60%1.30%1.40.78GU
    107R2577E1BXDBXD9755MR2577E.CEL0.0650.0692.077759.50%39.10%1.40%1.871.29UTM RW
    108R2649EBXDBXD9774FR2649E.CEL0.0290.0322.343119.0457.50%41.20%1.40%1.530.8GU
    109R2688EBXDBXD9867MR2688E.CEL0.0320.031.772145.2458.50%40.00%1.50%1.480.81GU
    110R1700E1GDPC3H/HeJ83FR1700E.CEL0.1520.1682.986960.80%37.90%1.40%1.480.78UTM RW
    111R1704E1GDPC3H/HeJ83MR1704E.CEL0.1540.1652.588860.10%38.60%1.30%1.380.84UTM RW
    112R0872E2GDP BXDC57BL/6J66MR0872E.CEL0.0140.0233.138958.90%39.60%1.50%1.30.79UTM RW
    113R2607E1GDP BXDC57BL/6J67FR2605E.CEL0.0080.0182.4311558.60%40.00%1.40%1.310.76UTM RW
    114R2564E1GDPCAST/Ei64FR2564E.CEL0.1240.1051.948958.50%39.90%1.60%1.60.77JAX
    115R2580E1GDPCAST/Ei64MR2580E.CEL0.1230.1092.099558.20%40.10%1.70%1.40.76JAX
    116R2600E1GDP BXDD2B6F172FR2600E.CEL0.0080.022.479558.10%40.20%1.70%1.410.78UTM RW
    117R2604E1GDP BXDD2B6F169MR2604E.CEL0.0050.0142.669059.40%39.20%1.50%1.280.79UTM RW
    118R2572E1GDP BXDDBA/2J65MR2572E.CEL0.0910.1062.417955.50%42.90%1.60%1.370.79UTM RW
    119R2636E1GDPKK/HIJ64FR2636E.CEL0.0440.0432.619358.90%39.50%1.50%1.390.76UTM RW
    120R2637E1GDPKK/HIJ64MR2637E.CEL0.0560.0362.1910359.40%39.00%1.50%1.30.79UTM RW
    121R0999E1GDPLG/J57FR0999E.CEL0.0210.0232.458259.40%39.10%1.50%1.380.79UTM RW
    122R1004E1GDPLG/J65MR1004E.CEL0.0250.0282.449258.70%39.80%1.50%1.380.79UTM RW
    123R1688E1GDPNOD/LtJ66FR1688E.CEL0.0280.0332.669858.60%39.90%1.50%1.260.8JAX
    124R2566E1GDPNOD/LtJ76MR2566E-2.CEL0.0360.043.036959.80%38.80%1.50%1.380.75UTM RW
    125R2535E1GDPNZO/H1LtJ62FR2535E.CEL0.0370.0621.898660.40%38.20%1.40%1.410.85JAX
    126R2550E1GDPNZO/HILtJ96MR2550E.CEL0.0250.0291.798760.70%37.80%1.50%1.520.82JAX
    127R2634E1GDPPWD/PhJ62FR2635E.CEL0.1260.1143.299055.90%42.50%1.60%1.570.81JAX
    128R2635E1GDPPWD/PhJ62MR2634E.CEL0.150.1373.728054.20%44.10%1.70%1.530.85JAX
    129R2544E1GDPPWK/PhJ63FR2544E.CEL0.1740.1752.210854.90%43.50%1.70%1.360.82JAX
    130R2549E1GDPPWK/PhJ83MR2549E.CEL0.1030.0872.288457.30%41.20%1.50%1.570.83JAX
    131R2368E1GDPWSB/EI67FR2368E.CEL0.0410.0472.578659.50%39.10%1.40%1.290.74UTM RW
    132R2547E1GDPWSB/Ei67MR2547E.CEL0.0410.0392.149058.20%40.10%1.60%1.320.77UTM RW
    + +
    + +

        About downloading this data set:

    +
    +

    This data set is not yet available as a bulk download. Please contact Robert W. Williams to request special data access.

    +
    + + +

        About the array platfrom:

    +
    +

    Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the three batches together in RMA. + + +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of arrays using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 7: Finally, when appropriate, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. + +
    + +

    After RMA processing all arrays were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (FVB/NJ, NOD/LtJ, MOLF/EiJ, C3H/HeJ and BXD24) and samples from wild subspecies such as WSB/EiJ, CAST/Ei, PWD/Ph, and PWK/Ph. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. We tended to keep arrays that "conformed" to the expectation. The assumption in these cases is that anomolous data are much more likely due to experimental problems and errors than to informative biological variation. Approximately 11 (CHECK) arrays total were discarded in batches 1, 2, and 3 combined. + +

    After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc. + + + +

    We reviewed the data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g. 1800) represented the QTL harvest for the full data set. We then dropped a single array from the data set, recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 1750 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs. Values ranged from approximately -90 (good arrays) to +40 (bad arrays). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a method to polish a data set. + +

    During this final process we discovered that nearly XX arrays in the second batch had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of very high quality. + +

    A third batch of approximately 40 arrays were processed by Yan Jiao and Wiekuan Gu in August 2006. These complete data set assembled by Hongqiang Li. This process again included a correction for a batch effect. + +

    For this June 2006 data set Hongqiang Li used a new batch correction method that stabilizes the range of expression in each batch. For each of the three large batches, we extracted the minumum and maximum raw probe expression (CEL file level) value. We then adjusted raw probe values in each batch to have the same range as the largest batch (Batch 1) using a simple linear interpolation. These procedure generated new correct CEL files which were then used with RMA. (note added by RWW and HQL, Oct 19, 2006) + + + +

        Data source acknowledgment:

    +
    +Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant. All arrays were processed at the VA Medical Center, Memphis by Yan Jiao and Weikuan Gu. +
    + +

        Information about this text file:

    +

    This text file originally generated by RWW, May 26, 2006. Updated by RWW, Oct 10, 2006. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + + diff --git a/web/dbdoc/Eye_M2_0906_R.html b/web/dbdoc/Eye_M2_0906_R.html new file mode 100755 index 00000000..68eb0540 --- /dev/null +++ b/web/dbdoc/Eye_M2_0906_R.html @@ -0,0 +1,485 @@ + +HEIMED M430 Microarray Eye RMA September06 / GN + + + + + + + + + + + + + + + + + +
    + + + +
    +

    + +Hamilton Eye Institute Mouse Eye M430v2 (Sept06) RMA Data Set modify this page

    Accession number: GN119

    + +

        Summary:

    + +
    +

    +NOT RECOMMENDED EYE DATA SET (please used Fixed data set which corrects for four errors in stain assignment). The HEIMED September 2006 data set provides estimates of mRNA expression in whole eyes of 84 lines of young adult mice generated using approximately 175 Affymetrix M430 2.0 arrays. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools; one male, one female, for each strain. This data set was processed using the RMA protocol. To simplify comparison among different transforms, RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units. Values range from a low of 4.78 (Tcf15, probe set 1420281_at) to a high of 15.47 (crystallin gamma C, Crygc, probe set 1422674_s_at). Even probe sets with comparatively low expression can provide reliable data. For example probe set 1440397_at (Cacna2d1) has expression of only 5.5, but is associated with a cis QTL with an LRS of 79. This indicates a high signal to noise ratio and the detection of significant strain variation of the correct transcript.

    +
    + +
    + +

    An additional set of strains will be add in early 2008 to complete the HEIMED data set. We will be adding data for the following strains: + +

      +
    1. Three additional BXD strains (67 total). The three new strains are BXD56, BXD71, and BXD99. +
    2. More arrays for the parental strains, C57BL/6J and DBA/2J, and their reciprocal F1s (n = 4) +
    3. Ten new common strains of mice. Tne Mouse diversity panel will include a total of 29 strains (n = 27 strains plus B6 and D2 +
    4. Seven KO lines (Rpe65, Nyx (NOB), Gabbr1, Gnb1, Gabra1, Gpr19, and Clcn3) +
    +
    +
    + +
    +

    Users of these mouse eye data may also find the NEIBank collection of ESTs and SAGE data of substantial utility. +

    + +

        About the cases used to generate this set of data:

    + +
    +We used a set of 64 BXD recombinant inbred strains, 18 conventional inbred strains including C57BL/6J (B6) and DBA/2J (D2), and their reciprocal F1s. BXD strains were generated by crossing C57BL/6J with DBA/2J. The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D2). Physical maps in WebQTL incorporate approximately 2 million B6 vs D2 SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD1 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. + +

    Please note that BXD24/TyJ (JAX stock number 000031) used in this study is also known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 stock that has now been rederived, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control. + +

    BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

    + + +

    Mouse Diversity Panel (MDP). In addition to the BXD strains, we have profiled a MDP consisting 18 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: + +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) have been included in the MDP. Twelve MDP strains have been sequenced or resequenced by Perlegen for the NIEHS (see the GeneNetwork SNP Browser for data, details, and a link to Perlegen Inc excellent data resources and browser). + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) also carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene. (JAX Stock Number: 002448) + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase-negative albino (c) mutant + + +
    3. BALB/cByJ +
           Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list. A tyrosinase-negative albino (c) mutant. (JAX Stock Number: 001026) + +
    4. BXSB/MpJ +
           A strain with interesting autoimmune disease associated with glomerulonephritis. (JAX Stock Number: 000740) + +
    5. C3H/HeJ +
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list. Important to note for this Eye dataset, C3H/HeJ is a Pdeb6 mutant with near total photoreceptor loss at as early as postnatal day 30. + +
    6. C57BL/6J +
          Sequenced by NIH/NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    7. CAST/EiJ (please note in an early data release, we listed CAST/Ei and CAST/EiJ as two different strains) +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list (JAX Stock Number: 000928). + +
    8. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    9. FVB/NJ +
          Sequenced by Perlegen/NIEHS and Celera; most common strain used to make transgenic mice due to large and easily injected oocyte; Phenome Project A list (JAX Stock Number: 001800). + +
    10. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    11. LG/J +
          Paternal parent of the LGXSM panel + +
    12. MOLF/EiJ +
          A wild strain derived from the M. musculus molossinus subspecies of mice that has retinal degeneration affecting photoreceptors. There appears to have been some genetic contamination or admixture of this strain with conventional inbred strains in the very recent past (F. Pardo, personal communication to RWW, August 2006) (JAX Stock Number: 000550). + +
    13. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    14. NZO/HlLtJ +
          Collaborative Cross strain + +
    15. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    16. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    17. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list (JAX Stock Number: 001145). + +
    18. B6D2F1 and D2B6F1, aka F1 in some graphs and tables +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J. These reciprocal F1 can be used to detect some imprinted genes. +
    + + + +

        About the tissue used to generate this set of data:

    + +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube. + +

    Each array was hybridized with a pool of RNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

    + +Dissecting and preparing eyes for RNA extraction +

      +
    1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below). +
    2. Store RNA in 75% ethanol at –80 deg. C until use. +
    + +

    Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue) +
    2. allowed the homogenate to stand for 5 min at room temperature +
    3. added 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    4. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min +
    5. centrifuged at 12,000 G for 15 min +
    6. transfered the aqueous phase to a fresh tube +
    7. added 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    8. vortexed and allowed sample to stand at room temperature for 5-10 min +
    9. centrifuged at 12,000 G for 10-15 min +
    10. removed the supernatant and washed the RNA pellet with 75% ethanol +
    11. stored the pellet in 75% ethanol at -80 deg C until use +
    + + +

    Sample Processing. Samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center lead by Drs. John Stuart and Weikuan Gu. All processing steps were performed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use (one third roughly) or were immediately used for hybridization. + +

    Dealing with Ocular Pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. The key determinant of this interesting effect is the Tyrp1 (brown) locus on Chr 4 at about 80 Mb. Loci on Chr 4 that map at this location should be considered with skepticism and reviewed carefully. To address this problem Yan Jiao purified total RNA a second time using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204). This was done for 8 colored samples (R2534E2, R2578E2, R1441E2, R2537E2, R2536E2, R2589E2, R2539E2) in the first batch of arrays (the November 05 data set) of which 5 were finally included in this data set (cases in which the strain ID is labeled with asterisks in the table). This same protocol was used for all samples in the second and third batches added in April 2006 and September 2006. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. The three batches of arrays included in this September data set, collectively represent a reasonably well balanced sample of males and females belonging to 84 strains, but without within-strain-by-sex replication. Three strains are represented only by male sample pools (A/J, BXD29, BXD48). One strain is represented only by a female pool sample (BXD89). Please use the probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males) as quantitative surrogates for the sex balance in this data set. + +

    Batch Structure: This data set consists of a three batches: the original batch that makes up the November 2005 data set (n = XXX), a second batch of 63 arrays (R0857E through R2649E, and R2682E through R2742E, non-consecutive identifiers) run in January 2006 by Dr. Yan Jiao; and a third batch of 41 arrays (XXXX through YYYYY) run in August 2006 by Dr. Yan Jiao. The arrays in the first batches are from different lots. +All arrays in the first batch were from Lot YYYYY (expiration date XX.YY.ZZ). +All arrays in the second batch were from Lot 4016879 (expiration date 12.28.06). +All NN arrays in the third batch were from Lot XXXXX (expiration date XX.YY.ZZ). + +We started working with a total of approximately 190 (???) arrays that passed initial crude quality control based on RNA quality and initial Affymetrix report file information such as 3'/5' ratio, scale factor, and percent present calls. A total of 177 (???) arrays were finally approved for inclusion in this September 2006 data set. The complex normalization procedure is described below. + +

    The table below summarizes information on strain, age, sex, original CEL filename, Affymetrix quality control values, and source of mice. Columns labeled "PDNN 2Z outlier" and "RMA 2Z outlier" list the fraction of probe sets with values that deviated more than 2 z units from the mean. Scale factor, background average, present, absent, marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files. + +

    IN PROGRESS: PLEASE NOTE THAT THIS TABLE IS NOW BEING UPDATED TO INCLUDE BATCHES 2 and 3 OF EARLY and MID 2006. + +

    + + + ++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    ID +

    tube ID

    +
    +

    group_type

    +
    +

     Strain

    +
    +

    age

    +
    +

     Sex

    +
    +

    original

    +

    CEL

    +

    filename

    +
    +

    PDNN

    +

    2Z

    +

    outlier

    +
    +

    RMA

    +

    2Z

    +

    outlier

    +
    +

    scale

    +

    factor

    +
    +

    background

    +

    average

    +
    +

    present

    +
    +

    absent

    +
    +

    marginal

    +
    +

    AFFX-b-

    +

    ActinMur(3'/5')

    +
    +

    AFFX-

    +

    GapdhMur(3'/5')

    +
    +

    Source

    +
    1R2533E1GDP129S1/SvImJ60MR2533E.CEL0.0250.0282.119457.90%40.50%1.60%1.370.78UTM RW
    2R2595E1GDP129S1/SvImJ59FR2595E.CEL0.0330.0361.7911561.00%37.50%1.50%1.460.77UTM RW
    3R0754E2GDPA/J60MR0754E.CEL0.0270.032.728659.80%38.70%1.50%1.360.76JAX
    4R2546E1GDPA/J66FR2545E.CEL0.0240.0291.999658.60%39.70%1.70%1.470.78UTM RW
    5R2601E1GDP BXDB6D2F173FR2601E.CEL0.0070.0082.559258.90%39.60%1.50%1.440.78UTM RW
    6R2602E1GDP BXDB6D2F173MR2602E.CEL0.0030.0082.68459.70%38.80%1.50%1.370.78UTM RW
    7R1672E1GDPBALB/cByJ83MR1672E.CEL0.0430.0392.2211159.90%38.60%1.50%1.260.8JAX
    8R1676E1GDPBALB/cByJ83FR1676E.CEL0.0830.0852.699858.90%39.60%1.50%1.460.74JAX
    9R2704EBXDBXD159FR2704E.CEL0.0290.032.066139.6156.60%41.90%1.50%1.310.81GU
    10R2581E1BXDBXD1165FR2581E.CEL0.0090.0211.948962.10%36.40%1.60%1.550.81UTM RW
    11R2612EBXDBXD1170MR2612E.CEL0.1010.1121.83142.0358.20%40.50%1.40%1.780.81GU
    12R2543E1BXDBXD1263MR2543E.CEL0.0180.0171.6111858.60%39.90%1.60%1.430.77UTM RW
    13R2742EBXDBXD1271FR2742E.CEL0.0730.0772.127134.1457.00%41.60%1.40%1.640.78GU
    14R2586E1BXDBXD1360FR2586E.CEL0.2590.2582.017456.40%42.00%1.60%2.853.81Glenn
    15R877EBXDBXD1376MR877E.CEL0.0260.0671.558125.6361.20%37.50%1.20%1.420.81GU
    16R2557E1BXDBXD1460FR2557E.CEL0.0120.0271.839962.50%36.10%1.40%1.310.78Glenn
    17R1128EBXDBXD1465MR1128E.CEL0.0370.0382.366118.3957.30%41.30%1.40%1.450.81GU
    18R2716EBXDBXD1560MR2716E.CEL0.0350.0372.015150.8356.40%42.10%1.60%1.420.81GU
    19R2567E1BXDBXD1660MR2567E.CEL0.0480.0582.248256.70%41.60%1.70%1.370.75Glenn
    20R2711EBXDBXD1661FR2711E.CEL0.0320.0211.953118.5359.00%39.60%1.50%1.450.8GU
    21R2559E1BXDBXD1859MR2559E.CEL0.010.0121.6510460.80%37.70%1.50%1.270.78Glenn
    22R2720EBXDBXD1859FR2720E.CEL0.0140.0192.3299.9359.50%39.00%1.50%1.330.77GU
    23R2560E1BXDBXD1960FR2560E.CEL0.0090.0121.799860.90%37.50%1.60%1.350.8Glenn
    24R2713EBXDBXD1960MR2713E.CEL0.0550.0211.67120.8260.20%38.30%1.50%1.450.8GU
    25R2597E1BXDBXD261MR2597E.CEL0.0050.0122.379460.30%38.30%1.50%1.340.77Glenn
    26R1231EBXDBXD264FR1231E.CEL0.0440.0372.197138.7357.30%41.30%1.40%1.410.77GU
    27R2584E1BXDBXD2059FR2584E.CEL0.0110.0172.078459.30%39.10%1.60%1.40.76Glenn
    28R2731EBXDBXD2060MR2731E.CEL0.0170.0191.82514759.00%39.50%1.50%1.40.8GU
    29R2541E2BXDBXD2161MR2541E2.CEL0.0490.0842.6312556.00%42.40%1.50%1.290.78UTM RW
    30R2702EBXDBXD2159FR2702E.CEL0.0090.0081.811128.6559.40%39.10%1.40%1.260.8GU
    31R2553E1BXDBXD2258FR2553E.CEL0.0040.011.9511159.90%38.50%1.50%1.280.76Glenn
    32R2700EBXDBXD2259MR2700E.CEL0.010.0151.858102.9661.50%37.10%1.30%1.480.79GU
    33R2558E1BXDBXD2360FR2558E-2.CEL0.0180.0271.9111559.90%38.80%1.40%1.20.82Glenn
    34R1086EBXDBXD2355MR1086E.CEL0.0430.0342.233125.0558.60%39.90%1.50%1.430.77GU
    35R2589E2BXDBXD2459MR2589E2.CEL0.1320.1762.6111257.50%40.90%1.60%1.240.8Glenn
    36R2719EBXDBXD24123FR2719E.CEL0.1120.1111.47140.3861.50%37.20%1.30%1.380.79GU
    37R2573E1BXDBXD2567FR2573E-2.CEL0.0550.0633.157257.90%40.70%1.40%1.770.97UAB
    38R2683EBXDBXD2558MR2683E.CEL0.0680.0681.777115.6458.30%40.30%1.40%2.010.79GU
    39R2703EBXDBXD2760FR2703E.CEL0.0080.0121.263134.7862.60%36.10%1.40%1.440.78GU
    40R2721EBXDBXD2860MR2721E.CEL0.040.0482.065157.3956.10%42.40%1.50%1.310.81GU
    41R2562E1BXDBXD2960MR2562E.CEL0.0070.011.6511659.90%38.40%1.70%1.370.79Glenn
    42R2598E1BXDBXD3161MR2598E.CEL0.0060.0131.9910660.90%37.60%1.50%1.270.78UTM RW
    43R1258EBXDBXD3157FR1258E.CEL0.0370.0362.063117.0959.00%39.50%1.50%1.540.78GU
    44R2563E1BXDBXD3263FR2563E.CEL0.0230.0251.5510261.90%36.70%1.40%1.50.8UTM RW
    45R1216EBXDBXD3276MR1216E.CEL0.050.0492.23111.9958.80%39.80%1.40%1.350.79GU
    46R2542E1BXDBXD3367FR2542E.CEL0.0580.0622.139756.50%41.80%1.60%1.910.93UTM RW
    47R857EBXDBXD3377MR857E.CEL0.0780.1081.737113.9861.90%36.70%1.30%1.60.77GU
    48R2585E1BXDBXD3460MR2585E.CEL0.0240.0322.647558.30%40.00%1.70%1.250.77Glenn
    49R1451EBXDBXD3461FR1451E.CEL0.010.0091.843140.0559.00%39.50%1.50%1.420.81GU
    50R2532E1BXDBXD3862MR2532E.CEL0.0020.0062.049459.80%38.70%1.50%1.370.8UTM RW
    51R2710EBXDBXD3855FR2710E.CEL0.0330.0312.112122.158.80%39.80%1.40%1.370.78GU
    52R2574E1BXDBXD3970FR2574E.CEL0.0030.0081.989161.20%37.30%1.50%1.390.78UTM RW
    53R2695EBXDBXD3959MR2695E.CEL0.0180.0161.638122.760.80%37.80%1.50%1.420.8GU
    54R2590E1BXDBXD4060MR2590E.CEL0.0070.0122.717759.10%39.30%1.50%1.40.77Glenn
    55R2699EBXDBXD4059FR2699E.CEL0.0140.0151.827105.2361.70%36.90%1.40%1.420.81GU
    56R2596E1BXDBXD4259MR2596E.CEL0.0160.032.6310859.00%39.60%1.50%1.240.8Glenn
    57R2696EBXDBXD4258FR2696E.CEL0.010.0171.622118.9562.00%36.60%1.50%1.530.79GU
    58R2605E1BXDBXD4379MR2607E.CEL0.0060.011.8213160.50%38.20%1.30%1.320.8UTM RW
    59R994EBXDBXD4360FR994E.CEL0.0130.0141.966113.1260.80%37.80%1.40%1.660.8GU
    60R2594E1BXDBXD4463FR2594E.CEL0.0140.0241.7711759.80%38.80%1.40%1.350.85UTM RW
    61R2610EBXDBXD4468MR2610E.CEL0.0130.0091.814142.9159.00%39.50%1.50%1.350.8GU
    62R2592E1BXDBXD4562MR2592E.CEL0.0050.0111.8510660.10%38.60%1.30%1.430.85UTM RW
    63R2732EBXDBXD4563FR2732E.CEL0.0390.0362.154122.4556.50%42.10%1.40%1.80.83GU
    64R2606E1BXDBXD4878MR2606E.CEL0.0070.0152.5610658.90%39.70%1.40%1.350.83UTM RW
    65R967EBXDBXD4864FR967E.CEL0.1010.0521.948130.9557.30%41.20%1.50%1.630.81GU
    66R2591E1BXDBXD560FR2591E.CEL0.0520.0141.713658.50%40.00%1.50%1.330.78Glenn
    67R2714EBXDBXD558MR2714E.CEL0.0470.0141.404144.3560.60%37.90%1.50%1.430.79GU
    68R2603E1BXDBXD5166FR2603E.CEL0.0070.022.4911557.70%40.80%1.50%1.240.79UTM RW
    69R1042EBXDBXD5162MR1042E.CEL0.0280.0272.352104.1258.70%39.90%1.40%1.530.82GU
    70R2690EBXDBXD5565MR2690E.CEL0.0810.0671.887164.0156.10%42.30%1.60%1.430.8GU
    71R2570E1BXDBXD665FR2570E.CEL0.0130.0171.998758.50%40.00%1.50%1.460.76UTM RW
    72R2694EBXDBXD658MR2694E.CEL0.0120.0181.98397.2361.60%37.10%1.30%1.390.82GU
    73R2534E2BXDBXD6170FR2534E2.CEL0.030.0582.4711857.90%40.60%1.50%1.420.79UTM RW
    74R2684EBXDBXD6162MR2684E.CEL0.0310.0322.01131.0357.00%41.50%1.50%1.340.78GU
    75R2611E1BXDBXD6468MR2611E.CEL0.0670.0682.299258.00%40.50%1.50%1.571.06UTM RW
    76R943E-2BXDBXD6456FR943E-2.CEL0.0240.0211.591141.3460.10%38.40%1.50%1.320.76GU
    77R2583E1BXDBXD6560MR2583E.CEL0.0270.032.497056.90%41.50%1.60%1.671.01UTM RW
    78R2689EBXDBXD6563FR2689E.CEL0.0080.0081.721142.4459.90%38.60%1.50%1.380.76GU
    79R2536E2BXDBXD6664FR2536E2.CEL0.0670.1392.7410956.10%42.30%1.70%1.280.79UTM RW
    80R1207EBXDBXD6683MR1207E.CEL0.0170.0121.681136.8660.40%38.10%1.50%1.450.77GU
    81R2551E1BXDBXD6867FR2551E.CEL0.2940.2912.499254.30%44.10%1.60%2.911.55UTM RW
    82R2726EBXDBXD6864MR2726E.CEL0.1250.0251.811153.0958.70%39.80%1.50%1.390.78GU
    83R2593E1BXDBXD6959FR2593E.CEL0.0270.0381.6712859.20%39.50%1.30%1.470.92UTM RW
    84R2727EBXDBXD6965MR2727E.CEL0.010.0081.578143.8660.30%38.30%1.40%1.340.77GU
    85R2537E2BXDBXD7059MR2537E2.CEL0.0490.0922.939958.00%40.50%1.60%1.290.75UTM RW
    86R975EBXDBXD7064FR975E.CEL0.0280.0241.841137.9758.00%40.50%1.40%1.360.79GU
    87R2779EBXDBXD7364FR2779E.CEL0.0120.0381.746121.1159.60%39.00%1.40%1.50.8GU
    88R2565E1BXDBXD7561FR2565E.CEL0.1180.1241.7910258.00%40.50%1.50%2.313.47UTM RW
    89R1397E-reBXDBXD7558MR1397E-re.CEL0.0320.011.449189.7159.60%39.00%1.40%1.390.82GU
    90R2538E1BXDBXD877FR2538E.CEL0.0330.0561.9110261.20%37.30%1.50%1.520.79UTM RW
    91R2709EBXDBXD861MR2709E.CEL0.0120.0111.9999.7960.90%37.60%1.50%1.420.76GU
    92R2579E1BXDBXD8065FR2579E.CEL0.0130.0262.427259.20%39.40%1.50%1.730.82UTM RW
    93R2686EBXDBXD8061MR2686E.CEL0.0460.052.342119.6356.00%42.60%1.50%1.380.79GU
    94R2692EBXDBXD8563FR2692E.CEL0.0060.0071.423160.8760.20%38.30%1.40%1.460.79GU
    95R2715EBXDBXD8591MR2715E.CEL0.0070.0081.488142.661.20%37.30%1.40%1.50.78GU
    96R1405EBXDBXD8658FR1405E.CEL0.0530.0522.351119.3456.40%42.20%1.40%1.640.81GU
    97R2540E1BXDBXD8763MR2540E.CEL0.0140.0342.339361.10%37.40%1.40%1.220.81UTM RW
    98R2724EBXDBXD8763FR2724E.CEL0.0130.0191.906113.7160.70%37.90%1.40%1.450.79GU
    99R2545E1BXDBXD8967MR2546E.CEL0.2660.2571.6710556.20%42.30%1.50%3.69.84UTM RW
    100R1433EBXDBXD8963FR1433E.CEL0.0290.0262.241115.8657.70%40.80%1.50%1.410.78GU
    101R2569E1BXDBXD967MR2569E.CEL0.2560.2391.758755.10%43.40%1.50%2.823.14UTM RW
    102R2708EBXDBXD960FR2708E.CEL0.0240.0451.966126.4657.70%40.70%1.50%1.40.84GU
    103R2578E2BXDBXD9061FR2578E2.CEL0.0410.0622.799258.60%39.80%1.60%1.520.77UTM RW
    104R859EBXDBXD9072MR859E.CEL0.0280.021.847152.2257.90%40.70%1.40%1.360.77GU
    105R2554E1BXDBXD9667MR2554E.CEL0.0050.0082.189360.20%38.30%1.50%1.460.77UTM RW
    106R2733EBXDBXD9667FR2733E.CEL0.0240.0541.7113.9962.10%36.60%1.30%1.40.78GU
    107R2577E1BXDBXD9755MR2577E.CEL0.0650.0692.077759.50%39.10%1.40%1.871.29UTM RW
    108R2649EBXDBXD9774FR2649E.CEL0.0290.0322.343119.0457.50%41.20%1.40%1.530.8GU
    109R2688EBXDBXD9867MR2688E.CEL0.0320.031.772145.2458.50%40.00%1.50%1.480.81GU
    110R1700E1GDPC3H/HeJ83FR1700E.CEL0.1520.1682.986960.80%37.90%1.40%1.480.78UTM RW
    111R1704E1GDPC3H/HeJ83MR1704E.CEL0.1540.1652.588860.10%38.60%1.30%1.380.84UTM RW
    112R0872E2GDP BXDC57BL/6J66MR0872E.CEL0.0140.0233.138958.90%39.60%1.50%1.30.79UTM RW
    113R2607E1GDP BXDC57BL/6J67FR2605E.CEL0.0080.0182.4311558.60%40.00%1.40%1.310.76UTM RW
    114R2564E1GDPCAST/Ei64FR2564E.CEL0.1240.1051.948958.50%39.90%1.60%1.60.77JAX
    115R2580E1GDPCAST/Ei64MR2580E.CEL0.1230.1092.099558.20%40.10%1.70%1.40.76JAX
    116R2600E1GDP BXDD2B6F172FR2600E.CEL0.0080.022.479558.10%40.20%1.70%1.410.78UTM RW
    117R2604E1GDP BXDD2B6F169MR2604E.CEL0.0050.0142.669059.40%39.20%1.50%1.280.79UTM RW
    118R2572E1GDP BXDDBA/2J65MR2572E.CEL0.0910.1062.417955.50%42.90%1.60%1.370.79UTM RW
    119R2636E1GDPKK/HIJ64FR2636E.CEL0.0440.0432.619358.90%39.50%1.50%1.390.76UTM RW
    120R2637E1GDPKK/HIJ64MR2637E.CEL0.0560.0362.1910359.40%39.00%1.50%1.30.79UTM RW
    121R0999E1GDPLG/J57FR0999E.CEL0.0210.0232.458259.40%39.10%1.50%1.380.79UTM RW
    122R1004E1GDPLG/J65MR1004E.CEL0.0250.0282.449258.70%39.80%1.50%1.380.79UTM RW
    123R1688E1GDPNOD/LtJ66FR1688E.CEL0.0280.0332.669858.60%39.90%1.50%1.260.8JAX
    124R2566E1GDPNOD/LtJ76MR2566E-2.CEL0.0360.043.036959.80%38.80%1.50%1.380.75UTM RW
    125R2535E1GDPNZO/H1LtJ62FR2535E.CEL0.0370.0621.898660.40%38.20%1.40%1.410.85JAX
    126R2550E1GDPNZO/HILtJ96MR2550E.CEL0.0250.0291.798760.70%37.80%1.50%1.520.82JAX
    127R2634E1GDPPWD/PhJ62FR2635E.CEL0.1260.1143.299055.90%42.50%1.60%1.570.81JAX
    128R2635E1GDPPWD/PhJ62MR2634E.CEL0.150.1373.728054.20%44.10%1.70%1.530.85JAX
    129R2544E1GDPPWK/PhJ63FR2544E.CEL0.1740.1752.210854.90%43.50%1.70%1.360.82JAX
    130R2549E1GDPPWK/PhJ83MR2549E.CEL0.1030.0872.288457.30%41.20%1.50%1.570.83JAX
    131R2368E1GDPWSB/EI67FR2368E.CEL0.0410.0472.578659.50%39.10%1.40%1.290.74UTM RW
    132R2547E1GDPWSB/Ei67MR2547E.CEL0.0410.0392.149058.20%40.10%1.60%1.320.77UTM RW
    + +
    + +

        About downloading this data set:

    +
    +

    This data set is not yet available as a bulk download. Please contact Robert W. Williams to request special data access.

    +
    + + +

        About the array platfrom:

    +
    +

    Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the three batches together in RMA. + + +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of arrays using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 7: Finally, when appropriate, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. + +
    + +

    After RMA processing all arrays were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (FVB/NJ, NOD/LtJ, MOLF/EiJ, C3H/HeJ and BXD24) and samples from wild subspecies such as WSB/EiJ, CAST/Ei, PWD/Ph, and PWK/Ph. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. We tended to keep arrays that "conformed" to the expectation. The assumption in these cases is that anomolous data are much more likely due to experimental problems and errors than to informative biological variation. Approximately 11 (CHECK) arrays total were discarded in batches 1, 2, and 3 combined. + +

    After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc. + + + +

    We reviewed the data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g. 1800) represented the QTL harvest for the full data set. We then dropped a single array from the data set, recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 1750 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs. Values ranged from approximately -90 (good arrays) to +40 (bad arrays). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a method to polish a data set. + +

    During this final process we discovered that nearly XX arrays in the second batch had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of very high quality. + +

    A third batch of approximately 40 arrays were processed by Yan Jiao and Wiekuan Gu in August 2006. These complete data set assembled by Hongqiang Li. This process again included a correction for a batch effect. + +

    For this June 2006 data set Hongqiang Li used a new batch correction method that stabilizes the range of expression in each batch. For each of the three large batches, we extracted the minumum and maximum raw probe expression (CEL file level) value. We then adjusted raw probe values in each batch to have the same range as the largest batch (Batch 1) using a simple linear interpolation. These procedure generated new correct CEL files which were then used with RMA. (note added by RWW and HQL, Oct 19, 2006) + + + +

        Data source acknowledgment:

    +
    +Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant. All arrays were processed at the VA Medical Center, Memphis by Yan Jiao and Weikuan Gu. +
    + +

        Information about this text file:

    +

    This text file originally generated by RWW, May 26, 2006. Updated by RWW, Oct 10, 2006. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Eye_M2_0908_R.html b/web/dbdoc/Eye_M2_0908_R.html new file mode 100755 index 00000000..f98ae30d --- /dev/null +++ b/web/dbdoc/Eye_M2_0908_R.html @@ -0,0 +1,886 @@ + + +Mouse Eye Genomics--HEIMED M430 Microarray Eye RMA September08 / GN + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    + +Hamilton Eye Institute Mouse Eye M430v2 Data Set (Sept08) RMA modify this page

    Accession number: GN207

    + +

    Summary:

    + +
    +

    +FINAL RECOMMENDED EYE DATA SET. The HEIMED September 2008 RMA data release provides estimates of gene expression in whole eyes of 103 lines of young adult mice generated using 221 Affymetrix M430 2.0 arrays. This data set is intended for exploration of the genetics and genomics of the mouse eye, retina, lens, retinal pigment epithelium, cornea, iris and choroid. Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). We used pooled RNA samples, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10). + + +

    Users of these mouse eye data may also find the following complementary resources extremely useful: +

      +
    1. NEIBank collection of ESTs and SAGE data. +
    2. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases +
    3. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5. +
    4. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus. + +
    5. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430). + + +
    6. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0. +
    +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    This is the complete and final HEIMED data set. HEIMED consists of expression data for 103 genetically defined lines of mice with standard errors of the mean. Almost all animals are young adults between 50 and 80 days of age (Table 1, maximum age is 123 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, reciprocal F1s between C57BL/6J and DBA/2J, and several mutant and knockout lines. We have combined all common strains, F1 hybrids, and mutants into a group called the Mouse Diversity Panel (MDP). Four lines, namely, C57BL/6J (B6), DBA/2J (D2), and the pair of B6D2F1 and D2B6F1 hybrids are common to both the MDP and the BXD set. This is a breakdown of cases that are part of HEIMED: + +

      +
    1. 68 BXD strains. The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. Only one of these strains, BXD24 (know also known as BXD24b), has retinal degeneration (a spontaneous mutation). The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. + +
    2. 35 MDP lines, including 26 inbred strains representing closely related substrains (e.g, BALB/cJ and BALB/cByJ), many of the most widely used common Mus musculus domesticus inbred strains (e.g., C57BL/6J and 129S1/SvImJ), inbred but wild-derived representatives of common subspecies (Mus musculus domesticus, e.g, WSB/EiJ; M. musculus musculus, e.g., CZECHII/EiJ; M. musculus molossinus, e.g., MOLF/EiJ; M. musculus castaneus, e.g., CAST/EiJ); and even one different species of mouse (Mus spicilegus, PANCEVO/EiJ). The MDP also includes the reciprocal F1 hybrids (B6D2F1 and D2B6F1) and the following 6 KO lines and the Nyx-nob mutant: + +
    3. 6 knockouts (KO), including a KO of Rpe65, and 5 DeltaGen Inc. knockout lines provided by Dr. Ted Choi. These KO lines have had a bacterial lacZ construct inserted into the gene. The endogenous promoter drives expression of beta-galactosidase. RT-PCR analysis detects a gene transcript in most tissues. The following KOs from DeltaGen were studied: Gabra1, Gabbr1, Gnb1, Gpr19, and Clcn3. We also included one spontaneous mutant of the nyctalopin (Nyx no b wave "nob") gene (Pardue et al., 1998) that is on a BALB/cByJ background. +
    + +

    Rod photoreceptor degeneration in inbred mice: Six strains of mice included in HEIMED suffer from severe loss of photoreceptors (mainly rods) and have the equivalent of night blindness in human patients. The death of photoreceptors in these strains occurs by one to two months of age and is often caused by the retinal degeneration 1 (rd1) mutant allele in the rod cyclic-GMP phosphodiesterase 6 beta subunit gene (Pde6b). The following strains are known to have photoreceptor degeneration: C3H/HeJ, FVB/NJ, MOLF/EiJ, SJL/J and BXD24/TyJ. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEIMED data set. + +

    As expected (Dickerson LW et al., 2002) and as judged from the absence of rhodopsin expression, one of the DeltaGen KO lines (chloride ion channel 3, Clcn3) also has retinal degeneration: B6129P2F2N1-Clcn3. Degeneration in this strain is likely to include all rods and all cones. The cone defect is obvious from the decrease in expression of Gnat2, a gene associated with cones and achromatopsia in mice and humans. + +

    Lines of mice were selected using the following criteria: + +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • representation of a fairly wide variety of different subspecies of Mus +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Tel Aviv/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • interesting mutations or knockouts affecting genes with high expression in the eye +
    • general availability from The Jackson Laboratory. The only exception are the DeltaGen KO mice. +
    + +

    We have included all eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ) in the MDP. Fourteen MDP strains have been partially sequenced by Perlegen for the NIEHS, including including 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, CAST/EiJ, DBA/2J, FVB/NJ, KK/HlJ, MOLF/EiJ, NOD/LtJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ (see the GeneNetwork SNP Browser for data, details, and see Perlegen's excellent data resources and browser). + +

      +
    1. 129S1/SvImJ : Collaborative Cross strain sequenced by NIEHS; background for many knockouts (R1 ES cell line); Phenome Project A list. This strain (JAX No 002448, aka 129S1/Sv-++Kitl/+) carries hypopigmentation mutations (white bellied chinchilla) of the tyrosinase gene on Chr 7 and a mutant allele of the steel (Kitl) gene. It is also a cone photoreceptor function loss 3 mutant (Cpfl3 allele) of the Gnat2 gene that is a model for achromatopsia (JAX Stock Number: 002448) + +
    2. A/J: Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel. A tyrosinase (Tyr c allele) albino mutant. This strain is particularly sensitive to light-induced photoreceptor loss (Danciger et al., 2007). (JAX Stock Number: 000646) + +
    3. BALB/cByJ: Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project old group A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Small brain, not aggressive (JAX Stock Number: 001026) + +
    4. BALB/cJ: Phenome Project A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Large brain and aggressive (JAX Stock Number: 000651) + +
    5. BXSB/MpJ: A white-bellied agouti strains with interesting autoimmune disease restricted to males that is associated with a mutation in the Yaa gene that causes glomerulonephritis, a dramatic increase in number of peripheral monocytes, and pre-B-cell deficiency (JAX Stock Number: 000740) + +
    6. C3H/HeJ: The Heston (He) substrain with a wildtype agouti (A allele) coat color. Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project old group A list. Important to note for this eye expression dataset, C3H/HeJ is a Pdeb6 rd1 mutant with near total photoreceptor loss at as early as postnatal day 30. Also a Tlr4 mutant that is endotoxin resistant. (JAX Stock Number: 000659) + +
    7. C57BL/6J: Sequenced by NIH/NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list. Single most widely used inbred strain of mouse. (JAX Stock Number: 000664) + +
    8. C57BLKS/J: Black Kaliss strain (non-agouti a allele) derived from C57BL/6J, but genetically contaminated at some point mainly with DBA/2J and then reinbred. Now at the Jackson Laboratory. (JAX Stock Number: 000662) + +
    9. CAST/EiJ: A wild-derived inbred Mus musculus castaneus strain. Samples of this subspecies were captured in Southeast Asia. One of three wild-derived strains in the Collaborative Cross sequenced by NIEHS; Phenome Project A list. CAST/Ei and CAST/EiJ are the same strain. The addition of the "J" is trivial and was added when stock were transferred from Dr. Eicher's lab to the Jackson Laboratory production facility in about 2004. (JAX Stock Number: 000928) + +
    10. CBA/CaJ: Agouti strain from the Jackson Laboratory. Wildtype pigment genes. (JAX Stock Number: 000654) + +
    11. CZECHII/EiJ: Czech 2 is a wild-derived inbred strain M. musculus musculus strain. Samples of this subspecies were caught in the Czech Republic and inbred at the Jackson Laboratory by Eva Eicher. White-bellied agouti. (JAX Stock Number: 001144). + +
    12. DBA/2J: The dilute, brown, agouti (dba) strain is the oldest inbred strain of mouse. Inbreeding was started in 1909 by Little. A tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. A myosin 5a (Myo5a d) dilute allele mutant. Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project old A group list. (JAX Stock Number: 000671) + +
    13. FVB/NJ: Friend's leukemia virus B (FVB) strain. Sequenced by Perlegen/NIEHS and Celera. Tyr c locus albino and a Pdeb6 rd1 mutant derived from Swiss mice at NIH. This has been the most common strain used to make transgenic mice due to large and easily injected oocytes; Phenome Project A list (JAX Stock Number: 001800). + +
    14. KK/HlJ: K Kondo's (KK) Kasukabe strain is a homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. Males have a form of type 2 diabetes. Sequenced by Perlegen/NIEHS. (JAX Stock Number: 002106) + +
    15. LG/J: Large (LG) strain. Paternal parent of the Large-by-Small set of RI strains made by James Cheverud and colleagues (the LGXSM panel, not to be confused with the LongXShort or LXS panel). A Tyr c locus albino strain. (JAX Stock Number: 000675) + +
    16. LP/J: White-bellied agouit strain with a piebald mutation in the endothelin receptor type B Ednrb gene from at the Jackson Laboratory. Some reduction in melanocytes in choroid of eye due to neural creast migration abnormalities. (JAX Stock Number: 000676) + +
    17. MOLF/EiJ: A wild-derived inbred strain derived from M. musculus molossinus samples camputered in Fukuoka, Japan. This strain has the retinal degeneration rd1 allele in Pde6b. There appears to have been some genetic contamination of this strain with conventional inbred strains in the past several decades (F. Pardo, personal communication to RWW, August 2006). However, the strain is currently fully inbred. (JAX Stock Number: 000550) + +
    18. NOD/LtJ: Non-obese diabetic strain, originally from M. Hattori in Kyoto, Japan. This is the Edward Leiter (Lt) substrain from the Jackson Laboratory. Collaborative Cross strain sequenced by NIEHS; Phenome Project B list. Homozygous age-related hearing loss (ahl) allele mutant of the Cdh23 gene. A Tyr c locus albino strain. (JAX Stock Number: 001976) + +
    19. NZO/HlLtJ: New Zealand Obese strain. This is a severely obese and hypertensive strain. Males often develop a type 2 diabetes. Collaborative Cross strain. Agouti coat color. (JAX Stock Number: 002105) + +
    20. NZB/BlNJ: New Zealand Black inbred strain from Bielschowsky (BL, substrain is "B lowercase L N", not "BiN") now maintained at the Jackson Laboratory. (JAX Stock Number: 000648) + +
    21. NZW/LacJ: New Zealand White strain from the Laboratory Animal Center (Carshalton, UK), now maintained at the Jackson Laboratory. Carries the Tyr c locus albino mutation, the pink-eye dilution mutation in the Oca2 or p locus, and the brown allele at Tyrp1. (JAX Stock Number: 001058) + +
    22. PANCEVO/EiJ: PANCEVO/EiJ is a wild-derived inbred strain from the Mus spicilegus samples caught in the Pancevo, Serbia. This species of mouse is also known as the Steppe mouse (taxon identifier 10103). M. spicilegus is a colonial mound-building species. No known ocular or retina mutations, but the expression level of Gnat2 is low in this strain, either due to a 3' UTR length variant or possible achromatosia (cone degeneration) (JAX Stock Number: 001384) + +
    23. PWD/PhJ: A wild-derived Mus musculus musculus agouti strain inbred from samples caught near Prague, Czech Republic. Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues. (JAX Stock Number: 004660) + +
    24. PWK/PhJ: A wild-derived Mus musculus musculus inbred strain from samples caught near Lhotka, Czech Republic. Collaborative Cross strain; Phenome Project D list. (JAX Stock Number: 003715) + +
    25. SJL/J: Swiss Webster inbred strain from Jim Lambert's lab at the Jackson Laboratory. This strain has the retinal degeneration rd1 allele in Pde6b. It also carries both the Tyr c albino mutation and the pink-eye dilution mutation in the Oca2 or p locus. Highly aggressive males. (JAX Stock Number: 000686) + +
    26. WSB/EiJ: Watkin Star line B (or "wild son-of-a-bitch") is a wild-derived Mus musculus domesticus inbred strain from samples caught in Maryland, USA. A Collaborative Cross strain sequenced by NIEHS; Phenome Project C list (JAX Stock Number: 001145) + +
    27. B6D2F1 and D2B6F1 (also listed as BDF1 and DBF1 in some graphs and tables): F1 hybrids generated by crossing C57BL/6J with DBA/2J. These black reciprocal F1 can be used to detect dominance effects. Comparison of the two reciprocal F1s can be used to detect parental origin (imprinting) effects. The D2B6F1 animals are currently available from the Jackson Laboratory as a special order.) (JAX Stock Number for B6D2F1 hybrids obtained from the Jackson Laboratory, aka B6D2F1/J 100006) +
    + +

    Most of the common inbred strains harbor mutations in genes the control pigmentation (Silvers, 2008 and material above in this INFO file). These gene include the albino and chinchilla alleles of the tyrosinase gene (Tyr, or human OCA1), the brown allele of the tyrosinase related protein 1 (Tyrp1), the pink-eye dilution allele of Oca2 (probe set 1418211), the non-agouti (black) and white-bellied alleles of the agouti signaling protein Asip, the steel allele of Kitlg, the dilute allele of Myo5a (probe set 1419754), and the piebald allele of Ednrb. In some of these cases, effects of the mutation are easily detected at the transcript level (Tyrp1, Oca2, and Myo5a), but in the other cases (Tyr, Asip, Ednrb, and Kitlg), mutations do not leave a strong imprint on expression. + + +

    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube. + +

    Each array was hybridized with a pool of cRNA from 4 to 8 eyes from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

    + +Dissecting and preparing eyes for RNA extraction +

      +
    1. Place eyes for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below). +
    2. Store RNA in 75% ethanol at –80 deg. C until use. +
    + +

    Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue) +
    2. allowed the homogenate to stand for 5 min at room temperature +
    3. added 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    4. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min +
    5. centrifuged at 12,000 G for 15 min +
    6. transfered the aqueous phase to a fresh tube +
    7. added 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    8. vortexed and allowed sample to stand at room temperature for 5-10 min +
    9. centrifuged at 12,000 G for 10-15 min +
    10. removed the supernatant and washed the RNA pellet with 75% ethanol +
    11. stored the pellet in 75% ethanol at -80 deg C until use +
    + +

    Sample Processing. All samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center led by Dr. Weikuan Gu. All arrays were processed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. C until use (roughly one third) or were used immediately for hybridization. + +

    Dealing with ocular pigmentation: Variable ocular pigmentation is a potential confound in a study of the whole eye transcriptome. Even the most careful RNA preparations taken from brown and beige colored mice tend to have faint residual pigmentation that affects hybridization signal. To address this problem, Dr. Yan Jiao purified total RNA using the Qiagen RNeasy MinElute Cleanup Kit (Cat No. 74204) all four batches. + +

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well balanced sample of males and females, in general without within-strain-by-sex replication. Two strains are represented by a single male sample pool (BXD29 and A/J). Four lines are represented by two or three male sample pools (all of the five DeltaGen KO line). + + + + +The SJL/J may be a single mixed sex sample. Users can study possible sex effects by comparing any results of expression data to that of a surrogate measurement that summarizes the overall sex balance of HEIMED. To do this just compare your data to those of probe sets 1427262_at (Xist, high in females) and probe set 1426438_at (Ddx3y, high in males). These two sex-specific probes are quantitative surrogates for the sex balance in this data set. + + + +

    Technical duplicates: One sample, highlighted in the tables below, is a technical duplicate. The pair of technical duplicates were both of high quality. For statistical analysis, they should be combined and treated as single biological sample. + +

    Batch structure: This data set consists of four batches (Table 2, far right column). The final September 2008 data set consists of a total of 221 arrays and 220 independent samples. + + + +

      +
    1. Batch 1: November 2005, n = 78 arrays original arrays of which 76 were accepted into this final data set. +
    2. Batch 2: January 2006, n = 62 arrays of which 62 were accepted. +
    3. Batch 3: August 2006, n = 39 arrays of which 36 were accepted. (These three batches, including some arrays that were eventually dropped from the final 2008 data set, were combined to form the September 2006 data set.) +
    4. Batch 4: Summer 2008, n = 53 arrays of which 47 were accepted. +
    + +

    Table 1: HEIMED case IDs, including sample tube ID, strain, age, sex, and source of mice (see Table 2 for information on array quality control) +

    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    2R2533E.1GDP129S1/SvImJ60MUTHSC RW
    3R0754E.1GDPA/J60MJAX
    4R4521EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
    5R4522EKOB6129P2F2N1-Clcn369MTChoi_Deltagen
    6R4523EKOB6129P2F2N1-Clcn367MTChoi_Deltagen
    7R4526EKOB6129P2F2N1-Gabbr116FTChoi_Deltagen
    8R4509EKOB6129P2F2N1-Gabbr116MTChoi_Deltagen
    9R4510EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
    10R4511EKOB6129P2F2N1-Gabbr120MTChoi_Deltagen
    11R4524EKOB6129P2F2N1-Gabbr119MTChoi_Deltagen
    12R4525EKOB6129P2F2N1-Gabbr122MTChoi_Deltagen
    13R4515EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
    14R4516EKOB6129P2F2N1-Gabra169MTChoi_Deltagen
    15R4517EKOB6129P2F2N1-Gabra167MTChoi_Deltagen
    16R4512EKOB6129P2F2N1-Gnb522FTChoi_Deltagen
    17R4513EKOB6129P2F2N1-Gnb525MTChoi_Deltagen
    18R4514EKOB6129P2F2N1-Gnb522MTChoi_Deltagen
    19R4518EKOB6129P2F2N1-Gpr1970MTChoi_Deltagen
    20R4519EKOB6129P2F2N1-Gpr1968MTChoi_Deltagen
    21R2601E.1GDP BXDB6D2F173FUTHSC RW
    22R2602E.1GDP BXDB6D2F173MUTHSC RW
    23R1676E.1GDPBALB/cByJ83FJAX
    24R1672E.1GDPBALB/cByJ83MJAX
    25R4530EGDPBALB/cJ66FJAX
    26R4529EGDPBALB/cJ66MJAX
    27R2704E.2BXDBXD159FUTHSC RW
    28R2707E.3BXDBXD159MBIDMC GR
    29R1231E.2BXDBXD264FUTHSC RW
    30R2598E.1BXDBXD261MUTHSC RW
    31R2591E.1BXDBXD560FBIDMC GR
    32R2714E.2BXDBXD558MUTHSC RW
    33R2570E.1BXDBXD665FUTHSC RW
    34R2694E.2BXDBXD658MUTHSC RW
    35R2538E.1BXDBXD877FUTHSC RW
    36R2709E.2BXDBXD861MUTHSC RW
    37R2708E.2BXDBXD960FUTHSC RW
    38R2569E.1BXDBXD967MUTHSC RW
    39R2581E.1BXDBXD1165FUTHSC RW
    40R2612E.2BXDBXD1170MUTHSC RW
    41R2742E.2BXDBXD1271FUTHSC RW
    42R2543E.1BXDBXD1263MUTHSC RW
    43R2586E.1BXDBXD1360FBIDMC GR
    44R877E.2BXDBXD1376MUTHSC RW
    45R2557E.1BXDBXD1460FBIDMC GR
    46R1128E.2BXDBXD1465MUTHSC RW
    47R2701E.3BXDBXD1560FBIDMC GR
    48R2716E.2BXDBXD1560MUTHSC RW
    49R2711E.2BXDBXD1661FUTHSC RW
    50R2567E.1BXDBXD1660MBIDMC GR
    51R2720E.2BXDBXD1859FUTHSC RW
    52R2559E.1BXDBXD1859MBIDMC GR
    53R2560E.1BXDBXD1960FBIDMC GR
    54R2713E.2BXDBXD1960MUTHSC RW
    55R2584E.1BXDBXD2059FBIDMC GR
    56R2731E.2BXDBXD2060MUTHSC RW
    57R2702E.2BXDBXD2159FUTHSC RW
    58R2541E2.1BXDBXD2161MUTHSC RW
    59R2553E.1BXDBXD2258FBIDMC GR
    60R2700E.2BXDBXD2259MUTHSC RW
    61R2558E-2.1BXDBXD2360FBIDMC GR
    62R1086E.2BXDBXD2355MUTHSC RW
    63R2719E.2BXDBXD24123FUTHSC RW
    64R2589E2.1BXDBXD2459MBIDMC GR
    65R2573E-2.1BXDBXD2567FUAB
    66R2683E.2BXDBXD2558MUTHSC RW
    67R2703E.2BXDBXD2760FUTHSC RW
    68R2729E.3BXDBXD2768MUTHSC RW
    69R2562E.3BXDBXD2860FBIDMC GR
    70R2721E.2BXDBXD2860MUTHSC RW
    71R2561E.3BXDBXD2960MBIDMC GR
    72R1258E.2BXDBXD3157FUTHSC RW
    73R2597E.1BXDBXD3161MBIDMC GR
    74R2563E.1BXDBXD3263FUTHSC RW
    75R1216E.2BXDBXD3276MUTHSC RW
    76R2542E.1BXDBXD3367FUTHSC RW
    77R857E.2BXDBXD3377MUTHSC RW
    78R1451E.2BXDBXD3461FUTHSC RW
    79R2585E.1BXDBXD3460MBIDMC GR
    80R2698E.3BXDBXD3658FBIDMC GR
    81R2705E.3BXDBXD3657MBIDMC GR
    82R2710E.2BXDBXD3855FUTHSC RW
    83R2532E.1BXDBXD3862MUTHSC RW
    84R2574E.1BXDBXD3970FUTHSC RW
    85R2695E.2BXDBXD3959MUTHSC RW
    86R2699E.2BXDBXD4059FUTHSC RW
    87R2590E.1BXDBXD4060MBIDMC GR
    88R2696E.2BXDBXD4258FUTHSC RW
    89R2596E.1BXDBXD4259MBIDMC GR
    90R994E.2BXDBXD4360FUTHSC RW
    91R2607E.1BXDBXD4367MUTHSC RW
    92R2594E.1BXDBXD4463FUTHSC RW
    93R2610E.2BXDBXD4468MUTHSC RW
    94R2732E.2BXDBXD4563FUTHSC RW
    95R2592E.1BXDBXD4562MUTHSC RW
    96R967E.2BXDBXD4864FUTHSC RW
    97R2606E.1BXDBXD4878MUTHSC RW
    98R2933E.3BXDBXD5061FUTHSC RW
    99R2937E.3BXDBXD5061MUTHSC RW
    100R2603E.1BXDBXD5166FUTHSC RW
    101R1042E.2BXDBXD5162MUTHSC RW
    102R2980E.3BXDBXD5576FUTHSC RW
    103R2690E.2BXDBXD5565MUTHSC RW
    104R4176EBXDBXD5667FUTHSC RW
    105R4175EBXDBXD5653MUTHSC RW
    106R1006E.3BXDBXD6060FUTHSC RW
    107R2725E.2BXDBXD6061FUTHSC RW
    108R1074E.3BXDBXD6059MUTHSC RW
    109R2534E2.1BXDBXD6170FUTHSC RW
    110R2684E.2BXDBXD6162MUTHSC RW
    111R1107E.3BXDBXD6254FUTHSC RW
    112R2681E.2BXDBXD6262MUTHSC RW
    113R965E.3BXDBXD6254MUTHSC RW
    114R1425E.2BXDBXD6361FUTHSC RW
    115R2576E.3BXDBXD6370MUTHSC RW
    116R943E-2.2BXDBXD6456FUTHSC RW
    117R2611E.1BXDBXD6468MUTHSC RW
    118R2689E.2BXDBXD6563FUTHSC RW
    119R2583E.1BXDBXD6560MUTHSC RW
    120R2728E.2BXDBXD6667FUTHSC RW
    121R2536E2.1BXDBXD6664FUTHSC RW
    122R1207E.2BXDBXD6683MUTHSC RW
    123R1192E.2BXDBXD6764FUTHSC RW
    124R2727E.3BXDBXD6765FUTHSC RW
    125R2691E.3BXDBXD6765MUTHSC RW
    126R2551E.1BXDBXD6867FUTHSC RW
    127R2726E.2BXDBXD6864MUTHSC RW
    128R2593E.1BXDBXD6959FUTHSC RW
    129R975E.2BXDBXD7064FUTHSC RW
    130R2537E2.1BXDBXD7059MUTHSC RW
    131R4531EBXDBXD7187FUTHSC RW
    132R4532EBXDBXD7186MUTHSC RW
    133R2779E.2BXDBXD7364FUTHSC RW
    134R3024E.3BXDBXD7354MUTHSC RW
    135R2565E.1BXDBXD7561FUTHSC RW
    136R1397E-re.2BXDBXD7558MUTHSC RW
    137R2687E.3BXDBXD7760FUTHSC RW
    138R2717E.2BXDBXD77107MUTHSC RW
    139R1421E.3BXDBXD7762MUTHSC RW
    140R2579E.1BXDBXD8065FUTHSC RW
    141R2686E.2BXDBXD8061MUTHSC RW
    142R2956E.3BXDBXD8358FUTHSC RW
    143R2960E.3BXDBXD8358MUTHSC RW
    144R2922E.3BXDBXD8461FUTHSC RW
    145R2895E.3BXDBXD8467MUTHSC RW
    146R2692E.2BXDBXD8563FUTHSC RW
    147R2715E.2BXDBXD8591MUTHSC RW
    148R1405E.2BXDBXD8658FUTHSC RW
    149R1225E.3BXDBXD8658MUTHSC RW
    150R2724E.2BXDBXD8763FUTHSC RW
    151R2540E.1BXDBXD8763MUTHSC RW
    152R1433E.2BXDBXD8963FUTHSC RW
    153R2546E.1BXDBXD8966MUTHSC RW
    154R2578E2.1BXDBXD9061FUTHSC RW
    155R859E.2BXDBXD9072MUTHSC RW
    156R2682E.2BXDBXD9266FUTHSC RW
    157R1388E.3BXDBXD9262FUTHSC RW
    158R1322E.3BXDBXD9255MUTHSC RW
    159R2733E.2BXDBXD9667FUTHSC RW
    160R2554E.1BXDBXD9667MUTHSC RW
    161R2649E.2BXDBXD9774FUTHSC RW
    162R2577E.1BXDBXD9755MUTHSC RW
    163R2645E.3BXDBXD9866FUTHSC RW
    164R2688E.2BXDBXD9867MUTHSC RW
    165R4533EBXDBXD9980FUTHSC RW
    166R4534EBXDBXD9991MUTHSC RW
    167R2885E.3GDPBXSB/MpJ61FBIDMC GR
    168R2883E.3GDPBXSB/MpJ61MBIDMC GR
    169R1700E.1GDPC3H/HeJ83FUTHSC RW
    170R1704E.1GDPC3H/HeJ83MUTHSC RW
    171R2605E.1GDP BXDC57BL/6J79FUTHSC RW
    172R0871EGDP BXDC57BL/6J65FUTHSC RW
    173R0872E.1GDP BXDC57BL/6J66MUTHSC RW
    174R0872EGDP BXDC57BL/6J66MUTHSC RW
    175R4507EKOC57BL/6J-Nyx57MGeisert
    176R4508EKOC57BL/6J-Nyx57MGeisert
    177R4505EKOC57BL/6J-Rpe6557FGeisert
    178R4506EKOC57BL/6J-Rpe6557FGeisert
    179R4535EGDPC57BLKS/J66FJAX
    180R4536EGDPC57BLKS/J66MJAX
    181R2564E.1GDPCAST/EiJ64FJAX
    182R2580E.1GDPCAST/EiJ64MJAX
    183R4537EGDPCBA/CaJ66FJAX
    184R4538EGDPCBA/CaJ66MJAX
    185R4539EGDPCZECHII/EiJ66FJAX
    186R4540EGDPCZECHII/EiJ66MJAX
    187R2600E.1GDP BXDD2B6F172FUTHSC RW
    188R2604E.1GDP BXDD2B6F169MUTHSC RW
    189R1002E.3GDP BXDDBA/2J72FUTHSC RW
    190R4541EGDP BXDDBA/2J65FJAX
    191R959E.3GDP BXDDBA/2J60MUTHSC RW
    192R2572E.1GDP BXDDBA/2J65MUTHSC RW
    193R4542EGDP BXDDBA/2J59MJAX
    194R2771E.3GDPFVB/NJ60FBIDMC GR
    195R2772E.3GDPFVB/NJ60MBIDMC GR
    196R2636E.1GDPKK/HlJ64FUTHSC RW
    197R2637E.1GDPKK/HlJ64MUTHSC RW
    198R0999E.1GDPLG/J57FUTHSC RW
    199R1004E.1GDPLG/J65MUTHSC RW
    200R4543EGDPLP/J65FJAX
    201R4544EGDPLP/J65MJAX
    202R2858E.3GDPMOLF/EiJ60FBIDMC GR
    203R2919.3GDPMOLF/EiJ60MBIDMC GR
    204R1688E.1GDPNOD/LtJ66FJAX
    205R2566E-2.1GDPNOD/LtJ76MUTHSC RW
    206R4545EGDPNZB/BlNJ61FBIDMC GR
    207R4546EGDPNZB/BlNJ58MBIDMC GR
    208R2535E.1GDPNZO/HlLtJ62FJAX
    209R2550E.1GDPNZO/HlLtJ96MJAX
    210R2817E.3GDPNZW/LacJ65FBIDMC GR
    211R2810EGDPNZW/LacJ60MBIDMC GR
    212R2810E.3GDPNZW/LacJ60MBIDMC GR
    213R4547EGDPPANCEVO/EiJ68FJAX
    214R4548EGDPPANCEVO/EiJ68MJAX
    215R2635E.1GDPPWD/PhJ62FJAX
    216R2634E.1GDPPWD/PhJ62MJAX
    217R2544E.1GDPPWK/PhJ63FJAX
    218R2549E.1GDPPWK/PhJ83MJAX
    219R4550EGDPSJL/J65M+FJAX
    220R2368E.1GDPWSB/EiJ67FUTHSC RW
    221R2547E.1GDPWSB/EiJ67MUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    + + + + + + +

    This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

    +
    + + +

    About the array platfrom:

    +
    +

    Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many probes overlap and target the same transcript). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

    + +

    As part of the development of HEIMED, we have manually annotated individual probe sets by sequence alignment to the mouse genome and transcriptome. Approximately 13,000 probe sets that have comparatively high expression in eye and CNS were curated by one of the authors (RWW) and now have specific information on the part of the transcript targeted by each probe set. The other 33,000 transcripts have corresponding data that was generated by Xusheng Wang using computational methods (BLAT analysis combined with annotated genome sequence). + +

    One example may help explain how to exploit this annotation. The four probe sets for rhodopsin include information on the target location. Only the first probe set targets the last two coding exons. The other three probe sets target different parts of the 3’ UTR (mid, distal, and far distal regions). The probe sets can be reordered by from high to low expression using the Sort By function in Search Results pages. In the case of rhodopsin, the probe set that targets that last two coding exons and proximal parts of the 3’ UTR also has the highest expression . Finally, the HEIMED gene descriptions have been customized to help vision researchers. In the case of rhodopsin, the description appended after the gene name reads “rod photoreceptor pigment, retinitis pigmentosa-associatedâ€. For less well known genes this kind of annotation can be extremely useful. For example, the more verbose annotation for Cerkl reads “neuronal survival and apoptosis-related, retinal ganglion cell expressed, retinitis pigmentosa 26); alternative 3' UTR of short form message, intron 2â€. + +

    + + +

    +

    + + + +

    Legend: Distribution of expression values for all probe sets in HEIMED.

    +
    + + +

    About data values and data processing:

    + +
    +Range of Gene Expression in the Eye. Expression of transcripts in the HEIMED and most other GN data sets is measured on a log2 scale. Each unit corresponding approximately to a 2-fold difference in hybridization signal intensity. To simplify comparisons among different data sets and cases, log2 RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units (variance stabilized). Values of all 45,101 probe sets in this data set range from a low of 4.8 (Tcf15, probe set 1420281_at) to a high of 15.5 (crystallin gamma C, Crygc, probe set 1422674_s_at). This corresponds to 10.7 units or a 1 to 1700 dynamic range of expression (2^10.73). + +

    We calibrated this log intensity scale using Affymetrix spike-in control probe sets. These 18 control probe sets target exogenous bacterial mRNAs that are added to each sample (a graded dose spike cocktail) during preparation at concentrations of 1.5, 5, 25, and 100 pM. (To find these probe sets, search GN’s ALL search field using the string “AFFX pMâ€.) A value of 6 or less is equivalent to an mRNA concentration of under 0.4 pM, a value of 8 is equivalent to ~1.5 pM, 9.5 is equivalent to ~5 pM, 11.5 is equivalent to ~25 pM, 13.5 is equivalent to ~100 pM, and a value of 15.5 is equivalent to an mRNA concentration of 400 pM or greater. + +

    This range can be converted to the mRNA molecules per cell in the eye assuming that a value of 8 is equivalent to about 1 mRNA copy per cell (Kanno et al. 2006, see http://www.biomedcentral.com/1471-2164/7/64). Since the expression of rhodopsin mRNA is normally 15 units, we predict that there are 27 or ~128 Rho mRNAs per cell in the whole eye and ~256 in rods themselves (assuming that rods make up about half of all cells in the eye). For this purpose it may be useful to know that a normal mouse eye contains between 6 and 8 million rod photoreceptors (Guo, Lu, and Williams; GN BXD Phenotype ID 11024). + +

    Note that some probe sets with very low expression still provide reliable data. For example, probe set 1440397_at (Cacna2d1) has expression of only 5.5 units (a value that would be declared as "absent" using conventional Affymetrix procedures), but the values for this calcium channel transcript are associated with a very strong cis QTL with an LRS of 79 (LOD = 17). This strong linkage is definitely not due to chance since the probability of the expression data mapping precisely to the location of the parent gene itself is about 10e-16. This indicates a high signal to noise ratio and the detection of significant strain variation of the correct transcript.

    + +

    The standard error of the mean for the HEIMED data set is computed for 2 to 6 biological replicates. The standard error of such small samples tends to systematically underestimate the population standard error. With n = 2 the underestimate is about 25%, whereas for n = 6 the underestimate is 5%. Gurland and Tripathi (1971) provide a correction and equation for this effect (see Sokal and Rohlf, Biometry, 2nd ed., 1981, p 53 for an equation of the correction factor for small samples of n < 20.) + + +Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. We processed the first three batches together. The last batch was processed separately and merged as described below. + + +

      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of arrays using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: Finally, when appropriate, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. + +
    + +

    After RMA processing using Biobase affy10 build running under R version 2.7.1, all array data sets were rank-order normalized. This second round of quantile normalization removes much residual non-linearity across arrays and forces every array to have the same distribution of values as the mean of all arrays. Comparative array data quality was then evaluated in DataDesk. Outlier arrays were flagged by visual inspection in DataDesk, usually by means of an analysis of scatter plots and more quantitatively by generating a correlation matrix of all arrays. Those arrays with mean correlation <0.96 versus all other arrays indicates trouble or a biological outlier). In some cases, outliers were expected, such as samples from strains with retinal degeneration (FVB/NJ, NOD/LtJ, MOLF/EiJ, C3H/HeJ and BXD24), samples from wild subspecies such as WSB/EiJ, CAST/EiJ, PWD/PhJ, and PWK/PhJ, and knockouts. However, when arrays were anomolous both within strain and across strains, they were often simply discarded. The assumption is that anomolous data are much more likely due to experimental and technical errors than to informative biological variation. Approximately 10% of arrays were discarded. + +

    After this process, the acceptable set of arrays was renormalized using all step as above, starting with the original RMA procedure, etc. + +

    We reviewed the data set using a new method developed by RW Williams, Jeremy Peirce, and Hongqiang Li. For the full set of arrays that passed standard QC protocols described above, we computed the strain means for the BXD strains, B6, D2, and F1s. Using this set of strain means we then computed LRS scores for all 45101 probe sets and counted the number of transcripts that generated QTLs with LRS values greater than 50. This value (e.g., 1800) represented the QTL harvest for the full data set. We then dropped a single array from the data set, recomputed strain means, and recomputed the number of transcripts with LRS scores great than 50. This value is expected to typically reduce the number of QTLs that reach the criterion level (e.g., 1750 QTLs > 50). This process was repeated for every array to obtain an array-specific difference value--the effect of removing that array on the total QTL count. For example, the loss of a single array might cause a decrease in 50 QTLs. Values ranged from approximately -90 (good arrays) to +40 (bad arrays). This procedure is similar in some ways to a jackknife protocol, although we are not using this procedure to esimate an error term, but rather as a method to polish a data set. + +

    During this process we discovered that nearly 20 arrays in the batch 2 had been mislabeled at some point in processing. We computed the correct strain membership of each array using a large number of Mendelian probe sets (more than 50) and comparing their match to standard SNP and microsatellite markers and the original array data set of November 2005. This allowed us to rescue a large number of arrays that were of high quality. + +

    A third batch of approximately 40 arrays were processed by Yan Jiao and Weikuan Gu in August 2006. These complete data set assembled by Hongqiang Li. This process again included a correction for a batch effect. + +

    For the June 2006 data set Hongqiang Li used a new batch correction method that stabilizes the range of expression in each batch. For each of the three large batches, we extracted the minumum and maximum raw probe expression (CEL file level) value. We then adjusted raw probe values in each batch to have the same range as the first and largest batch (batch 1) using a simple linear interpolation. These procedures generated new correct CEL files which were then used with RMA to generate final probe set estimates. + +

    For the final fourth batch of arrays (Sept 2008) Arthur Centeno and Rob Williams corrected for a systematic difference in probe set expression values between original arrays run in 2005 and 2006 and the new arrays added in 2008 (n = 45 acceptable arrays). This difference is due to unknown technical batch effects that are probably associated with labeling, hybridization, and scanning. We performed a simple correction to normalize values of the new set of arrays to those of the old set (batches 1 through 3). No changes were made to any values of the previous three batches. We corrected only the probe set level (RMA) values and not the CEL files. For this final batch, we corrected for the difference (offset) in probe set expression between the first three batches arrays run in 2005 and 2006 (a total of + + + + +174 acceptable arrays) and the new batch (n = 47 acceptable arrays). + + +This difference is due to unknown technical effects that are probably related to various steps in labeling, hybridization, and scanning. The correction was applied as follows: (1) RWW selected 51 high quality arrays with similar expression characteristics (r = 0.97 or better between pairs of arrays) in the old data set (from batches 1, 2, and 3) and 34 high quality arrays in the final batch. RWW used scatterplots of full RMA transcriptome data sets to review many pairs of arrays within these new and old array batches. Strains with retinal degeneration or unusual eye gene expression characteristics were excluded from these selected subsets. The average expression values for each probe set were then computed for both the old and new array subsets. The offset value (old minus new) was added to each probe set across all 47 new arrays. This processes forces the average probe set in the new arrays to be very close to that of the previous arrays. + + +

    Table 2: Sample tube ID, strain, original CEL filename, and Affymetrix quality control values. Columns labeled Scale factor, Background Average, Present, Absent, Marginal and 3'/5' ratios for actin and Gapdh were collated from the Affymetrix Report (RPT) files. + + +

    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    2R2533E.1129S1/SvImJR2533E.1.CEL2.119457.90%40.50%1.60%1.370.781Y
    3R0754E.1A/JR0754E.1.CEL2.728659.80%38.70%1.50%1.360.761Y
    4R4521EB6129P2F2N1-Clcn3R4521E.CEL4.8338.763.30%35.30%1.40%1.250.774
    5R4522EB6129P2F2N1-Clcn3R4522E.CEL5.7637.3662.90%35.70%1.40%1.370.834
    6R4523EB6129P2F2N1-Clcn3R4523E.CEL4.8840.4263.90%34.70%1.40%1.270.774
    7R4526EB6129P2F2N1-Gabbr1R4526E.CEL3.8444.1865.00%33.70%1.30%1.340.784Y
    8R4509EB6129P2F2N1-Gabbr1R4509E.CEL7.4534.7658.90%39.70%1.40%1.450.834
    9R4510EB6129P2F2N1-Gabbr1R4510E.CEL8.4437.4457.40%41.10%1.50%1.350.834
    10R4511EB6129P2F2N1-Gabbr1R4511E.CEL5.9142.0261.40%37.20%1.40%1.410.834
    11R4524EB6129P2F2N1-Gabbr1R4524E.CEL5.4942.3462.40%36.20%1.40%1.290.784Y
    12R4525EB6129P2F2N1-Gabbr1R4525E.CEL4.6941.363.10%35.50%1.40%1.270.84Y
    13R4515EB6129P2F2N1-Gabra1R4515E.CEL5.7541.7662.80%35.80%1.40%1.410.814Y
    14R4516EB6129P2F2N1-Gabra1R4516E.CEL7.0740.7360.20%38.40%1.40%1.320.874Y
    15R4517EB6129P2F2N1-Gabra1R4517E.CEL5.4538.0962.70%35.80%1.40%1.340.824Y
    16R4512EB6129P2F2N1-Gnb5R4512E.CEL6.5638.0259.90%38.70%1.50%1.330.834
    17R4513EB6129P2F2N1-Gnb5R4513E.CEL4.1541.663.40%35.10%1.50%1.340.824
    18R4514EB6129P2F2N1-Gnb5R4514E.CEL5.8639.261.20%37.30%1.50%1.340.814
    19R4518EB6129P2F2N1-Gpr19R4518E.CEL5.5838.962.60%36.00%1.30%1.390.794Y
    20R4519EB6129P2F2N1-Gpr19R4519E.CEL5.9541.9161.30%37.30%1.40%1.350.844Y
    21R2601E.1B6D2F1R2601E.1.CEL2.559258.90%39.60%1.50%1.440.781Y
    22R2602E.1B6D2F1R2602E.1.CEL2.68459.70%38.80%1.50%1.370.781Y
    23R1676E.1BALB/cByJR1676E.1.CEL2.699858.90%39.60%1.50%1.460.741
    24R1672E.1BALB/cByJR1672E.1.CEL2.2211159.90%38.60%1.50%1.260.81Y
    25R4530EBALB/cJR4530E.CEL6.3737.5360.80%37.80%1.40%1.30.844Y
    26R4529EBALB/cJR4529E.CEL5.7141.3360.50%38.00%1.50%1.480.84Y
    27R2704E.2BXD1R2704E.2.CEL2.066139.6156.60%41.90%1.50%1.310.812
    28R2707E.3BXD1R2707E.3.CEL18056.40%42.10%1.50%1.430.793
    29R1231E.2BXD2R1231E.2.CEL2.197138.7357.30%41.30%1.40%1.410.772
    30R2598E.1BXD2R2598E.1.CEL1.9910660.90%37.60%1.50%1.270.781Y
    31R2591E.1BXD5R2591E.1.CEL1.713658.50%40.00%1.50%1.330.781Y
    32R2714E.2BXD5R2714E.2.CEL1.404144.3560.60%37.90%1.50%1.430.792
    33R2570E.1BXD6R2570E.1.CEL1.998758.50%40.00%1.50%1.460.761Y
    34R2694E.2BXD6R2694E.2.CEL1.98397.2361.60%37.10%1.30%1.390.822
    35R2538E.1BXD8R2538E.1.CEL1.9110261.20%37.30%1.50%1.520.791Y
    36R2709E.2BXD8R2709E.2.CEL1.9999.7960.90%37.60%1.50%1.420.762
    37R2708E.2BXD9R2708E.2.CEL1.966126.4657.70%40.70%1.50%1.40.842
    38R2569E.1BXD9R2569E.1.CEL1.758755.10%43.40%1.50%2.823.141
    39R2581E.1BXD11R2581E.1.CEL1.948962.10%36.40%1.60%1.550.811Y
    40R2612E.2BXD11R2612E.2.CEL1.83142.0358.20%40.50%1.40%1.780.812
    41R2742E.2BXD12R2742E.2.CEL2.127134.1457.00%41.60%1.40%1.640.782
    42R2543E.1BXD12R2543E.1.CEL1.6111858.60%39.90%1.60%1.430.771Y
    43R2586E.1BXD13R2586E.1.CEL2.017456.40%42.00%1.60%2.853.811
    44R877E.2BXD13R877E.2.CEL1.558125.6361.20%37.50%1.20%1.420.812
    45R2557E.1BXD14R2557E.1.CEL1.839962.50%36.10%1.40%1.310.781Y
    46R1128E.2BXD14R1128E.2.CEL1.9111559.90%38.80%1.40%1.20.821Y
    47R2701E.3BXD15R2701E.3.CEL18860.60%37.90%1.40%1.50.773
    48R2716E.2BXD15R2716E.2.CEL2.015150.8356.40%42.10%1.60%1.420.812
    49R2711E.2BXD16R2711E.2.CEL1.953118.5359.00%39.60%1.50%1.450.82
    50R2567E.1BXD16R2567E.1.CEL2.248256.70%41.60%1.70%1.370.751
    51R2720E.2BXD18R2720E.2.CEL2.3299.9359.50%39.00%1.50%1.330.772
    52R2559E.1BXD18R2559E.1.CEL1.6510460.80%37.70%1.50%1.270.781Y
    53R2560E.1BXD19R2560E.1.CEL1.799860.90%37.50%1.60%1.350.81Y
    54R2713E.2BXD19R2713E.2.CEL1.67120.8260.20%38.30%1.50%1.450.82
    55R2584E.1BXD20R2584E.1.CEL2.078459.30%39.10%1.60%1.40.761Y
    56R2731E.2BXD20R2731E.2.CEL1.82514759.00%39.50%1.50%1.40.82
    57R2702E.2BXD21R2702E.2.CEL1.811128.6559.40%39.10%1.40%1.260.82
    58R2541E2.1BXD21R2541E2.1.CEL2.6312556.00%42.40%1.50%1.290.781
    59R2553E.1BXD22R2553E.1.CEL1.9511159.90%38.50%1.50%1.280.761Y
    60R2700E.2BXD22R2700E.2.CEL1.858102.9661.50%37.10%1.30%1.480.792
    61R2558E-2.1BXD23R2558E-2.1.CEL2.233125.0558.60%39.90%1.50%1.430.772
    62R1086E.2BXD23R1086E.2.CEL2.233125.0558.60%39.90%1.50%1.430.772
    63R2719E.2BXD24R2719E.2.CEL1.47140.3861.50%37.20%1.30%1.380.792
    64R2589E2.1BXD24R2589E2.1.CEL2.6111257.50%40.90%1.60%1.240.81
    65R2573E-2.1BXD25R2573E-2.1.CEL3.157257.90%40.70%1.40%1.770.971
    66R2683E.2BXD25R2683E.2.CEL1.777115.6458.30%40.30%1.40%2.010.792
    67R2703E.2BXD27R2703E.2.CEL1.263134.7862.60%36.10%1.40%1.440.782
    68R2729E.3BXD27R2729E.3.CEL18757.90%40.60%1.50%1.560.843Y
    69R2562E.3BXD28R2562E.3.CEL1.6511659.90%38.40%1.70%1.370.793Y
    70R2721E.2BXD28R2721E.2.CEL2.065157.3956.10%42.40%1.50%1.310.812
    71R2561E.3BXD29R2561E.3.CEL17753.30%45.40%1.40%3.3619.663
    72R1258E.2BXD31R1258E.2.CEL2.063117.0959.00%39.50%1.50%1.540.782
    73R2597E.1BXD31R2597E.1.CEL2.379460.30%38.30%1.50%1.340.771Y
    74R2563E.1BXD32R2563E.1.CEL1.5510261.90%36.70%1.40%1.50.81
    75R1216E.2BXD32R1216E.2.CEL2.23111.9958.80%39.80%1.40%1.350.792
    76R2542E.1BXD33R2542E.1.CEL2.139756.50%41.80%1.60%1.910.931
    77R857E.2BXD33R857E.2.CEL1.737113.9861.90%36.70%1.30%1.60.772
    78R1451E.2BXD34R1451E.2.CEL1.843140.0559.00%39.50%1.50%1.420.812Y
    79R2585E.1BXD34R2585E.1.CEL2.647558.30%40.00%1.70%1.250.771
    80R2698E.3BXD36R2698E.3.CEL18659.70%39.00%1.30%1.460.783
    81R2705E.3BXD36R2705E.3.CEL18660.20%38.40%1.40%1.460.773
    82R2710E.2BXD38R2710E.2.CEL2.112122.158.80%39.80%1.40%1.370.782
    83R2532E.1BXD38R2532E.1.CEL2.049459.80%38.70%1.50%1.370.81Y
    84R2574E.1BXD39R2574E.1.CEL1.989161.20%37.30%1.50%1.390.781
    85R2695E.2BXD39R2695E.2.CEL1.638122.760.80%37.80%1.50%1.420.82
    86R2699E.2BXD40R2699E.2.CEL1.827105.2361.70%36.90%1.40%1.420.812
    87R2590E.1BXD40R2590E.1.CEL2.717759.10%39.30%1.50%1.40.771Y
    88R2696E.2BXD42R2696E.2.CEL1.622118.9562.00%36.60%1.50%1.530.792
    89R2596E.1BXD42R2596E.1.CEL2.6310859.00%39.60%1.50%1.240.81
    90R994E.2BXD43R994E.2.CEL1.966113.1260.80%37.80%1.40%1.660.82
    91R2607E.1BXD43R2607E.1.CEL2.4311558.60%40.00%1.40%1.310.761Y
    92R2594E.1BXD44R2594E.1.CEL1.7711759.80%38.80%1.40%1.350.851
    93R2610E.2BXD44R2610E.2.CEL1.814142.9159.00%39.50%1.50%1.350.82
    94R2732E.2BXD45R2732E.2.CEL2.154122.4556.50%42.10%1.40%1.80.832
    95R2592E.1BXD45R2592E.1.CEL1.8510660.10%38.60%1.30%1.430.851Y
    96R967E.2BXD48R967E.2.CEL1.948130.9557.30%41.20%1.50%1.630.812
    97R2606E.1BXD48R2606E.1.CEL2.5610658.90%39.70%1.40%1.350.831Y
    98R2933E.3BXD50R2933E.3.CEL17252.90%45.60%1.50%2.450.983
    99R2937E.3BXD50R2937E.3.CEL18956.90%41.60%1.40%1.810.823
    100R2603E.1BXD51R2603E.1.CEL2.4911557.70%40.80%1.50%1.240.791
    101R1042E.2BXD51R1042E.2.CEL2.352104.1258.70%39.90%1.40%1.530.822
    102R2980E.3BXD55R2980E.3.CEL18256.90%41.70%1.50%1.770.843
    103R2690E.2BXD55R2690E.2.CEL1.887164.0156.10%42.30%1.60%1.430.82
    104R4176EBXD56R4176E.CEL4.7543.0863.00%35.60%1.30%1.390.814Y
    105R4175EBXD56R4175E.CEL638.4961.30%37.30%1.40%1.470.814Y
    106R1006E.3BXD60R1006E.3.CEL19854.90%43.70%1.50%2.70.863
    107R2725E.2BXD60R2725E.2.CEL1.551148.0159.80%38.80%1.40%1.430.792
    108R1074E.3BXD60R1074E.3.CEL111855.50%43.10%1.40%1.960.813
    109R2534E2.1BXD61R2534E2.1.CEL2.4711857.90%40.60%1.50%1.420.791
    110R2684E.2BXD61R2684E.2.CEL2.01131.0357.00%41.50%1.50%1.340.782
    111R1107E.3BXD62R1107E.3.CEL18355.20%43.40%1.40%2.430.933
    112R2681E.2BXD62R2681E.2.CEL2.086148.2457.20%41.30%1.50%1.290.812
    113R965E.3BXD62R965E.3.CEL193.5553.30%45.20%1.50%3.110.943
    114R1425E.2BXD63R1425E.2.CEL1.713659.30%39.30%1.40%1.430.822
    115R2576E.3BXD63R2576E.3.CEL18461.30%37.40%1.40%1.480.763
    116R943E-2.2BXD64R943E-2.2.CEL1.591141.3460.10%38.40%1.50%1.320.762
    117R2611E.1BXD64R2611E.1.CEL2.299258.00%40.50%1.50%1.571.061
    118R2689E.2BXD65R2689E.2.CEL1.721142.4459.90%38.60%1.50%1.380.762
    119R2583E.1BXD65R2583E.1.CEL2.497056.90%41.50%1.60%1.671.011
    120R2728E.2BXD66R2728E.2.CEL1.714137.4559.40%39.00%1.60%1.380.792
    121R2536E2.1BXD66R2536E2.1.CEL2.7410956.10%42.30%1.70%1.280.791
    122R1207E.2BXD66R1207E.2.CEL1.681136.8660.40%38.10%1.50%1.450.772
    123R1192E.2BXD67R1192E.2.CEL2.126123.3757.90%40.60%1.50%1.50.82
    124R2727E.3BXD67R2727E.3.CEL182.5556.10%42.40%1.50%1.970.872
    125R2691E.3BXD67R2691E.3.CEL19054.80%43.80%1.50%2.610.813
    126R2551E.1BXD68R2551E.1.CEL2.499254.30%44.10%1.60%2.911.551
    127R2726E.2BXD68R2726E.2.CEL1.811153.0958.70%39.80%1.50%1.390.782
    128R2593E.1BXD69R2593E.1.CEL1.6712859.20%39.50%1.30%1.470.921Y
    129R975E.2BXD70R975E.2.CEL1.841137.9758.00%40.50%1.40%1.360.792
    130R2537E2.1BXD70R2537E2.1.CEL2.939958.00%40.50%1.60%1.290.751
    131R4531EBXD71R4531E.CEL4.7743.4862.40%36.30%1.40%1.230.774Y
    132R4532EBXD71R4532E.CEL5.8940.6860.90%37.60%1.50%1.240.794Y
    133R2779E.2BXD73R2779E.2.CEL1.746121.1159.60%39.00%1.40%1.50.82
    134R3024E.3BXD73R3024E.3.CEL178.0551.70%46.60%1.70%2.30.943
    135R2565E.1BXD75R2565E.1.CEL1.7910258.00%40.50%1.50%2.313.471
    136R1397E-re.2BXD75R1397E-re.2.CEL1.449189.7159.60%39.00%1.40%1.390.822
    137R2687E.3BXD77R2687E.3.CEL18058.00%40.60%1.40%1.570.83Y
    138R2717E.2BXD77R2717E.2.CEL1.79784.4361.60%36.90%1.40%1.490.762
    139R1421E.3BXD77R1421E.3.CEL19452.40%46.20%1.40%2.290.823
    140R2579E.1BXD80R2579E.1.CEL2.427259.20%39.40%1.50%1.730.821
    141R2686E.2BXD80R2686E.2.CEL2.342119.6356.00%42.60%1.50%1.380.792
    142R2956E.3BXD83R2956E.3.CEL18455.40%43.20%1.40%1.390.843
    143R2960E.3BXD83R2960E.3.CEL18056.60%41.90%1.50%1.50.823Y
    144R2922E.3BXD84R2922E.3.CEL19157.80%40.80%1.50%1.470.833Y
    145R2895E.3BXD84R2895E.3.CEL17558.30%40.20%1.50%1.560.773Y
    146R2692E.2BXD85R2692E.2.CEL1.423160.8760.20%38.30%1.40%1.460.792
    147R2715E.2BXD85R2715E.2.CEL1.488142.661.20%37.30%1.40%1.50.782
    148R1405E.2BXD86R1405E.2.CEL2.351119.3456.40%42.20%1.40%1.640.812
    149R1225E.3BXD86R1225E.3.CEL17153.90%44.60%1.40%3.21.613
    150R2724E.2BXD87R2724E.2.CEL1.906113.7160.70%37.90%1.40%1.450.792
    151R2540E.1BXD87R2540E.1.CEL2.339361.10%37.40%1.40%1.220.811Y
    152R1433E.2BXD89R1433E.2.CEL12.24157.70%40.80%1.50%1.410.782
    153R2546E.1BXD89R2546E.1.CEL1.999658.60%39.70%1.70%1.470.781
    154R2578E2.1BXD90R2578E2.1.CEL2.799258.60%39.80%1.60%1.520.771Y
    155R859E.2BXD90R859E.2.CEL1.847152.2257.90%40.70%1.40%1.360.772
    156R2682E.2BXD92R2682E.2.CEL1.547156.3160.40%38.20%1.40%1.370.772
    157R1388E.3BXD92R1388E.3.CEL16360.00%38.60%1.40%1.851.033
    158R1322E.3BXD92R1322E.3.CEL18055.90%42.60%1.50%1.750.743
    159R2733E.2BXD96R2733E.2.CEL1.7113.9962.10%36.60%1.30%1.40.782
    160R2554E.1BXD96R2554E.1.CEL2.189360.20%38.30%1.50%1.460.771Y
    161R2649E.2BXD97R2649E.2.CEL2.343119.0457.50%41.20%1.40%1.530.82
    162R2577E.1BXD97R2577E.1.CEL2.077759.50%39.10%1.40%1.871.291
    163R2645E.3BXD98R2645E.3.CEL18859.40%39.20%1.50%1.590.813Y
    164R2688E.2BXD98R2688E.2.CEL1.772145.2458.50%40.00%1.50%1.480.812
    165R4533EBXD99R4533E.CEL137.6960.30%38.20%1.40%1.330.894Y
    166R4534EBXD99R4534E.CEL5.6936.6262.90%35.70%1.40%1.160.84Y
    167R2885E.3BXSB/MpJR2885E.3.CEL17658.10%40.60%1.30%1.881.063
    168R2883E.3BXSB/MpJR2883E.3.CEL17156.40%42.00%1.50%1.590.843Y
    169R1700E.1C3H/HeJR1700E.1.CEL2.986960.80%37.90%1.40%1.480.781
    170R1704E.1C3H/HeJR1704E.1.CEL2.588860.10%38.60%1.30%1.380.841
    171R2605E.1C57BL/6JR2605E.1.CEL1.8213160.50%38.20%1.30%1.320.81Y
    172R0871EC57BL/6JR0871E.CEL6.2437.3861.90%36.70%1.40%1.410.84Y
    173R0872E.1C57BL/6JR0872E.1.CEL3.138958.90%39.60%1.50%1.30.791Y
    174R0872EC57BL/6JR0872E.CEL3.12888.5858.90%39.60%1.50%1.30.791
    175R4507EC57BL/6J-NyxR4507E.CEL8.1337.559.30%39.30%1.40%1.320.84Y
    176R4508EC57BL/6J-NyxR4508E.CEL6.3337.2660.90%37.80%1.30%1.240.824Y
    177R4505EC57BL/6J-Rpe65R4505E.CEL5.9837.4861.80%36.80%1.40%1.450.854Y
    178R4506EC57BL/6J-Rpe65R4506E.CEL6.9437.961.10%37.50%1.30%1.50.834Y
    179R4535EC57BLKS/JR4535E.CEL6.5937.2861.20%37.30%1.40%1.260.834Y
    180R4536EC57BLKS/JR4536E.CEL140.7160.30%38.20%1.50%1.250.774Y
    181R2564E.1CAST/EiJR2564E.1.CEL1.948958.50%39.90%1.60%1.60.771
    182R2580E.1CAST/EiJR2580E.1.CEL2.099558.20%40.10%1.70%1.40.761
    183R4537ECBA/CaJR4537E.CEL138.4560.60%37.90%1.50%1.630.824Y
    184R4538ECBA/CaJR4538E.CEL5.8939.1861.70%36.90%1.40%1.450.84Y
    185R4539ECZECHII/EiJR4539E.CEL7.7337.158.30%40.10%1.50%1.70.954Y
    186R4540ECZECHII/EiJR4540E.CEL11.0436.6953.00%45.30%1.70%1.831.324
    187R2600E.1D2B6F1R2600E.1.CEL2.479558.10%40.20%1.70%1.410.781Y
    188R2604E.1D2B6F1R2604E.1.CEL2.669059.40%39.20%1.50%1.280.791Y
    189R1002E.3DBA/2JR1002E.3.CEL110254.80%43.70%1.50%2.840.833
    190R4541EDBA/2JR4541E.CEL143.461.40%37.00%1.50%1.370.734Y
    191R959E.3DBA/2JR959E.3.CEL189.9753.20%45.30%1.50%3.661.094
    192R2572E.1DBA/2JR2572E.1.CEL2.417955.50%42.90%1.60%1.370.791
    193R4542EDBA/2JR4542E.CEL5.739.9561.00%37.40%1.50%1.230.814Y
    194R2771E.3FVB/NJR2771E.3.CEL17055.30%43.20%1.50%1.690.833
    195R2772E.3FVB/NJR2772E.3.CEL17655.20%43.40%1.40%2.131.023
    196R2636E.1KK/HlJR2636E.1.CEL2.619358.90%39.50%1.50%1.390.761Y
    197R2637E.1KK/HlJR2637E.1.CEL2.1910359.40%39.00%1.50%1.30.791Y
    198R0999E.1LG/JR0999E.1.CEL2.458259.40%39.10%1.50%1.380.791Y
    199R1004E.1LG/JR1004E.1.CEL2.449258.70%39.80%1.50%1.380.791Y
    200R4543ELP/JR4543E.CEL6.5741.9960.30%38.20%1.50%1.280.754Y
    201R4544ELP/JR4544E.CEL4.5639.962.40%36.10%1.50%1.230.774Y
    202R2858E.3MOLF/EiJR2858E.3.CEL16453.80%44.70%1.50%1.590.953
    203R2919.3MOLF/EiJR2919.3.CEL16452.40%46.00%1.60%2.151.073
    204R1688E.1NOD/LtJR1688E.1.CEL2.669858.60%39.90%1.50%1.260.81Y
    205R2566E-2.1NOD/LtJR2566E-2.1.CEL3.036959.80%38.80%1.50%1.380.751Y
    206R4545ENZB/BlNJR4545E.CEL4.2343.4862.10%36.40%1.50%1.330.764Y
    207R4546ENZB/BlNJR4546E.CEL6.2744.2259.40%39.10%1.50%1.170.824Y
    208R2535E.1NZO/HlLtJR2535E.1.CEL1.898660.40%38.20%1.40%1.410.851
    209R2550E.1NZO/HlLtJR2550E.1.CEL1.798760.70%37.80%1.50%1.520.821
    210R2817E.3NZW/LacJR2817E.3.CEL15950.90%47.60%1.50%3.591.483
    211R2810ENZW/LacJR2810E.CEL3
    212R2810E.3NZW/LacJR2810E.3.CEL17457.00%41.70%1.40%2.151.034Y
    213R4547EPANCEVO/EiJR4547E.CEL5.2751.3457.20%41.10%1.70%1.70.834
    214R4548EPANCEVO/EiJR4548E.CEL10.5437.3950.30%48.00%1.70%1.681.094
    215R2635E.1PWD/PhJR2635E.1.CEL3.728054.20%44.10%1.70%1.530.851
    216R2634E.1PWD/PhJR2634E.1.CEL3.299055.90%42.50%1.60%1.570.811
    217R2544E.1PWK/PhJR2544E.1.CEL2.210854.90%43.50%1.70%1.360.821
    218R2549E.1PWK/PhJR2549E.1.CEL2.288457.30%41.20%1.50%1.570.831
    219R4550ESJL/JR4550E.CEL5.3540.4462.30%36.20%1.40%1.240.794
    220R2368E.1WSB/EiJR2368E.1.CEL2.578659.50%39.10%1.40%1.290.741Y
    221R2547E.1WSB/EiJR2547E.1.CEL2.149058.20%40.10%1.60%1.320.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant and from funds from NEI grant to Dr. Eldon Geisert (R01EY017841), an NEI Vision Core grant (EY14080) and an Unrestricted Grant from Research To Prevent Blindness. + + +

    We thank Dr. Ted Choi, Chief Scientific Director of Predictive Biology, Inc. (past director of molecular genetics at Deltagen Inc.) for providing us with eye samples from several interesting DeltaGen knockouts. +

    + + + +

    Information about this text file:

    +
    +

    Final data set entered by Arthur Centeno, Sept 17, 2008. This text file originally generated by RWW, May 26, 2006. RWW, Oct 30, 2008. EEG, Oct 31, 2008. Updated RWW, Nov 13, 2008. RWW, Nov 28, 2008. AC, Dec 12, 2008. RWW, Dec 18, 2008. +

    + + +

    +

    +

    + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series No GEO series number +

    Status Public on Feb 3, 2009 +

    Title Gene expression landscape of the mammalian eye: A global survey and database of mRNAs of 103 varieties of mice +

    Organism(s) Mus musculus +

    Experiment type Expression profiling by array +

    Summary The HEIMED September 2008 RMA data release provides estimates of gene expression in whole eyes of 103 lines of young adult mice generated using 221 Affymetrix M430 2.0 arrays. This data set is intended for exploration of the genetics and genomics of the mouse eye, retina, lens, retinal pigment epithelium, cornea, iris and choroid. + +

    Overall design We used pooled RNA samples of whole eyes, usually two independent pools--one male, one female pool--for most lines of mice. This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10). + +

    Contributor(s) Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams + +

    Citation(s) Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Xusheng Wang, Weikuan Gu, Yan Jiao, Robert W. Williams (2009) Gene expression landscape of the mammalian eye: A global survey and database of mRNAs of 103 strains of mice. Molecular Vision 15:1730-1763 . PMID: XXXXXX + +

    +
    Submission date Not submitted to GEO +
    Contact name Robert W. Williams +
    E-mails rwilliam@nb.utmem.edu +
    Phone 901-448-7018 +
    FAX 901-448-1716 +
    URL GeneNetwork BXD HEIMED +
    Organization name University of Tennessee Health Science Center +
    Department(s) Anatomy and Neurobiology, Ophthalmology +
    Laboratory(s) Williams, Lu, Geisert Labs +
    Street address 855 Monroe Avenue +
    City Memphis +
    State/province TN +
    ZIP/Postal code 38163 +
    Country USA + + +

    Platforms (1) GPL1261 Affymetrix GeneChip Mouse Genome 430 2.0 Array +

    Samples (221) GSMXXXXX 1_SampleNameHere, GSMXXXXX 2_SampleNameHere, GSMXXXXX 221_SampleNameHere, + +

    +

    +

    +

    + + + + + + + + +Data were generated at UTHSC with support from a grant from Dr. Barrett Haik, Director of the Hamilton Eye Institute (HEI). + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Eye_M2_0908_R_MT.html b/web/dbdoc/Eye_M2_0908_R_MT.html new file mode 100755 index 00000000..6415dea8 --- /dev/null +++ b/web/dbdoc/Eye_M2_0908_R_MT.html @@ -0,0 +1,82 @@ + + + +Eye M430v2 Mutant Tyrp1 (Sep08) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    Eye M430v2 Mutant Tyrp1 (Sep08) RMA **modify this page

    + + Accession number: GN278

    +

    + This page will be updated soon. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Eye_M2_0908_R_NB.html b/web/dbdoc/Eye_M2_0908_R_NB.html new file mode 100755 index 00000000..bd3fb887 --- /dev/null +++ b/web/dbdoc/Eye_M2_0908_R_NB.html @@ -0,0 +1,76 @@ + + + +Eye M430v2 New B (Sep08) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    Eye M430v2 New B (Sep08) RMA ** (accession number: GN261) + modify this page

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Eye_M2_0908_R_NBD.html b/web/dbdoc/Eye_M2_0908_R_NBD.html new file mode 100755 index 00000000..8c5d4d4d --- /dev/null +++ b/web/dbdoc/Eye_M2_0908_R_NBD.html @@ -0,0 +1,76 @@ + + + +Eye M430v2 New BD (Sep08) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    Eye M430v2 New BD (Sep08) RMA ** (accession number: GN263) + modify this page

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Eye_M2_0908_R_ND.html b/web/dbdoc/Eye_M2_0908_R_ND.html new file mode 100755 index 00000000..02e2eefb --- /dev/null +++ b/web/dbdoc/Eye_M2_0908_R_ND.html @@ -0,0 +1,76 @@ + + + +Eye M430v2 New D (Sep08) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    Eye M430v2 New D (Sep08) RMA ** (accession number: GN262) + modify this page

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Eye_M2_0908_R_OB.html b/web/dbdoc/Eye_M2_0908_R_OB.html new file mode 100755 index 00000000..8905081d --- /dev/null +++ b/web/dbdoc/Eye_M2_0908_R_OB.html @@ -0,0 +1,76 @@ + + + +Eye M430v2 Old B (Sep08) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    Eye M430v2 Old B (Sep08) RMA ** (accession number: GN264) + modify this page

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Eye_M2_0908_R_OBD.html b/web/dbdoc/Eye_M2_0908_R_OBD.html new file mode 100755 index 00000000..0513e021 --- /dev/null +++ b/web/dbdoc/Eye_M2_0908_R_OBD.html @@ -0,0 +1,76 @@ + + + +Eye M430v2 Old BD (Sep08) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    Eye M430v2 Old BD (Sep08) RMA ** (accession number: GN266) + modify this page

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Eye_M2_0908_R_OD.html b/web/dbdoc/Eye_M2_0908_R_OD.html new file mode 100755 index 00000000..f7876629 --- /dev/null +++ b/web/dbdoc/Eye_M2_0908_R_OD.html @@ -0,0 +1,76 @@ + + + +Eye M430v2 Old D (Sep08) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    Eye M430v2 Old D (Sep08) RMA ** (accession number: GN265) + modify this page

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Eye_M2_0908_R_WT.html b/web/dbdoc/Eye_M2_0908_R_WT.html new file mode 100755 index 00000000..3093e7ff --- /dev/null +++ b/web/dbdoc/Eye_M2_0908_R_WT.html @@ -0,0 +1,82 @@ + + + +Eye M430v2 WT Tyrp1 (Sep08) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    Eye M430v2 WT Tyrp1 (Sep08) RMA **modify this page

    + + Accession number: GN279

    +

    + This page will be updated soon. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Eye_M2_0908_WTWT.html b/web/dbdoc/Eye_M2_0908_WTWT.html new file mode 100644 index 00000000..7e593d83 --- /dev/null +++ b/web/dbdoc/Eye_M2_0908_WTWT.html @@ -0,0 +1,210 @@ + + + + + +Eye M430v2 WT WT (Sep08) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    Eye M430v2 WT WT (Sep08) RMA **modify this page

    + + Accession number: GN382

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Lei Yan, + Zachary Sloan, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/FT_2A_0605_Rz.html b/web/dbdoc/FT_2A_0605_Rz.html new file mode 100755 index 00000000..4823a10b --- /dev/null +++ b/web/dbdoc/FT_2A_0605_Rz.html @@ -0,0 +1,305 @@ + +RAE230A Microarray Kidney RMA April05 / +WebQTL + + + + + + + + + + + + + + + + + + +
    + + + +
    +

    MDC/CAS/ICL RAE230A Peritoneal Fat Database RMA 2ZPlus8 (June/05 freeze) modify this page

    Accession number: GN75

    + +

        Summary:

    + +

    +This June 2005 data set provides estimates of mRNA expression in normal peritoneal fat of 32 strains of rats. The set includes the hypertensive SHR strain, the normotensive BN +strain, and 30 HXB/BXH recombinant inbred strains. Each strain was sampled in quadruplicate (6-week-old males). Animals and tissues were generated by Michal Pravenec and +colleagues at the Czech Academy of Sciences (CAS). RNA samples were processed at the Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, by Norbert Hubner and colleagues. Transcriptome mapping was carried out by Norbert Hubner, Timothy Aitman and colleagues at the MDC and the MRC Clinicial Sciences Centre, Imperial College London (ICL). Samples were hybridized individually to a total of 130 Affymetrix RAE230A array. This particular data set includes 124 arrays processed using the RMA protocol. RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units (2ZPlus8). This data set complements the MAS5 data set exploited by Hubner and colleagues 2005. + Download the particular transform in an Excel work book with both strain means and SEMs.

    +
    + +

        About the cases used to generate this set of data:

    +
    We have exploited a set of HXB/BXH recombinant inbred strains of rats generated over the past 20 years in Prague. The parental strains from which all HXB lines are derived are SHR (SHR/OlaIpcv or HSR = H) and Brown Norway (BN.Lx/Cub= B). These parental strains have been used extensively to study cardiovascular system physiology and genetics.

    + +

    The HXB strains were generated by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were generated by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. These strains are at approximately the 60th generation of continuous inbreeding (F60).

    + +

    Animals used in the transcriptome analyses of kidney and fat (Hübner and colleagues, 2005) were weaned at 4 weeks. Those born at the Charles University were transferred to the Institute of Physiology. Animals were reared on a commercial rat chow (ST-1 from VELAZ, Czech Republic). Four males were house per cage. Cages were made of polystyrene and have a floor size of 22 x 38 cm and height of 23 cm. The bedding was changed twice a week. Light cycle was 12:12 on-off. Vivarium rooms were maintained at 23 degrees C. Rats were sexually naive. All males used in the initial transcriptome studies (Hubner et al., 2005) were born between May and August 2002. They were sacrificed unfastged by rapid cervical dislocation between 9 and 10 AM, following an approved animal protocol (Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague; Animal Protection Law of the Czech Republic (311/1997). +

    + +

        About the tissue used to generate these data:

    +
    All tissues were collected at the age of 6 weeks. Peritoneal fat pads were rapidly dissected and cleaned extraneous tissue, inserted into a vial, and immersed in liquid nitrogen for storage until RNA extraction. +
    + + +
    +The table below lists 130 arrays by strain and sample identifier. Each array was hybridized with mRNA from a single young male rat. Six arrays marked with asterisks were eventually excluded. +
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSampleID
    BNBN1
    BNBN2
    BNBN3
    BNBN5
    BNBN6
    BXH10RI 10c-1
    BXH10RI 10c-2
    BXH10RI 10c-3
    BXH10RI 10c-5
    BXH11RI 11c-1
    BXH11RI 11c-2
    BXH11RI 11c-3
    BXH11RI 11c-4
    BXH12RI 12c-1
    BXH12RI 12c-2
    BXH12RI 12c-3
    BXH12RI 12c-4
    BXH13RI 13c-1
    BXH13RI 13c-2
    BXH13RI 13c-3
    BXH13RI 13c-4
    BXH2RI 02c-1
    BXH2RI 02c-2
    BXH2RI 02c-4
    BXH2RI 02c-5
    BXH3RI 03c-1
    BXH3RI 03c-2
    BXH3RI 03c-3
    BXH3RI 03c-4
    BXH5RI 05c-1
    BXH5RI 05c-2
    BXH5*RI 05c-3
    BXH5RI 05c-5
    BXH6RI 06c-1
    BXH6RI 06c-4
    BXH6RI 06c-5
    BXH6RI 06c-6
    BXH8RI 08c-2
    BXH8RI 08c-3
    BXH8RI 08c-4
    BXH8RI 08c-5
    BXH9RI 09c-1
    BXH9RI 09c-2
    BXH9RI 09c-4
    BXH9RI 09c-5
    HXB1RI 01-1
    HXB1RI 01-2
    HXB1RI 01-4
    HXB1RI 01-5
    HXB10RI 10-2
    HXB10RI 10-3
    HXB10RI 10-4
    HXB10RI 10-5
    HXB15RI 15-1
    HXB15RI 15-2
    HXB15RI 15-5
    HXB15RI 15-6
    HXB17RI 17-1
    HXB17RI 17-2
    HXB17*RI 17-3
    HXB17RI 17-4
    HXB18RI 18-1
    HXB18RI 18-2
    HXB18*RI 18-3
    HXB18RI 18-4
    HXB2RI 02-1
    HXB2RI 02-2
    HXB2RI 02-3
    HXB2RI 02-4
    HXB20RI 20-1
    HXB20RI 20-2
    HXB20*RI 20-3
    HXB20RI 20-4
    HXB21RI 21-1
    HXB21RI 21-2
    HXB21RI 21-3
    HXB21RI 21-4
    HXB22RI 22-1
    HXB22RI 22-2
    HXB22*RI 22-3
    HXB22RI 22-4
    HXB23RI 23-1
    HXB23RI 23-2
    HXB23RI 23-3
    HXB23RI 23-4
    HXB24RI 24-1
    HXB24RI 24-2
    HXB24RI 24-3
    HXB24RI 24-5
    HXB25RI 25-1
    HXB25RI 25-3
    HXB25RI 25-4
    HXB25RI 25-5
    HXB26RI 26-1
    HXB26RI 26-2
    HXB26*RI 26-3
    HXB26RI 26-4
    HXB27RI 27-1
    HXB27RI 27-2
    HXB27RI 27-3
    HXB27RI 27-4
    HXB29RI 29-1
    HXB29RI 29-2
    HXB29RI 29-4
    HXB29RI 29-5
    HXB3RI 03-1
    HXB3RI 03-2
    HXB3RI 03-3
    HXB3RI 03-4
    HXB31RI 31-1
    HXB31RI 31-2
    HXB31RI 31-3
    HXB31RI 31-4
    HXB4RI 04-1
    HXB4RI 04-2
    HXB4RI 04-3
    HXB4RI 04-4
    HXB5RI 05-1
    HXB5RI 05-2
    HXB5RI 05-3
    HXB5RI 05-4
    HXB7RI 07-1
    HXB7RI 07-2
    HXB7RI 07-3
    HXB7RI 07-4
    HSRHSR1
    HSRHSR2
    HSRHSR6
    HSRHSR7
    HSRHSR8
    +
    +

    *: These six arrays were excluded in the final strain summary +data. See section of Quality Control for further explanation. + + + +

        About the array platform:

    + +

    +Affymetrix 230A GeneChip: Expression data were generated using 230A array. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Rat Genome Sequencing Consortium assembly.

    +
    + +

        About Quality Control Procedures:

    + +
    +

    RNA processing:RNA was extracted using Trizol reagent (Invitrogen) and purified using an RNeasy Mini kit from Qiagen. Double-stranded cDNA was generated without pooling. Fat samples were processed using the Enzo Diagnostics Bioarray High Yield RNA Transcript labeling kit. See Hubner et al. 2005 for additional detail. One-hundred and twenty eight samples passed RNA quality control assays.

    + +

    Probe level QC: All 130 CEL files were collected into a single DataDesk 6.2 analysis file. Probe data from pairs of arrays were plotted and compared after quantile normalization. Six arrays were considered potential outliers (despite having passed RNA quality control) and in the interest of minimizing technical variance, a decision was made to withhold them from the calculation of strain means. The remaining 124 arrays were then quantile normalized again and reexamined in DataDesk to ensure reasonable colinearity of all final array data sets.

    + +

    Strain assignment check: To confirm strain assignment we exploit a set of transcripts with near-Mendelian segregation patterns (search for "test Mendelian"). Strain means with both intermediate expression values AND unusually high error terms often indicate at a misassignment of a case to a particular strain. This error checking has identified 4 strains with possible errors in this data set. + + + + +

    + + +

        About data processing:

    + +
    +

    Probe and Probe set data: The original cell-level files (in text format) were downloaded from Array Express. These files were then converted to a standard Affymetrix CEL file (old MAS5 style) format using a Perl script written by Senhua Yu. These files were then processed as a large batch (either all 130 arrays or the final 124 arrays) using a custom quantile normalization program written by KF Manly. The output of this program automatically performs the log normalization and variance stabilization at the probe level. We then computed the mean and standard error for each strain using these normalized probe data.

    + +

    Probe set data were generated starting with the raw Affymetrix CEL file described above (prior to any normalization) and were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized variance of 2 units within each array). Data were further transformed as follows: + +

      + +
    • Step 1: RMA values were generated as described above. + +
    • Step 2: We computed the Z scores for each probe set value for each array. + +
    • Step 3: We multiplied all Z scores by 2. + +
    • Step 4: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 5: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. We have not corrected for background beyond the background correction implemented by Affymetrix. + +
    + +

    All transformation steps were carried out by Senhua Yu at UTHSC. +

    + + + + +

        Data source acknowledgment:

    +
    +This work was supported with funds to TJA by the MRC Clinical Sciences Centre, the British Heart Foundation, and the Wellcome Trust Cardiovascular Functional Genomics Intiative; to NH from the German Ministry for Science and Education (National Genome Research Network, NGFN); to MP and Vladimir Kren from the Grant Agency of the Czech Republic; to MP and TJA from the Wellcome Trust Collaborative Research Initiative grant, to Theodore W Kurtz from the NIH, to TWK and MP from a Fogarty International Research Collaboration Award. Microarrays were a generous donation of Affymetrix Inc. MP is an International Research Scholar of the Howard Hughes Medical Institute. + + +
    + +

        Information about this text file:

    +

    This approved text file originally generated by Robert Williams, Norbert Hubner, Michal Pravenec, Timothy Aitman, April 19, 2005. Updated by RWW, April 20, 2005; April 28, 2005. June 15, 2005 by RWW and SY; June 20 by RWW and NH.

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/FT_2A_0805_M.html b/web/dbdoc/FT_2A_0805_M.html new file mode 100755 index 00000000..47ef8aa4 --- /dev/null +++ b/web/dbdoc/FT_2A_0805_M.html @@ -0,0 +1,306 @@ + +RAE230A Microarray Kidney RMA April05 / +WebQTL + + + + + + + + + + + + + + + + + + +
    + + + +
    +

    MDC/CAS/ICL RAE230A Peritoneal Fat Database MAS5 (August/05 freeze) modify this page

    Accession number: GN79

    + +

        Summary:

    + +

    +This August 2005 data set provides estimates of mRNA expression in normal peritoneal fat of 32 strains of rats. The set includes the hypertensive SHR strain, the normotensive BN +strain, and 30 HXB/BXH recombinant inbred strains. Each strain was sampled in quadruplicate (6-week-old males). Animals and tissues were generated by Michal Pravenec and +colleagues at the Czech Academy of Sciences (CAS). RNA samples were processed at the Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, by Norbert Hubner and colleagues. Transcriptome mapping was carried out by Norbert Hubner, Timothy Aitman and colleagues at the MDC and the MRC Clinicial Sciences Centre, Imperial College London (ICL). Samples were hybridized individually to a total of 130 Affymetrix RAE230A array. This particular data set includes 124 arrays processed using the MAS5 protocol. MAS5 values of each array were adjusted to an average of 8 units and a standard deviation of 2 units (2ZPlus8). +Download the particular transform in an Excel work book with both strain means and SEMs.

    +
    + +

        About the cases used to generate this set of data:

    +
    We have exploited a set of HXB/BXH recombinant inbred strains of rats generated over the past 20 years in Prague. The parental strains from which all HXB lines are derived are SHR (SHR/OlaIpcv or HSR = H) and Brown Norway (BN.Lx/Cub= B). These parental strains have been used extensively to study cardiovascular system physiology and genetics.

    + +

    The HXB strains were generated by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were generated by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. These strains are at approximately the 60th generation of continuous inbreeding (F60).

    + +

    Animals used in the transcriptome analyses of kidney and fat (Hübner and colleagues, 2005) were weaned at 4 weeks. Those born at the Charles University were transferred to the Institute of Physiology. Animals were reared on a commercial rat chow (ST-1 from VELAZ, Czech Republic). Four males were house per cage. Cages were made of polystyrene and have a floor size of 22 x 38 cm and height of 23 cm. The bedding was changed twice a week. Light cycle was 12:12 on-off. Vivarium rooms were maintained at 23 degrees C. Rats were sexually naive. All males used in the initial transcriptome studies (Hubner et al., 2005) were born between May and August 2002. They were sacrificed unfastged by rapid cervical dislocation between 9 and 10 AM, following an approved animal protocol (Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague; Animal Protection Law of the Czech Republic (311/1997). +

    + +

        About the tissue used to generate these data:

    +
    All tissues were collected at the age of 6 weeks. Peritoneal fat pads were rapidly dissected and cleaned extraneous tissue, inserted into a vial, and immersed in liquid nitrogen for storage until RNA extraction. +
    + + +
    +The table below lists 130 arrays by strain and sample identifier. Each array was hybridized with mRNA from a single young male rat. Six arrays marked with asterisks were eventually excluded. +
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSampleID
    BNBN1
    BNBN2
    BNBN3
    BNBN5
    BNBN6
    BXH10RI 10c-1
    BXH10RI 10c-2
    BXH10RI 10c-3
    BXH10RI 10c-5
    BXH11RI 11c-1
    BXH11RI 11c-2
    BXH11RI 11c-3
    BXH11RI 11c-4
    BXH12RI 12c-1
    BXH12RI 12c-2
    BXH12RI 12c-3
    BXH12RI 12c-4
    BXH13RI 13c-1
    BXH13RI 13c-2
    BXH13RI 13c-3
    BXH13RI 13c-4
    BXH2RI 02c-1
    BXH2RI 02c-2
    BXH2RI 02c-4
    BXH2RI 02c-5
    BXH3RI 03c-1
    BXH3RI 03c-2
    BXH3RI 03c-3
    BXH3RI 03c-4
    BXH5RI 05c-1
    BXH5RI 05c-2
    BXH5*RI 05c-3
    BXH5RI 05c-5
    BXH6RI 06c-1
    BXH6RI 06c-4
    BXH6RI 06c-5
    BXH6RI 06c-6
    BXH8RI 08c-2
    BXH8RI 08c-3
    BXH8RI 08c-4
    BXH8RI 08c-5
    BXH9RI 09c-1
    BXH9RI 09c-2
    BXH9RI 09c-4
    BXH9RI 09c-5
    HXB1RI 01-1
    HXB1RI 01-2
    HXB1RI 01-4
    HXB1RI 01-5
    HXB10RI 10-2
    HXB10RI 10-3
    HXB10RI 10-4
    HXB10RI 10-5
    HXB15RI 15-1
    HXB15RI 15-2
    HXB15RI 15-5
    HXB15RI 15-6
    HXB17RI 17-1
    HXB17RI 17-2
    HXB17*RI 17-3
    HXB17RI 17-4
    HXB18RI 18-1
    HXB18RI 18-2
    HXB18*RI 18-3
    HXB18RI 18-4
    HXB2RI 02-1
    HXB2RI 02-2
    HXB2RI 02-3
    HXB2RI 02-4
    HXB20RI 20-1
    HXB20RI 20-2
    HXB20*RI 20-3
    HXB20RI 20-4
    HXB21RI 21-1
    HXB21RI 21-2
    HXB21RI 21-3
    HXB21RI 21-4
    HXB22RI 22-1
    HXB22RI 22-2
    HXB22*RI 22-3
    HXB22RI 22-4
    HXB23RI 23-1
    HXB23RI 23-2
    HXB23RI 23-3
    HXB23RI 23-4
    HXB24RI 24-1
    HXB24RI 24-2
    HXB24RI 24-3
    HXB24RI 24-5
    HXB25RI 25-1
    HXB25RI 25-3
    HXB25RI 25-4
    HXB25RI 25-5
    HXB26RI 26-1
    HXB26RI 26-2
    HXB26*RI 26-3
    HXB26RI 26-4
    HXB27RI 27-1
    HXB27RI 27-2
    HXB27RI 27-3
    HXB27RI 27-4
    HXB29RI 29-1
    HXB29RI 29-2
    HXB29RI 29-4
    HXB29RI 29-5
    HXB3RI 03-1
    HXB3RI 03-2
    HXB3RI 03-3
    HXB3RI 03-4
    HXB31RI 31-1
    HXB31RI 31-2
    HXB31RI 31-3
    HXB31RI 31-4
    HXB4RI 04-1
    HXB4RI 04-2
    HXB4RI 04-3
    HXB4RI 04-4
    HXB5RI 05-1
    HXB5RI 05-2
    HXB5RI 05-3
    HXB5RI 05-4
    HXB7RI 07-1
    HXB7RI 07-2
    HXB7RI 07-3
    HXB7RI 07-4
    HSRHSR1
    HSRHSR2
    HSRHSR6
    HSRHSR7
    HSRHSR8
    +
    +

    *: These six arrays were excluded in the final strain summary +data. See section of Quality Control for further explanation. + + + +

        About the array platform:

    + +

    +Affymetrix 230A GeneChip: Expression data were generated using 230A array. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Rat Genome Sequencing Consortium assembly.

    +
    + +

        About Quality Control Procedures:

    + +
    +

    RNA processing:RNA was extracted using Trizol reagent (Invitrogen) and purified using an RNeasy Mini kit from Qiagen. Double-stranded cDNA was generated without pooling. Fat samples were processed using the Enzo Diagnostics Bioarray High Yield RNA Transcript labeling kit. See Hubner et al. 2005 for additional detail. One-hundred and twenty eight samples passed RNA quality control assays.

    + +

    Probe level QC: All 130 CEL files were collected into a single DataDesk 6.2 analysis file. Probe data from pairs of arrays were plotted and compared after quantile normalization. Six arrays were considered potential outliers (despite having passed RNA quality control) and in the interest of minimizing technical variance, a decision was made to withhold them from the calculation of strain means. The remaining 124 arrays were then quantile normalized again and reexamined in DataDesk to ensure reasonable colinearity of all final array data sets.

    + +

    Strain assignment check: To confirm strain assignment we exploit a set of transcripts with near-Mendelian segregation patterns (search for "test Mendelian"). Strain means with both intermediate expression values AND unusually high error terms often indicate at a misassignment of a case to a particular strain. This error checking has identified 4 strains with possible errors in this data set. + + + + +

    + + +

        About data processing:

    + +
    +

    Probe and Probe set data: The original cell-level files (in text format) were downloaded from Array Express. These files were then converted to a standard Affymetrix CEL file (old MAS5 style) format using a Perl script written by Senhua Yu. These files were then processed as a large batch (either all 130 arrays or the final 124 arrays) using a custom quantile normalization program written by KF Manly. The output of this program automatically performs the log normalization and variance stabilization at the probe level. We then computed the mean and standard error for each strain using these normalized probe data.

    + +

    Probe set data were generated starting with the raw Affymetrix CEL file described above (prior to any normalization) and were processed using the Microarray Suite 5 (MAS5) method (Irrizary et al. 2003). + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized variance of 2 units within each array). Data were further transformed as follows: + +

      + +
    • Step 1: MAS5 values were generated as described above. + +
    • Step 2: We computed the Z scores for each probe set value for each array. + +
    • Step 3: We multiplied all Z scores by 2. + +
    • Step 4: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 5: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. We have not corrected for background beyond the background correction implemented by Affymetrix. + +
    + +

    All transformation steps were carried out by Senhua Yu at UTHSC. +

    + + + + +

        Data source acknowledgment:

    +
    +This work was supported with funds to TJA by the MRC Clinical Sciences Centre, the British Heart Foundation, and the Wellcome Trust Cardiovascular Functional Genomics Intiative; to NH from the German Ministry for Science and Education (National Genome Research Network); to MP and Vladimir Kren from the Grant Agency of the Czech Republic; to MP and TJA from the Wellcome Trust Collaborative Research Initiative grant, to Theodore W Kurtz from the NIH, to TWK and MP from a Fogarty International Research Collaboration Award. Microarrays were a generous donation of Affymetrix Inc. Michal Pravenec thanks the Howard Hughes Medical Institute for its support to him as an international research scholar. + + + +
    + +

        Information about this text file:

    +

    This approved text file originally generated by Robert Williams, Norbert Hubner, Michal Pravenec, Timothy Aitman, April 19, 2005. Updated by RWW, April 20, 2005; April 28, 2005. June 15, 2005 by RWW and SY; June 20 by RWW and NH.

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/G2HEIONCRetILM6_0911.html b/web/dbdoc/G2HEIONCRetILM6_0911.html new file mode 100755 index 00000000..6504d49c --- /dev/null +++ b/web/dbdoc/G2HEIONCRetILM6_0911.html @@ -0,0 +1,4653 @@ + + + +G2 HEI ONC Retina Illumina V6.2 (Sep11) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    G2 HEI ONC Retina Illumina V6.2 (Sep11) RankInv **modify this page

    + + Accession number: GN372 + modify this page + +

    Summary:

    +
    +

    G2 HEI ONC Retina Illumina V6.2 (Sept11) RankInv was normalized and scaled by William E. Orr and uploaded by Arthur Centeno and Xiaodong Zhou in September 2011. This data set consists of 57 BXD strains, C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. A total of 62 strains were quantified. The data are now open and available for analysis. + +

    Please cite: Templeton JP, Wang XD, Freeman NE, Nickerson JM, Williams RW, Jablonski, MM, Rex, T, Geisert EE. Innate Immune Network in the Retina Activated by Optic Nerve Crush. (In process) (Link) + +

    This is rank invariant expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strain was computed as the mean of four samples per strain. Expression values on a log2 scale range from 6.29 to 18.42 (12.13 units), a nominal range of approximately 4500-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale. + +

    The lowest level of expression is 6.29 for ILMN_1225143 (Ust4r). Lowest single data about 5.93. + +

    The highest level of expression is 18.42 for ILMN_2516699 (Ubb). Highest single value is about 19.78. +

    +

    +

    Other Related Publications

    +
    +

    +

      +
    1. Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE: Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision (2011) 17:1355-1372. (Link) +
    2. Jablonski MM, Freeman NE, Orr WE, Templeton JP, Lu L, Williams RW, Geisert EE: Genetic pathways regulating glutamate levels in retinal Muller cells. Neurochem Res. 2011 Apr;36(4):594-603. Epub 2010 Sep 30. (Link) +
    3. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63. (Link) +
    4. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 +
    5. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link) +
    6. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) + + + +

      +

    Other Data Sets

    + Users of these mouse retina data may also find the following complementary resources useful: +
      + +
    1. NEIBank collection of ESTs and SAGE data. + +
    2. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases + +
    3. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5. + +
    4. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus. + +
    5. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430). + + +
    6. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0. +
    +
    + + + + +
    +

    About the animals used to generate this set of data:

    +

    All animals are young adults between 60 and 90 days of age. We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. + + +

    +BXD strains:

  • The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. +

    +

  • In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. +

    +

  • The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set. +
  • +What Makes the G2 HEI Retina Database different from the HEI Retina Database +Examination of Gfap expression across all of the strains in the HEI Retinal Dataset, reveals that some strains express very high levels of Gfap relative to others. For example, BXD24 expresses Gfap at a 9-fold higher level, than BXD22. It has been established that BXD24 acquired a mutation in Cep290 that results in early onset photoreceptor degeneration (Chang et al., 2006). This degeneration results in reactive gliosis throughout the retina. In addition to BXD24, other BXD strains expressed very high levels of Gfap including: BXD32, BXD49, BXD70, BXD83 and BXD89. For the G2 dataset all of these strains with potential reactive gliosis were removed from the dataset. +
    + +

    About the tissue used to generate this set of data:

    + +
    +

    + The Optic Nerve Crush (ONC) Method +

    +

    +Animal Use: All procedures were in compliance with institutional guidelines and with the ARVO statement for the Use of Animals in Ophthalmic and Vision Research. The Institutional Animal Care and Use Committee (IACUC) at the University of Tennessee Health Science Center approved all protocols involving the use of mice. +

    +Anesthesia: The mice were anesthetized with a mixture of 13 mg/kg of Rompum and 87 mg/kg of Ketalar. +

    +ONC Procedure: Under the binocular operating scope a small incision was made with the spring scissors (Roboz, cat. #RS-5619, Gaithersburg, MD) in the conjunctiva beginning inferior to the globe and around the eye temporally. With the micro-forceps (Dumont #5/45 Forceps, Roboz, cat. #RS-5005, Gaithersburg, MD), we grasped the edge of the conjunctiva and rotated the globe nasally, exposing the posterior aspect of the globe which allowed visualization the optic nerve. The exposed optic nerve was grasped approximately 1-3mm from the globe with Dumont #N7 cross action forceps (Roboz, cat. #RS-5027, Gaithersburg, MD) for 10 seconds, allowing the only pressure to be from the self-clamping action. After the 10 seconds the optic nerve is released and the forceps are removed allowing the eye to rotate back into place. The mice were allowed to recover on a warming pad. + +

    Tissue preparation protocol. Two days after the ONC the animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RNAlater at room temperature. Two retinas from one mouse were stored in a single tube.

    +Dr. Justin P. Templeton categorized the animals, as well as the ONC and retina removal. + +

    Each array was hybridized with a pool of cRNA from 2 retinas (1 mouse). Dr. Clint Abner extracted RNA at UTHSC. +

    Dissecting and preparing eyes for RNA extraction +

    +

    Retinas for RNA extraction were placed in RNA STAT-60 (Tel-Test Inc.) and processed per manufacturer’s instructions (in brief form below). +Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    • Homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue via syringe) +
    • Allow the homogenate to stand for 5-10 min at room temperature +
    • Add 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    • Mix the sample vigorously for 15 sec and let the sample incubate at room temperature for 5-10 min +
    • Centrifuge at 12,000 g for 1 hr at 4°C +
    • Transfer the aqueous phase to a clean centrifuge tube +
    • Add 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    • Vortex and incubate the sample at -20°C for 1 hr or overnight +
    • Centrifuge at 12,000 g for 1 hr +
    • Remove the supernatant and wash the RNA pellet with 75% ethanol +
    • Remove ethanol, let air dry (5-10 min) +
    • Dissolve the pellet in 50 μl of nuclease free water. +

      +

    +

    Sample Processing: Dr. Justin P. Templeton extracted the retinas from the mice and Drs. Clint Abner and Natalie Freeman processed all samples in the HEI Vision Core Facility. The tissue was homogenized and extracted according to the RNA-Stat-60 protocol as described by the manufacturer (Tel-Test, Friendswood, TX) listed above. The quality and purity of RNA was assessed using an Agilent Bioanalyzer 2100 system. The RNA from each sample was processed with the Illumina TotalPrep RNA Amplification Kit (Ambion, Austin, TX) to produce labeled cRNA. The cRNA for each sample was then hybridized to an Illumina Sentrix® Mouse-6-V2 BeadChip (Illumina, San Diego, CA) +

    +

    +

    Quality control analysis of the raw image data was performed using the Illumina BeadStudio software. MIAME standards were used for all microarray data. Rank invariant normalization with BeadStudio software was used to calculate the data. Once this data was collected, the data was globally normalized across all samples using the formula 2 (z-score of log2 [intensity]) + 8. + +

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication. +

    +

    Table 1: HEI Retina case IDs, including sample tube ID, strain, age, sex, and source of mice +

    +

    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    Strain

    + +
    +

    Sex

    +
    +

    # of Mice

    + +
    +

    1

    +
    +

    BXD01

    + +
    +

    F

    +
    +

    2

    +
    +

    2

    +
    +

    BxD02

    +
    + +

    F

    +
    +

    1

    +
    + +

    3

    +
    +

    BxD02

    +
    +

    M

    + +
    +

    1

    +
    +

    4

    + +
    +

    BxD05

    +
    +

    M

    +
    + +

    2

    +
    +

    5

    +
    + +

    BxD06

    +
    +

    M

    +
    +

    1

    + +
    +

    6

    +
    +

    BxD08

    + +
    +

    F

    +
    +

    1

    +
    +

    7

    +
    +

    BxD08

    +
    + +

    M

    +
    +

    1

    +
    + +

    8

    +
    +

    BxD09

    +
    +

    F

    + +
    +

    2

    +
    +

    9

    + +
    +

    BxD09

    +
    +

    M

    +
    + +

    2

    +
    +

    10

    +
    + +

    BxD11

    +
    +

    M

    +
    +

    1

    + +
    +

    11

    +
    +

    BxD12

    + +
    +

    F

    +
    +

    1

    +
    +

    12

    +
    +

    BxD13

    +
    + +

    F

    +
    +

    1

    +
    + +

    13

    +
    +

    BxD13

    +
    +

    M

    + +
    +

    1

    +
    +

    14

    + +
    +

    BxD14

    +
    +

    F

    +
    + +

    1

    +
    +

    15

    +
    + +

    BxD15

    +
    +

    M

    +
    +

    2

    + +
    +

    16

    +
    +

    BxD16

    + +
    +

    F

    +
    +

    2

    +
    +

    17

    +
    +

    BxD16

    +
    + +

    M

    +
    +

    1

    +
    + +

    18

    +
    +

    BxD18

    +
    +

    F

    + +
    +

    1

    +
    +

    19

    + +
    +

    BxD18

    +
    +

    M

    +
    + +

    2

    +
    +

    20

    +
    + +

    BxD19

    +
    +

    F

    +
    +

    1

    + +
    +

    21

    +
    +

    BxD19

    + +
    +

    M

    +
    +

    2

    +
    +

    22

    +
    +

    BxD20

    +
    + +

    M

    +
    +

    2

    +
    + +

    23

    +
    +

    BxD22

    +
    +

    F

    + +
    +

    2

    +
    +

    24

    + +
    +

    BxD24a

    +
    +

    F

    +
    + +

    1

    +
    +

    25

    +
    + +

    BxD28

    +
    +

    F

    +
    +

    1

    + +
    +

    26

    +
    +

    BxD28

    + +
    +

    M

    +
    +

    1

    +
    +

    27

    +
    +

    BxD29

    +
    + +

    F

    +
    +

    2

    +
    + +

    28

    +
    +

    BxD29

    +
    +

    M

    + +
    +

    2

    +
    +

    29

    + +
    +

    BxD31

    +
    +

    F

    +
    + +

    1

    +
    +

    30

    +
    + +

    BxD31

    +
    +

    M

    +
    +

    2

    + +
    +

    31

    +
    +

    BxD33

    + +
    +

    M

    +
    +

    2

    +
    +

    32

    +
    +

    BxD34

    +
    + +

    F

    +
    +

    4

    +
    + +

    33

    +
    +

    BxD34

    +
    +

    M

    + +
    +

    1

    +
    +

    34

    + +
    +

    BxD38

    +
    +

    F

    +
    + +

    1

    +
    +

    35

    +
    + +

    BxD38

    +
    +

    M

    +
    +

    2

    + +
    +

    36

    +
    +

    BxD39

    + +
    +

    F

    +
    +

    1

    +
    +

    37

    +
    +

    BxD39

    +
    + +

    M

    +
    +

    5

    +
    + +

    38

    +
    +

    BxD40

    +
    +

    F

    + +
    +

    2

    +
    +

    39

    + +
    +

    BxD40

    +
    +

    M

    +
    + +

    2

    +
    +

    40

    +
    + +

    BxD42

    +
    +

    F

    +
    +

    1

    + +
    +

    41

    +
    +

    BxD43

    + +
    +

    F

    +
    +

    1

    +
    +

    42

    +
    +

    BxD43

    +
    + +

    M

    +
    +

    2

    +
    + +

    43

    +
    +

    BxD44

    +
    +

    F

    + +
    +

    2

    +
    +

    44

    + +
    +

    BxD44

    +
    +

    M

    +
    + +

    2

    +
    +

    45

    +
    + +

    BxD45

    +
    +

    F

    +
    +

    3

    + +
    +

    46

    +
    +

    BxD45

    + +
    +

    M

    +
    +

    2

    +
    +

    47

    +
    +

    BxD50

    +
    + +

    F

    +
    +

    2

    +
    + +

    48

    +
    +

    BxD50

    +
    +

    M

    + +
    +

    1

    +
    +

    49

    + +
    +

    BxD51

    +
    +

    F

    +
    + +

    3

    +
    +

    50

    +
    + +

    BxD51

    +
    +

    M

    +
    +

    3

    + +
    +

    51

    +
    +

    BxD55

    + +
    +

    F

    +
    +

    2

    +
    +

    52

    +
    +

    BxD55

    +
    + +

    M

    +
    +

    1

    +
    + +

    53

    +
    +

    BxD56

    +
    +

    F

    + +
    +

    2

    +
    +

    54

    + +
    +

    BxD56

    +
    +

    M

    +
    + +

    1

    +
    +

    55

    +
    + +

    BxD60

    +
    +

    F

    +
    +

    2

    + +
    +

    56

    +
    +

    BxD61

    + +
    +

    F

    +
    +

    2

    +
    +

    57

    +
    +

    BxD61

    +
    + +

    M

    +
    +

    2

    +
    + +

    58

    +
    +

    BxD62

    +
    +

    F

    + +
    +

    3

    +
    +

    59

    + +
    +

    BxD62

    +
    +

    M

    +
    + +

    2

    +
    +

    60

    +
    + +

    BxD65

    +
    +

    F

    +
    +

    1

    + +
    +

    61

    +
    +

    BxD66

    + +
    +

    F

    +
    +

    1

    +
    +

    62

    +
    +

    BxD66

    +
    + +

    M

    +
    +

    2

    +
    + +

    63

    +
    +

    BxD68

    +
    +

    F

    + +
    +

    2

    +
    +

    64

    + +
    +

    BxD68

    +
    +

    M

    +
    + +

    1

    +
    +

    65

    +
    + +

    BxD69

    +
    +

    F

    +
    +

    2

    + +
    +

    66

    +
    +

    BxD69

    + +
    +

    M

    +
    +

    2

    +
    +

    67

    +
    +

    BxD73

    +
    + +

    M

    +
    +

    1

    +
    + +

    68

    +
    +

    BxD75

    +
    +

    F

    + +
    +

    2

    +
    +

    69

    + +
    +

    BxD75

    +
    +

    M

    +
    + +

    1

    +
    +

    70

    +
    + +

    BxD80

    +
    +

    F

    +
    +

    2

    + +
    +

    71

    +
    +

    BxD80

    + +
    +

    M

    +
    +

    1

    +
    +

    72

    +
    +

    BxD85

    +
    + +

    F

    +
    +

    2

    +
    + +

    73

    +
    +

    BxD85

    +
    +

    M

    + +
    +

    2

    +
    +

    74

    + +
    +

    BxD86

    +
    +

    F

    +
    + +

    3

    +
    +

    75

    +
    + +

    BxD86

    +
    +

    M

    +
    +

    1

    + +
    +

    76

    +
    +

    BxD87

    + +
    +

    F

    +
    +

    2

    +
    +

    77

    +
    +

    BxD87

    +
    + +

    M

    +
    +

    3

    +
    + +

    78

    +
    +

    BxD95

    +
    +

    M

    + +
    +

    1

    +
    +

    79

    + +
    +

    BxD96

    +
    +

    F

    +
    + +

    2

    +
    +

    80

    +
    + +

    BxD96

    +
    +

    M

    +
    +

    1

    + +
    +

    81

    +
    +

    BxD98

    + +
    +

    F

    +
    +

    1

    +
    +

    82

    +
    +

    BxD98

    +
    + +

    M

    +
    +

    2

    +
    + +

    83

    +
    +

    BxD100

    +
    +

    F

    + +
    +

    1

    +
    +

    84

    + +
    +

    BxD100

    +
    +

    M

    +
    + +

    1

    +
    +

    85

    +
    + +

    BxD102

    +
    +

    M

    +
    +

    1

    + +
    +

    86

    +
    +

    BxD103

    + +
    +

    F

    +
    +

    6

    +
    +

    87

    +
    +

    B6D2F1

    +
    + +

    F

    +
    +

    1

    +
    + +

    88

    +
    +

    B6D2F1

    +
    +

    M

    + +
    +

    1

    +
    +

    89

    + +
    +

    D2B6F1

    +
    +

    F

    +
    + +

    3

    +
    +

    90

    +
    + +

    D2B6F1

    +
    +

    M

    +
    +

    1

    + +
    +

    91

    +
    +

    C57BL6J

    + +
    +

    F

    +
    +

    2

    +
    +

    92

    +
    +

    C57BL6J

    +
    + +

    M

    +
    +

    2

    +
    + +

    93

    +
    +

    DBA2J

    +
    +

    F

    + +
    +

    2

    +
    +

    94

    + +
    +

    DBA2J

    +
    +

    M

    +
    + +

    2

    +
    +

    95

    +
    + +

    BALBC

    +
    +

    F

    +
    +

    1

    + +
    +

    96

    +
    +

    BALBC

    + +
    +

    M

    +
    +

    3

    +
    + +

     

    + + + +

    + +

    About downloading this data set:

    +
    + + + + + + +

    This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

    +
    + + +

    About the array platform:

    +
    +

    Illumina MouseWG-6 v2.0 arrays: The Illumina Sentrix Mouse-6 BeadChip uses 50-nucleotide probes to interrogate approximately 46,000 sequences from the mouse transcriptome. For each array, the RNA was pooled from two retinas.

    + +
    +

    +

    About data values and data processing:

    + +
    +Values of all 45,281 probe sets in this data set range from a low of 6.29, (integral membrane transport protein UST4r, Ust4r probe ID ILMN_1225143), to a high of 18.42 (Ubiquitin B, Ubb, probe ID ILMN_2516699). This corresponds to 12.13 units or a 1 to 4482.2 dynamic range of expression (2^12.13). We normalized raw signal values using Beadstudio’s rank invariant normalization algorithm. BXD62 was the strain used as the control group + +
    + +

    Normalization:

    +

    All normalization was performed by William E. Orr in the HEI Vision Core Facility +

      + +
    1. Computed the log base 2 of each raw signal value +
    2. Calculated the mean and standard Deviation of each Mouse WG-6 v2.0 array +
    3. Normalized each array using the formula, 2 (z-score of log2 [intensity]) +The result is to produce arrays that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. +
    4. computed the mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. +
    + +

    Funding Support for the HEI Retina Dataset:

    +
    +

    The HEI Retinal Database is supported by National Eye Institute Grants: +

  • R01EY017841 (Dr. Eldon E. Geisert, PI) +

  • P030EY13080 (NEI Vision Core Grant), and +

  • A Unrestricted Grand from Research to Prevent Blindness (Dr. Barrett Haik, PI) + +
  • + + + +

    Information about this text file:

    +
    +

    Dataset was uploaded to GeneNetwork by Arthur Centeno and Xiaodong Zhou, September 2011. This text file was generated by Justin P. Templeton January 2012. +

    +
    + + +

    +

    +

    +

    References

    +
    Rogojina AT, Orr WE, Song BK, Geisert EE, Jr.: Comparing the use of Affymetrix to spotted oligonucleotide microarrays using two retinal pigment epithelium cell lines. Molecular vision 2003, 9:482-496.(Link) +

    Vazquez-Chona F, Song BK, Geisert EE, Jr.: Temporal changes in gene expression after injury in the rat retina. Investigative ophthalmology & visual science 2004, 45(8):2737-2746.(Link) + +

    + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series No GEO series number +

    Status Private on Sept, 2011 +

    Organism(s) Mus musculus +

    Experiment type Expression profiling by array + +

    Overall design We used pooled RNA samples of retinas, usually two independent pools--two male, two female pool--for most lines of mice. + +

    Contributor(s) Eldon E. Geisert, Justin P. Templeton, Robert W. Williams, Clint Abner, Natalie Freeman + + +

    +
    Submission date Not yet submitted to GEO. +
    Contact name Eldon E. Geisert +
    E-mails EGeisert@uthsc.edu +
    Phone 901-448-7740 +
    FAX 901-448-5028 +
    URL GeneNetwork BXD G2 HEI ONC RETINA +
    Organization name University of Tennessee Health Science Center +
    Department(s) Department of Ophthalmology +
    Laboratory(s) Geisert, Lu, Wiliams Labs +
    Street address 930 Madison Avenue +
    City Memphis +
    State/province TN +
    ZIP/Postal code 38163 +
    Country USA + + +

    Platforms (1) GPLXXXX Illumina Mouse Whole Genome 6 version 2.0 + + + + + + + + + + + + + + + + + + +

    + + + + + + + + + + +
    +
      + +
    +
    + + + + + + + + + + + + + + + diff --git a/web/dbdoc/G2NEI_ILM_Retina_BXD_RI0410.html b/web/dbdoc/G2NEI_ILM_Retina_BXD_RI0410.html new file mode 100755 index 00000000..ca630062 --- /dev/null +++ b/web/dbdoc/G2NEI_ILM_Retina_BXD_RI0410.html @@ -0,0 +1,17412 @@ + +G2 HEI Retina Illumina V6.2 (April 2010) RankInv + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    G2 HEI Retina Illumina V6.2 (April 2010) RankInvmodify this page

    + + Accession number: GN302

    + +

    Summary:

    +
    +

    G2 HEI Retina Illumina V6.2 (April 2010) RankInv was normalized and scaled by William E. Orr and uploaded by Arthur Centeno and Xiaodong Zhou on April 7, 2010. This data set consists of 75 BXD strains, C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. A total of 80 strains were quantified. The data are now open and available for analysis. + +

    Please cite: Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE (2011) Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision 17:1355-1372. Full Text PDF or HTML + +

    This is rank invariant expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 6.25 to 18.08 (11.83 units), a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale. + +

    The lowest level of expression is 6.252 for ILMN_1225143 (Ust4r). Lowest single data about 5.97. + +

    The highest level of expression is 18.077 for ILMN_2516699 (Ubb). Highest single value is about 18.934. +

    +

    +

    Other Related Publications

    +
    +

    +

      +
    1. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link) +
    2. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link) +
    3. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 +
    4. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) + + +

      +

    +Other Data Sets +Users of these mouse retina data may also find the following complementary resources useful: +
      +
    1. NEIBank collection of ESTs and SAGE data. +
    2. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases +
    3. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5. +
    4. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus. + +
    5. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430). + + +
    6. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0. +
    +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 48 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. + + +

    +BXD strains:

  • The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. +

    +

  • In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. +

    +

  • The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. +

    +

  • +What Makes the G2 HEI Retina Database different from the HEI Retina Database +Examination of Gfap expression across all of the strains in the HEI Retinal Dataset, reveals that some strains express very high levels of Gfap relative to others. For example, BXD24 expresses Gfap at a 9-fold higher level, than BXD22. It has been established that BXD24 acquired a mutation in Cep290 that results in early onset photoreceptor degeneration (Chang et al., 2006). This degeneration results in reactive gliosis throughout the retina. In addition to BXD24, other BXD strains expressed very high levels of Gfap including: BXD32, BXD49, BXD70, BXD83 and BXD89. For the G2 dataset all of these strains with potential reactive gliosis were removed from the dataset. +
    + +

    About the tissue used to generate this set of data:

    + +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RNAlater at room temperature. Two retinas from one mouse were stored in a single tube. + +

    Each array was hybridized with a pool of cRNA from 2 retinas (1 mouse). Natalie Freeman-Anderson extracted RNA at UTHSC. +

    + +

    Dissecting and preparing eyes for RNA extraction +

    +

    Retinas for RNA extraction were placed in RNA STAT-60 (Tel-Test Inc.) and processed per manufacturer’s instructions (in brief form below). +Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    • Homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue via syringe) +
    • Allow the homogenate to stand for 5-10 min at room temperature +
    • Add 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    • Mix the sample vigorously for 15 sec and let the sample incubate at room temperature for 5-10 min +
    • Centrifuge at 12,000 g for 1 hr at 4°C +
    • Transfer the aqueous phase to a clean centrifuge tube +
    • Add 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    • Vortex and incubate the sample at -20°C for 1 hr or overnight +
    • Centrifuge at 12,000 g for 1 hr +
    • Remove the supernatant and wash the RNA pellet with 75% ethanol +
    • Remove ethanol, let air dry (5-10 min) +
    • Dissolve the pellet in 50 μl of nuclease free water. +

      +

    +

    Sample Processing: Drs. Natalie E. Freeman and Justin P. Templeton extracted the retinas from the mice and Dr. Natalie Freeman-Anderson processed all samples in the HEI Vision Core Facility. The tissue was homogenized and extracted according to the RNA-Stat-60 protocol as described by the manufacturer (Tel-Test, Friendswood, TX) listed above. The quality and purity of RNA was assessed using an Agilent Bioanalyzer 2100 system. The RNA from each sample was processed with the Illumina TotalPrep RNA Amplification Kit (Ambion, Austin, TX) to produce labeled cRNA. The cRNA for each sample was then hybridized to an Illumina Sentrix® Mouse-6-V2 BeadChip (Illumina, San Diego, CA) +

    +

    +

    Quality control analysis of the raw image data was performed using the Illumina BeadStudio software. MIAME standards were used for all microarray data. Rank invariant normalization with BeadStudio software was used to calculate the data. Once this data was collected, the data was globally normalized across all samples using the formula 2 (z-score of log2 [intensity]) + 8. + +

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication. +

    +

    Table 1: HEI Retina case IDs, including sample tube ID, strain, age, sex, and source of mice +

    +

    +
    + + + +
    + +

     

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    Sample ID

    +
    + +

    Strain

    +
    +

    Age

    +
    +

    Sex

    + +
    +

    Source of Animal

    +
    +

    1

    + +
    +

    121608_11-C57BL/6JcFA

    +
    +

    C57BL/6J

    +
    + +

    69

    +
    +

    F

    +
    +

    JAX

    + +
    +

    2

    +
    +

    121608_12-C57BL/6JcFB

    + +
    +

    C57BL/6J

    +
    +

    69

    +
    + +

    F

    +
    +

    JAX

    +
    + +

    3

    +
    +

    KA7444-C57BL/6JcMC

    +
    +

    C57BL/6J

    + +
    +

    97

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    4

    +
    + +

    KA7444-C57BL/6JcMD

    +
    +

    C57BL/6J

    +
    +

    97

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    5

    +
    +

    31209.05-DBA2JcFA

    +
    + +

    DBA2J

    +
    +

    75

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    6

    + +
    +

    31209.05-DBA2JcFB

    +
    +

    DBA2J

    +
    + +

    75

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    7

    +
    +

    121608_13-DBA/2JcMA

    + +
    +

    DBA/2J

    +
    +

    89

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    8

    +
    +

    121608_14-DBA/2JcMB

    +
    +

    DBA/2J

    + +
    +

    89

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    9

    +
    + +

    KA7446-B6D2F1cFA

    +
    +

    B6D2F1

    +
    +

    92

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    10

    +
    +

    KA7446-B6D2F1cFB

    +
    + +

    B6D2F1

    +
    +

    92

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    11

    + +
    +

    KA7446-B6D2F1cMC

    +
    +

    B6D2F1

    +
    + +

    92

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    12

    +
    +

    KA7446-B6D2F1cMD

    + +
    +

    B6D2F1

    +
    +

    92

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    13

    +
    +

    KA7466-D2B6F1cFA

    +
    +

    D2B6F1

    + +
    +

    70

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    14

    +
    + +

    KA7466-D2B6F1cFB

    +
    +

    D2B6F1

    +
    +

    70

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    15

    +
    +

    KA7466-D2B6F1cMC

    +
    + +

    D2B6F1

    +
    +

    70

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    16

    + +
    +

    KA7466-D2B6F1cMD

    +
    +

    D2B6F1

    +
    + +

    70

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    17

    +
    +

    82609.13-1cFA

    + +
    +

    BXD01

    +
    +

    62

    +
    + +

    F

    +
    +

    JAX

    +
    + +

    18

    +
    +

    82609.14-1cFB

    +
    +

    BXD01

    + +
    +

    62

    +
    +

    F

    +
    + +

    JAX

    +
    +

    19

    +
    + +

    KA7389-1cFA

    +
    +

    BXD01

    +
    +

    51

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    20

    +
    +

    KA7389-1cFB

    +
    + +

    BXD01

    +
    +

    51

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    21

    + +
    +

    KA7389-1cMC

    +
    +

    BXD01

    +
    + +

    51

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    22

    +
    +

    KA7389-1cMD

    + +
    +

    BXD01

    +
    +

    51

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    23

    +
    +

    KA7300-2cFA

    +
    +

    BXD02

    + +
    +

    75

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    24

    +
    + +

    KA7300-2cFB

    +
    +

    BXD02

    +
    +

    75

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    25

    +
    +

    100909.01-2cMA

    +
    + +

    BXD02

    +
    +

    65

    +
    +

    M

    + +
    +

    JAX

    +
    +

    26

    + +
    +

    100909.02-2cMB

    +
    +

    BXD02

    +
    + +

    65

    +
    +

    M

    +
    +

    JAX

    + +
    +

    27

    +
    +

    KA6699-5cFA

    + +
    +

    BXD05

    +
    +

    62

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    28

    +
    +

    KA6699-5cFB

    +
    +

    BXD05

    + +
    +

    62

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    29

    +
    + +

    KA6699-5cFC

    +
    +

    BXD05

    +
    +

    62

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    30

    +
    +

    KA6699-5cFD

    +
    + +

    BXD05

    +
    +

    62

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    31

    + +
    +

    82609.09-5cMA

    +
    +

    BXD05

    +
    + +

    60

    +
    +

    M

    +
    +

    JAX

    + +
    +

    32

    +
    +

    82609.1-5cMB

    + +
    +

    BXD05

    +
    +

    60

    +
    + +

    M

    +
    +

    JAX

    +
    + +

    33

    +
    +

    KA6763-6cFA

    +
    +

    BXD06

    + +
    +

    48

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    34

    +
    + +

    KA6763-6cFB

    +
    +

    BXD06

    +
    +

    48

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    35

    +
    +

    81209.06-6cMA

    +
    + +

    BXD06

    +
    +

    69

    +
    +

    M

    + +
    +

    VAMC

    +
    +

    36

    + +
    +

    81209.07-6cMB

    +
    +

    BXD06

    +
    + +

    69

    +
    +

    M

    +
    +

    VAMC

    + +
    +

    37

    +
    +

    82609.07-8cFA

    + +
    +

    BXD08

    +
    +

    68

    +
    + +

    F

    +
    +

    JAX

    +
    + +

    38

    +
    +

    82609.08-8cFB

    +
    +

    BXD08

    + +
    +

    68

    +
    +

    F

    +
    + +

    JAX

    +
    +

    39

    +
    + +

    JAX-8cMA

    +
    +

    BXD08

    +
    +

    76

    + +
    +

    M

    +
    +

    JAX

    +
    +

    40

    +
    +

    JAX-8cMB

    +
    + +

    BXD08

    +
    +

    76

    +
    +

    M

    + +
    +

    JAX

    +
    +

    41

    + +
    +

    KA7289-9cFA

    +
    +

    BXD09

    +
    + +

    87

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    42

    +
    +

    KA7289-9cFB

    + +
    +

    BXD09

    +
    +

    87

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    43

    +
    +

    KA7289-9cMC

    +
    +

    BXD09

    + +
    +

    87

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    44

    +
    + +

    KA7289-9cMD

    +
    +

    BXD09

    +
    +

    87

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    45

    +
    +

    JAX-11cFA

    +
    + +

    BXD11

    +
    +

    84

    +
    +

    F

    + +
    +

    JAX

    +
    +

    46

    + +
    +

    JAX-11cFB

    +
    +

    BXD11

    +
    + +

    84

    +
    +

    F

    +
    +

    JAX

    + +
    +

    47

    +
    +

    JAX-11cMC

    + +
    +

    BXD11

    +
    +

    71

    +
    + +

    M

    +
    +

    JAX

    +
    + +

    48

    +
    +

    JAX-11cMD

    +
    +

    BXD11

    + +
    +

    71

    +
    +

    M

    +
    + +

    JAX

    +
    +

    49

    +
    + +

    40209.07-12cFA

    +
    +

    BXD12

    +
    +

    65

    + +
    +

    F

    +
    +

    VAMC

    +
    +

    50

    +
    +

    40209.08-12cFB

    +
    + +

    BXD12

    +
    +

    65

    +
    +

    F

    + +
    +

    VAMC

    +
    +

    51

    + +
    +

    011309.01-12cMA

    +
    +

    BXD12

    +
    + +

    65

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    52

    +
    +

    011309.02-12cMB

    + +
    +

    BXD12

    +
    +

    65

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    53

    +
    +

    KA7286-13cFA

    +
    +

    BXD13

    + +
    +

    89

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    54

    +
    + +

    KA7286-13cFB

    +
    +

    BXD13

    +
    +

    89

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    55

    +
    +

    KA7286-13cMC

    +
    + +

    BXD13

    +
    +

    89

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    56

    + +
    +

    KA7286-13cMD

    +
    +

    BXD13

    +
    + +

    89

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    57

    +
    +

    KA7302-14cFA

    + +
    +

    BXD14

    +
    +

    73

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    58

    +
    +

    KA7302-14cFB

    +
    +

    BXD14

    + +
    +

    73

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    59

    +
    + +

    100909.05-14cMA

    +
    +

    BXD14

    +
    +

    66

    + +
    +

    M

    +
    +

    JAX

    +
    +

    60

    +
    +

    100909.06-14cMB

    +
    + +

    BXD14

    +
    +

    66

    +
    +

    M

    + +
    +

    JAX

    +
    +

    61

    + +
    +

    KA7288-15cFA

    +
    +

    BXD15

    +
    + +

    89

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    62

    +
    +

    KA7288-15cFB

    + +
    +

    BXD15

    +
    +

    89

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    63

    +
    +

    KA7288-15cMC

    +
    +

    BXD15

    + +
    +

    89

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    64

    +
    + +

    KA7288-15cMD

    +
    +

    BXD15

    +
    +

    89

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    65

    +
    +

    062509.01-16cFA

    +
    + +

    BXD16

    +
    +

    68

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    66

    + +
    +

    KA7267-16cMA

    +
    +

    BXD16

    +
    + +

    91

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    67

    +
    +

    KA7267-16cMB

    + +
    +

    BXD16

    +
    +

    91

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    68

    +
    +

    KA6686-18cFB

    +
    +

    BXD18

    + +
    +

    65

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    69

    +
    + +

    KA6686-18cFC

    +
    +

    BXD18

    +
    +

    65

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    70

    +
    +

    KA6686-18cME

    +
    + +

    BXD18

    +
    +

    65

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    71

    + +
    +

    KA6686-18cMF

    +
    +

    BXD18

    +
    + +

    65

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    72

    +
    +

    KA6676-19cFB

    + +
    +

    BXD19

    +
    +

    63

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    73

    +
    +

    KA6676-19cFC

    +
    +

    BXD19

    + +
    +

    63

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    74

    +
    + +

    KA6676-19cME

    +
    +

    BXD19

    +
    +

    63

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    75

    +
    +

    KA6676-19cMF

    +
    + +

    BXD19

    +
    +

    63

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    76

    + +
    +

    060409.05-20cFA

    +
    +

    BXD20

    +
    + +

    67

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    77

    +
    +

    060409.06-20cFB

    + +
    +

    BXD20

    +
    +

    67

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    78

    +
    +

    021909.03-20cMA

    +
    +

    BXD20

    + +
    +

    64

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    79

    +
    + +

    021909.04-20cMB

    +
    +

    BXD20

    +
    +

    64

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    80

    +
    +

    82609.02-21cFC

    +
    + +

    BXD21

    +
    +

    65

    +
    +

    F

    + +
    +

    JAX

    +
    +

    81

    + +
    +

    82609.03-21cFD

    +
    +

    BXD21

    +
    + +

    65

    +
    +

    F

    +
    +

    JAX

    + +
    +

    82

    +
    +

    121709.01-21cMA

    + +
    +

    BXD21

    +
    +

    80

    +
    + +

    M

    +
    +

    JAX

    +
    + +

    83

    +
    +

    121709.02-21cMB

    +
    +

    BXD21

    + +
    +

    80

    +
    +

    M

    +
    + +

    JAX

    +
    +

    84

    +
    + +

    121709.03-22cFA

    +
    +

    BXD22

    +
    +

    62

    + +
    +

    F

    +
    +

    JAX

    +
    +

    85

    +
    +

    121709.04-22cFB

    +
    + +

    BXD22

    +
    +

    62

    +
    +

    F

    + +
    +

    JAX

    +
    +

    86

    + +
    +

    092308_03-22cMA

    +
    +

    BXD22

    +
    + +

    118

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    87

    +
    +

    092308_04-22cMB

    + +
    +

    BXD22

    +
    +

    118

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    88

    +
    +

    80409.01-24AcFA

    +
    +

    BXD24A

    + +
    +

    72

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    89

    +
    + +

    080409_02_24AcFB

    +
    +

    BXD24A

    +
    +

    72

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    90

    +
    +

    82609.26-24AcFC

    +
    + +

    BXD24A

    +
    +

    64

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    91

    + +
    +

    81209.03-24AcMC

    +
    +

    BXD24A

    +
    + +

    62

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    92

    +
    +

    060409.07-27cFA

    + +
    +

    BXD27

    +
    +

    63

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    93

    +
    +

    060409.08-27cFB

    +
    +

    BXD27

    + +
    +

    63

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    94

    +
    + +

    80409.03-27cMA

    +
    +

    BXD27

    +
    +

    74

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    95

    +
    +

    80409.04-27cMB

    +
    + +

    BXD27

    +
    +

    74

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    96

    + +
    +

    JAX-28cFA

    +
    +

    BXD28

    +
    + +

    67

    +
    +

    F

    +
    +

    JAX

    + +
    +

    97

    +
    +

    JAX-28cFB

    + +
    +

    BXD28

    +
    +

    67

    +
    + +

    F

    +
    +

    JAX

    +
    + +

    98

    +
    +

    JAX-28cMC

    +
    +

    BXD28

    + +
    +

    67

    +
    +

    M

    +
    + +

    JAX

    +
    +

    99

    +
    + +

    JAX-28cMD

    +
    +

    BXD28

    +
    +

    67

    + +
    +

    M

    +
    +

    JAX

    +
    +

    100

    +
    +

    82609.11-29cFA

    +
    + +

    BXD29

    +
    +

    66

    +
    +

    F

    + +
    +

    JAX

    +
    +

    101

    + +
    +

    82609.12-29cFB

    +
    +

    BXD29

    +
    + +

    66

    +
    +

    F

    +
    +

    JAX

    + +
    +

    102

    +
    +

    82609.04-29cMA

    + +
    +

    BXD29

    +
    +

    66

    +
    + +

    M

    +
    +

    JAX

    +
    + +

    103

    +
    +

    82609.05-29cMB

    +
    +

    BXD29

    + +
    +

    66

    +
    +

    M

    +
    + +

    JAX

    +
    +

    104

    +
    + +

    011309.03-32cFA

    +
    +

    BXD32

    +
    +

    62

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    105

    +
    +

    011309.04-32cFB

    +
    + +

    BXD32

    +
    +

    62

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    106

    + +
    +

    KA7318-32cFC

    +
    +

    BXD32

    +
    + +

    71

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    107

    +
    +

    KA7319-32cMA

    + +
    +

    BXD32

    +
    +

    74

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    108

    +
    +

    KA7319-32cMB

    +
    +

    BXD32

    + +
    +

    74

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    109

    +
    + +

    100909.07-33cFA

    +
    +

    BXD33

    +
    +

    65

    + +
    +

    F

    +
    +

    JAX

    +
    +

    110

    +
    +

    100909.08-33cFB

    +
    + +

    BXD33

    +
    +

    65

    +
    +

    F

    + +
    +

    JAX

    +
    +

    111

    + +
    +

    022609.01-33cMA

    +
    +

    BXD33

    +
    + +

    92

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    112

    +
    +

    022609.02-33cMB

    + +
    +

    BXD33

    +
    +

    92

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    113

    +
    +

    KA7416-34cFA

    +
    +

    BXD34

    + +
    +

    97

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    114

    +
    + +

    KA7416-34cFB

    +
    +

    BXD34

    +
    +

    97

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    115

    +
    +

    KA6321-34cMA

    +
    + +

    BXD34

    +
    +

    66

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    116

    + +
    +

    KA6321-34cMB

    +
    +

    BXD34

    +
    + +

    66

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    117

    +
    +

    060409.01-36cFA

    + +
    +

    BXD36

    +
    +

    63

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    118

    +
    +

    060409.02-36cFB

    +
    +

    BXD36

    + +
    +

    63

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    119

    +
    + +

    060409.03-36cMC

    +
    +

    BXD36

    +
    +

    63

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    120

    +
    +

    KA6702-38cFA

    +
    + +

    BXD38

    +
    +

    63

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    121

    + +
    +

    KA6702-38cFB

    +
    +

    BXD38

    +
    + +

    63

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    122

    +
    +

    82609.24-38cFA

    + +
    +

    BXD38

    +
    +

    85

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    123

    +
    +

    82609.25-38cFB

    +
    +

    BXD38

    + +
    +

    85

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    124

    +
    + +

    100909.03-38cMA

    +
    +

    BXD38

    +
    +

    61

    + +
    +

    M

    +
    +

    JAX

    +
    +

    125

    +
    +

    100909.04-38cMB

    +
    + +

    BXD38

    +
    +

    61

    +
    +

    M

    + +
    +

    JAX

    +
    +

    126

    + +
    +

    022609.05-39cFA

    +
    +

    BXD39

    +
    + +

    65

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    127

    +
    +

    022609.06-39cFB

    + +
    +

    BXD39

    +
    +

    65

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    128

    +
    +

    31209.01-39cMC

    +
    +

    BXD39

    + +
    +

    67

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    129

    +
    + +

    92409.01-40cFA

    +
    +

    BXD40

    +
    +

    64

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    130

    +
    +

    92409.02-40cFB

    +
    + +

    BXD40

    +
    +

    64

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    131

    + +
    +

    KA6173-40cMA

    +
    +

    BXD40

    +
    + +

    59

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    132

    +
    +

    KA6173-40cMB

    + +
    +

    BXD40

    +
    +

    59

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    133

    +
    +

    KA6173-40cMC

    +
    +

    BXD40

    + +
    +

    59

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    134

    +
    + +

    091809.01-42cFA

    +
    +

    BXD42

    +
    +

    73

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    135

    +
    +

    091809.02-42cFB

    +
    + +

    BXD42

    +
    +

    73

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    136

    + +
    +

    021909.01-42cFA

    +
    +

    BXD42

    +
    + +

    89

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    137

    +
    +

    011309.06-42cMA

    + +
    +

    BXD42

    +
    +

    67

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    138

    +
    +

    011309.07-42cMB

    +
    +

    BXD42

    + +
    +

    67

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    139

    +
    + +

    110408_02-43cFA

    +
    +

    BXD43

    +
    +

    61

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    140

    +
    +

    110408_03-43cFB

    +
    + +

    BXD43

    +
    +

    61

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    141

    + +
    +

    KA6158-43cMA

    +
    +

    BXD43

    +
    + +

    66

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    142

    +
    +

    KA6158-43cMB

    + +
    +

    BXD43

    +
    +

    66

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    143

    +
    +

    100308_01-44cFA

    +
    +

    BXD44

    + +
    +

    67

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    144

    +
    + +

    102208_02-44cMD

    +
    +

    BXD44

    +
    +

    64

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    145

    +
    +

    103009.03-45cFA

    +
    + +

    BXD45

    +
    +

    68

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    146

    + +
    +

    103009.04-45cFB

    +
    +

    BXD45

    +
    + +

    68

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    147

    +
    +

    022609.03-45cFA

    + +
    +

    BXD45

    +
    +

    78

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    148

    +
    +

    022609.04-45cFB

    +
    +

    BXD45

    + +
    +

    78

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    149

    +
    + +

    40309.05-45cMB

    +
    +

    BXD45

    +
    +

    65

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    150

    +
    +

    40209.05-48cFB

    +
    + +

    BXD48

    +
    +

    58

    +
    +

    F

    + +
    +

    VAMC

    +
    +

    151

    + +
    +

    40209.06-48cFC

    +
    +

    BXD48

    +
    + +

    58

    +
    +

    F

    +
    +

    VAMC

    + +
    +

    152

    +
    +

    81209.04-48cMA

    + +
    +

    BXD48

    +
    +

    82

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    153

    +
    +

    81209.05-48cMB

    +
    +

    BXD48

    + +
    +

    82

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    154

    +
    + +

    KA737850cFA

    +
    +

    BXD50

    +
    +

    50

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    155

    +
    +

    KA737850cFB

    +
    + +

    BXD50

    +
    +

    50

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    156

    + +
    +

    121908_01-50cMA

    +
    +

    BXD50

    +
    + +

    49

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    157

    +
    +

    121908_02-50cMB

    + +
    +

    BXD50

    +
    +

    49

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    158

    +
    +

    111208_01-51cFA

    +
    +

    BXD51

    + +
    +

    99

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    159

    +
    + +

    102208_03-51cMA

    +
    +

    BXD51

    +
    +

    56

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    160

    +
    +

    102208_04-51cMB

    +
    + +

    BXD51

    +
    +

    56

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    161

    + +
    +

    090208_14-53BcFA

    +
    +

    BXD53B

    +
    + +

    93

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    162

    +
    +

    090208_15-53BcFB

    + +
    +

    BXD53B

    +
    +

    93

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    163

    +
    +

    090208_16-53BcMC

    +
    +

    BXD53B

    + +
    +

    93

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    164

    +
    + +

    090208_17-53BcMD

    +
    +

    BXD53B

    +
    +

    93

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    165

    +
    +

    111208_05-55cFB

    +
    + +

    BXD55

    +
    +

    70

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    166

    + +
    +

    KA6183-55cMA

    +
    +

    BXD55

    +
    + +

    63

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    167

    +
    +

    KA6183-55cMB

    + +
    +

    BXD55

    +
    +

    63

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    168

    +
    +

    KA7362-56cFB

    +
    +

    BXD 56

    + +
    +

    54

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    169

    +
    + +

    KA6088-56cMA

    +
    +

    BXD56

    +
    +

    87

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    170

    +
    +

    KA6088-56cMB

    +
    + +

    BXD56

    +
    +

    87

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    171

    + +
    +

    KA6088-56cMC

    +
    +

    BXD56

    +
    + +

    87

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    172

    +
    +

    21810.01-60RFA

    + +
    +

    BXD 60

    +
    +

    67

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    173

    +
    +

    21810.02-60RFB

    +
    +

    BXD 60

    + +
    +

    67

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    174

    +
    + +

    21810.02-60RFC

    +
    +

    BXD 60

    +
    +

    67

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    175

    +
    +

    SQ7325-60cMA

    +
    + +

    BXD60

    +
    +

    85

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    176

    + +
    +

    SQ7325-60cMB

    +
    +

    BXD60

    +
    + +

    85

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    177

    +
    +

    092308_10-61cFA

    + +
    +

    BXD61

    +
    +

    110

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    178

    +
    +

    092308_11-61cFB

    +
    +

    BXD61

    + +
    +

    110

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    179

    +
    + +

    31909.01-61cMA

    +
    +

    BXD61

    +
    +

    67

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    180

    +
    +

    31909.02-61cMB

    +
    + +

    BXD61

    +
    +

    67

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    181

    + +
    +

    KA7462-62cFA

    +
    +

    BXD62

    +
    + +

    76

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    182

    +
    +

    KA7462-62cFB

    + +
    +

    BXD62

    +
    +

    76

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    183

    +
    +

    KA5996-62cMA

    +
    +

    BXD62

    + +
    +

    113

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    184

    +
    + +

    KA5996-62cMB

    +
    +

    BXD62

    +
    +

    113

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    185

    +
    +

    KA5996-62cMC

    +
    + +

    BXD62

    +
    +

    113

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    186

    + +
    +

    090309.01-63cFA

    +
    +

    BXD63

    +
    + +

    69

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    187

    +
    +

    090309.02-63cFB

    + +
    +

    BXD63

    +
    +

    69

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    188

    +
    +

    110609.01-63cMA

    +
    +

    BXD63

    + +
    +

    66

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    189

    +
    + +

    110609.02-63cMB

    +
    +

    BXD63

    +
    +

    66

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    190

    +
    +

    091809.03-65cFA

    +
    + +

    BXD65

    +
    +

    65

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    191

    + +
    +

    091809.04-65cFB

    +
    +

    BXD65

    +
    + +

    65

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    192

    +
    +

    103009.01-65cMA

    + +
    +

    BXD65

    +
    +

    74

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    193

    +
    +

    103009.02-65cMB

    +
    +

    BXD65

    + +
    +

    74

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    194

    +
    + +

    110408_05-66cFB

    +
    +

    BXD66

    +
    +

    59

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    195

    +
    +

    KA7165-66cMA

    +
    + +

    BXD66

    +
    +

    95

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    196

    + +
    +

    KA7165-66cMB

    +
    +

    BXD66

    +
    + +

    95

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    197

    +
    +

    90809.01-67cMA

    + +
    +

    BXD67

    +
    +

    61

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    198

    +
    +

    90809.02-67cMB

    +
    +

    BXD67

    + +
    +

    61

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    199

    +
    + +

    110609.03-67cFA

    +
    +

    BXD67

    +
    +

    68

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    200

    +
    +

    110609.04-67cFB

    +
    + +

    BXD67

    +
    +

    68

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    201

    + +
    +

    120408_01-68cFA

    +
    +

    BXD68

    +
    + +

    67

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    202

    +
    +

    120408_02-68cFB

    + +
    +

    BXD68

    +
    +

    67

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    203

    +
    +

    SQ7205-68cMA

    +
    +

    BXD68

    + +
    +

    87

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    204

    +
    + +

    SQ7205-68cMB

    +
    +

    BXD68

    +
    +

    87

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    205

    +
    +

    KA6316-68cMA

    +
    + +

    BXD68

    +
    +

    76

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    206

    + +
    +

    KA6316-68cMB

    +
    +

    BXD68

    +
    + +

    76

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    207

    +
    +

    KA6316-68cMC

    + +
    +

    BXD68

    +
    +

    76

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    208

    +
    +

    KA76-69cFA

    +
    +

    BXD69

    + +
    +

    48

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    209

    +
    + +

    KA76-69cFB

    +
    +

    BXD69

    +
    +

    48

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    210

    +
    +

    KA6074-69cMA

    +
    + +

    BXD69

    +
    +

    90

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    211

    + +
    +

    KA6074-69cMB

    +
    +

    BXD69

    +
    + +

    90

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    212

    +
    +

    052809.01-71cFA

    + +
    +

    BXD71

    +
    +

    70

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    213

    +
    +

    060409.09-71cMA

    +
    +

    BXD71

    + +
    +

    62

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    214

    +
    + +

    060409.10-71cMB

    +
    +

    BXD71

    +
    +

    62

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    215

    +
    +

    40809.01-73cFA

    +
    + +

    BXD73

    +
    +

    83

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    216

    + +
    +

    40809.02-73cFB

    +
    +

    BXD73

    +
    + +

    83

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    217

    +
    +

    111708_01-73cFA

    + +
    +

    BXD73

    +
    +

    55

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    218

    +
    +

    111708_01-73cFB

    +
    +

    BXD73

    + +
    +

    55

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    219

    +
    + +

    KA6164-73cMB

    +
    +

    BXD73

    +
    +

    59

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    220

    +
    +

    KA6164-73cMC

    +
    + +

    BXD73

    +
    +

    59

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    221

    + +
    +

    82609.22-74cFA

    +
    +

    BXD74

    +
    + +

    68

    +
    +

    F

    +
    +

    VAMC

    + +
    +

    222

    +
    +

    82609.23-74cFB

    + +
    +

    BXD74

    +
    +

    68

    +
    + +

    F

    +
    +

    VAMC

    +
    + +

    223

    +
    +

    82609.20-74cMA

    +
    +

    BXD74

    + +
    +

    68

    +
    +

    M

    +
    + +

    VAMC

    +
    +

    224

    +
    + +

    82609.21-74cMB

    +
    +

    BXD74

    +
    +

    68

    + +
    +

    M

    +
    +

    VAMC

    +
    +

    225

    +
    +

    KA733675cFA

    +
    + +

    BXD75

    +
    +

    59

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    226

    + +
    +

    KA733675cFB

    +
    +

    BXD75

    +
    + +

    59

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    227

    +
    +

    KA38-75cMB

    + +
    +

    BXD75

    +
    +

    62

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    228

    +
    +

    KA38-75cMC

    +
    +

    BXD75

    + +
    +

    62

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    229

    +
    + +

    41509.01-77cFA

    +
    +

    BXD77

    +
    +

    70

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    230

    +
    +

    41509.02-77cFB

    +
    + +

    BXD77

    +
    +

    70

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    231

    + +
    +

    41509.03-77cMC

    +
    +

    BXD77

    +
    + +

    70

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    232

    +
    +

    41509.04-77cMD

    + +
    +

    BXD77

    +
    +

    70

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    233

    +
    +

    121608_03-80cFA

    +
    +

    BXD80

    + +
    +

    77

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    234

    +
    + +

    121608_05-80cMC

    +
    +

    BXD80

    +
    +

    70

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    235

    +
    +

    KA23-80cMC

    +
    + +

    BXD80

    +
    +

    77

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    236

    + +
    +

    KA7305-81cFA

    +
    +

    BXD81

    +
    + +

    51

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    237

    +
    +

    KA7305-81cFB

    + +
    +

    BXD81

    +
    +

    51

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    238

    +
    +

    KA7305-81cMD

    +
    +

    BXD81

    + +
    +

    51

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    239

    +
    + +

    090409.05-84cFA

    +
    +

    BXD84

    +
    +

    65

    + +
    +

    F

    +
    +

    VAMC

    +
    +

    240

    +
    +

    090409.06-84cFB

    +
    + +

    BXD84

    +
    +

    65

    +
    +

    F

    + +
    +

    VAMC

    +
    +

    241

    + +
    +

    KA6203-84cMA

    +
    +

    BXD84

    +
    + +

    59

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    242

    +
    +

    KA6203-84cMB

    + +
    +

    BXD84

    +
    +

    59

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    243

    +
    +

    40309.02-85cFD

    +
    +

    BXD85

    + +
    +

    58

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    244

    +
    + +

    40309.03-85cFE

    +
    +

    BXD85

    +
    +

    58

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    245

    +
    +

    32609.01-85cMA

    +
    + +

    BXD85

    +
    +

    67

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    246

    + +
    +

    32609.02-85cMB

    +
    +

    BXD85

    +
    + +

    67

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    247

    +
    +

    41509.05-86cFA

    + +
    +

    BXD86

    +
    +

    73

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    248

    +
    +

    41509.06-86cFB

    +
    +

    BXD86

    + +
    +

    73

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    249

    +
    + +

    KA6101-86cMA

    +
    +

    BXD86

    +
    +

    82

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    250

    +
    +

    KA6101-86cMC

    +
    + +

    BXD86

    +
    +

    82

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    251

    + +
    +

    070909.02-87cFA

    +
    +

    BXD87

    +
    + +

    86

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    252

    +
    +

    070909.03-87cFB

    + +
    +

    BXD87

    +
    +

    86

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    253

    +
    +

    KA7407-87cMA

    +
    +

    BXD87

    + +
    +

    113

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    254

    +
    + +

    KA7407-87cMB

    +
    +

    BXD87

    +
    +

    113

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    255

    +
    +

    72309.01-90cFA

    +
    + +

    BXD90

    +
    +

    67

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    256

    + +
    +

    72309.02-90cFB

    +
    +

    BXD90

    +
    + +

    67

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    257

    +
    +

    090409.03-90cMA

    + +
    +

    BXD90

    +
    +

    64

    +
    + +

    M

    +
    +

    VAMC

    +
    + +

    258

    +
    +

    090409.04-90cMB

    +
    +

    BXD90

    + +
    +

    64

    +
    +

    M

    +
    + +

    VAMC

    +
    +

    259

    +
    + +

    KA6094-92cMA

    +
    +

    BXD92

    +
    +

    85

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    260

    +
    +

    020609.01-95cFA

    +
    + +

    BXD95

    +
    +

    71

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    261

    + +
    +

    020609.02-95cFB

    +
    +

    BXD95

    +
    + +

    71

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    262

    +
    +

    KA6181-95cMA

    + +
    +

    BXD95

    +
    +

    61

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    263

    +
    +

    KA6181-95cMB

    +
    +

    BXD95

    + +
    +

    61

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    264

    +
    + +

    31209.03-96cFA

    +
    +

    BXD96

    +
    +

    62

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    265

    +
    +

    31209.04-96cFB

    +
    + +

    BXD96

    +
    +

    62

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    266

    + +
    +

    KA7246-96cMA

    +
    +

    BXD96

    +
    + +

    73

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    267

    +
    +

    KA7246-96cMB

    + +
    +

    BXD96

    +
    +

    73

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    268

    +
    +

    81209.10-97cFA

    +
    +

    BXD97

    + +
    +

    83

    +
    +

    F

    +
    + +

    VAMC

    +
    +

    268

    +
    + +

    81209.11-97cFB

    +
    +

    BXD97

    +
    +

    83

    + +
    +

    F

    +
    +

    VAMC

    +
    +

    270

    +
    +

    81209.1-97cMA

    +
    + +

    BXD97

    +
    +

    83

    +
    +

    M

    + +
    +

    VAMC

    +
    +

    271

    + +
    +

    81209.11-97cMB

    +
    +

    BXD97

    +
    + +

    83

    +
    +

    M

    +
    +

    VAMC

    + +
    +

    272

    +
    +

    SQ7520-98cFA

    + +
    +

    BXD98

    +
    +

    59

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    273

    +
    +

    SQ7520-98cFB

    +
    +

    BXD98

    + +
    +

    59

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    274

    +
    + +

    SQ7520-98cMC

    +
    +

    BXD98

    +
    +

    59

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    275

    +
    +

    SQ7520-98cMD

    +
    + +

    BXD98

    +
    +

    59

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    276

    + +
    +

    82609.17-99cFA

    +
    +

    BXD99

    +
    + +

    64

    +
    +

    F

    +
    +

    VAMC

    + +
    +

    277

    +
    +

    82609.18-99cFB

    + +
    +

    BXD99

    +
    +

    64

    +
    + +

    F

    +
    +

    VAMC

    +
    + +

    278

    +
    +

    81409.01-99cMA

    +
    +

    BXD99

    + +
    +

    66

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    279

    +
    + +

    81409.02-99cMB

    +
    +

    BXD99

    +
    +

    66

    + +
    +

    M

    +
    +

    UTHSC RW

    +
    +

    280

    +
    +

    121608_09-100cFA

    +
    + +

    BXD100

    +
    +

    81

    +
    +

    F

    + +
    +

    UTHSC RW

    +
    +

    281

    + +
    +

    121608_10-100cFB

    +
    +

    BXD100

    +
    + +

    81

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    282

    +
    +

    KA6001-100cMA

    + +
    +

    BXD100

    +
    +

    111

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    283

    +
    +

    KA6001-100cMB

    +
    +

    BXD100

    + +
    +

    111

    +
    +

    M

    +
    + +

    UTHSC RW

    +
    +

    284

    +
    + +

    81209.12-101cFA

    +
    +

    BXD101

    +
    +

    72

    + +
    +

    F

    +
    +

    VAMC

    +
    +

    285

    +
    +

    81209.13-101cFB

    +
    + +

    BXD101

    +
    +

    72

    +
    +

    F

    + +
    +

    VAMC

    +
    +

    286

    + +
    +

    KA7296-101cMA

    +
    +

    BXD101

    +
    + +

    75

    +
    +

    M

    +
    +

    UTHSC RW

    + +
    +

    287

    +
    +

    KA7296-101cMB

    + +
    +

    BXD101

    +
    +

    75

    +
    + +

    M

    +
    +

    UTHSC RW

    +
    + +

    288

    +
    +

    92409.03-102cFA

    +
    +

    BXD102

    + +
    +

    71

    +
    +

    F

    +
    + +

    VAMC

    +
    +

    289

    +
    + +

    92409.04-102cFB

    +
    +

    BXD102

    +
    +

    71

    + +
    +

    F

    +
    +

    VAMC

    +
    +

    290

    +
    +

    KA7380-102cMA

    +
    + +

    BXD102

    +
    +

    115

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    291

    + +
    +

    43009.01-103cFA

    +
    +

    BXD103

    +
    + +

    68

    +
    +

    F

    +
    +

    UTHSC RW

    + +
    +

    292

    +
    +

    43009.02-103cFB

    + +
    +

    BXD103

    +
    +

    68

    +
    + +

    F

    +
    +

    UTHSC RW

    +
    + +

    293

    +
    +

    KA79-103cFA

    +
    +

    BXD103

    + +
    +

    48

    +
    +

    F

    +
    + +

    UTHSC RW

    +
    +

    294

    +
    + +

    KA79-103cFB

    +
    +

    BXD103

    +
    +

    48

    + +
    +

    F

    +
    +

    UTHSC RW

    +
    +

    295

    +
    +

    KA79-103cMC

    +
    + +

    BXD103

    +
    +

    48

    +
    +

    M

    + +
    +

    UTHSC RW

    +
    +

    296

    + +
    +

    82609.15-103cMA

    +
    +

    BXD103

    +
    + +

    69

    +
    +

    M

    +
    +

    VAMC

    + +
    +

    297

    +
    +

    82609.16-103cMB

    + +
    +

    BXD103

    +
    +

    69

    +
    + +

    M

    +
    +

    VAMC

    +
    + +

    298

    +
    +

    102909.01-BALBCcFA

    +
    +

    BALB/cByJ

    + +
    +

    78

    +
    +

    F

    +
    + +

    JAX

    +
    +

    299

    +
    + +

    102909.02-BALBCcFB

    +
    +

    BALB/cByJ

    +
    +

    78

    + +
    +

    F

    +
    +

    JAX

    +
    +

    300

    +
    +

    102909.03-BALBCcMA

    +
    + +

    BALB/cByJ

    +
    +

    78

    +
    +

    M

    + +
    +

    JAX

    +
    +

    301

    + +
    +

    102909.04-BALBCcMB

    +
    +

    BALB/cByJ

    +
    + +

    78

    +
    +

    M

    +
    +

    JAX

    + +
    + + + + + +

    + +

    About downloading this data set:

    +
    + + + + + + +

    This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

    +
    + + +

    About the array platform:

    +
    +

    Illumina MouseWG-6 v2.0 arrays: The Illumina Sentrix Mouse-6 BeadChip uses 50-nucleotide probes to interrogate approximately 46,000 sequences from the mouse transcriptome. For each array, the RNA was pooled from two retinas.

    + +
    +

    +

    About data values and data processing:

    + +
    +Values of all 45,281 probe sets in this data set range from a low of 6.25 (integral membrane transport protein UST4r, Ust4r, probe ID ILMN_1225143) to a high of 18.08 (Ubiquitin B, Ubb, probe ID ILMN_2516699). This corresponds to 11.83 units or a 1 to 3641 dynamic range of expression (2^11.83). We normalized raw signal values using Beadstudio’s rank invariant normalization algorithm. BXD62 was the strain used as the control group + +
    + +

    Normalization:

    +

    All normalization was performed by William E. Orr in the HEI Vision Core Facility +

      + +
    1. Computed the log base 2 of each raw signal value +
    2. Calculated the mean and standard Deviation of each Mouse WG-6 v2.0 array +
    3. Normalized each array using the formula, 2 (z-score of log2 [intensity]) +The result is to produce arrays that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. +
    4. computed the mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. +
    + +

    Funding Support for the HEI Retina Dataset:

    +
    +

    The HEI Retinal Database is supported by National Eye Institute Grants: +

  • R01EY017841 (Dr. Eldon E. Geisert, PI) +

  • P030EY13080 (NEI Vision Core Grant), and +

  • A Unrestricted Grand from Research to Prevent Blindness (Dr. Barrett Haik, PI) + +
  • + + + +

    Information about this text file:

    +
    +

    Dataset was uploaded to GeneNetwork by Arthur Centeno and Xiaodong Zhou, April 7, 2010. This text file was generated by Justin P. Templeton April 2010 from a previous version by RWW and EEG. +

    +
    + + +

    +

    +

    +

    References

    +
    Rogojina AT, Orr WE, Song BK, Geisert EE, Jr.: Comparing the use of Affymetrix to spotted oligonucleotide microarrays using two retinal pigment epithelium cell lines. Molecular vision 2003, 9:482-496.(Link) +

    Vazquez-Chona F, Song BK, Geisert EE, Jr.: Temporal changes in gene expression after injury in the rat retina. Investigative ophthalmology & visual science 2004, 45(8):2737-2746.(Link) + +

    + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series No GEO series number +

    Status Private on April, 2010 +

    Organism(s) Mus musculus +

    Experiment type Expression profiling by array + +

    Overall design We used pooled RNA samples of retinas, usually two independent pools--two male, two female pool--for most lines of mice. + +

    Contributor(s) Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Justin P. Templeton, Robert W. Williams + + +

    +
    Submission date Not yet submitted to GEO. +
    Contact name Eldon E. Geisert +
    E-mails EGeisert@uthsc.edu +
    Phone 901-448-7740 +
    FAX 901-448-5028 +
    URL GeneNetwork BXD G2 HEI RETINA +
    Organization name University of Tennessee Health Science Center +
    Department(s) Department of Ophthalmology +
    Laboratory(s) Geisert, Lu, Wiliams Labs +
    Street address 930 Madison Avenue +
    City Memphis +
    State/province TN +
    ZIP/Postal code 38163 +
    Country USA + + +

    Platforms (1) GPLXXXX Illumina Mouse Whole Genome 6 version 2.0 + + + + + + + + + + + + + + + + + + +

    + + + + + + + + + + +
    +
      + +
    +
    + + + + + + + + + + + + + + + diff --git a/web/dbdoc/GCB_M2_0505_M.html b/web/dbdoc/GCB_M2_0505_M.html new file mode 100755 index 00000000..89568f3d --- /dev/null +++ b/web/dbdoc/GCB_M2_0505_M.html @@ -0,0 +1,172 @@ + +GE-NIAAA Cerebellum mRNA M430v2 (May05) MAS5 dataset + + + + + + + + + + + + + + + + + +
    + + + +
    +

    GE-NIAAA Cerebellum mRNA M430v2 (May05) MAS5 dataset modify this page

    Accession number: GN71

    + +

        Summary:

    + +
    +

    +NOT RECOMMENDED: This May 2005 data freeze provides estimates of mRNA expression in adult cerebellum of 40 lines of mice including 28 BXD recombinant inbred strains, C57BL/6J, DBA/2J, and 10 other common inbred strains of mice. Data were generated by Genome Explorations Inc. (Divyen Patel and colleagues). Cerebellar samples were hybridized in small pools (n = 3) to Affymetrix M430 2.0 arrays. This particular data set was processed using the Microarray Suite 5 (MAS 5) protocol. To simplify comparisons among transforms, MAS5 values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. +

    +
    + + +

        About the cases used to generate this set of data:

    + +
    +We use a set of BXD recombinant inbred strains and standard inbred strains. The BXD lines are derived crossed between C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D parental strains have been almost fully sequenced (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera Discovery Systems) and data for 1.75 millioin B vs D SNPs are incorporated into WebQTL's genetic maps for the BXDs. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from The Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004).

    + +

    Most BXD animals were generated in-house at the University of Tennessee Health Science Center by Lu Lu and Robert Williams using stock obtained from The Jackson Laboratory between 1999 and 2004. All BXD strains with numbers above 42 are new advanced intecross type BXDs (Peirce et al. 2004) that are current available from UTHSC. Additional cases were provided by Glenn Rosen, John Mountz, and Hui-Chen Hsu. These cases were bred either at The Jackson Laboratory (GR) or at the University of Alabama (JM and HCH). +

    + + + + + +
    + + + +

        About the tissue used to generate this set of data:

    + +

    The May 2005 data set consists of a total of 61 array (Affymetrix 430 2.0 arrays) from 40 different genotypes. Each sample consists of whole cerebellum taken from three adult animals of the same age and sex. The M430 2.0 arrays were processed in several batches. + +

    Replication and Sample Balance: We obtained data independent biological sample pools from both sexes for half of the strain, including most of the standard inbred strains (129S1/SvImJ is the exception and is represented by two female-only arrays). Most BXD strains are represented by single pooled samples. You can determine the sex of a sample from the table below or by reviewing the expression of the Ddx3y and Xist RNA signal. + + + +

    +

    + + +

    Legend: Sex balance of the GE-NIAAA data set can be easily evaluated by analysis of this scatterplot of Ddx3y and Xist. Ddx3y (also called Dby) is a transcript with high expression in males whereas Xist is a transcript with high expression in females. Strains that fall in the upper left quadrant are represented only by a single female sample (except in the case of the 129S1/SvImJ data) whereas strains that fall in the lower right quadrant are represented only a a single male sample.

    +
    + + + + + +

    RNA was extracted at Genome Explorations.

    + +

    All samples were subsequently processed at the Genome Explorations Inc. by Divyen Patel and colleagues.

    + +
    + + + + +

        About the array platform :

    +
    +

    Affymetrix Mouse Genome 430 2.0: The 430 2.0 array consist of approximately 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430A and 430B series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

    +
    + + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization for the log base 2 values for the total set of 104 arrays (all three batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: No correction for potential batch effect was attempted. + +
    • Step 7: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replciates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, source of animals, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for these variables. + +
    + + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium March 2005 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    +Data were generated with funds to Genome Explorations, Inc., for the NIAAA as part of an SBIR grant to Dr. Divyen Patel. Mouse colony resources and integration of data into GeneNetwork was carried out by Drs. RW Williams and Lu Lu at UTHSC. + +
    + +

        Information about this text file:

    +

    +This text file originally generated by RWW and YHQ, March 21, 2005. Updated by RWW, March 23, 2005; RWW April 8. + + + + +

    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/GCB_M2_0505_P.html b/web/dbdoc/GCB_M2_0505_P.html new file mode 100755 index 00000000..0fccc1a1 --- /dev/null +++ b/web/dbdoc/GCB_M2_0505_P.html @@ -0,0 +1,207 @@ + + +GE-NIAAA Cerebellum mRNA M430v2 (May05) PDNN + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    GE-NIAAA Cerebellum mRNA M430v2 (May05) PDNN modify this page

    Accession number: GN73

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    These data were generated by Dr. Divyen Patel and Genome Explorations, Inc.

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GCB_M2_0505_R.html b/web/dbdoc/GCB_M2_0505_R.html new file mode 100755 index 00000000..55e618d1 --- /dev/null +++ b/web/dbdoc/GCB_M2_0505_R.html @@ -0,0 +1,207 @@ + + +GE-NIAAA Cerebellum mRNA M430v2 (May05) RMA + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    GE-NIAAA Cerebellum mRNA M430v2 (May05) RMA modify this page

    Accession number: GN72

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GN304_Iancu_Hitzemann.pdf b/web/dbdoc/GN304_Iancu_Hitzemann.pdf new file mode 100755 index 00000000..d65a0322 Binary files /dev/null and b/web/dbdoc/GN304_Iancu_Hitzemann.pdf differ diff --git a/web/dbdoc/GSE15222_F_A_RI_0409.html b/web/dbdoc/GSE15222_F_A_RI_0409.html new file mode 100755 index 00000000..a46eb41a --- /dev/null +++ b/web/dbdoc/GSE15222_F_A_RI_0409.html @@ -0,0 +1,82 @@ + + + +GSE15222 Human Brain Alzheimer Myers (Apr09) RankInv + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GSE15222 Human Brain Alzheimer Myers (Apr09) RankInvmodify this page

    + + Accession number: GN289

    +

    + This page will be updated soon. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GSE15222_F_N_RI_0409.html b/web/dbdoc/GSE15222_F_N_RI_0409.html new file mode 100755 index 00000000..717fb9cf --- /dev/null +++ b/web/dbdoc/GSE15222_F_N_RI_0409.html @@ -0,0 +1,492 @@ + +GSE15222 Human Brain Myers (Apr09) RankInv + + + + + + + + + + + + + + + + + + + + + + + + +
    + +
    + + + +

    NORMAL SUBSET: GSE15222 Human Brain Myers (Apr09) RankInv
    Accession number: GN234 + modify this page

    + + +

    +PUBLISHED DATA SET: Please read and cite:

    Webster JA, Gibbs JR, Clarke J, Ray M, Zhang W, Holmans P, Rohrer K, Zhao A, Marlowe L, Kaleem M, McCorquodale DS 3rd, Cuello C, Leung D, Bryden L, Nath P, Zismann VL, Joshipura K, Huentelman MJ, Hu-Lince D, Coon KD, Craig DW, Pearson JV; NACC-Neuropathology Group, Heward CB, Reiman EM, Stephan D, Hardy J, Myers AJ (2009) Genetic control of human brain transcript expression in Alzheimer disease. Am J Hum Genet 84:445-58. +
    + + +
    Summary: +
    + +

    Myers and colleagues generated massive neocortical transcriptome data sets for a set of unrelated elderly neurologically and neuropathologically normal humans and from confirmed late onset Alzheimer's disease patients (LOAD, n = 187 normal and 176 LOAD cases, see DOI:10.1016/j.ajhg.2009.03.011 for detail). They used an Illumina Sentrix Bead array (HumanRef-8) that measures expression of approximately 19,730 curated RefSeq sequences (Human Build 34). + + +

    Case identifiers: All case identifiers (IDs) in GeneNetwork begin with a capital C followed by a six digit GEO identifier, followed by the sex and age in years. Non-Alzheimer cases are labeled with the suffix letter N: C225652M85N. Alzheimer cases are labeled with the suffix letter A: C388217F97A. + +

    Data were initially downloaded from the NCBI GEO archive under the experiment ID GSE15222. All data were generated using the Illumina HumanRef-8 expression BeadChip (GPL2700) v2 Rev0. This data set in GeneNetwork includes data for 24,354 probes. We have realigned the 50-mer sequences by BLAT to the latest version of the human genome (Feb 2009, hg19) and reannotated the array (August 2009). The annotation in GN will differ from that provided in GEO for this platform. We were unable to obtain 50-mer sequences for several thousand probes (e.g., HTT), and these probes have therefore not been realigned to the human genome. + +

    The GEO data set was processed by Myers and colleagues using Illumina's Rank Invariant transform. We performed a series of QC and renormalization steps to the data to allow more facile comparison to other data sets in GeneNetwork. In brief, data is log2 transformed. We recentered each array to a mean expression of 8 units and a standard deviation of 2 units (2z + 8 transform). The values are therefore modified z scores and each unit represents roughly a two-fold difference in expression. Average expression across all 363 cases range from a low of 6 units (e.g., SYT15) to a high of 19 units for ARSK. APOE has an average expression of 15 units and APP has an average expression of 11.5 units.. The distribution is far from normal with a great excess of measurements of genes with low to moderate expression clustered between 6.5 and 8.5 units. + + +

    A small number of arrays (n = 6, GSM226040, GSM226041, GSM226042, GSM226044, GSM226045, GSM226046) had a different distribution from the great majority of other arrays. This was probably due to a batch processing effect. Members of this minority group belonged to both normal and LOAD cases. This putative batch effect has been eliminated in the GeneNetwork rendition of the Myers data. To eliminate the putative batch effect, we simply computed a mean offset for each probe in the "minority set" relative to the remaining "majority set" and added or subtracted this offset to force the mean of each probe in the minority set to conform to mean of the same probe in the majority set. + +

    + + +
    +

    + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexGEO SeriesOrgan RegionTissueCase IDAgeSex
    1GSM225652Temporal CortexNormalC225652M85N85M
    2GSM225662Temporal CortexNormalC225662M85N85M
    3GSM225664Temporal CortexNormalC225664F79N79F
    4GSM225665Temporal CortexNormalC225665F85N85F
    5GSM225666Temporal CortexNormalC225666F73N73F
    6GSM225667Temporal CortexNormalC225667M81N81M
    7GSM225668Temporal CortexNormalC225668M79N79M
    8GSM225669Temporal CortexNormalC225669M77N77M
    9GSM225670Temporal CortexNormalC225670M69N69M
    10GSM225671Temporal CortexNormalC225671M86N86M
    11GSM225672Temporal CortexNormalC225672F83N83F
    12GSM225673Temporal CortexNormalC225673M78N78M
    13GSM225674Temporal CortexNormalC225674M94N94M
    14GSM225675Temporal CortexNormalC225675F81N81F
    15GSM225676Temporal CortexNormalC225676M76N76M
    16GSM225677Temporal CortexNormalC225677M83N83M
    17GSM225678Temporal CortexNormalC225678M68N68M
    18GSM225679Temporal CortexNormalC225679F82N82F
    19GSM225680Temporal CortexNormalC225680F70N70F
    20GSM225681Temporal CortexNormalC225681M86N86M
    21GSM225682Temporal CortexNormalC225682M78N78M
    22GSM225683Temporal CortexNormalC225683M82N82M
    23GSM225684Temporal CortexNormalC225684F94N94F
    24GSM225685Temporal CortexNormalC225685F87N87F
    25GSM225686Temporal CortexNormalC225686M74N74M
    26GSM225687Temporal CortexNormalC225687M85N85M
    27GSM225688Temporal CortexNormalC225688M75N75M
    28GSM225689Temporal CortexNormalC225689F86N86F
    29GSM225690Temporal CortexNormalC225690M75N75M
    30GSM225691Temporal CortexNormalC225691M81N81M
    31GSM225692Temporal CortexNormalC225692F72N72F
    32GSM225693Temporal CortexNormalC225693F81N81F
    33GSM225695Temporal CortexNormalC225695M81N81M
    34GSM225696Temporal CortexNormalC225696M81N81M
    35GSM225697Temporal CortexNormalC225697M91N91M
    36GSM225698Temporal CortexNormalC225698M84N84M
    37GSM225699Temporal CortexNormalC225699M96N96M
    38GSM225700Temporal CortexNormalC225700F97N97F
    39GSM225701Temporal CortexNormalC225701M90N90M
    40GSM225702Temporal CortexNormalC225702F67N67F
    41GSM225703Temporal CortexNormalC225703F83N83F
    42GSM225704Temporal CortexNormalC225704F82N82F
    43GSM225705Temporal CortexNormalC225705F66N66F
    44GSM225706Temporal CortexNormalC225706F72N72F
    45GSM225707Temporal CortexNormalC225707F65N65F
    46GSM225708Temporal CortexNormalC225708F75N75F
    47GSM225709Temporal CortexNormalC225709F74N74F
    48GSM225711Temporal CortexNormalC225711M68N68M
    49GSM225713Temporal CortexNormalC225713F80N80F
    50GSM225714Temporal CortexNormalC225714M80N80M
    51GSM225715Temporal CortexNormalC225715M66N66M
    52GSM225717Temporal CortexNormalC225717M88N88M
    53GSM225718Temporal CortexNormalC225718F91N91F
    54GSM225719Temporal CortexNormalC225719M73N73M
    55GSM225720Temporal CortexNormalC225720M76N76M
    56GSM225721Temporal CortexNormalC225721M75N75M
    57GSM225722Temporal CortexNormalC225722F86N86F
    58GSM225723Temporal CortexNormalC225723F72N72F
    59GSM225724Temporal CortexNormalC225724M97N97M
    60GSM225725Temporal CortexNormalC225725M86N86M
    61GSM225726Temporal CortexNormalC225726M82N82M
    62GSM225727Temporal CortexNormalC225727F95N95F
    63GSM225728Temporal CortexNormalC225728F76N76F
    64GSM225729Temporal CortexNormalC225729M76N76M
    65GSM225730Temporal CortexNormalC225730M69N69M
    66GSM225731Temporal CortexNormalC225731F80N80F
    67GSM225732Temporal CortexNormalC225732F99N99F
    68GSM225733Temporal CortexNormalC225733M68N68M
    69GSM225734Temporal CortexNormalC225734M70N70M
    70GSM225735Temporal CortexNormalC225735F87N87F
    71GSM225736Temporal CortexNormalC225736F99N99F
    72GSM225737Temporal CortexNormalC225737F88N88F
    73GSM225739Temporal CortexNormalC225739M65N65M
    74GSM225741Temporal CortexNormalC225741M82N82M
    75GSM225742Temporal CortexNormalC225742F78N78F
    76GSM225743Temporal CortexNormalC225743F85N85F
    77GSM225744Temporal CortexNormalC225744F100N100F
    78GSM225745Temporal CortexNormalC225745F87N87F
    79GSM225746Temporal CortexNormalC225746F85N85F
    80GSM225747Temporal CortexNormalC225747F97N97F
    81GSM225748Temporal CortexNormalC225748M65N65M
    82GSM225749Temporal CortexNormalC225749M65N65M
    83GSM225751Temporal CortexNormalC225751F87N87F
    84GSM225752Temporal CortexNormalC225752F85N85F
    85GSM225753Temporal CortexNormalC225753M68N68M
    86GSM225754Temporal CortexNormalC225754M71N71M
    87GSM225755Temporal CortexNormalC225755F83N83F
    88GSM225756Temporal CortexNormalC225756M76N76M
    89GSM225757Temporal CortexNormalC225757M67N67M
    90GSM225758Temporal CortexNormalC225758F100N100F
    91GSM225759Temporal CortexNormalC225759M79N79M
    92GSM225760Temporal CortexNormalC225760M74N74M
    93GSM225761Temporal CortexNormalC225761F88N88F
    94GSM225762Temporal CortexNormalC225762M70N70M
    95GSM225763Temporal CortexNormalC225763F97N97F
    96GSM225764Temporal CortexNormalC225764M69N69M
    97GSM225915Temporal CortexNormalC225915F99N99F
    98GSM225916Temporal CortexNormalC225916M81N81M
    99GSM225917Temporal CortexNormalC225917F85N85F
    100GSM225918Temporal CortexNormalC225918F82N82F
    101GSM225919Temporal CortexNormalC225919M70N70M
    102GSM225920Temporal CortexNormalC225920M73N73M
    103GSM225921Temporal CortexNormalC225921M83N83M
    104GSM225922Temporal CortexNormalC225922M74N74M
    105GSM225923Temporal CortexNormalC225923M77N77M
    106GSM225924Temporal CortexNormalC225924M81N81M
    107GSM225925Temporal CortexNormalC225925M65N65M
    108GSM225926Temporal CortexNormalC225926F73N73F
    109GSM225927Temporal CortexNormalC225927F85N85F
    110GSM225928Temporal CortexNormalC225928M69N69M
    111GSM225929Temporal CortexNormalC225929M72N72M
    112GSM225930Temporal CortexNormalC225930F76N76F
    113GSM225931Temporal CortexNormalC225931M73N73M
    114GSM225932Temporal CortexNormalC225932M66N66M
    115GSM225933Temporal CortexNormalC225933F85N85F
    116GSM225934Temporal CortexNormalC225934M87N87M
    117GSM225935Temporal CortexNormalC225935F86N86F
    118GSM225936Temporal CortexNormalC225936F73N73F
    119GSM225937Temporal CortexNormalC225937M86N86M
    120GSM225938Temporal CortexNormalC225938M72N72M
    121GSM225939Temporal CortexNormalC225939F69N69F
    122GSM225940Temporal CortexNormalC225940F88N88F
    123GSM225941Temporal CortexNormalC225941M77N77M
    124GSM225942Temporal CortexNormalC225942M96N96M
    125GSM225943Temporal CortexNormalC225943F78N78F
    126GSM225944Temporal CortexNormalC225944M77N77M
    127GSM225945Temporal CortexNormalC225945F99N99F
    128GSM225946Temporal CortexNormalC225946M78N78M
    129GSM225947Temporal CortexNormalC225947F76N76F
    130GSM225948Temporal CortexNormalC225948M78N78M
    131GSM225949Temporal CortexNormalC225949F97N97F
    132GSM225950Temporal CortexNormalC225950F86N86F
    133GSM225951Temporal CortexNormalC225951M77N77M
    134GSM225952Temporal CortexNormalC225952M87N87M
    135GSM225953Temporal CortexNormalC225953F72N72F
    136GSM225954Temporal CortexNormalC225954F91N91F
    137GSM225955Temporal CortexNormalC225955F85N85F
    138GSM225956Temporal CortexNormalC225956M88N88M
    139GSM225957Temporal CortexNormalC225957F86N86F
    140GSM225958Temporal CortexNormalC225958F93N93F
    141GSM225959Temporal CortexNormalC225959M82N82M
    142GSM225961Temporal CortexNormalC225961F72N72F
    143GSM225962Temporal CortexNormalC225962F85N85F
    144GSM225963Temporal CortexNormalC225963M70N70M
    145GSM225964Temporal CortexNormalC225964F67N67F
    146GSM225965Temporal CortexNormalC225965F74N74F
    147GSM226034Temporal CortexNormalC226034M69N69M
    148GSM226035Temporal CortexNormalC226035M85N85M
    149GSM226037Temporal CortexNormalC226037M89N89M
    150GSM226038Temporal CortexNormalC226038M86N86M
    151GSM226039Temporal CortexNormalC226039M90N90M
    152GSM226040Temporal CortexNormalC226040F94N94F
    153GSM226041Temporal CortexNormalC226041F91N91F
    154GSM226042Temporal CortexNormalC226042F91N91F
    155GSM226044Temporal CortexNormalC226044F95N95F
    156GSM226045Temporal CortexNormalC226045F95N95F
    157GSM226046Temporal CortexNormalC226046F91N91F
    158GSM226047Temporal CortexNormalC226047M80N80M
    159GSM226048Temporal CortexNormalC226048M83N83M
    160GSM226049Temporal CortexNormalC226049M67N67M
    161GSM226050Temporal CortexNormalC226050M76N76M
    162GSM226051Temporal CortexNormalC226051F86N86F
    163GSM226052Temporal CortexNormalC226052F86N86F
    164GSM226053Temporal CortexNormalC226053M83N83M
    165GSM226055Temporal CortexNormalC226055M84N84M
    166GSM226056Temporal CortexNormalC226056M80N80M
    167GSM226082Temporal CortexNormalC226082M72N72M
    168GSM226145Temporal CortexNormalC226145M67N67M
    169GSM226146Temporal CortexNormalC226146F96N96F
    170GSM226147Temporal CortexNormalC226147F75N75F
    171GSM226148Temporal CortexNormalC226148F89N89F
    172GSM226149Temporal CortexNormalC226149F86N86F
    173GSM226150Temporal CortexNormalC226150M67N67M
    174GSM226151Temporal CortexNormalC226151M77N77M
    175GSM226154Temporal CortexNormalC226154M65N65M
    176GSM226155Temporal CortexNormalC226155M69N69M
    177GSM226156Temporal CortexNormalC226156M84N84M
    178GSM226157Temporal CortexNormalC226157F85N85F
    179GSM226158Temporal CortexNormalC226158M94N94M
    180GSM226159Temporal CortexNormalC226159F89N89F
    181GSM226160Temporal CortexNormalC226160M87N87M
    182GSM226162Temporal CortexNormalC226162M90N90M
    183GSM226163Temporal CortexNormalC226163F88N88F
    184GSM226164Temporal CortexNormalC226164M94N94M
    185GSM226165Temporal CortexNormalC226165F86N86F
    186GSM226167Temporal CortexNormalC226167F93N93F
    187GSM226168Temporal CortexNormalC226168M91N91M
    188GSM388217Cortical TissueAlzheimer'sC388217F97A97F
    189GSM388218Cortical TissueAlzheimer'sC388218F101A101F
    190GSM388219Cortical TissueAlzheimer'sC388219M84A84M
    191GSM388220Cortical TissueAlzheimer'sC388220F95A95F
    192GSM388221Cortical TissueAlzheimer'sC388221F97A97F
    193GSM388222Cortical TissueAlzheimer'sC388222F102A102F
    194GSM388223Cortical TissueAlzheimer'sC388223M87A87M
    195GSM388224Cortical TissueAlzheimer'sC388224F77A77F
    196GSM388225Cortical TissueAlzheimer'sC388225M87A87M
    197GSM388226Cortical TissueAlzheimer'sC388226M84A84M
    198GSM388228Cortical TissueAlzheimer'sC388228F92A92F
    199GSM388229Cortical TissueAlzheimer'sC388229M93A93M
    200GSM388230Cortical TissueAlzheimer'sC388230F93A93F
    201GSM388231Cortical TissueAlzheimer'sC388231F87A87F
    202GSM388232Cortical TissueAlzheimer'sC388232F90A90F
    203GSM388233Cortical TissueAlzheimer'sC388233M75A75M
    204GSM388234Cortical TissueAlzheimer'sC388234M92A92M
    205GSM388235Cortical TissueAlzheimer'sC388235M83A83M
    206GSM388236Cortical TissueAlzheimer'sC388236M88A88M
    207GSM388237Cortical TissueAlzheimer'sC388237M89A89M
    208GSM388238Cortical TissueAlzheimer'sC388238F74A74F
    209GSM388239Cortical TissueAlzheimer'sC388239F79A79F
    210GSM388240Cortical TissueAlzheimer'sC388240M80A80M
    211GSM388241Cortical TissueAlzheimer'sC388241F97A97F
    212GSM388242Cortical TissueAlzheimer'sC388242M87A87M
    213GSM388243Cortical TissueAlzheimer'sC388243F89A89F
    214GSM388244Cortical TissueAlzheimer'sC388244F90A90F
    215GSM388245Cortical TissueAlzheimer'sC388245M90A90M
    216GSM388246Cortical TissueAlzheimer'sC388246M78A78M
    217GSM388247Cortical TissueAlzheimer'sC388247F80A80F
    218GSM388248Cortical TissueAlzheimer'sC388248F79A79F
    219GSM388249Cortical TissueAlzheimer'sC388249F87A87F
    220GSM388250Cortical TissueAlzheimer'sC388250F88A88F
    221GSM388251Cortical TissueAlzheimer'sC388251M86A86M
    222GSM388252Cortical TissueAlzheimer'sC388252F74A74F
    223GSM388253Cortical TissueAlzheimer'sC388253F72A72F
    224GSM388254Cortical TissueAlzheimer'sC388254M81A81M
    225GSM388255Cortical TissueAlzheimer'sC388255F68A68F
    226GSM388256Cortical TissueAlzheimer'sC388256F81A81F
    227GSM388257Cortical TissueAlzheimer'sC388257F82A82F
    228GSM388258Cortical TissueAlzheimer'sC388258M78A78M
    229GSM388259Cortical TissueAlzheimer'sC388259M74A74M
    230GSM388260Cortical TissueAlzheimer'sC388260M88A88M
    231GSM388261Cortical TissueAlzheimer'sC388261F78A78F
    232GSM388262Cortical TissueAlzheimer'sC388262M83A83M
    233GSM388263Cortical TissueAlzheimer'sC388263M83A83M
    234GSM388264Cortical TissueAlzheimer'sC388264M80A80M
    235GSM388265Cortical TissueAlzheimer'sC388265M84A84M
    236GSM388266Cortical TissueAlzheimer'sC388266F79A79F
    237GSM388267Cortical TissueAlzheimer'sC388267F86A86F
    238GSM388268Cortical TissueAlzheimer'sC388268M92A92M
    239GSM388269Cortical TissueAlzheimer'sC388269F81A81F
    240GSM388270Cortical TissueAlzheimer'sC388270F79A79F
    241GSM388271Cortical TissueAlzheimer'sC388271M74A74M
    242GSM388272Cortical TissueAlzheimer'sC388272F73A73F
    243GSM388273Cortical TissueAlzheimer'sC388273M87A87M
    244GSM388274Cortical TissueAlzheimer'sC388274F86A86F
    245GSM388275Cortical TissueAlzheimer'sC388275F86A86F
    246GSM388276Cortical TissueAlzheimer'sC388276F87A87F
    247GSM388277Cortical TissueAlzheimer'sC388277F92A92F
    248GSM388278Cortical TissueAlzheimer'sC388278F78A78F
    249GSM388279Cortical TissueAlzheimer'sC388279F94A94F
    250GSM388281Cortical TissueAlzheimer'sC388281F94A94F
    251GSM388282Cortical TissueAlzheimer'sC388282M76A76M
    252GSM388284Cortical TissueAlzheimer'sC388284M91A91M
    253GSM388285Cortical TissueAlzheimer'sC388285M86A86M
    254GSM388286Cortical TissueAlzheimer'sC388286M77A77M
    255GSM388287Cortical TissueAlzheimer'sC388287M82A82M
    256GSM388288Cortical TissueAlzheimer'sC388288M78A78M
    257GSM388289Cortical TissueAlzheimer'sC388289M79A79M
    258GSM388290Cortical TissueAlzheimer'sC388290F84A84F
    259GSM388291Cortical TissueAlzheimer'sC388291F87A87F
    260GSM388292Cortical TissueAlzheimer'sC388292F86A86F
    261GSM388294Cortical TissueAlzheimer'sC388294M83A83M
    262GSM388295Cortical TissueAlzheimer'sC388295M83A83M
    263GSM388296Cortical TissueAlzheimer'sC388296M81A81M
    264GSM388297Cortical TissueAlzheimer'sC388297F93A93F
    265GSM388298Cortical TissueAlzheimer'sC388298M71A71M
    266GSM388299Cortical TissueAlzheimer'sC388299M78A78M
    267GSM388300Cortical TissueAlzheimer'sC388300F75A75F
    268GSM388301Cortical TissueAlzheimer'sC388301F84A84F
    269GSM388302Cortical TissueAlzheimer'sC388302M73A73M
    270GSM388303Cortical TissueAlzheimer'sC388303F89A89F
    271GSM388304Cortical TissueAlzheimer'sC388304FNAANAF
    272GSM388305Cortical TissueAlzheimer'sC388305M69A69M
    273GSM388306Cortical TissueAlzheimer'sC388306M83A83M
    274GSM388307Cortical TissueAlzheimer'sC388307M71A71M
    275GSM388308Cortical TissueAlzheimer'sC388308F86A86F
    276GSM388309Cortical TissueAlzheimer'sC388309M82A82M
    277GSM388310Cortical TissueAlzheimer'sC388310FNAANAF
    278GSM388311Cortical TissueAlzheimer'sC388311M88A88M
    279GSM388312Cortical TissueAlzheimer'sC388312M77A77M
    280GSM388313Cortical TissueAlzheimer'sC388313M85A85M
    281GSM388314Cortical TissueAlzheimer'sC388314F81A81F
    282GSM388315Cortical TissueAlzheimer'sC388315F86A86F
    283GSM388316Cortical TissueAlzheimer'sC388316M89A89M
    284GSM388317Cortical TissueAlzheimer'sC388317F73A73F
    285GSM388318Cortical TissueAlzheimer'sC388318F96A96F
    286GSM388319Cortical TissueAlzheimer'sC388319M73A73M
    287GSM388320Cortical TissueAlzheimer'sC388320M81A81M
    288GSM388321Cortical TissueAlzheimer'sC388321F84A84F
    289GSM388322Cortical TissueAlzheimer'sC388322F93A93F
    290GSM388323Cortical TissueAlzheimer'sC388323F82A82F
    291GSM388324Cortical TissueAlzheimer'sC388324M76A76M
    292GSM388325Cortical TissueAlzheimer'sC388325M77A77M
    293GSM388326Cortical TissueAlzheimer'sC388326F86A86F
    294GSM388327Cortical TissueAlzheimer'sC388327F85A85F
    295GSM388328Cortical TissueAlzheimer'sC388328M83A83M
    296GSM388329Cortical TissueAlzheimer'sC388329M76A76M
    297GSM388330Cortical TissueAlzheimer'sC388330M81A81M
    298GSM388331Cortical TissueAlzheimer'sC388331M79A79M
    299GSM388332Cortical TissueAlzheimer'sC388332M81A81M
    300GSM388333Cortical TissueAlzheimer'sC388333F78A78F
    301GSM388334Cortical TissueAlzheimer'sC388334M80A80M
    302GSM388335Cortical TissueAlzheimer'sC388335M84A84M
    303GSM388336Cortical TissueAlzheimer'sC388336F85A85F
    304GSM388337Cortical TissueAlzheimer'sC388337M75A75M
    305GSM388338Cortical TissueAlzheimer'sC388338F80A80F
    306GSM388339Cortical TissueAlzheimer'sC388339F97A97F
    307GSM388340Cortical TissueAlzheimer'sC388340F82A82F
    308GSM388341Cortical TissueAlzheimer'sC388341M82A82M
    309GSM388342Cortical TissueAlzheimer'sC388342M77A77M
    310GSM388343Cortical TissueAlzheimer'sC388343M81A81M
    311GSM388345Cortical TissueAlzheimer'sC388345F96A96F
    312GSM388346Cortical TissueAlzheimer'sC388346F90A90F
    313GSM388347Cortical TissueAlzheimer'sC388347M86A86M
    314GSM388348Cortical TissueAlzheimer'sC388348M88A88M
    315GSM388349Cortical TissueAlzheimer'sC388349F90A90F
    316GSM388350Cortical TissueAlzheimer'sC388350F90A90F
    317GSM388351Cortical TissueAlzheimer'sC388351F84A84F
    318GSM388352Cortical TissueAlzheimer'sC388352M84A84M
    319GSM388353Cortical TissueAlzheimer'sC388353F91A91F
    320GSM388354Cortical TissueAlzheimer'sC388354F81A81F
    321GSM388355Cortical TissueAlzheimer'sC388355F84A84F
    322GSM388356Cortical TissueAlzheimer'sC388356M80A80M
    323GSM388357Cortical TissueAlzheimer'sC388357M81A81M
    324GSM388358Cortical TissueAlzheimer'sC388358F87A87F
    325GSM388359Cortical TissueAlzheimer'sC388359M85A85M
    326GSM388360Cortical TissueAlzheimer'sC388360F90A90F
    327GSM388361Cortical TissueAlzheimer'sC388361M79A79M
    328GSM388362Cortical TissueAlzheimer'sC388362F87A87F
    329GSM388363Cortical TissueAlzheimer'sC388363M75A75M
    330GSM388364Cortical TissueAlzheimer'sC388364F92A92F
    331GSM388365Cortical TissueAlzheimer'sC388365F84A84F
    332GSM388366Cortical TissueAlzheimer'sC388366M75A75M
    333GSM388367Cortical TissueAlzheimer'sC388367F76A76F
    334GSM388368Cortical TissueAlzheimer'sC388368F86A86F
    335GSM388369Cortical TissueAlzheimer'sC388369M82A82M
    336GSM388370Cortical TissueAlzheimer'sC388370M76A76M
    337GSM388371Cortical TissueAlzheimer'sC388371F81A81F
    338GSM388372Cortical TissueAlzheimer'sC388372F80A80F
    339GSM388373Cortical TissueAlzheimer'sC388373M83A83M
    340GSM388374Cortical TissueAlzheimer'sC388374F83A83F
    341GSM388375Cortical TissueAlzheimer'sC388375F84A84F
    342GSM388376Cortical TissueAlzheimer'sC388376M93A93M
    343GSM388377Cortical TissueAlzheimer'sC388377F92A92F
    344GSM388378Cortical TissueAlzheimer'sC388378M78A78M
    345GSM388379Cortical TissueAlzheimer'sC388379M90A90M
    346GSM388380Cortical TissueAlzheimer'sC388380M83A83M
    347GSM388381Cortical TissueAlzheimer'sC388381M79A79M
    348GSM388382Cortical TissueAlzheimer'sC388382M84A84M
    349GSM388383Cortical TissueAlzheimer'sC388383F90A90F
    350GSM388384Cortical TissueAlzheimer'sC388384F88A88F
    351GSM388385Cortical TissueAlzheimer'sC388385M77A77M
    352GSM388386Cortical TissueAlzheimer'sC388386F80A80F
    353GSM388387Cortical TissueAlzheimer'sC388387M87A87M
    354GSM388388Cortical TissueAlzheimer'sC388388M86A86M
    355GSM388389Cortical TissueAlzheimer'sC388389M74A74M
    356GSM388390Cortical TissueAlzheimer'sC388390F86A86F
    357GSM388391Cortical TissueAlzheimer'sC388391F81A81F
    358GSM388392Cortical TissueAlzheimer'sC388392F73A73F
    359GSM388393Cortical TissueAlzheimer'sC388393M83A83M
    360GSM388394Cortical TissueAlzheimer'sC388394M86A86M
    361GSM388395Cortical TissueAlzheimer'sC388395F86A86F
    362GSM388396Cortical TissueAlzheimer'sC388396M78A78M
    363GSM388397Cortical TissueAlzheimer'sC388397M83A83M
    + +
    +

    +

    + + +

    Overall design:

    +
    +

    Expression quantitative trait loci study using human brain from 363 cortical samples. Affymetrix 500K chip for genotyping, Illumina Sentrix Human-ref 8 bead array chip for expression. Genotyping data will be available at dbGAP. +

    +
    + + + +
    Web link: +

    http://labs.med.miami.edu/myers

    + +
    +

    Information about this text file:

    +

    The file started, Aug 6, 2009 by AC, AC Aug 7, RWW Aug 12.

    +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GSE15222_F_RI_0409.html b/web/dbdoc/GSE15222_F_RI_0409.html new file mode 100755 index 00000000..5b83a01d --- /dev/null +++ b/web/dbdoc/GSE15222_F_RI_0409.html @@ -0,0 +1,492 @@ + +GSE15222 Human Brain Myers (Apr09) RankInv + + + + + + + + + + + + + + + + + + + + + + + + +
    + +
    + + + +

    GSE15222 Human Brain Myers (Apr09) RankInv
    Accession number: GN234 + modify this page

    + + +

    +PUBLISHED DATA SET: Please read and cite:

    Webster JA, Gibbs JR, Clarke J, Ray M, Zhang W, Holmans P, Rohrer K, Zhao A, Marlowe L, Kaleem M, McCorquodale DS 3rd, Cuello C, Leung D, Bryden L, Nath P, Zismann VL, Joshipura K, Huentelman MJ, Hu-Lince D, Coon KD, Craig DW, Pearson JV; NACC-Neuropathology Group, Heward CB, Reiman EM, Stephan D, Hardy J, Myers AJ (2009) Genetic control of human brain transcript expression in Alzheimer disease. Am J Hum Genet 84:445-58. +
    + + +
    Summary: +
    + +

    Myers and colleagues generated massive neocortical transcriptome data sets for a set of unrelated elderly neurologically and neuropathologically normal humans and from confirmed late onset Alzheimer's disease patients (LOAD, n = 187 normal and 176 LOAD cases, see DOI:10.1016/j.ajhg.2009.03.011 for detail). They used an Illumina Sentrix Bead array (HumanRef-8) that measures expression of approximately 19,730 curated RefSeq sequences (Human Build 34). + + +

    Case identifiers: All case identifiers (IDs) in GeneNetwork begin with a capital C followed by a six digit GEO identifier, followed by the sex and age in years. Non-Alzheimer cases are labeled with the suffix letter N: C225652M85N. Alzheimer cases are labeled with the suffix letter A: C388217F97A. + +

    Data were initially downloaded from the NCBI GEO archive under the experiment ID GSE15222. All data were generated using the Illumina HumanRef-8 expression BeadChip (GPL2700) v2 Rev0. This data set in GeneNetwork includes data for 24,354 probes. We have realigned the 50-mer sequences by BLAT to the latest version of the human genome (Feb 2009, hg19) and reannotated the array (August 2009). The annotation in GN will differ from that provided in GEO for this platform. We were unable to obtain 50-mer sequences for several thousand probes (e.g., HTT), and these probes have therefore not been realigned to the human genome. + +

    The GEO data set was processed by Myers and colleagues using Illumina's Rank Invariant transform. We performed a series of QC and renormalization steps to the data to allow more facile comparison to other data sets in GeneNetwork. In brief, data is log2 transformed. We recentered each array to a mean expression of 8 units and a standard deviation of 2 units (2z + 8 transform). The values are therefore modified z scores and each unit represents roughly a two-fold difference in expression. Average expression across all 363 cases range from a low of 6 units (e.g., SYT15) to a high of 19 units for ARSK. APOE has an average expression of 15 units and APP has an average expression of 11.5 units.. The distribution is far from normal with a great excess of measurements of genes with low to moderate expression clustered between 6.5 and 8.5 units. + + +

    A small number of arrays (n = 6, GSM226040, GSM226041, GSM226042, GSM226044, GSM226045, GSM226046) had a different distribution from the great majority of other arrays. This was probably due to a batch processing effect. Members of this minority group belonged to both normal and LOAD cases. This putative batch effect has been eliminated in the GeneNetwork rendition of the Myers data. To eliminate the putative batch effect, we simply computed a mean offset for each probe in the "minority set" relative to the remaining "majority set" and added or subtracted this offset to force the mean of each probe in the minority set to conform to mean of the same probe in the majority set. + +

    + + +
    +

    + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexGEO SeriesOrgan RegionTissueCase IDAgeSex
    1GSM225652Temporal CortexNormalC225652M85N85M
    2GSM225662Temporal CortexNormalC225662M85N85M
    3GSM225664Temporal CortexNormalC225664F79N79F
    4GSM225665Temporal CortexNormalC225665F85N85F
    5GSM225666Temporal CortexNormalC225666F73N73F
    6GSM225667Temporal CortexNormalC225667M81N81M
    7GSM225668Temporal CortexNormalC225668M79N79M
    8GSM225669Temporal CortexNormalC225669M77N77M
    9GSM225670Temporal CortexNormalC225670M69N69M
    10GSM225671Temporal CortexNormalC225671M86N86M
    11GSM225672Temporal CortexNormalC225672F83N83F
    12GSM225673Temporal CortexNormalC225673M78N78M
    13GSM225674Temporal CortexNormalC225674M94N94M
    14GSM225675Temporal CortexNormalC225675F81N81F
    15GSM225676Temporal CortexNormalC225676M76N76M
    16GSM225677Temporal CortexNormalC225677M83N83M
    17GSM225678Temporal CortexNormalC225678M68N68M
    18GSM225679Temporal CortexNormalC225679F82N82F
    19GSM225680Temporal CortexNormalC225680F70N70F
    20GSM225681Temporal CortexNormalC225681M86N86M
    21GSM225682Temporal CortexNormalC225682M78N78M
    22GSM225683Temporal CortexNormalC225683M82N82M
    23GSM225684Temporal CortexNormalC225684F94N94F
    24GSM225685Temporal CortexNormalC225685F87N87F
    25GSM225686Temporal CortexNormalC225686M74N74M
    26GSM225687Temporal CortexNormalC225687M85N85M
    27GSM225688Temporal CortexNormalC225688M75N75M
    28GSM225689Temporal CortexNormalC225689F86N86F
    29GSM225690Temporal CortexNormalC225690M75N75M
    30GSM225691Temporal CortexNormalC225691M81N81M
    31GSM225692Temporal CortexNormalC225692F72N72F
    32GSM225693Temporal CortexNormalC225693F81N81F
    33GSM225695Temporal CortexNormalC225695M81N81M
    34GSM225696Temporal CortexNormalC225696M81N81M
    35GSM225697Temporal CortexNormalC225697M91N91M
    36GSM225698Temporal CortexNormalC225698M84N84M
    37GSM225699Temporal CortexNormalC225699M96N96M
    38GSM225700Temporal CortexNormalC225700F97N97F
    39GSM225701Temporal CortexNormalC225701M90N90M
    40GSM225702Temporal CortexNormalC225702F67N67F
    41GSM225703Temporal CortexNormalC225703F83N83F
    42GSM225704Temporal CortexNormalC225704F82N82F
    43GSM225705Temporal CortexNormalC225705F66N66F
    44GSM225706Temporal CortexNormalC225706F72N72F
    45GSM225707Temporal CortexNormalC225707F65N65F
    46GSM225708Temporal CortexNormalC225708F75N75F
    47GSM225709Temporal CortexNormalC225709F74N74F
    48GSM225711Temporal CortexNormalC225711M68N68M
    49GSM225713Temporal CortexNormalC225713F80N80F
    50GSM225714Temporal CortexNormalC225714M80N80M
    51GSM225715Temporal CortexNormalC225715M66N66M
    52GSM225717Temporal CortexNormalC225717M88N88M
    53GSM225718Temporal CortexNormalC225718F91N91F
    54GSM225719Temporal CortexNormalC225719M73N73M
    55GSM225720Temporal CortexNormalC225720M76N76M
    56GSM225721Temporal CortexNormalC225721M75N75M
    57GSM225722Temporal CortexNormalC225722F86N86F
    58GSM225723Temporal CortexNormalC225723F72N72F
    59GSM225724Temporal CortexNormalC225724M97N97M
    60GSM225725Temporal CortexNormalC225725M86N86M
    61GSM225726Temporal CortexNormalC225726M82N82M
    62GSM225727Temporal CortexNormalC225727F95N95F
    63GSM225728Temporal CortexNormalC225728F76N76F
    64GSM225729Temporal CortexNormalC225729M76N76M
    65GSM225730Temporal CortexNormalC225730M69N69M
    66GSM225731Temporal CortexNormalC225731F80N80F
    67GSM225732Temporal CortexNormalC225732F99N99F
    68GSM225733Temporal CortexNormalC225733M68N68M
    69GSM225734Temporal CortexNormalC225734M70N70M
    70GSM225735Temporal CortexNormalC225735F87N87F
    71GSM225736Temporal CortexNormalC225736F99N99F
    72GSM225737Temporal CortexNormalC225737F88N88F
    73GSM225739Temporal CortexNormalC225739M65N65M
    74GSM225741Temporal CortexNormalC225741M82N82M
    75GSM225742Temporal CortexNormalC225742F78N78F
    76GSM225743Temporal CortexNormalC225743F85N85F
    77GSM225744Temporal CortexNormalC225744F100N100F
    78GSM225745Temporal CortexNormalC225745F87N87F
    79GSM225746Temporal CortexNormalC225746F85N85F
    80GSM225747Temporal CortexNormalC225747F97N97F
    81GSM225748Temporal CortexNormalC225748M65N65M
    82GSM225749Temporal CortexNormalC225749M65N65M
    83GSM225751Temporal CortexNormalC225751F87N87F
    84GSM225752Temporal CortexNormalC225752F85N85F
    85GSM225753Temporal CortexNormalC225753M68N68M
    86GSM225754Temporal CortexNormalC225754M71N71M
    87GSM225755Temporal CortexNormalC225755F83N83F
    88GSM225756Temporal CortexNormalC225756M76N76M
    89GSM225757Temporal CortexNormalC225757M67N67M
    90GSM225758Temporal CortexNormalC225758F100N100F
    91GSM225759Temporal CortexNormalC225759M79N79M
    92GSM225760Temporal CortexNormalC225760M74N74M
    93GSM225761Temporal CortexNormalC225761F88N88F
    94GSM225762Temporal CortexNormalC225762M70N70M
    95GSM225763Temporal CortexNormalC225763F97N97F
    96GSM225764Temporal CortexNormalC225764M69N69M
    97GSM225915Temporal CortexNormalC225915F99N99F
    98GSM225916Temporal CortexNormalC225916M81N81M
    99GSM225917Temporal CortexNormalC225917F85N85F
    100GSM225918Temporal CortexNormalC225918F82N82F
    101GSM225919Temporal CortexNormalC225919M70N70M
    102GSM225920Temporal CortexNormalC225920M73N73M
    103GSM225921Temporal CortexNormalC225921M83N83M
    104GSM225922Temporal CortexNormalC225922M74N74M
    105GSM225923Temporal CortexNormalC225923M77N77M
    106GSM225924Temporal CortexNormalC225924M81N81M
    107GSM225925Temporal CortexNormalC225925M65N65M
    108GSM225926Temporal CortexNormalC225926F73N73F
    109GSM225927Temporal CortexNormalC225927F85N85F
    110GSM225928Temporal CortexNormalC225928M69N69M
    111GSM225929Temporal CortexNormalC225929M72N72M
    112GSM225930Temporal CortexNormalC225930F76N76F
    113GSM225931Temporal CortexNormalC225931M73N73M
    114GSM225932Temporal CortexNormalC225932M66N66M
    115GSM225933Temporal CortexNormalC225933F85N85F
    116GSM225934Temporal CortexNormalC225934M87N87M
    117GSM225935Temporal CortexNormalC225935F86N86F
    118GSM225936Temporal CortexNormalC225936F73N73F
    119GSM225937Temporal CortexNormalC225937M86N86M
    120GSM225938Temporal CortexNormalC225938M72N72M
    121GSM225939Temporal CortexNormalC225939F69N69F
    122GSM225940Temporal CortexNormalC225940F88N88F
    123GSM225941Temporal CortexNormalC225941M77N77M
    124GSM225942Temporal CortexNormalC225942M96N96M
    125GSM225943Temporal CortexNormalC225943F78N78F
    126GSM225944Temporal CortexNormalC225944M77N77M
    127GSM225945Temporal CortexNormalC225945F99N99F
    128GSM225946Temporal CortexNormalC225946M78N78M
    129GSM225947Temporal CortexNormalC225947F76N76F
    130GSM225948Temporal CortexNormalC225948M78N78M
    131GSM225949Temporal CortexNormalC225949F97N97F
    132GSM225950Temporal CortexNormalC225950F86N86F
    133GSM225951Temporal CortexNormalC225951M77N77M
    134GSM225952Temporal CortexNormalC225952M87N87M
    135GSM225953Temporal CortexNormalC225953F72N72F
    136GSM225954Temporal CortexNormalC225954F91N91F
    137GSM225955Temporal CortexNormalC225955F85N85F
    138GSM225956Temporal CortexNormalC225956M88N88M
    139GSM225957Temporal CortexNormalC225957F86N86F
    140GSM225958Temporal CortexNormalC225958F93N93F
    141GSM225959Temporal CortexNormalC225959M82N82M
    142GSM225961Temporal CortexNormalC225961F72N72F
    143GSM225962Temporal CortexNormalC225962F85N85F
    144GSM225963Temporal CortexNormalC225963M70N70M
    145GSM225964Temporal CortexNormalC225964F67N67F
    146GSM225965Temporal CortexNormalC225965F74N74F
    147GSM226034Temporal CortexNormalC226034M69N69M
    148GSM226035Temporal CortexNormalC226035M85N85M
    149GSM226037Temporal CortexNormalC226037M89N89M
    150GSM226038Temporal CortexNormalC226038M86N86M
    151GSM226039Temporal CortexNormalC226039M90N90M
    152GSM226040Temporal CortexNormalC226040F94N94F
    153GSM226041Temporal CortexNormalC226041F91N91F
    154GSM226042Temporal CortexNormalC226042F91N91F
    155GSM226044Temporal CortexNormalC226044F95N95F
    156GSM226045Temporal CortexNormalC226045F95N95F
    157GSM226046Temporal CortexNormalC226046F91N91F
    158GSM226047Temporal CortexNormalC226047M80N80M
    159GSM226048Temporal CortexNormalC226048M83N83M
    160GSM226049Temporal CortexNormalC226049M67N67M
    161GSM226050Temporal CortexNormalC226050M76N76M
    162GSM226051Temporal CortexNormalC226051F86N86F
    163GSM226052Temporal CortexNormalC226052F86N86F
    164GSM226053Temporal CortexNormalC226053M83N83M
    165GSM226055Temporal CortexNormalC226055M84N84M
    166GSM226056Temporal CortexNormalC226056M80N80M
    167GSM226082Temporal CortexNormalC226082M72N72M
    168GSM226145Temporal CortexNormalC226145M67N67M
    169GSM226146Temporal CortexNormalC226146F96N96F
    170GSM226147Temporal CortexNormalC226147F75N75F
    171GSM226148Temporal CortexNormalC226148F89N89F
    172GSM226149Temporal CortexNormalC226149F86N86F
    173GSM226150Temporal CortexNormalC226150M67N67M
    174GSM226151Temporal CortexNormalC226151M77N77M
    175GSM226154Temporal CortexNormalC226154M65N65M
    176GSM226155Temporal CortexNormalC226155M69N69M
    177GSM226156Temporal CortexNormalC226156M84N84M
    178GSM226157Temporal CortexNormalC226157F85N85F
    179GSM226158Temporal CortexNormalC226158M94N94M
    180GSM226159Temporal CortexNormalC226159F89N89F
    181GSM226160Temporal CortexNormalC226160M87N87M
    182GSM226162Temporal CortexNormalC226162M90N90M
    183GSM226163Temporal CortexNormalC226163F88N88F
    184GSM226164Temporal CortexNormalC226164M94N94M
    185GSM226165Temporal CortexNormalC226165F86N86F
    186GSM226167Temporal CortexNormalC226167F93N93F
    187GSM226168Temporal CortexNormalC226168M91N91M
    188GSM388217Cortical TissueAlzheimer'sC388217F97A97F
    189GSM388218Cortical TissueAlzheimer'sC388218F101A101F
    190GSM388219Cortical TissueAlzheimer'sC388219M84A84M
    191GSM388220Cortical TissueAlzheimer'sC388220F95A95F
    192GSM388221Cortical TissueAlzheimer'sC388221F97A97F
    193GSM388222Cortical TissueAlzheimer'sC388222F102A102F
    194GSM388223Cortical TissueAlzheimer'sC388223M87A87M
    195GSM388224Cortical TissueAlzheimer'sC388224F77A77F
    196GSM388225Cortical TissueAlzheimer'sC388225M87A87M
    197GSM388226Cortical TissueAlzheimer'sC388226M84A84M
    198GSM388228Cortical TissueAlzheimer'sC388228F92A92F
    199GSM388229Cortical TissueAlzheimer'sC388229M93A93M
    200GSM388230Cortical TissueAlzheimer'sC388230F93A93F
    201GSM388231Cortical TissueAlzheimer'sC388231F87A87F
    202GSM388232Cortical TissueAlzheimer'sC388232F90A90F
    203GSM388233Cortical TissueAlzheimer'sC388233M75A75M
    204GSM388234Cortical TissueAlzheimer'sC388234M92A92M
    205GSM388235Cortical TissueAlzheimer'sC388235M83A83M
    206GSM388236Cortical TissueAlzheimer'sC388236M88A88M
    207GSM388237Cortical TissueAlzheimer'sC388237M89A89M
    208GSM388238Cortical TissueAlzheimer'sC388238F74A74F
    209GSM388239Cortical TissueAlzheimer'sC388239F79A79F
    210GSM388240Cortical TissueAlzheimer'sC388240M80A80M
    211GSM388241Cortical TissueAlzheimer'sC388241F97A97F
    212GSM388242Cortical TissueAlzheimer'sC388242M87A87M
    213GSM388243Cortical TissueAlzheimer'sC388243F89A89F
    214GSM388244Cortical TissueAlzheimer'sC388244F90A90F
    215GSM388245Cortical TissueAlzheimer'sC388245M90A90M
    216GSM388246Cortical TissueAlzheimer'sC388246M78A78M
    217GSM388247Cortical TissueAlzheimer'sC388247F80A80F
    218GSM388248Cortical TissueAlzheimer'sC388248F79A79F
    219GSM388249Cortical TissueAlzheimer'sC388249F87A87F
    220GSM388250Cortical TissueAlzheimer'sC388250F88A88F
    221GSM388251Cortical TissueAlzheimer'sC388251M86A86M
    222GSM388252Cortical TissueAlzheimer'sC388252F74A74F
    223GSM388253Cortical TissueAlzheimer'sC388253F72A72F
    224GSM388254Cortical TissueAlzheimer'sC388254M81A81M
    225GSM388255Cortical TissueAlzheimer'sC388255F68A68F
    226GSM388256Cortical TissueAlzheimer'sC388256F81A81F
    227GSM388257Cortical TissueAlzheimer'sC388257F82A82F
    228GSM388258Cortical TissueAlzheimer'sC388258M78A78M
    229GSM388259Cortical TissueAlzheimer'sC388259M74A74M
    230GSM388260Cortical TissueAlzheimer'sC388260M88A88M
    231GSM388261Cortical TissueAlzheimer'sC388261F78A78F
    232GSM388262Cortical TissueAlzheimer'sC388262M83A83M
    233GSM388263Cortical TissueAlzheimer'sC388263M83A83M
    234GSM388264Cortical TissueAlzheimer'sC388264M80A80M
    235GSM388265Cortical TissueAlzheimer'sC388265M84A84M
    236GSM388266Cortical TissueAlzheimer'sC388266F79A79F
    237GSM388267Cortical TissueAlzheimer'sC388267F86A86F
    238GSM388268Cortical TissueAlzheimer'sC388268M92A92M
    239GSM388269Cortical TissueAlzheimer'sC388269F81A81F
    240GSM388270Cortical TissueAlzheimer'sC388270F79A79F
    241GSM388271Cortical TissueAlzheimer'sC388271M74A74M
    242GSM388272Cortical TissueAlzheimer'sC388272F73A73F
    243GSM388273Cortical TissueAlzheimer'sC388273M87A87M
    244GSM388274Cortical TissueAlzheimer'sC388274F86A86F
    245GSM388275Cortical TissueAlzheimer'sC388275F86A86F
    246GSM388276Cortical TissueAlzheimer'sC388276F87A87F
    247GSM388277Cortical TissueAlzheimer'sC388277F92A92F
    248GSM388278Cortical TissueAlzheimer'sC388278F78A78F
    249GSM388279Cortical TissueAlzheimer'sC388279F94A94F
    250GSM388281Cortical TissueAlzheimer'sC388281F94A94F
    251GSM388282Cortical TissueAlzheimer'sC388282M76A76M
    252GSM388284Cortical TissueAlzheimer'sC388284M91A91M
    253GSM388285Cortical TissueAlzheimer'sC388285M86A86M
    254GSM388286Cortical TissueAlzheimer'sC388286M77A77M
    255GSM388287Cortical TissueAlzheimer'sC388287M82A82M
    256GSM388288Cortical TissueAlzheimer'sC388288M78A78M
    257GSM388289Cortical TissueAlzheimer'sC388289M79A79M
    258GSM388290Cortical TissueAlzheimer'sC388290F84A84F
    259GSM388291Cortical TissueAlzheimer'sC388291F87A87F
    260GSM388292Cortical TissueAlzheimer'sC388292F86A86F
    261GSM388294Cortical TissueAlzheimer'sC388294M83A83M
    262GSM388295Cortical TissueAlzheimer'sC388295M83A83M
    263GSM388296Cortical TissueAlzheimer'sC388296M81A81M
    264GSM388297Cortical TissueAlzheimer'sC388297F93A93F
    265GSM388298Cortical TissueAlzheimer'sC388298M71A71M
    266GSM388299Cortical TissueAlzheimer'sC388299M78A78M
    267GSM388300Cortical TissueAlzheimer'sC388300F75A75F
    268GSM388301Cortical TissueAlzheimer'sC388301F84A84F
    269GSM388302Cortical TissueAlzheimer'sC388302M73A73M
    270GSM388303Cortical TissueAlzheimer'sC388303F89A89F
    271GSM388304Cortical TissueAlzheimer'sC388304FNAANAF
    272GSM388305Cortical TissueAlzheimer'sC388305M69A69M
    273GSM388306Cortical TissueAlzheimer'sC388306M83A83M
    274GSM388307Cortical TissueAlzheimer'sC388307M71A71M
    275GSM388308Cortical TissueAlzheimer'sC388308F86A86F
    276GSM388309Cortical TissueAlzheimer'sC388309M82A82M
    277GSM388310Cortical TissueAlzheimer'sC388310FNAANAF
    278GSM388311Cortical TissueAlzheimer'sC388311M88A88M
    279GSM388312Cortical TissueAlzheimer'sC388312M77A77M
    280GSM388313Cortical TissueAlzheimer'sC388313M85A85M
    281GSM388314Cortical TissueAlzheimer'sC388314F81A81F
    282GSM388315Cortical TissueAlzheimer'sC388315F86A86F
    283GSM388316Cortical TissueAlzheimer'sC388316M89A89M
    284GSM388317Cortical TissueAlzheimer'sC388317F73A73F
    285GSM388318Cortical TissueAlzheimer'sC388318F96A96F
    286GSM388319Cortical TissueAlzheimer'sC388319M73A73M
    287GSM388320Cortical TissueAlzheimer'sC388320M81A81M
    288GSM388321Cortical TissueAlzheimer'sC388321F84A84F
    289GSM388322Cortical TissueAlzheimer'sC388322F93A93F
    290GSM388323Cortical TissueAlzheimer'sC388323F82A82F
    291GSM388324Cortical TissueAlzheimer'sC388324M76A76M
    292GSM388325Cortical TissueAlzheimer'sC388325M77A77M
    293GSM388326Cortical TissueAlzheimer'sC388326F86A86F
    294GSM388327Cortical TissueAlzheimer'sC388327F85A85F
    295GSM388328Cortical TissueAlzheimer'sC388328M83A83M
    296GSM388329Cortical TissueAlzheimer'sC388329M76A76M
    297GSM388330Cortical TissueAlzheimer'sC388330M81A81M
    298GSM388331Cortical TissueAlzheimer'sC388331M79A79M
    299GSM388332Cortical TissueAlzheimer'sC388332M81A81M
    300GSM388333Cortical TissueAlzheimer'sC388333F78A78F
    301GSM388334Cortical TissueAlzheimer'sC388334M80A80M
    302GSM388335Cortical TissueAlzheimer'sC388335M84A84M
    303GSM388336Cortical TissueAlzheimer'sC388336F85A85F
    304GSM388337Cortical TissueAlzheimer'sC388337M75A75M
    305GSM388338Cortical TissueAlzheimer'sC388338F80A80F
    306GSM388339Cortical TissueAlzheimer'sC388339F97A97F
    307GSM388340Cortical TissueAlzheimer'sC388340F82A82F
    308GSM388341Cortical TissueAlzheimer'sC388341M82A82M
    309GSM388342Cortical TissueAlzheimer'sC388342M77A77M
    310GSM388343Cortical TissueAlzheimer'sC388343M81A81M
    311GSM388345Cortical TissueAlzheimer'sC388345F96A96F
    312GSM388346Cortical TissueAlzheimer'sC388346F90A90F
    313GSM388347Cortical TissueAlzheimer'sC388347M86A86M
    314GSM388348Cortical TissueAlzheimer'sC388348M88A88M
    315GSM388349Cortical TissueAlzheimer'sC388349F90A90F
    316GSM388350Cortical TissueAlzheimer'sC388350F90A90F
    317GSM388351Cortical TissueAlzheimer'sC388351F84A84F
    318GSM388352Cortical TissueAlzheimer'sC388352M84A84M
    319GSM388353Cortical TissueAlzheimer'sC388353F91A91F
    320GSM388354Cortical TissueAlzheimer'sC388354F81A81F
    321GSM388355Cortical TissueAlzheimer'sC388355F84A84F
    322GSM388356Cortical TissueAlzheimer'sC388356M80A80M
    323GSM388357Cortical TissueAlzheimer'sC388357M81A81M
    324GSM388358Cortical TissueAlzheimer'sC388358F87A87F
    325GSM388359Cortical TissueAlzheimer'sC388359M85A85M
    326GSM388360Cortical TissueAlzheimer'sC388360F90A90F
    327GSM388361Cortical TissueAlzheimer'sC388361M79A79M
    328GSM388362Cortical TissueAlzheimer'sC388362F87A87F
    329GSM388363Cortical TissueAlzheimer'sC388363M75A75M
    330GSM388364Cortical TissueAlzheimer'sC388364F92A92F
    331GSM388365Cortical TissueAlzheimer'sC388365F84A84F
    332GSM388366Cortical TissueAlzheimer'sC388366M75A75M
    333GSM388367Cortical TissueAlzheimer'sC388367F76A76F
    334GSM388368Cortical TissueAlzheimer'sC388368F86A86F
    335GSM388369Cortical TissueAlzheimer'sC388369M82A82M
    336GSM388370Cortical TissueAlzheimer'sC388370M76A76M
    337GSM388371Cortical TissueAlzheimer'sC388371F81A81F
    338GSM388372Cortical TissueAlzheimer'sC388372F80A80F
    339GSM388373Cortical TissueAlzheimer'sC388373M83A83M
    340GSM388374Cortical TissueAlzheimer'sC388374F83A83F
    341GSM388375Cortical TissueAlzheimer'sC388375F84A84F
    342GSM388376Cortical TissueAlzheimer'sC388376M93A93M
    343GSM388377Cortical TissueAlzheimer'sC388377F92A92F
    344GSM388378Cortical TissueAlzheimer'sC388378M78A78M
    345GSM388379Cortical TissueAlzheimer'sC388379M90A90M
    346GSM388380Cortical TissueAlzheimer'sC388380M83A83M
    347GSM388381Cortical TissueAlzheimer'sC388381M79A79M
    348GSM388382Cortical TissueAlzheimer'sC388382M84A84M
    349GSM388383Cortical TissueAlzheimer'sC388383F90A90F
    350GSM388384Cortical TissueAlzheimer'sC388384F88A88F
    351GSM388385Cortical TissueAlzheimer'sC388385M77A77M
    352GSM388386Cortical TissueAlzheimer'sC388386F80A80F
    353GSM388387Cortical TissueAlzheimer'sC388387M87A87M
    354GSM388388Cortical TissueAlzheimer'sC388388M86A86M
    355GSM388389Cortical TissueAlzheimer'sC388389M74A74M
    356GSM388390Cortical TissueAlzheimer'sC388390F86A86F
    357GSM388391Cortical TissueAlzheimer'sC388391F81A81F
    358GSM388392Cortical TissueAlzheimer'sC388392F73A73F
    359GSM388393Cortical TissueAlzheimer'sC388393M83A83M
    360GSM388394Cortical TissueAlzheimer'sC388394M86A86M
    361GSM388395Cortical TissueAlzheimer'sC388395F86A86F
    362GSM388396Cortical TissueAlzheimer'sC388396M78A78M
    363GSM388397Cortical TissueAlzheimer'sC388397M83A83M
    + +
    +

    +

    + + +

    Overall design:

    +
    +

    Expression quantitative trait loci study using human brain from 363 cortical samples. Affymetrix 500K chip for genotyping, Illumina Sentrix Human-ref 8 bead array chip for expression. Genotyping data will be available at dbGAP. +

    +
    + + + +
    Web link: +

    http://labs.med.miami.edu/myers

    + +
    +

    Information about this text file:

    +

    The file started, Aug 6, 2009 by AC, AC Aug 7, RWW Aug 12.

    +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GSE16780_UCLA_ML0911.html b/web/dbdoc/GSE16780_UCLA_ML0911.html new file mode 100755 index 00000000..0b49887d --- /dev/null +++ b/web/dbdoc/GSE16780_UCLA_ML0911.html @@ -0,0 +1,211 @@ + + + + +GSE16780 UCLA Hybrid MDP Liver Affy HT M430A (Sep11) RMA + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    GSE16780 UCLA Hybrid MDP Liver Affy HT M430A (Sep11) RMAmodify this page

    + + Accession number: GN373

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/GSE5281_F_RMA0709.html b/web/dbdoc/GSE5281_F_RMA0709.html new file mode 100755 index 00000000..25ff78dc --- /dev/null +++ b/web/dbdoc/GSE5281_F_RMA0709.html @@ -0,0 +1,291 @@ + +GSE5281 Human Brain Full (Jul09) RMA + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    GSE5281 Human Brain Full (Jul09) RMA (accession number: GN233) + modify this page

    +
    + +

    Please cite: Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 105:4441-4446. + +

    +Human brain expression data in patients with Alzheimer's disease and age-matched elderly control subjects. This cortical expression data set is taken from GEO GSE5281 (Liang et al. 2006, Liang et al. 2008). Samples were laser-captured from cortical regions of 16 normal elderly humans (10 males and 4 females) and from 33 AD cases (15 males and 18 females). Mean age of cases and controls was 80 years. All samples were run on the Affymetrix U133 Plus 2.0 array. We renormalized the RMA data to an average expression of 8 units on a log2 scale. Two versions of the data have been entered in GeneNetwork: one consisting of 157 of 161 arrays (full set minus 4 arrays we consider of poor quality); the second consisting of what we regard as the best 102 arrays (those with mean correlations of better than 0.88 with all other arrays). Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex area 17 layer III. GeneNetwork does not yet allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example, expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes. + + + + + +

    NOTE: We detected a minimum of 7.6% case assignment error rate (12 of 158 arrays) in this data set. Twelve cases are assigned to the wrong sex (see XIST probe set 224588_at, the figure below, and table 1). This raises the possibility that some cases are also misassigned by cortical brain region and disease status. + +

    +

    Legend: Expression of the sex-specific gene XIST reveals about 10 sex assignment errors in this data set.

    +
    + + + +

    Samples were laser-captured from cortical layer 3 (except the hippocampus) and run on the Affymetrix U133 Plus 2.0 array. We renormalized the data to an average expression of 8 units on a log2 scale. Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex layer III. A total of 16 normal subjects were used (10 M and 4 female). The AD samples + +

    . GeneNetwork does not allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes. + +

    Summary: (Taken verbatim from the GEO record)

    +

    Information about the genes that are preferentially expressed during the course of Alzheimer’s disease (AD) could improve our understanding of the molecular mechanisms involved in the pathogenesis of this common cause of cognitive impairment in older persons, provide new opportunities in the diagnosis, early detection, and tracking of this disorder, and provide novel targets for the discovery of interventions to treat and prevent this disorder. Information about the genes that are preferentially expressed in relationship to normal neurological aging could provide new information about the molecular mechanisms that are involved in normal age-related cognitive decline and a host of age-related neurological disorders, and they could provide novel targets for the discovery of interventions to mitigate some of these deleterious effects. +

    + +Aim 1. Collect brain samples from three Alzheimer’s Disease Centers (ADCs) for subsequent gene expression profiling. Individuals will be stratified with respect to diagnostic groups (using both clinical and neuropathological criteria), age groups, and APOE genotype. 150 individual brains will be sampled from the Arizona ADC, the Duke University ADC, and the Washington University ADC. Miniscule sample sizes (200 um of sectioned tissue) from six brain regions that are histopathologically or metabolically relevant to AD and aging will be collected, ensuring that this proposal does not deplete the national resource. Frozen and fixed samples will be sent to Phoenix, sectioned in a standardized fashion, and then returned. Aim 2. Tissue heterogeneity will be eliminated prior to expression profiling by performing laser capture microscopy on all brain regions. Aim 3. Expression profile LCM-captured cells on the Affymetrix U133 Plus 2.0 array (~55,000 transcripts), and quickly provide these data to the community at large. Aim 4. Identify pathogenic cascades related to each of the clinico-pathologic correlates using unsupervised and supervised analyses coupled with a hypothesis-driven approach. Aim 5. Validation of the expression correlates at the protein and functional levels. + +

    +Scientific progress in the last few years has improved our understanding of AD and raised the hope of identifying treatments to halt the progression and prevent the onset of this disorder. For instance, researchers have begun to characterize the cascade of molecular events which lead to the major histopathological features of the disorder: neuritic plaques, which contain extra-cellular deposits of amyloid beta-peptides (Abeta); neurofibrillary tangles, which contain the hyperphosphorylated form of the intracellular, microtubule-associated protein, tau; and a loss of neurons and synapses. These molecular events provide targets for the development of promising new treatments. For example, A-beta has been postulated to trigger a cascade of events that are involved in the pathogenesis of AD. This proposal hopes to provide new information about the genes that are preferentially expressed in the development of AD histopathology, including the over-expression of APP, amyloid-induced neurotoxicity, and hyperphosphorylation of tau, as well as bring clarity to the metabolic abnormalities that seem to play a role in dementia and AD development and pathology. +

    +We will perform LCM on 6 brain regions with about 14 biological replicates per brain region. The brain regions are as follows: 1) entorhinal cortex 2) hippocampus 3) medial temporal gyrus 4) posterior cingulate 5) superior frontal gyrus and 6) primary visual cortex. We will collect layer III pyramidal cells from the white matter in each region, isolate total RNA from LCMed cell lysates, and perform double round amplification of each sample for array analysis.

    + + +

    Bad arrays excluded: Four samples, highlighted in the table below, are bad arrays. For quality control, they should be excluded. + +

    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexGEO SeriesOrgan RegionTissueCase IDAgeSex
    1GSM119615Entorhinal CortexNormalE119615M63N63M
    2GSM119616Entorhinal CortexNormalE119616M85N85M
    3GSM119617Entorhinal CortexNormalE119617M80N80M
    4GSM119618Entorhinal CortexNormalE119618M->F80N80M
    5GSM119619Entorhinal CortexNormalE119619F->M102N102F
    6GSM119620Entorhinal CortexNormalE119620M79N79M
    7GSM119621Entorhinal CortexNormalE119621M76N76M
    8GSM119622Entorhinal CortexNormalE119622M83N83M
    9GSM119623Entorhinal CortexNormalE119623M79N79M
    10GSM119624Entorhinal CortexNormalE119624F88N88F
    11GSM119625Entorhinal CortexNormalE119625F82N82F
    12GSM119626Entorhinal CortexNormalE119626M69N69M
    13GSM119627Entorhinal CortexNormalE119627M78N78M
    14GSM238763Entorhinal CortexAlzheimer'sE238763F82A82F
    15GSM238790Entorhinal CortexAlzheimer'sE238790F86A86F
    16GSM238791Entorhinal CortexAlzheimer'sE238791F93A93F
    17GSM238792Entorhinal CortexAlzheimer'sE238792M84A84M
    18GSM238793Entorhinal CortexAlzheimer'sE238793F79A79F
    19GSM238794Entorhinal CortexAlzheimer'sE238794F78A78F
    20GSM238795Entorhinal CortexAlzheimer'sE238795F91A91F
    21GSM238796Entorhinal CortexAlzheimer'sE238796M86A86M
    22GSM238797Entorhinal CortexAlzheimer'sE238797NA0AN/AN/A
    23GSM238798Entorhinal CortexAlzheimer'sE238798M80A80M
    24GSM119628HippocampusNormalH119628M85N85M
    25GSM119629HippocampusNormalH119629M80N80M
    26GSM119630HippocampusNormalH119630M80N80M
    27GSM119631HippocampusNormalH119631F102N102F
    28GSM119632HippocampusNormalH119632M63N63M
    29GSM119633HippocampusNormalH119633M79N79M
    30GSM119634HippocampusNormalH119634M76N76M
    31GSM119635HippocampusNormalH119635M83N83M
    32GSM119636HippocampusNormalH119636M79N79M
    33GSM119637HippocampusNormalH119637F88N88F
    34GSM119638HippocampusNormalH119638F73N73F
    35GSM119639HippocampusNormalH119639M69N69M
    36GSM119640HippocampusNormalH119640M78N78M
    37GSM238799HippocampusAlzheimer'sH238799F73A73F
    38GSM238800HippocampusAlzheimer'sH238800M81A81M
    39GSM238801HippocampusAlzheimer'sH238801M78A78M
    40GSM238802HippocampusAlzheimer'sH238802M75A75M
    41GSM238803HippocampusAlzheimer'sH238803F70A70F
    42GSM238804HippocampusAlzheimer'sH238804F85A85F
    43GSM238805HippocampusAlzheimer'sH238805F77A77F
    44GSM238806HippocampusAlzheimer'sH238806M79A79M
    45GSM238807HippocampusAlzheimer'sH238807M88A88M
    46GSM238808HippocampusAlzheimer'sH238808M72A72M
    47GSM119641Medial Temporal GyrusNormalMT119641M85N85M
    48GSM119642Medial Temporal GyrusNormalMT119642M80N80M
    49GSM119643Medial Temporal GyrusNormalMT119643F102N102F
    50GSM119644Medial Temporal GyrusNormalMT119644M63N63M
    51GSM119645Medial Temporal GyrusNormalMT119645M79N79M
    52GSM119646Medial Temporal GyrusNormalMT119646M83N83M
    53GSM119647Medial Temporal GyrusNormalMT119647M79N79M
    54GSM119648Medial Temporal GyrusNormalMT119648F88N88F
    55GSM119649Medial Temporal GyrusNormalMT119649F82N82F
    56GSM119650Medial Temporal GyrusNormalMT119650F73N73F
    57GSM119651Medial Temporal GyrusNormalMT119651M69N69M
    58GSM119652Medial Temporal GyrusNormalMT119652M->F78N78M
    59GSM238809Medial Temporal GyrusAlzheimer'sMT238809M81A81M
    60GSM238810Medial Temporal GyrusAlzheimer'sMT238810M72A72M
    61GSM238811Medial Temporal GyrusAlzheimer'sMT238811M75A75M
    62GSM238812Medial Temporal GyrusAlzheimer'sMT238812M78A78M
    63GSM238813Medial Temporal GyrusAlzheimer'sMT238813M75A75M
    64GSM238815Medial Temporal GyrusAlzheimer'sMT238815F95A95F
    65GSM238816Medial Temporal GyrusAlzheimer'sMT238816F81A81F
    66GSM238817Medial Temporal GyrusAlzheimer'sMT238817F85A85F
    67GSM238818Medial Temporal GyrusAlzheimer'sMT238818M79A79M
    68GSM238819Medial Temporal GyrusAlzheimer'sMT238819F82A82F
    69GSM238820Medial Temporal GyrusAlzheimer'sMT238820M88A88M
    70GSM238821Medial Temporal GyrusAlzheimer'sMT238821M72A72M
    71GSM238822Medial Temporal GyrusAlzheimer'sMT238822F73A73F
    72GSM238823Medial Temporal GyrusAlzheimer'sMT238823M87A87M
    73GSM238824Medial Temporal GyrusAlzheimer'sMT238824M68A68M
    74GSM238825Medial Temporal GyrusAlzheimer'sMT238825F80A80F
    75GSM119653Posterior CingulateNormalPC119653M85N85M
    76GSM119654Posterior CingulateNormalPC119654M80N80M
    77GSM119655Posterior CingulateNormalPC119655F102N102F
    78GSM119656Posterior CingulateNormalPC119656M63N63M
    79GSM119657Posterior CingulateNormalPC119657M79N79M
    80GSM119658Posterior CingulateNormalPC119658M->F76N76M
    81GSM119659Posterior CingulateNormalPC119659M83N83M
    82GSM119660Posterior CingulateNormalPC119660M79N79M
    83GSM119661Posterior CingulateNormalPC119661F88N88F
    84GSM119662Posterior CingulateNormalPC119662F82N82F
    85GSM119663Posterior CingulateNormalPC119663F73N73F
    86GSM119664Posterior CingulateNormalPC119664M69N69M
    87GSM119665Posterior CingulateNormalPC119665M78N78M
    88GSM238826Posterior CingulateAlzheimer'sPC238826F73A73F
    89GSM238827Posterior CingulateAlzheimer'sPC238827M81A81M
    90GSM238834Posterior CingulateAlzheimer'sPC238834M78A78M
    91GSM238835Posterior CingulateAlzheimer'sPC238835M75A75M
    92GSM238837Posterior CingulateAlzheimer'sPC238837M68A68M
    93GSM238838Posterior CingulateAlzheimer'sPC238838F70A70F
    94GSM238839Posterior CingulateAlzheimer'sPC238839F85A85F
    95GSM238840Posterior CingulateAlzheimer'sPC238840M79A79M
    96GSM238841Posterior CingulateAlzheimer'sPC238841M88A88M
    97GSM119666Superior Frontal GyrusNormalSF119666M79N79M
    98GSM119667Superior Frontal GyrusNormalSF119667F->M88N88F
    99GSM119668Superior Frontal GyrusNormalSF119668F->M82N82F
    100GSM119669Superior Frontal GyrusNormalSF119669F->M73N73F
    101GSM119670Superior Frontal GyrusNormalSF119670F->M102N102F
    102GSM119671Superior Frontal GyrusNormalSF119671M63N63M
    103GSM119672Superior Frontal GyrusNormalSF119672M->F79N79M
    104GSM119673Superior Frontal GyrusNormalSF119673M->F76N76M
    105GSM119674Superior Frontal GyrusNormalSF119674M->F83N83M
    106GSM119675Superior Frontal GyrusNormalSF119675M69N69M
    107GSM119676Superior Frontal GyrusNormalSF119676M78N78M
    108GSM238842Superior Frontal GyrusAlzheimer'sSF238842F73A73F
    109GSM238843Superior Frontal GyrusAlzheimer'sSF238843M81A81M
    110GSM238844Superior Frontal GyrusAlzheimer'sSF238844M72A72M
    111GSM238845Superior Frontal GyrusAlzheimer'sSF238845M75A75M
    112GSM238846Superior Frontal GyrusAlzheimer'sSF238846M78A78M
    113GSM238847Superior Frontal GyrusAlzheimer'sSF238847M75A75M
    114GSM238848Superior Frontal GyrusAlzheimer'sSF238848M87A87M
    115GSM238851Superior Frontal GyrusAlzheimer'sSF238851F95A95F
    116GSM238854Superior Frontal GyrusAlzheimer'sSF238854M68A68M
    117GSM238855Superior Frontal GyrusAlzheimer'sSF238855F95A95F
    118GSM238856Superior Frontal GyrusAlzheimer'sSF238856F70A70F
    119GSM238857Superior Frontal GyrusAlzheimer'sSF238857F85A85F
    120GSM238858Superior Frontal GyrusAlzheimer'sSF238858F83A83F
    121GSM238860Superior Frontal GyrusAlzheimer'sSF238860F77A77F
    122GSM238861Superior Frontal GyrusAlzheimer'sSF238861F83A83F
    123GSM238862Superior Frontal GyrusAlzheimer'sSF238862M68A68M
    124GSM238863Superior Frontal GyrusAlzheimer'sSF238863M79A79M
    125GSM238864Superior Frontal GyrusAlzheimer'sSF238864F82A82F
    126GSM238865Superior Frontal GyrusAlzheimer'sSF238865M88A88M
    127GSM238867Superior Frontal GyrusAlzheimer'sSF238867F80A80F
    128GSM238868Superior Frontal GyrusAlzheimer'sSF238868M74A74M
    129GSM238870Superior Frontal GyrusAlzheimer'sSF238870M72A72M
    130GSM238871Superior Frontal GyrusAlzheimer'sSF238871M80A80M
    131GSM119677Primary Visual CortexNormalV119677M85N85M
    132GSM119678Primary Visual CortexNormalV119678M80N80M
    133GSM119679Primary Visual CortexNormalV119679M63N63M
    134GSM119680Primary Visual CortexNormalV119680M79N79M
    135GSM119681Primary Visual CortexNormalV119681M76N76M
    136GSM119682Primary Visual CortexNormalV119682M83N83M
    137GSM119683Primary Visual CortexNormalV119683M79N79M
    138GSM119684Primary Visual CortexNormalV119684F88N88F
    139GSM119685Primary Visual CortexNormalV119685F82N82F
    140GSM119686Primary Visual CortexNormalV119686F73N73F
    141GSM119687Primary Visual CortexNormalV119687M69N69M
    142GSM119688Primary Visual CortexNormalV119688M78N78M
    143GSM238872Primary Visual CortexAlzheimer'sV238872F73A73F
    144GSM238873Primary Visual CortexAlzheimer'sV238873M81A81M
    145GSM238874Primary Visual CortexAlzheimer'sV238874M75A75M
    146GSM238875Primary Visual CortexAlzheimer'sV238875M78A78M
    147GSM238877Primary Visual CortexAlzheimer'sV238877M75A75M
    148GSM238941Primary Visual CortexAlzheimer'sV238941M87A87M
    149GSM238942Primary Visual CortexAlzheimer'sV238942F95A95F
    150GSM238943Primary Visual CortexAlzheimer'sV238943M68A68M
    151GSM238944Primary Visual CortexAlzheimer'sV238944F70A70F
    152GSM238945Primary Visual CortexAlzheimer'sV238945F81A81F
    153GSM238946Primary Visual CortexAlzheimer'sV238946F85A85F
    154GSM238947Primary Visual CortexAlzheimer'sV238947M68A68M
    155GSM238948Primary Visual CortexAlzheimer'sV238948M79A79M
    156GSM238949Primary Visual CortexAlzheimer'sV238949F82A82F
    157GSM238951Primary Visual CortexAlzheimer'sV238951M88A88M
    158GSM238952Primary Visual CortexAlzheimer'sV238952M74A74M
    159GSM238953Primary Visual CortexAlzheimer'sV238953M72A72M
    160GSM238955Primary Visual CortexAlzheimer'sV238955M->F68A68M
    161GSM238963Primary Visual CortexAlzheimer'sV238963F80A80F
    +
    + + + +

    Web Link:

    +

    http://arrayconsortium.tgen.org/np2/viewProject.do?action=viewProject&projectId=433773

    +

    Citations:

    +

    Liang WS, Dunckley T, Beach TG, Grover A et al. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol Genomics 2007 Feb 12;28(3):311-22. PMID: 17077275
    +Liang WS, Reiman EM, Valla J, Dunckley T et al. Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A 2008 Mar 18;105(11):4441-6. PMID: 18332434


    + + +
    + + + + + + + + + + +
    +
      + +
    +
    + + + + + + + + + + + + + + diff --git a/web/dbdoc/GSE5281_F_RMA_Alzh_0709.html b/web/dbdoc/GSE5281_F_RMA_Alzh_0709.html new file mode 100755 index 00000000..9b87f54a --- /dev/null +++ b/web/dbdoc/GSE5281_F_RMA_Alzh_0709.html @@ -0,0 +1,293 @@ + + +GSE5281 Human Brain Alzheimer Full Liang (Jul09) RMA + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GSE5281 Human Brain Alzheimer Full Liang (Jul09) RMAmodify this page

    + + Accession number: GN313

    +
    + +

    Please cite: Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 105:4441-4446. + +

    +Human brain expression data in patients with Alzheimer's disease and age-matched elderly control subjects. This cortical expression data set is taken from GEO GSE5281 (Liang et al. 2006, Liang et al. 2008). Samples were laser-captured from cortical regions of 16 normal elderly humans (10 males and 4 females) and from 33 AD cases (15 males and 18 females). Mean age of cases and controls was 80 years. All samples were run on the Affymetrix U133 Plus 2.0 array. We renormalized the RMA data to an average expression of 8 units on a log2 scale. Two versions of the data have been entered in GeneNetwork: one consisting of 157 of 161 arrays (full set minus 4 arrays we consider of poor quality); the second consisting of what we regard as the best 102 arrays (those with mean correlations of better than 0.88 with all other arrays). Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex area 17 layer III. GeneNetwork does not yet allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example, expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes. + + + + + +

    NOTE: We detected a minimum of 7.6% case assignment error rate (12 of 158 arrays) in this data set. Twelve cases are assigned to the wrong sex (see XIST probe set 224588_at, the figure below, and table 1). This raises the possibility that some cases are also misassigned by cortical brain region and disease status. + +

    +

    Legend: Expression of the sex-specific gene XIST reveals about 10 sex assignment errors in this data set.

    +
    + + + +

    Samples were laser-captured from cortical layer 3 (except the hippocampus) and run on the Affymetrix U133 Plus 2.0 array. We renormalized the data to an average expression of 8 units on a log2 scale. Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex layer III. A total of 16 normal subjects were used (10 M and 4 female). The AD samples + +

    . GeneNetwork does not allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes. + +

    Summary: (Taken verbatim from the GEO record)

    +

    Information about the genes that are preferentially expressed during the course of Alzheimer’s disease (AD) could improve our understanding of the molecular mechanisms involved in the pathogenesis of this common cause of cognitive impairment in older persons, provide new opportunities in the diagnosis, early detection, and tracking of this disorder, and provide novel targets for the discovery of interventions to treat and prevent this disorder. Information about the genes that are preferentially expressed in relationship to normal neurological aging could provide new information about the molecular mechanisms that are involved in normal age-related cognitive decline and a host of age-related neurological disorders, and they could provide novel targets for the discovery of interventions to mitigate some of these deleterious effects. +

    + +Aim 1. Collect brain samples from three Alzheimer’s Disease Centers (ADCs) for subsequent gene expression profiling. Individuals will be stratified with respect to diagnostic groups (using both clinical and neuropathological criteria), age groups, and APOE genotype. 150 individual brains will be sampled from the Arizona ADC, the Duke University ADC, and the Washington University ADC. Miniscule sample sizes (200 um of sectioned tissue) from six brain regions that are histopathologically or metabolically relevant to AD and aging will be collected, ensuring that this proposal does not deplete the national resource. Frozen and fixed samples will be sent to Phoenix, sectioned in a standardized fashion, and then returned. Aim 2. Tissue heterogeneity will be eliminated prior to expression profiling by performing laser capture microscopy on all brain regions. Aim 3. Expression profile LCM-captured cells on the Affymetrix U133 Plus 2.0 array (~55,000 transcripts), and quickly provide these data to the community at large. Aim 4. Identify pathogenic cascades related to each of the clinico-pathologic correlates using unsupervised and supervised analyses coupled with a hypothesis-driven approach. Aim 5. Validation of the expression correlates at the protein and functional levels. + +

    +Scientific progress in the last few years has improved our understanding of AD and raised the hope of identifying treatments to halt the progression and prevent the onset of this disorder. For instance, researchers have begun to characterize the cascade of molecular events which lead to the major histopathological features of the disorder: neuritic plaques, which contain extra-cellular deposits of amyloid beta-peptides (Abeta); neurofibrillary tangles, which contain the hyperphosphorylated form of the intracellular, microtubule-associated protein, tau; and a loss of neurons and synapses. These molecular events provide targets for the development of promising new treatments. For example, A-beta has been postulated to trigger a cascade of events that are involved in the pathogenesis of AD. This proposal hopes to provide new information about the genes that are preferentially expressed in the development of AD histopathology, including the over-expression of APP, amyloid-induced neurotoxicity, and hyperphosphorylation of tau, as well as bring clarity to the metabolic abnormalities that seem to play a role in dementia and AD development and pathology. +

    +We will perform LCM on 6 brain regions with about 14 biological replicates per brain region. The brain regions are as follows: 1) entorhinal cortex 2) hippocampus 3) medial temporal gyrus 4) posterior cingulate 5) superior frontal gyrus and 6) primary visual cortex. We will collect layer III pyramidal cells from the white matter in each region, isolate total RNA from LCMed cell lysates, and perform double round amplification of each sample for array analysis.

    + + +

    Bad arrays excluded: Four samples, highlighted in the table below, are bad arrays. For quality control, they should be excluded. + +

    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexGEO SeriesOrgan RegionTissueCase IDAgeSex
    1GSM119615Entorhinal CortexNormalE119615M63N63M
    2GSM119616Entorhinal CortexNormalE119616M85N85M
    3GSM119617Entorhinal CortexNormalE119617M80N80M
    4GSM119618Entorhinal CortexNormalE119618M->F80N80M
    5GSM119619Entorhinal CortexNormalE119619F->M102N102F
    6GSM119620Entorhinal CortexNormalE119620M79N79M
    7GSM119621Entorhinal CortexNormalE119621M76N76M
    8GSM119622Entorhinal CortexNormalE119622M83N83M
    9GSM119623Entorhinal CortexNormalE119623M79N79M
    10GSM119624Entorhinal CortexNormalE119624F88N88F
    11GSM119625Entorhinal CortexNormalE119625F82N82F
    12GSM119626Entorhinal CortexNormalE119626M69N69M
    13GSM119627Entorhinal CortexNormalE119627M78N78M
    14GSM238763Entorhinal CortexAlzheimer'sE238763F82A82F
    15GSM238790Entorhinal CortexAlzheimer'sE238790F86A86F
    16GSM238791Entorhinal CortexAlzheimer'sE238791F93A93F
    17GSM238792Entorhinal CortexAlzheimer'sE238792M84A84M
    18GSM238793Entorhinal CortexAlzheimer'sE238793F79A79F
    19GSM238794Entorhinal CortexAlzheimer'sE238794F78A78F
    20GSM238795Entorhinal CortexAlzheimer'sE238795F91A91F
    21GSM238796Entorhinal CortexAlzheimer'sE238796M86A86M
    22GSM238797Entorhinal CortexAlzheimer'sE238797NA0AN/AN/A
    23GSM238798Entorhinal CortexAlzheimer'sE238798M80A80M
    24GSM119628HippocampusNormalH119628M85N85M
    25GSM119629HippocampusNormalH119629M80N80M
    26GSM119630HippocampusNormalH119630M80N80M
    27GSM119631HippocampusNormalH119631F102N102F
    28GSM119632HippocampusNormalH119632M63N63M
    29GSM119633HippocampusNormalH119633M79N79M
    30GSM119634HippocampusNormalH119634M76N76M
    31GSM119635HippocampusNormalH119635M83N83M
    32GSM119636HippocampusNormalH119636M79N79M
    33GSM119637HippocampusNormalH119637F88N88F
    34GSM119638HippocampusNormalH119638F73N73F
    35GSM119639HippocampusNormalH119639M69N69M
    36GSM119640HippocampusNormalH119640M78N78M
    37GSM238799HippocampusAlzheimer'sH238799F73A73F
    38GSM238800HippocampusAlzheimer'sH238800M81A81M
    39GSM238801HippocampusAlzheimer'sH238801M78A78M
    40GSM238802HippocampusAlzheimer'sH238802M75A75M
    41GSM238803HippocampusAlzheimer'sH238803F70A70F
    42GSM238804HippocampusAlzheimer'sH238804F85A85F
    43GSM238805HippocampusAlzheimer'sH238805F77A77F
    44GSM238806HippocampusAlzheimer'sH238806M79A79M
    45GSM238807HippocampusAlzheimer'sH238807M88A88M
    46GSM238808HippocampusAlzheimer'sH238808M72A72M
    47GSM119641Medial Temporal GyrusNormalMT119641M85N85M
    48GSM119642Medial Temporal GyrusNormalMT119642M80N80M
    49GSM119643Medial Temporal GyrusNormalMT119643F102N102F
    50GSM119644Medial Temporal GyrusNormalMT119644M63N63M
    51GSM119645Medial Temporal GyrusNormalMT119645M79N79M
    52GSM119646Medial Temporal GyrusNormalMT119646M83N83M
    53GSM119647Medial Temporal GyrusNormalMT119647M79N79M
    54GSM119648Medial Temporal GyrusNormalMT119648F88N88F
    55GSM119649Medial Temporal GyrusNormalMT119649F82N82F
    56GSM119650Medial Temporal GyrusNormalMT119650F73N73F
    57GSM119651Medial Temporal GyrusNormalMT119651M69N69M
    58GSM119652Medial Temporal GyrusNormalMT119652M->F78N78M
    59GSM238809Medial Temporal GyrusAlzheimer'sMT238809M81A81M
    60GSM238810Medial Temporal GyrusAlzheimer'sMT238810M72A72M
    61GSM238811Medial Temporal GyrusAlzheimer'sMT238811M75A75M
    62GSM238812Medial Temporal GyrusAlzheimer'sMT238812M78A78M
    63GSM238813Medial Temporal GyrusAlzheimer'sMT238813M75A75M
    64GSM238815Medial Temporal GyrusAlzheimer'sMT238815F95A95F
    65GSM238816Medial Temporal GyrusAlzheimer'sMT238816F81A81F
    66GSM238817Medial Temporal GyrusAlzheimer'sMT238817F85A85F
    67GSM238818Medial Temporal GyrusAlzheimer'sMT238818M79A79M
    68GSM238819Medial Temporal GyrusAlzheimer'sMT238819F82A82F
    69GSM238820Medial Temporal GyrusAlzheimer'sMT238820M88A88M
    70GSM238821Medial Temporal GyrusAlzheimer'sMT238821M72A72M
    71GSM238822Medial Temporal GyrusAlzheimer'sMT238822F73A73F
    72GSM238823Medial Temporal GyrusAlzheimer'sMT238823M87A87M
    73GSM238824Medial Temporal GyrusAlzheimer'sMT238824M68A68M
    74GSM238825Medial Temporal GyrusAlzheimer'sMT238825F80A80F
    75GSM119653Posterior CingulateNormalPC119653M85N85M
    76GSM119654Posterior CingulateNormalPC119654M80N80M
    77GSM119655Posterior CingulateNormalPC119655F102N102F
    78GSM119656Posterior CingulateNormalPC119656M63N63M
    79GSM119657Posterior CingulateNormalPC119657M79N79M
    80GSM119658Posterior CingulateNormalPC119658M->F76N76M
    81GSM119659Posterior CingulateNormalPC119659M83N83M
    82GSM119660Posterior CingulateNormalPC119660M79N79M
    83GSM119661Posterior CingulateNormalPC119661F88N88F
    84GSM119662Posterior CingulateNormalPC119662F82N82F
    85GSM119663Posterior CingulateNormalPC119663F73N73F
    86GSM119664Posterior CingulateNormalPC119664M69N69M
    87GSM119665Posterior CingulateNormalPC119665M78N78M
    88GSM238826Posterior CingulateAlzheimer'sPC238826F73A73F
    89GSM238827Posterior CingulateAlzheimer'sPC238827M81A81M
    90GSM238834Posterior CingulateAlzheimer'sPC238834M78A78M
    91GSM238835Posterior CingulateAlzheimer'sPC238835M75A75M
    92GSM238837Posterior CingulateAlzheimer'sPC238837M68A68M
    93GSM238838Posterior CingulateAlzheimer'sPC238838F70A70F
    94GSM238839Posterior CingulateAlzheimer'sPC238839F85A85F
    95GSM238840Posterior CingulateAlzheimer'sPC238840M79A79M
    96GSM238841Posterior CingulateAlzheimer'sPC238841M88A88M
    97GSM119666Superior Frontal GyrusNormalSF119666M79N79M
    98GSM119667Superior Frontal GyrusNormalSF119667F->M88N88F
    99GSM119668Superior Frontal GyrusNormalSF119668F->M82N82F
    100GSM119669Superior Frontal GyrusNormalSF119669F->M73N73F
    101GSM119670Superior Frontal GyrusNormalSF119670F->M102N102F
    102GSM119671Superior Frontal GyrusNormalSF119671M63N63M
    103GSM119672Superior Frontal GyrusNormalSF119672M->F79N79M
    104GSM119673Superior Frontal GyrusNormalSF119673M->F76N76M
    105GSM119674Superior Frontal GyrusNormalSF119674M->F83N83M
    106GSM119675Superior Frontal GyrusNormalSF119675M69N69M
    107GSM119676Superior Frontal GyrusNormalSF119676M78N78M
    108GSM238842Superior Frontal GyrusAlzheimer'sSF238842F73A73F
    109GSM238843Superior Frontal GyrusAlzheimer'sSF238843M81A81M
    110GSM238844Superior Frontal GyrusAlzheimer'sSF238844M72A72M
    111GSM238845Superior Frontal GyrusAlzheimer'sSF238845M75A75M
    112GSM238846Superior Frontal GyrusAlzheimer'sSF238846M78A78M
    113GSM238847Superior Frontal GyrusAlzheimer'sSF238847M75A75M
    114GSM238848Superior Frontal GyrusAlzheimer'sSF238848M87A87M
    115GSM238851Superior Frontal GyrusAlzheimer'sSF238851F95A95F
    116GSM238854Superior Frontal GyrusAlzheimer'sSF238854M68A68M
    117GSM238855Superior Frontal GyrusAlzheimer'sSF238855F95A95F
    118GSM238856Superior Frontal GyrusAlzheimer'sSF238856F70A70F
    119GSM238857Superior Frontal GyrusAlzheimer'sSF238857F85A85F
    120GSM238858Superior Frontal GyrusAlzheimer'sSF238858F83A83F
    121GSM238860Superior Frontal GyrusAlzheimer'sSF238860F77A77F
    122GSM238861Superior Frontal GyrusAlzheimer'sSF238861F83A83F
    123GSM238862Superior Frontal GyrusAlzheimer'sSF238862M68A68M
    124GSM238863Superior Frontal GyrusAlzheimer'sSF238863M79A79M
    125GSM238864Superior Frontal GyrusAlzheimer'sSF238864F82A82F
    126GSM238865Superior Frontal GyrusAlzheimer'sSF238865M88A88M
    127GSM238867Superior Frontal GyrusAlzheimer'sSF238867F80A80F
    128GSM238868Superior Frontal GyrusAlzheimer'sSF238868M74A74M
    129GSM238870Superior Frontal GyrusAlzheimer'sSF238870M72A72M
    130GSM238871Superior Frontal GyrusAlzheimer'sSF238871M80A80M
    131GSM119677Primary Visual CortexNormalV119677M85N85M
    132GSM119678Primary Visual CortexNormalV119678M80N80M
    133GSM119679Primary Visual CortexNormalV119679M63N63M
    134GSM119680Primary Visual CortexNormalV119680M79N79M
    135GSM119681Primary Visual CortexNormalV119681M76N76M
    136GSM119682Primary Visual CortexNormalV119682M83N83M
    137GSM119683Primary Visual CortexNormalV119683M79N79M
    138GSM119684Primary Visual CortexNormalV119684F88N88F
    139GSM119685Primary Visual CortexNormalV119685F82N82F
    140GSM119686Primary Visual CortexNormalV119686F73N73F
    141GSM119687Primary Visual CortexNormalV119687M69N69M
    142GSM119688Primary Visual CortexNormalV119688M78N78M
    143GSM238872Primary Visual CortexAlzheimer'sV238872F73A73F
    144GSM238873Primary Visual CortexAlzheimer'sV238873M81A81M
    145GSM238874Primary Visual CortexAlzheimer'sV238874M75A75M
    146GSM238875Primary Visual CortexAlzheimer'sV238875M78A78M
    147GSM238877Primary Visual CortexAlzheimer'sV238877M75A75M
    148GSM238941Primary Visual CortexAlzheimer'sV238941M87A87M
    149GSM238942Primary Visual CortexAlzheimer'sV238942F95A95F
    150GSM238943Primary Visual CortexAlzheimer'sV238943M68A68M
    151GSM238944Primary Visual CortexAlzheimer'sV238944F70A70F
    152GSM238945Primary Visual CortexAlzheimer'sV238945F81A81F
    153GSM238946Primary Visual CortexAlzheimer'sV238946F85A85F
    154GSM238947Primary Visual CortexAlzheimer'sV238947M68A68M
    155GSM238948Primary Visual CortexAlzheimer'sV238948M79A79M
    156GSM238949Primary Visual CortexAlzheimer'sV238949F82A82F
    157GSM238951Primary Visual CortexAlzheimer'sV238951M88A88M
    158GSM238952Primary Visual CortexAlzheimer'sV238952M74A74M
    159GSM238953Primary Visual CortexAlzheimer'sV238953M72A72M
    160GSM238955Primary Visual CortexAlzheimer'sV238955M->F68A68M
    161GSM238963Primary Visual CortexAlzheimer'sV238963F80A80F
    +
    + + + +

    Web Link:

    +

    http://arrayconsortium.tgen.org/np2/viewProject.do?action=viewProject&projectId=433773

    +

    Citations:

    +

    Liang WS, Dunckley T, Beach TG, Grover A et al. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol Genomics 2007 Feb 12;28(3):311-22. PMID: 17077275
    +Liang WS, Reiman EM, Valla J, Dunckley T et al. Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A 2008 Mar 18;105(11):4441-6. PMID: 18332434


    + + +
    + + + + + + + + + + +
    +      +
    + + + + + + + + + + + + + + diff --git a/web/dbdoc/GSE5281_F_RMA_N_0709.html b/web/dbdoc/GSE5281_F_RMA_N_0709.html new file mode 100755 index 00000000..f9faed84 --- /dev/null +++ b/web/dbdoc/GSE5281_F_RMA_N_0709.html @@ -0,0 +1,292 @@ + +GSE5281 Human Brain Normal Full Liang (Jul09) RMA + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GSE5281 Human Brain Normal Full Liang (Jul09) RMAmodify this page

    + + Accession number: GN314

    +
    + +

    Please cite: Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 105:4441-4446. + +

    +Human brain expression data in patients with Alzheimer's disease and age-matched elderly control subjects. This cortical expression data set is taken from GEO GSE5281 (Liang et al. 2006, Liang et al. 2008). Samples were laser-captured from cortical regions of 16 normal elderly humans (10 males and 4 females) and from 33 AD cases (15 males and 18 females). Mean age of cases and controls was 80 years. All samples were run on the Affymetrix U133 Plus 2.0 array. We renormalized the RMA data to an average expression of 8 units on a log2 scale. Two versions of the data have been entered in GeneNetwork: one consisting of 157 of 161 arrays (full set minus 4 arrays we consider of poor quality); the second consisting of what we regard as the best 102 arrays (those with mean correlations of better than 0.88 with all other arrays). Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = entorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex area 17 layer III. GeneNetwork does not yet allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example, expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes. + + + + + +

    NOTE: We detected a minimum of 7.6% case assignment error rate (12 of 158 arrays) in this data set. Twelve cases are assigned to the wrong sex (see XIST probe set 224588_at, the figure below, and table 1). This raises the possibility that some cases are also misassigned by cortical brain region and disease status. + +

    +

    Legend: Expression of the sex-specific gene XIST reveals about 10 sex assignment errors in this data set.

    +
    + + + +

    Samples were laser-captured from cortical layer 3 (except the hippocampus) and run on the Affymetrix U133 Plus 2.0 array. We renormalized the data to an average expression of 8 units on a log2 scale. Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex layer II, H = hippocampus CA1 pyramidal layer, MT = medial temporal cortex layer III, PC = porterior cingulate cortex layer III, SP = supeior frontal cortex layer III, V = primary visual cortex layer III. A total of 16 normal subjects were used (10 M and 4 female). The AD samples + +

    . GeneNetwork does not allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes. + +

    Summary: (Taken verbatim from the GEO record)

    +

    Information about the genes that are preferentially expressed during the course of Alzheimer’s disease (AD) could improve our understanding of the molecular mechanisms involved in the pathogenesis of this common cause of cognitive impairment in older persons, provide new opportunities in the diagnosis, early detection, and tracking of this disorder, and provide novel targets for the discovery of interventions to treat and prevent this disorder. Information about the genes that are preferentially expressed in relationship to normal neurological aging could provide new information about the molecular mechanisms that are involved in normal age-related cognitive decline and a host of age-related neurological disorders, and they could provide novel targets for the discovery of interventions to mitigate some of these deleterious effects. +

    + +Aim 1. Collect brain samples from three Alzheimer’s Disease Centers (ADCs) for subsequent gene expression profiling. Individuals will be stratified with respect to diagnostic groups (using both clinical and neuropathological criteria), age groups, and APOE genotype. 150 individual brains will be sampled from the Arizona ADC, the Duke University ADC, and the Washington University ADC. Miniscule sample sizes (200 um of sectioned tissue) from six brain regions that are histopathologically or metabolically relevant to AD and aging will be collected, ensuring that this proposal does not deplete the national resource. Frozen and fixed samples will be sent to Phoenix, sectioned in a standardized fashion, and then returned. Aim 2. Tissue heterogeneity will be eliminated prior to expression profiling by performing laser capture microscopy on all brain regions. Aim 3. Expression profile LCM-captured cells on the Affymetrix U133 Plus 2.0 array (~55,000 transcripts), and quickly provide these data to the community at large. Aim 4. Identify pathogenic cascades related to each of the clinico-pathologic correlates using unsupervised and supervised analyses coupled with a hypothesis-driven approach. Aim 5. Validation of the expression correlates at the protein and functional levels. + +

    +Scientific progress in the last few years has improved our understanding of AD and raised the hope of identifying treatments to halt the progression and prevent the onset of this disorder. For instance, researchers have begun to characterize the cascade of molecular events which lead to the major histopathological features of the disorder: neuritic plaques, which contain extra-cellular deposits of amyloid beta-peptides (Abeta); neurofibrillary tangles, which contain the hyperphosphorylated form of the intracellular, microtubule-associated protein, tau; and a loss of neurons and synapses. These molecular events provide targets for the development of promising new treatments. For example, A-beta has been postulated to trigger a cascade of events that are involved in the pathogenesis of AD. This proposal hopes to provide new information about the genes that are preferentially expressed in the development of AD histopathology, including the over-expression of APP, amyloid-induced neurotoxicity, and hyperphosphorylation of tau, as well as bring clarity to the metabolic abnormalities that seem to play a role in dementia and AD development and pathology. +

    +We will perform LCM on 6 brain regions with about 14 biological replicates per brain region. The brain regions are as follows: 1) entorhinal cortex 2) hippocampus 3) medial temporal gyrus 4) posterior cingulate 5) superior frontal gyrus and 6) primary visual cortex. We will collect layer III pyramidal cells from the white matter in each region, isolate total RNA from LCMed cell lysates, and perform double round amplification of each sample for array analysis.

    + + +

    Bad arrays excluded: Four samples, highlighted in the table below, are bad arrays. For quality control, they should be excluded. + +

    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexGEO SeriesOrgan RegionTissueCase IDAgeSex
    1GSM119615Entorhinal CortexNormalE119615M63N63M
    2GSM119616Entorhinal CortexNormalE119616M85N85M
    3GSM119617Entorhinal CortexNormalE119617M80N80M
    4GSM119618Entorhinal CortexNormalE119618M->F80N80M
    5GSM119619Entorhinal CortexNormalE119619F->M102N102F
    6GSM119620Entorhinal CortexNormalE119620M79N79M
    7GSM119621Entorhinal CortexNormalE119621M76N76M
    8GSM119622Entorhinal CortexNormalE119622M83N83M
    9GSM119623Entorhinal CortexNormalE119623M79N79M
    10GSM119624Entorhinal CortexNormalE119624F88N88F
    11GSM119625Entorhinal CortexNormalE119625F82N82F
    12GSM119626Entorhinal CortexNormalE119626M69N69M
    13GSM119627Entorhinal CortexNormalE119627M78N78M
    14GSM238763Entorhinal CortexAlzheimer'sE238763F82A82F
    15GSM238790Entorhinal CortexAlzheimer'sE238790F86A86F
    16GSM238791Entorhinal CortexAlzheimer'sE238791F93A93F
    17GSM238792Entorhinal CortexAlzheimer'sE238792M84A84M
    18GSM238793Entorhinal CortexAlzheimer'sE238793F79A79F
    19GSM238794Entorhinal CortexAlzheimer'sE238794F78A78F
    20GSM238795Entorhinal CortexAlzheimer'sE238795F91A91F
    21GSM238796Entorhinal CortexAlzheimer'sE238796M86A86M
    22GSM238797Entorhinal CortexAlzheimer'sE238797NA0AN/AN/A
    23GSM238798Entorhinal CortexAlzheimer'sE238798M80A80M
    24GSM119628HippocampusNormalH119628M85N85M
    25GSM119629HippocampusNormalH119629M80N80M
    26GSM119630HippocampusNormalH119630M80N80M
    27GSM119631HippocampusNormalH119631F102N102F
    28GSM119632HippocampusNormalH119632M63N63M
    29GSM119633HippocampusNormalH119633M79N79M
    30GSM119634HippocampusNormalH119634M76N76M
    31GSM119635HippocampusNormalH119635M83N83M
    32GSM119636HippocampusNormalH119636M79N79M
    33GSM119637HippocampusNormalH119637F88N88F
    34GSM119638HippocampusNormalH119638F73N73F
    35GSM119639HippocampusNormalH119639M69N69M
    36GSM119640HippocampusNormalH119640M78N78M
    37GSM238799HippocampusAlzheimer'sH238799F73A73F
    38GSM238800HippocampusAlzheimer'sH238800M81A81M
    39GSM238801HippocampusAlzheimer'sH238801M78A78M
    40GSM238802HippocampusAlzheimer'sH238802M75A75M
    41GSM238803HippocampusAlzheimer'sH238803F70A70F
    42GSM238804HippocampusAlzheimer'sH238804F85A85F
    43GSM238805HippocampusAlzheimer'sH238805F77A77F
    44GSM238806HippocampusAlzheimer'sH238806M79A79M
    45GSM238807HippocampusAlzheimer'sH238807M88A88M
    46GSM238808HippocampusAlzheimer'sH238808M72A72M
    47GSM119641Medial Temporal GyrusNormalMT119641M85N85M
    48GSM119642Medial Temporal GyrusNormalMT119642M80N80M
    49GSM119643Medial Temporal GyrusNormalMT119643F102N102F
    50GSM119644Medial Temporal GyrusNormalMT119644M63N63M
    51GSM119645Medial Temporal GyrusNormalMT119645M79N79M
    52GSM119646Medial Temporal GyrusNormalMT119646M83N83M
    53GSM119647Medial Temporal GyrusNormalMT119647M79N79M
    54GSM119648Medial Temporal GyrusNormalMT119648F88N88F
    55GSM119649Medial Temporal GyrusNormalMT119649F82N82F
    56GSM119650Medial Temporal GyrusNormalMT119650F73N73F
    57GSM119651Medial Temporal GyrusNormalMT119651M69N69M
    58GSM119652Medial Temporal GyrusNormalMT119652M->F78N78M
    59GSM238809Medial Temporal GyrusAlzheimer'sMT238809M81A81M
    60GSM238810Medial Temporal GyrusAlzheimer'sMT238810M72A72M
    61GSM238811Medial Temporal GyrusAlzheimer'sMT238811M75A75M
    62GSM238812Medial Temporal GyrusAlzheimer'sMT238812M78A78M
    63GSM238813Medial Temporal GyrusAlzheimer'sMT238813M75A75M
    64GSM238815Medial Temporal GyrusAlzheimer'sMT238815F95A95F
    65GSM238816Medial Temporal GyrusAlzheimer'sMT238816F81A81F
    66GSM238817Medial Temporal GyrusAlzheimer'sMT238817F85A85F
    67GSM238818Medial Temporal GyrusAlzheimer'sMT238818M79A79M
    68GSM238819Medial Temporal GyrusAlzheimer'sMT238819F82A82F
    69GSM238820Medial Temporal GyrusAlzheimer'sMT238820M88A88M
    70GSM238821Medial Temporal GyrusAlzheimer'sMT238821M72A72M
    71GSM238822Medial Temporal GyrusAlzheimer'sMT238822F73A73F
    72GSM238823Medial Temporal GyrusAlzheimer'sMT238823M87A87M
    73GSM238824Medial Temporal GyrusAlzheimer'sMT238824M68A68M
    74GSM238825Medial Temporal GyrusAlzheimer'sMT238825F80A80F
    75GSM119653Posterior CingulateNormalPC119653M85N85M
    76GSM119654Posterior CingulateNormalPC119654M80N80M
    77GSM119655Posterior CingulateNormalPC119655F102N102F
    78GSM119656Posterior CingulateNormalPC119656M63N63M
    79GSM119657Posterior CingulateNormalPC119657M79N79M
    80GSM119658Posterior CingulateNormalPC119658M->F76N76M
    81GSM119659Posterior CingulateNormalPC119659M83N83M
    82GSM119660Posterior CingulateNormalPC119660M79N79M
    83GSM119661Posterior CingulateNormalPC119661F88N88F
    84GSM119662Posterior CingulateNormalPC119662F82N82F
    85GSM119663Posterior CingulateNormalPC119663F73N73F
    86GSM119664Posterior CingulateNormalPC119664M69N69M
    87GSM119665Posterior CingulateNormalPC119665M78N78M
    88GSM238826Posterior CingulateAlzheimer'sPC238826F73A73F
    89GSM238827Posterior CingulateAlzheimer'sPC238827M81A81M
    90GSM238834Posterior CingulateAlzheimer'sPC238834M78A78M
    91GSM238835Posterior CingulateAlzheimer'sPC238835M75A75M
    92GSM238837Posterior CingulateAlzheimer'sPC238837M68A68M
    93GSM238838Posterior CingulateAlzheimer'sPC238838F70A70F
    94GSM238839Posterior CingulateAlzheimer'sPC238839F85A85F
    95GSM238840Posterior CingulateAlzheimer'sPC238840M79A79M
    96GSM238841Posterior CingulateAlzheimer'sPC238841M88A88M
    97GSM119666Superior Frontal GyrusNormalSF119666M79N79M
    98GSM119667Superior Frontal GyrusNormalSF119667F->M88N88F
    99GSM119668Superior Frontal GyrusNormalSF119668F->M82N82F
    100GSM119669Superior Frontal GyrusNormalSF119669F->M73N73F
    101GSM119670Superior Frontal GyrusNormalSF119670F->M102N102F
    102GSM119671Superior Frontal GyrusNormalSF119671M63N63M
    103GSM119672Superior Frontal GyrusNormalSF119672M->F79N79M
    104GSM119673Superior Frontal GyrusNormalSF119673M->F76N76M
    105GSM119674Superior Frontal GyrusNormalSF119674M->F83N83M
    106GSM119675Superior Frontal GyrusNormalSF119675M69N69M
    107GSM119676Superior Frontal GyrusNormalSF119676M78N78M
    108GSM238842Superior Frontal GyrusAlzheimer'sSF238842F73A73F
    109GSM238843Superior Frontal GyrusAlzheimer'sSF238843M81A81M
    110GSM238844Superior Frontal GyrusAlzheimer'sSF238844M72A72M
    111GSM238845Superior Frontal GyrusAlzheimer'sSF238845M75A75M
    112GSM238846Superior Frontal GyrusAlzheimer'sSF238846M78A78M
    113GSM238847Superior Frontal GyrusAlzheimer'sSF238847M75A75M
    114GSM238848Superior Frontal GyrusAlzheimer'sSF238848M87A87M
    115GSM238851Superior Frontal GyrusAlzheimer'sSF238851F95A95F
    116GSM238854Superior Frontal GyrusAlzheimer'sSF238854M68A68M
    117GSM238855Superior Frontal GyrusAlzheimer'sSF238855F95A95F
    118GSM238856Superior Frontal GyrusAlzheimer'sSF238856F70A70F
    119GSM238857Superior Frontal GyrusAlzheimer'sSF238857F85A85F
    120GSM238858Superior Frontal GyrusAlzheimer'sSF238858F83A83F
    121GSM238860Superior Frontal GyrusAlzheimer'sSF238860F77A77F
    122GSM238861Superior Frontal GyrusAlzheimer'sSF238861F83A83F
    123GSM238862Superior Frontal GyrusAlzheimer'sSF238862M68A68M
    124GSM238863Superior Frontal GyrusAlzheimer'sSF238863M79A79M
    125GSM238864Superior Frontal GyrusAlzheimer'sSF238864F82A82F
    126GSM238865Superior Frontal GyrusAlzheimer'sSF238865M88A88M
    127GSM238867Superior Frontal GyrusAlzheimer'sSF238867F80A80F
    128GSM238868Superior Frontal GyrusAlzheimer'sSF238868M74A74M
    129GSM238870Superior Frontal GyrusAlzheimer'sSF238870M72A72M
    130GSM238871Superior Frontal GyrusAlzheimer'sSF238871M80A80M
    131GSM119677Primary Visual CortexNormalV119677M85N85M
    132GSM119678Primary Visual CortexNormalV119678M80N80M
    133GSM119679Primary Visual CortexNormalV119679M63N63M
    134GSM119680Primary Visual CortexNormalV119680M79N79M
    135GSM119681Primary Visual CortexNormalV119681M76N76M
    136GSM119682Primary Visual CortexNormalV119682M83N83M
    137GSM119683Primary Visual CortexNormalV119683M79N79M
    138GSM119684Primary Visual CortexNormalV119684F88N88F
    139GSM119685Primary Visual CortexNormalV119685F82N82F
    140GSM119686Primary Visual CortexNormalV119686F73N73F
    141GSM119687Primary Visual CortexNormalV119687M69N69M
    142GSM119688Primary Visual CortexNormalV119688M78N78M
    143GSM238872Primary Visual CortexAlzheimer'sV238872F73A73F
    144GSM238873Primary Visual CortexAlzheimer'sV238873M81A81M
    145GSM238874Primary Visual CortexAlzheimer'sV238874M75A75M
    146GSM238875Primary Visual CortexAlzheimer'sV238875M78A78M
    147GSM238877Primary Visual CortexAlzheimer'sV238877M75A75M
    148GSM238941Primary Visual CortexAlzheimer'sV238941M87A87M
    149GSM238942Primary Visual CortexAlzheimer'sV238942F95A95F
    150GSM238943Primary Visual CortexAlzheimer'sV238943M68A68M
    151GSM238944Primary Visual CortexAlzheimer'sV238944F70A70F
    152GSM238945Primary Visual CortexAlzheimer'sV238945F81A81F
    153GSM238946Primary Visual CortexAlzheimer'sV238946F85A85F
    154GSM238947Primary Visual CortexAlzheimer'sV238947M68A68M
    155GSM238948Primary Visual CortexAlzheimer'sV238948M79A79M
    156GSM238949Primary Visual CortexAlzheimer'sV238949F82A82F
    157GSM238951Primary Visual CortexAlzheimer'sV238951M88A88M
    158GSM238952Primary Visual CortexAlzheimer'sV238952M74A74M
    159GSM238953Primary Visual CortexAlzheimer'sV238953M72A72M
    160GSM238955Primary Visual CortexAlzheimer'sV238955M->F68A68M
    161GSM238963Primary Visual CortexAlzheimer'sV238963F80A80F
    +
    + + + +

    Web Link:

    +

    http://arrayconsortium.tgen.org/np2/viewProject.do?action=viewProject&projectId=433773

    +

    Citations:

    +

    Liang WS, Dunckley T, Beach TG, Grover A et al. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol Genomics 2007 Feb 12;28(3):311-22. PMID: 17077275
    +Liang WS, Reiman EM, Valla J, Dunckley T et al. Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A 2008 Mar 18;105(11):4441-6. PMID: 18332434


    + + +
    + + + + + + + + + + +
    +      +
    + + + + + + + + + + + + + + diff --git a/web/dbdoc/GSE5281_RMA0709.html b/web/dbdoc/GSE5281_RMA0709.html new file mode 100755 index 00000000..3b6487c1 --- /dev/null +++ b/web/dbdoc/GSE5281_RMA0709.html @@ -0,0 +1,269 @@ + +GSE5281 Human Brain Best 102 (Jul09) RMA + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    GSE5281 Human Brain Best 102 (Jul09) RMA
    Accession number: GN232 + modify this page

    +
    +

    Human brain expression data in patients with Alzheimer's disease and in age-matched elderly normal subjects. This data set is taken from GEO GSE5281. Samples were laser-captured from cortical layer 3 (except the hippocampus) and run on the Affymetrix U133 Plus 2.0 array. We renormalized the data to an average expression of 8 units on a log2 scale. Only then best 102 array data sets were entered into GeneNetwork: those with mean correlations of better than 0.88 with all other arrays. Case IDs have the following code structure: Brain Region, GEO ID, Sex, Age, Disease Status. E119615M63N is a sample of the entorhinal cortex of case GSM119615, a male 63 year old normal case. The tissue codes are E = enorhinal cortex, H = hippocampus pyramidal layer, MT = medial temporal cortex, PC = porterior cingulate cortex, SP = supeior frontal cortex, V = primary visual cortex. GeneNetwork does not allow sophisticated display of the data, but you can perform correlation analyses of any of the 56,000 probe sets. For example expression of the APP transcript is higher in the AD cases and correlates well with many other AD related genes. + +

    Please cite: Liang WS, Dunckley T, Beach TG, Grover A et al. (2007) Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol Genomics 28:311-22 + +

    Summary: (Taken verbatim from the GEO record)

    +

    Information about the genes that are preferentially expressed during the course of Alzheimer’s disease (AD) could improve our understanding of the molecular mechanisms involved in the pathogenesis of this common cause of cognitive impairment in older persons, provide new opportunities in the diagnosis, early detection, and tracking of this disorder, and provide novel targets for the discovery of interventions to treat and prevent this disorder. Information about the genes that are preferentially expressed in relationship to normal neurological aging could provide new information about the molecular mechanisms that are involved in normal age-related cognitive decline and a host of age-related neurological disorders, and they could provide novel targets for the discovery of interventions to mitigate some of these deleterious effects. +

    +Aim 1. Collect brain samples from three Alzheimer’s Disease Centers (ADCs) for subsequent gene expression profiling. Individuals will be stratified with respect to diagnostic groups (using both clinical and neuropathological criteria), age groups, and APOE genotype. 150 individual brains will be sampled from the Arizona ADC, the Duke University ADC, and the Washington University ADC. Miniscule sample sizes (200 um of sectioned tissue) from six brain regions that are histopathologically or metabolically relevant to AD and aging will be collected, ensuring that this proposal does not deplete the national resource. Frozen and fixed samples will be sent to Phoenix, sectioned in a standardized fashion, and then returned. Aim 2. Tissue heterogeneity will be eliminated prior to expression profiling by performing laser capture microscopy on all brain regions. Aim 3. Expression profile LCM-captured cells on the Affymetrix U133 Plus 2.0 array (~55,000 transcripts), and quickly provide these data to the community at large. Aim 4. Identify pathogenic cascades related to each of the clinico-pathologic correlates using unsupervised and supervised analyses coupled with a hypothesis-driven approach. Aim 5. Validation of the expression correlates at the protein and functional levels. +

    +Scientific progress in the last few years has improved our understanding of AD and raised the hope of identifying treatments to halt the progression and prevent the onset of this disorder. For instance, researchers have begun to characterize the cascade of molecular events which lead to the major histopathological features of the disorder: neuritic plaques, which contain extra-cellular deposits of amyloid beta-peptides (Abeta); neurofibrillary tangles, which contain the hyperphosphorylated form of the intracellular, microtubule-associated protein, tau; and a loss of neurons and synapses. These molecular events provide targets for the development of promising new treatments. For example, A-beta has been postulated to trigger a cascade of events that are involved in the pathogenesis of AD. This proposal hopes to provide new information about the genes that are preferentially expressed in the development of AD histopathology, including the over-expression of APP, amyloid-induced neurotoxicity, and hyperphosphorylation of tau, as well as bring clarity to the metabolic abnormalities that seem to play a role in dementia and AD development and pathology. +

    +We will perform LCM on 6 brain regions with about 14 biological replicates per brain region. The brain regions are as follows: 1) entorhinal cortex 2) hippocampus 3) medial temporal gyrus 4) posterior cingulate 5) superior frontal gyrus and 6) primary visual cortex. We will collect layer III pyramidal cells from the white matter in each region, isolate total RNA from LCMed cell lysates, and perform double round amplification of each sample for array analysis.

    +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexGEO SeriesOrgan RegionTissueCase IDAgeSexNormalization
    1GSM119615Entorhinal CortexNormalE119615M63N63MIncluded
    2GSM119616Entorhinal CortexNormalE119616M85N85MExcluded
    3GSM119617Entorhinal CortexNormalE119617M80N80MExcluded
    4GSM119618Entorhinal CortexNormalE119618M80N80MExcluded
    5GSM119619Entorhinal CortexNormalE119619F102N102FIncluded
    6GSM119620Entorhinal CortexNormalE119620M79N79MExcluded
    7GSM119621Entorhinal CortexNormalE119621M76N76MExcluded
    8GSM119622Entorhinal CortexNormalE119622M83N83MExcluded
    9GSM119623Entorhinal CortexNormalE119623M79N79MExcluded
    10GSM119624Entorhinal CortexNormalE119624F88N88FExcluded
    11GSM119625Entorhinal CortexNormalE119625F82N82FExcluded
    12GSM119626Entorhinal CortexNormalE119626M69N69MExcluded
    13GSM119627Entorhinal CortexNormalE119627M78N78MExcluded
    14GSM238763Entorhinal CortexAlzheimer'sE238763F82A82FExcluded
    15GSM238790Entorhinal CortexAlzheimer'sE238790F86A86FIncluded
    16GSM238791Entorhinal CortexAlzheimer'sE238791F93A93FExcluded
    17GSM238792Entorhinal CortexAlzheimer'sE238792M84A84MExcluded
    18GSM238793Entorhinal CortexAlzheimer'sE238793F79A79FExcluded
    19GSM238794Entorhinal CortexAlzheimer'sE238794F78A78FExcluded
    20GSM238795Entorhinal CortexAlzheimer'sE238795F91A91FExcluded
    21GSM238796Entorhinal CortexAlzheimer'sE238796M86A86MExcluded
    22GSM238797Entorhinal CortexAlzheimer'sE238797NA0AN/AN/AExcluded
    23GSM238798Entorhinal CortexAlzheimer'sE238798M80A80MExcluded
    24GSM119628HippocampusNormalH119628M85N85MExcluded
    25GSM119629HippocampusNormalH119629M80N80MExcluded
    26GSM119630HippocampusNormalH119630M80N80MExcluded
    27GSM119631HippocampusNormalH119631F102N102FExcluded
    28GSM119632HippocampusNormalH119632M63N63MExcluded
    29GSM119633HippocampusNormalH119633M79N79MExcluded
    30GSM119634HippocampusNormalH119634M76N76MExcluded
    31GSM119635HippocampusNormalH119635M83N83MExcluded
    32GSM119636HippocampusNormalH119636M79N79MExcluded
    33GSM119637HippocampusNormalH119637F88N88FExcluded
    34GSM119638HippocampusNormalH119638F73N73FExcluded
    35GSM119639HippocampusNormalH119639M69N69MExcluded
    36GSM119640HippocampusNormalH119640M78N78MExcluded
    37GSM238799HippocampusAlzheimer'sH238799F73A73FIncluded
    38GSM238800HippocampusAlzheimer'sH238800M81A81MIncluded
    39GSM238801HippocampusAlzheimer'sH238801M78A78MIncluded
    40GSM238802HippocampusAlzheimer'sH238802M75A75MIncluded
    41GSM238803HippocampusAlzheimer'sH238803F70A70FIncluded
    42GSM238804HippocampusAlzheimer'sH238804F85A85FIncluded
    43GSM238805HippocampusAlzheimer'sH238805F77A77FIncluded
    44GSM238806HippocampusAlzheimer'sH238806M79A79MIncluded
    45GSM238807HippocampusAlzheimer'sH238807M88A88MIncluded
    46GSM238808HippocampusAlzheimer'sH238808M72A72MIncluded
    47GSM119641Medial Temporal GyrusNormalMT119641M85N85MExcluded
    48GSM119642Medial Temporal GyrusNormalMT119642M80N80MExcluded
    49GSM119643Medial Temporal GyrusNormalMT119643F102N102FExcluded
    50GSM119644Medial Temporal GyrusNormalMT119644M63N63MExcluded
    51GSM119645Medial Temporal GyrusNormalMT119645M79N79MExcluded
    52GSM119646Medial Temporal GyrusNormalMT119646M83N83MExcluded
    53GSM119647Medial Temporal GyrusNormalMT119647M79N79MExcluded
    54GSM119648Medial Temporal GyrusNormalMT119648F88N88FExcluded
    55GSM119649Medial Temporal GyrusNormalMT119649F82N82FIncluded
    56GSM119650Medial Temporal GyrusNormalMT119650F73N73FExcluded
    57GSM119651Medial Temporal GyrusNormalMT119651M69N69MExcluded
    58GSM119652Medial Temporal GyrusNormalMT119652M78N78MExcluded
    59GSM238809Medial Temporal GyrusAlzheimer'sMT238809M81A81MExcluded
    60GSM238810Medial Temporal GyrusAlzheimer'sMT238810M72A72MIncluded
    61GSM238811Medial Temporal GyrusAlzheimer'sMT238811M75A75MIncluded
    62GSM238812Medial Temporal GyrusAlzheimer'sMT238812M78A78MIncluded
    63GSM238813Medial Temporal GyrusAlzheimer'sMT238813M75A75MExcluded
    64GSM238815Medial Temporal GyrusAlzheimer'sMT238815F95A95FIncluded
    65GSM238816Medial Temporal GyrusAlzheimer'sMT238816F81A81FIncluded
    66GSM238817Medial Temporal GyrusAlzheimer'sMT238817F85A85FIncluded
    67GSM238818Medial Temporal GyrusAlzheimer'sMT238818M79A79MIncluded
    68GSM238819Medial Temporal GyrusAlzheimer'sMT238819F82A82FIncluded
    69GSM238820Medial Temporal GyrusAlzheimer'sMT238820M88A88MIncluded
    70GSM238821Medial Temporal GyrusAlzheimer'sMT238821M72A72MIncluded
    71GSM238822Medial Temporal GyrusAlzheimer'sMT238822F73A73FExcluded
    72GSM238823Medial Temporal GyrusAlzheimer'sMT238823M87A87MIncluded
    73GSM238824Medial Temporal GyrusAlzheimer'sMT238824M68A68MIncluded
    74GSM238825Medial Temporal GyrusAlzheimer'sMT238825F80A80FIncluded
    75GSM119653Posterior CingulateNormalPC119653M85N85MIncluded
    76GSM119654Posterior CingulateNormalPC119654M80N80MIncluded
    77GSM119655Posterior CingulateNormalPC119655F102N102FIncluded
    78GSM119656Posterior CingulateNormalPC119656M63N63MIncluded
    79GSM119657Posterior CingulateNormalPC119657M79N79MIncluded
    80GSM119658Posterior CingulateNormalPC119658M76N76MIncluded
    81GSM119659Posterior CingulateNormalPC119659M83N83MIncluded
    82GSM119660Posterior CingulateNormalPC119660M79N79MIncluded
    83GSM119661Posterior CingulateNormalPC119661F88N88FExcluded
    84GSM119662Posterior CingulateNormalPC119662F82N82FIncluded
    85GSM119663Posterior CingulateNormalPC119663F73N73FIncluded
    86GSM119664Posterior CingulateNormalPC119664M69N69MIncluded
    87GSM119665Posterior CingulateNormalPC119665M78N78MIncluded
    88GSM238826Posterior CingulateAlzheimer'sPC238826F73A73FIncluded
    89GSM238827Posterior CingulateAlzheimer'sPC238827M81A81MIncluded
    90GSM238834Posterior CingulateAlzheimer'sPC238834M78A78MIncluded
    91GSM238835Posterior CingulateAlzheimer'sPC238835M75A75MIncluded
    92GSM238837Posterior CingulateAlzheimer'sPC238837M68A68MIncluded
    93GSM238838Posterior CingulateAlzheimer'sPC238838F70A70FIncluded
    94GSM238839Posterior CingulateAlzheimer'sPC238839F85A85FIncluded
    95GSM238840Posterior CingulateAlzheimer'sPC238840M79A79MIncluded
    96GSM238841Posterior CingulateAlzheimer'sPC238841M88A88MIncluded
    97GSM119666Superior Frontal GyrusNormalSF119666M79N79MExcluded
    98GSM119667Superior Frontal GyrusNormalSF119667F88N88FIncluded
    99GSM119668Superior Frontal GyrusNormalSF119668F82N82FIncluded
    100GSM119669Superior Frontal GyrusNormalSF119669F73N73FExcluded
    101GSM119670Superior Frontal GyrusNormalSF119670F102N102FIncluded
    102GSM119671Superior Frontal GyrusNormalSF119671M63N63MIncluded
    103GSM119672Superior Frontal GyrusNormalSF119672M79N79MIncluded
    104GSM119673Superior Frontal GyrusNormalSF119673M76N76MIncluded
    105GSM119674Superior Frontal GyrusNormalSF119674M83N83MIncluded
    106GSM119675Superior Frontal GyrusNormalSF119675M69N69MExcluded
    107GSM119676Superior Frontal GyrusNormalSF119676M78N78MExcluded
    108GSM238842Superior Frontal GyrusAlzheimer'sSF238842F73A73FIncluded
    109GSM238843Superior Frontal GyrusAlzheimer'sSF238843M81A81MIncluded
    110GSM238844Superior Frontal GyrusAlzheimer'sSF238844M72A72MIncluded
    111GSM238845Superior Frontal GyrusAlzheimer'sSF238845M75A75MIncluded
    112GSM238846Superior Frontal GyrusAlzheimer'sSF238846M78A78MIncluded
    113GSM238847Superior Frontal GyrusAlzheimer'sSF238847M75A75MIncluded
    114GSM238848Superior Frontal GyrusAlzheimer'sSF238848M87A87MIncluded
    115GSM238851Superior Frontal GyrusAlzheimer'sSF238851F95A95FIncluded
    116GSM238854Superior Frontal GyrusAlzheimer'sSF238854M68A68MIncluded
    117GSM238855Superior Frontal GyrusAlzheimer'sSF238855F95A95FIncluded
    118GSM238856Superior Frontal GyrusAlzheimer'sSF238856F70A70FIncluded
    119GSM238857Superior Frontal GyrusAlzheimer'sSF238857F85A85FIncluded
    120GSM238858Superior Frontal GyrusAlzheimer'sSF238858F83A83FIncluded
    121GSM238860Superior Frontal GyrusAlzheimer'sSF238860F77A77FIncluded
    122GSM238861Superior Frontal GyrusAlzheimer'sSF238861F83A83FIncluded
    123GSM238862Superior Frontal GyrusAlzheimer'sSF238862M68A68MIncluded
    124GSM238863Superior Frontal GyrusAlzheimer'sSF238863M79A79MExcluded
    125GSM238864Superior Frontal GyrusAlzheimer'sSF238864F82A82FIncluded
    126GSM238865Superior Frontal GyrusAlzheimer'sSF238865M88A88MIncluded
    127GSM238867Superior Frontal GyrusAlzheimer'sSF238867F80A80FIncluded
    128GSM238868Superior Frontal GyrusAlzheimer'sSF238868M74A74MExcluded
    129GSM238870Superior Frontal GyrusAlzheimer'sSF238870M72A72MIncluded
    130GSM238871Superior Frontal GyrusAlzheimer'sSF238871M80A80MIncluded
    131GSM119677Primary Visual CortexNormalV119677M85N85MIncluded
    132GSM119678Primary Visual CortexNormalV119678M80N80MIncluded
    133GSM119679Primary Visual CortexNormalV119679M63N63MIncluded
    134GSM119680Primary Visual CortexNormalV119680M79N79MIncluded
    135GSM119681Primary Visual CortexNormalV119681M76N76MIncluded
    136GSM119682Primary Visual CortexNormalV119682M83N83MIncluded
    137GSM119683Primary Visual CortexNormalV119683M79N79MIncluded
    138GSM119684Primary Visual CortexNormalV119684F88N88FIncluded
    139GSM119685Primary Visual CortexNormalV119685F82N82FIncluded
    140GSM119686Primary Visual CortexNormalV119686F73N73FIncluded
    141GSM119687Primary Visual CortexNormalV119687M69N69MIncluded
    142GSM119688Primary Visual CortexNormalV119688M78N78MIncluded
    143GSM238872Primary Visual CortexAlzheimer'sV238872F73A73FIncluded
    144GSM238873Primary Visual CortexAlzheimer'sV238873M81A81MIncluded
    145GSM238874Primary Visual CortexAlzheimer'sV238874M75A75MIncluded
    146GSM238875Primary Visual CortexAlzheimer'sV238875M78A78MIncluded
    147GSM238877Primary Visual CortexAlzheimer'sV238877M75A75MExcluded
    148GSM238941Primary Visual CortexAlzheimer'sV238941M87A87MExcluded
    149GSM238942Primary Visual CortexAlzheimer'sV238942F95A95FIncluded
    150GSM238943Primary Visual CortexAlzheimer'sV238943M68A68MExcluded
    151GSM238944Primary Visual CortexAlzheimer'sV238944F70A70FIncluded
    152GSM238945Primary Visual CortexAlzheimer'sV238945F81A81FExcluded
    153GSM238946Primary Visual CortexAlzheimer'sV238946F85A85FIncluded
    154GSM238947Primary Visual CortexAlzheimer'sV238947M68A68MIncluded
    155GSM238948Primary Visual CortexAlzheimer'sV238948M79A79MIncluded
    156GSM238949Primary Visual CortexAlzheimer'sV238949F82A82FIncluded
    157GSM238951Primary Visual CortexAlzheimer'sV238951M88A88MIncluded
    158GSM238952Primary Visual CortexAlzheimer'sV238952M74A74MIncluded
    159GSM238953Primary Visual CortexAlzheimer'sV238953M72A72MIncluded
    160GSM238955Primary Visual CortexAlzheimer'sV238955M68A68MIncluded
    161GSM238963Primary Visual CortexAlzheimer'sV238963F80A80FIncluded
    +
    + + + +

    Web Link:

    +

    http://arrayconsortium.tgen.org/np2/viewProject.do?action=viewProject&projectId=433773

    +

    Citations:

    +

    Liang WS, Dunckley T, Beach TG, Grover A et al. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol Genomics 2007 Feb 12;28(3):311-22. PMID: 17077275
    +Liang WS, Reiman EM, Valla J, Dunckley T et al. Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A 2008 Mar 18;105(11):4441-6. PMID: 18332434


    + + + +
    + + + + + + + + + + +
    +
      + +
    +
    + + + + + + + + + + + + + + diff --git a/web/dbdoc/GenEx_BXD_liverEt_RMA_0111.html b/web/dbdoc/GenEx_BXD_liverEt_RMA_0111.html new file mode 100755 index 00000000..2008bb71 --- /dev/null +++ b/web/dbdoc/GenEx_BXD_liverEt_RMA_0111.html @@ -0,0 +1,81 @@ + + +GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes **modify this page

    + + Accession number: GN292

    +

    + Data set generated with support of NIAAA by Drs. Robert Rooney (Genome Explorations Inc.), Divyen Patel(Genome Explorations Inc.), and Kristin Hamre (UTHSC). All animals were on standard chow and water ad lib. Both the saline control group and the ethanol=treated group were given solutions via intragastric gavage with controls getting saline and the alcohol-treated group getting 6g/kg of ethanol. Ethanol-treated mice were generally comatose for 4-6 hrs but were responsive and moving by the next morning. Tissue was collected at 24 hours after the initial infusion. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GenEx_BXD_liverEt_RMA_0211.html b/web/dbdoc/GenEx_BXD_liverEt_RMA_0211.html new file mode 100755 index 00000000..2f7fa69d --- /dev/null +++ b/web/dbdoc/GenEx_BXD_liverEt_RMA_0211.html @@ -0,0 +1,111 @@ + + +GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes **modify this page

    + + Accession number: GN307

    +

    + +These data generated by Dr. Robert Rooney, Kristin Hamre, Divyen Patel, and colleagues at Genome Explorations as part of an SBIR from NIAAA (2010-2011). + +

    Data entered by Arthur Centeno, Jan and Feb 2011. +

    Data error checked by Robert W. Williams, Jan-May 2011. + + +
    +eQTLs with LOD > 10 +

      +
    1. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females: 303 +
    2. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males: 279 +
    3. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes: 493 + +
    4. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females: 320 +
    5. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males: 207 +
    6. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 513 + +
    7. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females: 189 +
    8. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males: 97 +
    9. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 327 + +
    10. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females: 274 +
    11. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males: 175 +
    12. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 444 + +
    13. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females: 139 +
    14. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males: 73 +
    15. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 230 +
    + +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GenEx_BXD_liverEt_RMA_F_0111.html b/web/dbdoc/GenEx_BXD_liverEt_RMA_F_0111.html new file mode 100755 index 00000000..3cdc46c8 --- /dev/null +++ b/web/dbdoc/GenEx_BXD_liverEt_RMA_F_0111.html @@ -0,0 +1,81 @@ + + +GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females **modify this page

    + + Accession number: GN294

    +

    +Data set generated with support of NIAAA by Drs. Robert Rooney (Genome Explorations Inc.), Divyen Patel(Genome Explorations Inc.), and Kristin Hamre (UTHSC). All animals were on standard chow and water ad lib. Both the saline control group and the ethanol=treated group were given solutions via intragastric gavage with controls getting saline and the alcohol-treated group getting 6g/kg of ethanol. Ethanol-treated mice were generally comatose for 4-6 hrs but were responsive and moving by the next morning. Tissue was collected at 24 hours after the initial infusion. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GenEx_BXD_liverEt_RMA_F_0211.html b/web/dbdoc/GenEx_BXD_liverEt_RMA_F_0211.html new file mode 100755 index 00000000..86f40305 --- /dev/null +++ b/web/dbdoc/GenEx_BXD_liverEt_RMA_F_0211.html @@ -0,0 +1,111 @@ + + +GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females **modify this page

    + + Accession number: GN309

    +

    + This page will be updated soon. +

    + +These data generated by Dr. Robert Rooney, Kristin Hamre, Divyen Patel, and colleagues at Genome Explorations as part of an SBIR from NIAAA (2010-2011). + +

    Data entered by Arthur Centeno, Jan and Feb 2011. +

    Data error checked by Robert W. Williams, Jan-May 2011. + + +
    +eQTLs with LOD > 10 +

      +
    1. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females: 303 +
    2. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males: 279 +
    3. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes: 493 + +
    4. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females: 320 +
    5. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males: 207 +
    6. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 513 + +
    7. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females: 189 +
    8. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males: 97 +
    9. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 327 + +
    10. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females: 274 +
    11. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males: 175 +
    12. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 444 + +
    13. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females: 139 +
    14. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males: 73 +
    15. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 230 +
    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GenEx_BXD_liverEt_RMA_M_0111.html b/web/dbdoc/GenEx_BXD_liverEt_RMA_M_0111.html new file mode 100755 index 00000000..6d95787d --- /dev/null +++ b/web/dbdoc/GenEx_BXD_liverEt_RMA_M_0111.html @@ -0,0 +1,81 @@ + + +GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males **modify this page

    + + Accession number: GN293

    +

    + Data set generated with support of NIAAA by Drs. Robert Rooney (Genome Explorations Inc.), Divyen Patel(Genome Explorations Inc.), and Kristin Hamre (UTHSC). All animals were on standard chow and water ad lib. Both the saline control group and the ethanol=treated group were given solutions via intragastric gavage with controls getting saline and the alcohol-treated group getting 6g/kg of ethanol. Ethanol-treated mice were generally comatose for 4-6 hrs but were responsive and moving by the next morning. Tissue was collected at 24 hours after the initial infusion. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GenEx_BXD_liverEt_RMA_M_0211.html b/web/dbdoc/GenEx_BXD_liverEt_RMA_M_0211.html new file mode 100755 index 00000000..a65ec70b --- /dev/null +++ b/web/dbdoc/GenEx_BXD_liverEt_RMA_M_0211.html @@ -0,0 +1,113 @@ + + +GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males **modify this page

    + + Accession number: GN308

    +

    + This page will be updated soon. +

    + + + +These data generated by Dr. Robert Rooney, Kristin Hamre, Divyen Patel, and colleagues at Genome Explorations as part of an SBIR from NIAAA (2010-2011). + +

    Data entered by Arthur Centeno, Jan and Feb 2011. +

    Data error checked by Robert W. Williams, Jan-May 2011. + + +
    +eQTLs with LOD > 10 +

      +
    1. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females: 303 +
    2. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males: 279 +
    3. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes: 493 + +
    4. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females: 320 +
    5. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males: 207 +
    6. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 513 + +
    7. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females: 189 +
    8. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males: 97 +
    9. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 327 + +
    10. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females: 274 +
    11. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males: 175 +
    12. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 444 + +
    13. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females: 139 +
    14. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males: 73 +
    15. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 230 +
    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GenEx_BXD_liverSal_RMA_0111.html b/web/dbdoc/GenEx_BXD_liverSal_RMA_0111.html new file mode 100755 index 00000000..84cc919e --- /dev/null +++ b/web/dbdoc/GenEx_BXD_liverSal_RMA_0111.html @@ -0,0 +1,81 @@ + + +GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes **modify this page

    + + Accession number: GN291

    +

    + Data set generated with support of NIAAA by Drs. Robert Rooney (Genome Explorations Inc.), Divyen Patel(Genome Explorations Inc.), and Kristin Hamre (UTHSC). All animals were on standard chow and water ad lib. Both the saline control group and the ethanol=treated group were given solutions via intragastric gavage with controls getting saline and the alcohol-treated group getting 6g/kg of ethanol. Ethanol-treated mice were generally comatose for 4-6 hrs but were responsive and moving by the next morning. Tissue was collected at 24 hours after the initial infusion. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GenEx_BXD_liverSal_RMA_0211.html b/web/dbdoc/GenEx_BXD_liverSal_RMA_0211.html new file mode 100755 index 00000000..1fb165e0 --- /dev/null +++ b/web/dbdoc/GenEx_BXD_liverSal_RMA_0211.html @@ -0,0 +1,115 @@ + + +GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes **modify this page

    + + Accession number: GN310

    +

    + This page will be updated soon. +

    + + + +These data generated by Dr. Robert Rooney, Kristin Hamre, Divyen Patel, and colleagues at Genome Explorations as part of an SBIR from NIAAA (2010-2011). + +

    Data entered by Arthur Centeno, Jan and Feb 2011. +

    Data error checked by Robert W. Williams, Jan-May 2011. + + +
    +eQTLs with LOD > 10 +

      +
    1. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females: 303 +
    2. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males: 279 +
    3. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes: 493 + +
    4. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females: 320 +
    5. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males: 207 +
    6. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 513 + +
    7. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females: 189 +
    8. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males: 97 +
    9. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 327 + +
    10. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females: 274 +
    11. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males: 175 +
    12. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 444 + +
    13. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females: 139 +
    14. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males: 73 +
    15. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 230 +
    + + + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GenEx_BXD_liverSal_RMA_F_0111.html b/web/dbdoc/GenEx_BXD_liverSal_RMA_F_0111.html new file mode 100755 index 00000000..c80ad4b5 --- /dev/null +++ b/web/dbdoc/GenEx_BXD_liverSal_RMA_F_0111.html @@ -0,0 +1,87 @@ + +GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females **modify this page

    + + Accession number: GN296

    + +
    +

    These data sets were generated by Drs. Robert Rooney (Genome Explorations Inc.), Divyen Patel(Genome Explorations Inc.), and Kristin Hamre (UTHSC) with support of an NIAAA SBIR grant award. All animals were raised on standard chow and water ad lib, and were approximately 90 days old at the time of treatment. Both the saline control group and the ethanol-treated group were given solutions via intragastric gavage with controls getting saline and the alcohol-treated group getting 6g/kg of ethanol. Ethanol-treated mice were generally comatose for 4-6 hrs but were responsive and moving by the next morning. Tissue was collected at 24 hours after the initial infusion. The RNA was analyzed on Affymetrix 430 2.0 arrays. ALT and BAC levels were monitored in all of the strains. ALT levels varied from normal (~50 IU/L) in many strains to fairly high (>150 IU/L) in others. +
    + +

    Data quality control by R. Rooney and R. Williams. These data sets have a known batch effect due to the use of different kits to prepare samples. The batch effect is most noticeable in the parental strains which were run in the initial batch. We are currently correcting for this effect. + +

    Data were entered into GeneNetwork by Arthur Centeno. + +

    Contact: Dr. Robert Rooney, Genome Explorations, Inc. for additional information on use of these data sets. + +

    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GenEx_BXD_liverSal_RMA_F_0211.html b/web/dbdoc/GenEx_BXD_liverSal_RMA_F_0211.html new file mode 100755 index 00000000..6e7376ea --- /dev/null +++ b/web/dbdoc/GenEx_BXD_liverSal_RMA_F_0211.html @@ -0,0 +1,113 @@ + + +GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females **modify this page

    + + Accession number: GN312

    +

    + This page will be updated soon. +

    + + +These data generated by Dr. Robert Rooney, Kristin Hamre, Divyen Patel, and colleagues at Genome Explorations as part of an SBIR from NIAAA (2010-2011). + +

    Data entered by Arthur Centeno, Jan and Feb 2011. +

    Data error checked by Robert W. Williams, Jan-May 2011. + + +
    +eQTLs with LOD > 10 +

      +
    1. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females: 303 +
    2. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males: 279 +
    3. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes: 493 + +
    4. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females: 320 +
    5. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males: 207 +
    6. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 513 + +
    7. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females: 189 +
    8. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males: 97 +
    9. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 327 + +
    10. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females: 274 +
    11. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males: 175 +
    12. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 444 + +
    13. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females: 139 +
    14. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males: 73 +
    15. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 230 +
    + + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GenEx_BXD_liverSal_RMA_M_0111.html b/web/dbdoc/GenEx_BXD_liverSal_RMA_M_0111.html new file mode 100755 index 00000000..325dd18e --- /dev/null +++ b/web/dbdoc/GenEx_BXD_liverSal_RMA_M_0111.html @@ -0,0 +1,81 @@ + + +GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males **modify this page

    + + Accession number: GN295

    +

    + Data set generated with support of NIAAA by Drs. Robert Rooney (Genome Explorations Inc.), Divyen Patel(Genome Explorations Inc.), and Kristin Hamre (UTHSC). All animals were on standard chow and water ad lib. Both the saline control group and the ethanol=treated group were given solutions via intragastric gavage with controls getting saline and the alcohol-treated group getting 6g/kg of ethanol. Ethanol-treated mice were generally comatose for 4-6 hrs but were responsive and moving by the next morning. Tissue was collected at 24 hours after the initial infusion. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/GenEx_BXD_liverSal_RMA_M_0211.html b/web/dbdoc/GenEx_BXD_liverSal_RMA_M_0211.html new file mode 100755 index 00000000..ee88e8a3 --- /dev/null +++ b/web/dbdoc/GenEx_BXD_liverSal_RMA_M_0211.html @@ -0,0 +1,114 @@ + + +GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males **modify this page

    + + Accession number: GN311

    +

    + This page will be updated soon. +

    + + +These data generated by Dr. Robert Rooney, Kristin Hamre, Divyen Patel, and colleagues at Genome Explorations as part of an SBIR from NIAAA (2010-2011). + +

    Data entered by Arthur Centeno, Jan and Feb 2011. +

    Data error checked by Robert W. Williams, Jan-May 2011. + + +
    +eQTLs with LOD > 10 +

      +
    1. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females: 303 +
    2. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males: 279 +
    3. UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes: 493 + +
    4. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females: 320 +
    5. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males: 207 +
    6. GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 513 + +
    7. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females: 189 +
    8. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males: 97 +
    9. GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes: 327 + +
    10. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females: 274 +
    11. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males: 175 +
    12. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 444 + +
    13. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females: 139 +
    14. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males: 73 +
    15. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes: 230 +
    + + + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HBTRC-MLC_0611.html b/web/dbdoc/HBTRC-MLC_0611.html new file mode 100755 index 00000000..52f13ed3 --- /dev/null +++ b/web/dbdoc/HBTRC-MLC_0611.html @@ -0,0 +1,830 @@ + + + +HBTRC-MLC Human Cerebellum Agilent (Jun11) mlratio + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    HBTRC-MLC Human Cerebellum Agilent (Jun11) mlratiomodify this page

    + + Accession number: GN326

    +

    +

    +

    Summary:

    +

    This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

    +
    +

    +

    +

    +

    Data Source Acknowledgements:

    +

    +

    +Species: Human
    +Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
    +Disease: Neurological Disease
    +Investigator: Francine Benes/ Eric Schadt
    +Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
    +Approximate Number Subjects: 803

    +

    +The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/). +

    +

    This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. +Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines. +

    +
    +

    +

    +

    +

    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Series Cerebellum in GN Condition Gender BioSample Name
    1 HB_029_N N NA 3405_VC_N_0859
    2 HB_058_N N NA 4021_VC_N_0854
    3 HB_064_N N NA 4338_VC_N_0861
    4 HB_086_N N NA 4729_PF_N_0756
    5 HB_091_N N NA 4741_VC_N_0864
    6 HB_092_N N NA 4744_VC_N_0865
    7 HB_102_N N NA 4810_VC_N_0869
    8 HB_119_N N NA 4872_VC_N_0878
    9 HB_147_N N NA 5021_VC_N_0852
    10 HB_161_N N NA 5077_VC_N_0851
    11 HB_162_N N NA 5081_VC_N_1021
    12 HB_166_N N NA 5095_VC_N_1024
    13 HB_183_N N NA 5162_VC_N_0850
    14 HB_206_N N NA 5245_VC_N_0849
    15 HB_215_N N NA 5270_VC_N_0848
    16 HB_218_N N NA 5276_CR_N_0912
    17 HB_223_N N NA 5287_VC_N_0916
    18 HB_226_N N NA 5294_VC_N_0919
    19 HB_241_N N NA 5326_CR_N_0652
    20 HB_243_N N NA 5333_VC_N_1262
    21 HB_247_N N NA 5341_VC_N_0923
    22 HB_257_N N NA 5368_PF_N_1032
    23 HB_264_N N NA 5384_VC_N_0924
    24 HB_295_N N NA 5452_VC_N_1268
    25 HB_300_N N NA 5463_VC_N_0845
    26 HB_311_N N NA 5489_CR_N_0942
    27 HB_324_N N NA 5531_VC_N_0844
    28 HB_332_N N NA 5547_VC_N_0843
    29 HB_340_N N NA 5568_VC_N_0842
    30 HB_360_N N NA 5619_CR_N_0645
    31 HB_365_N N NA 5632_VC_N_0838
    32 HB_367_N N NA 5637_VC_N_0837
    33 HB_382_N N NA 5684_PF_N_1270
    34 HB_396_N N NA 5718_VC_N_0956
    35 HB_398_N N NA 5722_VC_N_1044
    36 HB_400_N N NA 5726_VC_N_0834_Bis
    37 HB_403_N N NA 5734_VC_N_0833
    38 HB_414_N N NA 5772_VC_N_0832_Bis
    39 HB_416_N N NA 5778_CR_N_0962
    40 HB_418_N N NA 5789_PF_N_1273
    41 HB_421_N N NA 5799_VC_N_1058
    42 HB_423_N N NA 5803_VC_N_0966
    43 HB_426_N N NA 5806_PF_N_1064
    44 HB_427_N N NA 5810_CR_N_0636
    45 HB_431_N N NA 5823_VC_N_0829
    46 HB_432_N N NA 5826_VC_N_0828
    47 HB_433_N N NA 5827_VC_N_0827
    48 HB_436_N N NA 5832_PF_N_1145
    49 HB_443_N N NA 5852_VC_N_0826
    50 HB_446_N N NA 5859_VC_N_0825
    51 HB_449_N N NA 5866_VC_N_0824
    52 HB_450_N N NA 5867_VC_N_1277
    53 HB_453_N N NA 5876_VC_N_0823
    54 HB_462_N N NA 5903_VC_N_0822
    55 HB_464_N N NA 5905_VC_N_0820
    56 HB_468_N N NA 5912_VC_N_1286
    57 HB_472_N N NA 5925_VC_N_1289
    58 HB_475_N N NA 5936_VC_N_0979
    59 HB_476_N N NA 5938_VC_N_0819
    60 HB_480_N N NA 5946_VC_N_0985
    61 HB_485_N N NA 5959_VC_N_0818
    62 HB_486_N N NA 5963_VC_N_0987
    63 HB_495_N N NA 5980_VC_N_0989
    64 HB_497_N N NA 5985_VC_N_0990
    65 HB_500_N N NA 5990_VC_N_0817
    66 HB_501_N N NA 5991_VC_N_0816
    67 HB_504_N N NA 5996_VC_N_0815
    68 HB_505_N N NA 5998_VC_N_0814
    69 HB_507_N N NA 6006_VC_N_0813
    70 HB_508_N N NA 6007_CR_N_0618
    71 HB_509_N N NA 6008_PF_N_1081
    72 HB_512_N N NA 6023_PF_N_1155
    73 HB_516_N N NA 6030_VC_N_0810
    74 HB_519_N N NA 6034_VC_N_0809
    75 HB_532_N N NA 6060_VC_N_1292
    76 HB_541_N N NA 6092_VC_N_1001
    77 HB_542_N N NA 6096_VC_N_0807
    78 HB_544_N N NA 6101_CR_N_1161
    79 HB_547_N N NA 6110_VC_N_1295
    80 HB_551_N N NA 6124_VC_N_0806
    81 HB_557_N N NA 6134_PF_N_1297
    82 HB_560_N N NA 6142_VC_N_0805
    83 HB_569_N N NA 6166_VC_N_0804
    84 HB_570_N N NA 6170_VC_N_0803
    85 HB_572_N N NA 6172_VC_N_1008
    86 HB_577_N N NA 6182_VC_N_1166
    87 HB_579_N N NA 6187_CR_N_0607
    88 HB_581_N N NA 6191_VC_N_1010
    89 HB_584_N N NA 6196_CR_N_0605
    90 HB_586_N N NA 6200_VC_N_0799
    91 HB_587_N N NA 6206_PF_N_1176
    92 HB_589_N N NA 6213_VC_N_0798
    93 HB_601_N N NA 6241_VC_N_0796
    94 HB_604_N N NA 6260_VC_N_0794
    95 HB_609_N N NA 6270_VC_N_0793
    96 HB_618_N N NA 6289_VC_N_0791
    97 HB_622_N N NA 6310_VC_N_0790
    98 HB_625_N N NA 6314_VC_N_0789
    99 HB_637_N N NA 6340_VC_N_0786
    100 HB_638_N N NA 6341_VC_N_0785
    101 HB_640_N N NA 6347_VC_N_0784
    102 HB_641_N N NA 6356_VC_N_0783
    103 HB_643_N N NA 6363_VC_N_0781
    104 HB_644_N N NA 6366_VC_N_0780
    105 HB_645_N N NA 6374_VC_N_0779
    106 HB_650_N N NA 6384_VC_N_0777
    107 HB_651_N N NA 6386_VC_N_0776
    108 HB_653_N N NA 6388_VC_N_0775
    109 HB_659_N N NA 6406_VC_N_1180
    110 HB_662_N N NA 6411_VC_N_0771
    111 HB_663_N N NA 6415_VC_N_0770
    112 HB_670_N N NA 6436_VC_N_0769
    113 HB_687_N N NA 6484_VC_N_0765
    114 HB_689_N N NA 6486_VC_N_0764
    115 HB_694_N N NA 6500_VC_N_0763
    116 HB_697_N N NA 6512_VC_N_0762
    117 HB_700_N N NA 6520_VC_N_0761
    118 HB_711_N N NA 6543_PF_N_1191
    119 HB_714_N N NA 6549_VC_N_1198
    120 HB_717_N N NA 6553_PF_N_2284
    121 HB_721_N N NA 6560_VC_N_2578
    122 HB_726_N N NA 6573_PF_N_2293
    123 HB_730_N N NA 6580_VC_N_2306
    124 HB_735_N N NA 6588_VC_N_1213
    125 HB_737_N N NA 6593_VC_N_1219
    126 HB_738_N N NA 6594_VC_N_1222
    127 HB_759_N N NA 6645_VC_N_1231
    128 HB_764_N N NA 6655_VC_N_1240
    129 HB_765_N N NA 6656_VC_N_1243
    130 HB_767_N N NA 6661_PF_N_2341
    131 HB_770_N N NA 6669_VC_N_1246
    132 HB_772_N N NA 6676_PF_N_1248
    133 HB_001_HD HD F 2028_CR_H_2282
    134 HB_003_HD HD F 2685_PF_H_2212
    135 HB_004_HD HD M 2706_CR_H_2432
    136 HB_006_HD HD M 2737_VC_H_2194
    137 HB_007_HD HD NA 2769_VC_H_2193
    138 HB_008_HD HD F 2790_CR_H_1890
    139 HB_009_HD HD NA 2879_VC_H_2192
    140 HB_010_HD HD M 2960_VC_H_2002
    141 HB_011_HD HD F 3053_VC_H_2001
    142 HB_012_HD HD F 3128_VC_H_1999
    143 HB_014_HD HD F 3149_PF_H_2110
    144 HB_015_HD HD F 3150_VC_H_1996
    145 HB_016_HD HD F 3177_VC_H_2191
    146 HB_017_HD HD NA 3195_VC_H_2190
    147 HB_018_HD HD M 3200_VC_H_2189
    148 HB_019_HD HD M 3209_VC_H_2188
    149 HB_020_HD HD M 3224_VC_H_1994
    150 HB_022_HD HD F 3242_PF_H_2105
    151 HB_024_HD HD NA 3272_VC_H_2186
    152 HB_027_HD HD M 3356_VC_H_2439
    153 HB_028_HD HD F 3394_PF_H_2104
    154 HB_031_HD HD M 3430_VC_H_1990
    155 HB_032_HD HD NA 3444_PF_H_2208
    156 HB_034_HD HD F 3482_VC_H_1987
    157 HB_036_HD HD M 3576_VC_H_1984
    158 HB_037_HD HD F 3579_VC_H_1983
    159 HB_038_HD HD F 3584_VC_H_2183
    160 HB_039_HD HD NA 3635_VC_H_2182
    161 HB_041_HD HD F 3695_CR_H_2267
    162 HB_042_HD HD M 3697_VC_H_1982
    163 HB_043_HD HD NA 3703_VC_H_2180
    164 HB_044_HD HD NA 3723_VC_H_2179
    165 HB_046_HD HD F 3735_VC_H_1981
    166 HB_050_HD HD M 3820_PF_H_2207
    167 HB_051_HD HD F 3849_CR_H_2262
    168 HB_054_HD HD M 3884_VC_H_2175
    169 HB_056_HD HD NA 4012_VC_H_2174
    170 HB_057_HD HD NA 4013_VC_H_2173
    171 HB_059_HD HD NA 4066_VC_H_2172
    172 HB_060_HD HD NA 4094_VC_H_2171
    173 HB_061_HD HD F 4116_VC_H_2170
    174 HB_062_HD HD NA 4121_VC_H_2169
    175 HB_063_HD HD NA 4215_VC_H_2167
    176 HB_065_HD HD M 4340_PF_H_2091
    177 HB_066_HD HD F 4344_VC_H_1977
    178 HB_067_HD HD M 4346_VC_H_2165
    179 HB_069_HD HD F 4356_VC_H_2164
    180 HB_070_HD HD NA 4386_CR_H_2249
    181 HB_072_HD HD NA 4404_VC_H_2161
    182 HB_073_HD HD F 4411_VC_H_1975
    183 HB_074_HD HD NA 4430_VC_H_2465
    184 HB_075_HD HD M 4470_VC_H_1974
    185 HB_076_HD HD F 4497_CR_H_1860
    186 HB_077_HD HD M 4509_CR_H_2244
    187 HB_079_HD HD M 4631_VC_H_1971
    188 HB_080_HD HD F 4653_PF_H_2083
    189 HB_081_HD HD NA 4678_CR_H_2242
    190 HB_084_HD HD M 4718_VC_H_2125
    191 HB_090_HD HD NA 4740_CR_H_2474
    192 HB_094_HD HD NA 4754_CR_H_2476
    193 HB_098_HD HD NA 4780_VC_H_2151
    194 HB_101_HD HD F 4809_VC_H_2148
    195 HB_105_HD HD NA 4819_CR_H_2238
    196 HB_106_HD HD F 4822_VC_H_1969
    197 HB_108_HD HD M 4826_VC_H_1968
    198 HB_109_HD HD M 4828_VC_H_2124
    199 HB_115_HD HD NA 4855_CR_H_2235
    200 HB_121_HD HD F 4902_VC_H_1967
    201 HB_129_HD HD NA 4938_VC_H_1966
    202 HB_141_HD HD F 4996_PF_H_2076
    203 HB_152_HD HD NA 5034_CR_H_2233
    204 HB_153_HD HD M 5043_VC_H_1960
    205 HB_159_HD HD M 5062_VC_H_1959
    206 HB_172_HD HD F 5114_PF_H_2070
    207 HB_175_HD HD M 5127_PF_H_2068
    208 HB_180_HD HD M 5148_VC_H_1944
    209 HB_185_HD HD F 5167_CR_H_2231
    210 HB_188_HD HD F 5172_VC_H_1951
    211 HB_191_HD HD M 5180_VC_H_1949
    212 HB_196_HD HD NA 5199_PF_H_2202
    213 HB_203_HD HD F 5228_PF_H_2059
    214 HB_207_HD HD NA 5248_PF_H_2201
    215 HB_228_HD HD F 5299_CR_H_2228
    216 HB_233_HD HD M 5312_VC_H_1938
    217 HB_235_HD HD F 5316_VC_H_1937
    218 HB_242_HD HD F 5328_PF_H_2048
    219 HB_266_HD HD M 5387_VC_H_1928
    220 HB_271_HD HD M 5394_PF_H_2039
    221 HB_272_HD HD F 5396_VC_H_1925
    222 HB_279_HD HD F 5409_VC_H_1924
    223 HB_294_HD HD M 5448_VC_H_1921
    224 HB_301_HD HD NA 5464_VC_H_1919
    225 HB_304_HD HD F 5471_VC_H_1918
    226 HB_321_HD HD NA 5522_PF_H_2199
    227 HB_361_HD HD F 5622_VC_H_2121
    228 HB_370_HD HD M 5645_VC_H_1904
    229 HB_371_HD HD F 5648_PF_H_2016
    230 HB_384_HD HD F 5688_PF_H_2012
    231 HB_390_HD HD M 5704_PF_H_2009
    232 HB_393_HD HD F 5709_VC_H_1895
    233 HB_402_HD HD F 5732_PF_H_2007
    234 HB_405_HD HD NA 5742_PF_H_2006
    235 HB_407_HD HD M 5745_PF_H_2005
    236 HB_408_HD HD M 5747_VC_H_1891
    237 HB_415_HD HD NA 5777_PF_H_1551
    238 HB_417_HD HD M 5784_PF_H_1554
    239 HB_424_HD HD M 5804_VC_H_1558
    240 HB_444_HD HD M 5856_VC_H_1567
    241 HB_457_HD HD M 5896_VC_H_1570
    242 HB_466_HD HD M 5910_PF_H_1572
    243 HB_478_HD HD M 5941_CR_H_1583
    244 HB_487_HD HD F 5964_VC_H_1597
    245 HB_511_HD HD M 6019_PF_H_2198
    246 HB_513_HD HD F 6024_VC_H_1612
    247 HB_515_HD HD F 6028_CR_H_1613
    248 HB_518_HD HD M 6033_VC_H_1618
    249 HB_522_HD HD M 6037_PF_H_1626
    250 HB_527_HD HD F 6047_VC_H_1639
    251 HB_528_HD HD M 6051_PF_H_1641
    252 HB_530_HD HD M 6054_VC_H_1648
    253 HB_537_HD HD F 6071_PF_H_1653
    254 HB_549_HD HD M 6119_CR_H_1670
    255 HB_593_HD HD NA 6219_CR_H_2567
    256 HB_610_HD HD NA 6275_PF_H_1692
    257 HB_616_HD HD F 6284_CR_H_1694
    258 HB_626_HD HD M 6315_VC_H_1702
    259 HB_639_HD HD F 6344_CR_H_1703
    260 HB_649_HD HD F 6382_CR_H_1709
    261 HB_661_HD HD M 6408_VC_H_1714
    262 HB_682_HD HD M 6467_PF_H_1725
    263 HB_683_HD HD M 6472_VC_H_1729
    264 HB_691_HD HD F 6493_VC_H_1732
    265 HB_692_HD HD M 6495_CR_H_1733
    266 HB_707_HD HD M 6535_PF_H_1737
    267 HB_709_HD HD F 6539_CR_H_1739
    268 HB_725_HD HD M 6572_PF_H_1746
    269 HB_732_HD HD F 6584_VC_H_1750
    270 HB_734_HD HD F 6587_CR_H_1751
    271 HB_748_HD HD NA 6615_VC_H_2315
    272 HB_750_HD HD NA 6628_PF_H_2326
    273 HB_758_HD HD NA 6643_VC_H_2602
    274 HB_760_HD HD M 6646_PF_H_1761
    275 HB_762_HD HD M 6650_VC_H_1765
    276 HB_766_HD HD M 6658_VC_H_1768
    277 HB_768_HD HD NA 6663_VC_H_1771
    278 HB_769_HD HD M 6666_VC_H_1774
    279 HB_774_HD HD NA 6689_PF_H_2344
    280 HB_778_HD HD NA 6696_PF_H_2356
    281 HB_780_HD HD NA 6704_PF_H_2362
    282 HB_790_HD HD NA 6788_PF_H_2389
    283 HB_800_HD HD NA 6807_PF_H_2419
    284 HB_802_HD HD NA 6811_PF_H_2425
    285 HB_045_AD AD NA 3734_CR_A_0122
    286 HB_048_AD AD NA 3791_CR_A_0128
    287 HB_053_AD AD NA 3877_CR_A_0134
    288 HB_055_AD AD NA 3893_VC_A_0142
    289 HB_068_AD AD NA 4349_VC_A_0148
    290 HB_082_AD AD NA 4712_CR_A_0309
    291 HB_085_AD AD NA 4726_VC_A_0311
    292 HB_087_AD AD NA 4730_CR_A_0315
    293 HB_089_AD AD NA 4733_VC_A_0320
    294 HB_093_AD AD NA 4749_VC_A_0323
    295 HB_095_AD AD NA 4759_CR_A_0327
    296 HB_097_AD AD NA 4773_CR_A_0866
    297 HB_099_AD AD NA 4785_VC_A_0332
    298 HB_100_AD AD NA 4795_VC_A_0335
    299 HB_103_AD AD NA 4811_VC_A_0341
    300 HB_104_AD AD NA 4813_CR_A_0345
    301 HB_112_AD AD NA 4842_VC_A_0870
    302 HB_113_AD AD NA 4850_CR_A_0351
    303 HB_114_AD AD NA 4852_CR_A_0354
    304 HB_117_AD AD NA 4868_VC_A_0874
    305 HB_122_AD AD NA 4904_CR_A_1132
    306 HB_123_AD AD NA 4905_VC_A_0884
    307 HB_124_AD AD NA 4916_VC_A_0886
    308 HB_125_AD AD NA 4917_CR_A_0360
    309 HB_126_AD AD NA 4921_VC_A_0362
    310 HB_128_AD AD NA 4936_CR_A_0369
    311 HB_130_AD AD NA 4939_VC_A_0888
    312 HB_131_AD AD NA 4944_CR_A_0889
    313 HB_132_AD AD NA 4946_CR_A_0372
    314 HB_134_AD AD NA 4951_CR_A_0891
    315 HB_135_AD AD NA 4953_VC_A_0893
    316 HB_136_AD AD NA 4965_VC_A_0160
    317 HB_137_AD AD NA 4966_VC_A_0374
    318 HB_138_AD AD NA 4969_VC_A_0895
    319 HB_140_AD AD NA 4993_CR_A_0896
    320 HB_146_AD AD NA 5018_CR_A_0384
    321 HB_148_AD AD NA 5022_VC_A_0386
    322 HB_150_AD AD NA 5031_VC_A_0392
    323 HB_151_AD AD NA 5033_CR_A_0396
    324 HB_154_AD AD NA 5048_VC_A_1321
    325 HB_155_AD AD NA 5056_VC_A_0398
    326 HB_156_AD AD NA 5057_VC_A_0163
    327 HB_157_AD AD NA 5059_VC_A_0401
    328 HB_158_AD AD NA 5061_PF_A_2612
    329 HB_160_AD AD NA 5064_PF_A_2615
    330 HB_165_AD AD NA 5092_CR_A_0899
    331 HB_168_AD AD NA 5097_VC_A_0407
    332 HB_170_AD AD NA 5101_VC_A_0410
    333 HB_174_AD AD NA 5124_PF_A_1343
    334 HB_179_AD AD NA 5145_VC_A_1351
    335 HB_181_AD AD NA 5152_CR_A_0414
    336 HB_184_AD AD NA 5166_VC_A_1354
    337 HB_194_AD AD NA 5193_VC_A_1360
    338 HB_197_AD AD NA 5202_CR_A_1368
    339 HB_199_AD AD NA 5205_VC_A_0166
    340 HB_200_AD AD NA 5210_VC_A_0905
    341 HB_205_AD AD NA 5235_VC_A_0419
    342 HB_208_AD AD NA 5249_VC_A_0422
    343 HB_209_AD AD NA 5252_VC_A_0907
    344 HB_211_AD AD NA 5257_VC_A_0169
    345 HB_216_AD AD NA 5272_VC_A_0425
    346 HB_219_AD AD NA 5279_CR_A_0147
    347 HB_221_AD AD NA 5283_VC_A_0145
    348 HB_222_AD AD NA 5285_VC_A_0141
    349 HB_224_AD AD NA 5288_VC_A_0428
    350 HB_230_AD AD NA 5301_VC_A_0174
    351 HB_231_AD AD NA 5305_VC_A_1384
    352 HB_232_AD AD NA 5310_CR_A_0176
    353 HB_234_AD AD NA 5313_PF_A_2618
    354 HB_236_AD AD NA 5317_PF_A_2624
    355 HB_238_AD AD NA 5322_CR_A_2632
    356 HB_240_AD AD NA 5325_VC_A_0137
    357 HB_244_AD AD NA 5337_VC_A_1387
    358 HB_245_AD AD NA 5339_VC_A_0181
    359 HB_250_AD AD NA 5346_VC_A_1393
    360 HB_251_AD AD NA 5350_VC_A_0184
    361 HB_252_AD AD NA 5355_VC_A_0133
    362 HB_253_AD AD NA 5359_CR_A_1395
    363 HB_258_AD AD NA 5370_PF_A_1400
    364 HB_259_AD AD NA 5371_PF_A_2636
    365 HB_260_AD AD NA 5375_VC_A_0188
    366 HB_263_AD AD NA 5381_VC_A_0022
    367 HB_265_AD AD NA 5385_VC_A_1402
    368 HB_267_AD AD NA 5389_VC_A_0928
    369 HB_268_AD AD NA 5390_CR_A_0151
    370 HB_273_AD AD NA 5400_PF_A_2645
    371 HB_274_AD AD NA 5401_VC_A_0931
    372 HB_275_AD AD NA 5404_PF_A_2648
    373 HB_276_AD AD NA 5406_VC_A_0933
    374 HB_277_AD AD NA 5407_PF_A_2651
    375 HB_280_AD AD NA 5412_VC_A_0935
    376 HB_281_AD AD NA 5413_PF_A_2657
    377 HB_283_AD AD NA 5419_VC_A_0937
    378 HB_284_AD AD NA 5420_VC_A_0939
    379 HB_285_AD AD NA 5421_CR_A_0432
    380 HB_286_AD AD NA 5423_PF_A_2660
    381 HB_288_AD AD NA 5425_PF_A_2666
    382 HB_289_AD AD NA 5426_VC_A_1405
    383 HB_290_AD AD NA 5433_VC_A_0434
    384 HB_296_AD AD NA 5456_PF_A_2675
    385 HB_299_AD AD NA 5461_VC_A_0192
    386 HB_302_AD AD NA 5465_PF_A_2678
    387 HB_303_AD AD NA 5469_VC_A_1417
    388 HB_305_AD AD NA 5479_PF_A_1421
    389 HB_306_AD AD NA 5480_VC_A_0437
    390 HB_307_AD AD NA 5482_VC_A_0028
    391 HB_308_AD AD NA 5483_VC_A_0941
    392 HB_309_AD AD NA 5487_CR_A_0441
    393 HB_310_AD AD NA 5488_CR_A_0194
    394 HB_312_AD AD NA 5500_VC_A_0198
    395 HB_313_AD AD NA 5502_PF_A_2684
    396 HB_315_AD AD NA 5513_PF_A_2687
    397 HB_316_AD AD NA 5516_PF_A_2690
    398 HB_317_AD AD NA 5517_PF_A_2693
    399 HB_318_AD AD NA 5518_CR_A_0030
    400 HB_319_AD AD NA 5519_CR_A_2695
    401 HB_320_AD AD NA 5520_PF_A_2699
    402 HB_322_AD AD NA 5527_VC_A_0945
    403 HB_325_AD AD NA 5532_PF_A_2702
    404 HB_328_AD AD NA 5541_PF_A_2705
    405 HB_330_AD AD NA 5544_VC_A_0201
    406 HB_334_AD AD NA 5554_VC_A_0452
    407 HB_335_AD AD NA 5557_VC_A_0950
    408 HB_337_AD AD NA 5560_VC_A_0204
    409 HB_342_AD AD NA 5571_PF_A_1430
    410 HB_345_AD AD NA 5583_PF_A_2708
    411 HB_347_AD AD NA 5589_PF_A_2714
    412 HB_349_AD AD NA 5592_PF_A_2717
    413 HB_352_AD AD NA 5604_VC_A_0037
    414 HB_353_AD AD NA 5607_PF_A_2723
    415 HB_356_AD AD NA 5615_VC_A_0041
    416 HB_357_AD AD NA 5616_CR_A_0127
    417 HB_358_AD AD NA 5617_CR_A_0456
    418 HB_359_AD AD NA 5618_CR_A_0044
    419 HB_362_AD AD NA 5625_CR_A_2495
    420 HB_363_AD AD NA 5626_CR_A_2498
    421 HB_364_AD AD NA 5629_CR_A_0390
    422 HB_369_AD AD NA 5643_VC_A_1143
    423 HB_373_AD AD NA 5654_VC_A_0047
    424 HB_375_AD AD NA 5660_CR_A_0462
    425 HB_376_AD AD NA 5661_VC_A_0464
    426 HB_377_AD AD NA 5667_VC_A_2509
    427 HB_378_AD AD NA 5668_VC_A_1438
    428 HB_383_AD AD NA 5686_CR_A_2728
    429 HB_386_AD AD NA 5695_VC_A_0953
    430 HB_389_AD AD NA 5700_VC_A_2514
    431 HB_391_AD AD NA 5705_CR_A_0474
    432 HB_392_AD AD NA 5706_VC_A_0476
    433 HB_394_AD AD NA 5713_VC_A_0479
    434 HB_397_AD AD NA 5721_CR_A_0210
    435 HB_404_AD AD NA 5735_CR_A_0489
    436 HB_406_AD AD NA 5744_CR_A_0960
    437 HB_409_AD AD NA 5749_CR_A_0159
    438 HB_410_AD AD NA 5751_CR_A_2518
    439 HB_411_AD AD NA 5755_CR_A_2731
    440 HB_413_AD AD NA 5766_VC_A_0214
    441 HB_419_AD AD NA 5790_VC_A_0217
    442 HB_420_AD AD NA 5796_CR_A_0964
    443 HB_428_AD AD NA 5811_CR_A_2524
    444 HB_429_AD AD NA 5819_CR_A_2527
    445 HB_430_AD AD NA 5822_CR_A_2530
    446 HB_434_AD AD NA 5828_CR_A_2533
    447 HB_435_AD AD NA 5831_CR_A_0222
    448 HB_437_AD AD NA 5839_CR_A_2539
    449 HB_438_AD AD NA 5843_CR_A_0227
    450 HB_439_AD AD NA 5845_CR_A_0230
    451 HB_441_AD AD NA 5849_CR_A_0233
    452 HB_442_AD AD NA 5850_CR_A_0495
    453 HB_445_AD AD NA 5858_CR_A_0969
    454 HB_448_AD AD NA 5864_CR_A_0974
    455 HB_451_AD AD NA 5871_CR_A_2542
    456 HB_454_AD AD NA 5879_CR_A_2545
    457 HB_455_AD AD NA 5887_CR_A_0976_Bis
    458 HB_459_AD AD NA 5898_CR_A_2548
    459 HB_460_AD AD NA 5900_VC_A_0237
    460 HB_461_AD AD NA 5901_CR_A_0239
    461 HB_469_AD AD NA 5914_CR_A_2554
    462 HB_471_AD AD NA 5922_VC_A_0246
    463 HB_473_AD AD NA 5927_CR_A_2560
    464 HB_474_AD AD NA 5933_VC_A_1071
    465 HB_477_AD AD NA 5939_CR_A_1151
    466 HB_479_AD AD NA 5945_VC_A_0983
    467 HB_484_AD AD NA 5956_CR_A_0123
    468 HB_489_AD AD NA 5968_VC_A_1075
    469 HB_491_AD AD NA 5971_CR_A_0119
    470 HB_492_AD AD NA 5972_VC_A_0251
    471 HB_494_AD AD NA 5979_CR_A_0115
    472 HB_498_AD AD NA 5988_VC_A_0503
    473 HB_502_AD AD NA 5994_PF_A_1605
    474 HB_503_AD AD NA 5995_CR_A_2563
    475 HB_510_AD AD NA 6017_CR_A_0048
    476 HB_514_AD AD NA 6025_VC_A_0506
    477 HB_517_AD AD NA 6031_VC_A_0258
    478 HB_520_AD AD NA 6035_VC_A_1621
    479 HB_523_AD AD NA 6038_VC_A_0261
    480 HB_524_AD AD NA 6042_VC_A_1156
    481 HB_525_AD AD NA 6044_VC_A_0264
    482 HB_531_AD AD NA 6056_CR_A_0999
    483 HB_533_AD AD NA 6061_PF_A_1650
    484 HB_534_AD AD NA 6066_VC_A_0270
    485 HB_535_AD AD NA 6067_PF_A_1452
    486 HB_536_AD AD NA 6068_VC_A_0273
    487 HB_545_AD AD NA 6102_CR_A_1661
    488 HB_546_AD AD NA 6107_CR_A_0055
    489 HB_550_AD AD NA 6120_VC_A_0058
    490 HB_552_AD AD NA 6126_VC_A_1675
    491 HB_553_AD AD NA 6129_PF_A_0274
    492 HB_554_AD AD NA 6130_VC_A_1678
    493 HB_555_AD AD NA 6131_CR_A_0510
    494 HB_556_AD AD NA 6132_CR_A_0513
    495 HB_558_AD AD NA 6137_VC_A_1681
    496 HB_564_AD AD NA 6153_VC_A_1465
    497 HB_565_AD AD NA 6154_VC_A_1468
    498 HB_566_AD AD NA 6157_VC_A_0062
    499 HB_568_AD AD NA 6164_CR_A_1005
    500 HB_571_AD AD NA 6171_CR_A_0065
    501 HB_573_AD AD NA 6174_VC_A_0068
    502 HB_576_AD AD NA 6180_CR_A_0281
    503 HB_583_AD AD NA 6194_VC_A_0071
    504 HB_585_AD AD NA 6198_VC_A_0073
    505 HB_590_AD AD NA 6215_VC_A_0518
    506 HB_591_AD AD NA 6216_VC_A_1476
    507 HB_592_AD AD NA 6218_CR_A_0522
    508 HB_594_AD AD NA 6223_VC_A_0288
    509 HB_596_AD AD NA 6226_CR_A_0076
    510 HB_597_AD AD NA 6227_VC_A_0080
    511 HB_598_AD AD NA 6231_VC_A_1479
    512 HB_605_AD AD NA 6261_VC_A_0084
    513 HB_608_AD AD NA 6268_CR_A_0525
    514 HB_611_AD AD NA 6279_VC_A_0089
    515 HB_612_AD AD NA 6280_VC_A_0091
    516 HB_613_AD AD NA 6281_CR_A_0528
    517 HB_621_AD AD NA 6308_VC_A_1503
    518 HB_623_AD AD NA 6311_CR_A_0531
    519 HB_624_AD AD NA 6312_CR_A_0534
    520 HB_630_AD AD NA 6324_PF_A_1514
    521 HB_633_AD AD NA 6332_VC_A_1518
    522 HB_634_AD AD NA 6335_VC_A_0536
    523 HB_635_AD AD NA 6336_CR_A_0290
    524 HB_636_AD AD NA 6338_VC_A_0539
    525 HB_642_AD AD NA 6358_VC_A_0545
    526 HB_652_AD AD NA 6387_VC_A_0093
    527 HB_657_AD AD NA 6394_VC_A_0551
    528 HB_664_AD AD NA 6416_VC_A_1095
    529 HB_666_AD AD NA 6422_CR_A_0555
    530 HB_669_AD AD NA 6431_VC_A_0294
    531 HB_674_AD AD NA 6449_VC_A_1183
    532 HB_680_AD AD NA 6458_CR_A_2570
    533 HB_685_AD AD NA 6481_VC_A_0560
    534 HB_690_AD AD NA 6489_CR_A_0100
    535 HB_696_AD AD NA 6511_VC_A_1119
    536 HB_698_AD AD NA 6515_CR_A_0564
    537 HB_699_AD AD NA 6518_VC_A_0103
    538 HB_703_AD AD NA 6523_VC_A_0107
    539 HB_704_AD AD NA 6530_VC_A_0112
    540 HB_706_AD AD NA 6534_VC_A_0306
    541 HB_712_AD AD NA 6546_PF_A_1194
    542 HB_713_AD AD NA 6548_PF_A_1541
    543 HB_715_AD AD NA 6550_VC_A_1201
    544 HB_718_AD AD NA 6554_PF_A_1203
    545 HB_720_AD AD NA 6559_PF_A_2287
    546 HB_722_AD AD NA 6561_CR_A_2582
    547 HB_723_AD AD NA 6562_PF_A_2290
    548 HB_724_AD AD NA 6564_CR_A_2585
    549 HB_727_AD AD NA 6575_CR_A_2298
    550 HB_728_AD AD NA 6577_PF_A_2299
    551 HB_729_AD AD NA 6578_PF_A_2302
    552 HB_731_AD AD NA 6582_VC_A_1207
    553 HB_733_AD AD NA 6585_VC_A_1210
    554 HB_736_AD AD NA 6590_PF_A_1215
    555 HB_743_AD AD NA 6603_PF_A_1448
    556 HB_745_AD AD NA 6610_PF_A_1227
    557 HB_746_AD AD NA 6612_PF_A_2308
    558 HB_749_AD AD NA 6617_VC_A_2587
    559 HB_751_AD AD NA 6629_VC_A_2330
    560 HB_752_AD AD NA 6630_VC_A_2590
    561 HB_753_AD AD NA 6632_PF_A_2332
    562 HB_754_AD AD NA 6637_VC_A_2596
    563 HB_755_AD AD NA 6638_VC_A_2599
    564 HB_756_AD AD NA 6639_VC_A_2336
    565 HB_757_AD AD NA 6641_PF_A_2338
    566 HB_763_AD AD NA 6654_VC_A_1237
    567 HB_773_AD AD NA 6681_VC_A_1252
    568 HB_775_AD AD NA 6693_VC_A_2348
    569 HB_776_AD AD NA 6694_VC_A_2351
    570 HB_777_AD AD NA 6695_PF_A_2353
    571 HB_779_AD AD NA 6699_PF_A_2359
    572 HB_781_AD AD NA 6708_VC_A_2366
    573 HB_782_AD AD NA 6776_PF_A_2607
    574 HB_783_AD AD NA 6778_PF_A_2368
    575 HB_784_AD AD NA 6779_PF_A_2371
    576 HB_785_AD AD NA 6780_PF_A_2374
    577 HB_786_AD AD NA 6782_PF_A_2377
    578 HB_787_AD AD NA 6784_PF_A_2380
    579 HB_788_AD AD NA 6785_CR_A_2385
    580 HB_789_AD AD NA 6787_CR_A_2388
    581 HB_791_AD AD NA 6790_PF_A_2392
    582 HB_792_AD AD NA 6791_PF_A_2395
    583 HB_793_AD AD NA 6793_PF_A_2398
    584 HB_794_AD AD NA 6794_PF_A_2401
    585 HB_795_AD AD NA 6797_PF_A_2404
    586 HB_796_AD AD NA 6798_PF_A_2407
    587 HB_797_AD AD NA 6799_VC_A_2411
    588 HB_798_AD AD NA 6801_VC_A_2414
    589 HB_799_AD AD NA 6803_VC_A_2417
    590 HB_801_AD AD NA 6809_PF_A_2422
    591 HB_803_AD AD NA 6818_CR_A_2430
    +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HBTRC-MLC_AD_0611.html b/web/dbdoc/HBTRC-MLC_AD_0611.html new file mode 100755 index 00000000..f9d27c72 --- /dev/null +++ b/web/dbdoc/HBTRC-MLC_AD_0611.html @@ -0,0 +1,831 @@ + + + +HBTRC-MLC Human Cerebellum Agilent AD (Jun11) mlratio + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    HBTRC-MLC Human Cerebellum Agilent AD (Jun11) mlratiomodify this page

    + + Accession number: GN362

    +

    +

    +

    Summary:

    +

    This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

    +
    +

    +

    +

    +

    Data Source Acknowledgements:

    +

    +

    +Species: Human
    +Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
    +Disease: Neurological Disease
    +Investigator: Francine Benes/ Eric Schadt
    +Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
    +Approximate Number Subjects: 803

    +

    +The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/). +

    +

    This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. +Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines. +

    +
    +

    +

    +

    +

    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Series Cerebellum in GN Condition Gender BioSample Name
    1 HB_029_N N NA 3405_VC_N_0859
    2 HB_058_N N NA 4021_VC_N_0854
    3 HB_064_N N NA 4338_VC_N_0861
    4 HB_086_N N NA 4729_PF_N_0756
    5 HB_091_N N NA 4741_VC_N_0864
    6 HB_092_N N NA 4744_VC_N_0865
    7 HB_102_N N NA 4810_VC_N_0869
    8 HB_119_N N NA 4872_VC_N_0878
    9 HB_147_N N NA 5021_VC_N_0852
    10 HB_161_N N NA 5077_VC_N_0851
    11 HB_162_N N NA 5081_VC_N_1021
    12 HB_166_N N NA 5095_VC_N_1024
    13 HB_183_N N NA 5162_VC_N_0850
    14 HB_206_N N NA 5245_VC_N_0849
    15 HB_215_N N NA 5270_VC_N_0848
    16 HB_218_N N NA 5276_CR_N_0912
    17 HB_223_N N NA 5287_VC_N_0916
    18 HB_226_N N NA 5294_VC_N_0919
    19 HB_241_N N NA 5326_CR_N_0652
    20 HB_243_N N NA 5333_VC_N_1262
    21 HB_247_N N NA 5341_VC_N_0923
    22 HB_257_N N NA 5368_PF_N_1032
    23 HB_264_N N NA 5384_VC_N_0924
    24 HB_295_N N NA 5452_VC_N_1268
    25 HB_300_N N NA 5463_VC_N_0845
    26 HB_311_N N NA 5489_CR_N_0942
    27 HB_324_N N NA 5531_VC_N_0844
    28 HB_332_N N NA 5547_VC_N_0843
    29 HB_340_N N NA 5568_VC_N_0842
    30 HB_360_N N NA 5619_CR_N_0645
    31 HB_365_N N NA 5632_VC_N_0838
    32 HB_367_N N NA 5637_VC_N_0837
    33 HB_382_N N NA 5684_PF_N_1270
    34 HB_396_N N NA 5718_VC_N_0956
    35 HB_398_N N NA 5722_VC_N_1044
    36 HB_400_N N NA 5726_VC_N_0834_Bis
    37 HB_403_N N NA 5734_VC_N_0833
    38 HB_414_N N NA 5772_VC_N_0832_Bis
    39 HB_416_N N NA 5778_CR_N_0962
    40 HB_418_N N NA 5789_PF_N_1273
    41 HB_421_N N NA 5799_VC_N_1058
    42 HB_423_N N NA 5803_VC_N_0966
    43 HB_426_N N NA 5806_PF_N_1064
    44 HB_427_N N NA 5810_CR_N_0636
    45 HB_431_N N NA 5823_VC_N_0829
    46 HB_432_N N NA 5826_VC_N_0828
    47 HB_433_N N NA 5827_VC_N_0827
    48 HB_436_N N NA 5832_PF_N_1145
    49 HB_443_N N NA 5852_VC_N_0826
    50 HB_446_N N NA 5859_VC_N_0825
    51 HB_449_N N NA 5866_VC_N_0824
    52 HB_450_N N NA 5867_VC_N_1277
    53 HB_453_N N NA 5876_VC_N_0823
    54 HB_462_N N NA 5903_VC_N_0822
    55 HB_464_N N NA 5905_VC_N_0820
    56 HB_468_N N NA 5912_VC_N_1286
    57 HB_472_N N NA 5925_VC_N_1289
    58 HB_475_N N NA 5936_VC_N_0979
    59 HB_476_N N NA 5938_VC_N_0819
    60 HB_480_N N NA 5946_VC_N_0985
    61 HB_485_N N NA 5959_VC_N_0818
    62 HB_486_N N NA 5963_VC_N_0987
    63 HB_495_N N NA 5980_VC_N_0989
    64 HB_497_N N NA 5985_VC_N_0990
    65 HB_500_N N NA 5990_VC_N_0817
    66 HB_501_N N NA 5991_VC_N_0816
    67 HB_504_N N NA 5996_VC_N_0815
    68 HB_505_N N NA 5998_VC_N_0814
    69 HB_507_N N NA 6006_VC_N_0813
    70 HB_508_N N NA 6007_CR_N_0618
    71 HB_509_N N NA 6008_PF_N_1081
    72 HB_512_N N NA 6023_PF_N_1155
    73 HB_516_N N NA 6030_VC_N_0810
    74 HB_519_N N NA 6034_VC_N_0809
    75 HB_532_N N NA 6060_VC_N_1292
    76 HB_541_N N NA 6092_VC_N_1001
    77 HB_542_N N NA 6096_VC_N_0807
    78 HB_544_N N NA 6101_CR_N_1161
    79 HB_547_N N NA 6110_VC_N_1295
    80 HB_551_N N NA 6124_VC_N_0806
    81 HB_557_N N NA 6134_PF_N_1297
    82 HB_560_N N NA 6142_VC_N_0805
    83 HB_569_N N NA 6166_VC_N_0804
    84 HB_570_N N NA 6170_VC_N_0803
    85 HB_572_N N NA 6172_VC_N_1008
    86 HB_577_N N NA 6182_VC_N_1166
    87 HB_579_N N NA 6187_CR_N_0607
    88 HB_581_N N NA 6191_VC_N_1010
    89 HB_584_N N NA 6196_CR_N_0605
    90 HB_586_N N NA 6200_VC_N_0799
    91 HB_587_N N NA 6206_PF_N_1176
    92 HB_589_N N NA 6213_VC_N_0798
    93 HB_601_N N NA 6241_VC_N_0796
    94 HB_604_N N NA 6260_VC_N_0794
    95 HB_609_N N NA 6270_VC_N_0793
    96 HB_618_N N NA 6289_VC_N_0791
    97 HB_622_N N NA 6310_VC_N_0790
    98 HB_625_N N NA 6314_VC_N_0789
    99 HB_637_N N NA 6340_VC_N_0786
    100 HB_638_N N NA 6341_VC_N_0785
    101 HB_640_N N NA 6347_VC_N_0784
    102 HB_641_N N NA 6356_VC_N_0783
    103 HB_643_N N NA 6363_VC_N_0781
    104 HB_644_N N NA 6366_VC_N_0780
    105 HB_645_N N NA 6374_VC_N_0779
    106 HB_650_N N NA 6384_VC_N_0777
    107 HB_651_N N NA 6386_VC_N_0776
    108 HB_653_N N NA 6388_VC_N_0775
    109 HB_659_N N NA 6406_VC_N_1180
    110 HB_662_N N NA 6411_VC_N_0771
    111 HB_663_N N NA 6415_VC_N_0770
    112 HB_670_N N NA 6436_VC_N_0769
    113 HB_687_N N NA 6484_VC_N_0765
    114 HB_689_N N NA 6486_VC_N_0764
    115 HB_694_N N NA 6500_VC_N_0763
    116 HB_697_N N NA 6512_VC_N_0762
    117 HB_700_N N NA 6520_VC_N_0761
    118 HB_711_N N NA 6543_PF_N_1191
    119 HB_714_N N NA 6549_VC_N_1198
    120 HB_717_N N NA 6553_PF_N_2284
    121 HB_721_N N NA 6560_VC_N_2578
    122 HB_726_N N NA 6573_PF_N_2293
    123 HB_730_N N NA 6580_VC_N_2306
    124 HB_735_N N NA 6588_VC_N_1213
    125 HB_737_N N NA 6593_VC_N_1219
    126 HB_738_N N NA 6594_VC_N_1222
    127 HB_759_N N NA 6645_VC_N_1231
    128 HB_764_N N NA 6655_VC_N_1240
    129 HB_765_N N NA 6656_VC_N_1243
    130 HB_767_N N NA 6661_PF_N_2341
    131 HB_770_N N NA 6669_VC_N_1246
    132 HB_772_N N NA 6676_PF_N_1248
    133 HB_001_HD HD F 2028_CR_H_2282
    134 HB_003_HD HD F 2685_PF_H_2212
    135 HB_004_HD HD M 2706_CR_H_2432
    136 HB_006_HD HD M 2737_VC_H_2194
    137 HB_007_HD HD NA 2769_VC_H_2193
    138 HB_008_HD HD F 2790_CR_H_1890
    139 HB_009_HD HD NA 2879_VC_H_2192
    140 HB_010_HD HD M 2960_VC_H_2002
    141 HB_011_HD HD F 3053_VC_H_2001
    142 HB_012_HD HD F 3128_VC_H_1999
    143 HB_014_HD HD F 3149_PF_H_2110
    144 HB_015_HD HD F 3150_VC_H_1996
    145 HB_016_HD HD F 3177_VC_H_2191
    146 HB_017_HD HD NA 3195_VC_H_2190
    147 HB_018_HD HD M 3200_VC_H_2189
    148 HB_019_HD HD M 3209_VC_H_2188
    149 HB_020_HD HD M 3224_VC_H_1994
    150 HB_022_HD HD F 3242_PF_H_2105
    151 HB_024_HD HD NA 3272_VC_H_2186
    152 HB_027_HD HD M 3356_VC_H_2439
    153 HB_028_HD HD F 3394_PF_H_2104
    154 HB_031_HD HD M 3430_VC_H_1990
    155 HB_032_HD HD NA 3444_PF_H_2208
    156 HB_034_HD HD F 3482_VC_H_1987
    157 HB_036_HD HD M 3576_VC_H_1984
    158 HB_037_HD HD F 3579_VC_H_1983
    159 HB_038_HD HD F 3584_VC_H_2183
    160 HB_039_HD HD NA 3635_VC_H_2182
    161 HB_041_HD HD F 3695_CR_H_2267
    162 HB_042_HD HD M 3697_VC_H_1982
    163 HB_043_HD HD NA 3703_VC_H_2180
    164 HB_044_HD HD NA 3723_VC_H_2179
    165 HB_046_HD HD F 3735_VC_H_1981
    166 HB_050_HD HD M 3820_PF_H_2207
    167 HB_051_HD HD F 3849_CR_H_2262
    168 HB_054_HD HD M 3884_VC_H_2175
    169 HB_056_HD HD NA 4012_VC_H_2174
    170 HB_057_HD HD NA 4013_VC_H_2173
    171 HB_059_HD HD NA 4066_VC_H_2172
    172 HB_060_HD HD NA 4094_VC_H_2171
    173 HB_061_HD HD F 4116_VC_H_2170
    174 HB_062_HD HD NA 4121_VC_H_2169
    175 HB_063_HD HD NA 4215_VC_H_2167
    176 HB_065_HD HD M 4340_PF_H_2091
    177 HB_066_HD HD F 4344_VC_H_1977
    178 HB_067_HD HD M 4346_VC_H_2165
    179 HB_069_HD HD F 4356_VC_H_2164
    180 HB_070_HD HD NA 4386_CR_H_2249
    181 HB_072_HD HD NA 4404_VC_H_2161
    182 HB_073_HD HD F 4411_VC_H_1975
    183 HB_074_HD HD NA 4430_VC_H_2465
    184 HB_075_HD HD M 4470_VC_H_1974
    185 HB_076_HD HD F 4497_CR_H_1860
    186 HB_077_HD HD M 4509_CR_H_2244
    187 HB_079_HD HD M 4631_VC_H_1971
    188 HB_080_HD HD F 4653_PF_H_2083
    189 HB_081_HD HD NA 4678_CR_H_2242
    190 HB_084_HD HD M 4718_VC_H_2125
    191 HB_090_HD HD NA 4740_CR_H_2474
    192 HB_094_HD HD NA 4754_CR_H_2476
    193 HB_098_HD HD NA 4780_VC_H_2151
    194 HB_101_HD HD F 4809_VC_H_2148
    195 HB_105_HD HD NA 4819_CR_H_2238
    196 HB_106_HD HD F 4822_VC_H_1969
    197 HB_108_HD HD M 4826_VC_H_1968
    198 HB_109_HD HD M 4828_VC_H_2124
    199 HB_115_HD HD NA 4855_CR_H_2235
    200 HB_121_HD HD F 4902_VC_H_1967
    201 HB_129_HD HD NA 4938_VC_H_1966
    202 HB_141_HD HD F 4996_PF_H_2076
    203 HB_152_HD HD NA 5034_CR_H_2233
    204 HB_153_HD HD M 5043_VC_H_1960
    205 HB_159_HD HD M 5062_VC_H_1959
    206 HB_172_HD HD F 5114_PF_H_2070
    207 HB_175_HD HD M 5127_PF_H_2068
    208 HB_180_HD HD M 5148_VC_H_1944
    209 HB_185_HD HD F 5167_CR_H_2231
    210 HB_188_HD HD F 5172_VC_H_1951
    211 HB_191_HD HD M 5180_VC_H_1949
    212 HB_196_HD HD NA 5199_PF_H_2202
    213 HB_203_HD HD F 5228_PF_H_2059
    214 HB_207_HD HD NA 5248_PF_H_2201
    215 HB_228_HD HD F 5299_CR_H_2228
    216 HB_233_HD HD M 5312_VC_H_1938
    217 HB_235_HD HD F 5316_VC_H_1937
    218 HB_242_HD HD F 5328_PF_H_2048
    219 HB_266_HD HD M 5387_VC_H_1928
    220 HB_271_HD HD M 5394_PF_H_2039
    221 HB_272_HD HD F 5396_VC_H_1925
    222 HB_279_HD HD F 5409_VC_H_1924
    223 HB_294_HD HD M 5448_VC_H_1921
    224 HB_301_HD HD NA 5464_VC_H_1919
    225 HB_304_HD HD F 5471_VC_H_1918
    226 HB_321_HD HD NA 5522_PF_H_2199
    227 HB_361_HD HD F 5622_VC_H_2121
    228 HB_370_HD HD M 5645_VC_H_1904
    229 HB_371_HD HD F 5648_PF_H_2016
    230 HB_384_HD HD F 5688_PF_H_2012
    231 HB_390_HD HD M 5704_PF_H_2009
    232 HB_393_HD HD F 5709_VC_H_1895
    233 HB_402_HD HD F 5732_PF_H_2007
    234 HB_405_HD HD NA 5742_PF_H_2006
    235 HB_407_HD HD M 5745_PF_H_2005
    236 HB_408_HD HD M 5747_VC_H_1891
    237 HB_415_HD HD NA 5777_PF_H_1551
    238 HB_417_HD HD M 5784_PF_H_1554
    239 HB_424_HD HD M 5804_VC_H_1558
    240 HB_444_HD HD M 5856_VC_H_1567
    241 HB_457_HD HD M 5896_VC_H_1570
    242 HB_466_HD HD M 5910_PF_H_1572
    243 HB_478_HD HD M 5941_CR_H_1583
    244 HB_487_HD HD F 5964_VC_H_1597
    245 HB_511_HD HD M 6019_PF_H_2198
    246 HB_513_HD HD F 6024_VC_H_1612
    247 HB_515_HD HD F 6028_CR_H_1613
    248 HB_518_HD HD M 6033_VC_H_1618
    249 HB_522_HD HD M 6037_PF_H_1626
    250 HB_527_HD HD F 6047_VC_H_1639
    251 HB_528_HD HD M 6051_PF_H_1641
    252 HB_530_HD HD M 6054_VC_H_1648
    253 HB_537_HD HD F 6071_PF_H_1653
    254 HB_549_HD HD M 6119_CR_H_1670
    255 HB_593_HD HD NA 6219_CR_H_2567
    256 HB_610_HD HD NA 6275_PF_H_1692
    257 HB_616_HD HD F 6284_CR_H_1694
    258 HB_626_HD HD M 6315_VC_H_1702
    259 HB_639_HD HD F 6344_CR_H_1703
    260 HB_649_HD HD F 6382_CR_H_1709
    261 HB_661_HD HD M 6408_VC_H_1714
    262 HB_682_HD HD M 6467_PF_H_1725
    263 HB_683_HD HD M 6472_VC_H_1729
    264 HB_691_HD HD F 6493_VC_H_1732
    265 HB_692_HD HD M 6495_CR_H_1733
    266 HB_707_HD HD M 6535_PF_H_1737
    267 HB_709_HD HD F 6539_CR_H_1739
    268 HB_725_HD HD M 6572_PF_H_1746
    269 HB_732_HD HD F 6584_VC_H_1750
    270 HB_734_HD HD F 6587_CR_H_1751
    271 HB_748_HD HD NA 6615_VC_H_2315
    272 HB_750_HD HD NA 6628_PF_H_2326
    273 HB_758_HD HD NA 6643_VC_H_2602
    274 HB_760_HD HD M 6646_PF_H_1761
    275 HB_762_HD HD M 6650_VC_H_1765
    276 HB_766_HD HD M 6658_VC_H_1768
    277 HB_768_HD HD NA 6663_VC_H_1771
    278 HB_769_HD HD M 6666_VC_H_1774
    279 HB_774_HD HD NA 6689_PF_H_2344
    280 HB_778_HD HD NA 6696_PF_H_2356
    281 HB_780_HD HD NA 6704_PF_H_2362
    282 HB_790_HD HD NA 6788_PF_H_2389
    283 HB_800_HD HD NA 6807_PF_H_2419
    284 HB_802_HD HD NA 6811_PF_H_2425
    285 HB_045_AD AD NA 3734_CR_A_0122
    286 HB_048_AD AD NA 3791_CR_A_0128
    287 HB_053_AD AD NA 3877_CR_A_0134
    288 HB_055_AD AD NA 3893_VC_A_0142
    289 HB_068_AD AD NA 4349_VC_A_0148
    290 HB_082_AD AD NA 4712_CR_A_0309
    291 HB_085_AD AD NA 4726_VC_A_0311
    292 HB_087_AD AD NA 4730_CR_A_0315
    293 HB_089_AD AD NA 4733_VC_A_0320
    294 HB_093_AD AD NA 4749_VC_A_0323
    295 HB_095_AD AD NA 4759_CR_A_0327
    296 HB_097_AD AD NA 4773_CR_A_0866
    297 HB_099_AD AD NA 4785_VC_A_0332
    298 HB_100_AD AD NA 4795_VC_A_0335
    299 HB_103_AD AD NA 4811_VC_A_0341
    300 HB_104_AD AD NA 4813_CR_A_0345
    301 HB_112_AD AD NA 4842_VC_A_0870
    302 HB_113_AD AD NA 4850_CR_A_0351
    303 HB_114_AD AD NA 4852_CR_A_0354
    304 HB_117_AD AD NA 4868_VC_A_0874
    305 HB_122_AD AD NA 4904_CR_A_1132
    306 HB_123_AD AD NA 4905_VC_A_0884
    307 HB_124_AD AD NA 4916_VC_A_0886
    308 HB_125_AD AD NA 4917_CR_A_0360
    309 HB_126_AD AD NA 4921_VC_A_0362
    310 HB_128_AD AD NA 4936_CR_A_0369
    311 HB_130_AD AD NA 4939_VC_A_0888
    312 HB_131_AD AD NA 4944_CR_A_0889
    313 HB_132_AD AD NA 4946_CR_A_0372
    314 HB_134_AD AD NA 4951_CR_A_0891
    315 HB_135_AD AD NA 4953_VC_A_0893
    316 HB_136_AD AD NA 4965_VC_A_0160
    317 HB_137_AD AD NA 4966_VC_A_0374
    318 HB_138_AD AD NA 4969_VC_A_0895
    319 HB_140_AD AD NA 4993_CR_A_0896
    320 HB_146_AD AD NA 5018_CR_A_0384
    321 HB_148_AD AD NA 5022_VC_A_0386
    322 HB_150_AD AD NA 5031_VC_A_0392
    323 HB_151_AD AD NA 5033_CR_A_0396
    324 HB_154_AD AD NA 5048_VC_A_1321
    325 HB_155_AD AD NA 5056_VC_A_0398
    326 HB_156_AD AD NA 5057_VC_A_0163
    327 HB_157_AD AD NA 5059_VC_A_0401
    328 HB_158_AD AD NA 5061_PF_A_2612
    329 HB_160_AD AD NA 5064_PF_A_2615
    330 HB_165_AD AD NA 5092_CR_A_0899
    331 HB_168_AD AD NA 5097_VC_A_0407
    332 HB_170_AD AD NA 5101_VC_A_0410
    333 HB_174_AD AD NA 5124_PF_A_1343
    334 HB_179_AD AD NA 5145_VC_A_1351
    335 HB_181_AD AD NA 5152_CR_A_0414
    336 HB_184_AD AD NA 5166_VC_A_1354
    337 HB_194_AD AD NA 5193_VC_A_1360
    338 HB_197_AD AD NA 5202_CR_A_1368
    339 HB_199_AD AD NA 5205_VC_A_0166
    340 HB_200_AD AD NA 5210_VC_A_0905
    341 HB_205_AD AD NA 5235_VC_A_0419
    342 HB_208_AD AD NA 5249_VC_A_0422
    343 HB_209_AD AD NA 5252_VC_A_0907
    344 HB_211_AD AD NA 5257_VC_A_0169
    345 HB_216_AD AD NA 5272_VC_A_0425
    346 HB_219_AD AD NA 5279_CR_A_0147
    347 HB_221_AD AD NA 5283_VC_A_0145
    348 HB_222_AD AD NA 5285_VC_A_0141
    349 HB_224_AD AD NA 5288_VC_A_0428
    350 HB_230_AD AD NA 5301_VC_A_0174
    351 HB_231_AD AD NA 5305_VC_A_1384
    352 HB_232_AD AD NA 5310_CR_A_0176
    353 HB_234_AD AD NA 5313_PF_A_2618
    354 HB_236_AD AD NA 5317_PF_A_2624
    355 HB_238_AD AD NA 5322_CR_A_2632
    356 HB_240_AD AD NA 5325_VC_A_0137
    357 HB_244_AD AD NA 5337_VC_A_1387
    358 HB_245_AD AD NA 5339_VC_A_0181
    359 HB_250_AD AD NA 5346_VC_A_1393
    360 HB_251_AD AD NA 5350_VC_A_0184
    361 HB_252_AD AD NA 5355_VC_A_0133
    362 HB_253_AD AD NA 5359_CR_A_1395
    363 HB_258_AD AD NA 5370_PF_A_1400
    364 HB_259_AD AD NA 5371_PF_A_2636
    365 HB_260_AD AD NA 5375_VC_A_0188
    366 HB_263_AD AD NA 5381_VC_A_0022
    367 HB_265_AD AD NA 5385_VC_A_1402
    368 HB_267_AD AD NA 5389_VC_A_0928
    369 HB_268_AD AD NA 5390_CR_A_0151
    370 HB_273_AD AD NA 5400_PF_A_2645
    371 HB_274_AD AD NA 5401_VC_A_0931
    372 HB_275_AD AD NA 5404_PF_A_2648
    373 HB_276_AD AD NA 5406_VC_A_0933
    374 HB_277_AD AD NA 5407_PF_A_2651
    375 HB_280_AD AD NA 5412_VC_A_0935
    376 HB_281_AD AD NA 5413_PF_A_2657
    377 HB_283_AD AD NA 5419_VC_A_0937
    378 HB_284_AD AD NA 5420_VC_A_0939
    379 HB_285_AD AD NA 5421_CR_A_0432
    380 HB_286_AD AD NA 5423_PF_A_2660
    381 HB_288_AD AD NA 5425_PF_A_2666
    382 HB_289_AD AD NA 5426_VC_A_1405
    383 HB_290_AD AD NA 5433_VC_A_0434
    384 HB_296_AD AD NA 5456_PF_A_2675
    385 HB_299_AD AD NA 5461_VC_A_0192
    386 HB_302_AD AD NA 5465_PF_A_2678
    387 HB_303_AD AD NA 5469_VC_A_1417
    388 HB_305_AD AD NA 5479_PF_A_1421
    389 HB_306_AD AD NA 5480_VC_A_0437
    390 HB_307_AD AD NA 5482_VC_A_0028
    391 HB_308_AD AD NA 5483_VC_A_0941
    392 HB_309_AD AD NA 5487_CR_A_0441
    393 HB_310_AD AD NA 5488_CR_A_0194
    394 HB_312_AD AD NA 5500_VC_A_0198
    395 HB_313_AD AD NA 5502_PF_A_2684
    396 HB_315_AD AD NA 5513_PF_A_2687
    397 HB_316_AD AD NA 5516_PF_A_2690
    398 HB_317_AD AD NA 5517_PF_A_2693
    399 HB_318_AD AD NA 5518_CR_A_0030
    400 HB_319_AD AD NA 5519_CR_A_2695
    401 HB_320_AD AD NA 5520_PF_A_2699
    402 HB_322_AD AD NA 5527_VC_A_0945
    403 HB_325_AD AD NA 5532_PF_A_2702
    404 HB_328_AD AD NA 5541_PF_A_2705
    405 HB_330_AD AD NA 5544_VC_A_0201
    406 HB_334_AD AD NA 5554_VC_A_0452
    407 HB_335_AD AD NA 5557_VC_A_0950
    408 HB_337_AD AD NA 5560_VC_A_0204
    409 HB_342_AD AD NA 5571_PF_A_1430
    410 HB_345_AD AD NA 5583_PF_A_2708
    411 HB_347_AD AD NA 5589_PF_A_2714
    412 HB_349_AD AD NA 5592_PF_A_2717
    413 HB_352_AD AD NA 5604_VC_A_0037
    414 HB_353_AD AD NA 5607_PF_A_2723
    415 HB_356_AD AD NA 5615_VC_A_0041
    416 HB_357_AD AD NA 5616_CR_A_0127
    417 HB_358_AD AD NA 5617_CR_A_0456
    418 HB_359_AD AD NA 5618_CR_A_0044
    419 HB_362_AD AD NA 5625_CR_A_2495
    420 HB_363_AD AD NA 5626_CR_A_2498
    421 HB_364_AD AD NA 5629_CR_A_0390
    422 HB_369_AD AD NA 5643_VC_A_1143
    423 HB_373_AD AD NA 5654_VC_A_0047
    424 HB_375_AD AD NA 5660_CR_A_0462
    425 HB_376_AD AD NA 5661_VC_A_0464
    426 HB_377_AD AD NA 5667_VC_A_2509
    427 HB_378_AD AD NA 5668_VC_A_1438
    428 HB_383_AD AD NA 5686_CR_A_2728
    429 HB_386_AD AD NA 5695_VC_A_0953
    430 HB_389_AD AD NA 5700_VC_A_2514
    431 HB_391_AD AD NA 5705_CR_A_0474
    432 HB_392_AD AD NA 5706_VC_A_0476
    433 HB_394_AD AD NA 5713_VC_A_0479
    434 HB_397_AD AD NA 5721_CR_A_0210
    435 HB_404_AD AD NA 5735_CR_A_0489
    436 HB_406_AD AD NA 5744_CR_A_0960
    437 HB_409_AD AD NA 5749_CR_A_0159
    438 HB_410_AD AD NA 5751_CR_A_2518
    439 HB_411_AD AD NA 5755_CR_A_2731
    440 HB_413_AD AD NA 5766_VC_A_0214
    441 HB_419_AD AD NA 5790_VC_A_0217
    442 HB_420_AD AD NA 5796_CR_A_0964
    443 HB_428_AD AD NA 5811_CR_A_2524
    444 HB_429_AD AD NA 5819_CR_A_2527
    445 HB_430_AD AD NA 5822_CR_A_2530
    446 HB_434_AD AD NA 5828_CR_A_2533
    447 HB_435_AD AD NA 5831_CR_A_0222
    448 HB_437_AD AD NA 5839_CR_A_2539
    449 HB_438_AD AD NA 5843_CR_A_0227
    450 HB_439_AD AD NA 5845_CR_A_0230
    451 HB_441_AD AD NA 5849_CR_A_0233
    452 HB_442_AD AD NA 5850_CR_A_0495
    453 HB_445_AD AD NA 5858_CR_A_0969
    454 HB_448_AD AD NA 5864_CR_A_0974
    455 HB_451_AD AD NA 5871_CR_A_2542
    456 HB_454_AD AD NA 5879_CR_A_2545
    457 HB_455_AD AD NA 5887_CR_A_0976_Bis
    458 HB_459_AD AD NA 5898_CR_A_2548
    459 HB_460_AD AD NA 5900_VC_A_0237
    460 HB_461_AD AD NA 5901_CR_A_0239
    461 HB_469_AD AD NA 5914_CR_A_2554
    462 HB_471_AD AD NA 5922_VC_A_0246
    463 HB_473_AD AD NA 5927_CR_A_2560
    464 HB_474_AD AD NA 5933_VC_A_1071
    465 HB_477_AD AD NA 5939_CR_A_1151
    466 HB_479_AD AD NA 5945_VC_A_0983
    467 HB_484_AD AD NA 5956_CR_A_0123
    468 HB_489_AD AD NA 5968_VC_A_1075
    469 HB_491_AD AD NA 5971_CR_A_0119
    470 HB_492_AD AD NA 5972_VC_A_0251
    471 HB_494_AD AD NA 5979_CR_A_0115
    472 HB_498_AD AD NA 5988_VC_A_0503
    473 HB_502_AD AD NA 5994_PF_A_1605
    474 HB_503_AD AD NA 5995_CR_A_2563
    475 HB_510_AD AD NA 6017_CR_A_0048
    476 HB_514_AD AD NA 6025_VC_A_0506
    477 HB_517_AD AD NA 6031_VC_A_0258
    478 HB_520_AD AD NA 6035_VC_A_1621
    479 HB_523_AD AD NA 6038_VC_A_0261
    480 HB_524_AD AD NA 6042_VC_A_1156
    481 HB_525_AD AD NA 6044_VC_A_0264
    482 HB_531_AD AD NA 6056_CR_A_0999
    483 HB_533_AD AD NA 6061_PF_A_1650
    484 HB_534_AD AD NA 6066_VC_A_0270
    485 HB_535_AD AD NA 6067_PF_A_1452
    486 HB_536_AD AD NA 6068_VC_A_0273
    487 HB_545_AD AD NA 6102_CR_A_1661
    488 HB_546_AD AD NA 6107_CR_A_0055
    489 HB_550_AD AD NA 6120_VC_A_0058
    490 HB_552_AD AD NA 6126_VC_A_1675
    491 HB_553_AD AD NA 6129_PF_A_0274
    492 HB_554_AD AD NA 6130_VC_A_1678
    493 HB_555_AD AD NA 6131_CR_A_0510
    494 HB_556_AD AD NA 6132_CR_A_0513
    495 HB_558_AD AD NA 6137_VC_A_1681
    496 HB_564_AD AD NA 6153_VC_A_1465
    497 HB_565_AD AD NA 6154_VC_A_1468
    498 HB_566_AD AD NA 6157_VC_A_0062
    499 HB_568_AD AD NA 6164_CR_A_1005
    500 HB_571_AD AD NA 6171_CR_A_0065
    501 HB_573_AD AD NA 6174_VC_A_0068
    502 HB_576_AD AD NA 6180_CR_A_0281
    503 HB_583_AD AD NA 6194_VC_A_0071
    504 HB_585_AD AD NA 6198_VC_A_0073
    505 HB_590_AD AD NA 6215_VC_A_0518
    506 HB_591_AD AD NA 6216_VC_A_1476
    507 HB_592_AD AD NA 6218_CR_A_0522
    508 HB_594_AD AD NA 6223_VC_A_0288
    509 HB_596_AD AD NA 6226_CR_A_0076
    510 HB_597_AD AD NA 6227_VC_A_0080
    511 HB_598_AD AD NA 6231_VC_A_1479
    512 HB_605_AD AD NA 6261_VC_A_0084
    513 HB_608_AD AD NA 6268_CR_A_0525
    514 HB_611_AD AD NA 6279_VC_A_0089
    515 HB_612_AD AD NA 6280_VC_A_0091
    516 HB_613_AD AD NA 6281_CR_A_0528
    517 HB_621_AD AD NA 6308_VC_A_1503
    518 HB_623_AD AD NA 6311_CR_A_0531
    519 HB_624_AD AD NA 6312_CR_A_0534
    520 HB_630_AD AD NA 6324_PF_A_1514
    521 HB_633_AD AD NA 6332_VC_A_1518
    522 HB_634_AD AD NA 6335_VC_A_0536
    523 HB_635_AD AD NA 6336_CR_A_0290
    524 HB_636_AD AD NA 6338_VC_A_0539
    525 HB_642_AD AD NA 6358_VC_A_0545
    526 HB_652_AD AD NA 6387_VC_A_0093
    527 HB_657_AD AD NA 6394_VC_A_0551
    528 HB_664_AD AD NA 6416_VC_A_1095
    529 HB_666_AD AD NA 6422_CR_A_0555
    530 HB_669_AD AD NA 6431_VC_A_0294
    531 HB_674_AD AD NA 6449_VC_A_1183
    532 HB_680_AD AD NA 6458_CR_A_2570
    533 HB_685_AD AD NA 6481_VC_A_0560
    534 HB_690_AD AD NA 6489_CR_A_0100
    535 HB_696_AD AD NA 6511_VC_A_1119
    536 HB_698_AD AD NA 6515_CR_A_0564
    537 HB_699_AD AD NA 6518_VC_A_0103
    538 HB_703_AD AD NA 6523_VC_A_0107
    539 HB_704_AD AD NA 6530_VC_A_0112
    540 HB_706_AD AD NA 6534_VC_A_0306
    541 HB_712_AD AD NA 6546_PF_A_1194
    542 HB_713_AD AD NA 6548_PF_A_1541
    543 HB_715_AD AD NA 6550_VC_A_1201
    544 HB_718_AD AD NA 6554_PF_A_1203
    545 HB_720_AD AD NA 6559_PF_A_2287
    546 HB_722_AD AD NA 6561_CR_A_2582
    547 HB_723_AD AD NA 6562_PF_A_2290
    548 HB_724_AD AD NA 6564_CR_A_2585
    549 HB_727_AD AD NA 6575_CR_A_2298
    550 HB_728_AD AD NA 6577_PF_A_2299
    551 HB_729_AD AD NA 6578_PF_A_2302
    552 HB_731_AD AD NA 6582_VC_A_1207
    553 HB_733_AD AD NA 6585_VC_A_1210
    554 HB_736_AD AD NA 6590_PF_A_1215
    555 HB_743_AD AD NA 6603_PF_A_1448
    556 HB_745_AD AD NA 6610_PF_A_1227
    557 HB_746_AD AD NA 6612_PF_A_2308
    558 HB_749_AD AD NA 6617_VC_A_2587
    559 HB_751_AD AD NA 6629_VC_A_2330
    560 HB_752_AD AD NA 6630_VC_A_2590
    561 HB_753_AD AD NA 6632_PF_A_2332
    562 HB_754_AD AD NA 6637_VC_A_2596
    563 HB_755_AD AD NA 6638_VC_A_2599
    564 HB_756_AD AD NA 6639_VC_A_2336
    565 HB_757_AD AD NA 6641_PF_A_2338
    566 HB_763_AD AD NA 6654_VC_A_1237
    567 HB_773_AD AD NA 6681_VC_A_1252
    568 HB_775_AD AD NA 6693_VC_A_2348
    569 HB_776_AD AD NA 6694_VC_A_2351
    570 HB_777_AD AD NA 6695_PF_A_2353
    571 HB_779_AD AD NA 6699_PF_A_2359
    572 HB_781_AD AD NA 6708_VC_A_2366
    573 HB_782_AD AD NA 6776_PF_A_2607
    574 HB_783_AD AD NA 6778_PF_A_2368
    575 HB_784_AD AD NA 6779_PF_A_2371
    576 HB_785_AD AD NA 6780_PF_A_2374
    577 HB_786_AD AD NA 6782_PF_A_2377
    578 HB_787_AD AD NA 6784_PF_A_2380
    579 HB_788_AD AD NA 6785_CR_A_2385
    580 HB_789_AD AD NA 6787_CR_A_2388
    581 HB_791_AD AD NA 6790_PF_A_2392
    582 HB_792_AD AD NA 6791_PF_A_2395
    583 HB_793_AD AD NA 6793_PF_A_2398
    584 HB_794_AD AD NA 6794_PF_A_2401
    585 HB_795_AD AD NA 6797_PF_A_2404
    586 HB_796_AD AD NA 6798_PF_A_2407
    587 HB_797_AD AD NA 6799_VC_A_2411
    588 HB_798_AD AD NA 6801_VC_A_2414
    589 HB_799_AD AD NA 6803_VC_A_2417
    590 HB_801_AD AD NA 6809_PF_A_2422
    591 HB_803_AD AD NA 6818_CR_A_2430
    +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HBTRC-MLC_HD_0611.html b/web/dbdoc/HBTRC-MLC_HD_0611.html new file mode 100755 index 00000000..e116be3f --- /dev/null +++ b/web/dbdoc/HBTRC-MLC_HD_0611.html @@ -0,0 +1,831 @@ + + + +HBTRC-MLC Human Cerebellum Agilent HD (Jun11) mlratio + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    HBTRC-MLC Human Cerebellum Agilent HD (Jun11) mlratiomodify this page

    + + Accession number: GN363

    +

    +

    +

    Summary:

    +

    This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

    +
    +

    +

    +

    +

    Data Source Acknowledgements:

    +

    +

    +Species: Human
    +Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
    +Disease: Neurological Disease
    +Investigator: Francine Benes/ Eric Schadt
    +Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
    +Approximate Number Subjects: 803

    +

    +The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/). +

    +

    This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. +Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines. +

    +
    +

    +

    +

    +

    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Series Cerebellum in GN Condition Gender BioSample Name
    1 HB_029_N N NA 3405_VC_N_0859
    2 HB_058_N N NA 4021_VC_N_0854
    3 HB_064_N N NA 4338_VC_N_0861
    4 HB_086_N N NA 4729_PF_N_0756
    5 HB_091_N N NA 4741_VC_N_0864
    6 HB_092_N N NA 4744_VC_N_0865
    7 HB_102_N N NA 4810_VC_N_0869
    8 HB_119_N N NA 4872_VC_N_0878
    9 HB_147_N N NA 5021_VC_N_0852
    10 HB_161_N N NA 5077_VC_N_0851
    11 HB_162_N N NA 5081_VC_N_1021
    12 HB_166_N N NA 5095_VC_N_1024
    13 HB_183_N N NA 5162_VC_N_0850
    14 HB_206_N N NA 5245_VC_N_0849
    15 HB_215_N N NA 5270_VC_N_0848
    16 HB_218_N N NA 5276_CR_N_0912
    17 HB_223_N N NA 5287_VC_N_0916
    18 HB_226_N N NA 5294_VC_N_0919
    19 HB_241_N N NA 5326_CR_N_0652
    20 HB_243_N N NA 5333_VC_N_1262
    21 HB_247_N N NA 5341_VC_N_0923
    22 HB_257_N N NA 5368_PF_N_1032
    23 HB_264_N N NA 5384_VC_N_0924
    24 HB_295_N N NA 5452_VC_N_1268
    25 HB_300_N N NA 5463_VC_N_0845
    26 HB_311_N N NA 5489_CR_N_0942
    27 HB_324_N N NA 5531_VC_N_0844
    28 HB_332_N N NA 5547_VC_N_0843
    29 HB_340_N N NA 5568_VC_N_0842
    30 HB_360_N N NA 5619_CR_N_0645
    31 HB_365_N N NA 5632_VC_N_0838
    32 HB_367_N N NA 5637_VC_N_0837
    33 HB_382_N N NA 5684_PF_N_1270
    34 HB_396_N N NA 5718_VC_N_0956
    35 HB_398_N N NA 5722_VC_N_1044
    36 HB_400_N N NA 5726_VC_N_0834_Bis
    37 HB_403_N N NA 5734_VC_N_0833
    38 HB_414_N N NA 5772_VC_N_0832_Bis
    39 HB_416_N N NA 5778_CR_N_0962
    40 HB_418_N N NA 5789_PF_N_1273
    41 HB_421_N N NA 5799_VC_N_1058
    42 HB_423_N N NA 5803_VC_N_0966
    43 HB_426_N N NA 5806_PF_N_1064
    44 HB_427_N N NA 5810_CR_N_0636
    45 HB_431_N N NA 5823_VC_N_0829
    46 HB_432_N N NA 5826_VC_N_0828
    47 HB_433_N N NA 5827_VC_N_0827
    48 HB_436_N N NA 5832_PF_N_1145
    49 HB_443_N N NA 5852_VC_N_0826
    50 HB_446_N N NA 5859_VC_N_0825
    51 HB_449_N N NA 5866_VC_N_0824
    52 HB_450_N N NA 5867_VC_N_1277
    53 HB_453_N N NA 5876_VC_N_0823
    54 HB_462_N N NA 5903_VC_N_0822
    55 HB_464_N N NA 5905_VC_N_0820
    56 HB_468_N N NA 5912_VC_N_1286
    57 HB_472_N N NA 5925_VC_N_1289
    58 HB_475_N N NA 5936_VC_N_0979
    59 HB_476_N N NA 5938_VC_N_0819
    60 HB_480_N N NA 5946_VC_N_0985
    61 HB_485_N N NA 5959_VC_N_0818
    62 HB_486_N N NA 5963_VC_N_0987
    63 HB_495_N N NA 5980_VC_N_0989
    64 HB_497_N N NA 5985_VC_N_0990
    65 HB_500_N N NA 5990_VC_N_0817
    66 HB_501_N N NA 5991_VC_N_0816
    67 HB_504_N N NA 5996_VC_N_0815
    68 HB_505_N N NA 5998_VC_N_0814
    69 HB_507_N N NA 6006_VC_N_0813
    70 HB_508_N N NA 6007_CR_N_0618
    71 HB_509_N N NA 6008_PF_N_1081
    72 HB_512_N N NA 6023_PF_N_1155
    73 HB_516_N N NA 6030_VC_N_0810
    74 HB_519_N N NA 6034_VC_N_0809
    75 HB_532_N N NA 6060_VC_N_1292
    76 HB_541_N N NA 6092_VC_N_1001
    77 HB_542_N N NA 6096_VC_N_0807
    78 HB_544_N N NA 6101_CR_N_1161
    79 HB_547_N N NA 6110_VC_N_1295
    80 HB_551_N N NA 6124_VC_N_0806
    81 HB_557_N N NA 6134_PF_N_1297
    82 HB_560_N N NA 6142_VC_N_0805
    83 HB_569_N N NA 6166_VC_N_0804
    84 HB_570_N N NA 6170_VC_N_0803
    85 HB_572_N N NA 6172_VC_N_1008
    86 HB_577_N N NA 6182_VC_N_1166
    87 HB_579_N N NA 6187_CR_N_0607
    88 HB_581_N N NA 6191_VC_N_1010
    89 HB_584_N N NA 6196_CR_N_0605
    90 HB_586_N N NA 6200_VC_N_0799
    91 HB_587_N N NA 6206_PF_N_1176
    92 HB_589_N N NA 6213_VC_N_0798
    93 HB_601_N N NA 6241_VC_N_0796
    94 HB_604_N N NA 6260_VC_N_0794
    95 HB_609_N N NA 6270_VC_N_0793
    96 HB_618_N N NA 6289_VC_N_0791
    97 HB_622_N N NA 6310_VC_N_0790
    98 HB_625_N N NA 6314_VC_N_0789
    99 HB_637_N N NA 6340_VC_N_0786
    100 HB_638_N N NA 6341_VC_N_0785
    101 HB_640_N N NA 6347_VC_N_0784
    102 HB_641_N N NA 6356_VC_N_0783
    103 HB_643_N N NA 6363_VC_N_0781
    104 HB_644_N N NA 6366_VC_N_0780
    105 HB_645_N N NA 6374_VC_N_0779
    106 HB_650_N N NA 6384_VC_N_0777
    107 HB_651_N N NA 6386_VC_N_0776
    108 HB_653_N N NA 6388_VC_N_0775
    109 HB_659_N N NA 6406_VC_N_1180
    110 HB_662_N N NA 6411_VC_N_0771
    111 HB_663_N N NA 6415_VC_N_0770
    112 HB_670_N N NA 6436_VC_N_0769
    113 HB_687_N N NA 6484_VC_N_0765
    114 HB_689_N N NA 6486_VC_N_0764
    115 HB_694_N N NA 6500_VC_N_0763
    116 HB_697_N N NA 6512_VC_N_0762
    117 HB_700_N N NA 6520_VC_N_0761
    118 HB_711_N N NA 6543_PF_N_1191
    119 HB_714_N N NA 6549_VC_N_1198
    120 HB_717_N N NA 6553_PF_N_2284
    121 HB_721_N N NA 6560_VC_N_2578
    122 HB_726_N N NA 6573_PF_N_2293
    123 HB_730_N N NA 6580_VC_N_2306
    124 HB_735_N N NA 6588_VC_N_1213
    125 HB_737_N N NA 6593_VC_N_1219
    126 HB_738_N N NA 6594_VC_N_1222
    127 HB_759_N N NA 6645_VC_N_1231
    128 HB_764_N N NA 6655_VC_N_1240
    129 HB_765_N N NA 6656_VC_N_1243
    130 HB_767_N N NA 6661_PF_N_2341
    131 HB_770_N N NA 6669_VC_N_1246
    132 HB_772_N N NA 6676_PF_N_1248
    133 HB_001_HD HD F 2028_CR_H_2282
    134 HB_003_HD HD F 2685_PF_H_2212
    135 HB_004_HD HD M 2706_CR_H_2432
    136 HB_006_HD HD M 2737_VC_H_2194
    137 HB_007_HD HD NA 2769_VC_H_2193
    138 HB_008_HD HD F 2790_CR_H_1890
    139 HB_009_HD HD NA 2879_VC_H_2192
    140 HB_010_HD HD M 2960_VC_H_2002
    141 HB_011_HD HD F 3053_VC_H_2001
    142 HB_012_HD HD F 3128_VC_H_1999
    143 HB_014_HD HD F 3149_PF_H_2110
    144 HB_015_HD HD F 3150_VC_H_1996
    145 HB_016_HD HD F 3177_VC_H_2191
    146 HB_017_HD HD NA 3195_VC_H_2190
    147 HB_018_HD HD M 3200_VC_H_2189
    148 HB_019_HD HD M 3209_VC_H_2188
    149 HB_020_HD HD M 3224_VC_H_1994
    150 HB_022_HD HD F 3242_PF_H_2105
    151 HB_024_HD HD NA 3272_VC_H_2186
    152 HB_027_HD HD M 3356_VC_H_2439
    153 HB_028_HD HD F 3394_PF_H_2104
    154 HB_031_HD HD M 3430_VC_H_1990
    155 HB_032_HD HD NA 3444_PF_H_2208
    156 HB_034_HD HD F 3482_VC_H_1987
    157 HB_036_HD HD M 3576_VC_H_1984
    158 HB_037_HD HD F 3579_VC_H_1983
    159 HB_038_HD HD F 3584_VC_H_2183
    160 HB_039_HD HD NA 3635_VC_H_2182
    161 HB_041_HD HD F 3695_CR_H_2267
    162 HB_042_HD HD M 3697_VC_H_1982
    163 HB_043_HD HD NA 3703_VC_H_2180
    164 HB_044_HD HD NA 3723_VC_H_2179
    165 HB_046_HD HD F 3735_VC_H_1981
    166 HB_050_HD HD M 3820_PF_H_2207
    167 HB_051_HD HD F 3849_CR_H_2262
    168 HB_054_HD HD M 3884_VC_H_2175
    169 HB_056_HD HD NA 4012_VC_H_2174
    170 HB_057_HD HD NA 4013_VC_H_2173
    171 HB_059_HD HD NA 4066_VC_H_2172
    172 HB_060_HD HD NA 4094_VC_H_2171
    173 HB_061_HD HD F 4116_VC_H_2170
    174 HB_062_HD HD NA 4121_VC_H_2169
    175 HB_063_HD HD NA 4215_VC_H_2167
    176 HB_065_HD HD M 4340_PF_H_2091
    177 HB_066_HD HD F 4344_VC_H_1977
    178 HB_067_HD HD M 4346_VC_H_2165
    179 HB_069_HD HD F 4356_VC_H_2164
    180 HB_070_HD HD NA 4386_CR_H_2249
    181 HB_072_HD HD NA 4404_VC_H_2161
    182 HB_073_HD HD F 4411_VC_H_1975
    183 HB_074_HD HD NA 4430_VC_H_2465
    184 HB_075_HD HD M 4470_VC_H_1974
    185 HB_076_HD HD F 4497_CR_H_1860
    186 HB_077_HD HD M 4509_CR_H_2244
    187 HB_079_HD HD M 4631_VC_H_1971
    188 HB_080_HD HD F 4653_PF_H_2083
    189 HB_081_HD HD NA 4678_CR_H_2242
    190 HB_084_HD HD M 4718_VC_H_2125
    191 HB_090_HD HD NA 4740_CR_H_2474
    192 HB_094_HD HD NA 4754_CR_H_2476
    193 HB_098_HD HD NA 4780_VC_H_2151
    194 HB_101_HD HD F 4809_VC_H_2148
    195 HB_105_HD HD NA 4819_CR_H_2238
    196 HB_106_HD HD F 4822_VC_H_1969
    197 HB_108_HD HD M 4826_VC_H_1968
    198 HB_109_HD HD M 4828_VC_H_2124
    199 HB_115_HD HD NA 4855_CR_H_2235
    200 HB_121_HD HD F 4902_VC_H_1967
    201 HB_129_HD HD NA 4938_VC_H_1966
    202 HB_141_HD HD F 4996_PF_H_2076
    203 HB_152_HD HD NA 5034_CR_H_2233
    204 HB_153_HD HD M 5043_VC_H_1960
    205 HB_159_HD HD M 5062_VC_H_1959
    206 HB_172_HD HD F 5114_PF_H_2070
    207 HB_175_HD HD M 5127_PF_H_2068
    208 HB_180_HD HD M 5148_VC_H_1944
    209 HB_185_HD HD F 5167_CR_H_2231
    210 HB_188_HD HD F 5172_VC_H_1951
    211 HB_191_HD HD M 5180_VC_H_1949
    212 HB_196_HD HD NA 5199_PF_H_2202
    213 HB_203_HD HD F 5228_PF_H_2059
    214 HB_207_HD HD NA 5248_PF_H_2201
    215 HB_228_HD HD F 5299_CR_H_2228
    216 HB_233_HD HD M 5312_VC_H_1938
    217 HB_235_HD HD F 5316_VC_H_1937
    218 HB_242_HD HD F 5328_PF_H_2048
    219 HB_266_HD HD M 5387_VC_H_1928
    220 HB_271_HD HD M 5394_PF_H_2039
    221 HB_272_HD HD F 5396_VC_H_1925
    222 HB_279_HD HD F 5409_VC_H_1924
    223 HB_294_HD HD M 5448_VC_H_1921
    224 HB_301_HD HD NA 5464_VC_H_1919
    225 HB_304_HD HD F 5471_VC_H_1918
    226 HB_321_HD HD NA 5522_PF_H_2199
    227 HB_361_HD HD F 5622_VC_H_2121
    228 HB_370_HD HD M 5645_VC_H_1904
    229 HB_371_HD HD F 5648_PF_H_2016
    230 HB_384_HD HD F 5688_PF_H_2012
    231 HB_390_HD HD M 5704_PF_H_2009
    232 HB_393_HD HD F 5709_VC_H_1895
    233 HB_402_HD HD F 5732_PF_H_2007
    234 HB_405_HD HD NA 5742_PF_H_2006
    235 HB_407_HD HD M 5745_PF_H_2005
    236 HB_408_HD HD M 5747_VC_H_1891
    237 HB_415_HD HD NA 5777_PF_H_1551
    238 HB_417_HD HD M 5784_PF_H_1554
    239 HB_424_HD HD M 5804_VC_H_1558
    240 HB_444_HD HD M 5856_VC_H_1567
    241 HB_457_HD HD M 5896_VC_H_1570
    242 HB_466_HD HD M 5910_PF_H_1572
    243 HB_478_HD HD M 5941_CR_H_1583
    244 HB_487_HD HD F 5964_VC_H_1597
    245 HB_511_HD HD M 6019_PF_H_2198
    246 HB_513_HD HD F 6024_VC_H_1612
    247 HB_515_HD HD F 6028_CR_H_1613
    248 HB_518_HD HD M 6033_VC_H_1618
    249 HB_522_HD HD M 6037_PF_H_1626
    250 HB_527_HD HD F 6047_VC_H_1639
    251 HB_528_HD HD M 6051_PF_H_1641
    252 HB_530_HD HD M 6054_VC_H_1648
    253 HB_537_HD HD F 6071_PF_H_1653
    254 HB_549_HD HD M 6119_CR_H_1670
    255 HB_593_HD HD NA 6219_CR_H_2567
    256 HB_610_HD HD NA 6275_PF_H_1692
    257 HB_616_HD HD F 6284_CR_H_1694
    258 HB_626_HD HD M 6315_VC_H_1702
    259 HB_639_HD HD F 6344_CR_H_1703
    260 HB_649_HD HD F 6382_CR_H_1709
    261 HB_661_HD HD M 6408_VC_H_1714
    262 HB_682_HD HD M 6467_PF_H_1725
    263 HB_683_HD HD M 6472_VC_H_1729
    264 HB_691_HD HD F 6493_VC_H_1732
    265 HB_692_HD HD M 6495_CR_H_1733
    266 HB_707_HD HD M 6535_PF_H_1737
    267 HB_709_HD HD F 6539_CR_H_1739
    268 HB_725_HD HD M 6572_PF_H_1746
    269 HB_732_HD HD F 6584_VC_H_1750
    270 HB_734_HD HD F 6587_CR_H_1751
    271 HB_748_HD HD NA 6615_VC_H_2315
    272 HB_750_HD HD NA 6628_PF_H_2326
    273 HB_758_HD HD NA 6643_VC_H_2602
    274 HB_760_HD HD M 6646_PF_H_1761
    275 HB_762_HD HD M 6650_VC_H_1765
    276 HB_766_HD HD M 6658_VC_H_1768
    277 HB_768_HD HD NA 6663_VC_H_1771
    278 HB_769_HD HD M 6666_VC_H_1774
    279 HB_774_HD HD NA 6689_PF_H_2344
    280 HB_778_HD HD NA 6696_PF_H_2356
    281 HB_780_HD HD NA 6704_PF_H_2362
    282 HB_790_HD HD NA 6788_PF_H_2389
    283 HB_800_HD HD NA 6807_PF_H_2419
    284 HB_802_HD HD NA 6811_PF_H_2425
    285 HB_045_AD AD NA 3734_CR_A_0122
    286 HB_048_AD AD NA 3791_CR_A_0128
    287 HB_053_AD AD NA 3877_CR_A_0134
    288 HB_055_AD AD NA 3893_VC_A_0142
    289 HB_068_AD AD NA 4349_VC_A_0148
    290 HB_082_AD AD NA 4712_CR_A_0309
    291 HB_085_AD AD NA 4726_VC_A_0311
    292 HB_087_AD AD NA 4730_CR_A_0315
    293 HB_089_AD AD NA 4733_VC_A_0320
    294 HB_093_AD AD NA 4749_VC_A_0323
    295 HB_095_AD AD NA 4759_CR_A_0327
    296 HB_097_AD AD NA 4773_CR_A_0866
    297 HB_099_AD AD NA 4785_VC_A_0332
    298 HB_100_AD AD NA 4795_VC_A_0335
    299 HB_103_AD AD NA 4811_VC_A_0341
    300 HB_104_AD AD NA 4813_CR_A_0345
    301 HB_112_AD AD NA 4842_VC_A_0870
    302 HB_113_AD AD NA 4850_CR_A_0351
    303 HB_114_AD AD NA 4852_CR_A_0354
    304 HB_117_AD AD NA 4868_VC_A_0874
    305 HB_122_AD AD NA 4904_CR_A_1132
    306 HB_123_AD AD NA 4905_VC_A_0884
    307 HB_124_AD AD NA 4916_VC_A_0886
    308 HB_125_AD AD NA 4917_CR_A_0360
    309 HB_126_AD AD NA 4921_VC_A_0362
    310 HB_128_AD AD NA 4936_CR_A_0369
    311 HB_130_AD AD NA 4939_VC_A_0888
    312 HB_131_AD AD NA 4944_CR_A_0889
    313 HB_132_AD AD NA 4946_CR_A_0372
    314 HB_134_AD AD NA 4951_CR_A_0891
    315 HB_135_AD AD NA 4953_VC_A_0893
    316 HB_136_AD AD NA 4965_VC_A_0160
    317 HB_137_AD AD NA 4966_VC_A_0374
    318 HB_138_AD AD NA 4969_VC_A_0895
    319 HB_140_AD AD NA 4993_CR_A_0896
    320 HB_146_AD AD NA 5018_CR_A_0384
    321 HB_148_AD AD NA 5022_VC_A_0386
    322 HB_150_AD AD NA 5031_VC_A_0392
    323 HB_151_AD AD NA 5033_CR_A_0396
    324 HB_154_AD AD NA 5048_VC_A_1321
    325 HB_155_AD AD NA 5056_VC_A_0398
    326 HB_156_AD AD NA 5057_VC_A_0163
    327 HB_157_AD AD NA 5059_VC_A_0401
    328 HB_158_AD AD NA 5061_PF_A_2612
    329 HB_160_AD AD NA 5064_PF_A_2615
    330 HB_165_AD AD NA 5092_CR_A_0899
    331 HB_168_AD AD NA 5097_VC_A_0407
    332 HB_170_AD AD NA 5101_VC_A_0410
    333 HB_174_AD AD NA 5124_PF_A_1343
    334 HB_179_AD AD NA 5145_VC_A_1351
    335 HB_181_AD AD NA 5152_CR_A_0414
    336 HB_184_AD AD NA 5166_VC_A_1354
    337 HB_194_AD AD NA 5193_VC_A_1360
    338 HB_197_AD AD NA 5202_CR_A_1368
    339 HB_199_AD AD NA 5205_VC_A_0166
    340 HB_200_AD AD NA 5210_VC_A_0905
    341 HB_205_AD AD NA 5235_VC_A_0419
    342 HB_208_AD AD NA 5249_VC_A_0422
    343 HB_209_AD AD NA 5252_VC_A_0907
    344 HB_211_AD AD NA 5257_VC_A_0169
    345 HB_216_AD AD NA 5272_VC_A_0425
    346 HB_219_AD AD NA 5279_CR_A_0147
    347 HB_221_AD AD NA 5283_VC_A_0145
    348 HB_222_AD AD NA 5285_VC_A_0141
    349 HB_224_AD AD NA 5288_VC_A_0428
    350 HB_230_AD AD NA 5301_VC_A_0174
    351 HB_231_AD AD NA 5305_VC_A_1384
    352 HB_232_AD AD NA 5310_CR_A_0176
    353 HB_234_AD AD NA 5313_PF_A_2618
    354 HB_236_AD AD NA 5317_PF_A_2624
    355 HB_238_AD AD NA 5322_CR_A_2632
    356 HB_240_AD AD NA 5325_VC_A_0137
    357 HB_244_AD AD NA 5337_VC_A_1387
    358 HB_245_AD AD NA 5339_VC_A_0181
    359 HB_250_AD AD NA 5346_VC_A_1393
    360 HB_251_AD AD NA 5350_VC_A_0184
    361 HB_252_AD AD NA 5355_VC_A_0133
    362 HB_253_AD AD NA 5359_CR_A_1395
    363 HB_258_AD AD NA 5370_PF_A_1400
    364 HB_259_AD AD NA 5371_PF_A_2636
    365 HB_260_AD AD NA 5375_VC_A_0188
    366 HB_263_AD AD NA 5381_VC_A_0022
    367 HB_265_AD AD NA 5385_VC_A_1402
    368 HB_267_AD AD NA 5389_VC_A_0928
    369 HB_268_AD AD NA 5390_CR_A_0151
    370 HB_273_AD AD NA 5400_PF_A_2645
    371 HB_274_AD AD NA 5401_VC_A_0931
    372 HB_275_AD AD NA 5404_PF_A_2648
    373 HB_276_AD AD NA 5406_VC_A_0933
    374 HB_277_AD AD NA 5407_PF_A_2651
    375 HB_280_AD AD NA 5412_VC_A_0935
    376 HB_281_AD AD NA 5413_PF_A_2657
    377 HB_283_AD AD NA 5419_VC_A_0937
    378 HB_284_AD AD NA 5420_VC_A_0939
    379 HB_285_AD AD NA 5421_CR_A_0432
    380 HB_286_AD AD NA 5423_PF_A_2660
    381 HB_288_AD AD NA 5425_PF_A_2666
    382 HB_289_AD AD NA 5426_VC_A_1405
    383 HB_290_AD AD NA 5433_VC_A_0434
    384 HB_296_AD AD NA 5456_PF_A_2675
    385 HB_299_AD AD NA 5461_VC_A_0192
    386 HB_302_AD AD NA 5465_PF_A_2678
    387 HB_303_AD AD NA 5469_VC_A_1417
    388 HB_305_AD AD NA 5479_PF_A_1421
    389 HB_306_AD AD NA 5480_VC_A_0437
    390 HB_307_AD AD NA 5482_VC_A_0028
    391 HB_308_AD AD NA 5483_VC_A_0941
    392 HB_309_AD AD NA 5487_CR_A_0441
    393 HB_310_AD AD NA 5488_CR_A_0194
    394 HB_312_AD AD NA 5500_VC_A_0198
    395 HB_313_AD AD NA 5502_PF_A_2684
    396 HB_315_AD AD NA 5513_PF_A_2687
    397 HB_316_AD AD NA 5516_PF_A_2690
    398 HB_317_AD AD NA 5517_PF_A_2693
    399 HB_318_AD AD NA 5518_CR_A_0030
    400 HB_319_AD AD NA 5519_CR_A_2695
    401 HB_320_AD AD NA 5520_PF_A_2699
    402 HB_322_AD AD NA 5527_VC_A_0945
    403 HB_325_AD AD NA 5532_PF_A_2702
    404 HB_328_AD AD NA 5541_PF_A_2705
    405 HB_330_AD AD NA 5544_VC_A_0201
    406 HB_334_AD AD NA 5554_VC_A_0452
    407 HB_335_AD AD NA 5557_VC_A_0950
    408 HB_337_AD AD NA 5560_VC_A_0204
    409 HB_342_AD AD NA 5571_PF_A_1430
    410 HB_345_AD AD NA 5583_PF_A_2708
    411 HB_347_AD AD NA 5589_PF_A_2714
    412 HB_349_AD AD NA 5592_PF_A_2717
    413 HB_352_AD AD NA 5604_VC_A_0037
    414 HB_353_AD AD NA 5607_PF_A_2723
    415 HB_356_AD AD NA 5615_VC_A_0041
    416 HB_357_AD AD NA 5616_CR_A_0127
    417 HB_358_AD AD NA 5617_CR_A_0456
    418 HB_359_AD AD NA 5618_CR_A_0044
    419 HB_362_AD AD NA 5625_CR_A_2495
    420 HB_363_AD AD NA 5626_CR_A_2498
    421 HB_364_AD AD NA 5629_CR_A_0390
    422 HB_369_AD AD NA 5643_VC_A_1143
    423 HB_373_AD AD NA 5654_VC_A_0047
    424 HB_375_AD AD NA 5660_CR_A_0462
    425 HB_376_AD AD NA 5661_VC_A_0464
    426 HB_377_AD AD NA 5667_VC_A_2509
    427 HB_378_AD AD NA 5668_VC_A_1438
    428 HB_383_AD AD NA 5686_CR_A_2728
    429 HB_386_AD AD NA 5695_VC_A_0953
    430 HB_389_AD AD NA 5700_VC_A_2514
    431 HB_391_AD AD NA 5705_CR_A_0474
    432 HB_392_AD AD NA 5706_VC_A_0476
    433 HB_394_AD AD NA 5713_VC_A_0479
    434 HB_397_AD AD NA 5721_CR_A_0210
    435 HB_404_AD AD NA 5735_CR_A_0489
    436 HB_406_AD AD NA 5744_CR_A_0960
    437 HB_409_AD AD NA 5749_CR_A_0159
    438 HB_410_AD AD NA 5751_CR_A_2518
    439 HB_411_AD AD NA 5755_CR_A_2731
    440 HB_413_AD AD NA 5766_VC_A_0214
    441 HB_419_AD AD NA 5790_VC_A_0217
    442 HB_420_AD AD NA 5796_CR_A_0964
    443 HB_428_AD AD NA 5811_CR_A_2524
    444 HB_429_AD AD NA 5819_CR_A_2527
    445 HB_430_AD AD NA 5822_CR_A_2530
    446 HB_434_AD AD NA 5828_CR_A_2533
    447 HB_435_AD AD NA 5831_CR_A_0222
    448 HB_437_AD AD NA 5839_CR_A_2539
    449 HB_438_AD AD NA 5843_CR_A_0227
    450 HB_439_AD AD NA 5845_CR_A_0230
    451 HB_441_AD AD NA 5849_CR_A_0233
    452 HB_442_AD AD NA 5850_CR_A_0495
    453 HB_445_AD AD NA 5858_CR_A_0969
    454 HB_448_AD AD NA 5864_CR_A_0974
    455 HB_451_AD AD NA 5871_CR_A_2542
    456 HB_454_AD AD NA 5879_CR_A_2545
    457 HB_455_AD AD NA 5887_CR_A_0976_Bis
    458 HB_459_AD AD NA 5898_CR_A_2548
    459 HB_460_AD AD NA 5900_VC_A_0237
    460 HB_461_AD AD NA 5901_CR_A_0239
    461 HB_469_AD AD NA 5914_CR_A_2554
    462 HB_471_AD AD NA 5922_VC_A_0246
    463 HB_473_AD AD NA 5927_CR_A_2560
    464 HB_474_AD AD NA 5933_VC_A_1071
    465 HB_477_AD AD NA 5939_CR_A_1151
    466 HB_479_AD AD NA 5945_VC_A_0983
    467 HB_484_AD AD NA 5956_CR_A_0123
    468 HB_489_AD AD NA 5968_VC_A_1075
    469 HB_491_AD AD NA 5971_CR_A_0119
    470 HB_492_AD AD NA 5972_VC_A_0251
    471 HB_494_AD AD NA 5979_CR_A_0115
    472 HB_498_AD AD NA 5988_VC_A_0503
    473 HB_502_AD AD NA 5994_PF_A_1605
    474 HB_503_AD AD NA 5995_CR_A_2563
    475 HB_510_AD AD NA 6017_CR_A_0048
    476 HB_514_AD AD NA 6025_VC_A_0506
    477 HB_517_AD AD NA 6031_VC_A_0258
    478 HB_520_AD AD NA 6035_VC_A_1621
    479 HB_523_AD AD NA 6038_VC_A_0261
    480 HB_524_AD AD NA 6042_VC_A_1156
    481 HB_525_AD AD NA 6044_VC_A_0264
    482 HB_531_AD AD NA 6056_CR_A_0999
    483 HB_533_AD AD NA 6061_PF_A_1650
    484 HB_534_AD AD NA 6066_VC_A_0270
    485 HB_535_AD AD NA 6067_PF_A_1452
    486 HB_536_AD AD NA 6068_VC_A_0273
    487 HB_545_AD AD NA 6102_CR_A_1661
    488 HB_546_AD AD NA 6107_CR_A_0055
    489 HB_550_AD AD NA 6120_VC_A_0058
    490 HB_552_AD AD NA 6126_VC_A_1675
    491 HB_553_AD AD NA 6129_PF_A_0274
    492 HB_554_AD AD NA 6130_VC_A_1678
    493 HB_555_AD AD NA 6131_CR_A_0510
    494 HB_556_AD AD NA 6132_CR_A_0513
    495 HB_558_AD AD NA 6137_VC_A_1681
    496 HB_564_AD AD NA 6153_VC_A_1465
    497 HB_565_AD AD NA 6154_VC_A_1468
    498 HB_566_AD AD NA 6157_VC_A_0062
    499 HB_568_AD AD NA 6164_CR_A_1005
    500 HB_571_AD AD NA 6171_CR_A_0065
    501 HB_573_AD AD NA 6174_VC_A_0068
    502 HB_576_AD AD NA 6180_CR_A_0281
    503 HB_583_AD AD NA 6194_VC_A_0071
    504 HB_585_AD AD NA 6198_VC_A_0073
    505 HB_590_AD AD NA 6215_VC_A_0518
    506 HB_591_AD AD NA 6216_VC_A_1476
    507 HB_592_AD AD NA 6218_CR_A_0522
    508 HB_594_AD AD NA 6223_VC_A_0288
    509 HB_596_AD AD NA 6226_CR_A_0076
    510 HB_597_AD AD NA 6227_VC_A_0080
    511 HB_598_AD AD NA 6231_VC_A_1479
    512 HB_605_AD AD NA 6261_VC_A_0084
    513 HB_608_AD AD NA 6268_CR_A_0525
    514 HB_611_AD AD NA 6279_VC_A_0089
    515 HB_612_AD AD NA 6280_VC_A_0091
    516 HB_613_AD AD NA 6281_CR_A_0528
    517 HB_621_AD AD NA 6308_VC_A_1503
    518 HB_623_AD AD NA 6311_CR_A_0531
    519 HB_624_AD AD NA 6312_CR_A_0534
    520 HB_630_AD AD NA 6324_PF_A_1514
    521 HB_633_AD AD NA 6332_VC_A_1518
    522 HB_634_AD AD NA 6335_VC_A_0536
    523 HB_635_AD AD NA 6336_CR_A_0290
    524 HB_636_AD AD NA 6338_VC_A_0539
    525 HB_642_AD AD NA 6358_VC_A_0545
    526 HB_652_AD AD NA 6387_VC_A_0093
    527 HB_657_AD AD NA 6394_VC_A_0551
    528 HB_664_AD AD NA 6416_VC_A_1095
    529 HB_666_AD AD NA 6422_CR_A_0555
    530 HB_669_AD AD NA 6431_VC_A_0294
    531 HB_674_AD AD NA 6449_VC_A_1183
    532 HB_680_AD AD NA 6458_CR_A_2570
    533 HB_685_AD AD NA 6481_VC_A_0560
    534 HB_690_AD AD NA 6489_CR_A_0100
    535 HB_696_AD AD NA 6511_VC_A_1119
    536 HB_698_AD AD NA 6515_CR_A_0564
    537 HB_699_AD AD NA 6518_VC_A_0103
    538 HB_703_AD AD NA 6523_VC_A_0107
    539 HB_704_AD AD NA 6530_VC_A_0112
    540 HB_706_AD AD NA 6534_VC_A_0306
    541 HB_712_AD AD NA 6546_PF_A_1194
    542 HB_713_AD AD NA 6548_PF_A_1541
    543 HB_715_AD AD NA 6550_VC_A_1201
    544 HB_718_AD AD NA 6554_PF_A_1203
    545 HB_720_AD AD NA 6559_PF_A_2287
    546 HB_722_AD AD NA 6561_CR_A_2582
    547 HB_723_AD AD NA 6562_PF_A_2290
    548 HB_724_AD AD NA 6564_CR_A_2585
    549 HB_727_AD AD NA 6575_CR_A_2298
    550 HB_728_AD AD NA 6577_PF_A_2299
    551 HB_729_AD AD NA 6578_PF_A_2302
    552 HB_731_AD AD NA 6582_VC_A_1207
    553 HB_733_AD AD NA 6585_VC_A_1210
    554 HB_736_AD AD NA 6590_PF_A_1215
    555 HB_743_AD AD NA 6603_PF_A_1448
    556 HB_745_AD AD NA 6610_PF_A_1227
    557 HB_746_AD AD NA 6612_PF_A_2308
    558 HB_749_AD AD NA 6617_VC_A_2587
    559 HB_751_AD AD NA 6629_VC_A_2330
    560 HB_752_AD AD NA 6630_VC_A_2590
    561 HB_753_AD AD NA 6632_PF_A_2332
    562 HB_754_AD AD NA 6637_VC_A_2596
    563 HB_755_AD AD NA 6638_VC_A_2599
    564 HB_756_AD AD NA 6639_VC_A_2336
    565 HB_757_AD AD NA 6641_PF_A_2338
    566 HB_763_AD AD NA 6654_VC_A_1237
    567 HB_773_AD AD NA 6681_VC_A_1252
    568 HB_775_AD AD NA 6693_VC_A_2348
    569 HB_776_AD AD NA 6694_VC_A_2351
    570 HB_777_AD AD NA 6695_PF_A_2353
    571 HB_779_AD AD NA 6699_PF_A_2359
    572 HB_781_AD AD NA 6708_VC_A_2366
    573 HB_782_AD AD NA 6776_PF_A_2607
    574 HB_783_AD AD NA 6778_PF_A_2368
    575 HB_784_AD AD NA 6779_PF_A_2371
    576 HB_785_AD AD NA 6780_PF_A_2374
    577 HB_786_AD AD NA 6782_PF_A_2377
    578 HB_787_AD AD NA 6784_PF_A_2380
    579 HB_788_AD AD NA 6785_CR_A_2385
    580 HB_789_AD AD NA 6787_CR_A_2388
    581 HB_791_AD AD NA 6790_PF_A_2392
    582 HB_792_AD AD NA 6791_PF_A_2395
    583 HB_793_AD AD NA 6793_PF_A_2398
    584 HB_794_AD AD NA 6794_PF_A_2401
    585 HB_795_AD AD NA 6797_PF_A_2404
    586 HB_796_AD AD NA 6798_PF_A_2407
    587 HB_797_AD AD NA 6799_VC_A_2411
    588 HB_798_AD AD NA 6801_VC_A_2414
    589 HB_799_AD AD NA 6803_VC_A_2417
    590 HB_801_AD AD NA 6809_PF_A_2422
    591 HB_803_AD AD NA 6818_CR_A_2430
    +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HBTRC-MLC_N_0611.html b/web/dbdoc/HBTRC-MLC_N_0611.html new file mode 100755 index 00000000..00f9843e --- /dev/null +++ b/web/dbdoc/HBTRC-MLC_N_0611.html @@ -0,0 +1,831 @@ + + + +HBTRC-MLC Human Cerebellum Agilent Normal (Jun11) mlratio + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    HBTRC-MLC Human Cerebellum Agilent Normal (Jun11) mlratiomodify this page

    + + Accession number: GN361

    +

    +

    +

    Summary:

    +

    This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

    +
    +

    +

    +

    +

    Data Source Acknowledgements:

    +

    +

    +Species: Human
    +Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
    +Disease: Neurological Disease
    +Investigator: Francine Benes/ Eric Schadt
    +Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
    +Approximate Number Subjects: 803

    +

    +The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/). +

    +

    This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. +Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines. +

    +
    +

    +

    +

    +

    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Series Cerebellum in GN Condition Gender BioSample Name
    1 HB_029_N N NA 3405_VC_N_0859
    2 HB_058_N N NA 4021_VC_N_0854
    3 HB_064_N N NA 4338_VC_N_0861
    4 HB_086_N N NA 4729_PF_N_0756
    5 HB_091_N N NA 4741_VC_N_0864
    6 HB_092_N N NA 4744_VC_N_0865
    7 HB_102_N N NA 4810_VC_N_0869
    8 HB_119_N N NA 4872_VC_N_0878
    9 HB_147_N N NA 5021_VC_N_0852
    10 HB_161_N N NA 5077_VC_N_0851
    11 HB_162_N N NA 5081_VC_N_1021
    12 HB_166_N N NA 5095_VC_N_1024
    13 HB_183_N N NA 5162_VC_N_0850
    14 HB_206_N N NA 5245_VC_N_0849
    15 HB_215_N N NA 5270_VC_N_0848
    16 HB_218_N N NA 5276_CR_N_0912
    17 HB_223_N N NA 5287_VC_N_0916
    18 HB_226_N N NA 5294_VC_N_0919
    19 HB_241_N N NA 5326_CR_N_0652
    20 HB_243_N N NA 5333_VC_N_1262
    21 HB_247_N N NA 5341_VC_N_0923
    22 HB_257_N N NA 5368_PF_N_1032
    23 HB_264_N N NA 5384_VC_N_0924
    24 HB_295_N N NA 5452_VC_N_1268
    25 HB_300_N N NA 5463_VC_N_0845
    26 HB_311_N N NA 5489_CR_N_0942
    27 HB_324_N N NA 5531_VC_N_0844
    28 HB_332_N N NA 5547_VC_N_0843
    29 HB_340_N N NA 5568_VC_N_0842
    30 HB_360_N N NA 5619_CR_N_0645
    31 HB_365_N N NA 5632_VC_N_0838
    32 HB_367_N N NA 5637_VC_N_0837
    33 HB_382_N N NA 5684_PF_N_1270
    34 HB_396_N N NA 5718_VC_N_0956
    35 HB_398_N N NA 5722_VC_N_1044
    36 HB_400_N N NA 5726_VC_N_0834_Bis
    37 HB_403_N N NA 5734_VC_N_0833
    38 HB_414_N N NA 5772_VC_N_0832_Bis
    39 HB_416_N N NA 5778_CR_N_0962
    40 HB_418_N N NA 5789_PF_N_1273
    41 HB_421_N N NA 5799_VC_N_1058
    42 HB_423_N N NA 5803_VC_N_0966
    43 HB_426_N N NA 5806_PF_N_1064
    44 HB_427_N N NA 5810_CR_N_0636
    45 HB_431_N N NA 5823_VC_N_0829
    46 HB_432_N N NA 5826_VC_N_0828
    47 HB_433_N N NA 5827_VC_N_0827
    48 HB_436_N N NA 5832_PF_N_1145
    49 HB_443_N N NA 5852_VC_N_0826
    50 HB_446_N N NA 5859_VC_N_0825
    51 HB_449_N N NA 5866_VC_N_0824
    52 HB_450_N N NA 5867_VC_N_1277
    53 HB_453_N N NA 5876_VC_N_0823
    54 HB_462_N N NA 5903_VC_N_0822
    55 HB_464_N N NA 5905_VC_N_0820
    56 HB_468_N N NA 5912_VC_N_1286
    57 HB_472_N N NA 5925_VC_N_1289
    58 HB_475_N N NA 5936_VC_N_0979
    59 HB_476_N N NA 5938_VC_N_0819
    60 HB_480_N N NA 5946_VC_N_0985
    61 HB_485_N N NA 5959_VC_N_0818
    62 HB_486_N N NA 5963_VC_N_0987
    63 HB_495_N N NA 5980_VC_N_0989
    64 HB_497_N N NA 5985_VC_N_0990
    65 HB_500_N N NA 5990_VC_N_0817
    66 HB_501_N N NA 5991_VC_N_0816
    67 HB_504_N N NA 5996_VC_N_0815
    68 HB_505_N N NA 5998_VC_N_0814
    69 HB_507_N N NA 6006_VC_N_0813
    70 HB_508_N N NA 6007_CR_N_0618
    71 HB_509_N N NA 6008_PF_N_1081
    72 HB_512_N N NA 6023_PF_N_1155
    73 HB_516_N N NA 6030_VC_N_0810
    74 HB_519_N N NA 6034_VC_N_0809
    75 HB_532_N N NA 6060_VC_N_1292
    76 HB_541_N N NA 6092_VC_N_1001
    77 HB_542_N N NA 6096_VC_N_0807
    78 HB_544_N N NA 6101_CR_N_1161
    79 HB_547_N N NA 6110_VC_N_1295
    80 HB_551_N N NA 6124_VC_N_0806
    81 HB_557_N N NA 6134_PF_N_1297
    82 HB_560_N N NA 6142_VC_N_0805
    83 HB_569_N N NA 6166_VC_N_0804
    84 HB_570_N N NA 6170_VC_N_0803
    85 HB_572_N N NA 6172_VC_N_1008
    86 HB_577_N N NA 6182_VC_N_1166
    87 HB_579_N N NA 6187_CR_N_0607
    88 HB_581_N N NA 6191_VC_N_1010
    89 HB_584_N N NA 6196_CR_N_0605
    90 HB_586_N N NA 6200_VC_N_0799
    91 HB_587_N N NA 6206_PF_N_1176
    92 HB_589_N N NA 6213_VC_N_0798
    93 HB_601_N N NA 6241_VC_N_0796
    94 HB_604_N N NA 6260_VC_N_0794
    95 HB_609_N N NA 6270_VC_N_0793
    96 HB_618_N N NA 6289_VC_N_0791
    97 HB_622_N N NA 6310_VC_N_0790
    98 HB_625_N N NA 6314_VC_N_0789
    99 HB_637_N N NA 6340_VC_N_0786
    100 HB_638_N N NA 6341_VC_N_0785
    101 HB_640_N N NA 6347_VC_N_0784
    102 HB_641_N N NA 6356_VC_N_0783
    103 HB_643_N N NA 6363_VC_N_0781
    104 HB_644_N N NA 6366_VC_N_0780
    105 HB_645_N N NA 6374_VC_N_0779
    106 HB_650_N N NA 6384_VC_N_0777
    107 HB_651_N N NA 6386_VC_N_0776
    108 HB_653_N N NA 6388_VC_N_0775
    109 HB_659_N N NA 6406_VC_N_1180
    110 HB_662_N N NA 6411_VC_N_0771
    111 HB_663_N N NA 6415_VC_N_0770
    112 HB_670_N N NA 6436_VC_N_0769
    113 HB_687_N N NA 6484_VC_N_0765
    114 HB_689_N N NA 6486_VC_N_0764
    115 HB_694_N N NA 6500_VC_N_0763
    116 HB_697_N N NA 6512_VC_N_0762
    117 HB_700_N N NA 6520_VC_N_0761
    118 HB_711_N N NA 6543_PF_N_1191
    119 HB_714_N N NA 6549_VC_N_1198
    120 HB_717_N N NA 6553_PF_N_2284
    121 HB_721_N N NA 6560_VC_N_2578
    122 HB_726_N N NA 6573_PF_N_2293
    123 HB_730_N N NA 6580_VC_N_2306
    124 HB_735_N N NA 6588_VC_N_1213
    125 HB_737_N N NA 6593_VC_N_1219
    126 HB_738_N N NA 6594_VC_N_1222
    127 HB_759_N N NA 6645_VC_N_1231
    128 HB_764_N N NA 6655_VC_N_1240
    129 HB_765_N N NA 6656_VC_N_1243
    130 HB_767_N N NA 6661_PF_N_2341
    131 HB_770_N N NA 6669_VC_N_1246
    132 HB_772_N N NA 6676_PF_N_1248
    133 HB_001_HD HD F 2028_CR_H_2282
    134 HB_003_HD HD F 2685_PF_H_2212
    135 HB_004_HD HD M 2706_CR_H_2432
    136 HB_006_HD HD M 2737_VC_H_2194
    137 HB_007_HD HD NA 2769_VC_H_2193
    138 HB_008_HD HD F 2790_CR_H_1890
    139 HB_009_HD HD NA 2879_VC_H_2192
    140 HB_010_HD HD M 2960_VC_H_2002
    141 HB_011_HD HD F 3053_VC_H_2001
    142 HB_012_HD HD F 3128_VC_H_1999
    143 HB_014_HD HD F 3149_PF_H_2110
    144 HB_015_HD HD F 3150_VC_H_1996
    145 HB_016_HD HD F 3177_VC_H_2191
    146 HB_017_HD HD NA 3195_VC_H_2190
    147 HB_018_HD HD M 3200_VC_H_2189
    148 HB_019_HD HD M 3209_VC_H_2188
    149 HB_020_HD HD M 3224_VC_H_1994
    150 HB_022_HD HD F 3242_PF_H_2105
    151 HB_024_HD HD NA 3272_VC_H_2186
    152 HB_027_HD HD M 3356_VC_H_2439
    153 HB_028_HD HD F 3394_PF_H_2104
    154 HB_031_HD HD M 3430_VC_H_1990
    155 HB_032_HD HD NA 3444_PF_H_2208
    156 HB_034_HD HD F 3482_VC_H_1987
    157 HB_036_HD HD M 3576_VC_H_1984
    158 HB_037_HD HD F 3579_VC_H_1983
    159 HB_038_HD HD F 3584_VC_H_2183
    160 HB_039_HD HD NA 3635_VC_H_2182
    161 HB_041_HD HD F 3695_CR_H_2267
    162 HB_042_HD HD M 3697_VC_H_1982
    163 HB_043_HD HD NA 3703_VC_H_2180
    164 HB_044_HD HD NA 3723_VC_H_2179
    165 HB_046_HD HD F 3735_VC_H_1981
    166 HB_050_HD HD M 3820_PF_H_2207
    167 HB_051_HD HD F 3849_CR_H_2262
    168 HB_054_HD HD M 3884_VC_H_2175
    169 HB_056_HD HD NA 4012_VC_H_2174
    170 HB_057_HD HD NA 4013_VC_H_2173
    171 HB_059_HD HD NA 4066_VC_H_2172
    172 HB_060_HD HD NA 4094_VC_H_2171
    173 HB_061_HD HD F 4116_VC_H_2170
    174 HB_062_HD HD NA 4121_VC_H_2169
    175 HB_063_HD HD NA 4215_VC_H_2167
    176 HB_065_HD HD M 4340_PF_H_2091
    177 HB_066_HD HD F 4344_VC_H_1977
    178 HB_067_HD HD M 4346_VC_H_2165
    179 HB_069_HD HD F 4356_VC_H_2164
    180 HB_070_HD HD NA 4386_CR_H_2249
    181 HB_072_HD HD NA 4404_VC_H_2161
    182 HB_073_HD HD F 4411_VC_H_1975
    183 HB_074_HD HD NA 4430_VC_H_2465
    184 HB_075_HD HD M 4470_VC_H_1974
    185 HB_076_HD HD F 4497_CR_H_1860
    186 HB_077_HD HD M 4509_CR_H_2244
    187 HB_079_HD HD M 4631_VC_H_1971
    188 HB_080_HD HD F 4653_PF_H_2083
    189 HB_081_HD HD NA 4678_CR_H_2242
    190 HB_084_HD HD M 4718_VC_H_2125
    191 HB_090_HD HD NA 4740_CR_H_2474
    192 HB_094_HD HD NA 4754_CR_H_2476
    193 HB_098_HD HD NA 4780_VC_H_2151
    194 HB_101_HD HD F 4809_VC_H_2148
    195 HB_105_HD HD NA 4819_CR_H_2238
    196 HB_106_HD HD F 4822_VC_H_1969
    197 HB_108_HD HD M 4826_VC_H_1968
    198 HB_109_HD HD M 4828_VC_H_2124
    199 HB_115_HD HD NA 4855_CR_H_2235
    200 HB_121_HD HD F 4902_VC_H_1967
    201 HB_129_HD HD NA 4938_VC_H_1966
    202 HB_141_HD HD F 4996_PF_H_2076
    203 HB_152_HD HD NA 5034_CR_H_2233
    204 HB_153_HD HD M 5043_VC_H_1960
    205 HB_159_HD HD M 5062_VC_H_1959
    206 HB_172_HD HD F 5114_PF_H_2070
    207 HB_175_HD HD M 5127_PF_H_2068
    208 HB_180_HD HD M 5148_VC_H_1944
    209 HB_185_HD HD F 5167_CR_H_2231
    210 HB_188_HD HD F 5172_VC_H_1951
    211 HB_191_HD HD M 5180_VC_H_1949
    212 HB_196_HD HD NA 5199_PF_H_2202
    213 HB_203_HD HD F 5228_PF_H_2059
    214 HB_207_HD HD NA 5248_PF_H_2201
    215 HB_228_HD HD F 5299_CR_H_2228
    216 HB_233_HD HD M 5312_VC_H_1938
    217 HB_235_HD HD F 5316_VC_H_1937
    218 HB_242_HD HD F 5328_PF_H_2048
    219 HB_266_HD HD M 5387_VC_H_1928
    220 HB_271_HD HD M 5394_PF_H_2039
    221 HB_272_HD HD F 5396_VC_H_1925
    222 HB_279_HD HD F 5409_VC_H_1924
    223 HB_294_HD HD M 5448_VC_H_1921
    224 HB_301_HD HD NA 5464_VC_H_1919
    225 HB_304_HD HD F 5471_VC_H_1918
    226 HB_321_HD HD NA 5522_PF_H_2199
    227 HB_361_HD HD F 5622_VC_H_2121
    228 HB_370_HD HD M 5645_VC_H_1904
    229 HB_371_HD HD F 5648_PF_H_2016
    230 HB_384_HD HD F 5688_PF_H_2012
    231 HB_390_HD HD M 5704_PF_H_2009
    232 HB_393_HD HD F 5709_VC_H_1895
    233 HB_402_HD HD F 5732_PF_H_2007
    234 HB_405_HD HD NA 5742_PF_H_2006
    235 HB_407_HD HD M 5745_PF_H_2005
    236 HB_408_HD HD M 5747_VC_H_1891
    237 HB_415_HD HD NA 5777_PF_H_1551
    238 HB_417_HD HD M 5784_PF_H_1554
    239 HB_424_HD HD M 5804_VC_H_1558
    240 HB_444_HD HD M 5856_VC_H_1567
    241 HB_457_HD HD M 5896_VC_H_1570
    242 HB_466_HD HD M 5910_PF_H_1572
    243 HB_478_HD HD M 5941_CR_H_1583
    244 HB_487_HD HD F 5964_VC_H_1597
    245 HB_511_HD HD M 6019_PF_H_2198
    246 HB_513_HD HD F 6024_VC_H_1612
    247 HB_515_HD HD F 6028_CR_H_1613
    248 HB_518_HD HD M 6033_VC_H_1618
    249 HB_522_HD HD M 6037_PF_H_1626
    250 HB_527_HD HD F 6047_VC_H_1639
    251 HB_528_HD HD M 6051_PF_H_1641
    252 HB_530_HD HD M 6054_VC_H_1648
    253 HB_537_HD HD F 6071_PF_H_1653
    254 HB_549_HD HD M 6119_CR_H_1670
    255 HB_593_HD HD NA 6219_CR_H_2567
    256 HB_610_HD HD NA 6275_PF_H_1692
    257 HB_616_HD HD F 6284_CR_H_1694
    258 HB_626_HD HD M 6315_VC_H_1702
    259 HB_639_HD HD F 6344_CR_H_1703
    260 HB_649_HD HD F 6382_CR_H_1709
    261 HB_661_HD HD M 6408_VC_H_1714
    262 HB_682_HD HD M 6467_PF_H_1725
    263 HB_683_HD HD M 6472_VC_H_1729
    264 HB_691_HD HD F 6493_VC_H_1732
    265 HB_692_HD HD M 6495_CR_H_1733
    266 HB_707_HD HD M 6535_PF_H_1737
    267 HB_709_HD HD F 6539_CR_H_1739
    268 HB_725_HD HD M 6572_PF_H_1746
    269 HB_732_HD HD F 6584_VC_H_1750
    270 HB_734_HD HD F 6587_CR_H_1751
    271 HB_748_HD HD NA 6615_VC_H_2315
    272 HB_750_HD HD NA 6628_PF_H_2326
    273 HB_758_HD HD NA 6643_VC_H_2602
    274 HB_760_HD HD M 6646_PF_H_1761
    275 HB_762_HD HD M 6650_VC_H_1765
    276 HB_766_HD HD M 6658_VC_H_1768
    277 HB_768_HD HD NA 6663_VC_H_1771
    278 HB_769_HD HD M 6666_VC_H_1774
    279 HB_774_HD HD NA 6689_PF_H_2344
    280 HB_778_HD HD NA 6696_PF_H_2356
    281 HB_780_HD HD NA 6704_PF_H_2362
    282 HB_790_HD HD NA 6788_PF_H_2389
    283 HB_800_HD HD NA 6807_PF_H_2419
    284 HB_802_HD HD NA 6811_PF_H_2425
    285 HB_045_AD AD NA 3734_CR_A_0122
    286 HB_048_AD AD NA 3791_CR_A_0128
    287 HB_053_AD AD NA 3877_CR_A_0134
    288 HB_055_AD AD NA 3893_VC_A_0142
    289 HB_068_AD AD NA 4349_VC_A_0148
    290 HB_082_AD AD NA 4712_CR_A_0309
    291 HB_085_AD AD NA 4726_VC_A_0311
    292 HB_087_AD AD NA 4730_CR_A_0315
    293 HB_089_AD AD NA 4733_VC_A_0320
    294 HB_093_AD AD NA 4749_VC_A_0323
    295 HB_095_AD AD NA 4759_CR_A_0327
    296 HB_097_AD AD NA 4773_CR_A_0866
    297 HB_099_AD AD NA 4785_VC_A_0332
    298 HB_100_AD AD NA 4795_VC_A_0335
    299 HB_103_AD AD NA 4811_VC_A_0341
    300 HB_104_AD AD NA 4813_CR_A_0345
    301 HB_112_AD AD NA 4842_VC_A_0870
    302 HB_113_AD AD NA 4850_CR_A_0351
    303 HB_114_AD AD NA 4852_CR_A_0354
    304 HB_117_AD AD NA 4868_VC_A_0874
    305 HB_122_AD AD NA 4904_CR_A_1132
    306 HB_123_AD AD NA 4905_VC_A_0884
    307 HB_124_AD AD NA 4916_VC_A_0886
    308 HB_125_AD AD NA 4917_CR_A_0360
    309 HB_126_AD AD NA 4921_VC_A_0362
    310 HB_128_AD AD NA 4936_CR_A_0369
    311 HB_130_AD AD NA 4939_VC_A_0888
    312 HB_131_AD AD NA 4944_CR_A_0889
    313 HB_132_AD AD NA 4946_CR_A_0372
    314 HB_134_AD AD NA 4951_CR_A_0891
    315 HB_135_AD AD NA 4953_VC_A_0893
    316 HB_136_AD AD NA 4965_VC_A_0160
    317 HB_137_AD AD NA 4966_VC_A_0374
    318 HB_138_AD AD NA 4969_VC_A_0895
    319 HB_140_AD AD NA 4993_CR_A_0896
    320 HB_146_AD AD NA 5018_CR_A_0384
    321 HB_148_AD AD NA 5022_VC_A_0386
    322 HB_150_AD AD NA 5031_VC_A_0392
    323 HB_151_AD AD NA 5033_CR_A_0396
    324 HB_154_AD AD NA 5048_VC_A_1321
    325 HB_155_AD AD NA 5056_VC_A_0398
    326 HB_156_AD AD NA 5057_VC_A_0163
    327 HB_157_AD AD NA 5059_VC_A_0401
    328 HB_158_AD AD NA 5061_PF_A_2612
    329 HB_160_AD AD NA 5064_PF_A_2615
    330 HB_165_AD AD NA 5092_CR_A_0899
    331 HB_168_AD AD NA 5097_VC_A_0407
    332 HB_170_AD AD NA 5101_VC_A_0410
    333 HB_174_AD AD NA 5124_PF_A_1343
    334 HB_179_AD AD NA 5145_VC_A_1351
    335 HB_181_AD AD NA 5152_CR_A_0414
    336 HB_184_AD AD NA 5166_VC_A_1354
    337 HB_194_AD AD NA 5193_VC_A_1360
    338 HB_197_AD AD NA 5202_CR_A_1368
    339 HB_199_AD AD NA 5205_VC_A_0166
    340 HB_200_AD AD NA 5210_VC_A_0905
    341 HB_205_AD AD NA 5235_VC_A_0419
    342 HB_208_AD AD NA 5249_VC_A_0422
    343 HB_209_AD AD NA 5252_VC_A_0907
    344 HB_211_AD AD NA 5257_VC_A_0169
    345 HB_216_AD AD NA 5272_VC_A_0425
    346 HB_219_AD AD NA 5279_CR_A_0147
    347 HB_221_AD AD NA 5283_VC_A_0145
    348 HB_222_AD AD NA 5285_VC_A_0141
    349 HB_224_AD AD NA 5288_VC_A_0428
    350 HB_230_AD AD NA 5301_VC_A_0174
    351 HB_231_AD AD NA 5305_VC_A_1384
    352 HB_232_AD AD NA 5310_CR_A_0176
    353 HB_234_AD AD NA 5313_PF_A_2618
    354 HB_236_AD AD NA 5317_PF_A_2624
    355 HB_238_AD AD NA 5322_CR_A_2632
    356 HB_240_AD AD NA 5325_VC_A_0137
    357 HB_244_AD AD NA 5337_VC_A_1387
    358 HB_245_AD AD NA 5339_VC_A_0181
    359 HB_250_AD AD NA 5346_VC_A_1393
    360 HB_251_AD AD NA 5350_VC_A_0184
    361 HB_252_AD AD NA 5355_VC_A_0133
    362 HB_253_AD AD NA 5359_CR_A_1395
    363 HB_258_AD AD NA 5370_PF_A_1400
    364 HB_259_AD AD NA 5371_PF_A_2636
    365 HB_260_AD AD NA 5375_VC_A_0188
    366 HB_263_AD AD NA 5381_VC_A_0022
    367 HB_265_AD AD NA 5385_VC_A_1402
    368 HB_267_AD AD NA 5389_VC_A_0928
    369 HB_268_AD AD NA 5390_CR_A_0151
    370 HB_273_AD AD NA 5400_PF_A_2645
    371 HB_274_AD AD NA 5401_VC_A_0931
    372 HB_275_AD AD NA 5404_PF_A_2648
    373 HB_276_AD AD NA 5406_VC_A_0933
    374 HB_277_AD AD NA 5407_PF_A_2651
    375 HB_280_AD AD NA 5412_VC_A_0935
    376 HB_281_AD AD NA 5413_PF_A_2657
    377 HB_283_AD AD NA 5419_VC_A_0937
    378 HB_284_AD AD NA 5420_VC_A_0939
    379 HB_285_AD AD NA 5421_CR_A_0432
    380 HB_286_AD AD NA 5423_PF_A_2660
    381 HB_288_AD AD NA 5425_PF_A_2666
    382 HB_289_AD AD NA 5426_VC_A_1405
    383 HB_290_AD AD NA 5433_VC_A_0434
    384 HB_296_AD AD NA 5456_PF_A_2675
    385 HB_299_AD AD NA 5461_VC_A_0192
    386 HB_302_AD AD NA 5465_PF_A_2678
    387 HB_303_AD AD NA 5469_VC_A_1417
    388 HB_305_AD AD NA 5479_PF_A_1421
    389 HB_306_AD AD NA 5480_VC_A_0437
    390 HB_307_AD AD NA 5482_VC_A_0028
    391 HB_308_AD AD NA 5483_VC_A_0941
    392 HB_309_AD AD NA 5487_CR_A_0441
    393 HB_310_AD AD NA 5488_CR_A_0194
    394 HB_312_AD AD NA 5500_VC_A_0198
    395 HB_313_AD AD NA 5502_PF_A_2684
    396 HB_315_AD AD NA 5513_PF_A_2687
    397 HB_316_AD AD NA 5516_PF_A_2690
    398 HB_317_AD AD NA 5517_PF_A_2693
    399 HB_318_AD AD NA 5518_CR_A_0030
    400 HB_319_AD AD NA 5519_CR_A_2695
    401 HB_320_AD AD NA 5520_PF_A_2699
    402 HB_322_AD AD NA 5527_VC_A_0945
    403 HB_325_AD AD NA 5532_PF_A_2702
    404 HB_328_AD AD NA 5541_PF_A_2705
    405 HB_330_AD AD NA 5544_VC_A_0201
    406 HB_334_AD AD NA 5554_VC_A_0452
    407 HB_335_AD AD NA 5557_VC_A_0950
    408 HB_337_AD AD NA 5560_VC_A_0204
    409 HB_342_AD AD NA 5571_PF_A_1430
    410 HB_345_AD AD NA 5583_PF_A_2708
    411 HB_347_AD AD NA 5589_PF_A_2714
    412 HB_349_AD AD NA 5592_PF_A_2717
    413 HB_352_AD AD NA 5604_VC_A_0037
    414 HB_353_AD AD NA 5607_PF_A_2723
    415 HB_356_AD AD NA 5615_VC_A_0041
    416 HB_357_AD AD NA 5616_CR_A_0127
    417 HB_358_AD AD NA 5617_CR_A_0456
    418 HB_359_AD AD NA 5618_CR_A_0044
    419 HB_362_AD AD NA 5625_CR_A_2495
    420 HB_363_AD AD NA 5626_CR_A_2498
    421 HB_364_AD AD NA 5629_CR_A_0390
    422 HB_369_AD AD NA 5643_VC_A_1143
    423 HB_373_AD AD NA 5654_VC_A_0047
    424 HB_375_AD AD NA 5660_CR_A_0462
    425 HB_376_AD AD NA 5661_VC_A_0464
    426 HB_377_AD AD NA 5667_VC_A_2509
    427 HB_378_AD AD NA 5668_VC_A_1438
    428 HB_383_AD AD NA 5686_CR_A_2728
    429 HB_386_AD AD NA 5695_VC_A_0953
    430 HB_389_AD AD NA 5700_VC_A_2514
    431 HB_391_AD AD NA 5705_CR_A_0474
    432 HB_392_AD AD NA 5706_VC_A_0476
    433 HB_394_AD AD NA 5713_VC_A_0479
    434 HB_397_AD AD NA 5721_CR_A_0210
    435 HB_404_AD AD NA 5735_CR_A_0489
    436 HB_406_AD AD NA 5744_CR_A_0960
    437 HB_409_AD AD NA 5749_CR_A_0159
    438 HB_410_AD AD NA 5751_CR_A_2518
    439 HB_411_AD AD NA 5755_CR_A_2731
    440 HB_413_AD AD NA 5766_VC_A_0214
    441 HB_419_AD AD NA 5790_VC_A_0217
    442 HB_420_AD AD NA 5796_CR_A_0964
    443 HB_428_AD AD NA 5811_CR_A_2524
    444 HB_429_AD AD NA 5819_CR_A_2527
    445 HB_430_AD AD NA 5822_CR_A_2530
    446 HB_434_AD AD NA 5828_CR_A_2533
    447 HB_435_AD AD NA 5831_CR_A_0222
    448 HB_437_AD AD NA 5839_CR_A_2539
    449 HB_438_AD AD NA 5843_CR_A_0227
    450 HB_439_AD AD NA 5845_CR_A_0230
    451 HB_441_AD AD NA 5849_CR_A_0233
    452 HB_442_AD AD NA 5850_CR_A_0495
    453 HB_445_AD AD NA 5858_CR_A_0969
    454 HB_448_AD AD NA 5864_CR_A_0974
    455 HB_451_AD AD NA 5871_CR_A_2542
    456 HB_454_AD AD NA 5879_CR_A_2545
    457 HB_455_AD AD NA 5887_CR_A_0976_Bis
    458 HB_459_AD AD NA 5898_CR_A_2548
    459 HB_460_AD AD NA 5900_VC_A_0237
    460 HB_461_AD AD NA 5901_CR_A_0239
    461 HB_469_AD AD NA 5914_CR_A_2554
    462 HB_471_AD AD NA 5922_VC_A_0246
    463 HB_473_AD AD NA 5927_CR_A_2560
    464 HB_474_AD AD NA 5933_VC_A_1071
    465 HB_477_AD AD NA 5939_CR_A_1151
    466 HB_479_AD AD NA 5945_VC_A_0983
    467 HB_484_AD AD NA 5956_CR_A_0123
    468 HB_489_AD AD NA 5968_VC_A_1075
    469 HB_491_AD AD NA 5971_CR_A_0119
    470 HB_492_AD AD NA 5972_VC_A_0251
    471 HB_494_AD AD NA 5979_CR_A_0115
    472 HB_498_AD AD NA 5988_VC_A_0503
    473 HB_502_AD AD NA 5994_PF_A_1605
    474 HB_503_AD AD NA 5995_CR_A_2563
    475 HB_510_AD AD NA 6017_CR_A_0048
    476 HB_514_AD AD NA 6025_VC_A_0506
    477 HB_517_AD AD NA 6031_VC_A_0258
    478 HB_520_AD AD NA 6035_VC_A_1621
    479 HB_523_AD AD NA 6038_VC_A_0261
    480 HB_524_AD AD NA 6042_VC_A_1156
    481 HB_525_AD AD NA 6044_VC_A_0264
    482 HB_531_AD AD NA 6056_CR_A_0999
    483 HB_533_AD AD NA 6061_PF_A_1650
    484 HB_534_AD AD NA 6066_VC_A_0270
    485 HB_535_AD AD NA 6067_PF_A_1452
    486 HB_536_AD AD NA 6068_VC_A_0273
    487 HB_545_AD AD NA 6102_CR_A_1661
    488 HB_546_AD AD NA 6107_CR_A_0055
    489 HB_550_AD AD NA 6120_VC_A_0058
    490 HB_552_AD AD NA 6126_VC_A_1675
    491 HB_553_AD AD NA 6129_PF_A_0274
    492 HB_554_AD AD NA 6130_VC_A_1678
    493 HB_555_AD AD NA 6131_CR_A_0510
    494 HB_556_AD AD NA 6132_CR_A_0513
    495 HB_558_AD AD NA 6137_VC_A_1681
    496 HB_564_AD AD NA 6153_VC_A_1465
    497 HB_565_AD AD NA 6154_VC_A_1468
    498 HB_566_AD AD NA 6157_VC_A_0062
    499 HB_568_AD AD NA 6164_CR_A_1005
    500 HB_571_AD AD NA 6171_CR_A_0065
    501 HB_573_AD AD NA 6174_VC_A_0068
    502 HB_576_AD AD NA 6180_CR_A_0281
    503 HB_583_AD AD NA 6194_VC_A_0071
    504 HB_585_AD AD NA 6198_VC_A_0073
    505 HB_590_AD AD NA 6215_VC_A_0518
    506 HB_591_AD AD NA 6216_VC_A_1476
    507 HB_592_AD AD NA 6218_CR_A_0522
    508 HB_594_AD AD NA 6223_VC_A_0288
    509 HB_596_AD AD NA 6226_CR_A_0076
    510 HB_597_AD AD NA 6227_VC_A_0080
    511 HB_598_AD AD NA 6231_VC_A_1479
    512 HB_605_AD AD NA 6261_VC_A_0084
    513 HB_608_AD AD NA 6268_CR_A_0525
    514 HB_611_AD AD NA 6279_VC_A_0089
    515 HB_612_AD AD NA 6280_VC_A_0091
    516 HB_613_AD AD NA 6281_CR_A_0528
    517 HB_621_AD AD NA 6308_VC_A_1503
    518 HB_623_AD AD NA 6311_CR_A_0531
    519 HB_624_AD AD NA 6312_CR_A_0534
    520 HB_630_AD AD NA 6324_PF_A_1514
    521 HB_633_AD AD NA 6332_VC_A_1518
    522 HB_634_AD AD NA 6335_VC_A_0536
    523 HB_635_AD AD NA 6336_CR_A_0290
    524 HB_636_AD AD NA 6338_VC_A_0539
    525 HB_642_AD AD NA 6358_VC_A_0545
    526 HB_652_AD AD NA 6387_VC_A_0093
    527 HB_657_AD AD NA 6394_VC_A_0551
    528 HB_664_AD AD NA 6416_VC_A_1095
    529 HB_666_AD AD NA 6422_CR_A_0555
    530 HB_669_AD AD NA 6431_VC_A_0294
    531 HB_674_AD AD NA 6449_VC_A_1183
    532 HB_680_AD AD NA 6458_CR_A_2570
    533 HB_685_AD AD NA 6481_VC_A_0560
    534 HB_690_AD AD NA 6489_CR_A_0100
    535 HB_696_AD AD NA 6511_VC_A_1119
    536 HB_698_AD AD NA 6515_CR_A_0564
    537 HB_699_AD AD NA 6518_VC_A_0103
    538 HB_703_AD AD NA 6523_VC_A_0107
    539 HB_704_AD AD NA 6530_VC_A_0112
    540 HB_706_AD AD NA 6534_VC_A_0306
    541 HB_712_AD AD NA 6546_PF_A_1194
    542 HB_713_AD AD NA 6548_PF_A_1541
    543 HB_715_AD AD NA 6550_VC_A_1201
    544 HB_718_AD AD NA 6554_PF_A_1203
    545 HB_720_AD AD NA 6559_PF_A_2287
    546 HB_722_AD AD NA 6561_CR_A_2582
    547 HB_723_AD AD NA 6562_PF_A_2290
    548 HB_724_AD AD NA 6564_CR_A_2585
    549 HB_727_AD AD NA 6575_CR_A_2298
    550 HB_728_AD AD NA 6577_PF_A_2299
    551 HB_729_AD AD NA 6578_PF_A_2302
    552 HB_731_AD AD NA 6582_VC_A_1207
    553 HB_733_AD AD NA 6585_VC_A_1210
    554 HB_736_AD AD NA 6590_PF_A_1215
    555 HB_743_AD AD NA 6603_PF_A_1448
    556 HB_745_AD AD NA 6610_PF_A_1227
    557 HB_746_AD AD NA 6612_PF_A_2308
    558 HB_749_AD AD NA 6617_VC_A_2587
    559 HB_751_AD AD NA 6629_VC_A_2330
    560 HB_752_AD AD NA 6630_VC_A_2590
    561 HB_753_AD AD NA 6632_PF_A_2332
    562 HB_754_AD AD NA 6637_VC_A_2596
    563 HB_755_AD AD NA 6638_VC_A_2599
    564 HB_756_AD AD NA 6639_VC_A_2336
    565 HB_757_AD AD NA 6641_PF_A_2338
    566 HB_763_AD AD NA 6654_VC_A_1237
    567 HB_773_AD AD NA 6681_VC_A_1252
    568 HB_775_AD AD NA 6693_VC_A_2348
    569 HB_776_AD AD NA 6694_VC_A_2351
    570 HB_777_AD AD NA 6695_PF_A_2353
    571 HB_779_AD AD NA 6699_PF_A_2359
    572 HB_781_AD AD NA 6708_VC_A_2366
    573 HB_782_AD AD NA 6776_PF_A_2607
    574 HB_783_AD AD NA 6778_PF_A_2368
    575 HB_784_AD AD NA 6779_PF_A_2371
    576 HB_785_AD AD NA 6780_PF_A_2374
    577 HB_786_AD AD NA 6782_PF_A_2377
    578 HB_787_AD AD NA 6784_PF_A_2380
    579 HB_788_AD AD NA 6785_CR_A_2385
    580 HB_789_AD AD NA 6787_CR_A_2388
    581 HB_791_AD AD NA 6790_PF_A_2392
    582 HB_792_AD AD NA 6791_PF_A_2395
    583 HB_793_AD AD NA 6793_PF_A_2398
    584 HB_794_AD AD NA 6794_PF_A_2401
    585 HB_795_AD AD NA 6797_PF_A_2404
    586 HB_796_AD AD NA 6798_PF_A_2407
    587 HB_797_AD AD NA 6799_VC_A_2411
    588 HB_798_AD AD NA 6801_VC_A_2414
    589 HB_799_AD AD NA 6803_VC_A_2417
    590 HB_801_AD AD NA 6809_PF_A_2422
    591 HB_803_AD AD NA 6818_CR_A_2430
    +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HBTRC-MLPFC_0611.html b/web/dbdoc/HBTRC-MLPFC_0611.html new file mode 100755 index 00000000..94229009 --- /dev/null +++ b/web/dbdoc/HBTRC-MLPFC_0611.html @@ -0,0 +1,830 @@ + + + +HBTRC-MLC Human Prefrontal Cortex Agilent (Jun11) mlratio + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    HBTRC-MLC Human Prefrontal Cortex Agilent (Jun11) mlratiomodify this page

    + + Accession number: GN328

    +

    +

    +

    Summary:

    +

    This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

    +
    +

    +

    +

    +

    Data Source Acknowledgements:

    +

    +

    +Species: Human
    +Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
    +Disease: Neurological Disease
    +Investigator: Francine Benes/ Eric Schadt
    +Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
    +Approximate Number Subjects: 803

    +

    +The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/). +

    +

    This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. +Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines. +

    +
    +

    +

    +

    +

    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Series Cerebellum in GN Condition Gender BioSample Name
    1 HB_029_N N NA 3405_VC_N_0859
    2 HB_058_N N NA 4021_VC_N_0854
    3 HB_064_N N NA 4338_VC_N_0861
    4 HB_086_N N NA 4729_PF_N_0756
    5 HB_091_N N NA 4741_VC_N_0864
    6 HB_092_N N NA 4744_VC_N_0865
    7 HB_102_N N NA 4810_VC_N_0869
    8 HB_119_N N NA 4872_VC_N_0878
    9 HB_147_N N NA 5021_VC_N_0852
    10 HB_161_N N NA 5077_VC_N_0851
    11 HB_162_N N NA 5081_VC_N_1021
    12 HB_166_N N NA 5095_VC_N_1024
    13 HB_183_N N NA 5162_VC_N_0850
    14 HB_206_N N NA 5245_VC_N_0849
    15 HB_215_N N NA 5270_VC_N_0848
    16 HB_218_N N NA 5276_CR_N_0912
    17 HB_223_N N NA 5287_VC_N_0916
    18 HB_226_N N NA 5294_VC_N_0919
    19 HB_241_N N NA 5326_CR_N_0652
    20 HB_243_N N NA 5333_VC_N_1262
    21 HB_247_N N NA 5341_VC_N_0923
    22 HB_257_N N NA 5368_PF_N_1032
    23 HB_264_N N NA 5384_VC_N_0924
    24 HB_295_N N NA 5452_VC_N_1268
    25 HB_300_N N NA 5463_VC_N_0845
    26 HB_311_N N NA 5489_CR_N_0942
    27 HB_324_N N NA 5531_VC_N_0844
    28 HB_332_N N NA 5547_VC_N_0843
    29 HB_340_N N NA 5568_VC_N_0842
    30 HB_360_N N NA 5619_CR_N_0645
    31 HB_365_N N NA 5632_VC_N_0838
    32 HB_367_N N NA 5637_VC_N_0837
    33 HB_382_N N NA 5684_PF_N_1270
    34 HB_396_N N NA 5718_VC_N_0956
    35 HB_398_N N NA 5722_VC_N_1044
    36 HB_400_N N NA 5726_VC_N_0834_Bis
    37 HB_403_N N NA 5734_VC_N_0833
    38 HB_414_N N NA 5772_VC_N_0832_Bis
    39 HB_416_N N NA 5778_CR_N_0962
    40 HB_418_N N NA 5789_PF_N_1273
    41 HB_421_N N NA 5799_VC_N_1058
    42 HB_423_N N NA 5803_VC_N_0966
    43 HB_426_N N NA 5806_PF_N_1064
    44 HB_427_N N NA 5810_CR_N_0636
    45 HB_431_N N NA 5823_VC_N_0829
    46 HB_432_N N NA 5826_VC_N_0828
    47 HB_433_N N NA 5827_VC_N_0827
    48 HB_436_N N NA 5832_PF_N_1145
    49 HB_443_N N NA 5852_VC_N_0826
    50 HB_446_N N NA 5859_VC_N_0825
    51 HB_449_N N NA 5866_VC_N_0824
    52 HB_450_N N NA 5867_VC_N_1277
    53 HB_453_N N NA 5876_VC_N_0823
    54 HB_462_N N NA 5903_VC_N_0822
    55 HB_464_N N NA 5905_VC_N_0820
    56 HB_468_N N NA 5912_VC_N_1286
    57 HB_472_N N NA 5925_VC_N_1289
    58 HB_475_N N NA 5936_VC_N_0979
    59 HB_476_N N NA 5938_VC_N_0819
    60 HB_480_N N NA 5946_VC_N_0985
    61 HB_485_N N NA 5959_VC_N_0818
    62 HB_486_N N NA 5963_VC_N_0987
    63 HB_495_N N NA 5980_VC_N_0989
    64 HB_497_N N NA 5985_VC_N_0990
    65 HB_500_N N NA 5990_VC_N_0817
    66 HB_501_N N NA 5991_VC_N_0816
    67 HB_504_N N NA 5996_VC_N_0815
    68 HB_505_N N NA 5998_VC_N_0814
    69 HB_507_N N NA 6006_VC_N_0813
    70 HB_508_N N NA 6007_CR_N_0618
    71 HB_509_N N NA 6008_PF_N_1081
    72 HB_512_N N NA 6023_PF_N_1155
    73 HB_516_N N NA 6030_VC_N_0810
    74 HB_519_N N NA 6034_VC_N_0809
    75 HB_532_N N NA 6060_VC_N_1292
    76 HB_541_N N NA 6092_VC_N_1001
    77 HB_542_N N NA 6096_VC_N_0807
    78 HB_544_N N NA 6101_CR_N_1161
    79 HB_547_N N NA 6110_VC_N_1295
    80 HB_551_N N NA 6124_VC_N_0806
    81 HB_557_N N NA 6134_PF_N_1297
    82 HB_560_N N NA 6142_VC_N_0805
    83 HB_569_N N NA 6166_VC_N_0804
    84 HB_570_N N NA 6170_VC_N_0803
    85 HB_572_N N NA 6172_VC_N_1008
    86 HB_577_N N NA 6182_VC_N_1166
    87 HB_579_N N NA 6187_CR_N_0607
    88 HB_581_N N NA 6191_VC_N_1010
    89 HB_584_N N NA 6196_CR_N_0605
    90 HB_586_N N NA 6200_VC_N_0799
    91 HB_587_N N NA 6206_PF_N_1176
    92 HB_589_N N NA 6213_VC_N_0798
    93 HB_601_N N NA 6241_VC_N_0796
    94 HB_604_N N NA 6260_VC_N_0794
    95 HB_609_N N NA 6270_VC_N_0793
    96 HB_618_N N NA 6289_VC_N_0791
    97 HB_622_N N NA 6310_VC_N_0790
    98 HB_625_N N NA 6314_VC_N_0789
    99 HB_637_N N NA 6340_VC_N_0786
    100 HB_638_N N NA 6341_VC_N_0785
    101 HB_640_N N NA 6347_VC_N_0784
    102 HB_641_N N NA 6356_VC_N_0783
    103 HB_643_N N NA 6363_VC_N_0781
    104 HB_644_N N NA 6366_VC_N_0780
    105 HB_645_N N NA 6374_VC_N_0779
    106 HB_650_N N NA 6384_VC_N_0777
    107 HB_651_N N NA 6386_VC_N_0776
    108 HB_653_N N NA 6388_VC_N_0775
    109 HB_659_N N NA 6406_VC_N_1180
    110 HB_662_N N NA 6411_VC_N_0771
    111 HB_663_N N NA 6415_VC_N_0770
    112 HB_670_N N NA 6436_VC_N_0769
    113 HB_687_N N NA 6484_VC_N_0765
    114 HB_689_N N NA 6486_VC_N_0764
    115 HB_694_N N NA 6500_VC_N_0763
    116 HB_697_N N NA 6512_VC_N_0762
    117 HB_700_N N NA 6520_VC_N_0761
    118 HB_711_N N NA 6543_PF_N_1191
    119 HB_714_N N NA 6549_VC_N_1198
    120 HB_717_N N NA 6553_PF_N_2284
    121 HB_721_N N NA 6560_VC_N_2578
    122 HB_726_N N NA 6573_PF_N_2293
    123 HB_730_N N NA 6580_VC_N_2306
    124 HB_735_N N NA 6588_VC_N_1213
    125 HB_737_N N NA 6593_VC_N_1219
    126 HB_738_N N NA 6594_VC_N_1222
    127 HB_759_N N NA 6645_VC_N_1231
    128 HB_764_N N NA 6655_VC_N_1240
    129 HB_765_N N NA 6656_VC_N_1243
    130 HB_767_N N NA 6661_PF_N_2341
    131 HB_770_N N NA 6669_VC_N_1246
    132 HB_772_N N NA 6676_PF_N_1248
    133 HB_001_HD HD F 2028_CR_H_2282
    134 HB_003_HD HD F 2685_PF_H_2212
    135 HB_004_HD HD M 2706_CR_H_2432
    136 HB_006_HD HD M 2737_VC_H_2194
    137 HB_007_HD HD NA 2769_VC_H_2193
    138 HB_008_HD HD F 2790_CR_H_1890
    139 HB_009_HD HD NA 2879_VC_H_2192
    140 HB_010_HD HD M 2960_VC_H_2002
    141 HB_011_HD HD F 3053_VC_H_2001
    142 HB_012_HD HD F 3128_VC_H_1999
    143 HB_014_HD HD F 3149_PF_H_2110
    144 HB_015_HD HD F 3150_VC_H_1996
    145 HB_016_HD HD F 3177_VC_H_2191
    146 HB_017_HD HD NA 3195_VC_H_2190
    147 HB_018_HD HD M 3200_VC_H_2189
    148 HB_019_HD HD M 3209_VC_H_2188
    149 HB_020_HD HD M 3224_VC_H_1994
    150 HB_022_HD HD F 3242_PF_H_2105
    151 HB_024_HD HD NA 3272_VC_H_2186
    152 HB_027_HD HD M 3356_VC_H_2439
    153 HB_028_HD HD F 3394_PF_H_2104
    154 HB_031_HD HD M 3430_VC_H_1990
    155 HB_032_HD HD NA 3444_PF_H_2208
    156 HB_034_HD HD F 3482_VC_H_1987
    157 HB_036_HD HD M 3576_VC_H_1984
    158 HB_037_HD HD F 3579_VC_H_1983
    159 HB_038_HD HD F 3584_VC_H_2183
    160 HB_039_HD HD NA 3635_VC_H_2182
    161 HB_041_HD HD F 3695_CR_H_2267
    162 HB_042_HD HD M 3697_VC_H_1982
    163 HB_043_HD HD NA 3703_VC_H_2180
    164 HB_044_HD HD NA 3723_VC_H_2179
    165 HB_046_HD HD F 3735_VC_H_1981
    166 HB_050_HD HD M 3820_PF_H_2207
    167 HB_051_HD HD F 3849_CR_H_2262
    168 HB_054_HD HD M 3884_VC_H_2175
    169 HB_056_HD HD NA 4012_VC_H_2174
    170 HB_057_HD HD NA 4013_VC_H_2173
    171 HB_059_HD HD NA 4066_VC_H_2172
    172 HB_060_HD HD NA 4094_VC_H_2171
    173 HB_061_HD HD F 4116_VC_H_2170
    174 HB_062_HD HD NA 4121_VC_H_2169
    175 HB_063_HD HD NA 4215_VC_H_2167
    176 HB_065_HD HD M 4340_PF_H_2091
    177 HB_066_HD HD F 4344_VC_H_1977
    178 HB_067_HD HD M 4346_VC_H_2165
    179 HB_069_HD HD F 4356_VC_H_2164
    180 HB_070_HD HD NA 4386_CR_H_2249
    181 HB_072_HD HD NA 4404_VC_H_2161
    182 HB_073_HD HD F 4411_VC_H_1975
    183 HB_074_HD HD NA 4430_VC_H_2465
    184 HB_075_HD HD M 4470_VC_H_1974
    185 HB_076_HD HD F 4497_CR_H_1860
    186 HB_077_HD HD M 4509_CR_H_2244
    187 HB_079_HD HD M 4631_VC_H_1971
    188 HB_080_HD HD F 4653_PF_H_2083
    189 HB_081_HD HD NA 4678_CR_H_2242
    190 HB_084_HD HD M 4718_VC_H_2125
    191 HB_090_HD HD NA 4740_CR_H_2474
    192 HB_094_HD HD NA 4754_CR_H_2476
    193 HB_098_HD HD NA 4780_VC_H_2151
    194 HB_101_HD HD F 4809_VC_H_2148
    195 HB_105_HD HD NA 4819_CR_H_2238
    196 HB_106_HD HD F 4822_VC_H_1969
    197 HB_108_HD HD M 4826_VC_H_1968
    198 HB_109_HD HD M 4828_VC_H_2124
    199 HB_115_HD HD NA 4855_CR_H_2235
    200 HB_121_HD HD F 4902_VC_H_1967
    201 HB_129_HD HD NA 4938_VC_H_1966
    202 HB_141_HD HD F 4996_PF_H_2076
    203 HB_152_HD HD NA 5034_CR_H_2233
    204 HB_153_HD HD M 5043_VC_H_1960
    205 HB_159_HD HD M 5062_VC_H_1959
    206 HB_172_HD HD F 5114_PF_H_2070
    207 HB_175_HD HD M 5127_PF_H_2068
    208 HB_180_HD HD M 5148_VC_H_1944
    209 HB_185_HD HD F 5167_CR_H_2231
    210 HB_188_HD HD F 5172_VC_H_1951
    211 HB_191_HD HD M 5180_VC_H_1949
    212 HB_196_HD HD NA 5199_PF_H_2202
    213 HB_203_HD HD F 5228_PF_H_2059
    214 HB_207_HD HD NA 5248_PF_H_2201
    215 HB_228_HD HD F 5299_CR_H_2228
    216 HB_233_HD HD M 5312_VC_H_1938
    217 HB_235_HD HD F 5316_VC_H_1937
    218 HB_242_HD HD F 5328_PF_H_2048
    219 HB_266_HD HD M 5387_VC_H_1928
    220 HB_271_HD HD M 5394_PF_H_2039
    221 HB_272_HD HD F 5396_VC_H_1925
    222 HB_279_HD HD F 5409_VC_H_1924
    223 HB_294_HD HD M 5448_VC_H_1921
    224 HB_301_HD HD NA 5464_VC_H_1919
    225 HB_304_HD HD F 5471_VC_H_1918
    226 HB_321_HD HD NA 5522_PF_H_2199
    227 HB_361_HD HD F 5622_VC_H_2121
    228 HB_370_HD HD M 5645_VC_H_1904
    229 HB_371_HD HD F 5648_PF_H_2016
    230 HB_384_HD HD F 5688_PF_H_2012
    231 HB_390_HD HD M 5704_PF_H_2009
    232 HB_393_HD HD F 5709_VC_H_1895
    233 HB_402_HD HD F 5732_PF_H_2007
    234 HB_405_HD HD NA 5742_PF_H_2006
    235 HB_407_HD HD M 5745_PF_H_2005
    236 HB_408_HD HD M 5747_VC_H_1891
    237 HB_415_HD HD NA 5777_PF_H_1551
    238 HB_417_HD HD M 5784_PF_H_1554
    239 HB_424_HD HD M 5804_VC_H_1558
    240 HB_444_HD HD M 5856_VC_H_1567
    241 HB_457_HD HD M 5896_VC_H_1570
    242 HB_466_HD HD M 5910_PF_H_1572
    243 HB_478_HD HD M 5941_CR_H_1583
    244 HB_487_HD HD F 5964_VC_H_1597
    245 HB_511_HD HD M 6019_PF_H_2198
    246 HB_513_HD HD F 6024_VC_H_1612
    247 HB_515_HD HD F 6028_CR_H_1613
    248 HB_518_HD HD M 6033_VC_H_1618
    249 HB_522_HD HD M 6037_PF_H_1626
    250 HB_527_HD HD F 6047_VC_H_1639
    251 HB_528_HD HD M 6051_PF_H_1641
    252 HB_530_HD HD M 6054_VC_H_1648
    253 HB_537_HD HD F 6071_PF_H_1653
    254 HB_549_HD HD M 6119_CR_H_1670
    255 HB_593_HD HD NA 6219_CR_H_2567
    256 HB_610_HD HD NA 6275_PF_H_1692
    257 HB_616_HD HD F 6284_CR_H_1694
    258 HB_626_HD HD M 6315_VC_H_1702
    259 HB_639_HD HD F 6344_CR_H_1703
    260 HB_649_HD HD F 6382_CR_H_1709
    261 HB_661_HD HD M 6408_VC_H_1714
    262 HB_682_HD HD M 6467_PF_H_1725
    263 HB_683_HD HD M 6472_VC_H_1729
    264 HB_691_HD HD F 6493_VC_H_1732
    265 HB_692_HD HD M 6495_CR_H_1733
    266 HB_707_HD HD M 6535_PF_H_1737
    267 HB_709_HD HD F 6539_CR_H_1739
    268 HB_725_HD HD M 6572_PF_H_1746
    269 HB_732_HD HD F 6584_VC_H_1750
    270 HB_734_HD HD F 6587_CR_H_1751
    271 HB_748_HD HD NA 6615_VC_H_2315
    272 HB_750_HD HD NA 6628_PF_H_2326
    273 HB_758_HD HD NA 6643_VC_H_2602
    274 HB_760_HD HD M 6646_PF_H_1761
    275 HB_762_HD HD M 6650_VC_H_1765
    276 HB_766_HD HD M 6658_VC_H_1768
    277 HB_768_HD HD NA 6663_VC_H_1771
    278 HB_769_HD HD M 6666_VC_H_1774
    279 HB_774_HD HD NA 6689_PF_H_2344
    280 HB_778_HD HD NA 6696_PF_H_2356
    281 HB_780_HD HD NA 6704_PF_H_2362
    282 HB_790_HD HD NA 6788_PF_H_2389
    283 HB_800_HD HD NA 6807_PF_H_2419
    284 HB_802_HD HD NA 6811_PF_H_2425
    285 HB_045_AD AD NA 3734_CR_A_0122
    286 HB_048_AD AD NA 3791_CR_A_0128
    287 HB_053_AD AD NA 3877_CR_A_0134
    288 HB_055_AD AD NA 3893_VC_A_0142
    289 HB_068_AD AD NA 4349_VC_A_0148
    290 HB_082_AD AD NA 4712_CR_A_0309
    291 HB_085_AD AD NA 4726_VC_A_0311
    292 HB_087_AD AD NA 4730_CR_A_0315
    293 HB_089_AD AD NA 4733_VC_A_0320
    294 HB_093_AD AD NA 4749_VC_A_0323
    295 HB_095_AD AD NA 4759_CR_A_0327
    296 HB_097_AD AD NA 4773_CR_A_0866
    297 HB_099_AD AD NA 4785_VC_A_0332
    298 HB_100_AD AD NA 4795_VC_A_0335
    299 HB_103_AD AD NA 4811_VC_A_0341
    300 HB_104_AD AD NA 4813_CR_A_0345
    301 HB_112_AD AD NA 4842_VC_A_0870
    302 HB_113_AD AD NA 4850_CR_A_0351
    303 HB_114_AD AD NA 4852_CR_A_0354
    304 HB_117_AD AD NA 4868_VC_A_0874
    305 HB_122_AD AD NA 4904_CR_A_1132
    306 HB_123_AD AD NA 4905_VC_A_0884
    307 HB_124_AD AD NA 4916_VC_A_0886
    308 HB_125_AD AD NA 4917_CR_A_0360
    309 HB_126_AD AD NA 4921_VC_A_0362
    310 HB_128_AD AD NA 4936_CR_A_0369
    311 HB_130_AD AD NA 4939_VC_A_0888
    312 HB_131_AD AD NA 4944_CR_A_0889
    313 HB_132_AD AD NA 4946_CR_A_0372
    314 HB_134_AD AD NA 4951_CR_A_0891
    315 HB_135_AD AD NA 4953_VC_A_0893
    316 HB_136_AD AD NA 4965_VC_A_0160
    317 HB_137_AD AD NA 4966_VC_A_0374
    318 HB_138_AD AD NA 4969_VC_A_0895
    319 HB_140_AD AD NA 4993_CR_A_0896
    320 HB_146_AD AD NA 5018_CR_A_0384
    321 HB_148_AD AD NA 5022_VC_A_0386
    322 HB_150_AD AD NA 5031_VC_A_0392
    323 HB_151_AD AD NA 5033_CR_A_0396
    324 HB_154_AD AD NA 5048_VC_A_1321
    325 HB_155_AD AD NA 5056_VC_A_0398
    326 HB_156_AD AD NA 5057_VC_A_0163
    327 HB_157_AD AD NA 5059_VC_A_0401
    328 HB_158_AD AD NA 5061_PF_A_2612
    329 HB_160_AD AD NA 5064_PF_A_2615
    330 HB_165_AD AD NA 5092_CR_A_0899
    331 HB_168_AD AD NA 5097_VC_A_0407
    332 HB_170_AD AD NA 5101_VC_A_0410
    333 HB_174_AD AD NA 5124_PF_A_1343
    334 HB_179_AD AD NA 5145_VC_A_1351
    335 HB_181_AD AD NA 5152_CR_A_0414
    336 HB_184_AD AD NA 5166_VC_A_1354
    337 HB_194_AD AD NA 5193_VC_A_1360
    338 HB_197_AD AD NA 5202_CR_A_1368
    339 HB_199_AD AD NA 5205_VC_A_0166
    340 HB_200_AD AD NA 5210_VC_A_0905
    341 HB_205_AD AD NA 5235_VC_A_0419
    342 HB_208_AD AD NA 5249_VC_A_0422
    343 HB_209_AD AD NA 5252_VC_A_0907
    344 HB_211_AD AD NA 5257_VC_A_0169
    345 HB_216_AD AD NA 5272_VC_A_0425
    346 HB_219_AD AD NA 5279_CR_A_0147
    347 HB_221_AD AD NA 5283_VC_A_0145
    348 HB_222_AD AD NA 5285_VC_A_0141
    349 HB_224_AD AD NA 5288_VC_A_0428
    350 HB_230_AD AD NA 5301_VC_A_0174
    351 HB_231_AD AD NA 5305_VC_A_1384
    352 HB_232_AD AD NA 5310_CR_A_0176
    353 HB_234_AD AD NA 5313_PF_A_2618
    354 HB_236_AD AD NA 5317_PF_A_2624
    355 HB_238_AD AD NA 5322_CR_A_2632
    356 HB_240_AD AD NA 5325_VC_A_0137
    357 HB_244_AD AD NA 5337_VC_A_1387
    358 HB_245_AD AD NA 5339_VC_A_0181
    359 HB_250_AD AD NA 5346_VC_A_1393
    360 HB_251_AD AD NA 5350_VC_A_0184
    361 HB_252_AD AD NA 5355_VC_A_0133
    362 HB_253_AD AD NA 5359_CR_A_1395
    363 HB_258_AD AD NA 5370_PF_A_1400
    364 HB_259_AD AD NA 5371_PF_A_2636
    365 HB_260_AD AD NA 5375_VC_A_0188
    366 HB_263_AD AD NA 5381_VC_A_0022
    367 HB_265_AD AD NA 5385_VC_A_1402
    368 HB_267_AD AD NA 5389_VC_A_0928
    369 HB_268_AD AD NA 5390_CR_A_0151
    370 HB_273_AD AD NA 5400_PF_A_2645
    371 HB_274_AD AD NA 5401_VC_A_0931
    372 HB_275_AD AD NA 5404_PF_A_2648
    373 HB_276_AD AD NA 5406_VC_A_0933
    374 HB_277_AD AD NA 5407_PF_A_2651
    375 HB_280_AD AD NA 5412_VC_A_0935
    376 HB_281_AD AD NA 5413_PF_A_2657
    377 HB_283_AD AD NA 5419_VC_A_0937
    378 HB_284_AD AD NA 5420_VC_A_0939
    379 HB_285_AD AD NA 5421_CR_A_0432
    380 HB_286_AD AD NA 5423_PF_A_2660
    381 HB_288_AD AD NA 5425_PF_A_2666
    382 HB_289_AD AD NA 5426_VC_A_1405
    383 HB_290_AD AD NA 5433_VC_A_0434
    384 HB_296_AD AD NA 5456_PF_A_2675
    385 HB_299_AD AD NA 5461_VC_A_0192
    386 HB_302_AD AD NA 5465_PF_A_2678
    387 HB_303_AD AD NA 5469_VC_A_1417
    388 HB_305_AD AD NA 5479_PF_A_1421
    389 HB_306_AD AD NA 5480_VC_A_0437
    390 HB_307_AD AD NA 5482_VC_A_0028
    391 HB_308_AD AD NA 5483_VC_A_0941
    392 HB_309_AD AD NA 5487_CR_A_0441
    393 HB_310_AD AD NA 5488_CR_A_0194
    394 HB_312_AD AD NA 5500_VC_A_0198
    395 HB_313_AD AD NA 5502_PF_A_2684
    396 HB_315_AD AD NA 5513_PF_A_2687
    397 HB_316_AD AD NA 5516_PF_A_2690
    398 HB_317_AD AD NA 5517_PF_A_2693
    399 HB_318_AD AD NA 5518_CR_A_0030
    400 HB_319_AD AD NA 5519_CR_A_2695
    401 HB_320_AD AD NA 5520_PF_A_2699
    402 HB_322_AD AD NA 5527_VC_A_0945
    403 HB_325_AD AD NA 5532_PF_A_2702
    404 HB_328_AD AD NA 5541_PF_A_2705
    405 HB_330_AD AD NA 5544_VC_A_0201
    406 HB_334_AD AD NA 5554_VC_A_0452
    407 HB_335_AD AD NA 5557_VC_A_0950
    408 HB_337_AD AD NA 5560_VC_A_0204
    409 HB_342_AD AD NA 5571_PF_A_1430
    410 HB_345_AD AD NA 5583_PF_A_2708
    411 HB_347_AD AD NA 5589_PF_A_2714
    412 HB_349_AD AD NA 5592_PF_A_2717
    413 HB_352_AD AD NA 5604_VC_A_0037
    414 HB_353_AD AD NA 5607_PF_A_2723
    415 HB_356_AD AD NA 5615_VC_A_0041
    416 HB_357_AD AD NA 5616_CR_A_0127
    417 HB_358_AD AD NA 5617_CR_A_0456
    418 HB_359_AD AD NA 5618_CR_A_0044
    419 HB_362_AD AD NA 5625_CR_A_2495
    420 HB_363_AD AD NA 5626_CR_A_2498
    421 HB_364_AD AD NA 5629_CR_A_0390
    422 HB_369_AD AD NA 5643_VC_A_1143
    423 HB_373_AD AD NA 5654_VC_A_0047
    424 HB_375_AD AD NA 5660_CR_A_0462
    425 HB_376_AD AD NA 5661_VC_A_0464
    426 HB_377_AD AD NA 5667_VC_A_2509
    427 HB_378_AD AD NA 5668_VC_A_1438
    428 HB_383_AD AD NA 5686_CR_A_2728
    429 HB_386_AD AD NA 5695_VC_A_0953
    430 HB_389_AD AD NA 5700_VC_A_2514
    431 HB_391_AD AD NA 5705_CR_A_0474
    432 HB_392_AD AD NA 5706_VC_A_0476
    433 HB_394_AD AD NA 5713_VC_A_0479
    434 HB_397_AD AD NA 5721_CR_A_0210
    435 HB_404_AD AD NA 5735_CR_A_0489
    436 HB_406_AD AD NA 5744_CR_A_0960
    437 HB_409_AD AD NA 5749_CR_A_0159
    438 HB_410_AD AD NA 5751_CR_A_2518
    439 HB_411_AD AD NA 5755_CR_A_2731
    440 HB_413_AD AD NA 5766_VC_A_0214
    441 HB_419_AD AD NA 5790_VC_A_0217
    442 HB_420_AD AD NA 5796_CR_A_0964
    443 HB_428_AD AD NA 5811_CR_A_2524
    444 HB_429_AD AD NA 5819_CR_A_2527
    445 HB_430_AD AD NA 5822_CR_A_2530
    446 HB_434_AD AD NA 5828_CR_A_2533
    447 HB_435_AD AD NA 5831_CR_A_0222
    448 HB_437_AD AD NA 5839_CR_A_2539
    449 HB_438_AD AD NA 5843_CR_A_0227
    450 HB_439_AD AD NA 5845_CR_A_0230
    451 HB_441_AD AD NA 5849_CR_A_0233
    452 HB_442_AD AD NA 5850_CR_A_0495
    453 HB_445_AD AD NA 5858_CR_A_0969
    454 HB_448_AD AD NA 5864_CR_A_0974
    455 HB_451_AD AD NA 5871_CR_A_2542
    456 HB_454_AD AD NA 5879_CR_A_2545
    457 HB_455_AD AD NA 5887_CR_A_0976_Bis
    458 HB_459_AD AD NA 5898_CR_A_2548
    459 HB_460_AD AD NA 5900_VC_A_0237
    460 HB_461_AD AD NA 5901_CR_A_0239
    461 HB_469_AD AD NA 5914_CR_A_2554
    462 HB_471_AD AD NA 5922_VC_A_0246
    463 HB_473_AD AD NA 5927_CR_A_2560
    464 HB_474_AD AD NA 5933_VC_A_1071
    465 HB_477_AD AD NA 5939_CR_A_1151
    466 HB_479_AD AD NA 5945_VC_A_0983
    467 HB_484_AD AD NA 5956_CR_A_0123
    468 HB_489_AD AD NA 5968_VC_A_1075
    469 HB_491_AD AD NA 5971_CR_A_0119
    470 HB_492_AD AD NA 5972_VC_A_0251
    471 HB_494_AD AD NA 5979_CR_A_0115
    472 HB_498_AD AD NA 5988_VC_A_0503
    473 HB_502_AD AD NA 5994_PF_A_1605
    474 HB_503_AD AD NA 5995_CR_A_2563
    475 HB_510_AD AD NA 6017_CR_A_0048
    476 HB_514_AD AD NA 6025_VC_A_0506
    477 HB_517_AD AD NA 6031_VC_A_0258
    478 HB_520_AD AD NA 6035_VC_A_1621
    479 HB_523_AD AD NA 6038_VC_A_0261
    480 HB_524_AD AD NA 6042_VC_A_1156
    481 HB_525_AD AD NA 6044_VC_A_0264
    482 HB_531_AD AD NA 6056_CR_A_0999
    483 HB_533_AD AD NA 6061_PF_A_1650
    484 HB_534_AD AD NA 6066_VC_A_0270
    485 HB_535_AD AD NA 6067_PF_A_1452
    486 HB_536_AD AD NA 6068_VC_A_0273
    487 HB_545_AD AD NA 6102_CR_A_1661
    488 HB_546_AD AD NA 6107_CR_A_0055
    489 HB_550_AD AD NA 6120_VC_A_0058
    490 HB_552_AD AD NA 6126_VC_A_1675
    491 HB_553_AD AD NA 6129_PF_A_0274
    492 HB_554_AD AD NA 6130_VC_A_1678
    493 HB_555_AD AD NA 6131_CR_A_0510
    494 HB_556_AD AD NA 6132_CR_A_0513
    495 HB_558_AD AD NA 6137_VC_A_1681
    496 HB_564_AD AD NA 6153_VC_A_1465
    497 HB_565_AD AD NA 6154_VC_A_1468
    498 HB_566_AD AD NA 6157_VC_A_0062
    499 HB_568_AD AD NA 6164_CR_A_1005
    500 HB_571_AD AD NA 6171_CR_A_0065
    501 HB_573_AD AD NA 6174_VC_A_0068
    502 HB_576_AD AD NA 6180_CR_A_0281
    503 HB_583_AD AD NA 6194_VC_A_0071
    504 HB_585_AD AD NA 6198_VC_A_0073
    505 HB_590_AD AD NA 6215_VC_A_0518
    506 HB_591_AD AD NA 6216_VC_A_1476
    507 HB_592_AD AD NA 6218_CR_A_0522
    508 HB_594_AD AD NA 6223_VC_A_0288
    509 HB_596_AD AD NA 6226_CR_A_0076
    510 HB_597_AD AD NA 6227_VC_A_0080
    511 HB_598_AD AD NA 6231_VC_A_1479
    512 HB_605_AD AD NA 6261_VC_A_0084
    513 HB_608_AD AD NA 6268_CR_A_0525
    514 HB_611_AD AD NA 6279_VC_A_0089
    515 HB_612_AD AD NA 6280_VC_A_0091
    516 HB_613_AD AD NA 6281_CR_A_0528
    517 HB_621_AD AD NA 6308_VC_A_1503
    518 HB_623_AD AD NA 6311_CR_A_0531
    519 HB_624_AD AD NA 6312_CR_A_0534
    520 HB_630_AD AD NA 6324_PF_A_1514
    521 HB_633_AD AD NA 6332_VC_A_1518
    522 HB_634_AD AD NA 6335_VC_A_0536
    523 HB_635_AD AD NA 6336_CR_A_0290
    524 HB_636_AD AD NA 6338_VC_A_0539
    525 HB_642_AD AD NA 6358_VC_A_0545
    526 HB_652_AD AD NA 6387_VC_A_0093
    527 HB_657_AD AD NA 6394_VC_A_0551
    528 HB_664_AD AD NA 6416_VC_A_1095
    529 HB_666_AD AD NA 6422_CR_A_0555
    530 HB_669_AD AD NA 6431_VC_A_0294
    531 HB_674_AD AD NA 6449_VC_A_1183
    532 HB_680_AD AD NA 6458_CR_A_2570
    533 HB_685_AD AD NA 6481_VC_A_0560
    534 HB_690_AD AD NA 6489_CR_A_0100
    535 HB_696_AD AD NA 6511_VC_A_1119
    536 HB_698_AD AD NA 6515_CR_A_0564
    537 HB_699_AD AD NA 6518_VC_A_0103
    538 HB_703_AD AD NA 6523_VC_A_0107
    539 HB_704_AD AD NA 6530_VC_A_0112
    540 HB_706_AD AD NA 6534_VC_A_0306
    541 HB_712_AD AD NA 6546_PF_A_1194
    542 HB_713_AD AD NA 6548_PF_A_1541
    543 HB_715_AD AD NA 6550_VC_A_1201
    544 HB_718_AD AD NA 6554_PF_A_1203
    545 HB_720_AD AD NA 6559_PF_A_2287
    546 HB_722_AD AD NA 6561_CR_A_2582
    547 HB_723_AD AD NA 6562_PF_A_2290
    548 HB_724_AD AD NA 6564_CR_A_2585
    549 HB_727_AD AD NA 6575_CR_A_2298
    550 HB_728_AD AD NA 6577_PF_A_2299
    551 HB_729_AD AD NA 6578_PF_A_2302
    552 HB_731_AD AD NA 6582_VC_A_1207
    553 HB_733_AD AD NA 6585_VC_A_1210
    554 HB_736_AD AD NA 6590_PF_A_1215
    555 HB_743_AD AD NA 6603_PF_A_1448
    556 HB_745_AD AD NA 6610_PF_A_1227
    557 HB_746_AD AD NA 6612_PF_A_2308
    558 HB_749_AD AD NA 6617_VC_A_2587
    559 HB_751_AD AD NA 6629_VC_A_2330
    560 HB_752_AD AD NA 6630_VC_A_2590
    561 HB_753_AD AD NA 6632_PF_A_2332
    562 HB_754_AD AD NA 6637_VC_A_2596
    563 HB_755_AD AD NA 6638_VC_A_2599
    564 HB_756_AD AD NA 6639_VC_A_2336
    565 HB_757_AD AD NA 6641_PF_A_2338
    566 HB_763_AD AD NA 6654_VC_A_1237
    567 HB_773_AD AD NA 6681_VC_A_1252
    568 HB_775_AD AD NA 6693_VC_A_2348
    569 HB_776_AD AD NA 6694_VC_A_2351
    570 HB_777_AD AD NA 6695_PF_A_2353
    571 HB_779_AD AD NA 6699_PF_A_2359
    572 HB_781_AD AD NA 6708_VC_A_2366
    573 HB_782_AD AD NA 6776_PF_A_2607
    574 HB_783_AD AD NA 6778_PF_A_2368
    575 HB_784_AD AD NA 6779_PF_A_2371
    576 HB_785_AD AD NA 6780_PF_A_2374
    577 HB_786_AD AD NA 6782_PF_A_2377
    578 HB_787_AD AD NA 6784_PF_A_2380
    579 HB_788_AD AD NA 6785_CR_A_2385
    580 HB_789_AD AD NA 6787_CR_A_2388
    581 HB_791_AD AD NA 6790_PF_A_2392
    582 HB_792_AD AD NA 6791_PF_A_2395
    583 HB_793_AD AD NA 6793_PF_A_2398
    584 HB_794_AD AD NA 6794_PF_A_2401
    585 HB_795_AD AD NA 6797_PF_A_2404
    586 HB_796_AD AD NA 6798_PF_A_2407
    587 HB_797_AD AD NA 6799_VC_A_2411
    588 HB_798_AD AD NA 6801_VC_A_2414
    589 HB_799_AD AD NA 6803_VC_A_2417
    590 HB_801_AD AD NA 6809_PF_A_2422
    591 HB_803_AD AD NA 6818_CR_A_2430
    +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HBTRC-MLPFC_AD_0611.html b/web/dbdoc/HBTRC-MLPFC_AD_0611.html new file mode 100755 index 00000000..b0a280b5 --- /dev/null +++ b/web/dbdoc/HBTRC-MLPFC_AD_0611.html @@ -0,0 +1,831 @@ + + + +HBTRC-MLC Human Prefrontal Cortex Agilent AD (Jun11) mlratio + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    HBTRC-MLC Human Prefrontal Cortex Agilent AD (Jun11) mlratiomodify this page

    + + Accession number: GN368

    +

    +

    +

    Summary:

    +

    This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

    +
    +

    +

    +

    +

    Data Source Acknowledgements:

    +

    +

    +Species: Human
    +Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
    +Disease: Neurological Disease
    +Investigator: Francine Benes/ Eric Schadt
    +Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
    +Approximate Number Subjects: 803

    +

    +The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/). +

    +

    This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. +Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines. +

    +
    +

    +

    +

    +

    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Series Cerebellum in GN Condition Gender BioSample Name
    1 HB_029_N N NA 3405_VC_N_0859
    2 HB_058_N N NA 4021_VC_N_0854
    3 HB_064_N N NA 4338_VC_N_0861
    4 HB_086_N N NA 4729_PF_N_0756
    5 HB_091_N N NA 4741_VC_N_0864
    6 HB_092_N N NA 4744_VC_N_0865
    7 HB_102_N N NA 4810_VC_N_0869
    8 HB_119_N N NA 4872_VC_N_0878
    9 HB_147_N N NA 5021_VC_N_0852
    10 HB_161_N N NA 5077_VC_N_0851
    11 HB_162_N N NA 5081_VC_N_1021
    12 HB_166_N N NA 5095_VC_N_1024
    13 HB_183_N N NA 5162_VC_N_0850
    14 HB_206_N N NA 5245_VC_N_0849
    15 HB_215_N N NA 5270_VC_N_0848
    16 HB_218_N N NA 5276_CR_N_0912
    17 HB_223_N N NA 5287_VC_N_0916
    18 HB_226_N N NA 5294_VC_N_0919
    19 HB_241_N N NA 5326_CR_N_0652
    20 HB_243_N N NA 5333_VC_N_1262
    21 HB_247_N N NA 5341_VC_N_0923
    22 HB_257_N N NA 5368_PF_N_1032
    23 HB_264_N N NA 5384_VC_N_0924
    24 HB_295_N N NA 5452_VC_N_1268
    25 HB_300_N N NA 5463_VC_N_0845
    26 HB_311_N N NA 5489_CR_N_0942
    27 HB_324_N N NA 5531_VC_N_0844
    28 HB_332_N N NA 5547_VC_N_0843
    29 HB_340_N N NA 5568_VC_N_0842
    30 HB_360_N N NA 5619_CR_N_0645
    31 HB_365_N N NA 5632_VC_N_0838
    32 HB_367_N N NA 5637_VC_N_0837
    33 HB_382_N N NA 5684_PF_N_1270
    34 HB_396_N N NA 5718_VC_N_0956
    35 HB_398_N N NA 5722_VC_N_1044
    36 HB_400_N N NA 5726_VC_N_0834_Bis
    37 HB_403_N N NA 5734_VC_N_0833
    38 HB_414_N N NA 5772_VC_N_0832_Bis
    39 HB_416_N N NA 5778_CR_N_0962
    40 HB_418_N N NA 5789_PF_N_1273
    41 HB_421_N N NA 5799_VC_N_1058
    42 HB_423_N N NA 5803_VC_N_0966
    43 HB_426_N N NA 5806_PF_N_1064
    44 HB_427_N N NA 5810_CR_N_0636
    45 HB_431_N N NA 5823_VC_N_0829
    46 HB_432_N N NA 5826_VC_N_0828
    47 HB_433_N N NA 5827_VC_N_0827
    48 HB_436_N N NA 5832_PF_N_1145
    49 HB_443_N N NA 5852_VC_N_0826
    50 HB_446_N N NA 5859_VC_N_0825
    51 HB_449_N N NA 5866_VC_N_0824
    52 HB_450_N N NA 5867_VC_N_1277
    53 HB_453_N N NA 5876_VC_N_0823
    54 HB_462_N N NA 5903_VC_N_0822
    55 HB_464_N N NA 5905_VC_N_0820
    56 HB_468_N N NA 5912_VC_N_1286
    57 HB_472_N N NA 5925_VC_N_1289
    58 HB_475_N N NA 5936_VC_N_0979
    59 HB_476_N N NA 5938_VC_N_0819
    60 HB_480_N N NA 5946_VC_N_0985
    61 HB_485_N N NA 5959_VC_N_0818
    62 HB_486_N N NA 5963_VC_N_0987
    63 HB_495_N N NA 5980_VC_N_0989
    64 HB_497_N N NA 5985_VC_N_0990
    65 HB_500_N N NA 5990_VC_N_0817
    66 HB_501_N N NA 5991_VC_N_0816
    67 HB_504_N N NA 5996_VC_N_0815
    68 HB_505_N N NA 5998_VC_N_0814
    69 HB_507_N N NA 6006_VC_N_0813
    70 HB_508_N N NA 6007_CR_N_0618
    71 HB_509_N N NA 6008_PF_N_1081
    72 HB_512_N N NA 6023_PF_N_1155
    73 HB_516_N N NA 6030_VC_N_0810
    74 HB_519_N N NA 6034_VC_N_0809
    75 HB_532_N N NA 6060_VC_N_1292
    76 HB_541_N N NA 6092_VC_N_1001
    77 HB_542_N N NA 6096_VC_N_0807
    78 HB_544_N N NA 6101_CR_N_1161
    79 HB_547_N N NA 6110_VC_N_1295
    80 HB_551_N N NA 6124_VC_N_0806
    81 HB_557_N N NA 6134_PF_N_1297
    82 HB_560_N N NA 6142_VC_N_0805
    83 HB_569_N N NA 6166_VC_N_0804
    84 HB_570_N N NA 6170_VC_N_0803
    85 HB_572_N N NA 6172_VC_N_1008
    86 HB_577_N N NA 6182_VC_N_1166
    87 HB_579_N N NA 6187_CR_N_0607
    88 HB_581_N N NA 6191_VC_N_1010
    89 HB_584_N N NA 6196_CR_N_0605
    90 HB_586_N N NA 6200_VC_N_0799
    91 HB_587_N N NA 6206_PF_N_1176
    92 HB_589_N N NA 6213_VC_N_0798
    93 HB_601_N N NA 6241_VC_N_0796
    94 HB_604_N N NA 6260_VC_N_0794
    95 HB_609_N N NA 6270_VC_N_0793
    96 HB_618_N N NA 6289_VC_N_0791
    97 HB_622_N N NA 6310_VC_N_0790
    98 HB_625_N N NA 6314_VC_N_0789
    99 HB_637_N N NA 6340_VC_N_0786
    100 HB_638_N N NA 6341_VC_N_0785
    101 HB_640_N N NA 6347_VC_N_0784
    102 HB_641_N N NA 6356_VC_N_0783
    103 HB_643_N N NA 6363_VC_N_0781
    104 HB_644_N N NA 6366_VC_N_0780
    105 HB_645_N N NA 6374_VC_N_0779
    106 HB_650_N N NA 6384_VC_N_0777
    107 HB_651_N N NA 6386_VC_N_0776
    108 HB_653_N N NA 6388_VC_N_0775
    109 HB_659_N N NA 6406_VC_N_1180
    110 HB_662_N N NA 6411_VC_N_0771
    111 HB_663_N N NA 6415_VC_N_0770
    112 HB_670_N N NA 6436_VC_N_0769
    113 HB_687_N N NA 6484_VC_N_0765
    114 HB_689_N N NA 6486_VC_N_0764
    115 HB_694_N N NA 6500_VC_N_0763
    116 HB_697_N N NA 6512_VC_N_0762
    117 HB_700_N N NA 6520_VC_N_0761
    118 HB_711_N N NA 6543_PF_N_1191
    119 HB_714_N N NA 6549_VC_N_1198
    120 HB_717_N N NA 6553_PF_N_2284
    121 HB_721_N N NA 6560_VC_N_2578
    122 HB_726_N N NA 6573_PF_N_2293
    123 HB_730_N N NA 6580_VC_N_2306
    124 HB_735_N N NA 6588_VC_N_1213
    125 HB_737_N N NA 6593_VC_N_1219
    126 HB_738_N N NA 6594_VC_N_1222
    127 HB_759_N N NA 6645_VC_N_1231
    128 HB_764_N N NA 6655_VC_N_1240
    129 HB_765_N N NA 6656_VC_N_1243
    130 HB_767_N N NA 6661_PF_N_2341
    131 HB_770_N N NA 6669_VC_N_1246
    132 HB_772_N N NA 6676_PF_N_1248
    133 HB_001_HD HD F 2028_CR_H_2282
    134 HB_003_HD HD F 2685_PF_H_2212
    135 HB_004_HD HD M 2706_CR_H_2432
    136 HB_006_HD HD M 2737_VC_H_2194
    137 HB_007_HD HD NA 2769_VC_H_2193
    138 HB_008_HD HD F 2790_CR_H_1890
    139 HB_009_HD HD NA 2879_VC_H_2192
    140 HB_010_HD HD M 2960_VC_H_2002
    141 HB_011_HD HD F 3053_VC_H_2001
    142 HB_012_HD HD F 3128_VC_H_1999
    143 HB_014_HD HD F 3149_PF_H_2110
    144 HB_015_HD HD F 3150_VC_H_1996
    145 HB_016_HD HD F 3177_VC_H_2191
    146 HB_017_HD HD NA 3195_VC_H_2190
    147 HB_018_HD HD M 3200_VC_H_2189
    148 HB_019_HD HD M 3209_VC_H_2188
    149 HB_020_HD HD M 3224_VC_H_1994
    150 HB_022_HD HD F 3242_PF_H_2105
    151 HB_024_HD HD NA 3272_VC_H_2186
    152 HB_027_HD HD M 3356_VC_H_2439
    153 HB_028_HD HD F 3394_PF_H_2104
    154 HB_031_HD HD M 3430_VC_H_1990
    155 HB_032_HD HD NA 3444_PF_H_2208
    156 HB_034_HD HD F 3482_VC_H_1987
    157 HB_036_HD HD M 3576_VC_H_1984
    158 HB_037_HD HD F 3579_VC_H_1983
    159 HB_038_HD HD F 3584_VC_H_2183
    160 HB_039_HD HD NA 3635_VC_H_2182
    161 HB_041_HD HD F 3695_CR_H_2267
    162 HB_042_HD HD M 3697_VC_H_1982
    163 HB_043_HD HD NA 3703_VC_H_2180
    164 HB_044_HD HD NA 3723_VC_H_2179
    165 HB_046_HD HD F 3735_VC_H_1981
    166 HB_050_HD HD M 3820_PF_H_2207
    167 HB_051_HD HD F 3849_CR_H_2262
    168 HB_054_HD HD M 3884_VC_H_2175
    169 HB_056_HD HD NA 4012_VC_H_2174
    170 HB_057_HD HD NA 4013_VC_H_2173
    171 HB_059_HD HD NA 4066_VC_H_2172
    172 HB_060_HD HD NA 4094_VC_H_2171
    173 HB_061_HD HD F 4116_VC_H_2170
    174 HB_062_HD HD NA 4121_VC_H_2169
    175 HB_063_HD HD NA 4215_VC_H_2167
    176 HB_065_HD HD M 4340_PF_H_2091
    177 HB_066_HD HD F 4344_VC_H_1977
    178 HB_067_HD HD M 4346_VC_H_2165
    179 HB_069_HD HD F 4356_VC_H_2164
    180 HB_070_HD HD NA 4386_CR_H_2249
    181 HB_072_HD HD NA 4404_VC_H_2161
    182 HB_073_HD HD F 4411_VC_H_1975
    183 HB_074_HD HD NA 4430_VC_H_2465
    184 HB_075_HD HD M 4470_VC_H_1974
    185 HB_076_HD HD F 4497_CR_H_1860
    186 HB_077_HD HD M 4509_CR_H_2244
    187 HB_079_HD HD M 4631_VC_H_1971
    188 HB_080_HD HD F 4653_PF_H_2083
    189 HB_081_HD HD NA 4678_CR_H_2242
    190 HB_084_HD HD M 4718_VC_H_2125
    191 HB_090_HD HD NA 4740_CR_H_2474
    192 HB_094_HD HD NA 4754_CR_H_2476
    193 HB_098_HD HD NA 4780_VC_H_2151
    194 HB_101_HD HD F 4809_VC_H_2148
    195 HB_105_HD HD NA 4819_CR_H_2238
    196 HB_106_HD HD F 4822_VC_H_1969
    197 HB_108_HD HD M 4826_VC_H_1968
    198 HB_109_HD HD M 4828_VC_H_2124
    199 HB_115_HD HD NA 4855_CR_H_2235
    200 HB_121_HD HD F 4902_VC_H_1967
    201 HB_129_HD HD NA 4938_VC_H_1966
    202 HB_141_HD HD F 4996_PF_H_2076
    203 HB_152_HD HD NA 5034_CR_H_2233
    204 HB_153_HD HD M 5043_VC_H_1960
    205 HB_159_HD HD M 5062_VC_H_1959
    206 HB_172_HD HD F 5114_PF_H_2070
    207 HB_175_HD HD M 5127_PF_H_2068
    208 HB_180_HD HD M 5148_VC_H_1944
    209 HB_185_HD HD F 5167_CR_H_2231
    210 HB_188_HD HD F 5172_VC_H_1951
    211 HB_191_HD HD M 5180_VC_H_1949
    212 HB_196_HD HD NA 5199_PF_H_2202
    213 HB_203_HD HD F 5228_PF_H_2059
    214 HB_207_HD HD NA 5248_PF_H_2201
    215 HB_228_HD HD F 5299_CR_H_2228
    216 HB_233_HD HD M 5312_VC_H_1938
    217 HB_235_HD HD F 5316_VC_H_1937
    218 HB_242_HD HD F 5328_PF_H_2048
    219 HB_266_HD HD M 5387_VC_H_1928
    220 HB_271_HD HD M 5394_PF_H_2039
    221 HB_272_HD HD F 5396_VC_H_1925
    222 HB_279_HD HD F 5409_VC_H_1924
    223 HB_294_HD HD M 5448_VC_H_1921
    224 HB_301_HD HD NA 5464_VC_H_1919
    225 HB_304_HD HD F 5471_VC_H_1918
    226 HB_321_HD HD NA 5522_PF_H_2199
    227 HB_361_HD HD F 5622_VC_H_2121
    228 HB_370_HD HD M 5645_VC_H_1904
    229 HB_371_HD HD F 5648_PF_H_2016
    230 HB_384_HD HD F 5688_PF_H_2012
    231 HB_390_HD HD M 5704_PF_H_2009
    232 HB_393_HD HD F 5709_VC_H_1895
    233 HB_402_HD HD F 5732_PF_H_2007
    234 HB_405_HD HD NA 5742_PF_H_2006
    235 HB_407_HD HD M 5745_PF_H_2005
    236 HB_408_HD HD M 5747_VC_H_1891
    237 HB_415_HD HD NA 5777_PF_H_1551
    238 HB_417_HD HD M 5784_PF_H_1554
    239 HB_424_HD HD M 5804_VC_H_1558
    240 HB_444_HD HD M 5856_VC_H_1567
    241 HB_457_HD HD M 5896_VC_H_1570
    242 HB_466_HD HD M 5910_PF_H_1572
    243 HB_478_HD HD M 5941_CR_H_1583
    244 HB_487_HD HD F 5964_VC_H_1597
    245 HB_511_HD HD M 6019_PF_H_2198
    246 HB_513_HD HD F 6024_VC_H_1612
    247 HB_515_HD HD F 6028_CR_H_1613
    248 HB_518_HD HD M 6033_VC_H_1618
    249 HB_522_HD HD M 6037_PF_H_1626
    250 HB_527_HD HD F 6047_VC_H_1639
    251 HB_528_HD HD M 6051_PF_H_1641
    252 HB_530_HD HD M 6054_VC_H_1648
    253 HB_537_HD HD F 6071_PF_H_1653
    254 HB_549_HD HD M 6119_CR_H_1670
    255 HB_593_HD HD NA 6219_CR_H_2567
    256 HB_610_HD HD NA 6275_PF_H_1692
    257 HB_616_HD HD F 6284_CR_H_1694
    258 HB_626_HD HD M 6315_VC_H_1702
    259 HB_639_HD HD F 6344_CR_H_1703
    260 HB_649_HD HD F 6382_CR_H_1709
    261 HB_661_HD HD M 6408_VC_H_1714
    262 HB_682_HD HD M 6467_PF_H_1725
    263 HB_683_HD HD M 6472_VC_H_1729
    264 HB_691_HD HD F 6493_VC_H_1732
    265 HB_692_HD HD M 6495_CR_H_1733
    266 HB_707_HD HD M 6535_PF_H_1737
    267 HB_709_HD HD F 6539_CR_H_1739
    268 HB_725_HD HD M 6572_PF_H_1746
    269 HB_732_HD HD F 6584_VC_H_1750
    270 HB_734_HD HD F 6587_CR_H_1751
    271 HB_748_HD HD NA 6615_VC_H_2315
    272 HB_750_HD HD NA 6628_PF_H_2326
    273 HB_758_HD HD NA 6643_VC_H_2602
    274 HB_760_HD HD M 6646_PF_H_1761
    275 HB_762_HD HD M 6650_VC_H_1765
    276 HB_766_HD HD M 6658_VC_H_1768
    277 HB_768_HD HD NA 6663_VC_H_1771
    278 HB_769_HD HD M 6666_VC_H_1774
    279 HB_774_HD HD NA 6689_PF_H_2344
    280 HB_778_HD HD NA 6696_PF_H_2356
    281 HB_780_HD HD NA 6704_PF_H_2362
    282 HB_790_HD HD NA 6788_PF_H_2389
    283 HB_800_HD HD NA 6807_PF_H_2419
    284 HB_802_HD HD NA 6811_PF_H_2425
    285 HB_045_AD AD NA 3734_CR_A_0122
    286 HB_048_AD AD NA 3791_CR_A_0128
    287 HB_053_AD AD NA 3877_CR_A_0134
    288 HB_055_AD AD NA 3893_VC_A_0142
    289 HB_068_AD AD NA 4349_VC_A_0148
    290 HB_082_AD AD NA 4712_CR_A_0309
    291 HB_085_AD AD NA 4726_VC_A_0311
    292 HB_087_AD AD NA 4730_CR_A_0315
    293 HB_089_AD AD NA 4733_VC_A_0320
    294 HB_093_AD AD NA 4749_VC_A_0323
    295 HB_095_AD AD NA 4759_CR_A_0327
    296 HB_097_AD AD NA 4773_CR_A_0866
    297 HB_099_AD AD NA 4785_VC_A_0332
    298 HB_100_AD AD NA 4795_VC_A_0335
    299 HB_103_AD AD NA 4811_VC_A_0341
    300 HB_104_AD AD NA 4813_CR_A_0345
    301 HB_112_AD AD NA 4842_VC_A_0870
    302 HB_113_AD AD NA 4850_CR_A_0351
    303 HB_114_AD AD NA 4852_CR_A_0354
    304 HB_117_AD AD NA 4868_VC_A_0874
    305 HB_122_AD AD NA 4904_CR_A_1132
    306 HB_123_AD AD NA 4905_VC_A_0884
    307 HB_124_AD AD NA 4916_VC_A_0886
    308 HB_125_AD AD NA 4917_CR_A_0360
    309 HB_126_AD AD NA 4921_VC_A_0362
    310 HB_128_AD AD NA 4936_CR_A_0369
    311 HB_130_AD AD NA 4939_VC_A_0888
    312 HB_131_AD AD NA 4944_CR_A_0889
    313 HB_132_AD AD NA 4946_CR_A_0372
    314 HB_134_AD AD NA 4951_CR_A_0891
    315 HB_135_AD AD NA 4953_VC_A_0893
    316 HB_136_AD AD NA 4965_VC_A_0160
    317 HB_137_AD AD NA 4966_VC_A_0374
    318 HB_138_AD AD NA 4969_VC_A_0895
    319 HB_140_AD AD NA 4993_CR_A_0896
    320 HB_146_AD AD NA 5018_CR_A_0384
    321 HB_148_AD AD NA 5022_VC_A_0386
    322 HB_150_AD AD NA 5031_VC_A_0392
    323 HB_151_AD AD NA 5033_CR_A_0396
    324 HB_154_AD AD NA 5048_VC_A_1321
    325 HB_155_AD AD NA 5056_VC_A_0398
    326 HB_156_AD AD NA 5057_VC_A_0163
    327 HB_157_AD AD NA 5059_VC_A_0401
    328 HB_158_AD AD NA 5061_PF_A_2612
    329 HB_160_AD AD NA 5064_PF_A_2615
    330 HB_165_AD AD NA 5092_CR_A_0899
    331 HB_168_AD AD NA 5097_VC_A_0407
    332 HB_170_AD AD NA 5101_VC_A_0410
    333 HB_174_AD AD NA 5124_PF_A_1343
    334 HB_179_AD AD NA 5145_VC_A_1351
    335 HB_181_AD AD NA 5152_CR_A_0414
    336 HB_184_AD AD NA 5166_VC_A_1354
    337 HB_194_AD AD NA 5193_VC_A_1360
    338 HB_197_AD AD NA 5202_CR_A_1368
    339 HB_199_AD AD NA 5205_VC_A_0166
    340 HB_200_AD AD NA 5210_VC_A_0905
    341 HB_205_AD AD NA 5235_VC_A_0419
    342 HB_208_AD AD NA 5249_VC_A_0422
    343 HB_209_AD AD NA 5252_VC_A_0907
    344 HB_211_AD AD NA 5257_VC_A_0169
    345 HB_216_AD AD NA 5272_VC_A_0425
    346 HB_219_AD AD NA 5279_CR_A_0147
    347 HB_221_AD AD NA 5283_VC_A_0145
    348 HB_222_AD AD NA 5285_VC_A_0141
    349 HB_224_AD AD NA 5288_VC_A_0428
    350 HB_230_AD AD NA 5301_VC_A_0174
    351 HB_231_AD AD NA 5305_VC_A_1384
    352 HB_232_AD AD NA 5310_CR_A_0176
    353 HB_234_AD AD NA 5313_PF_A_2618
    354 HB_236_AD AD NA 5317_PF_A_2624
    355 HB_238_AD AD NA 5322_CR_A_2632
    356 HB_240_AD AD NA 5325_VC_A_0137
    357 HB_244_AD AD NA 5337_VC_A_1387
    358 HB_245_AD AD NA 5339_VC_A_0181
    359 HB_250_AD AD NA 5346_VC_A_1393
    360 HB_251_AD AD NA 5350_VC_A_0184
    361 HB_252_AD AD NA 5355_VC_A_0133
    362 HB_253_AD AD NA 5359_CR_A_1395
    363 HB_258_AD AD NA 5370_PF_A_1400
    364 HB_259_AD AD NA 5371_PF_A_2636
    365 HB_260_AD AD NA 5375_VC_A_0188
    366 HB_263_AD AD NA 5381_VC_A_0022
    367 HB_265_AD AD NA 5385_VC_A_1402
    368 HB_267_AD AD NA 5389_VC_A_0928
    369 HB_268_AD AD NA 5390_CR_A_0151
    370 HB_273_AD AD NA 5400_PF_A_2645
    371 HB_274_AD AD NA 5401_VC_A_0931
    372 HB_275_AD AD NA 5404_PF_A_2648
    373 HB_276_AD AD NA 5406_VC_A_0933
    374 HB_277_AD AD NA 5407_PF_A_2651
    375 HB_280_AD AD NA 5412_VC_A_0935
    376 HB_281_AD AD NA 5413_PF_A_2657
    377 HB_283_AD AD NA 5419_VC_A_0937
    378 HB_284_AD AD NA 5420_VC_A_0939
    379 HB_285_AD AD NA 5421_CR_A_0432
    380 HB_286_AD AD NA 5423_PF_A_2660
    381 HB_288_AD AD NA 5425_PF_A_2666
    382 HB_289_AD AD NA 5426_VC_A_1405
    383 HB_290_AD AD NA 5433_VC_A_0434
    384 HB_296_AD AD NA 5456_PF_A_2675
    385 HB_299_AD AD NA 5461_VC_A_0192
    386 HB_302_AD AD NA 5465_PF_A_2678
    387 HB_303_AD AD NA 5469_VC_A_1417
    388 HB_305_AD AD NA 5479_PF_A_1421
    389 HB_306_AD AD NA 5480_VC_A_0437
    390 HB_307_AD AD NA 5482_VC_A_0028
    391 HB_308_AD AD NA 5483_VC_A_0941
    392 HB_309_AD AD NA 5487_CR_A_0441
    393 HB_310_AD AD NA 5488_CR_A_0194
    394 HB_312_AD AD NA 5500_VC_A_0198
    395 HB_313_AD AD NA 5502_PF_A_2684
    396 HB_315_AD AD NA 5513_PF_A_2687
    397 HB_316_AD AD NA 5516_PF_A_2690
    398 HB_317_AD AD NA 5517_PF_A_2693
    399 HB_318_AD AD NA 5518_CR_A_0030
    400 HB_319_AD AD NA 5519_CR_A_2695
    401 HB_320_AD AD NA 5520_PF_A_2699
    402 HB_322_AD AD NA 5527_VC_A_0945
    403 HB_325_AD AD NA 5532_PF_A_2702
    404 HB_328_AD AD NA 5541_PF_A_2705
    405 HB_330_AD AD NA 5544_VC_A_0201
    406 HB_334_AD AD NA 5554_VC_A_0452
    407 HB_335_AD AD NA 5557_VC_A_0950
    408 HB_337_AD AD NA 5560_VC_A_0204
    409 HB_342_AD AD NA 5571_PF_A_1430
    410 HB_345_AD AD NA 5583_PF_A_2708
    411 HB_347_AD AD NA 5589_PF_A_2714
    412 HB_349_AD AD NA 5592_PF_A_2717
    413 HB_352_AD AD NA 5604_VC_A_0037
    414 HB_353_AD AD NA 5607_PF_A_2723
    415 HB_356_AD AD NA 5615_VC_A_0041
    416 HB_357_AD AD NA 5616_CR_A_0127
    417 HB_358_AD AD NA 5617_CR_A_0456
    418 HB_359_AD AD NA 5618_CR_A_0044
    419 HB_362_AD AD NA 5625_CR_A_2495
    420 HB_363_AD AD NA 5626_CR_A_2498
    421 HB_364_AD AD NA 5629_CR_A_0390
    422 HB_369_AD AD NA 5643_VC_A_1143
    423 HB_373_AD AD NA 5654_VC_A_0047
    424 HB_375_AD AD NA 5660_CR_A_0462
    425 HB_376_AD AD NA 5661_VC_A_0464
    426 HB_377_AD AD NA 5667_VC_A_2509
    427 HB_378_AD AD NA 5668_VC_A_1438
    428 HB_383_AD AD NA 5686_CR_A_2728
    429 HB_386_AD AD NA 5695_VC_A_0953
    430 HB_389_AD AD NA 5700_VC_A_2514
    431 HB_391_AD AD NA 5705_CR_A_0474
    432 HB_392_AD AD NA 5706_VC_A_0476
    433 HB_394_AD AD NA 5713_VC_A_0479
    434 HB_397_AD AD NA 5721_CR_A_0210
    435 HB_404_AD AD NA 5735_CR_A_0489
    436 HB_406_AD AD NA 5744_CR_A_0960
    437 HB_409_AD AD NA 5749_CR_A_0159
    438 HB_410_AD AD NA 5751_CR_A_2518
    439 HB_411_AD AD NA 5755_CR_A_2731
    440 HB_413_AD AD NA 5766_VC_A_0214
    441 HB_419_AD AD NA 5790_VC_A_0217
    442 HB_420_AD AD NA 5796_CR_A_0964
    443 HB_428_AD AD NA 5811_CR_A_2524
    444 HB_429_AD AD NA 5819_CR_A_2527
    445 HB_430_AD AD NA 5822_CR_A_2530
    446 HB_434_AD AD NA 5828_CR_A_2533
    447 HB_435_AD AD NA 5831_CR_A_0222
    448 HB_437_AD AD NA 5839_CR_A_2539
    449 HB_438_AD AD NA 5843_CR_A_0227
    450 HB_439_AD AD NA 5845_CR_A_0230
    451 HB_441_AD AD NA 5849_CR_A_0233
    452 HB_442_AD AD NA 5850_CR_A_0495
    453 HB_445_AD AD NA 5858_CR_A_0969
    454 HB_448_AD AD NA 5864_CR_A_0974
    455 HB_451_AD AD NA 5871_CR_A_2542
    456 HB_454_AD AD NA 5879_CR_A_2545
    457 HB_455_AD AD NA 5887_CR_A_0976_Bis
    458 HB_459_AD AD NA 5898_CR_A_2548
    459 HB_460_AD AD NA 5900_VC_A_0237
    460 HB_461_AD AD NA 5901_CR_A_0239
    461 HB_469_AD AD NA 5914_CR_A_2554
    462 HB_471_AD AD NA 5922_VC_A_0246
    463 HB_473_AD AD NA 5927_CR_A_2560
    464 HB_474_AD AD NA 5933_VC_A_1071
    465 HB_477_AD AD NA 5939_CR_A_1151
    466 HB_479_AD AD NA 5945_VC_A_0983
    467 HB_484_AD AD NA 5956_CR_A_0123
    468 HB_489_AD AD NA 5968_VC_A_1075
    469 HB_491_AD AD NA 5971_CR_A_0119
    470 HB_492_AD AD NA 5972_VC_A_0251
    471 HB_494_AD AD NA 5979_CR_A_0115
    472 HB_498_AD AD NA 5988_VC_A_0503
    473 HB_502_AD AD NA 5994_PF_A_1605
    474 HB_503_AD AD NA 5995_CR_A_2563
    475 HB_510_AD AD NA 6017_CR_A_0048
    476 HB_514_AD AD NA 6025_VC_A_0506
    477 HB_517_AD AD NA 6031_VC_A_0258
    478 HB_520_AD AD NA 6035_VC_A_1621
    479 HB_523_AD AD NA 6038_VC_A_0261
    480 HB_524_AD AD NA 6042_VC_A_1156
    481 HB_525_AD AD NA 6044_VC_A_0264
    482 HB_531_AD AD NA 6056_CR_A_0999
    483 HB_533_AD AD NA 6061_PF_A_1650
    484 HB_534_AD AD NA 6066_VC_A_0270
    485 HB_535_AD AD NA 6067_PF_A_1452
    486 HB_536_AD AD NA 6068_VC_A_0273
    487 HB_545_AD AD NA 6102_CR_A_1661
    488 HB_546_AD AD NA 6107_CR_A_0055
    489 HB_550_AD AD NA 6120_VC_A_0058
    490 HB_552_AD AD NA 6126_VC_A_1675
    491 HB_553_AD AD NA 6129_PF_A_0274
    492 HB_554_AD AD NA 6130_VC_A_1678
    493 HB_555_AD AD NA 6131_CR_A_0510
    494 HB_556_AD AD NA 6132_CR_A_0513
    495 HB_558_AD AD NA 6137_VC_A_1681
    496 HB_564_AD AD NA 6153_VC_A_1465
    497 HB_565_AD AD NA 6154_VC_A_1468
    498 HB_566_AD AD NA 6157_VC_A_0062
    499 HB_568_AD AD NA 6164_CR_A_1005
    500 HB_571_AD AD NA 6171_CR_A_0065
    501 HB_573_AD AD NA 6174_VC_A_0068
    502 HB_576_AD AD NA 6180_CR_A_0281
    503 HB_583_AD AD NA 6194_VC_A_0071
    504 HB_585_AD AD NA 6198_VC_A_0073
    505 HB_590_AD AD NA 6215_VC_A_0518
    506 HB_591_AD AD NA 6216_VC_A_1476
    507 HB_592_AD AD NA 6218_CR_A_0522
    508 HB_594_AD AD NA 6223_VC_A_0288
    509 HB_596_AD AD NA 6226_CR_A_0076
    510 HB_597_AD AD NA 6227_VC_A_0080
    511 HB_598_AD AD NA 6231_VC_A_1479
    512 HB_605_AD AD NA 6261_VC_A_0084
    513 HB_608_AD AD NA 6268_CR_A_0525
    514 HB_611_AD AD NA 6279_VC_A_0089
    515 HB_612_AD AD NA 6280_VC_A_0091
    516 HB_613_AD AD NA 6281_CR_A_0528
    517 HB_621_AD AD NA 6308_VC_A_1503
    518 HB_623_AD AD NA 6311_CR_A_0531
    519 HB_624_AD AD NA 6312_CR_A_0534
    520 HB_630_AD AD NA 6324_PF_A_1514
    521 HB_633_AD AD NA 6332_VC_A_1518
    522 HB_634_AD AD NA 6335_VC_A_0536
    523 HB_635_AD AD NA 6336_CR_A_0290
    524 HB_636_AD AD NA 6338_VC_A_0539
    525 HB_642_AD AD NA 6358_VC_A_0545
    526 HB_652_AD AD NA 6387_VC_A_0093
    527 HB_657_AD AD NA 6394_VC_A_0551
    528 HB_664_AD AD NA 6416_VC_A_1095
    529 HB_666_AD AD NA 6422_CR_A_0555
    530 HB_669_AD AD NA 6431_VC_A_0294
    531 HB_674_AD AD NA 6449_VC_A_1183
    532 HB_680_AD AD NA 6458_CR_A_2570
    533 HB_685_AD AD NA 6481_VC_A_0560
    534 HB_690_AD AD NA 6489_CR_A_0100
    535 HB_696_AD AD NA 6511_VC_A_1119
    536 HB_698_AD AD NA 6515_CR_A_0564
    537 HB_699_AD AD NA 6518_VC_A_0103
    538 HB_703_AD AD NA 6523_VC_A_0107
    539 HB_704_AD AD NA 6530_VC_A_0112
    540 HB_706_AD AD NA 6534_VC_A_0306
    541 HB_712_AD AD NA 6546_PF_A_1194
    542 HB_713_AD AD NA 6548_PF_A_1541
    543 HB_715_AD AD NA 6550_VC_A_1201
    544 HB_718_AD AD NA 6554_PF_A_1203
    545 HB_720_AD AD NA 6559_PF_A_2287
    546 HB_722_AD AD NA 6561_CR_A_2582
    547 HB_723_AD AD NA 6562_PF_A_2290
    548 HB_724_AD AD NA 6564_CR_A_2585
    549 HB_727_AD AD NA 6575_CR_A_2298
    550 HB_728_AD AD NA 6577_PF_A_2299
    551 HB_729_AD AD NA 6578_PF_A_2302
    552 HB_731_AD AD NA 6582_VC_A_1207
    553 HB_733_AD AD NA 6585_VC_A_1210
    554 HB_736_AD AD NA 6590_PF_A_1215
    555 HB_743_AD AD NA 6603_PF_A_1448
    556 HB_745_AD AD NA 6610_PF_A_1227
    557 HB_746_AD AD NA 6612_PF_A_2308
    558 HB_749_AD AD NA 6617_VC_A_2587
    559 HB_751_AD AD NA 6629_VC_A_2330
    560 HB_752_AD AD NA 6630_VC_A_2590
    561 HB_753_AD AD NA 6632_PF_A_2332
    562 HB_754_AD AD NA 6637_VC_A_2596
    563 HB_755_AD AD NA 6638_VC_A_2599
    564 HB_756_AD AD NA 6639_VC_A_2336
    565 HB_757_AD AD NA 6641_PF_A_2338
    566 HB_763_AD AD NA 6654_VC_A_1237
    567 HB_773_AD AD NA 6681_VC_A_1252
    568 HB_775_AD AD NA 6693_VC_A_2348
    569 HB_776_AD AD NA 6694_VC_A_2351
    570 HB_777_AD AD NA 6695_PF_A_2353
    571 HB_779_AD AD NA 6699_PF_A_2359
    572 HB_781_AD AD NA 6708_VC_A_2366
    573 HB_782_AD AD NA 6776_PF_A_2607
    574 HB_783_AD AD NA 6778_PF_A_2368
    575 HB_784_AD AD NA 6779_PF_A_2371
    576 HB_785_AD AD NA 6780_PF_A_2374
    577 HB_786_AD AD NA 6782_PF_A_2377
    578 HB_787_AD AD NA 6784_PF_A_2380
    579 HB_788_AD AD NA 6785_CR_A_2385
    580 HB_789_AD AD NA 6787_CR_A_2388
    581 HB_791_AD AD NA 6790_PF_A_2392
    582 HB_792_AD AD NA 6791_PF_A_2395
    583 HB_793_AD AD NA 6793_PF_A_2398
    584 HB_794_AD AD NA 6794_PF_A_2401
    585 HB_795_AD AD NA 6797_PF_A_2404
    586 HB_796_AD AD NA 6798_PF_A_2407
    587 HB_797_AD AD NA 6799_VC_A_2411
    588 HB_798_AD AD NA 6801_VC_A_2414
    589 HB_799_AD AD NA 6803_VC_A_2417
    590 HB_801_AD AD NA 6809_PF_A_2422
    591 HB_803_AD AD NA 6818_CR_A_2430
    +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HBTRC-MLPFC_HD_0611.html b/web/dbdoc/HBTRC-MLPFC_HD_0611.html new file mode 100755 index 00000000..7a0b387c --- /dev/null +++ b/web/dbdoc/HBTRC-MLPFC_HD_0611.html @@ -0,0 +1,831 @@ + + + +HBTRC-MLC Human Prefrontal Cortex Agilent HD (Jun11) mlratio + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    HBTRC-MLC Human Prefrontal Cortex Agilent HD (Jun11) mlratiomodify this page

    + + Accession number: GN369

    +

    +

    +

    Summary:

    +

    This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

    +
    +

    +

    +

    +

    Data Source Acknowledgements:

    +

    +

    +Species: Human
    +Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
    +Disease: Neurological Disease
    +Investigator: Francine Benes/ Eric Schadt
    +Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
    +Approximate Number Subjects: 803

    +

    +The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/). +

    +

    This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. +Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines. +

    +
    +

    +

    +

    +

    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Series Cerebellum in GN Condition Gender BioSample Name
    1 HB_029_N N NA 3405_VC_N_0859
    2 HB_058_N N NA 4021_VC_N_0854
    3 HB_064_N N NA 4338_VC_N_0861
    4 HB_086_N N NA 4729_PF_N_0756
    5 HB_091_N N NA 4741_VC_N_0864
    6 HB_092_N N NA 4744_VC_N_0865
    7 HB_102_N N NA 4810_VC_N_0869
    8 HB_119_N N NA 4872_VC_N_0878
    9 HB_147_N N NA 5021_VC_N_0852
    10 HB_161_N N NA 5077_VC_N_0851
    11 HB_162_N N NA 5081_VC_N_1021
    12 HB_166_N N NA 5095_VC_N_1024
    13 HB_183_N N NA 5162_VC_N_0850
    14 HB_206_N N NA 5245_VC_N_0849
    15 HB_215_N N NA 5270_VC_N_0848
    16 HB_218_N N NA 5276_CR_N_0912
    17 HB_223_N N NA 5287_VC_N_0916
    18 HB_226_N N NA 5294_VC_N_0919
    19 HB_241_N N NA 5326_CR_N_0652
    20 HB_243_N N NA 5333_VC_N_1262
    21 HB_247_N N NA 5341_VC_N_0923
    22 HB_257_N N NA 5368_PF_N_1032
    23 HB_264_N N NA 5384_VC_N_0924
    24 HB_295_N N NA 5452_VC_N_1268
    25 HB_300_N N NA 5463_VC_N_0845
    26 HB_311_N N NA 5489_CR_N_0942
    27 HB_324_N N NA 5531_VC_N_0844
    28 HB_332_N N NA 5547_VC_N_0843
    29 HB_340_N N NA 5568_VC_N_0842
    30 HB_360_N N NA 5619_CR_N_0645
    31 HB_365_N N NA 5632_VC_N_0838
    32 HB_367_N N NA 5637_VC_N_0837
    33 HB_382_N N NA 5684_PF_N_1270
    34 HB_396_N N NA 5718_VC_N_0956
    35 HB_398_N N NA 5722_VC_N_1044
    36 HB_400_N N NA 5726_VC_N_0834_Bis
    37 HB_403_N N NA 5734_VC_N_0833
    38 HB_414_N N NA 5772_VC_N_0832_Bis
    39 HB_416_N N NA 5778_CR_N_0962
    40 HB_418_N N NA 5789_PF_N_1273
    41 HB_421_N N NA 5799_VC_N_1058
    42 HB_423_N N NA 5803_VC_N_0966
    43 HB_426_N N NA 5806_PF_N_1064
    44 HB_427_N N NA 5810_CR_N_0636
    45 HB_431_N N NA 5823_VC_N_0829
    46 HB_432_N N NA 5826_VC_N_0828
    47 HB_433_N N NA 5827_VC_N_0827
    48 HB_436_N N NA 5832_PF_N_1145
    49 HB_443_N N NA 5852_VC_N_0826
    50 HB_446_N N NA 5859_VC_N_0825
    51 HB_449_N N NA 5866_VC_N_0824
    52 HB_450_N N NA 5867_VC_N_1277
    53 HB_453_N N NA 5876_VC_N_0823
    54 HB_462_N N NA 5903_VC_N_0822
    55 HB_464_N N NA 5905_VC_N_0820
    56 HB_468_N N NA 5912_VC_N_1286
    57 HB_472_N N NA 5925_VC_N_1289
    58 HB_475_N N NA 5936_VC_N_0979
    59 HB_476_N N NA 5938_VC_N_0819
    60 HB_480_N N NA 5946_VC_N_0985
    61 HB_485_N N NA 5959_VC_N_0818
    62 HB_486_N N NA 5963_VC_N_0987
    63 HB_495_N N NA 5980_VC_N_0989
    64 HB_497_N N NA 5985_VC_N_0990
    65 HB_500_N N NA 5990_VC_N_0817
    66 HB_501_N N NA 5991_VC_N_0816
    67 HB_504_N N NA 5996_VC_N_0815
    68 HB_505_N N NA 5998_VC_N_0814
    69 HB_507_N N NA 6006_VC_N_0813
    70 HB_508_N N NA 6007_CR_N_0618
    71 HB_509_N N NA 6008_PF_N_1081
    72 HB_512_N N NA 6023_PF_N_1155
    73 HB_516_N N NA 6030_VC_N_0810
    74 HB_519_N N NA 6034_VC_N_0809
    75 HB_532_N N NA 6060_VC_N_1292
    76 HB_541_N N NA 6092_VC_N_1001
    77 HB_542_N N NA 6096_VC_N_0807
    78 HB_544_N N NA 6101_CR_N_1161
    79 HB_547_N N NA 6110_VC_N_1295
    80 HB_551_N N NA 6124_VC_N_0806
    81 HB_557_N N NA 6134_PF_N_1297
    82 HB_560_N N NA 6142_VC_N_0805
    83 HB_569_N N NA 6166_VC_N_0804
    84 HB_570_N N NA 6170_VC_N_0803
    85 HB_572_N N NA 6172_VC_N_1008
    86 HB_577_N N NA 6182_VC_N_1166
    87 HB_579_N N NA 6187_CR_N_0607
    88 HB_581_N N NA 6191_VC_N_1010
    89 HB_584_N N NA 6196_CR_N_0605
    90 HB_586_N N NA 6200_VC_N_0799
    91 HB_587_N N NA 6206_PF_N_1176
    92 HB_589_N N NA 6213_VC_N_0798
    93 HB_601_N N NA 6241_VC_N_0796
    94 HB_604_N N NA 6260_VC_N_0794
    95 HB_609_N N NA 6270_VC_N_0793
    96 HB_618_N N NA 6289_VC_N_0791
    97 HB_622_N N NA 6310_VC_N_0790
    98 HB_625_N N NA 6314_VC_N_0789
    99 HB_637_N N NA 6340_VC_N_0786
    100 HB_638_N N NA 6341_VC_N_0785
    101 HB_640_N N NA 6347_VC_N_0784
    102 HB_641_N N NA 6356_VC_N_0783
    103 HB_643_N N NA 6363_VC_N_0781
    104 HB_644_N N NA 6366_VC_N_0780
    105 HB_645_N N NA 6374_VC_N_0779
    106 HB_650_N N NA 6384_VC_N_0777
    107 HB_651_N N NA 6386_VC_N_0776
    108 HB_653_N N NA 6388_VC_N_0775
    109 HB_659_N N NA 6406_VC_N_1180
    110 HB_662_N N NA 6411_VC_N_0771
    111 HB_663_N N NA 6415_VC_N_0770
    112 HB_670_N N NA 6436_VC_N_0769
    113 HB_687_N N NA 6484_VC_N_0765
    114 HB_689_N N NA 6486_VC_N_0764
    115 HB_694_N N NA 6500_VC_N_0763
    116 HB_697_N N NA 6512_VC_N_0762
    117 HB_700_N N NA 6520_VC_N_0761
    118 HB_711_N N NA 6543_PF_N_1191
    119 HB_714_N N NA 6549_VC_N_1198
    120 HB_717_N N NA 6553_PF_N_2284
    121 HB_721_N N NA 6560_VC_N_2578
    122 HB_726_N N NA 6573_PF_N_2293
    123 HB_730_N N NA 6580_VC_N_2306
    124 HB_735_N N NA 6588_VC_N_1213
    125 HB_737_N N NA 6593_VC_N_1219
    126 HB_738_N N NA 6594_VC_N_1222
    127 HB_759_N N NA 6645_VC_N_1231
    128 HB_764_N N NA 6655_VC_N_1240
    129 HB_765_N N NA 6656_VC_N_1243
    130 HB_767_N N NA 6661_PF_N_2341
    131 HB_770_N N NA 6669_VC_N_1246
    132 HB_772_N N NA 6676_PF_N_1248
    133 HB_001_HD HD F 2028_CR_H_2282
    134 HB_003_HD HD F 2685_PF_H_2212
    135 HB_004_HD HD M 2706_CR_H_2432
    136 HB_006_HD HD M 2737_VC_H_2194
    137 HB_007_HD HD NA 2769_VC_H_2193
    138 HB_008_HD HD F 2790_CR_H_1890
    139 HB_009_HD HD NA 2879_VC_H_2192
    140 HB_010_HD HD M 2960_VC_H_2002
    141 HB_011_HD HD F 3053_VC_H_2001
    142 HB_012_HD HD F 3128_VC_H_1999
    143 HB_014_HD HD F 3149_PF_H_2110
    144 HB_015_HD HD F 3150_VC_H_1996
    145 HB_016_HD HD F 3177_VC_H_2191
    146 HB_017_HD HD NA 3195_VC_H_2190
    147 HB_018_HD HD M 3200_VC_H_2189
    148 HB_019_HD HD M 3209_VC_H_2188
    149 HB_020_HD HD M 3224_VC_H_1994
    150 HB_022_HD HD F 3242_PF_H_2105
    151 HB_024_HD HD NA 3272_VC_H_2186
    152 HB_027_HD HD M 3356_VC_H_2439
    153 HB_028_HD HD F 3394_PF_H_2104
    154 HB_031_HD HD M 3430_VC_H_1990
    155 HB_032_HD HD NA 3444_PF_H_2208
    156 HB_034_HD HD F 3482_VC_H_1987
    157 HB_036_HD HD M 3576_VC_H_1984
    158 HB_037_HD HD F 3579_VC_H_1983
    159 HB_038_HD HD F 3584_VC_H_2183
    160 HB_039_HD HD NA 3635_VC_H_2182
    161 HB_041_HD HD F 3695_CR_H_2267
    162 HB_042_HD HD M 3697_VC_H_1982
    163 HB_043_HD HD NA 3703_VC_H_2180
    164 HB_044_HD HD NA 3723_VC_H_2179
    165 HB_046_HD HD F 3735_VC_H_1981
    166 HB_050_HD HD M 3820_PF_H_2207
    167 HB_051_HD HD F 3849_CR_H_2262
    168 HB_054_HD HD M 3884_VC_H_2175
    169 HB_056_HD HD NA 4012_VC_H_2174
    170 HB_057_HD HD NA 4013_VC_H_2173
    171 HB_059_HD HD NA 4066_VC_H_2172
    172 HB_060_HD HD NA 4094_VC_H_2171
    173 HB_061_HD HD F 4116_VC_H_2170
    174 HB_062_HD HD NA 4121_VC_H_2169
    175 HB_063_HD HD NA 4215_VC_H_2167
    176 HB_065_HD HD M 4340_PF_H_2091
    177 HB_066_HD HD F 4344_VC_H_1977
    178 HB_067_HD HD M 4346_VC_H_2165
    179 HB_069_HD HD F 4356_VC_H_2164
    180 HB_070_HD HD NA 4386_CR_H_2249
    181 HB_072_HD HD NA 4404_VC_H_2161
    182 HB_073_HD HD F 4411_VC_H_1975
    183 HB_074_HD HD NA 4430_VC_H_2465
    184 HB_075_HD HD M 4470_VC_H_1974
    185 HB_076_HD HD F 4497_CR_H_1860
    186 HB_077_HD HD M 4509_CR_H_2244
    187 HB_079_HD HD M 4631_VC_H_1971
    188 HB_080_HD HD F 4653_PF_H_2083
    189 HB_081_HD HD NA 4678_CR_H_2242
    190 HB_084_HD HD M 4718_VC_H_2125
    191 HB_090_HD HD NA 4740_CR_H_2474
    192 HB_094_HD HD NA 4754_CR_H_2476
    193 HB_098_HD HD NA 4780_VC_H_2151
    194 HB_101_HD HD F 4809_VC_H_2148
    195 HB_105_HD HD NA 4819_CR_H_2238
    196 HB_106_HD HD F 4822_VC_H_1969
    197 HB_108_HD HD M 4826_VC_H_1968
    198 HB_109_HD HD M 4828_VC_H_2124
    199 HB_115_HD HD NA 4855_CR_H_2235
    200 HB_121_HD HD F 4902_VC_H_1967
    201 HB_129_HD HD NA 4938_VC_H_1966
    202 HB_141_HD HD F 4996_PF_H_2076
    203 HB_152_HD HD NA 5034_CR_H_2233
    204 HB_153_HD HD M 5043_VC_H_1960
    205 HB_159_HD HD M 5062_VC_H_1959
    206 HB_172_HD HD F 5114_PF_H_2070
    207 HB_175_HD HD M 5127_PF_H_2068
    208 HB_180_HD HD M 5148_VC_H_1944
    209 HB_185_HD HD F 5167_CR_H_2231
    210 HB_188_HD HD F 5172_VC_H_1951
    211 HB_191_HD HD M 5180_VC_H_1949
    212 HB_196_HD HD NA 5199_PF_H_2202
    213 HB_203_HD HD F 5228_PF_H_2059
    214 HB_207_HD HD NA 5248_PF_H_2201
    215 HB_228_HD HD F 5299_CR_H_2228
    216 HB_233_HD HD M 5312_VC_H_1938
    217 HB_235_HD HD F 5316_VC_H_1937
    218 HB_242_HD HD F 5328_PF_H_2048
    219 HB_266_HD HD M 5387_VC_H_1928
    220 HB_271_HD HD M 5394_PF_H_2039
    221 HB_272_HD HD F 5396_VC_H_1925
    222 HB_279_HD HD F 5409_VC_H_1924
    223 HB_294_HD HD M 5448_VC_H_1921
    224 HB_301_HD HD NA 5464_VC_H_1919
    225 HB_304_HD HD F 5471_VC_H_1918
    226 HB_321_HD HD NA 5522_PF_H_2199
    227 HB_361_HD HD F 5622_VC_H_2121
    228 HB_370_HD HD M 5645_VC_H_1904
    229 HB_371_HD HD F 5648_PF_H_2016
    230 HB_384_HD HD F 5688_PF_H_2012
    231 HB_390_HD HD M 5704_PF_H_2009
    232 HB_393_HD HD F 5709_VC_H_1895
    233 HB_402_HD HD F 5732_PF_H_2007
    234 HB_405_HD HD NA 5742_PF_H_2006
    235 HB_407_HD HD M 5745_PF_H_2005
    236 HB_408_HD HD M 5747_VC_H_1891
    237 HB_415_HD HD NA 5777_PF_H_1551
    238 HB_417_HD HD M 5784_PF_H_1554
    239 HB_424_HD HD M 5804_VC_H_1558
    240 HB_444_HD HD M 5856_VC_H_1567
    241 HB_457_HD HD M 5896_VC_H_1570
    242 HB_466_HD HD M 5910_PF_H_1572
    243 HB_478_HD HD M 5941_CR_H_1583
    244 HB_487_HD HD F 5964_VC_H_1597
    245 HB_511_HD HD M 6019_PF_H_2198
    246 HB_513_HD HD F 6024_VC_H_1612
    247 HB_515_HD HD F 6028_CR_H_1613
    248 HB_518_HD HD M 6033_VC_H_1618
    249 HB_522_HD HD M 6037_PF_H_1626
    250 HB_527_HD HD F 6047_VC_H_1639
    251 HB_528_HD HD M 6051_PF_H_1641
    252 HB_530_HD HD M 6054_VC_H_1648
    253 HB_537_HD HD F 6071_PF_H_1653
    254 HB_549_HD HD M 6119_CR_H_1670
    255 HB_593_HD HD NA 6219_CR_H_2567
    256 HB_610_HD HD NA 6275_PF_H_1692
    257 HB_616_HD HD F 6284_CR_H_1694
    258 HB_626_HD HD M 6315_VC_H_1702
    259 HB_639_HD HD F 6344_CR_H_1703
    260 HB_649_HD HD F 6382_CR_H_1709
    261 HB_661_HD HD M 6408_VC_H_1714
    262 HB_682_HD HD M 6467_PF_H_1725
    263 HB_683_HD HD M 6472_VC_H_1729
    264 HB_691_HD HD F 6493_VC_H_1732
    265 HB_692_HD HD M 6495_CR_H_1733
    266 HB_707_HD HD M 6535_PF_H_1737
    267 HB_709_HD HD F 6539_CR_H_1739
    268 HB_725_HD HD M 6572_PF_H_1746
    269 HB_732_HD HD F 6584_VC_H_1750
    270 HB_734_HD HD F 6587_CR_H_1751
    271 HB_748_HD HD NA 6615_VC_H_2315
    272 HB_750_HD HD NA 6628_PF_H_2326
    273 HB_758_HD HD NA 6643_VC_H_2602
    274 HB_760_HD HD M 6646_PF_H_1761
    275 HB_762_HD HD M 6650_VC_H_1765
    276 HB_766_HD HD M 6658_VC_H_1768
    277 HB_768_HD HD NA 6663_VC_H_1771
    278 HB_769_HD HD M 6666_VC_H_1774
    279 HB_774_HD HD NA 6689_PF_H_2344
    280 HB_778_HD HD NA 6696_PF_H_2356
    281 HB_780_HD HD NA 6704_PF_H_2362
    282 HB_790_HD HD NA 6788_PF_H_2389
    283 HB_800_HD HD NA 6807_PF_H_2419
    284 HB_802_HD HD NA 6811_PF_H_2425
    285 HB_045_AD AD NA 3734_CR_A_0122
    286 HB_048_AD AD NA 3791_CR_A_0128
    287 HB_053_AD AD NA 3877_CR_A_0134
    288 HB_055_AD AD NA 3893_VC_A_0142
    289 HB_068_AD AD NA 4349_VC_A_0148
    290 HB_082_AD AD NA 4712_CR_A_0309
    291 HB_085_AD AD NA 4726_VC_A_0311
    292 HB_087_AD AD NA 4730_CR_A_0315
    293 HB_089_AD AD NA 4733_VC_A_0320
    294 HB_093_AD AD NA 4749_VC_A_0323
    295 HB_095_AD AD NA 4759_CR_A_0327
    296 HB_097_AD AD NA 4773_CR_A_0866
    297 HB_099_AD AD NA 4785_VC_A_0332
    298 HB_100_AD AD NA 4795_VC_A_0335
    299 HB_103_AD AD NA 4811_VC_A_0341
    300 HB_104_AD AD NA 4813_CR_A_0345
    301 HB_112_AD AD NA 4842_VC_A_0870
    302 HB_113_AD AD NA 4850_CR_A_0351
    303 HB_114_AD AD NA 4852_CR_A_0354
    304 HB_117_AD AD NA 4868_VC_A_0874
    305 HB_122_AD AD NA 4904_CR_A_1132
    306 HB_123_AD AD NA 4905_VC_A_0884
    307 HB_124_AD AD NA 4916_VC_A_0886
    308 HB_125_AD AD NA 4917_CR_A_0360
    309 HB_126_AD AD NA 4921_VC_A_0362
    310 HB_128_AD AD NA 4936_CR_A_0369
    311 HB_130_AD AD NA 4939_VC_A_0888
    312 HB_131_AD AD NA 4944_CR_A_0889
    313 HB_132_AD AD NA 4946_CR_A_0372
    314 HB_134_AD AD NA 4951_CR_A_0891
    315 HB_135_AD AD NA 4953_VC_A_0893
    316 HB_136_AD AD NA 4965_VC_A_0160
    317 HB_137_AD AD NA 4966_VC_A_0374
    318 HB_138_AD AD NA 4969_VC_A_0895
    319 HB_140_AD AD NA 4993_CR_A_0896
    320 HB_146_AD AD NA 5018_CR_A_0384
    321 HB_148_AD AD NA 5022_VC_A_0386
    322 HB_150_AD AD NA 5031_VC_A_0392
    323 HB_151_AD AD NA 5033_CR_A_0396
    324 HB_154_AD AD NA 5048_VC_A_1321
    325 HB_155_AD AD NA 5056_VC_A_0398
    326 HB_156_AD AD NA 5057_VC_A_0163
    327 HB_157_AD AD NA 5059_VC_A_0401
    328 HB_158_AD AD NA 5061_PF_A_2612
    329 HB_160_AD AD NA 5064_PF_A_2615
    330 HB_165_AD AD NA 5092_CR_A_0899
    331 HB_168_AD AD NA 5097_VC_A_0407
    332 HB_170_AD AD NA 5101_VC_A_0410
    333 HB_174_AD AD NA 5124_PF_A_1343
    334 HB_179_AD AD NA 5145_VC_A_1351
    335 HB_181_AD AD NA 5152_CR_A_0414
    336 HB_184_AD AD NA 5166_VC_A_1354
    337 HB_194_AD AD NA 5193_VC_A_1360
    338 HB_197_AD AD NA 5202_CR_A_1368
    339 HB_199_AD AD NA 5205_VC_A_0166
    340 HB_200_AD AD NA 5210_VC_A_0905
    341 HB_205_AD AD NA 5235_VC_A_0419
    342 HB_208_AD AD NA 5249_VC_A_0422
    343 HB_209_AD AD NA 5252_VC_A_0907
    344 HB_211_AD AD NA 5257_VC_A_0169
    345 HB_216_AD AD NA 5272_VC_A_0425
    346 HB_219_AD AD NA 5279_CR_A_0147
    347 HB_221_AD AD NA 5283_VC_A_0145
    348 HB_222_AD AD NA 5285_VC_A_0141
    349 HB_224_AD AD NA 5288_VC_A_0428
    350 HB_230_AD AD NA 5301_VC_A_0174
    351 HB_231_AD AD NA 5305_VC_A_1384
    352 HB_232_AD AD NA 5310_CR_A_0176
    353 HB_234_AD AD NA 5313_PF_A_2618
    354 HB_236_AD AD NA 5317_PF_A_2624
    355 HB_238_AD AD NA 5322_CR_A_2632
    356 HB_240_AD AD NA 5325_VC_A_0137
    357 HB_244_AD AD NA 5337_VC_A_1387
    358 HB_245_AD AD NA 5339_VC_A_0181
    359 HB_250_AD AD NA 5346_VC_A_1393
    360 HB_251_AD AD NA 5350_VC_A_0184
    361 HB_252_AD AD NA 5355_VC_A_0133
    362 HB_253_AD AD NA 5359_CR_A_1395
    363 HB_258_AD AD NA 5370_PF_A_1400
    364 HB_259_AD AD NA 5371_PF_A_2636
    365 HB_260_AD AD NA 5375_VC_A_0188
    366 HB_263_AD AD NA 5381_VC_A_0022
    367 HB_265_AD AD NA 5385_VC_A_1402
    368 HB_267_AD AD NA 5389_VC_A_0928
    369 HB_268_AD AD NA 5390_CR_A_0151
    370 HB_273_AD AD NA 5400_PF_A_2645
    371 HB_274_AD AD NA 5401_VC_A_0931
    372 HB_275_AD AD NA 5404_PF_A_2648
    373 HB_276_AD AD NA 5406_VC_A_0933
    374 HB_277_AD AD NA 5407_PF_A_2651
    375 HB_280_AD AD NA 5412_VC_A_0935
    376 HB_281_AD AD NA 5413_PF_A_2657
    377 HB_283_AD AD NA 5419_VC_A_0937
    378 HB_284_AD AD NA 5420_VC_A_0939
    379 HB_285_AD AD NA 5421_CR_A_0432
    380 HB_286_AD AD NA 5423_PF_A_2660
    381 HB_288_AD AD NA 5425_PF_A_2666
    382 HB_289_AD AD NA 5426_VC_A_1405
    383 HB_290_AD AD NA 5433_VC_A_0434
    384 HB_296_AD AD NA 5456_PF_A_2675
    385 HB_299_AD AD NA 5461_VC_A_0192
    386 HB_302_AD AD NA 5465_PF_A_2678
    387 HB_303_AD AD NA 5469_VC_A_1417
    388 HB_305_AD AD NA 5479_PF_A_1421
    389 HB_306_AD AD NA 5480_VC_A_0437
    390 HB_307_AD AD NA 5482_VC_A_0028
    391 HB_308_AD AD NA 5483_VC_A_0941
    392 HB_309_AD AD NA 5487_CR_A_0441
    393 HB_310_AD AD NA 5488_CR_A_0194
    394 HB_312_AD AD NA 5500_VC_A_0198
    395 HB_313_AD AD NA 5502_PF_A_2684
    396 HB_315_AD AD NA 5513_PF_A_2687
    397 HB_316_AD AD NA 5516_PF_A_2690
    398 HB_317_AD AD NA 5517_PF_A_2693
    399 HB_318_AD AD NA 5518_CR_A_0030
    400 HB_319_AD AD NA 5519_CR_A_2695
    401 HB_320_AD AD NA 5520_PF_A_2699
    402 HB_322_AD AD NA 5527_VC_A_0945
    403 HB_325_AD AD NA 5532_PF_A_2702
    404 HB_328_AD AD NA 5541_PF_A_2705
    405 HB_330_AD AD NA 5544_VC_A_0201
    406 HB_334_AD AD NA 5554_VC_A_0452
    407 HB_335_AD AD NA 5557_VC_A_0950
    408 HB_337_AD AD NA 5560_VC_A_0204
    409 HB_342_AD AD NA 5571_PF_A_1430
    410 HB_345_AD AD NA 5583_PF_A_2708
    411 HB_347_AD AD NA 5589_PF_A_2714
    412 HB_349_AD AD NA 5592_PF_A_2717
    413 HB_352_AD AD NA 5604_VC_A_0037
    414 HB_353_AD AD NA 5607_PF_A_2723
    415 HB_356_AD AD NA 5615_VC_A_0041
    416 HB_357_AD AD NA 5616_CR_A_0127
    417 HB_358_AD AD NA 5617_CR_A_0456
    418 HB_359_AD AD NA 5618_CR_A_0044
    419 HB_362_AD AD NA 5625_CR_A_2495
    420 HB_363_AD AD NA 5626_CR_A_2498
    421 HB_364_AD AD NA 5629_CR_A_0390
    422 HB_369_AD AD NA 5643_VC_A_1143
    423 HB_373_AD AD NA 5654_VC_A_0047
    424 HB_375_AD AD NA 5660_CR_A_0462
    425 HB_376_AD AD NA 5661_VC_A_0464
    426 HB_377_AD AD NA 5667_VC_A_2509
    427 HB_378_AD AD NA 5668_VC_A_1438
    428 HB_383_AD AD NA 5686_CR_A_2728
    429 HB_386_AD AD NA 5695_VC_A_0953
    430 HB_389_AD AD NA 5700_VC_A_2514
    431 HB_391_AD AD NA 5705_CR_A_0474
    432 HB_392_AD AD NA 5706_VC_A_0476
    433 HB_394_AD AD NA 5713_VC_A_0479
    434 HB_397_AD AD NA 5721_CR_A_0210
    435 HB_404_AD AD NA 5735_CR_A_0489
    436 HB_406_AD AD NA 5744_CR_A_0960
    437 HB_409_AD AD NA 5749_CR_A_0159
    438 HB_410_AD AD NA 5751_CR_A_2518
    439 HB_411_AD AD NA 5755_CR_A_2731
    440 HB_413_AD AD NA 5766_VC_A_0214
    441 HB_419_AD AD NA 5790_VC_A_0217
    442 HB_420_AD AD NA 5796_CR_A_0964
    443 HB_428_AD AD NA 5811_CR_A_2524
    444 HB_429_AD AD NA 5819_CR_A_2527
    445 HB_430_AD AD NA 5822_CR_A_2530
    446 HB_434_AD AD NA 5828_CR_A_2533
    447 HB_435_AD AD NA 5831_CR_A_0222
    448 HB_437_AD AD NA 5839_CR_A_2539
    449 HB_438_AD AD NA 5843_CR_A_0227
    450 HB_439_AD AD NA 5845_CR_A_0230
    451 HB_441_AD AD NA 5849_CR_A_0233
    452 HB_442_AD AD NA 5850_CR_A_0495
    453 HB_445_AD AD NA 5858_CR_A_0969
    454 HB_448_AD AD NA 5864_CR_A_0974
    455 HB_451_AD AD NA 5871_CR_A_2542
    456 HB_454_AD AD NA 5879_CR_A_2545
    457 HB_455_AD AD NA 5887_CR_A_0976_Bis
    458 HB_459_AD AD NA 5898_CR_A_2548
    459 HB_460_AD AD NA 5900_VC_A_0237
    460 HB_461_AD AD NA 5901_CR_A_0239
    461 HB_469_AD AD NA 5914_CR_A_2554
    462 HB_471_AD AD NA 5922_VC_A_0246
    463 HB_473_AD AD NA 5927_CR_A_2560
    464 HB_474_AD AD NA 5933_VC_A_1071
    465 HB_477_AD AD NA 5939_CR_A_1151
    466 HB_479_AD AD NA 5945_VC_A_0983
    467 HB_484_AD AD NA 5956_CR_A_0123
    468 HB_489_AD AD NA 5968_VC_A_1075
    469 HB_491_AD AD NA 5971_CR_A_0119
    470 HB_492_AD AD NA 5972_VC_A_0251
    471 HB_494_AD AD NA 5979_CR_A_0115
    472 HB_498_AD AD NA 5988_VC_A_0503
    473 HB_502_AD AD NA 5994_PF_A_1605
    474 HB_503_AD AD NA 5995_CR_A_2563
    475 HB_510_AD AD NA 6017_CR_A_0048
    476 HB_514_AD AD NA 6025_VC_A_0506
    477 HB_517_AD AD NA 6031_VC_A_0258
    478 HB_520_AD AD NA 6035_VC_A_1621
    479 HB_523_AD AD NA 6038_VC_A_0261
    480 HB_524_AD AD NA 6042_VC_A_1156
    481 HB_525_AD AD NA 6044_VC_A_0264
    482 HB_531_AD AD NA 6056_CR_A_0999
    483 HB_533_AD AD NA 6061_PF_A_1650
    484 HB_534_AD AD NA 6066_VC_A_0270
    485 HB_535_AD AD NA 6067_PF_A_1452
    486 HB_536_AD AD NA 6068_VC_A_0273
    487 HB_545_AD AD NA 6102_CR_A_1661
    488 HB_546_AD AD NA 6107_CR_A_0055
    489 HB_550_AD AD NA 6120_VC_A_0058
    490 HB_552_AD AD NA 6126_VC_A_1675
    491 HB_553_AD AD NA 6129_PF_A_0274
    492 HB_554_AD AD NA 6130_VC_A_1678
    493 HB_555_AD AD NA 6131_CR_A_0510
    494 HB_556_AD AD NA 6132_CR_A_0513
    495 HB_558_AD AD NA 6137_VC_A_1681
    496 HB_564_AD AD NA 6153_VC_A_1465
    497 HB_565_AD AD NA 6154_VC_A_1468
    498 HB_566_AD AD NA 6157_VC_A_0062
    499 HB_568_AD AD NA 6164_CR_A_1005
    500 HB_571_AD AD NA 6171_CR_A_0065
    501 HB_573_AD AD NA 6174_VC_A_0068
    502 HB_576_AD AD NA 6180_CR_A_0281
    503 HB_583_AD AD NA 6194_VC_A_0071
    504 HB_585_AD AD NA 6198_VC_A_0073
    505 HB_590_AD AD NA 6215_VC_A_0518
    506 HB_591_AD AD NA 6216_VC_A_1476
    507 HB_592_AD AD NA 6218_CR_A_0522
    508 HB_594_AD AD NA 6223_VC_A_0288
    509 HB_596_AD AD NA 6226_CR_A_0076
    510 HB_597_AD AD NA 6227_VC_A_0080
    511 HB_598_AD AD NA 6231_VC_A_1479
    512 HB_605_AD AD NA 6261_VC_A_0084
    513 HB_608_AD AD NA 6268_CR_A_0525
    514 HB_611_AD AD NA 6279_VC_A_0089
    515 HB_612_AD AD NA 6280_VC_A_0091
    516 HB_613_AD AD NA 6281_CR_A_0528
    517 HB_621_AD AD NA 6308_VC_A_1503
    518 HB_623_AD AD NA 6311_CR_A_0531
    519 HB_624_AD AD NA 6312_CR_A_0534
    520 HB_630_AD AD NA 6324_PF_A_1514
    521 HB_633_AD AD NA 6332_VC_A_1518
    522 HB_634_AD AD NA 6335_VC_A_0536
    523 HB_635_AD AD NA 6336_CR_A_0290
    524 HB_636_AD AD NA 6338_VC_A_0539
    525 HB_642_AD AD NA 6358_VC_A_0545
    526 HB_652_AD AD NA 6387_VC_A_0093
    527 HB_657_AD AD NA 6394_VC_A_0551
    528 HB_664_AD AD NA 6416_VC_A_1095
    529 HB_666_AD AD NA 6422_CR_A_0555
    530 HB_669_AD AD NA 6431_VC_A_0294
    531 HB_674_AD AD NA 6449_VC_A_1183
    532 HB_680_AD AD NA 6458_CR_A_2570
    533 HB_685_AD AD NA 6481_VC_A_0560
    534 HB_690_AD AD NA 6489_CR_A_0100
    535 HB_696_AD AD NA 6511_VC_A_1119
    536 HB_698_AD AD NA 6515_CR_A_0564
    537 HB_699_AD AD NA 6518_VC_A_0103
    538 HB_703_AD AD NA 6523_VC_A_0107
    539 HB_704_AD AD NA 6530_VC_A_0112
    540 HB_706_AD AD NA 6534_VC_A_0306
    541 HB_712_AD AD NA 6546_PF_A_1194
    542 HB_713_AD AD NA 6548_PF_A_1541
    543 HB_715_AD AD NA 6550_VC_A_1201
    544 HB_718_AD AD NA 6554_PF_A_1203
    545 HB_720_AD AD NA 6559_PF_A_2287
    546 HB_722_AD AD NA 6561_CR_A_2582
    547 HB_723_AD AD NA 6562_PF_A_2290
    548 HB_724_AD AD NA 6564_CR_A_2585
    549 HB_727_AD AD NA 6575_CR_A_2298
    550 HB_728_AD AD NA 6577_PF_A_2299
    551 HB_729_AD AD NA 6578_PF_A_2302
    552 HB_731_AD AD NA 6582_VC_A_1207
    553 HB_733_AD AD NA 6585_VC_A_1210
    554 HB_736_AD AD NA 6590_PF_A_1215
    555 HB_743_AD AD NA 6603_PF_A_1448
    556 HB_745_AD AD NA 6610_PF_A_1227
    557 HB_746_AD AD NA 6612_PF_A_2308
    558 HB_749_AD AD NA 6617_VC_A_2587
    559 HB_751_AD AD NA 6629_VC_A_2330
    560 HB_752_AD AD NA 6630_VC_A_2590
    561 HB_753_AD AD NA 6632_PF_A_2332
    562 HB_754_AD AD NA 6637_VC_A_2596
    563 HB_755_AD AD NA 6638_VC_A_2599
    564 HB_756_AD AD NA 6639_VC_A_2336
    565 HB_757_AD AD NA 6641_PF_A_2338
    566 HB_763_AD AD NA 6654_VC_A_1237
    567 HB_773_AD AD NA 6681_VC_A_1252
    568 HB_775_AD AD NA 6693_VC_A_2348
    569 HB_776_AD AD NA 6694_VC_A_2351
    570 HB_777_AD AD NA 6695_PF_A_2353
    571 HB_779_AD AD NA 6699_PF_A_2359
    572 HB_781_AD AD NA 6708_VC_A_2366
    573 HB_782_AD AD NA 6776_PF_A_2607
    574 HB_783_AD AD NA 6778_PF_A_2368
    575 HB_784_AD AD NA 6779_PF_A_2371
    576 HB_785_AD AD NA 6780_PF_A_2374
    577 HB_786_AD AD NA 6782_PF_A_2377
    578 HB_787_AD AD NA 6784_PF_A_2380
    579 HB_788_AD AD NA 6785_CR_A_2385
    580 HB_789_AD AD NA 6787_CR_A_2388
    581 HB_791_AD AD NA 6790_PF_A_2392
    582 HB_792_AD AD NA 6791_PF_A_2395
    583 HB_793_AD AD NA 6793_PF_A_2398
    584 HB_794_AD AD NA 6794_PF_A_2401
    585 HB_795_AD AD NA 6797_PF_A_2404
    586 HB_796_AD AD NA 6798_PF_A_2407
    587 HB_797_AD AD NA 6799_VC_A_2411
    588 HB_798_AD AD NA 6801_VC_A_2414
    589 HB_799_AD AD NA 6803_VC_A_2417
    590 HB_801_AD AD NA 6809_PF_A_2422
    591 HB_803_AD AD NA 6818_CR_A_2430
    +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HBTRC-MLPFC_N_0611.html b/web/dbdoc/HBTRC-MLPFC_N_0611.html new file mode 100755 index 00000000..8c63ad77 --- /dev/null +++ b/web/dbdoc/HBTRC-MLPFC_N_0611.html @@ -0,0 +1,831 @@ + + + +HBTRC-MLC Human Prefrontal Cortex Agilent Normal (Jun11) mlratio + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    HBTRC-MLC Human Prefrontal Cortex Agilent Normal (Jun11) mlratiomodify this page

    + + Accession number: GN367

    +

    +

    +

    Summary:

    +

    This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

    +
    +

    +

    +

    +

    Data Source Acknowledgements:

    +

    +

    +Species: Human
    +Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
    +Disease: Neurological Disease
    +Investigator: Francine Benes/ Eric Schadt
    +Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
    +Approximate Number Subjects: 803

    +

    +The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/). +

    +

    This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. +Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines. +

    +
    +

    +

    +

    +

    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Series Cerebellum in GN Condition Gender BioSample Name
    1 HB_029_N N NA 3405_VC_N_0859
    2 HB_058_N N NA 4021_VC_N_0854
    3 HB_064_N N NA 4338_VC_N_0861
    4 HB_086_N N NA 4729_PF_N_0756
    5 HB_091_N N NA 4741_VC_N_0864
    6 HB_092_N N NA 4744_VC_N_0865
    7 HB_102_N N NA 4810_VC_N_0869
    8 HB_119_N N NA 4872_VC_N_0878
    9 HB_147_N N NA 5021_VC_N_0852
    10 HB_161_N N NA 5077_VC_N_0851
    11 HB_162_N N NA 5081_VC_N_1021
    12 HB_166_N N NA 5095_VC_N_1024
    13 HB_183_N N NA 5162_VC_N_0850
    14 HB_206_N N NA 5245_VC_N_0849
    15 HB_215_N N NA 5270_VC_N_0848
    16 HB_218_N N NA 5276_CR_N_0912
    17 HB_223_N N NA 5287_VC_N_0916
    18 HB_226_N N NA 5294_VC_N_0919
    19 HB_241_N N NA 5326_CR_N_0652
    20 HB_243_N N NA 5333_VC_N_1262
    21 HB_247_N N NA 5341_VC_N_0923
    22 HB_257_N N NA 5368_PF_N_1032
    23 HB_264_N N NA 5384_VC_N_0924
    24 HB_295_N N NA 5452_VC_N_1268
    25 HB_300_N N NA 5463_VC_N_0845
    26 HB_311_N N NA 5489_CR_N_0942
    27 HB_324_N N NA 5531_VC_N_0844
    28 HB_332_N N NA 5547_VC_N_0843
    29 HB_340_N N NA 5568_VC_N_0842
    30 HB_360_N N NA 5619_CR_N_0645
    31 HB_365_N N NA 5632_VC_N_0838
    32 HB_367_N N NA 5637_VC_N_0837
    33 HB_382_N N NA 5684_PF_N_1270
    34 HB_396_N N NA 5718_VC_N_0956
    35 HB_398_N N NA 5722_VC_N_1044
    36 HB_400_N N NA 5726_VC_N_0834_Bis
    37 HB_403_N N NA 5734_VC_N_0833
    38 HB_414_N N NA 5772_VC_N_0832_Bis
    39 HB_416_N N NA 5778_CR_N_0962
    40 HB_418_N N NA 5789_PF_N_1273
    41 HB_421_N N NA 5799_VC_N_1058
    42 HB_423_N N NA 5803_VC_N_0966
    43 HB_426_N N NA 5806_PF_N_1064
    44 HB_427_N N NA 5810_CR_N_0636
    45 HB_431_N N NA 5823_VC_N_0829
    46 HB_432_N N NA 5826_VC_N_0828
    47 HB_433_N N NA 5827_VC_N_0827
    48 HB_436_N N NA 5832_PF_N_1145
    49 HB_443_N N NA 5852_VC_N_0826
    50 HB_446_N N NA 5859_VC_N_0825
    51 HB_449_N N NA 5866_VC_N_0824
    52 HB_450_N N NA 5867_VC_N_1277
    53 HB_453_N N NA 5876_VC_N_0823
    54 HB_462_N N NA 5903_VC_N_0822
    55 HB_464_N N NA 5905_VC_N_0820
    56 HB_468_N N NA 5912_VC_N_1286
    57 HB_472_N N NA 5925_VC_N_1289
    58 HB_475_N N NA 5936_VC_N_0979
    59 HB_476_N N NA 5938_VC_N_0819
    60 HB_480_N N NA 5946_VC_N_0985
    61 HB_485_N N NA 5959_VC_N_0818
    62 HB_486_N N NA 5963_VC_N_0987
    63 HB_495_N N NA 5980_VC_N_0989
    64 HB_497_N N NA 5985_VC_N_0990
    65 HB_500_N N NA 5990_VC_N_0817
    66 HB_501_N N NA 5991_VC_N_0816
    67 HB_504_N N NA 5996_VC_N_0815
    68 HB_505_N N NA 5998_VC_N_0814
    69 HB_507_N N NA 6006_VC_N_0813
    70 HB_508_N N NA 6007_CR_N_0618
    71 HB_509_N N NA 6008_PF_N_1081
    72 HB_512_N N NA 6023_PF_N_1155
    73 HB_516_N N NA 6030_VC_N_0810
    74 HB_519_N N NA 6034_VC_N_0809
    75 HB_532_N N NA 6060_VC_N_1292
    76 HB_541_N N NA 6092_VC_N_1001
    77 HB_542_N N NA 6096_VC_N_0807
    78 HB_544_N N NA 6101_CR_N_1161
    79 HB_547_N N NA 6110_VC_N_1295
    80 HB_551_N N NA 6124_VC_N_0806
    81 HB_557_N N NA 6134_PF_N_1297
    82 HB_560_N N NA 6142_VC_N_0805
    83 HB_569_N N NA 6166_VC_N_0804
    84 HB_570_N N NA 6170_VC_N_0803
    85 HB_572_N N NA 6172_VC_N_1008
    86 HB_577_N N NA 6182_VC_N_1166
    87 HB_579_N N NA 6187_CR_N_0607
    88 HB_581_N N NA 6191_VC_N_1010
    89 HB_584_N N NA 6196_CR_N_0605
    90 HB_586_N N NA 6200_VC_N_0799
    91 HB_587_N N NA 6206_PF_N_1176
    92 HB_589_N N NA 6213_VC_N_0798
    93 HB_601_N N NA 6241_VC_N_0796
    94 HB_604_N N NA 6260_VC_N_0794
    95 HB_609_N N NA 6270_VC_N_0793
    96 HB_618_N N NA 6289_VC_N_0791
    97 HB_622_N N NA 6310_VC_N_0790
    98 HB_625_N N NA 6314_VC_N_0789
    99 HB_637_N N NA 6340_VC_N_0786
    100 HB_638_N N NA 6341_VC_N_0785
    101 HB_640_N N NA 6347_VC_N_0784
    102 HB_641_N N NA 6356_VC_N_0783
    103 HB_643_N N NA 6363_VC_N_0781
    104 HB_644_N N NA 6366_VC_N_0780
    105 HB_645_N N NA 6374_VC_N_0779
    106 HB_650_N N NA 6384_VC_N_0777
    107 HB_651_N N NA 6386_VC_N_0776
    108 HB_653_N N NA 6388_VC_N_0775
    109 HB_659_N N NA 6406_VC_N_1180
    110 HB_662_N N NA 6411_VC_N_0771
    111 HB_663_N N NA 6415_VC_N_0770
    112 HB_670_N N NA 6436_VC_N_0769
    113 HB_687_N N NA 6484_VC_N_0765
    114 HB_689_N N NA 6486_VC_N_0764
    115 HB_694_N N NA 6500_VC_N_0763
    116 HB_697_N N NA 6512_VC_N_0762
    117 HB_700_N N NA 6520_VC_N_0761
    118 HB_711_N N NA 6543_PF_N_1191
    119 HB_714_N N NA 6549_VC_N_1198
    120 HB_717_N N NA 6553_PF_N_2284
    121 HB_721_N N NA 6560_VC_N_2578
    122 HB_726_N N NA 6573_PF_N_2293
    123 HB_730_N N NA 6580_VC_N_2306
    124 HB_735_N N NA 6588_VC_N_1213
    125 HB_737_N N NA 6593_VC_N_1219
    126 HB_738_N N NA 6594_VC_N_1222
    127 HB_759_N N NA 6645_VC_N_1231
    128 HB_764_N N NA 6655_VC_N_1240
    129 HB_765_N N NA 6656_VC_N_1243
    130 HB_767_N N NA 6661_PF_N_2341
    131 HB_770_N N NA 6669_VC_N_1246
    132 HB_772_N N NA 6676_PF_N_1248
    133 HB_001_HD HD F 2028_CR_H_2282
    134 HB_003_HD HD F 2685_PF_H_2212
    135 HB_004_HD HD M 2706_CR_H_2432
    136 HB_006_HD HD M 2737_VC_H_2194
    137 HB_007_HD HD NA 2769_VC_H_2193
    138 HB_008_HD HD F 2790_CR_H_1890
    139 HB_009_HD HD NA 2879_VC_H_2192
    140 HB_010_HD HD M 2960_VC_H_2002
    141 HB_011_HD HD F 3053_VC_H_2001
    142 HB_012_HD HD F 3128_VC_H_1999
    143 HB_014_HD HD F 3149_PF_H_2110
    144 HB_015_HD HD F 3150_VC_H_1996
    145 HB_016_HD HD F 3177_VC_H_2191
    146 HB_017_HD HD NA 3195_VC_H_2190
    147 HB_018_HD HD M 3200_VC_H_2189
    148 HB_019_HD HD M 3209_VC_H_2188
    149 HB_020_HD HD M 3224_VC_H_1994
    150 HB_022_HD HD F 3242_PF_H_2105
    151 HB_024_HD HD NA 3272_VC_H_2186
    152 HB_027_HD HD M 3356_VC_H_2439
    153 HB_028_HD HD F 3394_PF_H_2104
    154 HB_031_HD HD M 3430_VC_H_1990
    155 HB_032_HD HD NA 3444_PF_H_2208
    156 HB_034_HD HD F 3482_VC_H_1987
    157 HB_036_HD HD M 3576_VC_H_1984
    158 HB_037_HD HD F 3579_VC_H_1983
    159 HB_038_HD HD F 3584_VC_H_2183
    160 HB_039_HD HD NA 3635_VC_H_2182
    161 HB_041_HD HD F 3695_CR_H_2267
    162 HB_042_HD HD M 3697_VC_H_1982
    163 HB_043_HD HD NA 3703_VC_H_2180
    164 HB_044_HD HD NA 3723_VC_H_2179
    165 HB_046_HD HD F 3735_VC_H_1981
    166 HB_050_HD HD M 3820_PF_H_2207
    167 HB_051_HD HD F 3849_CR_H_2262
    168 HB_054_HD HD M 3884_VC_H_2175
    169 HB_056_HD HD NA 4012_VC_H_2174
    170 HB_057_HD HD NA 4013_VC_H_2173
    171 HB_059_HD HD NA 4066_VC_H_2172
    172 HB_060_HD HD NA 4094_VC_H_2171
    173 HB_061_HD HD F 4116_VC_H_2170
    174 HB_062_HD HD NA 4121_VC_H_2169
    175 HB_063_HD HD NA 4215_VC_H_2167
    176 HB_065_HD HD M 4340_PF_H_2091
    177 HB_066_HD HD F 4344_VC_H_1977
    178 HB_067_HD HD M 4346_VC_H_2165
    179 HB_069_HD HD F 4356_VC_H_2164
    180 HB_070_HD HD NA 4386_CR_H_2249
    181 HB_072_HD HD NA 4404_VC_H_2161
    182 HB_073_HD HD F 4411_VC_H_1975
    183 HB_074_HD HD NA 4430_VC_H_2465
    184 HB_075_HD HD M 4470_VC_H_1974
    185 HB_076_HD HD F 4497_CR_H_1860
    186 HB_077_HD HD M 4509_CR_H_2244
    187 HB_079_HD HD M 4631_VC_H_1971
    188 HB_080_HD HD F 4653_PF_H_2083
    189 HB_081_HD HD NA 4678_CR_H_2242
    190 HB_084_HD HD M 4718_VC_H_2125
    191 HB_090_HD HD NA 4740_CR_H_2474
    192 HB_094_HD HD NA 4754_CR_H_2476
    193 HB_098_HD HD NA 4780_VC_H_2151
    194 HB_101_HD HD F 4809_VC_H_2148
    195 HB_105_HD HD NA 4819_CR_H_2238
    196 HB_106_HD HD F 4822_VC_H_1969
    197 HB_108_HD HD M 4826_VC_H_1968
    198 HB_109_HD HD M 4828_VC_H_2124
    199 HB_115_HD HD NA 4855_CR_H_2235
    200 HB_121_HD HD F 4902_VC_H_1967
    201 HB_129_HD HD NA 4938_VC_H_1966
    202 HB_141_HD HD F 4996_PF_H_2076
    203 HB_152_HD HD NA 5034_CR_H_2233
    204 HB_153_HD HD M 5043_VC_H_1960
    205 HB_159_HD HD M 5062_VC_H_1959
    206 HB_172_HD HD F 5114_PF_H_2070
    207 HB_175_HD HD M 5127_PF_H_2068
    208 HB_180_HD HD M 5148_VC_H_1944
    209 HB_185_HD HD F 5167_CR_H_2231
    210 HB_188_HD HD F 5172_VC_H_1951
    211 HB_191_HD HD M 5180_VC_H_1949
    212 HB_196_HD HD NA 5199_PF_H_2202
    213 HB_203_HD HD F 5228_PF_H_2059
    214 HB_207_HD HD NA 5248_PF_H_2201
    215 HB_228_HD HD F 5299_CR_H_2228
    216 HB_233_HD HD M 5312_VC_H_1938
    217 HB_235_HD HD F 5316_VC_H_1937
    218 HB_242_HD HD F 5328_PF_H_2048
    219 HB_266_HD HD M 5387_VC_H_1928
    220 HB_271_HD HD M 5394_PF_H_2039
    221 HB_272_HD HD F 5396_VC_H_1925
    222 HB_279_HD HD F 5409_VC_H_1924
    223 HB_294_HD HD M 5448_VC_H_1921
    224 HB_301_HD HD NA 5464_VC_H_1919
    225 HB_304_HD HD F 5471_VC_H_1918
    226 HB_321_HD HD NA 5522_PF_H_2199
    227 HB_361_HD HD F 5622_VC_H_2121
    228 HB_370_HD HD M 5645_VC_H_1904
    229 HB_371_HD HD F 5648_PF_H_2016
    230 HB_384_HD HD F 5688_PF_H_2012
    231 HB_390_HD HD M 5704_PF_H_2009
    232 HB_393_HD HD F 5709_VC_H_1895
    233 HB_402_HD HD F 5732_PF_H_2007
    234 HB_405_HD HD NA 5742_PF_H_2006
    235 HB_407_HD HD M 5745_PF_H_2005
    236 HB_408_HD HD M 5747_VC_H_1891
    237 HB_415_HD HD NA 5777_PF_H_1551
    238 HB_417_HD HD M 5784_PF_H_1554
    239 HB_424_HD HD M 5804_VC_H_1558
    240 HB_444_HD HD M 5856_VC_H_1567
    241 HB_457_HD HD M 5896_VC_H_1570
    242 HB_466_HD HD M 5910_PF_H_1572
    243 HB_478_HD HD M 5941_CR_H_1583
    244 HB_487_HD HD F 5964_VC_H_1597
    245 HB_511_HD HD M 6019_PF_H_2198
    246 HB_513_HD HD F 6024_VC_H_1612
    247 HB_515_HD HD F 6028_CR_H_1613
    248 HB_518_HD HD M 6033_VC_H_1618
    249 HB_522_HD HD M 6037_PF_H_1626
    250 HB_527_HD HD F 6047_VC_H_1639
    251 HB_528_HD HD M 6051_PF_H_1641
    252 HB_530_HD HD M 6054_VC_H_1648
    253 HB_537_HD HD F 6071_PF_H_1653
    254 HB_549_HD HD M 6119_CR_H_1670
    255 HB_593_HD HD NA 6219_CR_H_2567
    256 HB_610_HD HD NA 6275_PF_H_1692
    257 HB_616_HD HD F 6284_CR_H_1694
    258 HB_626_HD HD M 6315_VC_H_1702
    259 HB_639_HD HD F 6344_CR_H_1703
    260 HB_649_HD HD F 6382_CR_H_1709
    261 HB_661_HD HD M 6408_VC_H_1714
    262 HB_682_HD HD M 6467_PF_H_1725
    263 HB_683_HD HD M 6472_VC_H_1729
    264 HB_691_HD HD F 6493_VC_H_1732
    265 HB_692_HD HD M 6495_CR_H_1733
    266 HB_707_HD HD M 6535_PF_H_1737
    267 HB_709_HD HD F 6539_CR_H_1739
    268 HB_725_HD HD M 6572_PF_H_1746
    269 HB_732_HD HD F 6584_VC_H_1750
    270 HB_734_HD HD F 6587_CR_H_1751
    271 HB_748_HD HD NA 6615_VC_H_2315
    272 HB_750_HD HD NA 6628_PF_H_2326
    273 HB_758_HD HD NA 6643_VC_H_2602
    274 HB_760_HD HD M 6646_PF_H_1761
    275 HB_762_HD HD M 6650_VC_H_1765
    276 HB_766_HD HD M 6658_VC_H_1768
    277 HB_768_HD HD NA 6663_VC_H_1771
    278 HB_769_HD HD M 6666_VC_H_1774
    279 HB_774_HD HD NA 6689_PF_H_2344
    280 HB_778_HD HD NA 6696_PF_H_2356
    281 HB_780_HD HD NA 6704_PF_H_2362
    282 HB_790_HD HD NA 6788_PF_H_2389
    283 HB_800_HD HD NA 6807_PF_H_2419
    284 HB_802_HD HD NA 6811_PF_H_2425
    285 HB_045_AD AD NA 3734_CR_A_0122
    286 HB_048_AD AD NA 3791_CR_A_0128
    287 HB_053_AD AD NA 3877_CR_A_0134
    288 HB_055_AD AD NA 3893_VC_A_0142
    289 HB_068_AD AD NA 4349_VC_A_0148
    290 HB_082_AD AD NA 4712_CR_A_0309
    291 HB_085_AD AD NA 4726_VC_A_0311
    292 HB_087_AD AD NA 4730_CR_A_0315
    293 HB_089_AD AD NA 4733_VC_A_0320
    294 HB_093_AD AD NA 4749_VC_A_0323
    295 HB_095_AD AD NA 4759_CR_A_0327
    296 HB_097_AD AD NA 4773_CR_A_0866
    297 HB_099_AD AD NA 4785_VC_A_0332
    298 HB_100_AD AD NA 4795_VC_A_0335
    299 HB_103_AD AD NA 4811_VC_A_0341
    300 HB_104_AD AD NA 4813_CR_A_0345
    301 HB_112_AD AD NA 4842_VC_A_0870
    302 HB_113_AD AD NA 4850_CR_A_0351
    303 HB_114_AD AD NA 4852_CR_A_0354
    304 HB_117_AD AD NA 4868_VC_A_0874
    305 HB_122_AD AD NA 4904_CR_A_1132
    306 HB_123_AD AD NA 4905_VC_A_0884
    307 HB_124_AD AD NA 4916_VC_A_0886
    308 HB_125_AD AD NA 4917_CR_A_0360
    309 HB_126_AD AD NA 4921_VC_A_0362
    310 HB_128_AD AD NA 4936_CR_A_0369
    311 HB_130_AD AD NA 4939_VC_A_0888
    312 HB_131_AD AD NA 4944_CR_A_0889
    313 HB_132_AD AD NA 4946_CR_A_0372
    314 HB_134_AD AD NA 4951_CR_A_0891
    315 HB_135_AD AD NA 4953_VC_A_0893
    316 HB_136_AD AD NA 4965_VC_A_0160
    317 HB_137_AD AD NA 4966_VC_A_0374
    318 HB_138_AD AD NA 4969_VC_A_0895
    319 HB_140_AD AD NA 4993_CR_A_0896
    320 HB_146_AD AD NA 5018_CR_A_0384
    321 HB_148_AD AD NA 5022_VC_A_0386
    322 HB_150_AD AD NA 5031_VC_A_0392
    323 HB_151_AD AD NA 5033_CR_A_0396
    324 HB_154_AD AD NA 5048_VC_A_1321
    325 HB_155_AD AD NA 5056_VC_A_0398
    326 HB_156_AD AD NA 5057_VC_A_0163
    327 HB_157_AD AD NA 5059_VC_A_0401
    328 HB_158_AD AD NA 5061_PF_A_2612
    329 HB_160_AD AD NA 5064_PF_A_2615
    330 HB_165_AD AD NA 5092_CR_A_0899
    331 HB_168_AD AD NA 5097_VC_A_0407
    332 HB_170_AD AD NA 5101_VC_A_0410
    333 HB_174_AD AD NA 5124_PF_A_1343
    334 HB_179_AD AD NA 5145_VC_A_1351
    335 HB_181_AD AD NA 5152_CR_A_0414
    336 HB_184_AD AD NA 5166_VC_A_1354
    337 HB_194_AD AD NA 5193_VC_A_1360
    338 HB_197_AD AD NA 5202_CR_A_1368
    339 HB_199_AD AD NA 5205_VC_A_0166
    340 HB_200_AD AD NA 5210_VC_A_0905
    341 HB_205_AD AD NA 5235_VC_A_0419
    342 HB_208_AD AD NA 5249_VC_A_0422
    343 HB_209_AD AD NA 5252_VC_A_0907
    344 HB_211_AD AD NA 5257_VC_A_0169
    345 HB_216_AD AD NA 5272_VC_A_0425
    346 HB_219_AD AD NA 5279_CR_A_0147
    347 HB_221_AD AD NA 5283_VC_A_0145
    348 HB_222_AD AD NA 5285_VC_A_0141
    349 HB_224_AD AD NA 5288_VC_A_0428
    350 HB_230_AD AD NA 5301_VC_A_0174
    351 HB_231_AD AD NA 5305_VC_A_1384
    352 HB_232_AD AD NA 5310_CR_A_0176
    353 HB_234_AD AD NA 5313_PF_A_2618
    354 HB_236_AD AD NA 5317_PF_A_2624
    355 HB_238_AD AD NA 5322_CR_A_2632
    356 HB_240_AD AD NA 5325_VC_A_0137
    357 HB_244_AD AD NA 5337_VC_A_1387
    358 HB_245_AD AD NA 5339_VC_A_0181
    359 HB_250_AD AD NA 5346_VC_A_1393
    360 HB_251_AD AD NA 5350_VC_A_0184
    361 HB_252_AD AD NA 5355_VC_A_0133
    362 HB_253_AD AD NA 5359_CR_A_1395
    363 HB_258_AD AD NA 5370_PF_A_1400
    364 HB_259_AD AD NA 5371_PF_A_2636
    365 HB_260_AD AD NA 5375_VC_A_0188
    366 HB_263_AD AD NA 5381_VC_A_0022
    367 HB_265_AD AD NA 5385_VC_A_1402
    368 HB_267_AD AD NA 5389_VC_A_0928
    369 HB_268_AD AD NA 5390_CR_A_0151
    370 HB_273_AD AD NA 5400_PF_A_2645
    371 HB_274_AD AD NA 5401_VC_A_0931
    372 HB_275_AD AD NA 5404_PF_A_2648
    373 HB_276_AD AD NA 5406_VC_A_0933
    374 HB_277_AD AD NA 5407_PF_A_2651
    375 HB_280_AD AD NA 5412_VC_A_0935
    376 HB_281_AD AD NA 5413_PF_A_2657
    377 HB_283_AD AD NA 5419_VC_A_0937
    378 HB_284_AD AD NA 5420_VC_A_0939
    379 HB_285_AD AD NA 5421_CR_A_0432
    380 HB_286_AD AD NA 5423_PF_A_2660
    381 HB_288_AD AD NA 5425_PF_A_2666
    382 HB_289_AD AD NA 5426_VC_A_1405
    383 HB_290_AD AD NA 5433_VC_A_0434
    384 HB_296_AD AD NA 5456_PF_A_2675
    385 HB_299_AD AD NA 5461_VC_A_0192
    386 HB_302_AD AD NA 5465_PF_A_2678
    387 HB_303_AD AD NA 5469_VC_A_1417
    388 HB_305_AD AD NA 5479_PF_A_1421
    389 HB_306_AD AD NA 5480_VC_A_0437
    390 HB_307_AD AD NA 5482_VC_A_0028
    391 HB_308_AD AD NA 5483_VC_A_0941
    392 HB_309_AD AD NA 5487_CR_A_0441
    393 HB_310_AD AD NA 5488_CR_A_0194
    394 HB_312_AD AD NA 5500_VC_A_0198
    395 HB_313_AD AD NA 5502_PF_A_2684
    396 HB_315_AD AD NA 5513_PF_A_2687
    397 HB_316_AD AD NA 5516_PF_A_2690
    398 HB_317_AD AD NA 5517_PF_A_2693
    399 HB_318_AD AD NA 5518_CR_A_0030
    400 HB_319_AD AD NA 5519_CR_A_2695
    401 HB_320_AD AD NA 5520_PF_A_2699
    402 HB_322_AD AD NA 5527_VC_A_0945
    403 HB_325_AD AD NA 5532_PF_A_2702
    404 HB_328_AD AD NA 5541_PF_A_2705
    405 HB_330_AD AD NA 5544_VC_A_0201
    406 HB_334_AD AD NA 5554_VC_A_0452
    407 HB_335_AD AD NA 5557_VC_A_0950
    408 HB_337_AD AD NA 5560_VC_A_0204
    409 HB_342_AD AD NA 5571_PF_A_1430
    410 HB_345_AD AD NA 5583_PF_A_2708
    411 HB_347_AD AD NA 5589_PF_A_2714
    412 HB_349_AD AD NA 5592_PF_A_2717
    413 HB_352_AD AD NA 5604_VC_A_0037
    414 HB_353_AD AD NA 5607_PF_A_2723
    415 HB_356_AD AD NA 5615_VC_A_0041
    416 HB_357_AD AD NA 5616_CR_A_0127
    417 HB_358_AD AD NA 5617_CR_A_0456
    418 HB_359_AD AD NA 5618_CR_A_0044
    419 HB_362_AD AD NA 5625_CR_A_2495
    420 HB_363_AD AD NA 5626_CR_A_2498
    421 HB_364_AD AD NA 5629_CR_A_0390
    422 HB_369_AD AD NA 5643_VC_A_1143
    423 HB_373_AD AD NA 5654_VC_A_0047
    424 HB_375_AD AD NA 5660_CR_A_0462
    425 HB_376_AD AD NA 5661_VC_A_0464
    426 HB_377_AD AD NA 5667_VC_A_2509
    427 HB_378_AD AD NA 5668_VC_A_1438
    428 HB_383_AD AD NA 5686_CR_A_2728
    429 HB_386_AD AD NA 5695_VC_A_0953
    430 HB_389_AD AD NA 5700_VC_A_2514
    431 HB_391_AD AD NA 5705_CR_A_0474
    432 HB_392_AD AD NA 5706_VC_A_0476
    433 HB_394_AD AD NA 5713_VC_A_0479
    434 HB_397_AD AD NA 5721_CR_A_0210
    435 HB_404_AD AD NA 5735_CR_A_0489
    436 HB_406_AD AD NA 5744_CR_A_0960
    437 HB_409_AD AD NA 5749_CR_A_0159
    438 HB_410_AD AD NA 5751_CR_A_2518
    439 HB_411_AD AD NA 5755_CR_A_2731
    440 HB_413_AD AD NA 5766_VC_A_0214
    441 HB_419_AD AD NA 5790_VC_A_0217
    442 HB_420_AD AD NA 5796_CR_A_0964
    443 HB_428_AD AD NA 5811_CR_A_2524
    444 HB_429_AD AD NA 5819_CR_A_2527
    445 HB_430_AD AD NA 5822_CR_A_2530
    446 HB_434_AD AD NA 5828_CR_A_2533
    447 HB_435_AD AD NA 5831_CR_A_0222
    448 HB_437_AD AD NA 5839_CR_A_2539
    449 HB_438_AD AD NA 5843_CR_A_0227
    450 HB_439_AD AD NA 5845_CR_A_0230
    451 HB_441_AD AD NA 5849_CR_A_0233
    452 HB_442_AD AD NA 5850_CR_A_0495
    453 HB_445_AD AD NA 5858_CR_A_0969
    454 HB_448_AD AD NA 5864_CR_A_0974
    455 HB_451_AD AD NA 5871_CR_A_2542
    456 HB_454_AD AD NA 5879_CR_A_2545
    457 HB_455_AD AD NA 5887_CR_A_0976_Bis
    458 HB_459_AD AD NA 5898_CR_A_2548
    459 HB_460_AD AD NA 5900_VC_A_0237
    460 HB_461_AD AD NA 5901_CR_A_0239
    461 HB_469_AD AD NA 5914_CR_A_2554
    462 HB_471_AD AD NA 5922_VC_A_0246
    463 HB_473_AD AD NA 5927_CR_A_2560
    464 HB_474_AD AD NA 5933_VC_A_1071
    465 HB_477_AD AD NA 5939_CR_A_1151
    466 HB_479_AD AD NA 5945_VC_A_0983
    467 HB_484_AD AD NA 5956_CR_A_0123
    468 HB_489_AD AD NA 5968_VC_A_1075
    469 HB_491_AD AD NA 5971_CR_A_0119
    470 HB_492_AD AD NA 5972_VC_A_0251
    471 HB_494_AD AD NA 5979_CR_A_0115
    472 HB_498_AD AD NA 5988_VC_A_0503
    473 HB_502_AD AD NA 5994_PF_A_1605
    474 HB_503_AD AD NA 5995_CR_A_2563
    475 HB_510_AD AD NA 6017_CR_A_0048
    476 HB_514_AD AD NA 6025_VC_A_0506
    477 HB_517_AD AD NA 6031_VC_A_0258
    478 HB_520_AD AD NA 6035_VC_A_1621
    479 HB_523_AD AD NA 6038_VC_A_0261
    480 HB_524_AD AD NA 6042_VC_A_1156
    481 HB_525_AD AD NA 6044_VC_A_0264
    482 HB_531_AD AD NA 6056_CR_A_0999
    483 HB_533_AD AD NA 6061_PF_A_1650
    484 HB_534_AD AD NA 6066_VC_A_0270
    485 HB_535_AD AD NA 6067_PF_A_1452
    486 HB_536_AD AD NA 6068_VC_A_0273
    487 HB_545_AD AD NA 6102_CR_A_1661
    488 HB_546_AD AD NA 6107_CR_A_0055
    489 HB_550_AD AD NA 6120_VC_A_0058
    490 HB_552_AD AD NA 6126_VC_A_1675
    491 HB_553_AD AD NA 6129_PF_A_0274
    492 HB_554_AD AD NA 6130_VC_A_1678
    493 HB_555_AD AD NA 6131_CR_A_0510
    494 HB_556_AD AD NA 6132_CR_A_0513
    495 HB_558_AD AD NA 6137_VC_A_1681
    496 HB_564_AD AD NA 6153_VC_A_1465
    497 HB_565_AD AD NA 6154_VC_A_1468
    498 HB_566_AD AD NA 6157_VC_A_0062
    499 HB_568_AD AD NA 6164_CR_A_1005
    500 HB_571_AD AD NA 6171_CR_A_0065
    501 HB_573_AD AD NA 6174_VC_A_0068
    502 HB_576_AD AD NA 6180_CR_A_0281
    503 HB_583_AD AD NA 6194_VC_A_0071
    504 HB_585_AD AD NA 6198_VC_A_0073
    505 HB_590_AD AD NA 6215_VC_A_0518
    506 HB_591_AD AD NA 6216_VC_A_1476
    507 HB_592_AD AD NA 6218_CR_A_0522
    508 HB_594_AD AD NA 6223_VC_A_0288
    509 HB_596_AD AD NA 6226_CR_A_0076
    510 HB_597_AD AD NA 6227_VC_A_0080
    511 HB_598_AD AD NA 6231_VC_A_1479
    512 HB_605_AD AD NA 6261_VC_A_0084
    513 HB_608_AD AD NA 6268_CR_A_0525
    514 HB_611_AD AD NA 6279_VC_A_0089
    515 HB_612_AD AD NA 6280_VC_A_0091
    516 HB_613_AD AD NA 6281_CR_A_0528
    517 HB_621_AD AD NA 6308_VC_A_1503
    518 HB_623_AD AD NA 6311_CR_A_0531
    519 HB_624_AD AD NA 6312_CR_A_0534
    520 HB_630_AD AD NA 6324_PF_A_1514
    521 HB_633_AD AD NA 6332_VC_A_1518
    522 HB_634_AD AD NA 6335_VC_A_0536
    523 HB_635_AD AD NA 6336_CR_A_0290
    524 HB_636_AD AD NA 6338_VC_A_0539
    525 HB_642_AD AD NA 6358_VC_A_0545
    526 HB_652_AD AD NA 6387_VC_A_0093
    527 HB_657_AD AD NA 6394_VC_A_0551
    528 HB_664_AD AD NA 6416_VC_A_1095
    529 HB_666_AD AD NA 6422_CR_A_0555
    530 HB_669_AD AD NA 6431_VC_A_0294
    531 HB_674_AD AD NA 6449_VC_A_1183
    532 HB_680_AD AD NA 6458_CR_A_2570
    533 HB_685_AD AD NA 6481_VC_A_0560
    534 HB_690_AD AD NA 6489_CR_A_0100
    535 HB_696_AD AD NA 6511_VC_A_1119
    536 HB_698_AD AD NA 6515_CR_A_0564
    537 HB_699_AD AD NA 6518_VC_A_0103
    538 HB_703_AD AD NA 6523_VC_A_0107
    539 HB_704_AD AD NA 6530_VC_A_0112
    540 HB_706_AD AD NA 6534_VC_A_0306
    541 HB_712_AD AD NA 6546_PF_A_1194
    542 HB_713_AD AD NA 6548_PF_A_1541
    543 HB_715_AD AD NA 6550_VC_A_1201
    544 HB_718_AD AD NA 6554_PF_A_1203
    545 HB_720_AD AD NA 6559_PF_A_2287
    546 HB_722_AD AD NA 6561_CR_A_2582
    547 HB_723_AD AD NA 6562_PF_A_2290
    548 HB_724_AD AD NA 6564_CR_A_2585
    549 HB_727_AD AD NA 6575_CR_A_2298
    550 HB_728_AD AD NA 6577_PF_A_2299
    551 HB_729_AD AD NA 6578_PF_A_2302
    552 HB_731_AD AD NA 6582_VC_A_1207
    553 HB_733_AD AD NA 6585_VC_A_1210
    554 HB_736_AD AD NA 6590_PF_A_1215
    555 HB_743_AD AD NA 6603_PF_A_1448
    556 HB_745_AD AD NA 6610_PF_A_1227
    557 HB_746_AD AD NA 6612_PF_A_2308
    558 HB_749_AD AD NA 6617_VC_A_2587
    559 HB_751_AD AD NA 6629_VC_A_2330
    560 HB_752_AD AD NA 6630_VC_A_2590
    561 HB_753_AD AD NA 6632_PF_A_2332
    562 HB_754_AD AD NA 6637_VC_A_2596
    563 HB_755_AD AD NA 6638_VC_A_2599
    564 HB_756_AD AD NA 6639_VC_A_2336
    565 HB_757_AD AD NA 6641_PF_A_2338
    566 HB_763_AD AD NA 6654_VC_A_1237
    567 HB_773_AD AD NA 6681_VC_A_1252
    568 HB_775_AD AD NA 6693_VC_A_2348
    569 HB_776_AD AD NA 6694_VC_A_2351
    570 HB_777_AD AD NA 6695_PF_A_2353
    571 HB_779_AD AD NA 6699_PF_A_2359
    572 HB_781_AD AD NA 6708_VC_A_2366
    573 HB_782_AD AD NA 6776_PF_A_2607
    574 HB_783_AD AD NA 6778_PF_A_2368
    575 HB_784_AD AD NA 6779_PF_A_2371
    576 HB_785_AD AD NA 6780_PF_A_2374
    577 HB_786_AD AD NA 6782_PF_A_2377
    578 HB_787_AD AD NA 6784_PF_A_2380
    579 HB_788_AD AD NA 6785_CR_A_2385
    580 HB_789_AD AD NA 6787_CR_A_2388
    581 HB_791_AD AD NA 6790_PF_A_2392
    582 HB_792_AD AD NA 6791_PF_A_2395
    583 HB_793_AD AD NA 6793_PF_A_2398
    584 HB_794_AD AD NA 6794_PF_A_2401
    585 HB_795_AD AD NA 6797_PF_A_2404
    586 HB_796_AD AD NA 6798_PF_A_2407
    587 HB_797_AD AD NA 6799_VC_A_2411
    588 HB_798_AD AD NA 6801_VC_A_2414
    589 HB_799_AD AD NA 6803_VC_A_2417
    590 HB_801_AD AD NA 6809_PF_A_2422
    591 HB_803_AD AD NA 6818_CR_A_2430
    +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HBTRC-MLVC_0611.html b/web/dbdoc/HBTRC-MLVC_0611.html new file mode 100755 index 00000000..c131b493 --- /dev/null +++ b/web/dbdoc/HBTRC-MLVC_0611.html @@ -0,0 +1,830 @@ + + + +HBTRC-MLC Human Visual Cortex Agilent (Jun11) mlratio + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    HBTRC-MLC Human Visual Cortex Agilent (Jun11) mlratiomodify this page

    + + Accession number: GN327

    +

    +

    +

    Summary:

    +

    This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

    +
    +

    +

    +

    +

    Data Source Acknowledgements:

    +

    +

    +Species: Human
    +Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
    +Disease: Neurological Disease
    +Investigator: Francine Benes/ Eric Schadt
    +Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
    +Approximate Number Subjects: 803

    +

    +The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/). +

    +

    This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. +Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines. +

    +
    +

    +

    +

    +

    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Series Cerebellum in GN Condition Gender BioSample Name
    1 HB_029_N N NA 3405_VC_N_0859
    2 HB_058_N N NA 4021_VC_N_0854
    3 HB_064_N N NA 4338_VC_N_0861
    4 HB_086_N N NA 4729_PF_N_0756
    5 HB_091_N N NA 4741_VC_N_0864
    6 HB_092_N N NA 4744_VC_N_0865
    7 HB_102_N N NA 4810_VC_N_0869
    8 HB_119_N N NA 4872_VC_N_0878
    9 HB_147_N N NA 5021_VC_N_0852
    10 HB_161_N N NA 5077_VC_N_0851
    11 HB_162_N N NA 5081_VC_N_1021
    12 HB_166_N N NA 5095_VC_N_1024
    13 HB_183_N N NA 5162_VC_N_0850
    14 HB_206_N N NA 5245_VC_N_0849
    15 HB_215_N N NA 5270_VC_N_0848
    16 HB_218_N N NA 5276_CR_N_0912
    17 HB_223_N N NA 5287_VC_N_0916
    18 HB_226_N N NA 5294_VC_N_0919
    19 HB_241_N N NA 5326_CR_N_0652
    20 HB_243_N N NA 5333_VC_N_1262
    21 HB_247_N N NA 5341_VC_N_0923
    22 HB_257_N N NA 5368_PF_N_1032
    23 HB_264_N N NA 5384_VC_N_0924
    24 HB_295_N N NA 5452_VC_N_1268
    25 HB_300_N N NA 5463_VC_N_0845
    26 HB_311_N N NA 5489_CR_N_0942
    27 HB_324_N N NA 5531_VC_N_0844
    28 HB_332_N N NA 5547_VC_N_0843
    29 HB_340_N N NA 5568_VC_N_0842
    30 HB_360_N N NA 5619_CR_N_0645
    31 HB_365_N N NA 5632_VC_N_0838
    32 HB_367_N N NA 5637_VC_N_0837
    33 HB_382_N N NA 5684_PF_N_1270
    34 HB_396_N N NA 5718_VC_N_0956
    35 HB_398_N N NA 5722_VC_N_1044
    36 HB_400_N N NA 5726_VC_N_0834_Bis
    37 HB_403_N N NA 5734_VC_N_0833
    38 HB_414_N N NA 5772_VC_N_0832_Bis
    39 HB_416_N N NA 5778_CR_N_0962
    40 HB_418_N N NA 5789_PF_N_1273
    41 HB_421_N N NA 5799_VC_N_1058
    42 HB_423_N N NA 5803_VC_N_0966
    43 HB_426_N N NA 5806_PF_N_1064
    44 HB_427_N N NA 5810_CR_N_0636
    45 HB_431_N N NA 5823_VC_N_0829
    46 HB_432_N N NA 5826_VC_N_0828
    47 HB_433_N N NA 5827_VC_N_0827
    48 HB_436_N N NA 5832_PF_N_1145
    49 HB_443_N N NA 5852_VC_N_0826
    50 HB_446_N N NA 5859_VC_N_0825
    51 HB_449_N N NA 5866_VC_N_0824
    52 HB_450_N N NA 5867_VC_N_1277
    53 HB_453_N N NA 5876_VC_N_0823
    54 HB_462_N N NA 5903_VC_N_0822
    55 HB_464_N N NA 5905_VC_N_0820
    56 HB_468_N N NA 5912_VC_N_1286
    57 HB_472_N N NA 5925_VC_N_1289
    58 HB_475_N N NA 5936_VC_N_0979
    59 HB_476_N N NA 5938_VC_N_0819
    60 HB_480_N N NA 5946_VC_N_0985
    61 HB_485_N N NA 5959_VC_N_0818
    62 HB_486_N N NA 5963_VC_N_0987
    63 HB_495_N N NA 5980_VC_N_0989
    64 HB_497_N N NA 5985_VC_N_0990
    65 HB_500_N N NA 5990_VC_N_0817
    66 HB_501_N N NA 5991_VC_N_0816
    67 HB_504_N N NA 5996_VC_N_0815
    68 HB_505_N N NA 5998_VC_N_0814
    69 HB_507_N N NA 6006_VC_N_0813
    70 HB_508_N N NA 6007_CR_N_0618
    71 HB_509_N N NA 6008_PF_N_1081
    72 HB_512_N N NA 6023_PF_N_1155
    73 HB_516_N N NA 6030_VC_N_0810
    74 HB_519_N N NA 6034_VC_N_0809
    75 HB_532_N N NA 6060_VC_N_1292
    76 HB_541_N N NA 6092_VC_N_1001
    77 HB_542_N N NA 6096_VC_N_0807
    78 HB_544_N N NA 6101_CR_N_1161
    79 HB_547_N N NA 6110_VC_N_1295
    80 HB_551_N N NA 6124_VC_N_0806
    81 HB_557_N N NA 6134_PF_N_1297
    82 HB_560_N N NA 6142_VC_N_0805
    83 HB_569_N N NA 6166_VC_N_0804
    84 HB_570_N N NA 6170_VC_N_0803
    85 HB_572_N N NA 6172_VC_N_1008
    86 HB_577_N N NA 6182_VC_N_1166
    87 HB_579_N N NA 6187_CR_N_0607
    88 HB_581_N N NA 6191_VC_N_1010
    89 HB_584_N N NA 6196_CR_N_0605
    90 HB_586_N N NA 6200_VC_N_0799
    91 HB_587_N N NA 6206_PF_N_1176
    92 HB_589_N N NA 6213_VC_N_0798
    93 HB_601_N N NA 6241_VC_N_0796
    94 HB_604_N N NA 6260_VC_N_0794
    95 HB_609_N N NA 6270_VC_N_0793
    96 HB_618_N N NA 6289_VC_N_0791
    97 HB_622_N N NA 6310_VC_N_0790
    98 HB_625_N N NA 6314_VC_N_0789
    99 HB_637_N N NA 6340_VC_N_0786
    100 HB_638_N N NA 6341_VC_N_0785
    101 HB_640_N N NA 6347_VC_N_0784
    102 HB_641_N N NA 6356_VC_N_0783
    103 HB_643_N N NA 6363_VC_N_0781
    104 HB_644_N N NA 6366_VC_N_0780
    105 HB_645_N N NA 6374_VC_N_0779
    106 HB_650_N N NA 6384_VC_N_0777
    107 HB_651_N N NA 6386_VC_N_0776
    108 HB_653_N N NA 6388_VC_N_0775
    109 HB_659_N N NA 6406_VC_N_1180
    110 HB_662_N N NA 6411_VC_N_0771
    111 HB_663_N N NA 6415_VC_N_0770
    112 HB_670_N N NA 6436_VC_N_0769
    113 HB_687_N N NA 6484_VC_N_0765
    114 HB_689_N N NA 6486_VC_N_0764
    115 HB_694_N N NA 6500_VC_N_0763
    116 HB_697_N N NA 6512_VC_N_0762
    117 HB_700_N N NA 6520_VC_N_0761
    118 HB_711_N N NA 6543_PF_N_1191
    119 HB_714_N N NA 6549_VC_N_1198
    120 HB_717_N N NA 6553_PF_N_2284
    121 HB_721_N N NA 6560_VC_N_2578
    122 HB_726_N N NA 6573_PF_N_2293
    123 HB_730_N N NA 6580_VC_N_2306
    124 HB_735_N N NA 6588_VC_N_1213
    125 HB_737_N N NA 6593_VC_N_1219
    126 HB_738_N N NA 6594_VC_N_1222
    127 HB_759_N N NA 6645_VC_N_1231
    128 HB_764_N N NA 6655_VC_N_1240
    129 HB_765_N N NA 6656_VC_N_1243
    130 HB_767_N N NA 6661_PF_N_2341
    131 HB_770_N N NA 6669_VC_N_1246
    132 HB_772_N N NA 6676_PF_N_1248
    133 HB_001_HD HD F 2028_CR_H_2282
    134 HB_003_HD HD F 2685_PF_H_2212
    135 HB_004_HD HD M 2706_CR_H_2432
    136 HB_006_HD HD M 2737_VC_H_2194
    137 HB_007_HD HD NA 2769_VC_H_2193
    138 HB_008_HD HD F 2790_CR_H_1890
    139 HB_009_HD HD NA 2879_VC_H_2192
    140 HB_010_HD HD M 2960_VC_H_2002
    141 HB_011_HD HD F 3053_VC_H_2001
    142 HB_012_HD HD F 3128_VC_H_1999
    143 HB_014_HD HD F 3149_PF_H_2110
    144 HB_015_HD HD F 3150_VC_H_1996
    145 HB_016_HD HD F 3177_VC_H_2191
    146 HB_017_HD HD NA 3195_VC_H_2190
    147 HB_018_HD HD M 3200_VC_H_2189
    148 HB_019_HD HD M 3209_VC_H_2188
    149 HB_020_HD HD M 3224_VC_H_1994
    150 HB_022_HD HD F 3242_PF_H_2105
    151 HB_024_HD HD NA 3272_VC_H_2186
    152 HB_027_HD HD M 3356_VC_H_2439
    153 HB_028_HD HD F 3394_PF_H_2104
    154 HB_031_HD HD M 3430_VC_H_1990
    155 HB_032_HD HD NA 3444_PF_H_2208
    156 HB_034_HD HD F 3482_VC_H_1987
    157 HB_036_HD HD M 3576_VC_H_1984
    158 HB_037_HD HD F 3579_VC_H_1983
    159 HB_038_HD HD F 3584_VC_H_2183
    160 HB_039_HD HD NA 3635_VC_H_2182
    161 HB_041_HD HD F 3695_CR_H_2267
    162 HB_042_HD HD M 3697_VC_H_1982
    163 HB_043_HD HD NA 3703_VC_H_2180
    164 HB_044_HD HD NA 3723_VC_H_2179
    165 HB_046_HD HD F 3735_VC_H_1981
    166 HB_050_HD HD M 3820_PF_H_2207
    167 HB_051_HD HD F 3849_CR_H_2262
    168 HB_054_HD HD M 3884_VC_H_2175
    169 HB_056_HD HD NA 4012_VC_H_2174
    170 HB_057_HD HD NA 4013_VC_H_2173
    171 HB_059_HD HD NA 4066_VC_H_2172
    172 HB_060_HD HD NA 4094_VC_H_2171
    173 HB_061_HD HD F 4116_VC_H_2170
    174 HB_062_HD HD NA 4121_VC_H_2169
    175 HB_063_HD HD NA 4215_VC_H_2167
    176 HB_065_HD HD M 4340_PF_H_2091
    177 HB_066_HD HD F 4344_VC_H_1977
    178 HB_067_HD HD M 4346_VC_H_2165
    179 HB_069_HD HD F 4356_VC_H_2164
    180 HB_070_HD HD NA 4386_CR_H_2249
    181 HB_072_HD HD NA 4404_VC_H_2161
    182 HB_073_HD HD F 4411_VC_H_1975
    183 HB_074_HD HD NA 4430_VC_H_2465
    184 HB_075_HD HD M 4470_VC_H_1974
    185 HB_076_HD HD F 4497_CR_H_1860
    186 HB_077_HD HD M 4509_CR_H_2244
    187 HB_079_HD HD M 4631_VC_H_1971
    188 HB_080_HD HD F 4653_PF_H_2083
    189 HB_081_HD HD NA 4678_CR_H_2242
    190 HB_084_HD HD M 4718_VC_H_2125
    191 HB_090_HD HD NA 4740_CR_H_2474
    192 HB_094_HD HD NA 4754_CR_H_2476
    193 HB_098_HD HD NA 4780_VC_H_2151
    194 HB_101_HD HD F 4809_VC_H_2148
    195 HB_105_HD HD NA 4819_CR_H_2238
    196 HB_106_HD HD F 4822_VC_H_1969
    197 HB_108_HD HD M 4826_VC_H_1968
    198 HB_109_HD HD M 4828_VC_H_2124
    199 HB_115_HD HD NA 4855_CR_H_2235
    200 HB_121_HD HD F 4902_VC_H_1967
    201 HB_129_HD HD NA 4938_VC_H_1966
    202 HB_141_HD HD F 4996_PF_H_2076
    203 HB_152_HD HD NA 5034_CR_H_2233
    204 HB_153_HD HD M 5043_VC_H_1960
    205 HB_159_HD HD M 5062_VC_H_1959
    206 HB_172_HD HD F 5114_PF_H_2070
    207 HB_175_HD HD M 5127_PF_H_2068
    208 HB_180_HD HD M 5148_VC_H_1944
    209 HB_185_HD HD F 5167_CR_H_2231
    210 HB_188_HD HD F 5172_VC_H_1951
    211 HB_191_HD HD M 5180_VC_H_1949
    212 HB_196_HD HD NA 5199_PF_H_2202
    213 HB_203_HD HD F 5228_PF_H_2059
    214 HB_207_HD HD NA 5248_PF_H_2201
    215 HB_228_HD HD F 5299_CR_H_2228
    216 HB_233_HD HD M 5312_VC_H_1938
    217 HB_235_HD HD F 5316_VC_H_1937
    218 HB_242_HD HD F 5328_PF_H_2048
    219 HB_266_HD HD M 5387_VC_H_1928
    220 HB_271_HD HD M 5394_PF_H_2039
    221 HB_272_HD HD F 5396_VC_H_1925
    222 HB_279_HD HD F 5409_VC_H_1924
    223 HB_294_HD HD M 5448_VC_H_1921
    224 HB_301_HD HD NA 5464_VC_H_1919
    225 HB_304_HD HD F 5471_VC_H_1918
    226 HB_321_HD HD NA 5522_PF_H_2199
    227 HB_361_HD HD F 5622_VC_H_2121
    228 HB_370_HD HD M 5645_VC_H_1904
    229 HB_371_HD HD F 5648_PF_H_2016
    230 HB_384_HD HD F 5688_PF_H_2012
    231 HB_390_HD HD M 5704_PF_H_2009
    232 HB_393_HD HD F 5709_VC_H_1895
    233 HB_402_HD HD F 5732_PF_H_2007
    234 HB_405_HD HD NA 5742_PF_H_2006
    235 HB_407_HD HD M 5745_PF_H_2005
    236 HB_408_HD HD M 5747_VC_H_1891
    237 HB_415_HD HD NA 5777_PF_H_1551
    238 HB_417_HD HD M 5784_PF_H_1554
    239 HB_424_HD HD M 5804_VC_H_1558
    240 HB_444_HD HD M 5856_VC_H_1567
    241 HB_457_HD HD M 5896_VC_H_1570
    242 HB_466_HD HD M 5910_PF_H_1572
    243 HB_478_HD HD M 5941_CR_H_1583
    244 HB_487_HD HD F 5964_VC_H_1597
    245 HB_511_HD HD M 6019_PF_H_2198
    246 HB_513_HD HD F 6024_VC_H_1612
    247 HB_515_HD HD F 6028_CR_H_1613
    248 HB_518_HD HD M 6033_VC_H_1618
    249 HB_522_HD HD M 6037_PF_H_1626
    250 HB_527_HD HD F 6047_VC_H_1639
    251 HB_528_HD HD M 6051_PF_H_1641
    252 HB_530_HD HD M 6054_VC_H_1648
    253 HB_537_HD HD F 6071_PF_H_1653
    254 HB_549_HD HD M 6119_CR_H_1670
    255 HB_593_HD HD NA 6219_CR_H_2567
    256 HB_610_HD HD NA 6275_PF_H_1692
    257 HB_616_HD HD F 6284_CR_H_1694
    258 HB_626_HD HD M 6315_VC_H_1702
    259 HB_639_HD HD F 6344_CR_H_1703
    260 HB_649_HD HD F 6382_CR_H_1709
    261 HB_661_HD HD M 6408_VC_H_1714
    262 HB_682_HD HD M 6467_PF_H_1725
    263 HB_683_HD HD M 6472_VC_H_1729
    264 HB_691_HD HD F 6493_VC_H_1732
    265 HB_692_HD HD M 6495_CR_H_1733
    266 HB_707_HD HD M 6535_PF_H_1737
    267 HB_709_HD HD F 6539_CR_H_1739
    268 HB_725_HD HD M 6572_PF_H_1746
    269 HB_732_HD HD F 6584_VC_H_1750
    270 HB_734_HD HD F 6587_CR_H_1751
    271 HB_748_HD HD NA 6615_VC_H_2315
    272 HB_750_HD HD NA 6628_PF_H_2326
    273 HB_758_HD HD NA 6643_VC_H_2602
    274 HB_760_HD HD M 6646_PF_H_1761
    275 HB_762_HD HD M 6650_VC_H_1765
    276 HB_766_HD HD M 6658_VC_H_1768
    277 HB_768_HD HD NA 6663_VC_H_1771
    278 HB_769_HD HD M 6666_VC_H_1774
    279 HB_774_HD HD NA 6689_PF_H_2344
    280 HB_778_HD HD NA 6696_PF_H_2356
    281 HB_780_HD HD NA 6704_PF_H_2362
    282 HB_790_HD HD NA 6788_PF_H_2389
    283 HB_800_HD HD NA 6807_PF_H_2419
    284 HB_802_HD HD NA 6811_PF_H_2425
    285 HB_045_AD AD NA 3734_CR_A_0122
    286 HB_048_AD AD NA 3791_CR_A_0128
    287 HB_053_AD AD NA 3877_CR_A_0134
    288 HB_055_AD AD NA 3893_VC_A_0142
    289 HB_068_AD AD NA 4349_VC_A_0148
    290 HB_082_AD AD NA 4712_CR_A_0309
    291 HB_085_AD AD NA 4726_VC_A_0311
    292 HB_087_AD AD NA 4730_CR_A_0315
    293 HB_089_AD AD NA 4733_VC_A_0320
    294 HB_093_AD AD NA 4749_VC_A_0323
    295 HB_095_AD AD NA 4759_CR_A_0327
    296 HB_097_AD AD NA 4773_CR_A_0866
    297 HB_099_AD AD NA 4785_VC_A_0332
    298 HB_100_AD AD NA 4795_VC_A_0335
    299 HB_103_AD AD NA 4811_VC_A_0341
    300 HB_104_AD AD NA 4813_CR_A_0345
    301 HB_112_AD AD NA 4842_VC_A_0870
    302 HB_113_AD AD NA 4850_CR_A_0351
    303 HB_114_AD AD NA 4852_CR_A_0354
    304 HB_117_AD AD NA 4868_VC_A_0874
    305 HB_122_AD AD NA 4904_CR_A_1132
    306 HB_123_AD AD NA 4905_VC_A_0884
    307 HB_124_AD AD NA 4916_VC_A_0886
    308 HB_125_AD AD NA 4917_CR_A_0360
    309 HB_126_AD AD NA 4921_VC_A_0362
    310 HB_128_AD AD NA 4936_CR_A_0369
    311 HB_130_AD AD NA 4939_VC_A_0888
    312 HB_131_AD AD NA 4944_CR_A_0889
    313 HB_132_AD AD NA 4946_CR_A_0372
    314 HB_134_AD AD NA 4951_CR_A_0891
    315 HB_135_AD AD NA 4953_VC_A_0893
    316 HB_136_AD AD NA 4965_VC_A_0160
    317 HB_137_AD AD NA 4966_VC_A_0374
    318 HB_138_AD AD NA 4969_VC_A_0895
    319 HB_140_AD AD NA 4993_CR_A_0896
    320 HB_146_AD AD NA 5018_CR_A_0384
    321 HB_148_AD AD NA 5022_VC_A_0386
    322 HB_150_AD AD NA 5031_VC_A_0392
    323 HB_151_AD AD NA 5033_CR_A_0396
    324 HB_154_AD AD NA 5048_VC_A_1321
    325 HB_155_AD AD NA 5056_VC_A_0398
    326 HB_156_AD AD NA 5057_VC_A_0163
    327 HB_157_AD AD NA 5059_VC_A_0401
    328 HB_158_AD AD NA 5061_PF_A_2612
    329 HB_160_AD AD NA 5064_PF_A_2615
    330 HB_165_AD AD NA 5092_CR_A_0899
    331 HB_168_AD AD NA 5097_VC_A_0407
    332 HB_170_AD AD NA 5101_VC_A_0410
    333 HB_174_AD AD NA 5124_PF_A_1343
    334 HB_179_AD AD NA 5145_VC_A_1351
    335 HB_181_AD AD NA 5152_CR_A_0414
    336 HB_184_AD AD NA 5166_VC_A_1354
    337 HB_194_AD AD NA 5193_VC_A_1360
    338 HB_197_AD AD NA 5202_CR_A_1368
    339 HB_199_AD AD NA 5205_VC_A_0166
    340 HB_200_AD AD NA 5210_VC_A_0905
    341 HB_205_AD AD NA 5235_VC_A_0419
    342 HB_208_AD AD NA 5249_VC_A_0422
    343 HB_209_AD AD NA 5252_VC_A_0907
    344 HB_211_AD AD NA 5257_VC_A_0169
    345 HB_216_AD AD NA 5272_VC_A_0425
    346 HB_219_AD AD NA 5279_CR_A_0147
    347 HB_221_AD AD NA 5283_VC_A_0145
    348 HB_222_AD AD NA 5285_VC_A_0141
    349 HB_224_AD AD NA 5288_VC_A_0428
    350 HB_230_AD AD NA 5301_VC_A_0174
    351 HB_231_AD AD NA 5305_VC_A_1384
    352 HB_232_AD AD NA 5310_CR_A_0176
    353 HB_234_AD AD NA 5313_PF_A_2618
    354 HB_236_AD AD NA 5317_PF_A_2624
    355 HB_238_AD AD NA 5322_CR_A_2632
    356 HB_240_AD AD NA 5325_VC_A_0137
    357 HB_244_AD AD NA 5337_VC_A_1387
    358 HB_245_AD AD NA 5339_VC_A_0181
    359 HB_250_AD AD NA 5346_VC_A_1393
    360 HB_251_AD AD NA 5350_VC_A_0184
    361 HB_252_AD AD NA 5355_VC_A_0133
    362 HB_253_AD AD NA 5359_CR_A_1395
    363 HB_258_AD AD NA 5370_PF_A_1400
    364 HB_259_AD AD NA 5371_PF_A_2636
    365 HB_260_AD AD NA 5375_VC_A_0188
    366 HB_263_AD AD NA 5381_VC_A_0022
    367 HB_265_AD AD NA 5385_VC_A_1402
    368 HB_267_AD AD NA 5389_VC_A_0928
    369 HB_268_AD AD NA 5390_CR_A_0151
    370 HB_273_AD AD NA 5400_PF_A_2645
    371 HB_274_AD AD NA 5401_VC_A_0931
    372 HB_275_AD AD NA 5404_PF_A_2648
    373 HB_276_AD AD NA 5406_VC_A_0933
    374 HB_277_AD AD NA 5407_PF_A_2651
    375 HB_280_AD AD NA 5412_VC_A_0935
    376 HB_281_AD AD NA 5413_PF_A_2657
    377 HB_283_AD AD NA 5419_VC_A_0937
    378 HB_284_AD AD NA 5420_VC_A_0939
    379 HB_285_AD AD NA 5421_CR_A_0432
    380 HB_286_AD AD NA 5423_PF_A_2660
    381 HB_288_AD AD NA 5425_PF_A_2666
    382 HB_289_AD AD NA 5426_VC_A_1405
    383 HB_290_AD AD NA 5433_VC_A_0434
    384 HB_296_AD AD NA 5456_PF_A_2675
    385 HB_299_AD AD NA 5461_VC_A_0192
    386 HB_302_AD AD NA 5465_PF_A_2678
    387 HB_303_AD AD NA 5469_VC_A_1417
    388 HB_305_AD AD NA 5479_PF_A_1421
    389 HB_306_AD AD NA 5480_VC_A_0437
    390 HB_307_AD AD NA 5482_VC_A_0028
    391 HB_308_AD AD NA 5483_VC_A_0941
    392 HB_309_AD AD NA 5487_CR_A_0441
    393 HB_310_AD AD NA 5488_CR_A_0194
    394 HB_312_AD AD NA 5500_VC_A_0198
    395 HB_313_AD AD NA 5502_PF_A_2684
    396 HB_315_AD AD NA 5513_PF_A_2687
    397 HB_316_AD AD NA 5516_PF_A_2690
    398 HB_317_AD AD NA 5517_PF_A_2693
    399 HB_318_AD AD NA 5518_CR_A_0030
    400 HB_319_AD AD NA 5519_CR_A_2695
    401 HB_320_AD AD NA 5520_PF_A_2699
    402 HB_322_AD AD NA 5527_VC_A_0945
    403 HB_325_AD AD NA 5532_PF_A_2702
    404 HB_328_AD AD NA 5541_PF_A_2705
    405 HB_330_AD AD NA 5544_VC_A_0201
    406 HB_334_AD AD NA 5554_VC_A_0452
    407 HB_335_AD AD NA 5557_VC_A_0950
    408 HB_337_AD AD NA 5560_VC_A_0204
    409 HB_342_AD AD NA 5571_PF_A_1430
    410 HB_345_AD AD NA 5583_PF_A_2708
    411 HB_347_AD AD NA 5589_PF_A_2714
    412 HB_349_AD AD NA 5592_PF_A_2717
    413 HB_352_AD AD NA 5604_VC_A_0037
    414 HB_353_AD AD NA 5607_PF_A_2723
    415 HB_356_AD AD NA 5615_VC_A_0041
    416 HB_357_AD AD NA 5616_CR_A_0127
    417 HB_358_AD AD NA 5617_CR_A_0456
    418 HB_359_AD AD NA 5618_CR_A_0044
    419 HB_362_AD AD NA 5625_CR_A_2495
    420 HB_363_AD AD NA 5626_CR_A_2498
    421 HB_364_AD AD NA 5629_CR_A_0390
    422 HB_369_AD AD NA 5643_VC_A_1143
    423 HB_373_AD AD NA 5654_VC_A_0047
    424 HB_375_AD AD NA 5660_CR_A_0462
    425 HB_376_AD AD NA 5661_VC_A_0464
    426 HB_377_AD AD NA 5667_VC_A_2509
    427 HB_378_AD AD NA 5668_VC_A_1438
    428 HB_383_AD AD NA 5686_CR_A_2728
    429 HB_386_AD AD NA 5695_VC_A_0953
    430 HB_389_AD AD NA 5700_VC_A_2514
    431 HB_391_AD AD NA 5705_CR_A_0474
    432 HB_392_AD AD NA 5706_VC_A_0476
    433 HB_394_AD AD NA 5713_VC_A_0479
    434 HB_397_AD AD NA 5721_CR_A_0210
    435 HB_404_AD AD NA 5735_CR_A_0489
    436 HB_406_AD AD NA 5744_CR_A_0960
    437 HB_409_AD AD NA 5749_CR_A_0159
    438 HB_410_AD AD NA 5751_CR_A_2518
    439 HB_411_AD AD NA 5755_CR_A_2731
    440 HB_413_AD AD NA 5766_VC_A_0214
    441 HB_419_AD AD NA 5790_VC_A_0217
    442 HB_420_AD AD NA 5796_CR_A_0964
    443 HB_428_AD AD NA 5811_CR_A_2524
    444 HB_429_AD AD NA 5819_CR_A_2527
    445 HB_430_AD AD NA 5822_CR_A_2530
    446 HB_434_AD AD NA 5828_CR_A_2533
    447 HB_435_AD AD NA 5831_CR_A_0222
    448 HB_437_AD AD NA 5839_CR_A_2539
    449 HB_438_AD AD NA 5843_CR_A_0227
    450 HB_439_AD AD NA 5845_CR_A_0230
    451 HB_441_AD AD NA 5849_CR_A_0233
    452 HB_442_AD AD NA 5850_CR_A_0495
    453 HB_445_AD AD NA 5858_CR_A_0969
    454 HB_448_AD AD NA 5864_CR_A_0974
    455 HB_451_AD AD NA 5871_CR_A_2542
    456 HB_454_AD AD NA 5879_CR_A_2545
    457 HB_455_AD AD NA 5887_CR_A_0976_Bis
    458 HB_459_AD AD NA 5898_CR_A_2548
    459 HB_460_AD AD NA 5900_VC_A_0237
    460 HB_461_AD AD NA 5901_CR_A_0239
    461 HB_469_AD AD NA 5914_CR_A_2554
    462 HB_471_AD AD NA 5922_VC_A_0246
    463 HB_473_AD AD NA 5927_CR_A_2560
    464 HB_474_AD AD NA 5933_VC_A_1071
    465 HB_477_AD AD NA 5939_CR_A_1151
    466 HB_479_AD AD NA 5945_VC_A_0983
    467 HB_484_AD AD NA 5956_CR_A_0123
    468 HB_489_AD AD NA 5968_VC_A_1075
    469 HB_491_AD AD NA 5971_CR_A_0119
    470 HB_492_AD AD NA 5972_VC_A_0251
    471 HB_494_AD AD NA 5979_CR_A_0115
    472 HB_498_AD AD NA 5988_VC_A_0503
    473 HB_502_AD AD NA 5994_PF_A_1605
    474 HB_503_AD AD NA 5995_CR_A_2563
    475 HB_510_AD AD NA 6017_CR_A_0048
    476 HB_514_AD AD NA 6025_VC_A_0506
    477 HB_517_AD AD NA 6031_VC_A_0258
    478 HB_520_AD AD NA 6035_VC_A_1621
    479 HB_523_AD AD NA 6038_VC_A_0261
    480 HB_524_AD AD NA 6042_VC_A_1156
    481 HB_525_AD AD NA 6044_VC_A_0264
    482 HB_531_AD AD NA 6056_CR_A_0999
    483 HB_533_AD AD NA 6061_PF_A_1650
    484 HB_534_AD AD NA 6066_VC_A_0270
    485 HB_535_AD AD NA 6067_PF_A_1452
    486 HB_536_AD AD NA 6068_VC_A_0273
    487 HB_545_AD AD NA 6102_CR_A_1661
    488 HB_546_AD AD NA 6107_CR_A_0055
    489 HB_550_AD AD NA 6120_VC_A_0058
    490 HB_552_AD AD NA 6126_VC_A_1675
    491 HB_553_AD AD NA 6129_PF_A_0274
    492 HB_554_AD AD NA 6130_VC_A_1678
    493 HB_555_AD AD NA 6131_CR_A_0510
    494 HB_556_AD AD NA 6132_CR_A_0513
    495 HB_558_AD AD NA 6137_VC_A_1681
    496 HB_564_AD AD NA 6153_VC_A_1465
    497 HB_565_AD AD NA 6154_VC_A_1468
    498 HB_566_AD AD NA 6157_VC_A_0062
    499 HB_568_AD AD NA 6164_CR_A_1005
    500 HB_571_AD AD NA 6171_CR_A_0065
    501 HB_573_AD AD NA 6174_VC_A_0068
    502 HB_576_AD AD NA 6180_CR_A_0281
    503 HB_583_AD AD NA 6194_VC_A_0071
    504 HB_585_AD AD NA 6198_VC_A_0073
    505 HB_590_AD AD NA 6215_VC_A_0518
    506 HB_591_AD AD NA 6216_VC_A_1476
    507 HB_592_AD AD NA 6218_CR_A_0522
    508 HB_594_AD AD NA 6223_VC_A_0288
    509 HB_596_AD AD NA 6226_CR_A_0076
    510 HB_597_AD AD NA 6227_VC_A_0080
    511 HB_598_AD AD NA 6231_VC_A_1479
    512 HB_605_AD AD NA 6261_VC_A_0084
    513 HB_608_AD AD NA 6268_CR_A_0525
    514 HB_611_AD AD NA 6279_VC_A_0089
    515 HB_612_AD AD NA 6280_VC_A_0091
    516 HB_613_AD AD NA 6281_CR_A_0528
    517 HB_621_AD AD NA 6308_VC_A_1503
    518 HB_623_AD AD NA 6311_CR_A_0531
    519 HB_624_AD AD NA 6312_CR_A_0534
    520 HB_630_AD AD NA 6324_PF_A_1514
    521 HB_633_AD AD NA 6332_VC_A_1518
    522 HB_634_AD AD NA 6335_VC_A_0536
    523 HB_635_AD AD NA 6336_CR_A_0290
    524 HB_636_AD AD NA 6338_VC_A_0539
    525 HB_642_AD AD NA 6358_VC_A_0545
    526 HB_652_AD AD NA 6387_VC_A_0093
    527 HB_657_AD AD NA 6394_VC_A_0551
    528 HB_664_AD AD NA 6416_VC_A_1095
    529 HB_666_AD AD NA 6422_CR_A_0555
    530 HB_669_AD AD NA 6431_VC_A_0294
    531 HB_674_AD AD NA 6449_VC_A_1183
    532 HB_680_AD AD NA 6458_CR_A_2570
    533 HB_685_AD AD NA 6481_VC_A_0560
    534 HB_690_AD AD NA 6489_CR_A_0100
    535 HB_696_AD AD NA 6511_VC_A_1119
    536 HB_698_AD AD NA 6515_CR_A_0564
    537 HB_699_AD AD NA 6518_VC_A_0103
    538 HB_703_AD AD NA 6523_VC_A_0107
    539 HB_704_AD AD NA 6530_VC_A_0112
    540 HB_706_AD AD NA 6534_VC_A_0306
    541 HB_712_AD AD NA 6546_PF_A_1194
    542 HB_713_AD AD NA 6548_PF_A_1541
    543 HB_715_AD AD NA 6550_VC_A_1201
    544 HB_718_AD AD NA 6554_PF_A_1203
    545 HB_720_AD AD NA 6559_PF_A_2287
    546 HB_722_AD AD NA 6561_CR_A_2582
    547 HB_723_AD AD NA 6562_PF_A_2290
    548 HB_724_AD AD NA 6564_CR_A_2585
    549 HB_727_AD AD NA 6575_CR_A_2298
    550 HB_728_AD AD NA 6577_PF_A_2299
    551 HB_729_AD AD NA 6578_PF_A_2302
    552 HB_731_AD AD NA 6582_VC_A_1207
    553 HB_733_AD AD NA 6585_VC_A_1210
    554 HB_736_AD AD NA 6590_PF_A_1215
    555 HB_743_AD AD NA 6603_PF_A_1448
    556 HB_745_AD AD NA 6610_PF_A_1227
    557 HB_746_AD AD NA 6612_PF_A_2308
    558 HB_749_AD AD NA 6617_VC_A_2587
    559 HB_751_AD AD NA 6629_VC_A_2330
    560 HB_752_AD AD NA 6630_VC_A_2590
    561 HB_753_AD AD NA 6632_PF_A_2332
    562 HB_754_AD AD NA 6637_VC_A_2596
    563 HB_755_AD AD NA 6638_VC_A_2599
    564 HB_756_AD AD NA 6639_VC_A_2336
    565 HB_757_AD AD NA 6641_PF_A_2338
    566 HB_763_AD AD NA 6654_VC_A_1237
    567 HB_773_AD AD NA 6681_VC_A_1252
    568 HB_775_AD AD NA 6693_VC_A_2348
    569 HB_776_AD AD NA 6694_VC_A_2351
    570 HB_777_AD AD NA 6695_PF_A_2353
    571 HB_779_AD AD NA 6699_PF_A_2359
    572 HB_781_AD AD NA 6708_VC_A_2366
    573 HB_782_AD AD NA 6776_PF_A_2607
    574 HB_783_AD AD NA 6778_PF_A_2368
    575 HB_784_AD AD NA 6779_PF_A_2371
    576 HB_785_AD AD NA 6780_PF_A_2374
    577 HB_786_AD AD NA 6782_PF_A_2377
    578 HB_787_AD AD NA 6784_PF_A_2380
    579 HB_788_AD AD NA 6785_CR_A_2385
    580 HB_789_AD AD NA 6787_CR_A_2388
    581 HB_791_AD AD NA 6790_PF_A_2392
    582 HB_792_AD AD NA 6791_PF_A_2395
    583 HB_793_AD AD NA 6793_PF_A_2398
    584 HB_794_AD AD NA 6794_PF_A_2401
    585 HB_795_AD AD NA 6797_PF_A_2404
    586 HB_796_AD AD NA 6798_PF_A_2407
    587 HB_797_AD AD NA 6799_VC_A_2411
    588 HB_798_AD AD NA 6801_VC_A_2414
    589 HB_799_AD AD NA 6803_VC_A_2417
    590 HB_801_AD AD NA 6809_PF_A_2422
    591 HB_803_AD AD NA 6818_CR_A_2430
    +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HBTRC-MLVC_AD_0611.html b/web/dbdoc/HBTRC-MLVC_AD_0611.html new file mode 100755 index 00000000..af7f9147 --- /dev/null +++ b/web/dbdoc/HBTRC-MLVC_AD_0611.html @@ -0,0 +1,831 @@ + + + +HBTRC-MLC Human Visual Cortex Agilent AD (Jun11) mlratio + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    HBTRC-MLC Human Visual Cortex Agilent AD (Jun11) mlratiomodify this page

    + + Accession number: GN365

    +

    +

    +

    Summary:

    +

    This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

    +
    +

    +

    +

    +

    Data Source Acknowledgements:

    +

    +

    +Species: Human
    +Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
    +Disease: Neurological Disease
    +Investigator: Francine Benes/ Eric Schadt
    +Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
    +Approximate Number Subjects: 803

    +

    +The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/). +

    +

    This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. +Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines. +

    +
    +

    +

    +

    +

    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Series Cerebellum in GN Condition Gender BioSample Name
    1 HB_029_N N NA 3405_VC_N_0859
    2 HB_058_N N NA 4021_VC_N_0854
    3 HB_064_N N NA 4338_VC_N_0861
    4 HB_086_N N NA 4729_PF_N_0756
    5 HB_091_N N NA 4741_VC_N_0864
    6 HB_092_N N NA 4744_VC_N_0865
    7 HB_102_N N NA 4810_VC_N_0869
    8 HB_119_N N NA 4872_VC_N_0878
    9 HB_147_N N NA 5021_VC_N_0852
    10 HB_161_N N NA 5077_VC_N_0851
    11 HB_162_N N NA 5081_VC_N_1021
    12 HB_166_N N NA 5095_VC_N_1024
    13 HB_183_N N NA 5162_VC_N_0850
    14 HB_206_N N NA 5245_VC_N_0849
    15 HB_215_N N NA 5270_VC_N_0848
    16 HB_218_N N NA 5276_CR_N_0912
    17 HB_223_N N NA 5287_VC_N_0916
    18 HB_226_N N NA 5294_VC_N_0919
    19 HB_241_N N NA 5326_CR_N_0652
    20 HB_243_N N NA 5333_VC_N_1262
    21 HB_247_N N NA 5341_VC_N_0923
    22 HB_257_N N NA 5368_PF_N_1032
    23 HB_264_N N NA 5384_VC_N_0924
    24 HB_295_N N NA 5452_VC_N_1268
    25 HB_300_N N NA 5463_VC_N_0845
    26 HB_311_N N NA 5489_CR_N_0942
    27 HB_324_N N NA 5531_VC_N_0844
    28 HB_332_N N NA 5547_VC_N_0843
    29 HB_340_N N NA 5568_VC_N_0842
    30 HB_360_N N NA 5619_CR_N_0645
    31 HB_365_N N NA 5632_VC_N_0838
    32 HB_367_N N NA 5637_VC_N_0837
    33 HB_382_N N NA 5684_PF_N_1270
    34 HB_396_N N NA 5718_VC_N_0956
    35 HB_398_N N NA 5722_VC_N_1044
    36 HB_400_N N NA 5726_VC_N_0834_Bis
    37 HB_403_N N NA 5734_VC_N_0833
    38 HB_414_N N NA 5772_VC_N_0832_Bis
    39 HB_416_N N NA 5778_CR_N_0962
    40 HB_418_N N NA 5789_PF_N_1273
    41 HB_421_N N NA 5799_VC_N_1058
    42 HB_423_N N NA 5803_VC_N_0966
    43 HB_426_N N NA 5806_PF_N_1064
    44 HB_427_N N NA 5810_CR_N_0636
    45 HB_431_N N NA 5823_VC_N_0829
    46 HB_432_N N NA 5826_VC_N_0828
    47 HB_433_N N NA 5827_VC_N_0827
    48 HB_436_N N NA 5832_PF_N_1145
    49 HB_443_N N NA 5852_VC_N_0826
    50 HB_446_N N NA 5859_VC_N_0825
    51 HB_449_N N NA 5866_VC_N_0824
    52 HB_450_N N NA 5867_VC_N_1277
    53 HB_453_N N NA 5876_VC_N_0823
    54 HB_462_N N NA 5903_VC_N_0822
    55 HB_464_N N NA 5905_VC_N_0820
    56 HB_468_N N NA 5912_VC_N_1286
    57 HB_472_N N NA 5925_VC_N_1289
    58 HB_475_N N NA 5936_VC_N_0979
    59 HB_476_N N NA 5938_VC_N_0819
    60 HB_480_N N NA 5946_VC_N_0985
    61 HB_485_N N NA 5959_VC_N_0818
    62 HB_486_N N NA 5963_VC_N_0987
    63 HB_495_N N NA 5980_VC_N_0989
    64 HB_497_N N NA 5985_VC_N_0990
    65 HB_500_N N NA 5990_VC_N_0817
    66 HB_501_N N NA 5991_VC_N_0816
    67 HB_504_N N NA 5996_VC_N_0815
    68 HB_505_N N NA 5998_VC_N_0814
    69 HB_507_N N NA 6006_VC_N_0813
    70 HB_508_N N NA 6007_CR_N_0618
    71 HB_509_N N NA 6008_PF_N_1081
    72 HB_512_N N NA 6023_PF_N_1155
    73 HB_516_N N NA 6030_VC_N_0810
    74 HB_519_N N NA 6034_VC_N_0809
    75 HB_532_N N NA 6060_VC_N_1292
    76 HB_541_N N NA 6092_VC_N_1001
    77 HB_542_N N NA 6096_VC_N_0807
    78 HB_544_N N NA 6101_CR_N_1161
    79 HB_547_N N NA 6110_VC_N_1295
    80 HB_551_N N NA 6124_VC_N_0806
    81 HB_557_N N NA 6134_PF_N_1297
    82 HB_560_N N NA 6142_VC_N_0805
    83 HB_569_N N NA 6166_VC_N_0804
    84 HB_570_N N NA 6170_VC_N_0803
    85 HB_572_N N NA 6172_VC_N_1008
    86 HB_577_N N NA 6182_VC_N_1166
    87 HB_579_N N NA 6187_CR_N_0607
    88 HB_581_N N NA 6191_VC_N_1010
    89 HB_584_N N NA 6196_CR_N_0605
    90 HB_586_N N NA 6200_VC_N_0799
    91 HB_587_N N NA 6206_PF_N_1176
    92 HB_589_N N NA 6213_VC_N_0798
    93 HB_601_N N NA 6241_VC_N_0796
    94 HB_604_N N NA 6260_VC_N_0794
    95 HB_609_N N NA 6270_VC_N_0793
    96 HB_618_N N NA 6289_VC_N_0791
    97 HB_622_N N NA 6310_VC_N_0790
    98 HB_625_N N NA 6314_VC_N_0789
    99 HB_637_N N NA 6340_VC_N_0786
    100 HB_638_N N NA 6341_VC_N_0785
    101 HB_640_N N NA 6347_VC_N_0784
    102 HB_641_N N NA 6356_VC_N_0783
    103 HB_643_N N NA 6363_VC_N_0781
    104 HB_644_N N NA 6366_VC_N_0780
    105 HB_645_N N NA 6374_VC_N_0779
    106 HB_650_N N NA 6384_VC_N_0777
    107 HB_651_N N NA 6386_VC_N_0776
    108 HB_653_N N NA 6388_VC_N_0775
    109 HB_659_N N NA 6406_VC_N_1180
    110 HB_662_N N NA 6411_VC_N_0771
    111 HB_663_N N NA 6415_VC_N_0770
    112 HB_670_N N NA 6436_VC_N_0769
    113 HB_687_N N NA 6484_VC_N_0765
    114 HB_689_N N NA 6486_VC_N_0764
    115 HB_694_N N NA 6500_VC_N_0763
    116 HB_697_N N NA 6512_VC_N_0762
    117 HB_700_N N NA 6520_VC_N_0761
    118 HB_711_N N NA 6543_PF_N_1191
    119 HB_714_N N NA 6549_VC_N_1198
    120 HB_717_N N NA 6553_PF_N_2284
    121 HB_721_N N NA 6560_VC_N_2578
    122 HB_726_N N NA 6573_PF_N_2293
    123 HB_730_N N NA 6580_VC_N_2306
    124 HB_735_N N NA 6588_VC_N_1213
    125 HB_737_N N NA 6593_VC_N_1219
    126 HB_738_N N NA 6594_VC_N_1222
    127 HB_759_N N NA 6645_VC_N_1231
    128 HB_764_N N NA 6655_VC_N_1240
    129 HB_765_N N NA 6656_VC_N_1243
    130 HB_767_N N NA 6661_PF_N_2341
    131 HB_770_N N NA 6669_VC_N_1246
    132 HB_772_N N NA 6676_PF_N_1248
    133 HB_001_HD HD F 2028_CR_H_2282
    134 HB_003_HD HD F 2685_PF_H_2212
    135 HB_004_HD HD M 2706_CR_H_2432
    136 HB_006_HD HD M 2737_VC_H_2194
    137 HB_007_HD HD NA 2769_VC_H_2193
    138 HB_008_HD HD F 2790_CR_H_1890
    139 HB_009_HD HD NA 2879_VC_H_2192
    140 HB_010_HD HD M 2960_VC_H_2002
    141 HB_011_HD HD F 3053_VC_H_2001
    142 HB_012_HD HD F 3128_VC_H_1999
    143 HB_014_HD HD F 3149_PF_H_2110
    144 HB_015_HD HD F 3150_VC_H_1996
    145 HB_016_HD HD F 3177_VC_H_2191
    146 HB_017_HD HD NA 3195_VC_H_2190
    147 HB_018_HD HD M 3200_VC_H_2189
    148 HB_019_HD HD M 3209_VC_H_2188
    149 HB_020_HD HD M 3224_VC_H_1994
    150 HB_022_HD HD F 3242_PF_H_2105
    151 HB_024_HD HD NA 3272_VC_H_2186
    152 HB_027_HD HD M 3356_VC_H_2439
    153 HB_028_HD HD F 3394_PF_H_2104
    154 HB_031_HD HD M 3430_VC_H_1990
    155 HB_032_HD HD NA 3444_PF_H_2208
    156 HB_034_HD HD F 3482_VC_H_1987
    157 HB_036_HD HD M 3576_VC_H_1984
    158 HB_037_HD HD F 3579_VC_H_1983
    159 HB_038_HD HD F 3584_VC_H_2183
    160 HB_039_HD HD NA 3635_VC_H_2182
    161 HB_041_HD HD F 3695_CR_H_2267
    162 HB_042_HD HD M 3697_VC_H_1982
    163 HB_043_HD HD NA 3703_VC_H_2180
    164 HB_044_HD HD NA 3723_VC_H_2179
    165 HB_046_HD HD F 3735_VC_H_1981
    166 HB_050_HD HD M 3820_PF_H_2207
    167 HB_051_HD HD F 3849_CR_H_2262
    168 HB_054_HD HD M 3884_VC_H_2175
    169 HB_056_HD HD NA 4012_VC_H_2174
    170 HB_057_HD HD NA 4013_VC_H_2173
    171 HB_059_HD HD NA 4066_VC_H_2172
    172 HB_060_HD HD NA 4094_VC_H_2171
    173 HB_061_HD HD F 4116_VC_H_2170
    174 HB_062_HD HD NA 4121_VC_H_2169
    175 HB_063_HD HD NA 4215_VC_H_2167
    176 HB_065_HD HD M 4340_PF_H_2091
    177 HB_066_HD HD F 4344_VC_H_1977
    178 HB_067_HD HD M 4346_VC_H_2165
    179 HB_069_HD HD F 4356_VC_H_2164
    180 HB_070_HD HD NA 4386_CR_H_2249
    181 HB_072_HD HD NA 4404_VC_H_2161
    182 HB_073_HD HD F 4411_VC_H_1975
    183 HB_074_HD HD NA 4430_VC_H_2465
    184 HB_075_HD HD M 4470_VC_H_1974
    185 HB_076_HD HD F 4497_CR_H_1860
    186 HB_077_HD HD M 4509_CR_H_2244
    187 HB_079_HD HD M 4631_VC_H_1971
    188 HB_080_HD HD F 4653_PF_H_2083
    189 HB_081_HD HD NA 4678_CR_H_2242
    190 HB_084_HD HD M 4718_VC_H_2125
    191 HB_090_HD HD NA 4740_CR_H_2474
    192 HB_094_HD HD NA 4754_CR_H_2476
    193 HB_098_HD HD NA 4780_VC_H_2151
    194 HB_101_HD HD F 4809_VC_H_2148
    195 HB_105_HD HD NA 4819_CR_H_2238
    196 HB_106_HD HD F 4822_VC_H_1969
    197 HB_108_HD HD M 4826_VC_H_1968
    198 HB_109_HD HD M 4828_VC_H_2124
    199 HB_115_HD HD NA 4855_CR_H_2235
    200 HB_121_HD HD F 4902_VC_H_1967
    201 HB_129_HD HD NA 4938_VC_H_1966
    202 HB_141_HD HD F 4996_PF_H_2076
    203 HB_152_HD HD NA 5034_CR_H_2233
    204 HB_153_HD HD M 5043_VC_H_1960
    205 HB_159_HD HD M 5062_VC_H_1959
    206 HB_172_HD HD F 5114_PF_H_2070
    207 HB_175_HD HD M 5127_PF_H_2068
    208 HB_180_HD HD M 5148_VC_H_1944
    209 HB_185_HD HD F 5167_CR_H_2231
    210 HB_188_HD HD F 5172_VC_H_1951
    211 HB_191_HD HD M 5180_VC_H_1949
    212 HB_196_HD HD NA 5199_PF_H_2202
    213 HB_203_HD HD F 5228_PF_H_2059
    214 HB_207_HD HD NA 5248_PF_H_2201
    215 HB_228_HD HD F 5299_CR_H_2228
    216 HB_233_HD HD M 5312_VC_H_1938
    217 HB_235_HD HD F 5316_VC_H_1937
    218 HB_242_HD HD F 5328_PF_H_2048
    219 HB_266_HD HD M 5387_VC_H_1928
    220 HB_271_HD HD M 5394_PF_H_2039
    221 HB_272_HD HD F 5396_VC_H_1925
    222 HB_279_HD HD F 5409_VC_H_1924
    223 HB_294_HD HD M 5448_VC_H_1921
    224 HB_301_HD HD NA 5464_VC_H_1919
    225 HB_304_HD HD F 5471_VC_H_1918
    226 HB_321_HD HD NA 5522_PF_H_2199
    227 HB_361_HD HD F 5622_VC_H_2121
    228 HB_370_HD HD M 5645_VC_H_1904
    229 HB_371_HD HD F 5648_PF_H_2016
    230 HB_384_HD HD F 5688_PF_H_2012
    231 HB_390_HD HD M 5704_PF_H_2009
    232 HB_393_HD HD F 5709_VC_H_1895
    233 HB_402_HD HD F 5732_PF_H_2007
    234 HB_405_HD HD NA 5742_PF_H_2006
    235 HB_407_HD HD M 5745_PF_H_2005
    236 HB_408_HD HD M 5747_VC_H_1891
    237 HB_415_HD HD NA 5777_PF_H_1551
    238 HB_417_HD HD M 5784_PF_H_1554
    239 HB_424_HD HD M 5804_VC_H_1558
    240 HB_444_HD HD M 5856_VC_H_1567
    241 HB_457_HD HD M 5896_VC_H_1570
    242 HB_466_HD HD M 5910_PF_H_1572
    243 HB_478_HD HD M 5941_CR_H_1583
    244 HB_487_HD HD F 5964_VC_H_1597
    245 HB_511_HD HD M 6019_PF_H_2198
    246 HB_513_HD HD F 6024_VC_H_1612
    247 HB_515_HD HD F 6028_CR_H_1613
    248 HB_518_HD HD M 6033_VC_H_1618
    249 HB_522_HD HD M 6037_PF_H_1626
    250 HB_527_HD HD F 6047_VC_H_1639
    251 HB_528_HD HD M 6051_PF_H_1641
    252 HB_530_HD HD M 6054_VC_H_1648
    253 HB_537_HD HD F 6071_PF_H_1653
    254 HB_549_HD HD M 6119_CR_H_1670
    255 HB_593_HD HD NA 6219_CR_H_2567
    256 HB_610_HD HD NA 6275_PF_H_1692
    257 HB_616_HD HD F 6284_CR_H_1694
    258 HB_626_HD HD M 6315_VC_H_1702
    259 HB_639_HD HD F 6344_CR_H_1703
    260 HB_649_HD HD F 6382_CR_H_1709
    261 HB_661_HD HD M 6408_VC_H_1714
    262 HB_682_HD HD M 6467_PF_H_1725
    263 HB_683_HD HD M 6472_VC_H_1729
    264 HB_691_HD HD F 6493_VC_H_1732
    265 HB_692_HD HD M 6495_CR_H_1733
    266 HB_707_HD HD M 6535_PF_H_1737
    267 HB_709_HD HD F 6539_CR_H_1739
    268 HB_725_HD HD M 6572_PF_H_1746
    269 HB_732_HD HD F 6584_VC_H_1750
    270 HB_734_HD HD F 6587_CR_H_1751
    271 HB_748_HD HD NA 6615_VC_H_2315
    272 HB_750_HD HD NA 6628_PF_H_2326
    273 HB_758_HD HD NA 6643_VC_H_2602
    274 HB_760_HD HD M 6646_PF_H_1761
    275 HB_762_HD HD M 6650_VC_H_1765
    276 HB_766_HD HD M 6658_VC_H_1768
    277 HB_768_HD HD NA 6663_VC_H_1771
    278 HB_769_HD HD M 6666_VC_H_1774
    279 HB_774_HD HD NA 6689_PF_H_2344
    280 HB_778_HD HD NA 6696_PF_H_2356
    281 HB_780_HD HD NA 6704_PF_H_2362
    282 HB_790_HD HD NA 6788_PF_H_2389
    283 HB_800_HD HD NA 6807_PF_H_2419
    284 HB_802_HD HD NA 6811_PF_H_2425
    285 HB_045_AD AD NA 3734_CR_A_0122
    286 HB_048_AD AD NA 3791_CR_A_0128
    287 HB_053_AD AD NA 3877_CR_A_0134
    288 HB_055_AD AD NA 3893_VC_A_0142
    289 HB_068_AD AD NA 4349_VC_A_0148
    290 HB_082_AD AD NA 4712_CR_A_0309
    291 HB_085_AD AD NA 4726_VC_A_0311
    292 HB_087_AD AD NA 4730_CR_A_0315
    293 HB_089_AD AD NA 4733_VC_A_0320
    294 HB_093_AD AD NA 4749_VC_A_0323
    295 HB_095_AD AD NA 4759_CR_A_0327
    296 HB_097_AD AD NA 4773_CR_A_0866
    297 HB_099_AD AD NA 4785_VC_A_0332
    298 HB_100_AD AD NA 4795_VC_A_0335
    299 HB_103_AD AD NA 4811_VC_A_0341
    300 HB_104_AD AD NA 4813_CR_A_0345
    301 HB_112_AD AD NA 4842_VC_A_0870
    302 HB_113_AD AD NA 4850_CR_A_0351
    303 HB_114_AD AD NA 4852_CR_A_0354
    304 HB_117_AD AD NA 4868_VC_A_0874
    305 HB_122_AD AD NA 4904_CR_A_1132
    306 HB_123_AD AD NA 4905_VC_A_0884
    307 HB_124_AD AD NA 4916_VC_A_0886
    308 HB_125_AD AD NA 4917_CR_A_0360
    309 HB_126_AD AD NA 4921_VC_A_0362
    310 HB_128_AD AD NA 4936_CR_A_0369
    311 HB_130_AD AD NA 4939_VC_A_0888
    312 HB_131_AD AD NA 4944_CR_A_0889
    313 HB_132_AD AD NA 4946_CR_A_0372
    314 HB_134_AD AD NA 4951_CR_A_0891
    315 HB_135_AD AD NA 4953_VC_A_0893
    316 HB_136_AD AD NA 4965_VC_A_0160
    317 HB_137_AD AD NA 4966_VC_A_0374
    318 HB_138_AD AD NA 4969_VC_A_0895
    319 HB_140_AD AD NA 4993_CR_A_0896
    320 HB_146_AD AD NA 5018_CR_A_0384
    321 HB_148_AD AD NA 5022_VC_A_0386
    322 HB_150_AD AD NA 5031_VC_A_0392
    323 HB_151_AD AD NA 5033_CR_A_0396
    324 HB_154_AD AD NA 5048_VC_A_1321
    325 HB_155_AD AD NA 5056_VC_A_0398
    326 HB_156_AD AD NA 5057_VC_A_0163
    327 HB_157_AD AD NA 5059_VC_A_0401
    328 HB_158_AD AD NA 5061_PF_A_2612
    329 HB_160_AD AD NA 5064_PF_A_2615
    330 HB_165_AD AD NA 5092_CR_A_0899
    331 HB_168_AD AD NA 5097_VC_A_0407
    332 HB_170_AD AD NA 5101_VC_A_0410
    333 HB_174_AD AD NA 5124_PF_A_1343
    334 HB_179_AD AD NA 5145_VC_A_1351
    335 HB_181_AD AD NA 5152_CR_A_0414
    336 HB_184_AD AD NA 5166_VC_A_1354
    337 HB_194_AD AD NA 5193_VC_A_1360
    338 HB_197_AD AD NA 5202_CR_A_1368
    339 HB_199_AD AD NA 5205_VC_A_0166
    340 HB_200_AD AD NA 5210_VC_A_0905
    341 HB_205_AD AD NA 5235_VC_A_0419
    342 HB_208_AD AD NA 5249_VC_A_0422
    343 HB_209_AD AD NA 5252_VC_A_0907
    344 HB_211_AD AD NA 5257_VC_A_0169
    345 HB_216_AD AD NA 5272_VC_A_0425
    346 HB_219_AD AD NA 5279_CR_A_0147
    347 HB_221_AD AD NA 5283_VC_A_0145
    348 HB_222_AD AD NA 5285_VC_A_0141
    349 HB_224_AD AD NA 5288_VC_A_0428
    350 HB_230_AD AD NA 5301_VC_A_0174
    351 HB_231_AD AD NA 5305_VC_A_1384
    352 HB_232_AD AD NA 5310_CR_A_0176
    353 HB_234_AD AD NA 5313_PF_A_2618
    354 HB_236_AD AD NA 5317_PF_A_2624
    355 HB_238_AD AD NA 5322_CR_A_2632
    356 HB_240_AD AD NA 5325_VC_A_0137
    357 HB_244_AD AD NA 5337_VC_A_1387
    358 HB_245_AD AD NA 5339_VC_A_0181
    359 HB_250_AD AD NA 5346_VC_A_1393
    360 HB_251_AD AD NA 5350_VC_A_0184
    361 HB_252_AD AD NA 5355_VC_A_0133
    362 HB_253_AD AD NA 5359_CR_A_1395
    363 HB_258_AD AD NA 5370_PF_A_1400
    364 HB_259_AD AD NA 5371_PF_A_2636
    365 HB_260_AD AD NA 5375_VC_A_0188
    366 HB_263_AD AD NA 5381_VC_A_0022
    367 HB_265_AD AD NA 5385_VC_A_1402
    368 HB_267_AD AD NA 5389_VC_A_0928
    369 HB_268_AD AD NA 5390_CR_A_0151
    370 HB_273_AD AD NA 5400_PF_A_2645
    371 HB_274_AD AD NA 5401_VC_A_0931
    372 HB_275_AD AD NA 5404_PF_A_2648
    373 HB_276_AD AD NA 5406_VC_A_0933
    374 HB_277_AD AD NA 5407_PF_A_2651
    375 HB_280_AD AD NA 5412_VC_A_0935
    376 HB_281_AD AD NA 5413_PF_A_2657
    377 HB_283_AD AD NA 5419_VC_A_0937
    378 HB_284_AD AD NA 5420_VC_A_0939
    379 HB_285_AD AD NA 5421_CR_A_0432
    380 HB_286_AD AD NA 5423_PF_A_2660
    381 HB_288_AD AD NA 5425_PF_A_2666
    382 HB_289_AD AD NA 5426_VC_A_1405
    383 HB_290_AD AD NA 5433_VC_A_0434
    384 HB_296_AD AD NA 5456_PF_A_2675
    385 HB_299_AD AD NA 5461_VC_A_0192
    386 HB_302_AD AD NA 5465_PF_A_2678
    387 HB_303_AD AD NA 5469_VC_A_1417
    388 HB_305_AD AD NA 5479_PF_A_1421
    389 HB_306_AD AD NA 5480_VC_A_0437
    390 HB_307_AD AD NA 5482_VC_A_0028
    391 HB_308_AD AD NA 5483_VC_A_0941
    392 HB_309_AD AD NA 5487_CR_A_0441
    393 HB_310_AD AD NA 5488_CR_A_0194
    394 HB_312_AD AD NA 5500_VC_A_0198
    395 HB_313_AD AD NA 5502_PF_A_2684
    396 HB_315_AD AD NA 5513_PF_A_2687
    397 HB_316_AD AD NA 5516_PF_A_2690
    398 HB_317_AD AD NA 5517_PF_A_2693
    399 HB_318_AD AD NA 5518_CR_A_0030
    400 HB_319_AD AD NA 5519_CR_A_2695
    401 HB_320_AD AD NA 5520_PF_A_2699
    402 HB_322_AD AD NA 5527_VC_A_0945
    403 HB_325_AD AD NA 5532_PF_A_2702
    404 HB_328_AD AD NA 5541_PF_A_2705
    405 HB_330_AD AD NA 5544_VC_A_0201
    406 HB_334_AD AD NA 5554_VC_A_0452
    407 HB_335_AD AD NA 5557_VC_A_0950
    408 HB_337_AD AD NA 5560_VC_A_0204
    409 HB_342_AD AD NA 5571_PF_A_1430
    410 HB_345_AD AD NA 5583_PF_A_2708
    411 HB_347_AD AD NA 5589_PF_A_2714
    412 HB_349_AD AD NA 5592_PF_A_2717
    413 HB_352_AD AD NA 5604_VC_A_0037
    414 HB_353_AD AD NA 5607_PF_A_2723
    415 HB_356_AD AD NA 5615_VC_A_0041
    416 HB_357_AD AD NA 5616_CR_A_0127
    417 HB_358_AD AD NA 5617_CR_A_0456
    418 HB_359_AD AD NA 5618_CR_A_0044
    419 HB_362_AD AD NA 5625_CR_A_2495
    420 HB_363_AD AD NA 5626_CR_A_2498
    421 HB_364_AD AD NA 5629_CR_A_0390
    422 HB_369_AD AD NA 5643_VC_A_1143
    423 HB_373_AD AD NA 5654_VC_A_0047
    424 HB_375_AD AD NA 5660_CR_A_0462
    425 HB_376_AD AD NA 5661_VC_A_0464
    426 HB_377_AD AD NA 5667_VC_A_2509
    427 HB_378_AD AD NA 5668_VC_A_1438
    428 HB_383_AD AD NA 5686_CR_A_2728
    429 HB_386_AD AD NA 5695_VC_A_0953
    430 HB_389_AD AD NA 5700_VC_A_2514
    431 HB_391_AD AD NA 5705_CR_A_0474
    432 HB_392_AD AD NA 5706_VC_A_0476
    433 HB_394_AD AD NA 5713_VC_A_0479
    434 HB_397_AD AD NA 5721_CR_A_0210
    435 HB_404_AD AD NA 5735_CR_A_0489
    436 HB_406_AD AD NA 5744_CR_A_0960
    437 HB_409_AD AD NA 5749_CR_A_0159
    438 HB_410_AD AD NA 5751_CR_A_2518
    439 HB_411_AD AD NA 5755_CR_A_2731
    440 HB_413_AD AD NA 5766_VC_A_0214
    441 HB_419_AD AD NA 5790_VC_A_0217
    442 HB_420_AD AD NA 5796_CR_A_0964
    443 HB_428_AD AD NA 5811_CR_A_2524
    444 HB_429_AD AD NA 5819_CR_A_2527
    445 HB_430_AD AD NA 5822_CR_A_2530
    446 HB_434_AD AD NA 5828_CR_A_2533
    447 HB_435_AD AD NA 5831_CR_A_0222
    448 HB_437_AD AD NA 5839_CR_A_2539
    449 HB_438_AD AD NA 5843_CR_A_0227
    450 HB_439_AD AD NA 5845_CR_A_0230
    451 HB_441_AD AD NA 5849_CR_A_0233
    452 HB_442_AD AD NA 5850_CR_A_0495
    453 HB_445_AD AD NA 5858_CR_A_0969
    454 HB_448_AD AD NA 5864_CR_A_0974
    455 HB_451_AD AD NA 5871_CR_A_2542
    456 HB_454_AD AD NA 5879_CR_A_2545
    457 HB_455_AD AD NA 5887_CR_A_0976_Bis
    458 HB_459_AD AD NA 5898_CR_A_2548
    459 HB_460_AD AD NA 5900_VC_A_0237
    460 HB_461_AD AD NA 5901_CR_A_0239
    461 HB_469_AD AD NA 5914_CR_A_2554
    462 HB_471_AD AD NA 5922_VC_A_0246
    463 HB_473_AD AD NA 5927_CR_A_2560
    464 HB_474_AD AD NA 5933_VC_A_1071
    465 HB_477_AD AD NA 5939_CR_A_1151
    466 HB_479_AD AD NA 5945_VC_A_0983
    467 HB_484_AD AD NA 5956_CR_A_0123
    468 HB_489_AD AD NA 5968_VC_A_1075
    469 HB_491_AD AD NA 5971_CR_A_0119
    470 HB_492_AD AD NA 5972_VC_A_0251
    471 HB_494_AD AD NA 5979_CR_A_0115
    472 HB_498_AD AD NA 5988_VC_A_0503
    473 HB_502_AD AD NA 5994_PF_A_1605
    474 HB_503_AD AD NA 5995_CR_A_2563
    475 HB_510_AD AD NA 6017_CR_A_0048
    476 HB_514_AD AD NA 6025_VC_A_0506
    477 HB_517_AD AD NA 6031_VC_A_0258
    478 HB_520_AD AD NA 6035_VC_A_1621
    479 HB_523_AD AD NA 6038_VC_A_0261
    480 HB_524_AD AD NA 6042_VC_A_1156
    481 HB_525_AD AD NA 6044_VC_A_0264
    482 HB_531_AD AD NA 6056_CR_A_0999
    483 HB_533_AD AD NA 6061_PF_A_1650
    484 HB_534_AD AD NA 6066_VC_A_0270
    485 HB_535_AD AD NA 6067_PF_A_1452
    486 HB_536_AD AD NA 6068_VC_A_0273
    487 HB_545_AD AD NA 6102_CR_A_1661
    488 HB_546_AD AD NA 6107_CR_A_0055
    489 HB_550_AD AD NA 6120_VC_A_0058
    490 HB_552_AD AD NA 6126_VC_A_1675
    491 HB_553_AD AD NA 6129_PF_A_0274
    492 HB_554_AD AD NA 6130_VC_A_1678
    493 HB_555_AD AD NA 6131_CR_A_0510
    494 HB_556_AD AD NA 6132_CR_A_0513
    495 HB_558_AD AD NA 6137_VC_A_1681
    496 HB_564_AD AD NA 6153_VC_A_1465
    497 HB_565_AD AD NA 6154_VC_A_1468
    498 HB_566_AD AD NA 6157_VC_A_0062
    499 HB_568_AD AD NA 6164_CR_A_1005
    500 HB_571_AD AD NA 6171_CR_A_0065
    501 HB_573_AD AD NA 6174_VC_A_0068
    502 HB_576_AD AD NA 6180_CR_A_0281
    503 HB_583_AD AD NA 6194_VC_A_0071
    504 HB_585_AD AD NA 6198_VC_A_0073
    505 HB_590_AD AD NA 6215_VC_A_0518
    506 HB_591_AD AD NA 6216_VC_A_1476
    507 HB_592_AD AD NA 6218_CR_A_0522
    508 HB_594_AD AD NA 6223_VC_A_0288
    509 HB_596_AD AD NA 6226_CR_A_0076
    510 HB_597_AD AD NA 6227_VC_A_0080
    511 HB_598_AD AD NA 6231_VC_A_1479
    512 HB_605_AD AD NA 6261_VC_A_0084
    513 HB_608_AD AD NA 6268_CR_A_0525
    514 HB_611_AD AD NA 6279_VC_A_0089
    515 HB_612_AD AD NA 6280_VC_A_0091
    516 HB_613_AD AD NA 6281_CR_A_0528
    517 HB_621_AD AD NA 6308_VC_A_1503
    518 HB_623_AD AD NA 6311_CR_A_0531
    519 HB_624_AD AD NA 6312_CR_A_0534
    520 HB_630_AD AD NA 6324_PF_A_1514
    521 HB_633_AD AD NA 6332_VC_A_1518
    522 HB_634_AD AD NA 6335_VC_A_0536
    523 HB_635_AD AD NA 6336_CR_A_0290
    524 HB_636_AD AD NA 6338_VC_A_0539
    525 HB_642_AD AD NA 6358_VC_A_0545
    526 HB_652_AD AD NA 6387_VC_A_0093
    527 HB_657_AD AD NA 6394_VC_A_0551
    528 HB_664_AD AD NA 6416_VC_A_1095
    529 HB_666_AD AD NA 6422_CR_A_0555
    530 HB_669_AD AD NA 6431_VC_A_0294
    531 HB_674_AD AD NA 6449_VC_A_1183
    532 HB_680_AD AD NA 6458_CR_A_2570
    533 HB_685_AD AD NA 6481_VC_A_0560
    534 HB_690_AD AD NA 6489_CR_A_0100
    535 HB_696_AD AD NA 6511_VC_A_1119
    536 HB_698_AD AD NA 6515_CR_A_0564
    537 HB_699_AD AD NA 6518_VC_A_0103
    538 HB_703_AD AD NA 6523_VC_A_0107
    539 HB_704_AD AD NA 6530_VC_A_0112
    540 HB_706_AD AD NA 6534_VC_A_0306
    541 HB_712_AD AD NA 6546_PF_A_1194
    542 HB_713_AD AD NA 6548_PF_A_1541
    543 HB_715_AD AD NA 6550_VC_A_1201
    544 HB_718_AD AD NA 6554_PF_A_1203
    545 HB_720_AD AD NA 6559_PF_A_2287
    546 HB_722_AD AD NA 6561_CR_A_2582
    547 HB_723_AD AD NA 6562_PF_A_2290
    548 HB_724_AD AD NA 6564_CR_A_2585
    549 HB_727_AD AD NA 6575_CR_A_2298
    550 HB_728_AD AD NA 6577_PF_A_2299
    551 HB_729_AD AD NA 6578_PF_A_2302
    552 HB_731_AD AD NA 6582_VC_A_1207
    553 HB_733_AD AD NA 6585_VC_A_1210
    554 HB_736_AD AD NA 6590_PF_A_1215
    555 HB_743_AD AD NA 6603_PF_A_1448
    556 HB_745_AD AD NA 6610_PF_A_1227
    557 HB_746_AD AD NA 6612_PF_A_2308
    558 HB_749_AD AD NA 6617_VC_A_2587
    559 HB_751_AD AD NA 6629_VC_A_2330
    560 HB_752_AD AD NA 6630_VC_A_2590
    561 HB_753_AD AD NA 6632_PF_A_2332
    562 HB_754_AD AD NA 6637_VC_A_2596
    563 HB_755_AD AD NA 6638_VC_A_2599
    564 HB_756_AD AD NA 6639_VC_A_2336
    565 HB_757_AD AD NA 6641_PF_A_2338
    566 HB_763_AD AD NA 6654_VC_A_1237
    567 HB_773_AD AD NA 6681_VC_A_1252
    568 HB_775_AD AD NA 6693_VC_A_2348
    569 HB_776_AD AD NA 6694_VC_A_2351
    570 HB_777_AD AD NA 6695_PF_A_2353
    571 HB_779_AD AD NA 6699_PF_A_2359
    572 HB_781_AD AD NA 6708_VC_A_2366
    573 HB_782_AD AD NA 6776_PF_A_2607
    574 HB_783_AD AD NA 6778_PF_A_2368
    575 HB_784_AD AD NA 6779_PF_A_2371
    576 HB_785_AD AD NA 6780_PF_A_2374
    577 HB_786_AD AD NA 6782_PF_A_2377
    578 HB_787_AD AD NA 6784_PF_A_2380
    579 HB_788_AD AD NA 6785_CR_A_2385
    580 HB_789_AD AD NA 6787_CR_A_2388
    581 HB_791_AD AD NA 6790_PF_A_2392
    582 HB_792_AD AD NA 6791_PF_A_2395
    583 HB_793_AD AD NA 6793_PF_A_2398
    584 HB_794_AD AD NA 6794_PF_A_2401
    585 HB_795_AD AD NA 6797_PF_A_2404
    586 HB_796_AD AD NA 6798_PF_A_2407
    587 HB_797_AD AD NA 6799_VC_A_2411
    588 HB_798_AD AD NA 6801_VC_A_2414
    589 HB_799_AD AD NA 6803_VC_A_2417
    590 HB_801_AD AD NA 6809_PF_A_2422
    591 HB_803_AD AD NA 6818_CR_A_2430
    +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HBTRC-MLVC_HD_0611.html b/web/dbdoc/HBTRC-MLVC_HD_0611.html new file mode 100755 index 00000000..533fe4b3 --- /dev/null +++ b/web/dbdoc/HBTRC-MLVC_HD_0611.html @@ -0,0 +1,831 @@ + + + +HBTRC-MLC Human Visual Cortex Agilent HD (Jun11) mlratio + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    HBTRC-MLC Human Visual Cortex Agilent HD (Jun11) mlratiomodify this page

    + + Accession number: GN366

    +

    +

    +

    Summary:

    +

    This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

    +
    +

    +

    +

    +

    Data Source Acknowledgements:

    +

    +

    +Species: Human
    +Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
    +Disease: Neurological Disease
    +Investigator: Francine Benes/ Eric Schadt
    +Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
    +Approximate Number Subjects: 803

    +

    +The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/). +

    +

    This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. +Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines. +

    +
    +

    +

    +

    +

    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Series Cerebellum in GN Condition Gender BioSample Name
    1 HB_029_N N NA 3405_VC_N_0859
    2 HB_058_N N NA 4021_VC_N_0854
    3 HB_064_N N NA 4338_VC_N_0861
    4 HB_086_N N NA 4729_PF_N_0756
    5 HB_091_N N NA 4741_VC_N_0864
    6 HB_092_N N NA 4744_VC_N_0865
    7 HB_102_N N NA 4810_VC_N_0869
    8 HB_119_N N NA 4872_VC_N_0878
    9 HB_147_N N NA 5021_VC_N_0852
    10 HB_161_N N NA 5077_VC_N_0851
    11 HB_162_N N NA 5081_VC_N_1021
    12 HB_166_N N NA 5095_VC_N_1024
    13 HB_183_N N NA 5162_VC_N_0850
    14 HB_206_N N NA 5245_VC_N_0849
    15 HB_215_N N NA 5270_VC_N_0848
    16 HB_218_N N NA 5276_CR_N_0912
    17 HB_223_N N NA 5287_VC_N_0916
    18 HB_226_N N NA 5294_VC_N_0919
    19 HB_241_N N NA 5326_CR_N_0652
    20 HB_243_N N NA 5333_VC_N_1262
    21 HB_247_N N NA 5341_VC_N_0923
    22 HB_257_N N NA 5368_PF_N_1032
    23 HB_264_N N NA 5384_VC_N_0924
    24 HB_295_N N NA 5452_VC_N_1268
    25 HB_300_N N NA 5463_VC_N_0845
    26 HB_311_N N NA 5489_CR_N_0942
    27 HB_324_N N NA 5531_VC_N_0844
    28 HB_332_N N NA 5547_VC_N_0843
    29 HB_340_N N NA 5568_VC_N_0842
    30 HB_360_N N NA 5619_CR_N_0645
    31 HB_365_N N NA 5632_VC_N_0838
    32 HB_367_N N NA 5637_VC_N_0837
    33 HB_382_N N NA 5684_PF_N_1270
    34 HB_396_N N NA 5718_VC_N_0956
    35 HB_398_N N NA 5722_VC_N_1044
    36 HB_400_N N NA 5726_VC_N_0834_Bis
    37 HB_403_N N NA 5734_VC_N_0833
    38 HB_414_N N NA 5772_VC_N_0832_Bis
    39 HB_416_N N NA 5778_CR_N_0962
    40 HB_418_N N NA 5789_PF_N_1273
    41 HB_421_N N NA 5799_VC_N_1058
    42 HB_423_N N NA 5803_VC_N_0966
    43 HB_426_N N NA 5806_PF_N_1064
    44 HB_427_N N NA 5810_CR_N_0636
    45 HB_431_N N NA 5823_VC_N_0829
    46 HB_432_N N NA 5826_VC_N_0828
    47 HB_433_N N NA 5827_VC_N_0827
    48 HB_436_N N NA 5832_PF_N_1145
    49 HB_443_N N NA 5852_VC_N_0826
    50 HB_446_N N NA 5859_VC_N_0825
    51 HB_449_N N NA 5866_VC_N_0824
    52 HB_450_N N NA 5867_VC_N_1277
    53 HB_453_N N NA 5876_VC_N_0823
    54 HB_462_N N NA 5903_VC_N_0822
    55 HB_464_N N NA 5905_VC_N_0820
    56 HB_468_N N NA 5912_VC_N_1286
    57 HB_472_N N NA 5925_VC_N_1289
    58 HB_475_N N NA 5936_VC_N_0979
    59 HB_476_N N NA 5938_VC_N_0819
    60 HB_480_N N NA 5946_VC_N_0985
    61 HB_485_N N NA 5959_VC_N_0818
    62 HB_486_N N NA 5963_VC_N_0987
    63 HB_495_N N NA 5980_VC_N_0989
    64 HB_497_N N NA 5985_VC_N_0990
    65 HB_500_N N NA 5990_VC_N_0817
    66 HB_501_N N NA 5991_VC_N_0816
    67 HB_504_N N NA 5996_VC_N_0815
    68 HB_505_N N NA 5998_VC_N_0814
    69 HB_507_N N NA 6006_VC_N_0813
    70 HB_508_N N NA 6007_CR_N_0618
    71 HB_509_N N NA 6008_PF_N_1081
    72 HB_512_N N NA 6023_PF_N_1155
    73 HB_516_N N NA 6030_VC_N_0810
    74 HB_519_N N NA 6034_VC_N_0809
    75 HB_532_N N NA 6060_VC_N_1292
    76 HB_541_N N NA 6092_VC_N_1001
    77 HB_542_N N NA 6096_VC_N_0807
    78 HB_544_N N NA 6101_CR_N_1161
    79 HB_547_N N NA 6110_VC_N_1295
    80 HB_551_N N NA 6124_VC_N_0806
    81 HB_557_N N NA 6134_PF_N_1297
    82 HB_560_N N NA 6142_VC_N_0805
    83 HB_569_N N NA 6166_VC_N_0804
    84 HB_570_N N NA 6170_VC_N_0803
    85 HB_572_N N NA 6172_VC_N_1008
    86 HB_577_N N NA 6182_VC_N_1166
    87 HB_579_N N NA 6187_CR_N_0607
    88 HB_581_N N NA 6191_VC_N_1010
    89 HB_584_N N NA 6196_CR_N_0605
    90 HB_586_N N NA 6200_VC_N_0799
    91 HB_587_N N NA 6206_PF_N_1176
    92 HB_589_N N NA 6213_VC_N_0798
    93 HB_601_N N NA 6241_VC_N_0796
    94 HB_604_N N NA 6260_VC_N_0794
    95 HB_609_N N NA 6270_VC_N_0793
    96 HB_618_N N NA 6289_VC_N_0791
    97 HB_622_N N NA 6310_VC_N_0790
    98 HB_625_N N NA 6314_VC_N_0789
    99 HB_637_N N NA 6340_VC_N_0786
    100 HB_638_N N NA 6341_VC_N_0785
    101 HB_640_N N NA 6347_VC_N_0784
    102 HB_641_N N NA 6356_VC_N_0783
    103 HB_643_N N NA 6363_VC_N_0781
    104 HB_644_N N NA 6366_VC_N_0780
    105 HB_645_N N NA 6374_VC_N_0779
    106 HB_650_N N NA 6384_VC_N_0777
    107 HB_651_N N NA 6386_VC_N_0776
    108 HB_653_N N NA 6388_VC_N_0775
    109 HB_659_N N NA 6406_VC_N_1180
    110 HB_662_N N NA 6411_VC_N_0771
    111 HB_663_N N NA 6415_VC_N_0770
    112 HB_670_N N NA 6436_VC_N_0769
    113 HB_687_N N NA 6484_VC_N_0765
    114 HB_689_N N NA 6486_VC_N_0764
    115 HB_694_N N NA 6500_VC_N_0763
    116 HB_697_N N NA 6512_VC_N_0762
    117 HB_700_N N NA 6520_VC_N_0761
    118 HB_711_N N NA 6543_PF_N_1191
    119 HB_714_N N NA 6549_VC_N_1198
    120 HB_717_N N NA 6553_PF_N_2284
    121 HB_721_N N NA 6560_VC_N_2578
    122 HB_726_N N NA 6573_PF_N_2293
    123 HB_730_N N NA 6580_VC_N_2306
    124 HB_735_N N NA 6588_VC_N_1213
    125 HB_737_N N NA 6593_VC_N_1219
    126 HB_738_N N NA 6594_VC_N_1222
    127 HB_759_N N NA 6645_VC_N_1231
    128 HB_764_N N NA 6655_VC_N_1240
    129 HB_765_N N NA 6656_VC_N_1243
    130 HB_767_N N NA 6661_PF_N_2341
    131 HB_770_N N NA 6669_VC_N_1246
    132 HB_772_N N NA 6676_PF_N_1248
    133 HB_001_HD HD F 2028_CR_H_2282
    134 HB_003_HD HD F 2685_PF_H_2212
    135 HB_004_HD HD M 2706_CR_H_2432
    136 HB_006_HD HD M 2737_VC_H_2194
    137 HB_007_HD HD NA 2769_VC_H_2193
    138 HB_008_HD HD F 2790_CR_H_1890
    139 HB_009_HD HD NA 2879_VC_H_2192
    140 HB_010_HD HD M 2960_VC_H_2002
    141 HB_011_HD HD F 3053_VC_H_2001
    142 HB_012_HD HD F 3128_VC_H_1999
    143 HB_014_HD HD F 3149_PF_H_2110
    144 HB_015_HD HD F 3150_VC_H_1996
    145 HB_016_HD HD F 3177_VC_H_2191
    146 HB_017_HD HD NA 3195_VC_H_2190
    147 HB_018_HD HD M 3200_VC_H_2189
    148 HB_019_HD HD M 3209_VC_H_2188
    149 HB_020_HD HD M 3224_VC_H_1994
    150 HB_022_HD HD F 3242_PF_H_2105
    151 HB_024_HD HD NA 3272_VC_H_2186
    152 HB_027_HD HD M 3356_VC_H_2439
    153 HB_028_HD HD F 3394_PF_H_2104
    154 HB_031_HD HD M 3430_VC_H_1990
    155 HB_032_HD HD NA 3444_PF_H_2208
    156 HB_034_HD HD F 3482_VC_H_1987
    157 HB_036_HD HD M 3576_VC_H_1984
    158 HB_037_HD HD F 3579_VC_H_1983
    159 HB_038_HD HD F 3584_VC_H_2183
    160 HB_039_HD HD NA 3635_VC_H_2182
    161 HB_041_HD HD F 3695_CR_H_2267
    162 HB_042_HD HD M 3697_VC_H_1982
    163 HB_043_HD HD NA 3703_VC_H_2180
    164 HB_044_HD HD NA 3723_VC_H_2179
    165 HB_046_HD HD F 3735_VC_H_1981
    166 HB_050_HD HD M 3820_PF_H_2207
    167 HB_051_HD HD F 3849_CR_H_2262
    168 HB_054_HD HD M 3884_VC_H_2175
    169 HB_056_HD HD NA 4012_VC_H_2174
    170 HB_057_HD HD NA 4013_VC_H_2173
    171 HB_059_HD HD NA 4066_VC_H_2172
    172 HB_060_HD HD NA 4094_VC_H_2171
    173 HB_061_HD HD F 4116_VC_H_2170
    174 HB_062_HD HD NA 4121_VC_H_2169
    175 HB_063_HD HD NA 4215_VC_H_2167
    176 HB_065_HD HD M 4340_PF_H_2091
    177 HB_066_HD HD F 4344_VC_H_1977
    178 HB_067_HD HD M 4346_VC_H_2165
    179 HB_069_HD HD F 4356_VC_H_2164
    180 HB_070_HD HD NA 4386_CR_H_2249
    181 HB_072_HD HD NA 4404_VC_H_2161
    182 HB_073_HD HD F 4411_VC_H_1975
    183 HB_074_HD HD NA 4430_VC_H_2465
    184 HB_075_HD HD M 4470_VC_H_1974
    185 HB_076_HD HD F 4497_CR_H_1860
    186 HB_077_HD HD M 4509_CR_H_2244
    187 HB_079_HD HD M 4631_VC_H_1971
    188 HB_080_HD HD F 4653_PF_H_2083
    189 HB_081_HD HD NA 4678_CR_H_2242
    190 HB_084_HD HD M 4718_VC_H_2125
    191 HB_090_HD HD NA 4740_CR_H_2474
    192 HB_094_HD HD NA 4754_CR_H_2476
    193 HB_098_HD HD NA 4780_VC_H_2151
    194 HB_101_HD HD F 4809_VC_H_2148
    195 HB_105_HD HD NA 4819_CR_H_2238
    196 HB_106_HD HD F 4822_VC_H_1969
    197 HB_108_HD HD M 4826_VC_H_1968
    198 HB_109_HD HD M 4828_VC_H_2124
    199 HB_115_HD HD NA 4855_CR_H_2235
    200 HB_121_HD HD F 4902_VC_H_1967
    201 HB_129_HD HD NA 4938_VC_H_1966
    202 HB_141_HD HD F 4996_PF_H_2076
    203 HB_152_HD HD NA 5034_CR_H_2233
    204 HB_153_HD HD M 5043_VC_H_1960
    205 HB_159_HD HD M 5062_VC_H_1959
    206 HB_172_HD HD F 5114_PF_H_2070
    207 HB_175_HD HD M 5127_PF_H_2068
    208 HB_180_HD HD M 5148_VC_H_1944
    209 HB_185_HD HD F 5167_CR_H_2231
    210 HB_188_HD HD F 5172_VC_H_1951
    211 HB_191_HD HD M 5180_VC_H_1949
    212 HB_196_HD HD NA 5199_PF_H_2202
    213 HB_203_HD HD F 5228_PF_H_2059
    214 HB_207_HD HD NA 5248_PF_H_2201
    215 HB_228_HD HD F 5299_CR_H_2228
    216 HB_233_HD HD M 5312_VC_H_1938
    217 HB_235_HD HD F 5316_VC_H_1937
    218 HB_242_HD HD F 5328_PF_H_2048
    219 HB_266_HD HD M 5387_VC_H_1928
    220 HB_271_HD HD M 5394_PF_H_2039
    221 HB_272_HD HD F 5396_VC_H_1925
    222 HB_279_HD HD F 5409_VC_H_1924
    223 HB_294_HD HD M 5448_VC_H_1921
    224 HB_301_HD HD NA 5464_VC_H_1919
    225 HB_304_HD HD F 5471_VC_H_1918
    226 HB_321_HD HD NA 5522_PF_H_2199
    227 HB_361_HD HD F 5622_VC_H_2121
    228 HB_370_HD HD M 5645_VC_H_1904
    229 HB_371_HD HD F 5648_PF_H_2016
    230 HB_384_HD HD F 5688_PF_H_2012
    231 HB_390_HD HD M 5704_PF_H_2009
    232 HB_393_HD HD F 5709_VC_H_1895
    233 HB_402_HD HD F 5732_PF_H_2007
    234 HB_405_HD HD NA 5742_PF_H_2006
    235 HB_407_HD HD M 5745_PF_H_2005
    236 HB_408_HD HD M 5747_VC_H_1891
    237 HB_415_HD HD NA 5777_PF_H_1551
    238 HB_417_HD HD M 5784_PF_H_1554
    239 HB_424_HD HD M 5804_VC_H_1558
    240 HB_444_HD HD M 5856_VC_H_1567
    241 HB_457_HD HD M 5896_VC_H_1570
    242 HB_466_HD HD M 5910_PF_H_1572
    243 HB_478_HD HD M 5941_CR_H_1583
    244 HB_487_HD HD F 5964_VC_H_1597
    245 HB_511_HD HD M 6019_PF_H_2198
    246 HB_513_HD HD F 6024_VC_H_1612
    247 HB_515_HD HD F 6028_CR_H_1613
    248 HB_518_HD HD M 6033_VC_H_1618
    249 HB_522_HD HD M 6037_PF_H_1626
    250 HB_527_HD HD F 6047_VC_H_1639
    251 HB_528_HD HD M 6051_PF_H_1641
    252 HB_530_HD HD M 6054_VC_H_1648
    253 HB_537_HD HD F 6071_PF_H_1653
    254 HB_549_HD HD M 6119_CR_H_1670
    255 HB_593_HD HD NA 6219_CR_H_2567
    256 HB_610_HD HD NA 6275_PF_H_1692
    257 HB_616_HD HD F 6284_CR_H_1694
    258 HB_626_HD HD M 6315_VC_H_1702
    259 HB_639_HD HD F 6344_CR_H_1703
    260 HB_649_HD HD F 6382_CR_H_1709
    261 HB_661_HD HD M 6408_VC_H_1714
    262 HB_682_HD HD M 6467_PF_H_1725
    263 HB_683_HD HD M 6472_VC_H_1729
    264 HB_691_HD HD F 6493_VC_H_1732
    265 HB_692_HD HD M 6495_CR_H_1733
    266 HB_707_HD HD M 6535_PF_H_1737
    267 HB_709_HD HD F 6539_CR_H_1739
    268 HB_725_HD HD M 6572_PF_H_1746
    269 HB_732_HD HD F 6584_VC_H_1750
    270 HB_734_HD HD F 6587_CR_H_1751
    271 HB_748_HD HD NA 6615_VC_H_2315
    272 HB_750_HD HD NA 6628_PF_H_2326
    273 HB_758_HD HD NA 6643_VC_H_2602
    274 HB_760_HD HD M 6646_PF_H_1761
    275 HB_762_HD HD M 6650_VC_H_1765
    276 HB_766_HD HD M 6658_VC_H_1768
    277 HB_768_HD HD NA 6663_VC_H_1771
    278 HB_769_HD HD M 6666_VC_H_1774
    279 HB_774_HD HD NA 6689_PF_H_2344
    280 HB_778_HD HD NA 6696_PF_H_2356
    281 HB_780_HD HD NA 6704_PF_H_2362
    282 HB_790_HD HD NA 6788_PF_H_2389
    283 HB_800_HD HD NA 6807_PF_H_2419
    284 HB_802_HD HD NA 6811_PF_H_2425
    285 HB_045_AD AD NA 3734_CR_A_0122
    286 HB_048_AD AD NA 3791_CR_A_0128
    287 HB_053_AD AD NA 3877_CR_A_0134
    288 HB_055_AD AD NA 3893_VC_A_0142
    289 HB_068_AD AD NA 4349_VC_A_0148
    290 HB_082_AD AD NA 4712_CR_A_0309
    291 HB_085_AD AD NA 4726_VC_A_0311
    292 HB_087_AD AD NA 4730_CR_A_0315
    293 HB_089_AD AD NA 4733_VC_A_0320
    294 HB_093_AD AD NA 4749_VC_A_0323
    295 HB_095_AD AD NA 4759_CR_A_0327
    296 HB_097_AD AD NA 4773_CR_A_0866
    297 HB_099_AD AD NA 4785_VC_A_0332
    298 HB_100_AD AD NA 4795_VC_A_0335
    299 HB_103_AD AD NA 4811_VC_A_0341
    300 HB_104_AD AD NA 4813_CR_A_0345
    301 HB_112_AD AD NA 4842_VC_A_0870
    302 HB_113_AD AD NA 4850_CR_A_0351
    303 HB_114_AD AD NA 4852_CR_A_0354
    304 HB_117_AD AD NA 4868_VC_A_0874
    305 HB_122_AD AD NA 4904_CR_A_1132
    306 HB_123_AD AD NA 4905_VC_A_0884
    307 HB_124_AD AD NA 4916_VC_A_0886
    308 HB_125_AD AD NA 4917_CR_A_0360
    309 HB_126_AD AD NA 4921_VC_A_0362
    310 HB_128_AD AD NA 4936_CR_A_0369
    311 HB_130_AD AD NA 4939_VC_A_0888
    312 HB_131_AD AD NA 4944_CR_A_0889
    313 HB_132_AD AD NA 4946_CR_A_0372
    314 HB_134_AD AD NA 4951_CR_A_0891
    315 HB_135_AD AD NA 4953_VC_A_0893
    316 HB_136_AD AD NA 4965_VC_A_0160
    317 HB_137_AD AD NA 4966_VC_A_0374
    318 HB_138_AD AD NA 4969_VC_A_0895
    319 HB_140_AD AD NA 4993_CR_A_0896
    320 HB_146_AD AD NA 5018_CR_A_0384
    321 HB_148_AD AD NA 5022_VC_A_0386
    322 HB_150_AD AD NA 5031_VC_A_0392
    323 HB_151_AD AD NA 5033_CR_A_0396
    324 HB_154_AD AD NA 5048_VC_A_1321
    325 HB_155_AD AD NA 5056_VC_A_0398
    326 HB_156_AD AD NA 5057_VC_A_0163
    327 HB_157_AD AD NA 5059_VC_A_0401
    328 HB_158_AD AD NA 5061_PF_A_2612
    329 HB_160_AD AD NA 5064_PF_A_2615
    330 HB_165_AD AD NA 5092_CR_A_0899
    331 HB_168_AD AD NA 5097_VC_A_0407
    332 HB_170_AD AD NA 5101_VC_A_0410
    333 HB_174_AD AD NA 5124_PF_A_1343
    334 HB_179_AD AD NA 5145_VC_A_1351
    335 HB_181_AD AD NA 5152_CR_A_0414
    336 HB_184_AD AD NA 5166_VC_A_1354
    337 HB_194_AD AD NA 5193_VC_A_1360
    338 HB_197_AD AD NA 5202_CR_A_1368
    339 HB_199_AD AD NA 5205_VC_A_0166
    340 HB_200_AD AD NA 5210_VC_A_0905
    341 HB_205_AD AD NA 5235_VC_A_0419
    342 HB_208_AD AD NA 5249_VC_A_0422
    343 HB_209_AD AD NA 5252_VC_A_0907
    344 HB_211_AD AD NA 5257_VC_A_0169
    345 HB_216_AD AD NA 5272_VC_A_0425
    346 HB_219_AD AD NA 5279_CR_A_0147
    347 HB_221_AD AD NA 5283_VC_A_0145
    348 HB_222_AD AD NA 5285_VC_A_0141
    349 HB_224_AD AD NA 5288_VC_A_0428
    350 HB_230_AD AD NA 5301_VC_A_0174
    351 HB_231_AD AD NA 5305_VC_A_1384
    352 HB_232_AD AD NA 5310_CR_A_0176
    353 HB_234_AD AD NA 5313_PF_A_2618
    354 HB_236_AD AD NA 5317_PF_A_2624
    355 HB_238_AD AD NA 5322_CR_A_2632
    356 HB_240_AD AD NA 5325_VC_A_0137
    357 HB_244_AD AD NA 5337_VC_A_1387
    358 HB_245_AD AD NA 5339_VC_A_0181
    359 HB_250_AD AD NA 5346_VC_A_1393
    360 HB_251_AD AD NA 5350_VC_A_0184
    361 HB_252_AD AD NA 5355_VC_A_0133
    362 HB_253_AD AD NA 5359_CR_A_1395
    363 HB_258_AD AD NA 5370_PF_A_1400
    364 HB_259_AD AD NA 5371_PF_A_2636
    365 HB_260_AD AD NA 5375_VC_A_0188
    366 HB_263_AD AD NA 5381_VC_A_0022
    367 HB_265_AD AD NA 5385_VC_A_1402
    368 HB_267_AD AD NA 5389_VC_A_0928
    369 HB_268_AD AD NA 5390_CR_A_0151
    370 HB_273_AD AD NA 5400_PF_A_2645
    371 HB_274_AD AD NA 5401_VC_A_0931
    372 HB_275_AD AD NA 5404_PF_A_2648
    373 HB_276_AD AD NA 5406_VC_A_0933
    374 HB_277_AD AD NA 5407_PF_A_2651
    375 HB_280_AD AD NA 5412_VC_A_0935
    376 HB_281_AD AD NA 5413_PF_A_2657
    377 HB_283_AD AD NA 5419_VC_A_0937
    378 HB_284_AD AD NA 5420_VC_A_0939
    379 HB_285_AD AD NA 5421_CR_A_0432
    380 HB_286_AD AD NA 5423_PF_A_2660
    381 HB_288_AD AD NA 5425_PF_A_2666
    382 HB_289_AD AD NA 5426_VC_A_1405
    383 HB_290_AD AD NA 5433_VC_A_0434
    384 HB_296_AD AD NA 5456_PF_A_2675
    385 HB_299_AD AD NA 5461_VC_A_0192
    386 HB_302_AD AD NA 5465_PF_A_2678
    387 HB_303_AD AD NA 5469_VC_A_1417
    388 HB_305_AD AD NA 5479_PF_A_1421
    389 HB_306_AD AD NA 5480_VC_A_0437
    390 HB_307_AD AD NA 5482_VC_A_0028
    391 HB_308_AD AD NA 5483_VC_A_0941
    392 HB_309_AD AD NA 5487_CR_A_0441
    393 HB_310_AD AD NA 5488_CR_A_0194
    394 HB_312_AD AD NA 5500_VC_A_0198
    395 HB_313_AD AD NA 5502_PF_A_2684
    396 HB_315_AD AD NA 5513_PF_A_2687
    397 HB_316_AD AD NA 5516_PF_A_2690
    398 HB_317_AD AD NA 5517_PF_A_2693
    399 HB_318_AD AD NA 5518_CR_A_0030
    400 HB_319_AD AD NA 5519_CR_A_2695
    401 HB_320_AD AD NA 5520_PF_A_2699
    402 HB_322_AD AD NA 5527_VC_A_0945
    403 HB_325_AD AD NA 5532_PF_A_2702
    404 HB_328_AD AD NA 5541_PF_A_2705
    405 HB_330_AD AD NA 5544_VC_A_0201
    406 HB_334_AD AD NA 5554_VC_A_0452
    407 HB_335_AD AD NA 5557_VC_A_0950
    408 HB_337_AD AD NA 5560_VC_A_0204
    409 HB_342_AD AD NA 5571_PF_A_1430
    410 HB_345_AD AD NA 5583_PF_A_2708
    411 HB_347_AD AD NA 5589_PF_A_2714
    412 HB_349_AD AD NA 5592_PF_A_2717
    413 HB_352_AD AD NA 5604_VC_A_0037
    414 HB_353_AD AD NA 5607_PF_A_2723
    415 HB_356_AD AD NA 5615_VC_A_0041
    416 HB_357_AD AD NA 5616_CR_A_0127
    417 HB_358_AD AD NA 5617_CR_A_0456
    418 HB_359_AD AD NA 5618_CR_A_0044
    419 HB_362_AD AD NA 5625_CR_A_2495
    420 HB_363_AD AD NA 5626_CR_A_2498
    421 HB_364_AD AD NA 5629_CR_A_0390
    422 HB_369_AD AD NA 5643_VC_A_1143
    423 HB_373_AD AD NA 5654_VC_A_0047
    424 HB_375_AD AD NA 5660_CR_A_0462
    425 HB_376_AD AD NA 5661_VC_A_0464
    426 HB_377_AD AD NA 5667_VC_A_2509
    427 HB_378_AD AD NA 5668_VC_A_1438
    428 HB_383_AD AD NA 5686_CR_A_2728
    429 HB_386_AD AD NA 5695_VC_A_0953
    430 HB_389_AD AD NA 5700_VC_A_2514
    431 HB_391_AD AD NA 5705_CR_A_0474
    432 HB_392_AD AD NA 5706_VC_A_0476
    433 HB_394_AD AD NA 5713_VC_A_0479
    434 HB_397_AD AD NA 5721_CR_A_0210
    435 HB_404_AD AD NA 5735_CR_A_0489
    436 HB_406_AD AD NA 5744_CR_A_0960
    437 HB_409_AD AD NA 5749_CR_A_0159
    438 HB_410_AD AD NA 5751_CR_A_2518
    439 HB_411_AD AD NA 5755_CR_A_2731
    440 HB_413_AD AD NA 5766_VC_A_0214
    441 HB_419_AD AD NA 5790_VC_A_0217
    442 HB_420_AD AD NA 5796_CR_A_0964
    443 HB_428_AD AD NA 5811_CR_A_2524
    444 HB_429_AD AD NA 5819_CR_A_2527
    445 HB_430_AD AD NA 5822_CR_A_2530
    446 HB_434_AD AD NA 5828_CR_A_2533
    447 HB_435_AD AD NA 5831_CR_A_0222
    448 HB_437_AD AD NA 5839_CR_A_2539
    449 HB_438_AD AD NA 5843_CR_A_0227
    450 HB_439_AD AD NA 5845_CR_A_0230
    451 HB_441_AD AD NA 5849_CR_A_0233
    452 HB_442_AD AD NA 5850_CR_A_0495
    453 HB_445_AD AD NA 5858_CR_A_0969
    454 HB_448_AD AD NA 5864_CR_A_0974
    455 HB_451_AD AD NA 5871_CR_A_2542
    456 HB_454_AD AD NA 5879_CR_A_2545
    457 HB_455_AD AD NA 5887_CR_A_0976_Bis
    458 HB_459_AD AD NA 5898_CR_A_2548
    459 HB_460_AD AD NA 5900_VC_A_0237
    460 HB_461_AD AD NA 5901_CR_A_0239
    461 HB_469_AD AD NA 5914_CR_A_2554
    462 HB_471_AD AD NA 5922_VC_A_0246
    463 HB_473_AD AD NA 5927_CR_A_2560
    464 HB_474_AD AD NA 5933_VC_A_1071
    465 HB_477_AD AD NA 5939_CR_A_1151
    466 HB_479_AD AD NA 5945_VC_A_0983
    467 HB_484_AD AD NA 5956_CR_A_0123
    468 HB_489_AD AD NA 5968_VC_A_1075
    469 HB_491_AD AD NA 5971_CR_A_0119
    470 HB_492_AD AD NA 5972_VC_A_0251
    471 HB_494_AD AD NA 5979_CR_A_0115
    472 HB_498_AD AD NA 5988_VC_A_0503
    473 HB_502_AD AD NA 5994_PF_A_1605
    474 HB_503_AD AD NA 5995_CR_A_2563
    475 HB_510_AD AD NA 6017_CR_A_0048
    476 HB_514_AD AD NA 6025_VC_A_0506
    477 HB_517_AD AD NA 6031_VC_A_0258
    478 HB_520_AD AD NA 6035_VC_A_1621
    479 HB_523_AD AD NA 6038_VC_A_0261
    480 HB_524_AD AD NA 6042_VC_A_1156
    481 HB_525_AD AD NA 6044_VC_A_0264
    482 HB_531_AD AD NA 6056_CR_A_0999
    483 HB_533_AD AD NA 6061_PF_A_1650
    484 HB_534_AD AD NA 6066_VC_A_0270
    485 HB_535_AD AD NA 6067_PF_A_1452
    486 HB_536_AD AD NA 6068_VC_A_0273
    487 HB_545_AD AD NA 6102_CR_A_1661
    488 HB_546_AD AD NA 6107_CR_A_0055
    489 HB_550_AD AD NA 6120_VC_A_0058
    490 HB_552_AD AD NA 6126_VC_A_1675
    491 HB_553_AD AD NA 6129_PF_A_0274
    492 HB_554_AD AD NA 6130_VC_A_1678
    493 HB_555_AD AD NA 6131_CR_A_0510
    494 HB_556_AD AD NA 6132_CR_A_0513
    495 HB_558_AD AD NA 6137_VC_A_1681
    496 HB_564_AD AD NA 6153_VC_A_1465
    497 HB_565_AD AD NA 6154_VC_A_1468
    498 HB_566_AD AD NA 6157_VC_A_0062
    499 HB_568_AD AD NA 6164_CR_A_1005
    500 HB_571_AD AD NA 6171_CR_A_0065
    501 HB_573_AD AD NA 6174_VC_A_0068
    502 HB_576_AD AD NA 6180_CR_A_0281
    503 HB_583_AD AD NA 6194_VC_A_0071
    504 HB_585_AD AD NA 6198_VC_A_0073
    505 HB_590_AD AD NA 6215_VC_A_0518
    506 HB_591_AD AD NA 6216_VC_A_1476
    507 HB_592_AD AD NA 6218_CR_A_0522
    508 HB_594_AD AD NA 6223_VC_A_0288
    509 HB_596_AD AD NA 6226_CR_A_0076
    510 HB_597_AD AD NA 6227_VC_A_0080
    511 HB_598_AD AD NA 6231_VC_A_1479
    512 HB_605_AD AD NA 6261_VC_A_0084
    513 HB_608_AD AD NA 6268_CR_A_0525
    514 HB_611_AD AD NA 6279_VC_A_0089
    515 HB_612_AD AD NA 6280_VC_A_0091
    516 HB_613_AD AD NA 6281_CR_A_0528
    517 HB_621_AD AD NA 6308_VC_A_1503
    518 HB_623_AD AD NA 6311_CR_A_0531
    519 HB_624_AD AD NA 6312_CR_A_0534
    520 HB_630_AD AD NA 6324_PF_A_1514
    521 HB_633_AD AD NA 6332_VC_A_1518
    522 HB_634_AD AD NA 6335_VC_A_0536
    523 HB_635_AD AD NA 6336_CR_A_0290
    524 HB_636_AD AD NA 6338_VC_A_0539
    525 HB_642_AD AD NA 6358_VC_A_0545
    526 HB_652_AD AD NA 6387_VC_A_0093
    527 HB_657_AD AD NA 6394_VC_A_0551
    528 HB_664_AD AD NA 6416_VC_A_1095
    529 HB_666_AD AD NA 6422_CR_A_0555
    530 HB_669_AD AD NA 6431_VC_A_0294
    531 HB_674_AD AD NA 6449_VC_A_1183
    532 HB_680_AD AD NA 6458_CR_A_2570
    533 HB_685_AD AD NA 6481_VC_A_0560
    534 HB_690_AD AD NA 6489_CR_A_0100
    535 HB_696_AD AD NA 6511_VC_A_1119
    536 HB_698_AD AD NA 6515_CR_A_0564
    537 HB_699_AD AD NA 6518_VC_A_0103
    538 HB_703_AD AD NA 6523_VC_A_0107
    539 HB_704_AD AD NA 6530_VC_A_0112
    540 HB_706_AD AD NA 6534_VC_A_0306
    541 HB_712_AD AD NA 6546_PF_A_1194
    542 HB_713_AD AD NA 6548_PF_A_1541
    543 HB_715_AD AD NA 6550_VC_A_1201
    544 HB_718_AD AD NA 6554_PF_A_1203
    545 HB_720_AD AD NA 6559_PF_A_2287
    546 HB_722_AD AD NA 6561_CR_A_2582
    547 HB_723_AD AD NA 6562_PF_A_2290
    548 HB_724_AD AD NA 6564_CR_A_2585
    549 HB_727_AD AD NA 6575_CR_A_2298
    550 HB_728_AD AD NA 6577_PF_A_2299
    551 HB_729_AD AD NA 6578_PF_A_2302
    552 HB_731_AD AD NA 6582_VC_A_1207
    553 HB_733_AD AD NA 6585_VC_A_1210
    554 HB_736_AD AD NA 6590_PF_A_1215
    555 HB_743_AD AD NA 6603_PF_A_1448
    556 HB_745_AD AD NA 6610_PF_A_1227
    557 HB_746_AD AD NA 6612_PF_A_2308
    558 HB_749_AD AD NA 6617_VC_A_2587
    559 HB_751_AD AD NA 6629_VC_A_2330
    560 HB_752_AD AD NA 6630_VC_A_2590
    561 HB_753_AD AD NA 6632_PF_A_2332
    562 HB_754_AD AD NA 6637_VC_A_2596
    563 HB_755_AD AD NA 6638_VC_A_2599
    564 HB_756_AD AD NA 6639_VC_A_2336
    565 HB_757_AD AD NA 6641_PF_A_2338
    566 HB_763_AD AD NA 6654_VC_A_1237
    567 HB_773_AD AD NA 6681_VC_A_1252
    568 HB_775_AD AD NA 6693_VC_A_2348
    569 HB_776_AD AD NA 6694_VC_A_2351
    570 HB_777_AD AD NA 6695_PF_A_2353
    571 HB_779_AD AD NA 6699_PF_A_2359
    572 HB_781_AD AD NA 6708_VC_A_2366
    573 HB_782_AD AD NA 6776_PF_A_2607
    574 HB_783_AD AD NA 6778_PF_A_2368
    575 HB_784_AD AD NA 6779_PF_A_2371
    576 HB_785_AD AD NA 6780_PF_A_2374
    577 HB_786_AD AD NA 6782_PF_A_2377
    578 HB_787_AD AD NA 6784_PF_A_2380
    579 HB_788_AD AD NA 6785_CR_A_2385
    580 HB_789_AD AD NA 6787_CR_A_2388
    581 HB_791_AD AD NA 6790_PF_A_2392
    582 HB_792_AD AD NA 6791_PF_A_2395
    583 HB_793_AD AD NA 6793_PF_A_2398
    584 HB_794_AD AD NA 6794_PF_A_2401
    585 HB_795_AD AD NA 6797_PF_A_2404
    586 HB_796_AD AD NA 6798_PF_A_2407
    587 HB_797_AD AD NA 6799_VC_A_2411
    588 HB_798_AD AD NA 6801_VC_A_2414
    589 HB_799_AD AD NA 6803_VC_A_2417
    590 HB_801_AD AD NA 6809_PF_A_2422
    591 HB_803_AD AD NA 6818_CR_A_2430
    +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HBTRC-MLVC_N_0611.html b/web/dbdoc/HBTRC-MLVC_N_0611.html new file mode 100755 index 00000000..ee109ef3 --- /dev/null +++ b/web/dbdoc/HBTRC-MLVC_N_0611.html @@ -0,0 +1,831 @@ + + + +HBTRC-MLC Human Visual Cortex Agilent Normal (Jun11) mlratio + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    HBTRC-MLC Human Visual Cortex Agilent Normal (Jun11) mlratiomodify this page

    + + Accession number: GN364

    +

    +

    +

    Summary:

    +

    This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease (HD) and 170 controls (N) matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC). Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

    +
    +

    +

    +

    +

    Data Source Acknowledgements:

    +

    +

    +Species: Human
    +Tissue: Brain visual cortex,Brain cerebellum,Brain prefrontal cortex
    +Disease: Neurological Disease
    +Investigator: Francine Benes/ Eric Schadt
    +Institution: Harvard Brain Tissue Resource Center/ Merck Research Laboratories
    +Approximate Number Subjects: 803

    +

    +The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/). +

    +

    This data packet contains genotypes, clinical traits, as well as expression traits measured in three regions of the brain: visual cortex, cerebellum, prefrontal cortex. Samples were collected from 803 participants including 388 diagnosed with Alzheimer's disease and 220 diagnosed with Huntington's disease. Genotypes were run using two platforms (Illumina and Perlagen). Expression traits were profiled using a custom Agilent platform. +Western-IRB has confirmed that this dataset residing in Sage Bionetworks Repository is 'exempt' under federal regulation 45 CFR 46.101(b)4 and does not involve human subject research as defined by OHRP guidelines. +

    +
    +

    +

    +

    +

    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Series Cerebellum in GN Condition Gender BioSample Name
    1 HB_029_N N NA 3405_VC_N_0859
    2 HB_058_N N NA 4021_VC_N_0854
    3 HB_064_N N NA 4338_VC_N_0861
    4 HB_086_N N NA 4729_PF_N_0756
    5 HB_091_N N NA 4741_VC_N_0864
    6 HB_092_N N NA 4744_VC_N_0865
    7 HB_102_N N NA 4810_VC_N_0869
    8 HB_119_N N NA 4872_VC_N_0878
    9 HB_147_N N NA 5021_VC_N_0852
    10 HB_161_N N NA 5077_VC_N_0851
    11 HB_162_N N NA 5081_VC_N_1021
    12 HB_166_N N NA 5095_VC_N_1024
    13 HB_183_N N NA 5162_VC_N_0850
    14 HB_206_N N NA 5245_VC_N_0849
    15 HB_215_N N NA 5270_VC_N_0848
    16 HB_218_N N NA 5276_CR_N_0912
    17 HB_223_N N NA 5287_VC_N_0916
    18 HB_226_N N NA 5294_VC_N_0919
    19 HB_241_N N NA 5326_CR_N_0652
    20 HB_243_N N NA 5333_VC_N_1262
    21 HB_247_N N NA 5341_VC_N_0923
    22 HB_257_N N NA 5368_PF_N_1032
    23 HB_264_N N NA 5384_VC_N_0924
    24 HB_295_N N NA 5452_VC_N_1268
    25 HB_300_N N NA 5463_VC_N_0845
    26 HB_311_N N NA 5489_CR_N_0942
    27 HB_324_N N NA 5531_VC_N_0844
    28 HB_332_N N NA 5547_VC_N_0843
    29 HB_340_N N NA 5568_VC_N_0842
    30 HB_360_N N NA 5619_CR_N_0645
    31 HB_365_N N NA 5632_VC_N_0838
    32 HB_367_N N NA 5637_VC_N_0837
    33 HB_382_N N NA 5684_PF_N_1270
    34 HB_396_N N NA 5718_VC_N_0956
    35 HB_398_N N NA 5722_VC_N_1044
    36 HB_400_N N NA 5726_VC_N_0834_Bis
    37 HB_403_N N NA 5734_VC_N_0833
    38 HB_414_N N NA 5772_VC_N_0832_Bis
    39 HB_416_N N NA 5778_CR_N_0962
    40 HB_418_N N NA 5789_PF_N_1273
    41 HB_421_N N NA 5799_VC_N_1058
    42 HB_423_N N NA 5803_VC_N_0966
    43 HB_426_N N NA 5806_PF_N_1064
    44 HB_427_N N NA 5810_CR_N_0636
    45 HB_431_N N NA 5823_VC_N_0829
    46 HB_432_N N NA 5826_VC_N_0828
    47 HB_433_N N NA 5827_VC_N_0827
    48 HB_436_N N NA 5832_PF_N_1145
    49 HB_443_N N NA 5852_VC_N_0826
    50 HB_446_N N NA 5859_VC_N_0825
    51 HB_449_N N NA 5866_VC_N_0824
    52 HB_450_N N NA 5867_VC_N_1277
    53 HB_453_N N NA 5876_VC_N_0823
    54 HB_462_N N NA 5903_VC_N_0822
    55 HB_464_N N NA 5905_VC_N_0820
    56 HB_468_N N NA 5912_VC_N_1286
    57 HB_472_N N NA 5925_VC_N_1289
    58 HB_475_N N NA 5936_VC_N_0979
    59 HB_476_N N NA 5938_VC_N_0819
    60 HB_480_N N NA 5946_VC_N_0985
    61 HB_485_N N NA 5959_VC_N_0818
    62 HB_486_N N NA 5963_VC_N_0987
    63 HB_495_N N NA 5980_VC_N_0989
    64 HB_497_N N NA 5985_VC_N_0990
    65 HB_500_N N NA 5990_VC_N_0817
    66 HB_501_N N NA 5991_VC_N_0816
    67 HB_504_N N NA 5996_VC_N_0815
    68 HB_505_N N NA 5998_VC_N_0814
    69 HB_507_N N NA 6006_VC_N_0813
    70 HB_508_N N NA 6007_CR_N_0618
    71 HB_509_N N NA 6008_PF_N_1081
    72 HB_512_N N NA 6023_PF_N_1155
    73 HB_516_N N NA 6030_VC_N_0810
    74 HB_519_N N NA 6034_VC_N_0809
    75 HB_532_N N NA 6060_VC_N_1292
    76 HB_541_N N NA 6092_VC_N_1001
    77 HB_542_N N NA 6096_VC_N_0807
    78 HB_544_N N NA 6101_CR_N_1161
    79 HB_547_N N NA 6110_VC_N_1295
    80 HB_551_N N NA 6124_VC_N_0806
    81 HB_557_N N NA 6134_PF_N_1297
    82 HB_560_N N NA 6142_VC_N_0805
    83 HB_569_N N NA 6166_VC_N_0804
    84 HB_570_N N NA 6170_VC_N_0803
    85 HB_572_N N NA 6172_VC_N_1008
    86 HB_577_N N NA 6182_VC_N_1166
    87 HB_579_N N NA 6187_CR_N_0607
    88 HB_581_N N NA 6191_VC_N_1010
    89 HB_584_N N NA 6196_CR_N_0605
    90 HB_586_N N NA 6200_VC_N_0799
    91 HB_587_N N NA 6206_PF_N_1176
    92 HB_589_N N NA 6213_VC_N_0798
    93 HB_601_N N NA 6241_VC_N_0796
    94 HB_604_N N NA 6260_VC_N_0794
    95 HB_609_N N NA 6270_VC_N_0793
    96 HB_618_N N NA 6289_VC_N_0791
    97 HB_622_N N NA 6310_VC_N_0790
    98 HB_625_N N NA 6314_VC_N_0789
    99 HB_637_N N NA 6340_VC_N_0786
    100 HB_638_N N NA 6341_VC_N_0785
    101 HB_640_N N NA 6347_VC_N_0784
    102 HB_641_N N NA 6356_VC_N_0783
    103 HB_643_N N NA 6363_VC_N_0781
    104 HB_644_N N NA 6366_VC_N_0780
    105 HB_645_N N NA 6374_VC_N_0779
    106 HB_650_N N NA 6384_VC_N_0777
    107 HB_651_N N NA 6386_VC_N_0776
    108 HB_653_N N NA 6388_VC_N_0775
    109 HB_659_N N NA 6406_VC_N_1180
    110 HB_662_N N NA 6411_VC_N_0771
    111 HB_663_N N NA 6415_VC_N_0770
    112 HB_670_N N NA 6436_VC_N_0769
    113 HB_687_N N NA 6484_VC_N_0765
    114 HB_689_N N NA 6486_VC_N_0764
    115 HB_694_N N NA 6500_VC_N_0763
    116 HB_697_N N NA 6512_VC_N_0762
    117 HB_700_N N NA 6520_VC_N_0761
    118 HB_711_N N NA 6543_PF_N_1191
    119 HB_714_N N NA 6549_VC_N_1198
    120 HB_717_N N NA 6553_PF_N_2284
    121 HB_721_N N NA 6560_VC_N_2578
    122 HB_726_N N NA 6573_PF_N_2293
    123 HB_730_N N NA 6580_VC_N_2306
    124 HB_735_N N NA 6588_VC_N_1213
    125 HB_737_N N NA 6593_VC_N_1219
    126 HB_738_N N NA 6594_VC_N_1222
    127 HB_759_N N NA 6645_VC_N_1231
    128 HB_764_N N NA 6655_VC_N_1240
    129 HB_765_N N NA 6656_VC_N_1243
    130 HB_767_N N NA 6661_PF_N_2341
    131 HB_770_N N NA 6669_VC_N_1246
    132 HB_772_N N NA 6676_PF_N_1248
    133 HB_001_HD HD F 2028_CR_H_2282
    134 HB_003_HD HD F 2685_PF_H_2212
    135 HB_004_HD HD M 2706_CR_H_2432
    136 HB_006_HD HD M 2737_VC_H_2194
    137 HB_007_HD HD NA 2769_VC_H_2193
    138 HB_008_HD HD F 2790_CR_H_1890
    139 HB_009_HD HD NA 2879_VC_H_2192
    140 HB_010_HD HD M 2960_VC_H_2002
    141 HB_011_HD HD F 3053_VC_H_2001
    142 HB_012_HD HD F 3128_VC_H_1999
    143 HB_014_HD HD F 3149_PF_H_2110
    144 HB_015_HD HD F 3150_VC_H_1996
    145 HB_016_HD HD F 3177_VC_H_2191
    146 HB_017_HD HD NA 3195_VC_H_2190
    147 HB_018_HD HD M 3200_VC_H_2189
    148 HB_019_HD HD M 3209_VC_H_2188
    149 HB_020_HD HD M 3224_VC_H_1994
    150 HB_022_HD HD F 3242_PF_H_2105
    151 HB_024_HD HD NA 3272_VC_H_2186
    152 HB_027_HD HD M 3356_VC_H_2439
    153 HB_028_HD HD F 3394_PF_H_2104
    154 HB_031_HD HD M 3430_VC_H_1990
    155 HB_032_HD HD NA 3444_PF_H_2208
    156 HB_034_HD HD F 3482_VC_H_1987
    157 HB_036_HD HD M 3576_VC_H_1984
    158 HB_037_HD HD F 3579_VC_H_1983
    159 HB_038_HD HD F 3584_VC_H_2183
    160 HB_039_HD HD NA 3635_VC_H_2182
    161 HB_041_HD HD F 3695_CR_H_2267
    162 HB_042_HD HD M 3697_VC_H_1982
    163 HB_043_HD HD NA 3703_VC_H_2180
    164 HB_044_HD HD NA 3723_VC_H_2179
    165 HB_046_HD HD F 3735_VC_H_1981
    166 HB_050_HD HD M 3820_PF_H_2207
    167 HB_051_HD HD F 3849_CR_H_2262
    168 HB_054_HD HD M 3884_VC_H_2175
    169 HB_056_HD HD NA 4012_VC_H_2174
    170 HB_057_HD HD NA 4013_VC_H_2173
    171 HB_059_HD HD NA 4066_VC_H_2172
    172 HB_060_HD HD NA 4094_VC_H_2171
    173 HB_061_HD HD F 4116_VC_H_2170
    174 HB_062_HD HD NA 4121_VC_H_2169
    175 HB_063_HD HD NA 4215_VC_H_2167
    176 HB_065_HD HD M 4340_PF_H_2091
    177 HB_066_HD HD F 4344_VC_H_1977
    178 HB_067_HD HD M 4346_VC_H_2165
    179 HB_069_HD HD F 4356_VC_H_2164
    180 HB_070_HD HD NA 4386_CR_H_2249
    181 HB_072_HD HD NA 4404_VC_H_2161
    182 HB_073_HD HD F 4411_VC_H_1975
    183 HB_074_HD HD NA 4430_VC_H_2465
    184 HB_075_HD HD M 4470_VC_H_1974
    185 HB_076_HD HD F 4497_CR_H_1860
    186 HB_077_HD HD M 4509_CR_H_2244
    187 HB_079_HD HD M 4631_VC_H_1971
    188 HB_080_HD HD F 4653_PF_H_2083
    189 HB_081_HD HD NA 4678_CR_H_2242
    190 HB_084_HD HD M 4718_VC_H_2125
    191 HB_090_HD HD NA 4740_CR_H_2474
    192 HB_094_HD HD NA 4754_CR_H_2476
    193 HB_098_HD HD NA 4780_VC_H_2151
    194 HB_101_HD HD F 4809_VC_H_2148
    195 HB_105_HD HD NA 4819_CR_H_2238
    196 HB_106_HD HD F 4822_VC_H_1969
    197 HB_108_HD HD M 4826_VC_H_1968
    198 HB_109_HD HD M 4828_VC_H_2124
    199 HB_115_HD HD NA 4855_CR_H_2235
    200 HB_121_HD HD F 4902_VC_H_1967
    201 HB_129_HD HD NA 4938_VC_H_1966
    202 HB_141_HD HD F 4996_PF_H_2076
    203 HB_152_HD HD NA 5034_CR_H_2233
    204 HB_153_HD HD M 5043_VC_H_1960
    205 HB_159_HD HD M 5062_VC_H_1959
    206 HB_172_HD HD F 5114_PF_H_2070
    207 HB_175_HD HD M 5127_PF_H_2068
    208 HB_180_HD HD M 5148_VC_H_1944
    209 HB_185_HD HD F 5167_CR_H_2231
    210 HB_188_HD HD F 5172_VC_H_1951
    211 HB_191_HD HD M 5180_VC_H_1949
    212 HB_196_HD HD NA 5199_PF_H_2202
    213 HB_203_HD HD F 5228_PF_H_2059
    214 HB_207_HD HD NA 5248_PF_H_2201
    215 HB_228_HD HD F 5299_CR_H_2228
    216 HB_233_HD HD M 5312_VC_H_1938
    217 HB_235_HD HD F 5316_VC_H_1937
    218 HB_242_HD HD F 5328_PF_H_2048
    219 HB_266_HD HD M 5387_VC_H_1928
    220 HB_271_HD HD M 5394_PF_H_2039
    221 HB_272_HD HD F 5396_VC_H_1925
    222 HB_279_HD HD F 5409_VC_H_1924
    223 HB_294_HD HD M 5448_VC_H_1921
    224 HB_301_HD HD NA 5464_VC_H_1919
    225 HB_304_HD HD F 5471_VC_H_1918
    226 HB_321_HD HD NA 5522_PF_H_2199
    227 HB_361_HD HD F 5622_VC_H_2121
    228 HB_370_HD HD M 5645_VC_H_1904
    229 HB_371_HD HD F 5648_PF_H_2016
    230 HB_384_HD HD F 5688_PF_H_2012
    231 HB_390_HD HD M 5704_PF_H_2009
    232 HB_393_HD HD F 5709_VC_H_1895
    233 HB_402_HD HD F 5732_PF_H_2007
    234 HB_405_HD HD NA 5742_PF_H_2006
    235 HB_407_HD HD M 5745_PF_H_2005
    236 HB_408_HD HD M 5747_VC_H_1891
    237 HB_415_HD HD NA 5777_PF_H_1551
    238 HB_417_HD HD M 5784_PF_H_1554
    239 HB_424_HD HD M 5804_VC_H_1558
    240 HB_444_HD HD M 5856_VC_H_1567
    241 HB_457_HD HD M 5896_VC_H_1570
    242 HB_466_HD HD M 5910_PF_H_1572
    243 HB_478_HD HD M 5941_CR_H_1583
    244 HB_487_HD HD F 5964_VC_H_1597
    245 HB_511_HD HD M 6019_PF_H_2198
    246 HB_513_HD HD F 6024_VC_H_1612
    247 HB_515_HD HD F 6028_CR_H_1613
    248 HB_518_HD HD M 6033_VC_H_1618
    249 HB_522_HD HD M 6037_PF_H_1626
    250 HB_527_HD HD F 6047_VC_H_1639
    251 HB_528_HD HD M 6051_PF_H_1641
    252 HB_530_HD HD M 6054_VC_H_1648
    253 HB_537_HD HD F 6071_PF_H_1653
    254 HB_549_HD HD M 6119_CR_H_1670
    255 HB_593_HD HD NA 6219_CR_H_2567
    256 HB_610_HD HD NA 6275_PF_H_1692
    257 HB_616_HD HD F 6284_CR_H_1694
    258 HB_626_HD HD M 6315_VC_H_1702
    259 HB_639_HD HD F 6344_CR_H_1703
    260 HB_649_HD HD F 6382_CR_H_1709
    261 HB_661_HD HD M 6408_VC_H_1714
    262 HB_682_HD HD M 6467_PF_H_1725
    263 HB_683_HD HD M 6472_VC_H_1729
    264 HB_691_HD HD F 6493_VC_H_1732
    265 HB_692_HD HD M 6495_CR_H_1733
    266 HB_707_HD HD M 6535_PF_H_1737
    267 HB_709_HD HD F 6539_CR_H_1739
    268 HB_725_HD HD M 6572_PF_H_1746
    269 HB_732_HD HD F 6584_VC_H_1750
    270 HB_734_HD HD F 6587_CR_H_1751
    271 HB_748_HD HD NA 6615_VC_H_2315
    272 HB_750_HD HD NA 6628_PF_H_2326
    273 HB_758_HD HD NA 6643_VC_H_2602
    274 HB_760_HD HD M 6646_PF_H_1761
    275 HB_762_HD HD M 6650_VC_H_1765
    276 HB_766_HD HD M 6658_VC_H_1768
    277 HB_768_HD HD NA 6663_VC_H_1771
    278 HB_769_HD HD M 6666_VC_H_1774
    279 HB_774_HD HD NA 6689_PF_H_2344
    280 HB_778_HD HD NA 6696_PF_H_2356
    281 HB_780_HD HD NA 6704_PF_H_2362
    282 HB_790_HD HD NA 6788_PF_H_2389
    283 HB_800_HD HD NA 6807_PF_H_2419
    284 HB_802_HD HD NA 6811_PF_H_2425
    285 HB_045_AD AD NA 3734_CR_A_0122
    286 HB_048_AD AD NA 3791_CR_A_0128
    287 HB_053_AD AD NA 3877_CR_A_0134
    288 HB_055_AD AD NA 3893_VC_A_0142
    289 HB_068_AD AD NA 4349_VC_A_0148
    290 HB_082_AD AD NA 4712_CR_A_0309
    291 HB_085_AD AD NA 4726_VC_A_0311
    292 HB_087_AD AD NA 4730_CR_A_0315
    293 HB_089_AD AD NA 4733_VC_A_0320
    294 HB_093_AD AD NA 4749_VC_A_0323
    295 HB_095_AD AD NA 4759_CR_A_0327
    296 HB_097_AD AD NA 4773_CR_A_0866
    297 HB_099_AD AD NA 4785_VC_A_0332
    298 HB_100_AD AD NA 4795_VC_A_0335
    299 HB_103_AD AD NA 4811_VC_A_0341
    300 HB_104_AD AD NA 4813_CR_A_0345
    301 HB_112_AD AD NA 4842_VC_A_0870
    302 HB_113_AD AD NA 4850_CR_A_0351
    303 HB_114_AD AD NA 4852_CR_A_0354
    304 HB_117_AD AD NA 4868_VC_A_0874
    305 HB_122_AD AD NA 4904_CR_A_1132
    306 HB_123_AD AD NA 4905_VC_A_0884
    307 HB_124_AD AD NA 4916_VC_A_0886
    308 HB_125_AD AD NA 4917_CR_A_0360
    309 HB_126_AD AD NA 4921_VC_A_0362
    310 HB_128_AD AD NA 4936_CR_A_0369
    311 HB_130_AD AD NA 4939_VC_A_0888
    312 HB_131_AD AD NA 4944_CR_A_0889
    313 HB_132_AD AD NA 4946_CR_A_0372
    314 HB_134_AD AD NA 4951_CR_A_0891
    315 HB_135_AD AD NA 4953_VC_A_0893
    316 HB_136_AD AD NA 4965_VC_A_0160
    317 HB_137_AD AD NA 4966_VC_A_0374
    318 HB_138_AD AD NA 4969_VC_A_0895
    319 HB_140_AD AD NA 4993_CR_A_0896
    320 HB_146_AD AD NA 5018_CR_A_0384
    321 HB_148_AD AD NA 5022_VC_A_0386
    322 HB_150_AD AD NA 5031_VC_A_0392
    323 HB_151_AD AD NA 5033_CR_A_0396
    324 HB_154_AD AD NA 5048_VC_A_1321
    325 HB_155_AD AD NA 5056_VC_A_0398
    326 HB_156_AD AD NA 5057_VC_A_0163
    327 HB_157_AD AD NA 5059_VC_A_0401
    328 HB_158_AD AD NA 5061_PF_A_2612
    329 HB_160_AD AD NA 5064_PF_A_2615
    330 HB_165_AD AD NA 5092_CR_A_0899
    331 HB_168_AD AD NA 5097_VC_A_0407
    332 HB_170_AD AD NA 5101_VC_A_0410
    333 HB_174_AD AD NA 5124_PF_A_1343
    334 HB_179_AD AD NA 5145_VC_A_1351
    335 HB_181_AD AD NA 5152_CR_A_0414
    336 HB_184_AD AD NA 5166_VC_A_1354
    337 HB_194_AD AD NA 5193_VC_A_1360
    338 HB_197_AD AD NA 5202_CR_A_1368
    339 HB_199_AD AD NA 5205_VC_A_0166
    340 HB_200_AD AD NA 5210_VC_A_0905
    341 HB_205_AD AD NA 5235_VC_A_0419
    342 HB_208_AD AD NA 5249_VC_A_0422
    343 HB_209_AD AD NA 5252_VC_A_0907
    344 HB_211_AD AD NA 5257_VC_A_0169
    345 HB_216_AD AD NA 5272_VC_A_0425
    346 HB_219_AD AD NA 5279_CR_A_0147
    347 HB_221_AD AD NA 5283_VC_A_0145
    348 HB_222_AD AD NA 5285_VC_A_0141
    349 HB_224_AD AD NA 5288_VC_A_0428
    350 HB_230_AD AD NA 5301_VC_A_0174
    351 HB_231_AD AD NA 5305_VC_A_1384
    352 HB_232_AD AD NA 5310_CR_A_0176
    353 HB_234_AD AD NA 5313_PF_A_2618
    354 HB_236_AD AD NA 5317_PF_A_2624
    355 HB_238_AD AD NA 5322_CR_A_2632
    356 HB_240_AD AD NA 5325_VC_A_0137
    357 HB_244_AD AD NA 5337_VC_A_1387
    358 HB_245_AD AD NA 5339_VC_A_0181
    359 HB_250_AD AD NA 5346_VC_A_1393
    360 HB_251_AD AD NA 5350_VC_A_0184
    361 HB_252_AD AD NA 5355_VC_A_0133
    362 HB_253_AD AD NA 5359_CR_A_1395
    363 HB_258_AD AD NA 5370_PF_A_1400
    364 HB_259_AD AD NA 5371_PF_A_2636
    365 HB_260_AD AD NA 5375_VC_A_0188
    366 HB_263_AD AD NA 5381_VC_A_0022
    367 HB_265_AD AD NA 5385_VC_A_1402
    368 HB_267_AD AD NA 5389_VC_A_0928
    369 HB_268_AD AD NA 5390_CR_A_0151
    370 HB_273_AD AD NA 5400_PF_A_2645
    371 HB_274_AD AD NA 5401_VC_A_0931
    372 HB_275_AD AD NA 5404_PF_A_2648
    373 HB_276_AD AD NA 5406_VC_A_0933
    374 HB_277_AD AD NA 5407_PF_A_2651
    375 HB_280_AD AD NA 5412_VC_A_0935
    376 HB_281_AD AD NA 5413_PF_A_2657
    377 HB_283_AD AD NA 5419_VC_A_0937
    378 HB_284_AD AD NA 5420_VC_A_0939
    379 HB_285_AD AD NA 5421_CR_A_0432
    380 HB_286_AD AD NA 5423_PF_A_2660
    381 HB_288_AD AD NA 5425_PF_A_2666
    382 HB_289_AD AD NA 5426_VC_A_1405
    383 HB_290_AD AD NA 5433_VC_A_0434
    384 HB_296_AD AD NA 5456_PF_A_2675
    385 HB_299_AD AD NA 5461_VC_A_0192
    386 HB_302_AD AD NA 5465_PF_A_2678
    387 HB_303_AD AD NA 5469_VC_A_1417
    388 HB_305_AD AD NA 5479_PF_A_1421
    389 HB_306_AD AD NA 5480_VC_A_0437
    390 HB_307_AD AD NA 5482_VC_A_0028
    391 HB_308_AD AD NA 5483_VC_A_0941
    392 HB_309_AD AD NA 5487_CR_A_0441
    393 HB_310_AD AD NA 5488_CR_A_0194
    394 HB_312_AD AD NA 5500_VC_A_0198
    395 HB_313_AD AD NA 5502_PF_A_2684
    396 HB_315_AD AD NA 5513_PF_A_2687
    397 HB_316_AD AD NA 5516_PF_A_2690
    398 HB_317_AD AD NA 5517_PF_A_2693
    399 HB_318_AD AD NA 5518_CR_A_0030
    400 HB_319_AD AD NA 5519_CR_A_2695
    401 HB_320_AD AD NA 5520_PF_A_2699
    402 HB_322_AD AD NA 5527_VC_A_0945
    403 HB_325_AD AD NA 5532_PF_A_2702
    404 HB_328_AD AD NA 5541_PF_A_2705
    405 HB_330_AD AD NA 5544_VC_A_0201
    406 HB_334_AD AD NA 5554_VC_A_0452
    407 HB_335_AD AD NA 5557_VC_A_0950
    408 HB_337_AD AD NA 5560_VC_A_0204
    409 HB_342_AD AD NA 5571_PF_A_1430
    410 HB_345_AD AD NA 5583_PF_A_2708
    411 HB_347_AD AD NA 5589_PF_A_2714
    412 HB_349_AD AD NA 5592_PF_A_2717
    413 HB_352_AD AD NA 5604_VC_A_0037
    414 HB_353_AD AD NA 5607_PF_A_2723
    415 HB_356_AD AD NA 5615_VC_A_0041
    416 HB_357_AD AD NA 5616_CR_A_0127
    417 HB_358_AD AD NA 5617_CR_A_0456
    418 HB_359_AD AD NA 5618_CR_A_0044
    419 HB_362_AD AD NA 5625_CR_A_2495
    420 HB_363_AD AD NA 5626_CR_A_2498
    421 HB_364_AD AD NA 5629_CR_A_0390
    422 HB_369_AD AD NA 5643_VC_A_1143
    423 HB_373_AD AD NA 5654_VC_A_0047
    424 HB_375_AD AD NA 5660_CR_A_0462
    425 HB_376_AD AD NA 5661_VC_A_0464
    426 HB_377_AD AD NA 5667_VC_A_2509
    427 HB_378_AD AD NA 5668_VC_A_1438
    428 HB_383_AD AD NA 5686_CR_A_2728
    429 HB_386_AD AD NA 5695_VC_A_0953
    430 HB_389_AD AD NA 5700_VC_A_2514
    431 HB_391_AD AD NA 5705_CR_A_0474
    432 HB_392_AD AD NA 5706_VC_A_0476
    433 HB_394_AD AD NA 5713_VC_A_0479
    434 HB_397_AD AD NA 5721_CR_A_0210
    435 HB_404_AD AD NA 5735_CR_A_0489
    436 HB_406_AD AD NA 5744_CR_A_0960
    437 HB_409_AD AD NA 5749_CR_A_0159
    438 HB_410_AD AD NA 5751_CR_A_2518
    439 HB_411_AD AD NA 5755_CR_A_2731
    440 HB_413_AD AD NA 5766_VC_A_0214
    441 HB_419_AD AD NA 5790_VC_A_0217
    442 HB_420_AD AD NA 5796_CR_A_0964
    443 HB_428_AD AD NA 5811_CR_A_2524
    444 HB_429_AD AD NA 5819_CR_A_2527
    445 HB_430_AD AD NA 5822_CR_A_2530
    446 HB_434_AD AD NA 5828_CR_A_2533
    447 HB_435_AD AD NA 5831_CR_A_0222
    448 HB_437_AD AD NA 5839_CR_A_2539
    449 HB_438_AD AD NA 5843_CR_A_0227
    450 HB_439_AD AD NA 5845_CR_A_0230
    451 HB_441_AD AD NA 5849_CR_A_0233
    452 HB_442_AD AD NA 5850_CR_A_0495
    453 HB_445_AD AD NA 5858_CR_A_0969
    454 HB_448_AD AD NA 5864_CR_A_0974
    455 HB_451_AD AD NA 5871_CR_A_2542
    456 HB_454_AD AD NA 5879_CR_A_2545
    457 HB_455_AD AD NA 5887_CR_A_0976_Bis
    458 HB_459_AD AD NA 5898_CR_A_2548
    459 HB_460_AD AD NA 5900_VC_A_0237
    460 HB_461_AD AD NA 5901_CR_A_0239
    461 HB_469_AD AD NA 5914_CR_A_2554
    462 HB_471_AD AD NA 5922_VC_A_0246
    463 HB_473_AD AD NA 5927_CR_A_2560
    464 HB_474_AD AD NA 5933_VC_A_1071
    465 HB_477_AD AD NA 5939_CR_A_1151
    466 HB_479_AD AD NA 5945_VC_A_0983
    467 HB_484_AD AD NA 5956_CR_A_0123
    468 HB_489_AD AD NA 5968_VC_A_1075
    469 HB_491_AD AD NA 5971_CR_A_0119
    470 HB_492_AD AD NA 5972_VC_A_0251
    471 HB_494_AD AD NA 5979_CR_A_0115
    472 HB_498_AD AD NA 5988_VC_A_0503
    473 HB_502_AD AD NA 5994_PF_A_1605
    474 HB_503_AD AD NA 5995_CR_A_2563
    475 HB_510_AD AD NA 6017_CR_A_0048
    476 HB_514_AD AD NA 6025_VC_A_0506
    477 HB_517_AD AD NA 6031_VC_A_0258
    478 HB_520_AD AD NA 6035_VC_A_1621
    479 HB_523_AD AD NA 6038_VC_A_0261
    480 HB_524_AD AD NA 6042_VC_A_1156
    481 HB_525_AD AD NA 6044_VC_A_0264
    482 HB_531_AD AD NA 6056_CR_A_0999
    483 HB_533_AD AD NA 6061_PF_A_1650
    484 HB_534_AD AD NA 6066_VC_A_0270
    485 HB_535_AD AD NA 6067_PF_A_1452
    486 HB_536_AD AD NA 6068_VC_A_0273
    487 HB_545_AD AD NA 6102_CR_A_1661
    488 HB_546_AD AD NA 6107_CR_A_0055
    489 HB_550_AD AD NA 6120_VC_A_0058
    490 HB_552_AD AD NA 6126_VC_A_1675
    491 HB_553_AD AD NA 6129_PF_A_0274
    492 HB_554_AD AD NA 6130_VC_A_1678
    493 HB_555_AD AD NA 6131_CR_A_0510
    494 HB_556_AD AD NA 6132_CR_A_0513
    495 HB_558_AD AD NA 6137_VC_A_1681
    496 HB_564_AD AD NA 6153_VC_A_1465
    497 HB_565_AD AD NA 6154_VC_A_1468
    498 HB_566_AD AD NA 6157_VC_A_0062
    499 HB_568_AD AD NA 6164_CR_A_1005
    500 HB_571_AD AD NA 6171_CR_A_0065
    501 HB_573_AD AD NA 6174_VC_A_0068
    502 HB_576_AD AD NA 6180_CR_A_0281
    503 HB_583_AD AD NA 6194_VC_A_0071
    504 HB_585_AD AD NA 6198_VC_A_0073
    505 HB_590_AD AD NA 6215_VC_A_0518
    506 HB_591_AD AD NA 6216_VC_A_1476
    507 HB_592_AD AD NA 6218_CR_A_0522
    508 HB_594_AD AD NA 6223_VC_A_0288
    509 HB_596_AD AD NA 6226_CR_A_0076
    510 HB_597_AD AD NA 6227_VC_A_0080
    511 HB_598_AD AD NA 6231_VC_A_1479
    512 HB_605_AD AD NA 6261_VC_A_0084
    513 HB_608_AD AD NA 6268_CR_A_0525
    514 HB_611_AD AD NA 6279_VC_A_0089
    515 HB_612_AD AD NA 6280_VC_A_0091
    516 HB_613_AD AD NA 6281_CR_A_0528
    517 HB_621_AD AD NA 6308_VC_A_1503
    518 HB_623_AD AD NA 6311_CR_A_0531
    519 HB_624_AD AD NA 6312_CR_A_0534
    520 HB_630_AD AD NA 6324_PF_A_1514
    521 HB_633_AD AD NA 6332_VC_A_1518
    522 HB_634_AD AD NA 6335_VC_A_0536
    523 HB_635_AD AD NA 6336_CR_A_0290
    524 HB_636_AD AD NA 6338_VC_A_0539
    525 HB_642_AD AD NA 6358_VC_A_0545
    526 HB_652_AD AD NA 6387_VC_A_0093
    527 HB_657_AD AD NA 6394_VC_A_0551
    528 HB_664_AD AD NA 6416_VC_A_1095
    529 HB_666_AD AD NA 6422_CR_A_0555
    530 HB_669_AD AD NA 6431_VC_A_0294
    531 HB_674_AD AD NA 6449_VC_A_1183
    532 HB_680_AD AD NA 6458_CR_A_2570
    533 HB_685_AD AD NA 6481_VC_A_0560
    534 HB_690_AD AD NA 6489_CR_A_0100
    535 HB_696_AD AD NA 6511_VC_A_1119
    536 HB_698_AD AD NA 6515_CR_A_0564
    537 HB_699_AD AD NA 6518_VC_A_0103
    538 HB_703_AD AD NA 6523_VC_A_0107
    539 HB_704_AD AD NA 6530_VC_A_0112
    540 HB_706_AD AD NA 6534_VC_A_0306
    541 HB_712_AD AD NA 6546_PF_A_1194
    542 HB_713_AD AD NA 6548_PF_A_1541
    543 HB_715_AD AD NA 6550_VC_A_1201
    544 HB_718_AD AD NA 6554_PF_A_1203
    545 HB_720_AD AD NA 6559_PF_A_2287
    546 HB_722_AD AD NA 6561_CR_A_2582
    547 HB_723_AD AD NA 6562_PF_A_2290
    548 HB_724_AD AD NA 6564_CR_A_2585
    549 HB_727_AD AD NA 6575_CR_A_2298
    550 HB_728_AD AD NA 6577_PF_A_2299
    551 HB_729_AD AD NA 6578_PF_A_2302
    552 HB_731_AD AD NA 6582_VC_A_1207
    553 HB_733_AD AD NA 6585_VC_A_1210
    554 HB_736_AD AD NA 6590_PF_A_1215
    555 HB_743_AD AD NA 6603_PF_A_1448
    556 HB_745_AD AD NA 6610_PF_A_1227
    557 HB_746_AD AD NA 6612_PF_A_2308
    558 HB_749_AD AD NA 6617_VC_A_2587
    559 HB_751_AD AD NA 6629_VC_A_2330
    560 HB_752_AD AD NA 6630_VC_A_2590
    561 HB_753_AD AD NA 6632_PF_A_2332
    562 HB_754_AD AD NA 6637_VC_A_2596
    563 HB_755_AD AD NA 6638_VC_A_2599
    564 HB_756_AD AD NA 6639_VC_A_2336
    565 HB_757_AD AD NA 6641_PF_A_2338
    566 HB_763_AD AD NA 6654_VC_A_1237
    567 HB_773_AD AD NA 6681_VC_A_1252
    568 HB_775_AD AD NA 6693_VC_A_2348
    569 HB_776_AD AD NA 6694_VC_A_2351
    570 HB_777_AD AD NA 6695_PF_A_2353
    571 HB_779_AD AD NA 6699_PF_A_2359
    572 HB_781_AD AD NA 6708_VC_A_2366
    573 HB_782_AD AD NA 6776_PF_A_2607
    574 HB_783_AD AD NA 6778_PF_A_2368
    575 HB_784_AD AD NA 6779_PF_A_2371
    576 HB_785_AD AD NA 6780_PF_A_2374
    577 HB_786_AD AD NA 6782_PF_A_2377
    578 HB_787_AD AD NA 6784_PF_A_2380
    579 HB_788_AD AD NA 6785_CR_A_2385
    580 HB_789_AD AD NA 6787_CR_A_2388
    581 HB_791_AD AD NA 6790_PF_A_2392
    582 HB_792_AD AD NA 6791_PF_A_2395
    583 HB_793_AD AD NA 6793_PF_A_2398
    584 HB_794_AD AD NA 6794_PF_A_2401
    585 HB_795_AD AD NA 6797_PF_A_2404
    586 HB_796_AD AD NA 6798_PF_A_2407
    587 HB_797_AD AD NA 6799_VC_A_2411
    588 HB_798_AD AD NA 6801_VC_A_2414
    589 HB_799_AD AD NA 6803_VC_A_2417
    590 HB_801_AD AD NA 6809_PF_A_2422
    591 HB_803_AD AD NA 6818_CR_A_2430
    +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HC_M2CB_1005_M.html b/web/dbdoc/HC_M2CB_1005_M.html new file mode 100755 index 00000000..59486e23 --- /dev/null +++ b/web/dbdoc/HC_M2CB_1005_M.html @@ -0,0 +1,206 @@ + + +Hippocampus Consortium M430v2 CXB (Oct05) MAS5 + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    Hippocampus Consortium M430v2 CXB (Oct05) MAS5 modify this page

    Accession number: GN89

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    Please refer to the corresponding BXD Hippocampus Consortium INFO file.

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HC_M2CB_1005_P.html b/web/dbdoc/HC_M2CB_1005_P.html new file mode 100755 index 00000000..bb82dac1 --- /dev/null +++ b/web/dbdoc/HC_M2CB_1005_P.html @@ -0,0 +1,207 @@ + + +Hippocampus Consortium M430v2 CXB (Oct05) PDNN + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    Hippocampus Consortium M430v2 CXB (Oct05) PDNN modify this page

    Accession number: GN91

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HC_M2CB_1005_R.html b/web/dbdoc/HC_M2CB_1005_R.html new file mode 100755 index 00000000..d459e8da --- /dev/null +++ b/web/dbdoc/HC_M2CB_1005_R.html @@ -0,0 +1,207 @@ + + +Hippocampus Consortium M430v2 CXB (Oct05) RMA + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    Hippocampus Consortium M430v2 CXB (Oct05) RMA modify this page

    Accession number: GN90

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HC_M2CB_1205_P.html b/web/dbdoc/HC_M2CB_1205_P.html new file mode 100755 index 00000000..b3b2566e --- /dev/null +++ b/web/dbdoc/HC_M2CB_1205_P.html @@ -0,0 +1,80 @@ + + +Hippocampus Consortium M430v2 CXB (Dec05) PDNN + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    Hippocampus Consortium M430v2 CXB (Dec05) PDNN modify this page

    Accession number: GN99

    + +

    Summary:

    + +
    +

    Please refer to the corresponding BXD Hippocampus Consortium INFO file. This data set is also fully incorporated in the BXD Hippocampus data set and can be analyzed jointly. However, mapping CXB data can only be performed from this CXB data set.

    + + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HC_M2CB_1205_R.html b/web/dbdoc/HC_M2CB_1205_R.html new file mode 100755 index 00000000..337b50a6 --- /dev/null +++ b/web/dbdoc/HC_M2CB_1205_R.html @@ -0,0 +1,206 @@ + + +Hippocampus Consortium M430v2 CXB (Dec05) RMA + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    Hippocampus Consortium M430v2 CXB (Dec05) RMA modify this page

    Accession number: GN100

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    Please refer to the corresponding BXD Hippocampus Consortium INFO file.

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HC_M2_0606_M.html b/web/dbdoc/HC_M2_0606_M.html new file mode 100755 index 00000000..736398a3 --- /dev/null +++ b/web/dbdoc/HC_M2_0606_M.html @@ -0,0 +1,70 @@ + + + +Hippocampus Consortium M430v2 (Jun06) MAS5 + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    Hippocampus Consortium M430v2 (Jun06) MAS5 +modify this page

    Accession number: GN111

    + +
    +
    + + + +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HC_M2_0606_MDP.html b/web/dbdoc/HC_M2_0606_MDP.html new file mode 100755 index 00000000..1a9c1e25 --- /dev/null +++ b/web/dbdoc/HC_M2_0606_MDP.html @@ -0,0 +1,82 @@ + + + +Hippocampus Consortium M430v2 (Jun06) RMA MDP + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    Hippocampus Consortium M430v2 (Jun06) RMA MDPmodify this page

    + + Accession number: GN272

    +

    + This page will be updated soon. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HC_M2_0606_P.html b/web/dbdoc/HC_M2_0606_P.html new file mode 100755 index 00000000..ed7039cc --- /dev/null +++ b/web/dbdoc/HC_M2_0606_P.html @@ -0,0 +1,635 @@ + +Hippocampus Consortium M430v2 June06 PDNN + + + + + + + + + + + + + + + + + + +
    + + + + + +

    Hippocampus Consortium M430v2 (June06) PDNN +modify this page

    Accession number: GN112

    + + +

        Summary:

    + +
    +MOST HIGHLY RECOMMENDED DATA SET (Overall et al., 2009): The Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a diverse set of common inbred strains, and two reciprocal F1 hybrids. + +

    Please cite: Overall RW, Kempermann G, Peirce J, Lu L, Goldowitz D, Gage FH, Goodwin S, Smit AB, Airey DC, Rosen GD, Schalkwyk LC, Sutter TR, Nowakowski RS, Whatley S, Williams RW (2009) Genetics of the hippocampal transcriptome in mice: a systematic survey and online neurogenomic resource. Front. Neurosci. 3:55 Full Text HTML + + +

    The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2010). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. + +

    Samples were processed using a total of 206 Affymetrix GeneChip Mouse Expression 430 2.0 short oligomer arrays (MOE430 2.0 or M430v2; see GEO platform ID GPL1261), of which 201 passed quality control and error checking. This particular data set was processed using the PDNN protocol. To simplify comparisons among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. + +

    + +

        About the strains used to generate this set of data:

    + + + +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs. + +

    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel + +
    3. AKR/J +
          Sequenced by NIEHS; Phenome Project B list + +
    4. BALB/cByJ +
          Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list + +
    5. BALB/cJ +
          Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list + +
    6. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    7. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    8. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    9. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    10. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    11. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    12. LG/J +
          Paternal parent of the LGXSM panel + +
    13. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    14. NZO/HlLtJ +
          Collaborative Cross strain + +
    15. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    16. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    17. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    18. B6D2F1 and D2B6F1 +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J +
    + +

    We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondrial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels. + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

    + +
    + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thank Muriel Davisson for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria. + +

    A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase. + + +

    A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2). + +

    RNA Extraction: In brief, we used the RNA STAT-60 protocol (TEL-TEST "B" Bulletin No. 1), steps 5.1A (homogenization of tissue), 5.2 (RNA extraction), 5.3 (RNA precipitation), and 5.4 (RNA wash). In Step 5.4 we stopped after adding 75% ethanol (1 ml per 1 ml RNA STAT-60) and stored the mix at -80°C until further use. Before RNA labeling we thawed samples and proceeded with the remainder of Step 5.4; pelleting, drying, and redissolving the pellet in RNase-free water. + +

    We finally purify RNA by using Na4OAc before running arrays. Here is the detailed method: + +

    Final RNA purification protocol + +

      +
    1. Add 1/10th volume of 3M Na4OAc , pH 5.2. If the sample was eluted with 100 µl nuclease-free water as suggested, this will be 10 µl of 3M Na4OAc. +
    2. Add 2.5 volumes of 100% ethanol (250 µl if the RNA was eluted in100 µl). Mix well and incubate at –20°C for 2 hrs. +
    3. Centrifuge at speed of 13,000 rpm for 20 min at 4°C. Carefully remove and discard the supernatant. +
    4. Wash the pellet with 800 µl 75% cold ethanol, centrifuge at speed of 8,600 rpm for 5 min, and remove the 75% ethanol. Wash again. +
    5. To remove the last traces of ethanol, quickly respin the tube, and aspirate any residual fluid. +
    6. Air dry the pellet. +
    7. Resuspend pellet in nuclease-free water. + + + +
    + + + +
    +

    Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80°C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + +

    Replication and Sample Balance: Our goal was to obtain a male sample pool and female sample pool from each isogenic group. While almost all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. All but 5 of 99 strains (BXD55, BXD86, BXD94, BALB/cByJ, and CAST/EiJ) are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquots R1291H3 and R1291H4). + + +

    Sex Balance: Based on the expression of Xist, probe set 1427262_at, DBA/2J and KK/HlJ are represented only by female samples, BXD55, and BALB/cByJ are only represented by a single male sample, BXD74 is represented by two male samples, and BXD86, BXD94, and CAST/EiJ are possibly mixed sex samples. One of the BXD9 samples, array R1523, may be a mixed sex sample pool because the expression of Xist is intermediate. + +

    Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays. Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin. + +

    All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4°C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four. + + +

    COMPARISON with December 2005 Data Set: Both BXD14 arrays in the Dec05 data set were found to actually be from BXD23 cases. This error of strain identification has been corrected in the present data set. Four arrays in the Dec05 data set have been deleted because we judged them to be of poor quality (strain_sex_sample_firstreaction_group): +

      +
    1. BXD21_F_1_1_G1 +
    2. BXD23_M_1_1_G7 +
    3. BXD36_M_1_1_G2 +
    4. BXD36_F_1_1_G3 +
    + +

    +In the Dec05 data set there are a total of 1986 transcripts with QTLs that have LRS scores above 50, whereas in the corrected June06 data sets there are a total of 2074 transcripts with QTLs above 50. +

    + + + +
    + +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by file order (Index), tube/sample ID, age, sex, batch, and numbers of animals in each sample pool (pool size). The next columns (RMA outlier, scale factor, background average, present, absent, marginal, AFFY-b-ActinMur(3'/5'), AFFY-GapdhMur(3'/5')) are all Affymetrix QC data. Finally, source lists the source colony of the animals. (Final version, fully corrected, by Arthur Centeno, October 2008) +
    + + +
    +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexbatch IDpool sizeRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
    1R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
    2R1291H3B6D2F166M +130.013.52448.540.4870.4940.0191.211.52UTM RW
    3R1291H4B6D2F166M technical duplicate of above630.083.89146.690.5120.4690.0191.90.89UTM RW
    4R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
    5R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
    6R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
    7R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
    8R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
    9R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
    10R1290H2DBA/2J63F720.042.57659.60.5130.4680.0181.30.78JAX
    11R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
    12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
    13R1542H1BXD159F730.031.79280.560.4920.4890.0181.570.79Glenn
    14R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
    15R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
    16R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
    17R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
    18R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
    19R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
    20R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
    21R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
    22R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
    23R1523H3BXD957MF (mixed)730.143.978.360.4350.5470.0181.360.77UTM RW
    24R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
    25R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
    26R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
    27R2674H1BXD1259M730.031.92483.440.5190.4640.0181.210.78Glenn
    28R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
    29R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
    30R1304H2BXD1472F730.033.94661.870.4840.4980.0181.220.77UTM RW
    31R1278H2BXD1455M730.064.7567.520.4490.5320.0191.10.73UTM RW
    32R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
    33R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
    34R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
    35R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
    36R2666H1BXD1960F730.022.49876.20.4950.4860.0191.410.77Glenn
    37R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
    38R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
    39R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
    40R2668H1BXD2160M740.072.60544.90.5350.4490.0171.540.76Glenn
    41R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
    42R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
    43R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
    44R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
    45R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
    46R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
    47R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
    48R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
    49R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
    50R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
    51R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
    52R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
    53R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
    54R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
    55R1526H2BXD3157F740.17.26789.540.4350.5470.0171.350.78UTM RW
    56R2675H1BXD3257F730.032.26878.010.5020.4780.021.220.78Glenn
    57R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
    58R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
    59R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
    60R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
    61R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
    62R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
    63R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
    64R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
    65R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
    66R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
    67R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
    68R1541H2BXD4258F730.076.78452.120.4830.4990.0171.130.66Glenn
    69R1540H1BXD4258M740.032.42375.140.4920.4880.021.480.78Glenn
    70R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
    71R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
    72R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
    73R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
    74R1403H2BXD4563F720.033.14644.50.5240.4570.0181.410.78Glenn
    75R1472H1BXD4565M740.041.65173.310.5430.440.0181.630.74UTM RW
    76R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
    77R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
    78R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
    79R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
    80R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
    81R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
    82R2680H1BXD5565M730.071.70779.750.5030.480.0171.911.05UTM RW
    83R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
    84R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
    85R2667H1BXD6170F740.033.3659.040.4950.4880.0181.160.76UTM RW
    86R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
    87R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
    88R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
    89R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
    90R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
    91R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
    92R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
    93R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
    94R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
    95R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
    96R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
    97R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
    98R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
    99R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
    100R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
    101R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
    102R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
    103R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
    104R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
    105R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
    106R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
    107R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
    108R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
    109R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
    110R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
    111R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
    112R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
    113R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
    114R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
    115R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
    116R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
    117R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
    118R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
    119R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
    120R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
    121R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
    122R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
    123R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
    124R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
    125R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
    126R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
    127R2669H2BXD8763F730.072.6157.590.5130.470.0181.60.91UTM RW
    128R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
    129R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
    130R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
    131R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
    132R1600H2BXD9074M740.033.26151.310.5170.4650.0181.160.75Glenn
    133R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
    134R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
    135R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
    136R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
    137R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
    138R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
    139R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
    140R2648H1BXD9774F740.021.66482.080.5180.4640.0191.40.78UTM RW
    141R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
    142R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
    143R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
    144R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
    145R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
    146R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
    147R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
    148R2670H1A/J65F730.043.95146.80.4980.4850.0171.320.75UTM RW
    149R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
    150R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
    151R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
    152R1675H1BALB/cByJ83M730.033.40548.130.5090.4740.0181.130.78JAX
    153R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
    154R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
    155R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
    156R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
    157R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
    158R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
    159R2673H1C57BL/6ByJ55M730.081.84267.690.5140.4690.0171.750.78JAX
    160R2619H1CAST/EiJ64F530.144.07751.870.4550.5280.0182.741.2JAX
    161R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
    162R1687H3KK/HIJ72F530.043.88840.860.4990.4830.0191.860.88JAX
    163R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
    164R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
    165R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
    166R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
    167R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
    168R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
    169R2677H1PWD/PhJ65M720.122.76465.490.4620.520.0181.891.16UTM RW
    170R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
    171R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
    172R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
    173R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
    174R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
    175R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
    176R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
    177R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
    178R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
    179R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
    180R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
    181R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
    182R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
    183R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
    184R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
    185R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
    186R2676H1CXB647F720.052.14662.510.5070.4750.0181.520.78JAX
    187R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
    188R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
    189R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
    190R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
    191R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
    192R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
    193R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
    194R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
    195R2671H1CXB1053M730.092.34871.450.4880.4940.0182.21.14JAX
    196R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
    197R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
    198R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
    199R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
    200R2672H1CXB1349F730.031.72279.520.5160.4650.0191.640.75JAX
    201R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
    +
    + + + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consortium has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access problems. +

    +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    + +

        About data processing:

    + +
    +Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked. + +

    First pass data quality control: Affymetrix GCOS provides useful array quality control data including: +

      +
    1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter. +
    2. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control. +
    3. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion. +
    4. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios. +
    + +

    The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very sensitive to the transformation method that is used. Using the PDNN transform, the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For example, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one would include the sample if one can verify that there are no problems in sample and data set identification. + +

    The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets. + + +

    DataDesk was used to examine the statistical quality of the probe level (CEL) data after step 5 below. DataDesk allows the rapid detection of subsets of probes that are particularly sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below. + +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +

      + +
    1. We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    2. We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform. + +
    3. We computed the Z scores for each cell value. + +
    4. We multiplied all Z scores by 2. + +
    5. We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference. + +
    6. Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + + +
    + +

    Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

    + + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged. + +

    Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers. + + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort: + +

      +
    • David C. Airey, Ph.D. +
      Grant Support: Vanderbilt Institute for Integratie Genomics +
      Department of Pharmacology +
      david.airey at vanderbilt.edu + +
    • Lu Lu, M.D. +
      Grant Support: NIH U01AA13499, U24AA13513 + +
    • Fred H. Gage, Ph.D. +
      Grant Support: Lookout Foundation + +
    • Dan Goldowitz, Ph.D. +
      Grant Support: NIAAA INIA AA013503 +
      University of Tennessee Health Science Center +
      Dept. Anatomy and Neurobiology +
      email: dgold@nb.utmem.edu + +
    • Shirlean Goodwin, Ph.D. +
      Grant Support: NIAAA INIA U01AA013515 + +
    • Gerd Kempermann, M.D. +
      Grant Support: The Volkswagen Foundation Grant on Permissive and Persistent Factors in Neurogenesis in the Adult Central Nervous System +
      Humboldt-Universitat Berlin +
      Universitatsklinikum Charite +
      email: gerd.kempermann at mdc-berlin.de + +
    • Kenneth F. Manly, Ph.D. +
      Grant Support: NIH P20MH062009 and U01CA105417 + +
    • Richard S. Nowakowski, Ph.D. +
      Grant Support: R01 NS049445-01 + +
    • Glenn D. Rosen, Ph.D. +
      Grant Support: NIH P20 + +
    • Leonard C. Schalkwyk, Ph.D. +
      Grant Support: MRC Career Establishment Grant G0000170 +
      Social, Genetic and Developmental Psychiatry +
      Institute of Psychiatry,Kings College London +
      PO82, De Crespigny Park London SE5 8AF +
      L.Schalkwyk@iop.kcl.ac.uk + +
    • Guus Smit, Ph.D. +
      Dutch NeuroBsik Mouse Phenomics Consortium +
      Center for Neurogenomics & Cognitive Research +
      Vrije Universiteit Amsterdam, The Netherlands +
      e-mail: guus.smit at falw.vu.nl +
      Grant Support: BSIK 03053 + +
    • Thomas Sutter, Ph.D. +
      Grant Support: INIA U01 AA13515 and the W. Harry Feinstone Center for Genome Research + +
    • Stephen Whatley, Ph.D. +
      Grant Support: XXXX + +
    • Robert W. Williams, Ph.D. +
      Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 + +
    + + + +

    + +

        About this text file:

    +

    +This text file originally generated by RWW on July 9, 2006. Updated by RWW July 9, 2006. Finalized table, Oct 13, 2008 by Rob Williams and Arthur Centeno. +

    + + + +

    + +
    + + + +
    + +
    + + + + + + + + + + + + diff --git a/web/dbdoc/HC_M2_0606_R.html b/web/dbdoc/HC_M2_0606_R.html new file mode 100755 index 00000000..7432d983 --- /dev/null +++ b/web/dbdoc/HC_M2_0606_R.html @@ -0,0 +1,588 @@ + +Hippocampus Consortium M430v2 June06 RMA + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    Hippocampus Consortium M430v2 (June06) RMA +modify this page

    Accession number: GN110

    + + +

        Summary:

    + +
    +PRELIMINARY: The June 2006 Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a set of 17 diverse inbred strains, and 2 reciprocal F1 hybrids. This data set corrects for severl errors detected in the Dec05 RMA data set (see below). + +

    The hippocampus is an important and intriguing part of the forebrain that is crucial for memory formation, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3, and parts of the subiculum) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. Samples were processed using a total of 206 Affymetrix Mouse Expression 430 2.0 short oligomer microarrays (MOE430 2.0 or M430v2), of which 179 passed stringent quality control and error checking. This particular data set was processed using the RMA protocol. To simplify comparisons among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. + +

    + +

        About the strains used to generate this set of data:

    + +
    +

    This analysis has used 67 of BXD strains and a mouse diversity panel consisting of 16 inbred strains and a pair of reciprocal F1 hybrids (B6D2F1 and D2B6F1). + + + +

    The BXD genetic reference population of recombinant inbred strains consists of approximately 80 strains. Approximately 800 classical phenotypes from sets of 10 to 70 of these strains been integrated in the GeneNetwork. The BXD strains in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs. + + +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel + +
    3. AKR/J +
          Sequenced by NIEHS; Phenome Project B list + +
    4. BALB/cByJ +
          STILL IN PROGRESS (samples did not pass quality control); Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list + +
    5. BALB/cJ +
          Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list + +
    6. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    7. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    8. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    9. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    10. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    11. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    12. LG/J +
          Paternal parent of the LGXSM panel + +
    13. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    14. NZO/HlLtJ +
          Collaborative Cross strain + +
    15. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    16. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    17. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    18. B6D2F1 and D2B6F1 +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J +
    + +

    We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels. + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.

    + + + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thanks Muriel Davission for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria. + +

    A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2). + +

    A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). +

    + +
    +

    Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80 deg. C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. While all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. Seventy-seven of 97 strains are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquotes R1291H3 and R1291H4). + +

    Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays. Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin. + +

    All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4 deg C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four. + + +

    COMPARISON with December 2005 Data Set: Both BXD14 arrays in the Dec05 data set are actually BXD23 strains. This error of strain identification has been corrected in the present data set. Four arrays in the Dec05 data set have been deleted (strain_sex_sample_firstreaction_group): +

      +
    1. BXD21_F_1_1_G1 +
    2. BXD23_M_1_1_G7 +
    3. BXD36_M_1_1_G2 +
    4. BXD36_F_1_1_G3 +
    + +In the Dec05 data set there are a total of 1597 transcripts with QTLs above 50, whereas in the corrected June06 data sets there are a total of 1692 transcripts with QTLs above 50. + + + +
    + +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of processing (Run), Sample ID, Strain, Sex, Age, number of animals in each sample pool (Pool), F generation number when less than 30 (GenN, and the Source of animals. SampleID is the ID number of the pooled RNA sample with a H1 through H3 suffix to indicate the actual hippocampal RNA aliquot used to prepare cRNA. Grp is the sequential group processing number (1 - 6). +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexbatch IDpool sizelRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
    1R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
    2R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
    3R2670H1A/J65F730.043.95146.80.4980.4850.0171.320.75UTM RW
    4R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
    5R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
    6R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
    7R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
    8R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
    9R1291H4B6D2F166M630.083.89146.690.5120.4690.0191.90.89UTM RW
    10R1675H1BALB/cByJ83M730.033.40548.130.5090.4740.0181.130.78JAX
    11R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
    12R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
    13R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
    14R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
    15R1542H1BXD159F730.031.79280.560.4920.4890.0181.570.79Glenn
    16R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
    17R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
    18R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
    19R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
    20R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
    21R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
    22R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
    23R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
    24R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
    25R1523H3BXD957M730.143.978.360.4350.5470.0181.360.77UTM RW
    26R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
    27R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
    28R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
    29R2674H1BXD1259M730.031.92483.440.5190.4640.0181.210.78Glenn
    30R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
    31R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
    32R1304H2BXD1472F730.033.94661.870.4840.4980.0181.220.77UTM RW
    33R1278H2BXD1455M730.064.7567.520.4490.5320.0191.10.73UTM RW
    34R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
    35R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
    36R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
    37R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
    38R2666H1BXD1960F730.022.49876.20.4950.4860.0191.410.77Glenn
    39R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
    40R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
    41R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
    42R1347H2BXD2164F140.012.88161.490.4940.4860.0190.921.22UMemphis
    43R2668H1BXD2160M740.072.60544.90.5350.4490.0171.540.76Glenn
    44R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
    45R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
    46R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
    47R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
    48R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
    49R1244H2BXD2365M730.051.25781.930.5650.4170.0181.240.74Glenn
    50R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
    51R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
    52R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
    53R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
    54R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
    55R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
    56R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
    57R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
    58R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
    59R1526H2BXD3157F740.17.26789.540.4350.5470.0171.350.78UTM RW
    60R2675H1BXD3257F730.032.26878.010.5020.4780.021.220.78Glenn
    61R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
    62R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
    63R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
    64R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
    65R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
    66R1469H1BXD3683F330.023.47349.90.4940.4860.021.110.76UMemphis
    67R1363H1BXD3677M240.012.18448.190.5380.4430.021.280.77UMemphis
    68R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
    69R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
    70R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
    71R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
    72R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
    73R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
    74R1541H2BXD4258F730.076.78452.120.4830.4990.0171.130.66Glenn
    75R1540H1BXD4258M740.032.42375.140.4920.4880.021.480.78Glenn
    76R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
    77R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
    78R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
    79R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
    80R1403H2BXD4563F720.033.14644.50.5240.4570.0181.410.78Glenn
    81R1472H1BXD4565M740.041.65173.310.5430.440.0181.630.74UTM RW
    82R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
    83R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
    84R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
    85R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
    86R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
    87R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
    88R2680H1BXD5565M730.071.70779.750.5030.480.0171.911.05UTM RW
    89R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
    90R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
    91R2667H1BXD6170F740.033.3659.040.4950.4880.0181.160.76UTM RW
    92R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
    93R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
    94R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
    95R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
    96R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
    97R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
    98R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
    99R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
    100R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
    101R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
    102R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
    103R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
    104R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
    105R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
    106R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
    107R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
    108R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
    109R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
    110R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
    111R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
    112R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
    113R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
    114R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
    115R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
    116R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
    117R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
    118R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
    119R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
    120R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
    121R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
    122R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
    123R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
    124R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
    125R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
    126R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
    127R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
    128R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
    129R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
    130R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
    131R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
    132R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
    133R2669H2BXD8763F730.072.6157.590.5130.470.0181.60.91UTM RW
    134R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
    135R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
    136R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
    137R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
    138R1600H2BXD9074M740.033.26151.310.5170.4650.0181.160.75Glenn
    139R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
    140R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
    141R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
    142R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
    143R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
    144R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
    145R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
    146R2648H1BXD9774F740.021.66482.080.5180.4640.0191.40.78UTM RW
    147R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
    148R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
    149R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
    150R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
    151R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
    152R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
    153R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
    154R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
    155R2673H1C57BL/6ByJ55M730.081.84267.690.5140.4690.0171.750.78JAX
    156R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
    157R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
    158R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
    159R2619H1CAST/Ei64F530.144.07751.870.4550.5280.0182.741.2JAX
    160R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
    161R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
    162R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
    163R2671H1CXB1053M730.092.34871.450.4880.4940.0182.21.14JAX
    164R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
    165R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
    166R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
    167R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
    168R2672H1CXB1349F730.031.72279.520.5160.4650.0191.640.75JAX
    169R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
    170R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
    171R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
    172R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
    173R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
    174R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
    175R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
    176R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
    177R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
    178R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
    179R2676H1CXB647F720.052.14662.510.5070.4750.0181.520.78JAX
    180R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
    181R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
    182R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
    183R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
    184R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
    185R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
    186R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
    187R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
    188R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
    189R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
    190R1290H2DBA/2J63F720.042.57659.60.5130.4680.0181.30.78JAX
    191R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
    192R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
    193R1687H3KK/HIJ72M530.043.88840.860.4990.4830.0191.860.88JAX
    194R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
    195R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
    196R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
    197R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
    198R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
    199R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
    200R2677H1PWD/PhJ65F720.122.76465.490.4620.520.0181.891.16UTM RW
    201R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
    202R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
    203R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
    204R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
    205R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
    +
    +
    + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms. +

    +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    + +

        About data processing:

    + +
    +Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked. + +

    First pass data quality control: Affymetrix GCOS provides useful array quality control data including: +

      +
    1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter. +
    2. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control. +
    3. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion. +
    4. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios. +
    + +

    The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very senstive to the transformation method that is used. Using the PDNN transform the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For examploe, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one whould include the ssample if one can verify that there are no problems in sample and data set identification. + +

    The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets. + + +

    DataDesk was used to examine the statistical quality of the of the probe level (CEL) data after step 5 below. DataDesk allows a rapid detection of subsets of probes that are particular sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below. + +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +

      + +
    1. We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    2. We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform. + +
    3. We computed the Z scores for each cell value. + +
    4. We multiplied all Z scores by 2. + +
    5. We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference. + +
    6. Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + + +
    + +

    Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

    + + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged. + +

    Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers. + + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort: + +

      +
    • David C. Airey, Ph.D. +
      Grant Support: Vanderbilt Institute for Integratie Genomics +
      Department of Pharmacology +
      david.airey at vanderbilt.edu + +
    • Lu Lu, M.D. +
      Grant Support: NIH U01AA13499, U24AA13513 + +
    • Fred H. Gage, Ph.D. +
      Grant Support: Lookout Foundation + +
    • Dan Goldowitz, Ph.D. +
      Grant Support: NIAAA INIA AA013503 +
      University of Tennessee Health Science Center +
      Dept. Anatomy and Neurobiology +
      email: dgold@nb.utmem.edu + +
    • Shirlean Goodwin, Ph.D. +
      Grant Support: NIAAA INIA U01AA013515 + +
    • Gerd Kempermann, M.D. +
      Grant Support: The Volkswagen Foundation Grant on Permissive and Persistent Factors in Neurogenesis in the Adult Central Nervous System +
      Humboldt-Universitat Berlin +
      Universitatsklinikum Charite +
      email: gerd.kempermann at mdc-berlin.de + +
    • Kenneth F. Manly, Ph.D. +
      Grant Support: NIH P20MH062009 and U01CA105417 + +
    • Richard S. Nowakowski, Ph.D. +
      Grant Support: R01 NS049445-01 + +
    • Yanhua Qu, Ph.D. +
      Grant Support: NIH U01CA105417 + +
    • Glenn D. Rosen, Ph.D. +
      Grant Support: NIH P20 + +
    • Leonard C. Schalkwyk, Ph.D. +
      Grant Support: MRC Career Establishment Grant G0000170 +
      Social, Genetic and Developmental Psychiatry +
      Institute of Psychiatry,Kings College London +
      PO82, De Crespigny Park London SE5 8AF +
      L.Schalkwyk@iop.kcl.ac.uk + +
    • Guus Smit, Ph.D. +
      Dutch NeuroBsik Mouse Phenomics Consortium +
      Center for Neurogenomics & Cognitive Research +
      Vrije Universiteit Amsterdam, The Netherlands +
      e-mail: guus.smit at falw.vu.nl +
      Grant Support: BSIK 03053 + +
    • Thomas Sutter, Ph.D. +
      Grant Support: INIA U01 AA13515 and the W. Harry Feinstone Center for Genome Research + +
    • Stephen Whatley, Ph.D. +
      Grant Support: XXXX + +
    • Robert W. Williams, Ph.D. +
      Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 + +
    + + + +

    + +

        About this text file:

    +

    +This text file originally generated prospectively by RWW on July 30 2005. Updated by RWW July 31, 2005. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/HC_M2_1005_M.html b/web/dbdoc/HC_M2_1005_M.html new file mode 100755 index 00000000..00b6f289 --- /dev/null +++ b/web/dbdoc/HC_M2_1005_M.html @@ -0,0 +1,545 @@ + +Hippocampus Consortium M430v2 BXD MAS5 October 2005 + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    Hippocampus Consortium M430v2 (Oct05) MAS5 +modify this page

    Accession number: GN86

    + + +

        Summary:

    + +
    +PRELIMINARY: The October 2005 Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of approximately 99 genetically diverse strains of mice including 68 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a set of 16 diverse inbred strains, and 2 reciprocal F1 hybrids. The hippocampus is an important and intriguing part of the forebrain that is crucial for memory formation, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3, and parts of the subiculum) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. Samples were processed using a total of 206 Affymetrix Mouse Expression 430 2.0 short oligomer microarrays (MOE430 2.0 or M430v2), of which 179 passed stringent quality control and error checking. This particular data set was processed using the MAS5 protocol. To simplify comparisons among transforms, MAS5 values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. + +
    + +

        About the strains used to generate this set of data:

    + +
    +

    This analysis has used 68 of BXD strains, the complete set of 13 CXB recombinant inbred strain sets, and a mouse diversity panel consisting of 16 inbred strains and a pair of reciprocal F1 hybrids (B6D2F1 and D2B6F1). + + + +

    The BXD genetic reference population of recombinant inbred strains consists of approximately 80 strains. Approximately 800 classical phenotypes from sets of 10 to 70 of these strains been integrated in the GeneNetwork. The BXD strains in this data set include 29 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs. + +

    The CXB is the first and oldest set of recombinant inbred strains. Over 500 classical phenotypes from these strains been integrated in the GeneNetwork. It is noteworthy that the CXB strains segregate for the hippocampal lamination defect (Hld),characterized by Nowakowski and colleagues (1984). All of the CXBs have been recently genotyped at 13,377 SNPs. + +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel + +
    3. AKR/J +
          Sequenced by NIEHS; Phenome Project B list + +
    4. BALB/cByJ +
          STILL IN PROGRESS (samples did not pass quality control); Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list + +
    5. BALB/cJ +
          Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list + +
    6. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    7. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    8. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    9. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    10. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    11. KK/HIJ +
          Sequenced by Perlegen/NIEHS + +
    12. LG/J +
          Paternal parent of the LGXSM panel + +
    13. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    14. NZO/HILtJ +
          Collaborative Cross strain + +
    15. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    16. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    17. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    18. B6D2F1 and D2B6F1 +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J +
    + +

    We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels. + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.

    + + + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thanks Muriel Davission for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria. + +

    A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2). + +

    A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). +

    + +
    +

    Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80 deg. C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. While all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. Seventy-seven of 99 strains are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquotes R1291H3 and R1291H4). + +

    Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays.Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin. + +

    All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4 deg C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four. +

    + +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of processing (Run), Sample ID, Strain, Sex, Age, number of animals in each sample pool (Pool), F generation number when less than 30 (GenN, and the Source of animals. SampleID is the ID number of the pooled RNA sample with a H1 through H3 suffix to indicate the actual hippocampal RNA aliquot used to prepare cRNA. Grp is the sequential group processing number (1 - 6). +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexbatch IDpool sizelRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
    1R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
    2R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
    3R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
    4R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
    5R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
    6R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
    7R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
    8R1291H4B6D2F166M630.083.89146.690.5120.4690.0191.90.89UTM RW
    9R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
    10R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
    11R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
    12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
    13R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
    14R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
    15R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
    16R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
    17R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
    18R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
    19R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
    20R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
    21R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
    22R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
    23R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
    24R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
    25R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
    26R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
    27R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
    28R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
    29R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
    30R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
    31R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
    32R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
    33R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
    34R1347H2BXD2164F140.012.88161.490.4940.4860.0190.921.22UMemphis
    35R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
    36R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
    37R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
    38R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
    39R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
    40R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
    41R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
    42R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
    43R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
    44R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
    45R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
    46R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
    47R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
    48R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
    49R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
    50R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
    51R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
    52R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
    53R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
    54R1469H1BXD3683F330.023.47349.90.4940.4860.021.110.76UMemphis
    55R1363H1BXD3677M240.012.18448.190.5380.4430.021.280.77UMemphis
    56R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
    57R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
    58R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
    59R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
    60R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
    61R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
    62R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
    63R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
    64R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
    65R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
    66R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
    67R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
    68R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
    69R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
    70R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
    71R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
    72R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
    73R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
    74R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
    75R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
    76R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
    77R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
    78R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
    79R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
    80R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
    81R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
    82R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
    83R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
    84R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
    85R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
    86R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
    87R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
    88R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
    89R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
    90R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
    91R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
    92R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
    93R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
    94R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
    95R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
    96R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
    97R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
    98R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
    99R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
    100R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
    101R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
    102R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
    103R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
    104R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
    105R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
    106R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
    107R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
    108R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
    109R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
    110R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
    111R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
    112R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
    113R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
    114R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
    115R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
    116R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
    117R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
    118R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
    119R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
    120R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
    121R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
    122R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
    123R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
    124R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
    125R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
    126R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
    127R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
    128R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
    129R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
    130R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
    131R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
    132R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
    133R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
    134R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
    135R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
    136R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
    137R2619H1CAST/Ei64F530.144.07751.870.4550.5280.0182.741.2JAX
    138R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
    139R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
    140R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
    141R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
    142R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
    143R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
    144R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
    145R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
    146R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
    147R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
    148R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
    149R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
    150R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
    151R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
    152R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
    153R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
    154R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
    155R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
    156R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
    157R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
    158R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
    159R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
    160R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
    161R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
    162R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
    163R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
    164R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
    165R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
    166R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
    167R1687H3KK/HIJ72M530.043.88840.860.4990.4830.0191.860.88JAX
    168R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
    169R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
    170R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
    171R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
    172R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
    173R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
    174R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
    175R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
    176R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
    177R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
    178R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
    +
    +
    + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms. +

    +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    + +

        About data processing:

    + +
    +Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked. + +

    First pass data quality control: Affymetrix GCOS provides useful array quality control data including: +

      +
    1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter. +
    2. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control. +
    3. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion. +
    4. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios. +
    + +

    The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very senstive to the transformation method that is used. Using the PDNN transform the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For examploe, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one whould include the ssample if one can verify that there are no problems in sample and data set identification. + +

    The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets. + + +

    DataDesk was used to examine the statistical quality of the of the probe level (CEL) data after step 5 below. DataDesk allows a rapid detection of subsets of probes that are particular sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below. + +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +<0L> + +

  • We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
  • We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform. + +
  • We computed the Z scores for each cell value. + +
  • We multiplied all Z scores by 2. + +
  • We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference. + +
  • inally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + + + +

    Probe set data from the CHP file: The expression values were generated using MAS5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

  • + +
    + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged. + +

    Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers. +

    + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + + +

    + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort: + +

      +
    • David C. Airey, Ph.D. +
      Grant Support: Vanderbilt Institute for Integratie Genomics +
      Department of Pharmacology +
      david.airey at vanderbilt.edu + +
    • Lu Lu, M.D. +
      Grant Support: NIH U01AA13499, U24AA13513 + +
    • Fred H. Gage, Ph.D. +
      Grant Support: NIH XXXX + +
    • Dan Goldowitz, Ph.D. +
      Grant Support: NIAAA INIA AA013503 +
      University of Tennessee Health Science Center +
      Dept. Anatomy and Neurobiology +
      email: dgold@nb.utmem.edu + +
    • Shirlean Goodwin, Ph.D. +
      Grant Support: NIAAA INIA U01AA013515 + +
    • Gerd Kempermann, M.D. +
      Grant Support: The Volkswagen Foundation Grant on Permissive and Persistent Factors in Neurogenesis in the Adult Central Nervous System +
      Humboldt-Universitat Berlin +
      Universitatsklinikum Charite +
      email: gerd.kempermann at mdc-berlin.de + +
    • Kenneth F. Manly, Ph.D. +
      Grant Support: NIH P20MH062009 and U01CA105417 + +
    • Richard S. Nowakowski, Ph.D. +
      Grant Support: R01 NS049445-01 + +
    • Yanhua Qu, Ph.D. +
      Grant Support: NIH U01CA105417 + +
    • Glenn D. Rosen, Ph.D. +
      Grant Support: NIH P20 + +
    • Leonard C. Schalkwyk, Ph.D. +
      Grant Support: MRC Career Establishment Grant G0000170 +
      Social, Genetic and Developmental Psychiatry +
      Institute of Psychiatry,Kings College London +
      PO82, De Crespigny Park London SE5 8AF +
      L.Schalkwyk@iop.kcl.ac.uk + +
    • Guus Smit, Ph.D. +
      Dutch NeuroBsik Mouse Phenomics Consortium +
      Center for Neurogenomics & Cognitive Research +
      Vrije Universiteit Amsterdam, The Netherlands +
      e-mail: guus.smit at falw.vu.nl +
      Grant Support: BSIK 03053 + +
    • Thomas Sutter, Ph.D. +
      Grant Support: INIA U01 AA13515 and the W. Harry Feinstone Center for Genome Research + +
    • Stephen Whatley, Ph.D. +
      Grant Support: XXXX + +
    • Robert W. Williams, Ph.D. +
      Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 + +
    + + + +

    + +

        About this text file:

    +

    +This text file originally generated prospectively by RWW on July 30 2005. Updated by RWW July 31, 2005. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/HC_M2_1005_P.html b/web/dbdoc/HC_M2_1005_P.html new file mode 100755 index 00000000..7f78ab0e --- /dev/null +++ b/web/dbdoc/HC_M2_1005_P.html @@ -0,0 +1,548 @@ + +HTML Template/ WebQTL + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    Hippocampus Consortium M430v2 (Oct05) PDNN +modify this page

    Accession number: GN88

    + + +

        Summary:

    + +
    +PRELIMINARY: The October 2005 Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of approximately 96 genetically diverse strains of mice including 65 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a set of 16 diverse inbred strains, and 2 reciprocal F1 hybrids. The hippocampus is an important and intriguing part of the forebrain that is crucial for memory formation, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3, and parts of the subiculum) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. Samples were processed using a total of 206 Affymetrix Mouse Expression 430 2.0 short oligomer microarrays (MOE430 2.0 or M430v2), of which 178 passed stringent quality control and error checking. This particular data set was processed using the position-dependent nearest neighbor method (PDNN) of Zhang and colleagues. To simplify comparison among the transforms we have used, the quantile normalized PDNN values from each arrray have been adjusted to an average expression of 8 units and a standard deviation of 2 units. +
    + +

        About the strains used to generate this set of data:

    + +
    +

    This analysis has used 65 of BXD strains, the complete set of 13 CXB recombinant inbred strain sets, and a mouse diversity panel consisting of 16 inbred strains and a pair of reciprocal F1 hybrids (B6D2F1 and D2B6F1). + + + +

    The BXD genetic reference population of recombinant inbred strains consists of approximately 80 strains. Approximately 800 classical phenotypes from sets of 10 to 70 of these strains been integrated in the GeneNetwork. The BXD strains in this data set include 29 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs. + +

    The CXB is the first and oldest set of recombinant inbred strains. Over 500 classical phenotypes from these strains been integrated in the GeneNetwork. It is noteworthy that the CXB strains segregate for the hippocampal lamination defect (Hld),characterized by Nowakowski and colleagues (1984). All of the CXBs have been recently genotyped at 13,377 SNPs. + +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel + +
    3. AKR/J +
          Sequenced by NIEHS; Phenome Project B list + + + + + +
    4. BALB/cJ +
          Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list + +
    5. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    6. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    7. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    8. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    9. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    10. KK/HIJ +
          Sequenced by Perlegen/NIEHS + +
    11. LG/J +
          Paternal parent of the LGXSM panel + +
    12. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    13. NZO/HILtJ +
          Collaborative Cross strain + +
    14. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    15. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    16. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    17. B6D2F1 and D2B6F1 +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J +
    + +

    We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels. + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.

    + + + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thanks Muriel Davission for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria. + +

    A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2). + +

    A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). +

    + +
    +

    Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Dr. Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80 deg. C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. While all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. Seventy-seven of 99 strains are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquotes R1291H3 and R1291H4). + +

    Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays.Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin. + +

    All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4 deg C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four. +

    + +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by sample ID (tube ID), strain, age, sex, the name of the key Affymetrix CEL file, processing batch ID for the sample, whether or not the sample was stored in RNAlater prior to RNA extraction, number of animals in each sample pool (should read 3, not 1), the fraction of probe sets that generated values >2 standard deviation units from the mean (RMA 2Z outlier), and seven Affymetrix quality control values (scale factor, background, percent present, absent, and marginal, and the actin and Gadph 3' to 5' ratios. Finally, source provides information on the original source of tissues (Glenn = tissue dissected by Glenn D. Rosen, Beth Israel Deaconess Medical Center using mice received directly from JAX). +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexbatch Idpool sizeRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinAFFX-Gapdhsource
    1R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
    2R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
    3R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
    4R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
    5R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
    6R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
    7R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
    8R1291H4B6D2F166M630.083.89146.690.5120.4690.0191.90.89UTM RW
    9R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
    10R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
    11R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
    12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
    13R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
    14R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
    15R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
    16R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
    17R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
    18R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
    19R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
    20R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
    21R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
    22R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
    23R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
    24R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
    25R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
    26R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
    27R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
    28R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
    29R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
    30R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
    31R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
    32R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
    33R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
    34R1347H2BXD2164F140.012.88161.490.4940.4860.0190.921.22UMemphis
    35R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
    36R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
    37R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
    38R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
    39R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
    40R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
    41R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
    42R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
    43R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
    44R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
    45R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
    46R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
    47R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
    48R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
    49R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
    50R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
    51R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
    52R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
    53R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
    54R1469H1BXD3683F330.023.47349.90.4940.4860.021.110.76UMemphis
    55R1363H1BXD3677M240.012.18448.190.5380.4430.021.280.77UMemphis
    56R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
    57R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
    58R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
    59R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
    60R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
    61R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
    62R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
    63R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
    64R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
    65R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
    66R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
    67R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
    68R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
    69R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
    70R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
    71R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
    72R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
    73R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
    74R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
    75R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
    76R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
    77R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
    78R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
    79R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
    80R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
    81R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
    82R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
    83R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
    84R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
    85R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
    86R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
    87R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
    88R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
    89R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
    90R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
    91R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
    92R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
    93R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
    94R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
    95R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
    96R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
    97R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
    98R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
    99R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
    100R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
    101R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
    102R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
    103R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
    104R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
    105R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
    106R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
    107R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
    108R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
    109R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
    110R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
    111R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
    112R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
    113R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
    114R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
    115R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
    116R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
    117R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
    118R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
    119R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
    120R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
    121R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
    122R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
    123R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
    124R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
    125R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
    126R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
    127R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
    128R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
    129R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
    130R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
    131R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
    132R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
    133R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
    134R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
    135R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
    136R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
    137R2619H1CAST/Ei64F530.144.07751.870.4550.5280.0182.741.2JAX
    138R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
    139R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
    140R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
    141R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
    142R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
    143R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
    144R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
    145R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
    146R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
    147R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
    148R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
    149R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
    150R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
    151R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
    152R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
    153R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
    154R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
    155R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
    156R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
    157R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
    158R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
    159R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
    160R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
    161R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
    162R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
    163R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
    164R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
    165R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
    166R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
    167R1687H3KK/HIJ72M530.043.88840.860.4990.4830.0191.860.88JAX
    168R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
    169R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
    170R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
    171R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
    172R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
    173R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
    174R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
    175R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
    176R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
    177R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
    178R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
    +
    +
    + +

        Downloading all data:

    +
    +

    All data tables will be made active as sooon as the global analysis by the Hippocampus Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access problems. +

    +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    + +

        About data processing:

    + +
    +Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked. + +

    First pass data quality control: Affymetrix GCOS provides useful array quality control data including: +

      +
    1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter. +
    2. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control. +
    3. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion. +
    4. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios. +
    + +

    The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very senstive to the transformation method that is used. Using the PDNN transform the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For examploe, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one whould include the ssample if one can verify that there are no problems in sample and data set identification. + +

    The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets. + + +

    DataDesk was used to examine the statistical quality of the of the probe level (CEL) data after step 5 below. DataDesk allows a rapid detection of subsets of probes that are particular sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below. + +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +<0L> + +

  • We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
  • We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform. + +
  • We computed the Z scores for each cell value. + +
  • We multiplied all Z scores by 2. + +
  • We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference. + +
  • inally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + + + +

    Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

  • + +
    + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged. + +

    Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers. +

    + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + + +

    + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort: + +

      +
    • David C. Airey, Ph.D. +
      Grant Support: Vanderbilt Institute for Integratie Genomics +
      Department of Pharmacology +
      david.airey at vanderbilt.edu + +
    • Lu Lu, M.D. +
      Grant Support: NIH U01AA13499, U24AA13513 + +
    • Fred H. Gage, Ph.D. +
      Grant Support: NIH XXXX + +
    • Dan Goldowitz, Ph.D. +
      Grant Support: NIAAA INIA AA013503 +
      University of Tennessee Health Science Center +
      Dept. Anatomy and Neurobiology +
      email: dgold@nb.utmem.edu + +
    • Shirlean Goodwin, Ph.D. +
      Grant Support: NIAAA INIA U01AA013515 + +
    • Gerd Kempermann, M.D. +
      Grant Support: The Volkswagen Foundation Grant on Permissive and Persistent Factors in Neurogenesis in the Adult Central Nervous System +
      Humboldt-Universitat Berlin +
      Universitatsklinikum Charite +
      email: gerd.kempermann at mdc-berlin.de + +
    • Kenneth F. Manly, Ph.D. +
      Grant Support: NIH P20MH062009 and U01CA105417 + +
    • Richard S. Nowakowski, Ph.D. +
      Grant Support: R01 NS049445-01 + +
    • Yanhua Qu, Ph.D. +
      Grant Support: NIH U01CA105417 + +
    • Glenn D. Rosen, Ph.D. +
      Grant Support: NIH P20 + +
    • Leonard C. Schalkwyk, Ph.D. +
      Grant Support: MRC Career Establishment Grant G0000170 +
      Social, Genetic and Developmental Psychiatry +
      Institute of Psychiatry,Kings College London +
      PO82, De Crespigny Park London SE5 8AF +
      L.Schalkwyk@iop.kcl.ac.uk + +
    • Guus Smit, Ph.D. +
      Dutch NeuroBsik Mouse Phenomics Consortium +
      Center for Neurogenomics & Cognitive Research +
      Vrije Universiteit Amsterdam, The Netherlands +
      e-mail: guus.smit at falw.vu.nl +
      Grant Support: BSIK 03053 + +
    • Thomas Sutter, Ph.D. +
      Grant Support: INIA U01 AA13515 and the W. Harry Feinstone Center for Genome Research + +
    • Stephen Whatley, Ph.D. +
      Grant Support: XXXX + +
    • Robert W. Williams, Ph.D. +
      Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 + +
    + + + +

    + +

        About this text file:

    +

    +This text file originally generated prospectively by RWW on July 30 2005. Updated by RWW July 31, 2005. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/HC_M2_1005_R.html b/web/dbdoc/HC_M2_1005_R.html new file mode 100755 index 00000000..a880da70 --- /dev/null +++ b/web/dbdoc/HC_M2_1005_R.html @@ -0,0 +1,545 @@ + +HTML Template/ WebQTL + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    Hippocampus Consortium M430v2 (Oct05) RMA +modify this page

    Accession number: GN87

    + + +

        Summary:

    + +
    +PRELIMINARY: The October 2005 Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of approximately 99 genetically diverse strains of mice including 68 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a set of 16 diverse inbred strains, and 2 reciprocal F1 hybrids. The hippocampus is an important and intriguing part of the forebrain that is crucial for memory formation, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3, and parts of the subiculum) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. Samples were processed using a total of 206 Affymetrix Mouse Expression 430 2.0 short oligomer microarrays (MOE430 2.0 or M430v2), of which 179 passed stringent quality control and error checking. This particular data set was processed using the RMA protocol. To simplify comparisons among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. + +
    + +

        About the strains used to generate this set of data:

    + +
    +

    This analysis has used 68 of BXD strains, the complete set of 13 CXB recombinant inbred strain sets, and a mouse diversity panel consisting of 16 inbred strains and a pair of reciprocal F1 hybrids (B6D2F1 and D2B6F1). + + + +

    The BXD genetic reference population of recombinant inbred strains consists of approximately 80 strains. Approximately 800 classical phenotypes from sets of 10 to 70 of these strains been integrated in the GeneNetwork. The BXD strains in this data set include 29 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs. + +

    The CXB is the first and oldest set of recombinant inbred strains. Over 500 classical phenotypes from these strains been integrated in the GeneNetwork. It is noteworthy that the CXB strains segregate for the hippocampal lamination defect (Hld),characterized by Nowakowski and colleagues (1984). All of the CXBs have been recently genotyped at 13,377 SNPs. + +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel + +
    3. AKR/J +
          Sequenced by NIEHS; Phenome Project B list + +
    4. BALB/cByJ +
          STILL IN PROGRESS (samples did not pass quality control); Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list + +
    5. BALB/cJ +
          Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list + +
    6. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    7. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    8. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    9. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    10. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    11. KK/HIJ +
          Sequenced by Perlegen/NIEHS + +
    12. LG/J +
          Paternal parent of the LGXSM panel + +
    13. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    14. NZO/HILtJ +
          Collaborative Cross strain + +
    15. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    16. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    17. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    18. B6D2F1 and D2B6F1 +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J +
    + +

    We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels. + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.

    + + + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thanks Muriel Davission for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria. + +

    A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2). + +

    A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). +

    + +
    +

    Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80 deg. C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. While all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. Seventy-seven of 99 strains are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquotes R1291H3 and R1291H4). + +

    Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays.Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin. + +

    All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4 deg C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four. +

    + +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of processing (Run), Sample ID, Strain, Sex, Age, number of animals in each sample pool (Pool), F generation number when less than 30 (GenN, and the Source of animals. SampleID is the ID number of the pooled RNA sample with a H1 through H3 suffix to indicate the actual hippocampal RNA aliquot used to prepare cRNA. Grp is the sequential group processing number (1 - 6). +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexbatch IDpool sizelRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
    1R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
    2R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
    3R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
    4R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
    5R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
    6R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
    7R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
    8R1291H4B6D2F166M630.083.89146.690.5120.4690.0191.90.89UTM RW
    9R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
    10R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
    11R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
    12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
    13R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
    14R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
    15R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
    16R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
    17R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
    18R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
    19R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
    20R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
    21R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
    22R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
    23R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
    24R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
    25R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
    26R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
    27R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
    28R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
    29R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
    30R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
    31R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
    32R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
    33R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
    34R1347H2BXD2164F140.012.88161.490.4940.4860.0190.921.22UMemphis
    35R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
    36R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
    37R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
    38R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
    39R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
    40R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
    41R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
    42R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
    43R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
    44R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
    45R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
    46R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
    47R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
    48R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
    49R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
    50R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
    51R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
    52R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
    53R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
    54R1469H1BXD3683F330.023.47349.90.4940.4860.021.110.76UMemphis
    55R1363H1BXD3677M240.012.18448.190.5380.4430.021.280.77UMemphis
    56R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
    57R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
    58R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
    59R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
    60R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
    61R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
    62R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
    63R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
    64R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
    65R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
    66R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
    67R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
    68R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
    69R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
    70R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
    71R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
    72R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
    73R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
    74R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
    75R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
    76R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
    77R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
    78R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
    79R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
    80R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
    81R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
    82R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
    83R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
    84R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
    85R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
    86R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
    87R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
    88R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
    89R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
    90R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
    91R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
    92R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
    93R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
    94R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
    95R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
    96R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
    97R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
    98R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
    99R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
    100R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
    101R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
    102R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
    103R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
    104R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
    105R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
    106R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
    107R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
    108R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
    109R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
    110R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
    111R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
    112R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
    113R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
    114R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
    115R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
    116R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
    117R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
    118R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
    119R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
    120R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
    121R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
    122R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
    123R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
    124R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
    125R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
    126R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
    127R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
    128R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
    129R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
    130R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
    131R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
    132R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
    133R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
    134R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
    135R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
    136R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
    137R2619H1CAST/Ei64F530.144.07751.870.4550.5280.0182.741.2JAX
    138R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
    139R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
    140R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
    141R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
    142R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
    143R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
    144R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
    145R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
    146R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
    147R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
    148R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
    149R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
    150R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
    151R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
    152R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
    153R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
    154R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
    155R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
    156R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
    157R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
    158R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
    159R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
    160R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
    161R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
    162R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
    163R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
    164R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
    165R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
    166R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
    167R1687H3KK/HIJ72M530.043.88840.860.4990.4830.0191.860.88JAX
    168R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
    169R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
    170R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
    171R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
    172R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
    173R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
    174R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
    175R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
    176R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
    177R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
    178R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
    +
    +
    + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms. +

    +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    + +

        About data processing:

    + +
    +Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked. + +

    First pass data quality control: Affymetrix GCOS provides useful array quality control data including: +

      +
    1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter. +
    2. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control. +
    3. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion. +
    4. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios. +
    + +

    The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very senstive to the transformation method that is used. Using the PDNN transform the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For examploe, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one whould include the ssample if one can verify that there are no problems in sample and data set identification. + +

    The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets. + + +

    DataDesk was used to examine the statistical quality of the of the probe level (CEL) data after step 5 below. DataDesk allows a rapid detection of subsets of probes that are particular sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below. + +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +<0L> + +

  • We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
  • We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform. + +
  • We computed the Z scores for each cell value. + +
  • We multiplied all Z scores by 2. + +
  • We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference. + +
  • inally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + + + +

    Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

  • + +
    + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged. + +

    Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers. +

    + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + + +

    + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort: + +

      +
    • David C. Airey, Ph.D. +
      Grant Support: Vanderbilt Institute for Integratie Genomics +
      Department of Pharmacology +
      david.airey at vanderbilt.edu + +
    • Lu Lu, M.D. +
      Grant Support: NIH U01AA13499, U24AA13513 + +
    • Fred H. Gage, Ph.D. +
      Grant Support: NIH XXXX + +
    • Dan Goldowitz, Ph.D. +
      Grant Support: NIAAA INIA AA013503 +
      University of Tennessee Health Science Center +
      Dept. Anatomy and Neurobiology +
      email: dgold@nb.utmem.edu + +
    • Shirlean Goodwin, Ph.D. +
      Grant Support: NIAAA INIA U01AA013515 + +
    • Gerd Kempermann, M.D. +
      Grant Support: The Volkswagen Foundation Grant on Permissive and Persistent Factors in Neurogenesis in the Adult Central Nervous System +
      Humboldt-Universitat Berlin +
      Universitatsklinikum Charite +
      email: gerd.kempermann at mdc-berlin.de + +
    • Kenneth F. Manly, Ph.D. +
      Grant Support: NIH P20MH062009 and U01CA105417 + +
    • Richard S. Nowakowski, Ph.D. +
      Grant Support: R01 NS049445-01 + +
    • Yanhua Qu, Ph.D. +
      Grant Support: NIH U01CA105417 + +
    • Glenn D. Rosen, Ph.D. +
      Grant Support: NIH P20 + +
    • Leonard C. Schalkwyk, Ph.D. +
      Grant Support: MRC Career Establishment Grant G0000170 +
      Social, Genetic and Developmental Psychiatry +
      Institute of Psychiatry,Kings College London +
      PO82, De Crespigny Park London SE5 8AF +
      L.Schalkwyk@iop.kcl.ac.uk + +
    • Guus Smit, Ph.D. +
      Dutch NeuroBsik Mouse Phenomics Consortium +
      Center for Neurogenomics & Cognitive Research +
      Vrije Universiteit Amsterdam, The Netherlands +
      e-mail: guus.smit at falw.vu.nl +
      Grant Support: BSIK 03053 + +
    • Thomas Sutter, Ph.D. +
      Grant Support: INIA U01 AA13515 and the W. Harry Feinstone Center for Genome Research + +
    • Stephen Whatley, Ph.D. +
      Grant Support: XXXX + +
    • Robert W. Williams, Ph.D. +
      Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 + +
    + + + +

    + +

        About this text file:

    +

    +This text file originally generated prospectively by RWW on July 30 2005. Updated by RWW July 31, 2005. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/HC_M2_1205_P.html b/web/dbdoc/HC_M2_1205_P.html new file mode 100755 index 00000000..5d9114f3 --- /dev/null +++ b/web/dbdoc/HC_M2_1205_P.html @@ -0,0 +1,575 @@ + +HTML Template/ WebQTL + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    Hippocampus Consortium M430v2 (Dec05) PDNN +modify this page

    Accession number: GN98

    + + +

        Summary:

    + +
    +PRELIMINARY DATA SET (Unpublished, known to contain at least one strain assignment error): The December 2005 Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 69 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a mouse diversity panel (MDP) consisting of 15 inbred strains, and 2 reciprocal F1 hybrids. The hippocampus is an important and intriguing part of the forebrain that is crucial for memory formation, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the dentate gyrus of the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. Samples were processed using a total of 206 Affymetrix Mouse Expression 430 2.0 short oligomer microarrays (MOE430 2.0 or M430v2), of which 178 passed stringent quality control and error checking. This particular data set was processed using the position-dependent nearest neighbor method (PDNN) of Zhang and colleagues. To simplify comparison among the transforms we have used, the quantile normalized PDNN values from each arrray have been adjusted to an average expression of 8 units and a standard deviation of 2 units. +
    + +

        About the strains used to generate this set of data:

    + +
    +

    This analysis has used 69 of BXD strains, the complete set of 13 CXB recombinant inbred strain sets, and a mouse diversity panel consisting of 15 inbred strains and a pair of reciprocal F1 hybrids (B6D2F1 and D2B6F1). + + + +

    The BXD genetic reference population of recombinant inbred strains consists of approximately 80 strains. Approximately 800 classical phenotypes from sets of 10 to 70 of these strains been integrated in the GeneNetwork. The BXD strains in this data set include 29 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs. + +

    The CXB is the first and oldest set of recombinant inbred strains. Over 500 classical phenotypes from these strains been integrated in the GeneNetwork. It is noteworthy that the CXB strains segregate for the hippocampal lamination defect (Hld),characterized by Nowakowski and colleagues (1984). All of the CXBs have been recently genotyped at 13,377 SNPs. + +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129S1/SvImJ, A/J, C57BL/6J, CAST/Ei, NOD/LtJ, NZO/HlLtJ, PWK/PhJ, and WSB/Ei) have been included in the MDP (noted below in the list). Twelve of these MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel + +
    3. AKR/J +
          Sequenced by NIEHS; Phenome Project B list + + + +
    4. BALB/cByJ +
           Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list + + + +
    5. BALB/cJ +
          Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list + +
    6. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    7. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    8. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    9. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    10. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    11. KK/HIJ +
          Sequenced by Perlegen/NIEHS + +
    12. LG/J +
          Paternal parent of the LGXSM panel + +
    13. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    14. NZO/HILtJ +
          Collaborative Cross strain + +
    15. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forejt and colleagues + +
    16. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    17. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    18. B6D2F1 and D2B6F1 +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J +
    + +

    We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels. + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.

    + + + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thanks Muriel Davission for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria. + +

    A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2). + +

    A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). +

    + +
    +

    Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Dr. Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80 deg. C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. While all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. Seventy-seven of 99 strains are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquotes R1291H3 and R1291H4). + +

    Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays.Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin. + +

    All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4 deg C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four. +

    + +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by sample ID (tube ID), strain, age, sex, the name of the key Affymetrix CEL file, processing batch ID for the sample, whether or not the sample was stored in RNAlater prior to RNA extraction, number of animals in each sample pool (should read 3, not 1), the fraction of probe sets that generated values >2 standard deviation units from the mean (RMA 2Z outlier), and seven Affymetrix quality control values (scale factor, background, percent present, absent, and marginal, and the actin and Gadph 3' to 5' ratios. Finally, source provides information on the original source of tissues (Glenn = tissue dissected by Glenn D. Rosen, Beth Israel Deaconess Medical Center using mice received directly from JAX). +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexbatch IDpool sizeRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinAFFX-Gapdhsource
    1R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
    2R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
    3R2670H1A/J65F730.043.95146.80.4980.4850.0171.320.75UTM RW
    4R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
    5R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
    6R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
    7R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
    8R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
    9R1291H4B6D2F166M630.083.89146.690.5120.4690.0191.90.89UTM RW
    10R1675H1BALB/cByJ83M730.033.40548.130.5090.4740.0181.130.78JAX
    11R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
    12R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
    13R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
    14R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
    15R1542H1BXD159F730.031.79280.560.4920.4890.0181.570.79Glenn
    16R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
    17R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
    18R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
    19R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
    20R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
    21R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
    22R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
    23R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
    24R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
    25R1523H3BXD957M730.143.978.360.4350.5470.0181.360.77UTM RW
    26R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
    27R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
    28R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
    29R2674H1BXD1259M730.031.92483.440.5190.4640.0181.210.78Glenn
    30R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
    31R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
    32R1304H2BXD1472F730.033.94661.870.4840.4980.0181.220.77UTM RW
    33R1278H2BXD1455M730.064.7567.520.4490.5320.0191.10.73UTM RW
    34R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
    35R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
    36R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
    37R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
    38R2666H1BXD1960F730.022.49876.20.4950.4860.0191.410.77Glenn
    39R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
    40R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
    41R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
    42R1347H2BXD2164F140.012.88161.490.4940.4860.0190.921.22UMemphis
    43R2668H1BXD2160M740.072.60544.90.5350.4490.0171.540.76Glenn
    44R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
    45R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
    46R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
    47R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
    48R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
    49R1244H2BXD2365M730.051.25781.930.5650.4170.0181.240.74Glenn
    50R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
    51R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
    52R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
    53R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
    54R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
    55R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
    56R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
    57R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
    58R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
    59R1526H2BXD3157F740.17.26789.540.4350.5470.0171.350.78UTM RW
    60R2675H1BXD3257F730.032.26878.010.5020.4780.021.220.78Glenn
    61R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
    62R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
    63R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
    64R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
    65R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
    66R1469H1BXD3683F330.023.47349.90.4940.4860.021.110.76UMemphis
    67R1363H1BXD3677M240.012.18448.190.5380.4430.021.280.77UMemphis
    68R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
    69R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
    70R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
    71R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
    72R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
    73R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
    74R1541H2BXD4258F730.076.78452.120.4830.4990.0171.130.66Glenn
    75R1540H1BXD4258M740.032.42375.140.4920.4880.021.480.78Glenn
    76R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
    77R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
    78R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
    79R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
    80R1403H2BXD4563F720.033.14644.50.5240.4570.0181.410.78Glenn
    81R1472H1BXD4565M740.041.65173.310.5430.440.0181.630.74UTM RW
    82R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
    83R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
    84R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
    85R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
    86R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
    87R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
    88R2680H1BXD5565M730.071.70779.750.5030.480.0171.911.05UTM RW
    89R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
    90R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
    91R2667H1BXD6170F740.033.3659.040.4950.4880.0181.160.76UTM RW
    92R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
    93R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
    94R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
    95R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
    96R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
    97R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
    98R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
    99R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
    100R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
    101R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
    102R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
    103R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
    104R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
    105R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
    106R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
    107R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
    108R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
    109R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
    110R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
    111R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
    112R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
    113R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
    114R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
    115R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
    116R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
    117R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
    118R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
    119R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
    120R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
    121R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
    122R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
    123R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
    124R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
    125R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
    126R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
    127R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
    128R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
    129R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
    130R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
    131R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
    132R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
    133R2669H2BXD8763F730.072.6157.590.5130.470.0181.60.91UTM RW
    134R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
    135R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
    136R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
    137R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
    138R1600H2BXD9074M740.033.26151.310.5170.4650.0181.160.75Glenn
    139R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
    140R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
    141R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
    142R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
    143R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
    144R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
    145R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
    146R2648H1BXD9774F740.021.66482.080.5180.4640.0191.40.78UTM RW
    147R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
    148R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
    149R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
    150R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
    151R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
    152R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
    153R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
    154R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
    155R2673H1C57BL/6ByJ55M730.081.84267.690.5140.4690.0171.750.78JAX
    156R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
    157R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
    158R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
    159R2619H1CAST/Ei64F530.144.07751.870.4550.5280.0182.741.2JAX
    160R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
    161R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
    162R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
    163R2671H1CXB1053M730.092.34871.450.4880.4940.0182.21.14JAX
    164R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
    165R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
    166R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
    167R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
    168R2672H1CXB1349F730.031.72279.520.5160.4650.0191.640.75JAX
    169R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
    170R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
    171R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
    172R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
    173R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
    174R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
    175R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
    176R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
    177R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
    178R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
    179R2676H1CXB647F720.052.14662.510.5070.4750.0181.520.78JAX
    180R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
    181R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
    182R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
    183R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
    184R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
    185R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
    186R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
    187R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
    188R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
    189R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
    190R1290H2DBA/2J63F720.042.57659.60.5130.4680.0181.30.78JAX
    191R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
    192R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
    193R1687H3KK/HIJ72M530.043.88840.860.4990.4830.0191.860.88JAX
    194R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
    195R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
    196R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
    197R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
    198R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
    199R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
    200R2677H1PWD/PhJ65F720.122.76465.490.4620.520.0181.891.16UTM RW
    201R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
    202R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
    203R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
    204R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
    205R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
    +
    +
    + +

        Downloading all data:

    +
    +

    All data tables will be made active as sooon as the global analysis by the Hippocampus Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access problems. +

    +
    + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    + +

        About data processing:

    + +
    + + +

    First pass data quality control: Affymetrix GCOS provides useful data on array quality. Some of these data are listed in the table above, including: +

      +
    1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter. +
    2. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control. +
    3. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion. +
    4. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios. +
    + +

    The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire array data sets. This was an most important criterion used to eliminate "bad" data sets. All arrays were processed togther using standard RMA or PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very senstive to the transformation method that is used. Using the PDNN transform the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For examploe, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one whould include the ssample if one can verify that there are no problems in sample and data set identification. + +

    The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets. + +

    DataDesk was used to examine the statistical quality of the of the probe level (CEL) data after step 5 below. DataDesk allows a rapid detection of subsets of probes that are particular sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below. + +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +

      + +
    • We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform. + +
    • We computed the Z scores for each cell value. + +
    • We multiplied all Z scores by 2. + +
    • We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference. + +
    • Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + +

    Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

    + +
    + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged. + +

    Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers. +

    + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + +

    Noise structure of the data set: The probe sets for transthyretin (Ttr, e.g., 1454608_x_at) are extremely variable within and between strain. Ttr is a gene that is very heavily expressed almost exclusively in the choroid plexus (see the Allen Brain Atlas). When we dissect the hippocampus we usually retain a relatively constant amount of the choroid plexus and many strains have expression level of about 19 units in the PDNN data set. However, some dissections do not include most of the choroid and the expression levels can be as low as 11 units (a 256-fold difference). You can use the Ttr signal to estimate the "dissection variance" associated with the inclusion or exclusion of the choroid. Simple generate a list of transcripts that covary with Ttr. For example Kcnj13, a epithelial potassium channel covaries with Ttr. This Ttr signal can be exploited to study genes with specific expression in the choroid. (note added by RWW, May 8, 2006). + + +

    + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort: + +

      +
    • David C. Airey, Ph.D. +
      Grant Support: Vanderbilt Institute for Integratie Genomics +
      Department of Pharmacology +
      david.airey at vanderbilt.edu + +
    • Lu Lu, M.D. +
      Grant Support: NIH U01AA13499, U24AA13513 + +
    • Fred H. Gage, Ph.D. +
      Grant Support: NIH XXXX + +
    • Dan Goldowitz, Ph.D. +
      Grant Support: NIAAA INIA AA013503 +
      University of Tennessee Health Science Center +
      Dept. Anatomy and Neurobiology +
      email: dgold@nb.utmem.edu + +
    • Shirlean Goodwin, Ph.D. +
      Grant Support: NIAAA INIA U01AA013515 + +
    • Gerd Kempermann, M.D. +
      Grant Support: The Volkswagen Foundation Grant on Permissive and Persistent Factors in Neurogenesis in the Adult Central Nervous System +
      Humboldt-Universitat Berlin +
      Universitatsklinikum Charite +
      email: gerd.kempermann at mdc-berlin.de + +
    • Kenneth F. Manly, Ph.D. +
      Grant Support: NIH P20MH062009 and U01CA105417 + +
    • Richard S. Nowakowski, Ph.D. +
      Grant Support: R01 NS049445-01 + +
    • Yanhua Qu, Ph.D. +
      Grant Support: NIH U01CA105417 + +
    • Glenn D. Rosen, Ph.D. +
      Grant Support: NIH P20 + +
    • Leonard C. Schalkwyk, Ph.D. +
      Grant Support: MRC Career Establishment Grant G0000170 +
      Social, Genetic and Developmental Psychiatry +
      Institute of Psychiatry,Kings College London +
      PO82, De Crespigny Park London SE5 8AF +
      L.Schalkwyk@iop.kcl.ac.uk + +
    • Guus Smit, Ph.D. +
      Dutch NeuroBsik Mouse Phenomics Consortium +
      Center for Neurogenomics & Cognitive Research +
      Vrije Universiteit Amsterdam, The Netherlands +
      e-mail: guus.smit at falw.vu.nl +
      Grant Support: BSIK 03053 + +
    • Thomas Sutter, Ph.D. +
      Grant Support: INIA U01 AA13515 and the W. Harry Feinstone Center for Genome Research + +
    • Stephen Whatley, Ph.D. +
      Grant Support: + +
    • Robert W. Williams, Ph.D. +
      Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 + +
    + + + +

    + +

        About this text file:

    +

    +This text file originally generated prospectively by RWW on July 30 2005. Updated by RWW July 31, 2005. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/HC_M2_1205_R.html b/web/dbdoc/HC_M2_1205_R.html new file mode 100755 index 00000000..bd6c43fd --- /dev/null +++ b/web/dbdoc/HC_M2_1205_R.html @@ -0,0 +1,571 @@ + +Hippocampus Consortium M430v2 December05 RMA + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    Hippocampus Consortium M430v2 (Dec05) RMA +modify this page

    Accession number: GN97

    + + +

        Summary:

    + +
    +PRELIMINARY: The December 2005 Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of approximately 101 genetically diverse strains of mice including 70 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a set of 16 diverse inbred strains, and 2 reciprocal F1 hybrids. The hippocampus is an important and intriguing part of the forebrain that is crucial for memory formation, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3, and parts of the subiculum) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. Samples were processed using a total of 206 Affymetrix Mouse Expression 430 2.0 short oligomer microarrays (MOE430 2.0 or M430v2), of which 179 passed stringent quality control and error checking. This particular data set was processed using the RMA protocol. To simplify comparisons among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. + +
    + +

        About the strains used to generate this set of data:

    + +
    +

    This analysis has used 70 of BXD strains, the complete set of 13 CXB recombinant inbred strain sets, and a mouse diversity panel consisting of 16 inbred strains and a pair of reciprocal F1 hybrids (B6D2F1 and D2B6F1). + + + +

    The BXD genetic reference population of recombinant inbred strains consists of approximately 80 strains. Approximately 800 classical phenotypes from sets of 10 to 70 of these strains been integrated in the GeneNetwork. The BXD strains in this data set include 29 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs. + +

    The CXB is the first and oldest set of recombinant inbred strains. Over 500 classical phenotypes from these strains been integrated in the GeneNetwork. It is noteworthy that the CXB strains segregate for the hippocampal lamination defect (Hld),characterized by Nowakowski and colleagues (1984). All of the CXBs have been recently genotyped at 13,377 SNPs. + +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel + +
    3. AKR/J +
          Sequenced by NIEHS; Phenome Project B list + +
    4. BALB/cByJ +
          STILL IN PROGRESS (samples did not pass quality control); Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list + +
    5. BALB/cJ +
          Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list + +
    6. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    7. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    8. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    9. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    10. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    11. KK/HIJ +
          Sequenced by Perlegen/NIEHS + +
    12. LG/J +
          Paternal parent of the LGXSM panel + +
    13. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    14. NZO/HILtJ +
          Collaborative Cross strain + +
    15. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    16. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    17. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    18. B6D2F1 and D2B6F1 +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J +
    + +

    We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels. + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.

    + + + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thanks Muriel Davission for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria. + +

    A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2). + +

    A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). +

    + +
    +

    Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80 deg. C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. While all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. Seventy-seven of 99 strains are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquotes R1291H3 and R1291H4). + +

    Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays.Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin. + +

    All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4 deg C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four. +

    + +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of processing (Run), Sample ID, Strain, Sex, Age, number of animals in each sample pool (Pool), F generation number when less than 30 (GenN, and the Source of animals. SampleID is the ID number of the pooled RNA sample with a H1 through H3 suffix to indicate the actual hippocampal RNA aliquot used to prepare cRNA. Grp is the sequential group processing number (1 - 6). +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexbatch IDpool sizelRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
    1R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
    2R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
    3R2670H1A/J65F730.043.95146.80.4980.4850.0171.320.75UTM RW
    4R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
    5R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
    6R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
    7R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
    8R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
    9R1291H4B6D2F166M630.083.89146.690.5120.4690.0191.90.89UTM RW
    10R1675H1BALB/cByJ83M730.033.40548.130.5090.4740.0181.130.78JAX
    11R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
    12R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
    13R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
    14R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
    15R1542H1BXD159F730.031.79280.560.4920.4890.0181.570.79Glenn
    16R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
    17R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
    18R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
    19R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
    20R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
    21R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
    22R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
    23R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
    24R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
    25R1523H3BXD957M730.143.978.360.4350.5470.0181.360.77UTM RW
    26R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
    27R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
    28R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
    29R2674H1BXD1259M730.031.92483.440.5190.4640.0181.210.78Glenn
    30R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
    31R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
    32R1304H2BXD1472F730.033.94661.870.4840.4980.0181.220.77UTM RW
    33R1278H2BXD1455M730.064.7567.520.4490.5320.0191.10.73UTM RW
    34R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
    35R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
    36R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
    37R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
    38R2666H1BXD1960F730.022.49876.20.4950.4860.0191.410.77Glenn
    39R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
    40R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
    41R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
    42R1347H2BXD2164F140.012.88161.490.4940.4860.0190.921.22UMemphis
    43R2668H1BXD2160M740.072.60544.90.5350.4490.0171.540.76Glenn
    44R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
    45R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
    46R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
    47R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
    48R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
    49R1244H2BXD2365M730.051.25781.930.5650.4170.0181.240.74Glenn
    50R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
    51R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
    52R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
    53R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
    54R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
    55R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
    56R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
    57R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
    58R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
    59R1526H2BXD3157F740.17.26789.540.4350.5470.0171.350.78UTM RW
    60R2675H1BXD3257F730.032.26878.010.5020.4780.021.220.78Glenn
    61R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
    62R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
    63R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
    64R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
    65R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
    66R1469H1BXD3683F330.023.47349.90.4940.4860.021.110.76UMemphis
    67R1363H1BXD3677M240.012.18448.190.5380.4430.021.280.77UMemphis
    68R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
    69R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
    70R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
    71R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
    72R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
    73R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
    74R1541H2BXD4258F730.076.78452.120.4830.4990.0171.130.66Glenn
    75R1540H1BXD4258M740.032.42375.140.4920.4880.021.480.78Glenn
    76R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
    77R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
    78R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
    79R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
    80R1403H2BXD4563F720.033.14644.50.5240.4570.0181.410.78Glenn
    81R1472H1BXD4565M740.041.65173.310.5430.440.0181.630.74UTM RW
    82R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
    83R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
    84R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
    85R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
    86R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
    87R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
    88R2680H1BXD5565M730.071.70779.750.5030.480.0171.911.05UTM RW
    89R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
    90R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
    91R2667H1BXD6170F740.033.3659.040.4950.4880.0181.160.76UTM RW
    92R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
    93R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
    94R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
    95R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
    96R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
    97R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
    98R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
    99R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
    100R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
    101R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
    102R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
    103R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
    104R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
    105R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
    106R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
    107R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
    108R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
    109R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
    110R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
    111R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
    112R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
    113R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
    114R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
    115R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
    116R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
    117R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
    118R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
    119R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
    120R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
    121R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
    122R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
    123R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
    124R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
    125R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
    126R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
    127R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
    128R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
    129R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
    130R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
    131R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
    132R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
    133R2669H2BXD8763F730.072.6157.590.5130.470.0181.60.91UTM RW
    134R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
    135R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
    136R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
    137R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
    138R1600H2BXD9074M740.033.26151.310.5170.4650.0181.160.75Glenn
    139R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
    140R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
    141R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
    142R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
    143R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
    144R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
    145R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
    146R2648H1BXD9774F740.021.66482.080.5180.4640.0191.40.78UTM RW
    147R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
    148R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
    149R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
    150R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
    151R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
    152R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
    153R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
    154R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
    155R2673H1C57BL/6ByJ55M730.081.84267.690.5140.4690.0171.750.78JAX
    156R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
    157R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
    158R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
    159R2619H1CAST/Ei64F530.144.07751.870.4550.5280.0182.741.2JAX
    160R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
    161R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
    162R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
    163R2671H1CXB1053M730.092.34871.450.4880.4940.0182.21.14JAX
    164R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
    165R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
    166R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
    167R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
    168R2672H1CXB1349F730.031.72279.520.5160.4650.0191.640.75JAX
    169R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
    170R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
    171R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
    172R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
    173R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
    174R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
    175R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
    176R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
    177R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
    178R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
    179R2676H1CXB647F720.052.14662.510.5070.4750.0181.520.78JAX
    180R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
    181R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
    182R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
    183R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
    184R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
    185R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
    186R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
    187R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
    188R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
    189R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
    190R1290H2DBA/2J63F720.042.57659.60.5130.4680.0181.30.78JAX
    191R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
    192R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
    193R1687H3KK/HIJ72M530.043.88840.860.4990.4830.0191.860.88JAX
    194R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
    195R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
    196R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
    197R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
    198R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
    199R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
    200R2677H1PWD/PhJ65F720.122.76465.490.4620.520.0181.891.16UTM RW
    201R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
    202R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
    203R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
    204R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
    205R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
    +
    +
    + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms. +

    +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    + +

        About data processing:

    + +
    +Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked. + +

    First pass data quality control: Affymetrix GCOS provides useful array quality control data including: +

      +
    1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter. +
    2. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control. +
    3. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion. +
    4. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios. +
    + +

    The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very senstive to the transformation method that is used. Using the PDNN transform the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For examploe, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one whould include the ssample if one can verify that there are no problems in sample and data set identification. + +

    The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets. + + +

    DataDesk was used to examine the statistical quality of the of the probe level (CEL) data after step 5 below. DataDesk allows a rapid detection of subsets of probes that are particular sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below. + +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +<0L> + +

  • We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
  • We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform. + +
  • We computed the Z scores for each cell value. + +
  • We multiplied all Z scores by 2. + +
  • We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference. + +
  • inally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + + + +

    Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

  • + +
    + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged. + +

    Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers. +

    + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + + +

    + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort: + +

      +
    • David C. Airey, Ph.D. +
      Grant Support: Vanderbilt Institute for Integratie Genomics +
      Department of Pharmacology +
      david.airey at vanderbilt.edu + +
    • Lu Lu, M.D. +
      Grant Support: NIH U01AA13499, U24AA13513 + +
    • Fred H. Gage, Ph.D. +
      Grant Support: NIH XXXX + +
    • Dan Goldowitz, Ph.D. +
      Grant Support: NIAAA INIA AA013503 +
      University of Tennessee Health Science Center +
      Dept. Anatomy and Neurobiology +
      email: dgold@nb.utmem.edu + +
    • Shirlean Goodwin, Ph.D. +
      Grant Support: NIAAA INIA U01AA013515 + +
    • Gerd Kempermann, M.D. +
      Grant Support: The Volkswagen Foundation Grant on Permissive and Persistent Factors in Neurogenesis in the Adult Central Nervous System +
      Humboldt-Universitat Berlin +
      Universitatsklinikum Charite +
      email: gerd.kempermann at mdc-berlin.de + +
    • Kenneth F. Manly, Ph.D. +
      Grant Support: NIH P20MH062009 and U01CA105417 + +
    • Richard S. Nowakowski, Ph.D. +
      Grant Support: R01 NS049445-01 + +
    • Yanhua Qu, Ph.D. +
      Grant Support: NIH U01CA105417 + +
    • Glenn D. Rosen, Ph.D. +
      Grant Support: NIH P20 + +
    • Leonard C. Schalkwyk, Ph.D. +
      Grant Support: MRC Career Establishment Grant G0000170 +
      Social, Genetic and Developmental Psychiatry +
      Institute of Psychiatry,Kings College London +
      PO82, De Crespigny Park London SE5 8AF +
      L.Schalkwyk@iop.kcl.ac.uk + +
    • Guus Smit, Ph.D. +
      Dutch NeuroBsik Mouse Phenomics Consortium +
      Center for Neurogenomics & Cognitive Research +
      Vrije Universiteit Amsterdam, The Netherlands +
      e-mail: guus.smit at falw.vu.nl +
      Grant Support: BSIK 03053 + +
    • Thomas Sutter, Ph.D. +
      Grant Support: INIA U01 AA13515 and the W. Harry Feinstone Center for Genome Research + +
    • Stephen Whatley, Ph.D. +
      Grant Support: XXXX + +
    • Robert W. Williams, Ph.D. +
      Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 + +
    + + + +

    + +

        About this text file:

    +

    +This text file originally generated prospectively by RWW on July 30 2005. Updated by RWW July 31, 2005. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/HC_M2_1206_R.html b/web/dbdoc/HC_M2_1206_R.html new file mode 100755 index 00000000..08380605 --- /dev/null +++ b/web/dbdoc/HC_M2_1206_R.html @@ -0,0 +1,809 @@ + +Hippocampus Consortium M430v2(EntrezG_8) December06 RMA + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +
    + +

    Hippocampus Consortium M430v2(EntrezG_8) December06 RMA +modify this page

    Accession number: GN129

    + + +

        Summary:

    + +
    +PRELIMINARY: The June 2006 Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a set of diverse inbred strains, and two reciprocal F1 hybrids. + +

    The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. + +

    Samples were processed using a total of 205 Affymetrix GeneChip Mouse Expression 430 2.0 short oligomer arrays (MOE430 2.0 or M430v2; see GEO platform ID GPL1261), of which 179 passed stringent quality control and error checking . This particular data set was processed using the RMA protocol using a custom CDF. To simplify comparisons among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. + + +

    + +

        About the strains used to generate this set of data:

    + + + +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs. + +

    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project + +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants. + +

      +
    1. 129S1/SvImJ + +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel + +
    3. AKR/J +
          Sequenced by NIEHS; Phenome Project B list + +
    4. BALB/cByJ +
          Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list + +
    5. BALB/cJ +
          Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list + +
    6. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    7. C57BL/6J + +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    8. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    9. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    10. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    11. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    12. LG/J +
          Paternal parent of the LGXSM panel + +
    13. NOD/LtJ + +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    14. NZO/HlLtJ +
          Collaborative Cross strain + +
    15. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    16. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    17. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    18. B6D2F1 and D2B6F1 +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J +
    + +

    We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels. + + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

    + +
    + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thanks Muriel Davission for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria. + +

    A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2). + +

    A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). +

    + +
    +

    Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80 deg. C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. While all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. Seventy-seven of 97 strains are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquots R1291H3 and R1291H4). + +

    Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays. Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin. + +

    All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4 deg C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four. + + +

    + + + +
    + +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of processing (Run), Sample ID, Strain, Sex, Age, number of animals in each sample pool (Pool), F generation number when less than 30 (GenN, and the Source of animals. SampleID is the ID number of the pooled RNA sample with a H1 through H3 suffix to indicate the actual hippocampal RNA aliquot used to prepare cRNA. Grp is the sequential group processing number (1 - 6). + +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexbatch IDpool sizelRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
    1R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
    2R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
    3R2670H1A/J65F730.043.95146.80.4980.4850.0171.320.75UTM RW
    4R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
    5R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
    6R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
    7R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
    8R1291H3B6D2F166M130.013.52448.540.4870.4940.0191.211.52UTM RW
    9R1291H4B6D2F166M630.083.89146.690.5120.4690.0191.90.89UTM RW
    10R1675H1BALB/cByJ83M730.033.40548.130.5090.4740.0181.130.78JAX
    11R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
    12R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
    13R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
    14R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
    15R1542H1BXD159F730.031.79280.560.4920.4890.0181.570.79Glenn
    16R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
    17R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
    18R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
    19R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
    20R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
    21R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
    22R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
    23R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
    24R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
    25R1523H3BXD957M730.143.978.360.4350.5470.0181.360.77UTM RW
    26R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
    27R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
    28R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
    29R2674H1BXD1259M730.031.92483.440.5190.4640.0181.210.78Glenn
    30R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
    31R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
    32R1304H2BXD1472F730.033.94661.870.4840.4980.0181.220.77UTM RW
    33R1278H2BXD1455M730.064.7567.520.4490.5320.0191.10.73UTM RW
    34R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
    35R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
    36R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
    37R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
    38R2666H1BXD1960F730.022.49876.20.4950.4860.0191.410.77Glenn
    39R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
    40R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
    41R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
    42R1347H2BXD2164F140.012.88161.490.4940.4860.0190.921.22UMemphis
    43R2668H1BXD2160M740.072.60544.90.5350.4490.0171.540.76Glenn
    44R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
    45R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
    46R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
    47R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
    48R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
    49R1244H2BXD2365M730.051.25781.930.5650.4170.0181.240.74Glenn
    50R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
    51R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
    52R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
    53R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
    54R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
    55R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
    56R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
    57R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
    58R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
    59R1526H2BXD3157F740.17.26789.540.4350.5470.0171.350.78UTM RW
    60R2675H1BXD3257F730.032.26878.010.5020.4780.021.220.78Glenn
    61R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
    62R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
    63R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
    64R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
    65R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
    66R1469H1BXD3683F330.023.47349.90.4940.4860.021.110.76UMemphis
    67R1363H1BXD3677M240.012.18448.190.5380.4430.021.280.77UMemphis
    68R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
    69R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
    70R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
    71R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
    72R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
    73R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
    74R1541H2BXD4258F730.076.78452.120.4830.4990.0171.130.66Glenn
    75R1540H1BXD4258M740.032.42375.140.4920.4880.021.480.78Glenn
    76R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
    77R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
    78R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
    79R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
    80R1403H2BXD4563F720.033.14644.50.5240.4570.0181.410.78Glenn
    81R1472H1BXD4565M740.041.65173.310.5430.440.0181.630.74UTM RW
    82R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
    83R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
    84R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
    85R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
    86R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
    87R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
    88R2680H1BXD5565M730.071.70779.750.5030.480.0171.911.05UTM RW
    89R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
    90R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
    91R2667H1BXD6170F740.033.3659.040.4950.4880.0181.160.76UTM RW
    92R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
    93R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
    94R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
    95R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
    96R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
    97R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
    98R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
    99R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
    100R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
    101R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
    102R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
    103R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
    104R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
    105R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
    106R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
    107R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
    108R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
    109R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
    110R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
    111R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
    112R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
    113R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
    114R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
    115R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
    116R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
    117R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
    118R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
    119R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
    120R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
    121R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
    122R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
    123R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
    124R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
    125R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
    126R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
    127R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
    128R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
    129R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
    130R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
    131R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
    132R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
    133R2669H2BXD8763F730.072.6157.590.5130.470.0181.60.91UTM RW
    134R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
    135R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
    136R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
    137R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
    138R1600H2BXD9074M740.033.26151.310.5170.4650.0181.160.75Glenn
    139R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
    140R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
    141R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
    142R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
    143R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
    144R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
    145R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
    146R2648H1BXD9774F740.021.66482.080.5180.4640.0191.40.78UTM RW
    147R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
    148R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
    149R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
    150R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
    151R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
    152R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
    153R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
    154R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
    155R2673H1C57BL/6ByJ55M730.081.84267.690.5140.4690.0171.750.78JAX
    156R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
    157R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
    158R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
    159R2619H1CAST/Ei64F530.144.07751.870.4550.5280.0182.741.2JAX
    160R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
    161R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
    162R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
    163R2671H1CXB1053M730.092.34871.450.4880.4940.0182.21.14JAX
    164R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
    165R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
    166R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
    167R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
    168R2672H1CXB1349F730.031.72279.520.5160.4650.0191.640.75JAX
    169R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
    170R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
    171R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
    172R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
    173R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
    174R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
    175R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
    176R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
    177R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
    178R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
    179R2676H1CXB647F720.052.14662.510.5070.4750.0181.520.78JAX
    180R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
    181R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
    182R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
    183R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
    184R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
    185R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
    186R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
    187R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
    188R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
    189R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
    190R1290H2DBA/2J63F720.042.57659.60.5130.4680.0181.30.78JAX
    191R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
    192R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
    193R1687H3KK/HIJ72M530.043.88840.860.4990.4830.0191.860.88JAX
    194R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
    195R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
    196R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
    197R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
    198R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
    199R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
    200R2677H1PWD/PhJ65F720.122.76465.490.4620.520.0181.891.16UTM RW
    201R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
    202R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
    203R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
    204R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
    205R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
    + +
    +
    +
    + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms. + +

    +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 16,578 NCBI Reference Sequences. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The annotation used in this data set assigns probes to probe sets based on their alignment to Entrez GeneID sequences using the latest Mouse Genome assembly (Build 36, mm8).

    +
    + +

        About data processing:

    + +
    +Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked. + +

    First pass data quality control: Affymetrix GCOS provides useful array quality control data including: +

      +
    1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter. +
    2. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control. +
    3. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion. +
    4. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios. +
    + +

    The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very senstive to the transformation method that is used. Using the PDNN transform the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For examploe, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one whould include the ssample if one can verify that there are no problems in sample and data set identification. + +

    The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets. + + + +

    DataDesk was used to examine the statistical quality of the of the probe level (CEL) data after step 5 below. DataDesk allows a rapid detection of subsets of probes that are particular sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below. + + +

    Probe set data with custom CDF mapping: The original Affymetrix annotation often has multiple probe sets mapping to a single gene. Some of these redundancies represent alternative splicing products, while some reflect our changing knowledge of the mouse genome. This transformation uses an annotation generated by the Microarray Group at the University of Michigan where each probe has been checked against the latest mouse genome build (Build 36, mm8) and then collated into a new probe set based on its placement within a gene sequence in the Entrez Gene database. The following quote from their Brainarray website explains in more detail: + +

    +Affymetrix GeneChips were based on the best UniGene clustering and genomic sequence information available at the time of chip design. Due to the significant increase in EST/cDNA/Genomic sequence information in the last couple of years, some oligonucleotide probes in these old designs can now be assigned to different genes/transcripts based on the current UniGene clustering and genome annotation. While Affymetrix's current annotation system maps each probe set to the latest UniGene build every couple of months, it does not deal with situations where a subset of oligonucleotide probes in a probe set may be assigned to another gene or more than one gene based on the current UniGene clustering and genome annotation. +In addition, a significant portion of UniGene clusters can be represented by more than one oligonucleotide probe set on GeneChips but there is no standard approach to deal with signals from different probe sets representing the same gene. It will be highly desirable to have one probe set-one target relationship for the interpretation of the data. + + +

      + +
    1. CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +
    2. Probe level data from the CEL files were transformed with the RMA transform using the Mm74Bv2_Mm_ENTREZG_8 (Version 8) CDF mapping. Data transformation was done in Bioconductor using the affy.justRMA() package and the Mm430_Mm_ENTREZG file as contained in the Bioconductor repository. This yields only one unique probeset for each Entrez GeneID. + +
    3. We computed the Z scores for each array. + +
    4. The arithmetic mean of the values for the set of microarrays for each strain was computed. + +
    5. The Z scores were recomputed for each strain. + +
    6. We multiplied all Z scores by 2. + +
    7. We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference. + +
    + + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged. + +

    Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers. + + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + + +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort: + +

      +
    • David C. Airey, Ph.D. +
      Grant Support: Vanderbilt Institute for Integrative Genomics +
      Department of Pharmacology +
      david.airey at vanderbilt.edu + +
    • Lu Lu, M.D. +
      Grant Support: NIH U01AA13499, U24AA13513 + +
    • Fred H. Gage, Ph.D. + +
      Grant Support: Lookout Foundation + +
    • Dan Goldowitz, Ph.D. +
      Grant Support: NIAAA INIA AA013503 +
      University of Tennessee Health Science Center +
      Dept. Anatomy and Neurobiology +
      email: dgold@nb.utmem.edu + +
    • Shirlean Goodwin, Ph.D. +
      Grant Support: NIAAA INIA U01AA013515 + +
    • Gerd Kempermann, M.D. +
      Grant Support: The Volkswagen Foundation Grant on Permissive and Persistent Factors in Neurogenesis in the Adult Central Nervous System + +
      Humboldt-Universitat Berlin +
      Universitatsklinikum Charite +
      email: gerd.kempermann at mdc-berlin.de + +
    • Kenneth F. Manly, Ph.D. +
      Grant Support: NIH P20MH062009 and U01CA105417 + +
    • Richard S. Nowakowski, Ph.D. +
      Grant Support: R01 NS049445-01 + +
    • Yanhua Qu, Ph.D. +
      Grant Support: NIH U01CA105417 + +
    • Glenn D. Rosen, Ph.D. +
      Grant Support: NIH P20 + +
    • Leonard C. Schalkwyk, Ph.D. + +
      Grant Support: MRC Career Establishment Grant G0000170 +
      Social, Genetic and Developmental Psychiatry +
      Institute of Psychiatry,Kings College London +
      PO82, De Crespigny Park London SE5 8AF +
      L.Schalkwyk@iop.kcl.ac.uk + +
    • Guus Smit, Ph.D. +
      Dutch NeuroBsik Mouse Phenomics Consortium +
      Center for Neurogenomics & Cognitive Research +
      Vrije Universiteit Amsterdam, The Netherlands +
      e-mail: guus.smit at falw.vu.nl +
      Grant Support: BSIK 03053 + +
    • Thomas Sutter, Ph.D. +
      Grant Support: INIA U01 AA13515 and the W. Harry Feinstone Center for Genome Research + +
    • Stephen Whatley, Ph.D. + +
      Grant Support: XXXX + +
    • Robert W. Williams, Ph.D. +
      Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 + +
    + + + +

    + +

        About this text file:

    +

    +This text file originally generated by RWW and Rupert Overall on January 30, 2007. +

    + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/HC_U_0303_M.html b/web/dbdoc/HC_U_0303_M.html new file mode 100755 index 00000000..f7149cec --- /dev/null +++ b/web/dbdoc/HC_U_0303_M.html @@ -0,0 +1,166 @@ + +GNF Microarray March03 / WebQTL + + + + + + + + + + + + + + + + + + + + +
    + +

    Groningen-GNF Hematopoietic Cells U74Av2 (Mar03) MAS5 + + modify this page

    Accession number: GN5

    + + +

        Summary:

    + +

    +This data set is now superceeded by the March 2004 RMA data set. The original March 2003 data freeze provides estimates of mRNA expression in hematopoietic stem cells (HSC) from adult female BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the Genomics Institute of the Norvartis Research Foundations (GNF) and by de Haan and colleagues at the University of Groningen. Samples from 22 strains were hybridized to 44 arrays in a single batch. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between data sets (HSC and other tissues), the MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units.

    +
    + + +

        About the mice used to map microarray data:

    + +

    BXD recombinant inbred mice were purchased from The Jackson Laboratory and upon arrival were housed under clean conventional conditions in the Central Animal Facility of the University of Groningen, Netherlands. We used female mice between 3 and 6 months old.

    + +

    Stem cells (described below) were isolated from pooled bone marrow obtained from three BXD animals per strain. Pooled RNA samples were split in two aliquots and each sample was independently amplified and hybridized to the U74Av2 array (3 mice x 2 arrays).

    +
    + +

        About the tissue used to generate these data:

    + +

    Bone marrow cells were flushed from the femurs and tibiae of three mice and pooled. After standard erythrocyte lysis nucleated cells were incubated with normal rat serum for 15 min at 4 degrees Celsius. Subsequently cells were stained with a panel of biotinylated lineage-specific antibodies (murine progenitor enrichment cocktail, containing anti-CD5, anti-CD45R, anti-CD11b, anti-TER119, anti-Gr-1, and anti-7-4, Stem Cell Technologies, Vancouver, Canada), FITC-anti-Sca-1 and APC-anti-c-kit (Pharmingen). Cells were washed twice, and incubated for 30 minutes with streptavidin-PerCP (Pharmingen). After two washes cells were resuspended in PBS with 1% BSA, and purified using a MoFlo flow cytometer. The lineage-depleted bone marrow cell population was defined as the 5% cells showing least PerCP-fluorescence intensity. Stem cell yield across all BXD samples varied from 16,000 to 118,000 Lin-Sca-1+ c-kit+ cells. A small aliquot of each sample of purified cells was functionally tested for stem cell activity by directly depositing single cells in a cobblestone area forming cell assay. The remainder of the cells was immediately collected in RNA lysis buffer. Total RNA was isolated using StrataPrep Total RNA Microprep kit (Stratagene) as described by the manufacturer. RNA pellets were resolved in 500 microliters absolute ethanol, and sent on dry ice by courrier to GNF, La Jolla, CA. +

    + +

        About amplification and hybridization:

    +

    Total RNA was quantified using RiboGreen and split into equal aliquots of approximately 10 ng, representing RNA from approximately 10,000 cells, and labeled using a total of three rounds of RNA amplification, exactly as described previously (Scherer et al. 2003). Labeled cRNA was fractionated and hybridized to the U74Av2 microarray following standard Affymetrix protocols. +

    + + + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by MAS 5 are the 75% quantiles from a set of 36 pixel values per cell. +
      +
    • Step 1: We added an offset of 1.0 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log2 of each cell. + +
    • Step 3: We computed the Z score for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We computed the arithmetic mean of the values for the set of microarrays for each of the individual strains. +
    +Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefore represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + + + +

        About the array probe set names:

    +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target): Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + + +

        Data source acknowledgment:

    +

    Cell and samples were generated by Leonid V. Bystrykh, Ellen Weersing, Bert Dontje, Gerald de Haan, Department of Stem Cell Biology, University of Groningen, the Netherlands. RNA amplification and array processing were carried out by Michael Cooke, John Hogenesch, Andrew Su, and colleagues at GNF.

    + +

    Data normalization and conversion for WebQTL were handled by Robert Williams, Kenneth Manly, Jintao Wang, and Yanhua Qu at UTHSC and Roswell Park Cancer Institute.

    +
    + +

        References:

    +

    Scherer A, Krause A, Walker JR, Sutton SE, Seron D, Raulf F, Cooke MP (2003) Optimized protocol for linear RNA amplification and application to gene expression profiling of human renal biopsies. Biotechniques 34:546-550, 552-554, 556. +

    +

    de Haan G, Bystrykh LV, Weersing E, Dontje B, Geiger H, Ivanova N, Lemischka IR, Vellenga E, Van Zant G (2002) A genetic and genomic analysis identifies a cluster of genes associated with hematopoietic cell turnover Blood 100:2056-2062. +

    +

    +Wang J, Williams RW, Manly KF (2003) WebQTL: Web-based complex trait analysis. Neuroinformatics 1: 299-308. +

    +

    +Williams RW, Manly KF, Shou S, Chesler E, Hsu HC, Mountz J, Wang J, Threadgill DW, Lu L (2002) Massively parallel complex trait analysis of transcriptional activity in mouse brain. International Mouse Genome Conference 16:46. +

    + + +

        Information about this text file:

    +

    +This text file originally generated by GdH and RWW, March 2003. Updated by RWW, October 30, 2004. +

    + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/HC_U_0304_R.html b/web/dbdoc/HC_U_0304_R.html new file mode 100755 index 00000000..8e3c56cd --- /dev/null +++ b/web/dbdoc/HC_U_0304_R.html @@ -0,0 +1,261 @@ + +GNF Microarray March04 / WebQTL + + + + + + + + + + + + + + + + + + + + + + +
    +

    Genomics Institute of the Novartis Research Foundation (GNF) and Groningen Hematopoietic Stem Cell mRNA U74Av2 Database (March/04 Freeze) modify this page

    Accession number: GN7

    + +

        Summary:

    + +

    +The original March 2004 data freeze provides estimates of mRNA expression in hematopoietic stem cells (HSC) from adult female BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays (Bystrykh et al., 2005). Data were generated at the Genomics Institute of the Norvartis Research Foundations (Cooke and colleagues) and at the University of Groningen (de Haan and colleagues). Samples from 30 strains were hybridized to 60 arrays in two batches (Mar03 includes only the first batch). Data were processed using the RMA protocol. +

    + +REFERENCE: Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E, Wang J, Manly KF, Lu L, Chesler EJ, Alberts R, Jansen RC, Williams RW, Cooke M, de Haan G (2005) Uncovering regulatory pathways affecting hematopoietic stem cell function using "genetical genomics." Nature Genetics, 37:225-232 +
    + + +

        About the mice used to map microarray data:

    +

    BXD recombinant inbred mice were purchased from the Jackson Laboratory and upon arrival were housed under clean conventional conditions in the Central Animal Facility of the University of Groningen, Netherlands. We used female mice between 3 and 6 months of age. +

    +

    Stem cells (described below) were isolated from pooled bone marrow obtained from three BXD animals per strain. Pooled RNA samples were split in two aliquots and each sample was independently amplified and hybridized to the U74Av2 array (3 mice x 2 arrays).

    +
    + +

        About the tissue used to generate these data:

    +

    Bone marrow cells were flushed from the femurs and tibiae of three mice and pooled. After standard erythrocyte lysis nucleated cells were incubated with normal rat serum for 15 min at 4 degrees Celsius. Subsequently cells were stained with a panel of biotinylated lineage-specific antibodies (murine progenitor enrichment cocktail, containing anti-CD5, anti-CD45R, anti-CD11b, anti-TER119, anti-Gr-1, and anti-7-4, Stem Cell Technologies, Vancouver, Canada), FITC-anti-Sca-1 and APC-anti-c-kit (Pharmingen). Cells were washed twice, and incubated for 30 minutes with streptavidin-PerCP (Pharmingen). After two washes cells were resuspended in PBS with 1% BSA, and purified using a MoFlo flow cytometer. The lineage-depleted bone marrow cell population was defined as the 5% cells showing least PerCP-fluorescence intensity. Stem cell yield across all BXD samples varied from 16,000 to 118,000 Lin-Sca-1+ c-kit+ cells. A small aliquot of each sample of purified cells was functionally tested for stem cell activity by directly depositing single cells in a cobblestone area forming cell assay. The remainder of the cells was immediately collected in RNA lysis buffer. Total RNA was isolated using StrataPrep Total RNA Microprep kit (Stratagene) as described by the manufacturer. RNA pellets were resolved in 500 microliters absolute ethanol, and sent on dry ice by courrier to GNF, La Jolla, CA. The March 2004 data set was processed in two batches. The first batch consisted of samples from 22 strains, BXD1, 2, 5, 6, 8, 9, 11, 12, 14, 16,18, 19, 21, 28, 31, 32, 33, 34, 38, 39, 40, 42. The second batch included 8 strains, BXD15, 22, 24, 25, 27, 29, 30, 36. +

    + + + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainArray IDResult date
    BXD1M7SS020806159/27/02
    BXD1M7SS020806169/27/02
    BXD2M7SS020806119/27/02
    BXD2M7SS020806129/27/02
    BXD5M7SS020806199/27/02
    BXD5M7SS020806209/27/02
    BXD6M7SS020422019/27/02
    BXD6M7SS020422029/27/02
    BXD8M7SS020422039/27/02
    BXD8M7SS020422049/27/02
    BXD9M7SS020806079/27/02
    BXD9M7SS020806089/27/02
    BXD11M7SS020422059/27/02
    BXD11M7SS020422069/27/02
    BXD12M7SS020422079/27/02
    BXD12M7SS020422089/27/02
    BXD14M7SS020806219/27/02
    BXD14M7SS020806229/27/02
    BXD15M7SS030827018/27/03
    BXD15M7SS030827028/27/03
    BXD16M7SS020806139/27/02
    BXD16M7SS020806149/27/02
    BXD18M7SS020806019/27/02
    BXD18M7SS020806029/27/02
    BXD19M7SS020806059/27/02
    BXD19M7SS020806069/27/02
    BXD21M7SS020806039/27/02
    BXD21M7SS020806049/27/02
    BXD22M7SS030827038/27/03
    BXD22M7SS030827048/27/03
    BXD24M7SS030827058/27/03
    BXD24M7SS030827068/27/03
    BXD25M7SS030801048/27/03
    BXD25M7SS030827158/27/03
    BXD27M7SS030827078/27/03
    BXD27M7SS030827088/27/03
    BXD28M7SS020806239/27/02
    BXD28M7SS020806249/27/02
    BXD29M7SS030827098/27/03
    BXD29M7SS030827108/27/03
    BXD30M7SS030827118/27/03
    BXD30M7SS030827128/27/03
    BXD31M7SS020422099/27/02
    BXD31M7SS020422109/27/02
    BXD32M7SS020422119/27/02
    BXD32M7SS020422129/27/02
    BXD33M7SS020422199/27/02
    BXD33M7SS020422209/27/02
    BXD34M7SS020806179/27/02
    BXD34M7SS020806189/27/02
    BXD36M7SS030827138/27/03
    BXD36M7SS030827148/27/03
    BXD38M7SS020422139/27/02
    BXD38M7SS020422149/27/02
    BXD39M7SS020806099/27/02
    BXD39M7SS020806109/27/02
    BXD40M7SS020422159/27/02
    BXD40M7SS020422169/27/02
    BXD42M7SS020422179/27/02
    BXD42M7SS020422189/27/02
    +
    +
    + +

        How to Download these Data:

    +

    Array data files are available on the NCBI GEO site using the accession identifier GDS1077. Individual U74Av2 arrays are GEO IDs GSM36673 through GSM36716. The single most appropriate reference is: Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E, Wang J, Manly KF, Lu L, Chesler EJ, Alberts R, Jansen RC, Williams RW, Cooke M, de Haan G (2005) Uncovering regulatory pathways affecting hematopoietic stem cell function using "genetical genomics". Nature Genetics 37:225-232.

    +
    + +

        About amplification and hybridization:

    + +

    Total RNA was quantified using RiboGreen and split into equal aliquots of approximately 10 ng, representing RNA from approximately 10,000 cells, and labeled using a total of three rounds of RNA amplification, exactly as described previously (Scherer et al. 2003). Labeled cRNA was fractionated and hybridized to the U74Av2 microarray from Affymetrix according to manufacture's protocol. +

    + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values are the 75% quantiles from a set of 36 pixel values per cell. + +
      +
    • Step 1: We added an offset of 1 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log2 of each cell. + +
    • Step 3: We computed the Z score for each cell within array. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We computed the arithmetic mean of the values for the set of microarrays for each of the individual strains. +
    + + +

    Probe set data: Probe set expression data were processed by Ritsert Jansen. The original CEL files produced by the Affymetrix analysis software were read into the R environment (Ihaka and Gentleman 1996). Data were normalized using the Robust Multichip Average (RMA) method of background correction, quantile normalization, and summarization of signal intensity (Irrizary et al. 2003). Probe set intensities were log2 transformed. Probe set data are averages of two technical replicates after batch correction (see below) and were treated as single samples. Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets. +

    + +

    Samples were processed in two batches. To adjust for the effect of technical batch processing differences, a linear model was applied to RMA normalized expression data. The following ANOVA model fitting the processing batch was applied for each set of perfect match probes:

    + +

    PMij = M + Bi + eij

    + +

    in which PMij are the RMA probe intensities for arrays i = 1,...,30 and probe j = 1,...,J. M is the overall mean; Bi represents the batch effect, and eij is the error term. The batch effect parameter was estimated and subtracted from PM probe expression values. Probe level intensities were averaged for each probe set to produce the batch corrected expression. + + + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + +

        About the array probe set names:

    +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target): Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + + +

        Data source acknowledgment:

    + +

    Cell and samples were generated by Leonid V. Bystrykh, Ellen Weersing, Bert Dontje, Gerald de Haan, Department of Stem Cell Biology, University of Groningen, the Netherlands. +RNA amplification and array processing were carried out by Michael Cooke, John Hogenesch, Andrew Su and colleagues at GNF.

    + +

    +The batch correction of this March 2004 data set was carried out by Ritsert Jansen and his student Rudy Albert in the Department of Bioinformatics (University of Groningen). Conversion for WebQTL was carried out by Robert W. Williams, Kenneth Manly, Jintao Wang, and Yanhua Qu at UTHSC.

    +
    + +

        References:

    + +

    Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E, Wang J, Manly KF, Lu L, Chesler EJ, Alberts R, Jansen RC, Williams RW, Cooke M, de Haan G (2005) Uncovering regulatory pathways affecting hematopoietic stem cell function using “genetical genomics�? Nature Genetics, in press.

    + +

    Ihaka R, Gentleman R (1996) R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics 5:299-314.

    +

    Irizarry R, Hobbs B, Collin F, Beazer-Barclay Y, Antonellis K, Scherf U, Speed T (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249-264.

    +

    Gautier L, Cope L, Bolstad B, Irizarry R (2004) affy -- analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307-315.

    +

    Scherer A, Krause A, Walker JR, Sutton SE, Seron D, Raulf F, Cooke MP (2003) Optimized protocol for linear RNA amplification and application to gene expression profiling of human renal biopsies. Biotechniques 34:546-550, 552-554, 556. +

    +

    de Haan G, Bystrykh LV, Weersing E, Dontje B, Geiger H, Ivanova N, Lemischka IR, Vellenga E, Van Zant G (2002) A genetic and genomic analysis identifies a cluster of genes associated with hematopoietic cell turnover. Blood 100:2056-2062. +

    +

    +Wang J, Williams RW, Manly KF (2003) WebQTL: Web-based complex trait analysis. Neuroinformatics 1:299-308. +

    +

    +Williams RW, Manly KF, Shou S, Chesler E, Hsu HC, Mountz J, Wang J, Threadgill DW, Lu L (2002) Massively parallel complex trait analysis of transcriptional activity in mouse brain. International Mouse Genome Conference 16:46. +

    + +

        Information about this text file:

    +

    +This text file originally generated by GdH and RWW, March 2004. Updated by RWW, Oct 30, 2004, Dec 6, 2004. EJC Apr 25, 2005. +

    + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/HC_U_0903_M.html b/web/dbdoc/HC_U_0903_M.html new file mode 100755 index 00000000..a47ddd18 --- /dev/null +++ b/web/dbdoc/HC_U_0903_M.html @@ -0,0 +1,172 @@ + +GNF Microarray September03 / WebQTL + + + + + + + + + + + + + + + + + + + + +
    +

    + +

    Groningen-GNF Hematopoietic Cells U74Av2 (Sep03) MAS5 + + modify this page

    Accession number: GN6

    + + +

        Summary:

    + +

    + +

    The September 2003 data freeze provides estimates of mRNA expression in hematopoietic stem cells (HSC) from adult female BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the Genomics Institute of the Norvartis Research Foundation (GNF) and by de Haan and colleagues at the University of Groningen. Samples from 22 strains were hybridized to 44 arrays in the first batch and an additional 8 strains to 16 arrays in the second batch. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between data sets (HSC and other tissues), the MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. This data set is referenced in Bystrykh and colleagues (2005). We have subsequently improved analytic methods and this September 2003 MAS5 data set is superceeded by the March 2004 RMA data set.

    +

    +
    + + +

        About the mice used to map microarray data:

    + +

    BXD recombinant inbred mice were purchased from The Jackson Laboratory and upon arrival were housed under clean conventional conditions in the Central Animal Facility of the University of Groningen, Netherlands. We used female mice between 3 and 6 months-old.

    + +

    Stem cells (described below) were isolated from pooled bone marrow obtained from three BXD animals per strain. Pooled RNA samples were split in twoaliquots and each sample was independently amplified and hybridized to the U74Av2 array (3 mice x 2 arrays).

    + + +

        About the tissue used to generate these data:

    + +

    Bone marrow cells were flushed from the femurs and tibiae of three mice and pooled. After standard erythrocyte lysis nucleated cells were incubated with normal rat serum for 15 min at 4 degrees Celsius. Subsequently cells were stained with a panel of biotinylated lineage-specific antibodies (murine progenitor enrichment cocktail, containing anti-CD5, anti-CD45R, anti-CD11b, anti-TER119, anti-Gr-1, and anti-7-4, Stem Cell Technologies, Vancouver, Canada), FITC-anti-Sca-1 and APC-anti-c-kit (Pharmingen). Cells were washed twice, and incubated for 30 minutes with streptavidin-PerCP (Pharmingen). After two washes cells were resuspended in PBS with 1% BSA, and purified using a MoFlo flow cytometer. The lineage-depleted bone marrow cell population was defined as the 5% cells showing least PerCP-fluorescence intensity. Stem cell yield across all BXD samples varied from 16,000 to 118,000 Lin-Sca-1+ c-kit+ cells. A small aliquot of each sample of purified cells was functionally tested for stem cell activity by directly depositing single cells in a cobblestone area forming cell assay. The remainder of the cells was immediately collected in RNA lysis buffer. Total RNA was isolated using StrataPrep Total RNA Microprep kit (Stratagene) as described by the manufacturer. RNA pellets were resolved in 500 microliters absolute ethanol, and sent on dry ice by courrier to GNF, La Jolla, CA. +

    + +

        About amplification and hybridization:

    +

    Total RNA was quantified using RiboGreen and split into equal aliquots of approximately 10 ng, representing RNA from approximately 10,000 cells, and labeled using a total of three rounds of RNA amplification, exactly as described previously (Scherer et al. 2003). Labeled cRNA was fractionated and hybridized to the U74Av2 microarray following standard Affymetrix protocols. +

    + + + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by MAS 5 are the 75% quantiles from a set of 36 pixel values per cell. + +
      +
    • Step 1: We added an offset of 1 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log2 of each probe signal. + +
    • Step 3: We computed the Z score for each probe signal within its array. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We computed the arithmetic mean of the values for the set of microarrays for each of the individual strains. +
    + +Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefore represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + +

    This data set does not include a correction for batch effects. In contrast, the March 2004 RMA data set, includes a correction and will generally produce better results. + + +

        About the array probe set names:

    +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match probes and 16 mismatch controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set may hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target): Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + +

        Data source acknowledgment:

    +

    Cell and samples were generated by Leonid V. Bystrykh, Ellen Weersing, Bert Dontje, Gerald de Haan, Department of Stem Cell Biology, University of Groningen, the Netherlands. RNA amplification and array processing were carried out by Michael Cooke, John Hogenesch, Andrew Su, and colleagues at GNF.

    + +

    +Data normalization and conversion for WebQTL by Robert Williams, Kenneth Manly, Jintao Wang, and Yanhua Qu at UTHSC and Roswell Park Cancer Institute.

    + + +

        References:

    +

    Scherer A, Krause A, Walker JR, Sutton SE, Seron D, Raulf F, Cooke MP (2003) Optimized protocol for linear RNA amplification and application to gene expression profiling of human renal biopsies. Biotechniques 34:546-550, 552-554, 556. +

    +

    de Haan G, Bystrykh LV, Weersing E, Dontje B, Geiger H, Ivanova N, Lemischka IR, Vellenga E, Van Zant G (2002) A genetic and genomic analysis identifies a cluster of genes associated with hematopoietic cell turnover Blood 100:2056-2062. +

    +

    +Wang J, Williams RW, Manly KF (2003) WebQTL: Web-based complex trait analysis. Neuroinformatics 1: 299-308. +

    +

    +Williams RW, Manly KF, Shou S, Chesler E, Hsu HC, Mountz J, Wang J, Threadgill DW, Lu L (2002) Massively parallel complex trait analysis of transcriptional activity in mouse brain. International Mouse Genome Conference 16:46. +

    + + + +

        Information about this text file:

    +

    +This text file originally generated by GdH and RWW, September 2003. Updated by RWW, October 30, 2004; Feb 3, 2005. +

    + + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/HEIONCRetILM6_0911.html b/web/dbdoc/HEIONCRetILM6_0911.html new file mode 100755 index 00000000..efc77048 --- /dev/null +++ b/web/dbdoc/HEIONCRetILM6_0911.html @@ -0,0 +1,3914 @@ + +HEI ONC Retina Illumina V6.2 (Sep11) RankInv ** + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    HEI ONC Retina Illumina V6.2 (Sept11) RankInv (accession number: GN???) + modify this page + +

    Summary:

    +
    +

    HEI ONC Retina Illumina V6.2 (Sept11) RankInv was normalized and scaled by William E. Orr and uploaded by Arthur Centeno and Xiaodong Zhou in September 2011. This data set consists of 57 BXD strains, C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. A total of 62 strains were quantified. The data are now open and available for analysis. + +

    Please cite: Templeton JP, Wang XD, Freeman NE, Nickerson JM, Williams RW, Jablonski, MM, Rex, T, Geisert EE. Innate Immune Network in the Retina Activated by Optic Nerve Crush. (In process) (Link) + +

    This is rank invariant expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strain was computed as the mean of four samples per strain. Expression values on a log2 scale range from 6.29 to 18.42 (12.13 units), a nominal range of approximately 4500-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale. + +

    The lowest level of expression is 6.29 for ILMN_1225143 (Ust4r). Lowest single data about 5.93. + +

    The highest level of expression is 18.42 for ILMN_2516699 (Ubb). Highest single value is about 19.78. +

    +

    +

    Other Related Publications

    +
    +

    +

      +
    1. Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE: Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision (2011) 17:1355-1372. (Link) +
    2. Jablonski MM, Freeman NE, Orr WE, Templeton JP, Lu L, Williams RW, Geisert EE: Genetic pathways regulating glutamate levels in retinal Muller cells. Neurochem Res. 2011 Apr;36(4):594-603. Epub 2010 Sep 30. (Link) +
    3. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63. (Link) +
    4. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 +
    5. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link) +
    6. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) + + + +

      +

    Other Data Sets

    + Users of these mouse retina data may also find the following complementary resources useful: +
      + +
    1. NEIBank collection of ESTs and SAGE data. + +
    2. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases + +
    3. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5. + +
    4. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus. + +
    5. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430). + + +
    6. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0. +
    +
    + + + + +
    +

    About the animals used to generate this set of data:

    +

    All animals are young adults between 60 and 90 days of age. We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. + + +

    +BXD strains:

  • The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. +

    +

  • In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. +

    +

  • The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set. +
  • +
    + +

    About the tissue used to generate this set of data:

    + +
    +

    + The Optic Nerve Crush (ONC) Method +

    +

    +Animal Use: All procedures were in compliance with institutional guidelines and with the ARVO statement for the Use of Animals in Ophthalmic and Vision Research. The Institutional Animal Care and Use Committee (IACUC) at the University of Tennessee Health Science Center approved all protocols involving the use of mice. +

    +Anesthesia: The mice were anesthetized with a mixture of 13 mg/kg of Rompum and 87 mg/kg of Ketalar. +

    +ONC Procedure: Under the binocular operating scope a small incision was made with the spring scissors (Roboz, cat. #RS-5619, Gaithersburg, MD) in the conjunctiva beginning inferior to the globe and around the eye temporally. With the micro-forceps (Dumont #5/45 Forceps, Roboz, cat. #RS-5005, Gaithersburg, MD), we grasped the edge of the conjunctiva and rotated the globe nasally, exposing the posterior aspect of the globe which allowed visualization the optic nerve. The exposed optic nerve was grasped approximately 1-3mm from the globe with Dumont #N7 cross action forceps (Roboz, cat. #RS-5027, Gaithersburg, MD) for 10 seconds, allowing the only pressure to be from the self-clamping action. After the 10 seconds the optic nerve is released and the forceps are removed allowing the eye to rotate back into place. The mice were allowed to recover on a warming pad. + +

    Tissue preparation protocol. Two days after the ONC the animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RNAlater at room temperature. Two retinas from one mouse were stored in a single tube.

    +Dr. Justin P. Templeton categorized the animals, as well as the ONC and retina removal. + +

    Each array was hybridized with a pool of cRNA from 2 retinas (1 mouse). Dr. Clint Abner extracted RNA at UTHSC. +

    Dissecting and preparing eyes for RNA extraction +

    +

    Retinas for RNA extraction were placed in RNA STAT-60 (Tel-Test Inc.) and processed per manufacturer’s instructions (in brief form below). +Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    • Homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue via syringe) +
    • Allow the homogenate to stand for 5-10 min at room temperature +
    • Add 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    • Mix the sample vigorously for 15 sec and let the sample incubate at room temperature for 5-10 min +
    • Centrifuge at 12,000 g for 1 hr at 4°C +
    • Transfer the aqueous phase to a clean centrifuge tube +
    • Add 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    • Vortex and incubate the sample at -20°C for 1 hr or overnight +
    • Centrifuge at 12,000 g for 1 hr +
    • Remove the supernatant and wash the RNA pellet with 75% ethanol +
    • Remove ethanol, let air dry (5-10 min) +
    • Dissolve the pellet in 50 μl of nuclease free water. +

      +

    +

    Sample Processing: Dr. Justin P. Templeton extracted the retinas from the mice and Drs. Clint Abner and Natalie Freeman processed all samples in the HEI Vision Core Facility. The tissue was homogenized and extracted according to the RNA-Stat-60 protocol as described by the manufacturer (Tel-Test, Friendswood, TX) listed above. The quality and purity of RNA was assessed using an Agilent Bioanalyzer 2100 system. The RNA from each sample was processed with the Illumina TotalPrep RNA Amplification Kit (Ambion, Austin, TX) to produce labeled cRNA. The cRNA for each sample was then hybridized to an Illumina Sentrix® Mouse-6-V2 BeadChip (Illumina, San Diego, CA) +

    +

    +

    Quality control analysis of the raw image data was performed using the Illumina BeadStudio software. MIAME standards were used for all microarray data. Rank invariant normalization with BeadStudio software was used to calculate the data. Once this data was collected, the data was globally normalized across all samples using the formula 2 (z-score of log2 [intensity]) + 8. + +

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication. +

    +

    Table 1: HEI Retina case IDs, including sample tube ID, strain, age, sex, and source of mice +

    +

    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    Strain

    +
    +

    Sex

    +
    +

    # of + Mice

    +
    +

    1

    +
    +

    BXD01

    +
    +

    F

    +
    +

    2

    +
    +

    2

    +
    +

    BxD02

    +
    +

    F

    +
    +

    1

    +
    +

    3

    +
    +

    BxD02

    +
    +

    M

    +
    +

    1

    +
    +

    4

    +
    +

    BxD05

    +
    +

    M

    +
    +

    2

    +
    +

    5

    +
    +

    BxD06

    +
    +

    M

    +
    +

    1

    +
    +

    6

    +
    +

    BxD08

    +
    +

    F

    +
    +

    1

    +
    +

    7

    +
    +

    BxD08

    +
    +

    M

    +
    +

    1

    +
    +

    8

    +
    +

    BxD09

    +
    +

    F

    +
    +

    2

    +
    +

    9

    +
    +

    BxD09

    +
    +

    M

    +
    +

    2

    +
    +

    10

    +
    +

    BxD11

    +
    +

    M

    +
    +

    1

    +
    +

    11

    +
    +

    BxD12

    +
    +

    F

    +
    +

    1

    +
    +

    12

    +
    +

    BxD13

    +
    +

    F

    +
    +

    1

    +
    +

    13

    +
    +

    BxD13

    +
    +

    M

    +
    +

    1

    +
    +

    14

    +
    +

    BxD14

    +
    +

    F

    +
    +

    1

    +
    +

    15

    +
    +

    BxD15

    +
    +

    M

    +
    +

    2

    +
    +

    16

    +
    +

    BxD16

    +
    +

    F

    +
    +

    2

    +
    +

    17

    +
    +

    BxD16

    +
    +

    M

    +
    +

    1

    +
    +

    18

    +
    +

    BxD18

    +
    +

    F

    +
    +

    1

    +
    +

    19

    +
    +

    BxD18

    +
    +

    M

    +
    +

    2

    +
    +

    20

    +
    +

    BxD19

    +
    +

    F

    +
    +

    1

    +
    +

    21

    +
    +

    BxD19

    +
    +

    M

    +
    +

    2

    +
    +

    22

    +
    +

    BxD20

    +
    +

    M

    +
    +

    2

    +
    +

    23

    +
    +

    BxD22

    +
    +

    F

    +
    +

    2

    +
    +

    24

    +
    +

    BxD24

    +
    +

    M

    +
    +

    1

    +
    +

    25

    +
    +

    BxD24a

    +
    +

    F

    +
    +

    1

    +
    +

    26

    +
    +

    BxD28

    +
    +

    F

    +
    +

    1

    +
    +

    27

    +
    +

    BxD28

    +
    +

    M

    +
    +

    1

    +
    +

    28

    +
    +

    BxD29

    +
    +

    F

    +
    +

    2

    +
    +

    29

    +
    +

    BxD29

    +
    +

    M

    +
    +

    2

    +
    +

    30

    +
    +

    BxD31

    +
    +

    F

    +
    +

    1

    +
    +

    31

    +
    +

    BxD31

    +
    +

    M

    +
    +

    2

    +
    +

    32

    +
    +

    BxD32

    +
    +

    F

    +
    +

    1

    +
    +

    33

    +
    +

    BxD32

    +
    +

    M

    +
    +

    4

    +
    +

    34

    +
    +

    BxD33

    +
    +

    M

    +
    +

    2

    +
    +

    35

    +
    +

    BxD34

    +
    +

    F

    +
    +

    4

    +
    +

    36

    +
    +

    BxD34

    +
    +

    M

    +
    +

    1

    +
    +

    37

    +
    +

    BxD38

    +
    +

    F

    +
    +

    1

    +
    +

    38

    +
    +

    BxD38

    +
    +

    M

    +
    +

    2

    +
    +

    39

    +
    +

    BxD39

    +
    +

    F

    +
    +

    1

    +
    +

    40

    +
    +

    BxD39

    +
    +

    M

    +
    +

    5

    +
    +

    41

    +
    +

    BxD40

    +
    +

    F

    +
    +

    2

    +
    +

    42

    +
    +

    BxD40

    +
    +

    M

    +
    +

    2

    +
    +

    43

    +
    +

    BxD42

    +
    +

    F

    +
    +

    1

    +
    +

    44

    +
    +

    BxD43

    +
    +

    F

    +
    +

    1

    +
    +

    45

    +
    +

    BxD43

    +
    +

    M

    +
    +

    2

    +
    +

    46

    +
    +

    BxD44

    +
    +

    F

    +
    +

    2

    +
    +

    47

    +
    +

    BxD44

    +
    +

    M

    +
    +

    2

    +
    +

    48

    +
    +

    BxD45

    +
    +

    F

    +
    +

    3

    +
    +

    49

    +
    +

    BxD45

    +
    +

    M

    +
    +

    2

    +
    +

    50

    +
    +

    BxD50

    +
    +

    F

    +
    +

    2

    +
    +

    51

    +
    +

    BxD50

    +
    +

    M

    +
    +

    1

    +
    +

    52

    +
    +

    BxD51

    +
    +

    F

    +
    +

    3

    +
    +

    53

    +
    +

    BxD51

    +
    +

    M

    +
    +

    3

    +
    +

    54

    +
    +

    BxD55

    +
    +

    F

    +
    +

    2

    +
    +

    55

    +
    +

    BxD55

    +
    +

    M

    +
    +

    1

    +
    +

    56

    +
    +

    BxD56

    +
    +

    F

    +
    +

    2

    +
    +

    57

    +
    +

    BxD56

    +
    +

    M

    +
    +

    1

    +
    +

    58

    +
    +

    BxD60

    +
    +

    F

    +
    +

    2

    +
    +

    59

    +
    +

    BxD61

    +
    +

    F

    +
    +

    2

    +
    +

    60

    +
    +

    BxD61

    +
    +

    M

    +
    +

    2

    +
    +

    61

    +
    +

    BxD62

    +
    +

    F

    +
    +

    3

    +
    +

    62

    +
    +

    BxD62

    +
    +

    M

    +
    +

    2

    +
    +

    63

    +
    +

    BxD65

    +
    +

    F

    +
    +

    1

    +
    +

    64

    +
    +

    BxD66

    +
    +

    F

    +
    +

    1

    +
    +

    65

    +
    +

    BxD66

    +
    +

    M

    +
    +

    2

    +
    +

    66

    +
    +

    BxD68

    +
    +

    F

    +
    +

    2

    +
    +

    67

    +
    +

    BxD68

    +
    +

    M

    +
    +

    1

    +
    +

    68

    +
    +

    BxD69

    +
    +

    F

    +
    +

    2

    +
    +

    69

    +
    +

    BxD69

    +
    +

    M

    +
    +

    2

    +
    +

    70

    +
    +

    BxD70

    +
    +

    F

    +
    +

    2

    +
    +

    71

    +
    +

    BxD70

    +
    +

    M

    +
    +

    2

    +
    +

    72

    +
    +

    BxD73

    +
    +

    M

    +
    +

    1

    +
    +

    73

    +
    +

    BxD75

    +
    +

    F

    +
    +

    2

    +
    +

    74

    +
    +

    BxD75

    +
    +

    M

    +
    +

    1

    +
    +

    75

    +
    +

    BxD80

    +
    +

    F

    +
    +

    2

    +
    +

    76

    +
    +

    BxD80

    +
    +

    M

    +
    +

    1

    +
    +

    77

    +
    +

    BxD83

    +
    +

    F

    +
    +

    1

    +
    +

    78

    +
    +

    BxD83

    +
    +

    M

    +
    +

    1

    +
    +

    79

    +
    +

    BxD85

    +
    +

    F

    +
    +

    2

    +
    +

    80

    +
    +

    BxD85

    +
    +

    M

    +
    +

    2

    +
    +

    81

    +
    +

    BxD86

    +
    +

    F

    +
    +

    3

    +
    +

    82

    +
    +

    BxD86

    +
    +

    M

    +
    +

    1

    +
    +

    83

    +
    +

    BxD87

    +
    +

    F

    +
    +

    2

    +
    +

    84

    +
    +

    BxD87

    +
    +

    M

    +
    +

    3

    +
    +

    85

    +
    +

    BxD89

    +
    +

    F

    +
    +

    3

    +
    +

    86

    +
    +

    BxD89

    +
    +

    M

    +
    +

    2

    +
    +

    87

    +
    +

    BxD95

    +
    +

    M

    +
    +

    1

    +
    +

    88

    +
    +

    BxD96

    +
    +

    F

    +
    +

    2

    +
    +

    89

    +
    +

    BxD96

    +
    +

    M

    +
    +

    1

    +
    +

    90

    +
    +

    BxD98

    +
    +

    F

    +
    +

    1

    +
    +

    91

    +
    +

    BxD98

    +
    +

    M

    +
    +

    2

    +
    +

    92

    +
    +

    BxD100

    +
    +

    F

    +
    +

    1

    +
    +

    93

    +
    +

    BxD100

    +
    +

    M

    +
    +

    1

    +
    +

    94

    +
    +

    BxD102

    +
    +

    M

    +
    +

    1

    +
    +

    95

    +
    +

    BxD103

    +
    +

    F

    +
    +

    6

    +
    +

    96

    +
    +

    B6D2F1

    +
    +

    F

    +
    +

    1

    +
    +

    97

    +
    +

    B6D2F1

    +
    +

    M

    +
    +

    1

    +
    +

    98

    +
    +

    D2B6F1

    +
    +

    F

    +
    +

    3

    +
    +

    99

    +
    +

    D2B6F1

    +
    +

    M

    +
    +

    1

    +
    +

    100

    +
    +

    C57BL6J

    +
    +

    F

    +
    +

    2

    +
    +

    101

    +
    +

    C57BL6J

    +
    +

    M

    +
    +

    2

    +
    +

    102

    +
    +

    DBA2J

    +
    +

    F

    +
    +

    2

    +
    +

    103

    +
    +

    DBA2J

    +
    +

    M

    +
    +

    2

    +
    +

    104

    +
    +

    BALBC

    +
    +

    F

    +
    +

    1

    +
    +

    105

    +
    +

    BALBC

    +
    +

    M

    +
    +

    3

    +
    + +

     

    + + + +

    + +

    About downloading this data set:

    +
    + + + + + + +

    This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

    +
    + + +

    About the array platform:

    +
    +

    Illumina MouseWG-6 v2.0 arrays: The Illumina Sentrix Mouse-6 BeadChip uses 50-nucleotide probes to interrogate approximately 46,000 sequences from the mouse transcriptome. For each array, the RNA was pooled from two retinas.

    + +
    +

    +

    About data values and data processing:

    + +
    +Values of all 45,281 probe sets in this data set range from a low of 6.29, (integral membrane transport protein UST4r, Ust4r probe ID ILMN_1225143), to a high of 18.416 (Ubiquitin B, Ubb, probe ID ILMN_2516699). This corresponds to 12.13 units or a 1 to 4482.22 dynamic range of expression (2^12.13). We normalized raw signal values using Beadstudio’s rank invariant normalization algorithm. BXD62 was the strain used as the control group + +
    + +

    Normalization:

    +

    All normalization was performed by William E. Orr in the HEI Vision Core Facility +

      + +
    1. Computed the log base 2 of each raw signal value +
    2. Calculated the mean and standard Deviation of each Mouse WG-6 v2.0 array +
    3. Normalized each array using the formula, 2 (z-score of log2 [intensity]) +The result is to produce arrays that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. +
    4. computed the mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. +
    + +

    Funding Support for the HEI Retina Dataset:

    +
    +

    The HEI Retinal Database is supported by National Eye Institute Grants: +

  • R01EY017841 (Dr. Eldon E. Geisert, PI) +

  • P030EY13080 (NEI Vision Core Grant), and +

  • A Unrestricted Grand from Research to Prevent Blindness (Dr. Barrett Haik, PI) + +
  • + + + +

    Information about this text file:

    +
    +

    Dataset was uploaded to GeneNetwork by Arthur Centeno and Xiaodong Zhou, September 2011. This text file was generated by Justin P. Templeton January 2012. +

    +
    + + +

    +

    +

    +

    References

    +
    Rogojina AT, Orr WE, Song BK, Geisert EE, Jr.: Comparing the use of Affymetrix to spotted oligonucleotide microarrays using two retinal pigment epithelium cell lines. Molecular vision 2003, 9:482-496.(Link) +

    Vazquez-Chona F, Song BK, Geisert EE, Jr.: Temporal changes in gene expression after injury in the rat retina. Investigative ophthalmology & visual science 2004, 45(8):2737-2746.(Link) + +

    + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series No GEO series number +

    Status Private on Sept, 2011 +

    Organism(s) Mus musculus +

    Experiment type Expression profiling by array + +

    Overall design We used pooled RNA samples of retinas, usually two independent pools--two male, two female pool--for most lines of mice. + +

    Contributor(s) Eldon E. Geisert, Justin P. Templeton, Robert W. Williams, Clint Abner, Natalie Freeman + + +

    +
    Submission date Not yet submitted to GEO. +
    Contact name Eldon E. Geisert +
    E-mails EGeisert@uthsc.edu +
    Phone 901-448-7740 +
    FAX 901-448-5028 +
    URL GeneNetwork BXD HEI ONC RETINA +
    Organization name University of Tennessee Health Science Center +
    Department(s) Department of Ophthalmology +
    Laboratory(s) Geisert, Lu, Wiliams Labs +
    Street address 930 Madison Avenue +
    City Memphis +
    State/province TN +
    ZIP/Postal code 38163 +
    Country USA + + +

    Platforms (1) GPLXXXX Illumina Mouse Whole Genome 6 version 2.0 + + + + + + + + + + + + + + + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + + diff --git a/web/dbdoc/HEIONCvsCRetILM6_0911.html b/web/dbdoc/HEIONCvsCRetILM6_0911.html new file mode 100755 index 00000000..99d7c80a --- /dev/null +++ b/web/dbdoc/HEIONCvsCRetILM6_0911.html @@ -0,0 +1,211 @@ + + + + +HEI ONC vs Control Retina Illumina V6.2 (Sep11) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    HEI ONC vs Control Retina Illumina V6.2 (Sep11) RankInv **modify this page

    + + Accession number: GN371

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HEI_BXD_ONC_CTLRetina_0211.html b/web/dbdoc/HEI_BXD_ONC_CTLRetina_0211.html new file mode 100755 index 00000000..4d855d01 --- /dev/null +++ b/web/dbdoc/HEI_BXD_ONC_CTLRetina_0211.html @@ -0,0 +1,165 @@ + + +HEI BXD ONC Control Retina Illumina V6.2 (Feb11) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    HEI BXD ONC Control Retina Illumina V6.2 (Feb11) RankInv **modify this page

    + + Accession number: GN303

    +

    Summary:

    +
    +

    HEI Optic Nerve Crush (ONC) – Control Retina Illumina V6.2 (April 2010) RankInv ** was normalized and scaled by William E. Orr and uploaded by Arthur Centeno and Xiaodong Zhou on February 1, 2011. This data set consists of BXD strains, C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. The data base was constructed by subtacting the normal expression values from the values from the same strain that were generated from retinas 2 days after optic nerve crush. + +

    This is rank invariant data with 2z+8 stabilization, but without special correction for batch effects. The data includes the mean of four samples per strain. Values in expression range from 0000 to 0000 (0000 units), a nominal range of 0000-fold. + +

    The lowest level of expression is 0000 for ILMN_000 (0000) from HEI Retina Illumina V6.2 (April 2010) RankInv **. Lowest single data about 5.842. + +

    The highest level of expression is 0000 for ILMN_0000 (000). Highest single value is about 18.934. +

    +

    +

    Relevant Publications

    +
    +

    +

      +
    1. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link) +
    2. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 +
    3. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) +
    4. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link) + + + +

      +

    +Other Data Sets +Users of these mouse retina data may also find the following complementary resources useful: +
      +
    1. NEIBank collection of ESTs and SAGE data. +
    2. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases +
    3. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5. +
    4. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus. + +
    5. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430). + + +
    6. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0. +
    +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 48 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. + + +

    +BXD strains:

  • The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. +

    +

  • In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. +

    +

  • The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set. +
  • +
    + +

    About the tissue used to generate this set of data:

    + +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RNAlater at room temperature. Two retinas from one mouse were stored in a single tube. + +

    Dissecting and preparing eyes for RNA extraction +

    +

    Retinas for RNA extraction were placed in RNA STAT-60 (Tel-Test Inc.) and processed per manufacturer’s instructions (in brief form below). +Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    • Homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue via syringe) +
    • Allow the homogenate to stand for 5-10 min at room temperature +
    • Add 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    • Mix the sample vigorously for 15 sec and let the sample incubate at room temperature for 5-10 min +
    • Centrifuge at 12,000 g for 1 hr at 4°C +
    • Transfer the aqueous phase to a clean centrifuge tube +
    • Add 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    • Vortex and incubate the sample at -20°C for 1 hr or overnight +
    • Centrifuge at 12,000 g for 1 hr +
    • Remove the supernatant and wash the RNA pellet with 75% ethanol +
    • Remove ethanol, let air dry (5-10 min) +
    • Dissolve the pellet in 50 μl of nuclease free water. +

      +

    +

    Sample Processing: Drs. Natalie E. Freeman-Anderson and Justin P. Templeton extracted the retinas from the mice and Dr. Natalie Freeman-Anderson processed all samples in the HEI Vision Core Facility. The tissue was homogenized and extracted according to the RNA-Stat-60 protocol as described by the manufacturer (Tel-Test, Friendswood, TX) listed above. The quality and purity of RNA was assessed using an Agilent Bioanalyzer 2100 system. The RNA from each sample was processed with the Illumina TotalPrep RNA Amplification Kit (Ambion, Austin, TX) to produce labeled cRNA. The cRNA for each sample was then hybridized to an Illumina Sentrix® Mouse-6-V2 BeadChip (Illumina, San Diego, CA) +

    +

    +

    Quality control analysis of the raw image data was performed using the Illumina BeadStudio software. MIAME standards were used for all microarray data. Rank invariant normalization with BeadStudio software was used to calculate the data. Once this data was collected, the data was globally normalized across all samples using the formula 2 (z-score of log2 [intensity]) + 8. + +

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HEI_BXD_ONC_Retina_0211.html b/web/dbdoc/HEI_BXD_ONC_Retina_0211.html new file mode 100755 index 00000000..4795045d --- /dev/null +++ b/web/dbdoc/HEI_BXD_ONC_Retina_0211.html @@ -0,0 +1,165 @@ + + +HEI BXD ONC Retina Illumina V6.2 (Feb11) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    HEI BXD ONC Retina Illumina V6.2 (Feb11) RankInv **modify this page

    + + Accession number: GN306

    +

    Summary:

    +
    +

    HEI Optic Nerve Crush (ONC) – Control Retina Illumina V6.2 (April 2010) RankInv ** was normalized and scaled by William E. Orr and uploaded by Arthur Centeno and Xiaodong Zhou on February 1, 2011. This data set consists of BXD strains, C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. The data base was constructed by subtacting the normal expression values from the values from the same strain that were generated from retinas 2 days after optic nerve crush. + +

    This is rank invariant data with 2z+8 stabilization, but without special correction for batch effects. The data includes the mean of four samples per strain. Values in expression range from 0000 to 0000 (0000 units), a nominal range of 0000-fold. + +

    The lowest level of expression is 0000 for ILMN_000 (0000) from HEI Retina Illumina V6.2 (April 2010) RankInv **. Lowest single data about 5.842. + +

    The highest level of expression is 0000 for ILMN_0000 (000). Highest single value is about 18.934. +

    +

    +

    Relevant Publications

    +
    +

    +

      +
    1. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link) +
    2. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 +
    3. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) +
    4. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link) + + + +

      +

    +Other Data Sets +Users of these mouse retina data may also find the following complementary resources useful: +
      +
    1. NEIBank collection of ESTs and SAGE data. +
    2. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases +
    3. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5. +
    4. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus. + +
    5. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430). + + +
    6. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0. +
    +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 48 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. + + +

    +BXD strains:

  • The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. +

    +

  • In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. +

    +

  • The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set. +
  • +
    + +

    About the tissue used to generate this set of data:

    + +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RNAlater at room temperature. Two retinas from one mouse were stored in a single tube. + +

    Dissecting and preparing eyes for RNA extraction +

    +

    Retinas for RNA extraction were placed in RNA STAT-60 (Tel-Test Inc.) and processed per manufacturer’s instructions (in brief form below). +Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    • Homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue via syringe) +
    • Allow the homogenate to stand for 5-10 min at room temperature +
    • Add 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    • Mix the sample vigorously for 15 sec and let the sample incubate at room temperature for 5-10 min +
    • Centrifuge at 12,000 g for 1 hr at 4°C +
    • Transfer the aqueous phase to a clean centrifuge tube +
    • Add 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    • Vortex and incubate the sample at -20°C for 1 hr or overnight +
    • Centrifuge at 12,000 g for 1 hr +
    • Remove the supernatant and wash the RNA pellet with 75% ethanol +
    • Remove ethanol, let air dry (5-10 min) +
    • Dissolve the pellet in 50 μl of nuclease free water. +

      +

    +

    Sample Processing: Drs. Natalie E. Freeman-Anderson and Justin P. Templeton extracted the retinas from the mice and Dr. Natalie Freeman-Anderson processed all samples in the HEI Vision Core Facility. The tissue was homogenized and extracted according to the RNA-Stat-60 protocol as described by the manufacturer (Tel-Test, Friendswood, TX) listed above. The quality and purity of RNA was assessed using an Agilent Bioanalyzer 2100 system. The RNA from each sample was processed with the Illumina TotalPrep RNA Amplification Kit (Ambion, Austin, TX) to produce labeled cRNA. The cRNA for each sample was then hybridized to an Illumina Sentrix® Mouse-6-V2 BeadChip (Illumina, San Diego, CA) +

    +

    +

    Quality control analysis of the raw image data was performed using the Illumina BeadStudio software. MIAME standards were used for all microarray data. Rank invariant normalization with BeadStudio software was used to calculate the data. Once this data was collected, the data was globally normalized across all samples using the formula 2 (z-score of log2 [intensity]) + 8. + +

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HEI_BXD_ONCvsCTLRetina_0211.html b/web/dbdoc/HEI_BXD_ONCvsCTLRetina_0211.html new file mode 100755 index 00000000..da460401 --- /dev/null +++ b/web/dbdoc/HEI_BXD_ONCvsCTLRetina_0211.html @@ -0,0 +1,165 @@ + + +HEI BXD ONC vs Control Retina Illumina V6.2 (Feb11) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    HEI BXD ONC vs Control Retina Illumina V6.2 (Feb11) RankInv **modify this page

    + + Accession number: GN305

    +

    Summary:

    +
    +

    HEI Optic Nerve Crush (ONC) – Control Retina Illumina V6.2 (April 2010) RankInv ** was normalized and scaled by William E. Orr and uploaded by Arthur Centeno and Xiaodong Zhou on February 1, 2011. This data set consists of BXD strains, C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. The data base was constructed by subtacting the normal expression values from the values from the same strain that were generated from retinas 2 days after optic nerve crush. + +

    This is rank invariant data with 2z+8 stabilization, but without special correction for batch effects. The data includes the mean of four samples per strain. Values in expression range from 0000 to 0000 (0000 units), a nominal range of 0000-fold. + +

    The lowest level of expression is 0000 for ILMN_000 (0000) from HEI Retina Illumina V6.2 (April 2010) RankInv **. Lowest single data about 5.842. + +

    The highest level of expression is 0000 for ILMN_0000 (000). Highest single value is about 18.934. +

    +

    +

    Relevant Publications

    +
    +

    +

      +
    1. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link) +
    2. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 +
    3. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) +
    4. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link) + + + +

      +

    +Other Data Sets +Users of these mouse retina data may also find the following complementary resources useful: +
      +
    1. NEIBank collection of ESTs and SAGE data. +
    2. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases +
    3. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5. +
    4. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus. + +
    5. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430). + + +
    6. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0. +
    +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 48 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. + + +

    +BXD strains:

  • The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. +

    +

  • In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. +

    +

  • The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set. +
  • +
    + +

    About the tissue used to generate this set of data:

    + +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RNAlater at room temperature. Two retinas from one mouse were stored in a single tube. + +

    Dissecting and preparing eyes for RNA extraction +

    +

    Retinas for RNA extraction were placed in RNA STAT-60 (Tel-Test Inc.) and processed per manufacturer’s instructions (in brief form below). +Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    • Homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue via syringe) +
    • Allow the homogenate to stand for 5-10 min at room temperature +
    • Add 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    • Mix the sample vigorously for 15 sec and let the sample incubate at room temperature for 5-10 min +
    • Centrifuge at 12,000 g for 1 hr at 4°C +
    • Transfer the aqueous phase to a clean centrifuge tube +
    • Add 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    • Vortex and incubate the sample at -20°C for 1 hr or overnight +
    • Centrifuge at 12,000 g for 1 hr +
    • Remove the supernatant and wash the RNA pellet with 75% ethanol +
    • Remove ethanol, let air dry (5-10 min) +
    • Dissolve the pellet in 50 μl of nuclease free water. +

      +

    +

    Sample Processing: Drs. Natalie E. Freeman-Anderson and Justin P. Templeton extracted the retinas from the mice and Dr. Natalie Freeman-Anderson processed all samples in the HEI Vision Core Facility. The tissue was homogenized and extracted according to the RNA-Stat-60 protocol as described by the manufacturer (Tel-Test, Friendswood, TX) listed above. The quality and purity of RNA was assessed using an Agilent Bioanalyzer 2100 system. The RNA from each sample was processed with the Illumina TotalPrep RNA Amplification Kit (Ambion, Austin, TX) to produce labeled cRNA. The cRNA for each sample was then hybridized to an Illumina Sentrix® Mouse-6-V2 BeadChip (Illumina, San Diego, CA) +

    +

    +

    Quality control analysis of the raw image data was performed using the Illumina BeadStudio software. MIAME standards were used for all microarray data. Rank invariant normalization with BeadStudio software was used to calculate the data. Once this data was collected, the data was globally normalized across all samples using the formula 2 (z-score of log2 [intensity]) + 8. + +

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HLCF_0311.html b/web/dbdoc/HLCF_0311.html new file mode 100755 index 00000000..a4450eec --- /dev/null +++ b/web/dbdoc/HLCF_0311.html @@ -0,0 +1,213 @@ + + + + + +GSE9588 Human Liver Normal (Mar11) Females + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    GSE9588 Human Liver Normal (Mar11) Femalesmodify this page

    + + Accession number: GN384

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HLCM_0311.html b/web/dbdoc/HLCM_0311.html new file mode 100755 index 00000000..5909c621 --- /dev/null +++ b/web/dbdoc/HLCM_0311.html @@ -0,0 +1,213 @@ + + + + + +GSE9588 Human Liver Normal (Mar11) Males + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    GSE9588 Human Liver Normal (Mar11) Malesmodify this page

    + + Accession number: GN383

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HLC_0311.html b/web/dbdoc/HLC_0311.html new file mode 100755 index 00000000..fff49380 --- /dev/null +++ b/web/dbdoc/HLC_0311.html @@ -0,0 +1,121 @@ + +GSE9588 Human Liver Normal (Mar11) + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GSE9588 Human Liver Normal (Mar11)modify this page

    + + Accession number: GN320

    +
    +

    Summary:

    +

    The Human Liver Cohort (HLC) study aimed to characterize the genetic +architecture of gene expression in human liver using genotyping, gene expression +profiling, and enzyme activity measurements of Cytochrom P450. The HLC was +assembled from a total of 780 liver samples screened. These liver samples +were acquired from caucasian individuals from three independant tissue +collection centers. DNA samples were genotyped on the Affymetrix 500K SNP +and Illumina 650Y SNP genotyping arrays representing a total of 782,476 unique +single nucleotide polymorphisms (SNPs). Only the genotype data from those +samples which were collected postmortem are accessible in dbGap. These 228 +samples represent a subset of the 427 samples included in the Human Liver +Cohort Publication (Schadt, Molony et al. 2008). RNA samples were profiled on +a custom Agilent 44,000 feature microarray composed of 39,280 oligonucleotide +probes targeting transcripts representing 34,266 known and predicted genes, +including high-confidence, noncoding RNA sequences. Each of the liver samples +was processed into cytosol and microsomes using a standard differential +centrifugation method. The activities of nine P450 enzymes (CYP1A2, 2A6, 2B6, +2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) in isolated microsomes from 398 HLC liver +samples were measured in the microsome preparations using probe substrate +metabolism assays expressed as nmol/min/mg protein. Each was measured with a +single substrate except for the CYP3A4 activity that was measured using two +substrates, midazolam and testosterone.

    +

    To uncover the genetic determinants affecting expression in a metabolically active tissue relevant to the study of obesity, diabetes, atherosclerosis, and other common human diseases, we profiled 427 human liver samples on a comprehensive gene expression microarray targeting greater than 40,000 transcripts and genotyped DNA from each of these samples at greater than 1,000,000 SNPs. The relatively large sample size of this study and the large number of SNPs genotyped provided the means to assess the relationship between genetic variants and gene expression and it provided this look for the first time in a non-blood derived, metabolically active tissue. A comprehensive analysis of the liver gene expression traits revealed that thousands of these traits are under the control of well defined genetic loci, with many of the genes having already been implicated in a number of human diseases.

    +

    Overall Design:

    +

    Liver samples (1-2 g) were acquired from Caucasian individuals from three independent liver collections at tissue resource centers at Vanderbilt University, University of Pittsburg, and Merck Research Laboratories. All individuals were compared to a common pool created from equal portions of RNA from 191 (111 from Vanderbilt University and 80 from University of Pittsburg) samples.

    +

    Platforms:

    +

    Rosetta/Merck Human 44k 1.1 microarray

    +

    Data Source Acknowledgements:

    +

    +

    + +Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 2008 May 6;6(5):e107. Full text + +

    +Yang X, Zhang B, Molony C, Chudin E, Hao K, Zhu J, Gaedigk A, Suver C, Zhong H, Leeder JS, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich RG, Slatter JG, Schadt EE, Kasarskis A, Lum PY (2010) Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res. 2010 Aug;20(8):1020-36. + + + + +

    Data Source:

    +

    GEO Series GSE9588
    +Genotype data for 228 individuals who satisfy privacy policy have been submitted to the NCBI dbGaP (http://www.ncbi.nlm.nih.gov/gap/) under accession no. phs000253.v1.p1.] +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HLC_0311_F.html b/web/dbdoc/HLC_0311_F.html new file mode 100755 index 00000000..9fc18edd --- /dev/null +++ b/web/dbdoc/HLC_0311_F.html @@ -0,0 +1,112 @@ + +GSE9588 Human Liver Normal (Mar11) Females + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GSE9588 Human Liver Normal (Mar11) Femalesmodify this page

    + + Accession number: GN322

    +
    +

    Summary:

    +

    The Human Liver Cohort (HLC) study aimed to characterize the genetic +architecture of gene expression in human liver using genotyping, gene expression +profiling, and enzyme activity measurements of Cytochrom P450. The HLC was +assembled from a total of 780 liver samples screened. These liver samples +were acquired from caucasian individuals from three independant tissue +collection centers. DNA samples were genotyped on the Affymetrix 500K SNP +and Illumina 650Y SNP genotyping arrays representing a total of 782,476 unique +single nucleotide polymorphisms (SNPs). Only the genotype data from those +samples which were collected postmortem are accessible in dbGap. These 228 +samples represent a subset of the 427 samples included in the Human Liver +Cohort Publication (Schadt, Molony et al. 2008). RNA samples were profiled on +a custom Agilent 44,000 feature microarray composed of 39,280 oligonucleotide +probes targeting transcripts representing 34,266 known and predicted genes, +including high-confidence, noncoding RNA sequences. Each of the liver samples +was processed into cytosol and microsomes using a standard differential +centrifugation method. The activities of nine P450 enzymes (CYP1A2, 2A6, 2B6, +2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) in isolated microsomes from 398 HLC liver +samples were measured in the microsome preparations using probe substrate +metabolism assays expressed as nmol/min/mg protein. Each was measured with a +single substrate except for the CYP3A4 activity that was measured using two +substrates, midazolam and testosterone.

    +

    To uncover the genetic determinants affecting expression in a metabolically active tissue relevant to the study of obesity, diabetes, atherosclerosis, and other common human diseases, we profiled 427 human liver samples on a comprehensive gene expression microarray targeting greater than 40,000 transcripts and genotyped DNA from each of these samples at greater than 1,000,000 SNPs. The relatively large sample size of this study and the large number of SNPs genotyped provided the means to assess the relationship between genetic variants and gene expression and it provided this look for the first time in a non-blood derived, metabolically active tissue. A comprehensive analysis of the liver gene expression traits revealed that thousands of these traits are under the control of well defined genetic loci, with many of the genes having already been implicated in a number of human diseases.

    +

    Overall Design:

    +

    Liver samples (1-2 g) were acquired from Caucasian individuals from three independent liver collections at tissue resource centers at Vanderbilt University, University of Pittsburg, and Merck Research Laboratories. All individuals were compared to a common pool created from equal portions of RNA from 191 (111 from Vanderbilt University and 80 from University of Pittsburg) samples.

    +

    Platforms:

    +

    Rosetta/Merck Human 44k 1.1 microarray

    +

    Data Source Acknowledgements:

    +

    +

    Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum P, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, Guhathakurta D, Derry J, Storey J, Mehrabian M, Drake TA, Lusis AJ, Smith R, Guengerich P, Strom SC, Schuetz E, Rushmore T, Ulrich R

    +

    Source:

    +

    GEO Series GSE9588
    +Genotype data for 228 individuals who satisfy privacy policy have been submitted to the NCBI dbGaP (http://www.ncbi.nlm.nih.gov/gap/) under accession no. phs000253.v1.p1.] +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HLC_0311_M.html b/web/dbdoc/HLC_0311_M.html new file mode 100755 index 00000000..a5018011 --- /dev/null +++ b/web/dbdoc/HLC_0311_M.html @@ -0,0 +1,112 @@ + +GSE9588 Human Liver Normal (Mar11) Males + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    GSE9588 Human Liver Normal (Mar11) Malesmodify this page

    + + Accession number: GN321

    +
    +

    Summary:

    +

    The Human Liver Cohort (HLC) study aimed to characterize the genetic +architecture of gene expression in human liver using genotyping, gene expression +profiling, and enzyme activity measurements of Cytochrom P450. The HLC was +assembled from a total of 780 liver samples screened. These liver samples +were acquired from caucasian individuals from three independant tissue +collection centers. DNA samples were genotyped on the Affymetrix 500K SNP +and Illumina 650Y SNP genotyping arrays representing a total of 782,476 unique +single nucleotide polymorphisms (SNPs). Only the genotype data from those +samples which were collected postmortem are accessible in dbGap. These 228 +samples represent a subset of the 427 samples included in the Human Liver +Cohort Publication (Schadt, Molony et al. 2008). RNA samples were profiled on +a custom Agilent 44,000 feature microarray composed of 39,280 oligonucleotide +probes targeting transcripts representing 34,266 known and predicted genes, +including high-confidence, noncoding RNA sequences. Each of the liver samples +was processed into cytosol and microsomes using a standard differential +centrifugation method. The activities of nine P450 enzymes (CYP1A2, 2A6, 2B6, +2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) in isolated microsomes from 398 HLC liver +samples were measured in the microsome preparations using probe substrate +metabolism assays expressed as nmol/min/mg protein. Each was measured with a +single substrate except for the CYP3A4 activity that was measured using two +substrates, midazolam and testosterone.

    +

    To uncover the genetic determinants affecting expression in a metabolically active tissue relevant to the study of obesity, diabetes, atherosclerosis, and other common human diseases, we profiled 427 human liver samples on a comprehensive gene expression microarray targeting greater than 40,000 transcripts and genotyped DNA from each of these samples at greater than 1,000,000 SNPs. The relatively large sample size of this study and the large number of SNPs genotyped provided the means to assess the relationship between genetic variants and gene expression and it provided this look for the first time in a non-blood derived, metabolically active tissue. A comprehensive analysis of the liver gene expression traits revealed that thousands of these traits are under the control of well defined genetic loci, with many of the genes having already been implicated in a number of human diseases.

    +

    Overall Design:

    +

    Liver samples (1-2 g) were acquired from Caucasian individuals from three independent liver collections at tissue resource centers at Vanderbilt University, University of Pittsburg, and Merck Research Laboratories. All individuals were compared to a common pool created from equal portions of RNA from 191 (111 from Vanderbilt University and 80 from University of Pittsburg) samples.

    +

    Platforms:

    +

    Rosetta/Merck Human 44k 1.1 microarray

    +

    Data Source Acknowledgements:

    +

    +

    Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum P, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, Guhathakurta D, Derry J, Storey J, Mehrabian M, Drake TA, Lusis AJ, Smith R, Guengerich P, Strom SC, Schuetz E, Rushmore T, Ulrich R

    +

    Source:

    +

    GEO Series GSE9588
    +Genotype data for 228 individuals who satisfy privacy policy have been submitted to the NCBI dbGaP (http://www.ncbi.nlm.nih.gov/gap/) under accession no. phs000253.v1.p1.] +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HQFNeoc_0208_RankInv.html b/web/dbdoc/HQFNeoc_0208_RankInv.html new file mode 100755 index 00000000..f68be148 --- /dev/null +++ b/web/dbdoc/HQFNeoc_0208_RankInv.html @@ -0,0 +1,457 @@ + +HQF BXD Neocortex ILM6v1.1 (Feb08) RankInv + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    HQF BXD Neocortex ILM6v1.1 (Feb08) RankInv +modify this page

    Accession number: GN157

    + + + + + + +

        Summary:

    + +
    +The February 2008 High Q Foundation Neocortex data set provides estimates of mRNA expression in the cerebral cortex of 73 lines of mice, including 52 BXD strains, 20 standard inbred strains, and B6D2F1 isogenic hybrids. All samples are from normal adult control animals raised in a standard laboratory environment. All data were generated with funds provided by the High Q Foundation using the Illumina Mouse 6.1 bead array (the second version of the Illumina Mouse-6 platform). + +

    While this February data release is still a provisional, we are not aware of any specific errors. + +

    A total of 129 pooled neocortex samples were processed using approximately XX Illumina Sentrix Mouse-6.1 oligomer microarray BeadArray slides. XX Mouse-6.1 slides and a total of 128 samples passed stringent quality control and error checking. This data set is a companion to the High Q Foundation Striatum data set and was processed using very closely matched methods and most of the same samples. This is our third large data set generated using the Illumina platform. This particular data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high). + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Illumina (Feb 08) RankInv data set, 1564 probes have LRS values >46 (LOD >10). + + + + + +

    + + +
    + + +

    Users of these mouse neocortex data may also find the following complementary resources and papers useful: +

      +
    1. Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex. +
    2. A movie of the dissection of the brain by Dr. Glenn Rosen. +
    +
    + + + + + +

    ABOUT THE NEOCORTEX + + + +

         + +About the strains used to generate this set of data:

    + +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 25 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006). + +

    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 20 inbred strains and an F1 hybrid (B6D2F1). These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel + +
    3. AKR/J +
          Sequenced by NIEHS; Phenome Project B list + +
    4. BALB/cByJ +
          Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list + +
    5. BALB/cJ +
          Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list + +
    6. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    7. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    8. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    9. CAST/EiJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    10. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    11. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    12. LG/J +
          Paternal parent of the LGXSM panel + +
    13. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    14. NZO/HlLtJ +
          Collaborative Cross strain + +
    15. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    16. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    17. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    18. B6D2F1 +
      This F1 hybrid was generated by crossing C57BL/6J with DBA/2J. +
    + + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

    + +
    + +
    + + + + + +

        About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the Jackson Laboratory or at UTHSC in SPF facilities. All mice were killed by cervical dislocation. Whole brain dissections were performed at either Beth Israel Deaconess Medical Center by Glenn Rosen or at UTHSC by Lu Lu and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum. + +

    A pool of dissected neocortical tissue from two to three naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia (CHECK LAST STATEMENT WITH LU). + +

    All animals used in this study were between XX and XX days of age (average of XX days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase. +

    + +
    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between December 2007 and January 2008. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from as many strains as possible. However, a number of strains are represented by samples from a single sex (see figure at bottom of page). + + +

    Experimental Design and Batch Structure: This data set consists arrays processed in XX groups over a XX month period (from Month Year to Month Year). Most groups consisted of XX samples. All arrays in this data set were processed using a single protocol by a single operator, NAME HERE. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below. + +

    Error checking +

      +
    • Checked for genotypes of BXD strains on all chromosomes using a battery of test Mendelian transcripts (transcripts with a Mendelian segregation pattern in the BXDs). Peak LRS of 260.2 for Prdx2 using Illumina probe ILM5340577. There are no errors in the strain assignment but there are possible genotyping errors, such as: +
      Thumpd1 (ILM7510148) in BXD34 using marker rs6271956 +
      H2-D2 (ILM2190725) in BXD69 using marker gnf17.035.152 +
      Fcer1g (ILM5550020) in BXD100 using marker rs3722740 (incorrectly scored as a heterozygote). + +
      +
      These genotype discrepancies are either due to recombination between the marker and the probe or a genotyping errors. (RWW, Feb 27, 2008) + +
    • Total count of transcripts/probes with LOD greater than 10 is 1564 with 52 BXD strains (BXD1 through BXD43 from (n = 27) from JAX, and BXD43 through 100 (n = 25) from UTHSC). + +
    • Sex assignment checked using Xist probe ILM104280446. +
      All female samples: Strains BXD43, BXD42, BXD68, BXD77, NZW/LacJ, and NZO/HlLtJ +
      All male samples: Strains BXD1, PWK/PhJ, BXD66, BXD97, BXD10, BXD75, BXD44, BXD89, BXD86, BXD80, BXD69 + +
    + + + + + +
    + +

    Data Table 1:

    + +
    + +
    +This table lists all arrays by order of strain (index) and includes data on strain, sex, slide ID and slide position (A through F). +
    + + +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexStrainSexSlide IDSlide
    Position
    1B6D2F1F1848071018D
    2B6D2F1M1957998076B
    3C57BL/6JF1957998083A
    4C57BL/6JM1833451021A
    5DBA/2JF1957998083C
    6DBA/2JM1833451021C
    7BXD1M4051964030B
    8BXD5F1736925307A
    9BXD5M4051964028C
    10BXD6F4051964028F
    11BXD6M1736925307D
    12BXD8F4060001025A
    13BXD8M1957998111E
    14BXD9F4060001025D
    15BXD9M1736925359B
    16BXD11F4051964030D
    17BXD11M1848071017B
    18BXD12F4051964030E
    19BXD12M1848071017C
    20BXD13F4051964030F
    21BXD13M1848071017D
    22BXD14F4051964065A
    23BXD14M1848071017E
    24BXD15F4051964065B
    25BXD15M1848071017F
    26BXD16F1848071024A
    27BXD16M4051964065C
    28BXD18F4051964065D
    29BXD18M1848071024B
    30BXD19F4051964065E
    31BXD19M1848071024C
    32BXD21F1848071024D
    33BXD21M4051964065F
    34BXD23F1848071024E
    35BXD23M4051964022A
    36BXD27F1848071024F
    37BXD27M4051964022B
    38BXD28F1848071025A
    39BXD28M4051964022C
    40BXD31F4051964022D
    41BXD31M1848071025B
    42BXD32F4051964022E
    43BXD32M1848071025C
    44BXD33F4051964022F
    45BXD33M1848071025D
    46BXD34F4051964023A
    47BXD34M1848071025E
    48BXD36F1848071025F
    49BXD36M4051964023B
    50BXD38F4051964023C
    51BXD38M1957998101A
    52BXD39F4051964023D
    53BXD39M1957998101B
    54BXD40F4051964023E
    55BXD40M1957998101C
    56BXD42F4060001026B
    57BXD43F1957998101D
    58BXD43F4051964023F
    59BXD44F1957998101E
    60BXD44M4051964028A
    61BXD45F4051964028B
    62BXD45M1957998101F
    63BXD51F4051964028D
    64BXD51M1736925307B
    65BXD55F1736925307C
    66BXD55M4051964028E
    67BXD60F4060001014A
    68BXD60M1736925307E
    69BXD61F4060001014B
    70BXD61M1736925307F
    71BXD62F4060001014C
    72BXD62M1957998111A
    73BXD65F1957998111B
    74BXD65M4060001014D
    75BXD66M4060001026C
    76BXD68F4060001026D
    77BXD69M1957998111C
    78BXD69M4060001014E
    79BXD70M4060001026E
    80BXD73F1957998111D
    81BXD73M4060001014F
    82BXD75M4060001026F
    83BXD77F4060001027A
    84BXD80M4060001027B
    85BXD84F1957998111F
    86BXD84M4060001025B
    87BXD86M4060001027C
    88BXD87F4060001027F
    89BXD87M4060001025C
    90BXD89M4060001027D
    91BXD90F1736925359C
    92BXD90M4060001025E
    93BXD96F4060001025F
    94BXD96M1736925359D
    95BXD97M4060001027E
    96BXD100F1848071017A
    97BXD100M4051964030C
    98129S1/SvImJF1736925359E
    99129S1/SvImJM1848071018A
    100A/JF1848071018B
    101A/JM1736925359F
    102AKR/JF1848071018C
    103AKR/JM1957998076A
    104BALB/cByJF1957998076C
    105BALB/cByJM1953348019A
    106C3H/HeJF1953348019D
    107C3H/HeJM1957998076F
    108CAST/EiJF1833451021B
    109CAST/EiJM1957998083B
    110KK/HlJF1957998083E
    111KK/HlJM1848071023F
    112BXSB/MpJF1957998076E
    113BXSB/MpJM1953348019C
    114FVB/NJF1833451021D
    115FVB/NJM1957998083D
    116MOLF/EiJF1957998083F
    117MOLF/EiJM1848071001B
    118NOD/LtJF1848071001C
    119NOD/LtJM4060001004A
    120NZB/BlNJF4060001004B
    121NZB/BlNJM1848071001D
    122NZO/HlLtJF4060001004C
    123NZW/LacJF4060001004D
    124PWD/PhJF4060001004E
    125PWK/PhJM4060001004F
    126WSB/EiJF4051964030A
    127BTBRT<+>tf/JF1957998076D
    128BTBRT<+>tf/JM1953348019B
    + + + +

        Downloading all data:

    +
    +

    All data is available here. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact RW Williams if you have any questions on the use of these open data.

    +
    + + + +

        About the array platform:

    +
    +

    Illumina Sentrix Mouse-6.1 BeadArray Platform (ILM6v1.1): The Mouse6.1 array consists of 46,643 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology. + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf). + +

    ANNOTATION: In summer of 2008, Xusheng Wang and Robert W. Williams reannotated the Illumina Mouse-6.1 array content. This new annotation is now incorporated into GeneNetwork. For 46643 probes on the Mouse 6.1 array platform (including control probes) we have identified XXXXX NCBI Entrez Gene IDs; XXXXX matched human Gene IDs; XXXXX matched rat Gene IDs; XXXXX NCBI HomoloGene IDs; and XXXXX OMIM IDs. + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +
    + +

        About data processing:

    + +
    +

    This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation. + +

    Sex of the samples was validated using sex-specific probe set: Xist probe ILM104280446. + + + + +

    + + + + +

        Data source acknowledgment:

    +

    Data were generated with funds to RW Williams, Glenn D. Rosen, Weikuan Gu, and Lu Lu from the High Q Foundation. Informatics support also provided by NIH NIAAA INIA grants to RWW and LL. + +

  • Lu Lu, M.D. +
    Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI) + + + + +

  • + +

        About this text file:

    +

    +Data uploaded by Arthur Centeno, Feb 22, 2008. This text file originally generated by RWW on Feb 27, 2008. Updated by A.C on March 11, 2010. + + +

    + + +

    + + + +

    + +
    +
    + + + + +
    + + +
    + + + + + + + + + + diff --git a/web/dbdoc/HQFNeoc_1210_RankInv.html b/web/dbdoc/HQFNeoc_1210_RankInv.html new file mode 100755 index 00000000..2c9dd055 --- /dev/null +++ b/web/dbdoc/HQFNeoc_1210_RankInv.html @@ -0,0 +1,460 @@ + +HQF BXD Neocortex ILM6v1.1 (Dec10) RankInv + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    HQF BXD Neocortex ILM6v1.1 (Dec10) RankInv +modify this page

    Accession number: GN282

    + + + + + + +

        Summary:

    + +
    +The December 2010 High Q Foundation Neocortex data set is a batch corrected version of the November 2007 version (HQF BXD Neocortex ILM6.1 (Nov07) RankInv). This data set provides estimates of mRNA expression in the cerebral cortex of 73 lines of mice, including 52 BXD strains, 20 standard inbred strains, and B6D2F1 isogenic hybrids. All samples are from normal adult control animals raised in a standard laboratory environment. All data were generated with funds provided by the High Q Foundation using the Illumina Mouse 6.1 bead array (the second version of the Illumina Mouse-6 platform). + +

    NOTE: This data was adjusted to try and correct for a possible batch effect due to strain and date (see table below). Data from individual samples was adjusted using ANOVA to remove effect of batch (factor = date) in Partek Batch Remover. The first 3 principal components capture 19% of the variance in the entire data set after this correction. + +

    A total of 129 pooled neocortex samples were processed using approximately XX Illumina Sentrix Mouse-6.1 oligomer microarray BeadArray slides. XX Mouse-6.1 slides and a total of 128 samples passed stringent quality control and error checking. This data set is a companion to the High Q Foundation Striatum data set and was processed using very closely matched methods and most of the same samples. This is our third large data set generated using the Illumina platform. This particular data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high). + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Illumina (Feb 08) RankInv data set, 1564 probes have LRS values >46 (LOD >10). + + + + + +

    + + +
    + + +

    Users of these mouse neocortex data may also find the following complementary resources and papers useful: +

      +
    1. Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex. +
    2. A movie of the dissection of the brain by Dr. Glenn Rosen. +
    +
    + + + + + +

    ABOUT THE NEOCORTEX + + + +

         + +About the strains used to generate this set of data:

    + +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 25 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006). + +

    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 20 inbred strains and an F1 hybrid (B6D2F1). These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel + +
    3. AKR/J +
          Sequenced by NIEHS; Phenome Project B list + +
    4. BALB/cByJ +
          Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list + +
    5. BALB/cJ +
          Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list + +
    6. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    7. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    8. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    9. CAST/EiJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    10. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    11. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    12. LG/J +
          Paternal parent of the LGXSM panel + +
    13. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    14. NZO/HlLtJ +
          Collaborative Cross strain + +
    15. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    16. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    17. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    18. B6D2F1 +
      This F1 hybrid was generated by crossing C57BL/6J with DBA/2J. +
    + + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

    + +
    + +
    + + + + + +

        About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the Jackson Laboratory or at UTHSC in SPF facilities. All mice were killed by cervical dislocation. Whole brain dissections were performed at either Beth Israel Deaconess Medical Center by Glenn Rosen or at UTHSC by Lu Lu and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum. + +

    A pool of dissected neocortical tissue from two to three naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia (CHECK LAST STATEMENT WITH LU). + +

    All animals used in this study were between XX and XX days of age (average of XX days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase. +

    + +
    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between December 2007 and January 2008. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from as many strains as possible. However, a number of strains are represented by samples from a single sex (see figure at bottom of page). + + +

    Experimental Design and Batch Structure: This data set consists arrays processed in XX groups over a XX month period (from Month Year to Month Year). Most groups consisted of XX samples. All arrays in this data set were processed using a single protocol by a single operator, NAME HERE. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below. + +

    Error checking +

      +
    • Checked for genotypes of BXD strains on all chromosomes using a battery of test Mendelian transcripts (transcripts with a Mendelian segregation pattern in the BXDs). Peak LRS of 260.2 for Prdx2 using Illumina probe ILM5340577. There are no errors in the strain assignment but there are possible genotyping errors, such as: +
      Thumpd1 (ILM7510148) in BXD34 using marker rs6271956 +
      H2-D2 (ILM2190725) in BXD69 using marker gnf17.035.152 +
      Fcer1g (ILM5550020) in BXD100 using marker rs3722740 (incorrectly scored as a heterozygote). + +
      +
      These genotype discrepancies are either due to recombination between the marker and the probe or a genotyping errors. (RWW, Feb 27, 2008) + +
    • Total count of transcripts/probes with LOD greater than 10 is 1564 with 52 BXD strains (BXD1 through BXD43 from (n = 27) from JAX, and BXD43 through 100 (n = 25) from UTHSC). + +
    • Sex assignment checked using Xist probe ILM104280446. +
      All female samples: Strains BXD43, BXD42, BXD68, BXD77, NZW/LacJ, and NZO/HlLtJ +
      All male samples: Strains BXD1, PWK/PhJ, BXD66, BXD97, BXD10, BXD75, BXD44, BXD89, BXD86, BXD80, BXD69 + +
    + + + + + +
    + +

    Data Table 1:

    + +
    + +
    +This table lists all arrays by order of strain (index) and includes data on strain, sex, slide ID and slide position (A through F). +
    + + +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexStrainSexSlide IDSlide
    Position
    Date
    1B6D2F1F1848071018D11.8.07
    2B6D2F1M195799807611.30.07B11.30.07
    3C57BL/6JF1957998083A11.30.07
    4C57BL/6JM1833451021A11.8.07
    5DBA/2JF1957998083C11.30.07
    6DBA/2JM1833451021C11.8.07
    7BXD1M4051964030B12.21.07
    8BXD5F1736925307A11.27.07
    9BXD5M4051964028C12.13.07
    10BXD6F4051964028F12.13.07
    11BXD6M1736925307D11.27.07
    12BXD8F4060001025A1.3.08
    13BXD8M1957998111E11.27.07
    14BXD9F4060001025D1.3.08
    15BXD9M1736925359B11.30.07
    16BXD11F4051964030D12.21.07
    17BXD11M1848071017B11.16.07
    18BXD12F4051964030E12.21.07
    19BXD12M1848071017C11.16.07
    20BXD13F4051964030F12.21.07
    21BXD13M1848071017D11.16.07
    22BXD14F4051964065A12.21.07
    23BXD14M1848071017E11.16.07
    24BXD15F4051964065B12.21.07
    25BXD15M1848071017F11.16.07
    26BXD16F1848071024A11.21.07
    27BXD16M4051964065C12.21.07
    28BXD18F4051964065D12.21.07
    29BXD18M1848071024B11.21.07
    30BXD19F4051964065E12.21.07
    31BXD19M1848071024C11.21.07
    32BXD21F1848071024D11.21.07
    33BXD21M4051964065F12.21.07
    34BXD23F1848071024E11.21.07
    35BXD23M4051964022A12.13.07
    36BXD27F1848071024F11.21.07
    37BXD27M4051964022B12.13.07
    38BXD28F1848071025A11.21.07
    39BXD28M4051964022C12.13.07
    40BXD31F4051964022D12.13.07
    41BXD31M1848071025B11.21.07
    42BXD32F4051964022E12.13.07
    43BXD32M1848071025C11.21.07
    44BXD33F4051964022F12.13.07
    45BXD33M1848071025D11.21.07
    46BXD34F4051964023A12.13.07
    47BXD34M1848071025E11.21.07
    48BXD36F1848071025F11.21.07
    49BXD36M4051964023B12.13.07
    50BXD38F4051964023C12.13.07
    51BXD38M1957998101A11.27.07
    52BXD39F4051964023D12.13.07
    53BXD39M1957998101B11.27.07
    54BXD40F4051964023E12.13.07
    55BXD40M1957998101C11.27.07
    56BXD42F4060001026B1.3.08
    57BXD43F1957998101D11.27.07
    58BXD43F4051964023F12.13.07
    59BXD44F1957998101E11.27.07
    60BXD44M4051964028A12.13.07
    61BXD45F4051964028B12.13.07
    62BXD45M1957998101F11.27.07
    63BXD51F4051964028D12.13.07
    64BXD51M1736925307B11.27.07
    65BXD55F1736925307C11.27.07
    66BXD55M4051964028E12.13.07
    67BXD60F4060001014A1.3.08
    68BXD60M1736925307E11.27.07
    69BXD61F4060001014B1.3.08
    70BXD61M1736925307F11.27.07
    71BXD62F4060001014C1.3.08
    72BXD62M1957998111A11.27.07
    73BXD65F1957998111B11.27.07
    74BXD65M4060001014D1.3.08
    75BXD66M4060001026C1.3.08
    76BXD68F4060001026D1.3.08
    77BXD69M1957998111C11.27.07
    78BXD69M4060001014E1.3.08
    79BXD70M4060001026E1.3.08
    80BXD73F1957998111D11.27.07
    81BXD73M4060001014F1.3.08
    82BXD75M4060001026F1.3.08
    83BXD77F4060001027A1.3.08
    84BXD80M4060001027B1.3.08
    85BXD84F1957998111F11.27.07
    86BXD84M4060001025B1.3.08
    87BXD86M4060001027C1.3.08
    88BXD87F4060001027F1.3.08
    89BXD87M4060001025C1.3.08
    90BXD89M4060001027D1.3.08
    91BXD90F1736925359C11.30.07
    92BXD90M4060001025E1.3.08
    93BXD96F4060001025F1.3.08
    94BXD96M1736925359D11.30.07
    95BXD97M4060001027E1.3.08
    96BXD100F1848071017A11.16.07
    97BXD100M4051964030C12.21.07
    98129S1/SvImJF1736925359E11.30.07
    99129S1/SvImJM1848071018A11.8.07
    100A/JF1848071018B11.8.07
    101A/JM1736925359F11.30.07
    102AKR/JF1848071018C11.8.07
    103AKR/JM1957998076A11.30.07
    104BALB/cByJF1957998076C11.30.07
    105BALB/cByJM1953348019A11.8.07
    106C3H/HeJF1953348019D11.8.07
    107C3H/HeJM1957998076F11.30.07
    108CAST/EiJF1833451021B11.8.07
    109CAST/EiJM1957998083B11.30.07
    110KK/HlJF1957998083E11.30.07
    111KK/HlJM1848071023F11.21.07
    112BXSB/MpJF1957998076E11.30.07
    113BXSB/MpJM1953348019C11.8.07
    114FVB/NJF1833451021D11.8.07
    115FVB/NJM1957998083D11.30.07
    116MOLF/EiJF1957998083F11.30.07
    117MOLF/EiJM1848071001B11.16.07
    118NOD/LtJF1848071001C11.16.07
    119NOD/LtJM4060001004A12.21.07
    120NZB/BlNJF4060001004B12.21.07
    121NZB/BlNJM1848071001D11.16.07
    122NZO/HlLtJF4060001004C12.21.07
    123NZW/LacJF4060001004D12.21.07
    124PWD/PhJF4060001004E12.21.07
    125PWK/PhJM4060001004F12.21.07
    126WSB/EiJF4051964030A12.21.07
    127BTBRT<+>tf/JF1957998076D11.30.07
    128BTBRT<+>tf/JM1953348019B11.8.07
    + + + +

        Downloading all data:

    +
    +

    All data is available here. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact RW Williams if you have any questions on the use of these open data.

    +
    + + + +

        About the array platform:

    +
    +

    Illumina Sentrix Mouse-6.1 BeadArray Platform (ILM6v1.1): The Mouse6.1 array consists of 46,643 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology. + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf). + +

    ANNOTATION: In summer of 2008, Xusheng Wang and Robert W. Williams reannotated the Illumina Mouse-6.1 array content. This new annotation is now incorporated into GeneNetwork. For 46643 probes on the Mouse 6.1 array platform (including control probes) we have identified XXXXX NCBI Entrez Gene IDs; XXXXX matched human Gene IDs; XXXXX matched rat Gene IDs; XXXXX NCBI HomoloGene IDs; and XXXXX OMIM IDs. + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +
    + +

        About data processing:

    + +
    +

    This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation. + +

    Sex of the samples was validated using sex-specific probe set: Xist probe ILM104280446. + + + + +

    + + + + +

        Data source acknowledgment:

    +

    Data were generated with funds to RW Williams, Glenn D. Rosen, Weikuan Gu, and Lu Lu from the High Q Foundation. Informatics support also provided by NIH NIAAA INIA grants to RWW and LL. + +

  • Lu Lu, M.D. +
    Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI) + + + + +

  • + +

        About this text file:

    +

    +Data uploaded by Arthur Centeno, Feb 22, 2008. This text file originally generated by RWW on Feb 27, 2008. Updated by A.C on March 11, 2010. + + +

    + + +

    + + + +

    + +
    +
    + + + + +
    + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/HQFNeoc_1210v2_RankInv.html b/web/dbdoc/HQFNeoc_1210v2_RankInv.html new file mode 100755 index 00000000..018c8ee8 --- /dev/null +++ b/web/dbdoc/HQFNeoc_1210v2_RankInv.html @@ -0,0 +1,505 @@ + +HQF BXD Neocortex ILM6v1.1 (Dec10v2) RankInv + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    HQF BXD Neocortex ILM6v1.1 (Dec10v2) RankInvmodify this page

    + + Accession number: GN284

    +

    +

        Summary:

    + +
    +The December 2010 High Q Foundation Neocortex data set is a batch corrected version of the November 2007 version (HQF BXD Neocortex ILM6.1 (Nov07) RankInv). This data set provides estimates of mRNA expression in the cerebral cortex of 73 lines of mice, including 52 BXD strains, 20 standard inbred strains, and B6D2F1 isogenic hybrids. All samples are from normal adult control animals raised in a standard laboratory environment. All data were generated with funds provided by the High Q Foundation using the Illumina Mouse 6.1 bead array (the second version of the Illumina Mouse-6 platform). + +

    NOTE: This data was adjusted to correct for batch effects due to date, slide, and position (see table below). Data from individual samples was adjusted using ANOVA to remove effect of batch (factor = date, factor= slide, factor = position) in Partek Batch Remover. Batch effects were corrected by sequentially removing the effect of (1) date, (2) slide, and (3) position. The first 3 principal components capture 15-16% of the variance in the entire data set after this correction. + +

    A total of 129 pooled neocortex samples were processed using approximately XX Illumina Sentrix Mouse-6.1 oligomer microarray BeadArray slides. XX Mouse-6.1 slides and a total of 128 samples passed stringent quality control and error checking. This data set is a companion to the High Q Foundation Striatum data set and was processed using very closely matched methods and most of the same samples. This is our third large data set generated using the Illumina platform. This particular data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from XXX (very low or no expression) to XXXX (extremely high). + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Neocortex Illumina (Feb 08) RankInv data set, 1564 probes have LRS values >46 (LOD >10). + + + + + +

    + + +
    + + +

    Users of these mouse neocortex data may also find the following complementary resources and papers useful: +

      +
    1. Rossner and colleagues, 2006: a paper on the transcriptome of identified subtypes of neurons in the mouse neocortex. +
    2. A movie of the dissection of the brain by Dr. Glenn Rosen. +
    +
    + + + + + +

    ABOUT THE NEOCORTEX + + + +

         + +About the strains used to generate this set of data:

    + +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 25 new inbred strains BXD (F21+) generated by Lu and Peirce. All of these strains were been genotyped at 13,377 SNPs in 2005 (Shifman et al., 2006). + +

    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 20 inbred strains and an F1 hybrid (B6D2F1). These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel + +
    3. AKR/J +
          Sequenced by NIEHS; Phenome Project B list + +
    4. BALB/cByJ +
          Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list + +
    5. BALB/cJ +
          Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list + +
    6. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    7. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    8. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    9. CAST/EiJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    10. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    11. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    12. LG/J +
          Paternal parent of the LGXSM panel + +
    13. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    14. NZO/HlLtJ +
          Collaborative Cross strain + +
    15. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    16. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    17. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    18. B6D2F1 +
      This F1 hybrid was generated by crossing C57BL/6J with DBA/2J. +
    + + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

    + +
    + +
    + + + + + +

        About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the Jackson Laboratory or at UTHSC in SPF facilities. All mice were killed by cervical dislocation. Whole brain dissections were performed at either Beth Israel Deaconess Medical Center by Glenn Rosen or at UTHSC by Lu Lu and colleagues. Neocortex samples were close to complete but are likely to include variable amounts of underlying white matter. Samples may also include parts of the pyriform cortex and subiculum. + +

    A pool of dissected neocortical tissue from two to three naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia (CHECK LAST STATEMENT WITH LU). + +

    All animals used in this study were between XX and XX days of age (average of XX days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase. +

    + +
    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between December 2007 and January 2008. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from as many strains as possible. However, a number of strains are represented by samples from a single sex (see figure at bottom of page). + + +

    Experimental Design and Batch Structure: This data set consists arrays processed in XX groups over a XX month period (from Month Year to Month Year). Most groups consisted of XX samples. All arrays in this data set were processed using a single protocol by a single operator, NAME HERE. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between Month Day and Month Day, Year. Details on sample assignment to slides and batches is provide in the table below. + +

    Error checking +

      +
    • Checked for genotypes of BXD strains on all chromosomes using a battery of test Mendelian transcripts (transcripts with a Mendelian segregation pattern in the BXDs). Peak LRS of 260.2 for Prdx2 using Illumina probe ILM5340577. There are no errors in the strain assignment but there are possible genotyping errors, such as: +
      Thumpd1 (ILM7510148) in BXD34 using marker rs6271956 +
      H2-D2 (ILM2190725) in BXD69 using marker gnf17.035.152 +
      Fcer1g (ILM5550020) in BXD100 using marker rs3722740 (incorrectly scored as a heterozygote). + +
      +
      These genotype discrepancies are either due to recombination between the marker and the probe or a genotyping errors. (RWW, Feb 27, 2008) + +
    • Total count of transcripts/probes with LOD greater than 10 is 1564 with 52 BXD strains (BXD1 through BXD43 from (n = 27) from JAX, and BXD43 through 100 (n = 25) from UTHSC). + +
    • Sex assignment checked using Xist probe ILM104280446. +
      All female samples: Strains BXD43, BXD42, BXD68, BXD77, NZW/LacJ, and NZO/HlLtJ +
      All male samples: Strains BXD1, PWK/PhJ, BXD66, BXD97, BXD10, BXD75, BXD44, BXD89, BXD86, BXD80, BXD69 + +
    + + + + + +
    + +

    Data Table 1:

    + +
    + +
    +This table lists all arrays by order of strain (index) and includes data on strain, sex, slide ID and slide position (A through F). +
    + + +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexStrainSexSlide IDSlide
    Position
    Date
    1B6D2F1F1848071018D11.8.07
    2B6D2F1M1957998076B11.30.07
    3C57BL/6JF1957998083A11.30.07
    4C57BL/6JM1833451021A11.8.07
    5DBA/2JF1957998083C11.30.07
    6DBA/2JM1833451021C11.8.07
    7BXD1M4051964030B12.21.07
    8BXD5F1736925307A11.27.07
    9BXD5M4051964028C12.13.07
    10BXD6F4051964028F12.13.07
    11BXD6M1736925307D11.27.07
    12BXD8F4060001025A1.3.08
    13BXD8M1957998111E11.27.07
    14BXD9F4060001025D1.3.08
    15BXD9M1736925359B11.30.07
    16BXD11F4051964030D12.21.07
    17BXD11M1848071017B11.16.07
    18BXD12F4051964030E12.21.07
    19BXD12M1848071017C11.16.07
    20BXD13F4051964030F12.21.07
    21BXD13M1848071017D11.16.07
    22BXD14F4051964065A12.21.07
    23BXD14M1848071017E11.16.07
    24BXD15F4051964065B12.21.07
    25BXD15M1848071017F11.16.07
    26BXD16F1848071024A11.21.07
    27BXD16M4051964065C12.21.07
    28BXD18F4051964065D12.21.07
    29BXD18M1848071024B11.21.07
    30BXD19F4051964065E12.21.07
    31BXD19M1848071024C11.21.07
    32BXD21F1848071024D11.21.07
    33BXD21M4051964065F12.21.07
    34BXD23F1848071024E11.21.07
    35BXD23M4051964022A12.13.07
    36BXD27F1848071024F11.21.07
    37BXD27M4051964022B12.13.07
    38BXD28F1848071025A11.21.07
    39BXD28M4051964022C12.13.07
    40BXD31F4051964022D12.13.07
    41BXD31M1848071025B11.21.07
    42BXD32F4051964022E12.13.07
    43BXD32M1848071025C11.21.07
    44BXD33F4051964022F12.13.07
    45BXD33M1848071025D11.21.07
    46BXD34F4051964023A12.13.07
    47BXD34M1848071025E11.21.07
    48BXD36F1848071025F11.21.07
    49BXD36M4051964023B12.13.07
    50BXD38F4051964023C12.13.07
    51BXD38M1957998101A11.27.07
    52BXD39F4051964023D12.13.07
    53BXD39M1957998101B11.27.07
    54BXD40F4051964023E12.13.07
    55BXD40M1957998101C11.27.07
    56BXD42F4060001026B1.3.08
    57BXD43F1957998101D11.27.07
    58BXD43F4051964023F12.13.07
    59BXD44F1957998101E11.27.07
    60BXD44M4051964028A12.13.07
    61BXD45F4051964028B12.13.07
    62BXD45M1957998101F11.27.07
    63BXD51F4051964028D12.13.07
    64BXD51M1736925307B11.27.07
    65BXD55F1736925307C11.27.07
    66BXD55M4051964028E12.13.07
    67BXD60F4060001014A1.3.08
    68BXD60M1736925307E11.27.07
    69BXD61F4060001014B1.3.08
    70BXD61M1736925307F11.27.07
    71BXD62F4060001014C1.3.08
    72BXD62M1957998111A11.27.07
    73BXD65F1957998111B11.27.07
    74BXD65M4060001014D1.3.08
    75BXD66M4060001026C1.3.08
    76BXD68F4060001026D1.3.08
    77BXD69M1957998111C11.27.07
    78BXD69M4060001014E1.3.08
    79BXD70M4060001026E1.3.08
    80BXD73F1957998111D11.27.07
    81BXD73M4060001014F1.3.08
    82BXD75M4060001026F1.3.08
    83BXD77F4060001027A1.3.08
    84BXD80M4060001027B1.3.08
    85BXD84F1957998111F11.27.07
    86BXD84M4060001025B1.3.08
    87BXD86M4060001027C1.3.08
    88BXD87F4060001027F1.3.08
    89BXD87M4060001025C1.3.08
    90BXD89M4060001027D1.3.08
    91BXD90F1736925359C11.30.07
    92BXD90M4060001025E1.3.08
    93BXD96F4060001025F1.3.08
    94BXD96M1736925359D11.30.07
    95BXD97M4060001027E1.3.08
    96BXD100F1848071017A11.16.07
    97BXD100M4051964030C12.21.07
    98129S1/SvImJF1736925359E11.30.07
    99129S1/SvImJM1848071018A11.8.07
    100A/JF1848071018B11.8.07
    101A/JM1736925359F11.30.07
    102AKR/JF1848071018C11.8.07
    103AKR/JM1957998076A11.30.07
    104BALB/cByJF1957998076C11.30.07
    105BALB/cByJM1953348019A11.8.07
    106C3H/HeJF1953348019D11.8.07
    107C3H/HeJM1957998076F11.30.07
    108CAST/EiJF1833451021B11.8.07
    109CAST/EiJM1957998083B11.30.07
    110KK/HlJF1957998083E11.30.07
    111KK/HlJM1848071023F11.21.07
    112BXSB/MpJF1957998076E11.30.07
    113BXSB/MpJM1953348019C11.8.07
    114FVB/NJF1833451021D11.8.07
    115FVB/NJM1957998083D11.30.07
    116MOLF/EiJF1957998083F11.30.07
    117MOLF/EiJM1848071001B11.16.07
    118NOD/LtJF1848071001C11.16.07
    119NOD/LtJM4060001004A12.21.07
    120NZB/BlNJF4060001004B12.21.07
    121NZB/BlNJM1848071001D11.16.07
    122NZO/HlLtJF4060001004C12.21.07
    123NZW/LacJF4060001004D12.21.07
    124PWD/PhJF4060001004E12.21.07
    125PWK/PhJM4060001004F12.21.07
    126WSB/EiJF4051964030A12.21.07
    127BTBRT<+>tf/JF1957998076D11.30.07
    128BTBRT<+>tf/JM1953348019B11.8.07
    + + + +

        Downloading all data:

    +
    +

    All data is available here. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact RW Williams if you have any questions on the use of these open data.

    +
    + + + +

        About the array platform:

    +
    +

    Illumina Sentrix Mouse-6.1 BeadArray Platform (ILM6v1.1): The Mouse6.1 array consists of 46,643 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology. + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf). + +

    ANNOTATION: In summer of 2008, Xusheng Wang and Robert W. Williams reannotated the Illumina Mouse-6.1 array content. This new annotation is now incorporated into GeneNetwork. For 46643 probes on the Mouse 6.1 array platform (including control probes) we have identified XXXXX NCBI Entrez Gene IDs; XXXXX matched human Gene IDs; XXXXX matched rat Gene IDs; XXXXX NCBI HomoloGene IDs; and XXXXX OMIM IDs. + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +
    + +

        About data processing:

    + +
    +

    This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation. + +

    Sex of the samples was validated using sex-specific probe set: Xist probe ILM104280446. + + + + +

    + + + + +

        Data source acknowledgment:

    +

    Data were generated with funds to RW Williams, Glenn D. Rosen, Weikuan Gu, and Lu Lu from the High Q Foundation. Informatics support also provided by NIH NIAAA INIA grants to RWW and LL. + +

  • Lu Lu, M.D. +
    Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI) + + + + +

  • + +

        About this text file:

    +

    +Data uploaded by Arthur Centeno, Feb 22, 2008. This text file originally generated by RWW on Feb 27, 2008. Updated by A.C on March 11, 2010. Updated Feb 2011 by MKM. + + +

    + + +

    + + + +

    + +
    +
    + + + + +
    + + +
    + + + + + + + + + + + + +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HXBBXHGeno.html b/web/dbdoc/HXBBXHGeno.html new file mode 100755 index 00000000..aa2cb42f --- /dev/null +++ b/web/dbdoc/HXBBXHGeno.html @@ -0,0 +1,85 @@ + +RAE230A Microarray Kidney RMA April05 / +WebQTL + + + + + + + + + + + + + + + + + + +
    + + + +
    +

    HXB/BXH Genotype modify this page

    + +

        Summary:

    + +
    + +The HXB/BXH Genotype Database was assembled by Robert W. Williams and Michal Pravenec using a compendium of approximately 1100 markers that have been typed over the past decade (please see Pravenec et al. 1999 and Jirout et al.2003 for additional details of marker selection and genotyping). The final accepted genotype database contains 556 markers covering all 20 autosomes and the X chromosome. This file was updated November 2007 by RWW to correct some serious errors of maker order and to update the physical positions to the November 2004 assembly of the rat genome (still the most recent available to us). + +

    We hope to obtain much improved SNP-based rat chromosome maps in the next year (2008) from Dr. Hubner, Pravenec, and colleagues. + +

    Download the entire HXB/BXH genotypes data set. + +

    Pravenec M, Kren V, Krenova D, Bila V, Zidek V, Simakova M, Musilova A, van Lith HA, van Zutphen LF (1999) HXB/Ipcv and BXH/Cub recombinant inbred strains of the rat: strain distribution patterns of 632 alleles. Folia Biol (Praha) 45:203-215. + +

    Jirout M, Krenova D, Kren V, Breen L, Pravenec M, Schork NJ, Printz MP (2003) A new framework marker-based linkage map and SDPs for the rat HXB/BXH strain set. Mammalian Genome 14:537-546. + +

    File updated by RWW, Nov 28, 2007. +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/HXBBXHPublish.html b/web/dbdoc/HXBBXHPublish.html new file mode 100755 index 00000000..7715d39f --- /dev/null +++ b/web/dbdoc/HXBBXHPublish.html @@ -0,0 +1,102 @@ + +HTML Template + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    HXB/BXH Rat Published Phenotypes +modify this page

    + +

    +The HXB/BXH Phenotype data set was assembled by Michal Pravenec and Robert Williams in 2004. We thank Pierre Mormede for adding dat for a number of very useful traits.

    +
    + +

    +The HXB/BXH recombinant inbred strains of rats were derived from a cross between the spontaneously hypertensive rat (SHR/OlaIpcv = H) and Brown Norway (BN.Lx/Cub or BN = B). The HXB strains were generated by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were generated by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. As of 2003, most of these strains have been inbred for 60 or more generations (F60).

    +
    + + + + + + +
    Acknowledgments: +

    The HXB strains were generated by M Pravenec, V Kren and colleagues. For additional details please contact Dr. Michal Pravenec, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Phone: +(420)241062297; E-mail: pravenec@biomed.cas.cz +

    + + + +
    +Jirout M, Krenova D, Kren V, Breen L, Pravenec M, Schork NJ, Printz MP (2003) A new framework marker-based linkage map and SDPs for the rat HXB/BXH strain set. expression differences in mice diverently selected for methamphetamine sensitivity. Mammalian Genome 14:537-546. +
    + +
    +Pravenec M, Kren V (2004) Genetic analysis of complex cardiovascular traits in the spontaneously hypertensive rat. Experimental Physiology 90:273-276. +
    + +
    + + + +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/HXBPublish.html b/web/dbdoc/HXBPublish.html new file mode 100755 index 00000000..3bad4ea2 --- /dev/null +++ b/web/dbdoc/HXBPublish.html @@ -0,0 +1,95 @@ + +Publish Phenotype / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    + +Rat HXB/BXH Published Phenotypes Database + + modify this page

    + +

        Summary:

    + +

    +This HXB/BXH Phenotypes Database includes phenotype scores and values for HXB and BXH strains assembled by Michal Pravenec and Vladimir Kren, primarily from published sources. The HXB/BXH strains have been used for more than 15 years in cardiovascular and metabolic research and in the study of skeletal structure. These recombinant inbred strains are derived from a cross between the spontaneously hypertensive rat (SHR/Ola or HSR = H) and Brown Norway (BN-Lx/Cub or BN = B). For background on the HXB strain set please Pravenec and colleagues (1989, 2004) and Printz and colleagues (2003).

    + +

    The database currently includes approximately 85 traits. You can generate a complete list of these traits by searching with a single asterisk (*) as your search term.

    + + +
    + + +

    +The HXB/BXH Genotype Database was assembled by Robert W. Williams and Michal Pravenec using a compendium of approximately 1100 markers that have been typed over the past decade. This WebQTL BXH/HXB map assembly has been rigorously error-checked and has a cumulative genetic length of roughly 1350 cM (adjusted for the 4X expansion of RI strains) for all autosomes. No double-recombinant genotypes were tolerated in this file and all unspecified genotypes were imputed from neighboring markers. These HXB/BXH chromosomal maps therefore differ in many details from several other consensus maps built using the same set of markers.

    + +
    + + +

        Acknowledgments:

    +

    The initial construction of this database was by Michal Pravenec with assistance of Robert W. Williams. For additional details please contact Dr. Michal Pravenec, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Phone: +(420)241062297; E-mail: pravenec@biomed.cas.cz +

    + +

        Information about this text file:

    +

    This text file originally generated by RWW, Dec 3, 2004. Updated by RWW, Dec 3, 2004; MP and RWW, Dec 17, 2004. +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/HXB_Adrenal_1208.html b/web/dbdoc/HXB_Adrenal_1208.html new file mode 100755 index 00000000..687b52fd --- /dev/null +++ b/web/dbdoc/HXB_Adrenal_1208.html @@ -0,0 +1,268 @@ + +MDC/CAS/UCL Adrenal 230A (Dec08) RMA ** + + + + + + + + + + + + + + + + + + +
    + + + + +

    MDC/CAS/UCL Adrenal 230A (Dec08) RMA ** +modify this page

    Accession number: GN220

    + +
    +

    Entered by Arthur Centeno, Dec 18, 2008. Data from Herbert Schulz. CEL files processed by AC. Data normalized by AC and RWW (2z+8). + +

    Access to this data set is currently limited to the three teams of researchers who generated the data: Norbert Hübner (MDC, Berlin), Timothy Aitman (UC London), and Michal Pravenec (CAS, Prague). For access to data please contact N. Hübner by email. + +

    The text below was copied from the INFO file for the older (2005) kidney gene expression data set by RWW (Dec 20, 2008). It contains errors and will need to be corrected with the guidance of the data generators and owners. +

    + +

    Summary:

    + +

    +This December 2008 data set provides estimates of mRNA expression in normal adrenal glands of 31 strains of rats including the hypertensive SHR strain (aka HSR), the normotensive BN strain, and 29 HXB/BXH recombinant inbred strains. Most strains were sampled in quadruplicate (6-week-old males). Animals and tissues were generated by Michal Pravenec and colleagues at the Czech Academy of Sciences (CAS). RNA samples were processed at the Max-Delbrück-Center (MDC), Berlin Buch by Norbert Hübner and colleagues. Transcriptome mapping was carried out by Timothy Aitman and colleagues at the Imperial College, London (ICL). Samples were hybridized individually to a total of approximately 124 Affymetrix RAE230A array processed using the RMA protocol. The expression values of each array have been logged and adjusted to a mean of 8 and a standard deviation of 2 (mean and variance stabilized). This data set complements the kidney and fat data set exploited by Hübner and colleagues 2005. + + + +

    + +

    These data may also be viewed using the eQTL Explorer Java application +by John Mangion, Tim Aitman, and colleagues (Mueller et al. 2006). + + +

    + +

    About the cases used to generate this set of data:

    +
    Data were generated using the HXB/BXH recombinant inbred strains of rats generated over the past 20 years in Prague. The parental strains from which all HXB lines are derived are SHR (SHR/OlaIpcv, abbreviated SHR or HSR = H) and Brown Norway (BN-Lx/Cub= B). These strains have been used extensively to study cardiovascular system physiology and genetics.

    + +

    The HXB strains were bred by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were bred by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. These strains are at approximately the 6oth generation of continuous inbreeding (F60).

    + +

    Animals used in the transcriptome analyses of multiple tissues (Hübner and colleagues, 2005) were weaned at 4 weeks. Those born at the Charles University were transferred to the Institute of Physiology. Animals were reared on a commerical rat chow (ST-1 from VELAZ, Czech Republic). Four males were house per cage. Cages were made of polystyrene and have a floor size of 22 x 38 cm and height of 23 cm. The bedding was changed twice a week. Light cycle was 12:12 on-off. Vivarium rooms were maintained at 23 deg. C. Rats were sexually naive. All males used in the initial transcriptome studies (Hübner et al., 2005) were born between May and August 2002. They were sacrificed unfastged by rapid cervical dislocation between 9 and 10 AM, following an approved animal protocol (Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague; Animal Protectiion Law of the Czech Republic (311/1997). +

    + +

    About the tissue used to generate these data:

    +
    All tissues were collected at the age of 6 weeks. Adrenal glands and other organs were rapidly dissected and cleaned of fat, inserted into a vial, and immersed in liquid nitrogen for storage until RNA extraction. + +THIS IS AN OLD TABLE FOR THE KIDNEY DATA IN THIS INFO FILE ONLY AS A PLACEHOLDER. The table below lists the arrays by strain and sample identifier. Each array was hybridized with mRNA from a single young male rat. +
    + +
    + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSampleID
    HSRHSR1
    HSRHSR2
    HSRHSR3
    HSRHSR4
    BNBN1
    BNBN2
    BNBN3
    BNBN4
    BNBN5
    HXB1RI 01-1
    HXB1RI 01-2
    HXB1RI 01-3
    HXB1RI 01-4
    HXB2RI 02-1
    HXB2RI 02-2
    HXB2RI 02-3
    HXB2RI 02-4
    HXB3RI 03-1
    HXB3RI 03-2
    HXB3RI 03-3
    HXB3RI 03-4
    HXB4RI 04-1
    HXB4RI 04-2
    HXB4RI 04-3
    HXB4RI 04-4
    HXB5RI 05-1
    HXB5RI 05-2
    HXB5RI 05-3
    HXB5*RI 05-4
    HXB7RI 07-1
    HXB7RI 07-2
    HXB7RI 07-3
    HXB7RI 07-4
    HXB10RI 10-1
    HXB10RI 10-2
    HXB10RI 10-3
    HXB10RI 10-4
    HXB15RI 15-1
    HXB15RI 15-2
    HXB15RI 15-3
    HXB15RI 15-4
    HXB17RI 17-1
    HXB17RI 17-2
    HXB17RI 17-3
    HXB17RI 17-4
    HXB18RI 18-1
    HXB18RI 18-2
    HXB18RI 18-3
    HXB18RI 18-4
    HXB20RI 20-1
    HXB20RI 20-2
    HXB20RI 20-3
    HXB20RI 20-4
    HXB21RI 21-1
    HXB21RI 21-2
    HXB21RI 21-3
    HXB21RI 21-4
    HXB22RI 22-1
    HXB22RI 22-2
    HXB22RI 22-3
    HXB22RI 22-4
    HXB23RI 23-1
    HXB23RI 23-2
    HXB23RI 23-3
    HXB23RI 23-4
    HXB24RI 24-1
    HXB24RI 24-2
    HXB24RI 24-3
    HXB24RI 24-4
    HXB25RI 25-1
    HXB25RI 25-2
    HXB25RI 25-3
    HXB25*RI 25-4
    HXB26RI 26-1
    HXB26RI 26-2
    HXB26RI 26-3
    HXB26RI 26-4
    HXB27RI 27-1
    HXB27RI 27-2
    HXB27RI 27-3
    HXB27RI 27-4
    HXB29RI 29-1
    HXB29RI 29-2
    HXB29RI 29-3
    HXB29RI 29-4
    HXB31RI 31-1
    HXB31RI 31-2
    HXB31RI 31-3
    HXB31RI 31-4
    BXH2RI 02c-1
    BXH2RI 02c-2
    BXH2RI 02c-3
    BXH2RI 02c-4
    BXH3RI 03c-1
    BXH3RI 03c-2
    BXH3RI 03c-3
    BXH3RI 03c-4
    BXH5RI 05c-1
    BXH5RI 05c-2
    BXH5RI 05c-3
    BXH5RI 05c-4
    BXH6RI 06c-1
    BXH6RI 06c-2
    BXH6RI 06c-3
    BXH6RI 06c-4
    BXH8RI 08c-1
    BXH8RI 08c-2
    BXH8RI 08c-3
    BXH8RI 08c-4
    BXH9RI 09c-1
    BXH9RI 09c-2
    BXH9RI 09c-3
    BXH9RI 09c-4
    BXH10RI 10c-1
    BXH10RI 10c-2
    BXH10RI 10c-3
    BXH11RI 11c-1
    BXH11RI 11c-2
    BXH11RI 11c-3
    BXH11RI 11c-4
    BXH12RI 12c-1
    BXH12RI 12c-2
    BXH12RI 12c-3
    BXH12RI 12c-4
    BXH13RI 13c-1
    BXH13RI 13c-2
    BXH13RI 13c-3
    BXH13RI 13c-4
    +
    + + + + +

    About the array platform:

    + +

    +Affymetrix 230A GeneChip: Expression data were generated using the Affymetrix 230A array. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Rat Genome Sequencing Consortium assembly.

    +
    + +

    Control Procedures:

    + +
    +

    RNA processing:RNA was extracted using Trizol reagent (Invitrogen) and purified using an RNeasy Mini kit from Qiagen. Double-stranded cDNA was generated without pooling. The Ambion MEGAscript T7 kit from Ambion was used to generate biotinylated cRNA for kidney. See Hübner et al. 2005 for additional detail. One-hundred and twenty eight samples passed RNA quality control steps.

    + +
    + + + +

    About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of pixel measured in each cell. + +

    Probe set data: The original CEL values were processed using RMA and log2 transformed using our standard 2z +8 transform. This recenters each array to a mean of 8 units and a SD of 2 units. Probe set values are typically the averages of four biological replicates within strain.

    + + +
    + + +

    Data source acknowledgment:

    +
    +This work was supported with funds to TJA by the MRC Clinical Sciences Centre, the British Heart Foundation, and the Wellcome Trust Cardiovascular Functional Genomics Initiative; to NH from the German Ministry for Science and Education (National Genome Research Network); to MP and Vladimir Kren from the Grant Agency of the Czech Republic; to MP and TJA from the Wellcome Trust Collaborative Research Initiative grant, to Theodore W Kurtz from the NIH, to TWK and MP from a Fogarty International Research Collaboration Award. Microarrays were a generous donation of Affymetrix Inc. Michal Pravenec thanks the Howard Hughes Medical Institute for its support to him as an international research scholar. + + +
    + +

    Information about this text file:

    +

    This text file originally copied from the old kidney INFO file that was generated by Robert Williams, Norbert Hübner, Michal Pravnec, Timothy Aitman. This version entered into the adrenal INFO file, December 19, 2008, by RWW, Kathrin Saar Dec 23. +

    + +
    +
    + + + + + + +
    +
      + +
    +
    + + + diff --git a/web/dbdoc/HXB_Heart_1208.html b/web/dbdoc/HXB_Heart_1208.html new file mode 100755 index 00000000..8c1bd571 --- /dev/null +++ b/web/dbdoc/HXB_Heart_1208.html @@ -0,0 +1,301 @@ + +MDC/CAS/UCL Heart 230_V2 (Dec08) RMA ** + + + + + + + + + + + + + + + + + + +
    + + + + + +

    MDC/CAS/UCL Heart 230_V2 (Dec08) RMA ** +modify this page

    Accession number: GN221

    +
    +

    Heart Left Ventricle + +

    http://www.expressionanalysis.com/pdf/Affymetrix/GXRat230v2.pdf + +

    GEO platform id http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GPL1355 + +

    Data entered by Evan Williams and Rob Williams, Jan 2, 2009. + +

    Mapping of probes http://compbio.dcs.gla.ac.uk/sf/index.html#230map + +

    Entered by Arthur Centeno, Dec 18, 2008. Data from Herbert Schulz. CEL files processed by AC. Data normalized by AC and RWW (2z+8). + +

    Access to this data set is currently limited to the three teams of researchers who generated the data: Norbert Hübner (MDC, Berlin), Timothy Aitman (UC London), and Michal Pravenec (CAS, Prague). For access to data please contact N. Hübner by email. + +

    The text below was copied from the INFO file for the older (2005) kidney gene expression data set by RWW (Dec 20, 2008). It contains errors and will need to be corrected with the guidance of the data generators and owners. +

    + +

    Summary:

    + +

    +This December 2008 data set provides estimates of mRNA expression in normal hearts of 31 strains of rats including the hypertensive SHR strain (aka HSR), the normotensive BN strain, and 29 HXB/BXH recombinant inbred strains. Most strains were sampled in quadruplicate (6-week-old males). Animals and tissues were generated by Michal Pravenec and colleagues at the Czech Academy of Sciences (CAS). RNA samples were processed at the Max-Delbrück-Center (MDC), Berlin Buch by Norbert Hübner and colleagues. Transcriptome mapping was carried out by Timothy Aitman and colleagues at the Imperial College, London (ICL). Samples were hybridized individually to a total of approximately XXX Affymetrix RAE230A array processed using the RMA protocol. The expression values of each array have been logged and adjusted to a mean of 8 and a standard deviation of 2 (mean and variance stabilized). This data set complements the kidney and fat data set exploited by Hübner and colleagues 2005. + + +

    + +

    These data may also be viewed using the eQTL Explorer Java application +by John Mangion, Tim Aitman, and colleagues (Mueller et al. 2006). + + +

    + +

    About the cases used to generate this set of data:

    +
    Data were generated using the HXB/BXH recombinant inbred strains of rats generated over the past 20 years in Prague. The parental strains from which all HXB lines are derived are SHR (SHR/OlaIpcv, abbreviated SHR or HSR = H) and Brown Norway (BN-Lx/Cub= B). These strains have been used extensively to study cardiovascular system physiology and genetics.

    + +

    The HXB strains were bred by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were bred by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. These strains are at approximately the 6oth generation of continuous inbreeding (F60).

    + +

    Animals used in the transcriptome analyses of multiple tissues (Hübner and colleagues, 2005) were weaned at 4 weeks. Those born at the Charles University were transferred to the Institute of Physiology. Animals were reared on a commerical rat chow (ST-1 from VELAZ, Czech Republic). Four males were house per cage. Cages were made of polystyrene and have a floor size of 22 x 38 cm and height of 23 cm. The bedding was changed twice a week. Light cycle was 12:12 on-off. Vivarium rooms were maintained at 23 deg. C. Rats were sexually naive. All males used in the initial transcriptome studies (Hübner et al., 2005) were born between May and August 2002. They were sacrificed unfastged by rapid cervical dislocation between 9 and 10 AM, following an approved animal protocol (Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague; Animal Protectiion Law of the Czech Republic (311/1997). +

    + +

    About the tissue used to generate these data:

    +
    All tissues were collected at the age of 6 weeks. Hearts and other organs were rapidly dissected and cleaned of fat, inserted into a vial, and immersed in liquid nitrogen for storage until RNA extraction. + +THIS IS AN OLD TABLE FOR THE KIDNEY DATA IN THIS INFO FILE ONLY AS A PLACEHOLDER. The table below lists the arrays by strain and sample identifier. Each array was hybridized with mRNA from a single young male rat. +
    + +
    + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSampleID
    HSRHSR1
    HSRHSR2
    HSRHSR3
    HSRHSR4
    BNBN1
    BNBN2
    BNBN3
    BNBN4
    BNBN5
    HXB1RI 01-1
    HXB1RI 01-2
    HXB1RI 01-3
    HXB1RI 01-4
    HXB2RI 02-1
    HXB2RI 02-2
    HXB2RI 02-3
    HXB2RI 02-4
    HXB3RI 03-1
    HXB3RI 03-2
    HXB3RI 03-3
    HXB3RI 03-4
    HXB4RI 04-1
    HXB4RI 04-2
    HXB4RI 04-3
    HXB4RI 04-4
    HXB5RI 05-1
    HXB5RI 05-2
    HXB5RI 05-3
    HXB5*RI 05-4
    HXB7RI 07-1
    HXB7RI 07-2
    HXB7RI 07-3
    HXB7RI 07-4
    HXB10RI 10-1
    HXB10RI 10-2
    HXB10RI 10-3
    HXB10RI 10-4
    HXB15RI 15-1
    HXB15RI 15-2
    HXB15RI 15-3
    HXB15RI 15-4
    HXB17RI 17-1
    HXB17RI 17-2
    HXB17RI 17-3
    HXB17RI 17-4
    HXB18RI 18-1
    HXB18RI 18-2
    HXB18RI 18-3
    HXB18RI 18-4
    HXB20RI 20-1
    HXB20RI 20-2
    HXB20RI 20-3
    HXB20RI 20-4
    HXB21RI 21-1
    HXB21RI 21-2
    HXB21RI 21-3
    HXB21RI 21-4
    HXB22RI 22-1
    HXB22RI 22-2
    HXB22RI 22-3
    HXB22RI 22-4
    HXB23RI 23-1
    HXB23RI 23-2
    HXB23RI 23-3
    HXB23RI 23-4
    HXB24RI 24-1
    HXB24RI 24-2
    HXB24RI 24-3
    HXB24RI 24-4
    HXB25RI 25-1
    HXB25RI 25-2
    HXB25RI 25-3
    HXB25*RI 25-4
    HXB26RI 26-1
    HXB26RI 26-2
    HXB26RI 26-3
    HXB26RI 26-4
    HXB27RI 27-1
    HXB27RI 27-2
    HXB27RI 27-3
    HXB27RI 27-4
    HXB29RI 29-1
    HXB29RI 29-2
    HXB29RI 29-3
    HXB29RI 29-4
    HXB31RI 31-1
    HXB31RI 31-2
    HXB31RI 31-3
    HXB31RI 31-4
    BXH2RI 02c-1
    BXH2RI 02c-2
    BXH2RI 02c-3
    BXH2RI 02c-4
    BXH3RI 03c-1
    BXH3RI 03c-2
    BXH3RI 03c-3
    BXH3RI 03c-4
    BXH5RI 05c-1
    BXH5RI 05c-2
    BXH5RI 05c-3
    BXH5RI 05c-4
    BXH6RI 06c-1
    BXH6RI 06c-2
    BXH6RI 06c-3
    BXH6RI 06c-4
    BXH8RI 08c-1
    BXH8RI 08c-2
    BXH8RI 08c-3
    BXH8RI 08c-4
    BXH9RI 09c-1
    BXH9RI 09c-2
    BXH9RI 09c-3
    BXH9RI 09c-4
    BXH10RI 10c-1
    BXH10RI 10c-2
    BXH10RI 10c-3
    BXH11RI 11c-1
    BXH11RI 11c-2
    BXH11RI 11c-3
    BXH11RI 11c-4
    BXH12RI 12c-1
    BXH12RI 12c-2
    BXH12RI 12c-3
    BXH12RI 12c-4
    BXH13RI 13c-1
    BXH13RI 13c-2
    BXH13RI 13c-3
    BXH13RI 13c-4
    +
    + + + + +

    About the array platform:

    + +

    +Affymetrix 230Av2 GeneChip: Expression data were generated using the Affymetrix 230Av2 array (GEO_GPL341). The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Rat Genome Sequencing Consortium assembly.

    +
    + +

    Control Procedures:

    + +
    +

    RNA processing:RNA was extracted using Trizol reagent (Invitrogen) and purified using an RNeasy Mini kit from Qiagen. Double-stranded cDNA was generated without pooling. The Ambion MEGAscript T7 kit from Ambion was used to generate biotinylated cRNA for kidney. See Hübner et al. 2005 for additional detail. One-hundred and twenty eight samples passed RNA quality control steps.

    + +
    + + + +

    About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of pixel measured in each cell. + +

    Probe set data: The original CEL values were processed using RMA and log2 transformed using our standard 2z +8 transform. This recenters each array to a mean of 8 units and a SD of 2 units. Probe set values are typically the averages of four biological replicates within strain.

    + + +
    + + +

    Data source acknowledgment:

    +
    +This work was supported with funds to TJA by the MRC Clinical Sciences Centre, the British Heart Foundation, and the Wellcome Trust Cardiovascular Functional Genomics Initiative; to NH from the German Ministry for Science and Education (National Genome Research Network); to MP and Vladimir Kren from the Grant Agency of the Czech Republic; to MP and TJA from the Wellcome Trust Collaborative Research Initiative grant, to Theodore W Kurtz from the NIH, to TWK and MP from a Fogarty International Research Collaboration Award. Microarrays were a generous donation of Affymetrix Inc. Michal Pravenec thanks the Howard Hughes Medical Institute for its support to him as an international research scholar. + + +
    + +

    Information about this text file:

    +

    This text file originally copied from the old kidney INFO file that was generated by Robert Williams, Norbert Hübner, Michal Pravnec, Timothy Aitman. This version entered into the adrenal INFO file, December 19, 2008, by RWW, Kathrin Saar Dec 23. +

    + +
    +
    + + + + + + +
    +
      + +
    +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/HXB_Liver_1208.html b/web/dbdoc/HXB_Liver_1208.html new file mode 100755 index 00000000..4c6ad2d2 --- /dev/null +++ b/web/dbdoc/HXB_Liver_1208.html @@ -0,0 +1,216 @@ + + +MDC/CAS/UCL Liver 230v2 (Dec08) RMA ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    MDC/CAS/UCL Liver 230v2 (Dec08) RMA ** modify this page

    Accession number: GN222

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLEExpression data for normal liver of the HXB/BXH rat RI strains generated using the Affymetrix Rat Genome 230 2.0 array Link 1. +

  • Link 2. + +--> +
  • + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HZI_0408_M.html b/web/dbdoc/HZI_0408_M.html new file mode 100755 index 00000000..08bacf6b --- /dev/null +++ b/web/dbdoc/HZI_0408_M.html @@ -0,0 +1,207 @@ + + +HZI Lung M430v2 (Apr08) MAS5 ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    HZI Lung M430v2 (Apr08) MAS5 modify this page

    Accession number: GN161

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/HZI_0408_R.html b/web/dbdoc/HZI_0408_R.html new file mode 100755 index 00000000..d6c23a4d --- /dev/null +++ b/web/dbdoc/HZI_0408_R.html @@ -0,0 +1,331 @@ + +HZI Lung M430v2 (Apr08) RMA + + + + + + + + + + + + + + + + + + +
    + + + + + +

    HZI Lung M430v2 (Apr08) RMA +modify this page

    Accession number: GN160

    + +

    Summary:

    + +
    +

    +

    FINAL database. Error-checked. +

    Please cite: Alberts R, Lu L, Williams RW, Schughart K (2011) Genome-wide analysis of the mouse lung transcriptome reveals novel molecular gene interaction networks and cell-specific expression signatures. Respir Res 12:61 + +

    This is the final lung gene expression data set for 57 strains of mice generated using the M430 2.0 Affymetrix array. The data set includes estimates of expression for 8 common inbred strains, 47 BXD strains, and reciprocal F1 hybrids (B6D2F1 and D2B6F1). Data were generated by Klaus Schughart, Lu Lu, and Rob Williams. Arrays were processed by Yan Jiao and Weikuan Gu at the Memphis VA. For questions about these data please contact Prof. Klaus Schughart (Helmholtz Centre for Infection Research, Braunschweig, Germany) at kls@helmholtz-hzi.de. + +

    This data set was processed using the RMA protocol. A total of 2223 probes sets are associated with LRS values greater than 46 (LOD >10). + + +

    About the cases used to generate this set of data:

    + +
    + +

    This is the final HZI Lung data set. Almost all animals are young adults between 50 and 80 days of age. We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, reciprocal F1s between C57BL/6J and DBA/2J, and several mutant and knockout lines. We have combined all common strains, F1 hybrids, and mutants into a group called the Mouse Diversity Panel (MDP). Four lines, namely, C57BL/6J (B6), DBA/2J (D2), and the pair of B6D2F1 and D2B6F1 hybrids are common to both the MDP and the BXD set. This is a breakdown of cases that are part of HEIMED: + +

      +
    1. 47 BXD strains. The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. Only one of these strains, BXD24 (know also known as BXD24b), has retinal degeneration (a spontaneous mutation). The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. + +
    2. 10 MDP lines, including some of the most widely used common Mus musculus domesticus inbred strains (e.g., C57BL/6J and 129X1/SvJ), and one inbred but wild-derived representatives this subspecies (WSB/EiJ). + + +
        +
      1. 129X1/SvJ + +
      2. BALB/cByJ: Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project old group A list. A tyrosinase (Tyr c allele) albino mutant and also a tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. Small brain, not aggressive (JAX Stock Number: 001026) + +
      3. C57BL/6J: Sequenced by NIH/NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list. Single most widely used inbred strain of mouse. (JAX Stock Number: 000664) + +
      4. DBA/2J: The dilute, brown, agouti (dba) strain is the oldest inbred strain of mouse. Inbreeding was started in 1909 by Little. A tyrosinase related protein 1 (Tyrp1 b) brown allele mutant. A myosin 5a (Myo5a d) dilute allele mutant. Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project old A group list. (JAX Stock Number: 000671) + +
      5. FVB/NJ: Friend's leukemia virus B (FVB) strain. Sequenced by Perlegen/NIEHS and Celera. Tyr c locus albino and a Pdeb6 rd1 mutant derived from Swiss mice at NIH. This has been the most common strain used to make transgenic mice due to large and easily injected oocytes; Phenome Project A list (JAX Stock Number: 001800). + + +
      6. LP/J: White-bellied agouit strain with a piebald mutation in the endothelin receptor type B Ednrb gene from at the Jackson Laboratory. Some reduction in melanocytes in choroid of eye due to neural creast migration abnormalities. (JAX Stock Number: 000676) + + + +
      7. SJL/J: Swiss Webster inbred strain from Jim Lambert's lab at the Jackson Laboratory. This strain has the retinal degeneration rd1 allele in Pde6b. It also carries both the Tyr c albino mutation and the pink-eye dilution mutation in the Oca2 or p locus. Highly aggressive males. (JAX Stock Number: 000686) + +
      8. WSB/EiJ: Watkin Star line B (or "wild son-of-a-bitch") is a wild-derived Mus musculus domesticus inbred strain from samples caught in Maryland, USA. A Collaborative Cross strain sequenced by NIEHS; Phenome Project C list (JAX Stock Number: 001145) + +
      9. B6D2F1 and D2B6F1 (also listed as BDF1 and DBF1 in some graphs and tables): F1 hybrids generated by crossing C57BL/6J with DBA/2J. These black reciprocal F1 can be used to detect dominance effects. Comparison of the two reciprocal F1s can be used to detect parental origin (imprinting) effects. The D2B6F1 animals are currently available from the Jackson Laboratory as a special order.) (JAX Stock Number for B6D2F1 hybrids obtained from the Jackson Laboratory, aka B6D2F1/J 100006) +
      + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Lungs were removed immediately and placed in RNAlater at room temperature. Usually lungs from 2 to 4 animals with a common sex, age, and strain were stored in a single tube. + +

    Each array was hybridized with a pool of cRNA from lungs from 2 to 4 animals. RNA was extracted at UTHSC by Zhiping Jia. If tissue was saved for RNA extraction at a later time, eyes were placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. If eyes were used for immediate RNA extraction then we proceeded immediately to the next steps.

    + +Dissecting and preparing lungs for RNA extraction +

      +
    1. Place lungs for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below). +
    2. Store RNA in 75% ethanol at –80 deg. C until use. +
    + +

    Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue) +
    2. allowed the homogenate to stand for 5 min at room temperature +
    3. added 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    4. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min +
    5. centrifuged at 12,000 G for 15 min +
    6. transfered the aqueous phase to a fresh tube +
    7. added 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    8. vortexed and allowed sample to stand at room temperature for 5-10 min +
    9. centrifuged at 12,000 G for 10-15 min +
    10. removed the supernatant and washed the RNA pellet with 75% ethanol +
    11. stored the pellet in 75% ethanol at -80 deg C until use +
    + +

    Sample Processing. All samples were processed in the VA Medical Center, Memphis, Rheumatology Disease Research Core Center led by Dr. Weikuan Gu. All arrays were processed by Dr. Yan Jiao. In brief, samples were purified using a standard sodium acetate in alcohol method (recommended by Affymetrix). The RNA quality was checked using a 1% agarose gel. The 18S and 28S bands had to be clear and the 28S band had to be more prominent. RNA concentation was measured using a spectrophotometer. The 260/280 ratios had to be greater than 1.7, and the majority were 1.8 or higher. We used a total of 8 micrograms of RNA as starting amount for cDNA synthesis using a standard Eberwine T7 polymerase method (Superscript II RT, Invitrogen Inc., Affy Part No 900431, GeneChip Expression 3' Amplification One-Cyle cDNA Synthesis Kit). The Affymetrix IVT labeling kit (Affy 900449) was used to generate labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above were acceptable) and 1% agarose gel inspection of the product (a size range from 200 to 7000 bp is considered suitable for use). We used 45 micrograms of labeled cRNA for fragmentation. Those samples that passed both QC steps (<10% usually fail) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. C until use (roughly one third) or were used immediately for hybridization. + + +

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools for as many lines of mice as possible. We studies both sexes only for the 10 MDP strains and BXD98 (11 strains total). All other strains we sampled only for a single sex pool. + + + + +

    Table 1: Lung case IDs, including sample tube ID, strain, age, sex, and source of mice +

    FORMAT THIS CORRECTLY + +

    +Index RNA_tube_ID Strain Age Sex F_generation Batch_ID Pool_size Source +1 R4495LU C57BL/6J 65 F 4 3 UTM RW +2 R4496LU C57BL/6J 65 M 4 2 UTM RW +3 R4499LU DBA/2J 65 F 4 3 ORNL +4 R4500LU DBA/2J 59 M 4 2 JAX +5 R4486LU B6D2F1 70 F 4 2 UTM RW +6 R4485LU B6D2F1 62 M 4 5 UTM RW +7 R4489LU D2B6F1 61 F 4 2 UTM RW +8 R4490LU D2B6F1 61 M 4 3 UTM RW +9 R4442LU BXD1 88 F 1 3 UTM RW +10 R4470LU BXD2 84 M 152 3 3 UTM RW +11 R4478LU BXD6 92 M 161 3 3 UTM RW +12 R4475LU BXD9 78 M 132 3 3 UTM RW +13 R4444LU BXD12 61 F 1 3 ORNL +14 R4436LU BXD14 85 F 126 1 2 UTM RW +15 R4443LU BXD16 79 F 1 5 UTM RW +16 R4446LU BXD19 49 F 1 3 ORNL +17 R4445LU BXD21 50 F 1 3 ORNL +18 R4483LU BXD22 66 M 4 2 UTM RW +19 R4484LU BXD25 54 M 135 4 3 UTM RW +20 R4447LU BXD27 85 F 1 3 UTM RW +21 R4448LU BXD31 81 F 124 1 3 UTM RW +22 R4449LU BXD32 68 F 2 5 ORNL +23 R4450LU BXD33 61 F 2 2 ORNL +24 R4437LU BXD34 58 F 1 5 UTM RW +25 R4438LU BXD39 63 F 60 1 3 UTM RW +26 R4439LU BXD40 54 F 1 3 ORNL +27 R4451LU BXD42 65 F 2 2 UTM RW +28 R4452LU BXD43 79 F 33 2 2 UTM RW +29 R4440LU BXD45 unk unk 32 1 2 UTM RW +30 R4453LU BXD45 60 F 30 2 4 UTM RW +31 R4462LU BXD48 61 F 20 2 3 UTM RW +32 R4441LU BXD50 64 F 1 4 ORNL +33 R4460LU BXD51 81 M 31 2 2 UTM RW +34 R4454LU BXD55 80 M 2 3 ORNL +35 R4455LU BXD56 91 M 2 3 ORNL +36 R4463LU BXD60 93 M 33 2 2 UTM RW +37 R4464LU BXD62 80 M 30 2 2 UTM RW +38 R4477LU BXD65 59 F 29 3 3 UTM RW +39 R4456LU BXD66 80 F 28 2 3 UTM RW +40 R4457LU BXD68 65 F 25 2 4 UTM RW +41 R4465LU BXD69 63 M 31 2 5 UTM RW +42 R4466LU BXD70 75 M 25 2 3 UTM RW +43 R4467LU BXD71 64 M 20 2 4 UTM RW +44 R4468LU BXD73 59 M 34 2 3 UTM RW +45 R4469LU BXD75 51 M 30 3 4 UTM RW +46 R4471LU BXD83 75 M 20 3 2 UTM RW +47 R4472LU BXD84 78 M 21 3 2 UTM RW +48 R4473LU BXD86 77 M 28 3 3 UTM RW +49 R4474LU BXD87 67 M 24 3 3 UTM RW +50 R4459LU BXD89 79 F 25 2 2 UTM RW +51 R4476LU BXD90 63 M 29 3 3 UTM RW +52 R4479LU BXD96 71 M 26 3 3 UTM RW +53 R4461LU BXD97 80 M 21 2 3 UTM RW +54 R4480LU BXD97 80 M 28 3 3 UTM RW +55 R4481LU BXD98 80 M 25 3 2 UTM RW +56 R4482LU BXD99 72 M 21 3 2 UTM RW +57 R4435LU BXD100 64 F 20 1 2 UTM RW +58 R4497LU 129X1/SvJ 65 F 4 4 JAX +59 R4498LU 129X1/SvJ 66 M 4 4 JAX +60 R4487LU BALB/cByJ 91 F 4 3 UTM RW +61 R4488LU BALB/cByJ 91 M 4 2 UTM RW +62 R4491LU FVB/NJ 62 F 4 5 UTM RW +63 R4492LU FVB/NJ 73 M 4 3 UTM RW +64 R4501LU LP/J 65 F 4 4 JAX +65 R4502LU LP/J 65 M 4 4 JAX +66 R4503LU SJL/J 63 F 4 4 JAX +67 R4504LU SJL/J 65 M 4 4 JAX +68 R4493LU WSB/EiJ 76 F 4 3 UTM RW +69 R4494LU WSB/EiJ 76 M 4 3 UTM RW + + + + + +

    + + +
    + + + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    220R2368E.1GDPWSB/EiJ67FUTHSC RW
    221R2547E.1GDPWSB/EiJ67MUTHSC RW
    + +
    + +

    + +

    About downloading this data set:

    +
    + + + +

    This data set will eventually be available as a bulk download in several formats. Please contact Arthur Centeno or Robert W. Williams for a link to the FTP site associated with this Lung RMA GeneNetwork data set. The data will be available as either strain means or the individual arrays.

    +
    + + +

    About the array platfrom:

    +
    +

    Affymetrix Mouse Genome 430 2.0 arrays: The 430 2.0 array consists of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many probes overlap and target the same transcript). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequences as the old M430A and 430B array pair. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the new 430 2.0.

    + + +
    + + + +

    About data values and data processing:

    + +
    +Range of Gene Expression in the Lung. Expression of transcripts in the lung and most other GN data sets is measured on a log2 scale. Each unit corresponding approximately to a 2-fold difference in hybridization signal intensity. To simplify comparisons among different data sets and cases, log2 RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units (variance stabilized). Values of all 45,101 probe sets in this data set range from a low of 5.04 (Clca2, probe set 1437578_at) to a high of 15.1 (hemaglobin alpha, adult chain 1, Hba-a1, probe set 1428361_x_at). This corresponds to about 10 units or a dynamic range of expression 2^10. + +

    We calibrated this log intensity scale using Affymetrix spike-in control probe sets. (This analysis was done using the very similar HEIMED EYE data.) These 18 control probe sets target exogenous bacterial mRNAs that are added to each sample (a graded dose spike cocktail) during preparation at concentrations of 1.5, 5, 25, and 100 pM. (To find these probe sets, search GN’s ALL search field using the string “AFFX pMâ€.) A value of 6 or less is equivalent to an mRNA concentration of under 0.4 pM, a value of 8 is equivalent to ~1.5 pM, 9.5 is equivalent to ~5 pM, 11.5 is equivalent to ~25 pM, 13.5 is equivalent to ~100 pM, and a value of 15.5 is equivalent to an mRNA concentration of 400 pM or greater. + +

    This range can be converted to the mRNA molecules per cell in the eye assuming that a value of 8 is equivalent to about 1 mRNA copy per cell (Kanno et al. 2006, see http://www.biomedcentral.com/1471-2164/7/64). + +

    Note that some probe sets with very low expression still provide reliable data. For example, probe set 1445621_at (Kbtbd4 ) has expression of only 5.1 units (a value that would be declared as "absent" using conventional Affymetrix procedures), but the values for this transcript are associated with a very strong cis QTL with an LRS of 55 (LOD > 10, high D2 allele). This strong linkage is definitely not due to chance since the probability of the expression data mapping precisely to the location of the parent gene itself is about 10e-12. This indicates a high signal to noise ratio and the detection of significant strain variation of the correct transcript.

    + +

    The standard errors of the mean for the lung data was computed only for 11 strains. The standard error of such small samples tends to systematically underestimate the population standard error. With n = 2 the underestimate is about 25%, whereas for n = 6 the underestimate is 5%. Gurland and Tripathi (1971) provide a correction and equation for this effect (see Sokal and Rohlf, Biometry, 2nd ed., 1981, p 53 for an equation of the correction factor for small samples of n < 20.) + + +Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. The CEL files were processed using the RMA protocol. Data were processed as a single batch. + + +

      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of arrays using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: Finally, when appropriate, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. + +
    + + + + + +

    Data source acknowledgment:

    +
    + +

    Data were generated with funds provided by a variety of public and private source to members of the Kidney Consortium. We thank the following sources for financial support of this effort: +
    Klaus Schughart: Grant Support: Helmholtz Centre for Infection Research, Helmholtz Association +
    Robert W. Williams: Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 + +

    + +

    Information about this text file:

    +
    +

    This text file originally generated by Klaus Schughart 3.2.2009. +

    + + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Hipp_Illumina_1.html b/web/dbdoc/Hipp_Illumina_1.html new file mode 100755 index 00000000..851e62b3 --- /dev/null +++ b/web/dbdoc/Hipp_Illumina_1.html @@ -0,0 +1,82 @@ + +LXS Hippocampus Illumina October 2006 + + + + + + + + + + + + + + + + + +
    + + + + + + + + +
    + +

    LXS Hippocampus Control, Illumina Mouse 6, October 2006 + +modify this page

    + + +

    Documentation for this data set is currently in progress by Dr. Lu Lu and colleagues. + + + + + +

    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/Hipp_Illumina_1006.html b/web/dbdoc/Hipp_Illumina_1006.html new file mode 100755 index 00000000..42ac9bf8 --- /dev/null +++ b/web/dbdoc/Hipp_Illumina_1006.html @@ -0,0 +1,216 @@ + +LXS Hippocampus Illumina (Oct06) Rank Database Metadata + + + + + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    Hippocampus Illumina (Oct06) Rank Database + modify this page

    + + + + +

        Summary:

    + +
    +INITIAL DATA SET (TEST PURPOSE ONLY): The October 2006 INIA LXS Hippocampus data set provides estimates of mRNA expression in the adult hippocampus of 77 genetically diverse strains of mice including 75 LXS recombinant inbred strains and the two parental strains ILS/Ibg and ISS/Ibg (Institute of Behavioral Genetics). + +

    The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. + +Samples were processed using a total of 240 samples and 40 +Illumina mouse-6 oligomer microarray slides. Twenty-seven mouse-6 slides and a total of 157 samples passed stringent quality control and error checking. We should note that this was our first experience using the Illumina Sentrix Mouse-6 v 1.0 platform and the initial set of 13 slides were of little use and are not included in this data set. This particular data set was processed using a simple Rank protocol developed in house at UTHSC. Values were log2 transformed and the current data range from 6 to 16.5. + +

    In this initial data set, 859 probes have LRS values greater than 50. + +

    + +

        About the strains used to generate this set of data:

    + + +
    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 77 strains. All of these strains have been inbred from more than 23 generation (F23). All of these strains have been genotyped at 13,377 SNPs. + + +

    These strains are available from Drs. Beth Bennett and Tom Johnson at the Institute of Behavioral Genetics, in Boulder Colorado.

    + +
    + + + +

        About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the IBG in Boulder Colorado by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to UTHSC. Most hippocampal dissections (bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stem were also removed and stored at -80 deg C. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of fimbria. + +

    A pool of dissected tissue from four hippocampi and two naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. All RNA samples were extracted at UTHSC by Zhiping Jia. + +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below). +

    + +
    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between July 25 and Oct 19, 2006. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.83. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on the mouse-6 slide. The slides were hybridized and washed following standard Illumina protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each strain. While all strains were orginally represented by matched male and female samples, one strain LXS34 consists of a single male sample. + + + +

    Experimental Design and Batch Structure: This data set consists arrays processed in 12 groups over a three month period (July 2006 to Oct 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. + + + + +

    + +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of processing (Run), Sample ID, Strain, Sex, Age, number of animals in each sample pool (Pool), F generation number when less than 30 (GenN, and the Source of animals. SampleID is the ID number of the pooled RNA sample with a H1 through H3 suffix to indicate the actual hippocampal RNA aliquot used to prepare cRNA. Grp is the sequential group processing number (1 - 6). +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexbatch IDpool sizelRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
    1R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
    205R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
    +
    +
    +
    + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Contact Lu Lu regarding data access probelms. +

    +
    + + + + +

        About the array platform:

    +
    +

    Illumina Sentrix Mouse6 Bead Array Platform: The Mouse6 array consists of .... + +

    Position data for the 50-mer Illumina Mouse-6 array was downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz

    +
    + +

        About data processing:

    + +
    +

    This data set uses a simple rank order method in which mean expression of all probes are computed across all good arrays. The means are then ranked. This ranked list of probe mean values is used as a lookup table to assign values to ranked data from the individual arrays. This produces a set of array data that have precisely the same range and distribution of values per array. This is an extreme form of normalizing. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist (probe scl00213742.1_141-S) and Ddx3y (scl0013129.1_159-S). + +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. + +

  • Lu Lu, M.D. +
    Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI) + + + + +

  • + +

        About this text file:

    +

    +Data uploaded by Hongqiang Li, Oct 30, 2006. This text file originally generated by LL and RWW on November 29, 2006. Updated by LL, Dec 1, 2006. + + +

    + + +

    + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Hipp_Illumina_RankInv_0507.html b/web/dbdoc/Hipp_Illumina_RankInv_0507.html new file mode 100755 index 00000000..9655a6a0 --- /dev/null +++ b/web/dbdoc/Hipp_Illumina_RankInv_0507.html @@ -0,0 +1,471 @@ + +INIA LXS Hippocampus Illumina (May07) Rank Invariant Database Metadata + + + + + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    NIAAA INIA Hippocampus Illumina RankInv (May07) Database +modify this page

    Accession number: GN133

    + + + + +

        Summary:

    + + + + + + + +
    +May 07 ILLUMINA Mouse-6 DATA SET Rank Invariant Data Set: The LXS Hippocampus Illumina Rank Invariant data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains, ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics), and the two reciprocal F1 strains (ILSXISSF1, ISSXILSF1). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues). + +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were are not included. This particular data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from 6.141 average (very low or no expression) to 19.987 (extremely high). + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Hippocampus Illumina (May 07) RankInv data set, 1183 probes have LRS values >46. + +

    In comparison, here are the yields of QTLs with LOD>10 for other closely related data sets: + +

      +
    1. NO DATA for Hippocampus Illumina (Aug07) RSN +
    2. NO DATA for Hippocampus Illumina (Aug07) RSN_NB +
    3. 1050 for Hippocampus Illumina (Aug07) LOESS +
    4. 1162 for Hippocampus Illumina (Aug07) LOESS_NB +
    5. 1129 for Hippocampus Illumina (Aug07) QUANT +
    6. 1176 for Hippocampus Illumina (Aug07) QUANT_NB +
    7. 1183 for Hippocampus Illumina (May 07) RankInv (THIS DATA SET) +
    8. 1167 for Hippocampus Illumina (Oct06) Rank +
    9. 1170 for Hippocampus Illumina (Oct06) RankInv +
    + + +

    The LRS achieved in the different version of the LXS Hippocampus data for probe ILM103520706 (Disabled 1; Dab1) are as follows: + +

      +
    1. 374.8 for Hippocampus Illumina (Aug07) RSN +
    2. 363.0 for Hippocampus Illumina (Aug07) RSN_NB +
    3. 338.4 for Hippocampus Illumina (Aug07) LOESS +
    4. 339.8 for Hippocampus Illumina (Aug07) LOESS_NB +
    5. 370.2 for Hippocampus Illumina (Aug07) QUANT +
    6. 363.5 for Hippocampus Illumina (Aug07) QUANT_NB +
    7. 360.3 for Hippocampus Illumina (May 07) RankInv +
    8. 358.1 for Hippocampus Illumina (Oct06) Rank +
    9. 358.8 for Hippocampus Illumina (Oct06) RankInv +
    + + +

    + + + +

    Legend: UPDATE FIGURE: Bar chart of the expression of Dab1 probe ILM103520706 in the LXS data set. This probe has a Mendelian segregation pattern and is associated with an LRS 360.3 in this May07 RankInv data set vs 358.8 for the previous Oct06 data set.

    +
    +
    + + +
    + + +

    ABOUT THE HIPPOCAMPUS. The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval. This region of the brain is particularly vulnerable to the effects of environmental stressors and is a key upstream modulator of the hypothalamic-pituitary-adrenal axis (the HPA). The hippocampus is also often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators supported by numerous agencies described in the Acknowledgments section. + +

    + +

         + +About the strains used to generate this set of data:

    + +
    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 77 strains. All of these strains have been inbred for more than 23 generations (F23). All strains have been genotyped at 13,377 SNPs. Thanks to the efforts of Dr. Timothy Wiltshire at the Genome Institute of the Novartis Research Foundation, the two parental strains have been genotyped at 156,551 SNPs. These genotypes are incorporated in the GeneNetwork SNP Browser. + + +

    Strains are currently available from Drs. Beth Bennett and Tom Johnson at the Institute of Behavioral Genetics (IBG) in Boulder Colorado.

    + +
    + + + +

        About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus). + +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia. + +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below). +

    + +
    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between July 25 and Dec 20, 2006. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on the original Mouse-6 v 1.0 slide. The slides were hybridized and washed following standard Illumina protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each strain. While all strains were orginally represented by matched male and female samples, one strain LXS34 consists of two female samples. Given the expression of Xist, we suspect that strain LXS114 is represented by two male pools (see figure at bottom of page). + + +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below. + + +

    + +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch. +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    ation
    pool
    size
    slide
    ID
    slide
    position
    batch
    by slide
    scan
    batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +
    + + + + +

        About the array platform:

    +
    +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology. + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf). + +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs. + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +
    + +

        About data processing:

    + +
    +

    This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation. + +

    Sex of the samples was validated using sex-specific probe set: Xist (probe ILM106520068, also known as scl00213742.1_141-S). + + +

    + + + +

    Legend: Checking that the sex of samples was labeled correctly in mouse array data sets using Xist expression measured by probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample. In contrast LXS34 has very high expression and no error bar because the sample is from a single female pool.

    +
    +
    + + + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. + +

  • Lu Lu, M.D. +
    Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI) + + + + +

  • + +

        About this text file:

    +

    +Data uploaded by Hongqiang Li, Oct 30, 2006. This text file originally generated by LL and RWW on November 29, 2006. Updated by LL, Dec 1, 2006. Updated March 25, April 25 by RWW. Updated with data on LOD scores, Oct 24, 2007 by RWW> + + +

    + + +

    + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Hipp_Illumina_RankInv_1006.html b/web/dbdoc/Hipp_Illumina_RankInv_1006.html new file mode 100755 index 00000000..7668ff32 --- /dev/null +++ b/web/dbdoc/Hipp_Illumina_RankInv_1006.html @@ -0,0 +1,402 @@ + +INIA LXS Hippocampus Illumina (Oct06) Rank Invariant Database Metadata + + + + + + + + + + + + +
    + + + + + + + + +
    +

    NIAAA INIA Hippocampus Illumina RankInv (Oct06) Database +modify this page

    Accession number: GN120

    + + + + +

        Summary:

    + + + + + +
    +ILLUMINA Mouse-6 DATA SET: The LXS Hippocampus Illumina Rank Invariant data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains + +and + +ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues). + +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray (GEO GPL6099) BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were are not included. This particular data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from 6.141 average (very low or no expression) to 19.987 (extremely high). + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this initial data set, 1170 probes have LRS values >46. The maximum LRS achieved in this data set is 358.8 for probe ILM103520706 (Disabled 1; Dab1). + + +

    + + + +

    Legend: Bar chart of the expression of Dab1 probe ILM103520706 in the LXS data set. This probe has a Mendelian segregation pattern and is associated with a LOD score of 77.7 (LRS 358.8). The two parental strains are shown to the far left, followed by all of the LXS strains for which we have acquired mRNA expression estimates in the hippocampus.

    +
    +
    + + +
    + + +

    ABOUT THE HIPPOCAMPUS. The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval. This region of the brain is particularly vulnerable to the effects of environmental stressors and is a key upstream modulator of the hypothalamic-pituitary-adrenal axis (the HPA). The hippocampus is also often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators supported by numerous agencies described in the Acknowledgments section. + +

    + +

         + +About the strains used to generate this set of data:

    + +
    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 77 strains. All of these strains have been inbred for more than 23 generations (F23). All strains have been genotyped at 13,377 SNPs. Thanks to the efforts of Dr. Timothy Wiltshire at the Genome Institute of the Novartis Research Foundation, the two parental strains have been genotyped at 156,551 SNPs. These genotypes are incorporated in the GeneNetwork SNP Browser. + + +

    Strains are currently available from Drs. Beth Bennett and Tom Johnson at the Institute of Behavioral Genetics (IBG) in Boulder Colorado.

    + +
    + + + +

        About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus). + +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia. + +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below). +

    + +
    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between July 25 and Dec 20, 2006. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on the original Mouse-6 v 1.0 slide. The slides were hybridized and washed following standard Illumina protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each strain. While all strains were orginally represented by matched male and female samples, one strain LXS34 consists of two female samples. Given the expression of Xist, we suspect that strain LXS114 is represented by two male pools (see figure at bottom of page). + + +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below. + + +

    + +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch. +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    ation
    pool
    size
    slide
    ID
    slide
    position
    batch
    by slide
    scan
    batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +
    + + + + +

        About the array platform:

    +
    +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology. + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf). + +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs. + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +
    + +

        About data processing:

    + +
    +

    This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation. + +

    Sex of the samples was validated using sex-specific probe set: Xist (probe ILM106520068, also known as scl00213742.1_141-S). + + +

    + + + +

    Legend: Checking that the sex of samples was labeled correctly in mouse array data sets using Xist expression measured by probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample. In contrast LXS34 has very high expression and no error bar because the sample is from a single female pool.

    +
    +
    + + + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. + +

  • Lu Lu, M.D. +
    Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI) + + + + +

  • + +

        About this text file:

    +

    +Data uploaded by Hongqiang Li, Oct 30, 2006. This text file originally generated by LL and RWW on November 29, 2006. Updated by LL, Dec 1, 2006. Updated March 25, April 25 by RWW. + + +

    + + +

    + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Hipp_Illumina_Rank_1006.html b/web/dbdoc/Hipp_Illumina_Rank_1006.html new file mode 100755 index 00000000..75748f5c --- /dev/null +++ b/web/dbdoc/Hipp_Illumina_Rank_1006.html @@ -0,0 +1,439 @@ + +INIA LXS Hippocampus Illumina (Oct06) Rank Database Metadata + + + + + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    NIAAA INIA Hippocampus Illumina Rank (Oct06) Database +modify this page

    Accession number: GN121

    + + + + +

        Summary:

    + + + + + +
    +ILLUMINA Mouse-6 DATA SET: The LXS Hippocampus Illumina Rank data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains + +and + +ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues). + +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray (GEO GPL6099) BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were are not included. This particular data set was processed using a very simple probe "Rank" protocol described below. Values were log2 transformed and the current data range from 6 (very low or no expression) to 16.5 (extremely high). + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this initial data set, 1167 probes have LRS values >46. The maximum LRS achieved in this data set is 358.1 for probe ILM103520706 (Disabled 1; Dab1). + + +

    + + + +

    Legend: Bar chart of the expression of Dab1 probe ILM103520706 in the LXS data set. This probe has a Mendelian segregation pattern and is associated with a LOD score of 77.7 (LRS 358). The two parental strains are shown to the far left, followed by all of the LXS strains for which we have acquired mRNA expression estimates in the hippocampus.

    +
    +
    + + +
    + + +

    ABOUT THE HIPPOCAMPUS. The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval. This region of the brain is particularly vulnerable to the effects of environmental stressors and is a key upstream modulator of the hypothalamic-pituitary-adrenal axis (the HPA). The hippocampus is also often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators supported by numerous agencies described in the Acknowledgments section. + +

    + +

         + +About the strains used to generate this set of data:

    + +
    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 77 strains. All of these strains have been inbred for more than 23 generations (F23). All strains have been genotyped at 13,377 SNPs. Thanks to the efforts of Dr. Timothy Wiltshire at the Genome Institute of the Novartis Research Foundation, the two parental strains have been genotyped at 156,551 SNPs. These genotypes are incorporated in the GeneNetwork SNP Browser. + + +

    Strains are currently available from Drs. Beth Bennett and Tom Johnson at the Institute of Behavioral Genetics (IBG) in Boulder Colorado.

    + +
    + + + +

        About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus). + +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia. + +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below). +

    + +
    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between July 25 and Dec 20, 2006. All processing steps below were performed by Feng Jiao. + +

    RNA Extraction: In brief, we used the RNA STAT-60 protocol (TEL-TEST "B" Bulletin No. 1), steps 5.1A (homogenization of tissue), 5.2 (RNA extraction), 5.3 (RNA precipitation), and 5.4 (RNA wash). In Step 5.4 we stopped after adding 75% ethanol (1 ml per 1 ml RNA STAT-60) and stored the mix at -80 deg C until further use. Before RNA labeling we thawed samples and proceeded with the remainder of Step 5.4; pelleting, drying, and redissovling the pellet in RNAase-free water. + + + + +

    RNA Labeling: In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on the original Mouse-6 v 1.0 slide. The slides were hybridized and washed following standard Illumina protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each strain. While all strains were orginally represented by matched male and female samples, one strain LXS34 consists of two female samples. Given the expression of Xist, we suspect that strain LXS114 is represented by two male pools (see figure at bottom of page). + + +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below. + + +

    + +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch. +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    ation
    pool
    size
    slide
    ID
    slide
    position
    batch
    by slide
    scan
    batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +
    + + + + +

        About the array platform:

    +
    +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology. + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf). + +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs. + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +
    + +

        About data processing:

    + +
    +

    This data set uses a simple ranking method. Mean probe values given by Illumina output files were logged and then ranked within each of the sample data sets. This results in a rank vector (from 1 to 46116) for each array and a corresponding log2 value vector for the same array. We then compute the average log2 value corresponding to each of the rank values. For example, the average value for the 101th ranked probes across all arrays may have a mean value of 15.000 on the log2 scale. The 101th-ranked probes will naturally have many different gene identities across the many arrays although all of these genes/probes will share quite high expression. The average log2 value for each of the ranks is then used as a "look up" table for each rank in the individual arrays. For example if the 101th-ranked probe had a value of 15.321 on Array49 and a value of 14.872 on Array50, then both of these values would be reassigned the mean value of rank 101 of 15.000. As a result every array data set has exactly the same log2 distribution of expression values. + +

    Sex of the samples was validated using sex-specific probe set: Xist (probe ILM106520068, also known as scl00213742.1_141-S). + + +

    + + + +

    Legend: Checking that the sex of samples was labeled correctly in mouse array data sets using Xist expression measured by probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample. In contrast LXS34 has very high expression and no error bar because the sample is from a single female pool.

    +
    +
    + + + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. + +

  • Lu Lu, M.D. +
    Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI) + + + + +

  • + +

        About this text file:

    +

    +Data uploaded by Hongqiang Li, Oct 30, 2006. This text file originally generated by LL and RWW on November 29, 2006. Updated by LL, Dec 1, 2006. Updated March 25, April 25, 2007 by RWW. + + +

    + + +

    + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Hipp_M430.RO_0706.html b/web/dbdoc/Hipp_M430.RO_0706.html new file mode 100755 index 00000000..74d6d91b --- /dev/null +++ b/web/dbdoc/Hipp_M430.RO_0706.html @@ -0,0 +1,77 @@ + +Hippocampus M430.RO (Oct06) Metadata + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    Hippocampus M430 R. Overall Data Set + modify this page

    + +

    Experimental transform of Hippocampus Consortium data set using a new Cell Definition File generated by Dr. Fan Meng at University of Michigan (see http://brainarray.mbni.med.umich.edu/Brainarray/Aboutus/Aboutus.asp). Implementation by Rupert Overall (Max-Delbruck-Centrum, Berlin). + +

    The ID is the Entrez GeneID. Rupert Overal retransformed the CEL files with the affy.rma package in R using a new CDF file (Mm430_Mm_ENTREZG_8 from the website of Dr. Meng's group in Michigan "http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp"). +This bundles together probes belonging to the same Entrez Gene accession together. The raw output of this transform is, in fact, the GeneID with a trailing "_at" which we have removed to simplify translation into Gene Symbols. + + +

    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/Hippocampus_M430_PDNN_Sept05.html b/web/dbdoc/Hippocampus_M430_PDNN_Sept05.html new file mode 100755 index 00000000..4115e528 --- /dev/null +++ b/web/dbdoc/Hippocampus_M430_PDNN_Sept05.html @@ -0,0 +1,72 @@ + +HTML Template/ WebQTL + + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    Your Title Here + modify this page

    + +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/Hippocampus_M430_V2_PDNN_Sept05.html b/web/dbdoc/Hippocampus_M430_V2_PDNN_Sept05.html new file mode 100755 index 00000000..fbf6b42b --- /dev/null +++ b/web/dbdoc/Hippocampus_M430_V2_PDNN_Sept05.html @@ -0,0 +1,770 @@ + +HTML Template/ WebQTL + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    Hippocampus Consortium M430v2 (Oct05) PDNN + modify this page

    + + +

        Summary:

    + +
    +PRELIMINARY: The October 2005 Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of approximately 99 genetically diverse strains of mice including 68 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a set of 16 diverse inbred strains, and 2 reciprocal F1 hybrids. The hippocampus is an important and intriguing part of the forebrain that is crucial for memory formation, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3, and parts of the subiculum) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. Samples were processed using a total of 206 Affymetrix Mouse Expression 430 2.0 short oligomer microarrays (MOE430 2.0 or M430v2), of which 179 passed stringent quality control and error checking. This particular data set was processed using the position-dependent nearest neighbor method (PDNN) of Zhang and colleagues. To simplify comparison among the transforms we have used, the quantile normalized PDNN values from each arrray have been adjusted to an average expression of 8 units and a standard deviation of 2 units. +
    + +

        About the strains used to generate this set of data:

    + +
    +

    This analysis has used 68 of BXD strains, the complete set of 13 CXB recombinant inbred strain sets, and a mouse diversity panel consisting of 16 inbred strains and a pair of reciprocal F1 hybrids (B6D2F1 and D2B6F1). + + + +

    The BXD genetic reference population of recombinant inbred strains consists of approximately 80 strains. Approximately 800 classical phenotypes from sets of 10 to 70 of these strains been integrated in the GeneNetwork. The BXD strains in this data set include 29 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs. + +

    The CXB is the first and oldest set of recombinant inbred strains. Over 500 classical phenotypes from these strains been integrated in the GeneNetwork. It is noteworthy that the CXB strains segregate for the hippocampal lamination defect (Hld),characterized by Nowakowski and colleagues (1984). All of the CXBs have been recently genotyped at 13,377 SNPs. + +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel + +
    3. AKR/J +
          Sequenced by NIEHS; Phenome Project B list + +
    4. BALB/cByJ +
          STILL IN PROGRESS (samples did not pass quality control); Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list + +
    5. BALB/cJ +
          Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list + +
    6. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    7. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    8. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    9. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    10. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    11. KK/HIJ +
          Sequenced by Perlegen/NIEHS + +
    12. LG/J +
          Paternal parent of the LGXSM panel + +
    13. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    14. NZO/HILtJ +
          Collaborative Cross strain + +
    15. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    16. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    17. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    18. B6D2F1 and D2B6F1 +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J +
    + +

    We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels. + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.

    + + + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thanks Muriel Davission for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria. + +

    A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2). + +

    A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). +

    + +
    +

    Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80 deg. C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. While all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. Seventy-seven of 99 strains are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquotes R1291H3 and R1291H4). + +

    Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays.Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin. + +

    All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4 deg C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four. +

    + +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of processing (Run), Sample ID, Strain, Sex, Age, number of animals in each sample pool (Pool), F generation number when less than 30 (GenN, and the Source of animals. SampleID is the ID number of the pooled RNA sample with a H1 through H3 suffix to indicate the actual hippocampal RNA aliquot used to prepare cRNA. Grp is the sequential group processing number (1 - 6). +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +   + +   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +   + +   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    SortRunSampleIDStrainSexAgeGenNSourcePoolGrpNotesData_Links_to_Affy_Files
    14R1509H1BXD01F59>50GDR41uEXP RPT TXT CEL DAT
    274R1507H1BXD01M58>50GDR43 EXP RPT TXT CEL DAT
    3102R1520H1BXD02F56>50GDR44 EXP RPT TXT CEL DAT
    46R1516H1BXD02M61>50GDR41rEXP RPT TXT CEL DAT
    58R1593H2BXD05F60>50GDR31rEXP RPT TXT CEL DAT
    680R1692H1BXD05M60>50GDR23 EXP RPT TXT CEL DAT
    710R1539H2BXD06F59>50GDR41sEXP RPT TXT CEL DAT
    8127R1538H1BXD06M59>50GDR44 EXP RPT TXT CEL DAT
    912R1518H1BXD08F56>50GDR41tEXP RPT TXT CEL DAT
    10189R1548H1BXD08M59>50GDR36 EXP RPT TXT CEL DAT
    1114R1350H2BXD09F86>50UMem31uEXP RPT TXT CEL DAT
    12117R1351H3BXD09M86>50UMem34 EXP RPT TXT CEL DAT
    13173R1531H1BXD11F56>50GDR46 EXP RPT TXT CEL DAT
    1416R1367H1BXD11M56>50GDR41rEXP RPT TXT CEL DAT
    1518R1530H1BXD12F58>50GDR41sEXP RPT TXT CEL DAT
    16119R1567H1BXD12M58>50GDR44 EXP RPT TXT CEL DAT
    17177R1529H1BXD13F58>50GDR46 EXP RPT TXT CEL DAT
    1820R1662H1BXD13M60>50GDR31NAEXP RPT TXT CEL DAT
    1922R1280H2BXD14F56>50LuLu31sEXP RPT TXT CEL DAT
    20121R1544H1BXD14M59>50GDR44 EXP RPT TXT CEL DAT
    21179R1524H1BXD15F60>50GDR46 EXP RPT TXT CEL DAT
    2224R1515H1BXD15M61>50GDR41sEXP RPT TXT CEL DAT
    2326R1661H1BXD16F61>50GDR31sEXP RPT TXT CEL DAT
    24123R1594H1BXD16M61>50GDR34 EXP RPT TXT CEL DAT
    25181R1568H1BXD19F60>50GDR46 EXP RPT TXT CEL DAT
    2628R1471H1BXD19M157>50JBo21tEXP RPT TXT CEL DAT
    2730R1573H1BXD20F59>50GDR41sEXP RPT TXT CEL DAT
    2832R1347H2BXD21F64>50UMem31sEXP RPT TXT CEL DAT
    29125R1349H3BXD21M64>50UMem34 EXP RPT TXT CEL DAT
    30183R1848H1BXD22F196>50UAB36 EXP RPT TXT CEL DAT
    3134R1525H1BXD22M59>50GDR42 EXP RPT TXT CEL DAT
    32156R1254H1BXD23F66>50LuLu45 EXP RPT TXT CEL DAT
    3336R1337H2BXD23M102>50UAB32 EXP RPT TXT CEL DAT
    3438R1343H2BXD24F71>50UMem22 EXP RPT TXT CEL DAT
    3594R1517H1BXD24M57>50GDR43 EXP RPT TXT CEL DAT
    3640R1366H1BXD27F60>50GDR42 EXP RPT TXT CEL DAT
    37158R1849H1BXD27M70>50UAB25 EXP RPT TXT CEL DAT
    3876R1353H1BXD28F79>50UMem33 EXP RPT TXT CEL DAT
    3942R2332H1BXD28M60>50GDR32 EXP RPT TXT CEL DAT
    4044R1532H1BXD29F57>50GDR42 EXP RPT TXT CEL DAT
    41160R1356H1BXD29M76>50UMem35 EXP RPT TXT CEL DAT
    4296R1242H2BXD31F61>50LuLu43 EXP RPT TXT CEL DAT
    4346R1240H2BXD31M61>50LuLu32 EXP RPT TXT CEL DAT
    44162R1470H1BXD32F76>50UMem25 EXP RPT TXT CEL DAT
    4548R1508H2BXD32M58>50GDR42 EXP RPT TXT CEL DAT
    4650R1345H3BXD33F65>50UMem22 EXP RPT TXT CEL DAT
    4797R1581H1BXD33M59>50GDR43 EXP RPT TXT CEL DAT
    4852R1527H1BXD34F59>50GDR42 EXP RPT TXT CEL DAT
    49168R1339H1BXD34M74>50UMem35 EXP RPT TXT CEL DAT
    5088R1469H1BXD36F83>50UMem33 EXP RPT TXT CEL DAT
    5154R1363H1BXD36M77>50UMem32 EXP RPT TXT CEL DAT
    5292R1855H1BXD38F55>50GDR33 EXP RPT TXT CEL DAT
    5356R1510H1BXD38M65>50UMem32 EXP RPT TXT CEL DAT
    5458R1528H2BXD39F59>50GDR42 EXP RPT TXT CEL DAT
    5599R1514H1BXD39M59>50GDR43 EXP RPT TXT CEL DAT
    56100R1522H1BXD40F59>50GDR44 EXP RPT TXT CEL DAT
    5760R1359H1BXD40M73>50UMem32 EXP RPT TXT CEL DAT
    5862R1519H1BXD42F58>50GDR42 EXP RPT TXT CEL DAT
    59101R1512H1BXD42M59>50GDR44 EXP RPT TXT CEL DAT
    605R1334H2BXD43F5922LuLu41rEXP RPT TXT CEL DAT
    6184R1303H1BXD43M6324LuLu33 EXP RPT TXT CEL DAT
    6267R1326H1BXD44F6520LuLu43 EXP RPT TXT CEL DAT
    637R1577H2BXD44M5620LuLu41rEXP RPT TXT CEL DAT
    64103R1399H2BXD45F5820LuLu34 EXP RPT TXT CEL DAT
    65191R1465H1BXD45M6220LuLu46 EXP RPT TXT CEL DAT
    66105R1316H1BXD48F5821LuLu34 EXP RPT TXT CEL DAT
    6778R1575H3BXD48M6522LuLu43 EXP RPT TXT CEL DAT
    68175R1879H1BXD50F6918LuLu36 EXP RPT TXT CEL DAT
    6913R1944H2BXD50M8118LuLu21rEXP RPT TXT CEL DAT
    7072R2331H1BXD51F6625LuLu33 EXP RPT TXT CEL DAT
    71193R1330H1BXD51M6521LuLu46 EXP RPT TXT CEL DAT
    72107R2095H2BXD55F6118LuLu34 EXP RPT TXT CEL DAT
    7317R1474H1BXD55M5715LuLu21rEXP RPT TXT CEL DAT
    74109R1331H1BXD60F6021LuLu44 EXP RPT TXT CEL DAT
    7519R1281H2BXD60M5922LuLu41sEXP RPT TXT CEL DAT
    76111R1914H2BXD61F6320LuLu24 EXP RPT TXT CEL DAT
    7721R1856H2BXD61M9419LuLu21sEXP RPT TXT CEL DAT
    7823R1246H1BXD62F5422LuLu41sEXP RPT TXT CEL DAT
    79195R1585H1BXD62M6420LuLu46 EXP RPT TXT CEL DAT
    8025R1945H1BXD63F10721LuLu41tEXP RPT TXT CEL DAT
    81197R2093H1BXD63M7021LuLu26 EXP RPT TXT CEL DAT
    8227R2062H2BXD64F6519LuLu21uEXP RPT TXT CEL DAT
    8395R2061H1BXD64M8717LuLu43 EXP RPT TXT CEL DAT
    8429R2054H2BXD65F5520LuLu21rEXP RPT TXT CEL DAT
    85199R2056H1BXD65M8917LuLu26 EXP RPT TXT CEL DAT
    8631R1941H2BXD66F7820LuLu41rEXP RPT TXT CEL DAT
    87115R1949H2BXD66M9621LuLu24 EXP RPT TXT CEL DAT
    88185R2060H1BXD67F5420LuLu36 EXP RPT TXT CEL DAT
    8933R2052H1BXD67M6120LuLu31tEXP RPT TXT CEL DAT
    90142R2074H1BXD68F6019LuLu35 EXP RPT TXT CEL DAT
    9135R1928H1BXD68M7216LuLu22 EXP RPT TXT CEL DAT
    9237R1439H3BXD69F6021LuLu32 EXP RPT TXT CEL DAT
    9386R1559H1BXD69M6420LuLu33 EXP RPT TXT CEL DAT
    94144R2134H1BXD70F6421LuLu25 EXP RPT TXT CEL DAT
    9539R2063H1BXD70M5520LuLu32 EXP RPT TXT CEL DAT
    96113R1277H1BXD73F6020LuLu24 EXP RPT TXT CEL DAT
    9741R1443H2BXD73M7621LuLu32 EXP RPT TXT CEL DAT
    9843R2055H2BXD74M7918LuLu42 EXP RPT TXT CEL DAT
    99146R2316H1BXD74M19318LuLu25 EXP RPT TXT CEL DAT
    10045R1871H1BXD75F6121LuLu42 EXP RPT TXT CEL DAT
    10190R1844H2BXD75M9020LuLu43 EXP RPT TXT CEL DAT
    10247R1948H2BXD76F8116LuLu32 EXP RPT TXT CEL DAT
    103166R2094H1BXD76M6117LuLu35 EXP RPT TXT CEL DAT
    10498R2262H1BXD77F6224LuLu33 EXP RPT TXT CEL DAT
    10549R1423H1BXD77M6220LuLu42 EXP RPT TXT CEL DAT
    10651R1947H1BXD79F10817LuLu22 EXP RPT TXT CEL DAT
    107169R2092H1BXD79M8615LuLu35 EXP RPT TXT CEL DAT
    108164R1880H1BXD80F6819LuLu35 EXP RPT TXT CEL DAT
    10953R1881H2BXD80M6819LuLu32 EXP RPT TXT CEL DAT
    11055R2075H1BXD83F6015LuLu32 EXP RPT TXT CEL DAT
    111187R2076H1BXD83M6015LuLu36 EXP RPT TXT CEL DAT
    112171R2077H1BXD84F6217LuLu26 EXP RPT TXT CEL DAT
    11357R2135H3BXD84M7517LuLu22 EXP RPT TXT CEL DAT
    11459R1473H1BXD85F7920LuLu42 EXP RPT TXT CEL DAT
    115129R1597H1BXD85M8621LuLu34 EXP RPT TXT CEL DAT
    116130R1415H1BXD86F7720LuLu34 EXP RPT TXT CEL DAT
    11761R1419H1BXD86M5821LuLu32 EXP RPT TXT CEL DAT
    118131R1946H2BXD87F10120LuLu24 EXP RPT TXT CEL DAT
    11963R1710H1BXD87M9620LuLu32 EXP RPT TXT CEL DAT
    12064R1872H2BXD89F9020LuLu22 EXP RPT TXT CEL DAT
    121132R1850H2BXD89M8219LuLu44 EXP RPT TXT CEL DAT
    12265R2058H1BXD90F6123LuLu32 EXP RPT TXT CEL DAT
    123133R1453H1BXD90M6120LuLu24 EXP RPT TXT CEL DAT
    12466R1301H2BXD92F5821LuLu32 EXP RPT TXT CEL DAT
    125134R1309H1BXD92M5921LuLu34 EXP RPT TXT CEL DAT
    126148R2057H1BXD93F9219LuLu25 EXP RPT TXT CEL DAT
    1279R2059H1BXD93M5819LuLu41sEXP RPT TXT CEL DAT
    12882R2313H1BXD94F5914LuLu33 EXP RPT TXT CEL DAT
    129136R2314H1BXD94M5914LuLu35 EXP RPT TXT CEL DAT
    130150R1847H1BXD96F7020LuLu35 EXP RPT TXT CEL DAT
    13111R1846H2BXD96M6320LuLu41sEXP RPT TXT CEL DAT
    132138R2053H1BXD97F5521LuLu35 EXP RPT TXT CEL DAT
    13315R1927H2BXD97M6720LuLu31rEXP RPT TXT CEL DAT
    134154R1942H1BXD98F6219LuLu35 EXP RPT TXT CEL DAT
    13568R1943H2BXD98M6219LuLu33 EXP RPT TXT CEL DAT
    13670R2197H1BXD99F7014LuLu43 EXP RPT TXT CEL DAT
    137140R2315H1BXD99M8414LuLu25 EXP RPT TXT CEL DAT
    13869R2116H1CXB1F55>50JAX33 EXP RPT TXT CEL DAT
    139104R2096H1CXB1M55>50JAX24 EXP RPT TXT CEL DAT
    140124R2124H1CXB10F53>50JAX24 EXP RPT TXT CEL DAT
    14187R2108H1CXB10M53>50JAX33 EXP RPT TXT CEL DAT
    14289R2125H1CXB11F58>50JAX33 EXP RPT TXT CEL DAT
    143114R2128H1CXB11M58>50JAX24 EXP RPT TXT CEL DAT
    144126R2126H1CXB12F47>50JAX34 EXP RPT TXT CEL DAT
    14591R2109H1CXB12M47>50JAX33 EXP RPT TXT CEL DAT
    14693R2127H2CXB13F56>50JAX33 EXP RPT TXT CEL DAT
    147128R2110H1CXB13M56>50JAX34 EXP RPT TXT CEL DAT
    148116R2117H1CXB2F62>50JAX24 EXP RPT TXT CEL DAT
    14971R2098H1CXB2M68>50JAX33 EXP RPT TXT CEL DAT
    15073R2118H1CXB3F47>50JAX33 EXP RPT TXT CEL DAT
    151106R2100H1CXB3M47>50JAX34 EXP RPT TXT CEL DAT
    152118R2119H1CXB4F58>50JAX34 EXP RPT TXT CEL DAT
    15375R2101H1CXB4M58>50JAX33 EXP RPT TXT CEL DAT
    15477R0129H2CXB5M70>50LuLu33 EXP RPT TXT CEL DAT
    155108R2131H1CXB5M42>50JAX34 EXP RPT TXT CEL DAT
    15679R2120H1CXB6F49>50JAX33 EXP RPT TXT CEL DAT
    157120R2102H1CXB6M49>50JAX34 EXP RPT TXT CEL DAT
    158110R2121H1CXB7F63>50JAX24 EXP RPT TXT CEL DAT
    15981R2104H2CXB7M58>50JAX23 EXP RPT TXT CEL DAT
    16083R2122H1CXB8F54>50JAX33 EXP RPT TXT CEL DAT
    161122R2105H1CXB8M41>50JAX34 EXP RPT TXT CEL DAT
    16285R2123H1CXB9F54>50JAX33 EXP RPT TXT CEL DAT
    163112R2106H1CXB9M54>50JAX34 EXP RPT TXT CEL DAT
    164135R2028H2129S1/SvImJF66>50JAX35EXP RPT TXT CEL DAT
    165170R2029H1129S1/SvImJM66>50LuLu46EXP RPT TXT CEL DAT
    166186R2031H2A/JF57>50JAX36 EXP RPT TXT CEL DAT
    167149R2030H1A/JM57>50LuLu45 EXP RPT TXT CEL DAT
    168151R2032H2AKR/JF66>50LuLu35 EXP RPT TXT CEL DAT
    169172R2033H2AKR/JM67>50LuLu36 EXP RPT TXT CEL DAT
    170188R2034H2BALB/cByJF63>50LuLu26 EXP RPT TXT CEL DAT
    171152R2035H2BALB/cByJM63>50JAX35 EXP RPT TXT CEL DAT
    172137R2036H2BALB/cJF51>50JAX35 EXP RPT TXT CEL DAT
    173174R2037H2BALB/cJM51>50LuLu26 EXP RPT TXT CEL DAT
    174190R2038H2C3H/HeJF63>50JAX36 EXP RPT TXT CEL DAT
    175153R2039H1C3H/HeJM63>50LuLu35 EXP RPT TXT CEL DAT
    176139R2137H1C57BL/6ByJF55>50LuLu45 EXP RPT TXT CEL DAT
    177176R2136H1C57BL/6ByJM55>50LuLu26 EXP RPT TXT CEL DAT
    178192R2040H2C57BL/6JF64>50LuLu26 EXP RPT TXT CEL DAT
    1792R2041H2C57BL/6JM65>50LuLu31sEXP RPT TXT CEL DAT
    180155R1449H2C57BL/6JM71>50LuLu35 EXP RPT TXT CEL DAT
    181141R2042H2CAST/EIF64>50LuLu25 EXP RPT TXT CEL DAT
    182178R2043H2CAST/EIM64>50JAX26 EXP RPT TXT CEL DAT
    183165R1602H2DBA/2JF60>50LuLu35EXP RPT TXT CEL DAT
    184203R2044H2DBA/2JF63>50LuLu36EXP RPT TXT CEL DAT
    1853R2045H2DBA/2JM65>50LuLu21sEXP RPT TXT CEL DAT
    186194R1683H1KK/HIJF72>50JAX36 EXP RPT TXT CEL DAT
    187157R1687H2KK/HIJM72>50JAX25 EXP RPT TXT CEL DAT
    188143R2046H1LG/JF63>50JAX55 EXP RPT TXT CEL DAT
    189180R2047H1LG/JM63>50LuLu26 EXP RPT TXT CEL DAT
    190196R2048H1NOD/LtJF77>50LuLu46 EXP RPT TXT CEL DAT
    191159>R2049H2NOD/LtJM76>50LuLu45 EXP RPT TXT CEL DAT
    192182R2350H1NZ0/HILtJM96>50JAX26 EXP RPT TXT CEL DAT
    193145R2200H1NZO/H1LtJF62>50DanG45 EXP RPT TXT CEL DAT
    194198R2050H1PWD/PhJF65>50JAX36 EXP RPT TXT CEL DAT
    195161R2051H2PWD/PhJM64>50JAX25 EXP RPT TXT CEL DAT
    196147R2322H1PWK/PHJF63>50JAX35. EXP RPT TXT CEL DAT
    197184R2349H1PWK/PHJM83>50JAX16 EXP RPT TXT CEL DAT
    198200R2198H1WSB/EiJF58>50LuLu46 EXP RPT TXT CEL DAT
    199163R2199H1WSB/EiJM58>50JAX35 EXP RPT TXT CEL DAT
    200201R1289H1B6D2F1F64NALuLu46 EXP RPT TXT CEL DAT
    2011R1291H3B6D2F1M66NALuLu4sEXP RPT TXT CEL DAT
    202204R1291H4B6D2F1M66NAJAX36 EXP RPT TXT CEL DAT
    203167R1595H1D2B6F1F63NALuLu35 EXP RPT TXT CEL DAT
    204202R1286H1D2B6F1F57NALuLu36 EXP RPT TXT CEL DAT
    +
    +
    + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms. +

    +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    + +

        About data processing:

    + +
    +Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked. + +

    First pass data quality control: Affymetrix GCOS provides useful array quality control data including: +

      +
    1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter. +
    2. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control. +
    3. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion. +
    4. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios. +
    + +

    The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very senstive to the transformation method that is used. Using the PDNN transform the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For examploe, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one whould include the ssample if one can verify that there are no problems in sample and data set identification. + +

    The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets. + + +

    DataDesk was used to examine the statistical quality of the of the probe level (CEL) data after step 5 below. DataDesk allows a rapid detection of subsets of probes that are particular sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below. + +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +<0L> + +

  • We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
  • We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform. + +
  • We computed the Z scores for each cell value. + +
  • We multiplied all Z scores by 2. + +
  • We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference. + +
  • inally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + + + +

    Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

  • + +
    + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged. + +

    Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers. +

    + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + + +

    + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort: + +

      +
    • David C. Airey, Ph.D. +
      Grant Support: Vanderbilt Institute for Integratie Genomics +
      Department of Pharmacology +
      david.airey at vanderbilt.edu + +
    • Lu Lu, M.D. +
      Grant Support: NIH U01AA13499, U24AA13513 + +
    • Fred H. Gage, Ph.D. +
      Grant Support: NIH XXXX + +
    • Dan Goldowitz, Ph.D. +
      Grant Support: NIAAA INIA AA013503 +
      University of Tennessee Health Science Center +
      Dept. Anatomy and Neurobiology +
      email: dgold@nb.utmem.edu + +
    • Shirlean Goodwin, Ph.D. +
      Grant Support: NIAAA INIA U01AA013515 + +
    • Gerd Kempermann, M.D. +
      Grant Support: The Volkswagen Foundation Grant on Permissive and Persistent Factors in Neurogenesis in the Adult Central Nervous System +
      Humboldt-Universitat Berlin +
      Universitatsklinikum Charite +
      email: gerd.kempermann at mdc-berlin.de + +
    • Kenneth F. Manly, Ph.D. +
      Grant Support: NIH P20MH062009 and U01CA105417 + +
    • Richard S. Nowakowski, Ph.D. +
      Grant Support: R01 NS049445-01 + +
    • Yanhua Qu, Ph.D. +
      Grant Support: NIH U01CA105417 + +
    • Glenn D. Rosen, Ph.D. +
      Grant Support: NIH P20 + +
    • Leonard C. Schalkwyk, Ph.D. +
      Grant Support: MRC Career Establishment Grant G0000170 +
      Social, Genetic and Developmental Psychiatry +
      Institute of Psychiatry,Kings College London +
      PO82, De Crespigny Park London SE5 8AF +
      L.Schalkwyk@iop.kcl.ac.uk + +
    • Guus Smit, Ph.D. +
      Dutch NeuroBsik Mouse Phenomics Consortium +
      Center for Neurogenomics & Cognitive Research +
      Vrije Universiteit Amsterdam, The Netherlands +
      e-mail: guus.smit at falw.vu.nl +
      Grant Support: BSIK 03053 + +
    • Thomas Sutter, Ph.D. +
      Grant Support: INIA U01 AA13515 and the W. Harry Feinstone Center for Genome Research + +
    • Stephen Whatley, Ph.D. +
      Grant Support: XXXX + +
    • Robert W. Williams, Ph.D. +
      Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 + +
    + + + +

    + +

        About this text file:

    +

    +This text file originally generated prospectively by RWW on July 30 2005. Updated by RWW July 31, 2005. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Human_1008.html b/web/dbdoc/Human_1008.html new file mode 100755 index 00000000..07b13f5f --- /dev/null +++ b/web/dbdoc/Human_1008.html @@ -0,0 +1,128 @@ + +CEPH Immortalized B Cells, Agilent, Monks et al. (Oct08) + + + + + + + + + + + + + + + + + + +
    + + + + + +

    CEPH Immortalized B Cells, Agilent, Monks et al. (Oct08) + +modify this page

    Accession number: GN215

    + + +

        Summary:

    + +
    +PUBLISHED DATA SET: This is the first human data set entered into GeneNetwork and not all features have been implemented. You can currently explore and use the data for expression analysis and correlations among transcripts. However, mapping functions have not been implemented. These data were provided by Stephanie Santorico and are taken from her paper (Monks et al., 2004). + +

    Probes are mapped to UCSC Genome Browser hg18. Please update array annotation to hg19 (RWW to Arthur C. Sept 2009). + + +

    GEO Accession at GEO data +

    GEO Platform information at GEO Rosetta (Merck) custom-commercial array, GPL564 + + + + +

    Expression values for each transcript have been centered to a mean of zero. It is not possible to compare the absolute expression levels of transcripts with each other. + + +

    + +

        About the cases and families used to generate this set of data:

    + + +
    + +

    The text below is taken from Monks et al. (2004). We will add additional new annotation over the next several months. + +

    Families: Fifteen families from the CEPH/Utah family collection were selected for profiling. The family identifiers were 1334, 1340, 1345, 1346, 1349, 1350, 1358, 1362, 1375, 1377, 1408, 1418, 1421, 1424, and 1477. These families were selected because of the availability of genotypes and lymphoblastoid cell lines for all three generations and because of their large numbers of children. In total, the families represent 210 individuals. Of these, 167 individuals provided adequate quantity and quality of RNA for expression profiling. + +

    Tissue Growth, Processing, and Profiling: Lymphoblastoid cell lines were obtained from Coriell Repositories and propagated. All cell lines were grown in media and supplements purchased from the Invitrogen Corporation. The culture media consisted of RPMI supplemented with 15% fetal bovine serum, 1% penicillin/streptomycin, and 0.5% sodium pyruvate. To minimize variability between experiments, all fetal bovine serum used was from lot number 10082147 1129480. The cell lines were grown at 37°C in humidified incubators, in an atmosphere of 5% CO2. + +

    Experiment series were set up by seeding 25-ml cultures in T25 flasks at a density of 2.5×105 cells/ml. Each culture was grown for 48 h or until the cell density was at least 780,000 cells/ml. To harvest the cells, the cultures were centrifuged, the media was decanted, and 500 μl of guanidine isothiocynate cell lysis buffer (Buffer RLT, Qiagen) was added. Cell lysates were then transferred to 96-well block format and stored at −80°C. + +

    Total RNA was isolated using RNeasy 96 kits (Qiagen) with the following protocol modifications. Harvesting of cells was performed in 500 μl, instead of in the 150 μl specified by the protocol. To eliminate DNA contamination, the appended DNase protocol was used in concert with the isolation protocol. DNase was added to the membrane after the first 350-μl RW1 wash (guanidinium thiocyanate and ethanol) and was allowed to sit on an RNeasy membrane for 30 min. An additional 350-μl RW1 buffer wash and an additional 500-μl RPE buffer wash were performed. + +

    To quantitate and perform quality control on the experiments, the A260/A280 ratio was taken through use of a Spectramax spectrophotometer (Molecular Devices). Samples whose A260/A280 ratio deviated ±0.2 from the accepted ratio value of 2.0 were excluded. Formaldehyde gels (1.2%) were run on each sample to ensure that ribosomal RNA bands were intact and that significant degradation had not occurred. Samples that met the minimal mass requirement of 13 μg (for two replicates) and whose ribosomal bands were visible in the QC gel were transferred from the 96-well block and aliquoted into microcentrifuge tubes by use of a Multiprobe II EX (Packard BioScience Company). For samples of individuals that were to be used in the pool, 46 μg of RNA was allocated by use of the same procedure. In total, 167 individuals in 15 pedigrees provided adequate quantity and quality of RNA for expression profiling. + +

    The microcentrifuge tubes were vacuum dried and stored at −80°C before processing. Dried total RNA samples were reconstituted, and 3 μg of total RNA was used from each sample for subsequent RT-PCR–in vitro transcription amplification using the T7 promoter, which produced allyl-UTP–labeled single-stranded complementary RNA (sscRNA) (Hughes et al. 2001). Amplified cRNA was purified using the RNeasy purification kit (Qiagen) and was coupled with either cy3 or cy5 (Hughes et al. 2001). Purified cy3/cy5-labeled cRNA was fragmented using a ZnOAc/EDTA addition and was hybridized to at least two DNA microarray slides with fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a laser confocal scanner (Hughes et al. 2001). Arrays were quantified on the basis of the intensity of each spot relative to background, by use of the Qhyb program (Rosetta Inpharmatics) (Marton et al. 1998). + +

    Expression profiling of lymphoblastoid cell lines was performed using a 25K human gene oligonucleotide microarray. All individuals were compared with a common pool created from equal portions of RNA from all samples that passed quality control and were from founders within the 15 pedigrees (Gene Expression Omnibus Web site). Sequences for the microarray were selected from the RefSeq database (NCBI Reference Sequence Web site; see the Electronic-Database Information section for genes and accession numbers) and EST contigs (van’t Veer et al. 2002). + +

    Genotype Data and Genetic Maps: GENOTYPE DATA HAVE NOT YET BEEN INTEGRATED INTO GENENETWORK. Genotype data for 346 autosomal genetic markers for 210 of the pedigree members were obtained from the CEPH genotype database, version 9.0 (CEPH Genotype Database Web site). Genetic markers were selected from the 14,404 markers represented in the full database, so that at least 75% of the pedigrees had genotypes available for at least 75% of the families. The median intermarker distance was 11 cM, on the basis of the deCODE genetic map (Kong et al. 2002). Marker-allele frequencies available from the CEPH genotype database were used for estimating identity-by-descent probabilities. + +

    Statistical Methods : MORE TO COME: For each profile, genes were tested to assess differential expression relative to the pool, by use of procedures described elsewhere (Hughes et al. 2000). For each transcript/probe, the value is measured as the gene expression for an individual compared with that of the pool. + +

    Data provided by Stephanie Monks Santorico, University of Colorado, Denver (Oct 8, 2008). Annotation files to follow late Oct 2008. Mapping functions will not be implemented until 2009. + +

    Data entry by Arthur Centeno, Oct 30, 2008. +

    Agilent annotation entry by Hongqiang Li and Xusheng Wang, Oct 31, 2008. + +

    This annotation file started by Robert W. Williams, Oct 15, 2008. Most text taken from Monks et al., 2004. Last update, Nov 17, 2008 by RWW. + + + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/IBR_M_0106_P.html b/web/dbdoc/IBR_M_0106_P.html new file mode 100755 index 00000000..7358469a --- /dev/null +++ b/web/dbdoc/IBR_M_0106_P.html @@ -0,0 +1,306 @@ + +M430 Microarray brain PDNN January06 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    + +INIA Brain mRNA M430 (January06) PDNN modify this page

    Accession number: GN101

    + +

        Summary:

    + +
    +

    +RECOMMENDED, HIGHLY SELECTIVE DATA SET: This January 2006 data freeze provides estimates of mRNA expression in adult forebrain and midbrain from 43 lines of mice including C57BL/6J, DBA/2J, reciprocal F1 hybrids, and 39 BXD recombinant inbred strains. Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Samples were hybridized in small pools (n = 3) to a total of 121 Affymetrix M430A and B array pairs. This data set only includes a high quality subset of 76 arrays. Arrays were processed using the PDNN method of Zhang and colleagues. To simplify comparison among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. A total of 583 probe sets have LRS values above 50. +

    +
    + + + +

        About the cases used to generate this set of data:

    + +
    +We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D). Physical maps in WebQTL incorporate approximately 2 million B vs D SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

    + +

    All stock was obtained originally from The Jackson Laboratory between 1998 and 2003. Most BXD animals were born and housed at the University of Tennessee Health Science Center. Some cases were bred at the University of Memphis (Douglas Matthews) or the University of Alabama (John Mountz and Hui-Chen Hsu). +

    + + +

        About the tissue used to generate this set of data:

    + +
    The INIA M430 brain Database (January06) consists of 76 Affymetrix 430A and 430B microarray pairs. Each pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai at UTHSC. + +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube. The body was sprayed lightly with 70% ethanol to wet the hair. the following standard approach was used to extract the brain: + +

      +
    1. Using small surgical scissors make an incision under the skin on the dorsal side of the neck. Cut the skin overlying the skull close to the midsagittal plane towards the nose. Pull and reflect the skin to expose the entire dorsal skull. +
    2. Slip the points of the scissors through into the cisterna magna just caudal to the cerebellum and gently enlarge this opening until is it possible to cut through the skull overlying the cerebellum. +
    3. Cut rostrally through the skull along the midsagittal line almost all the way to the nasal opening, taking care not to damage the dorsal surface of the brain. +
    4. Approximately midway along this incision, make a lateral cut. Repeat along the incision and peel back the resulting strips of skull. +
    5. Using small forceps, free the olfactory bulbs rostrally and ventrally, taking care to retain their connection to the rest of the forebrain. +
    6. Gently lift the brain from the base the skull starting from the olfactory bulbs, pulling the brain toward a nearly vertical position. Cut the optic and trigeminal nerves. Separate the brain from the spinal cord about 2 mm distal to the medulla. +
    7. Spread the hemispheres of the forebrain gently with forceps and then cut from dorsal to ventral using a straight scalpel, separating the hemispheres from each other (but not from the cerebellum). Take care to retain both paraflocculi. +
    + +At this point the protocol divides. If tissue is to be saved for RNA extraction at a later time, the whole brain is placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. Step 7 is still very important because RNAlater may not fully penetrate the forebrain if the lobes are not separated. If tissue is to be used for immediate RNA extraction, one lobe of the forebrain is removed for processing and the rest of the brain is stored in RNAlater.

    + +Dissecting and preparing forebrain and midbrain for RNA extraction +

      +
    1. Remove the left or right hemisphere of the forebrain and midbrain (referred to here as the forebrain for simplicity), either fresh or preserved in RNAlater by cutting from the caudal border of the inferior colliculus on the dorsal side and extending the cut ventrally to the basis pedunculi and the pons (cut just rostral of the pons) on the ventral side. See steps 7 and 8 here +
    2. Place tissue for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer's instructions (in brief form below). +
    3. Store RNA in 75% ethanol at -80 deg. C until use. +
    + + + +

    Total RNA was extracted with RNA STAT-60 (Tel-Test) according to the manufacturer’s instructions. Briefly we: +

      +
    1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue) +
    2. allowed the homogenate to stand for 5 min at room temperature +
    3. added 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    4. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min +
    5. centrifuged at 12,000 G for 15 min +
    6. transfered the aqueous phase to a fresh tube +
    7. added 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    8. vortexed and allowed sample to stand at room temperature for 5-10 min +
    9. centrifugeed at 12,000 G for 10-15 min +
    10. removed the supernatant and washed the RNA pellet with 75% ethanol +
    11. stored the pellet in 75% ethanol at -80 deg C until use +
    + + +

    Sample Processing. Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence, The University of Memphis, lead by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, samples were quality control checked for RNA purity using 260/280 ratios (samples had to be greater than 1.8, but the majority were 1.9 or higher). RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8, based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II RT (Invitrogen Inc.). The Enzo LIfe Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nt is required). Those samples that passed both QC steps (10% usually fail) were then sheared using a fragment buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use or were immediately injected onto the array. + +

    Replication and Sample Balance: Our goal was to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. While we achieved this goal technically, not all of the replicates were of sufficient quality to be included in this highly selected set. This data set is now complete and includes more than 20 replicates. Despite the lack of replicates for about 20 strains we still recommend this data set strongly over earliers data sets that included more arrays, many of which are suboptimal. + +

    Batch Structure: Before running the first batch of 30 pairs of array (dated Jan04), we ran four test samples (Nov03). The main batch of 30 includes the four test samples (four technical replicates). The Nov03 data was combined with the Jan04 data and was treated as a single batch that consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. The second large batch was run February 2005 (Feb05) and consists of 71 pairs of arrays. Two more batches were run; the final in December 2005 (16 arrays pairs). Batch effects were corrected at the individual probe level as described below. + + +

    The table below summarizes information on strain, sex, age, sample name, batch result date, the grouping to which an arrays data set belongs based on expression similarity, and source of mice. + + +

    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexAgeSample name
    Batch
    Fixed Batch
    Source
    1B6D2F1F127R0919F1
    2
    e_2
    UTM JB
    2B6D2F1F127R0919F2
    2
    e_2
    UTM JB
    3B6D2F1F64R1053F1
    3
    g_3
    UTM RW
    4B6D2F1F64R1053F1
    3
    e_3
    UTM RW
    5B6D2F1M66R1057F1
    3
    e_3
    UTM RW
    6D2B6F1F57R1066F1
    3
    e_3
    UTM RW
    7C57BL/6JF65R0903F1
    1
    se_1
    UTM RW
    8C57BL/6JF65R0903F1
    2
    e_2
    UTM RW
    9C57BL/6JM66R0906F1
    1
    e_1
    UTM RW
    10C57BL/6JM76R0997F1
    3
    g_3
    UTM RW
    11DBA/2JF60R0917F1
    1
    e_1
    UTM RW
    12DBA/2JF64R1123F1
    3
    g_3
    UTM RW
    13DBA/2JM60R0918F1
    2
    sgA_2
    UTM RW
    14DBA/2JM73R1009F1
    3
    w_3
    UTM RW
    15BXD1M181R0956F1
    3
    e_3
    UTM JB
    16BXD2F142R0907F1
    3
    e_3
    UAB
    17BXD5F56R0744F1
    3
    o_3
    UMemphis
    18BXD5M71R0728F1
    2
    e_2
    UMemphis
    19BXD6F57R1711F1
    3
    g_3
    JAX
    20BXD8M71R2664F1
    4
    se_4
    JAX
    21BXD11F97R0745F1
    3
    gA_3
    UAB
    22BXD12F64R0896F1
    3
    o_3
    UMemphis
    23BXD12M64R0897F1
    2
    e_2
    UMemphis
    24BXD13F86R0748F1
    2
    e_2
    UMemphis
    25BXD13F86R0730F1
    3
    e_3
    UMemphis
    26BXD13M76R0929F1
    3
    e_3
    UMemphis
    27BXD14M68R1051F1
    3
    e_3
    UTM RW
    28BXD15F80R0928F1
    3
    e_3
    UMemphis
    29BXD18F108R0771F1
    2
    e_2
    UAB
    30BXD19M157R1229F1
    3
    gA_3
    UTM JB
    31BXD21F67R0740F1
    3
    gA_3
    UAB
    32BXD23F88R0815F1
    3
    gA_3
    UAB
    33BXD23F66R1035F1
    3
    gA_3
    UTM RW
    34BXD23M66R1256F1
    4
    e_4
    UTM RW
    35BXD23M66R1037F1
    3
    gA_3
    UTM RW
    36BXD24F71R0914F1
    3
    e_3
    UMemphis
    37BXD24M71R0913F1
    2
    e_2
    UMemphis
    38BXD25F74R0373F1
    2
    e_2
    UTM RW
    39BXD25M58R2623F1
    4
    e_4
    UTM RW
    40BXD27M54R2660F1
    4
    e_4
    UTM RW
    41BXD28F113R0892F1
    3
    e_3
    UTM RW
    42BXD28M79R0911F1
    3
    g_3
    UMemphis
    43BXD31M61R1141F1
    3
    e_3
    UTM RW
    44BXD32F93R0898F1
    2
    e_2
    UAB
    45BXD32F76R1214F1
    3
    w_3
    UMemphis
    46BXD32M76R1217F2
    4
    e_4
    UMemphis
    47BXD32M65R1478F1
    3
    e_3
    UMemphis
    48BXD34M72R0916F1
    2
    e_2
    UMemphis
    49BXD34F92R0900F1
    3
    e_3
    UMemphis
    50BXD36F79R2654F1
    4
    e_4
    UTM RW
    51BXD36F61R1145F1
    3
    e_3
    UTM RW
    52BXD36M77R0926F1
    2
    e_2
    UMemphis
    53BXD38F69R0729F1
    3
    e_3
    UMemphis
    54BXD38F83R1208F1
    3
    g_3
    UMemphis
    55BXD39F76R1712F1
    3
    e_3
    JAX
    56BXD39M71R0602F1
    3
    w_3
    UAB
    57BXD40F184R0741F1
    3
    e_3
    UAB
    58BXD40M56R0894F1
    3
    e_3
    UMemphis
    59BXD42F100R0742F1
    3
    e_3
    UAB
    60BXD43F61R1199F1
    3
    e_3
    UTM RW
    61BXD43F59R0980F1
    4
    e_4
    UTM RW
    62BXD44M58R1072F1
    3
    e_3
    UTM RW
    63BXD45F58R1398F1
    3
    o_3
    UTM RW
    64BXD45M81R1658F2
    4
    e_4
    UTM RW
    65BXD48F59R0946F1
    3
    e_3
    UTM RW
    66BXD51F63R1430F1
    3
    e_3
    UTM RW
    67BXD51M65R1001F1
    3
    e_3
    UTM RW
    68BXD60M59R1075F1
    3
    g_3
    UTM RW
    69BXD62M58R1027F1
    3
    e_3
    UTM RW
    70BXD69F60R1438F1
    3
    e_3
    UTM RW
    71BXD69M64R1193F1
    3
    o_3
    UTM RW
    72BXD73F60R1275F1
    3
    e_3
    UTM RW
    73BXD73M76R1442F1
    3
    g_3
    UTM RW
    74BXD77M61R1426F1
    3
    g_3
    UTM RW
    75BXD87F89R1713F1
    3
    e_3
    UTM RW
    76BXD90F71R2628F1
    4
    e_4
    UTM RW
    77BXD90M61R1452F
    3
    g_3
    UTM RW
    78BXD92F58R1299F1
    3
    e_3
    UTM RW
    +
    +
    + +

        About data access:

    +
    + +

    Normalized data are available for this INIA data set at

    +
    + + +
  • Jan 2006, PDNN normalization (17 Mb file with strain means): ftp://atlas.utmem.edu/Public/Mouse_bxd/INIA_M_0106_PDNN.txt + +
  • Jan 2006, RMA normalization (17 Mb file with strain means): ftp://atlas.utmem.edu/Public/Mouse_bxd/INIA_M_0106_RMA.txt + +
  • June 2006, QTL results from RMA normalized data (5.7 Mb, no strain means): ftp://atlas.utmem.edu/Public/Mouse_bxd/INIA_M_0606_RMA.txt + +
  • All data in ZIP format: ftp://atlas.utmem.edu/Public/Mouse_bxd/INIA_mRNA_data_sets.zip + + +
  • +
    + + + + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430A and 430B array pairs: The 430A and B array pairs collectively consist of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are essentially duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequence as the 430 2.0 series. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the 430 2.0.

    +
    + + + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the two batches (n = 34 and n = 71 array pairs) at the probe level. To do this we calculated the ratio of each batch mean to the mean of both batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each batch is the same. + +
    • Step 7a: The 430A and 430B arrays include a set of 100 shared probe sets (a total of 2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the 430A and 430B arrays to a common scale. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression correction to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a small offset. The result of this step is that the mean of the 430A expression is fixed at a value of 8, whereas that of the 430B chip is typically reduced to 7. The average of the merged 430A and 430B array data set is approximately 7.5. + +
    • Step 7b: We recentered the merged 430A and 430B data sets to a mean of 8 and a standard deviation of 2. This involved reapplying Steps 3 through 5. + +
    • Step 8: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, source of animals, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + + +

        Data source acknowledgment:

    +
    +Support for acquisition of microarray data were generously provided by the NIAAA and its INIA grant program to RWW, Thomas Sutter, and Daniel Goldowitz (U01AA013515, U01AA013499-03S1, U01AA013488, U01AA013503-03S1). Support for the continued development of the GeneNetwork and WebQTL was provided by a NIMH Human Brain Project grant (P20MH062009). All arrays were processed at the University of Memphis by Thomas Sutter and colleagues with support of the INIA Bioanalytical Core. +
    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004; April 7, 2005; RNA/tissue preparation protocol updatedby JLP, Sept 2, 2005; Sept 26, 2005; by RWW Jan 2006. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/IBR_M_0106_R.html b/web/dbdoc/IBR_M_0106_R.html new file mode 100755 index 00000000..606cd63e --- /dev/null +++ b/web/dbdoc/IBR_M_0106_R.html @@ -0,0 +1,441 @@ + +M430 Microarray brain RMA January06 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    INIA M430 brain RMA Database (January/06 Freeze) modify this page

    Accession number: GN102

    + +

        Summary:

    + + +
    +

    +HIGHLY SELECTIVE DATA SET: This January 2006 data freeze provides estimates of mRNA expression in adult forebrain and midbrain from 43 lines of mice including C57BL/6J, DBA/2J, reciprocal F1 hybrids, and 39 BXD recombinant inbred strains. Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Samples were hybridized in small pools (n = 3) to a total of 121 Affymetrix M430A and B array pairs. This data set only includes the highest quality subset of 76 arrays that have been quantile normalized at both probe and probe set levels. This data set was initially processed using the RMA protocol. Data were renormalized after generating the RMA values using a second quantile normalization step and a round of correction for group and batch effects. To simplify comparisons among transforms, final RMA values of each array have been adjusted to an average of 8 units and a standard deviation of 2 units. A total of 355 probe sets have LRS values above 50. +

    +
    + + +

        About the cases used to generate this set of data:

    + +
    +We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 2 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues

    + +

    All stock was obtained originally from The Jackson Laboratory between 1999 and 2003. Most BXD animals were born and housed at the University of Tennessee Health Science Center. Some cases were bred at the University of Memphis (Douglas Matthews) or the University of Alabama (John Mountz and Hui-Chen Hsu). +

    + + +

        About the tissue used to generate this set of data:

    + +
    The INIA M430 brain Database (Jan06) consists of 78 Affymetrix 430A and 430B microarray pairs. Each pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb or retina, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter, Shirlean Goodwin, and colleagues at the University of Memphis. + +

    Replication and Sample Balance: Our goal was to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. While we achieved this goal technically, not all of the replicates were of sufficient quality to be included in this highly selected set. This data set is now complete and includes more than 20 replicates. Despite the lack of replicates for about 20 strains we still recommend this data set strongly over earliers data sets that included more arrays, many of which are suboptimal. + +

    Batch Structure: Before running the first batch of 30 pairs of array (dated Jan04), we ran four test samples (Nov03). The main batch of 30 includes the four test samples (four technical replicates). The Nov03 data was combined with the Jan04 data and was treated as a single batch that consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. The second large batch was run February 2005 (Feb05) and consists of 71 pairs of arrays. Two more batches were run; the final in December 2005 (16 arrays pairs). Batch effects were corrected at the individual probe level as described below. + + +

    The table below summarizes information on strain, sex, age, sample name, batch result date, the grouping to which an arrays data set belongs based on expression similarity, and source of mice. + +

    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexAgeSample
    Batch
    Final Grouping
    Source
    1B6D2F1F127R0919F1
    2
    e_2
    UTM JB
    2B6D2F1F127R0919F2
    2
    e_2
    UTM JB
    3B6D2F1F64R1053F1
    3
    g_3
    UTM RW
    4B6D2F1F64R1053F1
    3
    e_3
    UTM RW
    5B6D2F1M66R1057F1
    3
    e_3
    UTM RW
    6D2B6F1F57R1066F1
    3
    e_3
    UTM RW
    7C57BL/6JF65R0903F1
    1
    se_1
    UTM RW
    8C57BL/6JF65R0903F1
    2
    e_2
    UTM RW
    9C57BL/6JM66R0906F1
    1
    e_1
    UTM RW
    10C57BL/6JM76R0997F1
    3
    g_3
    UTM RW
    11DBA/2JF60R0917F1
    1
    e_1
    UTM RW
    12DBA/2JF64R1123F1
    3
    g_3
    UTM RW
    13DBA/2JM60R0918F1
    2
    sgA_2
    UTM RW
    14DBA/2JM73R1009F1
    3
    w_3
    UTM RW
    15BXD1M181R0956F1
    3
    e_3
    UTM JB
    16BXD2F142R0907F1
    3
    e_3
    UAB
    17BXD5F56R0744F1
    3
    o_3
    UMemphis
    18BXD5M71R0728F1
    2
    e_2
    UMemphis
    19BXD6F57R1711F1
    3
    g_3
    JAX
    20BXD8M71R2664F1
    4
    se_4
    JAX
    21BXD11F97R0745F1
    3
    gA_3
    UAB
    22BXD12F64R0896F1
    3
    o_3
    UMemphis
    23BXD12M64R0897F1
    2
    e_2
    UMemphis
    24BXD13F86R0748F1
    2
    e_2
    UMemphis
    25BXD13F86R0730F1
    3
    e_3
    UMemphis
    26BXD13M76R0929F1
    3
    e_3
    UMemphis
    27BXD14M68R1051F1
    3
    e_3
    UTM RW
    28BXD15F80R0928F1
    3
    e_3
    UMemphis
    29BXD18F108R0771F1
    2
    e_2
    UAB
    30BXD19M157R1229F1
    3
    gA_3
    UTM JB
    31BXD21F67R0740F1
    3
    gA_3
    UAB
    32BXD23F88R0815F1
    3
    gA_3
    UAB
    33BXD23F66R1035F1
    3
    gA_3
    UTM RW
    34BXD23M66R1256F1
    4
    e_4
    UTM RW
    35BXD23M66R1037F1
    3
    gA_3
    UTM RW
    36BXD24F71R0914F1
    3
    e_3
    UMemphis
    37BXD24M71R0913F1
    2
    e_2
    UMemphis
    38BXD25F74R0373F1
    2
    e_2
    UTM RW
    39BXD25M58R2623F1
    4
    e_4
    UTM RW
    40BXD27M54R2660F1
    4
    e_4
    UTM RW
    41BXD28F113R0892F1
    3
    e_3
    UTM RW
    42BXD28M79R0911F1
    3
    g_3
    UMemphis
    43BXD31M61R1141F1
    3
    e_3
    UTM RW
    44BXD32F93R0898F1
    2
    e_2
    UAB
    46BXD32M76R1217F2
    4
    e_4
    UMemphis
    47BXD32M65R1478F1
    3
    e_3
    UMemphis
    48BXD34M72R0916F1
    2
    e_2
    UMemphis
    49BXD34F92R0900F1
    3
    e_3
    UMemphis
    50BXD36F79R2654F1
    4
    e_4
    UTM RW
    51BXD36F61R1145F1
    3
    e_3
    UTM RW
    52BXD36M77R0926F1
    2
    e_2
    UMemphis
    53BXD38F69R0729F1
    3
    e_3
    UMemphis
    54BXD38F83R1208F1
    3
    g_3
    UMemphis
    55BXD39F76R1712F1
    3
    e_3
    JAX
    57BXD40F184R0741F1
    3
    e_3
    UAB
    58BXD40M56R0894F1
    3
    e_3
    UMemphis
    59BXD42F100R0742F1
    3
    e_3
    UAB
    60BXD43F61R1199F1
    3
    e_3
    UTM RW
    61BXD43F59R0980F1
    4
    e_4
    UTM RW
    62BXD44M58R1072F1
    3
    e_3
    UTM RW
    63BXD45F58R1398F1
    3
    o_3
    UTM RW
    64BXD45M81R1658F2
    4
    e_4
    UTM RW
    65BXD48F59R0946F1
    3
    e_3
    UTM RW
    66BXD51F63R1430F1
    3
    e_3
    UTM RW
    67BXD51M65R1001F1
    3
    e_3
    UTM RW
    68BXD60M59R1075F1
    3
    g_3
    UTM RW
    69BXD62M58R1027F1
    3
    e_3
    UTM RW
    70BXD69F60R1438F1
    3
    e_3
    UTM RW
    71BXD69M64R1193F1
    3
    o_3
    UTM RW
    72BXD73F60R1275F1
    3
    e_3
    UTM RW
    73BXD73M76R1442F1
    3
    g_3
    UTM RW
    74BXD77M61R1426F1
    3
    g_3
    UTM RW
    75BXD87F89R1713F1
    3
    e_3
    UTM RW
    76BXD90F71R2628F1
    4
    e_4
    UTM RW
    77BXD90M61R1452F
    3
    g_3
    UTM RW
    78BXD92F58R1299F1
    3
    e_3
    UTM RW
    +
    + +

    The table below quality information on scale factor, background, present, absent, marginal, and control genes to which an arrays data set is from it's report file. +

    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSample
    Final grouping
    Set
    scale factorback ground
    present
    absentmarginalAffy- b- ActinAffy- Gapdh
    1B6D2F1R0919F1e_B2
    A
    14.21246.930.4170.5640.0191.240.8
    1B6D2F1R0919F1e_B2
    B
    30.34942.210.2330.7480.0191.240.74
    2B6D2F1R0919F2e_B2
    A
    5.95530.4680.5110.0211.170.73
    2B6D2F1R0919F2e_B2
    B
    14.79547.950.2640.7160.021.190.75
    3B6D2F1R1053F1g_B3
    A
    4.44550.820.5360.4470.0171.921.69
    3B6D2F1R1053F1g_B3
    B
    16.59651.440.2780.7020.021.931.76
    4B6D2F1R1053F1e_B3
    A
    11.19642.40.4570.5230.021.841.32
    4B6D2F1R1053F1e_B3
    B
    16.59651.440.2780.7020.021.931.76
    5B6D2F1R1057F1e_B3
    A
    7.33242.210.5050.4750.021.641.2
    5B6D2F1R1057F1e_B3
    B
    16.44440.310.3140.6610.0251.131.31
    6C57BL/6JR0903F1se_B1
    A
    10.1546.460.4180.5620.0191.130.76
    6C57BL/6JR0903F1se_B1
    B
    20.22347.780.2220.7590.0181.360.89
    7C57BL/6JR0903F1e_B2
    A
    7.40652.470.4730.5070.021.010.74
    7C57BL/6JR0903F1e_B2
    B
    20.7146.980.2520.7290.021.080.74
    8C57BL/6JR0906F1e_B1
    A
    9.40746.550.4390.540.02210.8
    8C57BL/6JR0906F1e_B1
    B
    28.7744.520.210.770.0191.040.74
    9C57BL/6JR0997F1g_B3
    A
    8.11855.740.4480.530.0220.91.04
    9C57BL/6JR0997F1g_B3
    B
    13.2449.640.3160.6610.0231.411.11
    10D2B6F1R1066F1e_B3
    A
    8.14746.390.4810.50.0190.971.22
    10D2B6F1R1066F1e_B3
    B
    18.83543.240.2850.6950.0211.111.29
    11DBA/2JR0917F1e_B1
    A
    13.77550.20.2530.7290.0191.180.76
    11DBA/2JR0917F1e_B1
    B
    22.30147.490.2410.7410.0181.370.88
    12DBA/2JR1123F1g_B3
    A
    9.45250.140.4560.5230.0211.371.87
    12DBA/2JR1123F1g_B3
    B
    23.46742.270.250.7290.0210.911.9
    13DBA/2JR0918F1sgA_B2
    A
    9.10548.240.4620.5170.0191.220.81
    13DBA/2JR0918F1sgA_B2
    B
    25.00746.990.2440.7360.0191.220.81
    14DBA/2JR1009F1w_B3
    A
    5.73642.880.5270.4550.0171.112.4
    14DBA/2JR1009F1w_B3
    B
    17.73943.750.2910.690.0190.912.36
    15BXD1R0956F1e_B3
    A
    4.92344.740.5190.460.0211.51.09
    15BXD1R0956F1e_B3
    B
    15.93739.50.310.6650.0251.471.21
    16BXD2R0907F1e_B3
    A
    6.19145.770.480.4980.0221.371.23
    16BXD2R0907F1e_B3
    B
    16.1543.780.30.6770.0231.741.37
    17BXD5R0744F1o_B3
    A
    10.44860.780.4030.5760.0211.231.38
    17BXD5R0744F1o_B3
    B
    28.05444.720.2360.7460.0181.431.68
    18BXD5R0728F1e_B2
    A
    7.88453.560.430.5490.0211.120.71
    18BXD5R0728F1e_B2
    B
    18.9242.50.2450.7350.01910.76
    19BXD6R1711F1g_B3
    A
    7.146.570.4980.4810.021.971.66
    19BXD6R1711F1g_B3
    B
    12.46546.020.3190.660.0222.061.78
    20BXD8R2664F1se_B4
    A
    2.12645.640.5940.390.0161.731
    20BXD8R2664F1se_B4
    B
    7.13341.850.3770.6030.021.950.99
    21BXD11R0745F1gA_B3
    A
    6.24240.990.5010.480.0191.41.24
    21BXD11R0745F1gA_B3
    B
    18.68141.110.2780.7020.021.281.27
    22BXD12R0896F1o_B3
    A
    8.23751.230.4330.5460.0211.721.28
    22BXD12R0896F1o_B3
    B
    19.78143.610.2640.7140.0221.441.45
    23BXD12R0897F1e_B2
    A
    10.71346.560.4210.560.0191.230.75
    23BXD12R0897F1e_B2
    B
    20.09350.310.2360.7440.021.250.76
    24BXD13R0748F1e_B2
    A
    7.14957.350.4350.5430.0221.020.74
    24BXD13R0748F1e_B2
    B
    12.7756.440.2480.7340.0191.050.8
    25BXD13R0730F1e_B3
    A
    6.07644.570.490.4880.0221.261.45
    25BXD13R0730F1e_B3
    B
    15.744.240.2930.6870.021.311.52
    26BXD13R0929F1e_B3
    A
    5.49347.460.5070.4720.0211.651.35
    26BXD13R0929F1e_B3
    B
    14.73946.050.3010.6770.0230.931.62
    27BXD14R1051F1e_B3
    A
    6.39345.190.490.4890.0211.221.26
    27BXD14R1051F1e_B3
    B
    15.48841.140.3250.6530.0221.121.38
    28BXD15R0928F1e_B3
    A
    5.64639.950.5240.4560.021.951.34
    28BXD15R0928F1e_B3
    B
    19.34437.650.2960.6820.0231.331.42
    29BXD18R0771F1e_B2
    A
    4.16854.80.5030.4770.021.130.77
    29BXD18R0771F1e_B2
    B
    9.67954.70.2770.7020.021.40.76
    30BXD19R1229F1gA_B3
    A
    6.99139.650.490.4910.021.921.29
    30BXD19R1229F1gA_B3
    B
    20.94540.50.2770.7020.0211.541.22
    31BXD21R0740F1gA_B3
    A
    6.22942.240.4830.4950.0221.311.25
    31BXD21R0740F1gA_B3
    B
    16.58441.880.3060.6730.0211.431.23
    32BXD23R0815F1gA_B3
    A
    4.75348.120.5210.460.0191.41.06
    32BXD23R0815F1gA_B3
    B
    11.55539.410.3530.6260.0221.441.1
    33BXD23R1035F1gA_B3
    A
    6.28139.580.5030.4760.021.311.6
    33BXD23R1035F1gA_B3
    B
    22.53634.860.2920.6860.0211.311.67
    34BXD23R1256F1e_B4
    A
    2.23346.660.5750.4080.0171.81.13
    34BXD23R1256F1e_B4
    B
    4.86243.160.3990.580.0211.731.01
    35BXD23R1037F1gA_B3
    A
    5.3741.470.5190.4620.0191.351.25
    35BXD23R1037F1gA_B3
    B
    18.48337.490.3050.6710.0241.241.28
    36BXD24R0914F1e_B3
    A
    6.21251.110.4970.4820.0211.091.53
    36BXD24R0914F1e_B3
    B
    19.64936.070.3090.6710.0211.41.76
    37BXD24R0913F1e_B2
    A
    9.00249.850.4370.5430.021.240.71
    37BXD24R0913F1e_B2
    B
    14.37551.490.2460.7340.021.360.79
    38BXD25R0373F1e_B2
    A
    6.22256.950.4570.5220.0221.370.75
    38BXD25R0373F1e_B2
    B
    8.33750.910.2910.6850.0241.190.77
    39BXD25R2623F1e_B4
    A
    1.98545.80.5880.3950.0161.61
    39BXD25R2623F1e_B4
    B
    7.555400.3740.6070.0191.781.03
    40BXD27R2660F1e_B4
    A
    2.68851.770.5820.4030.0161.40.84
    40BXD27R2660F1e_B4
    B
    5.73554.080.3920.5880.021.510.78
    41BXD28R0892F1e_B3
    A
    4.14347.20.5370.4420.0211.051.08
    41BXD28R0892F1e_B3
    B
    16.41345.830.2970.6820.0211.041.23
    42BXD28R0911F1g_B3
    A
    5.81143.060.5170.4650.0181.191.43
    42BXD28R0911F1g_B3
    B
    16.2241.150.30.6780.0220.851.65
    43BXD31R1141F1e_B3
    A
    3.60742.590.5470.4350.01911.15
    43BXD31R1141F1e_B3
    B
    11.82641.260.3290.650.0211.041.27
    44BXD32R0898F1e_B2
    A
    9.57445.430.4470.5320.0221.30.7
    44BXD32R0898F1e_B2
    B
    28.5742.930.230.7520.0191.420.69
    45BXD32R1214F1w_B3
    A
    5.50641.540.5270.4540.0191.42.12
    46BXD32R1217F2e_B4
    A
    1.86168.710.5810.4040.0151.620.89
    46BXD32R1217F2e_B4
    B
    5.38855.490.3760.6020.0221.940.83
    47BXD32R1478F1e_B3
    A
    5.45242.10.520.460.0191.361.68
    47BXD32R1478F1e_B3
    B
    14.80538.70.3320.6470.0211.531.84
    48BXD34R0916F1e_B2
    A
    5.37755.950.4460.5340.0211.120.75
    48BXD34R0916F1e_B2
    B
    13.77550.20.2530.7290.0191.180.76
    49BXD34R0900F1e_B3
    A
    7.20645.60.4840.4950.0211.111.15
    49BXD34R0900F1e_B3
    B
    14.66152.10.4940.4970.0211.111.15
    50BXD36R2654F1e_B4
    A
    2.64653.840.5590.4240.0171.891.27
    50BXD36R2654F1e_B4
    B
    7.06254.840.3340.6470.0191.911.24
    51BXD36R1145F1e_B3
    A
    5.22941.480.5150.4660.0190.971.12
    51BXD36R1145F1e_B3
    B
    12.66140.040.3340.6440.0221.041.13
    52BXD36R0926F1e_B2
    A
    5.84155.50.4380.5410.0211.260.74
    52BXD36R0926F1e_B2
    B
    13.35353.810.2630.7160.0211.230.76
    53BXD38R0729F1e_B3
    A
    5.47283.410.4690.5120.0190.921.09
    53BXD38R0729F1e_B3
    B
    10.8867.390.2990.6790.0221.061.2
    54BXD38R1208F1g_B3
    A
    3.53243.380.5440.4380.0181.151.27
    54BXD38R1208F1g_B3
    B
    15.23443.650.3110.6670.0231.081.38
    55BXD39R1712F1e_B3
    A
    7.51444.540.490.4890.0211.691.42
    55BXD39R1712F1e_B3
    B
    12.62444.610.3180.6610.0211.341.55
    56BXD39R0602F1w_B3
    B
    20.23137.070.3010.680.021.072.33
    57BXD40R0741F1e_B3
    A
    5.23445.680.510.4690.021.691.17
    57BXD40R0741F1e_B3
    B
    12.24246.890.3230.6560.0211.121.23
    58BXD40R0894F1e_B3
    A
    5.32644.90.520.4590.0211.261.21
    58BXD40R0894F1e_B3
    B
    10.33941.240.3520.6250.0240.811.4
    59BXD42R0742F1e_B3
    A
    5.54243.660.5220.4580.0211.721.17
    59BXD42R0742F1e_B3
    B
    15.09541.370.3190.660.0221.271.24
    60BXD43R1199F1e_B3
    A
    6.17141.280.5230.4580.0191.061.23
    60BXD43R1199F1e_B3
    B
    16.53440.320.2910.6850.0240.991.54
    61BXD43R0980F1e_B4
    A
    1.59263.750.5910.3920.0171.760.95
    61BXD43R0980F1e_B4
    B
    5.81548.890.3780.6010.0212.060.97
    62BXD44R1072F1e_B3
    A
    7.85841.120.4760.5020.0221.521.74
    62BXD44R1072F1e_B3
    B
    23.06541.320.2640.7170.0191.251.84
    63BXD45R1398F1o_B3
    A
    13.91145.870.3840.5950.0211.241.7
    63BXD45R1398F1o_B3
    B
    40.0747.470.1780.8050.0171.211.68
    64BXD45R1658F2e_B4
    A
    2.36856.290.5730.4080.0191.420.84
    64BXD45R1658F2e_B4
    B
    7.00649.520.3720.6080.021.450.8
    65BXD48R0946F1e_B3
    A
    6.56547.790.4870.4930.0211.681.27
    65BXD48R0946F1e_B3
    B
    17.49941.870.2920.6870.0211.541.35
    66BXD51R1430F1e_B3
    A
    7.04257.480.460.5190.0221.171.29
    66BXD51R1430F1e_B3
    B
    19.37348.260.2590.720.0212.071.48
    67BXD51R1001F1e_B3
    A
    4.68958.810.5010.480.0191.881.31
    67BXD51R1001F1e_B3
    B
    16.03255.590.2660.7150.0191.311.64
    68BXD60R1075F1g_B3
    A
    8.18949.90.4650.5130.0221.391.34
    68BXD60R1075F1g_B3
    B
    19.21945.140.2770.7050.0181.771.41
    69BXD62R1027F1e_B3
    A
    7.44744.420.4910.4880.0212.031.23
    69BXD62R1027F1e_B3
    B
    19.39141.090.2850.6960.0191.051.44
    70BXD69R1438F1e_B3
    A
    6.29744.190.5120.4690.0191.771.5
    70BXD69R1438F1e_B3
    B
    12.33546.580.3110.6670.0211.251.62
    71BXD69R1193F1o_B3
    A
    5.74983.560.4140.5640.0221.491.58
    71BXD69R1193F1o_B3
    B
    20.51344.280.2610.7180.0211.141.58
    72BXD73R1275F1e_B3
    A
    6.47840.910.4990.4810.021.051.52
    72BXD73R1275F1e_B3
    B
    16.93141.60.2990.6810.021.621.53
    73BXD73R1442F1g_B3
    A
    8.58462.860.4280.5520.021.781.69
    73BXD73R1442F1g_B3
    B
    17.37855.710.260.720.021.171.83
    74BXD77R1426F1g_B3
    A
    6.30646.270.5010.4810.0181.771.49
    74BXD77R1426F1g_B3
    B
    13.36548.960.3090.670.0221.261.63
    75BXD87R1713F1e_B3
    A
    6.24339.430.5150.4660.0181.381.34
    75BXD87R1713F1e_B3
    B
    14.99742.780.3050.6730.0221.711.58
    76BXD90R2628F1e_B4
    A
    2.09658.740.5720.4120.0161.570.82
    76BXD90R2628F1e_B4
    B
    8.91349.120.3320.6460.0231.880.85
    77BXD90R1452Fg_B3
    A
    7.47852.260.4490.5310.021.171.74
    77BXD90R1452Fg_B3
    B
    15.46940.590.3120.6680.021.71.74
    78BXD92R1299F1e_B3
    A
    8.26445.380.4780.5030.0191.41.37
    78BXD92R1299F1e_B3
    B
    18.36943.40.290.6890.0211.911.6
    +
    +
    + +

        About the array platform :

    +
    +

    Affymetrix Mouse Genome 430A and B array pairs: The 430A and B array pairs consist of 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430 2.0 series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the two batches (n = 34 and n = 71 array pairs) at the probe level. To do this we calculated the ratio of each batch mean to the mean of both batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each batch is the same. + +
    • Step 7a: The 430A and 430B arrays include a set of 100 shared probe sets (a total of 2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the 430A and 430B arrays to a common scale. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression correction to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a small offset. The result of this step is that the mean of the 430A expression is fixed at a value of 8, whereas that of the 430B chip is typically reduced to 7. The average of the merged 430A and 430B array data set is approximately 7.5. + +
    • Step 7b: We recentered the merged 430A and 430B data sets to a mean of 8 and a standard deviation of 2. This involved reapplying Steps 3 through 5. + +
    • Step 8: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, source of animals, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL are the averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
      +
    • Setp 1: Get CAB file for all arrays (121 arrays) +
    • Setp 2: Unpack CAB file using GCOS 1.4 DAT, CEL, RPT, CHP +
    • Setp 3: Put RPT data into spreadsheet +
    • Setp 4: Remaining N CEL data files were transformed to old CEL format using Transfer Tool (121 arrays) +
    • Setp 5: Old CEL format files transformed using RMA and PDNN (121 arrays). 430A set and 430B set arrays are processed separately using RMA and PDNN, Normalize 430A and 430B separately to Z Scores (2Z+8). +
    • Setp 6: Examine all scatter plots of the probe sets using DataDesk and categorized them by similarity. We are looking for batch and sub-batch structure. There are still quite obvious differences. For the INIA data we defined 5 groups that did NOT align exactly with the batches. The results are indicated in the table under the heading "Final Grouping." These are letters followed by the batch. For example "e_2" is an "e" type data set from batch 2. The prefix "s" means that an array was considered the "standard" for a particular group. For example sgA_2 is the "standard" for the gA group and was a member of batch 2. We defined groups "e" (originally "e" stood for 'excellent'), "g" (originally 'g' stood for good), "o" (OK), "w" (wide), and "gA" (good subdivision A). +
    • Setp 7: Delete obviously bad arrays (n of 3 were deleted, leaving 118 arrays). Array BXD8(S167) is high scale factor (A:16.797,B:35.646); BXD18(R1220) and BXD33(R2627) are high 3'/5' B_Act_Sig(64.20), GAPD_Sig(84.20) and B_Act_Sig(49.92), GAPD_Sig(84.17). +
    • Setp 8: Group rescale four minor groups to the same level of the largest group (please note that a group may have arrays from multiple physical batches). This group correction is done on a probe_set-by-probe_set level. The result of this rescaling is a group corrected data set. +
    • Setp 9: Look at the group rescaled arrays and delete any arrays that do not look good where good is usually a correlation of >0.96 with respect to other arrays. For the INIA data set of 118 arrays we deleted 40 arrays using very strict goodness criteria. +
    • Setp 10: Reprocess the remaining 78 good old-format CEL files and process as in Step 5. , 430A set and 430B set separately using RMA and PDNN, Normalize 430A and 430B separately to Z Scores (2Z+8). +
    • Setp 11: Bring the two arrays (430A and 430B) into alignment. To do this we regressed Z scores of the common set of 100 probe sets to obtain a linear regression corrections to rescale the 430B arrays to the 430A array values. Make data sets for RMA_430AB and PDNN_430AB. Normalize 430AB to Z Scores. +
    • Setp 12:Rank order of Probe Sets: Run all of the arrays through a second quantile normalization. This involves computing the average of all probe sets across all arrays. These averages are then rank ordered. We also rank order each of the individual array data sets. Probe sets for each individual array are then assigned a new expression value based on 1. Its rank within the particular array and 2. the value of that particular rank taken from the AVERAGE data. This forces every array to have exactly the same distribution as the average data. The result of this process is colinear expression of all arrays. +
    • Setp 13: We normalize the means of each of these groups to a common value set to the largest group (group e now with 37 members). If the mean for probe set 100001 is 8 in group e whereas group g a mean 8.5, then we just have a correction factor of 8/8.5 for probe set 100001 in the group g. The intent of this step is to correct for group effect on a probe set by probe set level. +
    • Setp 14: Verify that all arrays have correlations >0.98 using RMA transform. Two arrays discovered that escaped deletion. Delete these arrays (BXD32-R1214, BXD39-R0602) +
    • Setp 15: Finally, we compute the arithmetic mean of the values for the set of 76 final arrays for each strain. +
    +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized standard deviation of 2 units within each array). Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets. +

    + + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + + +

        Data source acknowledgment:

    +
    +Support for acquisition of microarray data were generously provided by the NIAAA and its INIA grant program to RWW, Thomas Sutter, and Daniel Goldowitz (U01AA013515, U01AA013499-03S1, U01AA013488, U01AA013503-03S1). Support for the continued development of the GeneNetwork and WebQTL was provided by a NIMH Human Brain Project grant (P20MH062009). All arrays were processed at the University of Memphis by Thomas Sutter and colleagues with support of the INIA Bioanalytical Core. +
    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004; April 7, 2005; RNA/tissue preparation protocol updatedby JLP, Sept 2, 2005; Sept 26, 2005. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/IBR_M_0204_M.html b/web/dbdoc/IBR_M_0204_M.html new file mode 100755 index 00000000..c73bbc1f --- /dev/null +++ b/web/dbdoc/IBR_M_0204_M.html @@ -0,0 +1,198 @@ + +M430 Microarray brain February04 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    +INIA Brain mRNA M430 (Feb04) MAS5 + + modify this page

    Accession number: GN11

    + +

        Summary:

    + +

    +The February 2004 freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using the Affymetrix MOE430 microarrays that replaced the U74 series of arrays in 2003. Data were generated at the University of Tennessee Health Science Center (UTHSC) as part of an research project funded by the NIAAA. Brain samples from BXD strains were hybridized in small pools (n=3) to M430A and M430B arrays. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was essentially run as a single large batch with careful consideration to balancing samples by sex and age. +

    +
    + + +

        About the cases used to generate this set of data:

    + +
    We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera). Chromosomes of the two parental strains have been recombined and fixed randomly in the many different BXD strains. BXD2 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were also produced by Taylor, but they were generated in the 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004).

    + +

    In this mRNA expression data set we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + + +

        About the tissue used to generate these data:

    + +
    This INIA M430 brain Database (February04) consists of 30 pairs of Affymetrix 430A and 430B arrays. Each pair was hybridized in succession (A then B) with cRNA generated from a pool of three brains from adult mice of the same age and sex. The brain region included most of the forebrain and midbrain, bilaterally. This sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain).

    + +

    RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai.

    + +

    All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter and colleagues at the University of Memphis. Before running the main batch of 30 pairs of array, we ran four test samples (one male and one female pool from each of the two parental strains, C57BL/6J and DBA/2J). The main batch of 30 array pairs includes the same four samples (in other words we have four technical replicates shared between the test and a single main batch), two F1 hybrid sample (each run two times for within-batch technical replication), and 22 BXD strains. The February04 data set therefore consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. We should note that the four technical replicates were eventually combined with a correction for a highly significant batch effect. This was done at both the probe and probe set levels to numerically align the test batch values with the two main batches. (The ratio of the probe average in the four test arrays to the average of the same probe in the four corresponding main batch arrays was used as a correction factor.) The F1 within-batch technical replicates were simply averaged. In the next batch we will reverse the sex of the BXD samples to achieve a balance with at least 22 BXD strains with one male and one female sample each. +

    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSample_nameResult date
    B6D2F1F127919-F1Jan04
    B6D2F1F127919-F2Jan04
    B6D2F1M127920-F1Jan04
    B6D2F1M127920-F2Jan04
    C57BL/6JF65903-F1Nov03
    C57BL/6JF65903-F2Jan03
    C57BL/6JM66906-F1Nov03
    C57BL/6JM66906-F2Jan04
    DBA/2JF60917-F1Nov03
    DBA/2JF60917-F2Jan04
    DBA/2JM60918-F1Nov03
    DBA/2JM60918-F2Jan04
    BXD1F95895-F1Jan04
    BXD5M71728-F1Jan04
    BXD6M92902-F1Jan04
    BXD8F72S167-F1Jan04
    BXD9M86909-F1Jan04
    BXD12M64897-F1Jan04
    BXD13F86748-F1Jan04
    BXD14M91912-F1Jan04
    BXD18F108771-F1Jan04
    BXD19F56S236-F1Jan04
    BXD21F67740-F1Jan04
    BXD23F88815-F1Jan04
    BXD24M71913-F1Jan04
    BXD25F74S373-F1Jan04
    BXD28F79910-F1Jan04
    BXD29F76693-F1Jan04
    BXD32F93898-F1Jan04
    BXD33M77915-F1Jan04
    BXD34M72916-F1Jan04
    BXD36M77926-F1Jan04
    BXD38M69731-F1Jan04
    BXD42M97936-F1Jan04
    +
    +
    + +

        About the array platform:

    + +
    Affymetrix MOE430 GeneChip Set: The expression data were generated using MOE430A and MOE430B arrays. Chromosomal positions of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possiible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      +
    • Step 1: We added a constant offset of 1 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log2 of each cell signal level. + +
    • Step 3: We computed the Z scores for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8 units, a variance of 4 units, and a standard deviation of 2 units. The advantage of this modified Z score is that a 2-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B GeneChips include a set of 100 shared probe sets (2200 probes) that have identical sequences. These 2200 probes and 100 probe sets provide a way to calibrate expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array (the A array contains the more commonly expressed transcripts). To bring the two arrays into numerical alignment, we regressed Z scores of the common set of 2200 probes to obtain a linear regression corrections to rescale the 430B arrays to values that match the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset (the regression intercept). The result of this adjustment is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recentered the entire combined set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: When necessary, we correct for technical variance introduced by running multiple batches. However, this data set is essentially a single batch with a few technical replicates in a first test batch. + +
    • Step 8: Finally, we compute the arithmetic mean of the values for the set of microarrays for each strain. In this data set we have only a very modest number of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that this data set does not provide any correction for variance introduced by differences in sex, age, tissue source, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We expect to add statistical controls and adjustments for these variables in subsequent versions of WebQTL. + +
    +Probe set data from the CHP file: These CHP files were generated using MAS 5. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a 2-fold difference in expression level. Expression levels below 5 are close to the noise level. +
    + + + +

        Data source acknowledgment:

    +
    +Array data were generated with funds from the NIAAA INIA to RWW and Thomas Sutter. Informatics resources are supported primarily by an NIMH/NIDA Human Brain Project. All arrays were processed at the University of Memphis by Thomas Sutter and colleagues with support of the INIA Bioanalytical Core. +
    + +

        Information about this text file:

    +

    +This text file originally generated by RWW, YHQ, and EJC, March 2004. Updated by RWW, October 30, 2004. + + +

    + + + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/IBR_M_0405_M.html b/web/dbdoc/IBR_M_0405_M.html new file mode 100755 index 00000000..deee6698 --- /dev/null +++ b/web/dbdoc/IBR_M_0405_M.html @@ -0,0 +1,268 @@ + +M430 Microarray brain April05 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    INIA M430 brain MAS5 Database (April/05 Freeze) modify this page

    Accession number: GN57

    + +

        Summary:

    + +
    +

    +This April 2005 data freeze provides estimates of mRNA expression in adult forebrain and midbrain from 45 lines of mice including C57BL/6J, DBA/2J, their F1 hybrids, and 42 BXD recombinant inbred strains. Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Samples were hybridized in small pools (n = 3) to a total of 105 Affymetrix M430A and B array pairs. This particular data set was processed using the Microarray Suite 5 (MAS 5) protocol. To simplify comparisons among transforms, MAS 5 values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. +

    +
    + + +

        About the cases used to generate this set of data:

    + +
    +We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues

    + +

    All stock was obtained originally from The Jackson Laboratory between 1999 and 2003. Most BXD animals were born and housed at the University of Tennessee Health Science Center. Some cases were bred at the University of Memphis (Douglas Matthews) or the University of Alabama (John Mountz and Hui-Chen Hsu). +

    + + +

        About the tissue used to generate this set of data:

    + +
    The INIA M430 brain Database (April05) consists of 105 Affymetrix 430A and 430B microarray pairs. Each pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter, Shirlean Goodwin, and colleagues at the University of Memphis. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. We have not yet achieved this goal. Ten of 45 strains are still represented by single sex samples: BXD2 (F), BXD8 (F), BXD15 (F), BXD18 (F), BXD25 (F), BXD29 (F), BXD33 (M), BXD45 (F), BXD77 (M), and BXD90 (M). Eleven strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 2M), B6D2F1 (2F 2M) + D2B6F1 (1F 1M), BXD6 (2F 1M), BXD13 (2F 1M), BXD14 (1F 2M), BXD28 (2F 1M), BXD34 (1F 2M), BXD36 (1F 2M), BXD38 (1F 2M), BXD42 (1F 2M). + +

    Batch Structure: Before running the first batch of 30 pairs of array (dated Jan04), we ran four test samples (Nov03). The main batch of 30 includes the four test samples (four technical replicates). The Nov03 data was combined with the Jan04 data and was treated as a single batch that consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. The second large batch was run February 2005 (Feb05) and consists of 71 pairs of arrays. Batch effects were corrected at the individual probe level as described below. + + +

    The table below summarizes information on strain, sex, age, sample name, batch result date, and source of mice. + +

    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexAgeSample_nameResult dateSource
    1C57BL/6JF65R0903F1Nov03UTM RW
    2C57BL/6JF65R0903F1Jan04UTM RW
    3C57BL/6JM66R0906F1Nov03UTM RW
    4C57BL/6JM66R0906F1Jan04UTM RW
    5C57BL/6JM66R0906F1Feb05UTM RW
    6C57BL/6JM76R0997F1Feb05UTM RW
    7D2B6F1F57R1066F1Feb05UTM RW
    8D2B6F1M59R1381F1Feb05UTM RW
    9DBA/2JF60R0917F1Nov03UTM RW
    10DBA/2JF60R0917F1Feb05UTM RW
    11DBA/2JF60R0917F2Jan04UTM RW
    12DBA/2JF64R1123F1Feb05UTM RW
    13DBA/2JM60R0918F1Nov03UTM RW
    14DBA/2JM60R0918F1Jan04UTM RW
    15DBA/2JM73R1009F1Feb05UTM RW
    16B6D2F1F127R0919F1Jan04UTM JB
    17B6D2F1F127R0919F2Jan04UTM JB
    18B6D2F1F64R1053F1Feb05UTM RW
    19B6D2F1F64R1053F1Feb05UTM RW
    20B6D2F1M127R0920F1Jan04UTM JB
    21B6D2F1M127R0920F2Jan04UTM JB
    22B6D2F1M66R1057F1Feb05UTM RW
    23BXD1M181R0956F1Feb05UTM JB
    24BXD1F95R0895F1Jan04UMemphis
    25BXD2F142R0907F1Feb05UAB
    26BXD5F56R0744F1Feb05UMemphis
    27BXD5M71R0728F1Jan04UMemphis
    28BXD6F57R1711F1Feb05JAX
    29BXD6F92R0901F1Feb05UMemphis
    30BXD6M92R0902F1Jan04UMemphis
    31BXD8F72R0167F1Jan04UAB
    32BXD9F86R0908F1Feb05UMemphis
    33BXD9M86R0909F1Jan04UMemphis
    34BXD11F97R0745F1Feb05UAB
    35BXD11M92R0666F1Feb05UMemphis
    36BXD12F64R0896F1Feb05UMemphis
    37BXD12M64R0897F1Jan04UMemphis
    38BXD13F86R0730F1Feb05UMemphis
    39BXD13F86R0748F1Jan04UMemphis
    40BXD13M76R0929F1Feb05UMemphis
    41BXD14M91R0912F1Jan04UMemphis
    42BXD14M68R1051F1Feb05UTM RW
    43BXD15F80R0928F1Feb05UMemphis
    44BXD18F108R0771F1Jan04UAB
    45BXD19M157R1229F1Feb05UTM JB
    46BXD19F56R0236F1Jan04UAB
    47BXD21F67R0740F1Jan04UAB
    48BXD21F67R0740F1Feb05UAB
    49BXD23F66R1035F1Feb05UTM RW
    50BXD23M66R1037F1Feb05UTM RW
    51BXD23F88R0815F1Jan04UAB
    52BXD23F88R0815F1Feb05UAB
    53BXD24F71R0914F1Feb05UMemphis
    54BXD24M71R0913F1Jan04UMemphis
    55BXD25F74R0373F1Jan04UTM RW
    56BXD28F79R0910F1Jan04UMemphis
    57BXD28M79R0911F1Feb05UMemphis
    58BXD28F113R0892F1Feb05UTM RW
    59BXD29F76R0693F1Jan04UMemphis
    60BXD31F61R1199F1Feb05UTM RW
    61BXD31M61R1141F1Feb05UTM RW
    62BXD32F93R0898F1Jan04UAB
    63BXD32F76R1214F1Feb05UMemphis
    64BXD32M65R1478F1Feb05UMemphis
    65BXD33M77R0915F1Jan04UMemphis
    66BXD34F92R0900F1Feb05UMemphis
    67BXD34M56R0617F1Feb05UMemphis
    68BXD34M72R0916F1Jan04UMemphis
    69BXD36F61R1145F1Feb05UTM RW
    70BXD36M77R0926F1Jan04UMemphis
    71BXD36M61R1211F1Feb05UMemphis
    72BXD38M83R1208F1Feb05UMemphis
    73BXD38F69R0729F1Feb05UMemphis
    74BXD38M69R0731F1Jan04UMemphis
    75BXD39F76R1712F1Feb05JAX
    76BXD39M71R0602F1Feb05UAB
    77BXD40F184R0741F1Feb05UAB
    78BXD40M56R0894F1Feb05UMemphis
    79BXD42F100R0742F1Feb05UAB
    80BXD42M97R0936F1Jan04UMemphis
    81BXD42M105R0937F1Feb05UMemphis
    82BXD43M63R1047F1Feb05UTM RW
    83BXD44F57R1069F1Feb05UTM RW
    84BXD44M58R1072F1Feb05UTM RW
    85BXD45F58R1398F1Feb05UTM RW
    86BXD48F59R0946F1Feb05UTM RW
    87BXD48M64R0970F1Feb05UTM RW
    88BXD51F63R1430F1Feb05UTM RW
    89BXD51M65R1001F1Feb05UTM RW
    90BXD60F64R0976F1Feb05UTM RW
    91BXD60M59R1075F1Feb05UTM RW
    92BXD62F59R1033F1Feb05UTM RW
    93BXD62M58R1027F1Feb05UTM RW
    94BXD69F60R1438F1Feb05UTM RW
    95BXD69M64R1193F1Feb05UTM RW
    96BXD73F60R1275F1Feb05UTM RW
    97BXD73M76R1442F1Feb05UTM RW
    98BXD77M61R1426F1Feb05UTM RW
    99BXD86F77R1414F1Feb05UTM RW
    100BXD86M77R1418F1Feb05UTM RW
    101BXD87F89R1713F1Feb05UTM RW
    102BXD87M84R1709F1Feb05UTM RW
    103BXD90M61R1452FFeb05UTM RW
    104BXD92F58R1299F1Feb05UTM RW
    105BXD92M59R1307F1Feb05UTM RW
    +
    +
    + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430A and 430B array pairs: The 430A and B array pairs collectively consist of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are essentially duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequence as the 430 2.0 series. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the 430 2.0.

    +
    + + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the two batches (n = 34 and n = 71 array pairs) at the probe level. To do this we calculated the ratio of each batch mean to the mean of both batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each batch is the same. + +
    • Step 7a: The 430A and 430B arrays include a set of 100 shared probe sets (a total of 2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the 430A and 430B arrays to a common scale. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression correction to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a small offset. The result of this step is that the mean of the 430A expression is fixed at a value of 8, whereas that of the 430B chip is typically reduced to 7. The average of the merged 430A and 430B array data set is approximately 7.5. + +
    • Step 7b: We recentered the merged 430A and 430B data sets to a mean of 8 and a standard deviation of 2. This involved reapplying Steps 3 through 5. + +
    • Step 8: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, source of animals, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. + +
    + + +

        Data source acknowledgment:

    +
    +Support for acquisition of microarray data were generously provided by the NIAAA and its INIA grant program to RWW, Thomas Sutter, and Daniel Goldowitz (U01AA013515, U01AA013499-03S1, U01AA013488, U01AA013503-03S1). Support for the continued development of the GeneNetwork and WebQTL was provided by a NIMH Human Brain Project grant (P20MH062009). All arrays were processed at the University of Memphis by Thomas Sutter and colleagues with support of the INIA Bioanalytical Core. +
    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004; April 7, 2005; RNA/tissue preparation protocol updatedby JLP, Sept 2, 2005; Sept 26, 2005. +

    + + + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/IBR_M_0405_P.html b/web/dbdoc/IBR_M_0405_P.html new file mode 100755 index 00000000..6acc7644 --- /dev/null +++ b/web/dbdoc/IBR_M_0405_P.html @@ -0,0 +1,308 @@ + +M430 Microarray brain PDNN April05 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    + +INIA Brain mRNA M430 (April05) PDNN modify this page

    Accession number: GN58

    + +

        Summary:

    + +
    +

    +This April 2005 data freeze provides estimates of mRNA expression in adult forebrain and midbrain from 45 lines of mice including C57BL/6J, DBA/2J, their F1 hybrids, and 42 BXD recombinant inbred strains. Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Samples were hybridized in small pools (n = 3) to a total of 105 Affymetrix M430A and B array pairs. This particular data set was processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. +

    +
    + + + +

        About the cases used to generate this set of data:

    + +
    +We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D). Physical maps in WebQTL incorporate approximately 2 million B vs D SNPs from Celera Genomics and from the Perlegen-NIEHS sequencing effort. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues.

    + +

    All stock was obtained originally from The Jackson Laboratory between 1998 and 2003. Most BXD animals were born and housed at the University of Tennessee Health Science Center. Some cases were bred at the University of Memphis (Douglas Matthews) or the University of Alabama (John Mountz and Hui-Chen Hsu). +

    + + +

        About the tissue used to generate this set of data:

    + +
    The INIA M430 brain Database (April05) consists of 105 Affymetrix 430A and 430B microarray pairs. Each pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai at UTHSC. + +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Eyes were removed immediately and placed in RNAlater at room temperature. Usually six eyes from animals with a common sex, age, and strain were stored in a single tube. The body was sprayed lightly with 70% ethanol to wet the hair. the following standard approach was used to extract the brain: + +

      +
    1. Using small surgical scissors make an incision under the skin on the dorsal side of the neck. Cut the skin overlying the skull close to the midsagittal plane towards the nose. Pull and reflect the skin to expose the entire dorsal skull. +
    2. Slip the points of the scissors through into the cisterna magna just caudal to the cerebellum and gently enlarge this opening until is it possible to cut through the skull overlying the cerebellum. +
    3. Cut rostrally through the skull along the midsagittal line almost all the way to the nasal opening, taking care not to damage the dorsal surface of the brain. +
    4. Approximately midway along this incision, make a lateral cut. Repeat along the incision and peel back the resulting strips of skull. +
    5. Using small forceps, free the olfactory bulbs rostrally and ventrally, taking care to retain their connection to the rest of the forebrain. +
    6. Gently lift the brain from the base the skull starting from the olfactory bulbs, pulling the brain toward a nearly vertical position. Cut the optic and trigeminal nerves. Separate the brain from the spinal cord about 2 mm distal to the medulla. +
    7. Spread the hemispheres of the forebrain gently with forceps and then cut from dorsal to ventral using a straight scalpel, separating the hemispheres from each other (but not from the cerebellum). Take care to retain both paraflocculi. +
    + +At this point the protocol divides. If tissue is to be saved for RNA extraction at a later time, the whole brain is placed directly in RNAlater (Ambion, Inc.) and treated per the manufacturer’s directions. Step 7 is still very important because RNAlater may not fully penetrate the forebrain if the lobes are not separated. If tissue is to be used for immediate RNA extraction, one lobe of the forebrain is removed for processing and the rest of the brain is stored in RNAlater.

    + +Dissecting and preparing forebrain and midbrain for RNA extraction +

      +
    1. Remove the left or right hemisphere of the forebrain and midbrain (referred to here as the forebrain for simplicity), either fresh or preserved in RNAlater by cutting from the caudal border of the inferior colliculus on the dorsal side and extending the cut ventrally to the basis pedunculi and the pons (cut just rostral of the pons) on the ventral side. See steps 7 and 8 here +
    2. Place tissue for RNA extraction in RNA STAT-60 (Tel-Test Inc.) and process per manufacturer’s instructions (in brief form below). +
    3. Store RNA in 75% ethanol at –80 deg. C until use. +
    + + + +

    Total RNA was extracted with RNA STAT-60 (Tel-Test) according to the manufacturer’s instructions. Briefly we: +

      +
    1. homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue) +
    2. allowed the homogenate to stand for 5 min at room temperature +
    3. added 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    4. shook the sample vigorously for 15 sec and let the sample sit at room temperature for 3 min +
    5. centrifuged at 12,000 G for 15 min +
    6. transfered the aqueous phase to a fresh tube +
    7. added 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    8. vortexed and allowed sample to stand at room temperature for 5-10 min +
    9. centrifugeed at 12,000 G for 10-15 min +
    10. removed the supernatant and washed the RNA pellet with 75% ethanol +
    11. stored the pellet in 75% ethanol at -80 deg C until use +
    + + +

    Sample Processing. Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence, The University of Memphis, lead by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, samples were quality control checked for RNA purity using 260/280 ratios (samples had to be greater than 1.8, but the majority were 1.9 or higher). RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8, based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II RT (Invitrogen Inc.). The Enzo LIfe Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. At this point the cRNA was evaluated again using both the 260/280 ratio (values of 2.0 or above are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nt is required). Those samples that passed both QC steps (10% usually fail) were then sheared using a fragment buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No.900371). After fragmentation, samples were either stored at -80 deg. centrigrade until use or were immediately injected onto the array. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. We have not yet achieved this goal. Ten of 45 strains are still represented by single sex samples: BXD2 (F), BXD8 (F), BXD15 (F), BXD18 (F), BXD25 (F), BXD29 (F), BXD33 (M), BXD45 (F), BXD77 (M), and BXD90 (M). Eleven strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 2M), B6D2F1 (2F 2M) + D2B6F1 (1F 1M), BXD6 (2F 1M), BXD13 (2F 1M), BXD14 (1F 2M), BXD28 (2F 1M), BXD34 (1F 2M), BXD36 (1F 2M), BXD38 (1F 2M), BXD42 (1F 2M). + +

    Batch Structure: Before running the first batch of 30 pairs of array (dated Jan04), we ran four test samples (Nov03). The main batch of 30 includes the four test samples (four technical replicates). The Nov03 data was combined with the Jan04 data and was treated as a single batch that consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. The second large batch was run February 2005 (Feb05) and consists of 71 pairs of arrays. Batch effects were corrected at the individual probe level as described below. + + +

    The table below summarizes information on strain, sex, age, sample name, batch result date, and source of mice. + +

    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexAgeSample_nameResult dateSourec
    1C57BL/6JF65R0903F1Nov03UTM RW
    2C57BL/6JF65R0903F1Jan04UTM RW
    3C57BL/6JM66R0906F1Nov03UTM RW
    4C57BL/6JM66R0906F1Jan04UTM RW
    5C57BL/6JM66R0906F1Feb05UTM RW
    6C57BL/6JM76R0997F1Feb05UTM RW
    7D2B6F1F57R1066F1Feb05UTM RW
    8D2B6F1M59R1381F1Feb05UTM RW
    9DBA/2JF60R0917F1Nov03UTM RW
    10DBA/2JF60R0917F1Feb05UTM RW
    11DBA/2JF60R0917F2Jan04UTM RW
    12DBA/2JF64R1123F1Feb05UTM RW
    13DBA/2JM60R0918F1Nov03UTM RW
    14DBA/2JM60R0918F1Jan04UTM RW
    15DBA/2JM73R1009F1Feb05UTM RW
    16B6D2F1F127R0919F1Jan04UTM JB
    17B6D2F1F127R0919F2Jan04UTM JB
    18B6D2F1F64R1053F1Feb05UTM RW
    19B6D2F1F64R1053F1Feb05UTM RW
    20B6D2F1M127R0920F1Jan04UTM JB
    21B6D2F1M127R0920F2Jan04UTM JB
    22B6D2F1M66R1057F1Feb05UTM RW
    23BXD1M181R0956F1Feb05UTM JB
    24BXD1F95R0895F1Jan04UMemphis
    25BXD2F142R0907F1Feb05UAB
    26BXD5F56R0744F1Feb05UMemphis
    27BXD5M71R0728F1Jan04UMemphis
    28BXD6F57R1711F1Feb05JAX
    29BXD6F92R0901F1Feb05UMemphis
    30BXD6M92R0902F1Jan04UMemphis
    31BXD8F72R0167F1Jan04UAB
    32BXD9F86R0908F1Feb05UMemphis
    33BXD9M86R0909F1Jan04UMemphis
    34BXD11F97R0745F1Feb05UAB
    35BXD11M92R0666F1Feb05UMemphis
    36BXD12F64R0896F1Feb05UMemphis
    37BXD12M64R0897F1Jan04UMemphis
    38BXD13F86R0730F1Feb05UMemphis
    39BXD13F86R0748F1Jan04UMemphis
    40BXD13M76R0929F1Feb05UMemphis
    41BXD14M91R0912F1Jan04UMemphis
    42BXD14M68R1051F1Feb05UTM RW
    43BXD15F80R0928F1Feb05UMemphis
    44BXD18F108R0771F1Jan04UAB
    45BXD19M157R1229F1Feb05UTM JB
    46BXD19F56R0236F1Jan04UAB
    47BXD21F67R0740F1Jan04UAB
    48BXD21F67R0740F1Feb05UAB
    49BXD23F66R1035F1Feb05UTM RW
    50BXD23M66R1037F1Feb05UTM RW
    51BXD23F88R0815F1Jan04UAB
    52BXD23F88R0815F1Feb05UAB
    53BXD24F71R0914F1Feb05UMemphis
    54BXD24M71R0913F1Jan04UMemphis
    55BXD25F74R0373F1Jan04UTM RW
    56BXD28F79R0910F1Jan04UMemphis
    57BXD28M79R0911F1Feb05UMemphis
    58BXD28F113R0892F1Feb05UTM RW
    59BXD29F76R0693F1Jan04UMemphis
    60BXD31F61R1199F1Feb05UTM RW
    61BXD31M61R1141F1Feb05UTM RW
    62BXD32F93R0898F1Jan04UAB
    63BXD32F76R1214F1Feb05UMemphis
    64BXD32M65R1478F1Feb05UMemphis
    65BXD33M77R0915F1Jan04UMemphis
    66BXD34F92R0900F1Feb05UMemphis
    67BXD34M56R0617F1Feb05UMemphis
    68BXD34M72R0916F1Jan04UMemphis
    69BXD36F61R1145F1Feb05UTM RW
    70BXD36M77R0926F1Jan04UMemphis
    71BXD36M61R1211F1Feb05UMemphis
    72BXD38M83R1208F1Feb05UMemphis
    73BXD38F69R0729F1Feb05UMemphis
    74BXD38M69R0731F1Jan04UMemphis
    75BXD39F76R1712F1Feb05JAX
    76BXD39M71R0602F1Feb05UAB
    77BXD40F184R0741F1Feb05UAB
    78BXD40M56R0894F1Feb05UMemphis
    79BXD42F100R0742F1Feb05UAB
    80BXD42M97R0936F1Jan04UMemphis
    81BXD42M105R0937F1Feb05UMemphis
    82BXD43M63R1047F1Feb05UTM RW
    83BXD44F57R1069F1Feb05UTM RW
    84BXD44M58R1072F1Feb05UTM RW
    85BXD45F58R1398F1Feb05UTM RW
    86BXD48F59R0946F1Feb05UTM RW
    87BXD48M64R0970F1Feb05UTM RW
    88BXD51F63R1430F1Feb05UTM RW
    89BXD51M65R1001F1Feb05UTM RW
    90BXD60F64R0976F1Feb05UTM RW
    91BXD60M59R1075F1Feb05UTM RW
    92BXD62F59R1033F1Feb05UTM RW
    93BXD62M58R1027F1Feb05UTM RW
    94BXD69F60R1438F1Feb05UTM RW
    95BXD69M64R1193F1Feb05UTM RW
    96BXD73F60R1275F1Feb05UTM RW
    97BXD73M76R1442F1Feb05UTM RW
    98BXD77M61R1426F1Feb05UTM RW
    99BXD86F77R1414F1Feb05UTM RW
    100BXD86M77R1418F1Feb05UTM RW
    101BXD87F89R1713F1Feb05UTM RW
    102BXD87M84R1709F1Feb05UTM RW
    103BXD90M61R1452FFeb05UTM RW
    104BXD92F58R1299F1Feb05UTM RW
    105BXD92M59R1307F1Feb05UTM RW
    +
    +
    + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430A and 430B array pairs: The 430A and B array pairs collectively consist of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are essentially duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequence as the 430 2.0 series. However, we have found that roughy 75000 probes differ between those on A and B arrays and those on the 430 2.0.

    +
    + + + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the two batches (n = 34 and n = 71 array pairs) at the probe level. To do this we calculated the ratio of each batch mean to the mean of both batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each batch is the same. + +
    • Step 7a: The 430A and 430B arrays include a set of 100 shared probe sets (a total of 2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the 430A and 430B arrays to a common scale. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression correction to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a small offset. The result of this step is that the mean of the 430A expression is fixed at a value of 8, whereas that of the 430B chip is typically reduced to 7. The average of the merged 430A and 430B array data set is approximately 7.5. + +
    • Step 7b: We recentered the merged 430A and 430B data sets to a mean of 8 and a standard deviation of 2. This involved reapplying Steps 3 through 5. + +
    • Step 8: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, source of animals, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + + +

        Data source acknowledgment:

    +
    +Support for acquisition of microarray data were generously provided by the NIAAA and its INIA grant program to RWW, Thomas Sutter, and Daniel Goldowitz (U01AA013515, U01AA013499-03S1, U01AA013488, U01AA013503-03S1). Support for the continued development of the GeneNetwork and WebQTL was provided by a NIMH Human Brain Project grant (P20MH062009). All arrays were processed at the University of Memphis by Thomas Sutter and colleagues with support of the INIA Bioanalytical Core. +
    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004; April 7, 2005; RNA/tissue preparation protocol updatedby JLP, Sept 2, 2005; Sept 26, 2005. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/IBR_M_0405_R.html b/web/dbdoc/IBR_M_0405_R.html new file mode 100755 index 00000000..3f803687 --- /dev/null +++ b/web/dbdoc/IBR_M_0405_R.html @@ -0,0 +1,273 @@ + +M430 Microarray brain RMA April05 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    INIA M430 brain RMA Database (April/05 Freeze) modify this page

    Accession number: GN59

    + +

        Summary:

    + + +
    +

    +This April 2005 data freeze provides estimates of mRNA expression in adult forebrain and midbrain from 45 lines of mice including C57BL/6J, DBA/2J, their F1 hybrids, and 42 BXD recombinant inbred strains. Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Samples were hybridized in small pools (n = 3) to a total of 105 Affymetrix M430A and B array pairs. This particular data set was processed using the RMA protocol. To simplify comparisons among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. +

    +
    + + +

        About the cases used to generate this set of data:

    + +
    +We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues

    + +

    All stock was obtained originally from The Jackson Laboratory between 1999 and 2003. Most BXD animals were born and housed at the University of Tennessee Health Science Center. Some cases were bred at the University of Memphis (Douglas Matthews) or the University of Alabama (John Mountz and Hui-Chen Hsu). +

    + + +

        About the tissue used to generate this set of data:

    + +
    The INIA M430 brain Database (April05) consists of 105 Affymetrix 430A and 430B microarray pairs. Each pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter, Shirlean Goodwin, and colleagues at the University of Memphis. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. We have not yet achieved this goal. Ten of 45 strains are still represented by single sex samples: BXD2 (F), BXD8 (F), BXD15 (F), BXD18 (F), BXD25 (F), BXD29 (F), BXD33 (M), BXD45 (F), BXD77 (M), and BXD90 (M). Eleven strains are represented by three independent samples with the following breakdown by sex: C57BL/6J (1F 2M), DBA/2J (2F 2M), B6D2F1 (2F 2M) + D2B6F1 (1F 1M), BXD6 (2F 1M), BXD13 (2F 1M), BXD14 (1F 2M), BXD28 (2F 1M), BXD34 (1F 2M), BXD36 (1F 2M), BXD38 (1F 2M), BXD42 (1F 2M). + +

    Batch Structure: Before running the first batch of 30 pairs of array (dated Jan04), we ran four test samples (Nov03). The main batch of 30 includes the four test samples (four technical replicates). The Nov03 data was combined with the Jan04 data and was treated as a single batch that consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. The second large batch was run February 2005 (Feb05) and consists of 71 pairs of arrays. Batch effects were corrected at the individual probe level as described below. + + +

    The table below summarizes information on strain, sex, age, sample name, batch result date, and source of mice. + +

    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexAgeSample_nameResult dateSource
    1C57BL/6JF65R0903F1Nov03UTM RW
    2C57BL/6JF65R0903F1Jan04UTM RW
    3C57BL/6JM66R0906F1Nov03UTM RW
    4C57BL/6JM66R0906F1Jan04UTM RW
    5C57BL/6JM66R0906F1Feb05UTM RW
    6C57BL/6JM76R0997F1Feb05UTM RW
    7D2B6F1F57R1066F1Feb05UTM RW
    8D2B6F1M59R1381F1Feb05UTM RW
    9DBA/2JF60R0917F1Nov03UTM RW
    10DBA/2JF60R0917F1Feb05UTM RW
    11DBA/2JF60R0917F2Jan04UTM RW
    12DBA/2JF64R1123F1Feb05UTM RW
    13DBA/2JM60R0918F1Nov03UTM RW
    14DBA/2JM60R0918F1Jan04UTM RW
    15DBA/2JM73R1009F1Feb05UTM RW
    16B6D2F1F127R0919F1Jan04UTM JB
    17B6D2F1F127R0919F2Jan04UTM JB
    18B6D2F1F64R1053F1Feb05UTM RW
    19B6D2F1F64R1053F1Feb05UTM RW
    20B6D2F1M127R0920F1Jan04UTM JB
    21B6D2F1M127R0920F2Jan04UTM JB
    22B6D2F1M66R1057F1Feb05UTM RW
    23BXD1M181R0956F1Feb05UTM JB
    24BXD1F95R0895F1Jan04UMemphis
    25BXD2F142R0907F1Feb05UAB
    26BXD5F56R0744F1Feb05UMemphis
    27BXD5M71R0728F1Jan04UMemphis
    28BXD6F57R1711F1Feb05JAX
    29BXD6F92R0901F1Feb05UMemphis
    30BXD6M92R0902F1Jan04UMemphis
    31BXD8F72R0167F1Jan04UAB
    32BXD9F86R0908F1Feb05UMemphis
    33BXD9M86R0909F1Jan04UMemphis
    34BXD11F97R0745F1Feb05UAB
    35BXD11M92R0666F1Feb05UMemphis
    36BXD12F64R0896F1Feb05UMemphis
    37BXD12M64R0897F1Jan04UMemphis
    38BXD13F86R0730F1Feb05UMemphis
    39BXD13F86R0748F1Jan04UMemphis
    40BXD13M76R0929F1Feb05UMemphis
    41BXD14M91R0912F1Jan04UMemphis
    42BXD14M68R1051F1Feb05UTM RW
    43BXD15F80R0928F1Feb05UMemphis
    44BXD18F108R0771F1Jan04UAB
    45BXD19M157R1229F1Feb05UTM JB
    46BXD19F56R0236F1Jan04UAB
    47BXD21F67R0740F1Jan04UAB
    48BXD21F67R0740F1Feb05UAB
    49BXD23F66R1035F1Feb05UTM RW
    50BXD23M66R1037F1Feb05UTM RW
    51BXD23F88R0815F1Jan04UAB
    52BXD23F88R0815F1Feb05UAB
    53BXD24F71R0914F1Feb05UMemphis
    54BXD24M71R0913F1Jan04UMemphis
    55BXD25F74R0373F1Jan04UTM RW
    56BXD28F79R0910F1Jan04UMemphis
    57BXD28M79R0911F1Feb05UMemphis
    58BXD28F113R0892F1Feb05UTM RW
    59BXD29F76R0693F1Jan04UMemphis
    60BXD31F61R1199F1Feb05UTM RW
    61BXD31M61R1141F1Feb05UTM RW
    62BXD32F93R0898F1Jan04UAB
    63BXD32F76R1214F1Feb05UMemphis
    64BXD32M65R1478F1Feb05UMemphis
    65BXD33M77R0915F1Jan04UMemphis
    66BXD34F92R0900F1Feb05UMemphis
    67BXD34M56R0617F1Feb05UMemphis
    68BXD34M72R0916F1Jan04UMemphis
    69BXD36F61R1145F1Feb05UTM RW
    70BXD36M77R0926F1Jan04UMemphis
    71BXD36M61R1211F1Feb05UMemphis
    72BXD38M83R1208F1Feb05UMemphis
    73BXD38F69R0729F1Feb05UMemphis
    74BXD38M69R0731F1Jan04UMemphis
    75BXD39F76R1712F1Feb05JAX
    76BXD39M71R0602F1Feb05UAB
    77BXD40F184R0741F1Feb05UAB
    78BXD40M56R0894F1Feb05UMemphis
    79BXD42F100R0742F1Feb05UAB
    80BXD42M97R0936F1Jan04UMemphis
    81BXD42M105R0937F1Feb05UMemphis
    82BXD43M63R1047F1Feb05UTM RW
    83BXD44F57R1069F1Feb05UTM RW
    84BXD44M58R1072F1Feb05UTM RW
    85BXD45F58R1398F1Feb05UTM RW
    86BXD48F59R0946F1Feb05UTM RW
    87BXD48M64R0970F1Feb05UTM RW
    88BXD51F63R1430F1Feb05UTM RW
    89BXD51M65R1001F1Feb05UTM RW
    90BXD60F64R0976F1Feb05UTM RW
    91BXD60M59R1075F1Feb05UTM RW
    92BXD62F59R1033F1Feb05UTM RW
    93BXD62M58R1027F1Feb05UTM RW
    94BXD69F60R1438F1Feb05UTM RW
    95BXD69M64R1193F1Feb05UTM RW
    96BXD73F60R1275F1Feb05UTM RW
    97BXD73M76R1442F1Feb05UTM RW
    98BXD77M61R1426F1Feb05UTM RW
    99BXD86F77R1414F1Feb05UTM RW
    100BXD86M77R1418F1Feb05UTM RW
    101BXD87F89R1713F1Feb05UTM RW
    102BXD87M84R1709F1Feb05UTM RW
    103BXD90M61R1452FFeb05UTM RW
    104BXD92F58R1299F1Feb05UTM RW
    105BXD92M59R1307F1Feb05UTM RW
    +
    +
    + +

        About the array platform :

    +
    +

    Affymetrix Mouse Genome 430A and B array pairs: The 430A and B array pairs consist of 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430 2.0 series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the two batches (n = 34 and n = 71 array pairs) at the probe level. To do this we calculated the ratio of each batch mean to the mean of both batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each batch is the same. + +
    • Step 7a: The 430A and 430B arrays include a set of 100 shared probe sets (a total of 2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the 430A and 430B arrays to a common scale. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression correction to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a small offset. The result of this step is that the mean of the 430A expression is fixed at a value of 8, whereas that of the 430B chip is typically reduced to 7. The average of the merged 430A and 430B array data set is approximately 7.5. + +
    • Step 7b: We recentered the merged 430A and 430B data sets to a mean of 8 and a standard deviation of 2. This involved reapplying Steps 3 through 5. + +
    • Step 8: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, source of animals, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL are the averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized standard deviation of 2 units within each array). Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets. +

    + + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + + +

        Data source acknowledgment:

    +
    +Support for acquisition of microarray data were generously provided by the NIAAA and its INIA grant program to RWW, Thomas Sutter, and Daniel Goldowitz (U01AA013515, U01AA013499-03S1, U01AA013488, U01AA013503-03S1). Support for the continued development of the GeneNetwork and WebQTL was provided by a NIMH Human Brain Project grant (P20MH062009). All arrays were processed at the University of Memphis by Thomas Sutter and colleagues with support of the INIA Bioanalytical Core. +
    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004; April 7, 2005; RNA/tissue preparation protocol updatedby JLP, Sept 2, 2005; Sept 26, 2005. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/IBR_M_0606_R.html b/web/dbdoc/IBR_M_0606_R.html new file mode 100755 index 00000000..a0b507e4 --- /dev/null +++ b/web/dbdoc/IBR_M_0606_R.html @@ -0,0 +1,466 @@ + +INIA Brain mRNA M430 (June06) RMA + + + + + + + + + + + + + + + + + +
    + + + + +
    +

    INIA Brain mRNA M430 (June06) RMA +modify this page

    Accession number: GN113

    + +

        Summary:

    + + +
    +

    +This June 2006 data freeze provides estimates of mRNA expression in adult forebrain and midbrain from 43 lines of mice including C57BL/6J, DBA/2J, reciprocal F1 hybrids, and 39 BXD recombinant inbred strains. No error terms are providing in this data set. Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Samples were hybridized in small pools (n = 3) to a total of 121 Affymetrix M430A and B array pairs. This data set only includes the highest quality subset of 76 arrays that have been quantile normalized at both probe and probe set levels. This data set was initially processed using the RMA protocol. Data were renormalized by Chesler and colleagues at ORNL. A total of 310 probe sets have an LRS values above 50. +

    +
    + + +

        About the cases used to generate this set of data:

    + +
    +We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 2 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory. BXD43 through BXD99 were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Many of the 50 new BXD strains are available from Lu Lu and colleagues

    + +

    All stock was obtained originally from The Jackson Laboratory between 1999 and 2003. Most BXD animals were born and housed at the University of Tennessee Health Science Center. Some cases were bred at the University of Memphis (Douglas Matthews) or the University of Alabama (John Mountz and Hui-Chen Hsu). +

    + + +

        About the tissue used to generate this set of data:

    + +
    The INIA M430 brain Database (Jan06) consists of 78 Affymetrix 430A and 430B microarray pairs. Each pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb or retina, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter, Shirlean Goodwin, and colleagues at the University of Memphis. + +

    Replication and Sample Balance: Our goal was to obtain data for independent biological sample pools from at least one of sample from each sex for all BXD strains. While we achieved this goal technically, not all of the replicates were of sufficient quality to be included in this highly selected set. This data set is now complete and includes more than 20 replicates. Despite the lack of replicates for about 20 strains we still recommend this data set strongly over earliers data sets that included more arrays, many of which are suboptimal. + +

    Batch Structure: Before running the first batch of 30 pairs of array (dated Jan04), we ran four test samples (Nov03). The main batch of 30 includes the four test samples (four technical replicates). The Nov03 data was combined with the Jan04 data and was treated as a single batch that consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. The second large batch was run February 2005 (Feb05) and consists of 71 pairs of arrays. Two more batches were run; the final in December 2005 (16 arrays pairs). Batch effects were corrected at the individual probe level as described below. + + +

    The table below summarizes information on strain, sex, age, sample name, batch result date, the grouping to which an arrays data set belongs based on expression similarity, and source of mice. + +

    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexAgeSample
    Batch
    Final Grouping
    Source
    1B6D2F1F127R0919F1
    2
    e_2
    UTM JB
    2B6D2F1F127R0919F2
    2
    e_2
    UTM JB
    3B6D2F1F64R1053F1
    3
    g_3
    UTM RW
    4B6D2F1F64R1053F1
    3
    e_3
    UTM RW
    5B6D2F1M66R1057F1
    3
    e_3
    UTM RW
    6D2B6F1F57R1066F1
    3
    e_3
    UTM RW
    7C57BL/6JF65R0903F1
    1
    se_1
    UTM RW
    8C57BL/6JF65R0903F1
    2
    e_2
    UTM RW
    9C57BL/6JM66R0906F1
    1
    e_1
    UTM RW
    10C57BL/6JM76R0997F1
    3
    g_3
    UTM RW
    11DBA/2JF60R0917F1
    1
    e_1
    UTM RW
    12DBA/2JF64R1123F1
    3
    g_3
    UTM RW
    13DBA/2JM60R0918F1
    2
    sgA_2
    UTM RW
    14DBA/2JM73R1009F1
    3
    w_3
    UTM RW
    15BXD1M181R0956F1
    3
    e_3
    UTM JB
    16BXD2F142R0907F1
    3
    e_3
    UAB
    17BXD5F56R0744F1
    3
    o_3
    UMemphis
    18BXD5M71R0728F1
    2
    e_2
    UMemphis
    19BXD6F57R1711F1
    3
    g_3
    JAX
    20BXD8M71R2664F1
    4
    se_4
    JAX
    21BXD11F97R0745F1
    3
    gA_3
    UAB
    22BXD12F64R0896F1
    3
    o_3
    UMemphis
    23BXD12M64R0897F1
    2
    e_2
    UMemphis
    24BXD13F86R0748F1
    2
    e_2
    UMemphis
    25BXD13F86R0730F1
    3
    e_3
    UMemphis
    26BXD13M76R0929F1
    3
    e_3
    UMemphis
    27BXD14M68R1051F1
    3
    e_3
    UTM RW
    28BXD15F80R0928F1
    3
    e_3
    UMemphis
    29BXD18F108R0771F1
    2
    e_2
    UAB
    30BXD19M157R1229F1
    3
    gA_3
    UTM JB
    31BXD21F67R0740F1
    3
    gA_3
    UAB
    32BXD23F88R0815F1
    3
    gA_3
    UAB
    33BXD23F66R1035F1
    3
    gA_3
    UTM RW
    34BXD23M66R1256F1
    4
    e_4
    UTM RW
    35BXD23M66R1037F1
    3
    gA_3
    UTM RW
    36BXD24F71R0914F1
    3
    e_3
    UMemphis
    37BXD24M71R0913F1
    2
    e_2
    UMemphis
    38BXD25F74R0373F1
    2
    e_2
    UTM RW
    39BXD25M58R2623F1
    4
    e_4
    UTM RW
    40BXD27M54R2660F1
    4
    e_4
    UTM RW
    41BXD28F113R0892F1
    3
    e_3
    UTM RW
    42BXD28M79R0911F1
    3
    g_3
    UMemphis
    43BXD31M61R1141F1
    3
    e_3
    UTM RW
    44BXD32F93R0898F1
    2
    e_2
    UAB
    46BXD32M76R1217F2
    4
    e_4
    UMemphis
    47BXD32M65R1478F1
    3
    e_3
    UMemphis
    48BXD34M72R0916F1
    2
    e_2
    UMemphis
    49BXD34F92R0900F1
    3
    e_3
    UMemphis
    50BXD36F79R2654F1
    4
    e_4
    UTM RW
    51BXD36F61R1145F1
    3
    e_3
    UTM RW
    52BXD36M77R0926F1
    2
    e_2
    UMemphis
    53BXD38F69R0729F1
    3
    e_3
    UMemphis
    54BXD38F83R1208F1
    3
    g_3
    UMemphis
    55BXD39F76R1712F1
    3
    e_3
    JAX
    57BXD40F184R0741F1
    3
    e_3
    UAB
    58BXD40M56R0894F1
    3
    e_3
    UMemphis
    59BXD42F100R0742F1
    3
    e_3
    UAB
    60BXD43F61R1199F1
    3
    e_3
    UTM RW
    61BXD43F59R0980F1
    4
    e_4
    UTM RW
    62BXD44M58R1072F1
    3
    e_3
    UTM RW
    63BXD45F58R1398F1
    3
    o_3
    UTM RW
    64BXD45M81R1658F2
    4
    e_4
    UTM RW
    65BXD48F59R0946F1
    3
    e_3
    UTM RW
    66BXD51F63R1430F1
    3
    e_3
    UTM RW
    67BXD51M65R1001F1
    3
    e_3
    UTM RW
    68BXD60M59R1075F1
    3
    g_3
    UTM RW
    69BXD62M58R1027F1
    3
    e_3
    UTM RW
    70BXD69F60R1438F1
    3
    e_3
    UTM RW
    71BXD69M64R1193F1
    3
    o_3
    UTM RW
    72BXD73F60R1275F1
    3
    e_3
    UTM RW
    73BXD73M76R1442F1
    3
    g_3
    UTM RW
    74BXD77M61R1426F1
    3
    g_3
    UTM RW
    75BXD87F89R1713F1
    3
    e_3
    UTM RW
    76BXD90F71R2628F1
    4
    e_4
    UTM RW
    77BXD90M61R1452F
    3
    g_3
    UTM RW
    78BXD92F58R1299F1
    3
    e_3
    UTM RW
    +
    + +

    The table below quality information on scale factor, background, present, absent, marginal, and control genes to which an arrays data set is from it's report file. +

    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSample
    Final grouping
    Set
    scale factorback ground
    present
    absentmarginalAffy- b- ActinAffy- Gapdh
    1B6D2F1R0919F1e_B2
    A
    14.21246.930.4170.5640.0191.240.8
    1B6D2F1R0919F1e_B2
    B
    30.34942.210.2330.7480.0191.240.74
    2B6D2F1R0919F2e_B2
    A
    5.95530.4680.5110.0211.170.73
    2B6D2F1R0919F2e_B2
    B
    14.79547.950.2640.7160.021.190.75
    3B6D2F1R1053F1g_B3
    A
    4.44550.820.5360.4470.0171.921.69
    3B6D2F1R1053F1g_B3
    B
    16.59651.440.2780.7020.021.931.76
    4B6D2F1R1053F1e_B3
    A
    11.19642.40.4570.5230.021.841.32
    4B6D2F1R1053F1e_B3
    B
    16.59651.440.2780.7020.021.931.76
    5B6D2F1R1057F1e_B3
    A
    7.33242.210.5050.4750.021.641.2
    5B6D2F1R1057F1e_B3
    B
    16.44440.310.3140.6610.0251.131.31
    6C57BL/6JR0903F1se_B1
    A
    10.1546.460.4180.5620.0191.130.76
    6C57BL/6JR0903F1se_B1
    B
    20.22347.780.2220.7590.0181.360.89
    7C57BL/6JR0903F1e_B2
    A
    7.40652.470.4730.5070.021.010.74
    7C57BL/6JR0903F1e_B2
    B
    20.7146.980.2520.7290.021.080.74
    8C57BL/6JR0906F1e_B1
    A
    9.40746.550.4390.540.02210.8
    8C57BL/6JR0906F1e_B1
    B
    28.7744.520.210.770.0191.040.74
    9C57BL/6JR0997F1g_B3
    A
    8.11855.740.4480.530.0220.91.04
    9C57BL/6JR0997F1g_B3
    B
    13.2449.640.3160.6610.0231.411.11
    10D2B6F1R1066F1e_B3
    A
    8.14746.390.4810.50.0190.971.22
    10D2B6F1R1066F1e_B3
    B
    18.83543.240.2850.6950.0211.111.29
    11DBA/2JR0917F1e_B1
    A
    13.77550.20.2530.7290.0191.180.76
    11DBA/2JR0917F1e_B1
    B
    22.30147.490.2410.7410.0181.370.88
    12DBA/2JR1123F1g_B3
    A
    9.45250.140.4560.5230.0211.371.87
    12DBA/2JR1123F1g_B3
    B
    23.46742.270.250.7290.0210.911.9
    13DBA/2JR0918F1sgA_B2
    A
    9.10548.240.4620.5170.0191.220.81
    13DBA/2JR0918F1sgA_B2
    B
    25.00746.990.2440.7360.0191.220.81
    14DBA/2JR1009F1w_B3
    A
    5.73642.880.5270.4550.0171.112.4
    14DBA/2JR1009F1w_B3
    B
    17.73943.750.2910.690.0190.912.36
    15BXD1R0956F1e_B3
    A
    4.92344.740.5190.460.0211.51.09
    15BXD1R0956F1e_B3
    B
    15.93739.50.310.6650.0251.471.21
    16BXD2R0907F1e_B3
    A
    6.19145.770.480.4980.0221.371.23
    16BXD2R0907F1e_B3
    B
    16.1543.780.30.6770.0231.741.37
    17BXD5R0744F1o_B3
    A
    10.44860.780.4030.5760.0211.231.38
    17BXD5R0744F1o_B3
    B
    28.05444.720.2360.7460.0181.431.68
    18BXD5R0728F1e_B2
    A
    7.88453.560.430.5490.0211.120.71
    18BXD5R0728F1e_B2
    B
    18.9242.50.2450.7350.01910.76
    19BXD6R1711F1g_B3
    A
    7.146.570.4980.4810.021.971.66
    19BXD6R1711F1g_B3
    B
    12.46546.020.3190.660.0222.061.78
    20BXD8R2664F1se_B4
    A
    2.12645.640.5940.390.0161.731
    20BXD8R2664F1se_B4
    B
    7.13341.850.3770.6030.021.950.99
    21BXD11R0745F1gA_B3
    A
    6.24240.990.5010.480.0191.41.24
    21BXD11R0745F1gA_B3
    B
    18.68141.110.2780.7020.021.281.27
    22BXD12R0896F1o_B3
    A
    8.23751.230.4330.5460.0211.721.28
    22BXD12R0896F1o_B3
    B
    19.78143.610.2640.7140.0221.441.45
    23BXD12R0897F1e_B2
    A
    10.71346.560.4210.560.0191.230.75
    23BXD12R0897F1e_B2
    B
    20.09350.310.2360.7440.021.250.76
    24BXD13R0748F1e_B2
    A
    7.14957.350.4350.5430.0221.020.74
    24BXD13R0748F1e_B2
    B
    12.7756.440.2480.7340.0191.050.8
    25BXD13R0730F1e_B3
    A
    6.07644.570.490.4880.0221.261.45
    25BXD13R0730F1e_B3
    B
    15.744.240.2930.6870.021.311.52
    26BXD13R0929F1e_B3
    A
    5.49347.460.5070.4720.0211.651.35
    26BXD13R0929F1e_B3
    B
    14.73946.050.3010.6770.0230.931.62
    27BXD14R1051F1e_B3
    A
    6.39345.190.490.4890.0211.221.26
    27BXD14R1051F1e_B3
    B
    15.48841.140.3250.6530.0221.121.38
    28BXD15R0928F1e_B3
    A
    5.64639.950.5240.4560.021.951.34
    28BXD15R0928F1e_B3
    B
    19.34437.650.2960.6820.0231.331.42
    29BXD18R0771F1e_B2
    A
    4.16854.80.5030.4770.021.130.77
    29BXD18R0771F1e_B2
    B
    9.67954.70.2770.7020.021.40.76
    30BXD19R1229F1gA_B3
    A
    6.99139.650.490.4910.021.921.29
    30BXD19R1229F1gA_B3
    B
    20.94540.50.2770.7020.0211.541.22
    31BXD21R0740F1gA_B3
    A
    6.22942.240.4830.4950.0221.311.25
    31BXD21R0740F1gA_B3
    B
    16.58441.880.3060.6730.0211.431.23
    32BXD23R0815F1gA_B3
    A
    4.75348.120.5210.460.0191.41.06
    32BXD23R0815F1gA_B3
    B
    11.55539.410.3530.6260.0221.441.1
    33BXD23R1035F1gA_B3
    A
    6.28139.580.5030.4760.021.311.6
    33BXD23R1035F1gA_B3
    B
    22.53634.860.2920.6860.0211.311.67
    34BXD23R1256F1e_B4
    A
    2.23346.660.5750.4080.0171.81.13
    34BXD23R1256F1e_B4
    B
    4.86243.160.3990.580.0211.731.01
    35BXD23R1037F1gA_B3
    A
    5.3741.470.5190.4620.0191.351.25
    35BXD23R1037F1gA_B3
    B
    18.48337.490.3050.6710.0241.241.28
    36BXD24R0914F1e_B3
    A
    6.21251.110.4970.4820.0211.091.53
    36BXD24R0914F1e_B3
    B
    19.64936.070.3090.6710.0211.41.76
    37BXD24R0913F1e_B2
    A
    9.00249.850.4370.5430.021.240.71
    37BXD24R0913F1e_B2
    B
    14.37551.490.2460.7340.021.360.79
    38BXD25R0373F1e_B2
    A
    6.22256.950.4570.5220.0221.370.75
    38BXD25R0373F1e_B2
    B
    8.33750.910.2910.6850.0241.190.77
    39BXD25R2623F1e_B4
    A
    1.98545.80.5880.3950.0161.61
    39BXD25R2623F1e_B4
    B
    7.555400.3740.6070.0191.781.03
    40BXD27R2660F1e_B4
    A
    2.68851.770.5820.4030.0161.40.84
    40BXD27R2660F1e_B4
    B
    5.73554.080.3920.5880.021.510.78
    41BXD28R0892F1e_B3
    A
    4.14347.20.5370.4420.0211.051.08
    41BXD28R0892F1e_B3
    B
    16.41345.830.2970.6820.0211.041.23
    42BXD28R0911F1g_B3
    A
    5.81143.060.5170.4650.0181.191.43
    42BXD28R0911F1g_B3
    B
    16.2241.150.30.6780.0220.851.65
    43BXD31R1141F1e_B3
    A
    3.60742.590.5470.4350.01911.15
    43BXD31R1141F1e_B3
    B
    11.82641.260.3290.650.0211.041.27
    44BXD32R0898F1e_B2
    A
    9.57445.430.4470.5320.0221.30.7
    44BXD32R0898F1e_B2
    B
    28.5742.930.230.7520.0191.420.69
    45BXD32R1214F1w_B3
    A
    5.50641.540.5270.4540.0191.42.12
    46BXD32R1217F2e_B4
    A
    1.86168.710.5810.4040.0151.620.89
    46BXD32R1217F2e_B4
    B
    5.38855.490.3760.6020.0221.940.83
    47BXD32R1478F1e_B3
    A
    5.45242.10.520.460.0191.361.68
    47BXD32R1478F1e_B3
    B
    14.80538.70.3320.6470.0211.531.84
    48BXD34R0916F1e_B2
    A
    5.37755.950.4460.5340.0211.120.75
    48BXD34R0916F1e_B2
    B
    13.77550.20.2530.7290.0191.180.76
    49BXD34R0900F1e_B3
    A
    7.20645.60.4840.4950.0211.111.15
    49BXD34R0900F1e_B3
    B
    14.66152.10.4940.4970.0211.111.15
    50BXD36R2654F1e_B4
    A
    2.64653.840.5590.4240.0171.891.27
    50BXD36R2654F1e_B4
    B
    7.06254.840.3340.6470.0191.911.24
    51BXD36R1145F1e_B3
    A
    5.22941.480.5150.4660.0190.971.12
    51BXD36R1145F1e_B3
    B
    12.66140.040.3340.6440.0221.041.13
    52BXD36R0926F1e_B2
    A
    5.84155.50.4380.5410.0211.260.74
    52BXD36R0926F1e_B2
    B
    13.35353.810.2630.7160.0211.230.76
    53BXD38R0729F1e_B3
    A
    5.47283.410.4690.5120.0190.921.09
    53BXD38R0729F1e_B3
    B
    10.8867.390.2990.6790.0221.061.2
    54BXD38R1208F1g_B3
    A
    3.53243.380.5440.4380.0181.151.27
    54BXD38R1208F1g_B3
    B
    15.23443.650.3110.6670.0231.081.38
    55BXD39R1712F1e_B3
    A
    7.51444.540.490.4890.0211.691.42
    55BXD39R1712F1e_B3
    B
    12.62444.610.3180.6610.0211.341.55
    56BXD39R0602F1w_B3
    B
    20.23137.070.3010.680.021.072.33
    57BXD40R0741F1e_B3
    A
    5.23445.680.510.4690.021.691.17
    57BXD40R0741F1e_B3
    B
    12.24246.890.3230.6560.0211.121.23
    58BXD40R0894F1e_B3
    A
    5.32644.90.520.4590.0211.261.21
    58BXD40R0894F1e_B3
    B
    10.33941.240.3520.6250.0240.811.4
    59BXD42R0742F1e_B3
    A
    5.54243.660.5220.4580.0211.721.17
    59BXD42R0742F1e_B3
    B
    15.09541.370.3190.660.0221.271.24
    60BXD43R1199F1e_B3
    A
    6.17141.280.5230.4580.0191.061.23
    60BXD43R1199F1e_B3
    B
    16.53440.320.2910.6850.0240.991.54
    61BXD43R0980F1e_B4
    A
    1.59263.750.5910.3920.0171.760.95
    61BXD43R0980F1e_B4
    B
    5.81548.890.3780.6010.0212.060.97
    62BXD44R1072F1e_B3
    A
    7.85841.120.4760.5020.0221.521.74
    62BXD44R1072F1e_B3
    B
    23.06541.320.2640.7170.0191.251.84
    63BXD45R1398F1o_B3
    A
    13.91145.870.3840.5950.0211.241.7
    63BXD45R1398F1o_B3
    B
    40.0747.470.1780.8050.0171.211.68
    64BXD45R1658F2e_B4
    A
    2.36856.290.5730.4080.0191.420.84
    64BXD45R1658F2e_B4
    B
    7.00649.520.3720.6080.021.450.8
    65BXD48R0946F1e_B3
    A
    6.56547.790.4870.4930.0211.681.27
    65BXD48R0946F1e_B3
    B
    17.49941.870.2920.6870.0211.541.35
    66BXD51R1430F1e_B3
    A
    7.04257.480.460.5190.0221.171.29
    66BXD51R1430F1e_B3
    B
    19.37348.260.2590.720.0212.071.48
    67BXD51R1001F1e_B3
    A
    4.68958.810.5010.480.0191.881.31
    67BXD51R1001F1e_B3
    B
    16.03255.590.2660.7150.0191.311.64
    68BXD60R1075F1g_B3
    A
    8.18949.90.4650.5130.0221.391.34
    68BXD60R1075F1g_B3
    B
    19.21945.140.2770.7050.0181.771.41
    69BXD62R1027F1e_B3
    A
    7.44744.420.4910.4880.0212.031.23
    69BXD62R1027F1e_B3
    B
    19.39141.090.2850.6960.0191.051.44
    70BXD69R1438F1e_B3
    A
    6.29744.190.5120.4690.0191.771.5
    70BXD69R1438F1e_B3
    B
    12.33546.580.3110.6670.0211.251.62
    71BXD69R1193F1o_B3
    A
    5.74983.560.4140.5640.0221.491.58
    71BXD69R1193F1o_B3
    B
    20.51344.280.2610.7180.0211.141.58
    72BXD73R1275F1e_B3
    A
    6.47840.910.4990.4810.021.051.52
    72BXD73R1275F1e_B3
    B
    16.93141.60.2990.6810.021.621.53
    73BXD73R1442F1g_B3
    A
    8.58462.860.4280.5520.021.781.69
    73BXD73R1442F1g_B3
    B
    17.37855.710.260.720.021.171.83
    74BXD77R1426F1g_B3
    A
    6.30646.270.5010.4810.0181.771.49
    74BXD77R1426F1g_B3
    B
    13.36548.960.3090.670.0221.261.63
    75BXD87R1713F1e_B3
    A
    6.24339.430.5150.4660.0181.381.34
    75BXD87R1713F1e_B3
    B
    14.99742.780.3050.6730.0221.711.58
    76BXD90R2628F1e_B4
    A
    2.09658.740.5720.4120.0161.570.82
    76BXD90R2628F1e_B4
    B
    8.91349.120.3320.6460.0231.880.85
    77BXD90R1452Fg_B3
    A
    7.47852.260.4490.5310.021.171.74
    77BXD90R1452Fg_B3
    B
    15.46940.590.3120.6680.021.71.74
    78BXD92R1299F1e_B3
    A
    8.26445.380.4780.5030.0191.41.37
    78BXD92R1299F1e_B3
    B
    18.36943.40.290.6890.0211.911.6
    +
    +
    + + +

        About data access:

    +
    + +

    Normalized data are available for this INIA data set at

    +
    + + +
  • Jan 2006, PDNN normalization (17 Mb file with strain means): ftp://atlas.utmem.edu/Public/Mouse_bxd/INIA_M_0106_PDNN.txt + +
  • Jan 2006, RMA normalization (17 Mb file with strain means): ftp://atlas.utmem.edu/Public/Mouse_bxd/INIA_M_0106_RMA.txt + +
  • June 2006, QTL results from RMA normalized data (5.7 Mb, no strain means): ftp://atlas.utmem.edu/Public/Mouse_bxd/INIA_M_0606_RMA.txt + +
  • All data in ZIP format: ftp://atlas.utmem.edu/Public/Mouse_bxd/INIA_mRNA_data_sets.zip + + +
  • +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430A and B array pairs: The 430A and B array pairs consist of 992936 25-nucleotide probes that collectively estimate the expression of approximately 39,000 transcripts. The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequences as the 430 2.0 series. However, we have found that roughy 75000 probes differ from those on A and B arrays and those on the 430 2.0

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the two batches (n = 34 and n = 71 array pairs) at the probe level. To do this we calculated the ratio of each batch mean to the mean of both batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each batch is the same. + +
    • Step 7a: The 430A and 430B arrays include a set of 100 shared probe sets (a total of 2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the 430A and 430B arrays to a common scale. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression correction to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a small offset. The result of this step is that the mean of the 430A expression is fixed at a value of 8, whereas that of the 430B chip is typically reduced to 7. The average of the merged 430A and 430B array data set is approximately 7.5. + +
    • Step 7b: We recentered the merged 430A and 430B data sets to a mean of 8 and a standard deviation of 2. This involved reapplying Steps 3 through 5. + +
    • Step 8: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, source of animals, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL are the averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
      +
    • Setp 1: Get CAB file for all arrays (121 arrays) +
    • Setp 2: Unpack CAB file using GCOS 1.4 DAT, CEL, RPT, CHP +
    • Setp 3: Put RPT data into spreadsheet +
    • Setp 4: Remaining N CEL data files were transformed to old CEL format using Transfer Tool (121 arrays) +
    • Setp 5: Old CEL format files transformed using RMA and PDNN (121 arrays). 430A set and 430B set arrays are processed separately using RMA and PDNN, Normalize 430A and 430B separately to Z Scores (2Z+8). +
    • Setp 6: Examine all scatter plots of the probe sets using DataDesk and categorized them by similarity. We are looking for batch and sub-batch structure. There are still quite obvious differences. For the INIA data we defined 5 groups that did NOT align exactly with the batches. The results are indicated in the table under the heading "Final Grouping." These are letters followed by the batch. For example "e_2" is an "e" type data set from batch 2. The prefix "s" means that an array was considered the "standard" for a particular group. For example sgA_2 is the "standard" for the gA group and was a member of batch 2. We defined groups "e" (originally "e" stood for 'excellent'), "g" (originally 'g' stood for good), "o" (OK), "w" (wide), and "gA" (good subdivision A). +
    • Setp 7: Delete obviously bad arrays (n of 3 were deleted, leaving 118 arrays). Array BXD8(S167) is high scale factor (A:16.797,B:35.646); BXD18(R1220) and BXD33(R2627) are high 3'/5' B_Act_Sig(64.20), GAPD_Sig(84.20) and B_Act_Sig(49.92), GAPD_Sig(84.17). +
    • Setp 8: Group rescale four minor groups to the same level of the largest group (please note that a group may have arrays from multiple physical batches). This group correction is done on a probe_set-by-probe_set level. The result of this rescaling is a group corrected data set. +
    • Setp 9: Look at the group rescaled arrays and delete any arrays that do not look "good" where good is usually a correlation of >0.96 with respect to other arrays. For the INIA data set of 118 arrays we deleted 40 arrays using very strict "goodness" criteria. +
    • Setp 10: Reprocess the remaining 78 good old-format CEL files and process as in Step 5. , 430A set and 430B set separately using RMA and PDNN, Normalize 430A and 430B separately to Z Scores (2Z+8). +
    • Setp 11: Bring the two arrays (430A and 430B) into alignment. To do this we regressed Z scores of the common set of 100 probe sets to obtain a linear regression corrections to rescale the 430B arrays to the 430A array values. Make data sets for RMA_430AB and PDNN_430AB. Normalize 430AB to Z Scores. +
    • Setp 12:Rank order of Probe Sets: Run all of the arrays through a second quantile normalization. This involves computing the average of all probe sets across all arrays. These averages are then rank ordered. We also rank order each of the individual array data sets. Probe sets for each individual array are then assigned a new expression value based on 1. Its rank within the particular array and 2. the value of that particular rank taken from the AVERAGE data. This forces every array to have exactly the same distribution as the average data. The result of this process is colinear expression of all arrays. +
    • Setp 13: We normalize the means of each of these groups to a common value set to the largest group (group e now with 37 members). If the mean for probe set 100001 is 8 in group e whereas group g a mean 8.5, then we just have a correction factor of 8/8.5 for probe set 100001 in the group g. The intent of this step is to correct for group effect on a probe set by probe set level. +
    • Setp 14: Verify that all arrays have correlations >0.98 using RMA transform. Two arrays discovered that escaped deletion. Delete these arrays (BXD32-R1214, BXD39-R0602) +
    • Setp 15: Finally, we compute the arithmetic mean of the values for the set of 76 final arrays for each strain. +
    +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized standard deviation of 2 units within each array). Please see Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets. +

    + + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets included on the microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + + +

        Data source acknowledgment:

    +
    +Support for acquisition of microarray data were generously provided by the NIAAA and its INIA grant program to RWW, Thomas Sutter, and Daniel Goldowitz (U01AA013515, U01AA013499-03S1, U01AA013488, U01AA013503-03S1). Support for the continued development of the GeneNetwork and WebQTL was provided by a NIMH Human Brain Project grant (P20MH062009). All arrays were processed at the University of Memphis by Thomas Sutter and colleagues with support of the INIA Bioanalytical Core. +
    + +

        Information about this text file:

    +

    This text file originally generated by RWW Nov 29, 2006 using as a template the previous Jan06 RMA INFO file. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/IBR_M_1004_M.html b/web/dbdoc/IBR_M_1004_M.html new file mode 100755 index 00000000..e397ec8d --- /dev/null +++ b/web/dbdoc/IBR_M_1004_M.html @@ -0,0 +1,163 @@ + +M430 Microarray brain February04 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    INIA M430 brain MAS5 Database (October/04 Freeze) modify this page

    Accession number: GN47

    + +

        About the mice used to map microarray data:

    + +
    We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6 by a public consortium and approximately 1.5x coverage for D by Celera). Chromosomes of the two parental strains have been recombined and fixed randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXD43, BXD67, BXD68, etc. are BXD recombinant inbred strains that are part of a large set produced by Drs. Lu Lu and Jeremy Peirce. There are approximately 45 of these new BXD strains. For additional background on recombinant inbred strains please see Peirce et al. 2004. +
    + +

        About the tissue used to generate these data:

    +
    The INIA M430 brain Database (February04) consists of 30 Affymetrix MOE 430A and MOE430B GeneChip microarray pairs. Each AB pair of arrays was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter and colleagues at the University of Memphis. Before running the main batch of 30 pairs of array, we ran four "test" samples (one male and one female pool from each of the two parental strains, C57BL/6J and DBA/2J). The main batch of 30 array pairs includes the same four samples (in other words we have four technical replicates between the test and the main batches), two F1 hybrid sample (each run two times for a within-batch technical replication), and 22 BXD strains. The February04 data set therefore consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. We should note that the four technical replicates between batches were eventually combined with a correction for a highly significant batch effect. This was done at both the probe and probe set levels to "align" the test batch values with the two main batches. (The ratio of the probe average in the four test arrays to the average of the same probe in the four corresponding main batch arrays was used as a correction factor.) The F1 within-batch technical replicates were simply averaged. In the next batch we will reverse the sex of the BXD samples to achieve a balance with at least 22 BXD strains with one male and one female sample each. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSample_nameResult date
    B6D2F1F127919-F1Jan04
    B6D2F1F127919-F2Jan04
    B6D2F1M127920-F1Jan04
    B6D2F1M127920-F2Jan04
    C57BL/6JF65903-F1Nov03
    C57BL/6JF65903-F2Jan03
    C57BL/6JM66906-F1Nov03
    C57BL/6JM66906-F2Jan04
    DBA/2JF60917-F1Nov03
    DBA/2JF60917-F2Jan04
    DBA/2JM60918-F1Nov03
    DBA/2JM60918-F2Jan04
    BXD1F95895-F1Jan04
    BXD5M71728-F1Jan04
    BXD6M92902-F1Jan04
    BXD8F72S167-F1Jan04
    BXD9M86909-F1Jan04
    BXD12M64897-F1Jan04
    BXD13F86748-F1Jan04
    BXD14M91912-F1Jan04
    BXD18F108771-F1Jan04
    BXD19F56S236-F1Jan04
    BXD21F67740-F1Jan04
    BXD23F88815-F1Jan04
    BXD24M71913-F1Jan04
    BXD25F74S373-F1Jan04
    BXD28F79910-F1Jan04
    BXD29F76693-F1Jan04
    BXD32F93898-F1Jan04
    BXD33M77915-F1Jan04
    BXD34M72916-F1Jan04
    BXD36M77926-F1Jan04
    BXD38M69731-F1Jan04
    BXD42M97936-F1Jan04
    +
    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the .CEL file: These .CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      +
    • Step 1: We added an offset of 1.0 to the .CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z scores for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B GeneChips include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: We corrected for technical variance introduced by two batches. Means separated by the first batch for each gene are corrected same as means of the second batch. + +
    • Step 8: Finally, we compute the arithmetic mean of the values for the set of microarrays for each strain. In this data set we have modest numbers of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the .CEL file. We expect to add statistical controls and adjustments for these variables in subsequent versions of WebQTL. + +
    +Probe set data from the .CHP file: These .CHP files were generated using the MAS5.0. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 (mm4) Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    +Data were generated with funds from multiple data sources including NIAAA INIA support to RWW and Thomas Sutter, an NIMH Human Brain Project, and the Dunavant Chair of Excellence, University of Tennessee Health Science Center. All arrays were processed at the University of Memphis by Dr. Thomas Sutter and colleagues with support of the INIA Bioanalytical Core. +
    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/IBR_M_1004_P.html b/web/dbdoc/IBR_M_1004_P.html new file mode 100755 index 00000000..ce70defb --- /dev/null +++ b/web/dbdoc/IBR_M_1004_P.html @@ -0,0 +1,203 @@ + +M430 Microarray brain PDNN October04 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    + +INIA Brain mRNA M430 (Oct04) PDNN modify this page

    Accession number: GN48

    + +

        Summary:

    + +

    +This October 2004 data freeze provides initial estimates of mRNA expression in brains of adult BXD recombinant inbred mice measured using Affymetrix M430AB microarrays. In contast to the U74Av2 array, this new data set provides broader coverage (~45,000 transcripts) but does not include replicates or as many strains (25 vs 35). Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Data were processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units.

    +
    + + +

        About the cases used to generate this set of data:

    +
    We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B) and DBA/2J (D). Both B and D strains have been almost fully sequence (8x coverage for B by a public consortium and approximately 1.5x coverage for D by Celera).

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine.

    +
    + +

        About the tissue used to generate these data:

    +
    The data set consists of a single batch of Affymetrix mouse expression 430A and 430B GeneChip array pairs. Each AB pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter and colleagues at the University of Memphis. Before running the main batch of 30 pairs of array, we ran four "test" samples (one male and one female pool from each of the two parental strains, C57BL/6J and DBA/2J). The main set of 30 array pairs includes the same four samples (in other words we have four technical replicates), two F1 hybrid sample (each run two times for a within-batch technical replication), and 22 BXD strains. The data set therefore consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. We should note that the four technical replicates between batches were eventually combined with a correction for a highly significant batch effect. This was done at both the probe and probe set levels to "align" the test batch values with the two main batches. (The ratio of the probe average in the four test arrays to the average of the same probe in the four corresponding main batch arrays was used as a correction factor.) The F1 within-batch technical replicates were simply averaged. In the next batch we will reverse the sex of the BXD samples to achieve a balance with at least 22 BXD strains with one male and one female sample each. +
    + + +
    +The table below lists the arrays by strain, sex, age, sample identifier, and data results were obtained from the Bioanalytical Core at the University of Memphis. Each array was hybridized to a pool of mRNA from three mice. +
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSampleIDDate
    B6D2F1F127919-F1Jan04
    B6D2F1F127919-F2Jan04
    B6D2F1M127920-F1Jan04
    B6D2F1M127920-F2Jan04
    C57BL/6JF65903-F1Nov03
    C57BL/6JF65903-F2Jan03
    C57BL/6JM66906-F1Nov03
    C57BL/6JM66906-F2Jan04
    DBA/2JF60917-F1Nov03
    DBA/2JF60917-F2Jan04
    DBA/2JM60918-F1Nov03
    DBA/2JM60918-F2Jan04
    BXD1F95895-F1Jan04
    BXD5M71728-F1Jan04
    BXD6M92902-F1Jan04
    BXD8F72S167-F1Jan04
    BXD9M86909-F1Jan04
    BXD12M64897-F1Jan04
    BXD13F86748-F1Jan04
    BXD14M91912-F1Jan04
    BXD18F108771-F1Jan04
    BXD19F56S236-F1Jan04
    BXD21F67740-F1Jan04
    BXD23F88815-F1Jan04
    BXD24M71913-F1Jan04
    BXD25F74S373-F1Jan04
    BXD28F79910-F1Jan04
    BXD29F76693-F1Jan04
    BXD32F93898-F1Jan04
    BXD33M77915-F1Jan04
    BXD34M72916-F1Jan04
    BXD36M77926-F1Jan04
    BXD38M69731-F1Jan04
    BXD42M97936-F1Jan04
    +
    + + +

        About the array platform:

    + +

    +Affymetrix 430A and 430B GeneChip Set: Expression data were generated using 430AB array pairs. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on either the Verify UCSC and Verify Ensembl links in the Trait Data and Editing Form (right side of the Location line).

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
    + +
    +
      +
    • Step 1: We added an offset of 1 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each probe signal. + +
    • Step 3: We computed the Z scores for each probe signal. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B arrays include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes provide a way to calibrate expression of the A and B arrays to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: We corrected for technical variance introduced by two batches. Means separated by the first batch for each gene are corrected same as means of the second batch. + +
    • Step 8: Finally, we compute the arithmetic mean of the values for the set of microarrays for each strain. In this data set we have modest numbers of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We expect to add statistical controls and adjustments for these variables in subsequent versions of WebQTL. +
    +
    + +
    +

    Probe set data: The original expression values in the Affymetrix CEL files were read into PerfectMatch to generate the normalized PDNN data set.

    + +

    PDNN values of each array were subsequently normalized to a achieve a mean value of 8 units and a variance of 2 units.

    + +

    When necessary, we computed the arithmetic mean for technical replicates and treated these as single samples. We then computed the arithmetic mean for the set of 2 to 5 biological replicates for each strain. +

    + +
    + + +

        About the array probe set names:

    + +

    +Most probe sets on the mouse 430A and 430B arrays consist of a total of 22 probes, divided into 11 perfect match(PM) probes and 11 mismatch (MM) controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, several suffix characters that highlight design features, a a final A or B character to specify the array pair member. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene.

    +
    + + +

        Data source acknowledgment:

    +
    +Data for the microarrays were generously provided by support from NIAAA INIA grants to RWW and Thomas Sutter. Support for sample acquistion and WebQTL have been provided by NIMH Human Brain Project, and the Dunavant Chair of Excellence, University of Tennessee Health Science Center. All arrays were processed at the University of Memphis by Dr. Thomas Sutter and colleagues with support of the INIA Bioanalytical Core. +
    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/IBR_M_1004_R.html b/web/dbdoc/IBR_M_1004_R.html new file mode 100755 index 00000000..cbf0ac5d --- /dev/null +++ b/web/dbdoc/IBR_M_1004_R.html @@ -0,0 +1,200 @@ + +M430 Microarray brain RMA October04 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    INIA M430 brain RMA Database (October/04 Freeze) modify this page

    Accession number: GN49

    + +

        Summary:

    + +

    +This October 2004 data freeze provides initial estimates of mRNA expression in brains of adult BXD recombinant inbred mice measured using Affymetrix M430AB microarrays. In contast to the U74Av2 array, this new data set provides broader coverage (~45,000 transcripts) but does not include replicates or as many strains (25 vs 35). Data were generated at UTHSC and the University of Memphis with support from grants from the NIAAA Integrative Neuroscience Initiative on Alcoholism (INIA). Data were processed using the RMA protocol and are presented with secondary normalization to an average expression value of 8 units. The variance of each array has been stabilized to 2 units for easy comparison to other transforms (see below). +

    +
    + + +

        About the cases used to generate this set of data:

    +
    We have exploited a set of BXD recombinant inbred strains. The parental strains from which all BXD lines are derived are C57BL/6J (B) and DBA/2J (D). Both B and D strains have been almost fully sequence (8x coverage for B by a public consortium and approximately 1.5x coverage for D by Celera).

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine.

    +
    + +

        About the tissue used to generate these data:

    +
    The data set consists of a single batch of Affymetrix mouse expression 430A and 430B GeneChip array pairs. Each AB pair was hybridized in sequence (A array first, B array second) with a pool of brain tissue (forebrain minus olfactory bulb, plus the entire midbrain) taken from three adult animals of closely matched age and the same sex. RNA was extracted at UTHSC by Lu Lu, Zhiping Jia, and Hongtao Zhai. All samples were subsequently processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center of Excellence by Thomas R. Sutter and colleagues at the University of Memphis. Before running the main batch of 30 pairs of array, we ran four "test" samples (one male and one female pool from each of the two parental strains, C57BL/6J and DBA/2J). The main set of 30 array pairs includes the same four samples (in other words we have four technical replicates), two F1 hybrid sample (each run two times for a within-batch technical replication), and 22 BXD strains. The data set therefore consists of one male and one female pool from C57BL/6J, DBA/2J, the B6D2F1 hybrid, 11 female BXD samples, and 11 male BXD samples. We should note that the four technical replicates between batches were eventually combined with a correction for a highly significant batch effect. This was done at both the probe and probe set levels to "align" the test batch values with the two main batches. (The ratio of the probe average in the four test arrays to the average of the same probe in the four corresponding main batch arrays was used as a correction factor.) The F1 within-batch technical replicates were simply averaged. In the next batch we will reverse the sex of the BXD samples to achieve a balance with at least 22 BXD strains with one male and one female sample each. +
    + + +
    +The table below lists the arrays by strain, sex, age, sample identifier, and data results were obtained from the Bioanalytical Core at the University of Memphis. Each array was hybridized to a pool of mRNA from three mice. +
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSampleIDDate
    B6D2F1F127919-F1Jan04
    B6D2F1F127919-F2Jan04
    B6D2F1M127920-F1Jan04
    B6D2F1M127920-F2Jan04
    C57BL/6JF65903-F1Nov03
    C57BL/6JF65903-F2Jan03
    C57BL/6JM66906-F1Nov03
    C57BL/6JM66906-F2Jan04
    DBA/2JF60917-F1Nov03
    DBA/2JF60917-F2Jan04
    DBA/2JM60918-F1Nov03
    DBA/2JM60918-F2Jan04
    BXD1F95895-F1Jan04
    BXD5M71728-F1Jan04
    BXD6M92902-F1Jan04
    BXD8F72S167-F1Jan04
    BXD9M86909-F1Jan04
    BXD12M64897-F1Jan04
    BXD13F86748-F1Jan04
    BXD14M91912-F1Jan04
    BXD18F108771-F1Jan04
    BXD19F56S236-F1Jan04
    BXD21F67740-F1Jan04
    BXD23F88815-F1Jan04
    BXD24M71913-F1Jan04
    BXD25F74S373-F1Jan04
    BXD28F79910-F1Jan04
    BXD29F76693-F1Jan04
    BXD32F93898-F1Jan04
    BXD33M77915-F1Jan04
    BXD34M72916-F1Jan04
    BXD36M77926-F1Jan04
    BXD38M69731-F1Jan04
    BXD42M97936-F1Jan04
    +
    + + +

        About the array platform:

    + +

    +Affymetrix 430A and 430B GeneChip Set: Expression data were generated using 430AB array pairs. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on either the Verify UCSC and Verify Ensembl links in the Trait Data and Editing Form (right side of the Location line).

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
    + +
    +
      +
    • Step 1: We added an offset of 1 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each probe signal. + +
    • Step 3: We computed the Z scores for each probe signal. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B arrays include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes provide a way to calibrate expression of the A and B arrays to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: We corrected for technical variance introduced by two batches. Means separated by the first batch for each gene are corrected same as means of the second batch. + +
    • Step 8: Finally, we compute the arithmetic mean of the values for the set of microarrays for each strain. In this data set we have modest numbers of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We expect to add statistical controls and adjustments for these variables in subsequent versions of WebQTL. +
    +
    + +
    +

    Probe set data: The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL are the averages of biological replicates within strain. A few technical replicates were averaged and treated as single samples.

    + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized variance of 2 units within each array). Please seee Bolstad and colleagues (2003) for a helpful comparison of RMA and two other common methods of processing Affymetrix array data sets. +

    + + + + +

        About the array probe set names:

    + +

    +Most probe sets on the mouse 430A and 430B arrays consist of a total of 22 probes, divided into 11 perfect match(PM) probes and 11 mismatch (MM) controls. Each set of these 25-nucleotide-long probes has an identifier code that includes a unique number, an underscore character, several suffix characters that highlight design features, a a final A or B character to specify the array pair member. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene.

    +
    + + +

        Data source acknowledgment:

    +
    +Data for the microarrays were generously provided by support from NIAAA INIA grants to RWW and Thomas Sutter. Support for sample acquistion and WebQTL have been provided by NIMH Human Brain Project, and the Dunavant Chair of Excellence, University of Tennessee Health Science Center. All arrays were processed at the University of Memphis by Dr. Thomas Sutter and colleagues with support of the INIA Bioanalytical Core. +
    + +

        Information about this text file:

    +

    This text file originally generated by RWW, YHQ, and EJC, Oct 2004. Updated by RWW, Nov 5, 2004. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/ILM_B_D_CNS_GI_avg_0508.html b/web/dbdoc/ILM_B_D_CNS_GI_avg_0508.html new file mode 100755 index 00000000..4e3c8ac9 --- /dev/null +++ b/web/dbdoc/ILM_B_D_CNS_GI_avg_0508.html @@ -0,0 +1,90 @@ + +UTHSC Hippocampus Illumina v6.1 RSS (Sep09) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UTHSC Illumina Whole Mouse Genome Array 6.0 Version 2 data set + modify this page

    +

    Modified by Ning Liu, Dec 6, 2010 +

    Array data set generated by Dr. Xusheng Wang (2008) +

    +
    +

    Animals

    +

    Two individual male strains (C57BL/6J and DBA/2J) were sacrifice to extract 61 tissues, including 32 CNS and 5 GIs (See tissue names in the table). The uterus of the C57BL/6J and DBA/2J mice were obtained from the corresponding female strains. Around two month old C57BL/6J and DBA/2J mice were used. +

    Tissue Collection and RNA isolation

    +

    The mouse was maintained at 20-24°C on a 12/12 hr light/dark cycle in a pathogen-free colony at the University of Tennessee, and was fed a 5% fat Agway Prolab 3000 rat and mouse chow and given tap water in glass bottles. Mice were sacrificed by cervical dislocation. 27 different tissues and organs were dissected from the body and place in RNAlater and then stored at -80°C until use. The whole brain was also rapidly extracted and placed on a sagital matrix with 1 mm divisions. The extraction of RNA from hippocampal tissues was carried out with the RNA STAT-60 reagent (Tel-Test Inc, Friedenswood, TX, USA). Tissue samples were washed three times in phosphate-buffered saline (PBS; GibCo BRL, Grand Island, NY, USA) to remove blood contamination. 100mg tissue was homogenized in 1 ml of RNA STAT-60 reagent. Following homogenization, store the homogenate for 5 minutes at room temperature. Next, 0.2ml of chloroform per 1ml of RNA STAT-60 was added and the mix was vigorously shaken for 15 seconds and centrifuged at 12,000g for 15 minutes at 4°C. After centrifugation the aqueous phase was transferred to a fresh tube and mixed with 0.5ml of isopropanol per 1ml of RNA STAT-60 used for the homogenization. The precipitate was washed twice in 75% ethanol, air-dried and re-diluted in Nuclease-free water (Ambion Inc., TX, USA). The purity of the extracted RNA was determined by by NanoDrop spectrophotometer (NanoDrop Technologies Inc, NC, USA). The 260/280 ratio of the samples was within the desired range of 1.9-2.1. RNA integrity was assessed on the Agilent 2100 Bioanalyzer (Agilent Technologies, CA, USA), and the RNA Integrity Number (RIN) values were required greater than 8.0. +

    Bead array and gene expression analysis

    +

    Sample amplification was performed with 100 ng of total RNA using the Illumina TotalPrep RNA Amplification kit and labeling was achieved by incorporation of biotin-16-UTP (Perkin Elmer Life and Analytical Sciences) at a ratio of 1:1 with unlabeled UTP. Labeled, amplified material (100 ng per array) was hybridized to Illumina Bead chips according to the Manufacturer's instructions (Illumina, Inc.). Arrays were scanned with an Illumina Bead Array Reader confocal scanner according to the Manufacturer's instructions. Array data processes were performed using Illumina BeadStudio software. For the striatum of the BXD RI data, Illumina MouseWG-6v1 presented with 45,281 transcripts were used; for the tissue data, Illumina MouseWG-6V2 presented with 45,281 transcripts were used. + +

    To associate probes with RefSeq transcripts, we mapped the probes back to the genomes (NCBI mouse genome assembly m36) to identify the probe locations and exon targets. We used the resulting probe-to-exon map to identify the RefSeq transcripts targeted by each probe, and assign a probe set to each transcript. + +

    Normalization was performed by the rank variance method using Beadstudio software. We generated probe set data using Rank variance, obtained the log2 of each probe set and standardized using Z scores. We doubled the Z scores and added 8 to produce a set of Z scores with a mean of 8, a variance of 4 and a standard deviation of 2. The advantage of this modified Z score is that a two fold difference in expression level corresponds approximately to a 1-unit difference. Expression levels below 6 are usually close to background noise levels. +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/ILM_B_D_CNS_GI_avg_0508.xls b/web/dbdoc/ILM_B_D_CNS_GI_avg_0508.xls new file mode 100755 index 00000000..b8fd0532 Binary files /dev/null and b/web/dbdoc/ILM_B_D_CNS_GI_avg_0508.xls differ diff --git a/web/dbdoc/ILM_B_D_avg_CNS_0508.html b/web/dbdoc/ILM_B_D_avg_CNS_0508.html new file mode 100755 index 00000000..3913dfe0 --- /dev/null +++ b/web/dbdoc/ILM_B_D_avg_CNS_0508.html @@ -0,0 +1,91 @@ + +UTHSC Hippocampus Illumina v6.1 RSS (Sep09) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UTHSC Illumina Whole Mouse Genome Array 6.0 Version 2 CNS data set
    + modify this page

    +

    Modified by Ning Liu, Dec 14, 2010. +

    Array data set generated by Dr. Xusheng Wang (2008) +

    +
    +

    This data set is subset of UTHSC Illumina Whole Mouse Genome Array 6.0 Version 2 data set. There are 32 tissues and related punch data belonging to CNS (Central Nervous System) data set, +which include Olfactory Bulb, Olfactory Bulb Punch1, Olfactory Bulb Punch2, Olfactory Bulb Punch3, Orbital Cortex Punch12, Neocortex, Neocortex Punch4, Neocortex Punch5, Neocortex Punch6, +Neocortex Punch7, Hippocampus, Hippocampus Punch15, Septal Nucleus Punch13, Striatum, Thalamus, Thalamus Punch22, Preoptic Area Punch14, Hypothalamus, Hypothalamus Punch16, Midbrain, +Midbrain Punch17, Midbrain Colliculus Punch8, Pons Punch18, Pons Punch19, Cerebellum Punch9, Cerebellum Punch10, Cerebellum Punch11, Cerebellum Punch25, HindBrain, Medulla Punch12, +Medulla Punch13, Spinal Cord. + +

    + Image of DBA/2J 82-day-old, male case ID 091407.01 and female case ID 102407.26 mice used for punches
    + Image of DBA/2J 82-day-old, male case ID 091407.01 and female case ID 102407.26 mice used for punches +

    + Image of C57BL/6J 65-day-old, male case ID 090607.06 and female case ID 090607.04 mice used for punches
    + Image of C57BL/6J 65-day-old, male case ID 090607.06 and female case ID 090607.04 mice used for punches +

    + + + + +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/ILM_B_D_avg_CNS_0508.xls b/web/dbdoc/ILM_B_D_avg_CNS_0508.xls new file mode 100755 index 00000000..732fc87b Binary files /dev/null and b/web/dbdoc/ILM_B_D_avg_CNS_0508.xls differ diff --git a/web/dbdoc/ILM_Retina_BXD_FM_RankInv1210.html b/web/dbdoc/ILM_Retina_BXD_FM_RankInv1210.html new file mode 100755 index 00000000..1295bd7c --- /dev/null +++ b/web/dbdoc/ILM_Retina_BXD_FM_RankInv1210.html @@ -0,0 +1,82 @@ + + + +HEI Retina F-M Illumina V6.2 (Dec10) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    HEI Retina F-M Illumina V6.2 (Dec10) RankInv **modify this page

    + + Accession number: GN286

    +

    + This page will be updated soon. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/ILM_Retina_BXD_F_RankInv1210.html b/web/dbdoc/ILM_Retina_BXD_F_RankInv1210.html new file mode 100755 index 00000000..070bd34e --- /dev/null +++ b/web/dbdoc/ILM_Retina_BXD_F_RankInv1210.html @@ -0,0 +1,82 @@ + + + +HEI Retina Females Illumina V6.2 (Dec10) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    HEI Retina Females Illumina V6.2 (Dec10) RankInv **modify this page

    + + Accession number: GN288

    +

    + This page will be updated soon. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/ILM_Retina_BXD_M_RankInv1210.html b/web/dbdoc/ILM_Retina_BXD_M_RankInv1210.html new file mode 100755 index 00000000..74a3e705 --- /dev/null +++ b/web/dbdoc/ILM_Retina_BXD_M_RankInv1210.html @@ -0,0 +1,82 @@ + + + +HEI Retina Males Illumina V6.2 (Dec10) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    HEI Retina Males Illumina V6.2 (Dec10) RankInv **modify this page

    + + Accession number: GN287

    +

    + This page will be updated soon. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_AmgCoh_0311.html b/web/dbdoc/INIA_AmgCoh_0311.html new file mode 100755 index 00000000..bece29fb --- /dev/null +++ b/web/dbdoc/INIA_AmgCoh_0311.html @@ -0,0 +1,273 @@ + +INIA Amygdala Cohort Affy MoGene 1.0 ST (Mar11) RMA + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    INIA Amygdala Cohort Affy MoGene 1.0 ST (Mar11) RMAmodify this page

    + + Accession number: GN323

    +
    +

    Summary:

    + +

    This is a final error-checked release of an amygdala gene expression data set generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from the NIH NIAAA. The basolateral complex of the amygdala of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna"). + + +

    Animals and Tissue Used to Generate This Set of Data:

    + + +

    Cases. A total of 58 strains, including 54 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1) were analyzed. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by K. Mozhui. Samples were pooled by sex and usually include at least two cases per sex and strain. + +

    Sex Balance. Fifty strains have matched male and female samples. Five strains have male only samples (BXD5, 13, 16, 100 and 103). Three strains have only female samples (BXD44, 70, and 87.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples. + +

    Dissection Protocol
    +

      +
    1. Animals were sacrificed by cervical dislocation and brains were immediately dissected from the head and stored in RNAlater (www.ambion.com) for 2 to 3 days at 4 deg C in a refrigerator. +
    2. Brains were placed with ventral side up on a cutting surface and a partial coronal cut was made with a surgical blade at a level that corresponds approximately to the -2.5 mm behind the stereotaxic Bregma point (this cut is just a little rostral from the pontine fibres when viewed from the ventral side). +
    3. Brains were placed in a coronal matrix (egg-style slicer) and a 2-mm thick coronal slab was taken just rostral to the initial cut. +
    4. The 2-mm thick slab was placed on a clean glass slide and the hypothalamus was cut out and placed in a tube on dry ice. +
    5. To dissect the BLA, the temporal lobes were detached by placing a scalpel in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then cut out and placed in a tube on dry ice. +
    6. Tissue from two mice (right and left sides) and from the same strain and sex (an usually the same litter) were pooled. The only exceptions are BLA samples from strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue was obtained from only one animal per array).
    7. +
    +

    + +

    Sample Processing:

    + +

    RNA Processing. Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + + +

    Array Processing: All arrays were processed by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. The BLA was dissected by K. Mozhui (description below) with special attention to time of day (every sample has time stamp). BLA and hypothalamus samples (~200 arrays) were run together (interleaved) in a single large batch. + +

    Experimental Design and Batch Structure:

    + +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno. + +

    Batch Effects. This data set required no initial correction for batch effects and the data in this initial release do not incorporate any additional corrections. However, there are several confounder-like factors that should be considered: +

      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation +
    2. Dissection variation: examine and use probe sets for Ttr as a correction for the inclusion of choroid plexus and non-parenchmymal tissue in samples. Transthyretin is only expressed in the choroid plexus (PMID 16698124 +
    3. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the 54 probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases (58) in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest 54 probe sets in this amygdala data set accounts of 42% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the amygdala data set can be map as a trait. It is not associated with any QLTs that are even suggestive, and the highest LRS is about 10 on chromosomes 18 and 19. The second principal component trait, which accounts for only 5% of the "noise" variance, has a suggestive QTL (LRS of 12, high B allele) on chromosome 4 at about 90 Mb. We therefore do not think that there is significant risk of major false trans eQTL bands in this data set. + +
    + +

    Data Release. This data set was first uploaded into GeneNetwork November 25, 2010 and made accessible without a password to all users on December 1, 2010. The data set was orginally entered with two strain identification errors that were fixed Dec 10, 2010 by KM Mozhui and A Centeno (array R6659BL was originally listed as BXD16 but is BXD27; R6789BL was original listed as BXD27 is BXD12). The current data release has no known errors of sex or strain assignment. + +

    Data Status and Use. The data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation. + +
    This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use. + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data. + + + +

    Data Evaluation Summary + +

      +
    1. eQLTs with LOD >10 (LRS>46.1): n = 525 +
    2. eQTL with high LOD and LRS: Trait ID 10513604 (Hdhd3) LOD = 39.8, LRS = 183.5 +
    3. Lowest mean value: Trait ID 10344361, mean = 3.998 +
    4. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1) +
    5. Greatest sex difference: Trait ID: 10606178 (Xist) +
    6. Great variation within and among strains: Trait ID 10454192 (Ttr +
        + + +
        +
        + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6853BLBLAC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6861BLBLAC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6851BLBLAD2B6F177F8/18/108:45AM to 12:30 PM
    4R6859BLBLAD2B6F177M8/18/108:45AM to 12:30 PM
    5R6863BLBLADBA/2J77F8/18/108:45AM to 12:30 PM
    6R6865BLBLADBA/2J68M8/18/108:45AM to 12:30 PM
    7R6857BLBLAB6D2F169F8/18/108:45AM to 12:30 PM
    8R6855BLBLAB6D2F169M8/18/108:45AM to 12:30 PM
    9R6799BLBLABXD171F8/17/101:15 PM to 5 PM
    10R6795BLBLABXD185M8/17/101:15 PM to 5 PM
    11R6787BLBLABXD1187F8/17/101:15 PM to 5 PM
    12R6785BLBLABXD1176M8/17/101:15 PM to 5 PM
    13R6819BLBLABXD1278F8/18/108:45AM to 12:30 PM
    14R6789BLBLABXD1273M8/17/101:15 PM to 5 PM
    15R6805BLBLABXD1277M8/17/101:15 PM to 5 PM
    16R6291BLBLABXD13N/AM6/11/09N/A
    17R6811BLBLABXD1481F8/18/108:45AM to 12:30 PM
    18R6825BLBLABXD1481M8/18/108:45AM to 12:30 PM
    19R6657BLBLABXD16N/AM1/8/08N/A
    20R6054BLBLABXD19N/AF2/26/08N/A
    21R6052BLBLABXD19N/AM2/26/08N/A
    22R6803BLBLABXD2485F8/17/101:15 PM to 5 PM
    23R6817BLBLABXD2486M8/18/108:45AM to 12:30 PM
    24R6063BLBLABXD25N/AF3/12/08N/A
    25R6062BLBLABXD25N/AM3/12/08N/A
    26R6659BLBLABXD27N/AF1/8/08N/A
    27R6791BLBLABXD2775F8/17/101:15 PM to 5 PM
    28R6797BLBLABXD2971F8/17/101:15 PM to 5 PM
    29R6793BLBLABXD2971M8/17/101:15 PM to 5 PM
    30R6815BLBLABXD3174F8/18/108:45AM to 12:30 PM
    31R6801BLBLABXD3173M8/17/101:15 PM to 5 PM
    32R6915BLBLABXD3281F8/18/101 PM to 6:45 PM
    33R6845BLBLABXD3281M8/18/108:45AM to 12:30 PM
    34R6821BLBLABXD3477F8/18/108:45AM to 12:30 PM
    35R6807BLBLABXD3477M8/18/108:45AM to 12:30 PM
    36R6057BLBLABXD38N/AF2/26/08N/A
    37R6056BLBLABXD38N/AM2/26/08N/A
    38R6827BLBLABXD3979F8/18/108:45AM to 12:30 PM
    39R6813BLBLABXD3979M8/18/108:45AM to 12:30 PM
    40R6847BLBLABXD4085F8/18/108:45AM to 12:30 PM
    41R6849BLBLABXD4085M8/18/108:45AM to 12:30 PM
    42R6809BLBLABXD4287F8/18/108:45AM to 12:30 PM
    43R6823BLBLABXD4287M8/18/108:45AM to 12:30 PM
    44R6759BLBLABXD4381F8/17/109:30 AM to 12:30AM
    45R6757BLBLABXD4381M8/17/109:30 AM to 12:30AM
    46R6745BLBLABXD4483F8/17/109:30 AM to 12:30AM
    47R6763BLBLABXD4577F8/17/109:30 AM to 12:30AM
    48R6761BLBLABXD4577M8/17/109:30 AM to 12:30AM
    49R6879BLBLABXD4876F8/18/101 PM to 6:45 PM
    50R6881BLBLABXD4876M8/18/101 PM to 6:45 PM
    51R6751BLBLABXD4984F8/17/109:30 AM to 12:30AM
    52R6747BLBLABXD4984M8/17/109:30 AM to 12:30AM
    53R6104BLBLABXD5N/Af10/23/09N/A
    54R6103BLBLABXD5N/AM10/23/09N/A
    55R6889BLBLABXD5077F8/18/101 PM to 6:45 PM
    56R6891BLBLABXD5077M8/18/101 PM to 6:45 PM
    57R6074BLBLABXD51N/AF3/12/08N/A
    58R6699BLBLABXD51N/AM4/30/09N/A
    59R6917BLBLABXD5684F8/18/101 PM to 6:45 PM
    60R6893BLBLABXD5677M8/18/101 PM to 6:45 PM
    61R6769BLBLABXD6070F8/17/109:30 AM to 12:30AM
    62R6771BLBLABXD6070M8/17/101:15 PM to 5 PM
    63R6655BLBLABXD61N/AF1/29/08N/A
    64R6653BLBLABXD61N/AM1/29/08N/A
    65R6835BLBLABXD6283F8/18/108:45AM to 12:30 PM
    66R6843BLBLABXD6283M8/18/108:45AM to 12:30 PM
    67R6887BLBLABXD6377F8/18/101 PM to 6:45 PM
    68R6885BLBLABXD6377M8/18/101 PM to 6:45 PM
    69R6877BLBLABXD6584F8/18/101 PM to 6:45 PM
    70R6873BLBLABXD6584M8/18/101 PM to 6:45 PM
    71R6929BLBLABXD6876F8/18/101 PM to 6:45 PM
    72R6931BLBLABXD6876M8/18/101 PM to 6:45 PM
    73R6775BLBLABXD6969F8/17/101:15 PM to 5 PM
    74R6773BLBLABXD6980M8/17/101:15 PM to 5 PM
    75R6925BLBLABXD7076F8/18/101 PM to 6:45 PM
    76R6921BLBLABXD7076M8/17/061 PM to 6:45 PM
    77R6869BLBLABXD7176F8/18/101 PM to 6:45 PM
    78R6871BLBLABXD7176M8/18/101 PM to 6:45 PM
    79R6777BLBLABXD7383F8/17/101:15 PM to 5 PM
    80R6779BLBLABXD7383M8/17/101:15 PM to 5 PM
    81R6837BLBLABXD7576F8/18/108:45AM to 12:30 PM
    82R6829BLBLABXD7576M8/18/108:45AM to 12:30 PM
    83R6933BLBLABXD7987F8/18/101 PM to 6:45 PM
    84R6935BLBLABXD7987M8/18/101 PM to 6:45 PM
    85R6781BLBLABXD8073F8/17/101:15 PM to 5 PM
    86R6783BLBLABXD8073M8/17/101:15 PM to 5 PM
    87R6913BLBLABXD8381F8/18/101 PM to 6:45 PM
    88R6911BLBLABXD8381M8/18/101 PM to 6:45 PM
    89R6841BLBLABXD8476F8/18/108:45AM to 12:30 PM
    90R6833BLBLABXD8476M8/18/108:45AM to 12:30 PM
    91R6937BLBLABXD8574F8/18/101 PM to 6:45 PM
    92R6939BLBLABXD8574M8/18/101 PM to 6:45 PM
    93R6909BLBLABXD8783F8/18/101 PM to 6:45 PM
    94R6895BLBLABXD8982F8/18/101 PM to 6:45 PM
    95R6897BLBLABXD8982M8/18/101 PM to 6:45 PM
    96R6903BLBLABXD9082F8/18/101 PM to 6:45 PM
    97R6905BLBLABXD9082M8/18/101 PM to 6:45 PM
    98R6923BLBLABXD9286F8/18/101 PM to 6:45 PM
    99R6927BLBLABXD9289M8/18/101 PM to 6:45 PM
    100R6919BLBLABXD9576F8/18/101 PM to 6:45 PM
    101R6867BLBLABXD9576M8/18/108:45AM to 12:30 PM
    102R6899BLBLABXD9771F8/18/101 PM to 6:45 PM
    103R6901BLBLABXD9771M8/18/101 PM to 6:45 PM
    104R6875BLBLABXD9977F8/18/101 PM to 6:45 PM
    105R6883BLBLABXD9977M8/18/101 PM to 6:45 PM
    106R6831BLBLABXD10083M8/18/108:45AM to 12:30 PM
    107R6943BLBLABXD10189F8/18/101 PM to 6:45 PM
    108R6941BLBLABXD10189M8/18/101 PM to 6:45 PM
    109R6753BLBLABXD10288F8/17/109:30 AM to 12:30AM
    110R6755BLBLABXD10288M8/17/109:30 AM to 12:30AM
    111R6765BLBLABXD10378M8/17/109:30 AM to 12:30AM
    +

    + + +

    Data Source Acknowledgements:

    + +

    Last edits by RW Williams, December 12, 2010, AC March 7, 2011 + + +

    +

    +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_Amg_BLA_RMA_1110.html b/web/dbdoc/INIA_Amg_BLA_RMA_1110.html new file mode 100755 index 00000000..d82f31f5 --- /dev/null +++ b/web/dbdoc/INIA_Amg_BLA_RMA_1110.html @@ -0,0 +1,274 @@ + +INIA Amygdala BLA Affy MoGene 1.0 ST (Nov10) + + + + + + + + + + + + + + + + + + +
    + + + + + +

    INIA Amygdala BLA Affy MoGene 1.0 ST (Nov10) +modify this page

    Accession number: GN280

    + + +
    +

    Summary:

    + +

    This is a final error-checked release of an amygdala gene expression data set generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from the NIH NIAAA. The basolateral complex of the amygdala of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna"). + + +

    Animals and Tissue Used to Generate This Set of Data:

    + + +

    Cases. A total of 58 strains, including 54 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1) were analyzed. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by K. Mozhui. Samples were pooled by sex and usually include at least two cases per sex and strain. + +

    Sex Balance. Fifty strains have matched male and female samples. Five strains have male only samples (BXD5, 13, 16, 100 and 103). Three strains have only female samples (BXD44, 70, and 87.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples. + +

    Dissection Protocol
    +

      +
    1. Animals were sacrificed by cervical dislocation and brains were immediately dissected from the head and stored in RNAlater (www.ambion.com) for 2 to 3 days at 4 deg C in a refrigerator. +
    2. Brains were placed with ventral side up on a cutting surface and a partial coronal cut was made with a surgical blade at a level that corresponds approximately to the -2.5 mm behind the stereotaxic Bregma point (this cut is just a little rostral from the pontine fibres when viewed from the ventral side). +
    3. Brains were placed in a coronal matrix (egg-style slicer) and a 2-mm thick coronal slab was taken just rostral to the initial cut. +
    4. The 2-mm thick slab was placed on a clean glass slide and the hypothalamus was cut out and placed in a tube on dry ice. +
    5. To dissect the BLA, the temporal lobes were detached by placing a scalpel in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then cut out and placed in a tube on dry ice. +
    6. Tissue from two mice (right and left sides) and from the same strain and sex (an usually the same litter) were pooled. The only exceptions are BLA samples from strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue was obtained from only one animal per array).
    7. +
    +

    + +

    Sample Processing:

    + +

    RNA Processing. Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + + +

    Array Processing: All arrays were processed by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. The BLA was dissected by K. Mozhui (description below) with special attention to time of day (every sample has time stamp). BLA and hypothalamus samples (~200 arrays) were run together (interleaved) in a single large batch. + +

    Experimental Design and Batch Structure:

    + +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno. + +

    Batch Effects. This data set required no initial correction for batch effects and the data in this initial release do not incorporate any additional corrections. However, there are several confounder-like factors that should be considered: +

      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation +
    2. Dissection variation: examine and use probe sets for Ttr as a correction for the inclusion of choroid plexus and non-parenchmymal tissue in samples. Transthyretin is only expressed in the choroid plexus (PMID 16698124 +
    3. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the 54 probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases (58) in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest 54 probe sets in this amygdala data set accounts of 42% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the amygdala data set can be map as a trait. It is not associated with any QLTs that are even suggestive, and the highest LRS is about 10 on chromosomes 18 and 19. The second principal component trait, which accounts for only 5% of the "noise" variance, has a suggestive QTL (LRS of 12, high B allele) on chromosome 4 at about 90 Mb. We therefore do not think that there is significant risk of major false trans eQTL bands in this data set. + +
    + +

    Data Release. This data set was first uploaded into GeneNetwork November 25, 2010 and made accessible without a password to all users on December 1, 2010. The data set was orginally entered with two strain identification errors that were fixed Dec 10, 2010 by KM Mozhui and A Centeno (array R6659BL was originally listed as BXD16 but is BXD27; R6789BL was original listed as BXD27 is BXD12). The current data release has no known errors of sex or strain assignment. + +

    Data Status and Use. The data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation. + +
    This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use. + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data. + + + +

    Data Evaluation Summary + +

      +
    1. eQLTs with LOD >10 (LRS>46.1): n = 525 +
    2. eQTL with high LOD and LRS: Trait ID 10513604 (Hdhd3) LOD = 39.8, LRS = 183.5 +
    3. Lowest mean value: Trait ID 10344361, mean = 3.998 +
    4. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1) +
    5. Greatest sex difference: Trait ID: 10606178 (Xist) +
    6. Great variation within and among strains: Trait ID 10454192 (Ttr +
        + + +
        +
        + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6853BLBLAC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6861BLBLAC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6851BLBLAD2B6F177F8/18/108:45AM to 12:30 PM
    4R6859BLBLAD2B6F177M8/18/108:45AM to 12:30 PM
    5R6863BLBLADBA/2J77F8/18/108:45AM to 12:30 PM
    6R6865BLBLADBA/2J68M8/18/108:45AM to 12:30 PM
    7R6857BLBLAB6D2F169F8/18/108:45AM to 12:30 PM
    8R6855BLBLAB6D2F169M8/18/108:45AM to 12:30 PM
    9R6799BLBLABXD171F8/17/101:15 PM to 5 PM
    10R6795BLBLABXD185M8/17/101:15 PM to 5 PM
    11R6787BLBLABXD1187F8/17/101:15 PM to 5 PM
    12R6785BLBLABXD1176M8/17/101:15 PM to 5 PM
    13R6819BLBLABXD1278F8/18/108:45AM to 12:30 PM
    14R6789BLBLABXD1273M8/17/101:15 PM to 5 PM
    15R6805BLBLABXD1277M8/17/101:15 PM to 5 PM
    16R6291BLBLABXD13N/AM6/11/09N/A
    17R6811BLBLABXD1481F8/18/108:45AM to 12:30 PM
    18R6825BLBLABXD1481M8/18/108:45AM to 12:30 PM
    19R6657BLBLABXD16N/AM1/8/08N/A
    20R6054BLBLABXD19N/AF2/26/08N/A
    21R6052BLBLABXD19N/AM2/26/08N/A
    22R6803BLBLABXD2485F8/17/101:15 PM to 5 PM
    23R6817BLBLABXD2486M8/18/108:45AM to 12:30 PM
    24R6063BLBLABXD25N/AF3/12/08N/A
    25R6062BLBLABXD25N/AM3/12/08N/A
    26R6659BLBLABXD27N/AF1/8/08N/A
    27R6791BLBLABXD2775F8/17/101:15 PM to 5 PM
    28R6797BLBLABXD2971F8/17/101:15 PM to 5 PM
    29R6793BLBLABXD2971M8/17/101:15 PM to 5 PM
    30R6815BLBLABXD3174F8/18/108:45AM to 12:30 PM
    31R6801BLBLABXD3173M8/17/101:15 PM to 5 PM
    32R6915BLBLABXD3281F8/18/101 PM to 6:45 PM
    33R6845BLBLABXD3281M8/18/108:45AM to 12:30 PM
    34R6821BLBLABXD3477F8/18/108:45AM to 12:30 PM
    35R6807BLBLABXD3477M8/18/108:45AM to 12:30 PM
    36R6057BLBLABXD38N/AF2/26/08N/A
    37R6056BLBLABXD38N/AM2/26/08N/A
    38R6827BLBLABXD3979F8/18/108:45AM to 12:30 PM
    39R6813BLBLABXD3979M8/18/108:45AM to 12:30 PM
    40R6847BLBLABXD4085F8/18/108:45AM to 12:30 PM
    41R6849BLBLABXD4085M8/18/108:45AM to 12:30 PM
    42R6809BLBLABXD4287F8/18/108:45AM to 12:30 PM
    43R6823BLBLABXD4287M8/18/108:45AM to 12:30 PM
    44R6759BLBLABXD4381F8/17/109:30 AM to 12:30AM
    45R6757BLBLABXD4381M8/17/109:30 AM to 12:30AM
    46R6745BLBLABXD4483F8/17/109:30 AM to 12:30AM
    47R6763BLBLABXD4577F8/17/109:30 AM to 12:30AM
    48R6761BLBLABXD4577M8/17/109:30 AM to 12:30AM
    49R6879BLBLABXD4876F8/18/101 PM to 6:45 PM
    50R6881BLBLABXD4876M8/18/101 PM to 6:45 PM
    51R6751BLBLABXD4984F8/17/109:30 AM to 12:30AM
    52R6747BLBLABXD4984M8/17/109:30 AM to 12:30AM
    53R6104BLBLABXD5N/Af10/23/09N/A
    54R6103BLBLABXD5N/AM10/23/09N/A
    55R6889BLBLABXD5077F8/18/101 PM to 6:45 PM
    56R6891BLBLABXD5077M8/18/101 PM to 6:45 PM
    57R6074BLBLABXD51N/AF3/12/08N/A
    58R6699BLBLABXD51N/AM4/30/09N/A
    59R6917BLBLABXD5684F8/18/101 PM to 6:45 PM
    60R6893BLBLABXD5677M8/18/101 PM to 6:45 PM
    61R6769BLBLABXD6070F8/17/109:30 AM to 12:30AM
    62R6771BLBLABXD6070M8/17/101:15 PM to 5 PM
    63R6655BLBLABXD61N/AF1/29/08N/A
    64R6653BLBLABXD61N/AM1/29/08N/A
    65R6835BLBLABXD6283F8/18/108:45AM to 12:30 PM
    66R6843BLBLABXD6283M8/18/108:45AM to 12:30 PM
    67R6887BLBLABXD6377F8/18/101 PM to 6:45 PM
    68R6885BLBLABXD6377M8/18/101 PM to 6:45 PM
    69R6877BLBLABXD6584F8/18/101 PM to 6:45 PM
    70R6873BLBLABXD6584M8/18/101 PM to 6:45 PM
    71R6929BLBLABXD6876F8/18/101 PM to 6:45 PM
    72R6931BLBLABXD6876M8/18/101 PM to 6:45 PM
    73R6775BLBLABXD6969F8/17/101:15 PM to 5 PM
    74R6773BLBLABXD6980M8/17/101:15 PM to 5 PM
    75R6925BLBLABXD7076F8/18/101 PM to 6:45 PM
    76R6921BLBLABXD7076M8/17/061 PM to 6:45 PM
    77R6869BLBLABXD7176F8/18/101 PM to 6:45 PM
    78R6871BLBLABXD7176M8/18/101 PM to 6:45 PM
    79R6777BLBLABXD7383F8/17/101:15 PM to 5 PM
    80R6779BLBLABXD7383M8/17/101:15 PM to 5 PM
    81R6837BLBLABXD7576F8/18/108:45AM to 12:30 PM
    82R6829BLBLABXD7576M8/18/108:45AM to 12:30 PM
    83R6933BLBLABXD7987F8/18/101 PM to 6:45 PM
    84R6935BLBLABXD7987M8/18/101 PM to 6:45 PM
    85R6781BLBLABXD8073F8/17/101:15 PM to 5 PM
    86R6783BLBLABXD8073M8/17/101:15 PM to 5 PM
    87R6913BLBLABXD8381F8/18/101 PM to 6:45 PM
    88R6911BLBLABXD8381M8/18/101 PM to 6:45 PM
    89R6841BLBLABXD8476F8/18/108:45AM to 12:30 PM
    90R6833BLBLABXD8476M8/18/108:45AM to 12:30 PM
    91R6937BLBLABXD8574F8/18/101 PM to 6:45 PM
    92R6939BLBLABXD8574M8/18/101 PM to 6:45 PM
    93R6909BLBLABXD8783F8/18/101 PM to 6:45 PM
    94R6895BLBLABXD8982F8/18/101 PM to 6:45 PM
    95R6897BLBLABXD8982M8/18/101 PM to 6:45 PM
    96R6903BLBLABXD9082F8/18/101 PM to 6:45 PM
    97R6905BLBLABXD9082M8/18/101 PM to 6:45 PM
    98R6923BLBLABXD9286F8/18/101 PM to 6:45 PM
    99R6927BLBLABXD9289M8/18/101 PM to 6:45 PM
    100R6919BLBLABXD9576F8/18/101 PM to 6:45 PM
    101R6867BLBLABXD9576M8/18/108:45AM to 12:30 PM
    102R6899BLBLABXD9771F8/18/101 PM to 6:45 PM
    103R6901BLBLABXD9771M8/18/101 PM to 6:45 PM
    104R6875BLBLABXD9977F8/18/101 PM to 6:45 PM
    105R6883BLBLABXD9977M8/18/101 PM to 6:45 PM
    106R6831BLBLABXD10083M8/18/108:45AM to 12:30 PM
    107R6943BLBLABXD10189F8/18/101 PM to 6:45 PM
    108R6941BLBLABXD10189M8/18/101 PM to 6:45 PM
    109R6753BLBLABXD10288F8/17/109:30 AM to 12:30AM
    110R6755BLBLABXD10288M8/17/109:30 AM to 12:30AM
    111R6765BLBLABXD10378M8/17/109:30 AM to 12:30AM
    +

    + + +

    Data Source Acknowledgements:

    + +

    Last edits by RW Williams, December 12, 2010, AC February 15, 2011 + + +

    +

    + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_Amg_BLA_RMA_F_1110.html b/web/dbdoc/INIA_Amg_BLA_RMA_F_1110.html new file mode 100755 index 00000000..a7b54323 --- /dev/null +++ b/web/dbdoc/INIA_Amg_BLA_RMA_F_1110.html @@ -0,0 +1,82 @@ + + + +INIA Amygdala BLA Affy MoGene 1.0 ST (Nov10) Females + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    INIA Amygdala BLA Affy MoGene 1.0 ST (Nov10) Femalesmodify this page

    + + Accession number: GN315

    +

    + This page will be updated soon. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_Amg_BLA_RMA_M_1110.html b/web/dbdoc/INIA_Amg_BLA_RMA_M_1110.html new file mode 100755 index 00000000..f5ea4832 --- /dev/null +++ b/web/dbdoc/INIA_Amg_BLA_RMA_M_1110.html @@ -0,0 +1,82 @@ + + + +INIA Amygdala BLA Affy MoGene 1.0 ST (Nov10) Males + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    INIA Amygdala BLA Affy MoGene 1.0 ST (Nov10) Malesmodify this page

    + + Accession number: GN316

    +

    + This page will be updated soon. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_Hyp_F_RMA_1110.html b/web/dbdoc/INIA_Hyp_F_RMA_1110.html new file mode 100755 index 00000000..66ca778c --- /dev/null +++ b/web/dbdoc/INIA_Hyp_F_RMA_1110.html @@ -0,0 +1,82 @@ + + + +INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) Females + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) Femalesmodify this page

    + + Accession number: GN317

    +

    + This page will be updated soon. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_Hyp_M_RMA_1110.html b/web/dbdoc/INIA_Hyp_M_RMA_1110.html new file mode 100755 index 00000000..ba6b8dfa --- /dev/null +++ b/web/dbdoc/INIA_Hyp_M_RMA_1110.html @@ -0,0 +1,82 @@ + + + +INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) Males + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) Malesmodify this page

    + + Accession number: GN318

    +

    + This page will be updated soon. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_Hyp_RMA_1110.html b/web/dbdoc/INIA_Hyp_RMA_1110.html new file mode 100755 index 00000000..a138617e --- /dev/null +++ b/web/dbdoc/INIA_Hyp_RMA_1110.html @@ -0,0 +1,205 @@ + +INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) ** + + + + + + + + + + + + + + + + + + +
    + + + + + +

    INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) +modify this page

    Accession number: GN281

    + + +
    +

    Summary:

    +

    These hypothalamic gene expression data were generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from NIAAA. The data set includes samples from 50 strains, including 46 BXDs, both parental strains, and reciprocal F1 hybrids. Expression data were generated using the Affymetrix Mouse Gene 1.0 ST exon-style microarray (multiple probes in all known exons) by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. Hypothalamic tissue was dissected by K. Mozhui (description to follow) with special attention to time of day (every sample has time stamp). RNA was extracted by K. Mozhui. All other processing steps by the UTHSC MRC by L. Rose. Data were processed by Arthur Centeno. + +

    Data released initially Nov 25, 2010, updated March 7, 2011 by A. Centeno and K. Mozhui to add two additional arrays. Data appear to be error-free in terms of sex and strain assignments shown in the table below. + +

    Dissection protocol:
    +

      +
    1. Animals were sacrificed by quick cervical dislocation and brains were removed and stored in RNAlater (www.ambion.com) for 2 to 3 days +
    2. Brain was placed with ventral side up and a partial cut was made with a blade at -2.5 from Bregma (just a little rostral from the pontine fibres when viewed from the ventral side) +
    3. The brain was then place in a coronal matrix and a 2 mm section was made rostral to the first cut +
    4. The 2mm Section was placed on a clean glass slide and hypothalamus was sliced out and placed in a tube on dry ice. +
    5. To dissect out the BLA, the temporal lobes were detached by placing a scalple in the lateral ventricles and teasing it apart. The cortical amygdala was removed and the BLA was then sliced out and placed in a tube on dry ice. +
    6. Tissues from two mice of the same strain and sex were pooled. The only exceptions to this are the BLA samples for strains BXD5, BXD13, BXD16, BXD19, BXD25, BXD38, BXD51, and BXD61 (tissue from only one animal).
    7. +
    +

    + +

    RNA isolation
    +Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + +

    This preliminary data set is associated with 430 eQTLs with LOD scores above 10. Peak LRS is 146 for Trait ID 10513604 (Hdhd3). + +

    About the strains used to generate this set of data

    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDTissueStrainAgeSexDate sacrificeTime sacrifice
    1R6854HYPHypC57BL/6J77F8/18/108:45AM to 12:30 PM
    2R6862HYPHypC57BL/6J77M8/18/108:45AM to 12:30 PM
    3R6852HYPHypD2B6F177F8/18/108:45AM to 12:30 PM
    4R6860HYPHypD2B6F177M8/18/108:45AM to 12:30 PM
    5R6864HYPHypDBA/2J77F8/18/108:45AM to 12:30 PM
    6R6866HYPHypDBA/2J68M8/18/108:45AM to 12:30 PM
    7R6858HYPHypB6D2F169F8/18/108:45AM to 12:30 PM
    8R6856HYPHypB6D2F169M8/18/108:45AM to 12:30 PM
    9R6800HYPHypBXD171F8/17/101:15 PM to 5 PM
    10R6796HYPHypBXD185M8/17/101:15 PM to 5 PM
    11R6788HYPHypBXD1187F8/17/101:15 PM to 5 PM
    12R6786HYPHypBXD1176M8/17/101:15 PM to 5 PM
    13R6806HYPHypBXD1277M8/17/101:15 PM to 5 PM
    14R6812HYPHypBXD1481F8/18/108:45AM to 12:30 PM
    15R6804HYPHypBXD2485F8/17/101:15 PM to 5 PM
    16R6792HYPHypBXD2775F8/17/101:15 PM to 5 PM
    17R6790HYPHypBXD2773M8/17/101:15 PM to 5 PM
    18R6798HYPHypBXD2971F8/17/101:15 PM to 5 PM
    19R6794HYPHypBXD2971M8/17/101:15 PM to 5 PM
    20R6816HYPHypBXD3174F8/18/108:45AM to 12:30 PM
    21R6802HYPHypBXD3173M8/17/101:15 PM to 5 PM
    22R6916HYPHypBXD3281F8/18/101 PM to 6:45 PM
    23R6846HYPHypBXD3281M8/18/108:45AM to 12:30 PM
    24R6822HYPHypBXD3477F8/18/108:45AM to 12:30 PM
    25R6808HYPHypBXD3477M8/18/108:45AM to 12:30 PM
    26R6814HYPHypBXD3979M8/18/108:45AM to 12:30 PM
    27R6848HYPHypBXD4085F8/18/108:45AM to 12:30 PM
    28R6850HYPHypBXD4085M8/18/108:45AM to 12:30 PM
    29R6810HYPHypBXD4287F8/18/108:45AM to 12:30 PM
    30R6758HYPHypBXD4381M8/17/109:30 AM to 12:30AM
    31R6746HYPHypBXD4483F8/17/109:30 AM to 12:30AM
    32R6750HYPHypBXD4483M8/17/109:30 AM to 12:30AM
    33R6764HYPHypBXD4577F8/17/109:30 AM to 12:30AM
    34R6762HYPHypBXD4577M8/17/109:30 AM to 12:30AM
    35R6880HYPHypBXD4876F8/18/101 PM to 6:45 PM
    36R6882HYPHypBXD4876M8/18/101 PM to 6:45 PM
    37R6748HYPHypBXD4984M8/17/109:30 AM to 12:30AM
    38R6890HYPHypBXD5077F8/18/101 PM to 6:45 PM
    39R6892HYPHypBXD5077M8/18/101 PM to 6:45 PM
    40R6918HYPHypBXD5684F8/18/101 PM to 6:45 PM
    41R6894HYPHypBXD5677M8/18/101 PM to 6:45 PM
    42R6770HYPHypBXD6070F8/17/109:30 AM to 12:30AM
    43R6772HYPHypBXD6070M8/17/101:15 PM to 5 PM
    44R6836HYPHypBXD6283F8/18/108:45AM to 12:30 PM
    45R6844HYPHypBXD6283M8/18/108:45AM to 12:30 PM
    46R6888HYPHypBXD6377F8/18/101 PM to 6:45 PM
    47R6878HYPHypBXD6584F8/18/101 PM to 6:45 PM
    48R6874HYPHypBXD6584M8/18/101 PM to 6:45 PM
    49R6930HYPHypBXD6876F8/18/101 PM to 6:45 PM
    50R6932HYPHypBXD6876M8/18/101 PM to 6:45 PM
    51R6776HYPHypBXD6969F8/17/101:15 PM to 5 PM
    52R6774HYPHypBXD6980M8/17/101:15 PM to 5 PM
    53R6926HYPHypBXD7076F8/18/101 PM to 6:45 PM
    54R6922HYPHypBXD7076M8/18/101 PM to 6:45 PM
    55R6870HYPHypBXD7176F8/18/101 PM to 6:45 PM
    56R6872HYPHypBXD7176M8/18/101 PM to 6:45 PM
    57R6778HYPHypBXD7383F8/17/101:15 PM to 5 PM
    58R6780HYPHypBXD7383M8/17/101:15 PM to 5 PM
    59R6838HYPHypBXD7576F8/18/108:45AM to 12:30 PM
    60R6830HYPHypBXD7576M8/18/108:45AM to 12:30 PM
    61R6934HYPHypBXD7987F8/18/101 PM to 6:45 PM
    62R6782HYPHypBXD8073F8/17/101:15 PM to 5 PM
    63R6784HYPHypBXD8073M8/17/101:15 PM to 5 PM
    64R6914HYPHypBXD8381F8/18/101 PM to 6:45 PM
    65R6912HYPHypBXD8381M8/18/101 PM to 6:45 PM
    66R6834HYPHypBXD8476M8/18/108:45AM to 12:30 PM
    67R6938HYPHypBXD8574F8/18/101 PM to 6:45 PM
    68R6940HYPHypBXD8574M8/18/101 PM to 6:45 PM
    69R6910HYPHypBXD8783F8/18/101 PM to 6:45 PM
    70R6908HYPHypBXD8783M8/18/101 PM to 6:45 PM
    71R6896HYPHypBXD8982F8/18/101 PM to 6:45 PM
    72R6898HYPHypBXD8982M8/18/101 PM to 6:45 PM
    73R6904HYPHypBXD9082F8/18/101 PM to 6:45 PM
    74R6906HYPHypBXD9082M8/18/101 PM to 6:45 PM
    75R6924HYPHypBXD9286F8/18/101 PM to 6:45 PM
    76R6928HYPHypBXD9289M8/18/101 PM to 6:45 PM
    77R6920HYPHypBXD9576F8/18/101 PM to 6:45 PM
    78R6868HYPHypBXD9576M8/18/108:45AM to 12:30 PM
    79R6900HYPHypBXD9771F8/18/101 PM to 6:45 PM
    80R6902HYPHypBXD9771M8/18/101 PM to 6:45 PM
    81R6876HYPHypBXD9977F8/18/101 PM to 6:45 PM
    82R6884HYPHypBXD9977M8/18/101 PM to 6:45 PM
    83R6840HYPHypBXD10083F8/18/108:45AM to 12:30 PM
    84R6832HYPHypBXD10083M8/18/108:45AM to 12:30 PM
    85R6944HYPHypBXD10189F8/18/101 PM to 6:45 PM
    86R6942HYPHypBXD10189M8/18/101 PM to 6:45 PM
    87R6756HYPHypBXD10288M8/17/109:30 AM to 12:30AM
    88R6768HYPHypBXD10378F8/17/109:30 AM to 12:30AM
    89R6766HYPHypBXD10378M8/17/109:30 AM to 12:30AM
    +

    + +

    Animals and Tissue Used to Generate This Set of Data:

    +

    Sample Processing:

    +

    Experimental Design and Batch Structure:

    +

    Data Source Acknowledgements:

    +

    +

    + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_MacFas_AMG_RMA_0110.html b/web/dbdoc/INIA_MacFas_AMG_RMA_0110.html new file mode 100644 index 00000000..696820fe --- /dev/null +++ b/web/dbdoc/INIA_MacFas_AMG_RMA_0110.html @@ -0,0 +1,206 @@ + + + + + +INIA Macaca fasicularis Amygdala (Jan10) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    INIA Macaca fasicularis Amygdala (Jan10) RMA **modify this page

    + + Accession number: GN255

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_MacFas_AMGc_RMA_0110.html b/web/dbdoc/INIA_MacFas_AMGc_RMA_0110.html new file mode 100755 index 00000000..523d2adc --- /dev/null +++ b/web/dbdoc/INIA_MacFas_AMGc_RMA_0110.html @@ -0,0 +1,79 @@ + + + +INIA Macaca fasicularis Amygdala control (Jan10) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    INIA Macaca fasicularis Amygdala control (Jan10) RMA ** (accession number: GN258) + modify this page

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_MacFas_AMGe_RMA_0110.html b/web/dbdoc/INIA_MacFas_AMGe_RMA_0110.html new file mode 100755 index 00000000..e25e9122 --- /dev/null +++ b/web/dbdoc/INIA_MacFas_AMGe_RMA_0110.html @@ -0,0 +1,79 @@ + + + +INIA Macaca fasicularis Amygdala ethanol (Jan10) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    INIA Macaca fasicularis Amygdala ethanol (Jan10) RMA ** (accession number: GN259) + modify this page

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_MacFas_Ac_RMA_0110.html b/web/dbdoc/INIA_MacFas_Ac_RMA_0110.html new file mode 100755 index 00000000..f9b9f023 --- /dev/null +++ b/web/dbdoc/INIA_MacFas_Ac_RMA_0110.html @@ -0,0 +1,79 @@ + + + +INIA Macaca fasicularis Nucleus Accumbens control (Jan10) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    INIA Macaca fasicularis Nucleus Accumbens control (Jan10) RMA ** (accession number: GN254) + modify this page

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_MacFas_Ae_RMA_0110.html b/web/dbdoc/INIA_MacFas_Ae_RMA_0110.html new file mode 100755 index 00000000..eda52da0 --- /dev/null +++ b/web/dbdoc/INIA_MacFas_Ae_RMA_0110.html @@ -0,0 +1,79 @@ + + + +INIA Macaca fasicularis Nucleus Accumbens ethanol (Jan10) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    INIA Macaca fasicularis Nucleus Accumbens ethanol (Jan10) RMA ** (accession number: GN255) + modify this page

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_MacFas_Hc_RMA_0110.html b/web/dbdoc/INIA_MacFas_Hc_RMA_0110.html new file mode 100755 index 00000000..d2a9d566 --- /dev/null +++ b/web/dbdoc/INIA_MacFas_Hc_RMA_0110.html @@ -0,0 +1,79 @@ + + + +INIA Macaca fasicularis Hippocampus control (Jan10) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    INIA Macaca fasicularis Hippocampus control (Jan10) RMA ** (accession number: GN256) + modify this page

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_MacFas_He_RMA_0110.html b/web/dbdoc/INIA_MacFas_He_RMA_0110.html new file mode 100755 index 00000000..42d9ef56 --- /dev/null +++ b/web/dbdoc/INIA_MacFas_He_RMA_0110.html @@ -0,0 +1,79 @@ + + + +INIA Macaca fasicularis Hippocampus ethanol (Jan10) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    INIA Macaca fasicularis Hippocampus ethanol (Jan10) RMA ** (accession number: GN257) + modify this page

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_MacFas_PfE_RMA_0110.html b/web/dbdoc/INIA_MacFas_PfE_RMA_0110.html new file mode 100755 index 00000000..6b3d720d --- /dev/null +++ b/web/dbdoc/INIA_MacFas_PfE_RMA_0110.html @@ -0,0 +1,79 @@ + + + +INIA Macaca Fasicularis Prefrontal Cortex ethanol(Jan10) RMA + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    INIA Macaca Fasicularis Prefrontal Cortex ethanol(Jan10) RMA (accession number: GN253) + modify this page

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_MacFas_Pf_RMA_0110.html b/web/dbdoc/INIA_MacFas_Pf_RMA_0110.html new file mode 100755 index 00000000..fd93d304 --- /dev/null +++ b/web/dbdoc/INIA_MacFas_Pf_RMA_0110.html @@ -0,0 +1,79 @@ + + + +INIA Macaca Fasicularis Prefrontal Cortex control(Jan10) RMA + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    INIA Macaca Fasicularis Prefrontal Cortex control(Jan10) RMA (accession number: GN252) + modify this page

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/INIA_MacFas_brain_RMA_0110.html b/web/dbdoc/INIA_MacFas_brain_RMA_0110.html new file mode 100755 index 00000000..db29aa79 --- /dev/null +++ b/web/dbdoc/INIA_MacFas_brain_RMA_0110.html @@ -0,0 +1,79 @@ + + + +INIA Macaca Fasicularis Brain (Jan10) RMA + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    INIA Macaca Fasicularis Brain (Jan10) RMA (accession number: GN251) + modify this page

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_BXD_PBL_1108.html b/web/dbdoc/Illum_BXD_PBL_1108.html new file mode 100755 index 00000000..84723d9f --- /dev/null +++ b/web/dbdoc/Illum_BXD_PBL_1108.html @@ -0,0 +1,85 @@ + +UWA Illumina PBL (Nov08) RSN ** + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UWA Illumina Peripheral Blood Leucocytes (Nov08) RSN ** +modify this page

    Accession number: GN218

    + + +

    These expression data are being generated by investigators at The Western Australian Institute for Medical Research and The University of Western Australia (Grant Morahan, Munish Mehta, Quang Nguyen, James Jooste, and Violet Peeva). Samples are generated by Quang Nguyen and James Jooste. Arrays are all processed by Quang Nguyen. + +

    For access to data prior to publication, please contact Grant Morahan (gem at waimr. uwa. edu. au) regarding use of these data sets on a collaborative basis. + +

    Illumina 8.1 array data (24,613 probes total) transformed using the Robust Spline Normalization (RSN) method. + +

    Data entered by Munish Mehta and Arthur Centeno, November 2, 2008. + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_BXD_Spl_1108.html b/web/dbdoc/Illum_BXD_Spl_1108.html new file mode 100755 index 00000000..3d6b071f --- /dev/null +++ b/web/dbdoc/Illum_BXD_Spl_1108.html @@ -0,0 +1,213 @@ + + +UWA Illumina Spleen (Nov08) RSN ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UWA Illumina Spleen (Nov08) RSN ** modify this page

    Accession number: GN216

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    All data was generated using female mice, 8 to 10 weeks old. RNA was extracted using the QIAGEN RNAeasy Plus kit. RNA was amplified using the Illumina Illumina TotalPrep RNA Amplification Kit. Sample were hybridized to Illumina MouseRef-8 V1.1 beadchips in 2008. + +

    Illumina 8.1 array data transformed using the Robust Spline Normalization (RSN) method. + +

    Please contact Dr. Grant Morahan (gem@waimr.uwa.edu.au), University of Western Australia, Perth, regarding this new data set. + +

    Data entered by Munish Mehta and Arthur Centeno, November 2, 2008.

    + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Please contact Dr. Grant Morahan at the University of Western Australia, Perth, regarding these data. All female young adult mice.

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    eQTL Statistics: Maximum LRS for this data set is 174.9 for probe ILM3870301 (Gene Symbol H2-Ea). The total number of probes with LOD > 10 and RS > 46 is 166

    . This is an excellent yield for a data set consisting of 26 BXD strains, both parents and the B2D2F1. The latter three are not used in mapping. + + +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_BXD_Thy_1108.html b/web/dbdoc/Illum_BXD_Thy_1108.html new file mode 100755 index 00000000..e095dcb3 --- /dev/null +++ b/web/dbdoc/Illum_BXD_Thy_1108.html @@ -0,0 +1,208 @@ + + +UWA Illumina Thymus (Nov08) RSN ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UWA Illumina Thymus (Nov08) RSN ** modify this page

    Accession number: GN217

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    Please contact Dr. Grant Morahan (gem@waimr.uwa.edu.au), University of Western Australia, Perth, regarding this new data set. +

    Illumina 8.1 array data transformed using the Robust Spline Normalization (RSN) method. +

    Data entered by Munish Mehta and Arthur Centeno, November 2, 2008.

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_LXS_Hipp_NOE_1008.html b/web/dbdoc/Illum_LXS_Hipp_NOE_1008.html new file mode 100755 index 00000000..53dc3679 --- /dev/null +++ b/web/dbdoc/Illum_LXS_Hipp_NOE_1008.html @@ -0,0 +1,300 @@ + +Hippocampus Illumina NOE (Oct08) RankInv beta + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    Hippocampus Illumina NOE (Oct08) RankInv beta +modify this page

    Accession number: GN214

    + + + +

        Summary:

    + +
    +

    Experimental data set: No restraint stress and a single ethanol injection (NOE). This data set provides data on the effects of acute ethanol on gene expression with stress associated with handling and an IP injection. Survival period X hours. Please copy text and style for other INFO pages and see Mike Miles INFO pages. + + +

    This data set entered by Arthur Centeno and Lu Lu, Oct 15, 2008. Please contact Dr. Lu Lu regarding these expression data at lulu@utmem.edu. +

    Note: This INFO file still in progress +

    +EXPERIMENTAL DATA SET (Unpublished): This is one of five INIA companion data sets generated using the hippocampus of LXS strains and the Illumina Mouse 6.1 bead array. The data set labeled Hippocampus Illumina (May07) RankInv provides baseline control expression data with no treatment at all. This NOS data set consists of animals who received a single IP injection of saline (NOS = no restraint saline) without restraint stress. This saline injection group is intended to provide appropriate control for cases that received an IP injection of ethanol. The only experimental stressor in this NOS data set is that associated with handling and the IP saline injection. Survival period was 4 hours. The paradigm that was used in this set of studies by Lu Lu and colleagues is identical to that used by Dr. Michael Miles (see his experimental prefrontal cortex data in GeneNetwork for both LXS and BXD strains). + +

    The hippocampus is highly susceptible to the effects of stress and glucocorticoid hormone action. ADD TEXT, rationale, and links. + +

    Samples were processed using a total of 12 Illumina Sentrix Mouse 6.1 Bead arrays. + +

    + +

        About the strains used to generate this set of data:

    + +
    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 70 strains. The LXS strains in this data set were obtained from Dr. Beth Bennett and colleagues at the University of Colorado, Bolder. All of these strains are fully inbred, many well beyond the 25th filial (F) generation of inbreeding. All of these LXS strains have been genotyped at 13,377 SNPs. + +

        About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the University of Colorado or at University of Memphis in SPF facilities. All mice were killed by cervical dislocation. Whole brain dissections were performed at UTHSC by Lu Lu and colleagues. Hippocampal samples were close to complete but are likely to include variable amounts of fimbira and choroid plexus. Samples may also include parts of the subiculum. + +

    The bilateral hippocampus tissue from one naive adults mouse was used to generate RNA samples. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Feng Jiao. + +

    All animals used in this study were between 60 and 74 days of age (average of 67 days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase. +

    + +
    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between April 2007 and November 2007. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791). TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols. + +

    Replication and Sample Balance: We obtained matched male and female sample from 27 strains. The following three strains are represented by male samples only: LXS25, 88, and 98. Three other strains, LXS19, 42, and 92 are represented only by female samples. + +

    +

    + + + +

    Legend:Sex balance of the NOE data set is revealed by expression of the Xist RNA (Illumina probe ILM1042800446). Male samples have low expression of Xist (about 7 units), whereas females have high expression (about 13 units). Each bar provides the mean expression value (log2 transformed) for a single strain. Strains with both male and female samples have intermediate averages and large error bars.

    +
    + + +

    Experimental Design and Batch Structure: This data set consists arrays processed in 17 groups over a seven month period (from April 2007 to November 2007). Most groups consisted of 5 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Jiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between April 24, 2007 and November 20, 2007 . Details on sample assignment to slides and batches is provide in the table below. + +

    Error checking +

      +
    • Checked for genotypes of LXS strains using a battery of test Mendelian transcripts (transcripts with a Mendelian segregation pattern in the LXS strains). Peak LRS of 201.7 for C1orf57 using Illumina probe ILM110129. There are no known errors in the strain assignment. (NOS data set) + + +
      +
      These genotype discrepancies are either due to recombination between the marker and the probe or a genotyping errors. (RWW, Feb 27, 2008) + +
    • Total count of transcripts/probes with LRS greater than 46 (LOD>10) is 754 with 31 LXS strains (NOS data set). + + + +
    + + + + + +
    + +

        NOE DATA AS OF Oct 2008: Data Table 1:

    + +
    + +
    +This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch. +
    + +

    +

    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexTube IDStrainAgeSexPool SizeSlide IDSlide positionBatch by slidescan batch
    1R3729HILS72M11736925158A146
    2R3805HILS63F11825397033A2310
    3R3884HISS66M11825397033B2310
    4R3932HISS66F11870382129B5314
    5R3941HLXS368F11736925148E1312
    6R3717HLXS364M11736925162D156
    7R3849HLXS365F11870382055D5014
    8R3850HLXS363M11870382090E5115
    9R3811HLXS773M11736925120E911
    10R3768HLXS773F11825397032D2216
    11R3767HLXS773F11825397077D3113
    12R3886HLXS765F11825397111A3717
    13R3711HLXS1469F11736925158E146
    14R3939HLXS1469M11825397041B2610
    15R3872HLXS1664M11825397041D2610
    16R3732HLXS1672F11833451012D4118
    17R3861HLXS1967F11825397041E2610
    18R3678HLXS2365F11736925131A114
    19R3679HLXS2364M11736925131B114
    20R3802HLXS2365F11825397041F2610
    21R4443LXS2370F11953348009F542
    22R3752HLXS2570M11725572045B47
    23R3751HLXS2570M11736925162C156
    24R3808HLXS2674M11736925148D1312
    25R3807HLXS2674F11825397042A2710
    26R4455LXS3267F11848071018E471
    27R4456LXS3267M11848071018F471
    28R3818HLXS3670M11736925148F1312
    29R3817HLXS3670F11825397042C2710
    30R3755HLXS3967M11736925162E156
    31R3683HLXS3966F11833451012B4118
    32R4440LXS3969M11953348009E542
    33R3701HLXS4269F11833451012E4118
    34R3674HLXS4367F11736925130C104
    35R3820HLXS4374M11825397042E2710
    36R3877HLXS4664M11736925163C1612
    37R3876HLXS4664F11825397042F2710
    38R3795HLXS5066F11736925163D1612
    39R3781HLXS5070M11825397077B3113
    40R3866HLXS5167F11736925163E1612
    41R3867HLXS5167M11825397073F2916
    42R3919HLXS5473M11736925120C911
    43R4463LXS5461F11848071023D483
    44R3856HLXS6661F11735640066C715
    45R3857HLXS6661M11825397080C3316
    46R3763HLXS7870F11825397036E2516
    47R3758HLXS7868M11848071016E5718
    48R3838HLXS8064M11736925120F911
    49R3901HLXS8066F11833451018D4317
    50R3718HLXS8871M11736925164D176
    51R3745HLXS8874M11825397020B219
    52R3906HLXS9072M11735640066F715
    53R3905HLXS9072F11870382102D5214
    54R3702HLXS9272F11716756046D37
    55R3724HLXS9771M11716756046E37
    56R3911HLXS9770F11736925322C1911
    57R3923HLXS9873M11735640068B815
    58R3881HLXS9864M11736925322D1911
    59R3813HLXS9975M11736925322E1911
    60R3930HLXS9968F11825397081A3416
    61R3748HLXS10075M11736925158B146
    62R3787HLXS10066F11825397076B3013
    63R3890HLXS10367F11735640068E815
    64R3827HLXS10367M11736925146A1211
    65R3831HLXS11064M11825397033E2310
    66R3898HLXS11066F11833451017A4217
    67R4452LXS11074M11953348032C562
    68R3695HLXS12272M11725572051E65
    69R3694HLXS12265M11725572051D65
    70R3697HLXS12266F11736925158C146
    71R3688HLXS12268M11833451008E394
    72R3743HLXS12373M11714451029D18
    73R3799HLXS12365M11736925146D1211
    74R3710HLXS12365F11736925158D146
    75R3798HLXS12365M11825397041A2610
    + +

    + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Lu Lu or RW Williams if you have questions about these data.

    +
    + + +

        About the array platform:

    +
    +

    Illumina Sentrix Mouse-6.1 BeadArray Platform (ILM6v1.1): The Mouse6.1 array consists of 46,643 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology. + +

    ANNOTATION: In summer of 2008, Xusheng Wang and Robert W. Williams reannotated the Illumina Mouse-6.1 array content. This new annotation is now incorporated into GeneNetwork. For 46643 probes on the Mouse 6.1 array platform (including control probes) we have identified 40183 NCBI Entrez Gene IDs; 22527 matched human Gene IDs; 11657 matched rat Gene IDs; 40983 NCBI HomoloGene IDs; and 22174 OMIM IDs. + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +
    + +

        About data processing:

    + +
    +

    This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation. + +

    Sex of the samples was tested and validated using sex-specific probe set: Xist probe ILM104280446. + +

    + + +

    Legend: Checking that the sex of samples were labeled correctly was done using Xist expression measured by probe ILM106520068. In this bar chart the expression of Xist is very low in ILS and in six of the LXS strains: LXS43, 110, 54, 78, 39, and 25. This is because both arrays are male samples rather than 1 male and 1 female sample. In contrast LXS19 and LXS92 have very high expression. LXS19 data is from a single female pool (no error bar) whereas LXS92 is from tow female pools.

    +
    + +
    + + + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Lu Lu from the NIAAA INIA program. Informatics support provided by NIH NIAAA INIA grants to RWW and LL. + +

  • Lu Lu, M.D. +
    Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI) + + + + +

  • + +

        About this text file:

    +

    +This text files was initially entered by Robert W. Williams, Oct 20, 2008. The data set was entered by Arthur Centeno and Lu Lu, Oct 15, 2008. Please contact Dr. Lu Lu regarding these expression data at lulu@utmem.edu. Updated by Robert W. Williams, Oct 21, 2008. Updated by Lu Lu on Oct 22, 2008. + + +

    + + +

    + + + + + +

    + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_LXS_Hipp_NON_1008.html b/web/dbdoc/Illum_LXS_Hipp_NON_1008.html new file mode 100755 index 00000000..1b341fe9 --- /dev/null +++ b/web/dbdoc/Illum_LXS_Hipp_NON_1008.html @@ -0,0 +1,480 @@ + +Hippocampus Illumina NON (Oct08) RankInv beta** + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    Hippocampus Illumina NON (Oct08) RankInv beta** +modify this page

    Accession number: GN219

    + +

    This is control expression data (No restraint and No injections, NON) for the four companion experimental data sets: No restraint and saline injection (NOS), No restraint and ethanol injection (NOE), Restraint stress and saline injection (RSS), and Restrain stress and ethanol injection (RSE). + +

    This data set is a subset of the much larger Hippocampus Illumina (May07) RankInv data set. The subset was selected by Lu Lu to match the set of strains in the NOS, NOE, RSS, and RSE data sets. The NON subset uses the original Mouse 6.0 array and some probe sequences differ from the Mouse 6.1 array used for the experimental treatments. + +

    WRONG ARRAY platform ID: This data set uses the ORGINAL Illumina Mouse 6.0 array. + + + +

        Summary:

    + + +
    +May 07 ILLUMINA Mouse-6 DATA SET Rank Invariant Data Set: The LXS Hippocampus Illumina Rank Invariant data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains, ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics), and the two reciprocal F1 strains (ILSXISSF1, ISSXILSF1). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues). + +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were are not included. This particular data set was processed using the Illumina "Rank Invariant" protocol. Values were log2 transformed and the current data range from 6.141 average (very low or no expression) to 19.987 (extremely high). + +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Hippocampus Illumina (May 07) RankInv data set, 1183 probes have LRS values >46. + +

    In comparison, here are the yields of QTLs with LOD>10 for other closely related data sets: + +

      +
    1. NO DATA for Hippocampus Illumina (Aug07) RSN +
    2. NO DATA for Hippocampus Illumina (Aug07) RSN_NB +
    3. 1050 for Hippocampus Illumina (Aug07) LOESS +
    4. 1162 for Hippocampus Illumina (Aug07) LOESS_NB +
    5. 1129 for Hippocampus Illumina (Aug07) QUANT +
    6. 1176 for Hippocampus Illumina (Aug07) QUANT_NB +
    7. 1183 for Hippocampus Illumina (May 07) RankInv (THIS DATA SET) +
    8. 1167 for Hippocampus Illumina (Oct06) Rank +
    9. 1170 for Hippocampus Illumina (Oct06) RankInv +
    + + +

    The LRS achieved in the different version of the LXS Hippocampus data for probe ILM103520706 (Disabled 1; Dab1) are as follows: + +

      +
    1. 374.8 for Hippocampus Illumina (Aug07) RSN +
    2. 363.0 for Hippocampus Illumina (Aug07) RSN_NB +
    3. 338.4 for Hippocampus Illumina (Aug07) LOESS +
    4. 339.8 for Hippocampus Illumina (Aug07) LOESS_NB +
    5. 370.2 for Hippocampus Illumina (Aug07) QUANT +
    6. 363.5 for Hippocampus Illumina (Aug07) QUANT_NB +
    7. 360.3 for Hippocampus Illumina (May 07) RankInv +
    8. 358.1 for Hippocampus Illumina (Oct06) Rank +
    9. 358.8 for Hippocampus Illumina (Oct06) RankInv +
    + + +

    + + + +

    Legend: UPDATE FIGURE: Bar chart of the expression of Dab1 probe ILM103520706 in the LXS data set. This probe has a Mendelian segregation pattern and is associated with an LRS 360.3 in this May07 RankInv data set vs 358.8 for the previous Oct06 data set.

    +
    +
    + + +
    + + +

    ABOUT THE HIPPOCAMPUS. The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval. This region of the brain is particularly vulnerable to the effects of environmental stressors and is a key upstream modulator of the hypothalamic-pituitary-adrenal axis (the HPA). The hippocampus is also often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators supported by numerous agencies described in the Acknowledgments section. + +

    + +

         + +About the strains used to generate this set of data:

    + +
    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 77 strains. All of these strains have been inbred for more than 23 generations (F23). All strains have been genotyped at 13,377 SNPs. Thanks to the efforts of Dr. Timothy Wiltshire at the Genome Institute of the Novartis Research Foundation, the two parental strains have been genotyped at 156,551 SNPs. These genotypes are incorporated in the GeneNetwork SNP Browser. + + +

    Strains are currently available from Drs. Beth Bennett and Tom Johnson at the Institute of Behavioral Genetics (IBG) in Boulder Colorado.

    + +
    + + + +

        About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus). + +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia. + +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below). +

    + +
    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between July 25 and Dec 20, 2006. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on the original Mouse-6 v 1.0 slide. The slides were hybridized and washed following standard Illumina protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each strain. While all strains were orginally represented by matched male and female samples, one strain LXS34 consists of two female samples. Given the expression of Xist, we suspect that strain LXS114 is represented by two male pools (see figure at bottom of page). + + +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below. + + +

    + +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch. +
    + + +
    +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    ation
    pool
    size
    slide
    ID
    slide
    position
    batch
    by slide
    scan
    batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    + + + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +
    + + + + +

        About the array platform:

    +
    +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology. + +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf). + +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs. + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +
    + +

        About data processing:

    + +
    +

    This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation. + +

    Sex of the samples was validated using sex-specific probe set: Xist (probe ILM106520068, also known as scl00213742.1_141-S). + + +

    + + + +

    Legend: Checking that the sex of samples was labeled correctly in mouse array data sets using Xist expression measured by probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample. In contrast LXS34 has very high expression and no error bar because the sample is from a single female pool.

    +
    +
    + + + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. + +

  • Lu Lu, M.D. +
    Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI) + + + + +

  • + +

        About this text file:

    +

    +Data uploaded by Hongqiang Li, Oct 30, 2006. This text file originally generated by LL and RWW on November 29, 2006. Updated by LL, Dec 1, 2006. Updated March 25, April 25 by RWW. Updated with data on LOD scores, Oct 24, 2007 by RWW> + + +

    + + +

    + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_LXS_Hipp_NOS_1008.html b/web/dbdoc/Illum_LXS_Hipp_NOS_1008.html new file mode 100755 index 00000000..c2273ca2 --- /dev/null +++ b/web/dbdoc/Illum_LXS_Hipp_NOS_1008.html @@ -0,0 +1,278 @@ + +Hippocampus Illumina NOS (Oct08) RankInv beta + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    Hippocampus Illumina NOS (Oct08) RankInv beta +modify this page

    Accession number: GN213

    + + + +

        Summary:

    + +
    +EXPERIMENTAL DATA SET (Unpublished): This is one of five INIA companion data sets generated using the hippocampus of LXS strains and the Illumina Mouse 6.1 bead array. The data set labeled Hippocampus Illumina (May07) RankInv provides baseline control expression data with no treatment at all. This NOS data set consists of animals who received a single IP injection of saline (NOS = no restraint saline) without restraint stress. This saline injection group is intended to provide appropriate control for cases that received an IP injection of ethanol. The only experimental stressor in this NOS data set is that associated with handling and the IP saline injection. Survival period was 4 hours. The paradigm that was used in this set of studies by Lu Lu and colleagues is identical to that used by Dr. Michael Miles (see his experimental prefrontal cortex data in GeneNetwork for both LXS and BXD strains). + +

    The hippocampus is highly susceptible to the effects of stress and glucocorticoid hormone action. ADD TEXT, rationale, and links. + +

    Samples were processed using a total of 12 Illumina Sentrix Mouse 6.1 Bead arrays. + +

    About the strains used to generate this set of data:

    + +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 70 strains. The LXS strains in this data set were obtained from Dr. Beth Bennett and colleagues at the University of Colorado, Bolder. All of these strains are fully inbred, many well beyond the 25th filial (F) generation of inbreeding. All of these LXS strains have been genotyped at 13,377 SNPs. + +

    About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the University of Colorado or at University of Memphis in SPF facilities. All mice were killed by cervical dislocation. Whole brain dissections were performed at UTHSC by Lu Lu and colleagues. Hippocampal samples were close to complete but are likely to include variable amounts of fimbira and choroid plexus. Samples may also include parts of the subiculum. + +

    The bilateral hippocampus tissue from one naive adults mouse was used to generate RNA samples. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Feng Jiao. + +

    All animals used in this study were between 60 and 74 days of age (average of 67 days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase. +

    + +
    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between April 2007 and November 2007. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791). TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on Mouse-6 v 1.1 slide. The slides were hybridized and washed following standard Illumina protocols. + +

    Replication and Sample Balance: We obtained matched male and female sample from 24 strains. The following seven strains are represented by male samples only: ILS, LXS25, 39, 43, 54, 78, and 110. Two strains, LXS19 and 92, are represented only by female samples. + +

    +

    + + + +

    Legend:Sex balance of the NOS data set is revealed by expression of the Xist RNA (Illumina probe ILM1042800446). Male samples have low expression of Xist (about 7 units), whereas females have high expression (about 13 units). Each bar provides the mean expression value (log2 transformed) for a single strain. Strains with both male and female samples have intermediate averages and large error bars.

    +
    + + +

    Experimental Design and Batch Structure: This data set consists arrays processed in 17 groups over a seven month period (from April 2007 to November 2007). Most groups consisted of 5 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Jiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between April 24, 2007 and November 20, 2007 . Details on sample assignment to slides and batches is provide in the table below. + +

    Error checking +

      +
    • Checked for genotypes of LXS strains using a battery of test Mendelian transcripts (transcripts with a Mendelian segregation pattern in the LXS strains). Peak LRS of 201.7 for C1orf57 using Illumina probe ILM110129. There are no known errors in the strain assignment. (NOS data set) + + +
      +
      These genotype discrepancies are either due to recombination between the marker and the probe or a genotyping errors. (RWW, Feb 27, 2008) + +
    • Total count of transcripts/probes with LRS greater than 46 (LOD>10) is 754 with 31 LXS strains (NOS data set). + + + +
    + + +

    NOS DATA AS OF Oct 2008: Data Table 1:

    +

    +This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch. + +

    +

    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexTube IDStrainAgeSexPool SizeSlide IDSlide positionBatch by slideScan batch
    1R3731HILS72M11714451029A17
    2R3730HILS72M11714451039A26
    3R3933HISS64F11735640068D814
    4R3885HISS66M11736925322F199
    5R3804HLXS365M11825397042B278
    6R3942HLXS368F11825397078F3212
    7R3851HLXS365F11833451001A3817
    8R3852HLXS363M11833451010B4019
    9R3769HLXS773F11825397036D2515
    10R3841HLXS760F11825397080D3316
    11R3770HLXS773F11825397100C3517
    12R3825HLXS766M11870382102B5213
    13R3727HLXS1470M11825397035F2415
    14R3715HLXS1470F11825397076D3012
    15R3902HLXS1672F11736925146F129
    16R3916HLXS1673M11825397078B3212
    17R3862HLXS1967F11736925148A1310
    18R3680HLXS2365F11736925131C114
    19R3681HLXS2364M11736925131D114
    20R3803HLXS2365F11736925148B1310
    21R3754HLXS2570M11825397076E3012
    22R3753HLXS2570M11848071016D5719
    23R3835HLXS2664F11825397081F3416
    24R3836HLXS2664M11833451010A4019
    25R4457LXS3266M11953348019E551
    26R4458LXS3270F11953348019F551
    27R3903HLXS3670F11870382055E5013
    28R3924HLXS3665M11870382090F5114
    29R3756HLXS3967M11725572045D46
    30R3927HLXS4265M11825397042D278
    31R3734HLXS4271F11825397077A3112
    32R3873HLXS4364M11736925163B1610
    33R3874HLXS4364M11825397073C2916
    34R3878HLXS4664M11825397073D2916
    35R3943HLXS4663F11833451001C3817
    36R3782HLXS5070M11825397032C2215
    37R3796HLXS5066F11825397073E2916
    38R3868HLXS5167F11735640066B714
    39R3869HLXS5167M11825397080B3316
    40R3920HLXS5473M11736925163F1610
    41R3822HLXS6666M11736925120D99
    42R3858HLXS6661F11833451001E3817
    43R3759HLXS7868M11825397077E3112
    44R3764HLXS7870F11825397100D3517
    45R3843HLXS8062M11735640066E714
    46R3842HLXS8062F11870382102C5213
    47R3719HLXS8871M11716756046C36
    48R3723HLXS8872F11825397036F2515
    49R4464LXS8861F11848071023E483
    50R3907HLXS9072F11825397080F3316
    51R3908HLXS9072M11825397108B3617
    52R3696HLXS9272F11736925164E175
    53R3689HLXS9268F11833451012C4119
    54R3725HLXS9771M11736925293B1810
    55R3912HLXS9770F11825397018F2011
    56R3882HLXS9864F11825397047A2811
    57R3883HLXS9864F11870382102F5213
    58R3897HLXS9967M11735640068C814
    59R3931HLXS9965F11833451018F4318
    60R3749HLXS10075M11714451039B26
    61R3788HLXS10066F11736925293D1810
    62R3891HLXS10367M11825397081C3416
    63R3840HLXS10362F11870382129C5313
    64R3893HLXS11067M11825397081D3416
    65R3847HLXS11060M11870382129D5313
    66R3698HLXS12266F11714451039C26
    67R3684HLXS12266F11833451008A394
    68R4447LXS12267M11848071028D492
    69R3772HLXS12374F11825397035E2415
    70R3744HLXS12373M11825397076C3012
    71R3800HLXS12365M11825397078A3212
    + +

    + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Lu Lu or RW Williams if you have questions about these data.

    +
    + + +

        About the array platform:

    +
    +

    Illumina Sentrix Mouse-6.1 BeadArray Platform (ILM6v1.1): The Mouse6.1 array consists of 46,643 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology. + +

    ANNOTATION: In summer of 2008, Xusheng Wang and Robert W. Williams reannotated the Illumina Mouse-6.1 array content. This new annotation is now incorporated into GeneNetwork. For 46643 probes on the Mouse 6.1 array platform (including control probes) we have identified 40183 NCBI Entrez Gene IDs; 22527 matched human Gene IDs; 11657 matched rat Gene IDs; 40983 NCBI HomoloGene IDs; and 22174 OMIM IDs. + +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +
    + +

        About data processing:

    + +
    +

    This data set uses the standard Rank Invariant method developed by Illumina and described in their BeadStation Studio documentation. + +

    Sex of the samples was tested and validated using sex-specific probe set: Xist probe ILM104280446. + +

    + + +

    Legend: Checking that the sex of samples were labeled correctly was done using Xist expression measured by probe ILM106520068. In this bar chart the expression of Xist is very low in ILS and in six of the LXS strains: LXS43, 110, 54, 78, 39, and 25. This is because both arrays are male samples rather than 1 male and 1 female sample. In contrast LXS19 and LXS92 have very high expression. LXS19 data is from a single female pool (no error bar) whereas LXS92 is from tow female pools.

    +
    + +
    + + + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Lu Lu from the NIAAA INIA program. Informatics support provided by NIH NIAAA INIA grants to RWW and LL. + +

  • Lu Lu, M.D. +
    Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI) + + + + +

  • + +

        About this text file:

    +

    +This text files was initially entered by Robert W. Williams, Oct 20, 2008. The data set was entered by Arthur Centeno and Lu Lu, Oct 15, 2008. Please contact Dr. Lu Lu regarding these expression data at lulu@utmem.edu. Updated by Robert W. Williams, Oct 21, 2008. Updated by Lu Lu on Oct 22, 2008. + + +

    + + +

    + + + + + +

    + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_LXS_Hipp_RSE_1008.html b/web/dbdoc/Illum_LXS_Hipp_RSE_1008.html new file mode 100755 index 00000000..533b843a --- /dev/null +++ b/web/dbdoc/Illum_LXS_Hipp_RSE_1008.html @@ -0,0 +1,221 @@ + + +Hippocampus mRNA - Hippocampus Illumina RSE (Oct08) RankInv beta + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    Hippocampus mRNA - Hippocampus Illumina RSE (Oct08) RankInv beta modify this page

    Accession number: GN212

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    Experimental data set: Restraint stress followed by a single ethanol injection (RSE). Survival period X hours. +Please copy text and style for other INFO pages and see Mike Miles INFO pages. + + +

    This data set entered by Arthur Centeno and Lu Lu, Oct 15, 2008. Please contact Dr. Lu Lu regarding these expression data at lulu@utmem.edu. + + +

    Replication and Sample Balance: We obtained matched male and female sample from 28 strains. The following three strains are represented by male samples only: LXS25, 88, and 103. Two other strains, LXS43 and 50 are represented only by female samples. + +

    +

    + + + +

    Legend:Sex balance of the RSE data set is revealed by expression of the Xist RNA (Illumina probe ILM1042800446). Male samples have low expression of Xist (about 7 units), whereas females have high expression (about 13 units). Each bar provides the mean expression value (log2 transformed) for a single strain. Strains with both male and female samples have intermediate averages and large error bars.

    +
    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_LXS_Hipp_RSS_1008.html b/web/dbdoc/Illum_LXS_Hipp_RSS_1008.html new file mode 100755 index 00000000..90742f6b --- /dev/null +++ b/web/dbdoc/Illum_LXS_Hipp_RSS_1008.html @@ -0,0 +1,92 @@ + +Hippocampus Illumina RSS (Oct08) RankInv beta + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    Hippocampus Illumina RSS (Oct08) RankInv beta +modify this page

    Accession number: GN211

    + + +

    Experimental data set: Restraint stress followed by a single saline injection (RSS). Survival period X hours. Please copy text and style for other INFO pages and see Mike Miles INFO pages. + + +

    This data set entered by Arthur Centeno and Lu Lu, Oct 15, 2008. Please contact Dr. Lu Lu regarding these expression data at lulu@utmem.edu. + +

    Replication and Sample Balance: We obtained matched male and female sample from 28 strains. The following four strains are represented by male samples only: ILS, LXS16, 88, and 112. One strains, LXS43, is represented by a single female sample pool. + +

    +

    + + + +

    Legend:Sex balance of the RSS data set is revealed by expression of the Xist RNA (Illumina probe ILM1042800446). Male samples have low expression of Xist (about 7 units), whereas females have high expression (about 13 units). Each bar provides the mean expression value (log2 transformed) for a single strain. Strains with both male and female samples have intermediate averages and large error bars.

    +
    + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_LXS_Hipp_loess0807.html b/web/dbdoc/Illum_LXS_Hipp_loess0807.html new file mode 100755 index 00000000..65ec4236 --- /dev/null +++ b/web/dbdoc/Illum_LXS_Hipp_loess0807.html @@ -0,0 +1,355 @@ + +HTML Template + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + + + + + + + +
    +

    NIAAA INIA Hippocampus Illumina (Aug07) LOESS Normalization with +Background Correction Database +modify this page

    Accession number: GN143

    + +

    Summary:

    +

    August 07 ILLUMINA Mouse-6 DATA SET LOESS: The LXS Hippocampus Illumina LOESS Normalization with Background correction data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains, ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics), and the two reciprocal F1 strains (ILSXISSF1, ISSXILSF1). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues).

    +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were not included. This particular data set was processed using the Illumina "LOESS Normalization with Background Correction" protocol. Values were log2 transformed and the current data range from 7.076 average (very low or no expression) to 25.294 (extremely high).

    +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Hippocampus Illumina (Aug 07) LOESS data set, 1050 probes have LRS values >46.

    +

    In comparison, here are the yields of QTLs with LOD>10 for other closely related data sets:

    +
      +
    1. 1050 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 1162 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 1129 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 1176 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. NO DATA for Hippocampus Illumina (Aug07) RSN
    10. +
    11. NO DATA for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 1183 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 1167 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 1170 for Hippocampus Illumina (Oct06) RankInv
    18. +
    +

    The LRS achieved in the different version of the LXS Hippocampus data for probe ILM103520706 (Disabled 1; Dab1) are as follow

    +
      +
    1. 338.4 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 339.8 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 370.2 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 363.5 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. 374.8 for Hippocampus Illumina (Aug07) RSN
    10. +
    11. 363.0 for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 360.3 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 358.1 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 358.8 for Hippocampus Illumina (Oct06) RankInv
    18. +
    +
    + +

    Legend: UPDATE THIS FIGURE: Bar chart of the expression of Dab1 probe ILM103520706 in the LXS data set. This probe has a Mendelian segregation pattern and is associated with an LRS 360.3 in this May07 RankInv data set vs 358.8 for the previous Oct06 data set.

    +

    ABOUT THE HIPPOCAMPUS. The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval. This region of the brain is particularly vulnerable to the effects of environmental stressors and is a key upstream modulator of the hypothalamic-pituitary-adrenal axis (the HPA). The hippocampus is also often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators supported by numerous agencies described in the Acknowledgments section.

    +

    About the strains used to generate this set of data:

    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 77 strains. All of these strains have been inbred for more than 23 generations (F23). All strains have been genotyped at 13,377 SNPs. Thanks to the efforts of Dr. Timothy Wiltshire at the Genome Institute of the Novartis Research Foundation, the two parental strains have been genotyped at 156,551 SNPs. These genotypes are incorporated in the GeneNetwork SNP Browser.

    +

    Strains are currently available from Drs. Beth Bennett and Tom Johnson at the Institute of Behavioral Genetics (IBG) in Boulder Colorado.

    +

    About the animals and tissue used to generate this set of data:

    +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus).

    +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia.

    +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below).

    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between July 25 and Dec 20, 2006. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on the original Mouse-6 v 1.0 slide. The slides were hybridized and washed following standard Illumina protocols.

    + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each strain. While all strains were orginally represented by matched male and female samples, strain LXS114 is represented by two male pools (see figure at bottom of page). + + + +

    + +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below.

    + + +

    Quality Control on Sex Labels: Sex of the samples was validated using sex-specific probe set: Xist (probe ILM106520068, also known as scl00213742.1_141-S).

    +
    + +

    Legend: We evaluated whether or not the sex of samples were labeled correctly by measuring the expression of Xist using probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than one male pooled sample and one female pooled sample.

    +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch. +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    ation
    pool
    size
    slide
    ID
    slide
    position
    batch
    by slide
    scan
    batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197F (but may be M in original file)NA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F or M2721562224034B2311
    68R2870H2LXS3478M or F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    +
    +

    Downloading all data:

    +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +

    About the array platform:

    +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs.

    +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +

    About data processing:

    +

    This data set uses the LOESS with Variance Stabilizing Transform (VST) and Background correction from the lumi package downloaded from Bioconductor (http://www.bioconductor.org/). For the more detailed information, please see the lumi package documentation.

    +

    Data source acknowledgment:

    +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. +· Lu Lu, M.D. +Grant Support: NIH U01AA014425 (Lu Lu, PI), U01AA13499, U24AA13513

    +

    About this text file:

    +

    INFO file prepared by Xusheng Wang, Oct 24, 2007.

    +

    Data set uploaded by Arthur Centeno, Aug 30, 2007.

    +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_LXS_Hipp_loess_nb0807.html b/web/dbdoc/Illum_LXS_Hipp_loess_nb0807.html new file mode 100755 index 00000000..b0acb1f5 --- /dev/null +++ b/web/dbdoc/Illum_LXS_Hipp_loess_nb0807.html @@ -0,0 +1,339 @@ + +HTML Template + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + + + + + + + +
    +

    NIAAA INIA Hippocampus Illumina (Aug07) LOESS Normalization with No +Background Correction Database +modify this page

    Accession number: GN142

    + +

    Summary:

    +

    August 07 ILLUMINA Mouse-6 DATA SET LOESS_NB: The LXS Hippocampus Illumina LOESS Normalization with Background correction data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains, ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics), and the two reciprocal F1 strains (ILSXISSF1, ISSXILSF1). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues).

    +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were not included. This particular data set was processed using the Illumina "LOESS Normalization with Background Correction" protocol. Values were log2 transformed and the current data range from 6.411 average (very low or no expression) to 24.245 (extremely high).

    +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Hippocampus Illumina (Aug 07) LOESS data set, 1162 probes have LRS values >46.

    +

    In comparison, here are the yields of QTLs with LOD>10 for other closely related data sets:

    +
      +
    1. 1050 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 1162 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 1129 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 1176 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. NO DATA for Hippocampus Illumina (Aug07) RSN
    10. +
    11. NO DATA for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 1183 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 1167 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 1170 for Hippocampus Illumina (Oct06) RankInv
    18. +
    +

    The LRS achieved in the different version of the LXS Hippocampus data for probe ILM103520706 (Disabled 1; Dab1) are as follow

    +
      +
    1. 338.4 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 339.8 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 370.2 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 363.5 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. 374.8 for Hippocampus Illumina (Aug07) RSN
    10. +
    11. 363.0 for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 360.3 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 358.1 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 358.8 for Hippocampus Illumina (Oct06) RankInv
    18. +
    +
    + +

    Legend: UPDATE THIS FIGURE: Bar chart of the expression of Dab1 probe ILM103520706 in the LXS data set. This probe has a Mendelian segregation pattern and is associated with an LRS 360.3 in this May07 RankInv data set vs 358.8 for the previous Oct06 data set.

    +

    ABOUT THE HIPPOCAMPUS. The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval. This region of the brain is particularly vulnerable to the effects of environmental stressors and is a key upstream modulator of the hypothalamic-pituitary-adrenal axis (the HPA). The hippocampus is also often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators supported by numerous agencies described in the Acknowledgments section.

    +

    About the strains used to generate this set of data:

    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 77 strains. All of these strains have been inbred for more than 23 generations (F23). All strains have been genotyped at 13,377 SNPs. Thanks to the efforts of Dr. Timothy Wiltshire at the Genome Institute of the Novartis Research Foundation, the two parental strains have been genotyped at 156,551 SNPs. These genotypes are incorporated in the GeneNetwork SNP Browser.

    +

    Strains are currently available from Drs. Beth Bennett and Tom Johnson at the Institute of Behavioral Genetics (IBG) in Boulder Colorado.

    +

    About the animals and tissue used to generate this set of data:

    +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus).

    +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia.

    +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below).

    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between July 25 and Dec 20, 2006. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on the original Mouse-6 v 1.0 slide. The slides were hybridized and washed following standard Illumina protocols.

    +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each strain. While all strains were orginally represented by matched male and female samples, one strain LXS34 consists of two female samples. Given the expression of Xist, we suspect that strain LXS114 is represented by two male pools (see figure at bottom of page).

    +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below.

    +

    Quality Control on Sex Labels: Sex of the samples was validated using sex-specific probe set: Xist (probe ILM106520068, also known as scl00213742.1_141-S).

    +
    + +

    Legend: We evaluated whether or not the sex of samples were labeled correctly by measuring the expression of Xist using probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample.

    +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch. +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    ation
    pool
    size
    slide
    ID
    slide
    position
    batch
    by slide
    scan
    batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    +
    +

    Downloading all data:

    +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +

    About the array platform:

    +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs.

    +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +

    About data processing:

    +

    This data set uses the LOESS with Variance Stabilizing Transform (VST) and Background correction from the lumi package downloaded from Bioconductor (http://www.bioconductor.org/). For the more detailed information, please see the lumi package documentation.

    +

    Data source acknowledgment:

    +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. +· Lu Lu, M.D. +Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI)

    +

    About this text file:

    +

    INFO file prepared by Xusheng Wang, Oct 24, 2007.

    +

    Data set uploaded by Arthur Centeno, Aug 30, 2007.

    +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_LXS_Hipp_quant0807.html b/web/dbdoc/Illum_LXS_Hipp_quant0807.html new file mode 100755 index 00000000..43c4f32a --- /dev/null +++ b/web/dbdoc/Illum_LXS_Hipp_quant0807.html @@ -0,0 +1,340 @@ + +NIAAA INIA Hippocampus Illumina (Aug07) Quantile Normalization with +Background Correction Database + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + + + + + + + +
    +

    NIAAA INIA Hippocampus Illumina (Aug07) Quantile Normalization with +Background Correction Database +modify this page

    Accession number: GN141

    + +

    Summary:

    +

    August 07 ILLUMINA Mouse-6 DATA SET QUANT: The LXS Hippocampus Illumina Quantile Normalization with Background correction data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains, ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics), and the two reciprocal F1 strains (ILSXISSF1, ISSXILSF1). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues).

    +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were not included. This particular data set was processed using the Illumina "Quantile Normalization with Background Correction" protocol. Values were log2 transformed and the current data range from 6.411 average (very low or no expression) to 24.245 (extremely high).

    +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Hippocampus Illumina (Aug 07) Quantile data set, 1129 probes have LRS values >46.

    +

    In comparison, here are the yields of QTLs with LOD>10 for other closely related data sets:

    +
      +
    1. 1050 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 1162 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 1129 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 1176 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. NO DATA for Hippocampus Illumina (Aug07) RSN
    10. +
    11. NO DATA for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 1183 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 1167 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 1170 for Hippocampus Illumina (Oct06) RankInv
    18. +
    +

    The LRS achieved in the different version of the LXS Hippocampus data for probe ILM103520706 (Disabled 1; Dab1) are as follow

    +
      +
    1. 338.4 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 339.8 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 370.2 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 363.5 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. 374.8 for Hippocampus Illumina (Aug07) RSN
    10. +
    11. 363.0 for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 360.3 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 358.1 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 358.8 for Hippocampus Illumina (Oct06) RankInv
    18. +
    +
    + +

    Legend: UPDATE THIS FIGURE: Bar chart of the expression of Dab1 probe ILM103520706 in the LXS data set. This probe has a Mendelian segregation pattern and is associated with an LRS 360.3 in this May07 RankInv data set vs 358.8 for the previous Oct06 data set.

    +

    ABOUT THE HIPPOCAMPUS. The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval. This region of the brain is particularly vulnerable to the effects of environmental stressors and is a key upstream modulator of the hypothalamic-pituitary-adrenal axis (the HPA). The hippocampus is also often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators supported by numerous agencies described in the Acknowledgments section.

    +

    About the strains used to generate this set of data:

    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 77 strains. All of these strains have been inbred for more than 23 generations (F23). All strains have been genotyped at 13,377 SNPs. Thanks to the efforts of Dr. Timothy Wiltshire at the Genome Institute of the Novartis Research Foundation, the two parental strains have been genotyped at 156,551 SNPs. These genotypes are incorporated in the GeneNetwork SNP Browser.

    +

    Strains are currently available from Drs. Beth Bennett and Tom Johnson at the Institute of Behavioral Genetics (IBG) in Boulder Colorado.

    +

    About the animals and tissue used to generate this set of data:

    +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus).

    +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia.

    +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below).

    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between July 25 and Dec 20, 2006. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on the original Mouse-6 v 1.0 slide. The slides were hybridized and washed following standard Illumina protocols.

    +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each strain. While all strains were orginally represented by matched male and female samples, one strain LXS34 consists of two female samples. Given the expression of Xist, we suspect that strain LXS114 is represented by two male pools (see figure at bottom of page).

    +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below.

    +

    Quality Control on Sex Labels: Sex of the samples was validated using sex-specific probe set: Xist (probe ILM106520068, also known as scl00213742.1_141-S).

    +
    + +

    Legend: We evaluated whether or not the sex of samples were labeled correctly by measuring the expression of Xist using probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample.

    +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch. +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    ation
    pool
    size
    slide
    ID
    slide
    position
    batch
    by slide
    scan
    batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    +
    +

    Downloading all data:

    +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +

    About the array platform:

    +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs.

    +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +

    About data processing:

    +

    This data set uses the LOESS with Variance Stabilizing Transform (VST) and Background correction from the lumi package downloaded from Bioconductor (http://www.bioconductor.org/). For the more detailed information, please see the lumi package documentation.

    +

    Data source acknowledgment:

    +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. +· Lu Lu, M.D. +Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI)

    +

    About this text file:

    +

    INFO file prepared by Xusheng Wang, Oct 24, 2007.

    +

    Data set uploaded by Arthur Centeno, Aug 30, 2007.

    +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_LXS_Hipp_quant_nb0807.html b/web/dbdoc/Illum_LXS_Hipp_quant_nb0807.html new file mode 100755 index 00000000..d95a4802 --- /dev/null +++ b/web/dbdoc/Illum_LXS_Hipp_quant_nb0807.html @@ -0,0 +1,340 @@ + +NIAAA INIA Hippocampus Illumina (Aug07) Quantile Normalization with No +Background Correction Database + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + + + + + + + +
    +

    NIAAA INIA Hippocampus Illumina (Aug07) Quantile Normalization with No +Background Correction Database +modify this page

    Accession number: GN140

    + +

    Summary:

    +

    August 07 ILLUMINA Mouse-6 DATA SET QUANT_NB: The LXS Hippocampus Illumina Quantile Normalization with No Background correction data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains, ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics), and the two reciprocal F1 strains (ILSXISSF1, ISSXILSF1). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues).

    +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were not included. This particular data set was processed using the Illumina "Quantile Normalization with No Background Correction" protocol. Values were log2 transformed and the current data range from 6.411 average (very low or no expression) to 24.245 (extremely high).

    +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Hippocampus Illumina (Aug 07) Quantile data set, 1129 probes have LRS values >46.

    +

    In comparison, here are the yields of QTLs with LOD>10 for other closely related data sets:

    +
      +
    1. 1050 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 1162 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 1129 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 1176 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. NO DATA for Hippocampus Illumina (Aug07) RSN
    10. +
    11. NO DATA for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 1183 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 1167 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 1170 for Hippocampus Illumina (Oct06) RankInv
    18. +
    +

    The LRS achieved in the different version of the LXS Hippocampus data for probe ILM103520706 (Disabled 1; Dab1) are as follow

    +
      +
    1. 338.4 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 339.8 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 370.2 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 363.5 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. 374.8 for Hippocampus Illumina (Aug07) RSN
    10. +
    11. 363.0 for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 360.3 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 358.1 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 358.8 for Hippocampus Illumina (Oct06) RankInv
    18. +
    +
    + +

    Legend: UPDATE THIS FIGURE: Bar chart of the expression of Dab1 probe ILM103520706 in the LXS data set. This probe has a Mendelian segregation pattern and is associated with an LRS 360.3 in this May07 RankInv data set vs 358.8 for the previous Oct06 data set.

    +

    ABOUT THE HIPPOCAMPUS. The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval. This region of the brain is particularly vulnerable to the effects of environmental stressors and is a key upstream modulator of the hypothalamic-pituitary-adrenal axis (the HPA). The hippocampus is also often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators supported by numerous agencies described in the Acknowledgments section.

    +

    About the strains used to generate this set of data:

    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 77 strains. All of these strains have been inbred for more than 23 generations (F23). All strains have been genotyped at 13,377 SNPs. Thanks to the efforts of Dr. Timothy Wiltshire at the Genome Institute of the Novartis Research Foundation, the two parental strains have been genotyped at 156,551 SNPs. These genotypes are incorporated in the GeneNetwork SNP Browser.

    +

    Strains are currently available from Drs. Beth Bennett and Tom Johnson at the Institute of Behavioral Genetics (IBG) in Boulder Colorado.

    +

    About the animals and tissue used to generate this set of data:

    +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus).

    +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia.

    +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below).

    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between July 25 and Dec 20, 2006. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on the original Mouse-6 v 1.0 slide. The slides were hybridized and washed following standard Illumina protocols.

    +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each strain. While all strains were orginally represented by matched male and female samples, one strain LXS34 consists of two female samples. Given the expression of Xist, we suspect that strain LXS114 is represented by two male pools (see figure at bottom of page).

    +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below.

    +

    Quality Control on Sex Labels: Sex of the samples was validated using sex-specific probe set: Xist (probe ILM106520068, also known as scl00213742.1_141-S).

    +
    + +

    Legend: We evaluated whether or not the sex of samples were labeled correctly by measuring the expression of Xist using probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample.

    +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch. +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    ation
    pool
    size
    slide
    ID
    slide
    position
    batch
    by slide
    scan
    batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    +
    +

    Downloading all data:

    +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +

    About the array platform:

    +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs.

    +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +

    About data processing:

    +

    This data set uses the LOESS with Variance Stabilizing Transform (VST) and Background correction from the lumi package downloaded from Bioconductor (http://www.bioconductor.org/). For the more detailed information, please see the lumi package documentation.

    +

    Data source acknowledgment:

    +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. +· Lu Lu, M.D. +Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI)

    +

    About this text file:

    +

    INFO file prepared by Xusheng Wang, Oct 24, 2007.

    +

    Data set uploaded by Arthur Centeno, Aug 30, 2007.

    +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_LXS_Hipp_rsn0807.html b/web/dbdoc/Illum_LXS_Hipp_rsn0807.html new file mode 100755 index 00000000..629ebddd --- /dev/null +++ b/web/dbdoc/Illum_LXS_Hipp_rsn0807.html @@ -0,0 +1,340 @@ + +NIAAA INIA Hippocampus Illumina (Aug07) Robust Spline Normalization (RSN) with +Background Correction Database + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + + + + + + + +
    +

    NIAAA INIA Hippocampus Illumina (Aug07) Robust Spline Normalization (RSN) with +Background Correction Database +modify this page

    Accession number: GN139

    + +

    Summary:

    +

    August 07 ILLUMINA Mouse-6 DATA SET RSN: The LXS Hippocampus Illumina Robust Spline Normalization with No Background correction data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains, ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics), and the two reciprocal F1 strains (ILSXISSF1, ISSXILSF1). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues).

    +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were not included. This particular data set was processed using the Illumina "Robust Spline Normalization with Background Correction" protocol. Values were log2 transformed and the current data range from 6.417 average (very low or no expression) to 24.169 (extremely high).

    +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Hippocampus Illumina (Aug 07) RSN data set, ### probes have LRS values >46.

    +

    In comparison, here are the yields of QTLs with LOD>10 for other closely related data sets:

    +
      +
    1. 1050 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 1162 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 1129 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 1176 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. NO DATA for Hippocampus Illumina (Aug07) RSN
    10. +
    11. NO DATA for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 1183 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 1167 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 1170 for Hippocampus Illumina (Oct06) RankInv
    18. +
    +

    The LRS achieved in the different version of the LXS Hippocampus data for probe ILM103520706 (Disabled 1; Dab1) are as follow

    +
      +
    1. 338.4 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 339.8 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 370.2 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 363.5 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. 374.8 for Hippocampus Illumina (Aug07) RSN
    10. +
    11. 363.0 for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 360.3 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 358.1 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 358.8 for Hippocampus Illumina (Oct06) RankInv
    18. +
    +
    + +

    Legend: UPDATE THIS FIGURE: Bar chart of the expression of Dab1 probe ILM103520706 in the LXS data set. This probe has a Mendelian segregation pattern and is associated with an LRS 360.3 in this May07 RankInv data set vs 358.8 for the previous Oct06 data set.

    +

    ABOUT THE HIPPOCAMPUS. The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval. This region of the brain is particularly vulnerable to the effects of environmental stressors and is a key upstream modulator of the hypothalamic-pituitary-adrenal axis (the HPA). The hippocampus is also often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators supported by numerous agencies described in the Acknowledgments section.

    +

    About the strains used to generate this set of data:

    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 77 strains. All of these strains have been inbred for more than 23 generations (F23). All strains have been genotyped at 13,377 SNPs. Thanks to the efforts of Dr. Timothy Wiltshire at the Genome Institute of the Novartis Research Foundation, the two parental strains have been genotyped at 156,551 SNPs. These genotypes are incorporated in the GeneNetwork SNP Browser.

    +

    Strains are currently available from Drs. Beth Bennett and Tom Johnson at the Institute of Behavioral Genetics (IBG) in Boulder Colorado.

    +

    About the animals and tissue used to generate this set of data:

    +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus).

    +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia.

    +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below).

    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between July 25 and Dec 20, 2006. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on the original Mouse-6 v 1.0 slide. The slides were hybridized and washed following standard Illumina protocols.

    +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each strain. While all strains were orginally represented by matched male and female samples, one strain LXS34 consists of two female samples. Given the expression of Xist, we suspect that strain LXS114 is represented by two male pools (see figure at bottom of page).

    +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below.

    +

    Quality Control on Sex Labels: Sex of the samples was validated using sex-specific probe set: Xist (probe ILM106520068, also known as scl00213742.1_141-S).

    +
    + +

    Legend: We evaluated whether or not the sex of samples were labeled correctly by measuring the expression of Xist using probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample.

    +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch. +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    ation
    pool
    size
    slide
    ID
    slide
    position
    batch
    by slide
    scan
    batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    +
    +

    Downloading all data:

    +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +

    About the array platform:

    +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs.

    +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +

    About data processing:

    +

    This data set uses the LOESS with Variance Stabilizing Transform (VST) and Background correction from the lumi package downloaded from Bioconductor (http://www.bioconductor.org/). For the more detailed information, please see the lumi package documentation.

    +

    Data source acknowledgment:

    +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. +· Lu Lu, M.D. +Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI)

    +

    About this text file:

    +

    INFO file prepared by Xusheng Wang, Oct 24, 2007.

    +

    Data set uploaded by Arthur Centeno, Aug 30, 2007.

    +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_LXS_Hipp_rsn_nb0807.html b/web/dbdoc/Illum_LXS_Hipp_rsn_nb0807.html new file mode 100755 index 00000000..0fd4201c --- /dev/null +++ b/web/dbdoc/Illum_LXS_Hipp_rsn_nb0807.html @@ -0,0 +1,340 @@ + +NIAAA INIA Hippocampus Illumina (Aug07) Robust Spline Normalization with +No Background Correction Database + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + + + + + + + +
    +

    NIAAA INIA Hippocampus Illumina (Aug07) Robust Spline Normalization with +No Background Correction Database +modify this page

    Accession number: GN138

    + +

    Summary:

    +

    August 07 ILLUMINA Mouse-6 DATA SET RSN: The LXS Hippocampus Illumina Robust Spline Normalization with No Background correction data set provides estimates of mRNA expression in the hippocampus of 75 LXS recombinant inbred strains, the two parental strains, ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics), and the two reciprocal F1 strains (ILSXISSF1, ISSXILSF1). All samples are from normal adult control animals raised in a standard laboratory environment. Subsequent data sets will provide estimates of mRNA expression following restraint stress, ethanol treatment, and stress followed by ethanol using many of the same strains (Lu Lu and colleagues).

    +

    A total of 240 pooled hippocampal samples were processed using 40 Illumina Sentrix Mouse-6 v 1.0 oligomer microarray BeadArray slides. Twenty-seven Mouse-6 slides and a total of 160 samples passed stringent quality control and error checking. We should note that this is our first experience using the Illumina platform and the initial set of 13 slides were not included. This particular data set was processed using the Illumina "Robust Spline Normalization with No Background Correction" protocol. Values were log2 transformed and the current data range from 6.481 average (very low or no expression) to 24.852 (extremely high).

    +

    As a measure of data quality we often count the number of probes that are associated with LOD scores of greater than 10 (LRS > 46). In this Hippocampus Illumina (Aug 07) RSN data set, ### probes have LRS values >46.

    +

    In comparison, here are the yields of QTLs with LOD>10 for other closely related data sets:

    +
      +
    1. 1050 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 1162 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 1129 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 1176 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. NO DATA for Hippocampus Illumina (Aug07) RSN
    10. +
    11. NO DATA for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 1183 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 1167 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 1170 for Hippocampus Illumina (Oct06) RankInv
    18. +
    +

    The LRS achieved in the different version of the LXS Hippocampus data for probe ILM103520706 (Disabled 1; Dab1) are as follow

    +
      +
    1. 338.4 for Hippocampus Illumina (Aug07) LOESS
    2. +
    3. 339.8 for Hippocampus Illumina (Aug07) LOESS_NB
    4. +
    5. 370.2 for Hippocampus Illumina (Aug07) QUANT
    6. +
    7. 363.5 for Hippocampus Illumina (Aug07) QUANT_NB
    8. +
    9. 374.8 for Hippocampus Illumina (Aug07) RSN
    10. +
    11. 363.0 for Hippocampus Illumina (Aug07) RSN_NB (THIS DATA SET)
    12. +
    13. 360.3 for Hippocampus Illumina (May 07) RankInv
    14. +
    15. 358.1 for Hippocampus Illumina (Oct06) Rank
    16. +
    17. 358.8 for Hippocampus Illumina (Oct06) RankInv
    18. +
    +
    + +

    Legend: UPDATE THIS FIGURE: Bar chart of the expression of Dab1 probe ILM103520706 in the LXS data set. This probe has a Mendelian segregation pattern and is associated with an LRS 360.3 in this May07 RankInv data set vs 358.8 for the previous Oct06 data set.

    +

    ABOUT THE HIPPOCAMPUS. The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval. This region of the brain is particularly vulnerable to the effects of environmental stressors and is a key upstream modulator of the hypothalamic-pituitary-adrenal axis (the HPA). The hippocampus is also often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators supported by numerous agencies described in the Acknowledgments section.

    +

    About the strains used to generate this set of data:

    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 77 strains. All of these strains have been inbred for more than 23 generations (F23). All strains have been genotyped at 13,377 SNPs. Thanks to the efforts of Dr. Timothy Wiltshire at the Genome Institute of the Novartis Research Foundation, the two parental strains have been genotyped at 156,551 SNPs. These genotypes are incorporated in the GeneNetwork SNP Browser.

    +

    Strains are currently available from Drs. Beth Bennett and Tom Johnson at the Institute of Behavioral Genetics (IBG) in Boulder Colorado.

    +

    About the animals and tissue used to generate this set of data:

    +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. Mice were killed by cervical dislocation. Whole brain dissections were performed at the IBG by Bennett and colleagues and shipped in RNAlater to Lu Lu and colleagues at UTHSC. Most hippocampal dissections (all were bilateral) were performed by Zhiping Jia. Cerebella, olfactory bulbs, and brain stems were also dissected and stored at -80 deg C using further use. Hippocampal samples are very close to complete (see Lu et al., 2001 but probably include variable amounts of fimbria and choroid plexus (see expression of transthyretin, Ttr, as a marker of choroid plexus).

    +

    A pool of dissected tissue from four hippocampi taken from two naive adults of the same strain, sex, and age was collected in one session and used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at UTHSC by Zhiping Jia.

    +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below).

    +

    Sample Processing: Samples were processed by Lu Lu and colleagues in the Illumina Core at UTHSC between July 25 and Dec 20, 2006. All processing steps were performed by Feng Jiao. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8 to pass our quality control (QC). The majority of samples had values between 1.9 and 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using the Ambion/Illumina (http://www.ambion.com/catalog/CatNum.php?AMIL1791) TotalPrep RNA amplication kit (Cat#IL1791). The biotin labeled cRNA was then evaluated using both the 260/280 ratio (values of 2.0-2.3 are acceptable) using a NanoDrop ND-1000 (http://www.nanodrop.com/nd-1000-overview.html). Those samples that passed QC steps (1-3% failed and new RNA samples had to be acquired and processed) were immediately used on the original Mouse-6 v 1.0 slide. The slides were hybridized and washed following standard Illumina protocols.

    +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each strain. While all strains were orginally represented by matched male and female samples, one strain LXS34 consists of two female samples. Given the expression of Xist, we suspect that strain LXS114 is represented by two male pools (see figure at bottom of page).

    +

    Experimental Design and Batch Structure: This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below.

    +

    Quality Control on Sex Labels: Sex of the samples was validated using sex-specific probe set: Xist (probe ILM106520068, also known as scl00213742.1_141-S).

    +
    + +

    Legend: We evaluated whether or not the sex of samples were labeled correctly by measuring the expression of Xist using probe ILM106520068. In this bar chart the expression of Xist is very low in LXS114 and has a low error term. This is because both arrays are male samples rather than 1 male and 1 female sample.

    +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch. +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    ation
    pool
    size
    slide
    ID
    slide
    position
    batch
    by slide
    scan
    batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    5R3281H1ILSXISSF190FNA31562224029A2813
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    10R3282H1ISSXILSF197MNA31562224029B2813
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    +
    +

    Downloading all data:

    +

    All data links (right-most column above) will be available as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +

    About the array platform:

    +

    Illumina Sentrix Mouse-6 BeadArray Platform: The Mouse6 array consists of 46,116 unique probe sequences, each 50 nucleotides in length, that have been arrayed on glass slides using a novel bead technology.

    +

    Dunning M, Smith M, Thorne N, Tavare S (2006) beadarray: An R package to analyse Illumina BeadArrays. R News (the Newsletter of the P Project) 6:17-23. (see pages 17-23 of http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf).

    +

    ANNOTATION: In spring of 2007, Robert W. Williams and Hongqiang Li reannotated the Illumina Mouse-6 array content. This new annotation is now incorporated into GeneNetwork. For 46166 probes on the Mouse 6 array platform (including control probes) we have identified 35975 NCBI Entrez Gene IDs; 26481 matched human Gene IDs; 23899 matched rat Gene IDs; 26883 NCBI HomoloGene IDs; and 12791 OMIM IDs.

    +

    Position data for the 50-mer Illumina Mouse-6 array were initially downloaded from Sanger at http://www.sanger.ac.uk/Users/avc/Illumina/Mouse-6_V1.gff.gz but we then updated all positions by BLAT analysis from mm6 positions to mm8 positions (Hongqiang Li).

    +

    About data processing:

    +

    This data set uses the LOESS with Variance Stabilizing Transform (VST) and Background correction from the lumi package downloaded from Bioconductor (http://www.bioconductor.org/). For the more detailed information, please see the lumi package documentation.

    +

    Data source acknowledgment:

    +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. +· Lu Lu, M.D. +Grant Support: NIH U01AA13499, U24AA13513 (Lu Lu, PI)

    +

    About this text file:

    +

    INFO file prepared by Xusheng Wang, Oct 24, 2007.

    +

    Data set uploaded by Arthur Centeno, Aug 30, 2007.

    +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_Retina_BXD_RankInv0309.html b/web/dbdoc/Illum_Retina_BXD_RankInv0309.html new file mode 100755 index 00000000..d7181c7b --- /dev/null +++ b/web/dbdoc/Illum_Retina_BXD_RankInv0309.html @@ -0,0 +1,10179 @@ + +HEI Retina Illumina V6.2 (Mar09) RankInv + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    Hamilton Eye Institute (HEI) Retina Illumina V6.2 (Mar09) RankInv +modify this page

    Accession number: GN223

    + +

    Summary:

    +
    +

    HEI Retina Illumina V6.2 (Mar09) RankInv ** was uploaded by Arthur Centeno on March 25, 2009. This data set consists of 46 BXD strains, C57BL/6J, and both reciprocal F1s--49 strains total. No data for DBA/2J. + +

    This data set has not been fully normalized. This is rank invariant data with 2z+8 stabilization, but without special correction for batch effects. The data includes the mean of four samples per strain. Values in expression range from 6.2 to 18.5 (12.3 units), a nominal range of 5000-fold. + +

    The lowest level of expression is 6.25 for ILMN_2747167 from HEI Retina Illumina V6.2 (Mar09) RankInv **. Lowest single data about 5.7. + +

    The highest level of expression is 18.50 for ILMN_2758581 (Gapdh). Highest single value is about 19.4. +

    +

    +

    Relevant Publications

    +
    +

    +

      +
    1. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Wang X, Gu W, Jiao Y, Williams RW,:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009, (In Press) +
    2. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 +
    3. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) +
    4. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams, RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, 10(1):90.[Epub ahead of print] (Link) + + + +

      +

    +Other Data Sets +Users of these mouse retina data may also find the following complementary resources useful: +
      +
    1. NEIBank collection of ESTs and SAGE data. +
    2. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases +
    3. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5. +
    4. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus. + +
    5. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430). + + +
    6. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0. +
    +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 48 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. + + +

    +
  • BXD strains:. The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. Only one of these strains, BXD24 (know also known as BXD24b), has retinal degeneration (a spontaneous mutation). The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set. +
  • +
    + +

    About the tissue used to generate this set of data:

    + +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RNAlater at room temperature. Two retinas from one mouse were stored in a single tube. + +

    Each array was hybridized with a pool of cRNA from 2 retinas (1 mouse). Natalie Freeman-Anderson extracted RNA at UTHSC. +

    + +

    Dissecting and preparing eyes for RNA extraction +

    +

    Retinas for RNA extraction were placed in RNA STAT-60 (Tel-Test Inc.) and processed per manufacturer’s instructions (in brief form below). +Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    • Homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue via syringe) +
    • Allow the homogenate to stand for 5-10 min at room temperature +
    • Add 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    • Mix the sample vigorously for 15 sec and let the sample incubate at room temperature for 5-10 min +
    • Centrifuge at 12,000 g for 30 min at 4°C +
    • Transfer the aqueous phase to a clean centrifuge tube +
    • Add 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    • Vortex and incubate the sample at -20°C for 1 hr +
    • Centrifuge at 12,000 g for 30 min- 1 hr +
    • Remove the supernatant and wash the RNA pellet with 75% ethanol +
    • Remove ethanol, let air dry (5-10 min) +
    • Dissolve the pellet in 50 μl of nuclease free water. +

      +

    +Sample Processing Dr. Natalie Freeman-Anderson processed all samples in the HEI Vision Core Facility. The tissue was homogenized and extracted according to the RNA-Stat-60 protocol as described by the manufacturer (Tel-Test, Friendswood, TX) listed above. The quality and purity of RNA was assessed using an Agilent Bioanalyzer 2100 system. The RNA from each sample was processed with the Illumina TotalPrep RNA Amplification Kit (Ambion, Austin, TX) to produce labeled cRNA. The cRNA for each sample was then hybridized to an Illumina Sentrix® Mouse-6-V2 BeadChip (Illumina, San Diego, CA) +

    +

    +

    Once data was collected, we normalized the data using the formula 2 (z-score of log2 [intensity]) + 8 as previously described (Rogojina et al., 2003, Vazquez-Chona et al., 2004). This procedure sets the mean expression level across a single microarray to 8 units on an exponential scale similar to that produced by real-time qRT-PCR. For the microarray analysis, we compared the changes in the transcriptome of C57BL/6J mice to that of DBA/2J mice before and after optic nerve crush. The mice, at 60-90 days of age, could be considered adults with fully developed retinas. At this age range, DBA2/J mice had not yet developed symptoms associated with pigmentary dispersion glaucoma. + +

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication. +

    +

    Table 1: HEI Retina case IDs, including sample tube ID, strain, age, sex, and source of mice +

    +

    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    Sample ID

    + +
    +

    Strain

    +
    +

    Age

    +
    + +

    Sex

    +
    +

    Source of Animal

    +
    + +

    1

    +
    +

    KA7446-B6D2F1cFA

    +
    +

    B6D2F1

    + +
    +

    92

    +
    +

    F

    +
    + +

    UTHSC + RW

    +
    +

    2

    +
    + +

    KA7446-B6D2F1cFB

    +
    +

    B6D2F1

    +
    +

    92

    + +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    3

    +
    +

    KA7446-B6D2F1cMC

    +
    + +

    B6D2F1

    +
    +

    92

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    4

    + +
    +

    KA7446-B6D2F1cMD

    +
    +

    B6D2F1

    +
    + +

    92

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    5

    +
    +

    KA7466-D2B6F1cFB

    + +
    +

    D2B6F1

    +
    +

    70

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    6

    +
    +

    KA7466-D2B6F1cFA

    +
    +

    D2B6F1

    + +
    +

    70

    +
    +

    F

    +
    + +

    UTHSC + RW

    +
    +

    7

    +
    + +

    KA7466-D2B6F1cMC

    +
    +

    D2B6F1

    +
    +

    70

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    8

    +
    +

    KA7466-D2B6F1cMD

    +
    + +

    D2B6F1

    +
    +

    70

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    9

    + +
    +

    KA7444-C57BL/6JcMC

    +
    +

    C57BL/6J

    +
    + +

    97

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    10

    +
    +

    KA7444-C57BL/6JcMD

    + +
    +

    C57BL/6J

    +
    +

    97

    +
    + +

    M

    +
    +

    UTHSC + RW

    +
    + +

    11

    +
    +

    KA7389-1cFB

    +
    +

    BXD01

    + +
    +

    51

    +
    +

    F

    +
    + +

    UTHSC + RW

    +
    +

    12

    +
    + +

    KA7389-1cMD

    +
    +

    BXD01

    +
    +

    51

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    13

    +
    +

    KA7389-1cFA

    +
    + +

    BXD01

    +
    +

    51

    +
    +

    F

    + +
    +

    UTHSC + RW

    +
    +

    14

    + +
    +

    KA7389-1cMC

    +
    +

    BXD01

    +
    + +

    51

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    15

    +
    +

    KA7300-2cFA

    + +
    +

    BXD02

    +
    +

    75

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    16

    +
    +

    KA7300-2cFB

    +
    +

    BXD02

    + +
    +

    75

    +
    +

    F

    +
    + +

    UTHSC + RW

    +
    +

    17

    +
    + +

    KA6699-5cFB

    +
    +

    BXD05

    +
    +

    62

    + +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    18

    +
    +

    KA6699-5cFC

    +
    + +

    BXD05

    +
    +

    62

    +
    +

    F

    + +
    +

    UTHSC + RW

    +
    +

    19

    + +
    +

    KA6699-5cFD

    +
    +

    BXD05

    +
    + +

    62

    +
    +

    F

    +
    +

    UTHSC + RW

    + +
    +

    20

    +
    +

    KA6699-5cFA

    + +
    +

    BXD05

    +
    +

    62

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    21

    +
    +

    KA6763-6cFB

    +
    +

    BXD06

    + +
    +

    48

    +
    +

    F

    +
    + +

    UTHSC + RW

    +
    +

    22

    +
    + +

    KA6763-6cFA

    +
    +

    BXD06

    +
    +

    48

    + +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    23

    +
    +

    JAX-8cMA

    +
    + +

    BXD08

    +
    +

    76

    +
    +

    M

    + +
    +

    JAX

    +
    +

    24

    + +
    +

    JAX-8cMB

    +
    +

    BXD08

    +
    + +

    76

    +
    +

    M

    +
    +

    JAX

    + +
    +

    25

    +
    +

    KA7289-9cFB

    + +
    +

    BXD09

    +
    +

    87

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    26

    +
    +

    KA7289-9cMD

    +
    +

    BXD09

    + +
    +

    87

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    27

    +
    + +

    KA7289-9cMC

    +
    +

    BXD09

    +
    +

    87

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    28

    +
    +

    KA7289-9cFA

    +
    + +

    BXD09

    +
    +

    87

    +
    +

    F

    + +
    +

    UTHSC + RW

    +
    +

    29

    + +
    +

    JAX-11cFA

    +
    +

    BXD11

    +
    + +

    84

    +
    +

    F

    +
    +

    JAX

    + +
    +

    30

    +
    +

    JAX-11cFB

    + +
    +

    BXD11

    +
    +

    84

    +
    + +

    F

    +
    +

    JAX

    +
    + +

    31

    +
    +

    JAX-11cMC

    +
    +

    BXD11

    + +
    +

    71

    +
    +

    M

    +
    + +

    JAX

    +
    +

    32

    +
    + +

    JAX-11cMD

    +
    +

    BXD11

    +
    +

    71

    + +
    +

    M

    +
    +

    JAX

    +
    +

    33

    +
    +

    KA7286-13cFB

    +
    + +

    BXD13

    +
    +

    89

    +
    +

    F

    + +
    +

    UTHSC + RW

    +
    +

    34

    + +
    +

    KA7286-13cMD

    +
    +

    BXD13

    +
    + +

    89

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    35

    +
    +

    KA7286-13cFA

    + +
    +

    BXD13

    +
    +

    89

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    36

    +
    +

    KA7286-13cMC

    +
    +

    BXD13

    + +
    +

    89

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    37

    +
    + +

    KA7302-14cFA

    +
    +

    BXD14

    +
    +

    73

    + +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    38

    +
    +

    KA7302-14cFB

    +
    + +

    BXD14

    +
    +

    73

    +
    +

    F

    + +
    +

    UTHSC + RW

    +
    +

    39

    + +
    +

    KA7288-15cFB

    +
    +

    BXD15

    +
    + +

    89

    +
    +

    F

    +
    +

    UTHSC + RW

    + +
    +

    40

    +
    +

    KA7288-15cMD

    + +
    +

    BXD15

    +
    +

    89

    +
    + +

    M

    +
    +

    UTHSC + RW

    +
    + +

    41

    +
    +

    KA7288-15cMC

    +
    +

    BXD15

    + +
    +

    89

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    42

    +
    + +

    KA7288-15cFA

    +
    +

    BXD15

    +
    +

    89

    + +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    43

    +
    +

    KA7267-16cMA

    +
    + +

    BXD16

    +
    +

    91

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    44

    + +
    +

    KA7267-16cMB

    +
    +

    BXD16

    +
    + +

    91

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    45

    +
    +

    KA6686-18cFC

    + +
    +

    BXD18

    +
    +

    65

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    46

    +
    +

    KA6686-18cMF

    +
    +

    BXD18

    + +
    +

    65

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    47

    +
    + +

    KA6686-18cME

    +
    +

    BXD18

    +
    +

    65

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    48

    +
    +

    KA6686-18cFB

    +
    + +

    BXD18

    +
    +

    65

    +
    +

    F

    + +
    +

    UTHSC + RW

    +
    +

    49

    + +
    +

    KA6676-19cMF

    +
    +

    BXD19

    +
    + +

    63

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    50

    +
    +

    KA6676-19cME

    + +
    +

    BXD19

    +
    +

    63

    +
    + +

    M

    +
    +

    UTHSC + RW

    +
    + +

    51

    +
    +

    KA6676-19cFB

    +
    +

    BXD19

    + +
    +

    63

    +
    +

    F

    +
    + +

    UTHSC + RW

    +
    +

    52

    +
    + +

    KA6676-19cFC

    +
    +

    BXD19

    +
    +

    63

    + +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    53

    +
    +

    092308_03-22cMA

    +
    + +

    BXD22

    +
    +

    118

    +
    +

    M

    + +
    +

    JAX

    +
    +

    54

    + +
    +

    092308_04-22cMB

    +
    +

    BXD22

    +
    + +

    118

    +
    +

    M

    +
    +

    JAX

    + +
    +

    55

    +
    +

    KA6678-24cFB

    + +
    +

    BXD24

    +
    +

    62

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    56

    +
    +

    KA6678-24cME

    +
    +

    BXD24

    + +
    +

    62

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    57

    +
    + +

    KA6678-24cFA

    +
    +

    BXD24

    +
    +

    62

    + +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    58

    +
    +

    KA6678-24cMF

    +
    + +

    BXD24

    +
    +

    62

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    59

    + +
    +

    JAX-28cFB

    +
    +

    BXD28

    +
    + +

    67

    +
    +

    F

    +
    +

    JAX

    + +
    +

    60

    +
    +

    JAX-28cMC

    + +
    +

    BXD28

    +
    +

    67

    +
    + +

    M

    +
    +

    JAX

    +
    + +

    61

    +
    +

    JAX-28cMD

    +
    +

    BXD28

    + +
    +

    67

    +
    +

    M

    +
    + +

    JAX

    +
    +

    62

    +
    + +

    JAX-28cFA

    +
    +

    BXD28

    +
    +

    67

    + +
    +

    F

    +
    +

    JAX

    +
    +

    63

    +
    +

    JAX-31cFD

    +
    + +

    BXD31

    +
    +

    69

    +
    +

    F

    + +
    +

    JAX

    +
    +

    64

    + +
    +

    JAX-31cMB

    +
    +

    BXD31

    +
    + +

    56

    +
    +

    M

    +
    +

    JAX

    + +
    +

    65

    +
    +

    JAX-31cFC

    + +
    +

    BXD31

    +
    +

    69

    +
    + +

    F

    +
    +

    JAX

    +
    + +

    66

    +
    +

    KA7319-32cMB

    +
    +

    BXD32

    + +
    +

    74

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    67

    +
    + +

    KA7318-32cFC

    +
    +

    BXD32

    +
    +

    71

    + +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    68

    +
    +

    KA7319-32cMA

    +
    + +

    BXD32

    +
    +

    74

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    69

    + +
    +

    KA7318-32cFD

    +
    +

    BXD32

    +
    + +

    71

    +
    +

    F

    +
    +

    UTHSC + RW

    + +
    +

    70

    +
    +

    KA6321-34cMB

    + +
    +

    BXD34

    +
    +

    66

    +
    + +

    M

    +
    +

    UTHSC + RW

    +
    + +

    71

    +
    +

    KA6321-34cMA

    +
    +

    BXD34

    + +
    +

    66

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    72

    +
    + +

    KA7416-34cFA

    +
    +

    BXD34

    +
    +

    97

    + +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    73

    +
    +

    KA7416-34cFB

    +
    + +

    BXD34

    +
    +

    97

    +
    +

    F

    + +
    +

    UTHSC + RW

    +
    +

    74

    + +
    +

    KA6702-38cFA

    +
    +

    BXD38

    +
    + +

    63

    +
    +

    F

    +
    +

    UTHSC + RW

    + +
    +

    75

    +
    +

    KA6173-40cMA

    + +
    +

    BXD40

    +
    +

    59

    +
    + +

    M

    +
    +

    UTHSC + RW

    +
    + +

    76

    +
    +

    KA6173-40cMB

    +
    +

    BXD40

    + +
    +

    59

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    77

    +
    + +

    KA6173-40cMC

    +
    +

    BXD40

    +
    +

    59

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    78

    +
    +

    KA6158-43cMA

    +
    + +

    BXD43

    +
    +

    66

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    79

    + +
    +

    KA6158-43cMB

    +
    +

    BXD43

    +
    + +

    66

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    80

    +
    +

    110408_02-43cFA

    + +
    +

    BXD43

    +
    +

    61

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    81

    +
    +

    110408_03-43cFB

    +
    +

    BXD43

    + +
    +

    61

    +
    +

    F

    +
    + +

    UTHSC + RW

    +
    +

    82

    +
    + +

    100308_02-44cFB

    +
    +

    BXD44

    +
    +

    67

    + +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    83

    +
    +

    102208_02-44cMD

    +
    + +

    BXD44

    +
    +

    64

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    84

    + +
    +

    100308_01-44cFA

    +
    +

    BXD44

    +
    + +

    67

    +
    +

    F

    +
    +

    UTHSC + RW

    + +
    +

    85

    +
    +

    KA7378-50cFA

    + +
    +

    BXD50

    +
    +

    50

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    86

    +
    +

    KA7378-50cFB

    +
    +

    BXD50

    + +
    +

    50

    +
    +

    F

    +
    + +

    UTHSC + RW

    +
    +

    87

    +
    + +

    102208_04-51cMB

    +
    +

    BXD51

    +
    +

    56

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    88

    +
    +

    111208_01-51cFA

    +
    + +

    BXD51

    +
    +

    99

    +
    +

    F

    + +
    +

    UTHSC + RW

    +
    +

    89

    + +
    +

    102208_03-51cMA

    +
    +

    BXD51

    +
    + +

    56

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    90

    +
    +

    KA7454-53BcFA

    + +
    +

    BXD53B

    +
    +

    93

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    91

    +
    +

    KA7454-53BcFB

    +
    +

    BXD53B

    + +
    +

    93

    +
    +

    F

    +
    + +

    UTHSC + RW

    +
    +

    92

    +
    + +

    090208_17-53BcMD

    +
    +

    BXD53B

    +
    +

    93

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    93

    +
    +

    090208_16-53BcMC

    +
    + +

    BXD53B

    +
    +

    93

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    94

    + +
    +

    KA6183-55cMB

    +
    +

    BXD55

    +
    + +

    63

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    95

    +
    +

    KA6183-55cMA

    + +
    +

    BXD55

    +
    +

    63

    +
    + +

    M

    +
    +

    UTHSC + RW

    +
    + +

    96

    +
    +

    111208_05-55cFB

    +
    +

    BXD55

    + +
    +

    70

    +
    +

    F

    +
    + +

    UTHSC + RW

    +
    +

    97

    +
    + +

    KA6088-56cMA

    +
    +

    BXD56

    +
    +

    87

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    98

    +
    +

    KA6088-56cMB

    +
    + +

    BXD56

    +
    +

    87

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    99

    + +
    +

    KA6088-56cMC

    +
    +

    BXD56

    +
    + +

    87

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    100

    +
    +

    KA7362-56cFB

    + +
    +

    BXD56

    +
    +

    54

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    101

    +
    +

    KA7362-56cFC

    +
    +

    BXD56

    + +
    +

    54

    +
    +

    F

    +
    + +

    UTHSC + RW

    +
    +

    102

    +
    + +

    SQ7325-60cMA

    +
    +

    BXD60

    +
    +

    85

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    103

    +
    +

    SQ7325-60cMB

    +
    + +

    BXD60

    +
    +

    85

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    104

    + +
    +

    092308_11-61cFB

    +
    +

    BXD61

    +
    + +

    110

    +
    +

    F

    +
    +

    UTHSC + RW

    + +
    +

    105

    +
    +

    092308_10-61cFA

    + +
    +

    BXD61

    +
    +

    110

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    106

    +
    +

    KA5996-62cMA

    +
    +

    BXD62

    + +
    +

    113

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    107

    +
    + +

    KA5996-62cMA

    +
    +

    BXD62

    +
    +

    113

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    108

    +
    +

    KA5996-62cMB

    +
    + +

    BXD62

    +
    +

    113

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    109

    + +
    +

    KA5996-62cMC

    +
    +

    BXD62

    +
    + +

    113

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    110

    +
    +

    KA5996-62cMA

    + +
    +

    BXD62

    +
    +

    113

    +
    + +

    M

    +
    +

    UTHSC + RW

    +
    + +

    111

    +
    +

    KA5996-62cMA

    +
    +

    BXD62

    + +
    +

    113

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    112

    +
    + +

    KA5996-62cMA

    +
    +

    BXD62

    +
    +

    113

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    113

    +
    +

    KA5996-62cMA

    +
    + +

    BXD62

    +
    +

    113

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    114

    + +
    +

    KA7462-62cFA

    +
    +

    BXD62

    +
    + +

    76

    +
    +

    F

    +
    +

    UTHSC + RW

    + +
    +

    115

    +
    +

    KA7462-62cFB

    + +
    +

    BXD62

    +
    +

    76

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    116

    +
    +

    KA7165-66cMA

    +
    +

    BXD66

    + +
    +

    95

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    117

    +
    + +

    KA7165-66cMB

    +
    +

    BXD66

    +
    +

    95

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    118

    +
    +

    110408_05-66cFB

    +
    + +

    BXD66

    +
    +

    59

    +
    +

    F

    + +
    +

    UTHSC + RW

    +
    +

    119

    + +
    +

    KA6316-68cMA

    +
    +

    BXD68

    +
    + +

    76

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    120

    +
    +

    KA6316-68cMB

    + +
    +

    BXD68

    +
    +

    76

    +
    + +

    M

    +
    +

    UTHSC + RW

    +
    + +

    121

    +
    +

    KA6316-68cMC

    +
    +

    BXD68

    + +
    +

    76

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    122

    +
    + +

    SQ7205-68cMA

    +
    +

    BXD68

    +
    +

    87

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    123

    +
    +

    SQ7205-68cMB

    +
    + +

    BXD68

    +
    +

    87

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    124

    + +
    +

    120408_02-68cFB

    +
    +

    BXD68

    +
    + +

    67

    +
    +

    F

    +
    +

    UTHSC + RW

    + +
    +

    125

    +
    +

    120408_01-68cFA

    + +
    +

    BXD68

    +
    +

    67

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    126

    +
    +

    KA6074-69cMB

    +
    +

    BXD69

    + +
    +

    90

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    127

    +
    + +

    KA6074-69cMA

    +
    +

    BXD69

    +
    +

    90

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    128

    +
    +

    KA76-69cFA

    +
    + +

    BXD69

    +
    +

    48

    +
    +

    F

    + +
    +

    UTHSC + RW

    +
    +

    129

    + +
    +

    KA76-69cFB

    +
    +

    BXD69

    +
    + +

    48

    +
    +

    F

    +
    +

    UTHSC + RW

    + +
    +

    130

    +
    +

    KA7394-70cMA

    + +
    +

    BXD70

    +
    +

    51

    +
    + +

    M

    +
    +

    UTHSC + RW

    +
    + +

    131

    +
    +

    121608_01-70cFA

    +
    +

    BXD70

    + +
    +

    80

    +
    +

    F

    +
    + +

    UTHSC + RW

    +
    +

    132

    +
    + +

    121608_02-70cFB

    +
    +

    BXD70

    +
    +

    80

    + +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    133

    +
    +

    KA6164-73cMC

    +
    + +

    BXD73

    +
    +

    59

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    134

    + +
    +

    KA6164-73cMB

    +
    +

    BXD73

    +
    + +

    59

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    135

    +
    +

    KA7336-75cFA

    + +
    +

    BXD75

    +
    +

    59

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    136

    +
    +

    KA7336-75cFB

    +
    +

    BXD75

    + +
    +

    59

    +
    +

    F

    +
    + +

    UTHSC + RW

    +
    +

    137

    +
    + +

    KA38-75cMB

    +
    +

    BXD75

    +
    +

    62

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    138

    +
    +

    KA38-75cMC

    +
    + +

    BXD75

    +
    +

    62

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    139

    + +
    +

    KA23-80cMC

    +
    +

    BXD80

    +
    + +

    77

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    140

    +
    +

    121608_04-80cFB

    + +
    +

    BXD80

    +
    +

    77

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    141

    +
    +

    121608_05-80cMC

    +
    +

    BXD80

    + +
    +

    70

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    142

    +
    + +

    121608_03-80cFA

    +
    +

    BXD80

    +
    +

    77

    + +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    143

    +
    +

    KA7305-81cFB

    +
    + +

    BXD81

    +
    +

    51

    +
    +

    F

    + +
    +

    UTHSC + RW

    +
    +

    144

    + +
    +

    KA7305-81cMD

    +
    +

    BXD81

    +
    + +

    51

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    145

    +
    +

    KA7305-81cFA

    + +
    +

    BXD81

    +
    +

    51

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    146

    +
    +

    KA6203-84cMB

    +
    +

    BXD84

    + +
    +

    59

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    147

    +
    + +

    KA6203-84cMA

    +
    +

    BXD84

    +
    +

    59

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    148

    +
    +

    KA6101-86cMC

    +
    + +

    BXD86

    +
    +

    82

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    149

    + +
    +

    KA6101-86cMA

    +
    +

    BXD86

    +
    + +

    82

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    150

    +
    +

    KA7407-87cMA

    + +
    +

    BXD87

    +
    +

    113

    +
    + +

    M

    +
    +

    UTHSC + RW

    +
    + +

    151

    +
    +

    KA7407-87cMB

    +
    +

    BXD87

    + +
    +

    113

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    152

    +
    + +

    KA5974-89cMB

    +
    +

    BXD89

    +
    +

    115

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    153

    +
    +

    KA5974-89cMA

    +
    + +

    BXD89

    +
    +

    115

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    154

    + +
    +

    102208_06-89cFB

    +
    +

    BXD89

    +
    + +

    82

    +
    +

    F

    +
    +

    UTHSC + RW

    + +
    +

    155

    +
    +

    102208_05-89cFA

    + +
    +

    BXD89

    +
    +

    82

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    156

    +
    +

    KA6094-92cMA

    +
    +

    BXD92

    + +
    +

    85

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    157

    +
    + +

    KA6181-95cMA

    +
    +

    BXD95

    +
    +

    61

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    158

    +
    +

    KA6181-95cMB

    +
    + +

    BXD95

    +
    +

    61

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    +

    159

    + +
    +

    KA7246-96cMB

    +
    +

    BXD96

    +
    + +

    73

    +
    +

    M

    +
    +

    UTHSC + RW

    + +
    +

    160

    +
    +

    KA7246-96cMA

    + +
    +

    BXD96

    +
    +

    73

    +
    + +

    M

    +
    +

    UTHSC + RW

    +
    + +

    161

    +
    +

    SQ7520-98cMC

    +
    +

    BXD98

    + +
    +

    59

    +
    +

    M

    +
    + +

    UTHSC + RW

    +
    +

    162

    +
    + +

    SQ7520-98cMD

    +
    +

    BXD98

    +
    +

    59

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    163

    +
    +

    SQ7520-98cFA

    +
    + +

    BXD98

    +
    +

    59

    +
    +

    F

    + +
    +

    UTHSC + RW

    +
    +

    164

    + +
    +

    SQ7520-98cFB

    +
    +

    BXD98

    +
    + +

    59

    +
    +

    F

    +
    +

    UTHSC + RW

    + +
    +

    165

    +
    +

    KA79-103cFA

    + +
    +

    BXD103

    +
    +

    48

    +
    + +

    F

    +
    +

    UTHSC + RW

    +
    + +

    166

    +
    +

    KA79-103cFB

    +
    +

    BXD103

    + +
    +

    48

    +
    +

    F

    +
    + +

    UTHSC + RW

    +
    +

    167

    +
    + +

    KA79-103cMC

    +
    +

    BXD103

    +
    +

    48

    + +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    168

    +
    +

    KA79-103cMD

    +
    + +

    BXD103

    +
    +

    48

    +
    +

    M

    + +
    +

    UTHSC + RW

    +
    + + + + + +

    + +

    About downloading this data set:

    +
    + + + + + + +

    This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

    +
    + + +

    About the array platform:

    +
    +

    Illumina MouseWG-6 v2.0 arrays: The Illumina Sentrix Mouse-6 BeadChip uses 50-nucleotide probes to interrogate approximately 46,000 sequences from the mouse transcriptome. For each array, the RNA was pooled from two retinas.

    + +
    +

    +

    About data values and data processing:

    + +
    +Values of all 45,281 probe sets in this data set range from a low of 6.25 (Rho GTPase activating protein 11A, Arhgap11a, probe ID ILMN_2747167) to a high of 18.50 (glyceraldehyde-3-phosphate dehydrogenase, Gapdh, probe ID ILMN_2758581). This corresponds to 12.25 units or a 1 to 4900 dynamic range of expression (2^12.25). We normalized raw signal values using Beadstudio’s rank invariant normalization algorithm. BXD62 was the strain used as the control group + +
    + +

    Normalization:

    +

    All normalization was performed by William E. Orr in the HEI Vision Core Facility +

      + +
    1. Computed the log base 2 of each raw signal value +
    2. Calculated the mean and standard Deviation of each Mouse WG-6 v2.0 array +
    3. Normalized each array using the formula, 2 (z-score of log2 [intensity]) +The result is to produce arrays that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. +
    4. computed the mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. +
    + +

    Data source acknowledgment:

    +
    + +

    Support for acquisition of microarray data sets was generously provided by Dr. Barrrett Haik, Chair of the Department of Ophthalmology, and Director of the Hamilton Eye Institute. Support for the continued development of GeneNetwork was provided by a NIDA/NIMH/NIAAA Human Brain Project grant, from funds from NEI grant to Dr. Eldon Geisert (R01EY017841), NEI Vision Core grant (EY14080), and an Unrestricted Grant from Research To Prevent Blindness. + +

    + + + +

    Information about this text file:

    +
    +

    Data set entered by Arthur Centeno, Sept 17, 2008. This text file originally generated by RWW and EEG. August 2009 +

    +
    + + +

    +

    +

    +

    References

    +
    Rogojina AT, Orr WE, Song BK, Geisert EE, Jr.: Comparing the use of Affymetrix to spotted oligonucleotide microarrays using two retinal pigment epithelium cell lines. Molecular vision 2003, 9:482-496. +

    Vazquez-Chona F, Song BK, Geisert EE, Jr.: Temporal changes in gene expression after injury in the rat retina. Investigative ophthalmology & visual science 2004, 45(8):2737-2746. + +

    + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series No GEO series number +

    Status Public on August, 2009 +

    Organism(s) Mus musculus +

    Experiment type Expression profiling by array + +

    Overall design We used pooled RNA samples of retinas, usually two independent pools--two male, two female pool--for most lines of mice. + +

    Contributor(s) Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Robert W. Williams + + +

    +
    Submission date Not yet submitted to GEO. +
    Contact name Eldon E. Geisert +
    E-mails +
    Phone 901-448-7740 +
    FAX 901-448-5028 +
    URL GeneNetwork BXD HEI RETINA +
    Organization name University of Tennessee Health Science Center +
    Department(s) Department of Ophthalmology +
    Laboratory(s) Geisert, Lu, Wiliams Labs +
    Street address 930 Madison Avenue +
    City Memphis +
    State/province TN +
    ZIP/Postal code 38163 +
    Country USA + + +

    Platforms (1) GPLXXXX Illumina Mouse Whole Genome 6 version 2.0 + + + + + + + + + + + + + + + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Illum_Retina_BXD_RankInv0410.html b/web/dbdoc/Illum_Retina_BXD_RankInv0410.html new file mode 100755 index 00000000..fc06297c --- /dev/null +++ b/web/dbdoc/Illum_Retina_BXD_RankInv0410.html @@ -0,0 +1,14650 @@ + +HEI Retina Illumina V6.2 (April 2010) RankInv ** + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    HEI Retina Illumina V6.2 (April 2010) RankInv (accession number: GN267) + modify this page + +

    Summary:

    +
    +

    HEI Retina Illumina V6.2 (April 2010) RankInv was normalized and scaled by William E. Orr and uploaded by Arthur Centeno and Xiaodong Zhou on April 7, 2010. This data set consists of 75 BXD strains, C57BL/6J, DBA/2J, both reciprocal F1s, and BALB/cByJ. A total of 80 strains were quantified. The data are now open and available for analysis. + +

    Please cite: Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE (2011) Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision 17:1355-1372. Full Text PDF or HTML + +

    This is rank invariant expression data that has been normalized using what we call a 2z+8 scale, but without special correction for batch effects. The data for each strains were computed as the mean of four samples per strain. Expression values on a log2 scale range from 6.25 to 18.08 (11.83 units), a nominal range of approximately 3600-fold. After taking the log2 of the original non-logged expression estimates, we convert data within an array to a z score. We then multiply the z score by 2. Finally, we add 8 units to ensure that no values are negative. The result is a scale with a mean of 8 units and a standard deviation of 2 units. A two-fold difference in expression is equivalent roughly to 1 unit on this scale. + +

    The lowest level of expression is 6.254 for ILMN_2747167 (Arhgap11a) from HEI Retina Illumina V6.2 (April 2010) RankInv **. Lowest single data about 5.842. + +

    The highest level of expression is 18.077 for ILMN_2516699 (Ubb). Highest single value is about 18.934. +

    +

    +

    Other Related Publications

    +
    +

    +

      +
    1. Geisert EE, Lu L, Freeman-Anderson NE, Templeton JP, Nassr M, Wang X, Gu W, Jiao Y, Williams RW.:Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice. Molecular Vision 2009 Aug 31;15:1730-63, (Link) +
    2. Geisert EE, Jr., Williams RW: The Mouse Eye Transcriptome: Cellular Signatures, Molecular Networks, and Candidate Genes for Human Disease. In Eye, Retina, and Visual System of the Mouse. Edited by Chalupa LM, Williams RW. Cambridge: The MIT Press; 2008:659-674 +
    3. Peirce JL, Lu L, Gu J, Silver LM, Williams RW: A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 2004, 5:7. (Link) +
    4. Templeton JP, Nassr M, Vazquez-Chona F, Freeman-Anderson NE, Orr WE, Williams RW, Geisert EE: Differential response of C57BL/6J mouse and DBA/2J mouse to optic nerve crush. BMC Neurosci. 2009, July 30;10:90.(Link) + + + +

      +

    +Other Data Sets +Users of these mouse retina data may also find the following complementary resources useful: +
      +
    1. NEIBank collection of ESTs and SAGE data. +
    2. RetNet: the Retinal Information Network--tables of genes and loci causing inherited retinal diseases +
    3. Mouse Retina SAGE Library from the Cepko laboratory. This site provides extensive developmental data from as early as embryonic day E12.5. +
    4. Digital reference of ophthalmology from Columbia provides high quality photographs of human ocular diseases, case studies, and short explanations. This reference does not have a molecular focus. + +
    5. Mouse Retinal Developmental Gene Expression data sets from the Friedlander laboratory. This site provides extensive developmental data using the Affymetrix U74 v 2 array (predecessor of the M430). + + +
    6. Data sets on differential gene expression in anatomical compartments of the human eye from Pat Brown's lab. View expression signatures for different ocular tissues using the geneXplorer 2.0. +
    +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Almost all animals are young adults between 60 and 90 days of age (Table 1, minimum age is 48 and maximum age is 118 days). We measured expression in conventional inbred strains, BXD recombinant inbred (RI) strains, and reciprocal F1s between C57BL/6J and DBA/2J. + + +

    +BXD strains:

  • The first 32 of these strains are from the Taylor series of BXD strains generated at the Jackson Laboratory by Benjamin A. Taylor. BXD1 through BXD32 were started in the late 1970s, whereas BXD33 through 42 were started in the 1990s. +

    +

  • In 2004, BXD24/TyJ developed a spontaneous mutation, rd16 which resulted in retinal degeneration and was renamed BXD24b/TyJ (BXD24 in this database). The strain, BXD24a, was cryo-recovered in 2004 from 1988 embryo stocks (F80) and does not exhibit retinal degeneration. In 2009, BXD24b was renamed BXD24/TyJ-Cep290rd16/J by JAX Labs to reflect the discovery of the genetic basis of the mutation. At the same time BXD24a was then referred to just as BXD24/TyJ by Jax Labs, but still called BXD24a in this dataset. +

    +

  • The other 36 BXD strains (BXD43 and higher) were bred by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams starting in 1997 using B6D2 generation 10 advanced intercross progeny. This modified breeding protocol doubles the number of recombinations per BXD strain and improves mapping resolution (Peirce et al. 2004). All of the Taylor series of BXD strains and many of the new BXD strains are available from the Jackson Laboratory. All of the new BXD strains (BXD43 and higher) are also available directly from Lu Lu and colleagues at the University of Tennessee Health Science Center in Memphis, TN, USA. BXD24/TyJ is now known as BXD24b/TyJ and has nearly complete retinal degeneration. BXD24a/TyJ, a 1988 F80 inbred stock that has been rederived from cryogenic storage, does not have retinal degeneration (stock number 005243) and is an ideal coisogenic control, but is not included in the HEI data set. +
  • +
    + +

    About the tissue used to generate this set of data:

    + +
    +

    Tissue preparation protocol. Animal were killed by rapid cervical dislocation. Retinas were removed immediately and placed in RNAlater at room temperature. Two retinas from one mouse were stored in a single tube. + +

    Each array was hybridized with a pool of cRNA from 2 retinas (1 mouse). Natalie Freeman-Anderson extracted RNA at UTHSC. +

    + +

    Dissecting and preparing eyes for RNA extraction +

    +

    Retinas for RNA extraction were placed in RNA STAT-60 (Tel-Test Inc.) and processed per manufacturer’s instructions (in brief form below). +Total RNA was extracted with RNA STAT-60 (Tel-Test Inc.) according to the manufacturer's instructions. Briefly we: +

      +
    • Homogenize tissue samples in the RNA STAT-60 (1 ml/50 to 100 mg tissue via syringe) +
    • Allow the homogenate to stand for 5-10 min at room temperature +
    • Add 0.2 ml of chloroform per 1 ml RNA STAT-60 +
    • Mix the sample vigorously for 15 sec and let the sample incubate at room temperature for 5-10 min +
    • Centrifuge at 12,000 g for 1 hr at 4°C +
    • Transfer the aqueous phase to a clean centrifuge tube +
    • Add 0.5 ml of isopropanol per 1 ml RNA STAT-60 +
    • Vortex and incubate the sample at -20°C for 1 hr or overnight +
    • Centrifuge at 12,000 g for 1 hr +
    • Remove the supernatant and wash the RNA pellet with 75% ethanol +
    • Remove ethanol, let air dry (5-10 min) +
    • Dissolve the pellet in 50 μl of nuclease free water. +

      +

    +

    Sample Processing: Drs. Natalie E. Freeman-Anderson and Justin P. Templeton extracted the retinas from the mice and Dr. Natalie Freeman-Anderson processed all samples in the HEI Vision Core Facility. The tissue was homogenized and extracted according to the RNA-Stat-60 protocol as described by the manufacturer (Tel-Test, Friendswood, TX) listed above. The quality and purity of RNA was assessed using an Agilent Bioanalyzer 2100 system. The RNA from each sample was processed with the Illumina TotalPrep RNA Amplification Kit (Ambion, Austin, TX) to produce labeled cRNA. The cRNA for each sample was then hybridized to an Illumina Sentrix® Mouse-6-V2 BeadChip (Illumina, San Diego, CA) +

    +

    +

    Quality control analysis of the raw image data was performed using the Illumina BeadStudio software. MIAME standards were used for all microarray data. Rank invariant normalization with BeadStudio software was used to calculate the data. Once this data was collected, the data was globally normalized across all samples using the formula 2 (z-score of log2 [intensity]) + 8. + +

    Replication, sex, and sample balance: Our goal was to obtain data for independent biological sample pools from both sexes for most lines of mice. The four batches of arrays included in this final data set, collectively represent a reasonably well-balanced sample of males and females, in general without within-strain-by-sex replication. +

    +

    Table 1: HEI Retina case IDs, including sample tube ID, strain, age, sex, and source of mice +

    +

    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Index

    +
    +

    Sample ID

    +
    +

    Strain

    +
    +

    Age

    +
    +

    Sex

    +
    +

    Source of Animal

    +
    +

    1

    +
    +

    121608_11-C57BL/6JcFA

    +
    +

    C57BL/6J

    +
    +

    69

    +
    +

    F

    +
    +

    JAX

    +
    +

    2

    +
    +

    121608_12-C57BL/6JcFB

    +
    +

    C57BL/6J

    +
    +

    69

    +
    +

    F

    +
    +

    JAX

    +
    +

    3

    +
    +

    KA7444-C57BL/6JcMC

    +
    +

    C57BL/6J

    +
    +

    97

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    4

    +
    +

    KA7444-C57BL/6JcMD

    +
    +

    C57BL/6J

    +
    +

    97

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    5

    +
    +

    31209.05-DBA2JcFA

    +
    +

    DBA2J

    +
    +

    75

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    6

    +
    +

    31209.05-DBA2JcFB

    +
    +

    DBA2J

    +
    +

    75

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    7

    +
    +

    121608_13-DBA/2JcMA

    +
    +

    DBA/2J

    +
    +

    89

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    8

    +
    +

    121608_14-DBA/2JcMB

    +
    +

    DBA/2J

    +
    +

    89

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    9

    +
    +

    KA7446-B6D2F1cFA

    +
    +

    B6D2F1

    +
    +

    92

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    10

    +
    +

    KA7446-B6D2F1cFB

    +
    +

    B6D2F1

    +
    +

    92

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    11

    +
    +

    KA7446-B6D2F1cMC

    +
    +

    B6D2F1

    +
    +

    92

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    12

    +
    +

    KA7446-B6D2F1cMD

    +
    +

    B6D2F1

    +
    +

    92

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    13

    +
    +

    KA7466-D2B6F1cFA

    +
    +

    D2B6F1

    +
    +

    70

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    14

    +
    +

    KA7466-D2B6F1cFB

    +
    +

    D2B6F1

    +
    +

    70

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    15

    +
    +

    KA7466-D2B6F1cMC

    +
    +

    D2B6F1

    +
    +

    70

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    16

    +
    +

    KA7466-D2B6F1cMD

    +
    +

    D2B6F1

    +
    +

    70

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    17

    +
    +

    82609.13-1cFA

    +
    +

    BXD01

    +
    +

    62

    +
    +

    F

    +
    +

    JAX

    +
    +

    18

    +
    +

    82609.14-1cFB

    +
    +

    BXD01

    +
    +

    62

    +
    +

    F

    +
    +

    JAX

    +
    +

    19

    +
    +

    KA7389-1cFA

    +
    +

    BXD01

    +
    +

    51

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    20

    +
    +

    KA7389-1cFB

    +
    +

    BXD01

    +
    +

    51

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    21

    +
    +

    KA7389-1cMC

    +
    +

    BXD01

    +
    +

    51

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    22

    +
    +

    KA7389-1cMD

    +
    +

    BXD01

    +
    +

    51

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    23

    +
    +

    KA7300-2cFA

    +
    +

    BXD02

    +
    +

    75

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    24

    +
    +

    KA7300-2cFB

    +
    +

    BXD02

    +
    +

    75

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    25

    +
    +

    100909.01-2cMA

    +
    +

    BXD02

    +
    +

    65

    +
    +

    M

    +
    +

    JAX

    +
    +

    26

    +
    +

    100909.02-2cMB

    +
    +

    BXD02

    +
    +

    65

    +
    +

    M

    +
    +

    JAX

    +
    +

    27

    +
    +

    KA6699-5cFA

    +
    +

    BXD05

    +
    +

    62

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    28

    +
    +

    KA6699-5cFB

    +
    +

    BXD05

    +
    +

    62

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    29

    +
    +

    KA6699-5cFC

    +
    +

    BXD05

    +
    +

    62

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    30

    +
    +

    KA6699-5cFD

    +
    +

    BXD05

    +
    +

    62

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    31

    +
    +

    82609.09-5cMA

    +
    +

    BXD05

    +
    +

    60

    +
    +

    M

    +
    +

    JAX

    +
    +

    32

    +
    +

    82609.1-5cMB

    +
    +

    BXD05

    +
    +

    60

    +
    +

    M

    +
    +

    JAX

    +
    +

    33

    +
    +

    KA6763-6cFA

    +
    +

    BXD06

    +
    +

    48

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    34

    +
    +

    KA6763-6cFB

    +
    +

    BXD06

    +
    +

    48

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    35

    +
    +

    81209.06-6cMA

    +
    +

    BXD06

    +
    +

    69

    +
    +

    M

    +
    +

    VAMC

    +
    +

    36

    +
    +

    81209.07-6cMB

    +
    +

    BXD06

    +
    +

    69

    +
    +

    M

    +
    +

    VAMC

    +
    +

    37

    +
    +

    82609.07-8cFA

    +
    +

    BXD08

    +
    +

    68

    +
    +

    F

    +
    +

    JAX

    +
    +

    38

    +
    +

    82609.08-8cFB

    +
    +

    BXD08

    +
    +

    68

    +
    +

    F

    +
    +

    JAX

    +
    +

    39

    +
    +

    JAX-8cMA

    +
    +

    BXD08

    +
    +

    76

    +
    +

    M

    +
    +

    JAX

    +
    +

    40

    +
    +

    JAX-8cMB

    +
    +

    BXD08

    +
    +

    76

    +
    +

    M

    +
    +

    JAX

    +
    +

    41

    +
    +

    KA7289-9cFA

    +
    +

    BXD09

    +
    +

    87

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    42

    +
    +

    KA7289-9cFB

    +
    +

    BXD09

    +
    +

    87

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    43

    +
    +

    KA7289-9cMC

    +
    +

    BXD09

    +
    +

    87

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    44

    +
    +

    KA7289-9cMD

    +
    +

    BXD09

    +
    +

    87

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    45

    +
    +

    JAX-11cFA

    +
    +

    BXD11

    +
    +

    84

    +
    +

    F

    +
    +

    JAX

    +
    +

    46

    +
    +

    JAX-11cFB

    +
    +

    BXD11

    +
    +

    84

    +
    +

    F

    +
    +

    JAX

    +
    +

    47

    +
    +

    JAX-11cMC

    +
    +

    BXD11

    +
    +

    71

    +
    +

    M

    +
    +

    JAX

    +
    +

    48

    +
    +

    JAX-11cMD

    +
    +

    BXD11

    +
    +

    71

    +
    +

    M

    +
    +

    JAX

    +
    +

    49

    +
    +

    40209.07-12cFA

    +
    +

    BXD12

    +
    +

    65

    +
    +

    F

    +
    +

    VAMC

    +
    +

    50

    +
    +

    40209.08-12cFB

    +
    +

    BXD12

    +
    +

    65

    +
    +

    F

    +
    +

    VAMC

    +
    +

    51

    +
    +

    011309.01-12cMA

    +
    +

    BXD12

    +
    +

    65

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    52

    +
    +

    011309.02-12cMB

    +
    +

    BXD12

    +
    +

    65

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    53

    +
    +

    KA7286-13cFA

    +
    +

    BXD13

    +
    +

    89

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    54

    +
    +

    KA7286-13cFB

    +
    +

    BXD13

    +
    +

    89

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    55

    +
    +

    KA7286-13cMC

    +
    +

    BXD13

    +
    +

    89

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    56

    +
    +

    KA7286-13cMD

    +
    +

    BXD13

    +
    +

    89

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    57

    +
    +

    KA7302-14cFA

    +
    +

    BXD14

    +
    +

    73

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    58

    +
    +

    KA7302-14cFB

    +
    +

    BXD14

    +
    +

    73

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    59

    +
    +

    100909.05-14cMA

    +
    +

    BXD14

    +
    +

    66

    +
    +

    M

    +
    +

    JAX

    +
    +

    60

    +
    +

    100909.06-14cMB

    +
    +

    BXD14

    +
    +

    66

    +
    +

    M

    +
    +

    JAX

    +
    +

    61

    +
    +

    KA7288-15cFA

    +
    +

    BXD15

    +
    +

    89

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    62

    +
    +

    KA7288-15cFB

    +
    +

    BXD15

    +
    +

    89

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    63

    +
    +

    KA7288-15cMC

    +
    +

    BXD15

    +
    +

    89

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    64

    +
    +

    KA7288-15cMD

    +
    +

    BXD15

    +
    +

    89

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    65

    +
    +

    062509.01-16cFA

    +
    +

    BXD16

    +
    +

    68

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    66

    +
    +

    KA7267-16cMA

    +
    +

    BXD16

    +
    +

    91

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    67

    +
    +

    KA7267-16cMB

    +
    +

    BXD16

    +
    +

    91

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    68

    +
    +

    KA6686-18cFB

    +
    +

    BXD18

    +
    +

    65

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    69

    +
    +

    KA6686-18cFC

    +
    +

    BXD18

    +
    +

    65

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    70

    +
    +

    KA6686-18cME

    +
    +

    BXD18

    +
    +

    65

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    71

    +
    +

    KA6686-18cMF

    +
    +

    BXD18

    +
    +

    65

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    72

    +
    +

    KA6676-19cFB

    +
    +

    BXD19

    +
    +

    63

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    73

    +
    +

    KA6676-19cFC

    +
    +

    BXD19

    +
    +

    63

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    74

    +
    +

    KA6676-19cME

    +
    +

    BXD19

    +
    +

    63

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    75

    +
    +

    KA6676-19cMF

    +
    +

    BXD19

    +
    +

    63

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    76

    +
    +

    060409.05-20cFA

    +
    +

    BXD20

    +
    +

    67

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    77

    +
    +

    060409.06-20cFB

    +
    +

    BXD20

    +
    +

    67

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    78

    +
    +

    021909.03-20cMA

    +
    +

    BXD20

    +
    +

    64

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    79

    +
    +

    021909.04-20cMB

    +
    +

    BXD20

    +
    +

    64

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    80

    +
    +

    82609.02-21cFC

    +
    +

    BXD21

    +
    +

    65

    +
    +

    F

    +
    +

    JAX

    +
    +

    81

    +
    +

    82609.03-21cFD

    +
    +

    BXD21

    +
    +

    65

    +
    +

    F

    +
    +

    JAX

    +
    +

    82

    +
    +

    121709.01-21cMA

    +
    +

    BXD21

    +
    +

    80

    +
    +

    M

    +
    +

    JAX

    +
    +

    83

    +
    +

    121709.02-21cMB

    +
    +

    BXD21

    +
    +

    80

    +
    +

    M

    +
    +

    JAX

    +
    +

    84

    +
    +

    121709.03-22cFA

    +
    +

    BXD22

    +
    +

    62

    +
    +

    F

    +
    +

    JAX

    +
    +

    85

    +
    +

    121709.04-22cFB

    +
    +

    BXD22

    +
    +

    62

    +
    +

    F

    +
    +

    JAX

    +
    +

    86

    +
    +

    092308_03-22cMA

    +
    +

    BXD22

    +
    +

    118

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    87

    +
    +

    092308_04-22cMB

    +
    +

    BXD22

    +
    +

    118

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    88

    +
    +

    80409.01-24AcFA

    +
    +

    BXD24A

    +
    +

    72

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    89

    +
    +

    080409_02_24AcFB

    +
    +

    BXD24A

    +
    +

    72

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    90

    +
    +

    82609.26-24AcFC

    +
    +

    BXD24A

    +
    +

    64

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    91

    +
    +

    81209.03-24AcMC

    +
    +

    BXD24A

    +
    +

    62

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    92

    +
    +

    KA6678-24cFA

    +
    +

    BXD24

    +
    +

    62

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    93

    +
    +

    KA6678-24cFB

    +
    +

    BXD24

    +
    +

    62

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    94

    +
    +

    KA6678-24cME

    +
    +

    BXD24

    +
    +

    62

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    95

    +
    +

    KA6678-24cMF

    +
    +

    BXD24

    +
    +

    62

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    96

    +
    +

    060409.07-27cFA

    +
    +

    BXD27

    +
    +

    63

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    97

    +
    +

    060409.08-27cFB

    +
    +

    BXD27

    +
    +

    63

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    98

    +
    +

    80409.03-27cMA

    +
    +

    BXD27

    +
    +

    74

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    99

    +
    +

    80409.04-27cMB

    +
    +

    BXD27

    +
    +

    74

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    100

    +
    +

    JAX-28cFA

    +
    +

    BXD28

    +
    +

    67

    +
    +

    F

    +
    +

    JAX

    +
    +

    101

    +
    +

    JAX-28cFB

    +
    +

    BXD28

    +
    +

    67

    +
    +

    F

    +
    +

    JAX

    +
    +

    102

    +
    +

    JAX-28cMC

    +
    +

    BXD28

    +
    +

    67

    +
    +

    M

    +
    +

    JAX

    +
    +

    103

    +
    +

    JAX-28cMD

    +
    +

    BXD28

    +
    +

    67

    +
    +

    M

    +
    +

    JAX

    +
    +

    104

    +
    +

    82609.11-29cFA

    +
    +

    BXD29

    +
    +

    66

    +
    +

    F

    +
    +

    JAX

    +
    +

    105

    +
    +

    82609.12-29cFB

    +
    +

    BXD29

    +
    +

    66

    +
    +

    F

    +
    +

    JAX

    +
    +

    106

    +
    +

    82609.04-29cMA

    +
    +

    BXD29

    +
    +

    66

    +
    +

    M

    +
    +

    JAX

    +
    +

    107

    +
    +

    82609.05-29cMB

    +
    +

    BXD29

    +
    +

    66

    +
    +

    M

    +
    +

    JAX

    +
    +

    108

    +
    +

    JAX-31cMB

    +
    +

    BXD 31

    +
    +

    56

    +
    +

    M

    +
    +

    JAX

    +
    +

    109

    +
    +

    JAX-31cFC

    +
    +

    BXD 31

    +
    +

    69

    +
    +

    F

    +
    +

    JAX

    +
    +

    110

    +
    +

    JAX-31cFD

    +
    +

    BXD 31

    +
    +

    69

    +
    +

    F

    +
    +

    JAX

    +
    +

    111

    +
    +

    011309.03-32cFA

    +
    +

    BXD32

    +
    +

    62

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    112

    +
    +

    011309.04-32cFB

    +
    +

    BXD32

    +
    +

    62

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    113

    +
    +

    KA7318-32cFC

    +
    +

    BXD32

    +
    +

    71

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    114

    +
    +

    KA7319-32cMA

    +
    +

    BXD32

    +
    +

    74

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    115

    +
    +

    KA7319-32cMB

    +
    +

    BXD32

    +
    +

    74

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    116

    +
    +

    100909.07-33cFA

    +
    +

    BXD33

    +
    +

    65

    +
    +

    F

    +
    +

    JAX

    +
    +

    117

    +
    +

    100909.08-33cFB

    +
    +

    BXD33

    +
    +

    65

    +
    +

    F

    +
    +

    JAX

    +
    +

    118

    +
    +

    022609.01-33cMA

    +
    +

    BXD33

    +
    +

    92

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    119

    +
    +

    022609.02-33cMB

    +
    +

    BXD33

    +
    +

    92

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    120

    +
    +

    KA7416-34cFA

    +
    +

    BXD34

    +
    +

    97

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    121

    +
    +

    KA7416-34cFB

    +
    +

    BXD34

    +
    +

    97

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    122

    +
    +

    KA6321-34cMA

    +
    +

    BXD34

    +
    +

    66

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    123

    +
    +

    KA6321-34cMB

    +
    +

    BXD34

    +
    +

    66

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    124

    +
    +

    060409.01-36cFA

    +
    +

    BXD36

    +
    +

    63

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    125

    +
    +

    060409.02-36cFB

    +
    +

    BXD36

    +
    +

    63

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    126

    +
    +

    060409.03-36cMC

    +
    +

    BXD36

    +
    +

    63

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    127

    +
    +

    KA6702-38cFA

    +
    +

    BXD38

    +
    +

    63

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    128

    +
    +

    KA6702-38cFB

    +
    +

    BXD38

    +
    +

    63

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    129

    +
    +

    82609.24-38cFA

    +
    +

    BXD38

    +
    +

    85

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    130

    +
    +

    82609.25-38cFB

    +
    +

    BXD38

    +
    +

    85

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    131

    +
    +

    100909.03-38cMA

    +
    +

    BXD38

    +
    +

    61

    +
    +

    M

    +
    +

    JAX

    +
    +

    132

    +
    +

    100909.04-38cMB

    +
    +

    BXD38

    +
    +

    61

    +
    +

    M

    +
    +

    JAX

    +
    +

    133

    +
    +

    022609.05-39cFA

    +
    +

    BXD39

    +
    +

    65

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    134

    +
    +

    022609.06-39cFB

    +
    +

    BXD39

    +
    +

    65

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    135

    +
    +

    31209.01-39cMC

    +
    +

    BXD39

    +
    +

    67

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    136

    +
    +

    92409.01-40cFA

    +
    +

    BXD40

    +
    +

    64

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    137

    +
    +

    92409.02-40cFB

    +
    +

    BXD40

    +
    +

    64

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    138

    +
    +

    KA6173-40cMA

    +
    +

    BXD40

    +
    +

    59

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    139

    +
    +

    KA6173-40cMB

    +
    +

    BXD40

    +
    +

    59

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    140

    +
    +

    KA6173-40cMC

    +
    +

    BXD40

    +
    +

    59

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    141

    +
    +

    091809.01-42cFA

    +
    +

    BXD42

    +
    +

    73

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    142

    +
    +

    091809.02-42cFB

    +
    +

    BXD42

    +
    +

    73

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    143

    +
    +

    021909.01-42cFA

    +
    +

    BXD42

    +
    +

    89

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    144

    +
    +

    011309.06-42cMA

    +
    +

    BXD42

    +
    +

    67

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    145

    +
    +

    011309.07-42cMB

    +
    +

    BXD42

    +
    +

    67

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    146

    +
    +

    110408_02-43cFA

    +
    +

    BXD43

    +
    +

    61

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    147

    +
    +

    110408_03-43cFB

    +
    +

    BXD43

    +
    +

    61

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    148

    +
    +

    KA6158-43cMA

    +
    +

    BXD43

    +
    +

    66

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    149

    +
    +

    KA6158-43cMB

    +
    +

    BXD43

    +
    +

    66

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    150

    +
    +

    100308_01-44cFA

    +
    +

    BXD44

    +
    +

    67

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    151

    +
    +

    102208_02-44cMD

    +
    +

    BXD44

    +
    +

    64

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    152

    +
    +

    103009.03-45cFA

    +
    +

    BXD45

    +
    +

    68

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    153

    +
    +

    103009.04-45cFB

    +
    +

    BXD45

    +
    +

    68

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    154

    +
    +

    022609.03-45cFA

    +
    +

    BXD45

    +
    +

    78

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    155

    +
    +

    022609.04-45cFB

    +
    +

    BXD45

    +
    +

    78

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    156

    +
    +

    40309.05-45cMB

    +
    +

    BXD45

    +
    +

    65

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    157

    +
    +

    40209.05-48cFB

    +
    +

    BXD48

    +
    +

    58

    +
    +

    F

    +
    +

    VAMC

    +
    +

    158

    +
    +

    40209.06-48cFC

    +
    +

    BXD48

    +
    +

    58

    +
    +

    F

    +
    +

    VAMC

    +
    +

    159

    +
    +

    81209.04-48cMA

    +
    +

    BXD48

    +
    +

    82

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    160

    +
    +

    81209.05-48cMB

    +
    +

    BXD48

    +
    +

    82

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    161

    +
    +

    81209.08-49cFA

    +
    +

    BXD49

    +
    +

    70

    +
    +

    F

    +
    +

    VAMC

    +
    +

    162

    +
    +

    81209.09-49cFB

    +
    +

    BXD49

    +
    +

    70

    +
    +

    F

    +
    +

    VAMC

    +
    +

    163

    +
    +

    40209.01-49cMA

    +
    +

    BXD49

    +
    +

    87

    +
    +

    M

    +
    +

    VAMC

    +
    +

    164

    +
    +

    40209.02-49cMB

    +
    +

    BXD49

    +
    +

    87

    +
    +

    M

    +
    +

    VAMC

    +
    +

    165

    +
    +

    40209.03-49cMC

    +
    +

    BXD49

    +
    +

    87

    +
    +

    M

    +
    +

    VAMC

    +
    +

    166

    +
    +

    KA737850cFA

    +
    +

    BXD50

    +
    +

    50

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    167

    +
    +

    KA737850cFB

    +
    +

    BXD50

    +
    +

    50

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    168

    +
    +

    121908_01-50cMA

    +
    +

    BXD50

    +
    +

    49

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    169

    +
    +

    121908_02-50cMB

    +
    +

    BXD50

    +
    +

    49

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    170

    +
    +

    111208_01-51cFA

    +
    +

    BXD51

    +
    +

    99

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    171

    +
    +

    102208_03-51cMA

    +
    +

    BXD51

    +
    +

    56

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    172

    +
    +

    102208_04-51cMB

    +
    +

    BXD51

    +
    +

    56

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    173

    +
    +

    090208_14-53BcFA

    +
    +

    BXD53B

    +
    +

    93

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    174

    +
    +

    090208_15-53BcFB

    +
    +

    BXD53B

    +
    +

    93

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    175

    +
    +

    090208_16-53BcMC

    +
    +

    BXD53B

    +
    +

    93

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    176

    +
    +

    090208_17-53BcMD

    +
    +

    BXD53B

    +
    +

    93

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    177

    +
    +

    111208_05-55cFB

    +
    +

    BXD55

    +
    +

    70

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    178

    +
    +

    KA6183-55cMA

    +
    +

    BXD55

    +
    +

    63

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    179

    +
    +

    KA6183-55cMB

    +
    +

    BXD55

    +
    +

    63

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    180

    +
    +

    KA7362-56cFB

    +
    +

    BXD 56

    +
    +

    54

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    181

    +
    +

    KA6088-56cMA

    +
    +

    BXD56

    +
    +

    87

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    182

    +
    +

    KA6088-56cMB

    +
    +

    BXD56

    +
    +

    87

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    183

    +
    +

    KA6088-56cMC

    +
    +

    BXD56

    +
    +

    87

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    184

    +
    +

    21810.01-60RFA

    +
    +

    BXD 60

    +
    +

    67

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    185

    +
    +

    21810.02-60RFB

    +
    +

    BXD 60

    +
    +

    67

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    186

    +
    +

    21810.02-60RFC

    +
    +

    BXD 60

    +
    +

    67

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    187

    +
    +

    SQ7325-60cMA

    +
    +

    BXD60

    +
    +

    85

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    188

    +
    +

    SQ7325-60cMB

    +
    +

    BXD60

    +
    +

    85

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    189

    +
    +

    092308_10-61cFA

    +
    +

    BXD61

    +
    +

    110

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    190

    +
    +

    092308_11-61cFB

    +
    +

    BXD61

    +
    +

    110

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    191

    +
    +

    31909.01-61cMA

    +
    +

    BXD61

    +
    +

    67

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    192

    +
    +

    31909.02-61cMB

    +
    +

    BXD61

    +
    +

    67

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    193

    +
    +

    KA7462-62cFA

    +
    +

    BXD62

    +
    +

    76

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    194

    +
    +

    KA7462-62cFB

    +
    +

    BXD62

    +
    +

    76

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    195

    +
    +

    KA5996-62cMA

    +
    +

    BXD62

    +
    +

    113

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    196

    +
    +

    KA5996-62cMB

    +
    +

    BXD62

    +
    +

    113

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    197

    +
    +

    KA5996-62cMC

    +
    +

    BXD62

    +
    +

    113

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    198

    +
    +

    090309.01-63cFA

    +
    +

    BXD63

    +
    +

    69

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    199

    +
    +

    090309.02-63cFB

    +
    +

    BXD63

    +
    +

    69

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    200

    +
    +

    110609.01-63cMA

    +
    +

    BXD63

    +
    +

    66

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    201

    +
    +

    110609.02-63cMB

    +
    +

    BXD63

    +
    +

    66

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    202

    +
    +

    091809.03-65cFA

    +
    +

    BXD65

    +
    +

    65

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    203

    +
    +

    091809.04-65cFB

    +
    +

    BXD65

    +
    +

    65

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    204

    +
    +

    103009.01-65cMA

    +
    +

    BXD65

    +
    +

    74

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    205

    +
    +

    103009.02-65cMB

    +
    +

    BXD65

    +
    +

    74

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    206

    +
    +

    110408_05-66cFB

    +
    +

    BXD66

    +
    +

    59

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    207

    +
    +

    KA7165-66cMA

    +
    +

    BXD66

    +
    +

    95

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    208

    +
    +

    KA7165-66cMB

    +
    +

    BXD66

    +
    +

    95

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    209

    +
    +

    90809.01-67cMA

    +
    +

    BXD67

    +
    +

    61

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    210

    +
    +

    90809.02-67cMB

    +
    +

    BXD67

    +
    +

    61

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    211

    +
    +

    110609.03-67cFA

    +
    +

    BXD67

    +
    +

    68

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    212

    +
    +

    110609.04-67cFB

    +
    +

    BXD67

    +
    +

    68

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    213

    +
    +

    120408_01-68cFA

    +
    +

    BXD68

    +
    +

    67

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    214

    +
    +

    120408_02-68cFB

    +
    +

    BXD68

    +
    +

    67

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    215

    +
    +

    SQ7205-68cMA

    +
    +

    BXD68

    +
    +

    87

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    216

    +
    +

    SQ7205-68cMB

    +
    +

    BXD68

    +
    +

    87

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    217

    +
    +

    KA6316-68cMA

    +
    +

    BXD68

    +
    +

    76

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    218

    +
    +

    KA6316-68cMB

    +
    +

    BXD68

    +
    +

    76

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    219

    +
    +

    KA6316-68cMC

    +
    +

    BXD68

    +
    +

    76

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    220

    +
    +

    KA76-69cFA

    +
    +

    BXD69

    +
    +

    48

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    221

    +
    +

    KA76-69cFB

    +
    +

    BXD69

    +
    +

    48

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    222

    +
    +

    KA6074-69cMA

    +
    +

    BXD69

    +
    +

    90

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    223

    +
    +

    KA6074-69cMB

    +
    +

    BXD69

    +
    +

    90

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    224

    +
    +

    121608_01-70cFA

    +
    +

    BXD70

    +
    +

    80

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    225

    +
    +

    121608_02-70cFB

    +
    +

    BXD70

    +
    +

    80

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    226

    +
    +

    KA7394-70cMA

    +
    +

    BXD70

    +
    +

    51

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    227

    +
    +

    81209.08-70cMA

    +
    +

    BXD70

    +
    +

    71

    +
    +

    M

    +
    +

    VAMC

    +
    +

    228

    +
    +

    81209.09-70cMB

    +
    +

    BXD70

    +
    +

    71

    +
    +

    M

    +
    +

    VAMC

    +
    +

    229

    +
    +

    052809.01-71cFA

    +
    +

    BXD71

    +
    +

    70

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    230

    +
    +

    060409.09-71cMA

    +
    +

    BXD71

    +
    +

    62

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    231

    +
    +

    060409.10-71cMB

    +
    +

    BXD71

    +
    +

    62

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    232

    +
    +

    40809.01-73cFA

    +
    +

    BXD73

    +
    +

    83

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    233

    +
    +

    40809.02-73cFB

    +
    +

    BXD73

    +
    +

    83

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    234

    +
    +

    111708_01-73cFA

    +
    +

    BXD73

    +
    +

    55

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    235

    +
    +

    111708_01-73cFB

    +
    +

    BXD73

    +
    +

    55

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    236

    +
    +

    KA6164-73cMB

    +
    +

    BXD73

    +
    +

    59

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    237

    +
    +

    KA6164-73cMC

    +
    +

    BXD73

    +
    +

    59

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    238

    +
    +

    82609.22-74cFA

    +
    +

    BXD74

    +
    +

    68

    +
    +

    F

    +
    +

    VAMC

    +
    +

    239

    +
    +

    82609.23-74cFB

    +
    +

    BXD74

    +
    +

    68

    +
    +

    F

    +
    +

    VAMC

    +
    +

    240

    +
    +

    82609.20-74cMA

    +
    +

    BXD74

    +
    +

    68

    +
    +

    M

    +
    +

    VAMC

    +
    +

    241

    +
    +

    82609.21-74cMB

    +
    +

    BXD74

    +
    +

    68

    +
    +

    M

    +
    +

    VAMC

    +
    +

    242

    +
    +

    KA733675cFA

    +
    +

    BXD75

    +
    +

    59

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    243

    +
    +

    KA733675cFB

    +
    +

    BXD75

    +
    +

    59

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    244

    +
    +

    KA38-75cMB

    +
    +

    BXD75

    +
    +

    62

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    245

    +
    +

    KA38-75cMC

    +
    +

    BXD75

    +
    +

    62

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    246

    +
    +

    41509.01-77cFA

    +
    +

    BXD77

    +
    +

    70

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    247

    +
    +

    41509.02-77cFB

    +
    +

    BXD77

    +
    +

    70

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    248

    +
    +

    41509.03-77cMC

    +
    +

    BXD77

    +
    +

    70

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    249

    +
    +

    41509.04-77cMD

    +
    +

    BXD77

    +
    +

    70

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    250

    +
    +

    121608_03-80cFA

    +
    +

    BXD80

    +
    +

    77

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    251

    +
    +

    121608_05-80cMC

    +
    +

    BXD80

    +
    +

    70

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    252

    +
    +

    KA23-80cMC

    +
    +

    BXD80

    +
    +

    77

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    253

    +
    +

    KA7305-81cFA

    +
    +

    BXD81

    +
    +

    51

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    254

    +
    +

    KA7305-81cFB

    +
    +

    BXD81

    +
    +

    51

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    255

    +
    +

    KA7305-81cMD

    +
    +

    BXD81

    +
    +

    51

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    256

    +
    +

    060409.11-83cFA

    +
    +

    BXD83

    +
    +

    65

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    257

    +
    +

    KA24-83cFA

    +
    +

    BXD83

    +
    +

    78

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    258

    +
    +

    121608_07-83cMA

    +
    +

    BXD83

    +
    +

    78

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    259

    +
    +

    121608_08-83cMB

    +
    +

    BXD83

    +
    +

    78

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    260

    +
    +

    KA24-83cMD

    +
    +

    BXD83

    +
    +

    78

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    261

    +
    +

    090409.05-84cFA

    +
    +

    BXD84

    +
    +

    65

    +
    +

    F

    +
    +

    VAMC

    +
    +

    262

    +
    +

    090409.06-84cFB

    +
    +

    BXD84

    +
    +

    65

    +
    +

    F

    +
    +

    VAMC

    +
    +

    263

    +
    +

    KA6203-84cMA

    +
    +

    BXD84

    +
    +

    59

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    264

    +
    +

    KA6203-84cMB

    +
    +

    BXD84

    +
    +

    59

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    265

    +
    +

    40309.02-85cFD

    +
    +

    BXD85

    +
    +

    58

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    266

    +
    +

    40309.03-85cFE

    +
    +

    BXD85

    +
    +

    58

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    267

    +
    +

    32609.01-85cMA

    +
    +

    BXD85

    +
    +

    67

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    268

    +
    +

    32609.02-85cMB

    +
    +

    BXD85

    +
    +

    67

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    269

    +
    +

    41509.05-86cFA

    +
    +

    BXD86

    +
    +

    73

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    270

    +
    +

    41509.06-86cFB

    +
    +

    BXD86

    +
    +

    73

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    271

    +
    +

    KA6101-86cMA

    +
    +

    BXD86

    +
    +

    82

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    272

    +
    +

    KA6101-86cMC

    +
    +

    BXD86

    +
    +

    82

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    273

    +
    +

    070909.02-87cFA

    +
    +

    BXD87

    +
    +

    86

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    274

    +
    +

    070909.03-87cFB

    +
    +

    BXD87

    +
    +

    86

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    275

    +
    +

    KA7407-87cMA

    +
    +

    BXD87

    +
    +

    113

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    276

    +
    +

    KA7407-87cMB

    +
    +

    BXD87

    +
    +

    113

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    277

    +
    +

    102208_05-89cFA

    +
    +

    BXD89

    +
    +

    82

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    278

    +
    +

    KA5974-89cMA

    +
    +

    BXD89

    +
    +

    113

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    279

    +
    +

    KA5974-89cMB

    +
    +

    BXD89

    +
    +

    113

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    280

    +
    +

    102208_06-89cMC

    +
    +

    BXD89

    +
    +

    82

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    281

    +
    +

    72309.01-90cFA

    +
    +

    BXD90

    +
    +

    67

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    282

    +
    +

    72309.02-90cFB

    +
    +

    BXD90

    +
    +

    67

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    283

    +
    +

    090409.03-90cMA

    +
    +

    BXD90

    +
    +

    64

    +
    +

    M

    +
    +

    VAMC

    +
    +

    284

    +
    +

    090409.04-90cMB

    +
    +

    BXD90

    +
    +

    64

    +
    +

    M

    +
    +

    VAMC

    +
    +

    285

    +
    +

    KA6094-92cMA

    +
    +

    BXD92

    +
    +

    85

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    286

    +
    +

    020609.01-95cFA

    +
    +

    BXD95

    +
    +

    71

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    287

    +
    +

    020609.02-95cFB

    +
    +

    BXD95

    +
    +

    71

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    288

    +
    +

    KA6181-95cMA

    +
    +

    BXD95

    +
    +

    61

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    289

    +
    +

    KA6181-95cMB

    +
    +

    BXD95

    +
    +

    61

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    290

    +
    +

    31209.03-96cFA

    +
    +

    BXD96

    +
    +

    62

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    291

    +
    +

    31209.04-96cFB

    +
    +

    BXD96

    +
    +

    62

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    292

    +
    +

    KA7246-96cMA

    +
    +

    BXD96

    +
    +

    73

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    293

    +
    +

    KA7246-96cMB

    +
    +

    BXD96

    +
    +

    73

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    294

    +
    +

    81209.10-97cFA

    +
    +

    BXD97

    +
    +

    83

    +
    +

    F

    +
    +

    VAMC

    +
    +

    295

    +
    +

    81209.11-97cFB

    +
    +

    BXD97

    +
    +

    83

    +
    +

    F

    +
    +

    VAMC

    +
    +

    296

    +
    +

    81209.1-97cMA

    +
    +

    BXD97

    +
    +

    83

    +
    +

    M

    +
    +

    VAMC

    +
    +

    297

    +
    +

    81209.11-97cMB

    +
    +

    BXD97

    +
    +

    83

    +
    +

    M

    +
    +

    VAMC

    +
    +

    298

    +
    +

    SQ7520-98cFA

    +
    +

    BXD98

    +
    +

    59

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    299

    +
    +

    SQ7520-98cFB

    +
    +

    BXD98

    +
    +

    59

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    300

    +
    +

    SQ7520-98cMC

    +
    +

    BXD98

    +
    +

    59

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    301

    +
    +

    SQ7520-98cMD

    +
    +

    BXD98

    +
    +

    59

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    302

    +
    +

    82609.17-99cFA

    +
    +

    BXD99

    +
    +

    64

    +
    +

    F

    +
    +

    VAMC

    +
    +

    303

    +
    +

    82609.18-99cFB

    +
    +

    BXD99

    +
    +

    64

    +
    +

    F

    +
    +

    VAMC

    +
    +

    304

    +
    +

    81409.01-99cMA

    +
    +

    BXD99

    +
    +

    66

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    305

    +
    +

    81409.02-99cMB

    +
    +

    BXD99

    +
    +

    66

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    306

    +
    +

    121608_09-100cFA

    +
    +

    BXD100

    +
    +

    81

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    307

    +
    +

    121608_10-100cFB

    +
    +

    BXD100

    +
    +

    81

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    308

    +
    +

    KA6001-100cMA

    +
    +

    BXD100

    +
    +

    111

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    309

    +
    +

    KA6001-100cMB

    +
    +

    BXD100

    +
    +

    111

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    310

    +
    +

    81209.12-101cFA

    +
    +

    BXD101

    +
    +

    72

    +
    +

    F

    +
    +

    VAMC

    +
    +

    311

    +
    +

    81209.13-101cFB

    +
    +

    BXD101

    +
    +

    72

    +
    +

    F

    +
    +

    VAMC

    +
    +

    312

    +
    +

    KA7296-101cMA

    +
    +

    BXD101

    +
    +

    75

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    313

    +
    +

    KA7296-101cMB

    +
    +

    BXD101

    +
    +

    75

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    314

    +
    +

    92409.03-102cFA

    +
    +

    BXD102

    +
    +

    71

    +
    +

    F

    +
    +

    VAMC

    +
    +

    315

    +
    +

    92409.04-102cFB

    +
    +

    BXD102

    +
    +

    71

    +
    +

    F

    +
    +

    VAMC

    +
    +

    316

    +
    +

    KA7380-102cMA

    +
    +

    BXD102

    +
    +

    115

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    317

    +
    +

    43009.01-103cFA

    +
    +

    BXD103

    +
    +

    68

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    318

    +
    +

    43009.02-103cFB

    +
    +

    BXD103

    +
    +

    68

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    319

    +
    +

    KA79-103cFA

    +
    +

    BXD103

    +
    +

    48

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    320

    +
    +

    KA79-103cFB

    +
    +

    BXD103

    +
    +

    48

    +
    +

    F

    +
    +

    UTHSC + RW

    +
    +

    321

    +
    +

    KA79-103cMC

    +
    +

    BXD103

    +
    +

    48

    +
    +

    M

    +
    +

    UTHSC + RW

    +
    +

    322

    +
    +

    82609.15-103cMA

    +
    +

    BXD103

    +
    +

    69

    +
    +

    M

    +
    +

    VAMC

    +
    +

    323

    +
    +

    82609.16-103cMB

    +
    +

    BXD103

    +
    +

    69

    +
    +

    M

    +
    +

    VAMC

    +
    +

    324

    +
    +

    102909.01-BALBCcFA

    +
    +

    BALB/cByJ

    +
    +

    78

    +
    +

    F

    +
    +

    JAX

    +
    +

    325

    +
    +

    102909.02-BALBCcFB

    +
    +

    BALB/cByJ

    +
    +

    78

    +
    +

    F

    +
    +

    JAX

    +
    +

    326

    +
    +

    102909.03-BALBCcMA

    +
    +

    BALB/cByJ

    +
    +

    78

    +
    +

    M

    +
    +

    JAX

    +
    +

    327

    +
    +

    102909.04-BALBCcMB

    +
    +

    BALB/cByJ

    +
    +

    78

    +
    +

    M

    +
    +

    JAX

    +
    + + + + + +

    + +

    About downloading this data set:

    +
    + + + + + + +

    This data set is available as a bulk download in several formats. The data are available as either strain means or the individual arrays. Due to the involved normalization procedures required to correct for batch effects we strongly recommend not using the raw CEL files without special statistical procedures.

    +
    + + +

    About the array platform:

    +
    +

    Illumina MouseWG-6 v2.0 arrays: The Illumina Sentrix Mouse-6 BeadChip uses 50-nucleotide probes to interrogate approximately 46,000 sequences from the mouse transcriptome. For each array, the RNA was pooled from two retinas.

    + +
    +

    +

    About data values and data processing:

    + +
    +Values of all 45,281 probe sets in this data set range from a low of 6.25 (Rho GTPase activating protein 11A, Arhgap11a, probe ID ILMN_2747167) to a high of 18.08 (Ubiquitin B, Ubb, probe ID ILMN_2516699). This corresponds to 11.83 units or a 1 to 3641 dynamic range of expression (2^11.83). We normalized raw signal values using Beadstudio’s rank invariant normalization algorithm. BXD62 was the strain used as the control group + +
    + +

    Normalization:

    +

    All normalization was performed by William E. Orr in the HEI Vision Core Facility +

      + +
    1. Computed the log base 2 of each raw signal value +
    2. Calculated the mean and standard Deviation of each Mouse WG-6 v2.0 array +
    3. Normalized each array using the formula, 2 (z-score of log2 [intensity]) +The result is to produce arrays that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. +
    4. computed the mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. +
    + +

    Funding Support for the HEI Retina Dataset:

    +
    +

    The HEI Retinal Database is supported by National Eye Institute Grants: +

  • R01EY017841 (Dr. Eldon E. Geisert, PI) +

  • P030EY13080 (NEI Vision Core Grant), and +

  • A Unrestricted Grand from Research to Prevent Blindness (Dr. Barrett Haik, PI) + +
  • + + + +

    Information about this text file:

    +
    +

    Dataset was uploaded to GeneNetwork by Arthur Centeno and Xiaodong Zhou, April 7, 2010. This text file was generated by Justin P. Templeton April 2010 from a previous version by RWW and EEG. +

    +
    + + +

    +

    +

    +

    References

    +
    Rogojina AT, Orr WE, Song BK, Geisert EE, Jr.: Comparing the use of Affymetrix to spotted oligonucleotide microarrays using two retinal pigment epithelium cell lines. Molecular vision 2003, 9:482-496.(Link) +

    Vazquez-Chona F, Song BK, Geisert EE, Jr.: Temporal changes in gene expression after injury in the rat retina. Investigative ophthalmology & visual science 2004, 45(8):2737-2746.(Link) + +

    + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series No GEO series number +

    Status Private on April, 2010 +

    Organism(s) Mus musculus +

    Experiment type Expression profiling by array + +

    Overall design We used pooled RNA samples of retinas, usually two independent pools--two male, two female pool--for most lines of mice. + +

    Contributor(s) Eldon E. Geisert, Lu Lu, Natalie E. Freeman-Anderson, Justin P. Templeton, Robert W. Williams + + +

    +
    Submission date Not yet submitted to GEO. +
    Contact name Eldon E. Geisert +
    E-mails EGeisert@uthsc.edu +
    Phone 901-448-7740 +
    FAX 901-448-5028 +
    URL GeneNetwork BXD HEI RETINA +
    Organization name University of Tennessee Health Science Center +
    Department(s) Department of Ophthalmology +
    Laboratory(s) Geisert, Lu, Wiliams Labs +
    Street address 930 Madison Avenue +
    City Memphis +
    State/province TN +
    ZIP/Postal code 38163 +
    Country USA + + +

    Platforms (1) GPLXXXX Illumina Mouse Whole Genome 6 version 2.0 + + + + + + + + + + + + + + + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + + diff --git a/web/dbdoc/IoP_SPL_RMA_0509.html b/web/dbdoc/IoP_SPL_RMA_0509.html new file mode 100755 index 00000000..c9696221 --- /dev/null +++ b/web/dbdoc/IoP_SPL_RMA_0509.html @@ -0,0 +1,99 @@ + +IoP Affy MOE 430v2 Spleen (May09) RMA + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    IoP Affy MOE 430v2 Spleen (May09) RMA
    Accession number: GN227 + modify this page

    + +
    +

    Summary:

    +

    Spleen mRNA expression levels are measured for 77 individual BXD RI mice from 24 different strains. The expressed gene set were characterised using the Affymetrix Mouse430_2.0 GeneChip which encompass over 34,000 known genes.

    +

    Animals and Tissue Used to Generate This Set of Data:

    +

    Female BXD mice were harvested between 8 and 12 weeks of age. The oestrus cycle of each mouse was determined by observing the status of the cells obtained from a vaginal swab by light microscopy. Mice were culled by cervical dislocation; the brain and spleen were harvested immediately and snap frozen on dry ice. Tissues were subsequently stored at -80°C. Individual mice were identified by strain, age and cage number and were assigned a unique sample identifier number at this stage.

    +

    RNA Extraction:

    +

    The spleens (average weight 0.1g) were homogenised individually in 1ml of TRIzol reagent per 100mg of tissue using a polytron homogenizer and a glass pestle and mortar. The polytron homogenizer was found to most quickly and efficiently disrupt the tough splenic tissue, giving rise to moderate yields of RNA of good quality with little contamination. + +Homogenates were chloroform extracted using 0.2ml of chloroform per 1ml of TRIzol. These were shaken vigorously by hand and separated with the aid of phase lock heavy tubes. 0.5ml of isopropanol per 1ml of TRIzol was added to retained aqueous phase at room temperature. This was then centrifuged at 4,000 x g for 30 minutes at 2-8°C. The pellet was washed with at least 1ml of 75% ethanol per 1ml of TRIzol used, and mixed by vortexing until the pellet came loose from the tube wall. This was then centrifuged at 4,000 x g for 10 minutes at 2-8°C. The pellet was air dried, dissolved in 100μl of RNase-free water and incubated at 55-60°C for 10 minutes. The RNA sample purity and concentration was determined by gel electrophoresis and spectrophotometry +

    +

    About the array platform:

    +

    The Affymetrix microarrays used in this investigation were the GeneChip ® Mouse Genome 430 2.0 Array which enables genome-wide expression analysis on a single array. These probe arrays contain over 45,000 probe sets which analyse the expression of over 39,000 transcripts and variants from over 34,000 well characterized mouse genes. Multiple probe pairs per probe set provide several independent measurements for every transcript, increasing accuracy and reproducibility. The probe sets were selected from sequences derived from GenBank®, dbEST, and RefSeq. The sequence clusters were created from the UniGene database and then refined by analysis and comparison with the publicly available draft assembly of the mouse genome from the Whitehead Institute Centre for genome Research.

    + +

    eQTL Statistics:

    This data set generates eQTLs with peak LRS scores of about 80 (see 1458092_at, Gene Symbol: Ap3m1). This is an impressive value given the sample size consists of only 23 BXD strains. A total of 194 probe sets are associated with LOD > 10 or LRS >46. + + +

    Researchers:

    +

    Sarah Lawn under the supervision of Cathy Fernandes, Leo Schalkwyk and Steve Whatley.

    +

    Publications:

    +

    Davies, M.N., Lawn, S., Whatley, S., Fernandes, C., Williams, R.W., Schalkwyk, L.C. (2009). , Is blood a reasonable surrogate for brain in gene expression studies? Frontiers in Neurogenomics.

    +
    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/JAX_CSB_L_0711.html b/web/dbdoc/JAX_CSB_L_0711.html new file mode 100755 index 00000000..a800a1a6 --- /dev/null +++ b/web/dbdoc/JAX_CSB_L_0711.html @@ -0,0 +1,373 @@ + + + +JAX Liver Affy M430 2.0 (Jul11) MDP + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    JAX Liver Affy M430 2.0 (Jul11) MDPmodify this page

    + + Accession number: GN357

    +
    +

    Summary:

    +

    High-fat diets are associated with increased obesity and metabolic disease in mice and humans. Here we used analysis of variance (ANOVA) to scrutinize a microarray data set consisting of 10 inbred strains of mice from both sexes fed atherogenic high-fat and control chow diets. An overall F-test was applied to the 40 unique groups of strain-diet-sex to identify 15,288 genes with altered transcription. Bootstrapping k-means clustering separated these changes into four strain-dependent expression patterns, including two sex-related profiles and two diet-related profiles. Sex-induced effects correspond to secretion (males) or fat and energy metabolism (females), whereas diet-induced changes relate to neurological processes (chow) or immune response (high-fat). The full set of pairwise contrasts for differences between strains within sex (90 different statistical tests) uncovered 32,379 total changes. These differences were unevenly distributed across strains and between sexes, indicating that strain-specific responses to high-fat diet differ between sexes. Correlations between expression levels and 8 obesity-related traits identified 5,274 associations between transcript abundance and measured phenotypic endpoints. From this number, 2,678 genes are positively correlated with total cholesterol levels and associate with immune-related categories while 2,596 genes are negatively correlated with cholesterol and connect to cholesterol synthesis. +Keywords: gene expression analysis, strain comparision, effect of dietary fat, sex-specific effects.

    +

    Overall Design:

    +

    One group of mice was fed an atherogenic high-fat (30% fat) diet containing cholic acid to increase fat uptake and another was fed a low-fat (6% fat) regular chow diet. Males and females from both diets were studied for mouse strains 129S1/SvImJ, A/J, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, I/LnJ, MRL/MpJ-Tnfrsf6lpr/J, NZB/BINJ, PERA/Ei, and SM/J. All strains were sacrificed between 11- and 13 weeks of age except for CAST and PERA, which were harvested after 50 weeks of age. CAST and PERA were subsequently removed from our analysis based on discrepant harvest age, but can be found in our database (see below). Three replicate animals were used for each combination of diet, strain, and sex, resulting in a total of 120 mice surveyed for gene expression.

    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrain IDHF=high-fat (30% fat)
    6C=low-fat (6% fat)
    Replicate Animal
    1GSM264767129S1/SvImJ6CRep1
    2GSM264768129S1/SvImJ6CRep2
    3GSM264769129S1/SvImJ6CRep3
    4GSM264770129S1/SvImJHFRep1
    5GSM264771129S1/SvImJHFRep2
    6GSM264772129S1/SvImJHFRep3
    7GSM264773129S1/SvImJ6CRep1
    8GSM264774129S1/SvImJ6CRep2
    9GSM264775129S1/SvImJ6CRep3
    10GSM264776129S1/SvImJHFRep1
    11GSM264777129S1/SvImJHFRep2
    12GSM264778129S1/SvImJHFRep3
    13GSM264779A/J6CRep1
    14GSM264780A/J6CRep2
    15GSM264781A/J6CRep3
    16GSM264782A/JHFRep1
    17GSM264783A/JHFRep2
    18GSM264784A/JHFRep3
    19GSM264785A/J6CRep1
    20GSM264786A/J6CRep2
    21GSM264787A/J6CRep3
    22GSM264788A/JHFRep1
    23GSM264789A/JHFRep2
    24GSM264790A/JHFRep3
    25GSM264791C57BL/6J6CRep1
    26GSM264792C57BL/6J6CRep2
    27GSM264793C57BL/6J6CRep3
    28GSM264794C57BL/6JHFRep1
    29GSM264795C57BL/6JHFRep2
    30GSM264796C57BL/6JHFRep3
    31GSM264797C57BL/6J6CRep1
    32GSM264798C57BL/6J6CRep2
    33GSM264799C57BL/6J6CRep3
    34GSM264800C57BL/6JHFRep1
    35GSM264801C57BL/6JHFRep2
    36GSM264802C57BL/6JHFRep3
    37GSM264803BALB/cJ6CRep1
    38GSM264804BALB/cJ6CRep2
    39GSM264805BALB/cJ6CRep3
    40GSM264806BALB/cJHFRep1
    41GSM264807BALB/cJHFRep2
    42GSM264808BALB/cJHFRep3
    43GSM264809BALB/cJ6CRep1
    44GSM264810BALB/cJ6CRep2
    45GSM264811BALB/cJ6CRep3
    46GSM264813BALB/cJHFRep1
    47GSM264814BALB/cJHFRep2
    48GSM264815BALB/cJHFRep3
    49GSM264845C3H/HeJ6CRep1
    50GSM264846C3H/HeJ6CRep2
    51GSM264847C3H/HeJ6CRep3
    52GSM264848C3H/HeJHFRep1
    53GSM264849C3H/HeJHFRep2
    54GSM264850C3H/HeJHFRep3
    55GSM264852C3H/HeJ6CRep1
    56GSM264853C3H/HeJ6CRep2
    57GSM264855C3H/HeJ6CRep3
    58GSM264856C3H/HeJHFRep1
    59GSM264857C3H/HeJHFRep2
    60GSM264858C3H/HeJHFRep3
    61GSM264859CAST/EiJ6CRep1
    62GSM264861CAST/EiJ6CRep2
    63GSM264862CAST/EiJ6CRep3
    64GSM264863CAST/EiJHFRep1
    65GSM264864CAST/EiJHFRep2
    66GSM264865CAST/EiJHFRep3
    67GSM264866CAST/EiJ6CRep1
    68GSM264867CAST/EiJ6CRep2
    69GSM264868CAST/EiJ6CRep3
    70GSM264869CAST/EiJHFRep1
    71GSM264870CAST/EiJHFRep2
    72GSM264871CAST/EiJHFRep3
    73GSM264872DBA/2J6CRep1
    74GSM264873DBA/2J6CRep2
    75GSM264874DBA/2J6CRep3
    76GSM264875DBA/2JHFRep1
    77GSM264876DBA/2JHFRep2
    78GSM264877DBA/2JHFRep3
    79GSM264890DBA/2J6CRep1
    80GSM264891DBA/2J6CRep2
    81GSM264892DBA/2J6CRep3
    82GSM264893DBA/2JHFRep1
    83GSM264894DBA/2JHFRep2
    84GSM264895DBA/2JHFRep3
    85GSM264896I/LnJ6CRep1
    86GSM264897I/LnJ6CRep2
    87GSM264898I/LnJ6CRep3
    88GSM264899I/LnJHFRep1
    89GSM264900I/LnJHFRep2
    90GSM264901I/LnJHFRep3
    91GSM264902I/LnJ6CRep1
    92GSM264903I/LnJ6CRep2
    93GSM264904I/LnJ6CRep3
    94GSM264905I/LnJHFRep1
    95GSM264906I/LnJHFRep2
    96GSM264907I/LnJHFRep3
    97GSM264908MRL/MpJ-Fas/J6CRep1
    98GSM264909MRL/MpJ-Fas/J6CRep2
    99GSM264910MRL/MpJ-Fas/J6CRep3
    100GSM264912MRL/MpJ-Fas/JHFRep1
    101GSM264913MRL/MpJ-Fas/JHFRep2
    102GSM264914MRL/MpJ-Fas/JHFRep3
    103GSM264915MRL/MpJ-Fas/J6CRep1
    104GSM264916MRL/MpJ-Fas/J6CRep2
    105GSM264917MRL/MpJ-Fas/J6CRep3
    106GSM264918MRL/MpJ-Fas/JHFRep1
    107GSM264920MRL/MpJ-Fas/JHFRep2
    108GSM264921MRL/MpJ-Fas/JHFRep3
    109GSM264922NZB/BlNJ6CRep1
    110GSM264924NZB/BlNJ6CRep2
    111GSM264925NZB/BlNJ6CRep3
    112GSM264926NZB/BlNJHFRep1
    113GSM264928NZB/BlNJHFRep2
    114GSM264929NZB/BlNJHFRep3
    115GSM264930NZB/BlNJ6CRep1
    116GSM264931NZB/BlNJ6CRep2
    117GSM264932NZB/BlNJ6CRep3
    118GSM264933NZB/BlNJHFRep1
    119GSM264935NZB/BlNJHFRep2
    120GSM264936NZB/BlNJHFRep3
    121GSM265061PERA/EiJ6CRep1
    122GSM265062PERA/EiJ6CRep2
    123GSM265063PERA/EiJ6CRep3
    124GSM265064PERA/EiJHFRep1
    125GSM265065PERA/EiJHFRep2
    126GSM265066PERA/EiJHFRep3
    127GSM265067PERA/EiJ6CRep1
    128GSM265068PERA/EiJ6CRep2
    129GSM265069PERA/EiJ6CRep3
    130GSM265070PERA/EiJHFRep1
    131GSM265071PERA/EiJHFRep2
    132GSM265072PERA/EiJHFRep3
    133GSM265074SM/J6CRep1
    134GSM265075SM/J6CRep2
    135GSM265105SM/J6CRep3
    136GSM265217SM/JHFRep1
    137GSM265248SM/JHFRep2
    138GSM265275SM/JHFRep3
    139GSM265324SM/J6CRep1
    140GSM265331SM/J6CRep2
    141GSM265357SM/J6CRep3
    142GSM265358SM/JHFRep1
    143GSM265359SM/JHFRep2
    144GSM265360SM/JHFRep3
    +
    + + +

    Citations:

    +

    +

    Burgess-Herbert SL, Cox A, Tsaih SW, Paigen B. Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci. Genetics 2008 Dec;180(4):2227-35. PMID: 18845850 +Shockley KR, Witmer D, Burgess-Herbert SL, Paigen B et al. Effects of atherogenic diet on hepatic gene expression across mouse strains. Physiol Genomics 2009 Nov 6;39(3):172-82. PMID: 19671657

    +

    Data Source Acknowledgements:

    +

    +

    Churchill GA, Paigen B, Shockley KR, Witmer D

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/JAX_CSB_L_6C_0711.html b/web/dbdoc/JAX_CSB_L_6C_0711.html new file mode 100755 index 00000000..643c1233 --- /dev/null +++ b/web/dbdoc/JAX_CSB_L_6C_0711.html @@ -0,0 +1,371 @@ + + + +JAX Liver 6C Affy M430 2.0 (Jul11) MDP + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    JAX Liver 6C Affy M430 2.0 (Jul11) MDPmodify this page

    + + Accession number: GN359

    +
    +

    Summary:

    +

    High-fat diets are associated with increased obesity and metabolic disease in mice and humans. Here we used analysis of variance (ANOVA) to scrutinize a microarray data set consisting of 10 inbred strains of mice from both sexes fed atherogenic high-fat and control chow diets. An overall F-test was applied to the 40 unique groups of strain-diet-sex to identify 15,288 genes with altered transcription. Bootstrapping k-means clustering separated these changes into four strain-dependent expression patterns, including two sex-related profiles and two diet-related profiles. Sex-induced effects correspond to secretion (males) or fat and energy metabolism (females), whereas diet-induced changes relate to neurological processes (chow) or immune response (high-fat). The full set of pairwise contrasts for differences between strains within sex (90 different statistical tests) uncovered 32,379 total changes. These differences were unevenly distributed across strains and between sexes, indicating that strain-specific responses to high-fat diet differ between sexes. Correlations between expression levels and 8 obesity-related traits identified 5,274 associations between transcript abundance and measured phenotypic endpoints. From this number, 2,678 genes are positively correlated with total cholesterol levels and associate with immune-related categories while 2,596 genes are negatively correlated with cholesterol and connect to cholesterol synthesis. +Keywords: gene expression analysis, strain comparision, effect of dietary fat, sex-specific effects.

    +

    Overall Design:

    +

    One group of mice was fed an atherogenic high-fat (30% fat) diet containing cholic acid to increase fat uptake and another was fed a low-fat (6% fat) regular chow diet. Males and females from both diets were studied for mouse strains 129S1/SvImJ, A/J, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, I/LnJ, MRL/MpJ-Tnfrsf6lpr/J, NZB/BINJ, PERA/Ei, and SM/J. All strains were sacrificed between 11- and 13 weeks of age except for CAST and PERA, which were harvested after 50 weeks of age. CAST and PERA were subsequently removed from our analysis based on discrepant harvest age, but can be found in our database (see below). Three replicate animals were used for each combination of diet, strain, and sex, resulting in a total of 120 mice surveyed for gene expression.

    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrain IDHF=high-fat (30% fat)
    6C=low-fat (6% fat)
    Replicate Animal
    1GSM264767129S1/SvImJ6CRep1
    2GSM264768129S1/SvImJ6CRep2
    3GSM264769129S1/SvImJ6CRep3
    4GSM264770129S1/SvImJHFRep1
    5GSM264771129S1/SvImJHFRep2
    6GSM264772129S1/SvImJHFRep3
    7GSM264773129S1/SvImJ6CRep1
    8GSM264774129S1/SvImJ6CRep2
    9GSM264775129S1/SvImJ6CRep3
    10GSM264776129S1/SvImJHFRep1
    11GSM264777129S1/SvImJHFRep2
    12GSM264778129S1/SvImJHFRep3
    13GSM264779A/J6CRep1
    14GSM264780A/J6CRep2
    15GSM264781A/J6CRep3
    16GSM264782A/JHFRep1
    17GSM264783A/JHFRep2
    18GSM264784A/JHFRep3
    19GSM264785A/J6CRep1
    20GSM264786A/J6CRep2
    21GSM264787A/J6CRep3
    22GSM264788A/JHFRep1
    23GSM264789A/JHFRep2
    24GSM264790A/JHFRep3
    25GSM264791C57BL/6J6CRep1
    26GSM264792C57BL/6J6CRep2
    27GSM264793C57BL/6J6CRep3
    28GSM264794C57BL/6JHFRep1
    29GSM264795C57BL/6JHFRep2
    30GSM264796C57BL/6JHFRep3
    31GSM264797C57BL/6J6CRep1
    32GSM264798C57BL/6J6CRep2
    33GSM264799C57BL/6J6CRep3
    34GSM264800C57BL/6JHFRep1
    35GSM264801C57BL/6JHFRep2
    36GSM264802C57BL/6JHFRep3
    37GSM264803BALB/cJ6CRep1
    38GSM264804BALB/cJ6CRep2
    39GSM264805BALB/cJ6CRep3
    40GSM264806BALB/cJHFRep1
    41GSM264807BALB/cJHFRep2
    42GSM264808BALB/cJHFRep3
    43GSM264809BALB/cJ6CRep1
    44GSM264810BALB/cJ6CRep2
    45GSM264811BALB/cJ6CRep3
    46GSM264813BALB/cJHFRep1
    47GSM264814BALB/cJHFRep2
    48GSM264815BALB/cJHFRep3
    49GSM264845C3H/HeJ6CRep1
    50GSM264846C3H/HeJ6CRep2
    51GSM264847C3H/HeJ6CRep3
    52GSM264848C3H/HeJHFRep1
    53GSM264849C3H/HeJHFRep2
    54GSM264850C3H/HeJHFRep3
    55GSM264852C3H/HeJ6CRep1
    56GSM264853C3H/HeJ6CRep2
    57GSM264855C3H/HeJ6CRep3
    58GSM264856C3H/HeJHFRep1
    59GSM264857C3H/HeJHFRep2
    60GSM264858C3H/HeJHFRep3
    61GSM264859CAST/EiJ6CRep1
    62GSM264861CAST/EiJ6CRep2
    63GSM264862CAST/EiJ6CRep3
    64GSM264863CAST/EiJHFRep1
    65GSM264864CAST/EiJHFRep2
    66GSM264865CAST/EiJHFRep3
    67GSM264866CAST/EiJ6CRep1
    68GSM264867CAST/EiJ6CRep2
    69GSM264868CAST/EiJ6CRep3
    70GSM264869CAST/EiJHFRep1
    71GSM264870CAST/EiJHFRep2
    72GSM264871CAST/EiJHFRep3
    73GSM264872DBA/2J6CRep1
    74GSM264873DBA/2J6CRep2
    75GSM264874DBA/2J6CRep3
    76GSM264875DBA/2JHFRep1
    77GSM264876DBA/2JHFRep2
    78GSM264877DBA/2JHFRep3
    79GSM264890DBA/2J6CRep1
    80GSM264891DBA/2J6CRep2
    81GSM264892DBA/2J6CRep3
    82GSM264893DBA/2JHFRep1
    83GSM264894DBA/2JHFRep2
    84GSM264895DBA/2JHFRep3
    85GSM264896I/LnJ6CRep1
    86GSM264897I/LnJ6CRep2
    87GSM264898I/LnJ6CRep3
    88GSM264899I/LnJHFRep1
    89GSM264900I/LnJHFRep2
    90GSM264901I/LnJHFRep3
    91GSM264902I/LnJ6CRep1
    92GSM264903I/LnJ6CRep2
    93GSM264904I/LnJ6CRep3
    94GSM264905I/LnJHFRep1
    95GSM264906I/LnJHFRep2
    96GSM264907I/LnJHFRep3
    97GSM264908MRL/MpJ-Fas/J6CRep1
    98GSM264909MRL/MpJ-Fas/J6CRep2
    99GSM264910MRL/MpJ-Fas/J6CRep3
    100GSM264912MRL/MpJ-Fas/JHFRep1
    101GSM264913MRL/MpJ-Fas/JHFRep2
    102GSM264914MRL/MpJ-Fas/JHFRep3
    103GSM264915MRL/MpJ-Fas/J6CRep1
    104GSM264916MRL/MpJ-Fas/J6CRep2
    105GSM264917MRL/MpJ-Fas/J6CRep3
    106GSM264918MRL/MpJ-Fas/JHFRep1
    107GSM264920MRL/MpJ-Fas/JHFRep2
    108GSM264921MRL/MpJ-Fas/JHFRep3
    109GSM264922NZB/BlNJ6CRep1
    110GSM264924NZB/BlNJ6CRep2
    111GSM264925NZB/BlNJ6CRep3
    112GSM264926NZB/BlNJHFRep1
    113GSM264928NZB/BlNJHFRep2
    114GSM264929NZB/BlNJHFRep3
    115GSM264930NZB/BlNJ6CRep1
    116GSM264931NZB/BlNJ6CRep2
    117GSM264932NZB/BlNJ6CRep3
    118GSM264933NZB/BlNJHFRep1
    119GSM264935NZB/BlNJHFRep2
    120GSM264936NZB/BlNJHFRep3
    121GSM265061PERA/EiJ6CRep1
    122GSM265062PERA/EiJ6CRep2
    123GSM265063PERA/EiJ6CRep3
    124GSM265064PERA/EiJHFRep1
    125GSM265065PERA/EiJHFRep2
    126GSM265066PERA/EiJHFRep3
    127GSM265067PERA/EiJ6CRep1
    128GSM265068PERA/EiJ6CRep2
    129GSM265069PERA/EiJ6CRep3
    130GSM265070PERA/EiJHFRep1
    131GSM265071PERA/EiJHFRep2
    132GSM265072PERA/EiJHFRep3
    133GSM265074SM/J6CRep1
    134GSM265075SM/J6CRep2
    135GSM265105SM/J6CRep3
    136GSM265217SM/JHFRep1
    137GSM265248SM/JHFRep2
    138GSM265275SM/JHFRep3
    139GSM265324SM/J6CRep1
    140GSM265331SM/J6CRep2
    141GSM265357SM/J6CRep3
    142GSM265358SM/JHFRep1
    143GSM265359SM/JHFRep2
    144GSM265360SM/JHFRep3
    +
    +

    Citations:

    +

    +

    Burgess-Herbert SL, Cox A, Tsaih SW, Paigen B. Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci. Genetics 2008 Dec;180(4):2227-35. PMID: 18845850 +Shockley KR, Witmer D, Burgess-Herbert SL, Paigen B et al. Effects of atherogenic diet on hepatic gene expression across mouse strains. Physiol Genomics 2009 Nov 6;39(3):172-82. PMID: 19671657

    +

    Data Source Acknowledgements:

    +

    +

    Churchill GA, Paigen B, Shockley KR, Witmer D

    + + +
    + + + + + + + + + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    + + + + + + + + + + + + + + + + diff --git a/web/dbdoc/JAX_CSB_L_HF_0711.html b/web/dbdoc/JAX_CSB_L_HF_0711.html new file mode 100755 index 00000000..ad892ef1 --- /dev/null +++ b/web/dbdoc/JAX_CSB_L_HF_0711.html @@ -0,0 +1,371 @@ + + + +JAX Liver HF Affy M430 2.0 (Jul11) MDP + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    JAX Liver HF Affy M430 2.0 (Jul11) MDPmodify this page

    + + Accession number: GN358

    +
    +

    Summary:

    +

    High-fat diets are associated with increased obesity and metabolic disease in mice and humans. Here we used analysis of variance (ANOVA) to scrutinize a microarray data set consisting of 10 inbred strains of mice from both sexes fed atherogenic high-fat and control chow diets. An overall F-test was applied to the 40 unique groups of strain-diet-sex to identify 15,288 genes with altered transcription. Bootstrapping k-means clustering separated these changes into four strain-dependent expression patterns, including two sex-related profiles and two diet-related profiles. Sex-induced effects correspond to secretion (males) or fat and energy metabolism (females), whereas diet-induced changes relate to neurological processes (chow) or immune response (high-fat). The full set of pairwise contrasts for differences between strains within sex (90 different statistical tests) uncovered 32,379 total changes. These differences were unevenly distributed across strains and between sexes, indicating that strain-specific responses to high-fat diet differ between sexes. Correlations between expression levels and 8 obesity-related traits identified 5,274 associations between transcript abundance and measured phenotypic endpoints. From this number, 2,678 genes are positively correlated with total cholesterol levels and associate with immune-related categories while 2,596 genes are negatively correlated with cholesterol and connect to cholesterol synthesis. +Keywords: gene expression analysis, strain comparision, effect of dietary fat, sex-specific effects.

    +

    Overall Design:

    +

    One group of mice was fed an atherogenic high-fat (30% fat) diet containing cholic acid to increase fat uptake and another was fed a low-fat (6% fat) regular chow diet. Males and females from both diets were studied for mouse strains 129S1/SvImJ, A/J, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, I/LnJ, MRL/MpJ-Tnfrsf6lpr/J, NZB/BINJ, PERA/Ei, and SM/J. All strains were sacrificed between 11- and 13 weeks of age except for CAST and PERA, which were harvested after 50 weeks of age. CAST and PERA were subsequently removed from our analysis based on discrepant harvest age, but can be found in our database (see below). Three replicate animals were used for each combination of diet, strain, and sex, resulting in a total of 120 mice surveyed for gene expression.

    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrain IDHF=high-fat (30% fat)
    6C=low-fat (6% fat)
    Replicate Animal
    1GSM264767129S1/SvImJ6CRep1
    2GSM264768129S1/SvImJ6CRep2
    3GSM264769129S1/SvImJ6CRep3
    4GSM264770129S1/SvImJHFRep1
    5GSM264771129S1/SvImJHFRep2
    6GSM264772129S1/SvImJHFRep3
    7GSM264773129S1/SvImJ6CRep1
    8GSM264774129S1/SvImJ6CRep2
    9GSM264775129S1/SvImJ6CRep3
    10GSM264776129S1/SvImJHFRep1
    11GSM264777129S1/SvImJHFRep2
    12GSM264778129S1/SvImJHFRep3
    13GSM264779A/J6CRep1
    14GSM264780A/J6CRep2
    15GSM264781A/J6CRep3
    16GSM264782A/JHFRep1
    17GSM264783A/JHFRep2
    18GSM264784A/JHFRep3
    19GSM264785A/J6CRep1
    20GSM264786A/J6CRep2
    21GSM264787A/J6CRep3
    22GSM264788A/JHFRep1
    23GSM264789A/JHFRep2
    24GSM264790A/JHFRep3
    25GSM264791C57BL/6J6CRep1
    26GSM264792C57BL/6J6CRep2
    27GSM264793C57BL/6J6CRep3
    28GSM264794C57BL/6JHFRep1
    29GSM264795C57BL/6JHFRep2
    30GSM264796C57BL/6JHFRep3
    31GSM264797C57BL/6J6CRep1
    32GSM264798C57BL/6J6CRep2
    33GSM264799C57BL/6J6CRep3
    34GSM264800C57BL/6JHFRep1
    35GSM264801C57BL/6JHFRep2
    36GSM264802C57BL/6JHFRep3
    37GSM264803BALB/cJ6CRep1
    38GSM264804BALB/cJ6CRep2
    39GSM264805BALB/cJ6CRep3
    40GSM264806BALB/cJHFRep1
    41GSM264807BALB/cJHFRep2
    42GSM264808BALB/cJHFRep3
    43GSM264809BALB/cJ6CRep1
    44GSM264810BALB/cJ6CRep2
    45GSM264811BALB/cJ6CRep3
    46GSM264813BALB/cJHFRep1
    47GSM264814BALB/cJHFRep2
    48GSM264815BALB/cJHFRep3
    49GSM264845C3H/HeJ6CRep1
    50GSM264846C3H/HeJ6CRep2
    51GSM264847C3H/HeJ6CRep3
    52GSM264848C3H/HeJHFRep1
    53GSM264849C3H/HeJHFRep2
    54GSM264850C3H/HeJHFRep3
    55GSM264852C3H/HeJ6CRep1
    56GSM264853C3H/HeJ6CRep2
    57GSM264855C3H/HeJ6CRep3
    58GSM264856C3H/HeJHFRep1
    59GSM264857C3H/HeJHFRep2
    60GSM264858C3H/HeJHFRep3
    61GSM264859CAST/EiJ6CRep1
    62GSM264861CAST/EiJ6CRep2
    63GSM264862CAST/EiJ6CRep3
    64GSM264863CAST/EiJHFRep1
    65GSM264864CAST/EiJHFRep2
    66GSM264865CAST/EiJHFRep3
    67GSM264866CAST/EiJ6CRep1
    68GSM264867CAST/EiJ6CRep2
    69GSM264868CAST/EiJ6CRep3
    70GSM264869CAST/EiJHFRep1
    71GSM264870CAST/EiJHFRep2
    72GSM264871CAST/EiJHFRep3
    73GSM264872DBA/2J6CRep1
    74GSM264873DBA/2J6CRep2
    75GSM264874DBA/2J6CRep3
    76GSM264875DBA/2JHFRep1
    77GSM264876DBA/2JHFRep2
    78GSM264877DBA/2JHFRep3
    79GSM264890DBA/2J6CRep1
    80GSM264891DBA/2J6CRep2
    81GSM264892DBA/2J6CRep3
    82GSM264893DBA/2JHFRep1
    83GSM264894DBA/2JHFRep2
    84GSM264895DBA/2JHFRep3
    85GSM264896I/LnJ6CRep1
    86GSM264897I/LnJ6CRep2
    87GSM264898I/LnJ6CRep3
    88GSM264899I/LnJHFRep1
    89GSM264900I/LnJHFRep2
    90GSM264901I/LnJHFRep3
    91GSM264902I/LnJ6CRep1
    92GSM264903I/LnJ6CRep2
    93GSM264904I/LnJ6CRep3
    94GSM264905I/LnJHFRep1
    95GSM264906I/LnJHFRep2
    96GSM264907I/LnJHFRep3
    97GSM264908MRL/MpJ-Fas/J6CRep1
    98GSM264909MRL/MpJ-Fas/J6CRep2
    99GSM264910MRL/MpJ-Fas/J6CRep3
    100GSM264912MRL/MpJ-Fas/JHFRep1
    101GSM264913MRL/MpJ-Fas/JHFRep2
    102GSM264914MRL/MpJ-Fas/JHFRep3
    103GSM264915MRL/MpJ-Fas/J6CRep1
    104GSM264916MRL/MpJ-Fas/J6CRep2
    105GSM264917MRL/MpJ-Fas/J6CRep3
    106GSM264918MRL/MpJ-Fas/JHFRep1
    107GSM264920MRL/MpJ-Fas/JHFRep2
    108GSM264921MRL/MpJ-Fas/JHFRep3
    109GSM264922NZB/BlNJ6CRep1
    110GSM264924NZB/BlNJ6CRep2
    111GSM264925NZB/BlNJ6CRep3
    112GSM264926NZB/BlNJHFRep1
    113GSM264928NZB/BlNJHFRep2
    114GSM264929NZB/BlNJHFRep3
    115GSM264930NZB/BlNJ6CRep1
    116GSM264931NZB/BlNJ6CRep2
    117GSM264932NZB/BlNJ6CRep3
    118GSM264933NZB/BlNJHFRep1
    119GSM264935NZB/BlNJHFRep2
    120GSM264936NZB/BlNJHFRep3
    121GSM265061PERA/EiJ6CRep1
    122GSM265062PERA/EiJ6CRep2
    123GSM265063PERA/EiJ6CRep3
    124GSM265064PERA/EiJHFRep1
    125GSM265065PERA/EiJHFRep2
    126GSM265066PERA/EiJHFRep3
    127GSM265067PERA/EiJ6CRep1
    128GSM265068PERA/EiJ6CRep2
    129GSM265069PERA/EiJ6CRep3
    130GSM265070PERA/EiJHFRep1
    131GSM265071PERA/EiJHFRep2
    132GSM265072PERA/EiJHFRep3
    133GSM265074SM/J6CRep1
    134GSM265075SM/J6CRep2
    135GSM265105SM/J6CRep3
    136GSM265217SM/JHFRep1
    137GSM265248SM/JHFRep2
    138GSM265275SM/JHFRep3
    139GSM265324SM/J6CRep1
    140GSM265331SM/J6CRep2
    141GSM265357SM/J6CRep3
    142GSM265358SM/JHFRep1
    143GSM265359SM/JHFRep2
    144GSM265360SM/JHFRep3
    +
    +

    Citations:

    +

    +

    Burgess-Herbert SL, Cox A, Tsaih SW, Paigen B. Practical applications of the bioinformatics toolbox for narrowing quantitative trait loci. Genetics 2008 Dec;180(4):2227-35. PMID: 18845850 +Shockley KR, Witmer D, Burgess-Herbert SL, Paigen B et al. Effects of atherogenic diet on hepatic gene expression across mouse strains. Physiol Genomics 2009 Nov 6;39(3):172-82. PMID: 19671657

    +

    Data Source Acknowledgements:

    +

    +

    Churchill GA, Paigen B, Shockley KR, Witmer D

    + + +
    + + + + + + + + + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    + + + + + + + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_A1C_0711.html b/web/dbdoc/KIN_YSM_A1C_0711.html new file mode 100755 index 00000000..2062c471 --- /dev/null +++ b/web/dbdoc/KIN_YSM_A1C_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human A1C Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human A1C Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN329

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_AMY_0711.html b/web/dbdoc/KIN_YSM_AMY_0711.html new file mode 100755 index 00000000..13d33d94 --- /dev/null +++ b/web/dbdoc/KIN_YSM_AMY_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human AMY Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human AMY Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN330

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_CBC_0711.html b/web/dbdoc/KIN_YSM_CBC_0711.html new file mode 100755 index 00000000..dbdf84c9 --- /dev/null +++ b/web/dbdoc/KIN_YSM_CBC_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human CBC Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human CBC Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN331

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_CGE_0711.html b/web/dbdoc/KIN_YSM_CGE_0711.html new file mode 100755 index 00000000..ed5c4fc1 --- /dev/null +++ b/web/dbdoc/KIN_YSM_CGE_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human CGE Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human CGE Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN332

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_DFC_0711.html b/web/dbdoc/KIN_YSM_DFC_0711.html new file mode 100755 index 00000000..e5d33945 --- /dev/null +++ b/web/dbdoc/KIN_YSM_DFC_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human DFC Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human DFC Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN333

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_DIE_0711.html b/web/dbdoc/KIN_YSM_DIE_0711.html new file mode 100755 index 00000000..f3979ba8 --- /dev/null +++ b/web/dbdoc/KIN_YSM_DIE_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human DIE Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human DIE Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN334

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_DTH_0711.html b/web/dbdoc/KIN_YSM_DTH_0711.html new file mode 100755 index 00000000..012c932b --- /dev/null +++ b/web/dbdoc/KIN_YSM_DTH_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human DTH Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human DTH Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN335

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_FC_0711.html b/web/dbdoc/KIN_YSM_FC_0711.html new file mode 100755 index 00000000..6eeaf971 --- /dev/null +++ b/web/dbdoc/KIN_YSM_FC_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human FC Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human FC Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN336

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_HIP_0711.html b/web/dbdoc/KIN_YSM_HIP_0711.html new file mode 100755 index 00000000..1757f319 --- /dev/null +++ b/web/dbdoc/KIN_YSM_HIP_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human HIP Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human HIP Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN337

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_IPC_0711.html b/web/dbdoc/KIN_YSM_IPC_0711.html new file mode 100755 index 00000000..20f48eb0 --- /dev/null +++ b/web/dbdoc/KIN_YSM_IPC_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human IPC Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human IPC Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN338

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_ITC_0711.html b/web/dbdoc/KIN_YSM_ITC_0711.html new file mode 100755 index 00000000..037eb9de --- /dev/null +++ b/web/dbdoc/KIN_YSM_ITC_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human ITC Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human ITC Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN339

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_LGE_0711.html b/web/dbdoc/KIN_YSM_LGE_0711.html new file mode 100755 index 00000000..6410fae0 --- /dev/null +++ b/web/dbdoc/KIN_YSM_LGE_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human LGE Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human LGE Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN340

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_M1C_0711.html b/web/dbdoc/KIN_YSM_M1C_0711.html new file mode 100755 index 00000000..da0e50fc --- /dev/null +++ b/web/dbdoc/KIN_YSM_M1C_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human M1C Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human M1C Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN341

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_MD_0711.html b/web/dbdoc/KIN_YSM_MD_0711.html new file mode 100755 index 00000000..4136cb2a --- /dev/null +++ b/web/dbdoc/KIN_YSM_MD_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human MD Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human MD Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN342

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_MFC_0711.html b/web/dbdoc/KIN_YSM_MFC_0711.html new file mode 100755 index 00000000..27bcf62f --- /dev/null +++ b/web/dbdoc/KIN_YSM_MFC_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human MFC Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human MFC Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN343

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_MGE_0711.html b/web/dbdoc/KIN_YSM_MGE_0711.html new file mode 100755 index 00000000..14b183ab --- /dev/null +++ b/web/dbdoc/KIN_YSM_MGE_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human MGE Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human MGE Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN344

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_OC_0711.html b/web/dbdoc/KIN_YSM_OC_0711.html new file mode 100755 index 00000000..23f19e33 --- /dev/null +++ b/web/dbdoc/KIN_YSM_OC_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human OC Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human OC Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN346

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_OFC_0711.html b/web/dbdoc/KIN_YSM_OFC_0711.html new file mode 100755 index 00000000..111d0ba2 --- /dev/null +++ b/web/dbdoc/KIN_YSM_OFC_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human OFC Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human OFC Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN347

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_PC_0711.html b/web/dbdoc/KIN_YSM_PC_0711.html new file mode 100755 index 00000000..dce7a758 --- /dev/null +++ b/web/dbdoc/KIN_YSM_PC_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human PC Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human PC Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN348

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_S1C_0711.html b/web/dbdoc/KIN_YSM_S1C_0711.html new file mode 100755 index 00000000..a3be6353 --- /dev/null +++ b/web/dbdoc/KIN_YSM_S1C_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human S1C Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human S1C Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN349

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_STC_0711.html b/web/dbdoc/KIN_YSM_STC_0711.html new file mode 100755 index 00000000..3b7c2b54 --- /dev/null +++ b/web/dbdoc/KIN_YSM_STC_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human STC Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human STC Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN350

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_STR_0711.html b/web/dbdoc/KIN_YSM_STR_0711.html new file mode 100755 index 00000000..eaa1a0e2 --- /dev/null +++ b/web/dbdoc/KIN_YSM_STR_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human STR Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human STR Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN351

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_TC_0711.html b/web/dbdoc/KIN_YSM_TC_0711.html new file mode 100755 index 00000000..76525a37 --- /dev/null +++ b/web/dbdoc/KIN_YSM_TC_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human TC Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human TC Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN352

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_URL_0711.html b/web/dbdoc/KIN_YSM_URL_0711.html new file mode 100755 index 00000000..a01d4fc3 --- /dev/null +++ b/web/dbdoc/KIN_YSM_URL_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human URL Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human URL Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN353

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_V1C_0711.html b/web/dbdoc/KIN_YSM_V1C_0711.html new file mode 100755 index 00000000..0d123e55 --- /dev/null +++ b/web/dbdoc/KIN_YSM_V1C_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human V1C Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human V1C Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN354

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_VFC_0711.html b/web/dbdoc/KIN_YSM_VFC_0711.html new file mode 100755 index 00000000..89dec87c --- /dev/null +++ b/web/dbdoc/KIN_YSM_VFC_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human VFC Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human VFC Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN356

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KIN_YSM_VF_0711.html b/web/dbdoc/KIN_YSM_VF_0711.html new file mode 100755 index 00000000..04da58dd --- /dev/null +++ b/web/dbdoc/KIN_YSM_VF_0711.html @@ -0,0 +1,210 @@ + + + + +KIN/YSM Human VF Affy Hu-Exon 1.0 ST (Jul11) Quantile ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    KIN/YSM Human VF Affy Hu-Exon 1.0 ST (Jul11) Quantile **modify this page

    + + Accession number: GN355

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/KI_2A_0405_M.html b/web/dbdoc/KI_2A_0405_M.html new file mode 100755 index 00000000..0e37d965 --- /dev/null +++ b/web/dbdoc/KI_2A_0405_M.html @@ -0,0 +1,292 @@ + +RAE230A Microarray Kidney MAS5 April05 / +WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    MDC/CAS/ICL RAE230A Kidney Database MAS5 (April/05 freeze) modify this page

    Accession number: GN70

    + +

        Summary:

    + +

    +This April 2005 data set provides estimates of mRNA expression in normal kidneys of 32 strains of rats. The set includes the hypertensive SHR strain, the normotensive BN strain, and 30 HXB/BXH recombinant inbred strains. Each strain was sampled in quadruplicate (6-week-old males). Animals and tissues were generated by Michal Pravenec and colleagues at the Czech Academy of Sciences (CAS). RNA samples were processed at the Max-Delbrück-Center (MDC), Berlin Buch by Nobert Hübner and colleagues. Transcriptome mapping was carried out by Timothy Aitman and colleagues at the Imperial College, London (ICL). Samples were hybridized individually to a total of 128 Affymetrix RAE230A array. This particular data set includes 120 arrays processed using a quantile normalized variant of the Affymetrix MAS5 protocol. The expression values of each array have been logged and adjusted to a mean of 8 and a stardard deviation of 2 (mean and variance stabilized). This data set complements the original MAS5 data set exploited by Hübner and colleagues 2005. +Download the particular transform in an Excel work book with both strain means and SEMs.

    + +

    These data can also be viewed using the eQTL Explorer Java application +by John Mangion, Tim Aitman, and colleagues (Mueller et al. 2006). + + + + +

    + + +

        About the cases used to generate this set of data:

    +
    Data were generated using the HXB/BXH recombinant inbred strains of rats generated over the past 20 years in Prague. The parental strains from which all HXB lines are derived are SHR (SHR/OlaIpcv or HSR = H) and Brown Norway (BN.Lx/Cub= B). These strains have been used extensively to study cardiovascular system physiology and genetics.

    + +

    The HXB strains were bred by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were bred by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. These strains are at approximately the 6oth geenration of continuous inbreeding (F60).

    + +

    Animals used in the transcriptome analyses of kidney and fat (Hübner and colleagues, 2005) were weaned at 4 weeks. Those born at the Charles University were transferred to the Institute of Physiology. Animals were reared on a commerical rat chow (ST-1 from VELAZ, Czech Republic). Four males were house per cage. Cages were made of polystyrene and have a floor size of 22 x 38 cm and height of 23 cm. The bedding was changed twice a week. Light cycle was 12:12 on-off. Vivarium rooms were maintained at 23 deg. C. Rats were sexually naive. All males used in the initial transcriptome studies (Hubner et al., 2005) were born between May and August 2002. They were sacrificed unfastged by rapid cervical dislocation between 9 and 10 AM, following an approved animal protocol (Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague; Animal Protectiion Law of the Czech Republic (311/1997). +

    + +

        About the tissue used to generate these data:

    +
    All tissues were collected at the age of 6 weeks. Kidneys and other organs were rapidly dissected and cleaned of fat, inserted into a vial, and immersed in liquid nitrogen for storage until RNA extraction. +
    + + +
    +The table below lists the arrays by strain and sample identifier. Each array was hybridized with mRNA from a single young male rat. +
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSampleID
    HSRHSR1
    HSRHSR2
    HSRHSR3
    HSRHSR4
    BNBN1
    BNBN2
    BNBN3
    BNBN4
    BNBN5
    HXB1RI 01-1
    HXB1RI 01-2
    HXB1RI 01-3
    HXB1RI 01-4
    HXB2RI 02-1
    HXB2RI 02-2
    HXB2RI 02-3
    HXB2*RI 02-4
    HXB3RI 03-1
    HXB3RI 03-2
    HXB3RI 03-3
    HXB3RI 03-4
    HXB4RI 04-1
    HXB4RI 04-2
    HXB4RI 04-3
    HXB4RI 04-4
    HXB5RI 05-1
    HXB5RI 05-2
    HXB5RI 05-3
    HXB5*RI 05-4
    HXB7RI 07-1
    HXB7RI 07-2
    HXB7RI 07-3
    HXB7RI 07-4
    HXB10RI 10-1
    HXB10RI 10-2
    HXB10RI 10-3
    HXB10RI 10-4
    HXB15RI 15-1
    HXB15RI 15-2
    HXB15RI 15-3
    HXB15RI 15-4
    HXB17RI 17-1
    HXB17RI 17-2
    HXB17RI 17-3
    HXB17RI 17-4
    HXB18RI 18-1
    HXB18RI 18-2
    HXB18RI 18-3
    HXB18RI 18-4
    HXB20RI 20-1
    HXB20RI 20-2
    HXB20RI 20-3
    HXB20RI 20-4
    HXB21RI 21-1
    HXB21RI 21-2
    HXB21RI 21-3
    HXB21RI 21-4
    HXB22RI 22-1
    HXB22RI 22-2
    HXB22RI 22-3
    HXB22RI 22-4
    HXB23RI 23-1
    HXB23RI 23-2
    HXB23RI 23-3
    HXB23RI 23-4
    HXB24RI 24-1
    HXB24RI 24-2
    HXB24RI 24-3
    HXB24*RI 24-4
    HXB25RI 25-1
    HXB25RI 25-2
    HXB25RI 25-3
    HXB25*RI 25-4
    HXB26RI 26-1
    HXB26RI 26-2
    HXB26RI 26-3
    HXB26RI 26-4
    HXB27RI 27-1
    HXB27RI 27-2
    HXB27RI 27-3
    HXB27RI 27-4
    HXB29RI 29-1
    HXB29RI 29-2
    HXB29RI 29-3
    HXB29*RI 29-4
    HXB31RI 31-1
    HXB31RI 31-2
    HXB31RI 31-3
    HXB31RI 31-4
    BXH2RI 02c-1
    BXH2RI 02c-2
    BXH2RI 02c-3
    BXH2RI 02c-4
    BXH3RI 03c-1
    BXH3RI 03c-2
    BXH3RI 03c-3
    BXH3RI 03c-4
    BXH5RI 05c-1
    BXH5RI 05c-2
    BXH5RI 05c-3
    BXH5*RI 05c-4
    BXH6RI 06c-1
    BXH6RI 06c-2
    BXH6RI 06c-3
    BXH6*RI 06c-4
    BXH8RI 08c-1
    BXH8RI 08c-2
    BXH8RI 08c-3
    BXH8RI 08c-4
    BXH9RI 09c-1
    BXH9RI 09c-2
    BXH9RI 09c-3
    BXH9RI 09c-4
    BXH10RI 10c-1
    BXH10RI 10c-2
    BXH10RI 10c-3
    BXH11RI 11c-1
    BXH11RI 11c-2
    BXH11RI 11c-3
    BXH11*RI 11c-4
    BXH12RI 12c-1
    BXH12RI 12c-2
    BXH12RI 12c-3
    BXH12RI 12c-4
    BXH13RI 13c-1
    BXH13RI 13c-2
    BXH13RI 13c-3
    BXH13RI 13c-4
    +
    +

    *: These eight arrays were excluded in the final strain summary data. See section of Quality Control for further explanation. + + + +

        About the array platform:

    + +

    +Affymetrix 230A GeneChip: Expression data were generated using the Affymetrix 230A array. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Rat Genome Sequencing Consortium assembly.

    +
    + +

        About Quality Control Procedures:

    + +
    +

    RNA processing:RNA was extracted using Trizol reagent (Invitrogen) and purified using an RNeasy Mini kit from Qiagen. Double-stranded cDNA was generated without pooling. The Ambion MEGAscript T7 kit from Ambion was used to generate biotinylated cRNA for kidney. Fat samples were processed at this step using the Enzo Diagnostics Bioarray High Yield RNA Transcript labeling kit. See Hübner et al. 2005 for additional detail. One-hundred and twenty eight samples passed RNA quality control steps.

    + +

    Probe level QC: All 128 CEL files were collected into a single DataDesk 6.2 file. Probe data from pairs of arrays were plotted and compared. Eight arrays were considered potential outliers (despite having passed RNA quality control) and in the interest of minimizing technical variance, a decision was made to withhold them from the calculation of strain means used in WebQTL. The remaining 120 arrays were quantile normalized and reexamined in DataDesk to ensure reasonble colinearity of all array data sets.

    + +

    Probe set level QC: Probe set level QC involves counting the number of times that a single array data set from a single sample generates outliers at the level of the probe set consensus estimates of expression. With 120 arrays, any single array should generate a comparatively small fraction of the total number of outlier calls. This final step of array QC has NOT been implemented yet in this data set.

    +
    + + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of pixel measured in each cell. +
    + + +
    +

    Probe set data: The original CEL values were log2 transformed and quantile normalized. We then took the antilog values of these quantile adjusted CEL values as input to the standard MAS5 algorithm. Probe set values listed in WebQTL pages are typically the averages of four biological replicates within strain.

    + + +
    + + +

        Data source acknowledgment:

    +
    +This work was supported with funds to TJA by the MRC Clinical Sciences Centre, the British Heart Foundation, and the Wellcome Trust Cardiovascular Functional Genomics Intiative; to NH from the German Ministry for Science and Education (National Genome Research Network); to MP and Vladimir Kren from the Grant Agency of the Czech Republic; to MP and TJA from the Wellcome Trust Collaborative Research Initiative grant, to Theodore W Kurtz from the NIH, to TWK and MP from a Fogarty International Research Collaboration Award. Microarrays were a generous donation of Affymetrix Inc. Michal Pravenec thanks the Howard Hughes Medical Institute for its support to him as an international research scholar. + + + + +
    + +

        Information about this text file:

    +

    This text file originally generated by Robert Williams, Norbert Hübner, Michal Pravnec, Timothy Aitman, April 19, 2005. Updated by RWW, May 13, 2005. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/KI_2A_0405_R.html b/web/dbdoc/KI_2A_0405_R.html new file mode 100755 index 00000000..e6916bb8 --- /dev/null +++ b/web/dbdoc/KI_2A_0405_R.html @@ -0,0 +1,290 @@ + +RAE230A Microarray Kidney RMA April05 / +WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    MDC/CAS/ICL RAE230A Kidney Database RMA Original (April/05 freeze) modify this page

    Accession number: GN64

    + +

        Summary:

    + +

    +This April 2005 data set provides estimates of mRNA expression in normal kidneys of 32 strains of rats. The set includes the hypertensive SHR strain, the normotensive BN strain, and 30 HXB/BXH recombinant inbred strains. Each strain was sampled in quadruplicate (6-week-old males). Animals and tissues were generated by Michal Pravenec and colleagues at the Czech Academy of Sciences (CAS). RNA samples were processed at the Max-Delbrück-Center for Molecular Medicine (MDC), Berlin Buch by Nobert Hübner and colleagues. Transcriptome mapping was carried out by Norbert Hubner, Timothy Aitman and colleagues at the MDC and the MRC Clinical Sciences Centre, Imperial College, London (ICL). Samples were hybridized individually to a total of 128 Affymetrix RAE230A array. This particular data set includes 120 arrays processed using the RMA protocol. The expression values are original RMA output values without further normalization. This data set complements the MAS5 data set exploited by Hubner and colleagues 2005. +Download the particular transform in an Excel work book with both strain means and SEMs. +

    + +

    These data can also be viewed using the eQTL Explorer Java application +by John Mangion, Tim Aitman, and colleagues (Mueller et al. 2006). + + +

    + +

        About the cases used to generate this set of data:

    +
    Data were generated using the HXB/BXH recombinant inbred strains of rats generated over the past 20 years in Prague. The parental strains from which all HXB lines are derived are SHR (SHR/OlaIpcv or HSR = H) and Brown Norway (BN.Lx/Cub= B). These strains have been used extensively to study cardiovascular system physiology and genetics.

    + +

    The HXB strains were bred by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were bred by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. These strains are at approximately the 60th generation of continuous inbreeding (F60).

    + +

    Animals used in the transcriptome analyses of kidney and fat (Hubner and colleagues, 2005) were weaned at 4 weeks. Those born at the Charles University were transferred to the Institute of Physiology. Animals were reared on a commercial rat chow (ST-1 from VELAZ, Czech Republic). Four males were house per cage. Cages were made of polystyrene and have a floor size of 22 x 38 cm and height of 23 cm. The bedding was changed twice a week. Light cycle was 12:12 on-off. Vivarium rooms were maintained at 23 degrees C. Rats were sexually naive. All males used in the initial transcriptome studies (Hübner et al., 2005) were born between May and August 2002. They were sacrificed unfastged by rapid cervical dislocation between 9 and 10 AM, following an approved animal protocol (Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague; Animal Protection Law of the Czech Republic (311/1997). +

    + +

        About the tissue used to generate these data:

    +
    All tissues were collected at the age of 6 weeks. Kidneys and other organs were rapidly dissected and cleaned of fat, inserted into a vial, and immersed in liquid nitrogen for storage until RNA extraction. +
    + + +
    +The table below lists the arrays by strain and sample identifier. Each array was hybridized with mRNA from a single young male rat. +
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSampleID
    HSRHSR1
    HSRHSR2
    HSRHSR3
    HSRHSR4
    BNBN1
    BNBN2
    BNBN3
    BNBN4
    BNBN5
    HXB1RI 01-1
    HXB1RI 01-2
    HXB1RI 01-3
    HXB1RI 01-4
    HXB2RI 02-1
    HXB2RI 02-2
    HXB2RI 02-3
    HXB2*RI 02-4
    HXB3RI 03-1
    HXB3RI 03-2
    HXB3RI 03-3
    HXB3RI 03-4
    HXB4RI 04-1
    HXB4RI 04-2
    HXB4RI 04-3
    HXB4RI 04-4
    HXB5RI 05-1
    HXB5RI 05-2
    HXB5RI 05-3
    HXB5*RI 05-4
    HXB7RI 07-1
    HXB7RI 07-2
    HXB7RI 07-3
    HXB7RI 07-4
    HXB10RI 10-1
    HXB10RI 10-2
    HXB10RI 10-3
    HXB10RI 10-4
    HXB15RI 15-1
    HXB15RI 15-2
    HXB15RI 15-3
    HXB15RI 15-4
    HXB17RI 17-1
    HXB17RI 17-2
    HXB17RI 17-3
    HXB17RI 17-4
    HXB18RI 18-1
    HXB18RI 18-2
    HXB18RI 18-3
    HXB18RI 18-4
    HXB20RI 20-1
    HXB20RI 20-2
    HXB20RI 20-3
    HXB20RI 20-4
    HXB21RI 21-1
    HXB21RI 21-2
    HXB21RI 21-3
    HXB21RI 21-4
    HXB22RI 22-1
    HXB22RI 22-2
    HXB22RI 22-3
    HXB22RI 22-4
    HXB23RI 23-1
    HXB23RI 23-2
    HXB23RI 23-3
    HXB23RI 23-4
    HXB24RI 24-1
    HXB24RI 24-2
    HXB24RI 24-3
    HXB24*RI 24-4
    HXB25RI 25-1
    HXB25RI 25-2
    HXB25RI 25-3
    HXB25*RI 25-4
    HXB26RI 26-1
    HXB26RI 26-2
    HXB26RI 26-3
    HXB26RI 26-4
    HXB27RI 27-1
    HXB27RI 27-2
    HXB27RI 27-3
    HXB27RI 27-4
    HXB29RI 29-1
    HXB29RI 29-2
    HXB29RI 29-3
    HXB29*RI 29-4
    HXB31RI 31-1
    HXB31RI 31-2
    HXB31RI 31-3
    HXB31RI 31-4
    BXH2RI 02c-1
    BXH2RI 02c-2
    BXH2RI 02c-3
    BXH2RI 02c-4
    BXH3RI 03c-1
    BXH3RI 03c-2
    BXH3RI 03c-3
    BXH3RI 03c-4
    BXH5RI 05c-1
    BXH5RI 05c-2
    BXH5RI 05c-3
    BXH5*RI 05c-4
    BXH6RI 06c-1
    BXH6RI 06c-2
    BXH6RI 06c-3
    BXH6*RI 06c-4
    BXH8RI 08c-1
    BXH8RI 08c-2
    BXH8RI 08c-3
    BXH8RI 08c-4
    BXH9RI 09c-1
    BXH9RI 09c-2
    BXH9RI 09c-3
    BXH9RI 09c-4
    BXH10RI 10c-1
    BXH10RI 10c-2
    BXH10RI 10c-3
    BXH11RI 11c-1
    BXH11RI 11c-2
    BXH11RI 11c-3
    BXH11*RI 11c-4
    BXH12RI 12c-1
    BXH12RI 12c-2
    BXH12RI 12c-3
    BXH12RI 12c-4
    BXH13RI 13c-1
    BXH13RI 13c-2
    BXH13RI 13c-3
    BXH13RI 13c-4
    +
    +

    *: These eight arrays were excluded in the final strain summary data. See section of Quality Control for further explanation. + + + +

        About the array platform:

    + +

    +Affymetrix 230A GeneChip: Expression data were generated using the Affymetrix 230A array. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Rat Genome Sequencing Consortium assembly.

    +
    + +

        About Quality Control Procedures:

    + +
    +

    RNA processing: RNA was extracted using Trizol reagent (Invitrogen) and purified using an RNeasy Mini kit from Qiagen. Double-stranded cDNA was generated without pooling. The Ambion MEGAscript T7 kit from Ambion was used to generate biotinylated cRNA for kidney. Fat samples were processed at this step using the Enzo Diagnostics Bioarray High Yield RNA Transcript labeling kit. See Hubner et al. 2005 for additional detail. One-hundred and twenty eight samples passed RNA quality control steps.

    + +

    Probe level QC: All 128 CEL files were collected into a single DataDesk 6.2 file. Probe data from pairs of arrays were plotted and compared. Eight arrays were considered potential outliers (despite having passed RNA quality control) and in the interest of minimizing technical variance, a decision was made to withhold them from the calculation of strain means used in WebQTL. The remaining 120 arrays were quantile normalized and reexamined in DataDesk to ensure reasonable colinearity of all array data sets.

    + +

    Probe set level QC: Probe set level QC involves counting the number of times that a single array data set from a single sample generates outliers at the level of the probe set consensus estimates of expression. With 120 arrays, any single array should generate a comparatively small fraction of the total number of outlier calls. This final step of array QC has NOT been implemented yet in this data set.

    +
    + + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of pixel measured in each cell. +
    + + +
    +

    Probe set data: The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed by Senhua Yu using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL pages are typically the averages of four biological replicates within strain.

    + +

    Please see Bolstad and colleagues (2003) for a helpful comparison of RMA and other common methods of processing Affymetrix array data sets. +

    + + + + +

        Data source acknowledgment:

    +
    +This work was supported with funds to TJA by the MRC Clinical Sciences Centre, the British Heart Foundation, and the Wellcome Trust Cardiovascular Functional Genomics Initiative; to NH from the German Ministry for Science and Education (National Genome Research Network, NGFN); to MP and Vladimir Kren from the Grant Agency of the Czech Republic; to MP and TJA from the Wellcome Trust Collaborative Research Initiative grant, to Theodore W Kurtz from the NIH, to TWK and MP from a Fogarty International Research Collaboration Award. Microarrays were a generous donation of Affymetrix Inc. MP is an International Research Scholar of the Howard Hughes Medical Institute. + + +
    + +

        Information about this text file:

    +

    This approved text file originally generated by Robert Williams, Norbert Hubner, Michal Pravenec, Timothy Aitman, April 19, 2005. Updated by RWW, April 20, 2005; April 28, 2005; May 10, 2005; June 19, 2005. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/KI_2A_0405_Rz.html b/web/dbdoc/KI_2A_0405_Rz.html new file mode 100755 index 00000000..8f2f33b5 --- /dev/null +++ b/web/dbdoc/KI_2A_0405_Rz.html @@ -0,0 +1,299 @@ + +RAE230A Microarray Kidney RMA 2ZPLus8 April05 / +WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    MDC/CAS/ICL RAE230A Kidney Database RMA 2ZPlus8 (April/05 freeze) +modify this page

    Accession number: GN65

    + +

        Summary:

    + +

    +This April 2005 data set provides estimates of mRNA expression in normal kidneys of 32 strains of rats. The set includes the hypertensive SHR strain, the normotensive BN strain, and 30 HXB/BXH recombinant inbred strains. Each strain was sampled in quadruplicate (6-week-old males). Animals and tissues were generated by Michal Pravenec and colleagues at the Czech Academy of Sciences (CAS). RNA samples were processed at the Max-Delbrück-Center (MDC), Berlin Buch by Nobert Hübner and colleagues. Transcriptome mapping was carried out by Timothy Aitman and colleagues at the Imperial College, London (ICL). Samples were hybridized individually to a total of 128 Affymetrix RAE230A array. This particular data set includes 120 arrays processed using the RMA protocol. RMA values of each array were adjusted to an average of 8 units and a standard deviation of 2 units (2ZPlus8). This data set complements the MAS5 data set exploited by Hübner and colleagues 2005. +Download the particular transform in an Excel work book with both strain means and SEMs.

    + + +

    These data can also be viewed using the eQTL Explorer Java application +by John Mangion, Tim Aitman, and colleagues (Mueller et al. 2006). + +

    + +

        About the cases used to generate this set of data:

    +
    We have exploited a set of HXB/BXH recombinant inbred strains of rats generated over the past 20 years in Prague. The parental strains from which all HXB lines are derived are SHR (SHR/OlaIpcv or HSR = H) and Brown Norway (BN.Lx/Cub= B). These parental strains have been used extensively to study cardiovascular system physiology and genetics.

    + +

    The HXB strains were generated by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were generated by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. These strains are at approximately the 6oth geenration of continuous inbreeding (F60).

    + +

    Animals used in the transcriptome analyses of kidney and fat (Hübner and colleagues, 2005) were weaned at 4 weeks. Those born at the Charles University were transferred to the Institute of Physiology. Animals were reared on a commerical rat chow (ST-1 from VELAZ, Czech Republic). Four males were house per cage. Cages were made of polystyrene and have a floor size of 22 x 38 cm and height of 23 cm. The bedding was changed twice a week. Light cycle was 12:12 on-off. Vivarium rooms were maintained at 23 deg. C. Rats were sexually naive. All males used in the initial transcriptome studies (Hubner et al., 2005) were born between May and August 2002. They were sacrificed unfastged by rapid cervical dislocation between 9 and 10 AM, following an approved animal protocol (Ethics Committee of the Institute of Physiology, Czech Academy of Sciences, Prague; Animal Protectiion Law of the Czech Republic (311/1997). +

    + +

        About the tissue used to generate these data:

    +
    All tissues were collected at the age of 6 weeks. Kidneys and other organs were rapidly dissected and cleaned of fat, inserted into a vial, and immersed in liquid nitrogen for storage until RNA extraction. +
    + + +
    +The table below lists the arrays by strain and sample identifier. Each array was hybridized with mRNA from a single young male rat. +
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSampleID
    BNBN1
    BNBN2
    BNBN3
    BNBN4
    BNBN5
    BXH10RI 10c-1
    BXH10RI 10c-2
    BXH10RI 10c-3
    BXH11RI 11c-1
    BXH11RI 11c-2
    BXH11RI 11c-3
    BXH11*RI 11c-4
    BXH12RI 12c-1
    BXH12RI 12c-2
    BXH12RI 12c-3
    BXH12RI 12c-4
    BXH13RI 13c-1
    BXH13RI 13c-2
    BXH13RI 13c-3
    BXH13RI 13c-4
    BXH2RI 02c-1
    BXH2RI 02c-2
    BXH2RI 02c-3
    BXH2RI 02c-4
    BXH3RI 03c-1
    BXH3RI 03c-2
    BXH3RI 03c-3
    BXH3RI 03c-4
    BXH5RI 05c-1
    BXH5RI 05c-2
    BXH5RI 05c-3
    BXH5*RI 05c-4
    BXH6RI 06c-1
    BXH6RI 06c-2
    BXH6RI 06c-3
    BXH6*RI 06c-4
    BXH8RI 08c-1
    BXH8RI 08c-2
    BXH8RI 08c-3
    BXH8RI 08c-4
    BXH9RI 09c-1
    BXH9RI 09c-2
    BXH9RI 09c-3
    BXH9RI 09c-4
    HXB1RI 01-1
    HXB1RI 01-2
    HXB1RI 01-3
    HXB1RI 01-4
    HXB10RI 10-1
    HXB10RI 10-2
    HXB10RI 10-3
    HXB10RI 10-4
    HXB15RI 15-1
    HXB15RI 15-2
    HXB15RI 15-3
    HXB15RI 15-4
    HXB17RI 17-1
    HXB17RI 17-2
    HXB17RI 17-3
    HXB17RI 17-4
    HXB18RI 18-1
    HXB18RI 18-2
    HXB18RI 18-3
    HXB18RI 18-4
    HXB2RI 02-1
    HXB2RI 02-2
    HXB2RI 02-3
    HXB2*RI 02-4
    HXB20RI 20-1
    HXB20RI 20-2
    HXB20RI 20-3
    HXB20RI 20-4
    HXB21RI 21-1
    HXB21RI 21-2
    HXB21RI 21-3
    HXB21RI 21-4
    HXB22RI 22-1
    HXB22RI 22-2
    HXB22RI 22-3
    HXB22RI 22-4
    HXB23RI 23-1
    HXB23RI 23-2
    HXB23RI 23-3
    HXB23RI 23-4
    HXB24RI 24-1
    HXB24RI 24-2
    HXB24RI 24-3
    HXB24*RI 24-4
    HXB25RI 25-1
    HXB25RI 25-2
    HXB25RI 25-3
    HXB25*RI 25-4
    HXB26RI 26-1
    HXB26RI 26-2
    HXB26RI 26-3
    HXB26RI 26-4
    HXB27RI 27-1
    HXB27RI 27-2
    HXB27RI 27-3
    HXB27RI 27-4
    HXB29RI 29-1
    HXB29RI 29-2
    HXB29RI 29-3
    HXB29*RI 29-4
    HXB3RI 03-1
    HXB3RI 03-2
    HXB3RI 03-3
    HXB3RI 03-4
    HXB31RI 31-1
    HXB31RI 31-2
    HXB31RI 31-3
    HXB31RI 31-4
    HXB4RI 04-1
    HXB4RI 04-2
    HXB4RI 04-3
    HXB4RI 04-4
    HXB5RI 05-1
    HXB5RI 05-2
    HXB5RI 05-3
    HXB5*RI 05-4
    HXB7RI 07-1
    HXB7RI 07-2
    HXB7RI 07-3
    HXB7RI 07-4
    HSRHSR1
    HSRHSR2
    HSRHSR3
    HSRHSR4
    +
    +

    *: These eight arrays were excluded in the final strain summary data. See section of Quality Control for further explanation. + + + +

        About the array platform:

    + +

    +Affymetrix 230A GeneChip: Expression data were generated using 230A array. The chromosomal locations of probe sets were determined by BLAT analysis of concatenated probe sequences using the Rat Genome Sequencing Consortium assembly.

    +
    + +

        About Quality Control Procedures:

    + +
    +

    RNA processing:RNA was extracted using Trizol reagent (Invitrogen) and purified using an RNeasy Mini kit from Qiagen. Double-stranded cDNA was generated without pooling. The Ambion MEGAscript T7 kit from Ambion was used to generate biotinylated cRNA for kidney. Fat samples were processed at this step using the Enzo Diagnostics Bioarray High Yield RNA Transcript labeling kit. See Hubner et al. 2005 for additional detail. One-hundred and twenty eight samples passed RNA quality control assays.

    + +

    Probe level QC: All 128 CEL files were collected into a single DataDesk 6.2 analysis file. Probe data from pairs of arrays were plotted and compared. Eight arrays were considered potential outliers (despite having passed RNA quality control) and in the interest of minimizing technical variance, a decision was made to withhold them from the calculation of strain means used in WebQTL. The remaining 120 arrays were quantile normalized and reexamined in DataDesk to ensure reasonble colinearity of all array data sets.

    +

    Probe set level QC: Probe set level QC involves counting the number of times that a single array data set from a single sample generates outliers at the level of the probe set consensus estimate of expression. With 120 arrays, any single array should generate a comparatively small fraction of the total number of outlier calls. This final step of array QC has NOT been implemented in this data set.

    +
    + + +

        About data processing:

    + +
    +

    Probe set data: The original CEL files were read into the R environment (Ihaka and Gentleman 1996). Data were processed using the Robust Multichip Average (RMA) method (Irrizary et al. 2003). Values were log2 transformed. Probe set values listed in WebQTL pages are typically the averages of four biological replicates within strain.

    + +

    This data set include further normalization to produce final estimates of expression that can be compared directly to the other transforms (average of 8 units and stabilized variance of 2 units within each array). Data were analyzed as follows: + +

      + +
    • Step 1: RMA values were generated as described above. These values already incorporate the quantile normalization + +
    • Step 2: We computed the Z scores for each value. + +
    • Step 3: We multiplied all Z scores by 2. + +
    • Step 4: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 5: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. We have not corrected for background beyond the background correction implemented by Affymetrix. + +
    + + +

    Please see Bolstad and colleagues (2003) for a helpful comparison of RMA and other common methods of processing Affymetrix array data sets. +

    + + + + +

        Data source acknowledgment:

    +
    +This work was supported with funds to TJA by the MRC Clinical Sciences Centre, the British Heart Foundation, and the Wellcome Trust Cardiovascular Functional Genomics Intiative; to NH from the German Ministry for Science and Education (National Genome Research Network); to MP and vladimir Kren from the Grant Agency of the Czech Republic; to MP and TJA from the Wellcome Trust Collaborative Research Initiative grant, to Theodore W Kurtz from the NIH, to TWK and MP from a Fogarty International Research Collaboration Award. Microarrays were a generous donation of Affymetrix Inc. + + +
    + +

        Information about this text file:

    +

    This text file originally generated by Robert Williams, Norbert Hübner, Michal Pravnec, Timothy Aitman, April 19, 2005. Updated by RWW, April 20, 2005; April 28, 2005. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/LVF2_M_0704_M.html b/web/dbdoc/LVF2_M_0704_M.html new file mode 100755 index 00000000..be309f06 --- /dev/null +++ b/web/dbdoc/LVF2_M_0704_M.html @@ -0,0 +1,249 @@ + +M430 RMA Liver F2 Aug05 / GeneNetwork + + + + + + + + + + + + +
    + + + + + + + +
    +

    + + + +(B6 x BTBR)F2-ob/ob Liver mRNA M430 MAS5 Database (Aug 2005 Freeze) modify this page

    Accession number: GN38

    +

        Summary:

    + +
    +

    +This August 2005 data freeze provides estimates of mRNA expression in adult liver from a selected set of 60 F2 animals generated by crossing strain C57BL/6J-ob/+ with BTBR and then intercrossing the F1-ob/+ progeny. The F2 progeny included, in a total of 350 progeny, 110 ob/ob progeny homozygous for the obese (ob) allele of leptin (Lep) on Chr 6. Sixty of the ob/ob progeny were selected for expression assays. This selection means that the data set is not useful for defining QTLs on Chr 6. Array data were generated at the University of Wisconsin by Alan Attie and colleagues. This data release accompanies the paper of Lan and colleagues (in submission, 2005). A set of 24 complementary phenotypes such as body weight, blood chemistry, and rtPCR results, are also available for these animals and an additional set of 50 F2s (see Phenotypes database. Samples were hybridized to 60 pairs of Affymetrix M430A and B arrays. This particular data set was processed using the RMA normalization method. To simplify comparison among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of two units. +

    +
    + + +

        About the cases used to generate this set of data:

    + +
    The F2-ob/ob mice were chosen from a mapping panel that we created to map diabetes related physiological phenotypes (Stoehr et al. 2000). About 110 of these F2-ob/ob mice were also used to map mRNA abundance traits derived by quantitative real-time RT-PCR (Lan et al. 2003). The sixty F2-ob/ob mice that were used to generate microarray-derived mRNA abundance traits were selected from the 110 mice based on a selective phenotyping algorithm (Jin et al. 2004). The F2-ob/ob mice were housed at weaning at the University of Wisconsin-Madison animal care facility on a 12-h light/dark cycle. Mice were provided Purina Formulab Chow 5008 (6.5% fat) and acidified water ad libitum. Mice were killed at 14 weeks of age by CO2 asphyxiation after a 4-hour fast. The livers, along with other tissues, were immediately foil wrapped and frozen in liquid nitrogen, and subsequently transferred to -80 °C freezers for storage.
    + +

        About the tissue used to generate this set of data:

    + +

    Liver samples were taken from 29 male and 31 females. Total RNA was isolated with RNAzol Reagent (Tel-Test, Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer's protocol. The extracted RNA was purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for concentration. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. RNA samples were converted to cDNA, and then biotin-labeled cRNA according to Affymetrix Expression Analysis Technical Manual. The labeled samples were hybridized to the M430A, and subsequently the M430B array. The hybridization, washing and scanning steps were carried out by Hong Lan using the Affymetrix core facility at the Gene Expression Center of University of Wisconsin-Madison. +

    + +

        About the array

    + +
    Liver samples were assayed individually using 60 M430A and B Affymetrix oligonucleotide microarray pairs. Each array ID is denoted by a 10-letter code: the first three letters represent the F2-ob/ob mouse ID number, the fourth letter (either A or B) denotes M430A or M430B arrays, and the last six letters represent the date the array was scanned (MMDDYY).
    + +
    All 120 M430A and B arrays used in this project were purchased at one time and had the same Affymetrix lot number. The table below lists the arrays by Animal ID, sex, and ArrayID. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Animal ID
    sex
    MOE430A ArrayID
    MOE430B ArrayID
    2
    M
    002A100203
    002B100503
    12
    M
    012A100203
    012B100503
    22
    M
    022A100203
    022B100503
    44
    M
    044A100203
    044B100503
    46
    M
    046A100203
    046B100503
    61
    M
    061A100203
    061B100503
    100
    M
    100A100303
    100B100503
    105
    F
    105A100303
    105B100503
    111
    F
    111A100303
    111B100503
    123
    M
    123A100303
    123B100503
    156
    F
    156A100303
    156B100503
    165
    M
    165A100303
    165B100503
    167
    M
    167A100303
    167B100503
    173
    M
    173A100303
    173B100503
    186
    F
    186A100203
    186B100503
    190
    F
    190A100303
    190B100503
    194
    M
    194A100303
    194B100503
    200
    F
    200A100303
    200B100503
    207
    F
    207A100303
    207B100503
    209
    F
    209A100203
    209B100503
    212
    F
    212A100303
    212B100503
    223
    M
    223A100303
    223B100503
    224
    M
    224A100303
    224B100503
    253
    F
    253A100303
    253B100503
    254
    F
    254A100603
    254B100703
    260
    F
    260A100603
    260B100703
    264
    F
    264A100603
    264B100703
    310
    F
    310A100603
    310B100703
    317
    M
    317A100603
    317B100703
    318
    F
    318A100603
    318B100703
    324
    F
    324A100603
    324B100703
    327
    F
    327A100603
    327B100703
    343
    M
    343A100603
    343B100703
    416
    M
    416A100603
    416B100703
    419
    F
    419A100603
    419B100703
    438
    M
    438A100603
    438B100703
    440
    M
    440A100603
    440B100803
    455
    M
    455A100603
    455B100803
    458
    F
    458A100603
    458B100803
    472
    M
    472A100603
    472B100803
    474
    F
    474A100603
    474B100803
    479
    F
    479A100603
    479B100803
    484
    F
    484A100603
    484B100803
    486
    F
    486A100603
    486B100803
    489
    F
    489A100603
    489B100803
    493
    F
    493A100603
    493B100803
    499
    M
    499A100603
    499B100803
    513
    M
    513A100603
    513B100803
    517
    M
    517A100703
    517B100803
    523
    M
    523A100703
    523B100803
    549
    M
    549A100703
    549B100803
    553
    F
    553A100703
    553B100803
    554
    F
    554A100703
    554B100803
    559
    F
    559A100703
    559B100803
    560
    F
    560A100703
    560B100803
    566
    M
    566A100703
    566B100803
    608
    F
    608A100703
    608B100803
    615
    F
    615A100703
    615B100803
    617
    M
    617A100703
    617B100803
    620
    M
    620A100703
    620B100803
    +
    +
    + + +

        About Data Access:

    +
    The F2 data set used in the manuscript is available at GEO under the accession number "GSE3330". +
    + + + + +

        About the marker set:

    +
    The 60 mice were each genotyped at 194 MIT microsatellite markers an average of approximately 10 cM (and always < 30 cM) apart across the entire genome (Y chromsome, excepted). The genotyping error-check routine implemented within R/qtl (Broman et al. 2003) showed no likely errors at p <0.01 probability. +
    + + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430A and 430B array pairs: The 430A and B array pairs collectively consist of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (some are variant transcipts and many are duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequence as the 430 2.0 series. However, roughy 75000 probes differ between those on A and B arrays and those on the 430 2.0.

    +
    + +

        About the data processing:

    + +
    +Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +
      +
    • Step 1: We added an offset of 1.0 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z scores for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B GeneChips include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    + +Probe set data from the .CHP file: The expression data were generated using MAS5. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + + +

        Data source acknowledgment:

    +
    This project was supported in part by NIH/NIDDK 5803701, NIH/NIDDK 66369-01 and American Diabetes Association 7-03-IG-01 to Alan D. Attie, USDA CSREES grants to the University of Wisconsin-Madison to Brian S. Yandell, and HHMI grant A-53-1200-4 to Christina Kendziorski. +
    + +
    B6BTBRF2 Liver Database. All of the original (B6 x BTBR)F2-ob/ob liver mRNA M430AB array data were generated by Hong Lan and Alan Attie at The University of Wisconsin-Madison. For contact and citations and other information on these data sets, please review the INFO pages and contact Drs. Alan Attie, Christina Kendziorski, and Brian Yandell regarding use of this data set in publications or projects.
    + +

        References:

    + + +

    Lan H, Chen M, Byers JE, Yandell BS, Stapleton DS, Mata CM, Mui ET, Flowers MT, Schueler KL, Malnly KF, Williams RW, Kendziorski CM, Attie AD (2005) Combined expression trait correlations and expression quantitative trait locus mapping. Submitted, Aug. 2005. +

    + +

    Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889-890. +

    +

    Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15. +

    +

    Jin C, Lan H, Attie AD, Churchill GA, Bulutuglo D, Yanell BS (2004) Selective phenotyping for increased efficiency in genetic mapping studies. Genetics 168:2285-2293. +

    +

    Lan H, Stoehr JP, Nadler ST, Schueler KL, Yandel BS, Attie AD (2003) Dimension reduction for mapping mRNA abundance as quantitative traits. Genetics 164: 1607-1614. +

    +

    Stoehr JP, Nadler ST, Schueler KL, Rabaglia ME, Yandell BS, Metz SA, Attie AD (2000) Genetic obesity unmasks nonlinear interactions between murine type 2 diabetes susceptibility loci. Diabetes 49: 1946-1954.

    +

    Zhang L, Miles MF, Aldape KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotechnol 21: 818-821.

    + +
    + + +

        Information about this text file:

    +

    This text file originally generated by RWW and Alan Attie, July 2, 2004. Updated by RWW, Aug 20, 5, 2004; April 7, 2005; August 20, 2005. +

    + + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + + diff --git a/web/dbdoc/LVF2_M_0704_R.html b/web/dbdoc/LVF2_M_0704_R.html new file mode 100755 index 00000000..98435819 --- /dev/null +++ b/web/dbdoc/LVF2_M_0704_R.html @@ -0,0 +1,246 @@ + +M430 RMA Liver F2 Aug05 / GeneNetwork + + + + + + + + + + + + +
    + + + + + + + +
    +

    + +(B6 x BTBR)F2-ob/ob Liver mRNA M430 RMA Database (Aug 2005 Freeze) modify this page

    Accession number: GN39

    + +

        Summary:

    + +
    +

    +This August 2005 data freeze provides estimates of mRNA expression in adult liver from a selected set of 60 F2 animals generated by crossing strain C57BL/6J-ob/+ with BTBR and then intercrossing the F1-ob/+ progeny. The F2 progeny included, in a total of 350 progeny, 110 ob/ob progeny homozygous for the obese (ob) allele of leptin (Lep) on Chr 6. Sixty of the ob/ob progeny were selected for expression assays. This selection means that the data set is not useful for defining QTLs on Chr 6. Array data were generated at the University of Wisconsin by Alan Attie and colleagues. This data release accompanies the paper of Lan and colleagues (in submission, 2005). A set of 24 complementary phenotypes such as body weight, blood chemistry, and rtPCR results, are also available for these animals and an additional set of 50 F2s (see Phenotypes database. Samples were hybridized to 60 pairs of Affymetrix M430A and B arrays. This particular data set was processed using the RMA normalization method. To simplify comparison among transforms, RMA values of each array were adjusted to an average of 8 units and a standard deviation of two units. +

    +
    + + +

        About the cases used to generate this set of data:

    + +
    The F2-ob/ob mice were chosen from a mapping panel that we created to map diabetes related physiological phenotypes (Stoehr et al. 2000). About 110 of these F2-ob/ob mice were also used to map mRNA abundance traits derived by quantitative real-time RT-PCR (Lan et al. 2003). The sixty F2-ob/ob mice that were used to generate microarray-derived mRNA abundance traits were selected from the 110 mice based on a selective phenotyping algorithm (Jin et al. 2004). The F2-ob/ob mice were housed at weaning at the University of Wisconsin-Madison animal care facility on a 12-h light/dark cycle. Mice were provided Purina Formulab Chow 5008 (6.5% fat) and acidified water ad libitum. Mice were killed at 14 weeks of age by CO2 asphyxiation after a 4-hour fast. The livers, along with other tissues, were immediately foil wrapped and frozen in liquid nitrogen, and subsequently transferred to -80 °C freezers for storage.
    + +

        About the tissue used to generate this set of data:

    + +

    Liver samples were taken from 29 male and 31 females. Total RNA was isolated with RNAzol Reagent (Tel-Test, Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer's protocol. The extracted RNA was purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for concentration. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. RNA samples were converted to cDNA, and then biotin-labeled cRNA according to Affymetrix Expression Analysis Technical Manual. The labeled samples were hybridized to the M430A, and subsequently the M430B array. The hybridization, washing and scanning steps were carried out by Hong Lan using the Affymetrix core facility at the Gene Expression Center of University of Wisconsin-Madison. +

    + +

        About the array

    + +
    Liver samples were assayed individually using 60 M430A and B Affymetrix oligonucleotide microarray pairs. Each array ID is denoted by a 10-letter code: the first three letters represent the F2-ob/ob mouse ID number, the fourth letter (either A or B) denotes M430A or M430B arrays, and the last six letters represent the date the array was scanned (MMDDYY).
    + +
    All 120 M430A and B arrays used in this project were purchased at one time and had the same Affymetrix lot number. The table below lists the arrays by Animal ID, sex, and ArrayID. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Animal ID
    sex
    MOE430A ArrayID
    MOE430B ArrayID
    2
    M
    002A100203
    002B100503
    12
    M
    012A100203
    012B100503
    22
    M
    022A100203
    022B100503
    44
    M
    044A100203
    044B100503
    46
    M
    046A100203
    046B100503
    61
    M
    061A100203
    061B100503
    100
    M
    100A100303
    100B100503
    105
    F
    105A100303
    105B100503
    111
    F
    111A100303
    111B100503
    123
    M
    123A100303
    123B100503
    156
    F
    156A100303
    156B100503
    165
    M
    165A100303
    165B100503
    167
    M
    167A100303
    167B100503
    173
    M
    173A100303
    173B100503
    186
    F
    186A100203
    186B100503
    190
    F
    190A100303
    190B100503
    194
    M
    194A100303
    194B100503
    200
    F
    200A100303
    200B100503
    207
    F
    207A100303
    207B100503
    209
    F
    209A100203
    209B100503
    212
    F
    212A100303
    212B100503
    223
    M
    223A100303
    223B100503
    224
    M
    224A100303
    224B100503
    253
    F
    253A100303
    253B100503
    254
    F
    254A100603
    254B100703
    260
    F
    260A100603
    260B100703
    264
    F
    264A100603
    264B100703
    310
    F
    310A100603
    310B100703
    317
    M
    317A100603
    317B100703
    318
    F
    318A100603
    318B100703
    324
    F
    324A100603
    324B100703
    327
    F
    327A100603
    327B100703
    343
    M
    343A100603
    343B100703
    416
    M
    416A100603
    416B100703
    419
    F
    419A100603
    419B100703
    438
    M
    438A100603
    438B100703
    440
    M
    440A100603
    440B100803
    455
    M
    455A100603
    455B100803
    458
    F
    458A100603
    458B100803
    472
    M
    472A100603
    472B100803
    474
    F
    474A100603
    474B100803
    479
    F
    479A100603
    479B100803
    484
    F
    484A100603
    484B100803
    486
    F
    486A100603
    486B100803
    489
    F
    489A100603
    489B100803
    493
    F
    493A100603
    493B100803
    499
    M
    499A100603
    499B100803
    513
    M
    513A100603
    513B100803
    517
    M
    517A100703
    517B100803
    523
    M
    523A100703
    523B100803
    549
    M
    549A100703
    549B100803
    553
    F
    553A100703
    553B100803
    554
    F
    554A100703
    554B100803
    559
    F
    559A100703
    559B100803
    560
    F
    560A100703
    560B100803
    566
    M
    566A100703
    566B100803
    608
    F
    608A100703
    608B100803
    615
    F
    615A100703
    615B100803
    617
    M
    617A100703
    617B100803
    620
    M
    620A100703
    620B100803
    +
    +
    + + + + +

        About Data Access:

    +
    The F2 data set used in the manuscript is available at GEO under the accession number "GSE3330". +
    + + + +

        About the marker set:

    +
    The 60 mice were each genotyped at 194 MIT microsatellite markers an average of approximately 10 cM (and always < 30 cM) apart across the entire genome (Y chromsome, excepted). The genotyping error-check routine implemented within R/qtl (Broman et al. 2003) showed no likely errors at p <0.01 probability. +
    + + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430A and 430B array pairs: The 430A and B array pairs collectively consist of 992936 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (some are variant transcipts and many are duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The arrays nominally contain the same probe sequence as the 430 2.0 series. However, roughy 75000 probes differ between those on A and B arrays and those on the 430 2.0.

    +
    + +

        About the data processing:

    + +
    +Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. + +
      +
    • Step 1: We added an offset of 1.0 to the CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z scores for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B GeneChips include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    +Probe set data from the TXT file: These TXT files were generated using the RMA (Robust Multiarray Average; (IRIZARRY et al. 2003)). RMA is implemented in the affy package (11/24/03 version) within Bioconductor. RMA functions provide options for background correction and normalization resulting in a single summary score of expression for every transcript in every condition. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + + +

        Data source acknowledgment:

    +
    This project was supported in part by NIH/NIDDK 5803701, NIH/NIDDK 66369-01 and American Diabetes Association 7-03-IG-01 to Alan D. Attie, USDA CSREES grants to the University of Wisconsin-Madison to Brian S. Yandell, and HHMI grant A-53-1200-4 to Christina Kendziorski. +
    + +
    B6BTBRF2 Liver Database. All of the original (B6 x BTBR)F2-ob/ob liver mRNA M430AB array data were generated by Hong Lan and Alan Attie at The University of Wisconsin-Madison. For contact and citations and other information on these data sets, please review the INFO pages and contact Drs. Alan Attie, Christina Kendziorski, and Brian Yandell regarding use of this data set in publications or projects.
    + +

        References:

    + + +

    Lan H, Chen M, Byers JE, Yandell BS, Stapleton DS, Mata CM, Mui ET, Flowers MT, Schueler KL, Malnly KF, Williams RW, Kendziorski CM, Attie AD (2005) Combined expression trait correlations and expression quantitative trait locus mapping. Submitted, Aug. 2005. +

    + +

    Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889-890. +

    +

    Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15. +

    +

    Jin C, Lan H, Attie AD, Churchill GA, Bulutuglo D, Yanell BS (2004) Selective phenotyping for increased efficiency in genetic mapping studies. Genetics 168:2285-2293. +

    +

    Lan H, Stoehr JP, Nadler ST, Schueler KL, Yandel BS, Attie AD (2003) Dimension reduction for mapping mRNA abundance as quantitative traits. Genetics 164: 1607-1614. +

    +

    Stoehr JP, Nadler ST, Schueler KL, Rabaglia ME, Yandell BS, Metz SA, Attie AD (2000) Genetic obesity unmasks nonlinear interactions between murine type 2 diabetes susceptibility loci. Diabetes 49: 1946-1954.

    +

    Zhang L, Miles MF, Aldape KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotechnol 21: 818-821.

    + +
    + + +

        Information about this text file:

    +

    This text file originally generated by RWW and Alan Attie, July 2, 2004. Updated by RWW, Aug 20, 5, 2004; April 7, 2005; August 20, 2005. +

    + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + + diff --git a/web/dbdoc/LV_G_0106_B.html b/web/dbdoc/LV_G_0106_B.html new file mode 100755 index 00000000..bb059181 --- /dev/null +++ b/web/dbdoc/LV_G_0106_B.html @@ -0,0 +1,343 @@ + + UNC Agilent G4121A Liver Database (January/06 Freeze) Orig LOWESS/ WebQTL + + + + + + + + + + + + + + + + + + + + +
    +

    UNC Agilent G4121A Liver Database (Jan06 Freeze) Orig LOWESS modify this page

    Accession number: GN105

    + + +

        Summary:

    + +
    +FINAL DATA FREEZE: This data set provides estimates of mRNA expression in livers of 43 adult BXD recombinant inbred mice measured using Agilent G4121A microarray. Data were generated by a consortium of investigators at the University of North Carolina at Chapel Hill (Akira Maki, Daniel Gatti, David Threadgill, and Ivan Rusyn) and at the University of Tennessee Heath Science Center (Lu Lu, Elissa Chesler, Ken Manly, and Rob Williams). Image intensity data were processed using a locally weighted scatterplot smooth (LOWESS) and are presented without further modification (Orig LOWESS; see section below on Data Processing). +
    + + +

        About the cases used to generate this set of data:

    + +
    Ninety-six BXD and parental strain liver sample pools were obtained from animals reared at UTHSC in a pathogen-free vivarium. Mice were experimentally naive and housed at weaning (20 to 24 days-of-age) in same-sex groups in standard mouse shoebox cages. Mice were 56 to 177 days old at the time of sacrifice. Forty mouse strains were used. Thirty-seven strains are represented by both sexes.
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain Name
    Sex
    WebQTL Strain ID
    C57BL/6J
    M and F
    C57BL/6J
    DBA/2J
    M and F
    DBA/2J
    B6D2F1
    M and F
    F1
    BXD1
    M and F
    BXD1
    BXD2
    M and F
    BXD2
    BXD5
    M and F
    BXD5
    BXD6
    M and F
    BXD6
    BXD8
    M and F
    BXD8
    BXD9
    M and F
    BXD9
    BXD11
    M and F
    BXD11
    BXD12
    M and F
    BXD12
    BXD13
    M and F
    BXD13
    BXD14
    M and F
    BXD14
    BXD15
    M and F
    BXD15
    BXD21
    M and F
    BXD21
    BXD23
    F
    BXD23
    BXD24
    M
    BXD24
    BXD28
    M and F
    BXD28
    BXD29
    M and F
    BXD29
    BXD31
    M and F
    BXD31
    BXD32
    M and F
    BXD32
    BXD33
    F
    BXD33
    BXD34
    M and F
    BXD34
    BXD38
    M and F
    BXD38
    BXD39
    M and F
    BXD39
    BXD40
    M and F
    BXD40
    BXD42
    M and F
    BXD42
    BXD43
    M and F
    BXD43
    BXD44
    M and F
    BXD44
    BXD45
    M and F
    BXD45
    BXD48
    M and F
    BXD48
    BXD51
    M and F
    BXD51
    BXD60
    M and F
    BXD60
    BXD62
    M and F
    BXD62
    BXD69
    M and F
    BXD69
    BXD73
    M and F
    BXD73
    BXD77
    M and F
    BXD77
    BXD85
    M and F
    BXD85
    BXD86
    M and F
    BXD86
    BXD92
    M and F
    BXD92
    +
    +
    + +
    +C57BL/6J, DBA/2J, and BXD1 through BXD42 were originally obtained from The Jackson Laboratory. Advanced intercross BXD strains (BXD43 and higher) were generated at Princeton University and UTHSC (Peirce and Lu, 2004). All of these new strains were inbred for at least 14 generations. +
    + + +

        About the tissue used to generate these data:

    +

    Animals were killed by cervical dislocation. The entire liver was removed within less than 5 minutes by Zhiping Jia or Hongtao Zhai and placed in RNAlater (Ambion) overnight at 4 degrees C. Tissue was stored in single vials (2 to 3 cases per vial) at -80 degrees C. Tissue vials were shipped to UNC on ice by FedEX. Prior to isolation of RNA, liver samples from the same strain and sex (2 to 3 animals) were pooled in equal amount and minced in a homogenization buffer using an electric homogenizer. Total RNA was isolated using Qiagen RNeasy Mini kits according to the manufacturer's instructions. RNA purity and quality were verified using a BioAnalyzer 2100 and Low RNA Input Linear Amplification kits (Agilent Technologies, Wilmington, DE) in these experiments. RNA labeling, array hybridization and washing and other procedures were performed according to the manufacturer's protocols. A common reference design was used. Male C57BL/6J mouse pooled (equal amounts of RNA from liver, kidney, lung, brain and spleen) RNA provided by the Toxicogenomics Research Consortium was used as a common reference in all these experiments. +

    + +

        About the array platform

    + +
    Samples were assayed using G4121A Agilent oligomer microarray glass slides ( GEO Platform ID GPL891). This microarray estimate expression of approximately 20,842 mouse genes, including a special set of toxicology transcripts nominated by a collaboration that included the National Institute of Environmental Health Sciences (NIEHS) and members of the Toxicogenomics Research Consortium. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Experiment ID
    Experiment Name
    Batch#
    Sample ID
    Strain
    Sex
    Array Barcode#
    Pool Size
    35783
    DBA/2J F B1
    1
    1
    DBA/2J
    F
    251197818090
    3
    35782
    C57BL/6J F B1
    1
    5
    C57BL/6J
    F
    251197818089
    3
    35770
    BXD1 M
    1
    9
    BXD1
    M
    251197817936
    3
    35771
    BXD12 F
    1
    13
    BXD12
    F
    251197817937
    3
    35772
    BXD23 M
    1
    24
    BXD14
    M
    251197817938
    3
    35774
    BXD28 M
    1
    29
    BXD28
    M
    251197817940
    3
    35775
    BXD29 F
    1
    30
    BXD29
    F
    251197817941
    3
    35773
    BXD34 F
    1
    43
    BXD34
    F
    251197817939
    3
    35776
    BXD39 M
    1
    54
    BXD39
    M
    251197817942
    3
    35777
    BXD40 F
    1
    59
    BXD40
    F
    251197817943
    2
    35778
    BXD77 M
    1
    500
    BXD77
    M
    251197817959
    2
    35768
    B6D2F1 M B1
    1
    609
    B6D2F1
    M
    251197817934
    3
    35779
    BXD8 F
    1
    613
    BXD8
    F
    251197817960
    3
    35781
    C57BL/6J M B1
    1
    614
    C57BL/6J
    M
    251197818088
    2
    35780
    C57BL/6J M B1R
    1
    614
    C57BL/6J
    M
    251197817961
    2
    35535
    DBA/2J F B2
    2
    1
    DBA/2J
    F
    251197818160
    3
    35537
    DBA/2J F B2(3)
    2
    3
    DBA/2J
    F
    251197818162
    3
    35536
    DBA/2J M B2
    2
    4
    DBA/2J
    M
    251197818161
    3
    35941
    C57BL/6J F
    2
    5
    C57BL/6J
    F
    251197818159
    3
    35509
    C57BL/6J M B2
    2
    8
    C57BL/6J
    M
    251197818158
    3
    35529
    C57BL/6J M B2R
    2
    8
    C57BL/6J
    M
    251197818086
    3
    35540
    BXD11 M
    2
    12
    BXD11
    M
    251197818178
    2
    35541
    BXD13 F
    2
    16
    BXD13
    F
    251197818179
    3
    35542
    BXD21 M
    2
    21
    BXD21
    M
    251197818180
    3
    35514
    BXD31 M
    2
    34
    BXD31
    M
    251197817944
    2
    35515
    BXD32 F
    2
    36
    BXD32
    F
    251197817945
    2
    35516
    BXD42 M
    2
    63
    BXD42
    M
    251197817946
    3
    35517
    BXD5 F
    2
    65
    BXD5
    F
    251197817947
    2
    35527
    BXD62 M
    2
    79
    BXD62
    M
    251197817948
    3
    35531
    BXD43 F
    2
    81
    BXD43
    F
    251197818085
    3
    35539
    B6D2F1 F
    2
    601
    B6D2F1
    F
    251197818177
    3
    35528
    B6D2F1 M
    2
    603
    B6D2F1
    M
    251197818084
    3
    35919
    DBA/2J F B3
    3
    1
    DBA/2J
    F
    251197817968
    3
    35918
    C57BL/6J F B3
    3
    5
    C57BL/6J
    F
    251197817967
    3
    35923
    BXD14 M
    3
    17
    BXD14
    M
    251197817972
    3
    35924
    BXD15 F
    3
    19
    BXD15
    F
    251197817973
    3
    35938
    BXD36M
    3
    46
    BXD36
    M
    16011978011758
    3
    35937
    BXD38F
    3
    52
    BXD38
    F
    16011978011757
    3
    35939
    BXD6 M
    3
    69
    BXD6
    M
    16011978011759
    3
    35936
    BXD9F
    3
    70
    BXD9
    F
    16011978011756
    3
    35930
    BXD60 M
    3
    86
    BXD60
    M
    16011978011860
    2
    35931
    BXD44 F
    3
    87
    BXD44
    F
    16011978011861
    3
    35916
    C57BL/6J M B3
    3
    506
    C57BL/6J
    M
    251197817964
    2
    35932
    C57BL/6J M B3R
    3
    506
    C57BL/6J
    M
    16011978011862
    2
    35917
    DBA/2J M B3
    3
    509
    DBA/2J
    M
    251197817966
    2
    35921
    B6D2F1 F B3
    3
    602
    B6D2F1
    F
    251197817970
    3
    35920
    C57BL/6J F B3(605)
    3
    605
    C57BL/6J
    F
    251197817969
    3
    35922
    B6D2F1 M B3
    3
    702
    B6D2F1
    M
    251197817971
    3
    39357
    B4R DBA/2J F
    4R
    1
    DBA/2J
    F
    251197826041
    3
    39356
    B4R C57BL/6J F B4
    4R
    5
    C57BL/6J
    F
    251197826040
    3
    39383
    B4R C57BL/6J F B4R
    4R
    5
    C57BL/6J
    F
    251197826108
    3
    39352
    B4R BXD24 F
    4R
    25
    BXD24
    M
    251197826026
    2
    39355
    B4R BXD40 M
    4R
    60
    BXD40
    M
    251197826029
    3
    39361
    B4R BXD51 M
    4R
    77
    BXD51
    M
    251197826105
    3
    39360
    B4R DBA/2J F (607)
    4R
    607
    DBA/2J
    F
    251197826043
    3
    39354
    B4R BXD32 M
    4R
    701
    BXD32
    M
    251197826028
    3
    39351
    B4R BXD23 F
    4R
    704
    BXD14
    F
    251197826025
    3
    39359
    B4R BXD16 M
    4R
    803
    BXD16
    M
    251197826044
    3
    39353
    B4R BXD19 F
    4R
    804
    BXD19
    F
    251197826027
    3
    39381
    B4R BXD62 F
    4R
    812
    BXD62
    F
    251197826106
    3
    39348
    B4R BXD69 F
    4R
    813
    BXD69
    F
    251197825672
    3
    39349
    B4R BXD73 M
    4R
    816
    BXD73
    M
    251197825673
    3
    39347
    B4R BXD8 M
    4R
    817
    BXD8
    M
    251197825670
    3
    39382
    B4R BXD85 F
    4R
    818
    BXD85
    F
    251197826107
    3
    39346
    B4R BXD86 F
    4R
    819
    BXD86
    F
    251197825669
    3
    39350
    B4R BXD92 F
    4R
    821
    BXD92
    F
    251197825674
    3
    39358
    B4R C57BL/6J F B4(823)
    4R
    823
    C57BL/6J
    F
    251197826042
    3
    35550
    DBA/2J F B5
    5
    1
    DBA/2J
    F
    251197817950
    3
    35549
    C57BL/6J F B5
    5
    5
    C57BL/6J
    F
    251197817949
    3
    35587
    C57BL/6J F B5R
    5
    5
    C57BL/6J
    F
    251197818022
    3
    35558
    BXD1 F
    5
    11
    BXD1
    F
    251197818036
    2
    35551
    BXD12 M
    5
    14
    BXD12
    M
    251197817952
    3
    35552
    BXD13 M
    5
    15
    BXD13
    M
    251197817953
    2
    35584
    BXD15 M
    5
    18
    BXD15
    M
    251197818034
    3
    35557
    BXD28 F
    5
    28
    BXD28
    F
    251197818035
    3
    35553
    BXD60 F
    5
    84
    BXD60
    F
    251197818019
    3
    35585
    BXD77 F
    5
    499
    BXD77
    F
    251197818037
    3
    35555
    BXD45 F
    5
    515
    BXD45
    F
    251197818021
    2
    35787
    DBA/2J F B6
    6
    1
    DBA/2J
    F
    251197818005
    3
    35786
    C57BL/6J F B6
    6
    5
    C57BL/6J
    F
    251197818004
    3
    35800
    C57BL/6J F B6R
    6
    5
    C57BL/6J
    F
    251197818123
    3
    35795
    BXD21 F
    6
    20
    BXD21
    F
    251197818114
    3
    35791
    BXD24 M
    6
    26
    BXD24
    M
    251197818115
    3
    35794
    BXD31 F
    6
    32
    BXD31
    F
    251197818118
    2
    35792
    BXD33 F
    6
    40
    BXD33
    F
    251197818116
    3
    35790
    BXD34 M
    6
    42
    BXD34
    M
    251197818008
    3
    35793
    BXD9 M
    6
    71
    BXD9
    M
    251197818117
    3
    35797
    BXD44 M
    6
    502
    BXD44
    M
    251197818120
    2
    35788
    C57BL/6J M B6(507)
    6
    507
    C57BL/6J
    M
    251197818006
    2
    35789
    DBA/2J M B6(510)
    6
    510
    DBA/2J
    M
    251197818007
    2
    35798
    BXD48 M
    6
    512
    BXD48
    M
    251197818121
    2
    35796
    BXD2 F
    6
    612
    BXD2
    F
    251197818119
    3
    35567
    DBA/2J F B7
    7
    1
    DBA/2J
    F
    251197818069
    3
    35566
    C57BL/6J F B7
    7
    5
    C57BL/6J
    F
    251197818023
    3
    35577
    C57BL/6J F B7R
    7
    5
    C57BL/6J
    F
    251197818156
    3
    35568
    BXD29 M
    7
    31
    BXD29
    M
    251197818071
    3
    35570
    BXD38 M
    7
    51
    BXD38
    M
    251197818073
    3
    35573
    BXD42 F
    7
    62
    BXD42
    F
    251197818126
    3
    35574
    BXD5 M
    7
    66
    BXD5
    M
    251197818127
    3
    35940
    BXD6 F
    7
    68
    BXD6
    F
    251197818128
    3
    35508
    BXD43 M
    7
    82
    BXD43
    M
    251197818157
    2
    35575
    DBA/2J M B7
    7
    511
    DBA/2J
    M
    251197818070
    2
    38670
    DBA/2J F B8-02 (1)
    8
    1
    DBA/2J
    F
    251197828123
    3
    38669
    C57BL/6J F
    8
    5
    C57BL/6J
    F
    251197828122
    3
    38668
    C57BL/6J F
    8
    5
    C57BL/6J
    F
    251197828099
    3
    38697
    BXD36 F R
    8
    48
    BXD36
    F
    251197828218
    3
    38698
    BXD39 F R
    8
    56
    BXD39
    F
    251197828219
    3
    38661
    BXD48 F
    8
    92
    BXD48
    F
    251197828096
    3
    38673
    BXD14 F
    8
    610
    BXD23
    F
    251197828126
    3
    38686
    BXD2 M
    8
    611
    BXD2
    M
    251197828134
    3
    38672
    BXD11/TY F
    8
    703
    BXD11/TY
    F
    251197828125
    3
    38671
    B6D2F1 F
    8
    801
    B6D2F1
    F
    251197828124
    3
    38694
    BXD16 F
    8
    802
    BXD16
    F
    251197828215
    3
    38696
    BXD19 M
    8
    805
    BXD19
    M
    251197828217
    2
    38695
    BXD33 F
    8
    809
    BXD33
    F
    251197828216
    3
    38667
    BXD45 M
    8
    811
    BXD45
    M
    251197828098
    3
    38687
    BXD69 M
    8
    814
    BXD69
    M
    251197828135
    3
    38688
    BXD73 F
    8
    815
    BXD73
    F
    251197828136
    2
    38689
    BXD92 M
    8
    822
    BXD92
    M
    251197828146
    3
    38685
    BXD86 M
    8
    901
    BXD86
    M
    251197828133
    3
    38660
    BXD51 F
    8
    902
    BXD51
    F
    251197828092
    3
    38666
    BXD85 M
    8
    903
    BXD85
    M
    251197828097
    3
    +
    +
    + +
    +

    Error-Checking Note: The strains of pooled samples were verified by Daniel Gatti and Rob Williams by comparing the genotype on the arrays with the known genotype for each strain. Sample 17 (BXD14M) did not match any other strain. This sample was removed from the dataset. Sample 610 (BXD14F) was found to match the BXD23F genotype and was reassigned. Samples 24 and 704 (BXD23M & F) matched the BXD14 genotype and were reassigned as BXD14 mice. Samples 46 and 48 were found to be of mixed genotype and were removed from the dataset.

    + +

    The sexes of each pooled sample were checked by Daniel Gatti using Y chromosome expression. Sample 25 (BXD24F) was found to be male. This change was made and there are two BXD24 male samples. Samples 40 and 809 (BXD33) were both found to be female.

    +
    + + +

        About data processing:

    +
    Expression data were initially expressed as the ratio of the liver fluorescence signal to that generated by the reference mRNA sample (liver, kidney, lung, brain, and spleen) for each probe. Data were normalized using a robust LOWESS smoothing method that adjusts for non-linearity of signal in the two channels. We then computed the log base 2 of these ratios (median). In this particular data set, values range from an extreme low of approximately -8 to a high of approximately +4. Of the full set of 20868 probes, a total of 1507 probes (or 7.2%) have a value greater than +1.0; 3651 (17.5%) have a value greater than 0.5; and 10821 (51.9%) have a value of greater than 1.0. It is possible for any user to recompute these type of counts and percentages using the "mean=(low_value, high_value)" command (for example, "mean=(1 5)" will provide a count of all probes with values between 1 and 5). + +

    A value of -1 indicates that expression in liver is roughly 1/2 that in the control; a value of -2 indicates that expression in the liver is roughly 1/4 that in the control, etc. Conversely, a value of +2 indicates that the expression in liver is 4-fold greater in liver. + +

    +

    + + + + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probes were determined by NCBI's megablast using the NCBI M32 genomic sequence. Gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/ ). We thank Kenneth Phillips (Paradigm Genetics, Inc) for helping generate the probes position data set. +
    + + +

        Data source acknowledgment:

    +
    This project was supported by ES10126, ES11391, ES11660 and P20-MH 62009 to KFM and RW. Ivan Rusyn was a recipient of a Transition to Independent Position Award (ES11660) from the National Institute of Environmental Health Sciences. Work by Paradigm Genetics, Inc. in design of the Toxicogenomics Micro (G4121A) array was supported by NIEHS contract N01-ES-25497.
    + + +
    Please contact either:
    + + +
    +Ivan Rusyn at the Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA or
    +
    Rob Williams at the Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, TN 38163, USA
    + + + +

        Citation:

    + + +
    +

    The first manuscript from this work is in press: + +

    Gatti D, Maki A, Chesler EJ, Kosyk O, Kirova R, Lu L, Manly KF, Qu Y, Williams RW, Perkins A, Langston ME, Threadgill DW, Rusyn I (2007) Genome-level analysis of genetic regulation of liver gene expression networks. Hepatology, in press + +

    + +

        About this text file:

    + + + +
    +This text file originally generated by Ivan Rusyn, David W. Threadgill and Robert W. Williams, July 2004. Updated by RWW, Nov 14, 16, 2004. Updated by IR, Dec 1, 2004. Updated by DMG, Jan. 5, 2006; RWW, April 17, 2007. + +
    + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/LV_G_0106_F.html b/web/dbdoc/LV_G_0106_F.html new file mode 100755 index 00000000..87d67a78 --- /dev/null +++ b/web/dbdoc/LV_G_0106_F.html @@ -0,0 +1,324 @@ + + UNC Agilent G4121A Liver Database (January/06 Freeze) Orig LOWESS/ WebQTL + + + + + + + + + + + + + + + + + + + + +
    +

    UNC Agilent G4121A Liver Database (Jan06 Freeze) Orig LOWESS modify this page

    Accession number: GN104

    + + +

        Summary:

    + +
    +This data set provides estimates of mRNA expression in livers of 38 adult BXD recombinant inbred mice measured using Agilent G4121A microarray. Data were generated by a consortium of investigators at the University of North Carolina at Chapel Hill (Akira Maki, Daniel Gatti, David Threadgill, and Ivan Rusyn) and at the University of Tennessee Heath Science Center (Lu Lu, Elissa Chesler, Ken Manly, and Rob Williams). Image intensity data were processed using a locally weighted scatterplot smooth (LOWESS) and are presented without further modification (Orig LOWESS; see section below on Data Processing). This is the final data freeze. +
    + + +

        About the cases used to generate this set of data:

    + +
    Ninety-six BXD liver sample pools were obtained from animals reared at UTHSC in a pathogen-free vivarium. Mice were experimentally naive and housed at weaning (20 to 24 days-of-age) in same-sex groups in standard mouse shoebox cages. Mice were 56 to 177 days old at the time of sacrifice. Forty mouse strains were used of which 37 were represented by both sexes.
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain Name
    Sex
    WebQTL Strain ID
    C57BL/6J
    M and F
    C57BL/6J
    DBA/2J
    M and F
    DBA/2J
    B6D2F1
    M and F
    F1
    BXD1
    M and F
    BXD1
    BXD2
    M and F
    BXD2
    BXD5
    M and F
    BXD5
    BXD6
    M and F
    BXD6
    BXD8
    M and F
    BXD8
    BXD9
    M and F
    BXD9
    BXD11
    M and F
    BXD11
    BXD12
    M and F
    BXD12
    BXD13
    M and F
    BXD13
    BXD14
    F
    BXD14
    BXD15
    M and F
    BXD15
    BXD21
    M and F
    BXD21
    BXD23
    M and F
    BXD23
    BXD24
    M
    BXD24
    BXD28
    M and F
    BXD28
    BXD29
    M and F
    BXD29
    BXD31
    M and F
    BXD31
    BXD32
    M and F
    BXD32
    BXD33
    F
    BXD33
    BXD34
    M and F
    BXD34
    BXD38
    M and F
    BXD38
    BXD39
    M and F
    BXD39
    BXD40
    M and F
    BXD40
    BXD42
    M and F
    BXD42
    BXD43
    M and F
    BXD43
    BXD44
    M and F
    BXD44
    BXD45
    M and F
    BXD45
    BXD48
    M and F
    BXD48
    BXD51
    M and F
    BXD51
    BXD60
    M and F
    BXD60
    BXD62
    M and F
    BXD62
    BXD69
    M and F
    BXD69
    BXD73
    M and F
    BXD73
    BXD77
    M and F
    BXD77
    BXD85
    M and F
    BXD85
    BXD86
    M and F
    BXD86
    BXD92
    M and F
    BXD92
    +
    +
    + +
    +C57BL/6J, DBA/2J, and BXD1 through BXD42 were originally obtained from The Jackson Laboratory. Advanced intercross BXD strains (BXD43 and higher) were generated at Princeton University and UTHSC (Peirce and Lu, 2004). All of these new strains were inbred for at least 14 generations. +
    + + +

        About the tissue used to generate these data:

    +

    Animals were killed by cervical dislocation. The entire liver was removed within less than 5 minutes by Zhiping Jia or Hongtao Zhai and placed in RNAlater (Ambion) overnight at 4 degrees C. Tissue was stored in single vials (2 to 3 cases per vial) at -80 degrees C. Tissue vials were shipped to UNC on ice by FedEX. Prior to isolation of RNA, liver samples from the same strain and sex (2 to 3 animals) were pooled in equal amount and minced in a homogenization buffer using an electric homogenizer. Total RNA was isolated using Qiagen RNeasy Mini kits according to the manufacturer's instructions. RNA purity and quality were verified using a BioAnalyzer 2100 and Low RNA Input Linear Amplification kits (Agilent Technologies, Wilmington, DE) in these experiments. RNA labeling, array hybridization and washing and other procedures were performed according to the manufacturer's protocols. A common reference design was used. Male C57BL/6J mouse pooled (equal amounts of RNA from liver, kidney, lung, brain and spleen) RNA provided by the Toxicogenomics Research Consortium was used as a common reference in all these experiments. +

    + +

        About the array platform

    + +
    Samples were assayed using G4121A Agilent oligomer microarray glass slides ( GEO Platform ID GPL891). This microarray estimate expression of approximately 20,842 mouse genes, including a special set of toxicology transcripts nominated by a collaboration that included the National Institute of Environmental Health Sciences (NIEHS) and members of the Toxicogenomics Research Consortium. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Experiment ID
    Experiment Name
    Batch#
    Sample ID
    Strain
    Sex
    Array Barcode#
    Pool Size
    35783
    DBA/2J F B1
    1
    1
    DBA/2J
    F
    251197818090
    3
    35782
    C57BL/6J F B1
    1
    5
    C57BL/6J
    F
    251197818089
    3
    35770
    BXD1 M
    1
    9
    BXD1
    M
    251197817936
    3
    35771
    BXD12 F
    1
    13
    BXD12
    F
    251197817937
    3
    35772
    BXD23 M
    1
    24
    BXD14
    M
    251197817938
    3
    35774
    BXD28 M
    1
    29
    BXD28
    M
    251197817940
    3
    35775
    BXD29 F
    1
    30
    BXD29
    F
    251197817941
    3
    35773
    BXD34 F
    1
    43
    BXD34
    F
    251197817939
    3
    35776
    BXD39 M
    1
    54
    BXD39
    M
    251197817942
    3
    35777
    BXD40 F
    1
    59
    BXD40
    F
    251197817943
    2
    35778
    BXD77 M
    1
    500
    BXD77
    M
    251197817959
    2
    35768
    B6D2F1 M B1
    1
    609
    B6D2F1
    M
    251197817934
    3
    35779
    BXD8 F
    1
    613
    BXD8
    F
    251197817960
    3
    35781
    C57BL/6J M B1
    1
    614
    C57BL/6J
    M
    251197818088
    2
    35780
    C57BL/6J M B1R
    1
    614
    C57BL/6J
    M
    251197817961
    2
    35535
    DBA/2J F B2
    2
    1
    DBA/2J
    F
    251197818160
    3
    35537
    DBA/2J F B2(3)
    2
    3
    DBA/2J
    F
    251197818162
    3
    35536
    DBA/2J M B2
    2
    4
    DBA/2J
    M
    251197818161
    3
    35941
    C57BL/6J F
    2
    5
    C57BL/6J
    F
    251197818159
    3
    35509
    C57BL/6J M B2
    2
    8
    C57BL/6J
    M
    251197818158
    3
    35529
    C57BL/6J M B2R
    2
    8
    C57BL/6J
    M
    251197818086
    3
    35540
    BXD11 M
    2
    12
    BXD11
    M
    251197818178
    2
    35541
    BXD13 F
    2
    16
    BXD13
    F
    251197818179
    3
    35542
    BXD21 M
    2
    21
    BXD21
    M
    251197818180
    3
    35514
    BXD31 M
    2
    34
    BXD31
    M
    251197817944
    2
    35515
    BXD32 F
    2
    36
    BXD32
    F
    251197817945
    2
    35516
    BXD42 M
    2
    63
    BXD42
    M
    251197817946
    3
    35517
    BXD5 F
    2
    65
    BXD5
    F
    251197817947
    2
    35527
    BXD62 M
    2
    79
    BXD62
    M
    251197817948
    3
    35531
    BXD43 F
    2
    81
    BXD43
    F
    251197818085
    3
    35539
    B6D2F1 F
    2
    601
    B6D2F1
    F
    251197818177
    3
    35528
    B6D2F1 M
    2
    603
    B6D2F1
    M
    251197818084
    3
    35919
    DBA/2J F B3
    3
    1
    DBA/2J
    F
    251197817968
    3
    35918
    C57BL/6J F B3
    3
    5
    C57BL/6J
    F
    251197817967
    3
    35923
    BXD14 M
    3
    17
    BXD14
    M
    251197817972
    3
    35924
    BXD15 F
    3
    19
    BXD15
    F
    251197817973
    3
    35938
    BXD36M
    3
    46
    BXD36
    M
    16011978011758
    3
    35937
    BXD38F
    3
    52
    BXD38
    F
    16011978011757
    3
    35939
    BXD6 M
    3
    69
    BXD6
    M
    16011978011759
    3
    35936
    BXD9F
    3
    70
    BXD9
    F
    16011978011756
    3
    35930
    BXD60 M
    3
    86
    BXD60
    M
    16011978011860
    2
    35931
    BXD44 F
    3
    87
    BXD44
    F
    16011978011861
    3
    35916
    C57BL/6J M B3
    3
    506
    C57BL/6J
    M
    251197817964
    2
    35932
    C57BL/6J M B3R
    3
    506
    C57BL/6J
    M
    16011978011862
    2
    35917
    DBA/2J M B3
    3
    509
    DBA/2J
    M
    251197817966
    2
    35921
    B6D2F1 F B3
    3
    602
    B6D2F1
    F
    251197817970
    3
    35920
    C57BL/6J F B3(605)
    3
    605
    C57BL/6J
    F
    251197817969
    3
    35922
    B6D2F1 M B3
    3
    702
    B6D2F1
    M
    251197817971
    3
    39357
    B4R DBA/2J F
    4R
    1
    DBA/2J
    F
    251197826041
    3
    39356
    B4R C57BL/6J F B4
    4R
    5
    C57BL/6J
    F
    251197826040
    3
    39383
    B4R C57BL/6J F B4R
    4R
    5
    C57BL/6J
    F
    251197826108
    3
    39352
    B4R BXD24 F
    4R
    25
    BXD24
    M
    251197826026
    2
    39355
    B4R BXD40 M
    4R
    60
    BXD40
    M
    251197826029
    3
    39361
    B4R BXD51 M
    4R
    77
    BXD51
    M
    251197826105
    3
    39360
    B4R DBA/2J F (607)
    4R
    607
    DBA/2J
    F
    251197826043
    3
    39354
    B4R BXD32 M
    4R
    701
    BXD32
    M
    251197826028
    3
    39351
    B4R BXD23 F
    4R
    704
    BXD14
    F
    251197826025
    3
    39359
    B4R BXD16 M
    4R
    803
    BXD16
    M
    251197826044
    3
    39353
    B4R BXD19 F
    4R
    804
    BXD19
    F
    251197826027
    3
    39381
    B4R BXD62 F
    4R
    812
    BXD62
    F
    251197826106
    3
    39348
    B4R BXD69 F
    4R
    813
    BXD69
    F
    251197825672
    3
    39349
    B4R BXD73 M
    4R
    816
    BXD73
    M
    251197825673
    3
    39347
    B4R BXD8 M
    4R
    817
    BXD8
    M
    251197825670
    3
    39382
    B4R BXD85 F
    4R
    818
    BXD85
    F
    251197826107
    3
    39346
    B4R BXD86 F
    4R
    819
    BXD86
    F
    251197825669
    3
    39350
    B4R BXD92 F
    4R
    821
    BXD92
    F
    251197825674
    3
    39358
    B4R C57BL/6J F B4(823)
    4R
    823
    C57BL/6J
    F
    251197826042
    3
    35550
    DBA/2J F B5
    5
    1
    DBA/2J
    F
    251197817950
    3
    35549
    C57BL/6J F B5
    5
    5
    C57BL/6J
    F
    251197817949
    3
    35587
    C57BL/6J F B5R
    5
    5
    C57BL/6J
    F
    251197818022
    3
    35558
    BXD1 F
    5
    11
    BXD1
    F
    251197818036
    2
    35551
    BXD12 M
    5
    14
    BXD12
    M
    251197817952
    3
    35552
    BXD13 M
    5
    15
    BXD13
    M
    251197817953
    2
    35584
    BXD15 M
    5
    18
    BXD15
    M
    251197818034
    3
    35557
    BXD28 F
    5
    28
    BXD28
    F
    251197818035
    3
    35553
    BXD60 F
    5
    84
    BXD60
    F
    251197818019
    3
    35585
    BXD77 F
    5
    499
    BXD77
    F
    251197818037
    3
    35555
    BXD45 F
    5
    515
    BXD45
    F
    251197818021
    2
    35787
    DBA/2J F B6
    6
    1
    DBA/2J
    F
    251197818005
    3
    35786
    C57BL/6J F B6
    6
    5
    C57BL/6J
    F
    251197818004
    3
    35800
    C57BL/6J F B6R
    6
    5
    C57BL/6J
    F
    251197818123
    3
    35795
    BXD21 F
    6
    20
    BXD21
    F
    251197818114
    3
    35791
    BXD24 M
    6
    26
    BXD24
    M
    251197818115
    3
    35794
    BXD31 F
    6
    32
    BXD31
    F
    251197818118
    2
    35792
    BXD33 F
    6
    40
    BXD33
    F
    251197818116
    3
    35790
    BXD34 M
    6
    42
    BXD34
    M
    251197818008
    3
    35793
    BXD9 M
    6
    71
    BXD9
    M
    251197818117
    3
    35797
    BXD44 M
    6
    502
    BXD44
    M
    251197818120
    2
    35788
    C57BL/6J M B6(507)
    6
    507
    C57BL/6J
    M
    251197818006
    2
    35789
    DBA/2J M B6(510)
    6
    510
    DBA/2J
    M
    251197818007
    2
    35798
    BXD48 M
    6
    512
    BXD48
    M
    251197818121
    2
    35796
    BXD2 F
    6
    612
    BXD2
    F
    251197818119
    3
    35567
    DBA/2J F B7
    7
    1
    DBA/2J
    F
    251197818069
    3
    35566
    C57BL/6J F B7
    7
    5
    C57BL/6J
    F
    251197818023
    3
    35577
    C57BL/6J F B7R
    7
    5
    C57BL/6J
    F
    251197818156
    3
    35568
    BXD29 M
    7
    31
    BXD29
    M
    251197818071
    3
    35570
    BXD38 M
    7
    51
    BXD38
    M
    251197818073
    3
    35573
    BXD42 F
    7
    62
    BXD42
    F
    251197818126
    3
    35574
    BXD5 M
    7
    66
    BXD5
    M
    251197818127
    3
    35940
    BXD6 F
    7
    68
    BXD6
    F
    251197818128
    3
    35508
    BXD43 M
    7
    82
    BXD43
    M
    251197818157
    2
    35575
    DBA/2J M B7
    7
    511
    DBA/2J
    M
    251197818070
    2
    38670
    DBA/2J F B8-02 (1)
    8
    1
    DBA/2J
    F
    251197828123
    3
    38669
    C57BL/6J F
    8
    5
    C57BL/6J
    F
    251197828122
    3
    38668
    C57BL/6J F
    8
    5
    C57BL/6J
    F
    251197828099
    3
    38697
    BXD36 F R
    8
    48
    BXD36
    F
    251197828218
    3
    38698
    BXD39 F R
    8
    56
    BXD39
    F
    251197828219
    3
    38661
    BXD48 F
    8
    92
    BXD48
    F
    251197828096
    3
    38673
    BXD14 F
    8
    610
    BXD23
    F
    251197828126
    3
    38686
    BXD2 M
    8
    611
    BXD2
    M
    251197828134
    3
    38672
    BXD11/TY F
    8
    703
    BXD11/TY
    F
    251197828125
    3
    38671
    B6D2F1 F
    8
    801
    B6D2F1
    F
    251197828124
    3
    38694
    BXD16 F
    8
    802
    BXD16
    F
    251197828215
    3
    38696
    BXD19 M
    8
    805
    BXD19
    M
    251197828217
    2
    38695
    BXD33 F
    8
    809
    BXD33
    F
    251197828216
    3
    38667
    BXD45 M
    8
    811
    BXD45
    M
    251197828098
    3
    38687
    BXD69 M
    8
    814
    BXD69
    M
    251197828135
    3
    38688
    BXD73 F
    8
    815
    BXD73
    F
    251197828136
    2
    38689
    BXD92 M
    8
    822
    BXD92
    M
    251197828146
    3
    38685
    BXD86 M
    8
    901
    BXD86
    M
    251197828133
    3
    38660
    BXD51 F
    8
    902
    BXD51
    F
    251197828092
    3
    38666
    BXD85 M
    8
    903
    BXD85
    M
    251197828097
    3
    +
    +
    + +
    +

    The strains of pooled samples were verified by Daniel Gatti and Rob Williams by comparing the genotype on the arrays with the known genotype for each strain. Sample 17 (BXD14M) did not match any other strain. This sample was removed from the dataset. Sample 610 (BXD14F) was found to match the BXD23F genotype and was reassigned. Samples 24 & 704 (BXD23M & F) matched the BXD14 genotype and were reassigned as BXD14 mice. Samples 46 & 48 were found to be of mixed genotype and were removed from the dataset.

    +

    The sexes of each pooled sample were checked by Daniel Gatti using Y chromosome expression. Sample 25 (BXD24F) was found to be male. This change was made and there are two BXD24 male samples. Samples 40 & 809 (BXD33) were both found to be female.

    +
    + + +

        About data processing:

    +
    Expression data were initially expressed as the ratio of the liver fluorescence signal to that generated by the reference mRNA sample (liver, kidney, lung, brain, and spleen) for each probe. Data were normalized using a robust LOWESS smoothing method that adjusts for non-linearity of signal in the two channels. We then computed the log base 2 of these ratios (median). A value of -1 indicates that expression in liver is roughly 1/2 that in the control; a value of -2 indicates that expression in the liver is roughly 1/4 that in the control, etc. Conversely, a value of +2 indicates that the expression in liver is 4-fold greater in liver. +
    + + + + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probes were determined by NCBI's megablast using the NCBI M32 genomic sequence. Gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/ ). We thank Kenneth Phillips (Paradigm Genetics, Inc) for helping generate the probes position data set. +
    + + +

        Data source acknowledgment:

    +
    This project was supported by ES10126, ES11391, ES11660 and P20-MH 62009 to KFM and RW. Ivan Rusyn was a recipient of a Transition to Independent Position Award (ES11660) from the National Institute of Environmental Health Sciences. Work by Paradigm Genetics, Inc. in design of the Toxicogenomics Micro (G4121A) array was supported by NIEHS contract N01-ES-25497.
    + + +
    Please contact either:
    + + +
    Ivan Rusyn at the Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA or
    +
    Rob Williams at the Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, TN 38163, USA
    + + +

        About this text file:

    + +
    +This text file originally generated by Ivan Rusyn, David W. Threadgill and Robert W. Williams, July 2004. Updated by RWW, Nov 14, 16, 2004. Updated by IR, Dec 1, 2004. Updated by DMG, Jan. 5, 2006. + +
    + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/LV_G_0106_M.html b/web/dbdoc/LV_G_0106_M.html new file mode 100755 index 00000000..56e79e33 --- /dev/null +++ b/web/dbdoc/LV_G_0106_M.html @@ -0,0 +1,325 @@ + + UNC Agilent G4121A Liver Database (January/06 Freeze) Orig LOWESS/ WebQTL + + + + + + + + + + + + + + + + + + + + +
    +

    UNC Agilent G4121A Liver Database (Jan06 Freeze) Orig LOWESS modify this page

    Accession number: GN103

    + + +

        Summary:

    + +
    +This data set provides estimates of mRNA expression in livers of 38 adult BXD recombinant inbred mice measured using Agilent G4121A microarray. Data were generated by a consortium of investigators at the University of North Carolina at Chapel Hill (Akira Maki, Daniel Gatti, David Threadgill, and Ivan Rusyn) and at the University of Tennessee Heath Science Center (Lu Lu, Elissa Chesler, Ken Manly, and Rob Williams). Image intensity data were processed using a locally weighted scatterplot smooth (LOWESS) and are presented without further modification (Orig LOWESS; see section below on Data Processing). This is the final data freeze. +
    + + +

        About the cases used to generate this set of data:

    + +
    Ninety-six BXD liver sample pools were obtained from animals reared at UTHSC in a pathogen-free vivarium. Mice were experimentally naive and housed at weaning (20 to 24 days-of-age) in same-sex groups in standard mouse shoebox cages. Mice were 56 to 177 days old at the time of sacrifice. Forty mouse strains were used of which 37 were represented by both sexes.
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain Name
    Sex
    WebQTL Strain ID
    C57BL/6J
    M and F
    C57BL/6J
    DBA/2J
    M and F
    DBA/2J
    B6D2F1
    M and F
    F1
    BXD1
    M and F
    BXD1
    BXD2
    M and F
    BXD2
    BXD5
    M and F
    BXD5
    BXD6
    M and F
    BXD6
    BXD8
    M and F
    BXD8
    BXD9
    M and F
    BXD9
    BXD11
    M and F
    BXD11
    BXD12
    M and F
    BXD12
    BXD13
    M and F
    BXD13
    BXD14
    F
    BXD14
    BXD15
    M and F
    BXD15
    BXD21
    M and F
    BXD21
    BXD23
    M and F
    BXD23
    BXD24
    M
    BXD24
    BXD28
    M and F
    BXD28
    BXD29
    M and F
    BXD29
    BXD31
    M and F
    BXD31
    BXD32
    M and F
    BXD32
    BXD33
    F
    BXD33
    BXD34
    M and F
    BXD34
    BXD38
    M and F
    BXD38
    BXD39
    M and F
    BXD39
    BXD40
    M and F
    BXD40
    BXD42
    M and F
    BXD42
    BXD43
    M and F
    BXD43
    BXD44
    M and F
    BXD44
    BXD45
    M and F
    BXD45
    BXD48
    M and F
    BXD48
    BXD51
    M and F
    BXD51
    BXD60
    M and F
    BXD60
    BXD62
    M and F
    BXD62
    BXD69
    M and F
    BXD69
    BXD73
    M and F
    BXD73
    BXD77
    M and F
    BXD77
    BXD85
    M and F
    BXD85
    BXD86
    M and F
    BXD86
    BXD92
    M and F
    BXD92
    +
    +
    + +
    +C57BL/6J, DBA/2J, and BXD1 through BXD42 were originally obtained from The Jackson Laboratory. Advanced intercross BXD strains (BXD43 and higher) were generated at Princeton University and UTHSC (Peirce and Lu, 2004). All of these new strains were inbred for at least 14 generations. +
    + + +

        About the tissue used to generate these data:

    +

    Animals were killed by cervical dislocation. The entire liver was removed within less than 5 minutes by Zhiping Jia or Hongtao Zhai and placed in RNAlater (Ambion) overnight at 4 degrees C. Tissue was stored in single vials (2 to 3 cases per vial) at -80 degrees C. Tissue vials were shipped to UNC on ice by FedEX. Prior to isolation of RNA, liver samples from the same strain and sex (2 to 3 animals) were pooled in equal amount and minced in a homogenization buffer using an electric homogenizer. Total RNA was isolated using Qiagen RNeasy Mini kits according to the manufacturer's instructions. RNA purity and quality were verified using a BioAnalyzer 2100 and Low RNA Input Linear Amplification kits (Agilent Technologies, Wilmington, DE) in these experiments. RNA labeling, array hybridization and washing and other procedures were performed according to the manufacturer's protocols. A common reference design was used. Male C57BL/6J mouse pooled (equal amounts of RNA from liver, kidney, lung, brain and spleen) RNA provided by the Toxicogenomics Research Consortium was used as a common reference in all these experiments. +

    + +

        About the array platform

    + +
    Samples were assayed using G4121A Agilent oligomer microarray glass slides (GEO Platform ID GPL891). This microarray estimate expression of approximately 20,842 mouse genes, including a special set of toxicology transcripts nominated by a collaboration that included the National Institute of Environmental Health Sciences (NIEHS) and members of the Toxicogenomics Research Consortium. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Experiment ID
    Experiment Name
    Batch#
    Sample ID
    Strain
    Sex
    Array Barcode#
    Pool Size
    35783
    DBA/2J F B1
    1
    1
    DBA/2J
    F
    251197818090
    3
    35782
    C57BL/6J F B1
    1
    5
    C57BL/6J
    F
    251197818089
    3
    35770
    BXD1 M
    1
    9
    BXD1
    M
    251197817936
    3
    35771
    BXD12 F
    1
    13
    BXD12
    F
    251197817937
    3
    35772
    BXD23 M
    1
    24
    BXD14
    M
    251197817938
    3
    35774
    BXD28 M
    1
    29
    BXD28
    M
    251197817940
    3
    35775
    BXD29 F
    1
    30
    BXD29
    F
    251197817941
    3
    35773
    BXD34 F
    1
    43
    BXD34
    F
    251197817939
    3
    35776
    BXD39 M
    1
    54
    BXD39
    M
    251197817942
    3
    35777
    BXD40 F
    1
    59
    BXD40
    F
    251197817943
    2
    35778
    BXD77 M
    1
    500
    BXD77
    M
    251197817959
    2
    35768
    B6D2F1 M B1
    1
    609
    B6D2F1
    M
    251197817934
    3
    35779
    BXD8 F
    1
    613
    BXD8
    F
    251197817960
    3
    35781
    C57BL/6J M B1
    1
    614
    C57BL/6J
    M
    251197818088
    2
    35780
    C57BL/6J M B1R
    1
    614
    C57BL/6J
    M
    251197817961
    2
    35535
    DBA/2J F B2
    2
    1
    DBA/2J
    F
    251197818160
    3
    35537
    DBA/2J F B2(3)
    2
    3
    DBA/2J
    F
    251197818162
    3
    35536
    DBA/2J M B2
    2
    4
    DBA/2J
    M
    251197818161
    3
    35941
    C57BL/6J F
    2
    5
    C57BL/6J
    F
    251197818159
    3
    35509
    C57BL/6J M B2
    2
    8
    C57BL/6J
    M
    251197818158
    3
    35529
    C57BL/6J M B2R
    2
    8
    C57BL/6J
    M
    251197818086
    3
    35540
    BXD11 M
    2
    12
    BXD11
    M
    251197818178
    2
    35541
    BXD13 F
    2
    16
    BXD13
    F
    251197818179
    3
    35542
    BXD21 M
    2
    21
    BXD21
    M
    251197818180
    3
    35514
    BXD31 M
    2
    34
    BXD31
    M
    251197817944
    2
    35515
    BXD32 F
    2
    36
    BXD32
    F
    251197817945
    2
    35516
    BXD42 M
    2
    63
    BXD42
    M
    251197817946
    3
    35517
    BXD5 F
    2
    65
    BXD5
    F
    251197817947
    2
    35527
    BXD62 M
    2
    79
    BXD62
    M
    251197817948
    3
    35531
    BXD43 F
    2
    81
    BXD43
    F
    251197818085
    3
    35539
    B6D2F1 F
    2
    601
    B6D2F1
    F
    251197818177
    3
    35528
    B6D2F1 M
    2
    603
    B6D2F1
    M
    251197818084
    3
    35919
    DBA/2J F B3
    3
    1
    DBA/2J
    F
    251197817968
    3
    35918
    C57BL/6J F B3
    3
    5
    C57BL/6J
    F
    251197817967
    3
    35923
    BXD14 M
    3
    17
    BXD14
    M
    251197817972
    3
    35924
    BXD15 F
    3
    19
    BXD15
    F
    251197817973
    3
    35938
    BXD36M
    3
    46
    BXD36
    M
    16011978011758
    3
    35937
    BXD38F
    3
    52
    BXD38
    F
    16011978011757
    3
    35939
    BXD6 M
    3
    69
    BXD6
    M
    16011978011759
    3
    35936
    BXD9F
    3
    70
    BXD9
    F
    16011978011756
    3
    35930
    BXD60 M
    3
    86
    BXD60
    M
    16011978011860
    2
    35931
    BXD44 F
    3
    87
    BXD44
    F
    16011978011861
    3
    35916
    C57BL/6J M B3
    3
    506
    C57BL/6J
    M
    251197817964
    2
    35932
    C57BL/6J M B3R
    3
    506
    C57BL/6J
    M
    16011978011862
    2
    35917
    DBA/2J M B3
    3
    509
    DBA/2J
    M
    251197817966
    2
    35921
    B6D2F1 F B3
    3
    602
    B6D2F1
    F
    251197817970
    3
    35920
    C57BL/6J F B3(605)
    3
    605
    C57BL/6J
    F
    251197817969
    3
    35922
    B6D2F1 M B3
    3
    702
    B6D2F1
    M
    251197817971
    3
    39357
    B4R DBA/2J F
    4R
    1
    DBA/2J
    F
    251197826041
    3
    39356
    B4R C57BL/6J F B4
    4R
    5
    C57BL/6J
    F
    251197826040
    3
    39383
    B4R C57BL/6J F B4R
    4R
    5
    C57BL/6J
    F
    251197826108
    3
    39352
    B4R BXD24 F
    4R
    25
    BXD24
    M
    251197826026
    2
    39355
    B4R BXD40 M
    4R
    60
    BXD40
    M
    251197826029
    3
    39361
    B4R BXD51 M
    4R
    77
    BXD51
    M
    251197826105
    3
    39360
    B4R DBA/2J F (607)
    4R
    607
    DBA/2J
    F
    251197826043
    3
    39354
    B4R BXD32 M
    4R
    701
    BXD32
    M
    251197826028
    3
    39351
    B4R BXD23 F
    4R
    704
    BXD14
    F
    251197826025
    3
    39359
    B4R BXD16 M
    4R
    803
    BXD16
    M
    251197826044
    3
    39353
    B4R BXD19 F
    4R
    804
    BXD19
    F
    251197826027
    3
    39381
    B4R BXD62 F
    4R
    812
    BXD62
    F
    251197826106
    3
    39348
    B4R BXD69 F
    4R
    813
    BXD69
    F
    251197825672
    3
    39349
    B4R BXD73 M
    4R
    816
    BXD73
    M
    251197825673
    3
    39347
    B4R BXD8 M
    4R
    817
    BXD8
    M
    251197825670
    3
    39382
    B4R BXD85 F
    4R
    818
    BXD85
    F
    251197826107
    3
    39346
    B4R BXD86 F
    4R
    819
    BXD86
    F
    251197825669
    3
    39350
    B4R BXD92 F
    4R
    821
    BXD92
    F
    251197825674
    3
    39358
    B4R C57BL/6J F B4(823)
    4R
    823
    C57BL/6J
    F
    251197826042
    3
    35550
    DBA/2J F B5
    5
    1
    DBA/2J
    F
    251197817950
    3
    35549
    C57BL/6J F B5
    5
    5
    C57BL/6J
    F
    251197817949
    3
    35587
    C57BL/6J F B5R
    5
    5
    C57BL/6J
    F
    251197818022
    3
    35558
    BXD1 F
    5
    11
    BXD1
    F
    251197818036
    2
    35551
    BXD12 M
    5
    14
    BXD12
    M
    251197817952
    3
    35552
    BXD13 M
    5
    15
    BXD13
    M
    251197817953
    2
    35584
    BXD15 M
    5
    18
    BXD15
    M
    251197818034
    3
    35557
    BXD28 F
    5
    28
    BXD28
    F
    251197818035
    3
    35553
    BXD60 F
    5
    84
    BXD60
    F
    251197818019
    3
    35585
    BXD77 F
    5
    499
    BXD77
    F
    251197818037
    3
    35555
    BXD45 F
    5
    515
    BXD45
    F
    251197818021
    2
    35787
    DBA/2J F B6
    6
    1
    DBA/2J
    F
    251197818005
    3
    35786
    C57BL/6J F B6
    6
    5
    C57BL/6J
    F
    251197818004
    3
    35800
    C57BL/6J F B6R
    6
    5
    C57BL/6J
    F
    251197818123
    3
    35795
    BXD21 F
    6
    20
    BXD21
    F
    251197818114
    3
    35791
    BXD24 M
    6
    26
    BXD24
    M
    251197818115
    3
    35794
    BXD31 F
    6
    32
    BXD31
    F
    251197818118
    2
    35792
    BXD33 F
    6
    40
    BXD33
    F
    251197818116
    3
    35790
    BXD34 M
    6
    42
    BXD34
    M
    251197818008
    3
    35793
    BXD9 M
    6
    71
    BXD9
    M
    251197818117
    3
    35797
    BXD44 M
    6
    502
    BXD44
    M
    251197818120
    2
    35788
    C57BL/6J M B6(507)
    6
    507
    C57BL/6J
    M
    251197818006
    2
    35789
    DBA/2J M B6(510)
    6
    510
    DBA/2J
    M
    251197818007
    2
    35798
    BXD48 M
    6
    512
    BXD48
    M
    251197818121
    2
    35796
    BXD2 F
    6
    612
    BXD2
    F
    251197818119
    3
    35567
    DBA/2J F B7
    7
    1
    DBA/2J
    F
    251197818069
    3
    35566
    C57BL/6J F B7
    7
    5
    C57BL/6J
    F
    251197818023
    3
    35577
    C57BL/6J F B7R
    7
    5
    C57BL/6J
    F
    251197818156
    3
    35568
    BXD29 M
    7
    31
    BXD29
    M
    251197818071
    3
    35570
    BXD38 M
    7
    51
    BXD38
    M
    251197818073
    3
    35573
    BXD42 F
    7
    62
    BXD42
    F
    251197818126
    3
    35574
    BXD5 M
    7
    66
    BXD5
    M
    251197818127
    3
    35940
    BXD6 F
    7
    68
    BXD6
    F
    251197818128
    3
    35508
    BXD43 M
    7
    82
    BXD43
    M
    251197818157
    2
    35575
    DBA/2J M B7
    7
    511
    DBA/2J
    M
    251197818070
    2
    38670
    DBA/2J F B8-02 (1)
    8
    1
    DBA/2J
    F
    251197828123
    3
    38669
    C57BL/6J F
    8
    5
    C57BL/6J
    F
    251197828122
    3
    38668
    C57BL/6J F
    8
    5
    C57BL/6J
    F
    251197828099
    3
    38697
    BXD36 F R
    8
    48
    BXD36
    F
    251197828218
    3
    38698
    BXD39 F R
    8
    56
    BXD39
    F
    251197828219
    3
    38661
    BXD48 F
    8
    92
    BXD48
    F
    251197828096
    3
    38673
    BXD14 F
    8
    610
    BXD23
    F
    251197828126
    3
    38686
    BXD2 M
    8
    611
    BXD2
    M
    251197828134
    3
    38672
    BXD11/TY F
    8
    703
    BXD11/TY
    F
    251197828125
    3
    38671
    B6D2F1 F
    8
    801
    B6D2F1
    F
    251197828124
    3
    38694
    BXD16 F
    8
    802
    BXD16
    F
    251197828215
    3
    38696
    BXD19 M
    8
    805
    BXD19
    M
    251197828217
    2
    38695
    BXD33 F
    8
    809
    BXD33
    F
    251197828216
    3
    38667
    BXD45 M
    8
    811
    BXD45
    M
    251197828098
    3
    38687
    BXD69 M
    8
    814
    BXD69
    M
    251197828135
    3
    38688
    BXD73 F
    8
    815
    BXD73
    F
    251197828136
    2
    38689
    BXD92 M
    8
    822
    BXD92
    M
    251197828146
    3
    38685
    BXD86 M
    8
    901
    BXD86
    M
    251197828133
    3
    38660
    BXD51 F
    8
    902
    BXD51
    F
    251197828092
    3
    38666
    BXD85 M
    8
    903
    BXD85
    M
    251197828097
    3
    +
    +
    + +
    +

    The strains of pooled samples were verified by Daniel Gatti and Rob Williams by comparing the genotype on the arrays with the known genotype for each strain. Sample 17 (BXD14M) did not match any other strain. This sample was removed from the dataset. Sample 610 (BXD14F) was found to match the BXD23F genotype and was reassigned. Samples 24 & 704 (BXD23M & F) matched the BXD14 genotype and were reassigned as BXD14 mice. Samples 46 & 48 were found to be of mixed genotype and were removed from the dataset.

    + +

    The sexes of each pooled sample were checked by Daniel Gatti using Y chromosome expression. Sample 25 (BXD24F) was found to be male. This change was made and there are two BXD24 male samples. Samples 40 & 809 (BXD33) were both found to be female.

    +
    + + +

        About data processing:

    +
    Expression data were initially expressed as the ratio of the liver fluorescence signal to that generated by the reference mRNA sample (liver, kidney, lung, brain, and spleen) for each probe. Data were normalized using a robust LOWESS smoothing method that adjusts for non-linearity of signal in the two channels. We then computed the log base 2 of these ratios (median). A value of -1 indicates that expression in liver is roughly 1/2 that in the control; a value of -2 indicates that expression in the liver is roughly 1/4 that in the control, etc. Conversely, a value of +2 indicates that the expression in liver is 4-fold greater in liver. +
    + + + + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probes were determined by NCBI's megablast using the NCBI M32 genomic sequence. Gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/ ). We thank Kenneth Phillips (Paradigm Genetics, Inc) for helping generate the probes position data set. +
    + + +

        Data source acknowledgment:

    +
    This project was supported by ES10126, ES11391, ES11660 and P20-MH 62009 to KFM and RW. Ivan Rusyn was a recipient of a Transition to Independent Position Award (ES11660) from the National Institute of Environmental Health Sciences. Work by Paradigm Genetics, Inc. in design of the Toxicogenomics Micro (G4121A) array was supported by NIEHS contract N01-ES-25497.
    + + +
    Please contact either:
    + + +
    Ivan Rusyn at the Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA or
    +
    Rob Williams at the Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, TN 38163, USA
    + + +

        About this text file:

    + +
    +This text file originally generated by Ivan Rusyn, David W. Threadgill and Robert W. Williams, July 2004. Updated by RWW, Nov 14, 16, 2004. Updated by IR, Dec 1, 2004. Updated by DMG, Jan. 5, 2006. + +
    + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/LV_G_0704_A.html b/web/dbdoc/LV_G_0704_A.html new file mode 100755 index 00000000..a94c37c0 --- /dev/null +++ b/web/dbdoc/LV_G_0704_A.html @@ -0,0 +1,302 @@ + +UNC Agilent G4121A Liver Database (July/04 Freeze) AFE v6.1 / WebQTL + + + + + + + + + + + + + + + + + + + + +
    +

    UNC Agilent G4121A Liver Database (Jul04 Freeze) Agilent FE v6.1 modify this page

    Accession number: GN35

    + + +

        Summary:

    + +
    +This data set provides estimates of mRNA expression in livers of 38 adult BXD recombinant inbred mice measured using Agilent G4121A microarray. Data were generated as part of the NIEHS Toxicogenomics Research Consortium program at the University of North Carolina at Chapel Hill (Akira Maki, David Threadgill, and Ivan Rusyn) and by the Informatics Center for Mouse Neurogenetics at the University of Tennessee Heath Science Center (Lu Lu, Elissa Chesler, Yanhua Qu, Kenneth Manly, and Robert Williams). Data were processed using Agilent's feature extraction (FE) software version 6.1. This is the first data freeze. For background on the NIEHS Toxicogenomics Research Consortium and the Chemical Effects in Biological Systems (CEBS) program please link to a PDF by Michael D. Waters. + +
    + + +

        About the cases used to generate this set of data:

    + +
    Ninety-six BXD liver sample pools were obtained from animals reared at UTHSC in a pathogen-free vivarium. Mice were experimentally naive and housed at weaning (20 to 24 days-of-age) in same-sex groups in standard mouse shoebox cages. Mice were 56 to 177 days old at the time of sacrifice. Thirty-eight mouse strains were used of which 27 were represented by both sexes.
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain Name
    Sex
    WebQTL Strain ID
    C57BL/6J
    M and F
    C57BL/6J
    DBA/2J
    M and F
    DBA/2J
    B6D2F1
    M and F
    F1
    BXD1
    M and F
    BXD1
    BXD2
    F
    BXD2
    BXD5
    M and F
    BXD5
    BXD6
    M and F
    BXD6
    BXD8
    F
    BXD8
    BXD9
    M and F
    BXD9
    BXD11
    M
    BXD11
    BXD12
    M and F
    BXD12
    BXD13
    M and F
    BXD13
    BXD14
    M
    BXD14
    BXD15
    M and F
    BXD15
    BXD21
    M and F
    BXD21
    BXD23
    M
    BXD23
    BXD24
    M and F
    BXD24
    BXD28
    M and F
    BXD28
    BXD29
    M and F
    BXD29
    BXD31
    M and F
    BXD31
    BXD32
    F
    BXD32
    BXD33
    F (?)
    BXD33
    BXD34
    M and F
    BXD34
    BXD36
    M and F (?)
    BXD36
    BXD38
    M and F
    BXD38
    BXD39
    M and F
    BXD39
    BXD40
    M and F
    BXD40
    BXD42
    M and F
    BXD42
    BXD43
    M and F
    BXD43
    BXD44
    M and F
    BXD44
    BXD45
    F
    BXD45
    BXD48
    M
    BXD48
    BXD51
    F (?)
    BXD51
    BXD60
    M and F
    BXD60
    BXD62
    M and F (?)
    BXD62
    BXD77
    M and F
    BXD77
    BXD85
    M and F (?)
    BXD85
    BXD86
    F (?)
    BXD86
    +
    +
    + +
    +C57BL/6J, DBA/2J, and BXD1 through BXD42 were originally obtained from The Jackson Laboratory. Advanced intercross BXD strains (BXD43 and higher) were generated at Princeton University and UTHSC (Peirce and Lu, 2004). All of these new strains were inbred for at least 14 generations. +
    + + +

        About the tissue used to generate these data:

    +

    Animals were killed by cervical dislocation. The entire liver was removed within less than 5 minutes by Zhiping Jia or Hongtao Zhai and placed in RNAlater (Ambion) overnight at 4 degrees. Tissue was stored in single vials (2 to 3 cases per vial) at -80 degrees. Tissue vials were shipped to UNC on ice by FedEX. Prior to isolation of RNA, liver samples from the same strain and sex (2 to 3 animals) were pooled in equal amount and minced in a homogenization buffer using an electric homogenizer. Total RNA was isolated using Qiagen RNeasy Mini kits according to the manufacturer's instructions. RNA purity and quality were verified using a BioAnalyzer 2100 and Low RNA Input Linear Amplification kits (Agilent Technologies, Wilmington, DE) in these experiments. RNA labeling, array hybridization and washing and other procedures were performed according to the manufacturer's protocols. A common reference design was used. Male C57BL/6J mouse pooled (equal amounts of RNA from liver, kidney, lung, brain and spleen) RNA provided by the Toxicogenomics Research Consortium was used as a common reference in all these experiments. +

    + +

        About the array platform

    + +
    Samples were assayed using G4121A Agilent oligomer microarray glass slides ( GEO Platform ID GPL891). This microarray estimate expression of approximately 20,842 mouse genes, including a special set of toxicology transcripts nominated by a collaboration that included the National Institute of Environmental Health Sciences (NIEHS) and members of the Toxicogenomics Research Consortium. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Experiment ID
    Experiment Name
    Batch#
    Sample ID
    Strain
    Sex
    Array Barcode#
    Pool Size
    35781
    C57BL/6J M B1
    1
    614
    C57BL/6J
    M
    251197818088
    2
    35780
    C57BL/6J M B1R
    1
    614
    C57BL/6J
    M
    251197817961
    2
    35782
    C57BL/6J F B1
    1
    5
    C57BL/6J
    F
    251197818089
    3
    35783
    DBA/2J F B1
    1
    1
    DBA/2J
    F
    251197818090
    3
    35768
    B6D2F1 M B1
    1
    609
    B6D2F1
    M
    251197817934
    3
    35769
    B6D2F1 F B1
    1
    96
    B6D2F1
    Unknown
    251197817935
    2
    35770
    BXD1 M
    1
    9
    BXD1
    M
    251197817936
    3
    35771
    BXD12 F
    1
    13
    BXD12
    F
    251197817937
    3
    35772
    BXD23 M
    1
    24
    BXD23
    M
    251197817938
    3
    35773
    BXD34 F
    1
    43
    BXD34
    F
    251197817939
    3
    35774
    BXD28 M
    1
    29
    BXD28
    M
    251197817940
    3
    35775
    BXD29 F
    1
    30
    BXD29
    F
    251197817941
    3
    35776
    BXD39 M
    1
    54
    BXD39
    M
    251197817942
    3
    35777
    BXD40 F
    1
    59
    BXD40
    F
    251197817943
    2
    35778
    BXDA10 M
    1
    500
    BXD77
    M
    251197817959
    2
    35779
    BXD8 F
    1
    613
    BXD8
    F
    251197817960
    3
    35509
    C57BL/6J M B2
    2
    8
    C57BL/6J
    M
    251197818158
    3
    35529
    C57BL/6J M B2R
    2
    8
    C57BL/6J
    M
    251197818086
    3
    35578
    C57BL/6J F B2
    2
    5
    C57BL/6J
    F
    251197818159
    3
    35535
    DBA/2J F B2
    2
    1
    DBA/2J
    F
    251197818160
    3
    35536
    DBA/2J M B2
    2
    4
    DBA/2J
    M
    251197818161
    3
    35537
    DBA/2J F B2(3)
    2
    3
    DBA/2J
    F
    251197818162
    3
    35538
    C57BL/6J F B2(7)
    2
    7
    C57BL/6J
    2F, 1M
    251197818163
    3
    35528
    B6D2F1 M
    2
    603
    B6D2F1
    M
    251197818084
    3
    35539
    B6D2F1 F
    2
    601
    B6D2F1
    F
    251197818177
    3
    35540
    BXD11 M
    2
    12
    BXD11
    M
    251197818178
    2
    35541
    BXD13 F
    2
    16
    BXD13
    F
    251197818179
    3
    35542
    BXD21 M
    2
    21
    BXD21
    M
    251197818180
    3
    35543
    BXD24 F
    2
    25
    BXD24
    F
    251197818181
    2
    35514
    BXD31 M
    2
    34
    BXD31
    M
    251197817944
    2
    35515
    BXD32 F
    2
    36
    BXD32
    F
    251197817945
    2
    35516
    BXD42 M
    2
    63
    BXD42
    M
    251197817946
    3
    35517
    BXD5 F
    2
    65
    BXD5
    F
    251197817947
    2
    35527
    BXDAP15 M
    2
    79
    BXD62
    M
    251197817948
    3
    35531
    BXDAP19 F
    2
    81
    BXD43
    F
    251197818085
    3
    35916
    C57BL/6J M B3
    3
    506
    C57BL/6J
    M
    251197817964
    2
    35932
    C57BL/6J M B3R
    3
    506
    C57BL/6J
    M
    16011978011862
    2
    35917
    DBA/2J M B3
    3
    509
    DBA/2J
    M
    251197817966
    2
    35918
    C57BL/6J F B3
    3
    5
    C57BL/6J
    F
    251197817967
    3
    35919
    DBA/2J F B3
    3
    1
    DBA/2J
    F
    251197817968
    3
    35920
    C57BL/6J F B3(605)
    3
    605
    C57BL/6J
    F
    251197817969
    3
    35921
    B6D2F1 F B3
    3
    602
    B6D2F1
    F
    251197817970
    3
    35922
    B6D2F1 M B3
    3
    702
    B6D2F1
    M
    251197817971
    3
    35923
    BXD14 M
    3
    17
    BXD14
    M
    251197817972
    3
    35924
    BXD15 F
    3
    19
    BXD15
    F
    251197817973
    3
    35933
    BXD33 M
    3
    39
    BXD33
    F or M
    251197818091
    3
    35925
    BXD9 F
    3
    70
    BXD9
    F
    16011978011756
    3
    35926
    BXD38 F
    3
    52
    BXD38
    F
    16011978011757
    3
    35927
    BXD36 M
    3
    46
    BXD36
    M
    16011978011758
    3
    35928
    BXD6 M
    3
    69
    BXD6
    M
    16011978011759
    3
    35929
    BXDA23F14 F
    3
    73
    BXD86
    F or M
    16011978011760
    3
    35930
    BXDAP5F21 M
    3
    86
    BXD60
    M
    16011978011860
    2
    35931
    BXDAP6F16 F
    3
    87
    BXD44
    F
    16011978011861
    3
    35549
    C57BL/6J F B5
    5
    5
    C57BL/6J
    F
    251197817949
    3
    35587
    C57BL/6J F B5R
    5
    5
    C57BL/6J
    F
    251197818022
    3
    35550
    DBA/2J F B5
    5
    1
    DBA/2J
    F
    251197817950
    3
    35558
    BXD1 F
    5
    11
    BXD1
    F
    251197818036
    2
    35551
    BXD12 M
    5
    14
    BXD12
    M
    251197817952
    3
    35552
    BXD13 M
    5
    15
    BXD13
    M
    251197817953
    2
    35584
    BXD15 M
    5
    18
    BXD15
    M
    251197818034
    3
    35557
    BXD28 F
    5
    28
    BXD28
    F
    251197818035
    3
    35585
    BXDA10 F
    5
    499
    BXD77
    F
    251197818037
    3
    35586
    BXDAP11 M
    5
    76
    BXD51
    M or F
    251197818038
    3
    35553
    BXDAP5 F
    5
    84
    BXD60
    F
    251197818019
    3
    35554
    BXDA22 M
    5
    513
    BXD85
    F
    251197818020
    2
    35555
    BXDAP12 F
    5
    515
    BXD45
    F
    251197818021
    2
    35786
    C57BL/6J F B6
    6
    5
    C57BL/6J
    F
    251197818004
    3
    35800
    C57BL/6J F B6R
    6
    5
    C57BL/6J
    F
    251197818005
    3
    35787
    DBA/2J F B6
    6
    1
    DBA/2J
    F
    251197818006
    3
    35788
    C57BL/6J M B6(507)
    6
    507
    C57BL/6J
    M
    251197818007
    2
    35789
    DBA/2J M B6(510)
    6
    510
    DBA/2J
    M
    251197818008
    2
    35790
    BXD34 M
    6
    42
    BXD34
    M
    251197818114
    3
    35795
    BXD21 F
    6
    20
    BXD21
    F
    251197818115
    3
    35791
    BXD24 M
    6
    26
    BXD24
    M
    251197818116
    3
    35792
    BXD33 F
    6
    40
    BXD33
    F
    251197818117
    3
    35793
    BXD9 M
    6
    71
    BXD9
    M
    251197818118
    3
    35794
    BXD31 F
    6
    32
    BXD31
    F
    251197818119
    2
    35796
    BXD2 F
    6
    612
    BXD2
    F
    251197818120
    3
    35797
    BXDAP6F16 M
    6
    502
    BXD44
    M
    251197818121
    2
    35798
    BXDAP8F21 M
    6
    512
    BXD48
    M
    251197818122
    2
    35799
    BXDA22F14 M
    6
    514
    BXD85
    M or F
    251197818123
    2
    35566
    C57BL/6J F B7
    7
    5
    C57BL/6J
    F
    251197818023
    3
    35577
    C57BL/6J F B7R
    7
    5
    C57BL/6J
    F
    251197818156
    3
    35567
    DBA/2J F B7
    7
    1
    DBA/2J
    F
    251197818069
    3
    35575
    DBA/2J M B7
    7
    511
    DBA/2J
    M
    251197818070
    2
    35568
    BXD29 M
    7
    31
    BXD29
    M
    251197818071
    3
    35569
    BXD36 F
    7
    47
    BXD36
    F or M
    251197818072
    3
    35570
    BXD38 M
    7
    51
    BXD38
    M
    251197818073
    3
    35571
    BXD39 F
    7
    56
    BXD39
    F
    251197818124
    3
    35572
    BXD40 M
    7
    60
    BXD40
    M
    251197818125
    3
    35573
    BXD42 F
    7
    62
    BXD42
    F
    251197818126
    3
    35574
    BXD5 M
    7
    66
    BXD5
    M
    251197818127
    3
    35579
    BXD6 F
    7
    68
    BXD6
    F
    251197818128
    3
    35576
    BXDAP15 F
    7
    78
    BXD62
    F or M
    251197818155
    3
    35508
    BXDAP19 M
    7
    82
    BXD43
    M
    251197818157
    2
    +
    +
    + +
    +

    Error Checking Note: Sexes of all individual animals used in this analysis were rechecked by Jing Gu and Lu Lu after processing was complete by genotyping Y chromosome-specific microsatellite markers. Sample 7 (also known as Experiment ID 35538) was shown to consist of a pool of two female samples and one male sample. This is the only mixed-sex sample in this study. Sample 513 is a female based both on regenotyping and on the array results. To use the array data to sex an animal we have relied on sex-specific expression differences of gene transcripts. Ddx3y and Uty are good male Y chromosome expression markers, whereas AI314753 and Eif2s3x are good female expression markers. Samples 39, 76, and 514 are males based laboratory records and based on regenotyping the Y chromosome, but appear to be females based on the "sex" of the array data. Conversely, sample 47, 73, and 78 should be females based on our records and regenotyping, but appear to be males based on array data. We have marked these uncertain cases as M or F in the table.

    +
    + + +

        About data processing:

    +
    Expression data were initially expressed as the ratio of the liver fluorescence signal to that generated by the reference mRNA sample (liver, kidney, lung, brain, and spleen) for each probe. Data were processed using the Agilent version 6.1 feature extractor software. We then computed the log base 2 of these ratios (median). A value of -1 indicates that expression in liver is roughly 1/2 that in the control; a value of -2 indicates that expression in the liver is roughly 1/4 that in the control, etc. Conversely, a value of +2 indicates that the expression in liver 4-fold greater in liver. +
    + + + + +

        About the chromosome and megabase position values:

    +
    The chromosomal locations of probes were determined by NCBI's megablast using the NCBIM32 genomic sequence. Gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/ ). We thank Kenneth Phillips (Paradigm Genetics, Inc) for helping in generating probes position data. +
    + + +

        Data source acknowledgment:

    +
    This project was supported by ES10126, ES11391, ES11660 and P20-MH 62009 to KFM and RW. Ivan Rusyn was a recipient of a Transition to Independent Position Award (ES11660) from the National Institute of Environmental Health Sciences.
    +
    Please contact either:
    +
    Ivan Rusyn at the Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA or
    +
    Rob Williams at the Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, TN 38163, USA
    + + +

        About this text file:

    + +
    +This text file originally generated by Ivan Rusyn, David W. Threadgill and Robert W. Williams, July 2004. Updated by RWW, Nov 14, 16, 2004; by IR, Dec 1, 2004. + +
    + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/LV_G_0704_ABF.html b/web/dbdoc/LV_G_0704_ABF.html new file mode 100755 index 00000000..a0ffa726 --- /dev/null +++ b/web/dbdoc/LV_G_0704_ABF.html @@ -0,0 +1,329 @@ + +UNC Agilent G4121A Liver Database (July/04 Freeze) AFE v6.1 / WebQTL + + + + + + + + + + + + + + + + + + + + +
    +

    UNC Agilent G4121A Liver Database (Jul04 Freeze) Agilent FE v6.1 modify this page

    + + +

        Summary:

    + +
    +This data set provides estimates of mRNA expression in livers of 38 adult BXD recombinant inbred mice measured using Agilent G4121A microarray. Data were generated as part of the NIEHS Toxicogenomics Research Consortium program at the University of North Carolina at Chapel Hill (Akira Maki, David Threadgill, and Ivan Rusyn) and by the Informatics Center for Mouse Neurogenetics at the University of Tennessee Heath Science Center (Lu Lu, Elissa Chesler, Yanhua Qu, Kenneth Manly, and Robert Williams). Data were processed using Agilent's feature extraction (FE) software version 6.1. This is the first data freeze. For background on the NIEHS Toxicogenomics Research Consortium and the Chemical Effects in Biological Systems (CEBS) program please link to a PDF by Michael D. Waters. + +
    + + +

        About the cases used to generate this set of data:

    + +
    Ninety-six BXD liver sample pools were obtained from animals reared at UTHSC in a pathogen-free vivarium. Mice were experimentally naive and housed at weaning (20 to 24 days-of-age) in same-sex groups in standard mouse shoebox cages. Mice were 56 to 177 days old at the time of sacrifice. Thirty-eight mouse strains were used of which 27 were represented by both sexes.
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain Name
    Sex
    WebQTL Strain ID
    C57BL/6J
    M and F
    C57BL/6J
    DBA/2J
    M and F
    DBA/2J
    B6D2F1
    M and F
    F1
    BXD1
    M and F
    BXD1
    BXD2
    F
    BXD2
    BXD5
    M and F
    BXD5
    BXD6
    M and F
    BXD6
    BXD8
    F
    BXD8
    BXD9
    M and F
    BXD9
    BXD11
    M
    BXD11
    BXD12
    M and F
    BXD12
    BXD13
    M and F
    BXD13
    BXD14
    M
    BXD14
    BXD15
    M and F
    BXD15
    BXD21
    M and F
    BXD21
    BXD23
    M
    BXD23
    BXD24
    M and F
    BXD24
    BXD28
    M and F
    BXD28
    BXD29
    M and F
    BXD29
    BXD31
    M and F
    BXD31
    BXD32
    F
    BXD32
    BXD33
    F (?)
    BXD33
    BXD34
    M and F
    BXD34
    BXD36
    M and F (?)
    BXD36
    BXD38
    M and F
    BXD38
    BXD39
    M and F
    BXD39
    BXD40
    M and F
    BXD40
    BXD42
    M and F
    BXD42
    BXD43
    M and F
    BXD43
    BXD44
    M and F
    BXD44
    BXD45
    F
    BXD45
    BXD48
    M
    BXD48
    BXD51
    F (?)
    BXD51
    BXD60
    M and F
    BXD60
    BXD62
    M and F (?)
    BXD62
    BXD77
    M and F
    BXD77
    BXD85
    M and F (?)
    BXD85
    BXD86
    F (?)
    BXD86
    +
    +
    + +
    +C57BL/6J, DBA/2J, and BXD1 through BXD42 were originally obtained from The Jackson Laboratory. Advanced intercross BXD strains (BXD43 and higher) were generated at Princeton University and UTHSC (Peirce and Lu, 2004). All of these new strains were inbred for at least 14 generations. +
    + + +

        About the tissue used to generate these data:

    +

    Animals were killed by cervical dislocation. The entire liver was removed within less than 5 minutes by Zhiping Jia or Hongtao Zhai and placed in RNAlater (Ambion) overnight at 4 degrees. Tissue was stored in single vials (2 to 3 cases per vial) at -80 degrees. Tissue vials were shipped to UNC on ice by FedEX. Prior to isolation of RNA, liver samples from the same strain and sex (2 to 3 animals) were pooled in equal amount and minced in a homogenization buffer using an electric homogenizer. Total RNA was isolated using Qiagen RNeasy Mini kits according to the manufacturer's instructions. RNA purity and quality were verified using a BioAnalyzer 2100 and Low RNA Input Linear Amplification kits (Agilent Technologies, Wilmington, DE) in these experiments. RNA labeling, array hybridization and washing and other procedures were performed according to the manufacturer's protocols. A common reference design was used. Male C57BL/6J mouse pooled (equal amounts of RNA from liver, kidney, lung, brain and spleen) RNA provided by the Toxicogenomics Research Consortium was used as a common reference in all these experiments. +

    + +

        About the array platform

    + +
    Samples were assayed using G4121A Agilent oligomer microarray glass slides (1" x 3" format). This microarray estimate expression of approximately 20,842 mouse genes, including a special set of toxicology transcripts nominated by a collaboration that included the National Institute of Environmental Health Sciences (NIEHS) and members of the Toxicogenomics Research Consortium. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Experiment ID
    Experiment Name
    Batch#
    Sample ID
    Strain
    Sex
    Array Barcode#
    35781
    C57BL/6J M B1
    1
    614
    C57BL/6J
    M
    251197818088
    35780
    C57BL/6J M B1R
    1
    614
    C57BL/6J
    M
    251197817961
    35782
    C57BL/6J F B1
    1
    5
    C57BL/6J
    F
    251197818089
    35783
    DBA/2J F B1
    1
    1
    DBA/2J
    F
    251197818090
    35768
    B6D2F1 M B1
    1
    609
    B6D2F1
    M
    251197817934
    35769
    B6D2F1 F B1
    1
    96
    B6D2F1
    Unknown
    251197817935
    35770
    BXD1 M
    1
    9
    BXD1
    M
    251197817936
    35771
    BXD12 F
    1
    13
    BXD12
    F
    251197817937
    35772
    BXD23 M
    1
    24
    BXD23
    M
    251197817938
    35773
    BXD34 F
    1
    43
    BXD34
    F
    251197817939
    35774
    BXD28 M
    1
    29
    BXD28
    M
    251197817940
    35775
    BXD29 F
    1
    30
    BXD29
    F
    251197817941
    35776
    BXD39 M
    1
    54
    BXD39
    M
    251197817942
    35777
    BXD40 F
    1
    59
    BXD40
    F
    251197817943
    35778
    BXDA10 M
    1
    500
    BXD77
    M
    251197817959
    35779
    BXD8 F
    1
    613
    BXD8
    F
    251197817960
    35509
    C57BL/6J M B2
    2
    8
    C57BL/6J
    M
    251197818158
    35529
    C57BL/6J M B2R
    2
    8
    C57BL/6J
    M
    251197818086
    35578
    C57BL/6J F B2
    2
    5
    C57BL/6J
    F
    251197818159
    35535
    DBA/2J F B2
    2
    1
    DBA/2J
    F
    251197818160
    35536
    DBA/2J M B2
    2
    4
    DBA/2J
    M
    251197818161
    35537
    DBA/2J F B2(3)
    2
    3
    DBA/2J
    F
    251197818162
    35538
    C57BL/6J F B2(7)
    2
    7
    C57BL/6J
    2F, 1M
    251197818163
    35528
    B6D2F1 M
    2
    603
    B6D2F1
    M
    251197818084
    35539
    B6D2F1 F
    2
    601
    B6D2F1
    F
    251197818177
    35540
    BXD11 M
    2
    12
    BXD11
    M
    251197818178
    35541
    BXD13 F
    2
    16
    BXD13
    F
    251197818179
    35542
    BXD21 M
    2
    21
    BXD21
    M
    251197818180
    35543
    BXD24 F
    2
    25
    BXD24
    F
    251197818181
    35514
    BXD31 M
    2
    34
    BXD31
    M
    251197817944
    35515
    BXD32 F
    2
    36
    BXD32
    F
    251197817945
    35516
    BXD42 M
    2
    63
    BXD42
    M
    251197817946
    35517
    BXD5 F
    2
    65
    BXD5
    F
    251197817947
    35527
    BXDAP15 M
    2
    79
    BXD62
    M
    251197817948
    35531
    BXDAP19 F
    2
    81
    BXD43
    F
    251197818085
    35916
    C57BL/6J M B3
    3
    506
    C57BL/6J
    M
    251197817964
    35932
    C57BL/6J M B3R
    3
    506
    C57BL/6J
    M
    16011978011862
    35917
    DBA/2J M B3
    3
    509
    DBA/2J
    M
    251197817966
    35918
    C57BL/6J F B3
    3
    5
    C57BL/6J
    F
    251197817967
    35919
    DBA/2J F B3
    3
    1
    DBA/2J
    F
    251197817968
    35920
    C57BL/6J F B3(605)
    3
    605
    C57BL/6J
    F
    251197817969
    35921
    B6D2F1 F B3
    3
    602
    B6D2F1
    F
    251197817970
    35922
    B6D2F1 M B3
    3
    702
    B6D2F1
    M
    251197817971
    35923
    BXD14 M
    3
    17
    BXD14
    M
    251197817972
    35924
    BXD15 F
    3
    19
    BXD15
    F
    251197817973
    35933
    BXD33 M
    3
    39
    BXD33
    F or M
    251197818091
    35925
    BXD9 F
    3
    70
    BXD9
    F
    16011978011756
    35926
    BXD38 F
    3
    52
    BXD38
    F
    16011978011757
    35927
    BXD36 M
    3
    46
    BXD36
    M
    16011978011758
    35928
    BXD6 M
    3
    69
    BXD6
    M
    16011978011759
    35929
    BXDA23F14 F
    3
    73
    BXD86
    F or M
    16011978011760
    35930
    BXDAP5F21 M
    3
    86
    BXD60
    M
    16011978011860
    35931
    BXDAP6F16 F
    3
    87
    BXD44
    F
    16011978011861
    35549
    C57BL/6J F B5
    5
    5
    C57BL/6J
    F
    251197817949
    35587
    C57BL/6J F B5R
    5
    5
    C57BL/6J
    F
    251197818022
    35550
    DBA/2J F B5
    5
    1
    DBA/2J
    F
    251197817950
    35558
    BXD1 F
    5
    11
    BXD1
    F
    251197818036
    35551
    BXD12 M
    5
    14
    BXD12
    M
    251197817952
    35552
    BXD13 M
    5
    15
    BXD13
    M
    251197817953
    35584
    BXD15 M
    5
    18
    BXD15
    M
    251197818034
    35557
    BXD28 F
    5
    28
    BXD28
    F
    251197818035
    35585
    BXDA10 F
    5
    499
    BXD77
    F
    251197818037
    35586
    BXDAP11 M
    5
    76
    BXD51
    M or F
    251197818038
    35553
    BXDAP5 F
    5
    84
    BXD60
    F
    251197818019
    35554
    BXDA22 M
    5
    513
    BXD85
    F
    251197818020
    35555
    BXDAP12 F
    5
    515
    BXD45
    F
    251197818021
    35786
    C57BL/6J F B6
    6
    5
    C57BL/6J
    F
    251197818004
    35800
    C57BL/6J F B6R
    6
    5
    C57BL/6J
    F
    251197818005
    35787
    DBA/2J F B6
    6
    1
    DBA/2J
    F
    251197818006
    35788
    C57BL/6J M B6(507)
    6
    507
    C57BL/6J
    M
    251197818007
    35789
    DBA/2J M B6(510)
    6
    510
    DBA/2J
    M
    251197818008
    35790
    BXD34 M
    6
    42
    BXD34
    M
    251197818114
    35795
    BXD21 F
    6
    20
    BXD21
    F
    251197818115
    35791
    BXD24 M
    6
    26
    BXD24
    M
    251197818116
    35792
    BXD33 F
    6
    40
    BXD33
    F
    251197818117
    35793
    BXD9 M
    6
    71
    BXD9
    M
    251197818118
    35794
    BXD31 F
    6
    32
    BXD31
    F
    251197818119
    35796
    BXD2 F
    6
    612
    BXD2
    F
    251197818120
    35797
    BXDAP6F16 M
    6
    502
    BXD44
    M
    251197818121
    35798
    BXDAP8F21 M
    6
    512
    BXD48
    M
    251197818122
    35799
    BXDA22F14 M
    6
    514
    BXD85
    M or F
    251197818123
    35566
    C57BL/6J F B7
    7
    5
    C57BL/6J
    F
    251197818023
    35577
    C57BL/6J F B7R
    7
    5
    C57BL/6J
    F
    251197818156
    35567
    DBA/2J F B7
    7
    1
    DBA/2J
    F
    251197818069
    35575
    DBA/2J M B7
    7
    511
    DBA/2J
    M
    251197818070
    35568
    BXD29 M
    7
    31
    BXD29
    M
    251197818071
    35569
    BXD36 F
    7
    47
    BXD36
    F or M
    251197818072
    35570
    BXD38 M
    7
    51
    BXD38
    M
    251197818073
    35571
    BXD39 F
    7
    56
    BXD39
    F
    251197818124
    35572
    BXD40 M
    7
    60
    BXD40
    M
    251197818125
    35573
    BXD42 F
    7
    62
    BXD42
    F
    251197818126
    35574
    BXD5 M
    7
    66
    BXD5
    M
    251197818127
    35579
    BXD6 F
    7
    68
    BXD6
    F
    251197818128
    35576
    BXDAP15 F
    7
    78
    BXD62
    F or M
    251197818155
    35508
    BXDAP19 M
    7
    82
    BXD43
    M
    251197818157
    +
    +
    + +
    +

    Error Checking Note: Sexes of all individual animals used in this analysis were rechecked by Jing Gu and Lu Lu after processing was complete by genotyping Y chromosome-specific microsatellite markers. Sample 7 (also known as Experiment ID 35538) was shown to consist of a pool of two female samples and one male sample. This is the only mixed-sex sample in this study. Sample 513 is a female based both on regenotyping and on the array results. To use the array data to sex an animal we have relied on sex-specific expression differences of gene transcripts. Ddx3y and Uty are good male Y chromosome expression markers, whereas AI314753 and Eif2s3x are good female expression markers. Samples 39, 76, and 514 are males based laboratory records and based on regenotyping the Y chromosome, but appear to be females based on the "sex" of the array data. Conversely, sample 47, 73, and 78 should be females based on our records and regenotyping, but appear to be males based on array data. We have marked these uncertain cases as M or F in the table.

    +
    + + +

        About data processing:

    +
    Expression data were initially expressed as the ratio of the liver fluorescence signal to that generated by the reference mRNA sample (liver, kidney, lung, brain, and spleen) for each probe. Data were processed using the Agilent version 6.1 feature extractor software. We then computed the log base 2 of these ratios (median). A value of -1 indicates that expression in liver is roughly 1/2 that in the control; a value of -2 indicates that expression in the liver is roughly 1/4 that in the control, etc. Conversely, a value of +2 indicates that the expression in liver 4-fold greater in liver. +
    + + + + +

        About the chromosome and megabase position values:

    +
    The chromosomal locations of probes were determined by NCBI's megablast using the NCBIM32 genomic sequence. Gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/ ). We thank Kenneth Phillips (Paradigm Genetics, Inc) for helping in generating probes position data. +
    + + +

        Data source acknowledgment:

    +
    This project was supported by ES10126, ES11391, ES11660 and P20-MH 62009 to KFM and RW. Ivan Rusyn was a recipient of a Transition to Independent Position Award (ES11660) from the National Institute of Environmental Health Sciences.
    +
    Please contact either:
    +
    Ivan Rusyn at the Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA or
    +
    Rob Williams at the Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, TN 38163, USA
    + + +

        About this text file:

    + +
    +This text file originally generated by Ivan Rusyn, David W. Threadgill and Robert W. Williams, July 2004. Updated by RWW, Nov 14, 16, 2004; by IR, Dec 1, 2004. + +
    + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/LV_G_0704_R.html b/web/dbdoc/LV_G_0704_R.html new file mode 100755 index 00000000..39cdffa9 --- /dev/null +++ b/web/dbdoc/LV_G_0704_R.html @@ -0,0 +1,308 @@ + + UNC Agilent G4121A Liver Database (July/04 Freeze) Orig LOWESS/ WebQTL + + + + + + + + + + + + + + + + + + + + +
    +

    UNC Agilent G4121A Liver Database (Jul04 Freeze) Orig LOWESS modify this page

    Accession number: GN34

    + + +

        Summary:

    + +
    +This data set provides estimates of mRNA expression in livers of 38 adult BXD recombinant inbred mice measured using Agilent G4121A microarray. Data were generated by a consortium of investigators at the University of North Carolina at Chapel Hill (Akira Maki, David Threadgill, and Ivan Rusyn) and at the University of Tennessee Heath Science Center (Lu Lu, Elissa Chesler, Ken Manly, and Rob Williams). Image intensity data were processed using a locally weighted scatterplot smooth (LOWESS) and are presented without further modification (Orig LOWESS; see section below on Data Processing). For background on the NIEHS Toxicogenomics Research Consortium and the Chemical Effects in Biological Systems (CEBS) program please link to a PDF by Michael D. Waters. +This is the first data freeze. This data set is still private. Please contact Dr. Ivan Rusyn for access. + +
    + + +

        About the cases used to generate this set of data:

    + +
    Ninety-six BXD liver sample pools were obtained from animals reared at UTHSC in a pathogen-free vivarium. Mice were experimentally naive and housed at weaning (20 to 24 days-of-age) in same-sex groups in standard mouse shoebox cages. Mice were 56 to 177 days old at the time of sacrifice. Thirty-eight mouse strains were used of which 27 were represented by both sexes.
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain Name
    Sex
    WebQTL Strain ID
    C57BL/6J
    M and F
    C57BL/6J
    DBA/2J
    M and F
    DBA/2J
    B6D2F1
    M and F
    F1
    BXD1
    M and F
    BXD1
    BXD2
    F
    BXD2
    BXD5
    M and F
    BXD5
    BXD6
    M and F
    BXD6
    BXD8
    F
    BXD8
    BXD9
    M and F
    BXD9
    BXD11
    M
    BXD11
    BXD12
    M and F
    BXD12
    BXD13
    M and F
    BXD13
    BXD14
    M
    BXD14
    BXD15
    M and F
    BXD15
    BXD21
    M and F
    BXD21
    BXD23
    M
    BXD23
    BXD24
    M and F
    BXD24
    BXD28
    M and F
    BXD28
    BXD29
    M and F
    BXD29
    BXD31
    M and F
    BXD31
    BXD32
    F
    BXD32
    BXD33
    F (?)
    BXD33
    BXD34
    M and F
    BXD34
    BXD36
    M and F (?)
    BXD36
    BXD38
    M and F
    BXD38
    BXD39
    M and F
    BXD39
    BXD40
    M and F
    BXD40
    BXD42
    M and F
    BXD42
    BXD43
    M and F
    BXD43
    BXD44
    M and F
    BXD44
    BXD45
    F
    BXD45
    BXD48
    M
    BXD48
    BXD51
    F (?)
    BXD51
    BXD60
    M and F
    BXD60
    BXD62
    M and F (?)
    BXD62
    BXD77
    M and F
    BXD77
    BXD85
    M and F (?)
    BXD85
    BXD86
    F (?)
    BXD86
    +
    +
    + +
    +C57BL/6J, DBA/2J, and BXD1 through BXD42 were originally obtained from The Jackson Laboratory. Advanced intercross BXD strains (BXD43 and higher) were generated at Princeton University and UTHSC (Peirce and Lu, 2004). All of these new strains were inbred for at least 14 generations. +
    + + +

        About the tissue used to generate these data:

    +

    Animals were killed by cervical dislocation. The entire liver was removed within less than 5 minutes by Zhiping Jia or Hongtao Zhai and placed in RNAlater (Ambion) overnight at 4 degrees C. Tissue was stored in single vials (2 to 3 cases per vial) at -80 degrees C. Tissue vials were shipped to UNC on ice by FedEX. Prior to isolation of RNA, liver samples from the same strain and sex (2 to 3 animals) were pooled in equal amount and minced in a homogenization buffer using an electric homogenizer. Total RNA was isolated using Qiagen RNeasy Mini kits according to the manufacturer's instructions. RNA purity and quality were verified using a BioAnalyzer 2100 and Low RNA Input Linear Amplification kits (Agilent Technologies, Wilmington, DE) in these experiments. RNA labeling, array hybridization and washing and other procedures were performed according to the manufacturer's protocols. A common reference design was used. Male C57BL/6J mouse pooled (equal amounts of RNA from liver, kidney, lung, brain and spleen) RNA provided by the Toxicogenomics Research Consortium was used as a common reference in all these experiments. +

    + +

        About the array platform

    + +
    Samples were assayed using G4121A Agilent oligomer microarray glass slides ( GEO Platform ID GPL891). This microarray estimate expression of approximately 20,842 mouse genes, including a special set of toxicology transcripts nominated by a collaboration that included the National Institute of Environmental Health Sciences (NIEHS) and members of the Toxicogenomics Research Consortium. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Experiment ID
    Experiment Name
    Batch#
    Sample ID
    Strain
    Sex
    Array Barcode#
    Pool Size
    35781
    C57BL/6J M B1
    1
    614
    C57BL/6J
    M
    251197818088
    2
    35780
    C57BL/6J M B1R
    1
    614
    C57BL/6J
    M
    251197817961
    2
    35782
    C57BL/6J F B1
    1
    5
    C57BL/6J
    F
    251197818089
    3
    35783
    DBA/2J F B1
    1
    1
    DBA/2J
    F
    251197818090
    3
    35768
    B6D2F1 M B1
    1
    609
    B6D2F1
    M
    251197817934
    3
    35769
    B6D2F1 F B1
    1
    96
    B6D2F1
    Unknown
    251197817935
    2
    35770
    BXD1 M
    1
    9
    BXD1
    M
    251197817936
    3
    35771
    BXD12 F
    1
    13
    BXD12
    F
    251197817937
    3
    35772
    BXD23 M
    1
    24
    BXD23
    M
    251197817938
    3
    35773
    BXD34 F
    1
    43
    BXD34
    F
    251197817939
    3
    35774
    BXD28 M
    1
    29
    BXD28
    M
    251197817940
    3
    35775
    BXD29 F
    1
    30
    BXD29
    F
    251197817941
    3
    35776
    BXD39 M
    1
    54
    BXD39
    M
    251197817942
    3
    35777
    BXD40 F
    1
    59
    BXD40
    F
    251197817943
    2
    35778
    BXDA10 M
    1
    500
    BXD77
    M
    251197817959
    2
    35779
    BXD8 F
    1
    613
    BXD8
    F
    251197817960
    3
    35509
    C57BL/6J M B2
    2
    8
    C57BL/6J
    M
    251197818158
    3
    35529
    C57BL/6J M B2R
    2
    8
    C57BL/6J
    M
    251197818086
    3
    35578
    C57BL/6J F B2
    2
    5
    C57BL/6J
    F
    251197818159
    3
    35535
    DBA/2J F B2
    2
    1
    DBA/2J
    F
    251197818160
    3
    35536
    DBA/2J M B2
    2
    4
    DBA/2J
    M
    251197818161
    3
    35537
    DBA/2J F B2(3)
    2
    3
    DBA/2J
    F
    251197818162
    3
    35538
    C57BL/6J F B2(7)
    2
    7
    C57BL/6J
    2F, 1M
    251197818163
    3
    35528
    B6D2F1 M
    2
    603
    B6D2F1
    M
    251197818084
    3
    35539
    B6D2F1 F
    2
    601
    B6D2F1
    F
    251197818177
    3
    35540
    BXD11 M
    2
    12
    BXD11
    M
    251197818178
    2
    35541
    BXD13 F
    2
    16
    BXD13
    F
    251197818179
    3
    35542
    BXD21 M
    2
    21
    BXD21
    M
    251197818180
    3
    35543
    BXD24 F
    2
    25
    BXD24
    F
    251197818181
    2
    35514
    BXD31 M
    2
    34
    BXD31
    M
    251197817944
    2
    35515
    BXD32 F
    2
    36
    BXD32
    F
    251197817945
    2
    35516
    BXD42 M
    2
    63
    BXD42
    M
    251197817946
    3
    35517
    BXD5 F
    2
    65
    BXD5
    F
    251197817947
    2
    35527
    BXDAP15 M
    2
    79
    BXD62
    M
    251197817948
    3
    35531
    BXDAP19 F
    2
    81
    BXD43
    F
    251197818085
    3
    35916
    C57BL/6J M B3
    3
    506
    C57BL/6J
    M
    251197817964
    2
    35932
    C57BL/6J M B3R
    3
    506
    C57BL/6J
    M
    16011978011862
    2
    35917
    DBA/2J M B3
    3
    509
    DBA/2J
    M
    251197817966
    2
    35918
    C57BL/6J F B3
    3
    5
    C57BL/6J
    F
    251197817967
    3
    35919
    DBA/2J F B3
    3
    1
    DBA/2J
    F
    251197817968
    3
    35920
    C57BL/6J F B3(605)
    3
    605
    C57BL/6J
    F
    251197817969
    3
    35921
    B6D2F1 F B3
    3
    602
    B6D2F1
    F
    251197817970
    3
    35922
    B6D2F1 M B3
    3
    702
    B6D2F1
    M
    251197817971
    3
    35923
    BXD14 M
    3
    17
    BXD14
    M
    251197817972
    3
    35924
    BXD15 F
    3
    19
    BXD15
    F
    251197817973
    3
    35933
    BXD33 M
    3
    39
    BXD33
    F or M
    251197818091
    3
    35925
    BXD9 F
    3
    70
    BXD9
    F
    16011978011756
    3
    35926
    BXD38 F
    3
    52
    BXD38
    F
    16011978011757
    3
    35927
    BXD36 M
    3
    46
    BXD36
    M
    16011978011758
    3
    35928
    BXD6 M
    3
    69
    BXD6
    M
    16011978011759
    3
    35929
    BXDA23F14 F
    3
    73
    BXD86
    F or M
    16011978011760
    3
    35930
    BXDAP5F21 M
    3
    86
    BXD60
    M
    16011978011860
    2
    35931
    BXDAP6F16 F
    3
    87
    BXD44
    F
    16011978011861
    3
    35549
    C57BL/6J F B5
    5
    5
    C57BL/6J
    F
    251197817949
    3
    35587
    C57BL/6J F B5R
    5
    5
    C57BL/6J
    F
    251197818022
    3
    35550
    DBA/2J F B5
    5
    1
    DBA/2J
    F
    251197817950
    3
    35558
    BXD1 F
    5
    11
    BXD1
    F
    251197818036
    2
    35551
    BXD12 M
    5
    14
    BXD12
    M
    251197817952
    3
    35552
    BXD13 M
    5
    15
    BXD13
    M
    251197817953
    2
    35584
    BXD15 M
    5
    18
    BXD15
    M
    251197818034
    3
    35557
    BXD28 F
    5
    28
    BXD28
    F
    251197818035
    3
    35585
    BXDA10 F
    5
    499
    BXD77
    F
    251197818037
    3
    35586
    BXDAP11 M
    5
    76
    BXD51
    M or F
    251197818038
    3
    35553
    BXDAP5 F
    5
    84
    BXD60
    F
    251197818019
    3
    35554
    BXDA22 M
    5
    513
    BXD85
    F
    251197818020
    2
    35555
    BXDAP12 F
    5
    515
    BXD45
    F
    251197818021
    2
    35786
    C57BL/6J F B6
    6
    5
    C57BL/6J
    F
    251197818004
    3
    35800
    C57BL/6J F B6R
    6
    5
    C57BL/6J
    F
    251197818005
    3
    35787
    DBA/2J F B6
    6
    1
    DBA/2J
    F
    251197818006
    3
    35788
    C57BL/6J M B6(507)
    6
    507
    C57BL/6J
    M
    251197818007
    2
    35789
    DBA/2J M B6(510)
    6
    510
    DBA/2J
    M
    251197818008
    2
    35790
    BXD34 M
    6
    42
    BXD34
    M
    251197818114
    3
    35795
    BXD21 F
    6
    20
    BXD21
    F
    251197818115
    3
    35791
    BXD24 M
    6
    26
    BXD24
    M
    251197818116
    3
    35792
    BXD33 F
    6
    40
    BXD33
    F
    251197818117
    3
    35793
    BXD9 M
    6
    71
    BXD9
    M
    251197818118
    3
    35794
    BXD31 F
    6
    32
    BXD31
    F
    251197818119
    2
    35796
    BXD2 F
    6
    612
    BXD2
    F
    251197818120
    3
    35797
    BXDAP6F16 M
    6
    502
    BXD44
    M
    251197818121
    2
    35798
    BXDAP8F21 M
    6
    512
    BXD48
    M
    251197818122
    2
    35799
    BXDA22F14 M
    6
    514
    BXD85
    M or F
    251197818123
    2
    35566
    C57BL/6J F B7
    7
    5
    C57BL/6J
    F
    251197818023
    3
    35577
    C57BL/6J F B7R
    7
    5
    C57BL/6J
    F
    251197818156
    3
    35567
    DBA/2J F B7
    7
    1
    DBA/2J
    F
    251197818069
    3
    35575
    DBA/2J M B7
    7
    511
    DBA/2J
    M
    251197818070
    2
    35568
    BXD29 M
    7
    31
    BXD29
    M
    251197818071
    3
    35569
    BXD36 F
    7
    47
    BXD36
    F or M
    251197818072
    3
    35570
    BXD38 M
    7
    51
    BXD38
    M
    251197818073
    3
    35571
    BXD39 F
    7
    56
    BXD39
    F
    251197818124
    3
    35572
    BXD40 M
    7
    60
    BXD40
    M
    251197818125
    3
    35573
    BXD42 F
    7
    62
    BXD42
    F
    251197818126
    3
    35574
    BXD5 M
    7
    66
    BXD5
    M
    251197818127
    3
    35579
    BXD6 F
    7
    68
    BXD6
    F
    251197818128
    3
    35576
    BXDAP15 F
    7
    78
    BXD62
    F or M
    251197818155
    3
    35508
    BXDAP19 M
    7
    82
    BXD43
    M
    251197818157
    2
    +
    +
    + +
    +

    Error Checking Note: Sexes of all individual animals used in this analysis were rechecked by Jing Gu and Lu Lu after processing was complete by genotyping Y chromosome-specific microsatellite markers. Sample 7 (also known as Experiment ID 35538) was shown to consist of a pool of two female samples and one male sample. This is the only mixed-sex sample in this study. Sample 513 is a female based both on regenotyping and on the array results. To use the array data to sex an animal we have relied on sex-specific expression differences of gene transcripts. Ddx3y and Uty are good male Y chromosome expression markers, whereas AI314753 and Eif2s3x are good female expression markers. Samples 39, 76, and 514 are males based on laboratory records and based on regenotyping the Y chromosome, but appear to be females based on the "sex" of the array data. Conversely, sample 47, 73, and 78 should be females based on our records and regenotyping, but appear to be males based on array data. We have marked these uncertain cases as M or F in the table.

    +
    + + +

        About data processing:

    +
    Expression data were initially expressed as the ratio of the liver fluorescence signal to that generated by the reference mRNA sample (liver, kidney, lung, brain, and spleen) for each probe. Data were normalized using a robust LOWESS smoothing method that adjusts for non-linearity of signal in the two channels. We then computed the log base 2 of these ratios (median). A value of -1 indicates that expression in liver is roughly 1/2 that in the control; a value of -2 indicates that expression in the liver is roughly 1/4 that in the control, etc. Conversely, a value of +2 indicates that the expression in liver is 4-fold greater in liver. +
    + + + + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probes were determined by NCBI's megablast using the NCBI M32 genomic sequence. Gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/ ). We thank Kenneth Phillips (Paradigm Genetics, Inc) for helping generate the probes position data set. +
    + + +

        Data source acknowledgment:

    +
    This project was supported by ES10126, ES11391, ES11660 and P20-MH 62009 to KFM and RW. Ivan Rusyn was a recipient of a Transition to Independent Position Award (ES11660) from the National Institute of Environmental Health Sciences. Work by Paradigm Genetics, Inc. in design of the Toxicogenomics Micro (G4121A) array was supported by NIEHS contract N01-ES-25497.
    + + +
    Please contact either:
    + + +
    Ivan Rusyn at the Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA or
    +
    Rob Williams at the Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, TN 38163, USA
    + + +

        About this text file:

    + +
    +This text file originally generated by Ivan Rusyn, David W. Threadgill and Robert W. Williams, July 2004. Updated by RWW, Nov 14, 16, 2004. Updated by IR, Dec 1, 2004; by RWW June 15, 2005. + +
    + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/LV_G_0704_RBF.html b/web/dbdoc/LV_G_0704_RBF.html new file mode 100755 index 00000000..3ff05735 --- /dev/null +++ b/web/dbdoc/LV_G_0704_RBF.html @@ -0,0 +1,330 @@ + + UNC Agilent G4121A Liver Database (July/04 Freeze) Orig LOWESS/ WebQTL + + + + + + + + + + + + + + + + + + + + +
    +

    UNC Agilent G4121A Liver Database (Jul04 Freeze) Orig LOWESS modify this page

    + + +

        Summary:

    + +
    +This data set provides estimates of mRNA expression in livers of 38 adult BXD recombinant inbred mice measured using Agilent G4121A microarray. Data were generated by a consortium of investigators at the University of North Carolina at Chapel Hill (Akira Maki, David Threadgill, and Ivan Rusyn) and at the University of Tennessee Heath Science Center (Lu Lu, Elissa Chesler, Ken Manly, and Rob Williams). Image intensity data were processed using a locally weighted scatterplot smooth (LOWESS) and are presented without further modification (Orig LOWESS; see section below on Data Processing). For background on the NIEHS Toxicogenomics Research Consortium and the Chemical Effects in Biological Systems (CEBS) program please link to a PDF by Michael D. Waters. +This is the first data freeze. + +
    + + +

        About the cases used to generate this set of data:

    + +
    Ninety-six BXD liver sample pools were obtained from animals reared at UTHSC in a pathogen-free vivarium. Mice were experimentally naive and housed at weaning (20 to 24 days-of-age) in same-sex groups in standard mouse shoebox cages. Mice were 56 to 177 days old at the time of sacrifice. Thirty-eight mouse strains were used of which 27 were represented by both sexes.
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain Name
    Sex
    WebQTL Strain ID
    C57BL/6J
    M and F
    C57BL/6J
    DBA/2J
    M and F
    DBA/2J
    B6D2F1
    M and F
    F1
    BXD1
    M and F
    BXD1
    BXD2
    F
    BXD2
    BXD5
    M and F
    BXD5
    BXD6
    M and F
    BXD6
    BXD8
    F
    BXD8
    BXD9
    M and F
    BXD9
    BXD11
    M
    BXD11
    BXD12
    M and F
    BXD12
    BXD13
    M and F
    BXD13
    BXD14
    M
    BXD14
    BXD15
    M and F
    BXD15
    BXD21
    M and F
    BXD21
    BXD23
    M
    BXD23
    BXD24
    M and F
    BXD24
    BXD28
    M and F
    BXD28
    BXD29
    M and F
    BXD29
    BXD31
    M and F
    BXD31
    BXD32
    F
    BXD32
    BXD33
    F (?)
    BXD33
    BXD34
    M and F
    BXD34
    BXD36
    M and F (?)
    BXD36
    BXD38
    M and F
    BXD38
    BXD39
    M and F
    BXD39
    BXD40
    M and F
    BXD40
    BXD42
    M and F
    BXD42
    BXD43
    M and F
    BXD43
    BXD44
    M and F
    BXD44
    BXD45
    F
    BXD45
    BXD48
    M
    BXD48
    BXD51
    F (?)
    BXD51
    BXD60
    M and F
    BXD60
    BXD62
    M and F (?)
    BXD62
    BXD77
    M and F
    BXD77
    BXD85
    M and F (?)
    BXD85
    BXD86
    F (?)
    BXD86
    +
    +
    + +
    +C57BL/6J, DBA/2J, and BXD1 through BXD42 were originally obtained from The Jackson Laboratory. Advanced intercross BXD strains (BXD43 and higher) were generated at Princeton University and UTHSC (Peirce and Lu, 2004). All of these new strains were inbred for at least 14 generations. +
    + + +

        About the tissue used to generate these data:

    +

    Animals were killed by cervical dislocation. The entire liver was removed within less than 5 minutes by Zhiping Jia or Hongtao Zhai and placed in RNAlater (Ambion) overnight at 4 degrees. Tissue was stored in single vials (2 to 3 cases per vial) at -80 degrees. Tissue vials were shipped to UNC on ice by FedEX. Prior to isolation of RNA, liver samples from the same strain and sex (2 to 3 animals) were pooled in equal amount and minced in a homogenization buffer using an electric homogenizer. Total RNA was isolated using Qiagen RNeasy Mini kits according to the manufacturer's instructions. RNA purity and quality were verified using a BioAnalyzer 2100 and Low RNA Input Linear Amplification kits (Agilent Technologies, Wilmington, DE) in these experiments. RNA labeling, array hybridization and washing and other procedures were performed according to the manufacturer's protocols. A common reference design was used. Male C57BL/6J mouse pooled (equal amounts of RNA from liver, kidney, lung, brain and spleen) RNA provided by the Toxicogenomics Research Consortium was used as a common reference in all these experiments. +

    + +

        About the array platform

    + +
    Samples were assayed using G4121A Agilent oligomer microarray glass slides (1" x 3" format). This microarray estimate expression of approximately 20,842 mouse genes, including a special set of toxicology transcripts nominated by a collaboration that included the National Institute of Environmental Health Sciences (NIEHS) and members of the Toxicogenomics Research Consortium. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Experiment ID
    Experiment Name
    Batch#
    Sample ID
    Strain
    Sex
    Array Barcode#
    35781
    C57BL/6J M B1
    1
    614
    C57BL/6J
    M
    251197818088
    35780
    C57BL/6J M B1R
    1
    614
    C57BL/6J
    M
    251197817961
    35782
    C57BL/6J F B1
    1
    5
    C57BL/6J
    F
    251197818089
    35783
    DBA/2J F B1
    1
    1
    DBA/2J
    F
    251197818090
    35768
    B6D2F1 M B1
    1
    609
    B6D2F1
    M
    251197817934
    35769
    B6D2F1 F B1
    1
    96
    B6D2F1
    Unknown
    251197817935
    35770
    BXD1 M
    1
    9
    BXD1
    M
    251197817936
    35771
    BXD12 F
    1
    13
    BXD12
    F
    251197817937
    35772
    BXD23 M
    1
    24
    BXD23
    M
    251197817938
    35773
    BXD34 F
    1
    43
    BXD34
    F
    251197817939
    35774
    BXD28 M
    1
    29
    BXD28
    M
    251197817940
    35775
    BXD29 F
    1
    30
    BXD29
    F
    251197817941
    35776
    BXD39 M
    1
    54
    BXD39
    M
    251197817942
    35777
    BXD40 F
    1
    59
    BXD40
    F
    251197817943
    35778
    BXDA10 M
    1
    500
    BXD77
    M
    251197817959
    35779
    BXD8 F
    1
    613
    BXD8
    F
    251197817960
    35509
    C57BL/6J M B2
    2
    8
    C57BL/6J
    M
    251197818158
    35529
    C57BL/6J M B2R
    2
    8
    C57BL/6J
    M
    251197818086
    35578
    C57BL/6J F B2
    2
    5
    C57BL/6J
    F
    251197818159
    35535
    DBA/2J F B2
    2
    1
    DBA/2J
    F
    251197818160
    35536
    DBA/2J M B2
    2
    4
    DBA/2J
    M
    251197818161
    35537
    DBA/2J F B2(3)
    2
    3
    DBA/2J
    F
    251197818162
    35538
    C57BL/6J F B2(7)
    2
    7
    C57BL/6J
    2F, 1M
    251197818163
    35528
    B6D2F1 M
    2
    603
    B6D2F1
    M
    251197818084
    35539
    B6D2F1 F
    2
    601
    B6D2F1
    F
    251197818177
    35540
    BXD11 M
    2
    12
    BXD11
    M
    251197818178
    35541
    BXD13 F
    2
    16
    BXD13
    F
    251197818179
    35542
    BXD21 M
    2
    21
    BXD21
    M
    251197818180
    35543
    BXD24 F
    2
    25
    BXD24
    F
    251197818181
    35514
    BXD31 M
    2
    34
    BXD31
    M
    251197817944
    35515
    BXD32 F
    2
    36
    BXD32
    F
    251197817945
    35516
    BXD42 M
    2
    63
    BXD42
    M
    251197817946
    35517
    BXD5 F
    2
    65
    BXD5
    F
    251197817947
    35527
    BXDAP15 M
    2
    79
    BXD62
    M
    251197817948
    35531
    BXDAP19 F
    2
    81
    BXD43
    F
    251197818085
    35916
    C57BL/6J M B3
    3
    506
    C57BL/6J
    M
    251197817964
    35932
    C57BL/6J M B3R
    3
    506
    C57BL/6J
    M
    16011978011862
    35917
    DBA/2J M B3
    3
    509
    DBA/2J
    M
    251197817966
    35918
    C57BL/6J F B3
    3
    5
    C57BL/6J
    F
    251197817967
    35919
    DBA/2J F B3
    3
    1
    DBA/2J
    F
    251197817968
    35920
    C57BL/6J F B3(605)
    3
    605
    C57BL/6J
    F
    251197817969
    35921
    B6D2F1 F B3
    3
    602
    B6D2F1
    F
    251197817970
    35922
    B6D2F1 M B3
    3
    702
    B6D2F1
    M
    251197817971
    35923
    BXD14 M
    3
    17
    BXD14
    M
    251197817972
    35924
    BXD15 F
    3
    19
    BXD15
    F
    251197817973
    35933
    BXD33 M
    3
    39
    BXD33
    F or M
    251197818091
    35925
    BXD9 F
    3
    70
    BXD9
    F
    16011978011756
    35926
    BXD38 F
    3
    52
    BXD38
    F
    16011978011757
    35927
    BXD36 M
    3
    46
    BXD36
    M
    16011978011758
    35928
    BXD6 M
    3
    69
    BXD6
    M
    16011978011759
    35929
    BXDA23F14 F
    3
    73
    BXD86
    F or M
    16011978011760
    35930
    BXDAP5F21 M
    3
    86
    BXD60
    M
    16011978011860
    35931
    BXDAP6F16 F
    3
    87
    BXD44
    F
    16011978011861
    35549
    C57BL/6J F B5
    5
    5
    C57BL/6J
    F
    251197817949
    35587
    C57BL/6J F B5R
    5
    5
    C57BL/6J
    F
    251197818022
    35550
    DBA/2J F B5
    5
    1
    DBA/2J
    F
    251197817950
    35558
    BXD1 F
    5
    11
    BXD1
    F
    251197818036
    35551
    BXD12 M
    5
    14
    BXD12
    M
    251197817952
    35552
    BXD13 M
    5
    15
    BXD13
    M
    251197817953
    35584
    BXD15 M
    5
    18
    BXD15
    M
    251197818034
    35557
    BXD28 F
    5
    28
    BXD28
    F
    251197818035
    35585
    BXDA10 F
    5
    499
    BXD77
    F
    251197818037
    35586
    BXDAP11 M
    5
    76
    BXD51
    M or F
    251197818038
    35553
    BXDAP5 F
    5
    84
    BXD60
    F
    251197818019
    35554
    BXDA22 M
    5
    513
    BXD85
    F
    251197818020
    35555
    BXDAP12 F
    5
    515
    BXD45
    F
    251197818021
    35786
    C57BL/6J F B6
    6
    5
    C57BL/6J
    F
    251197818004
    35800
    C57BL/6J F B6R
    6
    5
    C57BL/6J
    F
    251197818005
    35787
    DBA/2J F B6
    6
    1
    DBA/2J
    F
    251197818006
    35788
    C57BL/6J M B6(507)
    6
    507
    C57BL/6J
    M
    251197818007
    35789
    DBA/2J M B6(510)
    6
    510
    DBA/2J
    M
    251197818008
    35790
    BXD34 M
    6
    42
    BXD34
    M
    251197818114
    35795
    BXD21 F
    6
    20
    BXD21
    F
    251197818115
    35791
    BXD24 M
    6
    26
    BXD24
    M
    251197818116
    35792
    BXD33 F
    6
    40
    BXD33
    F
    251197818117
    35793
    BXD9 M
    6
    71
    BXD9
    M
    251197818118
    35794
    BXD31 F
    6
    32
    BXD31
    F
    251197818119
    35796
    BXD2 F
    6
    612
    BXD2
    F
    251197818120
    35797
    BXDAP6F16 M
    6
    502
    BXD44
    M
    251197818121
    35798
    BXDAP8F21 M
    6
    512
    BXD48
    M
    251197818122
    35799
    BXDA22F14 M
    6
    514
    BXD85
    M or F
    251197818123
    35566
    C57BL/6J F B7
    7
    5
    C57BL/6J
    F
    251197818023
    35577
    C57BL/6J F B7R
    7
    5
    C57BL/6J
    F
    251197818156
    35567
    DBA/2J F B7
    7
    1
    DBA/2J
    F
    251197818069
    35575
    DBA/2J M B7
    7
    511
    DBA/2J
    M
    251197818070
    35568
    BXD29 M
    7
    31
    BXD29
    M
    251197818071
    35569
    BXD36 F
    7
    47
    BXD36
    F or M
    251197818072
    35570
    BXD38 M
    7
    51
    BXD38
    M
    251197818073
    35571
    BXD39 F
    7
    56
    BXD39
    F
    251197818124
    35572
    BXD40 M
    7
    60
    BXD40
    M
    251197818125
    35573
    BXD42 F
    7
    62
    BXD42
    F
    251197818126
    35574
    BXD5 M
    7
    66
    BXD5
    M
    251197818127
    35579
    BXD6 F
    7
    68
    BXD6
    F
    251197818128
    35576
    BXDAP15 F
    7
    78
    BXD62
    F or M
    251197818155
    35508
    BXDAP19 M
    7
    82
    BXD43
    M
    251197818157
    +
    +
    + +
    +

    Error Checking Note: Sexes of all individual animals used in this analysis were rechecked by Jing Gu and Lu Lu after processing was complete by genotyping Y chromosome-specific microsatellite markers. Sample 7 (also known as Experiment ID 35538) was shown to consist of a pool of two female samples and one male sample. This is the only mixed-sex sample in this study. Sample 513 is a female based both on regenotyping and on the array results. To use the array data to sex an animal we have relied on sex-specific expression differences of gene transcripts. Ddx3y and Uty are good male Y chromosome expression markers, whereas AI314753 and Eif2s3x are good female expression markers. Samples 39, 76, and 514 are males based on laboratory records and based on regenotyping the Y chromosome, but appear to be females based on the "sex" of the array data. Conversely, sample 47, 73, and 78 should be females based on our records and regenotyping, but appear to be males based on array data. We have marked these uncertain cases as M or F in the table.

    +
    + + +

        About data processing:

    +
    Expression data were initially expressed as the ratio of the liver fluorescence signal to that generated by the reference mRNA sample (liver, kidney, lung, brain, and spleen) for each probe. Data were normalized using a robust LOWESS smoothing method that adjusts for non-linearity of signal in the two channels. We then computed the log base 2 of these ratios (median). A value of -1 indicates that expression in liver is roughly 1/2 that in the control; a value of -2 indicates that expression in the liver is roughly 1/4 that in the control, etc. Conversely, a value of +2 indicates that the expression in liver is 4-fold greater in liver. +
    + + + + +

        About the chromosome and megabase position values:

    +
    The chromosomal locations of probes were determined by NCBI's megablast using the NCBIM32 genomic sequence. Gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 Assembly (see http://genome.ucsc.edu/ ). We thank Kenneth Phillips (Paradigm Genetics, Inc) for helping in generating probes position data. +
    + + +

        Data source acknowledgment:

    +
    This project was supported by ES10126, ES11391, ES11660 and P20-MH 62009 to KFM and RW. Ivan Rusyn was a recipient of a Transition to Independent Position Award (ES11660) from the National Institute of Environmental Health Sciences.
    +
    Please contact either:
    +
    Ivan Rusyn at the Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA or
    +
    Rob Williams at the Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, TN 38163, USA
    + + +

        About this text file:

    + +
    +This text file originally generated by Ivan Rusyn, David W. Threadgill and Robert W. Williams, July 2004. Updated by RWW, Nov 14, 16, 2004. Updated by IR, Dec 1, 2004. + +
    + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/LXSGeno.html b/web/dbdoc/LXSGeno.html new file mode 100755 index 00000000..ca7fc19f --- /dev/null +++ b/web/dbdoc/LXSGeno.html @@ -0,0 +1,110 @@ + +LXS Genotype / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    LXS Genotypes Database (July 2005) + + modify this page

    + + +

        Summary:

    + +

    +The LXS genotype file used by WebQTL consists of a set of 2659 carefully error-checked SNPs and microsatellites typed across all 77 strains. Download all LXS genotypes as a 478 Kb text file. + +

    LXS strains were derived from a cross between the following 8 strains: A, AKR, BALB/c, C3H/2, C57BL, DBA/2, IS/Bi, and RIII. All of these strains were maintained at the Institute for Behavior Genetics, Bolder Colorado by Dr. Gerald McClearn and colleagues. C3H/2 is presumably the same as C3H/Crgl/2 (see paper by Green V (1981) Behavioral and Neural Biology 31:56). C57BL is presumably the same as C57BL/Crgl. IS/Bi is extinct. + +

    See Williams, Bennett, Johnson and colleagues (2004) for more details on the LXS panel. +

    +
    + + + +

        About the genotypes used in these studies:

    + +
    WebQTL mapping algorithms rely on an initial set of 330 microsatellites genotyped in 2002 and 2003 at UTHSC (labeled Mit). The current expanded marker set (n = 2659) have been selected from a total of 13377 SNPs genotyped in collaboration with Jonathan Flint, Richard Mott, Beth Bennett, Lu Lu, and Jing Gu. Closely linked genetic markers often have the same strain distribution pattern (SDP) across the LXS strains. For computational efficiency, we only use a single marker associated with each SDP. +
    + +
    All LXS strains are from the Institute of Behavioral Genetics, Boulder Colorado. They were generated by Beth Bennett, Tom Johnson, and colleagues over a ten-year period. All of these strains are beyond the 22 generation of serial sibling mating and are formally fully inbred. +
    + + + +

        Reference:

    + + +

    +Williams RW, Bennett B, Lu L, Gu J, DeFries JC, Carosone-Link P, Rikke B, Belknap JK, Johnson TE (2004) Genetic structure of the LXS panel of recombinant inbred mouse strains. Mammalian Genome 15:637-647 +

    + + +
    +This text file was originally written by RW Williams, July 26, 2005. +
    + + + +

    +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/LXSPublish.html b/web/dbdoc/LXSPublish.html new file mode 100755 index 00000000..8d28a42a --- /dev/null +++ b/web/dbdoc/LXSPublish.html @@ -0,0 +1,96 @@ + +LXS Publish / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    + +

    LXS Published Database + modify this page

    + + + +

        Summary:

    +

    +The set of 77 LXS recombinant inbred strains were generated at the Institute for Behavioral Genetics (University of Colorado, Boulder) by Beth Bennett, John DeFries, Tom Johnson, and colleages. Strains first became available for phenotyping in 2003. The large size of this panel ensures good power in genetic studies of a wide variety of complex traits.

    + +
    + +

        About the subjects:

    +

    +The parental strains of the LXS set are Inbred Long-Sleep (ILS) and Inbred Short-Sleep (ISS) strains. These parental strains have been phenotyped intensively by behavioral geneticists and neuropharmacologists for a decade (e.g., Markel PD et al. 1995, Hanania and Zahniser 2004. The LXS strains have an intriguing history and trace back to an 8-way cross initiated in the 1950s by Gerald McClearn, the dean of mouse behavior genetics.

    + +

    The LXS panel has recently been genotyped at 330 microsatellite markers, and this panel can already be used to map Mendelian and quantitative trait loci. As an example, the current prototype LXS phenotype database contains information on coat color treated as an ordinal trait (1 = albino, 5 = black). This simple trait produces a QTL with an LRS score of 73 (LOD score of ~16) on Chr 7 with a peak within a few megabases of the tyrosinase gene.

    +
    + +

        Submitting data and reporting +errors:

    +

    The utility of this resource increases greatly as new phenotypes are added to the database. To submit new data or report errors, please contact Beth Bennett at bennettb@colorado.edu or Lu Lu at a href="mailto:lulu@nb.utmem.edu">lulu@nb.utmem.edu.

    +
    + + +

        Acknowledgments:

    +

    The initial construction of this database was performed by Beth Bennett and colleagues at the University of Colorado, Boulder, and by Lu Lu and colleagues at the University of Tennessee Health Sciences Center.

    + + +

        About this file:

    +

    The file started, Oct 31, 2004 by RWW. Last update by RWW, Oct 31, 2004. RWW, JLP, Mar 31, 2005.

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Liver_95_AgilentFea.xls b/web/dbdoc/Liver_95_AgilentFea.xls new file mode 100755 index 00000000..9b276b20 Binary files /dev/null and b/web/dbdoc/Liver_95_AgilentFea.xls differ diff --git a/web/dbdoc/Liver_95_UNCMD.xls b/web/dbdoc/Liver_95_UNCMD.xls new file mode 100755 index 00000000..11259af4 Binary files /dev/null and b/web/dbdoc/Liver_95_UNCMD.xls differ diff --git a/web/dbdoc/M430MicroArray_May03.html b/web/dbdoc/M430MicroArray_May03.html new file mode 100755 index 00000000..30f481ea --- /dev/null +++ b/web/dbdoc/M430MicroArray_May03.html @@ -0,0 +1,180 @@ + +M430 Microarray May03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    SJUT M430 Cerebellum Database (May/03) modify this page

    + +

        About the mice used to map microarray data:

    + +
    The set of mouse strains used for mapping (a mapping panel) consists of groups of genetically unique BXD recombinant inbred strains. The ancestral strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6, and 1.5x coverage for D by Celera Genomics). Chromosomes of the two parental strains are recombined randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXDA12, BXDA20, etc. are BXD Advanced recombinant inbred strains that are part of a large set now being produced by Drs. Lu Lu, Guomin Zhou, Lee Silver, Jeremy Peirce, and Robert Williams. There will eventually be ~45 of these BXDA strains. For additional background on recombinant inbred strains, + please see http://www.nervenet.org/papers/bxn.html. +
    + +

        About the tissue used to generate these data:

    +
    The May03 data were run as a single batch. Each individual array experiment involved a pool of brain tissue (intact whole cerebellum) taken from three adult animals usually of the same age. RNA was extracted at UTHSC. Twenty samples passed quality control at SJCRH and were run on Affymetrix MOE 430A and MOE430B GeneChip pairs (40 arrays total). +
    +The May03 data set includes a single Affymetrix GeneChip pair (abbreviated 430AB) processed with labeled messenger RNA taken from 20 strains. Please note that the variation of sex and age is intentional and this data set is only the first of many batches that will be required to obtain a fully balanced design by sex and age. However, we note that there is still only quite modest evidence of sex difference in cerebellar transcriptional profiles (beyond such obvious transcripts such as Xist and Dby). The age range may look very broad, but translated into human terms corresponds to a range from about 20 years to 50 years. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    SampleIDStrainCase_ID_UTAgeSex
    + S347-1B6D2F1/J021202.0194M
    + S054-1C57BL/6J101201.01109M
    + S175-1DBA/2J011402.0771F
    + 751-CBXD2022003.02142F
    + 752-CBXD5031103.0171M
    + 719-CBXD6010803.0192F
    + S173-1BXD8011402.0172F
    + 737-CBXD9031903.0486M
    + S200-1BXD11011602.04441F
    + 750-CBXD16021402.04163F
    + 711-CBXD21121102.01116F
    + S174-1BXD22011402.0465F
    + S429-1BXD25030702.0190M
    + S203-1BXD28011602.13427F
    + 714-CBXD29020503.0476M
    + 715-CBXD33121002.01124M
    + 725-CBXD34111902.0756F
    + 723-CBXD39120902.01165M
    + 718-CBXD40111902.0456F
    + 709-CBXD42011303.0197M
    +
    +
    + +

        About data processing:

    + +
    Probe (cell) level data from the .CEL file: These .CEL values produced by MAS 5.0 are ~ 75% quantiles from a set of 22 pixel values per cell (6th-ranked pixel). +
      +
    • Step 1: We added an offset of 1.0 to the .CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z-score for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z-scores. The consequence of this simple set of transformations is to produce a set of Z-scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z-score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: The 430A and 430B GeneChips include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes and probe set provide a way to calibrate expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z values by approximately 0.87 and subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 7: This first batch of data intentionally includes no technical or biological replicates. Those are all included in September03 data set and will also be included in all subsequent large batches. For this particular data set we therefore did not need to compute the arithmetic mean of the values for the set of microarrays for each strain. We have not (yet) corrected for variance introduced by sex, age, or a sex-by-age interaction. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the .CEL file. + +
    +Probe set data from the .TXT file: These .TXT files were generated using the MAS 5.0. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + + +

        Data source acknowledgment:

    +
    +Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include:
      +
    • Tom Curran +
    • Dan Goldowitz +
    • Kristin Hamre +
    • Lu Lu +
    • Peter McKinnon +
    • Jim Morgan +
    • Clayton Naeve +
    • Richard Smeyne +
    • Robert Williams +
    • The Center of Genomics and Bioinformatics at UTHSC +
    • The Hartwell Center at SJCRH +
    +
    + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/M430MicroArray_October03.html b/web/dbdoc/M430MicroArray_October03.html new file mode 100755 index 00000000..837014c0 --- /dev/null +++ b/web/dbdoc/M430MicroArray_October03.html @@ -0,0 +1,185 @@ + +M430 Microarray October03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    SJUT M430 Cerebellum Database (October/03 Freeze) modify this page

    + +

        About the mice used to map microarray data:

    + +
    The set of mouse strains used for mapping (a mapping panel) consists of groups of genetically unique BXD recombinant inbred strains. The ancestral strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6, and 1.5x coverage for D by Celera Genomics). Chromosomes of the two parental strains are recombined randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXDA12, BXDA20, etc. are BXD Advanced recombinant inbred strains that are part of a large set now being produced by Drs. Lu Lu, Guomin Zhou, Lee Silver, Jeremy Peirce, and Robert Williams. There will eventually be ~45 of these BXDA strains. For additional background on recombinant inbred strains, + please see http://www.nervenet.org/papers/bxn.html. +
    + +

        About the tissue used to generate these data:

    +
    The October03 data were processed in two large batches. The first batch (the May03 data set) consisted of samples from 20 samples and 20 strains run on Affymetrix MOE 430A and MOE430B GeneChip pairs (40 arrays total). The second batch of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of brain tissue (intact whole cerebellum) taken from three adult animals usually of the same age. RNA was extracted at UTHSC and all samples were processed at the Hartwell Center (SJCRH, Memphis). We will eventually achieve a sample with good, but not perfect, balance of samples by sex and age. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSample_name
    B6D2F1M127766-C1
    B6D2F1M94S347-1C1
    C57BL/6JF116773-C1
    C57BL/6JM109S054-1C2
    DBA/2JF71S175-1C1
    DBA/2JF91782-C1
    BXD1F57813-C1
    BXD2F142751-C1
    BXD2F78774-C1
    BXD5F56802-C1
    BXD5M71752-C1
    BXD6F92719-C1
    BXD8F72S173-1C1
    BXD9M86737-C1
    BXD11F441S200-1C1
    BXD11M92790-C1
    BXD12F130776-C1
    BXD12M64756-C1
    BXD14F190794-C1
    BXD14M91758-C1
    BXD16F163750-C1
    BXD19F61772-C1
    BXD21F116711-C1
    BXD21M64803-C1
    BXD22F65S174-1C1
    BXD23F88814-C1
    BXD24F71805-C1
    BXD24M71759-C1
    BXD25M90S429-1C1
    BXD28F113785-C1
    BXD28F427S203-1C1
    BXD29F82777-C1
    BXD29M76714-C1
    BXD29M76714-C1
    BXD31F142816-C1
    BXD32F62778-C1
    BXD32M218786-C1
    BXD33F184793-C1
    BXD33M124715-C1
    BXD34F56725-C1
    BXD34M91789-C1
    BXD38F55781-C1
    BXD38M65761-C1
    BXD39M165723-C1
    BXD40F56718-C1
    BXD40F56718-C1
    BXD40M73812-C1
    BXD42F100799-C1
    BXD42M97709-C1
    +
    +
    + +

        About data processing:

    + +
    Probe (cell) level data from the .CEL file: These .CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      +
    • Step 1: We added an offset of 1.0 to the .CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z scores for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B GeneChips include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: Finally, we compute the arithmetic mean of the values for the set of microarrays for each strain. In this October03 data set we have relatively modest numbers of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, array batch, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the .CEL file. We expect to add statistical controls and adjustments for these variables in a subsequent versions of WebQTL. + +
    +Probe set data from the .TXT file: These .TXT files were generated using the MAS 5.0. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    +Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include:
      +
    • Tom Curran +
    • Dan Goldowitz +
    • Kristin Hamre +
    • Lu Lu +
    • Peter McKinnon +
    • Jim Morgan +
    • Clayton Naeve +
    • Richard Smeyne +
    • Robert Williams +
    • The Center of Genomics and Bioinformatics at UTHSC +
    • The Hartwell Center at SJCRH +
    +
    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/M430MicroArray_September03.html b/web/dbdoc/M430MicroArray_September03.html new file mode 100755 index 00000000..25a8b5b6 --- /dev/null +++ b/web/dbdoc/M430MicroArray_September03.html @@ -0,0 +1,187 @@ + +M430 Microarray September03 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    SJUT M430 Cerebellum Database (September/03 Freeze) modify this page

    + +

        About the mice used to map microarray data:

    + +
    The set of mouse strains used for mapping (a mapping panel) consists of groups of genetically unique BXD recombinant inbred strains. The ancestral strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6, and 1.5x coverage for D by Celera Genomics). Chromosomes of the two parental strains are recombined randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXD67, BXD68, etc. are BXD Advanced recombinant inbred strains that are part of a large set now being produced by Drs. Lu Lu, Guomin Zhou, Lee Silver, Jeremy Peirce, and Robert Williams. There will eventually be ~45 of these BXDA strains. For additional background on recombinant inbred strains, + please see http://www.nervenet.org/papers/bxn.html. +
    + +

        About the tissue used to generate these data:

    +
    The September03 data were processed in two large batches. The first batch (the May03 data set) consisted of samples from 20 samples and 20 strains run on Affymetrix MOE 430A and MOE430B GeneChip pairs (40 arrays total). The second batch of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of brain tissue (intact whole cerebellum) taken from three adult animals usually of the same age. RNA was extracted at UTHSC and all samples were processed at the Hartwell Center (SJCRH, Memphis). We will eventually achieve a sample with good, but not perfect, balance of samples by sex and age. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Sample_nameTissue_typeStrainSexAge
    766-C1CerebellumB6D2F1M127
    S347-1C1cerebellumB6D2F1M94
    813-C1CerebellumBXD1F57
    S200-1C1cerebellumBXD11F441
    790-C1CerebellumBXD11M92
    776-C1CerebellumBXD12F130
    756-C1CerebellumBXD12M64
    794-C1CerebellumBXD14F190
    758-C1CerebellumBXD14M91
    750-C1CerebellumBXD16F163
    772-C1CerebellumBXD19F61
    751-C1CerebellumBXD2F142
    774-C1CerebellumBXD2F78
    711-C1CerebellumBXD21F116
    803-C1CerebellumBXD21M64
    S174-1C1cerebellumBXD22F65
    814-C1CerebellumBXD23F88
    805-C1CerebellumBXD24F71
    759-C1CerebellumBXD24M71
    S429-1C1cerebellumBXD25M90
    785-C1CerebellumBXD28F113
    S203-1C1cerebellumBXD28F427
    777-C1CerebellumBXD29F82
    714-C1CerebellumBXD29M76
    714-C1CerebellumBXD29M76
    816-C1CerebellumBXD31F142
    778-C1CerebellumBXD32F62
    786-C1CerebellumBXD32M218
    793-C1CerebellumBXD33F184
    715-C1CerebellumBXD33M124
    725-C1CerebellumBXD34F56
    789-C1CerebellumBXD34M91
    781-C1CerebellumBXD38F55
    761-C1CerebellumBXD38M65
    723-C1CerebellumBXD39M165
    718-C1CerebellumBXD40F56
    718-C1CerebellumBXD40F56
    812-C1CerebellumBXD40M73
    799-C1CerebellumBXD42F100
    709-C1CerebellumBXD42M97
    802-C1CerebellumBXD5F56
    752-C1CerebellumBXD5M71
    719-C1CerebellumBXD6F92
    S173-1C1cerebellumBXD8F72
    737-C1CerebellumBXD9M86
    773-C1CerebellumC57BL/6JF116
    S054-1C2cerebellumC57BL/6JM109
    S175-1C1cerebellumDBA/2JF71
    782-C1CerebellumDBA/2JF91
    +
    +
    + +

        About data processing:

    + +
    Probe (cell) level data from the .CEL file: These .CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      +
    • Step 1: We added an offset of 1.0 to the .CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z-score for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z-scores. The consequence of this simple set of transformations is to produce a set of Z-scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z-score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B GeneChips include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z values by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: Finally, we compute the arithmetic mean of the values for the set of microarrays for each strain. In this September03 data set we have relatively modest numbers of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, array batch, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the .CEL file. We expect to add statistical controls and adjustments for these variables in a subsequent versions of WebQTL. + +
    +Probe set data from the .TXT file: These .TXT files were generated using the MAS 5.0. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Feb 2002 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    +Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include:
      +
    • Tom Curran +
    • Dan Goldowitz +
    • Kristin Hamre +
    • Lu Lu +
    • Peter McKinnon +
    • Jim Morgan +
    • Clayton Naeve +
    • Richard Smeyne +
    • Robert Williams +
    • The Center of Genomics and Bioinformatics at UTHSC +
    • The Hartwell Center at SJCRH +
    +
    + + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/M430MicroArray_SetAB_Batch12_January04.html b/web/dbdoc/M430MicroArray_SetAB_Batch12_January04.html new file mode 100755 index 00000000..cb3cc296 --- /dev/null +++ b/web/dbdoc/M430MicroArray_SetAB_Batch12_January04.html @@ -0,0 +1,222 @@ + +M430 Microarray January 04 / WebQTL + + + + + + + + + + + + + + + + + +
    + + + +
    +

    SJUT M430 Cerebellum Database (January/04 Freeze) modify this page

    + +

        About the mice used to map microarray data:

    + +
    The set of mouse strains used for mapping (a mapping panel) consists of groups of genetically unique BXD recombinant inbred strains. The ancestral strains from which all BXD lines are derived are C57BL/6J (B6 or B) and DBA/2J (D2 or D). Both B and D strains have been almost fully sequence (8x coverage for B6, and 1.5x coverage for D by Celera Genomics). Chromosomes of the two parental strains are recombined randomly in the many different BXD strains. BXD lines 2 through 32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through 42 were also produced by Dr. Taylor, but they were generated in the 1990s. All of these strains are available from The Jackson Laboratory. Lines such as BXDA12, BXDA20, etc. are BXD Advanced recombinant inbred strains that are part of a large set now being produced by Drs. Lu Lu, Guomin Zhou, Lee Silver, Jeremy Peirce, and Robert Williams. There will eventually be ~45 of these BXDA strains. For additional background on recombinant inbred strains, + please see http://www.nervenet.org/papers/bxn.html. +
    + +

        About the tissue used to generate these data:

    +
    The January04 data is same as the October03 data these were processed in two large batches. We did correction for the two batches based on the October03 data set.The first batch (the May03 data set) consisted of samples from 20 samples and 20 strains run on Affymetrix MOE 430A and MOE430B GeneChip pairs (40 arrays total). The second batch of 29 samples, included may biological replicates, 2 technical replicates, and data for 9 new strains. Each individual array experiment involved a pool of brain tissue (intact whole cerebellum) taken from three adult animals usually of the same age. RNA was extracted at UTHSC and all samples were processed at the Hartwell Center (SJCRH, Memphis). We will eventually achieve a sample with good, but not perfect, balance of samples by sex and age. The age range may look broad, but translated into human terms corresponds to a range from about 20 years to 50 years. + +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    StrainSexAgeSample_name
    B6D2F1M127766-C1
    B6D2F1M94S347-1C1
    C57BL/6JF116773-C1
    C57BL/6JM109S054-1C2
    DBA/2JF71S175-1C1
    DBA/2JF91782-C1
    BXD1F57813-C1
    BXD2F142751-C1
    BXD2F78774-C1
    BXD5F56802-C1
    BXD5M71752-C1
    BXD6F92719-C1
    BXD8F72S173-1C1
    BXD9M86737-C1
    BXD11F441S200-1C1
    BXD11M92790-C1
    BXD12F130776-C1
    BXD12M64756-C1
    BXD14F190794-C1
    BXD14M91758-C1
    BXD16F163750-C1
    BXD19F61772-C1
    BXD21F116711-C1
    BXD21M64803-C1
    BXD22F65S174-1C1
    BXD23F88814-C1
    BXD24F71805-C1
    BXD24M71759-C1
    BXD25M90S429-1C1
    BXD28F113785-C1
    BXD28F427S203-1C1
    BXD29F82777-C1
    BXD29M76714-C1
    BXD29M76714-C1
    BXD31F142816-C1
    BXD32F62778-C1
    BXD32M218786-C1
    BXD33F184793-C1
    BXD33M124715-C1
    BXD34F56725-C1
    BXD34M91789-C1
    BXD38F55781-C1
    BXD38M65761-C1
    BXD39M165723-C1
    BXD40F56718-C1
    BXD40F56718-C1
    BXD40M73812-C1
    BXD42F100799-C1
    BXD42M97709-C1
    +
    +
    + +

        About data processing:

    + +
    Probe (cell) level data from the .CEL file: These .CEL values produced by MAS 5.0 are ~ 75% quantiles from a set of 22 pixel values per cell (6th-ranked pixel). +
      +
    • Step 1: We added an offset of 1.0 to the .CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z scores for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B GeneChips include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    • Step 7: Finally, we compute the arithmetic mean of the values for the set of microarrays for each strain. In this October03 data set we have relatively modest numbers of replicates and for this reason we do not yet provide error terms for transcripts or probes. Note, that we have not (yet) corrected for variance introduced by differences in sex, age, array batch, or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the .CEL file. We expect to add statistical controls and adjustments for these variables in a subsequent versions of WebQTL. + +
    +Probe set data from the .TXT file: These .TXT files were generated using the MAS 5.0. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Feb 2002 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Resolving Gene Identity and Position Problems:

    + +
    Probe sets that are intended to target transcripts from a single gene occasionally map to different chromosomes; for example, M430 probe sets that supposedly target the thyroid hormone alpha receptor (Thra, 1416958_at on M430A) maps to Chr 14 at 13.556 Mb. Since Thra maps to Chr 11 rather than Chr 14, it is likely that one or all of these Thra probe sets are mismapped or mislabeled as Thra. To determine which problem is more likely, we suggest that you re-BLAT the perfect match probe sequence. +This is quite simple. Just paste all of the perfect match probes (odd numbered probes) into a single +BLAT query. WebQTL will do this automatically for you from the bottom of any Probe Sequence +Table To do this:
    + +
    +
      +
    1. Go to the Trait Data and Editing Form. +
    2. Select the Link: Probe sequences. +
    3. Scroll to the bottom of this page. +
    4. Click on the "BLAT PM Probes" button. +
    5. Click on the "browser" action link for the top row of the BLAT Search Results page. +
    6. Click on the "zoom out" 3x or 10x button. +
    7. Review the relation of "Your sequence from BLAT Search" with the "Known Genes" or any of the +other Genome Browser tracks. +
    +
    + +
    (NOTE: BLAT is insensitive to sequence overlap and extra spaces. The sequence above is a concatenation of all PM probes without any concern for probe overlap. The Perfect Match sequences are available on WebQTL by selecting the Probe link on the Trait Data and Editing window).
    + +
    This will return this BLAT Search Results

    + +
    + +
    The result confirms that the probe set maps to Chr 14 (a score of 211 is good). However if you click on the browser link in the BLAT Search Results window you will see that the gene that these probes target is actually BC008556 (a nuclear receptor subfamily 1, group D, member 2 gene), not Thra.
    + +

        Data source acknowledgment:

    +
    +Data were generated with funds contributed equally by The UTHSC-SJCRH Cerebellum Transcriptome Profiling Consortium. Our members include:
      +
    • Tom Curran +
    • Dan Goldowitz +
    • Kristin Hamre +
    • Lu Lu +
    • Peter McKinnon +
    • Jim Morgan +
    • Clayton Naeve +
    • Richard Smeyne +
    • Robert Williams +
    • The Center of Genomics and Bioinformatics at UTHSC +
    • The Hartwell Center at SJCRH +
    +
    + +

        Reference: None yet specifically for this project and data set +

    +

    + Wang J, Williams RW, Manly KF (2003) WebQTL: Web-based complex trait analysis. Neuroinformatics 1: 299-308.. +

    + +

    + +
    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/MA_M2F_0706_R.html b/web/dbdoc/MA_M2F_0706_R.html new file mode 100755 index 00000000..63be19dc --- /dev/null +++ b/web/dbdoc/MA_M2F_0706_R.html @@ -0,0 +1,2107 @@ + +Mouse kidney M430v2 Female (Aug06) RMA + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + +
    +

    Kidney Consortium M430v2 Female (Aug06) RMA modify this page

    Accession number: GN239

    + + +

        Summary:

    + +
    +

    The July 2006 Kidney QTL Consortium data set provides estimates +of mRNA expression in the adult kidney of 70 genetically diverse +strains of mice including 54 BXD recombinant inbred strains, a set +of 15 inbred strains, and 1 F1 hybrid; D2B6F1. Kidney samples were +processed using a total of 153 Affymetrix Mouse Expression 430 2.0 +microarrays (M430v2.0). This particular data set was processed using +the RMA protocol.

    +
    + +

        About the strains used to generate this set of data:

    + + + +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 30 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred. We have also included 24 BXD lines generated by Lu and Peirce. All of these strains have been genotyped at 13,377 SNPs. + +

    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 15 inbred strains and a pair of F1 hybrids; D2B6F1. These strains were selected for the following reasons: +This panel will be a powerful tool in systems genetic analysis of a wide variety of traits, and will provide additional power in fine mapping modulators through an association analysis of sequence variants. +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +
      +
    1. BTBR T+tf/J +
          Multiple recessive stock; Homozygotes show repeated waves of hair loss and regrowth, which begin in the nose and pass posteriorly along the body. + +
    2. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    3. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    4. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    5. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    6. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    7. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    8. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    9. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    10. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    11. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    12. D2B6F1 +
      F1 hybrid generated by crossing C57BL/6J with DBA/2J +
    + +

    These inbred strains can be ordered from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC. + +

    + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, and the Jackson Laboratory (Table 1). Animals were housed at UTHSC, at Harvard/BIDMC (Glenn Rosen), at the University of Memphis (Douglas Matthews), or the Jackson Laboratory before sacrifice (see Table 1). Mice were killed by cervical dislocation and kidneys were removed and placed in RNAlater prior to dissection. Kidneys were dissected whole and cleaned from the adrenal glands by Hong Tao Zhang in Dr. Lu’s lab. Kidneys from two to six animals per strain were pooled and shipped to Kremena Star at Mount Sinai School of Medicine (MSSM). Animals used in this study were between 50 and 99 days of age (average of 62 days; see Table 1). +

    + +
    +

    Sample Processing: : Samples were processed at the Mount Sinai School of Medicine in the laboratory of Dr. Erwin Bottinger. All processing steps were performed Kremena Star. Total RNA was extracted with TRIZOL, followed by Rneasy Mini Kit purification (QUAGEN) by Kremena Star at MSSM. RNA purity was evaluated using the 260/280 nm (protein contamination) and the 260/230 nm (TRIZOL contamination) absorbance ratios, and values had to be greater than 1.9 and 0.8 respectively. Most of the samples 260/280 nm values fell between 1.9 and 2.1 and the majority of the 260/230 nm measurements were in the range 1.8 to 2.3. RNA integrity was assessed with the Agilent Bioanalyzer 2100. We set a quality threshold at 28s/18s rRNA greater than 0.9 or RNA integrity number (RIN) of greater than 6.9. When the two metrics were in disagreement we gave priority on the RIN value as recommended by the Agilent Bioanalyzer 2100 technical support representative. +Synthesis of cDNA template from total RNA was performed using the one-cyclecDNA synthesis kit from Affymetrix (Affymetrix, P/N 900431). The Affymetrix IVT-labeling kit ((Affymetrix, P/N 900449)) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 1.9 to 2.1). The cRNA is then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup (Affymetrix, P/N 900371). Fragmented cRNA samples were accessed with Agilent Bioanalyzer 2100 (cRNA frgments between 25 and 200 nucleotides are required for optimal hybridization and immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + +

    Replication and Sample Balance: We obtained a male sample +pool and female sample pool from each isogenic group. Initially +all strains were represented by male and female samples, however, +not all data sets passed the quality control steps. Forty-two (thirty-one +BXD, D2B6F1 and ten inbred strains) are represented by male and +female samples. For the remaining strains, represented by only one +sex we calculated sex-corrected values for each probe set using +the following algorithm: +

    1. Compute the difference in expression values between the
    +ALL_FEMALE_AVE and the ALL_MALE_AVE (n = 100 vs n = 52).
    +b. Divide these values by 2 (additive sex effect)
    +c. If a female-only strain subtract the "additive sex effect" +
    +d. If a male-only strain add the "additive sex effect"
    +

    +

    Experimental Design and Batch Structure: The data set consists of arrays processed in twenty-three groups over a six month period (March 2006 to July 2006). Each group consists of 4 to 12 arrays. All arrays were processed using the Affymetrix Eukaryotic Sample and Array Processing protocol (701024 Rev. 3), by a single operator, Kremena Star. +All samples in a group were labeled on the same. The hybridization station accommodates up to 4 samples, and since most of the groups had 12 samples, processed in 3 batches on the same day. Samples were washed in groups of four and kept at 4° C until all 12 (or 4-12) arrays were ready to scan. Samples were scanned in sets of four. + +

    + +

        Data Table 1:

    + +
    + +
    This table lists all arrays ordered by strain and includes +Microarray ID, number of mice per pool, Microarray date, GAPDH 3`/5`Signal +Ratio, Percent of transcripts present on the microarray chip, Strain, +Generation, Sex, Age and Source of mice.
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Microarray_ID# miceMicroarray DateGAPDH (3`/5`)% presentstrainsgenerationsexageMice Source
    GKHI-KS-050603.07-051706305/14/020.7337.6C57BL/6J M56UTM RW
    GKHI-KS-070803.01-051706305/14/020.7541.6C57BL/6J F69UTM RW
    GKHI-KS-DBA-Male-070706207/06/020.7137.3DBA/2J M56JAX
    GKHI_KS_121404.75-042106404/18/02  DBA/2J F59UTM RW
    GKHI_KS_121404.75-033006403/19/020.7348.5DBA/2J F59UTM RW
    GKHI_KS_121404.78-042006404/17/020.8340.6DBA/2J F59UTM RW
    GKHI_KS_070804.39-042006404/17/020.8239.0D2B6F1 M59UTM RW
    GKHI_KS_030904.01-042006404/17/020.8235.9D2B6F1 M57UTM RW
    GKHI-KS-121404.73-070706207/06/020.7636.3D2B6F1 F69UTM RW
    GKHI-KS-010705.38-051206505/09/020.8139.9BXD1 M59Harvard/BIDMC
    GKHI-KS-060905.19506/05/020.7542.3BXD1 M68UTM RW
    GKHI-KS-051206.13-070706307/06/020.7136.3BXD1 F57UTM RW
    GKHI-KS-021304.10-051206405/09/020.8139.1BXD2 M61Harvard/BIDMC
    GKHI-KS-040303-04-050406305/01/020.8037.6BXD5 F56UMemphis
    GKHI-KS-010705-53-050306505/01/020.7637.1BXD5 F58Harvard/BIDMC
    GKHI-KS-031103.01-062206306/21/020.7537.1BXD5 M71UMemphis
    GKHI-KS-040505-51-050306505/01/020.7135.5BXD6 M58UTM RW
    GKHI-KS-092705-29--050406505/02/020.7536.1BXD6160F64UTM RW
    GKHI_KS_092404.01-042106404/18/020.7136.3BXD8 M59Harvard/BIDMC
    GKHI-KS-051205-25-042706504/23/020.9237.9BXD8 F77UTM RW
    KS-021605-17-042606504/22/020.8540.8BXD9 F67UTM RW
    KS-032905-32-042606504/22/020.9136.8BXD9 F60UTM RW
    GKHI-KS-062006.08-070706307/06/020.7436.3BXD9 M78UTM RW
    GKHI-KS-031505.22-051206505/09/020.7439.5BXD11 F65UTM RW
    GKHI-KS-031605.01506/05/020.7443.4BXD11 F69UTM RW
    GKHI_KS_102104.40-042106404/18/020.7238.5BXD12 M60Harvard/BIDMC
    GKHI-KS-112002.07-051106205/08/020.7742.0BXD12 F64UMemphis
    GKHI-KS-120904.33-051206405/09/020.7138.4BXD13 F60Harvard/BIDMC
    GKHI-KS-042304.01406/05/020.7144.1BXD13 F58Harvard/BIDMC
    GKHI-KS-020905.34-051106505/08/020.7540.7BXD14 F68UTM RW
    GKHI-KS-022405.46-051106505/08/020.7140.2BXD14 F60Harvard/BIDMC
    GKHI-KS-091704.09-062206406/21/020.7339.0BXD14 M59Harvard/BIDMC
    GKHI-KS-013004.45-062206406/21/020.7638.5BXD15 M61Harvard/BIDMC
    GKHI-KS-022405.43-051106505/08/020.7340.5BXD15 F60Harvard/BIDMC
    GKHI-KS-041604.10-051106405/08/020.7342.6BXD15 F60Harvard/BIDMC
    GKHI-KS-031805.01-051106505/08/020.7942.4BXD16 F59Harvard/BIDMC
    GKHI-KS-031805.04-051106505/08/020.7739.9BXD16 M60Harvard/BIDMC
    GKHI-KS-040805.10-051006505/05/020.9338.7BXD18 F59Harvard/BIDMC
    GKHI-KS-052804.09-051106405/05/020.6737.6BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.47-051106505/05/020.7342.3BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.44-070706307/06/020.7336.1BXD19 M60Harvard/BIDMC
    GKHI-KS-062905.07-051106505/05/020.7237.9BXD20 M60Harvard/BIDMC
    GKHI-KS-072104.58-051106405/05/020.7337.0BXD20 F59Harvard/BIDMC
    GKHI-KS-050405.21-051206405/09/020.8135.1BXD21 F60Harvard/BIDMC
    GKHI-KS-040705.24506/05/020.8040.2BXD21 F99UAB
    GKHI-KS-110405.01-051006505/05/020.7142.1BXD22 F60Harvard/BIDMC
    GKHI-KS-110405.04-051006505/05/020.7640.6BXD22 M60Harvard/BIDMC
    GKHI-KS-040805.01-051206505/09/020.7436.4BXD23 F60Harvard/BIDMC
    GKHI-KS-040805.04-051006505/05/020.7339.3BXD23 M60Harvard/BIDMC
    GKHI_KS_091704.13-042106404/18/020.7337.7BXD24 M59Harvard/BIDMC
    GKHI-KS-040303-20-050206304/30/020.7736.3BXD24 F71UMemphis
    GKHI-KS-021805.20-051006505/05/020.8340.5BXD25 F67UAB
    GKHI-KS-090705.05-062206506/21/020.7638.4BXD25 M58UTM RW
    GKHI-KS-090705.03-051006505/05/020.8140.1BXD25 F58UTM RW
    GKHI-KS-022105.42-051006505/05/020.8141.8BXD27 M70UAB
    GKHI-KS-032205.31-051006505/05/020.7439.0BXD27 M60UTM RW
    GKHI-KS-060706.10-070706307/06/020.6937.8BXD27 F85UTM RW
    GKHI-KS-012805-41-050506505/04/020.8134.2BXD28 F60Harvard/BIDMC
    GKHI-KS-012805-44-050506505/04/020.8135.8BXD28 M60Harvard/BIDMC
    GKHI-KS-012805-38-050506505/04/020.7742.7BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-35-050506505/04/020.8435.8BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-32-050506505/04/020.7439.9BXD31 F60Harvard/BIDMC
    GKHI-KS-100604-07-050506405/04/020.7940.2BXD31 M60Harvard/BIDMC
    GKHI-KS-021605.26-051706505/14/021.1139.0BXD32 F63UTM RW
    GKHI-KS-112002.01-051206205/09/020.7638.1BXD32 F60UMemphis
    GKHI-KS-072605-01-050506505/04/020.7941.3BXD3350F63UTM RW
    GKHI-KS-091405-23-050506505/04/020.8438.4BXD3350M76UTM RW
    GKHI-KS-111104-18-050506405/04/020.7942.2BXD36 F61Harvard/BIDMC
    GKHI-KS-031804-07-050506405/04/020.8542.5BXD36 F58Harvard/BIDMC
    GKHI-KS-092005.16-051206505/09/020.7237.2BXD3846F65UTM RW
    GKHI-KS-031403.01-060806106/07/020.6939.6BXD38 M69UMemphis
    GKHI-KS-090104.21-051106405/08/020.7236.3BXD39 F60Harvard/BIDMC
    GKHI-KS-040204.30406/05/020.7743.9BXD39 F59Harvard/BIDMC
    GKHI-KS-051805-16-050506505/04/022.1643.8BXD40 F61UTM RW
    GKHI-KS-111902-04-050506205/04/020.8441.0BXD40 F56UMemphis
    GKHI-KS-050604-01-050406405/01/020.8535.6BXD4323F61UTM RW
    GKHI-KS-080905-43-050406505/01/020.7833.7BXD4328F62UTM RW
    GKHI-KS-031004-01-050406405/01/020.7536.2BXD4421F57UTM RW
    GKHI-KS-020504-01-050406405/01/020.7530.8BXD4420M66UTM RW
    GKHI-KS-071504-01-050406405/01/020.7437.7BXD4520F58UTM RW
    GKHI-KS-081104-05-050406405/01/020.7834.2BXD4520M93UTM RW
    GKHI-KS-031204-01-050406405/01/020.7535.6BXD4822M60UTM RW
    GKHI-KS-021104.06-051706405/14/020.7541.1BXD4821F58UTM RW
    GKHI-KS-033005-21-050306505/01/020.7834.9BXD5127M64UTM RW
    GKHI-KS-090204-01-050306405/01/020.7238.3BXD5124F63UTM RW
    GKHI_KS-010704.01-040606404/03/020.7537.5BXD6021M64UTM RW
    GKHI_KS_013004.38-042006404/17/020.7840.1BXD6021F60UTM RW
    GKHI-KS-030905-28-050206504/30/020.7336.6BXD6120F63UTM RW
    GKHI-KS-050305-18-050206504/30/020.8335.8BXD6121F70UTM RW
    GKHI_KS-121803.01-040706304/03/020.8040.0BXD6220M54UTM RW
    GKHI_KS_021204.01-042006404/17/020.8539.8BXD6221F59UTM RW
    GKHI-KS-020905-25-050206504/30/020.8435.2BXD6321M70UTM RW
    GKHI-KS-040705.49-060806206/07/020.8539.4BXD6520F55UTM RW
    GKHI-KS-040406.12-060806206/07/020.7340.4BXD6523F60UTM RW
    GKHI-KS-052405-36-050406505/02/020.8436.8BXD6720F65UTM RW
    GKHI-KS-041205-01-050206504/30/020.7739.7BXD6720F54UTM RW
    GKHI-KS-062305-01-050206504/30/020.7636.0BXD6820F59UTM RW
    GKHI-KS-062305-09-050206504/30/020.9337.4BXD6820F64UTM RW
    GKHI_KS_110105.30-042006504/17/020.8039.0BXD6926F66UTM RW
    GKHI-KS-061504.64-062206406/21/020.7239.3BXD6920M55UTM RW
    GKHI_KS-050404.04-040606404/03/020.7738.3BXD6920F63UTM RW
    GKHI-KS-042705-01-042706504/23/020.8338.6BXD7021F64UTM RW
    GKHI-KS-051705-59-042706504/23/020.8938.5BXD7022F61UTM RW
    GKHI-KS-030805-40-042706504/23/020.8638.5BXD7323F61UTM RW
    GKHI-KS-041905.172-062206506/21/020.7937.6BXD7324M64UTM RW
    GKHI-KS-072605-03-042706504/23/020.8738.2BXD7325F72UTM RW
    GKHI-KS-041205-04-050406505/02/020.8341.4BXD7522F60UTM RW
    GKHI-KS-041205.07506/05/020.7945.8BXD7522F60UTM RW
    GKHI-KS-101805-35-050406505/02/020.7938.4BXD7724F60UTM RW
    GKHI-KS-070605.43506/05/020.7742.8BXD7723F62UTM RW
    GKHI-KS-071205-31-042706504/23/020.9137.7BXD8020F65UTM RW
    GKHI-KS-071205-2-042706504/23/020.9038.1BXD8020F65UTM RW
    KS-011305-11-042606504/22/020.8239.0BXD8522M91UTM RW
    KS-110805-27-042606504/22/020.9135.2BXD8525F63UTM RW
    KS-080404-28-042606404/22/020.8436.8BXD8621F58UTM RW
    KS-080504-04-042606404/22/020.8133.4BXD8620M77UTM RW
    KS-051705-57-042606504/22/021.1135.6BXD8720M63UTM RW
    KS-032905-46-042606504/22/020.8536.1BXD8720M57UTM RW
    GKHI-KS-080905-49-042706504/23/020.8937.6BXD9023F71UTM RW
    GKHI-KS-101105.26506/05/020.8443.6BXD9025F70UTM RW
    GKHI_KS-062304.02-040606404/03/020.8540.9BXD9221M55UTM RW
    GKHI_KS_071404.01-042006404/17/020.7739.5BXD9221F62UTM RW
    GKHI_KS_031005.17-042006504/17/020.7738.1BXD9620M65UTM RW
    GKHI-KS-111505.12506/05/020.7744.1BXD9623M66UTM RW
    GKHI-KS-012406.21-060806306/07/020.7336.6BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-012406.24-060806306/07/021.2839.2BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-030206.13-060806306/07/020.7141.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-030206.16-060806306/07/020.6637.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-011906.31-060806306/07/020.8037.2C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-011906.34-060806306/07/020.7638.5C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-060806.04-070706307/06/020.6837.3C3H/HeJ F76Harvard/BIDMC
    GKHI-KS-071505.08-060806306/07/020.7137.4C57BL/6ByJ F51JAX
    GKHI-KS-071505.11-060806206/07/020.7339.2C57BL/6ByJ F51JAX
    GKHI-KS-030305.15-060806306/07/020.7137.4CAST/Ei F64JAX
    GKHI-KS-031005.35-060906306/08/020.7035.7CAST/Ei M64JAX
    GKHI-KS-022206.16-060906306/08/020.7137.9KK/HlJ F61Harvard/BIDMC
    GKHI-KS-022206.07-060906306/08/020.7235.5KK/HlJ M61Harvard/BIDMC
    GKHI-KS-031606.01-060906306/08/020.8635.9MOLF/Ei M60Harvard/BIDMC
    GKHI-KS-022206.16-060906306/08/020.8737.4MOLF/Ei F60Harvard/BIDMC
    GKHI-KS-012006.25-060906306/08/020.7538.3NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-012006.28-061306306/11/020.8237.1NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-032306.04.060906306/08/020.7340.2NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-032306.07-060906306/08/020.7439.4NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-020706.04-060906306/08/020.7141.6NZW/LacJ F65Harvard/BIDMC
    GKHI-KS-020206.19-060906306/08/020.7736.7NZW/LacJ M60Harvard/BIDMC
    GKHI-KS-012406.33-061306306/11/020.9535.3PWD/PhJ F60Harvard/BIDMC
    GKHI-KS-012406.30-062006306/18/020.8836.3PWD/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.01-062206306/21/021.0235.9PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.04-062206306/21/020.9638.7PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.07-062206306/21/020.9836.6PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.10-062206306/21/020.8735.2PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-052705.01-061306206/11/020.7238.3WSB/EiJ F52UTM RW
    GKHI-KS-051005.07-061306306/11/020.7738.0WSB/EiJ M58JAX
    +
    +
    + + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access problems. +

    +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    + +

        About data processing:

    + +
    + +

    Probe set data from the CHP file: The expression values were generated using RMA. The same simple steps described above were also applied to these values.

    + +
    +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Kidney Consortium. Members of the Kidney Consortium thank the following sources for financial support of this effort: + +

      +
    • Erwin P. Bottinger, M.D.
      +Grant Support: R01 DK60043-04
      +
    • Russell W. Chesney, M.D.
      +Grant Support: Le Bonheur Chair of Excellence in Pediatrics II +
      +
    • Lu Lu, M.D.
      +Grant Support: NIH U01AA13499, U24AA13513
      +
    • Peter Mundel
      +Grant Support: NIH R01DK57683, NIH R01 DK 62472
      +
    • Paul E. Klotman
      +Grant Support: PO1 DK56492, PO1 DK56492.
      +
    • Matthew D. Breyer
      +Grant Support: DK-38226
      +
    • Kenneth F. Manly, Ph.D.
      +Grant Support: NIH P20MH062009 and U01CA105417
      +
    • Robert W. Williams, Ph.D.
      +Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 +
    + + +

    + +

        About this text file:

    +

    +This text file originally generated by Kremena Star on Sept. 1, 2006. +

    + + + + +

    + +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/MA_M2M_0706_R.html b/web/dbdoc/MA_M2M_0706_R.html new file mode 100755 index 00000000..0597534a --- /dev/null +++ b/web/dbdoc/MA_M2M_0706_R.html @@ -0,0 +1,2108 @@ + +Mouse kidney M430v2 Male (Aug06) RMA + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + + +
    +

    Mouse kidney M430v2 Male (Aug06) RMA modify this page

    Accession number: GN240

    + + +

        Summary:

    + +
    +

    The July 2006 Kidney QTL Consortium data set provides estimates +of mRNA expression in the adult kidney of 70 genetically diverse +strains of mice including 54 BXD recombinant inbred strains, a set +of 15 inbred strains, and 1 F1 hybrid; D2B6F1. Kidney samples were +processed using a total of 153 Affymetrix Mouse Expression 430 2.0 +microarrays (M430v2.0). This particular data set was processed using +the RMA protocol.

    +
    + +

        About the strains used to generate this set of data:

    + + + +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 30 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred. We have also included 24 BXD lines generated by Lu and Peirce. All of these strains have been genotyped at 13,377 SNPs. + +

    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 15 inbred strains and a pair of F1 hybrids; D2B6F1. These strains were selected for the following reasons: +This panel will be a powerful tool in systems genetic analysis of a wide variety of traits, and will provide additional power in fine mapping modulators through an association analysis of sequence variants. +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +
      +
    1. BTBR T+tf/J +
          Multiple recessive stock; Homozygotes show repeated waves of hair loss and regrowth, which begin in the nose and pass posteriorly along the body. + +
    2. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    3. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    4. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    5. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    6. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    7. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    8. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    9. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    10. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    11. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    12. D2B6F1 +
      F1 hybrid generated by crossing C57BL/6J with DBA/2J +
    + +

    These inbred strains can be ordered from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC. + +

    + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, and the Jackson Laboratory (Table 1). Animals were housed at UTHSC, at Harvard/BIDMC (Glenn Rosen), at the University of Memphis (Douglas Matthews), or the Jackson Laboratory before sacrifice (see Table 1). Mice were killed by cervical dislocation and kidneys were removed and placed in RNAlater prior to dissection. Kidneys were dissected whole and cleaned from the adrenal glands by Hong Tao Zhang in Dr. Lu’s lab. Kidneys from two to six animals per strain were pooled and shipped to Kremena Star at Mount Sinai School of Medicine (MSSM). Animals used in this study were between 50 and 99 days of age (average of 62 days; see Table 1). +

    + +
    +

    Sample Processing: : Samples were processed at the Mount Sinai School of Medicine in the laboratory of Dr. Erwin Bottinger. All processing steps were performed Kremena Star. Total RNA was extracted with TRIZOL, followed by Rneasy Mini Kit purification (QUAGEN) by Kremena Star at MSSM. RNA purity was evaluated using the 260/280 nm (protein contamination) and the 260/230 nm (TRIZOL contamination) absorbance ratios, and values had to be greater than 1.9 and 0.8 respectively. Most of the samples 260/280 nm values fell between 1.9 and 2.1 and the majority of the 260/230 nm measurements were in the range 1.8 to 2.3. RNA integrity was assessed with the Agilent Bioanalyzer 2100. We set a quality threshold at 28s/18s rRNA greater than 0.9 or RNA integrity number (RIN) of greater than 6.9. When the two metrics were in disagreement we gave priority on the RIN value as recommended by the Agilent Bioanalyzer 2100 technical support representative. +Synthesis of cDNA template from total RNA was performed using the one-cyclecDNA synthesis kit from Affymetrix (Affymetrix, P/N 900431). The Affymetrix IVT-labeling kit ((Affymetrix, P/N 900449)) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 1.9 to 2.1). The cRNA is then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup (Affymetrix, P/N 900371). Fragmented cRNA samples were accessed with Agilent Bioanalyzer 2100 (cRNA frgments between 25 and 200 nucleotides are required for optimal hybridization and immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + +

    Replication and Sample Balance: We obtained a male sample +pool and female sample pool from each isogenic group. Initially +all strains were represented by male and female samples, however, +not all data sets passed the quality control steps. Forty-two (thirty-one +BXD, D2B6F1 and ten inbred strains) are represented by male and +female samples. For the remaining strains, represented by only one +sex we calculated sex-corrected values for each probe set using +the following algorithm: +

    1. Compute the difference in expression values between the
    +ALL_FEMALE_AVE and the ALL_MALE_AVE (n = 100 vs n = 52).
    +b. Divide these values by 2 (additive sex effect)
    +c. If a female-only strain subtract the "additive sex effect" +
    +d. If a male-only strain add the "additive sex effect"
    +

    +

    Experimental Design and Batch Structure: The data set consists of arrays processed in twenty-three groups over a six month period (March 2006 to July 2006). Each group consists of 4 to 12 arrays. All arrays were processed using the Affymetrix Eukaryotic Sample and Array Processing protocol (701024 Rev. 3), by a single operator, Kremena Star. +All samples in a group were labeled on the same. The hybridization station accommodates up to 4 samples, and since most of the groups had 12 samples, processed in 3 batches on the same day. Samples were washed in groups of four and kept at 4° C until all 12 (or 4-12) arrays were ready to scan. Samples were scanned in sets of four. + +

    + +

        Data Table 1:

    + +
    + +
    This table lists all arrays ordered by strain and includes +Microarray ID, number of mice per pool, Microarray date, GAPDH 3`/5`Signal +Ratio, Percent of transcripts present on the microarray chip, Strain, +Generation, Sex, Age and Source of mice.
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Microarray_ID# miceMicroarray DateGAPDH (3`/5`)% presentstrainsgenerationsexageMice Source
    GKHI-KS-050603.07-051706305/14/020.7337.6C57BL/6J M56UTM RW
    GKHI-KS-070803.01-051706305/14/020.7541.6C57BL/6J F69UTM RW
    GKHI-KS-DBA-Male-070706207/06/020.7137.3DBA/2J M56JAX
    GKHI_KS_121404.75-042106404/18/02  DBA/2J F59UTM RW
    GKHI_KS_121404.75-033006403/19/020.7348.5DBA/2J F59UTM RW
    GKHI_KS_121404.78-042006404/17/020.8340.6DBA/2J F59UTM RW
    GKHI_KS_070804.39-042006404/17/020.8239.0D2B6F1 M59UTM RW
    GKHI_KS_030904.01-042006404/17/020.8235.9D2B6F1 M57UTM RW
    GKHI-KS-121404.73-070706207/06/020.7636.3D2B6F1 F69UTM RW
    GKHI-KS-010705.38-051206505/09/020.8139.9BXD1 M59Harvard/BIDMC
    GKHI-KS-060905.19506/05/020.7542.3BXD1 M68UTM RW
    GKHI-KS-051206.13-070706307/06/020.7136.3BXD1 F57UTM RW
    GKHI-KS-021304.10-051206405/09/020.8139.1BXD2 M61Harvard/BIDMC
    GKHI-KS-040303-04-050406305/01/020.8037.6BXD5 F56UMemphis
    GKHI-KS-010705-53-050306505/01/020.7637.1BXD5 F58Harvard/BIDMC
    GKHI-KS-031103.01-062206306/21/020.7537.1BXD5 M71UMemphis
    GKHI-KS-040505-51-050306505/01/020.7135.5BXD6 M58UTM RW
    GKHI-KS-092705-29--050406505/02/020.7536.1BXD6160F64UTM RW
    GKHI_KS_092404.01-042106404/18/020.7136.3BXD8 M59Harvard/BIDMC
    GKHI-KS-051205-25-042706504/23/020.9237.9BXD8 F77UTM RW
    KS-021605-17-042606504/22/020.8540.8BXD9 F67UTM RW
    KS-032905-32-042606504/22/020.9136.8BXD9 F60UTM RW
    GKHI-KS-062006.08-070706307/06/020.7436.3BXD9 M78UTM RW
    GKHI-KS-031505.22-051206505/09/020.7439.5BXD11 F65UTM RW
    GKHI-KS-031605.01506/05/020.7443.4BXD11 F69UTM RW
    GKHI_KS_102104.40-042106404/18/020.7238.5BXD12 M60Harvard/BIDMC
    GKHI-KS-112002.07-051106205/08/020.7742.0BXD12 F64UMemphis
    GKHI-KS-120904.33-051206405/09/020.7138.4BXD13 F60Harvard/BIDMC
    GKHI-KS-042304.01406/05/020.7144.1BXD13 F58Harvard/BIDMC
    GKHI-KS-020905.34-051106505/08/020.7540.7BXD14 F68UTM RW
    GKHI-KS-022405.46-051106505/08/020.7140.2BXD14 F60Harvard/BIDMC
    GKHI-KS-091704.09-062206406/21/020.7339.0BXD14 M59Harvard/BIDMC
    GKHI-KS-013004.45-062206406/21/020.7638.5BXD15 M61Harvard/BIDMC
    GKHI-KS-022405.43-051106505/08/020.7340.5BXD15 F60Harvard/BIDMC
    GKHI-KS-041604.10-051106405/08/020.7342.6BXD15 F60Harvard/BIDMC
    GKHI-KS-031805.01-051106505/08/020.7942.4BXD16 F59Harvard/BIDMC
    GKHI-KS-031805.04-051106505/08/020.7739.9BXD16 M60Harvard/BIDMC
    GKHI-KS-040805.10-051006505/05/020.9338.7BXD18 F59Harvard/BIDMC
    GKHI-KS-052804.09-051106405/05/020.6737.6BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.47-051106505/05/020.7342.3BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.44-070706307/06/020.7336.1BXD19 M60Harvard/BIDMC
    GKHI-KS-062905.07-051106505/05/020.7237.9BXD20 M60Harvard/BIDMC
    GKHI-KS-072104.58-051106405/05/020.7337.0BXD20 F59Harvard/BIDMC
    GKHI-KS-050405.21-051206405/09/020.8135.1BXD21 F60Harvard/BIDMC
    GKHI-KS-040705.24506/05/020.8040.2BXD21 F99UAB
    GKHI-KS-110405.01-051006505/05/020.7142.1BXD22 F60Harvard/BIDMC
    GKHI-KS-110405.04-051006505/05/020.7640.6BXD22 M60Harvard/BIDMC
    GKHI-KS-040805.01-051206505/09/020.7436.4BXD23 F60Harvard/BIDMC
    GKHI-KS-040805.04-051006505/05/020.7339.3BXD23 M60Harvard/BIDMC
    GKHI_KS_091704.13-042106404/18/020.7337.7BXD24 M59Harvard/BIDMC
    GKHI-KS-040303-20-050206304/30/020.7736.3BXD24 F71UMemphis
    GKHI-KS-021805.20-051006505/05/020.8340.5BXD25 F67UAB
    GKHI-KS-090705.05-062206506/21/020.7638.4BXD25 M58UTM RW
    GKHI-KS-090705.03-051006505/05/020.8140.1BXD25 F58UTM RW
    GKHI-KS-022105.42-051006505/05/020.8141.8BXD27 M70UAB
    GKHI-KS-032205.31-051006505/05/020.7439.0BXD27 M60UTM RW
    GKHI-KS-060706.10-070706307/06/020.6937.8BXD27 F85UTM RW
    GKHI-KS-012805-41-050506505/04/020.8134.2BXD28 F60Harvard/BIDMC
    GKHI-KS-012805-44-050506505/04/020.8135.8BXD28 M60Harvard/BIDMC
    GKHI-KS-012805-38-050506505/04/020.7742.7BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-35-050506505/04/020.8435.8BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-32-050506505/04/020.7439.9BXD31 F60Harvard/BIDMC
    GKHI-KS-100604-07-050506405/04/020.7940.2BXD31 M60Harvard/BIDMC
    GKHI-KS-021605.26-051706505/14/021.1139.0BXD32 F63UTM RW
    GKHI-KS-112002.01-051206205/09/020.7638.1BXD32 F60UMemphis
    GKHI-KS-072605-01-050506505/04/020.7941.3BXD3350F63UTM RW
    GKHI-KS-091405-23-050506505/04/020.8438.4BXD3350M76UTM RW
    GKHI-KS-111104-18-050506405/04/020.7942.2BXD36 F61Harvard/BIDMC
    GKHI-KS-031804-07-050506405/04/020.8542.5BXD36 F58Harvard/BIDMC
    GKHI-KS-092005.16-051206505/09/020.7237.2BXD3846F65UTM RW
    GKHI-KS-031403.01-060806106/07/020.6939.6BXD38 M69UMemphis
    GKHI-KS-090104.21-051106405/08/020.7236.3BXD39 F60Harvard/BIDMC
    GKHI-KS-040204.30406/05/020.7743.9BXD39 F59Harvard/BIDMC
    GKHI-KS-051805-16-050506505/04/022.1643.8BXD40 F61UTM RW
    GKHI-KS-111902-04-050506205/04/020.8441.0BXD40 F56UMemphis
    GKHI-KS-050604-01-050406405/01/020.8535.6BXD4323F61UTM RW
    GKHI-KS-080905-43-050406505/01/020.7833.7BXD4328F62UTM RW
    GKHI-KS-031004-01-050406405/01/020.7536.2BXD4421F57UTM RW
    GKHI-KS-020504-01-050406405/01/020.7530.8BXD4420M66UTM RW
    GKHI-KS-071504-01-050406405/01/020.7437.7BXD4520F58UTM RW
    GKHI-KS-081104-05-050406405/01/020.7834.2BXD4520M93UTM RW
    GKHI-KS-031204-01-050406405/01/020.7535.6BXD4822M60UTM RW
    GKHI-KS-021104.06-051706405/14/020.7541.1BXD4821F58UTM RW
    GKHI-KS-033005-21-050306505/01/020.7834.9BXD5127M64UTM RW
    GKHI-KS-090204-01-050306405/01/020.7238.3BXD5124F63UTM RW
    GKHI_KS-010704.01-040606404/03/020.7537.5BXD6021M64UTM RW
    GKHI_KS_013004.38-042006404/17/020.7840.1BXD6021F60UTM RW
    GKHI-KS-030905-28-050206504/30/020.7336.6BXD6120F63UTM RW
    GKHI-KS-050305-18-050206504/30/020.8335.8BXD6121F70UTM RW
    GKHI_KS-121803.01-040706304/03/020.8040.0BXD6220M54UTM RW
    GKHI_KS_021204.01-042006404/17/020.8539.8BXD6221F59UTM RW
    GKHI-KS-020905-25-050206504/30/020.8435.2BXD6321M70UTM RW
    GKHI-KS-040705.49-060806206/07/020.8539.4BXD6520F55UTM RW
    GKHI-KS-040406.12-060806206/07/020.7340.4BXD6523F60UTM RW
    GKHI-KS-052405-36-050406505/02/020.8436.8BXD6720F65UTM RW
    GKHI-KS-041205-01-050206504/30/020.7739.7BXD6720F54UTM RW
    GKHI-KS-062305-01-050206504/30/020.7636.0BXD6820F59UTM RW
    GKHI-KS-062305-09-050206504/30/020.9337.4BXD6820F64UTM RW
    GKHI_KS_110105.30-042006504/17/020.8039.0BXD6926F66UTM RW
    GKHI-KS-061504.64-062206406/21/020.7239.3BXD6920M55UTM RW
    GKHI_KS-050404.04-040606404/03/020.7738.3BXD6920F63UTM RW
    GKHI-KS-042705-01-042706504/23/020.8338.6BXD7021F64UTM RW
    GKHI-KS-051705-59-042706504/23/020.8938.5BXD7022F61UTM RW
    GKHI-KS-030805-40-042706504/23/020.8638.5BXD7323F61UTM RW
    GKHI-KS-041905.172-062206506/21/020.7937.6BXD7324M64UTM RW
    GKHI-KS-072605-03-042706504/23/020.8738.2BXD7325F72UTM RW
    GKHI-KS-041205-04-050406505/02/020.8341.4BXD7522F60UTM RW
    GKHI-KS-041205.07506/05/020.7945.8BXD7522F60UTM RW
    GKHI-KS-101805-35-050406505/02/020.7938.4BXD7724F60UTM RW
    GKHI-KS-070605.43506/05/020.7742.8BXD7723F62UTM RW
    GKHI-KS-071205-31-042706504/23/020.9137.7BXD8020F65UTM RW
    GKHI-KS-071205-2-042706504/23/020.9038.1BXD8020F65UTM RW
    KS-011305-11-042606504/22/020.8239.0BXD8522M91UTM RW
    KS-110805-27-042606504/22/020.9135.2BXD8525F63UTM RW
    KS-080404-28-042606404/22/020.8436.8BXD8621F58UTM RW
    KS-080504-04-042606404/22/020.8133.4BXD8620M77UTM RW
    KS-051705-57-042606504/22/021.1135.6BXD8720M63UTM RW
    KS-032905-46-042606504/22/020.8536.1BXD8720M57UTM RW
    GKHI-KS-080905-49-042706504/23/020.8937.6BXD9023F71UTM RW
    GKHI-KS-101105.26506/05/020.8443.6BXD9025F70UTM RW
    GKHI_KS-062304.02-040606404/03/020.8540.9BXD9221M55UTM RW
    GKHI_KS_071404.01-042006404/17/020.7739.5BXD9221F62UTM RW
    GKHI_KS_031005.17-042006504/17/020.7738.1BXD9620M65UTM RW
    GKHI-KS-111505.12506/05/020.7744.1BXD9623M66UTM RW
    GKHI-KS-012406.21-060806306/07/020.7336.6BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-012406.24-060806306/07/021.2839.2BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-030206.13-060806306/07/020.7141.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-030206.16-060806306/07/020.6637.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-011906.31-060806306/07/020.8037.2C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-011906.34-060806306/07/020.7638.5C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-060806.04-070706307/06/020.6837.3C3H/HeJ F76Harvard/BIDMC
    GKHI-KS-071505.08-060806306/07/020.7137.4C57BL/6ByJ F51JAX
    GKHI-KS-071505.11-060806206/07/020.7339.2C57BL/6ByJ F51JAX
    GKHI-KS-030305.15-060806306/07/020.7137.4CAST/Ei F64JAX
    GKHI-KS-031005.35-060906306/08/020.7035.7CAST/Ei M64JAX
    GKHI-KS-022206.16-060906306/08/020.7137.9KK/HlJ F61Harvard/BIDMC
    GKHI-KS-022206.07-060906306/08/020.7235.5KK/HlJ M61Harvard/BIDMC
    GKHI-KS-031606.01-060906306/08/020.8635.9MOLF/Ei M60Harvard/BIDMC
    GKHI-KS-022206.16-060906306/08/020.8737.4MOLF/Ei F60Harvard/BIDMC
    GKHI-KS-012006.25-060906306/08/020.7538.3NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-012006.28-061306306/11/020.8237.1NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-032306.04.060906306/08/020.7340.2NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-032306.07-060906306/08/020.7439.4NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-020706.04-060906306/08/020.7141.6NZW/LacJ F65Harvard/BIDMC
    GKHI-KS-020206.19-060906306/08/020.7736.7NZW/LacJ M60Harvard/BIDMC
    GKHI-KS-012406.33-061306306/11/020.9535.3PWD/PhJ F60Harvard/BIDMC
    GKHI-KS-012406.30-062006306/18/020.8836.3PWD/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.01-062206306/21/021.0235.9PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.04-062206306/21/020.9638.7PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.07-062206306/21/020.9836.6PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.10-062206306/21/020.8735.2PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-052705.01-061306206/11/020.7238.3WSB/EiJ F52UTM RW
    GKHI-KS-051005.07-061306306/11/020.7738.0WSB/EiJ M58JAX
    +
    +
    + + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access problems. +

    +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    + +

        About data processing:

    + +
    + +

    Probe set data from the CHP file: The expression values were generated using RMA. The same simple steps described above were also applied to these values.

    + +
    +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Kidney Consortium. Members of the Kidney Consortium thank the following sources for financial support of this effort: + +

      +
    • Erwin P. Bottinger, M.D.
      +Grant Support: R01 DK60043-04
      +
    • Russell W. Chesney, M.D.
      +Grant Support: Le Bonheur Chair of Excellence in Pediatrics II +
      +
    • Lu Lu, M.D.
      +Grant Support: NIH U01AA13499, U24AA13513
      +
    • Peter Mundel
      +Grant Support: NIH R01DK57683, NIH R01 DK 62472
      +
    • Paul E. Klotman
      +Grant Support: PO1 DK56492, PO1 DK56492.
      +
    • Matthew D. Breyer
      +Grant Support: DK-38226
      +
    • Kenneth F. Manly, Ph.D.
      +Grant Support: NIH P20MH062009 and U01CA105417
      +
    • Robert W. Williams, Ph.D.
      +Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 +
    + + +

    + +

        About this text file:

    +

    +This text file originally generated by Kremena Star on Sept. 1, 2006. +

    + + + + +

    + +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/MA_M2_0706_P.html b/web/dbdoc/MA_M2_0706_P.html new file mode 100755 index 00000000..f56b6fb9 --- /dev/null +++ b/web/dbdoc/MA_M2_0706_P.html @@ -0,0 +1,2098 @@ + +Kidney Consortium M430v2 July06 PDNN + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    Kidney Consortium M430v2 (July06) PDNN +modify this page

    Accession number: GN116

    + + +

        Summary:

    + +
    +The July 2006 Kidney QTL Consortium data set provides estimates of mRNA expression in the adult kidney of 70 genetically diverse strains of mice including 54 BXD recombinant inbred strains, a set of 15 inbred strains, and 1 F1 hybrid; D2B6F1. +Kidney samples were processed using a total of 153 Affymetrix Mouse Expression 430 2.0 microarrays (M430v2.0). This particular data set was processed using the PDNN protocol. +CAUTION: This dataset is not sex-balanced. +
    + +

        About the strains used to generate this set of data:

    + + + +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 30 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred. We have also included 24 BXD lines generated by Lu and Peirce. All of these strains have been genotyped at 13,377 SNPs. + +

    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 15 inbred strains and a pair of F1 hybrids; D2B6F1. These strains were selected for the following reasons: +This panel will be a powerful tool in systems genetic analysis of a wide variety of traits, and will provide additional power in fine mapping modulators through an association analysis of sequence variants. +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +
      +
    1. BTBR T+tf/J +
          Multiple recessive stock; Homozygotes show repeated waves of hair loss and regrowth, which begin in the nose and pass posteriorly along the body. + +
    2. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    3. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    4. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    5. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    6. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    7. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    8. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    9. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    10. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    11. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    12. D2B6F1 +
      F1 hybrid generated by crossing C57BL/6J with DBA/2J +
    + +

    These inbred strains can be ordered from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.P> + +

    + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, and the Jackson Laboratory (Table 1). Animals were housed at UTHSC, at Harvard/BIDMC (Glenn Rosen), at the University of Memphis (Douglas Matthews), or the Jackson Laboratory before sacrifice (see Table 1). Mice were killed by cervical dislocation and kidneys were removed and placed in RNAlater prior to dissection. Kidneys were dissected whole and cleaned from the adrenal glands by Hong Tao Zhang in Dr. Lu’s lab. Kidneys from two to six animals per strain were pooled and shipped to Kremena Star at Mount Sinai School of Medicine (MSSM). Animals used in this study were between 50 and 99 days of age (average of 62 days; see Table 1). +

    + +
    +

    Sample Processing: : Samples were processed at the Mount Sinai School of Medicine in the laboratory of Dr. Erwin Bottinger. All processing steps were performed Kremena Star. Total RNA was extracted with TRIZOL, followed by Rneasy Mini Kit purification (QUAGEN) by Kremena Star at MSSM. RNA purity was evaluated using the 260/280 nm (protein contamination) and the 260/230 nm (TRIZOL contamination) absorbance ratios, and values had to be greater than 1.9 and 0.8 respectively. Most of the samples 260/280 nm values fell between 1.9 and 2.1 and the majority of the 260/230 nm measurements were in the range 1.8 to 2.3. RNA integrity was assessed with the Agilent Bioanalyzer 2100. We set a quality threshold at 28s/18s rRNA greater than 0.9 or RNA integrity number (RIN) of greater than 6.9. When the two metrics were in disagreement we gave priority on the RIN value as recommended by the Agilent Bioanalyzer 2100 technical support representative. +Synthesis of cDNA template from total RNA was performed using the one-cyclecDNA synthesis kit from Affymetrix (Affymetrix, P/N 900431). The Affymetrix IVT-labeling kit ((Affymetrix, P/N 900449)) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 1.9 to 2.1). The cRNA is then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup (Affymetrix, P/N 900371). Fragmented cRNA samples were accessed with Agilent Bioanalyzer 2100 (cRNA frgments between 25 and 200 nucleotides are required for optimal hybridization and immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. Initially all strains were represented by male and female samples, however, not all data sets passed the quality control steps. Forty-two (thirty-one BXD, D2B6F1 and ten inbred strains) are represented by male and female samples. + +

    Experimental Design and Batch Structure: The data set consists of arrays processed in twenty-three groups over a six month period (March 2006 to July 2006). Each group consists of 4 to 12 arrays. All arrays were processed using the Affymetrix Eukaryotic Sample and Array Processing protocol (701024 Rev. 3), by a single operator, Kremena Star. +All samples in a group were labeled on the same. The hybridization station accommodates up to 4 samples, and since most of the groups had 12 samples, processed in 3 batches on the same day. Samples were washed in groups of four and kept at 4° C until all 12 (or 4-12) arrays were ready to scan. Samples were scanned in sets of four. + +

    + +

        Data Table 1:

    + +
    + +
    This table lists all arrays ordered by strain and includes +Microarray ID, number of mice per pool, Microarray date, GAPDH 3`/5`Signal +Ratio, Percent of transcripts present on the microarray chip, Strain, +Generation, Sex, Age and Source of mice.
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Microarray_ID# miceMicroarray DateGAPDH (3`/5`)% presentstrainsgenerationsexageMice Source
    GKHI-KS-050603.07-051706305/14/020.7337.6C57BL/6J M56UTM RW
    GKHI-KS-070803.01-051706305/14/020.7541.6C57BL/6J F69UTM RW
    GKHI-KS-DBA-Male-070706207/06/020.7137.3DBA/2J M56JAX
    GKHI_KS_121404.75-042106404/18/02  DBA/2J F59UTM RW
    GKHI_KS_121404.75-033006403/19/020.7348.5DBA/2J F59UTM RW
    GKHI_KS_121404.78-042006404/17/020.8340.6DBA/2J F59UTM RW
    GKHI_KS_070804.39-042006404/17/020.8239.0D2B6F1 M59UTM RW
    GKHI_KS_030904.01-042006404/17/020.8235.9D2B6F1 M57UTM RW
    GKHI-KS-121404.73-070706207/06/020.7636.3D2B6F1 F69UTM RW
    GKHI-KS-010705.38-051206505/09/020.8139.9BXD1 M59Harvard/BIDMC
    GKHI-KS-060905.19506/05/020.7542.3BXD1 M68UTM RW
    GKHI-KS-051206.13-070706307/06/020.7136.3BXD1 F57UTM RW
    GKHI-KS-021304.10-051206405/09/020.8139.1BXD2 M61Harvard/BIDMC
    GKHI-KS-040303-04-050406305/01/020.8037.6BXD5 F56UMemphis
    GKHI-KS-010705-53-050306505/01/020.7637.1BXD5 F58Harvard/BIDMC
    GKHI-KS-031103.01-062206306/21/020.7537.1BXD5 M71UMemphis
    GKHI-KS-040505-51-050306505/01/020.7135.5BXD6 M58UTM RW
    GKHI-KS-092705-29--050406505/02/020.7536.1BXD6160F64UTM RW
    GKHI_KS_092404.01-042106404/18/020.7136.3BXD8 M59Harvard/BIDMC
    GKHI-KS-051205-25-042706504/23/020.9237.9BXD8 F77UTM RW
    KS-021605-17-042606504/22/020.8540.8BXD9 F67UTM RW
    KS-032905-32-042606504/22/020.9136.8BXD9 F60UTM RW
    GKHI-KS-062006.08-070706307/06/020.7436.3BXD9 M78UTM RW
    GKHI-KS-031505.22-051206505/09/020.7439.5BXD11 F65UTM RW
    GKHI-KS-031605.01506/05/020.7443.4BXD11 F69UTM RW
    GKHI_KS_102104.40-042106404/18/020.7238.5BXD12 M60Harvard/BIDMC
    GKHI-KS-112002.07-051106205/08/020.7742.0BXD12 F64UMemphis
    GKHI-KS-120904.33-051206405/09/020.7138.4BXD13 F60Harvard/BIDMC
    GKHI-KS-042304.01406/05/020.7144.1BXD13 F58Harvard/BIDMC
    GKHI-KS-020905.34-051106505/08/020.7540.7BXD14 F68UTM RW
    GKHI-KS-022405.46-051106505/08/020.7140.2BXD14 F60Harvard/BIDMC
    GKHI-KS-091704.09-062206406/21/020.7339.0BXD14 M59Harvard/BIDMC
    GKHI-KS-013004.45-062206406/21/020.7638.5BXD15 M61Harvard/BIDMC
    GKHI-KS-022405.43-051106505/08/020.7340.5BXD15 F60Harvard/BIDMC
    GKHI-KS-041604.10-051106405/08/020.7342.6BXD15 F60Harvard/BIDMC
    GKHI-KS-031805.01-051106505/08/020.7942.4BXD16 F59Harvard/BIDMC
    GKHI-KS-031805.04-051106505/08/020.7739.9BXD16 M60Harvard/BIDMC
    GKHI-KS-040805.10-051006505/05/020.9338.7BXD18 F59Harvard/BIDMC
    GKHI-KS-052804.09-051106405/05/020.6737.6BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.47-051106505/05/020.7342.3BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.44-070706307/06/020.7336.1BXD19 M60Harvard/BIDMC
    GKHI-KS-062905.07-051106505/05/020.7237.9BXD20 M60Harvard/BIDMC
    GKHI-KS-072104.58-051106405/05/020.7337.0BXD20 F59Harvard/BIDMC
    GKHI-KS-050405.21-051206405/09/020.8135.1BXD21 F60Harvard/BIDMC
    GKHI-KS-040705.24506/05/020.8040.2BXD21 F99UAB
    GKHI-KS-110405.01-051006505/05/020.7142.1BXD22 F60Harvard/BIDMC
    GKHI-KS-110405.04-051006505/05/020.7640.6BXD22 M60Harvard/BIDMC
    GKHI-KS-040805.01-051206505/09/020.7436.4BXD23 F60Harvard/BIDMC
    GKHI-KS-040805.04-051006505/05/020.7339.3BXD23 M60Harvard/BIDMC
    GKHI_KS_091704.13-042106404/18/020.7337.7BXD24 M59Harvard/BIDMC
    GKHI-KS-040303-20-050206304/30/020.7736.3BXD24 F71UMemphis
    GKHI-KS-021805.20-051006505/05/020.8340.5BXD25 F67UAB
    GKHI-KS-090705.05-062206506/21/020.7638.4BXD25 M58UTM RW
    GKHI-KS-090705.03-051006505/05/020.8140.1BXD25 F58UTM RW
    GKHI-KS-022105.42-051006505/05/020.8141.8BXD27 M70UAB
    GKHI-KS-032205.31-051006505/05/020.7439.0BXD27 M60UTM RW
    GKHI-KS-060706.10-070706307/06/020.6937.8BXD27 F85UTM RW
    GKHI-KS-012805-41-050506505/04/020.8134.2BXD28 F60Harvard/BIDMC
    GKHI-KS-012805-44-050506505/04/020.8135.8BXD28 M60Harvard/BIDMC
    GKHI-KS-012805-38-050506505/04/020.7742.7BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-35-050506505/04/020.8435.8BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-32-050506505/04/020.7439.9BXD31 F60Harvard/BIDMC
    GKHI-KS-100604-07-050506405/04/020.7940.2BXD31 M60Harvard/BIDMC
    GKHI-KS-021605.26-051706505/14/021.1139.0BXD32 F63UTM RW
    GKHI-KS-112002.01-051206205/09/020.7638.1BXD32 F60UMemphis
    GKHI-KS-072605-01-050506505/04/020.7941.3BXD3350F63UTM RW
    GKHI-KS-091405-23-050506505/04/020.8438.4BXD3350M76UTM RW
    GKHI-KS-111104-18-050506405/04/020.7942.2BXD36 F61Harvard/BIDMC
    GKHI-KS-031804-07-050506405/04/020.8542.5BXD36 F58Harvard/BIDMC
    GKHI-KS-092005.16-051206505/09/020.7237.2BXD3846F65UTM RW
    GKHI-KS-031403.01-060806106/07/020.6939.6BXD38 M69UMemphis
    GKHI-KS-090104.21-051106405/08/020.7236.3BXD39 F60Harvard/BIDMC
    GKHI-KS-040204.30406/05/020.7743.9BXD39 F59Harvard/BIDMC
    GKHI-KS-051805-16-050506505/04/022.1643.8BXD40 F61UTM RW
    GKHI-KS-111902-04-050506205/04/020.8441.0BXD40 F56UMemphis
    GKHI-KS-050604-01-050406405/01/020.8535.6BXD4323F61UTM RW
    GKHI-KS-080905-43-050406505/01/020.7833.7BXD4328F62UTM RW
    GKHI-KS-031004-01-050406405/01/020.7536.2BXD4421F57UTM RW
    GKHI-KS-020504-01-050406405/01/020.7530.8BXD4420M66UTM RW
    GKHI-KS-071504-01-050406405/01/020.7437.7BXD4520F58UTM RW
    GKHI-KS-081104-05-050406405/01/020.7834.2BXD4520M93UTM RW
    GKHI-KS-031204-01-050406405/01/020.7535.6BXD4822M60UTM RW
    GKHI-KS-021104.06-051706405/14/020.7541.1BXD4821F58UTM RW
    GKHI-KS-033005-21-050306505/01/020.7834.9BXD5127M64UTM RW
    GKHI-KS-090204-01-050306405/01/020.7238.3BXD5124F63UTM RW
    GKHI_KS-010704.01-040606404/03/020.7537.5BXD6021M64UTM RW
    GKHI_KS_013004.38-042006404/17/020.7840.1BXD6021F60UTM RW
    GKHI-KS-030905-28-050206504/30/020.7336.6BXD6120F63UTM RW
    GKHI-KS-050305-18-050206504/30/020.8335.8BXD6121F70UTM RW
    GKHI_KS-121803.01-040706304/03/020.8040.0BXD6220M54UTM RW
    GKHI_KS_021204.01-042006404/17/020.8539.8BXD6221F59UTM RW
    GKHI-KS-020905-25-050206504/30/020.8435.2BXD6321M70UTM RW
    GKHI-KS-040705.49-060806206/07/020.8539.4BXD6520F55UTM RW
    GKHI-KS-040406.12-060806206/07/020.7340.4BXD6523F60UTM RW
    GKHI-KS-052405-36-050406505/02/020.8436.8BXD6720F65UTM RW
    GKHI-KS-041205-01-050206504/30/020.7739.7BXD6720F54UTM RW
    GKHI-KS-062305-01-050206504/30/020.7636.0BXD6820F59UTM RW
    GKHI-KS-062305-09-050206504/30/020.9337.4BXD6820F64UTM RW
    GKHI_KS_110105.30-042006504/17/020.8039.0BXD6926F66UTM RW
    GKHI-KS-061504.64-062206406/21/020.7239.3BXD6920M55UTM RW
    GKHI_KS-050404.04-040606404/03/020.7738.3BXD6920F63UTM RW
    GKHI-KS-042705-01-042706504/23/020.8338.6BXD7021F64UTM RW
    GKHI-KS-051705-59-042706504/23/020.8938.5BXD7022F61UTM RW
    GKHI-KS-030805-40-042706504/23/020.8638.5BXD7323F61UTM RW
    GKHI-KS-041905.172-062206506/21/020.7937.6BXD7324M64UTM RW
    GKHI-KS-072605-03-042706504/23/020.8738.2BXD7325F72UTM RW
    GKHI-KS-041205-04-050406505/02/020.8341.4BXD7522F60UTM RW
    GKHI-KS-041205.07506/05/020.7945.8BXD7522F60UTM RW
    GKHI-KS-101805-35-050406505/02/020.7938.4BXD7724F60UTM RW
    GKHI-KS-070605.43506/05/020.7742.8BXD7723F62UTM RW
    GKHI-KS-071205-31-042706504/23/020.9137.7BXD8020F65UTM RW
    GKHI-KS-071205-2-042706504/23/020.9038.1BXD8020F65UTM RW
    KS-011305-11-042606504/22/020.8239.0BXD8522M91UTM RW
    KS-110805-27-042606504/22/020.9135.2BXD8525F63UTM RW
    KS-080404-28-042606404/22/020.8436.8BXD8621F58UTM RW
    KS-080504-04-042606404/22/020.8133.4BXD8620M77UTM RW
    KS-051705-57-042606504/22/021.1135.6BXD8720M63UTM RW
    KS-032905-46-042606504/22/020.8536.1BXD8720M57UTM RW
    GKHI-KS-080905-49-042706504/23/020.8937.6BXD9023F71UTM RW
    GKHI-KS-101105.26506/05/020.8443.6BXD9025F70UTM RW
    GKHI_KS-062304.02-040606404/03/020.8540.9BXD9221M55UTM RW
    GKHI_KS_071404.01-042006404/17/020.7739.5BXD9221F62UTM RW
    GKHI_KS_031005.17-042006504/17/020.7738.1BXD9620M65UTM RW
    GKHI-KS-111505.12506/05/020.7744.1BXD9623M66UTM RW
    GKHI-KS-012406.21-060806306/07/020.7336.6BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-012406.24-060806306/07/021.2839.2BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-030206.13-060806306/07/020.7141.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-030206.16-060806306/07/020.6637.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-011906.31-060806306/07/020.8037.2C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-011906.34-060806306/07/020.7638.5C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-060806.04-070706307/06/020.6837.3C3H/HeJ F76Harvard/BIDMC
    GKHI-KS-071505.08-060806306/07/020.7137.4C57BL/6ByJ F51JAX
    GKHI-KS-071505.11-060806206/07/020.7339.2C57BL/6ByJ F51JAX
    GKHI-KS-030305.15-060806306/07/020.7137.4CAST/Ei F64JAX
    GKHI-KS-031005.35-060906306/08/020.7035.7CAST/Ei M64JAX
    GKHI-KS-022206.16-060906306/08/020.7137.9KK/HlJ F61Harvard/BIDMC
    GKHI-KS-022206.07-060906306/08/020.7235.5KK/HlJ M61Harvard/BIDMC
    GKHI-KS-031606.01-060906306/08/020.8635.9MOLF/Ei M60Harvard/BIDMC
    GKHI-KS-022206.16-060906306/08/020.8737.4MOLF/Ei F60Harvard/BIDMC
    GKHI-KS-012006.25-060906306/08/020.7538.3NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-012006.28-061306306/11/020.8237.1NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-032306.04.060906306/08/020.7340.2NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-032306.07-060906306/08/020.7439.4NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-020706.04-060906306/08/020.7141.6NZW/LacJ F65Harvard/BIDMC
    GKHI-KS-020206.19-060906306/08/020.7736.7NZW/LacJ M60Harvard/BIDMC
    GKHI-KS-012406.33-061306306/11/020.9535.3PWD/PhJ F60Harvard/BIDMC
    GKHI-KS-012406.30-062006306/18/020.8836.3PWD/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.01-062206306/21/021.0235.9PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.04-062206306/21/020.9638.7PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.07-062206306/21/020.9836.6PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.10-062206306/21/020.8735.2PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-052705.01-061306206/11/020.7238.3WSB/EiJ F52UTM RW
    GKHI-KS-051005.07-061306306/11/020.7738.0WSB/EiJ M58JAX
    +
    +
    + + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms. +

    +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    + +

        About data processing:

    + +
    + +

    Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values.

    + +
    +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Kidney Consortium. Members of the Kidney Consortium thank the following sources for financial support of this effort: + +

      +
    • Erwin Bottinger, M.D. + +
      +Grant Support: R01 DK60043-04 +
    • Russell Chesney, M.D. + +
      +Grant Support: Le Bonheur Chair of Excellence in Pediatrics II +
    • Lu Lu, M.D. + +
      +Grant Support: NIH U01AA13499, U24AA13513 +
    • Peter Mundel + +
      +Grant Support: NIH R01DK57683, NIH R01 DK 62472 +
    • Paul Klotman + +
      +Grant Support: PO1 DK56492, PO1 DK56492. +
    • Matthew Breyer + +
      +Grant Support: DK-38226 +
    • Kenneth F. Manly, Ph.D. + +
      +Grant Support: NIH P20MH062009 and U01CA105417 +
    • Robert W. Williams, Ph.D. + +
      +Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 +
    + + +

    + +

        About this text file:

    +

    +This text file originally generated by Kremena Star on July 22 ,2006. Updated by KS on July 25, 2006. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/MA_M2_0706_R.html b/web/dbdoc/MA_M2_0706_R.html new file mode 100755 index 00000000..d9bbaa1c --- /dev/null +++ b/web/dbdoc/MA_M2_0706_R.html @@ -0,0 +1,2083 @@ + +Kidney Consortium M430v2 July06 RMA + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    Kidney Consortium M430v2 (July06) RMA +modify this page

    Accession number: GN115

    + + +

        Summary:

    + +
    +The July 2006 Kidney QTL Consortium data set provides estimates of mRNA expression in the adult kidney of 70 genetically diverse strains of mice including 54 BXD recombinant inbred strains, a set of 15 inbred strains, and 1 F1 hybrid; D2B6F1. +Kidney samples were processed using a total of 153 Affymetrix Mouse Expression 430 2.0 microarrays (M430v2.0). This particular data set was processed using the RMA protocol. +CAUTION: This dataset is not sex-balanced. +
    + +

        About the strains used to generate this set of data:

    + + + +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 30 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred. We have also included 24 BXD lines generated by Lu and Peirce. All of these strains have been genotyped at 13,377 SNPs. + +

    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 15 inbred strains and a pair of F1 hybrids; D2B6F1. These strains were selected for the following reasons: +This panel will be a powerful tool in systems genetic analysis of a wide variety of traits, and will provide additional power in fine mapping modulators through an association analysis of sequence variants. +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +
      +
    1. BTBR T+tf/J +
          Multiple recessive stock; Homozygotes show repeated waves of hair loss and regrowth, which begin in the nose and pass posteriorly along the body. + +
    2. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    3. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    4. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    5. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    6. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    7. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    8. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    9. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    10. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    11. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    12. D2B6F1 +
      F1 hybrid generated by crossing C57BL/6J with DBA/2J +
    + +

    These inbred strains can be ordered from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC.P> + +

    + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, and the Jackson Laboratory (Table 1). Animals were housed at UTHSC, at Harvard/BIDMC (Glenn Rosen), at the University of Memphis (Douglas Matthews), or the Jackson Laboratory before sacrifice (see Table 1). Mice were killed by cervical dislocation and kidneys were removed and placed in RNAlater prior to dissection. Kidneys were dissected whole and cleaned from the adrenal glands by Hong Tao Zhang in Dr. Lu’s lab. Kidneys from two to six animals per strain were pooled and shipped to Kremena Star at Mount Sinai School of Medicine (MSSM). Animals used in this study were between 50 and 99 days of age (average of 62 days; see Table 1). +

    + +
    +

    Sample Processing: : Samples were processed at the Mount Sinai School of Medicine in the laboratory of Dr. Erwin Bottinger. All processing steps were performed Kremena Star. Total RNA was extracted with TRIZOL, followed by Rneasy Mini Kit purification (QUAGEN) by Kremena Star at MSSM. RNA purity was evaluated using the 260/280 nm (protein contamination) and the 260/230 nm (TRIZOL contamination) absorbance ratios, and values had to be greater than 1.9 and 0.8 respectively. Most of the samples 260/280 nm values fell between 1.9 and 2.1 and the majority of the 260/230 nm measurements were in the range 1.8 to 2.3. RNA integrity was assessed with the Agilent Bioanalyzer 2100. We set a quality threshold at 28s/18s rRNA greater than 0.9 or RNA integrity number (RIN) of greater than 6.9. When the two metrics were in disagreement we gave priority on the RIN value as recommended by the Agilent Bioanalyzer 2100 technical support representative. +Synthesis of cDNA template from total RNA was performed using the one-cyclecDNA synthesis kit from Affymetrix (Affymetrix, P/N 900431). The Affymetrix IVT-labeling kit ((Affymetrix, P/N 900449)) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 1.9 to 2.1). The cRNA is then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup (Affymetrix, P/N 900371). Fragmented cRNA samples were accessed with Agilent Bioanalyzer 2100 (cRNA frgments between 25 and 200 nucleotides are required for optimal hybridization and immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + +

    Replication and Sample Balance: We obtained a male sample pool and female sample pool from each isogenic group. Initially all strains were represented by male and female samples, however, not all data sets passed the quality control steps. Forty-two (thirty-one BXD, D2B6F1 and ten inbred strains) are represented by male and female samples. + +

    Experimental Design and Batch Structure: The data set consists of arrays processed in twenty-three groups over a six month period (March 2006 to July 2006). Each group consists of 4 to 12 arrays. All arrays were processed using the Affymetrix Eukaryotic Sample and Array Processing protocol (701024 Rev. 3), by a single operator, Kremena Star. +All samples in a group were labeled on the same. The hybridization station accommodates up to 4 samples, and since most of the groups had 12 samples, processed in 3 batches on the same day. Samples were washed in groups of four and kept at 4° C until all 12 (or 4-12) arrays were ready to scan. Samples were scanned in sets of four. + +

    + +

        Data Table 1:

    + +
    + +
    This table lists all arrays ordered by strain and includes +Microarray ID, number of mice per pool, Microarray date, GAPDH 3`/5`Signal +Ratio, Percent of transcripts present on the microarray chip, Strain, +Generation, Sex, Age and Source of mice.
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Microarray_ID# miceMicroarray DateGAPDH (3`/5`)% presentstrainsgenerationsexageMice Source
    GKHI-KS-050603.07-051706305/14/020.7337.6C57BL/6J M56UTM RW
    GKHI-KS-070803.01-051706305/14/020.7541.6C57BL/6J F69UTM RW
    GKHI-KS-DBA-Male-070706207/06/020.7137.3DBA/2J M56JAX
    GKHI_KS_121404.75-042106404/18/02  DBA/2J F59UTM RW
    GKHI_KS_121404.75-033006403/19/020.7348.5DBA/2J F59UTM RW
    GKHI_KS_121404.78-042006404/17/020.8340.6DBA/2J F59UTM RW
    GKHI_KS_070804.39-042006404/17/020.8239.0D2B6F1 M59UTM RW
    GKHI_KS_030904.01-042006404/17/020.8235.9D2B6F1 M57UTM RW
    GKHI-KS-121404.73-070706207/06/020.7636.3D2B6F1 F69UTM RW
    GKHI-KS-010705.38-051206505/09/020.8139.9BXD1 M59Harvard/BIDMC
    GKHI-KS-060905.19506/05/020.7542.3BXD1 M68UTM RW
    GKHI-KS-051206.13-070706307/06/020.7136.3BXD1 F57UTM RW
    GKHI-KS-021304.10-051206405/09/020.8139.1BXD2 M61Harvard/BIDMC
    GKHI-KS-040303-04-050406305/01/020.8037.6BXD5 F56UMemphis
    GKHI-KS-010705-53-050306505/01/020.7637.1BXD5 F58Harvard/BIDMC
    GKHI-KS-031103.01-062206306/21/020.7537.1BXD5 M71UMemphis
    GKHI-KS-040505-51-050306505/01/020.7135.5BXD6 M58UTM RW
    GKHI-KS-092705-29--050406505/02/020.7536.1BXD6160F64UTM RW
    GKHI_KS_092404.01-042106404/18/020.7136.3BXD8 M59Harvard/BIDMC
    GKHI-KS-051205-25-042706504/23/020.9237.9BXD8 F77UTM RW
    KS-021605-17-042606504/22/020.8540.8BXD9 F67UTM RW
    KS-032905-32-042606504/22/020.9136.8BXD9 F60UTM RW
    GKHI-KS-062006.08-070706307/06/020.7436.3BXD9 M78UTM RW
    GKHI-KS-031505.22-051206505/09/020.7439.5BXD11 F65UTM RW
    GKHI-KS-031605.01506/05/020.7443.4BXD11 F69UTM RW
    GKHI_KS_102104.40-042106404/18/020.7238.5BXD12 M60Harvard/BIDMC
    GKHI-KS-112002.07-051106205/08/020.7742.0BXD12 F64UMemphis
    GKHI-KS-120904.33-051206405/09/020.7138.4BXD13 F60Harvard/BIDMC
    GKHI-KS-042304.01406/05/020.7144.1BXD13 F58Harvard/BIDMC
    GKHI-KS-020905.34-051106505/08/020.7540.7BXD14 F68UTM RW
    GKHI-KS-022405.46-051106505/08/020.7140.2BXD14 F60Harvard/BIDMC
    GKHI-KS-091704.09-062206406/21/020.7339.0BXD14 M59Harvard/BIDMC
    GKHI-KS-013004.45-062206406/21/020.7638.5BXD15 M61Harvard/BIDMC
    GKHI-KS-022405.43-051106505/08/020.7340.5BXD15 F60Harvard/BIDMC
    GKHI-KS-041604.10-051106405/08/020.7342.6BXD15 F60Harvard/BIDMC
    GKHI-KS-031805.01-051106505/08/020.7942.4BXD16 F59Harvard/BIDMC
    GKHI-KS-031805.04-051106505/08/020.7739.9BXD16 M60Harvard/BIDMC
    GKHI-KS-040805.10-051006505/05/020.9338.7BXD18 F59Harvard/BIDMC
    GKHI-KS-052804.09-051106405/05/020.6737.6BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.47-051106505/05/020.7342.3BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.44-070706307/06/020.7336.1BXD19 M60Harvard/BIDMC
    GKHI-KS-062905.07-051106505/05/020.7237.9BXD20 M60Harvard/BIDMC
    GKHI-KS-072104.58-051106405/05/020.7337.0BXD20 F59Harvard/BIDMC
    GKHI-KS-050405.21-051206405/09/020.8135.1BXD21 F60Harvard/BIDMC
    GKHI-KS-040705.24506/05/020.8040.2BXD21 F99UAB
    GKHI-KS-110405.01-051006505/05/020.7142.1BXD22 F60Harvard/BIDMC
    GKHI-KS-110405.04-051006505/05/020.7640.6BXD22 M60Harvard/BIDMC
    GKHI-KS-040805.01-051206505/09/020.7436.4BXD23 F60Harvard/BIDMC
    GKHI-KS-040805.04-051006505/05/020.7339.3BXD23 M60Harvard/BIDMC
    GKHI_KS_091704.13-042106404/18/020.7337.7BXD24 M59Harvard/BIDMC
    GKHI-KS-040303-20-050206304/30/020.7736.3BXD24 F71UMemphis
    GKHI-KS-021805.20-051006505/05/020.8340.5BXD25 F67UAB
    GKHI-KS-090705.05-062206506/21/020.7638.4BXD25 M58UTM RW
    GKHI-KS-090705.03-051006505/05/020.8140.1BXD25 F58UTM RW
    GKHI-KS-022105.42-051006505/05/020.8141.8BXD27 M70UAB
    GKHI-KS-032205.31-051006505/05/020.7439.0BXD27 M60UTM RW
    GKHI-KS-060706.10-070706307/06/020.6937.8BXD27 F85UTM RW
    GKHI-KS-012805-41-050506505/04/020.8134.2BXD28 F60Harvard/BIDMC
    GKHI-KS-012805-44-050506505/04/020.8135.8BXD28 M60Harvard/BIDMC
    GKHI-KS-012805-38-050506505/04/020.7742.7BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-35-050506505/04/020.8435.8BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-32-050506505/04/020.7439.9BXD31 F60Harvard/BIDMC
    GKHI-KS-100604-07-050506405/04/020.7940.2BXD31 M60Harvard/BIDMC
    GKHI-KS-021605.26-051706505/14/021.1139.0BXD32 F63UTM RW
    GKHI-KS-112002.01-051206205/09/020.7638.1BXD32 F60UMemphis
    GKHI-KS-072605-01-050506505/04/020.7941.3BXD3350F63UTM RW
    GKHI-KS-091405-23-050506505/04/020.8438.4BXD3350M76UTM RW
    GKHI-KS-111104-18-050506405/04/020.7942.2BXD36 F61Harvard/BIDMC
    GKHI-KS-031804-07-050506405/04/020.8542.5BXD36 F58Harvard/BIDMC
    GKHI-KS-092005.16-051206505/09/020.7237.2BXD3846F65UTM RW
    GKHI-KS-031403.01-060806106/07/020.6939.6BXD38 M69UMemphis
    GKHI-KS-090104.21-051106405/08/020.7236.3BXD39 F60Harvard/BIDMC
    GKHI-KS-040204.30406/05/020.7743.9BXD39 F59Harvard/BIDMC
    GKHI-KS-051805-16-050506505/04/022.1643.8BXD40 F61UTM RW
    GKHI-KS-111902-04-050506205/04/020.8441.0BXD40 F56UMemphis
    GKHI-KS-050604-01-050406405/01/020.8535.6BXD4323F61UTM RW
    GKHI-KS-080905-43-050406505/01/020.7833.7BXD4328F62UTM RW
    GKHI-KS-031004-01-050406405/01/020.7536.2BXD4421F57UTM RW
    GKHI-KS-020504-01-050406405/01/020.7530.8BXD4420M66UTM RW
    GKHI-KS-071504-01-050406405/01/020.7437.7BXD4520F58UTM RW
    GKHI-KS-081104-05-050406405/01/020.7834.2BXD4520M93UTM RW
    GKHI-KS-031204-01-050406405/01/020.7535.6BXD4822M60UTM RW
    GKHI-KS-021104.06-051706405/14/020.7541.1BXD4821F58UTM RW
    GKHI-KS-033005-21-050306505/01/020.7834.9BXD5127M64UTM RW
    GKHI-KS-090204-01-050306405/01/020.7238.3BXD5124F63UTM RW
    GKHI_KS-010704.01-040606404/03/020.7537.5BXD6021M64UTM RW
    GKHI_KS_013004.38-042006404/17/020.7840.1BXD6021F60UTM RW
    GKHI-KS-030905-28-050206504/30/020.7336.6BXD6120F63UTM RW
    GKHI-KS-050305-18-050206504/30/020.8335.8BXD6121F70UTM RW
    GKHI_KS-121803.01-040706304/03/020.8040.0BXD6220M54UTM RW
    GKHI_KS_021204.01-042006404/17/020.8539.8BXD6221F59UTM RW
    GKHI-KS-020905-25-050206504/30/020.8435.2BXD6321M70UTM RW
    GKHI-KS-040705.49-060806206/07/020.8539.4BXD6520F55UTM RW
    GKHI-KS-040406.12-060806206/07/020.7340.4BXD6523F60UTM RW
    GKHI-KS-052405-36-050406505/02/020.8436.8BXD6720F65UTM RW
    GKHI-KS-041205-01-050206504/30/020.7739.7BXD6720F54UTM RW
    GKHI-KS-062305-01-050206504/30/020.7636.0BXD6820F59UTM RW
    GKHI-KS-062305-09-050206504/30/020.9337.4BXD6820F64UTM RW
    GKHI_KS_110105.30-042006504/17/020.8039.0BXD6926F66UTM RW
    GKHI-KS-061504.64-062206406/21/020.7239.3BXD6920M55UTM RW
    GKHI_KS-050404.04-040606404/03/020.7738.3BXD6920F63UTM RW
    GKHI-KS-042705-01-042706504/23/020.8338.6BXD7021F64UTM RW
    GKHI-KS-051705-59-042706504/23/020.8938.5BXD7022F61UTM RW
    GKHI-KS-030805-40-042706504/23/020.8638.5BXD7323F61UTM RW
    GKHI-KS-041905.172-062206506/21/020.7937.6BXD7324M64UTM RW
    GKHI-KS-072605-03-042706504/23/020.8738.2BXD7325F72UTM RW
    GKHI-KS-041205-04-050406505/02/020.8341.4BXD7522F60UTM RW
    GKHI-KS-041205.07506/05/020.7945.8BXD7522F60UTM RW
    GKHI-KS-101805-35-050406505/02/020.7938.4BXD7724F60UTM RW
    GKHI-KS-070605.43506/05/020.7742.8BXD7723F62UTM RW
    GKHI-KS-071205-31-042706504/23/020.9137.7BXD8020F65UTM RW
    GKHI-KS-071205-2-042706504/23/020.9038.1BXD8020F65UTM RW
    KS-011305-11-042606504/22/020.8239.0BXD8522M91UTM RW
    KS-110805-27-042606504/22/020.9135.2BXD8525F63UTM RW
    KS-080404-28-042606404/22/020.8436.8BXD8621F58UTM RW
    KS-080504-04-042606404/22/020.8133.4BXD8620M77UTM RW
    KS-051705-57-042606504/22/021.1135.6BXD8720M63UTM RW
    KS-032905-46-042606504/22/020.8536.1BXD8720M57UTM RW
    GKHI-KS-080905-49-042706504/23/020.8937.6BXD9023F71UTM RW
    GKHI-KS-101105.26506/05/020.8443.6BXD9025F70UTM RW
    GKHI_KS-062304.02-040606404/03/020.8540.9BXD9221M55UTM RW
    GKHI_KS_071404.01-042006404/17/020.7739.5BXD9221F62UTM RW
    GKHI_KS_031005.17-042006504/17/020.7738.1BXD9620M65UTM RW
    GKHI-KS-111505.12506/05/020.7744.1BXD9623M66UTM RW
    GKHI-KS-012406.21-060806306/07/020.7336.6BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-012406.24-060806306/07/021.2839.2BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-030206.13-060806306/07/020.7141.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-030206.16-060806306/07/020.6637.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-011906.31-060806306/07/020.8037.2C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-011906.34-060806306/07/020.7638.5C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-060806.04-070706307/06/020.6837.3C3H/HeJ F76Harvard/BIDMC
    GKHI-KS-071505.08-060806306/07/020.7137.4C57BL/6ByJ F51JAX
    GKHI-KS-071505.11-060806206/07/020.7339.2C57BL/6ByJ F51JAX
    GKHI-KS-030305.15-060806306/07/020.7137.4CAST/Ei F64JAX
    GKHI-KS-031005.35-060906306/08/020.7035.7CAST/Ei M64JAX
    GKHI-KS-022206.16-060906306/08/020.7137.9KK/HlJ F61Harvard/BIDMC
    GKHI-KS-022206.07-060906306/08/020.7235.5KK/HlJ M61Harvard/BIDMC
    GKHI-KS-031606.01-060906306/08/020.8635.9MOLF/Ei M60Harvard/BIDMC
    GKHI-KS-022206.16-060906306/08/020.8737.4MOLF/Ei F60Harvard/BIDMC
    GKHI-KS-012006.25-060906306/08/020.7538.3NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-012006.28-061306306/11/020.8237.1NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-032306.04.060906306/08/020.7340.2NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-032306.07-060906306/08/020.7439.4NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-020706.04-060906306/08/020.7141.6NZW/LacJ F65Harvard/BIDMC
    GKHI-KS-020206.19-060906306/08/020.7736.7NZW/LacJ M60Harvard/BIDMC
    GKHI-KS-012406.33-061306306/11/020.9535.3PWD/PhJ F60Harvard/BIDMC
    GKHI-KS-012406.30-062006306/18/020.8836.3PWD/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.01-062206306/21/021.0235.9PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.04-062206306/21/020.9638.7PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.07-062206306/21/020.9836.6PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.10-062206306/21/020.8735.2PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-052705.01-061306206/11/020.7238.3WSB/EiJ F52UTM RW
    GKHI-KS-051005.07-061306306/11/020.7738.0WSB/EiJ M58JAX
    +
    +
    + + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms. +

    +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    + +

        About data processing:

    + +
    + +

    Probe set data from the CHP file: The expression values were generated using RMA. The same simple steps described above were also applied to these values.

    + +
    +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Kidney Consortium. Members of the Kidney Consortium thank the following sources for financial support of this effort: + +

      +
    • Erwin Bottinger, M.D.
      +Grant Support: R01 DK60043-04
      +
    • Russell Chesney, M.D.
      +Grant Support: Le Bonheur Chair of Excellence in Pediatrics II +
      +
    • Lu Lu, M.D.
      +Grant Support: NIH U01AA13499, U24AA13513
      +
    • Peter Mundel
      +Grant Support: NIH R01DK57683, NIH R01 DK 62472
      +
    • Paul Klotman
      +Grant Support: PO1 DK56492, PO1 DK56492.
      +
    • Matthew Breyer
      +Grant Support: DK-38226
      +
    • Kenneth F. Manly, Ph.D.
      +Grant Support: NIH P20MH062009 and U01CA105417
      +
    • Robert W. Williams, Ph.D.
      +Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 +
    + + +

    + +

        About this text file:

    +

    +This text file originally generated by Kremena Star on July 22 ,2006. Updated by KS on July 25, 2006. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/MA_M2_0806_P.html b/web/dbdoc/MA_M2_0806_P.html new file mode 100755 index 00000000..6ba72b5b --- /dev/null +++ b/web/dbdoc/MA_M2_0806_P.html @@ -0,0 +1,2106 @@ + +Kidney Consortium M430v2 July06 RMA + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    Kidney Consortium M430v2 (Aug06) Sex-corrected PDNN modify this page

    Accession number: GN117

    + + +

        Summary:

    + +
    +

    The July 2006 Kidney QTL Consortium data set provides estimates +of mRNA expression in the adult kidney of 70 genetically diverse +strains of mice including 54 BXD recombinant inbred strains, a set +of 15 inbred strains, and 1 F1 hybrid; D2B6F1. Kidney samples were +processed using a total of 153 Affymetrix Mouse Expression 430 2.0 +microarrays (M430v2.0). This particular data set was processed using +the PDNN protocol.

    +
    + +

        About the strains used to generate this set of data:

    + + + +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 30 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred. We have also included 24 BXD lines generated by Lu and Peirce. All of these strains have been genotyped at 13,377 SNPs. + +

    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 15 inbred strains and a pair of F1 hybrids; D2B6F1. These strains were selected for the following reasons: +This panel will be a powerful tool in systems genetic analysis of a wide variety of traits, and will provide additional power in fine mapping modulators through an association analysis of sequence variants. +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +
      +
    1. BTBR T+tf/J +
          Multiple recessive stock; Homozygotes show repeated waves of hair loss and regrowth, which begin in the nose and pass posteriorly along the body. + +
    2. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    3. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    4. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    5. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    6. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    7. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    8. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    9. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    10. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    11. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    12. D2B6F1 +
      F1 hybrid generated by crossing C57BL/6J with DBA/2J +
    + +

    These inbred strains can be ordered from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC. +

    + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, and the Jackson Laboratory (Table 1). Animals were housed at UTHSC, at Harvard/BIDMC (Glenn Rosen), at the University of Memphis (Douglas Matthews), or the Jackson Laboratory before sacrifice (see Table 1). Mice were killed by cervical dislocation and kidneys were removed and placed in RNAlater prior to dissection. Kidneys were dissected whole and cleaned from the adrenal glands by Hong Tao Zhang in Dr. Lu’s lab. Kidneys from two to six animals per strain were pooled and shipped to Kremena Star at Mount Sinai School of Medicine (MSSM). Animals used in this study were between 50 and 99 days of age (average of 62 days; see Table 1). +

    + +
    +

    Sample Processing: : Samples were processed at the Mount Sinai School of Medicine in the laboratory of Dr. Erwin Bottinger. All processing steps were performed Kremena Star. Total RNA was extracted with TRIZOL, followed by Rneasy Mini Kit purification (QUAGEN) by Kremena Star at MSSM. RNA purity was evaluated using the 260/280 nm (protein contamination) and the 260/230 nm (TRIZOL contamination) absorbance ratios, and values had to be greater than 1.9 and 0.8 respectively. Most of the samples 260/280 nm values fell between 1.9 and 2.1 and the majority of the 260/230 nm measurements were in the range 1.8 to 2.3. RNA integrity was assessed with the Agilent Bioanalyzer 2100. We set a quality threshold at 28s/18s rRNA greater than 0.9 or RNA integrity number (RIN) of greater than 6.9. When the two metrics were in disagreement we gave priority on the RIN value as recommended by the Agilent Bioanalyzer 2100 technical support representative. +Synthesis of cDNA template from total RNA was performed using the one-cyclecDNA synthesis kit from Affymetrix (Affymetrix, P/N 900431). The Affymetrix IVT-labeling kit ((Affymetrix, P/N 900449)) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 1.9 to 2.1). The cRNA is then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup (Affymetrix, P/N 900371). Fragmented cRNA samples were accessed with Agilent Bioanalyzer 2100 (cRNA frgments between 25 and 200 nucleotides are required for optimal hybridization and immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + +

    Replication and Sample Balance: We obtained a male sample +pool and female sample pool from each isogenic group. Initially +all strains were represented by male and female samples, however, +not all data sets passed the quality control steps. Forty-two (thirty-one +BXD, D2B6F1 and ten inbred strains) are represented by male and +female samples. For the remaining strains, represented by only one +sex we calculated sex-corrected values for each probe set using +the following algorithm: +

    1. Compute the difference in expression values between the
    +ALL_FEMALE_AVE and the ALL_MALE_AVE (n = 100 vs n = 52).
    +b. Divide these values by 2 (additive sex effect)
    +c. If a female-only strain subtract the "additive sex effect" +
    +d. If a male-only strain add the "additive sex effect"
    +

    +

    Experimental Design and Batch Structure: The data set consists of arrays processed in twenty-three groups over a six month period (March 2006 to July 2006). Each group consists of 4 to 12 arrays. All arrays were processed using the Affymetrix Eukaryotic Sample and Array Processing protocol (701024 Rev. 3), by a single operator, Kremena Star. +All samples in a group were labeled on the same. The hybridization station accommodates up to 4 samples, and since most of the groups had 12 samples, processed in 3 batches on the same day. Samples were washed in groups of four and kept at 4° C until all 12 (or 4-12) arrays were ready to scan. Samples were scanned in sets of four. + +

    + +

        Data Table 1:

    + +
    + +
    This table lists all arrays ordered by strain and includes +Microarray ID, number of mice per pool, Microarray date, GAPDH 3`/5`Signal +Ratio, Percent of transcripts present on the microarray chip, Strain, +Generation, Sex, Age and Source of mice.
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Microarray_ID# miceMicroarray DateGAPDH (3`/5`)% presentstrainsgenerationsexageMice Source
    GKHI-KS-050603.07-051706305/14/020.7337.6C57BL/6J M56UTM RW
    GKHI-KS-070803.01-051706305/14/020.7541.6C57BL/6J F69UTM RW
    GKHI-KS-DBA-Male-070706207/06/020.7137.3DBA/2J M56JAX
    GKHI_KS_121404.75-042106404/18/02  DBA/2J F59UTM RW
    GKHI_KS_121404.75-033006403/19/020.7348.5DBA/2J F59UTM RW
    GKHI_KS_121404.78-042006404/17/020.8340.6DBA/2J F59UTM RW
    GKHI_KS_070804.39-042006404/17/020.8239.0D2B6F1 M59UTM RW
    GKHI_KS_030904.01-042006404/17/020.8235.9D2B6F1 M57UTM RW
    GKHI-KS-121404.73-070706207/06/020.7636.3D2B6F1 F69UTM RW
    GKHI-KS-010705.38-051206505/09/020.8139.9BXD1 M59Harvard/BIDMC
    GKHI-KS-060905.19506/05/020.7542.3BXD1 M68UTM RW
    GKHI-KS-051206.13-070706307/06/020.7136.3BXD1 F57UTM RW
    GKHI-KS-021304.10-051206405/09/020.8139.1BXD2 M61Harvard/BIDMC
    GKHI-KS-040303-04-050406305/01/020.8037.6BXD5 F56UMemphis
    GKHI-KS-010705-53-050306505/01/020.7637.1BXD5 F58Harvard/BIDMC
    GKHI-KS-031103.01-062206306/21/020.7537.1BXD5 M71UMemphis
    GKHI-KS-040505-51-050306505/01/020.7135.5BXD6 M58UTM RW
    GKHI-KS-092705-29--050406505/02/020.7536.1BXD6160F64UTM RW
    GKHI_KS_092404.01-042106404/18/020.7136.3BXD8 M59Harvard/BIDMC
    GKHI-KS-051205-25-042706504/23/020.9237.9BXD8 F77UTM RW
    KS-021605-17-042606504/22/020.8540.8BXD9 F67UTM RW
    KS-032905-32-042606504/22/020.9136.8BXD9 F60UTM RW
    GKHI-KS-062006.08-070706307/06/020.7436.3BXD9 M78UTM RW
    GKHI-KS-031505.22-051206505/09/020.7439.5BXD11 F65UTM RW
    GKHI-KS-031605.01506/05/020.7443.4BXD11 F69UTM RW
    GKHI_KS_102104.40-042106404/18/020.7238.5BXD12 M60Harvard/BIDMC
    GKHI-KS-112002.07-051106205/08/020.7742.0BXD12 F64UMemphis
    GKHI-KS-120904.33-051206405/09/020.7138.4BXD13 F60Harvard/BIDMC
    GKHI-KS-042304.01406/05/020.7144.1BXD13 F58Harvard/BIDMC
    GKHI-KS-020905.34-051106505/08/020.7540.7BXD14 F68UTM RW
    GKHI-KS-022405.46-051106505/08/020.7140.2BXD14 F60Harvard/BIDMC
    GKHI-KS-091704.09-062206406/21/020.7339.0BXD14 M59Harvard/BIDMC
    GKHI-KS-013004.45-062206406/21/020.7638.5BXD15 M61Harvard/BIDMC
    GKHI-KS-022405.43-051106505/08/020.7340.5BXD15 F60Harvard/BIDMC
    GKHI-KS-041604.10-051106405/08/020.7342.6BXD15 F60Harvard/BIDMC
    GKHI-KS-031805.01-051106505/08/020.7942.4BXD16 F59Harvard/BIDMC
    GKHI-KS-031805.04-051106505/08/020.7739.9BXD16 M60Harvard/BIDMC
    GKHI-KS-040805.10-051006505/05/020.9338.7BXD18 F59Harvard/BIDMC
    GKHI-KS-052804.09-051106405/05/020.6737.6BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.47-051106505/05/020.7342.3BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.44-070706307/06/020.7336.1BXD19 M60Harvard/BIDMC
    GKHI-KS-062905.07-051106505/05/020.7237.9BXD20 M60Harvard/BIDMC
    GKHI-KS-072104.58-051106405/05/020.7337.0BXD20 F59Harvard/BIDMC
    GKHI-KS-050405.21-051206405/09/020.8135.1BXD21 F60Harvard/BIDMC
    GKHI-KS-040705.24506/05/020.8040.2BXD21 F99UAB
    GKHI-KS-110405.01-051006505/05/020.7142.1BXD22 F60Harvard/BIDMC
    GKHI-KS-110405.04-051006505/05/020.7640.6BXD22 M60Harvard/BIDMC
    GKHI-KS-040805.01-051206505/09/020.7436.4BXD23 F60Harvard/BIDMC
    GKHI-KS-040805.04-051006505/05/020.7339.3BXD23 M60Harvard/BIDMC
    GKHI_KS_091704.13-042106404/18/020.7337.7BXD24 M59Harvard/BIDMC
    GKHI-KS-040303-20-050206304/30/020.7736.3BXD24 F71UMemphis
    GKHI-KS-021805.20-051006505/05/020.8340.5BXD25 F67UAB
    GKHI-KS-090705.05-062206506/21/020.7638.4BXD25 M58UTM RW
    GKHI-KS-090705.03-051006505/05/020.8140.1BXD25 F58UTM RW
    GKHI-KS-022105.42-051006505/05/020.8141.8BXD27 M70UAB
    GKHI-KS-032205.31-051006505/05/020.7439.0BXD27 M60UTM RW
    GKHI-KS-060706.10-070706307/06/020.6937.8BXD27 F85UTM RW
    GKHI-KS-012805-41-050506505/04/020.8134.2BXD28 F60Harvard/BIDMC
    GKHI-KS-012805-44-050506505/04/020.8135.8BXD28 M60Harvard/BIDMC
    GKHI-KS-012805-38-050506505/04/020.7742.7BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-35-050506505/04/020.8435.8BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-32-050506505/04/020.7439.9BXD31 F60Harvard/BIDMC
    GKHI-KS-100604-07-050506405/04/020.7940.2BXD31 M60Harvard/BIDMC
    GKHI-KS-021605.26-051706505/14/021.1139.0BXD32 F63UTM RW
    GKHI-KS-112002.01-051206205/09/020.7638.1BXD32 F60UMemphis
    GKHI-KS-072605-01-050506505/04/020.7941.3BXD3350F63UTM RW
    GKHI-KS-091405-23-050506505/04/020.8438.4BXD3350M76UTM RW
    GKHI-KS-111104-18-050506405/04/020.7942.2BXD36 F61Harvard/BIDMC
    GKHI-KS-031804-07-050506405/04/020.8542.5BXD36 F58Harvard/BIDMC
    GKHI-KS-092005.16-051206505/09/020.7237.2BXD3846F65UTM RW
    GKHI-KS-031403.01-060806106/07/020.6939.6BXD38 M69UMemphis
    GKHI-KS-090104.21-051106405/08/020.7236.3BXD39 F60Harvard/BIDMC
    GKHI-KS-040204.30406/05/020.7743.9BXD39 F59Harvard/BIDMC
    GKHI-KS-051805-16-050506505/04/022.1643.8BXD40 F61UTM RW
    GKHI-KS-111902-04-050506205/04/020.8441.0BXD40 F56UMemphis
    GKHI-KS-050604-01-050406405/01/020.8535.6BXD4323F61UTM RW
    GKHI-KS-080905-43-050406505/01/020.7833.7BXD4328F62UTM RW
    GKHI-KS-031004-01-050406405/01/020.7536.2BXD4421F57UTM RW
    GKHI-KS-020504-01-050406405/01/020.7530.8BXD4420M66UTM RW
    GKHI-KS-071504-01-050406405/01/020.7437.7BXD4520F58UTM RW
    GKHI-KS-081104-05-050406405/01/020.7834.2BXD4520M93UTM RW
    GKHI-KS-031204-01-050406405/01/020.7535.6BXD4822M60UTM RW
    GKHI-KS-021104.06-051706405/14/020.7541.1BXD4821F58UTM RW
    GKHI-KS-033005-21-050306505/01/020.7834.9BXD5127M64UTM RW
    GKHI-KS-090204-01-050306405/01/020.7238.3BXD5124F63UTM RW
    GKHI_KS-010704.01-040606404/03/020.7537.5BXD6021M64UTM RW
    GKHI_KS_013004.38-042006404/17/020.7840.1BXD6021F60UTM RW
    GKHI-KS-030905-28-050206504/30/020.7336.6BXD6120F63UTM RW
    GKHI-KS-050305-18-050206504/30/020.8335.8BXD6121F70UTM RW
    GKHI_KS-121803.01-040706304/03/020.8040.0BXD6220M54UTM RW
    GKHI_KS_021204.01-042006404/17/020.8539.8BXD6221F59UTM RW
    GKHI-KS-020905-25-050206504/30/020.8435.2BXD6321M70UTM RW
    GKHI-KS-040705.49-060806206/07/020.8539.4BXD6520F55UTM RW
    GKHI-KS-040406.12-060806206/07/020.7340.4BXD6523F60UTM RW
    GKHI-KS-052405-36-050406505/02/020.8436.8BXD6720F65UTM RW
    GKHI-KS-041205-01-050206504/30/020.7739.7BXD6720F54UTM RW
    GKHI-KS-062305-01-050206504/30/020.7636.0BXD6820F59UTM RW
    GKHI-KS-062305-09-050206504/30/020.9337.4BXD6820F64UTM RW
    GKHI_KS_110105.30-042006504/17/020.8039.0BXD6926F66UTM RW
    GKHI-KS-061504.64-062206406/21/020.7239.3BXD6920M55UTM RW
    GKHI_KS-050404.04-040606404/03/020.7738.3BXD6920F63UTM RW
    GKHI-KS-042705-01-042706504/23/020.8338.6BXD7021F64UTM RW
    GKHI-KS-051705-59-042706504/23/020.8938.5BXD7022F61UTM RW
    GKHI-KS-030805-40-042706504/23/020.8638.5BXD7323F61UTM RW
    GKHI-KS-041905.172-062206506/21/020.7937.6BXD7324M64UTM RW
    GKHI-KS-072605-03-042706504/23/020.8738.2BXD7325F72UTM RW
    GKHI-KS-041205-04-050406505/02/020.8341.4BXD7522F60UTM RW
    GKHI-KS-041205.07506/05/020.7945.8BXD7522F60UTM RW
    GKHI-KS-101805-35-050406505/02/020.7938.4BXD7724F60UTM RW
    GKHI-KS-070605.43506/05/020.7742.8BXD7723F62UTM RW
    GKHI-KS-071205-31-042706504/23/020.9137.7BXD8020F65UTM RW
    GKHI-KS-071205-2-042706504/23/020.9038.1BXD8020F65UTM RW
    KS-011305-11-042606504/22/020.8239.0BXD8522M91UTM RW
    KS-110805-27-042606504/22/020.9135.2BXD8525F63UTM RW
    KS-080404-28-042606404/22/020.8436.8BXD8621F58UTM RW
    KS-080504-04-042606404/22/020.8133.4BXD8620M77UTM RW
    KS-051705-57-042606504/22/021.1135.6BXD8720M63UTM RW
    KS-032905-46-042606504/22/020.8536.1BXD8720M57UTM RW
    GKHI-KS-080905-49-042706504/23/020.8937.6BXD9023F71UTM RW
    GKHI-KS-101105.26506/05/020.8443.6BXD9025F70UTM RW
    GKHI_KS-062304.02-040606404/03/020.8540.9BXD9221M55UTM RW
    GKHI_KS_071404.01-042006404/17/020.7739.5BXD9221F62UTM RW
    GKHI_KS_031005.17-042006504/17/020.7738.1BXD9620M65UTM RW
    GKHI-KS-111505.12506/05/020.7744.1BXD9623M66UTM RW
    GKHI-KS-012406.21-060806306/07/020.7336.6BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-012406.24-060806306/07/021.2839.2BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-030206.13-060806306/07/020.7141.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-030206.16-060806306/07/020.6637.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-011906.31-060806306/07/020.8037.2C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-011906.34-060806306/07/020.7638.5C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-060806.04-070706307/06/020.6837.3C3H/HeJ F76Harvard/BIDMC
    GKHI-KS-071505.08-060806306/07/020.7137.4C57BL/6ByJ F51JAX
    GKHI-KS-071505.11-060806206/07/020.7339.2C57BL/6ByJ F51JAX
    GKHI-KS-030305.15-060806306/07/020.7137.4CAST/Ei F64JAX
    GKHI-KS-031005.35-060906306/08/020.7035.7CAST/Ei M64JAX
    GKHI-KS-022206.16-060906306/08/020.7137.9KK/HlJ F61Harvard/BIDMC
    GKHI-KS-022206.07-060906306/08/020.7235.5KK/HlJ M61Harvard/BIDMC
    GKHI-KS-031606.01-060906306/08/020.8635.9MOLF/Ei M60Harvard/BIDMC
    GKHI-KS-022206.16-060906306/08/020.8737.4MOLF/Ei F60Harvard/BIDMC
    GKHI-KS-012006.25-060906306/08/020.7538.3NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-012006.28-061306306/11/020.8237.1NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-032306.04.060906306/08/020.7340.2NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-032306.07-060906306/08/020.7439.4NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-020706.04-060906306/08/020.7141.6NZW/LacJ F65Harvard/BIDMC
    GKHI-KS-020206.19-060906306/08/020.7736.7NZW/LacJ M60Harvard/BIDMC
    GKHI-KS-012406.33-061306306/11/020.9535.3PWD/PhJ F60Harvard/BIDMC
    GKHI-KS-012406.30-062006306/18/020.8836.3PWD/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.01-062206306/21/021.0235.9PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.04-062206306/21/020.9638.7PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.07-062206306/21/020.9836.6PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.10-062206306/21/020.8735.2PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-052705.01-061306206/11/020.7238.3WSB/EiJ F52UTM RW
    GKHI-KS-051005.07-061306306/11/020.7738.0WSB/EiJ M58JAX
    +
    +
    + + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as +sooon as the global analysis of these data by the Consoritum has +been accepted for publication. Please see text on Data +Sharing Policies, and Conditions +and Limitations, and Contacts. +Following publication, download a summary text file or Excel file +of the PDNN Sex-corrected probe set data. Contact RW Williams regarding +data access probelms.

    +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    + +

        About data processing:

    + +
    +

    Probe set data from the CHP file: The expression values +were generated using PDNN. The same simple steps described above +were also applied to these values. +

    + +
    +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Kidney Consortium. Members of the Kidney Consortium thank the following sources for financial support of this effort: + +

      +
    • Erwin Bottinger, M.D.
      +Grant Support: R01 DK60043-04
      +
    • Russell Chesney, M.D.
      +Grant Support: Le Bonheur Chair of Excellence in Pediatrics II +
      +
    • Lu Lu, M.D.
      +Grant Support: NIH U01AA13499, U24AA13513
      +
    • Peter Mundel
      +Grant Support: NIH R01DK57683, NIH R01 DK 62472
      +
    • Paul Klotman
      +Grant Support: PO1 DK56492, PO1 DK56492.
      +
    • Matthew Breyer
      +Grant Support: DK-38226
      +
    • Kenneth F. Manly, Ph.D.
      +Grant Support: NIH P20MH062009 and U01CA105417
      +
    • Robert W. Williams, Ph.D.
      +Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 +
    + + +

    + +

        About this text file:

    +

    +This text file originally generated by Kremena Star on Sept. 1,2006. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/MA_M2_0806_R.html b/web/dbdoc/MA_M2_0806_R.html new file mode 100755 index 00000000..73c4ad6a --- /dev/null +++ b/web/dbdoc/MA_M2_0806_R.html @@ -0,0 +1,2099 @@ + +Kidney Consortium M430v2 July06 RMA + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    Kidney Consortium M430v2 (Aug06) Sex-corrected RMA modify this page

    Accession number: GN118

    + + +

        Summary:

    + +
    +

    The July 2006 Kidney QTL Consortium data set provides estimates +of mRNA expression in the adult kidney of 70 genetically diverse +strains of mice including 54 BXD recombinant inbred strains, a set +of 15 inbred strains, and 1 F1 hybrid; D2B6F1. Kidney samples were +processed using a total of 153 Affymetrix Mouse Expression 430 2.0 +microarrays (M430v2.0). This particular data set was processed using +the RMA protocol.

    +
    + +

        About the strains used to generate this set of data:

    + + + +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 30 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred. We have also included 24 BXD lines generated by Lu and Peirce. All of these strains have been genotyped at 13,377 SNPs. + +

    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 15 inbred strains and a pair of F1 hybrids; D2B6F1. These strains were selected for the following reasons: +This panel will be a powerful tool in systems genetic analysis of a wide variety of traits, and will provide additional power in fine mapping modulators through an association analysis of sequence variants. +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +
      +
    1. BTBR T+tf/J +
          Multiple recessive stock; Homozygotes show repeated waves of hair loss and regrowth, which begin in the nose and pass posteriorly along the body. + +
    2. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    3. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    4. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    5. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    6. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    7. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    8. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    9. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    10. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    11. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    12. D2B6F1 +
      F1 hybrid generated by crossing C57BL/6J with DBA/2J +
    + +

    These inbred strains can be ordered from The Jackson Laboratory. BXD43 through BXD100 are available from Lu Lu and colleagues at UTHSC. + +

    + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, and the Jackson Laboratory (Table 1). Animals were housed at UTHSC, at Harvard/BIDMC (Glenn Rosen), at the University of Memphis (Douglas Matthews), or the Jackson Laboratory before sacrifice (see Table 1). Mice were killed by cervical dislocation and kidneys were removed and placed in RNAlater prior to dissection. Kidneys were dissected whole and cleaned from the adrenal glands by Hong Tao Zhang in Dr. Lu’s lab. Kidneys from two to six animals per strain were pooled and shipped to Kremena Star at Mount Sinai School of Medicine (MSSM). Animals used in this study were between 50 and 99 days of age (average of 62 days; see Table 1). +

    + +
    +

    Sample Processing: : Samples were processed at the Mount Sinai School of Medicine in the laboratory of Dr. Erwin Bottinger. All processing steps were performed Kremena Star. Total RNA was extracted with TRIZOL, followed by Rneasy Mini Kit purification (QUAGEN) by Kremena Star at MSSM. RNA purity was evaluated using the 260/280 nm (protein contamination) and the 260/230 nm (TRIZOL contamination) absorbance ratios, and values had to be greater than 1.9 and 0.8 respectively. Most of the samples 260/280 nm values fell between 1.9 and 2.1 and the majority of the 260/230 nm measurements were in the range 1.8 to 2.3. RNA integrity was assessed with the Agilent Bioanalyzer 2100. We set a quality threshold at 28s/18s rRNA greater than 0.9 or RNA integrity number (RIN) of greater than 6.9. When the two metrics were in disagreement we gave priority on the RIN value as recommended by the Agilent Bioanalyzer 2100 technical support representative. +Synthesis of cDNA template from total RNA was performed using the one-cyclecDNA synthesis kit from Affymetrix (Affymetrix, P/N 900431). The Affymetrix IVT-labeling kit ((Affymetrix, P/N 900449)) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 1.9 to 2.1). The cRNA is then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup (Affymetrix, P/N 900371). Fragmented cRNA samples were accessed with Agilent Bioanalyzer 2100 (cRNA frgments between 25 and 200 nucleotides are required for optimal hybridization and immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + +

    Replication and Sample Balance: We obtained a male sample +pool and female sample pool from each isogenic group. Initially +all strains were represented by male and female samples, however, +not all data sets passed the quality control steps. Forty-two (thirty-one +BXD, D2B6F1 and ten inbred strains) are represented by male and +female samples. For the remaining strains, represented by only one +sex we calculated sex-corrected values for each probe set using +the following algorithm: +

    1. Compute the difference in expression values between the
    +ALL_FEMALE_AVE and the ALL_MALE_AVE (n = 100 vs n = 52).
    +b. Divide these values by 2 (additive sex effect)
    +c. If a female-only strain subtract the "additive sex effect" +
    +d. If a male-only strain add the "additive sex effect"
    +

    +

    Experimental Design and Batch Structure: The data set consists of arrays processed in twenty-three groups over a six month period (March 2006 to July 2006). Each group consists of 4 to 12 arrays. All arrays were processed using the Affymetrix Eukaryotic Sample and Array Processing protocol (701024 Rev. 3), by a single operator, Kremena Star. +All samples in a group were labeled on the same. The hybridization station accommodates up to 4 samples, and since most of the groups had 12 samples, processed in 3 batches on the same day. Samples were washed in groups of four and kept at 4° C until all 12 (or 4-12) arrays were ready to scan. Samples were scanned in sets of four. + +

    + +

        Data Table 1:

    + +
    + +
    This table lists all arrays ordered by strain and includes +Microarray ID, number of mice per pool, Microarray date, GAPDH 3`/5`Signal +Ratio, Percent of transcripts present on the microarray chip, Strain, +Generation, Sex, Age and Source of mice.
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Microarray_ID# miceMicroarray DateGAPDH (3`/5`)% presentstrainsgenerationsexageMice Source
    GKHI-KS-050603.07-051706305/14/020.7337.6C57BL/6J M56UTM RW
    GKHI-KS-070803.01-051706305/14/020.7541.6C57BL/6J F69UTM RW
    GKHI-KS-DBA-Male-070706207/06/020.7137.3DBA/2J M56JAX
    GKHI_KS_121404.75-042106404/18/02  DBA/2J F59UTM RW
    GKHI_KS_121404.75-033006403/19/020.7348.5DBA/2J F59UTM RW
    GKHI_KS_121404.78-042006404/17/020.8340.6DBA/2J F59UTM RW
    GKHI_KS_070804.39-042006404/17/020.8239.0D2B6F1 M59UTM RW
    GKHI_KS_030904.01-042006404/17/020.8235.9D2B6F1 M57UTM RW
    GKHI-KS-121404.73-070706207/06/020.7636.3D2B6F1 F69UTM RW
    GKHI-KS-010705.38-051206505/09/020.8139.9BXD1 M59Harvard/BIDMC
    GKHI-KS-060905.19506/05/020.7542.3BXD1 M68UTM RW
    GKHI-KS-051206.13-070706307/06/020.7136.3BXD1 F57UTM RW
    GKHI-KS-021304.10-051206405/09/020.8139.1BXD2 M61Harvard/BIDMC
    GKHI-KS-040303-04-050406305/01/020.8037.6BXD5 F56UMemphis
    GKHI-KS-010705-53-050306505/01/020.7637.1BXD5 F58Harvard/BIDMC
    GKHI-KS-031103.01-062206306/21/020.7537.1BXD5 M71UMemphis
    GKHI-KS-040505-51-050306505/01/020.7135.5BXD6 M58UTM RW
    GKHI-KS-092705-29--050406505/02/020.7536.1BXD6160F64UTM RW
    GKHI_KS_092404.01-042106404/18/020.7136.3BXD8 M59Harvard/BIDMC
    GKHI-KS-051205-25-042706504/23/020.9237.9BXD8 F77UTM RW
    KS-021605-17-042606504/22/020.8540.8BXD9 F67UTM RW
    KS-032905-32-042606504/22/020.9136.8BXD9 F60UTM RW
    GKHI-KS-062006.08-070706307/06/020.7436.3BXD9 M78UTM RW
    GKHI-KS-031505.22-051206505/09/020.7439.5BXD11 F65UTM RW
    GKHI-KS-031605.01506/05/020.7443.4BXD11 F69UTM RW
    GKHI_KS_102104.40-042106404/18/020.7238.5BXD12 M60Harvard/BIDMC
    GKHI-KS-112002.07-051106205/08/020.7742.0BXD12 F64UMemphis
    GKHI-KS-120904.33-051206405/09/020.7138.4BXD13 F60Harvard/BIDMC
    GKHI-KS-042304.01406/05/020.7144.1BXD13 F58Harvard/BIDMC
    GKHI-KS-020905.34-051106505/08/020.7540.7BXD14 F68UTM RW
    GKHI-KS-022405.46-051106505/08/020.7140.2BXD14 F60Harvard/BIDMC
    GKHI-KS-091704.09-062206406/21/020.7339.0BXD14 M59Harvard/BIDMC
    GKHI-KS-013004.45-062206406/21/020.7638.5BXD15 M61Harvard/BIDMC
    GKHI-KS-022405.43-051106505/08/020.7340.5BXD15 F60Harvard/BIDMC
    GKHI-KS-041604.10-051106405/08/020.7342.6BXD15 F60Harvard/BIDMC
    GKHI-KS-031805.01-051106505/08/020.7942.4BXD16 F59Harvard/BIDMC
    GKHI-KS-031805.04-051106505/08/020.7739.9BXD16 M60Harvard/BIDMC
    GKHI-KS-040805.10-051006505/05/020.9338.7BXD18 F59Harvard/BIDMC
    GKHI-KS-052804.09-051106405/05/020.6737.6BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.47-051106505/05/020.7342.3BXD19 F60Harvard/BIDMC
    GKHI-KS-010705.44-070706307/06/020.7336.1BXD19 M60Harvard/BIDMC
    GKHI-KS-062905.07-051106505/05/020.7237.9BXD20 M60Harvard/BIDMC
    GKHI-KS-072104.58-051106405/05/020.7337.0BXD20 F59Harvard/BIDMC
    GKHI-KS-050405.21-051206405/09/020.8135.1BXD21 F60Harvard/BIDMC
    GKHI-KS-040705.24506/05/020.8040.2BXD21 F99UAB
    GKHI-KS-110405.01-051006505/05/020.7142.1BXD22 F60Harvard/BIDMC
    GKHI-KS-110405.04-051006505/05/020.7640.6BXD22 M60Harvard/BIDMC
    GKHI-KS-040805.01-051206505/09/020.7436.4BXD23 F60Harvard/BIDMC
    GKHI-KS-040805.04-051006505/05/020.7339.3BXD23 M60Harvard/BIDMC
    GKHI_KS_091704.13-042106404/18/020.7337.7BXD24 M59Harvard/BIDMC
    GKHI-KS-040303-20-050206304/30/020.7736.3BXD24 F71UMemphis
    GKHI-KS-021805.20-051006505/05/020.8340.5BXD25 F67UAB
    GKHI-KS-090705.05-062206506/21/020.7638.4BXD25 M58UTM RW
    GKHI-KS-090705.03-051006505/05/020.8140.1BXD25 F58UTM RW
    GKHI-KS-022105.42-051006505/05/020.8141.8BXD27 M70UAB
    GKHI-KS-032205.31-051006505/05/020.7439.0BXD27 M60UTM RW
    GKHI-KS-060706.10-070706307/06/020.6937.8BXD27 F85UTM RW
    GKHI-KS-012805-41-050506505/04/020.8134.2BXD28 F60Harvard/BIDMC
    GKHI-KS-012805-44-050506505/04/020.8135.8BXD28 M60Harvard/BIDMC
    GKHI-KS-012805-38-050506505/04/020.7742.7BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-35-050506505/04/020.8435.8BXD29 F60Harvard/BIDMC
    GKHI-KS-012805-32-050506505/04/020.7439.9BXD31 F60Harvard/BIDMC
    GKHI-KS-100604-07-050506405/04/020.7940.2BXD31 M60Harvard/BIDMC
    GKHI-KS-021605.26-051706505/14/021.1139.0BXD32 F63UTM RW
    GKHI-KS-112002.01-051206205/09/020.7638.1BXD32 F60UMemphis
    GKHI-KS-072605-01-050506505/04/020.7941.3BXD3350F63UTM RW
    GKHI-KS-091405-23-050506505/04/020.8438.4BXD3350M76UTM RW
    GKHI-KS-111104-18-050506405/04/020.7942.2BXD36 F61Harvard/BIDMC
    GKHI-KS-031804-07-050506405/04/020.8542.5BXD36 F58Harvard/BIDMC
    GKHI-KS-092005.16-051206505/09/020.7237.2BXD3846F65UTM RW
    GKHI-KS-031403.01-060806106/07/020.6939.6BXD38 M69UMemphis
    GKHI-KS-090104.21-051106405/08/020.7236.3BXD39 F60Harvard/BIDMC
    GKHI-KS-040204.30406/05/020.7743.9BXD39 F59Harvard/BIDMC
    GKHI-KS-051805-16-050506505/04/022.1643.8BXD40 F61UTM RW
    GKHI-KS-111902-04-050506205/04/020.8441.0BXD40 F56UMemphis
    GKHI-KS-050604-01-050406405/01/020.8535.6BXD4323F61UTM RW
    GKHI-KS-080905-43-050406505/01/020.7833.7BXD4328F62UTM RW
    GKHI-KS-031004-01-050406405/01/020.7536.2BXD4421F57UTM RW
    GKHI-KS-020504-01-050406405/01/020.7530.8BXD4420M66UTM RW
    GKHI-KS-071504-01-050406405/01/020.7437.7BXD4520F58UTM RW
    GKHI-KS-081104-05-050406405/01/020.7834.2BXD4520M93UTM RW
    GKHI-KS-031204-01-050406405/01/020.7535.6BXD4822M60UTM RW
    GKHI-KS-021104.06-051706405/14/020.7541.1BXD4821F58UTM RW
    GKHI-KS-033005-21-050306505/01/020.7834.9BXD5127M64UTM RW
    GKHI-KS-090204-01-050306405/01/020.7238.3BXD5124F63UTM RW
    GKHI_KS-010704.01-040606404/03/020.7537.5BXD6021M64UTM RW
    GKHI_KS_013004.38-042006404/17/020.7840.1BXD6021F60UTM RW
    GKHI-KS-030905-28-050206504/30/020.7336.6BXD6120F63UTM RW
    GKHI-KS-050305-18-050206504/30/020.8335.8BXD6121F70UTM RW
    GKHI_KS-121803.01-040706304/03/020.8040.0BXD6220M54UTM RW
    GKHI_KS_021204.01-042006404/17/020.8539.8BXD6221F59UTM RW
    GKHI-KS-020905-25-050206504/30/020.8435.2BXD6321M70UTM RW
    GKHI-KS-040705.49-060806206/07/020.8539.4BXD6520F55UTM RW
    GKHI-KS-040406.12-060806206/07/020.7340.4BXD6523F60UTM RW
    GKHI-KS-052405-36-050406505/02/020.8436.8BXD6720F65UTM RW
    GKHI-KS-041205-01-050206504/30/020.7739.7BXD6720F54UTM RW
    GKHI-KS-062305-01-050206504/30/020.7636.0BXD6820F59UTM RW
    GKHI-KS-062305-09-050206504/30/020.9337.4BXD6820F64UTM RW
    GKHI_KS_110105.30-042006504/17/020.8039.0BXD6926F66UTM RW
    GKHI-KS-061504.64-062206406/21/020.7239.3BXD6920M55UTM RW
    GKHI_KS-050404.04-040606404/03/020.7738.3BXD6920F63UTM RW
    GKHI-KS-042705-01-042706504/23/020.8338.6BXD7021F64UTM RW
    GKHI-KS-051705-59-042706504/23/020.8938.5BXD7022F61UTM RW
    GKHI-KS-030805-40-042706504/23/020.8638.5BXD7323F61UTM RW
    GKHI-KS-041905.172-062206506/21/020.7937.6BXD7324M64UTM RW
    GKHI-KS-072605-03-042706504/23/020.8738.2BXD7325F72UTM RW
    GKHI-KS-041205-04-050406505/02/020.8341.4BXD7522F60UTM RW
    GKHI-KS-041205.07506/05/020.7945.8BXD7522F60UTM RW
    GKHI-KS-101805-35-050406505/02/020.7938.4BXD7724F60UTM RW
    GKHI-KS-070605.43506/05/020.7742.8BXD7723F62UTM RW
    GKHI-KS-071205-31-042706504/23/020.9137.7BXD8020F65UTM RW
    GKHI-KS-071205-2-042706504/23/020.9038.1BXD8020F65UTM RW
    KS-011305-11-042606504/22/020.8239.0BXD8522M91UTM RW
    KS-110805-27-042606504/22/020.9135.2BXD8525F63UTM RW
    KS-080404-28-042606404/22/020.8436.8BXD8621F58UTM RW
    KS-080504-04-042606404/22/020.8133.4BXD8620M77UTM RW
    KS-051705-57-042606504/22/021.1135.6BXD8720M63UTM RW
    KS-032905-46-042606504/22/020.8536.1BXD8720M57UTM RW
    GKHI-KS-080905-49-042706504/23/020.8937.6BXD9023F71UTM RW
    GKHI-KS-101105.26506/05/020.8443.6BXD9025F70UTM RW
    GKHI_KS-062304.02-040606404/03/020.8540.9BXD9221M55UTM RW
    GKHI_KS_071404.01-042006404/17/020.7739.5BXD9221F62UTM RW
    GKHI_KS_031005.17-042006504/17/020.7738.1BXD9620M65UTM RW
    GKHI-KS-111505.12506/05/020.7744.1BXD9623M66UTM RW
    GKHI-KS-012406.21-060806306/07/020.7336.6BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-012406.24-060806306/07/021.2839.2BTBR T+tf/J F60Harvard/BIDMC
    GKHI-KS-030206.13-060806306/07/020.7141.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-030206.16-060806306/07/020.6637.2BXSB/MpJ F61Harvard/BIDMC
    GKHI-KS-011906.31-060806306/07/020.8037.2C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-011906.34-060806306/07/020.7638.5C3H/HeJ M60Harvard/BIDMC
    GKHI-KS-060806.04-070706307/06/020.6837.3C3H/HeJ F76Harvard/BIDMC
    GKHI-KS-071505.08-060806306/07/020.7137.4C57BL/6ByJ F51JAX
    GKHI-KS-071505.11-060806206/07/020.7339.2C57BL/6ByJ F51JAX
    GKHI-KS-030305.15-060806306/07/020.7137.4CAST/Ei F64JAX
    GKHI-KS-031005.35-060906306/08/020.7035.7CAST/Ei M64JAX
    GKHI-KS-022206.16-060906306/08/020.7137.9KK/HlJ F61Harvard/BIDMC
    GKHI-KS-022206.07-060906306/08/020.7235.5KK/HlJ M61Harvard/BIDMC
    GKHI-KS-031606.01-060906306/08/020.8635.9MOLF/Ei M60Harvard/BIDMC
    GKHI-KS-022206.16-060906306/08/020.8737.4MOLF/Ei F60Harvard/BIDMC
    GKHI-KS-012006.25-060906306/08/020.7538.3NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-012006.28-061306306/11/020.8237.1NOD/LtJ F58Harvard/BIDMC
    GKHI-KS-032306.04.060906306/08/020.7340.2NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-032306.07-060906306/08/020.7439.4NZB/BlNJ F61Harvard/BIDMC
    GKHI-KS-020706.04-060906306/08/020.7141.6NZW/LacJ F65Harvard/BIDMC
    GKHI-KS-020206.19-060906306/08/020.7736.7NZW/LacJ M60Harvard/BIDMC
    GKHI-KS-012406.33-061306306/11/020.9535.3PWD/PhJ F60Harvard/BIDMC
    GKHI-KS-012406.30-062006306/18/020.8836.3PWD/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.01-062206306/21/021.0235.9PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.04-062206306/21/020.9638.7PWK/PhJ F60Harvard/BIDMC
    GKHI-KS-020206.07-062206306/21/020.9836.6PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-020206.10-062206306/21/020.8735.2PWK/PhJ M60Harvard/BIDMC
    GKHI-KS-052705.01-061306206/11/020.7238.3WSB/EiJ F52UTM RW
    GKHI-KS-051005.07-061306306/11/020.7738.0WSB/EiJ M58JAX
    +
    +
    + + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access problems. +

    +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    + +

        About data processing:

    + +
    + +

    Probe set data from the CHP file: The expression values were generated using RMA. The same simple steps described above were also applied to these values.

    + +
    +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Kidney Consortium. Members of the Kidney Consortium thank the following sources for financial support of this effort: + +

      +
    • Erwin P. Bottinger, M.D.
      +Grant Support: R01 DK60043-04
      +
    • Russell W. Chesney, M.D.
      +Grant Support: Le Bonheur Chair of Excellence in Pediatrics II +
      +
    • Lu Lu, M.D.
      +Grant Support: NIH U01AA13499, U24AA13513
      +
    • Peter Mundel
      +Grant Support: NIH R01DK57683, NIH R01 DK 62472
      +
    • Paul E. Klotman
      +Grant Support: PO1 DK56492, PO1 DK56492.
      +
    • Matthew D. Breyer
      +Grant Support: DK-38226
      +
    • Kenneth F. Manly, Ph.D.
      +Grant Support: NIH P20MH062009 and U01CA105417
      +
    • Robert W. Williams, Ph.D.
      +Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 +
    + + +

    + +

        About this text file:

    +

    +This text file originally generated by Kremena Star on Sept. 1, 2006. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/MA_M_0704_M.html b/web/dbdoc/MA_M_0704_M.html new file mode 100755 index 00000000..90332dc3 --- /dev/null +++ b/web/dbdoc/MA_M_0704_M.html @@ -0,0 +1,197 @@ + +M430 RMA Liver F2 July04 / WebQTL + + + + + + + + + + + + + + + + + + + + +
    +

    NCI Mammary mRNA M430 RMA Database MAS5 (July/04 Freeze) modify this page

    Accession number: GN36

    + + +

        Synopsis

    + +
    Used the Affymetrix M430A and M430B pair of arrays (total of 45,137 probe sets). Data available as CEL files from GeneNetwork upon request. + +
    + +

        About the mice used to map microarray data:

    + +
    The lines of mice used in this NCI-sponsored project consist of 18 groups of isogenic F1 progeny made by crossing females from each of 18 AKXD recombinant inbred strains (AKXD2, 3, 7, 9, 10, 11, 13, 14, +16, 18, 20, 21, 22, 23, 24, 25, 27, and 28) to male FVB/N mice that carry a transgene that consistently leads to the development of mammary tumors in females (e.g. Le Voyer et al., 2001). The formal nomenclature of the male transgenic line is FVB/N-TgN(MMTV-PyMT)634Mul. The genomes of each AKXD x FVB F1 consist of one set of FVB chromosomes (including the transgene) and one set of chromosomes inherited from one of the 18 AKXD RI strain mothers. Only the AKXD chromosomes are "recombinant" across this panel of F1 progeny, and the set therefore has a genetic architecture similar to backcross progeny. It is possible to map modifiers that influence tumor characteristics and expression patterns. It is also possible to study covariance of transcript expression levels in tumor tissue. For further background on this special mapping design please see Hunter and Williams (2002).
    +
    The ancestral strains from which all AKXD strains are derived are AKR/J (AKR) and DBA/2J (D2 or D). DBA/2J has been partially sequenced (approximately 1.5x coverage by D by Celera Genomics). Significant genomic sequence data for AKR is not currently available. Chromosomes of the two parental strains have recombined in the different AKXD strains. All of these strains are available from The Jackson Laboratory as cryopreserved stocks. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html. +
    + +

        About the tissue used to generate these data:

    +
    Mammary tumors used in this array experiment were derived from 18 sets of AKXD x FVB/N F1 females as described above. After the primary tumor was diagnosed, the animals were aged an additional 40 days to permit metastatic progression. Females were sacrificed and mammary tumors were harvested. Samples were processed and arrayed on Affymetrix M430A and M430B arrays. The majority of the samples were assayed on arrays obtained from the same lot number. + +
    + + +

        About the array

    + +
    All samples were processed and arrayed in the Laboratory of Population Genetics at the NCI. The table below lists the arrays by Samples, AKXD strain and Age. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Sample
    AKXD strain
    Age
    AKXD2957
    2
    98
    AKXD2959
    2
    96
    AKXD1747
    3
    84
    AKXD3446
    3
    91
    AKXD4225
    3
    83
    AKXD2543
    7
    82
    AKXD2967
    7
    88
    AKXD3336
    7
    95
    AKXD2685
    9
    113
    AKXD2710
    9
    109
    AKXD2949
    9
    115
    AKXD2618
    10
    99
    AKXD2620
    10
    99
    AKXD3023
    10
    94
    AKXD1910
    11
    87
    AKXD2824
    11
    92
    AKXD2825
    11
    103
    AKXD2635
    13
    83
    AKXD2718
    13
    100
    AKXD2721
    13
    91
    AKXD2632
    14
    99
    AKXD2640
    14
    100
    AKXD3444
    14
    96
    AKXD1636
    16
    112
    AKXD3688
    16
    80
    AKXD4152
    16
    91
    AKXD1647
    18
    91
    AKXD2616
    18
    91
    AKXD2804
    18
    80
    AKXD2456
    20
    100
    AKXD2554
    20
    107
    AKXD2829
    20
    105
    AKXD1610
    21
    98
    AKXD2611
    21
    88
    AKXD2918
    21
    98
    AKXD2460
    22
    107
    AKXD2461
    22
    94
    AKXD2463
    22
    110
    AKXD2975
    23
    82
    AKXD2976
    23
    86
    AKXD3955
    23
    90
    AKXD1494
    24
    103
    AKXD1880
    24
    104
    AKXD3030
    24
    89
    AKXD1607
    25
    110
    AKXD2326
    25
    92
    AKXD2328
    25
    90
    AKXD2629
    25
    96
    AKXD1756
    27
    100
    AKXD1757
    27
    98
    AKXD1948
    27
    99
    AKXD1950
    27
    97
    AKXD2968
    27
    94
    AKXD2809
    28
    88
    AKXD2815
    28
    90
    AKXD3432
    28
    91
    +
    +
    +

        About the data processing:

    +
    +Probe (cell) level data from the .CEL file: These .CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      +
    • Step 1: We added an offset of 1.0 to the .CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z scores for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B GeneChips include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    +Probe set data from the .CHP file: The expression data were generated using MAS5. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    All of the NCI mammary mRNA M430A and M430B data sets have been generated by Kent Hunter at the Laboratory of Population Genetics at the National Cancer Institute in Bethesda. For contact and citations and other information on these data sets please review the INFO pages and contact Dr. Hunter regarding use of this data set in publications or projects. +
    + +

        About this text file:

    +
    Text originally written by Kent Hunter and Robert W. Williams, July 2004. Updated by RWW, Nov 6, 2004. +
    + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + + diff --git a/web/dbdoc/MA_M_0704_R.html b/web/dbdoc/MA_M_0704_R.html new file mode 100755 index 00000000..4d05e86e --- /dev/null +++ b/web/dbdoc/MA_M_0704_R.html @@ -0,0 +1,196 @@ + +M430 RMA Liver F2 July04 / WebQTL + + + + + + + + + + + + + + + + + + + + +
    +

    NCI Mammary mRNA M430 RMA Database RMA (July/04 Freeze) modify this page

    Accession number: GN37

    + + + +

        Reference

    + +
    Yang H, Crawford N, Lukes L, Finney R, Lancaster M, Hunter KW (2006) Metatasis predictive signature profiles pre-exist in normal tissue. Clinical and Experimental Metastasis 22: 593–603. Full text + +
    + + +

        Synopsis

    + +
    Used the Affymetrix M430A and M430B pair of arrays (total of 45,137 probe sets). Data available as CEL files from GeneNetwork upon request. + +
    + +

        About the mice used to map microarray data:

    + + +
    The lines of mice used in this NCI-sponsored project consist of 18 groups of isogenic F1 progeny made by crossing females from each of 18 AKXD recombinant inbred strains (AKXD2, 3, 7, 9, 10, 11, 13, 14, +16, 18, 20, 21, 22, 23, 24, 25, 27, and 28) to male FVB/N mice that carry a transgene that consistently leads to the development of mammary tumors in females (e.g. Le Voyer et al., 2001). The formal nomenclature of the male transgenic line is FVB/N-TgN(MMTV-PyMT)634Mul. The genomes of each AKXD x FVB F1 consist of one set of FVB chromosomes (including the transgene) and one set of chromosomes inherited from one +of the 18 AKXD RI strain mothers. Only the AKXD chromosomes are "recombinant" across this panel of F1 progeny, and the set therefore has a genetic architecture similar to backcross progeny. It is possible to map modifiers that influence tumor characteristics and expression patterns. It is also possible to study covariance of transcript expression levels in tumor tissue. For further background on this special mapping design please see Hunter and Williams (2002).
    +
    The ancestral strains from which all AKXD strains are derived are AKR/J (AKR) and DBA/2J (D2 or D). DBA/2J has been partially sequenced (approximately 1.5x coverage by D by Celera Genomics). Significant genomic sequence data for AKR is not currently available. Chromosomes of the two parental strains have recombined in the different AKXD strains. All of these strains are available from The Jackson Laboratory as cryopreserved stocks. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html. +
    + +

        About the tissue used to generate these data:

    +
    Mammary tumors used in this array experiment were derived from 18 sets of AKXD x FVB/N F1 females as described above. After the primary tumor was diagnosed, the animals were aged an additional 40 days to permit metastatic progression. Females were sacrificed and mammary tumors were harvested. Samples were processed and arrayed on Affymetrix M430A and M430B arrays. The majority of the samples were assayed on arrays obtained from the same lot number. + +
    + +

        About the array

    + +
    All samples were processed and arrayed in the Laboratory of Population Genetics at the NCI. The table below lists the arrays by Samples, AKXD strain and Age. +
    +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Sample
    AKXD strain
    Age
    AKXD2957
    2
    98
    AKXD2959
    2
    96
    AKXD1747
    3
    84
    AKXD3446
    3
    91
    AKXD4225
    3
    83
    AKXD2543
    7
    82
    AKXD2967
    7
    88
    AKXD3336
    7
    95
    AKXD2685
    9
    113
    AKXD2710
    9
    109
    AKXD2949
    9
    115
    AKXD2618
    10
    99
    AKXD2620
    10
    99
    AKXD3023
    10
    94
    AKXD1910
    11
    87
    AKXD2824
    11
    92
    AKXD2825
    11
    103
    AKXD2635
    13
    83
    AKXD2718
    13
    100
    AKXD2721
    13
    91
    AKXD2632
    14
    99
    AKXD2640
    14
    100
    AKXD3444
    14
    96
    AKXD1636
    16
    112
    AKXD3688
    16
    80
    AKXD4152
    16
    91
    AKXD1647
    18
    91
    AKXD2616
    18
    91
    AKXD2804
    18
    80
    AKXD2456
    20
    100
    AKXD2554
    20
    107
    AKXD2829
    20
    105
    AKXD1610
    21
    98
    AKXD2611
    21
    88
    AKXD2918
    21
    98
    AKXD2460
    22
    107
    AKXD2461
    22
    94
    AKXD2463
    22
    110
    AKXD2975
    23
    82
    AKXD2976
    23
    86
    AKXD3955
    23
    90
    AKXD1494
    24
    103
    AKXD1880
    24
    104
    AKXD3030
    24
    89
    AKXD1607
    25
    110
    AKXD2326
    25
    92
    AKXD2328
    25
    90
    AKXD2629
    25
    96
    AKXD1756
    27
    100
    AKXD1757
    27
    98
    AKXD1948
    27
    99
    AKXD1950
    27
    97
    AKXD2968
    27
    94
    AKXD2809
    28
    88
    AKXD2815
    28
    90
    AKXD3432
    28
    91
    +
    +
    +

        About the data processing:

    +
    +Probe (cell) level data from the .CEL file: These .CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      +
    • Step 1: We added an offset of 1.0 to the .CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z scores for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B GeneChips include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes and probe sets provide a way to calibrate expression of the two GeneChips to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    +Probe set data: The expression data were generated using the RMA (Robust Multiarray Average; (IRIZARRY et al. 2003)). RMA is implemented in the affy package (11/24/03 version) within Bioconductor. RMA functions provide options for background correction and normalization resulting in a single summary score of expression for every transcript in every condition. The same simple steps described above were also applied to these values. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. +
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers on the 430A and 430B microarrays were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Oct 2003 (mm4) Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Dr. Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis.
    + +

        Data source acknowledgment:

    +
    All of the NCI mammary mRNA M430A and M430B data sets have been generated by Kent Hunter at the Laboratory of Population Genetics at the National Cancer Institute in Bethesda. For contact and citations and other information on these data sets please review the INFO pages and contact Dr. Hunter regarding use of this data set in publications or projects.. +
    +

    + +
    + + + +
    + +
    + + + + + + + + + + + + diff --git a/web/dbdoc/MDPGeno.html b/web/dbdoc/MDPGeno.html new file mode 100755 index 00000000..3230f607 --- /dev/null +++ b/web/dbdoc/MDPGeno.html @@ -0,0 +1,207 @@ + + +MDP Genotypes + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    MDP Genotypes modify this page

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/MDPPublish.html b/web/dbdoc/MDPPublish.html new file mode 100755 index 00000000..83bd7246 --- /dev/null +++ b/web/dbdoc/MDPPublish.html @@ -0,0 +1,104 @@ + +HTML Template + + + + + + + + + + + + + + + + + +
    + + + + + + + +
    +

    Mouse Phenome Database (July/06) +modify this page

    + +

        About the mouse phenome data:

    +
    +These data were downloaded from the Mouse Phenome Database at The Jackson Laboratory in June 2006 and implemented in GeneNetwork July 2006. +
    + +

        About the Mouse Phenome Database (MDP):

    + +
    +When mentioning the MPD please use and cite this URL: +http://www.jax.org/phenome. This is the MPD's best known location and is usually preferable to the longer dynamic system URLs that may appear in URL address fields. + + +

    Publications: + +

    Grubb SC, Churchill GA, Bogue MA. A collaborative database of inbred mouse strain characteristics. Bioinformatics. 2004 Nov 1;20(16):2857-9. Epub 2004 May 6. PMID: 15130929 + +

    Bogue MA, Grubb SC. The mouse phenome project. Genetica. 2004 Sep;122:71-74. PMID: 15619963 + + +

    To cite specific phenotyping data in the MPD, a format similar to this may be used. (Please be sure you have read and agree with our user agreement for taking and using MPD data.) + +

    Investigators. Project Title. MPD accession#. Mouse Phenome Database Web Site, The Jackson Laboratory, Bar Harbor, Maine USA. World Wide Web (URL: http://www.jax.org/phenome, month and year of download ). + +

    Example: +

    Wahlsten D, Crabbe JC. Comparative study of activity, anxiety, motor learning, and spatial learning in two laboratories. MPD:108. Mouse Phenome Database Web Site, The Jackson Laboratory, Bar Harbor, ME USA. World Wide Web (URL: http://www.jax.org/phenome, July 2004). + +

    Each phenotyping project in the MPD is assigned an accession number having the format MPD:NNN, where NNN is an integer. Accession numbers are displayed in the projects index and the individual project detail pages. + + + + + +

    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/NCI_Agil_Mam_Tum_RMA_0409.html b/web/dbdoc/NCI_Agil_Mam_Tum_RMA_0409.html new file mode 100755 index 00000000..abe8b0dd --- /dev/null +++ b/web/dbdoc/NCI_Agil_Mam_Tum_RMA_0409.html @@ -0,0 +1,79 @@ + + + +NCI Mammary LMT_mRNA_v2 (Apr09) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    NCI Mammary LMT_mRNA_v2 (Apr09) RMA ** +modify this page

    Accession number: GN224

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/NCI_Mam_Tum_RMA_0409.html b/web/dbdoc/NCI_Mam_Tum_RMA_0409.html new file mode 100755 index 00000000..3d2e197e --- /dev/null +++ b/web/dbdoc/NCI_Mam_Tum_RMA_0409.html @@ -0,0 +1,83 @@ + + +NCI Mammary M430v2 (Apr09) RMA + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    NCI Mammary M430v2 (Apr09) RMA +modify this page

    Accession number: GN225

    + +

    Data from Dr. Kent Hunter at NCI. entered into GeneNEtwork by Arthur Centeno, May 2009. + +

    Arthur: Need to add genotype file for mapping. + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/NCSU_DrosWB_LC_RMA_0111.html b/web/dbdoc/NCSU_DrosWB_LC_RMA_0111.html new file mode 100755 index 00000000..13a66472 --- /dev/null +++ b/web/dbdoc/NCSU_DrosWB_LC_RMA_0111.html @@ -0,0 +1,96 @@ + +NCSU Drosophila Whole Body (Jan11) RMA + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    NCSU Drosophila Whole Body (Jan11) RMA
    Accession number: GN297 + modify this page

    +
    +

    Summary:

    +

    Determining the genetic architecture of complex traits is challenging because phenotypic variation +arises from interactions between multiple, environmentally sensitive alleles. We quantified genomewide +transcript abundance and phenotypes for six ecologically relevant traits in D. melanogaster +wild-derived inbred lines. We observed 10,096 genetically variable transcripts and high heritabilities +for all organismal phenotypes. The transcriptome is highly genetically inter-correlated, forming 241 +transcriptional modules. Modules are enriched for transcripts in common pathways, gene ontology +categories, tissue-specific expression, and transcription factor binding sites. The high transcriptional +connectivity allows us to infer genetic networks and the function of predicted genes based on +annotations of other genes in the network. Regressions of organismal phenotypes on transcript +abundance implicate several hundred candidate genes that form modules of biologically meaningful +correlated transcripts affecting each phenotype. Overlapping transcripts in modules associated with +different traits provides insight into the molecular basis of pleiotropy between complex traits.
    +Full Article

    +

    Animals and Tissue Used to Generate This Set of Data:

    +

    The raw microarray data are deposited in the ArrayExpress database (www.ebi.ac.uk/arrayexpress,) under accession +number E-MEXP-1594

    +
    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Neocortex_M430_PDNN_Nov05.html b/web/dbdoc/Neocortex_M430_PDNN_Nov05.html new file mode 100755 index 00000000..e99b201c --- /dev/null +++ b/web/dbdoc/Neocortex_M430_PDNN_Nov05.html @@ -0,0 +1,72 @@ + +HTML Template/ WebQTL + + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    test Here + modify this page

    + +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/Neocortex_M430_V2_PDNN_Nov05.html b/web/dbdoc/Neocortex_M430_V2_PDNN_Nov05.html new file mode 100755 index 00000000..b3b4b520 --- /dev/null +++ b/web/dbdoc/Neocortex_M430_V2_PDNN_Nov05.html @@ -0,0 +1,225 @@ + +HTML Template/ WebQTL + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    HIQ Neocortex M430v2 (Nov05) PDNN + modify this page

    + + +

        Summary:

    + +
    +This November 2005 data freeze provides estimates of mRNA expression in the neocortex of NN lines of mice including C57BL/6J, DBA/2J, and NN BXD recombinant inbred strains. Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Robert W. Williams, Ken Manly, and Glenn D. Rosen with the support of grant from the High Q Foundation. Approximately NNN brain samples (males and females) from NN strains were used to generate this data set. It consists of a total of NN arrays that passed stringent quality control procedures. Data were processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units. +
    + +

        About the cases used to generate this set of data:

    + +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in the GeneNetwork incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    +

    +
    + +

        About the tissue used to generate this set of data:

    + +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both neocortices were dissected whole by GD Rosen. The neocortical sample is close to complete but probably excludes parts of the subiculum medially and parts of the olfactory and pyriform cortex laterally. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. +

    + +
    RNA was extracted by Lu Lu and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. NN of NN strains are represented by male and female samples. The remaining NN strains are still represented by single sex samples: ADD LIST HERE. + +

    Batch Structure: This data set consists all new arrays processed in NN batches. All arrays were processed using a single protocol. All data have been corrected for batch effects as described below. + +

    + +
    +The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days. +
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2BXD1FChip03_Batch03_BXD1_F_StrBatch03
    3BXD1MChip04_Batch03_BXD1_M_StrBatch03
    4BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    5BXD2MChip05_Batch01_BXD2_M_StrBatch01
    6BXD5FChip10_Batch03_BXD5_F_StrBatch03
    7BXD5MChip12_Batch03_BXD5_M_StrBatch03
    8BXD6FChip38_Batch02_BXD6_F_StrBatch02
    9BXD8FChip07_Batch03_BXD8_F_StrBatch03
    10BXD8MChip02_Batch03_BXD8_M_StrBatch03
    11BXD9FChip16_Batch01_BXD9_F_StrBatch01
    12BXD11FChip31_Batch02_BXD11_F_StrBatch02
    13BXD12FChip11_Batch01_BXD12_F_StrBatch01
    14BXD13FChip33_Batch02_BXD13_F_StrBatch02
    15BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    16BXD15FChip21_Batch01_BXD15_F_StrBatch01
    17BXD15MChip13_Batch01_BXD15_M_StrBatch01
    18BXD16FChip36_Batch02_BXD16_F_StrBatch02
    19BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    20BXD18FChip15_Batch03_BXD18_F_StrBatch03
    21BXD18MChip19_Batch03_BXD18_M_StrBatch03
    22BXD19FChip19_Batch01_BXD19_F_StrBatch01
    23BXD20FChip14_Batch03_BXD20_F_StrBatch03
    24BXD21FChip18_Batch01_BXD21_F_StrBatch01
    25BXD21MChip09_Batch01_BXD21_M_StrBatch01
    26BXD22MChip13_Batch03_BXD22_M_StrBatch03
    27BXD24MChip17_Batch03_BXD24_M_StrBatch03
    28BXD27FChip29_Batch02_BXD27_F_StrBatch02
    29BXD28FChip06_Batch01_BXD28_F_StrBatch01
    30BXD29FChip45_Batch02_BXD29_F_StrBatch02
    31BXD29MChip42_Batch02_BXD29_M_StrBatch02
    32BXD31FChip14_Batch01_BXD31_F_StrBatch01
    33BXD31MChip09_Batch03_BXD31_M_StrBatch03
    34BXD32MChip30_Batch02_BXD32_M_StrBatch02
    35BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    36BXD33MChip34_Batch02_BXD33_M_StrBatch02
    37BXD34FChip03_Batch01_BXD34_F_StrBatch01
    38BXD34MChip07_Batch01_BXD34_M_StrBatch01
    39BXD38FChip17_Batch01_BXD38_F_StrBatch01
    40BXD38MChip24_Batch01_BXD38_M_StrBatch01
    41BXD39MChip20_Batch03_BXD39_M_StrBatch03
    42BXD39FChip23_Batch03_BXD39_F_StrBatch03
    43BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    44BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    45BXD40MChip22_Batch01_BXD40_M_StrBatch01
    46BXD42FChip35_Batch02_BXD42_F_StrBatch02
    47BXD42MChip32_Batch02_BXD42_M_StrBatch02
    48DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    + + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the batches at the probe level. To do this we calculated the ratio of each batch mean to the mean of all batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each batch is the same. + +
    • Step 7: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + +Probe set data from the CHP file: The expression values were +generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + +
    Data quality control: A total of 62 samples passed RNA quality control. +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. Arrays with probe data that was not homogeneous when compared to any other arrays was flagged. If the correlation at the probe level was less than approximately 0.92 we deleted that array data set. + +

    Probe set level QC: The final normalized array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers. +

    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW, KFM, and GDR from the High Q Foundation. Samples and arrays were processed by the +Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    + +

        About this text file:

    +

    +This text file originally generated prospectively by RWW on July 30 2005. Updated by RWW July 30, 2005. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Neurotox_2009_eQTL.pdf b/web/dbdoc/Neurotox_2009_eQTL.pdf new file mode 100755 index 00000000..9216a9c9 Binary files /dev/null and b/web/dbdoc/Neurotox_2009_eQTL.pdf differ diff --git a/web/dbdoc/OHSU_HS-CC_ILMStr_0211.html b/web/dbdoc/OHSU_HS-CC_ILMStr_0211.html new file mode 100755 index 00000000..45bbb426 --- /dev/null +++ b/web/dbdoc/OHSU_HS-CC_ILMStr_0211.html @@ -0,0 +1,90 @@ + + +OHSU HS-CC Striatum ILM6v1 (Feb11) RankInv + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    OHSU HS-CC Striatum ILM6v1 (Feb11) RankInvmodify this page

    + + Accession number: GN304

    +

    Summary:

    + +
    +The current study focused on the extent genetic diversity within a species (Mus musculus) affects gene +co-expression network structure. To examine this issue, we have created a new mouse resource, a heterogeneous +stock (HS) formed from the same eight inbred strains that have been used to create the collaborative cross (CC). The +eight inbred strains capture > 90% of the genetic diversity available within the species. For contrast with the HS-CC, a +C57BL/6J (B6) × DBA/2J (D2) F2 intercross and the HS4, derived from crossing the B6, D2, BALB/cJ and LP/J strains, +were used. Brain (striatum) gene expression data were obtained using the Illumina Mouse WG 6.1 array, and the data +sets were interrogated using a weighted gene co-expression network analysis (WGCNA).
    +Read full article: Genetic diversity and striatal gene networks: focus on the heterogeneous stock-collaborative cross (HS-CC) mouse. +
    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/ONCRetILM6_0412.html b/web/dbdoc/ONCRetILM6_0412.html new file mode 100644 index 00000000..514eac11 --- /dev/null +++ b/web/dbdoc/ONCRetILM6_0412.html @@ -0,0 +1,206 @@ + + + + + +ONC Retina Illumina V6.2 (Apr12) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    ONC Retina Illumina V6.2 (Apr12) RankInv **modify this page

    + + Accession number: GN385

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/OXUKHS_ILMHipp_RI0510.html b/web/dbdoc/OXUKHS_ILMHipp_RI0510.html new file mode 100755 index 00000000..4db5ec57 --- /dev/null +++ b/web/dbdoc/OXUKHS_ILMHipp_RI0510.html @@ -0,0 +1,91 @@ + +OX UK HS ILM6v1.1 Hippocampus (May 2010) RankInv + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    OX UK HS ILM6v1.1 Hippocampus (May 2010) RankInv (accession number: GN268) + modify this page

    +

    +

    Summary:

    +

    A proportion of the genetic variants underlying complex phenotypes do so through their effects on gene expression, so an important challenge in complex trait analysis is to discover the genetic basis for the variation in transcript abundance. So far, the potential of mapping both quantitative trait loci (QTLs) and expression quantitative trait loci (eQTLs) in rodents has been limited by the low mapping resolution inherent in crosses between inbred strains. We provide a megabase resolution map of thousands of eQTLs in hippocampus, lung, and liver samples from heterogeneous stock (HS) mice in which 843 QTLs have also been mapped at megabase resolution. We exploit dense mouse SNP data to show that artifacts due to allele-specific hybridization occur in _30% of the cis-acting eQTLs and, by comparison with exon expression data, we show that alternative splicing of the 3_ end of the genes accounts for <1% of cis-acting eQTLs. Approximately one third of cis-acting eQTLs and one half of trans-acting eQTLs are tissue specific. We have created an important systems biology resource for the genetic analysis of complex traits in a key model organism.

    +

    Animals and Tissue Used to Generate This Set of Data:

    +

    Organism: Mus musculus. Tissue: Hippocampus. Array design: A-MEXP-533 - Illumina Mouse-6 v1 Expression BeadChip

    +

    Data Source Acknowledgements:

    +

    + + +

    Key Citation: Huang GJ, Shifman S, Valdar W, Johannesson M, Yalcin B, Taylor MS, Taylor JM, Mott R, Flint J (2009) High resolution mapping of expression QTLs in heterogeneous stock mice in multiple tissues. Genome Res 19:1133-1140 PubMed 19376938 + +

    +Contact: Richard Mott. Email: Richard.Mott at well.ox.ac.uk University of Oxford

    +

    Data entered by A. Centeno on May 20, 2010

    +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/OXUKHS_ILMLiver_RI0510.html b/web/dbdoc/OXUKHS_ILMLiver_RI0510.html new file mode 100755 index 00000000..5b8ebcb3 --- /dev/null +++ b/web/dbdoc/OXUKHS_ILMLiver_RI0510.html @@ -0,0 +1,87 @@ + +OX UK HS ILM6v1.1 Liver (May 2010) RankInv + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    OX UK HS ILM6v1.1 Liver (May 2010) RankInv (accession number: GN269) + modify this page

    +

    +

    Summary:

    +

    A proportion of the genetic variants underlying complex phenotypes do so through their effects on gene expression, so an important challenge in complex trait analysis is to discover the genetic basis for the variation in transcript abundance. So far, the potential of mapping both quantitative trait loci (QTLs) and expression quantitative trait loci (eQTLs) in rodents has been limited by the low mapping resolution inherent in crosses between inbred strains. We provide a megabase resolution map of thousands of eQTLs in hippocampus, lung, and liver samples from heterogeneous stock (HS) mice in which 843 QTLs have also been mapped at megabase resolution. We exploit dense mouse SNP data to show that artifacts due to allele-specific hybridization occur in _30% of the cis-acting eQTLs and, by comparison with exon expression data, we show that alternative splicing of the 3_ end of the genes accounts for <1% of cis-acting eQTLs. Approximately one third of cis-acting eQTLs and one half of trans-acting eQTLs are tissue specific. We have created an important systems biology resource for the genetic analysis of complex traits in a key model organism.

    +

    Animals and Tissue Used to Generate This Set of Data:

    +

    Organism: Mus musculus. Tissue: Liver. Array design: A-MEXP-533 - Illumina Mouse-6 v1 Expression BeadChip

    +

    Data Source Acknowledgements:

    +

    +

    Citations: High resolution mapping of expression QTLs in heterogeneous stock mice in multiple tissues. Huang GJ, Shifman S, Valdar W, Johannesson M, Yalcin B, Taylor MS, Taylor JM, Mott R, Flint J. Genome Res 19(6):1133-40 (Genome Res), PubMed 19376938

    +Contact: Richard Mott. Email: Richard.Mott at well.ox.ac.uk University of Oxford

    +

    Data entered by A. Centeno on May 20, 2010

    +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/OXUKHS_ILMLung_RI0510.html b/web/dbdoc/OXUKHS_ILMLung_RI0510.html new file mode 100755 index 00000000..96a6c9b2 --- /dev/null +++ b/web/dbdoc/OXUKHS_ILMLung_RI0510.html @@ -0,0 +1,86 @@ + +OX UK HS ILM6v1.1 Lung (May 2010) RankInv + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    OX UK HS ILM6v1.1 Lung (May 2010) RankInv (accession number: GN270) + modify this page

    +

    +

    Summary:

    +

    A proportion of the genetic variants underlying complex phenotypes do so through their effects on gene expression, so an important challenge in complex trait analysis is to discover the genetic basis for the variation in transcript abundance. So far, the potential of mapping both quantitative trait loci (QTLs) and expression quantitative trait loci (eQTLs) in rodents has been limited by the low mapping resolution inherent in crosses between inbred strains. We provide a megabase resolution map of thousands of eQTLs in hippocampus, lung, and liver samples from heterogeneous stock (HS) mice in which 843 QTLs have also been mapped at megabase resolution. We exploit dense mouse SNP data to show that artifacts due to allele-specific hybridization occur in _30% of the cis-acting eQTLs and, by comparison with exon expression data, we show that alternative splicing of the 3_ end of the genes accounts for <1% of cis-acting eQTLs. Approximately one third of cis-acting eQTLs and one half of trans-acting eQTLs are tissue specific. We have created an important systems biology resource for the genetic analysis of complex traits in a key model organism.

    +

    Animals and Tissue Used to Generate This Set of Data:

    +

    Organism: Mus musculus. Tissue: Lung. Array design: A-MEXP-533 - Illumina Mouse-6 v1 Expression BeadChip

    +

    Data Source Acknowledgements:

    +

    +

    Citations: High resolution mapping of expression QTLs in heterogeneous stock mice in multiple tissues. Huang GJ, Shifman S, Valdar W, Johannesson M, Yalcin B, Taylor MS, Taylor JM, Mott R, Flint J. Genome Res 19(6):1133-40 (Genome Res), PubMed 19376938

    +Contact: Richard Mott. Email: Richard.Mott at well.ox.ac.uk University of Oxford

    +

    Data entered by A. Centeno on May 20, 2010

    +

    +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/RTC_1106_R.html b/web/dbdoc/RTC_1106_R.html new file mode 100755 index 00000000..eae25179 --- /dev/null +++ b/web/dbdoc/RTC_1106_R.html @@ -0,0 +1,236 @@ + +About the HZI Regulatory T Cell mRNA data set of Feb 2011 on GN + + + + + + + + + + + + + + + + + +
    + + +
    +

    + +Helmholtz Zentrum für Infektionsforschung (HZI) T-Regulatory Cell Affymetrix M430v2 February 2011 RMA Data Set modify this page

    Accession number: GN122

    + + + +

        Summary:

    + +
    +
    +ERROR-CHECKED FIRST PHASE PRIVATE TEST DATA SET. This data set provides estimates of gene expression in regulatory T cells (CD4+CD25+) of BXD strains. Data were generated by Prof. Dr. Klaus Schughart and colleagues at the Helmholtz Centre for Infection Research (HZI). Samples were processed using a total of 35 Affymetrix MOE 430 2.0 short oligomer microarrays, of which 33 passed stringent quality control and error checking. + +

    This is a private test data set. Please contact Dr. Klaus Schughart for early access. + + +

    +
    +

        About the cases used to generate this set of data:

    +
    + +
    +

    +Parental and 31 BXD lines were studied. Mice were received from Jackson Laboratory, or from The Oak Ridge National and were bred in the facility of the Neuro-BSIK consortium (VU University Amsterdam). The data set includes expression values for 18 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40, as well as the two parental strains, C57BL/6J and DBA/2J. All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. + +

    BXD spleen sample pools (from 2-3 mice) were obtained from a pathogen-free mice of the Dutch Mouse Phenomics Consortium (MPC) in Amsterdam. Mice were imported into the central animal +facility at the HZI and kept in a pathogen-free vivarium. Mice were euthanized using CO2 and spleenocytes wre prepared. Most mice were between 17 and 22 weeks of age when samples were collected. FACS sorting was used to select the CD4-positive T cells. These cells were further separated into CD4+CD25+ and CD4+CD25- pools. + +

    Error-checking strain identity. A set of more than 20 probe sets with Mendelian segregation patterns in this HZI data set were used to confirm strain identify in early June, 2007. Two errors were detected and rectified. As of June 22, 2007, data are registered correctly. Prior to June 22, 2007, data listed as strains BXD33 and BXD39 were essentially hybrid (mixed) data sets. + +

    On Aug 23, 2007, we loaded the final QTL Reaper data into GeneNetwork for the corrected data set. The maximum LRS generated by any probe set is 84.6 for 1436240_at (Tra2a). A total of 41 probe sets are associated with QTLs that have LRS values above 46 (LOD > 10). + +

    Sex of samples is listed below in Table 1. In brief, data for BXD14 and 23 are male-only samples, whereas BXD12, 16, 31, 34, 36 and C57BL/6J are from female-only samples. All other samples (DBA/2J, BXD1, 2, 6, 9, 11, 18, 21 32, 33, 39, 40) consist of one male and one female array. The sex of samples can be independently validated using the Xist probe set (1427262_at). + + +

    + + + +

    Figure 1: The expression of Xist can be used as an independent marker for sex. Xist is expressed at very low levels (noise) in male samples (far left) and at high values in females (far right). Sex-balanced samples (middle) have high variance due to the inclusion of one array per sex.

    +
    + + + +

        Table 1

    +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexProbeSet IDSample DescriptionSexStraincd25MicroarrayShort DescriptionAgePool No.Pool members (animal number)Date of preparation
    1HZI1008BXD-06f (f1) CD25+FBXD6CD25+YesBXD-06f17f11,3,41-31-2006
    2HZI1009BXD-06m (m2) CD25+MBXD6CD25+YesBXD-06m18m25,6,71-31-2006
    3HZI1010BXD-14m (m3) CD25+MBXD14CD25+YesBXD-14m17m31,3,41-31-2006
    4HZI1013BXD-40f (f6) CD25+FBXD40CD25+YesBXD-40f17f61,2,32-1-2006
    5HZI1014BXD-40m (m7) CD25+MBXD40CD25+YesBXD-40m17m75,6,72-2-2006
    6HZI1015BXD-02f (f8) CD25+FBXD2CD25+YesBXD-02f17f81,2,32-14-2006
    7HZI1016BXD-02m (m20) CD25+MBXD2CD25+YesBXD-02m21m204,5,64-6-2006
    8HZI1017BXD-11f (f30) CD25+FBXD11CD25+YesBXD-11f17f303,4,55-11-2006
    9HZI1018BXD-11m (m9) CD25+MBXD11CD25+YesBXD-11m18m91,22-14-2006
    10HZI1019BXD-12f (f10) CD25+FBXD12CD25+YesBXD-12f17f101,2,32-14-2006
    11HZI1020BXD-39f (f23) CD25+FBXD39CD25+YesBXD-39f19f234,5,64-11-2006
    12HZI1021BXD-33m (m11) CD25+MBXD33CD25+YesBXD-33m17m111,22-14-2006
    13HZI1022BXD-18f (f14) CD25+FBXD18CD25+YesBXD-18f17f143,4,52-15-2006
    14HZI1023BXD-18m (m13) CD25+MBXD18CD25+YesBXD-18m18m137,82-15-2006
    15HZI1024BXD-23m (m15) CD25+MBXD23CD25+YesBXD-23m18m151,2,32-15-2006
    16HZI1026BXD-09f (f17) CD25+FBXD9CD25+YesBXD-09f21f171,2,34-5-2006
    17HZI1028BXD-09m (m35) CD25+MBXD9CD25+YesBXD-09m15m357,8,97-7-2006
    18HZI1029BXD-32f (f18) CD25+FBXD32CD25+YesBXD-32f21f181,2,34-6-2006
    19HZI1030BXD-32m (m19) CD25+MBXD32CD25+YesBXD-32m22m191,2,34-6-2006
    20HZI1031BXD-33f (f22) CD25+FBXD33CD25+YesBXD-33f18f222,3,44-11-2006
    21HZI1032BXD-39m (m29) CD25+MBXD39CD25+YesBXD-39m17m295,6,75-10-2006
    22HZI1033BXD-01f (f32) CD25+FBXD1CD25+YesBXD-01f18f323,47-6-2006
    23HZI1034BXD-01m (m31) CD25+MBXD1CD25+YesBXD-01m18m311,27-6-2006
    24HZI1035BXD-16f (f26) CD25+FBXD16CD25+YesBXD-16f18f261,2,34-12-2006
    25HZI1036BXD-21f (f25) CD25+FBXD21CD25+YesBXD-21f19f255,6,74-12-2006
    26HZI1037BXD-21m (m24) CD25+MBXD21CD25+YesBXD-21m18m241,2,34-12-2006
    27HZI1039BXD-31f (f34) CD25+FBXD31CD25+YesBXD-31f16f341,2,37-7-2006
    28HZI1040C57BL/6Jf (f28) CD25+FC57BL/6JCD25+YesC57BL/6Jf16f281,2,35-10-2006
    29HZI1041DBA/2Jf (f27) CD25+FDBA/2JCD25+YesDBA/2Jf16f275,6,75-10-2006
    30HZI1042DBA/2Jm (m21) CD25+MDBA/2JCD25+YesDBA/2Jm21m211,2,34-11-2006
    31HZI1487BXD-08f (f67) CD25+FBXD8CD25+YesBXD-08f11f674,5,66-25-2007
    32HZI1488BXD-08m (m66) CD25+MBXD8CD25+YesBXD-08m17m661,2,36-25-2007
    33HZI1489BXD-16m (m36) CD25+MBXD16CD25+YesBXD-16m20, 16m365,6,78-28-2006
    34HZI1490BXD-12m (m42) CD25+MBXD12CD25+YesBXD-12m20m425,6,710-23-2006
    35HZI1491BXD-13f (f44) CD25+FBXD13CD25+YesBXD-13f15f441,2,312-13-2006
    36HZI1492BXD-13m (m45) CD25+MBXD13CD25+YesBXD-13m15m454,5,6,712-13-2006
    37HZI1493BXD-14f (f48) CD25+FBXD14CD25+YesBXD-14f16f485,6,72-15-2007
    38HZI1494BXD-19f (f64) CD25+FBXD19CD25+YesBXD-19f19f647,8,96-20-2007
    39HZI1495BXD-19m (m46) CD25+MBXD19CD25+YesBXD-19m16m464,5,612-15-2006
    40HZI1499BXD-28m (m43) CD25+MBXD28CD25+YesBXD-28m17,2m431,2,310-23-2006
    41HZI1500BXD-42f (f49) CD25+FBXD42CD25+YesBXD-42f17f49??3-8-2007
    42HZI1502F1 (BXD)m (f50) CD25+MB6D2F1CD25+YesF1 (BXD)m15m511,2,3,4-18-2007
    43HZI1503F1 (BXD)m (m51) CD25+FB6D2F1CD25+YesF1 (BXD)f15f501,2,34-18-2007
    44HZI1504BXD-86f (f52) CD25+FBXD86CD25+YesBXD-86f16f521,2,34-18-2007
    45HZI1505BXD-43f (f53) CD25+FBXD43CD25+YesBXD-43f16f531,2,34-23-2007
    46HZI1506BXD-44f (f54) CD25+FBXD44CD25+YesBXD-44f18f541,2,34-23-2007
    47HZI1507BXD-45f (f55) CD25+FBXD45CD25+YesBXD-45f19f551,2,34-23-2007
    48HZI1508BXD-62f (f56) CD25+FBXD62CD25+YesBXD-62f17f561,2,34-26-2007
    49HZI1509BXD-73f (f57) CD25+FBXD73CD25+YesBXD-73f18f571,2,34-26-2007
    50HZI1510BXD-51f (f59) CD25+FBXD51CD25+YesBXD-51f22f591,2,36-18-2007
    51HZI1523BXD-75f (f58) CD25+FBXD75CD25+YesBXD-75f15,17f581,2,34-26-2007
    52HZI1525BXD-29m (m37) CD25+MBXD29CD25+YesBXD-29m20, 16m371,2,38-29-2006
    53HZI1526BXD-34f (f4) CD25+FBXD34CD25+YesBXD-34f17f41,2,32-1-2006
    54HZI1940BXD-27m (m39) CD25+MBXD27CD25+YesBXD-27m18 - 20m391,3,49-1-2006
    55HZI1941BXD-42m (m47) CD25+MBXD42CD25+YesBXD-42m15,16m471,2,312-15-2006
    56HZI1942BXD-34m (m5) CD25+MBXD34CD25+YesBXD-34m17m55,7,82-1-2006
    57HZI1943BXD-38f (f70) CD25+FBXD38CD25+YesBXD-38f13f704,5,6,72-1-2008
    58HZI1944BXD-31m (m69) CD25+MBXD31CD25+YesBXD-31m14m694,5,62-1-2008
    59HZI1945BXD-27f (f12) CD25+FBXD27CD25+YesBXD-27f18f121,22-15-2006
    60HZI1946BXD-38m (m63) CD25+MBXD38CD25+YesBXD-38m18m631,2,36-20-2007
    61HZI1947BXD-23f (f62) CD25+FBXD23CD25+YesBXD-23f21f621,2,36-20-2007
    62HZI1948BXD-28f (f61) CD25+FBXD28CD25+YesBXD-28f22f611,2,36-18-2007
    + + +
    + + +

    +About the Array Platform: +

    + + +

    The Affymetrix M430 2.0 array consists of approximately 992,936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts, including a majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using NCBI Build 107 by Affymetrix. The UTHSC GN group continuously reannotated probe sets on this array, producing more accurate data on probe and probe set targets. All probes have also be aligned to the most recent assembly of the Mouse Genome using Jim Kent's BLAT program. +

    + + + +

    Methods:

    + +
    +

    Parental and BXD lines were received from Jackson Laboratory, or from Oak Ridge Laboratory (BXD43, BXD51, BXD61, BXD62, BXD65, BXD68, BXD69, BXD73, BXD75, BXD87, BXD90), and were bred in the facility of the Neuro-BSIK consortium (VU University Amsterdam). Female mice 3 per strain were housed on sawdust in standard Makrolon type II cages with food (Harlan Teklad 2018) and water ad libitum under specific pathogen free conditions. For the analysis, mice were transferred to the animal facility in Braunschweig and adapted for at least two weeks to the new environment before preparing the spleen cells. All protocols involving mice were approved by national animal welfare committees.

    + For sorting of Tregs and Th cells, splenocytes from 31 BXD recombinant inbred strains as well as from the parental mouse lines DBA/2J and C57BL/6J were isolated by flushing the spleens with erythrocyte-lysis-buffer. Cells were collected by centrifugation, re-suspended in cold FACS-buffer (PBS / 2% FCS / 0,5 mM EDTA). After passing the cells through a 100 µm cell strainer and an additional washing step with FACS-buffer, splenocytes were stained with anti-CD4-APC and anti-CD25-PE for 10 minutes at 4°C, washed and re-suspended in FACS-buffer. CD4+ T cells were separated into CD4+CD25+ Tregs and CD4+CD25- Th cells using a MoFlo cell sorter (Cytomation) and purity of the sorted T cell subsets reached 95-97%.

    + Quality and integrity of the total RNA isolated from 1x105 cells was controlled by running all samples on an Agilent Technologies 2100 Bioanalyzer (Agilent Technologies; Waldbronn, Germany). RNA amplification and labeling was done according to manufactures protocol (Small Sample Target Labeling Assay Version II, Affymetrix; Santa Clara, CA).  The concentration of biotin-labeled cRNA was determined by UV absorbance. In all cases, 10 µg of each biotinylated cRNA preparation were fragmented and placed in a hybridization cocktail containing four biotinylated hybridization controls (BioB, BioC, BioD, and Cre) as recommended by the manufacturer. Samples were hybridized to an identical lot of Affymetrix MOE430 2.0 for 16 hours at 46°C. After hybridisation the GeneChips were washed and stained using the Affymetrix´s recommended EukGE-WS2v5 protocol for GeneChip®  Fluidics FS400 station.  Images were scanned using GeneChip® Scanner 3000 under the control of GCOS 1.3 software package (Affymetrix; Santa Clara, CA).

    +
    +

    About the data processing: + +

    + +

    Microarray data then was preprocessed using the RMA method [bolstad] and subsequently batch corrected [Alberts et al]. In this study, RNA was extracted at three different points in time for the Treg samples and also microarray processing was performed at three different points in time. Similarly, the Th samples were processed in two batches. Therefore, we performed a batch correction for both cell types using the following ANOVA model before further analysis of the data.
    +yi = μ + Bi + ei
    +Where yi is the expression level of the ith microarray, μ is the overall mean, Bi is the batch to which the ith individual belongs and ei is the residual error.
    +Batch corrected data sets were then preprocessed before transferring them to the GeneNetwork (GN) database: Adding an offset of 1 unit to each signal intensity value to ensure that the logarithm of all values were positive, computing the log2 value, performing a quantile normalization of the log2 values for the total set of arrays using the same initial steps used by the RMA transform, computing the Z scores for each cell value, multiplying all Z scores by 2 and adding 8 to the value of all Z scores. The advantage of this variant of a Z transformation is that all values are positive and that 1 unit represents approximately a 2-fold difference in expression as determined using the spike-in control probe sets. The mean values were subsequently calculated if multiple samples from one BXD line were recorded (male and females or replicates).

    + +
    +

    Acknowledgment:

    +
    + +

    These data were generated by Prof. Dr. Klaus Schughart (Department of Experimental Mouse Genetics) and Dr. Dunja Bruder (Research Group Immune Regulation) at the Helmholtz Center for Infection Research with the help of Dr. Lothar Gröbe (FACS sorting, Research Group Mucosal Immunity). + +

    Funding was provided by the Helmholtz Association and publicly funded research projects awarded to Drs. Klaus +Schughart and Dunja Bruder.

    + +
    + +

    About this text file:

    +
    + +

    This text file was generated by KS on July, 18 2011. +

    + +

    + + + +
    +
    + +

    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/RTHC_0211_R.html b/web/dbdoc/RTHC_0211_R.html new file mode 100755 index 00000000..07f5138e --- /dev/null +++ b/web/dbdoc/RTHC_0211_R.html @@ -0,0 +1,221 @@ + +About the HZI Helper T Cell mRNA data set of Feb 2011 on GN + + + + + + + + + + + + + + + + + +
    + + +
    +

    + +Helmholtz Zentrum für Infektionsforschung (HZI) T-Helper Cell Affymetrix M430v2 February 2011 RMA Data Set modify this page

    Accession number: GN319

    + + + +

        Summary:

    + +
    +
    +ERROR-CHECKED FIRST PHASE PRIVATE TEST DATA SET. This data set provides estimates of gene expression in helper T cells (CD4+CD25+) of BXD strains. Data were generated by Prof. Dr. Klaus Schughart and colleagues at the Helmholtz Centre for Infection Research (HZI). Samples were processed using a total of 35 Affymetrix MOE 430 2.0 short oligomer microarrays, of which 33 passed stringent quality control and error checking. + +

    This is a private test data set. Please contact Dr. Klaus Schughart for early access. + + +

    +
    +

        About the cases used to generate this set of data:

    +
    + +
    +

    +Parental and 31 BXD lines were studied. Mice were received from Jackson Laboratory, or from The Oak Ridge National and were bred in the facility of the Neuro-BSIK consortium (VU University Amsterdam). The data set includes expression values for 18 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD40, as well as the two parental strains, C57BL/6J and DBA/2J. All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. + +

    BXD spleen sample pools (from 2-3 mice) were obtained from a pathogen-free mice of the Dutch Mouse Phenomics Consortium (MPC) in Amsterdam. Mice were imported into the central animal +facility at the HZI and kept in a pathogen-free vivarium. Mice were euthanized using CO2 and spleenocytes wre prepared. Most mice were between 17 and 22 weeks of age when samples were collected. FACS sorting was used to select the CD4-positive T cells. These cells were further separated into CD4+CD25+ and CD4+CD25- pools. + +

    Error-checking strain identity. A set of more than 20 probe sets with Mendelian segregation patterns in this HZI data set were used to confirm strain identify in early June, 2007. Two errors were detected and rectified. As of June 22, 2007, data are registered correctly. Prior to June 22, 2007, data listed as strains BXD33 and BXD39 were essentially hybrid (mixed) data sets. + +

    On Aug 23, 2007, we loaded the final QTL Reaper data into GeneNetwork for the corrected data set. The maximum LRS generated by any probe set is 84.6 for 1436240_at (Tra2a). A total of 41 probe sets are associated with QTLs that have LRS values above 46 (LOD > 10). + + + + +

        Table 1

    +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexProbeSet IDSample DescriptionSexStraincd25MicroarrayShort DescriptionAgePool No.Pool members (animal number)Date of preparation
    1HZI1176BXD-06f (f1) CD25FBXD6CD25-YesBXD-06f17f11,3,41-31-2006
    2HZI1177BXD-06m (m2) CD25MBXD6CD25-YesBXD-06m18m25,6,71-31-2006
    3HZI1178BXD-14m (m3) CD25MBXD14CD25-YesBXD-14m17m31,3,41-31-2006
    4HZI1179BXD-34f (f4) CD25FBXD34CD25-YesBXD-34f17f41,2,32-1-2006
    5HZI1180BXD-34m (m5) CD25MBXD34CD25-YesBXD-34m17m55,7,82-1-2006
    6HZI1181BXD-40f (f6) CD25FBXD40CD25-YesBXD-40f17f61,2,32-1-2006
    7HZI1182BXD-40m (m7) CD25MBXD40CD25-YesBXD-40m17m75,6,72-2-2006
    8HZI1183BXD-02f (f8) CD25FBXD2CD25-YesBXD-02f17f81,2,32-14-2006
    9HZI1184BXD-02m (m20) CD25MBXD2CD25-YesBXD-02m21m204,5,64-6-2006
    10HZI1185BXD-11f (f30) CD25FBXD11CD25-YesBXD-11f17f303,4,55-11-2006
    11HZI1186BXD-11m (m9) CD25MBXD11CD25-YesBXD-11m18m91,22-14-2006
    12HZI1187BXD-12f (f10) CD25FBXD12CD25-YesBXD-12f17f101,2,32-14-2006
    13HZI1188BXD-39f (f23) CD25FBXD39CD25-YesBXD-39f19f234,5,64-11-2006
    14HZI1191BXD-18m (m13) CD25MBXD18CD25-YesBXD-18m18m137,82-15-2006
    15HZI1192BXD-23m (m15) CD25MBXD23CD25-YesBXD-23m18m151,2,32-15-2006
    16HZI1194BXD-09f (f17) CD25FBXD9CD25-YesBXD-09f21f171,2,34-5-2006
    17HZI1195BXD-09m (m16) CD25MBXD9CD25-YesBXD-09m221m165,64-5-2006
    18HZI1196BXD-09m (m35) CD25MBXD9CD25-YesBXD-09m15m357,8,97-7-2006
    19HZI1197BXD-32f (f18) CD25FBXD32CD25-YesBXD-32f21f181,2,34-6-2006
    20HZI1198BXD-32m (m19) CD25MBXD32CD25-YesBXD-32m22m191,2,34-6-2006
    21HZI1199BXD-33f (f22) CD25FBXD33CD25-YesBXD-33f18f222,3,44-11-2006
    22HZI1200BXD-39m (m29) CD25MBXD39CD25-YesBXD-39m17m295,6,75-10-2006
    23HZI1201BXD-01f (f32) CD25FBXD1CD25-YesBXD-01f18f323,47-6-2006
    24HZI1202BXD-01m (m31) CD25MBXD1CD25-YesBXD-01m18m311,27-6-2006
    25HZI1203BXD-16f (f26) CD25FBXD16CD25-YesBXD-16f18f261,2,34-12-2006
    26HZI1204BXD-21f (f25) CD25FBXD21CD25-YesBXD-21f19f255,6,74-12-2006
    27HZI1205BXD-21m (m24) CD25MBXD21CD25-YesBXD-21m18m241,2,34-12-2006
    28HZI1208C57BL/6Jf (f28) CD25FC57BL/6JCD25-YesC57BL/6Jf16f281,2,35-10-2006
    29HZI1209DBA/2Jf (f27) CD25FDBA/2JCD25-YesDBA/2Jf16f275,6,75-10-2006
    30HZI1210DBA/2Jm (m21) CD25MDBA/2JCD25-YesDBA/2Jm21m211,2,34-11-2006
    31HZI2473BXD-13 m 45MBXD13CD25-YesBXD-13m15m454,5,6,712-13-2006
    32HZI2474BXD-19 m 46MBXD19CD25-YesBXD-19m16m464,5,612-15-2006
    33HZI2475BXD-28 m 43MBXD28CD25-YesBXD-28m17,2m431,2,310-23-2006
    34HZI2476BXD-29 m 37MBXD29CD25-YesBXD-29m20, 16m371,2,38-29-2006
    35HZI2477BXD-31 m 69MBXD31CD25-YesBXD-31m14m694,5,62-1-2008
    36HZI2478BXD-33 m 11MBXD33CD25-YesBXD-33m17m111,22-14-2006
    37HZI2479BXD-38 m 63MBXD38CD25-YesBXD-38m18m631,2,36-20-2007
    38HZI2480BXD-42 m 47MBXD42CD25-YesBXD-42m15,16m471,2,312-15-2006
    39HZI2481BXD-42 m 65MBXD42CD25-YesBXD-42m15,16m471,2,312-15-2006
    40HZI2482BXD-13 f 44FBXD13CD25-YesBXD-13f15f441,2,312-13-2006
    41HZI2483BXD-18 F 14FBXD18CD25-YesBXD-18f17f143,4,52-15-2006
    42HZI2484BXD-19 f 38FBXD19CD25-YesBXD-19f221f381,2,39-1-2006
    43HZI2485BXD-19 f 64FBXD19CD25-YesBXD-19f19f647,8,96-20-2007
    44HZI2486BXD-28 f 61FBXD28CD25-YesBXD-28f22f611,2,36-18-2007
    45HZI2487BXD-29 f 40FBXD29CD25-YesBXD-29f15 - 16f404,5,69-25-2006
    46HZI2488BXD-31 f 34FBXD31CD25-YesBXD-31f16f341,2,37-7-2006
    47HZI2489BXD-38 f 70FBXD38CD25-YesBXD-38f13f704,5,6,72-1-2008
    48HZI2490BXD-42 f 49FBXD42CD25-YesBXD-42f17f49??3-8-2007
    49HZI2491BXD-43 f 53FBXD43CD25-YesBXD-43f16f531,2,34-23-2007
    50HZI2492BXD-44 f 54FBXD44CD25-YesBXD-44f18f541,2,34-23-2007
    51HZI2493BXD-45 f 55FBXD45CD25-YesBXD-45f19f551,2,34-23-2007
    52HZI2494BXD-51 f 59FBXD51CD25-YesBXD-51f22f591,2,36-18-2007
    53HZI2495BXD-62 f 56FBXD62CD25-YesBXD-62f17f561,2,34-26-2007
    54HZI2496BXD-73 f 57FBXD73CD25-YesBXD-73f18f571,2,34-26-2007
    55HZI2497BXD-75 f 58FBXD75CD25-YesBXD-75f15,17f581,2,34-26-2007
    56HZI2498BXD-86 f 52FBXD86CD25-YesBXD-86f16f521,2,34-18-2007
    + + +
    + + +

    +About the Array Platform: +

    + + +

    The Affymetrix M430 2.0 array consists of approximately 992,936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts, including a majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using NCBI Build 107 by Affymetrix. The UTHSC GN group continuously reannotated probe sets on this array, producing more accurate data on probe and probe set targets. All probes have also be aligned to the most recent assembly of the Mouse Genome using Jim Kent's BLAT program. +

    + + + +

    Methods:

    + +
    +

    Parental and BXD lines were received from Jackson Laboratory, or from Oak Ridge Laboratory (BXD43, BXD51, BXD61, BXD62, BXD65, BXD68, BXD69, BXD73, BXD75, BXD87, BXD90), and were bred in the facility of the Neuro-BSIK consortium (VU University Amsterdam). Female mice 3 per strain were housed on sawdust in standard Makrolon type II cages with food (Harlan Teklad 2018) and water ad libitum under specific pathogen free conditions. For the analysis, mice were transferred to the animal facility in Braunschweig and adapted for at least two weeks to the new environment before preparing the spleen cells. All protocols involving mice were approved by national animal welfare committees.

    + For sorting of Tregs and Th cells, splenocytes from 31 BXD recombinant inbred strains as well as from the parental mouse lines DBA/2J and C57BL/6J were isolated by flushing the spleens with erythrocyte-lysis-buffer. Cells were collected by centrifugation, re-suspended in cold FACS-buffer (PBS / 2% FCS / 0,5 mM EDTA). After passing the cells through a 100 µm cell strainer and an additional washing step with FACS-buffer, splenocytes were stained with anti-CD4-APC and anti-CD25-PE for 10 minutes at 4°C, washed and re-suspended in FACS-buffer. CD4+ T cells were separated into CD4+CD25+ Tregs and CD4+CD25- Th cells using a MoFlo cell sorter (Cytomation) and purity of the sorted T cell subsets reached 95-97%.

    + Quality and integrity of the total RNA isolated from 1x105 cells was controlled by running all samples on an Agilent Technologies 2100 Bioanalyzer (Agilent Technologies; Waldbronn, Germany). RNA amplification and labeling was done according to manufactures protocol (Small Sample Target Labeling Assay Version II, Affymetrix; Santa Clara, CA).  The concentration of biotin-labeled cRNA was determined by UV absorbance. In all cases, 10 µg of each biotinylated cRNA preparation were fragmented and placed in a hybridization cocktail containing four biotinylated hybridization controls (BioB, BioC, BioD, and Cre) as recommended by the manufacturer. Samples were hybridized to an identical lot of Affymetrix MOE430 2.0 for 16 hours at 46°C. After hybridisation the GeneChips were washed and stained using the Affymetrix´s recommended EukGE-WS2v5 protocol for GeneChip®  Fluidics FS400 station.  Images were scanned using GeneChip® Scanner 3000 under the control of GCOS 1.3 software package (Affymetrix; Santa Clara, CA).

    +
    +

    About the data processing: + +

    + +

    Microarray data then was preprocessed using the RMA method [bolstad] and subsequently batch corrected [Alberts et al]. In this study, RNA was extracted at three different points in time for the Treg samples and also microarray processing was performed at three different points in time. Similarly, the Th samples were processed in two batches. Therefore, we performed a batch correction for both cell types using the following ANOVA model before further analysis of the data.
    +yi = μ + Bi + ei
    +Where yi is the expression level of the ith microarray, μ is the overall mean, Bi is the batch to which the ith individual belongs and ei is the residual error.
    +Batch corrected data sets were then preprocessed before transferring them to the GeneNetwork (GN) database: Adding an offset of 1 unit to each signal intensity value to ensure that the logarithm of all values were positive, computing the log2 value, performing a quantile normalization of the log2 values for the total set of arrays using the same initial steps used by the RMA transform, computing the Z scores for each cell value, multiplying all Z scores by 2 and adding 8 to the value of all Z scores. The advantage of this variant of a Z transformation is that all values are positive and that 1 unit represents approximately a 2-fold difference in expression as determined using the spike-in control probe sets. The mean values were subsequently calculated if multiple samples from one BXD line were recorded (male and females or replicates).

    + +
    +

    Acknowledgment:

    +
    + +

    These data were generated by Prof. Dr. Klaus Schughart (Department of Experimental Mouse Genetics) and Dr. Dunja Bruder (Research Group Immune Regulation) at the Helmholtz Center for Infection Research with the help of Dr. Lothar Gröbe (FACS sorting, Research Group Mucosal Immunity). + +

    Funding was provided by the Helmholtz Association and publicly funded research projects awarded to Drs. Klaus +Schughart and Dunja Bruder.

    + +
    + +

    About this text file:

    +
    + +

    This text file was generated by KS on July, 18 2011. +

    + +

    + + + +
    +
    + +

    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + \ No newline at end of file diff --git a/web/dbdoc/SA_M2_0405_M.html b/web/dbdoc/SA_M2_0405_M.html new file mode 100755 index 00000000..947e9194 --- /dev/null +++ b/web/dbdoc/SA_M2_0405_M.html @@ -0,0 +1,232 @@ + +M430 Microarray brain PDNN April05 / WebQTL + + + + + + + + + + + + +
    + + + + + + + +
    +

    + + + + +HBP/Rosen Striatum M430v2 (April05) MAS5 modify this page

    Accession number: GN60

    + +

        Summary:

    + +
    +This April 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 33 lines of mice including C57BL/6J, DBA/2J, and 31 BXD recombinant inbred strains. Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 250 brain samples (males and females) from 33 strains were used in this experiment. Samples were hybridized to a total of 59 arrays. This particular data set was processed using the Microarray Suite 5 protocol (MAS 5). To simplify comparison among different transforms, MAS5 values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units. +
    + +

        About the cases used to generate this set of data:

    + +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    +

    +
    + +

        About the tissue used to generate this set of data:

    + +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. + + +

    + +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. Twenty-three of 33 strains are represented by male and female samples. The remaining 8 strains are still represented by single sex samples: BXD11 (F), BXD13 (F), BXD19 (F), BXD20 (F), BXD22 (M), BXD23 (M), BXD24 (M), BXD32 (M), C57BL/6J (M), and DBA/2J (M). + +

    Batch Structure: This data set consists of arrays processed in three batches with several reruns for the first batch. All arrays were processed using a single protocol. All data have been corrected for batch effects as described below. + +

    + + +
    +The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days. +
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2C57BL/6JMChip11_Batch03_B6_M_StrBatch03
    3BXD1FChip03_Batch03_BXD1_F_StrBatch03
    4BXD1MChip04_Batch03_BXD1_M_StrBatch03
    5BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    6BXD2MChip05_Batch01_BXD2_M_StrBatch01
    7BXD5FChip10_Batch03_BXD5_F_StrBatch03
    8BXD5MChip12_Batch03_BXD5_M_StrBatch03
    9BXD6FChip38_Batch02_BXD6_F_StrBatch02
    10BXD6MChip39_Batch02_BXD6_M_StrBatch02
    11BXD8FChip07_Batch03_BXD8_F_StrBatch03
    12BXD8MChip02_Batch03_BXD8_M_StrBatch03
    13BXD9FChip16_Batch01_BXD9_F_StrBatch01
    14BXD9MChip10_Batch01_BXD9_M_StrBatch01
    15BXD11FChip31_Batch02_BXD11_F_StrBatch02
    16BXD12FChip11_Batch01_BXD12_F_StrBatch01
    17BXD12MChip18_Batch03_BXD12_M_StrBatch03
    18BXD13FChip33_Batch02_BXD13_F_StrBatch02
    19BXD14FChip48_Batch02_BXD14_F_StrBatch02
    20BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    21BXD15FChip21_Batch01_BXD15_F_StrBatch01
    22BXD15MChip13_Batch01_BXD15_M_StrBatch01
    23BXD16FChip36_Batch02_BXD16_F_StrBatch02
    24BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    25BXD18FChip15_Batch03_BXD18_F_StrBatch03
    26BXD18MChip19_Batch03_BXD18_M_StrBatch03
    27BXD19FChip19_Batch01_BXD19_F_StrBatch01
    28BXD20FChip14_Batch03_BXD20_F_StrBatch03
    29BXD21FChip18_Batch01_BXD21_F_StrBatch01
    30BXD21MChip09_Batch01_BXD21_M_StrBatch01
    31BXD22MChip13_Batch03_BXD22_M_StrBatch03
    32BXD23MChip01_Batch03_BXD23_M_StrBatch03
    33BXD24MChip17_Batch03_BXD24_M_StrBatch03
    34BXD27FChip29_Batch02_BXD27_F_StrBatch02
    35BXD27MChip40_Batch02_BXD27_M_StrBatch02
    36BXD28FChip06_Batch01_BXD28_F_StrBatch01
    37BXD28MChip23_Batch01_BXD28_M_StrBatch01
    38BXD29FChip45_Batch02_BXD29_F_StrBatch02
    39BXD29MChip42_Batch02_BXD29_M_StrBatch02
    40BXD31FChip14_Batch01_BXD31_F_StrBatch01
    41BXD31MChip09_Batch03_BXD31_M_StrBatch03
    42BXD32MChip30_Batch02_BXD32_M_StrBatch02
    43BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    44BXD33MChip34_Batch02_BXD33_M_StrBatch02
    45BXD34FChip03_Batch01_BXD34_F_StrBatch01
    46BXD34MChip07_Batch01_BXD34_M_StrBatch01
    47BXD36FChip22_Batch03_BXD36_F_StrBatch03
    48BXD36MChip24_Batch03_BXD36_M_StrBatch03
    49BXD38FChip17_Batch01_BXD38_F_StrBatch01
    50BXD38MChip24_Batch01_BXD38_M_StrBatch01
    51BXD39MChip20_Batch03_BXD39_M_StrBatch03
    52BXD39FChip23_Batch03_BXD39_F_StrBatch03
    53BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    54BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    55BXD40MChip22_Batch01_BXD40_M_StrBatch01
    56BXD42FChip35_Batch02_BXD42_F_StrBatch02
    57BXD42MChip32_Batch02_BXD42_M_StrBatch02
    58DBA/2JMChip02_Batch01_D2_M_StrBatch01
    59DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    + + + + + + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the batches at the probe level. To do this we calculated the ratio of each batch mean to the mean of both batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each batch is the same. + +
    • Step 7: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + +Probe set data: The expression data were processed by Yanhua Qu (UTHSC). Probe set data were generated from the fully normalized CEL files (quantile and batch corrected) using the standard MAS 5 Tukey biweight procedure. A 1-unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels. + +Data quality control: A total of 62 samples passed RNA quality control. + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients (62x61/2). Arrays with probe data that was not homogeneous when compared to any other arrays was flagged. If the correlation at the probe level was less than approximately 0.92 we deleted that array data set. Three arrays we lost during this process (BXD19_M_Str_Batch03, BXD23_F_Str_Batch03, and BXD24_F_Str_Batch03). + +

    Probe set level QC: The final normalized strain averages were evaluated for outliers. This involved counting the number of times that the probe set value for a particular strain was beyond two standard deviations of the mean of all strains. (We used the PDNN transform as our reference probe set data for this QC step.) Two strains, each represented by single arrays, generated greater than 5,000 outlier counts (10% of the number of probe sets). These two arrays generated a great number of outliers across the entire range of expression and since we do not yet have replicate arrays for either of these two strains we opted to delete them from the final April 2005 striatum data sets. + +

    + +

        Data source acknowledgment:

    +

    Data were generated with funds to Glenn Rosen from P20 +MH62009 (see below for specifics). Samples and arrays were processed by the +Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    + +

        About this text file:

    +

    +This text file originally generated by GDR, RWW, and YHQ on Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004; RWW and GDR April 8, 2005. +

    + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/SA_M2_0405_MC.html b/web/dbdoc/SA_M2_0405_MC.html new file mode 100755 index 00000000..8334c634 --- /dev/null +++ b/web/dbdoc/SA_M2_0405_MC.html @@ -0,0 +1,235 @@ + +HTML Template/ WebQTL + + + + + + + + + + + + + + +""" + +sharinginfo_body_string = """ +""" + +sharinginfoedit_body_string = """""" diff --git a/web/webqtl/dataSharing/SharingInfo.py b/web/webqtl/dataSharing/SharingInfo.py new file mode 100755 index 00000000..10abcefa --- /dev/null +++ b/web/webqtl/dataSharing/SharingInfo.py @@ -0,0 +1,98 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import httplib + +from dbFunction import webqtlDatabaseFunction +import SharingBody + + +######################################### +# Sharing Info +######################################### +class SharingInfo: + + def __init__(self, GN_AccessionId, InfoPageName): + self.GN_AccessionId = GN_AccessionId + self.InfoPageName = InfoPageName + + def getInfo(self): + cursor = webqtlDatabaseFunction.getCursor() + if (not cursor): + return + sql = "select Id, GEO_Series, Status, Title, Organism, Experiment_Type, Summary, Overall_Design, Contributor, Citation, Submission_Date, Contact_Name, Emails, Phone, URL, Organization_Name, Department, Laboratory, Street, City, State, ZIP, Country, Platforms, Samples, Species, Normalization, InbredSet, InfoPageName, DB_Name, Organism_Id, InfoPageTitle, GN_AccesionId, Tissue, AuthorizedUsers, About_Cases, About_Tissue, About_Download, About_Array_Platform, About_Data_Values_Processing, Data_Source_Acknowledge, Progreso from InfoFiles where " + if(self.GN_AccessionId): + sql += "GN_AccesionId = %s" + cursor.execute(sql, self.GN_AccessionId) + elif (self.InfoPageName): + sql += "InfoPageName = %s" + cursor.execute(sql, self.InfoPageName) + else: + raise 'No correct parameter found' + info = cursor.fetchone() + # fetch datasets file list + try: + conn = httplib.HTTPConnection("atlas.uthsc.edu") + conn.request("GET", "/scandatasets.php?GN_AccesionId=%s" % (info[32])) + response = conn.getresponse() + data = response.read() + filelist = data.split() + conn.close() + except Exception: + filelist = [] + return info, filelist + + def getBody(self, infoupdate=""): + info, filelist = self.getInfo() + if filelist: + htmlfilelist = '
      \n' + for i in range(len(filelist)): + if i%2==0: + filename = filelist[i] + filesize = filelist[i+1] + htmlfilelist += "
    • " + htmlfilelist += '%s' % (self.GN_AccessionId, filename, filename) + htmlfilelist += '   ' + #r=re.compile(r'(?<=\d)(?=(\d\d\d)+(?!\d))') + #htmlfilelist += '[%s B]' % r.sub(r',',filesize) + if 12= webqtlConfig.USERDICT['admin']: + pass + else: + heading = "Adding Info" + detail = ["You don't have the permission to add new dataset"] + self.error(heading=heading,detail=detail,error="Error") + return + self.dict['body'] = SharingBody.sharinginfoedit_body_string % ("Add new dataset", "-1", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "") diff --git a/web/webqtl/dataSharing/SharingInfoDeletePage.py b/web/webqtl/dataSharing/SharingInfoDeletePage.py new file mode 100755 index 00000000..edc0be7d --- /dev/null +++ b/web/webqtl/dataSharing/SharingInfoDeletePage.py @@ -0,0 +1,55 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from base.templatePage import templatePage +from base import webqtlConfig +from dbFunction import webqtlDatabaseFunction +import SharingBody +import SharingInfo + + +######################################### +# Sharing Info Delete Page +######################################### +class SharingInfoDeletePage(templatePage): + + def __init__(self, fd=None): + templatePage.__init__(self, fd) + if webqtlConfig.USERDICT[self.privilege] >= webqtlConfig.USERDICT['admin']: + pass + else: + heading = "Deleting Info" + detail = ["You don't have the permission to delete this dataset"] + self.error(heading=heading,detail=detail,error="Error") + return + cursor = webqtlDatabaseFunction.getCursor() + if (not cursor): + return + GN_AccessionId = fd.formdata.getvalue('GN_AccessionId') + sql = "delete from InfoFiles where GN_AccesionId=%s" + cursor.execute(sql, GN_AccessionId) + re = cursor.fetchone() + self.dict['body'] = "Delete dataset info record (GN_AccesionId=%s) successfully." % GN_AccessionId \ No newline at end of file diff --git a/web/webqtl/dataSharing/SharingInfoEditPage.py b/web/webqtl/dataSharing/SharingInfoEditPage.py new file mode 100755 index 00000000..266b8602 --- /dev/null +++ b/web/webqtl/dataSharing/SharingInfoEditPage.py @@ -0,0 +1,51 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from base.templatePage import templatePage +from base import webqtlConfig +import SharingBody +import SharingInfo + + +######################################### +# Sharing Info Edit Page +######################################### +class SharingInfoEditPage(templatePage): + + def __init__(self, fd=None): + templatePage.__init__(self, fd) + if webqtlConfig.USERDICT[self.privilege] >= webqtlConfig.USERDICT['admin']: + pass + else: + heading = "Editing Info" + detail = ["You don't have the permission to edit this dataset"] + self.error(heading=heading,detail=detail,error="Error") + return + GN_AccessionId = fd.formdata.getvalue('GN_AccessionId') + InfoPageName = fd.formdata.getvalue('InfoPageName') + sharingInfoObject = SharingInfo.SharingInfo(GN_AccessionId, InfoPageName) + info, filelist = sharingInfoObject.getInfo() + self.dict['body'] = SharingBody.sharinginfoedit_body_string % (info[31], info[0], info[11], info[12], info[13], info[14], info[15], info[16], info[17], info[18], info[19], info[20], info[21], info[22], info[6], info[5], info[35], info[36], info[37], info[38], info[39], info[7], info[8], info[9], info[40], info[32], info[31], info[1], info[2], info[3], info[30], info[4], info[10], info[23], info[25], info[33], info[26], info[27], info[28], info[24], info[34], info[41]) diff --git a/web/webqtl/dataSharing/SharingInfoPage.py b/web/webqtl/dataSharing/SharingInfoPage.py new file mode 100755 index 00000000..230ba2f3 --- /dev/null +++ b/web/webqtl/dataSharing/SharingInfoPage.py @@ -0,0 +1,52 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from base.templatePage import templatePage +from base import webqtlConfig +from dbFunction import webqtlDatabaseFunction +import SharingBody +import SharingInfo + + +######################################### +# Sharing Info Page +######################################### +class SharingInfoPage(templatePage): + + def __init__(self, fd=None): + templatePage.__init__(self, fd) + GN_AccessionId = fd.formdata.getvalue('GN_AccessionId') + InfoPageName = fd.formdata.getvalue('InfoPageName') + cursor = webqtlDatabaseFunction.getCursor() + if InfoPageName and not GN_AccessionId: + sql = "select GN_AccesionId from InfoFiles where InfoPageName = %s" + cursor.execute(sql, InfoPageName) + GN_AccessionId = cursor.fetchone() + url = webqtlConfig.CGIDIR + "main.py?FormID=sharinginfo&GN_AccessionId=%s" % GN_AccessionId + self.redirection = url + else: + sharingInfoObject = SharingInfo.SharingInfo(GN_AccessionId, InfoPageName) + self.dict['body'] = sharingInfoObject.getBody(infoupdate="") diff --git a/web/webqtl/dataSharing/SharingInfoUpdatePage.py b/web/webqtl/dataSharing/SharingInfoUpdatePage.py new file mode 100755 index 00000000..a70238b9 --- /dev/null +++ b/web/webqtl/dataSharing/SharingInfoUpdatePage.py @@ -0,0 +1,109 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import MySQLdb + +from base.templatePage import templatePage +from base import webqtlConfig +from dbFunction import webqtlDatabaseFunction +import SharingBody +import SharingInfo + +######################################### +# Sharing Info Update Page +######################################### +class SharingInfoUpdatePage(templatePage): + + def __init__(self, fd=None): + templatePage.__init__(self, fd) + if webqtlConfig.USERDICT[self.privilege] >= webqtlConfig.USERDICT['admin']: + pass + else: + heading = "Editing Info" + detail = ["You don't have the permission to modify this file"] + self.error(heading=heading,detail=detail,error="Error") + return + cursor = webqtlDatabaseFunction.getCursor() + if (not cursor): + return + Id=fd.formdata.getvalue('Id') + GN_AccesionId=fd.formdata.getvalue('GN_AccesionId') + GEO_Series=fd.formdata.getvalue('GEO_Series') + Status=fd.formdata.getvalue('Status') + Title=fd.formdata.getvalue('Title') + Organism_Id=fd.formdata.getvalue('Organism_Id') + Organism=fd.formdata.getvalue('Organism') + Experiment_Type =fd.formdata.getvalue('Experiment_Type') + Summary=fd.formdata.getvalue('Summary') + Overall_Design=fd.formdata.getvalue('Overall_Design') + Contributor=fd.formdata.getvalue('Contributor') + Citation=fd.formdata.getvalue('Citation') + Submission_Date=fd.formdata.getvalue('Submission_Date') + Contact_Name=fd.formdata.getvalue('Contact_Name') + Emails=fd.formdata.getvalue('Emails') + Phone=fd.formdata.getvalue('Phone') + URL=fd.formdata.getvalue('URL') + Organization_Name=fd.formdata.getvalue('Organization_Name') + Department=fd.formdata.getvalue('Department') + Laboratory=fd.formdata.getvalue('Laboratory') + Street=fd.formdata.getvalue('Street') + City=fd.formdata.getvalue('City') + State=fd.formdata.getvalue('State') + ZIP=fd.formdata.getvalue('ZIP') + Country=fd.formdata.getvalue('Country') + Platforms=fd.formdata.getvalue('Platforms') + Samples=fd.formdata.getvalue('Samples') + Species=fd.formdata.getvalue('Species') + Tissue=fd.formdata.getvalue('Tissue') + Normalization=fd.formdata.getvalue('Normalization') + InbredSet=fd.formdata.getvalue('InbredSet') + InfoPageName=fd.formdata.getvalue('InfoPageName') + InfoPageTitle=fd.formdata.getvalue('InfoPageTitle') + About_Cases=fd.formdata.getvalue('About_Cases') + About_Tissue=fd.formdata.getvalue('About_Tissue') + About_Download=fd.formdata.getvalue('About_Download') + About_Array_Platform=fd.formdata.getvalue('About_Array_Platform') + About_Data_Values_Processing=fd.formdata.getvalue('About_Data_Values_Processing') + Data_Source_Acknowledge=fd.formdata.getvalue('Data_Source_Acknowledge') + AuthorizedUsers=fd.formdata.getvalue('AuthorizedUsers') + Progress=fd.formdata.getvalue('Progress') + if Id=='-1': + sharingInfoObject = SharingInfo.SharingInfo(GN_AccesionId, InfoPageName) + info, filelist = sharingInfoObject.getInfo() + if info: + heading = "Editing Info" + detail = ["The new dataset info record is duplicate."] + self.error(heading=heading, detail=detail, error="Error") + return + sql = """INSERT INTO InfoFiles SET GN_AccesionId=%s, GEO_Series=%s, Status=%s, Title=%s, Organism_Id=%s, Organism=%s, Experiment_Type=%s, Summary=%s, Overall_Design=%s, Contributor=%s, Citation=%s, Submission_Date=%s, Contact_Name=%s, Emails=%s, Phone=%s, URL=%s, Organization_Name=%s, Department=%s, Laboratory=%s, Street=%s, City=%s, State=%s, ZIP=%s, Country=%s, Platforms=%s, Samples=%s, Species=%s, Tissue=%s, Normalization=%s, InbredSet=%s, InfoPageName=%s, InfoPageTitle=%s, About_Cases=%s, About_Tissue=%s, About_Download=%s, About_Array_Platform=%s, About_Data_Values_Processing=%s, Data_Source_Acknowledge=%s, AuthorizedUsers=%s, Progreso=%s""" + cursor.execute(sql, tuple([GN_AccesionId, GEO_Series, Status, Title, Organism_Id, Organism, Experiment_Type, Summary, Overall_Design, Contributor, Citation, Submission_Date, Contact_Name, Emails, Phone, URL, Organization_Name, Department, Laboratory, Street, City, State, ZIP, Country, Platforms, Samples, Species, Tissue, Normalization, InbredSet, InfoPageName, InfoPageTitle, About_Cases, About_Tissue, About_Download, About_Array_Platform, About_Data_Values_Processing, Data_Source_Acknowledge, AuthorizedUsers, Progress])) + infoupdate="This record has been succesfully added." + else: + sql = """UPDATE InfoFiles SET GN_AccesionId=%s, GEO_Series=%s, Status=%s, Title=%s, Organism_Id=%s, Organism=%s, Experiment_Type=%s, Summary=%s, Overall_Design=%s, Contributor=%s, Citation=%s, Submission_Date=%s, Contact_Name=%s, Emails=%s, Phone=%s, URL=%s, Organization_Name=%s, Department=%s, Laboratory=%s, Street=%s, City=%s, State=%s, ZIP=%s, Country=%s, Platforms=%s, Samples=%s, Species=%s, Tissue=%s, Normalization=%s, InbredSet=%s, InfoPageName=%s, InfoPageTitle=%s, About_Cases=%s, About_Tissue=%s, About_Download=%s, About_Array_Platform=%s, About_Data_Values_Processing=%s, Data_Source_Acknowledge=%s, AuthorizedUsers=%s, Progreso=%s WHERE Id=%s""" + cursor.execute(sql, tuple([GN_AccesionId, GEO_Series, Status, Title, Organism_Id, Organism, Experiment_Type, Summary, Overall_Design, Contributor, Citation, Submission_Date, Contact_Name, Emails, Phone, URL, Organization_Name, Department, Laboratory, Street, City, State, ZIP, Country, Platforms, Samples, Species, Tissue, Normalization, InbredSet, InfoPageName, InfoPageTitle, About_Cases, About_Tissue, About_Download, About_Array_Platform, About_Data_Values_Processing, Data_Source_Acknowledge, AuthorizedUsers, Progress, Id])) + infoupdate="This record has been succesfully updated." + sharingInfoObject = SharingInfo.SharingInfo(GN_AccesionId, InfoPageName) + self.dict['body'] = sharingInfoObject.getBody(infoupdate=infoupdate) \ No newline at end of file diff --git a/web/webqtl/dataSharing/SharingListDataSetPage.py b/web/webqtl/dataSharing/SharingListDataSetPage.py new file mode 100755 index 00000000..ec90f5f3 --- /dev/null +++ b/web/webqtl/dataSharing/SharingListDataSetPage.py @@ -0,0 +1,99 @@ +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from htmlgen import HTMLgen2 as HT +from base import webqtlConfig + +from base.templatePage import templatePage + + +######################################### +# Sharing List DataSet Page +######################################### +class SharingListDataSetPage(templatePage): + + def __init__(self, fd=None): + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + if webqtlConfig.USERDICT[self.privilege] >= webqtlConfig.USERDICT['admin']: + pass + else: + heading = "Editing Info" + detail = ["You don't have the permission to list the datasets"] + self.error(heading=heading,detail=detail,error="Error") + return + + + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') + + query = """select GN_AccesionId, InfoPageTitle, Progreso from InfoFiles order by GN_AccesionId""" + self.cursor.execute(query) + result = self.cursor.fetchall() + + heading = HT.Paragraph('Dataset Table', Class="title") + + newrecord = HT.Href(text="New Record", url="/webqtl/main.py?FormID=sharinginfoadd") + + info = "Click the accession id to view the dataset info. Click the dataset name to edit the dataset info." + + datasetTable = HT.TableLite(border=0, cellpadding=0, cellspacing=0, Class="collap", width="100%") + + tableHeaderRow = HT.TR() + tableHeaderRow.append(HT.TD("Accession Id", Class='fs14 fwb ffl b1 cw cbrb', align="center")) + tableHeaderRow.append(HT.TD("Dataset name", Class='fs14 fwb ffl b1 cw cbrb', align="center")) + tableHeaderRow.append(HT.TD("Progress", Class='fs14 fwb ffl b1 cw cbrb', align="center")) + tableHeaderRow.append(HT.TD("Operation", Class='fs14 fwb ffl b1 cw cbrb', align="center")) + datasetTable.append(tableHeaderRow) + + for one_row in result: + Accession_Id, InfoPage_title, Progress = one_row + datasetRow = HT.TR() + datasetRow.append(HT.TD(HT.Href(text="GN%s" % Accession_Id, url="/webqtl/main.py?FormID=sharinginfo&GN_AccessionId=%s" % Accession_Id, Class='fs12 fwn'), Class="fs12 fwn b1 c222")) + datasetRow.append(HT.TD(HT.Href(text="%s" % InfoPage_title, url="/webqtl/main.py?FormID=sharinginfo&GN_AccessionId=%s" % Accession_Id, Class='fs12 fwn'), Class="fs12 fwn b1 c222")) + datasetRow.append(HT.TD("%s" % Progress, Class='fs12 fwn ffl b1 c222')) + operation_edit = HT.Href(text="Edit", url="/webqtl/main.py?FormID=sharinginfoedit&GN_AccessionId=%s" % Accession_Id) + operation_delete = HT.Href(text="Delete", onClick="deleteRecord(%s); return false;" % Accession_Id) + operation = HT.TD(Class="fs12 fwn b1 c222", align="center") + operation.append(operation_edit) + operation.append("    ") + operation.append(operation_delete) + datasetRow.append(operation) + datasetTable.append(datasetRow) + + TD_LR.append(heading, HT.P(), newrecord, HT.P(), info, HT.P(), datasetTable) + + js1 = """ """ + self.dict['js1'] = js1 + self.dict['body'] = str(TD_LR) \ No newline at end of file diff --git a/web/webqtl/dataSharing/SharingPage.py b/web/webqtl/dataSharing/SharingPage.py new file mode 100755 index 00000000..cf1d9ac3 --- /dev/null +++ b/web/webqtl/dataSharing/SharingPage.py @@ -0,0 +1,40 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from base.templatePage import templatePage +import SharingBody + +######################################### +# SharingPage +######################################### + +class SharingPage(templatePage): + + def __init__(self, fd): + templatePage.__init__(self, fd) + self.dict['title'] = 'GeneNetwork Data Sharing Zone' + self.dict['body'] = SharingBody.sharing_body_string + self.dict['js2'] = 'onload="javascript:initialDatasetSelection();"' \ No newline at end of file diff --git a/web/webqtl/dataSharing/__init__.py b/web/webqtl/dataSharing/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/dbFunction/__init__.py b/web/webqtl/dbFunction/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/dbFunction/webqtlDatabaseFunction.py b/web/webqtl/dbFunction/webqtlDatabaseFunction.py new file mode 100755 index 00000000..772e0526 --- /dev/null +++ b/web/webqtl/dbFunction/webqtlDatabaseFunction.py @@ -0,0 +1,265 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by Xiaodong Zhou 2011/Jan/20 + +#webqtlDatabaseFunction.py +# +#This file consists of various database related functions; the names are generally self-explanatory. + +import MySQLdb +import string +from base import webqtlConfig + +########################################################################### +#output: cursor instance +#function: connect to database and return cursor instance +########################################################################### +def getCursor(): + try: + con = MySQLdb.Connect(db=webqtlConfig.DB_NAME, host=webqtlConfig.MYSQL_SERVER, user=webqtlConfig.DB_USER, passwd=webqtlConfig.DB_PASSWD) + cursor = con.cursor() + return cursor + except: + return None + + + +########################################################################### +#input: cursor, groupName (string) +#output: mappingMethodId (int) info, value will be Null or else +#function: retrieve mappingMethodId info from InbredSet table +########################################################################### + +def getMappingMethod(cursor=None, groupName=None): + cursor.execute("select MappingMethodId from InbredSet where Name= '%s'" % groupName) + mappingMethodId = cursor.fetchone()[0] + return mappingMethodId + +########################################################################### +#input: cursor, inbredSetId (int), strainId (int) +#output: isMappingId (bull) info, value will be 0,1,2 or else, 0 or Null means +# "can not do mapping", >0 means "can do mapping", >1 means "there exsists +# redundant data, user needs to choose one to do mapping function" +#function: retrieve isMappingId info from StrainXRef table +########################################################################### + +def isMapping(cursor=None, inbredSetId=None, strainId=None): + cursor.execute("select IsMapping from StrainXRef where InbredSetId='%d' and StrainId = '%d'" %(inbredSetId, strainId)) + isMappingId = cursor.fetchone()[0] + return isMappingId + +########################################################################### +#input: cursor, groupName (string) +#output: all species data info (array), value will be Null or else +#function: retrieve all species info from Species table +########################################################################### + +def getAllSpecies(cursor=None): + cursor.execute("select Id, Name, MenuName, FullName, TaxonomyId,OrderId from Species Order by OrderId") + allSpecies = cursor.fetchall() + return allSpecies + +########################################################################### +#input: cursor, RISet (string) +#output: specie's name (string), value will be None or else +#function: retrieve specie's name info based on RISet +########################################################################### + +def retrieveSpecies(cursor=None, RISet=None): + try: + cursor.execute("select Species.Name from Species, InbredSet where InbredSet.Name = '%s' and InbredSet.SpeciesId = Species.Id" % RISet) + return cursor.fetchone()[0] + except: + return None + +########################################################################### +#input: cursor, RISet (string) +#output: specie's Id (string), value will be None or else +#function: retrieve specie's Id info based on RISet +########################################################################### + +def retrieveSpeciesId(cursor=None, RISet=None): + try: + cursor.execute("select SpeciesId from InbredSet where Name = '%s'" % RISet) + return cursor.fetchone()[0] + except: + return None + +########################################################################### +# input: cursor +# output: tissProbeSetFreezeIdList (list), +# nameList (list), +# fullNameList (list) +# function: retrieve all TissueProbeSetFreezeId,Name,FullName info +# from TissueProbeSetFreeze table. +# These data will listed in the dropdown menu in the first page of Tissue Correlation +########################################################################### + +def getTissueDataSet(cursor=None): + tissProbeSetFreezeIdList=[] + nameList =[] + fullNameList = [] + + query = "select Id,Name,FullName from TissueProbeSetFreeze; " + try: + cursor.execute(query) + result = cursor.fetchall() + + for row in result: + tissProbeSetFreezeIdList.append(row[0]) + nameList.append(row[1]) + fullNameList.append(row[2]) + except: + return None + + return tissProbeSetFreezeIdList,nameList,fullNameList + +########################################################################### +# input: cursor,GeneSymbol (string), and TissueProbeSetFreezeId (string) +# output: geneId (string), dataId (string) +# function: retrieve geneId and DataId from TissueProbeSetXRef table +########################################################################### + +def getGeneIdDataIdForTissueBySymbol(cursor=None, GeneSymbol=None, TissueProbeSetFreezeId= 0): + query ="select GeneId, DataId from TissueProbeSetXRef where Symbol = '%s' and TissueProbeSetFreezeId=%s order by Mean desc" %(GeneSymbol,TissueProbeSetFreezeId) + try: + cursor.execute(query) + result = cursor.fetchone() + geneId = result[0] + dataId = result[1] + except: + geneId = 0 + dataId = 0 + + return geneId,dataId + +########################################################################### +# input: cursor, TissueProbeSetFreezeId (int) +# output: chipId (int) +# function: retrieve chipId from TissueProbeFreeze table +########################################################################### + +def getChipIdByTissueProbeSetFreezeId(cursor=None, TissueProbeSetFreezeId=None): + query = "select TissueProbeFreezeId from TissueProbeSetFreeze where Id =%s" % TissueProbeSetFreezeId + try: + cursor.execute(query) + result = cursor.fetchone() + TissueProbeFreezeId = result[0] + except: + TissueProbeFreezeId =0 + + query1 = "select ChipId from TissueProbeFreeze where Id =%s" % TissueProbeFreezeId + try: + cursor.execute(query1) + result1 = cursor.fetchone() + chipId = result1[0] + except: + chipId =0 + + return chipId + +########################################################################### +# input: cursor, TissueProbeSetFreezeId (int) +# output: TissueCount (int) +# function: retrieve how many tissue used in the specific dataset based on TissueProbeSetFreezeId +########################################################################### +def getTissueCountByTissueProbeSetFreezeId(cursor=None, TissueProbeSetFreezeId=None): + query1 ="select DataId from TissueProbeSetXRef where TissueProbeSetFreezeId =%s limit 1" % TissueProbeSetFreezeId + try: + cursor.execute(query1) + result1 = cursor.fetchone() + DataId = result1[0] + + query2 =" select count(*) from TissueProbeSetData where Id=%s" % DataId + try: + cursor.execute(query2) + result2 = cursor.fetchone() + TissueCount = result2[0] + except: + TissueCount =0 + except: + TissueCount =0 + + return TissueCount + +########################################################################### +# input: cursor, TissueProbeSetFreezeId (int) +# output: DatasetName(string),DatasetFullName(string) +# function: retrieve DatasetName, DatasetFullName based on TissueProbeSetFreezeId +########################################################################### +def getDatasetNamesByTissueProbeSetFreezeId(cursor=None, TissueProbeSetFreezeId=None): + query ="select Name, FullName from TissueProbeSetFreeze where Id=%s" % TissueProbeSetFreezeId + try: + cursor.execute(query) + result = cursor.fetchone() + DatasetName = result[0] + DatasetFullName =result[1] + except: + DatasetName =None + DatasetFullName =None + + return DatasetName, DatasetFullName + +########################################################################### +# input: cursor, geneIdLst (list) +# output: geneIdSymbolPair(dict),key is geneId, value is geneSymbol +# function: retrieve GeneId, GeneSymbol based on geneId List +########################################################################### +def getGeneIdSymbolPairByGeneId(cursor=None, geneIdLst =None): + geneIdSymbolPair={} + for geneId in geneIdLst: + geneIdSymbolPair[geneId]=None + + query ="select GeneId,GeneSymbol from GeneList where GeneId in (%s)" % string.join(geneIdLst, ", ") + try: + cursor.execute(query) + results = cursor.fetchall() + for item in results: + geneId =item[0] + geneSymbol =item[1] + geneIdSymbolPair[geneId]=geneSymbol + except: + geneIdSymbolPair=None + + return geneIdSymbolPair + + +def updateTissueProbesetXRefByProbesetId(cursor=None, probesetId=None): + query ="select Symbol,GeneId,Chr,Mb,description, Probe_Target_Description from ProbeSet where Id =%s"%probesetId + try: + cursor.execute(query) + result =cursor.fetchone() + + updateQuery =''' + Update TissueProbeSetXRef + Set Symbol='%s',GeneId='%s', Chr='%s', Mb='%s', description ='%s',Probe_Target_Description='%s' + where ProbesetId=%s + '''%(result[0],result[1],result[2],result[3],result[4],result[5],probesetId) + + cursor.execute(updateQuery) + + except: + return None + \ No newline at end of file diff --git a/web/webqtl/externalResource/GCATPage.py b/web/webqtl/externalResource/GCATPage.py new file mode 100755 index 00000000..7e22f168 --- /dev/null +++ b/web/webqtl/externalResource/GCATPage.py @@ -0,0 +1,101 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#GCATPage.py + +from htmlgen import HTMLgen2 as HT + +from base.webqtlTrait import webqtlTrait +from base.templatePage import templatePage + + +#Implemented by Xiaodong +class GCATPage(templatePage): + + def __init__(self,fd): + + self.theseTraits = [] + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee',valign="middle") + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + self.searchResult = fd.formdata.getvalue('searchResult', []) + if type("1") == type(self.searchResult): + self.searchResult = [self.searchResult] + + for item in self.searchResult: + try: + thisTrait = webqtlTrait(fullname=item, cursor=self.cursor) + thisTrait.retrieveInfo(QTL=1) + if thisTrait.db.type == "ProbeSet": + self.theseTraits.append(thisTrait) + except: + pass + + if self.theseTraits: + pass + else: + templatePage.__init__(self, fd) + heading = 'GCAT' + detail = ['You need to select at least one microarray trait to submit to GCAT.'] + self.error(heading=heading,detail=detail) + return + + geneSymbolList = self.getGeneSymbolList() + + geneSymbolSet = set(geneSymbolList) + + if ( len(geneSymbolSet) < 500 ): + temp = '+'.join(geneSymbolSet) + GCATurl = "http://binf1.memphis.edu/gcat/?organism=mouse&subset=all&year=2010&geneInput=%s" % temp + + self.dict['js1'] = """ + + """ % GCATurl + + TD_LR.append(HT.Paragraph("Your selection of %d genes is being submitted to GCAT" % len(geneSymbolSet), Class="cr fs16 fwb", align="Center")) + else: + TD_LR.append(HT.Paragraph("Your selection of %d genes exceeds the limit of 500. Please reduce your gene number to below the limit." % len(geneSymbolSet), Class="cr fs16 fwb", align="Center")) + + + self.dict['body'] = TD_LR + + + def getGeneSymbolList(self): + geneList = [] + + for item in self.theseTraits: + item.retrieveInfo() + geneList.append(str(item.symbol)) + + return geneList + + diff --git a/web/webqtl/externalResource/GoTreePage.py b/web/webqtl/externalResource/GoTreePage.py new file mode 100755 index 00000000..07144a23 --- /dev/null +++ b/web/webqtl/externalResource/GoTreePage.py @@ -0,0 +1,154 @@ +#GoTreePage.py + +import string +from htmlgen import HTMLgen2 as HT + +from base import webqtlConfig +from base.webqtlTrait import webqtlTrait +from base.templatePage import templatePage +from dbFunction import webqtlDatabaseFunction + + +######################################### +# GoTree Page +######################################### +class GoTreePage(templatePage): + + def __init__(self,fd): + + self.theseTraits = [] + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee',valign="middle") + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + self.searchResult = fd.formdata.getvalue('searchResult', []) + if type("1") == type(self.searchResult): + self.searchResult = [self.searchResult] + + #XZ, self.theseTraits holds the "ProbeSet" traits. + + for item in self.searchResult: + try: + thisTrait = webqtlTrait(fullname=item, cursor=self.cursor) + thisTrait.retrieveInfo(QTL=1) + if thisTrait.db.type == "ProbeSet": + self.theseTraits.append(thisTrait) + except: + pass + + if self.theseTraits: + pass + else: + templatePage.__init__(self, fd) + heading = 'WebGestalt' + detail = ['You need to select at least one microarray trait to submit.'] + self.error(heading=heading,detail=detail) + return + + chipName = self.testChip(fd) + + #XZ, 8/24/2009: the name of arraylist is misleading. It holds the name of traits. + arraylist, geneIdList = self.genGeneIdList(fd) + + target_url = "http://bioinfo.vanderbilt.edu/webgestalt/webgestalt.php" + + formWebGestalt = HT.Form(cgi=target_url, enctype='multipart/form-data', name='WebGestalt', submit = HT.Input(type='hidden')) + + id_type = chipName + + hddnWebGestalt = {'id_list':string.join(arraylist, ","), + 'id_type':id_type} + + hddnWebGestalt['ref_type'] = hddnWebGestalt['id_type'] + hddnWebGestalt['analysis_type'] = 'GO' + hddnWebGestalt['significancelevel'] = 'Top10' + hddnWebGestalt['stat'] = 'Hypergeometric' + hddnWebGestalt['mtc'] = 'BH' + hddnWebGestalt['min'] = '2' + hddnWebGestalt['id_value'] = fd.formdata.getvalue('correlation') + + species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=fd.RISet) + + if species == 'rat': + hddnWebGestalt['org'] = 'Rattus norvegicus' + elif species == 'human': + hddnWebGestalt['org'] = 'Homo sapiens' + elif species == 'mouse': + hddnWebGestalt['org'] = 'Mus musculus' + else: + hddnWebGestalt['org'] = '' + + hddnWebGestalt['org'] = hddnWebGestalt['org'].replace(' ','_') + + for key in hddnWebGestalt.keys(): + formWebGestalt.append(HT.Input(name=key, value=hddnWebGestalt[key], type='hidden')) + + TD_LR.append(formWebGestalt) + + TD_LR.append(HT.Paragraph("Your selection of %d traits is being submitted to GO Tree" % len(self.theseTraits), Class="cr fs16 fwb", align="Center")) + + # updated by NL, moved mixedChipError() to webqtl.js and change it to mixedChipError(methodName) + # moved unknownChipError() to webqtl.js and change it to unknownChipError(chipName) + if chipName == 'mixed': + methodName = "WebGestalt" + self.dict['js1'] = """ + + """ % methodName + elif chipName.find('_NA') > 0: + chipName = chipName[0:-3] + self.dict['js1'] = """ + + """ % chipName + else: + self.dict['js1'] = """ + + """ + + self.dict['body'] = TD_LR + + def testChip(self, fd): + chipName0 = "" + + for item in self.theseTraits: + self.cursor.execute('SELECT GeneChip.GO_tree_value FROM GeneChip, ProbeFreeze, ProbeSetFreeze WHERE GeneChip.Id = ProbeFreeze.ChipId and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.Name = "%s"' % item.db.name) + result = self.cursor.fetchone() + if result: + chipName = result[0] + if chipName: + if chipName != chipName0: + if chipName0: + return 'mixed' + else: + chipName0 = chipName + else: + pass + else: + self.cursor.execute('SELECT GeneChip.Name FROM GeneChip, ProbeFreeze, ProbeSetFreeze WHERE GeneChip.Id = ProbeFreeze.ChipId and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.Name = "%s"' % item.db.name) + result = self.cursor.fetchone() + chipName = '%s_NA' % result[0] + return chipName + else: + self.cursor.execute('SELECT GeneChip.Name FROM GeneChip, ProbeFreeze, ProbeSetFreeze WHERE GeneChip.Id = ProbeFreeze.ChipId and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.Name = "%s"' % item.db.name) + result = self.cursor.fetchone() + chipName = '%s_NA' % result[0] + return chipName + return chipName + + def genGeneIdList(self, fd): + arrayList = [] + geneList = [] + for item in self.theseTraits: + arrayList.append(item.name) + item.retrieveInfo() + geneList.append(str(item.geneid)) + return arrayList, geneList + diff --git a/web/webqtl/externalResource/ODEPage.py b/web/webqtl/externalResource/ODEPage.py new file mode 100755 index 00000000..f02fe5aa --- /dev/null +++ b/web/webqtl/externalResource/ODEPage.py @@ -0,0 +1,143 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#ODEPage.py + +import string +from htmlgen import HTMLgen2 as HT + +from base import webqtlConfig +from base.webqtlTrait import webqtlTrait +from base.templatePage import templatePage +from dbFunction import webqtlDatabaseFunction + +class ODEPage(templatePage): + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + #XZ, self.theseTraits holds the "ProbeSet" traits. + self.theseTraits = [] + + self.searchResult = fd.formdata.getvalue('searchResult', []) + if type("1") == type(self.searchResult): + self.searchResult = [self.searchResult] + + for item in self.searchResult: + try: + thisTrait = webqtlTrait(fullname=item, cursor=self.cursor) + thisTrait.retrieveInfo(QTL=1) + if thisTrait.db.type == "ProbeSet": + self.theseTraits.append(thisTrait) + except: + pass + + if self.theseTraits: + pass + else: + heading = 'ODE' + detail = ['You need to select at least one microarray trait to submit.'] + self.error(heading=heading,detail=detail) + return + + chipName = self.getChipName(fd) + species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=fd.RISet) + + if species == 'rat': + species = 'Rattus norvegicus' + elif species == 'human': + species = 'Homo sapiens' + elif species == 'mouse': + species = 'Mus musculus' + else: + species = '' + + probesetNameList = self.getProbesetNameList(fd) + + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee',valign="middle") + + formODE = HT.Form(cgi="http://ontologicaldiscovery.org/index.php?action=manage&cmd=importGeneSet", enctype='multipart/form-data', name='formODE', submit = HT.Input(type='hidden')) + + hddnODE = {} + + hddnODE['client'] = 'genenetwork' + hddnODE['species'] = species + hddnODE['idtype'] = chipName + hddnODE['list'] = string.join(probesetNameList, ",") + + for key in hddnODE.keys(): + formODE.append(HT.Input(name=key, value=hddnODE[key], type='hidden')) + + TD_LR.append(formODE) + + TD_LR.append(HT.Paragraph("Your selections of %d traits is being exported to the ODE" % len(self.theseTraits), Class="cr fs16 fwb", align="Center")) + # updated by NL, moved mixedChipError() to webqtl.js and change it to mixedChipError(methodName) + if chipName == 'mixed': + methodName = "ODE" + self.dict['js1'] = """ + + """ % methodName + else: + self.dict['js1'] = """ + + """ + + self.dict['body'] = TD_LR + + + + def getProbesetNameList(self, fd): + probesetNameList = [] + + for item in self.theseTraits: + probesetNameList.append(item.name) + + return probesetNameList + + + + def getChipName(self, fd): + chipName0 = "" + for item in self.theseTraits: + self.cursor.execute('SELECT GeneChip.Name FROM GeneChip, ProbeFreeze, ProbeSetFreeze WHERE GeneChip.Id = ProbeFreeze.ChipId and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.Name = "%s"' % item.db.name) + chipName = self.cursor.fetchone()[0] + if chipName != chipName0: + if chipName0: + return 'mixed' + else: + chipName0 = chipName + else: + pass + + return chipName diff --git a/web/webqtl/externalResource/__init__.py b/web/webqtl/externalResource/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/geneWiki/AddGeneRIFPage.py b/web/webqtl/geneWiki/AddGeneRIFPage.py new file mode 100755 index 00000000..0a5038ef --- /dev/null +++ b/web/webqtl/geneWiki/AddGeneRIFPage.py @@ -0,0 +1,635 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#geneWikiPage.py +# +#This one's pretty self-evident from the title. If you use the GeneWiki module, this is what's behind it. -KA + +# Xiaodong changed the dependancy structure + +import glob +import re +import piddle as pid +from htmlgen import HTMLgen2 as HT +import os +import string + +from utility import Plot +from base.templatePage import templatePage +from base import webqtlConfig +from utility import webqtlUtil + +######################################### +# Gene Wiki Page +######################################### + +class AddGeneRIFPage(templatePage): + + fields = ['species', 'pubmedid', 'weburl', 'comment', 'email', 'initial', 'genecategory'] + spliter = "__split__" + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.updMysql(): + return + + if webqtlConfig.USERDICT[self.privilege] >= webqtlConfig.USERDICT['user']: + self.privilege_to_delete_entry = 1 + self.additional_colspan = 1 + else: + self.privilege_to_delete_entry = 0 + self.additional_colspan = 0 + + #read input fields + self.action = fd.formdata.getvalue("action", "disp").strip() + self.symbol = fd.formdata.getvalue("symbol", "").strip() + self.Id = fd.formdata.getvalue("Id") + self.comment = fd.formdata.getvalue("comment", "").strip() + self.email = fd.formdata.getvalue("email", "").strip() + self.pubmedid = fd.formdata.getvalue("pubmedid", "").strip() + self.species = fd.formdata.getvalue("species", "no specific species:0").strip() + self.genecategory = fd.formdata.getvalue("genecategory") + self.initial = fd.formdata.getvalue("initial", "").strip() + self.weburl = fd.formdata.getvalue("weburl", "").strip() + self.reason = fd.formdata.getvalue("reason", "").strip() + + #self.dict['title'] = 'Add GeneWiki Entries for %s' % self.symbol + + if not self.symbol: + self.content_type = 'text/html' + Heading = HT.Paragraph("GeneWiki Entries", Class="title") + help1 = HT.Href(url="/GeneWikihelp.html", text=" help document", Class="fwn", target="_blank") + Intro = HT.Blockquote("GeneWiki enables you to enrich the annotation of genes and transcripts. Please submit or edit a GeneWiki note (500 characters max) related to a gene, its transcripts, or proteins. When possible include PubMed identifiers or web resource links (URL addresses). Please ensure that the additions will have widespread use. For additional information, check the GeneWiki ", help1, ".") + + Intro.append(HT.P(), "Please enter a gene symbol in the box below and then click submit.") + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='addgenerif',submit=HT.Input(type='hidden')) + form.append(HT.Input(type="text", size = 45, maxlength=100, name="symbol")) + form.append(HT.Input(type="hidden", name="FormID", value="geneWiki")) + form.append(HT.Input(type="submit", name="submit", value="submit", Class="button")) + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee',valign="top") + TD_LR.append(Heading,Intro,HT.Center(form)) + self.dict['body'] = str(TD_LR) + self.dict['title'] = "Gene Wiki" + elif self.action == 'disp': + self.content_type = 'text/html' + self.dispWikiPage(fd) + elif self.action in ('add', 'update'): + if self.action == 'update': + self.cursor.execute("Select Id from GeneRIF where symbol='%s' and Id = %s and versionId=0" % (self.symbol, self.Id)) + if not self.cursor.fetchall(): + print 'Content-type: text/html\n' + heading = "Update Entry" + detail = ["The Entry cannot be located."] + self.error(heading=heading,detail=detail,error="Error") + self.write() + return + else: + pass + else: + pass + status = fd.formdata.getvalue('curStatus') + if status == 'insertResult': + i = self.insertResultPage(fd) + if i == 0: + self.content_type = 'text/html' + self.insertUpdateCheck(fd, "You entered wrong password, Please try again") + elif i == 2: + #prevent re-submit + url = os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE) + "?FormID=geneWiki&symbol=%s" % self.symbol + self.redirection = url + return + else: + self.content_type = 'text/html' + pass + elif status == 'insertCheck': + self.content_type = 'text/html' + self.insertUpdateCheck(fd) + else: + self.content_type = 'text/html' + self.insertUpdateForm(fd) + elif self.action == 'del': + if self.Id: + try: + self.Id= int(self.Id) + self.delRIF() + except: + pass + self.redirection = os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE) + "?FormID=geneWiki&symbol=%s" % self.symbol + return + elif self.action == 'history': + self.content_type = 'text/html' + self.cursor.execute("Select Id from GeneRIF where symbol='%s' and Id = %s and versionId=0" % (self.symbol, self.Id)) + if not self.cursor.fetchall(): + heading = "Update Entry" + detail = ["The Entry cannot be located."] + self.error(heading=heading,detail=detail,error="Error") + else: + pass + self.historyPage(fd) + else: + self.content_type = 'text/html' + pass + + def historyPage(self, fd): + self.dict['title'] = "GeneWiki Entry History" + title = HT.Paragraph(self.dict['title'], Class= "title") + + subtitle1 = HT.Blockquote("Most Recent Version:", Class="subtitle") + self.cursor.execute("select GeneRIF.Id, versionId, symbol, PubMed_ID, Species.Name, comment, createtime, weburl, reason from GeneRIF left Join Species on GeneRIF.SpeciesId = Species.Id Where GeneRIF.Id = %s and versionId = 0" % self.Id) + results = self.cursor.fetchone() + subtitle1.append(HT.Blockquote(self.genTable(results))) + + subtitle2 = HT.Blockquote("Previous Version:", Class="subtitle") + self.cursor.execute("select GeneRIF.Id, versionId, symbol, PubMed_ID, Species.Name, comment, createtime, weburl, reason from GeneRIF Left Join Species on GeneRIF.SpeciesId = Species.Id Where GeneRIF.Id = %s and versionId > 0 order by versionId desc" % self.Id) + results = self.cursor.fetchall() + if results: + for item in results: + subtitle2.append(HT.Blockquote(self.genTable(item), HT.P())) + else: + subtitle2.append(HT.Blockquote("No Previous History")) + + TD_LR = HT.TD(valign="top", bgcolor="#eeeeee") + + TD_LR.append(title, subtitle1, subtitle2) + self.dict['body'] = TD_LR + + def genTable(self, results): + if not results: + return "" + Id, versionId, symbol, PubMed_ID, Species_Name, comment, createtime, weburl, reason = results + if not Species_Name: + Species_Name="no specific species" + tbl = HT.TableLite(border=0, cellpadding=5, Class="collap ffv") + + tbl.append(HT.TR( + HT.TD("Gene Symbol: ", width = 200, Class="fs13 fwb b1 c222"), + HT.TD(self.symbol, width = 600, Class="fs13 b1 c222"), + )) + + tbl.append(HT.TR( + HT.TD("Species: ", width = 200, Class="fs13 fwb b1 c222"), + HT.TD(Species_Name, width = 600, Class="fs13 b1 c222") + )) + if PubMed_ID: + PubMed_ID = PubMed_ID.split() + pTD = HT.TD(Class="fs13 b1 c222") + for item in PubMed_ID: + pTD.append(HT.Href(text=item, target = "_blank", + url = webqtlConfig.PUBMEDLINK_URL % item, Class="fwn"), " ") + tbl.append(HT.TR( + HT.TD("PubMed IDs: ", Class="fs13 fwb b1 c222"), + pTD + )) + + if weburl: + tbl.append(HT.TR( + HT.TD("Web URL: ", Class="fs13 fwb b1 c222"), + HT.TD(HT.Href(text=weburl, url=weburl, Class='fwn'), Class="fs13 b1 c222") + )) + + tbl.append(HT.TR( + HT.TD("Entry: ", Class="fs13 fwb b1 c222"), + HT.TD(comment, Class="fs13 b1 c222") + )) + + self.cursor.execute("select GeneCategory.Name from GeneCategory, GeneRIFXRef where GeneRIFXRef.GeneRIFId = %s and GeneRIFXRef.versionId=%s and GeneRIFXRef.GeneCategoryId = GeneCategory.Id" % (Id, versionId)) + results = self.cursor.fetchall() + if results: + tHD = HT.TD(Class="fs13 b1 c222") + for i, item in enumerate(results): + tHD.append(item[0]) + if i < len(results)-1: + tHD.append("; ") + if i%2 == 1: + tHD.append(HT.BR()) + + tbl.append(HT.TR( + HT.TD("Category: ", Class="fs13 fwb b1 c222"), + tHD + )) + + tbl.append(HT.TR( + HT.TD("Add Time: ", Class="fs13 fwb b1 c222"), + HT.TD(createtime, Class="fs13 b1 c222") + )) + if reason: + tbl.append(HT.TR( + HT.TD("Reason for Modification: ", Class="fs13 fwb b1 c222"), + HT.TD(reason, Class="fs13 b1 c222") + )) + return tbl + + def insertUpdateCheck(self, fd, warning= ""): + self.dict['title'] = "%s GeneWiki Entry for %s" % (self.action.title(), self.symbol) + #mailsrch = re.compile('([\w\-][\w\-\.]*@[\w\-][\w\-\.]+[a-zA-Z]{1,4})([\s,;])*') + mailsrch = re.compile('([\w\-][\w\-\.]*)@([\w\-\.]+)\.([a-zA-Z]{1,4})([\s,;])*') + httpsrch = re.compile('((?:http|ftp|gopher|file)://(?:[^ \n\r<\)]+))([\s,;])*') + if not self.comment or not self.email: + heading = self.dict['title'] + detail = ["Please don't leave text field or email field empty."] + self.error(heading=heading,detail=detail,error="Error") + return + if self.action == 'update' and not self.reason: + heading = self.dict['title'] + detail = ["Please submit your reason for this modification."] + self.error(heading=heading,detail=detail,error="Error") + return + if len(self.comment) >500: + heading = self.dict['title'] + detail = ["Your entry is more than 500 characters."] + self.error(heading=heading,detail=detail,error="Error") + return + if self.email and re.sub(mailsrch, "", self.email) != "": + heading = self.dict['title'] + detail = ["The format of your email address is incorrect."] + self.error(heading=heading,detail=detail,error="Error") + return + + if self.weburl == "http://": + self.weburl = "" + + if self.weburl and re.sub(httpsrch, "", self.weburl) != "": + heading = self.dict['title'] + detail = ["The format of web resource link is incorrect."] + self.error(heading=heading,detail=detail,error="Error") + return + + if self.pubmedid: + try: + test = map(int, string.split(self.pubmedid)) + except: + heading = self.dict['title'] + detail = ["PubMed IDs can only be integers."] + self.error(heading=heading,detail=detail,error="Error") + return + + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='addgenerif',submit=HT.Input(type='hidden')) + recordInfoTable = HT.TableLite(border=0, cellspacing=1, cellpadding=5,align="center") + + addButton = HT.Input(type='submit',name='submit', value='%s GeneWiki Entry' % self.action.title(),Class="button") + hddn = {'curStatus':'insertResult', 'FormID':'geneWiki', 'symbol':self.symbol, + 'comment':self.comment, 'email':self.email, 'species':self.species, + 'action':self.action, 'reason':self.reason} + if self.Id: + hddn['Id']=self.Id + + formBody = HT.TableLite() + + formBody.append(HT.TR( + HT.TD(HT.Strong("Species: ")), + HT.TD(width=10), + HT.TD(string.split(self.species, ":")[0]) + )) + if self.pubmedid: + try: + formBody.append(HT.TR( + HT.TD(HT.Strong("PubMed IDs: ")), + HT.TD(width=10), + HT.TD(self.pubmedid) + )) + hddn['pubmedid'] = self.pubmedid + except: + pass + if self.weburl: + try: + formBody.append(HT.TR( + HT.TD(HT.Strong("Web URL: ")), + HT.TD(width=10), + HT.TD(HT.Href(text=self.weburl, url=self.weburl, Class='fwn')) + )) + hddn['weburl'] = self.weburl + except: + pass + formBody.append(HT.TR( + HT.TD(HT.Strong("Gene Notes: ")), + HT.TD(width=10), + HT.TD(self.comment) + )) + formBody.append(HT.TR( + HT.TD(HT.Strong("Email: ")), + HT.TD(width=10), + HT.TD(self.email) + )) + if self.initial: + formBody.append(HT.TR( + HT.TD(HT.Strong("Initial: ")), + HT.TD(width=10), + HT.TD(self.initial) + )) + hddn['initial'] = self.initial + + if self.genecategory: + cTD = HT.TD() + if type(self.genecategory) == type(""): + self.genecategory = string.split(self.genecategory) + self.cursor.execute("Select Id, Name from GeneCategory where Id in (%s) order by Name " % string.join(self.genecategory, ', ')) + results = self.cursor.fetchall() + for item in results: + cTD.append(item[1], HT.BR()) + + formBody.append(HT.TR( + HT.TD(HT.Strong("Category: ")), + HT.TD(width=10), + cTD + )) + hddn['genecategory'] = string.join(self.genecategory, " ") + + formBody.append(HT.TR( + HT.TD( + HT.BR(), HT.BR(), + HT.Div("For security reasons, enter the code (case insensitive) in the image below to finalize your submission"), HT.BR(), + addButton, HT.Input(type="password", size = 25, name="password"), + colspan=3) + )) + + + code = webqtlUtil.genRandStr(length=5, chars="abcdefghkmnpqrstuvwxyzABCDEFGHJKMNPQRSTUVWXYZ23456789") + filename= webqtlUtil.genRandStr("Sec_") + hddn['filename'] = filename + securityCanvas = pid.PILCanvas(size=(300,100)) + Plot.plotSecurity(securityCanvas, text=code) + + os.system("touch %s_.%s" % (os.path.join(webqtlConfig.IMGDIR,filename), code)) + securityCanvas.save(os.path.join(webqtlConfig.IMGDIR,filename), format='png') + + formBody.append(HT.TR( + HT.TD(HT.Image("/image/"+filename+".png"), colspan=3) + )) + + hddn['filename'] = filename + TD_LR = HT.TD(valign="top", bgcolor="#eeeeee") + title = HT.Paragraph("%s GeneWiki Entry for %s" % (self.action.title(), self.symbol), Class="title") + + form.append(HT.P(), HT.Blockquote(formBody)) + + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + TD_LR.append(title, HT.Blockquote(warning, Id="red"), form) + + self.dict['body'] = TD_LR + + def insertUpdateForm(self, fd): + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='addgenerif',submit=HT.Input(type='hidden')) + addButton = HT.Input(type='submit',name='submit', value='%s GeneWiki Entry' % self.action.title(),Class="button") + resetButton = HT.Input(type='reset',Class="button") + + hddn = {'curStatus':'insertCheck', 'FormID':'geneWiki', 'symbol':self.symbol, 'action':self.action, 'reason':self.reason} + if self.Id: + hddn['Id']=self.Id + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + if self.action == 'update': + self.cursor.execute("Select Species.Name, PubMed_ID, weburl, comment, email, initial from GeneRIF left JOIN Species on Species.Id = GeneRIF.SpeciesId where symbol='%s' and GeneRIF.Id = %s and versionId=0" % (self.symbol, self.Id)) + oldSpeciesId, oldPubMed_ID, oldweburl, oldcomment, oldemail, oldinitial = self.cursor.fetchone() + if not oldSpeciesId: + oldSpeciesId="no specific species:0" + oldemail = "" + self.cursor.execute("Select GeneCategoryId from GeneRIFXRef where GeneRIFId = %s and versionId=0" % self.Id) + oldCategory = self.cursor.fetchall() + if oldCategory: + oldCategory = map(lambda X:X[0], oldCategory) + else: + oldSpeciesId = oldPubMed_ID = oldcomment = oldemail = oldinitial = oldweburl = "" + oldCategory= () + + if not oldweburl: + oldweburl = "http://" + ############################# + TD_LR = HT.TD(valign="top", bgcolor="#eeeeee") + title = HT.Paragraph("%s GeneWiki Entry for %s" % (self.action.title(), self.symbol), Class="title") + + smenu = HT.Select(name="species") + self.cursor.execute("select Id, Name from Species order by Name") + for Id, Name in self.cursor.fetchall(): + smenu.append((Name, "%s:%s" % (Name, Id))) + smenu.append(("no specific species", "no specific species:0")) + if oldSpeciesId != "": + smenu.selected.append(oldSpeciesId) + else: + smenu.selected.append("mouse") + formBody = HT.TableLite() + + if self.action == 'update': + formBody.append(HT.TR( + HT.TD("Reason for Modification: "), + HT.TD(width=10), + HT.TD(HT.Input(type="text", size = 45, maxlength=100, name="reason")) + )) + else: + pass + + formBody.append(HT.TR( + HT.TD("Species: "), + HT.TD(" ", width=10), + HT.TD(smenu) + )) + formBody.append(HT.TR( + HT.TD("PubMed IDs: "), + HT.TD(" ", width=10), + HT.TD(HT.Input(type="text", size = 25, maxlength=25, name="pubmedid", value=oldPubMed_ID), " (optional, separate by blank space only)") + )) + formBody.append(HT.TR( + HT.TD("Web resource URL: "), + HT.TD(" ", width=10), + HT.TD(HT.Input(type="text", size = 50, maxlength=100, name="weburl", value=oldweburl), " (optional)") + )) + formBody.append(HT.TR( + HT.TD("Text: "), + HT.TD(" ", width=10), + HT.TD(HT.Textarea(cols = 60, rows=5, name="comment", text=oldcomment)) + )) + formBody.append(HT.TR( + HT.TD("Email: "), + HT.TD(" ", width=10), + HT.TD(HT.Input(type="text", size = 40, maxlength=40, name="email", value=oldemail)) + )) + formBody.append(HT.TR( + HT.TD("User Code: "), + HT.TD(" ", width=10), + HT.TD(HT.Input(type="text", size =15, maxlength=10, name="initial", value=oldinitial), " (optional user or project code or your initials)") + )) + + self.cursor.execute("Select Id, Name from GeneCategory order by Name") + results = self.cursor.fetchall() + if results: + tbl2 = HT.TableLite() + tempTR = HT.TR() + for i, item in enumerate(results): + if item[0] in oldCategory: + boxchecked = 1 + else: + boxchecked = 0 + tempTR.append(HT.TD(HT.Input(type='checkbox', Class='checkbox', name='genecategory', value = item[0], checked=boxchecked), valign="top"), HT.TD(" ", item[1], valign="top")) + if (i%2): + tbl2.append(tempTR) + tempTR = HT.TR() + tbl2.append(tempTR) + formBody.append(HT.TR( + HT.TD("Category of Gene Note", HT.BR(), "(Please select one or", HT.BR(), "many categories):"), + HT.TD(" ", width=10), + HT.TD(tbl2) + )) + formBody.append(HT.TR( + HT.TD(addButton, " "*10, resetButton, colspan=3) + )) + + form.append(HT.P(), HT.Blockquote(formBody)) + + TD_LR.append(title, form) + self.dict['title'] = "%s GeneWiki Entry for %s" % (self.action.title(), self.symbol) + self.dict['body'] = TD_LR + + def dispWikiPage(self, fd): + addButton = HT.Input(type="button",value="New GeneWiki Entry",onClick= \ + "openNewWin('%s')" % (os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE) + "?FormID=geneWiki&action=add&symbol=%s" % self.symbol), + Class="button") + geneRIFBody = HT.TableLite(cellpadding=3, width="100%") + geneRIFBody.append(HT.TR(HT.TD(HT.Paragraph("GeneWiki for %s: " % self.symbol, addButton, Class="subtitle"), colspan=5+self.additional_colspan, height=40))) + + self.cursor.execute("select comment, PubMed_ID, weburl, Id from GeneRIF where symbol = '%s' and display > 0 and versionId=0" % self.symbol) + results = self.cursor.fetchall() + geneRIFBody.append(HT.TR(HT.TD(), HT.TD("GeneNetwork:", colspan=4+self.additional_colspan, Class="fwb"))) + if results: + for i, item in enumerate(results): + PubMedLink = WebLink = comma = "" + if item[1]: + PubMedLink = HT.Href(text="PubMed", target = "_blank", + url = webqtlConfig.PUBMEDLINK_URL % item[1], Class="fwn") + if item[2]: + if PubMedLink: comma = ", " + WebLink = HT.Href(text="URL Link", target = "_blank", + url = item[2], Class="fwn") + myTR = HT.TR( + HT.TD(" ", width=20), + HT.TD(HT.Strong(i+1, ". "), valign="top"), + HT.TD(HT.Paragraph(item[0], " ", PubMedLink, comma, WebLink), valign="top"), + #HT.TD(, width=40, valign="top"), + HT.TD( + HT.Href(url=os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE)+ \ + "?FormID=geneWiki&action=update&Id=%d&symbol=%s" %(item[-1], self.symbol), + onClick = "return confirm('Any user can edit any GeneWiki entry, with changes showing up immediately. The history of previous versions of this entry are stored and available for reference. Click OK to continue.');" , + text=HT.Image("/images/modify.gif", border=0), title="Modify Entry", Class="fwn") + , width=20, valign="top" + ), + HT.TD( + HT.Href(url=os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE)+ \ + "?FormID=geneWiki&action=history&Id=%d&symbol=%s" %(item[-1], self.symbol), + text=HT.Image("/images/history.gif", border=0), title="History of Entry", Class="fwn") + , width=20, valign="top" + ) + ) + if self.privilege_to_delete_entry: + myTR.append(HT.TD( + HT.Href(url=os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE)+ \ + "?FormID=geneWiki&action=del&Id=%d&symbol=%s" %(item[-1], self.symbol), + onClick = "return confirm('Do you really want to delete this entry, click YES to continue.');" , + text=HT.Image("/images/trash.gif", border=0), title="Delete Entry", Class="fwn") + , width=20, valign="top" + )) + geneRIFBody.append(myTR) + else: + geneRIFBody.append(HT.TR( + HT.TD(" ", width=20), + HT.TD(HT.U("There is no GeneWiki entry for this gene."), colspan=5+self.additional_colspan), + )) + + self.cursor.execute("select distinct Species.FullName, GeneRIF_BASIC.GeneId, GeneRIF_BASIC.comment, GeneRIF_BASIC.PubMed_ID from GeneRIF_BASIC, Species where GeneRIF_BASIC.symbol='%s' and GeneRIF_BASIC.SpeciesId = Species.Id order by Species.Id, GeneRIF_BASIC.createtime" % self.symbol) + results = self.cursor.fetchall() + if results: + geneRIFBody.append(HT.TR(HT.TD(), HT.TD("GeneRIF from NCBI:", colspan=4+self.additional_colspan, Class="fwb"))) + for i, item in enumerate(results): + PubMedLink = HT.Href(text="PubMed", target = "_blank", + url = webqtlConfig.PUBMEDLINK_URL % item[3], Class="fwn") + GeneLink = HT.Href(text= item[0], target='_blank',\ + url=webqtlConfig.NCBI_LOCUSID % item[1], Class="fwn") + myTR = HT.TR( + HT.TD(" ", width=20), + HT.TD(HT.Strong(i+1, ". "), valign="top"), + HT.TD(HT.Paragraph(item[2], " (", GeneLink,") ", PubMedLink), valign="top", colspan=3+self.additional_colspan)) + geneRIFBody.append(myTR) + + TD_LR = HT.TD(valign="top", bgcolor="#eeeeee") + help1 = HT.Href(url="/GeneWikihelp.html", text=" help document", Class="fwn", target="_blank") + title = HT.Paragraph("GeneWiki Entries", Class="title") + intro = HT.Blockquote("GeneWiki enables you to enrich the annotation of genes and transcripts. Please submit or edit a GeneWiki note (500 characters max) related to a gene, its transcripts, or proteins. When possible include PubMed identifiers or web resource links (URL addresses). Please ensure that the additions will have widespread use. For additional information, check the GeneWiki ", help1, ".") + + TD_LR.append(title, intro, HT.Blockquote(geneRIFBody)) + self.dict['title'] = "GeneWiki for %s" % self.symbol + self.dict['body'] = TD_LR + + + def delRIF(self): + if self.privilege_to_delete_entry: + self.cursor.execute("update GeneRIF set display= 0 where Id = %d" % self.Id) + + def insertResultPage(self, fd): + try: + password = fd.formdata.getvalue("password", "") + filename = fd.formdata.getvalue("filename") + code = glob.glob(os.path.join(webqtlConfig.IMGDIR,filename+"_.*")) + code = string.split(code[0], '.')[-1] + if string.lower(code) != string.lower(password): + return 0 + TD_LR = HT.TD(valign="top", bgcolor="#eeeeee") + title = HT.Paragraph("Add GeneWiki Entry", Class="title") + self.cursor.execute("Select max(Id) from GeneRIF") + if self.action == 'update': + #old record + maxId = int(self.Id) + self.cursor.execute("select max(versionId)+1 from GeneRIF where Id=%s" % maxId) + newversionId = self.cursor.fetchone()[0] + self.cursor.execute("update GeneRIF set versionId = %d where Id=%d and versionId = 0" % (newversionId, maxId)) + self.cursor.execute("update GeneRIFXRef set versionId = %d where GeneRIFId=%d and versionId = 0" % (newversionId, maxId)) + else: + #new record + try: + maxId = self.cursor.fetchone()[0] +1 + except: + maxId = 1 + + for item in self.fields: + if not getattr(self, item): + setattr(self, item, None) + self.cursor.execute("""insert into GeneRIF (id, symbol, PubMed_ID, SpeciesId, comment, email, createtime, user_ip, display, weburl, initial, reason) + values (%s, %s, %s, %s, %s, %s, Now(), %s, 1, %s, %s, %s)""", + (maxId, self.symbol, self.pubmedid, string.split(self.species, ":")[-1], self.comment, + self.email, fd.remote_ip, self.weburl, self.initial, self.reason)) + if self.genecategory: + Ids = string.split(self.genecategory) + for item in Ids: + self.cursor.execute("insert into GeneRIFXRef(GeneRIFId, GeneCategoryId) values(%s, %s)" % (maxId, item)) + return 2 + except: + heading = self.dict['title'] + detail = ["Error occurred while adding your Gene RIFs."] + self.error(heading=heading,detail=detail,error="Error") + return 1 + + diff --git a/web/webqtl/geneWiki/__init__.py b/web/webqtl/geneWiki/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/genomeGraph/__init__.py b/web/webqtl/genomeGraph/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/genomeGraph/cmdGenomeScanPage.py b/web/webqtl/genomeGraph/cmdGenomeScanPage.py new file mode 100755 index 00000000..d880ce69 --- /dev/null +++ b/web/webqtl/genomeGraph/cmdGenomeScanPage.py @@ -0,0 +1,532 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string +import piddle as pid +import os +import math + +from htmlgen import HTMLgen2 as HT + +from utility import svg +from base import webqtlConfig +from utility import Plot +from utility import webqtlUtil +from base.webqtlDataset import webqtlDataset +from base.templatePage import templatePage + + +######################################### +# Genome Scan PAGE +######################################### +class cmdGenomeScanPage(templatePage): + def __init__(self,fd): + templatePage.__init__(self,fd) + if not self.openMysql(): + return + self.database = fd.formdata.getvalue('database', '') + db = webqtlDataset(self.database, self.cursor) + + try: + self.openURL = webqtlConfig.CGIDIR + webqtlConfig.SCRIPTFILE + \ + '?FormID=showDatabase&database=%s&incparentsf1=1&ProbeSetID=' % self.database + + if db.type != "ProbeSet" or not db.id: + raise DbNameError + + self.cursor.execute(""" + Select + InbredSet.Name + From + ProbeSetFreeze, ProbeFreeze, InbredSet + whERE + ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id AND + ProbeFreeze.InbredSetId = InbredSet.Id AND + ProbeSetFreeze.Id = %d + """ % db.id) + thisRISet = self.cursor.fetchone()[0] + if thisRISet =='BXD300': + thisRISet = 'BXD' + + ################################################## + # exon data is too huge for GenoGraph, skip it # + ################################################## + self.cursor.execute('select count(*) from ProbeSetXRef where ProbeSetFreezeId=%d' % db.id) + amount = self.cursor.fetchall() + if amount: + amount = amount[0][0] + if amount>100000: + heading = "Whole Transcriptome Mapping" + detail = ["Whole Transcriptome Mapping is not available for this data set."] + self.error(heading=heading,detail=detail) + return + + self.cursor.execute(""" + Select + ProbeSet.Id, ProbeSet.Name, ProbeSet.Chr, ProbeSet.Mb, ProbeSetXRef.Locus, ProbeSetXRef.pValue + From + ProbeSet, ProbeSetXRef + whERE + ProbeSetXRef.ProbeSetFreezeId = %d AND + ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + ProbeSetXRef.Locus is not NULL + """ % db.id) + results = self.cursor.fetchall() + + if results: + self.mouseChrLengthDict, sum = self.readMouseGenome(thisRISet) + + import reaper + markerGMb = {} + genotype_1 = reaper.Dataset() + genotype_1.read(os.path.join(webqtlConfig.GENODIR, thisRISet + '.geno')) + for chr in genotype_1: + chrlen = self.mouseChrLengthDict[chr.name] + + for locus in chr: + markerGMb[locus.name] = locus.Mb + chrlen + + try: + FDR = float(fd.formdata.getvalue("fdr", "")) + except: + FDR = 0.2 + self.grid = fd.formdata.getvalue("grid", "") + + NNN = len(results) + results = list(results) + results.sort(self.cmppValue) + + MbCoord = [] + MbCoord2 = [] + + for j in range(NNN, 0, -1): + if results[j-1][-1] <= (FDR*j)/NNN: + break + + if j > 0: + for i in range(j-1, -1, -1): + _Id, _probeset, _chr, _Mb, _marker, _pvalue = results[i] + try: + MbCoord.append([markerGMb[_marker], _Mb+self.mouseChrLengthDict[string.strip(_chr)], _probeset, _chr, _Mb, _marker, _pvalue]) + except: + pass + + filename=webqtlUtil.genRandStr("gScan_") + canvas = pid.PILCanvas(size=(1280,880)) + self.drawGraph(canvas, MbCoord, cLength=sum) + + canvas.save(os.path.join(webqtlConfig.IMGDIR, filename), format='png') + + canvasSVG = self.drawSVG(MbCoord, cLength=sum, size=(1280,880)) + canvasSVG.toXml(os.path.join(webqtlConfig.IMGDIR, filename+'.svg')) #and write it to file + + img = HT.Embed(src='/image/'+filename+'.png', width=1280, height=880, border=0, alt='Genome Scan') + img2 = HT.Embed(src='/image/'+filename+'.svg', width=1280, height=880, border=0) + TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee') + + heading = HT.Paragraph('Whole Transcriptome Mapping') + heading.__setattr__("class","title") + intro = HT.Blockquote() + intro.append('The plot below is the Whole Transcriptome Mapping of Database ') + intro.append(HT.Href(text=db.fullname, url = webqtlConfig.INFOPAGEHREF % db.name ,target='_blank',Class="normalsize")) + intro.append(". %d from a total of %d ProbeSets were utilized to generate this graph." % (len(MbCoord), len(results))) + + mainfm = HT.Form(cgi = os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', \ + name=webqtlUtil.genRandStr("fm_"), submit=HT.Input(type='hidden')) + mainfm.append(HT.Input(name='database', value=self.database, type='hidden')) + mainfm.append(HT.Input(name='FormID', value='transciptMapping', type='hidden')) + + mainfm.append("
      ") + mainfm.append("0 < FDR <= 1.0 ") + mainfm.append(HT.Input(name='fdr', value=FDR, type='text')) + + mainfm.append(HT.Input(name='submit', value='Redraw Graph', type='submit', Class='button')) + mainfm.append("
      ") + mainfm.append(""" +
      + + +
      +""") + mainfm.append(img) + mainfm.append(""" +
      + +
      +""") + mainfm.append(img2) + mainfm.append(""" +
      +
      +""") + + TD_LR.append(heading, intro, HT.Paragraph(mainfm)) + + self.dict['title'] = 'Whole Transcriptome Mapping' + self.dict['body'] = TD_LR + else: + heading = "Whole Transcriptome Mapping" + detail = ["Database calculation is not finished."] + self.error(heading=heading,detail=detail) + return + except: + heading = "Whole Transcriptome Mapping" + detail = ["Whole Transcriptome Mapping only apply to Microarray database."] + self.error(heading=heading,detail=detail) + return + + def drawSVG(self, data, cLength = 2500, offset= (80, 160, 60, 60), size=(1280,880), + XLabel="Marker GMb", YLabel="Transcript GMb"): + entities = { + "colorText" : "fill:darkblue;", + "strokeText" : ";stroke:none;stroke-width:0;", + "allText" : "font-family:Helvetica;", + "titleText" : "font-size:22;font-weight:bold;", + "subtitleText" : "font-size:18;font-weight:bold;", + "headlineText" : "font-size:14;font-weight:bold;", + "normalText" : "font-size:12;", + "legendText" : "font-size:11;text-anchor:end;", + "valuesText" : "font-size:12;", + "boldValuesText" : "font-size:12;font-weight:bold;", + "smallText" : "font-size:10;", + "vText" : "writing-mode:tb-rl", + "rightText" : "text-anchor:end;", + "middleText" : "text-anchor:middle;", + "bezgrenzstyle" : "fill:none;stroke:#11A0FF;stroke-width:40;stroke-antialiasing:true;", + "rectstyle" : "fill:lightblue;stroke:none;opacity:0.2;", + "fillUnbebaut" : "fill:#CCFFD4;stroke:none;", + "fillNodata" : "fill:#E7E7E7;stroke:black;stroke-width:2;stroke-antialiasing:true;", + "fillNodataLegend" : "fill:#E7E7E7;stroke:black;stroke-width:0.5;stroke-antialiasing:true;", + "grundzeitstyle" : "fill:none;stroke:#E00004;stroke-width:60;stroke-antialiasing:true;", + "bezgrenzstyle" : "fill:none;stroke:#11A0FF;stroke-width:40;stroke-antialiasing:true;", + "mapAuthor" : "A. Neumann", + } + cWidth, cHeight = size + canvasSVG = svg.drawing(entities) #create a drawing + drawSpace=svg.svg((0, 0, cWidth, cHeight), cWidth, cHeight, xml__space="preserve", + zoomAndPan="disable", onload="initMap(evt);", + xmlns__a3="http://ns.adobe.com/AdobeSVGViewerExtensions/3.0/", + a3__scriptImplementation="Adobe") #create a svg drawingspace + canvasds=svg.description('Genome Graph') #define a description + drawSpace.addElement(canvasds) #add the description to the svg + + #need to be modified or deleted + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = cWidth - xLeftOffset - xRightOffset + plotHeight = cHeight - yTopOffset - yBottomOffset + drawSpace.addElement(svg.script("", language="javascript", xlink__href="/javascript/svg.js")) + + #add defs + defs = svg.defs() + symbol1= svg.symbol(id="magnifyer", overflow="visible", + style="fill:white;stroke:orange;stroke-width:2;") + symbol1.addElement(svg.line(0, 0, -8, 20)) + symbol1.addElement(svg.circle(0, 0, 8)) + symbol1.addElement(svg.line(-4, 0, 4, 0, style="stroke:orange;stroke-width:2;")) + defs.addElement(symbol1) + symbol2= svg.symbol(id="magnifyerZoomIn",overflow="visible") + symbol2.addElement(svg.use(link="#magnifyer", id="zoomIn")) + symbol2.addElement(svg.line(0, -4, 0, 4, style="stroke:orange;stroke-width:2;")) + defs.addElement(symbol2) + drawSpace.addElement(defs) + + symbol3= svg.symbol(id="msgbox", overflow="visible", + style="fill:white;stroke:orange;stroke-width:1;opacity:0.8;") + symbol3.addElement(svg.rect(-80, -190, 300, 150, rx=10, ry=10)) + symbol3.addElement(svg.line(21, -40, 58, -40, style="stroke:white;")) + symbol3.addElement(svg.polyline([[20, -40], [0, 0], [60, -40]])) + symbol3.addElement(svg.text(-60, -160, "ProbeSet ", style="&colorText; &allText; &subtitleText; &strokeText;")) + symbol3.addElement(svg.text(-60, -125, "Marker ", style="&colorText; &allText; &subtitleText; &strokeText;")) + symbol3.addElement(svg.text(-60, -90, "LRS ", style="&colorText; &allText; &subtitleText; &strokeText;")) + symbol3.addElement(svg.text(-60, -55, "P value ", style="&colorText; &allText; &subtitleText; &strokeText;")) + defs.addElement(symbol3) + + g = svg.group("title") + g.addElement(svg.text(cWidth-40, 30, "Genome Graph", style="&colorText; &allText; &titleText; &rightText;")) + g.addElement(svg.text(cWidth-40, 50, "Whole Transcriptome Mapping", style="&colorText; &allText; &subtitleText; &rightText;")) + drawSpace.addElement(g) + + #draw Main display area border + mainSquare = cHeight-60 + cordZOOM = 10 + drawSpace.addElement(svg.rect(8, 8, mainSquare+4, mainSquare+4,'none',"orange",0.5, rx="5", ry="5")) + drawSpace.addElement(svg.text(10+mainSquare/2, 40+mainSquare,'Marker GMb', + style="&colorText; &allText; &titleText; &middleText;", id="XLabel")) + drawSpace.addElement(svg.text(mainSquare + 80, 10+mainSquare/2,'Transcript GMb', + style="&colorText; &allText; &titleText; &middleText; &vText;", id="YLabel")) + + #draw overview display area + drawSpace.addElement(svg.rect(cWidth-40-260, 60, 260, 260,'none',"orange",0.5, rx="5", ry="5")) + drawSpaceThumb= svg.svg(id="overviewPlot",x=cWidth-40-260,y="60",width="260", + height="260",viewBox=(0, 0, mainSquare*cordZOOM, mainSquare*cordZOOM)) + g = svg.group(style="&bezgrenzstyle;") + g.addElement(svg.use("#grid")) + drawSpaceThumb.addElement(g) + drawSpaceThumb.addElement(svg.rect(id="overviewRect",style="&rectstyle;", + x="0",y="0",width=mainSquare*cordZOOM,height=mainSquare*cordZOOM, + onmouseover="statusChange('click and drag rectangle to change extent');", + onmousedown="beginPan(evt);", onmousemove="doPan(evt);", + onmouseup="endPan();", onmouseout="endPan();")) + drawSpace.addElement(drawSpaceThumb) + + #draw navigator + g = svg.group(id="navigatorElements") + g.addElement(svg.use("#magnifyerZoomIn", id="zoomIn", transform="translate(%d,350)" % (cWidth-40-130-20), + onmouseover="magnify(evt,1.3,'in');", onmouseout="magnify(evt,1,'in');", onclick="zoomIt('in');")) + g.addElement(svg.use("#magnifyer", id="zoomOut", transform="translate(%d,350)" % (cWidth-40-130+20), + onmouseover="magnify(evt,1.3,'out');",onmouseout="magnify(evt,1,'out');", onclick="zoomIt('out');")) + + drawSpace.addElement(g) + + g = svg.group(id="statusBar") + g.addElement(svg.text(cWidth-40-260, 360, "ZOOM: 100%", style="fill:orange; font-size:14;", id="zoomValueObj")) + g.addElement(svg.text(cWidth-40-260, 380, "Status:", style="&colorText; &allText; &smallText;")) + g.addElement(svg.text(cWidth-40-260, 395, "Loading Plot", style="&colorText; &allText; &smallText;", id="statusText")) + drawSpace.addElement(g) + + #draw main display area + drawSpaceMain= svg.svg((0, 0, mainSquare*cordZOOM, mainSquare*cordZOOM), mainSquare, mainSquare, + id="mainPlot",x="10",y="10") + mPlotWidth = mPlotHeight = 0.8*mainSquare*cordZOOM + + drawSpaceMain.addElement(svg.rect(mainSquare*cordZOOM*0.1, mainSquare*cordZOOM*0.1, mPlotWidth, mPlotHeight,style="fill:white", + onmousemove="showChr(evt);", onmouseover="showChr(evt);", onmouseout="showNoChr(evt);")) + #draw grid + g = svg.group("grid", style="stroke:lightblue;stroke-width:3", + transform="translate(%d,%d)" % (mainSquare*cordZOOM*0.1, mainSquare*cordZOOM*0.1)) + + if 1: #self.grid == "on": + js = [] + for key in self.mouseChrLengthDict.keys(): + length = self.mouseChrLengthDict[key] + js.append(mPlotWidth*length/cLength) + if length != 0: + yCoord = mPlotHeight*(1.0-length/cLength) + l = svg.line(0,yCoord ,mPlotWidth, yCoord) + g.addElement(l) + xCoord = mPlotWidth*length/cLength + l = svg.line(xCoord, 0 ,xCoord, mPlotHeight) + g.addElement(l) + js.sort() + drawSpace.addElement(svg.script("",language="javascript", cdata="var openURL=\"%s\";\nvar chrLength=%s;\n" % (self.openURL, js))) + + g.addElement(svg.rect(0, 0, mPlotWidth, mPlotHeight,'none','black',10)) + drawSpaceMain.addElement(g) + + #draw Scale + g = svg.group("scale", style="stroke:black;stroke-width:0", + transform="translate(%d,%d)" % (mainSquare*cordZOOM*0.1, mainSquare*cordZOOM*0.1)) + i = 100 + scaleFontSize = 11*cordZOOM + while i < cLength: + yCoord = mPlotHeight - mPlotHeight*i/cLength + l = svg.line(0,yCoord ,-5*cordZOOM, yCoord) + g.addElement(l) + t = svg.text(-40*cordZOOM, yCoord +5*cordZOOM, "%d"% i, 100, "verdana") # coordinate tag Y + g.addElement(t) + xCoord = mPlotWidth*i/cLength + l = svg.line(xCoord, mPlotHeight, xCoord, mPlotHeight+5*cordZOOM) + g.addElement(l) + if i%200 == 0: + t = svg.text(xCoord, mPlotHeight+10*cordZOOM, "%d"% i, 100, "verdana") # coordinate tag X + g.addElement(t) + i += 100 + + drawSpaceMain.addElement(g) + #draw Points + finecolors = Plot.colorSpectrumSVG(12) + finecolors.reverse() + g = preColor = "" + for item in data: + _probeset, _chr, _Mb, _marker, _pvalue = item[2:] + try: + _idx = int((-math.log10(_pvalue))*12/6.0) # add module name + _color = finecolors[_idx] + except: + _color = finecolors[-1] + if _color != preColor: + preColor = _color + if g: + drawSpaceMain.addElement(g) + g = svg.group("points", style="stroke:%s;stroke-width:5" % _color, + transform="translate(%d,%d)" % (mainSquare*cordZOOM*0.1, mainSquare*cordZOOM*0.1), + onmouseover="mvMsgBox(evt);", onmouseout="hdMsgBox();", onmousedown="openPage(evt);") + else: + pass + px = mPlotWidth*item[0]/cLength + py = mPlotHeight*(1.0-item[1]/cLength) + l = svg.line("%2.1f" % (px-3*cordZOOM), "%2.1f" % py, "%2.1f" % (px+3*cordZOOM), "%2.1f" % py, ps=_probeset, mk=_marker) + g.addElement(l) + + drawSpaceMain.addElement(g) + + """ + #draw spectrum + i = 0 + j = 0 + middleoffsetX = 40 + labelFont=pid.Font(ttf="tahoma",size=12,bold=0) + for dcolor in finecolors: + drawSpace.drawLine(xLeftOffset+ plotWidth + middleoffsetX -15 , plotHeight + yTopOffset - i, \ + xLeftOffset+ plotWidth + middleoffsetX+15 , plotHeight + yTopOffset - i, color=dcolor) + if i % 50 == 0: + drawSpace.drawLine(xLeftOffset+ plotWidth +middleoffsetX+15 ,plotHeight + yTopOffset - i, \ + xLeftOffset+ plotWidth +middleoffsetX+20,plotHeight + yTopOffset - i, color=pid.black) + drawSpace.drawString("%1.1f" % -j , xLeftOffset+ plotWidth +middleoffsetX+25 ,plotHeight + yTopOffset - i+5, font = labelFont) + j += 1 + i += 1 + drawSpace.drawLine(xLeftOffset+ plotWidth +middleoffsetX+15 ,plotHeight + yTopOffset - i+1, \ + xLeftOffset+ plotWidth +middleoffsetX+20,plotHeight + yTopOffset - i+1, color=pid.black) + drawSpace.drawString("%1.1f" % -j , xLeftOffset+ plotWidth +middleoffsetX+25 ,plotHeight + yTopOffset - i+6, font = labelFont) + labelFont=pid.Font(ttf="tahoma",size=14,bold=1) + drawSpace.drawString("Log(pValue)" , xLeftOffset+ plotWidth +middleoffsetX+60 ,plotHeight + yTopOffset - 100, font = labelFont, angle =90) + + labelFont=pid.Font(ttf="verdana",size=18,bold=0) + drawSpace.drawString(XLabel, xLeftOffset + (plotWidth -drawSpace.stringWidth(XLabel,font=labelFont))/2.0, plotHeight + yTopOffset +40, color=pid.blue, font=labelFont) + drawSpace.drawString(YLabel,xLeftOffset-60, plotHeight + yTopOffset-(plotHeight -drawSpace.stringWidth(YLabel,font=labelFont))/2.0, color=pid.blue, font=labelFont, angle =90) + """ + drawSpace.addElement(drawSpaceMain) + + g= svg.group(id="dispBox", overflow="visible", + style="fill:white;stroke:orange;stroke-width:1;opacity:0.85;", + transform="translate(%d,650)" % (cWidth-40-300), visibility="hidden") + g.addElement(svg.rect(-80, -190, 300, 150, rx=10, ry=10)) + g.addElement(svg.line(21, -40, 58, -40, style="stroke:white;")) + g.addElement(svg.polyline([[20, -40], [0, 0], [60, -40]])) + g.addElement(svg.text(-60, -160, "ProbeSet ", style="&colorText; &allText; &subtitleText; &strokeText;", id="_probeset")) + g.addElement(svg.text(-60, -125, "Marker ", style="&colorText; &allText; &subtitleText; &strokeText;", id="_marker")) + + drawSpace.addElement(g) + + canvasSVG.setSVG(drawSpace) #set the svg of the drawing to the svg + return canvasSVG + + + def drawGraph(self, canvas, data, cLength = 2500, offset= (80, 160, 60, 60), XLabel="QTL location (GMb)", YLabel="Gene location (GMb)"): + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + + #draw Frame + canvas.drawRect(plotWidth+xLeftOffset, plotHeight + yTopOffset, xLeftOffset, yTopOffset) + + #draw Scale + i = 100 + scaleFont=pid.Font(ttf="cour",size=11,bold=1) + while i < cLength: + yCoord = plotHeight + yTopOffset - plotHeight*i/cLength + canvas.drawLine(xLeftOffset,yCoord ,xLeftOffset-5, yCoord) + canvas.drawString("%d"% i, xLeftOffset -40, yCoord +5,font=scaleFont) + xCoord = xLeftOffset + plotWidth*i/cLength + canvas.drawLine(xCoord, plotHeight + yTopOffset ,xCoord, plotHeight + yTopOffset+5) + canvas.drawString("%d"% i, xCoord -10, plotHeight + yTopOffset+15,font=scaleFont) + i += 100 + + #draw Points + finecolors = Plot.colorSpectrum(300) + finecolors.reverse() + for item in data: + _pvalue = item[-1] + try: + _idx = int((-math.log10(_pvalue))*300/6.0) # XZ, 09/11/2008: add module name + _color = finecolors[_idx] + except: + _color = finecolors[-1] + + canvas.drawCross(xLeftOffset + plotWidth*item[0]/cLength, plotHeight + yTopOffset - plotHeight*item[1]/cLength, color=_color,size=3) + + #draw grid / always draw grid + if 1: #self.grid == "on": + for key in self.mouseChrLengthDict.keys(): + length = self.mouseChrLengthDict[key] + if length != 0: + yCoord = plotHeight + yTopOffset - plotHeight*length/cLength + canvas.drawLine(xLeftOffset,yCoord ,xLeftOffset+plotWidth, yCoord, color=pid.lightgrey) + xCoord = xLeftOffset + plotWidth*length/cLength + canvas.drawLine(xCoord, plotHeight + yTopOffset ,xCoord, yTopOffset, color=pid.lightgrey) + + #draw spectrum + i = 0 + j = 0 + middleoffsetX = 40 + labelFont=pid.Font(ttf="tahoma",size=12,bold=0) + for dcolor in finecolors: + canvas.drawLine(xLeftOffset+ plotWidth + middleoffsetX -15 , plotHeight + yTopOffset - i, \ + xLeftOffset+ plotWidth + middleoffsetX+15 , plotHeight + yTopOffset - i, color=dcolor) + if i % 50 == 0: + canvas.drawLine(xLeftOffset+ plotWidth +middleoffsetX+15 ,plotHeight + yTopOffset - i, \ + xLeftOffset+ plotWidth +middleoffsetX+20,plotHeight + yTopOffset - i, color=pid.black) + canvas.drawString("%1.1f" % -j , xLeftOffset+ plotWidth +middleoffsetX+25 ,plotHeight + yTopOffset - i+5, font = labelFont) + j += 1 + i += 1 + canvas.drawLine(xLeftOffset+ plotWidth +middleoffsetX+15 ,plotHeight + yTopOffset - i+1, \ + xLeftOffset+ plotWidth +middleoffsetX+20,plotHeight + yTopOffset - i+1, color=pid.black) + canvas.drawString("%1.1f" % -j , xLeftOffset+ plotWidth +middleoffsetX+25 ,plotHeight + yTopOffset - i+6, font = labelFont) + labelFont=pid.Font(ttf="tahoma",size=14,bold=1) + canvas.drawString("Log(pValue)" , xLeftOffset+ plotWidth +middleoffsetX+60 ,plotHeight + yTopOffset - 100, font = labelFont, angle =90) + + labelFont=pid.Font(ttf="verdana",size=18,bold=0) + canvas.drawString(XLabel, xLeftOffset + (plotWidth -canvas.stringWidth(XLabel,font=labelFont))/2.0, plotHeight + yTopOffset +40, color=pid.blue, font=labelFont) + canvas.drawString(YLabel,xLeftOffset-60, plotHeight + yTopOffset-(plotHeight -canvas.stringWidth(YLabel,font=labelFont))/2.0, color=pid.blue, font=labelFont, angle =90) + return + + def readMouseGenome(self, RISet): + ldict = {} + lengths = [] + sum = 0 + ##################################### + # Retrieve Chr Length Information + ##################################### + self.cursor.execute(""" + Select + Chr_Length.Name, Length from Chr_Length, InbredSet + where + Chr_Length.SpeciesId = InbredSet.SpeciesId AND + InbredSet.Name = '%s' + Order by + OrderId + """ % RISet) + lengths = self.cursor.fetchall() + ldict[lengths[0][0]] = 0 + prev = lengths[0][1]/1000000.0 + sum += lengths[0][1]/1000000.0 + for item in lengths[1:]: + ldict[item[0]] = prev + prev += item[1]/1000000.0 + sum += item[1]/1000000.0 + return ldict, sum + + def cmppValue(self, A,B): + if A[-1] < B[-1]: + return -1 + elif A[-1] == B[-1]: + return 0 + else: + return 1 + diff --git a/web/webqtl/genomeGraph/genAllDbResultPage.py b/web/webqtl/genomeGraph/genAllDbResultPage.py new file mode 100755 index 00000000..f0663a7c --- /dev/null +++ b/web/webqtl/genomeGraph/genAllDbResultPage.py @@ -0,0 +1,309 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string +import os +import time + +from htmlgen import HTMLgen2 as HT + +from base import webqtlConfig +from utility import webqtlUtil +from base.webqtlDataset import webqtlDataset +from base.templatePage import templatePage + + +######################################### +# Genome Scan PAGE +######################################### +class genAllDbResultPage(templatePage): + + def __init__(self,fd): + + templatePage.__init__(self,fd) + + if not self.openMysql(): + return + + self.database = fd.formdata.getvalue('database', '') + db = webqtlDataset(self.database, self.cursor) + + try: + if db.type != "ProbeSet" or not db.id: + raise DbNameError + except: + print 'Content-type: text/html\n' + heading = "Download Results" + detail = ["Only results of microarray database are available to download."] + self.error(heading=heading,detail=detail) + self.write() + return + + + #XZ, protect confidential dataset. + userExist = None + self.cursor.execute('SELECT Id, Name, FullName, confidentiality, AuthorisedUsers FROM ProbeSetFreeze WHERE Name = "%s"' % self.database) + indId, indName, indFullName, indConfid, AuthorisedUsers = self.cursor.fetchall()[0] + if indConfid == 1 and userExist == None: + try: + + userExist = self.userName + + #for the dataset that confidentiality is 1 + #1. 'admin' and 'root' can see all of the dataset + #2. 'user' can see the dataset that AuthorisedUsers contains his id(stored in the Id field of User table) + if webqtlConfig.USERDICT[self.privilege] < webqtlConfig.USERDICT['admin']: + if not AuthorisedUsers: + userExist=None + else: + AuthorisedUsersList=AuthorisedUsers.split(',') + if not AuthorisedUsersList.__contains__(self.userName): + userExist=None + except: + pass + + if not userExist: + #Error, Confidential Database + heading = "Correlation Table" + detail = ["The %s database you selected is not open to the public at this time, please go back and select other database." % indFullName] + self.error(heading=heading,detail=detail,error="Confidential Database") + return + + self.cursor.execute(""" + Select + InbredSet.Name + From + ProbeSetFreeze, ProbeFreeze, InbredSet + whERE + ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id AND + ProbeFreeze.InbredSetId = InbredSet.Id AND + ProbeSetFreeze.Id = %d + """ % db.id) + thisRISet = self.cursor.fetchone()[0] + if thisRISet =='BXD300': + thisRISet = 'BXD' + + #XZ, 06/26/2009: It seems that this query is not neccessary. It doesn't return any result. + #XZ: It seems it is just for test purpose. The next try-except block does the real work. + #XZ: I think it should be deleted to shorten the response time. + #self.cursor.execute(""" + # Select + # ProbeSet.Name, ProbeSet.symbol, ProbeSet.description, ProbeSet.Chr, ProbeSet.Mb, ProbeSetXRef.Locus, + # ProbeSetXRef.LRS, ProbeSetXRef.pValue, ProbeSetXRef.additive, ProbeSetXRef.mean + # From + # ProbeSet, ProbeSetXRef + # whERE + # ProbeSetXRef.ProbeSetFreezeId = %d AND + # ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + # ProbeSetXRef.Locus is not NULL + # Order by + # ProbeSet.name_num + # """ % db.id) + + filename = os.path.join(webqtlConfig.SECUREDIR, db.name+'.result.xls') + + try: + import random234 + if random.choice(range(10)) == 0: + raise "ReCalculate" + fp = open(filename, 'rb') + text = fp.read() + fp.close() + except: + self.cursor.execute("Select ProbeSetXRef.ProbeSetId from ProbeSetXRef where ProbeSetFreezeId=%d" % db.id) + ProbeSetIds = self.cursor.fetchall() + self.mouseChrLengthDict, sum = self.readMouseGenome(thisRISet) + + if ProbeSetIds: + import reaper + markerGMb = {} + genotype_1 = reaper.Dataset() + genotype_1.read(os.path.join(webqtlConfig.GENODIR, thisRISet + '.geno')) + for chr in genotype_1: + chrlen = self.mouseChrLengthDict[chr.name] + for locus in chr: + markerGMb[locus.name] = [chr.name, locus.Mb, locus.Mb + chrlen] + + text = [] + text.append(['ProbeSetId', 'Symbol', 'Description', 'Target Description', 'Chr', 'TMb', 'TGMb', 'Locus', 'LRS', 'Additive', 'pvalue', 'markerChr', 'markerMb', 'markerGMb', 'meanExpression']) + ProbeSetIdList = [] + for ProbeSetId in ProbeSetIds: + ProbeSetIdList.append(ProbeSetId[0]) + if len(ProbeSetIdList)==1000: + ProbeSetIdStr = ','.join(map(str, ProbeSetIdList)) + ProbeSetIdList = [] + + cmd = """ + Select + ProbeSet.Name, ProbeSet.symbol, ProbeSet.description,ProbeSet.Probe_Target_Description,ProbeSet.Chr, ProbeSet.Mb, + ProbeSetXRef.Locus, ProbeSetXRef.LRS, ProbeSetXRef.pValue, + ProbeSetXRef.additive, ProbeSetXRef.mean + From + ProbeSet, ProbeSetXRef + Where + ProbeSetXRef.ProbeSetFreezeId = %s AND + ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + ProbeSetXRef.Locus is not NULL AND + ProbeSet.Id in (%s) + Order by + ProbeSet.name_num + """ % (db.id, ProbeSetIdStr) + + self.cursor.execute(cmd) + results = self.cursor.fetchall() + + for result in results: + _Id, _symbol, _desc,_targetDesc, _chr, _TMb, _marker, _lrs, _pvalue, _additive, _mean = result + if _marker == "-": + continue + if not _additive: + _additive = "" + + try: + _TGMb = _TMb + self.mouseChrLengthDict[string.strip(_chr)] + except: + _TGMb = "" + + result2 = [_Id, _symbol, _desc, _targetDesc, _chr, _TMb, _TGMb, _marker, _lrs, _additive, _pvalue] + try: + result2 += markerGMb[_marker] + except: + result2 += ['', '', ''] + result2 += [_mean] + text.append(map(str, result2)) + + #XZ, 06/29/2007: This block is dealing with the last several probesets that fall out of the 1000-probeset block. + if ProbeSetIdList: + ProbeSetIdStr = ','.join(map(str, ProbeSetIdList)) + + cmd = """ + Select + ProbeSet.Name, ProbeSet.symbol, ProbeSet.description,ProbeSet.Probe_Target_Description, ProbeSet.Chr, ProbeSet.Mb, + ProbeSetXRef.Locus, ProbeSetXRef.LRS, ProbeSetXRef.pValue, + ProbeSetXRef.additive, ProbeSetXRef.mean + From + ProbeSet, ProbeSetXRef + Where + ProbeSetXRef.ProbeSetFreezeId = %s AND + ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + ProbeSetXRef.Locus is not NULL AND + ProbeSet.Id in (%s) + Order by + ProbeSet.name_num + """ % (db.id, ProbeSetIdStr) + + self.cursor.execute(cmd) + results = self.cursor.fetchall() + + for result in results: + _Id, _symbol, _desc, _targetDesc,_chr, _TMb, _marker, _lrs, _pvalue, _additive, _mean = result + if _marker == "-": + continue + if not _additive: + _additive = "" + + try: + _TGMb = _TMb + self.mouseChrLengthDict[string.strip(_chr)] + except: + _TGMb = "" + + result2 = [_Id, _symbol, _desc,_targetDesc, _chr, _TMb, _TGMb, _marker, _lrs, _additive, _pvalue] + try: + result2 += markerGMb[_marker] + except: + result2 += ['', '', ''] + result2 += [_mean] + text.append(map(str, result2)) + + + import pyXLWriter as xl + # Create a new Excel workbook + workbook = xl.Writer(filename) + worksheet = workbook.add_worksheet() + heading = workbook.add_format(align = 'center', bold = 1, size=13, color = 'red') + titleStyle = workbook.add_format(align = 'left', bold = 0, size=14, border = 1, border_color="gray") + + worksheet.write([0, 0], "Data source: The GeneNetwork at http://www.genenetwork.org", titleStyle) + worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle) + worksheet.write([2, 0], "Database : %s" % db.fullname, titleStyle) + worksheet.write([3, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime()), titleStyle) + worksheet.write([4, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime()), titleStyle) + worksheet.write([5, 0], "Status of data ownership: Possibly unpublished data; please see %s/statusandContact.html for details on sources, ownership, and usage of these data." % webqtlConfig.PORTADDR, titleStyle) + + table_row_start_index = 7 + nrow = table_row_start_index + for row in text: + for ncol, cell in enumerate(row): + if nrow == table_row_start_index: + worksheet.write([nrow, ncol], cell.strip(), heading) + worksheet.set_column([ncol, ncol], 20) + else: + worksheet.write([nrow, ncol], cell.strip()) + nrow += 1 + + worksheet.write([1+nrow, 0], "Funding for The GeneNetwork: NIAAA (U01AA13499, U24AA13513), NIDA, NIMH, and NIAAA (P20-DA21131), NCI MMHCC (U01CA105417), and NCRR (U01NR 105417)", titleStyle) + worksheet.write([2+nrow, 0], "PLEASE RETAIN DATA SOURCE INFORMATION WHENEVER POSSIBLE", titleStyle) + + workbook.close() + + fp = open(filename, 'rb') + text = fp.read() + fp.close() + else: + heading = "Download Results" + detail = ["Database calculation is not finished."] + self.error(heading=heading,detail=detail) + return + + self.content_type = 'application/xls' + self.content_disposition = 'attachment; filename=%s' % ('export-%s.xls' % time.strftime("%y-%m-%d-%H-%M")) + self.attachment = text + + def readMouseGenome(self, RISet): + ldict = {} + lengths = [] + sum = 0 + ##################################### + # Retrieve Chr Length Information + ##################################### + self.cursor.execute(""" + Select + Chr_Length.Name, Length from Chr_Length, InbredSet + where + Chr_Length.SpeciesId = InbredSet.SpeciesId AND + InbredSet.Name = '%s' + Order by + OrderId + """ % RISet) + lengths = self.cursor.fetchall() + ldict[lengths[0][0]] = 0 + prev = lengths[0][1]/1000000.0 + sum += lengths[0][1]/1000000.0 + for item in lengths[1:]: + ldict[item[0]] = prev + prev += item[1]/1000000.0 + sum += item[1]/1000000.0 + return ldict, sum diff --git a/web/webqtl/heatmap/Heatmap.py b/web/webqtl/heatmap/Heatmap.py new file mode 100755 index 00000000..c4543cee --- /dev/null +++ b/web/webqtl/heatmap/Heatmap.py @@ -0,0 +1,437 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os +import string +import piddle as pid +import cPickle + +from base import webqtlConfig +from base.webqtlTrait import webqtlTrait +from dbFunction import webqtlDatabaseFunction +from utility import webqtlUtil +from utility import Plot +import slink + + +# XZ, 09/09/2008: After adding several traits to collection, click "QTL Heatmap" button, +# XZ, 09/09/2008: This class will generate what you see. +######################################### +# QTL heatmap Page +######################################### +class Heatmap: + + def __init__(self, fd=None, searchResult=None, colorScheme=None, userPrivilege=None, userName=None): + cursor = webqtlDatabaseFunction.getCursor() + if (not cursor): + return + targetDescriptionChecked = fd.formdata.getvalue('targetDescriptionCheck', '') + clusterChecked = fd.formdata.getvalue('clusterCheck', '') + sessionfile = fd.formdata.getvalue("session") + genotype = fd.genotype + strainlist = fd.strainlist + ppolar = fd.ppolar + mpolar = fd.mpolar + traitList = [] + traitDataList = [] + for item in searchResult: + thisTrait = webqtlTrait(fullname=item, cursor=cursor) + thisTrait.retrieveInfo() + thisTrait.retrieveData(fd.strainlist) + traitList.append(thisTrait) + traitDataList.append(thisTrait.exportData(fd.strainlist)) + self.buildCanvas(colorScheme=colorScheme, targetDescriptionChecked=targetDescriptionChecked, clusterChecked=clusterChecked, sessionfile=sessionfile, genotype=genotype, strainlist=strainlist, ppolar=ppolar, mpolar=mpolar, traitList=traitList, traitDataList=traitDataList, userPrivilege=userPrivilege, userName=userName) + + def buildCanvas(self, colorScheme='', targetDescriptionChecked='', clusterChecked='', sessionfile='', genotype=None, strainlist=None, ppolar=None, mpolar=None, traitList=None, traitDataList=None, userPrivilege=None, userName=None): + labelFont = pid.Font(ttf="tahoma",size=14,bold=0) + topHeight = 0 + NNN = len(traitList) + #XZ: It's necessory to define canvas here + canvas = pid.PILCanvas(size=(80+NNN*20,880)) + names = map(webqtlTrait.displayName, traitList) + #XZ, 7/29/2009: create trait display and find max strWidth + strWidth = 0 + for j in range(len(names)): + thisTrait = traitList[j] + if targetDescriptionChecked: + if thisTrait.db.type == 'ProbeSet': + if thisTrait.probe_target_description: + names[j] += ' [%s at Chr %s @ %2.3fMB, %s]' % (thisTrait.symbol, thisTrait.chr, thisTrait.mb, thisTrait.probe_target_description) + else: + names[j] += ' [%s at Chr %s @ %2.3fMB]' % (thisTrait.symbol, thisTrait.chr, thisTrait.mb) + elif thisTrait.db.type == 'Geno': + names[j] += ' [Chr %s @ %2.3fMB]' % (thisTrait.chr, thisTrait.mb) + elif thisTrait.db.type == 'Publish': + if thisTrait.confidential: + if webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=userPrivilege, userName=userName, authorized_users=thisTrait.authorized_users): + if thisTrait.post_publication_abbreviation: + names[j] += ' [%s]' % (thisTrait.post_publication_abbreviation) + else: + if thisTrait.pre_publication_abbreviation: + names[j] += ' [%s]' % (thisTrait.pre_publication_abbreviation) + else: + if thisTrait.post_publication_abbreviation: + names[j] += ' [%s]' % (thisTrait.post_publication_abbreviation) + else: + pass + + i = canvas.stringWidth(names[j], font=labelFont) + if i > strWidth: + strWidth = i + + width = NNN*20 + xoffset = 40 + yoffset = 40 + cellHeight = 3 + nLoci = reduce(lambda x,y: x+y, map(lambda x: len(x),genotype),0) + + if nLoci > 2000: + cellHeight = 1 + elif nLoci > 1000: + cellHeight = 2 + elif nLoci < 200: + cellHeight = 10 + else: + pass + + pos = range(NNN) + neworder = [] + BWs = Plot.BWSpectrum() + colors100 = Plot.colorSpectrum() + colors = Plot.colorSpectrum(130) + finecolors = Plot.colorSpectrum(250) + colors100.reverse() + colors.reverse() + finecolors.reverse() + + scaleFont=pid.Font(ttf="tahoma",size=10,bold=0) + + if not clusterChecked: #XZ: this part is for original order + for i in range(len(names)): + neworder.append((xoffset+20*(i+1), i)) + + canvas = pid.PILCanvas(size=(80+NNN*20+240,80+ topHeight +5+5+strWidth+nLoci*cellHeight+80+20*cellHeight)) + + self.drawTraitNameBottom(canvas,names,yoffset,neworder,strWidth,topHeight,labelFont) + else: #XZ: this part is to cluster traits + topHeight = 400 + canvas = pid.PILCanvas(size=(80+NNN*20+240,80+ topHeight +5+5+strWidth+nLoci*cellHeight+80+20*cellHeight)) + + corArray = [([0] * (NNN))[:] for i in range(NNN)] + + nnCorr = len(strainlist) + + #XZ, 08/04/2009: I commented out pearsonArray, spearmanArray + for i, thisTrait in enumerate(traitList): + names1 = [thisTrait.db.name, thisTrait.name, thisTrait.cellid] + for j, thisTrait2 in enumerate(traitList): + names2 = [thisTrait2.db.name, thisTrait2.name, thisTrait2.cellid] + if j < i: + corr,nOverlap = webqtlUtil.calCorrelation(traitDataList[i], traitDataList[j],nnCorr) + if (1-corr) < 0: + distance = 0.0 + else: + distance = 1-corr + corArray[i][j] = distance + corArray[j][i] = distance + elif j == i: + corArray[i][j] = 0.0 + else: + pass + + #XZ, 7/29/2009: The parameter d has info of cluster (group member and distance). The format of d is tricky. Print it out to see it's format. + d = slink.slink(corArray) + + #XZ, 7/29/2009: Attention: The 'neworder' is changed by the 'draw' function + #XZ, 7/30/2009: Only toppos[1][0] and top[1][1] are used later. Then what toppos[0] is used for? + toppos = self.draw(canvas,names,d,xoffset,yoffset,neworder,topHeight) + self.drawTraitNameTop(canvas,names,yoffset,neworder,strWidth,topHeight,labelFont) + + #XZ, 7/29/2009: draw the top vertical line + canvas.drawLine(toppos[1][0],toppos[1][1],toppos[1][0],yoffset) + + #XZ: draw string 'distance = 1-r' + canvas.drawString('distance = 1-r',neworder[-1][0] + 50, topHeight*3/4,font=labelFont,angle=90) + + #draw Scale + scaleFont=pid.Font(ttf="tahoma",size=10,bold=0) + x = neworder[-1][0] + canvas.drawLine(x+5, topHeight+yoffset, x+5, yoffset, color=pid.black) + y = 0 + while y <=2: + canvas.drawLine(x+5, topHeight*y/2.0+yoffset, x+10, topHeight*y/2.0+yoffset) + canvas.drawString('%2.1f' % (2-y), x+12, topHeight*y/2.0+yoffset, font=scaleFont) + y += 0.5 + + + chrname = 0 + chrnameFont=pid.Font(ttf="tahoma",size=24,bold=0) + Ncol = 0 + + nearestMarkers = self.getNearestMarker(traitList, genotype) + + # import cPickle + if sessionfile: + fp = open(os.path.join(webqtlConfig.TMPDIR, sessionfile + '.session'), 'rb') + permData = cPickle.load(fp) + fp.close() + else: + permData = {} + + areas = [] + #XZ, 7/31/2009: This for loop is to generate the heatmap + #XZ: draw trait by trait instead of marker by marker + for order in neworder: + #startHeight = 40+400+5+5+strWidth + startHeight = topHeight + 40+5+5+strWidth + startWidth = order[0]-5 + if Ncol and Ncol % 5 == 0: + drawStartPixel = 8 + else: + drawStartPixel = 9 + + tempVal = traitDataList[order[1]] + _vals = [] + _strains = [] + for i in range(len(strainlist)): + if tempVal[i] != None: + _strains.append(strainlist[i]) + _vals.append(tempVal[i]) + + qtlresult = genotype.regression(strains = _strains, trait = _vals) + + if sessionfile: + LRSArray = permData[str(traitList[order[1]])] + else: + LRSArray = genotype.permutation(strains = _strains, trait = _vals, nperm = 1000) + permData[str(traitList[order[1]])] = LRSArray + + sugLRS = LRSArray[369] + sigLRS = LRSArray[949] + prechr = 0 + chrstart = 0 + nearest = nearestMarkers[order[1]] + midpoint = [] + + for item in qtlresult: + if item.lrs > webqtlConfig.MAXLRS: + adjustlrs = webqtlConfig.MAXLRS + else: + adjustlrs = item.lrs + + if item.locus.chr != prechr: + if prechr: + canvas.drawRect(startWidth-drawStartPixel, startHeight, startWidth+10, startHeight+3,edgeColor=pid.white, edgeWidth=0, fillColor=pid.white) + startHeight+= 3 + if not chrname: + canvas.drawString(prechr,xoffset-20,(chrstart+startHeight)/2,font = chrnameFont,color=pid.dimgray) + prechr = item.locus.chr + chrstart = startHeight + if colorScheme == '0': + if adjustlrs <= sugLRS: + colorIndex = int(65*adjustlrs/sugLRS) + else: + colorIndex = int(65 + 35*(adjustlrs-sugLRS)/(sigLRS-sugLRS)) + if colorIndex > 99: + colorIndex = 99 + colorIndex = colors100[colorIndex] + elif colorScheme == '1': + sugLRS = LRSArray[369]/2.0 + if adjustlrs <= sugLRS: + colorIndex = BWs[20+int(50*adjustlrs/sugLRS)] + else: + if item.additive > 0: + colorIndex = int(80 + 50*(adjustlrs-sugLRS)/(sigLRS-sugLRS)) + else: + colorIndex = int(50 - 50*(adjustlrs-sugLRS)/(sigLRS-sugLRS)) + if colorIndex > 129: + colorIndex = 129 + if colorIndex < 0: + colorIndex = 0 + colorIndex = colors[colorIndex] + elif colorScheme == '2': + if item.additive > 0: + colorIndex = int(150 + 100*(adjustlrs/sigLRS)) + else: + colorIndex = int(100 - 100*(adjustlrs/sigLRS)) + if colorIndex > 249: + colorIndex = 249 + if colorIndex < 0: + colorIndex = 0 + colorIndex = finecolors[colorIndex] + else: + colorIndex = pid.white + + if startHeight > 1: + canvas.drawRect(startWidth-drawStartPixel, startHeight, startWidth+10, startHeight+cellHeight,edgeColor=colorIndex, edgeWidth=0, fillColor=colorIndex) + else: + canvas.drawLine(startWidth-drawStartPixel, startHeight, startWidth+10, startHeight, Color=colorIndex) + + if item.locus.name == nearest: + midpoint = [startWidth,startHeight-5] + startHeight+=cellHeight + + #XZ, map link to trait name and band + COORDS = "%d,%d,%d,%d" %(startWidth-drawStartPixel,topHeight+40,startWidth+10,startHeight) + HREF = "javascript:showDatabase2('%s','%s','%s');" % (traitList[order[1]].db.name, traitList[order[1]].name, traitList[order[1]].cellid) + area = (COORDS, HREF, '%s' % names[order[1]]) + areas.append(area) + + if midpoint: + traitPixel = ((midpoint[0],midpoint[1]),(midpoint[0]-6,midpoint[1]+12),(midpoint[0]+6,midpoint[1]+12)) + canvas.drawPolygon(traitPixel,edgeColor=pid.black,fillColor=pid.orange,closed=1) + + if not chrname: + canvas.drawString(prechr,xoffset-20,(chrstart+startHeight)/2,font = chrnameFont,color=pid.dimgray) + chrname = 1 + Ncol += 1 + + + #draw Spectrum + startSpect = neworder[-1][0] + 30 + startHeight = topHeight + 40+5+5+strWidth + + if colorScheme == '0': + for i in range(100): + canvas.drawLine(startSpect+i,startHeight+20,startSpect+i,startHeight+40,color=colors100[i]) + scaleFont=pid.Font(ttf="tahoma",size=10,bold=0) + canvas.drawLine(startSpect,startHeight+45,startSpect,startHeight+39,color=pid.black) + canvas.drawString('LRS = 0',startSpect,startHeight+55,font=scaleFont) + canvas.drawLine(startSpect+64,startHeight+45,startSpect+64,startHeight+39,color=pid.black) + canvas.drawString('Suggestive LRS',startSpect+64,startHeight+55,font=scaleFont) + canvas.drawLine(startSpect+99,startHeight+45,startSpect+99,startHeight+39,color=pid.black) + canvas.drawString('Significant LRS',startSpect+105,startHeight+40,font=scaleFont) + elif colorScheme == '1': + for i in range(50): + canvas.drawLine(startSpect+i,startHeight,startSpect+i,startHeight+40,color=BWs[20+i]) + for i in range(50,100): + canvas.drawLine(startSpect+i,startHeight,startSpect+i,startHeight+20,color=colors[100-i]) + canvas.drawLine(startSpect+i,startHeight+20,startSpect+i,startHeight+40,color=colors[30+i]) + + canvas.drawLine(startSpect,startHeight+45,startSpect,startHeight+39,color=pid.black) + canvas.drawString('LRS = 0',startSpect,startHeight+60,font=scaleFont) + canvas.drawLine(startSpect+50,startHeight+45,startSpect+50,startHeight+39,color=pid.black) + canvas.drawString('0.5*Suggestive LRS',startSpect+50,startHeight+ 60,font=scaleFont) + canvas.drawLine(startSpect+99,startHeight+45,startSpect+99,startHeight+39,color=pid.black) + canvas.drawString('Significant LRS',startSpect+105,startHeight+50,font=scaleFont) + textFont=pid.Font(ttf="verdana",size=18,bold=0) + canvas.drawString('%s +' % ppolar,startSpect+120,startHeight+ 35,font=textFont,color=pid.red) + canvas.drawString('%s +' % mpolar,startSpect+120,startHeight+ 15,font=textFont,color=pid.blue) + elif colorScheme == '2': + for i in range(100): + canvas.drawLine(startSpect+i,startHeight,startSpect+i,startHeight+20,color=finecolors[100-i]) + canvas.drawLine(startSpect+i,startHeight+20,startSpect+i,startHeight+40,color=finecolors[150+i]) + + canvas.drawLine(startSpect,startHeight+45,startSpect,startHeight+39,color=pid.black) + canvas.drawString('LRS = 0',startSpect,startHeight+60,font=scaleFont) + canvas.drawLine(startSpect+99,startHeight+45,startSpect+99,startHeight+39,color=pid.black) + canvas.drawString('Significant LRS',startSpect+105,startHeight+50,font=scaleFont) + textFont=pid.Font(ttf="verdana",size=18,bold=0) + canvas.drawString('%s +' % ppolar,startSpect+120,startHeight+ 35,font=textFont,color=pid.red) + canvas.drawString('%s +' % mpolar,startSpect+120,startHeight+ 15,font=textFont,color=pid.blue) + + filename= webqtlUtil.genRandStr("Heatmap_") + canvas.save(webqtlConfig.IMGDIR+filename, format='png') + if not sessionfile: + sessionfile = webqtlUtil.generate_session() + webqtlUtil.dump_session(permData, os.path.join(webqtlConfig.TMPDIR, sessionfile +'.session')) + self.filename=filename + self.areas=areas + self.sessionfile=sessionfile + + def getResult(self): + return self.filename, self.areas, self.sessionfile + + #XZ, 7/31/2009: This function put the order of traits into parameter neworder, + #XZ: return the position of the top vertical line of the hierarchical tree, draw the hierarchical tree. + def draw(self,canvas,names,d,xoffset,yoffset,neworder,topHeight): + maxDistance = topHeight + fontoffset = 4 #XZ, 7/31/2009: used only for drawing tree + if type(d[0]) == type(1) and type(d[1]) == type(1): + neworder.append((xoffset+20,d[0])) + neworder.append((xoffset+40,d[1])) + height = d[2]*maxDistance/2 + canvas.drawLine(xoffset+20-fontoffset,maxDistance+yoffset,xoffset+20-fontoffset,maxDistance-height+yoffset) + canvas.drawLine(xoffset+40-fontoffset,maxDistance+yoffset,xoffset+40-fontoffset,maxDistance-height+yoffset) + canvas.drawLine(xoffset+40-fontoffset,maxDistance+yoffset-height,xoffset+20-fontoffset,maxDistance-height+yoffset) + return (40,(xoffset+30-fontoffset,maxDistance-height+yoffset)) + elif type(d[0]) == type(1): + neworder.append((xoffset+20,d[0])) + d2 = self.draw(canvas,names,d[1],xoffset+20,yoffset,neworder,topHeight) + height = d[2]*maxDistance/2 + canvas.drawLine(xoffset+20-fontoffset,maxDistance+yoffset,xoffset+20-fontoffset,maxDistance-height+yoffset) + canvas.drawLine(d2[1][0],d2[1][1],d2[1][0],maxDistance-height+yoffset) + canvas.drawLine(d2[1][0],maxDistance-height+yoffset,xoffset+20-fontoffset,maxDistance-height+yoffset) + return (20+d2[0],((d2[1][0]+xoffset+20-fontoffset)/2,maxDistance-height+yoffset)) + elif type(d[1]) == type(1): + d1 = self.draw(canvas,names,d[0],xoffset,yoffset,neworder,topHeight) + neworder.append((xoffset+d1[0]+20,d[1])) + height = d[2]*maxDistance/2 + canvas.drawLine(xoffset+d1[0]+20-fontoffset,maxDistance+yoffset,xoffset+d1[0]+20-fontoffset,maxDistance-height+yoffset) + canvas.drawLine(d1[1][0],d1[1][1],d1[1][0],maxDistance-height+yoffset) + canvas.drawLine(d1[1][0],maxDistance-height+yoffset,xoffset+d1[0]+20-fontoffset,maxDistance-height+yoffset) + return (d1[0]+20,((d1[1][0]+xoffset+d1[0]+20-fontoffset)/2,maxDistance-height+yoffset)) + else: + d1 = self.draw(canvas,names,d[0],xoffset,yoffset,neworder,topHeight) + d2 = self.draw(canvas,names,d[1],xoffset+d1[0],yoffset,neworder,topHeight) + height = d[2]*maxDistance/2 + canvas.drawLine(d2[1][0],d2[1][1],d2[1][0],maxDistance-height+yoffset) + canvas.drawLine(d1[1][0],d1[1][1],d1[1][0],maxDistance-height+yoffset) + canvas.drawLine(d1[1][0],maxDistance-height+yoffset,d2[1][0],maxDistance-height+yoffset) + return (d1[0]+d2[0],((d1[1][0]+d2[1][0])/2,maxDistance-height+yoffset)) + + #XZ, 7/31/2009: dras trait names + def drawTraitNameBottom (self,canvas,names,yoffset,neworder,strWidth,topHeight,labelFont): + maxDistance = topHeight + for oneOrder in neworder: + canvas.drawString(names[oneOrder[1]],oneOrder[0]-5,maxDistance+yoffset+5+strWidth-canvas.stringWidth(names[oneOrder[1]],font=labelFont),font=labelFont,color=pid.black,angle=270) + + def drawTraitNameTop (self,canvas,names,yoffset,neworder,strWidth,topHeight,labelFont): + maxDistance = topHeight + for oneOrder in neworder: + canvas.drawString(names[oneOrder[1]],oneOrder[0]-5,maxDistance+yoffset+5,font=labelFont,color=pid.black,angle=270) + + + def getNearestMarker(self, traitList, genotype): + out = [] + if not genotype.Mbmap: + return [None]* len(traitList) + for item in traitList: + try: + nearest = None + for _chr in genotype: + if _chr.name != item.chr: + continue + distance = 1e30 + for _locus in _chr: + if abs(_locus.Mb-item.mb) < distance: + distance = abs(_locus.Mb-item.mb) + nearest = _locus.name + out.append(nearest) + except: + out.append(None) + + return out diff --git a/web/webqtl/heatmap/__init__.py b/web/webqtl/heatmap/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/heatmap/heatmapPage.py b/web/webqtl/heatmap/heatmapPage.py new file mode 100755 index 00000000..b407b0c8 --- /dev/null +++ b/web/webqtl/heatmap/heatmapPage.py @@ -0,0 +1,116 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os +import string +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from base import webqtlConfig +from heatmap.Heatmap import Heatmap + + +# XZ, 09/09/2008: After adding several traits to collection, click "QTL Heatmap" button, +# XZ, 09/09/2008: This class will generate what you see. +######################################### +# QTL heatmap Page +######################################### +class heatmapPage(templatePage): + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + if not fd.genotype: + fd.readGenotype() + + searchResult = fd.formdata.getvalue('searchResult') + if not searchResult: + heading = 'QTL Heatmap' + detail = ['You need to select at least two traits in order to generate QTL heatmap.'] + self.error(heading=heading,detail=detail) + return + if type("1") == type(searchResult): + searchResult = string.split(searchResult,'\t') + if searchResult: + if len(searchResult) > webqtlConfig.MAXCORR: + heading = 'QTL Heatmap' + detail = ['In order to display the QTL heat map properly, do not select more than %d traits for analysis.' % webqtlConfig.MAXCORR] + self.error(heading=heading,detail=detail) + return + else: + heading = 'QTL Heatmap' + detail = [HT.Font('Error : ',color='red'),HT.Font('Error occurs while retrieving data from database.',color='black')] + self.error(heading=heading,detail=detail) + return + self.dict['title'] = 'QTL heatmap' + NNN = len(searchResult) + if NNN == 0: + heading = "QTL Heatmap" + detail = ['No trait was selected for %s data set. No QTL heatmap was generated.' % fd.RISet] + self.error(heading=heading,detail=detail) + return + elif NNN < 2: + heading = 'QTL Heatmap' + detail = ['You need to select at least two traits in order to generate QTL heatmap.'] + self.error(heading=heading,detail=detail) + return + else: + colorScheme = fd.formdata.getvalue('colorScheme') + if not colorScheme: + colorScheme = '1' + heatmapObject = Heatmap(fd=fd, searchResult=searchResult, colorScheme=colorScheme, userPrivilege=self.privilege, userName=self.userName) + filename, areas, sessionfile = heatmapObject.getResult() + gifmap = HT.Map(name='traitMap') + for area in areas: + Areas = HT.Area(shape='rect', coords=area[0], href=area[1], title=area[2]) + gifmap.areas.append(Areas) + img2=HT.Image('/image/'+filename+'.png',border=0,usemap='#traitMap') + imgUrl = 'Right-click or control-click on the link to download this graph as a PNG file' % filename + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':fd.RISet+"Geno",'CellID':'_','RISet':fd.RISet,'searchResult':string.join(searchResult,'\t')} + if fd.incparentsf1: + hddn['incparentsf1']='ON' + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + heatmapButton = HT.Input(type='button' ,name='mintmap',value='Redraw QTL Heatmap', onClick="databaseFunc(this.form,'heatmap');",Class="button") + spects = {'0':'Single Spectrum','1':'Grey + Blue + Red','2':'Blue + Red'} + schemeMenu = HT.Select(name='colorScheme') + schemeMenu.append(('Single Spectrum',0)) + schemeMenu.append(('Grey + Blue + Red',1)) + schemeMenu.append(('Blue + Red',2)) + schemeMenu.selected.append(spects[colorScheme]) + clusterCheck= HT.Input(type='checkbox', Class='checkbox', name='clusterCheck',checked=0) + targetDescriptionCheck = HT.Input(type='checkbox', Class='checkbox', name='targetDescriptionCheck',checked=0) + form.append(gifmap,schemeMenu, heatmapButton, HT.P(), clusterCheck, ' Cluster traits ', targetDescriptionCheck, ' Add description', HT.P(),img2, HT.P(), imgUrl) + form.append(HT.Input(name='session', value=sessionfile, type='hidden')) + heatmapHelp = HT.Input(type='button' ,name='heatmapHelpButton',value='Info', onClick="openNewWin('/heatmap.html');",Class="button") + heatmapHeading = HT.Paragraph('QTL Heatmap ', heatmapHelp, Class="title") + TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee') + TD_LR.append(heatmapHeading, HT.P(),HT.P(),HT.P(),HT.P(),HT.P(),form) + self.dict['body'] = str(TD_LR) diff --git a/web/webqtl/heatmap/heatmapPage_GN.py b/web/webqtl/heatmap/heatmapPage_GN.py new file mode 100755 index 00000000..abc5d8aa --- /dev/null +++ b/web/webqtl/heatmap/heatmapPage_GN.py @@ -0,0 +1,522 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os +import string +import piddle as pid +import cPickle +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from base import webqtlConfig +from base.webqtlTrait import webqtlTrait +from utility import webqtlUtil +from utility import Plot +import slink + + +# XZ, 09/09/2008: After adding several traits to collection, click "QTL Heatmap" button, +# XZ, 09/09/2008: This class will generate what you see. +######################################### +# QTL heatmap Page +######################################### +class heatmapPage(templatePage): + + labelFont=pid.Font(ttf="tahoma",size=14,bold=0) + + topHeight = 0 + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + if not fd.genotype: + fd.readGenotype() + + + self.searchResult = fd.formdata.getvalue('searchResult') + + if not self.searchResult: + templatePage.__init__(self, fd) + heading = 'QTL Heatmap' + detail = ['You need to select at least two traits in order to generate correlation matrix.'] + self.error(heading=heading,detail=detail) + return + if type("1") == type(self.searchResult): + self.searchResult = string.split(self.searchResult,'\t') + + + if self.searchResult: + if len(self.searchResult) > webqtlConfig.MAXCORR: + heading = 'QTL Heatmap' + detail = ['In order to display the QTL heat map properly, do not select more than %d traits for analysis.' % webqtlConfig.MAXCORR] + self.error(heading=heading,detail=detail) + return + + traitList = [] + traitDataList = [] + for item in self.searchResult: + thisTrait = webqtlTrait(fullname=item, cursor=self.cursor) + thisTrait.retrieveInfo() + thisTrait.retrieveData(fd.strainlist) + traitList.append(thisTrait) + traitDataList.append(thisTrait.exportData(fd.strainlist)) + else: + heading = 'QTL Heatmap' + detail = [HT.Font('Error : ',color='red'),HT.Font('Error occurs while retrieving data from database.',color='black')] + self.error(heading=heading,detail=detail) + return + + self.colorScheme = fd.formdata.getvalue('colorScheme') + if not self.colorScheme: + self.colorScheme = '1' + + self.dict['title'] = 'QTL heatmap' + + NNN = len(traitList) + + if NNN == 0: + heading = "QTL Heatmap" + detail = ['No trait was selected for %s data set. No QTL heatmap was generated.' % fd.RISet] + self.error(heading=heading,detail=detail) + return + elif NNN < 2: + templatePage.__init__(self, fd) + heading = 'QTL Heatmap' + detail = ['You need to select at least two traits in order to generate QTL heatmap.'] + self.error(heading=heading,detail=detail) + return + else: + #XZ: It's necessory to define canvas here + canvas = pid.PILCanvas(size=(80+NNN*20,880)) + + names = map(webqtlTrait.displayName, traitList) + + self.targetDescriptionChecked = fd.formdata.getvalue('targetDescriptionCheck', '') + + #XZ, 7/29/2009: create trait display and find max strWidth + strWidth = 0 + for j in range(len(names)): + thisTrait = traitList[j] + + if self.targetDescriptionChecked: + if thisTrait.db.type == 'ProbeSet': + if thisTrait.probe_target_description: + names[j] += ' [%s at Chr %s @ %2.3fMB, %s]' % (thisTrait.symbol, thisTrait.chr, thisTrait.mb, thisTrait.probe_target_description) + else: + names[j] += ' [%s at Chr %s @ %2.3fMB]' % (thisTrait.symbol, thisTrait.chr, thisTrait.mb) + elif thisTrait.db.type == 'Geno': + names[j] += ' [Chr %s @ %2.3fMB]' % (thisTrait.chr, thisTrait.mb) + elif thisTrait.db.type == 'Publish': + if thisTrait.abbreviation: + names[j] += ' [%s]' % (thisTrait.abbreviation) + else: + pass + else: + pass + + i = canvas.stringWidth(names[j],font=self.labelFont) + if i > strWidth: + strWidth = i + + width = NNN*20 + xoffset = 40 + yoffset = 40 + cellHeight = 3 + nLoci = reduce(lambda x,y: x+y, map(lambda x: len(x),fd.genotype),0) + + if nLoci > 2000: + cellHeight = 1 + elif nLoci > 1000: + cellHeight = 2 + elif nLoci < 200: + cellHeight = 10 + else: + pass + + pos = range(NNN) + neworder = [] + BWs = Plot.BWSpectrum() + colors100 = Plot.colorSpectrum() + colors = Plot.colorSpectrum(130) + finecolors = Plot.colorSpectrum(250) + colors100.reverse() + colors.reverse() + finecolors.reverse() + + scaleFont=pid.Font(ttf="tahoma",size=10,bold=0) + + self.clusterChecked = fd.formdata.getvalue('clusterCheck', '') + + + if not self.clusterChecked: #XZ: this part is for original order + for i in range(len(names)): + neworder.append((xoffset+20*(i+1), i)) + + canvas = pid.PILCanvas(size=(80+NNN*20+240,80+ self.topHeight +5+5+strWidth+nLoci*cellHeight+80+20*cellHeight)) + + self.drawTraitNameBottom(canvas,names,yoffset,neworder,strWidth) + else: #XZ: this part is to cluster traits + self.topHeight = 400 + canvas = pid.PILCanvas(size=(80+NNN*20+240,80+ self.topHeight +5+5+strWidth+nLoci*cellHeight+80+20*cellHeight)) + + corArray = [([0] * (NNN))[:] for i in range(NNN)] + + nnCorr = len(fd.strainlist) + + #XZ, 08/04/2009: I commented out pearsonArray, spearmanArray + for i, thisTrait in enumerate(traitList): + names1 = [thisTrait.db.name, thisTrait.name, thisTrait.cellid] + for j, thisTrait2 in enumerate(traitList): + names2 = [thisTrait2.db.name, thisTrait2.name, thisTrait2.cellid] + if j < i: + corr,nOverlap = webqtlUtil.calCorrelation(traitDataList[i],traitDataList[j],nnCorr) + if (1-corr) < 0: + distance = 0.0 + else: + distance = 1-corr + corArray[i][j] = distance + corArray[j][i] = distance + elif j == i: + corArray[i][j] = 0.0 + else: + pass + + #XZ, 7/29/2009: The parameter d has info of cluster (group member and distance). The format of d is tricky. Print it out to see it's format. + d = slink.slink(corArray) + + #XZ, 7/29/2009: Attention: The 'neworder' is changed by the 'draw' function + #XZ, 7/30/2009: Only toppos[1][0] and top[1][1] are used later. Then what toppos[0] is used for? + toppos = self.draw(canvas,names,d,xoffset,yoffset,neworder) + self.drawTraitNameTop(canvas,names,yoffset,neworder,strWidth) + + #XZ, 7/29/2009: draw the top vertical line + canvas.drawLine(toppos[1][0],toppos[1][1],toppos[1][0],yoffset) + + #XZ: draw string 'distance = 1-r' + canvas.drawString('distance = 1-r',neworder[-1][0] + 50, self.topHeight*3/4,font=self.labelFont,angle=90) + + #draw Scale + scaleFont=pid.Font(ttf="tahoma",size=10,bold=0) + x = neworder[-1][0] + canvas.drawLine(x+5, self.topHeight+yoffset, x+5, yoffset, color=pid.black) + y = 0 + while y <=2: + canvas.drawLine(x+5, self.topHeight*y/2.0+yoffset, x+10, self.topHeight*y/2.0+yoffset) + canvas.drawString('%2.1f' % (2-y), x+12, self.topHeight*y/2.0+yoffset, font=scaleFont) + y += 0.5 + + + chrname = 0 + chrnameFont=pid.Font(ttf="tahoma",size=24,bold=0) + Ncol = 0 + + gifmap = HT.Map(name='traitMap') + + nearestMarkers = self.getNearestMarker(traitList, fd.genotype) + + # import cPickle + sessionfile = fd.formdata.getvalue("session") + + if sessionfile: + fp = open(os.path.join(webqtlConfig.TMPDIR, sessionfile + '.session'), 'rb') + permData = cPickle.load(fp) + fp.close() + else: + permData = {} + + #XZ, 7/31/2009: This for loop is to generate the heatmap + #XZ: draw trait by trait instead of marker by marker + for order in neworder: + #startHeight = 40+400+5+5+strWidth + startHeight = self.topHeight + 40+5+5+strWidth + startWidth = order[0]-5 + if Ncol and Ncol % 5 == 0: + drawStartPixel = 8 + else: + drawStartPixel = 9 + + tempVal = traitDataList[order[1]] + _vals = [] + _strains = [] + for i in range(len(fd.strainlist)): + if tempVal[i] != None: + _strains.append(fd.strainlist[i]) + _vals.append(tempVal[i]) + + qtlresult = fd.genotype.regression(strains = _strains, trait = _vals) + + if sessionfile: + LRSArray = permData[str(traitList[order[1]])] + else: + LRSArray = fd.genotype.permutation(strains = _strains, trait = _vals, nperm = 1000) + permData[str(traitList[order[1]])] = LRSArray + + sugLRS = LRSArray[369] + sigLRS = LRSArray[949] + prechr = 0 + chrstart = 0 + nearest = nearestMarkers[order[1]] + midpoint = [] + + for item in qtlresult: + if item.lrs > webqtlConfig.MAXLRS: + adjustlrs = webqtlConfig.MAXLRS + else: + adjustlrs = item.lrs + + if item.locus.chr != prechr: + if prechr: + canvas.drawRect(startWidth-drawStartPixel, startHeight, startWidth+10, startHeight+3,edgeColor=pid.white, edgeWidth=0, fillColor=pid.white) + startHeight+= 3 + if not chrname: + canvas.drawString(prechr,xoffset-20,(chrstart+startHeight)/2,font = chrnameFont,color=pid.dimgray) + prechr = item.locus.chr + chrstart = startHeight + if self.colorScheme == '0': + if adjustlrs <= sugLRS: + colorIndex = int(65*adjustlrs/sugLRS) + else: + colorIndex = int(65 + 35*(adjustlrs-sugLRS)/(sigLRS-sugLRS)) + if colorIndex > 99: + colorIndex = 99 + colorIndex = colors100[colorIndex] + elif self.colorScheme == '1': + sugLRS = LRSArray[369]/2.0 + if adjustlrs <= sugLRS: + colorIndex = BWs[20+int(50*adjustlrs/sugLRS)] + else: + if item.additive > 0: + colorIndex = int(80 + 50*(adjustlrs-sugLRS)/(sigLRS-sugLRS)) + else: + colorIndex = int(50 - 50*(adjustlrs-sugLRS)/(sigLRS-sugLRS)) + if colorIndex > 129: + colorIndex = 129 + if colorIndex < 0: + colorIndex = 0 + colorIndex = colors[colorIndex] + elif self.colorScheme == '2': + if item.additive > 0: + colorIndex = int(150 + 100*(adjustlrs/sigLRS)) + else: + colorIndex = int(100 - 100*(adjustlrs/sigLRS)) + if colorIndex > 249: + colorIndex = 249 + if colorIndex < 0: + colorIndex = 0 + colorIndex = finecolors[colorIndex] + else: + colorIndex = pid.white + + if startHeight > 1: + canvas.drawRect(startWidth-drawStartPixel, startHeight, startWidth+10, startHeight+cellHeight,edgeColor=colorIndex, edgeWidth=0, fillColor=colorIndex) + else: + canvas.drawLine(startWidth-drawStartPixel, startHeight, startWidth+10, startHeight, Color=colorIndex) + + if item.locus.name == nearest: + midpoint = [startWidth,startHeight-5] + startHeight+=cellHeight + + #XZ, map link to trait name and band + COORDS = "%d,%d,%d,%d" %(startWidth-drawStartPixel,self.topHeight+40,startWidth+10,startHeight) + HREF = "javascript:showDatabase2('%s','%s','%s');" % (traitList[order[1]].db.name, traitList[order[1]].name, traitList[order[1]].cellid) + Areas = HT.Area(shape='rect',coords=COORDS,href=HREF, title='%s' % names[order[1]]) + gifmap.areas.append(Areas) + + if midpoint: + traitPixel = ((midpoint[0],midpoint[1]),(midpoint[0]-6,midpoint[1]+12),(midpoint[0]+6,midpoint[1]+12)) + canvas.drawPolygon(traitPixel,edgeColor=pid.black,fillColor=pid.orange,closed=1) + + if not chrname: + canvas.drawString(prechr,xoffset-20,(chrstart+startHeight)/2,font = chrnameFont,color=pid.dimgray) + chrname = 1 + Ncol += 1 + + + #draw Spectrum + startSpect = neworder[-1][0] + 30 + startHeight = self.topHeight + 40+5+5+strWidth + + if self.colorScheme == '0': + for i in range(100): + canvas.drawLine(startSpect+i,startHeight+20,startSpect+i,startHeight+40,color=colors100[i]) + scaleFont=pid.Font(ttf="tahoma",size=10,bold=0) + canvas.drawLine(startSpect,startHeight+45,startSpect,startHeight+39,color=pid.black) + canvas.drawString('LRS = 0',startSpect,startHeight+55,font=scaleFont) + canvas.drawLine(startSpect+64,startHeight+45,startSpect+64,startHeight+39,color=pid.black) + canvas.drawString('Suggestive LRS',startSpect+64,startHeight+55,font=scaleFont) + canvas.drawLine(startSpect+99,startHeight+45,startSpect+99,startHeight+39,color=pid.black) + canvas.drawString('Significant LRS',startSpect+105,startHeight+40,font=scaleFont) + elif self.colorScheme == '1': + for i in range(50): + canvas.drawLine(startSpect+i,startHeight,startSpect+i,startHeight+40,color=BWs[20+i]) + for i in range(50,100): + canvas.drawLine(startSpect+i,startHeight,startSpect+i,startHeight+20,color=colors[100-i]) + canvas.drawLine(startSpect+i,startHeight+20,startSpect+i,startHeight+40,color=colors[30+i]) + + canvas.drawLine(startSpect,startHeight+45,startSpect,startHeight+39,color=pid.black) + canvas.drawString('LRS = 0',startSpect,startHeight+60,font=scaleFont) + canvas.drawLine(startSpect+50,startHeight+45,startSpect+50,startHeight+39,color=pid.black) + canvas.drawString('0.5*Suggestive LRS',startSpect+50,startHeight+ 60,font=scaleFont) + canvas.drawLine(startSpect+99,startHeight+45,startSpect+99,startHeight+39,color=pid.black) + canvas.drawString('Significant LRS',startSpect+105,startHeight+50,font=scaleFont) + textFont=pid.Font(ttf="verdana",size=18,bold=0) + canvas.drawString('%s +' % fd.ppolar,startSpect+120,startHeight+ 35,font=textFont,color=pid.red) + canvas.drawString('%s +' % fd.mpolar,startSpect+120,startHeight+ 15,font=textFont,color=pid.blue) + elif self.colorScheme == '2': + for i in range(100): + canvas.drawLine(startSpect+i,startHeight,startSpect+i,startHeight+20,color=finecolors[100-i]) + canvas.drawLine(startSpect+i,startHeight+20,startSpect+i,startHeight+40,color=finecolors[150+i]) + + canvas.drawLine(startSpect,startHeight+45,startSpect,startHeight+39,color=pid.black) + canvas.drawString('LRS = 0',startSpect,startHeight+60,font=scaleFont) + canvas.drawLine(startSpect+99,startHeight+45,startSpect+99,startHeight+39,color=pid.black) + canvas.drawString('Significant LRS',startSpect+105,startHeight+50,font=scaleFont) + textFont=pid.Font(ttf="verdana",size=18,bold=0) + canvas.drawString('%s +' % fd.ppolar,startSpect+120,startHeight+ 35,font=textFont,color=pid.red) + canvas.drawString('%s +' % fd.mpolar,startSpect+120,startHeight+ 15,font=textFont,color=pid.blue) + + + filename= webqtlUtil.genRandStr("Heatmap_") + canvas.save(webqtlConfig.IMGDIR+filename, format='png') + img2=HT.Image('/image/'+filename+'.png',border=0,usemap='#traitMap') + imgUrl = 'Right-click or control-click on the link to download this graph as a PNG file' % filename + + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':fd.RISet+"Geno",'CellID':'_','RISet':fd.RISet,'searchResult':string.join(self.searchResult,'\t')} + if fd.incparentsf1: + hddn['incparentsf1']='ON' + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + heatmap = HT.Input(type='button' ,name='mintmap',value='Redraw QTL Heatmap', onClick="databaseFunc(this.form,'heatmap');",Class="button") + spects = {'0':'Single Spectrum','1':'Grey + Blue + Red','2':'Blue + Red'} + schemeMenu = HT.Select(name='colorScheme') + schemeMenu.append(('Single Spectrum',0)) + schemeMenu.append(('Grey + Blue + Red',1)) + schemeMenu.append(('Blue + Red',2)) + schemeMenu.selected.append(spects[self.colorScheme]) + + clusterCheck= HT.Input(type='checkbox', Class='checkbox', name='clusterCheck',checked=0) + targetDescriptionCheck = HT.Input(type='checkbox', Class='checkbox', name='targetDescriptionCheck',checked=0) + + form.append(gifmap,schemeMenu, heatmap, HT.P(), clusterCheck, ' Cluster traits ', targetDescriptionCheck, ' Add description', HT.P(),img2, HT.P(), imgUrl) + + if not sessionfile: + filename = webqtlUtil.generate_session() + webqtlUtil.dump_session(permData, os.path.join(webqtlConfig.TMPDIR, filename +'.session')) + sessionfile=filename + + form.append(HT.Input(name='session', value=sessionfile, type='hidden')) + + heatmapHelp = HT.Input(type='button' ,name='heatmapHelpButton',value='Info', onClick="openNewWin('/heatmap.html');",Class="button") + + heatmapHeading = HT.Paragraph('QTL Heatmap ', heatmapHelp, Class="title") + + TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee') + TD_LR.append(heatmapHeading, HT.P(),HT.P(),HT.P(),HT.P(),HT.P(),form) + + self.dict['body'] = str(TD_LR) + + #XZ, 7/31/2009: This function put the order of traits into parameter neworder, + #XZ: return the position of the top vertical line of the hierarchical tree, draw the hierarchical tree. + def draw(self,canvas,names,d,xoffset,yoffset,neworder): + maxDistance = self.topHeight + fontoffset = 4 #XZ, 7/31/2009: used only for drawing tree + + if type(d[0]) == type(1) and type(d[1]) == type(1): + neworder.append((xoffset+20,d[0])) + neworder.append((xoffset+40,d[1])) + height = d[2]*maxDistance/2 + canvas.drawLine(xoffset+20-fontoffset,maxDistance+yoffset,xoffset+20-fontoffset,maxDistance-height+yoffset) + canvas.drawLine(xoffset+40-fontoffset,maxDistance+yoffset,xoffset+40-fontoffset,maxDistance-height+yoffset) + canvas.drawLine(xoffset+40-fontoffset,maxDistance+yoffset-height,xoffset+20-fontoffset,maxDistance-height+yoffset) + return (40,(xoffset+30-fontoffset,maxDistance-height+yoffset)) + elif type(d[0]) == type(1): + neworder.append((xoffset+20,d[0])) + d2 = self.draw(canvas,names,d[1],xoffset+20,yoffset,neworder) + height = d[2]*maxDistance/2 + canvas.drawLine(xoffset+20-fontoffset,maxDistance+yoffset,xoffset+20-fontoffset,maxDistance-height+yoffset) + canvas.drawLine(d2[1][0],d2[1][1],d2[1][0],maxDistance-height+yoffset) + canvas.drawLine(d2[1][0],maxDistance-height+yoffset,xoffset+20-fontoffset,maxDistance-height+yoffset) + return (20+d2[0],((d2[1][0]+xoffset+20-fontoffset)/2,maxDistance-height+yoffset)) + elif type(d[1]) == type(1): + d1 = self.draw(canvas,names,d[0],xoffset,yoffset,neworder) + neworder.append((xoffset+d1[0]+20,d[1])) + height = d[2]*maxDistance/2 + canvas.drawLine(xoffset+d1[0]+20-fontoffset,maxDistance+yoffset,xoffset+d1[0]+20-fontoffset,maxDistance-height+yoffset) + canvas.drawLine(d1[1][0],d1[1][1],d1[1][0],maxDistance-height+yoffset) + canvas.drawLine(d1[1][0],maxDistance-height+yoffset,xoffset+d1[0]+20-fontoffset,maxDistance-height+yoffset) + return (d1[0]+20,((d1[1][0]+xoffset+d1[0]+20-fontoffset)/2,maxDistance-height+yoffset)) + else: + d1 = self.draw(canvas,names,d[0],xoffset,yoffset,neworder) + d2 = self.draw(canvas,names,d[1],xoffset+d1[0],yoffset,neworder) + height = d[2]*maxDistance/2 + canvas.drawLine(d2[1][0],d2[1][1],d2[1][0],maxDistance-height+yoffset) + canvas.drawLine(d1[1][0],d1[1][1],d1[1][0],maxDistance-height+yoffset) + canvas.drawLine(d1[1][0],maxDistance-height+yoffset,d2[1][0],maxDistance-height+yoffset) + return (d1[0]+d2[0],((d1[1][0]+d2[1][0])/2,maxDistance-height+yoffset)) + + #XZ, 7/31/2009: dras trait names + def drawTraitNameBottom (self,canvas,names,yoffset,neworder,strWidth): + maxDistance = self.topHeight + + for oneOrder in neworder: + canvas.drawString(names[oneOrder[1]],oneOrder[0]-5,maxDistance+yoffset+5+strWidth-canvas.stringWidth(names[oneOrder[1]],font=self.labelFont),font=self.labelFont,color=pid.black,angle=270) + + def drawTraitNameTop (self,canvas,names,yoffset,neworder,strWidth): + maxDistance = self.topHeight + + for oneOrder in neworder: + canvas.drawString(names[oneOrder[1]],oneOrder[0]-5,maxDistance+yoffset+5,font=self.labelFont,color=pid.black,angle=270) + + + def getNearestMarker(self,traitList, genotype): + out = [] + if not genotype.Mbmap: + return [None]* len(traitList) + for item in traitList: + try: + nearest = None + for _chr in genotype: + if _chr.name != item.chr: + continue + distance = 1e30 + for _locus in _chr: + if abs(_locus.Mb-item.mb) < distance: + distance = abs(_locus.Mb-item.mb) + nearest = _locus.name + out.append(nearest) + except: + out.append(None) + + return out + + + + diff --git a/web/webqtl/heatmap/slink.py b/web/webqtl/heatmap/slink.py new file mode 100755 index 00000000..3de41de4 --- /dev/null +++ b/web/webqtl/heatmap/slink.py @@ -0,0 +1,141 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#--Only imported by correlationPage.py. +# +#Functions: +#slink(lists) -- the only function called outside of this file. +#nearest(lists,i,j) -- some sort of recursive function. +#printarray(array,n) -- prints n elements of the given array +#this is a myseterious piece of code in GN that Kev Adler and Rob Williams do not understand. +#but is used in some way by the Traits Correlation function +#Kev and Rob suspect that the d2 matrix below is unused +#We do not understand the signifance of "d" but Kev suspects it is unimportant +#These comments by Kev and Rob: May 23, 2008 + +d = [[0,9,3,6,11],[9,0,7,5,10],[3,7,0,9,2],[6,5,9,0,8],[11,10,2,8,0]] +d2 = [[0,9,5.5,6,11],[9,0,7,5,10],[5.5,7,0,9,2],[6,5,9,0,3],[11,10,2,3,0]] + +def nearest(lists,i,j): + if type(i) == type(1) and type(j) == type(1): + return lists[i][j] + elif type(i) == type(1): + dist = 1e10 + for itemj in j[:-1]: + d = nearest(lists,i,itemj) + if dist > d: + dist = d + elif type(j) == type(1): + dist = 1e10 + for itemi in i[:-1]: + d = nearest(lists,itemi,j) + if dist > d: + dist = d + else: + dist = 1e10 + for itemi in i[:-1]: + for itemj in j[:-1]: + d = nearest(lists,itemi,itemj) + if dist > d: + dist = d + return dist + +def printarray(array,n): + print "\n" + for i in range(n): + print array[i][:n] + print "\n" + +def slink(lists): + try: + if type(lists) != type([]) and type(lists) != type(()): + raise 'FormatError' + else: + size = len(lists) + for item in lists: + if type(item) != type([]) and type(item) != type(()): + raise 'FormatError' + else: + if len(item) != size: + raise 'LengthError' + for i in range(size): + if lists[i][i] != 0: + raise 'ValueError' + for j in range(0,i): + if lists[i][j] < 0: + raise 'ValueError' + if lists[i][j] != lists[j][i]: + raise 'MirrorError' + except 'FormatError': + print "the format of the list is incorrect!" + return [] + except 'LengthError': + print "the list is not a square list!" + return [] + except 'MirrorError': + print "the list is not symmetric!" + return [] + except 'ValueError': + print "the distance is negative value!" + return [] + except: + print "Unknown Error" + return [] + listindex = range(size) + listindexcopy = range(size) + listscopy = [] + for i in range(size): + listscopy.append(lists[i][:]) + initSize = size + candidate = [] + while initSize >2: + mindist = 1e10 + for i in range(initSize): + for j in range(i+1,initSize): + if listscopy[i][j] < mindist: + mindist = listscopy[i][j] + candidate=[[i,j]] + elif listscopy[i][j] == mindist: + mindist = listscopy[i][j] + candidate.append([i,j]) + else: + pass + newmem = (listindexcopy[candidate[0][0]],listindexcopy[candidate[0][1]],mindist) + listindexcopy.pop(candidate[0][1]) + listindexcopy[candidate[0][0]] = newmem + + initSize -= 1 + for i in range(initSize): + for j in range(i+1,initSize): + listscopy[i][j] = nearest(lists,listindexcopy[i],listindexcopy[j]) + listscopy[j][i] = listscopy[i][j] + #print listindexcopy + #printarray(listscopy,initSize) + listindexcopy.append(nearest(lists,listindexcopy[0],listindexcopy[1])) + return listindexcopy + + + diff --git a/web/webqtl/intervalAnalyst/GeneUtil.py b/web/webqtl/intervalAnalyst/GeneUtil.py new file mode 100755 index 00000000..43008ecf --- /dev/null +++ b/web/webqtl/intervalAnalyst/GeneUtil.py @@ -0,0 +1,124 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string + +#Just return a list of dictionaries +#each dictionary contains sub-dictionary +def loadGenes(cursor, chrName, diffCol, startMb, endMb, webqtlDb =None, species='mouse'): + #cursor.execute("desc GeneList") + #results = cursor.fetchall() + #fetchFields = map(lambda X:X[0], results) + fetchFields = ['SpeciesId', 'Id', 'GeneSymbol', 'GeneDescription', 'Chromosome', 'TxStart', 'TxEnd', + 'Strand', 'GeneID', 'NM_ID', 'kgID', 'GenBankID', 'UnigenID', 'ProteinID', 'AlignID', + 'exonCount', 'exonStarts', 'exonEnds', 'cdsStart', 'cdsEnd'] + + ##List All Species in the Gene Table + speciesDict = {} + cursor.execute("select Species.Name, GeneList.SpeciesId from Species, GeneList where \ + GeneList.SpeciesId = Species.Id group by GeneList.SpeciesId") + results = cursor.fetchall() + for item in results: + speciesDict[item[0]] = item[1] + + ##List current Species and other Species + speciesId = speciesDict[species] + otherSpecies = map(lambda X: [X, speciesDict[X]], speciesDict.keys()) + otherSpecies.remove([species, speciesId]) + + cursor.execute("""SELECT %s from GeneList + where + SpeciesId = %d AND Chromosome = '%s' AND + ((TxStart > %f and TxStart <= %f) OR (TxEnd > %f and TxEnd <= %f)) + order by txStart + """ + % (string.join(fetchFields, ", "), speciesId, chrName, startMb, endMb, startMb, endMb)) + results = cursor.fetchall() + GeneList = [] + + if results: + for result in results: + newdict = {} + for j, item in enumerate(fetchFields): + newdict[item] = result[j] + #count SNPs if possible + if diffCol and species=='mouse': + cursor.execute(""" + select + count(*) from BXDSnpPosition + where + Chr = '%s' AND Mb >= %2.6f AND Mb < %2.6f AND + StrainId1 = %d AND StrainId2 = %d + """ % (chrName, newdict["TxStart"], newdict["TxEnd"], diffCol[0], diffCol[1])) + newdict["snpCount"] = cursor.fetchone()[0] + newdict["snpDensity"] = newdict["snpCount"]/(newdict["TxEnd"]-newdict["TxStart"])/1000.0 + else: + newdict["snpDensity"] = newdict["snpCount"] = 0 + + try: + newdict['GeneLength'] = 1000.0*(newdict['TxEnd'] - newdict['TxStart']) + except: + pass + + #load gene from other Species by the same name + for item in otherSpecies: + othSpec, othSpecId = item + newdict2 = {} + + cursor.execute("SELECT %s from GeneList where SpeciesId = %d and geneSymbol= '%s' limit 1" % + (string.join(fetchFields, ", "), othSpecId, newdict["GeneSymbol"])) + resultsOther = cursor.fetchone() + if resultsOther: + for j, item in enumerate(fetchFields): + newdict2[item] = resultsOther[j] + + #count SNPs if possible, could be a separate function + if diffCol and othSpec == 'mouse': + cursor.execute(""" + select + count(*) from BXDSnpPosition + where + Chr = '%s' AND Mb >= %2.6f AND Mb < %2.6f AND + StrainId1 = %d AND StrainId2 = %d + """ % (chrName, newdict["TxStart"], newdict["TxEnd"], diffCol[0], diffCol[1])) + + newdict2["snpCount"] = cursor.fetchone()[0] + newdict2["snpDensity"] = newdict2["snpCount"]/(newdict2["TxEnd"]-newdict2["TxStart"])/1000.0 + else: + newdict2["snpDensity"] = newdict2["snpCount"] = 0 + + try: + newdict2['GeneLength'] = 1000.0*(newdict2['TxEnd'] - newdict2['TxStart']) + except: + pass + + newdict['%sGene' % othSpec] = newdict2 + + GeneList.append(newdict) + + return GeneList + + diff --git a/web/webqtl/intervalAnalyst/IntervalAnalystPage.py b/web/webqtl/intervalAnalyst/IntervalAnalystPage.py new file mode 100755 index 00000000..ec9aa29c --- /dev/null +++ b/web/webqtl/intervalAnalyst/IntervalAnalystPage.py @@ -0,0 +1,405 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from mod_python import apache, util, Cookie +import os +import time +import pyXLWriter as xl + +from htmlgen import HTMLgen2 as HT + +import GeneUtil +from base.templatePage import templatePage +from utility import webqtlUtil +from base import webqtlConfig + + +class IntervalAnalystPage(templatePage): + filename = webqtlUtil.genRandStr("Itan_") + + _scriptfile = "main.py?FormID=intervalAnalyst" + + #A dictionary that lets us map the html form names "txStart_mm6" -> "Mb Start (mm8)" + #the first item is the short name (column headers) and the second item is the long name (dropdown list) + # [short name, long name, category] + columnNames = {"GeneSymbol" : ["Gene", "Gene Name", 'gene'], + "GeneDescription" : ["Description", "Gene Description", 'species'], + 'GeneNeighborsCount' : ["Neighbors", "Gene Neighbors", 'gene'], + 'GeneNeighborsRange' : ["Neighborhood", "Gene Neighborhood (Mb)", 'gene'], + 'GeneNeighborsDensity' : ["Gene Density", "Gene Density (Neighbors/Mb)", 'gene'], + "ProteinID" : ["Prot ID", "Protein ID", 'protein'], + "Chromosome" : ["Chr", "Chromosome", 'species'], + "TxStart" : ["Start", "Mb Start", 'species'], + "TxEnd" : ["End", "Mb End", 'species'], + "GeneLength" : ["Length", "Kb Length", 'species'], + "cdsStart" : ["CDS Start", "Mb CDS Start", 'species'], + "cdsEnd" : ["CDS End", "Mb CDS End", 'species'], + "exonCount" : ["Num Exons", "Exon Count", 'species'], + "exonStarts" : ["Exon Starts", "Exon Starts", 'species'], + "exonEnds" : ["Exon Ends", "Exon Ends", 'species'], + "Strand" : ["Strand", "Strand", 'species'], + "GeneID" : ["Gene ID", "Gene ID", 'species'], + "GenBankID" : ["GenBank", "GenBank ID", 'species'], + "UnigenID" : ["Unigen", "Unigen ID", 'species'], + "NM_ID" : ["NM ID", "NM ID", 'species'], + "kgID" : ["kg ID", "kg ID", 'species'], + "snpCount" : ["SNPs", "SNP Count", 'species'], + "snpDensity" : ["SNP Density", "SNP Density", 'species'], + "lrs" : ["LRS", "Likelihood Ratio Statistic", 'misc'], + "lod" : ["LOD", "Likelihood Odds Ratio", 'misc'], + "pearson" : ["Pearson", "Pearson Product Moment", 'misc'], + "literature" : ["Lit Corr", "Literature Correlation", 'misc'], + } + + ###Species Freeze + speciesFreeze = {'mouse':'mm9', 'rat':'rn3', 'human':'hg19'} + for key in speciesFreeze.keys(): + speciesFreeze[speciesFreeze[key]] = key + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + fd.formdata['remote_ip'] = fd.remote_ip + if not self.openMysql(): + return + + self.species = fd.formdata.getvalue("species", "mouse") + try: + self.startMb = float(fd.formdata.getvalue("startMb")) + except: + self.startMb = 10 + try: + self.endMb = float(fd.formdata.getvalue("endMb")) + except: + self.endMb = self.startMb + 10 + + self.Chr = fd.formdata.getvalue("chromosome", "1") + self.xls = fd.formdata.getvalue("xls", "1") + try: + s1 = int(fd.formdata.getvalue("s1")) + s2 = int(fd.formdata.getvalue("s2")) + self.diffColDefault = self.diffCol = [s1, s2] + except: + self.diffColDefault = self.diffCol = [] + if self.species != 'mouse': + self.diffColDefault = [2, 3]#default is B6 and D2 for other species + + controlFrm, dispFields = self.genControlForm(fd) + geneTable, filename = self.genGeneTable(fd, dispFields) + + infoTD = HT.TD(width=400, valign= "top") + infoTD.append(HT.Paragraph("Interval Analyst : Chr %s" % self.Chr, Class="title"), + HT.Strong("Species : "), self.species.title(), HT.BR(), + HT.Strong("Database : "), "UCSC %s" % self.speciesFreeze[self.species], HT.BR(), + HT.Strong("Range : "), "%2.6f Mb - %2.6f Mb" % (self.startMb, self.endMb), HT.BR(), + ) + if filename: + infoTD.append(HT.BR(), HT.BR(), HT.Href(text="Download", url = "/tmp/" + filename, Class="normalsize") + , " output in MS excel format.") + + mainTable = HT.TableLite(HT.TR(infoTD, HT.TD(controlFrm, Class="doubleBorder", width=400), HT.TD(" ", width="")), cellpadding=10) + mainTable.append(HT.TR(HT.TD(geneTable, colspan=3))) + self.dict['body'] = HT.TD(mainTable) + self.dict['title'] = "Interval Analyst" + + def genGeneTable(self, fd, dispFields): + filename = "" + if self.xls: + #import pyXLWriter as xl + filename = "IntAn_Chr%s_%2.6f-%2.6f" % (self.Chr, self.startMb, self.endMb) + filename += ".xls" + + # Create a new Excel workbook + workbook = xl.Writer(os.path.join(webqtlConfig.TMPDIR, filename)) + worksheet = workbook.add_worksheet() + titleStyle = workbook.add_format(align = 'left', bold = 0, size=18, border = 1, border_color="gray") + headingStyle = workbook.add_format(align = 'center', bold = 1, size=13, fg_color = 0x1E, color="white", border = 1, border_color="gray") + + ##Write title Info + worksheet.write([0, 0], "GeneNetwork Interval Analyst Table", titleStyle) + worksheet.write([1, 0], "%s%s" % (webqtlConfig.PORTADDR, os.path.join(webqtlConfig.CGIDIR, self._scriptfile))) + # + worksheet.write([2, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime())) + worksheet.write([3, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime())) + worksheet.write([4, 0], "Search by : %s" % fd.formdata['remote_ip']) + worksheet.write([5, 0], "view region : Chr %s %2.6f - %2.6f Mb" % (self.Chr, self.startMb, self.endMb)) + nTitleRow = 7 + + geneTable = HT.TableLite(Class="collap", cellpadding=5) + headerRow = HT.TR(HT.TD(" ", Class="fs13 fwb ffl b1 cw cbrb", width="1")) + if self.xls: + worksheet.write([nTitleRow, 0], "Index", headingStyle) + + for ncol, column in enumerate(dispFields): + if len(column) == 1: + headerRow.append(HT.TD(self.columnNames[column[0]][0], Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1,align="Center")) + if self.xls: + colTitle = self.columnNames[column[0]][0] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + else: + headerRow.append(HT.TD(self.columnNames[column[0]][0], HT.BR(), " (%s)" % self.speciesFreeze[column[1]], + Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1, align="Center")) + if self.xls: + colTitle = self.columnNames[column[0]][0] + " (%s)" % self.speciesFreeze[column[1]] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + #headerRow.append(HT.TD(self.columnNames[column[0]][0], HT.BR(), + # "(%s %s)" % (column[1].title(), self.speciesFreeze[column[1]]), + # Class="colorBlue", NOWRAP=1, align="Center")) + geneTable.append(headerRow) + + geneCol = GeneUtil.loadGenes(self.cursor, self.Chr, self.diffColDefault, self.startMb, self.endMb, species=self.species) + for gIndex, theGO in enumerate(geneCol): + geneRow = HT.TR(HT.TD(gIndex+1, Class="fs12 fwn b1", align="right")) + if self.xls: + nTitleRow += 1 + worksheet.write([nTitleRow, 0], gIndex + 1) + + for ncol, column in enumerate(dispFields): + if len(column) == 1 or column[1]== self.species: + keyValue = "" + fieldName = column[0] + curSpecies = self.species + curGO = theGO + if theGO.has_key(fieldName): + keyValue = theGO[fieldName] + else: + fieldName , othSpec = column + curSpecies = othSpec + subGO = '%sGene' % othSpec + keyValue = "" + curGO = theGO[subGO] + if theGO[subGO].has_key(fieldName): + keyValue = theGO[subGO][fieldName] + + if self.xls: + worksheet.write([nTitleRow, ncol+1], keyValue) + geneRow.append(self.formatTD(keyValue, fieldName, curSpecies, curGO)) + + geneTable.append(geneRow) + + if self.xls: + workbook.close() + return geneTable, filename + + def formatTD(self, keyValue, fieldName, Species, theGO): + if keyValue is None: + keyValue = "" + if keyValue != "": + if fieldName in ("exonStarts", "exonEnds"): + keyValue = string.replace(keyValue, ',', ' ') + return HT.TD(HT.Span(keyValue, Class="code", Id="green"), width=350, Class="fs12 fwn b1") + elif fieldName in ("GeneDescription"): + if keyValue == "---": + keyValue = "" + return HT.TD(keyValue, Class="fs12 fwn b1", width=300) + elif fieldName in ("GeneSymbol"): + webqtlLink = HT.Href("./%s?cmd=sch&gene=%s&alias=1&species=%s" % (webqtlConfig.SCRIPTFILE, keyValue, Species), + HT.Image("/images/webqtl_search.gif", border=0, valign="top"), target="_blank") + if theGO['GeneID']: + geneSymbolLink = HT.Href(webqtlConfig.NCBI_LOCUSID % theGO['GeneID'], keyValue, Class="normalsize", target="_blank") + else: + geneSymbolLink = keyValue + return HT.TD(webqtlLink, geneSymbolLink, Class="fs12 fwn b1",NOWRAP=1) + elif fieldName == 'UnigenID': + try: + gurl = HT.Href(webqtlConfig.UNIGEN_ID % tuple(string.split(keyValue,'.')[:2]), keyValue, Class="normalsize", target="_blank") + except: + gurl = keyValue + return HT.TD(gurl, Class="fs12 fwn b1",NOWRAP=1) + elif fieldName in ("exonCount", "Chromosome"): + return HT.TD(keyValue, Class="fs12 fwn b1",align="right") + elif fieldName in ("snpCount"): + if keyValue: + snpString = HT.Href(url="%s&chr=%s&start=%s&end=%s&geneName=%s&s1=%d&s2=%d" % (os.path.join(webqtlConfig.CGIDIR, 'main.py?FormID=snpBrowser'), + theGO["Chromosome"], theGO["TxStart"], theGO["TxEnd"], theGO["GeneSymbol"], self.diffColDefault[0], self.diffColDefault[1]), + text=theGO["snpCount"], target="_blank", Class="normalsize") + else: + snpString = keyValue + return HT.TD(snpString, Class="fs12 fwn b1",align="right") + elif fieldName in ("snpDensity", "GeneLength"): + if keyValue: keyValue = "%2.3f" % keyValue + else: keyValue = "" + return HT.TD(keyValue, Class="fs12 fwn b1",align="right") + elif fieldName in ("TxStart", "TxEnd"): + return HT.TD("%2.6f" % keyValue, Class="fs12 fwn b1",align="right") + else: + return HT.TD(keyValue, Class="fs12 fwn b1",NOWRAP=1) + else: + return HT.TD(keyValue, Class="fs12 fwn b1",NOWRAP=1,align="right") + + def genControlForm(self, fd): + ##desc GeneList + self.cursor.execute("Desc GeneList") + GeneListFields = self.cursor.fetchall() + GeneListFields = map(lambda X: X[0], GeneListFields) + + #group columns by category--used for creating the dropdown list of possible columns + categories = {} + for item in self.columnNames.keys(): + category = self.columnNames[item] + if category[-1] not in categories.keys(): + categories[category[-1]] = [item ] + else: + categories[category[-1]] = categories[category[-1]]+[item] + + ##List All Species in the Gene Table + speciesDict = {} + self.cursor.execute("select Species.Name, GeneList.SpeciesId from Species, GeneList where \ + GeneList.SpeciesId = Species.Id group by GeneList.SpeciesId order by Species.Id") + results = self.cursor.fetchall() + speciesField = categories.pop('species', []) + categoriesOrder = ['gene', 'protein'] + for item in results: + specName, specId = item + categoriesOrder.append(specName) + speciesDict[specName] = specId + AppliedField = [] + for item2 in speciesField: + if item2 in GeneListFields: + self.cursor.execute("select %s from GeneList where SpeciesId = %d and %s is not NULL limit 1 " % (item2, specId, item2)) + columnApply = self.cursor.fetchone() + if not columnApply: + continue + elif specName != 'mouse' and item2 in ('snpCount', 'snpDensity'): + continue + else: + pass + AppliedField.append(item2) + categories[specName] = AppliedField + + categoriesOrder += ['misc'] + + ############################################################ + ## Create the list of possible columns for the dropdown list + ############################################################ + allColumnsList = HT.Select(name="allColumns", Class="snpBrowserDropBox") + + for category in categoriesOrder: + allFields = categories[category] + if allFields: + geneOpt = HT.Optgroup(label=category.title()) + for item in allFields: + if category in self.speciesFreeze.keys(): + geneOpt.append(("%s (%s %s)" % (self.columnNames[item][1], category.title(), self.speciesFreeze[category]), + "%s__%s" % (item, self.speciesFreeze[category]))) + else: + geneOpt.append((self.columnNames[item][1], item)) + geneOpt.sort() + allColumnsList.append(geneOpt) + + ###################################### + ## Create the list of selected columns + ###################################### + + #cols contains the value of all the selected columns + submitCols = cols = fd.formdata.getvalue("columns", "default") + + if cols == "default": + if self.species=="mouse": #these are the same columns that are shown on intervalPage.py + cols = ['GeneSymbol', 'GeneDescription', 'Chromosome', 'TxStart', 'Strand', 'GeneLength', 'GeneID', 'NM_ID', 'snpCount', 'snpDensity'] + elif self.species=="rat": + cols = ['GeneSymbol', 'GeneDescription', 'Chromosome', 'TxStart', 'GeneLength', 'Strand', 'GeneID', 'UnigenID'] + else: + #should not happen + cols = [] + else: + if type(cols)==type(""): + cols = [cols] + + colsLst = [] + dispFields = [] + for column in cols: + if submitCols == "default" and column not in ('GeneSymbol') and (column in GeneListFields or column in speciesField): + colsLst.append(("%s (%s %s)" % (self.columnNames[column][1], self.species.title(), self.speciesFreeze[self.species]), + "%s__%s" % (column, self.speciesFreeze[self.species]))) + dispFields.append([column, self.species]) + else: + column2 = column.split("__") + if len(column2) == 1: + colsLst.append((self.columnNames[column2[0]][1], column)) + dispFields.append([column]) + else: + thisSpecies = self.speciesFreeze[column2[1]] + colsLst.append(("%s (%s %s)" % (self.columnNames[column2[0]][1], thisSpecies.title(), column2[1]), + column)) + dispFields.append((column2[0], thisSpecies)) + selectedColumnsList = HT.Select(name="columns", Class="snpBrowserSelectBox", multiple="true", data=colsLst, size=6) + + ########################## + ## Create the columns form + ########################## + columnsForm = HT.Form(name="columnsForm", submit=HT.Input(type='hidden'), cgi=os.path.join(webqtlConfig.CGIDIR, self._scriptfile), enctype="multipart/form-data") + columnsForm.append(HT.Input(type="hidden", name="fromdatabase", value= fd.formdata.getvalue("fromdatabase", "unknown"))) + columnsForm.append(HT.Input(type="hidden", name="species", value=self.species)) + if self.diffCol: + columnsForm.append(HT.Input(type="hidden", name="s1", value=self.diffCol[0])) + columnsForm.append(HT.Input(type="hidden", name="s2", value=self.diffCol[1])) + startBox = HT.Input(type="text", name="startMb", value=self.startMb, size=10) + endBox = HT.Input(type="text", name="endMb", value=self.endMb, size=10) + addButton = HT.Input(type="button", name="add", value="Add", Class="button", onClick="addToList(this.form.allColumns.options[this.form.allColumns.selectedIndex].text, this.form.allColumns.options[this.form.allColumns.selectedIndex].value, this.form.columns)") + removeButton = HT.Input(type="button", name="remove", value="Remove", Class="button", onClick="removeFromList(this.form.columns.selectedIndex, this.form.columns)") + upButton = HT.Input(type="button", name="up", value="Up", Class="button", onClick="swapOptions(this.form.columns.selectedIndex, this.form.columns.selectedIndex-1, this.form.columns)") + downButton = HT.Input(type="button", name="down", value="Down", Class="button", onClick="swapOptions(this.form.columns.selectedIndex, this.form.columns.selectedIndex+1, this.form.columns)") + clearButton = HT.Input(type="button", name="clear", value="Clear", Class="button", onClick="deleteAllElements(this.form.columns)") + submitButton = HT.Input(type="submit", value="Refresh", Class="button", onClick="selectAllElements(this.form.columns)") + + selectChrBox = HT.Select(name="chromosome") + self.cursor.execute(""" + Select + Chr_Length.Name, Length from Chr_Length, Species + where + Chr_Length.SpeciesId = Species.Id AND + Species.Name = '%s' + Order by + Chr_Length.OrderId + """ % self.species) + + results = self.cursor.fetchall() + for chrInfo in results: + selectChrBox.append((chrInfo[0], chrInfo[0])) + selectChrBox.selected.append(self.Chr) + + innerColumnsTable = HT.TableLite(border=0, Class="collap", cellpadding = 2) + innerColumnsTable.append(HT.TR(HT.TD(selectedColumnsList)), + HT.TR(HT.TD(clearButton, removeButton, upButton, downButton))) + columnsTable = HT.TableLite(border=0, cellpadding=2, cellspacing=0) + columnsTable.append(HT.TR(HT.TD(HT.Font("Chr: ", size=-1)), + HT.TD(selectChrBox, submitButton)), + HT.TR(HT.TD(HT.Font("View: ", size=-1)), + HT.TD(startBox, HT.Font("Mb to ", size=-1), endBox, HT.Font("Mb", size=-1))), + HT.TR(HT.TD(HT.Font("Show: ", size=-1)), + HT.TD(allColumnsList, addButton)), + HT.TR(HT.TD(""), + HT.TD(innerColumnsTable))) + columnsForm.append(columnsTable) + #columnsForm.append(HT.Input(type="hidden", name="sort", value=diffCol), + # HT.Input(type="hidden", name="identification", value=identification), + # HT.Input(type="hidden", name="traitInfo", value=traitInfo)) + + return columnsForm, dispFields diff --git a/web/webqtl/intervalAnalyst/__init__.py b/web/webqtl/intervalAnalyst/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/intervalMapping/IntervalMappingPage.py b/web/webqtl/intervalMapping/IntervalMappingPage.py new file mode 100644 index 00000000..4bdf45ab --- /dev/null +++ b/web/webqtl/intervalMapping/IntervalMappingPage.py @@ -0,0 +1,2454 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by Zach 12/14/2010 + + +import time +import string +from math import * +import piddle as pid +import sys,os +import httplib, urllib + +from htmlgen import HTMLgen2 as HT +from utility import Plot +from intervalAnalyst import GeneUtil +from base.webqtlTrait import webqtlTrait +from base.templatePage import templatePage +from utility import webqtlUtil +from base import webqtlConfig +from dbFunction import webqtlDatabaseFunction +from base.GeneralObject import GeneralObject + +######################################### +# Inteval Mapping Plot Page +######################################### +class IntervalMappingPage(templatePage): + cMGraphInterval = 5 + maxBootStrap = 50 + GRAPH_MIN_WIDTH = 900 + GRAPH_MAX_WIDTH = 10000 # Don't set this too high + GRAPH_DEFAULT_WIDTH = 1280 + MULT_GRAPH_DEFAULT_WIDTH = 2000 + MULT_GRAPH_MIN_WIDTH = 1400 + MULT_GRAPH_DEFAULT_WIDTH = 1600 + GRAPH_DEFAULT_HEIGHT = 600 + + + # Display order: + # UCSC BAND ========= + # ENSEMBL BAND -=-=-= + # ** GENES ********** + BAND_SPACING = 4 + + #ENSEMBL_BAND_Y = UCSC_BAND_Y + UCSC_BAND_HEIGHT + BAND_SPACING + UCSC_BAND_HEIGHT = 10 + ENSEMBL_BAND_HEIGHT = 10 + WEBQTL_BAND_HEIGHT = 10 + + #GENE_START_Y = ENSEMBL_BAND_Y + ENSEMBL_BAND_HEIGHT + BAND_SPACING + NUM_GENE_ROWS = 10 + EACH_GENE_HEIGHT = 6 # number of pixels tall, for each gene to display + EACH_GENE_ARROW_WIDTH = 5 + EACH_GENE_ARROW_SPACING = 14 + DRAW_DETAIL_MB = 4 + DRAW_UTR_LABELS_MB = 4 + + MIN_PIXELS_BETWEEN_LABELS = 50 + + qmarkImg = HT.Image('/images/qmarkBoxBlue.gif', width=10, height=13, border=0, alt='Glossary') + # Note that "qmark.gif" is a similar, smaller, rounded-edges question mark. It doesn't look + # like the ones on the image, though, which is why we don't use it here. + + HELP_WINDOW_NAME = 'helpWind' + + ## BEGIN HaplotypeAnalyst + NR_INDIVIDUALS = 0 + ## END HaplotypeAnalyst + + ALEX_DEBUG_BOOL_COLORIZE_GENES = 1 # 0=don't colorize, 1=colorize + ALEX_DEBUG_BOOL_PRINT_GENE_LIST = 1 + + kWIDTH_DEFAULT=1 + + kONE_MILLION = 1000000 + + LODFACTOR = 4.61 + + SNP_COLOR = pid.orange # Color for the SNP "seismograph" + TRANSCRIPT_LOCATION_COLOR = pid.mediumpurple + + GENE_FILL_COLOR = pid.HexColor(0x6666FF) + GENE_OUTLINE_COLOR = pid.HexColor(0x000077) + BOOTSTRAP_BOX_COLOR = pid.yellow + LRS_COLOR = pid.HexColor(0x0000FF) + LRS_LINE_WIDTH = 2 + SIGNIFICANT_COLOR = pid.HexColor(0xEBC7C7) + SUGGESTIVE_COLOR = pid.gainsboro + SIGNIFICANT_WIDTH = 5 + SUGGESTIVE_WIDTH = 5 + ADDITIVE_COLOR_POSITIVE = pid.green + ADDITIVE_COLOR_NEGATIVE = pid.red + ADDITIVE_COLOR = ADDITIVE_COLOR_POSITIVE + DOMINANCE_COLOR_POSITIVE = pid.darkviolet + DOMINANCE_COLOR_NEGATIVE = pid.orange + + ## BEGIN HaplotypeAnalyst + HAPLOTYPE_POSITIVE = pid.green + HAPLOTYPE_NEGATIVE = pid.red + HAPLOTYPE_HETEROZYGOUS = pid.blue + HAPLOTYPE_RECOMBINATION = pid.darkgray + ## END HaplotypeAnalyst + + QMARK_EDGE_COLOR = pid.HexColor(0x718118) + QMARK_FILL_COLOR = pid.HexColor(0xDEE3BB) + + TOP_RIGHT_INFO_COLOR = pid.black + X_AXIS_LABEL_COLOR = pid.black #HexColor(0x505050) + + MINI_VIEW_MAGNIFIED_REGION_COLOR = pid.HexColor(0xCC0000) + MINI_VIEW_OUTSIDE_REGION_COLOR = pid.HexColor(0xEEEEEE) + MINI_VIEW_BORDER_COLOR = pid.black + + CLICKABLE_WEBQTL_REGION_COLOR = pid.HexColor(0xF5D3D3) + CLICKABLE_WEBQTL_REGION_OUTLINE_COLOR = pid.HexColor(0xFCE9E9) + CLICKABLE_WEBQTL_TEXT_COLOR = pid.HexColor(0x912828) + + CLICKABLE_UCSC_REGION_COLOR = pid.HexColor(0xDDDDEE) + CLICKABLE_UCSC_REGION_OUTLINE_COLOR = pid.HexColor(0xEDEDFF) + CLICKABLE_UCSC_TEXT_COLOR = pid.HexColor(0x333366) + + CLICKABLE_ENSEMBL_REGION_COLOR = pid.HexColor(0xEEEEDD) + CLICKABLE_ENSEMBL_REGION_OUTLINE_COLOR = pid.HexColor(0xFEFEEE) + CLICKABLE_ENSEMBL_TEXT_COLOR = pid.HexColor(0x555500) + + GRAPH_BACK_LIGHT_COLOR = pid.HexColor(0xFBFBFF) + GRAPH_BACK_DARK_COLOR = pid.HexColor(0xF1F1F9) + + HELP_PAGE_REF = '/glossary.html' + + DRAW_UTR_LABELS=0 + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + #RISet and Species + if not fd.genotype: + fd.readGenotype() + + fd.parentsf14regression = fd.formdata.getvalue('parentsf14regression') + + if ((fd.parentsf14regression == 'on') and fd.genotype_2): + fd.genotype = fd.genotype_2 + else: + fd.genotype = fd.genotype_1 + fd.strainlist = list(fd.genotype.prgy) + + self.species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=fd.RISet) + if self.species == "rat": + self._ucscDb = "rn3" + elif self.species == "mouse": + self._ucscDb = "mm9" + else: + self._ucscDb = "" + + ##################################### + # Options + ##################################### + #Mapping options + self.plotScale = fd.formdata.getvalue('scale', 'physic') + if self.plotScale == 'physic' and not fd.genotype.Mbmap: + self.plotScale = 'morgan' + self.permChecked = fd.formdata.getvalue('permCheck') + self.bootChecked = fd.formdata.getvalue('bootCheck', '') + self.controlLocus = fd.formdata.getvalue('controlLocus', '') + try: + self.selectedChr = int(fd.formdata.getvalue('chromosomes', "-1")) + except: + self.selectedChr = -1 + + #whether include parents and F1 for InbredSet + fd.parentsf14regression = fd.formdata.getvalue('parentsf14regression') + if ((fd.parentsf14regression == 'on') and fd.genotype_2): + fd.genotype = fd.genotype_2 + else: + fd.genotype = fd.genotype_1 + self.strainlist = list(fd.genotype.prgy) + self.genotype = fd.genotype + + #Darwing Options + try: + if self.selectedChr > -1: + self.graphWidth = min(self.GRAPH_MAX_WIDTH, max(self.GRAPH_MIN_WIDTH, int(fd.formdata.getvalue('graphWidth')))) + else: + self.graphWidth = min(self.GRAPH_MAX_WIDTH, max(self.MULT_GRAPH_MIN_WIDTH, int(fd.formdata.getvalue('graphWidth')))) + except: + if self.selectedChr > -1: + self.graphWidth = self.GRAPH_DEFAULT_WIDTH + else: + self.graphWidth = self.MULT_GRAPH_DEFAULT_WIDTH + +## BEGIN HaplotypeAnalyst + self.haplotypeAnalystChecked = fd.formdata.getvalue('haplotypeAnalystCheck') +## END HaplotypeAnalyst + + + self.graphHeight = self.GRAPH_DEFAULT_HEIGHT + self.additiveChecked = fd.formdata.getvalue('additiveCheck') + self.dominanceChecked = fd.formdata.getvalue('dominanceCheck') + self.LRS_LOD = fd.formdata.getvalue('LRSCheck', 'LRS') + self.intervalAnalystChecked = fd.formdata.getvalue('intervalAnalystCheck') + self.legendChecked = fd.formdata.getvalue('viewLegend') + self.geneChecked = fd.formdata.getvalue('showGenes') + self.SNPChecked = fd.formdata.getvalue('showSNP') + self.draw2X = fd.formdata.getvalue('draw2X') + self.lrsMax = float(fd.formdata.getvalue('lrsMax', 0)) + + self.startMb = fd.formdata.getvalue('startMb', "-1") + self.endMb = fd.formdata.getvalue('endMb', "-1") + try: + self.startMb = float(self.startMb) + self.endMb = float(self.endMb) + if self.startMb > self.endMb: + temp = self.startMb + self.startMb = self.endMb + self.endMb = temp + #minimal distance 10bp + if self.endMb - self.startMb < 0.00001: + self.endMb = self.startMb + 0.00001 + except: + self.startMb = self.endMb = -1 + #Trait Infos + self.identification = fd.formdata.getvalue('identification', "") + + ################################################################ + # Generate Chr list and Retrieve Length Information + ################################################################ + self.ChrList = [("All", -1)] + for i, indChr in enumerate(self.genotype): + self.ChrList.append((indChr.name, i)) + + self.cursor.execute(""" + Select + Length from Chr_Length, InbredSet + where + Chr_Length.SpeciesId = InbredSet.SpeciesId AND + InbredSet.Name = '%s' AND + Chr_Length.Name in (%s) + Order by + OrderId + """ % (fd.RISet, string.join(map(lambda X: "'%s'" % X[0], self.ChrList[1:]), ", "))) + + self.ChrLengthMbList = self.cursor.fetchall() + self.ChrLengthMbList = map(lambda x: x[0]/1000000.0, self.ChrLengthMbList) + self.ChrLengthMbSum = reduce(lambda x, y:x+y, self.ChrLengthMbList, 0.0) + if self.ChrLengthMbList: + self.MbGraphInterval = self.ChrLengthMbSum/(len(self.ChrLengthMbList)*12) #Empirical Mb interval + else: + self.MbGraphInterval = 1 + + self.ChrLengthCMList = [] + for i, _chr in enumerate(self.genotype): + self.ChrLengthCMList.append(_chr[-1].cM - _chr[0].cM) + self.ChrLengthCMSum = reduce(lambda x, y:x+y, self.ChrLengthCMList, 0.0) + + if self.plotScale == 'physic': + self.GraphInterval = self.MbGraphInterval #Mb + else: + self.GraphInterval = self.cMGraphInterval #cM + + + ################################################################ + # Get Trait Values and Infomation + ################################################################ + #input from search page or selection page + self.searchResult = fd.formdata.getvalue('searchResult') + #convert single selection into a list + if type("1") == type(self.searchResult): + self.searchResult = string.split(self.searchResult,'\t') + + self.traitList = [] + if self.searchResult and len(self.searchResult) > webqtlConfig.MULTIPLEMAPPINGLIMIT: + heading = 'Multiple Interval Mapping' + detail = ['In order to get clear result, do not select more than %d traits for \ + Multiple Interval Mapping analysis.' % webqtlConfig.MULTIPLEMAPPINGLIMIT] + self.error(heading=heading,detail=detail) + return + elif self.searchResult: + self.dataSource = 'selectionPage' + for item in self.searchResult: + thisTrait = webqtlTrait(fullname=item, cursor=self.cursor) + thisTrait.retrieveInfo() + thisTrait.retrieveData(fd.strainlist) + self.traitList.append(thisTrait) + else: + #input from data editing page + fd.readData() + if not fd.allTraitData: + heading = "Mapping" + detail = ['No trait data was selected for %s data set. No mapping attempted.' % fd.RISet] + self.error(heading=heading,detail=detail) + return + + self.dataSource = 'editingPage' + fullname = fd.formdata.getvalue('fullname', '') + if fullname: + thisTrait = webqtlTrait(fullname=fullname, data=fd.allTraitData, cursor=self.cursor) + thisTrait.retrieveInfo() + else: + thisTrait = webqtlTrait(data=fd.allTraitData) + self.traitList.append(thisTrait) + + + + + + + +## BEGIN HaplotypeAnalyst +## count the amount of individuals to be plotted, and increase self.graphHeight + if self.haplotypeAnalystChecked and self.selectedChr > -1: + thisTrait = self.traitList[0] + _strains, _vals, _vars = thisTrait.exportInformative() + smd=[] + for ii, _val in enumerate(_vals): + temp = GeneralObject(name=_strains[ii], value=_val) + smd.append(temp) + bxdlist=list(self.genotype.prgy) + for j,_geno in enumerate (self.genotype[0][1].genotype): + for item in smd: + if item.name == bxdlist[j]: + self.NR_INDIVIDUALS = self.NR_INDIVIDUALS + 1 +## default: + self.graphHeight = self.graphHeight + 2 * (self.NR_INDIVIDUALS+10) * self.EACH_GENE_HEIGHT +## for paper: + #self.graphHeight = self.graphHeight + 1 * self.NR_INDIVIDUALS * self.EACH_GENE_HEIGHT - 180 + + + +## END HaplotypeAnalyst + + ################################################################ + # Calculations QTL goes here + ################################################################ + self.multipleInterval = len(self.traitList) > 1 + errorMessage = self.calculateAllResult(fd) + if errorMessage: + heading = "Mapping" + detail = ['%s' % errorMessage] + self.error(heading=heading,detail=detail) + return + + if self.multipleInterval: + self.colorCollection = Plot.colorSpectrum(len(self.qtlresults)) + else: + self.colorCollection = [self.LRS_COLOR] + + + ######################### + ## Get the sorting column + ######################### + RISet = fd.RISet + if RISet in ('AXB', 'BXA', 'AXBXA'): + self.diffCol = ['B6J', 'A/J'] + elif RISet in ('BXD', 'BXD300', 'B6D2F2', 'BDF2-2005', 'BDF2-1999', 'BHHBF2'): + self.diffCol = ['B6J', 'D2J'] + elif RISet in ('CXB'): + self.diffCol = ['CBY', 'B6J'] + elif RISet in ('BXH', 'BHF2'): + self.diffCol = ['B6J', 'C3H'] + elif RISet in ('B6BTBRF2'): + self.diffCol = ['B6J', 'BTB'] + elif RISet in ('LXS'): + self.diffCol = ['ILS', 'ISS'] + else: + self.diffCol= [] + + for i, strain in enumerate(self.diffCol): + self.cursor.execute("select Id from Strain where Symbol = %s", strain) + self.diffCol[i] = self.cursor.fetchone()[0] + #print self.diffCol + + ################################################################ + # GeneCollection goes here + ################################################################ + if self.plotScale == 'physic': + #StartMb or EndMb + if self.startMb < 0 or self.endMb < 0: + self.startMb = 0 + self.endMb = self.ChrLengthMbList[self.selectedChr] + + geneTable = "" + if self.plotScale == 'physic' and self.selectedChr > -1 and (self.intervalAnalystChecked or self.geneChecked): + chrName = self.genotype[0].name + # Draw the genes for this chromosome / region of this chromosome + if self.traitList and self.traitList[0] and len(self.traitList) == 1 and self.traitList[0].db: + webqtldatabase = self.traitList[0].db.name + else: + webqtldatabase = None + + self.geneCol = None + + if self.species == "mouse": + self.geneCol = GeneUtil.loadGenes(self.cursor, chrName, self.diffCol, self.startMb, self.endMb, webqtldatabase, "mouse") + elif self.species == "rat": + self.geneCol = GeneUtil.loadGenes(self.cursor, chrName, self.diffCol, self.startMb, self.endMb, webqtldatabase, "rat") + else: + self.geneCol = None + + if self.geneCol and self.intervalAnalystChecked: + ####################################################################### + #Nick use GENEID as RefGene to get Literature Correlation Informations# + #For Interval Mapping, Literature Correlation isn't useful, so skip it# + #through set GENEID is None # + ######################################################################## + + #GENEID = fd.formdata.getvalue('GeneId') or None + GENEID = None + geneTable = self.geneTables(self.geneCol,GENEID) + + else: + self.geneCol = None + + ################################################################ + # Plots goes here + ################################################################ + if self.plotScale != 'physic' or self.multipleInterval: + showLocusForm = webqtlUtil.genRandStr("fm_") + else: + showLocusForm = "" + intCanvas = pid.PILCanvas(size=(self.graphWidth,self.graphHeight)) + gifmap = self.plotIntMapping(fd, intCanvas, startMb = self.startMb, endMb = self.endMb, showLocusForm= showLocusForm) + + filename= webqtlUtil.genRandStr("Itvl_") + intCanvas.save(os.path.join(webqtlConfig.IMGDIR, filename), format='png') + intImg=HT.Image('/image/'+filename+'.png', border=0, usemap='#WebQTLImageMap') + + if self.draw2X: + intCanvasX2 = pid.PILCanvas(size=(self.graphWidth*2,self.graphHeight*2)) + gifmapX2 = self.plotIntMapping(fd, intCanvasX2, startMb = self.startMb, endMb = self.endMb, showLocusForm= showLocusForm, zoom=2) + intCanvasX2.save(os.path.join(webqtlConfig.IMGDIR, filename+"X2"), format='png') + DLintImgX2=HT.Href(text='Download',url = '/image/'+filename+'X2.png', Class='smallsize', target='_blank') + + textUrl = self.writeQTL2Text(fd, filename) + + ################################################################ + # Info tables goes here + ################################################################ + traitInfoTD = self.traitInfoTD(fd) + + if self.draw2X: + traitInfoTD.append(HT.P(), DLintImgX2, ' a higher resolution 2X image. ') + else: + traitInfoTD.append(HT.P()) + + if textUrl: + traitInfoTD.append(HT.BR(), textUrl, ' results in tab-delimited text format.') + traitRemapTD = self.traitRemapTD(self.cursor, fd) + + topTable = HT.TableLite(HT.TR(traitInfoTD, HT.TD(" ", width=25), traitRemapTD), border=0, cellspacing=0, cellpadding=0) + + ################################################################ + # Outputs goes here + ################################################################ + #this form is used for opening Locus page or trait page, only available for genetic mapping + if showLocusForm: + showLocusForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', + name=showLocusForm, submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase', 'ProbeSetID':'_','database':fd.RISet+"Geno",'CellID':'_', 'RISet':fd.RISet, 'incparentsf1':'ON'} + for key in hddn.keys(): + showLocusForm.append(HT.Input(name=key, value=hddn[key], type='hidden')) + showLocusForm.append(intImg) + else: + showLocusForm = intImg + + ################################################################ + # footnote goes here + ################################################################ + btminfo = HT.Paragraph(Id="smallsize") #Small('More information about this graph is available here.') + + if (self.additiveChecked): + btminfo.append(HT.BR(), 'A positive additive coefficient (', HT.Font('green', color='green'), ' line) indicates that %s alleles increase trait values. In contrast, a negative additive coefficient (' % fd.ppolar, HT.Font('red', color='red'), ' line) indicates that %s alleles increase trait values.' % fd.mpolar) + + if self.traitList and self.traitList[0].db and self.traitList[0].db.type == 'Geno': + btminfo.append(HT.BR(), 'Mapping using genotype data as a trait will result in infinity LRS at one locus. In order to display the result properly, all LRSs higher than 100 are capped at 100.') + + TD_LR = HT.TD(HT.Blockquote(topTable), HT.Blockquote(gifmap, showLocusForm, HT.P(), btminfo), bgColor='#eeeeee', height = 200) + + if geneTable: + iaForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, "main.py?FormID=intervalAnalyst"), enctype='multipart/form-data', + name="iaForm", submit=HT.Input(type='hidden')) + hddn = {'chromosome':self.genotype[0].name, 'species':self.species,'startMb':self.startMb,'endMb':self.endMb} + if self.diffCol: + hddn['s1'] = self.diffCol[0] + hddn['s2'] = self.diffCol[1] + for key in hddn.keys(): + iaForm.append(HT.Input(name=key, value=hddn[key], type='hidden')) + iaForm.append(HT.Paragraph("Interval Analyst : Chr %s from %2.6f to %2.6f Mb" % (self.genotype[0].name, self.startMb, self.endMb), + HT.Input(name='customize', value='Customize', onClick= "formInNewWindow(this.form);", type='button', Class="button"), Class="subtitle")) + TD_LR.append(HT.Blockquote(iaForm, geneTable)) + + self.dict['body'] = TD_LR + self.dict['title'] = "Mapping" + + def writeQTL2Text(self, fd, filename): + if self.multipleInterval: + return "" + _dominance = (self.genotype.type == 'intercross') + _Mb = self.genotype.Mbmap + + ###Write to text file + fpText = open(os.path.join(webqtlConfig.TMPDIR, filename) + '.txt','wb') + + fpText.write("Source: WebQTL, The GeneNetwork (%s)\n" % webqtlConfig.PORTADDR) + # + fpText.write("Site: %s\n" % webqtlConfig.SITENAME) + fpText.write("Page: Map Viewer\n") + fpText.write(time.strftime("Date and Time (US Center): %b %d, %Y at %I.%M %p\n", time.localtime())) + fpText.write("Trait ID: %s\n" % fd.identification) + fpText.write("Suggestive LRS = %0.2f\n" % self.suggestive) + fpText.write("Significant LRS = %0.2f\n" % self.significance) + """ + if fd.traitInfo: + writeSymbol, writeChromosome, writeMb = string.split(fd.traitInfo) + else: + writeSymbol, writeChromosome, writeMb = (" ", " ", " ") + fpText.write("Gene Symbol: %s\n" % writeSymbol) + fpText.write("Location: Chr %s @ %s Mb\n" % (writeChromosome, writeMb)) + selectedChr = self.indexToChrName(int(fd.formdata.getvalue('chromosomes', -1))) + fpText.write("Chromosome: %s\n" % selectedChr) + fpText.write("Region: %0.6f-%0.6f Mb\n\n" % (self.startMb, self.endMb)) + """ + + if hasattr(self, 'LRSArray'): + if _dominance: + fpText.write('Chr\tLocus\tcM\tMb\tLRS\tP-value\tAdditive\tDominance\n') + else: + fpText.write('Chr\tLocus\tcM\tMb\tLRS\tP-value\tAdditive\n') + else: + if _dominance: + fpText.write('Chr\tLocus\tcM\tMb\tLRS\tAdditive\tDominance\n') + else: + fpText.write('Chr\tLocus\tcM\tMb\tLRS\tAdditive\n') + + i = 0 + for qtlresult in self.qtlresults[0]: + if _Mb: + locusMb = '%2.3f' % qtlresult.locus.Mb + else: + locusMb = 'N/A' + + if hasattr(self, 'LRSArray'): + P_value = self.calculatePValue(qtlresult.lrs, self.LRSArray) + + if _dominance: + fpText.write("%s\t%s\t%2.3f\t%s\t%2.3f\t%2.3f\t%2.3f\t%2.3f\n" %(qtlresult.locus.chr, \ + qtlresult.locus.name, qtlresult.locus.cM, locusMb , qtlresult.lrs, P_value, qtlresult.additive, qtlresult.dominance)) + else: + fpText.write("%s\t%s\t%2.3f\t%s\t%2.3f\t%2.3f\t%2.3f\n" %(qtlresult.locus.chr, \ + qtlresult.locus.name, qtlresult.locus.cM, locusMb , qtlresult.lrs, P_value, qtlresult.additive)) + else: + if _dominance: + fpText.write("%s\t%s\t%2.3f\t%s\t%2.3f\t%2.3f\t%2.3f\n" %(qtlresult.locus.chr, \ + qtlresult.locus.name, qtlresult.locus.cM, locusMb , qtlresult.lrs, qtlresult.additive, qtlresult.dominance)) + else: + fpText.write("%s\t%s\t%2.3f\t%s\t%2.3f\t%2.3f\n" %(qtlresult.locus.chr, \ + qtlresult.locus.name, qtlresult.locus.cM, locusMb , qtlresult.lrs, qtlresult.additive)) + + i += 1 + + fpText.close() + textUrl = HT.Href(text = 'Download', url= '/tmp/'+filename+'.txt', target = "_blank", Class='smallsize') + return textUrl + + def plotIntMapping(self, fd, canvas, offset= (80, 120, 20, 80), zoom = 1, startMb = None, endMb = None, showLocusForm = ""): + #calculating margins + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + if self.multipleInterval: + yTopOffset = max(80, yTopOffset) + else: + if self.legendChecked: + yTopOffset = max(80, yTopOffset) + else: + pass + + if self.plotScale != 'physic': + yBottomOffset = max(120, yBottomOffset) + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + xLeftOffset = int(xLeftOffset*fontZoom) + xRightOffset = int(xRightOffset*fontZoom) + yBottomOffset = int(yBottomOffset*fontZoom) + + cWidth = canvas.size[0] + cHeight = canvas.size[1] + plotWidth = cWidth - xLeftOffset - xRightOffset + plotHeight = cHeight - yTopOffset - yBottomOffset + startPixelX = xLeftOffset + endPixelX = (xLeftOffset + plotWidth) + + #Drawing Area Height + drawAreaHeight = plotHeight + if self.plotScale == 'physic' and self.selectedChr > -1: + drawAreaHeight -= self.ENSEMBL_BAND_HEIGHT + self.UCSC_BAND_HEIGHT+ self.WEBQTL_BAND_HEIGHT + 3*self.BAND_SPACING+ 10*zoom + if self.geneChecked: + drawAreaHeight -= self.NUM_GENE_ROWS*self.EACH_GENE_HEIGHT + 3*self.BAND_SPACING + 10*zoom + else: + if self.selectedChr > -1: + drawAreaHeight -= 20 + else: + drawAreaHeight -= 30 + +## BEGIN HaplotypeAnalyst + if self.haplotypeAnalystChecked and self.selectedChr > -1: + drawAreaHeight -= self.EACH_GENE_HEIGHT * (self.NR_INDIVIDUALS+10) * 2 * zoom +## END HaplotypeAnalyst + + #Image map + gifmap = HT.Map(name='WebQTLImageMap') + + newoffset = (xLeftOffset, xRightOffset, yTopOffset, yBottomOffset) + # Draw the alternating-color background first and get plotXScale + plotXScale = self.drawGraphBackground(canvas, gifmap, offset=newoffset, zoom= zoom, startMb=startMb, endMb = endMb) + + #draw bootstap + if self.bootChecked and not self.multipleInterval: + self.drawBootStrapResult(canvas, fd.nboot, drawAreaHeight, plotXScale, offset=newoffset) + + # Draw clickable region and gene band if selected + if self.plotScale == 'physic' and self.selectedChr > -1: + self.drawClickBand(canvas, gifmap, plotXScale, offset=newoffset, zoom= zoom, startMb=startMb, endMb = endMb) + if self.geneChecked and self.geneCol: + self.drawGeneBand(canvas, gifmap, plotXScale, offset=newoffset, zoom= zoom, startMb=startMb, endMb = endMb) + if self.SNPChecked: + self.drawSNPTrackNew(canvas, offset=newoffset, zoom= 2*zoom, startMb=startMb, endMb = endMb) +## BEGIN HaplotypeAnalyst + if self.haplotypeAnalystChecked: + self.drawHaplotypeBand(canvas, gifmap, plotXScale, offset=newoffset, zoom= zoom, startMb=startMb, endMb = endMb) +## END HaplotypeAnalyst + # Draw X axis + self.drawXAxis(fd, canvas, drawAreaHeight, gifmap, plotXScale, showLocusForm, offset=newoffset, zoom= zoom, startMb=startMb, endMb = endMb) + # Draw QTL curve + self.drawQTL(canvas, drawAreaHeight, gifmap, plotXScale, offset=newoffset, zoom= zoom, startMb=startMb, endMb = endMb) + + #draw legend + if self.multipleInterval: + self.drawMultiTraitName(fd, canvas, gifmap, showLocusForm, offset=newoffset) + elif self.legendChecked: + self.drawLegendPanel(fd, canvas, offset=newoffset) + else: + pass + + #draw position, no need to use a separate function + if fd.genotype.Mbmap: + self.drawProbeSetPosition(canvas, plotXScale, offset=newoffset) + + return gifmap + + def drawBootStrapResult(self, canvas, nboot, drawAreaHeight, plotXScale, offset= (40, 120, 80, 10), zoom = 1, startMb = None, endMb = None): + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + yZero = canvas.size[1] - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + bootHeightThresh = drawAreaHeight*3/4 + + #break bootstrap result into groups + BootCoord = [] + i = 0 + startX = xLeftOffset + for j, _chr in enumerate(self.genotype): + BootCoord.append( []) + for _locus in _chr: + if self.plotScale == 'physic': + Xc = startX + (_locus.Mb-self.startMb)*plotXScale + else: + Xc = startX + (_locus.cM-_chr[0].cM)*plotXScale + BootCoord[-1].append([Xc, self.bootResult[i]]) + i += 1 + startX += (self.ChrLengthDistList[j] + self.GraphInterval)*plotXScale + + #reduce bootResult + if self.selectedChr > -1: + maxBootBar = 80.0 + else: + maxBootBar = 200.0 + stepBootStrap = plotWidth/maxBootBar + reducedBootCoord = [] + maxBootCount = 0 + + for BootChrCoord in BootCoord: + nBoot = len(BootChrCoord) + bootStartPixX = BootChrCoord[0][0] + bootCount = BootChrCoord[0][1] + for i in range(1, nBoot): + if BootChrCoord[i][0] - bootStartPixX < stepBootStrap: + bootCount += BootChrCoord[i][1] + continue + else: + if maxBootCount < bootCount: + maxBootCount = bootCount + # end if + reducedBootCoord.append([bootStartPixX, BootChrCoord[i][0], bootCount]) + bootStartPixX = BootChrCoord[i][0] + bootCount = BootChrCoord[i][1] + # end else + # end for + #add last piece + if BootChrCoord[-1][0] - bootStartPixX > stepBootStrap/2.0: + reducedBootCoord.append([bootStartPixX, BootChrCoord[-1][0], bootCount]) + else: + reducedBootCoord[-1][2] += bootCount + reducedBootCoord[-1][1] = BootChrCoord[-1][0] + # end else + if maxBootCount < reducedBootCoord[-1][2]: + maxBootCount = reducedBootCoord[-1][2] + # end if + for item in reducedBootCoord: + if item[2] > 0: + if item[0] < xLeftOffset: + item[0] = xLeftOffset + if item[0] > xLeftOffset+plotWidth: + item[0] = xLeftOffset+plotWidth + if item[1] < xLeftOffset: + item[1] = xLeftOffset + if item[1] > xLeftOffset+plotWidth: + item[1] = xLeftOffset+plotWidth + if item[0] != item[1]: + canvas.drawRect(item[0], yZero, item[1], yZero - item[2]*bootHeightThresh/maxBootCount, + fillColor=self.BOOTSTRAP_BOX_COLOR) + + ###draw boot scale + highestPercent = (maxBootCount*100.0)/nboot + bootScale = Plot.detScale(0, highestPercent) + bootScale = Plot.frange(bootScale[0], bootScale[1], bootScale[1]/bootScale[2]) + bootScale = bootScale[:-1] + [highestPercent] + + bootOffset = 50*fontZoom + bootScaleFont=pid.Font(ttf="verdana",size=13*fontZoom,bold=0) + canvas.drawRect(canvas.size[0]-bootOffset,yZero-bootHeightThresh,canvas.size[0]-bootOffset-15*zoom,yZero,fillColor = pid.yellow) + canvas.drawLine(canvas.size[0]-bootOffset+4, yZero, canvas.size[0]-bootOffset, yZero, color=pid.black) + canvas.drawString('0%' ,canvas.size[0]-bootOffset+10,yZero+5,font=bootScaleFont,color=pid.black) + for item in bootScale: + if item == 0: + continue + bootY = yZero-bootHeightThresh*item/highestPercent + canvas.drawLine(canvas.size[0]-bootOffset+4,bootY,canvas.size[0]-bootOffset,bootY,color=pid.black) + canvas.drawString('%2.1f'%item ,canvas.size[0]-bootOffset+10,bootY+5,font=bootScaleFont,color=pid.black) + + if self.legendChecked: + startPosY = 30 + nCol = 2 + smallLabelFont = pid.Font(ttf="trebuc", size=12, bold=1) + leftOffset = xLeftOffset+(nCol-1)*200 + canvas.drawRect(leftOffset,startPosY-6, leftOffset+12,startPosY+6, fillColor=pid.yellow) + canvas.drawString('Frequency of the Peak LRS',leftOffset+ 20, startPosY+5,font=smallLabelFont,color=pid.black) + + def drawProbeSetPosition(self, canvas, plotXScale, offset= (40, 120, 80, 10), zoom = 1, startMb = None, endMb = None): + if len(self.traitList) != 1: + return + + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + yZero = canvas.size[1] - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + try: + Chr = self.traitList[0].chr + Mb = self.traitList[0].mb + except: + return + + if self.plotScale == 'physic': + if self.selectedChr > -1: + if self.genotype[0].name != Chr or Mb < self.startMb or Mb > self.endMb: + return + else: + locPixel = xLeftOffset + (Mb-self.startMb)*plotXScale + else: + locPixel = xLeftOffset + for i, _chr in enumerate(self.genotype): + if _chr.name != Chr: + locPixel += (self.ChrLengthDistList[i] + self.GraphInterval)*plotXScale + else: + locPixel += Mb*plotXScale + break + else: + if self.selectedChr > -1: + if self.genotype[0].name != Chr: + return + else: + for i, _locus in enumerate(self.genotype[0]): + #the trait's position is on the left of the first genotype + if i==0 and _locus.Mb >= Mb: + locPixel=-1 + break + + #the trait's position is between two traits + if i > 0 and self.genotype[0][i-1].Mb < Mb and _locus.Mb >= Mb: + locPixel = xLeftOffset + plotXScale*(self.genotype[0][i-1].cM+(_locus.cM-self.genotype[0][i-1].cM)*(Mb -self.genotype[0][i-1].Mb)/(_locus.Mb-self.genotype[0][i-1].Mb)) + break + + #the trait's position is on the right of the last genotype + if i==len(self.genotype[0]) and Mb>=_locus.Mb: + locPixel = -1 + else: + locPixel = xLeftOffset + for i, _chr in enumerate(self.genotype): + if _chr.name != Chr: + locPixel += (self.ChrLengthDistList[i] + self.GraphInterval)*plotXScale + else: + locPixel += (Mb*(_chr[-1].cM-_chr[0].cM)/self.ChrLengthCMList[i])*plotXScale + break + if locPixel >= 0: + traitPixel = ((locPixel, yZero), (locPixel-6, yZero+12), (locPixel+6, yZero+12)) + canvas.drawPolygon(traitPixel, edgeColor=pid.black, fillColor=self.TRANSCRIPT_LOCATION_COLOR, closed=1) + + if self.legendChecked: + startPosY = 15 + nCol = 2 + smallLabelFont = pid.Font(ttf="trebuc", size=12, bold=1) + leftOffset = xLeftOffset+(nCol-1)*200 + canvas.drawPolygon(((leftOffset+6, startPosY-6), (leftOffset, startPosY+6), (leftOffset+12, startPosY+6)), edgeColor=pid.black, fillColor=self.TRANSCRIPT_LOCATION_COLOR, closed=1) + canvas.drawString("Sequence Site", (leftOffset+15), (startPosY+5), smallLabelFont, self.TOP_RIGHT_INFO_COLOR) + + + def drawSNPTrackNew(self, canvas, offset= (40, 120, 80, 10), zoom = 1, startMb = None, endMb = None): + if self.plotScale != 'physic' or self.selectedChr == -1 or not self.diffCol: + return + + SNP_HEIGHT_MODIFIER = 18.0 + + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + yZero = canvas.size[1] - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + drawSNPLocationY = yTopOffset + plotHeight + chrName = self.genotype[0].name + + stepMb = (endMb-startMb)/plotWidth + strainId1, strainId2 = self.diffCol + SNPCounts = [] + + while startMb= %2.6f AND Mb < %2.6f AND + StrainId1 = %d AND StrainId2 = %d + """ % (chrName, startMb, startMb+stepMb, strainId1, strainId2)) + SNPCounts.append(self.cursor.fetchone()[0]) + startMb += stepMb + + if (len(SNPCounts) > 0): + maxCount = max(SNPCounts) + if maxCount>0: + for i in range(xLeftOffset, xLeftOffset + plotWidth): + snpDensity = float(SNPCounts[i-xLeftOffset]*SNP_HEIGHT_MODIFIER/maxCount) + canvas.drawLine(i, drawSNPLocationY+(snpDensity)*zoom, i, drawSNPLocationY-(snpDensity)*zoom, color=self.SNP_COLOR, width=1) + + def drawMultiTraitName(self, fd, canvas, gifmap, showLocusForm, offset= (40, 120, 80, 10), zoom = 1, locLocation= None): + nameWidths = [] + yPaddingTop = 10 + colorFont=pid.Font(ttf="trebuc",size=12,bold=1) + if len(self.qtlresults) >20 and self.selectedChr > -1: + rightShift = 20 + rightShiftStep = 60 + rectWidth = 10 + else: + rightShift = 40 + rightShiftStep = 80 + rectWidth = 15 + + for k, thisTrait in enumerate(self.traitList): + thisLRSColor = self.colorCollection[k] + kstep = k % 4 + if k!=0 and kstep==0: + if nameWidths: + rightShiftStep = max(nameWidths[-4:]) + rectWidth + 20 + rightShift += rightShiftStep + + name = thisTrait.displayName() + nameWidth = canvas.stringWidth(name,font=colorFont) + nameWidths.append(nameWidth) + + canvas.drawRect(rightShift,yPaddingTop+kstep*15, rectWidth+rightShift,yPaddingTop+10+kstep*15, fillColor=thisLRSColor) + canvas.drawString(name,rectWidth+2+rightShift,yPaddingTop+10+kstep*15,font=colorFont,color=pid.black) + if thisTrait.db: + + COORDS = "%d,%d,%d,%d" %(rectWidth+2+rightShift,yPaddingTop+kstep*15,rectWidth+2+rightShift+nameWidth,yPaddingTop+10+kstep*15,) + HREF= "javascript:showDatabase3('%s','%s','%s','');" % (showLocusForm, thisTrait.db.name, thisTrait.name) + Areas = HT.Area(shape='rect',coords=COORDS,href=HREF) + gifmap.areas.append(Areas) + + + def drawLegendPanel(self, fd, canvas, offset= (40, 120, 80, 10), zoom = 1, locLocation= None): + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + yZero = canvas.size[1] - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + + labelFont=pid.Font(ttf="trebuc",size=12, bold=1) + startPosY = 15 + stepPosY = 12 + canvas.drawLine(xLeftOffset,startPosY,xLeftOffset+32,startPosY,color=self.LRS_COLOR, width=2) + canvas.drawString(self.LRS_LOD, xLeftOffset+40,startPosY+5,font=labelFont,color=pid.black) + startPosY += stepPosY + + if self.additiveChecked: + startPosX = xLeftOffset + canvas.drawLine(startPosX,startPosY,startPosX+17,startPosY,color=self.ADDITIVE_COLOR_POSITIVE, width=2) + canvas.drawLine(startPosX+18,startPosY,startPosX+32,startPosY,color=self.ADDITIVE_COLOR_NEGATIVE, width=2) + canvas.drawString('Additive Effect',startPosX+40,startPosY+5,font=labelFont,color=pid.black) + + if self.genotype.type == 'intercross' and self.dominanceChecked: + startPosX = xLeftOffset + startPosY += stepPosY + canvas.drawLine(startPosX,startPosY,startPosX+17,startPosY,color=self.DOMINANCE_COLOR_POSITIVE, width=4) + canvas.drawLine(startPosX+18,startPosY,startPosX+35,startPosY,color=self.DOMINANCE_COLOR_NEGATIVE, width=4) + canvas.drawString('Dominance Effect',startPosX+42,startPosY+5,font=labelFont,color=pid.black) + + if self.haplotypeAnalystChecked: + startPosY += stepPosY + startPosX = xLeftOffset + canvas.drawLine(startPosX,startPosY,startPosX+17,startPosY,color=self.HAPLOTYPE_POSITIVE, width=4) + canvas.drawLine(startPosX+18,startPosY,startPosX+35,startPosY,color=self.HAPLOTYPE_NEGATIVE, width=4) + canvas.drawLine(startPosX+36,startPosY,startPosX+53,startPosY,color=self.HAPLOTYPE_HETEROZYGOUS, width=4) + canvas.drawLine(startPosX+54,startPosY,startPosX+67,startPosY,color=self.HAPLOTYPE_RECOMBINATION, width=4) + canvas.drawString('Haplotypes (Pat, Mat, Het, Unk)',startPosX+76,startPosY+5,font=labelFont,color=pid.black) + + if self.permChecked: + startPosY += stepPosY + startPosX = xLeftOffset + canvas.drawLine(startPosX, startPosY, startPosX + 32, startPosY, color=self.SIGNIFICANT_COLOR, width=self.SIGNIFICANT_WIDTH) + canvas.drawLine(startPosX, startPosY + stepPosY, startPosX + 32, startPosY + stepPosY, color=self.SUGGESTIVE_COLOR, width=self.SUGGESTIVE_WIDTH) + lod = 1 + if self.LRS_LOD == 'LOD': + lod = self.LODFACTOR + canvas.drawString('Significant %s = %2.2f' % (self.LRS_LOD, self.significance/lod),xLeftOffset+42,startPosY +5,font=labelFont,color=pid.black) + canvas.drawString('Suggestive %s = %2.2f' % (self.LRS_LOD, self.suggestive/lod),xLeftOffset+42,startPosY + 5 +stepPosY,font=labelFont,color=pid.black) + + + + labelFont=pid.Font(ttf="verdana",size=12) + labelColor = pid.black + if self.selectedChr == -1: + string1 = 'Mapping for Dataset: %s, mapping on All Chromosomes' % fd.RISet + else: + string1 = 'Mapping for Dataset: %s, mapping on Chromosome %s' % (fd.RISet,self.genotype[0].name) + if self.controlLocus: + string2 = 'Using %s as control' % self.controlLocus + else: + string2 = 'Using Haldane mapping function with no control for other QTLs' + d = 4+ max(canvas.stringWidth(string1,font=labelFont),canvas.stringWidth(string2,font=labelFont)) + if fd.identification: + identification = "Trait ID: %s" % fd.identification + canvas.drawString(identification,canvas.size[0] - xRightOffset-d,20,font=labelFont,color=labelColor) + + canvas.drawString(string1,canvas.size[0] - xRightOffset-d,35,font=labelFont,color=labelColor) + canvas.drawString(string2,canvas.size[0] - xRightOffset-d,50,font=labelFont,color=labelColor) + + + def drawGeneBand(self, canvas, gifmap, plotXScale, offset= (40, 120, 80, 10), zoom = 1, startMb = None, endMb = None): + if self.plotScale != 'physic' or self.selectedChr == -1 or not self.geneCol: + return + + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + yZero = canvas.size[1] - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + yPaddingTop = yTopOffset + + displayStartInBases = startMb*self.kONE_MILLION + displayEndInBases = endMb*self.kONE_MILLION + + for gIndex, theGO in enumerate(self.geneCol): + geneNCBILink = 'http://www.ncbi.nlm.nih.gov/gene?term=%s' + if self.species == "mouse": + txStart = theGO["TxStart"] + txEnd = theGO["TxEnd"] + geneLength = (txEnd - txStart)*1000.0 + tenPercentLength = geneLength*0.0001 + SNPdensity = theGO["snpCount"]/geneLength + + exonStarts = map(float, theGO['exonStarts'].split(",")[:-1]) + exonEnds = map(float, theGO['exonEnds'].split(",")[:-1]) + cdsStart = theGO['cdsStart'] + cdsEnd = theGO['cdsEnd'] + accession = theGO['NM_ID'] + geneId = theGO['GeneID'] + geneSymbol = theGO["GeneSymbol"] + strand = theGO["Strand"] + exonCount = theGO["exonCount"] + + geneStartPix = xLeftOffset + plotXScale*(float(txStart) - startMb) + geneEndPix = xLeftOffset + plotXScale*(float(txEnd) - startMb) #at least one pixel + + if (geneEndPix < xLeftOffset): + return; # this gene is not on the screen + elif (geneEndPix > xLeftOffset + plotWidth): + geneEndPix = xLeftOffset + plotWidth; # clip the last in-range gene + if (geneStartPix > xLeftOffset + plotWidth): + return; # we are outside the valid on-screen range, so stop drawing genes + elif (geneStartPix < xLeftOffset): + geneStartPix = xLeftOffset; # clip the first in-range gene + + #color the gene based on SNP density + + + #found earlier, needs to be recomputed as snps are added + + #always apply colors now, even if SNP Track not checked - Zach 11/24/2010 + + densities=[1.0000000000000001e-05, 0.094094033555233408, 0.3306166377816987, 0.88246026851027781, 2.6690084029581951, 4.1, 61.0] + if SNPdensity < densities[0]: + myColor = pid.black + elif SNPdensity < densities[1]: + myColor = pid.purple + elif SNPdensity < densities[2]: + myColor = pid.darkblue + elif SNPdensity < densities[3]: + myColor = pid.darkgreen + elif SNPdensity < densities[4]: + myColor = pid.gold + elif SNPdensity < densities[5]: + myColor = pid.darkorange + else: + myColor = pid.darkred + + outlineColor = myColor + fillColor = myColor + + TITLE = "Gene: %s (%s)\nFrom %2.3f to %2.3f Mb (%s)\nNum. exons: %d." % (geneSymbol, accession, float(txStart), float(txEnd), strand, exonCount) + # NL: 06-02-2011 Rob required to change this link for gene related + HREF=geneNCBILink %geneSymbol + + elif self.species == "rat": + exonStarts = [] + exonEnds = [] + txStart = theGO["TxStart"] + txEnd = theGO["TxEnd"] + cdsStart = theGO["TxStart"] + cdsEnd = theGO["TxEnd"] + geneId = theGO["GeneID"] + geneSymbol = theGO["GeneSymbol"] + strand = theGO["Strand"] + exonCount = 0 + + geneStartPix = xLeftOffset + plotXScale*(float(txStart) - startMb) + geneEndPix = xLeftOffset + plotXScale*(float(txEnd) - startMb) #at least one pixel + + if (geneEndPix < xLeftOffset): + return; # this gene is not on the screen + elif (geneEndPix > xLeftOffset + plotWidth): + geneEndPix = xLeftOffset + plotWidth; # clip the last in-range gene + if (geneStartPix > xLeftOffset + plotWidth): + return; # we are outside the valid on-screen range, so stop drawing genes + elif (geneStartPix < xLeftOffset): + geneStartPix = xLeftOffset; # clip the first in-range gene + + outlineColor = pid.darkblue + fillColor = pid.darkblue + TITLE = "Gene: %s\nFrom %2.3f to %2.3f Mb (%s)" % (geneSymbol, float(txStart), float(txEnd), strand) + # NL: 06-02-2011 Rob required to change this link for gene related + HREF=geneNCBILink %geneSymbol + else: + outlineColor = pid.orange + fillColor = pid.orange + TITLE = "Gene: %s" % geneSymbol + + #Draw Genes + geneYLocation = yPaddingTop + (gIndex % self.NUM_GENE_ROWS) * self.EACH_GENE_HEIGHT*zoom + + if 1:#drawClickableRegions: + geneYLocation += self.UCSC_BAND_HEIGHT + self.BAND_SPACING + self.ENSEMBL_BAND_HEIGHT + self.BAND_SPACING + self.WEBQTL_BAND_HEIGHT + self.BAND_SPACING + else: + geneYLocation += self.BAND_SPACING + + #draw the detail view + if self.endMb - self.startMb <= self.DRAW_DETAIL_MB and geneEndPix - geneStartPix > self.EACH_GENE_ARROW_SPACING * 3: + utrColor = pid.Color(0.66, 0.66, 0.66) + arrowColor = pid.Color(0.7, 0.7, 0.7) + + #draw the line that runs the entire length of the gene + #canvas.drawString(str(geneStartPix), 300, 400) + canvas.drawLine(geneStartPix, geneYLocation + self.EACH_GENE_HEIGHT/2*zoom, geneEndPix, geneYLocation + self.EACH_GENE_HEIGHT/2*zoom, color=outlineColor, width=1) + + #draw the arrows + for xCoord in range(0, geneEndPix-geneStartPix): + + if (xCoord % self.EACH_GENE_ARROW_SPACING == 0 and xCoord + self.EACH_GENE_ARROW_SPACING < geneEndPix-geneStartPix) or xCoord == 0: + if strand == "+": + canvas.drawLine(geneStartPix + xCoord, geneYLocation, geneStartPix + xCoord + self.EACH_GENE_ARROW_WIDTH, geneYLocation +(self.EACH_GENE_HEIGHT / 2)*zoom, color=arrowColor, width=1) + canvas.drawLine(geneStartPix + xCoord, geneYLocation + self.EACH_GENE_HEIGHT*zoom, geneStartPix + xCoord+self.EACH_GENE_ARROW_WIDTH, geneYLocation + (self.EACH_GENE_HEIGHT / 2) * zoom, color=arrowColor, width=1) + else: + canvas.drawLine(geneStartPix + xCoord + self.EACH_GENE_ARROW_WIDTH, geneYLocation, geneStartPix + xCoord, geneYLocation +(self.EACH_GENE_HEIGHT / 2)*zoom, color=arrowColor, width=1) + canvas.drawLine(geneStartPix + xCoord + self.EACH_GENE_ARROW_WIDTH, geneYLocation + self.EACH_GENE_HEIGHT*zoom, geneStartPix + xCoord, geneYLocation + (self.EACH_GENE_HEIGHT / 2)*zoom, color=arrowColor, width=1) + + #draw the blocks for the exon regions + for i in range(0, len(exonStarts)): + exonStartPix = (exonStarts[i]-startMb)*plotXScale + xLeftOffset + exonEndPix = (exonEnds[i]-startMb)*plotXScale + xLeftOffset + if (exonStartPix < xLeftOffset): + exonStartPix = xLeftOffset + if (exonEndPix < xLeftOffset): + exonEndPix = xLeftOffset + if (exonEndPix > xLeftOffset + plotWidth): + exonEndPix = xLeftOffset + plotWidth + if (exonStartPix > xLeftOffset + plotWidth): + exonStartPix = xLeftOffset + plotWidth + canvas.drawRect(exonStartPix, geneYLocation, exonEndPix, (geneYLocation + self.EACH_GENE_HEIGHT*zoom), edgeColor = outlineColor, fillColor = fillColor) + + #draw gray blocks for 3' and 5' UTR blocks + if cdsStart and cdsEnd: + + utrStartPix = (txStart-startMb)*plotXScale + xLeftOffset + utrEndPix = (cdsStart-startMb)*plotXScale + xLeftOffset + if (utrStartPix < xLeftOffset): + utrStartPix = xLeftOffset + if (utrEndPix < xLeftOffset): + utrEndPix = xLeftOffset + if (utrEndPix > xLeftOffset + plotWidth): + utrEndPix = xLeftOffset + plotWidth + if (utrStartPix > xLeftOffset + plotWidth): + utrStartPix = xLeftOffset + plotWidth + canvas.drawRect(utrStartPix, geneYLocation, utrEndPix, (geneYLocation+self.EACH_GENE_HEIGHT*zoom), edgeColor=utrColor, fillColor =utrColor) + + if self.DRAW_UTR_LABELS and self.endMb - self.startMb <= self.DRAW_UTR_LABELS_MB: + if strand == "-": + labelText = "3'" + else: + labelText = "5'" + canvas.drawString(labelText, utrStartPix-9, geneYLocation+self.EACH_GENE_HEIGHT, pid.Font(face="helvetica", size=2)) + + #the second UTR region + + utrStartPix = (cdsEnd-startMb)*plotXScale + xLeftOffset + utrEndPix = (txEnd-startMb)*plotXScale + xLeftOffset + if (utrStartPix < xLeftOffset): + utrStartPix = xLeftOffset + if (utrEndPix < xLeftOffset): + utrEndPix = xLeftOffset + if (utrEndPix > xLeftOffset + plotWidth): + utrEndPix = xLeftOffset + plotWidth + if (utrStartPix > xLeftOffset + plotWidth): + utrStartPix = xLeftOffset + plotWidth + canvas.drawRect(utrStartPix, geneYLocation, utrEndPix, (geneYLocation+self.EACH_GENE_HEIGHT*zoom), edgeColor=utrColor, fillColor =utrColor) + + if self.DRAW_UTR_LABELS and self.endMb - self.startMb <= self.DRAW_UTR_LABELS_MB: + if tstrand == "-": + labelText = "5'" + else: + labelText = "3'" + canvas.drawString(labelText, utrEndPix+2, geneYLocation+self.EACH_GENE_HEIGHT, pid.Font(face="helvetica", size=2)) + + #draw the genes as rectangles + else: + canvas.drawRect(geneStartPix, geneYLocation, geneEndPix, (geneYLocation + self.EACH_GENE_HEIGHT*zoom), edgeColor = outlineColor, fillColor = fillColor) + + COORDS = "%d, %d, %d, %d" %(geneStartPix, geneYLocation, geneEndPix, (geneYLocation + self.EACH_GENE_HEIGHT)) + # NL: 06-02-2011 Rob required to display NCBI info in a new window + gifmap.areas.append(HT.Area(shape='rect',coords=COORDS,href=HREF, title=TITLE,target="_blank")) + +## BEGIN HaplotypeAnalyst + def drawHaplotypeBand(self, canvas, gifmap, plotXScale, offset= (40, 120, 80, 10), zoom = 1, startMb = None, endMb = None): + if self.plotScale != 'physic' or self.selectedChr == -1 or not self.geneCol: + return + + + fpText = open(os.path.join(webqtlConfig.TMPDIR, "hallo") + '.txt','wb') + + clickableRegionLabelFont=pid.Font(ttf="verdana", size=9, bold=0) + + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + yZero = canvas.size[1] - yBottomOffset + fontZoom = zoom + widthMultiplier = 1 + + yPaddingTop = yTopOffset + + exprdrawn = 0 + + thisTrait = self.traitList[0] + _strains, _vals, _vars = thisTrait.exportInformative() + + smd=[] + for ii, _val in enumerate(_vals): + temp = GeneralObject(name=_strains[ii], value=_val) + smd.append(temp) + + smd.sort(lambda A, B: cmp(A.value, B.value)) + + bxdlist=list(self.genotype.prgy) + + oldgeneEndPix = -1 + #Initializing plotRight, error before + plotRight = xRightOffset + +#### find out PlotRight + for i, _locus in enumerate(self.genotype[0]): + txStart = self.genotype[0][i].Mb + txEnd = self.genotype[0][i].Mb + + geneStartPix = xLeftOffset + plotXScale*(float(txStart) - startMb) - 0 + geneEndPix = xLeftOffset + plotXScale*(float(txEnd) - startMb) - 0 + + drawit = 1 + if (geneStartPix < xLeftOffset): + drawit = 0; + if (geneStartPix > xLeftOffset + plotWidth): + drawit = 0; + + if drawit == 1: + + if self.genotype[0][i].name != " - " : + + plotRight = geneEndPix + 4 + + + +#### end find out PlotRight + + firstGene = 1 + lastGene = 0 + + #Sets the length to the length of the strain list. Beforehand, "oldgeno = self.genotype[0][i].genotype" + #was the only place it was initialized, which worked as long as the very start (startMb = None/0) wasn't being mapped. + #Now there should always be some value set for "oldgeno" - Zach 12/14/2010 + oldgeno = [None]*len(self.strainlist) + + for i, _locus in enumerate(self.genotype[0]): + txStart = self.genotype[0][i].Mb + txEnd = self.genotype[0][i].Mb + + geneStartPix = xLeftOffset + plotXScale*(float(txStart) - startMb) - 0 + geneEndPix = xLeftOffset + plotXScale*(float(txEnd) - startMb) + 0 + + if oldgeneEndPix >= xLeftOffset: + drawStart = oldgeneEndPix + 4 + else: + drawStart = xLeftOffset + 3 + + drawEnd = plotRight - 9 + + drawit = 1 + + if (geneStartPix < xLeftOffset): + if firstGene == 1: + drawit = 1 + else: + drawit = 0 + + elif (geneStartPix > (xLeftOffset + plotWidth - 3)): + if lastGene == 0: + drawit = 1 + drawEnd = xLeftOffset + plotWidth - 6 + lastGene = 1 + else: + break + + else: + firstGene = 0 + drawit = 1 + + if drawit == 1: + myColor = pid.darkblue + outlineColor = myColor + fillColor = myColor + + maxind=0 + + #Draw Genes + + geneYLocation = yPaddingTop + self.NUM_GENE_ROWS * (self.EACH_GENE_HEIGHT)*zoom + + if 1:#drawClickableRegions: + geneYLocation += self.UCSC_BAND_HEIGHT + self.BAND_SPACING + self.ENSEMBL_BAND_HEIGHT + self.BAND_SPACING + self.WEBQTL_BAND_HEIGHT + self.BAND_SPACING + else: + geneYLocation += self.BAND_SPACING + + if self.genotype[0][i].name != " - " : + + if (firstGene == 1) and (lastGene != 1): + oldgeneEndPix = drawStart = xLeftOffset + oldgeno = self.genotype[0][i].genotype + continue + + for j,_geno in enumerate (self.genotype[0][i].genotype): + + plotbxd=0 + for item in smd: + if item.name == bxdlist[j]: + plotbxd=1 + + if (plotbxd == 1): + ind = 0 + counter = 0 + for item in smd: + counter = counter + 1 + if item.name == bxdlist[j]: + ind = counter + maxind=max(ind,maxind) + + # lines + if (oldgeno[j] == -1 and _geno == -1): + mylineColor = self.HAPLOTYPE_NEGATIVE + elif (oldgeno[j] == 1 and _geno == 1): + mylineColor = self.HAPLOTYPE_POSITIVE + elif (oldgeno[j] == 0 and _geno == 0): + mylineColor = self.HAPLOTYPE_HETEROZYGOUS + else: + mylineColor = self.HAPLOTYPE_RECOMBINATION # XZ: Unknown + + canvas.drawLine(drawStart, geneYLocation+7+2*ind*self.EACH_GENE_HEIGHT*zoom, drawEnd, geneYLocation+7+2*ind*self.EACH_GENE_HEIGHT*zoom, color = mylineColor, width=zoom*(self.EACH_GENE_HEIGHT+2)) + + fillColor=pid.black + outlineColor=pid.black + if lastGene == 0: + canvas.drawRect(geneStartPix, geneYLocation+2*ind*self.EACH_GENE_HEIGHT*zoom, geneEndPix, geneYLocation+2*ind*self.EACH_GENE_HEIGHT+ 2*self.EACH_GENE_HEIGHT*zoom, edgeColor = outlineColor, fillColor = fillColor) + + + COORDS = "%d, %d, %d, %d" %(geneStartPix, geneYLocation+ind*self.EACH_GENE_HEIGHT, geneEndPix+1, (geneYLocation + ind*self.EACH_GENE_HEIGHT)) + TITLE = "Strain: %s, marker (%s) \n Position %2.3f Mb." % (bxdlist[j], self.genotype[0][i].name, float(txStart)) + HREF = '' + gifmap.areas.append(HT.Area(shape='rect',coords=COORDS,href=HREF, title=TITLE)) + + # if there are no more markers in a chromosome, the plotRight value calculated above will be before the plotWidth + # resulting in some empty space on the right side of the plot area. This draws an "unknown" bar from plotRight to the edge. + if (plotRight < (xLeftOffset + plotWidth - 3)) and (lastGene == 0): + drawEnd = xLeftOffset + plotWidth - 6 + mylineColor = self.HAPLOTYPE_RECOMBINATION + canvas.drawLine(plotRight, geneYLocation+7+2*ind*self.EACH_GENE_HEIGHT*zoom, drawEnd, geneYLocation+7+2*ind*self.EACH_GENE_HEIGHT*zoom, color = mylineColor, width=zoom*(self.EACH_GENE_HEIGHT+2)) + + + if lastGene == 0: + canvas.drawString("%s" % (self.genotype[0][i].name), geneStartPix , geneYLocation+17+2*maxind*self.EACH_GENE_HEIGHT*zoom, font=pid.Font(ttf="verdana", size=12, bold=0), color=pid.black, angle=-90) + + oldgeneEndPix = geneEndPix; + oldgeno = self.genotype[0][i].genotype + firstGene = 0 + else: + lastGene = 0 + + for j,_geno in enumerate (self.genotype[0][1].genotype): + + plotbxd=0 + for item in smd: + if item.name == bxdlist[j]: + plotbxd=1 + + if (plotbxd == 1): + + ind = 0 + counter = 0 + expr = 0 + for item in smd: + counter = counter + 1 + if item.name == bxdlist[j]: + ind = counter + expr = item.value + + # Place where font is hardcoded + canvas.drawString("%s" % (bxdlist[j]), (xLeftOffset + plotWidth + 10) , geneYLocation+8+2*ind*self.EACH_GENE_HEIGHT*zoom, font=pid.Font(ttf="verdana", size=12, bold=0), color=pid.black) + canvas.drawString("%2.2f" % (expr), (xLeftOffset + plotWidth + 60) , geneYLocation+8+2*ind*self.EACH_GENE_HEIGHT*zoom, font=pid.Font(ttf="verdana", size=12, bold=0), color=pid.black) + + fpText.close() + +## END HaplotypeAnalyst + + def drawClickBand(self, canvas, gifmap, plotXScale, offset= (40, 120, 80, 10), zoom = 1, startMb = None, endMb = None): + if self.plotScale != 'physic' or self.selectedChr == -1: + return + + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + yZero = canvas.size[1] - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + # only draw this many clickable regions (if you set it higher, you get more precision in clicking, + # but it makes the HTML huge, and takes forever to render the page in the first place) + # Draw the bands that you can click on to go to UCSC / Ensembl + MAX_CLICKABLE_REGION_DIVISIONS = 100 + clickableRegionLabelFont=pid.Font(ttf="verdana", size=9, bold=0) + pixelStep = max(5, int(float(plotWidth)/MAX_CLICKABLE_REGION_DIVISIONS)) + # pixelStep: every N pixels, we make a new clickable area for the user to go to that area of the genome. + + numBasesCurrentlyOnScreen = self.kONE_MILLION*abs(startMb - endMb) # Number of bases on screen now + flankingWidthInBases = int ( min( (float(numBasesCurrentlyOnScreen) / 2.0), (5*self.kONE_MILLION) ) ) + webqtlZoomWidth = numBasesCurrentlyOnScreen / 16.0 + # Flanking width should be such that we either zoom in to a 10 million base region, or we show the clicked region at the same scale as we are currently seeing. + + currentChromosome = self.genotype[0].name + i = 0 + for pixel in range(xLeftOffset, xLeftOffset + plotWidth, pixelStep): + + calBase = self.kONE_MILLION*(startMb + (endMb-startMb)*(pixel-xLeftOffset-0.0)/plotWidth) + + xBrowse1 = pixel + xBrowse2 = min(xLeftOffset + plotWidth, (pixel + pixelStep - 1)) + + paddingTop = yTopOffset + ucscPaddingTop = paddingTop + self.WEBQTL_BAND_HEIGHT + self.BAND_SPACING + ensemblPaddingTop = ucscPaddingTop + self.UCSC_BAND_HEIGHT + self.BAND_SPACING + + WEBQTL_COORDS = "%d, %d, %d, %d" % (xBrowse1, paddingTop, xBrowse2, (paddingTop+self.WEBQTL_BAND_HEIGHT)) + bandWidth = xBrowse2 - xBrowse1 + WEBQTL_HREF = "javascript:centerIntervalMapOnRange2('%s', %f, %f, document.changeViewForm)" % (currentChromosome, max(0, (calBase-webqtlZoomWidth))/1000000.0, (calBase+webqtlZoomWidth)/1000000.0) + + WEBQTL_TITLE = "Click to view this section of the genome in WebQTL" + gifmap.areas.append(HT.Area(shape='rect',coords=WEBQTL_COORDS,href=WEBQTL_HREF, title=WEBQTL_TITLE)) + canvas.drawRect(xBrowse1, paddingTop, xBrowse2, (paddingTop + self.WEBQTL_BAND_HEIGHT), edgeColor=self.CLICKABLE_WEBQTL_REGION_COLOR, fillColor=self.CLICKABLE_WEBQTL_REGION_COLOR) + canvas.drawLine(xBrowse1, paddingTop, xBrowse1, (paddingTop + self.WEBQTL_BAND_HEIGHT), color=self.CLICKABLE_WEBQTL_REGION_OUTLINE_COLOR) + + UCSC_COORDS = "%d, %d, %d, %d" %(xBrowse1, ucscPaddingTop, xBrowse2, (ucscPaddingTop+self.UCSC_BAND_HEIGHT)) + if self.species == "mouse": + UCSC_HREF = "http://genome.ucsc.edu/cgi-bin/hgTracks?db=%s&position=chr%s:%d-%d&hgt.customText=%s/snp/chr%s" % (self._ucscDb, currentChromosome, max(0, calBase-flankingWidthInBases), calBase+flankingWidthInBases, webqtlConfig.PORTADDR, currentChromosome) + else: + UCSC_HREF = "http://genome.ucsc.edu/cgi-bin/hgTracks?db=%s&position=chr%s:%d-%d" % (self._ucscDb, currentChromosome, max(0, calBase-flankingWidthInBases), calBase+flankingWidthInBases) + UCSC_TITLE = "Click to view this section of the genome in the UCSC Genome Browser" + gifmap.areas.append(HT.Area(shape='rect',coords=UCSC_COORDS,href=UCSC_HREF, title=UCSC_TITLE)) + canvas.drawRect(xBrowse1, ucscPaddingTop, xBrowse2, (ucscPaddingTop+self.UCSC_BAND_HEIGHT), edgeColor=self.CLICKABLE_UCSC_REGION_COLOR, fillColor=self.CLICKABLE_UCSC_REGION_COLOR) + canvas.drawLine(xBrowse1, ucscPaddingTop, xBrowse1, (ucscPaddingTop+self.UCSC_BAND_HEIGHT), color=self.CLICKABLE_UCSC_REGION_OUTLINE_COLOR) + + ENSEMBL_COORDS = "%d, %d, %d, %d" %(xBrowse1, ensemblPaddingTop, xBrowse2, (ensemblPaddingTop+self.ENSEMBL_BAND_HEIGHT)) + if self.species == "mouse": + ENSEMBL_HREF = "http://www.ensembl.org/Mus_musculus/contigview?highlight=&chr=%s&vc_start=%d&vc_end=%d&x=35&y=12" % (currentChromosome, max(0, calBase-flankingWidthInBases), calBase+flankingWidthInBases) + else: + ENSEMBL_HREF = "http://www.ensembl.org/Rattus_norvegicus/contigview?chr=%s&start=%d&end=%d" % (currentChromosome, max(0, calBase-flankingWidthInBases), calBase+flankingWidthInBases) + ENSEMBL_TITLE = "Click to view this section of the genome in the Ensembl Genome Browser" + gifmap.areas.append(HT.Area(shape='rect',coords=ENSEMBL_COORDS,href=ENSEMBL_HREF, title=ENSEMBL_TITLE)) + canvas.drawRect(xBrowse1, ensemblPaddingTop, xBrowse2, (ensemblPaddingTop+self.ENSEMBL_BAND_HEIGHT), edgeColor=self.CLICKABLE_ENSEMBL_REGION_COLOR, fillColor=self.CLICKABLE_ENSEMBL_REGION_COLOR) + canvas.drawLine(xBrowse1, ensemblPaddingTop, xBrowse1, (ensemblPaddingTop+self.ENSEMBL_BAND_HEIGHT), color=self.CLICKABLE_ENSEMBL_REGION_OUTLINE_COLOR) + # end for + + canvas.drawString("Click to view the corresponding section of the genome in an 8x expanded WebQTL map", (xLeftOffset + 10), paddingTop + self.WEBQTL_BAND_HEIGHT/2, font=clickableRegionLabelFont, color=self.CLICKABLE_WEBQTL_TEXT_COLOR) + canvas.drawString("Click to view the corresponding section of the genome in the UCSC Genome Browser", (xLeftOffset + 10), ucscPaddingTop + self.UCSC_BAND_HEIGHT/2, font=clickableRegionLabelFont, color=self.CLICKABLE_UCSC_TEXT_COLOR) + canvas.drawString("Click to view the corresponding section of the genome in the Ensembl Genome Browser", (xLeftOffset+10), ensemblPaddingTop + self.ENSEMBL_BAND_HEIGHT/2, font=clickableRegionLabelFont, color=self.CLICKABLE_ENSEMBL_TEXT_COLOR) + + #draw the gray text + chrFont = pid.Font(ttf="verdana", size=26, bold=1) + traitFont = pid.Font(ttf="verdana", size=14, bold=0) + chrX = xLeftOffset + plotWidth - 2 - canvas.stringWidth("Chr %s" % currentChromosome, font=chrFont) + canvas.drawString("Chr %s" % currentChromosome, chrX, ensemblPaddingTop-5, font=chrFont, color=pid.gray) + traitX = chrX - 28 - canvas.stringWidth("database", font=traitFont) + # end of drawBrowserClickableRegions + + pass + + def drawXAxis(self, fd, canvas, drawAreaHeight, gifmap, plotXScale, showLocusForm, offset= (40, 120, 80, 10), zoom = 1, startMb = None, endMb = None): + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + yZero = canvas.size[1] - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + #Parameters + NUM_MINOR_TICKS = 5 # Number of minor ticks between major ticks + X_MAJOR_TICK_THICKNESS = 2 + X_MINOR_TICK_THICKNESS = 1 + X_AXIS_THICKNESS = 1*zoom + + # ======= Alex: Draw the X-axis labels (megabase location) + MBLabelFont = pid.Font(ttf="verdana", size=12*fontZoom, bold=0) + xMajorTickHeight = 15 # How high the tick extends below the axis + xMinorTickHeight = 5*zoom + xAxisTickMarkColor = pid.black + xAxisLabelColor = pid.black + fontHeight = 12*fontZoom # How tall the font that we're using is + spacingFromLabelToAxis = 20 + spacingFromLineToLabel = 3 + + if self.plotScale == 'physic': + strYLoc = yZero + spacingFromLabelToAxis + canvas.fontHeight(MBLabelFont) + ###Physical single chromosome view + if self.selectedChr > -1: + graphMbWidth = endMb - startMb + XScale = Plot.detScale(startMb, endMb) + XStart, XEnd, XStep = XScale + if XStep < 8: + XStep *= 2 + spacingAmtX = spacingAmt = (XEnd-XStart)/XStep + + j = 0 + while abs(spacingAmtX -int(spacingAmtX)) >= spacingAmtX/100.0 and j < 6: + j += 1 + spacingAmtX *= 10 + + formatStr = '%%2.%df' % j + + for counter, _Mb in enumerate(Plot.frange(XStart, XEnd, spacingAmt / NUM_MINOR_TICKS)): + if _Mb < startMb or _Mb > endMb: + continue + Xc = xLeftOffset + plotXScale*(_Mb - startMb) + if counter % NUM_MINOR_TICKS == 0: # Draw a MAJOR mark, not just a minor tick mark + canvas.drawLine(Xc, yZero, Xc, yZero+xMajorTickHeight, color=xAxisTickMarkColor, width=X_MAJOR_TICK_THICKNESS) # Draw the MAJOR tick mark + labelStr = str(formatStr % _Mb) # What Mbase location to put on the label + strWidth = canvas.stringWidth(labelStr, font=MBLabelFont) + drawStringXc = (Xc - (strWidth / 2.0)) + canvas.drawString(labelStr, drawStringXc, strYLoc, font=MBLabelFont, color=xAxisLabelColor, angle=0) + else: + canvas.drawLine(Xc, yZero, Xc, yZero+xMinorTickHeight, color=xAxisTickMarkColor, width=X_MINOR_TICK_THICKNESS) # Draw the MINOR tick mark + # end else + + ###Physical genome wide view + else: + distScale = 0 + startPosX = xLeftOffset + for i, distLen in enumerate(self.ChrLengthDistList): + if distScale == 0: #universal scale in whole genome mapping + if distLen > 75: + distScale = 25 + elif distLen > 30: + distScale = 10 + else: + distScale = 5 + for tickdists in range(distScale, ceil(distLen), distScale): + canvas.drawLine(startPosX + tickdists*plotXScale, yZero, startPosX + tickdists*plotXScale, yZero + 7, color=pid.black, width=1*zoom) + canvas.drawString(str(tickdists), startPosX+tickdists*plotXScale, yZero + 10*zoom, color=pid.black, font=MBLabelFont, angle=270) + startPosX += (self.ChrLengthDistList[i]+self.GraphInterval)*plotXScale + + megabaseLabelFont = pid.Font(ttf="verdana", size=14*zoom*1.5, bold=0) + canvas.drawString("Megabases", xLeftOffset + (plotWidth -canvas.stringWidth("Megabases", font=megabaseLabelFont))/2, + strYLoc + canvas.fontHeight(MBLabelFont) + 5*zoom, font=megabaseLabelFont, color=pid.black) + pass + else: + ChrAInfo = [] + preLpos = -1 + distinctCount = 0.0 + if len(self.genotype) > 1: + for i, _chr in enumerate(self.genotype): + thisChr = [] + Locus0CM = _chr[0].cM + nLoci = len(_chr) + if nLoci <= 8: + for _locus in _chr: + if _locus.name != ' - ': + if _locus.cM != preLpos: + distinctCount += 1 + preLpos = _locus.cM + thisChr.append([_locus.name, _locus.cM-Locus0CM]) + else: + for j in (0, nLoci/4, nLoci/2, nLoci*3/4, -1): + while _chr[j].name == ' - ': + j += 1 + if _chr[j].cM != preLpos: + distinctCount += 1 + preLpos = _chr[j].cM + thisChr.append([_chr[j].name, _chr[j].cM-Locus0CM]) + ChrAInfo.append(thisChr) + else: + for i, _chr in enumerate(self.genotype): + thisChr = [] + Locus0CM = _chr[0].cM + for _locus in _chr: + if _locus.name != ' - ': + if _locus.cM != preLpos: + distinctCount += 1 + preLpos = _locus.cM + thisChr.append([_locus.name, _locus.cM-Locus0CM]) + ChrAInfo.append(thisChr) + + stepA = (plotWidth+0.0)/distinctCount + + LRectWidth = 10 + LRectHeight = 3 + offsetA = -stepA + lineColor = pid.lightblue + startPosX = xLeftOffset + for j, ChrInfo in enumerate(ChrAInfo): + preLpos = -1 + for i, item in enumerate(ChrInfo): + Lname,Lpos = item + if Lpos != preLpos: + offsetA += stepA + differ = 1 + else: + differ = 0 + preLpos = Lpos + Lpos *= plotXScale + if self.selectedChr > -1: + Zorder = i % 5 + else: + Zorder = 0 + if differ: + canvas.drawLine(startPosX+Lpos,yZero,xLeftOffset+offsetA,\ + yZero+25, color=lineColor) + canvas.drawLine(xLeftOffset+offsetA,yZero+25,xLeftOffset+offsetA,\ + yZero+40+Zorder*(LRectWidth+3),color=lineColor) + rectColor = pid.orange + else: + canvas.drawLine(xLeftOffset+offsetA, yZero+40+Zorder*(LRectWidth+3)-3,\ + xLeftOffset+offsetA, yZero+40+Zorder*(LRectWidth+3),color=lineColor) + rectColor = pid.deeppink + canvas.drawRect(xLeftOffset+offsetA, yZero+40+Zorder*(LRectWidth+3),\ + xLeftOffset+offsetA-LRectHeight,yZero+40+Zorder*(LRectWidth+3)+LRectWidth,\ + edgeColor=rectColor,fillColor=rectColor,edgeWidth = 0) + COORDS="%d,%d,%d,%d"%(xLeftOffset+offsetA-LRectHeight, yZero+40+Zorder*(LRectWidth+3),\ + xLeftOffset+offsetA,yZero+40+Zorder*(LRectWidth+3)+LRectWidth) + HREF="javascript:showDatabase3('%s','%s','%s','');" % (showLocusForm,fd.RISet+"Geno", Lname) + Areas=HT.Area(shape='rect',coords=COORDS,href=HREF, title="Locus : " + Lname) + gifmap.areas.append(Areas) + ##piddle bug + if j == 0: + canvas.drawLine(startPosX,yZero,startPosX,yZero+40, color=lineColor) + startPosX += (self.ChrLengthDistList[j]+self.GraphInterval)*plotXScale + + canvas.drawLine(xLeftOffset, yZero, xLeftOffset+plotWidth, yZero, color=pid.black, width=X_AXIS_THICKNESS) # Draw the X axis itself + + + def drawQTL(self, canvas, drawAreaHeight, gifmap, plotXScale, offset= (40, 120, 80, 10), zoom = 1, startMb = None, endMb = None): + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + INTERCROSS = (self.genotype.type=="intercross") + + LRSHeightThresh = drawAreaHeight + AdditiveHeightThresh = drawAreaHeight/2 + DominanceHeightThresh = drawAreaHeight/2 + + #draw the LRS scale + #We first determine whether or not we are using a sliding scale. + #If so, we need to compute the maximum LRS value to determine where the max y-value should be, and call this LRSMax. + #LRSTop is then defined to be above the LRSMax by enough to add one additional LRSScale increment. + #if we are using a set-scale, then we set LRSTop to be the user's value, and LRSMax doesn't matter. + + if self.LRS_LOD == 'LOD': + lodm = self.LODFACTOR + else: + lodm = 1.0 + + if self.lrsMax <= 0: #sliding scale + LRSMax = max(map(max, self.qtlresults)).lrs + #genotype trait will give infinite LRS + LRSMax = min(LRSMax, webqtlConfig.MAXLRS) + if self.permChecked and not self.multipleInterval: + self.significance = min(self.significance, webqtlConfig.MAXLRS) + self.suggestive = min(self.suggestive, webqtlConfig.MAXLRS) + LRSMax = max(self.significance, LRSMax) + else: + LRSMax = self.lrsMax*lodm + + if LRSMax/lodm > 100: + LRSScale = 20.0 + elif LRSMax/lodm > 20: + LRSScale = 5.0 + elif LRSMax/lodm > 7.5: + LRSScale = 2.5 + else: + LRSScale = 1.0 + + LRSAxisList = Plot.frange(LRSScale, LRSMax/lodm, LRSScale) + #make sure the user's value appears on the y-axis + #update by NL 6-21-2011: round the LOD value to 100 when LRSMax is equal to 460 + LRSAxisList.append(round(LRSMax/lodm)) + + #draw the "LRS" or "LOD" string to the left of the axis + LRSScaleFont=pid.Font(ttf="verdana", size=14*fontZoom, bold=0) + LRSLODFont=pid.Font(ttf="verdana", size=14*zoom*1.5, bold=0) + yZero = yTopOffset + plotHeight + + + canvas.drawString(self.LRS_LOD, xLeftOffset - canvas.stringWidth("999.99", font=LRSScaleFont) - 10*zoom, \ + yZero - 150, font=LRSLODFont, color=pid.black, angle=90) + + for item in LRSAxisList: + yLRS = yZero - (item*lodm/LRSMax) * LRSHeightThresh + canvas.drawLine(xLeftOffset, yLRS, xLeftOffset - 4, yLRS, color=self.LRS_COLOR, width=1*zoom) + scaleStr = "%2.1f" % item + canvas.drawString(scaleStr, xLeftOffset-4-canvas.stringWidth(scaleStr, font=LRSScaleFont)-5, yLRS+3, font=LRSScaleFont, color=self.LRS_COLOR) + + + #"Significant" and "Suggestive" Drawing Routine + # ======= Draw the thick lines for "Significant" and "Suggestive" ===== (crowell: I tried to make the SNPs draw over these lines, but piddle wouldn't have it...) + if self.permChecked and not self.multipleInterval: + significantY = yZero - self.significance*LRSHeightThresh/LRSMax + suggestiveY = yZero - self.suggestive*LRSHeightThresh/LRSMax + startPosX = xLeftOffset + for i, _chr in enumerate(self.genotype): + rightEdge = int(startPosX + self.ChrLengthDistList[i]*plotXScale - self.SUGGESTIVE_WIDTH/1.5) + canvas.drawLine(startPosX+self.SUGGESTIVE_WIDTH/1.5, suggestiveY, rightEdge, suggestiveY, color=self.SUGGESTIVE_COLOR, + width=self.SUGGESTIVE_WIDTH*zoom, clipX=(xLeftOffset, xLeftOffset + plotWidth-2)) + canvas.drawLine(startPosX+self.SUGGESTIVE_WIDTH/1.5, significantY, rightEdge, significantY, color=self.SIGNIFICANT_COLOR, + width=self.SIGNIFICANT_WIDTH*zoom, clipX=(xLeftOffset, xLeftOffset + plotWidth-2)) + sugg_coords = "%d, %d, %d, %d" % (startPosX, suggestiveY-2, rightEdge + 2*zoom, suggestiveY+2) + sig_coords = "%d, %d, %d, %d" % (startPosX, significantY-2, rightEdge + 2*zoom, significantY+2) + if self.LRS_LOD == 'LRS': + sugg_title = "Suggestive LRS = %0.2f" % self.suggestive + sig_title = "Significant LRS = %0.2f" % self.significance + else: + sugg_title = "Suggestive LOD = %0.2f" % (self.suggestive/4.61) + sig_title = "Significant LOD = %0.2f" % (self.significance/4.61) + Areas1 = HT.Area(shape='rect',coords=sugg_coords,title=sugg_title) + Areas2 = HT.Area(shape='rect',coords=sig_coords,title=sig_title) + gifmap.areas.append(Areas1) + gifmap.areas.append(Areas2) + + startPosX += (self.ChrLengthDistList[i]+self.GraphInterval)*plotXScale + + + if self.multipleInterval: + lrsEdgeWidth = 1 + else: + additiveMax = max(map(lambda X : abs(X.additive), self.qtlresults[0])) + if INTERCROSS: + dominanceMax = max(map(lambda X : abs(X.dominance), self.qtlresults[0])) + else: + dominanceMax = -1 + lrsEdgeWidth = 2 + for i, qtlresult in enumerate(self.qtlresults): + m = 0 + startPosX = xLeftOffset + thisLRSColor = self.colorCollection[i] + for j, _chr in enumerate(self.genotype): + LRSCoordXY = [] + AdditiveCoordXY = [] + DominanceCoordXY = [] + for k, _locus in enumerate(_chr): + if self.plotScale == 'physic': + Xc = startPosX + (_locus.Mb-startMb)*plotXScale + else: + Xc = startPosX + (_locus.cM-_chr[0].cM)*plotXScale + # updated by NL 06-18-2011: + # fix the over limit LRS graph issue since genotype trait may give infinite LRS; + # for any lrs is over than 460(LRS max in this system), it will be reset to 460 + if qtlresult[m].lrs> 460 or qtlresult[m].lrs=='inf': + Yc = yZero - webqtlConfig.MAXLRS*LRSHeightThresh/LRSMax + else: + Yc = yZero - qtlresult[m].lrs*LRSHeightThresh/LRSMax + + LRSCoordXY.append((Xc, Yc)) + if not self.multipleInterval and self.additiveChecked: + Yc = yZero - qtlresult[m].additive*AdditiveHeightThresh/additiveMax + AdditiveCoordXY.append((Xc, Yc)) + if not self.multipleInterval and INTERCROSS and self.additiveChecked: + Yc = yZero - qtlresult[m].dominance*DominanceHeightThresh/dominanceMax + DominanceCoordXY.append((Xc, Yc)) + m += 1 + canvas.drawPolygon(LRSCoordXY,edgeColor=thisLRSColor,closed=0, edgeWidth=lrsEdgeWidth, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + if not self.multipleInterval and self.additiveChecked: + plusColor = self.ADDITIVE_COLOR_POSITIVE + minusColor = self.ADDITIVE_COLOR_NEGATIVE + for k, aPoint in enumerate(AdditiveCoordXY): + if k > 0: + Xc0, Yc0 = AdditiveCoordXY[k-1] + Xc, Yc = aPoint + if (Yc0-yZero)*(Yc-yZero) < 0: + if Xc == Xc0: #genotype , locus distance is 0 + Xcm = Xc + else: + Xcm = (yZero-Yc0)/((Yc-Yc0)/(Xc-Xc0)) +Xc0 + if Yc0 < yZero: + canvas.drawLine(Xc0, Yc0, Xcm, yZero, color=plusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + canvas.drawLine(Xcm, yZero, Xc, yZero-(Yc-yZero), color=minusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + else: + canvas.drawLine(Xc0, yZero - (Yc0-yZero), Xcm, yZero, color=minusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + canvas.drawLine(Xcm, yZero, Xc, Yc, color=plusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + elif (Yc0-yZero)*(Yc-yZero) > 0: + if Yc < yZero: + canvas.drawLine(Xc0, Yc0, Xc, Yc, color=plusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + else: + canvas.drawLine(Xc0, yZero - (Yc0-yZero), Xc, yZero - (Yc-yZero), color=minusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + else: + minYc = min(Yc-yZero, Yc0-yZero) + if minYc < 0: + canvas.drawLine(Xc0, Yc0, Xc, Yc, color=plusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + else: + canvas.drawLine(Xc0, yZero - (Yc0-yZero), Xc, yZero - (Yc-yZero), color=minusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + if not self.multipleInterval and INTERCROSS and self.dominanceChecked: + plusColor = self.DOMINANCE_COLOR_POSITIVE + minusColor = self.DOMINANCE_COLOR_NEGATIVE + for k, aPoint in enumerate(DominanceCoordXY): + if k > 0: + Xc0, Yc0 = DominanceCoordXY[k-1] + Xc, Yc = aPoint + if (Yc0-yZero)*(Yc-yZero) < 0: + if Xc == Xc0: #genotype , locus distance is 0 + Xcm = Xc + else: + Xcm = (yZero-Yc0)/((Yc-Yc0)/(Xc-Xc0)) +Xc0 + if Yc0 < yZero: + canvas.drawLine(Xc0, Yc0, Xcm, yZero, color=plusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + canvas.drawLine(Xcm, yZero, Xc, yZero-(Yc-yZero), color=minusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + else: + canvas.drawLine(Xc0, yZero - (Yc0-yZero), Xcm, yZero, color=minusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + canvas.drawLine(Xcm, yZero, Xc, Yc, color=plusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + elif (Yc0-yZero)*(Yc-yZero) > 0: + if Yc < yZero: + canvas.drawLine(Xc0, Yc0, Xc, Yc, color=plusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + else: + canvas.drawLine(Xc0, yZero - (Yc0-yZero), Xc, yZero - (Yc-yZero), color=minusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + else: + minYc = min(Yc-yZero, Yc0-yZero) + if minYc < 0: + canvas.drawLine(Xc0, Yc0, Xc, Yc, color=plusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + else: + canvas.drawLine(Xc0, yZero - (Yc0-yZero), Xc, yZero - (Yc-yZero), color=minusColor, width=1, clipX=(xLeftOffset, xLeftOffset + plotWidth)) + startPosX += (self.ChrLengthDistList[j]+self.GraphInterval)*plotXScale + + ###draw additive scale + if not self.multipleInterval and self.additiveChecked: + additiveScaleFont=pid.Font(ttf="verdana",size=12*fontZoom,bold=0) + additiveScale = Plot.detScaleOld(0,additiveMax) + additiveStep = (additiveScale[1]-additiveScale[0])/additiveScale[2] + additiveAxisList = Plot.frange(0, additiveScale[1], additiveStep) + maxAdd = additiveScale[1] + addPlotScale = AdditiveHeightThresh/additiveMax + + additiveAxisList.append(additiveScale[1]) + for item in additiveAxisList: + additiveY = yZero - item*addPlotScale + canvas.drawLine(xLeftOffset + plotWidth,additiveY,xLeftOffset+4+ plotWidth,additiveY,color=self.ADDITIVE_COLOR_POSITIVE, width=1*zoom) + scaleStr = "%2.3f" % item + canvas.drawString(scaleStr,xLeftOffset + plotWidth +6,additiveY+5,font=additiveScaleFont,color=self.ADDITIVE_COLOR_POSITIVE) + + canvas.drawLine(xLeftOffset+plotWidth,additiveY,xLeftOffset+plotWidth,yZero,color=self.ADDITIVE_COLOR_POSITIVE, width=1*zoom) + + canvas.drawLine(xLeftOffset, yZero, xLeftOffset, yTopOffset, color=self.LRS_COLOR, width=1*zoom) #the blue line running up the y axis + + + def drawGraphBackground(self, canvas, gifmap, offset= (80, 120, 80, 50), zoom = 1, startMb = None, endMb = None): + ##conditions + ##multiple Chromosome view + ##single Chromosome Physical + ##single Chromosome Genetic + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + #calculate plot scale + if self.plotScale != 'physic': + self.ChrLengthDistList = self.ChrLengthCMList + drawRegionDistance = self.ChrLengthCMSum + else: + self.ChrLengthDistList = self.ChrLengthMbList + drawRegionDistance = self.ChrLengthMbSum + + if self.selectedChr > -1: #single chromosome view + spacingAmt = plotWidth/13.5 + i = 0 + for startPix in Plot.frange(xLeftOffset, xLeftOffset+plotWidth, spacingAmt): + if (i % 2 == 0): + theBackColor = self.GRAPH_BACK_DARK_COLOR + else: + theBackColor = self.GRAPH_BACK_LIGHT_COLOR + i += 1 + canvas.drawRect(startPix, yTopOffset, min(startPix+spacingAmt, xLeftOffset+plotWidth), \ + yTopOffset+plotHeight, edgeColor=theBackColor, fillColor=theBackColor) + + drawRegionDistance = self.ChrLengthDistList[self.selectedChr] + self.ChrLengthDistList = [drawRegionDistance] + if self.plotScale == 'physic': + plotXScale = plotWidth / (endMb-startMb) + else: + plotXScale = plotWidth / drawRegionDistance + + else: #multiple chromosome view + plotXScale = plotWidth / ((len(self.genotype)-1)*self.GraphInterval + drawRegionDistance) + + startPosX = xLeftOffset + chrLabelFont=pid.Font(ttf="verdana",size=24*fontZoom,bold=0) + + for i, _chr in enumerate(self.genotype): + if (i % 2 == 0): + theBackColor = self.GRAPH_BACK_DARK_COLOR + else: + theBackColor = self.GRAPH_BACK_LIGHT_COLOR + + #draw the shaded boxes and the sig/sug thick lines + canvas.drawRect(startPosX, yTopOffset, startPosX + self.ChrLengthDistList[i]*plotXScale, \ + yTopOffset+plotHeight, edgeColor=pid.gainsboro,fillColor=theBackColor) + + chrNameWidth = canvas.stringWidth(_chr.name, font=chrLabelFont) + chrStartPix = startPosX + (self.ChrLengthDistList[i]*plotXScale -chrNameWidth)/2 + chrEndPix = startPosX + (self.ChrLengthDistList[i]*plotXScale +chrNameWidth)/2 + + canvas.drawString(_chr.name, chrStartPix, yTopOffset +20,font = chrLabelFont,color=pid.dimgray) + COORDS = "%d,%d,%d,%d" %(chrStartPix, yTopOffset, chrEndPix,yTopOffset +20) + + #add by NL 09-03-2010 + HREF = "javascript:changeView(%d,%s);" % (i,self.ChrLengthMbList) + Areas = HT.Area(shape='rect',coords=COORDS,href=HREF) + gifmap.areas.append(Areas) + startPosX += (self.ChrLengthDistList[i]+self.GraphInterval)*plotXScale + + return plotXScale + + def calculateAllResult(self, fd): + + weightedRegression = fd.formdata.getvalue('applyVarianceSE') + + self.genotype = self.genotype.addinterval() + resultSlice = [] + controlGeno = [] + + if self.multipleInterval: + self.suggestive = 0 + self.significance = 0 + if self.selectedChr > -1: + self.genotype.chromosome = [self.genotype[self.selectedChr]] + else: + #single interval mapping + try: + self.suggestive = float(fd.formdata.getvalue('permSuggestive')) + self.significance = float(fd.formdata.getvalue('permSignificance')) + except: + self.suggestive = None + self.significance = None + + _strains, _vals, _vars = self.traitList[0].exportInformative(weightedRegression) + + if webqtlUtil.ListNotNull(_vars): + pass + else: + weightedRegression = 0 + _strains, _vals, _vars = self.traitList[0].exportInformative() + + ##locate genotype of control Locus + if self.controlLocus: + controlGeno2 = [] + _FIND = 0 + for _chr in self.genotype: + for _locus in _chr: + if _locus.name == self.controlLocus: + controlGeno2 = _locus.genotype + _FIND = 1 + break + if _FIND: + break + if controlGeno2: + _prgy = list(self.genotype.prgy) + for _strain in _strains: + _idx = _prgy.index(_strain) + controlGeno.append(controlGeno2[_idx]) + else: + return "The control marker you selected is not in the genofile." + + + if self.significance and self.suggestive: + pass + else: + if self.permChecked: + if weightedRegression: + self.LRSArray = self.genotype.permutation(strains = _strains, trait = _vals, + variance = _vars, nperm=fd.nperm) + else: + self.LRSArray = self.genotype.permutation(strains = _strains, trait = _vals, + nperm=fd.nperm) + self.suggestive = self.LRSArray[int(fd.nperm*0.37-1)] + self.significance = self.LRSArray[int(fd.nperm*0.95-1)] + + else: + self.suggestive = 9.2 + self.significance = 16.1 + + #calculating bootstrap + #from now on, genotype could only contain a single chromosome + #permutation need to be performed genome wide, this is not the case for bootstrap + + #due to the design of qtlreaper, composite regression need to be performed genome wide + if not self.controlLocus and self.selectedChr > -1: + self.genotype.chromosome = [self.genotype[self.selectedChr]] + elif self.selectedChr > -1: #self.controlLocus and self.selectedChr > -1 + lociPerChr = map(len, self.genotype) + resultSlice = reduce(lambda X, Y: X+Y, lociPerChr[:self.selectedChr], 0) + resultSlice = [resultSlice,resultSlice+lociPerChr[self.selectedChr]] + else: + pass + + #calculate QTL for each trait + self.qtlresults = [] + + for thisTrait in self.traitList: + _strains, _vals, _vars = thisTrait.exportInformative(weightedRegression) + if self.controlLocus: + if weightedRegression: + qtlresult = self.genotype.regression(strains = _strains, trait = _vals, + variance = _vars, control = self.controlLocus) + else: + qtlresult = self.genotype.regression(strains = _strains, trait = _vals, + control = self.controlLocus) + if resultSlice: + qtlresult = qtlresult[resultSlice[0]:resultSlice[1]] + else: + if weightedRegression: + qtlresult = self.genotype.regression(strains = _strains, trait = _vals, + variance = _vars) + else: + qtlresult = self.genotype.regression(strains = _strains, trait = _vals) + + self.qtlresults.append(qtlresult) + + if not self.multipleInterval: + if self.controlLocus and self.selectedChr > -1: + self.genotype.chromosome = [self.genotype[self.selectedChr]] + + if self.bootChecked: + if controlGeno: + self.bootResult = self.genotype.bootstrap(strains = _strains, trait = _vals, + control = controlGeno, nboot=fd.nboot) + elif weightedRegression: + self.bootResult = self.genotype.bootstrap(strains = _strains, trait = _vals, + variance = _vars, nboot=fd.nboot) + else: + self.bootResult = self.genotype.bootstrap(strains = _strains, trait = _vals, + nboot=fd.nboot) + else: + self.bootResult = [] + + def calculatePValue (self, query_LRS, permutation_LRS_array): + query_index = len(permutation_LRS_array) + for i, one_permutation_LRS in enumerate(permutation_LRS_array): + if one_permutation_LRS >= query_LRS: + query_index = i + break + + P_value = float(len(permutation_LRS_array) - query_index) / len(permutation_LRS_array) + + return P_value + + def helpButton(self, anchor): + return HT.Href(self.HELP_PAGE_REF + '#%s' % anchor, self.qmarkImg, target=self.HELP_WINDOW_NAME) + + + def traitRemapTD(self, cursor, fd): + chrList = HT.Select(name="chromosomes", data=self.ChrList, selected=[self.selectedChr], + onChange="chrLength(this.form.chromosomes.value, this.form.scale.value, this.form, self.ChrLengthMbList);") + + physicOnly = HT.Span(' *', Class="cr") + + showSNPCheck = HT.Input(type='checkbox', Class='checkbox', name='showSNP', value='ON', checked=self.SNPChecked) + showSNPText = HT.Span('SNP Track ', self.helpButton("snpSeismograph"), Class="fs12 fwn") + + showGenesCheck = HT.Input(type='checkbox', Class='checkbox', name='showGenes', value='ON', checked=self.geneChecked) + showGenesText = HT.Span('Gene Track', Class="fs12 fwn") + + showIntervalAnalystCheck = HT.Input(type='checkbox', Class='checkbox', name='intervalAnalystCheck', value='ON', checked=self.intervalAnalystChecked) + showIntervalAnalystText = HT.Span('Interval Analyst', Class="fs12 fwn") +## BEGIN HaplotypeAnalyst + + showHaplotypeAnalystCheck = HT.Input(type='checkbox', Class='checkbox', name='haplotypeAnalystCheck', value='ON', checked=self.haplotypeAnalystChecked) + showHaplotypeAnalystText = HT.Span('Haplotype Analyst', Class="fs12 fwn") +## END HaplotypeAnalyst + + leftBox = HT.Input(type="text", name="startMb", size=10) + rightBox = HT.Input(type="text", name="endMb", size=10) + if self.selectedChr > -1 and self.plotScale=='physic': + leftBox.value = self.startMb + rightBox.value = self.endMb + + scaleBox = HT.Select(name="scale", onChange="chrLength(this.form.chromosomes.value, this.form.scale.value, this.form, self.ChrLengthMbList);") + scaleBox.append(("Genetic", "morgan")) + if fd.genotype.Mbmap: + scaleBox.append(("Physical", "physic")) + scaleBox.selected.append(self.plotScale) + + permBox = HT.Input(type="checkbox", name="permCheck", value='ON', checked=self.permChecked, Class="checkbox") + permText = HT.Span("Permutation Test ", self.helpButton("Permutation"), Class="fs12 fwn") + bootBox = HT.Input(type="checkbox", name="bootCheck", value='ON', checked=self.bootChecked, Class="checkbox") + bootText = HT.Span("Bootstrap Test ", self.helpButton("bootstrap"), Class="fs12 fwn") + additiveBox = HT.Input(type="checkbox", name="additiveCheck", value='ON', checked=self.additiveChecked, Class="checkbox") + additiveText = HT.Span("Allele Effects ", self.helpButton("additive"), Class="fs12 fwn") + dominanceBox = HT.Input(type="checkbox", name="dominanceCheck", value='ON', checked=self.dominanceChecked, Class="checkbox") + dominanceText = HT.Span("Dominance Effects ", self.helpButton("Dominance"), Class="fs12 fwn") + + lrsRadio = HT.Input(type="radio", name="LRSCheck", value='LRS', checked = (self.LRS_LOD == "LRS")) + lodRadio = HT.Input(type="radio", name="LRSCheck", value='LOD', checked = (self.LRS_LOD != "LRS")) + lrsMaxBox = HT.Input(type="text", name="lrsMax", value=self.lrsMax, size=3) + widthBox = HT.Input(type="text", name="graphWidth", size=5, value=str(self.graphWidth)) + legendBox = HT.Input(type="checkbox", name="viewLegend", value='ON', checked=self.legendChecked, Class="checkbox") + legendText = HT.Span("Legend", Class="fs12 fwn") + + draw2XBox = HT.Input(type="checkbox", name="draw2X", value='ON', Class="checkbox") + draw2XText = HT.Span("2X Plot", Class="fs12 fwn") + + regraphButton = HT.Input(type="button", Class="button", onClick="javascript:databaseFunc(this.form,'showIntMap');", value="Remap") + + controlsForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype="multipart/form-data", name="changeViewForm", submit=HT.Input(type='hidden')) + controlsTable = HT.TableLite(border=0) + innerControlsTable = HT.TableLite(border=0) + if self.selectedChr == -1: + minimumGraphWidth = self.MULT_GRAPH_MIN_WIDTH + else: + minimumGraphWidth = self.GRAPH_MIN_WIDTH + + innerControlsTable.append( + HT.TR(HT.TD("Chr: ", Class="fs12 fwb ffl"),HT.TD(chrList, scaleBox, regraphButton)), + HT.TR(HT.TD("View: ", Class="fs12 fwb ffl"),HT.TD(leftBox, " to ", rightBox, "Mb", physicOnly, NOWRAP="on")), + HT.TR(HT.TD("Units: ", Class="fs12 fwb ffl"), HT.TD(lrsRadio, "LRS ", lodRadio, "LOD ", self.helpButton("LOD"))), + HT.TR(HT.TD(" ", Class="fs12 fwb ffl"), HT.TD(lrsMaxBox, "units on Y-axis (0 for default)", Class="fs11 fwn")), + HT.TR(HT.TD("Width: ", Class="fs12 fwb ffl"), HT.TD(widthBox, "pixels (minimum=%d)" % minimumGraphWidth, Class="fs11 fwn ")) + ) + #whether SNP + cursor.execute("Select Species.Id from SnpAll, Species where SnpAll.SpeciesId = Species.Id and Species.Name = %s limit 1", self.species) + SNPorNot = cursor.fetchall() + #Whether Gene + cursor.execute("Select Species.Id from GeneList, Species where GeneList.SpeciesId = Species.Id and Species.Name = %s limit 1", self.species) + GeneorNot = cursor.fetchall() + + if self.multipleInterval: + optionPanel = HT.TD(valign="top", NOWRAP="on") + else: + optionPanel = HT.TD(permBox, permText, HT.BR(), bootBox, bootText, HT.BR(), additiveBox, additiveText, HT.BR(), valign="top", NOWRAP="on") + #whether dominance + if self.genotype.type == 'intercross': + optionPanel.append(dominanceBox, dominanceText, HT.BR()) + if SNPorNot: + optionPanel.append(showSNPCheck, showSNPText, physicOnly, HT.BR()) + if GeneorNot: + optionPanel.append(showGenesCheck, showGenesText, physicOnly, HT.BR(), + showIntervalAnalystCheck, showIntervalAnalystText, physicOnly, HT.BR()) +## BEGIN HaplotypeAnalyst + optionPanel.append(showHaplotypeAnalystCheck, showHaplotypeAnalystText, physicOnly, HT.BR()) +## END HaplotypeAnalyst + optionPanel.append(legendBox, legendText, HT.BR(),draw2XBox, draw2XText) + controlsTable.append( + HT.TR(HT.TD(innerControlsTable, valign="top"), + HT.TD(" ", width=15), optionPanel), + HT.TR(HT.TD(physicOnly, " only apply to single chromosome physical mapping", align="Center", colspan=3, Class="fs11 fwn")) + ) + controlsForm.append(controlsTable) + + controlsForm.append(HT.Input(name="permSuggestive", value=self.suggestive, type="hidden")) + controlsForm.append(HT.Input(name="permSignificance", value=self.significance, type="hidden")) + +## BEGIN HaplotypeAnalyst #### haplotypeAnalystCheck added below +## END HaplotypeAnalyst + + for key in fd.formdata.keys(): + if key == "searchResult" and type([]) == type(fd.formdata.getvalue(key)): + controlsForm.append(HT.Input(name=key, value=string.join(fd.formdata.getvalue(key), "\t"), type="hidden")) + elif key not in ("endMb", "startMb", "chromosomes", "scale", "permCheck", "bootCheck", "additiveCheck", "dominanceCheck", + "LRSCheck", "intervalAnalystCheck", "haplotypeAnalystCheck", "lrsMax", "graphWidth", "viewLegend", 'showGenes', 'showSNP', 'draw2X', + 'permSuggestive', "permSignificance"): + controlsForm.append(HT.Input(name=key, value=fd.formdata.getvalue(key), type="hidden")) + else: + pass + + # updated by NL, move function changeView(i) to webqtl.js and change it to function changeView(i, Chr_Mb_list) + # move function chrLength(a, b, c) to webqtl.js and change it to function chrLength(a, b, c, Chr_Mb_list) + self.dict['js1'] = '' + + return HT.TD(controlsForm, Class="doubleBorder", width=400) + + def traitInfoTD(self, fd): + if self.selectedChr == -1: + intMapHeading = HT.Paragraph('Map Viewer: Whole Genome', Class="title") + else: + intMapHeading = HT.Paragraph('Map Viewer: Chr %s' % self.genotype[0].name, Class="title") + + heading2 = HT.Paragraph(HT.Strong('Population: '), "%s %s" % (self.species.title(), fd.RISet) , HT.BR()) + #Trait is from an database + if self.traitList and self.traitList[0] and self.traitList[0].db: + #single trait + if len(self.traitList) == 1: + thisTrait = self.traitList[0] + trait_url = HT.Href(text=thisTrait.name, url = os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE) + \ + "?FormID=showDatabase&incparentsf1=1&database=%s&ProbeSetID=%s" % (thisTrait.db.name, thisTrait.name), \ + target='_blank', Class="normalsize") + heading2.append(HT.Strong("Database: "), HT.Href(text=thisTrait.db.fullname, url = webqtlConfig.INFOPAGEHREF % thisTrait.db.name ,\ + target='_blank',Class="normalsize"),HT.BR()) + if thisTrait.db.type == 'ProbeSet': + heading2.append(HT.Strong('Trait ID: '), trait_url, HT.BR(), + HT.Strong("Gene Symbol: "), HT.Italic('%s' % thisTrait.symbol,id="green"),HT.BR()) + if thisTrait.chr and thisTrait.mb: + heading2.append(HT.Strong("Location: "), 'Chr %s @ %s Mb' % (thisTrait.chr, thisTrait.mb)) + elif thisTrait.db.type == 'Geno': + heading2.append(HT.Strong('Locus : '), trait_url, HT.BR()) + if thisTrait.chr and thisTrait.mb: + heading2.append(HT.Strong("Location: "), 'Chr %s @ %s Mb' % (thisTrait.chr, thisTrait.mb)) + elif thisTrait.db.type == 'Publish': + heading2.append(HT.Strong('Record ID: '), trait_url, HT.BR()) + else: + pass + else: + heading2.append(HT.Strong("Traits: "), "Multiple Traits") + else: + heading2.append(HT.Strong("Trait Name: "), fd.identification) + return HT.TD(intMapHeading, heading2, valign="top") + + def geneTables(self, geneCol, refGene=None): + SNPLink = 0 + tableIterationsCnt = 0 + if self.species == "mouse": + geneTableMain = HT.TableLite(border=0, width=1280, cellpadding=0, cellspacing=0, Class="collap") + columns = HT.TR(HT.TD(' ', Class="fs14 fwb ffl b1 cw cbrb"), + HT.TD('Gene Symbol',Class="fs14 fwb ffl b1 cw cbrb", colspan=2), + HT.TD('Mb Start (mm9)',Class="fs14 fwb ffl b1 cw cbrb", width=1), + HT.TD('Gene Length (Kb)',Class="fs14 fwb ffl b1 cw cbrb", width=1), + HT.TD("SNP Count", Class="fs14 fwb ffl b1 cw cbrb", width=1), + HT.TD("SNP Density (SNP/Kb)", Class="fs14 fwb ffl b1 cw cbrb", width=1), + HT.TD('Avg. Expr. Value', Class="fs14 fwb ffl b1 cw cbrb", width=1), # Max of all transcripts + HT.TD('Human Chr',Class="fs14 fwb ffl b1 cw cbrb", width=1), + HT.TD('Mb Start (hg19)', Class="fs14 fwb ffl b1 cw cbrb", width=1)) + + # http://compbio.uthsc.edu/miRSNP/ + + td_pd = HT.TD(Class="fs14 fwb ffl b1 cw cbrb") + td_pd.append(HT.Text("PolymiRTS")) + td_pd.append(HT.BR()) + td_pd.append(HT.Text("Database")) + td_pd.append(HT.BR()) + td_pd.append(HT.Href(url='http://compbio.uthsc.edu/miRSNP/', text='>>', target="_blank", Class="normalsize")) + + if refGene: + columns.append(HT.TD('Literature Correlation', Class="fs14 fwb ffl b1 cw cbrb", width=1)) + columns.append(HT.TD('Gene Description',Class="fs14 fwb ffl b1 cw cbrb")) + columns.append(td_pd) + geneTableMain.append(columns) + + # polymiRTS + # http://lily.uthsc.edu:8080/20090422_UTHSC_cuiyan/PolymiRTS_CLS?chrom=2&chrom_from=115&chrom_to=125 + #XZ: We can NOT assume their web service is always on. We must put this block of code in try except. + try: + conn = httplib.HTTPConnection("lily.uthsc.edu:8080") + conn.request("GET", "/20090422_UTHSC_cuiyan/PolymiRTS_CLS?chrom=%s&chrom_from=%s&chrom_to=%s" % (self.genotype[0].name, self.startMb, self.endMb)) + response = conn.getresponse() + data = response.read() + data = data.split() + conn.close() + dic = {} + index = 0 + for i in data: + if index%3==0: + dic[data[index]] = HT.Href(url=data[index+2], text=data[index+1], target="_blank", Class="normalsize") + index = index+1 + except Exception: + dic={} + + + for gIndex, theGO in enumerate(geneCol): + geneLength = (theGO["TxEnd"] - theGO["TxStart"])*1000.0 + tenPercentLength = geneLength*0.0001 + txStart = theGO["TxStart"] + txEnd = theGO["TxEnd"] + theGO["snpDensity"] = theGO["snpCount"]/geneLength + if (self.ALEX_DEBUG_BOOL_PRINT_GENE_LIST and geneTableMain): + #accessionString = 'http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=Display&DB=gene&term=%s' % theGO["NM_ID"] + geneIdString = 'http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s' % theGO["GeneID"] + + allProbeString = '%s?cmd=sch&gene=%s&alias=1' % (os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), theGO["GeneSymbol"]) + if theGO["snpCount"]: + snpString = HT.Href(url="%s&chr=%s&start=%s&end=%s&geneName=%s&s1=%d&s2=%d" % (os.path.join(webqtlConfig.CGIDIR, 'main.py?FormID=snpBrowser'), + theGO["Chromosome"], theGO["TxStart"], theGO["TxEnd"], theGO["GeneSymbol"], self.diffCol[0], self.diffCol[1]), + text=theGO["snpCount"], target="_blank", Class="normalsize") + else: + snpString = 0 + + mouseStartString = "http://genome.ucsc.edu/cgi-bin/hgTracks?clade=vertebrate&org=Mouse&db=mm9&position=chr" + theGO["Chromosome"] + "%3A" + str(int(theGO["TxStart"] * 1000000.0)) + "-" + str(int(theGO["TxEnd"]*1000000.0)) +"&pix=620&Submit=submit" + + if theGO['humanGene']: + huGO = theGO['humanGene'] + if huGO["TxStart"] == '': + humanStartDisplay = "" + else: + humanStartDisplay = "%0.6f" % huGO["TxStart"] + humanChr = huGO["Chromosome"] + if humanChr.find("q") > -1: + humanChr = humanChr[:humanChr.find("q")] + if humanChr.find("p") > -1: + humanChr = humanChr[:humanChr.find("p")] + humanStartString = "http://genome.ucsc.edu/cgi-bin/hgTracks?clade=vertebrate&org=Human&db=hg17&position=chr%s:%d-%d" % (humanChr, int(1000000*huGO["TxStart"]), int(1000000*huGO["TxEnd"])) + else: + humanStartString = humanChr = humanStartDisplay = "" + + geneDescription = theGO["GeneDescription"] + if len(geneDescription) > 26: + geneDescription = geneDescription[:26]+"..." + probeSetSearch = HT.Href(allProbeString, HT.Image("/images/webqtl_search.gif", border=0), target="_blank") + + if theGO["snpDensity"] < 0.000001: + snpDensityStr = "0" + else: + snpDensityStr = "%0.6f" % theGO["snpDensity"] + + avgExpr = []#theGO["avgExprVal") + if avgExpr in ([], None): + avgExpr = "" + else: + avgExpr = "%0.6f" % avgExpr + + tableIterationsCnt = tableIterationsCnt + 1 + + # polymiRTS + polymiRTS = ' ' + if dic.has_key(theGO["GeneID"]): + polymiRTS = dic[theGO["GeneID"]] + + # If we have a referenceGene then we will show the Literature Correlation + if refGene: + literatureCorrelation = str(self.getLiteratureCorrelation(self.cursor,refGene,theGO['GeneID']) or "N/A") + geneTableMain.append(HT.TR(HT.TD(tableIterationsCnt, align="right", Class="fs13 b1 cbw c222"), + HT.TD(probeSetSearch, align="center", Class="fs13 bt1 bb1 cbw c222", width=21), + HT.TD(HT.Href(geneIdString, theGO["GeneSymbol"], target="_blank", Class="normalsize"), align='left', Class="fs13 bt1 bb1 cbw c222"), + HT.TD(HT.Href(mouseStartString, "%0.6f" % txStart, target="_blank", Class="normalsize"), align='right', Class="fs13 b1 cbw c222"), + HT.TD(HT.Href("javascript:centerIntervalMapOnRange2('%s', " % theGO["Chromosome"]+str(txStart-tenPercentLength) + ", " + str(txEnd+tenPercentLength) + ", document.changeViewForm)", "%0.3f" % geneLength, Class="normalsize"), align='right', Class="fs13 b1 cbw c222"), + HT.TD(snpString, align="right", Class="fs13 b1 cbw c222"), + HT.TD(snpDensityStr, align='right', Class='fs13 b1 cbw c222'), + HT.TD(avgExpr, align="right", Class="fs13 b1 cbw c222"), # This should have a link to the "basic stats" (button on main selection page) of the gene + HT.TD(humanChr, align="right",Class="fs13 b1 cbw c222"), + HT.TD(HT.Href(humanStartString, humanStartDisplay, target="_blank", Class="normalsize"), align="right", Class="fs13 b1 cbw c222"), + HT.TD(literatureCorrelation, align='left',Class="fs13 b1 cbw c222"), + HT.TD(geneDescription, align='left',Class="fs13 b1 cbw c222"), + HT.TD(polymiRTS, align='left', Class="fs13 b1 cbw c222"))) + + else: + geneTableMain.append(HT.TR(HT.TD(tableIterationsCnt, align="right", Class="fs13 b1 cbw c222"), + HT.TD(probeSetSearch, align="center", Class="fs13 bt1 bb1 cbw c222", width=21), + HT.TD(HT.Href(geneIdString, theGO["GeneSymbol"], target="_blank", Class="normalsize"), align='left', Class="fs13 bt1 bb1 cbw c222"), + HT.TD(HT.Href(mouseStartString, "%0.6f" % txStart, target="_blank", Class="normalsize"), align='right', Class="fs13 b1 cbw c222"), + HT.TD(HT.Href("javascript:centerIntervalMapOnRange2('%s', " % theGO["Chromosome"]+str(txStart-tenPercentLength) + ", " + str(txEnd+tenPercentLength) + ", document.changeViewForm)", "%0.3f" % geneLength, Class="normalsize"), align='right', Class="fs13 b1 cbw c222"), + HT.TD(snpString, align="right", Class="fs13 b1 cbw c222"), + HT.TD(snpDensityStr, align='right', Class='fs13 b1 cbw c222'), + HT.TD(avgExpr, align="right", Class="fs13 b1 cbw c222"), # This should have a link to the "basic stats" (button on main selection page) of the gene + HT.TD(humanChr, align="right",Class="fs13 b1 cbw c222"), + HT.TD(HT.Href(humanStartString, humanStartDisplay, target="_blank", Class="normalsize"), align="right", Class="fs13 b1 cbw c222"), + HT.TD(geneDescription, align='left',Class="fs13 b1 cbw c222"), + HT.TD(polymiRTS, align='left', Class="fs13 b1 cbw c222"))) + + return geneTableMain + elif self.species == "rat": + geneTableMain = HT.TableLite(border=0, width=1050, cellpadding=0, cellspacing=0, Class="collap") + geneTableMain.append(HT.TR(HT.TD(' ', Class="fs14 fwb ffl b1 cw cbrb"), + HT.TD('Gene Symbol',Class="fs14 fwb ffl b1 cw cbrb", colspan=2), + HT.TD('Mb Start (rn3)',Class="fs14 fwb ffl b1 cw cbrb", width=1), + HT.TD('Gene Length (Kb)',Class="fs14 fwb ffl b1 cw cbrb", width=1), + HT.TD('Avg. Expr. Value', Class="fs14 fwb ffl b1 cw cbrb", width=1), # Max of all transcripts + HT.TD('Mouse Chr', Class="fs14 fwb ffl b1 cw cbrb", width=1), + HT.TD('Mb Start (mm9)', Class="fs14 fwb ffl b1 cw cbrb", width=1), + HT.TD('Human Chr',Class="fs14 fwb ffl b1 cw cbrb", width=1), + HT.TD('Mb Start (hg19)', Class="fs14 fwb ffl b1 cw cbrb", width=1), + HT.TD('Gene Description',Class="fs14 fwb ffl b1 cw cbrb"))) + + for gIndex, theGO in enumerate(geneCol): + geneDesc = theGO["GeneDescription"] + if geneDesc == "---": + geneDesc = "" + geneLength = (float(theGO["TxEnd"]) - float(theGO["TxStart"])) + geneLengthURL = "javascript:centerIntervalMapOnRange2('%s', %f, %f, document.changeViewForm)" % (theGO["Chromosome"], float(theGO["TxStart"])-(geneLength*0.1), float(theGO["TxEnd"])+(geneLength*0.1)) + + #the chromosomes for human 1 are 1qXX.XX + if theGO['humanGene']: + humanChr = theGO['humanGene']["Chromosome"] + if 'q' in humanChr: + humanChr = humanChr[:humanChr.find("q")] + if 'p' in humanChr: + humanChr = humanChr[:humanChr.find("p")] + humanTxStart = theGO['humanGene']["TxStart"] + else: + humanChr = humanTxStart = "" + + #Mouse Gene + if theGO['mouseGene']: + mouseChr = theGO['mouseGene']["Chromosome"] + mouseTxStart = theGO['mouseGene']["TxStart"] + else: + mouseChr = mouseTxStart = "" + + if theGO["GeneID"] != "": + geneSymbolURL = HT.Href("http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" % theGO["GeneID"], theGO["GeneSymbol"], Class="normalsize", target="_blanK") + else: + geneSymbolURL = theGO["GeneSymbol"] + + if len(geneDesc) > 34: + geneDesc = geneDesc[:32] + "..." + + avgExprVal = [] #theGO["avgExprVal"] + if avgExprVal != "" and avgExprVal: + avgExprVal = "%0.5f" % float(avgExprVal) + else: + avgExprVal = "" + + geneTableMain.append(HT.TR(HT.TD(gIndex+1, align="right", Class="fs13 b1 cbw c222"), + HT.TD(HT.Href(os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE)+"?cmd=sch&gene=%s&alias=1&species=rat" % theGO["GeneSymbol"], HT.Image("/images/webqtl_search.gif", border=0), target="_blank"), Class="fs13 bt1 bb1 cbw c222"), + HT.TD(geneSymbolURL, Class="fs13 bt1 bb1 cbw c222"), + HT.TD(theGO["TxStart"], Class="fs13 b1 cbw c222"), + HT.TD(HT.Href(geneLengthURL, "%0.3f" % (geneLength*1000.0), Class="normalsize"), Class="fs13 b1 cbw c222"), + HT.TD(avgExprVal, Class="fs13 b1 cbw c222"), + HT.TD(mouseChr, Class="fs13 b1 cbw c222"), + HT.TD(mouseTxStart, Class="fs13 b1 cbw c222"), + HT.TD(humanChr, Class="fs13 b1 cbw c222"), + HT.TD(humanTxStart, Class="fs13 b1 cbw c222"), + HT.TD(geneDesc, Class="fs13 b1 cbw c222"))) + return geneTableMain + else: + return "" + + def getLiteratureCorrelation(cursor,geneId1=None,geneId2=None): + if not geneId1 or not geneId2: + return None + if geneId1 == geneId2: + return 1.0 + geneId1 = str(geneId1) + geneId2 = str(geneId2) + lCorr = None + try: + query = 'SELECT Value FROM LCorrRamin3 WHERE GeneId1 = %s and GeneId2 = %s' + for x,y in [(geneId1,geneId2),(geneId2,geneId1)]: + cursor.execute(query,(x,y)) + lCorr = cursor.fetchone() + if lCorr: + lCorr = lCorr[0] + break + except: raise #lCorr = None + return lCorr diff --git a/web/webqtl/intervalMapping/__init__.py b/web/webqtl/intervalMapping/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/main.py b/web/webqtl/main.py new file mode 100644 index 00000000..f37fae01 --- /dev/null +++ b/web/webqtl/main.py @@ -0,0 +1,699 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + + +from mod_python import apache, util, Session, Cookie +import time +import string + +from base.webqtlFormData import webqtlFormData + +import logging +logging.basicConfig(filename="/tmp/gn_log", level=logging.INFO) +_log = logging.getLogger("main") + + + +def handler(req): + _log.info("Handling a request") + req.content_type = 'text/html' + + formdata = util.FieldStorage(req) + + formID = formdata.getfirst('FormID') + sid = formdata.getfirst('sid') + cmdID = formdata.getfirst('cmd') + page = None + + #XZ: this statement must be put into handler function + _log.info("Loading session") + mod_python_session = Session.Session(req, timeout=864000, lock=0) + mod_python_session.load() + _log.info("Done loading session") + + if sid: + from cmdLine import procPage + reload(procPage) + req.content_type = 'text/html' + procPage.procPage(sid, req) + else: + fd = webqtlFormData(req=req, mod_python_session=mod_python_session, FieldStorage_formdata=formdata) + + if formID: + _log.info("Dispatching on %s, %s"%(formID, fd.formID)) + #XZ: Special case. Pay attention to parameters! We can NOT pass 'fd'! + if fd.formID == 'uploadFile': + from base import cookieData + from misc import uploadFilePage + reload(uploadFilePage) + reload(cookieData) + cookies = cookieData.cookieData(Cookie.get_cookies(req)) #new module + req.content_type = 'text/html' + page = uploadFilePage.uploadFilePage(fd, formdata, cookies) + + #search + elif fd.formID in ('searchResult','asearchResult'): + from search import SearchResultPage + reload(SearchResultPage) + req.content_type = 'text/html' + page = SearchResultPage.SearchResultPage(fd) + + #showTrait + elif fd.formID == 'showDatabase': + from showTrait import ShowTraitPage + reload(ShowTraitPage) + req.content_type = 'text/html' + page = ShowTraitPage.ShowTraitPage(fd) + elif fd.formID == 'showBest': + from showTrait import ShowBestTrait + reload(ShowBestTrait) + req.content_type = 'text/html' + page = ShowBestTrait.ShowBestTrait(fd) + elif fd.formID == 'showProbeInfo': + from showTrait import ShowProbeInfoPage + reload(ShowProbeInfoPage) + page = ShowProbeInfoPage.ShowProbeInfoPage(fd) + req.content_type = 'text/html' + elif fd.formID in ('crossChoice', 'varianceChoice'): + if not fd.submitID: + req.content_type = 'text/html' + req.write('check your page') + elif fd.submitID == 'sample': + from showTrait import testTraitPage # new module + reload(testTraitPage) + page = testTraitPage.testTraitPage() + req.content_type = 'text/html' + else: + from showTrait import DataEditingPage + reload(DataEditingPage) + req.content_type = 'text/html' + page = DataEditingPage.DataEditingPage(fd) + + #from Trait Data and Analysis form page + elif fd.formID == 'dataEditing': + if not fd.submitID: + req.content_type = 'text/html' + req.write('check your page') + elif fd.submitID == 'basicStatistics': #Updated Basic Statistics page (pop-up when user hits "update" button in DataEditingPage.py + from basicStatistics import updatedBasicStatisticsPage + reload(updatedBasicStatisticsPage) + req.content_type = 'text/html' + page = updatedBasicStatisticsPage.updatedBasicStatisticsPage(fd) + elif fd.submitID == 'updateRecord': + from updateTrait import DataUpdatePage + reload(DataUpdatePage) + req.content_type = 'text/html' + page=DataUpdatePage.DataUpdatePage(fd) + elif fd.submitID == 'addRecord': + from collection import AddUserInputToSelectionPage + reload(AddUserInputToSelectionPage) + page = AddUserInputToSelectionPage.AddUserInputToSelectionPage(fd) + req.content_type = 'text/html' + elif fd.submitID == 'addPublish': + from submitTrait import AddUserInputToPublishPage + reload(AddUserInputToPublishPage) + req.content_type = 'text/html' + page = AddUserInputToPublishPage.AddUserInputToPublishPage(fd) + elif fd.submitID == 'correlation': + from cmdLine import cmdCorrelationPage + reload(cmdCorrelationPage) + page = cmdCorrelationPage.cmdCorrelationPage(fd) + elif fd.submitID == 'intervalMap': + from cmdLine import cmdIntervalMappingPage + reload(cmdIntervalMappingPage) + page = cmdIntervalMappingPage.cmdIntervalMappingPage(fd) + elif fd.submitID == 'markerRegression': + from cmdLine import cmdMarkerRegressionPage + reload(cmdMarkerRegressionPage) + req.content_type = 'text/html' + page = cmdMarkerRegressionPage.cmdMarkerRegressionPage(fd) + + elif fd.submitID == 'directPlot': + from cmdLine import cmdDirectPlotPage + reload(cmdDirectPlotPage) + req.content_type = 'text/html' + page = cmdDirectPlotPage.cmdDirectPlotPage(fd) + elif fd.submitID == 'exportData': + from showTrait import exportPage + reload(exportPage) + req.content_type = 'text/html' + page = exportPage.ExportPage(fd) + elif fd.submitID == 'showAll': + from cmdLine import cmdShowAllPage + reload(cmdShowAllPage) + page = cmdShowAllPage.cmdShowAllPage(fd) + elif fd.submitID == 'showAll2': + from cmdLine import cmdShowAllPage2 + reload(cmdShowAllPage2) + page=cmdShowAllPage2.cmdShowAllPage2(fd) + else: + pass + + #from marker regression result page + elif fd.formID == 'secondRegression': + if not fd.submitID: + req.content_type = 'text/html' + req.write('check your page') + elif fd.submitID == 'compositeRegression': + req.content_type = 'text/html' + from markerRegression import CompositeMarkerRegressionPage + reload(CompositeMarkerRegressionPage) + page = CompositeMarkerRegressionPage.CompositeMarkerRegressionPage(fd) + elif fd.submitID == 'intervalMap': + from intervalMapping import IntervalMappingPage + reload(IntervalMappingPage) + page = IntervalMappingPage.IntervalMappingPage(fd) + else: + pass + + #cmdLine + elif fd.formID == 'showIntMap': + from cmdLine import cmdIntervalMappingPage + reload(cmdIntervalMappingPage) + page = cmdIntervalMappingPage.cmdIntervalMappingPage(fd) + elif fd.formID == 'heatmap': + from cmdLine import cmdHeatmapPage + reload(cmdHeatmapPage) + page = cmdHeatmapPage.cmdHeatmapPage(fd) + elif fd.formID == 'networkGraph': + from cmdLine import cmdNetworkGraphPage + reload(cmdNetworkGraphPage) + page = cmdNetworkGraphPage.cmdNetworkGraphPage(fd) + elif fd.formID == 'compCorr2': + from cmdLine import cmdCompCorrPage + reload(cmdCompCorrPage) + page = cmdCompCorrPage.cmdCompCorrPage(fd) + elif fd.formID == 'calPartialCorrDB': + from cmdLine import cmdPartialCorrelationPage + reload(cmdPartialCorrelationPage) + page = cmdPartialCorrelationPage.cmdPartialCorrelationPage(fd) + + #pairScan + elif fd.formID == 'showCategoryGraph': + from pairScan import CategoryGraphPage + reload(CategoryGraphPage) + req.content_type = 'text/html' + page = CategoryGraphPage.CategoryGraphPage(fd) + elif fd.formID == 'pairPlot': + from pairScan import PairPlotPage + reload(PairPlotPage) + req.content_type = 'text/html' + page = PairPlotPage.PairPlotPage(fd) + + #compareCorrelates + elif fd.formID == 'compCorr': + from compareCorrelates import MultipleCorrelationPage + reload(MultipleCorrelationPage) + page = MultipleCorrelationPage.MultipleCorrelationPage(fd) + + #correlationMatrix + elif fd.formID == 'corMatrix': + from correlationMatrix import CorrelationMatrixPage + reload(CorrelationMatrixPage) + req.content_type = 'text/html' + page = CorrelationMatrixPage.CorrelationMatrixPage(fd) + elif fd.formID=='tissueCorrelation' or fd.formID=='dispMultiSymbolsResult': + from correlationMatrix import TissueCorrelationPage + reload(TissueCorrelationPage) + page = TissueCorrelationPage.TissueCorrelationPage(fd) + elif fd.formID =='dispTissueCorrelationResult': + from cmdLine import cmdTissueCorrelationResultPage + reload (cmdTissueCorrelationResultPage) + page = cmdTissueCorrelationResultPage.cmdTissueCorrelationResultPage(fd) + elif fd.formID=='tissueAbbreviation': + from correlationMatrix import TissueAbbreviationPage + reload(TissueAbbreviationPage) + page = TissueAbbreviationPage.TissueAbbreviationPage(fd) + + #collection + elif fd.formID == 'dispSelection': + from collection import DisplaySelectionPage + reload(DisplaySelectionPage) + page = DisplaySelectionPage.DisplaySelectionPage(fd) + req.content_type = 'text/html' + elif fd.formID == 'addToSelection': + from collection import AddToSelectionPage + reload(AddToSelectionPage) + page = AddToSelectionPage.AddToSelectionPage(fd) + req.content_type = 'text/html' + elif fd.formID == 'removeSelection': + from collection import RemoveSelectionPage + reload(RemoveSelectionPage) + page = RemoveSelectionPage.RemoveSelectionPage(fd) + req.content_type = 'text/html' + elif fd.formID == 'exportSelect': + from collection import ExportSelectionPage + reload(ExportSelectionPage) + page = ExportSelectionPage.ExportSelectionPage(fd) + elif fd.formID == 'importSelect': + from collection import ImportSelectionPage + reload(ImportSelectionPage) + page = ImportSelectionPage.ImportSelectionPage(fd) + req.content_type = 'text/html' + elif fd.formID == 'exportSelectionDetailInfo': + from collection import ExportSelectionDetailInfoPage + reload(ExportSelectionDetailInfoPage) + page = ExportSelectionDetailInfoPage.ExportSelectionDetailInfoPage(fd) + elif fd.formID == 'batSubmitResult': + from collection import BatchSubmitSelectionPage + reload(BatchSubmitSelectionPage) + page = BatchSubmitSelectionPage.BatchSubmitSelectionPage(fd) + req.content_type = 'text/html' + + #user + elif fd.formID == 'userLogin': + from user import userLogin + reload(userLogin) + page = userLogin.userLogin(fd) + req.content_type = 'text/html' + elif fd.formID == 'userLogoff': + from user import userLogoff + reload(userLogoff) + page = userLogoff.userLogoff(fd) + req.content_type = 'text/html' + elif fd.formID == 'userPasswd': + from user import userPasswd + reload(userPasswd) + page = userPasswd.userPasswd(fd) + req.content_type = 'text/html' + + #submitTrait + elif fd.formID == 'pre_dataEditing': + from submitTrait import VarianceChoicePage + reload(VarianceChoicePage) + page = VarianceChoicePage.VarianceChoicePage(fd) + req.content_type = 'text/html' + elif fd.formID == 'batSubmit': + from submitTrait import BatchSubmitPage + reload(BatchSubmitPage) + req.content_type = 'text/html' + page = BatchSubmitPage.BatchSubmitPage(fd) + + + #misc + elif fd.formID == 'editHtml': + from misc import editHtmlPage + reload(editHtmlPage) + req.content_type = 'text/html' + page = editHtmlPage.editHtmlPage(fd) + + #genomeGraph + elif fd.formID == 'transciptMapping': + from genomeGraph import cmdGenomeScanPage + reload(cmdGenomeScanPage) + req.content_type = 'text/html' + page = cmdGenomeScanPage.cmdGenomeScanPage(fd) + elif fd.formID == 'genAllDbResult': + from genomeGraph import genAllDbResultPage + reload(genAllDbResultPage) + page = genAllDbResultPage.genAllDbResultPage(fd) + + #geneWiki + elif fd.formID == 'geneWiki': + from geneWiki import AddGeneRIFPage + reload(AddGeneRIFPage) + page = AddGeneRIFPage.AddGeneRIFPage(fd) + + #externalResource + elif fd.formID == 'GOTree': + from externalResource import GoTreePage + reload(GoTreePage) + req.content_type = 'text/html' + page = GoTreePage.GoTreePage(fd) + elif fd.formID == 'ODE': + from externalResource import ODEPage + reload(ODEPage) + req.content_type = 'text/html' + page = ODEPage.ODEPage(fd) + elif fd.formID == 'GCAT': + from externalResource import GCATPage + reload(GCATPage) + req.content_type = 'text/html' + page = GCATPage.GCATPage(fd) + + #management + elif fd.formID == 'managerMain': + from management import managerMainPage + reload(managerMainPage) + req.content_type = 'text/html' + page = managerMainPage.managerMainPage(fd) + elif fd.formID == 'createUserAccount': + from management import createUserAccountPage + reload(createUserAccountPage) + req.content_type = 'text/html' + page = createUserAccountPage.createUserAccountPage(fd) + elif fd.formID == 'assignUserToDataset': + from management import assignUserToDatasetPage + reload(assignUserToDatasetPage) + req.content_type = 'text/html' + page = assignUserToDatasetPage.assignUserToDatasetPage(fd) + elif fd.formID == 'deletePhenotypeTrait': + from management import deletePhenotypeTraitPage + reload(deletePhenotypeTraitPage) + req.content_type = 'text/html' + page = deletePhenotypeTraitPage.deletePhenotypeTraitPage(fd) + elif fd.formID == 'exportPhenotypeDataset': + from management import exportPhenotypeDatasetPage + reload(exportPhenotypeDatasetPage) + req.content_type = 'text/html' + page = exportPhenotypeDatasetPage.exportPhenotypeDatasetPage(fd) + elif fd.formID == 'editHeaderFooter': + from management import editHeaderFooter + reload(editHeaderFooter) + req.content_type = 'text/html' + page = editHeaderFooter.editHeaderFooter(fd) + elif fd.formID == 'updGeno': + from management import GenoUpdate + reload(GenoUpdate) + req.content_type = 'text/html' + page = GenoUpdate.GenoUpdate(fd) + + #correlation + elif fd.formID == 'showCorrelationPlot': + from correlation import PlotCorrelationPage + reload(PlotCorrelationPage) + req.content_type = 'text/html' + page = PlotCorrelationPage.PlotCorrelationPage(fd) + elif fd.formID == 'partialCorrInput': + from correlation import PartialCorrInputPage + reload(PartialCorrInputPage) + req.content_type = 'text/html' + page = PartialCorrInputPage.PartialCorrInputPage(fd) + elif fd.formID == 'calPartialCorrTrait': + from correlation import PartialCorrTraitPage + reload(PartialCorrTraitPage) + req.content_type = 'text/html' + page = PartialCorrTraitPage.PartialCorrTraitPage(fd) + + #elif fd.formID == 'BNInput': + # from BN import BNInputPage + # reload(BNInputPage) + # req.content_type = 'text/html' + # page = BNInputPage.BNInputPage(fd) + + elif fd.formID == 'updateRecord': + from updateTrait import DataUpdatePage + reload(DataUpdatePage) + req.content_type = 'text/html' + page=DataUpdatePage.DataUpdatePage(fd) + + #schema + elif fd.formID == 'schemaShowPage': + from schema import ShowSchemaPage + reload(ShowSchemaPage) + req.content_type = 'text/html' + page = ShowSchemaPage.ShowSchemaPage(fd) + elif fd.formID == 'schemaShowComment': + from schema import ShowCommentPage + reload(ShowCommentPage) + req.content_type = 'text/html' + page = ShowCommentPage.ShowCommentPage(fd) + elif fd.formID == 'schemaUpdateComment': + from schema import UpdateCommentPage + reload(UpdateCommentPage) + req.content_type = 'text/html' + page = UpdateCommentPage.UpdateCommentPage(fd) + + #snpBrowser + elif fd.formID == 'snpBrowser': + req.content_type = 'text/html' + snpId = fd.formdata.getfirst('snpId') + if snpId: + from snpBrowser import snpDetails + reload(snpDetails) + page = snpDetails.snpDetails(fd, snpId) + else: + from snpBrowser import snpBrowserPage + reload(snpBrowserPage) + page = snpBrowserPage.snpBrowserPage(fd) + elif fd.formID =='SnpBrowserResultPage': + from cmdLine import cmdSnpBrowserResultPage + reload (cmdSnpBrowserResultPage) + page = cmdSnpBrowserResultPage.cmdSnpBrowserResultPage(fd) + + #intervalAnalyst + elif fd.formID == 'intervalAnalyst': + from intervalAnalyst import IntervalAnalystPage + reload(IntervalAnalystPage) + req.content_type = 'text/html' + page = IntervalAnalystPage.IntervalAnalystPage(fd) + + #AJAX_table + elif fd.formID == 'AJAX_table': + from utility import AJAX_table + reload(AJAX_table) + req.content_type = 'text/html' + req.write(AJAX_table.AJAX_table(fd).write()) + + elif fd.formID == 'submitSingleTrait': + from submitTrait import CrossChoicePage + reload(CrossChoicePage) + page = CrossChoicePage.CrossChoicePage(fd) + req.content_type = 'text/html' + + elif fd.formID == 'sharing': + from dataSharing import SharingPage + reload(SharingPage) + page = SharingPage.SharingPage(fd) + req.content_type = 'text/html' + + elif fd.formID == 'sharinginfo': + from dataSharing import SharingInfoPage + reload(SharingInfoPage) + page = SharingInfoPage.SharingInfoPage(fd) + req.content_type = 'text/html' + + elif fd.formID == 'sharinginfoedit': + from dataSharing import SharingInfoEditPage + reload(SharingInfoEditPage) + page = SharingInfoEditPage.SharingInfoEditPage(fd) + req.content_type = 'text/html' + + elif fd.formID == 'sharinginfodelete': + from dataSharing import SharingInfoDeletePage + reload(SharingInfoDeletePage) + page = SharingInfoDeletePage.SharingInfoDeletePage(fd) + req.content_type = 'text/html' + + elif fd.formID == 'sharinginfoupdate': + from dataSharing import SharingInfoUpdatePage + reload(SharingInfoUpdatePage) + page = SharingInfoUpdatePage.SharingInfoUpdatePage(fd) + req.content_type = 'text/html' + + elif fd.formID == 'sharingListDataset': + from dataSharing import SharingListDataSetPage + reload(SharingListDataSetPage) + page = SharingListDataSetPage.SharingListDataSetPage(fd) + req.content_type = 'text/html' + + elif fd.formID == 'sharinginfoadd': + from dataSharing import SharingInfoAddPage + reload(SharingInfoAddPage) + page = SharingInfoAddPage.SharingInfoAddPage(fd) + req.content_type = 'text/html' + + elif fd.formID == 'annotation': + from annotation import AnnotationPage + reload(AnnotationPage) + page = AnnotationPage.AnnotationPage(fd) + req.content_type = 'text/html' + + elif fd.formID == 'qtlminer': + from qtlminer import QTLminer + reload(QTLminer) + req.content_type = 'text/html' + page = QTLminer.QTLminer(fd) + elif fd.formID == 'qtlminerresult': + from cmdLine import cmdQTLminerPage + reload (cmdQTLminerPage) + page = cmdQTLminerPage.cmdQTLminerPage(fd) + + else: + from search import IndexPage + reload(IndexPage) + page = IndexPage.IndexPage(fd) + req.content_type = 'text/html' + + #elif fd.formID == 'updGeno': + # import GenoUpdate + # reload(GenoUpdate) + # req.content_type = 'text/html' + # page=GenoUpdate.GenoUpdate(fd) + #elif fd.formID == 'updStrain': + # import StrainUpdate + # reload(StrainUpdate) + # req.content_type = 'text/html' + # page=StrainUpdate.StrainUpdate(fd) + #elif fd.formID == 'showTextResult': + # import resultPage + # reload(resultPage) + # page = resultPage.ShowTextResult(fd) + #elif fd.formID == 'showStrainInfo': + # import dataPage + # reload(dataPage) + # req.content_type = 'text/html' + # page = dataPage.ShowStrainInfoPage(fd) + #elif fd.formID == 'showImage': + # import dataPage + # reload(dataPage) + # req.content_type = 'text/html' + # page = dataPage.ShowImagePage(fd) + #XZ, 04/29/2009: There is one webpage gn/web/webqtl/blat.html and I have moved it to junk folder. This function is very old and I don't think it is being used. + #elif fd.formID == 'BlatSearch': + # import miscPage + # reload(miscPage) + # page = miscPage.ShowBlatResult(fd) + #elif fd.formID == 'admin': + # import adminPage + # reload(adminPage) + # req.content_type = 'text/html' + # page = adminPage.adminModifyPage(fd) + + elif cmdID: + #need to rewrite + cmdID = string.lower(cmdID) + if cmdID in ('get','trait','tra'): + from textUI import cmdGet + reload(cmdGet) + req.content_type = 'text/plain' + req.write(cmdGet.cmdGet(fd).write()) + elif cmdID in ('help', 'hlp'): + from textUI import cmdHelp + reload(cmdHelp) + req.content_type = 'text/plain' + req.write(cmdHelp.cmdHelp(fd).write()) + elif cmdID in ('correlation','cor','pea','pearson'): + from textUI import cmdCorrelation + reload(cmdCorrelation) + req.content_type = 'text/plain' + req.write(cmdCorrelation.cmdCorrelation(fd).write()) + elif cmdID in ('map','marker'): + from textUI import cmdMap + reload(cmdMap) + req.content_type = 'text/plain' + req.write(cmdMap.cmdMap(fd).write()) + elif cmdID in ('geno','gen','genotype'): + from textUI import cmdGeno + reload(cmdGeno) + req.content_type = 'text/plain' + req.write(cmdGeno.cmdGeno(fd).write()) + elif cmdID in ('interval','int'): + from textUI import cmdInterval + reload(cmdInterval) + req.content_type = 'text/plain' + req.write(cmdInterval.cmdInterval(fd).write()) + elif cmdID in ('show','shw'): + from textUI import cmdShowEditing + reload(cmdShowEditing) + req.content_type = 'text/html' + result = cmdShowEditing.cmdShowEditing(fd) + page = result.page + elif cmdID in ('search','sch'): + req.content_type = 'text/plain' + from textUI import cmdSearchGene + reload(cmdSearchGene) + result = cmdSearchGene.cmdSearchGene(fd) + page = result.page + req.write(result.text) + + #elif cmdID in ('tst','Test'): + # req.write('Content-type: application/x-download') + # req.write('Content-disposition: attachment; filename=my.txt\n') + # genotype_file = GENODIR + 'AKXD.geno' + # fp = open(genotype_file) + # line = fp.read() + # fp.close() + # req.write(line) + #XZ, 03/03/2009: This fuction must be initiated from URL + #XZ: http://www.genenetwork.org/webqtl/WebQTL.py?cmd=birn&species=mouse&tissue=Hippocampus&ProbeId=1436869_at&Strain=BXD1 + #elif cmdID[0:4]=="birn": + # req.content_type = 'text/plain' + # import BIRN + # reload(BIRN) + # result = BIRN.birnSwitch(fd) + # req.write(result.text) + #elif cmdID in ('spear','spearman','spe'): + # import cmdSpearman # new modules + # reload(cmdSpearman) + # req.content_type = 'text/plain' + # req.write(cmdSpearman.cmdSpearman(fd).write()) + #elif cmdID in ('snp','track'): + # import cmdSnpTrack # new modules + # reload(cmdSnpTrack) + # req.content_type = 'text/plain' + # req.write(cmdSnpTrack.cmdSnpTrack(fd).write()) + + else: + req.content_type = 'text/html' + req.write("###Wrong Command") + + ######## Create first page when called with no formID ######## + + else: + _log.info("Going to the search page") + from search import IndexPage + reload(IndexPage) + page = IndexPage.IndexPage(fd) + req.content_type = 'text/html' + + if page: + #send Cookie first + if page.cookie: + for item in page.cookie: + if (item): + modcookie = Cookie.Cookie(item.name, item.value) + modcookie.path = item.path + if item.expire != None: + modcookie.expires = time.time() + item.expire + Cookie.add_cookie(req, modcookie) + + #save session + if page.session_data_changed: + for one_key in page.session_data_changed.keys(): + mod_python_session[one_key] = page.session_data_changed[one_key] + mod_python_session.save() + + + req.content_type= page.content_type + + #send attachment + if page.redirection: + util.redirect(req, page.redirection) + elif page.content_disposition: + req.headers_out["Content-Disposition"] = page.content_disposition + req.write(page.attachment) + elif page.debug: # for debug + req.write(page.debug) + #send regular content + else: + req.write(page.write()) + else: + pass + + return apache.OK + + diff --git a/web/webqtl/maintainance/__init__.py b/web/webqtl/maintainance/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/maintainance/addRif.py b/web/webqtl/maintainance/addRif.py new file mode 100755 index 00000000..c7cdde7a --- /dev/null +++ b/web/webqtl/maintainance/addRif.py @@ -0,0 +1,107 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by Lei Yan 2011/02/08 + +# created by Lei Yan 02/08/2011 + +import string +import MySQLdb +import time +import os +import sys + +path1 = os.path.abspath(os.path.dirname(__file__)) +path2 = path1 + "/.." +path3 = path1 + "/../../tmp" +sys.path.insert(0, path2) +from base import webqtlConfig + +try: + con = MySQLdb.Connect(db=webqtlConfig.DB_NAME,host=webqtlConfig.MYSQL_SERVER, user=webqtlConfig.DB_USER,passwd=webqtlConfig.DB_PASSWD) + cursor = con.cursor() + print "You have successfully connected to mysql.\n" +except: + print "You entered incorrect password.\n" + sys.exit(0) + +taxIds = {'10090':1, '9606':4, '10116':2, '3702':3} +taxIdKeys = taxIds.keys() + +os.chdir(path3) +cdict = {} + +os.system("rm -f gene_info") +os.system("wget ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene_info.gz") +os.system("gunzip gene_info.gz") +try: + fp = open("gene_info") +except: + print "gene_info doesn't exit" + sys.exit(1) + +i=0 +line = fp.readline() +while line: + line2 = map(string.strip, string.split(line.strip(), "\t")) + if line2[0] in taxIdKeys: + cdict[line2[1]] = line2[2] + line = fp.readline() + i += 1 + if i%1000 == 0: + print "finished ", i +fp.close() + +os.system("rm -f generifs_basic") +os.system("wget ftp://ftp.ncbi.nlm.nih.gov/gene/GeneRIF/generifs_basic.gz") +os.system("gunzip generifs_basic.gz") +try: + fp = open("generifs_basic") +except: + print "generifs_basic doesn't exist" + sys.exit(1) + +cursor.execute("delete from GeneRIF_BASIC") +count = 0 +line = fp.readline() +while line: + line2 = map(string.strip, string.split(line.strip(), "\t")) + if line2[0] in taxIdKeys: + count += 1 + line2[0] = taxIds[line2[0]] + if len(line2) !=5: + print line + else: + try: + symbol=cdict[line2[1]] + except: + symbol= "" + + line2 = line2[:2] + [symbol] + line2[2:] + cursor.execute("insert into GeneRIF_BASIC(SpeciesId, GeneId, Symbol, PubMed_ID, createtime, comment) values(%s, %s, %s, %s, %s, %s)", tuple(line2)) + line = fp.readline() + +fp.close() +print count, "\n" +cursor.close() diff --git a/web/webqtl/maintainance/checkInfoFile.py b/web/webqtl/maintainance/checkInfoFile.py new file mode 100755 index 00000000..6aa0d771 --- /dev/null +++ b/web/webqtl/maintainance/checkInfoFile.py @@ -0,0 +1,102 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by NL 2011/01/28 + +# created by Ning Liu 2011/01/27 +# This script is to check whether dataset related Info file exist or not; if not, the tempate Info file will be generated +# This script should be only run at GeneNetwork production server + +import sys, os +import MySQLdb + +current_file_name = __file__ +pathname = os.path.dirname( current_file_name ) +abs_path = os.path.abspath(pathname) +sys.path.insert(0, abs_path + '/..') + +from base import template +from base import webqtlConfig +from base import header +from base import footer + +# build MySql database connection +con = MySQLdb.Connect(db=webqtlConfig.DB_NAME,host=webqtlConfig.MYSQL_SERVER, user=webqtlConfig.DB_USER,passwd=webqtlConfig.DB_PASSWD) +cursor = con.cursor() + +InfoFilePath =webqtlConfig.HTMLPATH+'dbdoc/' + +# create template for Info file +def createTemplateForInfoFile(datasetId=None,datasetFullName=None,InfoFileURL=None): + #template.py has been changed with dynamic header and footer + userInfo="" + headerInfo=header.header_string % userInfo + serverInfo="" + footerInfo=footer.footer_string % serverInfo + + title =datasetFullName + contentTitle = ''' +

      %smodify this page

      + ''' % datasetFullName + content =''' + Accession number: GN%s

      +

      + This page will be updated soon. +

      + ''' % (datasetId,datasetId) + + body=contentTitle+content + # Note: 'templateParameters' includes parameters required for template.py + # templateParameters = ['title','basehref','js1','js2','layer','header','body', 'footer'] + templateParameters =[title,'','','','',headerInfo,body,footerInfo] + + # build template file + templateFile=template.template % tuple(templateParameters) + InfoFileHandler = open(InfoFileURL, 'w') + # write template file into Info .html file + InfoFileHandler.write(templateFile) + InfoFileHandler.close() + + +# select all ProbeSet names from datatable 'ProbeSetFreeze' +cursor.execute("select Id, Name, FullName from ProbeSetFreeze ") +results = cursor.fetchall() +for item in results: + datasetId = item[0] + datasetName =item[1] + datasetFullName =item[2] + InfoFileURL = InfoFilePath+datasetName+".html" + # check Info html file exist or not + if not os.path.exists(InfoFileURL): + createTemplateForInfoFile(datasetId=datasetId,datasetFullName=datasetFullName,InfoFileURL=InfoFileURL) + + + + + + + + + + diff --git a/web/webqtl/maintainance/genSelectDatasetJS.py b/web/webqtl/maintainance/genSelectDatasetJS.py new file mode 100755 index 00000000..bc88beec --- /dev/null +++ b/web/webqtl/maintainance/genSelectDatasetJS.py @@ -0,0 +1,637 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by NL 2011/01/27 + +# created by Ning Liu 07/01/2010 +# This script is to generate selectDatasetMenu.js file for cascade menu in the main search page http://www.genenetwork.org/. +# This script will be run automatically every one hour or manually when database has been changed . +import sys, os + +current_file_name = __file__ +pathname = os.path.dirname( current_file_name ) +abs_path = os.path.abspath(pathname) +sys.path.insert(0, abs_path + '/..') + +import MySQLdb +import os +import string +import time +import datetime + +from base import template +from base import webqtlConfig + +################################################################################# +# input: searchArray, targetValue +# function: retrieve index info of target value in designated array (searchArray) +# output: return index info +################################################################################## +def getIndex(searchArray=None, targetValue=None): + for index in range(len(searchArray)): + if searchArray[index][0]==targetValue: + return index + +# build MySql database connection +con = MySQLdb.Connect(db=webqtlConfig.DB_NAME,host=webqtlConfig.MYSQL_SERVER, user=webqtlConfig.DB_USER,passwd=webqtlConfig.DB_PASSWD) +cursor = con.cursor() + +# create js_select.js file +fileHandler = open(webqtlConfig.HTMLPATH + 'javascript/selectDatasetMenu.js', 'w') + +# define SpeciesString, GroupString, TypeString, DatabasingString, LinkageString for output +# outputSpeciesStr is for building Species Array(sArr) in js file; outputGroupStr is for Group Array(gArr) +# outputTypeStr is for Type Array(tArr); outputDatabaseStr is for Database Array(dArr) +# outputLinkStr is for Linkage Array(lArr) +outputTimeStr ="/* Generated Date : %s , Time : %s */ \n" % (datetime.date.today(),time.strftime("%H:%M ", time.localtime())) +outputTimeStr ="" +outputSpeciesStr ='var sArr = [\n{txt:\'\',val:\'\'},\n' +outputGroupStr ='var gArr = [\n{txt:\'\',val:\'\'},\n' +outputTypeStr ='var tArr = [\n{txt:\'\',val:\'\'},\n' +outputDatabaseStr ='var dArr = [\n{txt:\'\',val:\'\'},\n' +outputLinkStr ='var lArr = [\n null,\n' + +# built speices array in js file for select menu in the main search page http://www.genenetwork.org/ +cursor.execute("select Name, MenuName from Species order by OrderId") +speciesResult = cursor.fetchall() +speciesTotalResult = list(speciesResult) +speciesResultsTotalNum = cursor.rowcount +if speciesResultsTotalNum >0: + for speciesItem in speciesResult: + speciesVal = speciesItem[0] + speciesTxt = speciesItem[1] + outputSpeciesStr += '{txt:\'%s\',val:\'%s\'},\n'%(speciesTxt,speciesVal) +# 'All Species' option for 'Species' select menu +outputSpeciesStr +='{txt:\'All Species\',val:\'All Species\'}];\n\n' +#speciesTotalResult is a list which inclues all species' options +speciesTotalResult.append(('All Species','All Species')) + +# built group array in js file for select menu in the main search page http://www.genenetwork.org/ +cursor.execute("select distinct InbredSet.Name, InbredSet.FullName from InbredSet, Species, ProbeFreeze, GenoFreeze, PublishFreeze where InbredSet.SpeciesId= Species.Id and InbredSet.Name != 'BXD300' and (PublishFreeze.InbredSetId = InbredSet.Id or GenoFreeze.InbredSetId = InbredSet.Id or ProbeFreeze.InbredSetId = InbredSet.Id) order by InbredSet.Name") +groupResults = cursor.fetchall() +groupTotalResults = list(groupResults) +groupResultsTotalNum = cursor.rowcount +if groupResultsTotalNum > 0: + for groupItem in groupResults: + groupVal = groupItem[0] + groupTxt = groupItem[1] + outputGroupStr += '{txt:\'%s\',val:\'%s\'},\n'%(groupTxt,groupVal) +# add 'All Groups' option for 'Group' select menu +outputGroupStr +='{txt:\'All Groups\',val:\'all groups\'}];\n\n' +# groupTotalResults is a list which inclues all groups' options +groupTotalResults.append(('all groups','All Groups')) + +# built type array in js file for select menu in the main search page http://www.genenetwork.org/ +cross = groupVal +cursor.execute("select distinct Tissue.Name, concat(Tissue.Name, ' mRNA') from ProbeFreeze, ProbeSetFreeze, InbredSet, Tissue where ProbeFreeze.TissueId = Tissue.Id and ProbeFreeze.InbredSetId = InbredSet.Id and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.public > %d order by Tissue.Name" % (webqtlConfig.PUBLICTHRESH)) +typeResults = cursor.fetchall() +typeTotalResults = list(typeResults) +typeResultsTotalNum = cursor.rowcount +if typeResultsTotalNum > 0: + for typeItem in typeResults: + typeVal = typeItem[0] + typeTxt = typeItem[1] + outputTypeStr += '{txt:\'%s\',val:\'%s\'},\n'%(typeTxt,typeVal) +# add 'Phenotypes' and 'Genotypes' options for 'Type' select menu +outputTypeStr +='{txt:\'Phenotypes\',val:\'Phenotypes\'},\n' +outputTypeStr +='{txt:\'Genotypes\',val:\'Genotypes\'}];\n\n' +# typeTotalResults is a list which inclues all types' options +typeTotalResults.append(('Phenotypes','Phenotypes')) +typeTotalResults.append(('Genotypes','Genotypes')) + +# built dataset array in js file for select menu in the main search page http://www.genenetwork.org/ +tissue = typeVal +cursor.execute("select ProbeSetFreeze.Name, ProbeSetFreeze.FullName from ProbeSetFreeze, ProbeFreeze, InbredSet, Tissue where ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeFreeze.TissueId = Tissue.Id and ProbeFreeze.InbredSetId = InbredSet.Id and ProbeSetFreeze.public > %d order by ProbeSetFreeze.CreateTime desc" % (webqtlConfig.PUBLICTHRESH)) +datasetResults = cursor.fetchall() +datasetTotalResults = list(datasetResults) +datasetResultsTotalNum = cursor.rowcount +if datasetResultsTotalNum > 0: + for datasetItem in datasetResults: + datasetVal = datasetItem[0] + datasetTxt = datasetItem[1] + outputDatabaseStr += '{txt:\'%s\',val:\'%s\'},\n'%(datasetTxt,datasetVal) + +# This part is to built linkage array in js file, the linkage is among Species, Group, Type and Database. +# The format of linkage array is [speciesIndex, groupIndex, typeIndex, databaseIndex] +if speciesResultsTotalNum >0: + for speciesItem in speciesResult: + speciesVal = speciesItem[0] + sIndex = getIndex(searchArray=speciesTotalResult,targetValue=speciesVal)+1 + + # retrieve group info based on specie + cursor.execute("select distinct InbredSet.Name, InbredSet.FullName from InbredSet, Species, ProbeFreeze, GenoFreeze, PublishFreeze where InbredSet.SpeciesId= Species.Id and Species.Name='%s' and InbredSet.Name != 'BXD300' and (PublishFreeze.InbredSetId = InbredSet.Id or GenoFreeze.InbredSetId = InbredSet.Id or ProbeFreeze.InbredSetId = InbredSet.Id) order by InbredSet.Name" % speciesVal) + groupResults = cursor.fetchall() + groupResultsNum = cursor.rowcount + + if groupResultsNum > 0: + for groupItem in groupResults: + groupVal = groupItem[0] + gIndex = getIndex(searchArray=groupTotalResults, targetValue=groupVal)+1 + + cross = groupVal + # if group also exists in PublishFreeze table, then needs to add related Published Phenotypes in Database Array(dArr) and Linkage Array(lArr) + # 'MDP' case is related to 'Mouse Phenome Database' + cursor.execute("select PublishFreeze.Id from PublishFreeze, InbredSet where PublishFreeze.InbredSetId = InbredSet.Id and InbredSet.Name = '%s'" % cross) + if (cursor.fetchall()): + typeVal = "Phenotypes" + if cross=='MDP': + datasetTxt = "Mouse Phenome Database" + else: + datasetTxt = "%s Published Phenotypes" % cross + datasetVal = "%sPublish" % cross + outputDatabaseStr += '{txt:\'%s\',val:\'%s\'},\n'% (datasetTxt,datasetVal) + datasetTotalResults.append(('%s'% datasetVal,'%s' % datasetTxt)) + + tIndex = getIndex(searchArray=typeTotalResults,targetValue=typeVal)+1 + dIndex = getIndex(searchArray=datasetTotalResults, targetValue=datasetVal)+1 + outputLinkStr +='[%d,%d,%d,%d],\n'%(sIndex,gIndex,tIndex,dIndex) + + # if group also exists in GenoFreeze table, then needs to add related Genotypes in database Array(dArr) + cursor.execute("select GenoFreeze.Id from GenoFreeze, InbredSet where GenoFreeze.InbredSetId = InbredSet.Id and InbredSet.Name = '%s'" % cross) + if (cursor.fetchall()): + typeVal = "Genotypes" + datasetTxt = "%s Genotypes" % cross + datasetVal = "%sGeno" % cross + outputDatabaseStr += '{txt:\'%s\',val:\'%s\'},\n'%(datasetTxt,datasetVal) + typeTotalResults.append(('Genotypes','Genotypes')) + datasetTotalResults.append(('%s'% datasetVal,'%s' % datasetTxt)) + + tIndex = getIndex(searchArray=typeTotalResults,targetValue=typeVal)+1 + dIndex = getIndex(searchArray=datasetTotalResults, targetValue=datasetVal)+1 + outputLinkStr +='[%d,%d,%d,%d],\n'%(sIndex,gIndex,tIndex,dIndex) + + # retrieve type(tissue) info based on group + # if cross is equal to 'BXD', then need to seach for 'BXD' and 'BXD300' InbredSet + if cross == "BXD": + cross2 = "BXD', 'BXD300" + else: + cross2 = cross + cursor.execute("select distinct Tissue.Name, concat(Tissue.Name, ' mRNA') from ProbeFreeze, ProbeSetFreeze, InbredSet, Tissue where ProbeFreeze.TissueId = Tissue.Id and ProbeFreeze.InbredSetId = InbredSet.Id and InbredSet.Name in ('%s') and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.public > %d order by Tissue.Name" % (cross2, webqtlConfig.PUBLICTHRESH)) + typeResults = cursor.fetchall() + typeResultsNum = cursor.rowcount + + if typeResultsNum > 0: + for typeItem in typeResults: + typeVal = typeItem[0] + tIndex = getIndex(searchArray=typeTotalResults, targetValue=typeVal)+1 + # retrieve database(dataset) info based on group(InbredSet) and type(Tissue) + tissue = typeVal + cursor.execute("select ProbeSetFreeze.Name, ProbeSetFreeze.FullName from ProbeSetFreeze, ProbeFreeze, InbredSet, Tissue where ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeFreeze.TissueId = Tissue.Id and ProbeFreeze.InbredSetId = InbredSet.Id and InbredSet.Name in ('%s') and Tissue.name = '%s' and ProbeSetFreeze.public > %d order by ProbeSetFreeze.CreateTime desc" % (cross2, tissue, webqtlConfig.PUBLICTHRESH)) + datasetResults = cursor.fetchall() + datasetResultsNum = cursor.rowcount + + if datasetResultsNum > 0: + for datasetItem in datasetResults: + datasetVal = datasetItem[0] + dIndex = getIndex(searchArray=datasetTotalResults, targetValue=datasetVal)+1 + outputLinkStr +='[%d,%d,%d,%d],\n'%(sIndex,gIndex,tIndex,dIndex) + +# add 'All Phenotypes' option for 'Database' select menu +# for 'All Species'option in 'Species' select menu, 'Database' select menu will show 'All Phenotypes' option +outputDatabaseStr += '{txt:\'%s\',val:\'%s\'}];\n\n'%('All Phenotypes','_allPublish') +datasetTotalResults.append(('_allPublish','All Phenotypes')) + +sIndex = getIndex(searchArray=speciesTotalResult,targetValue='All Species')+1 +gIndex = getIndex(searchArray=groupTotalResults, targetValue='all groups')+1 +tIndex = getIndex(searchArray=typeTotalResults,targetValue='Phenotypes')+1 +dIndex = getIndex(searchArray=datasetTotalResults, targetValue='_allPublish')+1 +outputLinkStr +='[%d,%d,%d,%d]];\n\n'%(sIndex,gIndex,tIndex,dIndex) + +# Combine sArr, gArr, tArr, dArr and lArr output string together +outputStr = outputTimeStr+outputSpeciesStr+outputGroupStr+outputTypeStr+outputDatabaseStr+outputLinkStr +outputStr +=''' + +/* +* function: based on different browser use, will have different initial actions; +* Once the index.html page is loaded, this function will be called +*/ +function initialDatasetSelection() +{ + defaultSpecies =getDefaultValue('species'); + defaultSet =getDefaultValue('cross'); + defaultType =getDefaultValue('tissue'); + defaultDB =getDefaultValue('database'); + + if (navigator.userAgent.indexOf('MSIE')>=0) + { + sOptions = fillOptionsForIE(null,defaultSpecies); + var menu0 =""; + document.getElementById('menu0').innerHTML = menu0; + + gOptions = fillOptionsForIE('species',defaultSet); + var menu1 =""; + document.getElementById('menu1').innerHTML =menu1; + + tOptions = fillOptionsForIE('cross',defaultType); + var menu2 =""; + document.getElementById('menu2').innerHTML =menu2; + + dOptions = fillOptionsForIE('tissue',defaultDB); + var menu3 =""; + document.getElementById('menu3').innerHTML =menu3; + + }else{ + fillOptions(null); + } + searchtip(); +} + +/* +* input: selectObjId (designated select menu, such as species, cross, etc... ) +* defaultValue (default Value of species, cross,tissue or database) +* function: special for IE browser,setting options value for select menu dynamically based on linkage array(lArr), +* output: options string +*/ +function fillOptionsForIE(selectObjId,defaultValue) +{ + var options=''; + if(selectObjId==null) + { + var len = sArr.length; + for (var i=1; i < len; i++) { + // setting Species' option + if( sArr[i].val==defaultValue){ + options =options+""; + }else{ + options =options+""; + } + } + }else if(selectObjId=='species') + { + var speciesObj = document.getElementById('species'); + var len = lArr.length; + var arr = []; + var idx = 0; + for (var i=1; i < len; i++) { + //get group(cross) info from lArr + if(lArr[i][0]==(getIndexByValue('species',speciesObj.value)).toString()&&!Contains(arr,lArr[i][1])) + { + arr[idx++]=lArr[i][1]; + } + } + idx=0; + len = arr.length; + removeOptions("cross"); + for (var i=0; i < len; i++) { + // setting Group's option + if( gArr[arr[i]].val==defaultValue){ + options =options+""; + }else{ + options =options+""; + } + + } + }else if(selectObjId=='cross') + { + var speciesObj = document.getElementById('species'); + var groupObj = document.getElementById('cross'); + var len = lArr.length; + var arr = []; + var idx = 0; + for (var i=1; i < len; i++) { + //get type(tissue) info from lArr + if(lArr[i][0]==(getIndexByValue('species',speciesObj.value)).toString()&&lArr[i][1]==(getIndexByValue('cross',groupObj.value)).toString()&&!Contains(arr,lArr[i][2])) + { + arr[idx++]=lArr[i][2]; + } + } + idx=0; + len = arr.length; + removeOptions("tissue"); + for (var i=0; i < len; i++) { + // setting Type's option + if( tArr[arr[i]].val==defaultValue){ + options =options+""; + }else{ + options =options+""; + } + } + + }else if(selectObjId=='tissue') + { + var speciesObj = document.getElementById('species'); + var groupObj = document.getElementById('cross'); + var typeObj = document.getElementById('tissue'); + + var len = lArr.length; + var arr = []; + var idx = 0; + for (var i=1; i < len; i++) { + //get dataset(database) info from lArr + if(lArr[i][0]==(getIndexByValue('species',speciesObj.value)).toString()&&lArr[i][1]==(getIndexByValue('cross',groupObj.value)).toString()&&lArr[i][2]==(getIndexByValue('tissue',typeObj.value)).toString()&&!Contains(arr,lArr[i][3])) + { + arr[idx++]=lArr[i][3]; + } + } + idx=0; + len = arr.length; + removeOptions("database"); + for (var i=0; i < len; i++) { + // setting Database's option + if( dArr[arr[i]].val==defaultValue){ + options =options+""; + }else{ + options =options+""; + } + } + } + return options; +} +/* +* input: selectObjId (designated select menu, such as species, cross, etc... ) +* function: setting options value for select menu dynamically based on linkage array(lArr) +* output: null +*/ +function fillOptions(selectObjId) +{ + if(selectObjId==null) + { + + var speciesObj = document.getElementById('species'); + var len = sArr.length; + for (var i=1; i < len; i++) { + // setting Species' option + speciesObj.options[i-1] = new Option(sArr[i].txt, sArr[i].val); + } + updateChocie('species'); + + }else if(selectObjId=='species') + { + var speciesObj = document.getElementById('species'); + var groupObj = document.getElementById('cross'); + var len = lArr.length; + var arr = []; + var idx = 0; + for (var i=1; i < len; i++) { + //get group(cross) info from lArr + if(lArr[i][0]==(getIndexByValue('species',speciesObj.value)).toString()&&!Contains(arr,lArr[i][1])) + { + arr[idx++]=lArr[i][1]; + } + } + idx=0; + len = arr.length; + removeOptions("cross"); + for (var i=0; i < len; i++) { + // setting Group's option + groupObj.options[idx++] = new Option(gArr[arr[i]].txt, gArr[arr[i]].val); + } + updateChocie('cross'); + + }else if(selectObjId=='cross') + { + var speciesObj = document.getElementById('species'); + var groupObj = document.getElementById('cross'); + var typeObj = document.getElementById('tissue'); + var len = lArr.length; + var arr = []; + var idx = 0; + for (var i=1; i < len; i++) { + //get type(tissue) info from lArr + if(lArr[i][0]==(getIndexByValue('species',speciesObj.value)).toString()&&lArr[i][1]==(getIndexByValue('cross',groupObj.value)).toString()&&!Contains(arr,lArr[i][2])) + { + arr[idx++]=lArr[i][2]; + } + } + idx=0; + len = arr.length; + removeOptions("tissue"); + for (var i=0; i < len; i++) { + // setting Type's option + typeObj.options[idx++] = new Option(tArr[arr[i]].txt, tArr[arr[i]].val); + } + updateChocie('tissue'); + + }else if(selectObjId=='tissue') + { + var speciesObj = document.getElementById('species'); + var groupObj = document.getElementById('cross'); + var typeObj = document.getElementById('tissue'); + var databaseObj = document.getElementById('database'); + + var len = lArr.length; + var arr = []; + var idx = 0; + for (var i=1; i < len; i++) { + //get dataset(database) info from lArr + if(lArr[i][0]==(getIndexByValue('species',speciesObj.value)).toString()&&lArr[i][1]==(getIndexByValue('cross',groupObj.value)).toString()&&lArr[i][2]==(getIndexByValue('tissue',typeObj.value)).toString()&&!Contains(arr,lArr[i][3])) + { + arr[idx++]=lArr[i][3]; + } + } + idx=0; + len = arr.length; + removeOptions("database"); + for (var i=0; i < len; i++) { + // setting Database's option + databaseObj.options[idx++] = new Option(dArr[arr[i]].txt, dArr[arr[i]].val); + } + updateChocie('database'); + } +} + +/* +* input: arr (targeted array); obj (targeted value) +* function: check whether targeted array contains targeted value or not +* output: return true, if array contains targeted value, otherwise return false +*/ +function Contains(arr,obj) { + var i = arr.length; + while (i--) { + if (arr[i] == obj) { + return true; + } + } + return false; +} + +/* +* input: selectObj (designated select menu, such as species, cross, etc... ) +* function: clear designated select menu's option +* output: null +*/ +function removeOptions(selectObj) { + if (typeof selectObj != 'object'){ + selectObj = document.getElementById(selectObj); + } + var len = selectObj.options.length; + for (var i=0; i < len; i++) { + // clear current selection + selectObj.options[0] = null; + } +} + +/* +* input: selectObjId (designated select menu, such as species, cross, etc... ) +* Value: target value +* function: retrieve Index info of target value in designated array +* output: index info +*/ +function getIndexByValue(selectObjId,val) +{ + if(selectObjId=='species') + { + for(var i=1;i=0){ + //setting option's selected status + Obj.options[idx].selected=true; + //update the following select menu + fillOptions(objId); + }else{ + Obj.options[0].selected=true; + fillOptions(objId); + } +} + +// setting option's selected status based on default setting or cookie setting for Species, Group, Type and Database select menu in the main search page http://www.genenetwork.org/ +function updateChocie(selectObjId){ + + if (selectObjId =='species') + { + defaultSpecies= getDefaultValue('species'); + //setting option's selected status + setChoice('species',defaultSpecies); + }else if (selectObjId =='cross') + { + defaultSet= getDefaultValue('cross'); + //setting option's selected status + setChoice('cross',defaultSet); + }else if (selectObjId =='tissue') + { + defaultType= getDefaultValue('tissue'); + //setting option's selected status + setChoice('tissue',defaultType); + }else if (selectObjId =='database') + { + defaultDB= getDefaultValue('database'); + //setting option's selected status + setChoice('database',defaultDB); + } +} + +//get default value;if cookie exists, then use cookie value, otherwise use default value +function getDefaultValue(selectObjId){ + //define default value + var defaultSpecies = 'mouse' + var defaultSet = 'BXD' + var defaultType = 'Hippocampus' + var defaultDB = 'HC_M2_0606_P' + + if (selectObjId =='species') + { + //if cookie exists, then use cookie value, otherwise use default value + var cookieSpecies = getCookie('defaultSpecies'); + if(cookieSpecies) + { + defaultSpecies= cookieSpecies; + } + return defaultSpecies; + }else if (selectObjId =='cross'){ + var cookieSet = getCookie('defaultSet'); + if(cookieSet){ + defaultSet= cookieSet; + } + return defaultSet; + }else if (selectObjId =='tissue'){ + var cookieType = getCookie('defaultType'); + if(cookieType){ + defaultType= cookieType; + } + return defaultType; + }else if (selectObjId =='database') + { + var cookieDB = getCookie('defaultDB'); + if(cookieDB){ + defaultDB= cookieDB; + } + return defaultDB; + } + +} + +//setting default value into cookies for the dropdown menus: Species,Group, Type, and Database +function setDefault(thisform){ + + setCookie('cookieTest', 'cookieTest', 1); + var cookieTest = getCookie('cookieTest'); + delCookie('cookieTest'); + if (cookieTest){ + var defaultSpecies = thisform.species.value; + setCookie('defaultSpecies', defaultSpecies, 10); + var defaultSet = thisform.cross.value; + setCookie('defaultSet', defaultSet, 10); + var defaultType = thisform.tissue.value; + setCookie('defaultType', defaultType, 10); + var defaultDB = thisform.database.value; + setCookie('defaultDB', defaultDB, 10); + updateChocie('species'); + updateChocie('cross'); + updateChocie('tissue'); + updateChocie('database'); + alert("The current settings are now your default"); + } + else{ + alert("You need to enable Cookies in your browser."); + } +} + +''' +# write all strings' info into selectDatasetMenu.js file +fileHandler.write(outputStr) +fileHandler.close() diff --git a/web/webqtl/maintainance/updateMenuJS.py b/web/webqtl/maintainance/updateMenuJS.py new file mode 100755 index 00000000..8b6e25d3 --- /dev/null +++ b/web/webqtl/maintainance/updateMenuJS.py @@ -0,0 +1,127 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# created by Lei Yan 02/08/2011 +import sys, os +import MySQLdb +import string + + + +abs_path = os.path.abspath(os.path.dirname(__file__)) +path1 = abs_path + "/.." +path2 = abs_path + "/../../javascript" +sys.path.insert(0, path1) + +#must import GN python files after add path +from base import webqtlConfig + +# build MySql database connection +con = MySQLdb.Connect(db=webqtlConfig.DB_NAME, host=webqtlConfig.MYSQL_SERVER, user=webqtlConfig.DB_USER, passwd=webqtlConfig.DB_PASSWD) +cursor = con.cursor() +cursor.execute("SELECT id,menuname FROM Species ORDER BY OrderId") +results = list(cursor.fetchall()) +collectionsText = "" +for result in results: + specieid = result[0] + speciename = result[1] + collectionsText += ("['" + speciename + "', ") + collectionsText += ("null, ") + collectionsText += ("null, ") + collectionsText += "\n" + cursor.execute("select name from InbredSet where speciesid=" + str(specieid)) + results2 = list(cursor.fetchall()) + for result2 in results2: + inbredsetName = result2[0] + if not cmp(inbredsetName, "BXD300"): + continue + collectionsText += "\t" + collectionsText += ("['" + inbredsetName + "', ") + collectionsText += ("'/webqtl/main.py?FormID=dispSelection&RISet=" + inbredsetName + "'], ") + collectionsText += "\n" + collectionsText += "]," + collectionsText += "\n" +collectionsText = collectionsText.strip() + +jstext = """/* + --- menu items --- + note that this structure has changed its format since previous version. + additional third parameter is added for item scope settings. + Now this structure is compatible with Tigra Menu GOLD. + Format description can be found in product documentation. +*/ +var MENU_ITEMS = [ + ['menu_grp1', null, null, + ['GeneNetwork Intro', '/home.html'], + ['Enter Trait Data', '/webqtl/main.py?FormID=submitSingleTrait'], + ['Batch Submission', '/webqtl/main.py?FormID=batSubmit'], + ], + ['menu_grp2', null, null, + ['Search Databases', '/'], + ['Tissue Correlation', '/webqtl/main.py?FormID=tissueCorrelation'], + ['SNP Browser', '/webqtl/main.py?FormID=snpBrowser'], + ['Gene Wiki', '/webqtl/main.py?FormID=geneWiki'], + ['Interval Analyst', '/webqtl/main.py?FormID=intervalAnalyst'], + ['QTLminer', '/webqtl/main.py?FormID=qtlminer'], + ['GenomeGraph', '/dbResults.html'], + ['Trait Collections',null,null, +%s + ], + ['Scriptable Interface', '/CGIDoc.html'], + /* ['Simple Query Interface', '/GUI.html'], */ + ['Database Information',null,null, + ['Database Schema', '/webqtl/main.py?FormID=schemaShowPage'], + ], + ['Data Sharing', '/webqtl/main.py?FormID=sharing'], + ['Microarray Annotations', '/webqtl/main.py?FormID=annotation'], + ], + ['menu_grp3', null, null, + ['Movies','http://www.genenetwork.org/tutorial/movies'], + ['Tutorials', null, null, + ['GN Barley Tutorial','/tutorial/pdf/GN_Barley_Tutorial.pdf'], + ['GN Powerpoint', '/tutorial/ppt/index.html']], + ['HTML Tour','/tutorial/WebQTLTour/'], + ['FAQ','/faq.html'], + ['Glossary of Terms','/glossary.html'], + ['GN MediaWiki','http://wiki.genenetwork.org/'], + ], + ['menu_grp4', '/whats_new.html' + ], + ['menu_grp5', '/reference.html' + ], + ['menu_grp6', null, null, + ['Conditions and Limitation', '/conditionsofUse.html'], + ['Data Sharing Policy', '/dataSharing.html'], + ['Status and Contacts', '/statusandContact.html'], + ['Privacy Policy', '/privacy.html'], + ], + ['menu_grp8', '/links.html' + ], +]; +""" + +# create menu_items.js file +fileHandler = open(path2 + '/menu_items.js', 'w') +fileHandler.write(jstext % collectionsText) +fileHandler.close() diff --git a/web/webqtl/management/GenoUpdate.py b/web/webqtl/management/GenoUpdate.py new file mode 100755 index 00000000..6ee87dec --- /dev/null +++ b/web/webqtl/management/GenoUpdate.py @@ -0,0 +1,1279 @@ +""" +Maintainnce module. Update Genotype data, user can update the Marker +one by one through web interface, or batch update one Population +through submit genotype file +""" + +import string +import os + +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from base import webqtlConfig +from utility import webqtlUtil +from dbFunction import webqtlDatabaseFunction + + + +""" +The Fields of Geno, GenoXRef table that be shown to user for updating +""" +MarkerSpeciesInfoField = ['Name', 'Chr', 'Mb', 'Sequence', 'Source'] +MarkerGroupInfoField = ['cM', 'Used_for_mapping'] +MarkerInfoField = MarkerSpeciesInfoField + MarkerGroupInfoField +markerName_Feild_Separator = '_and_' + + +# retrieve all of the Inbred Set names and group them by Species +def retrieveSpeciesInbredSetGroup(cursor): + """ + @type cursor: MySQLdb.connect.cursor + rtype: dictionary + return: dictionary, the key are the name of Species, the value are + the InbredSet Names that related with the Species + """ + + SpeciesInbredSet={} + cursor.execute(""" + SELECT + Species.Id, Species.Name + FROM + Species, InbredSet + WHERE + Species.Id=InbredSet.SpeciesId AND + MappingMethodId = 1 + GROUP BY + Species.Id + """) + species=cursor.fetchall() + + for item in species: + SpeciesId, SpeciesName = item + cursor.execute("SELECT distinct(InbredSet.Name) FROM InbredSet, GenoFreeze, GenoXRef WHERE SpeciesId=%d and GenoFreeze.InbredSetId = InbredSet.Id and GenoXRef.GenoFreezeId = GenoFreeze.Id and GenoXRef.Used_for_mapping='Y' " % SpeciesId) + InbredSetNames=cursor.fetchall() + + InbredSetNameList=[] + for InbredSetName in InbredSetNames: + if InbredSetName[0]=='BXD300': + continue + InbredSetNameList.append(InbredSetName[0]) + SpeciesInbredSet[SpeciesName]=InbredSetNameList + + return SpeciesInbredSet + + +#XZ: This function will be called in many places. +# Each caller might organize the result in different way. +# So the raw database results are returned. +def retrieveGenoCode(cursor, InbredSetName): + + cursor.execute(""" + SELECT + AlleleType, AlleleSymbol, DatabaseValue + FROM + GenoCode, InbredSet + WHERE + InbredSet.Name = '%s' AND + InbredSetId = InbredSet.Id + """ % InbredSetName ) + results = cursor.fetchall() + + GenoCode = [] + + for one_result in results: + GenoCode.append(one_result) + + return GenoCode + + +def retrieveGeneticTypeOfInbredSet(cursor, InbredSetName): + + GeneticType = '' + + cursor.execute(""" + SELECT + GeneticType + FROM + InbredSet + WHERE + InbredSet.Name=%s + """, InbredSetName) + result=cursor.fetchone() + + if result: + GeneticType = result[0] + + return GeneticType + + + + +#XZ: For one group, retrieve the list of all strains that are in StrainXRef and used for mapping +def retrieveStrainUsedForMapping(cursor, GroupName): + """ + @type cursor: MySQLdb.connect.cursor + @type GroupName: string + @param GroupName: In MySQL table, it's called Inbred Set name, in GeneNetwork's Homepage, it's called group + + @rtype: list + @return: The Strain's names that related with the Inbred Set + """ + + cursor.execute(""" + SELECT + Strain.Name + FROM + Strain, StrainXRef, InbredSet + WHERE + InbredSet.Name = '%s' AND + StrainXRef.InbredSetId=InbredSet.Id AND + StrainXRef.StrainId = Strain.Id AND + StrainXRef.Used_for_mapping = 'Y' + ORDER BY + StrainXRef.OrderId + """ % GroupName) + results = cursor.fetchall() + + StrainList=[] + for item in results: + StrainList.append(item[0]) + + return StrainList + + +#XZ: For one group, retrieve the dictionary of all strain id, name pairs that are in StrainXRef and used for mapping +def retrieveStrainNameIdUsedForMapping(cursor, GroupName): + """ + @type cursor: MySQLdb.connect.cursor + @type GroupName: string + @param GroupName: In MySQL table, it's called Inbred Set name, in GeneNetwork's Homepage, it's called group + + @rtype: dictionary + @return: dictionary, the key is Strain's name, the value is Strain's Id + """ + + StrainNameId = {} + + cursor.execute(""" + SELECT + Strain.Name, Strain.Id + FROM + Strain, StrainXRef, InbredSet + WHERE + InbredSet.Name = '%s' AND + StrainXRef.InbredSetId=InbredSet.Id AND + StrainXRef.StrainId = Strain.Id AND + StrainXRef.Used_for_mapping = 'Y' + ORDER BY + StrainXRef.OrderId + """ % GroupName) + results = cursor.fetchall() + + for item in results: + StrainNameId[item[0]] = item[1] + + return StrainNameId + + + +# retrieve the strain's id by name, the Strain should bind with Inbred Set +#if the strain's name cann't be found, the id will be set to 'None' +def retrieveStrainIds(cursor, StrainList, InbredSetName): + """ + @type cursor: MySQLdb.connect.cursor + @type StrainList: list + @param StrainList: the list of Strains' Name + @type InbredSetName: string + + @rtype: dictionary + @return: dictionary, the key is Strain's name, the value is Strain's Id + """ + + StrainIds={} + for Strain in StrainList: + cursor.execute(""" + SELECT + Strain.Id + FROM + Strain,StrainXRef,InbredSet + WHERE + Strain.Id=StrainXRef.StrainId AND + StrainXRef.InbredSetId=InbredSet.Id AND + Strain.Name=%s AND + InbredSet.Name=%s + """, (Strain, InbredSetName)) + result=cursor.fetchone() + if result: + StrainIds[Strain]=result[0] + else: + StrainIds[Strain]=None + + return StrainIds + + + +# retrieve the GenoFreezeId +def retrieveGenoFreezeId(cursor, InbredSetName): + """ + @type cursor: MySQLdb.connect.cursor + @type InbredSetName: string + + @rtype: int + @return: the GenoFreezeId related with the Inbred Set's name + """ + + cursor.execute(""" + SELECT + GenoFreeze.Id + FROM + InbredSet, GenoFreeze + WHERE + GenoFreeze.InbredSetId=InbredSet.Id AND + InbredSet.Name=%s + """, InbredSetName) + result=cursor.fetchone() + + if result: + return result[0] + else: + return None + + +# retrieve the DataId +def retrieveDataId(cursor, GenoId, InbredSetName): + """ + @type cursor: MySQLdb.connect.cursor + @type GenoId: int + @type InbredSetName: int + + @rtype: int + @return: the DataId relate with the Geno(Marker) and the Inbred Set + """ + + cursor.execute(""" + SELECT + GenoXRef.DataId + FROM + GenoXRef, GenoFreeze, InbredSet + WHERE + GenoXRef.GenoFreezeId=GenoFreeze.Id AND + GenoFreeze.InbredSetId=InbredSet.Id AND + GenoXRef.GenoId=%s AND + InbredSet.Name=%s + """, (GenoId, InbredSetName)) + result=cursor.fetchone() + + if result: + return result[0] + else: + return None + + +# retrieve the max Id from GenoData table +def retrieveMaxGenoDataId(cursor): + """ + @type cursor: MySQLdb.connect.cursor + + @rtype: int + @return: the maximal Id of the Data table + """ + + cursor.execute('SELECT max(Id) FROM GenoData') + results = cursor.fetchone() + + return results[0] + + +# retrieve the max Id from Geno table +def retrieveMaxGenoId(cursor): + """ + @type cursor: MySQLdb.connect.cursor + + @rtype: int + @return: the maximal Id of the Geno table + """ + + cursor.execute('SELECT max(Id) FROM Geno') + results = cursor.fetchone() + + return results[0] + + +# retrieve the strain names related with a data.Id +# Note that for one group, even if one strain is labelled as Used_for_mapping in StrainXRef table, +# if the allele value for this strain is unknown, there is no record for this strain along with this group in GenoData table. +# So the list of strains returned by this function <= list of strains returned by function retrieveStrainUsedForMapping. +def retrieveDataStrains(cursor, DataId): + """ + @type cursor: MySQLdb.connect.cursor + @type DataId: int + + @rtype: list + @return: the names list of the Strains that related with the DataId + """ + + cursor.execute("SELECT Strain.Name FROM Strain, GenoData WHERE GenoData.StrainId=Strain.Id AND GenoData.Id=%s", DataId) + results=cursor.fetchall() + + Strains=[] + for item in results: + Strains.append(item[0]) + + return Strains + + + +def retrieveMarkerNameForGroupByRange(cursor, InbredSetName, Chr, MbStart, MbEnd): + + MarkerName = [] + + SpeciesId = webqtlDatabaseFunction.retrieveSpeciesId(cursor, InbredSetName) + + GenoFreezeId = retrieveGenoFreezeId(cursor, InbredSetName) + + MbStartClause = '' + MbEndClause = '' + + try: + MbStartClause = 'and Mb >= %s ' % float(MbStart) + except: + pass + + try: + MbEndClause = 'and Mb <= %s' % float(MbEnd) + except: + pass + + + cmd = "SELECT Geno.Name FROM Geno, GenoXRef WHERE Geno.SpeciesId=%s and Chr='%s' " % (SpeciesId, Chr) + MbStartClause + MbEndClause + " and GenoXRef.GenoFreezeId=%s and GenoXRef.GenoId=Geno.Id and GenoXRef.Used_for_mapping='Y' order by Mb" % (GenoFreezeId) + + cursor.execute(cmd) + + results = cursor.fetchall() + for one_result in results: + MarkerName.append( one_result[0] ) + + return MarkerName + + + +# retrive the Marker's infomation from Geno and GenoXRef table, +# the information includes the Id of the marker matchs and all of the MarkerInfoField that defined upper +def retrieveMarkerInfoForGroup(cursor, MarkerName, InbredSetName): + """ + @type cursor: MySQLdb.connect.cursor + @type MarkerName: string + + @rtype: list + @return: the Marker's Id, Name, Chr, cM, Mb, Sequence, Source + """ + + + SpeciesId = webqtlDatabaseFunction.retrieveSpeciesId(cursor, InbredSetName) + + GenoFreezeId = retrieveGenoFreezeId(cursor, InbredSetName) + + cmd = ','.join( MarkerInfoField ) + cmd = "SELECT Geno.Id," + cmd + " FROM Geno, GenoXRef WHERE Geno.SpeciesId=%s and Geno.Name='%s' and GenoXRef.GenoFreezeId=%s and GenoXRef.GenoId=Geno.Id" % (SpeciesId, MarkerName, GenoFreezeId) + cursor.execute(cmd) + result = cursor.fetchone() + + if result: + return result + else: + return None + + +def retrieveMarkerPositionForSpecies(cursor, GenoId): + + Chr = '' + Mb = '' + + cursor.execute( "select Chr, Mb from Geno where Id=%s" % GenoId ) + result = cursor.fetchone() + + Chr = result[0] + Mb = result[1] + + return Chr, Mb + + +def checkIfMarkerInSpecies (cursor, MarkerName, InbredSetName): + + cmd = "SELECT Geno.Id FROM Geno, InbredSet, Species WHERE Geno.SpeciesId=Species.Id AND Geno.Name='%s' and InbredSet.Name = '%s' and InbredSet.SpeciesId = Species.Id" % (MarkerName, InbredSetName) + cursor.execute(cmd) + result = cursor.fetchone() + + if result: + return result + else: + return None + + + + +# retrive the Marker's Used_for_mapping status from MySQL +# for one marker, if we want it be contains in the special genotype file, we can set its value in Used_for_mapping column to 'Y' in the GenoXRef table. +# In GenoXRef table, the default value of column Used_for_mapping is 'N'. +# GenoXRef table is the relationship of the Marker and the allele value that this marker in special genotype +def mappingForThisGroup(cursor, GenoFreezeId, GenoId): + """ + @type cursor: MySQLdb.connect.cursor + @type MarkerName: string + @type InbredSetName: string + + @rtype: boolean + @return: the status that if the marker's exprssion value in special Inbred Set will be hide(not shown in genotype file) + """ + + cursor.execute(""" + SELECT + Used_for_mapping + FROM + GenoXRef + WHERE + GenoFreezeId = %s AND + GenoId = %s + """, (GenoFreezeId, GenoId)) + result = cursor.fetchone() + + Used_for_mapping = False + if result: + if result[0] == 'Y': + Used_for_mapping = True + + return Used_for_mapping + + +# Retrieve the allele values of a Marker in specific genotype +# +# 1. Retrieve strain name and allele value from GenoData table +# 2. Put the result into dictionary, the key is strain name. The value is allele (-1, 0, 1). +# +# Note even one strain is used for mapping for one group in GenoXRef table. When its genotype is unknown, +# it has no record in GenoData table (e.g., BXD102 strain for marker rs6376963). +# In this case, the dictionary key doesn't include this strain. +def retrieveAllele (cursor, GenoFreezeId, GenoId): + """ + @type cursor: MySQLdb.connect.cursor + @type MarkerName: string + @type InbredSetName: string + + @rtype: dictionary + @return: dictionary, the keys are strain names, the values are alleles + that the Marker in specials Inbred Set + """ + + Alleles = {} + + #retrieve the strains' name and their allele values + cursor.execute(""" + SELECT + Strain.Name, GenoData.Value + FROM + Strain, GenoData, GenoXRef + WHERE + GenoXRef.GenoFreezeId=%s AND + GenoXRef.GenoId=%s AND + GenoXRef.DataId=GenoData.Id AND + GenoData.StrainId=Strain.Id + """, (GenoFreezeId, GenoId)) + results = cursor.fetchall() + + # set the allele value of the strain that appears in Data to the value from Data + for item in results: + Alleles[item[0]]=item[1] + + return Alleles + + + +def retrieveGroupNeedExported (cursor, GenoId): + + Groups = [] + + cursor.execute(""" + SELECT + InbredSet.Name + FROM + InbredSet, GenoFreeze, GenoXRef + WHERE + Used_for_mapping = 'Y' AND + GenoXRef.GenoId = %s AND + GenoXRef.GenoFreezeId = GenoFreeze.Id AND + GenoFreeze.InbredSetId = InbredSet.Id + """, (GenoId) ) + results = cursor.fetchall() + + if results: + for one_result in results: + Groups.append( one_result[0] ) + + return Groups + + +def get_chr_num (cursor, Chr='', SpeciesId=0): + + chr_num = 99 + + cmd = "SELECT OrderId FROM Chr_Length WHERE Name='%s' and SpeciesId=%s " % (Chr, SpeciesId) + + cursor.execute(cmd) + result = cursor.fetchone() + + if result: + chr_num = result[0] + + return chr_num + + + +def addGeno(cursor, GenoId, InbredSetName, MarkerWebID, fd): + + SpeciesId = webqtlDatabaseFunction.retrieveSpeciesId(cursor, InbredSetName) + + Name = fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + 'Name' ) + Chr = fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + 'Chr' ) + Mb = fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + 'Mb' ) + Sequence = fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + 'Sequence' ) + Source = fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + 'Source' ) + + chr_num = get_chr_num (cursor, Chr, SpeciesId) + + cmd = "INSERT INTO Geno (Id, SpeciesId, Name, Marker_Name, Chr, Mb, Sequence, Source, chr_num) VALUES (%s, %s, '%s', '%s', '%s', %s, '%s', '%s', %s )" % (GenoId, SpeciesId, Name, Name, Chr, Mb, Sequence, Source, chr_num) + cursor.execute(cmd) + + + +def updateGeno(cursor, GenoId, InbredSetName, MarkerWebID, fd): + + SpeciesId = webqtlDatabaseFunction.retrieveSpeciesId(cursor, InbredSetName) + + Chr = fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + 'Chr' ) + cmd = "UPDATE Geno SET Chr='%s' WHERE Id=%s" % (Chr, GenoId) + cursor.execute(cmd) + + chr_num = get_chr_num (cursor, Chr, SpeciesId) + cmd = "UPDATE Geno SET chr_num=%s WHERE Id=%s" % (chr_num, GenoId) + cursor.execute(cmd) + + Mb = fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + 'Mb' ) + cmd = "UPDATE Geno SET Mb=%s WHERE Id=%s" % (Mb, GenoId) + cursor.execute(cmd) + + Sequence = fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + 'Sequence' ) + cmd = "UPDATE Geno SET Sequence='%s' WHERE Id=%s" % (Sequence, GenoId) + cursor.execute(cmd) + + Source = fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + 'Source' ) + cmd = "UPDATE Geno SET Source='%s' WHERE Id=%s" % (Source, GenoId) + cursor.execute(cmd) + + +def updateGenoXRef(cursor, GenoFreezeId, GenoId, MarkerWebID, fd): + + cM = fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + 'cM' ) + cmd = "UPDATE GenoXRef SET cM=%s WHERE GenoFreezeId=%s AND GenoId=%s" % (cM, GenoFreezeId, GenoId) + cursor.execute(cmd) + + Used_for_mapping = fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + 'Used_for_mapping') + + if Used_for_mapping == 'on': + cmd = "UPDATE GenoXRef SET Used_for_mapping='Y' WHERE GenoFreezeId=%s AND GenoId=%s" % (GenoFreezeId, GenoId) + else: + cmd = "UPDATE GenoXRef SET Used_for_mapping='N' WHERE GenoFreezeId=%s AND GenoId=%s" % (GenoFreezeId, GenoId) + cursor.execute(cmd) + + + +def addGenoXRef(cursor, GenoFreezeId, GenoId, DataId, MarkerWebID, fd): + + cM = fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + 'cM') + + Used_for_mapping = fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + 'Used_for_mapping') + + Used_for_mapping_db_value = 'N' + if Used_for_mapping == 'on': + Used_for_mapping_db_value = 'Y' + + cmd = "INSERT INTO GenoXRef (GenoFreezeId, GenoId, DataId, cM, Used_for_mapping) VALUES (%s, %s, %s, %s, '%s')" % (GenoFreezeId, GenoId, DataId, cM, Used_for_mapping_db_value) + + cursor.execute(cmd) + + + +def insertGenoData(cursor, InbredSetName, DataId, MarkerWebID, fd): + + StrainList = retrieveStrainUsedForMapping (cursor, InbredSetName) + StrainIds = retrieveStrainIds(cursor, StrainList, InbredSetName) + + for Strain in StrainList: + if fd.formdata.has_key( MarkerWebID + markerName_Feild_Separator + Strain ): + value = fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + Strain ) + + # XZ: The legitimate values are hard coded. Should be dynamical (from database). + try: + int_value = int(float(value)) + + if int_value in (0, 1, -1): + cmd = "INSERT INTO GenoData VALUES(%d,%d,%s)"%(DataId, StrainIds[Strain], int_value) + cursor.execute(cmd) + except: + pass + + +#XZ: This function is to compare the input position (Chr, Mb) with position in database. +# It should be executed before update database record. +def getAllGroupsNeedExported(cursor, GroupNeedExport=[], GenoId=0, Chr='', Mb=''): + + db_Chr, db_Mb = retrieveMarkerPositionForSpecies(cursor, GenoId) + + if str(Chr) == str(db_Chr) and str(Mb) == str(db_Mb): + pass + else: + temp = retrieveGroupNeedExported (cursor, GenoId) + for one_group in temp: + try: + GroupNeedExport.index(one_group) + except: + GroupNeedExport.append(one_group) + + return GroupNeedExport + + + + +class GenoUpdate(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + # get mysql connection, if not, show error + if not self.openMysql(): + heading = "Geno Updating" + detail = ["Can't connect to MySQL server"] + self.error(heading=heading,detail=detail) + return + + + self.dict['title'] = 'Geno Updating' + + # status is the switch, direct what's the next step + try: + status = fd.formdata.getvalue('status') + except: + status = '' + + if fd.formdata.getvalue('submit')=='Clear': + status='' + + if not status: # show + self.dict['body']=self.showSelectionPage() + elif status=='search' or status == 'addNewMarker': + InbredSetName = fd.formdata.getvalue('InbredSetName') + Chr = fd.formdata.getvalue('Chr') + + if not InbredSetName: + self.dict['body']= "Please select the population." + return + elif not Chr: + self.dict['body']= "Please input Chr." + return + else: + self.dict['body']=self.showAllMarkers (InbredSetName, Chr, fd) + + elif status == 'editMarkerTable': + self.dict['body'] = self.editMarkerTable(fd) + + elif status == 'checkMarkerHasBeenInGroup': # check if there is anything changed. + InbredSetName = fd.formdata.getvalue('InbredSetName') + Marker = fd.formdata.getvalue('Name') + self.dict['body'] = self.checkMarkerHasBeenInGroup (InbredSetName, Marker, fd) + + elif status=='changeMarker': #insert new marker + InbredSetName = fd.formdata.getvalue('InbredSetName') + self.dict['body']=self.changeMarker(InbredSetName, fd) + + else: #this part is used to test, the proceduce won't come here in normal cycle + HTTable = HT.TableLite(border=0, cellspacing=1, cellpadding=1,align="center") + for key in fd.formdata.keys(): + HTTable.append(HT.TR(HT.TD(key), HT.TD(':'), HT.TD(fd.formdata.getvalue(key)))) + self.dict['body'] = HTTable + + + + + # this is the first page, user upload their genotype file here, or input + # which marker they want to update + def showSelectionPage(self): + """ + The first page, in this page, user can upload a genotype file for batch updating, + or enter a Marker for one by one updating + + @rtype: string + @return: HTML + """ + + # get the InbredSet Name list + SpeciesInbredSet = retrieveSpeciesInbredSetGroup(self.cursor) + + # generate homepage + + HTTableLite_Population = HT.TableLite(border=0, width="100%") + + HTTD_InbredSet = HT.TD(width="30%") + + HTSelect_InbredSetNames = HT.Select(name='InbredSetName') + HTSelect_InbredSetNames.append("") + for SpeciesName in SpeciesInbredSet.keys(): + HT_OptGroup_Species=HT.Optgroup() + HT_OptGroup_Species.label=SpeciesName + for InbredSetName in SpeciesInbredSet[SpeciesName]: + HT_OptGroup_Species.append(InbredSetName) + HTSelect_InbredSetNames.append(HT_OptGroup_Species) + + HTTD_InbredSet.append( HT.Font(HT.Strong('Group (required) '), color="red") ) + HTTD_InbredSet.append(HTSelect_InbredSetNames) + + HTTableLite_Population.append(HT.TR(HTTD_InbredSet)) + + HTTableLite_Marker = HT.TableLite(border=0, width="100%") + HTTD_Chr = HT.TD() + HTTD_Chr.append( HT.Font(HT.Strong('Chr (required) '), color="red") ) + HTTD_Chr.append(HT.Input(name='Chr', size=3)) + HTTD_Mb = HT.TD() + HTTD_Mb.append(HT.Font(HT.Strong('Mb')), ' from ') + HTTD_Mb.append(HT.Input(name='MbStart', size=10)) + HTTD_Mb.append(' to ') + HTTD_Mb.append(HT.Input(name='MbEnd', size=10)) + HTTableLite_Marker.append(HT.TR(HTTD_Chr), HT.TR(), HT.TR(HTTD_Mb) ) + + + + HTTableLite_Search = HT.TableLite(border=1, width="100%") + HTTableLite_Search.append( + HT.TR(HT.TD(HTTableLite_Population, height="100")), + HT.TR(HT.TD("Enter Chr and Mb range", HT.BR(), HT.BR(), + HTTableLite_Marker, + height="100")) + ) + + + HTInput_Submit = HT.Input(type='submit', name='submit', value='Submit',Class="button") + HTInput_Clear = HT.Input(type='submit', name='submit', value='Clear', Class="button") + HTInput_FormId = HT.Input(type='hidden', name='FormID', value='updGeno') + HTInput_Status = HT.Input(type='hidden', name='status', value='search') + + HTForm_Search = HT.Form(cgi=os.path.join(webqtlConfig.CGIDIR, 'main.py'), \ + enctype= 'multipart/form-data', submit='') + HTForm_Search.append(HTTableLite_Search) + HTForm_Search.append(HTInput_Submit) + HTForm_Search.append(HTInput_Clear) + + HTForm_Search.append(HTInput_FormId) + HTForm_Search.append(HTInput_Status) + + HTTableLite_Content = HT.TableLite(border=1, width="100%") + HTTableLite_Content.append(HT.TR(HT.TD(HTForm_Search, width="50%"), \ + HT.TD(HT.Font(HT.Strong("Instructions:"), HT.BR(),HT.BR(), "The \"from\" and \"to\" inputs for Mb range are optional.", HT.BR(),HT.BR(), "If only the \"from\" input is provided, the result will be all markers from the input position to the end of chromosome.", HT.BR(),HT.BR(), "If only the \"to\" input is provided, the result will be all markers from the beginning of the chromosome to the input position.", HT.BR(),HT.BR(), "If no input is provided for Mb range, the result will be all markers on the chromosome."), valign='top', width="50%") \ + )) + + return HTTableLite_Content + + + + + def searchMappingMarkerInDB (self, InbredSetName="", Chr='', MbStart='', MbEnd=''): + """ + Show Marker's information for updating or inserting + + @type InbredSetName: string + @type MarkerName: string + + @rtype: string + @return: The HTML form that contains the Marker's information + """ + + + MarkerInfoDic = {} + + MarkerNamesByRange = retrieveMarkerNameForGroupByRange(self.cursor, InbredSetName, Chr, MbStart, MbEnd) + + for one_MarkerName in MarkerNamesByRange: + one_MarkerGroupInfo = retrieveMarkerInfoForGroup (self.cursor, one_MarkerName, InbredSetName) + MarkerInfoDic[ one_MarkerName ] = one_MarkerGroupInfo + + return MarkerNamesByRange, MarkerInfoDic + + + + def showAllMarkers( self, InbredSetName, Chr, fd ): + + MbStart = fd.formdata.getvalue('MbStart') + MbEnd = fd.formdata.getvalue('MbEnd') + + inputStatus = fd.formdata.getvalue('status') + + newMarkerNameQuantityDic = {} + MarkerNameAdded = [] + + MarkerNames, MarkerInfoDic = self.searchMappingMarkerInDB (InbredSetName=InbredSetName, Chr=Chr, MbStart=MbStart, MbEnd=MbEnd) + + MainTable = HT.TableLite(border=1, cellspacing=1, cellpadding=1,align="left") + + if inputStatus == 'search': + + + InputTable = HT.TableLite(border=1, cellspacing=1, cellpadding=1,align="left") + + InputTable.append( HT.TR( HT.TD( HT.Textarea(name="InputNewMarker", rows=10, cols=20)), + HT.TD(HT.Font( "Add one input per line.", HT.BR(), HT.BR(), \ + "Each input must be in the format of: existing marker name,quantity", HT.BR(), HT.BR(), \ + "For instance, the input rs6376963, 2 will add two markers after rs6376963", HT.BR(), HT.BR(), \ + "The input existing marker name must have been shown in the table below.", HT.BR(), HT.BR(), color="red"), \ + HT.Input(type='submit', name='inputmarker_submit', value='Add new markers', Class="button", onClick= "changeStatusSubmit(this.form, 'addNewMarker');" ) ) ) ) + + MainTable.append( HT.TR(HT.TD(InputTable)) ) + else: + InputNewMarkerString = fd.formdata.getvalue('InputNewMarker') + + InputNewMarkerLines = InputNewMarkerString.split('\n') + for one_line in InputNewMarkerLines: + one_line = one_line.strip() + if len(one_line) > 0: + one_line_tokens = one_line.split(',') + try: + first_token = one_line_tokens[0].strip() + second_token = one_line_tokens[1].strip() + second_token = int( second_token ) + if first_token in MarkerNames: + newMarkerNameQuantityDic[ first_token ] = second_token + except: + pass + + + MarkerTable = HT.TableLite(border=1, cellspacing=1, cellpadding=1,align="left") + + HeaderRow = HT.TR() + + + for one_field in MarkerSpeciesInfoField: + HeaderRow.append( HT.TD(one_field) ) + + for one_field in MarkerGroupInfoField: + HeaderRow.append( HT.TD(one_field) ) + + GenoFreezeId = retrieveGenoFreezeId(self.cursor, InbredSetName) + StrainList = retrieveStrainUsedForMapping (self.cursor, InbredSetName) + + for one_strain in StrainList: + HeaderRow.append( HT.TD(one_strain) ) + + MarkerTable.append( HeaderRow ) + + + for one_MarkerName in MarkerNames: + one_MarkerGroupInfo = MarkerInfoDic[ one_MarkerName ] + oneMarkerRow = self.showOneMarker (InbredSetName=InbredSetName, MarkerName=one_MarkerName, suffix="", MarkerGroupInfo=one_MarkerGroupInfo, StrainList=StrainList, marker_type='existed') + MarkerTable.append( oneMarkerRow ) + + if newMarkerNameQuantityDic.has_key(one_MarkerName): + for i in range(0, newMarkerNameQuantityDic[one_MarkerName]): + MarkerNameAdded.append( one_MarkerName + '_add_' + str(i) ) + oneMarkerRow = self.showOneMarker (InbredSetName=InbredSetName, MarkerName=one_MarkerName, suffix='_add_' + str(i), MarkerGroupInfo=one_MarkerGroupInfo, StrainList=StrainList, marker_type='add') + MarkerTable.append( oneMarkerRow ) + + + + MarkerTable.append( HT.TR(HT.TD( HT.Input(type='submit', name='markertable_submit', value='Edit marker table',Class="button", onClick= "changeStatusSubmit(this.form, 'editMarkerTable');") )) ) + + MainTable.append( HT.TR(HT.TD(MarkerTable)) ) + + + HTInput_Submit = HT.Input(type='hidden', name='submit', value='Submit',Class="button") + HTInput_FormId = HT.Input(type='hidden', name='FormID', value='updGeno') + HTInput_Status = HT.Input(type='hidden', name='status', value='') + HTInput_InbredSetName = HT.Input(type='hidden', name='InbredSetName', value=InbredSetName) + HTInput_Chr = HT.Input(type='hidden', name='Chr', value=Chr) + HTInput_MbStart = HT.Input(type='hidden', name='MbStart', value=MbStart) + HTInput_MbEnd = HT.Input(type='hidden', name='MbEnd', value=MbEnd) + HTInput_MarkerNamesExisted = HT.Input(type='hidden', name='MarkerNamesExisted', value=','.join(MarkerNames) ) + HTInput_MarkerNamesAdded = HT.Input(type='hidden', name='MarkerNamesAdded', value=','.join(MarkerNameAdded) ) + + + HTForm_showAllMarkers = HT.Form(cgi=os.path.join(webqtlConfig.CGIDIR, 'main.py'), enctype= 'multipart/form-data', submit=HTInput_Submit) + + HTForm_showAllMarkers.append( MainTable ) + HTForm_showAllMarkers.append(HTInput_FormId) + HTForm_showAllMarkers.append(HTInput_Status) + HTForm_showAllMarkers.append(HTInput_InbredSetName) + HTForm_showAllMarkers.append(HTInput_Chr) + HTForm_showAllMarkers.append(HTInput_MbStart) + HTForm_showAllMarkers.append(HTInput_MbEnd) + HTForm_showAllMarkers.append(HTInput_MarkerNamesExisted) + HTForm_showAllMarkers.append(HTInput_MarkerNamesAdded) + + return HTForm_showAllMarkers + + + + def showOneMarker (self, InbredSetName="", MarkerName="", suffix="", MarkerGroupInfo=[], StrainList=[], marker_type=''): + + GenoInfo={} + + #XZ: The first item of MarkerInfo is Geno.Id + GenoId = MarkerGroupInfo[0] + + for i in range(1, len(MarkerGroupInfo)): + if MarkerGroupInfo[i] != None: + GenoInfo[ MarkerInfoField[i-1] ] = str(MarkerGroupInfo[i]) + else: + GenoInfo[ MarkerInfoField[i-1] ] = '' + + if GenoInfo['Used_for_mapping'] == 'Y': + GenoInfo['Used_for_mapping'] = True + else: + GenoInfo['Used_for_mapping'] = False + + + MarkerRow = HT.TR() + + # Species level info + for i in range(0, len(MarkerSpeciesInfoField)): + if MarkerSpeciesInfoField[i] == 'Name': + if marker_type == 'existed': + MarkerRow.append( HT.TD(GenoInfo['Name']) ) + else: + MarkerRow.append(HT.TD(HT.Input(name = MarkerName + suffix + markerName_Feild_Separator + MarkerSpeciesInfoField[i], size=20, maxlength=500, value=MarkerName + suffix ))) + else: + MarkerRow.append(HT.TD(HT.Input(name = MarkerName + suffix + markerName_Feild_Separator + MarkerSpeciesInfoField[i], size=10, maxlength=500, value=GenoInfo[MarkerSpeciesInfoField[i]]))) + + # Group level info + for i in range(0, len(MarkerGroupInfoField)): + if MarkerGroupInfoField[i] != 'Used_for_mapping': + MarkerRow.append( HT.TD(HT.Input(name = MarkerName + suffix + markerName_Feild_Separator + MarkerGroupInfoField[i], size=10, value=GenoInfo[MarkerGroupInfoField[i]]))) + else: + MarkerRow.append( HT.TD(HT.Input(type='checkbox', name= MarkerName + suffix + markerName_Feild_Separator + 'Used_for_mapping', checked=GenoInfo['Used_for_mapping'] ))) + + # retrive Marker allele values + GenoFreezeId = retrieveGenoFreezeId(self.cursor, InbredSetName) + Alleles = retrieveAllele (self.cursor, GenoFreezeId, GenoId) + + for i in range(0, len(StrainList)): + try: + Value = Alleles[StrainList[i]] + except: + Value = 'X' # 'X' is the symbol for unknown allele + MarkerRow.append( HT.TD(HT.Input(name = MarkerName + suffix + markerName_Feild_Separator + StrainList[i], size=3, maxlength=5, value=Value))) + + + return MarkerRow + + + def editMarkerTable (self, fd): + + InbredSetName = fd.formdata.getvalue('InbredSetName') + Chr = fd.formdata.getvalue('Chr') + + MbStart = fd.formdata.getvalue('MbStart') + MbEnd = fd.formdata.getvalue('MbEnd') + + MarkerNamesExistedString = fd.formdata.getvalue('MarkerNamesExisted') + MarkerNamesAddedString = fd.formdata.getvalue('MarkerNamesAdded') + + MarkerNamesExisted = [] + MarkerNamesAdded = [] + + MarkerNamesExistedString = MarkerNamesExistedString.strip() + MarkerNamesExisted = MarkerNamesExistedString.split(',') + + MarkerNamesAddedString = MarkerNamesAddedString.strip() + if MarkerNamesAddedString: + MarkerNamesAdded = MarkerNamesAddedString.split(',') + + GroupNeedExport = [] + # To simplify the business logic, just add this group to the list anyway + GroupNeedExport.append(InbredSetName) + + + for one_marker in MarkerNamesExisted: + if self.checkMarkerHasBeenInGroup(InbredSetName=InbredSetName, MarkerName=one_marker, fd=fd): + GroupNeedExport = self.changeMarker( InbredSetName=InbredSetName, MarkerWebID=one_marker, MarkerName=one_marker, GroupNeedExport=GroupNeedExport, fd=fd) + + if MarkerNamesAdded: + for one_marker in MarkerNamesAdded: + input_name = fd.formdata.getvalue( one_marker + markerName_Feild_Separator + 'Name' ) + GroupNeedExport = self.changeMarker( InbredSetName=InbredSetName, MarkerWebID=one_marker, MarkerName=input_name, GroupNeedExport=GroupNeedExport, fd=fd) + + export_info = self.exportAllGenoFiles( GroupNeedExport ) + + contents = [] + + contents.append(export_info) + + HTInput_FormId = HT.Input(type='hidden', name='FormID', value='updGeno') + HTInput_Back = HT.Input(type="submit", name="backButton", value="Back to main page", Class="button") + HTForm_Back = HT.Form(name='StrainForm', cgi=os.path.join(webqtlConfig.CGIDIR, 'main.py'), \ + enctype= 'multipart/form-data', submit=HTInput_Back) + HTForm_Back.append(HTInput_FormId) + + contents.append(str(HTForm_Back)) + + return '
      '.join(contents) + + # return "%s" % export_info + + + + def checkMarkerHasBeenInGroup(self, InbredSetName="", MarkerName="", fd=None): + + isChanged = False + + # retrive Marker information from database + MarkerGroupInfo = retrieveMarkerInfoForGroup (self.cursor, MarkerName, InbredSetName) + + GenoId = MarkerGroupInfo[0] + + GenoInfo={} + + for i in range(1, len(MarkerGroupInfo)): + if MarkerGroupInfo[i] != None: + GenoInfo[MarkerInfoField[i-1]] = str( MarkerGroupInfo[i] ) + else: + GenoInfo[MarkerInfoField[i-1]] = '' + + if GenoInfo['Used_for_mapping'] == 'Y': + GenoInfo['Used_for_mapping'] = True + else: + GenoInfo['Used_for_mapping'] = False + + + # check the changing of Geno information + + for i in range(0, len(MarkerInfoField)): + + if MarkerInfoField[i] == 'Name': + continue + + webInputValue = fd.formdata.getvalue( MarkerName + markerName_Feild_Separator + MarkerInfoField[i] ) + + + if MarkerInfoField[i] == 'Used_for_mapping': + if webInputValue == 'on': + webInputValue = True + else: + webInputValue = False + + + if GenoInfo[MarkerInfoField[i]] != webInputValue: + isChanged = True + + # retrive Marker alleles + GenoFreezeId = retrieveGenoFreezeId(self.cursor, InbredSetName) + db_alleles = retrieveAllele (self.cursor, GenoFreezeId, GenoId) + StrainList = retrieveStrainUsedForMapping (self.cursor, InbredSetName) + + + # check the changing of allele values + + for i in range(0, len(StrainList)): + webInputValue = fd.formdata.getvalue(MarkerName + markerName_Feild_Separator + StrainList[i]) + + if not db_alleles.has_key(StrainList[i]): + #XZ: This is hard coded. + #XZ: The best way is to check if the input value is in ('B', 'D', 'H'). + if webInputValue.upper() != 'X': # 'X' is the symbol for unknown allele. + isChanged = True + else: + if str( db_alleles[StrainList[i]]) != webInputValue: + isChanged = True + + + return isChanged + + + def changeMarker(self,InbredSetName="", MarkerWebID="", MarkerName="", GroupNeedExport=[], fd=None): + + GenoFreezeId = retrieveGenoFreezeId( self.cursor, InbredSetName ) + + MarkerGroupInfo = retrieveMarkerInfoForGroup(self.cursor, MarkerName, InbredSetName) + + # This marker has record for this group. + # Need to keep the original GeneId and marker name. + if MarkerGroupInfo: + + #XZ: The first item of MarkerInfo is Geno.Id + GenoId = MarkerGroupInfo[0] + + #This function should be excuted before update Chr and Mb in database. + GroupNeedExport = getAllGroupsNeedExported(self.cursor, GroupNeedExport=GroupNeedExport, GenoId=GenoId, \ + Chr=fd.formdata.getvalue(MarkerWebID + markerName_Feild_Separator + 'Chr'), \ + Mb=fd.formdata.getvalue(MarkerWebID + markerName_Feild_Separator + 'Mb') ) + + # Update the info in Geno (Chr, Mb, Sequence, Source). + updateGeno(self.cursor, GenoId, InbredSetName, MarkerWebID, fd) + + # Update GenoXRef (cM, Used_for_mapping) + updateGenoXRef(self.cursor, GenoFreezeId, GenoId, MarkerWebID, fd) + + # Keep the original GenoXRef.DataId value. + DataId = retrieveDataId(self.cursor, GenoId, InbredSetName) + + # Delete the original alleles + cmd = "delete from GenoData where Id=%s" % DataId + self.cursor.execute(cmd) + + # Insert new alleles. + insertGenoData(cursor=self.cursor, InbredSetName=InbredSetName, DataId=DataId, MarkerWebID=MarkerWebID, fd=fd) + + else: # No record for this group. + + hasInfoForSpecies = checkIfMarkerInSpecies(self.cursor, MarkerName, InbredSetName) + + if hasInfoForSpecies: + + # Keep the original GenoId. + GenoId = hasInfoForSpecies[0] + + #This function should be excuted before update Chr and Mb in database. + GroupNeedExport = getAllGroupsNeedExported(self.cursor, GroupNeedExport=GroupNeedExport, GenoId=GenoId, \ + Chr=fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + 'Chr' ), \ + Mb=fd.formdata.getvalue( MarkerWebID + markerName_Feild_Separator + 'Mb') ) + + + # Update the info in Geno (Chr, Mb, Sequence, Source). + updateGeno(self.cursor, GenoId, InbredSetName, MarkerWebID, fd) + + + # Get new GenoData.Id + DataId = retrieveMaxGenoDataId(self.cursor) + 1 + + # Add record in GenoXRef table for this group. + addGenoXRef(self.cursor, GenoFreezeId, GenoId, DataId, MarkerWebID, fd) + + # Add record in GenoData table. + insertGenoData(cursor=self.cursor, InbredSetName=InbredSetName, DataId=DataId, MarkerWebID=MarkerWebID, fd=fd) + + else: + # Get new Geno.Id + GenoId = retrieveMaxGenoId(cursor=self.cursor) + 1 + + # Add record in Geno + addGeno(self.cursor, GenoId, InbredSetName, MarkerWebID, fd) + + # Get new GenoData.Id + DataId = retrieveMaxGenoDataId(self.cursor) + 1 + + # Add record into GenoXRef table. + addGenoXRef(self.cursor, GenoFreezeId, GenoId, DataId, MarkerWebID, fd) + + #Add record into GenoData table. + insertGenoData(cursor=self.cursor, InbredSetName=InbredSetName, DataId=DataId, MarkerWebID=MarkerWebID, fd=fd) + + return GroupNeedExport + + + + def exportAllGenoFiles (self, InbredSetNameList = []): + + warning = "As to the change made, the following groups need to be exported to generate new geno files: %s\n

      " % str(InbredSetNameList) + + whiteList = ['BXD'] + + warning = warning + "At current development stage, the following groups can be exported to generate geno files: %s\n

      " % str(whiteList) + warning = warning + "Here are the geno files that are ACTUALLY exported according to the change you made:\n
      " + + blackList = [] + for one_group in InbredSetNameList: + if one_group in whiteList: + self.exportOneGenoFile( one_group ) + warning = warning + "" + one_group + " geno file\n
      " + else: + blackList.append(one_group) + + return warning + + + + def exportOneGenoFile (self, InbredSetName=''): + + geno_file = open(webqtlConfig.GENODIR + InbredSetName + '.geno', 'w') + + query = "select SpeciesId from InbredSet where Name='%s' " % InbredSetName + self.cursor.execute( query ) + SpeciesId = self.cursor.fetchone()[0] + + GenoFreezeId = retrieveGenoFreezeId( self.cursor, InbredSetName ) + + StrainUsedForMapping = retrieveStrainUsedForMapping(self.cursor, InbredSetName ) + + StrainNameIdUsedForMapping = retrieveStrainNameIdUsedForMapping( self.cursor, InbredSetName ) + + GenoCode_record = retrieveGenoCode(self.cursor, InbredSetName ) + + Allle_value_symbol = {} + symbol_for_unknown = '' + + for one_result in GenoCode_record: + if str(one_result[2]) != 'None': + Allle_value_symbol[one_result[2]] = one_result[1] + else: + symbol_for_unknown = one_result[1] + + + geno_file.write('@name:%s\n' % InbredSetName ) + + GeneticType = retrieveGeneticTypeOfInbredSet(self.cursor, InbredSetName ) + + geno_file.write('@type:%s\n' % str(GeneticType) ) + + for one_result in GenoCode_record: + geno_file.write('@%s:%s\n' % (one_result[0], one_result[1]) ) + + geno_file.write('Chr\tLocus\tcM\tMb') + + for one_strain in StrainUsedForMapping: + geno_file.write('\t%s' % one_strain ) + + + query = "select Geno.Chr, Geno.Name, GenoXRef.cM, Geno.Mb, GenoXRef.DataId from Geno, GenoXRef where SpeciesId=%s and GenoFreezeId=%s and Used_for_mapping='Y' and Geno.Id=GenoId order by chr_num, Mb" % (SpeciesId, GenoFreezeId) + self.cursor.execute( query ) + results = self.cursor.fetchall() + + StrainId_Allele = {} + + for one_result in results: + Chr, Name, cM, Mb, DataId = one_result + geno_file.write('\n%s\t%s\t%s\t%s' % (Chr, Name, cM, Mb) ) + + StrainId_Allele = {} + + query = "select StrainId, value from GenoData where Id=%s " % DataId + self.cursor.execute( query ) + GenoData_results = self.cursor.fetchall() + + for one_GenoData_result in GenoData_results: + StrainId_Allele[ one_GenoData_result[0] ] = one_GenoData_result[1] + + for one_strain_name in StrainUsedForMapping: + one_strain_id = StrainNameIdUsedForMapping[ one_strain_name ] + + if StrainId_Allele.has_key( one_strain_id ): + one_allele_value = StrainId_Allele[one_strain_id] + one_allele_symbol = Allle_value_symbol[ one_allele_value ] + geno_file.write( '\t%s' % one_allele_symbol ) + else: + geno_file.write( '\t%s' % symbol_for_unknown ) + + + + + + + + + + + diff --git a/web/webqtl/management/__init__.py b/web/webqtl/management/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/management/assignUserToDatasetPage.py b/web/webqtl/management/assignUserToDatasetPage.py new file mode 100755 index 00000000..8e089526 --- /dev/null +++ b/web/webqtl/management/assignUserToDatasetPage.py @@ -0,0 +1,159 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os +import string + +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from base import webqtlConfig + +#XZ, 02/06/2009: Xiaodong created this class +class assignUserToDatasetPage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + + ifVerified = fd.formdata.getvalue('ifVerified') + + if ifVerified != 'GN@UTHSC': + heading = "Error page" + detail = ["You are NoT verified as administrator."] + self.error(heading=heading,detail=detail) + return + else: + + ProbeSetFreeze_FullName = fd.formdata.getvalue('ProbeSetFreeze_FullName') + User_name = fd.formdata.getvalue('User_name') + + if ProbeSetFreeze_FullName and User_name: + ProbeSetFreeze_FullName = string.strip(ProbeSetFreeze_FullName) + User_name = string.strip(User_name) + + #XZ, check if the input dataset name exists. + self.cursor.execute( 'select count(FullName) from ProbeSetFreeze where FullName="%s"' % ProbeSetFreeze_FullName ) + result = self.cursor.fetchone() + if result: + row_count = result[0] + if row_count: + pass + else: + heading = "Error page" + detail = ["The dataset name %s does NOT exist in database." % ProbeSetFreeze_FullName] + self.error(heading=heading,detail=detail) + return + else: + heading = "Error page" + detail = ["No sql result returned when check dataset name."] + self.error(heading=heading,detail=detail) + return + + #XZ, check if the input user name exists. + self.cursor.execute( 'select count(name) from User where name="%s"' % User_name ) + result = self.cursor.fetchone() + if result: + row_count = result[0] + if row_count: + pass + else: + heading = "Error page" + detail = ["The user name %s does NOT exist in database." % User_name] + self.error(heading=heading,detail=detail) + return + else: + heading = "Error page" + detail = ["No sql result returned when check user name."] + self.error(heading=heading,detail=detail) + return + + self.cursor.execute( 'select AuthorisedUsers from ProbeSetFreeze where FullName="%s"' % ProbeSetFreeze_FullName ) + result = self.cursor.fetchone() # The FullName is unique. + if result: + AuthorisedUsers = result[0] + if not AuthorisedUsers: + self.cursor.execute('update ProbeSetFreeze set AuthorisedUsers="%s" where FullName="%s"' %(User_name, ProbeSetFreeze_FullName) ) + else: + AuthorisedUsersList=AuthorisedUsers.split(',') + if not AuthorisedUsersList.__contains__(User_name): + AuthorisedUsers = AuthorisedUsers + ',%s' % User_name + self.cursor.execute('update ProbeSetFreeze set AuthorisedUsers="%s" where FullName="%s"' %(AuthorisedUsers, ProbeSetFreeze_FullName) ) + else: + heading = "Error page" + detail = ["No sql result returned when query AuthorisedUsers."] + self.error(heading=heading,detail=detail) + return + + + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') + + dataHeading = HT.Paragraph('Confidential Dataset Table', Class="title") + + dataTable = HT.TableLite(border=1, cellpadding=0, cellspacing=0, Class="collap", width="100%") + + dataHeaderRow = HT.TR() + dataHeaderRow.append(HT.TD("Dataset Id", Class='fs14 fwb ffl b1 cw cbrb')) + dataHeaderRow.append(HT.TD("Dataset Full Name", Class='fs14 fwb ffl b1 cw cbrb')) + dataHeaderRow.append(HT.TD("Authorised User", Class='fs14 fwb ffl b1 cw cbrb')) + dataTable.append(dataHeaderRow) + + self.cursor.execute('select Id, FullName, AuthorisedUsers from ProbeSetFreeze where confidentiality=1 order by FullName,Id') + + result = self.cursor.fetchall() + + dataInfo = HT.Blockquote( 'There are %d confidential datasets.' % len(result) ) + + + for one_row in result: + ProbeSetFreeze_Id, ProbeSetFreeze_FullName, ProbeSetFreeze_AuthorisedUsers = one_row + dataRow = HT.TR() + dataRow.append(HT.TD("%s" % ProbeSetFreeze_Id, Class='fs12 fwn ffl b1 c222')) + dataRow.append(HT.TD("%s" % ProbeSetFreeze_FullName, Class='fs12 fwn ffl b1 c222')) + dataRow.append(HT.TD("%s" % ProbeSetFreeze_AuthorisedUsers, Class='fs12 fwn ffl b1 c222')) + dataTable.append(dataRow) + + assignUserForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='assignUserForm', submit=HT.Input(type='hidden')) + assignUserForm.append( + HT.Blockquote( + HT.Font('Dataset Full Name ', color='red'), + HT.Input(type='text' ,name='ProbeSetFreeze_FullName',value='', size=50,maxlength=200), + HT.Font(' User name ', color='red'), + HT.Input(type='text' ,name='User_name',value='', size=20,maxlength=20), + HT.Input(type='Submit', value='Submit', Class="button")), + HT.Input(type='hidden',name='FormID',value='assignUserToDataset'), + HT.Input(type='hidden',name='ifVerified',value='GN@UTHSC') + ) + + TD_LR.append(dataHeading, dataInfo, assignUserForm, dataTable, assignUserForm) + + self.dict['body'] = str(TD_LR) + self.dict['title'] = 'Confidential datasets' + diff --git a/web/webqtl/management/createUserAccountPage.py b/web/webqtl/management/createUserAccountPage.py new file mode 100755 index 00000000..f002c6ed --- /dev/null +++ b/web/webqtl/management/createUserAccountPage.py @@ -0,0 +1,161 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os +import string + +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from base import webqtlConfig + + + +#XZ, 02/06/2009: Xiaodong created this class +class createUserAccountPage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + + ifVerified = fd.formdata.getvalue('ifVerified') + + if ifVerified != 'GN@UTHSC': + heading = "Error page" + detail = ["You are NoT verified as administrator."] + self.error(heading=heading,detail=detail) + return + else: + + user_name = fd.formdata.getvalue('user_name') + password = fd.formdata.getvalue('password') + retype_password = fd.formdata.getvalue('retype_password') + + if user_name or password or retype_password: + user_name = string.strip(user_name) + password = string.strip(password) + retype_password = string.strip(retype_password) + + #XZ, check if the input user name exists. + + if len(user_name) == 0: + heading = "Error page" + detail = ["The user name can NOT be empty."] + self.error(heading=heading,detail=detail) + return + + self.cursor.execute( 'select count(name) from User where name="%s"' % user_name ) + result = self.cursor.fetchone() + if result: + row_count = result[0] + if row_count: + heading = "Error page" + detail = ["The user name %s already exists in database. Please make up another user name." % user_name] + self.error(heading=heading,detail=detail) + return + else: + heading = "Error page" + detail = ["No sql result returned when check user name."] + self.error(heading=heading,detail=detail) + return + + # check password + if len(password) == 0 or len(retype_password) == 0: + heading = "Error page" + detail = ["The password can NOT be empty."] + self.error(heading=heading,detail=detail) + return + + if password != retype_password: + heading = "Error page" + detail = ["The passwords you entered are NOT consistent. Please go back and try again."] + self.error(heading=heading,detail=detail) + return + + #XZ, create new account + self.cursor.execute( "insert into User (name, password, createtime, privilege) values ('%s', SHA('%s'), Now(), 'user')" % (user_name, password) ) + + + #show user table. + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') + + userHeading = HT.Paragraph('User Table', Class="title") + + self.cursor.execute( 'select id, name, privilege from User order by name' ) + + result = self.cursor.fetchall() + + userInfo = HT.Blockquote( 'There are %d users.' % len(result) ) + + userTable = HT.TableLite(border=0, cellpadding=0, cellspacing=0, Class="collap", width="100%") + + userHeaderRow = HT.TR() + userHeaderRow.append(HT.TD("User Id", Class='fs14 fwb ffl b1 cw cbrb')) + userHeaderRow.append(HT.TD("User name", Class='fs14 fwb ffl b1 cw cbrb')) + userHeaderRow.append(HT.TD("User privilege", Class='fs14 fwb ffl b1 cw cbrb')) + userTable.append(userHeaderRow) + + for one_row in result: + User_Id, User_name, User_privilege = one_row + userRow = HT.TR() + userRow.append(HT.TD("%s" % User_Id, Class='fs12 fwn ffl b1 c222')) + userRow.append(HT.TD("%s" % User_name, Class='fs12 fwn ffl b1 c222')) + userRow.append(HT.TD("%s" % User_privilege, Class='fs12 fwn ffl b1 c222')) + userTable.append(userRow) + + #add user form + createUserAccountForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='createUserAccountForm', submit=HT.Input(type='hidden')) + + user_name = HT.Input(type='text' ,name='user_name',value='', size=20,maxlength=20) + password = HT.Input(type='password' ,name='password',value='', size=20,maxlength=20) + retype_password = HT.Input(type='password' ,name='retype_password',value='', size=20,maxlength=20) + submit_button = HT.Input(type='Submit', value='Submit', Class="button") + + createUserAccountForm.append( + HT.Blockquote( HT.Font('Create one new account: User Name ', color='red'), user_name, HT.Font(' Password ', color='red'), password, HT.Font(' Retype Password ', color='red'), retype_password, submit_button ), + HT.Input(type='hidden',name='FormID',value='createUserAccount'), + HT.Input(type='hidden',name='ifVerified',value='GN@UTHSC') + ) + + """ + #manager form + managerForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='managerForm', submit=HT.Input(type='hidden')) + managerForm.append( + HT.Input(type='Submit', value='Go to manager main page', Class="button"), + HT.Input(type='hidden',name='FormID',value='managerMain'), + HT.Input(type='hidden',name='ifVerified',value='GN@UTHSC') + ) + """ + + #TD_LR.append(managerForm, HT.BR(), userHeading, userInfo, HT.P(), createUserAccountForm, userTable, createUserAccountForm, HT.BR(), managerForm) + TD_LR.append(userHeading, userInfo, HT.P(), createUserAccountForm, userTable, createUserAccountForm) + + self.dict['body'] = str(TD_LR) + self.dict['title'] = 'User account' diff --git a/web/webqtl/management/deletePhenotypeTraitPage.py b/web/webqtl/management/deletePhenotypeTraitPage.py new file mode 100755 index 00000000..de071003 --- /dev/null +++ b/web/webqtl/management/deletePhenotypeTraitPage.py @@ -0,0 +1,196 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os + +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from base import webqtlConfig +from base.webqtlDataset import webqtlDataset +from base.webqtlTrait import webqtlTrait + + +#XZ, 09/07/2009: Xiaodong created this class +class deletePhenotypeTraitPage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + ifVerified = fd.formdata.getvalue('ifVerified') + status = fd.formdata.getvalue('status') + + if ifVerified != 'GN@UTHSC': + heading = "Error page" + detail = ["You are NoT verified as administrator."] + self.error(heading=heading,detail=detail) + return + else: + if status == 'input': + self.dict['body'] = self.genInputPage() + self.dict['title'] = 'Delete Phenotype Trait Input Page' + if status == 'check': + PublishFreeze_Name = fd.formdata.getvalue('PublishFreeze_Name') + traitID = fd.formdata.getvalue('traitID') + self.dict['body'] = self.checkInputPage(PublishFreeze_Name, traitID) + self.dict['title'] = 'Delete Phenotype Trait Check Input Page' + if status == 'delete': + PublishFreeze_Name = fd.formdata.getvalue('PublishFreeze_Name') + traitID = fd.formdata.getvalue('traitID') + self.dict['body'] = self.deleteResultPage(PublishFreeze_Name, traitID) + self.dict['title'] = 'Delete Phenotype Trait Result Page' + + + def genInputPage(self): + + crossMenu = HT.Select(name='PublishFreeze_Name', onChange='xchange()') + + self.cursor.execute('select PublishFreeze.Name from PublishFreeze, InbredSet where InbredSetId=InbredSet.Id') + result = self.cursor.fetchall() + + for one_row in result: + Name = one_row + crossMenu.append(tuple([Name,Name])) + + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') + + deletePhenotypeTraitForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='deletePhenotypeTraitForm', submit=HT.Input(type='hidden')) + deletePhenotypeTraitForm.append( + HT.Blockquote( + HT.Font('Publish Freeze Name '), + crossMenu, + HT.Font(' Phenotype Trait ID '), + HT.Input(type='text' ,name='traitID',value='', size=20,maxlength=20), + HT.Input(type='Submit', value='Submit', Class="button")), + HT.Input(type='hidden',name='FormID',value='deletePhenotypeTrait'), + HT.Input(type='hidden',name='ifVerified',value='GN@UTHSC'), + HT.Input(type='hidden',name='status',value='check') + ) + + TD_LR.append(deletePhenotypeTraitForm) + + return str(TD_LR) + + + def checkInputPage(self, PublishFreeze_Name, traitID): + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') + + try: + db = webqtlDataset(PublishFreeze_Name, self.cursor) + thisTrait = webqtlTrait(db=db, cursor=self.cursor, name=traitID) + thisTrait.retrieveInfo() + setDescription = thisTrait.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users) + except: + TD_LR.append( HT.Font('This trait is not found. Please go back to check if you selected correct Group Name and inputed correct trait ID.', color='red') ) + return str(TD_LR) + + #TD_LR.append(HT.Font('Publish Freeze Name: %s' % PublishFreeze_Name, color='red'),HT.BR(), HT.Font('trait ID: %s' % traitID, color='red'), HT.BR()) + + formMain = HT.Form(cgi=os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden')) + + formMain.append( + HT.Blockquote( + HT.Font('The trait '), + setDescription, + HT.Font(' will be deleted.'), + HT.BR(), HT.BR(), + HT.Font('Please open the trait and make sure you do want to delete it.', color = 'red') + ), + HT.Input(type='hidden',name='FormID',value=''), + HT.Input(type='hidden',name='database',value=''), + HT.Input(type='hidden',name='ProbeSetID',value=''), + HT.Input(type='hidden',name='CellID',value='') + ) + + deletePhenotypeTraitForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='deletePhenotypeTraitForm', submit=HT.Input(type='hidden')) + deletePhenotypeTraitForm.append( + HT.Input(type='Submit', value='Delete Trait', Class="button"), + HT.Input(type='hidden',name='FormID',value='deletePhenotypeTrait'), + HT.Input(type='hidden',name='ifVerified',value='GN@UTHSC'), + HT.Input(type='hidden',name='status',value='delete'), + HT.Input(type='hidden',name='PublishFreeze_Name',value=db), + HT.Input(type='hidden',name='traitID',value=traitID) + ) + + + TD_LR.append(formMain, HT.BR(), HT.BR(), deletePhenotypeTraitForm) + return str(TD_LR) + + def deleteResultPage(self, PublishFreeze_Name, traitID): + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') + + #TD_LR.append(HT.Font('Publish Freeze Name: %s' % PublishFreeze_Name, color='red'),HT.BR(), HT.Font('trait ID: %s' % traitID, color='red'), HT.BR(), HT.BR(), 'Being constructed...') + + self.cursor.execute( 'select InbredSetId from PublishFreeze where Name="%s"' % PublishFreeze_Name ) + InbredSetId = self.cursor.fetchone()[0] + #TD_LR.append(HT.BR(), HT.BR(), 'InbredSetId: ', InbredSetId) + + self.cursor.execute( 'select PhenotypeId, PublicationId, DataId from PublishXRef where Id = %s and InbredSetId = %s' % (traitID, InbredSetId) ) + result = self.cursor.fetchone() + PhenotypeId, PublicationId, DataId = result + + #TD_LR.append(HT.BR(), 'PhenotypeId: ', PhenotypeId) + #TD_LR.append(HT.BR(), 'PublicationId: ', PublicationId) + #TD_LR.append(HT.BR(), 'DataId: ', DataId) + + #PublishData + self.cursor.execute('delete from PublishData where Id = %s' % DataId) + + #PublishSE + self.cursor.execute('delete from PublishSE where DataId = %s' % DataId) + + #NStrain + self.cursor.execute('delete from NStrain where DataId = %s' % DataId) + + #Phenotype + self.cursor.execute( 'select count(*) from PublishXRef where PhenotypeId = %s' % PhenotypeId ) + PhenotypeId_count = self.cursor.fetchone()[0] + #TD_LR.append(HT.BR(), HT.BR(), 'PhenotypeId_count: ', PhenotypeId_count) + if PhenotypeId_count > 1: + pass + else: + self.cursor.execute('delete from Phenotype where Id = %s' % PhenotypeId) + + #Publication + self.cursor.execute( 'select count(*) from PublishXRef where PublicationId = %s' % PublicationId ) + PublicationId_count = self.cursor.fetchone()[0] + #TD_LR.append(HT.BR(), 'PublicationId_count: ', PublicationId_count) + if PublicationId_count > 1: + pass + else: + self.cursor.execute('delete from Publication where Id = %s' % PublicationId) + + #PublishXRef + self.cursor.execute( 'delete from PublishXRef where Id = %s and InbredSetId = %s' % (traitID, InbredSetId) ) + + #TD_LR.append(HT.BR(), HT.BR() ) + TD_LR.append('The trait %s has been successfully deleted from %s' % (traitID, PublishFreeze_Name)) + + return str(TD_LR) diff --git a/web/webqtl/management/editHeaderFooter.py b/web/webqtl/management/editHeaderFooter.py new file mode 100755 index 00000000..1461fa3a --- /dev/null +++ b/web/webqtl/management/editHeaderFooter.py @@ -0,0 +1,200 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from htmlgen import HTMLgen2 as HT +import os +import string +import urlparse + +from base.templatePage import templatePage +from base import webqtlConfig + +# 20100309 Lei Yan +class editHeaderFooter(templatePage): + + htmlPath = webqtlConfig.ChangableHtmlPath + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + self.templateInclude = 1 + self.dict['title'] = "Editing HTML" + + if not self.updMysql(): + return + + path = fd.formdata.getvalue('path') + preview = fd.formdata.getvalue('preview') + newHtmlCode = fd.formdata.getvalue('htmlSrc') + hf = fd.formdata.getvalue('hf') + + if newHtmlCode: + newHtmlCode = string.replace(newHtmlCode,"&", "&") + if path and preview: + self.templateInclude = 0 + if hf=='h': + tempH = newHtmlCode + fp = open(self.htmlPath+'/footer.html', 'r') + tempF = fp.read() + fp.close() + else: + fp = open(self.htmlPath+'/header.html', 'r') + tempH = fp.read() + fp.close() + tempF = newHtmlCode + tempHtml = """ + +Header Footer Test + + + + + + + + + + + +
    + + + + + + + + +
    +

    HBP/Rosen Striatum M430v2 (April05) PDNN Clean modify this page

    Accession number: GN74

    + +

        Summary:

    + +
    +PREFERRED DATA SET. This April 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 31 lines of mice including C57BL/6J, DBA/2J, and 29 BXD recombinant inbred strains. This data set excludes eleven arrays associated with high numbers of outliers (clean). Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 250 brain samples (males and females) from 31 strains were used in this experiment. This data set includes 48 arrays that passed very stringent quality control procedures. This data set was processed using the Microarray Suite 5 protocol (MAS 5). To simplify comparison among different transforms, MAS5 values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units. +
    + +

        About the cases used to generate this set of data:

    + +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    +

    +
    + +

        About the tissue used to generate this set of data:

    + +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. + + +

    + +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. Fifteen of 31 strains are represented by male and female samples. The remaining 16 strains are still represented by single sex samples: BXD6 (F), BXD9 (F), BXD11 (F), BXD12(F), BXD13 (F), BXD14 (M), BXD19 (F), BXD20 (F), BXD22 (M), BXD24 (M), BXD27 (F), BXD28 (F), BXD32 (M), BXD39 (M), C57BL/6J (M), and DBA/2J (M). + +

    Batch Structure: This data set consists of arrays processed in three batches with several "reruns" for the first batch. All arrays were run using a single protocol. All data have been corrected for batch effects as described below. + +

    + + +
    +The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days. +
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2BXD1FChip03_Batch03_BXD1_F_StrBatch03
    3BXD1MChip04_Batch03_BXD1_M_StrBatch03
    4BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    5BXD2MChip05_Batch01_BXD2_M_StrBatch01
    6BXD5FChip10_Batch03_BXD5_F_StrBatch03
    7BXD5MChip12_Batch03_BXD5_M_StrBatch03
    8BXD6FChip38_Batch02_BXD6_F_StrBatch02
    9BXD8FChip07_Batch03_BXD8_F_StrBatch03
    10BXD8MChip02_Batch03_BXD8_M_StrBatch03
    11BXD9FChip16_Batch01_BXD9_F_StrBatch01
    12BXD11FChip31_Batch02_BXD11_F_StrBatch02
    13BXD12FChip11_Batch01_BXD12_F_StrBatch01
    14BXD13FChip33_Batch02_BXD13_F_StrBatch02
    15BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    16BXD15FChip21_Batch01_BXD15_F_StrBatch01
    17BXD15MChip13_Batch01_BXD15_M_StrBatch01
    18BXD16FChip36_Batch02_BXD16_F_StrBatch02
    19BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    20BXD18FChip15_Batch03_BXD18_F_StrBatch03
    21BXD18MChip19_Batch03_BXD18_M_StrBatch03
    22BXD19FChip19_Batch01_BXD19_F_StrBatch01
    23BXD20FChip14_Batch03_BXD20_F_StrBatch03
    24BXD21FChip18_Batch01_BXD21_F_StrBatch01
    25BXD21MChip09_Batch01_BXD21_M_StrBatch01
    26BXD22MChip13_Batch03_BXD22_M_StrBatch03
    27BXD24MChip17_Batch03_BXD24_M_StrBatch03
    28BXD27FChip29_Batch02_BXD27_F_StrBatch02
    29BXD28FChip06_Batch01_BXD28_F_StrBatch01
    30BXD29FChip45_Batch02_BXD29_F_StrBatch02
    31BXD29MChip42_Batch02_BXD29_M_StrBatch02
    32BXD31FChip14_Batch01_BXD31_F_StrBatch01
    33BXD31MChip09_Batch03_BXD31_M_StrBatch03
    34BXD32MChip30_Batch02_BXD32_M_StrBatch02
    35BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    36BXD33MChip34_Batch02_BXD33_M_StrBatch02
    37BXD34FChip03_Batch01_BXD34_F_StrBatch01
    38BXD34MChip07_Batch01_BXD34_M_StrBatch01
    39BXD38FChip17_Batch01_BXD38_F_StrBatch01
    40BXD38MChip24_Batch01_BXD38_M_StrBatch01
    41BXD39MChip20_Batch03_BXD39_M_StrBatch03
    42BXD39FChip23_Batch03_BXD39_F_StrBatch03
    43BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    44BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    45BXD40MChip22_Batch01_BXD40_M_StrBatch01
    46BXD42FChip35_Batch02_BXD42_F_StrBatch02
    47BXD42MChip32_Batch02_BXD42_M_StrBatch02
    48DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    + + + + + + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the batches at the probe level. To do this we calculated the ratio of each batch mean to the mean of all batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each batch is the same. + +
    • Step 7: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + +Probe set data from the CHP file: The expression values were +generated using PDNN. The same simple steps described above +were also applied to these values. Every microarray data set +therefore has a mean expression of 8 with a standard deviation of 2. +A 1 unit difference represents roughly a two-fold difference +in expression level. Expression levels below 5 are usually close to +background noise levels.
    +
    Data quality control: A total of 62 samples passed RNA quality control. +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients (62x61/2). Arrays with probe data that was not homogeneous when compared to any other arrays was flagged. If the correlation at the probe level was less than approximately 0.92 we deleted that array data set. Three arrays we lost during this process (BXD19_M_Str_Batch03, BXD23_F_Str_Batch03, and BXD24_F_Str_Batch03). + +

    Probe set level QC: The final normalized array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Eleven arrays were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels. In contrast, most other arrays generated fewer than 5% outliers. These eleven suspect eleven arrays were elimated from this "clean" data set. The following arrays were eliminated: B6_M_Str_Batch03, BXD6_M_Str_Batch02, BXD9_M_Str_Batch01, BXD12_M_Str_Batch03, BXD14_F_Str_Batch02, BXD23_M_Str_Batch03, BXD27_M_Str_Batch02, BXD28_M_Str_Batch01, BXD36_F_Str_Batch03, BXD36_M_Str_Batch03, and D2_M_Str_Batch01.

    + +

        Data source acknowledgment:

    +

    Data were generated with funds to Glenn Rosen from P20 +MH62009 (see below for specifics). Samples and arrays were processed by the +Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    + +

        About this text file:

    +

    +This text file originally generated by GDR, RWW, and YHQ on Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004; RWW and GDR April 8, 2005. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/SA_M2_0405_P.html b/web/dbdoc/SA_M2_0405_P.html new file mode 100755 index 00000000..0ed260ef --- /dev/null +++ b/web/dbdoc/SA_M2_0405_P.html @@ -0,0 +1,233 @@ + +M430 Microarray brain PDNN April05 / WebQTL + + + + + + + + + + + + + tags + """ + html = "" + for col in cols: + html += '' % (align, col) + return html + +def thEscapeList(cols): + """ + A helper function used by tableRowHeader + in Trait that will convert a list of strings into a set of + table cells enclosed by tags + """ + html = "" + for col in cols: + html += "" % col + return html + +def commaEscapeList(cols): + """ + A helper function used by csvHeader and csvRow. + Really it's just a wrapper for string.join + """ + return '"' + string.join(cols, '","') + '"' + + +class Trait: + """ + A trait represents an attribute of an object. In the WebQTL database, traits are stored + as ProbeSets; that is, the average values of a set of probes are stored. + """ + def __init__(self, id="", name="", description="", symbol="", href=""): + self.id = id + self.name = name + self.dbName = "" + self.symbol = symbol + self.href = href + self.strainData = {} + + def populateDataId(self, cursor, freezeId): + """ + Retrieve the dataId for trait data corresponding to the given database + The way to do this depends on the particular type of trait, so we leave implementation + to subclasses. + """ + raise NotImplementedError + + def populateStrainData(self, cursor): + """ + Load this trait full of train data corresponding to the data id + The data id can either come from populateDataId + or can be set manually by the user of this class. + Xiaodong added: The way to do this depends on the particular type of trait, + so we leave implementation to subclasses. + + """ + raise NotImplementedError + + def shortName(self): + """ + To return a short name for this trait; this name should be + appropriate for a row or column title + """ + return self.name + + def nameNoDB(self): + """ + To return only the short name without the database attached + """ + strArray = self.shortName().split('::') + + return strArray[1] + + def datasetName(self): + """ + To return only the name of the dataset + """ + strArray = self.shortName().split('::') + + return strArray[0].strip() + + def longName(self): + """ + To return a long name for this trait; this name should be + appropriate for a key to a table + """ + return self.shortName() + + def __str__(self): + return self.shortName() + + def tableRowHelper(self, beforeCols, afterCols, color, thisRow): + """ + tableRowHelper: (arrayof String) -. String + To generate a table row to represent this object, appending + the additional information in beforeCols and afterCols + to the beginning and the end + """ + thisRow[0] = '%s' % (self.traitInfoLink(), + self.name) + html = '' % color + html += tdEscapeList(beforeCols + thisRow) + html += tdEscapeList(afterCols, align="right") + html += "" + + return html + + + def header(self): + """ + header: (listof String) + To generate a list of strings describing each piece of data + returned by row + """ + raise NotImplementedError + + def row(self): + """ + row: (listof String) + To generate a list of strings describing this object. The + elements of this list should be described by header() + """ + raise NotImplementedError + + def tableRowHeader(self, beforeCols, afterCols, color): + """ + tableRowHeader: (arrayof String) -> (arrayof String) -> String + To generate a table row header to represent this object, + appending the additional information in beforeCols and + afterCols to the beginning and end + """ + html = '' % color + html += thEscapeList(beforeCols + self.header() + + afterCols) + html += "" + return html + + def csvHeader(self, beforeCols, afterCols): + return commaEscapeList(beforeCols + self.header() + afterCols) + + def csvRow(self, beforeCols, afterCols): + return commaEscapeList(beforeCols + self.row() + afterCols) + + + def traitInfoLink(self): + """ + To build a trait info link to show information about this + trait. We assume that the database attribute is properly set + on the hidden form on the page where this link will go. + """ + return "javascript:showDatabase2('%s','%s','')" % (self.dbName, self.name) + +# ProbeSetTrait: a trait with data from a probeset +class ProbeSetTrait(Trait): + def __init__(self, id="", name="", description="", symbol="", href="", + chromosome="", MB="", GeneId=""): + Trait.__init__(self, id=id, name=name, href=href) + self.description = description + self.symbol = symbol + self.chromosome = chromosome + self.MB = MB + self.GeneId = GeneId + + def populateDataId(self, cursor, freezeId): + """ + Look up the data id for this trait given which + freeze it came from. + """ + cursor.execute(''' + SELECT + ProbeSetXRef.DataId + FROM + ProbeSetXRef + WHERE + ProbeSetId = %s AND + ProbeSetFreezeId = %s + ''' % (self.id, freezeId)) + + # we hope that there's only one record here + row = cursor.fetchone() + self.dataId = row[0] + + #XZ, 03/03/2009: Xiaodong implemented this fuction + def populateStrainData(self, cursor): + cursor.execute(''' + SELECT + ProbeSetData.StrainId, + ProbeSetData.value + FROM + ProbeSetData + WHERE + ProbeSetData.Id = %s''' % self.dataId) + for row in cursor.fetchall(): + self.strainData[int(row[0])] = float(row[1]) + + + def shortName(self): + """ + An improved string method that uses the gene symbol where + we have it + """ + if self.symbol != "": + return self.symbol + else: + return Trait.shortName(self) + + def longName(self): + """ + We use several bits of genetic information to give + useful information about this trait and where it is + """ + if self.chromosome != "": + chrPart = " (%s on Chr %s @ %s Mb)" % (self.symbol, + self.chromosome, + self.MB) + else: + chrPart = "" + + return "%s%s: %s" % (self.name, chrPart, self.description) + + def header(self): + return ["Name", "Symbol", "Description", + "Chr", "Position (Mb)"] + + def row(self): + if type(self.MB) is float: + MB = "%.2f" % self.MB + else: + MB = "" + + return [self.name, self.symbol, self.description, + self.chromosome, MB] + + def tableRow(self, beforeCols, afterCols, color): + """ + tableRow: (arrayof String) -> (arrayof String) -> String + To generate a table row to represent this object, appending + the additional information in beforeCols and afterCols to the + beginning and end + """ + thisRow = self.row() + + # trim description + if len(thisRow[2]) > 20: + thisRow[2] = thisRow[2][:20] + "..." + + # add NCBI info link + thisRow[1] = self.ncbiInfoLink() + + return self.tableRowHelper(beforeCols, afterCols, color, + thisRow) + + + def ncbiInfoLink(self): + """ + ncbiInfoLink :: String + To generate an NCBI info link for this trait. If we have a GeneId, + then we can go straight to the gene. If not, then we generate a search + link based on the gene symbol. If we have none of them, then we don't + generate a link at all. + """ + if self.GeneId != "": + cmd = "cmd=Retrieve&dopt=Graphics&list_uids=%s" % self.GeneId + elif self.symbol != "": + cmd = "cmd=Search&term=%s" % self.symbol + else: + return "" + + return ''' + + %s ''' % (cmd, self.symbol) + + +# GenotypeTrait: a trait with data from the genotype +class GenotypeTrait(Trait): + def __init__(self, id="", name="", href="", chromosome="", MB=""): + Trait.__init__(self, id=id, name=name, href=href) + self.chromosome = chromosome + self.MB = MB + + def populateDataId(self, cursor, freezeId): + """ + Look up the data id for this trait from the + genotype. + """ + cursor.execute(''' + SELECT + GenoXRef.DataId + FROM + GenoXRef + WHERE + GenoId = %s AND + GenoFreezeId = %s + ''' % (self.id, freezeId)) + + # we hope that there's only one record here + row = cursor.fetchone() + self.dataId = row[0] + + #XZ, 03/03/2009: Xiaodong implemented this fuction + def populateStrainData(self, cursor): + cursor.execute(''' + SELECT + GenoData.StrainId, + GenoData.value + FROM + GenoData + WHERE + GenoData.Id = %s''' % self.dataId) + for row in cursor.fetchall(): + self.strainData[int(row[0])] = float(row[1]) + + def header(self): + return ["Locus", "Chr", "Position (Mb)"] + + def row(self): + return [self.name, self.chromosome, "%.3f" % self.MB] + + def tableRow(self, beforeCols, afterCols, color): + return self.tableRowHelper(beforeCols, afterCols, color, self.row()) + +# PublishTrait: a trait with data from publications +class PublishTrait(Trait): + def __init__(self, id="", name="", href="", authors="", title="", + phenotype="", year=""): + Trait.__init__(self, id=id, name=name, href=href) + self.authors = authors + self.title = title + self.phenotype = phenotype + self.year = year + + def populateDataId(self, cursor, freezeId): + """ + Look up the data id for this trait from the + published set. For the moment, we assume that there's + only one publish freeze. + """ + cursor.execute(''' + SELECT + PublishXRef.DataId + FROM + PublishXRef, PublishFreeze + WHERE + PublishFreeze.Id = %s AND + PublishFreeze.InbredSetId = PublishXRef.InbredSetId AND + PublishXRef.Id = %s + ''' % (freezeId, self.id)) + + # we hope that there's only one record here + row = cursor.fetchone() + self.dataId = row[0] + + #XZ, 03/03/2009: Xiaodong implemented this fuction + def populateStrainData(self, cursor): + cursor.execute(''' + SELECT + PublishData.StrainId, + PublishData.value + FROM + PublishData + WHERE + PublishData.Id = %s''' % self.dataId) + for row in cursor.fetchall(): + self.strainData[int(row[0])] = float(row[1]) + + + def longName(self): + """ + A more intelligent string function that uses + information about the publication from which this trait came + """ + return "%s: %s by %s" % (self.name, self.title, self.authors) + + def header(self): + return ["Record", "Phenotype", "Authors", "Year", "URL"] + + def row(self): + return [self.name, + self.phenotype, + self.authors, + str(self.year), + ""] + + def tableRow(self, beforeCols, afterCols, color): + """ + tableRow: (arrayof String) -> (arrayof String) -> String + To generate a table row to represent this object, appending + the additional information in beforeCols and afterCols to the + beginning and end + """ + thisRow = self.row() + + # for multiple authors, use "et. al" after first two + authors = thisRow[2].split(",") + if len(authors) > 2: + thisRow[2] = string.join(authors[:2], ",") + ", et al" + + # clip phenotype to 20 chars + if len(thisRow[1]) > 20: + thisRow[1] = thisRow[1][:20] + "..." + + # add Pub Med URL + thisRow[4] = 'Pub Med' % (CONFIG_pubMedLinkURL % self.href) + + return self.tableRowHelper(beforeCols, afterCols, color, + thisRow) + + +# TempTrait: a trait with data generate by user and stored in temp table +class TempTrait(Trait): + def __init__(self, id="", name="", href="", description=""): + Trait.__init__(self, id=id, name=name, href=href) + self.description = description + + def populateDataId(self, cursor, freeezeId): + """ + Look up the data id for this trait from the Temp table, freezeId isn't used, + it just for fixing the inherit + """ + cursor.execute(''' + SELECT + DataId + FROM + Temp + WHERE + Id=%s + ''' % (self.id)) + + # we hope that there's only one record here + row = cursor.fetchone() + self.dataId = row[0] + + #XZ, 03/03/2009: Xiaodong implemented this fuction + def populateStrainData(self, cursor): + cursor.execute(''' + SELECT + TempData.StrainId, + TempData.value + FROM + TempData + WHERE + TempData.Id = %s''' % self.dataId) + for row in cursor.fetchall(): + self.strainData[int(row[0])] = float(row[1]) + + + def row(self): + return [self.id, + self.name, + self.description, + ""] + + + def longName(self): + """ + For temp trait, the description always contents whole useful information + """ + return self.description + + +# queryGenotypeTraitByName : Cursor -> string -> GenotypeTrait +def queryGenotypeTraitByName(cursor, speciesId, name): + qry = ''' + SELECT + Geno.Id, + Geno.Name, + Geno.Chr, + Geno.Mb + FROM + Geno + WHERE + Geno.SpeciesId = %s and Geno.Name = "%s" ''' % (speciesId, name) + + cursor.execute(qry) + row = cursor.fetchone() + return GenotypeTrait(id=row[0], name=row[1], + chromosome=row[2], MB=row[3]) + +# queryPublishTraitByName : Cursor -> string -> PublishTrait +def queryPublishTraitByName(cursor, freezeId, name): + qry = ''' + SELECT + PublishXRef.Id, + Phenotype.Id, + Publication.Authors, + Publication.Title, + Publication.Year, + Publication.PubMed_ID + FROM + Publication, PublishXRef, Phenotype, PublishFreeze + WHERE + PublishFreeze.Id = %s AND + PublishFreeze.InbredSetId = PublishXRef.InbredSetId AND + PublishXRef.Id = %s AND + PublishXRef.PublicationId = Publication.Id AND + PublishXRef.PhenotypeId = Phenotype.Id + ''' % (freezeId, name) + + cursor.execute(qry) + if cursor.rowcount == 0: + return None + else: + row = cursor.fetchone() + + return PublishTrait(id=row[0], name='%s'%row[0], + authors=row[2], title=row[3], + year=row[4], href=row[5]) + + +def queryTempTraitByName(cursor, name): + name=name.strip() + qry = ''' + SELECT + Temp.Id, + Temp.Name, + Temp.description + FROM + Temp + WHERE + Temp.Name= "%s" + ''' % (name) + + cursor.execute(qry) + if cursor.rowcount == 0: + return None + else: + row = cursor.fetchone() + return TempTrait(id=row[0], name=row[1], description=row[2], href='') + +# queryPopulatedProbeSetTraits: Cursor -> Integer -> dictof Trait +# to retrieve an entire probeset fully populated with data +# this query can take 15+ sec the old way (22,000 traits * 35 strains = half +# a million records) +# so we ask for the data in bulk +# +# cursor should be SSCursor for MySQL so rows are stored on the server side +# and tuples are used +# we explicitly close the cursor here as well +#XZ, 03/04/2009: It seems to me that this function is never be executed. +#XZ: Although it can be called from multitrait.loadDatabase, +#XZ: but the loadDatabase function will not be called +#XZ: if the targetDatabaseType is probeset. +#XZ: The probeset traits of target database are retrieved by execute +#XZ: queryPopulatedProbeSetTraits2 from correlation.calcProbeSetPearsonMatrix +def queryPopulatedProbeSetTraits(cursor, freezeId): + step1 = time.time() + traits = queryProbeSetTraits(cursor, freezeId) + traitDict = {} + for trait in traits: + traitDict[trait.id] = trait + + step2 = time.time() + print + #XZ, 03/04/2009: Xiaodong changed Data to ProbeSetData + cursor.execute(''' + SELECT + ProbeSetXRef.ProbeSetId, + ProbeSetData.StrainId, + ProbeSetData.value + FROM + ProbeSetXRef + Left Join ProbeSetData ON + ProbeSetXRef.DataId = ProbeSetData.Id + WHERE + ProbeSetXRef.ProbeSetFreezeId = %s + ''' % freezeId) + + step3 = time.time() + totalrows = 0 + somerows = cursor.fetchmany(1000) + while len(somerows) > 0: + totalrows += len(somerows) + for row in somerows: + # this line of code can execute more than one million times + traitDict[row[0]].strainData[int(row[1])] = row[2] + somerows = cursor.fetchmany(1000) + + #cursor.close() + step4 = time.time() + + time1 = step2 - step1 + time2 = step3 - step2 + time3 = step4 - step3 + time4 = step4 - step1 + #print "%f %f %f %f %d rows" % (round(time1, 2), + # round(time2, 2), + # round(time3, 2), + # round(time4, 2), + # totalrows) + #print "Fetched %d traits" % len(traits) + return traits + + +# queryPopulatedProbeSetTraits2: Cursor -> Integer -> dictof Trait +# to retrieve probeset fully populated whose ProbeSetId in a range +# a special ProbeSetId with data +# this query can take 15+ sec the old way (22,000 traits * 35 strains = half +# a million records) +# so we ask for the data in bulk +# +# cursor should be SSCursor for MySQL so rows are stored on the server side +# and tuples are used +# we explicitly close the cursor here as well +def queryPopulatedProbeSetTraits2(cursor, freezeId, ProbeSetId1, ProbeSetId2): + step1 = time.time() + traits = queryProbeSetTraits2(cursor, freezeId, ProbeSetId1, ProbeSetId2) + traitDict = {} + for trait in traits: + traitDict[trait.id] = trait + + step2 = time.time() + print + #XZ, 03/04/2009: Xiaodong changed Data to ProbeSetData + cursor.execute(''' + SELECT + ProbeSetXRef.ProbeSetId, + ProbeSetData.StrainId, + ProbeSetData.value + FROM + ProbeSetXRef + Left Join ProbeSetData ON + ProbeSetXRef.DataId = ProbeSetData.Id + WHERE + ProbeSetXRef.ProbeSetFreezeId = %s AND + ProbeSetXRef.ProbeSetId >= %s AND + ProbeSetXRef.ProbeSetId <= %s + ''' % (freezeId, ProbeSetId1, ProbeSetId2)) + + step3 = time.time() + totalrows = 0 + somerows = cursor.fetchmany(1000) + while len(somerows) > 0: + totalrows += len(somerows) + for row in somerows: + # this line of code can execute more than one million times + traitDict[row[0]].strainData[int(row[1])] = row[2] + somerows = cursor.fetchmany(1000) + + #cursor.close() + step4 = time.time() + + time1 = step2 - step1 + time2 = step3 - step2 + time3 = step4 - step3 + time4 = step4 - step1 + #print "%f %f %f %f %d rows" % (round(time1, 2), + # round(time2, 2), + # round(time3, 2), + # round(time4, 2), + # totalrows) + #print "Fetched %d traits" % len(traits) + return traits + + +# def noneFilter : string or none -> string +# to replace a possible None by an empty string +def noneFilter(x): + if x is None: + return "" + else: + return x + +# queryProbeSetTraits: Cursor -> Integer -> dictof Trait +def queryProbeSetTraits(cursor, freezeId): + """ + To locate all of the traits in a particular probeset + """ + qry = ''' + SELECT + ProbeSet.Id, + ProbeSet.Name, + ProbeSet.description, + ProbeSet.symbol, + ProbeSet.Chr, + ProbeSet.Mb, + ProbeSet.GeneId, + ProbeSetXRef.DataId + FROM + ProbeSet, + ProbeSetXRef + WHERE + ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + ProbeSetXRef.ProbeSetFreezeId = %s + ORDER BY ProbeSet.Id + ''' % freezeId + + cursor.execute(qry) + rows = cursor.fetchall() + traits = [] + + for row in rows: + row = map(noneFilter, row) + trait = ProbeSetTrait(id=row[0], name=row[1], + description=row[2], + chromosome=row[4], + MB=row[5], + symbol=row[3], + GeneId=row[6]) + trait.dataId = row[7] + traits.append(trait) + + return traits + + +# queryProbeSetTraits2: Cursor -> Integer -> dictof Trait +def queryProbeSetTraits2(cursor, freezeId, ProbeSetId1, ProbeSetId2): + """ + To locate all of the traits in a particular probeset + """ + qry = ''' + SELECT + ProbeSet.Id, + ProbeSet.Name, + ProbeSet.description, + ProbeSet.symbol, + ProbeSet.Chr, + ProbeSet.Mb, + ProbeSet.GeneId, + ProbeSetXRef.DataId + FROM + ProbeSet, + ProbeSetXRef + WHERE + ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + ProbeSetXRef.ProbeSetFreezeId = %s AND + ProbeSet.Id >= %s AND + ProbeSet.Id <= %s + ORDER BY ProbeSet.Id + ''' % (freezeId, ProbeSetId1, ProbeSetId2) + + cursor.execute(qry) + rows = cursor.fetchall() + traits = [] + + for row in rows: + row = map(noneFilter, row) + trait = ProbeSetTrait(id=row[0], name=row[1], + description=row[2], + chromosome=row[4], + MB=row[5], + symbol=row[3], + GeneId=row[6]) + trait.dataId = row[7] + traits.append(trait) + + return traits + + +# queryPublishTraits : Cursor -> arrayof Trait +def queryPublishTraits(cursor, freezeId): + """ + To locate all published traits + """ + qry = ''' + SELECT + Publication.Id, + Publication.Name, + Publication.PhenoType, + Publication.Authors, + Publication.Title, + Publication.Year, + Publication.PubMed_ID, + PublishXRef.DataId + FROM + Publication, + PublishXRef + WHERE + PublishXRef.PublishFreezeId = %s AND + PublishXRef.PublishId = Publication.Id + ''' % freezeId + + qry = ''' + SELECT + Publication.Id, + PublishXRef.Id, + Phenotype.Pre_publication_description, + Phenotype.Post_publication_description, + Publication.Authors, + Publication.Title, + Publication.Year, + Publication.PubMed_ID, + PublishXRef.DataId + FROM + Publication, PublishXRef, Phenotype, PublishFreeze + WHERE + PublishFreeze.Id = %s AND + PublishFreeze.InbredSetId = PublishXRef.InbredSetId AND + PublishXRef.PublicationId = Publication.Id AND + PublishXRef.PhenotypeId = Phenotype.Id + ''' % freezeId + cursor.execute(qry) + rows = cursor.fetchall() + traits = [] + for row in rows: + PhenotypeString = row[3] + if not row[7] and row[2]: + PhenotypeString = row[2] + trait = PublishTrait(id=row[0], name= '%s' %row[1], + phenotype=PhenotypeString, + authors=row[4], + title=row[5], + year=row[6], + href=row[7]) + trait.dataId = row[8] + traits.append(trait) + + return traits + +# queryGenotypeTraits : Cursor -> arrayof Trait +def queryGenotypeTraits(cursor, freezeId): + """ + To locate all traits in the genotype + """ + qry = ''' + SELECT + Geno.Id, + Geno.Name, + Geno.Chr, + GenoXRef.DataId, + Geno.Mb + FROM + Geno, + GenoXRef + WHERE + GenoXRef.GenoId = Geno.Id + AND GenoXRef.GenoFreezeId = %s + ''' % freezeId + cursor.execute(qry) + rows = cursor.fetchall() + traits = [] + + for row in rows: + trait = GenotypeTrait(id=row[0], name=row[1], + chromosome=row[2], MB=row[4]) + trait.dataId = row[3] + traits.append(trait) + + return traits + +# queryProbeSetTraitByName : Cursor -> string -> Trait +# to find a particular trait given its name +def queryProbeSetTraitByName(cursor, name): + qry = ''' + SELECT + ProbeSet.Id, + ProbeSet.Name, + ProbeSet.description, + ProbeSet.symbol, + ProbeSet.Chr, + ProbeSet.Mb, + ProbeSet.GeneId + FROM + ProbeSet + WHERE + ProbeSet.Name = "%s" + ''' % name + #print qry + cursor.execute(qry) + row = cursor.fetchone() + + # convert a MySQL NULL value to an empty string + # for gene symbol + if row[3] is None: + sym = "" + else: + sym = row[3] + + return ProbeSetTrait(id=row[0], name=row[1], description=row[2], + symbol=sym, chromosome=row[4], MB=row[5], + GeneId=row[6]) + + +# queryTraits : Cursor -> string -> string -> arrayof Traits +# to find all of the traits whose descriptions match a certain string in a +# particular database +def queryTraits(cursor, dbId, queryString): + # we do this in two steps: + # first we get the data id for the matching traits + qry = ''' + SELECT + ProbeSet.Id, + ProbeSet.Name, + ProbeSet.description, + ProbeSetXRef.DataId + FROM + ProbeSet, + ProbeSetXRef + WHERE + ProbeSetXRef.ProbeSetFreezeId = %s AND + ProbeSet.Id = ProbeSetXRef.ProbeSetId AND + ProbeSet.description LIKE "%%%s%%" + ''' % (dbId, queryString) + # print qry + cursor.execute(qry) + + if cursor.rowcount == 0: + print "No traits found" + return [] + else: + print "%s traits found" % (cursor.rowcount) + + # maybe fetchall is bad; we will see + traits = [] + for row in cursor.fetchall(): + myTrait = Trait(row[0], row[1], row[2]) + myTrait.dataId = row[3] + traits.append(myTrait) + + # second we pull all of the strain data for each trait + print "Retrieving individual trait data..." + for trait in traits: + trait.populateStrainData(cursor, trait.dataId) + print "%s (%s) -- %s" % (trait.name, trait.id, trait.description) + + print "done" + return traits + +# queryProbeSetFreezes : Cursor -> arrayof String,String tuples +# to return the short and long name for each ProbeSetFreeze +# this function is designed specifically for building +# a database selector +def queryProbeSetFreezes(cursor): + cursor.execute(""" + SELECT + ProbeSetFreeze.Name, + ProbeSetFreeze.FullName + FROM + ProbeSetFreeze + ORDER BY + ProbeSetFreeze.Name + """) + + # for now, fetchall returns the data as a list of tuples + # which is what we want + return list(cursor.fetchall()) + +# queryProbeSetFreezeIdName: Cursor -> String -> String, String +# this function returns the +# id and the long name of a probesetfreeze given its name +# once again, it's designed specifically for building +# the database selector +def queryProbeSetFreezeIdName(cursor, name): + qry = (''' + SELECT + ProbeSetFreeze.Id, + ProbeSetFreeze.FullName + FROM + ProbeSetFreeze + WHERE + ProbeSetFreeze.Name = "%s" + ''' % name) + #print qry + cursor.execute(qry) + + row = cursor.fetchone() + return row + +# queryProbeSetFreezeName: Cursor -> String -> String +# to return the name of a probe set freeze given its id +def queryProbeSetFreezeName(cursor, id): + cursor.execute(''' + SELECT + ProbeSetFreeze.FullName + FROM + ProbeSetFreeze + WHERE + ProbeSetFreeze.Id = %s + ''' % id) + + row = cursor.fetchone() + return row[0] + +# dbNameToTypeId : Cursor -> String -> (String, String) +# to convert a database name to a (type, id) pair +def dbNameToTypeId(cursor, name): + types = ["ProbeSet", "Geno", "Publish"] + for type_ in types: + count = cursor.execute(''' + SELECT + %sFreeze.Id + FROM + %sFreeze + WHERE + Name = "%s" + ''' % (type_, type_, name)) + + if count != 0: + id = cursor.fetchone()[0] + return type_, id + + return None, None + +# dbTypeIdToName : Cursor -> String -> String -> String +# to convert a database (type,id) pair into a name +def dbTypeIdToName(cursor, dbType, dbId): + cursor.execute(''' + SELECT + %sFreeze.Name + FROM + %sFreeze + WHERE + Id = %s + ''' % (dbType, dbType, dbId)) + + row = cursor.fetchone() + return row[0] + +#XZ, July 21, 2010: I add this function +def getSpeciesIdByDbTypeId (cursor, dbType, dbId): + cursor.execute(''' + SELECT + SpeciesId + FROM + InbredSet, %sFreeze + WHERE + %sFreeze.Id = %s + and InbredSetId = InbredSet.Id + ''' % (dbType, dbType, dbId)) + + row = cursor.fetchone() + return row[0] + + +# queryStrainCount : Cursor -> int +# return the number of strains in the database +def queryStrainCount(cursor): + cursor.execute(''' + SELECT + Max(Strain.Id) + FROM + Strain + ''') + return (cursor.fetchone())[0] diff --git a/web/webqtl/correlation/CorrelationPage.py b/web/webqtl/correlation/CorrelationPage.py new file mode 100755 index 00000000..8ce669cb --- /dev/null +++ b/web/webqtl/correlation/CorrelationPage.py @@ -0,0 +1,1958 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by NL 2011/02/11 + +import string +from math import * +import cPickle +import os +import time +import pyXLWriter as xl +import pp +import math + +from htmlgen import HTMLgen2 as HT +import reaper + +from base import webqtlConfig +from utility.THCell import THCell +from utility.TDCell import TDCell +from base.webqtlTrait import webqtlTrait +from base.webqtlDataset import webqtlDataset +from base.templatePage import templatePage +from utility import webqtlUtil +from dbFunction import webqtlDatabaseFunction +import utility.webqtlUtil #this is for parallel computing only. +from correlation import correlationFunction + + +class CorrelationPage(templatePage): + + corrMinInformative = 4 + + def __init__(self, fd): + + #XZ, 01/14/2009: This method is for parallel computing only. + #XZ: It is supposed to be called when "Genetic Correlation, Pearson's r" (method 1) + #XZ: or "Genetic Correlation, Spearman's rho" (method 2) is selected + def compute_corr( input_nnCorr, input_trait, input_list, computing_method): + + allcorrelations = [] + + for line in input_list: + tokens = line.split('","') + tokens[-1] = tokens[-1][:-2] #remove the last " + tokens[0] = tokens[0][1:] #remove the first " + + traitdataName = tokens[0] + database_trait = tokens[1:] + + if computing_method == "1": #XZ: Pearson's r + corr,nOverlap = utility.webqtlUtil.calCorrelationText(input_trait, database_trait, input_nnCorr) + else: #XZ: Spearman's rho + corr,nOverlap = utility.webqtlUtil.calCorrelationRankText(input_trait, database_trait, input_nnCorr) + traitinfo = [traitdataName,corr,nOverlap] + allcorrelations.append(traitinfo) + + return allcorrelations + + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + if not fd.genotype: + fd.readGenotype() + + #XZ, 09/18/2008: get the information such as value, variance of the input strain names from the form. + if fd.allstrainlist: + mdpchoice = fd.formdata.getvalue('MDPChoice') + #XZ, in HTML source code, it is "BXD Only" or "BXH only", and so on + if mdpchoice == "1": + strainlist = fd.f1list + fd.strainlist + #XZ, in HTML source code, it is "MDP Only" + elif mdpchoice == "2": + strainlist = [] + strainlist2 = fd.f1list + fd.strainlist + for strain in fd.allstrainlist: + if strain not in strainlist2: + strainlist.append(strain) + #So called MDP Panel + if strainlist: + strainlist = fd.f1list+fd.parlist+strainlist + #XZ, in HTML source code, it is "All Cases" + else: + strainlist = fd.allstrainlist + #XZ, 09/18/2008: put the trait data into dictionary fd.allTraitData + fd.readData(fd.allstrainlist) + else: + mdpchoice = None + strainlist = fd.strainlist + #XZ, 09/18/2008: put the trait data into dictionary fd.allTraitData + fd.readData() + + #XZ, 3/16/2010: variable RISet must be pass by the form + RISet = fd.RISet + #XZ, 12/12/2008: get species infomation + species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=RISet) + + #XZ, 09/18/2008: get all information about the user selected database. + self.target_db_name = fd.formdata.getvalue('database') + + try: + self.db = webqtlDataset(self.target_db_name, self.cursor) + except: + heading = "Correlation Table" + detail = ["The database you just requested has not been established yet."] + self.error(heading=heading,detail=detail) + return + + #XZ, 09/18/2008: check if user has the authority to get access to the database. + if self.db.type == 'ProbeSet': + self.cursor.execute('SELECT Id, Name, FullName, confidentiality, AuthorisedUsers FROM ProbeSetFreeze WHERE Name = "%s"' % self.target_db_name) + indId, indName, indFullName, confidential, AuthorisedUsers = self.cursor.fetchall()[0] + + if confidential == 1: + access_to_confidential_dataset = 0 + + #for the dataset that confidentiality is 1 + #1. 'admin' and 'root' can see all of the dataset + #2. 'user' can see the dataset that AuthorisedUsers contains his id(stored in the Id field of User table) + if webqtlConfig.USERDICT[self.privilege] > webqtlConfig.USERDICT['user']: + access_to_confidential_dataset = 1 + else: + AuthorisedUsersList=AuthorisedUsers.split(',') + if AuthorisedUsersList.__contains__(self.userName): + access_to_confidential_dataset = 1 + + if not access_to_confidential_dataset: + #Error, Confidential Database + heading = "Correlation Table" + detail = ["The %s database you selected is not open to the public at this time, please go back and select other database." % indFullName] + self.error(heading=heading,detail=detail,error="Confidential Database") + return + + #XZ, 09/18/2008: filter out the strains that have no value. + _strains, _vals, _vars, N = fd.informativeStrains(strainlist) + + N = len(_strains) + + if N < self.corrMinInformative: + heading = "Correlation Table" + detail = ['Fewer than %d strain data were entered for %s data set. No calculation of correlation has been attempted.' % (self.corrMinInformative, RISet)] + self.error(heading=heading,detail=detail) + return + + #XZ, 09/28/2008: if user select "1", then display 1, 3 and 4. + #XZ, 09/28/2008: if user select "2", then display 2, 3 and 5. + #XZ, 09/28/2008: if user select "3", then display 1, 3 and 4. + #XZ, 09/28/2008: if user select "4", then display 1, 3 and 4. + #XZ, 09/28/2008: if user select "5", then display 2, 3 and 5. + methodDict = {"1":"Genetic Correlation (Pearson's r)","2":"Genetic Correlation (Spearman's rho)","3":"SGO Literature Correlation","4":"Tissue Correlation (Pearson's r)", "5":"Tissue Correlation (Spearman's rho)"} + self.method = fd.formdata.getvalue('method') + if self.method not in ("1","2","3","4","5"): + self.method = "1" + + self.returnNumber = int(fd.formdata.getvalue('criteria')) + + myTrait = fd.formdata.getvalue('fullname') + if myTrait: + myTrait = webqtlTrait(fullname=myTrait, cursor=self.cursor) + myTrait.retrieveInfo() + + # We will not get Literature Correlations if there is no GeneId because there is nothing to look against + try: + input_trait_GeneId = int(fd.formdata.getvalue('GeneId')) + except: + input_trait_GeneId = None + + # We will not get Tissue Correlations if there is no gene symbol because there is nothing to look against + try: + input_trait_symbol = myTrait.symbol + except: + input_trait_symbol = None + + + #XZ, 12/12/2008: if the species is rat or human, translate the geneid to mouse geneid + input_trait_mouse_geneid = self.translateToMouseGeneID(species, input_trait_GeneId) + + + #XZ: As of Nov/13/2010, this dataset is 'UTHSC Illumina V6.2 RankInv B6 D2 average CNS GI average (May 08)' + TissueProbeSetFreezeId = 1 + + #XZ, 09/22/2008: If we need search by GeneId, + #XZ, 09/22/2008: we have to check if this GeneId is in the literature or tissue correlation table. + #XZ, 10/15/2008: We also to check if the selected database is probeset type. + if self.method == "3" or self.method == "4" or self.method == "5": + if self.db.type != "ProbeSet": + self.error(heading="Wrong correlation type",detail="It is not possible to compute the %s between your trait and data in this %s database. Please try again after selecting another type of correlation." % (methodDict[self.method],self.db.name),error="Correlation Type Error") + return + + """ + if not input_trait_GeneId: + self.error(heading="No Associated GeneId",detail="This trait has no associated GeneId, so we are not able to show any literature or tissue related information.",error="No GeneId Error") + return + """ + + #XZ: We have checked geneid did exist + + if self.method == "3": + if not input_trait_GeneId or not self.checkForLitInfo(input_trait_mouse_geneid): + self.error(heading="No Literature Info",detail="This gene does not have any associated Literature Information.",error="Literature Correlation Error") + return + + if self.method == "4" or self.method == "5": + if not input_trait_symbol: + self.error(heading="No Tissue Correlation Information",detail="This gene does not have any associated Tissue Correlation Information.",error="Tissue Correlation Error") + return + + if not self.checkSymbolForTissueCorr(TissueProbeSetFreezeId, myTrait.symbol): + self.error(heading="No Tissue Correlation Information",detail="This gene does not have any associated Tissue Correlation Information.",error="Tissue Correlation Error") + return + +############################################################################################################################################ + + allcorrelations = [] + nnCorr = len(_vals) + + #XZ: Use the fast method only for probeset dataset, and this dataset must have been created. + #XZ: Otherwise, use original method + + useFastMethod = False + + if self.db.type == "ProbeSet": + + DatabaseFileName = self.getFileName( target_db_name=self.target_db_name ) + DirectoryList = os.listdir(webqtlConfig.TEXTDIR) ### List of existing text files. Used to check if a text file already exists + + if DatabaseFileName in DirectoryList: + useFastMethod = True + + if useFastMethod: + if 1: + #try: + useLit = False + if self.method == "3": + litCorrs = self.fetchLitCorrelations(species=species, GeneId=input_trait_GeneId, db=self.db, returnNumber=self.returnNumber) + useLit = True + + useTissueCorr = False + if self.method == "4" or self.method == "5": + tissueCorrs = self.fetchTissueCorrelations(db=self.db, primaryTraitSymbol=input_trait_symbol, TissueProbeSetFreezeId=TissueProbeSetFreezeId, method=self.method, returnNumber = self.returnNumber) + useTissueCorr = True + + datasetFile = open(webqtlConfig.TEXTDIR+DatabaseFileName,'r') + + #XZ, 01/08/2009: read the first line + line = datasetFile.readline() + dataset_strains = webqtlUtil.readLineCSV(line)[1:] + + #XZ, 01/08/2009: This step is critical. It is necessary for this new method. + #XZ: The original function fetchAllDatabaseData uses all strains stored in variable _strains to + #XZ: retrieve the values of each strain from database in real time. + #XZ: The new method uses all strains stored in variable dataset_strains to create a new variable + #XZ: _newvals. _newvals has the same length as dataset_strains. The items in _newvals is in + #XZ: the same order of items in dataset_strains. The value of each item in _newvals is either + #XZ: the value of correspinding strain in _vals or 'None'. + _newvals = [] + for item in dataset_strains: + if item in _strains: + _newvals.append(_vals[_strains.index(item)]) + else: + _newvals.append('None') + + nnCorr = len(_newvals) + + #XZ, 01/14/2009: If literature corr or tissue corr is selected, + #XZ: there is no need to use parallel computing. + if useLit or useTissueCorr: + for line in datasetFile: + traitdata=webqtlUtil.readLineCSV(line) + traitdataName = traitdata[0] + traitvals = traitdata[1:] + + if useLit: + if not litCorrs.has_key( traitdataName ): + continue + + if useTissueCorr: + if not tissueCorrs.has_key( traitdataName ): + continue + + if self.method == "3" or self.method == "4": + corr,nOverlap = webqtlUtil.calCorrelationText(traitvals,_newvals,nnCorr) + else: + corr,nOverlap = webqtlUtil.calCorrelationRankText(traitvals,_newvals,nnCorr) + + traitinfo = [traitdataName,corr,nOverlap] + + if useLit: + traitinfo.append(litCorrs[traitdataName]) + + if useTissueCorr: + tempCorr, tempPValue = tissueCorrs[traitdataName] + traitinfo.append(tempCorr) + traitinfo.append(tempPValue) + + allcorrelations.append(traitinfo) + #XZ, 01/14/2009: If genetic corr is selected, use parallel computing + else: + input_line_list = datasetFile.readlines() + all_line_number = len(input_line_list) + + step = 1000 + job_number = math.ceil( float(all_line_number)/step ) + + job_input_lists = [] + + for job_index in range( int(job_number) ): + starti = job_index*step + endi = min((job_index+1)*step, all_line_number) + + one_job_input_list = [] + + for i in range( starti, endi ): + one_job_input_list.append( input_line_list[i] ) + + job_input_lists.append( one_job_input_list ) + + ppservers = () + # Creates jobserver with automatically detected number of workers + job_server = pp.Server(ppservers=ppservers) + + jobs = [] + results = [] + + for one_job_input_list in job_input_lists: #pay attention to modules from outside + jobs.append( job_server.submit(func=compute_corr, args=(nnCorr, _newvals, one_job_input_list, self.method), depfuncs=(), modules=("utility.webqtlUtil",)) ) + + for one_job in jobs: + one_result = one_job() + results.append( one_result ) + + for one_result in results: + for one_traitinfo in one_result: + allcorrelations.append( one_traitinfo ) + + datasetFile.close() + totalTraits = len(allcorrelations) + #except: + # useFastMethod = False + # self.error(heading="No computation method",detail="Something is wrong within the try except block in CorrelationPage python module.",error="Computation Error") + # return + + #XZ, 01/08/2009: use the original method to retrieve from database and compute. + if not useFastMethod: + + traitdatabase, dataStartPos = self.fetchAllDatabaseData(species=species, GeneId=input_trait_GeneId, GeneSymbol=input_trait_symbol, strains=_strains, db=self.db, method=self.method, returnNumber=self.returnNumber, tissueProbeSetFreezeId=TissueProbeSetFreezeId) + + totalTraits = len(traitdatabase) #XZ, 09/18/2008: total trait number + + for traitdata in traitdatabase: + traitdataName = traitdata[0] + traitvals = traitdata[dataStartPos:] + if self.method == "1" or self.method == "3" or self.method == "4": + corr,nOverlap = webqtlUtil.calCorrelation(traitvals,_vals,nnCorr) + else: + corr,nOverlap = webqtlUtil.calCorrelationRank(traitvals,_vals,nnCorr) + + traitinfo = [traitdataName,corr,nOverlap] + + #XZ, 09/28/2008: if user select '3', then fetchAllDatabaseData would give us LitCorr in the [1] position + #XZ, 09/28/2008: if user select '4' or '5', then fetchAllDatabaseData would give us Tissue Corr in the [1] position + #XZ, 09/28/2008: and Tissue Corr P Value in the [2] position + if input_trait_GeneId and self.db.type == "ProbeSet": + if self.method == "3": + traitinfo.append( traitdata[1] ) + if self.method == "4" or self.method == "5": + traitinfo.append( traitdata[1] ) + traitinfo.append( traitdata[2] ) + + allcorrelations.append(traitinfo) + + +############################################################# + + if self.method == "3" and input_trait_GeneId: + allcorrelations.sort(webqtlUtil.cmpLitCorr) + #XZ, 3/31/2010: Theoretically, we should create one function 'comTissueCorr' + #to compare each trait by their tissue corr p values. + #But because the tissue corr p values are generated by permutation test, + #the top ones always have p value 0. So comparing p values actually does nothing. + #In addition, for the tissue data in our database, the N is always the same. + #So it's safe to compare with tissue corr statistic value. + #That's the same as literature corr. + elif self.method in ["4","5"] and input_trait_GeneId: + allcorrelations.sort(webqtlUtil.cmpLitCorr) + else: + allcorrelations.sort(webqtlUtil.cmpCorr) + + + #XZ, 09/20/2008: we only need the top ones. + self.returnNumber = min(self.returnNumber,len(allcorrelations)) + allcorrelations = allcorrelations[:self.returnNumber] + + addLiteratureCorr = False + addTissueCorr = False + + traitList = [] + for item in allcorrelations: + thisTrait = webqtlTrait(db=self.db, name=item[0], cursor=self.cursor) + thisTrait.retrieveInfo( QTL='Yes' ) + + nOverlap = item[2] + corr = item[1] + + #XZ: calculate corrPValue + if nOverlap < 3: + corrPValue = 1.0 + else: + if abs(corr) >= 1.0: + corrPValue = 0.0 + else: + ZValue = 0.5*log((1.0+corr)/(1.0-corr)) + ZValue = ZValue*sqrt(nOverlap-3) + corrPValue = 2.0*(1.0 - reaper.normp(abs(ZValue))) + + thisTrait.Name = item[0] + thisTrait.corr = corr + thisTrait.nOverlap = nOverlap + thisTrait.corrPValue = corrPValue + # NL, 07/19/2010 + # js function changed, add a new parameter rankOrder for js function 'showTissueCorrPlot' + rankOrder = 0; + if self.method in ["2","5"]: + rankOrder = 1; + thisTrait.rankOrder =rankOrder + + #XZ, 26/09/2008: Method is 4 or 5. Have fetched tissue corr, but no literature correlation yet. + if len(item) == 5: + thisTrait.tissueCorr = item[3] + thisTrait.tissuePValue = item[4] + addLiteratureCorr = True + + #XZ, 26/09/2008: Method is 3, Have fetched literature corr, but no tissue corr yet. + elif len(item) == 4: + thisTrait.LCorr = item[3] + thisTrait.mouse_geneid = self.translateToMouseGeneID(species, thisTrait.geneid) + addTissueCorr = True + + #XZ, 26/09/2008: Method is 1 or 2. Have NOT fetched literature corr and tissue corr yet. + # Phenotype data will not have geneid, and neither will some probes + # we need to handle this because we will get an attribute error + else: + if input_trait_mouse_geneid and self.db.type=="ProbeSet": + addLiteratureCorr = True + if input_trait_symbol and self.db.type=="ProbeSet": + addTissueCorr = True + + traitList.append(thisTrait) + + if addLiteratureCorr: + traitList = self.getLiteratureCorrelationByList(input_trait_mouse_geneid, species, traitList) + if addTissueCorr: + traitList = self.getTissueCorrelationByList( primaryTraitSymbol=input_trait_symbol, traitList=traitList,TissueProbeSetFreezeId =TissueProbeSetFreezeId, method=self.method) + +######################################################## + + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') + + mainfmName = webqtlUtil.genRandStr("fm_") + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name= mainfmName, submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase', 'ProbeSetID':'_','database':self.target_db_name, 'databaseFull':self.db.fullname, 'CellID':'_', 'RISet':RISet, 'identification':fd.identification} + + if myTrait: + hddn['fullname']=fd.formdata.getvalue('fullname') + if mdpchoice: + hddn['MDPChoice']=mdpchoice + + + #XZ, 09/18/2008: pass the trait data to next page by hidden parameters. + webqtlUtil.exportData(hddn, fd.allTraitData) + + if fd.incparentsf1: + hddn['incparentsf1']='ON' + + if fd.allstrainlist: + hddn['allstrainlist'] = string.join(fd.allstrainlist, ' ') + + + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + #XZ, 11/21/2008: add two parameters to form + form.append(HT.Input(name="X_geneSymbol", value="", type='hidden')) + form.append(HT.Input(name="Y_geneSymbol", value="", type='hidden')) + + #XZ, 3/11/2010: add one parameter to record if the method is rank order. + form.append(HT.Input(name="rankOrder", value="%s" % rankOrder, type='hidden')) + + form.append(HT.Input(name="TissueProbeSetFreezeId", value="%s" % TissueProbeSetFreezeId, type='hidden')) + + #################################### + # generate the info on top of page # + #################################### + + info = self.getTopInfo(myTrait=myTrait, method=self.method, db=self.db, target_db_name=self.target_db_name, returnNumber=self.returnNumber, methodDict=methodDict, totalTraits=totalTraits, identification=fd.identification ) + + ############## + # Excel file # + ############## + filename= webqtlUtil.genRandStr("Corr_") + xlsUrl = HT.Input(type='button', value = 'Download Table', onClick= "location.href='/tmp/%s.xls'" % filename, Class='button') + # Create a new Excel workbook + workbook = xl.Writer('%s.xls' % (webqtlConfig.TMPDIR+filename)) + headingStyle = workbook.add_format(align = 'center', bold = 1, border = 1, size=13, fg_color = 0x1E, color="white") + + #XZ, 3/18/2010: pay attention to the line number of header in this file. As of today, there are 7 lines. + worksheet = self.createExcelFileWithTitleAndFooter(workbook=workbook, identification=fd.identification, db=self.db, returnNumber=self.returnNumber) + + newrow = 7 + + +##################################################################### + + + + mintmap = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'showIntMap');" % mainfmName) + mintmap_img = HT.Image("/images/multiple_interval_mapping1_final.jpg", name='mintmap', alt="Multiple Interval Mapping", title="Multiple Interval Mapping", style="border:none;") + mintmap.append(mintmap_img) + mcorr = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'compCorr');" % mainfmName) + mcorr_img = HT.Image("/images/compare_correlates2_final.jpg", alt="Compare Correlates", title="Compare Correlates", style="border:none;") + mcorr.append(mcorr_img) + cormatrix = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'corMatrix');" % mainfmName) + cormatrix_img = HT.Image("/images/correlation_matrix1_final.jpg", alt="Correlation Matrix and PCA", title="Correlation Matrix and PCA", style="border:none;") + cormatrix.append(cormatrix_img) + networkGraph = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'networkGraph');" % mainfmName) + networkGraph_img = HT.Image("/images/network_graph1_final.jpg", name='mintmap', alt="Network Graphs", title="Network Graphs", style="border:none;") + networkGraph.append(networkGraph_img) + heatmap = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'heatmap');" % mainfmName) + heatmap_img = HT.Image("/images/heatmap2_final.jpg", name='mintmap', alt="QTL Heat Map and Clustering", title="QTL Heatmap and Clustering", style="border:none;") + heatmap.append(heatmap_img) + partialCorr = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'partialCorrInput');" % mainfmName) + partialCorr_img = HT.Image("/images/partial_correlation_final.jpg", name='partialCorr', alt="Partial Correlation", title="Partial Correlation", style="border:none;") + partialCorr.append(partialCorr_img) + addselect = HT.Href(url="#redirect", onClick="addRmvSelection('%s', document.getElementsByName('%s')[0], 'addToSelection');" % (RISet, mainfmName)) + addselect_img = HT.Image("/images/add_collection1_final.jpg", name="addselect", alt="Add To Collection", title="Add To Collection", style="border:none;") + addselect.append(addselect_img) + selectall = HT.Href(url="#redirect", onClick="checkAll(document.getElementsByName('%s')[0]);" % mainfmName) + selectall_img = HT.Image("/images/select_all2_final.jpg", name="selectall", alt="Select All", title="Select All", style="border:none;") + selectall.append(selectall_img) + selectinvert = HT.Href(url="#redirect", onClick = "checkInvert(document.getElementsByName('%s')[0]);" % mainfmName) + selectinvert_img = HT.Image("/images/invert_selection2_final.jpg", name="selectinvert", alt="Invert Selection", title="Invert Selection", style="border:none;") + selectinvert.append(selectinvert_img) + reset = HT.Href(url="#redirect", onClick="checkNone(document.getElementsByName('%s')[0]); return false;" % mainfmName) + reset_img = HT.Image("/images/select_none2_final.jpg", alt="Select None", title="Select None", style="border:none;") + reset.append(reset_img) + selecttraits = HT.Input(type='button' ,name='selecttraits',value='Select Traits', onClick="checkTraits(this.form);",Class="button") + selectgt = HT.Input(type='text' ,name='selectgt',value='-1.0', size=6,maxlength=10,onChange="checkNumeric(this,1.0,'-1.0','gthan','greater than filed')") + selectlt = HT.Input(type='text' ,name='selectlt',value='1.0', size=6,maxlength=10,onChange="checkNumeric(this,-1.0,'1.0','lthan','less than field')") + selectandor = HT.Select(name='selectandor') + selectandor.append(('AND','and')) + selectandor.append(('OR','or')) + selectandor.selected.append('AND') + + pageTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="100%", border=0, align="Left") + + containerTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="90%",border=0, align="Left") + + optionsTable = HT.TableLite(cellSpacing=2, cellPadding=0,width="320", height="80", border=0, align="Left") + optionsTable.append(HT.TR(HT.TD(selectall), HT.TD(reset), HT.TD(selectinvert), HT.TD(addselect), align="left")) + optionsTable.append(HT.TR(HT.TD(" "*1,"Select"), HT.TD("Deselect"), HT.TD(" "*1,"Invert"), HT.TD(" "*3,"Add"))) + containerTable.append(HT.TR(HT.TD(optionsTable))) + + functionTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="480",height="80", border=0, align="Left") + functionRow = HT.TR(HT.TD(networkGraph, width="16.7%"), HT.TD(cormatrix, width="16.7%"), HT.TD(partialCorr, width="16.7%"), HT.TD(mcorr, width="16.7%"), HT.TD(mintmap, width="16.7%"), HT.TD(heatmap), align="left") + labelRow = HT.TR(HT.TD(" "*1,HT.Text("Graph")), HT.TD(" "*1,HT.Text("Matrix")), HT.TD(" "*1,HT.Text("Partial")), HT.TD(HT.Text("Compare")), HT.TD(HT.Text("QTL Map")), HT.TD(HT.Text(text="Heat Map"))) + functionTable.append(functionRow, labelRow) + containerTable.append(HT.TR(HT.TD(functionTable), HT.BR())) + + #more_options = HT.Image("/images/more_options1_final.jpg", name='more_options', alt="Expand Options", title="Expand Options", style="border:none;", Class="toggleShowHide") + + #containerTable.append(HT.TR(HT.TD(more_options, HT.BR(), HT.BR()))) + + moreOptions = HT.Input(type='button',name='options',value='More Options', onClick="",Class="toggle") + fewerOptions = HT.Input(type='button',name='options',value='Fewer Options', onClick="",Class="toggle") + + if (fd.formdata.getvalue('showHideOptions') == 'less'): + containerTable.append(HT.TR(HT.TD(" "), height="10"), HT.TR(HT.TD(HT.Div(fewerOptions, Class="toggleShowHide")))) + containerTable.append(HT.TR(HT.TD(" "))) + else: + containerTable.append(HT.TR(HT.TD(" "), height="10"), HT.TR(HT.TD(HT.Div(moreOptions, Class="toggleShowHide")))) + containerTable.append(HT.TR(HT.TD(" "))) + + containerTable.append(HT.TR(HT.TD(HT.Span(selecttraits,' with r > ',selectgt, ' ',selectandor, ' r < ',selectlt,Class="bd1 cbddf fs11")), style="display:none;", Class="extra_options")) + + chrMenu = HT.Input(type='hidden',name='chromosomes',value='all') + + corrHeading = HT.Paragraph('Correlation Table', Class="title") + + + tblobj = {} + + if self.db.type=="Geno": + + containerTable.append(HT.TR(HT.TD(xlsUrl, height=40))) + + pageTable.append(HT.TR(HT.TD(containerTable))) + + tblobj['header'], worksheet = self.getTableHeaderForGeno( method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle) + newrow += 1 + + sortby = self.getSortByValue( calculationMethod = self.method ) + + corrScript = HT.Script(language="Javascript") + corrScript.append("var corrArray = new Array();") + + tblobj['body'], worksheet, corrScript = self.getTableBodyForGeno(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript) + + workbook.close() + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + + div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable") + + pageTable.append(HT.TR(HT.TD(div))) + + form.append(HT.Input(name='ShowStrains',type='hidden', value =1), + HT.Input(name='ShowLine',type='hidden', value =1), + HT.P(), HT.P(), pageTable) + TD_LR.append(corrHeading, info, form, HT.P()) + + self.dict['body'] = str(TD_LR) + self.dict['js1'] = '' + self.dict['title'] = 'Correlation' + + elif self.db.type=="Publish": + + containerTable.append(HT.TR(HT.TD(xlsUrl, height=40))) + + pageTable.append(HT.TR(HT.TD(containerTable))) + + tblobj['header'], worksheet = self.getTableHeaderForPublish(method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle) + newrow += 1 + + sortby = self.getSortByValue( calculationMethod = self.method ) + + corrScript = HT.Script(language="Javascript") + corrScript.append("var corrArray = new Array();") + + tblobj['body'], worksheet, corrScript = self.getTableBodyForPublish(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript, species=species) + + workbook.close() + + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py; + div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable") + + pageTable.append(HT.TR(HT.TD(div))) + + form.append( + HT.Input(name='ShowStrains',type='hidden', value =1), + HT.Input(name='ShowLine',type='hidden', value =1), + HT.P(), pageTable) + TD_LR.append(corrHeading, info, form, HT.P()) + + self.dict['body'] = str(TD_LR) + self.dict['js1'] = '' + self.dict['title'] = 'Correlation' + + + elif self.db.type=="ProbeSet": + + tblobj['header'], worksheet = self.getTableHeaderForProbeSet(method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle) + newrow += 1 + + sortby = self.getSortByValue( calculationMethod = self.method ) + + corrScript = HT.Script(language="Javascript") + corrScript.append("var corrArray = new Array();") + + tblobj['body'], worksheet, corrScript = self.getTableBodyForProbeSet(traitList=traitList, primaryTrait=myTrait, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript, species=species) + + workbook.close() + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + + #XZ: here is the table of traits + div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1", hiddenColumns=["Gene ID","Homologene ID"]), corrScript, Id="sortable") + + + #XZ, 01/12/2009: create database menu for 'Add Correlation' + self.cursor.execute(""" + select + ProbeSetFreeze.FullName, ProbeSetFreeze.Id, Tissue.name + from + ProbeSetFreeze, ProbeFreeze, ProbeSetFreeze as ps2, ProbeFreeze as p2, Tissue + where + ps2.Id = %d + and ps2.ProbeFreezeId = p2.Id + and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id + and (ProbeFreeze.InbredSetId = p2.InbredSetId or (ProbeFreeze.InbredSetId in (1, 3) and p2.InbredSetId in (1, 3))) + and p2.ChipId = ProbeFreeze.ChipId + and ps2.Id != ProbeSetFreeze.Id + and ProbeFreeze.TissueId = Tissue.Id + and ProbeSetFreeze.public > %d + order by + ProbeFreeze.TissueId, ProbeSetFreeze.CreateTime desc + """ % (self.db.id, webqtlConfig.PUBLICTHRESH)) + + results = self.cursor.fetchall() + dbCustomizer = HT.Select(results, name = "customizer") + databaseMenuSub = preTissue = "" + for item in results: + TName, TId, TTissue = item + if TTissue != preTissue: + if databaseMenuSub: + dbCustomizer.append(databaseMenuSub) + databaseMenuSub = HT.Optgroup(label = '%s mRNA ------' % TTissue) + preTissue = TTissue + + databaseMenuSub.append(item[:2]) + if databaseMenuSub: + dbCustomizer.append(databaseMenuSub) + + #updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js + #variables: filename, strainIds and vals are required by getquerystring function + strainIds=self.getStrainIds(species=species, strains=_strains) + var1 = HT.Input(name="filename", value=filename, type='hidden') + var2 = HT.Input(name="strainIds", value=strainIds, type='hidden') + var3 = HT.Input(name="vals", value=_vals, type='hidden') + customizerButton = HT.Input(type="button", Class="button", value="Add Correlation", onClick = "xmlhttpPost('%smain.py?FormID=AJAX_table', 'sortable', (getquerystring(this.form)))" % webqtlConfig.CGIDIR) + + containerTable.append(HT.TR(HT.TD(HT.Span(var1,var2,var3,customizerButton, "with", dbCustomizer, Class="bd1 cbddf fs11"), HT.BR(), HT.BR()), style="display:none;", Class="extra_options")) + + #outside analysis part + GCATButton = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'GCAT');" % mainfmName) + GCATButton_img = HT.Image("/images/GCAT_logo_final.jpg", name="GCAT", alt="GCAT", title="GCAT", style="border:none") + GCATButton.append(GCATButton_img) + + ODE = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'ODE');" % mainfmName) + ODE_img = HT.Image("/images/ODE_logo_final.jpg", name="ode", alt="ODE", title="ODE", style="border:none") + ODE.append(ODE_img) + + ''' + #XZ, 07/07/2010: I comment out this block of code. + WebGestaltScript = HT.Script(language="Javascript") + WebGestaltScript.append(""" +setTimeout('openWebGestalt()', 2000); +function openWebGestalt(){ + var thisForm = document['WebGestalt']; + makeWebGestaltTree(thisForm, '%s', %d, 'edag_only.php'); +} + """ % (mainfmName, len(traitList))) + ''' + + self.cursor.execute('SELECT GeneChip.GO_tree_value FROM GeneChip, ProbeFreeze, ProbeSetFreeze WHERE GeneChip.Id = ProbeFreeze.ChipId and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.Name = "%s"' % self.db.name) + result = self.cursor.fetchone() + + if result: + GO_tree_value = result[0] + + if GO_tree_value: + + WebGestalt = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'GOTree');" % mainfmName) + WebGestalt_img = HT.Image("/images/webgestalt_icon_final.jpg", name="webgestalt", alt="Gene Set Analysis Toolkit", title="Gene Set Analysis Toolkit", style="border:none") + WebGestalt.append(WebGestalt_img) + + hddnWebGestalt = { + 'id_list':'', + 'correlation':'', + 'id_value':'', + 'llid_list':'', + 'id_type':GO_tree_value, + 'idtype':'', + 'species':'', + 'list':'', + 'client':''} + + hddnWebGestalt['ref_type'] = hddnWebGestalt['id_type'] + hddnWebGestalt['cat_type'] = 'GO' + hddnWebGestalt['significancelevel'] = 'Top10' + + if species == 'rat': + hddnWebGestalt['org'] = 'Rattus norvegicus' + elif species == 'human': + hddnWebGestalt['org'] = 'Homo sapiens' + elif species == 'mouse': + hddnWebGestalt['org'] = 'Mus musculus' + else: + hddnWebGestalt['org'] = '' + + for key in hddnWebGestalt.keys(): + form.append(HT.Input(name=key, value=hddnWebGestalt[key], type='hidden')) + + + LinkOutTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="320",height="80", border=0, align="Left") + + if not GO_tree_value: + LinkOutRow = HT.TR(HT.TD(GCATButton, width="50%"), HT.TD(ODE, width="50%"), align="left") + LinkOutLabels = HT.TR(HT.TD(" ", HT.Text("GCAT"), width="50%"), HT.TD(" ",HT.Text("ODE"), width="50%"), align="left") + else: + LinkOutRow = HT.TR(HT.TD(WebGestalt, width="25%"), HT.TD(GCATButton, width="25%"), HT.TD(ODE, width="25%"), align="left") + LinkOutLabels = HT.TR(HT.TD(HT.Text("Gene Set")), HT.TD(" "*2, HT.Text("GCAT")), HT.TD(" "*3, HT.Text("ODE")), style="display:none;", Class="extra_options") + + LinkOutTable.append(LinkOutRow,LinkOutLabels) + + containerTable.append(HT.TR(HT.TD(LinkOutTable), Class="extra_options", style="display:none;")) + + containerTable.append(HT.TR(HT.TD(xlsUrl, HT.BR(), HT.BR()))) + + pageTable.append(HT.TR(HT.TD(containerTable))) + + pageTable.append(HT.TR(HT.TD(div))) + + if species == 'human': + heatmap = "" + + form.append(HT.Input(name='ShowStrains',type='hidden', value =1), + HT.Input(name='ShowLine',type='hidden', value =1), + info, HT.BR(), pageTable, HT.BR()) + + TD_LR.append(corrHeading, form, HT.P()) + + + self.dict['body'] = str(TD_LR) + self.dict['title'] = 'Correlation' + # updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js + self.dict['js1'] = '' + self.dict['js2'] = 'onLoad="pageOffset()"' + self.dict['layer'] = self.generateWarningLayer() + else: + self.dict['body'] = "" + + +############################# +# # +# CorrelationPage Functions # +# # +############################# + + + def getSortByValue(self, calculationMethod): + + if calculationMethod == "1": + sortby = ("Sample p(r)", "up") + elif calculationMethod == "2": + sortby = ("Sample p(rho)", "up") + elif calculationMethod == "3": #XZ: literature correlation + sortby = ("Lit Corr","down") + elif calculationMethod == "4": #XZ: tissue correlation + sortby = ("Tissue r", "down") + elif calculationMethod == "5": + sortby = ("Tissue rho", "down") + + return sortby + + + + def generateWarningLayer(self): + + layerString = """ + +
    + + + + + + + +
    +

    + + +HBP/Rosen Striatum M430v2 (April05) PDNN modify this page

    Accession number: GN61

    + +

        Summary:

    + +
    +This April 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 33 lines of mice including C57BL/6J, DBA/2J, and 31 BXD recombinant inbred strains. Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 250 brain samples (males and females) from 33 strains were used in this experiment. Samples were hybridized to a total of 59 arrays. This particular data set was processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units. +
    + +

        About the cases used to generate this set of data:

    + +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    +

    +
    + +

        About the tissue used to generate this set of data:

    + +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. + + +

    + +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. Twenty-three of 33 strains are represented by male and female samples. The remaining 10 strains are still represented by single sex samples: BXD11 (F), BXD13 (F), BXD19 (F), BXD20 (F), BXD22 (M), BXD23 (M), BXD24 (M), BXD32 (M), C57BL/6J (M), and DBA/2J (M). + +

    Batch Structure: This data set consists of arrays processed in three batches with several "reruns" for the first batch. All arrays were run using a single protocol. All data have been corrected for batch effects as described below. + +

    + + +
    +The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days. +
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2C57BL/6JMChip11_Batch03_B6_M_StrBatch03
    3BXD1FChip03_Batch03_BXD1_F_StrBatch03
    4BXD1MChip04_Batch03_BXD1_M_StrBatch03
    5BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    6BXD2MChip05_Batch01_BXD2_M_StrBatch01
    7BXD5FChip10_Batch03_BXD5_F_StrBatch03
    8BXD5MChip12_Batch03_BXD5_M_StrBatch03
    9BXD6FChip38_Batch02_BXD6_F_StrBatch02
    10BXD6MChip39_Batch02_BXD6_M_StrBatch02
    11BXD8FChip07_Batch03_BXD8_F_StrBatch03
    12BXD8MChip02_Batch03_BXD8_M_StrBatch03
    13BXD9FChip16_Batch01_BXD9_F_StrBatch01
    14BXD9MChip10_Batch01_BXD9_M_StrBatch01
    15BXD11FChip31_Batch02_BXD11_F_StrBatch02
    16BXD12FChip11_Batch01_BXD12_F_StrBatch01
    17BXD12MChip18_Batch03_BXD12_M_StrBatch03
    18BXD13FChip33_Batch02_BXD13_F_StrBatch02
    19BXD14FChip48_Batch02_BXD14_F_StrBatch02
    20BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    21BXD15FChip21_Batch01_BXD15_F_StrBatch01
    22BXD15MChip13_Batch01_BXD15_M_StrBatch01
    23BXD16FChip36_Batch02_BXD16_F_StrBatch02
    24BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    25BXD18FChip15_Batch03_BXD18_F_StrBatch03
    26BXD18MChip19_Batch03_BXD18_M_StrBatch03
    27BXD19FChip19_Batch01_BXD19_F_StrBatch01
    28BXD20FChip14_Batch03_BXD20_F_StrBatch03
    29BXD21FChip18_Batch01_BXD21_F_StrBatch01
    30BXD21MChip09_Batch01_BXD21_M_StrBatch01
    31BXD22MChip13_Batch03_BXD22_M_StrBatch03
    32BXD23MChip01_Batch03_BXD23_M_StrBatch03
    33BXD24MChip17_Batch03_BXD24_M_StrBatch03
    34BXD27FChip29_Batch02_BXD27_F_StrBatch02
    35BXD27MChip40_Batch02_BXD27_M_StrBatch02
    36BXD28FChip06_Batch01_BXD28_F_StrBatch01
    37BXD28MChip23_Batch01_BXD28_M_StrBatch01
    38BXD29FChip45_Batch02_BXD29_F_StrBatch02
    39BXD29MChip42_Batch02_BXD29_M_StrBatch02
    40BXD31FChip14_Batch01_BXD31_F_StrBatch01
    41BXD31MChip09_Batch03_BXD31_M_StrBatch03
    42BXD32MChip30_Batch02_BXD32_M_StrBatch02
    43BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    44BXD33MChip34_Batch02_BXD33_M_StrBatch02
    45BXD34FChip03_Batch01_BXD34_F_StrBatch01
    46BXD34MChip07_Batch01_BXD34_M_StrBatch01
    47BXD36FChip22_Batch03_BXD36_F_StrBatch03
    48BXD36MChip24_Batch03_BXD36_M_StrBatch03
    49BXD38FChip17_Batch01_BXD38_F_StrBatch01
    50BXD38MChip24_Batch01_BXD38_M_StrBatch01
    51BXD39MChip20_Batch03_BXD39_M_StrBatch03
    52BXD39FChip23_Batch03_BXD39_F_StrBatch03
    53BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    54BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    55BXD40MChip22_Batch01_BXD40_M_StrBatch01
    56BXD42FChip35_Batch02_BXD42_F_StrBatch02
    57BXD42MChip32_Batch02_BXD42_M_StrBatch02
    58DBA/2JMChip02_Batch01_D2_M_StrBatch01
    59DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    + + + + + + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the batches at the probe level. To do this we calculated the ratio of each batch mean to the mean of all batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each batch is the same. + +
    • Step 7: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + +Probe set data from the CHP file: The expression values were +generated using PDNN. The same simple steps described above +were also applied to these values. Every microarray data set +therefore has a mean expression of 8 with a standard deviation of 2. +A 1 unit difference represents roughly a two-fold difference +in expression level. Expression levels below 5 are usually close to +background noise levels.
    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Glenn Rosen from P20 +MH62009 (see below for specifics). Samples and arrays were processed by the +Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    + +

        About this text file:

    +

    +This text file originally generated by GDR, RWW, and YHQ on Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004; RWW and GDR April 8, 2005. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/SA_M2_0405_PC.html b/web/dbdoc/SA_M2_0405_PC.html new file mode 100755 index 00000000..6e3cc1b7 --- /dev/null +++ b/web/dbdoc/SA_M2_0405_PC.html @@ -0,0 +1,240 @@ + +M430 Microarray brain PDNN April05 / WebQTL + + + + + + + + + + + + +' % totalColumnCount + + output += "
    + + + + + + + +
    +

    + + + +HBP/Rosen Striatum M430v2 (April05) PDNN Clean modify this page

    Accession number: GN68

    + +

        Summary:

    + +
    +PREFERRED DATA SET. This April 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 31 lines of mice including C57BL/6J, DBA/2J, and 29 BXD recombinant inbred strains. This data set excludes eleven arrays associated with high numbers of outliers (clean). Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 250 brain samples (males and females) from 31 strains were used in this experiment. This data set includes 48 arrays that passed very stringent quality control procedures. Data were processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units. +
    + +

        About the cases used to generate this set of data:

    + +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    +

    +
    + +

        About the tissue used to generate this set of data:

    + +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. + +

    All striatal dissections were performed by one person (GD Rosen) using a midsagittal approach that minimizes the likelihood of contamination across tissues. This dissection recovers most, but not all, of neostraitum. We have histologically examined dissected tissue and have found that no evidence of inclusion of cortical or thalamic tissue at the margins. We have further confirmed the dissections by comparative assays for acetylcholinesterase (AChE) protein levels using Western blots. The concentration of AChE in the striatum is far higher than that in cortex or cerebellum. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. + + +

    + +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. Fifteen of 31 strains are represented by male and female samples. The remaining 16 strains are still represented by single sex samples: BXD6 (F), BXD9 (F), BXD11 (F), BXD12(F), BXD13 (F), BXD14 (M), BXD19 (F), BXD20 (F), BXD22 (M), BXD24 (M), BXD27 (F), BXD28 (F), BXD32 (M), BXD39 (M), C57BL/6J (M), and DBA/2J (M). + +

    Batch Structure: This data set consists of arrays processed in three batches with several "reruns" for the first batch. All arrays were run using a single protocol. All data have been corrected for batch effects as described below. + +

    + + +
    +The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days. +
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2BXD1FChip03_Batch03_BXD1_F_StrBatch03
    3BXD1MChip04_Batch03_BXD1_M_StrBatch03
    4BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    5BXD2MChip05_Batch01_BXD2_M_StrBatch01
    6BXD5FChip10_Batch03_BXD5_F_StrBatch03
    7BXD5MChip12_Batch03_BXD5_M_StrBatch03
    8BXD6FChip38_Batch02_BXD6_F_StrBatch02
    9BXD8FChip07_Batch03_BXD8_F_StrBatch03
    10BXD8MChip02_Batch03_BXD8_M_StrBatch03
    11BXD9FChip16_Batch01_BXD9_F_StrBatch01
    12BXD11FChip31_Batch02_BXD11_F_StrBatch02
    13BXD12FChip11_Batch01_BXD12_F_StrBatch01
    14BXD13FChip33_Batch02_BXD13_F_StrBatch02
    15BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    16BXD15FChip21_Batch01_BXD15_F_StrBatch01
    17BXD15MChip13_Batch01_BXD15_M_StrBatch01
    18BXD16FChip36_Batch02_BXD16_F_StrBatch02
    19BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    20BXD18FChip15_Batch03_BXD18_F_StrBatch03
    21BXD18MChip19_Batch03_BXD18_M_StrBatch03
    22BXD19FChip19_Batch01_BXD19_F_StrBatch01
    23BXD20FChip14_Batch03_BXD20_F_StrBatch03
    24BXD21FChip18_Batch01_BXD21_F_StrBatch01
    25BXD21MChip09_Batch01_BXD21_M_StrBatch01
    26BXD22MChip13_Batch03_BXD22_M_StrBatch03
    27BXD24MChip17_Batch03_BXD24_M_StrBatch03
    28BXD27FChip29_Batch02_BXD27_F_StrBatch02
    29BXD28FChip06_Batch01_BXD28_F_StrBatch01
    30BXD29FChip45_Batch02_BXD29_F_StrBatch02
    31BXD29MChip42_Batch02_BXD29_M_StrBatch02
    32BXD31FChip14_Batch01_BXD31_F_StrBatch01
    33BXD31MChip09_Batch03_BXD31_M_StrBatch03
    34BXD32MChip30_Batch02_BXD32_M_StrBatch02
    35BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    36BXD33MChip34_Batch02_BXD33_M_StrBatch02
    37BXD34FChip03_Batch01_BXD34_F_StrBatch01
    38BXD34MChip07_Batch01_BXD34_M_StrBatch01
    39BXD38FChip17_Batch01_BXD38_F_StrBatch01
    40BXD38MChip24_Batch01_BXD38_M_StrBatch01
    41BXD39MChip20_Batch03_BXD39_M_StrBatch03
    42BXD39FChip23_Batch03_BXD39_F_StrBatch03
    43BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    44BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    45BXD40MChip22_Batch01_BXD40_M_StrBatch01
    46BXD42FChip35_Batch02_BXD42_F_StrBatch02
    47BXD42MChip32_Batch02_BXD42_M_StrBatch02
    48DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    + + + + + + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the batches at the probe level. To do this we calculated the ratio of each batch mean to the mean of all batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each batch is the same. + +
    • Step 7: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + +Probe set data from the CHP file: The expression values were +generated using PDNN. The same simple steps described above +were also applied to these values. Every microarray data set +therefore has a mean expression of 8 with a standard deviation of 2. +A 1 unit difference represents roughly a two-fold difference +in expression level. Expression levels below 5 are usually close to +background noise levels.
    + +
    Data quality control: A total of 62 samples passed RNA quality control. +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients (62x61/2). Arrays with probe data that was not homogeneous when compared to any other arrays was flagged. If the correlation at the probe level was less than approximately 0.92 we deleted that array data set. Three arrays we lost during this process (BXD19_M_Str_Batch03, BXD23_F_Str_Batch03, and BXD24_F_Str_Batch03). + +

    Probe set level QC: The final normalized array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Eleven arrays were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels. In contrast, most other arrays generated fewer than 5% outliers. These eleven suspect eleven arrays were elimated from this "clean" data set. The following arrays were eliminated: B6_M_Str_Batch03, BXD6_M_Str_Batch02, BXD9_M_Str_Batch01, BXD12_M_Str_Batch03, BXD14_F_Str_Batch02, BXD23_M_Str_Batch03, BXD27_M_Str_Batch02, BXD28_M_Str_Batch01, BXD36_F_Str_Batch03, BXD36_M_Str_Batch03, and D2_M_Str_Batch01.

    + +

        Data source acknowledgment:

    +

    Data were generated with funds to Glenn Rosen from P20 +MH62009 (see below for specifics). Samples and arrays were processed by the +Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    + +

        About this text file:

    +

    +This text file originally generated by GDR, RWW, and YHQ on Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004; RWW and GDR April 8, 2005. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/SA_M2_0405_R.html b/web/dbdoc/SA_M2_0405_R.html new file mode 100755 index 00000000..8d370295 --- /dev/null +++ b/web/dbdoc/SA_M2_0405_R.html @@ -0,0 +1,227 @@ + +M430 Microarray brain PDNN April05 / WebQTL + + + + + + + + + + + + +" + self.dict["body"] = body + + + # showOptionPanel: ParamDict -> Cursor -> String -> String + # to build an option panel for the multitrait correlation + # we expect the database list to be a list of 2-tuples + # the first element of each tuple is the short name + # and the second element of the tuple is the long name + def showOptionPanel(self, params, cursor, inbredSetName): + output = ''' +

    Correlation Options

    + + + + + +
    + + + + + + + +
    +

    + + + +HBP/Rosen Striatum M430v2 (April05) RMA modify this page

    Accession number: GN62

    + + +

        Summary:

    + +
    +This April 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 33 lines of mice including C57BL/6J, DBA/2J, and 31 BXD recombinant inbred strains. Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 250 brain samples (males and females) from 33 strains were used in this experiment. Samples were hybridized to a total of 59 arrays. This particular data set was processed using the RMA protocol. To simplify comparison among different transforms, RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units. +
    + +

        About the cases used to generate this set of data:

    + +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    +

    +
    + +

        About the tissue used to generate this set of data:

    + +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. + + +

    + +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. Twenty-three of 33 strains are represented by male and female samples. The remaining 10 strains are still represented by single sex samples: BXD11 (F), BXD13 (F), BXD19 (F), BXD20 (F), BXD22 (M), BXD23 (M), BXD24 (M), BXD32 (M), C57BL/6J (M), and DBA/2J (M). + +

    Batch Structure: This data set consists of arrays processed in three batches with several "reruns" for the first batch. All arrays were run using a single protocol. All data have been corrected for batch effects as described below. + +

    + + +
    +The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days. +
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2C57BL/6JMChip11_Batch03_B6_M_StrBatch03
    3BXD1FChip03_Batch03_BXD1_F_StrBatch03
    4BXD1MChip04_Batch03_BXD1_M_StrBatch03
    5BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    6BXD2MChip05_Batch01_BXD2_M_StrBatch01
    7BXD5FChip10_Batch03_BXD5_F_StrBatch03
    8BXD5MChip12_Batch03_BXD5_M_StrBatch03
    9BXD6FChip38_Batch02_BXD6_F_StrBatch02
    10BXD6MChip39_Batch02_BXD6_M_StrBatch02
    11BXD8FChip07_Batch03_BXD8_F_StrBatch03
    12BXD8MChip02_Batch03_BXD8_M_StrBatch03
    13BXD9FChip16_Batch01_BXD9_F_StrBatch01
    14BXD9MChip10_Batch01_BXD9_M_StrBatch01
    15BXD11FChip31_Batch02_BXD11_F_StrBatch02
    16BXD12FChip11_Batch01_BXD12_F_StrBatch01
    17BXD12MChip18_Batch03_BXD12_M_StrBatch03
    18BXD13FChip33_Batch02_BXD13_F_StrBatch02
    19BXD14FChip48_Batch02_BXD14_F_StrBatch02
    20BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    21BXD15FChip21_Batch01_BXD15_F_StrBatch01
    22BXD15MChip13_Batch01_BXD15_M_StrBatch01
    23BXD16FChip36_Batch02_BXD16_F_StrBatch02
    24BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    25BXD18FChip15_Batch03_BXD18_F_StrBatch03
    26BXD18MChip19_Batch03_BXD18_M_StrBatch03
    27BXD19FChip19_Batch01_BXD19_F_StrBatch01
    28BXD20FChip14_Batch03_BXD20_F_StrBatch03
    29BXD21FChip18_Batch01_BXD21_F_StrBatch01
    30BXD21MChip09_Batch01_BXD21_M_StrBatch01
    31BXD22MChip13_Batch03_BXD22_M_StrBatch03
    32BXD23MChip01_Batch03_BXD23_M_StrBatch03
    33BXD24MChip17_Batch03_BXD24_M_StrBatch03
    34BXD27FChip29_Batch02_BXD27_F_StrBatch02
    35BXD27MChip40_Batch02_BXD27_M_StrBatch02
    36BXD28FChip06_Batch01_BXD28_F_StrBatch01
    37BXD28MChip23_Batch01_BXD28_M_StrBatch01
    38BXD29FChip45_Batch02_BXD29_F_StrBatch02
    39BXD29MChip42_Batch02_BXD29_M_StrBatch02
    40BXD31FChip14_Batch01_BXD31_F_StrBatch01
    41BXD31MChip09_Batch03_BXD31_M_StrBatch03
    42BXD32MChip30_Batch02_BXD32_M_StrBatch02
    43BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    44BXD33MChip34_Batch02_BXD33_M_StrBatch02
    45BXD34FChip03_Batch01_BXD34_F_StrBatch01
    46BXD34MChip07_Batch01_BXD34_M_StrBatch01
    47BXD36FChip22_Batch03_BXD36_F_StrBatch03
    48BXD36MChip24_Batch03_BXD36_M_StrBatch03
    49BXD38FChip17_Batch01_BXD38_F_StrBatch01
    50BXD38MChip24_Batch01_BXD38_M_StrBatch01
    51BXD39MChip20_Batch03_BXD39_M_StrBatch03
    52BXD39FChip23_Batch03_BXD39_F_StrBatch03
    53BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    54BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    55BXD40MChip22_Batch01_BXD40_M_StrBatch01
    56BXD42FChip35_Batch02_BXD42_F_StrBatch02
    57BXD42MChip32_Batch02_BXD42_M_StrBatch02
    58DBA/2JMChip02_Batch01_D2_M_StrBatch01
    59DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    + + + + + + +

        About the array platform :

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the batches at the probe level. To do this we calculated the ratio of each batch mean to the mean of all batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal for each batch is the same. + + +
    • Step 7: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    +Probe set data from the CHP file: The expression values were generated using RMA. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Glenn Rosen from P20 +MH62009 (see below for specifics). Samples and arrays were processed by the +Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    + +

        About this text file:

    +

    +This text file originally generated by GDR, RWW, and YHQ on Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004; RWW and GDR April 8, 2005. +

    + + + + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/SA_M2_0405_RC.html b/web/dbdoc/SA_M2_0405_RC.html new file mode 100755 index 00000000..85aad915 --- /dev/null +++ b/web/dbdoc/SA_M2_0405_RC.html @@ -0,0 +1,231 @@ + +HBP/Rosen Striatum M430v2 (April05) RMA Clean + + + + + + + + + + + + +
    + + + + + + + +
    +

    + + + +HBP/Rosen Striatum M430v2 (April05) RMA Clean modify this page

    Accession number: GN69

    + + +

        Summary:

    + +
    +This April 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 31 lines of mice including C57BL/6J, DBA/2J, and 29 BXD recombinant inbred strains. Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 250 brain samples (males and females) from 31 strains were used in this experiment. Samples were hybridized to a total of 48 arrays. This particular data set was processed using the RMA protocol. To simplify comparison among different transforms, RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units. +
    + +

        About the cases used to generate this set of data:

    + +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    +

    +
    + +

        About the tissue used to generate this set of data:

    + +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. + + +

    + +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. Fifteen of 31 strains are represented by male and female samples. The remaining 16 strains are still represented by single sex samples: BXD6 (F), BXD9 (F), BXD11 (F), BXD12(F), BXD13 (F), BXD14 (M), BXD19 (F), BXD20 (F), BXD22 (M), BXD24 (M), BXD27 (F), BXD28 (F), BXD32 (M), BXD39 (M), C57BL/6J (M), and DBA/2J (M). + +

    Batch Structure: This data set consists of arrays processed in three batches with several "reruns" for the first batch. All arrays were run using a single protocol. All data have been corrected for batch effects as described below. + +

    + + +
    +The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days. +
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2BXD1FChip03_Batch03_BXD1_F_StrBatch03
    3BXD1MChip04_Batch03_BXD1_M_StrBatch03
    4BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    5BXD2MChip05_Batch01_BXD2_M_StrBatch01
    6BXD5FChip10_Batch03_BXD5_F_StrBatch03
    7BXD5MChip12_Batch03_BXD5_M_StrBatch03
    8BXD6FChip38_Batch02_BXD6_F_StrBatch02
    9BXD8FChip07_Batch03_BXD8_F_StrBatch03
    10BXD8MChip02_Batch03_BXD8_M_StrBatch03
    11BXD9FChip16_Batch01_BXD9_F_StrBatch01
    12BXD11FChip31_Batch02_BXD11_F_StrBatch02
    13BXD12FChip11_Batch01_BXD12_F_StrBatch01
    14BXD13FChip33_Batch02_BXD13_F_StrBatch02
    15BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    16BXD15FChip21_Batch01_BXD15_F_StrBatch01
    17BXD15MChip13_Batch01_BXD15_M_StrBatch01
    18BXD16FChip36_Batch02_BXD16_F_StrBatch02
    19BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    20BXD18FChip15_Batch03_BXD18_F_StrBatch03
    21BXD18MChip19_Batch03_BXD18_M_StrBatch03
    22BXD19FChip19_Batch01_BXD19_F_StrBatch01
    23BXD20FChip14_Batch03_BXD20_F_StrBatch03
    24BXD21FChip18_Batch01_BXD21_F_StrBatch01
    25BXD21MChip09_Batch01_BXD21_M_StrBatch01
    26BXD22MChip13_Batch03_BXD22_M_StrBatch03
    27BXD24MChip17_Batch03_BXD24_M_StrBatch03
    28BXD27FChip29_Batch02_BXD27_F_StrBatch02
    29BXD28FChip06_Batch01_BXD28_F_StrBatch01
    30BXD29FChip45_Batch02_BXD29_F_StrBatch02
    31BXD29MChip42_Batch02_BXD29_M_StrBatch02
    32BXD31FChip14_Batch01_BXD31_F_StrBatch01
    33BXD31MChip09_Batch03_BXD31_M_StrBatch03
    34BXD32MChip30_Batch02_BXD32_M_StrBatch02
    35BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    36BXD33MChip34_Batch02_BXD33_M_StrBatch02
    37BXD34FChip03_Batch01_BXD34_F_StrBatch01
    38BXD34MChip07_Batch01_BXD34_M_StrBatch01
    39BXD38FChip17_Batch01_BXD38_F_StrBatch01
    40BXD38MChip24_Batch01_BXD38_M_StrBatch01
    41BXD39MChip20_Batch03_BXD39_M_StrBatch03
    42BXD39FChip23_Batch03_BXD39_F_StrBatch03
    43BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    44BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    45BXD40MChip22_Batch01_BXD40_M_StrBatch01
    46BXD42FChip35_Batch02_BXD42_F_StrBatch02
    47BXD42MChip32_Batch02_BXD42_M_StrBatch02
    48DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    + + + + + + +

        About the array platform :

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the batches at the probe level. To do this we calculated the ratio of each batch mean to the mean of all batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal for each batch is the same. + + +
    • Step 7: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    +Probe set data: The expression values were generated using RMA. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + +
    Data quality control: A total of 48 samples passed RNA quality control. +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients (62x61/2). Arrays with probe data that was not homogeneous when compared to any other arrays was flagged. If the correlation at the probe level was less than approximately 0.92 we deleted that array data set. Three arrays we lost during this process (BXD19_M_Str_Batch03, BXD23_F_Str_Batch03, and BXD24_F_Str_Batch03). + +

    Probe set level QC: The final normalized array expression values were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean of all arrays. (We used the PDNN, RMA and Mas5 transform as our reference probe set data for this QC step.) Two strains, each represented by single arrays, generated greater than 5,000 outlier counts (10% of the number of probe sets). These two strains generated a great number of outliers across the entire range of expression and since we do not yet have replicate arrays for either of these two strains we opted to delete them from the final April 2005 striatum data sets. Eleven arrays we lost during this process (B6_M_Str_Batch03, BXD6_M_Str_Batch02, BXD9_M_Str_Batch01, BXD12_M_Str_Batch03, BXD14_F_Str_Batch02, BXD23_M_Str_Batch03, BXD27_M_Str_Batch02, BXD28_M_Str_Batch01, BXD36_F_Str_Batch03, BXD36_M_Str_Batch03, and D2_M_Str_Batch01 ).

    + +

        Data source acknowledgment:

    +

    Data were generated with funds to Glenn Rosen from P20 +MH62009 (see below for specifics). Samples and arrays were processed by the +Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    + +

        About this text file:

    +

    +This text file originally generated by GDR, RWW, and YHQ on Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004; RWW and GDR April 8, 2005. +

    + + + + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/SA_M2_0405_RR.html b/web/dbdoc/SA_M2_0405_RR.html new file mode 100755 index 00000000..21cf6b60 --- /dev/null +++ b/web/dbdoc/SA_M2_0405_RR.html @@ -0,0 +1,227 @@ + +M430 Microarray brain PDNN April05 / WebQTL + + + + + + + + + + + + + +""" diff --git a/web/webqtl/annotation/__init__.py b/web/webqtl/annotation/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/base/GeneralObject.py b/web/webqtl/base/GeneralObject.py new file mode 100755 index 00000000..311c9e22 --- /dev/null +++ b/web/webqtl/base/GeneralObject.py @@ -0,0 +1,71 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +class GeneralObject: + """ + Base class to define an Object. + a = [Spam(1, 4), Spam(9, 3), Spam(4,6)] + a.sort(lambda x, y: cmp(x.eggs, y.eggs)) + """ + + def __init__(self, *args, **kw): + self.contents = list(args) + for name, value in kw.items(): + setattr(self, name, value) + + def __setitem__(self, key, value): + setattr(self, key, value) + + def __getitem__(self, key): + return getattr(self, key) + + def __getattr__(self, key): + if key in self.__dict__.keys(): + return self.__dict__[key] + else: + return eval("self.__dict__.%s" % key) + + def __len__(self): + return len(self.__dict__) - 1 + + def __str__(self): + s = '' + for key in self.__dict__.keys(): + if key != 'contents': + s += '%s = %s\n' % (key,self.__dict__[key]) + return s + + def __repr__(self): + s = '' + for key in self.__dict__.keys(): + s += '%s = %s\n' % (key,self.__dict__[key]) + return s + + def __cmp__(self,other): + return len(self.__dict__.keys()).__cmp__(len(other.__dict__.keys())) + + + diff --git a/web/webqtl/base/__init__.py b/web/webqtl/base/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/base/admin.py b/web/webqtl/base/admin.py new file mode 100755 index 00000000..a04df2da --- /dev/null +++ b/web/webqtl/base/admin.py @@ -0,0 +1,88 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + + + + + +#XZ, 04/02/2009: we should put this into database. + + +###LIST of databases used into gene name query + + +ADMIN_search_dbs = { + 'rat': {'PERITONEAL FAT': ['FT_2A_0605_Rz'], + 'KIDNEY': ['KI_2A_0405_Rz'], + 'ADRENAL GLAND': ['HXB_Adrenal_1208'], + 'HEART': ['HXB_Heart_1208'] + }, + 'mouse': {'CEREBELLUM': ['CB_M_0305_R'], + 'STRIATUM': ['SA_M2_0905_R', 'SA_M2_0405_RC', 'UTHSC_1107_RankInv', 'Striatum_Exon_0209'], + 'HIPPOCAMPUS': ['HC_M2_0606_R', 'UMUTAffyExon_0209_RMA'], + 'WHOLE BRAIN': ['BR_M2_1106_R', 'IBR_M_0106_R', 'BRF2_M_0805_R', 'UCLA_BHF2_BRAIN_0605'], + 'LIVER': ['LV_G_0106_B', 'UCLA_BHF2_LIVER_0605'], + 'EYE': ['Eye_M2_0908_R'], + 'HEMATOPOIETIC STEM CELLS': ['HC_U_0304_R'], + 'KIDNEY': ['MA_M2_0806_R'], + 'MAMMARY TUMORS': ['MA_M_0704_R', 'NCI_Agil_Mam_Tum_RMA_0409'], + 'PREFRONTAL CORTEX': ['VCUSal_1206_R'], + 'SPLEEN': ['IoP_SPL_RMA_0509'], + 'NUCLEUS ACCUMBENS': ['VCUSalo_1007_R'], + 'NEOCORTEX': ['HQFNeoc_0208_RankInv'], + 'ADIPOSE': ['UCLA_BHF2_ADIPOSE_0605'], + 'RETINA': ['Illum_Retina_BXD_RankInv0410'] + }, + 'human': { + 'LYMPHOBLAST B CELL': ['Human_1008', 'UT_CEPH_RankInv0909'], + 'WHOLE BRAIN': ['GSE5281_F_RMA0709', 'GSE15222_F_RI_0409'] + } + } + + +###LIST of tissue alias + +ADMIN_tissue_alias = {'CEREBELLUM': ['Cb'], + 'STRIATUM': ['Str'], + 'HIPPOCAMPUS': ['Hip'], + 'WHOLE BRAIN': ['Brn'], + 'LIVER': ['Liv'], + 'EYE': ['Eye'], + 'PERITONEAL FAT': ['Fat'], + 'HEMATOPOIETIC STEM CELLS': ['Hsc'], + 'KIDNEY': ['Kid'], + 'ADRENAL GLAND': ['Adr'], + 'HEART': ['Hea'], + 'MAMMARY TUMORS': ['Mam'], + 'PREFRONTAL CORTEX': ['Pfc'], + 'SPLEEN': ['Spl'], + 'NUCLEUS ACCUMBENS': ['Nac'], + 'NEOCORTEX': ['Ctx'], + 'ADIPOSE': ['Wfat'], + 'RETINA': ['Ret'] + } + + diff --git a/web/webqtl/base/cgiData.py b/web/webqtl/base/cgiData.py new file mode 100755 index 00000000..57416060 --- /dev/null +++ b/web/webqtl/base/cgiData.py @@ -0,0 +1,70 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +######################################### +#convert Field storage object to Dict object +#in order to be able to saved into a session file +######################################### + +class cgiData(dict): + '''convert Field storage object to Dict object + Filed storage object cannot be properly dumped + ''' + + def __init__(self, field_storage=None): + + if not field_storage: + field_storage={} + + for key in field_storage.keys(): + temp = field_storage.getlist(key) + if len(temp) > 1: + temp = map(self.toValue, temp) + elif len(temp) == 1: + temp = self.toValue(temp[0]) + else: + temp = None + self[key]= temp + + def toValue(self, obj): + '''fieldstorge returns different type of objects, \ + need to convert to string or None''' + try: + return obj.value + except: + return "" + + def getvalue(self, k, default= None): + try: + return self[k] + except: + return default + + getfirst = getvalue + + + + diff --git a/web/webqtl/base/cookieData.py b/web/webqtl/base/cookieData.py new file mode 100755 index 00000000..4b7c9046 --- /dev/null +++ b/web/webqtl/base/cookieData.py @@ -0,0 +1,52 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +######################################### +#convert mod_python object to Dict object +#in order to be able to be pickled +######################################### + +class cookieData(dict): + 'convert mod python Cookie object to Dict object' + + def __init__(self, cookies=None): + + if not cookies: + cookies={} + + for key in cookies.keys(): + self[key.lower()]= cookies[key].value + + def getvalue(self, k, default= None): + try: + return self[k.lower()] + except: + return default + + getfirst = getvalue + + + diff --git a/web/webqtl/base/footer.py b/web/webqtl/base/footer.py new file mode 100755 index 00000000..6f92fdf8 --- /dev/null +++ b/web/webqtl/base/footer.py @@ -0,0 +1,6 @@ +import webqtlConfig + +footer_html = open(webqtlConfig.HTMLPATH + 'footer.html', 'r').read() +footer = footer_html.replace('%"','%%"') + +footer_string = footer.replace('', '%s') diff --git a/web/webqtl/base/header.py b/web/webqtl/base/header.py new file mode 100755 index 00000000..b6136b51 --- /dev/null +++ b/web/webqtl/base/header.py @@ -0,0 +1,6 @@ +import webqtlConfig + +header_string = open(webqtlConfig.HTMLPATH + 'header.html', 'r').read() +header_string = header_string.replace("\\'", "'") +header_string = header_string.replace('%"','%%"') +header_string = header_string.replace('', '%s') \ No newline at end of file diff --git a/web/webqtl/base/indexBody.py b/web/webqtl/base/indexBody.py new file mode 100755 index 00000000..aa67dffa --- /dev/null +++ b/web/webqtl/base/indexBody.py @@ -0,0 +1,290 @@ +index_body_string = """ + + + + + + +""" diff --git a/web/webqtl/base/myCookie.py b/web/webqtl/base/myCookie.py new file mode 100755 index 00000000..db5320df --- /dev/null +++ b/web/webqtl/base/myCookie.py @@ -0,0 +1,55 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +######################################### +## python cookie and mod python cookie are +## not compatible +######################################### + +class myCookie(dict): + 'define my own cookie' + + def __init__(self, name="", value="", expire = None, path="/"): + self['name']= name + self['value']= value + self['expire']= expire + self['path']= path + + def __getattr__(self, key): + if key in self.keys(): + return self[key] + else: + return None + + def __nonzero__ (self): + if self['name']: + return 1 + else: + return 0 + + + + diff --git a/web/webqtl/base/sessionData.py b/web/webqtl/base/sessionData.py new file mode 100755 index 00000000..01555f87 --- /dev/null +++ b/web/webqtl/base/sessionData.py @@ -0,0 +1,53 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +######################################### +#convert mod_python object to Dict object +#in order to be able to be pickled +######################################### + +class sessionData(dict): + 'convert mod python Session object to Dict object' + + def __init__(self, mod_python_session=None): + + if not mod_python_session: + mod_python_session = {} + + for key in mod_python_session.keys(): + self[key]= mod_python_session[key] + + + def getvalue(self, k, default= None): + try: + return self[k] + except: + return default + + getfirst = getvalue + + + diff --git a/web/webqtl/base/template.py b/web/webqtl/base/template.py new file mode 100644 index 00000000..85bd86df --- /dev/null +++ b/web/webqtl/base/template.py @@ -0,0 +1,123 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +template = """ + + + + +%s + + + + + + + +%s + + + + + + + + + + + + + + +%s + + + + +%s +
    + + + + + + + +
    +

    + + + +HBP/Rosen Striatum M430v2 (April05) RMA Orig modify this page

    Accession number: GN66

    + + +

        Summary:

    + +
    +This April 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 33 lines of mice including C57BL/6J, DBA/2J, and 31 BXD recombinant inbred strains. Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 250 brain samples (males and females) from 33 strains were used in this experiment. Samples were hybridized to a total of 59 arrays. This particular data set was processed using the RMA protocol. To simplify comparison among different transforms, RMA values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units. +
    + +

        About the cases used to generate this set of data:

    + +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    +

    +
    + +

        About the tissue used to generate this set of data:

    + +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. + + +

    + +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. Twenty-three of 33 strains are represented by male and female samples. The remaining 10 strains are still represented by single sex samples: BXD11 (F), BXD13 (F), BXD19 (F), BXD20 (F), BXD22 (M), BXD23 (M), BXD24 (M), BXD32 (M), C57BL/6J (M), and DBA/2J (M). + +

    Batch Structure: This data set consists of arrays processed in three batches with several "reruns" for the first batch. All arrays were run using a single protocol. All data have been corrected for batch effects as described below. + +

    + + +
    +The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days. +
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2C57BL/6JMChip11_Batch03_B6_M_StrBatch03
    3BXD1FChip03_Batch03_BXD1_F_StrBatch03
    4BXD1MChip04_Batch03_BXD1_M_StrBatch03
    5BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    6BXD2MChip05_Batch01_BXD2_M_StrBatch01
    7BXD5FChip10_Batch03_BXD5_F_StrBatch03
    8BXD5MChip12_Batch03_BXD5_M_StrBatch03
    9BXD6FChip38_Batch02_BXD6_F_StrBatch02
    10BXD6MChip39_Batch02_BXD6_M_StrBatch02
    11BXD8FChip07_Batch03_BXD8_F_StrBatch03
    12BXD8MChip02_Batch03_BXD8_M_StrBatch03
    13BXD9FChip16_Batch01_BXD9_F_StrBatch01
    14BXD9MChip10_Batch01_BXD9_M_StrBatch01
    15BXD11FChip31_Batch02_BXD11_F_StrBatch02
    16BXD12FChip11_Batch01_BXD12_F_StrBatch01
    17BXD12MChip18_Batch03_BXD12_M_StrBatch03
    18BXD13FChip33_Batch02_BXD13_F_StrBatch02
    19BXD14FChip48_Batch02_BXD14_F_StrBatch02
    20BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    21BXD15FChip21_Batch01_BXD15_F_StrBatch01
    22BXD15MChip13_Batch01_BXD15_M_StrBatch01
    23BXD16FChip36_Batch02_BXD16_F_StrBatch02
    24BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    25BXD18FChip15_Batch03_BXD18_F_StrBatch03
    26BXD18MChip19_Batch03_BXD18_M_StrBatch03
    27BXD19FChip19_Batch01_BXD19_F_StrBatch01
    28BXD20FChip14_Batch03_BXD20_F_StrBatch03
    29BXD21FChip18_Batch01_BXD21_F_StrBatch01
    30BXD21MChip09_Batch01_BXD21_M_StrBatch01
    31BXD22MChip13_Batch03_BXD22_M_StrBatch03
    32BXD23MChip01_Batch03_BXD23_M_StrBatch03
    33BXD24MChip17_Batch03_BXD24_M_StrBatch03
    34BXD27FChip29_Batch02_BXD27_F_StrBatch02
    35BXD27MChip40_Batch02_BXD27_M_StrBatch02
    36BXD28FChip06_Batch01_BXD28_F_StrBatch01
    37BXD28MChip23_Batch01_BXD28_M_StrBatch01
    38BXD29FChip45_Batch02_BXD29_F_StrBatch02
    39BXD29MChip42_Batch02_BXD29_M_StrBatch02
    40BXD31FChip14_Batch01_BXD31_F_StrBatch01
    41BXD31MChip09_Batch03_BXD31_M_StrBatch03
    42BXD32MChip30_Batch02_BXD32_M_StrBatch02
    43BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    44BXD33MChip34_Batch02_BXD33_M_StrBatch02
    45BXD34FChip03_Batch01_BXD34_F_StrBatch01
    46BXD34MChip07_Batch01_BXD34_M_StrBatch01
    47BXD36FChip22_Batch03_BXD36_F_StrBatch03
    48BXD36MChip24_Batch03_BXD36_M_StrBatch03
    49BXD38FChip17_Batch01_BXD38_F_StrBatch01
    50BXD38MChip24_Batch01_BXD38_M_StrBatch01
    51BXD39MChip20_Batch03_BXD39_M_StrBatch03
    52BXD39FChip23_Batch03_BXD39_F_StrBatch03
    53BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    54BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    55BXD40MChip22_Batch01_BXD40_M_StrBatch01
    56BXD42FChip35_Batch02_BXD42_F_StrBatch02
    57BXD42MChip32_Batch02_BXD42_M_StrBatch02
    58DBA/2JMChip02_Batch01_D2_M_StrBatch01
    59DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    + + + + + + +

        About the array platform :

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + + + +
    • Step 2: We computed the Z scores for each cell value. + +
    • Step 3: We multiplied all Z scores by 2. + +
    • Step 4: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 5: We eliminated much of the systematic technical variance introduced by the batches at the probe level. To do this we calculated the ratio of each batch mean to the mean of all batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal for each batch is the same. + + +
    • Step 6: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    +Probe set data from the CHP file: The expression values were generated using RMA. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Glenn Rosen from P20 +MH62009 (see below for specifics). Samples and arrays were processed by the +Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    + +

        About this text file:

    +

    +This text file originally generated by GDR, RWW, and YHQ on Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004; RWW and GDR April 8, 2005. +

    + + + + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/SA_M2_0405_SS.html b/web/dbdoc/SA_M2_0405_SS.html new file mode 100755 index 00000000..889d14a9 --- /dev/null +++ b/web/dbdoc/SA_M2_0405_SS.html @@ -0,0 +1,207 @@ + + +HBP Rosen Striatum M430V2 (Apr05) SScore + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    HBP Rosen Striatum M430V2 (Apr05) SScore modify this page

    Accession number: GN67

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/SA_M2_0905_M.html b/web/dbdoc/SA_M2_0905_M.html new file mode 100755 index 00000000..5e4ad279 --- /dev/null +++ b/web/dbdoc/SA_M2_0905_M.html @@ -0,0 +1,254 @@ + +OHSU/VA B6D2F2 Brain mRNA M430 MAS5(August 05) RMA / WebQTL + + + + + + + + + + + + + + + + + + + + +
    +

    + +OHSU/VA B6D2F2 2005 Brain mRNA M430 MAS5 Database (Sep/05 Freeze) modify this page

    Accession number: GN83

    + +

        Summary:             + +

    +This August 2005 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430v2 microarray. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the Microarray Suite 5 (MAS 5) protocol of Affymetrix. To simplify comparison between transforms, MAS 5 values of each array were log2 transformed and adjusted to an average of 8 units. In general, MAS 5 data do not perform as well as RMA or PDNN transforms.

    +
    + + + +

        About the cases used to generate this set of data:

    + +

    Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A&B Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

    + +

    The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

    +
    + +

        About the tissue used to generate these data:

    + +

    Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A and 430B array pairs. +

    + +

        About the arrays:

    +

    All 56 430A&B arrays used in this project were purchased at one time and had the same Affymetrix lot number. + +The table below lists the arrays by Case ID, Array ID.

    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Order
    +
    +
    +CaseID +
    +
    ArrayID
    +
    1
    061
    CASE05_061
    2
    062
    CASE05_062
    3
    063
    CASE05_063
    4
    064
    CASE05_064
    5
    065
    CASE05_065
    6
    066
    CASE05_066
    7
    067
    CASE05_067
    8
    068
    CASE05_068
    9
    069
    CASE05_069
    10
    070
    CASE05_070
    11
    071
    CASE05_071
    12
    072
    CASE05_072
    13
    073
    CASE05_073
    14
    074
    CASE05_074
    15
    075
    CASE05_075
    16
    076
    CASE05_076
    17
    077
    CASE05_077
    18
    078
    CASE05_078
    19
    079
    CASE05_079
    20
    080
    CASE05_080
    21
    702
    CASE05_702
    22
    704
    CASE05_704
    23
    707
    CASE05_707
    24
    709
    CASE05_709
    25
    710
    CASE05_710
    26
    712
    CASE05_712
    27
    713
    CASE05_713
    28
    715
    CASE05_715
    29
    716
    CASE05_716
    30
    719
    CASE05_719
    31
    720
    CASE05_720
    32
    722
    CASE05_722
    33
    723
    CASE05_723
    34
    724
    CASE05_724
    35
    725
    CASE05_725
    36
    726
    CASE05_726
    37
    727
    CASE05_727
    38
    728
    CASE05_728
    39
    729
    CASE05_729
    40
    732
    CASE05_732
    41
    734
    CASE05_734
    42
    735
    CASE05_735
    43
    736
    CASE05_736
    44
    737
    CASE05_737
    45
    739
    CASE05_739
    46
    741
    CASE05_741
    47
    743
    CASE05_743
    48
    746
    CASE05_746
    49
    754
    CASE05_754
    50
    771
    CASE05_771
    51
    785
    CASE05_785
    52
    793
    CASE05_793
    53
    795
    CASE05_795
    54
    796
    CASE05_796
    55
    798
    CASE05_798
    56
    799
    CASE05_799
    57
    800
    CASE05_800
    58
    801
    CASE05_801
    59
    802
    CASE05_802
    60
    803
    CASE05_803
    61
    806
    CASE05_806
    62
    807
    CASE05_807
    63
    808
    CASE05_808
    64
    809
    CASE05_809
    65
    811
    CASE05_811
    66
    813
    CASE05_813
    67
    814
    CASE05_814
    68
    815
    CASE05_815
    69
    816
    CASE05_816
    70
    817
    CASE05_817
    71
    819
    CASE05_819
    72
    821
    CASE05_821
    73
    824
    CASE05_824
    74
    825
    CASE05_825
    75
    826
    CASE05_826
    76
    828
    CASE05_828
    77
    829
    CASE05_829
    78
    830
    CASE05_830
    79
    833
    CASE05_833
    80
    835
    CASE05_835
    +
    + +

        About the marker set:

    + +

    The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi. +

    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + +
      +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. +
    • Step 2: We took the log base 2 of each probe signal. + +
    • Step 3: We computed the Z scores for each probe signal. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B arrays include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes provide a way to calibrate expression of the A and B arrays to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. +
    + +

    +Probe set data from the TXT file: These TXT files were generated using the MAS 5. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

    +
    + + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium March 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        Data source acknowledgment:

    +

    This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372. +

    +Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA. +

    + + +

        References:

    +

    Hitzemann, R, McWeeney, S, Harrington, S, Malmanger, B, Lawler, M, Belknap, JK (2004) Brain gene expression among four inbred mouse strains: The development of an analysis strategy for the integration of QTL and gene expression data. Submitted. +

    +

    Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15. +

    +

    Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610. +

    +

    Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821. +

    + +

        Information about this text file:

    +

    This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004, EJC June 21, 2005. +

    + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + + diff --git a/web/dbdoc/SA_M2_0905_P.html b/web/dbdoc/SA_M2_0905_P.html new file mode 100755 index 00000000..b34ea114 --- /dev/null +++ b/web/dbdoc/SA_M2_0905_P.html @@ -0,0 +1,257 @@ + +OHSU/VA B6D2F2 Striatum M430v2 (Sep05) PDNN / GeneNetwork + + + + + + + + + + + + + + + + + + + + +
    + + +

    OHSU/VA B6D2F2 Striatum M430v2 PDNN Database (September/05 Freeze)

    + +

    Summary         modify this page

    Accession number: GN85

    + +

    +PROVISIONAL DRAFT (NOT APPROVED): This September 2005 data freeze provides estimates of mRNA expression in dorsal striatum of 60 adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2, 30 males and 30 females) measured using Affymetrix M430v2 microarrays. In addition, data were acquired from 5 male and 5 females from both C57BL/6J and DBA/2J parental strains. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by Robert Hitzemann and colleagues. Data were processed using the Position-Dependent Nearest Neighbor (PDNN) method of Zhang and colleagues (2003. To simplify comparison among transforms, PDNN values of each array have been adjusted to an average of 8 units and a variance of 2 units. + +This data set was run as a single large batch balanced by sex. + +

    + + + +

        About the cases used to generate this set of data:

    + +

    Eighty samples, each taken from a single brain hemisphere from an individual mouse, were assayed using M430v2 Affymetrix short oligomer microarrays. All F2 were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 60 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

    + +

    The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

    +
    + +

        About the tissue used to generate these data:

    + +

    Brain samples were from 40 male and 40 females. The dorsal striatum was dissected. Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A array. +

    + +

        About the arrays:

    +

    All 430v2 arrays used in this project were purchased at one time and had the same Affymetrix lot number. + +The table below lists the arrays by Case ID, Array ID.

    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Order
    +
    +
    +CaseID +
    +
    ArrayID
    +
    1
    061
    CASE05_061
    2
    062
    CASE05_062
    3
    063
    CASE05_063
    4
    064
    CASE05_064
    5
    065
    CASE05_065
    6
    066
    CASE05_066
    7
    067
    CASE05_067
    8
    068
    CASE05_068
    9
    069
    CASE05_069
    10
    070
    CASE05_070
    11
    071
    CASE05_071
    12
    072
    CASE05_072
    13
    073
    CASE05_073
    14
    074
    CASE05_074
    15
    075
    CASE05_075
    16
    076
    CASE05_076
    17
    077
    CASE05_077
    18
    078
    CASE05_078
    19
    079
    CASE05_079
    20
    080
    CASE05_080
    21
    702
    CASE05_702
    22
    704
    CASE05_704
    23
    707
    CASE05_707
    24
    709
    CASE05_709
    25
    710
    CASE05_710
    26
    712
    CASE05_712
    27
    713
    CASE05_713
    28
    715
    CASE05_715
    29
    716
    CASE05_716
    30
    719
    CASE05_719
    31
    720
    CASE05_720
    32
    722
    CASE05_722
    33
    723
    CASE05_723
    34
    724
    CASE05_724
    35
    725
    CASE05_725
    36
    726
    CASE05_726
    37
    727
    CASE05_727
    38
    728
    CASE05_728
    39
    729
    CASE05_729
    40
    732
    CASE05_732
    41
    734
    CASE05_734
    42
    735
    CASE05_735
    43
    736
    CASE05_736
    44
    737
    CASE05_737
    45
    739
    CASE05_739
    46
    741
    CASE05_741
    47
    743
    CASE05_743
    48
    746
    CASE05_746
    49
    754
    CASE05_754
    50
    771
    CASE05_771
    51
    785
    CASE05_785
    52
    793
    CASE05_793
    53
    795
    CASE05_795
    54
    796
    CASE05_796
    55
    798
    CASE05_798
    56
    799
    CASE05_799
    57
    800
    CASE05_800
    58
    801
    CASE05_801
    59
    802
    CASE05_802
    60
    803
    CASE05_803
    61
    806
    CASE05_806
    62
    807
    CASE05_807
    63
    808
    CASE05_808
    64
    809
    CASE05_809
    65
    811
    CASE05_811
    66
    813
    CASE05_813
    67
    814
    CASE05_814
    68
    815
    CASE05_815
    69
    816
    CASE05_816
    70
    817
    CASE05_817
    71
    819
    CASE05_819
    72
    821
    CASE05_821
    73
    824
    CASE05_824
    74
    825
    CASE05_825
    75
    826
    CASE05_826
    76
    828
    CASE05_828
    77
    829
    CASE05_829
    78
    830
    CASE05_830
    79
    833
    CASE05_833
    80
    835
    CASE05_835
    +
    + +

        About the marker set:

    + +

    The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi. +

    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + +
      +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. +
    • Step 2: We took the log base 2 of each probe signal. + +
    • Step 3: We computed the Z scores for each probe signal. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    +
    +

    +Probe set data: The uncorrected, untransformed CEL files were subject to probe (low) level processing using both the RMA (Robust Multiarray Average; Irizarry et al. 2003) and PDNN (Position Dependent Nearest Neighbor; Zhang et al. 2003) methods because these two performed the best of four methods tested in a recent four inbred strain comparison using the M430A chip on whole brain samples (Hitzemann et al, submitted). RMA was implemented by the Affy package (11/24/03 version) within Bioconductor (http://www.bioconductor.org) and PDNN by the PerfectMatch v. 2.3 program from Li Zhang (PDNN ). For sake of comparison with other data sets, MAS 5 files have also been generated. + +

    To better compare data sets, the same simple steps (1 through 6 above) were applied to PDNN and RMA values. Every microarray data set therefore has a mean expression of 8 units with a standard deviation of 2 units. A 1-unit difference therefore represents roughly a 2-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

    + + +
    + + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of M430v2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium March 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        Data source acknowledgment:

    +

    This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372. +

    +Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA. +

    + + +

        References:

    +

    Hitzemann, R, McWeeney, S, Harrington, S, Malmanger, B, Lawler, M, Belknap, JK (2004) Brain gene expression among four inbred mouse strains: The development of an analysis strategy for the integration of QTL and gene expression data. Submitted. +

    +

    Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15. +

    +

    Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610. +

    +

    Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821. +

    + +

        Information about this text file:

    +

    This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004. +

    + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/SA_M2_0905_R.html b/web/dbdoc/SA_M2_0905_R.html new file mode 100755 index 00000000..c66e2364 --- /dev/null +++ b/web/dbdoc/SA_M2_0905_R.html @@ -0,0 +1,251 @@ + +OHSU/VA B6D2F2 Brain mRNA M430 (Aug05) RMA / WebQTL + + + + + + + + + + + + + + + + + + + + +
    + + +

    OHSU/VA B6D2F2 Brain mRNA M430 RMA Database (August/05 Freeze) modify this page

    Accession number: GN84

    + +

    +This August 2005 data freeze provides estimate of mRNA expression in adult brains of F2 intercross mice (C57BL/6J x DBA/2J F2) measured using Affymetrix M430A and M430B microarray pairs. Data were generated at The Oregon Health Sciences University (OHSU) in Portland, Oregon, by John Belknap and Robert Hitzemann. Data were processed using the RMA protocol and are presented with secondary normalization to an average expression value of 8 units. To simplify comparison between transforms, RMA values of each array were adjusted to an average of 8 units and a variance of 2 units. This data set was run as a single large batch with effort to balance samples by sex, age, and environment. +

    + + +

        About the cases used to generate this set of data:

    + +

    Fifty-six B6D2F2 samples, each taken from a single brain hemisphere from an individual mouse, were assayed using 56 M430A and M430B Affymetrix short oligomer microarrays. [The remaining hemisphere will be used later for an anaysis of specific brain regions.] Each array ID (see table below) includes a three letter code; the first letter usually denotes sex of the case (note that we have made a few corrections and there are therefore several sex-discordant IDs), the second letter denotes the hemisphere (R or L), and the third letter is the mouse number within each cell. The F2 mice were experimentally naive, born within a 3-day period from second litters of each dam, and housed at weaning (20- to 24-days-of-age) in like-sex groups of 3 to 4 mice for females and 2 to 3 mice for males in standard mouse shoebox cages within Thoren racks. All 56 F2 mice were killed at 77 to 79 days-of-age by cervical dislocation on December 17, 2003. The brains were immediately split at the midline and then quickly frozen on dry ice. The brains were stored for about two weeks at -80 degrees C until further use.

    + +

    The F2 was derived as follows: C57BL/6J (B6) and DBA/2J (D2) breeders were obtained from The Jackson Laboratory, and two generations later their progeny were crossed to produce B6D2F1 and D2B6F1 hybrid at the Portland VA Veterinary Medical Unit (AAALAC approved). The reciprocal F1s were mated to create an F2 population with both progenitor X and Y chromosomes about equally represented.

    +
    + +

        About the tissue used to generate these data:

    + +

    Brain samples were from 31 male and 25 females and between 28 right and 28 left hemispheres distributed with good balance across the two sexes. The tissue arrayed included the forebrain, midbrain, one olfactory bulb, the cerebellum; and the rostral part of the medulla. The medulla was trimmed transversely at the caudal aspect of the cerebellum. The sagittal cut was made from a dorsal to ventral direction. (Note that several of the other brain transcriptome databases do not include olfactory bulb or cerebellum.) Total RNA was isolated with TRIZOL Reagent (Life Technologies Inc.) using a modification of the single-step acid guanidinium isothiocyanate phenol-chloroform extraction method according to the manufacturer’s protocol. The extracted RNA was then purified using RNeasy (Qiagen, Inc.). RNA samples were evaluated by UV spectroscopy for purity; only samples with an A260/280 ratio greater than 1.8 were used. RNA quality was monitored by visualization on an ethidium bromide-stained denaturing formaldehyde agarose gel. Samples containing at least 10 micrograms of total RNA were sent to the OHSU Gene Microarray Shared Resource facility for analysis. The procedures used at the facility precisely follow the manufacturer’s specifications. Details can be found at http://www.ohsu.edu/gmsr/amc. Following labeling, all samples were hybridized to the GeneChip Test3 array for quality control. If target performance did not meet recommended thresholds, the sample would have been discarded. All labeled samples passed the threshold and were hybridized to the 430A and 430B arraya. +

    + +

        About the arrays:

    +

    All 56 430A&B arrays used in this project were purchased at one time and had the same Affymetrix lot number. + +The table below lists the arrays by Case ID, Array ID.

    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Order
    +
    +
    +CaseID +
    +
    ArrayID
    +
    1
    061
    CASE05_061
    2
    062
    CASE05_062
    3
    063
    CASE05_063
    4
    064
    CASE05_064
    5
    065
    CASE05_065
    6
    066
    CASE05_066
    7
    067
    CASE05_067
    8
    068
    CASE05_068
    9
    069
    CASE05_069
    10
    070
    CASE05_070
    11
    071
    CASE05_071
    12
    072
    CASE05_072
    13
    073
    CASE05_073
    14
    074
    CASE05_074
    15
    075
    CASE05_075
    16
    076
    CASE05_076
    17
    077
    CASE05_077
    18
    078
    CASE05_078
    19
    079
    CASE05_079
    20
    080
    CASE05_080
    21
    702
    CASE05_702
    22
    704
    CASE05_704
    23
    707
    CASE05_707
    24
    709
    CASE05_709
    25
    710
    CASE05_710
    26
    712
    CASE05_712
    27
    713
    CASE05_713
    28
    715
    CASE05_715
    29
    716
    CASE05_716
    30
    719
    CASE05_719
    31
    720
    CASE05_720
    32
    722
    CASE05_722
    33
    723
    CASE05_723
    34
    724
    CASE05_724
    35
    725
    CASE05_725
    36
    726
    CASE05_726
    37
    727
    CASE05_727
    38
    728
    CASE05_728
    39
    729
    CASE05_729
    40
    732
    CASE05_732
    41
    734
    CASE05_734
    42
    735
    CASE05_735
    43
    736
    CASE05_736
    44
    737
    CASE05_737
    45
    739
    CASE05_739
    46
    741
    CASE05_741
    47
    743
    CASE05_743
    48
    746
    CASE05_746
    49
    754
    CASE05_754
    50
    771
    CASE05_771
    51
    785
    CASE05_785
    52
    793
    CASE05_793
    53
    795
    CASE05_795
    54
    796
    CASE05_796
    55
    798
    CASE05_798
    56
    799
    CASE05_799
    57
    800
    CASE05_800
    58
    801
    CASE05_801
    59
    802
    CASE05_802
    60
    803
    CASE05_803
    61
    806
    CASE05_806
    62
    807
    CASE05_807
    63
    808
    CASE05_808
    64
    809
    CASE05_809
    65
    811
    CASE05_811
    66
    813
    CASE05_813
    67
    814
    CASE05_814
    68
    815
    CASE05_815
    69
    816
    CASE05_816
    70
    817
    CASE05_817
    71
    819
    CASE05_819
    72
    821
    CASE05_821
    73
    824
    CASE05_824
    74
    825
    CASE05_825
    75
    826
    CASE05_826
    76
    828
    CASE05_828
    77
    829
    CASE05_829
    78
    830
    CASE05_830
    79
    833
    CASE05_833
    80
    835
    CASE05_835
    + +
    + +

        About the marker set:

    + +

    The 56 mice were each genotyped at 309 MIT microsatellite markers distributed across the genome, including the Y chromosome. The genotyping error check routine (Lincoln and Lander, 1992) implemented within R/qtl (Broman et al., 2003) showed no likely errors at p <.01 probability. Initial genotypes were generated at OHSU. Approximately 200 genotypes were generated at UTHSC by Jing Gu and Shuhua Qi. +

    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are the 75% quantiles from a set of 91 pixel values per cell. Probe values were processed as follows: + +
      +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. +
    • Step 2: We took the log base 2 of each probe signal. + +
    • Step 3: We computed the Z scores for each probe signal. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6a: The 430A and 430B arrays include a set of 100 shared probe sets (2200 probes) that have identical sequences. These probes provide a way to calibrate expression of the A and B arrays to a common scale. The absolute mean expression on the 430B array is almost invariably lower than that on the 430A array. To bring the two arrays into alignment, we regressed Z scores of the common set of probes to obtain a linear regression corrections to rescale the 430B arrays to the 430A array. In our case this involved multiplying all 430B Z scores by the slope of the regression and adding or subtracting a very small offset. The result of this step is that the mean of the 430A GeneChip expression is fixed at a value of 8, whereas that of the 430B chip is typically 7. Thus average of A and B arrays is approximately 7.5. + +
    • Step 6b: We recenter the whole set of 430A and B transcripts to a mean of 8 and a standard deviation of 2. This involves reapplying Steps 3 through 5 above but now using the entire set of probes and probe sets from a merged 430A and B data set. + +
    +
    +

    +Probe set data: The uncorrected, untransformed CEL files were subject to probe (low) level processing using both the RMA (Robust Multiarray Average; Irizarry et al. 2003) and PDNN (Position Dependent Nearest Neighbor; Zhang et al. 2003) methods because these two performed the best of four methods tested in a recent four inbred strain comparison using the M430A chip on whole brain samples (Hitzemann et al, submitted). RMA was implemented by the Affy package (11/24/03 version) within Bioconductor (http://www.bioconductor.org) and PDNN by the PerfectMatch v. 2.3 program from Li Zhang (PDNN ). For sake of comparison with other data sets, MAS 5 files have also been generated. + +

    To better compare data sets, the same simple steps (1 through 6 above) were applied to PDNN and RMA values. Every microarray data set therefore has a mean expression of 8 units with a standard deviation of 2 units. A 1-unit difference therefore represents roughly a 2-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

    + + +
    + + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of M430A and M430B probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium March 2005 (mm6) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released. We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify link in the Trait Data and Editing Form (right side of the Location line). +

    + + +

        Data source acknowledgment:

    +

    This project was supported by two Department of Veterans Affairs Merit Review Awards (to JK Belknap and R Hitzemann, respectively), AA10760 (Portland Alcohol Research Center), AA06243, AA13484, AA11034, DA05228 and MH51372. +

    +Please contact either John Belknap or Robert Hitzemann at the Dept. of Behavioral Neuroscience, Oregon Health & Science University (L470), or Research Service (R&D5), Portland VA Medical Ctr., Portland, OR 97239 USA. +

    + + +

        References:

    +

    Hitzemann, R, McWeeney, S, Harrington, S, Malmanger, B, Lawler, M, Belknap, JK (2004) Brain gene expression among four inbred mouse strains: The development of an analysis strategy for the integration of QTL and gene expression data. Submitted. +

    +

    Irizarry, RA, Bolstad, BM, Collin, F, Cope, LM, Hobbs, B, Speed, TP (2003) Summaries of Affymetrix GeneChip probe level data. Nuc Acids Res 31:1-15. +

    +

    Lincoln, SE, Lander, ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604-610. +

    +

    Zhang, L, Miles, MF, Aldape, KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotech 21:818-821. +

    + +

        Information about this text file:

    +

    This text file was originally generated by John Belknap, March 2004. Updated by RWW, October 31, 2004. +

    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/SA_M2_1104_G.html b/web/dbdoc/SA_M2_1104_G.html new file mode 100755 index 00000000..f4f1fdb7 --- /dev/null +++ b/web/dbdoc/SA_M2_1104_G.html @@ -0,0 +1,489 @@ + +

    HBP/Rosen Striatum M430V2 (Novmber04 Freeze) MAS5/ WebQTL + + + + + + + +

    + + + + + + + + + + + + +
    +

    HBP/Rosen Striatum M430v2 (Nov04) GCRMA modify this page

    Accession number: GN53

    + +

        Summary:

    + +
    +This November 2004 data freeze provides estimates of mRNA expression +in the striatum (caudate nucleus of the forebrain) of BXD recombinant inbred mice measured using +Affymetrix Mouse Genome 430 2.0 short oligomer microarrays. Data were generated at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 125 brain samples from 24 strains were used in this initial experiment. Data were processed using the GC-RMA transform of Wu et al. (2004). To simplify comparison among Nov04 data sets, values of each array have been log2 transformed and adjusted to an average expression of 8 units. +
    + +

        About the cases used to generate this set of data:

    + +
    +

    This data set includes estimate of gene expression for 24 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), and 22 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period (see the WebQTL BXD Published Phenotypes database). A significant advantage of this RI set is that both parental strains (B6 and D2) have been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. +

    + +
    + +
    The table below lists the arrays +by strain, sex, and age. Each array was hybridized to a pool of mRNA +from 3 to 4 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Sex +
    +
    Strain + +
    +Sex +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1)BXD1
    BXD2♂♀BXD5
    BXD6BXD8
    BXD9♂♀BXD11
    BXD12BXD13
    BXD14BXD15♂♀
    BXD16BXD18
    BXD19BXD21♂♀
    BXD22BXD23
    BXD24BXD25
    BXD27♂♀BXD28♂♀
    BXD29♂♀BXD31
    BXD32BXD33♂♀
    BXD34♂♀BXD38♂♀
    BXD39BXD40♂♀
    BXD42♂♀
    + +
    +

    Select the strain name in the table above to review details about the specific cases and to view the array quality control image processed using the PerfectMatch program by Li Zhang.

    +
    + + +

        About the samples used to generate these data:

    + +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 5 to 10 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25-30 mg of tissue from 6 striata) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Rought 90 to 95% of all cells in the striatum are medium spiny neurons (Gerfen, 1992, for a review of the structure and function of the neostriatum). + +

    mRNA processing: We used the Amersham Biosciences cRNA synthesis kit protocol.

    + +
    + + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are actually duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    + + + +

        About data processing:

    + +
    Affymetrix CEL files obtained from the BIDMC Genomics Core were processed as follows. +
      +
    • Step 1: We added an offset of 1 to the CEL expression values +for each cell to ensure that all values could be logged without +generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z score for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence +of this simple set of transformations is to produce a set of Z scores +that have a mean of 8, a variance of 4, and a standard deviation of +2. The advantage of this modified Z score is that a two-fold +difference in expression level corresponds approximately to a 1 unit +difference. + +
    • Step 6: We plotted these modified Z score probe level expression estimates in DataDesk. Male-female scatterplots of the probe signals were compared strain by strain to highlight poor array data sets. A total of 36 arrays passed this stringent quality control step. + +
    • Step 7: We computed the arithmetic mean of the values for the set +of microarrays for each of the individual strains. We have not corrected for background beyond the +background correction implemented by Affymetrix in generating the +CEL file. +
    + +Probe set data from the CHP file: The expression values were +generated using GCRMA; a still experimental new version of RMA. The GC-RMA method of Wu et al. (2004) is similar to to RMA, but incorporate the mismatch signal to estimate background and noise levels. The same simple steps described above +were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Glenn Rosen from P20 +MH62009 (see below for specifics). Samples and arrays were processed by the +Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    + +

        About this test file:

    +

    +This text file originally generated by GDR, RWW, and YHQ Nov 2004. Updated by RWW Nov 17, 2004

    +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/SA_M2_1104_M.html b/web/dbdoc/SA_M2_1104_M.html new file mode 100755 index 00000000..1dfd9e1b --- /dev/null +++ b/web/dbdoc/SA_M2_1104_M.html @@ -0,0 +1,493 @@ + +

    HBP/Rosen Striatum M430V2 (Novmber04 Freeze) MAS5/ WebQTL + + + + + + + +

    + + + + + + + + + + + + +
    +

    HBP/Rosen Striatum M430v2 (Nov04) MAS5 modify this page

    Accession number: GN50

    + +

        Summary:

    + +
    +This November 2004 data freeze provides estimates of mRNA expression +in the striatum (caudate nucleus of the forebrain) of BXD recombinant inbred mice measured using +Affymetrix Mouse Genome 430 2.0 short oligomer microarrays. Data were generated at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 125 brain samples from 24 strains were used in this initial experiment. Data were processed using the Affymetrix Microarray Suite 5 (MAS 5) transform. To simplify comparison among Nov04 data sets, values of each array have been log2 transformed and adjusted to an average expression of 8 units. +
    + +

        About the cases used to generate this set of data:

    + +
    +

    This data set includes estimate of gene expression for 24 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), and 22 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period (see the WebQTL BXD Published Phenotypes database). A significant advantage of this RI set is that both parental strains (B6 and D2) have been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. +

    + +
    + +
    The table below lists the arrays +by strain, sex, and age. Each array was hybridized to a pool of mRNA +from 3 to 4 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Sex +
    +
    Strain + +
    +Sex +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1)BXD1
    BXD2♂♀BXD5
    BXD6BXD8
    BXD9♂♀BXD11
    BXD12BXD13
    BXD14BXD15♂♀
    BXD16BXD18
    BXD19BXD21♂♀
    BXD22BXD23
    BXD24BXD25
    BXD27♂♀BXD28♂♀
    BXD29♂♀BXD31
    BXD32BXD33♂♀
    BXD34♂♀BXD38♂♀
    BXD39BXD40♂♀
    BXD42♂♀
    + +
    +

    Select the strain name in the table above to review details about the specific cases and to view the array quality control image processed using the PerfectMatch program by Li Zhang.

    +
    + + +

        About the samples used to generate these data:

    + +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 5 to 10 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25-30 mg of tissue from 6 striata) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Rought 90 to 95% of all cells in the striatum are medium spiny neurons (Gerfen, 1992, for a review of the structure and function of the neostriatum). + +

    mRNA processing: We used the Amersham Biosciences cRNA synthesis kit protocol.

    + +
    + + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are actually duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    + + + +

        About data processing:

    + +
    Affymetrix CEL files obtained from the BIDMC Genomics Core were processed as follows. +
      +
    • Step 1: We added an offset of 1 to the CEL expression values +for each cell to ensure that all values could be logged without +generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z score for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence +of this simple set of transformations is to produce a set of Z scores +that have a mean of 8, a variance of 4, and a standard deviation of +2. The advantage of this modified Z score is that a two-fold +difference in expression level corresponds approximately to a 1 unit +difference. + +
    • Step 6: We plotted these modified Z score probe level expression estimates in DataDesk. Male-female scatterplots of the probe signals were compared strain by strain to highlight poor array data sets. A total of 36 arrays passed this stringent quality control step. + +
    • Step 7: We computed the arithmetic mean of the values for the set +of microarrays for each of the individual strains. We have not corrected for background beyond the +background correction implemented by Affymetrix in generating the +CEL file. +
    + +Probe set data from the CHP file: The expression values were +generated using the MAS 5. The same simple steps described above +were also applied to these values. Every microarray data set +therefore has a mean expression of 8 with a standard deviation of 2. +A 1 unit difference therefor represents roughly a two-fold difference +in expression level. Expression levels below 5 are usually close to +background noise levels.
    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Glenn Rosen from P20 +MH62009 (see below for specifics). Samples and arrays were processed by the +Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    + +

        About this test file:

    +

    +This text file originally generated by GDR, RWW, and YHQ Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW, Dec 23, 2004.

    +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/SA_M2_1104_P.html b/web/dbdoc/SA_M2_1104_P.html new file mode 100755 index 00000000..9b9ae92b --- /dev/null +++ b/web/dbdoc/SA_M2_1104_P.html @@ -0,0 +1,493 @@ + +

    HBP/Rosen Striatum M430V2 (Novmber04 Freeze) MAS5/ WebQTL + + + + + + + +

    + + + + + + + + + + + + +
    +

    HBP/Rosen Striatum M430v2 (Nov04) PDNN modify this page

    Accession number: GN51

    + +

        Summary:

    + +
    +This November 2004 data freeze provides estimates of mRNA expression +in the striatum (caudate nucleus of the forebrain) of BXD recombinant inbred mice measured using +Affymetrix Mouse Genome 430 2.0 short oligomer microarrays. Data were generated at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 125 brain samples from 24 strains were used in this initial experiment. Data were processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array were adjusted to an average of 8 units and a variance of 2 units. +
    + +

        About the cases used to generate this set of data:

    + +
    +

    This data set includes estimate of gene expression for 24 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), and 22 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period (see the WebQTL BXD Published Phenotypes database). A significant advantage of this RI set is that both parental strains (B6 and D2) have been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. +

    + +
    + +
    The table below lists the arrays +by strain, sex, and age. Each array was hybridized to a pool of mRNA +from 3 to 4 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Sex +
    +
    Strain + +
    +Sex +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1)BXD1
    BXD2♂♀BXD5
    BXD6BXD8
    BXD9♂♀BXD11
    BXD12BXD13
    BXD14BXD15♂♀
    BXD16BXD18
    BXD19BXD21♂♀
    BXD22BXD23
    BXD24BXD25
    BXD27♂♀BXD28♂♀
    BXD29♂♀BXD31
    BXD32BXD33♂♀
    BXD34♂♀BXD38♂♀
    BXD39BXD40♂♀
    BXD42♂♀
    + +
    +

    Select the strain name in the table above to review details about the specific cases and to view the array quality control image processed using the PerfectMatch program by Li Zhang.

    +
    + + +

        About the samples used to generate these data:

    + +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 5 to 10 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25-30 mg of tissue from 6 striata) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Rought 90 to 95% of all cells in the striatum are medium spiny neurons (Gerfen, 1992, for a review of the structure and function of the neostriatum). + +

    mRNA processing: We used the Amersham Biosciences cRNA synthesis kit protocol.

    + +
    + + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are actually duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    + + + +

        About data processing:

    + +
    Affymetrix CEL files obtained from the BIDMC Genomics Core were processed as follows. +
      +
    • Step 1: We added an offset of 1 to the CEL expression values +for each cell to ensure that all values could be logged without +generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z score for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence +of this simple set of transformations is to produce a set of Z scores +that have a mean of 8, a variance of 4, and a standard deviation of +2. The advantage of this modified Z score is that a two-fold +difference in expression level corresponds approximately to a 1 unit +difference. + +
    • Step 6: We plotted these modified Z score probe level expression estimates in DataDesk. Male-female scatterplots of the probe signals were compared strain by strain to highlight poor array data sets. A total of 36 arrays passed this stringent quality control step. + +
    • Step 7: We computed the arithmetic mean of the values for the set +of microarrays for each of the individual strains. We have not corrected for background beyond the +background correction implemented by Affymetrix in generating the +CEL file. +
    + +Probe set data from the CHP file: The expression values were +generated using PDNN. The same simple steps described above +were also applied to these values. Every microarray data set +therefore has a mean expression of 8 with a standard deviation of 2. +A 1 unit difference therefor represents roughly a two-fold difference +in expression level. Expression levels below 5 are usually close to +background noise levels.
    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Glenn Rosen from P20 +MH62009 (see below for specifics). Samples and arrays were processed by the +Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    + +

        About this test file:

    +

    +This text file originally generated by GDR, RWW, and YHQ Nov 2004. Updated by RWW Nov 17, 2004; GDR and RWW Dec 23, 2004.

    +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/SA_M2_1104_R.html b/web/dbdoc/SA_M2_1104_R.html new file mode 100755 index 00000000..ae5b7d8d --- /dev/null +++ b/web/dbdoc/SA_M2_1104_R.html @@ -0,0 +1,493 @@ + +

    HBP/Rosen Striatum M430V2 (Novmber04 Freeze) MAS5/ WebQTL + + + + + + + +

    + + + + + + + + + + + + +
    +

    HBP/Rosen Striatum M430v2 (Nov04) RMA modify this page

    Accession number: GN52

    + +

        Summary:

    + +
    +This November 2004 data freeze provides estimates of mRNA expression +in the striatum (caudate nucleus of the forebrain) of BXD recombinant inbred mice measured using +Affymetrix Mouse Genome 430 2.0 short oligomer microarrays. Data were generated at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of a Human Brain Project (HBP) grant. Approximately 125 brain samples from 24 strains were used in this initial experiment. Data were processed using the Robust Multiarray (RMA) transform (a Bioconductor module). To simplify comparison among Nov04 data sets, values of each array have been log2 transformed and adjusted to an average expression of 8 units. +
    + +

        About the cases used to generate this set of data:

    + +
    +

    This data set includes estimate of gene expression for 24 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), and 22 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period (see the WebQTL BXD Published Phenotypes database). A significant advantage of this RI set is that both parental strains (B6 and D2) have been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. +

    + +
    + +
    The table below lists the arrays +by strain, sex, and age. Each array was hybridized to a pool of mRNA +from 3 to 4 mice.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    +Sex +
    +
    Strain + +
    +Sex +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1)BXD1
    BXD2♂♀BXD5
    BXD6BXD8
    BXD9♂♀BXD11
    BXD12BXD13
    BXD14BXD15♂♀
    BXD16BXD18
    BXD19BXD21♂♀
    BXD22BXD23
    BXD24BXD25
    BXD27♂♀BXD28♂♀
    BXD29♂♀BXD31
    BXD32BXD33♂♀
    BXD34♂♀BXD38♂♀
    BXD39BXD40♂♀
    BXD42♂♀
    + +
    +

    Select the strain name in the table above to review details about the specific cases and to view the array quality control image processed using the PerfectMatch program by Li Zhang.

    +
    + + +

        About the samples used to generate these data:

    + +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 5 to 10 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25-30 mg of tissue from 6 striata) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Rought 90 to 95% of all cells in the striatum are medium spiny neurons (Gerfen, 1992, for a review of the structure and function of the neostriatum). + +

    mRNA processing: We used the Amersham Biosciences cRNA synthesis kit protocol.

    + +
    + + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are actually duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    + + + +

        About data processing:

    + +
    Affymetrix CEL files obtained from the BIDMC Genomics Core were processed as follows. +
      +
    • Step 1: We added an offset of 1 to the CEL expression values +for each cell to ensure that all values could be logged without +generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z score for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence +of this simple set of transformations is to produce a set of Z scores +that have a mean of 8, a variance of 4, and a standard deviation of +2. The advantage of this modified Z score is that a two-fold +difference in expression level corresponds approximately to a 1 unit +difference. + +
    • Step 6: We plotted these modified Z score probe level expression estimates in DataDesk. Male-female scatterplots of the probe signals were compared strain by strain to highlight poor array data sets. A total of 36 arrays passed this stringent quality control step. + +
    • Step 7: We computed the arithmetic mean of the values for the set +of microarrays for each of the individual strains. We have not corrected for background beyond the +background correction implemented by Affymetrix in generating the +CEL file. +
    + +Probe set data from the CHP file: The expression values were +generated using RMA. The same simple steps described above +were also applied to these values. Every microarray data set +therefore has a mean expression of 8 with a standard deviation of 2. +A 1 unit difference therefor represents roughly a two-fold difference +in expression level. Expression levels below 5 are usually close to +background noise levels.
    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Glenn Rosen from P20 +MH62009 (see below for specifics). Samples and arrays were processed by the +Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    + +

        About this test file:

    +

    +This text file originally generated by GDR, RWW, and YHQ Nov 2004. Updated by RWW Nov 17, 2004

    +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/STSPL_1107_R.html b/web/dbdoc/STSPL_1107_R.html new file mode 100755 index 00000000..5857c390 --- /dev/null +++ b/web/dbdoc/STSPL_1107_R.html @@ -0,0 +1,131 @@ + +Stuart CXB Mouse Spleen Normative Affy M430 2.0 (Nov 2007) RMA data set + + + + + + + + + + + + +"; + + return html; +} + +function sortSearchResults(myForm) +{ + var newSearchResults = searchResults + + if (document.getElementById('traitNode')){ + var selectedNode = document.getElementById('traitNode').value; + + if (selectedNode == "none") + { + alert("Please select a central node for your radial graph."); + return false; + } + + else if (selectedNode == "auto") + { + var newSelectedNode = String(searchResults[parseInt(document.getElementById('optimalNode').value)]); + } + + else + { + var newSelectedNode = selectedNode; + } + + newSearchResults.splice(searchResults.indexOf(newSelectedNode), 1); + + newSearchResults.splice(0, 0, newSelectedNode); + } + + var gType = document.getElementById('gType').value; + + if (gType == "none") + { + alert("Please select a graph method."); + return false; + } + + document.getElementById('searchResult').value = newSearchResults.join("\t"); + + databaseFunc(myForm, 'networkGraph'); + +} + +function changeThreshold(){ + var lock = document.getElementById('lock').value; + var threshold = document.getElementById('kValue').value; + + if (lock == "yes"){ + if(threshold != 0){ + originalThreshold = threshold; + document.getElementById('kValue').value = "0.0"; + } + } + + else if (lock == "no" && originalThreshold != 0){ + document.getElementById('kValue').value = originalThreshold; + } +} + diff --git a/web/javascript/searchtip.js b/web/javascript/searchtip.js new file mode 100755 index 00000000..5665bc1d --- /dev/null +++ b/web/javascript/searchtip.js @@ -0,0 +1,64 @@ +// search tips for 'Get Any' and 'Combined' in the main search page http://www.genenetwork.org/ +function searchtip(){ + + var tfor = document.getElementById("tfor"); + var tfand = document.getElementById("tfand"); + var btsearch = document.getElementById("btsearch"); + var tiptextor = "Enter list here (APOE, APOA, etc.): logical OR"; + var tiptextand = "Enter terms to combine (blood pressure): logical AND"; + + if(tfor.value == "" || tfor.value == tiptextor) { + tfor.className = "searchtip"; + tfor.value = tiptextor; + } + + tfor.onfocus = function(e) { + if(tfor.value == tiptextor) { + tfor.value = ""; + } + tfor.className = ""; + } + tfor.onblur = function(e) { + if(tfor.value == "") { + tfor.className = "searchtip"; + tfor.value = tiptextor; + } else if(tfor.value == tiptextor){ + tfor.className = "searchtip"; + } else { + tfor.className = ""; + } + } + + if(tfand.value == "" || tfand.value == tiptextand) { + tfand.className = "searchtip"; + tfand.value = tiptextand; + } + + tfand.onfocus = function(e) { + if(tfand.value == tiptextand) { + tfand.value = ""; + } + tfand.className = ""; + } + tfand.onblur = function(e) { + if(tfand.value == "") { + tfand.className = "searchtip"; + tfand.value = tiptextand; + } else if(tfand.value == tiptextand) { + tfand.className = "searchtip"; + } else { + tfand.className = ""; + } + } + + btsearch.onclick = function(e) { + if(tfor.value == tiptextor) { + tfor.value = ""; + } + if(tfand.value == tiptextand) { + tfand.value = ""; + } + return true; + } + +} diff --git a/web/javascript/selectDatasetMenu.js b/web/javascript/selectDatasetMenu.js new file mode 100755 index 00000000..65fff775 --- /dev/null +++ b/web/javascript/selectDatasetMenu.js @@ -0,0 +1,1191 @@ +var sArr = [ +{txt:'',val:''}, +{txt:'Human',val:'human'}, +{txt:'Macaque monkey',val:'macaque monkey'}, +{txt:'Mouse',val:'mouse'}, +{txt:'Rat',val:'rat'}, +{txt:'Drosophila',val:'drosophila'}, +{txt:'Arabidopsis thaliana',val:'arabidopsis'}, +{txt:'Barley',val:'barley'}, +{txt:'Soybean',val:'soybean'}, +{txt:'Tomato',val:'tomato'}, +{txt:'All Species',val:'All Species'}]; + +var gArr = [ +{txt:'',val:''}, +{txt:'AD Cases & Controls (Liang)',val:'AD-cases-controls'}, +{txt:'AD Cases & Controls (Myers)',val:'AD-cases-controls-Myers'}, +{txt:'AKXD',val:'AKXD'}, +{txt:'AXB/BXA',val:'AXBXA'}, +{txt:'B6BTBRF2',val:'B6BTBRF2'}, +{txt:'B6D2F2',val:'B6D2F2'}, +{txt:'BayXSha',val:'BayXSha'}, +{txt:'BDF2 UCLA',val:'BDF2-1999'}, +{txt:'BDF2-2005',val:'BDF2-2005'}, +{txt:'BHF2 (Apoe Null) UCLA',val:'BHF2'}, +{txt:'BH/HB F2 UCLA',val:'BHHBF2'}, +{txt:'BXD',val:'BXD'}, +{txt:'BXH',val:'BXH'}, +{txt:'CANDLE',val:'CANDLE'}, +{txt:'CEPH Families',val:'CEPH-2004'}, +{txt:'ColXBur',val:'ColXBur'}, +{txt:'ColXCvi',val:'ColXCvi'}, +{txt:'CastB6/B6Cast F2 UCLA',val:'CTB6F2'}, +{txt:'CXB',val:'CXB'}, +{txt:'Drosophila Genetic Reference Panel',val:'DGRP'}, +{txt:'Harvard Brain Tissue Resource Center',val:'HB'}, +{txt:'Human Liver Cohort',val:'HLC'}, +{txt:'Heterogeneous Stock',val:'HS'}, +{txt:'Heterogeneous Stock Collaborative Cross',val:'HS-CC'}, +{txt:'KIN/YSM',val:'HSB'}, +{txt:'HXB/BXH',val:'HXBBXH'}, +{txt:'J12XJ58F2',val:'J12XJ58F2'}, +{txt:'LXP',val:'LXP'}, +{txt:'LXS',val:'LXS'}, +{txt:'Macaca fasicularis (Cynomolgus monkey)',val:'Macaca-fasicularis'}, +{txt:'Mouse Diversity Panel',val:'MDP'}, +{txt:'NZB/FVB N2 NCI',val:'NZBXFVB-N2'}, +{txt:'Oregon-R x 2b3',val:'Oregon-R_x_2b3'}, +{txt:'QSM',val:'QSM'}, +{txt:'UIOWA SRxSHRSP F2',val:'SRxSHRSPF2'}, +{txt:'SXM',val:'SXM'}, +{txt:'All Groups',val:'all groups'}]; + +var tArr = [ +{txt:'',val:''}, +{txt:'Adipose mRNA',val:'Adipose'}, +{txt:'Adrenal Gland mRNA',val:'Adrenal Gland'}, +{txt:'Amygdala mRNA',val:'Amygdala'}, +{txt:'Brain mRNA',val:'Brain'}, +{txt:'Cartilage mRNA',val:'Cartilage'}, +{txt:'Caudal Ganglionic Eminence mRNA',val:'Caudal Ganglionic Eminence'}, +{txt:'Cerebellar Cortex mRNA',val:'Cerebellar Cortex'}, +{txt:'Cerebellum mRNA',val:'Cerebellum'}, +{txt:'Diencephalon mRNA',val:'Diencephalon'}, +{txt:'Dorsal Thalamus mRNA',val:'Dorsal Thalamus'}, +{txt:'Dorsolateral Prefrontal Cortex mRNA',val:'Dorsolateral Prefrontal Cortex'}, +{txt:'Embryo mRNA',val:'Embryo'}, +{txt:'Eye mRNA',val:'Eye'}, +{txt:'Frontal Cerebral Wall mRNA',val:'Frontal Cerebral Wall'}, +{txt:'Heart mRNA',val:'Heart'}, +{txt:'Hematopoietic Cells mRNA',val:'Hematopoietic Cells'}, +{txt:'Hippocampus mRNA',val:'Hippocampus'}, +{txt:'Hypothalamus mRNA',val:'Hypothalamus'}, +{txt:'Inferior Temporal Cortex mRNA',val:'Inferior Temporal Cortex'}, +{txt:'Kidney mRNA',val:'Kidney'}, +{txt:'Lateral Ganglionic Eminence mRNA',val:'Lateral Ganglionic Eminence'}, +{txt:'Leaf mRNA',val:'Leaf'}, +{txt:'Leucocytes mRNA',val:'Leucocytes'}, +{txt:'Liver mRNA',val:'Liver'}, +{txt:'Lung mRNA',val:'Lung'}, +{txt:'Lymphoblast B-cell mRNA',val:'Lymphoblast B-cell'}, +{txt:'Mammary Tumors mRNA',val:'Mammary Tumors'}, +{txt:'Medial Ganglionic Eminence mRNA',val:'Medial Ganglionic Eminence'}, +{txt:'Medial Prefrontal Cortex mRNA',val:'Medial Prefrontal Cortex'}, +{txt:'Mediodorsal Nucleus of Thalamus mRNA',val:'Mediodorsal Nucleus of Thalamus'}, +{txt:'Midbrain mRNA',val:'Midbrain'}, +{txt:'Muscle mRNA',val:'Muscle'}, +{txt:'Neocortex mRNA',val:'Neocortex'}, +{txt:'Newborn Cord Blood mRNA',val:'Newborn Cord Blood'}, +{txt:'Nucleus Accumbens mRNA',val:'Nucleus Accumbens'}, +{txt:'Occipital Cerebral Wall mRNA',val:'Occipital Cerebral Wall'}, +{txt:'Orbital Prefrontal Cortex mRNA',val:'Orbital Prefrontal Cortex'}, +{txt:'Parietal Cerebral Wall mRNA',val:'Parietal Cerebral Wall'}, +{txt:'Peritoneal Fat mRNA',val:'Peritoneal Fat'}, +{txt:'Posterior Inferior Parietal Cortex mRNA',val:'Posterior Inferior Parietal Cortex'}, +{txt:'Posterior Superior Temporal Cortex mRNA',val:'Posterior Superior Temporal Cortex'}, +{txt:'Prefrontal Cortex mRNA',val:'Prefrontal Cortex'}, +{txt:'Primary Auditory (A1) Cortex mRNA',val:'Primary Auditory (A1) Cortex'}, +{txt:'Primary Motor (M1) Cortex mRNA',val:'Primary Motor (M1) Cortex'}, +{txt:'Primary Somatosensory (S1) Cortex mRNA',val:'Primary Somatosensory (S1) Cortex'}, +{txt:'Primary Visual Cortex mRNA',val:'Primary Visual Cortex'}, +{txt:'Retina mRNA',val:'Retina'}, +{txt:'Spleen mRNA',val:'Spleen'}, +{txt:'Striatum mRNA',val:'Striatum'}, +{txt:'T Cell (helper) mRNA',val:'T Cell (helper)'}, +{txt:'T Cell (regulatory) mRNA',val:'T Cell (regulatory)'}, +{txt:'Temporal Cerebral Wall mRNA',val:'Temporal Cerebral Wall'}, +{txt:'Thymus mRNA',val:'Thymus'}, +{txt:'Upper (Rostral) Rhombic Lip mRNA',val:'Upper (Rostral) Rhombic Lip'}, +{txt:'Ventral Forebrain mRNA',val:'Ventral Forebrain'}, +{txt:'Ventral Tegmental Area mRNA',val:'Ventral Tegmental Area'}, +{txt:'Ventrolateral Prefrontal Cortex mRNA',val:'Ventrolateral Prefrontal Cortex'}, +{txt:'Whole Body mRNA',val:'Whole Body'}, +{txt:'Phenotypes',val:'Phenotypes'}, +{txt:'Genotypes',val:'Genotypes'}]; + +var dArr = [ +{txt:'',val:''}, +{txt:'GSE15222 Human Brain Normal Myers (Apr09) RankInv',val:'GSE15222_F_N_RI_0409'}, +{txt:'GSE15222 Human Brain Alzheimer Myers (Apr09) RankInv',val:'GSE15222_F_A_RI_0409'}, +{txt:'INIA Macaca fasicularis Nucleus Accumbens (Jan10) RMA **',val:'INIA_MacFas_Ac_RMA_0110'}, +{txt:'UCLA CTB6/B6CTF2 Brain (2005) mlratio',val:'UCLA_CTB6B6CTF2_BRAIN_2005'}, +{txt:'INIA Macaca fasicularis Hippocampus (Jan10) RMA **',val:'INIA_MacFas_Hc_RMA_0110'}, +{txt:'UCLA CTB6/B6CTF2 Liver (2005) mlratio',val:'UCLA_CTB6B6CTF2_LIVER_2005'}, +{txt:'UCLA CTB6/B6CTF2 Muscle (2005) mlratio',val:'UCLA_CTB6B6CTF2_MUSCLE_2005'}, +{txt:'UCLA CTB6/B6CTF2 Adipose (2005) mlratio',val:'UCLA_CTB6B6CTF2_ADIPOSE_2005'}, +{txt:'UCLA CTB6B6CTF2 Adipose Female mlratio **',val:'UCLA_CTB6B6CTF2_ADIPOSE_FEMALE'}, +{txt:'UCLA CTB6B6CTF2 Brain Female mlratio **',val:'UCLA_CTB6B6CTF2_BRAIN_FEMALE'}, +{txt:'UCLA CTB6B6CTF2 Muscle Female mlratio **',val:'UCLA_CTB6B6CTF2_MUSCLE_FEMALE'}, +{txt:'UCLA CTB6B6CTF2 Liver Female mlratio **',val:'UCLA_CTB6B6CTF2_LIVER_FEMALE'}, +{txt:'INIA Macaca fasicularis Amygdala (Jan10) RMA **',val:'INIA_MacFas_AMG_RMA_0110'}, +{txt:'VU BXD Midbrain Agilent SurePrint G3 Mouse GE (May12) Quantile',val:'VUBXDMouseMidBrainQ0512'}, +{txt:'GSE16780 UCLA Hybrid MDP Liver Affy HT M430A (Sep11) RMA',val:'GSE16780_UCLA_ML0911'}, +{txt:'EPFL/LISP BXD CD Muscle Affy Mouse Gene 1.0 ST (Dec11) RMA **',val:'EPFLMouseMuscleCDRMA1211'}, +{txt:'EPFL/LISP BXD Muscle Affy Mouse Gene 1.0 ST (Dec11) RMA **',val:'EPFLMouseMuscleRMA1211'}, +{txt:'EPFL/LISP BXD HFD Muscle Affy Mouse Gene 1.0 ST (Dec11) RMA **',val:'EPFLMouseMuscleHFDRMA1211'}, +{txt:'BIDMC/UTHSC Dev Striatum P14 ILMv6.2 (Nov11) RankInv **',val:'DevStriatum_ILM6.2P14RInv_1111'}, +{txt:'BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov11) RankInv **',val:'DevStriatum_ILM6.2P3RInv_1111'}, +{txt:'BIDMC/UTHSC Dev Neocortex P14 ILMv6.2 (Nov11) RankInv',val:'DevNeocortex_ILM6.2P14RInv_1111'}, +{txt:'BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov11) RankInv',val:'DevNeocortex_ILM6.2P3RInv_1111'}, +{txt:'HEI Retina Illumina V6.2 (April 2010) RankInv',val:'Illum_Retina_BXD_RankInv0410'}, +{txt:'B6D2 ONC Illumina v6.1 (Apr12) RankInv **',val:'B6D2ONCILM_0412'}, +{txt:'ONC Retina Illumina V6.2 (Apr12) RankInv **',val:'ONCRetILM6_0412'}, +{txt:'HEI ONC Retina Illumina V6.2 (Sep11) RankInv **',val:'HEIONCRetILM6_0911'}, +{txt:'HEI ONC vs Control Retina Illumina V6.2 (Sep11) RankInv **',val:'HEIONCvsCRetILM6_0911'}, +{txt:'G2 HEI ONC Retina Illumina V6.2 (Sep11) RankInv **',val:'G2HEIONCRetILM6_0911'}, +{txt:'JAX Liver Affy M430 2.0 (Jul11) MDP',val:'JAX_CSB_L_0711'}, +{txt:'JAX Liver HF Affy M430 2.0 (Jul11) MDP',val:'JAX_CSB_L_HF_0711'}, +{txt:'JAX Liver 6C Affy M430 2.0 (Jul11) MDP',val:'JAX_CSB_L_6C_0711'}, +{txt:'CANDLE Newborn Cord ILMv6.3 (Jun11) QUANT **',val:'CANDLE_NB_0711'}, +{txt:'KIN/YSM Human HIP Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_HIP_0711'}, +{txt:'KIN/YSM Human MFC Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_MFC_0711'}, +{txt:'KIN/YSM Human VFC Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_VFC_0711'}, +{txt:'KIN/YSM Human VF Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_VF_0711'}, +{txt:'KIN/YSM Human MGE Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_MGE_0711'}, +{txt:'KIN/YSM Human OC Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_OC_0711'}, +{txt:'KIN/YSM Human V1C Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_V1C_0711'}, +{txt:'KIN/YSM Human URL Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_URL_0711'}, +{txt:'KIN/YSM Human TC Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_TC_0711'}, +{txt:'KIN/YSM Human STR Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_STR_0711'}, +{txt:'KIN/YSM Human OFC Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_OFC_0711'}, +{txt:'KIN/YSM Human PC Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_PC_0711'}, +{txt:'KIN/YSM Human S1C Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_S1C_0711'}, +{txt:'KIN/YSM Human MD Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_MD_0711'}, +{txt:'KIN/YSM Human STC Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_STC_0711'}, +{txt:'KIN/YSM Human FC Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_FC_0711'}, +{txt:'KIN/YSM Human DIE Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_DIE_0711'}, +{txt:'KIN/YSM Human DFC Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_DFC_0711'}, +{txt:'KIN/YSM Human CGE Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_CGE_0711'}, +{txt:'KIN/YSM Human DTH Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_DTH_0711'}, +{txt:'KIN/YSM Human CBC Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_CBC_0711'}, +{txt:'KIN/YSM Human AMY Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_AMY_0711'}, +{txt:'KIN/YSM Human A1C Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_A1C_0711'}, +{txt:'KIN/YSM Human IPC Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_IPC_0711'}, +{txt:'KIN/YSM Human ITC Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_ITC_0711'}, +{txt:'KIN/YSM Human LGE Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_LGE_0711'}, +{txt:'KIN/YSM Human M1C Affy Hu-Exon 1.0 ST (Jul11) Quantile **',val:'KIN_YSM_M1C_0711'}, +{txt:'HBTRC-MLC Human Cerebellum Agilent (Jun11) mlratio',val:'HBTRC-MLC_0611'}, +{txt:'HBTRC-MLC Human Cerebellum Agilent Normal (Jun11) mlratio',val:'HBTRC-MLC_N_0611'}, +{txt:'HBTRC-MLC Human Prefrontal Cortex Agilent (Jun11) mlratio',val:'HBTRC-MLPFC_0611'}, +{txt:'HBTRC-MLC Human Prefrontal Cortex Agilent Normal (Jun11) mlratio',val:'HBTRC-MLPFC_N_0611'}, +{txt:'HBTRC-MLC Human Cerebellum Agilent AD (Jun11) mlratio',val:'HBTRC-MLC_AD_0611'}, +{txt:'HBTRC-MLC Human Visual Cortex Agilent (Jun11) mlratio',val:'HBTRC-MLVC_0611'}, +{txt:'HBTRC-MLC Human Prefrontal Cortex Agilent AD (Jun11) mlratio',val:'HBTRC-MLPFC_AD_0611'}, +{txt:'HBTRC-MLC Human Visual Cortex Agilent Normal (Jun11) mlratio',val:'HBTRC-MLVC_N_0611'}, +{txt:'HBTRC-MLC Human Cerebellum Agilent HD (Jun11) mlratio',val:'HBTRC-MLC_HD_0611'}, +{txt:'HBTRC-MLC Human Visual Cortex Agilent AD (Jun11) mlratio',val:'HBTRC-MLVC_AD_0611'}, +{txt:'HBTRC-MLC Human Prefrontal Cortex Agilent HD (Jun11) mlratio',val:'HBTRC-MLPFC_HD_0611'}, +{txt:'HBTRC-MLC Human Visual Cortex Agilent HD (Jun11) mlratio',val:'HBTRC-MLVC_HD_0611'}, +{txt:'INIA Amygdala Cohort Affy MoGene 1.0 ST (Mar11) RMA',val:'INIA_AmgCoh_0311'}, +{txt:'INIA Amygdala Affy MoGene 1.0 ST (Nov10) RMA',val:'INIA_Amg_BLA_RMA_1110'}, +{txt:'INIA Amygdala Affy MoGene 1.0 ST (Nov10) RMA Male',val:'INIA_Amg_BLA_RMA_M_1110'}, +{txt:'INIA Amygdala Affy MoGene 1.0 ST (Nov10) RMA Female',val:'INIA_Amg_BLA_RMA_F_1110'}, +{txt:'GSE9588 Human Liver Normal (Mar11) Both Sexes',val:'HLC_0311'}, +{txt:'GSE9588 Human Liver Normal (Mar11) Males',val:'HLCM_0311'}, +{txt:'HZI Thelp M430v2 (Feb11) RMA',val:'RTHC_0211_R'}, +{txt:'GSE5281 Human Brain Normal Full Liang (Jul09) RMA',val:'GSE5281_F_RMA_N_0709'}, +{txt:'GSE5281 Human Brain Alzheimer Full Liang (Jul09) RMA',val:'GSE5281_F_RMA_Alzh_0709'}, +{txt:'OHSU HS-CC Striatum ILM6v1 (Feb11) RankInv',val:'OHSU_HS-CC_ILMStr_0211'}, +{txt:'HEI Retina Females Illumina V6.2 (Dec10) RankInv **',val:'ILM_Retina_BXD_F_RankInv1210'}, +{txt:'HEI Retina Males Illumina V6.2 (Dec10) RankInv **',val:'ILM_Retina_BXD_M_RankInv1210'}, +{txt:'HEI Retina F-M Illumina V6.2 (Dec10) RankInv **',val:'ILM_Retina_BXD_FM_RankInv1210'}, +{txt:'G2NEI Retina Illumina V6.2 (April 2010) RankInv **',val:'G2NEI_ILM_Retina_BXD_RI0410'}, +{txt:'NCSU Drosophila Whole Body (Jan11) RMA',val:'NCSU_DrosWB_LC_RMA_0111'}, +{txt:'UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Females',val:'LV_G_0106_F'}, +{txt:'UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Males',val:'LV_G_0106_M'}, +{txt:'UNC Agilent G4121A Liver LOWESS Stanford (Jan06) Both Sexes',val:'LV_G_0106_B'}, +{txt:'GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Females **',val:'GenEx_BXD_liverSal_RMA_F_0211'}, +{txt:'GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Males **',val:'GenEx_BXD_liverSal_RMA_M_0211'}, +{txt:'GenEx BXD Sal Liver Affy M430 2.0 (Feb11) RMA Both Sexes **',val:'GenEx_BXD_liverSal_RMA_0211'}, +{txt:'GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Females **',val:'GenEx_BXD_liverEt_RMA_F_0211'}, +{txt:'GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Males **',val:'GenEx_BXD_liverEt_RMA_M_0211'}, +{txt:'GenEx BXD EtOH Liver Affy M430 2.0 (Feb11) RMA Both Sexes **',val:'GenEx_BXD_liverEt_RMA_0211'}, +{txt:'SUH BXD Liver Affy Mouse Gene 1.0 ST (Jun11) RMA **',val:'SUH_Liv_RMA_0611'}, +{txt:'HQF BXD Striatum ILM6.1 (Dec10v2) RankInv',val:'UTHSC_Striatum_RankInv_1210'}, +{txt:'HQF BXD Striatum ILM6.1 (Dec10) RankInv',val:'UTHSC_Str_RankInv_1210'}, +{txt:'HQF BXD Neocortex ILM6v1.1 (Dec10v2) RankInv',val:'HQFNeoc_1210v2_RankInv'}, +{txt:'UTHSC Affy MoGene 1.0 ST Spleen (Dec10) RMA',val:'UTHSC_SPL_RMA_1210'}, +{txt:'HQF BXD Neocortex ILM6v1.1 (Dec10) RankInv',val:'HQFNeoc_1210_RankInv'}, +{txt:'INIA Hypothalamus Affy MoGene 1.0 ST (Nov10)',val:'INIA_Hyp_RMA_1110'}, +{txt:'INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) Male',val:'INIA_Hyp_M_RMA_1110'}, +{txt:'INIA Hypothalamus Affy MoGene 1.0 ST (Nov10) Female',val:'INIA_Hyp_F_RMA_1110'}, +{txt:'UMUTAffy Hippocampus Exon (Feb09) RMA MDP',val:'UMUTAffyExon_0209_RMA_MDP'}, +{txt:'UTHSC Affy MoGene 1.0 ST Spleen (Oct10) RMA',val:'UTHSC_SPL_RMA_1010'}, +{txt:'Hippocampus Consortium M430v2 (Jun06) RMA MDP',val:'HC_M2_0606_MDP'}, +{txt:'OX UK HS ILM6v1.1 Lung (May 2010) RankInv',val:'OXUKHS_ILMLung_RI0510'}, +{txt:'OX UK HS ILM6v1.1 Hippocampus (May 2010) RankInv',val:'OXUKHS_ILMHipp_RI0510'}, +{txt:'OX UK HS ILM6v1.1 Liver (May 2010) RankInv',val:'OXUKHS_ILMLiver_RI0510'}, +{txt:'INIA Macaca fasicularis Prefrontal Cortex (Jan10) RMA **',val:'INIA_MacFas_Pf_RMA_0110'}, +{txt:'INIA Macaca fasicularis Brain (Jan10) RMA **',val:'INIA_MacFas_brain_RMA_0110'}, +{txt:'UAB Whole body D.m. mRNA control (Oct09) RMA',val:'UAB_DrosWB_LC_RMA_1009'}, +{txt:'UAB Whole body D.m. mRNA lead (pbAc) (Oct09) RMA',val:'UAB_DrosWB_LE_RMA_1009'}, +{txt:'UMCG Stem Cells ILM6v1.1 (Apr09) original',val:'UMCG_0907_HemaStem_ori'}, +{txt:'UMCG Stem Cells ILM6v1.1 (Apr09) transformed',val:'UMCG_0907_HemaStem'}, +{txt:'UMCG Progenitor Cells ILM6v1.1 (Apr09) original',val:'UMCG_0907_Pro_ori'}, +{txt:'UMCG Progenitor Cells ILM6v1.1 (Apr09) transformed',val:'UMCG_0907_Pro'}, +{txt:'UMCG Erythroid Cells ILM6v1.1 (Apr09) original',val:'UMCG_0907_Eryth_ori'}, +{txt:'UMCG Erythroid Cells ILM6v1.1 (Apr09) transformed',val:'UMCG_0907_Eryth'}, +{txt:'UMCG Myeloid Cells ILM6v1.1 (Apr09) original',val:'UMCG_0907_Myeloid_ori'}, +{txt:'UMCG Myeloid Cells ILM6v1.1 (Apr09) transformed',val:'UMCG_0907_Myeloid'}, +{txt:'UTHSC CEPH B-cells Illumina (Sep09) RankInv',val:'UT_CEPH_RankInv0909'}, +{txt:'Mouse kidney M430v2 Female (Aug06) RMA',val:'MA_M2F_0706_R'}, +{txt:'Mouse kidney M430v2 Male (Aug06) RMA',val:'MA_M2M_0706_R'}, +{txt:'Barley1 Leaf INOC TTKS (Aug09) MAS5',val:'B1LI0809M5'}, +{txt:'Barley1 Leaf INOC TTKS (Aug09) RMA',val:'B1LI0809R'}, +{txt:'Barley1 Leaf MOCK TTKS (Aug09) MAS5',val:'B1MI0809M5'}, +{txt:'Barley1 Leaf MOCK TTKS (Aug09) RMA',val:'B1MI0809R'}, +{txt:'GSE15222 Human Brain Myers (Apr09) RankInv',val:'GSE15222_F_RI_0409'}, +{txt:'GSE5281 Human Brain Full Liang (Jul09) RMA',val:'GSE5281_F_RMA0709'}, +{txt:'GSE5281 Human Brain Best 102 Liang (Jul09) RMA',val:'GSE5281_RMA0709'}, +{txt:'UT Hippocampus Affy RaEx 1.0 Exon (Jul09) RMA',val:'UT_HippRatEx_RMA_0709'}, +{txt:'VCU BXD VTA Et vs Sal M430 2.0 (Jun09) Sscore **',val:'VCUEtvsSal_0609_R'}, +{txt:'VCU BXD VTA Sal M430 2.0 (Jun09) RMA **',val:'VCUSal_0609_R'}, +{txt:'VCU BXD VTA EtOH M430 2.0 (Jun09) RMA **',val:'VCUEtOH_0609_R'}, +{txt:'IoP Affy MOE 430v2 Spleen (May09) RMA',val:'IoP_SPL_RMA_0509'}, +{txt:'NCI Mammary M430v2 (Apr09) RMA',val:'NCI_Mam_Tum_RMA_0409'}, +{txt:'NCI Mammary LMT miRNA v2 (Apr09) RMA',val:'NCI_Agil_Mam_Tum_RMA_0409'}, +{txt:'MDC/CAS/UCL Liver 230v2 (Dec08) RMA',val:'HXB_Liver_1208'}, +{txt:'MDC/CAS/UCL Heart 230_V2 (Dec08) RMA',val:'HXB_Heart_1208'}, +{txt:'MDC/CAS/UCL Adrenal 230A (Dec08) RMA',val:'HXB_Adrenal_1208'}, +{txt:'UWA Illumina Spleen (Nov08) RSN **',val:'Illum_BXD_Spl_1108'}, +{txt:'UWA Illumina Thymus (Nov08) RSN **',val:'Illum_BXD_Thy_1108'}, +{txt:'UWA Illumina PBL (Nov08) RSN **',val:'Illum_BXD_PBL_1108'}, +{txt:'Monks CEPH B-cells Agilent (Dec04) Log10Ratio',val:'Human_1008'}, +{txt:'UTK Spleen ILM6.1 (Jan10) VST',val:'UTK_BXDSpl_VST_0110'}, +{txt:'Eye AXBXA Illumina V6.2(Oct08) RankInv Beta',val:'Eye_AXBXA_1008_RankInv'}, +{txt:'Eye M430v2 (Sep08) RMA',val:'Eye_M2_0908_R'}, +{txt:'Eye M430v2 Mutant Gpnmb (Sep08) RMA **',val:'Eye_M2_0908_R_NB'}, +{txt:'Eye M430v2 WT Gpnmb (Sep08) RMA **',val:'Eye_M2_0908_R_ND'}, +{txt:'Eye M430v2 WT Tyrp1 (Sep08) RMA **',val:'Eye_M2_0908_R_WT'}, +{txt:'Eye M430v2 WT WT (Sep08) RMA **',val:'Eye_M2_0908_WTWT'}, +{txt:'Eye M430v2 Mutant Tyrp1 (Sep08) RMA **',val:'Eye_M2_0908_R_MT'}, +{txt:'BXD Glaucoma Affy M430 2.0 Trial (Sep11) RMA **',val:'BXD_GLA_0911'}, +{txt:'UCLA BXH and BXD Cartilage v2',val:'UCLA_BXHBXD_CARTILAGE_V2'}, +{txt:'UCLA BXD and BXH Cartilage v2',val:'UCLA_BXDBXH_CARTILAGE_V2'}, +{txt:'UCLA BXH and BXD Cartilage',val:'UCLA_BXHBXD_CARTILAGE'}, +{txt:'UCLA BXD and BXH Cartilage',val:'UCLA_BXDBXH_CARTILAGE'}, +{txt:'UCLA BHF2 Liver Male mlratio',val:'UCLA_BHF2_LIVER_MALE'}, +{txt:'UCLA BHF2 Brain Female mlratio',val:'UCLA_BHF2_BRAIN_FEMALE'}, +{txt:'UCLA BHF2 Brain Male mlratio',val:'UCLA_BHF2_BRAIN_MALE'}, +{txt:'UCLA BHF2 Adipose Female mlratio',val:'UCLA_BHF2_ADIPOSE_FEMALE'}, +{txt:'UCLA BHF2 Adipose Male mlratio',val:'UCLA_BHF2_ADIPOSE_MALE'}, +{txt:'UCLA CTB6B6CTF2 Liver Male mlratio **',val:'UCLA_CTB6B6CTF2_LIVER_MALE'}, +{txt:'UCLA CTB6B6CTF2 Adipose Male mlratio **',val:'UCLA_CTB6B6CTF2_ADIPOSE_MALE'}, +{txt:'UCLA CTB6B6CTF2 Brain Male mlratio **',val:'UCLA_CTB6B6CTF2_BRAIN_MALE'}, +{txt:'UCLA CTB6B6CTF2 Muscle Male mlratio **',val:'UCLA_CTB6B6CTF2_MUSCLE_MALE'}, +{txt:'UCLA BHF2 Liver Female mlratio',val:'UCLA_BHF2_LIVER_FEMALE'}, +{txt:'UCLA BHHBF2 Muscle Female Only',val:'UCLA_BHHBF2_MUSCLE_FEMALE'}, +{txt:'UCLA BHHBF2 Brain Female Only',val:'UCLA_BHHBF2_BRAIN_FEMALE'}, +{txt:'UCLA BHHBF2 Brain Male Only',val:'UCLA_BHHBF2_BRAIN_MALE'}, +{txt:'UCLA BHHBF2 Adipose Female Only',val:'UCLA_BHHBF2_ADIPOSE_FEMALE'}, +{txt:'UCLA BHHBF2 Adipose Male Only',val:'UCLA_BHHBF2_ADIPOSE_MALE'}, +{txt:'UCLA BHF2 Muscle Female mlratio **',val:'UCLA_BHF2_MUSCLE_FEMALE'}, +{txt:'UCLA BHF2 Muscle Male mlratio **',val:'UCLA_BHF2_MUSCLE_MALE'}, +{txt:'UCLA BHHBF2 Liver Female Only',val:'UCLA_BHHBF2_LIVER_FEMALE'}, +{txt:'UCLA BHHBF2 Muscle Male Only',val:'UCLA_BHHBF2_MUSCLE_MALE'}, +{txt:'UCLA BHHBF2 Liver Male Only',val:'UCLA_BHHBF2_LIVER_MALE'}, +{txt:'UCLA BXD Cartilage',val:'UCLA_BXD_CARTILAGE'}, +{txt:'UCLA BXH Cartilage',val:'UCLA_BXH_CARTILAGE'}, +{txt:'UCLA BHHBF2 Brain (2005) mlratio **',val:'UCLA_BHHBF2_BRAIN_2005'}, +{txt:'UCLA BHHBF2 Liver (2005) mlratio **',val:'UCLA_BHHBF2_LIVER_2005'}, +{txt:'UCLA BHHBF2 Muscle (2005) mlratio **',val:'UCLA_BHHBF2_MUSCLE_2005'}, +{txt:'UCLA BHHBF2 Adipose (2005) mlratio **',val:'UCLA_BHHBF2_ADIPOSE_2005'}, +{txt:'UCLA BHF2 Adipose (June05) mlratio',val:'UCLA_BHF2_ADIPOSE_0605'}, +{txt:'UCLA BHF2 Brain (June05) mlratio',val:'UCLA_BHF2_BRAIN_0605'}, +{txt:'UCLA BHF2 Liver (June05) mlratio',val:'UCLA_BHF2_LIVER_0605'}, +{txt:'UCLA BHF2 Muscle (June05) mlratio **',val:'UCLA_BHF2_MUSCLE_0605'}, +{txt:'UCLA BDF2 Liver (1999) mlratio',val:'UCLA_BDF2_LIVER_1999'}, +{txt:'HZI Lung M430v2 (Apr08) RMA',val:'HZI_0408_R'}, +{txt:'HZI Lung M430v2 (Apr08) MAS5',val:'HZI_0408_M'}, +{txt:'HQF BXD Neocortex ILM6v1.1 (Feb08) RankInv',val:'HQFNeoc_0208_RankInv'}, +{txt:'VCU BXD NA Sal M430 2.0 (Oct07) RMA',val:'VCUSalo_1007_R'}, +{txt:'VCU BXD NA EtOH M430 2.0 (Oct07) RMA **',val:'VCUEtOH_1007_R'}, +{txt:'VCU BXD NA Et vs Sal M430 2.0 (Oct07) Sscore **',val:'VCUSal_1007_R'}, +{txt:'Stuart Spleen M430v2 (Nov07) RMA',val:'STSPL_1107_R'}, +{txt:'HQF BXD Striatum ILM6.1 (Nov07) RankInv',val:'UTHSC_1107_RankInv'}, +{txt:'Hippocampus Illumina (Aug07) LOESS',val:'Illum_LXS_Hipp_loess0807'}, +{txt:'Hippocampus Illumina (Aug07) LOESS_NB',val:'Illum_LXS_Hipp_loess_nb0807'}, +{txt:'Hippocampus Illumina (Aug07) QUANT',val:'Illum_LXS_Hipp_quant0807'}, +{txt:'Hippocampus Illumina (Aug07) QUANT_NB',val:'Illum_LXS_Hipp_quant_nb0807'}, +{txt:'Hippocampus Illumina (Aug07) RSN',val:'Illum_LXS_Hipp_rsn0807'}, +{txt:'Hippocampus Illumina (Aug07) RSN_NB',val:'Illum_LXS_Hipp_rsn_nb0807'}, +{txt:'VCU BXD PFC EtOH M430 2.0 (Dec06) RMA',val:'VCUEtOH_1206_R'}, +{txt:'VCU BXD PFC Sal M430 2.0 (Dec06) RMA',val:'VCUSal_1206_R'}, +{txt:'VCU BXD PFC Et vs Sal M430 2.0 (Dec06) Sscore',val:'VCUSal_1006_R'}, +{txt:'VCU BXD PFC CIE Air M430 2.0 (Jan11) RMA **',val:'VCU_PF_Air_0111_R'}, +{txt:'VCU BXD PFC CIE EtOH M430 2.0 (Jan11) RMA **',val:'VCU_PF_Et_0111_R'}, +{txt:'VCU BXD PFC EtOH vs CIE Air M430 2.0 (Jan11) Sscore **',val:'VCU_PF_AvE_0111_Ss'}, +{txt:'Hippocampus Illumina (May07) RankInv',val:'Hipp_Illumina_RankInv_0507'}, +{txt:'VCU LXS PFC EtOH M430A 2.0 (Aug06) RMA **',val:'VCUEtOH_0806_R'}, +{txt:'VCU LXS PFC Sal M430A 2.0 (Aug06) RMA',val:'VCUSal_0806_R'}, +{txt:'VCU LXS PFC Et vs Sal M430A 2.0 (Aug06) Sscore **',val:'VCUEt_vs_Sal_0806_R'}, +{txt:'Barley1 Leaf MAS 5.0 SCRI (Dec06)',val:'B30_K_1206_M'}, +{txt:'Barley1 Embryo gcRMA SCRI (Dec06)',val:'B139_K_1206_R'}, +{txt:'Barley1 Leaf gcRMAn SCRI (Dec06)',val:'B30_K_1206_Rn'}, +{txt:'Barley1 Embryo MAS 5.0 SCRI (Dec06)',val:'B139_K_1206_M'}, +{txt:'Barley1 Leaf gcRMA SCRI (Dec06)',val:'B30_K_1206_R'}, +{txt:'HZI Treg M430v2 (Feb11) RMA',val:'RTC_1106_R'}, +{txt:'UCHSC BXD Whole Brain M430 2.0 (Nov06) RMA',val:'BR_M2_1106_R'}, +{txt:'UIOWA Eye mRNA RAE230v2 (Sep06) RMA',val:'UIOWA_Eye_RMA_0906'}, +{txt:'Mouse kidney M430v2 Sex Balanced (Aug06) RMA',val:'MA_M2_0806_R'}, +{txt:'Mouse Kidney M430v2 Sex Balanced (Aug06) PDNN',val:'MA_M2_0806_P'}, +{txt:'Mouse Kidney M430v2 (Jul06) PDNN',val:'MA_M2_0706_P'}, +{txt:'Mouse Kidney M430v2 (Jul06) RMA',val:'MA_M2_0706_R'}, +{txt:'Barley1 Embryo0 gcRMA SCRI (Apr06)',val:'B150_K_0406_R'}, +{txt:'INIA Brain mRNA M430 (Jun06) RMA',val:'IBR_M_0606_R'}, +{txt:'Hippocampus Consortium M430v2 (Jun06) PDNN',val:'HC_M2_0606_P'}, +{txt:'Hippocampus Consortium M430v2 (Jun06) MAS5',val:'HC_M2_0606_M'}, +{txt:'Hippocampus Consortium M430v2 (Jun06) RMA',val:'HC_M2_0606_R'}, +{txt:'INIA Brain mRNA M430 (Jan06) PDNN',val:'IBR_M_0106_P'}, +{txt:'INIA Brain mRNA M430 (Jan06) RMA',val:'IBR_M_0106_R'}, +{txt:'Hippocampus Consortium M430v2 CXB (Dec05) RMA',val:'HC_M2CB_1205_R'}, +{txt:'Hippocampus Consortium M430v2 CXB (Dec05) PDNN',val:'HC_M2CB_1205_P'}, +{txt:'UTHSC Brain mRNA U74Av2 (Nov05) PDNN',val:'BR_U_1105_P'}, +{txt:'UMUTAffy Hippocampus Exon (Feb09) RMA',val:'UMUTAffyExon_0209_RMA'}, +{txt:'UTHSC Hippocampus Illumina v6.1 NON (Sep09) RankInv',val:'UT_ILM_BXD_hipp_NON_0909'}, +{txt:'UTHSC Hippocampus Illumina v6.1 NOS (Sep09) RankInv',val:'UT_ILM_BXD_hipp_NOS_0909'}, +{txt:'UTHSC Hippocampus Illumina v6.1 NOE (Sep09) RankInv',val:'UT_ILM_BXD_hipp_NOE_0909'}, +{txt:'UTHSC Hippocampus Illumina v6.1 RSS (Sep09) RankInv',val:'UT_ILM_BXD_hipp_RSS_0909'}, +{txt:'UTHSC Hippocampus Illumina v6.1 RSE (Sep09) RankInv',val:'UT_ILM_BXD_hipp_RSE_0909'}, +{txt:'OHSU/VA B6D2F2 Striatum M430v2 (Sep05) MAS5',val:'SA_M2_0905_M'}, +{txt:'OHSU/VA B6D2F2 Striatum M430v2 (Sep05) PDNN',val:'SA_M2_0905_P'}, +{txt:'OHSU/VA B6D2F2 Striatum M430v2 (Sep05) RMA',val:'SA_M2_0905_R'}, +{txt:'UTHSC Brain mRNA U74Av2 (Aug05) RMA',val:'BR_U_0805_R'}, +{txt:'UTHSC Brain mRNA U74Av2 (Aug05) PDNN',val:'BR_U_0805_P'}, +{txt:'UTHSC Brain mRNA U74Av2 (Aug05) MAS5',val:'BR_U_0805_M'}, +{txt:'MDC/CAS/ICL Peritoneal Fat 230A (Aug05) MAS5',val:'FT_2A_0805_M'}, +{txt:'OHSU/VA B6D2F2 Brain mRNA M430 (Aug05) RMA',val:'BRF2_M_0805_R'}, +{txt:'OHSU/VA B6D2F2 Brain mRNA M430 (Aug05) PDNN',val:'BRF2_M_0805_P'}, +{txt:'OHSU/VA B6D2F2 Brain mRNA M430 (Aug05) MAS5',val:'BRF2_M_0805_M'}, +{txt:'MDC/CAS/ICL Peritoneal Fat 230A (Jun05) RMA 2z+8',val:'FT_2A_0605_Rz'}, +{txt:'HBP Rosen Striatum M430V2 (Apr05) MAS5 Clean',val:'SA_M2_0405_MC'}, +{txt:'GE-NIAAA Cerebellum mRNA M430v2 (May05) RMA',val:'GCB_M2_0505_R'}, +{txt:'GE-NIAAA Cerebellum mRNA M430v2 (May05) MAS5',val:'GCB_M2_0505_M'}, +{txt:'GE-NIAAA Cerebellum mRNA M430v2 (May05) PDNN',val:'GCB_M2_0505_P'}, +{txt:'MDC/CAS/ICL Kidney 230A (Apr05) MAS5',val:'KI_2A_0405_M'}, +{txt:'HBP Rosen Striatum M430V2 (Apr05) RMA Clean',val:'SA_M2_0405_RC'}, +{txt:'HBP Rosen Striatum M430V2 (Apr05) PDNN Clean',val:'SA_M2_0405_PC'}, +{txt:'HBP Rosen Striatum M430V2 (Apr05) SScore',val:'SA_M2_0405_SS'}, +{txt:'HBP Rosen Striatum M430V2 (Apr05) RMA Orig',val:'SA_M2_0405_RR'}, +{txt:'MDC/CAS/ICL Kidney 230A (Apr05) RMA 2z+8',val:'KI_2A_0405_Rz'}, +{txt:'MDC/CAS/ICL Kidney 230A (Apr05) RMA',val:'KI_2A_0405_R'}, +{txt:'SJUT Cerebellum mRNA M430 (Mar05) RMA',val:'CB_M_0305_R'}, +{txt:'SJUT Cerebellum mRNA M430 (Mar05) MAS5',val:'CB_M_0305_M'}, +{txt:'SJUT Cerebellum mRNA M430 (Mar05) PDNN',val:'CB_M_0305_P'}, +{txt:'HQF Striatum Exon (Feb09) RMA',val:'Striatum_Exon_0209'}, +{txt:'BIDMC/UTHSC Dev Striatum P3 ILMv6.2 (Nov10) RankInv **',val:'DevStriatum_ILM6.2P3RInv_1110'}, +{txt:'BIDMC/UTHSC Dev Neocortex P3 ILMv6.2 (Nov10) RankInv',val:'DevNeocortex_ILM6.2P3RInv_1110'}, +{txt:'BIDMC/UTHSC Dev Neocortex P14 ILMv6.2 (Nov10) RankInv',val:'DevNeocortex_ILM6.2P14RInv_1110'}, +{txt:'BIDMC/UTHSC Dev Striatum P14 ILMv6.2 (Nov10) RankInv **',val:'DevStriatum_ILM6.2P14RInv_1110'}, +{txt:'SJUT Cerebellum mRNA M430 (Oct04) MAS5',val:'CB_M_1004_M'}, +{txt:'SJUT Cerebellum mRNA M430 (Oct04) RMA',val:'CB_M_1004_R'}, +{txt:'SJUT Cerebellum mRNA M430 (Oct04) PDNN',val:'CB_M_1004_P'}, +{txt:'(B6 x BTBR)F2-ob/ob Liver mRNA M430 (Jul04) MAS5',val:'LVF2_M_0704_M'}, +{txt:'(B6 x BTBR)F2-ob/ob Liver mRNA M430 (Jul04) RMA',val:'LVF2_M_0704_R'}, +{txt:'NCI Mammary mRNA M430 (July04) RMA',val:'MA_M_0704_R'}, +{txt:'NCI Mammary mRNA M430 (July04) MAS5',val:'MA_M_0704_M'}, +{txt:'OHSU/VA B6D2F2 Brain mRNA M430A (Mar04) PDNN',val:'BRF2_M_0304_P'}, +{txt:'OHSU/VA B6D2F2 Brain mRNA M430A (Mar04) RMA',val:'BRF2_M_0304_R'}, +{txt:'GNF Stem Cells U74Av2 (Mar04) RMA',val:'HC_U_0304_R'}, +{txt:'OHSU/VA B6D2F2 Brain mRNA M430A (Mar04) MAS5',val:'BRF2_M_0304_M'}, +{txt:'INIA Brain mRNA M430 (Feb04) PDNN',val:'CB_M_0204_P'}, +{txt:'SJUT Cerebellum mRNA M430 (Oct03) MAS5',val:'CB_M_1003_M'}, +{txt:'Hippocampus Illumina NON (Oct08) RankInv beta',val:'Illum_LXS_Hipp_NON_1008'}, +{txt:'Hippocampus Illumina RSE (Oct08) RankInv beta',val:'Illum_LXS_Hipp_RSE_1008'}, +{txt:'GSE9588 Human Liver Normal (Mar11) Females',val:'HLCF_0311'}, +{txt:'Hippocampus Illumina NOE (Oct08) RankInv beta',val:'Illum_LXS_Hipp_NOE_1008'}, +{txt:'Hippocampus Illumina NOS (Oct08) RankInv beta',val:'Illum_LXS_Hipp_NOS_1008'}, +{txt:'Hippocampus Illumina RSS (Oct08) RankInv beta',val:'Illum_LXS_Hipp_RSS_1008'}, +{txt:'CANDLE Published Phenotypes',val:'CANDLEPublish'}, +{txt:'HLC Published Phenotypes',val:'HLCPublish'}, +{txt:'AKXD Genotypes',val:'AKXDGeno'}, +{txt:'AXBXA Published Phenotypes',val:'AXBXAPublish'}, +{txt:'AXBXA Genotypes',val:'AXBXAGeno'}, +{txt:'B6BTBRF2 Published Phenotypes',val:'B6BTBRF2Publish'}, +{txt:'B6BTBRF2 Genotypes',val:'B6BTBRF2Geno'}, +{txt:'B6D2F2 Genotypes',val:'B6D2F2Geno'}, +{txt:'BDF2-1999 Genotypes',val:'BDF2-1999Geno'}, +{txt:'BDF2-2005 Genotypes',val:'BDF2-2005Geno'}, +{txt:'BHF2 Genotypes',val:'BHF2Geno'}, +{txt:'BHHBF2 Genotypes',val:'BHHBF2Geno'}, +{txt:'BXD Published Phenotypes',val:'BXDPublish'}, +{txt:'BXD Genotypes',val:'BXDGeno'}, +{txt:'BXH Published Phenotypes',val:'BXHPublish'}, +{txt:'BXH Genotypes',val:'BXHGeno'}, +{txt:'CTB6F2 Published Phenotypes',val:'CTB6F2Publish'}, +{txt:'CTB6F2 Genotypes',val:'CTB6F2Geno'}, +{txt:'CXB Published Phenotypes',val:'CXBPublish'}, +{txt:'CXB Genotypes',val:'CXBGeno'}, +{txt:'LXS Published Phenotypes',val:'LXSPublish'}, +{txt:'LXS Genotypes',val:'LXSGeno'}, +{txt:'Mouse Phenome Database',val:'MDPPublish'}, +{txt:'MDP Genotypes',val:'MDPGeno'}, +{txt:'NZBXFVB-N2 Published Phenotypes',val:'NZBXFVB-N2Publish'}, +{txt:'HXBBXH Published Phenotypes',val:'HXBBXHPublish'}, +{txt:'HXBBXH Genotypes',val:'HXBBXHGeno'}, +{txt:'BayXSha Published Phenotypes',val:'BayXShaPublish'}, +{txt:'BayXSha Genotypes',val:'BayXShaGeno'}, +{txt:'ColXBur Published Phenotypes',val:'ColXBurPublish'}, +{txt:'ColXBur Genotypes',val:'ColXBurGeno'}, +{txt:'ColXCvi Published Phenotypes',val:'ColXCviPublish'}, +{txt:'ColXCvi Genotypes',val:'ColXCviGeno'}, +{txt:'SXM Published Phenotypes',val:'SXMPublish'}, +{txt:'SXM Genotypes',val:'SXMGeno'}, +{txt:'J12XJ58F2 Published Phenotypes',val:'J12XJ58F2Publish'}, +{txt:'LXP Published Phenotypes',val:'LXPPublish'}, +{txt:'All Phenotypes',val:'_allPublish'}]; + +var lArr = [ + null, +[1,1,4,79], +[1,1,4,80], +[1,1,4,131], +[1,1,4,132], +[1,2,4,1], +[1,2,4,2], +[1,2,4,130], +[1,14,59,292], +[1,14,34,32], +[1,15,26,123], +[1,15,26,146], +[1,21,8,60], +[1,21,8,61], +[1,21,8,64], +[1,21,8,68], +[1,21,42,62], +[1,21,42,63], +[1,21,42,66], +[1,21,42,70], +[1,21,46,65], +[1,21,46,67], +[1,21,46,69], +[1,21,46,71], +[1,22,59,293], +[1,22,24,76], +[1,22,24,77], +[1,22,24,288], +[1,25,3,54], +[1,25,6,51], +[1,25,7,53], +[1,25,9,49], +[1,25,10,52], +[1,25,11,50], +[1,25,14,48], +[1,25,17,33], +[1,25,19,57], +[1,25,21,58], +[1,25,28,37], +[1,25,29,34], +[1,25,30,46], +[1,25,36,38], +[1,25,37,43], +[1,25,38,44], +[1,25,40,56], +[1,25,41,47], +[1,25,43,55], +[1,25,44,59], +[1,25,45,45], +[1,25,46,39], +[1,25,49,42], +[1,25,52,41], +[1,25,54,40], +[1,25,55,36], +[1,25,57,35], +[2,30,3,13], +[2,30,4,112], +[2,30,17,5], +[2,30,35,3], +[2,30,42,111], +[3,3,60,294], +[3,3,27,139], +[3,3,27,278], +[3,3,27,279], +[3,4,59,295], +[3,4,60,296], +[3,4,13,148], +[3,5,59,297], +[3,5,60,298], +[3,5,24,276], +[3,5,24,277], +[3,6,60,299], +[3,6,4,250], +[3,6,4,251], +[3,6,4,252], +[3,6,4,280], +[3,6,4,281], +[3,6,4,283], +[3,8,60,300], +[3,8,24,190], +[3,9,60,301], +[3,9,49,243], +[3,9,49,244], +[3,9,49,245], +[3,10,60,302], +[3,10,1,163], +[3,10,1,164], +[3,10,1,186], +[3,10,4,161], +[3,10,4,162], +[3,10,4,187], +[3,10,24,160], +[3,10,24,169], +[3,10,24,188], +[3,10,32,175], +[3,10,32,176], +[3,10,32,189], +[3,11,60,303], +[3,11,1,173], +[3,11,1,174], +[3,11,1,185], +[3,11,4,171], +[3,11,4,172], +[3,11,4,182], +[3,11,24,177], +[3,11,24,179], +[3,11,24,183], +[3,11,32,170], +[3,11,32,178], +[3,11,32,184], +[3,12,59,304], +[3,12,60,305], +[3,12,3,72], +[3,12,3,73], +[3,12,3,74], +[3,12,3,75], +[3,12,4,221], +[3,12,4,228], +[3,12,4,232], +[3,12,4,233], +[3,12,4,236], +[3,12,4,246], +[3,12,4,247], +[3,12,4,248], +[3,12,4,284], +[3,12,5,157], +[3,12,5,159], +[3,12,5,180], +[3,12,8,255], +[3,12,8,256], +[3,12,8,257], +[3,12,8,265], +[3,12,8,266], +[3,12,8,267], +[3,12,8,273], +[3,12,8,274], +[3,12,8,275], +[3,12,8,285], +[3,12,13,149], +[3,12,13,150], +[3,12,13,151], +[3,12,13,152], +[3,12,13,153], +[3,12,13,154], +[3,12,13,155], +[3,12,16,115], +[3,12,16,116], +[3,12,16,117], +[3,12,16,118], +[3,12,16,119], +[3,12,16,120], +[3,12,16,121], +[3,12,16,122], +[3,12,16,282], +[3,12,17,229], +[3,12,17,230], +[3,12,17,231], +[3,12,17,237], +[3,12,17,238], +[3,12,17,239], +[3,12,17,240], +[3,12,17,241], +[3,12,17,242], +[3,12,18,102], +[3,12,18,103], +[3,12,18,104], +[3,12,20,124], +[3,12,20,125], +[3,12,20,223], +[3,12,20,224], +[3,12,20,225], +[3,12,20,226], +[3,12,23,145], +[3,12,24,15], +[3,12,24,87], +[3,12,24,88], +[3,12,24,89], +[3,12,24,90], +[3,12,24,91], +[3,12,24,92], +[3,12,24,93], +[3,12,24,94], +[3,12,24,95], +[3,12,24,96], +[3,12,25,191], +[3,12,25,192], +[3,12,31,14], +[3,12,32,16], +[3,12,32,17], +[3,12,32,18], +[3,12,33,21], +[3,12,33,22], +[3,12,33,99], +[3,12,33,101], +[3,12,33,193], +[3,12,33,270], +[3,12,33,271], +[3,12,35,194], +[3,12,35,195], +[3,12,35,196], +[3,12,42,205], +[3,12,42,206], +[3,12,42,207], +[3,12,42,208], +[3,12,42,209], +[3,12,42,210], +[3,12,47,23], +[3,12,47,24], +[3,12,47,25], +[3,12,47,26], +[3,12,47,27], +[3,12,47,28], +[3,12,47,82], +[3,12,47,83], +[3,12,47,84], +[3,12,47,85], +[3,12,48,100], +[3,12,48,106], +[3,12,48,137], +[3,12,48,143], +[3,12,48,147], +[3,12,49,19], +[3,12,49,20], +[3,12,49,97], +[3,12,49,98], +[3,12,49,198], +[3,12,49,254], +[3,12,49,259], +[3,12,49,260], +[3,12,49,261], +[3,12,49,262], +[3,12,49,268], +[3,12,49,269], +[3,12,49,272], +[3,12,50,78], +[3,12,51,220], +[3,12,53,144], +[3,12,56,134], +[3,12,56,135], +[3,12,56,136], +[3,13,59,306], +[3,13,60,307], +[3,13,5,156], +[3,13,5,158], +[3,13,5,181], +[3,18,59,308], +[3,18,60,309], +[3,18,1,8], +[3,18,1,9], +[3,18,1,166], +[3,18,4,4], +[3,18,4,10], +[3,18,4,167], +[3,18,24,6], +[3,18,24,12], +[3,18,24,165], +[3,18,32,7], +[3,18,32,11], +[3,18,32,168], +[3,19,59,310], +[3,19,60,311], +[3,19,17,234], +[3,19,17,235], +[3,19,48,197], +[3,23,17,109], +[3,23,24,110], +[3,23,25,108], +[3,24,49,81], +[3,29,59,312], +[3,29,60,313], +[3,29,17,199], +[3,29,17,200], +[3,29,17,201], +[3,29,17,202], +[3,29,17,203], +[3,29,17,204], +[3,29,17,211], +[3,29,17,286], +[3,29,17,287], +[3,29,17,289], +[3,29,17,290], +[3,29,17,291], +[3,29,42,212], +[3,29,42,213], +[3,29,42,214], +[3,31,59,314], +[3,31,60,315], +[3,31,17,105], +[3,31,17,107], +[3,31,24,29], +[3,31,24,30], +[3,31,24,31], +[3,32,59,316], +[3,32,27,138], +[4,26,59,317], +[4,26,60,318], +[4,26,2,142], +[4,26,15,141], +[4,26,17,133], +[4,26,20,258], +[4,26,20,263], +[4,26,20,264], +[4,26,24,140], +[4,26,39,249], +[4,26,39,253], +[4,35,13,222], +[5,20,58,86], +[5,33,58,113], +[5,33,58,114], +[6,7,59,319], +[6,7,60,320], +[6,16,59,321], +[6,16,60,322], +[6,17,59,323], +[6,17,60,324], +[7,34,22,126], +[7,34,22,127], +[7,34,22,128], +[7,34,22,129], +[7,36,59,325], +[7,36,60,326], +[7,36,12,216], +[7,36,12,218], +[7,36,12,227], +[7,36,22,215], +[7,36,22,217], +[7,36,22,219], +[8,27,59,327], +[9,28,59,328], +[10,37,59,329]]; + + + +/* +* function: based on different browser use, will have different initial actions; +* Once the index.html page is loaded, this function will be called +*/ +function initialDatasetSelection() +{ + defaultSpecies =getDefaultValue('species'); + defaultSet =getDefaultValue('cross'); + defaultType =getDefaultValue('tissue'); + defaultDB =getDefaultValue('database'); + + if (navigator.userAgent.indexOf('MSIE')>=0) + { + sOptions = fillOptionsForIE(null,defaultSpecies); + var menu0 =""; + document.getElementById('menu0').innerHTML = menu0; + + gOptions = fillOptionsForIE('species',defaultSet); + var menu1 =""; + document.getElementById('menu1').innerHTML =menu1; + + tOptions = fillOptionsForIE('cross',defaultType); + var menu2 =""; + document.getElementById('menu2').innerHTML =menu2; + + dOptions = fillOptionsForIE('tissue',defaultDB); + var menu3 =""; + document.getElementById('menu3').innerHTML =menu3; + + }else{ + fillOptions(null); + } + searchtip(); +} + +/* +* input: selectObjId (designated select menu, such as species, cross, etc... ) +* defaultValue (default Value of species, cross,tissue or database) +* function: special for IE browser,setting options value for select menu dynamically based on linkage array(lArr), +* output: options string +*/ +function fillOptionsForIE(selectObjId,defaultValue) +{ + var options=''; + if(selectObjId==null) + { + var len = sArr.length; + for (var i=1; i < len; i++) { + // setting Species' option + if( sArr[i].val==defaultValue){ + options =options+""; + }else{ + options =options+""; + } + } + }else if(selectObjId=='species') + { + var speciesObj = document.getElementById('species'); + var len = lArr.length; + var arr = []; + var idx = 0; + for (var i=1; i < len; i++) { + //get group(cross) info from lArr + if(lArr[i][0]==(getIndexByValue('species',speciesObj.value)).toString()&&!Contains(arr,lArr[i][1])) + { + arr[idx++]=lArr[i][1]; + } + } + idx=0; + len = arr.length; + removeOptions("cross"); + for (var i=0; i < len; i++) { + // setting Group's option + if( gArr[arr[i]].val==defaultValue){ + options =options+""; + }else{ + options =options+""; + } + + } + }else if(selectObjId=='cross') + { + var speciesObj = document.getElementById('species'); + var groupObj = document.getElementById('cross'); + var len = lArr.length; + var arr = []; + var idx = 0; + for (var i=1; i < len; i++) { + //get type(tissue) info from lArr + if(lArr[i][0]==(getIndexByValue('species',speciesObj.value)).toString()&&lArr[i][1]==(getIndexByValue('cross',groupObj.value)).toString()&&!Contains(arr,lArr[i][2])) + { + arr[idx++]=lArr[i][2]; + } + } + idx=0; + len = arr.length; + removeOptions("tissue"); + for (var i=0; i < len; i++) { + // setting Type's option + if( tArr[arr[i]].val==defaultValue){ + options =options+""; + }else{ + options =options+""; + } + } + + }else if(selectObjId=='tissue') + { + var speciesObj = document.getElementById('species'); + var groupObj = document.getElementById('cross'); + var typeObj = document.getElementById('tissue'); + + var len = lArr.length; + var arr = []; + var idx = 0; + for (var i=1; i < len; i++) { + //get dataset(database) info from lArr + if(lArr[i][0]==(getIndexByValue('species',speciesObj.value)).toString()&&lArr[i][1]==(getIndexByValue('cross',groupObj.value)).toString()&&lArr[i][2]==(getIndexByValue('tissue',typeObj.value)).toString()&&!Contains(arr,lArr[i][3])) + { + arr[idx++]=lArr[i][3]; + } + } + idx=0; + len = arr.length; + removeOptions("database"); + for (var i=0; i < len; i++) { + // setting Database's option + if( dArr[arr[i]].val==defaultValue){ + options =options+""; + }else{ + options =options+""; + } + } + } + return options; +} +/* +* input: selectObjId (designated select menu, such as species, cross, etc... ) +* function: setting options value for select menu dynamically based on linkage array(lArr) +* output: null +*/ +function fillOptions(selectObjId) +{ + if(selectObjId==null) + { + + var speciesObj = document.getElementById('species'); + var len = sArr.length; + for (var i=1; i < len; i++) { + // setting Species' option + speciesObj.options[i-1] = new Option(sArr[i].txt, sArr[i].val); + } + updateChocie('species'); + + }else if(selectObjId=='species') + { + var speciesObj = document.getElementById('species'); + var groupObj = document.getElementById('cross'); + var len = lArr.length; + var arr = []; + var idx = 0; + for (var i=1; i < len; i++) { + //get group(cross) info from lArr + if(lArr[i][0]==(getIndexByValue('species',speciesObj.value)).toString()&&!Contains(arr,lArr[i][1])) + { + arr[idx++]=lArr[i][1]; + } + } + idx=0; + len = arr.length; + removeOptions("cross"); + for (var i=0; i < len; i++) { + // setting Group's option + groupObj.options[idx++] = new Option(gArr[arr[i]].txt, gArr[arr[i]].val); + } + updateChocie('cross'); + + }else if(selectObjId=='cross') + { + var speciesObj = document.getElementById('species'); + var groupObj = document.getElementById('cross'); + var typeObj = document.getElementById('tissue'); + var len = lArr.length; + var arr = []; + var idx = 0; + for (var i=1; i < len; i++) { + //get type(tissue) info from lArr + if(lArr[i][0]==(getIndexByValue('species',speciesObj.value)).toString()&&lArr[i][1]==(getIndexByValue('cross',groupObj.value)).toString()&&!Contains(arr,lArr[i][2])) + { + arr[idx++]=lArr[i][2]; + } + } + idx=0; + len = arr.length; + removeOptions("tissue"); + for (var i=0; i < len; i++) { + // setting Type's option + typeObj.options[idx++] = new Option(tArr[arr[i]].txt, tArr[arr[i]].val); + } + updateChocie('tissue'); + + }else if(selectObjId=='tissue') + { + var speciesObj = document.getElementById('species'); + var groupObj = document.getElementById('cross'); + var typeObj = document.getElementById('tissue'); + var databaseObj = document.getElementById('database'); + + var len = lArr.length; + var arr = []; + var idx = 0; + for (var i=1; i < len; i++) { + //get dataset(database) info from lArr + if(lArr[i][0]==(getIndexByValue('species',speciesObj.value)).toString()&&lArr[i][1]==(getIndexByValue('cross',groupObj.value)).toString()&&lArr[i][2]==(getIndexByValue('tissue',typeObj.value)).toString()&&!Contains(arr,lArr[i][3])) + { + arr[idx++]=lArr[i][3]; + } + } + idx=0; + len = arr.length; + removeOptions("database"); + for (var i=0; i < len; i++) { + // setting Database's option + databaseObj.options[idx++] = new Option(dArr[arr[i]].txt, dArr[arr[i]].val); + } + updateChocie('database'); + } +} + +/* +* input: arr (targeted array); obj (targeted value) +* function: check whether targeted array contains targeted value or not +* output: return true, if array contains targeted value, otherwise return false +*/ +function Contains(arr,obj) { + var i = arr.length; + while (i--) { + if (arr[i] == obj) { + return true; + } + } + return false; +} + +/* +* input: selectObj (designated select menu, such as species, cross, etc... ) +* function: clear designated select menu's option +* output: null +*/ +function removeOptions(selectObj) { + if (typeof selectObj != 'object'){ + selectObj = document.getElementById(selectObj); + } + var len = selectObj.options.length; + for (var i=0; i < len; i++) { + // clear current selection + selectObj.options[0] = null; + } +} + +/* +* input: selectObjId (designated select menu, such as species, cross, etc... ) +* Value: target value +* function: retrieve Index info of target value in designated array +* output: index info +*/ +function getIndexByValue(selectObjId,val) +{ + if(selectObjId=='species') + { + for(var i=1;i=0){ + //setting option's selected status + Obj.options[idx].selected=true; + //update the following select menu + fillOptions(objId); + }else{ + Obj.options[0].selected=true; + fillOptions(objId); + } +} + +// setting option's selected status based on default setting or cookie setting for Species, Group, Type and Database select menu in the main search page http://www.genenetwork.org/ +function updateChocie(selectObjId){ + + if (selectObjId =='species') + { + defaultSpecies= getDefaultValue('species'); + //setting option's selected status + setChoice('species',defaultSpecies); + }else if (selectObjId =='cross') + { + defaultSet= getDefaultValue('cross'); + //setting option's selected status + setChoice('cross',defaultSet); + }else if (selectObjId =='tissue') + { + defaultType= getDefaultValue('tissue'); + //setting option's selected status + setChoice('tissue',defaultType); + }else if (selectObjId =='database') + { + defaultDB= getDefaultValue('database'); + //setting option's selected status + setChoice('database',defaultDB); + } +} + +//get default value;if cookie exists, then use cookie value, otherwise use default value +function getDefaultValue(selectObjId){ + //define default value + var defaultSpecies = 'mouse' + var defaultSet = 'BXD' + var defaultType = 'Hippocampus' + var defaultDB = 'HC_M2_0606_P' + + if (selectObjId =='species') + { + //if cookie exists, then use cookie value, otherwise use default value + var cookieSpecies = getCookie('defaultSpecies'); + if(cookieSpecies) + { + defaultSpecies= cookieSpecies; + } + return defaultSpecies; + }else if (selectObjId =='cross'){ + var cookieSet = getCookie('defaultSet'); + if(cookieSet){ + defaultSet= cookieSet; + } + return defaultSet; + }else if (selectObjId =='tissue'){ + var cookieType = getCookie('defaultType'); + if(cookieType){ + defaultType= cookieType; + } + return defaultType; + }else if (selectObjId =='database') + { + var cookieDB = getCookie('defaultDB'); + if(cookieDB){ + defaultDB= cookieDB; + } + return defaultDB; + } + +} + +//setting default value into cookies for the dropdown menus: Species,Group, Type, and Database +function setDefault(thisform){ + + setCookie('cookieTest', 'cookieTest', 1); + var cookieTest = getCookie('cookieTest'); + delCookie('cookieTest'); + if (cookieTest){ + var defaultSpecies = thisform.species.value; + setCookie('defaultSpecies', defaultSpecies, 10); + var defaultSet = thisform.cross.value; + setCookie('defaultSet', defaultSet, 10); + var defaultType = thisform.tissue.value; + setCookie('defaultType', defaultType, 10); + var defaultDB = thisform.database.value; + setCookie('defaultDB', defaultDB, 10); + updateChocie('species'); + updateChocie('cross'); + updateChocie('tissue'); + updateChocie('database'); + alert("The current settings are now your default"); + } + else{ + alert("You need to enable Cookies in your browser."); + } +} + diff --git a/web/javascript/sortTrait.js b/web/javascript/sortTrait.js new file mode 100755 index 00000000..7e617572 --- /dev/null +++ b/web/javascript/sortTrait.js @@ -0,0 +1,344 @@ +/* Generated Date : 2010-07-20 */ +var sArr = [ +{txt:'',val:''}, +{txt:'Database name',val:'1'}, +{txt:'ID number of trait',val:'2'}, +{txt:'Symbol, Gene, Phenotype',val:'3'}, +{txt:'Chr and Mb',val:'4'}, +{txt:'LRS or LOD',val:'5'}, +{txt:'Mean Value',val:'6'} + +]; + +var gArr = [ +{txt:'',val:''}, +{txt:'Database name',val:'1'}, +{txt:'ID number of trait',val:'2'}, +{txt:'Symbol, Gene, Phenotype',val:'3'}, +{txt:'Chr and Mb',val:'4'}, +{txt:'LRS or LOD',val:'5'}, +{txt:'Mean Value',val:'6'}]; + +var tArr = [ +{txt:'',val:''}, +{txt:'Database name',val:'1'}, +{txt:'ID number of trait',val:'2'}, +{txt:'Symbol, Gene, Phenotype',val:'3'}, +{txt:'Chr and Mb',val:'4'}, +{txt:'LRS or LOD',val:'5'}, +{txt:'Mean Value',val:'6'}]; + +var lArr = [ + null, +[1,2,3], +[1,2,4], +[1,2,5], +[1,2,6], +[1,3,2], +[1,3,4], +[1,3,5], +[1,3,6], +[1,4,2], +[1,4,3], +[1,4,5], +[1,4,6], +[1,5,2], +[1,5,3], +[1,5,4], +[1,5,6], +[1,6,2], +[1,6,3], +[1,6,4], +[1,6,5], +[2,1,3], +[2,1,4], +[2,1,5], +[2,1,6], +[2,3,1], +[2,3,4], +[2,3,5], +[2,3,6], +[2,4,1], +[2,4,3], +[2,4,5], +[2,4,6], +[2,5,1], +[2,5,3], +[2,5,4], +[2,5,6], +[2,6,1], +[2,6,3], +[2,6,4], +[2,6,5], +[3,1,2], +[3,1,4], +[3,1,5], +[3,1,6], +[3,2,1], +[3,2,4], +[3,2,5], +[3,2,6], +[3,4,1], +[3,4,2], +[3,4,5], +[3,4,6], +[3,5,1], +[3,5,2], +[3,5,4], +[3,5,6], +[3,6,1], +[3,6,2], +[3,6,4], +[3,6,5], +[4,1,2], +[4,1,3], +[4,1,5], +[4,1,6], +[4,2,1], +[4,2,3], +[4,2,5], +[4,2,6], +[4,3,1], +[4,3,2], +[4,3,5], +[4,3,6], +[4,5,1], +[4,5,2], +[4,5,3], +[4,5,6], +[4,6,1], +[4,6,2], +[4,6,4], +[4,6,5], +[5,1,2], +[5,1,3], +[5,1,4], +[5,1,6], +[5,2,1], +[5,2,3], +[5,2,4], +[5,2,6], +[5,3,1], +[5,3,2], +[5,3,4], +[5,3,6], +[5,4,1], +[5,4,2], +[5,4,3], +[5,4,6], +[5,6,1], +[5,6,2], +[5,6,3], +[5,6,4], +[6,1,2], +[6,1,3], +[6,1,4], +[6,1,5], +[6,2,1], +[6,2,3], +[6,2,4], +[6,2,5], +[6,3,1], +[6,3,2], +[6,3,4], +[6,3,5], +[6,4,1], +[6,4,2], +[6,4,3], +[6,4,5], +[6,5,1], +[6,5,2], +[6,5,3], +[6,5,4]]; + +/* +* input: selectObjId (designated select menu, such as sort1, sort2, etc... ) +* function: setting options value for select menu dynamically based on linkage array(lArr) +* output: null +*/ +function fillOptions(selectObjId) +{ + + + if(selectObjId==null) + { + var sort1Obj = document.getElementsByName('sort1')[0]; + + var len = sArr.length; + for (var i=1; i < len; i++) { + // setting sort1' option + sort1Obj.options[i-1] = new Option(sArr[i].txt, sArr[i].val); + + + } + fillOptions('sort1'); + }else if(selectObjId=='sort1') + { + var sort1Obj = document.getElementsByName('sort1')[0]; + var sort2Obj = document.getElementsByName('sort2')[0]; + var len = lArr.length; + var arr = []; + var idx = 0; + for (var i=1; i < len; i++) { + //get sort2 info from lArr + if(lArr[i][0]==(getIndexByValue('sort1',sort1Obj.value)).toString()&&!Contains(arr,lArr[i][1])) + { + arr[idx++]=lArr[i][1]; + } + } + idx=0; + len = arr.length; + removeOptions("sort2"); + for (var i=0; i < len; i++) { + // setting sort2's option + sort2Obj.options[idx++] = new Option(gArr[arr[i]].txt, gArr[arr[i]].val); + } + fillOptions('sort2'); + }else if(selectObjId=='sort2') + { + var sort1Obj = document.getElementsByName('sort1')[0]; + var sort2Obj = document.getElementsByName('sort2')[0]; + var sort3Obj = document.getElementsByName('sort3')[0]; + var len = lArr.length; + var arr = []; + var idx = 0; + for (var i=1; i < len; i++) { + //get sort2 info from lArr + if(lArr[i][0]==(getIndexByValue('sort1',sort1Obj.value)).toString()&&lArr[i][1]==(getIndexByValue('sort2',sort2Obj.value)).toString()&&!Contains(arr,lArr[i][2])) + { + arr[idx++]=lArr[i][2]; + } + } + idx=0; + len = arr.length; + removeOptions("sort3"); + for (var i=0; i < len; i++) { + // setting sort3's option + sort3Obj.options[idx++] = new Option(tArr[arr[i]].txt, tArr[arr[i]].val); + } + fillOptions('sort3'); + } +} + +/* +* input: arr (targeted array); obj (targeted value) +* function: check whether targeted array contains targeted value or not +* output: return true, if array contains targeted value, otherwise return false +*/ +function Contains(arr,obj) { + var i = arr.length; + while (i--) { + if (arr[i] == obj) { + return true; + } + } + return false; +} + +updateChocie(); + +/* +* input: selectObj (designated select menu, such as sort1, sort2, etc... ) +* function: clear designated select menu's option +* output: null +*/ +function removeOptions(selectObj) { + if (typeof selectObj != 'object'){ + selectObj = document.getElementsByName(selectObj)[0]; + } + var len = selectObj.options.length; + for (var i=0; i < len; i++) { + // clear current selection + selectObj.options[0] = null; + } +} + +/* +* input: selectObjId (designated select menu, such as sort1, sort2, etc... ) +* Value: target value +* function: retrieve Index info of target value in designated array +* output: index info +*/ +function getIndexByValue(selectObjId,val) +{ + if(selectObjId=='sort1') + { + for(var i=1;i=0){ + //setting option's selected status + Obj.options[idx].selected=true; + //update the following select menu + fillOptions(objId) + return true; + }else{ + return false; + } +} + +// setting option's selected status based on default setting or cookie setting for sort1, sort2, and sort3 select menu +function updateChocie(){ + fillOptions(null); + //define default value + var defaultSort1 = 1 + var defaultSort2 = 3 + var defaultSort3 = 4 + + //if cookie exists, then use cookie value, otherwise use default value + var cookieSort1 = getCookie('defaultSort1'); + if(cookieSort1) defaultSort1= cookieSort1 + var cookieSort2 = getCookie('defaultSort2'); + if(cookieSort2) defaultSort2 = cookieSort2; + var cookieSort3 = getCookie('defaultSort3'); + if(cookieSort3 ) defaultSort3 = cookieSort3; + + //setting option's selected status + if(!setChoice('sort1',defaultSort1)){return;} + if(!setChoice('sort2',defaultSort2)){return;} + if(!setChoice('sort3',defaultSort3)){return;} +} \ No newline at end of file diff --git a/web/javascript/svg.js b/web/javascript/svg.js new file mode 100755 index 00000000..73523b7b --- /dev/null +++ b/web/javascript/svg.js @@ -0,0 +1,326 @@ +/*extracted and modified from http://www.carto.net/neumann/cartography/vienna/ */ +var openURL="/webqtl/WebQTL.py?FormID=showDatabase&database=Eye_M2_0906_R&incparentsf1=1&ProbeSetID="; +var chrLength=[0.0, 491.91598118601547, 946.15708685124116, 1345.2216933525635, 1732.198920660242, 2111.6212086643609, 2484.8595921440615, 2847.1359103053924, 3176.8399906396698, 3486.3641319132003, 3810.7615243606533, 4114.7890532612491, 4415.4830426184499, 4716.5544971256113, 5026.024224847908, 5284.3571135528055, 5529.6098871486292, 5767.1869053349601, 5993.6795668729492, 6146.7463916706538]; + +var statusObj; +var zoomVal; +var svgdoc; +var zoomValueObj; +var dispBoxObj; +var probesetObj; +var markerObj; +var xObj; +var yObj; +var svgRect; +var svgMainViewport; +var overviewViewport; + +var allWidth = 8200; +var allHeight = 8200; +var xOriginCorner = 0; +var yOriginCorner = 0; + +var evtX; +var evtY; +var dataPanelEvtX; +var dataPanelEvtX; +var rectUlXCorner; +var rectUlYCorner +var pluginPixWidth; +var pluginPixHeight; +var mainPixWidth; +var mainPixHeight; +var mainX; +var mainY; +var scaleFactor = 1; +var width; +var height; +var pressed = 0; + +var msgObj; + +function initMap(evt) { + //initializing values + zoomVal = 100; //initial zoomFactor + //svgdoc=evt.getTarget().getOwnerDocument(); + svgdoc = evt.target.ownerDocument; + statusObj = svgdoc.getElementById("statusText"); + statusObj = statusObj.firstChild; + + zoomValueObj = svgdoc.getElementById("zoomValueObj"); + zoomValueObj = zoomValueObj.firstChild; + + xObj = svgdoc.getElementById("XLabel"); + xObj = xObj.firstChild; + yObj = svgdoc.getElementById("YLabel"); + yObj = yObj.firstChild; + + dispBoxObj = svgdoc.getElementById("dispBox"); + probesetObj = svgdoc.getElementById("_probeset"); + probesetObj = probesetObj.firstChild; + markerObj = svgdoc.getElementById("_marker"); + markerObj = markerObj.firstChild; + + //dispBoxObj.parent.appendChild(dispBoxObj); + svgRect = svgdoc.getElementById("overviewRect"); + allWidth = svgRect.getAttribute("width"); + allHeight = svgRect.getAttribute("height"); + svgMainViewport = svgdoc.getElementById("mainPlot"); + mainPixWidth = svgMainViewport.getAttribute("width"); + mainPixHeight = svgMainViewport.getAttribute("height"); + mainX = svgMainViewport.getAttribute("x"); + mainY = svgMainViewport.getAttribute("y"); + //overviewObjects + overviewViewport = svgdoc.getElementById("overviewPlot"); + pluginPixWidth = overviewViewport.getAttribute("width"); + pluginPixHeight = overviewViewport.getAttribute("height"); + + //msgObj = svgdoc.getElementById("msgText") + //msgObj = msgObj.firstChild; +} + +//simulating statusbar +function statusChange(text) { + //statusObj.setData(text); + statusObj.nodeValue=text; +} + +//magnifier glass mouse-over effects +function magnify(evt,scaleFact,inOrOut) { + if (inOrOut == "in") { + if (zoomVal < 1000) { + statusChange("click to zoom in"); + scaleObject(evt,scaleFact); + } + else { + statusChange("maximum zoom factor reached! cannot zoom in any more!"); + } + } + if (inOrOut == "out") { + if (zoomVal >= 100) { + statusChange("click to zoom out"); + scaleObject(evt,scaleFact); + } + else { + statusChange("minimum zoom factor reached! cannot zoom out any more!"); + } + } + if (scaleFact == 1) { + statusChange("plot ready"); + scaleObject(evt,scaleFact); + } +} + +// Lei Yan +// 2009/03/26 + +//scale any object that has a transform-value +function scaleObject(evt,factor) { + //reference to the currently selected object + var element = evt.target; + + //query old transform value (we need the translation value) + var curTransform = element.getAttribute("transform"); + curTransform = new String(curTransform); //Wert in ein String umwandeln + //no fear from Regular expressions ... just copy it, I copied it either ... + var translateRegExp=/translate\(([-+]?\d+)(\s*[\s,]\s*)([-+]?\d+)\)\s*/; + + //This part extracts the translation-value from the whole transform-string + if (curTransform.length != 0) + { + var result = curTransform.match(translateRegExp); + if (result == null || result.index == -1) + { + oldTranslateX = 0; + oldTranslateY = 0; + } + else + { + oldTranslateX = result[1]; + oldTranslateY = result[3]; + } + //concatenate the string again, add scale-factor + var newtransform = "translate(" + oldTranslateX + " " + oldTranslateY + ") " + "scale(" + factor + ")"; + } + //set transform-factor + element.setAttribute('transform', newtransform); +} + +function zoomIt(inOrOut) { + if (zoomVal>=300) step=100.0; + else step=50.0; + if (inOrOut == "in") { + if (zoomVal < 1000) { + statusChange("click to zoom in"); + zoomVal = zoomVal + step; + zoomItReally(); + } + else { + statusChange("maximum zoom factor reached! cannot zoom in any more!"); + } + } + if (inOrOut == "out") { + if (zoomVal > 100) { + statusChange("click to zoom out"); + zoomVal = zoomVal - step; + zoomItReally(); + } + else { + statusChange("minimum zoom factor reached! cannot zoom out any more!"); + } + } +} + +function zoomItReally() { + statusChange("panning plot - please be patient ..."); + + //get values from draggable rectangle + xulcorner = parseFloat(svgRect.getAttribute("x")); + yulcorner = parseFloat(svgRect.getAttribute("y")); + width = parseFloat(svgRect.getAttribute("width")); + height = parseFloat(svgRect.getAttribute("height")); + + //calcs + xcenter = xulcorner + width / 2; + ycenter = yulcorner + height / 2; + xnulcorner = xcenter - allWidth / 2 * (100/zoomVal); + ynulcorner = ycenter - allHeight / 2 * (100/zoomVal); + nWidth = allWidth * (100/zoomVal); + nHeight = allHeight * (100/zoomVal); + + if (zoomVal == 100) { + xnulcorner = 0; + ynulcorner = 0; + } + //set values of draggable rectangle + svgRect.setAttribute("x",xnulcorner); + svgRect.setAttribute("y",ynulcorner); + svgRect.setAttribute("width",nWidth); + svgRect.setAttribute("height",nHeight); + + //set viewport of main map + newViewport = xnulcorner + " " + ynulcorner + " " + nWidth + " " + nHeight; + svgMainViewport.setAttribute("viewBox",newViewport);/**/ + //zoomValueObj.setData("ZOOM: " + zoomVal+"%"); + zoomValueObj.nodeValue="ZOOM: " + zoomVal+"%"; + statusChange("plot ready ..."); +} + +function beginPan(evt) { + pressed = 1; + width = parseFloat(svgRect.getAttribute("width")); + height = parseFloat(svgRect.getAttribute("height")); + evtX = parseFloat(evt.clientX) * scaleFactor; + evtY = parseFloat(evt.clientY) * scaleFactor; + rectUlXCorner = parseFloat(svgRect.getAttribute("x")); + rectUlYCorner = parseFloat(svgRect.getAttribute("y")); +} + +function doPan(evt) { + if (pressed == 1) { + newEvtX = parseFloat(evt.clientX) * scaleFactor; //scaleFactor is because of resizable interface + newEvtY = parseFloat(evt.clientY) * scaleFactor; + toMoveX = rectUlXCorner + (newEvtX - evtX) * allWidth / pluginPixWidth; + toMoveY = rectUlYCorner + (newEvtY - evtY) * allHeight / pluginPixHeight; + + //restrict to borders of overviewmap + if (toMoveX < xOriginCorner) { + svgRect.setAttribute("x",xOriginCorner); + } + else if ((toMoveX + width) > (xOriginCorner + allWidth)) { + svgRect.setAttribute("x",xOriginCorner + allWidth - width); + } + else { + svgRect.setAttribute("x",toMoveX); + } + if (toMoveY < yOriginCorner) { + svgRect.setAttribute("y",yOriginCorner); + } + else if ((toMoveY + height) > (yOriginCorner + allHeight)) { + svgRect.setAttribute("y",yOriginCorner + allHeight - height); + } + else { + svgRect.setAttribute("y",toMoveY); + } + + evtX = newEvtX; + evtY = newEvtY; + rectUlXCorner = parseFloat(svgRect.getAttribute("x")); + rectUlYCorner = parseFloat(svgRect.getAttribute("y")); + } +} + +function endPan() { + statusChange("panning plot - please be patient ..."); + pressed = 0; + //set viewport of main plot + xulcorner = parseFloat(svgRect.getAttribute("x")); + yulcorner = parseFloat(svgRect.getAttribute("y")); + width = parseFloat(svgRect.getAttribute("width")); + height = parseFloat(svgRect.getAttribute("height")); + newViewport = xulcorner + " " + yulcorner + " " + width + " " + height; + svgMainViewport.setAttribute("viewBox",newViewport); + statusChange("plot ready ..."); +} + +function showChr(evt) { + xulcorner = parseFloat(svgRect.getAttribute("x")); + yulcorner = parseFloat(svgRect.getAttribute("y")); + width = parseFloat(svgRect.getAttribute("width")); + height = parseFloat(svgRect.getAttribute("height")); + myX = parseFloat(evt.clientX-mainX) * scaleFactor; + myY = parseFloat(evt.clientY-mainY) * scaleFactor; + myX = xulcorner + (myX*100/zoomVal -0.1*mainPixWidth)* allWidth/ mainPixWidth; + myY = allHeight*0.8-(yulcorner + (myY*100/zoomVal -0.1*mainPixWidth)* allHeight/ mainPixHeight); + + for (i=0; i myX) break; + } + i = (i==chrLength.length)? "X":i; + //xObj.setData("Marker GMb (Chr "+ i+")"); + xObj.nodeValue="Marker GMb (Chr "+ i+")"; + + for (i=0; i myY) break; + } + i = (i==chrLength.length)? "X":i; + //yObj.setData("Transcript GMb (Chr "+ i+")"); + yObj.nodeValue="Transcript GMb (Chr "+ i+")"; +} + +function showNoChr(evt) { + //xObj.setData("Marker GMb"); + xObj.nodeValue="Marker GMb."; + //yObj.setData("Transcript GMb"); + yObj.nodeValue="Transcript GMb."; +} + +function mvMsgBox(evt) { + var element = evt.target; + var myX = parseFloat(evt.clientX)+2; + var myY = parseFloat(evt.clientY)-2; + var newtransform = "translate(" + myX + " " + myY + ") " + "scale(0.8)"; + dispBoxObj.setAttribute('transform', newtransform); + dispBoxObj.setAttribute('visibility', 'visible'); + //probesetObj.setData("ProbeSet : " + element.getAttribute("ps")); + probesetObj.nodeValue="ProbeSet : " + element.getAttribute("ps"); + //markerObj.setData("Marker : " + element.getAttribute("mk")); + markerObj.nodeValue="Marker : " + element.getAttribute("mk"); +} + +function hdMsgBox() { + dispBoxObj.setAttribute('visibility', 'hidden'); +} + +function openPage(evt) { + var element = evt.target; + var windowName = 'formTarget' + (new Date().getTime()); + //var openWinString = "openNewWin('"+openURL+element.getAttribute("ps")+"')"; + //var aURL = "http://www.genenetwork.org"+openURL+element.getAttribute("ps"); + var aURL = openURL+element.getAttribute("ps"); + var newWin = window.open(aURL); + newWin.focus(); + return false; + + //browserEval(openWinString); +} diff --git a/web/javascript/tabbed_pages.js b/web/javascript/tabbed_pages.js new file mode 100755 index 00000000..a0a600f8 --- /dev/null +++ b/web/javascript/tabbed_pages.js @@ -0,0 +1,32 @@ +/* ================================================================ +This copyright notice must be untouched at all times. + +The original version of this script and the associated (x)html +is available at http://www.stunicholls.com/various/tabbed_pages.html +Copyright (c) 2005-2007 Stu Nicholls. All rights reserved. +This script and the associated (x)html may be modified in any +way to fit your requirements. +=================================================================== */ + + +onload = function() { + var e, i = 0; + var ee = document.getElementById('gallery'); + if(ee==null){ + return; + } + while (e = document.getElementById('gallery').getElementsByTagName ('DIV') [i++]) { + if (e.className == 'on' || e.className == 'off') { + e.onclick = function () { + var getEls = document.getElementsByTagName('DIV'); + for (var z=0; z 1) { + arr = arr.concat(checkCellColSpan(table, headerArr, row++)); + } else { + if (table.tHead.length == 1 || (cell.rowSpan > 1 || !r[row + 1])) { + arr.push(cell); + } + // headerArr[row] = (i+row); + } + } + return arr; + }; + + function checkHeaderMetadata(cell) { + if (($.metadata) && ($(cell).metadata().sorter === false)) { + return true; + }; + return false; + } + + function checkHeaderOptions(table, i) { + if ((table.config.headers[i]) && (table.config.headers[i].sorter === false)) { + return true; + }; + return false; + } + + function checkHeaderOptionsSortingLocked(table, i) { + if ((table.config.headers[i]) && (table.config.headers[i].lockedOrder)) return table.config.headers[i].lockedOrder; + return false; + } + + function applyWidget(table) { + var c = table.config.widgets; + var l = c.length; + for (var i = 0; i < l; i++) { + + getWidgetById(c[i]).format(table); + } + + } + + function getWidgetById(name) { + var l = widgets.length; + for (var i = 0; i < l; i++) { + if (widgets[i].id.toLowerCase() == name.toLowerCase()) { + return widgets[i]; + } + } + }; + + function formatSortingOrder(v) { + if (typeof(v) != "Number") { + return (v.toLowerCase() == "desc") ? 1 : 0; + } else { + return (v == 1) ? 1 : 0; + } + } + + function isValueInArray(v, a) { + var l = a.length; + for (var i = 0; i < l; i++) { + if (a[i][0] == v) { + return true; + } + } + return false; + } + + function setHeadersCss(table, $headers, list, css) { + // remove all header information + $headers.removeClass(css[0]).removeClass(css[1]); + + var h = []; + $headers.each(function (offset) { + if (!this.sortDisabled) { + h[this.column] = $(this); + } + }); + + var l = list.length; + for (var i = 0; i < l; i++) { + h[list[i][0]].addClass(css[list[i][1]]); + } + } + + function fixColumnWidth(table, $headers) { + var c = table.config; + if (c.widthFixed) { + var colgroup = $(''); + $("tr:first td", table.tBodies[0]).each(function () { + colgroup.append($('').css('width', $(this).width())); + }); + $(table).prepend(colgroup); + }; + } + + function updateHeaderSortCount(table, sortList) { + var c = table.config, + l = sortList.length; + for (var i = 0; i < l; i++) { + var s = sortList[i], + o = c.headerList[s[0]]; + o.count = s[1]; + o.count++; + } + } + + /* sorting methods */ + + function multisort(table, sortList, cache) { + + if (table.config.debug) { + var sortTime = new Date(); + } + + var dynamicExp = "var sortWrapper = function(a,b) {", + l = sortList.length; + + for (var i = 0; i < l; i++) { + + var c = sortList[i][0]; + var order = sortList[i][1]; + var s = (table.config.parsers[c].type == "text") ? ((order == 0) ? makeSortFunction("text", "asc", c) : makeSortFunction("text", "desc", c)) : ((order == 0) ? makeSortFunction("numeric", "asc", c) : makeSortFunction("numeric", "desc", c)); + var e = "e" + i; + + dynamicExp += "var " + e + " = " + s; + dynamicExp += "if(" + e + ") { return " + e + "; } "; + dynamicExp += "else { "; + } + + // if value is the same keep orignal order + var orgOrderCol = cache.normalized[0].length - 1; + dynamicExp += "return a[" + orgOrderCol + "]-b[" + orgOrderCol + "];"; + + for (var i = 0; i < l; i++) { + dynamicExp += "}; "; + } + + dynamicExp += "return 0; "; + dynamicExp += "}; "; + + if (table.config.debug) { + benchmark("Evaling expression:" + dynamicExp, new Date()); + } + + eval(dynamicExp); + + cache.normalized.sort(sortWrapper); + if (table.config.debug) { + benchmark("Sorting on " + sortList.toString() + " and dir " + order + " time:", sortTime); + } + + return cache; + }; + + function makeSortFunction(type, direction, index) { + var a = "a[" + index + "]", + b = "b[" + index + "]"; + if (type == 'text' && direction == 'asc') { + return "(" + a + " == " + b + " ? 0 : (" + a + " === null ? Number.POSITIVE_INFINITY : (" + b + " === null ? Number.NEGATIVE_INFINITY : (" + a + " < " + b + ") ? -1 : 1 )));"; + } else if (type == 'text' && direction == 'desc') { + return "(" + a + " == " + b + " ? 0 : (" + a + " === null ? Number.POSITIVE_INFINITY : (" + b + " === null ? Number.NEGATIVE_INFINITY : (" + b + " < " + a + ") ? -1 : 1 )));"; + } else if (type == 'numeric' && direction == 'asc') { + return "(" + a + " === null && " + b + " === null) ? 0 :(" + a + " === null ? Number.POSITIVE_INFINITY : (" + b + " === null ? Number.NEGATIVE_INFINITY : " + a + " - " + b + "));"; + } else if (type == 'numeric' && direction == 'desc') { + return "(" + a + " === null && " + b + " === null) ? 0 :(" + a + " === null ? Number.POSITIVE_INFINITY : (" + b + " === null ? Number.NEGATIVE_INFINITY : " + b + " - " + a + "));"; + } + }; + + function getCachedSortType(parsers, i) { + return parsers[i].type; + }; /* public methods */ + this.construct = function (settings) { + return this.each(function () { + + //ZS: Removed this portion and added a section that automatically makes the first table row a thead if one doesn't exist + /* + //if no thead or tbody quit. + if (!this.tHead || !this.tBodies) return; + */ + + //ZS: Added this portion, which automatically makes the first row in a table its thead if one doesn't exist + if ($('.sortable').has('thead').length == 0) { //ZS: Changed this line to work with current format (was previously "table.tHead" instead of the jQuery + // table doesn't have a tHead. Since it should have, create one and + // put the first table row in it. + the = document.createElement('thead'); + the.appendChild(this.rows[0]); + this.insertBefore(the,this.firstChild); + } + + // declare + var $this, $document, $headers, cache, config, shiftDown = 0, + sortOrder; + // new blank config object + this.config = {}; + // merge and extend. + config = $.extend(this.config, $.tablesorter.defaults, settings); + // store common expression for speed + $this = $(this); + // save the settings where they read + $.data(this, "tablesorter", config); + // build headers + $headers = buildHeaders(this); + // try to auto detect column type, and store in tables config + this.config.parsers = buildParserCache(this, $headers); + // build the cache for the tbody cells + cache = buildCache(this); + // get the css class names, could be done else where. + var sortCSS = [config.cssDesc, config.cssAsc]; + // fixate columns if the users supplies the fixedWidth option + fixColumnWidth(this); + + // apply event handling to headers + $headers.click( + function (e) { + var totalRows = ($this[0].tBodies[0] && $this[0].tBodies[0].rows.length) || 0; + if (!this.sortDisabled && totalRows > 0) { + // Only call sortStart if sorting is enabled. + $this.trigger("sortStart"); + // store exp, for speed + var $cell = $(this); + + // get current column index + var i = this.column; + // get current column sort order + this.order = this.count++ % 2; + // always sort on the locked order. + if(this.lockedOrder) this.order = this.lockedOrder; + + // user only whants to sort on one + + // column + if (!e[config.sortMultiSortKey]) { + // flush the sort list + config.sortList = []; + + if (config.sortForce != null) { + var a = config.sortForce; + for (var j = 0; j < a.length; j++) { + if (a[j][0] != i) { + config.sortList.push(a[j]); + } + } + } + // add column to sort list + config.sortList.push([i, this.order]); + // multi column sorting + } else { + // the user has clicked on an already sorted column + if (isValueInArray(i, config.sortList)) { + // reverse the sorting direction for all tables + for (var j = 0; j < config.sortList.length; j++) { + var s = config.sortList[j], + o = config.headerList[s[0]]; + if (s[0] == i) { + o.count = s[1]; + o.count++; + s[1] = o.count % 2; + } + } + } else { + // add column to sort list array + config.sortList.push([i, this.order]); + } + }; + setTimeout(function () { + // set css for headers + setHeadersCss($this[0], $headers, config.sortList, sortCSS); + appendToTable( + $this[0], multisort( + $this[0], config.sortList, cache) + ); + }, 1); + // stop normal event by returning false + return false; + } + // cancel selection + }).mousedown(function () { + if (config.cancelSelection) { + this.onselectstart = function () { + return false + }; + return false; + } + }); + + // apply easy methods that trigger binded events + // ZS: I added "change" as a trigger to make the cache be updated/rebuilt whenever the user changes a sample's value or standard error. + $this.bind("update sortEnd change propertychange keyup input paste", function () { + var me = this; + setTimeout(function () { + // rebuild parsers. + //me.config.parsers = buildParserCache( + //me, $headers); + // rebuild the cache map + cache = buildCache(me); + }, 1); + }).bind("updateCell", function (e, cell) { + var config = this.config; + // get position from the dom. + var pos = [(cell.parentNode.rowIndex - 1), cell.cellIndex]; + // update cache + cache.normalized[pos[0]][pos[1]] = config.parsers[pos[1]].format( + getElementText(config, cell), cell); + }).bind("sorton", function (e, list) { + $(this).trigger("sortStart"); + config.sortList = list; + // update and store the sortlist + var sortList = config.sortList; + // update header count index + updateHeaderSortCount(this, sortList); + // set css for headers + setHeadersCss(this, $headers, sortList, sortCSS); + // sort the table and append it to the dom + appendToTable(this, multisort(this, sortList, cache)); + }).bind("appendCache", function () { + appendToTable(this, cache); + }).bind("applyWidgetId", function (e, id) { + getWidgetById(id).format(this); + }).bind("applyWidgets", function () { + // apply widgets + applyWidget(this); + }); + if ($.metadata && ($(this).metadata() && $(this).metadata().sortlist)) { + config.sortList = $(this).metadata().sortlist; + } + // if user has supplied a sort list to constructor. + if (config.sortList.length > 0) { + $this.trigger("sorton", [config.sortList]); + } + // apply widgets + applyWidget(this); + }); + }; + this.addParser = function (parser) { + var l = parsers.length, + a = true; + for (var i = 0; i < l; i++) { + if (parsers[i].id.toLowerCase() == parser.id.toLowerCase()) { + a = false; + } + } + if (a) { + parsers.push(parser); + }; + }; + this.addWidget = function (widget) { + widgets.push(widget); + }; + this.formatFloat = function (s) { + var i = parseFloat(s); + return (isNaN(i)) ? 0 : i; + }; + this.formatInt = function (s) { + var i = parseInt(s); + return (isNaN(i)) ? 0 : i; + }; + this.isDigit = function (s, config) { + // replace all an wanted chars and match. + return /^[-+]?\d*$/.test($.trim(s.replace(/[,.']/g, ''))); + }; + this.clearTableBody = function (table) { + if ($.browser.msie) { + function empty() { + while (this.firstChild) + this.removeChild(this.firstChild); + } + empty.apply(table.tBodies[0]); + } else { + table.tBodies[0].innerHTML = ""; + } + }; + } + }); + + // extend plugin scope + $.fn.extend({ + tablesorter: $.tablesorter.construct + }); + + // make shortcut + var ts = $.tablesorter; + + // add default parsers + ts.addParser({ + id: "text", + is: function (s) { + return true; + }, format: function (s) { + return $.trim(s.toLocaleLowerCase()); + }, type: "text" + }); + + ts.addParser({ + id: "digit", + is: function (s, table) { + var c = table.config; + return $.tablesorter.isDigit(s, c); + }, format: function (s) { + return $.tablesorter.formatFloat(s); + }, type: "numeric" + }); + + ts.addParser({ + id: "currency", + is: function (s) { + return /^[£$€?.]/.test(s); + }, format: function (s) { + return $.tablesorter.formatFloat(s.replace(new RegExp(/[£$€]/g), "")); + }, type: "numeric" + }); + + ts.addParser({ + id: "ipAddress", + is: function (s) { + return /^\d{2,3}[\.]\d{2,3}[\.]\d{2,3}[\.]\d{2,3}$/.test(s); + }, format: function (s) { + var a = s.split("."), + r = "", + l = a.length; + for (var i = 0; i < l; i++) { + var item = a[i]; + if (item.length == 2) { + r += "0" + item; + } else { + r += item; + } + } + return $.tablesorter.formatFloat(r); + }, type: "numeric" + }); + + ts.addParser({ + id: "url", + is: function (s) { + return /^(https?|ftp|file):\/\/$/.test(s); + }, format: function (s) { + return jQuery.trim(s.replace(new RegExp(/(https?|ftp|file):\/\//), '')); + }, type: "text" + }); + + ts.addParser({ + id: "isoDate", + is: function (s) { + return /^\d{4}[\/-]\d{1,2}[\/-]\d{1,2}$/.test(s); + }, format: function (s) { + return $.tablesorter.formatFloat((s != "") ? new Date(s.replace( + new RegExp(/-/g), "/")).getTime() : "0"); + }, type: "numeric" + }); + + ts.addParser({ + id: "percent", + is: function (s) { + return /\%$/.test($.trim(s)); + }, format: function (s) { + return $.tablesorter.formatFloat(s.replace(new RegExp(/%/g), "")); + }, type: "numeric" + }); + + ts.addParser({ + id: "usLongDate", + is: function (s) { + return s.match(new RegExp(/^[A-Za-z]{3,10}\.? [0-9]{1,2}, ([0-9]{4}|'?[0-9]{2}) (([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(AM|PM)))$/)); + }, format: function (s) { + return $.tablesorter.formatFloat(new Date(s).getTime()); + }, type: "numeric" + }); + + ts.addParser({ + id: "shortDate", + is: function (s) { + return /\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2,4}/.test(s); + }, format: function (s, table) { + var c = table.config; + s = s.replace(/\-/g, "/"); + if (c.dateFormat == "us") { + // reformat the string in ISO format + s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/, "$3/$1/$2"); + } else if (c.dateFormat == "uk") { + // reformat the string in ISO format + s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})/, "$3/$2/$1"); + } else if (c.dateFormat == "dd/mm/yy" || c.dateFormat == "dd-mm-yy") { + s = s.replace(/(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{2})/, "$1/$2/$3"); + } + return $.tablesorter.formatFloat(new Date(s).getTime()); + }, type: "numeric" + }); + ts.addParser({ + id: "time", + is: function (s) { + return /^(([0-2]?[0-9]:[0-5][0-9])|([0-1]?[0-9]:[0-5][0-9]\s(am|pm)))$/.test(s); + }, format: function (s) { + return $.tablesorter.formatFloat(new Date("2000/01/01 " + s).getTime()); + }, type: "numeric" + }); + ts.addParser({ + id: "metadata", + is: function (s) { + return false; + }, format: function (s, table, cell) { + var c = table.config, + p = (!c.parserMetadataName) ? 'sortValue' : c.parserMetadataName; + return $(cell).metadata()[p]; + }, type: "numeric" + }); + // add default widgets + ts.addWidget({ + id: "zebra", + format: function (table) { + if (table.config.debug) { + var time = new Date(); + } + var $tr, row = -1, + odd; + // loop through the visible rows + $("tr:visible", table.tBodies[0]).each(function (i) { + $tr = $(this); + // style children rows the same way the parent + // row was styled + if (!$tr.hasClass(table.config.cssChildRow)) row++; + odd = (row % 2 == 0); + $tr.removeClass( + table.config.widgetZebra.css[odd ? 0 : 1]).addClass( + table.config.widgetZebra.css[odd ? 1 : 0]) + }); + if (table.config.debug) { + $.tablesorter.benchmark("Applying Zebra widget", time); + } + } + }); +})(jQuery); \ No newline at end of file diff --git a/web/javascript/thickbox.js b/web/javascript/thickbox.js new file mode 100755 index 00000000..86bcf738 --- /dev/null +++ b/web/javascript/thickbox.js @@ -0,0 +1,319 @@ +/* + * Thickbox 3.1 - One Box To Rule Them All. + * By Cody Lindley (http://www.codylindley.com) + * Copyright (c) 2007 cody lindley + * Licensed under the MIT License: http://www.opensource.org/licenses/mit-license.php +*/ + +var tb_pathToImage = "images/loadingAnimation.gif"; + +/*!!!!!!!!!!!!!!!!! edit below this line at your own risk !!!!!!!!!!!!!!!!!!!!!!!*/ + +//on page load call tb_init +$(document).ready(function(){ + tb_init('a.thickbox, area.thickbox, input.thickbox');//pass where to apply thickbox + imgLoader = new Image();// preload image + imgLoader.src = tb_pathToImage; +}); + +//add thickbox to href & area elements that have a class of .thickbox +function tb_init(domChunk){ + $(domChunk).click(function(){ + var t = this.title || this.name || null; + var a = this.href || this.alt; + var g = this.rel || false; + tb_show(t,a,g); + this.blur(); + return false; + }); +} + +function tb_show(caption, url, imageGroup) {//function called when the user clicks on a thickbox link + + try { + if (typeof document.body.style.maxHeight === "undefined") {//if IE 6 + $("body","html").css({height: "100%", width: "100%"}); + $("html").css("overflow","hidden"); + if (document.getElementById("TB_HideSelect") === null) {//iframe to hide select elements in ie6 + $("body").append("
    "); + $("#TB_overlay").click(tb_remove); + } + }else{//all others + if(document.getElementById("TB_overlay") === null){ + $("body").append("
    "); + $("#TB_overlay").click(tb_remove); + } + } + + if(tb_detectMacXFF()){ + $("#TB_overlay").addClass("TB_overlayMacFFBGHack");//use png overlay so hide flash + }else{ + $("#TB_overlay").addClass("TB_overlayBG");//use background and opacity + } + + if(caption===null){caption="";} + $("body").append("
    ");//add loader to the page + $('#TB_load').show();//show loader + + var baseURL; + if(url.indexOf("?")!==-1){ //ff there is a query string involved + baseURL = url.substr(0, url.indexOf("?")); + }else{ + baseURL = url; + } + + var urlString = /\.jpg$|\.jpeg$|\.png$|\.gif$|\.bmp$/; + var urlType = baseURL.toLowerCase().match(urlString); + + if(urlType == '.jpg' || urlType == '.jpeg' || urlType == '.png' || urlType == '.gif' || urlType == '.bmp'){//code to show images + + TB_PrevCaption = ""; + TB_PrevURL = ""; + TB_PrevHTML = ""; + TB_NextCaption = ""; + TB_NextURL = ""; + TB_NextHTML = ""; + TB_imageCount = ""; + TB_FoundURL = false; + if(imageGroup){ + TB_TempArray = $("a[@rel="+imageGroup+"]").get(); + for (TB_Counter = 0; ((TB_Counter < TB_TempArray.length) && (TB_NextHTML === "")); TB_Counter++) { + var urlTypeTemp = TB_TempArray[TB_Counter].href.toLowerCase().match(urlString); + if (!(TB_TempArray[TB_Counter].href == url)) { + if (TB_FoundURL) { + TB_NextCaption = TB_TempArray[TB_Counter].title; + TB_NextURL = TB_TempArray[TB_Counter].href; + TB_NextHTML = "  Next >"; + } else { + TB_PrevCaption = TB_TempArray[TB_Counter].title; + TB_PrevURL = TB_TempArray[TB_Counter].href; + TB_PrevHTML = "  < Prev"; + } + } else { + TB_FoundURL = true; + TB_imageCount = "Image " + (TB_Counter + 1) +" of "+ (TB_TempArray.length); + } + } + } + + imgPreloader = new Image(); + imgPreloader.onload = function(){ + imgPreloader.onload = null; + + // Resizing large images - orginal by Christian Montoya edited by me. + var pagesize = tb_getPageSize(); + var x = pagesize[0] - 150; + var y = pagesize[1] - 150; + var imageWidth = imgPreloader.width; + var imageHeight = imgPreloader.height; + if (imageWidth > x) { + imageHeight = imageHeight * (x / imageWidth); + imageWidth = x; + if (imageHeight > y) { + imageWidth = imageWidth * (y / imageHeight); + imageHeight = y; + } + } else if (imageHeight > y) { + imageWidth = imageWidth * (y / imageHeight); + imageHeight = y; + if (imageWidth > x) { + imageHeight = imageHeight * (x / imageWidth); + imageWidth = x; + } + } + // End Resizing + + TB_WIDTH = imageWidth + 30; + TB_HEIGHT = imageHeight + 60; + $("#TB_window").append(""+caption+"" + "
    "+caption+"
    " + TB_imageCount + TB_PrevHTML + TB_NextHTML + "
    close or Esc Key
    "); + + $("#TB_closeWindowButton").click(tb_remove); + + if (!(TB_PrevHTML === "")) { + function goPrev(){ + if($(document).unbind("click",goPrev)){$(document).unbind("click",goPrev);} + $("#TB_window").remove(); + $("body").append("
    "); + tb_show(TB_PrevCaption, TB_PrevURL, imageGroup); + return false; + } + $("#TB_prev").click(goPrev); + } + + if (!(TB_NextHTML === "")) { + function goNext(){ + $("#TB_window").remove(); + $("body").append("
    "); + tb_show(TB_NextCaption, TB_NextURL, imageGroup); + return false; + } + $("#TB_next").click(goNext); + + } + + document.onkeydown = function(e){ + if (e == null) { // ie + keycode = event.keyCode; + } else { // mozilla + keycode = e.which; + } + if(keycode == 27){ // close + tb_remove(); + } else if(keycode == 190){ // display previous image + if(!(TB_NextHTML == "")){ + document.onkeydown = ""; + goNext(); + } + } else if(keycode == 188){ // display next image + if(!(TB_PrevHTML == "")){ + document.onkeydown = ""; + goPrev(); + } + } + }; + + tb_position(); + $("#TB_load").remove(); + $("#TB_ImageOff").click(tb_remove); + $("#TB_window").css({display:"block"}); //for safari using css instead of show + }; + + imgPreloader.src = url; + }else{//code to show html + + var queryString = url.replace(/^[^\?]+\??/,''); + var params = tb_parseQuery( queryString ); + + TB_WIDTH = (params['width']*1) + 30 || 630; //defaults to 630 if no paramaters were added to URL + TB_HEIGHT = (params['height']*1) + 40 || 440; //defaults to 440 if no paramaters were added to URL + ajaxContentW = TB_WIDTH - 30; + ajaxContentH = TB_HEIGHT - 45; + + if(url.indexOf('TB_iframe') != -1){// either iframe or ajax window + urlNoQuery = url.split('TB_'); + $("#TB_iframeContent").remove(); + if(params['modal'] != "true"){//iframe no modal + $("#TB_window").append("
    "+caption+"
    close or Esc Key
    "); + }else{//iframe modal + $("#TB_overlay").unbind(); + $("#TB_window").append(""); + } + }else{// not an iframe, ajax + if($("#TB_window").css("display") != "block"){ + if(params['modal'] != "true"){//ajax no modal + $("#TB_window").append("
    "+caption+"
    close or Esc Key
    "); + }else{//ajax modal + $("#TB_overlay").unbind(); + $("#TB_window").append("
    "); + } + }else{//this means the window is already up, we are just loading new content via ajax + $("#TB_ajaxContent")[0].style.width = ajaxContentW +"px"; + $("#TB_ajaxContent")[0].style.height = ajaxContentH +"px"; + $("#TB_ajaxContent")[0].scrollTop = 0; + $("#TB_ajaxWindowTitle").html(caption); + } + } + + $("#TB_closeWindowButton").click(tb_remove); + + if(url.indexOf('TB_inline') != -1){ + $("#TB_ajaxContent").append($('#' + params['inlineId']).children()); + $("#TB_window").unload(function () { + $('#' + params['inlineId']).append( $("#TB_ajaxContent").children() ); // move elements back when you're finished + }); + tb_position(); + $("#TB_load").remove(); + $("#TB_window").css({display:"block"}); + }else if(url.indexOf('TB_iframe') != -1){ + tb_position(); + if($.browser.safari){//safari needs help because it will not fire iframe onload + $("#TB_load").remove(); + $("#TB_window").css({display:"block"}); + } + }else{ + $("#TB_ajaxContent").load(url += "&random=" + (new Date().getTime()),function(){//to do a post change this load method + tb_position(); + $("#TB_load").remove(); + tb_init("#TB_ajaxContent a.thickbox"); + $("#TB_window").css({display:"block"}); + }); + } + + } + + if(!params['modal']){ + document.onkeyup = function(e){ + if (e == null) { // ie + keycode = event.keyCode; + } else { // mozilla + keycode = e.which; + } + if(keycode == 27){ // close + tb_remove(); + } + }; + } + + } catch(e) { + //nothing here + } +} + +//helper functions below +function tb_showIframe(){ + $("#TB_load").remove(); + $("#TB_window").css({display:"block"}); +} + +function tb_remove() { + $("#TB_imageOff").unbind("click"); + $("#TB_closeWindowButton").unbind("click"); + $("#TB_window").fadeOut("fast",function(){$('#TB_window,#TB_overlay,#TB_HideSelect').trigger("unload").unbind().remove();}); + $("#TB_load").remove(); + if (typeof document.body.style.maxHeight == "undefined") {//if IE 6 + $("body","html").css({height: "auto", width: "auto"}); + $("html").css("overflow",""); + } + document.onkeydown = ""; + document.onkeyup = ""; + return false; +} + +function tb_position() { +$("#TB_window").css({marginLeft: '-' + parseInt((TB_WIDTH / 2),10) + 'px', width: TB_WIDTH + 'px'}); + if ( !(jQuery.browser.msie && jQuery.browser.version < 7)) { // take away IE6 + $("#TB_window").css({marginTop: '-' + parseInt((TB_HEIGHT / 2),10) + 'px'}); + } +} + +function tb_parseQuery ( query ) { + var Params = {}; + if ( ! query ) {return Params;}// return empty object + var Pairs = query.split(/[;&]/); + for ( var i = 0; i < Pairs.length; i++ ) { + var KeyVal = Pairs[i].split('='); + if ( ! KeyVal || KeyVal.length != 2 ) {continue;} + var key = unescape( KeyVal[0] ); + var val = unescape( KeyVal[1] ); + val = val.replace(/\+/g, ' '); + Params[key] = val; + } + return Params; +} + +function tb_getPageSize(){ + var de = document.documentElement; + var w = window.innerWidth || self.innerWidth || (de&&de.clientWidth) || document.body.clientWidth; + var h = window.innerHeight || self.innerHeight || (de&&de.clientHeight) || document.body.clientHeight; + arrayPageSize = [w,h]; + return arrayPageSize; +} + +function tb_detectMacXFF() { + var userAgent = navigator.userAgent.toLowerCase(); + if (userAgent.indexOf('mac') != -1 && userAgent.indexOf('firefox')!=-1) { + return true; + } +} + + diff --git a/web/javascript/webqtl.js b/web/javascript/webqtl.js new file mode 100644 index 00000000..f8dd1a4e --- /dev/null +++ b/web/javascript/webqtl.js @@ -0,0 +1,1346 @@ +// var NS4 = (document.layers) ? 1 : 0; +// var IE4 = (document.all) ? 1 : 0; + +function openNewWin(myURL){ + windowName = 'formTarget' + (new Date().getTime()); + if (openNewWin.arguments.length == 2){ + newWindow = open(myURL,windowName,openNewWin.arguments[1]); + } + else{ + newWindow = open(myURL,windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + } +} + +/*XZ, 9/2/2009*/ +/*submit form to new window*/ +function submitToNewWindow(thisForm){ + var windowName = genNewWin(); + newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + newWindow.focus(); + thisForm.target = windowName; + thisForm.submit(); +} + +/*Obsolete and To be mofdified*/ +/* +function makeTree(thisForm, nnn){ + var trait_list2 = new Array(); + var correlation2 = new Array(); + var symbol_list2 = new Array(); + var length = document.showDatabase.searchResult.length; + var j = 0 + for(var i = 0; i < length; i++) + { + if (document.showDatabase.searchResult[i].checked == true){ + trait_list2 = trait_list2.concat(trait_list[i]); + correlation2 = correlation2.concat(correlation[i]); + symbol_list2 = symbol_list2.concat(symbol_list[i]); + j += 1; + } + } + + var windowName = 'formTarget' + (new Date().getTime()); + var newWindow = open("", windowName,"width=900,menubar=0,toolbar=1,resizable=1,status=1,scrollbars=1"); + var html = ""; + if (j > 0) + { + var waithtml1 ="
    Your list of "+j+" transcripts is being exported to the Gene Ontology Tree Machine for analysis. This window will soon be replaced with the main GOTM results.
    "; + } + else + { + var waithtml1 ="
    Your should select at least one transcript to export to the Gene Ontology Tree Machine for analysis.
    "; + } + html += waithtml1; + //newWindow.document.write(html); + //newWindow.document.close(); + newWindow.focus(); + if (j > 0) + { + thisForm.trait_list.value = trait_list2.join(','); + thisForm.correlation.value = correlation2.join(','); + thisForm.symbol_list.value = symbol_list2.join(','); + thisForm.target = windowName; + thisForm.submit(); + } +} +*/ + +function showCorrelationPlot(ProbeSetID,CellID){ + windowName = 'formTarget' + (new Date().getTime()); + newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + document.showDatabase.target = windowName; + document.showDatabase.FormID.value = "showCorrelationPlot"; + document.showDatabase.ProbeSetID.value = ProbeSetID; + document.showDatabase.CellID.value = CellID; + document.showDatabase.submit(); +} + + +function showPairPlot(ChrA,ChrB){ + windowName = 'formTarget' + (new Date().getTime()); + newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + document.showPairPlot.target = windowName; + document.showPairPlot.Chr_A.value = ChrA; + document.showPairPlot.Chr_B.value = ChrB; + document.showPairPlot.submit(); +} + +function showCorrelationPlot2(db, ProbeSetID, CellID, db2, ProbeSetID2, CellID2, rank){ + windowName = 'formTarget' + (new Date().getTime()); + newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + document.showDatabase.target = windowName; + document.showDatabase.FormID.value = "showCorrelationPlot"; + document.showDatabase.database.value = db; + document.showDatabase.ProbeSetID.value = ProbeSetID; + document.showDatabase.CellID.value = CellID; + document.showDatabase.database2.value = db2; + document.showDatabase.ProbeSetID2.value = ProbeSetID2; + document.showDatabase.CellID2.value = CellID2; + document.showDatabase.rankOrder.value = rank; + + //This is to make sure the type of correlation is Sample Correlation + if(typeof(document.showDatabase.X_geneSymbol) !== 'undefined'){ + document.showDatabase.X_geneSymbol.value = null; + document.showDatabase.Y_geneSymbol.value = null; + } + + document.showDatabase.submit(); +} + + +function showProbeInfo(Database,ProbeSetID,CellID){ + windowName = 'formTarget' + (new Date().getTime()); + newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + document.showDatabase.target = windowName; + document.showDatabase.FormID.value = "showProbeInfo"; + document.showDatabase.database.value = Database; + document.showDatabase.ProbeSetID.value = ProbeSetID; + document.showDatabase.CellID.value = CellID; + document.showDatabase.submit(); +} + + +function showDatabase(ProbeSetID,CellID){ + windowName = 'formTarget' + (new Date().getTime()); + newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + document.showDatabase.target = windowName; + document.showDatabase.FormID.value = "showDatabase"; + document.showDatabase.ProbeSetID.value = ProbeSetID; + document.showDatabase.CellID.value = CellID; + document.showDatabase.submit(); +} + + + +function showDatabase2(Database,ProbeSetID,CellID){ + windowName = 'formTarget' + (new Date().getTime()); + newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + document.showDatabase.target = windowName; + document.showDatabase.FormID.value = "showDatabase"; + document.showDatabase.database.value = Database; + document.showDatabase.ProbeSetID.value = ProbeSetID; + document.showDatabase.CellID.value = CellID; + document.showDatabase.submit(); +} + + +function showDatabase3(formName, Database,ProbeSetID,CellID){ + windowName = 'formTarget' + (new Date().getTime()); + newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + document[formName].target = windowName; + document[formName].FormID.value = "showDatabase"; + document[formName].database.value = Database; + document[formName].ProbeSetID.value = ProbeSetID; + document[formName].CellID.value = CellID; + document[formName].submit(); +} + + +function showTextResult(){ + windowName = 'formTarget' + (new Date().getTime()); + newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + document.SEARCHFORM.target = windowName; + document.SEARCHFORM.submit(); + newWindow.focus() +} + +/*New form name independent function*/ +function getForm(fmName){ + var match = 0; + for (i=0; i< document.forms.length;i++){ + if (document.forms[i].name == fmName){ + thisForm = document.forms[i]; + match = 1; + return thisForm; + } + } + if (match == 0) + return null; +} + +function genNewWin(){ + windowName = 'formTarget' + (new Date().getTime()); + newWindow = open("",windowName, "menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + return windowName; +} + +function showTrait(fmName){ + var thisForm = getForm(fmName); + if (thisForm == null || showTrait.arguments.length < 2) + return; + + windowName = genNewWin(); + thisForm.target = windowName; + + thisForm.FormID.value = "showDatabase"; + thisForm.ProbeSetID.value = showTrait.arguments[1]; + if (showTrait.arguments.length > 2) + thisForm.CellID.value = showTrait.arguments[2]; + else + thisForm.CellID.value = ""; + thisForm.submit(); +} + +function showCateGraph(fmName){ + var thisForm = getForm(fmName); + if (thisForm == null || showCateGraph.arguments.length < 2) + return; + + windowName = genNewWin(); + thisForm.target = windowName; + + thisForm.FormID.value = "showCategoryGraph"; + thisForm.interval1.value = showCateGraph.arguments[1]; + thisForm.interval2.value = showCateGraph.arguments[2]; + thisForm.submit(); +} + +function showCorrPlot(fmName){ + var thisForm = getForm(fmName); + if (thisForm == null || showCorrPlot.arguments.length < 2) + return; + + windowName = genNewWin(); + thisForm.target = windowName; + + thisForm.FormID.value = "showCorrelationPlot"; + thisForm.ProbeSetID.value = showCorrPlot.arguments[1]; + if (showCorrPlot.arguments.length > 2) + thisForm.CellID.value = showCorrPlot.arguments[2]; + else + thisForm.CellID.value = ""; + + thisForm.X_geneSymbol.value = null; + thisForm.Y_geneSymbol.value = null; + + thisForm.submit(); + +} + + +function showCorrPlotThird(fmName){ + var thisForm = getForm(fmName); + if (thisForm == null || showCorrPlotThird.arguments.length < 3) + return; + + windowName = genNewWin(); + thisForm.target = windowName; + + var olddb = thisForm.database.value; + + thisForm.FormID.value = "showCorrelationPlot"; + thisForm.database.value = showCorrPlotThird.arguments[1]; + thisForm.ProbeSetID.value = showCorrPlotThird.arguments[2]; + if (showCorrPlotThird.arguments.length > 3) + thisForm.CellID.value = showCorrPlotThird.arguments[3]; + else + thisForm.CellID.value = ""; + thisForm.submit(); + thisForm.database.value = olddb; +} + +/* +function ODE(thisForm, script){ + var trait_list_all = new Array(); + var correlation_all = new Array(); + var llid_list_all = new Array(); + var trait_list2 = new Array(); + var correlation2 = new Array(); + var llid_list2 = new Array(); + var length = thisForm.searchResult.length; + var j = 0; + for(var i = 0; i < length; i++){ + var p = corrArray[thisForm.searchResult[i].value]; + if (thisForm.searchResult[i].checked == true){ + trait_list2 = trait_list2.concat(p.name); + correlation2 = correlation2.concat(p.corr); + llid_list2 = llid_list2.concat(p.geneid); + j += 1; + } + trait_list_all = trait_list_all.concat(p.name); + correlation_all = correlation_all.concat(p.corr); + llid_list_all = llid_list_all.concat(p.geneid); + } + var windowName = 'formTarget' + (new Date().getTime()); + var newWindow = open("", windowName, "width=900,menubar=0,toolbar=1,resizable=1,status=1,scrollbars=1"); + var html = ""; + if (j == 0){ + j = length; + trait_list2 = trait_list_all; + correlation2 = correlation_all; + llid_list2 = llid_list_all; + } + + var waithtml1 ="
    Your list of "+j+" transcripts is being exported to the ODE for analysis. This window will soon be replaced with the results.
    "; + + html += waithtml1; + newWindow.document.write(html); + newWindow.document.close(); + newWindow.focus(); + if (j > 0){ + thisForm.id_list.value = trait_list2.join(','); + thisForm.correlation.value = correlation2.join(','); + thisForm.id_value.value = thisForm.correlation.value; + thisForm.llid_list.value = llid_list2.join(','); + + // ODE + + thisForm.idtype.value = thisForm.id_type.value; + thisForm.species.value = thisForm.org.value; + thisForm.list.value = thisForm.id_list.value; + thisForm.client.value = "genenetwork"; + + thisForm.target = windowName; + var oldaction = thisForm.action; + thisForm.action = script; + thisForm.submit(); + thisForm.action = oldaction; + } +} +*/ +// 02/12/2009 +// Lei Yan + +/*scripts in the Dataediting form*/ + +function dataEditingFunc(thisForm,submitIdValue){ + + windowName = 'formTarget' + (new Date().getTime()); + + if (thisForm.FormID.value!='secondRegression'){ + thisForm.FormID.value = 'dataEditing'; + } + + if ((submitIdValue == "markerRegression")||(submitIdValue == "compositeRegression")){ + thisForm.topten.value = ""; + } + + else if (submitIdValue == "addRecord"){ + windowName = thisForm.RISet.value; + var name = thisForm.identification.value; + if (name != ""){ + } + else{ + name = "Unnamed Trait"; + } + Namebox = prompt("Name of your trait",name); + thisForm.identification.value = Namebox; + } + + else{ + } + + newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + thisForm.target = windowName; + newWindow.focus(); + thisForm.submitID.value = submitIdValue; + thisForm.submit(); +} + +/*searchForm etc.*/ +function databaseFunc(thisForm,formIdValue){ + if(formIdValue=="GOTree" && typeof(corrArray)!='undefined' && corrArray!=null){ + makeListCorrelation(thisForm); + } + + windowName = 'formTarget' + (new Date().getTime()); + newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + if (databaseFunc.arguments.length > 2){ + newWindow.document.write("

    " + databaseFunc.arguments[2]+ "

    "); + newWindow.document.close(); + } + newWindow.focus(); + thisForm.target = windowName; + thisForm.FormID.value = formIdValue; + thisForm.submit(); +} + +/* make a list of correlation values for GOTree */ +function makeListCorrelation(thisForm){ + var correlation = new Array(); + for(var i = 0; i < thisForm.searchResult.length; i++){ + if (thisForm.searchResult[i].checked == true){ + var p = corrArray[thisForm.searchResult[i].value]; + correlation = correlation.concat(p.corr); + } + } + thisForm.correlation.value = correlation.join(','); +} + +/*add/remove selection*/ + +function addRmvSelection(windowName, thisForm, addORrmv){ + var newWindow = window.open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + thisForm.target = windowName; + thisForm.FormID.value = addORrmv; + thisForm.submit(); + newWindow.focus(); +} + +function batchSelection(thisForm){ + var select = thisForm.RISet; + var windowName = select.options[select.selectedIndex].value; + var newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + newWindow.focus(); + thisForm.target = windowName; + thisForm.submit(); +} + +/*opener involved*/ + +function showTop10(formName, submitIdValue){ + var match = 0; + for (i=0; i< window.opener.document.forms.length;i++){ + if (window.opener.document.forms[i].name == formName){ + thisForm = window.opener.document.forms[i]; + match = 1; + break; + } + } + if (match == 0) + return; + + thisForm.target = self.name; + if ((submitIdValue == "markerRegression")||(submitIdValue == "compositeRegression")){ + thisForm.topten.value = "topten"; + } + + thisForm.submitID.value = submitIdValue; + thisForm.submit(); +} + + +function showIndividualChromosome(formName, submitIdValue, ii){ + var match = 0; + for (i=0; i< window.opener.document.forms.length;i++){ + if (window.opener.document.forms[i].name == formName){ + thisForm = window.opener.document.forms[i]; + match = 1; + break; + } + } + if (match == 0) + return; + + windowName = 'formTarget' + (new Date().getTime()); + newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + newWindow.focus(); + thisForm.target = windowName; + + if (submitIdValue == "showIntMap"){ + thisForm.chromosomes.value = ii; + } + else{ + thisForm.chromosomes.selectedIndex = ii; + } + + thisForm.FormID.value = submitIdValue; + thisForm.submit(); + +} + +/*end of opener*/ + +function showSample(thisForm){ + thisForm.submitID.value = "sample"; + thisForm.submit(); +} + +function showNext(thisForm){ + thisForm.submitID.value = "next"; + thisForm.submit(); +} + + +function changeStatusSubmit(thisForm, status) { + thisForm.status.value = status; + thisForm.submit(); +} + +function editHTML(thisForm, execCommand){ + if (execCommand == "preview"){ + windowName = 'formTarget' + (new Date().getTime()); + newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + newWindow.focus(); + thisForm.target = windowName; + thisForm.preview.value = "newWindow"; + thisForm.submit(); + } + else if (execCommand == "submit"){ + //thisForm.target = window; + thisForm.preview.value = ""; + thisForm.submit(); + } + else{ + } +} + +function dataWindow(form){ + var SaveAs = (document.execCommand) ? 1 : 0; + newWindow = open("", "thankYouWin","width=600,menubar=1,toolbar=1,height=300,resizable=0,status=1,scrollbars=1"); + var html = ""; + for (var i=0; i < form.length; i++) + { + if (form.elements[i].type == "text") + { + if (form.elements[i].value=="") + html +="x "; + else + html += form.elements[i].value+" "; + } + } + newWindow.document.open(); + newWindow.document.write(html); + newWindow.document.close(); + newWindow.focus(); + + if (!SaveAs) + {alert("Feature is not avaiable in current type of browser,You \nneed to manually save the content into a text format \nfile, The window will be automatically closed in 20 \nseconds!"); + setTimeout("newWindow.close()", 20000);} + else + { + if (newWindow.document.execCommand('SaveAs',false,'.txt')) + {newWindow.close();} + else{ + alert("Either you cancelled the SaveAs Dialog, or this feature \nis not avaiable in current type of browser, You \ncan manually save the content into a text format file."); + setTimeout("newWindow.close()", 20000); + } + } +} + + +function xchange() { + var select = document.crossChoice.RISet; + var value = select.options[select.selectedIndex].value; + + if (value !="BDAI") return; + document.crossChoice.variance.checked = false; +} + +/*display Info Page and Data Set buttom Added by A. Centeno*/ + +function datasetinfo(){ + var windowName = 'dataset_info' + (new Date().getTime()); + var select = document.SEARCHFORM.database; + var database = select.options[select.selectedIndex].value; + var page = '/webqtl/main.py?FormID=sharinginfo&InfoPageName=' + database; + newWindow = open(page,windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + newWindow.focus(); +} + +function databaseinfo(){ + var windowName = 'database_info' + (new Date().getTime()); + var select = document.SEARCHFORM.database; + var database = select.options[select.selectedIndex].value; + var page = '/webqtl/main.py?FormID=sharinginfo&InfoPageName=' + database; + newWindow = open(page,windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + newWindow.focus(); +} + +function crossinfo(){ + var windowName = 'cross_info'; + var select0 = document.SEARCHFORM.species; + var select1 = document.SEARCHFORM.cross; + var specie = select0.options[select0.selectedIndex].value; + var database = select1.options[select1.selectedIndex].value; + var page = '/' + specie + 'Cross.html#' + database; + newWindow = open(page,windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + newWindow.focus(); +} + +function crossinfo2(){ + var windowName = 'cross_info'; + var select = document.crossChoice.RISet; + var database = select.options[select.selectedIndex].value; + var page = '/cross.html#' + database; + newWindow = open(page,windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + newWindow.focus() +} + + +function checkWidth(){ + var width = document.getElementsByName('plotSize')[0].value + + if (width < 600) { + alert("Plot size is too small - setting size to 600") + document.getElementsByName('plotSize')[0].value = 600 + } +} + +function changeLineColor(){ + var lineColor = document.getElementsByName('lineColorSel')[0].value + + document.getElementsByName('lineColor')[0].value = lineColor +} + +function changeLineSize(){ + var lineSize = document.getElementsByName('lineSizeSel')[0].value + + document.getElementsByName('lineSize')[0].value = lineSize +} + +function changeIdColor(){ + var idColor = document.getElementsByName('idColorSel')[0].value + + document.getElementsByName('idColor')[0].value = idColor +} + +function changeIdFont(){ + var idFont = document.getElementsByName('idFontSel')[0].value + + document.getElementsByName('idFont')[0].value = idFont +} + +function changeIdSize(){ + var idSize = document.getElementsByName('idSizeSel')[0].value + + document.getElementsByName('idSize')[0].value = idSize +} + +function changeSymbolColor(){ + var symbolColor = document.getElementsByName('colorSel')[0].value + + document.getElementsByName('symbolColor')[0].value = symbolColor +} + +function changeSymbol(){ + var symbol = document.getElementsByName('symbolSel')[0].value + + document.getElementsByName('symbol')[0].value = symbol +} + +function changeFilled(){ + var filled = document.getElementsByName('fillSel')[0].value + + document.getElementsByName('filled')[0].value = filled +} + +function changeSize(){ + var symbolSize = document.getElementsByName('sizeSel')[0].value + + document.getElementsByName('symbolSize')[0].value = symbolSize +} + + +function checkAll(thisForm){ + var length = thisForm.searchResult.length; + for(var i = 0; i < length; i++) + { + thisForm.searchResult[i].checked = true; + highlight(thisForm.searchResult[i]); + } +} + +function checkNone(thisForm){ + var length = thisForm.searchResult.length; + for(var i = 0; i < length; i++) + { + thisForm.searchResult[i].checked = false; + highlight(thisForm.searchResult[i]); + } +} + +function checkInvert(thisForm){ + var length = thisForm.searchResult.length; + for(var i = 0; i < length; i++) + { + thisForm.searchResult[i].checked = !(thisForm.searchResult[i].checked); + highlight(thisForm.searchResult[i]); + } +} + +/*Not used anymore*/ +function checkTraits2(thisForm){ + var length = thisForm.searchResult.length; + var category = thisForm.selectmenu.value; + for(var i = 0; i < length; i++) + { + if (category == 'gt0.8') + { + if (correlation[i] > 0.8) + {thisForm.searchResult[i].checked = true;} + else + {thisForm.searchResult[i].checked = false;} + } + else if (category == 'gt0.4') + { + if (correlation[i] > 0.4) + {thisForm.searchResult[i].checked = true;} + else + {thisForm.searchResult[i].checked = false;} + } + else if (category == 'gt0.0') + { + if (correlation[i] > 0.0) + {thisForm.searchResult[i].checked = true;} + else + {thisForm.searchResult[i].checked = false;} + } + else if (category == 'lt0.0') + { + if (correlation[i] < 0.0) + {thisForm.searchResult[i].checked = true;} + else + {thisForm.searchResult[i].checked = false;} + } + else if (category == 'lt-0.4') + { + if (correlation[i] < -0.4) + {thisForm.searchResult[i].checked = true;} + else + {thisForm.searchResult[i].checked = false;} + } + else if (category == 'lt-0.8') + { + if (correlation[i] < -0.8) + {thisForm.searchResult[i].checked = true;} + else + {thisForm.searchResult[i].checked = false;} + } + else + {} + } +} + + +function checkNumeric(field,limit,resetvalue,compares,fdname) + { + pattern = /^-?[0-9]*\.?[0-9]*$/; + if(pattern.test(field.value)==false) + { + alert("Not numeric in " + fdname); + field.value = resetvalue; + } + else + { + if (compares == 'gthan') { + if(field.value > limit) + { + alert("Out of range in " + fdname); + field.value = resetvalue; + }} + else { + if(field.value < limit) + { + alert("Out of range in " + fdname); + field.value = resetvalue; + }} + } + } + +function checkTraits(thisForm){ + var length = thisForm.searchResult.length; + var andor = thisForm.selectandor.value; + var gthan = parseFloat(thisForm.selectgt.value); + var lthan = parseFloat(thisForm.selectlt.value); + //alert(length + ' / ' + andor + ' / ' + gthan + ' / ' + lthan); + for(var i = 0; i < length; i++) + { + var p = corrArray[thisForm.searchResult[i].value]; + if (andor == 'and') + { + if ((p.corr > gthan) && ( p.corr < lthan)) + {thisForm.searchResult[i].checked = true;} + else + {thisForm.searchResult[i].checked = false;} + } + else if (andor == 'or') + { + if ((p.corr > gthan) || ( p.corr < lthan)) + {thisForm.searchResult[i].checked = true;} + else + {thisForm.searchResult[i].checked = false;} + } + else + {} + highlight(thisForm.searchResult[i]); + } + + +} + + +function checkPM(thisForm){ + var length = thisForm.searchResult.length; + for(var i = 0; i < length; i++) + { + curStr = thisForm.searchResult[i].value; + //alert(curStr.charAt(curStr.length - 1)); + if ((curStr.charAt(curStr.length - 1) % 2) == 1) + {thisForm.searchResult[i].checked = true;} + else + {thisForm.searchResult[i].checked = false;} + highlight(thisForm.searchResult[i]); + } +} +function checkMM(thisForm){ + var length = thisForm.searchResult.length; + for(var i = 0; i < length; i++) + { + curStr = thisForm.searchResult[i].value; + if ((curStr.charAt(curStr.length - 1) % 2) == 0) + {thisForm.searchResult[i].checked = true;} + else + {thisForm.searchResult[i].checked = false;} + highlight(thisForm.searchResult[i]); + } +} + + +function directPermuAlert(thisForm){ + if (thisForm.directPermuCheckbox.checked){ + alert("Interaction permutation will take long time to compute.\n Check this box only when necessary."); + } +} + +function cliqueDatabase(pid){ + var windowName = 'clique'; + var newWindow = open("", windowName,"width=900,menubar=0,toolbar=1,resizable=1,status=1,scrollbars=1"); + var html = '
    + + + +",""],legend:[1,"
    ","
    "],thead:[1,"
    +

    Stuart CXB Mouse Spleen Normative Affy M430 2.0 (Nov 2007) RMA data set +modify this page

    Accession number: GN153

    + +This is a new and untested data set from John Stuart and colleagues, VA Medical Center, Memphis, TN. + +

    Please contact Rob Williams (rwilliam@nb.utmem.edu) for access. + + +

    The recombinant inbred CXB (BALB/cBy x C57BL/6By) RI set have often been used to study the influence of non-H-2 chromosomal regions on the progression of collagen-induced arthritis (CIA). C57BL/6By mice are of intermediate susceptibility to CIA while BALB/cBy mice are resistant, but are highly susceptible to proteoglycan-induced arthritis. While antigen presentation is H-2 directed, the amount of disease that results is thought to be driven by regions outside of the MHC. CXB strains that are H-2b are predicted to show variation in the frequency and severity of disease relative to C57BL/6By, depending on which BALB/cBy chromosome regions are present. Nine of thirteen CXB strains are H-2b (2, 3, 5, 6, 7, 8, 10, 11 and 13) while one has a recombined H-2 region (CXB9). The four H-2d strains were crossed with C57Bl/6ByJ to generate F1 mice that could present collagen via the B allele at the H-2b locus, while possibly identifying BALB/cBy alleles that would have a dominant effect on disease progression. A number of disease and immunological parameters were collected. (text from Dana Marshall, Jan 2008) + +

    Gene expression analysis was performed using samples from resting naive spleens from adult female adult mice. Information on these cases is provided below. +

    + +

    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexTube IDRNA IDStrainAgeSourcePool size
    1R2440S1R2440SBALB/cByJ60UTHSCn/a
    2R2435S1R2435SBALB/cByJ83JAXn/a
    3R2394S1R2394SC57BL/6BYJ51JAXn/a
    4R2395S1R2395SC57BL/6BYJ51JAXn/a
    5R2410S1R2410SCXB155JAXn/a
    6R2655S1R2655SCXB158JAXn/a
    7R2392S1R2392SCXB253JAXn/a
    8R2393S1R2393SCXB253JAXn/a
    9R2430S1R2430SCXB341JAXn/a
    10R2412S1R2412SCXB347JAXn/a
    11R2432S1R2432SCXB447JAXn/a
    12R2413S1R2413SCXB458JAXn/a
    13R2441S1R2441SCXB567UTHSCn/a
    14R2444S1R2444SCXB580UTHSCn/a
    15R2437S1R2437SCXB647JAXn/a
    16R2414S1R2414SCXB649JAXn/a
    17R2416S1R2416SCXB758JAXn/a
    18R2415S1R2415SCXB763JAXn/a
    19R2418S1R2418SCXB841JAXn/a
    20R2417S1R2417SCXB854JAXn/a
    21R2420S1R2420SCXB953JAXn/a
    22R2419S1R2419SCXB954JAXn/a
    23R2422S1R2422SCXB1048JAXn/a
    24R2421S1R2421SCXB1053JAXn/a
    25R2423S1R2423SCXB1158JAXn/a
    26R2424S1R2424SCXB1177JAXn/a
    27R2425S1R2425SCXB1247JAXn/a
    28R2442S1R2442SCXB1276UTHSCn/a
    29R2427S1R2427SCXB1349JAXn/a
    30R2426S1R2426SCXB1356JAXn/a
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/SUH_Liv_RMA_0611.html b/web/dbdoc/SUH_Liv_RMA_0611.html new file mode 100755 index 00000000..151ea4ce --- /dev/null +++ b/web/dbdoc/SUH_Liv_RMA_0611.html @@ -0,0 +1,362 @@ + + + +SUH BXD Liver Affy Mouse Gene 1.0 ST (Jun11) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    SUH BXD Liver Affy Mouse Gene 1.0 ST (Jun11) RMA **modify this page

    + +Accession number: GN325

    + + +

    Saarland University Homburg (SUH) Carbon Tetrachloride-Treated BXD Mouse Affymetrix Mouse Gene 1.0 ST Array data set + +

    This experimental liver gene expression data set (~100 Affymetrix exon-type arrays), was generated by Frank Lammert, Sonja Hillebrandt, Rabea Hall, and colleagues at the Saarland University Medical Center in Homburg, Germany. This work is part of the German Network for Systems Genetics (GeNeSys). + +

    Expression data after carbon tetrachloride treatment (CCl4, also known as Halon, Freon, carbon tet, or tetrachloromethane) were generated using RNA sample from 30 BXD strains, both parental strains (C57BL/6J, DBA/2J), and B6D2 F1 hybrids. The great majority of cases were females and were treated with carbon tetrachloride injections over a six week period. Three arrays were run for each strain using independent liver samples. + +

    PURPOSE: The overall goal of the project is to understand the etiology of liver fibrogenesis using carbon tetracholoride as a toxin and inducer of liver disease. Liver fibrogenesis, or scarring of the liver, is the common end-stage of chronic liver diseases, in particular after chronic viral infections. In Germany along complications associated with liver fibrosis cause approximately 10,000 deaths per year. In the past decade key molecular pathomechanisms of hepatic fibrogenesis due to chronic viral infections have been identified. Activated hepatic stellate cells (HSCs) drive the process of de novo deposition of abnormal extracellular matrix, which is modulated by complex interactions between cytokines, receptors, and matrix components. + +

    Several studies have demonstrated that the course and progression of the fibrogenic response to chronic liver injury is highly variability among individuals. This marked variabilityhas been attributed to etiology, age, gender, and environmental factors. In humans these genetic disease fibrosis predisposition factors have not yet to be studied systematically. + +

    Our group recently identified a gene variant that contributes to liver fibrogenesis by using QTL mapping in an experimental crosses between fibrosis-susceptible and resistant strains of mice (Hillebrandt et al., 2005). We demonstrated that sequence differences in the HC gene that encodes complement factor C5 (also known as hemolytic complement), are responsible for this strain difference. Common haplotype-tagging polymorphisms of the human HC gene were shown to be associated with advanced fibrosis in chronic hepatitis C virus infection. Thus, the mouse analysis led to the identification of an unknown gene underlying human susceptibility to liver fibrosis, supporting the idea that HC has a causal role in chronic inflammatory disorders and organ fibrogenesis across species. + +

    As part of the GeNeSys program we have studied liver fibrogenesis in the BXD family of strains as a model for chronic liver injury. This expression data set is used to map complex genetic traits that modulate gene expression and determine gene networks during liver fibrogenesis in GRPs. + +

    The following assays are complete or are in progress: + +

      +
    1. Liver fibrosis studies: Phenotyping protocols include standard histology, morphometry, biochemical quantification of hepatic collagen contents, serum surrogate markers of fibrosis, immunohistochemistry, and expression profiling of proinflammatory and profibrogenic genes by qRT-PCR and Affymetrix microarrays (this data set). + + +
    2. Characterization of liver cells: Liver immune cell fractions will be isolated and sorted according to SOPs developed in the Lammert laboratory. In addition, in cooperation with the technology platforms of the HepatoSys Network of Excellence, we will characterize primary HSCs that play critical roles in liver fibrogenesis with respect to proinflammatory responses during chronic liver inflammation. + +
    + + +

    PROTOCOL for carbon tetrachloride (CCl4) treatment (parental strains, F1, and BXD lines). Animals were injected with CCl4 (12 x 0.7 mg/kg ip) over a 6-week period on days 1 and 4 of each week. Intraperitoneal injections were begun between the ages of 6-8 weeks. Animals were sacrificed after 6 weeks of treatment at 12 to 14 weeks of age. Untreated control mice from only the two parental strains were also sacrificed at 12-14 weeks of age + +

    +Tissue: Livers were snap frozen in liquid nitrogen immediately after harvesting. RNA was extracted and submitted to the UTHSC Molecular Resource Core for expression profiling. Expression data were generated by Lorne Rose, William Taylor and colleagues. Data were entered into GeneNetwork by Arthur Centeno, June 17, 2011. Data were quality controlled by R. W. Williams.

    + +

    QC Results: This data set consists of expression data for 33 strains. A total of 166 probe sets are associated with LOD scores above 10 and the highest linkage score of 22 for Rpl3 (probe set 10430669). Strain distribution patterns of eQTLs with a Mendelian expression pattern match those of their closest markers perfectly, verifying that there are no errors of strain assignment in this data set. + +

    Analysis of XIST probe set 1060617 confirms that most strains are purely female. However, only males were available for BXD1 and BXD6. BXD28 and BXD33 data are based on the average of two female samples and one male sample. All other strains are purely female. + +

    Data were analyzed by Rabea Hall and Dr. Frank Lammert at the Universitätsklinikum des Saarlandes in Homburg, Germany. + +

    Contacts: rabea.hall at uks.eu, Rabea.Hall at uniklinikum-saarland.de, and frank.lammert at uks.eu + + + + +

    Table updated 7-19-2011

    +
    +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSample IDStrain IDTreatment
    1504B6D2F1 CCl4
    2506B6D2F1CCl4
    3508B6D2F1CCl4
    4414C57BL/6JCCl4
    5488C57BL/6JCCl4
    6489C57BL/6JCCl4
    7B6J1 C57BL/6Juntreated control
    8B6J2 C57BL/6Juntreated control
    9B6J3 C57BL/6Juntreated control
    10449DBA/2JCCl4
    11450DBA/2JCCl4
    12451DBA/2JCCl4
    13219.1DBA/2Juntreated control
    14219.2DBA/2Juntreated control
    15219.3DBA/2Juntreated control
    16276BXD1CCl4
    17278BXD1CCl4
    18279BXD1CCl4
    19353BXD2CCl4
    20357BXD2CCl4
    21358BXD2CCl4
    22272BXD6CCl4
    23273BXD6CCl4
    24274BXD6CCl4
    25405BXD11CCl4
    26406BXD11CCl4
    27408BXD11CCl4
    28239BXD12CCl4
    29240BXD12CCl4
    30241BXD12CCl4
    31553BXD13CCl4
    32554BXD13CCl4
    33555BXD13CCl4
    34249BXD14CCl4
    35250BXD14CCl4
    36288BXD14CCl4
    37191BXD19CCl4
    38644BXD19CCl4
    39645BXD19CCl4
    40442BXD24aCCl4
    41443BXD24aCCl4
    42444BXD24aCCl4
    43216BXD27CCl4
    44218BXD27CCl4
    45290BXD27CCl4
    4628BXD28CCl4
    4771BXD28CCl4
    48129BXD28CCl4
    49219BXD31CCl4
    50220BXD31CCl4
    51231BXD31CCl4
    52549BXD32CCl4
    53550BXD32CCl4
    54551BXD32CCl4
    55139BXD33CCl4
    56140BXD33CCl4
    57559BXD33CCl4
    58132BXD34CCl4
    59146BXD34CCl4
    60147BXD34CCl4
    61293BXD39CCl4
    62597BXD39CCl4
    63599BXD39CCl4
    64154BXD40CCl4
    65570BXD40CCl4
    66572BXD40CCl4
    67361BXD42CCl4
    68362BXD42CCl4
    69373BXD42CCl4
    70428BXD43CCl4
    71429BXD43CCl4
    72556BXD43CCl4
    73472BXD51CCl4
    74473BXD51CCl4
    75474BXD51CCl4
    76533BXD55CCl4
    77534BXD55CCl4
    78535BXD55CCl4
    79519BXD62CCl4
    80520BXD62CCl4
    81521BXD62CCl4
    82463BXD65CCl4
    83464BXD65CCl4
    84465BXD65CCl4
    85327BXD69CCl4
    86346BXD69CCl4
    87347BXD69CCl4
    88614BXD73CCl4
    89616BXD73CCl4
    90619BXD73CCl4
    91395BXD75CCl4
    92482BXD75CCl4
    93483BXD75CCl4
    94317BXD87CCl4
    95319BXD87CCl4
    96322BXD87CCl4
    97374BXD90CCl4
    98388BXD90CCl4
    99389BXD90CCl4
    100402BXD96CCl4
    101403BXD96CCl4
    102404BXD96CCl4
    103584BXD98CCl4
    104585BXD98CCl4
    105607BXD98CCl4
    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/SXMGeno.html b/web/dbdoc/SXMGeno.html new file mode 100755 index 00000000..6e9bb35d --- /dev/null +++ b/web/dbdoc/SXMGeno.html @@ -0,0 +1,89 @@ + +Barley SXM Genotype Information + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    Barley SXM Genotypes Information +modify this page

    + + +

    A population of 150 doubled haploid lines was developed from the Steptoe x Morex cross by the Hordeum bulbosum method. The parents were selected for their diversity of agronomic traits, Steptoe is high yielding, broadly adapted six-rowed feed-type barley. Morex is midwestern also six-rowed cultivar that has been for long time considered as the American malting industry standard.

    +

    Please cite the following publication when using the Steptoe x Morex (SxM) data sets:
    +Kleinhofs et al. (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet (1993) 86:705-712

    +

    Genotyping by using Illumina GoldenGate BeadArrays and barley pilot OPA1 (1536 SNPs, Rostoks et al 2006) identified 424 good quality SNPs. They were integrated into the RFLP map that contained 632 markers (1202 cM) by using Map Manager QTX (ver 0.27). Final, 1082 cM map, consisting of 505 loci including 227 SNP loci was generated by removing co-segregating markers (leaving a single marker per locus) and correcting the spurious recombinations.

    + + +

    The genotype file is available at http://www.genenetwork.org/genotypes/SXM.geno + + +

    Rostoks et al (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. PNAS, vol. 103 no. 49 18656-18661.

    +

        About this file:

    +
    +

    The file started, Feb 1, 2007 by AD

    + + +
       
    + +

     

    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/SXMPublish.html b/web/dbdoc/SXMPublish.html new file mode 100755 index 00000000..55e8a160 --- /dev/null +++ b/web/dbdoc/SXMPublish.html @@ -0,0 +1,441 @@ + +Barley SM Phenotype Database + + + + + + + + + + + + + + + + + + + + +
    + + + +
    +

    Barley Phenotype Database modify this page

    + + + +Steptoe x Morex (SxM):
    +
    North American Barley Genome Project (NABGP) dataset
    +Hayes, P. M., B. H. Liu, S. J. Knapp, F. Chen, B. Jones, T. Blake, J. Franckowiak, D Rasmusson, M. Sorrells, S. E. Ullrich, D. Wesenberg and A. Kleinhofs. 1993. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor. Appl. Genet. 87: 392-401. The data set is available at the http://wheat.pw.usda.gov/ggpages/SxM/phenotypes.html

    It comprises the following agronomic and malting quality traits:
    +* Grain yield (MT/ha)
    +* Lodging (%)
    +* Height (cm)
    +* Heading date (days after January 1)
    +* Grain protein (%)
    +* Alpha amylase (20 Deg units)
    +* Diastatic power (Deg)
    +* Malt extract (%)
    +Agronomic and malting quality traits were measured in 16 and 9 environments, respectively. The phenotype data files are coded for each environment as follows:
    +Environment # Location Year Cooperator
    +1 Crookston, Minnesota 1992 D. Rasmusson (rasmu002@maroon.tc.umn.edu)
    +2 Ithaca, New York 1992 M. Sorrells (mes12@cornell.edu)
    +3 Guelph, Ontario 1992 D. Falk (dfalk@crop.uoguelph.ca)
    +4 Pullman, Washington 1992 S. Ullrich (ullrich@wsu.edu)
    +5 Brandon, Manitoba 1992 W. Legge (legge@mbrsbr.agr.ca)
    +6 Outlook, Saskatchewan 1992 R. Irvine
    +7 Goodale, Saskatchewan 1992 B. Rossnagel (rossnagel@sask.uask.ca)
    +8 Saskatoon, Saskatchewan 1992 B. Rossnagel (rossnagel@sask.uask.ca)
    +9 Tetonia, Idaho D. Wesenberg (fax: 208-397-4165) 1992
    +10 Bozeman, Montana (irrigated) 1992 T. Blake (blake@hordeum.oscs.montana.edu)
    +11 Bozeman, Montana (dryland) 1992 T. Blake (blake@hordeum.oscs.montana.edu)
    +12 Aberdeen, Idaho 1991 D. Wesenberg (fax: 208-397-4165)
    +13 Klamath Falls, Oregon 1991 P. Hayes (hayesp@css.orst.edu)
    +14 Pullman, Washington 1991 S. Ullrich (ullrich@wsu.edu)
    +15 Bozeman, Montana (irrigated) 1991 T. Blake (blake@hordeum.oscs.montana.edu)
    +16 Bozeman, Montana (dryland) 1991 T. Blake (blake@hordeum.oscs.montana.edu)

    +

    Other data sets
    +ENSAT-INP: Ecole Nationale Supérieure Agronomique de Toulouse, Institut National Polytechnique (ENSAT-INP), France
    +UM: University of Minnesota, USA
    +JLU: Justus Liebig University, Germany
    +UW: University of Wageningen, Netherlands
    +SCRI: Scottish Crop Research Institute, UK
    +WSU: Washington State University, USA

    +

    α-amylase (NABGP)
    +(see description of the NABGP dataset)

    +

    Diastatic power (NABGP)
    +(see description of the NABGP dataset)

    +

    Disease resistance, bacterial streak, Xanthomonas campestris (ENSAT-INP)
    +El Attari H., Rebai A., Hayes P. M.; Barrault G.; Dechamp-Guillaume G.; Sarrafi A. Potential of doubled-haploid lines and localization of quantitative trait loci (QTL) for partial resistance to bacterial leaf streak (Xanthomonas campestris pv. hordei) in barley. Theoretical and Applied Genetics 1998, vol. 96, no1, pp. 95-100.

    +

    Two experiments were undertaken in a randomized complete block design with three replicates, in a controlled growth chamber. Twenty seeds per replicate were planted in plastic containers (60 x 40 x 8 cm) containing moistened vermiculite. At the two-leaf stage seedlings were inoculated with an Iranian strain of the pathogen.

    +

    Disease resistance, head blight, Fusarium graminearum (UM) or FHB data set
    +Prom, L. K., B. J. Steffenson, B. Salas, T. G. Fetch Jr., and H. H. Casper. 1997. Barley accessions resistant to Fusarium head blight and the accumulation of deoxyvalenol. Cereal Res. Comm. 25:807-808.

    +

    Prom, L.K., Horsley, R.D., Steffenson, B.J., and Schwarz, P.B. 1999. Development of Fusarium head blight and accumulation of deoxynivalenol in barley sampled at different growth stages. J. Am. Soc. Brew. Chem. 57:60-63.

    +

    Steffenson, B. J. 2003. Fusarium head blight of barley: Impact, epidemics, management, and strategies for identifying and utilizing genetic resistance. Pages 241-295: In: K. J. Leonard and W.R. Bushnell, eds. 2003. Fusarium Head Blight of Wheat and Barley. APS Press. St. Paul. 512 pp.

    +

    Tacke, B. K., and H. H. Casper. 1996. Determination of deoxyvalenol in wheat, barley, and malt by column cleanup and gas chromatography with electron capture detection. J. Assoc. Off. Anal. Chem. 79:472-475.

    +

    FHB and DON assays
    +Parents and DH progeny from the Steptoe/Morex were assessed for FHB severity (in %) and DON accumulation (in ppm) at three different environments in 1994 and 1995: Fargo, ND in both 1994 and 1995 and Langdon, ND in 1995. A randomized complete block design was used in the three environments and included a single replicate. Progeny and parents were planted in short rows (10-20 seeds) spaced 0.33 cm apart in two adjacent rows. Planting, maintenance of plots, and inoculation protocols were as described by (Prom et al. 1997). Disease assessments were made when the parents and DH progeny were at the mid-dough stage of development (growth stage 84-86) (Zadoks et al. 1974). The percent severity of FHB was determined by counting the number of infected kernels (those with greater than one-fourth of their surface area showing disease symptoms) and dividing that quantity by the total number of kernels in that spike multiplied by 100 (Prom et al. 1997). These assessments were made on 10-20 randomly selected spikes per plot as described by Prom et al. (1997). When the plants were mature, all spikes from each plot were harvested, dried, and threshed. DON assays were made using the method developed by Tacke and Casper (Tacke and Casper 1996). For this assay, a random six-gram sample of seed was used from each parent and DH line (Prom et al. 1999).

    +

    File names in the dataset:
    +DON94F.TXT final
    +amount of vomitoxin in samples vom ppm

    +

    DONP195F.TXT final
    +DON levels in ppm planting date 1 (Fargo 1995)

    +

    DONP295F.TXT final
    +DON levels in ppm planting date 2 (Fargo 1995)

    +

    DONP295L.TXT final
    +DON levels in ppm planting date 2 (Langdon 1995)

    +

    DON94F.TXT final
    +amount of vomitoxin vom ppm

    +

    FGINC04.94
    +incidence of Fusarium graminearum isolated from seed in all severity classes.

    +

    FGINC14.94
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 1, 2, 3, or 4.

    +

    FGINC24.94
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 2, 3, or 4.

    +

    FGINC34.94
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 3 or 4.

    +

    FHB1494F.TXT
    +incidence of Fusarium head blight (visual rating) with a severity rating of 1, 2, 3, or 4.

    +

    FHB1494F.TXT final
    +incidence of Fusarium head blight (visual rating) with a severity rating of 1, 2, 3, or 4.

    +

    FHB2494F.TXT
    +no heading

    +

    FHB2494F.TXT final
    +no heading

    +

    FHB3494F.TXT
    +incidence of Fusarium head blight (visual rating) when severity categories 3 or 4 only are considered blighted.

    +

    FHB3494F.TXT final
    +incidence of Fusarium head blight (visual rating) when severity categories 3 or 4 only are considered blighted.

    +

    FHBINC14.94
    +incidence of Fusarium head blight (visual rating) with a severity rating of 1, 2, 3, or 4.

    +

    FHBINC34.94
    +incidence of Fusarium head blight (visual rating) when severity categories 3 or 4 only are considered blighted.

    +

    FHBSE94F.TXT
    +severity of Fusarium head blight

    +

    FHBSE94F.TXT final
    +severity of Fusarium head blight

    +

    FHBSEV.94
    +severity of Fusarium head blight

    +

    FPPLTT95.TXT final
    +Fusarium Poae Isolations from seed 1995 (Fargo PD1, Fargo PD2, and Langdon PD2)

    +

    FSPD195F.TXT final
    +Percentage of FHB infection in S/M lines from the first planting date at Fargo 1995

    +

    FSPD295F.TXT final
    +Percentage of FHB infection in S/M lines from the second planting date at Fargo 1995

    +

    FSPD295L.TXT final
    +Percentage of FHB infection in S/M lines from the second planting date at Langdon 1995

    +

    GRSTG94F.TXT
    +developmental stages of the Steptoe/Morex population
    +The first column is the SM line,
    +the second is Zadok's Growth Stage,
    +the third estimated days to mid-milk and
    +the 4th days to heading (St. Paul).

    +

    GRSTG94F.TXT final
    +developmental stages of the Steptoe/Morex population
    +The first column is the SM line,
    +the second is Zadok's Growth Stage,
    +the third estimated days to mid-milk and
    +the 4th days to heading (St. Paul).

    +

    GRTHSTGE.94
    +developmental stages of the Steptoe/Morex population
    +The first column is the SM line,
    +the second is Zadok's Growth Stage,
    +the third estimated days to mid-milk and the 4th days to heading (St. Paul).

    +

    GZP0494F.TXT
    +incidence of Fusarium graminearum isolated from seed in all severity classes.

    +

    GZP0494F.TXT final
    +incidence of Fusarium graminearum isolated from seed in all severity classes.

    +

    GZP1494F.TXT
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 1, 2, 3, or 4.

    +

    GZP1494F.TXT final
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 1, 2, 3, or 4.

    +

    GZP2494F.TXT
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 2, 3, or 4.

    +

    GZP2494F.TXT final
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 2, 3, or 4.
    +ND94

    +

    GZP3494F.TXT
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 3 or 4.

    +

    GZP3494F.TXT final
    +incidence of Fusarium graminearum isolated from seeds with a severity rating of 3 or 4.

    +

    GZPLT95.TXT final
    +no heading

    + +

    HDPD295L.TXT final
    +1995 LANGDON - number of days until heading (planted June 9)

    +

    SEVPD1F95.TXT
    +Percentage of FHB infection in S/M lines from the first planting date at Fargo 1995

    +

    SEVPD2F95.TXT
    +Percentage of FHB infection in S/M lines
    +from the second planting date at Fargo 1995

    +

    SEVPD2L95.TXT
    +Percentage of FHB infection in S/M lines from the second planting date at Langdon 1995

    +

    SMDNSITY.95 (Converted)
    +head density ratings (field 1995)spikelets/cm

    +

    SMFHB1.95F
    +1st planting date Fargo

    +

    SMFHB2.95F
    +2nd planting date Fargo

    +

    SMFHB2.95L
    +2nd planting date Langdon

    +

    SPDEN95F.TXT final
    +spikelet density ratings (Fargo 1995)

    +

    SPDEN95L.TXT final
    +spikelet density ratings (Langdon 1995) spikelets/cm

    +

    SPIKELET DENSITY FARGO 95
    +spikelet density ratings (Fargo 1995) spikelets/cm

    +

    SPIKELET DENSITY LANGDON 95
    +spikelet density ratings (Langdon 1995) spikelets/cm

    +

    SPKDENF95.TXT
    +spikelet density ratings (Fargo 1995) spikelets/cm

    +

    SPKDENL95.TXT
    +spikelet density ratings (Langdon 1995) spikelets/cm

    +

    VOMPPM.94
    +No headings
    +

    +

    Disease resistance, leaf scald, Rhynchosporium secalis (JLU)
    +Schweizer GF, Herz M, Mikolajewski S, Brenner M, Hartl L, Baumer M (2004) Genetic mapping of a novel scald resistance gene Rrs15CI8288 in barley. 9th International Barley Genetics Symposium, Brno, Czech Republic, 20-26 June 2004. Proceedings:258-265).

    +

    Jackson LF, Webster RK (1976) Race differentiation, distribution and frequency of Rhynchosporium secalis in California. Phytopathology 66:719-725.

    +

    Schweizer G, Baumer M, Daniel G, Rugel H, Röder MS (1995) RFLP-markers linked to scald (Rhynchosporium secalis) resistance gene Rh2 in barley. Theor Appl Genet 90:920-924.

    +

    Disease resistance assay R. secalis
    +
    +General description
    +Disease severity was assessed at seedling stage in a greenhouse chamber. Therefore, the plants were sown and grown at a temperature of 16-18°C in 9x9 cm plastic pots whereas each line was represented by four individuals. The plants were inoculated at the three-leaves stage, approximately 20 days after sowing. The parents as well as some differential genotypes (resistant: Atlas; susceptible: Alexis, Hendrix, Steffi) were included as internal controls.
    +The single-spore isolate 271 (Straßmoos, Bavaria) of R. secalis, provided by Dr. Sachs, BBA Kleinmachnow, was grown for approximately 20 days on Lima bean agar (Difco, Detroit, USA) in Petri-dishes at 16°C in the dark. The spores were harvested after addition of water by gently rubbing of the mycel with a glass rod. The advanced spore suspension was decanted, filtrated and adjusted to 2-300.000 spores/ml. One inoculum preparation was used for the inoculation of all seedlings. by covering the inoculated plants with black plastic hoods for 48 hours high humidity and darkness were maintained to provide optimal infection conditions. 10-14 days after infection plants were assessed visually for scald symptoms on the lamina of the second leaf approximately according to the scale described by Jackson & Webster (1976). The third leaf was later consult to verify the infection. The final score of scald severity per DH line was achieved by averaging the scoring results of the four included plants.
    +
    Detailed description
    +The Steptoe/Morex DH mapping population and reference cultivars were tested for reaction to Rhynchosporium secalis according to Schweizer et al. 1995 with some modifications. The single-spore isolate “271” (Straßmoos, LfL-Bavaria, Germany) of R. secalis, provided by Dr. Sachs was grown for approximately 20 days on 2.3% (w/v) Lima bean agar (Difco Laboratories) in Petri-dishes at 16°C in the dark. For inoculation a conidial suspension was prepared by rinsing the plates with water and filtering the mycel through gauze. The spore concentration was adjusted to 200.000 spores/ml-1. One inoculum preparation was used for all seedlings in a given experiment.
    +Seedlings at the 2- to 3-leaf stage (3 weeks after sowing) were sprayed uniformly with inoculum (approximately 0.25 ml per plant) and left for 20 min to dry. Inoculated plants were then lightly sprayed with water and kept for 48h in a dark moist chamber at 18°C. DH lines (four independent plants/DH line) were assessed 10-14 days after inoculation visually for scald symptoms on the lamina of the second leaf (the third leaf was used as further control) according to the scale described by Jackson & Webster (1976). Differential genotypes ´Atlas´ (res) and ´Steffi´ (susc) and the parents Steptoe and Morex were used as reference cultivars.

    +

    Disease resistance, net blotch, Pyrenophora teres (UM)
    +Steffenson, B.J., Hayes, P.M., and Kleinhofs, A. 1996. Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theor. Appl. Genet. 92:552-558.

    +

    Burleigh JR, Loubane, M (1984) Plot size effects on disease progress and yield of wheat infected by Mycosphaerella graminicola and barley infected by Pyrenophora teres. Phytopathology 74:545--549
    +
    +Fetch, T.G., Jr., and Steffenson, B.J. 1999. Rating scales for assessing infection responses of barley infected with Cochliobolus sativus. Plant Dis. 83:213-217.

    +

    James WC (1971) A manual of disease assessment keys for plant diseases. Can Dep Agric Publ 1458

    +

    Tekauz, A (1985) A numerical scale to classify reactions of barley to Pyrenophora teres. Can J Plant Pathol 7:181—183

    +

    Fetch, T. G., Jr., and Steffenson, B. J. 1999. Rating scales for assessing infection responses of
    +barley infected with Cochliobolus sativus. Plant Dis. 83:213-217.

    +

    Seedling evaluations
    +For seedling evaluations, four to six seeds of parents and DH lines were sown in plastic cones (3.8 cm diameter and 21 cm length) filled with a peat moss:perlite (3:1) potting mix and grown at 22-26C in a greenhouse. Fertilization was provided at planting with water soluble (15-0-15, N-P-K) and controlled release (14-14-14, N-P-K) formulations. When the second leaves of plants were fully expanded (14 days after planting), inoculations were made with conidial suspensions of the individual pathogens using an atomizer pressured by an air pump at 414 kPa. Inoculations with isolate ND89-19 of P. t. f. teres and ND85F of C. sativus were made using a concentration of 5,000 and 8,000 conidia/ml, respectively. The volume of the inoculum suspension applied to each plant was approximately 0.15 ml. To facilitate even distribution and adherence of conidia, 10 ul of Tween® 20 (polyoxyethylene-20-sorbitan monolaurate) was added for every 100 ml of the inoculum suspension. Plants were allowed to dry slightly after inoculation before being placed in chambers maintained near saturation by periodic mistings from ultrasonic humidifiers. After a 16 hour infection period in complete darkness, the plants were allowed to dry slowly for approximately four hours before being returned to the greenhouse. Assessments of the infection response (IR) were made 9--11 days post-inoculation using the rating scale of Tekauz (1985) for net blotch and Fetch and Steffenson (1999) for spot blotch. The experiment was conducted in a randomized complete block design with two replicates and was repeated twice.

    +

    Adult plant evaluations
    +Parents and DH lines were also evaluated to the net and spot blotch pathogens in the field at Langdon and Fargo, North Dakota, respectively. The host entries were sown in hill plots (8--15 seeds/hill) spaced 0.3 m apart in paired rows. Susceptible barley genotypes (cultivar Hector for net blotch and line ND 5883 for spot blotch) were planted around the paired rows of hill plots to increase disease development in the nurseries. When most of the DH lines were at the mid-tillering stage of development, the susceptible spreader plants were inoculated with barley straw infected with either isolate ND89-19 of P. t. f. teres or ND85F of C. sativus. This infected barley straw was taken from the previous season's crop at the respective locations. Assessments of disease severity (percentage of leaf area affected by disease) were made at the mid-dough stage of development using standard disease area diagrams (Burleigh and Loubane [1984] for net blotch and James [1971] for spot blotch). The experimental design was a randomized complete block with three replications. Evaluations for net blotch reaction were made in 1991 only and for spot blotch both in 1991 and 1992.

    +

    Disease resistance, leaf rust, Puccinia hordei (UW)
    +Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJ, Graner A, Niks RE: A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor.Appl.Genet. 2007, 114:487-500.

    +

    Disease evaluations at seedling plant stage
    +The standard barley leaf rust isolate 1.2.1 (P. hordei Otth) was used to evaluate the level of partial resistance of the 150 DH lines of StMx at seedling stage in a greenhouse compartment. The disease experiments were conducted in six replications in time and within each replication one seedling of each DH line was inoculated. The seeds were sown in trays of 37 x 39 cm, each of them containing two rows of 10–15 seeds. In each tray one seed of each parental line, Steptoe and Morex and of the control lines, L94 and Vada, were sown. The inoculation was performed with about 200 spores per cm2. The latency period (LP) on each seedling was evaluated and the relative latency period (RLP50S) was calculated, relative to the LP on L94.

    +

    Disease resistance, spot blotch, Cochliobolus sativus (UM)
    +See the net blotch description

    +

    Disease resistance, stem rust, Puccinia graminis (UM)
    +Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. USDA Agricultural Research Service Bulletin 617.

    +

    Miller JD, J.W.Lambert (1965) Variability and inheritance of reaction of barley to race
    +32 l5B of stem rust. Aqron J 47:373-377.

    +

    Druka, A., Potokina, E., Luo, Z., Bonar, N., Druka, I., Zhang, L., Marshall, D.F., Steffenson, B.J., Close, T.J., Wise, R.P., Kleinhofs, A., Williams, R.W., Kearsey, M.J. and Waugh, R. 2008. Exploiting regulatory variation to identify genes underlying quantitative resistance to the wheat stem rust pathogen Puccinia graminis f. sp. tritici in barley. Theoretical and Applied Genetics. 117(2):261-72

    +

    Stem rust infection phenotyping
    +Each of the St/Mx DH lines was challenged with the stem rust fungus race Pgt-MCC in 5 replications over 2 years (1990 and 1991). Phenotypic scores were made 12 to 14 days after inoculation according to the infection type (IT) scale of Stakman et al. (1962) as modified by Miller and Lambert (Miller and Lambert 1965). Under the Stakman system, IT 0 indicates no visible infection; only a necrotic “fleck” (i.e. hypersensitive response) with no sporulation; IT 1 designates a minute uredinium (i.e. sporulating pustule) surrounded by necrosis; IT 2 designates a small uredinium often surrounded by chlorosis; IT 3 designates a moderate sized uredinium sometimes surrounded by chlorosis; and IT 4 designates a large uredinium. Since barley exhibits chlorosis in association with most ITs (excluding IT 0, and IT 1), Miller and Lambert modified the Stakman system and classified ITs 2, 3, and 4 on the basis of uredinium size alone. Barley often exhibits a mixture of different ITs on a single plant—the “mesothetic” reaction described by Stakman et al (1962). ITs on the St/Mx DH lines were recorded according to prevalence. In most cases, the one or two most common ITs comprised over 75% of the total observed and were used to assign the general binary classes of resistant and susceptible. ITs 0, 1 and 2 were
    +3 considered indicative of host resistance (i.e. a low infection type), whereas IT 3 and 4
    +4 were indicative of host susceptibility (a high infection type). The classic “diamond
    +5 shaped” uredinium of IT 4 was not observed on plants in the St/Mx population.
    +

    +

    Emergence of the second leaf (SCRI)
    +Seeds of all 150 recombinant lines from the Steptoe x Morex DH population and the parents, Steptoe and Morex were planted in the 24 x 30 cm pots filled with the ‘Cereal Mix’ and placed on the automatically irrigated glasshouse benches (cubicle AO59). Three sterilized seeds per line were sown in each of four replicate pots. Placement of the pots was randomized across the glasshouse space. Temperature in the cubicle was set at 20° with 16-hr light/15° 8-hr dark periods. Intensity of the supplementary light was 400 µE m–1 sec–1.

    +

    Single leaf frequency
    +After 20 days, seedlings were counted based on number of emerged visible leaves (either single or two). Frequency of the single leaf across all four replicates within the recombinant line was used for QTL mapping.

    +

    Ratio
    +The lengths of the leaf blades were measured for the seedlings that have two visible leaves. Ratio of the length of both blades was used for QTL mapping.

    +

    Endosperm modification (SCRI)
    +Jorgensen (1988) Carlsberg Res. Commun. 53:277

    +

    ImageJ is a public domain Java image processing program.
    +Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997-2008.

    +

    Abramoff, M.D., Magelhaes, P.J., Ram, S.J. "Image Processing with ImageJ". Biophotonics International, volume 11, issue 7, pp. 36-42, 2004.

    +

    Druka, A., Muehlbauer, G., Druka, I., Caldo, R., Baumann, U., Rostoks, N., Schreiber, A., Wise, R., Close, T., Kleinhofs, A., Graner, A., Schulman, A., Langridge, P., Sato, K., Hayes, P., McNicol, J., Marshall, D., Waugh, R. 2006. An atlas of gene expression from seed to seed through barley development. Functional Integrative Genomics 6, 202-211.

    +

    Plant material was generated essentially as described previously (Druka et al 2006) but with some modifications specific to these studies. To obtain embryo-derived tissue from the germinating grain, 30–50 sterilized seeds per line of the trial set were germinated on a petri plate between three layers of wet 3-mm filter paper in the dark, for 16 hr at 17° and 8 hr at 12°, for 96 hr total. 6-10 similarly looking or ‘average’ seeds were cut in half longitudally, and stained with calcuflor.

    +

    Calcufluor staining
    +1) 30 sec - 1min 0.1% calcufluor (H2O);
    +2) 10 sec 70% EtOH;
    +3) Dry shortly;
    +4) 30-60 sec 0.1% fast green H2O;
    +5) blot off residual stain, put under the UV microscope at 400 nm to take photographs.
    +Photographs were taken by using Leica DM IL Inverted contrasting microscope Leica Microsystems. Image analysis was by using ImageJ software.

    +

    Fermentability (SCRI)
    +Fermentability is the proportion of fermentable material in a malt extract. It is measured using a standard yeast strain following 48 hrs fermentation according to the IoB Recommended Methods for Analysis (1992) buut modified for small aliquots as described by Swanson & Thomas (1996)

    +

    Fermentable malt extract (SCRI)
    +Fermentable malt extract is the total amount of fermentable material in a sample of barley grain and is the product of hot water extract and ferementability

    +

    Flecking of leaves (SCRI)
    +Leaf flecking is a visual score of the degree of flag and flag leaf-1 coverage by dark brown leasions that are not attributable to known foliar pathogens or pests. It is scored on a 1-8 scale with 1 = 0 and 9=100% coverage

    +

    Germination (WSU)
    +See Dormancy and Pre-harvest sprouting

    +

    Grain length F0-F9 (SCRI)
    +Number of seeds from a sample of approx 100 cleaned grain that have passed over a 2.5mm sieve and are between 2.5 and 3 mm in width as determined by MARVIN 4.0 analysis of a digital image (www.gta-sensorik.com)

    +

    Grain length, average (SCRI)
    +Grain length is the average length of a sample of approx 100 cleaned sseds that have passed over a 2.5mm sieve. Seed length is determined by analysis of digital images using the Marvin 4.0 system (www.gta-sensorik.com).

    +

    Grain nitrogen (SCRI)
    +Grain nitrogen is the estimated % nitrogen content of a sample of cleaned grain that has passed over a 2.5mm sieve. It was measured by a FOSS 1251 Near Infra Red Transmittance grain analyser (www.foss.dk)

    +

    Grain protein (NABGP)
    +(see description of the NABGP dataset).

    +

    Grain shape (width/length) (SCRI)
    +Grain shape is the average grain width divided by the average grain length.

    +

    Grain surface area (SCRI)
    +Grain surface area is the average area 2D area of a sample of approx 100 leaned barley grain that have passed over a 2.5mm sieve. Surface area is determined by analysis of digital images using the Marvin 4.0 system (www.gta-sensorik.com).

    +

    Grain width (average) (SCRI)
    +Grain width is the average width of a sample of approx 100 cleaned seeds that have passed over a 2.5mm sieve. Seed width is determined by analysis of digital images using the Marvin 4.0 system (www.gta-sensorik.com).

    +

    Grain width F0-F9 (SCRI)
    +Number of seeds from a sample of approx 100 cleaned grain that have passed over a 2.5mm sieve and are between 2.5 and 3 mm in width as determined by MARVIN 4.0 analysis of a digital image (www.gta-sensorik.com).

    +

    Head length (SCRI)
    +Length (cm) of ear from collar to base of awn of last spikelet measured on a random sample from a field grown barley plot.

    +

    Heading date - glasshouse (SCRI)
    +Seeds of all 150 recombinant lines from the Steptoe x Morex DH population and the parents, Steptoe and Morex were planted in the 24 x 30 cm pots filled with the ‘Cereal Mix’ and placed on the automatically irrigated glasshouse benches (cubicle AO59). Three sterilized seeds per line were sown in each of four replicate pots. Placement of the pots was randomized across the glasshouse space. Temperature in the cubicle was set at 20° with 16-hr light/15° 8-hr dark periods. Intensity of the supplementary light was 400 µE m–1 sec–1.

    +

    Heading date was measured as number of days to anthesis. Anthesis was determined by observing the colour and the response of anthers to the mechanical disturbance. Anthers should be yellow and a slight mechanical disturbance should cause shedding of the pollen meaning that anthesis is about to happen.

    +

    Heading date (NABGP)
    +(see description of the NABGP dataset)

    +

    Heading date (SCRI)
    +Days after May31st on which 50% of the plot first reached DGS53

    +

    Heading date (UM)
    +Steffenson, B. J. 2003. Fusarium head blight of barley: Impact, epidemics, management, and strategies for identifying and utilizing genetic resistance. Pages 241-295: In: K. J. Leonard and W.R. Bushnell, eds. 2003. Fusarium Head Blight of Wheat and Barley. APS Press. St. Paul. 512 pp.

    +

    Zadoks, J. C., T. T. Chang, and C. F. Konzak. 1974. A decimal code for the growth stages of cereals. Weed. Res. 14:415-421.

    +

    Morphological and agronomic trait assessment
    +Various morphological (especially spike characters) and agronomic traits may affect the development of FHB on lines in the field (Steffenson 2003). To determine the possible contribution of such factors on FHB severity, assessments were made on heading date, plant height, spike, and the number of nodes per cm of rachis in the spike (kernel density). Heading date was defined as the number of days from planting to when 50% of the plants in a plot had emerged spikes. Plant height was the number of cm from the ground to the tip of the spike, excluding the awns. Spike angle was rated at maturity on a scale of 1 to 3 where spikes bending less than 45 degrees from vertical were scored as 1; those bending from 45-120 degrees from vertical were scored as 2, and those bending greater than 120 degrees from vertical were scored as 3. The number of nodes per cm of rachis was measured on four randomly selected spikes for each parent and DH line.

    +

    Hot water extract (SCRI)
    +Amount of material extracted by hot water from a clean 25g sample of barley grain that has passed over a 2.5mm sieve following micro-malting under standard conditions of steeping and air rests. Hot water extract is measured by refractometry and expressed as Lintner degrees per kg. NB, this is equivalent to malt extract but the micro-malting protocol will be different.

    +

    Lodging (NABGP)
    +(see description of the NABGP dataset)

    +

    Lodging (SCRI)
    +Lodging is the proportion of the plot that is less than 45 degrees from horizontal. It is measured on a 1-9 scale with 1=0 and 9=100%.

    +

    Malt extract (NABGP)
    +(see description of the NABGP dataset)

    +

    Malt extract (SCRI)
    +See HWE

    +

    Maturity (SCRI)
    +Maturity is a visual estimate of the relative physiological maturity of a plot with 1=early and 9=late.

    +

    Milling energy (SCRI)
    +Milling energy is the amount of energy required to mill a weighed sample of clean grain that has passed over a 2.5mm sieve. It is expressed as Joules per 5g grain ane measured using the Comparamill.

    +

    Moisture content in the grain (SCRI)
    +Estimate of moisture in sample by NIT after drying and storage!

    +

    Necrotic spotting doughy stage (SCRI)
    +Spotting at the doughy stage is a visual score of the degree of flag and flag leaf-1 coverage by dark brown lesions that are considered to be due to infection by Ramularia collo-cygni. It is scored on a 1-9 scale with 1 = 0 and 9=100% covereage

    +

    Normalised difference vegetation index (SCRI)
    +NDVI is ((ref660nm-ref770nm)/(ref660nm+ref770nm)) as measured by the Greenseeker (www.ntechindustries.com) at GS61

    +

    Normalised difference vegetation index @GS43 (SCRI)
    +NDVI is ((ref660nm-ref770nm)/(ref660nm+ref770nm)) as measured by the Greenseeker (www.ntechindustries.com) at GS43

    +

    Plant height (NABGP)
    +(see description of the NABGP dataset)

    +

    Plant height (SCRI)
    +Height is the height(cm) of a plot from the ground to the collar at GS71+

    +

    Dormancy and pre-harvest sprouting (WSU)
    +AOSA (1988) Association of Official Seed Analysis rules for testing seeds. J Seed Technol 12 (3).
    +Ullrich, S.E., J.A. Clancy, I.A. del Blanco, H. Lee, V.A. Jitkov, F. Han, A. Kleinhofs, and K. Matsui. 2007. Genetic analysis of preharvest sprouting in a six-row barley cross. Molecular Breeding. Submitted.

    +

    Hayes, P. M., B. H. Liu, S. J. Knapp, F. Chen, B. Jones, T. Blake, J. Franckowiak, D Rasmusson, M. Sorrells, S. E. Ullrich, D. Wesenberg and A. Kleinhofs. 1993. Quantitative trait locus effects and environmental interaction in a sample of North American barley germplasm. Theor. Appl. Genet. 87: 392-401.

    +

    Han, F., and S.E. Ullrich. 1994. Mapping of quantitative trait loci for malting quality traits in barley. Barley Genetics Newsletter 23:84-97.

    +

    Ullrich, S. E., P. M. Hayes, W. E. Dyer, T. K. Blake, and J. A. Clancy. 1993. Quantitative trait locus analysis of seed dormancy in "Steptoe" barley. p. 136-145. In: M. K. Walker-Simmons and J. L. Reid (eds.) Preharvest sprouting in cereals 1992. Amer.Assoc. Cereal Chemist, St. Paul.

    +

    Oberthur, L., T.K. Blake, W.E. Dyer, and S.E. Ullrich. 1995. Genetic analysis of seed dormancy in barley (Hordeum vulgare L.). J. Quant. Trait Loci (on line), available: http://probe.nalusda.gov. 8000/other docs/jqtl/jqtl 1995-05/ dormancy.html.

    +

    Han, F., S.E. Ullrich, S. Chirat, S. Menteur, L. Jestin, A. Sarrafi, P.M. Hayes, B.L. Jones, T.K. Blake, D.M. Wesenberg, A. Kleinhofs, and A. Kilian. 1995. Mapping of b-glucan content and b-glucanase activity loci in barley grain and malt. Theor. Appl. Genet. 91:921-927.

    +

    Clancy, J.A., F. Han, and S.E. Ullrich. 2003. Comparative mapping of b-amylase activity QTLs among three barley crosses. Crop Sci.43:1043-1052.

    +

    Ullrich, S.E., J.A. Clancy, I.A. del Blanco, H. Lee, V.A. Jitkov, F. Han, A. Kleinhofs, and K. Matsui. 2007. Genetic analysis of preharvest sprouting in a six-row barley cross. Molecular Breeding. Submitted.
    +

    +

    Dormancy as measured by germination tests
    +Dormancy defined as the failure of viable mature seed to germinate under favorable conditions was measured indirectly by measuring germination percentage, as there is no known direct test for dormancy. Two different after-ripening periods (0 and 14 days) were included in the study to measure the state of and change in dormancy over time. Genetic sub-traits for dormancy based on physiological activity/state could include the development of dormancy as seeds mature, the state of dormancy at maturity, and the dissipation of dormancy with time following maturity. The latter two situations were considered in this study. Germination percentage has also been used to measure susceptibility/resistance to preharvest sprouting (PHS) as well, but it is also a very indirect measure, which assumes that dormancy is the opposite of PHS, which may or may not be entirely true.

    +

    Seeds were harvested at physiological maturity (as determined when green color was lost from the spike). Heads were collected and stored in a -20°C freezer prior to germination tests of the seeds to arrest physiological activity. Germination tests were carried out after two different post-harvest after-ripening periods at room temperature; 0 d and 14 d for materials grown in field and glasshouse environments. For each after-ripening period, two replications of 100 seeds were germinated at 20°C on moist filter paper in a petri dish. Standard germination tests were performed (AOSA 1988). After 7 d the number of germinated seeds were counted and expressed as a percentage of the total.

    +

    Pre-harvest Sprouting (PHS) experiment in the greenhouse.
    +Trait scores:
    +0 = no visible roots
    +1 = roots <or = 3/ no shoots
    +2 = roots < or = 5/ shoots < or = 3
    +3 = roots < or = 8/ shoots < or = 5
    +4 = roots and shoots over 25% but < 50% of head
    +5 roots and shoots over 50% of head

    +

    Predicted spirit yield (SCRI)
    +PSY is fermentable extract multiplied vy a constant to give the yield of spirit(l) per tonne of malt (Dolan, 1982).

    +

    Soluble nitrogen content of wort (SCRI)
    +Soluble nitrogen content is the amount of nirogen that has been solubilised in a hot water extract follwing micro-malting under standard conditions (see Hot Water Extract, HWE). It is measure by UV spectrophotometry (Haselmore & Gill, 1995).

    +

    Spike density (UM)
    +Steffenson, B. J. 2003. Fusarium head blight of barley: Impact, epidemics, management, and strategies for identifying and utilizing genetic resistance. Pages 241-295: In: K. J. Leonard and W.R. Bushnell, eds. 2003. Fusarium Head Blight of Wheat and Barley. APS Press. St. Paul. 512 pp.

    +

    Zadoks, J. C., T. T. Chang, and C. F. Konzak. 1974. A decimal code for the growth stages of cereals. Weed. Res. 14:415-421.

    +

    Morphological and agronomic trait assessment
    +Various morphological (especially spike characters) and agronomic traits may affect the development of Fusarium Head Blight (FHB) on lines in the field (Steffenson 2003). To determine the possible contribution of such factors on FHB severity, assessments were made on heading date, plant height, spike, and the number of nodes per cm of rachis in the spike (kernel density). Heading date was defined as the number of days from planting to when 50% of the plants in a plot had emerged spikes. Plant height was the number of cm from the ground to the tip of the spike, excluding the awns. Spike angle was rated at maturity on a scale of 1 to 3 where spikes bending less than 45 degrees from vertical were scored as 1; those bending from 45-120 degrees from vertical were scored as 2, and those bending greater than 120 degrees from vertical were scored as 3. The number of nodes per cm of rachis was measured on four randomly selected spikes for each parent and DH line.

    +

    Thousand grain weight (SCRI)
    +Thousand grain weight is measured by counting and weighing a clean sample of grain that has passed over a 2.5 mm sieve using MARVIN 4.0 (www.gta-sensorik.com)

    +

    Vegetation index (SCRI)
    +This is Infra Red Vegetation Index, IRVI (ref660nm/ref770nm) as measured by the Greenseeker (www.ntechindustries.com) at GS61.

    +

    Vegetation index @ GS43 (SCRI)
    +This is Infra Red Vegetation Index, IRVI (ref660nm/ref770nm) as measured by the Greenseeker (www.ntechindustries.com) at GS43.

    +

    Yield (MT/ha) (NABGP)
    +(see description of the NABGP dataset).
    +

    +

     

    +

     

    +
    + + +

        About this file:

    +
    +

    The file started, Dec 9, 2006 by AD. Last update AD, Dec 10, 2006; Jan 28, 2007; Aug 30, 2008.

    + + +
       
    + + +
    +
    + + + + + + + +
    + + + + + +
    diff --git a/web/dbdoc/Striatum_Exon_0209.html b/web/dbdoc/Striatum_Exon_0209.html new file mode 100755 index 00000000..196ffd32 --- /dev/null +++ b/web/dbdoc/Striatum_Exon_0209.html @@ -0,0 +1,193 @@ + +HQF Striatum Exon (Feb09) RMA + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    HQF Striatum Exon (Feb09) RMA +modify this page

    Accession number: GN163

    + +

    Final and fully corrected Exon 1.0 ST array data. Entered by Arthur Centeno. Data error-checking by Manjunatha N. Jagalur . Tissue collected by Glenn Rosen. Array processing by Weikuan Gu. +

    +

    + +A movie of the dissection of the brain, including the striatum, by Dr. Glenn Rosen.

    +

    About the strains used to generate this set of data

    +
    +
    + + +

    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDTube No.TissueStrainAgeSex
    1R3025SA1705Striatum129S1/SvImJ60F
    2R3026SA1375Striatum129S1/SvImJ59M
    3R3027SA1435StriatumA/J59F
    4R3028SA1455StriatumA/J59M
    5R3029SA1395StriatumAKR/J59F
    6R3030SA1415StriatumAKR/J59M
    7R3031SA1227StriatumB6D2F159F
    8R3032SA1225StriatumB6D2F159M
    9R3033SA1495StriatumBALB/cByJ59F
    10R3034SA1475StriatumBALB/cByJ59M
    11R3035SA1665StriatumBTBRT<+>tf/J59F
    12R3036SA1615StriatumBTBRT<+>tf/J60M
    13R3037SA457StriatumBXD159F
    14R3038SA927StriatumBXD159M
    15R3055SA487StriatumBXD261F
    16R3056SA477StriatumBXD261M
    17R3089SA977StriatumBXD558F
    18R3090SA967StriatumBXD558M
    19R3091SA557StriatumBXD659F
    20R3092SA547StriatumBXD659M
    21R3093SA717StriatumBXD861F
    22R3094SA707StriatumBXD861M
    23R3095SA647StriatumBXD960F
    24R3096SA637StriatumBXD960M
    25R3039SA517StriatumBXD1159F
    26R3040SA787StriatumBXD1159M
    27R3041SA817StriatumBXD1262F
    28R3042SA807StriatumBXD1259M
    29R3043SA877StriatumBXD1360F
    30R3044SA867StriatumBXD1360M
    31R3045SA1067StriatumBXD1459F
    32R3144SA1077StriatumBXD1459M
    33R3047SA1057StriatumBXD1560F
    34R3048SA1047StriatumBXD1560M
    35R3049SA767StriatumBXD1661F
    36R3050SA777StriatumBXD1661M
    37R3051SA1177StriatumBXD1859F
    38R3052SA1167StriatumBXD1859M
    39R3053SA957StriatumBXD1960F
    40R3054SA947StriatumBXD1960M
    41R3057SA1255StriatumBXD2060F
    42R3058SA1245StriatumBXD2060M
    43R3059SA1197StriatumBXD2148F
    44R3060SA1187StriatumBXD2148M
    45R3061SA1235StriatumBXD2258F
    46R3062SA1275StriatumBXD2260M
    47R3063SA1137StriatumBXD2360F
    48R3064SA1127StriatumBXD2360M
    49R3065SA437StriatumBXD2459F
    50R3066SA587StriatumBXD2460M
    51R3067SA1107StriatumBXD2760F
    52R3068SA1117StriatumBXD2760M
    53R3069SA1027StriatumBXD2860F
    54R3070SA1037StriatumBXD2860M
    55R3071SA1007StriatumBXD2958F
    56R3072SA1017StriatumBXD2958M
    57R3073SA997StriatumBxD3160F
    58R3074SA987StriatumBxD3160M
    59R3075SA917StriatumBXD3257F
    60R3076SA907StriatumBXD3257M
    61R3077SA897StriatumBXD3359F
    62R3078SA887StriatumBXD3359M
    63R3079SA837StriatumBXD3460F
    64R3080SA827StriatumBXD3460M
    65R3081SA857StriatumBXD3657F
    66R3082SA847StriatumBXD3657M
    67R3083SA697StriatumBXD3860F
    68R3084SA687StriatumBXD3860M
    69R3085SA677StriatumBXD4060F
    70R3086SA667StriatumBXD4060M
    71R3087SA577StriatumBXD4258F
    72R3088SA567StriatumBXD4258M
    73R3097SA1975StriatumBXSB/MpJ61F
    74R3098SA1945StriatumBXSB/MpJ61M
    75R3099SA1575StriatumC3H/HeJ60F
    76R3100SA1595StriatumC3H/HeJ60M
    77R3101SA1228StriatumC57BL/6J58F
    78R3102SA343StriatumC57BL/6J59M
    79R3103SA (sample removed)2305StriatumCAST/Ei61F
    80R3104SA (sample removed)2285StriatumCAST/Ei59M
    81R3105SA1223StriatumDBA/2J58F
    82R3106SA344StriatumDBA/2J59M
    83R3107SA1535StriatumFVB/NJ60F
    84R3108SA1555StriatumFVB/NJ60M
    85R3109SA1845StriatumKK/HlJ61F
    86R3110SA1835StriatumKK/HlJ61M
    87R3111SA1865StriatumMOLF/EiJ60F
    88R3112SA1855StriatumMOLF/EiJ60M
    89R3113SA1295StriatumNOD/LtJ58F
    90R3114SA1315StriatumNOD/LtJ58M
    91R3115SA2075StriatumNZB/BlNJ61F
    92R3116SA1515StriatumNZB/BlNJ58M
    93R3117SA1745StriatumNZO/HlLtJ61F
    94R3118SA1725StriatumNZO/HlLtJ61M
    95R3119SA1805StriatumNZW/LacJ65F
    96R3120SA1685StriatumNZW/LacJ70M
    97R3121SA1875StriatumPWD/PhJ70F
    98R3122SA1885StriatumPWD/PhJ70M
    99R3123SA1765StriatumPWK/PhJ59F
    100R3124SA1785StriatumPWK/PhJ60M
    101R3125SA1825StriatumWSB/EiJ71F
    102R3126SA1655StriatumWSB/EiJ71M
    +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Striatum_Exon_0308.html b/web/dbdoc/Striatum_Exon_0308.html new file mode 100755 index 00000000..ac250400 --- /dev/null +++ b/web/dbdoc/Striatum_Exon_0308.html @@ -0,0 +1,77 @@ + + + +HQF Striatum Exon (Mar08) RMA + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    HQF Striatum Exon (Mar08) RMA + modify this page

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Striatum_Exon_0707.html b/web/dbdoc/Striatum_Exon_0707.html new file mode 100755 index 00000000..92e183e2 --- /dev/null +++ b/web/dbdoc/Striatum_Exon_0707.html @@ -0,0 +1,491 @@ + +Information on the HQF Striatum Exon Array data of July 2007 + + + + + + + + + + + + + ' +document.write(ctext) \ No newline at end of file diff --git a/web/javascript/jquery-1.5.2.min.js b/web/javascript/jquery-1.5.2.min.js new file mode 100755 index 00000000..d5636d70 --- /dev/null +++ b/web/javascript/jquery-1.5.2.min.js @@ -0,0 +1,16 @@ +/*! + * jQuery JavaScript Library v1.5.2 + * http://jquery.com/ + * + * Copyright 2011, John Resig + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * Includes Sizzle.js + * http://sizzlejs.com/ + * Copyright 2011, The Dojo Foundation + * Released under the MIT, BSD, and GPL Licenses. + * + * Date: Thu Mar 31 15:28:23 2011 -0400 + */ +(function(a,b){function ci(a){return d.isWindow(a)?a:a.nodeType===9?a.defaultView||a.parentWindow:!1}function cf(a){if(!b_[a]){var b=d("<"+a+">").appendTo("body"),c=b.css("display");b.remove();if(c==="none"||c==="")c="block";b_[a]=c}return b_[a]}function ce(a,b){var c={};d.each(cd.concat.apply([],cd.slice(0,b)),function(){c[this]=a});return c}function b$(){try{return new a.ActiveXObject("Microsoft.XMLHTTP")}catch(b){}}function bZ(){try{return new a.XMLHttpRequest}catch(b){}}function bY(){d(a).unload(function(){for(var a in bW)bW[a](0,1)})}function bS(a,c){a.dataFilter&&(c=a.dataFilter(c,a.dataType));var e=a.dataTypes,f={},g,h,i=e.length,j,k=e[0],l,m,n,o,p;for(g=1;g=0===c})}function P(a){return!a||!a.parentNode||a.parentNode.nodeType===11}function H(a,b){return(a&&a!=="*"?a+".":"")+b.replace(t,"`").replace(u,"&")}function G(a){var b,c,e,f,g,h,i,j,k,l,m,n,o,p=[],q=[],s=d._data(this,"events");if(a.liveFired!==this&&s&&s.live&&!a.target.disabled&&(!a.button||a.type!=="click")){a.namespace&&(n=new RegExp("(^|\\.)"+a.namespace.split(".").join("\\.(?:.*\\.)?")+"(\\.|$)")),a.liveFired=this;var t=s.live.slice(0);for(i=0;ic)break;a.currentTarget=f.elem,a.data=f.handleObj.data,a.handleObj=f.handleObj,o=f.handleObj.origHandler.apply(f.elem,arguments);if(o===!1||a.isPropagationStopped()){c=f.level,o===!1&&(b=!1);if(a.isImmediatePropagationStopped())break}}return b}}function E(a,c,e){var f=d.extend({},e[0]);f.type=a,f.originalEvent={},f.liveFired=b,d.event.handle.call(c,f),f.isDefaultPrevented()&&e[0].preventDefault()}function y(){return!0}function x(){return!1}function i(a){for(var b in a)if(b!=="toJSON")return!1;return!0}function h(a,c,e){if(e===b&&a.nodeType===1){e=a.getAttribute("data-"+c);if(typeof e==="string"){try{e=e==="true"?!0:e==="false"?!1:e==="null"?null:d.isNaN(e)?g.test(e)?d.parseJSON(e):e:parseFloat(e)}catch(f){}d.data(a,c,e)}else e=b}return e}var c=a.document,d=function(){function G(){if(!d.isReady){try{c.documentElement.doScroll("left")}catch(a){setTimeout(G,1);return}d.ready()}}var d=function(a,b){return new d.fn.init(a,b,g)},e=a.jQuery,f=a.$,g,h=/^(?:[^<]*(<[\w\W]+>)[^>]*$|#([\w\-]+)$)/,i=/\S/,j=/^\s+/,k=/\s+$/,l=/\d/,m=/^<(\w+)\s*\/?>(?:<\/\1>)?$/,n=/^[\],:{}\s]*$/,o=/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g,p=/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g,q=/(?:^|:|,)(?:\s*\[)+/g,r=/(webkit)[ \/]([\w.]+)/,s=/(opera)(?:.*version)?[ \/]([\w.]+)/,t=/(msie) ([\w.]+)/,u=/(mozilla)(?:.*? rv:([\w.]+))?/,v=navigator.userAgent,w,x,y,z=Object.prototype.toString,A=Object.prototype.hasOwnProperty,B=Array.prototype.push,C=Array.prototype.slice,D=String.prototype.trim,E=Array.prototype.indexOf,F={};d.fn=d.prototype={constructor:d,init:function(a,e,f){var g,i,j,k;if(!a)return this;if(a.nodeType){this.context=this[0]=a,this.length=1;return this}if(a==="body"&&!e&&c.body){this.context=c,this[0]=c.body,this.selector="body",this.length=1;return this}if(typeof a==="string"){g=h.exec(a);if(!g||!g[1]&&e)return!e||e.jquery?(e||f).find(a):this.constructor(e).find(a);if(g[1]){e=e instanceof d?e[0]:e,k=e?e.ownerDocument||e:c,j=m.exec(a),j?d.isPlainObject(e)?(a=[c.createElement(j[1])],d.fn.attr.call(a,e,!0)):a=[k.createElement(j[1])]:(j=d.buildFragment([g[1]],[k]),a=(j.cacheable?d.clone(j.fragment):j.fragment).childNodes);return d.merge(this,a)}i=c.getElementById(g[2]);if(i&&i.parentNode){if(i.id!==g[2])return f.find(a);this.length=1,this[0]=i}this.context=c,this.selector=a;return this}if(d.isFunction(a))return f.ready(a);a.selector!==b&&(this.selector=a.selector,this.context=a.context);return d.makeArray(a,this)},selector:"",jquery:"1.5.2",length:0,size:function(){return this.length},toArray:function(){return C.call(this,0)},get:function(a){return a==null?this.toArray():a<0?this[this.length+a]:this[a]},pushStack:function(a,b,c){var e=this.constructor();d.isArray(a)?B.apply(e,a):d.merge(e,a),e.prevObject=this,e.context=this.context,b==="find"?e.selector=this.selector+(this.selector?" ":"")+c:b&&(e.selector=this.selector+"."+b+"("+c+")");return e},each:function(a,b){return d.each(this,a,b)},ready:function(a){d.bindReady(),x.done(a);return this},eq:function(a){return a===-1?this.slice(a):this.slice(a,+a+1)},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},slice:function(){return this.pushStack(C.apply(this,arguments),"slice",C.call(arguments).join(","))},map:function(a){return this.pushStack(d.map(this,function(b,c){return a.call(b,c,b)}))},end:function(){return this.prevObject||this.constructor(null)},push:B,sort:[].sort,splice:[].splice},d.fn.init.prototype=d.fn,d.extend=d.fn.extend=function(){var a,c,e,f,g,h,i=arguments[0]||{},j=1,k=arguments.length,l=!1;typeof i==="boolean"&&(l=i,i=arguments[1]||{},j=2),typeof i!=="object"&&!d.isFunction(i)&&(i={}),k===j&&(i=this,--j);for(;j0)return;x.resolveWith(c,[d]),d.fn.trigger&&d(c).trigger("ready").unbind("ready")}},bindReady:function(){if(!x){x=d._Deferred();if(c.readyState==="complete")return setTimeout(d.ready,1);if(c.addEventListener)c.addEventListener("DOMContentLoaded",y,!1),a.addEventListener("load",d.ready,!1);else if(c.attachEvent){c.attachEvent("onreadystatechange",y),a.attachEvent("onload",d.ready);var b=!1;try{b=a.frameElement==null}catch(e){}c.documentElement.doScroll&&b&&G()}}},isFunction:function(a){return d.type(a)==="function"},isArray:Array.isArray||function(a){return d.type(a)==="array"},isWindow:function(a){return a&&typeof a==="object"&&"setInterval"in a},isNaN:function(a){return a==null||!l.test(a)||isNaN(a)},type:function(a){return a==null?String(a):F[z.call(a)]||"object"},isPlainObject:function(a){if(!a||d.type(a)!=="object"||a.nodeType||d.isWindow(a))return!1;if(a.constructor&&!A.call(a,"constructor")&&!A.call(a.constructor.prototype,"isPrototypeOf"))return!1;var c;for(c in a){}return c===b||A.call(a,c)},isEmptyObject:function(a){for(var b in a)return!1;return!0},error:function(a){throw a},parseJSON:function(b){if(typeof b!=="string"||!b)return null;b=d.trim(b);if(n.test(b.replace(o,"@").replace(p,"]").replace(q,"")))return a.JSON&&a.JSON.parse?a.JSON.parse(b):(new Function("return "+b))();d.error("Invalid JSON: "+b)},parseXML:function(b,c,e){a.DOMParser?(e=new DOMParser,c=e.parseFromString(b,"text/xml")):(c=new ActiveXObject("Microsoft.XMLDOM"),c.async="false",c.loadXML(b)),e=c.documentElement,(!e||!e.nodeName||e.nodeName==="parsererror")&&d.error("Invalid XML: "+b);return c},noop:function(){},globalEval:function(a){if(a&&i.test(a)){var b=c.head||c.getElementsByTagName("head")[0]||c.documentElement,e=c.createElement("script");d.support.scriptEval()?e.appendChild(c.createTextNode(a)):e.text=a,b.insertBefore(e,b.firstChild),b.removeChild(e)}},nodeName:function(a,b){return a.nodeName&&a.nodeName.toUpperCase()===b.toUpperCase()},each:function(a,c,e){var f,g=0,h=a.length,i=h===b||d.isFunction(a);if(e){if(i){for(f in a)if(c.apply(a[f],e)===!1)break}else for(;g1?f.call(arguments,0):c,--g||h.resolveWith(h,f.call(b,0))}}var b=arguments,c=0,e=b.length,g=e,h=e<=1&&a&&d.isFunction(a.promise)?a:d.Deferred();if(e>1){for(;c
    + + + + + + + + + + +
    +

    The High Q Foundation Striatum Exon 1.0 Array Expression Dataset of July 2007 + modify this page

    + +

        Summary:

    + +
    +EXPERIMENTAL EXON ST TEST DATA SET (preliminary text, not error checked). The July 2007 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of 50 lines of mice, including the C57BL/6J and DBA/2J parental strains, their F1 hybrid (B6D2F1), 30 BXD recombinant inbred strains, and 17 more common inbred strains of mice. Data were generated using the new Affymetrix Mouse Exon 1.0 ST short oligomer microarrays by Weikuan Gu, Yan Jiao, David Kulp, and Lu Lu, Glenn D. Rosen, and Robert W. Williams with the support of a grant from the High Q Foundation. This is the first "all exons" array that we have entered into GeneNetwork and the data are still experimental. Approximately 300 brain samples (males and females) from 50 strains were used in this experiment. This data set includes 97 arrays that passed very stringent quality control procedures. Data were processed using the RMA method of Irizarry, Bolstad, Speed, and colleagues. To simplify comparison among transforms, RMA values of each array were adjusted to an average expression of 8 units and a standard deviation of 2 units. +
    + +

        About the strains and cases used to generate this set of data:

    + +
    +

    We have used a set of 30 BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D). Physical maps in WebQTL maps incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. All of these strains are available from The Jackson Laboratory.

    +

    +
    + +
    +

    Mouse Diversity Panel (MDP). We have also profiled a MDP consisting at total of 19 inbred strains (this number includes the C57BL/6J and DBA/2J strains) and one F1 hybrid (B6D2F1 only; not D2B6F1 yet). Strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    Seven of the eight parents of the Collaborative Cross (129, A, C57BL/6J, NOD, NZO, PWK, and WSB) have been included. CAST/Ei is the member of the Collaborative Cross that is currently missing from this data set. Thirteen of the MDP strains have been sequenced by Celera, NIH, or by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel + +
    3. AKR/J +
          Sequenced by NIEHS; Phenome Project B list + +
    4. BALB/cByJ +
          Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list + + + +
    5. BTBR T<+> tf/J +
           Phenome Project group D strain. Used in mutagenesis studies. This black and tan strain carries the recessive tufted allele and is wildtype at the T locus (brachyury). + + + +
    6. BXSB/MpJ +
          An isolated recombinant inbred strain generated by crossing C57BL/6J and SB/Le that is used to study autoimmune disease. Males are deficient in pre-B cells. + + +
    7. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    8. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + + +
    9. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    10. FVB/NJ +
          Sequenced by Perlegen/NIEHS. Phenome Project group A strain. + + +
    11. KK/HlJ +
          Sequenced by Perlegen/NIEHS + + +
    12. MOLF/EiJ +
          Sequenced by Perlegen/NIEHS. Phenome Project B strain. + + +
    13. NZB/BlNJ +
           Phenome Project B list. Please note that the substrain is B-el-J not B-eye-NJ. + +
    14. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    15. NZO/HlLtJ +
          Collaborative Cross strain + + +
    16. NZW/LacJ +
          Phenome Project D strain + +
    17. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues. Not part of the Phenome Project. + +
    18. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    19. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    20. B6D2F1 +
      This F1 hybrid was generated by crossing C57BL/6J with DBA/2J at the Jackson Laboratory. They are also be designated (incorrectly) as B6D2F1/J. +
    + + +

    All of these strains are available from The Jackson Laboratory.

    + +
    + + +

        About the tissue used to generate this set of data:

    + +

    Many of the tissue samples used in this exon array study were also used in our previous M430 analysis of the striatum, providing a partially matched Exon-M430 pair of data sets. However, the previous study included fewer samples (47) and fewer strains (31 total). Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. + +

    All striatal dissections were performed by one person (GD Rosen) using a midsagittal approach that minimizes the likelihood of contamination across tissues. This dissection recovers most, but not all, of neostraitum. We have histologically examined dissected tissue and have found that no evidence of inclusion of cortical or thalamic tissue at the margins. We have further confirmed the dissections by comparative assays for acetylcholinesterase (AChE) protein levels using Western blots. The concentration of AChE in the striatum is far higher than that in cortex or cerebellum. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. + +

    Roughly 90 to 95% of all cells in the striatum are medium spiny neurons (Gerfen, 1992, for a review of the structure and function of the neostriatum). +

    + +
    +

    RNA Extraction: RNA was extracted by Rosen and colleagues between June 2, 2004 and March 8, 2006. In brief, we used the RNA STAT-60 protocol (TEL-TEST "B" Bulletin No. 1), steps 5.1A (homogenization of tissue), 5.2 (RNA extraction), 5.3 (RNA precipitation), and 5.4 (RNA wash). In Step 5.4 we stopped after adding 75% ethanol (1 ml per 1 ml RNA STAT-60) and stored the mix at -80 deg C until further use. Before RNA labeling we thawed samples and proceeded with the remainder of Step 5.4; pelleting, drying, and redissovling the pellet in RNAase-free water. + + + + +

    RNA samples were then processed by the array core at the VA Medical Center by Drs. Yan Jiao and Weikuan Gu (Director of the the DNA Discovery Core of the UTHSC Center of Genomics and Bioinformatics). Labeled cRNA was generated using the standard Affymetrix whole transcript sense target labeling protocol. + +

    + + + +

    Legend: Summary of protocol from http://www.affymetrix.com/products/reagents/wt_cdna_synthesis_amp_chart.jsp) as carried out by Dr. Yan Jiao.

    + + + + +

    Replication and Sample Balance: The aim of our standard operating procedure is to obtain data for independent biological sample pools from each sex for all strains. We have succeeded for 44 of 50 strains. Several strains are represented by only a single sex or a single sample pool. This sex imbalance can lead to bias with respect to transcripts that have genuine sex differences. One way to handle this issue is to study the correlation between a proxy variable for this bias, as represented by the Xist probe set 5153684, and a data set of interest. + + + +

    + + + +

    Legend: Sex balance in this data set is illustrated using the sex-specific Xist gene and one of its probe sets (Affy Exon ST probe set: 5153684). Most samples include one male sample pool with very low Xist expression (6 or 7) and one female sample pool with high Xist expression (10 to 12). As a result 43 of the 50 strains have both intermediate values and high variance. The B6D2F1 sample has no error bar due to an early data entry error. Strains for which samples are only male or only female are at the extreme left and right sides of this bar chart, respectively.

    + + +
      +
    • Strains with two male samples: KK/HlJ, BTBRT<+>tf/J +
    • Strains with two female samples:BXD5, BXD22 +
    • Only a single female sample:BXD29 +
    • The status of BXD23 is not clear and may represent a single male sample or a possible mixed sex pool. +
    + + + +

    Batch Structure: This data set consists of 97 arrays processed in 8 batches. All arrays were processed by a single skilled operator (Dr. Yan Jiao) between and October 20 and Nov 29, 2006 (scan dates from Oct 26 to Nov 29). In general, the male and female samples from a single strain were run within a single batch. +

    + + + +

        Data Table 1:

    +
    + + +
    +Mouse Exon 1.0 ST data: The table below lists arrays by strain, age, sex, case id, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 48 and 71 days. +
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    RNA IDStrainAgeSexCase IDBatch
    ID
    Source
    R3101SAC57BL/6J58F073106.706GDRosen
    R3102SAC57BL/6J59M073106.016GDRosen
    R3105SADBA/2J58F073106.657GDRosen
    R3106SADBA/2J59M073106.027GDRosen
    R3031SAB6D2F1/J59F073106.692GDRosen
    R3032SAB6D2F1/J59M073106.672GDRosen
    R3037SABXD159F073106.042GDRosen
    R3038SABXD159M073106.382GDRosen
    R3055SABXD261M073106.063GDRosen
    R3056SABXD261F073106.053GDRosen
    R3089SABXD558F073106.426GDRosen
    R3090SABXD558F073106.416GDRosen
    R3091SABXD659F073106.096GDRosen
    R3092SABXD659M073106.086GDRosen
    R3093SABXD861F073106.216GDRosen
    R3094SABXD861M073106.206GDRosen
    R3095SABXD960F073106.156GDRosen
    R3096SABXD960M073106.146GDRosen
    R3039SABXD1159F073106.072GDRosen
    R3040SABXD1159M073106.242GDRosen
    R3041SABXD1262F073106.272GDRosen
    R3042SABXD1259M073106.262GDRosen
    R3044SABXD1360M073106.323GDRosen
    R3043SABXD1360F073106.338GDRosen
    R3045SABXD1459F073106.513GDRosen
    R3144SABXD1459M073106.523GDRosen
    R3047SABXD1560F073106.503GDRosen
    R3048SABXD1560M073106.493GDRosen
    R3049SABXD1661F073106.223GDRosen
    R3050SABXD1661M073106.233GDRosen
    R3051SABXD1859F073106.603GDRosen
    R3052SABXD1859M073106.593GDRosen
    R3053SABXD1960F073106.403GDRosen
    R3054SABXD1960M073106.393GDRosen
    R3057SABXD2060F073106.753GDRosen
    R3058SABXD2060M073106.743GDRosen
    R3059SABXD2148F073106.623GDRosen
    R3060SABXD2148M073106.614GDRosen
    R3061SABXD2258F073106.734GDRosen
    R3062SABXD2260M073106.774GDRosen
    R3064SABXD2360M073106.574GDRosen
    R3063SABXD2360F073106.588GDRosen
    R3065SABXD2459F073106.034GDRosen
    R3066SABXD2460M073106.124GDRosen
    R3067SABXD2760F073106.554GDRosen
    R3068SABXD2760M073106.564GDRosen
    R3069SABXD2860F073106.474GDRosen
    R3070SABXD2860M073106.484GDRosen
    R3071SABXD2958F073106.454GDRosen
    R3072SABXD2958M073106.465GDRosen
    R3074SABXD3160M073106.438GDRosen
    R3073SABXD3160F073106.445GDRosen
    R3075SABXD3257F073106.378GDRosen
    R3076SABXD3257M073106.365GDRosen
    R3077SABXD3359F073106.355GDRosen
    R3078SABXD3359M073106.345GDRosen
    R3079SABXD3460F073106.295GDRosen
    R3080SABXD3460M073106.285GDRosen
    R3081SABXD3657F073106.315GDRosen
    R3082SABXD3657M073106.305GDRosen
    R3083SABXD3860F073106.195GDRosen
    R3084SABXD3860M073106.185GDRosen
    R3085SABXD4060F073106.175GDRosen
    R3086SABXD4060M073106.166GDRosen
    R3087SABXD4258F073106.116GDRosen
    R3088SABXD4258M073106.106GDRosen
    R3025SA129S1/SvImJ60F073106.121GDRosen
    R3026SA129S1/SvImJ59M073106.871GDRosen
    R3027SAA/J59F073106.931GDRosen
    R3028SAA/J59M073106.951GDRosen
    R3029SAAKR/J59F073106.891GDRosen
    R3030SAAKR/J59M073106.911GDRosen
    R3033SABALB/cByJ59M073106.992GDRosen
    R3036SABTBR/T+tf/J60M073106.102GDRosen
    R3034SABTBR/T+tf/J59F073106.972GDRosen
    R3035SABTBRT+tf/J59M073106.112GDRosen
    R3097SABXSB/MpJ61F073106.156GDRosen
    R3098SABXSB/MpJ61M073106.146GDRosen
    R3099SAC3H/HeJ60F073106.116GDRosen
    R3100SAC3H/HeJ60M073106.116GDRosen
    R3107SAFVB/NJ60F073106.117GDRosen
    R3108SAFVB/NJ60M073106.117GDRosen
    R3109SAKK/HlJ61M073106.137GDRosen
    R3110SAKK/HlJ61M073106.137GDRosen
    R3111SAMOLF/EiJ60F073106.137GDRosen
    R3112SAMOLF/EiJ60M073106.137GDRosen
    R3113SANOD/LtJ58F073106.797GDRosen
    R3114SANOD/LtJ58M073106.817GDRosen
    R3115SANZB/BinJ61F073106.167GDRosen
    R3116SANZB/BinJ58M073106.107GDRosen
    R3117SANZO/HlLtJ61F073106.128GDRosen
    R3118SANZO/HlLtJ61M073106.128GDRosen
    R3119SANZW/LacJ65F073106.138GDRosen
    R3120SANZW/LacJ70M073106.128GDRosen
    R3121SAPWD/PhJ70F073106.148GDRosen
    R3122SAPWD/PhJ70M073106.148GDRosen
    R3123SAPWK/PhJ59F073106.128GDRosen
    R3124SAPWK/PhJ60M073106.138GDRosen
    R3125SAWSB/EiJ71F073106.138GDRosen
    R3126SAWSB/EiJ71M073106.118GDRosen
    +
    +
    + + +
    + + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Exon ST 1.0 array: The Exon 1.0 ST (sense target) array consists of approximately 4.5 million useful 25-nucleotide probes that estimate the expression of approximately 1 million exon clusters. The array sequences were selected in 2006 using Unigene Build XXX.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level and Probe set data from the CEL file: + +1. Probes overlapping SNPs were removed from the design file +2. Affymetrix Power Tools(APT) package was used extract CEL values and perform RMA normalization +3. Probe set values were normalized to mean=8 and sd=2 (per chip) +4. Strain average was calculated by averaging over chips that belong to same strain + +
      + +
    • Step 1: Probes overlapping SNPs were removed from the design file + +
    • Step 2: Affymetrix Power Tools(APT) package was used extract CEL values and perform RMA normalization + +
    • Step 3: Probe set values were normalized to mean=8 and sd=2 (per array) + +
    • Step 4: Strain averages were calculated by averaging over all arrays that belong to same strain (3 maximum in this data set) + + + +
    + +Probe set data from the CHP file: The expression values were +generated by Manjunatha in David Kulp's group at the University of Massachusetts Amherst using RMA. The same simple steps described above +were also applied to these values. Every microarray data set +therefore has a mean expression of 8 with a standard deviation of 2. +A 1 unit difference represents roughly a two-fold difference +in expression level. Expression levels below 5 are usually close to +background noise levels.
    + +
    Data quality control: A total of 97 samples passed RNA quality control. + +

    Part1: Testing if replicates come from the same strain + +

      +
    1. RMA normalized values were used in this analysis +
    2. Pair-wise correlations were calculated between all the arrays using the probesets with high variance and high median +
    3. Probability density of correlations between non-replicate pairs and replicate-pairs were calculated +
    4. Threshold of 0.85 using Maximum likelihood estimate +
    5. In total 5 set of replicates might not have come from the same strains. (They are marked as 0 in Manju_Quality Score column) +
    + +

    Part 2: Testing if strain labeling is correct +

      +
    1. RMA normalized values were used in this analysis +
    2. Only BXD strains were tested +
    3. A set of strongly cis-linked probesets were identified (using linkage to nearest marker) +
    4. The expression of these probesets was used to re-estimate the genotype of nearest marker +
    5. The values of all re-estimated marker genotypes were compared to genotypes of all the BXD strains and optimal match was identified +
    6. In total four set of replicates were found to be mislabeled. +
    + +

    Probe set level QC: The final normalized array data were evaluated for outliers. XXX arrays were considered outliers. These XXX suspect arrays were elimated from this data set. The following arrays were eliminated: XXX, YYY, ZZZ.

    + +

        Data source acknowledgment:

    +

    Data were generated with funds to Weikuan Gu, Rob Williams, Glenn Rosen from the High Q Foundation. Samples and arrays were processed by Dr. Yan Jiao +Array Core at the University of Tennessee Health Science Center and VA Medical Center, Memphis.

    + +

        About this text file:

    +

    +This text file originally generated by RWW on July 24, 2007 using a template from a previous M430 Striatum data set. Updated by RWW July 26, 2007; MJ and RWW, Aug 7, 2007. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Striatum_Exon_0708.html b/web/dbdoc/Striatum_Exon_0708.html new file mode 100755 index 00000000..c45d8423 --- /dev/null +++ b/web/dbdoc/Striatum_Exon_0708.html @@ -0,0 +1,77 @@ + + + +HQF Striatum Exon (Jul08) RMA + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    HQF Striatum Exon (Jul08) RMA + modify this page

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/Striatum_M430_PDNN_Nov05.html b/web/dbdoc/Striatum_M430_PDNN_Nov05.html new file mode 100755 index 00000000..48cae632 --- /dev/null +++ b/web/dbdoc/Striatum_M430_PDNN_Nov05.html @@ -0,0 +1,226 @@ + +HTML Template/ WebQTL + + + + + + + + + + + + + + ' +ctext += '' +ctext += '' +ctext += '
    + + + + + + + + +
    +

    HIQ Striatum M430v2 (Nov05) PDNN + modify this page

    + + +

        Summary:

    + +
    +This November 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of NN lines of mice including C57BL/6J, DBA/2J, and NN BXD recombinant inbred strains. This data set incorporated 48 arrays from the April 2005 HBP/Rosen data sets (clean). Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen with the support of grant from the High Q Foundation. Approximately NNN brain samples (males and females) from NN strains were used to generate this data set. It consists of a total of NN arrays that passed stringent quality control procedures. Data were processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units. +
    + +

        About the cases used to generate this set of data:

    + +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage for D). Physical maps in the GeneNetwork incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    +

    +
    + +

        About the tissue used to generate this set of data:

    + +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. It is of interest to note that roughly 90 to 95% of all cells in the striatum are medium spiny neurons (Gerfen, 1992, for a review of the structure and function of the neostriatum). +

    + +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. NN of NN strains are represented by male and female samples. The remaining NN strains are still represented by single sex samples: ADD LIST HERE. + +

    Batch Structure: This data set consists of the orginal April 2005 data set and new arrays processed in NN batches. All arrays were processed using a single protocol. All data have been corrected for batch effects as described below. + +

    + +
    +The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days. +
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2BXD1FChip03_Batch03_BXD1_F_StrBatch03
    3BXD1MChip04_Batch03_BXD1_M_StrBatch03
    4BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    5BXD2MChip05_Batch01_BXD2_M_StrBatch01
    6BXD5FChip10_Batch03_BXD5_F_StrBatch03
    7BXD5MChip12_Batch03_BXD5_M_StrBatch03
    8BXD6FChip38_Batch02_BXD6_F_StrBatch02
    9BXD8FChip07_Batch03_BXD8_F_StrBatch03
    10BXD8MChip02_Batch03_BXD8_M_StrBatch03
    11BXD9FChip16_Batch01_BXD9_F_StrBatch01
    12BXD11FChip31_Batch02_BXD11_F_StrBatch02
    13BXD12FChip11_Batch01_BXD12_F_StrBatch01
    14BXD13FChip33_Batch02_BXD13_F_StrBatch02
    15BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    16BXD15FChip21_Batch01_BXD15_F_StrBatch01
    17BXD15MChip13_Batch01_BXD15_M_StrBatch01
    18BXD16FChip36_Batch02_BXD16_F_StrBatch02
    19BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    20BXD18FChip15_Batch03_BXD18_F_StrBatch03
    21BXD18MChip19_Batch03_BXD18_M_StrBatch03
    22BXD19FChip19_Batch01_BXD19_F_StrBatch01
    23BXD20FChip14_Batch03_BXD20_F_StrBatch03
    24BXD21FChip18_Batch01_BXD21_F_StrBatch01
    25BXD21MChip09_Batch01_BXD21_M_StrBatch01
    26BXD22MChip13_Batch03_BXD22_M_StrBatch03
    27BXD24MChip17_Batch03_BXD24_M_StrBatch03
    28BXD27FChip29_Batch02_BXD27_F_StrBatch02
    29BXD28FChip06_Batch01_BXD28_F_StrBatch01
    30BXD29FChip45_Batch02_BXD29_F_StrBatch02
    31BXD29MChip42_Batch02_BXD29_M_StrBatch02
    32BXD31FChip14_Batch01_BXD31_F_StrBatch01
    33BXD31MChip09_Batch03_BXD31_M_StrBatch03
    34BXD32MChip30_Batch02_BXD32_M_StrBatch02
    35BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    36BXD33MChip34_Batch02_BXD33_M_StrBatch02
    37BXD34FChip03_Batch01_BXD34_F_StrBatch01
    38BXD34MChip07_Batch01_BXD34_M_StrBatch01
    39BXD38FChip17_Batch01_BXD38_F_StrBatch01
    40BXD38MChip24_Batch01_BXD38_M_StrBatch01
    41BXD39MChip20_Batch03_BXD39_M_StrBatch03
    42BXD39FChip23_Batch03_BXD39_F_StrBatch03
    43BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    44BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    45BXD40MChip22_Batch01_BXD40_M_StrBatch01
    46BXD42FChip35_Batch02_BXD42_F_StrBatch02
    47BXD42MChip32_Batch02_BXD42_M_StrBatch02
    48DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    + + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the batches at the probe level. To do this we calculated the ratio of each batch mean to the mean of all batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each batch is the same. + +
    • Step 7: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + +Probe set data from the CHP file: The expression values were +generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + +
    Data quality control: A total of 62 samples passed RNA quality control. +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients (62x61/2). Arrays with probe data that was not homogeneous when compared to any other arrays was flagged. If the correlation at the probe level was less than approximately 0.92 we deleted that array data set. Three arrays we lost during this process (BXD19_M_Str_Batch03, BXD23_F_Str_Batch03, and BXD24_F_Str_Batch03). + +

    Probe set level QC: The final normalized array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers.

    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW, KFM, and GDR from the High Q Foundation. The first 48 arrays were generated with support to Glenn Rosen and colleagues from P20 +MH62009. Samples and arrays were processed by the +Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    + +

        About this text file:

    +

    +This text file originally generated prospectively by RWW on July 30 2005. Updated by RWW July 30, 2005. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Striatum_M430_V2_PDNN_Nov05.html b/web/dbdoc/Striatum_M430_V2_PDNN_Nov05.html new file mode 100755 index 00000000..3a7ccc41 --- /dev/null +++ b/web/dbdoc/Striatum_M430_V2_PDNN_Nov05.html @@ -0,0 +1,231 @@ + +M430 Microarray brain PDNN April05 / WebQTL + + + + + + + + + + + + + + + + + + + diff --git a/web/heatmap.html b/web/heatmap.html new file mode 100755 index 00000000..b1b726e7 --- /dev/null +++ b/web/heatmap.html @@ -0,0 +1,64 @@ + +QTL heatmap + + + + + + + + +
    + + + + + + + +
    +

    + + +HiQ Striatum M430v2 (Nov05) PDNN modify this page

    + +

        Summary:

    + +
    +This November 2005 data freeze provides estimates of mRNA expression in the striatum (caudate nucleus of the forebrain) of NN lines of mice including C57BL/6J, DBA/2J, and NN BXD recombinant inbred strains. Data were generated using Affymetrix Mouse Genome 430 2.0 short oligomer microarrays at Beth Israel Deaconess Medical Center (BIDMC, Boston MA) by Glenn D. Rosen and Robert W. Williams with support of the High Q Foundation. Approximately NNN brain samples (males and females) from NN strains were used in this experiment. Samples were hybridized to a total of NN arrays, including the 48 arrays from the April 2005 data set. This particular data set was processed using the PDNN method of Zhang. To simplify comparison among transforms, PDNN values of each array have been adjusted to an average expression of 8 units and a standard deviation of 2 units. +
    + +

        About the cases used to generate this set of data:

    + +
    +

    We have used a set of BXD recombinant inbred strains generated by crossing C57BL/6J (B6 or B) with DBA/2J (D2 or D). The BXDs are particularly useful for systems genetics because both parental strains have been sequenced (8x coverage of B6 and 1.5x coverage of D). Physical maps in WebQTL incorporate approximately 1.75 million B vs D SNPs from Celera. BXD2 through BXD32 were bred by Benjamin A. Taylor starting in the late 1970s. BXD33 through 42 were bred by Taylor in the 1990s. These strains are available from The Jackson Laboratory.

    +

    +
    + +

        About the tissue used to generate this set of data:

    + +

    Animals were obtained from The Jackson Laboratory and housed for several weeks at BIDMC until they reached ~2 months of age (range from 55 to 62 days). Mice were killed by cervical dislocation and brains were removed and placed in RNAlater for 20 to 25 minutes prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both striata were dissected using a medial approach by GD Rosen that typically yields 5 to 7 mg of tissue per side. The purity of this dissection has been validated by an analysis of acetylcholinestase activity. A pool of dissected tissue from 3 or 4 adults (approximately 25 to 30 mg of tissue) of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Roughly 90 to 95% of all cells in the striatum are medium spiny neurons (Gerfen, 1992, for a review of the structure and function of the neostriatum). +

    + +
    RNA was extracted by Rosen and colleagues and was then processed by the BIDMC Genomics Core. Labeled cRNA was generated using the Amersham Biosciences cRNA synthesis kit protocol. + +

    Replication and Sample Balance: Our goal is to obtain data for independent biological sample pools from at least one sample from each sex for all BXD strains. We have not yet achieved this goal. + + +

    Batch Structure: This data set consists of arrays processed in three batches with several "reruns" for the first batch. All arrays were run using a single protocol. All data have been corrected for batch effects as described below. + +

    + + +
    +The table below lists the arrays by strain, sex, sample name, and batch ID. Each array was hybridized to a pool of mRNA from 3 to 4 mice. All mice were between 55 and 62 days. +
    + +
    + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IdStrainSexSample_nameBatchId
    1C57BL/6JMChip41_Batch02_B6_M_StrBatch02
    2C57BL/6JMChip11_Batch03_B6_M_StrBatch03
    3BXD1FChip03_Batch03_BXD1_F_StrBatch03
    4BXD1MChip04_Batch03_BXD1_M_StrBatch03
    5BXD2FChip20_Rerun01_BXD2_F_StrRerun01
    6BXD2MChip05_Batch01_BXD2_M_StrBatch01
    7BXD5FChip10_Batch03_BXD5_F_StrBatch03
    8BXD5MChip12_Batch03_BXD5_M_StrBatch03
    9BXD6FChip38_Batch02_BXD6_F_StrBatch02
    10BXD6MChip39_Batch02_BXD6_M_StrBatch02
    11BXD8FChip07_Batch03_BXD8_F_StrBatch03
    12BXD8MChip02_Batch03_BXD8_M_StrBatch03
    13BXD9FChip16_Batch01_BXD9_F_StrBatch01
    14BXD9MChip10_Batch01_BXD9_M_StrBatch01
    15BXD11FChip31_Batch02_BXD11_F_StrBatch02
    16BXD12FChip11_Batch01_BXD12_F_StrBatch01
    17BXD12MChip18_Batch03_BXD12_M_StrBatch03
    18BXD13FChip33_Batch02_BXD13_F_StrBatch02
    19BXD14FChip48_Batch02_BXD14_F_StrBatch02
    20BXD14MChip47_Rerun01_BXD14_M_StrRerun01
    21BXD15FChip21_Batch01_BXD15_F_StrBatch01
    22BXD15MChip13_Batch01_BXD15_M_StrBatch01
    23BXD16FChip36_Batch02_BXD16_F_StrBatch02
    24BXD16MChip44_Rerun01_BXD16_M_StrRerun01
    25BXD18FChip15_Batch03_BXD18_F_StrBatch03
    26BXD18MChip19_Batch03_BXD18_M_StrBatch03
    27BXD19FChip19_Batch01_BXD19_F_StrBatch01
    28BXD20FChip14_Batch03_BXD20_F_StrBatch03
    29BXD21FChip18_Batch01_BXD21_F_StrBatch01
    30BXD21MChip09_Batch01_BXD21_M_StrBatch01
    31BXD22MChip13_Batch03_BXD22_M_StrBatch03
    32BXD23MChip01_Batch03_BXD23_M_StrBatch03
    33BXD24MChip17_Batch03_BXD24_M_StrBatch03
    34BXD27FChip29_Batch02_BXD27_F_StrBatch02
    35BXD27MChip40_Batch02_BXD27_M_StrBatch02
    36BXD28FChip06_Batch01_BXD28_F_StrBatch01
    37BXD28MChip23_Batch01_BXD28_M_StrBatch01
    38BXD29FChip45_Batch02_BXD29_F_StrBatch02
    39BXD29MChip42_Batch02_BXD29_M_StrBatch02
    40BXD31FChip14_Batch01_BXD31_F_StrBatch01
    41BXD31MChip09_Batch03_BXD31_M_StrBatch03
    42BXD32MChip30_Batch02_BXD32_M_StrBatch02
    43BXD33FChip27_Rerun01_BXD33_F_StrRerun01
    44BXD33MChip34_Batch02_BXD33_M_StrBatch02
    45BXD34FChip03_Batch01_BXD34_F_StrBatch01
    46BXD34MChip07_Batch01_BXD34_M_StrBatch01
    47BXD36FChip22_Batch03_BXD36_F_StrBatch03
    48BXD36MChip24_Batch03_BXD36_M_StrBatch03
    49BXD38FChip17_Batch01_BXD38_F_StrBatch01
    50BXD38MChip24_Batch01_BXD38_M_StrBatch01
    51BXD39MChip20_Batch03_BXD39_M_StrBatch03
    52BXD39FChip23_Batch03_BXD39_F_StrBatch03
    53BXD39MChip43_Rerun01_BXD39_M_StrRerun01
    54BXD40FChip08_Rerun01_BXD40_F_StrRerun01
    55BXD40MChip22_Batch01_BXD40_M_StrBatch01
    56BXD42FChip35_Batch02_BXD42_F_StrBatch02
    57BXD42MChip32_Batch02_BXD42_M_StrBatch02
    58DBA/2JMChip02_Batch01_D2_M_StrBatch01
    59DBA/2JMChip05_Batch03_D2_M_StrBatch03
    +
    +
    + + + + + + +

        About the array platfrom :

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts (many are near duplicates). The array sequences were selected late in 2002 using Unigene Build 107. The array nominally contains the same probe sequence as the 430A and B series. However, we have found that roughy 75000 probes differ from those on A and B arrays.

    +
    + + +

        About data processing:

    + +
    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +
      + +
    • Step 1: We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    • Step 2: We performed a quantile normalization of the log base 2 values for the total set of 105 arrays (processed as two batches) using the same initial steps used by the RMA transform. + +
    • Step 3: We computed the Z scores for each cell value. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We eliminated much of the systematic technical variance introduced by the batches at the probe level. To do this we calculated the ratio of each batch mean to the mean of all batches and used this as a single multiplicative probe-specific batch correction factor. The consequence of this simple correction is that the mean probe signal value for each batch is the same. + +
    • Step 7: Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + +Probe set data from the CHP file: The expression values were +generated using PDNN. The same simple steps described above +were also applied to these values. Every microarray data set +therefore has a mean expression of 8 with a standard deviation of 2. +A 1 unit difference represents roughly a two-fold difference +in expression level. Expression levels below 5 are usually close to +background noise levels.
    + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Robert W. Williams, Ken Manly, and Glenn Rosen from the High Q Foundation and from a P20 +MH62009 (see below for specifics). Samples and arrays were processed by the +Genomics Core at Beth Israel Deaconess Medical Center by Towia Libermann and colleagues.

    + +

        About this text file:

    +

    +This text file originally generated by RWW (prospectively), July 30, 2005. Updated by RWW. +

    + + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/Treg_R_1006.html b/web/dbdoc/Treg_R_1006.html new file mode 100755 index 00000000..92fc3afb --- /dev/null +++ b/web/dbdoc/Treg_R_1006.html @@ -0,0 +1,2120 @@ + +HZI Treg CD4+CD25+ M430v2 (Nov06) RMA + + + + + + + + + + + + + + +
    + + + + + + +
    +

    Helmholtz Center Treg CD4+CD25+ M430v2 (Nov06) RMA + modify this page

    + + +

        Summary:

    + +
    + + + + + + + + + + + + + + + + + + +
    + + + +


    + + +This is the first regulatory T cell (CD4+CD25+) data set generated by Prof. Dr. +Klaus Schughart and colleagues at the Helmholtz Centre for Infection Research. + +Samples were processed using a total of 35 Affymetrix +Mouse Expression 430 2.0 short oligomer microarrays (MOE430 2.0), of which 33 passed stringent +quality control and error checking.

    + +

     

    + +

    This is the first data freeze and the set +is still private. Please contact Dr. Klaus Schughart for access.

    + +

     

    + +

    About the material used to generate this set of data:

    + +

    + +BXD spleen sample pools (from 2-3 mice) were obtained from a pathogen-free mice of the Dutch Mouse Phenomics Consortium (MPC) in Amsterdam. The mice were imported into the central animal +facility at the HZI and kept at a pathogen-free status. The mice were +euthanized using CO2 and spleenocytes prepared. At the +age of preparation, most mice were between 17 and 22 weeks of age.

    + +

    + +FACS sorting was applied to select the +CD4 positive T-cells. These cells were further separated into CD4+CD25+ and +CD4+CD25- pools.

    + +

     

    + +

    + +The BXD genetic reference population of recombinant inbred strains consists of approximately 80 strains. Approximately 800 classical phenotypes from sets of 10 to 70 of these strains been integrated +in the GeneNetwork. + +These data set includes expression values for 18 of the BXD strains made by Benjamin Taylor at the Jackson Laboratoryin the 1970s and 1990s (BXD1 through BXD40, as well as the two parental strains, C57BL/6J and DBA/2J. All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding.

    + +

     

    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Strain

    +
    +

    Sex

    +
    +

    Age

    +
    +

    Date of preparation

    +
    +

    BXD6

    +
    +

    f

    +
    +

    17

    +
    +

    31.01.2006

    +
    +

    BXD6

    +
    +

    m

    +
    +

    18

    +
    +

    31.01.2006

    +
    +

    BXD14

    +
    +

    m

    +
    +

    17

    +
    +

    31.01.2006

    +
    +

    BXD34

    +
    +

    f

    +
    +

    17

    +
    +

    01.02.2006

    +
    +

    BXD40

    +
    +

    f

    +
    +

    17

    +
    +

    01.02.2006

    +
    +

    BXD40

    +
    +

    m

    +
    +

    17

    +
    +

    02.02.2006

    +
    +

    BXD12

    +
    +

    f

    +
    +

    17

    +
    +

    14.02.2006

    +
    +

    BXD2

    +
    +

    f

    +
    +

    17

    +
    +

    14.02.2006

    +
    +

    BXD33

    +
    +

    m

    +
    +

    17

    +
    +

    14.02.2006

    +
    +

    BXD11

    +
    +

    m

    +
    +

    18

    +
    +

    14.02.2006

    +
    +

    BXD18

    +
    +

    f

    +
    +

    17

    +
    +

    15.02.2006

    +
    +

    BXD18

    +
    +

    m

    +
    +

    18

    +
    +

    15.02.2006

    +
    +

    BXD23

    +
    +

    m

    +
    +

    18

    +
    +

    15.02.2006

    +
    +

    BXD9

    +
    +

    f

    +
    +

    21

    +
    +

    05.04.2006

    +
    +

    BXD9

    +
    +

    m

    +
    +

    21

    +
    +

    05.04.2006

    +
    +

    BXD32

    +
    +

    f

    +
    +

    21

    +
    +

    06.04.2006

    +
    +

    BXD32

    +
    +

    m

    +
    +

    22

    +
    +

    06.04.2006

    +
    +

    BXD2

    +
    +

    m

    +
    +

    21

    +
    +

    06.04.2006

    +
    +

    BXD39

    +
    +

    f

    +
    +

    18

    +
    +

    11.04.2006

    +
    +

    BXD33

    +
    +

    f

    +
    +

    19

    +
    +

    11.04.2006

    +
    +

    DBA2/J

    +
    +

    m

    +
    +

    21

    +
    +

    11.04.2006

    +
    +

    BXD21

    +
    +

    f

    +
    +

    19

    +
    +

    12.04.2006

    +
    +

    BXD16

    +
    +

    f

    +
    +

    18

    +
    +

    12.04.2006

    +
    +

    BXD21

    +
    +

    m

    +
    +

    18

    +
    +

    12.04.2006

    +
    +

    DBA/2J

    +
    +

    f

    +
    +

    16

    +
    +

    10.05.2006

    +
    +

    C57BL/6J

    +
    +

    f

    +
    +

    16

    +
    +

    10.05.2006

    +
    +

    BXD39

    +
    +

    m

    +
    +

    17

    +
    +

    10.05.2006

    +
    +

    BXD11

    +
    +

    f

    +
    +

    17

    +
    +

    11.05.2006

    +
    +

    BXD1

    +
    +

    f

    +
    +

    18

    +
    +

    06.07.2006

    +
    +

    BXD36

    +
    +

    f

    +
    +

    16

    +
    +

    06.07.2006

    +
    +

    BXD1

    +
    +

    m

    +
    +

    18

    +
    +

    06.07.2006

    +
    +

    BXD31

    +
    +

    f

    +
    +

    16

    +
    +

    07.07.2006

    +
    +

    BXD9

    +
    +

    m

    +
    +

    15

    +
    +

    07.07.2006

    +
    + +

     

    + +

    About the array platform:

    + +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists +of 992,936 useful 25-nucleotide probes that estimate the expression of +approximately 39,000 transcripts and the majority of known genes and expressed +sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. +The UTHSC group has recently reannotated all probe +sets on this array, producing more accurate data on probe and probe set +targets. All probes were aligned to the most recent assembly of the Mouse +Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets +have been manually curated by Jing +Gu and Rob Williams.

    + +

     

    + +

    About the array set:

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +

    Probe Set ID

    +
    +

    probe_id:

    +
    +

    sample_desc:

    +
    +

    HZI1008 + MOE430 2.0

    +
    +

    HZI1008

    +
    +

    BXD-06f + (f1)

    +
    +

    HZI1009 + MOE430 2.0

    +
    +

    HZI1009

    +
    +

    BXD-06m + (m2)

    +
    +

    HZI1010 + MOE430 2.0

    +
    +

    HZI1010

    +
    +

    BXD-14m + (m3)

    +
    +

    HZI1011 + MOE430 2.0

    +
    +

    HZI1011

    +
    +

    BXD-34f + (f4)

    +
    +

    HZI1013 + MOE430 2.0

    +
    +

    HZI1013

    +
    +

    BXD-40f + (f6)

    +
    +

    HZI1014 + MOE430 2.0

    +
    +

    HZI1014

    +
    +

    BXD-40m + (m7)

    +
    +

    HZI1019 + MOE430 2.0

    +
    +

    HZI1019

    +
    +

    BXD-12f + (f10)

    +
    +

    HZI1015 + MOE430 2.0

    +
    +

    HZI1015

    +
    +

    BXD-02f + (f8)

    +
    +

    HZI1021 + MOE430 2.0

    +
    +

    HZI1021

    +
    +

    BXD-33m + (m11)

    +
    +

    HZI1018 + MOE430 2.0

    +
    +

    HZI1018

    +
    +

    BXD-11m + (m9)

    +
    +

    HZI1022 + MOE430 2.0

    +
    +

    HZI1022

    +
    +

    BXD-18f + (f14)

    +
    +

    HZI1023 + MOE430 2.0

    +
    +

    HZI1023

    +
    +

    BXD-18m + (m13)

    +
    +

    HZI1024 + MOE430 2.0

    +
    +

    HZI1024

    +
    +

    BXD-23m + (m15)

    +
    +

    HZI1026 + MOE430 2.0

    +
    +

    HZI1026

    +
    +

    BXD-09f + (f17)

    +
    +

    HZI1027 + MOE430 2.0

    +
    +

    HZI1027

    +
    +

    BXD-09m + (m16)

    +
    +

    HZI1029 + MOE430 2.0

    +
    +

    HZI1029

    +
    +

    BXD-32f + (f18)

    +
    +

    HZI1030 + MOE430 2.0

    +
    +

    HZI1030

    +
    +

    BXD-32m + (m19)

    +
    +

    HZI1016 + MOE430 2.0

    +
    +

    HZI1016

    +
    +

    BXD-02m + (m20)

    +
    +

    HZI1031 + MOE430 2.0

    +
    +

    HZI1031

    +
    +

    BXD-39f + (f22)

    +
    +

    HZI1020 + MOE430 2.0

    +
    +

    HZI1020

    +
    +

    BXD-33f + (f23)

    +
    +

    HZI1042 + MOE430 2.0

    +
    +

    HZI1042

    +
    +

    DBA/2Jm + (m21)

    +
    +

    HZI1036 + MOE430 2.0

    +
    +

    HZI1036

    +
    +

    BXD-21f + (f25)

    +
    +

    HZI1035 + MOE430 2.0

    +
    +

    HZI1035

    +
    +

    BXD-16f + (f26)

    +
    +

    HZI1037 + MOE430 2.0

    +
    +

    HZI1037

    +
    +

    BXD-21m + (m24)

    +
    +

    HZI1041 + MOE430 2.0

    +
    +

    HZI1041

    +
    +

    DBA/2Jf + (f27)

    +
    +

    HZI1040 + MOE430 2.0

    +
    +

    HZI1040

    +
    +

    C57BL/6Jf + (f28)

    +
    +

    HZI1032 + MOE430 2.0

    +
    +

    HZI1032

    +
    +

    BXD-39m + (m29)

    +
    +

    HZI1017 + MOE430 2.0

    +
    +

    HZI1017

    +
    +

    BXD-11f + (f30)

    +
    +

    HZI1033 + MOE430 2.0

    +
    +

    HZI1033

    +
    +

    BXD-01f + (f32)

    +
    +

    HZI1038 + MOE430 2.0

    +
    +

    HZI1038

    +
    +

    BXD-36f + (f33)

    +
    +

    HZI1034 + MOE430 2.0

    +
    +

    HZI1034

    +
    +

    BXD-01m + (m31)

    +
    +

    HZI1039 + MOE430 2.0

    +
    +

    HZI1039

    +
    +

    BXD-31f + (f34)

    +
    +

    HZI1028 + MOE430 2.0

    +
    +

    HZI1028

    +
    +

    BXD-09m + (m35)

    +
    + +

     

    + +

     

    + +

    About the data processing:

    + +

    This data set was processed using the +RMA protocol. We then calculated the log base 2 of the intensity signal and +subsequently computed the Z scores for each value. We multiplied all Z scores +by 2 and added 8. The consequence of this simple set of transformations is to +produce a set of Z scores that have a mean of 8, a variance of 4, and a +standard deviation of 2. The advantage of this modified Z score is that a +two-fold difference in expression level (probe brightness level) corresponds +approximately to a 1 unit difference.

    + +

     

    + +

    DataDesk was then used to examine the statistical quality of +the data. All except two fulfilled the stringency criteria, except for two arrays +BXD27f and BXD34m which were subsequently excluded from the set.

    + +

     

    + +

    DataDesk allows a rapid detection of subsets of probes that +are particular sensitive to still unknown factors in array processing. Arrays +can then be categorized at the probe level into "reaction classes." A +reaction class is a group of arrays for which the expression of essentially all +probes are colinear over the full range of log2 +values. A single but large group of arrays (n = 32) processed in essentially +the identical manner by a single operator can produce arrays belonging to as +many as four different reaction classes. Reaction classes are NOT related to +strain, age, sex, treatment, or any known biological parameter (technical +replicates can belong to different reaction classes).

    + +

     

    + +

    Acknowledgment:

    + +

    These Data were generated by Prof. Dr. Klaus +Schughart (Department of Experimental Mouse Genetics) and Dr. Dunja Bruder (Research Group Immune +Regulation) at the Helmholtz Center for Infection research with the help of Dr. +Lothar Gröbe (FACS sorting, +Research Group Mucosal Immunity).

    + +

    Funding was provided by the +Helmholtz-Association and publicly funded research projects awarded to Klaus +Schughart and Dunja Bruder.

    + +

     

    + +

     

    + +

    This text file was generated by KS on +November 18, 2006.

    + +

     

    + +

     

    + +
    +
    + +
    + + + +
    + +
    + + diff --git a/web/dbdoc/U74Av2SScore_Apr05.html b/web/dbdoc/U74Av2SScore_Apr05.html new file mode 100755 index 00000000..6b85cf2c --- /dev/null +++ b/web/dbdoc/U74Av2SScore_Apr05.html @@ -0,0 +1,414 @@ + +

    U74Av2 SScore April 05 / WebQTL + + + + + + + + + + + + + + + +
    + + + + + + + +
    + + +

    + +UTHSC Brain mRNA U74Av2 (Apr05) SScore + +modify this page

    +

        Summary:

    + +

    +RECOMMENDED BRAIN DATA SET. This April 05 data freeze provides estimates of mRNA expression in brains of BXD recombinant inbred mice measured using Affymetrix U74Av2 microarrays. Data were generated at the University of Tennessee Health Science Center (UTHSC). Over 300 brain samples from 35 strains were hybridized in small pools (n=3) to 100 arrays. Data were processed using a new method called the Heritability Weighted Transform (HWT) developed by Kenneth F. Manly and Robert W. Williams. Our initial results demonstrate that the HWT1PM transform generates estimates of gene expression that yield more significant QTLs than RMA, dChip, PDNN, or MAS 5. +

    +
    + + +

        About the cases used to generate this set of data:

    +

    +This data set includes estimate of gene expression for 35 genetically uniform lines of mice: C57BL/6J (B6, or simply B), DBA/2J (D2 or D), their B6D2 F1 intercross, and 32 BXD recombinant inbred (RI) strains derived by crossing female B6 mice with male D2 mice and then inbreeding progeny for over 21 generations. This set of RI strains is a remarkable resource because many of these strains have been extensively phenotyped for hundreds of interesting traits over a 25-year period. A significant advantage of this RI set is that the two parental strains (B6 and D2) have both been extensively sequenced and are known to differ at approximately 1.8 million SNPs. Coding variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be rapidly identified in this particular RI set.

    + +

    BXD1 through BXD32 were produced by Benjamin A. Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Taylor, but from a second set of crosses initiated in the early 1990s. These strains are all available from the Jackson Laboratory, Bar Harbor, Maine. BXD43 through BXD99 were produced by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W. Williams in the late 1990s and early 2000s using advanced intercross progeny (Peirce et al. 2004). Only two of these incipient strains are included in the current database (BXD67 and BXD68).

    + +

    In this mRNA expression database we generally used progeny of stock obtained from The Jackson Laboratory between 1999 and 2001. Animals were generated in-house at the University of Alabama by John Mountz and Hui-Chen Hsu and at the University of Tennessee Health Science Center by Lu Lu and Robert Williams. +

    + + +
    +The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from three mice. +
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    + Age +
    +
    Strain + +
    + Age +
    +
    +
    + 8 Wks +
    +
    +
    + 20 Wks +
    +
    +
    + 52 Wks +
    +
    +
    + 8 Wks +
    +
    +
    + 20 Wks +
    +
    +
    + 52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2)
    B6D2F1 (F1) BXD1
    BXD2BXD5
    BXD6 BXD8
    BXD9BXD11
    BXD12 BXD13
    BXD14 BXD15
    BXD16 BXD18
    BXD19BXD21
    BXD22 BXD23
    BXD24 BXD25
    BXD27 BXD28
    BXD29 BXD31
    BXD32BXD33
    BXD34 BXD38
    BXD39 BXD40
    BXD42 BXD67 (F8)
    BXD68 (F9)
    + + + +

        How to download these data:

    +

    +All standard Affymetrix file types (DAT, CEL, RPT, CHP, TXT) can be downloaded for this data set by selecting the strain names in the table above and then selecting the appropriate file, or download the particular transform in an Excel work book with both individual arrays and strain means and SEMs. Please refer to the Usage Conditions and Limitations page and the References page for background on appropriate use and citations of these data. +

    + + +

         + +About the samples used to generate these data:

    + +

    +Each array was hybridized with labeled cRNA generated from a pool of three brains from adult animals usually of the same age and always of the same sex. The brain region included most of the forebrain and midbrain, bilaterally. However, the sample excluded the olfactory bulbs, retinas, or the posterior pituitary (all formally part of the forebrain). A total of 100 such pooled samples were arrayed: 74 from females and 26 from males. Animals ranged in age from 56 to 441 days, usually with a balanced design: one pool at approximately 8 weeks, one pool at approximately 20 weeks, and one pool at approximately 1 year. Strain averages of mRNA expression level are therefore typically based on three pooled biological replicate arrays. This data set does not incorporate statistical adjustment for possible effects of age and sex. Users can select the strain symbol in the table above to review details about the specific cases and array processing center (DP = Divyen Patel at Genome Explorations, Inc; TS = Thomas Sutter at University of Memphis). You can also click on the individual symbols (males or females) to view the array image. +

    + + +

         +About the array platform:

    + +

    +Affymetrix U74Av2 GeneChip: The expression data were generated using 100 U74Av2 arrays. The chromosomal locations of U74Av2 probe sets were determined by BLAT analysis of concatenated probe sequences using the Mouse Genome Sequencing Consortium May 2004 (mm5) assembly. This BLAT analysis is performed periodically by Yanhua Qu as each new build of the mouse genome is released (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank Yan Cui (UTHSC) for allowing us to use his Linux cluster to perform this analysis. It is possible to confirm the BLAT alignment results yourself simply by clicking on the Verify UCSC and Verify Emsembllinks in the Trait Data and Editing Form (see buttons to the right side of the Location line). + +

    + +

    +Most probe sets on the U74Av2 array consist of a total of 32 probes, divided into 16 perfect match (PM) probes and 16 mismatch controls (MM). Each set of these probe has an identifier code that includes a unique number, an underscore character, and several suffix characters that highlight design features. The most common probe set suffix is at. This code indicates that the probes should hybridize relatively selectively with the complementary anti-sense target (i.e., the complemenary RNA) produced from a single gene. Other codes include:

    + +
  • f_at (sequence family): Some probes in this probe set will hybridize to identical and/or slightly different sequences of related gene transcripts.
  • + +
  • s_at (similarity constraint): All Probes in this probe set target common sequences found in transcripts from several genes.
  • + +
  • g_at (common groups): Some probes in this set target identical sequences in multiple genes and some target unique sequences in the intended target gene.
  • + +
  • r_at (rules dropped): Probe sets for which it was not possible to pick a full set of unique probes using the Affymetrix probe selection rules. Probes were picked after dropping some of the selection rules.
  • + +
  • i_at (incomplete): Designates probe sets for which there are fewer than the standard numbers of unique probes specified in the design (16 perfect match for the U74Av2).
  • + +
  • st (sense target) : Designates a sense target; almost always generated in error.
  • + +

    Descriptions for the probe set extensions were taken from the Affymetrix GeneChip Expression Analysis Fundamentals. +

    + +

        About data processing:

    +
    + + +

    HWT1PM is an acronym for heritability weighted transform version 1, perfect match probes only.

    + +

    Most Affmetrix transforms generate a single consensus estimate of expression based on as many as 32 probes that hybridize with variable selectivity to the target transcript. Each probe could be given an equal weight to derive a consensus estimate of expression (essentially one vote per probe). However, the hybridization performance of probes and their ability to generate a biologically meaningful estimate of mRNA level is highly variable and idiosyncratic; depending on melting temperature, stacking energy, the mixture of background transcripts, and characteristics of reactions used to extract mRNA and to generated labeled cRNA. A simple way to evaluate the performance of probes is to compute their heritabiity within a large data set.

    + +

    Heritability is essentially the ratio of genetic variance to the total variance. A highly informative probe is one with little variability within strain but a great deal of variability among strains; essentially the main effect of "strain" in an analysis of variance (ANOVA). Heritability estimated in this way is necessary but not sufficient to define a QTL. To define a QTL, the variation must also correlate with genotypes at some genomic location(s). + +We have studied 35 strains and can therefore estimate the "between-strain variance." We have also typically performed three biological replicates within strain. Therefore, we can estimate genetic and non-genetic sources of variance. In our study we have minimized non-genetic variance by pooling samples and by rearing all mice in a standard laboratory environment. We are in a good position to estimate these two variance components and compute the heritability of the 490,000 probes on the U74Av2 array. All of these estimates, both for the perfect match (PM) and mismatch (MM) probes, are provided in the PROBE INFORMATION table associated with every transcript (click on the work "Probe" in any of the TRAIT DATA pages). + +

    Estimation of Heritability: Individual probe intensities from Affymetrix U74Av2 microarrays were log2-transformed and normalized to a standard array-wide mean of 8 units and a standard deviation of 2 units as described for several other data sets (e.g., UTHSC Brain mRNA U74Av2 (Dec03) MAS5).

    + +

    For each probe, the mean squared deviations within strains (MSw) and the mean square deviation between strains (MSb) were calculated by ANOVA. Raw heritability was estimated as (MSb-MSw)/(n x MSt), where n is the average number of replicates per strain (usually 3) and MSt is total variance in the 100 array data set. These particular raw heritability estimates are provided in the PROBE INFORMATION table for each transcript (click on the blue word "Probe" in any of the TRAIT DATA pages and then scroll to the far right column labeled 100brains h2). Note, these raw heritabilities may have negative values because they are calculated from the difference of two estimates subject to sampling error.

    + +

    Adjusted heritability was derived from raw heritability by assigning values of 0 and 1, respectively, to raw heritability values below 0.0 or above 1.0. Weights for each probe were calculated by dividing the adjusted heritability by the mean adjusted heritability for all probes in the probeset. In essence this divides the 16 total votes (there are 16 PM probes per probe set) on the basis of their heritability scores. For example. If 8 of the probes had a heritability of 0.5, 4 had a heritability of 0.25, and 4 had a heritability of 0, then these three groups would get weights of 1.6, 0.8, and 0, respectively in generating the consensus estimate of expression level. Expression estimates for each probe set were calculated as the weighted average of those probe-specific means, using the heritability weights just described. The final expression estimates for each strain were calculated as an unweighted average of all biological replicates within each strain. +

    + +

    General Comment: From a statistical point of view the 100 arrays data set we are working with has four dimensions. The first dimension is genetic, and is formed by the set of genetically distinct inbred strains (n = 35) and their genotypes. The second dimension in non-genetic and is represented by the replicate samples within each isogenic line. The third dimension is formed by the multiple probes that make up each probe set. There are up to 32 probes per probe set, but in this transform we have focused attention only on the 16 PM probes. Finally, the fourth dimension is represented by the 12422 probe sets that target different transcripts. For genetic analysis and QTL mapping, dimensions 2 and 3 must be collapsed into single estimate of mean gene expression for each strain that can be compared with genotypes (dimension 1). Heritability is determined by the relative expression variance contributed by dimensions 1 and 2. The HWT1PM method uses the information from dimensions 1 and 2 to define weights that allow dimension 3 to be collapsed using a weighted average. Dimension 2 is still collapsed using a simple average.

    +
    + + +

         + +Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. We thank Guomin Zhou for generating advanced intercross stock used to produce most of the new BXD RI strains. +

    + +

        Information about this text file:

    +

    +This text file originally generated by RWW and KFM, December 2003. Updated by RWW, Oct 31, Nov 6, 2004 and by KFM Nov 8, 2004. + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/UAB_DrosWB_LC_RMA_1009.html b/web/dbdoc/UAB_DrosWB_LC_RMA_1009.html new file mode 100755 index 00000000..5be4e8dd --- /dev/null +++ b/web/dbdoc/UAB_DrosWB_LC_RMA_1009.html @@ -0,0 +1,133 @@ + +UAB Whole body D.m. mRNA Lead control (Oct09) RMA + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UAB Whole body D.m. mRNA Lead control (Oct09) RMA (accession number: GN249) + modify this page

    + +
    +

    Summary:

    +

    The genetics of gene expression in recombinant inbred lines (RILs) can be mapped as expression +quantitative trait loci (eQTLs). So-called ‘‘genetical genomics’’ studies have identified locally acting +eQTLs (cis-eQTLs) for genes that show differences in steady-state RNA levels. These studies have also +identified distantly acting master-modulatory trans-eQTLs that regulate tens or hundreds of transcripts +(hotspots or transbands). We expand on these studies by performing genetical genomics experiments in +two environments in order to identify trans-eQTL thatmight be regulated by developmental exposure to +the neurotoxin lead. Flies from each of 75 RIL were raised from eggs to adults on either control food +(made with 250 mM sodium acetate), or lead-treated food (made with 250 mM lead acetate, PbAc). RNA +expression analyses of whole adult male flies (5–10 days old) were performed with Affymetrix DrosII +whole genome arrays (18,952 probesets). Among the 1389 genes with cis-eQTL, there were 405 genes +unique to control flies and 544 genes unique to lead-treated ones (440 genes had the same cis-eQTLs in +both samples). There are 2396 genes with trans-eQTL which mapped to 12major transbands with greater +than 95 genes. Permutation analyses of the strain labels but not the expression data suggests that the +total number of eQTL and the number of transbands are more important criteria for validation than the +size of the transband. Two transbands, one located on the 2nd chromosome and one on the 3rd +chromosome, co-regulate 33 lead-induced genes, many of which are involved in neurodevelopmental +processes. For these 33 genes, rather than allelic variation at one locus exerting differential effects in two +environments, we found that variation at two different loci are required for optimal effects on leadinduced +expression.

    +

    Materials and Methods:

    +

    The 75 Drosophila roo lines were obtained from Trudy Mackay. +To avoid batch effects (Zakharkin et al., 2005), the growth of the +flies, the RNA extraction and the order of running the arrays, and +the fluidics well used for each array was completely randomized +for the 75 lines in two treatments. Control food consisted of +standard cornmeal, agar, sugar, yeast, and 250 mM NaAc (Ashburner, +1989). Lead-contaminated food consisted of standard food +plus 250 mM PbAc (lead exposure at this concentration has been +shown to affect locomotion in adults; Hirsch et al., 2003). Flies +from each of the 75 roo lines (20 males and 20 females) were +placed in a vial with 10 ml of food (control or PbAc) for 3 days at +25 8C and allowed to lay eggs; the adults were subsequently +discarded. Newly enclosed adult males were placed on the same +medium (control or PbAc) as had been present during pre-adult +development for 5–10 days before being used as subjects. Male +progeny were pooled from each vial (65 males per vial) and frozen +at 80 8C. RNA samples were extracted in groups of 24 and arrays +hybridization run in groups of 4 with 3 groups run per day. Effects +of RNA extraction and array hybridizations day were examined by +ANOVA and Support Vector approaches and no obvious day effects +were observed.

    +

    Data Source Acknowledgements:

    +

    +

    This work was supported by the Environmental Health Sciences +Center in Molecular and Cellular Toxicology with Human +Applications Grant P30 ES06639 at Wayne State University, NIH +R01 grants ES012933 and CA105349 to D.M.R., DK071073 to X.L., +and UAB-CNGI grant to M.D.G. We thank H. Ghiradella for critical +comments on the manuscript. The microarray data is freely +available to the public, in the MIAME format in 150 CEL files, in the +GEO database under GSE 11695.

    Please cite this article in press as: Ruden DM, et al. Genetical toxicogenomics in Drosophila identifies master-modulatory loci that are +regulated by developmental exposure to lead, Neurotoxicology (2009), doi:10.1016/j.neuro.2009.08.011

    Full Article

    +
    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UAB_DrosWB_LE_RMA_1009.html b/web/dbdoc/UAB_DrosWB_LE_RMA_1009.html new file mode 100755 index 00000000..095783f7 --- /dev/null +++ b/web/dbdoc/UAB_DrosWB_LE_RMA_1009.html @@ -0,0 +1,132 @@ + +UAB Whole body D.m. mRNA Lead exposed (Oct09) RMA + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UAB Whole body D.m. mRNA Lead exposed (Oct09) RMA (accession number: GN250) + modify this page

    + +
    +

    Summary:

    +

    The genetics of gene expression in recombinant inbred lines (RILs) can be mapped as expression +quantitative trait loci (eQTLs). So-called ‘‘genetical genomics’’ studies have identified locally acting +eQTLs (cis-eQTLs) for genes that show differences in steady-state RNA levels. These studies have also +identified distantly acting master-modulatory trans-eQTLs that regulate tens or hundreds of transcripts +(hotspots or transbands). We expand on these studies by performing genetical genomics experiments in +two environments in order to identify trans-eQTL thatmight be regulated by developmental exposure to +the neurotoxin lead. Flies from each of 75 RIL were raised from eggs to adults on either control food +(made with 250 mM sodium acetate), or lead-treated food (made with 250 mM lead acetate, PbAc). RNA +expression analyses of whole adult male flies (5–10 days old) were performed with Affymetrix DrosII +whole genome arrays (18,952 probesets). Among the 1389 genes with cis-eQTL, there were 405 genes +unique to control flies and 544 genes unique to lead-treated ones (440 genes had the same cis-eQTLs in +both samples). There are 2396 genes with trans-eQTL which mapped to 12major transbands with greater +than 95 genes. Permutation analyses of the strain labels but not the expression data suggests that the +total number of eQTL and the number of transbands are more important criteria for validation than the +size of the transband. Two transbands, one located on the 2nd chromosome and one on the 3rd +chromosome, co-regulate 33 lead-induced genes, many of which are involved in neurodevelopmental +processes. For these 33 genes, rather than allelic variation at one locus exerting differential effects in two +environments, we found that variation at two different loci are required for optimal effects on leadinduced +expression.

    +

    Materials and Methods:

    +

    The 75 Drosophila roo lines were obtained from Trudy Mackay. +To avoid batch effects (Zakharkin et al., 2005), the growth of the +flies, the RNA extraction and the order of running the arrays, and +the fluidics well used for each array was completely randomized +for the 75 lines in two treatments. Control food consisted of +standard cornmeal, agar, sugar, yeast, and 250 mM NaAc (Ashburner, +1989). Lead-contaminated food consisted of standard food +plus 250 mM PbAc (lead exposure at this concentration has been +shown to affect locomotion in adults; Hirsch et al., 2003). Flies +from each of the 75 roo lines (20 males and 20 females) were +placed in a vial with 10 ml of food (control or PbAc) for 3 days at +25 8C and allowed to lay eggs; the adults were subsequently +discarded. Newly enclosed adult males were placed on the same +medium (control or PbAc) as had been present during pre-adult +development for 5–10 days before being used as subjects. Male +progeny were pooled from each vial (65 males per vial) and frozen +at 80 8C. RNA samples were extracted in groups of 24 and arrays +hybridization run in groups of 4 with 3 groups run per day. Effects +of RNA extraction and array hybridizations day were examined by +ANOVA and Support Vector approaches and no obvious day effects +were observed.

    +

    Data Source Acknowledgements:

    +

    +

    This work was supported by the Environmental Health Sciences +Center in Molecular and Cellular Toxicology with Human +Applications Grant P30 ES06639 at Wayne State University, NIH +R01 grants ES012933 and CA105349 to D.M.R., DK071073 to X.L., +and UAB-CNGI grant to M.D.G. We thank H. Ghiradella for critical +comments on the manuscript. The microarray data is freely +available to the public, in the MIAME format in 150 CEL files, in the +GEO database under GSE 11695.

    Please cite this article in press as: Ruden DM, et al. Genetical toxicogenomics in Drosophila identifies master-modulatory loci that are +regulated by developmental exposure to lead, Neurotoxicology (2009), doi:10.1016/j.neuro.2009.08.011

    Full Article

    +
    +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BDF2_LIVER_1999.html b/web/dbdoc/UCLA_BDF2_LIVER_1999.html new file mode 100755 index 00000000..fe28fa44 --- /dev/null +++ b/web/dbdoc/UCLA_BDF2_LIVER_1999.html @@ -0,0 +1,114 @@ + + +UCLA BDF2 Liver (1999) mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BDF2 Liver (1999) mlratio +modify this page

    Accession number: GN169

    + +

    This is one of the first expression genetic data sets. The methods are similar, but probably not identical to those described below for more recent data sets generated by Jake Lusis and Eric Schadt. + +

    General information and background for all UCLA/Rosetta data sets: + +

    [This paragraph applies specifically to BDF2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of DBA/2J (D2) mice to generate F2 progeny (BXD F2, also known as BDF2, and not the same as BXD recombinant inbred strains). For some further details see Schadt and colleagues (2003. + +

    [This paragraph applies specifically to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

    [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

    [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

    All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

    Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

    Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

    Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

    This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
    Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
    2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + +

    +Contributors:
    +Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, Drake TA, Lusis AJ +

    +Citation:
    +Wang S, Yehya N, Schadt EE, Wang H et al. Genetic and genomic analysis of a fat mass trait with complex inheritance reveals marked sex specificity. PLoS Genet 2006 Feb;2(2):e15. PMID: 16462940
    +Yang X, Schadt EE, Wang S, Wang H et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 2006 Aug;16(8):995-1004. PMID: 16825664
    +Ghazalpour A, Doss S, Zhang B, Wang S et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet 2006 Aug 18;2(8):e130. PMID: 16934000
    +Chen Y, Zhu J, Lum PY, Yang X et al. Variations in DNA elucidate molecular networks that cause disease. Nature 2008 Mar 27;452(7186):429-35. PMID: 18344982 + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHF2_ADIPOSE_0605.html b/web/dbdoc/UCLA_BHF2_ADIPOSE_0605.html new file mode 100755 index 00000000..13f6a806 --- /dev/null +++ b/web/dbdoc/UCLA_BHF2_ADIPOSE_0605.html @@ -0,0 +1,95 @@ + +UCLA BHF2 Adipose (June05) mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BHF2 Adipose (June05) mlratio +modify this page

    Accession number: GN165

    + + +UCLA BHF2 Liver mRNA V2 mlratio Database (June/05 Freeze) +

    +GEO Information Link +

    +Summary:
    +This June 2005 data freeze provides estimate of mRNA expression in (adult?) brains of F2 intercross mice (C57BL/6J x C3H/HeJ) on ApoE null backgrouds, measured using Agilent microarray pairs. Data were generated at The Univesity of California Los Angeles (UCLA), by Jake Lusis and Thomas Drake. Data were processed using mlratio method developed by He and colleagues (2003 -- Paper with He and Schadt). +

    +The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat "Western" diet from 8-24 weeks of age. These have been genotyped for QTL mapping, and various phenotypes measured. +

    + +Adipose from 295 F2 female and male mice (animals fed a high fat "Western" diet from 8-24 weeks of age.) derived from C57BL/6J and C3H/HeJ parental strains with both on ApoE null backgrounds. All samples were compared to a common pool created from equal portions of RNA from each of the samples. Keywords=Genetics of Gene Expression Keywords=C57BL/6J Keywords=C3H/HeJ +

    +Contributors:
    +Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, Drake TA, Lusis AJ +

    +Citation:
    +Yang X, Schadt EE, Wang S, Wang H et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 2006 Aug;16(8):995-1004. PMID: 16825664
    +Chen Y, Zhu J, Lum PY, Yang X et al. Variations in DNA elucidate molecular networks that cause disease. Nature 2008 Mar 27;452(7186):429-35. PMID: 18344982
    +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHF2_ADIPOSE_FEMALE.html b/web/dbdoc/UCLA_BHF2_ADIPOSE_FEMALE.html new file mode 100755 index 00000000..074678ce --- /dev/null +++ b/web/dbdoc/UCLA_BHF2_ADIPOSE_FEMALE.html @@ -0,0 +1,207 @@ + + +UCLA BHF2 Adipose Female mlratio + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UCLA BHF2 Adipose Female mlratio modify this page

    Accession number: GN197

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHF2_ADIPOSE_MALE.html b/web/dbdoc/UCLA_BHF2_ADIPOSE_MALE.html new file mode 100755 index 00000000..bc63c5cf --- /dev/null +++ b/web/dbdoc/UCLA_BHF2_ADIPOSE_MALE.html @@ -0,0 +1,207 @@ + + +UCLA BHF2 Adipose Male mlratio + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UCLA BHF2 Adipose Male mlratio modify this page

    Accession number: GN196

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHF2_BRAIN_0605.html b/web/dbdoc/UCLA_BHF2_BRAIN_0605.html new file mode 100755 index 00000000..c9cc9c6f --- /dev/null +++ b/web/dbdoc/UCLA_BHF2_BRAIN_0605.html @@ -0,0 +1,92 @@ + +UCLA BHF2 Brain (June05) mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BHF2 Brain (June05) mlratio +modify this page

    Accession number: GN166

    + + +UCLA BHF2 Brain mRNA V2 mlratio Database (June/05 Freeze) +

    +GEO Information Link +

    +Summary:
    +This June 2005 data freeze provides estimate of mRNA expression in (adult?) brains of F2 intercross mice (C57BL/6J x C3H/HeJ) on ApoE null backgrouds, measured using Agilent microarray pairs. Data were generated at The Univesity of California Los Angeles (UCLA), by Jake Lusis and Thomas Drake. Data were processed using mlratio method developed by He and colleagues (2003 -- Paper with He and Schadt). +

    +The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat "Western" diet from 8-24 weeks of age. These have been genotyped for QTL mapping, and various phenotypes measured. +

    +Brain tissue from 249 F2 female and male mice (animals fed a high fat "Western" diet from 8-24 weeks of age.) derived from C57BL/6J and C3H/HeJ parental strains with both on ApoE null backgrounds. All samples were compared to a common pool created from equal portions of RNA from each of the samples. Keywords=Genetics of Gene Expression Keywords=C57BL/6J Keywords=C3H/HeJ +

    +Contributors:
    +Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, Drake TA, Lusis AJ +

    +Citation:
    +Yang X, Schadt EE, Wang S, Wang H et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 2006 Aug;16(8):995-1004. PMID: 16825664

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHF2_BRAIN_FEMALE.html b/web/dbdoc/UCLA_BHF2_BRAIN_FEMALE.html new file mode 100755 index 00000000..2fb2ad22 --- /dev/null +++ b/web/dbdoc/UCLA_BHF2_BRAIN_FEMALE.html @@ -0,0 +1,106 @@ + + +UCLA BHF2 Brain Female mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BHF2 Brain Female mlratio +modify this page

    Accession number: GN199

    + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHF2_BRAIN_MALE.html b/web/dbdoc/UCLA_BHF2_BRAIN_MALE.html new file mode 100755 index 00000000..e0071fc4 --- /dev/null +++ b/web/dbdoc/UCLA_BHF2_BRAIN_MALE.html @@ -0,0 +1,106 @@ + + +UCLA BHF2 Brain Male mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BHF2 Brain Male mlratio +modify this page

    Accession number: GN198

    + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHF2_LIVER_0605.html b/web/dbdoc/UCLA_BHF2_LIVER_0605.html new file mode 100755 index 00000000..c6ecf7d2 --- /dev/null +++ b/web/dbdoc/UCLA_BHF2_LIVER_0605.html @@ -0,0 +1,121 @@ + +UCLA BHF2 Liver (June05) mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BHF2 Liver (June05) mlratio +modify this page

    Accession number: GN167

    + + +UCLA BHF2 Liver mRNA V2 mlratio Database (June/05 Freeze) +

    +GEO Information Link +

    + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + +

      +Contributors:
      +Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, Drake TA, Lusis AJ +

      +Citation:
      +Wang S, Yehya N, Schadt EE, Wang H et al. Genetic and genomic analysis of a fat mass trait with complex inheritance reveals marked sex specificity. PLoS Genet 2006 Feb;2(2):e15. PMID: 16462940
      +Yang X, Schadt EE, Wang S, Wang H et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 2006 Aug;16(8):995-1004. PMID: 16825664
      +Ghazalpour A, Doss S, Zhang B, Wang S et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet 2006 Aug 18;2(8):e130. PMID: 16934000
      +Chen Y, Zhu J, Lum PY, Yang X et al. Variations in DNA elucidate molecular networks that cause disease. Nature 2008 Mar 27;452(7186):429-35. PMID: 18344982 + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHF2_LIVER_FEMALE.html b/web/dbdoc/UCLA_BHF2_LIVER_FEMALE.html new file mode 100755 index 00000000..a2a5b444 --- /dev/null +++ b/web/dbdoc/UCLA_BHF2_LIVER_FEMALE.html @@ -0,0 +1,107 @@ + + +UCLA BHF2 Liver Female mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BHF2 Liver Female mlratio +modify this page

    Accession number: GN201

    + + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHF2_LIVER_MALE.html b/web/dbdoc/UCLA_BHF2_LIVER_MALE.html new file mode 100755 index 00000000..b09a2a49 --- /dev/null +++ b/web/dbdoc/UCLA_BHF2_LIVER_MALE.html @@ -0,0 +1,106 @@ + + +UCLA BHF2 Liver Male mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BHF2 Liver Male mlratio +modify this page

    Accession number: GN200

    + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHF2_MUSCLE_0605.html b/web/dbdoc/UCLA_BHF2_MUSCLE_0605.html new file mode 100755 index 00000000..9b60de79 --- /dev/null +++ b/web/dbdoc/UCLA_BHF2_MUSCLE_0605.html @@ -0,0 +1,111 @@ + +UCLA BHF2 Muscle (June05) mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BHF2 Muscle (June05) mlratio +modify this page

    Accession number: GN168

    + + +UCLA BHF2 Muscle mRNA V2 mlratio Database (June/05 Freeze) +

    +GEO Information Link +

    + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + +

      +Citation:
      +Yang X, Schadt EE, Wang S, Wang H et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 2006 Aug;16(8):995-1004. PMID: 16825664 +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHF2_MUSCLE_FEMALE.html b/web/dbdoc/UCLA_BHF2_MUSCLE_FEMALE.html new file mode 100755 index 00000000..7eb32c9d --- /dev/null +++ b/web/dbdoc/UCLA_BHF2_MUSCLE_FEMALE.html @@ -0,0 +1,106 @@ + + +UCLA BHF2 Muscle Female mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BHF2 Muscle Female mlratio +modify this page

    Accession number: GN203

    + + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHF2_MUSCLE_MALE.html b/web/dbdoc/UCLA_BHF2_MUSCLE_MALE.html new file mode 100755 index 00000000..d0bb9606 --- /dev/null +++ b/web/dbdoc/UCLA_BHF2_MUSCLE_MALE.html @@ -0,0 +1,106 @@ + + +UCLA BHF2 Muscle Male mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BHF2 Muscle Male mlratio +modify this page

    Accession number: GN202

    + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHHBF2_ADIPOSE_2005.html b/web/dbdoc/UCLA_BHHBF2_ADIPOSE_2005.html new file mode 100755 index 00000000..2b701454 --- /dev/null +++ b/web/dbdoc/UCLA_BHHBF2_ADIPOSE_2005.html @@ -0,0 +1,104 @@ + + +UCLA BHHBF2 Adipose (2005) mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    UCLA BHHBF2 Adipose (2005) mlratio +modify this page

    Accession number: GN174

    + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHHBF2_ADIPOSE_FEMALE.html b/web/dbdoc/UCLA_BHHBF2_ADIPOSE_FEMALE.html new file mode 100755 index 00000000..bd8f7cca --- /dev/null +++ b/web/dbdoc/UCLA_BHHBF2_ADIPOSE_FEMALE.html @@ -0,0 +1,105 @@ + +UCLA BHHBF2 Adipose Female Only + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BHHBF2 Adipose Female Only +modify this page

    Accession number: GN181

    + + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003). Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHHBF2_ADIPOSE_MALE.html b/web/dbdoc/UCLA_BHHBF2_ADIPOSE_MALE.html new file mode 100755 index 00000000..797d15a7 --- /dev/null +++ b/web/dbdoc/UCLA_BHHBF2_ADIPOSE_MALE.html @@ -0,0 +1,106 @@ + + +UCLA BHHBF2 Adipose Male Only + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BHHBF2 Adipose Male Only +modify this page

    Accession number: GN180

    + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHHBF2_BRAIN_2005.html b/web/dbdoc/UCLA_BHHBF2_BRAIN_2005.html new file mode 100755 index 00000000..aa13939f --- /dev/null +++ b/web/dbdoc/UCLA_BHHBF2_BRAIN_2005.html @@ -0,0 +1,207 @@ + + +UCLA BHHBF2 Brain (2005) mlratio ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UCLA BHHBF2 Brain (2005) mlratio ** modify this page

    Accession number: GN175

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHHBF2_BRAIN_FEMALE.html b/web/dbdoc/UCLA_BHHBF2_BRAIN_FEMALE.html new file mode 100755 index 00000000..9c199b71 --- /dev/null +++ b/web/dbdoc/UCLA_BHHBF2_BRAIN_FEMALE.html @@ -0,0 +1,207 @@ + + +UCLA BHHBF2 Brain Female Only ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UCLA BHHBF2 Brain Female Only ** modify this page

    Accession number: GN183

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHHBF2_BRAIN_MALE.html b/web/dbdoc/UCLA_BHHBF2_BRAIN_MALE.html new file mode 100755 index 00000000..2e8f97eb --- /dev/null +++ b/web/dbdoc/UCLA_BHHBF2_BRAIN_MALE.html @@ -0,0 +1,207 @@ + + +UCLA BHHBF2 Brain Male Only ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UCLA BHHBF2 Brain Male Only ** modify this page

    Accession number: GN182

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHHBF2_LIVER_2005.html b/web/dbdoc/UCLA_BHHBF2_LIVER_2005.html new file mode 100755 index 00000000..84373f61 --- /dev/null +++ b/web/dbdoc/UCLA_BHHBF2_LIVER_2005.html @@ -0,0 +1,207 @@ + + +UCLA BHHBF2 Liver (2005) mlratio ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UCLA BHHBF2 Liver (2005) mlratio ** modify this page

    Accession number: GN176

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHHBF2_LIVER_FEMALE.html b/web/dbdoc/UCLA_BHHBF2_LIVER_FEMALE.html new file mode 100755 index 00000000..dbdef4cc --- /dev/null +++ b/web/dbdoc/UCLA_BHHBF2_LIVER_FEMALE.html @@ -0,0 +1,207 @@ + + +UCLA BHHBF2 Liver Female Only ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UCLA BHHBF2 Liver Female Only ** modify this page

    Accession number: GN185

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHHBF2_LIVER_MALE.html b/web/dbdoc/UCLA_BHHBF2_LIVER_MALE.html new file mode 100755 index 00000000..b6c2d42f --- /dev/null +++ b/web/dbdoc/UCLA_BHHBF2_LIVER_MALE.html @@ -0,0 +1,207 @@ + + +UCLA BHHBF2 Liver Male Only ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UCLA BHHBF2 Liver Male Only ** modify this page

    Accession number: GN184

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHHBF2_MUSCLE_2005.html b/web/dbdoc/UCLA_BHHBF2_MUSCLE_2005.html new file mode 100755 index 00000000..31984553 --- /dev/null +++ b/web/dbdoc/UCLA_BHHBF2_MUSCLE_2005.html @@ -0,0 +1,207 @@ + + +UCLA BHHBF2 Muscle (2005) mlratio ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UCLA BHHBF2 Muscle (2005) mlratio ** modify this page

    Accession number: GN177

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHHBF2_MUSCLE_FEMALE.html b/web/dbdoc/UCLA_BHHBF2_MUSCLE_FEMALE.html new file mode 100755 index 00000000..0127007d --- /dev/null +++ b/web/dbdoc/UCLA_BHHBF2_MUSCLE_FEMALE.html @@ -0,0 +1,204 @@ + + +UCLA BHHBF2 Muscle Female Only ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UCLA BHHBF2 Muscle Female Only modify this page

    Accession number: GN187

    +

    + +Data Status: Open data. Please cite: van Nas A, Ingram-Drake L, Sinsheimer JS, Wang SS, Schadt EE, Drake T, Lusis AJ (2010) Expression quantitative trait loci: replication, tissue- and sex-specificity in mice. Genetics 185:1059-1068 (PMID: 20439777 + +

    + +

    Summary:

    + +
    +

    +This is a sex-specific subset of data published by van Nas and colleagues. They used an Agilent array to measure expression of most genes (~24,000 60-mer probes). The data are described more fully in the paper and in the GEO GSE data sets: Expression profiling of Muscle tissue from C57BL/6J X C3H/HeJ)F2 and (C3H/HeJ X C57BL/6J)F2

    + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    This is a sex-specific subset of the original data. Please see Gene Expression Omnibus data set GSE12795 for details.

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Muscle from F2 intercross progeny were generated by intercrossing F1 mice. Mice were fed chow diet containing 4% fat (Ralston-Purina Co., St. Louis, MO) until 8 weeks of age and then were placed on a high-fat "Western" diet containing 42% fat and 0.15% cholesterol (Teklad 88137, Harlan Teklad, Madison WI) for 12 weeks. At 20 weeks mice were sacrificed, after a 12-hour fast. Muscle tissues were dissected and flash frozen in liquid N2 and stored at -80 deg C.

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BHHBF2_MUSCLE_MALE.html b/web/dbdoc/UCLA_BHHBF2_MUSCLE_MALE.html new file mode 100755 index 00000000..575b0512 --- /dev/null +++ b/web/dbdoc/UCLA_BHHBF2_MUSCLE_MALE.html @@ -0,0 +1,207 @@ + + +UCLA BHHBF2 Muscle Male Only ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UCLA BHHBF2 Muscle Male Only ** modify this page

    Accession number: GN186

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BXDBXH_CARTILAGE.html b/web/dbdoc/UCLA_BXDBXH_CARTILAGE.html new file mode 100755 index 00000000..2b6afc22 --- /dev/null +++ b/web/dbdoc/UCLA_BXDBXH_CARTILAGE.html @@ -0,0 +1,104 @@ + + +UCLA BXD and BXH Cartilage + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BXD and BXH Cartilage +modify this page

    Accession number: GN204

    + + +

    PRELIMINARY SUMMARY (private data): One of a set of two expression data sets by Alfons Jake Lusis and colleagues (UCLA) generated using two sets of Recombinant Inbred strains. + + +

    General information and background for BXD and BXH UCLA Cartilage data sets: +

      +
    1. BXD UCLA data sets +
    2. BXH UCLA data sets +
    + +

    All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. + +

    Mice were killed at XX weeks, and tissues, including the cartilage were immediately collected and flash-frozen in liquid nitrogen. + +

    All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

    Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at UCLA using Illumina Mouse 6 version 1.1 arrays. + +

    Mouse cartilage was homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. ADD MORE. + +

    Arrays were quantified using Illumina Rank Invariant protocol and normalized to a mean of 8 units and a SEM of all probes to 2.0 units (a modified Z score). + + +

    Data entered by Evan Williams (July 24, 2008). + +

    These unapproved notes by RWW, Sept 4, 2008. + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BXDBXH_CARTILAGE_V2.html b/web/dbdoc/UCLA_BXDBXH_CARTILAGE_V2.html new file mode 100755 index 00000000..74d13243 --- /dev/null +++ b/web/dbdoc/UCLA_BXDBXH_CARTILAGE_V2.html @@ -0,0 +1,216 @@ + + +UCLA BXD and BXH Cartilage v2 ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UCLA BXD and BXH Cartilage Illumina WG-6 v2 ** modify this page

    Accession number: GN208

    +

    + +

    Summary:

    + +
    +

    Associated Publication: Jaijam Suwanwela, Aldons J. Lusis, and colleagues, 2011. PDF version + + +20954177 + +

    Description from the paper by Suwanwela and colleagues: "The recombinant inbred strains that have been proven to have significant differences in bone traits and that were available from the Jackson Laboratories (Bar Harbor, ME, USA) were used. Those strains were C3H/HeJ, C57BL/6J, DBA/2J, B6Cc3-1/KccJ, BXH2/ TyJ, BXH4/TyJ, BXH6/TyJ, BXH7/TyJ, BXH8/TyJ, BXH9/TyJ, BXH14/ TyJ, BXH19/TyJ, BXH22/KccJ, BXD1/TyJ, BXD2/TyJ, BXD6/TyJ, BXD 12/TyJ, BXD16/TyJ, BXD 19/TyJ, BXD21/TyJ, BXD 24a/TyJ, BXD27/ TyJ BXD 28/TyJ, BXD 32/TyJ, BXD 39/TyJ, BXD 40/TyJ, and BXD 42/ TyJ recombinant inbred (RI) strains. All mouse protocols were performed according to the guidelines of the American Association for Accreditation of Laboratory Animal Care (AAALAC). Cartilage from the rib cage of 1- to 2-day-old male mice was dissected to remove bone and any adherent noncartilage tissue for microarray analysis. The cartilage was digested in 0.3% bacterial collagenase (Invitrogen, Carlsbad, CA, USA) for 10 hours, and the cells were collected by centrifugation. RNA was isolated and purified using the Rneasy kit (Qiagen, Valencia, CA, USA). It then was quantified and assessed for purity using a NanoDrop spectrophotometer (Rockland, DE, USA). RNA integrity was verified with a BioAnalyzer 2100 (Agilent, Santa Clara, CA, USA). Given the small amount of RNA we could isolate from the rib cages, we had to pool the RNA from three mice from the same strain. All 27 strains were applied separately to the Illumina arrays." + +

    "llumina Mouse-6 V1 BeadChip mouse whole-genome expres- sion arrays (Illumina, Inc., San Diego, CA, USA) were used in this study. Of the 27 RNA samples from 27 strains, 3 were hybridized twice and were used as technical replicates. A total of 200 ng of DNA-free, quality-checked RNA was amplified using the Ambion Illumina RNA amplification kit with biotin UTP (Enzo, Farming- dale, NY, USA) labeling. The Ambion Illumina RNA amplification kit uses T7 oligo(dT) primers to generate single-stranded cDNA, followed by a second-strand synthesis to generate double- stranded cDNA, which then is column-purified. In vitro transcription was done to synthesize biotin-labeled cRNA using T7 RNA polymerase. The cRNA then was column-purified. The cRNA then was checked for size and yield using the Molecular Probes Quant-iT RiboGreen assay (Invitrogen). A total of 1.5 mg of cRNA was hybridized to each array using standard Illumina protocols with streptavidin-Cy3 (Amersham, Sigma, St. Louis, Mo, USA) being used for detection. Slides were scanned on an Illumina Beadstation and processed using BeadStudio (Illumina, Inc.)." + +

    "The R software (http://cran.r-project.org/), a system for statistical computation and graphics, was used to analyze the data.(11) Data were normalized using Lumi,(12) a Bioconductor (Seattle, WA, USA) package designed to analyze Illumina microarray data that includes data input, quality control, variance stabilization, normalization, and gene annotation. The function ‘‘lumi- Expresso,’’ which uses a variance-stabilizing transformation (VST) algorithm, was used to take advantage of the technical replicates available on every Illumina microarray." + +

    Normative gene expression in cartilage tissue for a set of BXD and BXH strains of mice generated using the Mouse WG-6 v2 Illumina Sentrix bead array. The data set includes 14 BXD strains (the Jackson Laboratory series generated by Dr. Ben Taylor), 10 of the BXH series, and the 3 parental strains, C57BL/6J (B), DBA/2J (D), and C3H/HeJ (H). Data were generated by JJ Suwanwela, Evan Williams, and Dr. Jake Lusis.

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    +

    Based on the expression of Xist, probe ILM104280446, these samples are mixed sex pools. Expression of Xist varies from 7.2 to 9.0, consistent with mixed sex samples.

    + + +
    + + +

    About the tissue used to generate this set of data: Please see publication and above text from the key paper.

    + +
    +

    Cartilage. JJ, please provide data on age and sex. Based on the expression of Xist, probe ILM104280446, these samples are mixed sex pools. Expression of Xist varies from 7.2 to 9.0, consistent with mixed sex samples.

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1CASEIDHEREGDPSTRAINHEREAGESEXUCLA JL
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    This is a confidential data set for both BXD and BXH strains of mice generated at UCLA by Jaijam Suwanwela, Evan Williams, and colleagues in the laboratory of Dr. Jake Lusis. Contact or Dr. Lusis for additional information.

    +
    + + +

    About the array platfrom:

    +
    +

    Illumina Mouse WG-6 v2

    + +
    + + +

    About data values and data processing:

    + +
    +

    Illumina rank invariant transform was further normalized by Jaijam Suwanwela using standard 2z + 8 method common to many data sets in GeneNetwork. The final values entered in GeneNetwork are a modified z score of rank invariant Log2 expression data, with a mean of 8 units and a SD of 2 units for each array. One unit of expression corresponds to approximately a 2-fold difference in expression. These values were entered by Evan G. Williams, Aug 2008, UCLA. QTL Reaper results were computed by EGW. All annotation files for this array in GeneNetwork were generated by Xusheng Wang and RW Williams.

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal File IDQC1QC2QC3QC4QC5QC6QC7Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Alfons J. Lusis and colleagues. Dissertation work of Jaijam Suwanwela

    +
    + + + +

    Information about this text file:

    +
    +

    JJ needs to provide these data. Current skeleton text by RWW

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series: none +

    Status: unreviewed, unpublished +

    Title: Get from JJ +

    Organism(s): M. m. musculus, inbred strains, BXD and BXH type +

    Experiment type: Normative expression of genes in young adult mouse cartilage +

    Summary + +

    Overall design +

    Contributor(s): Jaijam Suwanwela and Alfons J. Lusis, UCLA + +

    Citation(s) + +

    +
    Submission date +
    Contact name: Jaijam Suwanwela and Alfons J. Lusis +
    E-mails: jaijam1220@gmail.com +
    Phone +
    FAX +
    URL +
    Organization name: UCLA +
    Department(s): Genetics +
    Laboratory(s): Lusis +
    Street address +
    City: Los Angeles +
    State/province: CA +
    ZIP/Postal code +
    Country: USA + + +

    Platforms: Illumina Mouse WG-6 v 2.0 +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BXD_CARTILAGE.html b/web/dbdoc/UCLA_BXD_CARTILAGE.html new file mode 100755 index 00000000..ca40bd72 --- /dev/null +++ b/web/dbdoc/UCLA_BXD_CARTILAGE.html @@ -0,0 +1,207 @@ + + +UCLA BXD Cartilage ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UCLA BXD Cartilage ** modify this page

    Accession number: GN178

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BXHBXD_CARTILAGE.html b/web/dbdoc/UCLA_BXHBXD_CARTILAGE.html new file mode 100755 index 00000000..7852bdd1 --- /dev/null +++ b/web/dbdoc/UCLA_BXHBXD_CARTILAGE.html @@ -0,0 +1,104 @@ + + +UCLA BXD and BXH Cartilage + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BXD and BXH Cartilage +modify this page

    Accession number: GN205

    + + +

    PRELIMINARY SUMMARY (private data): One of a set of two expression data sets by Alfons Jake Lusis and colleagues (UCLA) generated using two sets of Recombinant Inbred strains. + + +

    General information and background for BXD and BXH UCLA Cartilage data sets: +

      +
    1. BXD UCLA data sets +
    2. BXH UCLA data sets +
    + +

    All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. + +

    Mice were killed at XX weeks, and tissues, including the cartilage were immediately collected and flash-frozen in liquid nitrogen. + +

    All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

    Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at UCLA using Illumina Mouse 6 version 1.1 arrays. + +

    Mouse cartilage was homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. ADD MORE. + +

    Arrays were quantified using Illumina Rank Invariant protocol and normalized to a mean of 8 units and a SEM of all probes to 2.0 units (a modified Z score). + + +

    Data entered by Evan Williams (July 24, 2008). + +

    These unapproved notes by RWW, Sept 4, 2008. + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BXHBXD_CARTILAGE_V2.html b/web/dbdoc/UCLA_BXHBXD_CARTILAGE_V2.html new file mode 100755 index 00000000..f7bec8a2 --- /dev/null +++ b/web/dbdoc/UCLA_BXHBXD_CARTILAGE_V2.html @@ -0,0 +1,207 @@ + + +UCLA BXH and BXD Cartilage v2 ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UCLA BXH and BXD Cartilage v2 ** modify this page

    Accession number: GN209

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BXH_CARTILAGE.html b/web/dbdoc/UCLA_BXH_CARTILAGE.html new file mode 100755 index 00000000..8323b0ca --- /dev/null +++ b/web/dbdoc/UCLA_BXH_CARTILAGE.html @@ -0,0 +1,207 @@ + + +UCLA BXH Cartilage ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    UCLA BXH Cartilage ** modify this page

    Accession number: GN179

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BXN_CARTILAGE.html b/web/dbdoc/UCLA_BXN_CARTILAGE.html new file mode 100755 index 00000000..a5f116eb --- /dev/null +++ b/web/dbdoc/UCLA_BXN_CARTILAGE.html @@ -0,0 +1,127 @@ + +UCLA BXD and BXH Cartilage v2 + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BXD and BXH Cartilage v2 + modify this page

    + + +

    PRELIMINARY SUMMARY (private data): One of a set of two expression data sets by Alfons Jake Lusis and colleagues (UCLA) generated using two sets of Recombinant Inbred strains. + +

    Version 2 uploaded by Evan Williams, Sept 19, 2008. Information on this database to be provided by Jaijam Wuwanwela in Jake Lusis Lab at UCLA. + + +

    General information and background for BXD and BXH UCLA Cartilage data sets: +

      +
    1. BXD UCLA data sets +
    2. BXH UCLA data sets +
    + +

    All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. + +

    Mice were killed at XX weeks, and tissues, including the cartilage were immediately collected and flash-frozen in liquid nitrogen. + +

    All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

    Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at UCLA using Illumina Mouse 6 version 1.1 arrays. + +

    Mouse cartilage was homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. ADD MORE. + +

    Arrays were quantified using Illumina Rank Invariant protocol and normalized to a mean of 8 units and a SEM of all probes to 2.0 units (a modified Z score). + + +

    Data entered by Evan Williams (July 24, 2008). + +

    These unapproved notes by RWW, Sept 4, 2008. + + + + + +

    +Notes from Evan Williams on this version 2 data set: I uploaded JJ's new 'corrected' dataset into GN. I didn't take a look at anything to make sure it was more right than before (I actually am not really sure what the problem was) but hopefully it's better this time. It contains all 46k probes, but I think I reimported the v1 to contain all 46k probes too, so I don't actually know what the differences are. + +

    -Evan + +

    Begin forwarded message: + +

    From: egw4693 +
    Date: September 20, 2008 12:03:38 AM CDT +
    To: jaijam suwanwela +
    Subject: v2 now in GeneNetwork + +

    Hey JJ, + +

    I uploaded the (hopefully) corrected data set into GeneNetwork. I put it on a test site for you to look over and make sure everything is OK before it goes into GeneNetwork. + +

    www.genenetwork.org , look under either BXD or BXH and select Cartilage mRNA, then select the "V2" combined. + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_BXN_CARTILAGE2.html b/web/dbdoc/UCLA_BXN_CARTILAGE2.html new file mode 100755 index 00000000..608afcae --- /dev/null +++ b/web/dbdoc/UCLA_BXN_CARTILAGE2.html @@ -0,0 +1,77 @@ + + + +UCLA BXD and BXH Cartilage v2 + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA BXD and BXH Cartilage v2 + modify this page

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CTB6B6CTF2_ADIPOSE_2005.html b/web/dbdoc/UCLA_CTB6B6CTF2_ADIPOSE_2005.html new file mode 100755 index 00000000..6c07cf0f --- /dev/null +++ b/web/dbdoc/UCLA_CTB6B6CTF2_ADIPOSE_2005.html @@ -0,0 +1,107 @@ + +UCLA CXBF2 Brain (2005) mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA CAST/Ei X C57BL/6J reciprocal F2 Intercross Adipose Tissue (2005) mlratio +modify this page

    Accession number: GN170

    + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CTB6B6CTF2_ADIPOSE_FEMALE.html b/web/dbdoc/UCLA_CTB6B6CTF2_ADIPOSE_FEMALE.html new file mode 100755 index 00000000..ac479537 --- /dev/null +++ b/web/dbdoc/UCLA_CTB6B6CTF2_ADIPOSE_FEMALE.html @@ -0,0 +1,109 @@ + + +UCLA CTB6B6CTF2 Adipose Female mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA CTB6B6CTF2 Adipose Female mlratio +modify this page

    Accession number: GN189

    + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + + + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CTB6B6CTF2_ADIPOSE_MALE.html b/web/dbdoc/UCLA_CTB6B6CTF2_ADIPOSE_MALE.html new file mode 100755 index 00000000..e747aa3e --- /dev/null +++ b/web/dbdoc/UCLA_CTB6B6CTF2_ADIPOSE_MALE.html @@ -0,0 +1,107 @@ + + +UCLA CTB6B6CTF2 Adipose Male mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA CTB6B6CTF2 Adipose Male mlratio +modify this page

    Accession number: GN188

    + + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CTB6B6CTF2_BRAIN_2005.html b/web/dbdoc/UCLA_CTB6B6CTF2_BRAIN_2005.html new file mode 100755 index 00000000..e2591471 --- /dev/null +++ b/web/dbdoc/UCLA_CTB6B6CTF2_BRAIN_2005.html @@ -0,0 +1,113 @@ + +UCLA CXBF2 Brain (2005) mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA CAST/EiJ X C57BL/6J reciprocal F2 Intercross Brain (2005) mlratio +modify this page

    Accession number: GN171

    + +

    SUMMARY: One of a set of four large expression data set (brain, peritoneal fat, liver, and quadriceps muscle) by Alfons Jake Lusis and colleagues (UCLA) generated using two large reciprocal F2 intercrosses between CAST/EiJ and C57BL/6J. The data are given as mean log ratios. These values are essentially expression offsets for each individual with respect to the group mean. + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + +

      Data entered by Evan Williams (July 24, 2008). + +

      These unapproved notes by RWW, Sept 4, 2008. + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CTB6B6CTF2_BRAIN_FEMALE.html b/web/dbdoc/UCLA_CTB6B6CTF2_BRAIN_FEMALE.html new file mode 100755 index 00000000..080b867d --- /dev/null +++ b/web/dbdoc/UCLA_CTB6B6CTF2_BRAIN_FEMALE.html @@ -0,0 +1,106 @@ + + +UCLA CTB6B6CTF2 Brain Female mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA CTB6B6CTF2 Brain Female mlratio +modify this page

    Accession number: GN191

    + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CTB6B6CTF2_BRAIN_MALE.html b/web/dbdoc/UCLA_CTB6B6CTF2_BRAIN_MALE.html new file mode 100755 index 00000000..afe85289 --- /dev/null +++ b/web/dbdoc/UCLA_CTB6B6CTF2_BRAIN_MALE.html @@ -0,0 +1,106 @@ + + +UCLA CTB6B6CTF2 Brain Male mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA CTB6B6CTF2 Brain Male mlratio +modify this page

    Accession number: GN190

    + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CTB6B6CTF2_LIVER_2005.html b/web/dbdoc/UCLA_CTB6B6CTF2_LIVER_2005.html new file mode 100755 index 00000000..2e933174 --- /dev/null +++ b/web/dbdoc/UCLA_CTB6B6CTF2_LIVER_2005.html @@ -0,0 +1,111 @@ + + +UCLA CTB6/B6CTF2 Liver (2005) mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA CTB6/B6CTF2 Liver (2005) mlratio +modify this page

    Accession number: GN172

    + + +

    SUMMARY: One of a set of four large expression data set (brain, peritoneal fat, liver, and quadriceps muscle) by Alfons Jake Lusis and colleagues (UCLA) generated using two large reciprocal F2 intercrosses between CAST/EiJ and C57BL/6J. The data are given as mean log ratios. These values are essentially expression offsets for each individual with respect to the group mean. + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + +

      Data entered by Evan Williams (July 24, 2008). + +

      These unapproved notes by RWW, Sept 4, 2008. + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CTB6B6CTF2_LIVER_FEMALE.html b/web/dbdoc/UCLA_CTB6B6CTF2_LIVER_FEMALE.html new file mode 100755 index 00000000..1810c78c --- /dev/null +++ b/web/dbdoc/UCLA_CTB6B6CTF2_LIVER_FEMALE.html @@ -0,0 +1,111 @@ + + +UCLA CTB6B6CTF2 Liver Female mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA CTB6B6CTF2 Liver Female mlratio +modify this page

    Accession number: GN193

    + +

    SUMMARY: One of a set of four large expression data set (brain, peritoneal fat, liver, and quadriceps muscle) by Alfons Jake Lusis and colleagues (UCLA) generated using two large reciprocal F2 intercrosses between CAST/EiJ and C57BL/6J. The data are given as mean log ratios. These values are essentially expression offsets for each individual with respect to the group mean. + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + +

      Data entered by Evan Williams (July 24, 2008). + +

      These unapproved notes by RWW, Sept 4, 2008. + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CTB6B6CTF2_LIVER_MALE.html b/web/dbdoc/UCLA_CTB6B6CTF2_LIVER_MALE.html new file mode 100755 index 00000000..341cce2e --- /dev/null +++ b/web/dbdoc/UCLA_CTB6B6CTF2_LIVER_MALE.html @@ -0,0 +1,111 @@ + + +UCLA CTB6B6CTF2 Liver Male mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA CTB6B6CTF2 Liver Male mlratio +modify this page

    Accession number: GN192

    + +

    SUMMARY: One of a set of four large expression data set (brain, peritoneal fat, liver, and quadriceps muscle) by Alfons Jake Lusis and colleagues (UCLA) generated using two large reciprocal F2 intercrosses between CAST/EiJ and C57BL/6J. The data are given as mean log ratios. These values are essentially expression offsets for each individual with respect to the group mean. + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + +

      Data entered by Evan Williams (July 24, 2008). + +

      These unapproved notes by RWW, Sept 4, 2008. + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CTB6B6CTF2_MUSCLE_2005.html b/web/dbdoc/UCLA_CTB6B6CTF2_MUSCLE_2005.html new file mode 100755 index 00000000..34dadeb3 --- /dev/null +++ b/web/dbdoc/UCLA_CTB6B6CTF2_MUSCLE_2005.html @@ -0,0 +1,110 @@ + + +UCLA CTB6/B6CTF2 Muscle (2005) mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA CTB6/B6CTF2 Muscle (2005) mlratio +modify this page

    Accession number: GN173

    + +

    SUMMARY: One of a set of four large expression data set (brain, peritoneal fat, liver, and quadriceps muscle) by Alfons Jake Lusis and colleagues (UCLA) generated using two large reciprocal F2 intercrosses between CAST/EiJ and C57BL/6J. The data are given as mean log ratios. These values are essentially expression offsets for each individual with respect to the group mean. + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + +

      Data entered by Evan Williams (July 24, 2008). + +

      These unapproved notes by RWW, Sept 4, 2008. + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CTB6B6CTF2_MUSCLE_FEMALE.html b/web/dbdoc/UCLA_CTB6B6CTF2_MUSCLE_FEMALE.html new file mode 100755 index 00000000..91f8f302 --- /dev/null +++ b/web/dbdoc/UCLA_CTB6B6CTF2_MUSCLE_FEMALE.html @@ -0,0 +1,111 @@ + + +UCLA CTB6B6CTF2 Muscle Female mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA CTB6B6CTF2 Muscle Female mlratio +modify this page

    Accession number: GN195

    + +

    SUMMARY: One of a set of four large expression data set (brain, peritoneal fat, liver, and quadriceps muscle) by Alfons Jake Lusis and colleagues (UCLA) generated using two large reciprocal F2 intercrosses between CAST/EiJ and C57BL/6J. The data are given as mean log ratios. These values are essentially expression offsets for each individual with respect to the group mean. + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + +

      Data entered by Evan Williams (July 24, 2008). + +

      These unapproved notes by RWW, Sept 4, 2008. + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CTB6B6CTF2_MUSCLE_MALE.html b/web/dbdoc/UCLA_CTB6B6CTF2_MUSCLE_MALE.html new file mode 100755 index 00000000..b5216936 --- /dev/null +++ b/web/dbdoc/UCLA_CTB6B6CTF2_MUSCLE_MALE.html @@ -0,0 +1,111 @@ + + +UCLA CTB6B6CTF2 Muscle Male mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA CTB6B6CTF2 Muscle Male mlratio +modify this page

    Accession number: GN194

    + +

    SUMMARY: One of a set of four large expression data set (brain, peritoneal fat, liver, and quadriceps muscle) by Alfons Jake Lusis and colleagues (UCLA) generated using two large reciprocal F2 intercrosses between CAST/EiJ and C57BL/6J. The data are given as mean log ratios. These values are essentially expression offsets for each individual with respect to the group mean. + + +

    General information and background for all UCLA/Rosetta data sets: +

      +
    1. BH/HB F2 UCLA data sets +
    2. BHF2 (Apoe Null) UCLA data sets +
    3. CastB6/B6CastF2 UCLA data sets + +

      [This paragraph applies to BH/HB F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed of C3H/HeJ (C3H) mice to generate 321 F2 progeny (161 females, 160 males) for the BXH wild type (BXH/wt, also known as BHF2, but not the same as wildtype BXH recombinant inbred strains). These F2 animals were generated by reciprocal intercrosses of either B6xC3H (BH) F1 parents or C3HxB6 (HB) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (BH will have B6-type mitochondria and males will have a C3H-type Y chromosomes). + +

      [This paragraph applies to CastB6/B6Cast F2 UCLA data set in GeneNetwork]. C57BL/6J (B6) mice were intercrossed with inbred derivatives of Mus castaneus (CAST/EiJ) mice to generate 442 F2 progeny (276 females, 166 males) for the BXC cross. These F2 animals were generated by reciprocal intercrosses of either CAST/EiJ x C57BL/6J (CB) F1 parents or C57BL/6J x CAST/EiJ (BC) F1 parents. As a result the Y chromosome and mitochondrial genomes of these two parts of the reciprocal cross with be different (CB will have CAST-type mitochondria and males will have an B6-type Y chromosomes). + +All mice were maintained on a 12 h light–12 h dark cycle and fed ad libitum. BH/HB F2 mice were fed Purina Chow (Ralston-Purina) containing 4% fat until 8 weeks of age. From that time until the mice were killed at 20 weeks, mice were fed a high fat Western diet (Teklad 88137, Harlan Teklad) containing 42% fat and 0.15% cholesterol. CastB6/B6Cast F2 mice were fed Purina Chow until 10 weeks of age, and then fed the same high fat Western diet (Teklad 88137, Harlan Teklad) for the subsequent 8 weeks. Mice were fasted overnight before they were killed. Their liver, white adipose tissue, and whole brains were collected, flash frozen in liquid nitrogen, and stored in -80 deg C prior to RNA isolation. + +

      [This paragraph applies to the BHF2 (Apoe Null) UCLA database in GeneNetwork.] The BHF2 cross on an ApoE null background has been described previously by Yang and colleagues (2006). (These animals are referred to as BXH/apoE mice in the original publication but in GeneNetwork these mice are referred to as the BHF2 (Apoe Null) UCLA group to avoid confusion with BXH recombinant inbred strains of mice). To generate this animals, C57BL/6J carrying a knock allele of the Apoe gene (B6.ApoE -/-) were purchased from the Jackson Laboratory. C3H/HeJ Apoe null (C3H.Apoe -/-) were generated by backcrossing B6.Apoe -/- to C3H for 10 generations. F1 mice were generated from reciprocal intercrossing between B6.ApoE -/- and C3H.Apoe -/-, and F2 mice were subsequently bred by intercrossing F1 mice. A total of 334 (169 female, 165 male) were bred, and all were fed Purina Chow containing 4% fat until 8 weeks of age, and then transferred to a high fat Western diet containing a 42% fat and 0.15% cholesterol for 16 weeks. Mice were killed at 24 weeks, and liver, white adipose tissue, and whole brains were immediately collected and flash-frozen in liquid nitrogen. + +

      All procedures of housing and treatment of animals were performed in accordance with Institutional Animal Care and Use Committee regulations (UCLA). + +

      Array design and preparation of labeled cDNA and hybridizations to microarrays for the mouse tissue samples. RNA preparation and array hybridizations were performed at Rosetta Inpharmatics. The custom ink-jet microarrays used in the BH/HBF2, BHF2-Apoe Null, and CastB6/B6CastF2 crosses were manufactured by Agilent Technologies. The array used for the BHF2-Apoe Null and BH/HBF2 samples consisted of 2,186 control probes and 23,574 noncontrol oligonucleotides extracted from mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S5). The array used for the CastB6/B6CastF2 cross consisted of 39,280 noncontrol oligonuceotides again extracted from the mouse Unigene clusters and combined with RefSeq sequences and RIKEN full-length cDNA clones (see Table S6). + +

      Mouse adipose, liver, brain, and muscle from all crosses were homogenized, and total RNA was extracted using Trizol (Invitrogen) according to manufacturer's protocol. Approximately three micrograms of total RNA was reverse transcribed and labeled with either Cy3 or Cy5 fluorochrome. Labeled complementary RNA from each F2 animal was hybridized against a cross-specific pool of labeled cRNAs constructed from equal aliquots of RNA from F2 animals and parental mouse strains for each of the tissues for each cross. The hybridizations for the BHF2-Apoe null animals were performed in fluor reversal for 24 h in a hybridization chamber, washed, and scanned using a confocal laser scanner. The hybridizations for the BH/HB F2 wildtype and CastB6/B6Cast F2 crosses were performed to single arrays (individuals F2 samples labeled with Cy5 and reference pools labeled with Cy3 fluorochromes) for 24 h in a hybridization chamber, washed, and again scanned using a confocal laser scanner. + +

      Arrays were quantified on the basis of spot intensity relative to background, adjusted for experimental variation between arrays using average intensity over multiple channels, and fitted to a previously described error model to determine significance (type I error) as described by He and colleagues (2003. Gene expression measures are reported as the ratio of the mean log10 intensity (mlratio). + +

      This description of the experiment was adapted from the following reference by RW Williams (Sept 4, 2008): + +
      Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (
      2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biology 6:e107. + + +

      Data entered by Evan Williams (July 24, 2008). + +

      These unapproved notes by RWW, Sept 4, 2008. + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CXBF2_ADIPOSE_2005.html b/web/dbdoc/UCLA_CXBF2_ADIPOSE_2005.html new file mode 100755 index 00000000..8d2b8e1e --- /dev/null +++ b/web/dbdoc/UCLA_CXBF2_ADIPOSE_2005.html @@ -0,0 +1,89 @@ + + +UCLA CXBF2 Adipose (2005) mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA CAST/Ei X C57BL/6J reciprocal F2 Intercross Adipose Tissue (2005) mlratio + modify this page

    + + +

    One of a set of four expression data set (whole brain, peritoneal adipose tissue, liver, and quadriceps muscle) by Alfons Jake Lusis and colleagues (UCLA) generated from two large reciprocal F2 intercrosses between CAST/EiJ and C57BL/6J. The data are given as mean log ratios. These values are essentially expression offsets for each individual with respect to the group mean. + +

    Breeding and tissue dissection was performed at UCLA by AJL and colleagues. The adipose tissue (white fat) was dissected from the peritoneal region (?). + +

    RNA extraction, expression profiling, and initial data transformation and normalization were carried out by Eric Schadt and colleagues at Rosetta/Merck. + +

    Data entered by Evan Williams (July 24, 2008). + +

    These unapproved notes by RWW, July 25, 2008. + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CXBF2_BRAIN_2005.html b/web/dbdoc/UCLA_CXBF2_BRAIN_2005.html new file mode 100755 index 00000000..6cdb7737 --- /dev/null +++ b/web/dbdoc/UCLA_CXBF2_BRAIN_2005.html @@ -0,0 +1,92 @@ + +UCLA CXBF2 Brain (2005) mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA CAST/Ei X C57BL/6J reciprocal F2 Intercross Brain (2005) mlratio + modify this page

    + +

    SUMMARY: One of a set of four large expression data set (brain, peritoneal fat, liver, and quadriceps muscle) by Alfons Jake Lusis and colleagues (UCLA) generated using two large reciprocal F2 intercrosses between CAST/EiJ and C57BL/6J. The data are given as mean log ratios. These values are essentially expression offsets for each individual with respect to the group mean. + +

    Breeding and tissue dissection was performed at UCLA by AJL and colleagues. + +

    The brain in this case consists of the olfactory bulbs, the whole forebrain and midbrain, the cerebellum, and hindbrain. Data are provided for 401 animals, roughly the same number of reciprocal BCF2 and CBF2 progeny. + +

    RNA extraction, expression profiling, genotyping, and initial data transformation and normalization were carried out by Eric Schadt and colleagues at Rosetta/Merck. + +

    A custom Agilent array consisting of 23,272 60-mer probes was used in this study. The same array was also used in a study of the same four tissues in a large BHF2 intercross (also included in GeneNetwork). + +

    Data entered by Evan Williams (July 24, 2008). + +

    These unapproved notes by RWW, July 25, 2008. + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CXBF2_LIVER_2005.html b/web/dbdoc/UCLA_CXBF2_LIVER_2005.html new file mode 100755 index 00000000..ad8b2f7d --- /dev/null +++ b/web/dbdoc/UCLA_CXBF2_LIVER_2005.html @@ -0,0 +1,90 @@ + + +UCLA CXBF2 Liver (2005) mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UCLA CAST/Ei X C57BL/6J reciprocal F2 Intercross Liver (2005) mlratio + modify this page

    + +

    One of a set of four expression data set (whole brain, peritoneal fat, liver, and quadriceps muscle) by Alfons Jake Lusis and colleagues (UCLA) generated from two large reciprocal F2 intercrosses between CAST/EiJ and C57BL/6J. The data are given as mean log ratios. These values are essentially expression offsets for each individual with respect to the group mean. + +

    Breeding and tissue dissection was performed at UCLA by AJL and colleagues. The entire liver was dissected. RNA was extracted from a XXX mg sample. + +

    RNA extraction, expression profiling, and initial data transformation and normalization were carried out by Eric Schadt and colleagues at Rosetta/Merck. + +

    Data entered by Evan Williams (July 24, 2008). + +

    These unapproved notes by RWW, July 25, 2008. + + + + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UCLA_CXBF2_MUSCLE_2005.html b/web/dbdoc/UCLA_CXBF2_MUSCLE_2005.html new file mode 100755 index 00000000..ee08a4cc --- /dev/null +++ b/web/dbdoc/UCLA_CXBF2_MUSCLE_2005.html @@ -0,0 +1,88 @@ + + +UCLA CXBF2 Muscle (2005) mlratio + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + +

    UCLA CAST/Ei X C57BL/6J reciprocal F2 Intercross Muscle (2005) mlratio + modify this page

    + +

    One of a set of four expression data set (brain, peritoneal fat, liver, and quadriceps muscle) by Alfons Jake Lusis and colleagues (UCLA) generated from two large reciprocal F2 intercrosses between CAST/EiJ and C57BL/6J. The data are given as mean log ratios. These values are essentially expression offsets for each individual with respect to the group mean. + +

    Breeding and tissue dissection was performed at UCLA by AJL and colleagues. The quadriceps femoris muscle was dissected. + +

    RNA extraction, expression profiling, and initial data transformation and normalization were carried out by Eric Schadt and colleagues at Rosetta/Merck. + +

    Data entered by Evan Williams (July 24, 2008). + +

    These unapproved notes by RWW, July 25, 2008. + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UIOWA_Eye_RMA_0906.html b/web/dbdoc/UIOWA_Eye_RMA_0906.html new file mode 100755 index 00000000..30d99824 --- /dev/null +++ b/web/dbdoc/UIOWA_Eye_RMA_0906.html @@ -0,0 +1,84 @@ + + +UIOWA Eye mRNA RAE230v2 (Sep06) RMA + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UIOWA Eye mRNA RAE230v2 (Sep06) RMA +modify this page

    Accession number: GN226

    + + +

    Scheetz and colleagues studied gene expression in a set of 120 rat F2 progeny using the Affymetrix rat RAE230 2.0 array platform and RMA normalization methods. For details on their methods and results see: + +

    Scheetz TE, Kim KY, Swiderski RE, Philp AR, Braun TA, Knudtson KL, et al. Regulation of gene expression in the mammalian eye and its relevance to eye disease. Proc Natl Acad Sci U S A 2006; 103(39):14429-34. + + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UMCG_0907_Eryth.html b/web/dbdoc/UMCG_0907_Eryth.html new file mode 100755 index 00000000..aac8dd11 --- /dev/null +++ b/web/dbdoc/UMCG_0907_Eryth.html @@ -0,0 +1,92 @@ + +UMCG Erythroid Cells ILM6v1.1 (Apr09) transformed + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    UMCG Erythroid Cells ILM6v1.1 (Apr09) transformed +modify this page

    Accession number: GN146

    +

    Summary

    +

    The UMCG Hematopoietic cells datasets allow to search for differential expression of mRNA transcripts across a large subset of the BXD recombinant inbred strains. Prior studies have indicated and collected many hematopoietic phenotypes for which the parental C57BL/6 and DBA/2 strains differ. Total RNA collected from four distinct bone marrow cell populations was hybridized to Illumina Sentrix Mouse-6 BeadChips.

    +

    About the cases used to generate this set of data

    +

    Samples were collected from BXD recombinant inbred strains.

    +

    About the tissue used to generate these data

    +

    Bone marrow cells were flushed from femurs and stained with a collection of antibodies to detect defined hematopoietic cell populations. Four datasets are available: +

    1. Hematopoietic stem cells. These cells were isolated by flowcytometry using a MoFlow high speed cell sorter. Cells were stained with a panel of antibodies directed against lineage-specific markers, in combination with antibodies directed against c-kit and Sca-1. Purified cells were Lin-, Sca1+, and ckit+ (LSK cells). All long term repopulating stem cells are contained in the fraction of cells. +

    2. Hematopoietic progenitor cells. These cells were similarly isolated but were defined by a Lin-Sca1-ckit+ phenotype. These Sca1- cells are devoid of long term repopulating activity, but are highly enriched for progenitors. +

    3. Erythroid cells. These cells were isolated based on the expression of the erythroid antigen Ter119. +

    4. Myeloid cells. These cells were isolated based on the expression of the myeloid antigen Gr-1. +

    Cells were immediately sorted in RNA lysis buffer and RNA was isolated using the Rneasy Mini Kit (Qiagen, www.qiagen.com). RNA samples were stored at -80 C, and were shipped to ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/) where hybridizations were performed.

    +

    +

    About the array platform

    +

    RNA samples were randomly distributed according to strain and cell type across Illumina Sentrix Mouse-6 BeadChips.

    +

    About data processing

    +

    The data were pre-processed using Illumina BeadStudio software. The AVG_Signal values from the Gene profiles of all 4 cell types samples were gathered and submitted to a quantile normalization using the Bioconductor Affy package (Bolstad et al, Bioinformatics (2003). The Apr09 datasets were hybridized in two large series. The Apr09 dataset has not yet been corrected for potential batch effects.

    +

    Data source acknowledgment

    +

    Cells and RNA were collected by Ellen Weersing, Bert Dontje, Alice Gerrits, Leonid Bystrykh and Gerald de Haan, at the Department of Cell Biology, University Medical Center Groningen, the Netherlands. Cells were flow-sorted at the central flowcytometry facility of the UMCG with technical assistance from Geert Mesander and Henk Moes. Hybridizations were carried out by ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/). Normalizations and preprocessing was carried out by Bruno Tesson, Yang Li, Rainer Breitling and Ritsert Jansen at the Department of Bioinformatics, University of Groningen, the Netherlands. +Financial support for this project was provided through VICI-awards to Ritsert Jansen and Gerald de Haan by the Netherlands Organization for Scientific Research (NWO) and by a Horizon-grant awarded to GdH by the Netherlands Genomics Initiative (http://www.genomics.nl/). +

    +

    Contact address

    +

    Gerald de Haan, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands. (g.de.haan@med.umcg.nl). (http://www.rug.nl/umcg/faculteit/disciplinegroepen/celbiologie/stamcelbiologie/index)

    +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/UMCG_0907_Eryth_ori.html b/web/dbdoc/UMCG_0907_Eryth_ori.html new file mode 100755 index 00000000..46f11900 --- /dev/null +++ b/web/dbdoc/UMCG_0907_Eryth_ori.html @@ -0,0 +1,93 @@ + +UMCG Erythroid Cells ILM6v1.1 (Apr09) original + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    UMCG Erythroid Cells ILM6v1.1 (Apr09) original +modify this page

    Accession number: GN150

    +

    Summary

    +

    The UMCG Hematopoietic cells datasets allow to search for differential expression of mRNA transcripts across a large subset of the BXD recombinant inbred strains. Prior studies have indicated and collected many hematopoietic phenotypes for which the parental C57BL/6 and DBA/2 strains differ. Total RNA collected from four distinct bone marrow cell populations was hybridized to Illumina Sentrix Mouse-6 BeadChips.

    +

    About the cases used to generate this set of data

    +

    Samples were collected from BXD recombinant inbred strains.

    +

    About the tissue used to generate these data

    +

    Bone marrow cells were flushed from femurs and stained with a collection of antibodies to detect defined hematopoietic cell populations. Four datasets are available: +

    1. Hematopoietic stem cells. These cells were isolated by flowcytometry using a MoFlow high speed cell sorter. Cells were stained with a panel of antibodies directed against lineage-specific markers, in combination with antibodies directed against c-kit and Sca-1. Purified cells were Lin-, Sca1+, and ckit+ (LSK cells). All long term repopulating stem cells are contained in the fraction of cells. +

    2. Hematopoietic progenitor cells. These cells were similarly isolated but were defined by a Lin-Sca1-ckit+ phenotype. These Sca1- cells are devoid of long term repopulating activity, but are highly enriched for progenitors. +

    3. Erythroid cells. These cells were isolated based on the expression of the erythroid antigen Ter119. +

    4. Myeloid cells. These cells were isolated based on the expression of the myeloid antigen Gr-1. +

    Cells were immediately sorted in RNA lysis buffer and RNA was isolated using the Rneasy Mini Kit (Qiagen, www.qiagen.com). RNA samples were stored at -80 C, and were shipped to ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/) where hybridizations were performed.

    +

    +

    About the array platform

    +

    RNA samples were randomly distributed according to strain and cell type across Illumina Sentrix Mouse-6 BeadChips.

    +

    About data processing

    +

    The data were pre-processed using Illumina BeadStudio software. The AVG_Signal values from the Gene profiles of all 4 cell types samples were gathered and submitted to a quantile normalization using the Bioconductor Affy package (Bolstad et al, Bioinformatics (2003). The Apr09 datasets were hybridized in two large series. The Apr09 dataset has not yet been corrected for potential batch effects.

    +

    Data source acknowledgment

    +

    Cells and RNA were collected by Ellen Weersing, Bert Dontje, Alice Gerrits, Leonid Bystrykh and Gerald de Haan, at the Department of Cell Biology, University Medical Center Groningen, the Netherlands. Cells were flow-sorted at the central flowcytometry facility of the UMCG with technical assistance from Geert Mesander and Henk Moes. Hybridizations were carried out by ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/). Normalizations and preprocessing was carried out by Bruno Tesson, Yang Li, Rainer Breitling and Ritsert Jansen at the Department of Bioinformatics, University of Groningen, the Netherlands. +Financial support for this project was provided through VICI-awards to Ritsert Jansen and Gerald de Haan by the Netherlands Organization for Scientific Research (NWO) and by a Horizon-grant awarded to GdH by the Netherlands Genomics Initiative (http://www.genomics.nl/). +

    +

    Contact address

    +

    Gerald de Haan, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands. (g.de.haan@med.umcg.nl). (http://www.rug.nl/umcg/faculteit/disciplinegroepen/celbiologie/stamcelbiologie/index)

    +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/UMCG_0907_HemaStem.html b/web/dbdoc/UMCG_0907_HemaStem.html new file mode 100755 index 00000000..4147dd3f --- /dev/null +++ b/web/dbdoc/UMCG_0907_HemaStem.html @@ -0,0 +1,92 @@ + +UMCG Stem Cells ILM6v1.1 (Apr09) transformed + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    UMCG Stem Cells ILM6v1.1 (Apr09) transformed +modify this page

    Accession number: GN145

    +

    Summary

    +

    The UMCG Hematopoietic cells datasets allow to search for differential expression of mRNA transcripts across a large subset of the BXD recombinant inbred strains. Prior studies have indicated and collected many hematopoietic phenotypes for which the parental C57BL/6 and DBA/2 strains differ. Total RNA collected from four distinct bone marrow cell populations was hybridized to Illumina Sentrix Mouse-6 BeadChips.

    +

    About the cases used to generate this set of data

    +

    Samples were collected from BXD recombinant inbred strains.

    +

    About the tissue used to generate these data

    +

    Bone marrow cells were flushed from femurs and stained with a collection of antibodies to detect defined hematopoietic cell populations. Four datasets are available: +

    1. Hematopoietic stem cells. These cells were isolated by flowcytometry using a MoFlow high speed cell sorter. Cells were stained with a panel of antibodies directed against lineage-specific markers, in combination with antibodies directed against c-kit and Sca-1. Purified cells were Lin-, Sca1+, and ckit+ (LSK cells). All long term repopulating stem cells are contained in the fraction of cells. +

    2. Hematopoietic progenitor cells. These cells were similarly isolated but were defined by a Lin-Sca1-ckit+ phenotype. These Sca1- cells are devoid of long term repopulating activity, but are highly enriched for progenitors. +

    3. Erythroid cells. These cells were isolated based on the expression of the erythroid antigen Ter119. +

    4. Myeloid cells. These cells were isolated based on the expression of the myeloid antigen Gr-1. +

    Cells were immediately sorted in RNA lysis buffer and RNA was isolated using the Rneasy Mini Kit (Qiagen, www.qiagen.com). RNA samples were stored at -80 C, and were shipped to ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/) where hybridizations were performed.

    +

    +

    About the array platform

    +

    RNA samples were randomly distributed according to strain and cell type across Illumina Sentrix Mouse-6 BeadChips.

    +

    About data processing

    +

    The data were pre-processed using Illumina BeadStudio software. The AVG_Signal values from the Gene profiles of all 4 cell types samples were gathered and submitted to a quantile normalization using the Bioconductor Affy package (Bolstad et al, Bioinformatics (2003). The Apr09 datasets were hybridized in two large series. The Apr09 dataset has not yet been corrected for potential batch effects.

    +

    Data source acknowledgment

    +

    Cells and RNA were collected by Ellen Weersing, Bert Dontje, Alice Gerrits, Leonid Bystrykh and Gerald de Haan, at the Department of Cell Biology, University Medical Center Groningen, the Netherlands. Cells were flow-sorted at the central flowcytometry facility of the UMCG with technical assistance from Geert Mesander and Henk Moes. Hybridizations were carried out by ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/). Normalizations and preprocessing was carried out by Bruno Tesson, Yang Li, Rainer Breitling and Ritsert Jansen at the Department of Bioinformatics, University of Groningen, the Netherlands. +Financial support for this project was provided through VICI-awards to Ritsert Jansen and Gerald de Haan by the Netherlands Organization for Scientific Research (NWO) and by a Horizon-grant awarded to GdH by the Netherlands Genomics Initiative (http://www.genomics.nl/). +

    +

    Contact address

    +

    Gerald de Haan, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands. (g.de.haan@med.umcg.nl). (http://www.rug.nl/umcg/faculteit/disciplinegroepen/celbiologie/stamcelbiologie/index)

    +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/UMCG_0907_HemaStem_ori.html b/web/dbdoc/UMCG_0907_HemaStem_ori.html new file mode 100755 index 00000000..8d1d293b --- /dev/null +++ b/web/dbdoc/UMCG_0907_HemaStem_ori.html @@ -0,0 +1,93 @@ + +UMCG Stem Cells ILM6v1.1 (Apr09) original + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    UMCG Stem Cells ILM6v1.1 (Apr09) original +modify this page

    Accession number: GN149

    +

    Summary

    +

    The UMCG Hematopoietic cells datasets allow to search for differential expression of mRNA transcripts across a large subset of the BXD recombinant inbred strains. Prior studies have indicated and collected many hematopoietic phenotypes for which the parental C57BL/6 and DBA/2 strains differ. Total RNA collected from four distinct bone marrow cell populations was hybridized to Illumina Sentrix Mouse-6 BeadChips.

    +

    About the cases used to generate this set of data

    +

    Samples were collected from BXD recombinant inbred strains.

    +

    About the tissue used to generate these data

    +

    Bone marrow cells were flushed from femurs and stained with a collection of antibodies to detect defined hematopoietic cell populations. Four datasets are available: +

    1. Hematopoietic stem cells. These cells were isolated by flowcytometry using a MoFlow high speed cell sorter. Cells were stained with a panel of antibodies directed against lineage-specific markers, in combination with antibodies directed against c-kit and Sca-1. Purified cells were Lin-, Sca1+, and ckit+ (LSK cells). All long term repopulating stem cells are contained in the fraction of cells. +

    2. Hematopoietic progenitor cells. These cells were similarly isolated but were defined by a Lin-Sca1-ckit+ phenotype. These Sca1- cells are devoid of long term repopulating activity, but are highly enriched for progenitors. +

    3. Erythroid cells. These cells were isolated based on the expression of the erythroid antigen Ter119. +

    4. Myeloid cells. These cells were isolated based on the expression of the myeloid antigen Gr-1. +

    Cells were immediately sorted in RNA lysis buffer and RNA was isolated using the Rneasy Mini Kit (Qiagen, www.qiagen.com). RNA samples were stored at -80 C, and were shipped to ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/) where hybridizations were performed.

    +

    +

    About the array platform

    +

    RNA samples were randomly distributed according to strain and cell type across Illumina Sentrix Mouse-6 BeadChips.

    +

    About data processing

    +

    The data were pre-processed using Illumina BeadStudio software. The AVG_Signal values from the Gene profiles of all 4 cell types samples were gathered and submitted to a quantile normalization using the Bioconductor Affy package (Bolstad et al, Bioinformatics (2003). The Apr09 datasets were hybridized in two large series. The Apr09 dataset has not yet been corrected for potential batch effects.

    +

    Data source acknowledgment

    +

    Cells and RNA were collected by Ellen Weersing, Bert Dontje, Alice Gerrits, Leonid Bystrykh and Gerald de Haan, at the Department of Cell Biology, University Medical Center Groningen, the Netherlands. Cells were flow-sorted at the central flowcytometry facility of the UMCG with technical assistance from Geert Mesander and Henk Moes. Hybridizations were carried out by ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/). Normalizations and preprocessing was carried out by Bruno Tesson, Yang Li, Rainer Breitling and Ritsert Jansen at the Department of Bioinformatics, University of Groningen, the Netherlands. +Financial support for this project was provided through VICI-awards to Ritsert Jansen and Gerald de Haan by the Netherlands Organization for Scientific Research (NWO) and by a Horizon-grant awarded to GdH by the Netherlands Genomics Initiative (http://www.genomics.nl/). +

    +

    Contact address

    +

    Gerald de Haan, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands. (g.de.haan@med.umcg.nl). (http://www.rug.nl/umcg/faculteit/disciplinegroepen/celbiologie/stamcelbiologie/index)

    +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/UMCG_0907_Myeloid.html b/web/dbdoc/UMCG_0907_Myeloid.html new file mode 100755 index 00000000..e15ca2ba --- /dev/null +++ b/web/dbdoc/UMCG_0907_Myeloid.html @@ -0,0 +1,92 @@ + +UMCG Myeloid Cells ILM6v1.1 (Apr09) transformed + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    UMCG Myeloid Cells ILM6v1.1 (Apr09) transformed +modify this page

    Accession number: GN144

    +

    Summary

    +

    The UMCG Hematopoietic cells datasets allow to search for differential expression of mRNA transcripts across a large subset of the BXD recombinant inbred strains. Prior studies have indicated and collected many hematopoietic phenotypes for which the parental C57BL/6 and DBA/2 strains differ. Total RNA collected from four distinct bone marrow cell populations was hybridized to Illumina Sentrix Mouse-6 BeadChips.

    +

    About the cases used to generate this set of data

    +

    Samples were collected from BXD recombinant inbred strains.

    +

    About the tissue used to generate these data

    +

    Bone marrow cells were flushed from femurs and stained with a collection of antibodies to detect defined hematopoietic cell populations. Four datasets are available: +

    1. Hematopoietic stem cells. These cells were isolated by flowcytometry using a MoFlow high speed cell sorter. Cells were stained with a panel of antibodies directed against lineage-specific markers, in combination with antibodies directed against c-kit and Sca-1. Purified cells were Lin-, Sca1+, and ckit+ (LSK cells). All long term repopulating stem cells are contained in the fraction of cells. +

    2. Hematopoietic progenitor cells. These cells were similarly isolated but were defined by a Lin-Sca1-ckit+ phenotype. These Sca1- cells are devoid of long term repopulating activity, but are highly enriched for progenitors. +

    3. Erythroid cells. These cells were isolated based on the expression of the erythroid antigen Ter119. +

    4. Myeloid cells. These cells were isolated based on the expression of the myeloid antigen Gr-1. +

    Cells were immediately sorted in RNA lysis buffer and RNA was isolated using the Rneasy Mini Kit (Qiagen, www.qiagen.com). RNA samples were stored at -80 C, and were shipped to ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/) where hybridizations were performed.

    +

    +

    About the array platform

    +

    RNA samples were randomly distributed according to strain and cell type across Illumina Sentrix Mouse-6 BeadChips.

    +

    About data processing

    +

    The data were pre-processed using Illumina BeadStudio software. The AVG_Signal values from the Gene profiles of all 4 cell types samples were gathered and submitted to a quantile normalization using the Bioconductor Affy package (Bolstad et al, Bioinformatics (2003). The Apr09 datasets were hybridized in two large series. The Apr09 dataset has not yet been corrected for potential batch effects.

    +

    Data source acknowledgment

    +

    Cells and RNA were collected by Ellen Weersing, Bert Dontje, Alice Gerrits, Leonid Bystrykh and Gerald de Haan, at the Department of Cell Biology, University Medical Center Groningen, the Netherlands. Cells were flow-sorted at the central flowcytometry facility of the UMCG with technical assistance from Geert Mesander and Henk Moes. Hybridizations were carried out by ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/). Normalizations and preprocessing was carried out by Bruno Tesson, Yang Li, Rainer Breitling and Ritsert Jansen at the Department of Bioinformatics, University of Groningen, the Netherlands. +Financial support for this project was provided through VICI-awards to Ritsert Jansen and Gerald de Haan by the Netherlands Organization for Scientific Research (NWO) and by a Horizon-grant awarded to GdH by the Netherlands Genomics Initiative (http://www.genomics.nl/). +

    +

    Contact address

    +

    Gerald de Haan, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands. (g.de.haan@med.umcg.nl). (http://www.rug.nl/umcg/faculteit/disciplinegroepen/celbiologie/stamcelbiologie/index)

    +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/UMCG_0907_Myeloid_ori.html b/web/dbdoc/UMCG_0907_Myeloid_ori.html new file mode 100755 index 00000000..dfeff1fe --- /dev/null +++ b/web/dbdoc/UMCG_0907_Myeloid_ori.html @@ -0,0 +1,93 @@ + +UMCG Myeloid Cells ILM6v1.1 (Apr09) original + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    UMCG Myeloid Cells ILM6v1.1 (Apr09) original +modify this page

    Accession number: GN148

    +

    Summary

    +

    The UMCG Hematopoietic cells datasets allow to search for differential expression of mRNA transcripts across a large subset of the BXD recombinant inbred strains. Prior studies have indicated and collected many hematopoietic phenotypes for which the parental C57BL/6 and DBA/2 strains differ. Total RNA collected from four distinct bone marrow cell populations was hybridized to Illumina Sentrix Mouse-6 BeadChips.

    +

    About the cases used to generate this set of data

    +

    Samples were collected from BXD recombinant inbred strains.

    +

    About the tissue used to generate these data

    +

    Bone marrow cells were flushed from femurs and stained with a collection of antibodies to detect defined hematopoietic cell populations. Four datasets are available: +

    1. Hematopoietic stem cells. These cells were isolated by flowcytometry using a MoFlow high speed cell sorter. Cells were stained with a panel of antibodies directed against lineage-specific markers, in combination with antibodies directed against c-kit and Sca-1. Purified cells were Lin-, Sca1+, and ckit+ (LSK cells). All long term repopulating stem cells are contained in the fraction of cells. +

    2. Hematopoietic progenitor cells. These cells were similarly isolated but were defined by a Lin-Sca1-ckit+ phenotype. These Sca1- cells are devoid of long term repopulating activity, but are highly enriched for progenitors. +

    3. Erythroid cells. These cells were isolated based on the expression of the erythroid antigen Ter119. +

    4. Myeloid cells. These cells were isolated based on the expression of the myeloid antigen Gr-1. +

    Cells were immediately sorted in RNA lysis buffer and RNA was isolated using the Rneasy Mini Kit (Qiagen, www.qiagen.com). RNA samples were stored at -80 C, and were shipped to ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/) where hybridizations were performed.

    +

    +

    About the array platform

    +

    RNA samples were randomly distributed according to strain and cell type across Illumina Sentrix Mouse-6 BeadChips.

    +

    About data processing

    +

    The data were pre-processed using Illumina BeadStudio software. The AVG_Signal values from the Gene profiles of all 4 cell types samples were gathered and submitted to a quantile normalization using the Bioconductor Affy package (Bolstad et al, Bioinformatics (2003). The Apr09 datasets were hybridized in two large series. The Apr09 dataset has not yet been corrected for potential batch effects.

    +

    Data source acknowledgment

    +

    Cells and RNA were collected by Ellen Weersing, Bert Dontje, Alice Gerrits, Leonid Bystrykh and Gerald de Haan, at the Department of Cell Biology, University Medical Center Groningen, the Netherlands. Cells were flow-sorted at the central flowcytometry facility of the UMCG with technical assistance from Geert Mesander and Henk Moes. Hybridizations were carried out by ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/). Normalizations and preprocessing was carried out by Bruno Tesson, Yang Li, Rainer Breitling and Ritsert Jansen at the Department of Bioinformatics, University of Groningen, the Netherlands. +Financial support for this project was provided through VICI-awards to Ritsert Jansen and Gerald de Haan by the Netherlands Organization for Scientific Research (NWO) and by a Horizon-grant awarded to GdH by the Netherlands Genomics Initiative (http://www.genomics.nl/). +

    +

    Contact address

    +

    Gerald de Haan, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands. (g.de.haan@med.umcg.nl). (http://www.rug.nl/umcg/faculteit/disciplinegroepen/celbiologie/stamcelbiologie/index)

    +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/UMCG_0907_Pro.html b/web/dbdoc/UMCG_0907_Pro.html new file mode 100755 index 00000000..4bfae838 --- /dev/null +++ b/web/dbdoc/UMCG_0907_Pro.html @@ -0,0 +1,92 @@ + +UMCG Progenitor Cells ILM6v1.1 (Apr09) transformed + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    UMCG Progenitor Cells ILM6v1.1 (Apr09) transformed +modify this page

    Accession number: GN147

    +

    Summary

    +

    The UMCG Hematopoietic cells datasets allow to search for differential expression of mRNA transcripts across a large subset of the BXD recombinant inbred strains. Prior studies have indicated and collected many hematopoietic phenotypes for which the parental C57BL/6 and DBA/2 strains differ. Total RNA collected from four distinct bone marrow cell populations was hybridized to Illumina Sentrix Mouse-6 BeadChips.

    +

    About the cases used to generate this set of data

    +

    Samples were collected from BXD recombinant inbred strains.

    +

    About the tissue used to generate these data

    +

    Bone marrow cells were flushed from femurs and stained with a collection of antibodies to detect defined hematopoietic cell populations. Four datasets are available: +

    1. Hematopoietic stem cells. These cells were isolated by flowcytometry using a MoFlow high speed cell sorter. Cells were stained with a panel of antibodies directed against lineage-specific markers, in combination with antibodies directed against c-kit and Sca-1. Purified cells were Lin-, Sca1+, and ckit+ (LSK cells). All long term repopulating stem cells are contained in the fraction of cells. +

    2. Hematopoietic progenitor cells. These cells were similarly isolated but were defined by a Lin-Sca1-ckit+ phenotype. These Sca1- cells are devoid of long term repopulating activity, but are highly enriched for progenitors. +

    3. Erythroid cells. These cells were isolated based on the expression of the erythroid antigen Ter119. +

    4. Myeloid cells. These cells were isolated based on the expression of the myeloid antigen Gr-1. +

    Cells were immediately sorted in RNA lysis buffer and RNA was isolated using the Rneasy Mini Kit (Qiagen, www.qiagen.com). RNA samples were stored at -80 C, and were shipped to ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/) where hybridizations were performed.

    +

    +

    About the array platform

    +

    RNA samples were randomly distributed according to strain and cell type across Illumina Sentrix Mouse-6 BeadChips.

    +

    About data processing

    +

    The data were pre-processed using Illumina BeadStudio software. The AVG_Signal values from the Gene profiles of all 4 cell types samples were gathered and submitted to a quantile normalization using the Bioconductor Affy package (Bolstad et al, Bioinformatics (2003). The Apr09 datasets were hybridized in two large series. The Apr09 dataset has not yet been corrected for potential batch effects.

    +

    Data source acknowledgment

    +

    Cells and RNA were collected by Ellen Weersing, Bert Dontje, Alice Gerrits, Leonid Bystrykh and Gerald de Haan, at the Department of Cell Biology, University Medical Center Groningen, the Netherlands. Cells were flow-sorted at the central flowcytometry facility of the UMCG with technical assistance from Geert Mesander and Henk Moes. Hybridizations were carried out by ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/). Normalizations and preprocessing was carried out by Bruno Tesson, Yang Li, Rainer Breitling and Ritsert Jansen at the Department of Bioinformatics, University of Groningen, the Netherlands. +Financial support for this project was provided through VICI-awards to Ritsert Jansen and Gerald de Haan by the Netherlands Organization for Scientific Research (NWO) and by a Horizon-grant awarded to GdH by the Netherlands Genomics Initiative (http://www.genomics.nl/). +

    +

    Contact address

    +

    Gerald de Haan, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands. (g.de.haan@med.umcg.nl). (http://www.rug.nl/umcg/faculteit/disciplinegroepen/celbiologie/stamcelbiologie/index)

    +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/UMCG_0907_Pro_ori.html b/web/dbdoc/UMCG_0907_Pro_ori.html new file mode 100755 index 00000000..32e0ebb8 --- /dev/null +++ b/web/dbdoc/UMCG_0907_Pro_ori.html @@ -0,0 +1,93 @@ + +UMCG Progenitor Cells ILM6v1.1 (Apr09) original + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    UMCG Progenitor Cells ILM6v1.1 (Apr09) original +modify this page

    Accession number: GN151

    +

    Summary

    +

    The UMCG Hematopoietic cells datasets allow to search for differential expression of mRNA transcripts across a large subset of the BXD recombinant inbred strains. Prior studies have indicated and collected many hematopoietic phenotypes for which the parental C57BL/6 and DBA/2 strains differ. Total RNA collected from four distinct bone marrow cell populations was hybridized to Illumina Sentrix Mouse-6 BeadChips.

    +

    About the cases used to generate this set of data

    +

    Samples were collected from BXD recombinant inbred strains.

    +

    About the tissue used to generate these data

    +

    Bone marrow cells were flushed from femurs and stained with a collection of antibodies to detect defined hematopoietic cell populations. Four datasets are available: +

    1. Hematopoietic stem cells. These cells were isolated by flowcytometry using a MoFlow high speed cell sorter. Cells were stained with a panel of antibodies directed against lineage-specific markers, in combination with antibodies directed against c-kit and Sca-1. Purified cells were Lin-, Sca1+, and ckit+ (LSK cells). All long term repopulating stem cells are contained in the fraction of cells. +

    2. Hematopoietic progenitor cells. These cells were similarly isolated but were defined by a Lin-Sca1-ckit+ phenotype. These Sca1- cells are devoid of long term repopulating activity, but are highly enriched for progenitors. +

    3. Erythroid cells. These cells were isolated based on the expression of the erythroid antigen Ter119. +

    4. Myeloid cells. These cells were isolated based on the expression of the myeloid antigen Gr-1. +

    Cells were immediately sorted in RNA lysis buffer and RNA was isolated using the Rneasy Mini Kit (Qiagen, www.qiagen.com). RNA samples were stored at -80 C, and were shipped to ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/) where hybridizations were performed.

    +

    +

    About the array platform

    +

    RNA samples were randomly distributed according to strain and cell type across Illumina Sentrix Mouse-6 BeadChips.

    +

    About data processing

    +

    The data were pre-processed using Illumina BeadStudio software. The AVG_Signal values from the Gene profiles of all 4 cell types samples were gathered and submitted to a quantile normalization using the Bioconductor Affy package (Bolstad et al, Bioinformatics (2003). The Apr09 datasets were hybridized in two large series. The Apr09 dataset has not yet been corrected for potential batch effects.

    +

    Data source acknowledgment

    +

    Cells and RNA were collected by Ellen Weersing, Bert Dontje, Alice Gerrits, Leonid Bystrykh and Gerald de Haan, at the Department of Cell Biology, University Medical Center Groningen, the Netherlands. Cells were flow-sorted at the central flowcytometry facility of the UMCG with technical assistance from Geert Mesander and Henk Moes. Hybridizations were carried out by ServiceXS (Leiden, the Netherlands, http://www.servicexs.com/). Normalizations and preprocessing was carried out by Bruno Tesson, Yang Li, Rainer Breitling and Ritsert Jansen at the Department of Bioinformatics, University of Groningen, the Netherlands. +Financial support for this project was provided through VICI-awards to Ritsert Jansen and Gerald de Haan by the Netherlands Organization for Scientific Research (NWO) and by a Horizon-grant awarded to GdH by the Netherlands Genomics Initiative (http://www.genomics.nl/). +

    +

    Contact address

    +

    Gerald de Haan, Department of Cell Biology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands. (g.de.haan@med.umcg.nl). (http://www.rug.nl/umcg/faculteit/disciplinegroepen/celbiologie/stamcelbiologie/index)

    +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/UMUTAffyExon_0209_RMA.html b/web/dbdoc/UMUTAffyExon_0209_RMA.html new file mode 100755 index 00000000..5868b043 --- /dev/null +++ b/web/dbdoc/UMUTAffyExon_0209_RMA.html @@ -0,0 +1,254 @@ + +UMUTAffy Hippocampus Exon (Feb09) RMA + + + + + + + + + + + + + + + + + + + + + + + +
    + +
    + + + +

    UMUTAffy Hippocampus Exon (Feb09) RMA +modify this page

    Accession number: GN206

    + +

    Data generated by RW Williams, Lu Lu, Manjunatha Jagalur, and David Kulp. All arrays run at the VA Medical Center, Memphis, by Yan Jiao. + +

    Data entered by Arthur Centeno and Manju Jagalur, Feb 27, 2009. This data set modified data for two BXD strains. Data were added for BXD79 that had been incorrectly included as a striatum sample (this data set was therefore deleted from the Exon 1.0ST striatum data set). We also changed data for BXD39. As expected, this addition and correction improved QTL mapping values. For example, for Kcnj9 probe set 4519178 the LRS values increased from 103.3 in the Aug08 data to 115.7 for these Feb09 data. Rob is concerned about the high error term of BXD39.

    + +Quality improvement of BXD data +
    +The following steps were applied to refine the data by M. Jagalur in RWW lab: +
      +
    1. Strain correction: In this step the strong probe level cis-QTLs were identified and using an expectation maximization (EM)-like method, the genotypes of each marker was re-assigned. This set of reassigned markers was compared to existing list genotypes of BXD strains and the maximal match was identified as the correct strain. +
      +   Results: Three chips were initially found to be strain-mislabeled.
      + +
    2. Sex correction: In this step probes that are highly correlated to sex were identified and using an EM-like method we detected and corrected the sex of single array data sets.
      +   Results: Two chips were found to be sex-mislabeled
      + +
    3. Data exclusion criteria: In this step individual arrays were evaluated. Arrays were systematically excluded from the data set (drop one out) and the number of cis-QTLs was recomputed. If excluding an array resulted in s significantly higher number of cis-QTLs then that array was considered to be of poor quality and was excluded from the final data set This step was repeated across all arrays in multiple cycles until there was no improvement in number of cis-QTLs
      +Results: None of the arrays were dropped.
      + +
    4. Tissue correction: In this step probes that are highly correlated to tissue type were identified and EM-like method was used to identify correct tissue.
      +  Results: Three arrays were found to have been reverse labeled between hippocampus and striatum data sets. Samples were relabeled and reassigned based upon this analysis.
      + +
    5. Noise Removal: A noise component was calculated using the expression of "unhybridized" probes (those with the lowest signal) and was removed from the data. +
      +   Result: A spurious transband was detected on distal chromosome 12 and removed. +
    + + +

    After this procedure we analyzed probe sets (n = 64) with the lowest expression (mean between 4.0 to 4.2). These probe sets had no cis eQTLs, confirming the absence of any significant biological variance in their expression. These background probe sets also did not have any notable transband expression pattern using the QTL heatmap function in GeneNetwork. This confirms that residual noise in this data set does not by chance covary well with any genetic markers. The covariation among this set of probe sets is poor. However, a small subset of probe sets do covary and generate a principal component that in total accounts for 25% the variance among this "noise" set. The first PC does not map well to any region. (RWW June 2010). + +
    +
    + + + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexOriginal CELTube IDStrainAgeSexSource
    1JR3551H.CELjr3551hC57BL/6J60FUTM RW
    2JR3552H.CELjr3552hreC57BL/6J60FUTM RW
    3R0572H.CELr0572hC57BL/6J69F
    4R2137H.CELr2137hC57BL/6J55FJAX
    5R3552H.CELr3552hC57BL/6J60FGlenn
    6JR3549H.CELjr3549hC57BL/6J60MUTM RW
    7JR3550H.CELjr3550hreC57BL/6J60MUTM RW
    8R0574H.CELr0574hC57BL/6J69M
    9R2136H.CELr2136hC57BL/6J55MJAX
    10R3549H.CELr3549hC57BL/6J60MGlenn
    11JR3557H.CELjr3557hDBA/2J60FUTM RW
    12JR3558H.CELjr3558hreDBA/2J60FUTM RW
    13R3558H.CELr3558hDBA/2J60FGlenn
    14JR3555H.CELjr3555hDBA/2J60MUTM RW
    15JR3556H.CELjr3556hDBA/2J60MUTM RW
    16R3555H.CELr3555hDBA/2J60MGlenn
    17R3497H.CELr3497hB6D2F158FGlenn
    18R3500H.CELr3500hB6D2F158MGlenn
    19R1374H.CELr1374hD2B6F158FUTM RW
    20R1382H.CELr1382hD2B6F159MUTM RW
    21R3532H.CELr3532h129S1/SvImJ60FGlenn
    22R3512H.CELr3512h129S1/SvImJ59MGlenn
    23R3520H.CELr3520hA/J59FGlenn
    24R3523H.CELr3523hA/J59MGlenn
    25R3514H.CELr3514hAKR/J59FGlenn
    26R3515H.CELr3515hAKR/J59MGlenn
    27R3508H.CELr3508hBALB/cByJ59FGlenn
    28R3505H.CELr3505hBALB/cByJ59MGlenn
    29R3524H.CELr3524hBTBR T+ tf/J60FGlenn
    30R3509H.CELr3509hBTBR T+ tf/J60MGlenn
    31R1542H.CELr1542hBXD159FGlenn
    32R1520H.CELr1520hBXD256FGlenn
    33R1694H.CELr1694hBXD558MGlenn
    34R3454H.CELr3454hBXD658MGlenn
    35R3457H.CELr3457hBXD861FGlenn
    36R3455H.CELr3455hBXD960MGlenn
    37R3462H.CELr3462hBXD1159MGlenn
    38R3464H.CELr3464hBXD1259FGlenn
    39R2315H.CELr2315hBXD1384MUTM RW
    40R3480H.CELr3480hBXD1460FGlenn
    41R3478H.CELr3478hBXD1560MGlenn
    42R3482H.CELr3482hBXD1659FGlenn
    43R3488H.CELr3488hBXD1859MGlenn
    44R3471H.CELr3471hBXD1960MGlenn
    45R2506H.CELr2506hBXD2060MGlenn
    46R3490H.CELr3490hBXD2160FGlenn
    47R3492H.CELr3492hBXD2260FGlenn
    48R3486H.CELr3486hBXD2360FGlenn
    49R1547H.CELr1547hBXD2459MGlenn
    50R2892H.CELr2892hBXD2567FUTM RW
    51R3485H.CELr3485hBXD2760MGlenn
    52R3477H.CELr3477hBXD2860FGlenn
    53R3475H.CELr3475hBXD2960FGlenn
    54R3456H.CELr3456hBXD3160MGlenn
    55R3570H.CELr3570hBXD3266F
    56R3571H.CELr3571hBXD3258M
    57R3467H.CELr3467hBXD3359MGlenn
    58R3466H.CELr3466hBXD3460FGlenn
    59R3463H.CELr3463hBXD3661FGlenn
    60R3458H.CELr3458hBXD3855MGlenn
    61JR4433H.CELjr4433saBXD3963FUTM RW
    62R1535H.CELr1535hBXD3960FGlenn
    63R3459H.CELr3459hBXD4060MGlenn
    64R1541H.CELr1541hBXD4258FGlenn
    65R1279H.CELr1279hBXD4357MUTM RW
    66R1472H.CELr1472hBXD4565MUTM RW
    67R1586H.CELr1586hBXD4859FUTM RW
    68R2936H.CELr2936hBXD5061FUTM RW
    69R1313H.CELr1313hBXD5162MUTM RW
    70JR2680H.CELjr2680hBXD5565MUTM RW
    71R1340H.CELr1340hBXD6064FUTM RW
    72R1856H.CELr1856hBXD6194MUTM RW
    73R1317H.CELr1317hBXD6259FUTM RW
    74R1945H.CELr1945hBXD63107FUTM RW
    75R2615H.CELr2615hBXD6468FUTM RW
    76R3567H.CELr3567hBXD6560FUTRW
    77R1949H.CELr1949hBXD6696MUTM RW
    78R2060H.CELr2060hBXD6754FUTM RW
    79R2902H.CELr2902hBXD6857MUTM RW
    80R1466H.CELr1466hBXD6959FUTM RW
    81R2063H.CELr2063hBXD7055MUTM RW
    82R1269H.CELr1269hBXD7372MUTM RW
    83JR2316H.CELjr2316hreBXD74193MUTM RW
    84R1871H.CELr1871hBXD7561FUTM RW
    85JR1948H.CELjr1948hBXD7681FUTM RW
    86R1427H.CELr1427hBXD7761MUTM RW
    87JR4434H.CELjr4434sareBXD7963FUTM RW
    88R3568H.CELr3568hBXD8066MUTRW
    89R2959H.CELr2959hBXD8358FUTM RW
    90R2898H.CELr2898hBXD8467MUTM RW
    91R3566H.CELr3566hBXD8565MUTRW
    92R1556H.CELr1556hBXD8657FUTM RW
    93R1710H.CELr1710hBXD8784MUTM RW
    94JR4079H.CELjr4079hreBXD8963MUTM RW
    95R2058H.CELr2058hBXD9061FUTM RW
    96R1284H.CELr1284hBXD9258MUTM RW
    97JR2057H.CELjr2057hBXD9392FUTM RW
    98JR2313H.CELjr2313h-reBXD9459FUTM RW
    99R1915H.CELr1915hBXD9665FUTM RW
    100R2648H.CELr2648hBXD9774FUTM RW
    101R1942H.CELr1942hBXD9862FUTM RW
    102R1369H.CELr1369hBXD9976MUMemphis
    103R2889H.CELr2889hBXSB/MpJ61FGlenn
    104R2887H.CELr2887hBXSB/MpJ61MGlenn
    105R3501H.CELr3501hC3H/HeJ60FGlenn
    106R3504H.CELr3504hC3H/HeJ60MGlenn
    107R3564H.CELr3564hCAST/EiJ57FGlenn
    108R3565H.CELr3565hCAST/EiJ61MGlenn
    109R3493H.CELr3493hFVB/NJ60FGlenn
    110R3496H.CELr3496hFVB/NJ60MGlenn
    111JR1683H.CELjr1683hKK/HlJ72FUTM RW
    112JR3542H.CELjr3542hreKK/HlJ61MUTM RW
    113JR2046H.CELjr2046hreLG/J63FUTM RW
    114JR2047H.CELjr2047hLG/J63MUTM RW
    115R3541H.CELr3541hMOLF/EiJ60FGlenn
    116R3553H.CELr3553hMOLF/EiJ60MGlenn
    117R3516H.CELr3516hNOD/LtJ58FGlenn
    118R3519H.CELr3519hNOD/LtJ58MGlenn
    119R3554H.CELr3554hNZB/BlNJ61FGlenn
    120R3513H.CELr3513hNZB/BlNJ58MGlenn
    121R3539H.CELr3539hNZO/HlLtJ60FGlenn
    122R3536H.CELr3536hNZO/HlLtJ60MGlenn
    123R3540H.CELr3540hNZW/LacJ65FGlenn
    124R3535H.CELr3535hNZW/LacJ60MGlenn
    125R3527H.CELr3527hPWD/PhJ60FGlenn
    126R3526H.CELr3526hPWD/PhJ60MGlenn
    127R3531H.CELr3531hPWK/PhJ60MGlenn
    128R3561H.CELr3561hWSB/EiJ60FGlenn
    129R3525H.CELr3525hWSB/EiJ60MGlenn
    + +
    + +

    +

    We thank Affymetrix Inc. for their generous support of this project and array data set. +

    +

    Table updated by Rob with questions for Arthur, Aug 13, 2009. + +

    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UMUTAffyExon_0209_RMA_MDP.html b/web/dbdoc/UMUTAffyExon_0209_RMA_MDP.html new file mode 100755 index 00000000..891b452f --- /dev/null +++ b/web/dbdoc/UMUTAffyExon_0209_RMA_MDP.html @@ -0,0 +1,82 @@ + + + +UMUTAffy Hippocampus Exon (Feb09) RMA MDP + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    UMUTAffy Hippocampus Exon (Feb09) RMA MDPmodify this page

    + + Accession number: GN273

    +

    + This page will be updated soon. +

    + +
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UMUTAffyExon_0308_RMA.html b/web/dbdoc/UMUTAffyExon_0308_RMA.html new file mode 100755 index 00000000..cca845a8 --- /dev/null +++ b/web/dbdoc/UMUTAffyExon_0308_RMA.html @@ -0,0 +1,77 @@ + + + +UMUTAffy Hippocampus Exon (Mar08) RMA + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UMUTAffy Hippocampus Exon (Mar08) RMA + modify this page

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UMUTAffyExon_0708_RMA.html b/web/dbdoc/UMUTAffyExon_0708_RMA.html new file mode 100755 index 00000000..14dcfabb --- /dev/null +++ b/web/dbdoc/UMUTAffyExon_0708_RMA.html @@ -0,0 +1,621 @@ + +Hippocampus Consortium M430v2 June06 PDNN + + + + + + + + + + + + + + + + + + +
    + + + + + +

    MODIFY All TEXT (June06) PDNN + modify this page

    + + +

        Summary:

    + +
    +MOST HIGHLY RECOMMENDED DATA SET (Unpublished): The June 2006 Hippocampus Consortium data set provides estimates of mRNA expression in the adult hippocampus of 99 genetically diverse strains of mice including 67 BXD recombinant inbred strains, 13 CXB recombinant inbred strains, a set of diverse inbred strains, and two reciprocal F1 hybrids. This release corrects for several errors detected in the Dec05 PDNN data set (see below). + +

    The hippocampus is an important and intriguing part of the forebrain that is crucial in memory formation and retrieval, and that is often affected in epilepsy, Alzheimer's disease, and schizophrenia. Unlike most other parts of the brain, the hippocampus contains a remarkable population of stems cells that continue to generate neurons and glial cells even in adult mammals (Kempermann, 2005). This genetic analysis of transcript expression in the hippocampus (dentate gyrus, CA1-CA3) is a joint effort of 14 investigators that is supported by numerous agencies described in the acknowledgments section. + +

    Samples were processed using a total of 206 Affymetrix GeneChip Mouse Expression 430 2.0 short oligomer arrays (MOE430 2.0 or M430v2; see GEO platform ID GPL1261), of which 201 passed quality control and error checking. This particular data set was processed using the PDNN protocol. To simplify comparisons among transforms, PDNN values of each array were adjusted to an average of 8 units and a standard deviation of 2 units. + +

    + +

        About the strains used to generate this set of data:

    + + + +
    +

    The BXD genetic reference panel of recombinant inbred strains consists of just over 80 strains. The BXDs in this data set include 27 of the BXD strains made by Benjamin Taylor at the Jackson Laboratory in the 1970s and 1990s (BXD1 through BXD42). All of these strains are fully inbred, many well beyond the 100th filial (F) generation of inbreeding. We have also included 39 inbred (25 strains at F20+) and nearly inbred (14 strains between F14 and F20) BXD lines generated by Lu and Peirce. All of these strains, including those between F14 and F20, have been genotyped at 13,377 SNPs. + +

    +

    Mouse Diversity Panel (MDP). We have profiled a MDP consisting 16 inbred strains and a pair of reciprocal F1 hybrids; B6D2F1 and D2B6F1. These strains were selected for several reasons: +

      +
    • genetic and phenotypic diversity, including use by the Phenome Project +
    • their use in making genetic reference populations including recombinant inbred strains, cosomic strains, congenic and recombinant congenic strains +
    • their use by the Complex Trait Consortium to make the Collaborative Cross (Nairobi/Wellcome, Oak Ridge/DOE, and Perth/UWA) +
    • genome sequence data from three sources (NHGRI, Celera, and Perlegen-NIEHS) +
    • availability from The Jackson Laboratory +
    + +

    All eight parents of the Collaborative Cross (129, A, C57BL/6J, CAST, NOD, NZO, PWK, and WSB) have been included in the MDP (noted below in the list). Twelve MDP strains have been sequenced, or are currently being resequenced by Perlegen for the NIEHS. This panel will be extremely helpful in systems genetic analysis of a wide variety of traits, and will be a powerful adjunct in fine mapping modulators using what is essentially an association analysis of sequence variants. + +

      +
    1. 129S1/SvImJ +
          Collaborative Cross strain sequenced by NIEHS; background for many knockouts; Phenome Project A list + +
    2. A/J +
          Collaborative Cross strain sequenced by Perlegen/NIEHS; parent of the AXB/BXA panel + +
    3. AKR/J +
          Sequenced by NIEHS; Phenome Project B list + +
    4. BALB/cByJ +
          Sequenced by NIEHS; maternal parent of the CXB panel; Phenome Project A list + +
    5. BALB/cJ +
          Widely used strain with forebrain abnormalities (callosal defects); Phenome Project A list + +
    6. C3H/HeJ
          Sequenced by Perlegen/NIEHS; paternal parent of the BXH panel; Phenome Project A list + +
    7. C57BL/6J +
          Sequenced by NHGRI; parental strain of AXB/BXA, BXD, and BXH; Phenome Project A list + +
    8. C57BL/6ByJ +
          Paternal substrain of B6 used to generate the CXB panel + +
    9. CAST/Ei +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project A list + +
    10. DBA/2J +
          Sequenced by Perlegen/NIEHS and Celera; paternal parent of the BXD panel; Phenome Project A list + +
    11. KK/HlJ +
          Sequenced by Perlegen/NIEHS + +
    12. LG/J +
          Paternal parent of the LGXSM panel + +
    13. NOD/LtJ +
          Collaborative Cross strain sequenced by NIEHS; Phenome Project B list; diabetic + +
    14. NZO/HlLtJ +
          Collaborative Cross strain + +
    15. PWD/PhJ +
          Sequenced by Perlegen/NIEHS; parental strain for a consomic set by Forjet and colleagues + +
    16. PWK/PhJ +
          Collaborative Cross strain; Phenome Project D list + +
    17. WSB/EiJ
          Collaborative Cross strain sequenced by NIEHS; Phenome Project C list + +
    18. B6D2F1 and D2B6F1 +
      F1 hybrids generated by crossing C57BL/6J with DBA/2J +
    + +

    We have not combined data from reciprocal F1s because they have different Y chromosome and mitochondial haplotypes. Parent-of-origin effects (imprinting, maternal environment) may also lead to interesting differences in hippocampal transcript levels. + +

    These strains are available from The Jackson Laboratory. BXD43 through BXD100 strains are available from Lu Lu and colleagues at UTHSC.

    + +
    + +
    + +

        About the animals and tissue used to generate this set of data:

    + +

    BXD animals were obtained from UTHSC, UAB, or directly from The Jackson Laboratory (see Table 1 below). Animals were housed at UTHSC, Beth Israel Deaconess, or the Jackson Laboratory before sacrifice. Virtually all CXB animals were obtained directly at the Jackson Laboratory by Lu Lu. We thanks Muriel Davission for making it possible to collect these cases on site. Standard inbred strain stock was from The Jackson Laboratory, but most animals were housed or reared at UTHSC. Mice were killed by cervical dislocation and brains were removed and placed in RNAlater prior to dissection. Cerebella and olfactory bulbs were removed; brains were hemisected, and both hippocampi were dissected whole by Hong Tao Zhang in the Lu lab. Hippocampal samples are very close to complete (see Lu et al., 2001) but probably include variable amounts of subiculum and fimbria. + +

    A great majority of animals used in this study were between 45 and 90 days of age (average of 66 days, maximum range from 41 to 196 days; see Table 1 below). All animals were sacrifice between 9 AM and 5 PM during the light phase. + + +

    A pool of dissected tissue typically from six hippocampi and three naive adults of the same strain, sex, and age was collected in one session and used to generate cRNA samples. Two-hundred and one RNA samples were extracted at UTHSC by Zhiping Jia, four samples by Shuhua Qi (R2331H1, R2332H1, P2350H1, R2349H1), and one by Siming Shou (R0129H2). + +

    RNA Extraction: In brief, we used the RNA STAT-60 protocol (TEL-TEST "B" Bulletin No. 1), steps 5.1A (homogenization of tissue), 5.2 (RNA extraction), 5.3 (RNA precipitation), and 5.4 (RNA wash). In Step 5.4 we stopped after adding 75% ethanol (1 ml per 1 ml RNA STAT-60) and stored the mix at -80 deg C until further use. Before RNA labeling we thawed samples and proceeded with the remainder of Step 5.4; pelleting, drying, and redissovling the pellet in RNAase-free water. + +

    We finally purify RNA by using Na4OAc before running arrays. Here is the detailed method: + +

    Final RNA purification protocol + +

      +
    1. Add 1/10th volume of 3M Na4OAc , pH 5.2. If the sample was eluted with 100 µl nuclease-free water as suggested, this will be 10 µl of 3M Na4OAc. +
    2. Add 2.5 volumes of 100% ethanol (250 µl if the RNA was eluted in100 µl). Mix well and incubate at –20°C for 2 hrs. +
    3. Centrifuge at speed of 13,000 rpm for 20 min at 4 °C. Carefully remove and discard the supernatant. +
    4. Wash the pellet with 800 µl 75% cold ethanol, centrifuge at speed of 8,600 rpm for 5 min, and remove the 75% ethanol. Wash again. +
    5. To remove the last traces of ethanol, quickly respin the tube, and aspirate any residual fluid. +
    6. Air dry the pellet. +
    7. Resuspend pellet in nuclease-free water. + + + +
    + + + +
    +

    Sample Processing: Samples were processed in the INIA Bioanalytical Core at the W. Harry Feinstone Center for Genomic Research, The University of Memphis, led by Thomas R. Sutter. All processing steps were performed by Shirlean Goodwin. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio, and values had to be greater than 1.8. The majority of samples were 1.9 to 2.1. RNA integrity was assessed using the Agilent Bioanalyzer 2100. We required an RNA integrity number (RIN) of greater than 8. This RIN value is based on the intensity ratio and amplitude of 18S and 28S rRNA signals. The standard Eberwine T7 polymerase method was used to catalyze the synthesis of cDNA template from polyA-tailed RNA using Superscript II reverse transcriptase (Invitrogen Inc.). The Enzo Life Sciences, Inc., BioArray High Yield RNA Transcript Labeling Kit (T7, Part No. 42655) was used to synthesize labeled cRNA. The cRNA was evaluated using both the 260/280 ratio (values of 2.0 or 2.1 are acceptable) and the Bioanalyzer output (a dark cRNA smear on the 2100 output centered roughly between 600 and 2000 nucleotides is required). Those samples that passed both QC steps (10% usually failed and new RNA samples had to be acquired and processed) were then sheared using a fragmentation buffer included in the Affymetrix GeneChip Sample Cleanup Module (Part No. 900371). Fragmented cRNA samples were either stored at -80 deg. C until use or were immediately injected onto the array. The arrays were hybridized and washed following standard Affymetrix protocols. + +

    Replication and Sample Balance: Our goal was to obtain a male sample pool and female sample pool from each isogenic group. While almost all strains were orginally represented by matched male and female samples, not all data sets passed the final quality control steps. Seventy-seven of 97 strains are represented by pairs or (rarely) trios of arrays. The first and last samples are technical replicates of a B6D2F1 hippocampal pool (aliquotes R1291H3 and R1291H4). + + +

    Sex Balance: Based on the expression of Xist, probe set 1427262_at, DBA/2J and KK/HlJ are represented only by female samples, BXD55, and BALB/cByJ are only represented by a single male sample, BXD74 is represented by two male samples, and BXD86, BXD94, and CAST/EiJ appear to be missing error term data or are mixed sex samples. One of the BXD9 samples, array R1523, may be a mixed sex sample pool because the expression of Xist is intermediate. + +

    Experimental Design and Batch Structure: This data set consists arrays processed in six groups over a three month period (May 2005 to August 2005). Each group consists of 32 to 34 arrays. Sex, strain, and strain type (BXD, CXB, and MDP) were interleaved among groups to ensure reasonable balance and to minimize group-by-strain statistical confounds in group normalization. The two independent samples from a single strain were always run in different groups. All arrays were processed using a single protocol by a single operator, Shirlean Goodwin. + +

    All samples in a group were labeled on one day, except for a few cases that failed QC on their first pass. The hybridization station accommodates up to 20 samples, and for this reason each group was split into a large first set of 20 samples and a second set of 12 to 14 samples. Samples were washed in groups of four and then held in at 4 deg C until all 20 (or 12-14) arrays were ready to scan. The last four samples out of the wash stations were scanned directly. Samples were scanned in sets of four. + + +

    COMPARISON with December 2005 Data Set: Both BXD14 arrays in the Dec05 data set were found to actually be from BXD23 cases. This error of strain identification has been corrected in the present data set. Four arrays in the Dec05 data set have been deleted because we judged them to be of poor quality (strain_sex_sample_firstreaction_group): +

      +
    1. BXD21_F_1_1_G1 +
    2. BXD23_M_1_1_G7 +
    3. BXD36_M_1_1_G2 +
    4. BXD36_F_1_1_G3 +
    + +

    +In the Dec05 data set there are a total of 1986 transcripts with QTLs that have LRS scores above 50, whereas in the corrected June06 data sets there are a total of 2074 transcripts with QTLs above 50. +

    + + + +
    + +

        Data Table 1:

    + +
    + +
    +This table lists all arrays by file order (Index), tube/sample ID, age, sex, batch, and numbers of animals in each sample pool (pool size). The next columns (RMA outlier, scale factor, background average, present, absent, marginal, AFFY-b-ActinMur(3'/5'), AFFY-GapdhMur(3'/5')) are all Affymetrix QC data. Finally, source lists the source colony of the animals. +
    + + +
    +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexbatch IDpool sizelRMA outlierscale factorback ground averagepresentabsentmarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')source
    1R1289H2B6D2F164F630.022.40653.840.4920.4890.0191.610.96UTM RW
    2R1291H3B6D2F166M +130.013.52448.540.4870.4940.0191.211.52UTM RW
    3R1291H4B6D2F166M technical duplicate of above630.083.89146.690.5120.4690.0191.90.89UTM RW
    4R2045H2D2B6F165F120.014.40347.990.4970.4850.0181.091.53UTM RW
    5R1595H2D2B6F163F530.062.57958.490.5060.4750.0192.491.21UTM RW
    6R1551H1D2B6F172F630.022.6253.760.5060.4760.0181.370.76UTM RW
    7R1361H1C57BL/6J69F640.013.05851.870.4770.5030.021.670.76UTM RW
    8R2041H2C57BL/6J65M140.043.34149.260.5270.4560.0181.141.45UTM RW
    9R1449H2C57BL/6J71M530.093.59244.320.470.510.021.680.77UTM DG
    10R1290H2DBA/2J63F720.042.57659.60.5130.4680.0181.30.78JAX
    11R1468H1DBA/2J64F530.032.92953.80.5150.4650.0191.280.79UTM RW
    12R1507H1BXD158M330.024.05660.170.4780.5030.0191.150.76Glenn
    13R1542H1BXD159F730.031.79280.560.4920.4890.0181.570.79Glenn
    14R1520H1BXD256F440.091.71571.620.5150.4670.0182.361.6Glenn
    15R1516H1BXD261M140.012.23164.860.5080.4740.0191.31.53Glenn
    16R1593H2BXD560F1401.91359.960.4870.4930.020.981.44Glenn
    17R1692H1BXD560M320.073.76472.740.4650.5160.021.150.74Glenn
    18R1539H2BXD659F1402.48854.970.5180.4630.0181.081.33Glenn
    19R1538H1BXD659M430.012.58550.270.5050.4750.021.460.79Glenn
    20R1518H1BXD856F1302.9254.840.5150.4650.021.321.24Glenn
    21R1548H1BXD859M630.072.13259.370.5040.4770.0192.161.54Glenn
    22R1350H2BXD986F130.052.77160.620.50.4820.0181.011.28UMemphis
    23R1523H3BXD957MF (mixed)730.143.978.360.4350.5470.0181.360.77UTM RW
    24R1531H1BXD1156F630.062.22956.360.5050.4750.022.231.02Glenn
    25R1367H1BXD1156M130.012.1178.780.5030.4770.021.071.27Glenn
    26R1530H1BXD1258F1303.22753.770.5050.4770.0180.951.4Glenn
    27R2674H1BXD1259M730.031.92483.440.5190.4640.0181.210.78Glenn
    28R1529H1BXD1358F630.052.5559.050.4970.4850.01821.54Glenn
    29R1662H2BXD1360M130.034.60345.810.5090.4720.0191.30.82Glenn
    30R1304H2BXD1472F730.033.94661.870.4840.4980.0181.220.77UTM RW
    31R1278H2BXD1455M730.064.7567.520.4490.5320.0191.10.73UTM RW
    32R1524H1BXD1560F640.022.96150.930.4970.4840.0191.740.91Glenn
    33R1515H1BXD1561M130.013.31657.050.5030.4780.0191.321.21Glenn
    34R1661H1BXD1661F130.012.77859.810.5160.4660.0191.391.2Glenn
    35R1594H1BXD1661M430.032.63453.660.5040.4780.0181.961.51Glenn
    36R2666H1BXD1960F730.022.49876.20.4950.4860.0191.410.77Glenn
    37R1471H1BXD19157M130.023.16543.340.5190.4620.0181.011.29UTM JB
    38R1573H1BXD2059F130.023.74952.70.5130.4690.0181.011.27Glenn
    39R2507H1BXD2060M630.063.568570.4720.5080.021.290.76Glenn
    40R2668H1BXD2160M740.072.60544.90.5350.4490.0171.540.76Glenn
    41R1337H2BXD21102F2402.67358.050.4920.4890.0191.40.76UAB
    42R1848H3BXD22196F640.022.94351.70.4940.4850.0212.20.78UAB
    43R1525H1BXD2259M230.022.24855.760.5480.4330.0181.260.74Glenn
    44R1280H2BXD2356F130.013.18754.630.4580.5230.0190.961.2UTM RW
    45R1537H1BXD2358F530.13.71967.540.4680.5130.0191.510.96Glenn
    46R1343H2BXD2471F230.012.08365.070.5060.4740.0191.460.75UMemphis
    47R1517H1BXD2457M330.013.47153.660.5040.4760.0191.280.78Glenn
    48R1366H1BXD2760F2402.2648.460.5180.4630.0191.290.77Glenn
    49R1849H1BXD2770M530.068.80138.340.4680.5120.0192.421.08UAB
    50R1353H1BXD2879F340.013.2276.220.480.50.021.330.78UMemphis
    51R2332H1BXD2860M230.013.21763.680.4910.490.0191.370.79Glenn
    52R1532H1BXD2957F230.012.12259.180.5240.4560.0191.170.76Glenn
    53R1356H1BXD2976M530.014.03347.670.520.4630.0171.170.78UMemphis
    54R1240H2BXD3161M230.022.33565.170.5070.4740.0191.310.78UTM RW
    55R1526H2BXD3157F740.17.26789.540.4350.5470.0171.350.78UTM RW
    56R2675H1BXD3257F730.032.26878.010.5020.4780.021.220.78Glenn
    57R1508H2BXD3258M240.011.91767.780.5390.4420.0191.280.73Glenn
    58R1345H3BXD3365F220.012.09863.140.5220.4590.0191.270.73UMemphis
    59R1581H1BXD3359M330.013.22953.160.4960.4850.0191.190.78Glenn
    60R1527H1BXD3459F230.012.358.920.510.4710.0191.240.76Glenn
    61R1339H3BXD3474M530.122.88853.490.5060.4760.0182.391.35UMemphis
    62R1855H1BXD3855F340.013.53654.540.490.4920.0181.390.75Glenn
    63R1510H1BXD3859M230.012.18668.060.5210.460.0191.260.79Glenn
    64R1528H2BXD3959F230.034.71738.30.5110.470.021.120.75Glenn
    65R1514H1BXD3959M330.033.99256.060.4770.5040.0191.430.81Glenn
    66R1522H1BXD4059F4402.63167.160.490.4910.0181.560.77Glenn
    67R1359H1BXD4073M230.097.45839.860.4510.5270.0211.280.74UMemphis
    68R1541H2BXD4258F730.076.78452.120.4830.4990.0171.130.66Glenn
    69R1540H1BXD4258M740.032.42375.140.4920.4880.021.480.78Glenn
    70R1334H2BXD4359F1302.67254.360.4920.4910.0171.22.06UTM RW
    71R1303H1BXD4363M340.023.49751.90.4860.4950.0191.150.8UTM RW
    72R1326H1BXD4465F3403.41253.960.4960.4850.0181.350.78UTM RW
    73R1577H2BXD4456M130.022.15967.520.5120.4690.0191.181.71UTM RW
    74R1403H2BXD4563F720.033.14644.50.5240.4570.0181.410.78Glenn
    75R1472H1BXD4565M740.041.65173.310.5430.440.0181.630.74UTM RW
    76R1316H1BXD4858F4302.44568.590.5150.4670.0191.160.73UTM RW
    77R1575H3BXD4865M340.054.57755.780.4660.5140.0191.590.9UTM RW
    78R2521H1BXD5063F640.013.10957.280.4950.4850.021.230.78UTM RW
    79R1944H2BXD5081M130.012.54663.390.4950.4850.020.91.57UTM RW
    80R2331H1BXD5166F330.033.53444.420.5010.4810.0171.20.9UTM RW
    81R1582H1BXD5171M640.032.9247.870.4890.4910.021.360.75UTM RW
    82R2680H1BXD5565M730.071.70779.750.5030.480.0171.911.05UTM RW
    83R1331H1BXD6060F430.012.86750.330.4920.4870.0211.340.78UTM RW
    84R1281H2BXD6059M1302.3958.440.5110.4690.020.941.2UTM RW
    85R2667H1BXD6170F740.033.3659.040.4950.4880.0181.160.76UTM RW
    86R1856H2BXD6194M1203.50249.60.5010.480.0190.961.3UTM RW
    87R1246H1BXD6254F140.023.40551.470.5110.4710.0181.141.34UTM RW
    88R1585H2BXD6264M640.013.15655.770.5180.4640.0181.430.82UTM RW
    89R1945H1BXD63107F130.022.81152.650.5220.4590.0191.051.36UTM RW
    90R2093H3BXD6370M630.023.89442.850.5030.4770.0191.291.01UTM RW
    91R2062H2BXD6465F130.053.79578.480.5130.4680.0190.981.43UTM RW
    92R2061H1BXD6487M340.013.53661.570.4770.5040.0191.310.78UTM RW
    93R2054H2BXD6555F120.033.15980.960.480.5020.0181.091.24UTM RW
    94R2056H2BXD6589M6202.83659.60.5040.4770.0191.30.75UTM RW
    95R1941H2BXD6678F140.012.73450.930.4990.4810.021.181.29UTM RW
    96R1949H2BXD6696M420.042.82851.270.4740.5080.0192.051.12UTM RW
    97R2060H1BXD6754F630.012.56143.880.5020.4790.021.70.84UTM RW
    98R2052H1BXD6761M140.013.16143.230.5210.460.0181.091.31UTM RW
    99R2074H1BXD6860F530.026.52849.620.4790.5020.0191.480.83UTM RW
    100R1928H1BXD6872M220.012.40448.280.5210.4590.021.30.74UTM RW
    101R1439H3BXD6960F230.022.46359.140.5220.4590.0181.310.78UTM RW
    102R1559H1BXD6964M330.032.98767.740.4860.4960.0171.380.8UTM RW
    103R2134H1BXD7064F520.022.14858.640.5320.450.0191.40.85UTM RW
    104R2063H1BXD7055M230.023.48155.320.5130.4690.0181.280.71UTM RW
    105R1277H1BXD7360F420.012.57662.450.5020.4790.0191.350.79UTM RW
    106R1443H2BXD7376M230.012.31264.340.4990.4810.021.480.77UTM RW
    107R2055H2BXD7479M230.012.57656.840.5090.4730.0181.460.88UTM RW
    108R2316H1BXD74193M520.013.45755.350.5080.4710.021.170.78UTM RW
    109R1871H1BXD7561F230.041.72356.40.530.4510.0191.30.76UTM RW
    110R1844H2BXD7590M340.011.93456.230.520.4610.0191.620.86UTM RW
    111R1948H2BXD7681F230.011.50768.850.5530.4280.021.30.75UTM RW
    112R2094H1BXD7661M540.013.29942.690.5190.4620.0191.390.88UTM RW
    113R2262H1BXD7762F340.024.31747.160.4930.4880.0191.320.74UTM RW
    114R1423H1BXD7762M230.023.07154.150.510.4710.0191.260.74UTM RW
    115R1947H1BXD79108F220.012.59951.520.5240.4570.0191.350.74UTM RW
    116R2092H1BXD7986M540.063.73542.250.5140.4680.0182.941.06UTM RW
    117R1880H1BXD8068F530.064.85542.220.5010.4810.0182.171.36UTM RW
    118R1881H2BXD8068M230.022.07348.930.5240.4580.0191.340.83UTM RW
    119R2075H1BXD8360F230.012.45455.10.5020.480.0181.270.77UTM RW
    120R2076H2BXD8360M630.032.62455.650.4950.4880.0182.210.94UTM RW
    121R2077H2BXD8462F6202.171.870.5220.4590.0181.680.81UTM RW
    122R2135H3BXD8475M220.012.46764.460.5050.4760.0191.20.74UTM RW
    123R1473H1BXD8579F230.023.38455.340.4780.5020.021.240.77UTM RW
    124R1474H1BXD8557M130.012.83155.240.5220.4610.0181.041.29UTM RW
    125R1597H1BXD8586M440.092.02853.950.4870.4920.0211.280.83UTM RW
    126R1415H1BXD8677F430.022.52553.160.4950.4850.021.660.91UTM RW
    127R2669H2BXD8763F730.072.6157.590.5130.470.0181.60.91UTM RW
    128R1710H1BXD8784M240.012.69756.40.5120.4690.0191.280.79UTM RW
    129R1872H2BXD8990F220.023.01363.530.4920.4880.0211.220.72UTM RW
    130R1850H3BXD8982M440.032.73644.890.4980.4830.0191.50.83UTM RW
    131R2058H1BXD9061F230.013.38948.050.5020.4780.021.530.76UTM RW
    132R1600H2BXD9074M740.033.26151.310.5170.4650.0181.160.75Glenn
    133R1301H2BXD9258F230.023.54341.970.5220.460.0181.50.79UTM RW
    134R1309H1BXD9259M430.051.65566.340.4980.4810.0211.520.82UTM RW
    135R2057H1BXD9392F530.024.03344.410.5090.4710.021.220.78UTM RW
    136R2059H1BXD9358M1303.05860.290.4930.4880.0191.181.37UTM RW
    137R2313H1BXD9459F3303.09159.450.4870.4950.0181.340.73UTM RW
    138R1915H1BXD9665F520.045.14546.190.5020.4810.0171.370.74UTM RW
    139R1846H2BXD9663M1303.15955.850.4870.4930.020.921.26UTM RW
    140R2648H1BXD9774F740.021.66482.080.5180.4640.0191.40.78UTM RW
    141R1927H2BXD9767M130.042.62257.810.5390.4440.0171.451.32UTM RW
    142R1942H1BXD9862F530.043.10448.420.5280.4540.0192.221.08UTM RW
    143R1943H2BXD9862M330.024.0456.850.4840.4970.0191.180.76UTM RW
    144R2197H1BXD9970F330.024.28851.750.490.4920.0181.350.81UTM RW
    145R2315H1BXD9984M520.036.03643.050.4840.4970.0181.70.96UTM RW
    146R2028H2129S1/SvImJ66F530.14.36264.490.4970.4840.0192.781.13JAX
    147R2029H2129S1/SvImJ66M630.045.20841.210.490.490.021.620.95JAX
    148R2670H1A/J65F730.043.95146.80.4980.4850.0171.320.75UTM RW
    149R2030H1A/J57M520.063.30745.160.5270.4540.0181.630.99UTM RW
    150R2032H3AKR/J66F530.043.05461.030.510.4710.0181.460.79JAX
    151R2454H1AKR/J66M640.112.89258.550.4740.5070.0191.990.78JAX
    152R1675H1BALB/cByJ83M730.033.40548.130.5090.4740.0181.130.78JAX
    153R2036H3BALB/cJ51F530.122.61156.290.5180.4660.0173.31.23UTM RW
    154R2053H1BALB/cJ55M530.12.50563.270.4990.4830.0183.11.34UTM RW
    155R2037H2BALB/cJ51M640.012.54658.130.4970.4850.0181.260.77UTM RW
    156R2038H3C3H/HeJ63F630.022.67166.740.4760.5040.021.410.77UTM RW
    157R2039H1C3H/HeJ63M530.13.38444.150.5280.4540.0172.160.88UTM RW
    158R2137H1C57BL/6ByJ55F530.024.74647.010.4880.4930.0181.230.79JAX
    159R2673H1C57BL/6ByJ55M730.081.84267.690.5140.4690.0171.750.78JAX
    160R2619H1CAST/EiJ64F530.144.07751.870.4550.5280.0182.741.2JAX
    161R1683H1KK/HIJ72F630.023.91954.230.4910.4890.021.310.83JAX
    162R1687H3KK/HIJ72F530.043.88840.860.4990.4830.0191.860.88JAX
    163R2046H1LG/J63F520.032.82259.180.5140.4680.0181.680.8UTM RW
    164R2047H2LG/J63M630.072.03860.340.5090.4710.022.160.95UTM RW
    165R2048H1NOD/LtJ77F620.144.04550.210.4890.490.0212.890.95UTM RW
    166R2049H3NOD/LtJ76M530.12.32852.780.5190.4620.0193.091.35UTM RW
    167R2200H1NZO/HlLtJ62F520.032.64854.290.5430.4380.0191.270.8JAX
    168R2350H1NZO/HlLtJ96M620.192.39150.520.5180.4630.023.712.21JAX
    169R2677H1PWD/PhJ65M720.122.76465.490.4620.520.0181.891.16UTM RW
    170R2051H3PWD/PhJ64M530.073.26651.50.4750.5060.0192.81.01UTM RW
    171R2322H1PWK/PhJ63F520.092.9454.910.5110.470.0192.321.02JAX
    172R2349H1PWK/PhJ83M620.153.30654.930.4590.5220.0194.651.45JAX
    173R2198H2WSB/EiJ58F610.022.92257.970.5020.4790.0191.440.76JAX
    174R2199H1WSB/EiJ58M530.043.17154.950.4750.5050.021.320.81JAX
    175R2116H1CXB155F330.075.79251.590.4590.5210.021.170.8JAX
    176R2096H1CXB155M420.013.43553.780.4950.4850.021.220.79JAX
    177R2117H2CXB262F420.043.3945.970.5330.450.0172.050.89JAX
    178R2098H1CXB268M330.022.57254.220.4960.4850.0191.380.86JAX
    179R2118H1CXB347F330.033.64663.160.4780.5030.0191.220.77JAX
    180R2100H1CXB347M430.025.7651.380.480.5030.0171.240.81JAX
    181R2119H1CXB458F430.023.89749.210.4880.4940.0181.310.79JAX
    182R2101H1CXB458M330.137.37253.770.4330.5480.0191.20.97JAX
    183R2505H1CXB580F630.022.8349.60.4990.480.021.330.76UTM RW
    184R2131H1CXB542M430.15.57751.150.4340.5470.0191.70.89JAX
    185R0129H2CXB570M330.074.82945.420.4880.4930.0191.230.83UTM RW
    186R2676H1CXB647F720.052.14662.510.5070.4750.0181.520.78JAX
    187R2102H1CXB649M430.075.14851.630.4530.5290.0181.430.87JAX
    188R2121H1CXB763F420.064.90448.710.4640.5170.0191.190.92JAX
    189R2104H2CXB758M320.063.38948.790.5020.4790.0191.741.48JAX
    190R2122H1CXB854F330.044.12859.770.4510.5290.021.120.76JAX
    191R2105H1CXB841M430.163.14661.040.4510.530.0191.340.84JAX
    192R2123H1CXB954F330.085.70855.940.4380.5430.0191.320.78JAX
    193R2106H1CXB954M430.065.86846.550.4690.5120.0191.180.82JAX
    194R2124H1CXB1053F420.114.86739.880.4510.5280.021.550.8JAX
    195R2671H1CXB1053M730.092.34871.450.4880.4940.0182.21.14JAX
    196R2125H1CXB1158F330.033.25654.950.4610.5190.021.460.77JAX
    197R2128H1CXB1158M420.064.98654.130.4650.5150.021.110.83JAX
    198R2126H1CXB1247F430.113.93554.110.4690.5110.0211.50.79JAX
    199R2109H1CXB1247M330.074.51849.260.4880.4920.021.230.77JAX
    200R2672H1CXB1349F730.031.72279.520.5160.4650.0191.640.75JAX
    201R2110H1CXB1356M430.213.47848.080.4610.5170.0221.210.78JAX
    +
    + + + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as sooon as the global analysis of these data by the Consoritum has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of the PDNN probe set data. Contact RW Williams regarding data access probelms. +

    +
    + + + + +

        About the array platform:

    +
    +

    Affymetrix Mouse Genome 430 2.0 array: The 430v2 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    +
    + +

        About data processing:

    + +
    +Harshlight was used to examine the image quality of the array (CEL files). Bad areas (bubbles, scratches, blemishes) of arrays were masked. + +

    First pass data quality control: Affymetrix GCOS provides useful array quality control data including: +

      +
    1. The scale factor used to normalize mean probe intensity. This averaged 3.3 for the 179 arrays that passed and 6.2 for arrays that were excluded. The scale factor is not a particular critical parameter. +
    2. The average background level. Values averaged 54.8 units for the data sets that passed and 55.8 for data sets that were excluded. This factor is not important for quality control. +
    3. The percentage of probe sets that are associated with good signal ("present" calls). This averaged 50% for the 179 data sets that passed and 42% for those that failed. Values for passing data sets extended from 43% to 55%. This is a particularly important criterion. +
    4. The 3':5' signal ratios of actin and Gapdh. Values for passing data sets averaged 1.5 for actin and 1.0 for Gapdh. Values for excluded data sets averaged 12.9 for actin and 9.6 for Gapdh. This is a highly discriminative QC criterion, although one must keep in mind that only two transcripts are being tested. Sequence variation among strains (particularly wild derivative strains such as CAST/Ei) may affect these ratios. +
    + +

    The second step in our post-processing QC involves a count of the number of probe sets in each array that are more than 2 standard deviations (z score units) from the mean across the entire 206 array data sets. This was the most important criterion used to eliminate "bad" data sets. All 206 arrays were processed togther using standard RMA and PDNN methods. The count and percentage of probe sets in each array that were beyond the 2 z theshold was computed. Using the RMA transform the average percentage of probe sets beyond the 2 z threshold for the 179 arrays that finally passed of QC procedure was 1.76% (median of 1.18%). In contrast the 2 z percentage was more than 10-fold higher (mean of 22.4% and median 20.2%) for those arrays that were excluded. This method is not very senstive to the transformation method that is used. Using the PDNN transform the average percent of probe sets exceeding was 1.31% for good arrays and was 22.6% for those that were excluded. In our opinion, this 2 z criterion is the most useful criterion for the final decision of whether or not to include arrays, although again, allowances need to be made for wild strains that one expects to be different from the majority of conventional inbred strains. For examploe, if a data set has excellent characteristics on all of the Affymetrix GCOS metrics listed above, but generates a high 2 z percentage, then one whould include the ssample if one can verify that there are no problems in sample and data set identification. + +

    The entire procedure can be reapplied once the initial outlier data sets have been eliminated to detect any remaining outlier data sets. + + +

    DataDesk was used to examine the statistical quality of the probe level (CEL) data after step 5 below. DataDesk allows the rapid detection of subsets of probes that are particularly sensitive to still unknown factors in array processing. Arrays can then be categorized at the probe level into "reaction classes." A reaction class is a group of arrays for which the expression of essentially all probes are colinear over the full range of log2 values. A single but large group of arrays (n = 32) processed in essentially the identical manner by a single operator can produce arrays belonging to as many as four different reaction classes. Reaction classes are NOT related to strain, age, sex, treatment, or any known biological parameter (technical replicates can belong to different reaction classes). We do not yet understand the technical origins of reaction classes. The number of probes that contribute to the definition of reaction classes is quite small (<10% of all probes). We have categorized all arrays in this data set into one of 5 reaction classes. These have then been treated as if they were separate batches. Probes in these data type "batches" have been aligned to a common mean as described below. + +

    Probe (cell) level data from the CEL file: These CEL values produced by GCOS are 75% quantiles from a set of 91 pixel values per cell. +

      + +
    1. We added an offset of 1.0 unit to each cell signal to ensure that all values could be logged without generating negative values. We then computed the log base 2 of each cell. + +
    2. We performed a quantile normalization of the log base 2 values for all arrays using the same initial steps used by the RMA transform. + +
    3. We computed the Z scores for each cell value. + +
    4. We multiplied all Z scores by 2. + +
    5. We added 8 to the value of all Z scores. The consequence of this simple set of transformations is to produce a set of Z scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z score is that a two-fold difference in expression level (probe brightness level) corresponds approximately to a 1 unit difference. + +
    6. Finally, we computed the arithmetic mean of the values for the set of microarrays for each strain. Technical replicates were averaged before computing the mean for independent biological samples. Note, that we have not (yet) corrected for variance introduced by differences in sex or any interaction terms. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the CEL file. We eventually hope to add statistical controls and adjustments for some of these variables. + +
    + + +
    + +

    Probe set data from the CHP file: The expression values were generated using PDNN. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1 unit difference represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.

    + + +

    Probe level QC: Log2 probe data of all arrays were inspected in DataDesk before and after quantile normalization. Inspection involved examining scatterplots of pairs of arrays for signal homogeneity (i.e., high correlation and linearity of the bivariate plots) and looking at all pairs of correlation coefficients. XY plots of probe expression and signal variance were also examined. Probe level array data sets were organized into reaction groups. Arrays with probe data that were not homogeneous when compared to other arrays were flagged. + +

    Probe set level QC: The final normalized individual array data were evaluated for outliers. This involved counting the number of times that the probe set value for a particular array was beyond two standard deviations of the mean. This outlier analysis was carried out using the PDNN, RMA and MAS5 transforms and outliers across different levels of expression. Arrays that were associated with an average of more than 8% outlier probe sets across all transforms and at all expression levels were eliminated. In contrast, most other arrays generated fewer than 5% outliers. + + +

    Validation of strains and sex of each array data set: A subset of probes and probe sets with a Mendelian pattern of inheritance were used to construct a expression correlation matrix for all arrays and the ideal Mendelian expectation for each strain constructed from the genotypes. There should naturally be a very high correlation in the expression patterns of transcripts with Mendelian phenotypes within each strain, as well as with the genotype strain distribution pattern of markers for the strain. + +

    Sex of the samples was validated using sex-specific probe sets such as Xist and Dby. + +

    + + +

        Data source acknowledgment:

    +

    Data were generated with funds provided by a variety of public and private source to members of the Consortium. All of us thank Muriel Davisson, Cathy Lutz, and colleagues at the Jackson Laboratory for making it possible for us to add all of the CXB strains, and one or more samples from KK/HIJ, WSB/Ei, NZO/HILtJ, LG/J, CAST/Ei, PWD/PhJ, and PWK/PhJ to this study. We thank Yan Cui at UTHSC for allowing us to use his Linux cluster to align all M430 2.0 probes and probe sets to the mouse genome. We thank Hui-Chen Hsu and John Mountz for providing us BXD tissue samples, as well as many strains of BXD stock. We thanks Douglas Matthews (UMem in Table 1) and John Boughter (JBo in Table 1) for sharing BXD stock with us. Members of the Hippocampus Consortium thank the following sources for financial support of this effort: + +

      +
    • David C. Airey, Ph.D. +
      Grant Support: Vanderbilt Institute for Integratie Genomics +
      Department of Pharmacology +
      david.airey at vanderbilt.edu + +
    • Lu Lu, M.D. +
      Grant Support: NIH U01AA13499, U24AA13513 + +
    • Fred H. Gage, Ph.D. +
      Grant Support: Lookout Foundation + +
    • Dan Goldowitz, Ph.D. +
      Grant Support: NIAAA INIA AA013503 +
      University of Tennessee Health Science Center +
      Dept. Anatomy and Neurobiology +
      email: dgold@nb.utmem.edu + +
    • Shirlean Goodwin, Ph.D. +
      Grant Support: NIAAA INIA U01AA013515 + +
    • Gerd Kempermann, M.D. +
      Grant Support: The Volkswagen Foundation Grant on Permissive and Persistent Factors in Neurogenesis in the Adult Central Nervous System +
      Humboldt-Universitat Berlin +
      Universitatsklinikum Charite +
      email: gerd.kempermann at mdc-berlin.de + +
    • Kenneth F. Manly, Ph.D. +
      Grant Support: NIH P20MH062009 and U01CA105417 + +
    • Richard S. Nowakowski, Ph.D. +
      Grant Support: R01 NS049445-01 + +
    • Glenn D. Rosen, Ph.D. +
      Grant Support: NIH P20 + +
    • Leonard C. Schalkwyk, Ph.D. +
      Grant Support: MRC Career Establishment Grant G0000170 +
      Social, Genetic and Developmental Psychiatry +
      Institute of Psychiatry,Kings College London +
      PO82, De Crespigny Park London SE5 8AF +
      L.Schalkwyk@iop.kcl.ac.uk + +
    • Guus Smit, Ph.D. +
      Dutch NeuroBsik Mouse Phenomics Consortium +
      Center for Neurogenomics & Cognitive Research +
      Vrije Universiteit Amsterdam, The Netherlands +
      e-mail: guus.smit at falw.vu.nl +
      Grant Support: BSIK 03053 + +
    • Thomas Sutter, Ph.D. +
      Grant Support: INIA U01 AA13515 and the W. Harry Feinstone Center for Genome Research + +
    • Stephen Whatley, Ph.D. +
      Grant Support: XXXX + +
    • Robert W. Williams, Ph.D. +
      Grant Support: NIH U01AA013499, P20MH062009, U01AA013499, U01AA013513 + +
    + + + +

    + +

        About this text file:

    +

    +This text file originally generated by RWW on July 9, 2006. Updated by RWW July 9, 2006. +

    + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + +
    +
      + +
    +
    + +

    + + + + + + + + + + diff --git a/web/dbdoc/UTHSC_1107_RankInv.html b/web/dbdoc/UTHSC_1107_RankInv.html new file mode 100755 index 00000000..bf72cfd5 --- /dev/null +++ b/web/dbdoc/UTHSC_1107_RankInv.html @@ -0,0 +1,253 @@ + +HQF BXD Striatum Illumina Mouse-6.1 November 2007 Rank Invariant Data Set + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/web/gghelp.html b/web/gghelp.html new file mode 100755 index 00000000..57afb815 --- /dev/null +++ b/web/gghelp.html @@ -0,0 +1,98 @@ + +HTML Template + + + + + + +
    + + + + + + + + +
    +

    HQF BXD Striatum Illumina Mouse-6.1 November 2007 Rank Invariant Data Set +modify this page

    Accession number: GN152

    +

    +NOTE (1): The data from the HQF BXD Striatum Illumina Mouse-6.1 November 2007 Rank Invariant Data Set were corrected for a batch effect due to the hybridization of different strains on different dates. Data were adjusted for individual samples using ANOVA to remove effect of batch (factor = date) in Partek Batch Remover. The first 3 principal components capture 19% of the variance in the entire data set after this correction. +

    +

    +NOTE (2): The data from the HQF BXD Striatum Illumina Mouse-6.1 November 2007 Rank Invariant Data Set were corrected for a batch effect due to the hybridization of different strains on different dates. This data was adjusted to correct for batch effects due to date, slide, and position (see table below). Data from individual samples was adjusted using ANOVA to remove effect of batch (factor = date, factor= slide, factor = position) in Partek Batch Remover. Batch effects were corrected by sequentially removing the effect of (1) date, (2) slide, and (3) position. The first 3 principal components capture 15-16% of the variance in the entire data set after this correction.

    +

    +INFO file to be provided by Rob Williams and Lu Lu. This data set that is still being error-checked and annotated. Data quality appear to be excellent. There do not appear to be any errors in strain assignment of the BXD lines. Conventional inbred strain (the Mouse Diversity Panel) have not been error checked for genotype. +

    + +

    +

    Illumina Mouse-6.1 array (second generation of the Illumina Mouse 6 platform) + +

    This Rank Invariant Illumina data set yields 1567 probes associated with LOD values of great than 10 using data from 54 BXD strains. This is the second large data set Dr. Lu and colleagues have generated and the first to use the slightly modified Illumina array (6.1) and to use the new slide holder for processing. This data set is of high quality. Our first Illumina array data set (LXS hippocampus May07 Rank Invariant using the first generation Mouse-6 array) yielded 1183 probes with LOD>10 using 75 LXS strains. + +

    Figure 1: Sex balance illustrated by the expression of Xist (Illumina probe 104280446). Strains represented by a single male sample have low expression (BXD44, 65, 66, 69, 70, 85, 86, 87, 89, 90, and 97). Strains represents by one or more female samples have high expression (KK, BXD43, 68, 77, and 100). All other strains are represented by one male and one female sample. Note that the Xist signal intensity in females of the wild strains (PWK, PWD, MOLF, CAST and WSB) is lower than in standard mouse strains. +

    + + +

    + +

    Useful links +

      + +
    1. A movie of the dissection of the brain, including the striatum, by Dr. Glenn Rosen. + +
    + + +

    Notes for Dr. Lu on the RNA cleanup (Jan 22, 2008) + +

    We purify RNA by using Na4OAc before running arrays. Here is the detailed method: + +

    Final RNA purification protocol + +

      +
    1. Add 1/10th volume of 3M Na4OAc , PH5.2. If the sample was eluted with 100 µl nuclease-free Water as suggested, this will be 10 µl of 3M Na4OAc. +
    2. Add 2.5 volumes of 100% ethanol (250 µl if the RNA was eluted in100 µl). Mix well and incubate at –20°C for 2hrs. +
    3. Centrifuge at speed of 1,3000 rpm for 20 min at 4°C,Carefully remove and discard the supernatant. +
    4. Wash the pellet with 800 µl 75% cold ethanol, centrifuge at speed of 8600 rpm for 5 min, and remove the 75% ethanol. Wash again. +
    5. To remove the last traces of ethanol, quickly respin the tube, and aspirate any residual fluid. +
    6. Air dry the pellet. +
    7. Resuspend pellet in nuclease-free water. + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSlidePositionStrainTissueAgeSexDate
    11736925204DC57BL/6JStriatum58F6.7.07
    21736925140DC57BL/6JStriatum61M6.12.07
    31736925204EDBA/2JStriatum58F6.7.07
    41736925140EDBA/2JStriatum60M6.12.07
    51736925140AB6D2F1/JStriatum59F6.12.07
    61736925204AB6D2F1/JStriatum59M6.7.07
    71736925225ABXD1Striatum59F6.21.07
    81716756015ABXD1Striatum59M6.22.07
    91736925169ABXD2Striatum61F6.21.07
    101716756027ABXD2Striatum61M6.22.07
    111716756004CBXD5Striatum58F6.22.07
    121716756036CBXD5Striatum58M6.28.07
    131716756004DBXD6Striatum59F6.22.07
    141716756036DBXD6Striatum59M6.28.07
    151716756004EBXD8Striatum61F6.22.07
    161716756036EBXD8Striatum61M6.28.07
    171716756004FBXD9Striatum60F6.22.07
    181716756036FBXD9Striatum60M6.28.07
    191736925139CBXD11Striatum59F6.12.07
    201716756045BBXD11Striatum59M6.28.07
    211736925225BBXD12Striatum62F6.21.07
    221716756015BBXD12Striatum59M6.22.07
    231736925225CBXD13Striatum60F6.21.07
    241716756015CBXD13Striatum60M6.22.07
    251716756045CBXD14Striatum59F6.28.07
    261736925351CBXD14Striatum60M6.15.07
    271736925225DBXD15Striatum60F6.21.07
    281716756015DBXD15Striatum60M6.22.07
    291736925140BBXD16Striatum58F6.12.07
    301736925204BBXD16Striatum60M6.7.07
    311736925225EBXD18Striatum59F6.21.07
    321716756015EBXD18Striatum59M6.22.07
    331736925225FBXD19Striatum60F6.21.07
    341716756015FBXD19Striatum60M6.22.07
    351716756045DBXD20Striatum60F6.28.07
    361736925139DBXD20Striatum60M6.12.07
    371736925169BBXD21Striatum48F6.21.07
    381716756027BBXD21Striatum48M6.22.07
    391736925351DBXD22Striatum60F6.15.07
    401716756045EBXD22Striatum60M6.28.07
    411736925169CBXD23Striatum60F6.21.07
    421716756027CBXD23Striatum60M6.22.07
    431736925140CBXD24bStriatum58F6.12.07
    441736925204CBXD24bStriatum58M6.7.07
    451736925169DBXD27Striatum60F6.21.07
    461716756027DBXD27Striatum60M6.22.07
    471736925169EBXD28Striatum60F6.21.07
    481716756027EBXD28Striatum60M6.22.07
    491736925169FBXD29Striatum58F6.21.07
    501716756027FBXD29Striatum58M6.22.07
    511736925171ABxD31Striatum60F6.21.07
    521716756034ABxD31Striatum60M6.28.07
    531736925171BBXD32Striatum57F6.21.07
    541716756034BBXD32Striatum57M6.28.07
    551736925171CBXD33Striatum59F6.21.07
    561716756034CBXD33Striatum59M6.28.07
    571736925171DBXD34Striatum60F6.21.07
    581716756034DBXD34Striatum60M6.28.07
    591736925171EBXD36Striatum57F6.21.07
    601716756034EBXD36Striatum57M6.28.07
    611736925171FBXD38Striatum60F6.21.07
    621716756034FBXD38Striatum60M6.28.07
    631716756004ABXD40Striatum60F6.22.07
    641716756036ABXD40Striatum60M6.28.07
    651716756004BBXD42Striatum58F6.22.07
    661716756036BBXD42Striatum58M6.28.07
    671736925339EBXD43Striatum53F7.3.07
    681736925339FBXD44Striatum56M7.3.07
    691736925300ABXD45Striatum60F7.6.07
    701825397020DBXD45Striatum63M7.10.07
    711736925300BBXD51Striatum66F7.6.07
    721825397020EBXD51Striatum64M7.10.07
    731825397020FBXD55Striatum55F7.10.07
    741736925300CBXD55Striatum55M7.6.07
    751736925300DBXD60Striatum61F7.6.07
    761825397021ABXD60Striatum61M7.10.07
    771736925300EBXD61Striatum62F7.6.07
    781825397021BBXD61Striatum62M7.10.07
    791736925300FBXD62Striatum62F7.6.07
    801825397021CBXD62Striatum63M7.10.07
    811825397021EBXD65Striatum62M7.10.07
    821736925245BBXD66Striatum59M7.3.07
    831736925245CBXD68Striatum56F7.3.07
    841736925245DBXD69Striatum65M7.3.07
    851736925245EBXD70Striatum61M7.3.07
    861736925339ABXD73Striatum62F7.3.07
    871736925292ABXD73Striatum50M7.6.07
    881736925292DBXD77Striatum50F7.6.07
    891736925339BBXD84Striatum55F7.3.07
    901736925292BBXD84Striatum55M7.6.07
    911736925292EBXD85Striatum57M7.6.07
    921736925292FBXD86Striatum58M7.6.07
    931736925299ABXD87Striatum31M7.6.07
    941736925299BBXD89Striatum63M7.6.07
    951736925299CBXD90Striatum66M7.6.07
    961736925292CBXD96Striatum61F7.6.07
    971736925339CBXD96Striatum61M7.3.07
    981736925299DBXD97Striatum61M7.6.07
    991736925339DBXD100Striatum61F7.3.07
    1001736925140F129S1/SvImJStriatum60F6.12.07
    1011736925204F129S1/SvImJStriatum59M6.7.07
    1021736925129AA/JStriatum59F6.7.07
    1031736925241AA/JStriatum59M6.12.07
    1041736925129BAKR/JStriatum59F6.7.07
    1051736925241BAKR/JStriatum59M6.12.07
    1061736925241CBALB/CByJStriatum59F6.12.07
    1071736925129CBALB/CByJStriatum59M6.7.07
    1081716756045ABTBRT+tf/JStriatum59F6.28.07
    1091736925139EBTBRT+tf/JStriatum60M6.12.07
    1101716756045FBXSB/MpJStriatum61F6.28.07
    1111736925351EBXSB/MpJStriatum61M6.15.07
    1121736925129DC3H/HeJStriatum60F6.7.07
    1131736925241DC3H/HeJStriatum60M6.12.07
    1141736925129ECAST/EiStriatum57F6.7.07
    1151736925241ECAST/EiStriatum61M6.12.07
    1161736925129FFVB/NJStriatum60F6.7.07
    1171736925241FFVB/NJStriatum60M6.12.07
    1181716756057AKK/HiJStriatum62F6.7.07
    1191736925303AKK/HiJStriatum62F6.15.07
    1201716756057BMOLF/EiJStriatum60F6.7.07
    1211736925303BMOLF/EiJStriatum60M6.15.07
    1221716756057DNOD/LtJStriatum58F6.7.07
    1231736925303CNOD/LtJStriatum58M6.15.07
    1241736925303DNZB/BlnJStriatum61F6.15.07
    1251716756057ENZB/BlnJStriatum58M6.7.07
    1261736925303ENZO/HiltJStriatum61F6.15.07
    1271716756057FNZO/HiltJStriatum61M6.7.07
    1281736925139FNZW/LacJStriatum65F6.12.07
    1291825397021DNZW/LacJStriatum70M7.10.07
    1301736925303FPWD/PhJStriatum70F6.15.07
    1311716756057CPWD/PhJStriatum70M6.7.07
    1321736925139APWK/PhJStriatum59F6.12.07
    1331736925351APWK/PhJStriatum60M6.15.07
    1341736925351BWSB/EiJ`Striatum71F6.15.07
    1351736925139BWSB/EiJStriatum71M6.12.07
    +

    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/UTHSC_SPL_RMA_1010.html b/web/dbdoc/UTHSC_SPL_RMA_1010.html new file mode 100755 index 00000000..45f59697 --- /dev/null +++ b/web/dbdoc/UTHSC_SPL_RMA_1010.html @@ -0,0 +1,407 @@ + +UTHSC Spleen (Oct10) RMA + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UTHSC Affy MoGene 1.0 ST Spleen (Oct10) RMA
    Accession number: GN271 + modify this page

    + +

    Summary Description of Data Set: + +

    +

    Summary:

    + +

    This is a preliminary release WITH KNOWN ERRORS of a spleen gene expression data set generated by a DOD-funded consortium (Byrne, Kotb, Williams, and Lu). Please contact Lu Lu or Robert Williams regarding status of this data set. + +

    Animals were generated at UTHSC by Lu Lu and colleagues. The spleen of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna"). + + +

    Animals and Tissue Used to Generate This Set of Data:

    + + +

    Cases. A total of 111 strains, including 81 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1), and 26 other common inbred strains were quantified. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by Lu Lu and colleagues. Samples were pooled by sex and usually include at least two cases per sex and strain. + +

    Sex Balance. XX strains have matched male and female samples. XX strains have male only samples (BXDX, XX, XX, XXX and XXX). XX strains have only female samples (BXDXX, XX, and XX.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples. + + +

    Sample Processing:

    + +

    RNA Processing. Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + + +

    Array Processing: All arrays were processed by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. The spleen was dissected by both Dr. Lu Lu and colleagues and Dr. Abdeltawab and colleagues. All arrays were run together (interleaved) as a single large batch. + +

    Experimental Design and Batch Structure:

    + +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno. + +

    Batch Effects. This data set required some correction for batch effects and the data in this initial release incorporate any additional corrections. There are several additional confounder-like factors that should be considered: +

      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation + + +
    2. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest probe sets in this spleen data set accounts of XX% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the spleen data set can be mapped as a trait. + +
    + +

    Data Release. This data set was first uploaded into GeneNetwork by Arthur Centeno, October 11, 2010 and made accessible without a password to all users on November 1, 2010. The data set still is provisional and contains numerous strain identification errors that have NOT YET BEEN FIXED. Based on an analysis of the top 20 Mendelian loci, the following 21 strains are likely to have been incorrectly identified or assigned in the current release: + +

      + +
    1. BXD8, e.g., Probe set 10450161, 1036098. 10338684 +
    2. BXD13, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10342568, +
    3. BXD21 (may be ok, only one probe set 10338684 is problematic) +
    4. BXD23 (may be ok, only two probe sets 10421128, 10419465 is problematic) +
    5. BXD36 (may be ok, only one probe set 10421128 is problematic) +
    6. BXD40, e.g., Probe set 10341070 +
    7. BXD43, e.g., Probe set 10450161, 1036098, 10338684 +
    8. BXD48, e.g., Probe set 1036098, 10402390, 10514896, 10592493, 10357381, 10342568, 10571444, 10419465 +
    9. BXD62, e.g., Probe set 1036098, 1036098, 10402390, 10514896, 10592493, 10421128, 10571444 +
    10. BXD68 (may be ok, only one probe set 10338684 is problematic) +
    11. BXD69, e.g., Probe set 10450161 +
    12. BXD73, e.g., Probe set 10341070, 1036098, 10402390, 10514896, 10587633, 10342568, 10421128 +
    13. BXD74, e.g., Probe set 10402390 +
    14. BXD80, e.g., Probe set 10341070, 1036098, 10592493, 10400109, 10338684, 10342568, 10421128, 10419465 +
    15. BXD83, e.g., Probe set 10450161, 10338684 +
    16. BXD87 (may be ok, only one probe set 10421128 is problematic) +
    17. BXD89, e.g., Probe set 10450161, 1036098, 10402390, 10592493, 10357381, 10419465 +
    18. BXD93, e.g., Probe set 10402390, 10357381 +
    19. BALB/cByJ, e.g., Probe set 10388042, 1036098, 10587633, 10357381, 10342568, 10421128 +
    20. LP/J, e.g., Probe set 10592493 +
    21. DBA/2J, e.g., Probe set 10592493 + + +
    + +

    Data Status and Use. This is a provisional release that will soon be replaced by a final corrected data set. In the interim this data set is open for exploration and use for focused analysis of single genes. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation. + +
    This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use. + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data. + + + +

    Data Evaluation Summary + +

      +
    1. eQLTs with LOD >10 (LRS>46.1): n = 638 +
    2. eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 237.9 +
    3. Lowest mean value: Trait ID 10344361, mean = 3.998 +
    4. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1) +
    5. Greatest sex difference: Trait ID: 10606178 (Xist) +
    6. Great variation within and among strains: Trait ID 10454192 (Ttr +
        + + +

        Table 1

        +
        +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDPhaseStrainAgeSex
    1R5583S1129P3/J65F
    2R5584S1129P3/J66M
    3R5585S1129S1/SvImJ66F
    4R5586S1129S1/SvImJ66M
    5R5587S1129X1/SvJ65F
    6R5588S1129X1/SvJ66M
    7R6348S3B6D2F167F
    8R6347S3B6D2F162F
    9R5590S1B6D2F179M
    10R5662S1BALB/cByJ59F
    11R5664S1BALB/cByJ59M
    12R5591S1BALB/cJ51F
    13R5592S1BALB/cJ51M
    14R6154S2BTBR T+ tf/J60F
    15R6516S3BXD182F
    16R6584S3BXD195M
    17R5759S1BXD2N/AF
    18R5837S1BXD2106M
    19R5874S2BXD586F
    20R6554S3BXD560M
    21R6359S3BXD672F
    22R5777S1BXD6149M
    23R6364S3BXD876F
    24R5637S1BXD871F
    25R6365S3BXD876M
    26R5746S1BXD970F
    27R5981S2BXD967M
    28R5980S2BXD967M
    29R6182S2BXD1184F
    30R6486S3BXD1158M
    31R6711S24BXD1271F
    32R6608S3BXD1248F
    33R5885S2BXD1244M
    34R5755S1BXD13160F
    35R5887S2BXD1353M
    36R6180S2BXD1470F
    37R5669S1BXD1491M
    38R6456S3BXD1560F
    39R6622S3BXD1560F
    40R6626S3BXD1560M
    41R6181S2BXD1674F
    42R6515S3BXD1664M
    43R5673S1BXD1880F
    44R5674S1BXD1865M
    45R6553S3BXD19158F
    46R6551S3BXD1960M
    47R6643S44BXD2059F
    48R6595S3BXD2060M
    49R5735S1BXD2164F
    50R5892S2BXD2199M
    51R5896S2BXD2260F
    52R6414S3BXD2273M
    53R6550S3BXD2374F
    54R6586S3BXD23102F
    55R5630S1BXD2471F
    56R6356S3BXD2457M
    57R6162S2BXD2567F
    58R6625S3BXD2567F
    59R6642S44BXD2558M
    60R5761S1BXD27N/AF
    61R5763S1BXD2790M
    62R6621S3BXD28113F
    63R6548S3BXD2860M
    64R6547S3BXD2960F
    65R6453S3BXD3148F
    66R6452S3BXD3148M
    67R6583S3BXD3260F
    68R5765S1BXD3271M
    69R5689S1BXD3365F
    70R6450S3BXD3355M
    71R5767S1BXD3472F
    72R5900S2BXD3470M
    73R6588S3BXD3661F
    74R6490S3BXD3663M
    75R6417S3BXD3864F
    76R6439S3BXD3872M
    77R5769S1BXD39N/AF
    78R5771S1BXD3974M
    79R5773S1BXD40N/AF
    80R5775S1BXD40N/AM
    81R6494S3BXD4172F
    82R5910S2BXD4279F
    83R6493S3BXD4269M
    84R6341S3BXD4359F
    85R6401S3BXD4399M
    86R5916S2BXD4379M
    87R5839S1BXD44141F
    88R5779S1BXD44124M
    89R6405S3BXD4558F
    90R6610S3BXD4555M
    91R5922S2BXD4864F
    92R5925S2BXD4860M
    93R6719S14BXD4958F
    94R6485S3BXD4979M
    95R5781S1BXD5061F
    96R6464S3BXD5165F
    97R6585S3BXD5163M
    98R6500S3BXD5558F
    99R5938S2BXD5593M
    100R6504S3BXD5658F
    101R6503S3BXD5658M
    102R5783S1BXD60111F
    103R5784S1BXD6085M
    104R5786S1BXD6186F
    105R6449S3BXD6165M
    106R6716S14BXD6254F
    107R5790S1BXD62115M
    108R6519S3BXD6354F
    109R6717S14BXD6370M
    110R5792S1BXD64167F
    111R6641S44BXD6468M
    112R6630S3BXD6468M
    113R6477S3BXD6558F
    114R6628S3BXD6570M
    115R6511S3BXD6670F
    116R6448S3BXD6661M
    117R5794S1BXD66144M
    118R6502S3BXD6766F
    119R6545S3BXD6761M
    120R6337S3BXD6856F
    121R6594S3BXD6864M
    122R5796S1BXD6985F
    123R5798S1BXD6998M
    124R6402S3BXD7093F
    125R5841S1BXD70121F
    126R6592S3BXD7059M
    127R6328S3BXD7187F
    128R5967S2BXD7164M
    129R5969S2BXD7364F
    130R5800S1BXD73120M
    131R6646S3BXD7440F
    132R6524S3BXD7472M
    133R6445S3BXD7585F
    134R5843S1BXD75103F
    135R5845S1BXD75103M
    136R6604S3BXD7764F
    137R6513S3BXD7772M
    138R6582S3BXD78144F
    139R6563S3BXD7895M
    140R6645S44BXD7966F
    141R5806S1BXD7978M
    142R5847S1BXD8089F
    143R5852S1BXD8079M
    144R6562S3BXD8199F
    145R6468S3BXD8165M
    146R6560S3BXD8285F
    147R6512S3BXD8368F
    148R5810S1BXD83139M
    149R6510S3BXD8487F
    150R5970S2BXD84107F
    151R6603S3BXD8499M
    152R6517S3BXD8558F
    153R6718S14BXD8586M
    154R5812S1BXD8661F
    155R5814S1BXD8659M
    156R5816S1BXD87112F
    157R6488S3BXD87137M
    158R6580S3BXD88125F
    159R5977S2BXD8968F
    160R5979S2BXD8979M
    161R5978S2BXD8979M
    162R5818S1BXD90106F
    163R5820S1BXD90131M
    164R6343S3BXD9262F
    165R5984S2BXD9255M
    166R6581S3BXD93173M
    167R6557S3BXD93126M
    168R6509S3BXD9559F
    169R5822S1BXD9589M
    170R6640S44BXD9670F
    171R6514S3BXD9664M
    172R6506S3BXD9778F
    173R5849S1BXD97130F
    174R6591S3BXD97122M
    175R5990S2BXD9865F
    176R6596S3BXD9867M
    177R5993S2BXD9974F
    178R5995S2BXD9950M
    179R6607S3BXD10075F
    180R6411S3BXD100104M
    181R6508S3BXD10159F
    182R5593S1BXD10159M
    183R6523S3BXD10260F
    184R6466S3BXD10250M
    185R6404S3BXD10372F
    186R6609S3BXD10357M
    187R6555S3C57BL/10J73M
    188R5596S1C57BL/10J73M
    189R5597S1C57BL/6ByJ51F
    190R5598S1C57BL/6ByJ69M
    191R5600S1C57BL/6J79F
    192R5599S1C57BL/6J60F
    193R6451S3C57BL/6J77M
    194R6410S3C57BL/6J85M
    195R5603S1C57BLKS/J66F
    196R5604S1C57BLKS/J66M
    197R5996S2CBA/CaJ66F
    198R6349S3CBA/CaJ66M
    199R6458S3D2B6F164F
    200R6353S3D2B6F160M
    201R5605S1DBA/2J79F
    202R6446S3DBA/2J83M
    203R6597S3FVB/NJ60F
    204R5643S1FVB/NJ60F
    205R6598S3FVB/NJ60M
    206R5606S1ILS74F
    207R5607S1ILS74M
    208R5610S1ISS97M
    209R6627S3KK/HlJ64F
    210R6444S3KK/HlJ65M
    211R5702S1KK/HlJ61M
    212R5613S1LG/J63F
    213R5704S1LG/J65M
    214R5614S1LP/J65F
    215R5615S1LP/J65M
    216R6599S3MOLF/EiJ60F
    217R6606S3MOLF/EiJ60M
    218R6544S3NOD/LtJ77F
    219R5709S1NOD/LtJ58M
    220R6601S3NZB/BlNJ61F
    221R5711S1NZB/BlNJ61F
    222R6427S3NZB/BlNJ58M
    223R6150S2NZO/HlLtJ71F
    224R6155S2NZW/LacJ65F
    225R5654S1NZW/LacJ60M
    226R5721S1PL/J59M
    227R5616S1PWD/PhJ60M
    228R5725S1PWK/PhJ121M
    229R6174S2SJL/J63F
    230R6350S3SJL/J65M
    231R6419S3WSB/EiJ60F
    232R5620S1WSB/EiJ60M
    + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UTHSC_SPL_RMA_1210.html b/web/dbdoc/UTHSC_SPL_RMA_1210.html new file mode 100755 index 00000000..ea992326 --- /dev/null +++ b/web/dbdoc/UTHSC_SPL_RMA_1210.html @@ -0,0 +1,379 @@ + +UTHSC Affy MoGene 1.0 ST Spleen (Dec10) RMA + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UTHSC Affy MoGene 1.0 ST Spleen (Dec10) RMA
    Accession number: GN283 + modify this page

    + +

    Summary Description of Data Set: + +

    +

    Summary:

    + +

    This is a final quality controlled release of a spleen gene expression data set generated by a DOD-funded consortium (Byrne, Kotb, Williams, and Lu). Please contact Lu Lu or Robert Williams regarding use of this data set. A total of 782 probes are associated with LOD of greater than 10. + +

    Animals were generated at UTHSC by Lu Lu and colleagues. The spleen of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna"). + + +

    Animals and Tissue Used to Generate This Set of Data:

    + + +

    Cases. A total of 108 strains, including 81 BXD strains, both parental strains (C57BL/6J and DBA/2J) and both reciprocal F1 hybrids (B6D2F1 and D2B6F1), and 26 other common inbred strains were quantified. In most cases, two arrays were processed per strain--one for males and one for females. All tissue and RNA was extracted by Lu Lu and colleagues. Samples were pooled by sex and usually include at least two cases per sex and strain. + +

    Sex Balance. XX strains have matched male and female samples. XX strains have male only samples (BXDX, XX, XX, XXX and XXX). XX strains have only female samples (BXDXX, XX, and XX.) Please review the expression data for Xist probe set 10606178. This non-coding RNA is expressed highly only in females and can be used to check the sex of a sample or pool of tissue. Ddx3y probe set 10608138 can also be used. This is a Y chromosome gene that is expressed abundantly in male samples and at background levels in female samples. + + +

    Sample Processing:

    + +

    RNA Processing. Total RNA was purified using the RNAeasy micro kit on the QIAcube system (www.qiagen.com). RNA purity and concentration was checked using 260/280 nm absorbance ratio and RNA integrity was analyzed using the Agilent Bioanalyzer 2100 (Agilent Technologies).

    + + +

    Array Processing: All arrays were processed by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. The spleen was dissected by both Dr. Lu Lu and colleagues and Dr. Abdeltawab and colleagues. All arrays were run together (interleaved) as a single large batch. + +

    Experimental Design and Batch Structure:

    + +

    Data Processing. Array data sets were generated by the vendors GCOS system. Expression values were logged and then were further normalized and rescaled so that the mean value for each array data set is 8 units with a standard deviation of 2 units. Data were processed by Arthur Centeno. + +

    Batch Effects. This data set required some correction for batch effects and the data in this initial release incorporate any additional corrections. There are several additional confounder-like factors that should be considered: +

      +
    1. Sex imbalance in the sample: use probe sets for Xist as correction in partial correlation + + +
    2. Background noise factors: examine and use probe sets with very low expression using the search "mean=(3.900 4.135)". This will extract the probe sets with the lowest expression. (Note that the number 54 is less than the total number of cases in this data set; important in computing principal components.) Add these probe sets to your collection window and then compute the correlation matrix. Use the first few principal components as surrogates for nuisance factors in partial correlation analysis. The first principal component of the lowest probe sets in this spleen data set accounts of XX% of the the variance. Mapping of this noise trait can be used to evaluate the effects of shared noise on QTL results. The first principal component in the spleen data set can be mapped as a trait. + +
    + +

    Data Release. This final release data set was uploaded into GeneNetwork by Arthur Centeno, December 21, 2010 and made accessible without a password to all users. + +

    The following samples were excluded from the analysis:
    +R5614S, R6446S, R5885S and R5615S

    + +

    Data Status and Use. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data regarding the best citation. + +
    This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please see the GeneNetwork data sharing policy for more background on data use. + +

    Contact. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data. + + + +

    Data Evaluation Summary + +

      +
    1. eQLTs with LOD >10 (LRS>46.1): n = 638 +
    2. eQTL with high LOD and LRS: Trait ID 10450161 (H2-Ea-ps) LOD = 51.6, LRS = 237.9 +
    3. Lowest mean value: Trait ID 10344361, mean = 3.998 +
    4. Highest mean value: Trait ID 10598025, mean = 14.475 (MT-ND1) +
    5. Greatest sex difference: Trait ID: 10606178 (Xist) +
    6. Great variation within and among strains: Trait ID 10454192 (Ttr) +
    + +

    +

    Table 1. Updated on 1-14-2011

    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDStrainSexAgePhase
    1R5583S129P3/JF651
    2R5584S129P3/JM661
    3R5585S129S1/SvImJF661
    4R5586S129S1/SvImJM661
    5R5587S129X1/SvJF651
    6R5588S129X1/SvJM661
    7R6347SB6D2F1F622b
    8R6348SB6D2F1M672b
    9R5590SB6D2F1M791
    10R5800SBALB/cByJF1201
    11R5664SBALB/cByJM591
    12R5591SBALB/cJF511
    13R5592SBALB/cJM511
    14R6154SBTBR T+ tf/JF602a
    15R6516SBXD1F822b
    16R6584SBXD1M952b
    17R5759SBXD2FN/A1
    18R5837SBXD2M1061
    19R5874SBXD5F862a
    20R6554SBXD5M602b
    21R6359SBXD6F722b
    22R5777SBXD6M1491
    23R6364SBXD8F762b
    24R6365SBXD8M762b
    25R6581SBXD8M1732b
    26R5746SBXD9F701
    27R5980SBXD9M672a
    28R6182SBXD11F842a
    29R6486SBXD11M582b
    30R6711S2BXD12F712c
    31R6608SBXD12F482b
    32R5981SBXD12M672a
    33R5755SBXD13F1601
    34R6180SBXD14F702a
    35R5669SBXD14M911
    36R6456SBXD15F602b
    37R6622SBXD15F602b
    38R6626SBXD15M602b
    39R6181SBXD16F742a
    40R5662SBXD16M591
    41R6515SBXD16M642b
    42R5673SBXD18F801
    43R5674SBXD18M651
    44R6553SBXD19F1582b
    45R6551SBXD19M602b
    46R5916SBXD19M792a
    47R6643S4BXD20F592c
    48R6595SBXD20M602b
    49R5735SBXD21F641
    50R5892SBXD21M992a
    51R5896SBXD22M602a
    52R6414SBXD22M732b
    53R6550SBXD23F742b
    54R5630SBXD24F711
    55R6356SBXD24M572b
    56R6162SBXD25F672a
    57R6625SBXD25F672b
    58R5978SBXD25M792a
    59R6642S4BXD25M582c
    60R5761SBXD27F01
    61R5763SBXD27M901
    62R6621SBXD28F1132b
    63R5887SBXD28M532a
    64R6548SBXD28M602b
    65R6547SBXD29M602b
    66R6453SBXD31F482b
    67R6452SBXD31M482b
    68R6583SBXD32F602b
    69R5765SBXD32M711
    70R5689SBXD33F651
    71R6450SBXD33M552b
    72R5767SBXD34M721
    73R5900SBXD34M702a
    74R6588SBXD36F612b
    75R6490SBXD36M632b
    76R6417SBXD38F642b
    77R6439SBXD38M722b
    78R5769SBXD39FN/A1
    79R5771SBXD39M741
    80R5773SBXD40FN/A1
    81R5775SBXD40MN/A1
    82R5910SBXD42F792a
    83R6493SBXD42M692b
    84R6401SBXD43M992b
    85R5839SBXD44F1411
    86R5779SBXD44M1241
    87R6405SBXD45F582b
    88R6610SBXD45M552b
    89R5922SBXD48F642a
    90R6719S1BXD49F582c
    91R5925SBXD49M602a
    92R6485SBXD49M792b
    93R5781SBXD50F611
    94R6494SBXD51F722b
    95R6464SBXD51F652b
    96R6585SBXD51M632b
    97R6500SBXD55F582b
    98R5938SBXD55M932a
    99R6504SBXD56F582b
    100R6503SBXD56M582b
    101R5783SBXD60F1111
    102R5784SBXD60M851
    103R5786SBXD61F861
    104R6449SBXD61M652b
    105R6716S1BXD62F542c
    106R6519SBXD63F542b
    107R6717S1BXD63M702c
    108R5792SBXD64F1671
    109R6641S4BXD64M682c
    110R6630SBXD64M682b
    111R6477SBXD65F582b
    112R6628SBXD65M702b
    113R6511SBXD66F702b
    114R6448SBXD66M612b
    115R5794SBXD66M1441
    116R6502SBXD67F662b
    117R6545SBXD67M612b
    118R6337SBXD68F562b
    119R6594SBXD68M642b
    120R5796SBXD69F851
    121R5847SBXD69F891
    122R5798SBXD69M981
    123R6402SBXD70F932b
    124R5841SBXD70F1211
    125R6592SBXD70M592b
    126R6411SBXD70M1042b
    127R6328SBXD71F872b
    128R5967SBXD71M642a
    129R5969SBXD73F642a
    130R5790SBXD73M1151
    131R6646SBXD74F402b
    132R6524SBXD74M722b
    133R6445SBXD75F852b
    134R5843SBXD75F1031
    135R5845SBXD75M1031
    136R6586SBXD77F1022b
    137R6604SBXD77F642b
    138R6513SBXD77M722b
    139R6582SBXD78F1442b
    140R6563SBXD78M952b
    141R6645S4BXD79F662c
    142R5806SBXD79M781
    143R5637SBXD80F711
    144R5852SBXD80M791
    145R6562SBXD81F992b
    146R6468SBXD81M652b
    147R6560SBXD82F852b
    148R5979SBXD83F792a
    149R6512SBXD83F682b
    150R5810SBXD83M1391
    151R6510SBXD84F872b
    152R5970SBXD84F1072a
    153R6603SBXD84M992b
    154R6517SBXD85F582b
    155R6718S1BXD85M862c
    156R5812SBXD86F611
    157R5814SBXD86M591
    158R5816SBXD87F1121
    159R6488SBXD87M1372b
    160R5977SBXD89F682a
    161R5818SBXD90F1061
    162R5820SBXD90M1311
    163R6343SBXD92F622b
    164R5984SBXD92M552a
    165R6557SBXD93M1262b
    166R6509SBXD95F592b
    167R5822SBXD95M891
    168R6640S4BXD96F702c
    169R6514SBXD96M642b
    170R6506SBXD97F782b
    171R5849SBXD97F1301
    172R6591SBXD97M1222b
    173R5990SBXD98F652a
    174R6596SBXD98M672b
    175R5993SBXD99F742a
    176R5995SBXD99M502a
    177R6580SBXD100F1252b
    178R6607SBXD100F752b
    179R6508SBXD101F592b
    180R5593SBXD101M591
    181R6523SBXD102F602b
    182R6466SBXD102M502b
    183R6609SBXD103M572b
    184R6404SBXD103F722b
    185R6555SC57BL/10JM732b
    186R5596SC57BL/10JM731
    187R5597SC57BL/6ByJF511
    188R5598SC57BL/6ByJM691
    189R5600SC57BL/6JF791
    190R5599SC57BL/6JF601
    191R6451SC57BL/6JM772b
    192R6410SC57BL/6JM852b
    193R5603SC57BLKS/JF661
    194R5604SC57BLKS/JM661
    195R5996SCBA/CaJF662a
    196R6349SCBA/CaJM662b
    197R6458SD2B6F1F642b
    198R6353SD2B6F1M602b
    199R5605SDBA/2JF791
    200R6597SFVB/NJF602b
    201R5643SFVB/NJF601
    202R6598SFVB/NJM602b
    203R5606SILSF741
    204R5607SILSM741
    205R5610SISSM971
    206R6627SKK/HlJF642b
    207R6444SKK/HlJM652b
    208R5702SKK/HlJM611
    209R5613SLG/JF631
    210R5704SLG/JM651
    211R6341SMOLF/EiJF592b
    212R6599SMOLF/EiJF602b
    213R6606SMOLF/EiJM602b
    214R6544SNOD/LtJF772b
    215R5709SNOD/LtJM581
    216R6601SNZB/BiNJF612b
    217R5711SNZB/BiNJF611
    218R6427SNZB/BiNJM582b
    219R6150SNZO/HlLtJF712a
    220R6155SNZW/LacJF652a
    221R5654SNZW/LacJM601
    222R5721SPL/JM591
    223R5616SPWD/PhJM601
    224R5725SPWK/PHJF1211
    225R6174SSJL/JF632a
    226R6350SSJL/JM652b
    227R6419SWSB/EiJF602b
    228R5620SWSB/EiJM601
    + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UTHSC_Str_RankInv_1210.html b/web/dbdoc/UTHSC_Str_RankInv_1210.html new file mode 100755 index 00000000..425f8d96 --- /dev/null +++ b/web/dbdoc/UTHSC_Str_RankInv_1210.html @@ -0,0 +1,221 @@ + +HQF BXD Striatum ILM6.1 (Dec10) RankInv + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    HQF BXD Striatum ILM6.1 (Dec10) RankInvmodify this page

    + + Accession number: GN298

    +

    + NOTE: The data from the HQF BXD Striatum Illumina Mouse-6.1 November 2007 Rank Invariant Data Set were corrected for a batch effect due to the hybridization of different strains on different dates. Data were adjusted for individual samples using ANOVA to remove effect of batch (factor = date) in Partek Batch Remover. The first 3 principal components capture 19% of the variance in the entire data set after this correction. +

    +

    +

    +

    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSlidePositionStrainTissueAgeSexDate
    11736925204DC57BL/6JStriatum58F6.7.07
    21736925140DC57BL/6JStriatum61M6.12.07
    31736925204EDBA/2JStriatum58F6.7.07
    41736925140EDBA/2JStriatum60M6.12.07
    51736925140AB6D2F1/JStriatum59F6.12.07
    61736925204AB6D2F1/JStriatum59M6.7.07
    71736925225ABXD1Striatum59F6.21.07
    81716756015ABXD1Striatum59M6.22.07
    91736925169ABXD2Striatum61F6.21.07
    101716756027ABXD2Striatum61M6.22.07
    111716756004CBXD5Striatum58F6.22.07
    121716756036CBXD5Striatum58M6.28.07
    131716756004DBXD6Striatum59F6.22.07
    141716756036DBXD6Striatum59M6.28.07
    151716756004EBXD8Striatum61F6.22.07
    161716756036EBXD8Striatum61M6.28.07
    171716756004FBXD9Striatum60F6.22.07
    181716756036FBXD9Striatum60M6.28.07
    191736925139CBXD11Striatum59F6.12.07
    201716756045BBXD11Striatum59M6.28.07
    211736925225BBXD12Striatum62F6.21.07
    221716756015BBXD12Striatum59M6.22.07
    231736925225CBXD13Striatum60F6.21.07
    241716756015CBXD13Striatum60M6.22.07
    251716756045CBXD14Striatum59F6.28.07
    261736925351CBXD14Striatum60M6.15.07
    271736925225DBXD15Striatum60F6.21.07
    281716756015DBXD15Striatum60M6.22.07
    291736925140BBXD16Striatum58F6.12.07
    301736925204BBXD16Striatum60M6.7.07
    311736925225EBXD18Striatum59F6.21.07
    321716756015EBXD18Striatum59M6.22.07
    331736925225FBXD19Striatum60F6.21.07
    341716756015FBXD19Striatum60M6.22.07
    351716756045DBXD20Striatum60F6.28.07
    361736925139DBXD20Striatum60M6.12.07
    371736925169BBXD21Striatum48F6.21.07
    381716756027BBXD21Striatum48M6.22.07
    391736925351DBXD22Striatum60F6.15.07
    401716756045EBXD22Striatum60M6.28.07
    411736925169CBXD23Striatum60F6.21.07
    421716756027CBXD23Striatum60M6.22.07
    431736925140CBXD24bStriatum58F6.12.07
    441736925204CBXD24bStriatum58M6.7.07
    451736925169DBXD27Striatum60F6.21.07
    461716756027DBXD27Striatum60M6.22.07
    471736925169EBXD28Striatum60F6.21.07
    481716756027EBXD28Striatum60M6.22.07
    491736925169FBXD29Striatum58F6.21.07
    501716756027FBXD29Striatum58M6.22.07
    511736925171ABxD31Striatum60F6.21.07
    521716756034ABxD31Striatum60M6.28.07
    531736925171BBXD32Striatum57F6.21.07
    541716756034BBXD32Striatum57M6.28.07
    551736925171CBXD33Striatum59F6.21.07
    561716756034CBXD33Striatum59M6.28.07
    571736925171DBXD34Striatum60F6.21.07
    581716756034DBXD34Striatum60M6.28.07
    591736925171EBXD36Striatum57F6.21.07
    601716756034EBXD36Striatum57M6.28.07
    611736925171FBXD38Striatum60F6.21.07
    621716756034FBXD38Striatum60M6.28.07
    631716756004ABXD40Striatum60F6.22.07
    641716756036ABXD40Striatum60M6.28.07
    651716756004BBXD42Striatum58F6.22.07
    661716756036BBXD42Striatum58M6.28.07
    671736925339EBXD43Striatum53F7.3.07
    681736925339FBXD44Striatum56M7.3.07
    691736925300ABXD45Striatum60F7.6.07
    701825397020DBXD45Striatum63M7.10.07
    711736925300BBXD51Striatum66F7.6.07
    721825397020EBXD51Striatum64M7.10.07
    731825397020FBXD55Striatum55F7.10.07
    741736925300CBXD55Striatum55M7.6.07
    751736925300DBXD60Striatum61F7.6.07
    761825397021ABXD60Striatum61M7.10.07
    771736925300EBXD61Striatum62F7.6.07
    781825397021BBXD61Striatum62M7.10.07
    791736925300FBXD62Striatum62F7.6.07
    801825397021CBXD62Striatum63M7.10.07
    811825397021EBXD65Striatum62M7.10.07
    821736925245BBXD66Striatum59M7.3.07
    831736925245CBXD68Striatum56F7.3.07
    841736925245DBXD69Striatum65M7.3.07
    851736925245EBXD70Striatum61M7.3.07
    861736925339ABXD73Striatum62F7.3.07
    871736925292ABXD73Striatum50M7.6.07
    881736925292DBXD77Striatum50F7.6.07
    891736925339BBXD84Striatum55F7.3.07
    901736925292BBXD84Striatum55M7.6.07
    911736925292EBXD85Striatum57M7.6.07
    921736925292FBXD86Striatum58M7.6.07
    931736925299ABXD87Striatum31M7.6.07
    941736925299BBXD89Striatum63M7.6.07
    951736925299CBXD90Striatum66M7.6.07
    961736925292CBXD96Striatum61F7.6.07
    971736925339CBXD96Striatum61M7.3.07
    981736925299DBXD97Striatum61M7.6.07
    991736925339DBXD100Striatum61F7.3.07
    1001736925140F129S1/SvImJStriatum60F6.12.07
    1011736925204F129S1/SvImJStriatum59M6.7.07
    1021736925129AA/JStriatum59F6.7.07
    1031736925241AA/JStriatum59M6.12.07
    1041736925129BAKR/JStriatum59F6.7.07
    1051736925241BAKR/JStriatum59M6.12.07
    1061736925241CBALB/CByJStriatum59F6.12.07
    1071736925129CBALB/CByJStriatum59M6.7.07
    1081716756045ABTBRT+tf/JStriatum59F6.28.07
    1091736925139EBTBRT+tf/JStriatum60M6.12.07
    1101716756045FBXSB/MpJStriatum61F6.28.07
    1111736925351EBXSB/MpJStriatum61M6.15.07
    1121736925129DC3H/HeJStriatum60F6.7.07
    1131736925241DC3H/HeJStriatum60M6.12.07
    1141736925129ECAST/EiStriatum57F6.7.07
    1151736925241ECAST/EiStriatum61M6.12.07
    1161736925129FFVB/NJStriatum60F6.7.07
    1171736925241FFVB/NJStriatum60M6.12.07
    1181716756057AKK/HiJStriatum62F6.7.07
    1191736925303AKK/HiJStriatum62F6.15.07
    1201716756057BMOLF/EiJStriatum60F6.7.07
    1211736925303BMOLF/EiJStriatum60M6.15.07
    1221716756057DNOD/LtJStriatum58F6.7.07
    1231736925303CNOD/LtJStriatum58M6.15.07
    1241736925303DNZB/BlnJStriatum61F6.15.07
    1251716756057ENZB/BlnJStriatum58M6.7.07
    1261736925303ENZO/HiltJStriatum61F6.15.07
    1271716756057FNZO/HiltJStriatum61M6.7.07
    1281736925139FNZW/LacJStriatum65F6.12.07
    1291825397021DNZW/LacJStriatum70M7.10.07
    1301736925303FPWD/PhJStriatum70F6.15.07
    1311716756057CPWD/PhJStriatum70M6.7.07
    1321736925139APWK/PhJStriatum59F6.12.07
    1331736925351APWK/PhJStriatum60M6.15.07
    1341736925351BWSB/EiJ`Striatum71F6.15.07
    1351736925139BWSB/EiJStriatum71M6.12.07
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UTHSC_Striatum_RankInv_1210.html b/web/dbdoc/UTHSC_Striatum_RankInv_1210.html new file mode 100755 index 00000000..3aef085f --- /dev/null +++ b/web/dbdoc/UTHSC_Striatum_RankInv_1210.html @@ -0,0 +1,219 @@ + +HQF BXD Striatum ILM6.1 (Dec10v2) RankInv + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + +

    HQF BXD Striatum ILM6.1 (Dec10v2) RankInvmodify this page

    + + Accession number: GN285

    +

    NOTE: The data from the HQF BXD Striatum Illumina Mouse-6.1 November 2007 Rank Invariant Data Set were corrected for a batch effect due to the hybridization of different strains on different dates. This data was adjusted to correct for batch effects due to date, slide, and position (see table below). Data from individual samples was adjusted using ANOVA to remove effect of batch (factor = date, factor= slide, factor = position) in Partek Batch Remover. Batch effects were corrected by sequentially removing the effect of (1) date, (2) slide, and (3) position. The first 3 principal components capture 15-16% of the variance in the entire data set after this correction.

    +

    +

    +

    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexSlidePositionStrainTissueAgeSexDate
    11736925204DC57BL/6JStriatum58F6.7.07
    21736925140DC57BL/6JStriatum61M6.12.07
    31736925204EDBA/2JStriatum58F6.7.07
    41736925140EDBA/2JStriatum60M6.12.07
    51736925140AB6D2F1/JStriatum59F6.12.07
    61736925204AB6D2F1/JStriatum59M6.7.07
    71736925225ABXD1Striatum59F6.21.07
    81716756015ABXD1Striatum59M6.22.07
    91736925169ABXD2Striatum61F6.21.07
    101716756027ABXD2Striatum61M6.22.07
    111716756004CBXD5Striatum58F6.22.07
    121716756036CBXD5Striatum58M6.28.07
    131716756004DBXD6Striatum59F6.22.07
    141716756036DBXD6Striatum59M6.28.07
    151716756004EBXD8Striatum61F6.22.07
    161716756036EBXD8Striatum61M6.28.07
    171716756004FBXD9Striatum60F6.22.07
    181716756036FBXD9Striatum60M6.28.07
    191736925139CBXD11Striatum59F6.12.07
    201716756045BBXD11Striatum59M6.28.07
    211736925225BBXD12Striatum62F6.21.07
    221716756015BBXD12Striatum59M6.22.07
    231736925225CBXD13Striatum60F6.21.07
    241716756015CBXD13Striatum60M6.22.07
    251716756045CBXD14Striatum59F6.28.07
    261736925351CBXD14Striatum60M6.15.07
    271736925225DBXD15Striatum60F6.21.07
    281716756015DBXD15Striatum60M6.22.07
    291736925140BBXD16Striatum58F6.12.07
    301736925204BBXD16Striatum60M6.7.07
    311736925225EBXD18Striatum59F6.21.07
    321716756015EBXD18Striatum59M6.22.07
    331736925225FBXD19Striatum60F6.21.07
    341716756015FBXD19Striatum60M6.22.07
    351716756045DBXD20Striatum60F6.28.07
    361736925139DBXD20Striatum60M6.12.07
    371736925169BBXD21Striatum48F6.21.07
    381716756027BBXD21Striatum48M6.22.07
    391736925351DBXD22Striatum60F6.15.07
    401716756045EBXD22Striatum60M6.28.07
    411736925169CBXD23Striatum60F6.21.07
    421716756027CBXD23Striatum60M6.22.07
    431736925140CBXD24bStriatum58F6.12.07
    441736925204CBXD24bStriatum58M6.7.07
    451736925169DBXD27Striatum60F6.21.07
    461716756027DBXD27Striatum60M6.22.07
    471736925169EBXD28Striatum60F6.21.07
    481716756027EBXD28Striatum60M6.22.07
    491736925169FBXD29Striatum58F6.21.07
    501716756027FBXD29Striatum58M6.22.07
    511736925171ABxD31Striatum60F6.21.07
    521716756034ABxD31Striatum60M6.28.07
    531736925171BBXD32Striatum57F6.21.07
    541716756034BBXD32Striatum57M6.28.07
    551736925171CBXD33Striatum59F6.21.07
    561716756034CBXD33Striatum59M6.28.07
    571736925171DBXD34Striatum60F6.21.07
    581716756034DBXD34Striatum60M6.28.07
    591736925171EBXD36Striatum57F6.21.07
    601716756034EBXD36Striatum57M6.28.07
    611736925171FBXD38Striatum60F6.21.07
    621716756034FBXD38Striatum60M6.28.07
    631716756004ABXD40Striatum60F6.22.07
    641716756036ABXD40Striatum60M6.28.07
    651716756004BBXD42Striatum58F6.22.07
    661716756036BBXD42Striatum58M6.28.07
    671736925339EBXD43Striatum53F7.3.07
    681736925339FBXD44Striatum56M7.3.07
    691736925300ABXD45Striatum60F7.6.07
    701825397020DBXD45Striatum63M7.10.07
    711736925300BBXD51Striatum66F7.6.07
    721825397020EBXD51Striatum64M7.10.07
    731825397020FBXD55Striatum55F7.10.07
    741736925300CBXD55Striatum55M7.6.07
    751736925300DBXD60Striatum61F7.6.07
    761825397021ABXD60Striatum61M7.10.07
    771736925300EBXD61Striatum62F7.6.07
    781825397021BBXD61Striatum62M7.10.07
    791736925300FBXD62Striatum62F7.6.07
    801825397021CBXD62Striatum63M7.10.07
    811825397021EBXD65Striatum62M7.10.07
    821736925245BBXD66Striatum59M7.3.07
    831736925245CBXD68Striatum56F7.3.07
    841736925245DBXD69Striatum65M7.3.07
    851736925245EBXD70Striatum61M7.3.07
    861736925339ABXD73Striatum62F7.3.07
    871736925292ABXD73Striatum50M7.6.07
    881736925292DBXD77Striatum50F7.6.07
    891736925339BBXD84Striatum55F7.3.07
    901736925292BBXD84Striatum55M7.6.07
    911736925292EBXD85Striatum57M7.6.07
    921736925292FBXD86Striatum58M7.6.07
    931736925299ABXD87Striatum31M7.6.07
    941736925299BBXD89Striatum63M7.6.07
    951736925299CBXD90Striatum66M7.6.07
    961736925292CBXD96Striatum61F7.6.07
    971736925339CBXD96Striatum61M7.3.07
    981736925299DBXD97Striatum61M7.6.07
    991736925339DBXD100Striatum61F7.3.07
    1001736925140F129S1/SvImJStriatum60F6.12.07
    1011736925204F129S1/SvImJStriatum59M6.7.07
    1021736925129AA/JStriatum59F6.7.07
    1031736925241AA/JStriatum59M6.12.07
    1041736925129BAKR/JStriatum59F6.7.07
    1051736925241BAKR/JStriatum59M6.12.07
    1061736925241CBALB/CByJStriatum59F6.12.07
    1071736925129CBALB/CByJStriatum59M6.7.07
    1081716756045ABTBRT+tf/JStriatum59F6.28.07
    1091736925139EBTBRT+tf/JStriatum60M6.12.07
    1101716756045FBXSB/MpJStriatum61F6.28.07
    1111736925351EBXSB/MpJStriatum61M6.15.07
    1121736925129DC3H/HeJStriatum60F6.7.07
    1131736925241DC3H/HeJStriatum60M6.12.07
    1141736925129ECAST/EiStriatum57F6.7.07
    1151736925241ECAST/EiStriatum61M6.12.07
    1161736925129FFVB/NJStriatum60F6.7.07
    1171736925241FFVB/NJStriatum60M6.12.07
    1181716756057AKK/HiJStriatum62F6.7.07
    1191736925303AKK/HiJStriatum62F6.15.07
    1201716756057BMOLF/EiJStriatum60F6.7.07
    1211736925303BMOLF/EiJStriatum60M6.15.07
    1221716756057DNOD/LtJStriatum58F6.7.07
    1231736925303CNOD/LtJStriatum58M6.15.07
    1241736925303DNZB/BlnJStriatum61F6.15.07
    1251716756057ENZB/BlnJStriatum58M6.7.07
    1261736925303ENZO/HiltJStriatum61F6.15.07
    1271716756057FNZO/HiltJStriatum61M6.7.07
    1281736925139FNZW/LacJStriatum65F6.12.07
    1291825397021DNZW/LacJStriatum70M7.10.07
    1301736925303FPWD/PhJStriatum70F6.15.07
    1311716756057CPWD/PhJStriatum70M6.7.07
    1321736925139APWK/PhJStriatum59F6.12.07
    1331736925351APWK/PhJStriatum60M6.15.07
    1341736925351BWSB/EiJ`Striatum71F6.15.07
    1351736925139BWSB/EiJStriatum71M6.12.07
    +
    + + + + + + +
    +      +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UTK_BXDSpl_VST_0110.html b/web/dbdoc/UTK_BXDSpl_VST_0110.html new file mode 100755 index 00000000..45712afa --- /dev/null +++ b/web/dbdoc/UTK_BXDSpl_VST_0110.html @@ -0,0 +1,112 @@ + +UTK Illumina Spleen (Jan10) VST ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UTK Illumina Spleen (Jan10) VST ** (accession number: GN260) + +modify this page

    + + +

    Status of Data: Open data; please cite Lynch RM, Naswa S, Rogers GL Jr, Kania SA, Das S, Chesler EJ, Saxton AM, Langston MA, Voy BH (2010) Identifying genetic loci and spleen gene coexpression networks underlying immunophenotypes in BXD recombinant inbred mice. Physiological Genomics (2010)

    + + +

    Summary: (Taken verbatim from the GEO record )

    +

    The immune system plays a pivotal role in susceptibility to and progression of a variety of diseases. Due to its strong genetic basis, heritable differences in immune function may contribute to differential disease susceptibility between individuals. Genetic reference populations, such as the BXD (C57BL/6J X DBA/2J) panel of recombinant inbred (RI) mouse strains, provide a unique model through which to integrate baseline phenotypes in healthy individuals with heritable risk for disease because of the ability to combine data collected from these populations across multiple studies and time. We performed basic immunophenotyping (e.g. percentage of circulating B and T lymphocytes and CD4+ and CD8+ T cell subpopulations) in peripheral blood of healthy mice from 41 BXD RI strains to define the phenotypic variation in this model system and to characterize the genetic architecture that unlerlies these traits. Significant QTL models that explained the majority (50-77%) of phenotypic variance were derived for each trait and for the T:B cell and CD4+:CD8+ ratios. Combining QTL mapping with spleen gene expression data uncovered two quantitative trait transcripts (QTTs), Ptprk and Acp1, that which are candidates for heritable differences in the relative abundance of helper and cytotoxic T cells. These data will be valuable in extracting genetic correlates of the immune system in the BXD panel. In addition, they will be a useful resource in prospective, phenotype-driven model selection to test hypotheses about differential disease or environmental susceptibility between individuals with baseline differences in the composition of the immune system. + +

    Reference Abstract: Identifying genetic loci and spleen gene coexpression networks underlying immunophenotypes in BXD recombinant inbred mice.

    + +

    Overall design:

    +

    Spleen gene expression was analyzed from 38 BXD strains. Adult mice (8-12 weeks) were euthanized by cervical dislocation and spleens were harvested and stabilized in RNAlater. Total RNA was extracted and gene expression profiling was performed on the Illumina Sentrix mouse-6 gene expression arrays v1.1. Each BXD sample profiled consisted of a pool of equal amounts of RNA from two individuals of the same sex and strain (approximately 15ug per strain). In addition, flow cytometry was used for the immunophenotyping of male and female mice (average of four mice/sex/strain) from 41 BXD strains (spleen expression profiling was performed on 34 of these strains) and the parental strains. Lymphoctes were identified as CD3+, CD79+, CD4+, or CD8+ to identify T cells, B cells, T helper cells, and cytotoxic T cells, respectively. These data are presented as percentage of lymphoctes with those cell surface markers (e.g. CD3%, CD79%, CD4%, CD8%). Lymphocyte subpopulations are also represented as natural log-transformed ratios (e.g. LN T:B, LN CD4:CD8). In addition, the median expression of MHCII on B cells is reported (LN MHC Med). The immunophenotype data is available in the supplementary file.

    + +

    This data set generates eQTLs with a maximum LOD of 42.7 and a maximum LRS of 196.7 using a Bat5 probe (Trait ID: ILM5720687). A total of 676 probe sets out of 34,491 probes have LOD scores above 10 and LRS scores above 46. These values are remarkably high and indicative of excellent data quality. + + + +

    + + + + + + + + + + + + + + + +
    Contributor(s)Lynch RM, Voy BH
    Submission dateJan 19, 2010
    Contact nameRachel Lynch
    E-mail(s)rlynch@utk.edu
    Organization nameUniversity of Tennessee
    DepartmentLife Sciences
    LabBrynn Voy
    Street address2640 Morgan Circle Drive, 51f McCord Hall
    CityKnoxville
    State/provinceTN
    ZIP/Postal code37996
    CountryUSA
    + + +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UT_CEPH_RankInv0909.html b/web/dbdoc/UT_CEPH_RankInv0909.html new file mode 100755 index 00000000..7fb29231 --- /dev/null +++ b/web/dbdoc/UT_CEPH_RankInv0909.html @@ -0,0 +1,291 @@ + +UTHSC CEPH B-cells Illumina (Sep09) RankInv + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UTHSC CEPH B-cells Illumina (Sep09) RankInv (accession number: GN241) + modify this page

    + +

    The Illumina Human Whole Genome 6 v2.0 Rank Invariant data for CEPH lymphoblastoid cell lines obtained from the Coriell Institute for Medical Research. All cell lines were processed in Memphis in the UTHSC laboratory of Dr. Malak Kotb (2007-2009), by Dr. Rita G. Kasal, Nourtan Abdeltawab, and colleagues. +

    Selection of CEPH families and members was done by Dr. Roel Ophoff (Utrecht and UCLA). +

    Array data were generated at microarray core facility in laboratory of Dr. Weikuan Gu at VA medical center, Memphis, TN. +

    Analysis by Mark Reimers, Stephanie Santorico, and Roel Ophoff + +

    About the CEPH/UTAH families used to generate this data set:

    +

    The CEPH/UTAH families used in this data set are part of CEPH repository linkage families of National Institute of General Medical Sciences (NIGMS) human genetic cell repository. These are immortalized human B-lymphocytes (EBV-transformed) from Caucasian donors of UTAH/Mormon ethnicity. The CEPH/UTAH families contain 48 families; the present data set includes 14 of these families with available DNA/genotypes for each member of these pedigrees. There are five families common with the published Monks et al (2004), namely families: 1346, 1362, 1418, 1421, and 1424.

    +

    About the processing of cell lines:

    +

    CEPH/UTAH families cell lines were purchased from Coriell repository of cell lines part of NIGMS. Upon arrival from the Coriell institute, we incubated the cell lines in 25ml flasks upright overnight at 37 ºC humidified incubator, with 5% carbon dioxide. We maintained the cells at a density of 5 X 105 cells/ml. The composition of the media used was RPMI-1640, 15% fetal bovine serum (FBS) and 2mM L-Glutamine; all FBS used was from the same lot. At 48 hours or when cell counts were ≥ 8 x 106 cells total, we harvested the cells and tested each cell line for mycoplasma contamination using e-Myco Mycoplasma PCR detection kit (iNtRON Biotechnology) according to manufacturer protocol. Cell lysates free of mycoplasma were used for RNA extraction as detailed below. We froze duplicates of each cell line at a concentration of ~2–6 x106 cells/ml according to standard procedures and stored in liquid nitrogen.

    +

    About RNA processing:

    +

    Two hundred and five cell lines were used for isolation of RNA. Ms. Sarah Rowe Hasty performed initial RNA isolation, purification and re-precipitation from 205 cell lines in Dr. Malak Kotb laboratory at VAMC. After initial RNA isolation, Ms. Nourtan Abdeltawab treated all samples for removal of contaminating DNA, along with further purification and re-precipitation of all samples. RNA samples that passed quality control were used to generate cRNA samples, those that didn't pass QC were re-extracted as we had duplicates of all cell lines lysates. RNA Extraction details: We used Qiagen RNeasy Mini purification of total RNA from tissues and cells spin protocol. RNA was isolated from 7.5 X 105 cells in duplicates. We froze cell lysates in RLT buffer and ß-mercaptoethanol at -80 ºC in 96 well plates until processed at a later time. We thawed samples, one 96 well plate at a time, and proceeded with RNA isolation steps and resuspended the pellets in RNase-free water. We then treated RNA to remove any DNA contamination using DNase digestion with RNase-free DNase kit (Qiagen) according to manufacturer protocol. RNA was finally purified by re-precipitation using ethanol precipitation using Purescript RNA purification kit (Gentra). Final purified RNA was resuspended in RNase-free water. RNA quality control: RNA samples were checked for RNA purity and integrity. RNA purity was evaluated using the 260/280 and 260/230 absorbance ratios. We used RNA samples with 260/280 ratio values ≥ 1.8 and 260/230 of ≥1.7. In cases were RNA samples did not meet these ratios, the RNA was purified by re-precipitation as above. RNA integrity was assessed using 1% RNA denaturing agrose gels. We required clear sharp bands of 18S and 28S rRNA for all samples compared to a control RNA sample to ensure intactness of rRNA.

    +

    About arrays used to generate this data set:

    +

    Array platform:

    +

    Illumina HumanGW-6 v2.0 BeadChip: The Human-6 v2 beadchip simultaneously assays six samples, therefore, known as ‘array of arrays’. Each chip has ~1.8 million beads, beads have several hundred thousands copies of optimized 50-mer gene-specific probes. These probes cover more than 48,000 transcripts per sample, targeting genes and known alternative splice variants from the RefSeq database release 17 and UniGene build 188.

    +

    Sample Processing:

    +

    All RNA samples were processed by Yan Jiao at Dr. Weikuan Gu’s microarray core facility at VA medical center, Memphis, TN. We used only RNA samples that passed quality control as detailed above and of concentration ≥ 50ng/ul for cRNA synthesis using Illumina TotalPrep RNA amplification kit (Ambion) according to manufacturer protocol. The basic outline of the procedure involves reverse transcription of RNA to synthesize cDNA using oligo (dT) primer, followed by in vitro transcription of purified dsDNA to synthesize amplified biotinylated cRNA (aRNA). We evaluated purified labeled cRNA using same methods as mentioned above for RNA samples. cRNA samples of good quality (passing QC), were then used to hybridize to Illumina Human-6WG v2.0 according to Illumina standard protocols.

    +

    Experimental Design and Batch Structure:

    +

    This data set consists of arrays processed in seven groups. Groups consisted of 2, 3, 4, 4, 3, 6, and then 8 beadchips at a time, batch IDs are indicated in table 1. Samples from same family were scattered among array groups, with samples from six different families were run on one chip. This was done to ensure balance and to minimize batch effects and group-by-family statistical confounds in normalization. This was done with the exception of the first two chips, which were run with 3 generations of the same family on one chip. A single operator, Yan Jiao, processed all arrays using illumina protocol for hybridization, washing and scanning. All samples in a group were labeled on one day, hybridization station accommodates up to 24 samples, or 4 beadchips. Chips were scanned using BeadArray Reader in sets of three.

    +

    About array data processing and analysis:

    +

    RNA samples (n = 180) were processed using a total of 30 Illumina HumanWG-6 BeadChips, each beadchip analyses six samples covering 48,000 transcripts per sample. All chips passed quality control and error checking. This data set was extracted and processed using the Bead Studio 3. We applied Rank-invariant normalization to all the samples and the resulting expression values along with gene ID were exported in GeneSpring format. Dr. Rita Kansal performed the normalization steps.

    + +

    Financial support for this project was provided by Dr. Barrett Haik and the Hamilton Eye Institute, by NIH grant support to RWW and MK, and by the UT Center for Integrative and Translational Genomics.

    +

    Data entered by Arthur Centeno, Sept 22, 2009. This file started Sept 22, 2009 by RWW.

    + +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexRepository
    Number
    Case IDAge
    (years)
    GenderFamily IDFamily Member IDSentrix IDSentrix
    Position
    Batch ID
    1GM07038133300141Male133314256249060A5
    2GM06987133300239Female133324158260019B4
    3GM07004133300319Male133334256249103A7
    4GM07052133300417Male133344256249051A6
    5GM06982133300516Male133354158260009F3
    6GM07011133300614Female133364158260012C3
    7GM07009133300712Male133374256249101F6
    8GM07678133300812Male133384158260005B4
    9GM0702613330096Male133394158260026C3
    10GM0767913330106Male1333104158260030C3
    11GM07049133301168Male1333114256249059A5
    12GM07002133301263Female1333124158260001B4
    13GM07017133301361Male1333134158260027B5
    14GM07341133301461Female1333144256249042A6
    15GM118201333015NAFemale1333154256249104E7
    16GM07048134100143Male134114256249103B7
    17GM06991134100242Female134124158260027A5
    18GM07343134100322Female134134256249095C7
    19GM07044134100420Female134144158260002C4
    20GM07012134100518Female134154158260026D3
    21GM07344134100617Female134164158260030B3
    22GM07021134100714Male134174256249097B7
    23GM07006134100810Female134184158260001C4
    24GM0701013410098Female1341941582600011A2
    25GM0702013410107Male1341104158260007A1
    26GM07034134101171Male1341114158260007B1
    27GM07055134101270Female1341124158260012E3
    28GM06993134101374Male1341134256249059C5
    29GM06985134101469Female1341144158260007C1
    30GM10852134600248Female134624256249098D7
    31GM12035134600327Male134634158260007D1
    32GM12036134600425Male134644256249047A6
    33GM12037134600524Male134654158260027E5
    34GM12038134600621Male134664158260001E4
    35GM12039134600721Male134674256249097C7
    36GM12041134600913Female134694256249099B7
    37GM12042134601010Female13461041582600011D2
    38GM12043134601174Male1346114158260007E1
    39GM12044134601270Female1346124256249096F7
    40GM12046134601472Female1346144158260007F1
    41GM10858134700142Male134714158260030A3
    42GM10859134700241Female134724158260027C5
    43GM11870134700321Female134734158260018C2
    44GM11871134700419Male134744256249060B5
    45GM11872134700518Male134754256249097A7
    46GM11873134700616Male134764158260001A4
    47GM11875134700813Female134784256249095E7
    48GM11876134700911Male134794256249059E5
    49GM1187713470108Male1347104158260021A2
    50GM1187813470116Male1347114158260008A1
    51GM11879134701266Male1347124158260019D4
    52GM11880134701365Female1347134158260008B1
    53GM11881134701462Male1347144256249101C6
    54GM11882134701561Female1347154158260008C1
    55GM1188313470166Male13471641582600011B2
    56GM10860136200150Male136214256249097E7
    57GM10861136200249Female136224158260027D5
    58GM11982136200328Female136234158260019F4
    59GM11983136200429Female136244158260030D3
    60GM11984136200526Male136254158260008D1
    61GM11985136200624Female136264158260002F4
    62GM11986136200722Female136274256249060C5
    63GM11987136200819Male136284158260005F4
    64GM11988136200917Female136294256249042B6
    65GM11989136201014Female1362104158260001F4
    66GM1199013620119Male1362114256249094A6
    67GM1199113620127Female1362124158260018E2
    68GM11992136201386Male1362134256249059B5
    69GM11993136201480Female1362144256249059F5
    70GM11994136201580Male1362154158260008E1
    71GM11995136201684Female1362164158260008F1
    72GM11996136201721Male1362174158260021C2
    73GM10835141600139Male141614256249060F5
    74GM10834141600240Female141624158260018A2
    75GM12240141600319Male141634158260019E4
    76GM12241141600416Male141644256249059D5
    77GM12243141600613Male141664256249096C7
    78GM12244141600712Female141674256249047B6
    79GM12245141600810Male1416841582600011E2
    80GM1224614160098Female141694158260026E3
    81GM1224714160105Female1416104158260021D2
    82GM12248141601189Male1416114256249094B6
    83GM12249141601277Female1416124256249041A6
    84GM12250141601366Male1416134256249044F7
    85GM12251141601463Female1416144158260005D4
    86GM1225214160155Female1416154158260009E3
    87GM1225314160166Female1416164158260027F5
    88GM10836141800244Female141824158260018B2
    89GM12328141800324Female141834256249047C6
    90GM12266141800520Female1418541582600011F2
    91GM12267141800618Male141864158260009D3
    92GM1227014180099Female141894158260001D4
    93GM1227114180106Female1418104158260012D3
    94GM12272141801173Male1418114256249060E5
    95GM12273141801271Female1418124158260002D4
    96GM12274141801372Male1418134256249101A6
    97GM12275141801469Female1418144158260005C4
    98GM10841142100143Male142114158260030E3
    99GM10840142100242Female142124256249098C7
    100GM12276142100324Female142134158260012F3
    101GM12278142100519Female142154256249042C6
    102GM12280142100710Female142174256249041B6
    103GM1228114210088Male142184256249047D6
    104GM12282142100969Male142194158260026F3
    105GM12283142101064Female1421104256249101B6
    106GM12284142101121Male1421114256249094C6
    107GM12285142101220Male1421124256249104B7
    108GM12287142101469Female1421144256249051B6
    109GM11910142300417Female142344256249103D7
    110GM11911142300515Female142354256249096E7
    111GM11912142300612Male142364158260009C3
    112GM11913142300711Male142374256249044D7
    113GM1191414230089Female142384256249098A7
    114GM1191514230098Female1423941582600011C2
    115GM1191614230105Male1423104158260018D2
    116GM11917142301166Male1423114256249097F7
    117GM11919142301367Male1423134256249104F7
    118GM11920142301466Female1423144256249095D7
    119GM1192114230157Female1423154256249099A7
    120GM10845142400149Male142414256249104C7
    121GM10844142400250Female142424256249103F7
    122GM11922142400330Male142434256249044A7
    123GM11923142400429Male142444256249097D7
    124GM11924142400527Female142454256249096A7
    125GM11925142400625Male142464158260021B2
    126GM11926142400721Female142474256249051C6
    127GM11927142400819Male142484256249042D6
    128GM11928142400915Male142494256249098B7
    129GM11929142401013Male1424104256249094D6
    130GM119301424011NAMale1424114256249041C6
    131GM11931142401278Female1424124158260002A4
    132GM11932142401376Male1424134256249095A7
    133GM11933142401474Female1424144158260005E4
    134GM127521447001NAMale144714158260021E2
    135GM127541447003NAFemale144734256249044E7
    136GM127561447005NAMale144754256249098F7
    137GM127581447007NAFemale144774256249099D7
    138GM127591447008NAFemale144784158260002E4
    139GM127601447009NAMale144794256249103E7
    140GM127611447010NAFemale1447104158260009A3
    141GM127621447011NAMale1447114158260018F2
    142GM127631447012NAFemale1447124158260012A3
    143GM127641447013NAMale1447134256249042E6
    144GM127651447014NAMale1447144158260026A3
    145GM127661451001NAMale145114158260009B3
    146GM127671451002NAFemale145124158260012B3
    147GM127681451003NAMale145134256249041D6
    148GM127691451004NAFemale145144158260021F2
    149GM127701451005NAFemale145154158260005A4
    150GM127711451006NAMale145164256249047E6
    151GM127721451007NAFemale145174158260019A4
    152GM127731451008NAFemale145184158260002B4
    153GM128481451009NAFemale145194256249051D6
    154GM127741451010NAMale1451104158260030F3
    155GM127761451012NAFemale1451124256249099E7
    156GM127771451013NAMale1451134256249060D5
    157GM128011454001NAMale145414256249103C7
    158GM128031454003NAFemale145434158260019C4
    159GM128041454004NAFemale145444256249101D6
    160GM128051454005NAMale145454256249095F7
    161GM128061454006NAMale145464256249098E7
    162GM128081454008NAFemale145484256249099C7
    163GM128091454009NAFemale145494256249051E6
    164GM128101454010NAMale1454104256249104A7
    165GM128111454011NAMale1454114256249044B7
    166GM128121454012NAMale1454124256249042F6
    167GM128131454013NAFemale1454134256249094E6
    168GM128141454014NAMale1454144256249096D7
    169GM128151454015NAFemale1454154256249041E6
    170GM128161454016NAMale1454164256249047F6
    171GM128171456001NAMale145614256249051F6
    172GM128181456002NAFemale145624256249101E6
    173GM128191456003NAMale145634256249095B7
    174GM128211456005NAFemale145654256249044C7
    175GM128221456006NAMale145664256249094F6
    176GM128231456007NAMale145674256249096B7
    177GM128241456008NAFemale145684256249104D7
    178GM128251456009NAMale145694158260026B3
    179GM128261456010NAFemale1456104256249041F6
    180GM128281456012NAFemale1456124256249099F7
    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UT_HippRatEx_RMA_0709.html b/web/dbdoc/UT_HippRatEx_RMA_0709.html new file mode 100755 index 00000000..c24a903a --- /dev/null +++ b/web/dbdoc/UT_HippRatEx_RMA_0709.html @@ -0,0 +1,92 @@ + +UT Hippocampus Affy RaEx 1.0 Exon (Jul09) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UT Hippocampus Affy RaEx 1.0 Exon (Jul09) RMA **
    Accession number: GN231 + modify this page

    +
    +

    Summary:

    +

    The HXB/BXH data provides estimates of Hippocampus mRNA expression. Affymetrix Rat Exon 1.0ST microarrays were used for hybridization using standard procedures. Total of 68 samples come from 30 BXH/HXB strain (one male and one female) and 2 parental strains (two males and two females).

    +

    Animals and Tissue Used to Generate This Set of Data:

    +

    +

    Sample Processing:

    +

    +

    Replication and Sample Balance:

    +

    +

    Experimental Design and Batch Structure:

    +

    +

    +

    Data Source Acknowledgements:

    +

    +

    Data were generated with NIAAA grants U01AA13499 to Robert W. Williams and a grant to Gerd Kempermann, Genomics of Regeneration in the Central Nervous System, Center for Regenerative Therapies, Dresden.

    +
    +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UT_ILM_BXD_hipp_NOE_0909.html b/web/dbdoc/UT_ILM_BXD_hipp_NOE_0909.html new file mode 100755 index 00000000..ecfc6e9b --- /dev/null +++ b/web/dbdoc/UT_ILM_BXD_hipp_NOE_0909.html @@ -0,0 +1,142 @@ + +UTHSC Hippocampus Illumina v6.1 NOE (Sep09) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UTHSC Hippocampus Illumina v6.1 NOE (Sep09) RankInv
    Accession number: GN246 + modify this page

    +

    Modified by Arthur Centeno, Sept 20, 2010. +

    Array data sets all generated by Dr. Lu Lu (2008 2009) +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues. +

    As an example of the experimental paradigm please see Ziebarth et al 2010. +

    Table 1. Anxiety assay, ethanol treated (NOE group).

    + +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDConditionStrainAgeSex
    14068846016_FNOEBXD190F
    24256265074_DNOEBXD190M
    34256265044_FNOEBXD890F
    44256265059_CNOEBXD969F
    54207851052_ENOEBXD973M
    64060001068_CNOEBXD3169F
    74060001078_DNOEBXD3475F
    84207851040_CNOEBXD4365F
    94207851040_DNOEBXD4571F
    104207851041_CNOEBXD4568M
    114068846016_DNOEBXD5173F
    124207851035_DNOEBXD5185M
    134068846016_CNOEBXD5568M
    144060001071_ANOEBXD6076F
    154068846016_ANOEBXD6067M
    164207851041_ANOEBXD6170F
    174207851041_BNOEBXD6267F
    184060001075_FNOEBXD6268M
    194207851014_FNOEBXD6572M
    204207851035_ANOEBXD6673F
    214256265026_ENOEBXD6867F
    224207851035_BNOEBXD6866M
    234060001088_FNOEBXD6966F
    244207851049_ENOEBXD6966M
    254207851045_BNOEBXD7069F
    264256265057_ANOEBXD7176F
    274256265042_BNOEBXD7366F
    284256265042_CNOEBXD7569M
    294256265080_BNOEBXD7773F
    304060001083_ENOEBXD7787M
    314060001083_CNOEBXD8167F
    324060001083_ANOEBXD8369M
    334256265045_CNOEBXD8468F
    344207851058_ANOEBXD8763F
    354256265080_CNOEBXD8765M
    364256265024_ANOEBXD8971F
    374207851058_BNOEBXD8968M
    384256265024_BNOEBXD9068F
    394256265052_ANOEBXD9074M
    404256265059_DNOEBXD9284F
    414256265023_FNOEBXD9668F
    424256265023_ANOEBXD9668M
    434256265044_ANOEBXD9668M
    444068846017_BNOEBXD9767M
    454068846017_ANOEBXD9874F
    464207851052_FNOEBXD9871M
    474068846021_FNOEBXD9970M
    484060001088_ENOEBXD10061F
    494060001088_DNOEBXD10171M
    504060001088_CNOEBXD10263F
    + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UT_ILM_BXD_hipp_NON_0909.html b/web/dbdoc/UT_ILM_BXD_hipp_NON_0909.html new file mode 100755 index 00000000..c8e1a651 --- /dev/null +++ b/web/dbdoc/UT_ILM_BXD_hipp_NON_0909.html @@ -0,0 +1,173 @@ + +UTHSC Hippocampus Illumina v6.1 NON (Sep09) RankInv + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UTHSC Hippocampus Illumina v6.1 NON (Sep09) RankInv
    Accession number: GN242 + modify this page

    + +

    Summary Description of Data Set: This is untreated control "Base" group gene expression data for the hippocampus of BXD strains of mice (n = 27 strains and n = 35 animals). These data NON data are useful as baseline for comparison with NOS, NOE, RSS, and RSE data sets. NON = NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection. + +

    For more details on the precise experimental paradigm, please see Ziebarth et al 2010 or the original paper that used this paradigm by Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266. + + +

    Restraint Stress Protocol +

      +
    1. Weigh animals all animals to be tested and record body weight. +
    2. Bring animals into testing area at least one hour prior to testing. 9 a.m. + +The following steps will be done for three animals (in parallel) because we have three zero-mazes. + +
    3. Place animals in immobilization tubes for 15 minutes. +
    4. Inject animals IP with saline OR ethanol* and return to home cages for 5 minutes. (Remember to counterbalance groups. All animals in one cage should not be assigned to same group). +
    5. Place each animal into zero-maze for 10 minutes. +
    6. Return animal to home cage. +
    7. Exactly 4 hours after injection, kill animals and remove brains to RNAlater solution. Animals should be killed by rapid decapitation with scissors so that trunk blood can be collected at the same time for corticosteroid analysis. + +
    + + + + + +Ethanol and saline injections
    + +Ethanol will be mixed with saline : 12.5% v/v. 100 ml of solution = 87.5 ml of saline and 12.5 ml of ethanol. Animals receive an injection of 1.8 g/kg. Multiply animals’ body weight by 0.018 to get injection volume (i.e. 25 g mouse X .018 mL/g = 0.45mL injection volume). + + +

    "Adult mice were housed three to five to a cage with ad libitum access to standard rodent chow (Harlan Teklad, Madison, WI) and water in a 12 h dark/light cycle. All injections were intraperitoneal. Mice were given a saline injection once daily for 5 d to habituate them to the injection process. On day 6, mice received either an injection of saline or 20% ethanol in saline." + +

    Data Quality: All five data have been error checked. Strain and sex assignments were verified and are correct. This was determined by analysis of approximately 20 "test Mendelian" probes such as that for Thumpd1 (ILM751048). These probes have very high LRS values and the expected strain distribution pattern given their chromosomal location. Expression of genes on X and Y chromosomes (such as Xist) were used to confirm sex. + + +

    Quality Control Data +
    Total cis eQTLs with LRS > 23 within 5 Mb, maximum cis eQTL LRS value and probe +

      +
    1. NON: 669 (n=27 BXDs), 86.5 for B3galt6 (ILM50195) +
    2. NOS: 844 (n=28 BXDs), 100.2 for Telo2 (ILM4850047) +
    3. NOE: 1186 (n=35 BXDs), 101.9 for Mela-associated pseudogene (ILM4850047) +
    4. RSS: 725 (n=27 BXDs), 82.8 for Gpr116 (ILM105390524) +
    5. RSE: 915 (n=29 BXDs), 100.6 for Casp9 (ILM60577) +
    + + + +

    Entered by Arthur Centeno, September 20, 2010. +

    Array data sets all generated by Dr. Lu Lu (2008 - 2009) at the University of Tennessee Health Science Center, Memphis. +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues at the University of Memphis. + +

    Table 1. Anxiety and stress assay, baseline untreated control (Base group) NON (No stress no saline).

    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDConditionStrainAgeSex
    14060001068_BNONBXD3475M
    24207851040_ENONBXD4366F
    34207851014_BNONBXD4367M
    44060001071_FNONBXD4463M
    54207851035_CNONBXD4571F
    64207851040_FNONBXD5171M
    74060001071_CNONBXD5567F
    84060001069_DNONBXD5568M
    94207851053_BNONBXD6074F
    104060001069_BNONBXD6064M
    114068846017_FNONBXD6163F
    124207851053_CNONBXD6178M
    134207851053_ENONBXD6567M
    144256265026_DNONBXD6669M
    154256265073_BNONBXD6865F
    164207851045_ANONBXD6866M
    174207851049_FNONBXD6965F
    184207851049_ANONBXD7061M
    194256265042_ANONBXD7176M
    204060001078_CNONBXD7366F
    214256265051_DNONBXD7369M
    224256265044_ENONBXD7568F
    234256265051_BNONBXD7767M
    244060001078_ENONBXD7995M
    254256265045_ANONBXD8084M
    264256265053_BNONBXD8369M
    274207851038_ENONBXD8469F
    284256265059_ANONBXD8563F
    294256265057_FNONBXD8763F
    304068846021_CNONBXD8768M
    314207851027_ENONBXD9770M
    324207851027_FNONBXD9876F
    334256265062_CNONBXD9870M
    344256265063_CNONBXD10071M
    354060001068_ENONBXD10168F
    + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UT_ILM_BXD_hipp_NOS_0909.html b/web/dbdoc/UT_ILM_BXD_hipp_NOS_0909.html new file mode 100755 index 00000000..c4a81586 --- /dev/null +++ b/web/dbdoc/UT_ILM_BXD_hipp_NOS_0909.html @@ -0,0 +1,133 @@ + +UTHSC Hippocampus Illumina v6.1 NOS (Sep09) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UTHSC Hippocampus Illumina v6.1 NOS (Sep09) RankInv
    Accession number: GN243 + modify this page

    +

    Modified by Arthur Centeno, Sept 20, 2010. +

    Array data sets all generated by Dr. Lu Lu (2008 2009) +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues. +

    As an example of the experimental paradigm please see Ziebarth et al 2010. +

    Table 1. Anxiety assay, saline treated (NOS group) No stress, saline

    + +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDConditionStrainAgeSex
    14068846017_DNOSBXD190M
    24060001069_ENOSBXD973M
    34207851040_BNOSBXD3467M
    44207851045_ENOSBXD4375F
    54256265009_DNOSBXD4364M
    64256265052_DNOSBXD4469M
    74068846016_ENOSBXD4565M
    84060001082_BNOSBXD5175M
    94060001082_FNOSBXD5562F
    104207851041_FNOSBXD6076F
    114060001069_ANOSBXD6178F
    124207851051_CNOSBXD6178M
    134207851053_DNOSBXD6267F
    144256265043_ANOSBXD6268M
    154256265074_CNOSBXD6669F
    164207851051_ENOSBXD6663M
    174207851038_BNOSBXD6869F
    184256265044_CNOSBXD6866M
    194256265024_ENOSBXD6965F
    204256265074_ENOSBXD6963F
    214256265057_ENOSBXD7366F
    224256265074_ANOSBXD7369M
    234207851058_ENOSBXD7568F
    244060001078_BNOSBXD7570M
    254256265052_FNOSBXD7764F
    264207851038_DNOSBXD7769M
    274256265045_BNOSBXD8175F
    284256265023_BNOSBXD8370F
    294207851051_ANOSBXD8367M
    304207851038_FNOSBXD8566M
    314207851045_FNOSBXD8768M
    324068846021_BNOSBXD8969F
    334256265073_FNOSBXD8969M
    344256265080_ENOSBXD9073M
    354256265007_BNOSBXD9268M
    364060001082_ANOSBXD9872F
    374256265058_FNOSBXD9870M
    384256265051_FNOSBXD9970M
    394060001075_ENOSBXD10063F
    404207851035_ENOSBXD10072M
    414060001075_DNOSBXD10178M
    + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UT_ILM_BXD_hipp_RSE_0909.html b/web/dbdoc/UT_ILM_BXD_hipp_RSE_0909.html new file mode 100755 index 00000000..a4ed645c --- /dev/null +++ b/web/dbdoc/UT_ILM_BXD_hipp_RSE_0909.html @@ -0,0 +1,133 @@ + +UTHSC Hippocampus Illumina v6.1 RSE (Sep09) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UTHSC Hippocampus Illumina v6.1 RSE (Sep09) RankInv
    Accession number: GN245 + modify this page

    +

    Modified by Arthur Centeno, Sept 20, 2010. +

    Array data sets all generated by Dr. Lu Lu (2008 2009) +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues. +

    As an example of the experimental paradigm please see Ziebarth et al 2010. +

    Table 1. Anxiety assay, restraint stress + ethanol treated (RSE group).

    + +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDConditionStrainAgeSex
    14060001088_BRSEBXD3471M
    24060001068_ARSEBXD4075F
    34256265052_BRSEBXD4373F
    44256265042_ERSEBXD4372M
    54256265042_FRSEBXD4465F
    64256265043_CRSEBXD4466M
    74256265051_ARSEBXD4560F
    84207851041_DRSEBXD5166F
    94207851058_CRSEBXD5185M
    104207851035_FRSEBXD5562F
    114207851041_ERSEBXD5562M
    124060001082_DRSEBXD6076F
    134256265043_DRSEBXD6067M
    144256265043_ERSEBXD6170F
    154207851027_ARSEBXD6267M
    164256265026_CRSEBXD6566F
    174207851027_CRSEBXD6674M
    184207851049_DRSEBXD6873F
    194256265057_CRSEBXD6966M
    204256265044_DRSEBXD7069F
    214207851027_DRSEBXD7176F
    224060001078_FRSEBXD7170M
    234256265073_CRSEBXD7368F
    244060001075_ARSEBXD7369M
    254256265063_ARSEBXD7566F
    264256265023_CRSEBXD8061M
    274256265026_ARSEBXD8974F
    284256265057_DRSEBXD8968M
    294060001075_BRSEBXD9072F
    304060001069_FRSEBXD9284F
    314256265043_FRSEBXD9284F
    324207851052_BRSEBXD9284M
    334256265059_ERSEBXD9566M
    344207851014_ERSEBXD9667F
    354256265063_DRSEBXD9664M
    364256265062_DRSEBXD9765M
    374256265023_ERSEBXD9875M
    384256265063_FRSEBXD9871M
    394256265058_ARSEBXD9976M
    404256265026_BRSEBXD10095M
    414207851040_ARSEBXD10169F
    + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UT_ILM_BXD_hipp_RSS_0909.html b/web/dbdoc/UT_ILM_BXD_hipp_RSS_0909.html new file mode 100755 index 00000000..1b3bb722 --- /dev/null +++ b/web/dbdoc/UT_ILM_BXD_hipp_RSS_0909.html @@ -0,0 +1,130 @@ + +UTHSC Hippocampus Illumina v6.1 RSS (Sep09) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UTHSC Hippocampus Illumina v6.1 RSS (Sep09) RankInv
    Accession number: GN244 + modify this page

    +

    Modified by Arthur Centeno, Sept 20, 2010. +

    Array data sets all generated by Dr. Lu Lu (2008 2009) +

    Corresponding anxiety and ethanol response phenotypes generated by Dr. Melloni Cook and colleagues. +

    As an example of the experimental paradigm please see Ziebarth et al 2010. +

    Table 1. Anxiety assay, restraint stress + saline treated (RSS group).

    + +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    IndexArray IDConditionStrainAgeSex
    14068846021_ARSSBXD972M
    24207851045_DRSSBXD3471M
    34068846017_CRSSBXD4373F
    44060001083_BRSSBXD4372M
    54256265080_DRSSBXD4465F
    64256265045_DRSSBXD4470M
    74060001083_FRSSBXD4567F
    84256265045_ERSSBXD5188F
    94256265043_BRSSBXD5567F
    104256265045_FRSSBXD6072F
    114256265024_DRSSBXD6076M
    124207851058_DRSSBXD6170F
    134068846017_ERSSBXD6261F
    144256265080_FRSSBXD6267M
    154256265044_BRSSBXD6669F
    164207851052_ARSSBXD6674M
    174060001075_CRSSBXD6864M
    184207851038_CRSSBXD7069F
    194068846021_ERSSBXD7068M
    204207851014_ARSSBXD7368F
    214207851014_DRSSBXD7367M
    224051964017_ARSSBXD7573F
    234256265058_BRSSBXD7569F
    244256265063_ERSSBXD7995M
    254256265062_ARSSBXD8084M
    264256265058_CRSSBXD8375F
    274256265074_FRSSBXD8369M
    284256265062_BRSSBXD8473F
    294207851051_FRSSBXD8769M
    304256265073_ARSSBXD9068F
    314207851051_BRSSBXD9669M
    324060001079_FRSSBXD9765F
    334256265080_ARSSBXD9770M
    344207851014_CRSSBXD9973M
    354207851051_DRSSBXD10068F
    364060001068_FRSSBXD10079M
    374207851045_CRSSBXD10166F
    384060001068_DRSSBXD10263M
    + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UT_VA_ILM_BXD_Islets_RInv1009.html b/web/dbdoc/UT_VA_ILM_BXD_Islets_RInv1009.html new file mode 100755 index 00000000..4ce07bb0 --- /dev/null +++ b/web/dbdoc/UT_VA_ILM_BXD_Islets_RInv1009.html @@ -0,0 +1,79 @@ + + + +UTHSC/VA ILMv8.2 Islets (Oct09) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UTHSC/VA ILMv8.2 Islets (Oct09) RankInv ** (accession number: GN248) + modify this page

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/UT_VA_ILM_BXD_SpLeuc_RInv1009.html b/web/dbdoc/UT_VA_ILM_BXD_SpLeuc_RInv1009.html new file mode 100755 index 00000000..18ef4b34 --- /dev/null +++ b/web/dbdoc/UT_VA_ILM_BXD_SpLeuc_RInv1009.html @@ -0,0 +1,79 @@ + + + +UTHSC/VA ILMv8.2 Spleen Leucocytes (Oct09) RankInv ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    UTHSC/VA ILMv8.2 Spleen Leucocytes (Oct09) RankInv ** (accession number: GN247) + modify this page

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/VCUEtOH_0609_R.html b/web/dbdoc/VCUEtOH_0609_R.html new file mode 100755 index 00000000..7321d88e --- /dev/null +++ b/web/dbdoc/VCUEtOH_0609_R.html @@ -0,0 +1,95 @@ + +VCU BXD PFC EtOH M430 2.0 (Jun09) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    VCU BXD VTA EtOH M430 2.0 (Jun09) RMA **
    Accession number: GN229 + modify this page

    +
    +

    Summary:

    +

    This BXD data set provides estimates of ventral tegmental area (VTA) mRNA expression in response to ethanol (1.8 g/kg x 4 hours) across 35 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 596 adult male animals obtained from Jackson Laboratory (27 “classical†BXD strains) or Oak Ridge National Laboratory (extended BXD series) and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and ethanol (IP) treatment in the light-dark transition model of anxiety.

    Behavior was measured for 10 minutes and then mice returned to their home cages. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the VTA in response to ethanol using the Robust Multichip Average (RMA) method.

    + +

    Animals and Tissue Used to Generate This Set of Data:

    +

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with 0.9% saline or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 16 month period beginning in August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Ventral tegmental area tissue was isolated by microdissection using a wedge-shaped slice as described in Kerns et al., 2005. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Nate Bruce during April 2009 and the order of RNA isolation was randomized across all strains and treatment groups (since ethanol treated animals were processed concurrently).

    +

    Sample Processing:

    +

    All samples were processed by Nate Bruce at VCU between April and May 2009. The BioRad Experion RNA analyzer and used to assess total RNA integrity and verify equal molar ratios of 18S and 28S ribosomal RNA. All RNA Quality Index (RQI) calculations were > 8. Standard Affymetrix reagents and protocols were used for generation of cDNA and biotinylated cRNA from total RNA samples. Integrity of cRNA was checked by Experion analysis prior to microarray hybridizations. All probes exceeded a maximum size of 3000 nt for the upper border of the cRNA size distribution.

    +

    Replication and Sample Balance:

    +

    +

    At present, this ethanol VTA mRNA expression BXD data set is represented by a total of 1 microarray for each BXD strain and 5 microarrays for each progenitor strain. A duplicate dataset for BXD strains is in progress.

    +

    Experimental Design and Batch Structure:

    +

    +

    This data set was generated concurrently with the VCU saline VTA BXD RMA data and therefore consisted of 90 microarrays processed in 6 groups of 8 to 16 microarrays during the month of May 2009. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    +

    Data Source Acknowledgements:

    +

    +

    Data were generated with NIAAA grants U01AA016662, U01AA01667 and R01AA014717 to Michael F. Miles. BXD mice obtained from Oak Ridge National Laboratory were through the Mouse Research Core of the Interactive Neuroscience Initiative on Alcoholism – Stress (INIA-Stress) consortium. Assistance for this work from INIA-Stress investigators Elissa Chesler, Dan Goldowitz, Lu Lu and Robert Williams was greatly appreciated.

    +
    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/VCUEtOH_0806_R.html b/web/dbdoc/VCUEtOH_0806_R.html new file mode 100755 index 00000000..bfe0fcdf --- /dev/null +++ b/web/dbdoc/VCUEtOH_0806_R.html @@ -0,0 +1,207 @@ + + +VCU LXS PFC EtOH M430A 2.0 (Aug06) RMA ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    VCU LXS PFC EtOH M430A 2.0 (Aug06) RMA ** modify this page

    Accession number: GN131

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/VCUEtOH_1007_R.html b/web/dbdoc/VCUEtOH_1007_R.html new file mode 100755 index 00000000..5a1dcf9a --- /dev/null +++ b/web/dbdoc/VCUEtOH_1007_R.html @@ -0,0 +1,207 @@ + + +VCU BXD NA EtOH M430 2.0 (Oct07) RMA ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    VCU BXD NA EtOH M430 2.0 (Oct07) RMA ** modify this page

    Accession number: GN155

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/VCUEtOH_1206_R.html b/web/dbdoc/VCUEtOH_1206_R.html new file mode 100755 index 00000000..a347d761 --- /dev/null +++ b/web/dbdoc/VCUEtOH_1206_R.html @@ -0,0 +1,104 @@ + +VCU BXD PFC EtOH M430 2.0 (Dec06) RMA + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    VCU BXD PFC EtOH M430 2.0 (Dec06) RMA +modify this page

    Accession number: GN136

    +

    +Summary: +

    +This BXD data set provides estimates of mRNA expression in the prefrontal cortex following ethanol treatment across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and treatment with 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). +All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex following ethanol treatment using the Robust Multichip Average (RMA) method. +

    +Animals and Tissue Used to Generate This Set of Data: +

    +All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either saline (0.9%) or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since saline treated animals were processed concurrently). +

    +Sample Processing: +

    +All samples were processed by Paul Vorster and Alex Putman at VCU between October and November 2006. The BioRad Experion RNA analyzer and used to assess total RNA integrity and verify equal molar ratios of 18S and 28S ribosomal RNA. Standard Affymetrix reagents and protocols were used for generation of cDNA and biotinylated cRNA from total RNA samples. Integrity of cRNA was checked by Experion analysis prior to microarray hybridizations. All probes exceeded a maximum size of 3000 nt for the upper border of the cRNA size distribution. +

    + +Replication and Sample Balance: +

    +At present, this ethanol prefrontal cortex mRNA expression BXD data set is represented by a total of 1 microarray for each BXD strain and 3 microarrays for each progenitor strain. +

    +Experimental Design and Batch Structure: +

    +This data set was generated concurrently with the VCU saline prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects. + +

    References: +

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience. + + + +

    +Data Source Acknowledgments: +

    +Data were generated with funds to Mike Miles from the NIAAA. +

    + +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/VCUEt_vs_Sal_0806_R.html b/web/dbdoc/VCUEt_vs_Sal_0806_R.html new file mode 100755 index 00000000..1bda5a9f --- /dev/null +++ b/web/dbdoc/VCUEt_vs_Sal_0806_R.html @@ -0,0 +1,376 @@ + +VCU LXS Prefrontal Cortex Ethanol vs Saline Affymetrix Sscore Aug 2006 data set + + + + + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    Virginia Commonwealth University LXS Prefrontal Cortex Ethanol vs Saline M430A 2.0 (Aug06) Sscore data set by Michael F. Miles and colleagues +modify this page

    Accession number: GN132

    + + + + +

        Summary:

    + + +
    +VCU LXS PFC Et vs Sal M430A 2.0 (Aug06) Sscore DATA SET: This LXS data set provides estimates of ethanol-responsive differences in mRNA expression in the prefrontal cortex of 43 LXS recombinant inbred strains generated by crossing +ILS/Ibg and ISS/Ibg (Inbred Long Sleep and Inbred Short Sleep strains from the Institute of Behavioral Genetics). All samples are from a total of 376 adult male animals raised in a standard laboratory environment. An average of 8 males per strain were used for basal or post-saline injection activity measurements on days 1-2, respectively. 4 animals of each strain were then injected IP with saline or ethanol (1.8 g/kg) on day 3 and locomotor activity measured for 15 minutes prior to returning to home cages. 4 hours after testing, animals were rapidly sacrificed by cervical dislocation and brains removed, cooled and microdissected as described previously (Kerns et al., J. Neurosci. 25:2255, 2005). + + + +

    RNA was isolated from pools of 3-4 animals per strain/treatment group. All RNA isolation and subsequent probe generation and hybridization to microarrays was done using a supervised randomization procedure to minimize batch effects. Affymetrix M430A 2.0 microarrays were used for hybridization using standard procedures. A total of 22626 estimates of expression (some of which are controls) were transformed using the S-score method to compare ethanol vs. saline expression from pairs of arrays for each strain (Kerns et al., Methods 31:274, 2003, ). The S-score is a method developed for Affymetrix oligonucleotide arrays that is particularly suited to comparing expression on 2 or a small number of chips The S-score output for each probeset is not an indication of expression magnitude but rather, the change in expression between compared arrays. The S-score is essentially a z-score centered around zero with positive S-scores reflecting increased gene expression with ethanol and negative scores reflecting ethanol-induced decreases in expression. Larger magnitude S-scores show more significant changes in expression and are generally correlated with the "fold-change". + +

    As a measure of data quality we often count the number of probes that are associated with higher LOD scores. In this data set, 91 probes have LRS values >23 (LOD >5). The maximum LRS achieved in this data set is 36.63 for probe set 1460695_at ( 2300006M17Rik). + + +

    + + + +

    Legend: Bar chart of the expression of 2300006M17Rik probe set 1460695_at in the LXS PFC Et vs Sal Sscore data set. This probe is associated with a LOD score of 7.96 (LRS 36.63).

    +
    +
    + + +
    + +
    + +

        About the strains used to generate this set of data:

    + +
    +

    The LXS genetic reference panel of recombinant inbred strains consists of just over 77 strains. All of these strains have been inbred for more than 23 generations (F23). All strains have been genotyped at 13,377 SNPs. Thanks to the efforts of Dr. Timothy Wiltshire at the Genome Institute of the Novartis Research Foundation, the two parental strains have been genotyped at 156,551 SNPs. These genotypes are incorporated in the GeneNetwork SNP Browser. + + +

    Strains are currently available from Drs. Beth Bennett and Tom Johnson at the Institute of Behavioral Genetics (IBG) in Boulder Colorado.

    + +
    + + + +

        About the animals and tissue used to generate this set of data:

    + +

    All animals were raised at the IBG by Bennett and colleagues in an SPF facility. No cases were MHV positive. All animals were treated and brains dissected by Chris Downing and colleagues at IBG. Dissections were according to protocols routinely used by the Miles' laboratory (Kerns et al., J. Neurosci. 2005). Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediated frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. + +

    A pool of dissected tissue from 3-4 adults of the same strain, sex, age and treatment group (saline or ethanol) was used to generate RNA samples. The great majority (75%) of animals were sacrificed between 9:30 AM and 11:30 AM. All animals were sacrificed between 9 AM and 5 PM during the light phase. All RNA samples were extracted at VCU by Paul Vorster between 1/06 and 2/06. Strains were randomized in terms of order of RNA isolation but paired saline and ethanol samples from the same strain were always processed at the same time to decrease technical causes for differences in gene expression between saline and ethanol treated animals. + +

    All animals used in this study were between 53 and 90 days of age (average of 72 days; see Table 1 below). +

    + +
    +

    Sample Processing: Samples were processed by Paul Vorster at VCU between 2/06 and 4/06. In brief, RNA purity was evaluated using the 260/280 nm absorbance ratio with all values between 1.9 and 2.1. Total RNA integrity was assessed using the BioRad Experion RNA analyzer and used to verify equal molar ratios of 18S and 28S ribosomal RNA. Standard Affymetrix reagents and protocols were used for generation of cDNA and biotinylated cRNA from total RNA samples. Integrity of cRNA was checked by Experion analysis prior to microarray hybridizations. All probes exceeded a maximum size of 3000 nt for the upper border of the cRNA size distribution. + +

    Replication and Sample Balance: At present, all strains are represented by a total of 2 microrarrays, one each for saline- and ethanol-treated animals. + + +

    Experimental Design and Batch Structure: CHANGE THIS This data set consists arrays processed in 13 groups over a five month period (July 2006 to Dec 2006). Most groups consisted of 12 samples. All arrays in this data set were processed using a single protocol by a single operator, Feng Yiao. Processing was supervised directly by Dr. Lu Lu. All samples were scanned on a single Illumina Beadstation housed in the Hamilton Eye Institute between July 28 and Dec 21, 2006. Details on sample assignment to slides and batches is provide in the table below. + + +

    + +

        Data Table 1:

    + +
    + +
    +CHANGE THIS This table lists all arrays by order of strain (index) and includes data on tube ID, strain, age, sex, F generation number, number of animals in each sample pool (pool size), slide ID, slide position (A through F), scan date, and scan batch. +
    + + +
    + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    indextube IDstrainagesexgener-
    ation
    pool
    size
    slide
    ID
    slide
    position
    batch
    by slide
    scan
    batch
    1R2851H2ILS77F>10041523516003B11
    2R0595H2ILS71F>10021523516030B42
    3R2874H2ILS78M>10041523516011B21
    4R0585H2ILS65M>10021523516028A32
    6R2857H2ISS75F>10041523516011A21
    7R0589H2ISS73F>10021523516028B32
    8R2955H2ISS53M>10031523516003A11
    9R0578H2ISS67M>10021523516030A42
    11R2013H2LXS1084F2721562224049E189
    12R1993H2LXS1078M2721562224036E179
    13R1997H2LXS10070F2521562224049A189
    14R1983H2LXS10077M2521562224047F168
    15R2083H2LXS10185F2821562224050B199
    16R2084H2LXS10185M2821562224050C199
    17R2186H2LXS10273F2921523516001C95
    18R2187H2LXS10273M2921562224053C2010
    19R2809H2LXS10372F2621562224034C2311
    20R2854H1LXS10369M2621523516006D63
    21R2735H2LXS10778F2621523516028D32
    22R2738H2LXS10778M2621562224054C2110
    23R2840H2LXS11067F2521562224037D2411
    24R2157H2LXS11075M2721523516033E84
    25R2172H2LXS11272F2721523516001B95
    26R2841H2LXS11284M2721562224042D2712
    27R2188H2LXS11472F2821562224053D2010
    28R2204H2LXS11472M2821523516001D95
    29R2168H2LXS11580F2721523516001A95
    30R2085H2LXS11571M2721562224050D199
    31R2811H2LXS11772F2821562224034D2311
    32R2212H2LXS11774M2721523516001E95
    33R1992H2LXS12286F2621562224036D179
    34R2219H2LXS12272M2621562224054A2110
    35R2876H2LXS12387F2821562224038C2511
    36R2832H1LXS12377M2721523516011E21
    37R2872H1LXS12483F2821523516006E63
    38R2871H2LXS12485M2821562224042F2712
    39R1909H2LXS1379F2521523516024D137
    40R1901H2LXS1381M2621562224041D2612
    41R2023H2LXS1486F2521562224050A199
    42R1612H2LXS1485M2621523516015A105
    43R1936H2LXS1681F2521523516024E137
    44R1912H2LXS1681M2521523516033B84
    45R1961H2LXS1966F2621523516029F147
    46R1904H2LXS1966M2621523516024B137
    47R1883H2LXS271F2721523516009F126
    48R2753H2LXS274M2821523516030E42
    49R1729H2LXS2272F2721523516032E74
    50R2743H2LXS2279M2721562224054D2110
    51R1966H2LXS2373F2621562224032D158
    52R1971H2LXS2373M2621562224047A168
    53R2795H2LXS2474F2621523516003C11
    54R1755H2LXS2456M2521523516007A116
    55R1986H2LXS2575F2721562224036A179
    56R2006H2LXS2575M2721562224049C189
    57R2014H2LXS2682F2521562224049F189
    58R2009H2LXS2682M2621562224049D189
    59R2824H1LXS2867F2821562224042A2712
    60R1753H1LXS2872M2721562224041F2612
    61R2765H2LXS363F2721523516005B53
    62R1898H2LXS381M2621562224041C2612
    63R2764H2LXS3173F2921562224060C2210
    64R1908H2LXS3180M2821523516024C137
    65R2758H2LXS3270F2621523516030F42
    66R1743H1LXS3267M2521562224041E2612
    67R2794H2LXS3475F2721562224034B2311
    68R2870H2LXS3478F2721562224029C2813
    69R2746H2LXS3580F2221523516030C42
    70R2747H2LXS3581M2221562224060A2210
    71R1968H2LXS3676F2521562224032E158
    72R1640H2LXS3676M2521523516032C74
    73R2835H1LXS3867F2721523516011F21
    74R2842H2LXS3867M2721562224042E2712
    75R2210H2LXS3981F2821562224053E2010
    76R2736H2LXS3975M2721523516028E32
    77R1978H2LXS4178F2621562224047C168
    78R1783H2LXS4156M2621523516007D116
    79R2822H2LXS4266F2721562224034F2311
    80R2769H2LXS4270M2721562224042B2712
    81R1974H2LXS4384F2621562224047B168
    82R1733H2LXS4372M2621523516015C105
    83R1756H2LXS4656F2521523516007B116
    84R1727H2LXS4670M2521523516032D74
    85R1970H2LXS4872F2721562224032F158
    86R1981H2LXS4872M2721562224042C2712
    87R1957H2LXS4972F2521523516029C147
    88R2259H2LXS4972M2521523516028C32
    89R2836H1LXS568F2821523516006A63
    90R2213H2LXS580M2721562224053F2010
    91R2791H2LXS5068F2721562224034A2311
    92R1789H2LXS5057M2621523516033A84
    93R1740H2LXS5168F2721523516032F74
    94R1734H2LXS5168M2621523516015D105
    95R2786H2LXS5261F2721562224060D2210
    96R2768H2LXS5261M2721523516005C53
    97R2154H2LXS5470F2721523516033D84
    98R2155H2LXS5470M2721562224053A2010
    99R1821H2LXS5577F2521523516009C126
    100R1951H2LXS5574M2621523516024F137
    101R2789H2LXS5671F2521523516005F53
    102R2788H2LXS5671M2521562224060F2210
    103R2787H2LXS5966F2921562224060E2210
    104R2785H2LXS5962M2921523516005E53
    105R1791H2LXS6058F2721562224038D2511
    106R1792H2LXS6064M2721523516007E116
    107R1796H2LXS6258F2721523516007F116
    108R1797H2LXS6258M2721562224038E2511
    109R2220H2LXS6471F2821523516001F95
    110R2221H2LXS6471M2821562224054B2110
    111R1989H2LXS6673F2621562224036B179
    112R1843H2LXS6678M2721523516009E126
    113R2820H2LXS6867F2921523516003E11
    114R2819H2LXS6867M2921562224034E2311
    115R1963H2LXS778F2821562224032B158
    116R1964H2LXS778M2821562224032C158
    117R2166H2LXS7072F2721523516033F84
    118R2745H2LXS7071M2821562224054F2110
    119R2848H2LXS7272F2721562224038A2511
    120R1902H2LXS7266M2721523516024A137
    121R2750H2LXS7381F2521523516030D42
    122R1835H2LXS7390M2421523516009D126
    123R1979H2LXS7559F2721562224047D168
    124R2826H2LXS7572M2721523516003F11
    125R2142H2LXS7677F2621562224050E199
    126R1884H2LXS7685M2621562224041A2612
    127R1959H2LXS7869F2621523516029E147
    128R1958H2LXS7869M2621523516029D147
    129R2845H1LXS870F2821523516006C63
    130R2156H2LXS876M2721562224053B2010
    131R1955H2LXS8071F2521523516029A147
    132R1956H2LXS8071M2521523516029B147
    133R2830H1LXS8466F2621523516011D21
    134R2829H2LXS8466M2621562224037A2411
    135R2839H2LXS8668F2721562224037C2411
    136R2838H1LXS8668M2721523516006B63
    137R2882H1LXS8766F2721523516006F63
    138R2744H2LXS8771M2621562224054E2110
    139R2831H2LXS8869F2721562224037B2411
    140R2762H2LXS8871M2721523516005A53
    141R2828H1LXS8975F2621523516011C21
    142R1962H2LXS8973M2521562224032A158
    143R1746H2LXS966F2621523516015F105
    144R2801H2LXS968M2721523516003D11
    145R1812H2LXS9061F2521562224038F2511
    146R1813H2LXS9061M2521523516009A126
    147R1736H2LXS9266F2321523516015E105
    148R1609H2LXS9287M2321523516032A74
    149R1624H2LXS9374F2621523516032B74
    150R1815H2LXS9361M2621523516009B126
    151R1991H2LXS9470F2521562224036C179
    152R2002H2LXS9470M2521562224049B189
    153R1996H2LXS9675F2321562224036F179
    154R1772H2LXS9663M2321523516007C116
    155R2759H2LXS9773F2621562224060B2210
    156R2739H2LXS9779M2621523516028F32
    157R2149H2LXS9878F2621523516033C84
    158R1888H2LXS9876M2621562224041B2612
    159R1644H2LXS9979F2621523516015B105
    160R2145H2LXS9977M2721562224050F199
    +
    +
    +
    + +

        Downloading all data:

    +
    +

    All data links (right-most column above) will be made active as soon as the global analysis of these data has been accepted for publication. Please see text on Data Sharing Policies, and Conditions and Limitations, and Contacts. Following publication, download a summary text file or Excel file of data. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

    +
    + + + + +

        About the array platform:

    +
    +

    PLEASE ADD TEXT REGARDING AFFYMETRIX M430A version 2 +

    + +

        About data processing:

    + +
    +

    ADD TEXT + + +

    + + + + +

        Data source acknowledgment:

    +

    Data were generated with funds to Lu Lu, Beth Bennett, Mike Miles, Melloni Cook from INIA. + +

  • Lu Lu, M.D. +
    Grant Support: PLEASE ADD + + + + +

  • + +

        About this text file:

    +

    +Data uploaded by Hongqiang Li, Oct 30, 2006. This text file originally generated by LL and RWW on November 29, 2006. Updated by LL, Dec 1, 2006. Updated March 25, April 25, 2007 by RWW. Updated by RWW, Nov 2007 (removed references to Illumina). + + +

    + + +

    + + + +

    + +
    + + + + + + +
    + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/VCUEtvsSal_0609_R.html b/web/dbdoc/VCUEtvsSal_0609_R.html new file mode 100755 index 00000000..aa6012c3 --- /dev/null +++ b/web/dbdoc/VCUEtvsSal_0609_R.html @@ -0,0 +1,93 @@ + +VCU BXD PFC Et vs Sal M430 2.0 (Jun09) Sscore ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    VCU BXD VTA Et vs Sal M430 2.0 (Jun09) Sscore ** +
    Accession number: GN230 + modify this page

    +
    +

    Summary:

    +

    This BXD data set provides estimates of ventral tegmental area (VTA) mRNA expression in response to ethanol (1.8 g/kg x 4 hours) across 35 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 596 adult male animals obtained from Jackson Laboratory (27 “classical†BXD strains) or Oak Ridge National Laboratory (extended BXD series) and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and ethanol (IP) treatment in the light-dark transition model of anxiety. Behavior was measured for 10 minutes and then mice returned to their home cages. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the VTA in response to ethanol or saline and transforming these data using the S-score method to compare ethanol vs. saline expression from pairs of arrays for each strain (Kerns et al., Methods 31:274, 2003). The S-score is a method developed for Affymetrix oligonucleotide arrays that is particularly suited to comparing expression on 2 or a small number of chips. The S-score output for each probeset is not an indication of expression magnitude but rather, the change in expression between compared arrays. The S-score is essentially a z-score centered around zero with positive S-scores reflecting increased gene expression with ethanol and negative scores reflecting ethanol-induced decreases in expression. Larger magnitude S-scores show more significant changes in expression and are generally correlated with the "fold-change".

    +

    Animals and Tissue Used to Generate This Set of Data:

    +

    All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with 0.9% saline or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 16 month period beginning in August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Ventral tegmental area tissue was isolated by microdissection using a wedge-shaped slice as described in Kerns et al., 2005. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Nate Bruce during April 2009 and the order of RNA isolation was randomized across all strains and treatment groups (since ethanol treated animals were processed concurrently).

    +

    Sample Processing:

    +

    All samples were processed by Nate Bruce at VCU between April and May 2009. The BioRad Experion RNA analyzer and used to assess total RNA integrity and verify equal molar ratios of 18S and 28S ribosomal RNA. All RNA Quality Index (RQI) calculations were > 8. Standard Affymetrix reagents and protocols were used for generation of cDNA and biotinylated cRNA from total RNA samples. Integrity of cRNA was checked by Experion analysis prior to microarray hybridizations. All probes exceeded a maximum size of 3000 nt for the upper border of the cRNA size distribution.

    +

    Replication and Sample Balance:

    +

    At present, this ethanol VTA mRNA expression BXD data set is represented by a total of 1 microarray for each BXD strain and 5 microarrays for each progenitor strain. A duplicate dataset for BXD strains is in progress.

    +

    Experimental Design and Batch Structure:

    +

    +

    This data set was generated by processing the VCU saline VTA BXD and VCU ethanol VTA BXD data with the S-score algorithm, and therefore consisted of 90 microarrays processed in 6 groups of 8 to 16 microarrays during the month of May 2009. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    +

    Data Source Acknowledgements:

    +

    +

    Data were generated with NIAAA grants U01AA016662, U01AA01667 and R01AA014717 to Michael F. Miles. BXD mice obtained from Oak Ridge National Laboratory were through the Mouse Research Core of the Interactive Neuroscience Initiative on Alcoholism – Stress (INIA-Stress) consortium. Assistance for this work from INIA-Stress investigators Elissa Chesler, Dan Goldowitz, Lu Lu and Robert Williams was greatly appreciated.

    +
    +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/VCUSal_0609_R.html b/web/dbdoc/VCUSal_0609_R.html new file mode 100755 index 00000000..a3c5d0f4 --- /dev/null +++ b/web/dbdoc/VCUSal_0609_R.html @@ -0,0 +1,101 @@ + +VCU BXD PFC Sal M430 2.0 (Jun09) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + +

    VCU BXD VTA Sal M430 2.0 (Jun09) RMA **
    Accession number: GN228 + modify this page

    +
    +

    Summary:

    +

    This BXD data set provides estimates of ventral tegmental area (VTA) mRNA expression in response to saline across 35 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 596 adult male animals obtained from Jackson Laboratory (27 “classical†BXD strains) or Oak Ridge National Laboratory (extended BXD series) and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and saline treatment in the light-dark transition model of anxiety. Behavior was measured for 10 minutes and then mice returned to their home cages. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005).

    +All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex in response to saline using the Robust Multichip Average (RMA) method. +

    + +

    Maximum LRS is 176.1 for Prdx2,probe set 1430979_a_at. +

    865 probe sets with LRS above 46 (>10 LOD) + +

    Animals and Tissue Used to Generate This Set of Data:

    +

    +All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with 0.9% saline or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 16 month period beginning in August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Ventral tegmental area tissue was isolated by microdissection using a wedge-shaped slice as described in Kerns et al., 2005. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Nate Bruce during April 2009 and the order of RNA isolation was randomized across all strains and treatment groups (since ethanol treated animals were processed concurrently).

    +

    Sample Processing:

    +

    +

    All samples were processed by Nate Bruce at VCU between April and May 2009. The BioRad Experion RNA analyzer and used to assess total RNA integrity and verify equal molar ratios of 18S and 28S ribosomal RNA. All RNA Quality Index (RQI) calculations were > 8. Standard Affymetrix reagents and protocols were used for generation of cDNA and biotinylated cRNA from total RNA samples. Integrity of cRNA was checked by Experion analysis prior to microarray hybridizations. All probes exceeded a maximum size of 3000 nt for the upper border of the cRNA size distribution.

    +

    Replication and Sample Balance:

    +

    +

    At present, this saline VTA mRNA expression BXD data set is represented by a total of 1 microarray for each BXD strain and 5 microarrays for each progenitor strain. A duplicate dataset for BXD strains is in progress.

    +

    Experimental Design and Batch Structure:

    +

    +

    This data set was generated concurrently with the VCU ethanol VTA BXD RMA data and therefore consisted of 90 microarrays processed in 6 groups of 8 to 16 microarrays during the month of May 2009. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    +

    Data Source Acknowledgements:

    +

    +

    Data were generated with NIAAA grants U01AA016662, U01AA01667 and R01AA014717 to Michael F. Miles. BXD mice obtained from Oak Ridge National Laboratory were through the Mouse Research Core of the Interactive Neuroscience Initiative on Alcoholism – Stress (INIA-Stress) consortium. Assistance for this work from INIA-Stress investigators Elissa Chesler, Dan Goldowitz, Lu Lu and Robert Williams was greatly appreciated.

    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/VCUSal_0806_R.html b/web/dbdoc/VCUSal_0806_R.html new file mode 100755 index 00000000..b26849e7 --- /dev/null +++ b/web/dbdoc/VCUSal_0806_R.html @@ -0,0 +1,207 @@ + + + VCU LXS PFC Sal M430A 2.0 (Aug06) RMA + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    VCU LXS PFC Sal M430A 2.0 (Aug06) RMA modify this page

    Accession number: GN130

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/VCUSal_1006_R.html b/web/dbdoc/VCUSal_1006_R.html new file mode 100755 index 00000000..07a435aa --- /dev/null +++ b/web/dbdoc/VCUSal_1006_R.html @@ -0,0 +1,104 @@ + +VCU BXD PFC Et vs Sal M430 2.0 (Dec06) Sscore + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    VCU BXD PFC Et vs Sal M430 2.0 (Dec06) Sscore +modify this page

    Accession number: GN137

    +

    +Summary: +

    +This BXD data set provides estimates of ethanol-responsive mRNA expression in the prefrontal cortex across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure the anxiety-like behavior in response to restraint and treatment with either saline or 1.8g/kg ethanol in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). +

    +All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex in response to ethanol or saline and transforming these data using the S-score method to compare ethanol vs. saline expression from pairs of arrays for each strain (Kerns et al., Methods 31:274, 2003). The S-score is a method developed for Affymetrix oligonucleotide arrays that is particularly suited to comparing expression on 2 or a small number of chips (Zhang et al., 2002). The S-score output for each probeset is not an indication of expression magnitude but rather, the change in expression between compared arrays. The S-score is essentially a z-score centered around zero with positive S-scores reflecting increased gene expression with ethanol and negative scores reflecting ethanol-induced decreases in expression. Larger magnitude S-scores show more significant changes in expression and are generally correlated with the "fold-change". + +

    Zhang, L., et al., 2002. A new algorithm for analysis of oligonucleotide arrays: application to expression profiling in mouse brain regions. J Mol Biol. 317, 225-35. +

    +Animals and Tissue Used to Generate This Set of Data: +

    +All animals were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME) and were treated, behaviorally tested and brains dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with either 0.9% saline or 1.8g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10-minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4 mm thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain/treatment group was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups. +

    +Sample Processing: +

    +All samples were processed by Paul Vorster and Alex Putman at VCU between October and November 2006. The BioRad Experion RNA analyzer and used to assess total RNA integrity and verify equal molar ratios of 18S and 28S ribosomal RNA. Standard Affymetrix reagents and protocols were used for generation of cDNA and biotinylated cRNA from total RNA samples. Integrity of cRNA was checked by Experion analysis prior to microarray hybridizations. All probes exceeded a maximum size of 3000 nt for the upper border of the cRNA size distribution. +

    +Replication and Sample Balance: +

    +At present, this ethanol-responsive prefrontal cortex mRNA expression BXD data set is represented by a total of 2 microarrays for each BXD strain, one each for saline- and ethanol-treated animals, and 6 microarrays for each progenitor strain, three each for saline and ethanol-treated animals. +

    +Experimental Design and Batch Structure: +

    +This data set was generated by comparing saline vs. ethanol prefrontal cortex BXD microarray data, as described in Summary, and consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects. + +

    References: +

    Many of the techniques used to generate this data set are described in a recent publication in the Journal of Neuroscience. + + +

    +Data Source Acknowledgments: +

    +Data were generated with funds to Mike Miles from the NIAAA. +

    +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/VCUSal_1007_R.html b/web/dbdoc/VCUSal_1007_R.html new file mode 100755 index 00000000..8d510648 --- /dev/null +++ b/web/dbdoc/VCUSal_1007_R.html @@ -0,0 +1,207 @@ + + +VCU BXD NA Et vs Sal M430 2.0 (Oct07) Sscore ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    VCU BXD NA Et vs Sal M430 2.0 (Oct07) Sscore ** modify this page

    Accession number: GN154

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/VCUSal_1206_R.html b/web/dbdoc/VCUSal_1206_R.html new file mode 100755 index 00000000..84faf31f --- /dev/null +++ b/web/dbdoc/VCUSal_1206_R.html @@ -0,0 +1,223 @@ + +VCU BXD PFC Sal M430 2.0 (Dec06) RMA + + + + + + + + + + + + + + + + + +
    + + + + + + +
    + + +

    Virginia Commonwealth University BXD Prefrontal Cortex +
    Saline Control M430 2.0 (Dec06) RMA Dataset +modify this page

    Accession number: GN135

    +

    + + +

        Summary:

    +
    + +This BXD data set provides estimates of prefrontal cortex mRNA expression in response to a saline injection (injection control) across 27 BXD recombinant inbred strains and their B6 and D2 progenitor strains. All samples are from a total of 468 adult male animals obtained from Jackson Laboratory and raised in a standard laboratory environment. An average of 8 males per strain was used to measure anxiety-like behavior in response to restraint and saline treatment in the light-dark transition model of anxiety. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). +All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix M430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the prefrontal cortex in response to saline using the Robust Multichip Average (RMA) method. + +

    This data set has not been normalized to a mean of 8 or a standard deviation of 2. The average expression value for all probe sets per array is approximately 6.0 with a standard deviation of 1.2. + + +

    +

        About the animals and tissue used to generate this set of data:

    +
    + + +All animals (males only) were obtained at 8-9 weeks of age from the Jackson Laboratory (Bar Harbor, ME). Animals were treated, behaviorally tested, and dissected by Alex Putman and colleagues at VCU. Following an hour acclimation period to the behavioral room, animals were restrained for 15 minutes, immediately injected (I.P.) with 0.9% saline or 1.8 g/kg ethanol, and 5 minutes later placed in the light-dark box for a 10 minute test session. All behavioral testing occurred between 10 AM and 1 PM during the light phase over a 12 month period beginning August 2005. Four hours after treatment, animals were rapidly sacrificed by cervical dislocation, brains were removed, cooled and microdissected. Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice taken from a 4-mm-thick brain slice extending rostrally from the optic chiasm. The wedge was centered on the inter-hemispheric fissure and extending 2 mm laterally on each side and ventrally to just above the corpus callosum. This tissue and all other brain regions were dissected in less than 5 minutes per mouse and were immediately frozen in liquid nitrogen followed by storage at -80 deg C prior to RNA isolation. A pool of dissected tissue from 3 mice of the same strain was used to generate RNA samples. All RNA samples were extracted at VCU by Alex Putman during October 2006 and the order of RNA isolation was randomized across all strains and treatment groups (since ethanol treated animals were processed concurrently). + + +

    + +

    +

        Sample Processing: +

    + +

    +All samples were processed by Paul Vorster and Alex Putman at VCU between October and November 2006. The BioRad Experion RNA analyzer was used to assess total RNA integrity and to verify equal molar ratios of 18S and 28S ribosomal RNA. Standard Affymetrix reagents and protocols were used for generation of cDNA and biotinylated cRNA from total RNA samples. Integrity of cRNA was checked by Experion analysis prior to microarray hybridizations. All probes exceeded a maximum size of 3000 nt for the upper border of the cRNA size distribution. +

    + +

    +

        Replication and Sample Balance: +

    + +

    +At present, this saline prefrontal cortex mRNA expression BXD data set is represented by a total of one microarray for each BXD strain and three microarrays for each progenitor strain. +

    + + + + + +

    +

    + + +

    Legend:An example of a probe set with a Mendelian bimodal distribution of phenotypes that can be used as a genetic marker to confirm the correct assignment of strain assignments to RNA samples. Apparent Kcnj9 mRNA levels are either high like the DBA/2J parent or low like the C57BL/6J parent. +

    +
    + + + + +

    The correct assignment of RNA samples and strains was confirmed by checking the expression signal of probe sets known to have Mendelian segregation patterns in the BXD strains. For example, probe set 1450712_at for Kcnj9 (Chr 1 at 174 Mb) has high expression in all strains that inherit an allele from DBA/2J (D2) and has low in expression in all strains that inherit an allele from C57BL/6J (B6). The correlation between values of this probe set and the genotype of SNP rs3707910 in the same strains is 0.994 when the D2 allele is scored as +1 and the B6 alelle is scored as -1. This indicates that the strain assignments of all samples are perfectly aligned with respect to the the expected genotypes at this marker. This probe set is associated with an LRS score of 117.2 (n = 29 strains) when using the VCU BXD PFC Sal M430 2.0 (Dec06) RMA data set. + + +

    +

        Experimental Design and Batch Structure: +

    + + +

    This data set was generated concurrently with the VCU ethanol prefrontal cortex BXD RMA data and therefore consisted of 64 microarrays processed in 5 groups of 8 to 16 microarrays during the month of September 2006. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects. + + + + +

    +

        About the array platform:

    +
    + +

    Affymetrix Mouse Genome 430 2.0 array: The Mouse Expression 430 2.0 array consists of 992936 useful 25-nucleotide probes that estimate the expression of approximately 39,000 transcripts and the majority of known genes and expressed sequence tags. The array sequences were selected late in 2002 using Unigene Build 107 by Affymetrix. The UTHSC group has recently reannotated all probe sets on this array, producing more accurate data on probe and probe set targets. All probes were aligned to the most recent assembly of the Mouse Genome (Build 34, mm6) using Jim Kent's BLAT program. Many of the probe sets have been manually curated by Jing Gu and Rob Williams.

    + + +
    +

        Data Source Acknowledgments:

    +
    + +Work supported by NIAAA grants R01 AA13678 to Michael Miles and F31 AA016052 to Alex Putman. +

    + + +
    +

        Information about this text file: +

    + +This text file originally generated by Mike Miles and Alex Putman, August 15, 2007. Minor additions on quality control by RWW, August 17, 2007. +

    +
    + + + + +
    +
    + + + + + + + +
    + + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/VCUSalo_1007_R.html b/web/dbdoc/VCUSalo_1007_R.html new file mode 100755 index 00000000..57578f34 --- /dev/null +++ b/web/dbdoc/VCUSalo_1007_R.html @@ -0,0 +1,207 @@ + + +VCU BXD NA Sal M430 2.0 (Oct07) RMA ** + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    VCU BXD NA Sal M430 2.0 (Oct07) RMA ** modify this page

    Accession number: GN156

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/VCU_PF_Air_0111_R.html b/web/dbdoc/VCU_PF_Air_0111_R.html new file mode 100755 index 00000000..c6772172 --- /dev/null +++ b/web/dbdoc/VCU_PF_Air_0111_R.html @@ -0,0 +1,208 @@ + +VCU BXD PFC CIE Air M430 2.0 (Jan11) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    VCU BXD PFC CIE Air M430 2.0 (Jan11) RMA **
    Accession number: GN301 modify this page

    + +

    Summary:

    + +
    +

    +This BXD data set provides estimates of prefrontal cortex (PFC) mRNA expression across 25 BXD RI strains along with their B6 and D2 progenitor strains and F1 strain. Mice were exposed to an established dependence and relapse drinking model (e.g., Becker and Lopez, 2004; Lopez and Becker, 2005; Griffin et al., 2009). Briefly, a 2-bottle choice (15% v/v ethanol vs. water) limited access (2 hr/day) drinking model was employed. After 6 weeks of establishing baseline intake, mice from each genotype received 4 weekly cycles of chronic intermittent ethanol (CIE) vapor exposure (EtOH group) or air exposure (CTL group) in inhalation chambers (16 hr/day x 4 days + 72 hr forced abstinence) alternated with weekly test cycles in which ethanol intake was measured during 5 consecutive limited access daily drinking sessions. Mice were not food or water deprived at any time during the study. This study was conducted as the first part of an overall design, with the second part to be completed using complementary male and female mice of the corresponding genotypes used in the present study. The general study design involved typically one mouse per experimental cell (N= 1/genotype/sex/group) with both the CTL and EtOH samples of a given strain being of the same sex. A positive control condition (C57BL/6J male mice) was included in the study (N= 6-8/group). All mice received a 5th CIE exposure cycle and EtOH and CTL groups were sacrificed at 72 hr following removal from the inhalation chambers. Male animals were used for strains BXD5, BXD12, BXD14, BXD16, BXD34, BXD39, BXD43, BXD45, BXD66, BXD74, BXD77, BXD80, BXD81, BXD83, BXD100, BXD101, BXD102 and BXD103 while females were used for BXD49, BXD50, BXD55, BXD62, BXD71, BXD75 and BXD85 +

    +All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix Mouse Genome 430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the PFC using the Robust Multichip Average (RMA) method. Comparison of air vs. ethanol vapor treated animals (within strain comparisons) were also done at the individual probe level by using the S-score analysis algorithm developed in the Miles's laboratory (Zhang et all, 2002; Kennedy et al., 2006). Three datasets were deposited within GeneNetwork: VCU_BXD_PFC_CIE_Air M430 2.0 (12/10) RMA (RMA values of arrays from air-treated controls); VCU_BXD_PFC_CIE_EtOHVapor M430 2.0 (12/10) RMA (RMA values from ethanol-vapor treated animals); and VCU_BXD_PFC_CIE_Sscore M430 2.0 (12/10) RMA (S-score comparison of ethanol vapor vs. air control arrays within strains). +

    +
    + + +

    About the animals and tissue used to generate this set of data:

    + +
    + +

    All 121 mice (85 males and 36 females) were obtained from R. Williams's lab. Immediately after being sacrificed, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice as described in Kerns et al., 2005. This tissue was immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation.

    + + +
    + + +

    Sample Processing:

    + +
    +

    All RNA samples were extracted at VCU by Paul Vorster during December 2010. The order of RNA isolation was randomized across all strains and treatment groups (since ethanol treated animals were processed concurrently). The BioRad Experion RNA analyzer was used to assess total RNA integrity and verify equal molar ratios of 18S and 28S ribosomal RNA. All RNA Quality Index (RQI) calculations were > 8. Standard Affymetrix reagents and protocols were used for generation of cDNA and biotinylated cRNA from total RNA samples. Integrity of cRNA was checked by Experion analysis prior to microarray hybridizations. All probes exceeded a maximum size of 3000 nt for the upper border of the cRNA size distribution.

    +
    +

    + +

    Replication and Sample Balance:

    +
    +

    This study was conducted as the first part of an overall design, with the second part to be completed using complementary male and female mice of the corresponding genotypes used in the present study. The general study design involved typically one mouse per experimental cell (N= 1/genotype/sex/group). At present, this ethanol vapor PFC mRNA expression data set is represented by 1-2 microarrays for all strains, except the C57BL/6J male mice, which were included as a positive control condition and were represented by 6-8 microarrays. In cases where there multiple arrays run per strain/treatment group, an average of RMA results is reported. Similarly, S-scores were calculated in such cases by first averaging .Cel files across biological replicates.

    +
    + + +

    Experimental Design and Batch Structure:

    +
    +

    This data consisted of 70 microarrays processed in 9 batches of 8 arrays during the month of December 2010. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    +

    + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    SampleRNA BatchcRNA SynthArray Scan Batch
    II3M_B6J_C564
    II6M_B6J_C351
    II9M_B6J_C937
    II10M_B6J_C245
    II12M_B6J_C812
    II13M_B6J_C466
    II15M_B6J_C718
    II16M_B6J_C143
    II2M_B6J_E353
    II4M_B6J_E264
    II7M_B6J_E526
    II8M_B6J_E147
    II11M_B6J_E628
    II14M_B6J_E415
    H2M_B6UT_C637
    H1M_B6UT_E365
    R2M_BXD5_C123
    R1M_BXD5_E251
    U2M_BXD12_C256
    U1M_BXD12_E937
    G2M_BXD14_C817
    G1M_BXD14_E559
    K2M_BXD16_C365
    K1M_BXD16_E148
    F2M_BXD34_C222
    F1M_BXD34_E414
    BB1M_BXD39_E139
    BB2M_BXD39_E762
    Z3M_BXD43_C526
    Z2M_BXD43_E735
    L2M_BXD45_C137
    L1M_BXD45_E641
    A2M_BXD66_C456
    A1M_BXD66_E943
    B2M_BXD74_C928
    DD2M_BXD77_C715
    DD1M_BXD77_E644
    C3M_BXD80_C551
    C4M_BXD80_E268
    C5M_BXD80_E936
    J2M_BXD81_C812
    J1M_BXD81_E423
    Y2M_BXD83_C349
    Y1M_BXD83_E912
    N2M_BXD100_C833
    N1M_BXD100_E456
    E2M_BXD101_C741
    E1M_BXD101_E612
    D1M_BXD102_E822
    HH2M_BXD103_C628
    HH1M_BXD103_E357
    A2F_D2B6F1_C636
    A1F_D2B6F1_E813
    B2F_D2_C717
    Q2F_BXD49_C223
    Q3F_BXD49_E939
    K2F_BXD50_C441
    K1F_BXD50_E868
    G1F_BXD55_C159
    G2F_BXD55_E247
    G3F_BXD55_E514
    N2F_BXD62_C552
    N1F_BXD62_E626
    D2F_BXD71_C535
    D1F_BXD71_E462
    M2F_BXD75_C354
    M1F_BXD75_E139
    M3F_BXD75_E745
    J2F_BXD85_E738
    J3F_BXD85_E361
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Any use of this data in publications should come with the approval of Dr. Michael Miles (mfmiles@vcu.edu) at the present time since the data is unpublished. Use of the this data is available as a collaborative project until this data has been included in a primary publication. Upon use of this data, acknowledgement should be given to Drs. Michael Miles, Robert Williams and Howard Becker, whose laboratories collaborated in the generation of this dataset. Funding acknowledgments should include NIAAA grants U01 AA016667 and U01 AA016662 to MFM.

    +
    + + + +

    Information about this text file:

    +
    +

    This file last updated by A.Centeno on 1-25-2011

    +
    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/VCU_PF_AvE_0111_Ss.html b/web/dbdoc/VCU_PF_AvE_0111_Ss.html new file mode 100755 index 00000000..374bab80 --- /dev/null +++ b/web/dbdoc/VCU_PF_AvE_0111_Ss.html @@ -0,0 +1,212 @@ + +VCU BXD PFC CIE Air vs EtOH M430 2.0 (Jan11) Sscore ** + + + + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    VCU BXD PFC EtOH vs CIE Air M430 2.0 (Jan11) Sscore **
    Accession number: GN299 modify this page

    + +

    Summary:

    + +
    +

    + +

    Positive z score values indicate that CIE treatment leads to higher expression relative to air control. + +

    +This BXD data set provides estimates of prefrontal cortex (PFC) mRNA expression across 25 BXD RI strains along with their B6 and D2 progenitor strains and F1 strain. Mice were exposed to an established dependence and relapse drinking model (e.g., Becker and Lopez, 2004; Lopez and Becker, 2005; Griffin et al., 2009). Briefly, a 2-bottle choice (15% v/v ethanol vs. water) limited access (2 hr/day) drinking model was employed. After 6 weeks of establishing baseline intake, mice from each genotype received 4 weekly cycles of chronic intermittent ethanol (CIE) vapor exposure (EtOH group) or air exposure (CTL group) in inhalation chambers (16 hr/day x 4 days + 72 hr forced abstinence) alternated with weekly test cycles in which ethanol intake was measured during 5 consecutive limited access daily drinking sessions. Mice were not food or water deprived at any time during the study. This study was conducted as the first part of an overall design, with the second part to be completed using complementary male and female mice of the corresponding genotypes used in the present study. The general study design involved typically one mouse per experimental cell (N= 1/genotype/sex/group) with both the CTL and EtOH samples of a given strain being of the same sex. A positive control condition (C57BL/6J male mice) was included in the study (N= 6-8/group). All mice received a 5th CIE exposure cycle and EtOH and CTL groups were sacrificed at 72 hr following removal from the inhalation chambers. Male animals were used for strains BXD5, BXD12, BXD14, BXD16, BXD34, BXD39, BXD43, BXD45, BXD66, BXD74, BXD77, BXD80, BXD81, BXD83, BXD100, BXD101, BXD102 and BXD103 while females were used for BXD49, BXD50, BXD55, BXD62, BXD71, BXD75 and BXD85 +

    +All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix Mouse Genome 430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the PFC using the Robust Multichip Average (RMA) method. Comparison of air vs. ethanol vapor treated animals (within strain comparisons) were also done at the individual probe level by using the S-score analysis algorithm developed in the Miles's laboratory (Zhang et all, 2002; Kennedy et al., 2006). Three datasets were deposited within GeneNetwork: VCU_BXD_PFC_CIE_Air M430 2.0 (12/10) RMA (RMA values of arrays from air-treated controls); VCU_BXD_PFC_CIE_EtOHVapor M430 2.0 (12/10) RMA (RMA values from ethanol-vapor treated animals); and VCU_BXD_PFC_CIE_Sscore M430 2.0 (12/10) RMA (S-score comparison of ethanol vapor vs. air control arrays within strains). +

    +
    + + +

    About the animals and tissue used to generate this set of data:

    + +
    + +

    All 121 mice (85 males and 36 females) were obtained from R. Williams's lab. Immediately after being sacrificed, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice as described in Kerns et al., 2005. This tissue was immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation.

    + + +
    + + +

    Sample Processing:

    + +
    +

    All RNA samples were extracted at VCU by Paul Vorster during December 2010. The order of RNA isolation was randomized across all strains and treatment groups (since ethanol treated animals were processed concurrently). The BioRad Experion RNA analyzer was used to assess total RNA integrity and verify equal molar ratios of 18S and 28S ribosomal RNA. All RNA Quality Index (RQI) calculations were > 8. Standard Affymetrix reagents and protocols were used for generation of cDNA and biotinylated cRNA from total RNA samples. Integrity of cRNA was checked by Experion analysis prior to microarray hybridizations. All probes exceeded a maximum size of 3000 nt for the upper border of the cRNA size distribution.

    +
    +

    + +

    Replication and Sample Balance:

    +
    +

    This study was conducted as the first part of an overall design, with the second part to be completed using complementary male and female mice of the corresponding genotypes used in the present study. The general study design involved typically one mouse per experimental cell (N= 1/genotype/sex/group). At present, this ethanol vapor PFC mRNA expression data set is represented by 1-2 microarrays for all strains, except the C57BL/6J male mice, which were included as a positive control condition and were represented by 6-8 microarrays. In cases where there multiple arrays run per strain/treatment group, an average of RMA results is reported. Similarly, S-scores were calculated in such cases by first averaging .Cel files across biological replicates.

    +
    + + +

    Experimental Design and Batch Structure:

    +
    +

    This data consisted of 70 microarrays processed in 9 batches of 8 arrays during the month of December 2010. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    +

    + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    SampleRNA BatchcRNA SynthArray Scan Batch
    II3M_B6J_C564
    II6M_B6J_C351
    II9M_B6J_C937
    II10M_B6J_C245
    II12M_B6J_C812
    II13M_B6J_C466
    II15M_B6J_C718
    II16M_B6J_C143
    II2M_B6J_E353
    II4M_B6J_E264
    II7M_B6J_E526
    II8M_B6J_E147
    II11M_B6J_E628
    II14M_B6J_E415
    H2M_B6UT_C637
    H1M_B6UT_E365
    R2M_BXD5_C123
    R1M_BXD5_E251
    U2M_BXD12_C256
    U1M_BXD12_E937
    G2M_BXD14_C817
    G1M_BXD14_E559
    K2M_BXD16_C365
    K1M_BXD16_E148
    F2M_BXD34_C222
    F1M_BXD34_E414
    BB1M_BXD39_E139
    BB2M_BXD39_E762
    Z3M_BXD43_C526
    Z2M_BXD43_E735
    L2M_BXD45_C137
    L1M_BXD45_E641
    A2M_BXD66_C456
    A1M_BXD66_E943
    B2M_BXD74_C928
    DD2M_BXD77_C715
    DD1M_BXD77_E644
    C3M_BXD80_C551
    C4M_BXD80_E268
    C5M_BXD80_E936
    J2M_BXD81_C812
    J1M_BXD81_E423
    Y2M_BXD83_C349
    Y1M_BXD83_E912
    N2M_BXD100_C833
    N1M_BXD100_E456
    E2M_BXD101_C741
    E1M_BXD101_E612
    D1M_BXD102_E822
    HH2M_BXD103_C628
    HH1M_BXD103_E357
    A2F_D2B6F1_C636
    A1F_D2B6F1_E813
    B2F_D2_C717
    Q2F_BXD49_C223
    Q3F_BXD49_E939
    K2F_BXD50_C441
    K1F_BXD50_E868
    G1F_BXD55_C159
    G2F_BXD55_E247
    G3F_BXD55_E514
    N2F_BXD62_C552
    N1F_BXD62_E626
    D2F_BXD71_C535
    D1F_BXD71_E462
    M2F_BXD75_C354
    M1F_BXD75_E139
    M3F_BXD75_E745
    J2F_BXD85_E738
    J3F_BXD85_E361
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Any use of this data in publications should come with the approval of Dr. Michael Miles (mfmiles@vcu.edu) at the present time since the data is unpublished. Use of the this data is available as a collaborative project until this data has been included in a primary publication. Upon use of this data, acknowledgement should be given to Drs. Michael Miles, Robert Williams and Howard Becker, whose laboratories collaborated in the generation of this dataset. Funding acknowledgments should include NIAAA grants U01 AA016667 and U01 AA016662 to MFM.

    +
    + + + +

    Information about this text file:

    +
    +

    This file last updated by A.Centeno on 1-25-2011

    +
    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/VCU_PF_Et_0111_R.html b/web/dbdoc/VCU_PF_Et_0111_R.html new file mode 100755 index 00000000..b1dd882a --- /dev/null +++ b/web/dbdoc/VCU_PF_Et_0111_R.html @@ -0,0 +1,208 @@ + +VCU BXD PFC CIE EtOH M430 2.0 (Jan11) RMA ** + + + + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    VCU BXD PFC CIE EtOH M430 2.0 (Jan11) RMA **
    Accession number: GN300 modify this page

    + +

    Summary:

    + +
    +

    +This BXD data set provides estimates of prefrontal cortex (PFC) mRNA expression across 25 BXD RI strains along with their B6 and D2 progenitor strains and F1 strain. Mice were exposed to an established dependence and relapse drinking model (e.g., Becker and Lopez, 2004; Lopez and Becker, 2005; Griffin et al., 2009). Briefly, a 2-bottle choice (15% v/v ethanol vs. water) limited access (2 hr/day) drinking model was employed. After 6 weeks of establishing baseline intake, mice from each genotype received 4 weekly cycles of chronic intermittent ethanol (CIE) vapor exposure (EtOH group) or air exposure (CTL group) in inhalation chambers (16 hr/day x 4 days + 72 hr forced abstinence) alternated with weekly test cycles in which ethanol intake was measured during 5 consecutive limited access daily drinking sessions. Mice were not food or water deprived at any time during the study. This study was conducted as the first part of an overall design, with the second part to be completed using complementary male and female mice of the corresponding genotypes used in the present study. The general study design involved typically one mouse per experimental cell (N= 1/genotype/sex/group) with both the CTL and EtOH samples of a given strain being of the same sex. A positive control condition (C57BL/6J male mice) was included in the study (N= 6-8/group). All mice received a 5th CIE exposure cycle and EtOH and CTL groups were sacrificed at 72 hr following removal from the inhalation chambers. Male animals were used for strains BXD5, BXD12, BXD14, BXD16, BXD34, BXD39, BXD43, BXD45, BXD66, BXD74, BXD77, BXD80, BXD81, BXD83, BXD100, BXD101, BXD102 and BXD103 while females were used for BXD49, BXD50, BXD55, BXD62, BXD71, BXD75 and BXD85 +

    +All RNA isolation and subsequent probe generation and hybridization to microarrays were completed using a supervised randomization procedure to minimize batch effects. Affymetrix Mouse Genome 430 type 2.0 microarrays were used for hybridization using standard procedures. Expression analysis was conducted by estimating the relative abundance of over 45,000 transcripts in the PFC using the Robust Multichip Average (RMA) method. Comparison of air vs. ethanol vapor treated animals (within strain comparisons) were also done at the individual probe level by using the S-score analysis algorithm developed in the Miles's laboratory (Zhang et all, 2002; Kennedy et al., 2006). Three datasets were deposited within GeneNetwork: VCU_BXD_PFC_CIE_Air M430 2.0 (12/10) RMA (RMA values of arrays from air-treated controls); VCU_BXD_PFC_CIE_EtOHVapor M430 2.0 (12/10) RMA (RMA values from ethanol-vapor treated animals); and VCU_BXD_PFC_CIE_Sscore M430 2.0 (12/10) RMA (S-score comparison of ethanol vapor vs. air control arrays within strains). +

    +
    + + +

    About the animals and tissue used to generate this set of data:

    + +
    + +

    All 121 mice (85 males and 36 females) were obtained from R. Williams's lab. Immediately after being sacrificed, brains were removed, cooled and microdissected as previously described (Kerns et al., J. Neurosci. 25:2255, 2005). Prefrontal cortex tissue was isolated by microdissection using a wedge-shaped slice as described in Kerns et al., 2005. This tissue was immediately frozen in liquid nitrogen followed by storage at -80 oC prior to RNA isolation.

    + + +
    + + +

    Sample Processing:

    + +
    +

    All RNA samples were extracted at VCU by Paul Vorster during December 2010. The order of RNA isolation was randomized across all strains and treatment groups (since ethanol treated animals were processed concurrently). The BioRad Experion RNA analyzer was used to assess total RNA integrity and verify equal molar ratios of 18S and 28S ribosomal RNA. All RNA Quality Index (RQI) calculations were > 8. Standard Affymetrix reagents and protocols were used for generation of cDNA and biotinylated cRNA from total RNA samples. Integrity of cRNA was checked by Experion analysis prior to microarray hybridizations. All probes exceeded a maximum size of 3000 nt for the upper border of the cRNA size distribution.

    +
    +

    + +

    Replication and Sample Balance:

    +
    +

    This study was conducted as the first part of an overall design, with the second part to be completed using complementary male and female mice of the corresponding genotypes used in the present study. The general study design involved typically one mouse per experimental cell (N= 1/genotype/sex/group). At present, this ethanol vapor PFC mRNA expression data set is represented by 1-2 microarrays for all strains, except the C57BL/6J male mice, which were included as a positive control condition and were represented by 6-8 microarrays. In cases where there multiple arrays run per strain/treatment group, an average of RMA results is reported. Similarly, S-scores were calculated in such cases by first averaging .Cel files across biological replicates.

    +
    + + +

    Experimental Design and Batch Structure:

    +
    +

    This data consisted of 70 microarrays processed in 9 batches of 8 arrays during the month of December 2010. All RNA extractions, cRNA synthesis, and hybridizations were randomized across strain and treatment groups to minimize batch effects.

    +

    + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    SampleRNA BatchcRNA SynthArray Scan Batch
    II3M_B6J_C564
    II6M_B6J_C351
    II9M_B6J_C937
    II10M_B6J_C245
    II12M_B6J_C812
    II13M_B6J_C466
    II15M_B6J_C718
    II16M_B6J_C143
    II2M_B6J_E353
    II4M_B6J_E264
    II7M_B6J_E526
    II8M_B6J_E147
    II11M_B6J_E628
    II14M_B6J_E415
    H2M_B6UT_C637
    H1M_B6UT_E365
    R2M_BXD5_C123
    R1M_BXD5_E251
    U2M_BXD12_C256
    U1M_BXD12_E937
    G2M_BXD14_C817
    G1M_BXD14_E559
    K2M_BXD16_C365
    K1M_BXD16_E148
    F2M_BXD34_C222
    F1M_BXD34_E414
    BB1M_BXD39_E139
    BB2M_BXD39_E762
    Z3M_BXD43_C526
    Z2M_BXD43_E735
    L2M_BXD45_C137
    L1M_BXD45_E641
    A2M_BXD66_C456
    A1M_BXD66_E943
    B2M_BXD74_C928
    DD2M_BXD77_C715
    DD1M_BXD77_E644
    C3M_BXD80_C551
    C4M_BXD80_E268
    C5M_BXD80_E936
    J2M_BXD81_C812
    J1M_BXD81_E423
    Y2M_BXD83_C349
    Y1M_BXD83_E912
    N2M_BXD100_C833
    N1M_BXD100_E456
    E2M_BXD101_C741
    E1M_BXD101_E612
    D1M_BXD102_E822
    HH2M_BXD103_C628
    HH1M_BXD103_E357
    A2F_D2B6F1_C636
    A1F_D2B6F1_E813
    B2F_D2_C717
    Q2F_BXD49_C223
    Q3F_BXD49_E939
    K2F_BXD50_C441
    K1F_BXD50_E868
    G1F_BXD55_C159
    G2F_BXD55_E247
    G3F_BXD55_E514
    N2F_BXD62_C552
    N1F_BXD62_E626
    D2F_BXD71_C535
    D1F_BXD71_E462
    M2F_BXD75_C354
    M1F_BXD75_E139
    M3F_BXD75_E745
    J2F_BXD85_E738
    J3F_BXD85_E361
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Any use of this data in publications should come with the approval of Dr. Michael Miles (mfmiles@vcu.edu) at the present time since the data is unpublished. Use of the this data is available as a collaborative project until this data has been included in a primary publication. Upon use of this data, acknowledgement should be given to Drs. Michael Miles, Robert Williams and Howard Becker, whose laboratories collaborated in the generation of this dataset. Funding acknowledgments should include NIAAA grants U01 AA016667 and U01 AA016662 to MFM.

    +
    + + + +

    Information about this text file:

    +
    +

    This file last updated by A.Centeno on 1-25-2011

    +
    + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0212.html b/web/dbdoc/VUBXDMouseMidBrainQ0212.html new file mode 100755 index 00000000..e0dcff92 --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0212.html @@ -0,0 +1,213 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE (Feb12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE (Feb12) Quantilemodify this page

    + + Accession number: GN381

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + + Service initiated June 15, 2001. Site by + Xiaodong Zhou, + Lei Yan, + Ning Liu, + Zachary Sloan, + Rudi Alberts, + Arthur Centeno, Jintao Wang, Lu Lu, Kenneth Manly, Robert W. Williams, and colleagues. + + + Python Powered + + + Registered with Nif +
    + + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0212L1.html b/web/dbdoc/VUBXDMouseMidBrainQ0212L1.html new file mode 100644 index 00000000..e126d884 --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0212L1.html @@ -0,0 +1,206 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE L1(Feb12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE L1(Feb12) Quantilemodify this page

    + + Accession number: GN387

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0212L10.html b/web/dbdoc/VUBXDMouseMidBrainQ0212L10.html new file mode 100644 index 00000000..c794e511 --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0212L10.html @@ -0,0 +1,206 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE L10(Feb12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE L10(Feb12) Quantilemodify this page

    + + Accession number: GN392

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0212L11.html b/web/dbdoc/VUBXDMouseMidBrainQ0212L11.html new file mode 100644 index 00000000..8324c08c --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0212L11.html @@ -0,0 +1,206 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE L11(Feb12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE L11(Feb12) Quantilemodify this page

    + + Accession number: GN393

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0212L12.html b/web/dbdoc/VUBXDMouseMidBrainQ0212L12.html new file mode 100644 index 00000000..aca20be7 --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0212L12.html @@ -0,0 +1,206 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE L12(Feb12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE L12(Feb12) Quantilemodify this page

    + + Accession number: GN394

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0212L13.html b/web/dbdoc/VUBXDMouseMidBrainQ0212L13.html new file mode 100644 index 00000000..77742a74 --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0212L13.html @@ -0,0 +1,206 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE L13(Feb12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE L13(Feb12) Quantilemodify this page

    + + Accession number: GN395

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0212L14.html b/web/dbdoc/VUBXDMouseMidBrainQ0212L14.html new file mode 100644 index 00000000..1366f377 --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0212L14.html @@ -0,0 +1,206 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE L14(Feb12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE L14(Feb12) Quantilemodify this page

    + + Accession number: GN396

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0212L2.html b/web/dbdoc/VUBXDMouseMidBrainQ0212L2.html new file mode 100644 index 00000000..801cb3fd --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0212L2.html @@ -0,0 +1,206 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE L2(Feb12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE L2(Feb12) Quantilemodify this page

    + + Accession number: GN388

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0212L3.html b/web/dbdoc/VUBXDMouseMidBrainQ0212L3.html new file mode 100644 index 00000000..f8eb73a6 --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0212L3.html @@ -0,0 +1,206 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE L3(Feb12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE L3(Feb12) Quantilemodify this page

    + + Accession number: GN389

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0212L4.html b/web/dbdoc/VUBXDMouseMidBrainQ0212L4.html new file mode 100644 index 00000000..2992b713 --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0212L4.html @@ -0,0 +1,206 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE L4(Feb12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE L4(Feb12) Quantilemodify this page

    + + Accession number: GN390

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0212L5.html b/web/dbdoc/VUBXDMouseMidBrainQ0212L5.html new file mode 100644 index 00000000..3e6b03f7 --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0212L5.html @@ -0,0 +1,206 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE L5(Feb12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE L5(Feb12) Quantilemodify this page

    + + Accession number: GN387

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0212L6.html b/web/dbdoc/VUBXDMouseMidBrainQ0212L6.html new file mode 100644 index 00000000..a4cadcf5 --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0212L6.html @@ -0,0 +1,206 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE L6(Feb12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE L6(Feb12) Quantilemodify this page

    + + Accession number: GN388

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0212L7.html b/web/dbdoc/VUBXDMouseMidBrainQ0212L7.html new file mode 100644 index 00000000..0dcfe17f --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0212L7.html @@ -0,0 +1,206 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE L7(Feb12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE L7(Feb12) Quantilemodify this page

    + + Accession number: GN389

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0212L8.html b/web/dbdoc/VUBXDMouseMidBrainQ0212L8.html new file mode 100644 index 00000000..bc3f7d1b --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0212L8.html @@ -0,0 +1,206 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE L8(Feb12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE L8(Feb12) Quantilemodify this page

    + + Accession number: GN390

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0212L9.html b/web/dbdoc/VUBXDMouseMidBrainQ0212L9.html new file mode 100644 index 00000000..c36ede8e --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0212L9.html @@ -0,0 +1,206 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE L9(Feb12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE L9(Feb12) Quantilemodify this page

    + + Accession number: GN391

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/VUBXDMouseMidBrainQ0512.html b/web/dbdoc/VUBXDMouseMidBrainQ0512.html new file mode 100644 index 00000000..5522a4b0 --- /dev/null +++ b/web/dbdoc/VUBXDMouseMidBrainQ0512.html @@ -0,0 +1,206 @@ + + + + + +VU BXD Midbrain Agilent SurePrint G3 Mouse GE (May12) Quantile + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + +

    VU BXD Midbrain Agilent SurePrint G3 Mouse GE (May12) Quantilemodify this page

    + + Accession number: GN381

    +

    + This page will be updated soon. +

    + + +
    +
    + + + + + + + + + + + + + + +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    +
    + + + + + + + + + + diff --git a/web/dbdoc/data_analysis_fundamentals_manual.pdf b/web/dbdoc/data_analysis_fundamentals_manual.pdf new file mode 100755 index 00000000..12c99dfe Binary files /dev/null and b/web/dbdoc/data_analysis_fundamentals_manual.pdf differ diff --git a/web/dbdoc/downloadHelp.html b/web/dbdoc/downloadHelp.html new file mode 100755 index 00000000..c4765107 --- /dev/null +++ b/web/dbdoc/downloadHelp.html @@ -0,0 +1,60 @@ + +Download Help / WebQTL + + + + + + + + + + + + + + + + + + +
    +

    Download Help

    +
    + + + + + + +
    + + + + +
    + + + + + + + + + + diff --git a/web/dbdoc/template.html b/web/dbdoc/template.html new file mode 100755 index 00000000..de9c51ef --- /dev/null +++ b/web/dbdoc/template.html @@ -0,0 +1,207 @@ + + +DATABASE TITLE HERE + + + + + + + + + + + + + + + + + + + + + +
    + + +
    +

    DATABASE TITLE HERE modify this page

    +

    Waiting for the data provider to submit their info file

    + +

    Summary:

    + +
    +

    +SUBTITLE. Some text here

    + + +
    + + +

    About the cases used to generate this set of data:

    + +
    + +

    Some text here

    + + +
    + + +

    About the tissue used to generate this set of data:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + +
    IndexTubeIDGroupStrainAgeSexSource
    1R2595E.1GDP129S1/SvImJ59FUTHSC RW
    + +
    +

    +

    + +

    About downloading this data set:

    +
    +

    Some text here

    +
    + + +

    About the array platfrom:

    +
    +

    Some text here

    + +
    + + +

    About data values and data processing:

    + +
    +

    Some text here

    +

    + + + + +
    + + + + + +
    IndexTubeIDStrainOriginal CELScale factorBackground AveragePresentAbsentMarginalAFFX-b-ActinMur (3'/5')AFFX-GapdhMur (3'/5')Batch IdUsed for batch control
    1R2595E.1129S1/SvImJR2595E.1.CEL1.7911561.00%37.50%1.50%1.460.771Y
    + +
    +

    +

    + + +

    Data source acknowledgment:

    +
    + +

    Some text here

    +
    + + + +

    Information about this text file:

    +
    +

    Some text here

    +
    + + +

    GEO Series Data: This section to be used for GEO submission of the whole series of arrays

    +
    +

    GSE Series +

    Status +

    Title +

    Organism(s) +

    Experiment type +

    Summary + +

    Overall design +

    Contributor(s) + +

    Citation(s) + +

    +
    Submission date +
    Contact name +
    E-mails +
    Phone +
    FAX +
    URL +
    Organization name +
    Department(s) +
    Laboratory(s) +
    Street address +
    City +
    State/province +
    ZIP/Postal code +
    Country + + +

    Platforms +

    Samples + + +

    + + + + +
    +
    + + + + + + +
    +
      + +
    +
    + +
    + + + + + + + + + + diff --git a/web/dbdoc/test.html b/web/dbdoc/test.html new file mode 100755 index 00000000..da363b2f --- /dev/null +++ b/web/dbdoc/test.html @@ -0,0 +1,84 @@ + +RAE230A Microarray Kidney RMA April05 / +WebQTL + + + + + + + + + + + + + + + + + + +
    + + + +
    +

    HXB/BXH Genotype modify this page

    + +

        Summary:

    + +
    + +The HXB/BXH Genotype Database was assembled by Robert W. Williams and Michal Pravenec using a compendium of approximately 1100 markers that have been typed over the past decade (please see Pravenec et al. 1999 and Jirout et al. 2003 for additional details of marker selection and genotyping). + +

    Pravenec M, Kren V, Krenova D, Bila V, Zidek V, Simakova M, Musilova A, van Lith HA, van Zutphen LF (1999) HXB/Ipcv and BXH/Cub recombinant inbred strains of the rat: strain distribution patterns of 632 alleles. Folia Biol (Praha) 45:203-215. +

    Jirout M, Krenova D, Kren V, Breen L, Pravenec M, Schork NJ (2003) A new framework marker-based linkage map and SDPs for the rat HXB/BXH strain set. Mammalian Genome 14:537-546. + + +

    + +
    +
    + + + + + + + + +
    + + + + + + +
    + + + + + + + + + + + diff --git a/web/dbdoc/testimage.html b/web/dbdoc/testimage.html new file mode 100755 index 00000000..cb53035a --- /dev/null +++ b/web/dbdoc/testimage.html @@ -0,0 +1,436 @@ + +BXD Microarray Database / WebQTL + + + + + + + + + + + + + + + + + + + +
    +

    BXD Brain mRNA U74Av2 Database

    + +

        About the mice used to map microarray data:

    + +
    The set of animals used for mapping (a mapping panel) consists of 30 groups of genetically uniform mice of the BXD type. The parental strains are C57BL/6J (B6 or B) and DBA/2J (D2 or D). The first generation hybrid is labeled F1. The F1 hybrids were made by crossing B6 females to D2 males. + + + All other lines are recombinant inbred strains derived from C57BL/6J and DBA/2J crosses. BXD2 through BXD32 were produced by Dr. Benjamin Taylor starting in the late 1970s. BXD33 through BXD42 were also produced by Dr. Taylor, but they were generated in the 1990s. Lines BXDA12 and BXDA20 are two partially inbred advanced recombinant strains (F8 and F9) that are part of a large set of BXD-Advanced strains being produced by Drs. Robert Williams, Lu Lu, Guomin Zhou, Lee Silver, and Jeremy Peirce. There will eventually be ~45 of these strains. For additional background on recombinant inbred strains, please see http://www.nervenet.org/papers/bxn.html. +
    + +
    The table below lists the arrays by strain, sex, and age. Each array was hybridized to a pool of mRNA from 3 mice. Selecting on the Male or Female symbols in the table below will link you to data on the quality of the individual microarrays.
    + + + + + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Strain + +
    + Age +
    +
    Strain + +
    + Age +
    +
    +
    + 8 Wks +
    +
    +
    + 20 Wks +
    +
    +
    + 52 Wks +
    +
    +
    + 8 Wks +
    +
    +
    + 20 Wks +
    +
    +
    + 52 Wks +
    +
    C57BL/6J (B6)DBA/2J (D2) 
    B6D2F1 (F1) BXD1 
    BXD2BXD5  
    BXD6BXD8 
    BXD9BXD11 
    BXD12 BXD13  
    BXD14 BXD15 
    BXD16 BXD18
    BXD19BXD21 
    BXD22 BXD23  
    BXD24  BXD25 
    BXD27  BXD28
    BXD29  BXD31 
    BXD32BXD33 
    BXD34 BXD38   
    BXD39  BXD40  
    BXD42    BXDA12  
    BXDA20       
    +

        About the tissue used to generate these data:

    +

    Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 83 arrays were used: 67 were female pools and 16 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year). +

    + +

        About data processing:

    + +
    Probe (cell) level data from the .CEL file: These .CEL values produced by MAS 5.0 are the 75% quantiles from a set of 36 pixel values per cell (the pixel with the 12th highest value represents the whole cell). +
      +
    • Step 1: We added an offset of 1.0 to the .CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z-score for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z-scores. The consequence of this simple set of transformations is to produce a set of Z-scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z-score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We computed the arithmetic mean of the values for the set of microarrays for each of the individual strains. We have not (yet) corrected for variance introduced by sex, age, or a sex-by-age interaction. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the .CEL file. +
    +Probe set data from the .TXT file: These .TXT files were generated using the MAS 5.0. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Feb 2002 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank John Hogenesch (GNF) and Rob Edwards (UTHSC) for help in extracting and generating these position data.
    + +

        Resolving Gene Identify and Position Problems:

    + +
    Users should confirm the identity and positions of probe sets. Probe sets that are intended to target transcripts from a single gene occasionally map to different chromosomes; for example, two probe sets supposedly target the thyroid hormone alpha receptor (Thra): probe sets 99076_at and 99077_at map to Chr 14 at 13.556 Mb and Chr 11 at 99.537 Mb, respectively. One of these must be wrong and since Thra maps to Chr 11 rather than Chr 14, it is likely that 99076_at is mismapped or mislabeled as Thra. To determine which problem is more likely, please re-BLAT the perfect match probe sequence. This is usually quite simple. Just paste all of the perfect match probes into a single BLAT query. For example, to test probe set 99076, paste this sequence into the BLAT query window:
    + +
    +GTTAG ACTTT TTCAT CTGCC AAGTC TTTAG TAAGT GACCT 
    +ACCTA CAGGG TGACC TACCT ACAGG CTTAG AGATT ACCTA
    +CAGGC TTAGA GATCA TGGTA AGATT CATGA ACAAC ACCCC
    +GTGCA GATTC ATGAA CAACA CCCCG TGCCG TAACG ACATT
    +AAGAA CCTGC TTTAT AACTT GTTGC TACAG GATTT GAACC
    +AGGAT TTGAA CTTCT GTGGT ACAGA CTTCT GTGGT ACAGT
    +TAGGA GAGCC TTCTG TGGTA CAGTT AGGAG AGCTG GTGTG
    +TCTGT CATTC AGTAG GGACC TGTCA TTCAG TAGGG ACCAT
    +AACTC TGTCA TTCAG TAGGG ACCAT AACTA TTCAG TAGGG
    +ACCAT AACTG CTGCG CTTAC GTTCA GTGGG TATGG CTTTG
    +TGAAT TCTTT ACATG ATAGC ATTC
    + +
    (NOTE: BLAT is insensitive to sequence overlap and extra spaces. The sequence above is a concatenation of all PM probes without any concern for probe overlap. The Perfect Match sequences are available on WebQTL by selecting the link� on� the Trait Data and Editing window).
    + +
    This will return this BLAT Search Results

    + +
    + +
    This confirms that the probe set maps to Chr 14 (a score of 219 is good). However if you click on the browser link in the BLAT Search Results window you will see that the gene that these probes target is actually BC008556 (a nuclear receptor subfamily 1, group D, member 2 gene), not Thra. The Chr 19 hit with a score of 171 can be discounted since it does not correspond to a known transcript.
    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. +

    + +

        Reference:

    +

    Williams RW, Shou S, Lu L, Qu Y, Manly KF, Wang J, Chesler E, Hsu HC, Mountz J, Threadgill DW (2002) Massively parallel QTL mapping of microarray data reveals mouse forebrain transcriptional networks. Soc. Neurosci Abst. +

    +

    Williams RW, Manly KF, Shou S, Chesler E, Hsu HC, Mountz J, Wang J, Threadgill DW, Lu L (2002) Massively parallel complex trait analysis of transcriptional activity in mouse brain. International Mouse Genome Conference 16: 46 +

    +

    +Manly KF, Wang J, Shou S. Qu Y, Chesler E, Lu L, Hsu HC, Mountz JD, Threadgill D, Williams RW (2002) QTL mapping with microarray expression data. International Mouse Genome Conference 16: 88. +

    +

    +Wang JT, Williams RW, Manly KF (2002) WebQTL Project. A system for rapidly analyzing transcriptional networks. http://www.webqtl.org, mirrored at http://www.webqtl.org +

    + +

    + +
    + + +
    +
    + + + + + +

        About the tissue used to generate these data:

    +

    Most expression data are averages based on three microarrays (U74Av2). Each individual array experiment involved a pool of brain tissue (forebrain plus the midbrain, but without the olfactory bulb) that was taken from three adult animals usually of the same age. A total of 83 arrays were used: 67 were female pools and 16 were male pools. Animals ranged in age from 56 to 441 days, usually with a balanced design (one pool at 8 weeks, one pool at ~20 weeks, one pool at approximately 1 year). +

    + +

        About data processing:

    + +
    Probe (cell) level data from the .CEL file: These .CEL values produced by MAS 5.0 are the 75% quantiles from a set of 36 pixel values per cell (the pixel with the 12th highest value represents the whole cell). +
      +
    • Step 1: We added an offset of 1.0 to the .CEL expression values for each cell to ensure that all values could be logged without generating negative values. + +
    • Step 2: We took the log base 2 of each cell. + +
    • Step 3: We computed the Z-score for each cell. + +
    • Step 4: We multiplied all Z scores by 2. + +
    • Step 5: We added 8 to the value of all Z-scores. The consequence of this simple set of transformations is to produce a set of Z-scores that have a mean of 8, a variance of 4, and a standard deviation of 2. The advantage of this modified Z-score is that a two-fold difference in expression level corresponds approximately to a 1 unit difference. + +
    • Step 6: We computed the arithmetic mean of the values for the set of microarrays for each of the individual strains. We have not (yet) corrected for variance introduced by sex, age, or a sex-by-age interaction. We have not corrected for background beyond the background correction implemented by Affymetrix in generating the .CEL file. +
    +Probe set data from the .TXT file: These .TXT files were generated using the MAS 5.0. The same simple steps described above were also applied to these values. Every microarray data set therefore has a mean expression of 8 with a standard deviation of 2. A 1-unit difference therefor represents roughly a two-fold difference in expression level. Expression levels below 5 are usually close to background noise levels.
    + +

        About the chromosome and megabase position values:

    + +
    The chromosomal locations of probe sets and gene markers were determined by BLAT analysis using the Mouse Genome Sequencing Consortium Feb 2002 Assembly (see http://genome.ucsc.edu/cgi-bin/hgBlat?command=start&org=mouse). We thank John Hogenesch (GNF) and Rob Edwards (UTHSC) for help in extracting and generating these position data.
    + +

        Resolving Gene Identify and Position Problems:

    + +
    Users should confirm the identity and positions of probe sets. Probe sets that are intended to target transcripts from a single gene occasionally map to different chromosomes; for example, two probe sets supposedly target the thyroid hormone alpha receptor (Thra): probe sets 99076_at and 99077_at map to Chr 14 at 13.556 Mb and Chr 11 at 99.537 Mb, respectively. One of these must be wrong and since Thra maps to Chr 11 rather than Chr 14, it is likely that 99076_at is mismapped or mislabeled as Thra. To determine which problem is more likely, please re-BLAT the perfect match probe sequence. This is usually quite simple. Just paste all of the perfect match probes into a single BLAT query. For example, to test probe set 99076, paste this sequence into the BLAT query window:
    + +
    +GTTAG ACTTT TTCAT CTGCC AAGTC TTTAG TAAGT GACCT 
    +ACCTA CAGGG TGACC TACCT ACAGG CTTAG AGATT ACCTA
    +CAGGC TTAGA GATCA TGGTA AGATT CATGA ACAAC ACCCC
    +GTGCA GATTC ATGAA CAACA CCCCG TGCCG TAACG ACATT
    +AAGAA CCTGC TTTAT AACTT GTTGC TACAG GATTT GAACC
    +AGGAT TTGAA CTTCT GTGGT ACAGA CTTCT GTGGT ACAGT
    +TAGGA GAGCC TTCTG TGGTA CAGTT AGGAG AGCTG GTGTG
    +TCTGT CATTC AGTAG GGACC TGTCA TTCAG TAGGG ACCAT
    +AACTC TGTCA TTCAG TAGGG ACCAT AACTA TTCAG TAGGG
    +ACCAT AACTG CTGCG CTTAC GTTCA GTGGG TATGG CTTTG
    +TGAAT TCTTT ACATG ATAGC ATTC
    + +
    (NOTE: BLAT is insensitive to sequence overlap and extra spaces. The sequence above is a concatenation of all PM probes without any concern for probe overlap. The Perfect Match sequences are available on WebQTL by selecting the link� on� the Trait Data and Editing window).
    + +
    This will return this BLAT Search Results

    + +
    + +
    This confirms that the probe set maps to Chr 14 (a score of 219 is good). However if you click on the browser link in the BLAT Search Results window you will see that the gene that these probes target is actually BC008556 (a nuclear receptor subfamily 1, group D, member 2 gene), not Thra. The Chr 19 hit with a score of 171 can be discounted since it does not correspond to a known transcript.
    + +

        Data source acknowledgment:

    +

    Data were generated with funds to RWW from the Dunavant Chair of +Excellence, University of Tennessee Health Science Center, Department +of Pediatrics. The majority of arrays were processed at Genome Explorations by Dr. Divyen Patel. +

    + +

        Reference:

    +

    Williams RW, Shou S, Lu L, Qu Y, Manly KF, Wang J, Chesler E, Hsu HC, Mountz J, Threadgill DW (2002) Massively parallel QTL mapping of microarray data reveals mouse forebrain transcriptional networks. Soc. Neurosci Abst. +

    +

    Williams RW, Manly KF, Shou S, Chesler E, Hsu HC, Mountz J, Wang J, Threadgill DW, Lu L (2002) Massively parallel complex trait analysis of transcriptional activity in mouse brain. International Mouse Genome Conference 16: 46 +

    +

    +Manly KF, Wang J, Shou S. Qu Y, Chesler E, Lu L, Hsu HC, Mountz JD, Threadgill D, Williams RW (2002) QTL mapping with microarray expression data. International Mouse Genome Conference 16: 88. +

    +

    +Wang JT, Williams RW, Manly KF (2002) WebQTL Project. A system for rapidly analyzing transcriptional networks. http://www.webqtl.org, mirrored at http://www.webqtl.org +

    + +

    + +
    + + +
    +
    + + + diff --git a/web/down.html b/web/down.html new file mode 100755 index 00000000..ff81db91 --- /dev/null +++ b/web/down.html @@ -0,0 +1,55 @@ + +System + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    + Gene Network is temporarily unavailable due to system maintenance, Please check back in several hours! +

    +
    +
    + + + +
    + +
    + + + + + + + + + diff --git a/web/drosophilaCross.html b/web/drosophilaCross.html new file mode 100755 index 00000000..c17c08c4 --- /dev/null +++ b/web/drosophilaCross.html @@ -0,0 +1,73 @@ + +Drosophila Cross Information + + + + + + + + + + + + + + + + + + + +
    + + + +
    + + +

    Information on Groups modify this page

    + +     +The Drosophila Genetic Reference Panel - DGRP: + +
    +

    The DGRP is a community resource for association mapping of quantitative trait loci. The same strains can be evaluated for multiple complex traits, including ‘intermediate’ phenotypes such as whole genome transcript abundance and quantitative variation in the proteome and metabolome. This will facilitate a systems genetics approach for understanding the genetic architecture of complex traits in an economical genetic model organism. Interrogating a common resource population for genetic variation at multiple levels, traits, and environments will provide an unprecedented opportunity to quantify genetic correlations and pleiotropy among traits, as well as to quantify the magnitude and nature of genotype by environment interaction. A sample of 192 strains has the power to detect intermediate frequency variants with moderately small to large effects on complex traits.

    + +

    The DGRP is a community resource of common Drosophila sequence polymorphisms (SNPs and indels) with a minor allele frequency (MAF) of 0.02 or greater. These variants will be valuable for high resolution QTL mapping as well as mapping alleles of major effect, molecular population genetic analyses, and allele specific transcription studies.

    + +

    The DGRP can also be used to identify extreme lines for QTL mapping – the lines are already inbred and therefore can be used immediately to construct mapping populations. They can also be used as a base population for artificial selection experiments, in which lines can be derived with trait phenotypes that greatly exceed the range of the base population.

    +

    For more information click here

    +
    + + + +

        About this file:

    +

    The file started, Jan 12, 2011

    + + +
    +
    + + + +
    + +
    + + + + + + + + + diff --git a/web/faq.html b/web/faq.html new file mode 100644 index 00000000..e7d26e37 --- /dev/null +++ b/web/faq.html @@ -0,0 +1,778 @@ + +Frequently Asked Questions + + + + + + + + + + + + + + + + + + +
    + + + + +
    +

    Frequently Asked Questions + modify +

    + + +
    Questions +
      + +
    1. How do I report an error or program bug? +

      +
    2. Expression levels are often measured by several probes or probe sets. Which is better and which should I use? + +

      +
    3. There are often mutliple database. Which database is best? + +

      +
    4. How should we cite the GeneNetwork and WebQTL, and what are conditions on use of data? + +

      +
    5. How can I compare the correlates from two transcripts that interest me? Let's say I am interested in transcripts that correlate well with both Drd1a and Drd2. +

      + +
    6. If I have a list of transcripts that covary with Drd1a how to I decide if the correlations are truly significant or informative? +

      + +
    7. How much would it cost to add transcriptome data for an organ, tissue, or cell type that is more relevant for my research? + +

      +
    8. How many genes and transcripts are in the expression databases, and what fraction of the genome is being surveyed? + +

      +
    9. The Correlation Results window includes a maximum of 500 traits. How can I generate a complete list of all correlations? + +

      +
    10. Validation: Are there great examples of validated QTLs and correlation results? What is the proof that relations detected using GeneNetwork are biologically compelling and meaningful? + +

      +
    11. Relevance to protein expression: Are measurements of steady-state mRNA levels relevant? Cells operate principally in the proteome domain, and there are many examples of poor correlations between mRNA and protein levels. +

      +
    12. What is the best way to handle a whole set of interesting traits or transcripts simultaneously? For example, can I study the genetics of all dopamine receptors simultaneously? + +

      +
    13. What web browser do you recommend? + +

      +
    14. Reverse mapping: How can I find a set of transcripts and other traits that are possibly controlled by a transcription factor or other gene variant that I already know about? For example, in the paper by Chesler et al., the region near D6Mit150 is nominated as a master controller. What are some of the controlled traits? How to I review them efficiently since they are not all listed in the paper? + +

      +
    15. Finding transcripts that modulate their own expression levels (cis-QTs and cis-QTLs): How can I find a set of transcripts or proteins that are under tight control by a locus that overlaps their own physical location in the genome—that have a cis-QTL? This class of transcripts is particulary interesting because polymorphic genes that modulate their own expression, may also produce numerous downstream effects. + +

      +
    16. How do you error-check data? + +

      +
    17. Is there a way for me to automatically generate a log file of my use of the GeneNetwork and WebQTL? + +

      +
    18. How can I determine the precise region of the transcript that is targeted by a particular Affymetrix or Agilent probe set? + +

      +
    19. What expression levels are considered high and reliable; what expression levels are so low as to disregard? + +

      +
    20. How do I select the best strains to study to improve the precision of my current mapping/QTL results? + +

      +
    21. How do I output the genotype data associated with a particular data set? For example, I want the genotypes used in mapping BXD data. + +

      +
    22. I have generated some phenotype data that I would like to put into GeneNetwork. How should I name my traits? + +

      +
    23. How do I combined mapping data from two or more crosses to end up with a cumulative or summary LRS or LOD QTL map? + + +

      +
    24. How can I find a set of transcripts or proteins that have a cis-QTL or cis eQTL? + +

      +
    25. Partial Correlation: What is it and how do I use it? + +
    +
    + +
    Answers
    + +
    +
    +Q1: How do I report an error or program bug?

    + +A1: Software errors that generate on-screen error messages are automatically logged and reviewed by us, usually on a daily basis. If you note an error on the public site (rather than the less stable beta site) that is persistent (more than one day) or that is really causing you trouble, please send us an email notification immediately and we wil do our best to resolve the problem. Email us at: +
    +webqtl@gmail.com, rwilliams@uthsc.edu + +[RWW, September 27, 2005] +
    +
    + Back to Index +
    +
    +
    +
    + +
    +Q2: Expression levels of some transcripts are measured by two or more probes or probe sets, but these values do not correlate well with each other. For example, two probe sets that target Bcl2l have no correlation with each other, whereas two probe sets for Erbb3 show a strong negative correlation (r = -0.74 using the UTHSC Brain mRNA U74Av2 RMA data set). In cases such as these which probe set should I trust?

    + +A2: Probes vary greatly in hybridization properties and sensitivity to cross-hybridization. They also target different exons and different parts of the 3' untranslated regions of transcripts (3' UTR). A very small number (<0.1%) also contain SNPs that can affect hybridization efficiency.

    + +

    The quickest answer is to use the set of probes with the highest and most consistent expression. Higher intensity signals usually have a higher signal-to-noise ratio. Select the Probe Information page from the Trait Data and Analysis form. It is interesting (and sometimes scary) to compare the mean and standard error of the mean (SEM) of the signal of different probes in the set. Also check the heritability estimate of the entire probe set in the Basic Statistics page. Heritability is a often a reasonably good indicator. You can also compare the lists of top 100 correlated transcripts for the different probe sets and see if one probe set makes more sense given the known biology and function of the gene. + +There are other important features that you may want to examine. +

      +
    1. Check the placement of the probes that are part of the probe set. Use the Verify UCSC or Verify ENSEMBL button next to the probe set position in the Trait Data and +Analysis window. The Verify functions will BLAT the concatenated probe sequences (overlap is trimmed away) to the most current mouse genome assembly. If the placement and annotation appears to be wrong, please email us. + +BLAT analysis of Erbb3 reveals a relatively complex situation. The two probe sets target different Erbb3 expressed sequence tags (ESTs). +
    2. Use the Probe Information link in the Trait Data window to view exon +targets and the original probe sequences and their mean expression. +
    3. Select all the probes and add them to your BXD selections. Use the Custer Map +to view the probe-specific QTLs. Strong cis QTLs detected only in a group of tightly overlapping +probes may indicate a SNP. +
    4. Each probe can be examined as an individual trait. Check the noise of the +probe using Basic Statistics window. +
    5. Individual probe sequences can be BLATed to the genome using UCSC's BLAT +function. You can also retrieve the sequence data to compare individual probes by +location and known polymorphisms. +
    6. Also from the selections page, use the Correlation Matrix function to generate a +correlation matrix and perform a principal component analysis (PCA). The PC scores can be used as "consensus +traits." You can eliminate probes that appear to misbehave from you selections +prior to performing the PCA. [EJ Chesler, Oct 2004; minor update by RWW, Jan 2004] +
    + Back to Index +
    +
    +
    +
    + +
    +Q3: There are often mutliple database versions associated with each tissue or experiment. Which database is best?

    + +A3: GeneNetwork often provides several complementary transformations of data sets, for example PDNN, RMA, and MAS5. The Position-Dependent Nearest Neighbor (PDNN) method of Zhang and colleagues generally gives better results than two more common alternatives--RMA and MAS5 transforms. + +

    To determine the best data set among alternatives do this: enter the string "CisLRS=(50 1000 10)" into the ANY search field for the first of the alternatives that interest you. This is one of GN's Advanced Search strings that finds all transcripts that are associated with a very strong quantitative trait locus (QTL) very close to the location of the gene. The command translates as "find all transcripts with an LRS value above 50 and less than 1000 that is located within 10 Mb on either side of the gene." GeneNetwork will compute the number of transcripts that are associated with very high LRS or LOD scores. The great majority of these hits are naturally genes that modulate their own expression. This number is an excellent measurement of data quality. GN will open a new page with the total numbers of hits. The number will be listed in red font toward the top of the Search Results page. For example, there are several alternative data sets for the cerebellum of the BXD genetic reference panel. If you systematically test each of these you will get the following results: + +

      +
    1. n = 130 GE-NIAAA Cerebellum mRNA M430v2 (May05) RMA +
    2. n = 117 GE-NIAAA Cerebellum mRNA M430v2 (May05) MAS5 +
    3. n = 207 GE-NIAAA Cerebellum mRNA M430v2 (May05) PDNN +
    4. n = 514 SJUT Cerebellum mRNA M430 (Mar05) RMA +
    5. n = 732 SJUT Cerebellum mRNA M430 (Mar05) PDNN +
    6. n = 420 SJUT Cerebellum mRNA M430 (Mar05) MAS5 +
    7. n = 91 SJUT Cerebellum mRNA M430 (Oct04) MAS5 +
    8. n = 228 SJUT Cerebellum mRNA M430 (Oct04) PDNN +
    9. n = 130 SJUT Cerebellum mRNA M430 (Oct04) RMA +
    10. n = 85 SJUT Cerebellum mRNA M430 (Oct03) MAS5 +
    + +In this case, the 5th data set is significantly better than all of the other transforms or data sets (n = 732 trnscripts associated with LRS values above 50 (a LOD score > 10). There is really no way to systematically generate high numbers of these so-called cisQTLs as an artifact. One of the advantages of large transcriptome mapping data sets is that we have internal but entriely objective measures of data quality. The only caveat is that some of the cisQTLs will be generated by hybridization artifacts (SNPs and other sequence variants). However, this is generally an artifact of the array platform and not of the transformation method. + +

    When available we recommend using databases that have the suffix HWT, for example the database "UTHSC Brain mRNA (Dec03) HWT1PM." The heritability weighted transform (HWT) accentuates meaningful variation in probe signal and takes advantage of the unusually large data sets used by GN. HWT outperforms PDNN for the majority of probe sets as assessed by the strong covariance among probe sets in single data sets and in terms of the yield of QTLs at a fixed false discovery rate. + +

    +Manly KF, Wang J, Williams RW (2005) Weighting by heritability for detection of quantitative trait loci with microarray estimates of gene expression. Genome Biology 6:R27 Full Text HTML and PDF Version. +
    + +

    MAS5 and dChip do not generally perform as well as the other transforms. However, there are a few probe sets for which MAS5's reliance on the mismatch probe actually does improve performance, one instructive example being the transcript of Pam using the selection sequence Mouse -> BXD -> Striatum. WebQTL also provides access to the primary probe signals, and it is possible to generate custom probe set consensus expression estimates by performing a principal component analysis of all or a subset of probes (see the previous question). [RWW, Dec 14, 2004; Sept 25, 2005; April 23, 2006]

    + Back to Index +
    +


    +
    +
    + +
    +Q4: How should we cite the GeneNetwork and WebQTL, and what are the conditions on use of data?

    + +A4: Please have a look at the References page or at the Usage Conditions page. If you have other questions about a particular data set, please link to the Contacts page or Info button for the individual data sets. [RWW, Dec 14, 2004, Feb 23, 2005] +

    + Back to Index +
    +
    +
    +
    + +
    +Q5: How can I compare the correlates from two transcripts that interest me? Let's say I am interested in transcripts that correlate well with both Drd1a and Drd2.

    + +A5: The two traits need to have been measured using the same genetic reference population, such as the BXD strains. But it is ok if they have been measured in different tissues. Put Drd1a and Drd2 transcripts into a single Selections window. Click on their small selection boxes, and then use the Compare Correlates function. [RWW, Dec 23, 2004] +

    + Back to Index +
    +
    +
    +
    + +
    +Q6: If I have a list of transcripts that covary with Drd1a how to I decide if the correlations are truly significant or informative?.

    + +A6: In most databases correlations under 0.7 will have relatively high false discovery rates (FDR). However, this statement needs to be moderated if you already have strong prior data that suggests that such correlation should exist. The Literature Correlation column (far right) tries to formalize the likely biological connection between two genes based on a comparison of PubMed abstracts for the genes. + +

    One can compute a formal FDR for the data in a correlation table given the size of the array, but the FDR does not account for the noise structure of the array data. Structured noise, such as batch effects, can seriously inflate correlations. We recommend that your biological sense of the system you are studying be a major "prior" in evaluating a list of correlations. You can also compute the Gene Ontology stats for the top 100 or 500 transcripts. A "bad" list should not generate an interesting GO structure. + +

    Here is an operation that will help you in evaluating the significance of correlations: Search the ANY field using this string "mean=(1 5)". This will find probe sets with very low expression. For example, in the BXD Whole Brain INIA PDNN data set, this search string returns 10 probe sets. For example, the correlation table for Abcd2 (probe set 1439835_x_at_B) starts at a high value of r = 0.65. Similarly, Myo1f has a top covariate of 0.73 but then shifts down immediately to 0.64. These correlations are not likely to be biologically meaningful, particulary without strong prior data. + + + [RWW, May 12, 2006] +

    + Back to Index +
    +


    +
    +
    + +
    +Q7: How much would it cost to add transcriptome data for an organ, tissue, or cell type that is more relevant for my research?

    + +A7: Around $20,000–$40,000 for a medium-sized study; high quality arrays cost around $300-$400 each. A minimum sample size is two biological replicates for each member of the genetic reference population (GRP), often one male sample or pool of male samples, and one female sample or pool of female samples. If the GRP contains 40 genomes or strains, then you need to budget for a minimum of 90 arrays (10 for control, wastage, and reruns). Ideally all of the samples should be processed in one large batch, although batches of 20 or more arrays can usually be normalized to each other fairly well. We would be happy to help generate new data sets at any stage, the earlier the better. [RWW, Dec 23, 2004; EGW Apr 11, 2012] +

    + Back to Index +
    +
    +
    +
    + + +
    +Q8: How many genes and transcripts are in your databases, and what fraction of the genome is being surveyed?

    + +A8: The U74Av2 data sets (brain and hematopoietic stem cells) contain ~12,400 probe sets that target about 9,000 different UniGene clusters. A UniGene cluster is a group of real and putative mRNAs that appear to be generated from a single gene (unified gene). The M430 data sets contain ~45,000 probe sets that target at least one member from each of ~32,000 nonredundant UniGene clusters out of a total of 46,000 clusters in the most recent UniGene build (#143) of Mus musculus. + +

    What fraction of the genome and transcriptome does this represent? According to the most recent AceView summary (Nov 2004), there are 51,000 main genes (well-supported genes that code for proteins with at least 100 amino acids or that contain conventional introns) in the human genome. There are another 60,000 putative genes, some of which may be pseudogenes. Finally, there are an additional 229,000 so-called cloud genes that have a few associated GenBank sequences (usually less than 6 entries) but do not contain introns and do not code for protein (no open reading frame). These cloud genes are often intercalated in the right orientation near or in main genes. The mouse genome is likely to have nearly the same numbers of these three categories of genes. The majority of main genes are associated with multiple alternative splice variant transcripts, often more than 5. Thus, old COT curve estimates that there are 200,000 or more unique transcript species in a single tissue such as the brain are entirely plausible. + +

    In summary, the Affymetrix M430 2.0 array is likely to represent 50% to 70% of main genes, an unknown fraction of putative and cloud genes, and a more modest fraction of the entire transcriptome. However, it is likely that the M430 array samples at least one common transcript (or a collection of transcripts with the same 3' UTR) from the great majority of abundant and widely expressed genes that have 50 or more UniGene GenBank entries. Array platforms of this type can therefore be called "whole genome" arrays without too much inaccuracy. They cannot be considered true "whole transcriptome" arrays. + +

    The Agilent G4121A toxarray consists of 20868 60-mer probes and is likely to represent 40% of so-called main genes listed in AceView. + + +[RWW, Jan 1,2, 2005] +

    + Back to Index +
    +


    +
    +
    + + +
    +Q9: The Correlation Results window includes a maximum of 500 traits. How can I generate a more comprehensive list of all correlations?

    + +A9: Select the SEARCH menu item labeled Simple Query Interface. Select the appropriate menu items, enter the trait identifier (a specific ID), and chose an output order and format. The output can be saved as a tab-delimited text file and imported into spreadsheet and statistics programs. + +[RWW, Jan 2, 2005] +

    + Back to Index +
    +
    +
    +
    + + + +
    +Q10: Are there strong examples of validated QTLs and correlation results? What is the proof that relations detected using GeneNetwork aare biologically compelling and meaningful?

    + +A10: Yes, there are already several examples, and we expect the number of validated results to increase rapidly along with the depth and quality of data sets. Here are examples: +
      +
    1. Pumilio 2 is a mouse homolog of the Drosophila RNA-binding gene pum. The PUM protein in Drosophila binds to a 3' UTR Puf domain in a number of mRNAs and strongly inhibits their translation (a translational repressor). While the mouse pumilio homologs of this well conversed eukaryotic gene have been known for several years, there were no known mRNAs that are PUM2 targets. Using WebQTL, Scott and colleagues (2004) noted strong positive correlations between Pum2 and Rbbp6/P2P-R message levels in three transcriptome data sets (forebrain, cerebellum, and hematopoietic stem cells). P2P-R is an important nuclear gene (also known as retinoblastoma binding protein 6) that is involved in p53-mediated transcriptional control. The robust covariance between Pum2 and P2P-R suggested that P2P-R was a target of Pum2 repression. Three nearly perfect Puf domains were subsequently found in the 3' UTR of the P2P-R 3' UTR, providing additional bioinformatic support. Subsequent pull-down experiments carried out by E. White-Grindley and E. Ruley provide the final confirmation that PUM2 protein binds to P2P-R mRNA. [RWW, Jan 8, 2005]
      + +
      + +Scott RW, White-Grindley E, Ruley HE, Chesler EJ, Williams RW (2004) P2P-R expression is genetically coregulated with components of the translation machinery and with PUM2, a translational repressor that associates with the P2P-R mRNA. Journal of Cellular Physiology, in press. Full text HTML version + +
      + +
    2. Retinoblastoma binding protein 7 (Rbbp7, Mis16 or p55, probe set 1415775*) is part of the core histone deacetylase complex that modulates nucleosome structure via effects on histone transport and acetylation, and DNA methylation. Together with RBBP4 (1434892*) and several other proteins such as BRCA1 (1424629*), MTA1 (1417295*), MBD3 (1417728*), HDAC1 (1448246*), and HDAC2 (1445684*), RBBP7 protein helps suppress levels of transcription, enhances apoptosis, and inhibits cell growth and transformation (Cheng et al., 2001). The gene maps to Chr X at approximately 153 Mb. Its expression is comparatively high in brain and kidney (Yang et al., 2002). We have shown that variation in Rbbp7 expression in the striatum of BXD strains is substantial. Expression is high in C57BL/6J and comparatively low in DBA/2J (1415775* in the HBP/Rosen Striatum M430v2 11/04 PDNN data set). This variation is caused by a strong QTL that peaks very near to the Ahr marker (LRS of 21.3; also see the adjacent marker D12Mit153) on proximal Chr 12. Ahr is not a typical marker; it is actually the aryl hydrocarbon response gene (1449045* and BXD Published Phenotype ID 10371). The AHR protein is an important transcription factor that complexes with the ARNT nuclear translocator (Affymetrix probe set 1437042*) and binds to xenobiotic response elements and AhR elements in promoters to influence gene expression. There is a critical leucine-to-proline substitution in the Ahr gene that results in a 15 to 20-fold reduction in the binding affinity of the proline variant found in DBA/2J compared to the b-1 leucine variant found in C57BL/6J (Chang et al., 1993). Furthermore, the DBA/2J sequence converts a normal opal stop codon at 36185363 nt (mm9) to an Arg residue (rs3021951) and thereby extends translation for an extra 43 amino acids. Note that Published Phenotype ID 10371 demonstrates an 80-fold variation in Ahr induction by anthracene that unequivocally maps to the Ahr gene locus on Chr 12 (despite the title of the 1984 paper by Levgraverend and colleagues). For this reason Ahr is an unusually compelling candidate gene. If variation in the binding affinity of AHR isoforms causes expression difference, then we naturally expect an AhR element in the promoter of Rbbp7. The 5' UTR and proximal promoter of Rbbp7has the following sequence:

      + + +ACACC GCGCT CGCAT CCGCC CCACC CCCGC GCGGG CCCAG CCGCC CCCGC GGCCA GCCTG GGGAG TGACG CCTCG CGCCT GCGCC TCGCC GACTT CCTGC +CGCGG AACGC CCCAC CCACT CTCGA GAAGC CCACC CCCGG AGAGC GCGTC AGACC CTCCC GTCGC ACGCT ATTGG TCCAA GCCGC CGAGC CGTTG GCTCC +CAGGC CCGCC TCTTC TCCGC CTCTC CAATT TCCCA GGGCG GCTGC GCCTG CGCTC AGCTG CCTGG GCGGG CTGAG AGGCG CGGGT TGAAA AGTCT CGTTC +CAAGT TTGGC GAGAG GGAGA GAGAG GAGAG CGGCT CAGAC CTCGC TACCC GCCAG CGGGG AGGAG GCAG AAGAG GAGAT CGCGG CGTCT GGGGG GAGAA +CCCAG ACGGC CAGAC CGAAC TCAGG CTTTT CCGAG CGAGG ACTGC GTGAC GTGCC +TGGGA GAGGC AAGGA GCGCC TGCCG GGCTG CTCTT GACTA GCGAG +AGAGA AGTCC GAGGC GGCCA AGGGG GGCGA AACGA CCCGA CGCAA GATGG CGAGT AAAGA GAGTA AGGAT GCCTG CCCTG TGGGG CGGGC GGGCG TGCGG + + +
      The ATG translation initiation codon and exon 1 are highlighted using italic font, and the position of the AhR consensus binding site is highlighted using bold font. (Note: Rbbp7 does not have a TATA box.) All of the conditions are met for Ahr to be the polymorphic gene that modulates Rbbp7 expression among BXD strains. Do sequence differences in Ahr produce an effect on the steady state expression level of its own mRNA? In other words, is this gene also a cis QTL? The answer is a qualified no. In the striatum, Ahr (1422631*) is a good example of a polymorphic gene that does not act primarily via changes in its own mRNA level but acts via "classical" differences in protein sequence and conformation. However, this is not true in the liver, in which there is unequivocal evidence of cis modulation of Ahr (Agilent probe P449133). Thus Ahr is likely to have downstream effects due to two distinct mechanisms--one acting via differences in Ahr gene expression, the other acting via changes in AHR protein binding affinity. + +

      Another gene regulated by a QTL that coincides with Ahr that also has an AhR response element is Exoc2 (1426630*). + + + +

      +*Affymetrix probe set identifiers are listed without the "underscore_at" type suffixes. Enter an asterisk when searching for the probe sets in WebQTL (eg., 1415775*). When mulitple probe sets are available, I have selected the best overall performer using criteria listed in Q&A 8. To enter all of these probe sets, just copy and paste this string into the "Any term" field: 1415775* 1434892* 1424629* 1417295* 1417728* 1448246* 1445684* 1422631* 1437042* . + + + +[Example 2 is based on preliminary work by RW Williams, GD Rosen, and colleagues (2005). RWW, Jan 8,9, 2005]
      + + + + + +
    + +
    + Back to Index +
    +
    +
    +
    + + + +
    +Q11: Are measurements of steady-state mRNA levels relevant? Cells operate principally in the proteome domain, and there are many examples of poor correlations between mRNA and protein levels. +

    + +A11: It is true that there are many examples of poor correlations between mRNA and protein levels, but this fact does not negate the strong global tendency of mRNA expression and protein expression to be correlated positively. It is important to recognize the strong coupling between message and protein levels. Technical errors in estimating mRNA and protein level will inevitably degrade positive correlations. A powerful test of the mRNA-protein relation is the ability to predict cell phenotype from mRNA data. An excellent example is work by Markam and colleagues (Toledo-Rodriguez et al., 2004) in which major electrophysiologically-defined classes of neocortical neurons were accurately classified using expression data for merely 29 mRNAs (3 calcium-binding and 26 ion channel genes). + +

    Another interesting and related question to consider: How are positive and negative correlations between transcripts achieved at a mechanistic level? Keep in mind that we always have to keep on mental eye on the idea of difference among individuals and strains. It is easy to get tied up in a mechanistic explanation and to neglect the actual source of the phenotypic variation among individuals that we are trying to explain. There are probably many answers to this questions: +

      +
    1. Common transcription factors and cofactors (proteins x, y, and z) modulate the expression of a pair of transcripts A' and B'. The levels of x, y, and z differ among cases and strains and this variation generates well coupled differences in expression of genes A and B that we pick up as a positive or negative correlations in the array data sets between A' and B'. What is interesting about this idea is that the effectors x, y, and z may have a difference in protein expression or protein sequence among the cases or strains (protein variation --> mRNA variation). Genes A and B that vary in expression at the transcript level (A' and B') will not necessarily vary in expression at the protein level (a and b). A secondary homeostatic mechanism may neutralize differences (protein variation --> mRNA variation -- no protein variation). While it is most like that x, y, and z protein effectors vary among cases and strains, this is not essential. Alternatively there may be a segregating sequence variants in the promoters of BOTH genes A and B that generate coupled variation in A' and B' mRNA. (no protein variation --> DNA target variation --> mRNA variation...). This final model would require both A' and B' transcripts to have so-called cisQTLs. In other words, the variation in A' and B' mRNA is associated with local cis-sequence variants in their genes of orgin, A and B. + +
    2. The pair of transcripts A' and B' that covary in expression at the transcript level also covary in expression at the protein level, a and b. This mRNA and protein covariance is NOT due to the action of common transcription factors on genes A and B. Instead, the correlation is driven by networks of interactions in the protein domain that ultimately link different transcriptional control circuits: circuits x, y, and z for gene A and transcription control circuits p, q, and r for gene B. The two sets of transcriptional control cirucuits xyz and pqr are themselves partially coupled. In this model, I have stated that A and B covary at both mRNA and protein levels. This is not necessary. The variation and correlation could in principle be isolated to the mRNA domain. If we entertain this idea, then we are saying that the variation in mRNA level is effectively a read-out of differences in the amount or sequence of proteins that modulate mRNA expression (protein variation --> mRNA --> no protein variation). If we concede that the mRNA variation does not lead to protein variation, we still need a cause for the original mRNA variation, and that will usually be upstream strain variation in protein level or sequence. Variation in mRNA is essentially providing us with an assay of variation in the upstream transcriptional protein circuits. In some cases, it may also be due to local cis-acting promoter variants in both A and B, but this is likely to be uncommon and should be detected as pairs of reciprocal QTLs. + +
    3. Technical confounds can introduce correlations in the expression of A' and B'. Imagine if data for the first 20 cases or strains were all acquired in the winter months and data for the second set of 20 cases or strains were all acquired in the summer months. If there were major differences in the technical personel handling arrays, or in the particular batch of arrays or reagents, one might easily introduce large differences in apparent expression. Technical factors or batch effects of this type can introduce large group differences that will tend to inflate the absolute values of correlations among many traits. The variation within the several batches may may lead to relatively well distributed scatter plots. Batch effects are a major problem in large array experiments of the type incorporated into GeneNetwork. If you review the INFO pages for any of the data sets you will see detailed descriptions of how cases were processed to minimize the potential batch effect confound. More recent data sets have better and larger designs that are better protected from batch effect. Technical and biological replicates can be used to detect and control for batch effects. Interleaving samples across multiple batches is also important in minimizing batch effect confounds. + +[RWW, Jan 9, 2005; Sept 27, 2005] +
    + +

    + + Back to Index +
    +
    +
    +
    + +
    +Q12: What is the best way to analyze a group of interesting traits or transcripts simultaneously? For example, can I study all dopamine receptors together? +

    + +A12: Yes, there are several tools for this type of multi-trait analysis, including (i) the Correlation Matrix tool that will perform a Principal Component Anaysis (PCA) of a group of traits and (ii) the Cluster Map that allows you to visually detect common QTLs for sets of traits. Here are the instructions: + +
      +
    1. Select the traits that interest you from any of the Genetic Reference Population. You can select traits and transcripts from multiple databases. You can select traits from the Published Phenotypes databases, Genotype databases, and any of the array databases. All of these traits need to be moved to the Selections window by clicking on the Add Selection button. Of course, all of the traits in a single Selections window must come from a single genetic reference population. The reason is simple: to compute a correlation coefficient the different measurements have to originate from common cases or strains. + +
    2. Once you have added traits to the Selections window, you now need to select the subset of traits that you would like to analyzed together. If you plan to run a PCA using the Correlation Matrix function then keep the number of traits that you select under about 20 or 30 and/or drop any traits that have only be studied in a small number of strains. Click the check boxes to the left of each trait or click the Select All button. + +
    3. Click the Correlation Matrix button. + +
    4. Review the matrix of correlation coefficients. You may want to drop traits if they do not appear to covary (positively or negatively) with any other traits. To drop a trait you must return to the Selections window and deselect the checkbox and click the Correlation Matrix button again. + +
    5. Scroll down the Correlation Matrix window. You will (usually) find a heading that is labeled PCA Traits with one or more listed components. The components will have labels such as PC01, PC02, PC03 etc. The components are "synthetic" traits that share significant variance with members of your selection. We only list those components that can explain 10% or more of the variance that is common to your group of traits. If you click on one of the PCA Traits a new window will open that contains the synthetic trait values (component scores) for all strains that have complete data. (The positive and negative values of these component scores may be "flipped" relative to what you might have expected.) You can add the PC01 trait back into your Selections window if you want to see which of your traits covary best with each of the principal components. This allows you to view the effective "loading" of the original traits on the PCA factors. + +
    6. Cluster Maps are a particularly effective and intuitive way to look for shared covariance withing a group of traits. Just click on the Cluster Map button in the Selection window and then read the explanatory text at the top of the page. [RWW, Jan 2, 2005, Sept 27, 2005] + +
    + + Back to Index +
    +
    +
    +
    + + +
    +Q13: What web browsers do you recommend? +

    + +A13: Most browsers will work without any signficiant differences in functionality. However, we tend to use Safari and Firefox for most in-house testing. IE Explorer works well and is also tested. Even the touch interface on the iPad and iPhone works reasonably well. Please let us know if you encounter any "breakdowns" or differences in function among browsers or serious aesthetic issues that detract from your use of the GeneNetwork. + +

    We used to make lots of use of AJAX-type web services, but have found that this works poorly over slow connections. If you find that only part of a graph or page downloads, please send us a note of complaint and let us know if you had a fast connection or a slow connection when you encountered the problem. + +

    Before you assume that the problem is GeneNetwork, please check one time by restarting your browser. It is possible that your browser is acting up. + + +[RWW, Feb 19, 2005;l May 14, 2005] +
    +
    + Back to Index +
    +


    +
    +
    + +
    +Q14: Reverse Complex Trait Mapping: How can I find a set of transcripts and other traits that are possibly controlled by a transcription factor or other gene variant that I already know about? For example, in the paper by Chesler et al. (2005), the region near D6Mit150 was defined as a master control locus. What are some of the controlled traits? How do I review them efficiently since they are not all listed in the paper.

    + +A14: Select the BXD Genotype Database. Search for and select D6Mit150. Generate the Correlation Results table for D6Mit150 against any other BXD database. For example, the correlation of D6Mit150 against the RMA database (UTHSC Brain mRNA U74Av2 (Mar04) RMA Orig) that was used in Chesler et al., generates a list of 100 transcripts. All 100 covary with this marker with Pearson product moment correlations that have absolute values between 0.72 and 0.56 (76 are positive correlations, 24 are negative correlations). Select all 100 and add them to your BXD "Selections" window (do not select more than 100). Select all 100 again and compute a Cluster Map for the whole set of traits. This map highlights calcium/calmodulin dependent kinase 1 (Camk1) and the GABA transporter (Gabt or Slc6a1as two high priority candidates for the Chr 6 QTL (both are logical candidates and both are apparent cis-QTLs. This cluster map also highlights more than 90 downstream candidates of the Chr 6 locus, including Pax3, Bmp10, Dlx4, Myh7, Prph, Gata6, Hoxb6, Ifna5, Msx3, Caml, Reln, Dct, and Rgs9. +[RWW, March 27, 2005] +
    +
    + Back to Index +
    +
    +
    +
    + + + + +
    +Q15: Finding transcripts that modulate their own expression levels (cis-QTs and cis-QTLs): How can I find a set of transcripts or proteins that are under tight control by a locus that overlaps their own physical location in the genome—that have cis-QTLs? This class of transcripts is particulary interesting because polymorphic genes that modulate their own expression, may also produce numerous downstream effects.

    + +A15: Select the The Genotype Database that corresponds to the your species and tissue of interest. Select the marker that is most closely linked to the gene or transcript in which you are interested. Review the "Trait Data" window of the genotype that you have selected. Then compute the top 100 covariates of this genotype in any of the phenotype phenotypes databases. Select the top 100 covariates of your marker and then run the Cluster Map. This may take a while if you selected 100 traits. Review the cluster map. It will highlight a subset of transcripts that are linked by high correlation to your marker and which have a marked yellow triangle. +[RWW, April 7, 2005] +
    +
    + Back to Index +
    +
    +
    +
    + + + + +
    +Q16: How do you error-check the data that you put into the GeneNetwork?

    + + +A16: Once an array data set has passed standard quality control steps (good RNA quality, good array hybridization signal), we still need to verify that data are assigned to the correct strain and sex. + +

    Checking the "sex" of an array data set is done using probe sets that are sexually dimorphic in expression level. The transcripts Xist and Ddx3y, for example, have sexually dimorphic expression on the U74Av2 array using some transforms. The Xist probe set, 99126_at, can be used as a surrogate "factor" for sex in most U74av2 data sets. Note that this probe set has high expression is 'all-female' strains (e.g., BXD6, 13, 25, and 28 in the Brain data sets). Ddx3y, or probe set 103842_at, tends to have high expression in male samples, although some transforms perform poorly with this particular probe set. + +

    Checking the "strain" of a data set is done using probe sets that are known to have nearly perfect Mendelian segregation patterns among BXD strains. Many probe sets (and single probes) can be used for this purpose. For the M430 Affymetrix arrays these include the following example probe sets: +

      +
    1. 1452705_at_A [KIAA0251 on Chr 16 @ 12.570143 Mb]: pyridoxal dependent group II decarboxylase family member; deep 3' UTR, antisense probes in Ntan1 (test Mendelian 1) +
    2. 1418908_at_A [Pam on Chr 1 @ 97.712988 Mb]: peptidylglycine alpha-amidating monooxygenase; whole 3' UTR (test Mendelian 2) +
    3. 1450712_at_A [Kcnj9 on Chr 1 @ 172.39301 Mb]: potassium inwardly-rectifying channel, subfamily J, member 9; distal 3' UTR (test Mendelian 3) +
    4. 1429509_at_B [FLJ30656 on Chr 11 @ 101.983718 Mb]: RIKEN cDNA 1110032E16; deep 3' UTR (test Mendelian 4) +
    5. 1444806_at_B [6720456B07Rik on Chr 6 @ 114.179842 Mb]: 6720456B07Rik; intron or 3' UTR (test Mendelian 5) +
    6. 1427011_a_at_A [Lancl1 on Chr 1 @ 67.399339 Mb]: LanC (bacterial lantibiotic synthetase component C)-like; last exons and proximal 3' UTR (test Mendelian 6) +
    + +Strain means for these probe sets should in general be either high or low. When data for different arrays purported from the same strain fall into both high and low groups this suggest that there has been an error of strain assignment at some stage of the process. In some cases, it is possible to fix these errors after the fact and to correctly reassign an array to a particular strain. + +[RWW, May 8, 2005] +
    +
    + Back to Index +
    +
    +
    +
    + + +
    +Q17: Is there a way for me to automatically generate a log file of my use of the GeneNetwork?

    + +A17: No. The GeneNetwork does not track your activity and has no memory of your sequence of requests. However, there is a simple expedient that makes it possible for you to produce a history of your own activity. Open a slide presentation program such as PowerPoint or Keynote and incorporate screen shots from GeneNetwork as slides. Annotate as you progress. Even modest annotation will allow you to return to precisely the same point or graph. Note, that there are functions in the GeneNetwork that allow you to export and save lists of traits or markers. For example, you can export the top 500 traits in a Compare Correlates window by clicking on the "download" link toward the top of the page. The contents of any Selections window can also be saved in a format that can be reloaded into the GeneNetwork. Scroll to the bottom of the Selections window to find the Save and Load buttons. + +[RWW, May 15, 2005] +
    +
    + Back to Index +
    +
    +
    +
    + + + +
    +Q18: How can I determine the precise region of the transcript that is targeted by Affymetrix or Agilent probes?

    + +A18: The easiest way is to align the sequences of the probes with the most up-to-date version of genome sequence. GeneNetwork does most of the work for you. Notice that most Trait Data and Analysis Forms have on of more Verify buttons (e.g., UCSC by Probes). When you click these verify buttons, the sequence of probes are assembled into a single query sequence (overlapping sequence is trimmed away). The query string representing the four nucleotides is sent to the BLAT BLAT search program at UCSC. A BLAT window will load in a few seconds. There will typically be several rows of results, but the top row with the highest score is the one that will be of most relevance. Scores should be over 45, representing roughly a 45 nucleotide match. Review the whole row of data and note the target chromosome, the strand of DNA that matches the probe sequences, and the start and end base pairs of the probe sequence. Click on the browser link. The window will refresh with a graphic display of the probe sequence labeled YourSeq at the top. The black bars represent the probe sequences on the array (they are often interrupted by thin lines with arrow heads) aligned to the genome. YourSeq will either run from left to right on the plus strand of DNA or from right to left on the minus strand. Click on the Zoom Out 10x button in the upper right of the Genome Browser window. This will give you a better overview of the location of the probes on the target sequence. Look at the Known Genes track and see what part of the gene is targeted. Most probes are complementary to parts of the last few exons or the 3' untranslated region. If you still do not see any nearby genes, then zoom out again until you see the genome context of your probe sequence. + +[RWW, July 15, 2005] +
    +
    + Back to Index +
    +
    +
    +
    + +
    +Q19: What expression levels are considered high and reliable. What expression levels are so low as to disregard? ?

    + +A19: For a good answer please read the first part of the Results of a paper in (Molecular Vision. The signal-to-noise ratio of expression measurements differ greatly between probe "assays". For this reason there is no simple answer. Many probe sets with very low values detect and reliably measure expression of the correct transcript. For example, expression of the calcium ion channel Cacna2d1 (1440397_at) in the Mouse BXD Eye data set varies more than twofold among strains—from 5.1 and 6.3 units. This is well under the conventional detection threshold of the Affymetrix array and even below the background noise level of several genes that have been knocked out. However, by using gene mapping methods it is possible to show that at least 70% of the variability in Cacna2d1 expression is generated by polymorphisms that map precisely to the location of the Cacna2d1 gene itself. This demonstrates that the assay has achieved a reasonable signal-to-noise ratio. For specific answers to this question you can look for strong cis modulated transcripts that have low expression level. The Heritability of the variance in expression is also a very useful measure of the signal to noise ratio. + +[RWW, Oct 6, 2009] +
    +
    + Back to Index +
    +
    +
    +
    + +
    +Q20: How do I select the best strains to study to improve the precision of my current mapping/QTL results?

    + +A20: Let's assume that you have mapped a QTL in the BXD mouse strains using a set of 30 strains to an interval of Chr 7 between 40 Mb and 48 Mb. There are another 50 strains that you could study. How do you decide which of these 50 strains might be best to study? +
      +
    1. You will want to find the subset of strains that have recombinations on Chr 7 between 40 and 48 Mb. Phenotyping these strains may enable you to narrow the QTL interval (sometimes not). +
    2. To find the strains with recombinants you will want to look at the gneoytpes of markers between 40 and 48 Mb. Do this my searching the BXD Genotype file for all markers on Chr 7 between 40 and 48 Mb using this search string: "mb=(Chr7, 40, 48)" in the ANY field of the Search Page. +[RWW, May 15, 2005] +
    +
    +
    + Back to Index +
    +
    +
    +
    + + +
    +Q21: How do I output genotype data?

    + +A21: There are two major ways to get genotypes for particular markers from GeneNetwork. + +

    If you just genotypes for a all marker: +

      +
    1. Link to the main Search window of GeneNetwork. +
    2. Select the appropriate Species and Type using the pull-down menu items. +
    3. Select the Database called "Genotypes" that appears at the bottom of the list. +
    4. Click on the INFO button to the right of the Database name. +
    5. Read or look through the file. There will usually be a link to a specific file that is used by GeneNetwork for mapping. For example, for the BXD strains, the link is http://www.genenetwork.org/genotypes/BXD.geno +
    6. Click on the link. This will download what we call the "Geno" file for each group. For example, the "BXD.geno" file is a 778 KB text files that you can open in many programs. +
    7. Note that the Geno file will not include all markers, but only the subset that we regard as crucial and correct for mapping. We extensively modify raw genotype data to reduce false positive linkages. We call this process "smoothing". Smoothing has its own risks and problems, but we are confident that the smoothed files are in general better than the raw genotypes. +
    + +

    If you just need genotypes for a single marker or a few markers in one region: +

      +
    1. Link to the main Search window of GeneNetwork. +
    2. Select the appropriate Species and Type using the pull-down menu items. +
    3. Select the Database called "Genotypes" that appears at the bottom of the list. +
    4. Enter the name of the markers in the ANY field or enter a search string that will find all markers in a particular region, such as "Mb=(Chr1 100 120)". For the BXD Genotype database (Oct 2008), this search generates a list of 74 markers. +
    5. "Select All" of the markers or a subset of the markers using the checkboxes. +
    6. "Add to Collection" +
    7. Again "Select All" of the markers or a subset of the markers using the checkboxes (sorry about this redundancy, but it is a "feature" not a bug.) +
    8. Select the "Export Traits" button. This will send your computer an Excel file with a name such as "export-YR-MN-DY-HR-MN.xls" where YR = Year, MBN = Month, DY = day, HR = hour and MN = minute. +
    9. Open the Excel file. The genotypes are organized row by row. The strains are organized column by column. +[RWW, Oct 15, 2008] +
    +
    + Back to Index +
    +
    +
    +
    + +
    +Q22: I have generated some phenotype data that I would like to put into GeneNetwork. How should I name my traits?

    + +A22: Phenotype trait names in GeneNetwork should have this general form when possible: + +
      +
    1. General category or name of the trait starting with a key word or phrase that refers to the type of trait. For example, "Ethanol response..." or "Anxiety assay...", "Brain weight...". The first letter should almost always be capitalized. + +
    2. Do not start with a generic uninformative word such as "Mean", "Maximum", "Mechanical", "Count", "Number", "Difference", "Baseline", "Induction", "Decrease", "New", "Adjusted", "Distance", "Right", "Left", "Bilateral", "Time", "Total", "Percentage", "Percent". Consider how you would like traits to be alphabetized and categorized. + +
    3. Please do not start with a specific instrumental assay such as "Morris water maze" or "Dowel test..." or "Porsolt test behavior". Many of these tests will be unknown to other users. Try to use a term that reflects the intent of the assay (Motor coordination test, Learning and memory function, Allergic airway response). This may be difficult, particularly for tests such as the Porsolt swim test and the Morris water maze that measure aspects of many different traits (anxiety, activity level, spatial navigation, visual acuity etc). But in the interest of clarity of intent rather than precision of measurement, please follow this suggestion. The actual assay instrument can be listed after the primary and secondary trait descriptions. + +
    4. Many traits can be difficult to categorize in a consistent way. For example a trait such as "ventral midbrain copper level in males" could be labeled "copper level in the ventral midbrain." There is no right or wrong way to do this, but the convention should be to choose the order that you think will be most useful to other users in terms of comprehension and consistency with other existing phenotypes. Review related phenotypes before you start naming your own. You will find good and bad examples. + +
    5. Dose and route of drug delivery. If the phenotype is a pharmacological phenotype, whenever practical enter the doses and routes of injection in parentheses after the name of the general trait. For example, "Cocaine response (40 mg/kg ip)". We would prefer to use "ip" and "iv" rather than i.p. and i.v., but this is not a strong preference. If a protocol requires multiple treatments, please include them if possible. For example, "Cocaine response (3 x 3.2 mg/kg ip, Days 2, 3, 4),..."). + +
    6. Series of more precise definitions of the phenotype and the subject(s) will often follow with commas used as separators. If possible make this understandable to almost any user, even at the risk of being wordy. + +

      For example, "Cocaine response (3 x 3.2 mg/kg ip, Days 2, 3, and 4), conditioned place preference (CPP), change in time in cocaine-paired compartment relative to baseline (Day 5 minus Day 1) for 50 to 90-day-old males and females [sec]" + +

    7. Sex. If the data are for males please write out "in males" or "of male" or "for males". Do not just add a comma such as " , males" or "(M)". This should usually go at the end of the description. + +
    8. Age and condition of subjects can be added if you think it is essential or helpful. However, do not bother with a generic addition "adult" since that is what most users will reasonably assume. If you would like to add an age range then use this format "in 100 to 200-day-old males and females" or "of 3 to 4-month-old males". + +
    9. Mandatory units of measurement between square brackets [min] or [sec] or [n bream breaks/10 min test]. If you are using an ordinal scale, then describe the scale within the brackets. If the units are simply a ratio or percentage then use [ratio] or [%]. + +
    + +

    Other advice on trait descriptions: + +

      + +
    1. Do Not Capitalize Each Word in a Description. (e.g, Ethanol Response, Distance traveled after saline - Distance traveled after ethanol for males and females [cm in a 0-5 min test period] ) + +
    2. Do not use "-" as a minus sign. The dash is too confusing and may sometimes be used as a hyphen. Spell out "minus" + +
    3. No not use ALL CAP in a trait description (e.g., TOTAL) + +
    4. Do use commas when appropriate. For example, Morphine response severity of abdominal constriction for males needs a comma between "response" and "severity" + +
    5. Do not use extraneous words such as "time SPENT on rotarod". "time on rotarod" is good enough. + +
    6. Do not start with text or abbreviations that will not be understandable to all users, such as "RSS female and male..." + +
    7. Please us a space between a number and the units: Prepulse inhibition at 70 dB for females (not 70db). Please use the correct form of the abbreviation. + +
    8. Use American spelling. + +[RWW, September 10, 2009] +
    +
    +
    + Back to Index +
    +
    +
    +
    + +
    +Q23: How do I combined mapping data from two or more crosses to end up with a cumulative or summary LRS or LOD QTL map?

    + +A23: Text soon + +[RWW, February 15, 2012] +
    +
    + Back to Index +
    +
    +
    +
    + + +
    +Q24: Finding transcripts that modulate their own expression levels (cis-QTs and cis-QTLs): How can I find a set of transcripts or proteins that have a cis-QTL or cis eQTL? This class of transcripts is particulary interesting because polymorphic genes that modulate their own expression, may also produce numerous downstream effects.

    + +A24: Select the The Genotype Database that corresponds to the your species and tissue of interest. Select the marker that is most closely linked to the gene or transcript in which you are interested. Review the "Trait Data" window of the genotype that you have selected. Then compute the top 100 covariates of this genotype in any of the phenotype phenotypes databases. Select the top 100 covariates of your marker and then run the Cluster Map. This may take a while if you selected 100 traits. Review the cluster map. It will highlight a subset of transcripts that are linked by high correlation to your marker and which have a marked yellow triangle. +[RWW, April 7, 2005] +
    +
    + Back to Index +
    +
    +
    +
    +
    +Q25: Partial Correlation: What is it and how do I use it?

    + +A25: A partial correlation is a correlation between two variables or traits that remains after controlling for one or more additional variables, such as age or weight, genotype, or a technical confound. Partial correlations can be an important aid in testing causal models (see the Glossary and the great book "Cause and Correlation in Biology" by Bill Shipley, 2000). For instance, the correlation r between transcript 1 and transcript 2 controlling for variables 3 and 4 is written r1,2||3,4 (the || symbol translates as "controlling for"). We can compare the partial correlation (e.g., r1,2||3,4) with the original "full" correlation (e.g., r1,2). If there is an insignificant difference we can infer that the controlled variables have minimal effect and probably do not influence the main variables (we may be able to drop them from a causal model). In contrast, if the partial correlations change significantly, then we can infer that the association between the primary variable (x axis) and the target trait (Y axis) is influenced to some degree by the controlled variables. Partial correlations can be very different from than the original (zero order) correlation. The polarity of the correlation can change. + +

    There are many uses of partial correlations in GeneNetwork. One example is when analyzing QTLs and trying to sort out the genes that may be responsible for trans eQTLs. In the example that follows we explore whether or not the gene formin 2 Fmn2 is likely to control expression of transcripts that map to the distal part of Chr 1 very close to the Fmn2 gene itself. Fmn2 and many of its close neighbors on Chr 1 are a so-called cis eQTL (sequence variants in these genes control their own expression) and each is in the correct physical location to be a candidate gene. But it is highly likely that there is only one genuine causal gene among these candidates. This example is adapted from a study by Mozhui et al. (2008). In this paper, the authors tried to determine which of several candidate genes, including Fmn2, was the most likely cause of variation in protein synthesis in the brains of mice. + +

    In this example we use the default BXD database: Hippocampus RMA expression data, as well as the BXD Genotype database. We will need to hop back and forth between these two data bases. + +

    First we need to find all transcripts that are associated with strong cis eQTLs that are ALSO linked to Fmn2 on Chr 1 at about 176.5 Mb. I've used a 2.5 Mb window around 176.5 Mb in the search. Put this in the "Combined" search field of GN: + +

         LRS=(20 999 Chr1 174 179) cisLRS=(20 999 10) + +

    You should get a set of 24 transcripts that meet these criteria. Select all of them and put them into your BXD Trait Collection. Their shared variance (r2) is about 60%. You can get this value directly by computing the Correlation Matrix for these transcripts and then looking at the first principal component (the shared genetic effect) in the Scree Plot. It is the left-most point close to the y axis. Many of these probe sets will be well correlated with trans eQTLs that map to distal Chr 1 simply because of genetic linkage effects. These genes have shared expression patterns simply because they are linked up on the same chromosome. Imagine passengers on a bus bumping along on a road together. They will all bounce up and down at roughly the same time and rate. Linkage produces covariation of this type that is not strictly speaking "functional." But the bus metaphor fails in one way--the linkage correlations among these Ch 1 genes can be either positive or negative, depending on whether the B allele or the D allele produces higher expression. QUESTION: So how do we figure out which is the best candidate among these 14 linked genes that may actually control the protein synthesis in neurons? One way is to use the partial correlation feature. We rephrase the question as follows: + +

    Of all the possible QT genes in the Chr 1 interval (our list of 25 probe sets minus any redundant probe sets), which covaries with the downstream target genes EVEN IN THE ABSENCE of genetic variation (the bumpy road our bus is driving over)? If two transcripts/genes covary in expression even when there is no genetic variation, then that covariation must be caused by common environmental effects. This kind of information provides independent support for an association between genes even when there is no genetic variation. + +

    To implement the partial correlation test that tries to answer this question by statistically stripping away genetic variation do this (i) put all 14 of these genes in your BXD trait collection. You probably have already done this. Then you need to add some local SNP markers into your Collection to represent the pure genetic linkage effect" + +

    Put this into the ANY field. Make sure that you select the BXD GENOTYPE Database before clicking on Search: + +

         mb=(chr1 174 179) + +

    You should get a list of about 24 SNP markers. Pick the following three markers: + +

      +
    1. Locus NES13041283 (the most proximal marker) +
    2. Locus 11 on the list: rs3682996 (a central markers) +
    3. Locus 24: rs4136041 (the most distal marker) +
    + +

    Add them to your collection. These markers bracket your region of interest and include one in the center. If you control for all three of them you are essentially killing any genetic variation that comes from Chr 1 at 176 Mb ±5 Mb. For a simple demonstration of partial correlation just use these three markers as your "Primary", "Control", and "Target" in a partial correlation test. The correlation will drop from r = 0.831 between the proximal and distal marker to a value of -0.041 if you control for the central marker. The screen shot below shows you how to replicate this simple test. + +

    Simple Partial Correlation Setup for SNPs + + +

    Final ingredient: Add a set of some of the most interesting transcripts that are controlled by a QTL on Chr 1 between 174 and 178 (trans eQTLs) using fairly stringent search criteria in the Combined field. + +

    At this point make sure you have switched back to the Hippocampus BXD RMA data set. + +

    Here is the full search term that will find trans eQTLs that have LRS values higher than 18, AND the gene has to have expression above 9 units, AND the gene has to be associated with the Gene Ontology term "Translation" ID number 0006412. + +

         +LRS=(18 999 Chr1 174 179) transLRS=(18 999 10) mean=(9 20) GO:0006412 + +

    Select and add all 11 transcripts/probe sets/genes into the BXD Trait Collection. You can add other probe sets and genes to the list. The BXD collection now has about 48 transcripts and 2 SNPs in it. + +

    Select all of these transcript traits and the two SNP markers and then initiate a partial correlation analysis. There is a button with a large arrow marked "Partial." + +

    The steps for the Partial Correction involve: +

      +
    1. Set the two SNP markers as your CONTROL column variables. + +
    2. Select a single primary trait you will test. I used Fmn2, probe set 1450063_at. + +
    3. Select the target traits. I "IGNORED" all of the transcripts on Chr 1 other than my 11 target genes, none of which are on chromosome 1. +
    + +

    Making sense of the output table + +

    The partial correlations between the primary trait and the targets shows you how much of the covariation between the two does NOT depend on the direct genetic effects of Fmn2. You expect the partial correlation to be lower because you have removed any genetic effects associated with Chr 1 (afterall you know that these 11 transcripts map to Chr 1 are have big trans eQTLs very close to Fmn2), but you are hoping that it is still significant. Have a look at this output page: + +

    Partial Correlation Output + +

    The partial correlation between Fmn2 and Nars changed dramatically, from the original "non-partial" value of r = 0.232 to the partial r = -0.414. That is an interesting change in polarity and magnitude. It means that the genetic effect located on Chr 1 that produces a positive correlation between these two transcripts strongly counteracts an otherwise negative correlation between caused by other genetic effects NOT on distal Chr 1 and by other non-genetic factors. The partial correlations with Ei4g2, Mrpl42, and Yars also swings from positive to negative. + +

    This seems quite interesting, but before we get too excited we should perform the same analysis with other "Primary" candidate genes near Fmn2 to see if this is an effect that is a specific effect. I fact, several other genes in the region have even more interesting differences between the standard "full" or zero-order correlation and the partial correlation. + +

    Some probe sets clearly have nothing to do with our set of translation-related genes with QTLs that map to Chr 1. Pigm is an example of a gene that we can demote as a candidate based on the partial correlation results. But other genes, such as gremlin 2 (Grem2 get promoted, and may be even better candidates that Fmn2. +[RWW, July 17, 2010] +
    +
    + Back to Index +
    +


    +
    +
    +
    + + +Last edit Jan 18, 2005, by KAG. Feb 19, by RWW. May 12, 2006 by RWW. Feb 15, 2012 by RWW + + + +
    +
    + + + +
    + + +
    + + + + + + + + + diff --git a/web/favicon.ico b/web/favicon.ico new file mode 100755 index 00000000..70b1ad1d Binary files /dev/null and b/web/favicon.ico differ diff --git a/web/footer.html b/web/footer.html new file mode 100644 index 00000000..334de26f --- /dev/null +++ b/web/footer.html @@ -0,0 +1,44 @@ +
    + + CITG + +WWW service initiated January, 1994 as The Portable Dictionary of the Mouse Genome and June 15, 2001 as WebQTL. + +This site is currently operated by + Rob Williams, + Lei Yan, + Zachary Sloan, + Arthur Centeno. Design and code by Xiaodong Zhou, Christian Fernandez, Ning Liu, Rudi Alberts, Elissa Chesler, Jintao Wang, Kenneth Manly, Robert W. Williams, and colleagues. + + + + + Python Powered + + + Registered with Nif +
    + GeneNetwork support from: + +
    +      +
    + + + + + + + + + + +
    + + + + + + +
    + +

    + +GenomeGraph: An Explanation, List of Features, and Help + + + modify this page

    + + +
    +

    + +The key concept behind GenomeGraph is simple: expression of traits among individuals is highy variable, even when raised in the same environment and treated in the same way. Some individuals (strains or cases) will have high endogenous expression whereas others will have low or intermediate expression. Systematic difference among individuals is often generated by genetic differences (polymorphisms) that have segregated among different members of a genetic reference population (GRP) such as the BXDs mouse recombinant inbred strains or the HXB/BXH rat recombinant strains. + +

    The chromosomal locations of the allelic variants and gene polymorphisms that cause these differences can be determined using standard mapping methods such as those exploited in the WebQTL module of GeneNetwork. The methods used to find these upstream modulators are collectively called QTL mapping. A gene may have sequence variants in its promoter or enhancer that influence the expression or stability of its own transcripts. If this is the case, then the position of the QTL will coincide with the location of gene from which the transcript is synthesized. QTLs that have a location that closely matches the location to the gene of origin are called cis-QTLs. This does not constitute formal proof that the variant is in the gene or its promoter, but it is a matter of reasonable inference and likelihood. A window of +/- 5 Mb seems reasonable to define a cis-QTL, because this window is only 1/250th the size of the entire genome in most mammals. + +

    Endogenous variation in mRNA or protein level may also be influenced by upstream control loci, for example, transcription factors that happen to differ in sequence or expression level between parental lines. In this case, the location of the QTL will typically be located far from the gene of origin of the message or protein. QTLs of this type are said to be "in trans" or trans-QTLs. (Note that this use of cis and trans differs from the classical use in phage genetics.) Certain trans-QTLs appear to have remarkably widespread effects, and modulate the steady-state abundance of hundreds or even thousands of transcripts. Such master modulators give rise to a feature in GenomeGraph output plots that we informally call transbands. + +

    GenomeGraph generates output that plots the locations of QTLs that modulate an entire transcriptome. For example, the Affymetrix M430 2.0 mouse array provides 45,000 estimates of the steady-state expression of transcripts (probe set estimates). Each of of these probe set traits has been mapped across the entire genome and the results have been stored in a database table. The x-axis plots the location of the QTL and is similar to the many plots generated by WebQTL. However, the y-axis does not plot the LRS value. Instead the y-axis plots the dependent variable for each transcript or protein: namely, the location of its gene of origin. A cis-QTL will generate a point on the diagonal of these plots. + +

    + +
    +
    + +Example of the GenomeGraph output for the Mouse BXD Brain U74Av2 Heritability Weight Transform (HWT) database. The false discovery rate (FDR) parameter was set at a value of 1 (most permissive and highest error rate). There is a particular prominent vertical band of transcripts that are all modulated by an interval centered at about 65 Mb on chromosome 1 (far left). This is the putative Mtap2 transband first discovered by Chesler, Lu and colleagues (2005) in forebrain of the BXD GRP. The cis-QTL diagonal is less prominent at this FDR setting, but replotting with an FDR of 0.1 will highlight this constant feature of all GenomeGraph plots. + + +
    + + +

    GenomeGraph relies on large files in which we have collected data for the QTLs that control all transcripts in a particular data set. We have collected information on locations in the genome that are responsible for generating variation in steady state titres of mRNA species. The y-axis marks the physical locations of parent genes from which mRNA is synthesized. In contrast, the x-axis plots the locations of the highest LRS values associated with each transcript; in essence, the location of the best QTL. + +

    The plots currently a single major parameter that you can vary called the false discovery rate (FDR). The FDR can be tuned from 1, in which case QTLs will be show for every transcript, even those that are highly likely to be false signals, down to values between 0.1 and 0.01, in which case only those one in ten to one in 100 of the QTLs are likely to be false discoveries. + +

    Please note that many of these data sets are still being computed. You may encounter a message that reads Database calculation is not finished.. The older databases such as the mouse BXD U74Av2 data sets and rat HXB RAE230A data sets are available. + +

    Similarly, GenomeGraph plots can only be generated when each trait is linked to a particular a gene. This is straightforward for both genes and many proteins. If you select a classical trait database such as one of the Phenotype databases you will encounter this error message: >I>Sorry, this database cannot be used with this GenomeGraph plot type. + +

    For a more information on the scientific context of this work please see Chesler, Lu and colleagues (2005). +

    + +

    This text by RW Williams, Oct 2005. +

    +
    +
    +
    + + + +
    + +
    + + + + + + + + + diff --git a/web/glossary.html b/web/glossary.html new file mode 100755 index 00000000..fc4ba719 --- /dev/null +++ b/web/glossary.html @@ -0,0 +1,771 @@ + +Glossary of Terms and Features + + + + + + + + + + + + + + + + + + +
    + + + +
    +

    Glossary of Terms and Features + modify

    + + +
    + A | + B | + C | + D | + E | + F | + G | + H | + I | + J | + K | + L | + M | + N | + O | + P | + Q | + R | + S | + T | + U | + V | + W | + X | + Y | + Z +
    + + +
    + +You are welcome to cite or reproduce these glossary definitions. Please cite or link: +
    Author AA. "Insert Glossary Term Here." +From The WebQTL Glossary--A GeneNetwork Resource. www.genenetwork.org/glossary.html +
    +
    +
    + +
    + A
    +     Additive Allele Effect: + +
    +The additive allele effect is an estimate of the change in the average phenotype that would be produced by substituting a single allele of one type with that of another type (e.g., a replaced by A) in a population. In a standard F2 intercross between two inbred parental lines there are two alleles at every polymorphic locus that are often referred to as the little "a" allele and big "A" allele. F2 progeny inherit the a/a, a/A, or A/A genotypes at every genetic locus in a ratio close to 1:2:1. The additive effect is half of the difference between the mean of all cases that are homozygous for one parental allele (aa) compared to the mean of all cases that are homozygous for the other parental allele (AA): +

    + [(mean of AA cases)-(mean of aa cases)]/2 +

    +GeneNetwork displays the additive values on the far right of many trait/QTL maps, usually as red or green lines along the maps. The units of measurement of additive effects (and dominance effects) are defined by the trait itself and are shown in Trait Data and Analysis windows. For mRNA estimates these units are usually normalized log2 expression values. For this reason an additive effect of 0.5 units indicates that the A/A and a/a genotypes at a particular locus or marker differ by 1 unit (twice the effect of swapping a single A allele for an a allele). On this log2 scale this is equivalent to a 2-fold difference (2 raised to the power of 1). + +

    On the QTL map plots the polarity of allele effects is represented by the color of the line. For example, in mouse BXD family maps, if the DBA/2J allele produces higher values than the C57BL/6J allele then the additive effect line is colored in green. In contrast, if the C57BL/6J allele produces higher values then the line is colored in red. For computational purposes, C57BL/6J red values are considered negative. + +

    The dominance effects of alleles are also computed on maps for F2 populations (e.g., B6D2F2 and B6BTBRF2). Orange and purple line colors are used to distinguish the polarity of effects. Purple is the positive dominance effect that matches the polarity of the green additive effect, whereas orange is the negative dominance effect that matches the polarity of the red additive effect. + +[Please also see entry on Dominance Effects: Williams RW, Oct 15, 2004; Sept 3, 2005; Dec 4, 2005; Oct 25, 2011] +

    + +Back to Index +
    + +
    +B
    + +    Bootstrap: +
    +A bootstrap sample is a randomly drawn sample (or resample) that is taken from the original data set and that has the same number of samples as the original data set. In a single bootstrap sample, some cases will by chance be represented one or more times; other cases may not be represented at all (in other words, the sampling is done "with replacement" after each selection). To get a better intuitive feel for the method, imagine a bag of 26 Scrabble pieces that contain each letter of the English alphabet. In a bootstrap sample of these 26 pieces, you would shake the bag, insert your hand, and draw out one piece. You would then write down that letter on a piece of paper, and the place that Scrabble piece back in the bag in preparation for the next random selection. You would repeat this process (shake, draw, replace) 25 more times to generate a single bootstrap resample of the alphabet. Some letters will be represented several time in each sample and others will not be represented at al. If you repeat this procedure 1000 times you would have a set of bootstrap resamples of the type that GN uses to remap data sets. + +

    Bootstrap resampling is a method that can be used to estimate statistical parameters and error terms. GeneNetwork uses a bootstrap procedure to evaluate approximate confidence limits of QTL peaks. We generate 2000 bootstraps, remap each, and keep track of the location of the single locus with the highest LRS score locations (equivalent to a "letter" in the Scrabble example). The 2000 "best" locations are used to produce the yellow histograms plotted on some of the QTL maps. If the position of a QTL is firm, then the particular composition of the sample, will not shift the position of the QTL peak by very much. In such a case, the histogram of "best QTLs" (yellow bars in the maps) that is displayed in WebQTL maps will tend to have a sharp peak (the scale is the percentage of bootstrap resamples that fall into each bar of the bootstrap histogram). In contrast, if the the yellow bootstrap histograms are spread out along a chromosome, then the precise location of a QTL may not be accurate, even in the original correct data set. Bootstrap results naturally vary between runs due to the random generation of the samples. See the related entry "Frequency of Peak LRS." + +

    KNOWN PROBLEMS and INTERPRETATION of BOOTSTRAP RESULTS: The reliability of bootstrap analysis of QTL confidence intervals has been criticized by Manichaikul and colleagues (2006). Their work applies in particular to standard intercrosses and backcrosses in which markers are spaced every 2 cM. They recommend that confidence intervals be estimated either by a conventional 1.5 to 2.0 LOD drop-off interval or by a Bayes credible Interval method. + +

    There is a known flaw in the way in which GeneNetwork displays bootstrap results (Sept 2011). If a map has two or more adjacent markers with identical LOD score and identical strain distribution patterns, all of the bootstrap results are assigned incorrectly to just one of the "twin" markers. This results in a false perception of precision. + +

    QTL mapping methods can be highly sensitive to cases with very high or very low phenotype values (outliers). The bootstrap method does not provide protection against the effects of outliers and their effects on QTL maps. Make sure you review your data for outliers before mapping. Options include (1) Do nothing, (2) Delete the outliers and see what happens to your maps, (3) Winsorize the values of the outliers. You might try all three options and determine if your main results are stable or not. With small samples or extreme outliers, you may find the mapping results to be quite volatile. In general, if the results (QTL position or value) depend highly on one or two outliers (5-10% of the samples) then you should probably delete or winsorize the outliers. + +[Williams RW, Oct 15, 2004, Mar 15, 2008, Mar 26, 2008; Sept 2011] +

    + +
    Back to Index +
    + +
    +C
    + + +    CEL and DAT Files (Affymetrix): + +
    Array data begin as raw image files that are generated using a confocal microscope and video system. Affymetrix refers to these image data files as DAT files. The DAT image needs to be registered to a template that assigns pixel values to expected array coordinates (cells). The result is an assignment of a set of image intensity values (pixel intensities) to each probe. For example, each cell/probe value generated using Affymetrix arrays is associated with approximately 36 pixels (a 6x6 set of pixels, usually with an effective 11 or 12-bit range of intensity). Affymetrix uses a method that simply ranks the values of these pixels and picks as the "representative value" the pixel that is has rank 24 from low to high. The range of variation in intensity amoung these ranked pixels provides a way to estimate the error of the estimate. The Affymetrix CEL files therefore consist of XY coordinates, the consensus value, and an error term. [Williams RW, April 30, 2005] + +
    + + +    Cluster Map or QTL Cluster Map: + +
    +Cluster maps are sets of QTL maps for a group of traits. The QTL maps for the individual traits (up to 100) are run side by side to enable easy detection of common and unique QTLs. Traits are clustered along one axis of the map by phenotypic similarity (hierarchical clustering) using the Pearson product-moment correlation r as a measurement of similarity (we plot 1-r as the distance). Traits that are positively correlated will be located near to each other. The genome location is shown along the other, long axis of the cluster map, marker by marker, from Chromosome 1 to Chromosome X. Colors are used to encode the probability of linkage, as well as the additive effect polarity of alleles at each marker. These QTL maps are computed using the fast Marker Regression algorithm. P values for each trait are computed by permuting each trait 1000 times. Cluster maps could be considered trait gels because each lane is loaded with a trait that is run out along the genome. Cluster maps are a unique feature of the GeneNetwork developed by Elissa Chesler and implemented in WebQTL by J Wang and RW Williams, April 2004. [Williams RW, Dec 23, 2004, rev June 15, 2006 RWW]. +
    + + + + + +    Collections and Trait Collections: +
    +One of the most powerful features of GeneNetwork (GN) is the ability to study large sets of traits that have been measured using a common genetic reference population or panel (GRP). This is one of the key requirements of systems genetics--many traits studied in common. Under the main GN menu Search heading you will see a link to Trait Collections. You can assemble you own collection for any GRP by simply adding items using the Add to Collection button that you will find in many windows. Once you have a collection you will have access to a new set of tools for analysis of your collection, including QTL Cluster Map, Network Graph, Correlation Matrix, and Compare Correlates. [Williams RW, April 7, 2006] +
    + + +    Complex Trait Analysis: +
    +Complex trait analysis is the study of multiple causes of variation of phenotypes within species. Essentially all traits that vary within a population are modulated by a set of genetic and environmental factors. Finding and characterizing the multiple genetic sources of variation is referred to as "genetic dissection" or "QTL mapping." In comparison, complex trait analysis has a slightly broader focus and includes the analysis of the effects of environmental perturbation, and gene-by-environment interactions on phenotypes; the "norm of reaction." Please also see the glossary term "Systems Genetics." [Williams RW, April 12, 2005] +
    + +    Composite Interval Mapping: +
    +Composite interval mapping is a method of mapping chromosomal regions that controls for some fraction of the genetic variability in a quantitative trait. Unlike simple interval mapping, composite interval mapping usually controls for variation produced at one or more background marker loci. These background markers are generally chosen because they are already known to be close to the location of a significant QTL. By factoring out a portion of the genetic variance produced by a major QTL, one can occasionally detect secondary QTLs. WebQTL allows users to control for a single background marker. To select this marker, first run the Marker Regression analysis (and if necessary, check the box labeled display all LRS, select the appropriate locus, and the click on either Composite Interval Mapping or Composite Regression. A more powerful and effective alternative to composite interval mapping is pair-scan analysis. This latter method takes into accounts (models) both the independent effects of two loci and possible two-locus epistatic interactions. [Williams RW, Dec 20, 2004] +
    + +    Correlations: Pearson and Spearman: +
    +GeneNetwork provides tools to compute both Pearson product-moment correlations (the standard type of correlation), Spearman rank order correlations. Wikipedia and introductory statistics text will have a discussion of these major types of correlation. The quick advice is to use the more robust Spearman rank order correlation if the number of pairs of observations in a data set is less than about 30 and to use the more powerful but much more sensitive Pearson product-moment correlation when the number of observations is greater than 30 AND after you have dealt with any outliers. GeneNetwork automatically flags outliers for you in the Trait Data and Analysis form. GeneNetwork also allows you to modify values by either deleting or winsorising them. That means that you can use Pearson correlations even with smaller sample sizes after making sure that data are well distributed. Be sure to view the scatterplots associated with correlation values (just click on the value to generate a plot). Look for bivariate outliers. + +
    + +    Cross: + +
    +The term Cross refers to a group of offspring made by mating (crossing) one strain with another strain. There are several types of crosses including intercrosses, backcrosses, advanced intercrosses, and recombinant inbred intercrosses. Genetic crosses are almost always started by mating two different but fully inbred strains to each other. For example, a B6D2F2 cross is made by breeding C57BL/6J females (B6 or B for short) with DBA/2J males (D2 or D) and then intercrossing their F1 progeny to make the second filial generation (F2). By convention the female is always listed first in cross nomenclature; B6D2F2 and D2B6F2 are therefore so-called reciprocal F2 intercrosses (B6D2F1 females to B6D2F1 males or D2B6F1 females to D2B6F1 males). A cross may also consist of a set of recombinant inbred (RI) strains such as the BXD strains, that are actually inbred progeny of a set of B6D2F2s. Crosses can be thought of as a method to randomize the assignment of blocks of chromosomes and genetic variants to different individuals or strains. This random assignment is a key feature in testing for causal relations. The strength with which one can assert that a causal relation exists between a chromosomal location and a phenotypic variant is measured by the LOD score or the LRS score (they are directly convertable, where LOD = LRS/4.61) [Williams RW, Dec 26, 2004; Dec 4, 2005]. +
    + + + + +Back to Index +
    + +
    +D
    +    Dominance Effects: + +
    +The term dominance indicates that the phenotype of intercross progeny closely resemble one of the two parental lines, rather than having an intermediate phenotype. Geneticists commonly refer to an allele as having a dominance effect or dominance deviation on a phenotype. Dominance deviation at a particular marker are calculated as the difference between the average phenotype of all cases that have the Aa genotype at that marker and the expected value half way between the all casese that have the aa genotype and the AA genotype. For example, if the average phenotype value of 50 individuals with the aa genotype is 10 units whereas that of 50 individuals with the AA genotype is 20 units, then we would expect the average of 100 cases with the Aa genotype to be 15 units. We are assuming a linear and perfectly additive model of how the a and A alleles interact. If these 100 Aa cases actually have a mean of 11 units, then this additive model would be inadequate. A non-linear dominance terms is now needed. In this case the low a alleles is almost perfectly dominant (or semi-dominant) and the dominance deviation is -4 units. + +

    The dominance effects are computed at each location on the maps generated by the WebQTL module for F2 populations (e.g., B6D2F2 and B6BTBRF2). Orange and purple line colors are used to distinguish the polarity of the dominance effects. Purple is the positive dominance effect that matches the polarity of the green additive effect, whereas orange is the negative dominance effect that matches the polarity of the red additive effect. + +

    Note that dominance deviations cannot be computed from a set of recombinant inbred strains because there are only two classes of genotypes at any marker (aa and AA, more usuually written AA and BB). However, when data for F1 hybrids are available one can estimate the dominance of the trait. This global phenotypic dominance has almost nothing to do with the dominance deviation at a single marker in the genome. In other words, the dominance deviation detected at a single marker may be reversed or neutralized by the action of many other polymorphic genes. + +[Williams RW, Dec 21, 2004; Sept 3, 2005] +

    + +Back to Index +
    + +
    +E
    + +    Epistasis: +
    +Epistasis means that combined effects of two or more different loci or polymorphic genes are not what one would expect given the addition of their individual effects. There is, in other words, evidence for non-linear interactions among two or more loci. This is similar to the dominance effects mentioned above, but now generalized to two or more distinct loci, rather than to two or more alleles at a single locus. For example, if QTL 1 has an A allele that has an additive effects of +5 and QTL 2 has an A alleles that has an additive effect of +2, then the two locus genotype combination A/A would be expected to boost the mean by +7 units. But if the value of these A/A individuals was actually -7 we would be quite surprised and would refer to this as an epistatic interaction between QTL 1 and QTL 2. WebQTL will search for all possible epistatic interactions between pairs of loci in the genome. This function is called a Pair Scan becasue the software analyzes the LRS score for all possible pairs of loci. Instead of viewing an LRS plot along a single dimension, we now view a two-dimensional plot that shows a field of LRS scores computed for pairs of loci. Pair scan plots are extremely sensitive to outlier data. Be sure to review the primary data carefully using Basic Statistics. Also note that this more sophisiticated method also demands a significantly larger sample size. While 25 to 50 cases may be adequate for a conventional LRS plot (sometimes called a "main scan"), a Pair-Scan is hard to apply safely with fewer than 60 cases. [Williams RW, Dec 21, 2004; Dec 5, 2005] +
    + +    Effect Size of a QTL: +
    +QTLs can be ranked by the amount of variance that they explain--their so-called "effect size"--when they are included in a statistical model. The concept of a genetic model may seem odd to some users of GeneNetwork. A model is just an explicit hypothesis of how QTLs and other factors cause variation in a trait. QTL mapping involves comparisons of the explanatory power of different models. Effect size can be measured in different units including the percentage of variance that is explained by adding the QTL into the model, by the mean shift in Z score, or by the additive effect size expressed in the original measurement scale. Because effects of single QTLs are often dependent on genetic background (i.e., other QTLs) and environmental conditions, a QTL's functional or molecular importance can not be predicted by the size of its effect on the trait in one environment or at one stage of development. Estimates of the effect size of QTLs are usually both noisy and upwardly biased (overestimated), and both of these problems are particulary acute when sample sizes are small (<500 cases or strains). [Williams RW, Dec 23, 2004] +
    + +    eQTL, cis eQTL, trans eQTL +
    +An expression QTL or eQTL. Differences in the expression of mRNA or proteins are often treated as standard phenotypes, much like body height or lung capacity. The variation in these microscopic traits (microtraits) can be mapped using conventional QTL methods. Damerval and colleagues were the first authors to use this kind of nomenclature and in their classic study of 1994 introduced the term PQLs for protein quantitative trait loci. Schadt and colleagues added the acronym eQTL in their early mRNA study of corn, mouse, and humans. We now are "blessed" with all kinds of prefixes to QTLs that highlight the type of trait that has been measured (m for metabolic, b for behavioral, p for physiological or protein). +

    eQTLs of mRNAs and proteins have the unique property of (usually) having a single parent gene and genetic location. An eQTL that maps to the location of the parent gene that produces the mRNA or protein is referred to as a cis eQTL or local eQTL. In contrast, an eQTL that maps far away from its parent gene is referred to as a trans eQTL. You can use special search commands in GeneNetwork to find cis and trans eQTLs. + +[Williams RW, Nov 23, 2009, Dec 2009] +

    + + +Back to Index +
    + +
    +F
    + +    Frequency of Peak LRS: +
    +The height of the yellow bars in some of the Map View windows provides a measure of the confidence with which a trait maps to a particular chromosomal region. WebQTL runs 2000 bootstrap samples of the original data. (A bootstrap sample is a "sample with replacement" of the same size as the original data set in which some samples will by chance be represented one of more times and others will not be represented at all.) For each of these 2000 bootstraps, WebQTL remaps each and keeps track of the location of the single locus with the highest LRS score. These accumulated locations are used to produce the yellow histogram of "best locations." A frequency of 10% means that 200 of 2000 bootstraps had a peak score at this location. It the mapping data are robust (for example, insensitive to the exclusion of an particular case), then the bootstrap bars should be confined to a short chromosomal interval. Bootstrap results will vary slightly between runs due to the random generation of the bootstrap samples. [Williams RW, Oct 15, 2004] +
    + + +    False Discovery Rate (FDR): +
    +A false discovery is an apparently significant finding--usually determined using a particular P value alpha criterion--that given is known to be insignificant or false given other information. When performing a single statistical test we often accept a false discovery rate of 1 in 20 (p = .05). False discovery rates can climb to high levels in large genomic and genetic studies in which hundreds to millions of tests are run and summarized using standard "single test" p values. There are various statistical methods to estimate and control false discovery rate and to compute genome-wide p values that correct for large numbers of implicit or explicit statistical test. The Permutation test in GeneNetwork is one method that is used to prevent and excessive number of false QTL discoveries. Methods used to correct the FDR are approximations and may depend on a set of assumptions about data and sample structure. [Williams RW, April 5, 2008] +
    + +Back to Index +
    + +
    +G
    + +    Genes, GenBankID, UniGeneID, GeneID, LocusID: +
    +GeneNetwork provides summary information on most of the genes and their transcripts. Genes and their alternative splice variants are often are poorly annotated and may not have proper names or symbols. However, almost all entries have a valid GenBank accession identifier. This is a unique code associated with a single sequence deposited in GenBank (Entrez Nucleotide). A single gene may have hundreds of GenBank entries. GenBank entries that share a genomic location and possibly a single gene are generally combined into a single UniGene entry. For mouse, these always begin with "Mm" (Mus musculus) and are followed by a period and then a number. More than half of all mouse UniGene identifiers are associated with a reputable gene, and these genes will have gene identifiers (GeneID). GeneIDs are identical to LocusLink identifiers (LocusID). Even a 10 megabase locus such as human Myopia 4 (MYP4) that is not yet associated with a specific gene is assigned a GeneID--a minor misnomer and one reason to prefer the term LocusID. + +

    See the related FAQ on "How many genes and transcripts are in your databases and what fraction of the genome is being surveyed?" +[Williams RW, Dec 23, 2004, updated Jan 2, 2005] +

    + + + +    Genetic Reference Population (GRP): +
    +A genetic reference population consists of a set of genetically well characterized lines that are often used over a long period of time to study a multitude of different phenotypes. Once a GRP has been genotyped, subsequent studies can focus on the analysis of interesting and important phenotypes and their joint and independent relations. Most of the mouse GRPs, such as the BXDs used in the GeneNetwork, have been typed using a common set of over 14,000 makers (SNPs and microsatellites). Many of these same GRPs have been phenotyped extensively for more than 25 years, resulting in rich sets of phenotypes. A GRP is an ideal long-term resource for systems genetics because of the relative ease with which vast amounts of diverse data can be accumulated, analyzed, and combined. + +

    The power of GRPs and their compelling scientific advantages derive from the ability to study multiple phenotypes and substantial numbers of genetically defined individuals under one or more environmental conditions. When accurate phenotypes from 20 or more lines in a GRP have been acquired it becomes practical to explore and test the genetic correlations between that trait and any previously measured trait in the same GRP. This fact underlies the use of the term reference in GRP. Since each genetic individual is represented by an entire isogenic line--usually an inbred strain or an isogenic F1 hybrid--it is possible to obtain accurate mean phenotypes associated with each line simply by typing several individuals. GRPs are also ideal for developmental and aging studies because the same genetic individual can be phenotyped at multiple stages. + +

    A GRP can also be used a conventional mapping panel. But unlike most other mapping panel, a GRP can be easily adapted to jointly map sets of functionally related traits (multitrait mapping); a more powerful method to extract causal relations from networks of genetic correlations. + + +

    The largest GRPs now consist of more than 400 recombinant inbred lines of Arabidopsis and maize. The BayxSha Arabidopsis set in the GeneNetwork consists of 420 lines. Pioneer Hi-Bred International is rumored to have as many as 4000 maize RI lines. The largest mammalian GRPs are the LXS and BXD RI sets in the GeneNetwork. The Collaborative Cross is the largest mammalian GRP, and over 600 of these strains are now being bred by members of the Complex Trait Consortium. + +

    There are several subtypes of GRPs. In addition to recombinant inbred strains there are + +

      +
    • Recombinant congenic (RCC) strains such as the AcB set + +
    • Consomic or chromosome substitution strains (CSS) of mice (Matin et al., 1999) and rats (Roman et al., 2002) + +
    • Recombinant intercross (RIX) F1 sets made by intercrossing RI strains + +
    • Recombinant F1 line sets made by crossing RI sets to a single inbred line. The GeneNetwork includes one RI F1 set generated by Kent Hunter in which each of 18 AKXD RI strains wre crossed to an FVB/N line that carries a tumor susceptibility allele (polyoma middle T). + +
    +All of these sets of lines are GRPs since each line is genetically defined and because the set as a whole can in principle be easily regenerated and phenotyped. Finally, each of these resources can be used to track down genetic loci that are causes of variation in phenotype using variants of standard linkage analysis. + +

    A Diversity Panel such as that used by the Mouse Phenome Project is not a standard GRPs, although its also shares the ability to accumulate and study networks of phenotypes. The main difference is that a Diversity Panel cannot be used for conventional linkage analysis. A sufficiently large Diversity Panel could in principle be used for the equivalent of an assocation study. However, these are definitely NOT in silico studies, because hundreds of individuals need to be phenotyped for every trait. Surveys of many diverse isogenic lines (inbred or F1 hybrids) is statistically the equivalent of a human association study (the main difference is the ability to replicate measurements and study sets of traits) and therefore, like human association studies, does require very high sample size to map polygenic traits. Like human association studies there is also a high risk of false positive results due to population stratification and non-syntenic marker association. + +

    A good use of a Diversity Panel is as a fine-mapping resource with which to dissect chromosomal intervals already mapped using a conventional cross or GRP. GeneNetwork now includes Mouse Diversity Panel (MDP) data for several data sets. We now typically include all 16 sequenced strains of mice, and add PWK/PhJ, NZO/HiLtJ (two of the eight members of the Collaborative Cross), and several F1 hybrids. The MDP data is often appended at the bottom of the GRP data set with which is was acquired (e.g., BXD hippocampua and BXD eye data sets). + +[Williams RW, June 19, 2005; Dec 4, 2005] +

    + + +    Genotype: The state of a gene or DNA sequence, usually used to describe a contrast between two or more states, such as that between the normal state (wildtype) and a mutant state (mutation) or between the alleles inherited from two parents. All species that are included in GeneNetwork are diploid (derived from two parents) and have two copies of most genes (genes located on the X and Y chromosomes are exceptions). As a result the genotype of a particular diploid individual is actually a pair of genotypes, one from each parents. For example, the offspring of a mating between strain A and strain B will have one copy of the A genotype and one copy of the B genotype and therefore have an A/B genotype. In contrast, offspring of a mating between a female strain A and a male strain A will inherit only A genotypes and have an A/A genotype. + +

    Genotypes can be measured or inferred in many different ways, even by visual inspection of animals (e.g. as Gregor Mendel did long before DNA was discovered). But now the typical method is to directly test DNA that has a well define chromosomal location that has been obtained from one or usually many cases using molecular tests that often rely on polymerase chain reaction steps and sequence analysis. Each case is genotyped at many chromosomal locations (loci, markers, or genes). The entire collection of genotypes (as many a 1 million for a single case) is also sometimes referred to as the cases genotype, but the word "genometype" might be more appropriate to highlight the fact that we are now dealing with a set of genotypes spanning the entire genome (all chromosomes) of the case. + +

    For gene mapping purposes, genotypes are often translated from letter codes (A/A, A/B, and B/B) to simple numerical codes that are more suitable for computation. A/A might be represented by the value -1, A/B by the value 0, and B/B by the value +1. This recoding makes it easy to determine if there is a statistically significant correlation between genotypes across of a set of cases (for example, an F2 population or a Genetic Reference Panel) and a variable phenotype measured in the same population. A sufficiently high correlation between genotypes and phenotypes is referred to as a quantitative trait locus (QTL). If the correlation is almost perfect (r > 0.9) then correlation is usually referred to as a Mendelian locus. Despite the fact that we use the term "correlation" in the preceding sentences, the genotype is actually the cause of the phenotype. More precisely, variation in the genotypes of individuals in the sample population cause the variation in the phenotype. The statistical confidence of this assertion of causality is often estimated using LOD and LRS scores and permutation methods. If the LOD score is above 10, then we can be extremely confident that we have located a genetic cause of variation in the phenotype. While the location is defined usually with a precision ranging from 10 million to 100 thousand basepairs (the locus), the individual sequence variant that is responsible may be quite difficult to extract. Think of this in terms of police work: we may know the neighborhood where the suspect lives, we may have clues as to identity and habits, but we still may have a large list of suspects. + +

    Text here [Williams RW, July 15, 2010]
    + +Back to Index +
    + +
    +H
    + + +    Heritability, h2: +
    +Heritability is a measure of the ability to predict variation in a phenotype among a set of progeny from variation in phenotype of progenitors. A high value of 1 means that a trait is entirely predictable, whereas a value of 0 means that a trait is not heritable. Estimates of heritability are themselves variable population statistics and are dependent on the environment and its stability and on the frequency and interactions among alleles. For the heritable of a trait to be computed it must be variable in the sample population. Heritability can not be computed for a trait such as limb number which is essentially invariant. Important traits that affect fitness often have low heritabilities because stabilizing selection reduces the frequency of gene variants that usually produce suboptimal phenotypes. Conversely, less critical traits for which substantial phenotypic variation is well tolerated may have high heritability. The environment of laboratory mice is unnatural, and this allows the continuous accumulation of somewhat deleterious mutations. This leads to an upward bias in the mean heritability of most traits in laboratory mouse populations--a highly desirable feature from the point of view of the biomedical analysis of trait variance. Heritability is a useful parameter to measure because it provides a rough gauge of the likelihood of successfully understanding the allelic sources of variation in a phenotypes. Highly heritable traits are more ammenable to mapping studies. There are numerous ways to estimate heritability, a few of which are described below. [Williams RW, Dec 23, 2004] +
    + +    h2 Estimated by Intraclass Correlation (termed Heritability in the Basic Statisics window): +
    Heritability can be estimated using the intraclass correlation coefficient. This is essentially a one-way repeated measures analysis of variance (ANOVA) of the reliability of trait data. Difference among strains are considered due to a random effect, whereas the variation among samples within a single strain are considered due to measurement error. We used a method implemented by SAS 9.0 (PROC VARCOMP) that exploits a restricted maximum likelihood (REML) approach to estimate the intraclass correlation coefficient instead of an ordinary least squares method. The general equation for the intraclass correlation is: + +
    r = (Between-strain MS - Within-strain MS)/(Between-strain MS + (n-1)x Within-strain MS) + +
    where n is the average number of cases per strain. The intraclass correlation approaches 1 when there is minimal variation within strains, and strain means differ greatly. In contrast, if difference between strains are less than what would be predicted from the differences within strain, then the intraclass correlation will produce negative estimates of heritability. Negative heritability is usually a clue that the design of the experiment has injected excessive within-strain variance. It is easy for this to happen inadvertently by failing to correct for a batch effect. For example, if one collects the first batch of data for strains 1 through 20 during a full moon, and a second batch of data for these same strains during a rare blue moon, then the apparent variation within strain may greatly exceed the among strain variance. A technical batch effect has been confounded with the within-strain variation and has swamped any among-strain variance. What to do? Fix the batch effect, sex effect, age effect, etc., first! [Williams RW, Chesler EJ, Dec 23, 2004] +
    + + +    h2 Estimated using Hegmann and Possidente's Method (Adjusted Heritability in the Basic Statisics): +
    +A simple estimate of heritability for inbred lines that is computed using the method of Hegmann and Possidente (1981) + +
    h2 = 0.5Va / (0.5Va+Ve) + +
    where Va is the additive genetic variance and Ve is the average environmental variance. The factor 0.5 is applied to adjust for the 2X overestimatation of additive genetic variance among inbred strains (heterozygotes are missing). This estimate of heritability does not make allowances for the within-strain error term. It does have the advantages of never producing negative heritability estimates. [Chesler EJ, Dec 20, 2004] +
    + +

    +    Hitchhiking Effect: +

    + +

    Conventional knockout lines (KOs) of mice are often mixtures of the genomes of two strains of mice. One important consequence of this fact is that a conventional comparison of wildtype and KO litter mates does not only test of the effects of the KO gene itself but also tests the effects of thousands of "hitchhiking" sequence polymorphisms in genes that flank the KO gene. This experimental confound can be difficult to resolve (but see below). This problem was first highlighted by Robert Gerlai (1996). + +

    Genetics of KO Lines. The embryonic stem cells used to make KOs are usually derived from a 129 strain of mouse (e.g., 129/OlaHsd). Mutated stem cells are then added to a C57BL/6J blastocyst to generate B6x129 chimeric mice. Germline transmission of the KO allele is tested and carriers are then used to establish heterozygous +/- B6.129 KO stock. This stock is often crossed back to wildtype C57BL/6J strains for several generations. At each generation the transmission of the KO is checked by genotyping the gene or closely flanking markers in each litter of mice. Carriers are again selected for breeding. The end result of this process is a KO congenic line in which the genetic background is primarily C57BL/6J except for the region around the KO gene. + +

    It is often thought that 10 generations of backcrossing will result in a pure genetic background (99.8% C57BL/6J). Unfortunately, this is not true for the region around the KO, and even after many generations of backcrossing of KO stock to C57BL/6J, a large region around the KO is still derived from the 129 substrain (see the residual white "line" at N10 in the figure below. + +

    +

    + + +

    Legend: Figure from Flaherty, L. (1981) Congenic strains. In The Mouse in Biomedical Research, Vol. 1, Foster, H. L., Small, J. D., and Fox, J. G., eds. (Academic Press, N.Y.), pp. 215-222.

    +
    + + +

    After 20 generations of backcrossing nearly +/-5 cM on either side of the KO will still usually be derived from 129 (see Figure 3.6 from http://www.informatics.jax.org/silver/chapters/3-3.shtml) This amounts to an average of +/- 10 megabases of DNA around the KO. The wildtype littermates do NOT have this flanking DNA from 129 and they will be like a true C57BL/6J. The +/- 10 megabases to either side of the KO is known as the "hitchhiking" chromosomal interval. Any polymorphism between 129 and B6 in this interval has the potential to have significant downstream effects on gene expression, protein expression, and higher order traits such as anxiety, activity, and maternal behavior. Much of the conventional KO literature is highly suspect due to this hitchhiker effect (see Gerlai R, Trends in Neurosci 1996 19:177). + +

    As one example, consider the thyroid alpha receptor hormone gene Thra and its KO. Thra maps to Chr 11 at about 99 Mb. A conventional KO made as described above will have a hitchhiking 129 chromosomal interval extending from about 89 Mb to 109 Mb even after 20 generations of backcrossing to B6. Since the mouse genome is about 2.6 billion base pairs and contains about 26,000 genes, this 20 Mb region will typically contain about 200 genes. The particular region of Chr 11 around Thra has an unusually high density of genes (2-3X) and includes many highly expressed and polymorphic genes, including Nog, Car10, Cdc34, Col1a1, Dlx4, Myst2, Ngfr, Igf2bp1, Gip, the entire Hoxb complex, Sp6, Socs7, Lasp1, Cacnb1, Pparbp, Pnmt, Erbb2, Grb7, Nr1d1, Casc3, Igfbp4, and the entire Krt1 complex. Of these gene roughly half will be polymorphic between B6 and 129. It is like having a busload of noisy and possibly dangerous hitchhikers. Putative KO effects may be generated by a complex subset of these 100 polymorphic genes. + +

    What is the solution? +

      +
    1. Do not use litter mates as controls without great care. They are not really the correct genetic control. The correct genetic control is a congenic strain of the same general type without the KO or with a different KO in a nearby gene. These are often available as KOs in neighboring genes that are not of interest. For example, the gene Casc3 is located next to Thra. If a KO in Casc3 is available, then compare the two KOs and see if phenotypes of the two KOs differ ways predicted given the known molecular functions of the gene. + +
    2. Use a KO in which the KO has been backcrossed to a 129 strain--ideally the same strain from which ES cells were obtained. This eliminates the hitchhiker effect entirely and the KO, HET, and WT littermates really can be compared. + +
    3. Use a conditional KO. + +
    4. Compare the phenotype of the two parental strains--129 and C57BL/6J and see if they differ in ways that might be confounded with the effects of the KO. + +

      +

      + + +

      Legend:from Silver, L. (1995) Oxford University Press, http://www.informatics.jax.org/silver/index.shtml.

      +
      + +

      + +

    + + +Back to Index +
    + +
    +I
    + +    Interquartile Range: +
    The interquartile range is the difference between the 75% and 25% percentiles of the distribution. We divide the sample into a high and low half and then compute the median for each of these halves. In other words we effectively split our sample into four ordered sets of values known as quartiles. The absolute value of the difference between the median of the lower half and the median of the upper half is also called the interquartile range. This estimate of range is insenstive to outliers. If you are curious you might double the IQR to get an interquartile-range-based estimate of the full range. Of course, keep in mind that range is dependent on the sample size. For theis reason the coeffficient of variation (the standard deviation divided by the mean) is a better overall indicator of dispersion of values around the mean that is less sensitive to sample size. [Williams RW, Oct 20, 2004; Jan 23, 2005]
    + +    Interval Mapping: +
    Interval mapping is a process in which the statistical significance of a hypothetical QTL is evaluated at regular points across a chromosome, even in the absence of explicit genotype data at those points. In the case of WebQTL, significance is calculated using an efficient and very rapid regression method in which trait values are compared to the known genotype at a marker or (more commonly) to the probability of a specific genotype at a test location. (The three genotypes are coded as -1, 0, and +1 at known markers, but often have fractional values in the intervals between markers.) The inferred probability of the genotypes in regions that have not been genotyped can be estimated from genotypes of the closest flanking markers. As a consequence of this approach to computing linkage statistics, interval maps have a characteristic shape in which the markers usually appear as sharply defined inflection points, and the intervals between nodes are smooth curves. [Chesler EJ, Dec 20, 2004; RWW April 2005] +
    + +    Interval Mapping Options: +
      +
    • Permutation Test: Select this option to determine the approximate LRS value that matches a genome-wide p-value of .05. + +
    • Bootstrap Test: Select this option to evaluate the consistency with which peak LRS scores cluster around a putative QTL. Deselect this option if it obscures the SNP track or the additive effect track. + +
    • Additive Effect: The additive effect (shown by the red lines in these plots) provide an estimate of the change in the average phenotype that is brought about by substituting a single allele of one type with that of another type. + +
    • SNP Track: The SNP Seismograph Track provides information on the regional density of segregating variants in the cross that may generate trait variants. It is plotted along the X axis. If a locus spans a region with both high and low SNP density, then the causal variant has a higher prior probability to be located in the region with high density than in the region with low density. + +
    • Gene Track: This track overlays the positions of known genes on the physical Interval Map Viewer. If you hover the cursor over genes on this track, minimal information (symbol, position, and exon number) will appear. + +
    • Display from X Mb to Y Mb: Enter values in megabases to regenerate a smaller or large map view. + +
    • Graph width (in pixels): Adjust this value to obtain larger or smaller map views (x axis only). +
    + +
    +
    + +Back to Index +
    + +
    +J
    + + +Back to Index +
    + +
    +K
    + +Back to Index +
    + +
    +L
    + +    Literature Correlation: +
    +The literature correlation is a measure of the similarity of words used to describe genes. Values between 0.5 and 1.0 indicate moderate-to-high levels of similarity of vocabularies. Sets of words that are associated with genes are compared using latent semantic indexing methods. Sets of words associated with genes are extracted from MEDLINE/PubMed abstracts. The Literature Correlation feature is available commercially from ComputableGenomix. + + +
    + +    LOD: +
    + +The log of the odds (LOD) ratio provides a measure of the association between variation in a phenotype and genetic differences (alleles) at a particular chromosomal locus. It also provides a measure of the strength of linkage between two markers and can be used to evaluate whether two or more markers to each other on the same chromosome. + +

    A LOD score is defined as the logarithm of the ratio of two likelihoods: (1) the likelihood for the alternative hypothesis (that there is a QTL) and (2) the likelihood of the null hypothesis (that there is no QTL). Likelihoods are probabilities, but they are not Pr(hypothesis | data) but rather Pr(data | hypothesis). That's why they are called likelihoods rather than probabilities. (The "|" symbol translates to "given the"). + +

    In the two likelihoods, one has maximized over the various nuisance parameters (the mean phenotypes for each genotype group, or overall for the null hypothesis, and the residual variance). Or one can say, one has plugged in the maximum likelihood estimates for these nuisance parameters. + +

    With complete data at a marker, the log likelihood for the normal model reduces to the (-n/2) times the log of the residual sum of squares. + +

    LOD values can be converted to LRS scores (likelihood ratio statistics) by multiplying by 4.61. The LOD is also roughly equivalent to the -log(P), where P is the probability of linkage (P = 0.001 => 3). The LOD itself is not a precise measurement of the probability of linkage, but in general for F2 crosses and RI strains, values above 3.3 will usually be worth attention for simple interval maps. [Williams RW, June 15, 2005, updated with text from Karl Broman, Oct 28, 2010]

    + +    LRS: +
    +The likelihood ratio statistic is a measurement of the association or linkage between differences phenotypes and differences in particular DNA sequence (marker sequence). These values are used in genetic maps of traits, usually plotted on the y-axis. Values above 10 to 15 will usually be worth attention for simple interval maps. The term "likelihood ratio" is used to describe the relative probability of two different explanations for variation in a trait. The first explanation (or model or hypothesis H1) is that the differences in the trait ARE associated with that particular DNA sequence difference. The second "null" hypothesis (Hnull or H0) is that differences in the trait are NOT associated with that particular DNA sequence. We can compute the probability of these two different explanations and use this ratio as our score. If model A is 1000 times more probable than model B, then the ratio of the odds are 1000:1 and the logarithm of the odds ratio is 3. LRS values can be converted to LOD scores (logarithm of the odds ratio) by dividing by 4.61. [Williams RW, Dec 13, 2004, updated Nov 18, 2009]
    + +Back to Index +
    + +
    +M
    + +    Marker Regression: +
    The relationship between differences in a trait and differences in alleles at a marker (or gene variants) can be computed using a regression analysis (genotype vs phenotype) or as a simple Pearson product moment correlation. Here is a simple example that you can try in Excel to understand marker-phenotype regression or marker-phenotype correlation: enter a row of phenotype and genotype data for 20 strains in an Excel spreadsheet labeled "Brain weight." The strains are C57BL/6J, DBA/2J, and 20 BXD strains of mice (1, 2, 5, 6, 8, 9, 12, 13, 14, 15, 16, 18, 21, 22, 23, 24, 25, 27, 28, and 29. The brains of these strains weigh an average (in milligrams) of 465, 339, 450, 390, 477, 361, 421, 419, 412, 403, 429, 429, 436, 427, 409, 431, 432, 380, 394, 381, 389, and 375. (These values are taken from BXD Trait 10032; data by John Belknap and colleagues, 1992. Notice that data are missing for several strains including the extinct lines BXD3, 4, and 7. Data for BXD 11 and BXD19 (not extinct) are also missing. In the second row enter the genotypes at a single SNP marker on Chr 4 called "rs13478021" for the subset of strains for which we have phenotype data. The genotypes at rs1347801 are as follows for 20 BXDs listed above: D B D B D B D D D D D B D B D B D B D B. This string of alleles in the parents and 20 BXDs is called a strains distribution pattern (SDP). Let's convert these SDP letters into more useful numbers, so that we can "compute" with genotypes. Each B gets converted into a -1 and each D allele gets converted into the positive 1. The spreadsheet, the data set of phenotypes and genotypes should look like this. +
    +
    Strain BXD1 BXD2 BXD5 6 8 9 12 13 14 15 16 18 21 22 23 24 25 27 28 29 +
    Brain_weight 450 390 477 361 421 419 412 403 429 429 436 427 409 431 432 380 394 381 389 375 +
    Marker_rs1347801 D B D B D B D D D D D B D B D B D B D B +
    Marker_code 1 -1 1 -1 1 -1 1 1 1 1 1 -1 1 -1 1 -1 1 -1 1 -1 +

    To compute the marker regression (or correlation) we just compare values in Rows 2 and 4. A Pearson product moment correlation gives a value o r = 0.494. A regression analysis indicates that on average those strains with a D allele have a heavier brain with roughly a 14 mg increase for each 1 unit change in genotype; that is a total of about 28 mg if all B-type strains are compared to all D-type strains at this particular marker. This difference is associated with a p value of 0.0268 (two-tailed test). Note that the number of strains is modest and the results are therefore not robust. If you were to add the two parent strains (C57BL/6J and DBA/2J) back into this analysis, which is perfectly fair, then the significance of this maker is lost (r = 0.206 and p = 0.3569). Bootstrap and permutation analyses can help you decide whether results are robust or not. + +[RWW, Feb 20, 2007]

    + + +Back to Index +
    + +
    +N
    + +    Normal Probability Plot: + + +
    +A normal probability plot is a powerful tool to evaluate the extent to which a distribution of values conforms to (or deviates from) a normal Gaussian distribution. The Basic Statistics tools in GeneNetwork provides these plots for any trait. If a distribution of numbers is normal then the actual values and the predicted values based on a z score (units of deviation from the mean measured in standard deviation units) will form a nearly straight line. These plots can also be used to efficiently flag outlier samples in either tail of the distribution. + +

    In genetic studies, the probability plot can be used to detect the effects of major effect loci. A classical Mendelian locus will typically be associated with either a bimodal or trimodal distribution. In the plot below based on 99 samples, the points definitely do not fall on a single line. Three samples (green squares) have unusually high values; the majority of samples fall on a straight line between z = -0.8 to z = 2; and 16 values have much lower trait values than would be predicted based on a single normal distribution (a low mode group). The abrupt discontinuity in the distribution at -0.8 z is due to the effect of a single major Mendelian effect. + +

    Deviations from normality of the sort in the figure below should be considered good news from the point of view of likely success of tracking down the locations of QTLs. However, small numbers of outliers may require special statistical handling, such as their exclusion or winsorising. [RWW June 2011] + + +

    +

    Legend: Example of a probability plot for a trait with a major QTL effect. In this case we have plotted the measured expression value on the Gabra2 receptor mRNA in hippocampus on the y-axis and the expected Z score value on the x-axis.

    +
    +
    + + + +Back to Index +
    + +
    +O
    + +    Outliers: (also see Wikipedia) +
    +

    Statistical methods often assume that the distribution of trait values is close to a Gaussian normal bell-shaped curve and that there are no outlier values that are extremely high or low compared to the average. Some traits can be clearly split into two or more groups (affected cases and unaffected cases) and this is not a problem as long as the number of cases in each group is close to the number that you expected by chance and that your sample size is reasonable high (40 or more for recombinant inbred strains). Mapping functions and most statistical procedure in GeneNetwork should work reasonable well (the pair scan function for epistatic interactions is one possible exception). + +

    However, correlations and QTL mapping methods can be highly sensitive to outlier values. Make sure you review your data for outliers before mapping. GeneNetwork flags all outliers for you in the Trait Data and Analysis window and gives you the option of zapping these extreme values. Options include (1) do nothing, (2) delete the outliers and see what happens to your maps, (3) Winsorize the values of the outliers. You might try all three options and determine if your main results are stable or not. With small samples or extreme outliers, you may find the correlation and mapping results to be volatile. In general, if results (correlations, QTL positions or QTL LRS score) depend highly on one or two outliers (5-10% of the samples) then you should probably delete or winsorize the outliers. + +[Williams RW, Sept 2011] +

    + + + + + +Back to Index +
    + +
    +P
    + + +    Pair-Scan, 2D Genome Scan, or Two-QTL Model: + +
    The pair scan function evaluates pairs of intervals (loci) across the genome to determine how much of the variability in the trait can be explained jointly by two putative QTLs. The pair scan function in GeneNetwork is used to detect effects of pairs of QTLs that have epistatic interactions, although this function also evaluates summed additive effects of two loci. Trait variance is evaluated using a general linear model that has this structure (called a "model"): +
    Variance V(trait) = QTL1 + QTL2 + QTL1xQTL2 + error (where the = sign should be read "a function of" +
    This model is also known as the Full Model (LRS Full in the output table), where QTL1 and QTL2 are the independent additive effects associated with two unlinked loci (the so-called main effects) and QTL1xQTL2 is the interaction term (LRS Interact in the output table). An LRS score is computed for this full model. This is computation identical to computing an ANOVA that allows for an interaction term between two predictors. The additive model that neglects the QTL1XQTL2 term is also computed. + +

    The output table in GeneNetwork list the the two intervals at the top of the table (Interval 1 to the left and Interval 2 to the far right). The LRS values for different components of the model are shown in the middle of the table (LRS Full, LRS Additive, LRS Interact, LRS 1, and LRS 2). Note that LRS 1 and LRS 2 will usually NOT sum to LRS Additive. + +

    CAUTIONS and LIMITATIONS: Pair-scan is only implemented for recombinant inbred strains. We do not recommend the use of this function with sample sizes of less than 60 recombinant inbred strains. Pair-scan procedures need careful diagnostics and an be very sensitive to outliers and to the balance among the four possible two-locus genotype classes among a set of RI strains. Pair-scan is not yet implemented for F2 progeny. + +

    GeneNetwork implements a rapid but non-exhaustive DIRECT algorithm (Lundberg et al., 2004) that efficiently searches for epistatic interactions. This method is so fast that it is possible to compute 500 permutations to evaluate non-parametric significance of the joint LRS value within a minute. This makes DIRECT ideal for an interactive web service. Karl Broman's R/qtl implements an exhaustive search using the "scantwo" function. [RWW, May 2011]

    + + + +    Partial Correlation: +
    + + +

    Partial correlation is the correlation between two variables that remains after controlling for one or more other variables. Idea and techniques used to compute partial correlations are important in testing causal models (Cause and Correlation in Biology, Bill Shipley, 2000). For instance, r1,2||3,4 is the partial correlation between variables 1 and 2, while controlling for variables 3 and 4 (the || symbol is equivalent to "while controlling for"). We can compare partial correlations (e.g., r1,2||3,4) with original correlations (e.g., r1,2). If there is an insignificant difference, we infer that the controlled variables have minimal effect and may not influence the variables or even be part of the model. In contrast, if the partial correlations change significantly, the inference is that the causal link between the two variables is dependent to some degree on the controlled variables. These control variables are either anteceding causes or intervening variables. (text adapted from D Garson's original by RWW). + +

    For more on +partial correlation please link to this great site by David Garson at NC State. + +

    For more on dependence separation ( +d-separation) and constructing causal models see Richard Scheines' site. + + +

    + +

    Why would you use of need partial correlations in GeneNetwork? It is often useful to compute correlations among traits while controlling for additional variables. Partial correlations may reveal more about the causality of relations. In a genetic context, partial correlations can be used to remove much of the variance associated with linkage and linkage disequilibrium. You can also control for age, age, and other common cofactors. + +

    Please see the related Glossary terms "Tissue Correlation". [RWW, Aug 21, 2009; Jan 30, 2010]

    + + + +    PCA Trait: +
    Principal component analysis is also known as factor analysis. GeneNetwork allows you to make a new "synthetic" trait from a collection of many correlated traits. These synthetic traits will often be less noise-prone that any single trait. How to do it: You can select and assemble many different traits into a single Trait Collection window using the check boxes and Add To Collection buttons. One of the most important function buttons in the Collection window is labeled Correlation Matrix. This function computes Pearson product moment correlations and Spearman rank order correlations for all possible pairs of traits in the Collection window. It also perfoms a principal component or factor analysis. For example, if you have 20 traits in the Collection window, the correlation matrix will consist of 20*19 or 190 correlations and the identity diagonal. Principal components analysis is a linear algebraic procedure that finds a small number of independent factors or principal components that efficiently explain variation in the original 20 traits. It is a effective method to reduce the dimensionality of a group of traits. If the 20 traits share a great deal of variation, then only two or three factors may explain variation among the traits. Instead of analyzing 20 traits as if they were independent, we can now analyze the main principal components labeled PC01, PC02, etc. PC01 and PC02 can be treated as new synthetic traits that represent the main sources of variation among original traits. You can treat a PC trait like any other trait except that it is not stored permanently in a database table. You can put a PC trait in your Collection window and see how well correlated each of the 20 original traits is with this new synthetic trait. You can also map a PC trait. [RWW, Aug 23, 2005]
    + + +    Permutation Test: +
    A permutation test is a computationally intensive but conceptually simple method used to evaluate the statisical significance of findings. Permutation tests are often used to evaluate QTL significance. Some background: In order to detect parts of chromosomes that apparently harbor genes that contribute to differences in a trait's value, it is common to search for associations (linkage) across the entire genome. This is referred to as a "whole genome" scan, and it usually involves testing hundreds of independently segregating regions of the genome using hundreds, or even thousands of genetic markers (SNPs and microsatellites). A parametric test such as a conventional t test of F test can be used to estimate the probability of the null hypothesis at any single location in the genome (the null hypothesis is that there is no QTL at this particular location). But a parametric test of this type makes assumptions about the distribution of the trait (its normality), and also does not provide a way to correct for the large number of independent tests that are performed while scanning the whole genome. We need protection against many false discoveries as well as some assurance that we are not neglecting truly interesting locations. A permutation test is an elegant solution to both problems. The procedure involves randomly reassigning (permuting) traits values and genotypes of all cases used in the analysis. The permuted data sets have the same set of phenotypes and genotypes (in other words, distributions are the same), but obviously the permutation procedure almost invariably obliterates genuine gene-to-phenotype relation in large data sets. We typically generate several thousand permutations of the data. Each of these is analyzed using precisely the same method that was used to analyze the correctly ordered data set. We then compare statistical results of the original data set with the collection of values generated by the many permuted data sets. The hope is that the correctly ordered data are associated with larger LRS and LOD values than more than 95% of the permuted data sets. This is how we define the p = .05 whole genome significance threshold for a QTL. Please see the related Glossary terms "Significant threshold" and "Suggestive threshold". [RWW, July 15, 2005]
    + + +    Probes and Probe Sets: +
    In microarray experiments the probe is the immobilized sequence on the array that is complementary to the target message washed over the array surface. Affymetrix probes are 25-mer DNA sequences synthesized on a quartz substrate. There are a few million of these 25-mers in each 120-square micron cell of the array. The abundance of a single transcript is usualy estimated by as many as 16 perfect match probes and 16 mismatch probes. The collection of probes that targets a particular message is called a probe set. [RWW, Dec 21, 2004]
    + + + +Back to Index +
    + + +
    +Q
    +    QTL: +
    A quantitative trait locus is a chromosome region that contains one or more sequence variants that modulates the distribution of a variable trait measured in a sample of genetically diverse individuals from an interbreeding population. Variation in a quantitative trait may be generated by a single QTL with the addition of some environmental noise. Variation may be oligogenic and be modulated by a few independently segregating QTLs. In many cases however, variation in a trait will be polygenic and influenced by large number of QTLs distributed on many chromosomes. Environment, technique, experimental design and a host of other factors also affect the apparent distribution of a trait. Most quantitative traits are therefore the product of complex interactions of genetic factors, developmental and epigenetics factors, environmental variables, and measurement error. [Williams RW, Dec 21, 2004]
    + +Back to Index +
    + +
    +R
    + +    Recombinant Inbred Strain (RI or RIS) or Recombinant Inbred Line (RIL): +
    An inbred strain whose chromosomes incorporate a fixed and permanent set of recombinations of chromosomes originally descended from two or more parental strains. Sets of RI strains (from 10 to 5000) are often used to map the chromosomal positions of polymorphic loci that control variance in phenotypes. + +

    For a terrific short summary of the uses of RI strains see Lee Silver's Mouse Genetics (1995). For an complementary history on RI strains see the article by JF Crow (2007). + +

    Chromosomes of RI strains typically consist of alternating haplotypes of highly variable length that are inherited intact from the parental strains. In the case of a typical rodent RI strain made by crossing maternal strain C with paternal strain B (called a CXB RI strain), a chromosome will typically incorporate 3 to 5 alternating haplotype blocks with a structure such as BBBBBCCCCBBBCCCCCCCC, where each letter represents a genotype, series of similar genotype represent haplotypes, and where a transition between haplotypes represents a recombination. Both pairs of each chromosome will have the same alternating pattern, and all markers will be homozygous. Each of the different chromosomes (Chr 1, Chr 2, etc.) will have a different pattern of haplotypes and recombinations. The only exception is that the Y chromosome and the mitochondial genome, both of which are inherited intact from the paternal and maternal strain, respectively. For an RI strain to be useful for mapping purposes, the approximate position of recombinations along each chromsome need to be well defined either in terms of centimorgan or DNA basepair position. The precision with which these recombinations are mapped is a function of the number and position of the genotypes used to type the chromosomes--20 in the example above. + +

    RI strains are almost always studied in sets or panels. All else being equal, the larger the set of RI strains, the greater the power and resolution with which phenotypes can be mapped to chromosomal locations. The first set of eight RIs, the CXB RIs, were generated by Donald Bailey (By) from an intercross between a female BALB/cBy mouse (abbreviated C) and a male C57BL/6By mouse in the 1960s. The small panel of 8 CXB strains was originally used to determine if the Major Histocompatibility (MHC) locus on proximal Chr 17 was a key factor in different immune responses such as tissue rejection. The methods used to determine the locations of recombinations relied on visible markers (coat color phenotypes such as the C and B loci) and the electrophoretic mobility of proteins. Somewhat larger RI sets were generated by Benjamin Taylor to map Mendelian and other major effect loci. In the 1990s the utility of RI sets for mapping was significantly improved thanks to higher density genotypes made possible by the use of microsatellite markers. Between 2005 and 2007, virtually all extant mouse and rat RI strains were regenotyped at many thousands of SNP markers, providing highly accurate maps of recombinations. + +

    While the potential utility of RI strains is the mapping analysis of complex polygenic traits was obvious from the outset, the small number of strains only made it feasible to map quantitative traits with very large effects (quasi-Mendelian loci). The first large RI sets were generated by plant geneticists (Burr et al. 2000) and this large community holds a strong lead in the production of large RI sets to study multigenic and polygenic traits and trait covariance and pleiotropy. + +

    Making RI strains: The usual procedure typically involves sib mating of the progeny of an F1 intercross for more than 20 generations. Even by the 5th filial (F) generation of successive matings, the RI lines are homozygous at 50% of loci and by F13, the value is above 90%. At F20 the lines are nearly fully inbred (~98%) and by convention are now referred to as inbred strains rather than inbred lines. + + + +

    +

    + + +

    Legend:from Silver, L. (1995) Oxford University Press, http://www.informatics.jax.org/silver/index.shtml.

    +
    + + + + + + + + + + + + + [Williams RW, June 20, 2005; significant extension, Sept 21, 2007, added Crow ref, Oct 2009]
    + +Back to Index +
    + +
    +S
    + +    Scree Plots: +
    GeneNetwork will often automatically generate a Scree Plot and the associated principal components (PCs) when you compute a Correlation Matrix for a group of traits that you have placed in your Trait Collection (a set of phenotypes and/or expression data for a specific population). Here is a nice definition of what a Scree plot is trying to tell you adopted and adapted from IOS (www.improvedoutcomes.com). + +

    A Scree Plot is a simple line segment plot that shows the fraction of total variance in the data as explained or represented by each PC. The PCs are ordered, and by definition are therefore assigned a number label, by decreasing order of contribution to total variance. The PC with the largest fraction contribution is labeled PC01. Such a plot when read left-to-right across the abscissa can often show a clear separation in fraction of total variance where the 'most important' components cease and the 'least important' components begin. The point of separation is often called the 'elbow'. (In the PCA literature, the plot is called a 'Scree' Plot because it often looks like a 'scree' slope, where rocks have fallen down and accumulated on the side of a mountain.) [Williams RW, Dec 20, 2008]

    + +    Significant threshold: +
    The significant threshold represents the approximate LRS value that corresponds to a genome-wide p-value of 0.05, or a 5% probability of falsely rejecting the null hypothesis that there is no linkage anywhere in the genome. This threshold is computed by evaluating the distribution of highest LRS scores generated by a set of 2000 random permutations of strain means. For example, a random permutation of the correctly ordered data may give a peak LRS score of 10 somewhere across the genome. The set of 1000 or more of these highest LRS scores is then compared to the actual LRS obtained for the correctly ordered (real) data at any location in the genome. If fewer than 50 (5%) of the 1000 permutations have peak LRS scores anywhere in the genome that exceed that obtained at a particular locus using the correctly ordered data, then one can usually claim that a QTL has been defined at a genome-wide p-value of .05. The threshold will vary slightly each time it is recomputed due to the random generation of the permutations. You can view the actual histogram of the permutation results by selecting the "Marker Regression" function in the Analysis Tools area of the Trait Data and Editing Form. WebQTL does make it possible to search through hundreds of traits for those that may have significant linkage somewhere in the genome. Keep in mind that this introduces a second tier of multiple testing problems for which the permutation test will not usually provide adequate protection. If you anticipate mapping many independent traits, then you will need to correct for the number of traits you have tested. [Williams RW, Nov 14, 2004]
    + +    SNP Seismograph Track: +
    SNP is an acronym for single nucleotide polymorphisms (SNPs). SNPs are simple one base pair variants that distinguish individuals and strains. The SNP Seismograph track is a unique feature of physical maps in the GeneNetwork. Each track is customized for a particular cross and shows only those SNPs that differ between the two parental strains. For example, on mouse BXD maps, only the SNPs that differ between C57BL/6J and DBA/2J will be displayed. Regions with high numbers of SNPs are characterised by wider excursions of the yellow traces that extends along the x axis. Since these regions have many SNPs they have a higher prior probability of containing functional sequence differences that might have downstream effects on phenotypes. Large genes with many SNPs close to the peak LRS and that also have a biological connection with the trait ypu are studying are high priority candidate genes. + +

    The SNP track in WebQTL exploits the complete Celera Discovery System SNP set but adds an additional 500,000 inferred SNPs in both BXD and AXB/BXA crosses. These SNPs were inferred based on common haplotype structure using an Monte Carlo Markov chain algorithm developed by Gary Churchill and Natalie Blades and implemented by Robert Crowell, and RWW in July 2004. Raw data used to generate the SNP seismograph track were generated by Alex Williams and Chris Vincent, July 2003. The BXD track exploits a database of 1.75 million B vs D SNPs, whereas the AXB/BXA track exploits a database of 1.80 million A vs B SNPs. The names, sequences, and precise locations of most of these SNPs are the property of Celera Discovery Systems, whom we thank for allowing us to provide this level of display in WebQTL. + +

    Approximately 2.8 million additional SNPs generated by Perlegen for the NIEHS have been added to the SNP track by Robert Crowell (July-Aug 2005). We have also added all Wellcome-CTC SNPs and all relevant mouse SNPs from dbSNP. + +[Williams RW, Dec 25, 2004; Sept 3, 2005] +

    + + +    Standard Error of the Mean (SE or SEM): +
    In most GeneNetwork data sets, the SEM is computed as: +
    Standard Deviation (SD) divided by the square root of n - 1 +
    where n is the number of independent biological samples used to estimate the population mean. What this means in practice is that when n = 2 (as in many microarray data sets), the SEM and the SD are identical. This method of computing the SEM is conservative, but corrects to some extent for well known bias of the SEM discussed by Gurland and Tripathi (1971, A simple approximation for unbiased estimation of the standard deviation. Amer Stat 25:30-32). [Williams RW, Dec 17, 2008]
    + +    Strain Distribution Pattern: +
    A marker such as a SNP or microsatellite is genotyped using DNA obtained from each member of the mapping population. In the case of a genetic reference population, such as the BXD strains or the BayXSha Arabadopsis lines, this results in a text string of genotypes (e.g., BDDDBDBBBBDDBDDDBBBB... for BXD1 through BXD100). Each marker is associated with its own particular text string of genotypes that is often called the strain distribution pattern of the marker. (A more appropriate term would be the marker genotype string.) This string is converted to a numerical version, a genotype vector: -1111-11-1-1-1-111-1111-1-1-1-1..., where D=1, B=-1, H=0. Mapping a trait boils down to performing correlations between each trait and all of the genotype vectors. The genotype vector with the highest correlation (absolute value) is a good candidate for a QTL. [Williams RW, June 18, 2005]
    + +    Suggestive Threshold: +
    The suggestive threshold represents the approximate LRS value that corresponds to a genome-wide p-value of 0.63, or a 63% probability of falsely rejecting the null hypothesis that there is no linkage anywhere in the genome. This is not a typographical error. The Suggestive LRS threshold is defined as that which yields, on average, one false positive per genome scan. That is, roughly one-third of scans at this threshold will yield no false positive, one-third will yield one false positive, and one-third will yield two or more false positives. This is a very permissive threshold, but it is useful because it calls attention to loci that may be worth follow-up. Regions of the genome in which the LRS exceeds the suggestive threshold are often worth tracking and screening. They are particularly useful in combined multicross metaanalysis of traits. If two crosses pick up the same suggestive locus, then that locus may be significant when the joint probability is computed. The suggestive threshold may vary slightly each time it is recomputed due to the random generation of permutations. You can view the actual histogram of the permutation results by selecting the "Marker Regression" function in the Analysis Tools area of the Trait Data and Editing Form. [Williams RW and Manly KF, Nov 15, 2004]
    + +    Systems Genetics: +
    Systems genetics or "network genetics" is an emerging new branch of genetics that aims to understand complex causal networks of interactions at multiple levels of biological organization. To put this in a simple context: Mendelian genetics can be defined as the search for linkage between a single trait and a single gene variant (1 to 1); complex trait analysis can be defined as the search for linkage between a single trait and a set of gene variants (QTLs, QTGs, and QTNs) and environmental cofactors (1 to many); and systems genetics can be defined as the search for linkages among networks of traits and networks of gene and environmental variants (many to many). + +

    A hallmark of systems genetics is the simultaneous consideration of groups (systems) of phenotypes from the primary level of molecular and cellular interactions that ultimately modulate global phenotypes such as blood pressure, behavior, or disease resistance. Changes in environment are also often important determinants of multiscalar phenotypes; reversing the standard notion of causality as flowing inexorably upward from the genome. Scientists who use a systems genetics approach often have a broad interest in modules of linked phenotypes. Causality in these complex dynamic systems is often contingent on environmental or temporal context, and often will involve feedback modulation. A systems genetics approach can be unusually powerful, but does require the use of large numbers of observations (large sample size), and more advanced statistical and computational models. + +

    Systems genetics is not really a new field and traces back to Sewall Wright's classical paper (Wright, 1921, "Correlation and Causation") that introduced path analysis to study systems of related phenotypes. Two factors have invigorated this field. The first factor is the advent of more sophisticated statistical methods including Structural Equation Modeling (SEM), System Dynamics Modeling, and Bayesian Network Modeling combined with powerful computer systems and efficient algorithms. The second factor is the relative ease with which it is now possible to acquire extensive and diverse phenotype data sets across genetic reference populations such as the BXD set of mice, the HXB set of rats, and the BayXSha lines of Arabidopsis (data are incorporated in the GeneNetwork). In the case of the BXD strains, a large research community has collectively generated hundreds of thousands of transcript phenotypes in different tissues and cells (level of expression), as well as hundreds of protein, cellular, pharmacological, and behavioral data types across a single genetic reference panel. Evaluating and modeling the associative and causal relations among these phenotypes is a major, and still relatively new area of research. Complex trait analysis and QTL mapping are both part of systems genetics in which causality is inferred using conventional genetic linkage (Li et al., 2005). One can often assert with confidence that a particular module of phenotypes (component of the variance and covariance) is modulated by sequence variants at a common locus. This provides a causal constraint that can be extremely helpful in more accurately modeling network architecture. Most models are currently static, but as the field matures, more sophisticated dynamic models will supplant steady-state models. + +

    The term "systems genetics" was coined by Grant Morahan, October 2004, during a visit to Memphis, as a more general and appropriate term to use instead of "genetical genomics." [Williams RW, April 11, 2005, revised Oct 22, 2005, April, 2008]

    + + +Back to Index +
    + +
    +T
    + +    Tissue Correlation: +
    The tissue correlation is an estimate of the similarity of expression of two genes across different cells, tissues, or organs. In order to compute this type of correlation we first generate expression data for multiple different cell types, tissues, or whole organs from a single individual. There will be significant differences in gene expression across this sample and this variation can then be used to compute either Pearson product-moment correlations (r) or Spearman rank order correlations (rho) between any pair of genes, transcripts, or even exons. Since the samples are ideally all from one individual there should not be any genetic or environmental differences among samples. The difficulty in computing tissue correlations is that samples are not independent. For example, three samples of the small intestine (jejunum, ilieum, and duodenum) will have expression patterns that are quite similar to each other in comparison to three other samples, such as heart, brain, and bone. For this reason the nature of the sampling and how those samples are combined will greatly affect the correlation values. The tissue correlations in GeneNetwork were computed in a way that attempts to reduce the impact of this fact by combining closely related sample types. For example multiple data sets for different brain region were combined to generate a single average CNS tissue sample (generating a whole brain sample would have been an alternative method). + +

    However, there is really not optimal way to minimize the effects of this type of non-independence of samples. Some genes will have high expression in only a few tissues, for example the cholinergic receptor, nicotinic, alpha polypeptide 1 gene Chrna1 has high expression in muscle tissues (skeletal muscle = Mus, tongue = Ton, and esophagus = Eso) but lower expression in most other tissues. The very high correlation between Chrna1 and other genes with high expression only in muscle reflects their joint bimodality of expression. It does not mean that these genes or their proteins necessarily cooperate directly in molecular processes. [Williams RW, Dec 26, 2008]

    + +

    +

    + + +

    Legend: The tissue correlation between the expression of the cholinergic receptor, nicotinic, alpha polypeptide 1 gene (Chrna1) and that of the myogenic factor 6 gene Myf6. The Pearson product-moment correlation is extremely high. This is largely due to the fact that the expression values are not normally distributed across the 25 samples. The rank order correlation is a more conservative estimate. (

    +
    + +    Transcript Location: +
    The small orange triangle on the x-axis indicates the approximate position of the gene that corresponds to the transcript. These values were taken from the latest assembly of genome of the particular species.
    + +    Transform: +
    Most of the data sets in the GeneNetwork are ultimately derived from high resolution images of the surfaces of microarrays. Estimates the gene expression therefore involves extensive low-level image analysis. These processesing steps attempt to compensate for low spatial frequency "background" variation in image intensity that cannot be related to the actual hybridization signal, for example, a gradation of intensity across the whole array surface due to illumination differences, uneven hybridization, optical performance, scanning characteristics, etc. High spatial frequeny artifacts are also removed if they are likely to be artifacts: dust, scrathes on the array surface, and other "sharp" blemishes. The raw image data (for example, the Affymetrix DAT file) also needs to be registered to a template that assigns pixel values to expected array spots (cells). This image registration is an important process that users can usually take for granted. The end result is the reliable assignment of a set of image intensity values (pixels) to each probe. Each cell value generated using the Affymetrix U74Av2 array is associated with approximately 36 pixel intensity values (a 6x6 set of pixels, usually an effective 11 or 12-bit range of intensity). Affymetrix uses a method that simply ranks the values of these pixels and picks as the "representative value" the pixel that is closest to a particular rank order value, for example, the 24th highest of 36 pixels. The range of variation in intensity values amoung these ranked pixels provides a way to estimate the error of the estimate. The Affymetrix CEL files therefore consist of XY coordinates, the consensus value, and an error term. [Williams RW, April 30, 2005] + +
    + +    Transgression: +
    Most of us are familiar with the phrase "regression toward the mean." This refers to the tendency of progeny of a cross to have phenotype that are intermediate to those of the parents. Transgression refers to the converse: progeny that have more phenotypes that are higher and lower than those of either parent. Transgression is common, and provided that a trait is influenced by many independent sequence variants (a polygenic trait), transgression is the expectation. This is particularly true if the parents are different genetically, but by chance have similar phenotypes. Consider a trait that is controlled by six independent genes, A through F. The "0" allele at these size genes lowers body weight whereas the "1" allele increases body weight. If one parent has a 000111 6-locus genotype and the other parent has 111000 genotype, then they will have closely matched weight. But their progeny may inherit combinations as extreme as 000000 and 111111. + +

    Transgression means that you can rarely predict the distribution of phenotypes among a set of progeny unless you already have a significant amount of information about the genetic architecture of a trait (numbers of segregating variants that affect the trait, either interactions, and GXE effects). In practical terms this means that if the parents of a cross do NOT differ and you have good reasons to believe that the trait you are interested in is genetically complex, then you can be fairly confident that the progeny will display a much wider range of variation that the parents. [May 2011 by RWW] + + +

    + + +Back to Index +
    + +
    +U
    + +Back to Index +
    + +
    +V
    + +Back to Index +
    + +
    +W
    + +Back to Index +
    + +
    +X
    + +Back to Index +
    + +
    +Y
    + +Back to Index +
    + +
    +Z
    + +Back to Index +
    + + +
    + +You are welcome to cite or reproduce these glossary definitions. Please cite or link: +
    Author AA. "Insert Glossary Term Here." +From The WebQTL Glossary--A GeneNetwork Resource. www.genenetwork.org/glossary.html +
    +
    +
    + + + + + + +     About this text file +
    +Glossary begun November 2004 by RWW. Last edits: June 16, 2005 by RWW.
    + +
    +
    + + + +
    + +
    + + + + + + + diff --git a/web/header.html b/web/header.html new file mode 100644 index 00000000..71d27162 --- /dev/null +++ b/web/header.html @@ -0,0 +1,60 @@ +
      + + + + + + +
    + + + + + + + + + WebQTL +
    +
     
    + + + + + +
    +   |    + +Home +   |    + +Search +   |    + +Help +   |    + + +News +   |    + + +References +   |    + +Policies +   |    + + +Links +   |    + +    +
    +
    + + + + + + + + + + +
    + + + +
    + +

    What is QTL heatmap? modify this page

    + +
    +The upper part of this page includes a hierarchical cluster tree of the set of traits you selected in the previous window. To generate this plot, we initially compute distances between pairs of traits using (1 - r) where r is the Pearson product-moment correlation. The hierarchy is assembled by successively linking traits and groups of traits. +

    +The lower part of this page provides a QTL heat map for all members of the Cluster Tree, extending from proximal Chr 1 at the top to distal Chr X at the bottom. Each vertical column or stripe encodes the genome-wide p value computed on the basis of 1000 permutations. Orange triangles mark the approximate location of genes. +

    +These QTL heat maps can be redrawn using alternative color assignments using the "Redraw Cluster Tree" option. The default heat map is "Grey + Blue + Red" in which more intense colors mark chromosomal regions with comparatively high linkage statistics and the spectrum encodes the allelic effect. For example, blue-green regions are those in which one of the parental alleles (e.g., C57BL/6J) is associated with higher trait values, whereas red-yellow regions are those in which the other parental allele is associated with higher trait values. Grey and black regions have insignfiicant linkage to trait variance. The "Blue + Red" option is similar but the entire genome is encoded for allele polarity, including regions without significant linkage. Finally, " Single Spectrum" provides a plot that does not distinguish between allelic effects and encodes the p values, ranging from insignificant (dark blue) to genome-wide significant (bright red). +

    +
    + +

    +
    +
    + + + +
    + +
    + + + + + + + + + diff --git a/web/home.html b/web/home.html new file mode 100755 index 00000000..e3904d16 --- /dev/null +++ b/web/home.html @@ -0,0 +1,183 @@ + +Introduction + + + + + + + + + + + + + + + + + + + +
    + + + + +
    +

    What is GeneNetwork? + modify this page

    +
    + +

    GeneNetwork is a group of linked data sets and tools used to study complex networks of genes, molecules, and higher order gene function and phenotypes. GeneNetwork combines more than 25 years of legacy data generated by hundreds of scientists together with sequence data (SNPs) and massive transcriptome data sets (expression genetic or eQTL data sets). The quantitative trait locus (QTL) mapping module that is built into GN is optimized for fast on-line analysis of traits that are controlled by combinations of gene variants and environmental factors. GeneNetwork can be used to study humans, mice (BXD, AXB, LXS, etc.), rats (HXB), Drosophila, and plant species (barley and Arabidopsis). Most of these population data sets are linked with dense genetic maps (genotypes) that can be used to locate the genetic modifiers that cause differences in expression and phenotypes, including disease susceptibility.

    + +

    +Users are welcome to enter their own private data directly into GeneNetwork to exploit the full range of analytic tools and to map modulators in a powerful environment. This combination of data and fast analytic functions enable users to study relations between sequence variants, molecular networks, and function.

    +
    + +

    What can I do with GeneNetwork?

    + +
    + +

    QTL Mapping:

    + +

    Interval Mapping: Statistical tests of association between trait values and the genotypes of marker loci through the genome. A significant association is interpreted as indicating the presence of a QTL linked to the marker that shows the association.

    + +

    Simple interval mapping: This method evaluates the association between the trait values and the expected genotype of a hypothetical QTL (the target QTL) at multiple analysis points between each pair of adjacent +marker loci. The analysis point that yields the most significant associations may be taken as the location of a putative QTL. Bootstrap methods may be performed for estimating confidence intervals on QTL location.

    + +

    Composite interval mapping: Like simple interval mapping, this method evaluates the possibility of a target QTL at multiple analysis points across each interlocus interval. However, at each point it also includes in the analysis the effect of one or more markers elsewhere in the genome. These markers, also called background markers, have previously been shown to be associated with the trait and therefore are each presumably close to another QTL (a background QTL).

    + +

    Pair-scan: This method evaluates all marker pairs in two-locus models including main effects of each locus and their interaction. These allow discovery of multiple QTL models for complex phenotypes. For all mapping methods Permutation tests may also be selected to establish empirical significance thresholds.

    +
    + +
    +

    Multiple Types of Correlation Analysis: Enables you to study the correlation between traits using a variety of methods including Pearson and Spearman correlations, partial correlations, literature correlations (based on Semantic Gene Organizer data), and tissue correlations. Trait values entered by users or retrieved from the databases can also be correlated "in bulk" against any other database of phenotype from the population of cases.

    + +

    Correlation Matrix / Principal Components Analysis: Enables you to compare the values of up to 100 traits in a Trait Collection using correlation matrices. You can export correlations matrices and you can generate novel synthetic phenotypes by using the Principal Component derivatives of your group of traits..

    + +

    QTL Heatmaps: Enables you to simultaneously map and analyze up to 100 traits using the QTL heatmap feature. The traits can be ordered by similarity of correlation (hierarchical clustering) or by their order in the genome. The QTL Heatmaps make is easy to identify common and unique genetic determinants of large sets of phenotypes.

    + +

    Compare Correlates: Enables you to find shared genetic correlates among a group of traits by correlating them with all records from any database.

    + +

    Network Graph: Enables you to examine the network of associations among large groups of phenotypes. Most graphs are interactive and allow users to define interesting trait sets which can be temporarily stored for further analysis in GeneNetwork.

    +
    + +
    +

    Systems Genetics and Complex Trait Analysis:

    +

    GeneNetwork pages are extensively connected to external + resources. Numerous links to the UCSC and Ensembl Genome Browsers, PubMed, Entrez Gene, GNF Expression + Atlas, ABI Panther, and WebGestalt provide users with + rapid interpretive information about genomic regions, published phenotypes and + genes highlighted in WebQTL.

    +
    +
    +

    How to Use WebQTL?

    +

      1. Choose RI set and data source:

    +
    + + + + + + + + + + + + + + + +
    + + +

    First select the genetic reference population from the menu. Then you have + the options to import the trait data from a file or simply enter trait data + by pasting or typing multiple values into the text box assigned. You can + also leave both blank and input the values during next step. Check the + trait variance checkbox if you want to use your trait variance data in + WebQTL.

    +
    +

    OR

    +
    +

    You can map loci controlling traits for phenotypes in + recombinant inbred sets by searching our database.

    +
    + +
    +

      2. Check data and set thresholds:

    +
    + + + + + + + + +
    + + +

    During this step, you may check your data for accuracy and edit it, + if necessary, before analysis. If you haven't entered data, you can now + input data into corresponding boxes individually. You can manually set + the minimal LRS for display and for significance, otherwise default values + will be assigned if both are left blank. If you want your result to be + returned in an email, enter your email address in the assigned box. WebQTL + will repeat step one and two to let user enter trait variance data if you + select that option.

    +
    + +
    +

      3. Mapping:

    +
    + + + + + + + + + + + +
    + +

    Once all you data have been entered and checked, you now can do + various mapping analyses using your data against the genotypes of the + cross or recombinant inbred set you have chosen. The result of each + analysis will be returned in a separate window.

    +
    +
    + +
    +
    +
    +
    +
    + + + +
    + +
    + + + + + + + + + diff --git a/web/humanCross.html b/web/humanCross.html new file mode 100755 index 00000000..ecf65e2d --- /dev/null +++ b/web/humanCross.html @@ -0,0 +1,198 @@ + +Human Case Information + + + + + + + + + + + + + + + + + +
    + + + + + +
    + +

    Information on Human Data Setsmodify this page

    + + +
    +

    These human data sets are under development and not all features have been implemented in GeneNetwork. Mapping functions have not been implemented but it is possible to study the expression and covariation of transcripts.

    +
    + + + +Human Liver Cohort (GSE9588 from GEO, entered into GeneNetwork, March 2011): + +
    + +

    Please review and cite: Mapping the genetic architecture of gene expression in human liver. Eric E. Schadt, Cliona Molony, Eugene Chudin, Ke Hao, Xia Yang, Pek Y. Lum, Andrew Kasarskis, Bin Zhang, Susanna Wang, Christine Suver, Jun Zhu, Joshua Millstein, Solveig Sieberts, John Lamb, Debraj GuhaThakurta, Jonathan Derry, John D. Storey, Iliana Avila-Campillo, Mark J. Kruger, Jason M. Johnson, Carol A. Rohl, Atila van Nas, Margarete Mehrabian, Thomas A. Drake, Aldons J. Lusis, Ryan C. Smith, F. Peter Guengerich, Stephen C. Strom, Erin Schuetz, Thomas H. Rushmore, Roger Ulrich. PLoS Biol, 2008. 6(5): p. e107. PMID: 18462017

    + +

    Systematic Genetic and Genomic Analysis of Cytochrome P450 Enzyme Activities in Human Liver. Xia Yang, Bin Zhang, Cliona Molony, Eugene Chudin, Ke Hao, Jun Zhu, Christine Suver, Hua Zhong, F. Peter Guengerich, Stephen C. Strom, Erin Schuetz, Thomas H. Rushmore, Roger G. Ulrich, J. Greg Slatter, Eric E. Schadt, Andrew Kasarskis, Pek Yee Lum. Genome Res. 2010 Aug;20(8):1020-36.

    + +

    The Human Liver Cohort (HLC) study aimed to characterize the genetic +architecture of gene expression in human liver using genotyping, gene expression +profiling, and enzyme activity measurements of Cytochrom P450. The HLC was +assembled from a total of 780 liver samples screened. These liver samples +were acquired from caucasian individuals from three independant tissue +collection centers. DNA samples were genotyped on the Affymetrix 500K SNP +and Illumina 650Y SNP genotyping arrays representing a total of 782,476 unique +single nucleotide polymorphisms (SNPs). Only the genotype data from those +samples which were collected postmortem are accessible in dbGap. These 228 +samples represent a subset of the 427 samples included in the Human Liver +Cohort Publication (Schadt, Molony et al. 2008). RNA samples were profiled on +a custom Agilent 44,000 feature microarray composed of 39,280 oligonucleotide +probes targeting transcripts representing 34,266 known and predicted genes, +including high-confidence, noncoding RNA sequences. Each of the liver samples +was processed into cytosol and microsomes using a standard differential +centrifugation method. The activities of nine P450 enzymes (CYP1A2, 2A6, 2B6, +2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) in isolated microsomes from 398 HLC liver +samples were measured in the microsome preparations using probe substrate +metabolism assays expressed as nmol/min/mg protein. Each was measured with a +single substrate except for the CYP3A4 activity that was measured using two +substrates, midazolam and testosterone.

    +

    Summary from GEO: "To uncover the genetic determinants affecting expression in a metabolically active tissue relevant to the study of obesity, diabetes, atherosclerosis, and other common human diseases, we profiled 427 human liver samples on a comprehensive gene expression microarray targeting greater than 40,000 transcripts and genotyped DNA from each of these samples at greater than 1,000,000 SNPs. The relatively large sample size of this study and the large number of SNPs genotyped provided the means to assess the relationship between genetic variants and gene expression and it provided this look for the first time in a non-blood derived, metabolically active tissue. A comprehensive analysis of the liver gene expression traits revealed that thousands of these traits are under the control of well defined genetic loci, with many of the genes having already been implicated in a number of human diseases."

    + +
    + + + + +Alzheimer's disease Cases and Controls Liang (July 2009): + +
    + +

    Please cite: Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 105:4441-4446. + +

    Summary from GEO: "Information about the genes that are preferentially expressed during the course of Alzheimer's disease (AD) could improve our understanding of the molecular mechanisms involved in the pathogenesis of this common cause of cognitive impairment in older persons, provide new opportunities in the diagnosis, early detection, and tracking of this disorder, and provide novel targets for the discovery of interventions to treat and prevent this disorder. Information about the genes that are preferentially expressed in relationship to normal neurological aging could provide new information about the molecular mechanisms that are involved in normal age-related cognitive decline and a host of age-related neurological disorders, and they could provide novel targets for the discovery of interventions to mitigate some of these deleterious effects."

    + +
    + + + + +Alzheimer's disease Cases and Controls Myers (April 2009): + +
    + +

    Expression quantitative trait loci study using human brain from 363 cortical samples. Affymetrix 500K chip for genotyping, Illumina ref-seq 8 chip for expression. Genotypes are available at dbGAP. + +

    +Please cite: Webster JA, Gibbs JR, Clarke J, Ray M, Zhang W, Holmans P, Rohrer K, Zhao A, Marlowe L, Kaleem M, McCorquodale DS 3rd, Cuello C, Leung D, Bryden L, Nath P, Zismann VL, Joshipura K, Huentelman MJ, Hu-Lince D, Coon KD, Craig DW, Pearson JV; NACC-Neuropathology Group, Heward CB, Reiman EM, Stephan D, Hardy J, Myers AJ (2009) Genetic control of human brain transcript expression in Alzheimer disease. Am J Hum Genet 84:445-58. + + +

    Summary from GEO: Myers and colleagues generated massive neocortical transcriptome data sets for a set of unrelated elderly neurologically and neuropathologically normal humans and from confirmed late onset Alzheimer's disease patients (LOAD, n = 187 normal and 176 LOAD cases, see DOI:10.1016/j.ajhg.2009.03.011 for detail). They used an Illumina Sentrix Bead array (HumanRef-8) that measures expression of approximately 19,730 curated RefSeq sequences (Human Build 34). + + +

    Case identifiers: All case identifiers (IDs) in GeneNetwork begin with a capital C followed by a six digit GEO identifier, followed by the sex and age in years. Non-Alzheimer cases are labeled with the suffix letter N: C225652M85N. Alzheimer cases are labeled with the suffix letter A: C388217F97A. + +

    Data were initially downloaded from the NCBI GEO archive under the experiment ID GSE15222. All data were generated using the Illumina HumanRef-8 expression BeadChip (GPL2700) v2 Rev0. This data set in GeneNetwork includes data for 24,354 probes. We have realigned the 50-mer sequences by BLAT to the latest version of the human genome (Feb 2009, hg19) and reannotated the array (August 2009). The annotation in GN will differ from that provided in GEO for this platform. We were unable to obtain 50-mer sequences for several thousand probes (e.g., HTT), and these probes have therefore not been realigned to the human genome. + +

    The GEO data set was processed by Myers and colleagues using Illumina's Rank Invariant transform. We performed a series of QC and renormalization steps to the data to allow more facile comparison to other data sets in GeneNetwork. In brief, data is log2 transformed. We recentered each array to a mean expression of 8 units and a standard deviation of 2 units (2z + 8 transform). The values are therefore modified z scores and each unit represents roughly a two-fold difference in expression. Average expression across all 363 cases range from a low of 6 units (e.g., SYT15) to a high of 19 units for ARSK. APOE has an average expression of 15 units and APP has an average expression of 11.5 units.. The distribution is far from normal with a great excess of measurements of genes with low to moderate expression clustered between 6.5 and 8.5 units. + +

    + + + + + + +The CANDLE STUDY: Conditions Affecting Neurocognitive Development and Learning (June 2011): + +
    + +

    The CANDLE Study is a large multidisciplinary study of early child development that involves genetic, genomic, environmental, and large-scale behavioral evaluation of children and their families from the second trimester of development through to 4 years of age. The full study involves more than 1000 children and their mothers and fathers. + +

    For information on genomic and genetic studies related to CANDLE, please contact: Drs. Ronald M. Adkins (ronald.m.adkins@gmail.com) and Julia Krushkal (jkrushka@uthsc.edu). + +

    For information on the overall design of CANDLE, please contact: Dr. Frances A. Tylavsky (ftylavsk@uthsc.edu). + + +

    Summary from The Urban Child Institute: The primary goal of the CANDLE study is to study factors that affect brain development in young children. To this end, the current study will test specific hypotheses regarding factors that may negatively influence cognitive development in children. Participants in this cohort study will include 1,500 mother-child dyads, recruited during the second trimester of pregnancy and followed from birth to age 3. Data on a wide range of possible influences on children's cognitive outcomes is being collected during pregnancy, at delivery, and at 1, 2, 3, and 4 years of age from numerous sources, including questionnaires, interviews, psychosocial assessments, medical chart abstraction, environmental samples from the child's home environment, blood and urine samples from the mother, cord blood, and placental tissue. The primary outcomes of the current study are those associated with cognitive measures. Outcomes are being measured using standardized cognitive assessments conducted at 12 months, 24 months, and 36 months of age. Epidemiological, clinical, and laboratory-based research may be undertaken using data from the project, with sub-studies including, but not limited to, molecular genetics, environmental exposure assessments, and micronutrient deficiency analyses. Results of this cohort study may provide information that will ultimately lead to improvements in the health, development, and well-being of children in Shelby County, Tennessee through interventions and policy enforcement and/or development. Full participant recruitment and complete data collection began in November 2006.

    + + +

    Associated References: +

      +
    1. +Adkins RM, Thomas F, Tylavsky FA, Krushkal J (2011) Parental ages and levels of DNA methylation in the newborn are correlated. BMC Med Genet. 2011 Mar 31;12:47. + +
    2. +Adkins RM, Krushkal J, Tylavsky FA, Thomas F (2011) Racial differences in gene-specific DNA methylation levels are present at birth. Birth Defects Res A Clin Mol Teratol. 2011 Feb 9. doi: 10.1002/bdra.20770. +
    + + + + +
    + + + + + + + + + + + + + +CEPH Immortalized B Cells (October 2008): + +
    + +

    +UTHSC CEPH C-cells Illumina (Sept09) RankInv data were generated by Malak Kotb, Robert W. Williams, and colleagues. Please contact Robert Williams at UTHSC regarding use of these data. + +

    More Details + + +

    Monks CEPH-D-cells Agilent (Dec04) Log10Ratio data were generated by Stephanie Monks (Stephanie Santorico), Eric Schadt, and collaborators. + +

    More Details + + + + +

    About this file:

    + + +

    The file started, Aug 6, 2009 by AC. Last update by RWW, June 7, 2011.

    + +
    +
    + + + +
    + +
    + + + + + + + + + diff --git a/web/images/AffyU74.pdf b/web/images/AffyU74.pdf new file mode 100755 index 00000000..8598e03d Binary files /dev/null and b/web/images/AffyU74.pdf differ diff --git a/web/images/B6 punch image.png b/web/images/B6 punch image.png new file mode 100755 index 00000000..4af3a74e Binary files /dev/null and b/web/images/B6 punch image.png differ diff --git a/web/images/BEHN.head.gif b/web/images/BEHN.head.gif new file mode 100755 index 00000000..4a69bd2d Binary files /dev/null and b/web/images/BEHN.head.gif differ diff --git a/web/images/Beth_Israel.jpg b/web/images/Beth_Israel.jpg new file mode 100755 index 00000000..d8ed2754 Binary files /dev/null and b/web/images/Beth_Israel.jpg differ diff --git a/web/images/Beth_Israel.pdf b/web/images/Beth_Israel.pdf new file mode 100755 index 00000000..d4705da3 Binary files /dev/null and b/web/images/Beth_Israel.pdf differ diff --git a/web/images/CEL.gif b/web/images/CEL.gif new file mode 100755 index 00000000..271b4869 Binary files /dev/null and b/web/images/CEL.gif differ diff --git a/web/images/CHP.gif b/web/images/CHP.gif new file mode 100755 index 00000000..8910c54e Binary files /dev/null and b/web/images/CHP.gif differ diff --git a/web/images/Contract.gif b/web/images/Contract.gif new file mode 100755 index 00000000..0afd47ea Binary files /dev/null and b/web/images/Contract.gif differ diff --git a/web/images/CzechAca.gif b/web/images/CzechAca.gif new file mode 100755 index 00000000..cabc5df4 Binary files /dev/null and b/web/images/CzechAca.gif differ diff --git a/web/images/D2 punch image.png b/web/images/D2 punch image.png new file mode 100755 index 00000000..a16ef092 Binary files /dev/null and b/web/images/D2 punch image.png differ diff --git a/web/images/DAT.gif b/web/images/DAT.gif new file mode 100755 index 00000000..e67208e3 Binary files /dev/null and b/web/images/DAT.gif differ diff --git a/web/images/Expand.gif b/web/images/Expand.gif new file mode 100755 index 00000000..44b70f1a Binary files /dev/null and b/web/images/Expand.gif differ diff --git a/web/images/GCAT_logo_final.jpg b/web/images/GCAT_logo_final.jpg new file mode 100755 index 00000000..e55548f1 Binary files /dev/null and b/web/images/GCAT_logo_final.jpg differ diff --git a/web/images/MDC_Logo.gif b/web/images/MDC_Logo.gif new file mode 100755 index 00000000..6278ceba Binary files /dev/null and b/web/images/MDC_Logo.gif differ diff --git a/web/images/NIEHS.gif b/web/images/NIEHS.gif new file mode 100755 index 00000000..5a9af53f Binary files /dev/null and b/web/images/NIEHS.gif differ diff --git a/web/images/ODE_logo_final.jpg b/web/images/ODE_logo_final.jpg new file mode 100755 index 00000000..1f66ee92 Binary files /dev/null and b/web/images/ODE_logo_final.jpg differ diff --git a/web/images/PORTLANDVASEALROUND.jpg b/web/images/PORTLANDVASEALROUND.jpg new file mode 100755 index 00000000..fcff63db Binary files /dev/null and b/web/images/PORTLANDVASEALROUND.jpg differ diff --git a/web/images/PythonPoweredAnimSmall.gif b/web/images/PythonPoweredAnimSmall.gif new file mode 100755 index 00000000..fad82060 Binary files /dev/null and b/web/images/PythonPoweredAnimSmall.gif differ diff --git a/web/images/RPT.gif b/web/images/RPT.gif new file mode 100755 index 00000000..0e57652e Binary files /dev/null and b/web/images/RPT.gif differ diff --git a/web/images/TXT.gif b/web/images/TXT.gif new file mode 100755 index 00000000..f8147a85 Binary files /dev/null and b/web/images/TXT.gif differ diff --git a/web/images/Unc.gif b/web/images/Unc.gif new file mode 100755 index 00000000..f2c15bf1 Binary files /dev/null and b/web/images/Unc.gif differ diff --git a/web/images/VNATCrop.gif b/web/images/VNATCrop.gif new file mode 100755 index 00000000..527fbd1b Binary files /dev/null and b/web/images/VNATCrop.gif differ diff --git a/web/images/add_collection1_final.jpg b/web/images/add_collection1_final.jpg new file mode 100755 index 00000000..a794ab32 Binary files /dev/null and b/web/images/add_collection1_final.jpg differ diff --git a/web/images/add_icon.jpg b/web/images/add_icon.jpg new file mode 100755 index 00000000..0621adde Binary files /dev/null and b/web/images/add_icon.jpg differ diff --git a/web/images/analogo.gif b/web/images/analogo.gif new file mode 100755 index 00000000..9fd0aade Binary files /dev/null and b/web/images/analogo.gif differ diff --git a/web/images/arrowdown.gif b/web/images/arrowdown.gif new file mode 100755 index 00000000..577e5476 Binary files /dev/null and b/web/images/arrowdown.gif differ diff --git a/web/images/arrowdown2.gif b/web/images/arrowdown2.gif new file mode 100755 index 00000000..61ee92f6 Binary files /dev/null and b/web/images/arrowdown2.gif differ diff --git a/web/images/arrowdown3.gif b/web/images/arrowdown3.gif new file mode 100755 index 00000000..01df00cb Binary files /dev/null and b/web/images/arrowdown3.gif differ diff --git a/web/images/asc.gif b/web/images/asc.gif new file mode 100755 index 00000000..74157867 Binary files /dev/null and b/web/images/asc.gif differ diff --git a/web/images/bg.gif b/web/images/bg.gif new file mode 100755 index 00000000..fac668fc Binary files /dev/null and b/web/images/bg.gif differ diff --git a/web/images/biochem_logo.jpg b/web/images/biochem_logo.jpg new file mode 100755 index 00000000..c738b40c Binary files /dev/null and b/web/images/biochem_logo.jpg differ diff --git a/web/images/blat.png b/web/images/blat.png new file mode 100755 index 00000000..ff7344ce Binary files /dev/null and b/web/images/blat.png differ diff --git a/web/images/blat2.gif b/web/images/blat2.gif new file mode 100755 index 00000000..edddec38 Binary files /dev/null and b/web/images/blat2.gif differ diff --git a/web/images/blue.png b/web/images/blue.png new file mode 100755 index 00000000..2c11d69b Binary files /dev/null and b/web/images/blue.png differ diff --git a/web/images/bluegradient.png b/web/images/bluegradient.png new file mode 100755 index 00000000..c6dbeb99 Binary files /dev/null and b/web/images/bluegradient.png differ diff --git a/web/images/cds.gif b/web/images/cds.gif new file mode 100755 index 00000000..0d1e52a9 Binary files /dev/null and b/web/images/cds.gif differ diff --git a/web/images/checkblue.gif b/web/images/checkblue.gif new file mode 100755 index 00000000..43f7b3a0 Binary files /dev/null and b/web/images/checkblue.gif differ diff --git a/web/images/checkgreen.gif b/web/images/checkgreen.gif new file mode 100755 index 00000000..5f3b83f0 Binary files /dev/null and b/web/images/checkgreen.gif differ diff --git a/web/images/checkorange.gif b/web/images/checkorange.gif new file mode 100755 index 00000000..c77aa57c Binary files /dev/null and b/web/images/checkorange.gif differ diff --git a/web/images/checkred.gif b/web/images/checkred.gif new file mode 100755 index 00000000..759fc9e8 Binary files /dev/null and b/web/images/checkred.gif differ diff --git a/web/images/checkyellow.gif b/web/images/checkyellow.gif new file mode 100755 index 00000000..11dd29b0 Binary files /dev/null and b/web/images/checkyellow.gif differ diff --git a/web/images/colorPanel.png b/web/images/colorPanel.png new file mode 100755 index 00000000..3a269c1d Binary files /dev/null and b/web/images/colorPanel.png differ diff --git a/web/images/compare_correlates2_final.jpg b/web/images/compare_correlates2_final.jpg new file mode 100755 index 00000000..61556a69 Binary files /dev/null and b/web/images/compare_correlates2_final.jpg differ diff --git a/web/images/correlation_matrix1_final.jpg b/web/images/correlation_matrix1_final.jpg new file mode 100755 index 00000000..ff7bcfa1 Binary files /dev/null and b/web/images/correlation_matrix1_final.jpg differ diff --git a/web/images/desc.gif b/web/images/desc.gif new file mode 100755 index 00000000..3b30b3c5 Binary files /dev/null and b/web/images/desc.gif differ diff --git a/web/images/download.gif b/web/images/download.gif new file mode 100755 index 00000000..84ebe6fc Binary files /dev/null and b/web/images/download.gif differ diff --git a/web/images/edit_icon.jpg b/web/images/edit_icon.jpg new file mode 100755 index 00000000..69d5f53c Binary files /dev/null and b/web/images/edit_icon.jpg differ diff --git a/web/images/export2_final.jpg b/web/images/export2_final.jpg new file mode 100755 index 00000000..b1fb937e Binary files /dev/null and b/web/images/export2_final.jpg differ diff --git a/web/images/female.jpg b/web/images/female.jpg new file mode 100755 index 00000000..6695294b Binary files /dev/null and b/web/images/female.jpg differ diff --git a/web/images/femaleb6by.jpg b/web/images/femaleb6by.jpg new file mode 100755 index 00000000..34cb9b4c Binary files /dev/null and b/web/images/femaleb6by.jpg differ diff --git a/web/images/find_icon.jpg b/web/images/find_icon.jpg new file mode 100755 index 00000000..5206e0a3 Binary files /dev/null and b/web/images/find_icon.jpg differ diff --git a/web/images/genenetwork.gif b/web/images/genenetwork.gif new file mode 100755 index 00000000..c942c41b Binary files /dev/null and b/web/images/genenetwork.gif differ diff --git a/web/images/genewiki_icon.jpg b/web/images/genewiki_icon.jpg new file mode 100755 index 00000000..ba2d0c30 Binary files /dev/null and b/web/images/genewiki_icon.jpg differ diff --git a/web/images/gnf.gif b/web/images/gnf.gif new file mode 100755 index 00000000..95ccf22e Binary files /dev/null and b/web/images/gnf.gif differ diff --git a/web/images/gron.jpg b/web/images/gron.jpg new file mode 100755 index 00000000..77a1009d Binary files /dev/null and b/web/images/gron.jpg differ diff --git a/web/images/gtom_icon_final.jpg b/web/images/gtom_icon_final.jpg new file mode 100755 index 00000000..2fa6a398 Binary files /dev/null and b/web/images/gtom_icon_final.jpg differ diff --git a/web/images/heatmap2_final.jpg b/web/images/heatmap2_final.jpg new file mode 100755 index 00000000..b247156f Binary files /dev/null and b/web/images/heatmap2_final.jpg differ diff --git a/web/images/history.gif b/web/images/history.gif new file mode 100755 index 00000000..2f122b33 Binary files /dev/null and b/web/images/history.gif differ diff --git a/web/images/html2.gif b/web/images/html2.gif new file mode 100755 index 00000000..b908c3a4 Binary files /dev/null and b/web/images/html2.gif differ diff --git a/web/images/imperialCollege.gif b/web/images/imperialCollege.gif new file mode 100755 index 00000000..e9c869f0 Binary files /dev/null and b/web/images/imperialCollege.gif differ diff --git a/web/images/invert_selection2_final.jpg b/web/images/invert_selection2_final.jpg new file mode 100755 index 00000000..517ef2aa Binary files /dev/null and b/web/images/invert_selection2_final.jpg differ diff --git a/web/images/ipad_icon3.png b/web/images/ipad_icon3.png new file mode 100755 index 00000000..97060e97 Binary files /dev/null and b/web/images/ipad_icon3.png differ diff --git a/web/images/loadingAnimation.gif b/web/images/loadingAnimation.gif new file mode 100755 index 00000000..82290f48 Binary files /dev/null and b/web/images/loadingAnimation.gif differ diff --git a/web/images/logo.jpg b/web/images/logo.jpg new file mode 100755 index 00000000..f2119f36 Binary files /dev/null and b/web/images/logo.jpg differ diff --git a/web/images/logo_inra.gif b/web/images/logo_inra.gif new file mode 100755 index 00000000..21862653 Binary files /dev/null and b/web/images/logo_inra.gif differ diff --git a/web/images/male.jpg b/web/images/male.jpg new file mode 100755 index 00000000..67be10c4 Binary files /dev/null and b/web/images/male.jpg differ diff --git a/web/images/mmicon.gif b/web/images/mmicon.gif new file mode 100755 index 00000000..7795014a Binary files /dev/null and b/web/images/mmicon.gif differ diff --git a/web/images/modify.gif b/web/images/modify.gif new file mode 100755 index 00000000..45b314ee Binary files /dev/null and b/web/images/modify.gif differ diff --git a/web/images/multiple_interval_mapping1_final.jpg b/web/images/multiple_interval_mapping1_final.jpg new file mode 100755 index 00000000..546a13f5 Binary files /dev/null and b/web/images/multiple_interval_mapping1_final.jpg differ diff --git a/web/images/naturalbig.jpg b/web/images/naturalbig.jpg new file mode 100755 index 00000000..f6138c47 Binary files /dev/null and b/web/images/naturalbig.jpg differ diff --git a/web/images/nciLogo-rev.jpg b/web/images/nciLogo-rev.jpg new file mode 100755 index 00000000..48029576 Binary files /dev/null and b/web/images/nciLogo-rev.jpg differ diff --git a/web/images/network_graph1_final.jpg b/web/images/network_graph1_final.jpg new file mode 100755 index 00000000..e2524c12 Binary files /dev/null and b/web/images/network_graph1_final.jpg differ diff --git a/web/images/new_user.gif b/web/images/new_user.gif new file mode 100755 index 00000000..1a04bf79 Binary files /dev/null and b/web/images/new_user.gif differ diff --git a/web/images/nextsign.gif b/web/images/nextsign.gif new file mode 100755 index 00000000..6b43ba3a Binary files /dev/null and b/web/images/nextsign.gif differ diff --git a/web/images/nih.jpg b/web/images/nih.jpg new file mode 100755 index 00000000..6c2005a9 Binary files /dev/null and b/web/images/nih.jpg differ diff --git a/web/images/partial_correlation_final.jpg b/web/images/partial_correlation_final.jpg new file mode 100755 index 00000000..395b6667 Binary files /dev/null and b/web/images/partial_correlation_final.jpg differ diff --git a/web/images/plant1.jpg b/web/images/plant1.jpg new file mode 100755 index 00000000..4399716e Binary files /dev/null and b/web/images/plant1.jpg differ diff --git a/web/images/plant1_t.jpg b/web/images/plant1_t.jpg new file mode 100755 index 00000000..a82ca4e4 Binary files /dev/null and b/web/images/plant1_t.jpg differ diff --git a/web/images/plant2.jpg b/web/images/plant2.jpg new file mode 100755 index 00000000..1daa2528 Binary files /dev/null and b/web/images/plant2.jpg differ diff --git a/web/images/plant2_t.jpg b/web/images/plant2_t.jpg new file mode 100755 index 00000000..86ffd7ff Binary files /dev/null and b/web/images/plant2_t.jpg differ diff --git a/web/images/plant3.jpg b/web/images/plant3.jpg new file mode 100755 index 00000000..6176ee62 Binary files /dev/null and b/web/images/plant3.jpg differ diff --git a/web/images/plant3_t.jpg b/web/images/plant3_t.jpg new file mode 100755 index 00000000..7e53b0ef Binary files /dev/null and b/web/images/plant3_t.jpg differ diff --git a/web/images/plant4.jpg b/web/images/plant4.jpg new file mode 100755 index 00000000..0893cbfb Binary files /dev/null and b/web/images/plant4.jpg differ diff --git a/web/images/plant4_t.jpg b/web/images/plant4_t.jpg new file mode 100755 index 00000000..b4c29c8c Binary files /dev/null and b/web/images/plant4_t.jpg differ diff --git a/web/images/probe_icon.jpg b/web/images/probe_icon.jpg new file mode 100755 index 00000000..b4bf2591 Binary files /dev/null and b/web/images/probe_icon.jpg differ diff --git a/web/images/qmark.gif b/web/images/qmark.gif new file mode 100755 index 00000000..69b4a58b Binary files /dev/null and b/web/images/qmark.gif differ diff --git a/web/images/qmarkBox.gif b/web/images/qmarkBox.gif new file mode 100755 index 00000000..9d485294 Binary files /dev/null and b/web/images/qmarkBox.gif differ diff --git a/web/images/qmarkBoxBlue.gif b/web/images/qmarkBoxBlue.gif new file mode 100755 index 00000000..4d7ef3ec Binary files /dev/null and b/web/images/qmarkBoxBlue.gif differ diff --git a/web/images/qtlreaper.gif b/web/images/qtlreaper.gif new file mode 100755 index 00000000..dee71d83 Binary files /dev/null and b/web/images/qtlreaper.gif differ diff --git a/web/images/question_mark.gif b/web/images/question_mark.gif new file mode 100755 index 00000000..5aea0493 Binary files /dev/null and b/web/images/question_mark.gif differ diff --git a/web/images/real-webqtllogo2.gif b/web/images/real-webqtllogo2.gif new file mode 100755 index 00000000..dfeaa76c Binary files /dev/null and b/web/images/real-webqtllogo2.gif differ diff --git a/web/images/real-webqtllogo2beta.gif b/web/images/real-webqtllogo2beta.gif new file mode 100755 index 00000000..66a9fb6e Binary files /dev/null and b/web/images/real-webqtllogo2beta.gif differ diff --git a/web/images/redgradient.png b/web/images/redgradient.png new file mode 100755 index 00000000..360304b8 Binary files /dev/null and b/web/images/redgradient.png differ diff --git a/web/images/remove_selection1_final.jpg b/web/images/remove_selection1_final.jpg new file mode 100755 index 00000000..7b80ef63 Binary files /dev/null and b/web/images/remove_selection1_final.jpg differ diff --git a/web/images/rnaseq_icon.jpg b/web/images/rnaseq_icon.jpg new file mode 100755 index 00000000..21a1e58b Binary files /dev/null and b/web/images/rnaseq_icon.jpg differ diff --git a/web/images/rug.jpg b/web/images/rug.jpg new file mode 100755 index 00000000..77a1009d Binary files /dev/null and b/web/images/rug.jpg differ diff --git a/web/images/search.gif b/web/images/search.gif new file mode 100755 index 00000000..50980b6e Binary files /dev/null and b/web/images/search.gif differ diff --git a/web/images/select_all.gif b/web/images/select_all.gif new file mode 100755 index 00000000..33ebe639 Binary files /dev/null and b/web/images/select_all.gif differ diff --git a/web/images/select_all2_final.jpg b/web/images/select_all2_final.jpg new file mode 100755 index 00000000..d4085aae Binary files /dev/null and b/web/images/select_all2_final.jpg differ diff --git a/web/images/select_none2_final.jpg b/web/images/select_none2_final.jpg new file mode 100755 index 00000000..86ccbff2 Binary files /dev/null and b/web/images/select_none2_final.jpg differ diff --git a/web/images/shadow/corner_bl.gif b/web/images/shadow/corner_bl.gif new file mode 100755 index 00000000..4bd75f06 Binary files /dev/null and b/web/images/shadow/corner_bl.gif differ diff --git a/web/images/shadow/corner_tr.gif b/web/images/shadow/corner_tr.gif new file mode 100755 index 00000000..1ba16572 Binary files /dev/null and b/web/images/shadow/corner_tr.gif differ diff --git a/web/images/shadow/shadow.gif b/web/images/shadow/shadow.gif new file mode 100755 index 00000000..4106fce0 Binary files /dev/null and b/web/images/shadow/shadow.gif differ diff --git a/web/images/single.jpg b/web/images/single.jpg new file mode 100755 index 00000000..8e2a974c Binary files /dev/null and b/web/images/single.jpg differ diff --git a/web/images/single_t.jpg b/web/images/single_t.jpg new file mode 100755 index 00000000..c4f890f1 Binary files /dev/null and b/web/images/single_t.jpg differ diff --git a/web/images/snp_icon.jpg b/web/images/snp_icon.jpg new file mode 100755 index 00000000..36076125 Binary files /dev/null and b/web/images/snp_icon.jpg differ diff --git a/web/images/sortdown.gif b/web/images/sortdown.gif new file mode 100755 index 00000000..22331d45 Binary files /dev/null and b/web/images/sortdown.gif differ diff --git a/web/images/sortdownon.gif b/web/images/sortdownon.gif new file mode 100755 index 00000000..b9177db5 Binary files /dev/null and b/web/images/sortdownon.gif differ diff --git a/web/images/sortup.gif b/web/images/sortup.gif new file mode 100755 index 00000000..75d358c7 Binary files /dev/null and b/web/images/sortup.gif differ diff --git a/web/images/sortupon.gif b/web/images/sortupon.gif new file mode 100755 index 00000000..e61cf24f Binary files /dev/null and b/web/images/sortupon.gif differ diff --git a/web/images/spearman.gif b/web/images/spearman.gif new file mode 100755 index 00000000..cad1721b Binary files /dev/null and b/web/images/spearman.gif differ diff --git a/web/images/start.gif b/web/images/start.gif new file mode 100755 index 00000000..42f52171 Binary files /dev/null and b/web/images/start.gif differ diff --git a/web/images/step1.gif b/web/images/step1.gif new file mode 100755 index 00000000..42d2bc7d Binary files /dev/null and b/web/images/step1.gif differ diff --git a/web/images/step2.gif b/web/images/step2.gif new file mode 100755 index 00000000..b3dca656 Binary files /dev/null and b/web/images/step2.gif differ diff --git a/web/images/step3.gif b/web/images/step3.gif new file mode 100755 index 00000000..0e0c7ea2 Binary files /dev/null and b/web/images/step3.gif differ diff --git a/web/images/tair.gif b/web/images/tair.gif new file mode 100755 index 00000000..55a6c7fd Binary files /dev/null and b/web/images/tair.gif differ diff --git a/web/images/th_back.gif b/web/images/th_back.gif new file mode 100755 index 00000000..856eef24 Binary files /dev/null and b/web/images/th_back.gif differ diff --git a/web/images/tjl_logo.gif b/web/images/tjl_logo.gif new file mode 100755 index 00000000..e9b8699a Binary files /dev/null and b/web/images/tjl_logo.gif differ diff --git a/web/images/tjl_logo_02.gif b/web/images/tjl_logo_02.gif new file mode 100755 index 00000000..bb4e8eeb Binary files /dev/null and b/web/images/tjl_logo_02.gif differ diff --git a/web/images/tooltip.js b/web/images/tooltip.js new file mode 100755 index 00000000..56687bdf --- /dev/null +++ b/web/images/tooltip.js @@ -0,0 +1,192 @@ + /********************************************************** + * Popup Window Definition Part * + * * + * To add a popup window, add a string definition below. * + * To include the item in the printing friendly page, * + * modify the longStr by adding the item to it. * + * Don't change anything else. * + **********************************************************/ + +var htmlOpener = "Tooltip and Popup Window Demo"+ + "

    " +var htmlCloser = "" + + demo1 = "

    Title Here.

    It is fun. Don't forget to put a line break here.

    " + + demo2 = "No title in this window. Just plain text.

    " + + demo3 = "How much is a picture worth?

    "+ + "

    " + +/****END OF STRING DEFINITION*****/ + + var popupWin + var wholeWin + function popup(term) // write corresponding content to the popup window + { + popupWin = window.open("", "puWin", "width=480,height=200,scrollbars,dependent,resizable"); + popupWin.document.open("text/html", "replace"); + popupWin.document.write(htmlOpener); + popupWin.document.write(term); + popupWin.document.write(htmlCloser); + popupWin.document.close(); // close layout stream + popupWin.focus(); // bring the popup window to the front + } + + function closeDep() { + if (popupWin && popupWin.open && !popupWin.closed) popupWin.close(); + if (wholeWin && wholeWin.open && !wholeWin.closed) wholeWin.close(); + + } + + +/***********************END OF FUNCTION POPUP******************************/ + + function printwhole() + { + longStr ="

    Annotated Output for Proc Univariate

    "; + longStr += demo1 + demo2 + demo3; + + wholeWin = window.open("","wWin", "width=800,height=500,dependent=yes,scrollbars=yes,resizable=yes,toolbar=yes,menubar=yes"); + wholeWin.document.open("text/html","replace"); + wholeWin.document.write(htmlOpener); + wholeWin.document.write(longStr); + wholeWin.document.write(htmlCloser); + wholeWin.document.close(); + wholeWin.focus();} + +/*******End of popup window stuff*********/ + + +/***************************Tooltip Part Begins***************************/ + var style = ((NS4 && document.test) || IE4) ? 1 : 0; + var timerID = null; + var padding = 3; // < 4 recommended + var bgcolor = "beige"; + var borWid = 1; // for no border, assign null + var borCol = "#0000cc"; + var borSty = "solid"; + var str = ""; + + + if (style) { + document.write(str); + if (NS4) window.onload = init; +} + +/************************************************** +* Making your tooltip text here * +* This is the only place that need to be modified.* +* The first argument is the name of the tooltip. * +* The second argument is the width and last one * +* is the content of the tooltip. * +**************************************************/ + + +makeEl("map", 200, "This will do an interval regression using your data against the chromosome you just selected "); +makeEl("chrs", 200, "This will allow you to choose the chromosome you want to do the interval mapping"); +makeEl("normal", 200, "This will generate a graph to assess if your data is normally distributed"); +makeEl("link", 200, "This will do a Marker Regression using your data."); +makeEl("save", 200, "This will save the data you just input into a text file"); + + +/*************************End of making tooltip text*************************/ + +function init() { + setTimeout("window.onresize = redo", 1000); +} + +function redo() { + window.location.reload(); +} + +function makeEl(id, width, code) { + if (!style) return; + + var str = ""; + str += "
    " + code + "
    "; + + document.write(str); +} + +function displayEl(left, top) { + + if (NS4) document.releaseEvents(Event.MOUSEMOVE); + document.onmousemove = null; + var whichEl = (NS4) ? document[active] : document.all[active].style; + whichEl.left = left; + whichEl.top = top; + whichEl.visibility = (NS4) ? "show" : "visible"; +} + +function clearEl() { + + if (!style) return; + var whichEl = (NS4) ? document[active] : document.all[active].style; + whichEl.visibility = (NS4) ? "hide" : "hidden"; + active = null; + + if (timerID) clearTimeout(timerID); + if (NS4) document.releaseEvents(Event.MOUSEMOVE); + document.onmousemove = null; + +} + +function activateEl(id, e) { + if (!style) return; + active = id; + + if (NS4) document.captureEvents(Event.MOUSEMOVE); + document.onmousemove = checkEl; + checkEl(e); + + } + +function checkEl(e) { + if (timerID) clearTimeout(timerID); + var left = (NS4) ? e.pageX : event.clientX + document.body.scrollLeft; + var top = (NS4) ? e.pageY + 20 : event.clientY + document.body.scrollTop + 20; + timerID = setTimeout("displayEl(" + left + ", " + top + ")", 300); +} + diff --git a/web/images/trash.gif b/web/images/trash.gif new file mode 100755 index 00000000..e98e6f26 Binary files /dev/null and b/web/images/trash.gif differ diff --git a/web/images/trash.jpg b/web/images/trash.jpg new file mode 100755 index 00000000..1373c3ac Binary files /dev/null and b/web/images/trash.jpg differ diff --git a/web/images/upload/APOE_Pearson.gif b/web/images/upload/APOE_Pearson.gif new file mode 100755 index 00000000..c73ac7c2 Binary files /dev/null and b/web/images/upload/APOE_Pearson.gif differ diff --git a/web/images/upload/APOE_Rank.gif b/web/images/upload/APOE_Rank.gif new file mode 100755 index 00000000..9e83a80d Binary files /dev/null and b/web/images/upload/APOE_Rank.gif differ diff --git a/web/images/upload/APOE_Scatter.png b/web/images/upload/APOE_Scatter.png new file mode 100755 index 00000000..d1d9a5d0 Binary files /dev/null and b/web/images/upload/APOE_Scatter.png differ diff --git a/web/images/upload/AXB_BXA_Eye_Sex.gif b/web/images/upload/AXB_BXA_Eye_Sex.gif new file mode 100755 index 00000000..65db806f Binary files /dev/null and b/web/images/upload/AXB_BXA_Eye_Sex.gif differ diff --git a/web/images/upload/AXB_Eye_Sex.gif b/web/images/upload/AXB_Eye_Sex.gif new file mode 100755 index 00000000..6d859066 Binary files /dev/null and b/web/images/upload/AXB_Eye_Sex.gif differ diff --git a/web/images/upload/Affero_General_Public_License_3_Logo.svg.png b/web/images/upload/Affero_General_Public_License_3_Logo.svg.png new file mode 100755 index 00000000..e59ab467 Binary files /dev/null and b/web/images/upload/Affero_General_Public_License_3_Logo.svg.png differ diff --git a/web/images/upload/BLATVerify1.png b/web/images/upload/BLATVerify1.png new file mode 100755 index 00000000..fbef58f2 Binary files /dev/null and b/web/images/upload/BLATVerify1.png differ diff --git a/web/images/upload/BLATVerify2.png b/web/images/upload/BLATVerify2.png new file mode 100755 index 00000000..93544a81 Binary files /dev/null and b/web/images/upload/BLATVerify2.png differ diff --git a/web/images/upload/BXD20.png b/web/images/upload/BXD20.png new file mode 100755 index 00000000..f5fbf1d1 Binary files /dev/null and b/web/images/upload/BXD20.png differ diff --git a/web/images/upload/BXD_immunophenotypes_2010.pdf b/web/images/upload/BXD_immunophenotypes_2010.pdf new file mode 100755 index 00000000..f0054a03 Binary files /dev/null and b/web/images/upload/BXD_immunophenotypes_2010.pdf differ diff --git a/web/images/upload/Bailey_1971_Transplantation.pdf b/web/images/upload/Bailey_1971_Transplantation.pdf new file mode 100755 index 00000000..eb8b770c Binary files /dev/null and b/web/images/upload/Bailey_1971_Transplantation.pdf differ diff --git a/web/images/upload/BannerGraph_2009.png b/web/images/upload/BannerGraph_2009.png new file mode 100755 index 00000000..77c2cbed Binary files /dev/null and b/web/images/upload/BannerGraph_2009.png differ diff --git a/web/images/upload/BannerGraphs.png b/web/images/upload/BannerGraphs.png new file mode 100755 index 00000000..aeccb85b Binary files /dev/null and b/web/images/upload/BannerGraphs.png differ diff --git a/web/images/upload/Barley_Search.png b/web/images/upload/Barley_Search.png new file mode 100755 index 00000000..5099dad1 Binary files /dev/null and b/web/images/upload/Barley_Search.png differ diff --git a/web/images/upload/Boon_H5N1_2009.pdf b/web/images/upload/Boon_H5N1_2009.pdf new file mode 100755 index 00000000..3ce73e3f Binary files /dev/null and b/web/images/upload/Boon_H5N1_2009.pdf differ diff --git a/web/images/upload/CITGLogo.png b/web/images/upload/CITGLogo.png new file mode 100755 index 00000000..ae99fedb Binary files /dev/null and b/web/images/upload/CITGLogo.png differ diff --git a/web/images/upload/Chrna1vsMyf6.gif b/web/images/upload/Chrna1vsMyf6.gif new file mode 100755 index 00000000..881a08e8 Binary files /dev/null and b/web/images/upload/Chrna1vsMyf6.gif differ diff --git a/web/images/upload/Congenic.png b/web/images/upload/Congenic.png new file mode 100755 index 00000000..8cd489a4 Binary files /dev/null and b/web/images/upload/Congenic.png differ diff --git a/web/images/upload/Cord Blood Review 2010.pdf b/web/images/upload/Cord Blood Review 2010.pdf new file mode 100644 index 00000000..aae3bcea Binary files /dev/null and b/web/images/upload/Cord Blood Review 2010.pdf differ diff --git a/web/images/upload/Davies_Schalkwyk_2009.pdf b/web/images/upload/Davies_Schalkwyk_2009.pdf new file mode 100755 index 00000000..f4c83b46 Binary files /dev/null and b/web/images/upload/Davies_Schalkwyk_2009.pdf differ diff --git a/web/images/upload/DdyvsXist_GENIAAA.png b/web/images/upload/DdyvsXist_GENIAAA.png new file mode 100755 index 00000000..41b9ea96 Binary files /dev/null and b/web/images/upload/DdyvsXist_GENIAAA.png differ diff --git a/web/images/upload/DiCurzio_Goldowitz-2011_BXDAdrenals.pdf b/web/images/upload/DiCurzio_Goldowitz-2011_BXDAdrenals.pdf new file mode 100755 index 00000000..03d9b5bd Binary files /dev/null and b/web/images/upload/DiCurzio_Goldowitz-2011_BXDAdrenals.pdf differ diff --git a/web/images/upload/ExonStriatumSearch.png b/web/images/upload/ExonStriatumSearch.png new file mode 100755 index 00000000..24b7e7ab Binary files /dev/null and b/web/images/upload/ExonStriatumSearch.png differ diff --git a/web/images/upload/GCAT.png b/web/images/upload/GCAT.png new file mode 100755 index 00000000..1499ef67 Binary files /dev/null and b/web/images/upload/GCAT.png differ diff --git a/web/images/upload/Gatti et al Physiol Genomics 2010.pdf b/web/images/upload/Gatti et al Physiol Genomics 2010.pdf new file mode 100755 index 00000000..d7f28d20 Binary files /dev/null and b/web/images/upload/Gatti et al Physiol Genomics 2010.pdf differ diff --git a/web/images/upload/Gatti_2010PhysiolGenomics.pdf b/web/images/upload/Gatti_2010PhysiolGenomics.pdf new file mode 100755 index 00000000..d7f28d20 Binary files /dev/null and b/web/images/upload/Gatti_2010PhysiolGenomics.pdf differ diff --git a/web/images/upload/GeneNetBanner2009.png b/web/images/upload/GeneNetBanner2009.png new file mode 100755 index 00000000..6fc046b6 Binary files /dev/null and b/web/images/upload/GeneNetBanner2009.png differ diff --git a/web/images/upload/GeneNet_Banner.png b/web/images/upload/GeneNet_Banner.png new file mode 100755 index 00000000..df91e604 Binary files /dev/null and b/web/images/upload/GeneNet_Banner.png differ diff --git a/web/images/upload/GeneNet_Banner2009b PM.png b/web/images/upload/GeneNet_Banner2009b PM.png new file mode 100755 index 00000000..7e481520 Binary files /dev/null and b/web/images/upload/GeneNet_Banner2009b PM.png differ diff --git a/web/images/upload/GeneNet_Banner2009c.png b/web/images/upload/GeneNet_Banner2009c.png new file mode 100755 index 00000000..7e481520 Binary files /dev/null and b/web/images/upload/GeneNet_Banner2009c.png differ diff --git a/web/images/upload/Gibson_Jones_2011_Spleen_Iron.pdf b/web/images/upload/Gibson_Jones_2011_Spleen_Iron.pdf new file mode 100755 index 00000000..45dd2b04 Binary files /dev/null and b/web/images/upload/Gibson_Jones_2011_Spleen_Iron.pdf differ diff --git a/web/images/upload/Grin2BMap.png b/web/images/upload/Grin2BMap.png new file mode 100755 index 00000000..6cfd936f Binary files /dev/null and b/web/images/upload/Grin2BMap.png differ diff --git a/web/images/upload/HEIMED_Distrib.png b/web/images/upload/HEIMED_Distrib.png new file mode 100755 index 00000000..b4319d5f Binary files /dev/null and b/web/images/upload/HEIMED_Distrib.png differ diff --git a/web/images/upload/HQF_Drd1a_Striatum.gif b/web/images/upload/HQF_Drd1a_Striatum.gif new file mode 100755 index 00000000..f473501c Binary files /dev/null and b/web/images/upload/HQF_Drd1a_Striatum.gif differ diff --git a/web/images/upload/HSmice.jpg b/web/images/upload/HSmice.jpg new file mode 100755 index 00000000..cc0e737c Binary files /dev/null and b/web/images/upload/HSmice.jpg differ diff --git a/web/images/upload/HZi_sex.gif b/web/images/upload/HZi_sex.gif new file mode 100755 index 00000000..8e081ec9 Binary files /dev/null and b/web/images/upload/HZi_sex.gif differ diff --git a/web/images/upload/Heimel_2008_BXDVisualCortex.pdf b/web/images/upload/Heimel_2008_BXDVisualCortex.pdf new file mode 100755 index 00000000..c8f12bf4 Binary files /dev/null and b/web/images/upload/Heimel_2008_BXDVisualCortex.pdf differ diff --git a/web/images/upload/Ilm103520706_May07RankInv.gif b/web/images/upload/Ilm103520706_May07RankInv.gif new file mode 100755 index 00000000..711123eb Binary files /dev/null and b/web/images/upload/Ilm103520706_May07RankInv.gif differ diff --git a/web/images/upload/IndelsinHc.png b/web/images/upload/IndelsinHc.png new file mode 100755 index 00000000..c8a5e932 Binary files /dev/null and b/web/images/upload/IndelsinHc.png differ diff --git a/web/images/upload/Info.png b/web/images/upload/Info.png new file mode 100755 index 00000000..81e05965 Binary files /dev/null and b/web/images/upload/Info.png differ diff --git a/web/images/upload/Jackson_2011_Neuropsypharm_GalaninNicotine.pdf b/web/images/upload/Jackson_2011_Neuropsypharm_GalaninNicotine.pdf new file mode 100755 index 00000000..6f44ed9d Binary files /dev/null and b/web/images/upload/Jackson_2011_Neuropsypharm_GalaninNicotine.pdf differ diff --git a/web/images/upload/Jones et al 1999 Pharmacogenetics3-0.pdf b/web/images/upload/Jones et al 1999 Pharmacogenetics3-0.pdf new file mode 100755 index 00000000..319ee0ac Binary files /dev/null and b/web/images/upload/Jones et al 1999 Pharmacogenetics3-0.pdf differ diff --git a/web/images/upload/Jones et al 1999 Pharmacogenetics3.pdf b/web/images/upload/Jones et al 1999 Pharmacogenetics3.pdf new file mode 100755 index 00000000..319ee0ac Binary files /dev/null and b/web/images/upload/Jones et al 1999 Pharmacogenetics3.pdf differ diff --git a/web/images/upload/Jones_2003_NN1203.pdf b/web/images/upload/Jones_2003_NN1203.pdf new file mode 100755 index 00000000..ac686be9 Binary files /dev/null and b/web/images/upload/Jones_2003_NN1203.pdf differ diff --git a/web/images/upload/Jones_2008_Hippocampus.pdf b/web/images/upload/Jones_2008_Hippocampus.pdf new file mode 100755 index 00000000..545cd742 Binary files /dev/null and b/web/images/upload/Jones_2008_Hippocampus.pdf differ diff --git a/web/images/upload/Jones_OfMiceandMen.pdf b/web/images/upload/Jones_OfMiceandMen.pdf new file mode 100755 index 00000000..386afbce Binary files /dev/null and b/web/images/upload/Jones_OfMiceandMen.pdf differ diff --git a/web/images/upload/Kcnj9_PFCMiles.gif b/web/images/upload/Kcnj9_PFCMiles.gif new file mode 100755 index 00000000..f870f742 Binary files /dev/null and b/web/images/upload/Kcnj9_PFCMiles.gif differ diff --git a/web/images/upload/LXS_SscrMaxLOD.gif b/web/images/upload/LXS_SscrMaxLOD.gif new file mode 100755 index 00000000..9333106b Binary files /dev/null and b/web/images/upload/LXS_SscrMaxLOD.gif differ diff --git a/web/images/upload/Li_Burmeister_2005.pdf b/web/images/upload/Li_Burmeister_2005.pdf new file mode 100755 index 00000000..029be415 Binary files /dev/null and b/web/images/upload/Li_Burmeister_2005.pdf differ diff --git a/web/images/upload/LitCorSearch.png b/web/images/upload/LitCorSearch.png new file mode 100755 index 00000000..0c2d9d07 Binary files /dev/null and b/web/images/upload/LitCorSearch.png differ diff --git a/web/images/upload/MDP_Search.png b/web/images/upload/MDP_Search.png new file mode 100755 index 00000000..008061c8 Binary files /dev/null and b/web/images/upload/MDP_Search.png differ diff --git a/web/images/upload/Mendelian_LXS.gif b/web/images/upload/Mendelian_LXS.gif new file mode 100755 index 00000000..8a7f2f83 Binary files /dev/null and b/web/images/upload/Mendelian_LXS.gif differ diff --git a/web/images/upload/Morahan_2008.pdf b/web/images/upload/Morahan_2008.pdf new file mode 100755 index 00000000..ae66b7ed Binary files /dev/null and b/web/images/upload/Morahan_2008.pdf differ diff --git a/web/images/upload/Mountz2005.pdf b/web/images/upload/Mountz2005.pdf new file mode 100755 index 00000000..467ded39 --- /dev/null +++ b/web/images/upload/Mountz2005.pdf @@ -0,0 +1,4418 @@ +%PDF-1.4 %âãÏÓ +1 0 obj << /GTS_PDFXConformance (PDF/X-1a:2001) /Trapped /False /ModDate (D:20050128143729+05'30') /Title (Unknown) /GTS_PDFXVersion (PDF/X-1:2001) /Producer (Acrobat Distiller 4.05 for Windows) /Creator (3B2 Total Publishing System 7.51j/W) /CreationDate (D:20050126112552Z) >> endobj 2 0 obj << /Parent 12 0 R /Type /Page /Contents 89 0 R /Resources 87 0 R >> endobj 3 0 obj << /Subtype /Type1 /FontDescriptor 44 0 R /BaseFont /KMELKB+AdvROT-R /Widths [ 260 281 354 572 541 812 645 208 281 281 312 572 208 406 208 291 500 500 500 500 500 500 500 500 500 500 260 260 572 572 572 406 1000 552 541 541 572 458 427 593 614 260 354 520 406 791 625 593 479 614 541 479 406 593 520 833 520 500 479 291 291 291 375 500 302 458 479 427 479 447 312 479 500 239 239 427 239 739 500 479 479 479 312 375 333 500 427 687 447 427 406 500 260 500 572 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 447 447 0 0 0 0 0 0 0 0 0 0 0 0 0 572 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 32 /LastChar 177 >> endobj 4 0 obj << /Subtype /Type1 /FontDescriptor 46 0 R /BaseFont /KMELKM+AdvROT-L /Widths [ 239 260 312 572 520 781 614 187 260 260 312 572 187 385 187 281 479 479 479 479 479 479 479 479 479 479 239 239 572 572 572 385 1000 541 520 520 572 447 406 593 593 239 333 500 385 760 614 572 479 572 541 458 385 593 500 791 500 479 479 260 281 260 333 500 281 447 458 406 479 427 312 479 500 218 218 406 218 739 500 479 479 479 312 375 312 500 427 666 406 427 385 479 333 479 572 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 239 0 427 406 0 0 0 427 0 0 0 0 0 385 0 0 0 572 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 32 /LastChar 177 >> endobj 5 0 obj << /ToUnicode 79 0 R /Subtype /Type1 /FontDescriptor 48 0 R /BaseFont /KMELLC+AdvP4C4E74 /Widths [ 437 437 604 770 770 500 270 770 770 770 770 ] /Encoding 78 0 R /Type /Font /FirstChar 1 /LastChar 11 >> endobj 6 0 obj << /Subtype /Type1 /FontDescriptor 50 0 R /BaseFont /KMELLG+AdvROT-B /Widths [ 291 291 406 593 572 854 666 239 333 333 312 593 218 458 239 312 541 541 541 541 541 541 541 541 541 541 291 281 593 593 593 447 1000 614 541 541 593 500 458 614 625 260 375 552 447 833 645 625 500 625 541 500 447 614 552 875 552 520 500 333 312 333 427 500 343 458 479 427 500 447 354 500 520 260 260 458 260 760 520 500 500 500 333 375 354 520 447 687 458 447 385 552 260 552 614 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 479 458 0 0 0 0 0 0 0 0 0 0 0 0 0 593 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 32 /LastChar 177 >> endobj 7 0 obj << /Subtype /Type1 /FontDescriptor 52 0 R /BaseFont /KMELLI+AdvP5D8B /Widths [ 250 218 406 500 500 843 822 239 322 322 395 500 250 322 250 322 500 500 500 500 500 500 500 500 500 500 250 250 500 500 500 322 760 625 604 697 781 583 541 750 802 333 343 677 552 916 781 791 552 791 645 489 656 750 677 958 645 572 645 322 312 322 500 500 364 406 500 395 510 395 291 447 510 260 250 479 250 791 520 489 510 500 333 322 302 510 427 656 427 437 375 322 239 322 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 239 239 0 0 0 500 0 0 0 0 0 0 0 0 0 250 0 500 500 0 0 0 0 0 0 0 0 0 322 0 0 0 500 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 32 /LastChar 177 >> endobj 8 0 obj << /Subtype /Type1 /FontDescriptor 54 0 R /BaseFont /KMELMD+AdvP5D3C /Widths [ 250 208 375 500 500 864 770 208 322 322 395 562 250 322 250 250 500 500 500 500 510 500 500 500 500 500 250 250 562 562 562 302 770 593 583 645 739 562 531 697 760 343 343 625 541 875 739 729 552 729 572 468 635 729 625 875 572 562 604 322 343 322 562 500 364 447 468 333 479 343 260 385 479 281 260 447 250 729 500 406 447 468 343 260 281 500 427 656 416 364 406 322 260 322 562 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 500 500 0 0 0 0 0 0 0 0 0 0 0 0 0 562 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 32 /LastChar 177 >> endobj 9 0 obj << /ToUnicode 81 0 R /Subtype /Type1 /FontDescriptor 56 0 R /BaseFont /KMELNE+AdvTimes /Widths [ 270 ] /Encoding 80 0 R /Type /Font /FirstChar 1 /LastChar 1 >> endobj 10 0 obj << /Subtype /Type1 /FontDescriptor 58 0 R /BaseFont /KMELNM+AdvPi3 /Widths [ 1000 1000 1000 1000 1104 1000 0 1000 1000 1000 1000 1000 1000 1000 1000 0 1000 1000 1000 1000 1000 1000 1000 1000 0 1218 0 770 1000 1000 1000 1000 822 822 666 822 666 718 822 718 666 666 718 666 1000 822 822 822 822 822 822 718 718 822 1000 666 822 718 1000 333 1000 1000 0 0 1000 822 718 822 666 1000 718 1104 822 885 1104 1000 1104 1156 666 822 666 822 937 1000 822 1000 1156 822 822 937 1000 1000 1156 1000 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 33 /LastChar 126 >> endobj 11 0 obj << /Subtype /Type1 /FontDescriptor 60 0 R /BaseFont /KMELOG+Advrot-li /Widths [ 187 260 312 572 520 781 614 187 260 260 312 572 187 385 187 281 479 479 479 479 479 479 479 479 479 479 187 187 572 572 572 385 1000 541 520 520 572 447 385 593 593 239 333 500 385 760 614 572 479 572 541 458 385 593 500 791 500 479 479 260 281 260 333 500 291 479 458 406 479 427 312 479 500 218 218 406 218 739 500 479 479 479 312 375 312 500 427 666 406 427 385 479 239 479 572 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 427 406 0 0 0 0 0 0 0 0 0 0 0 0 0 572 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 32 /LastChar 177 >> endobj 12 0 obj << /Count 10 /Type /Pages /Parent 42 0 R /Kids [ 2 0 R 13 0 R 16 1 R 18 0 R 29 0 R 34 0 R 36 0 R 37 0 R 38 0 R 40 0 R ] >> endobj 13 0 obj << /Parent 12 0 R /Type /Page /Contents 91 0 R /Resources 90 0 R >> endobj 14 0 obj << /Subtype /Type1 /FontDescriptor 62 0 R /BaseFont /KMEMBB+AdvPi1 /Widths [ 1000 437 1000 385 1000 1000 0 1000 1000 1000 1000 1000 0 500 1000 1000 1000 0 0 1000 1000 1000 1000 385 1000 1000 1000 666 1000 666 1000 385 0 437 822 666 437 718 666 666 0 0 552 718 0 0 718 822 0 552 666 0 718 1000 552 666 822 666 437 822 437 1000 1000 0 552 552 666 500 437 666 500 885 333 666 552 552 552 500 666 552 500 552 666 437 500 0 552 500 500 437 500 0 385 822 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 33 /LastChar 126 >> endobj 15 0 obj << /Subtype /Type1 /FontDescriptor 64 0 R /BaseFont /KMEMCC+AdvROT-I /Widths [ 208 281 354 572 541 812 645 208 281 281 312 572 208 406 208 291 500 500 500 500 500 500 500 500 500 500 208 208 572 572 572 406 1000 552 541 541 572 458 427 593 614 260 354 520 406 791 625 593 479 614 541 479 406 593 520 833 520 500 479 291 291 291 375 500 291 479 479 427 479 447 312 479 500 239 239 427 239 739 500 479 479 479 312 375 333 500 427 687 447 427 406 500 260 500 572 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 447 447 0 0 0 0 0 0 0 0 0 0 0 0 0 572 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 32 /LastChar 177 >> endobj 16 1 obj << /Type /Page /Parent 12 0 R /Resources 119 0 R /Contents 118 0 R >> endobj 17 0 obj << /ToUnicode 83 0 R /Subtype /Type1 /FontDescriptor 66 0 R /BaseFont /KMEMDN+AdvP4C4E51 /Widths [ 770 770 625 ] /Encoding 82 0 R /Type /Font /FirstChar 1 /LastChar 3 >> endobj 18 0 obj << /Parent 12 0 R /Type /Page /Contents 100 0 R /Resources 94 0 R >> endobj 19 0 obj << /Subtype /Type1 /FontDescriptor 68 0 R /BaseFont /KMENHN+AdvP5D4A /Widths [ 250 281 437 510 510 864 833 250 322 322 416 510 250 322 250 343 510 510 510 510 510 510 510 510 510 510 250 250 510 510 510 333 781 625 625 697 781 583 531 739 812 354 354 687 562 916 781 791 583 791 656 500 677 739 645 968 645 593 635 322 333 322 510 500 375 416 510 395 510 406 302 468 520 270 260 479 260 802 531 489 520 500 354 343 322 520 437 687 437 447 385 322 250 322 510 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 510 510 0 0 0 0 0 0 0 0 0 0 0 0 0 510 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 32 /LastChar 177 >> endobj 20 0 obj << /Subtype /Type1 /FontDescriptor 70 0 R /BaseFont /KMENED+Helvetica /Widths [ 278 0 0 0 0 889 0 0 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 0 0 584 584 584 0 0 667 667 722 722 667 611 778 0 278 0 0 556 833 722 778 667 0 722 667 611 722 0 0 667 0 0 0 0 0 0 0 0 556 556 500 556 556 278 556 556 222 0 500 222 833 556 556 556 0 333 500 278 556 500 722 0 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 556 0 0 0 0 0 0 0 0 0 278 0 0 0 0 0 0 0 0 0 0 0 0 333 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 32 /LastChar 173 >> endobj 21 0 obj << /Subtype /Type1 /FontDescriptor 72 0 R /BaseFont /KMENFB+Symbol /Widths [ 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 576 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 549 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 32 /LastChar 215 >> endobj 22 0 obj << /Subtype /Type1 /FontDescriptor 74 0 R /BaseFont /KMENFL+Helvetica-Oblique /Widths [ 278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 556 556 0 556 0 556 0 0 0 0 0 0 0 0 0 0 0 0 0 722 0 0 0 0 0 0 0 0 833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 222 0 0 0 0 556 0 0 0 0 0 278 0 0 0 0 0 0 0 0 0 0 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 0 0 278 278 278 278 278 0 278 278 278 278 278 278 278 0 278 278 278 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 32 /LastChar 180 >> endobj 23 0 obj << /Subtype /Type1 /FontDescriptor 76 0 R /BaseFont /KMENGC+Helvetica-Bold /Widths [ 722 722 722 722 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 0 0 278 278 278 278 278 0 278 278 278 278 278 278 278 0 278 278 278 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 65 /LastChar 180 >> endobj 24 0 obj << /Height 20 /BitsPerComponent 8 /Subtype /Image /Length 276 /Width 18 /Type /XObject /ColorSpace /DeviceGray /Filter /FlateDecode >> stream +H‰,ϱjÃ0àw xO‡vLÁYìÙªM»¤ÑE^$°1‰4I2©Ó€C½Joѳ“?þã¿‹±®ß^?ˆ1ÄØ4}V!DÈBünº~Ng)¥à­VóŸ÷y> ç“B¶\ëyö>ËÓ}×ßnJ3Jõ>Ý÷ Z3V +$í:È(²lúŸ,s.k•Æ¨®…1Ïœ Á9­ÐCBÓ\.ólÖ‡cUrÞò‡8«ÕáXV‹l·_Ÿ +:•Ê²¢ 0/ K§RyN)’„Rc~á"S–' £Ö,WÃs«06ŽÎZS•ÖxOéf³Š3 æ)÷‰2„1d¯#ow;„§‰1¼Êxå|÷ŽÑt_¡§@æ_€ñ/ +endstream endobj 25 0 obj << /Height 109 /BitsPerComponent 8 /Subtype /Image /Length 2023 /Width 26 /Type /XObject /ColorSpace /DeviceGray /Filter /DCTDecode >> stream +ÿØÿîAdobedÿÛC + + +  ÿÀ mÿÝÿÄÒ + s!1AQa"q2‘¡±B#ÁRÑá3bð$r‚ñ%C4S’¢²csÂ5D'“£³6TdtÃÒâ&ƒ +„”EF¤´VÓU(òãóÄÔäôeu…•¥µÅÕåõfv†–¦¶ÆÖæö7GWgw‡—§·Ç×ç÷8HXhxˆ˜¨¸ÈØèø)9IYiy‰™©¹ÉÙéù*:JZjzŠšªºÊÚêúÿÚ?ïãʺ_çm¼˜7ÖK5¿)„·&X$#éƒÂݸºù×|«çk.5ßµ$™-î!•cƒŠ*ümÁæì¯J)þ8_y£k¶Zü:½–®ù}JRÍ¥I9¹NòšŒý0³þ†³ü»ßúE³ÿšóÿÐïó^~×<ÅäÕ‹ê–¶Ö׺ãjâóÎ@d?« +24j:~š°ˆ´vÜ$rê1O#G NÞkù}ùëG§y†Tx­ý«@é,¨œË³qZ°4&˜IõÿÊoùe³ÿ¸ýyÏÿÑë7žxó­êhñyvÎ.ØÝÉ$i§4"ìÛƒ"«$Ñjµ_zu¦üÊóŸ•ÿ—“á]&»æb'¼½‚‹qÖm¤€ ¶ÆWò^¤ºTZ¤vÁZçÜE.jð¨d=§o‹}sÌŸïýcþ_ëŸÿ×횧å楩y¦ÊçËúïè]NžeƒêkuÊ"Q¤ø¤q ÝX÷;íÐdÃÌŒº«E•5­Ï¤ÙªOsèzuknA›„ÔH4Îe©þTÊÃÕ[W¹¿úæ³iO®Xú>—/U'ˆœ¶Ç|ìŸà½oþ¬_ô÷üןÿÐõ\~fÓ‘®y‚ÎÞêkíRÙ½[UDn oÇà­Èræ½²;7™ôÛ/,&¦J¢ã]§é8îY+l÷‘p˜Œ +p } iÞ¹Çn¼†÷Ÿ˜2I¢Hnnì8ò•I’Õ½k`4PAÿ+= þ(óü²[ÿȹÿæ¬ÿÑíÞPó>ŸæÛHµ%j>­ž¬Â“ÑeâUÚ³ª±«ðÃ[_É ëfÔµÏ5yŸÐŽví¡ú‚¿¤_÷ˆyC5[Üo‰Yiš&öþVŸëÚÌ>·ªp’/_™%?s1(¼P•Û¯^¹§<ÃÿWù#ôÏÿÒî–~Pп*´¨tx5«]FÂÙƒ­ÄqÎÜD¯3ò`±¯W mÛÃù‹®ù/Í>`Ö4¨í.ôfÒ/uKRVI.ðÍÍ#ª:FTƃ`yW½0·Êš~süÒ—SÖ¼Ïei¡é‘}_ô}ÔÑOh²r ¼žY$CGŒÄ÷ß®s­èŸïóÿõÏÿÓëºåö¯ä~óËåÃjÑ+Û*Í8P¥]}G™’]©%ûÓ 4Ÿ7ùwR¼Õí Ò`ž-"[:âPþ¬À2ÑR„SqóÇ\ùË˾_Ò5 um" m+TôGYÑ^>®ô—„i“°'á]üs•ʵ×ÿ“ñþªgÿÔ—y·ôwøûCú×ûÍõÈ?J}¯î9CËìïö+öwÈ‹†?åbjò¯¸ý'7×ÿ½éõŸÞ½;ôãö~ŽùéŸÉªÖ÷êïWî¹ÿÉZ}­ºgä(ŸÕ3ÿÙ +endstream endobj 26 0 obj << /Height 284 /BitsPerComponent 8 /Subtype /Image /Length 48423 /Width 205 /Type /XObject /ColorSpace /DeviceCMYK /Filter /DCTDecode >> stream +ÿØÿîAdobedÿÛC + + +  ÿÀÍÿÝÿÄÒ + s!1AQa"q2‘¡±B#ÁRÑá3bð$r‚ñ%C4S’¢²csÂ5D'“£³6TdtÃÒâ&ƒ +„”EF¤´VÓU(òãóÄÔäôeu…•¥µÅÕåõfv†–¦¶ÆÖæö7GWgw‡—§·Ç×ç÷8HXhxˆ˜¨¸ÈØèø)9IYiy‰™©¹ÉÙéù*:JZjzŠšªºÊÚêúÿÚ?ì¿T0:¼+êzòÚ µwbe¢ã½7©ÏHË:˜½5^@šŸ§=u—š&åÔÛšŸÞxý(Ùúg™bŒÛÐÃYbqéMAö·©Àþ¤‹²"Ð{ Šlg Pk×·_cÙ¥Øà“2¸ßo§…$·fô¦êkFí‹ýmUCMl h>š;f¤S:¹«?#Ê•ì+zÉEº2°Vߦ6o®€DsZíÇÇ(]igvµ¡þj±&±ÕLN-µ +±¯’0ÀãJa´‘#GpjͳŽƒèÄ"üY/Ê´gd o_|rÖÓ0ô I¦3M±Ö¥ŠâËÌòAuÉ鲤eæ„‘B;`äô‡ÅO +âãÜ…¾ØØ(ñö8rסD“$u¢Æ¤…ßì€1u +.Uí\rªÆy3õÚ§v.(úbÊ–ðÒgUª†BBšV´'Û+-6øM³K,kÄ’MM7ß*%5zõÛ Ä®n¡ÑÐ4æFXéäEhÐ죾v +¨ÜlM+‰Ê®c.…}ºZ1N ÜïLsÉ#µ¡ * 䡨ﶹ¶µ¸„šüM÷ü·ÄâÙýY;7oìÁK$­ÅOaµ~œ umlî% 5ËÕ#à~6xÐàCm 7¦¯MºŠ}Ù@Ô!zx’@Çš–É:«R÷Ø[D¿\žÊ2 ³¸*¢¸ö¯3ܯ¤Ñ¼ðïŽIÒÌãw=¾yo’$×»´ñÅßV²‚ÒàJè +©fsÐ ^Àe¬77ñ…Uä4~Î6ÒY–àWÔ…s°¡öÆÅqF +¸§!B?¸ÆysP¸Ö|¿awªEËs«"Ç«Ȓ£„¤²´¨=ñqBNDv¯~›à—i8‚vQÐtÀD²P-u¦7ÚJÏÃ48ч}²Öác¸;­v8‰’jý•áû\±ï…ä¯Æƒb1 ‰ç‰÷$qŠúÜ«Zv*A Âøíã´¸{ƒ1QRI=({c¬Ä~Ý¢Ô~X¡s8TéCµ~šà$†Xï>±õ¦u (u`¼O"ZÒ»SnÛà§aQÉo-i׶)·ž2¸R¤~ã¿NµÄ+„–ˆ„ƒZ¹˜1â…ã &èã÷‹¿Ä¤{~¼Jîœ,´ Ãp:í™îV±Ho„ö ÇBÑjÃítÛ¿»S%¼)NjJ£¡ø‰>â”™•Â A³}¯O ïõiŒ†R8l ¢—…i\þ­»=ÐUa3D”á¸^‚”ÜÒ»×>AÎGy5<…ùßç-@Œ–ñ_I=§5aû›ªN”/R@J÷¦|Žÿœ‡ò‚yó«ÍÞ]…JÛÅ}$ö¼ƒÜÜÒt¡j’zW½3ãü䧒ãü¿üôóŸ–-Õ…´7òÏiÈ0¬7T¸JÜ€•ïLø{ÿ9'ä–ü¼ü÷ó·•8‘®§q-±n[ÁrÞ¼{°ü.s›ç;Îiœ×6lÙ³fÍ›6lÙ³fÍ›6lÙ³ÿÐímm,Dðø—­]óº ¨dP’WØ1ØPg¢¸šÕzöyرQZô®/MEõ”¼@þ‹1CT«ü½b±hÁ¹cLr³ª*I¥WÇéÁöñ«Ð¤tÛ¦2IGòúíˆêHõFÝ>,]¤0Ž¼ˆŠm‚¡‹Ó­E+Ðûe/ÔbO@FõñÇ #—$¥I ŠtÅý7Ø– +W5vø†ÝñŸ Ù6'§Ï?î>·†™j¬\ž©JŠø拃I°ø)Zšuùc'æ*ýlûǹdH¹ÅÀ:Jáx««}šW•i½q†eY(ǧӗ„Œ#ü¡¶Ø¤aÕ=G#}©ß.y ‘’9Pä4a†ÕúqŒ&ZË©‘¶ø¶¨ËŠ8CruäÔ¥FS(.±OdžM>Ý.N¥é ºu1R±P§·\·šˆw‚ñY#k÷øbRŸ«•/OŒw vü1d0̃Ò$PЖáJõÂßÓwÖþ½üQÇ%ÌïºEV%*xnÔŠŠžÃÈ.!>”‰ÉXב5;ü³4ÈÊ=8Ûm¹7ZŸ–9!Hþ"ŒkPqSh‹fö,ë+’'‘¹0y*O"»·\dpJÒñ¥A¨Q•i5ãÏõ[ŠµnAh£Ãsß¹Qn”ó/PÔ¥0ºÈy†-Z-&ýä¼VŠIdxaTµ„T íB\ôúrÄd,ëOæ$Uì¢ZÉ)bµ®ß,rJ>ÌKWm˜ë† åû8e’âX•Öã÷w^ 2rBñÜlqBîX¥¶„0¡oˆÔ£ÇsÓë}B%xÚdgâÞ˜¯kCCØb† ®_E7â„ÕVž-ñ›vĵ½NûEŽÂOIîÖ{…·»xŒh-ÐÖ’ñ•‡$¨KoP1òN잟¦ o¸;šãåŠ+¸ #7ÃV¡÷Å-ÃÚL~°ÇðxõÛ \GsjÂâ?‚^B Ð•cüØÃËm+sw UA<~xØ%VãZ±ÙO†=­Ü³ÉÈz1nÀš ,ÒÙ›["ŽAP(ÙoÈ’{ Qáu +åŽáŽØïRØ$‘L ¸ïÛq:ð–¦Á0UØK{fu +Ê]ÙêkÈÐì+Û¤‹#¿Ã <}'#‰÷˨T–ñ”J‚%M;bO8/êI¨ _Ç“àiVŒ.¬‹fHPm°5 ²ƒÞ\(Š>FèIÚ•®3RGªY¿ïyâ§I”¢ŽnT7Üš`M~ë[ïg 4QêWýK„‘¡Hù(‘›‡í(5PzŸl3¶° ¾¡$” © Äâ0[˹•™èì+â~œ£zc&0Nô‘ÜwÛèVW±´¦öy® +,Q)•QVE«Ì¼@¡jî:xgÍïùø—åßš¬?5ÿåeKmêyU‚ÒÊÞñ!ż~Ø«q¨§OíÂû—bÞœDý+‰< 9=°\1+/7RGñÀ“Ü` &Ý* 5Ä$¼o… +ÕÐÔvÌHo²h{ž•Ê ¥AÕ¶§‡¾]jabTõ$žÈª=ë…Î×\ËwûRR€…>x‘„Ç7¬ÇˆaFf?ß hAöï5?8z>ˆ³ƒëRË"´c²FkV!¶·õ®=KÚJPÐ!ì£H=«ÛÍǦ Ä2úŽ¨ +…í^ ññß &3+E'í×.6XÕ˜%Hû-MëLM•›à˜QOÚ¡g ·R\„qâü*[á¨>~9¤gy7Zž??e"-9½CšÑjw'Äc¤d•ã‘ôaÓ§:Ã,°ÞÜ<ŠÖÅÙ„<׉櫱 ÜW¡À÷S +ð„¿~C·¾nF8ˆõ7e'ñǯ¦²|?ýCÇ¿¾†%U´¤“…ä B¼nô÷q¦ÛA(å í^'¶0–•ÿxA^¼ûs1ˆ~çrÕ hb¸¤ŒDÀf§M– ÐõÃ1¼i°¥+Û3Mér ñÞ»~*ÜHyŠÚ½±¯©úwIÊ4}^K×unï\㟞?”¾^üâòœþGó;¼¼‹ug} >¥½ÊU-@m˜‚Ûç;üáü¬òÏç_“n|—æ6{bÒ­Í•ÜDú\"•YÔÙˆ í¾C9ÿ$¼§ùãä›#y–WµW‘n¬o¡oÞ[Ý"²¬œI…‚Ô>9ç_Ï¿Ê/&þtùfÿòïÌs~Ž¸¹œjñ1õb»EdI +“Å–ŒTŽàøÓ>Q~`~_y—òÛÌ×þYó%œ°Ig<°EpñºEp±µ‘3 +2°¡gÊÿÌËß4~ZyšûË>g²–ÖkI¤†9ä‰Ò+…¨$‰˜Ê„Ÿ"¿2-|ÙùWæ½CÊ~k±–Úk)å‚+—‰Ò”¨%…˜È„Ÿ$¿1.¼Õù]æ»ÿ(ù²ÊK[«¤‰edeŠáˆÂÌd`*ÈÖF²+‘œÙ³fÍ›6lÙ³fÍ›6lÿÒë¯e¦$I О¢›øgiM’iĆá•iÆ”ÏKI~M»Â9 +°!¶¡ÏWMåy%¸I¥Ô¦<*öß·\bÄѸüGöpKB¶€§¨$ð=ð$ÒN<=ðúÖ4‚oÌ3A¸©¦}t[pµbÃ~¹AAˆÍÄqwÀÞƒò#‘<^9F ­zàÈC[Eß|B‚Oˆ(Zoîq®¨,On™’Õ#n^˜¤5r7©÷ÁM"³wu ÍÅ_â_„øbc”c‰¿† ýÛ)*]¶8´M¸ +:øíŠEÌu Ôâ3ªv¨>ÛŒQc<¶;Ôôí‰ÜËm7j(+¾ç“êí/lWçŠB—"*£+¹Ðà{¶·OÐz*°?hžƒË ¡˜ ÈR„Ó¸K…n€Hß­6Ç ŒÕV»‘C¶Gµˆ¼Á"4z}¬sÔ¬ÌcVZu*kôaTÖ’E!fRÄý•;…šÖ@5Bßä“Q×z`eµÔWչ¡UcʵðÇüÙåß>YI{¨$NB€ÑÛJææ3V•ä +NÞîÎxÕšJ,{|5Ü“á¶!í¼e™R@ñÑL\j¦¾æ©ë=„ÿn”€Û|Œ·žµ>îæÂú àXÃØúG2„Fx€Þç¥q¾„ŸW[v)ðž\IØïQ¾/-ý½÷%{R W•V”ÆO~QR ÔI0kOˆþØ+UóÕ¶¯gªhë,|ÔÉoëpF’ ¡È©=Gш½ÛÃw¼¤b +>íMð]–d,€…ZЈú0ýaÛ¤²‡éAO£:ƒq}~‹- ,¦‘ƪ¤pP=·ëƒd·iÿ¾n½TòÞ”é¶Ø&+ai ™y€Ç¥{|±ÑJ°–@¥–µ¶¶Ù1´ÑRÝç{¹¤¹KëD$~kâÆð +Tnw9JR sfµ©ø¼dsñ•­)·áŒ¹ie*ÐQ(A?*à¡ë=¿Õíd1ÖTrE EmÐ/nTëÛ­pÃœiÓrkMñfBzÔW¾_®®BHµfè{`—¸ºp¡Bì[ì“òí‚£,Êÿ´*|6ñÀ­)jðÍ:ŧ€oC¿Ð1?Zä¢ò@Ððc#‚œ)RŽUËí§+ÁéÈ’7¤÷wàÜø[¾¼´šñà\½¹†D•ÂqÕw(ÜÙ»à}KM’þ]ËgéJ’—ƒd Ö6 Â{áš´‹ýdèϦêÓhÆÂîÞêémcB/!Ž¥íeæ ô¤¯Ä†Úê1²•u +õ¡PkL$¤xÔtק†&Ðs Êw§]÷ß$V:¥™–kCÇÖ„^Ý_™JŠ©b:»€qn˜™yP5MGjâB¨V=·5<ÊÞ‘/]Å;šï‰Ûéšl0Égiw’CÄ|<¥$’Mw9Öì¹$¦PM¶^Ÿ«\¢‚O6 +[ù~þØUÔçµ…&•(Œü9!©wðÎùÉu}åë{Ç•æŠæå`’T<šR¦µ  ° ¯S‘2ùoË>sÓÛEóF—«c>Ò[ÝÆ<*¥·Sî(p?œ<«å8èÿ üå§[êÚ{!ýÝÄbQ¿;«xk…Ú·–|ù¡¿—üå¦Úë +BÅ{ºŠšTº·Rkv>HüÃòý®ç{[m_Ožôn.#”wâËÉ·Wð*ÀŒùûÿ9Sÿ8¿/äÅÐóo—%k-jw2$Þœ…´þ_FòÁ—²±59ó‹þr{þq´þP^7š<¹+ÏåÍBêHà·1IÊÄ7ĈòÀ©è¤šçÌïùË/ùÅËÈíf]{BvŸË—÷rGoŽBlC|IJÕä»ÑXîóKþr/òFãò“Í·¿RŠDÑ®.¦]9‘Å^H¾£}  ®ÿ>¹ç|à9çlä³fÍ›6lÙ³fÍŸÿÓí¯oó1šÔPõÎÝ,·Å8Ðîzl3Ñ*GC#r¨Ç®{6Kd@YA$øu®Íð•¹DSGô·î–2!ݺ|qcÀCPwØtÀwPN¥°fã#FU=ýð}H%†ækµvÄø1Œ#lh•ÆK+H¤ ƒw `=^4 %ƒB@â>†êbä‚Ôé‰4¨¿ +›°'¥0©íÛ|xHa¹ØÓ­0L’˜âD¼ÛÀôÆ.åÉèkÇP1ZšÚ>Ø×z#ÃĺµiQµ=ðM¨e5¯ÙUjŸ£xVDr¨ûTb¨Ðâ8Óű´±óçñW¨£}±ês$ܤ"´§zb‚5*° ¼‡Zãd·W«&äíNÔÌ“5: 8Zmv— X’›W¡ùbNÓ‰%ºbMЯ£‡Ž>'õq­w ÈÐbÓÏÆ"CW¾7˜ €>Ýò–_Höìq×'¢É"z¼Øë]·Â«ÈÚE§Ä;qßè¡Äg·iØý^ODê¯ß1ˆñ<[ ` Sß#bòÍÞ± }Bçê­8Ï +#âGn¦»`i­%A@ÕTþì ¬ößé/pdo²XoZfµÓ­£D·˜™d¼ØRµÈ¦ùquåãÚóêw#àk¦PI=kÆ´_ ²…‚ÄœŠËÑ€®µõe¹ÈïZ 4ªŠ`¨zS¶J´ë[GFvVäi"ñøEv¥0'‰‰.Kzôë†D-ÀnA›ÄôÄ$•îƒô?´:ýØ´6¢Å+,ë4ÌHõÔRµ-h6Å`º‡—`×H˜oAã¶#<ÑÛ…ä꾡á…~išÛêVË1á$¥’1üÎ.?H8×üä-–“}–³J-õMOÕ‹L£3à KéÐ(Õò=x¬;y"áv+Û-¤U…IøAþ¬m¥ÚÜ[ZÃŽ¨ûŸL}»øm‘¼‘¥Þh^]ÓY¢°¼çYa©Š‘4¡*HßÛ õ‹]?UÓ&Ñu˜#¾²œ0\F²Dëü®¯Q× §²Ó5Í:M'[µ·Ô-§æ²ÁPÑ¢ÍϨ:««ÔTSÑSËÞfòÿøÏ1Úù†Ð”ÒïdŒ\G,iéKêT‰R„ý3Ç^sÿœÒfÔï5+yìlå%íôÙ­}c^"A"UkÓáØxçüïÿ8 \kw×ÞSó,šuŒ¬Ïm¦Ïi똉ðõVDª×§Ã°ñÏþbÿϼ|™/™/®|“ç94ë)˜µ¾“uf'h\©<«,u^[‡aãžüÏÿœnò~•æ[Ãå]~X¬žV1ØKm꼪BV^@¶Ã8vµÿ8­ùÉ£ÕWKŽýÅIŠÎa#Pv ½: ó‡kßó‰ßœÚü:l:‹ïû«į°®Á‚Wä7ίÎÿÎAh–â{}&ßXc_Üi·K4´ +[ep•éÐns_~ZyÆËP]1læw4QoWÒ´­sÍGÉ>qÒ=sªhwÖ«lÅgymfUB X­:ûç8Ô¼ç=LÚ®ƒ}h¶ÌRy%´™±Zu÷ÎG«þ]yÿ@õηå½JÅmXÇq$öSƈÊhAfN=}ð’çCÖ¬¹}nÂxx72BêÕ#®ú2óô¸7?䡯݄ޔ¼ý. Ïù(kãÓ}½OGÓoSù(yxôë€ø??O‰åÓ7û³ÿÔë_Xbwˆ}ßCž"•ñKÔ”“Tâzø ·Hâ!ú>àø ]x§§#|q±-󮮥:ÆEI•ñÀfÎ.N]¸íádªÒ Ó’n<аºü·©ß5λ¨' R?PTr¡¥:;d £Õ«7Ãà7Äã´‚E“Ô. +X¤‘Ûšöñ=9 @Ê þ¸Æ±{ýâBYÛ§€Ç‚bW n<1–ú}”ÓUø +TâRj—3ú4°5\.£qê =[}ë°ÅøV ®Ô®õ¦†Þ*ŸM€ +h[ßÎ8ŸHò¡!鲓°¯Ž +·Õg¨˜ ­1 ,㆗Õ›°cš[q:©B7®(ìÆQs*1hÁ1"½jRi†[…¦ôÞ¡;¬cc·¾4Øó^eôÕ~ÐÜÓîÀ¾”‰·âIîÁߵżª’Þ™VeZÖªÉëòÅÓW‡™BœT}®ôÌñ†POqðŸlDYʧánG¸Ç}e(jOo§ {[Š4NØmÑ€kþM?MÔ³T¶üŽ™Ä÷&9âxÌ|£w*DlÕ€iZö8]sõRA‘@b>šý»‰ØÍ%V´®øëx7/ƽk_Õîl¢¨±Ñ¨ÚÐQFÝ;à@ªÓ£pæòÃj}›YÆaPæ­åR5¥ öÁRÈ'*îJHÌ¡¥6úŸL‚í-eºBÇOqs²Æ²\ +9ŒnT”$TS® õ#2r5B>MÏûY‘áµS)^,ŸdöïˆÝ§*I/ÅM¹qÞ‡¶ +»¹Ò¬ j׈Ð=²˜¡’8ËÈP‘Tø%I§Ãí—ÒI1äþ‘@@ä7˺cqÊÊYŸì­h@÷ËOJ*ìÃsL¥¿k¡äн­ÄªË Ž2®ìÊ*ôŘKê»Ñ[ýØ:Ö¸#¹û<‚ €_•~ì|¯ò˜PT€õÜ1Ûjâ }-̆G[K9!xâ¹<^ån]è +‚ +MÇêÁ´J啤ý•jí¿L©ä•+Çé°<@â 5ùxâòE "žJòjr¡;ž!sªÇ¥Åj·¬%ú¼z|Ù½V! TPrâIì0mµÓ‹OU˜6+ß,´²Z»6Ä—Äe\[Çò¢´ õ;ja¤Ó^~3»èŽ†‹Mª)¸ù`©#H$yÛ—ç ?dà9"³»ôãâ=Høá]Å­òÏ['⼃ Iå°¦ÅO¾ +·»¾v•ôiÄ sæAcJt*k¶ÛÙë·7sÞy^ìE ¼‹(ºu2  +†ªåŠÚéñÝ]H$; äé°ö¦±™ny:³Ò“DËN¾õÁÚ7šìu«ÖÓ®¥+p«Yäqð±í@@²Eä}VÇÌ:ìÉ& ‘j {¾j"æàpÚ›Ó¦!úGý#úSôL¤>ÇéB^”¥=N<©Mºàq¥è_X:¯è‹_Ò<‚}wê±}c)Εé·\éy/ë‡Rý eúGaú[ê}k§«Ã—Mºáøóõf_ÐÐýÕQúOê°}h'~tükŸÿÕé%昫±’¤Ÿ²wKÅœ:²U‰íòÏS#éÑÛzs¡ŽrßhnsÖ3O¬z¼ìåŽH@§$÷5åŠä¢¤èµØñ)u `“Ÿ¤x3l„¿3ÚÛKúÕÔTR¸Ö¥¨Û"zÖmG`DÀõ=M{b¢;yUz3xt¦ >¥Â™¢rO_‹n¸Ô‘TCp¼‡¶ ú¼ "È$oZAR +šS¸Ûl`W»;^_Q#¨S_ PÜ(\ñ/¶þ'»·…a!’›±«†þG€pRTxõËšËs.Ùq¬¨ËÌŒE/[q$g‚šý®»Ž›âsL¶Ê 9f?ÛÇ•Ä\žœ‡îÇÈâ,¼.8G²‘Sã\£pR5 /6¥ +¿Ó„Þ9—~ÔdtĦ‚â-ãA×–ÃY„@3<…6 +®ýidá ¾¨‘k,e@áN¦ V¹V­¥Ã!0ÉûáöX +þ¼·7qñiS”K^Q×í¢ÓK¤hTíRhÑ•iq‘-«F(â‘o‹¾[Ëkqš®ÏÔµ÷ÀòÃ<Õ[„díýŸ–nM¬H€²W;“óÃHéÌ;’é'é(ýâÈz“Ú€aÂMe$I²úOüÕê>œbÁ,`É*™9 +Pÿ æC%M”ï°þ8a h±€…ŒœxÕŽìŽ(]¥u‰ÍJÑž½éLM½CéˆÛÑôÏ&+ñTÛŒFH¤Ý•í°ú0ìzÌÖð[Îm\'¹dUq*© Ây©Xu"Œ)€/Uâáã +‰ð„Ö›×îÊC+NC·%cÌš’³à zq¬R•â8• ëã&²º:”/'h…NM+Ö¢CO²íLk^Â’¬=!üª+¿lQcõeõV£Ó«î1Æ —„G:5,•=»bÞ¤×w]O„[ú§ÑF yŠªo¶åZ¿NTsC,„ÆHáö«øcž½ òÔ¹9DÜ¡p ÐôÇ”†qG‰«P\—"¼zTŽ½7ÁPÚI;3„¸'‘4­q‰l*Z7 ¸4Oôã//cTXeO³NE{ÓžÂ9Ìœc&k„%¾-¸Ÿ„Ò¦ƒcÓx#ˆˆnøñZ;*ÔƒCAôàc-ø³o´«êÔ‡áj.þ5ß™¡—÷M9P$5 ÛéȽԖwža‡ÊÚµ¹‘í"¬«À›p œ¥¹,FîXr +Ô­FîíK­¯Ã &‹¾Ç(™Vifõ$sð–òi¤mlÍi +‡aPX’¦ÖeÕm¥¼—J™ïžp’)@bI +w¢íß|Öz…`Xêì fË $*f$HÔnUøh|ÂÛÁéY1¸bn#Žý€ðÂwÔ§Òü°Ój7&óSŽ;–’㇤-ø*nT÷©÷ËÕukxâEe ð¸éP7Û o&‚7Å1IYA)ÇáO\%»›UÒÓô‚Â¥†Šyl6ÜÓ8×曯|ªÐùŽÑ™/õ 5‚…ô£< +¶ÛÔWjç>cÔãŽfÔ¹´Ek+]š¤PÓÆ»g>ó&­ykwúOÖ%ÿ»†*ü‘;{íœcÍZÅÃß>³pí ŽÆeRj‰¯MöÏ þgùÃTÔ<Ç?›.n;‰XÅh‡*(Ôí¸#|Œj>jµ‚eI“€å=y/ OéL#Õ<÷ÜV÷[5L4YO]éJW +_:}ìfñhÇ9ÇÄ +JGOáÍCÏYj £êº-ÂŽC…à èzP °5˜dG~q‡†áù«³…8ÔŒ~›æk†°²ÃtÂU˜5Tíµ(Iëã†>e¿·¿ç5>¯|âTnAƒŽÄq©ý'ÎWö×®o•¶¡*ܱ-PÄ}’8ÔŒWô´"úc‘rÁy¢¶ÊÓ}ª/}tfÔÞe!®W’óét$Ôm±Ã+ÝJÒÒ^ZÈÒ^0_R_ +FÝ>*‚AÁº–¸d×n5( ¹ó‹Õ<&éñUjéeh$ô…(G?Þr +Nû†z/Õ#YVÚFdJA`UIÜR»Œ:Ó/-£Kˆ¬àVû>¯)y*±ø…FK<«y§XÇvºz—E+ë–˜2#ŸŒTa±Ô‡®%úÂý“ðSãê>Œ77Ã×}‚=ë¶þtuù«sŽ¾“/ ùõúS&ÍæÄúâ^úñTZ¼~Ÿßr%G*Ò„m×è®ÿÖ銳$P?˜îe÷?On†¹é·`°z3Qž°Içæv§8†åÛ4±2…hÙ¤^­ÜÓŠé%âü)Ø}ùƒ9@Û§CƒïˆT17ªßdÔʢ權KR„1ÇÈ]ˆ†F Úƒ½1 º«IöªkL¸f+4qÌ‘Á2~ÑÔW1\FIg·ª¬lø†ÀÔåIÇ´#¹÷õâ››H=6 áËÇ"<‡—=›}«”’ܺºÚ¿·|cÆ’IejÔmÓ€¬/×â~ô8ó+Êpð׎tâòéSï‰[ÜGÎEpA©+±Àé±rPÁã,‚µå^µðöÀ¦ÆêY™ÅCCÐþ¦*þ˜@É#pß«[„ä9žØë›e–7šªˆkPÄWÛnÞØM.79z`ÔñÇ,ÞÃ<Ø»H>Ï~»x`€÷,å¢eõÛÝÛiö¤Ý¸f·ÂXšµl½F2+ 8¯ZKX(SÀœ{Ü“n=I…\n¤t§¾&þ¬’˜à>ОØƵÓà»–â ˆƒá©¥{wiaWi¦ŠŽÆªàyeY¢­ð(ãÖ¸Œ“ºš ¡;µzàË[Ó"1b5nG—p0l±uà¡H: ¥ª*³‹á­w‚2¤¾«/&ïá‚L1Ê‚VR²È¢7d;ªŸ‹»…CFÔMð;Z%¼‚9×ì®ýÿŽ+%×1U@°ë6¶ÐKÜÑQ}ÑÛ퓸îM¸Žæåœ0f-Ò½0T*yN§å‰s¶m¡Ó‘ñüq 3HÏÄÈÁ¥—sÈ oLÐË ªýe±ÐÐmˆ+Ü9â½êå‹I «°V›Ò´üq;Y¯¦ŠÜ\˜Ì’+zåM¨'âïá™`3Ìéiö©ô ¹æHWÓÈÛ¨½qš€¾Áè+á÷c.'Ž9M”ƒë2%¡hâPÔf$¸®Â»áÌI¨I¸ò ×Ê=H«È7ĵ߆Q)˜6Zê5¨I=HœÅ)$Ü*ÑNÄèpŠ[— EXÅz§°ìAÞ¸Ëx—F'ÒQBìðM¿Öšì+D^ +Þrb(7È7é6Gæé4«û!&›)r5heÑa© ±0W OòÔS îæ›ÐqÔuõÁ?V¶-WÝŽïCá‡P@¨„ªñSÙv' nôû%¶ŸÒ„–võ%(å9• Ô€w8rñ‹Š +®Ì SêW½IbVu_„¨>ôöÆêö–74È$Ÿf ÜScïß ^xgÕ<»©Z«I@ÃÔ,ÞâF³SÁã%%$0>ãÇ¡Î;?—§»Õ¯t{€§Ñwh– †ð#Ç¡Ïê^]¼¾Õ¯<¿pÊ­k#Éu¨pÛìŸk¡î2{¡LÆxo‘^ÙŒHI<ÐìzÔd7SÐ..¥h®aV·©rIdèzÔd:(ܪÜŬB²Åñƒ‘?¼C]¾c9Þ¡å«Ø%˜]Åû˜œ¬<‰øÔšP¦˜ -mîæêÞ ,‰R”Øؤ:[C!¹¼ý(à…ŠPol,L6:¼W·öÍõh”´q‚T{PÇÇE§½¥Ð¸¿·oAa%ví·\dW×HfÔ•o[Œ!… + QQúñ;yît‹g:’³›Æ¤ %A„W©ùà»I.´_R÷[ "êÆÙOÂT0¢ +׊[Ís¤)“P¤‚‘,•‡ìFô÷ùŠÁ­µÕ.e*îÀבð5Á&ùô—Û¸Iå£LÀ† _òÁwht©8Xß¼Ÿ‹HyåíJSÉtú9Y\”¹˜+JÁƒ|Á?¥>CêÒ}|'7ínk^: þ ¹þWúÀoRkˇNƒ+ôíù“ê†9>¾#ôÄÔø¨MKpéÐ þ$¼'Ó0Éú@Eé {Ôš–áÓìŒÿ×ê–q°~ %HÎï=#ˆ]º»g¤•ÚW%ÇýyëëX¥Z@FÄW¶ „Gnæ¼hç}÷Äf`¢9J —o|Õ’àÉ‘!!ˆQCO‹´‹Õ¨”ð58ööÒ0ÒF´dý­k÷â6» ÌÇâ$… ß·|}ö§Ž5äÇߧ¶+ »™Ù–fôÇ µ;‚}°+Én½a+½“¹®·º³}eZÐI2ÛÁêµDÆRŸÍ¿_ ÑÅõ¤Zµ^TÛåšyÞ9ÄI5¡<¶S¶=}%`® »×aLVIÌ×ðZ v’G­ì"BŒ¦GZšÔmM°ÂÆÙ¡§3Ãâá=iҧà +.îî+q#ê/#‘SµO‡¶!{n·Š;XØ0âÇrÕ¥>ìj:\úö¡¦³lÖPé÷ }XNÁ§{få¨ôRPV¥7Þ˜6jÄ£qû €7cJnpM¼0Ñ®¢”†}«Ëj~ŒF8#ŠcÉ95gM©§]†Hl´­:Î[b[Y5)âëÓAY߀Eg=ÏßHQý¡!\‚Äšïdqsv]cõ==M¦ø§­·ÕZ9n +ÀŠ-MNù½»³¿Ô¥¶¶´y½#Y¤c𤀉Ó}Á­q(ã¡ôYw¥h=±Y Mz`úƒ¢Žƒ‡»‡÷•SÙ\õcàú@A%ºÄLÀG¹$Óï8ªÇm¯ zŠõÀÑÇ,¨Æ`¤UG_à +dR’ENf¤šÆ±Ò¾µk1Õ-«LèÒÀ? ¤D­©0¿TÑ ½W•ãä[¡€>â1­6â~rBüVACPÝ;â‚ÏË÷p>ü#7.{ìiNƒ#~üžÓüÚ——ñ7„‘MÂü$Pn:ä3TÒ§¶j€B®ÊÇÓ‘{í&[)U½>iZW„øšv9×/ô­5ö× ñ–'e<”‘¹­jAÏ ~f~DÜy"u¹ZKE“%ã,ÄXJµ0†â(Å.I^]E+…7ö_¾‘f@TÓáíôd7[ò”ÊÆrÅ$ŠÓ·ËÇ8ßš<¥:ŒÑja‘d +Â:u¨ ß îí!ž_ÝÉYYXv=Ž\hq;¤¬Å¦U!d=;Ó"º¿“”JGÕ‘‘%jcôd7Xòt-8Ìf™‘.PJ€kÜ°žûJŠ\<¬á~2ª<0‡^Ðd¾D»¸¹%QAgm¶Â-cÈÒMaÒK!dø@aP+í¶Euß(ݽ¬W×HÜv/ÙÛm¿ŽŸ.Ýýi¥&¤7M©Ð×"Sy{T¾°“±è̦»×"W>M¿²¼å,ÄզçBEgòõý´µcS±5ýx¸†øk‡P x´b¾ôZúÎ']Hk¿¥‚4~‰?-‡ëÄ¿Fj#Í?¦C·¦Ñú%k½À×é9¹ßþ“úæÿgÓå]éJuÏÿÐêvÊav!õýàíâîæ7)%(wNµûóÒ±Á'3QZþì]b©æ7;°¦ØÕ†ÞK¥¹2’Ãök°¯¶šÞ9'ŽæQÄÆ(¦„`¥yR6Ž1V ªíZW®Ϣ鷺ݯ˜¥•Åͼm#™ Å·5^˜Û[!˜P’iƒQ¦¸Ã¢„øàhá(y¥<ÏÚßα»˜€SµT“³Ë%¢ÁÅc^Cì¶4Û¹¹>¡Ø‹¦(‰ubTûÔfúµ¬JÎÈ¿ +‚\n~á‰æ@Ê¥˜íQµqäºV‹XÀ =iï¾[5»Ä¨Òq“•JôÄÙåõc1FYx•ªì|AßZ\]BV¯q· +Ò"K¯T‡¶øŸÕíÚ¨í@{÷Á›ªQƒ߉¯·z`) ÕÍé,ÅÔoÄíú±uqès˜p=ÇF‰n¾”nçW¹šViª¨¦O]»íã‚"I­Ûš/©ËoOÞx™I§Òv©Çznýœw¦Ø¬¯,Aç¶C;Rž‰¯Ž ² 5Û+- ëíNÙlúñ”«JŽÆ˜i§—î¹¢ì[…ây•Ha# +íP(½vïƒIx¹É;HîÀŽ=V %@Tm\µDJ¤î=«ŠKñT’,µkJa]Åí¬22OVêXßÅ,CÑ•Ho@FZ-ÄXÁmþȯl­ËaTâQ÷bj4tˆþïn.Ýqz¦D<›¦Æ£`)2ð#öNŸPGÍlÕÜÌƃހҘŠÞƒ"˜¦õ)¹^Àûe?ª‘´×+ð©¨?/ +b³Eh‘…( Ó•z‘·lBãSôb7—r-ÂÀLÀQX#F¤€ +ƒJô߇Qp9ÊJBªZoø㹂Ž+P;0ëŲÈRÔã‹YëI,i$¢ŽPêrÜR¢¾ø-¼Â]‘›÷`n@þ8‹Å·Ã \SÜccÓ¤J-ÚqÓk¶–¤C"|j¢Œ Öœ€Þ•ÃK=J •©4?ÏþÞnQ7"9Õ+@q³výß*=v9Vב\ƒY ’->üTÔì~/Õ€æ¿c Jzµ$ô¯ÏšÝî GÑþj§0ŽoHR•#Ô"§°ùaeÕÜ×ZŒ0Û¿.=HžT]ãìÅ·^•Ï"~kÿÎØùgÌ7šåÇÔÏ£&©{$ÂfV¤Š°…@¥*XoÚ™ä/ÍùÏí?ÊzÝç•¿-´eÖRÉ„3j×Ï$14ÈÅdU„(r(°ßµ3ÅÿŸóò­Ê^g½òÏå–c×Îœâu½FY …§ŠÊ‰nª®@"‹.ý©×Å¿œßóòÛ&ùŠïÊ”Újé§1¶¸Öu&’Þxج‚8UÈS“0®ûR™òßüüoVmV?ñŸ“í›O$ LžTrbÊß*¯Ï"žZÿŸŒë¤£O8ùNÙ¬,šlÒ$è;&,­ò¨ùäCÊ?óõ_2Eª$~uòM£in@•´»‰Râ1½YEÁuo•Wç‘O/ÏÕ<ÔúÕ³yÓÉ2iu¥ßèÉæŽè/ŠzìèH=>yÜtoùÍŸÈO0G +¯>•$ÍÀE¨ZË~Ó:«Æñ-ÓËÿóš?ó¾aX‘üÇ&•,鬕¬Ñq-"+Æø–ÏDy3þs×þqcÌ“CõÏ0É¢ÜNþ˜S³ž §ùžDWWܶzAÿŸ…Î8y¢ž`¸Ð%i4ƒR³•~Ð’‘‚hIa‡Vÿ?•¾gµ¹]ÍZuåÄL¨.P3?PÄO¶L´ßÎÊ4ËèènÒ¯J£Åäa‹>Êr¤×Û;–?? <çgygåo=èš­Â…ŒAõèVNrl¡VB¥‰=)Šùó÷ò_Î>¡‹æí'RºJ´kr€º¶ÃˆzSÒ™WºöŸyCœL}½ªGϺTžS鿨’V…ME «ZõTgœ|Ý®YëPG$‹y‰–• ^¡†ŽÛí¼Dº.µ5¥{ mcqo°i”’éÌÔ­z€p™´©4”›õ‘šXCÜCuõ§|‰AåÛÝ>Þê zêPy­Ì„?Û•­QˆJ/ÛàXëËï' ¥YÂú7óæz‰9š+óvI¶¤R‡‹xoÓ"Wkeþ¯=™e™º‹?J{xâjÌñ¤2Š™B?®}8°G• B<{lp–óÊ³ê† šE©‘@‡øá$þ]žñ`G‰Ú@×@âß>àýø„—Éw ´ªMò1«lñœ$P(Fßôß·Ë’ nõ_æë[´]Þ¿!·êÅs]Àøbbä±y"rAü Ädµ¾E3DCö€Z}5Å}K{™Òœ… ©#Û*6ÈÑ‚¯#šÐЉµ´ìÞ§©Xˆ,UjŸm’M4Þ¢’Š€ï’tT qm€ V¾9ž. UŠž½zâÖm,’ …c¡ª•Ü“ßEn¤xØz;ŒFxÚE…(h ÔôØâ):§8å=zW½1æÞ?îNLÛ±;1_¢˜äº¹·ró*ˆ÷Fù¥‰¥‹Ó„AÜ÷Ç*Û ÌEGÂ*iŠ<“ÆH)ûµØ0~ øa>¡&4ÍÈÔ®ä +eÚÃ'÷‹"…5$ ­ +>Ø·Ïç‡M7p®Ô—Š$çÅK›‰ï.%»ºs,Ó»I4¬jÌîy1'Ä“Ÿå–YåyæròHÅäv5ff5$“Üœf3ÆæÍ›6`H5ÐæƒQ±`H ƒB7fÉç“?;<ùäm4éEÌsZòçwhfô‰êâÃ:‡åÏüä‡æ‡å~Œú—®ážÄ¿«Ñ ?hFK õ#;Wå/üå÷çGä×–&ò–/m¯4©$õ¡¶Õ k±nÄ|B]x«u#¥pûCó¶½åûf´²•^&<‚J …=øî)\šió—ßš–Æ×ØÝ[¯÷–æNcÃ’½GÑ“3þs§óšÆò)®­ô»¨ŸVØÚ2 öä²T}:Ó¿çâÿŸV×K¨[é7–±ŸßYýRH½U=¹¤¼‡Ìd³DüþóÆ4d-µÅº‚’Û#âpJ<öÈ#y¡KôÊæöàN¿ÜYu'劘pVzÿu¹èjœ¥˜“Æ·ûKÜŸa‚•œ(•‚¬`TTî\mnñú“lkP®çlk™Ã}R3UØè¿~_$úуQMöÆ+G'$˜Wˆ¯#Ü|kʦE$QCã\R(&(̼½L©挔k_´ +œWà3NœE>CËOG÷OéƒÔƒ¸ú0837ÁȧAØâ‘!Cõ?N:W‹‹JÙû«ÓýXXÅ$Ìèõñï‹J$¸Už‚!ÄNÕ`?f˜í"V:ófiÐÜû`q Ćk‡‰Q¹rZrpE8··| ¡·2˜éñ +÷ÄŒ°ÝÇñqâÛ”òË-­Ñõ^œ„‹ñ +|ZŽ&vRÀÅ”‚*ÝÎ\K‘Ø3¥+R iòÁBf#Ò¨&”`OLoI$Pá¾Åi°zài/bõdœ¸ +ÒpºãQiÛÆÍ3 Á¡ÊdŒ•@5½}ði´‰äI]DhMp¼ê7鞪¢±!T¹Ú¤š×Í©^úš2H=1k{W·Cp¨…I$Ž[ïŠÜ}B÷’HÈÉF›}øïu‰™m’ˆyqBk^µ¯JáuåãÊÌž“«÷ªq‹-Š«O# Ž†‹PMG\ èÙ¼q\7«R­ß"š÷™48åÔ$, ñ<¹óâ5&”¦ØØa½œpˆõeÚ¿:a<ÚΞÌn-ckÎ$¨‰ÅÞ„í¶»ó"Ä +é¶I+!àŒ¬€§¶s«ßÌÛ·2ùSJmBXŸêñ©(‘³ RF  üpìYúp¨žŽçáZo¿¶&²ú÷K#[•bJÇQ½?€Â›YdÔZ6€Ž”Bç~”ÁZ.± ÿ™ßèÇë +ÒAopÉÈ•¬K +„]Í*A8ɬZ†ªyuza…¯Ö&sÀ§Id4 Hé¾K¬Ù}YŠ| +FÒ%I_qLè 3ú(䷌ȶY^ ±î7Âûß3é–S4ÜH +¯)¥AÍ–üÃ7¡pgŽ0„«Û#R6¯s^˜;¥wŠIÉeƒMÇ€©Ü7ǾÙºÔu‹=FÆ]K^Ék[kÛ%1ÛH^…Xú„‘Æ›|uŸ™¼±«FË{Y* +4S¨*Êz‚l_Vòeàø.M&ÂþÕ¬õhÒ{g©1È£TRŒ Šxáüš/’üеëh&*_’OWW 8°d}˜SÄg’ÿç$¿çìŒZßæ—å\ÐC§ÚÂo5-*dôè${nŽ®äŒRÚøÇÆ+ƒé’v;š£Æ”sMž/ŸŽUÚDôÚ¼¨+ï]F;3wŽ!’f šüLEB|4áÉkW,«»% +òûñ._»h±4ä7+ï¶2(èƽ;cç¾Bµ‰I¡<Ô¤aE÷ª`’xåezí +ïƽª2’Y ‚0TW”ͱ`;ý2mžD ÁºÐéýýk‘û˛ɞJ¤ïÑ—éð»KÉ}C0“ÓeøHej“óË’æ&å•àe& ÐòŸ<Zô(¨XÐ9ßmª0–ÓÌqN¢ú+È…‹¬‹ûÀáÚdn;mP*ÄbpÑür5z·5¯S펴¹¶u ²q hØÔâ+ÚbG<@øœTî}ºâ¶ZŸXîÍÉXÙȼ”ÈÄQ•H¨¥:ûàK‹Û«™ƒ‰(¿ÌÀ×éÁo`Y£’"àVŸâk½0=å…¡ýbii+ð1ún25¬ÙhÚ­ðMA¤¹Z?U—‹†5àASµN·–ô Z;¦ê¨>ÓÅ0¬ [€P½¬ ’ÏÀ¸¯°QÓ +&µ±c·(PÔ• |Cæ3ž·—- ÔÚÎoo†RaŠ£Ô¥)J ¾X"âòv„r€+OMNõö8¬W ',dõ6çÁ’„w©í…1ÛÍ û¨ø­w@;“î15]ZÛX”}9ÕõïFf…ýH\Ôßõaʤ—6ÑJ’#· VZ€úq÷—QC +„¬$6ñÔ( ›øáW<üNµ‚+†³»22XEjÓãûäVçTš ´A¹}‡mÉšö·écví¹œ‘1ì ©$½:WËæËÛ›øt»ËalG£"?$*"¦€vÜg5Öÿ6uÉ|îZzK1O©ßC1hYT˜…4£(®ŽSxâU îQµ=ðuϘE´)rÔâ–ê¾ßo:¦‡Í5×gpÃnÔ÷®Xüéo.ÀJ:É +g<ôÆÔZÖ­_²Si"[D¡fndÆ6 Žr½KÏ×]¤&Ý™‘¹ý–F­j;í×9Ƨù¥}suÊÄ“&QhZ¢Œ;휋RÿœólZŠÍ¥jsÇiahÃpY¡”°e Uv5ÛÃ"ÚÏäwä÷œ4ûý._)ØÙ^êË"¶³.!š^’¡R Æ´èr7­ÿÎ5~CþaùgQdòΟ§^jqÈ¿¥¬àXî"žZ‘2Ðõ ½;àË_ùÆùÇ/ÍŸ#ê–÷žNÓ4mcSŠH¤ÖlàTº‚æj• +šr½:ï—?•ŸóŽ¿žß•réÓyGLÐõ{´[IuË(’+Èn¦4ŽdÜî_ö{ŒùÑæóʾdÕ<³¨ +\éw3ZMÓíBå Ø‘½8šÉqB‘úŸ+SÓ(Æ“0æÄqø‡Ñ‰Ëi²ÆÓ«IÖ¼ls£dÂKYªÆŽÐӮثLe…ÜÂ9 äªIðßF,#¢±vsµ06¤Úµ„ÝØÇõÆQSf%;D +œ%¾·$ÃÑ FX4ŸA‹ÁxjW$yJJ°¦ÍÚ½0’ïR;ÛJ®dE h½Mö‹ÍM5Þ†>±wwkr¼n‚?ÝÈ~õMGŽ×g[HžYËpŒ#$°®Ý°ÊÅžKÔŠ1leGø©ÜŠl}cRkŒGÕ'ÔÚ•5ìwÛjÚþ»cÕ¬­¢†T‰ y䌿ÄŠԒŠdõÎo¨êv råYø¯V?yÁŽ¡ µ‘¹Þ0U¢pBOBIÈ–¡®[YÉ#j²ÙIVˆ‘}ˆ­Ï8y×óA[‹¹/¦–ÚU/ Ö3@òCBG@ä2÷­0šçR…ØGm/¬¤ðÏܾØGk¨[Ajë ¿Z,¦±p^±ŠU–„6ßxÈÍ¿˜V$œY]úü¹¹³rXújwe‚)÷Œåúœâµ·4›¿ÒÐJ&kÍ㜊Ð.æH¸•`W®Ç’Ò½0ËH};êa…KÌÄ¿Nß}:ä#ÎÞkmJ8,lØå‘GèGPG|‹ù§Îz½¬v6³<‚@ òßèGPFõ¦C<ÝçDÖ´ûk :I]f@fY(Æ)+Ä(` @¨4ï‹ÜÝ[X´úǧ('‚Ð1¨ÜôNBo¦Di3°Y£nJ†ŒkJõ;§"sݾ—ÂÄÌ©?"BP+× úrw$š_û–P“ÆÕž,A"½z§ ô |HFâBµ<6#zm“˽}d¹KB¡,Fà0ÜVž©'òŸÎÍgvÉ–>CÕVŒ7? ìÿó_šòyWÍ6ž´Bæ~r#À:žJhµ5ìÐuÏ$ÿÎqyV-;ó LóŒS!>c¶>­´q„ôÞÈ$E‹ñå^³Æóð%Ûè_š–>n·™Oø–ÝŒ¶ËÓ’Ë„LÅøËò­h)ïž\ÿŸ–ùÓEüÖÑ?1,æZyÎÉš[%€Db—NÂÎÎÆdçZÐRòÿç;4 ?ùXZ_æ%¤ËËÍ–înlÖßÑô¦±ÄÎ[nfNu­>üó~yw<}žgÍ›6lÙ³fÍ›6lÙ³fÍ›6lÿÕé—¨+!é\î‹'&Šk@sÓ‰#JBAÓ=iuÁH‘ÔÕTöÂë‹y¥Úè†*—0/¯mªqqë[ +ì+ÓLþ¸i$„0»lqÐÒUô×âj +öÌ“˜‰gB£µiší9 nAXýªŒuµè(U‘” +1´eDÑ>cÃLÌÎ %liÆDठ+TS4‘Ìd„‚BԙߦÃÛ]À#‘d[mË)Áq4äGÅû'¶)@þ¤lìûü±ÓÃö +|hw¬ŒüÙZFjÔ¨4ï—pò¬¨ØvÄïFF«pÄ M™hO]‡LN{™í`wi(ŠkÈŠ•Û® +Y  2?Å]–£s€ÕïQÙƒ +]ü´?$Y]Í—co¬Æ[L´­½+T‘8Š:÷Îm'õ‹ë8ZõÎL¦xhU}CÁC…ZüíËoÌ1Þiv–Ú¦Ÿj“LÓaø%*¾¡ôÕYQئô­5<Óypù…-žFiŒ°”I©‘¸(uD&©N€g”<Çÿ9+çï5YÛiºÈ±Ô!¬¥á—NµV +ÎJÆ$Fû4ÜS"žcó6…åé?IjqAN\=EäV”äW¨Þ› +øãtO3É­êÌõáä!æ9q§Úãµ7¦Ãç…ÚG.Ûžã'þY”É$Pt®7BÀ›çPò*A§±£$€^Œv.8øœìÿ–å Õ-L0šªf%¶ ßMòaùy)·ó ”ÐFC£¨’Js×·¶g7œ”q¤@ìïÛÏGR2«EýíX·¨i@8Ÿ³LõQ^i«4ƒ`@Ü}رŠÂÒ@-ãXÐ7zÓ·ãKwzœcMÈÀ+‰§I%ÜVéñTvEø˜)%TbNé7„õ8ðPEK]ü0 —RÝ]=´â(ÖµŸ%ÆÛÛšÞ ³\3FçÇ¡ýyZ¹ªêº…ÌébÂÊÿ{fd3J´”Œnµéña•¶¦Ñ<•™ +“Ä¡»°rDuÛŸ*Ÿ»šÖ%(P.6æ¤_†—z“Ag4Ÿ[ŠÙe¤<ä<Úa·|ZÑíf”‰þëÄtü0ªiíEk:òR \Zu9סe&uЫò ÉHïôç2ó%ß—¯%{wÔ൸·š9ÃK*ðu]˜ü&Ï!¸¶³‰à…?tz9«ÝÁ|)–îrõ¶Ib]ýbä‚Àî +HÈuõíОâÕàõ£¯ÛÝ€aÔ2šŸ‘Îi«y¶ÎÃPÔtÔÑaÔ¬9Tj #Í‘Ž³C yG ²çBËGÓ命FUe@ÖÊ]XÉß‚T€ ¡$avŸwåMDŸS³šÅZ-ÜQÍ$N\íD„±¦•+ï‘+}SOòÇ«.³g2F*Ïl$tbçcéÄ€ ¥HÎ-«ù}åd|Ç¥\XH’ÈbÕmàÙÜ è¢rÅ/&MúíœCVÓuFšK…³4„~ðUiÜŒ˜yŽöMFÈAbkqûm +Øš£çÙ¤Ô “ô}ÅÄrš›™ 4#¶rÍum§ÔtÍ&öH.Z­}q0x¶Š +Rò樆âKYY¬¢™íd"—r9r<ÂÔÐnA ®q¯5\éZv¢5›ë+‰¯¬ámdÆcr9+|aš}¦‹\à~v‡E±–;û­6g¸±Šf´ 7fr9!‚ÔÐnA ®qmL,-éYÆSWómæ¨÷·Ã"J²[BmÞ24è”X‘ÛŒL5X`јÝbæ 6Þã\ûyƒÍf]…:=±TKOM¢Y¨rH®U±ÈZFîq"’[»‚ìÌG!¾Û|ñE–YíËMð»6 ;e5¬p¯©nqªMjzãšáá¹ô¦­€|Î*Ѳۙ‚|dV¼¿›šk˜Qa„óAÑ[r~œ«ií”—@,°¯leü2†IJ€ÄàIµ +¢Î³ž)€I#­+×’ùÖ@ E†í¶Ø¥„34’'Ãövé¿ôÅ…”’Á¹ô$vð댻Õc[>3ΖD¡£ñSÃÀŠí¶Fon@gXÅ_ù‰í††Õdá ?H°v,€-£ßK )Ôep¶ì$bªZNAy)^´8Ý.CZ'sã€oÎ"Z(¹ÉâÄœWQ¶ò&â81aP~Y½Ó㶻ŽîÒÍ$‘˜•‹14=(Iß{q3Uo‡ìšâ±Án 2º~òd*Åv { õyžöáÅVÞ00?;PàM9¥ÌÎêˉ¤‰øȨ EèAÅôÓrñ€yŽ^øä¢À³¤e¸üA©"µÍ§Ü2³P£”T‹•:xSѵ9…£],>³r0ˆ.ä+|‰7é†K¨]Yn²žÃͧ麼LŒ85(欭óÛ#úí…m’3Hä°M‚ŽÔÞ¸Wæ}3L×t“kªÚ‘$îHK/© v!… ­{ó^»s5®™3YB½3×­Xy¿ó[Ïþu×õtý6èÅlÁº%ÁØl>Yå_=~ay“̺„±Íw ‚¤¯Àÿ5?Vq¿1ùS[†âÕ5W–¦{¡³Ð ›–ÔZß<Ñæ¿.ùŠ=I?Nk3Ïk$ÏraW`L”êh*Ðùæÿ3ycÌpÝE§«I4RÌ÷9°"@)±åµÁVƒÇ!Œ\ý¢OÓŠEœŸWfõà[4ôìÖktZšž**ÝÏLmèßIᦷŽÍ 6±DÍ`7Z øNÝÈÛ ´×ÓU`K4+k§oé3@«]Ï¡o•‡Sê­¦ÜYßÛ¤“\žËB>êVFE °#¶ ¿Õ|³©Y\i÷væiî>'0­Tó«•R á‡Wzß–µ[‹ ‹u’kŸÓ-xžuvE#>òêËñ‹Ämï¾H¼¿åØ&¹ I8¯…QØ0Û€ÛèÁþ[òƒË¨£¤RÇUàÏ.ŸÎÔ†ySÊ }« ˆ(ð…rÃíµá—/<«)%é§ËrEH†¼ Yšµ­sÕŸ—žX†ÓEŽk¦åéÔ‡5£õøgµ?)|¥¢Át9:7(˜×¨ë·~´Ï^ÿÎ2þXÚ2?1êtôí_ÔY²î‡zw­h~ÙâùÉï;Ëç_ÍÝa‚I¶’ÿ£`·y (6ß»yMóe©~|Ýÿœ»üÂÌÏzX£–ÞËG”év¶²HÌ ÚŸJI=F^DSçŸ9ÿç5?3äüÎüþóÌpËig¢Éú"ÖÒYYÐ5Ÿî¤•€Õeä@<ã_󔟙iù›ù»ªê66ïc¦éÍõ &wà>¯û·•cuNR¼˜RµëSœ£8Æpœäy³fÍ›6lÙ³fÍ›6lÙ³fÍŸÿГ­Üáÿx«Äv4úçwIíê=Dd”oÈE3ÕSâ…–`áIE>œô5¶©Ì­{Y"¯ÅNÇßjW×+2¼…E?jµÛéÇ<ö»·6‘—¢ªþî¸2ÆÚ3o v Ì*pµæŠSqiÊA‚)$ŽôÄŸTKèä~ÑõÅcÜBáã)Z…@ bBËÑýÄs”vå°ëß|¨|÷c4~”ðú€¡!J‘QJ‚rÅï¨E°nq2ÂÝ£Š¨¡,ÔújqjGD’s'fQò­r†µ…µ½¼F‘@‚9w +Mfjb¶“™%ý†®õ=þœI„È>° YP´ß=°mÌv“[D‘ÝQԃdžýñkk›‰$FH#uûLü¶¯ˆ?Ó)®=Y.ž ×‹¶f…àV¨þq@IÀŸVžY=4nAŽÈzswjc¿X¸IZÔ­zƒQá…×ÍÑR%«¹›c-¤³N Ëé¶ñÆÞ=Ùqm+«HßÛ"ú¥ö™5«G+·5xÖ‘’»ÐÐ m±k•[^b"7Qã‰Éwm´eåP3Ó Ä$Ô!††âtÛhÕ›riï€!óž–±iÓÞÙÚ\Ê¥-Ri³QvëC·SŽ”Ç(_÷œvf¥)ôæ_ÞqÍ€øÓ¯S‹%í´–ëÉ‘Ø +1V¥÷¶’ââÚi£N'Ðu'°$IßéÁÚÆ°™ƒÔž€vöÀsê\7høìÀ +‚N!#Z2Æëį¾ 4çžKë;·µhÔ R%䥚›rØÛ¹¤k åÌP“Óå¹a ®(äÛvùÓê2DaF«7¼œŠŸ9K v¢òÖO­É *»}v øˆÁÚe ¹KÐדSqOa¾#§ËR=ë+Ér$Mì¨û°ª-7O¼õgu<œ„ñ>ué.ôQ–çÌœ6÷+?ÖÂÒ4”ª¬+YW’µjSå‘ÝkKhå7,=DŒ·|doN†§¾F<ñmn&£g=´b¥â©e'­WíwÎ5ù±ä«*UÕ¬ç³JžJLŒ¤õªš°ëžRÿœ ü¦›Ëº‡ø§Ë0½ö€Ü½9⑤’6&¥dŠOÞ¯ZTŒåþkò†—ª;Ü,6³z‰$—·ÂåÕ*+Æ›ô¥3‡y‹DÑõyå)å¤æT–yḸÙÔíPÄŠoÒ”Ï;ù«Ë6:ÌÍ1¶º¶ŸÕI%žÚy¡vumª+JoáLò–­I®YšÑÒ@xÌ\1$÷ šÇïïÓºó ïÀKUÞ&U“»4aEÝr«y_Kæk3Ýú·>°¸’H,ÑPPí× zçõ .¤†mjì‰,dhÙTÙ£ +(}ðž[yR’Ôѽ¿†ÝhÂÖ"½†7¸žo«‰n ÉW†Ê~×Â{SÃ]ù~/ª!¼e[™åô}IUš:8ä ý­ja)òÄAåºË4òý\K77Œ«ŽC쟵±íLKŽßOу¡òÕ”*·Ñ^0³½Zzq¨XÈ +‚¥Nܺb£Éb Eº¶¸f³äKËû¸øˆÈ +nT÷é†Còåâu [†[P[Õ§¦R2›•=úcÚ#Ypk_jgZò¾ŠžŠª¸´d-ojçuò“î~§(‘ü.…QNóÑ•–——vñÌ#"„…h »×¾t¿ÊÿË][ÌÓ,©n}¤2²(Nõ¡­0ÃóCÏVŸ•^EŸÍSɪ§êÖ°04“HŒÑªðVy5Ø'ó·ó>_ɯ#Oæ™Þýõ+Kò––y‘š0¾šµñ'“P +d¿óŸóR_È"\ù–w†#n¦ÊÒÆC)i§™¡ Á[zI ½0Úƒ!ÚÞªcê ¨'$:H‡qZõSƒ^i­Ü9£«wË°’Ô[£ü Ò0vé€nKy˜,(ðÓ­7Qìp×M—PÑm£³Œ/¡‘jJm@þ5Ôó\" _SÔ -zîq(umƒ‡œ#ÅRV´éãh¸4L¬ 2 +–&„mˆ]yãÊÚ„¼˜š•gàËÛ‘ÀòÇ$¼ø˜…M\ µ½ôõ8£IZ¨$ÕE *>ì.Šî «–ô™Oc5S¿Q‘}/RÔ±fa•^ êþ¤mÅÏƦ»PŠ`­2ódâ ¯G¦ùW±Ûˆ‘¨®ÕÙXU4í…ºœ1I([”227$"„E:‘—=Þ—uk÷6ñ\ÍÖ‘Xãb8Ÿ‰…z`«•šæ=ƒPÈXU½©ˆ$¦Úâ9%‡÷-ÀÖ£Ãà FÝÊ8ôÀ “^½GLtnÐ ­­­æ‹‚dµâXj†â¦kHÖ;v !õ†Áü$xà–•¦¯ªV©  ©ùøâ)¬¦+€‹É*…èk^ãi7ô·’Öêqgw4|¬ƒã7 7ùºƒòÃm2ÊÙÕ„§”€5"mêi¶½þ£N³*ÆʶøÀªïÐƒß gŠy£•¬{#»ÆP’{UxÒž;äWO—[Xuu¹D’IšãN¶³~^¥Äâ0ñp"ŠÊŨôÜS +<óù§ùkù_¦Û]yßS†Âêá¸[ÙÀ —2µ 8ÇX +ŠU¨¾ùüÀüäü½ü«Ò­&óÿ˜Îêr©±2ÝJälV8êÁv¥[á÷È—æOçŸåäÍ…¬þ×ᶞà¤pYÛòžîi8ïÆ(ªÁjäÔ^Äáÿœÿ7?,¿&|“¥\~lùt½mR5¹³Ò¹Byš!FDˆ—Uwç·jâÞ©m-˽«° ¥‡KÔ¨2Wæ-f´‡X—ÔY"õç!,µR)óÃÏÌmJòÿw'Õ‹Õ"4äç’ÕHûóÎQ~fhwš šN‹'«Źº“Œ^­ÃÈÈm@(w=r%ó^i‘ JUŽùÁ_M æ* TüT,+\åV§ôΙÚÌ¢ @¯Ž:ªP¤·ÅF`7Î ¥¦¥§C¥8]IÔ…@X p +…«|T-C\ðµt{M„j×-IÁHcRUj¡”+–ßâzkã„h2Íäš—£!š5cÈ\2zŽ”.Ô +eòÅýÜÒk‰ QIÇ¢ <‘UÍ7KµŽG§òÌ‹{.¥¸ŒD#K´ÑVBGN%ÛˆñÂ#ämM­ç½ŸÒæÀ*EZG%TmÄ»…' äòÔKatÉlZkk–1»ÉUY©P’HþP0§—,綼ídÎå„2íÊ¡•UœŠ€Ä’FßÇÈ¢ÒÂù–ÕšK;–ôA™O5U-J€Ä’@ý00òúµËGž­œ­³…YX V"´f54ì0n›å+8g‘.‹Ê`icx]ƒ+¬€8¦û²I¡~Xi|潚îYŤ’ÂöÌá‘ÕÀo@ßc¶K¼­ùIcu=ô·×±³–HLƒ+£¨bi¸¡Û%>Xü¥Žëë·Wò±úŒÏ D>*ª¨j£z«dãI³¶XÒ%c@4 ¥)CK·ŠÂÒ?ª …«¡ì´§ðÝ<§åxlm¢ŽÌ {q2 ÚŸ«=CùUäë->ÊÙ¬äú¬M šuåF<Ô©þ,ñçüå—æ„þgó¤žMѵD¼Ðta —ª›3ñæTPÓ>tÎl~mŸ;~fÜùS@ÔÒóËú*Å-›”R^ c#h¡r¢†™ócþsïó ùëóZçÈþYÖSQòÇ—ÒklCE5ôaýG.>ÙŒÈPPñëžeÿœ¨ó}¶»ù¡}£èš Ô´½&8l’ê)=Hçhy5yCp.Tiœ<åžYÎ5›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍŸÿÒoé¤@é àŒGNùÝß„R›X /#¨ Ò¹ëÿ«Z¿2ñvÒ¤lztÎ.¼¦Ag§¨‘ºñäG¦¼2¹’YGj¢>X²DB°CjDˆ(έ~xãkw‘mض滚bŸ¥uù!ô’ØUI¬€Ö‡¥|s¹Ô,Á€éÈjÏäœF[¹ *¸ZÄ“Æ¿«õÝ^úêÞþækRŠ­€ž¤·éŒc '”3ïñš’GϬ–ËéÌö²ER4PÆ„-òS lŒ×Wž½µ¿ :F)ð’ÿFC­î G,–[Ggq5­¤q!w†­?`Ój÷˵H–6he¬„ÄWjcµãf×—+èÛ f.¢®@ܨ¸­ÍÔÚLò¡2@­#Å‚µpmñÓäòõƱ4ŸVHY¡R%â•/Øí·Ž2;™!y*~-‰R€¶ÆX^ZßE·vXH GˆAËÓom'·ˆýJB  èp/”üÝc} h“$\cx ŒtSöXѾ_×¢†îµ"ŽÎ5ýü· «­iœ€Ï¯¶‡e¥Üjx£°AÊâk‡T†1QPìäôâZÂykômÕÆ°ÐÚé­o®ož4‚-ÅC»|ðËW‹Ë·Zeý¦¸ÑÉ¢/ûÕ-˧¡ æ ÄìÄq ïœOóSþs/Êz™«è>EŽ]G^ušÁ58Ï¥koÉ +úñ8©vSöhïZg“ÿ=¿ç9|™£éºÇ”?-’M[U 6¬§Ò´·fB¦âgdm–€ «ZgŒç!¿çàß—>XÒ5ï#~PÇ6±®q¦Ç¯DÞ…•¹hʈ$Z´ŒŒh´V´Îù½ÿ9ÃåMÖ¼£ùwaõýPÛM£[ë`ˆímÑ׉¹‚œ™¥R8«l(*x©o.ï54¼»‘®'’Pï$ŒY™™ùIñ'<.î¯5$»»•§žIC¼’1fff©$Ÿsæ༻¾ÕöòW¸¸–PòK+gf~D’wÜœðÕÅÍÅÜÍqu+Í+’^Y³1&¤’jN}.\µ´7rHªÍÝUõ#zúŸªk´š-¤ßnG´@L{Æ”J÷¥xôÏ­^tó.ºú5‹K0g’Ê0#XÐÁêi^=w¿Ì?7ùŸP³°»¾¼[¦’Â8£–ÜVR n¥:²3ua$×Z’gY'€¢z{S•Cä6oŒS#šFŸ¨ß¸’âáã–[r#1õ¯"¼º7Æ)òÈ>ƒå}[Qã«^\É—åc1ìhI S—FøÅ3œé:.£},wrÈÊòBÆ."…4~5èÔqL—–öRHL‰P"©õD1Swñ‘¨kL>[b=Ϫ˧û¸ãŒ¢xŠµÝ¿M²]nú„Z´\ÒÜF +úq“2ÛCÄçýúÔ=6ßl¥î§‘$¶ž¤vòÄrˆy¥´jÇÂFÜTmá‹XIú.´µS+J%¼<Ç1ûL šU©JW¶²s¡é¯¤YƲÍv“^Žb­1§'PM*Ôí”8ywHŠÊƳ½ÛO~9ל慙9U€ öÁ–NŽº5˜WK6¡W´´RΕ¨«+ÛìáMBc;#«É rJjŠÐTŽ­ØᆙsôñG¿àœ¡â±L«Å #«vo£<¡¨þÔVŽFyâ†YX'Eâ¥í7ì·Ñ’Ÿ)Ìž`ÔE·9eY-â!àb±ÛÍpŽV?´XŽ,<®C?>|äžIü«Õu+9f†òû†§\ÛP4wÕ‹=Dl‹ÎPþcËùmù®ê6òÍoªê‚Nº²yßeÐS8¤^„g®­¤¸XÖ>%©`*~yÝxE$°¡E‘ú–`¦›šg3ÎIœC9öM?'<Œ114Ÿ,;4vÒ;O{*õKxÈäT½(=ÎN¿$/Çæoæn‹å)œÅi<6¡2 +[@¦Y'j´ç:äå¨üÙüØÐü™<† )ä{JáH;[d3HG-ªBñç$>@ò²ùÇÍVš· k‰&º¹‘•BCm+ŸˆŠ’€u'>€yæ ŒN‹F‡ UUáBŽ}!× š}8Ø,QǪ۲àF†Šˆœh@ñ9ô¿Í–QêÚzÛ[Æ#„¢Û<\^‘%"'ÏwªÙ‚ÑÇe#µ0úl#¶Ž(ÂÐ^¤ä~ÎÜDm­§™Œ"À(@ÊõØ1'p>ìOFÓWL¹Ó,¥23­£Ä쪼ÒNM@Äš0{uÄ|¯§Á£ ?F’VyþªÑ?…Ò^f*0w\-Ðôë7K/+JÖo´Â9VbíNG캻®+3½>¾­ËpV e4=»Œ=²‚ý•¯'­°ÙÌ|¶à«²ÕÜwÃ}0\-ŒÚž¦¦´¸yd¢©6=‰ÜwÃ=*Þý-f¿Õ"6±ÚÏ,’ÂZˆÑ"ÐG±Ø©;Žô¶›iK»ÞL-Ì®8¢üI *Tí·ŽØ”ZD7Øj\Ú9-½id¢ÑÒ@Ušxíˆh–‘jÖ^£9`-žâbDkñ¤ªÈÊh |[˺]¥ö•¦j·k ïsr󔇆@ÈÑ’ Ò”-Ž m*Ai–ÚA# :’]¹*€7éµ0³IÔ®ôvú¤íHë(ß‘wæªßaµÍj´öÁÖK<1úhÌÜ…v5Q_c€u.oÅݵãÚHG"¥¹F|)‚ Ñ¦>µÏ’íÆ0w-áL&¹¶»šãê’Ú(Ž«Kô=kÔ§P0¶õ^îùฅmá@¼.ƒS“oU+Ûç‘»ïËÏ2kÚ‹%æš‚Ë”"fÞAûÇrKÆÑP@Ü7C½±]:Ò[Íbh´è#*%žåÖ(ב «9zøà etß-¨½Ôu±³GORâêT†!ÌÓâ.Áwùá&­¯é~Y·iõkè,-K¢5õÔé\Ðri.ý:à2~^\y:á#Ôï—K¶õaÏw"Á‰NìâFU+Oå5öÎ?æÿùÉŸÉÿ*M, ©>¹ujZ?ªéÑ™¸ïçã+ÜœcÍß󚟒^BkëmV]vî&xͶ“‘K- =y8ÇCÒ ¶p=ÏÁ?çÿ/¤¼±:Œ¾i¿µg„ÚhÑ™TºS¥Ì¼"ãڪ͜“Sÿœžü¥ò¡}§ÝjkMžÜä©š­4Åcàz +¦rÿ2Îo]Ïg{eå_/g v·×Wž"ËN~’%9)éñ|óƒùóþsæßRµÔ-|‡å'Ó&¹C¶§wxD,¿ÞcN!Ôô£üóÌßšóò¡æ;MBÇòûɤI8+gª]Þ‡’2Vž¡‚8ø‡R~9÷®pŸÌoùÊ?Ì?ZO%yq´W¸†öKžLC ¤"ñIAèÊÝ:×8—šÿ;¿4¼ëaú/Ì>`žk3¼–Ñ·ŽOõÖ@ßNpo>ÿÎE~s~eéÐépó=ÅÝ”"‚Ö%ŠÚ6íñ‹uN_ì«žmüÁÿœüöüÑÒbÐ|éæë«Í6.–1íasJ|kn±†ÿe\æžqüèüÎó핾›æz{»KP6ªÅ+Æ%POÏ ýw9Î ®ç9q$šœ…fÍ›6lÙ³g®ÿçÿ,¢ò×–Ÿó/SI£«Dñiöì *ZrH¤IŠ|³Ü?ó†_“Úo–¼£'æÿ˜IuM^)`Ò¬J¨X¬ê)0"¬L¬(=†{Ëþp³òJò/‘düëó³0¤1Ð)%€SñPž•® ¹±Ótë¿®IéÇ=Ê«@¡AbÔJs šPïM±‘ÍqfÑY²ú‚ârd2T¿ä’v§\.Õíï´¹¬´øx——E®V@ÌÁd$Ð×®ßÚjÖ)i¢ /¥}Êñ%™#б bwùaMí¾­¡›,\FeVÔZKÑp¬Î¨Ÿï¶c°sñðDo/Œ7Â¥·!Ò»xá­·7òëÇZ´lȪÔ^j6¨§NL4ëI ò¼‘F…Œe㌰ +¥~æ©Éf˜—_àw‚7ÞÞIbŠ75š%AGí’iQ¾Gkåh庞UŠÓL‚{Û‰',}ùŠ¸ ±;Ws^€ç?ý1§ùÒãS¼‘–ÅÝÑŠ 0Eê/)cB~îk°9õŽ£eùs§Þj—Ò¤Vše½Ö¡p. "«Ãê/)cB~îk° ß–ñÚùw̶qÞΩikëß^ú»G¶‹Õ î|5¨T“°>{j×çTÕou2¼ ÜÒÎRµãê¹zWjÒ¹òûYÔ?KëÚ¯Oë³Íqé×—UËÒ»V•Ï”ÚÞ¤ujÿW)é›ë‰®LuåÇÖ½+µi^¹ÅuKßÒZÞ¢W‡Ö¦–n$Öž£–¥v¯\ €ðÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÿÕqjȤa¹;)Îý«k!%FªŠ|C©íLõÕ¤ÓÞÀh½3^§jÙ>ΟuFõ* ô¨ØSg‚7N ³l\VŸ¯4¦y–G¯E TWèÃ[?«ÛÙÊeQ,‘Uê*¾2êê(#XÝ‚?ÏÙæÅâ’)®€3¤õiQT{“…‚–bIµ6Q`–šI ù‹óÀ×—­i×年ÊÍ#å%Ã0XÓى؞iίêk÷°ÚéÊ…Þöyb_g/ðãSœOóþswË^S”é—@Öo-fh«™ô˜©1*oR P)ž;üÝÿŸ‚è>_ÔdÒ¿+´¶Õîm¦xno¯ØÇeHÉ_Ý,mÉ÷ P)ãžüõÿŸùcC¾“Bü¡ÑN½qm4^êZŸ(lXDÅ …"noR*•ìs~eÏÃô,Þ3ò“C:œÖŽÑM¨ÈF'¤J«Å͸ª·%ìsÍœó?˜ß7í'šo}5Ii¡ÚNÒãÕš‡í1'<ŸùÇÿ9ù›ùÝz_Íú‰]1$õlô;‚Ò Õš‡í1'Ÿ¾µŽ‡n=;+SB£‚ ÉÓ“s›g3ÎWœ³6lÙ³fÍ›6lÙ³fÍ›'?“ß•º‡æ·š†ŸV±µQqª^Ÿ÷T<‚ÐWnLM¹Ð¿$?(µÎ/8®ƒ âËNµAs«ê Ò¢×nnM¹Ò¿ ÿ&/:¼ètCt4í#OŒ^kš›ºmÄ +•ÛÔrx¥vïÛ<£å‰üϨ˜9ˆ--À–úíÈTŠ>AzªÄÐg½ô}&ÓËúež¦¯{£·´€}”Š1ÅM|vûóég“<¹§èZ>åý-8ÛØC­¬ B©_ +µw©þ;çÓ?'èv‘if‰§@"²ÒàŠËN³R +ÅmàŒz“O¿|ï>SÑþ¹ º'¨ðªÁifœZ8­ã,¢@äš±=7ë¾5¤·„Ë<€Dìy´„]þÀ'Žýðö4­4Ï=«¬27'i˜i% ˆã½>*tÛ žÿJÐäžm1T\9giäòKOH+½*Ôé¶[êÚ—伺Ó]m®«(¸‘KËqrWêÀ»!åÇ÷´¡˜„ÂU¼HZFU´Y€àVpÊE7%¨ ­h7ÆG#®©cc;4k¤#Mx![€ÊÔ]Én ž´à+½Fiuû=*õž£¯¯y…e¹IâMKqõÛ| 5äÖžaÒôMaH_.BóêKV «8RKeºÐxb²»I4ŽdUÜ­@;íOcšx®®îÚc31pÄQT±åU§ZƒL–’꺢]½Ûºs¨Qð­_ãi^ õ»ˆ®µ­Z]Nâùæ +æZ¥"AÃv*Ô¯¶-wqÚ§¦ÔRU@=~#A¾)©Éio¤þýù€P J9ã½;w9)Õ§¶Óô_O×&4â85hCž §E's’1M§ÇäõŽU 1ž&´d•¸S¡Ô°Îÿ9+çDп/ÊmÂûÌ2²É 0ŠÞÖQ!a±£#‰ð'<•ÿ9{ç»]òê?&Á ß2NÂx&Z¬Vör‰9€FÌX¯v'<ƒÿ9§çý;ËŸ”–^M·Šš§šç‘nm䤋 ¥ŒÂ^b €ÅÊ… ô'8¯™µˆôŸ)¾› oÖ«$°ÞÛJ"G¢D 0ª¶â„v'<—ž(Ïg9Í›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÏÿÖ ‚W†G,Æ’G#rñÖçfä:„ +ð/÷6¢ŽùK×=u|—6ðeäÕ¢¼ìˆÀ×s]i 5Ƨn÷܈¶ºÓØ´ˆ|^3½2?ù™çÏ%~]hyÌ´á¬"²Í3ËŽÕ§S°Èæ_ç^—ùCäÙüÍæ[Õ+o(ŠÒÏíOu)Ré(©¹jß97ççö‡ùå;Ÿ4ùÆñ$JÚÂ/Ž{ÉÙK¬H£u$ Ël½óœþ`~sÜùË2êú†¡ Ç¡ K[WÞKžCš U<”‘×—Lð·æ?燞¿1åžÖþñ­tv½¾‘ (§ìg"[¿JgÎÎùÉÏÍ?Ϋ˨uÝI¬ô9f2Ûy~ЈíãQNÊ€ÒJÕÉߥ3å—ç·üå¿ççÍÍÝ—˜5y,|µ$æk?,Z0ŽÖ%à®T”­+W'}Å3ÇŸšžÿ˜?š·E­ê’Ò-ôX xÇE  ;µsŸg%Î-œó6lÙ³fÍ›6lÙ³fÍ›$:åçž|Ѻòþ…w§ï¡…ŠÔlÔ¡éÛ%~Yü§üËó•“ê^WòÍþ¥i9]Anæ-ÉŽ@S¸ìreå/ÉŸÍ=éòêÞOòž¥ªØÃC%彬 H€§pz7Ò|¡æ}rÚKÍ'K¸º·††K„ŒúkSMØÐuÃXÿ%¿3ÍÔ6×>_¹³YcúÅÒúP¡cÕݶaš~C~m‹ËkKß-ÝX‹™!sv¾Œ(XÒ®ìhêpÇþ…÷óŠ+˜ Ô<¯w§¤ò,?Z»Q ’z»“E©Äo<»¬iÒ"jÍm͸s’A÷"¹íOÊÿÊÏ*þ_ùz;C€¼÷~…Ωpî\Ë:¥Å·îÕ‰à)Þ¹îoÊÉ¿(þ]i–ú/—Ѧ–÷ê÷µÛ9a-ÂÇAñmû´bÜ;×=ãùqù7äËo*âyB9.o5´ºÕî¥rË-Ê -·î•‹pZw®uM?Ëz0[è^\‘¯¢ºkiï%ãiÀ¢—5û +ŸƒóÉ}ÝçÄë +2ˆ(µ§nU§:Ó¾v]=áÓ4ýFH£~vÜÝ©HŸÔ¯CNÔúu}'TƒOÐ5K…‰¡{ ‰P'õ9W ûó£hš…¾ƒå]oV·‚EŸMxmìT|6ó‹×‡ŠŽ£¡Â³M‰`y$*ìixúŒµ'“tÂ/#E :J/,¢BZéÈ,R¤òn†›d7òÂæ ›^0™gdjÜËÇ™BIäÇ­*>œç—³X<²5ÒN]îOú_jüT¨뢒:(õ®¦ÌÔ b@kOZaýôuÔÆúب¸Ôd033v†55§µi’K˜bºÔþ½,JnµI^j€ÍJCSjÒ´É.´–º´ÒkH¿éÚÝÛÚ3³fµ‚2€v­:õÀ±Ü%µ¡‰ú¨Aðmø`¬›+p·3“j°E@Tzö퇱§è{0h9G +¬ r⃎ÔèEAÄcÔ?Châ ™­¯PiJc!Xt"ªq JâÉ´©¢¹–HQH‰å‰¸²+Qƒ«.â„ !ó=ÕœÚ ÄO j~®ï qeŠB:²ïµÓ¶ó6©¥ÞùröÓXžH!Š¶²MQ’)~5‘Yw };`Mw\ÓŸË2Ã{s"-³5…"*ikp}@àŽœH÷Û<Çÿ9g}o7ô½7w½±°Œ^ÎA̬dMº}“]¼sÿóššÏæ>™¥!õotÝ>4¿º ©‘¥c"Ttû&»xçÏÏùÍýNÊÌ}#EŽ’_iZlqßÝGªfv–:Ž• +k·Žrß>HWR†Æu uk[«¥LÌß±öR3‡çŸ3ÎyÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÏÿ×àÿ›ÿó‘¾[üµ½“CÑãý7­- Ьœ`¶ä I5a·Â>’25ÿ9ÿ9­å/Ê‹×òÏ•ícó˜¢ãõˆ’N6vÁ”‘êHµ,ý>ô‘‡¿ó“¿óŸÞAü¿(y&Ö?6yª Ÿ[ˆKÆÆÌ2“Ie@KH6øÇr3‰þwÎUù{ÈzƒiQŽsV›JVBm"F¨ÎŸiú|#§|ñ¿š<Í«yÃ^½óµ {»ùZi‚Ô cÙT“@Àgο:ùË]óÿš5/7yŠQ%þ«3ÜÜðc ý‘I4P6Ã>Wþ`ù÷Ì™¾qÕ¼óæ©„Ú–³p÷w~˜+»þÌjIâ laž)ó7˜õO6ë×ÞcÖ¤^j½ÅÁQEäæ´QØ€aVäw 3fÍ›6lÙ³fÍ›6lÙ²wù;ùukù‘æÑ—÷‚ÒÒÕÅÐó–0ÀCÐ^§:‡üã×åç[GÕu¨Øiñ ÛäPLÓ®£ˆý•c^§ ÎÇÿ8·ù¥~zþa>…¯j¿£t½.¨jQÆŒ×6èáZ(ZœU~Ó‡¾y;B²ó®-5 ¡mjf“cÊEB9*ž€Ó¹9î­FµÓ¼½‘¢'’3œHô +ˆ„*«PÓæ3Ýzå´:•­´o(Å466èmìm£“àXÑhŠ°î3èWšÒÛË~OAò$Vº]ª[ U’‘¬1­Aö¨ß:™¥ŠËËÉkå–¼[Y$xáC/$1(%V¿Ó!VvždÑuŠàýr8ªÒÃ’W%Úœåj­?düYËtI<Þú­­¬¡®Y e‘˜»S”®(•ÿ$ïœ7ËpùÖãQE¸é-ªeµ·Idw,Ôç+ì•ÿ$üYͬmõi$O«¤“qaÎ8Õž¥¶£qïìs¥'©mdëF’5àæÉJV­QZíØg£´*ëEÑ'7rêG¤dt…K=Ev§@6Ï@ŦO¤y}Ë"Cs##+Æ]⊒õ‰Û g ¬¼»7–<¥v%žçy!+-¹–h:–g–£‘§†£l zì–÷vHå=H¨„|4åPäJ\1»Š}:ÇRÑãvãq}]‚Ñ@py° '–Ø"÷F¼µÐu$JA»LrÅ@j‡`E(Hm°v© ÿ•|¿æ+,Ìd½´·’ÊRŠ"ëêÈ´…•Å)¸ÂË{E $F%R" |F渆•}”Ü!-h¬öáUH+JÍkßùKJ´òÞ—w< ÉÑT´Dâ¼+JS_žF<©¥[éUýìPÚI$·*Š4D‘P*yWÇ,Lªmeª¢Ë­4r=$PT⻂kÜöÀߥ Ú®—4I½³ÛÌòE+~ô)PWŠŠ‚ÕsŠ~šúÆ»¡ÏŽÞ)-§‘â•ÿyFPT*‚An@î{ ^ßZ²}[Hº-!–ÂêT·•z2s_4'°ë\†ùÃV›F+{èµä$ÆÓ¬t¬K¸çN¤W­:wÈÿ›µK­s}õci?¢Ó¢P”‚=B¿´+Ö;à/:ë7º*¾£whÚ„DC$‹…hA—Vß­:wÈg./m.üŠ/RU‚gAE+±øŽµ#r>œuœú½„×w¬VÊ(õÌñÐ1H×ÔyÐ+m±m†y‚-FóI¹¹¿U·±ŠÙµ™ããY#‰=E +ZXñصÂ]J;½OL–óTCo§­³jw7IÇ÷±Ã•Uyl¬xlZ€wÀZV©ù†YF âÚÏêï¨Ïrµ+2¤~¢'%)n4¶®x›ÍºÛyÌÚ¦¸ÒK(½¸–XÚáƒI鳈l´gÍ8ëÒy£ÍZ·˜d’Y~¿s4è× ^ ä b-ÙóÎþao6y¿Xó!yd]Fêiâk–(Ü”V P´ êwK{¨\]Çêp•Ù“ÖR@¤ì¨*@Âœ'ÂL ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍŸÿÐùTIbK“ÔœùTIbK“ÔœùTIbYIÜ“ÔçʬٳfÍ›6lÙ³fÍ›6lÙ³fÍ›6l7òç›5ÿ)\Muåû£k,ééJáUª•­> {ä‹É_˜^nü¼¼¹¿ò…ù°žò/«ÜH#ŽNQò OÞ+SqÛ%ÿ–ÿ›^~ü£Ô/uO j£.µ>©w/£ Üá,&GqÛµ½º².ֲ̊QÈêTõè¿ùÇß?þly›S—QÖešûH³…űKx’#8!@䊽+¸'=Mÿ8Õù©ùÃçÝNæóÎW3j>_Ó­¤B;;xá7\”g´¦§=uÿ8×ùÛùçù±uwsù•{>©å.ÒQ¦z6°Boyª…g†8ë@Õ œšh^tó> ¶Ö÷üîôý&) ¥¼0F#Wm—Ô*«UäÕ59ÞôØÆž ×WÆæòô¼¡\ ­7!B(3ÔV‹IÒ`išågÔõîˆxHëÀ ‚¹èÿ'&“ Dî.VãTÔ¹¼jJÔÓ¯@‹“ï$ËöÒêmsÆ·©‡0[Ž;±*ª8íÚ˜bòÚÞ2ì~È©öê>Œ•iþZ´Š/FWsŒÓfØÔ†5§Ë&K寭ÈÔª¶ÇX™Èä(¤ÖŸêç@Ó¼Ÿbi ôÇꓘÚ(R9†àïÈ + +ƒ§Z`,w’ ªx>ü†Û{aÁ™u›UžÔú!V€¨â½”žÛaô‘Úë:,U@¨DSGºñRGÂOŽ^ÜÛyÚÊ+Ë46Èc!eŒ| [qFaÐá…º¦®a¾ŠÆÖDe%Yãc¹ +»oìH O3k—i©¦céÍõ¨æ[µvÜñQNž£ 柘÷si—Vz&“éÝ}m%Šú9⪨¥ð&Œläߘ^a—MÕBé2¥Àž) ¿Á«PR§­T2øa^›w©L±É¨ˆÄ×ë^—Æ *IEå¸"ƒ <½sy<6ú†®‘BÖ`‹ÁÆá%‘9nH è0ƒË0j+õ-SW‚Ξºh¾0OÌ‹Ëq¹GA‘= +îâk«}KT†( °ªÜ2I 4`v©"€l0M΀—Ÿé;‰™~_Èw +@Ú‡¡}/—!ÖU5ßÑn5Œ?ûìüJŒÔ#b2gå+_4À5‹™8N¨ +,‚€Ä~ ŒÔ#b;Œ—ÁäæX†¹â…Np$â‰è·ÆˆÀmB6#ù¯X‹Ë?’^q[F ¤Öp,ò,qÊn‰àI«2†$ ëLæ?œ÷ø{ò#ÎrKk8-æÓí>± Ž3ì}3PYÕ]ˆAÖ™Ï;üÐþWÿœtóØK)kk.—e%Ä«mõˆŒÔsuWbxaÇ•®$³ü˜ó£ÝiQ7èèf±´»¹JÕœ°“‚µAi;Œu4ížÏšyò“<×›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙÿÑùUŸ*³åV|ªÍ›6lÙ³fÍ›6lÙ³fÍ›6lZÎÎëPºŠÊÊ&šy˜$Q «3ÃiÚuö¯}™¦@×7W,#‚ÅYØô`3LÔ5B +Jî®î˜Goo«»ž€ Ê¥ˆU'`3­þ[ÿÎ;j~la}æ=B=/N ê $Ó»¾øÖŠHƒ¾vÿËùÅ}kͳß6êQé:bGê«­|Œ9rKeš.&;”JïÄ×mÆHÿ.´ÝRúàëZ’K`Ÿ¿*Yâcð…SF+°4ZçZòn§k}bl©ÎvRòB»§‹H¤€h•ïØç—ç'¼÷iy‘4ù=e±Ÿë·r$¬Qft1úL”§%Ö½éžÿœÇüÅ·¿ÕÓòËNœ\C¥Ý5ýä±ÊåVáã1úN„Sšë_Ú¦xþs¯ó6ËPדò«H¹úÌ:UÑÔµ "™ŒqÝ¡q EêÃ# ¡ªš±"ƒ©Áñh:Äö‹¤nä*Jf'Ãîοåÿ/yCʺcÙÜAÝE‰¨z`É"Èäë+·M«ž€òï•<£ä­ ì,, Žxcxïî nDÀ¸™4ã±¥s¿/þ\þ\é#ËúÑI©pˆ..ŒÀ0iÃiÄ€iA]±V8)ý° +Íßâß¡ð¦Jÿ.5všÈß[ÛÏ%ªÐÉmGBbaé˜ÃS‚¨¡$÷é’/ˉ5»t°Ü}DÊc0Û,f­§Q¹'½iü·Ô5[Ûf¾³¶¸šÀJc–ÒâøÚ6™Œ0Fäžý0VŽdõ9#ÄHõ#‡"WpjvñɆg­ß^Ï>³Ä[1O«Z3—WjîîPâ>YÔü»å?1¼§SÖ@– èZ¹.¬ÌwyŠà;‘áLëþVò›¯.¥­À¢½6²±“ãVjîò#Øõ#™/òÿ–uÙ5+ØVTšž…´¼™IvHê ‚jÈé†÷Ú”öŒdŽN\Aá•^ìGL_y–}6_XB‘[°"¬§í9^”®JüÛç í8¾§qÅáRŸVeغ´ä +-ÛaεçOH™ZÚ਷Ù”îÈ~ÛñØ :`?Õrfè‹*±TÐP}ù&Ñ­!‚Â[»Ç2É3ó‚*‡ŽãÒ mÔÖµÉW•âÓ Ð÷R•¾±w#Â5Zê~dóD£íÕÖ:›¹Í4…ÄÌô'˜Aæ­Tó7™_ôm˜™Ò­#}€ F«9}ÛÀ!o&y¯ócÎ÷ ¡Y,ÂÖ).õ–>”0ÚBßÒKB@©ágšõ½Ó[Õô¸ný84ÉÒx8³[†b*¤šŒŠyŸÎ:di­ÆÏIxí%À4­²Û¶èIä=²%ç6Ce­êšÌËhš3Ãe=ª…`TÛ) hÔ(Õä†þp_éZ/槡h Òô±ke*C¤¦8ÑäV¯Æ gSÜŠé^g¨K{ar%šb­xæ'+¦¦¡xÐãRv¡È畼ǫ§Ö,Ý&•Ùd»“Ò$C顪 Zhw¨pƒÉ>nÔ¬MÖ±a šK–WºŸÑ~6þšA8PC¸$íCÌ:–˜³ÝX…ÌÜÍÀFç ð €*ã<—çmrçÌžlÕ5«É²ÜÎäÈ«ÁJ¯À´êžüÌó%÷›¼ÿ¯y‹R”Mqyw+<¡`„<á>óóócÍ?2|ÇæmVaqs{y)y‚Ã,gÓO„tøTaýõÖ§y-ýëú³Ìܤ€*|vÂLŒäOÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÿÓùUŸ*³åV|ªÍ›6lÙ³fÍ›6léÿ–ÿ•¿¦ôë_3êI3Â÷ +¶ðÆ£‰TcÉä.7ZŠP{碿 ¿ç“^òý懘¡šâÖKÕ‹K²T'ô\ó–ncã¥À×={ÿ8Ÿÿ8«™¼·¥þvy¾ÎâöÆMAbÐôèã6Î}Iî=@D‘rB¯pk†Öº%ßèøus ´RKÂ"©UêMzŒíúÕìðÚ.[ïI,²-‹*Ñ?25=rö+8$‚Å⎧ы€¢«À‡¡Ã%zgç.¡®êðiÖ–¯k M$?\(}}1ÅUˆj‰ +|0Ê/4êW2ÃoõxcýÜM½*ÐZS|˜iÖ²ww²­¼6ìÍÄŸµîí¸*)á×$šE´vŸYÖuYU!µf1Å!c_´Í¸*)ØuÉ¥£E}æ aÒ+{&vHä#âb~Ӷਧa×hš|F;ZþUDµbbŽF;“»±Þª)Û½0êë9m„D%½@8-KŽÕ'|•é>g´’µT lÄHÒ*”F©¡mÈšúòq¡y‹O½´´ˆ"ý^$iãj·ÄÛ“ßß&úG›tÛ.ÚÆdÞY ˆ¦$54`â »m^ãÇ72Y””ÙdjlªÆœ‡O­y¢Ú-4Çg"E*²ÄP/ÎÌA¦ù ×|àƒGU±fy8¯‘ÈiÈ +ƒMÆ Ö|äfÓ *G!aª©ÁV9ÛP(xô8k/t¯*¬ÚzJDϸ¸‘˜Há^,À +½Ïlm­ižRkÝ/V¿ŒËu ]ÝM!(ãhY@«ï¾ÕÃ"Óü5ô¥õnî­ÚîêîR qÛÛ/@°Næµ3òßæ§å›«ù9'úÍþµ›TÔ[ƒ@Ú¯Xøü ܆ªW Î/æ+;Íhó¯c¨GÇ\XÙOÝ$Ðf W‹³…ù’ÏMó/šüÁ«éz‘{=wÓ1Ì©û¥xE +…aã¶yKóÛFóæoœ5m7TIaÖš6ø~äIn«T ¨V;xgüÇó^tóÞ³æhÖ;Ù‹ÓON>(‚5â´EaJd_^Õn<åZÎeŒ$âX£>Ìȼ +€ETÕ‰=ˆÈ?5[ßË?Ë0D$TIÌ–Ðñn¥Ìê¡8ET‚ÄžÜrç6ÞþZ~Vù†ÒTŽ%ºYm­ýôÞ+»„P… • ±'±\,’Ai,-öY¨H;ƒN”ð9çÂKÌjNäœñÛ3;rY˜Ô“¹$牙™Ø»’ÌÄ–bjI=ÎÍ••›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³ÿÔùUŸ*³åV|ªÍ›6lÙ³fÍ›6lõåúAù;¦Cj¯nc·Ô3=HÜ€zg»?)|ý/–ÿç<µg§Æ%¾d¿ŽÙ§÷Rò w`OqŸM?$ÿ2î|™ÿ8Qäë >/WP¼‹S†ÅѸ²™/¦V½YAÚž#'ƒÍQYùËI†-Ó áŠQPÕcËæÀ~±’()otMÎ é‹ßêlþ½¨y..@“wi$R&”ÑpÏËÿ•Þ\òõ¬ÕÝËj:Ó¼óY†{™ÔLC3JèAöøp†ÓþqóÌ>\òV}ªÝ“¬y†âg¸ÒݦºÔcI¾6’Yìòè7¢åyƒòŸ[òÞ£_j71MªëEÜhü§»‚öd›…Tr?³ZŽøÄò–ì6OÐKlÜÄÅøú¥Z?!ñ–›øaõŸ”|¼÷°A´±MnÜëIÇÕ¨§¯Ûf¥7ðÅôË_+®­kaui7Öm¤õMÑ—ŠÊH+ÅÉq¡ððÈõ¦•·+g228$ñÞ‹B7bED<á{=Ü£OÒ 3ƒÈ´1'ïaDz4Š ­ Ç–ýÎCÿ3o¯5 FÖÃÊñBÈCÄ…9H£ÎŠ£ðò©îr;ù©ªßÜ^&‘åy!•1šÖ8ÿ{HôiAf'=ú€¯æW™„J¼7P€S;ÐwÉ–ìô]*KI%Š9$‰„7WlHòýèA»S%^^:N‡ˆ–8äóšÖ:ÄÌ»’•# Ý©’/&ygOÓ`±º¸¶Šåùïo•"ò¬Ãz¡$Rƒv¦ Ðc‹ë0³„#‘3Ô…娩+üriæ/®Ûi×1É âñr™`¬ PGUÚ§$þq}Yôö²²¬ð*Ë8¹ÕUÃâê6©éÎVÚ£i’i6iÀÙ"Ë8Ìœø¸bœAWjžž{æ®G°”1«ÊKSJÔ-; +xç=ŸÌš÷×.nœúg×Hm!P #J‰Ù‰*J‚A;tÈ\^d×!¿¸iK­$ŽxÕàòcvbJž ‘]³Cæ?3K¨NÒ¥Rã‚Ò(Âü 'v©RT Û¦F¿H^ú ¤…YYxPŠ)'¥FHµ_8Xþ^Åi¨_]]Þkº·î´í U’Mâ28sAîzí¶!çO<Ùþ[j¶·2ÝêÚþ¸VË[(šSX}I6Ñ“û]M6Ão:yþÓòÇ^Ñ5+ÁyªyŸ[š(<»åAE3šÁêʾXšrêi¶JìnÛÊ­i®ê/;ÞÜ+Ie§È€¤­ñD^PÌû=ö¯Lêòëú§›´È4÷Ši–7µÔ}IÜBÄÔIO‹‰~€n;Œ)Õ´¿?M®yrÒÆ;k–¸e¬Í$¢I ·$–Y@‚—Ù@ÞrcæYÿ1§Õ<¯¢ØX››Âe­js\$’Å–,’€¼„fM ÀŒŽ\ûûëxYé#¯¢nN~ËÓq¿AŠßXK¥[Ÿ4\ZIgwbÔ](2í4Ü5Zøâzä×Þ]ÓÓͤ¶RÙ"Ѩ¯ê.Ñ¡ZŠšpª×Äç$óÆ©ùbîïÎÚݬ¶c%cÑŽXm04©"¾'\Á5´…äˆÛ¸ ¬lN•ßåœÃó]ŸP×L’é.…°±ŒmLŠ}2ÀÅGR;œó×ü䯛εæk}+Å»[$[‹“R{ˆÕ½>@ÅÄŽäç™ç'üõ'˜üÏm Åx—piè'F¥¸Ò, Qv$w'ºBŽ¼¤Y•]¸þÉa^'Üg>Î7œSÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÏÿÕùUŸ*³åV|ªÍ›6lÙ³fÍ›6lôŸå,šuÏ‘tPút²•vƒLò±*µ0^;ç½ÿç4/ù—ò“Ë’Þ²†Ñî' ê u{—¸v* ¶©Ïªó„ZO“|åÿ8ýä¶ÖbKƒåÉîÖ‘C£ÞKw#”PFÒ(rgå‹{+»K§ÛýF`ñ‚µYåvÝSo´^¹5¾ó½”/nmÏÖo%kf1[Ã#<ŒZJPHÇíT÷;uÉO¿4ô¯Ë­OTÑl]NO«2Cml¿¾%¦¡cBsÕº{d«ó‹óË¿”ºŽ§¥ØC%û=£$ÎZà—ž„ IåÈTõm†ý0uçš“ÊZÆ©g§¹¸Žx^Ú9Ï©w«Sí×¾@|Ëæ¯1I=æ \$BR ‹FYª8ר+ÔÉ]ûg8¼óηq§j“BðÛÅ Kh„Š zûq¨øQ»I]ûgšõ¿;ë³G«90[ÛÂVÖÍ%›×¨¦ßà7i ß±¦B[R¹õL¨ô2¢° ³TwïC×®D§Ôõ½^ö¤¶Ò,kÄ‚K¥§öTž=é‰Øþ×Y.Ì-±xøß3ˆrÊ Äþʓǽ0¢ÒóÍr¹=œ‰’Æ«~XEðIu¡ T²¤ñïL Y˜Ôõ'sÓ:6“êµæ™õË£ª$sEnËW~ûÀê qï\Ÿ˜Þ-KJ¥ôH‰f…k'Á'/Þ ø”=ëïŒ\ÝèèÖï~¶ð£ž+Y ŽZÒUÖœ{×ß mË[\Ù³HœdÞ½›•ûaÇ›<ÛÑw¨®ñÍ-åºr-¸üJå€âÌëá†Þ`ó$0Z­ž±y2˜¦›QHË3 r¤¸v`8±V N¾c­ùÄCfm5{Ø–âæ9®oá‹“°´d«¬ŒÀv |0ÏUÖ®Z%Y.Õ”3΋ɚ’‚H%»ÒƒÛ9¥¿æ·–4Ãq&§lo$³-u¤Øt„N$Ë„ñ¡gåì3ˆëŸó¾EòËÝ}Y›S–ÓÞ•cZÄ.‚ð†)ŠÑ¨„zü³ƒêó‘ÞAò’]¼?é÷–O-摧G¼?Z ÂÞ)ÊPÑ,ü½”an}§Ù]ýfò3*ÂH "ªòHÃ{¹ÈyëUóG懚|×v9úñ’c‚iDSPAÎgù¥®ùÇóHóÿŸ5Ì·–ÆkŠŠÚر©¨UQÐg Ñÿ7üÇç¿ÏÏ/~dþcë/ìÌ×­E†ÎÞ'ÔÔ* 5ïÄõ fû\Õ£«LÒHű߂&ÁTÐÐg[¿óO”­¤·¸ò¶·§Áê8“Rõ$á#2·PGZÖ§|õ¦·ù¿äŠÚ_&y¿F¶õYeÕÖYÖ)]цêhµjwÏxëߟߕ÷–ö«å?Ì=ÓÔt›ZõîVd’7§%aN|«VßðÃ)ͳAÖwNQZö9c~hÔªjÕ­h3Ÿ~eþiÏæ-OQ²Óæõ´æXâ³¢«P(æK Þ´Ï>~~~}:kzž™ LgÒøÅ …LjQêÊ ê<Íÿ9Cÿ9A¤yÖçZòוnN¥o'¡žª©L õO05MBøuÂý{T:­ûNª¡p¡¾Ô¨ëLæw9 $Ôç” ®ç sfÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›?ÿÖùUŸ*³åV|ªÍ›6lÙ³fÍ›6lè”ÞsÔôíV×ÊáÁ·¼~¨^œmî$ø9Ѩ î3½Î.þvjÞI×aò-ÏúF›«ÎŸÍ€WÓLL9 üKÜž§ÿœÿœÖ?-üçeùg¨­è¾`¼t¿U”.›©ND"áC +•?÷ S t-Jö »kXÊûªHÇ zêú7—îõ5ê7¾hw:%¯{¸cá=צ¨R(ÒP³5>ë'õ_Ì¿ÌWSó5̶úžWÕ¿·Œ$÷Æ:…T£J–j#=%mùq­þr~lk¯™¦•¼¥¥º¥Æ«mK‹Ã¤p,a”‡˜),À#|¥¡èÚö³u¬y¶æXô=<ò¸–Þ1ë]È»Ço¨âò…5møõ8c©_išäŸY°·Ž+6i-ãµhÏ¥µºÕh‡‹HÀ/\™ù‚ÆÎúxnmR=;M.ÖËnÑJ;[u8¡!¤z»ä£Ï?–š¡yi¨i¶ÑØé2Êö¿U6íéCgj•N1³+ÊüWÇíoßyŠçK×µ™5+ uÒìf•£·±‰…½´JXÕڃ⩩;÷Èôúw™'•ìuM‚A=äñCÄ›©ðá`K?ÙØ9Ô<Ñäÿ0Y_ÁcæäM'DŠ og·€ÆÍ+N*RÅÈãU(Ⱦ¥ª~XÍey•æ(IÑ-­î/® µhÉÔ&céÃð0,ÒÇáˆëß –ÖÚã›,á-ዛȄÈkÅxÔT“¶Ý1Kk?4Í©Oæfµy¤º~k5xÁ q=4g ¤¿Û º+~dêzíÏœåK›Ó)u¹’@Á #iEEs†ÚYþakÞgÔ0ÞÞâø_ÎÓDME¬Á·yRT‘_Ÿ¶’+ÖE¿•$¤ðŠR´cÖ•üÎóž–d¸±ÑZ+‹Ë²ë©^F P‚œU[`ÌN後 üöüãÓÙn<»åkˆ¯/oǬê1rdDhãm•˜Ë–Aÿ?¿;m&õü½å+¨®.ï9ǬÞÁÉ‘Æ8ß`ÌNåÇËšOQ‹6ìI%¼s–çž:îsÎw8žlÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³gÿ×ùUŸ*³åV|ªÍ›6lÙ³fÍ›6lt2É©ŒõGæf¦žrüÐ|ÅåX½ ® r•·A n¢ªJ8uo£=çç­dùûò3Ëžmò\Keu~±Üº[(¶çwnJL +þÒ7ÌgÕÛ5?æwüãï–üñå•åøŽé£µŒ[,—¶äÇ0XÔù#|×:_æ=ݦ±äÿ/kzm”vKtÝ­ºˆ£{…ªé‚E~¸íœ×Ró…Ö‘åTòúÏõÝgV§×ÆßVïn +E*@¦sMcóÌ—þYƒÉ–ñÞù‹X!{û¦‹ÓÓ¡¯ï›“ÝšíZ}9󇟼ۮèÞWµÕÒ}wTHb—Rº’…°5Ÿ‹="H¥Hß PjRÇg=“*Ì× +±ÆÒÆä˜É? $Pûd ®ôÍÍ YMÅø•X´$¢ÂU¨ÀH¦P)ôç)½¸üºò&‹} ›‘æmx]$†òا¦hzYkk;{zP U5bÃí&¸3RÖ5 [êâöRéiÛÛD6HãA²ª‡‰ñ9ÈVsŒ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍŸÿÐùUŸ*³åV|ªÍ›6lÙ³fÍ›6lÙ³fÎãæ”´oÉ/h©xgÖRyZk8j^;s`h*Gûç¨tί!ùWþqÓË÷­y¯Cq:¾™l+%¼báäõ±U 8üóÚþHÿœ”üµüºÿœTòf€úƒÞù¢Þîê9t{-浈\É/­/2ª*®o½~y-Ôu OËÍ*Ín‹êIs/;U­#‰w Ûõ<¶ÎMæ-fÛQÕo.t”– [—ÆwW•¶ý¦PZš àÞsóŒzߘ5]CËé=…–§ y"–@ÓHIŠSÄm¿|ó·æÇç]ÿžµÍEü¶.4öOQ­¤˜5Äßë¼aA’xMûäVs HL•6 b ­7éNøO‘|æ8ÌÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÿÑùUŸ*³åV|ªÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÿÒùUŸ*³åV|ªÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÿÙ +endstream endobj 27 0 obj << /Height 216 /BitsPerComponent 8 /Subtype /Image /Length 96980 /Width 286 /Type /XObject /ColorSpace /DeviceCMYK /Filter /DCTDecode >> stream +ÿØÿîAdobedÿÛC + + +  ÿÀØÿÝ$ÿÄÒ + s!1AQa"q2‘¡±B#ÁRÑá3bð$r‚ñ%C4S’¢²csÂ5D'“£³6TdtÃÒâ&ƒ +„”EF¤´VÓU(òãóÄÔäôeu…•¥µÅÕåõfv†–¦¶ÆÖæö7GWgw‡—§·Ç×ç÷8HXhxˆ˜¨¸ÈØèø)9IYiy‰™©¹ÉÙéù*:JZjzŠšªºÊÚêúÿÚ?ùk{;3’KXžõ9òÆêg‘ÙØÕ¤%œø’så•ÝÃÊåœÕš¥Ìçʬ +·O»¾%O4‹@³¹ +ˆ$“° @)=3d®ÇG°´0 ɤõâæÓ4¡ŠRµˆ(Û»mÐú“ÿ8gùiäßÊo%ßÛ\ZÞkq‡Ó“Íði¿YºK 4I¹zÅò“ˆ’”,›e¬Œ¬I ¿dˆ¦lN·ý)õ?¯Iõ x4— YAÖ(‘ÙAø¨£SAZ +Ó©jzŸ–|Ý®jþ_Syi¦èíd·öÚ…‚Á1y‚Èf‚Q)e˜£ŸG”jœ¸’)L—Ó-ºÄYøòMGPy0U¦Õ4&‡6 +ŽïWhÝ=_Q†Uº¹h=U—Šü–jøâ~Îûä¦ÃóFîËA’Õ<Ñbe³AXž].5“ý +KKx¬dgõTÅ—I'6â´<äv<¼~ÖA-ç ¿(|É?—<³kÞR}nÑúMýê t÷L¯¦Mw)õ+Ì®#gi*EFø†£æNöÖ =Ÿ”6êBÊcôäuaéŽlÔq4>Ý1¥‰|; +=÷ÂsU7’ÇúFuºÁÇ~k3.Ë4²ÅÉÊô`6 QZ€`_ϯɿ-yÇI¾Ó<Ϧ¾¿döFÖÒêšÞ÷M¸Q+Áõyž¡$O)¶¹Õ'Ž( úÊÜ« ‘ÌaÅŠqQEJô¨í@ÙG mç¼ÓçúÕŒíÄOñ$0=ºÐ‚kŸ;üßùCùùç¥óßå™%¶}įåûÄÔmíµ¸£%¢àÂ)8;˜ÉWXËUkÉš`;{ÛÛi~µi+Á$f«,lÊP…ÜxfÌ×Ò³üdÆ+V +iR wäM|s»ù7þ~Åÿ9 äûØ´ÎO,Ùêð(Y˜­´º^¡R¼ã}˜FË^'ì +Šïƒãó>»ôÅÛÉ:ÈÑ»rVt<”±Ú¼OJæÇ[jz„2,Ñ]”e$)<«CîñÎñoÿ?Jüƒó$ê¨êþWÔ"·–;HîtÁ4o3Ä̶ÒÍÍT¨ñš¸ípy›Y +ݺ8óˆ 4íÈP§jæÃû/=êÖR¹n"ÈœY˹RIBöé—®ÏÝ¿$t  Òô½gÌØ´â²Ei žŸ%ß+Î{–°­x1÷9*?œÔVqÀŠ²H‹ÁÌœÇÄ9)ôo ÌžqÔ¼ÈÃÔŠ;X”ü0©-Xš’h¢¾'â§"Nxþr?þrÏó›þr;ê×^aŒhSž=3BÒýxtù%‰¹”Èïë\*ȼÛý—©¬cYóF±­:Ëw!ªš¤eøÑBÕK–nŠß®ù‰®Ço$²ª9 ÌÑYƒþ@r-ÿ8×ùMçwæÖ“äÍ~úçNИMs®j°ZÚÚžJ†“àRì¡·sÐôÀVÏ5ÅÂGu(DzÕ¤-Ǧբ¿êÍ“Ï.é7°Gc~a­Š#›‰mÖ3/" —¹‹÷>Ð5øTtõkE‡ÊþQòî…äÊо]ò&žÓ½ÝìR¥´³·*K¯IT2ÈÑ9,ŽËü½ó¹y#Îrjf÷@Óàž }^Þ[˜ç‰åhÝ£iM\°^|»ƒ^øµæ©mh4Þl,`U6öÊJ¨PoF02±K=b÷NN6¼|Õ–e$25k¸R6Ø໨F¯z²yžÒ+…²'²FŽ²ÄÉJÄÐrïÓá45Áþ|Õn/Ãj,·Q+«®KÄ +T)cÄÞ¹±¥®52ÒHÒK:ÕšWz€Š» Åv§27ù‹ùåùùI¥·žudÓæÔî¤ZÛÍuu2AC+ÇoÉ#ªW*¼TTšáÇæEÐFŽàJ ôUŒN(—nŒÝj)±æwÍ’í'Ïšþ›¤\è~ªÍws!‚9r±ˆå¡ggVT Efn"¤á-šôëÈn¼Ï¡yçFº†ÖâXnnjØZüúâY#“ŠÎª¿¿ÙSñ ð^h¸E:…Åñ{—£ZÆ9ò<Ñ£%ÀrOÙ©ýªî`Hé‘æ¾Ôô»‰mÚe/0i¡‘e W¯ #,¬7ê ë“Ï1ùÿGòÇ•í.n®˪úË=_ß#ÙiÐ}­÷É^©ùžÚn†-aæ²ÝD‰)`9}“SXØ¥>-”ïR3`mJîo¬3,å …• (An©ÈCSÔgœ?'µ­KþrOó“ÎÞa0]Ýyj]#ËÞTPŒÑézwÕáã…Þœd‘e_T%-·"kç«« ^ãU‘§@‰m"V(~!xHØôêk×6Y®#‘'‰Ù26RGREm÷ÏFiÿ˜öÚק*Ö9ÃL5¥B/*¨íZ}ùWßšzÖ«"Ku³¯©TSD +´PÄŠTt¦l–y̾aò½êê%äÖÏ)?Xx£VuŠ1S4nË!WŒr<ÂU;4ÿÎE+òOÏÖÿœ?—÷ך&¿æiŸl,"õ’öÊÚX¸Ü:‡¬2Åh.?~±Ë"&ê‡â8Aþ"˜ÉÐUŠá#xK #á7nt# â VdnK±u}3óJëFòÚØê¯ÖÚF™®ãúظ¸œMéªÉûƒÖ;¾H^^jèêî8ª‹äùÊŸË4ikk¥k¯_µþ±wi§Énm."³ti«~®ÉI¢™>¡û_3_i^Z66 é­Ì×?\*Oï­ÚÜ«¸U¨à怓û^8´W—6ð´0ÊÈ’dY€cÅÇávæ|p>‚ÞB0+þ^éz}ÝÅÔ kqç4Žacq¹v¼ŒÜ„˜T™¶2·M—‰<¢ÓUÒ|ÓŸ§þByËše’ÚËÍÚÿ™ôi¤¾Ótë(&¾¸Õæ‡ÕƒF³CéÉ5ÊëT1qe¡ëzõÏ• Syé<.§ÅQæ’âeŠåAqªGé†;'*’ +ƒ]2óLµžÅ´Û(®/# ÿ¥ZÜ]¼îRx×÷qª¬|Y‹§.Eª¦‹(\iÚ}Õ¥‘ƒTŸK¸g’}.s}e"¢¤…® „J=8êü& ‚ßü¸ü—òϼ‹ù…å_%ÝXù»Ë¾RÕ¹Y]Iêòjrȶ³\þ“ÓbŠ¦ŠÚI ™$l™~2?¨é·BîáVuÔ$·ÝKú‹P¤’§«ªñ8| (IEÍ´–×2Ú¹GxY‘Ú'Y•Øñt%XmÔl[Ï>lò§¼³as9{=cO‡êº~k‹iÇ4aÚ#YwéWà.~0X0û-ÿœÁüÿüŠüÓü½›Ê:÷–õ{¿=ùzyôÍ)t½ÁocuoyjZâ }Wxâ™XªÄ?J† +¥y/tyì¸5šÛÝÇ "h~(å‘™d.çˆXÁ ¼ÍI¡ o(ŠŸ„†â¡Û•zôðüpßRÖµMUåÒîô›ûinE’\ØÛ4Ö:Tú|p¬¼Šé=Q'¨‘¯41Ž“•><õ.­ä0þqi±G®èÚŽ…¤]þ‡šê½:2jÛ¥åìps”’‘ýšñu¬|”|x­¾«§$·rYý]/-¡·ªÄ#†h#"€·¨ÑL¬Ú;ÔãšRß „QÄRª)¸rh7É`ó†®Ûèá¥Õt—KÎ/ÑñjqH=&.%¹PÄ<‘£³üLêÌ(Å?;ù»ò×̺v—ä,ù~å®neÐî´Ë:n›«é0O`¶ö±¢:Ïsn&䶴Pцu'ˆ]©ùî×VòƇcy¦ÅÆ‘r°é°C&Ô/ÉžS;H$4doµNM!aľcYf·Ô~¥3ؘ†V¶æÔzOÏ÷É*8˜Sb$äZ¿†¨y«ó+È>sÕ<Ám®¥æ¦´“WXÖâ¨Ï,–Iüaá"é4hÈB…øhÍÇnô‹Ê_Ì/4þoù‡ó"þïJ—N·Óµ9^Ý\Cye« «®i¡oÐÁkÄE*ˆ‡ŸXé‘Û8y¯FÕæ×4yš)œ¼w£ÐC ’â*4,ž˜c§ Zv8_o¬j6wòêαM)oUR4X˜3r(bãÉ?³ÇjS$@Ô?83’o9ùrM)otY¥žê9c’ÚmD½¿¤ómc²Â VœO&© ½/þq³ÌÿóšßŸ:M§ŸîfÓ<žžMÔoà æ ÉŸÌ2IZHnVØÚ6ˆŠœ£ãÊd`Ãc’?'Çæ¯>Ü^ëš…Ü7SÚÜ[Këj‰5Àžå¡d”PÀLv¾¡Á6¶š†¶nµW¹I®£ugŽbòM9ewf‹r +±’Äáµ­ßž­¼‘}çÉæXôëÖ‚âÞ)ï”kR.™Ìöì‘,_ß3LáÃrh(‰#HüðüÁ·ü´óçåĺ;é7bÇS´òûkâæò=9ž7a01ÙÛ\4¿þóÕ“”DŠ(Q6žv󷑯¤¿¿ê7qÇ—o4¨·@ýqf–Ku¡h½9j¤ñTO°¢ƒPÔ Ðn /Žqk­')ëYã §ÛŒ'²: ¿ÿÐùat?{ôgÊهǟ+f|ªÇØu¹O­TÇñToü¦Ÿg~´ÏYÎÎ/[~{êžmó–±¥I¬Ùy*ÞÞ[ ;A¡rÏéÆeIabf n´å¶ÅÐÀó‚‘¿hÿi·÷æΡ 6¡¢ê·O‘拱µ¿’Ñâ– è r–[ˆZ"&,kÙëJ®}pò·—¬<¡©Êð$»B‘ÞÆÞKc +4ªÃãN(¡-]ÇJPŽ´´¼±šFp-nbZ4W"5-ÂqRj(§ÀòqÃœMZPÓ£vaÖ‡Øä^÷P…ÍÂÍl‘Lü@XccDmF­VcN òÞsÏ™¿›vmq¥=’\hº§™lô]ImìK%Äo·ºAVpÏP‚€òam9 +§¯†ýñ¸ +Kˆ^t¶%z… SßàÌÞ)Zm¶Dÿ1ÿ+aÐüág¬þ]ÛÇ>•%…¬v—²ÚŒ¹i +Å,—ª¤F#9:2ÑMAZY¸†! +]‰4ùo›ÕVâá,m¤icç±GÊ`‚† 粪Ҡí×–K¼›qù±¥k-´¶z•:{Çjð‘š9•YݽHÂ#£š($eSjæÂÍI¬WN³º†îY.çy í‘H•"*²¬ŒX¿"hcZt«uÉ-Ïå~¥ù¹iq y¥~³åÍHªÝé“JX0‹‹C,w‘ɬÒPÉýÔf:q«uÃKMB;y¬œw)$f„¡Sc¹¨5éO~Ù±º~¿%RïÔ¹Ó§©žÈMÈì&Ïé¹@E+°ä+P‘þ_ÿÎ+韖òþ‹òÆ£,~\¸Hã¾òìÏ%ô2á•™/d/Ʋ’Wåè›Èú¡¹ŽÚXýÚqˆIâÊ9°rWsÇìŸÓ`‰n,õ(Ò}1ΓxÃiÜå’* 2µ7§Ãñ0ÈGüä/üã7“üÝåC y•Dé·7Pj/«é†HÒËW›e½ô#g¡*Æ»p=Š!ÀZ§–o´ô7Р&56»bNÜd”_„r&½+ï°dWšÇ™¢¸ÑYÚöid{ÀL±Å$ÓGŒ7ïAi(«A‚ÌNÛíœȾ}üÛò矵ŸùÄŸÎIgóXÖ®—Rò6¿¬jÆÒêæÑäK[YCEê4Œ¢@dFfµ©,ô¤»ŠPO&^RÉB¤’ªI‘`7¥saZXëšT†´Xây~­+ÜÅã,E_‰õGÁñSµzW'¾bºÔü³iseq¥ñŽ+¨âº>´—qcqû‹ ¼.XçGvR‡VØ•ÀËf^DøÏÜ©£¹•5†lFy-n­9V6ƒŠÛÛ¤uæ’õußá;îNÇl„ê¿—šæ–£åmgJ†âÛO´ÓƦÝÛ˜V)3HÖó7ïÐ,‰!eç*·%U¡NH½1ÁÀæ7¨`ÀקLØí14„ŠéïÚ#$1“ s ØO 4¢ú\8íO·Ý3þq3òΚsM Xv”G —‘j·ÑÜM$¬B"Eyjðª­iøû­!ŠY’EA·Â¤’iM•†ÞôÍ‚®l´id[­ò"±…2ÛÍ‘°!AbÚtoˆñ§-ÿ–™(óOüûÿòçÈ6–^gѵ6±¿Š²Çõûnm%‹Ò`9[ÝýeïxüLÝ>’ õ>ÚÇÓk;„œ8§"o*€7bŠÌ´=јӶy«KºÓ[N¶Xá‹je´hãí:1«Îá¤g%˜Ps Ðl‹JagüåŸå/™OåÇ—ôÿËÍ*Îù<½¤Ý‰/mí­ÔtèãŽ+¨ýxVæîYO´Bu†·l`kgY˜Iæ$fbX±.hÄŽMÔSlÙ<ÒUš)8” W•&›þŒó·üâ×çŸåÏ䦙¬i¾fò캾«æÉÅ𸖥Ú@`Ëê4PÃÜ`4ƳIj̪¼%çºt]ëZ{fÁ2_O5ºA;¬‘€V$d^IW/ð€**ÍØþ2“óßóWò§ËžfòŸ™î­ïoužI4ßµ…¯¨ÌVææ+a‰™ù!†@TƒÍw +2K*,hÕDéZ% %¼wë› 6ïÅ)+«ˆÑ(@!Œƒâ­k±ÛðÀ/¨~]y“òÏSŠæÿM¯™e6ºKÜ5Þ˜šy¶‘šIZg·’bJ¸†±µ ¡†)`ÔQ£ ‘±ß­ví›v!‚%wø$e 9~àŠTíáž½ÿœ>òW˜ô+Ï$éšïé?/è×qM§ÜÚÚ[YÛÝÀ¿¼·—Š§7qåmÙË)çÄ6&ì]¹w=~y°·ˆ‘ÂÀ„·í!ß  ³Øz¦™åÍ>MW_hì¬Q{{q ¶ˆ†¶îÝi•B7 ïÓ66DPU7OÄM((0¢_5éW¾X¾ó½­ü7úg 'yìXܬ¢"P„xÏ ¯ª:ŽýŸZǶÔÙ½ü3`Ë WO¼CuðÆãw“P2^ð±¯mú×<ñùµä/þrš_)~qþJy¢2?”­õm.m +ÛêÓ¼‰­/Õžhšâh)a¤ã#Á@RC‚áˆÞ[qGýì{g  ·*žTŸ\ØíbúÊò^v±ª+-B*ñžGáêK|Û»¼…ùwæÍ?ÍÖžl󆎩ª ¶›Ë–¡ØÜ[É-ÒÍΦCû´ , ÓábG BÞ9Ä©è€ÎG5âêÝ>y° 3Uå^¢´©íáMð¿óëÌZÆž Õÿ1µ«?/hP]ñ‡ÕâÈOÀcPï,¬ŸÂ«ñP6Ëž[—ýÌìi^Hi^”®ù³zeéÜ(¡ Š +Ÿ|GÈWz•Æ³ªùf9¸ù¶ú×»¹I¾³{ÆÖRSŠt@V"¡”nÔ&5ù¾í³bð #$³?sMêj•õ®v=?\òΓÀÉkkM]¥_E¢åÙÉãÈ#bÛ×Ƴd©t/¨FðÞOBn VôåÝ•—`ÊC¤€ï@EB¼sùŠ¾^üÂüÖóçæßœ#_%ëÚ›Oå}7Ð{æ+]&ÖÚ–Ñ]@Í'¢ÑË",ŒŒ¯_ݲ—(< …? qÐx™°÷MÒ¬u‹;¨u ­¢‰e»´†Åm¥…ã^IõŸY¡’ŠŒ€ˆËs`8Ž›wùǯ0Kæ ïÌ0jFÃÉÚ©æ,éþZƒL‚Ú]Ýåx/f½1úñF‘ÀÑ,4Væ*‚ =|L’·=îÁ!ªA¡©R( +ã_» +wû²C¨]ù£ÊÞ]“̆Í4í?W´‹JMSM—Œ²¤Ð,\x£PiÆY?vÛžNüáóWžÿ--bóî§ ¡üµ×ô/M‡ü?hl.-m5nÄw7sMr泊%õÊS¦c¥DÛA©[Ù¾£k)Š99[¿§'pàòBªy* vãÛ®ØøÞhA–')PÈJµ PƒMèA¦E£Ô,Õ'W¼yciU–öÛ‚@c,ƯiÈÍÂòn´50 OóGòVúÖïXÐ5¿7Ù%Ö—q©ùÒßUËlÐ!dÒKHií>Œ|ø¬€˜ƒ<ÑJ@Ô;úm¿^‡€¦¾– +Û&™Öº‹›{ÙL¥eš'n" M°ôy/.qÔÅC?;>|ååßÍÝ/DüпÅ0k—åï8‹1 ›ê7E –Ö×2ͦ¬°heä²A0¥TÈÀÐD¬€°H«{R¾ô®l˜ÞyãL¿ýÖvæÊÖ7 säØ﵉c–fRDÐEË÷l\ÕTHE_ìñ¨Î§ç?Î#yKóWÈÚ6æ ]Í–:œZeÏåñ›\¼°¼´½²¸†BÊ6ú­¬¯1TY)@œ‡‰âFÇw,w8Yôæk‚“2©V£Ó©ÞŒ:ì)‹<±»‰$@¡ ъ­ ±5$TïÔì)¶#¬k~U¿ò½•´&Ž[ë«Ã©"Z,ôŠXà*M Òˆ¥•än%•kE¥Hn /ç¿üäçå—"ÿ•5äûñs细SµwÓá´]+Z·›!q´Ud˜Þ•bUäÊG6dr­ ¹žÁD¶ÒG$ò¿)¢PîTBÜèêÃÒebSâÞ•@‰;×}©ÛÃ#Ú¿™õ^?-y‰%Ó…­½¤É¥Ígõ.Iè‰PÉ´J^C ?½1³¸íÓÍÿ˜¿”ÿó_šž:å÷çn±«E Ùéº}í¾,Öº%½ÖŸ+Ü WI [êÌâ+€‚j¬@|·¢â‹5ú*LéÂ$º)Dn)Jl+¸Ü÷®:a*¸'â„<~ © ¨¡¯~¹ÕŸÍó]hº­§’|Çmå Mk”·/ÜPM§q$“ôe"_ô’¦1'À¤Qaî?2y®ó[òn©åOË»ûÏ(j&i/t}A4mBU-ªê'ëSÍmªiòÆjÓ¿îÐÍð?!é­Mt½oUom¥k)m^¼é ržfçmA(·d +–ä’¤…*À-\4±¼¹‡J¹6ú¤vM”[UYV{…¹á”«Ç^*®¬ëPß +Ÿ‹9•¦£åM;È׺}”–×Z¾®©e¨ÚÝfð_¥ÄW6—+X‘äV›Ðç´ÿœ3óä‹Û,ùfØM曄ӼåÕÜnM…Ž®·Vz¡ôZ$›ÑÔêAX³Èraßòª|Î÷ߣå·céÜ4Þ‡Õ™_Ô!' Qñ}¹ Þƒ¥T©h)“°$·­E =·ÏÿÑùa1å1 >üùgnM}WRú»ªK?Þš“BÔš éŸ+dÝÍ|6Ï•X'N¼¸³iZ*~ôݨ¼‚‚ÑéÉj tϺ>BƒÊ_‘óŽþN²ü±Õ¡_,iÙ_.¯+`Õ?IÊа&8î%R÷*Û(ãZ(#¬Êj3dú{Dóv´ööim£ÝÍÜ!¢KR%‰ +Å`µ„E µ'«¶t_Í/ʉÿ2ííu›ñ%¦£]ÞXÚ¼Á}¤µ[fƒà0ÃGêQ']©ZƒíRÆ}VåoÑb‚KÿVT„˜â<£!YD†%? `{‘ŠM#ÝNó¿Òv +«ƒÔÑT*`^PJ’ͤ—R¼‰ ºƒ‚ÛÀf«B„3¹}ƒ7%zY5ý%Ñ|Å¢y^êã̾a´ŽÞöúV[8¨~ k™LŒÊÀ…”•µ y—Ë—K ëßW[¨Åݽ½»Å,O´ *Oª¥jƒâåÛçß*j×ÖPA©É4 y§ÁiÊÉo4'“\JêÓeD8C,tq¾+{g=¤Ñ¬¶í8ÒDSRJýµ=ÃP³+ÔR»Œ ââÖ;_­O5!·õnJÅ]ÆOÝ¥bcBXñn½A¼«å?#êzŽ§§h¶ux¦ŠÏL»yY ŽÞX¢häw.¼ÊHÍ UoµÄu)ÛÀf‘"Z‘‚¢T.äŽí¶lŽ¥Ì–× =—($ˆòI0Fõ¨§êÏE8ØY¥¡¸HíÖÂ% +IÝNí^½A¯\‘ýZ{0md¹¨F%íÀ^¨5CJ: ÙV·ÛËÎÙÌR2¼eÁ¥RT1°$ö ‘ôäÎmÔ¢{ 1£’ÞQqõyýyãy§H̪–âÝ=#Gfè´ï€g¾º§Ö +)n¢ŽŸ )×6)muw`‚é @Âqñ2ƒ,JÜq¯Ä*BŸ|¤ßy™õ·µÔ«>•è¼étd +AøV;Y!z·> [Õ¯·¾;LÔ/í®"oRF0Qã_W€5 +yW³ Ù(ÖµhuË jÿTkÝM#HnÉ„™b)ËÒFv(® +׋Sjœóçü憅¼Ö×zÌRM6–¿¥ô½KêQË&‘-¼NÖò,‹4sJ®`niöe®ükµÙ.ÍÓO=Ï6—÷ŠjÁŠîW•WÄ»æÀ|4»‹KBâhå½Y%ÙÇ„WÒìZÒßJ3]4vém{¡%ǧ$2Å;ØO‹¨Ê‘™–?P7O…‰&ª 6¯jæÄPÙ¤•ý9|TšSÀtÛlšÉ¡Ckeå/ÊŸÊ.éü¥åÈÔ¼»i('ôÊËK¨]Hª…%a3Žeäo‡qÈeiQ²%H‡Žç6:0ʬԧŽûTŠw§_ à:‰ÓdÿŸùçÌ·KÜ>“‹úêÒæâØÁêip$’3[: KT«+òÅn¤SAUAn=kNÄ×Ç®lJâ(Ï2–¨"5¶æ Ô{mž—üïüûÖ4¿.?•¿(´æºó.¤ ”¾o‘bH4XeIt"–¯;§T‰VŒz‘ƒã×RÛL[XnnwÍG“Óe§ä> ûób®°Y= â‰Ðv?¿8‘ü»iäÙ¥Õü£K/šõ( ~fóƯIoo¯*úòÊÑG#å#à7§l*i ¨?²:fÌ´+B(* ¦õ; èúŽ±¦ÚµÜ²-ö¡qýbòFôbJ’ìYžŠ´$V¢¾8ÚÓ·\Ù+ò®“äËIßPó߯=¥c-*æØÍȬÊ\Ñêj§à"×ùçþr[òGCü¾Õ´O2éòþcyJ+a§y÷PòåÅ°žÒêð1´µžÞvŽB³Ù9ÄvËGãP¸*Ò;_]>²KÇQQâíQ¸Å6éøï™xÔrÀØá——´›'ËVþiMb×ýÈÉ%¬Và Õô2C^<ۣͪ¾ÐåHÎQÿ8Áù=æ}òSÌó^^üÂ}Tk­-ž³ä}7L…ï~«m<­ž5k•T°ŽE›”× i +žjG1¶µµ<—ò_[¢ÊLOáê\W’È\zŠB/Â5<©µã +P:ä¡Ž•p wAÅ”¼Ýç8u3y_G‹ôn˜n®u+öÒOg#I4 •~*¤áh 8Ðпœ<‡ùÃùß kßš¿–6Zo—4%kÇ›|€—v÷ÚµŽ¨†íµk뇼eYeã+‘~'à­VP{ PÔínîm¡yÖÆžä Ú8T ÄU¸Õ…M8RÓN¿¾Žæ[+i.Î?^í¢Bâ¹*szÅy0;T©èÌm¤kR˜"™MÄ·w Ç–œ˜ÄŠÎ’7ðPšòèM|óùuù…aåß&þZþeêp·’.­ôûÝ_ÎWðEu¬Úw+§Ó‰ˆMÎE¤ž”¬C2ºÆáêÁ€j5 ñP÷é_l†7.—åO.Éoÿˆe’Û„7ÖòFÖÀ2¨õfHŠ²,gãù+ +R§/Ì¿•º7üâ_üãÖ¦þX[Åsù»¨êQÇg¯^CfþôòK3»-쯬¢ *šòZ•y™‚ÒÆî Ë_ô««UŽIãRXÉ+í´Ë««I/m¢eŠÔÆ..]À^Va©…©°¯bzDÖÞwîU †"«$´øC=J©=*Bšc„¾MÖ|²Õ|á Éæ‹ýAÓFCu-Œ<³R)X§!pœŒˆÈÅÿlls’þFþy~„òåäžzÐ üË×|ß®\i~F¹Õ.ý-sKÒ¦¸º¶7_Z†Žä#Å(4°8,Ñ<btx"¹›V²–á&ŒGf°JaÍð;?'Y+A·»ÖµµŒºlKt5y. ²Ú4S½)ù)Wj£óP~×í 7ó~—ùˆúÆŸ©Zhë \}N.ÝÌ÷¶±Cu)­¸¼’Àõ!+È}ªÌýhùáåÏùÊëÍBÃÍDÓ¡¸Óô›?&ÝË·¥Å.¡y%Ü‘³^=ÉJ9í=15°–QûÕnuÕÒÚê q}Qà_«½Èj+Pº).‰øT­V€…®ûàrX‘@ #¿Ï¶B.<ñ¬ùJæ{ õMfÂV²–u’ÞæÙmíÈU„Fb‘‘Ô•˜9$Ôoò7Fÿœ§Öt8¼«çk(ÿ)ìtGŠÆßY¶—MÖn.ô›5[dÒí-&TŒù-äŽìEhŒ® +2=$[ÝI¡2¢ŽH¦0³;m±Eä v5ùcXH=FÛä&êöêõÄ—R™T²­kEöèô‘ùoå}Bʯ+Nö1êÁ¡›±·’³T,··eÈ1ãÈ«ð¨ƒ$:I»»»ú–n"…\)±sEjÔŽRÃü¬Ø5tèZÉæXæªP<¦d¯*lÀŠV£bÏ9’þqÿÎdË+]ÜÿÎ0‰Ê«µÑß1þUéw~VO+´š¦©§«‰&šØ[­é•e +òú1'©ÆoŠ¨áÚž'3i6Ú´Æ,[ÝÜúAÛÐôÖYÕB—<„_h)¯ü½‡Ô†Þk™ V±¼¬œª)f —sA]•A$øo…:ŒW—WLuWúÝÜÌ‘µÁbò)Á*äðšu<¨¾ »ÑuŸ/ù.cúŒöºkkÍji—ÔTXÌ3\¹e1Ö>Ax«|=Gr%BÎR¤Ór¯Ï¦'ˆ¾™{j.ll õ¤ž"Ò£[³ÜE 5i*X@¥~" v§JŒ,üÖó¿§ySÍ¢I ÖvV§ª«Cʾ†—m$óÆÓ€T“"•â›Ñ>Þæ‹Ãgys+ÃNò’GPŒÌ YÎÀSÛ¾Z«1¢‚M  ð§ŧ[] Ååí½›EoëB²™”»&ËÄõw_ˆEÿ+¶@ç¼»­ù‹MòÏž5­RÕo<˧Úkw6ëir‘Û›˜#–;kui"(9ž´ûÄévËs|mÄž™˜ÁC2šÐ¯ß¶VÁ–TF%U˜+0 '­;ç¨&´k«†Ò™(UhnQ¸º‡«7w˜usmèÜÍc$&!¢™×“02ïµx“øfÃ%ЮZT†É[Pi[‚5š<ªiØ-ÐÓc’»mCFìÆoa—ád)Ë€_„ôÔç@°Ò<§‰/˜4ëiµKk +M‰å0Ll¡¢QVfÜÆ›V¹ºæºÒEÔ.ƒos5´iÊVuÈUÕ°‹•®£~ç9ל¿1+mÑ<¹5ǘd¼i´Ð çŒZ²E+7 +3ª^Un˜Cç}Kòž{ëwòƒj’ÙȦ[ñs ºÉ© +¡8Ð2ŸN½2Û~ +Óß/E“_Ónn'ÒšâÝÒ>¶aõP˜øÕý=ø(k¶2Ú-7Íá-­&ŸO¹Í, wC4KP¿jÑÔwâvÈÝ£iÚµÉÓí¯ÞÎ9)žæ>+nëZ˜ØíJ è¾'+G$¢ÎúKKæ´¸ÆòúR4vÎäH‹½Xn"k¿\ð¿üä'åŒ?óŠ×Zçæ?–u ]_Éžaqeæï/ÙÌ·0[Þ\ݽ͸µW1µ´‘ÊÎWâo‚½:á˜tHôKØìm¯¬õ^h’}cOy%‰›jÃv¨ßbs.¶Ê¼#ÌdH‹ $RAÞ¼ÆÝ~ÏðßÌo*/嶹äÍÃR{ù-ôÝbû_¼’æT¸ux-ÄÛË¢¾´lÎy7¦¢:Ö¤ál‰ +*üö•? ¨|@ƒ×6JuÛ»I>¥©Goj°8!d‘‘Dní jPé­*©P~ jH‘yçÍB-Ë>eI-â±¹µ{û²Ž)¯$DD–{pQcAZÅA·ÅM”•í=Häô@Š†«1†'“= ÚÍï5IHÚdÑKj±ˆ£™àVxLîÌ”‰(à“R9®Äšg7Õüá¯êV–ë¥y”év7–öZUŠ››o^Ðj†d.“GoÎTX‘n§Nj¬ì±Ì°®/shb P „/ÚnTÛÃíA›ßRŽˆfµ’³F¨î̉ŒC’¯¹èýòuùaÿ8g®ÝÝéh[éíÊ­š¬úñX¦ŽÖÓÑxD°B•P!Š«+7)÷#lô+ë¾Þ8#ˆµÃ%B–-MÉÐù±)µ8/u!wul‘@ä™-mÅðñ¥¥õhO½sºè?ó”^MüËó'M´’1M/¬¤QAo©PÈ Ž4¨¬QìXµ $÷«®l´»}I-‰HI¨RE#бV¦Ýôï˜{àˆ ´Í 2¹Z|Q¸uÜÔmÂ)ìÊÛA,æEäZEôÔZŸSÔºuÅ¢Ô,¡ú´rFLðšò’Š½)G ®H t±‹#î Ôз§NØe4Ú£éæÞùPz• ­TíE5åôü8¦±¯yƒPÑã±»ôoQ¦â¢œ›ìÔšò>æǬ’³37ëE•6ÖWM‰`»¿½–‡÷‘ÂÓû·WV¬uõn¹¦Õ¯Ñ›TbCÉN\iñ K«hš]©Ò¼·c›§¤Ï$vVÇ`»$(EIðÌMMz{fƘ+5Fþ;}ÕÆÍæa¨ê6ÖÚ\2Iê»}]9D»Ô«â*Äì7Í›5µ­Õüëmi ÜÌõ+JÎǹ¢ƒ—Ë#úpÆ–Ò] +Go;*Hä/*OIÅ`µ’yD ª1ÿ~:Æ>’Ä›k èQ$š%Pñ<¨ÊX•Z VöØä+SÕÒúž ëÀ¨b4¨<®/˜m¼Ÿ§ßyÆïË3Kë]<Ûµ“j +ƒ¹º2-¸xX¨™Ut¼Z‡Ámd¶¿Z’)˜¡™3‚Pì’„Ž»Ôt¦XF*^‡ˆ Næ´ýXigå(üµ¦­æ6ïL´¼„>™|Ö’,wæ5C/¦ÒÜÅÉi"°taÌ +(È|Ŭþ]Þè~jÿœ‰ŽËOÒ#Ž9¼·¤h­k¦I%Ö’ï–dÕ5 dˆ£G4M Æòz\]WZÿE¾µŠí^Êm6Úê0l%0Ié\ñP¡Ñœñ*H«2’7Ø`«½'T°µ´½¿³šÚÞýKå‰Ò9Ñ[ƒ4lÀŽø+Ì^Qó?åÝö¯êZ4¶UÚJ4x¯ÂN&·T 9ÉlªŽüg<ƒO³žqóÿ“1?ç¿7t/Ï73i>RX¯îü‹§p¼66i;qƒWŽÂ8arãVu‡ÒŸcE2l‡¸ÓoôèašæÔ¬wj¯Ž> …’ˆAÞ€Ž[ÔV†˜Œ¶—0Åı2Å-DRx1P º +øW$úF•æ«ïÊÛß/j>UÖ£µ°ŽOÐ׶¶…¤7SJ²´R‰ÙL‘Æè­ÊÕлr$^»ù}å/ÍKÏùÂ/1~YOäo0è no<³¥ÁdñêVúÖ¡=â[7éÉ%°˜C#à‰£RÊ$vØÖÏKÕ¯|¹qwo¥O.dåN¥%&œªMºñ)ãÇzÓlY,îäÓ¤½’5´/Á¯[‚»ÒŠíB½Ðlp¯ËzN›dÖriÆtÔšñVæ+Aa Õ¤© P¶šG’4ýó!ãìŒÜ©7Ð|­æä//ÛùvfÖ%’÷Í6ºÊØÛK/1hÐÆ–CZ´Ž6dŽ/­ú|C›UB®Å€}>Ö;{8.?º¹i…'’HžÜGD+êÀT¿F¥Pô¡Ä£&%Žu§.f…Š°øxŸ‰;oßcŠÜùƒóCBó=Ýüöw|?IO9·{ˆoãw(ušøL”·!$\jTPAÂ-wÍŸó‘:OçMÞ…å KHÑ5+íKó6´¶vw?¡ïÓ–Þ{ۋ˲â13«(§§)Ž4jŒºÔu{]iu;Â`žwúËÊ!R²33~ùè‡í¤PÙ¦5¤œKë½y½[“ +“Ëö·ýxK/˜õ"ë+y¦–RóµæŸÏPŽê{F, «¤­›™ø¾(¨ÃŽÝ³‚yÃóóÎÿó†^fÕu?)Úè>`²üÀžëY·µO2K¯kzI½&¹’9mÙm3J=HŸÑrE=BÄeYÞ&îrm­î§ õxä—“¤n…H’2„/%ãÜ•ö#î:d×Ó¤¾f–6³·vä9‘•v¨«ö>Gl€~LÎ*y¿óÇÍô¾jü¦Õ<Ÿc©8YÃeÚmŽ)ÆWS©³Èï7DQÔòjqøF%o¥êº´€Ø[<îVIâ^O^<Ÿ`+Nç­r°xó—§YO§iS]¼3`X +¼±¼R.Í *T¯/„N£=‰å/ùÀm+ÉÉ{åk_7êw’µ†ãTÐü4²;Ú\Ø^ÃêC ¸Xg¶œ+€93\€Iů•í#x¦Öï!‚%AëÆŽ`Ìy5ªšV‡Â„SjæÀš_šüÁd÷¿Qœ$×Öo§Îæ4ämˆ”lx¨ºÓ¾vË_ÉÏË?È›‹¯6ùrûUÔfÒt#¢ÙÚÞ\Gp"Óm˜N¶öÊ6g%hœ˜×¥pÏ@ËÚeÕåÄj÷SËG‘b`¢VTfiöèHZxí–¬P’)¸#p_ž ×|ªh©dRæßP{»xîå[6•½”T ‘¢íüÈYf8Oyùݨi~d·†ãJ·6ÚßÑ—·3\Lž§ÄÞ¼Mm«öý—‰ñZ°'ÔçNa4m­p=ÓêÏ;žI)!(õ4 ŒÎ¡iF P ¥vöÜ §©iãŒO˜¯5µ¨®Æ™Ûíìô[+ kiÝZÕ0™O2å~.Dž¤ê{äËO¶Ðí4¸%tf¡^ñúÂG­€'©ßjôÊÁ+;´r^Í{ »^"ÜÈj“òh:Pûd*/Ï+ ï5O¡éž^×?C錟¦<Õw¦Ý[Øqš©Ù» kƒê•QJ"Õ™€Ã†ólZAµø°ßë72Ç'6Qо¨ G/€íS¶lÿÓùn×3Ùܥͬ­ «^2#aZƒB7Ï™/š¼Éäôÿ”µ;S„O:…”Ïñ¬ÈÑ¿ #!–ªÄl{çËKî"åëâvñß>Ua„~nÕÆ“y£ÜÈ·v÷¦&ÜÆ“H†Ü})$Réýᯠ­h3£éÿó–?-å-OÈ~hÖ›Íz­,Ím¯s¿’ -ÞIíe‘½H\³‚Y'ŠöZ`o††žÔÿ:fÀÉy>‹ªÅw ÞKo,•ìOèÎœ«J²1¨w¡Ïº–Ÿ˜ ù‘å½7óÉìöÚV­mÔ"hŠÈÁ¼ Úx3Ñu=cG¿:¶…rú}Ô!ȹ‰ÌM%`B° Š­G½iŠÚ]ÝX\Å{c3ÛÜBÁáž&(èÃpU–„ƒå»ŸW[™cŠIYcyÿrïÆBy*9éJ +œE¼íçï0ùaoµ]x/õ[«‰æÒeµ¹š$ôÖA h^c’B™ŒJ¼}FûXZD’9Ú­¹ S°Ä±‘KÊé½OVÝgSéˆds0ªÒ›)V;w¨ÛÇ~hyêûËÆ/ë–±\7˜$¶·“K‚âo¨¼úåȶ–+¨Ë X½Ø4a@<בãL¥ Iâi׸³` ^Ö8ï#·´‘nL© ~éšJHÈ+%V¼I¦Õ ÝsÒó~PÔtHô¨5 ­®ŸMÑltØílÔ /^ Y4e ¡Zª£j +ŠBdÞG·WÖY8g—Ò`‘\Ô…fp»+ÌW¶l$vZ¼ k$Ój’«úé„·HØQL/RÒ¸-E›r磴ÍÒÀ›¹Ažä’9ÇȪ†ÛáîsÒ¾Kü²ò¦‹lúµåÐÕ.•¸Fö‰/æ¼Y‰pL€ð” +ƒzÕAÅ]m–ÊHÍ1-ê¡@Vƒ‘$ë°¥;áž /5 BûPžÉt«»xRg´¶€Yúo ˆ¨VZE>×.ô¡_Ý…°6â°ÏÍ¿™×~z›KÔËZæ‘Qoªé×i¨Zês[ºÄ«(–1"TU…=³~DCZì*s`{Û›Û©ƒ\'ˆ0ð(±(5 +ª¤òÚ§ØyoÉ~x½±¿üØÖÚÊñ.5q,öQ[ÂyþêÞv’G„hØâbHžûã{ï›MsÍY"Ž‹R ·Ää1¨©;  ôþƒùsä;hàÔ<½¢YBéÕí5‘ +Myè N*——ÊFh­Å(+FÁpʉ[~`|UR)ñ5Jÿ±Íˆp_L8qÊ´ô÷åóéJ}9=µ:db2ï1Š"Ò^%8¸iH5Zö<0mJ)mÑ&DŠ3®®À³’ *ÕôÛ6)èp@óT%hÛÓ9F™ùõåÏ7yºãÊ_—·–—º…RîâÞ­<*ex¹·E4äÃå…}3qáD +8ü"„ƒüÇ©úNl¯IÝyˆø¨? +Ó™¦Mt¿3é~X´x®ïÛUÕ'øÞf§Í †v=ÛmŠY_ dBÏ-(ªßaOJìwÛ6>;SP\ž€túp—[üÝÕ&ŽHìY õ~—ýÛB7㹟,N[û™«É¨NĪ3b¬\"©/Pj?k Û®G¬Æ¯æV—„Í+ÄŒešVbÊŠ&Geh{Ó¡§CèiZl:œØf4=rhÛÙÉonEE̱ñR ]ƒ=?ØTî6È—˜¼Ímäawpºeî¾MšÞÛÜ,ÑYhó3L°ÇSÜrÉ#Ì¡1É΢„œº(äzt¡ï›ü±ä[=SUý,Wz±¦hô´I%žÚ5äÍl%(ÎÁjçáUI €qO'Mù‹æÙ´ÍNñ.5K]< V_&4:V“¬[Ín-mî/'—7 +™•ª¡Fç¼0M,ñÛÁÈýÒ0K·}€é˜Æ€Wå’q«þ^4—zW™t¹€Òâõt¹ìêIÊ#µ½òˆ&.¨C„(Ú¿Ó‰™þd~kh:o˜<ÇåÏý7P—É:JÙk>J¿Ôb“@½ÔõtŒKu§ŸÑp}VøDÊ謪¼øHß©›Y4ĉí¯m%žN."hau”…ãÏ’KÉTòØ'ù¶¦ +³—MHîþÞI™¢ahð̱p˜•£H99 ü#‰©û[SyBóJò´jvÒ¥¥ä¶Öú”6ò[ÏwmìÑ4\+#‰”ñÆöƒöFz#þqòJÇþqöÔÙYéZ~›&¦--À°»ŽøÝYñâ’½äPY;Ü5ÇîhìÛš/£Þ~…Öm5Ö/ȇi t’hÑÁS$l¯ðLŸi+Ñ€8Ý>X­ï švt]K¼Tõk»%Hø‡Q¿\<—˜4ÍS̾Só—õ ‹%žõ5ãorºœ‘†™¢•ŠÜ,L—,Å]ü|˜‚IÎ{å¿ÌOÍŸ%þy~jù Ì_•BëÈz/éMZËÌvq‡S»=ÝêÈA¼C0œ<‘¡J»Ð0å!Á:€º°Ôu‹h"–î)œÊn.Ru¸{RåÖW¡CÅÁVn]v9wÉ$wS DŒ\‰VYÔ¤¬ñ+°©ûJÀõ=záoæô7ÚÛÛê–£Di.¥Ñl´Ûô4¿¤ “¤þ£´’€Dªe§0]ð'çßüä'üã§æ6£Kç_5èùsY‚þIt]Á¡£[ßتzÚœ¾´€HÈÒA鳑٠+UÐGUÖçÔ„z|dKeoÉ4ØR ’½j‰ n9ÿj˜Ë‰ù“ lLÌaq b7"­¹w9»0ßÜÛh´švk,jl®fº°·‘Ó—­tb…cñSì×íÝy¿˜&üªóÚygòŸÌz ÷|·£Kjšæ™¥hQO6€š¬Ö·ÖpêZ­ÄB(MÅcgã^HRSÉT±cÜ(fX#,#V`Έçq_†½zmúñJíÓ¶H¬?3õ¯'Ú VÔ#óG—„`Ckª¹»Ž5hjŠlíï½*£}žr ü!O!cÍ_¿—_–Ïmå-,?2,¤I_Wò¶ªÉ¯y’Þž; {( Š¡˜"$r¸0ãP(ôß<ë.Ÿs¡ÛLú†“/¥ëÜ‹$AÞ•IcZ†êiÔàØõ{Èì_LykF*Ëo$’zjèX«W QͺƒöŽFõ¿Í=>] /.Á&‹|—Ws3YÏr–ñÁs +DcMć⠖è(PüU囿žÿŸœþP°òå§ä/œt=N&”ƒeså{K{+‹F·šÌL²,nάàI +¿<…JËs=µªXÁ%›E#80´ÆÉE]Tò!šŸ¯Ù +; +Ò“Æ*–4äxü@ ‡c¶ù:×Ä uVYdN\¤ ábͺü=(:ôÈ5Ÿüà¯üåçž4u¸]'É~A6“YÜXÅ}ªA}$w1 cq-ŸÖýF^5Ti%bÄG¾ Ó¼‘¨ê,]Ã`¡ÃÛlEV ÝÇ}ñ˜žµ=Œ’<1E xÞ¬êªëÆ H :©ƒÿþqßþ}—ùeùQm™?0µ;Ÿ2ùšâÜÛê°éAZµH’kq ŠUùR£‰\™h—š^—¿×å2ÍGD†HY¾ª5K>/‡mé–¬TÔS¡€zŠwÄu ýSX¹}KT¸šöáø¬—S»ÊìB(.ä”=³Ô÷žwò$ëù60XG¯úi,š8¿ˆêMZ«´E̤qß‘0F«å‘eŵ¹=ONå »Å~>e˜¨4©&ƒ(’zâkgzѤë úm^q[tï› ¦¸‚W2UG&"1Q±è+RHç8ýç–?çà¾]Ö®›F×4éÒúÌ +lgºÓ]¿ºŽ9^[ˆÈ¨K‘MÆ:w›ífŽ8 ½1ÁCh¸¢Š9¿\Ø ÇŒjߺݫõnQ“MÅ}1Z +ŽþØ`ÿšßóòhž4›@ü»]Ndåo£ýOÌvQË$1kŤƒQ’†üÒüÅ ‘ÈG¬ÀÇ6‘›ªwÂú€ÓÄôÍŸÿÔùc{ýñùŸ-55)}2¡›õçËMQ w²¡ê ‰Ï•X€4÷ÀÈB°,*Ò£ƒLÙêËÏÈ!ù£òÏLüÌÒ^;EΦ³i—¾¤q¼+N–ð¼ä «ŽïUåß?Có…_œ—ßœÿ^NÕ4 4Òï"±’Ö_.Ív/®-“NžK%3J±DšÄ® A³ í¿—ÿ–žXÖ¿.¦ó…ÅÔ2Ik ©qbó"ó¸Šbê8ËOB¥MU: šè_—¶º·“n<ß&³c¶3G%„×p-Ðxø?VWk§Bí$L»°ˆâ^XÖïgóL aµ62ØE-Åí¤CÕô¡IDWÓi9Pø…'ˆïÚšdò-¯™µ­zÙ,5:ÚÑŽ…o}*[Æó™`ãTWøÌujA¶¡QÒ!CŶ=×}½q[Ø¿G[YÉ%üKwyð^É ‡œL„©I£UFUdUZwÅÓQÑ<£ªùãM0ùšM +Qgu§ÛMÆ?ÒRÂÍgl×%TO7§Ô ~µZÓzoBwÛçLÙ1ƒËMŽ‘>˜Öìú‘€Þ¶­¶·IK)u€ nnßÞŽK§»0#óž/¿4<©¨ù\Z®Ÿä8b™¼Ýæ­UµŽØi’XÂ×3¤úºC «;ÃStæh‘?¦8ñ·€ÚÏ3)d ‰ÒX\°B€`Ë‘øvã\RX½ÂB9W\QÀ` RhhwîƇÊ<¹ú]~Úé/™vKoN"ÁäXoê%dæâ¼…Y~±,_˜ŸäN§ù…ä»;­kIò6o Û…Ó^Ú›…a&š"‚-:È··¦ÌE4€²)!Þ?Mësê’IÆ‘†bÀPžÅEwðÄÍ;}8[åív÷H¸·¶ÖoÞ×NšK{‘£zαH’†!ý+ MCr8ƒÊ‡lŒy3óOÌ>[óï/ùÈ+©4ÝwPM&þÊѪßß!årÿZ³G’À»[Å /^?H2É^T\^ÒêæÞÒîÚ Ó´ÍÖ- J«rª¼•S¾çåY¦Xž‘–9 +™#…bµ¡#¡¥M0~±yú?R·Ñ5‹èõm7Nžöky¬Ì¬¾œÌ¥â†ÞîÜ-¹$rþíiö·Yw"™áI–t™RTä€?iC…`]À8ØUŽî[»hí®ƒM¶×ëi”sÛ¹* `Z*¤26ɱxœîžRo2>“§ùŸÊºü—mÌÖ÷Z]›[xn,½X@­i"1##ÇÆEPÊiU<™Ķw‰qa+#Dü ˜€¬(v'rʸžëZ½Ì·zÖ¡5Ûß„™/Dr}aã™OUË8Œ°ª"µŒâó‘ÞWò¾ºž¥çÝ7VóžiŽãP–->ÒXu-7L·‰®¦ÿHŽé¸µ$æ"oIEø—— +ÝÜw‚è›Æ-<Á%gv [ÖQ fbOPÕß-‹1,ƤîO\-»Ñ­´ýEš6‹ÑP¢d‘½E„OÀß»!¥Ž5ã°=åÿ2Î&ùWòÂïËš‘^i–šn­b÷ùkY·}FÛI·¸³DŽzFÒþ˜™ךѣHÑÜzb0Wgªºž¬jHÚ»ÔÓ èÊÇÜk7vzLvzmÔ›Þs\ÇÄB«(eVø¢âX¡/AZç¨ç£ÒõÿȨuÿ8]êºRÝÉ=ç™®/nBÞI¨Ç4°Ëz×ш^ŒŠ#J¢˜ãøƒr›µXÐí° †Ù²;&šgˆÜ´­#ÛÇpzï¶N?'8(5دnÿ'4›M?Nº¸*5KM<ÚG8$ÈáÚ8ÞRÒ5jÕÜæ$fŠJá±ßñÍ…ò¦ÜBцý)QãÔøgGO0jÏv£ué‰ñ¤í0FéEæ«á¾Ã3K#P3“N•$æÄiµ –iš¬E®f•,«°¡åa¶¨z’\O­(`¡÷!Í‹:Y‹dhå‘® >¤m„QÚŽ“ÿ0YxXÈðêܼì¼a•Š0¢”E»÷­rHßTÔ!…-µ+Û™Ÿ—©Èï èGÅß½FlMäy”„±ñ>ØmIMFÎûW±¶»ÔlDh¯mýðd—«×!uŦCêFÿhÕøT("œi@jse9'‹äHß­E6× ãÔ&EdèU”ÕÌd‚ÃÏW–Ié™ÒS±CÔíâ„u ñ;m›¥åf’öB‹:éF ˆÄÇe ¥ª~ÉßïÁBø2šÍy®ÈÜZô¥;u9;‡Ï’K¢O©MåÛ?¬C ºú¬¨ÎŠ[‡ð¨¯O¶jï_áŸÿÕù¬ÛÛÉ©^6&Xasɹ•ø¨wîÏ>ÎvÿÎ(yòßS“ο““8ÓKªyu˜Ìmóf&•Ì… 1Jõ­61|áŒ>a»ƒN,aÊ ¡ª’P_ùU…GîÔ¿Ä:mœ‚çBò¿å§—õ1y—Ìv÷þn¿†èy“X¾ÓÞØÝiþ”×&Þ;{eXáå(rª))W«µ0+Bœc+]ø«7(K 齟•HÊÁ·^¬m6¡$(óGõÅx¦†iƒÜ²²µ"e<Œg‰FbGRµé'Ó<å©ê—Ú/æëÑÁw¨Á§ßÛép»É+OsR+þì$7¥$lÜvb~.ŠÛ@Öó$²°¤\%á§#²ÉAû&?dš¹ºaC>Öê{k»qõrÈ’¤né(b¡g×j)×¾{kDÖ_Í^W°Ö¯,L-u2Û8.ëʨxÑkNû¶zi¯¼÷ä»]ZòßÔõã‘ÁUÞVV>qÉIun$R›t®l•Ëç[MRÒÖÂIf³ô­¦yKJ÷‹w|ÑÈ‹9:ü +’ ~<Ìÿ”:ÿ§i2ÏªÛ [›}Bh®&¶&ý¢ôÖ{ˆ.'3/ {¹íË—ù›ËšËK-´SÎÐéªCr]®#¡ÌS²´<‚€(Z€m±Ë-U ½¿|Œ¾·&“4 ¢¬šuÌp›{»˜n¤ç#ònd4|(‘ðzuÈ7”ü¡>©å¨gÑu6òìšr‹;»)!YäGV,÷%æXçE5þí\ÇMÔïL‡ÚÏ­¡’Öi-åpc’Œ~Æ©ª2mÐAñöÊͤͤ%Íäš…ºO¨ÑZiÑ"weQ*ð,Ĩ€ÜîL䟘zF‘å­wWòή–š”73C¥¬² ©s4M~ <¡BdT*èÊxû¡ë½Ä¨üfHËÆ•,á€qßc¾l¸ìâ«=­übâ%?Y¬h® QÝêH*ˆÁiË•+H·–ÿ!ÿ#<«æ Ì_&_ÿIÓã¶Õ$I®M¸–èzsÏÆáD¾­ÃEˆ‘x2{2IH­\ÌqP®ÄkßÃ6 u‚ÛÝ<Žc£ZIJÒ8Èf-T¡­kÔôàÍCòÓósó¶] Ëš7”¢ó Œw6×6úÝÆ¡nšN‘¤¯¦[9­«7¬¬ÜQ’ªwRû#KÒu-^V‡N‰¥t£­K1tÍ…“N&#`¡A쵩ñ +ç²(ÿ&ìÿ%ü±såÄwQê-+›;4´Dœ(S‘%wîvÅæÓ.t“$:³u}CN»v©úsb\˜€µÛ°ÿ?žYhvú-åÖ­,ímÄ7«4‚ˆ!MÉ;‘AMÿ¦ŠÖh×ÖäbV¤R¨v'®ÿ,ØðJŸŽŒW $Lˆ6»£ùŠÊkÏ'9[ö‘Òí-ä‡ÕšW&I¢Y’0Á¾Ðp +·QQš¬æ›–=§_)›YÁw©3¤$*FÜJÕ+T/&ãR@ö¼Ò<‡ùs¤ÎƒK±ÓṞ –êåãõÎÐB¼å‘Ì’¯"7Ä: w ËNd/ JŠ‚NôìvúsdÃGü²ó£¨Ç¡XijëoÎH4å–ÞCéG¹gfc^ŸˆÚ¯y_þrói®|— X^~^_ÆבêBßôv¦^Ýmâ¹·’+ø®‚E#lœ +S÷„R¡ðÂßËzÅÕì:u¹ººš1.!„œ¹ ¿6k~Vó?åÖ¶0µ¿9ù/Íúy¦âÂ}¬-- ŠïOÑ ´x¯n k—’h•%P ;q*."‰$I\Ȩ9FJ2ñR‘N$TÛTÐPõÊ •"µ§Å¸"¼2w©±§+è, +c…¤ˆÒ5ªvßjm‘ŸÉÊmrúO/kš·›$ó—aŽÞëÈ‘êzlvqZØ4L¡ímÙc0¡ˆ€¨ð•†3SÍB33[v©,MjO¾7 .„ó—º5øA&…¹*j>üÿÎpëÉåßùÅ¿6i¶7 k}}¼I#ʆö¬R <¡b ýs/ÚW~‡¦lwy1¹-ž/F +4$têvÎÓù¢Ø럕¾[×5ÿ/~ƒÕ§Ó-¤¸Óç³Z¿¤BE~úWÄefÀÒ4ò¬8“û_fµñ'l›Gå?+Å<úÅË^q,Á^Œ‘ý¥U­iL veƒ¸§ºuë¿á›Ñp 3 +Ò´þñÃ+Q¸õd[]6IàŠŠ—$Q–>Â’)ß 4½j÷NV’Ð1ER*ïð©Ûq°¡ùfÇÉ Ì®hèqaÖ§ ¥GC]òîüÓ4©MH•øÏÀ,ÈŒ$Øøj(jzxáÂùÓÍ7±Ÿ©ÍPh·HcI”S`jêzøö¶#\ÚD¢ö{ùd¬—1â¬*±¡j’k¿é„º†™|—Iy/9›â•Aäõ=*¹³`ˆ,.^ôJHáЇ'â^ãzâkeyqt%œlÅCsmÈPV§¶l³M¨kã_4»˜«b­ñP@שíL»´¸ff‚B ©Xã Žµ#¯¾lÌ +š£À×[ˆÄ²K#z¥ÜŽN ~šxS¸®x%yQ¨à2’øzq›*‡°Ãk]2H}Z‘ÐQPk¸Ûû2Icågº%d©ú“4Ô®ý*¤×¡ð̓­ôjè]{¤ú—v6&.n#^B•f ~¢ékõuaëH>-· –tæдk/&&‹¥¿ÔQšn1;!”Í”¿ åMóMH:çÿÖùn’It/ +P³Q¤ †*u 4Þµ;vÉ?üü7òÉî? 5Ûï&Ù‹ VÞæ oÍQZ4²¥ÅºFÑܪ—©…•Ï»-{œùçlæ×î>¨… +±YªÕ^`šñ¨…såVn¹ò õÂFë·LØ{å¿0êž\¼²Õ4Ùä„ÚË2»ð¥ä^Œ¢‡»ÆOM†Ùõãþ}ç¯þAùƒËVÉõï*ùŒ^Í +ª¸6šªÆ´§s ž2mä}vïF†ÓS³”£i7fâa,QËoé΂JxÕ…E*+Û|VÚê{I}h‹QÓpq‘J0¡nM¼ÓÝþcê÷7½ž¹k õ{VÝX®a‰›à-IGañr Õ­NvÎ"kÿ_™nµþ_Ô­ÛN¸·7`½Ä7¶éf«*EÝœ(‘yxõÄ0¢±·ó~¥új–*¬/P©W…ã@.Ç“!!îIVoµ\_W´·²¿’ÞÖò;ø‚Æés`­ÍèCªžK^-·Ú¯\„éÖ~µÓÙ_ÿv²Æ×·U¬ª’(••IÞ¦¿Êw¥sȇH²üÈü΋ÉÉ4PhqI¶³æiº<1M<ÓèV¯,‰Ö¤]¤Uo„ª¡lŒ#½Ü¬Jswf‘ž§$nYv©©®ÊÔfŠá¾§§Ç ´v¼QäÆÆIãJ<«#QÊÈTƒáôòKò‹Ëÿ“þY±Ó´Ë`³Åkik¦\Ç P[CZÌÕ5hËWß= ùoåÍ/È‘C«5­ÄÚåÄ~­Åã’C*‚Ñr2ïMÁ¨9°šVgUwpìÄ–ëÈò‰ýù=º½jòQÈ«ÜÿµŠj~d’öòKç£É8àÓ,ŒepãÕiØæÇß\ÃurÓÁÛ! +(ÎêP¤ƒ!fÜŠõÂq?LBÖёŇÇŒÔp7 *AÛ®y¦æ8þ¯eP”ê³Hò+…ìšòëS˜ïÚ˜…Mj3›\ù{ÈéÚëV ZÉëÛ\ÜÌá=U? d-Fý’h{Œ€Íc¢þ¯q¶™yšRÆ"ô¦õzV¾&žÙ°ËF»Ž-NÛë6æþeŽ[R¼‹«|%R†¼¨~¹ó—ä—µÍR-oɲiZ­ü¢MRÒæ(î´ýYLol$uw‹šá<‘€eSܼyoM¸š8­®”Ë àbyX82íÄw9±}wQ#Wld˜A6öëuÇ*D ÇÁÑKBíÔœ‘é?óÞAÔ8Ÿ1Y»ÝÚDöeÿH_–̆?FœÐ)àÅKp Çl0·òE¤³Ï\,nÀqqõyQN-Y”ø×|Ç®ÁndŠY¶¤ah (©f£OÐ)ùÏùóù9ä'RÑu_Í+/'jT \XAéMxÒÍÁ£ ogvU!¸G½­ðàgZÓa²“LÓõi,Ö D±ÛÅËÕz‚£š•R»Wç›g%3J-i@;ûÎy3UÕ"òåŒK5åÝ¥ÜQÍëjþ¢_–r,ñÈŒ’~Ïo Ž‹mV(þ®ŠÑ¤æ3 •ƒ3 ƒO„V§¯ß›…Õª„ƒÐS®û`ýwU·‡L¹¾×.aµÓ,¦½žy+kuŒg¸•Ê…P7<)Ž–Þæò‘Ï"$PHí²# +ý£C×·à3d»Ê_—Z÷˜’MNÚÉîìm"’âV„z‘“ ff‰Šºš…¸B]T¹Pd5ÝcÎÖ¾cŸòŽ8õ«3O–[?0ˆÖçJ]Q­ÚâÞÔ"H“Hxð‘Ù‡>H´ÍBP÷öZÙ•.ö DBüy8R ÅÞ˜ïJNN'ƒ©±* QƒË_”ÞZ²òÄzßæ}Ä Þ¥o4V6wÜYIjöò$•d :­ene¤}%±O&þ@ù<ù/Pºÿœ¶_0yïóØ/š.®Qâ2&˜ü-£´¶µgX0ôG&dì\rÉf‰å(\^ùÙ“NúÔ<,ÍÚMÉ32ÇêSœ +x+ ¤³F«a¥†™l«,šÄ¢Ì•Û$ÐÌC; 1Ž„Õ¹šr?gà`M!þiüÔ½Öü©eùoå+`ºx>®¥rÖñË}©êºHòVIc +êU_âP¼º_.ÿÎB~vÎCk:—ÿ8ßÿ8çäÿ1Ù˥ʿ^Ö%òëé­ªKhës%ì<ýH£In¢wU|A@­,Ö|Ö—ú•´»q¬DÍs;*‹«¹O"ž& q]êÊ.ÁjóZhÖÚ¬,0°šK“ +‹‰% Ô««ÈŠ9Pè¡`VšÒê[Mj -Qd‰Õ£’)•ŠÊMA]×m¿“~R~[~YÍwù/ùéo®ù‹EÑ,­®týZòÚ[;{ýjáúžŸrÒú×WR¼ìë ]ÒÖ„¼ðOoq,1´SDÌ’BÀ«£-j +‘µQ…n´r)VRC) Ž Œ—5ðøó\q!ÒËéñÜ<Ðò{”ŒJÊ"/΂6°^#o‹9½—üá‡ç ÿ–õÍ/&O¥yDŒêv~^ѧõ óÃ5Ñ彎ôI "Ñ™Bìß°më‚Ÿpt‘«ÉO@Íõdå*sgTæB§Úâ Šž‚ bŸT›ê†÷áôƒˆ·uX‚Û%yRÞ82ÆÒ÷Ë0I©j±Ïay%ª\èí"F=e–EÔ 9,ñ2r£"š‘Ö€á_å‡åϘ?ç<·ç?ZjöZæ Þœ–þVV»Óy¦žîwkc{*¼–òAÎmœîüEcˆŒ„uÍAZÃð’â Ô‘AJî+¸¦%óú2u¬Ïa‰¦yŸò®Yô‡..c8’úÆòéH²H¯ ic™I†Hã ¾à +íJžÁ{–¶WŠKH8!pÏÍ–UcP‰@H¨´ +“„z/˜üÝåÝ+ ?R6Ðß5½Õ­µ½´Gë§8Эa@«$‘ŒÀ±!»‚_äWó;ò‹Ëº•µ_Ì›K¦1ØÏå O,ézo×uyÚd[[5Ó ®±Âf…™ Ë «(à†K»»hŒQ‚ÜÆê\ÆH ñ GÞ1îÆ âÄ1^ÄŠ€iíS‘tšÄ[;Þú¶÷á¤öqÆ•¢²ª²+©: +¼·5è*òóòëÌv>G“^üÞü¾ÔtÏÌmjåÚß\³¶Ñ´k[d‚ám ÖöwvÞ¤0• ò=»ÈFZbwI „’6o„8 š ßܬ~$V?ˆ¸T—›¼qñäv<>C'?—ß’¶6úõ¦»¯¼³¥Œ\·&I.;ÍOMX¢†d¤l‚úp¤b:…?²¡RÍ€ùØ°w«(¡H]‰#mö߶wÖ5uŽM?CÑ&Ye$]]K2„ë^JƬG^€f±¢ŠŸ›A,H‡Ö âADb rWzÒ§¾@ôŸÉË;©u{¿/!ÓÒæËQÔ_VžWY$3Ãõ‹Ë§yY‘Ñ[2Â)CLÙ±(¢F•ŠÀa +C,³Sö¨üÎJ?6?>ü›ùSä÷Ôüå¨[_=ר"ÑtI’öåâQ½ÐQw%v¯†jt¦äöÍ‚-áš6±¥bVæ$u¬¤6ëU§^‡âá¿ÍÿùÈ¿ùÈ_Î/3i¾cü§ƒXò×åö‘$i©©é÷¶vZÜÖíÉD·6°:p•ì<ÊœMø¯Œ²ÈClTò¡ëâ3`«MëP·¸»·–ôJ$Ö¡O%Š`Õœ(B +!P‚XÇ®\>PÿœËóµÿšï?;<³§µ«Eú|ÚŠ¥½½´‘,ž²„´–41–àI¨a±;Uè°z 1ãð2§'›s j#aA\Ø¢Ž+UžÆ~k媊ۑXÏÛaCñ +m·ŽÐ1ÿÎ;yÊ~JÿùCÎ׺^½¦$ÇÌ·]Ü›]`jsÒ94öE‰äªH}e¦ëÄ€K‰ VB¢ŒFà +Šxw͉µ“Z½Ä×VæT“‡Ô‘%:€~0á8¦í]úaÏ–ÿç-1ÿ%EïøßóŠë̺Ɵ<ö–ÞZÒ4È.bœè÷W·¶Ð·#lgSˆe኱µÌ2]K7"5 … Ï}«½6#,Zp(‘DJ >£³qi>"Fܘ.ÛwñÉ$Ÿóõ?1ˬi±Ç>¢4«N&ñÞÇN{»ª7"¬#h£]¾­:W.IõŠ .Âü*9šì?³6ZÛ較°œ‚(–‹ÄòÚŒA¨¦ÝßÏÛfÚKc¡ÞÊä{nßR·Aɉ¢J}rÔZ Õ|ObÅ1«‰(êkJ7-º¶lX]ZÄÚZG’\·%§ïä÷¥Àd_ÿŸ´þ{\[ü¥ ¶(’EY¤µ·»ÜŸ€È¬: #=£ ´¿2ùƒCRšmÊÄOYQ7¤Ž…Á͆6žh¾Ó®…Ü77-11Z»¦à†RbxßzÃ| üÌÿŸyÏófÑžnƒP/ÖOб߈ xLe9ÖÉ-%˜VŒ Ì´8´þmóeëD÷ÚÄ×&¬q4ò*W‰'ƒ-*6úsTÐ +ì: ']JS#N÷r Ò6,A"µ~`¾yÄ¢ó¿å…ß™§ó<ï­ÛÃbQ-¢Yn&k¨äˆÛ2°7bH‚+(¹<‡Á]ðª;€`•Ív§ÿœ²óž¥¡êv¥}—´ÆÒ5Ýecº.u.Vw:{ÛF­ÁåNs¡Ó‹žhÃ>WÝÎn®e¸"ž£ ¯Oߟ*°¡éP†|mjrwÔbÓü³ùí$É4ë \¸Z£K3˜ÛQQ‚ÄòwÉpŸá½fÒY +£5´ÌªÌøs@8‚äV5þQò;±2ÏÌšt>Z}QÑ-žVIÓWeKÅ‘YK±c ãAðrÐõ¯¯uÍgEóM¦­ù')´9ÚO§X]ÀIq¤ÜßÆíëµÂÌY”±±, +Â"Þ“|&”ï3ê¾kò…ÕûEËLDH.EHáøHª$aGâG.§¥sMO‡¾&º-ÓZ5ò¼f!YÄ‹Õˆ +(HÜøu '¶üËÿœÃÿœsü±Ð%×µO4ÛjpÛͤñé3[ݼs]Uh%PX)æꤲ§Æ@]òAæ/Ì¿Ë‹KHÅ¥¬×W†$0«R6-Ȳ1~ÖÄ Ø”zuÄÎÑÃÆBµåFêK†›u®~KÎ`Î=ÿÎ@k7^]ò~¼-u˜¤–84«ó½ÜÂKÉêè“ÉXŠd{Eóg•üÑ=­Äߣ€ln'e‡PvrÅ‘ Góo›A#îù'üèÑu›//M¬ép¤æ$&òÝôÚ ¬L‚ƒfý½ú—~kùKQÓìãÕ^1uS2(¤l¤}±þWŽl|D«+ ŠÁ‡\ù»ÿ9ù½ùÝäíN;¿Ê»‹™4ýR²–ÎUÖÚfbŒ(I—’åRAE¯)V•GÂX¾Õê:Ø6iDág¹&n4“T¨Ú£8·äçGüåïç6—åó +þËY½{¨L^j¿¿ŸJIE´Ä‹ˆ%@éü ñÃK©Äé(¹hšœ^RkE"•&‡zc›µÄËðšÙi²ïØg®<µÿ8Gùù‹¬¯ææ±ç­CΠÒmoÍ„ÃP»BÒæ(ÂqY…C° Zá…¦‚šÔ÷³;X@Êâe3°§_³»ûæÃO/èÖ·³¬š’HÃÄ©§Û·w^«ð Qþ"{ñ?Ã=KùùÝåŸÊ +6¸±¹Öõ‹©ÇLòåª0Ôu å¤qEia¹SËÓ$®è§jŒ:ݤ cj.ĪVâe)8»ñ_Bµ ±êÊwíÓ-xò"»€hHùïV/È1I ” g²X¾¡ìï럮J•#{{míâ!§%½5Þ®´*¾qó¯üâoçÇæÚ_ž,%Qòî«£ë~vòóëzÓMúCQ¹·{ÔŠÎâ'³OªÛ9Yæe’¬’V‹TF&ë×vòΖ²Å,“4w¯¨“Å•J øòv¯^ãæÞN’:qß‹lH§"@;Ð.äô®-çÿ̨#ó5Ö‘ùSei¥ÜÌm¬f¿òäwq-ÕÝ»cdq/)ãÅ‘VJ5!›‘¿çüå'šWþrËògþqÇO°·ÔüÉú:ÇZó]Ý•Å“\ËHªcšÞEYŽD‘xĦ› åkºävº½Í¿—ÞÈ)XDºg¬PÊ´æÖæY\…vP9Š1PšKgë”n O8ÍÃ4‚»o±§†øÿÌ^e‹ÍZ®aù´å’ÜXÚßO4¼¹Ü›£3ÈÊüØì¬~»žÛæÍsóKòÓóŸòûBµ‚ÛWÒo`ú“êSI{®Þ]ˆéq"Ekj¦D„ñyÞFZFÕ@Ýu×uÛ=kNM>Ò+ˈA¬ÖÐ\Ë#ЉCÇb gmör)RH®·¹n hbIãh’@ü«Z©SÈÔí]úx [YÖàü¾ó&—¬ù^9'’âVºÓãÖn :D$híìÓêµ2©£T)Ed«ùí?3¿+|Çå-#òÙϘ&×õ¥šïÌ—ºÌñf”mÆÙP(‘@*Ád1Ñ>Tî5ôO0Újž^cz -•¾ ‰ IgŒ HÿuöÚ«CUe£(+»Òãô}äwV4%wD™RjART‚NÝÅ6 ¥ÔtvÓ"³¹’æV†:Ef8m–Iäâ±±,@POžï@0"ÉŒ¤¡š€úaHU hìkÓûpÇPÑ4Õµm* ;JõRôÙÛ_Í.¦×ÙÍË¢ò¬fV*«ê Hþ }>/Ë5–‘æ¬yVÒ<¸Ëq¬\jz>©m6 5 K8£·Ô^á9Ç9„få&äÑ2°^hÉô‹vY­h-£µ˜…¹vr$†U.’#²ª¸Ü| ¶îžŽááY¢± -Ž§pÃ’†¡>òÈw˜µý+DÓít9âÛPòûȃL{Hà‚[^®×LÎüm•ZR”Jç'üÄüâòç•®4ÈÏɹ×2´ë—´Ó¬/ÚÊM&+¸%K‹ûíkêC8ød.Y–­:T2µKobH¢ŽÒbé5¨u–3ŒT¹ oF&‡«{vÄä&ˆ‡b€©B‘ñ½7=zŸ–s&¾Ô'›ëfWi!âVJŸÝ…øV‡°t&~W韗V->š./5eEŠïÍ7γ뗋ÌñÝqVà…Ê¢ ŠB€ÿHÖeå! Ž6 ƒPAþÌL5Mdbž‰N¿,’è:U¾­êÁ£i‹ªjÖëëL/ÜË")øA¨ EHÚ¾ø#KÓ5 ^sk¦Y½äÁK²Æ®ì´­µNl°!¦ÍðIƪ+áŠÂÞe¶ÖF™æ_/½­äv±µ„ÐOΞežIcDø’)–E( JŽK¹=¹´¹µº{9â)4lQ£ ƒÈt;æÁPRDpÛzœºÈõ¿æwo,Ôñ %õ²BÍQÄc v©8E$¯ÚZíCß`O†V\º^£f+¨e·š(Òy-æÓ÷n¡«º7*7¦DµùÀ wÌW?àí@ýsO†KųÔô¯«I=¸£!ôù¤'’š¯îéN„íŠ|qrIC+”¨`ت k›ÒxâŠyÀE”ƒup`YM(@"zç¾ÿœfó?•®9yÑ­ ³”©I ñ“ 1HÞk_Lñ¡Û•kØãCKY)@wSN¢¤Wï°H‹NÇ' Ì9#¯Æ¨xòZÒ ’)µOnø;Tÿœvòi²Ôu-ÎV­Ÿ,ñ$ÞÙ!º[p¬Æ¹’ÖFcÍB(ˆ–5 Û[¤´V‘ˆ¥y¸êh8…³\ÚGsCzÒÃyÚ„qæ—ªü>+Zí@7ÁÖÿóŽ¿—ñè&©w¯G«‹qqõ¬âqðÌQÑ–%–ep¢¼8u+R¨§ŠÉ Ú˜fM’2¦¬Õ£,ß ¶ÍŒ+j¶œWOcÍ+É$cI0åTvX1Ûb+‘xô äÑ%Òå”–Ú|ª±›©â¾]jä$Õ2[’U‰!™DM@§p½-×O4…¸º…7mÌ¥D†¬´EH ¡äkЊæÏÿÐù§j°®‹pÒª–1:¨Ø€B“Ó}úoÚ˜yùãouæ_ÉOÌÆ×ÖXÚYë.–§‹ÇbÖ¶òK"̵Wˆ¤fªzÖƒ¾|ªÏ•Yn¹ò=ˆ&£l·ÜƒÜŠŸžlow<Or:Cp¡n#S@áHeä;€À÷GüúWÏi?œÞmü¾â6èS4QshËÝéÒ,Ñ"´!CZSYݽ¼wVê %Ô^›¯*…–@vëB£5Oß×+¼‘ê*/Á×á$Š¶ç=¡}§yY2<§ªyŠ¯-JšÕ´ió˜›ë/¥m¤W²RN5!¿˜×Ç°’(¯­åŸû¤‘JŠü!;lÙ•ôöµS8•®ŒÍù.#ŽÄT·"Iߧߞİմëå>„æâH¤Á/L…‰÷ßq×Ëþo°¿ŠÒ[;É®šÒPIŠ'E+]j9-B6fËŠú彺@áå*VGõÁjOŽÆ™üÿò?–2?./<§æÏ+'™lï´vRˆC8·—Ò™ãà "ŽJ[¸uù‘uoªyF[›2Î˨©’F·r²Qƒ³ +Ð +u'6z[_Ë›/4h~O¿Ñ妛 0_&ŸiP +È“EsjöÃë-ŒÅ*Ÿ…š¬œG<þßó¾oÿœ·òÏäMß” ×µo/iÑZö K)=†´ôd¶¹¶Ô­š+ÙQÛ¥øž0íV<~Kè:ŠXÜ[?ÖÕÚ;x +FhÝ$ŽX’5o\;ÑY(¤¨,‡ñˆµžÞCx$‰T2º4| .OŠPÔv†jžLóžÂm.е *Iì¥q#YL(dVV‘—÷Ž‘JKÔ/ÂA S¼Áÿ8¥äÛ´²>_³ÿ•sæý§‡GÔ´?SJÔ–2XE1ÊÌÒz÷ç–ªåIGàÈXªK »E™t!–Íœ® –òÂYØ4³,h……GUøAäň<Ã3A*4RFÆ9ÁRZÕ¥ÏüÃòõÿ—õy-?1´EÒ®RÜÛÛ_iqZÁq,_'·UŽ6BH¸†û_~ߘ?ó˜¿Íq¢ùÛ˱~où(ÛÏmaæ+ha´Ô\Ä¥"7¯p±ŠÄA•Sâå̳Tr–:ùËÒÞi~n°XK[¡Ónàõ-¢E]aª*€ŽQ¿ä¶-¨Y_ÙOéê6ío!(„ÇQ@R*;áåÊÝOiy«ÞA è÷­Ð¿¼ž)dh:Um¡a)$U¸Ó‘jšÄ*¬üÁäÏÌÏÌ͈|™ù}æ Õ†æ[û1jQÎ$AêÛZiÜY +¤}> …Œ¯ñ‡Cäe¼‰R W"CqtB¤PJ§â¡ô݈¦ÜÔt©ÛÄ‚IÄaˆÚ´POS@NÞÃ[ù/Éê1ÙYêÑÞÛ\¼––·ÍX=YÕ¨²$7/nR2 K9 "vÎÏcæùÇ}SUµ¶Ô/ ¿Ôµk¹­ôû”Ò¦Ñî®LN£×gh`D‡…Czͽ)ÈòëJ‚I h¯#–2Ï ʼÊR9L/Å€zõ;fuUvPÁÀ$ZÐÓ¸­ ¾t½7ò›OòÿåË]ß®‘ôÓ[A¨ßj‘º:­Ô‘ÞÖòàKm"ñ’ŒaŠ¨§“¸ê:Ï“üùSùMù hÚeÖ›omÖ&Òöê ®§õ5;¸dFµ’Ý#p ]¨¬q…E`Î@ ’m;EºÒ¼«urÚu‰™ž8.¯¯¬‘É#Ö5¶–G’Õù!¸@To^øe ´«¢Í'Õaø¤UúäÌË(§¤\œ#} ZŠX +nÃmgM¶ü—¼’MQ´…Ô½9. ­m=ÔWS•ÒK6†æ+¤ø•c‚-y:Ñi’ƒ‡„;¢!yF¨ 3¢qÓÚÉäY=[è,Má3HÆæ#ÃÔ‰ª¯iè´s§"AW~Iðï˜ÀÚóGrÌÊ9#9”.Ôud1”ˆ +);P×ß9˜¿4¼Ïçd¶òœ1[ùKYäy-¬`–8‘ßÕ–eC4ŒªŒÅ©R}ÎxGó3óþrþr×Í~GëVQþ^ykE¾š3Øè âH–»„¾’c—+r±FX4i𴦿øDgYóv¡¯­BæYDÅ–ÊÐEc’L…š‚´Ý‰ñÂß2kZUµ¤ ¨Å5Ìv¢QqclæAzf +É,Ò”Ü,A½HƒP*Ûœ«ëóZ]Ï’¿&üÃweå=2Ñþ¿ç¯/Z­´²yŠ+µÃ.¥¨KëÎÂ(£y.­Ð‰Tô6lLÐzñGÅ8$¯Âe,·6;Pt§^¸–Ao¯¤¾”HꀫZ D’Ìw'ÇÛlê¿“_‘¾Eü–ÒýM¶]Vkk{}OYôU¯¯ÞÕæ”T³3ÎIÝ›Ã`6ÖÀÚ–ŸRÊƒà‰ªÅËlynGÛŽIT2FÄûJ+ñk¸ïã’ÝNÏDÔÖ§&9­’B/é6…—‰a,ªÁjôëÓN–—Rs +帱••€Uâ6?§n•ÍŠÇjYO:«P•¨ +ž™ Ó?ã6¼Tg¹4“§© +ÆÑH*%e«-@8†Ý|©ùÃäO"~Nùr×L¼Ëæ‘k$í¦¤HÒÜ´)ëK°!*  $ŽD…*KÄ/bÑÜOĉk$qn@9BM UOÝàk›¤³¬—£Éµ=W +XDŒüG-¨*ÆŸ3¯5 sÉÓùçGát¾[µHõûiÄ6ZÛÁ*±pÇÔyêhk¸\· öîÞ"”¡¡`©êq=v¦ôÜûæÏÿÑùû¥¡‰âbuÓˆqþ#:æW–µFüŒüß—ÌøsW¾´xpYFÊÒÑP‘Pàü[ž½Ž|ª¦ô9ò« +›­3ã9Ëzr lÃ6/§}LÞºŠ»Ú—ºÄÊ’qïÅ™Xôg^ÿœHüÙòGþr+É_™3Ú}z6ê[yíýQbÔ-å±væRJpYË}“ZSß²DÜ‘¸÷¥{›Ç$1Db–Ý%*Ä’àŽJhÇ«»x×>¡þhyOónmù›åÒú­¾¦#‚o,1ÇÜOsit§UVªž$|B¹R;HÜßrh6tè3`&PT5 H5‡õgcÿœeü×¾ó_—ïtk›8ÛXÒýoÓj­äaUK— ‰ïß%~Fó%挷öð­ÌmÉ絑Š,ÈW‰R„tþÌØ´Ž9Ç/îÝWîÕHU©'‹V„‘ã¿Ï$šæo9þWy¶o,ÄÖú™°¾°†Æ[v¡™Ð´e~²ªŽ +ž$Š©;rØᾦšžµ Ëætêþ’}^kXù +Fì$B^JW”uµ¸ÈÍv&èvÚN—¤ª]Üÿ¹ [EFnŠ0ÐÄ—¡ŠH½b©ZñaÈ|q­þ@þUÊžHüºòöŸçU–}J?'XêBÂóQ¸·‹–±$ÄÜ$k~ÓI`aÃÓ<o¼»¡°´ŠF¸¾’(î'µ€–#*zŠŸ TŽ?$å@ÿ☽ʹp-¹IÖgš?RTJ“`(OjÒ´;‚1ÚrÝk–Sé:w– ¾õ¦Š2‹‹ÛÍ8B‘ŸUËR—©RÀ)ÙÿddÏòsQó}Ç–åçåö™¢G{jðiú½¯§ë^èÚ[ZÊ5+xµp­,sÃ|’ÉÍBæE.ÎxãVïô•¥Õ̺Q»?ºí¥ä…” +ƒñn†‡ýZŠöÄAøXq©?µ½Fé¾eºòÍŽ™¥ÝGs-µïד̖Vw— $3Òwqiw$*8ú‰ððø7áB¬óɽcJÔ+t[¹4ùõA¥JãÏ0éúã4gVÒîÐË{ ϨFd2³úBA¦ÜJ”e`w£y²çÊÍkk4÷cN¼‚—6);ÛT Z9S”O#­}6@Yk— aÚ~¡>›$|¥”Ú\SëvðNb2ÅÈ«¡+Ê„­Għ¯L"´óÅ”Kæ 4ë»Þi&¹Óm¤ŠYæ•$}íÚ{BI¦Ì’†E¥~5À>\üÛóW˜`Ôí¼ç«[~_\êRß]è^U³²ò´Nÿè²Ë-Œ…ÄŽ‚A:ƒ,#YÕØ`-?\²Óá¿ŽÅ-lêKÄ— 4÷ÄIšÁÄŠ@e‘xÔUxÔâ1ÈŒ³,n°*†x¹ò20b§$]ê?šƒ¯Jä‹Pò#YÃ¥yòâËJµòÕ¸‘n$6ó>š÷\ž(Þ 9%¸šGHÇ2¿RŒGS''ò¦ÃʾiÑ<|Ù}§ÙùcÊúmô—º%¾žÍqes} +´‘Ê–Ëõ—XØï8¸ûUP¬†µ+ÜEéy‚H-lt‹ÐÆS¤¢ßÕgeŽ3JÌ@C Óe®ôÙ’5¿o«ÅÿqÅ:KéóäU +«¼€íO‹~•ÈÄ›zÖ€oÊùDY-›ô¢­©8ç‘aWóWಓêðFäBÅUÏ%oÏ]só#Ëö»ù§Þ~T^鶶:F¥«ÝZi²ÙĶzœcfg•'Háž`¾„e½I…yJZù“PÒ4ÂüÇ£*ñ;£0bJòÙ¶?pÀ±ÜI .TìI ¨"´¡úr¼½å Ío©j_™cŸË·B9ç¾}:âò]B)_fE,J¨ ôøND|¡ÿ8gùç©^ÿœ¢ý4þdÒ„×wÞhÿIY¼Ýi¨905Ç ¦15¼•©©ä0:ÑÈ—Ñ,Ϋ‘USÔŠ¨ÁžoÓ#òü: þj½}IßL‚m#X†d½‰g^l°ú~¢‘@"N*¦¥ 4?ó“þg±ÿœwüªò¯›|å¬\ëv¾_¶òÏ•üá ­ä¿¦L2]%Ã[ðFnMm·9Äeh=6nX SÓ¦‚hPsq$ð$ö×(þª²côÉV`Bºñ6Ôéà +Uuâd$òPUªÝ?…2Cä4höñGå;³{»4K,jW/}dóÜ_F^è=ųؖ›â)I^&0±“SÊOÿ8íye¨ipþ^ùxå]'O·¼ò®§«­ïÖ5;vÚfÔYÔÚŽF‘ÔˆšP!+†^\¿bcÒ¬#µžöC¦¹ymZWb]ƒ:45pxñ,û¢Z¸*Öfª@‹´u’'jÆÁŠÔŽ`¡$v©ê6뻵ï1kz/˜ltË#=‡™4™5+XÌs ›•Ôi£ž;鑃„-À媧Š1Œ3&óF•ç_/]EvÚÞ±¦êZÅž‘kcmi¦_²jàIéKq6¢ìoܳH¦>IêX έ«iZ¼Œ MÄWrÍ‘® Ê‘)‘.±$9Ýê{€§Óê}ôÞ¨h À™*àÈ­„€žT'®àûäLóe¦—§éÚý¾»vºÍ©—žšÖÖì‹xÕn$2Î"K3G¶ëĆ®qï-~wê?•¾\òìžwÔu(2ïÕ®,t–Ñlíô+‹øD°[ÝGÛ±·³‡Õgdõ[ýöÜÛEvm–FÚñã¼Ux•ªªñâ@bÌ~ ǪÛ‚¤òÜ—Ïõ;ýÇËÏ¥Ocõ­~{‰.®oZæu6ÈÔ_BH,o eæ1¥HeÛiäçüà÷åþƒù}k¯~oùnß]ó–·¬Iæ{¦È].âä!RCnRÒ_EƒT„àI4Œ +PÊ .Ñ,UïÛÔ¹½5†$±dBÊÅOÈ7æÞ ÍðpèyWc]€ð¥2%b³<Åb•¡,ÎEä~Aà ¡éž‘Ò¾© +ZùjÅE¤b--ÇâÓT¢€;‡)æbk_.FÆ8-Û€VwXÀj«=Ë +ýÍr±{cÂäMj&ø—g1˜˜«P ’8Ѽ~œˆ~`~ihÿ—V·òêzl·U%Ž ÆJ3*–^!€'±4© ßjžj±!ôÙtå4aÝÙ‘+WñS±jŠ§,V½ûo‚-¬,â“ÔÔÃþì…šÑk´¡‹pp8Óâ¨þ£Ížgÿœ‹ó™<Íi¢Å§~¸²•’&´Ð-Õôb)ä™…m]#6±Ä%aÄ1_µ¾Efº’áƒI@©@±ª…ù|NV6«¦Ø%«è éjW=X}pÖ£÷ýZ"Ò8~JÁ½B9ER7ÂKm5ì>kÐ펣ç ÐóÜ][%äw:dwH … ’ûŒâ¤“'EÅGõ¹[eY-¨&cê„ŽKÅjHÜkJŠ +ºŽ$SrAå½F3\òÞ¯£¬Wš¥‹éZ}ÐŒª™–Y“ºJ[—1éµT…#¸PFqÍoùÆOù˯̟:i—~oòòç‘mO*Zë:tÏm§Å!õåxðÍ5Àˆ±v Ì“@i‚dÓn¬!ŠI£hþµ M± +Vaâ7¬f€ïøÌ…B“J0¨¡j‘ôtÂií¡DXN.#E/Î`°’w¨ +ÄÔ¶äÿÈ¿ó‰ß”HÖ¢ºŸH¸Õ¤÷ÞMF_ª @M½Íº¼‰3(nñ¬a•‰*{3’8U‘Pß+/+V!@j+°¯Rj}þ’ïÌír[LØÅsõKO.¥„×K$—ÕdK{xla–yX«7ázð`*­$“S¾l¥³–úÝþ­¯,EÚR!.#EVr]5ØväwÉ6¾xò6 ºÞ«¦Ïcä›;MJMOAÓäÓФÄ&™oå{Ù#Eõ¤—Ò¶Žtý–sL|k@d(YÂHØÀÒ§èÍ™ãÓZÚª2º×7Áy‚G%l*Ócã킼‰ÿ9Ùù)ù‹ù•å?Ê/ÈrYéך½¾½%Ì2He FÒ!ž•A +‹EâÍMø–# m#¶kˆ,å…Ñe•#¸e’ŽQšœ~ÉQØî:ŠæÁ½•­´nÚ}«@²|R\«“"ñ£©êEšÚ¹+ÿœ¿ÿœuòçV˜SÓl¬üá§jãÁwG¼Óíî]á‚T/ k4¨ÁùæµôÉøv_TŠÝ-êQ´H”;ÀŸ‹àJ·?d »×TñØv|/1]¥ˆ£'2¸b®¤òÝEi߸¦yK_ÿœ)üË»òÖ»ùµçkÄÐõ•o¯'“Þ¸q§z¡}Cxg[_‚T½\{à1ˆÚDÈ"…«V¶ñëò͆Ù%ø0@Ǥ~¼qHÆ0erˆëf(¨%˜­@ñ ÈOä——43YëÖš¶¾o´-i¯¨.j>µ”Íy)Ž9ÒuY¡‡‹í!²§÷dïŠDVâH—™ŒÍZ€ªÀ +WQSAÜfÁš~›w¨Æë¦Ú™b¶’)®´™Rd`EŠG2)~'<‡%¥vð…òßå7˜¬/µÈî<›$Žƒ{e©/”/uNMÏè¨"²º¹“RŽæ5ݤfá;#(Ú2)ðÕŒO-#C8‹˜ø%E ¨²VH‘ªk¹ÜR‡m³åVqjwó9ñžâm§’Þu)$lQÑ… +²šGˆÆ‘J{æÆŽ¸ØÛ‹«R´5¦Z’¦£ß6Iõ[4¹Ó­¼Í`c6×Tµ¼¶F«ÛÜF€’ÉRUe¡d¯Ãö€û9õ‡þq«Vò_üä?ä$\/,mµ­4Üÿˆü­fmÄáåä³ÍèH ¤w3Kë«GE ÍÓ‚Œqk'¦o#€¼‹^'rGzW­Íï…ðYúÐú±Ä.å™ÖÒÖÙYÌÂGZ£"-+¸§½s¡~Fy?ócÊ^w}É7ºd e ÝÁv²[Þ]<°ûPÛÈž’£([OÈåéiy%ôK`OÖ+X‚ò,Ä +ñ$ž™±&¡rúêO5¼¿XIj’™ÍAõYªÕåöß=—c«XÙC®¿q»–?OÒi8™\ŠñÑMs°ùCÍe¡ÚùHnf´kvŽ9M$µ+éKê +ñÛâý®_~nûäÿòË\×üÑq¤þ\¥Õ¥¯%ž2æðÑ99¸@fDwN†`ËFjðfàÎGcùK¯h^b»ò—•5²òž¨'“J´··G“L–bn%Y^RäEë´²ÃÅOÇ!V¢$c"³y2ã\óÒ¼¦bµdxšåý‚(ã3VN Ä5× ^T¦ °³—S¼†Â'Š'ðI&t†0w?ŽB›<Ðâò÷”|Ý>hßyw[ŠÒ[I#”K¨ÚþëÔ­Äl +‰‹9„`h€Å¿.4 þIþgÝ46ö¯§yÛê2}u‘dÔíbú³Lê}Q!e©§â­Åw+Ñ¡Òô\Xù’ÞVÓîQeRž›³L‘yR0Ê$& 2©ñp[mõE›ç3S âxŸ‹b9uÀZǘ®î¬$Ô4K»o-ébâ8­ãÓîƒ_W€užâÚÆEŠ4䜩`ÁTk‘Ï_óή&­çÉ<·ä‹ÖŽÇGмW:„ÉjàÍ}5¸â–ÜÓ“Qòø9Ó«dÖîÜÝX\®—oÙkW‚n>§÷ˆïˆ p”‰ÝV€µr¥,PÍãvœÔ°èwQNÔÞ€Å/—–çëÚ‘¹ó ÌÉ$7,sF³Ü4”Qo4wì̬­ûØê K#t1ï)ù7òO̶7~S‡G½ó¶«¥iö~\ÔõGšOU¿‚8ÔÛ[ÞC~fGEe/ŠCr&C…RIg6¡“&«q;H—j܇¨ìJ«ÂõI¯% ¢J†b`¢iÌCP5”?NtÝNò 6v:¡¦[Øi—k}hjcS½õUô`ðS)@¯\ïBò–ÿ*|›¬yQò톓äyøò±Òu=WZÔe7$’@È­…Eõ=1ð +zHÛËÑÙÚi—ð%¬F³5ÄZŒw³•HB Gšá¨Á=Ȩ©íã`q 4~ªåIŸpVŒ¨§’ý–€ú*]ä_'Xùn]6ãÍì} ÙŸôÝ“ZH†Ð©&Å®Åá·´àx1ŒzéËzƒÀ+ñŸÊ‘§þEyËHÒÿ2ukÝVãÌsO{ù‡®ê:pµÓƦàI£Ý]jc¯ 4|˜«€êµ-Ó4;(íóX¸ ¥ 6Ñ+‰ ‘ÿ¹yƒ¬qQ·*UØW ¡»{+F†Þæâè–WŠhbÚhBª•væ2‘ I+ðš€)Xÿš›Ë—zÝÓ#°ÓôÛ‹q/èi.®åŠÂb&ie`•Õ¥TÉ&”=3Žù³JÒ?0?9ôÛm¼©«é%m®—DÓ¥›WÑí.Òd°ˆ]^Ÿ¶¸“M‚E_­BòÆäÆ@ܯqi,èöhmm¤‹‘ŸÑjrK€*Ìœ¨;ô‘™^5TTN[I<‰ÜÒ¦†›ýaæ-No2êVú–‡y³i×±K™4ójZ•Ösg [z+/ ]“âV£nxç@üÙœ~aëߤŸ_Òü‹¯ys[yno5-wM–;84«dšÞîÞàô¼w²²È p³£ c å¦Ô&kŸ­Ùè$Ë,VÒ¬% ŒO` +…‡áâ{õ¦: ©mî㽈!xdUxÒHÉSP7m¸"‡Þù›Êqj1_kšôº¤î²I}iiiÊØÍqÊ¿ ’À‘”FÒÜ'Z#R…Úç䶫ùƒ¤~di^\óÇæV«m§Ëi©?•<´eÓu ›¥˜Ot÷3¬UdUI-½>( +«s‹Ëv÷’Û¥ýѹZ¤k±‰KV  tªñZ …)»$Ë+JàU‰f +¡Ws]‚Ðì0ÞÿÎ`ý i¨¥Ý¹ÙõX´ÍX¢£8ÞU¤CW‰éRÅÉδŸœÞeüì³Ôô=7òÎûO±”Ä·¶ß™ioå¸ßÔO«Io òÜ% ¤ªË1Š·6+Z…ͳˆ,¸ #·÷3}^ 9¡"P•/ºìKrûòæ?ZQ±à¨z +×^ž9 +µÔt?/ÞÉo&¡û‘ê*¶žf¹ŸÒ—âô¤Mo/µâOZ‹þVþ\yŸÉ~tÕ¯¼Ãq¥yËíh²âtyæŽò>/$ZuŒr6¡Â)µš—*Þš;H£2š|5Û ìÿ0üߥÏ%ÆŸ¨z2ÊK$pÄ ¢ÖŠ~ Óü“·¶Ù±C5Íí«E2b/+Ý24®Á¨Š$,ÔDßj.õïÛŽùãZüÁ»ó®«æ¯<ÜýnÌpL—O†Þêæú„†¹õÉ6ñ”Æ=U'™%ù)¦¯y¬ÜK}©¹žîgi&¹by1`AðíO Ø`ÑǬ%­Œ%Ýmä’8m-â™çº2ÍÍý%eSÒˆ)Nù üù“ê’kvúmÌÐD¨óË-Ẹs2:[²ÇžšT’°öÙ˜ «ëì(E<œ–è(®ù±Öp…½†ÓQëVN—·Wîºq¹b¤0 È• *  f†uO*y²[;_9iÚ§•íëw}kç=^×KŽê^ K{‹I':¨¡æ"%Nãá®>J]Æ“GQÉIŠFôƒ/Z$R£¾l"Ô¡{mBCkè,[9XÂõx=ü÷ùm:Ýùu¼ß¤ù»Ìˆ’]BÒ5‘3ª´pG'$¹ ”`ï ì@Þ˜œÆ²¹ Ÿ…I {I¯ß›À\ȶjÉ bKÉ3ø·êÀÓœ{FÿœŽò*yÊ$þnk—¾K0K$égsÄÑÙEubvò—µ¶häC@ìË-7â¤ãB“¸ùu±[†—H–çKIã•”í$/½«ÈlÀoCÓÃ8Wæ÷üåš´/Ïß9j^LÔl5ï-jÅÖöË"iú·²ú·©êD-çuÌ­ƽŠÓµ² ô™Ç1Õ”Õ~“Z|ˆÍ#YdBŠZˆ¤²t4ã¹£|³kú¿ž?=üó}©Ã7á5äv~»}SN´„UFÙ@,|NZúpÄyÚPH,Ï6 +³¶‘áŽî6‰BIa%š~l•¸¹Ày1øEG#¸Ï@~AÎ7y‹Ë¶Ú×æW—|Éå¯1y–ÖÓü¥o¥j‹w-–­pÜ~³4j¼H…¨p¤qÃÄ´bASp7" ZfšV¹a!š%Xìè#cødzÄW}Ç\¢Ië˜èÞj’®ÚÙ^Ýi³L`³¼{y ÏŃԉ½26c½wÚ¹Æÿ7l?;õÏ>Ûy‡òs_¸Ô/ÞæVò¶¯¤èͪ@ÏgjöJMÙ·–Ò`÷ËY%øµ*¼II’úæÝ®š9e¤,¼O“¨]¶åJšeñn%èxƒB{Tà1„"GºI~ªDkÏ~› +g,üÇòò阮4{[}m~æÿQó|¶S¼–#P¸Ô BÝ3¤Q«(V`QMCzkN+¥x}4á_P×Õ¥qµ êÿ•:ì‘ê—š|—}yÞ‹{žw2ÆÑ@ŠìÉqû´F„€ë•k8›àV-@¬Äü0<… #pzøæÄ¥ŽB2…½f,f@*8k¿¾xKÎR隟äe²·ºúeÞ±a©O"£H$’)àô›‘%¨Ì:¹Cp4¨!ƒl)^¹³Oy5ÂÛÚM#4V¨Ñ[§8r,åE:Žlzç{Õîôí_ò—Aü®‘M7AÒn­â¾„ZÑk‚‹â˜“Rk^Ür™Ù Ž$ªv  Ôõ +3gÿÓù•¢Dêd´rRÀ|D…“e )×zW<ý¯ù‹KüÝÕ|“®É •­ˆk "æxMåÊjIqû™– +¡P8^G ¨'>[ëzlú>³¤]3YO5¼ª ÿÎ^ù.Ç@ü×¼óg—`X|»æÒ÷úZ¤Zˆ§B#¼…¡•U£ež­ÀôGSߪÔu¾~°¬çÆæÅbšXÕ„nËÈQ€$¸;ÒžÎÇÿ8“ù§mùOùïåY¸h4Ù×Kóõž(›O½"9 ÁH‘±Yx°"¨P8³2q®Õ­;fÁB®ÁÖ€»9µß­+ôú™æ©õ(Çwæm:èiP¨OðÍÆ›5c¿ÒŒHöÒZH^ŒÎ€|*hÄÇÆâ–ky°»G"«ìFlkÚÙ¥«Je‘®„¼}‹é”ãRÜùråË· +S¾I<ÿ9mù]ª¶¿˜É·Lð…Eôç·.#úË8p½Tò¨ã^²Cå¯0éVŒÚÜ:Ä +„|LÄ_“?Zûw͆÷÷ÚÞžÚŽ˜™ªsõ.m°‡f>¦à3!¥Ãµn™éH¼Í ê¶jž\¼·½¸ +J™ÈW~*c4ÙHØøý9Ô­/ü½¤Þjòýº]Á–K[»©Mê°ømx†¯!+ƒSðšâ«O’z‹ ¨¹UÉ`(´l ~">üå í)õ«&$¶·±ÔáôR]a#¹òª‰‰BÆT—Z´¢¹Ñÿ+<³qæ_+ÚCmm¨Â-u="ì=Å•™ƒœÉgeV† ‡“újëͪFä7z‰ªØ\ë^RkRŽ‹ìWÑÆY%CÉZj¨Ã‰=UX}¥#–RIÇšF¢’/Ì=AØÒ Ôu.•Àþh„éׯ¥Ü¥Ì7`)ÔRîÝm8H¬ÅxĄЃȚššxŸ +~yÛ~j~t~c?üãv‡m«Ûézpjq×5ûFƒP¹šÞw&-&;sèM3ZMÆ2iÍyÕÕ9;s‰ôë×Ô%ÓÞÞHï£gK«C¤ÑJ…•”§j¸ ßje\[Ïk<–·1´3BÌ“E"•tu4*Àî=p¯LÖ¥ÒnÖ{zȱ¸’*ü ®Œ®¬¬¿¨Ým\öåŸä^Ÿù-elÿ–ú}¦š®"“êWè’zŒ‹^w…j€Ö6 `(i‡vZ±å¹mµhšÞf"9L@¦¼ÅY(ÊV•V Ò$š–£U˜ÔüF¸œPé±üW,`×îÇm·ÒvÊÀ—7÷Úקq¨N¬áøM"ÇYÜ1,Ò»P+¶çvnG õ¿ÊùÄÿ/ÜêyãCÑ5-N5XËÞÚÙÞjúœ!v–@ÈÒÝ\Häó–EiÄÇ-#´ŠÜÜ}b…xp@G"ÛŸ²o›ǦÍ/¨Òl•’¢”¯íZõ¼¿ó’—Þ_´M'Éöõ=.A³†Á•`·´ãD”2@Š•PxÄ~Î\:Û[ÇéAmÐPHC=k×ä3bß¡ee<š@ +MkßÛéÈþÿ9:žeÔ­M!·šB¤G¨¡š8A ´ŠÈ•`* ®Þ4À772]He›v'­I?*±'6m"¡r&’£#£5­>Z¹+üáóU®“úGЯU5c$²Koop@Þš2:H’ÏÃCÞ»Ó{¸D@Š¦¬E[â 7¸9°Îu d‚Û™TÂìª}B8ú„-ç¥;W<1ù§.¹æ_8j·z•«iš-ý݉Ѣ¿‚ÙåmrÒ@¹žíÅb ŽÏįì9ÔâjÊìy†»ßlØ”ò‚e‘¦g’œÖ<Îâ¯MÛö«C]ðòÏ̺‡›ü›c¡B'û:éÓ±£Éª\Ãmꬳrš&FË,ª*ÈC»M”Ôäx‡µwÛß6 ¶·¸Õ4ËËR¶‘%¿ ±qs0¶ša„ô#õU©Ë—9m׶v¯*]Yùòò 6ËPòÒkQ[Ã<·ýÊÁ=õµ´)±´š6Q$¾¢3 Æ¢ŠM)ŠD G UJ­›0   ká\ØíA5Ýn uF´E±$Ó›h£ŠÚÕ¥Ž.¯ËP]¨ ñ”\Ø¥ÔlPI{$µ +RâÚ8š5´ýá@®„ÑY¾& ¯ÌÒ<ÞVÕüŽÐy¿óÍz®µm`%Òµ•Ð™,Ÿh/f°†kÛk‰d%îÖgpÒ‹Ÿ Ÿ5=8øÍÌ0'Ò¿wF;€=ö¯_ØšÃpüí­­ÍÏL¹Ž•ª#s'BG‰¸öÈÏ”¿)üÁùx÷cȺ´Wš%µÍ²ùvac©sqÕµèÔY®#ÁbôVgfG«ÄªKðágá™w"•ûv9°EýÞ¥½¶¬ðžŒHÅ?vÀ0sð–uu<ªrûgD¹üÓüÁŸÌ7þPô´¶ó’¶–Ð\Ét÷ÿ¤ì'ŠÚåî uâð‹g£ÔôÙ„†*µÔ +Ÿ¯!U¡èkMÇÑ›töÓÙ[ZÚÃõ˹çwy䤓1ôãSâõeçRµ_õO\7µó‹ç?ËÝ6×OK¯8y—V»úŽµ¯ßF—×ÒÒÄÇ)³Ye7éË1g†" U‡Ø¿Õ…mÌ"%wb¬fnA“0UhÜH5’+Q·zîÔ§Ó…–ë¡-¼Ÿèí$q°*‚–ßbý(NÔÜäwÎÖº/ø¦ÛB¶½²Ñgò×éûV½»‚ÐAedÕý P¯!”¯ÄCqJ1àÄ¢&ƒ62T( aËoˆ}Å|)¿\ò¿’üÕiäþ‘¥èÖé¨2æðùŽ+›U“ê|ÒÁÁÉeX™dDf`­Èñ]«U¥øøŸŒ$‚@§¾l{êŒ×©|-àFT1’"^xæP‚œ¨{¸¯]ó©Mç/2_èÐjö9¿Ò¬ÿF]½µ¢ U,ö‰5Ê11µÇ¢(²¨ ö‰bÞgÓ @äõß°û³gÿÔù‘?Õ4ÍnêeúÕº»f >07€f¥iÒ¤ŒèÿóššÏ•|ñž.ày£¸•ÔÛzÆ`Œ#ONU„s? `Ô¡íŸ6ÿ7t/2h?˜ZÔ^jŒG}wsqv̬K3üJA;T+¾|ª"„Ž¾ø'Z'P´WEøáø£#pTë÷~æùÈïË{ÏÍOÈó­ézL±j>J#PÓÚ$gmBÞüF÷‘£H¯n(ÜI#ÒJƒ± SQ±Í‘ŒðlÙ`ÓµsLÙ°ÿËÖ¶šôè“Ì-/%&; —*"wzq†bJðRÝ¿ wÜ}ÿœ ÿœ¼òçš4­/þqþr÷ýdŠ/ËÏ6Ý‘ìfP#‚Âi&!Ò§À~³Ç‰Æog¬ÓJ»Ÿê÷,GÔ.þíÜÑD2³0TZW‹ô ³QItZÎØ]̶ÁÂI!T‡™TBìÀî쪢‡í¼vÜÔ4ûþçGÖá– Ûfhå·cÀÅ*šÂQO½kžüàü:]ìÖyjÑSÓu» UiãcΣՃ*~§bÄamí•Þw5…ü/osníöò©I#t4ee;‚l«»K« ©¬o¡{{‹wh§‚U)$r!âÊÊÔ ‚(AÀ’E;•üIZ)jSzwÎuùQù©å#ùÊ÷GÕ¯µ-½¶•©Â‘–·3CëHÖ¯pU‘xßµ6ÍgpÖ· 2»FW¤‘š:ïÕMFø–/e«O¦]FÓÛA1Ãz3[ÆÀ¥hÔ +ÝúW¯¾{+Ëš§_òÄ^eü«·¶×$•ƒK¥êR‹ ¤E¬ré´“j€ËF¥ /\é^Só”:|lº=…•èf¬Ún§|'^&¡ÊÜ;ÐŽõËFàêåCPƒÅºc†~pó„þqÔΧmoÍ vÅ¡·/F¼]世I]èhYØìèp8/ÿç$|Åÿ9>n?* òžå-ÉåýCH¹Ô"¸Ô5[¹7R~ú“Js¦žŒN_“)TP˜uMsÍÌþgk´¤´·ôg?9Ñ $¼’³¼®CnÌÛ…Ãëš²ëWÆò;(lŠªÛ[Y:’ÓÉ,ŒI$’Î|Ga·–rDJOÉÈ…]f Ø +õÎîþw»]õk« –ÓR4¿Št‚idkiT7~&r»ˆÂÖ»Pä\ê×ð„ŽóÔ̲¨%€17ò©" Ž˜_ŠI £)JìÆ~¾áªµ­1–Z¤zÕ†“¬.“u§é:½»Éy6¦Íij0Ñí“—ÄZªEË¿»·p}+_MeU-$´õ6îžÇ囧ÚEu0YYÂWãôÓ™¥ $Ê;w#9Ïæ×<Ãå4Ò¬ô'ŽÛOÕ¥kKa¤„]ÛCX£žH¢rV§ânØM$IHX¨~§¡Ûå›$2Ûŧéö’épA Çô¼R™n9²Y=v +þ˜%h¼=Ï|àþsüÍÖ<ÄÚ“ù‹§¶c§Ì :ºÅu ·ŸÝK(wÕ1séTqJšBi&Æ¢Hÿx*}nMÉêGÚäHØ + +S7nŸN+©§ˆÐ‹yVèÜ›´wŠU„XSâŠ)±¡ã]Ži¿›>]Ó4–S¤G{a¨Ë¨C¬iJVçôz5³ºžVñ»†8ÚDÉVå<Ѽ|*­ÍœÊ ò!€øwb()¶Õñ9» !Žë÷VèQþŽ4äTŠp©åVäNþ½ºd Tó§“õˆ&Ž k‹]bò8ôí7MÓ®’ÚA W„†7k¿Qä*U ¦­T.@)fÅn'ÓÖ3m &"¤æb/ñˆ9 +… +¸Šõ® +Ô?=<¹§ÚèþL¼´­!»3ÙO¨ÜX@‚á§W»–Ú)%YgcÅ•T€[•rèÅkO„Í;Ÿ£6+=‡Ô®Ýds +ÄÞJq“Œ€ Ì‚H¯BkAQ†‘_ê£ÏÓŪZ]éþ_Ð.¾ªòÜ BöI£N"ÓÕ[YX¡z<%e濬ØË[©4÷ £K}G'ÖcW·E‘ø‡ù9'añScQœÂûóÏŸ•Ÿ™ÙjvW—>uóåšÙùŠËUçu¡éöz­Äq¬ö-=Ó¹TXãy\UX:‚â˜ð¼ôw¯rNl%̳ÈU¤’&VUqHø‚OŠ*:ô®ùgó¿TÎ:¶‘§ÙÉqæWX¸·ƒTׯU´m&Æ[Êð‹OA=:$Š_‰<ƒÿ.b¨;Ö€&›oóÍyѪ\Ž›@@R«¿QÛ Çææ›ù_æ‹+Ÿ.ÝGù…«i6ÖÖ’jZ´³]h˜†ŽÆ؈¤uˆÉH¥yÕ¤cfÅb·äÊ’€·p+O™Íƒu+ûýNãêh#†Ñxˬ2ZÂYI¬Œ@&ƒ•I$í’»oÊoÏÏùÌ=ÜjºÆ¹aeåké©,—0ùnÏë@²A¦ÄÈÈÓ-eE2·¬’q·Ö4ÝÕIâ“BI'c÷ÔS6i¬l#rªÆñ„¸¸³ˆ²(^@q'•+RA§ÎƒéWå6‡ùi”¬Éð.¥åè`šÖ#&k§E4%¦iVÞÞ;kxÔI0äÁQy +3r8iem¤ÛÉëÍ#ÞÛÆÄ\4q’(€dã^M¾àPS¾ÙŽ66sé·W°]Ä -`”ð–Jô¤e¥w$)×|“ß™.4û­#NXm4I­%†]CŸ§vï"z+$qˆ…;ªØ”ò[5­Äš{,q +2|2¿!Ä(XÏOjmÖ§6!gu6÷QȬ>²»**Ñ•Ô°5ä»O g(O&êÚ‡žõ_ñ/˜µ o.â5…´V†kDv»œ(š[˜Ú8ÙãÈ-½2œ]\–-ÅJãôêVrü¡e øö©ß|Øøa»t—RµG¬,†iጉÜÖ>%zr¡ðé’=KóÇCÑ­æ±”Ïgi%JÈÌ_‚‘ähŸFA?.ü÷ù=/æ.±g¥G«ysZ¹ J=N;{CwqgpלKÄ’HYªci(€/¬&»}ßífÇBŽíÀ¨’NMERYéWæxP{ÐxáM·ç­š|ܾVó5½ŸÖî5‹¹-nu;XåH'Š5e’2Æ8Û‘xä“àUZò \Á˜µv©5Þ~œØgk¥(³}BøµÌI`¶,‡„³f¡Xú1¥*i@(y:~RiþL×®ÿ1üâÙy†ÊÆ›MÒ-ZK˜í¯çÔgkioHÖmž0U×´¯ý†Gh©\ÏVŒ¯Â"*O"HPäT/Ù&‡z”5Í‚MµíôRC¦i×?kHÖWXâJð,Ë»Tó,MýŸ )O>ù‡Íö¦•æÊ}J`fƒÕòí–=îi¤X$¢ÚHý &åêÈìY«Æ©û¶8„O[€$}2â­MÍvÍ€¡ŠÞêî+m>çê¢cé§Ö®„¢üfGઋ?qÁ>KµòüžmÓ¼«å ¥LÔæ×M²Ö¯¦0è"Þ ç£Kd õYݦ‰¾Hœ–N+^Yˆw2#qb@¡;’ÃsZJæËŠY‚Ü-¬R#ªŽcgà¢' ¬}Ö´ñƒ#öÚ¼Þa›[ò6dc™t··µ¶ÐDÖFÂæk´ù-ïó7¦9 +ÑFÞ£Èå}7eá™b–f&5iy3ÐrØnOõ͆êVPi7V2[E5ä?Ýj*²;À‚@ªÑÉÌhjIÜÆýzï·vòn¿å{?Éù./4»½KFÑ¥»]kF¶vô-´§ŠÒ ”Ÿ×Š¬ó¼Æ7±c¸ìãḠ–) V‘èRàúœÐ€vu]ê+Pz}öâWˆ$Ò½E? t±.™os,öÒM"˜¸õn.}Q%Z¨»#\ä›Zf±7ü㉩Émisæß3YG¢Üýi¥¸Ô,tiîdÔäšPY‰#)!Kµ¤œ¸Ú(âåUj3QO ì +Õr°-Ä7Ö~¡Ê(þ±VeÔV†‡¦rk/&ùÏ^eüËòÏ’nu #NÔCéúMx'[ A%ÚÈfHŽ¡@y3n£fZ'„¨ðï_ØŒ"ÅtÙù%ËÝ;(RŒÀaOP•bå…iN‚©XƒV•ØíNù³ÿÕùƒo§é‡]†­EF›4åPPKÁs ƒCµW¯N™ïÿÏ?ÊÍ óCËñÚjò< e)¸†òÚžª(RvV$½Ryþr{˃SŠ=nC—Ö/$o{ÕdµUb¨@¯ÄñêM>Ÿ*ÜbòÐ7Žh.)/£ E4Nƒ iRvéžHò/˜ô›m:H¼Ç¦ÉcªÛËx-¬õõ’Éàõ ŠFô•Š­Ì, qý–ß<Ó•€o-Ò¤`ñp +ŽàíU?,ù…ÿ9Mù($¿5oô]*)ŸË/¼­¨ÍF’YC(1IÊ6¨`iB+tj:÷ͳôë•›-I­)Ó-X« )¾Z’ A¦lé/œü¿ç{o/~iÌcŠÑ[ê~c¶…F¢„(HážPŽÒÂàä0çЯùÃùø–ck§þRÎZÍ¥åM*"Þ\óŒÖ’ßêZ|ÑPE ÅWxB +ʆE4«ögG˜ô/4%®ù*Û¥ºJ¶ÞaŠ%ädª¬qÎ4KMª=AÐ?ÇãÖ­5K{M3̨[rQ5xµÚÅÄ*#üAdD¦Õ€øCqdÌþRÕ¼®ðItÉg¨3>Ÿ­ÛL$³¼ZŒU˜ +0"Œ­F^ã=Mù¿ùIeù¡åM?Ï_—Ùk¾YÔb’{/0è–ð™e+ðFìUj1ºQiFø{ö»åGFô&‘Vk[¥i-/-ÜKÈ„©dqßj²h -½°šÉ”±C%L1ÔÇ"ƒÕIý;„*¾ª´Å+$“ª«6ë_pëO/þf~\ié WMo¬(‰4Qı­Ä4gœz?t^G‹Iڕ•Y*8ƒSÒŸÙ²¸òŒÇÅvbi° °§P*~U¦è¿ó—Ÿ˜žAóùoóâ OBµ…Z}Uíî^ü3J?vé”zƵ õÛlYµçÒk‡+N$r;®Ã‰öÛ¦l1ƒS†ßCºÓZ9­î®´Žá +8$ò +T¿¾z·òÿÏþ@ógåµ·š¬o$Õmmmå´¶´cÂÖeb²*ÜZ…D.…h­ÄPtÃhõ 0iÏ1yu ZA,·xK "Í ztéMö½ƒ,AÃU‰©  ãS„Güä'¼Ùæ)|±ÄV·p—‚ÞÂ5šG¬#hÖ UT‡âÞ€amÖ£õÆå$ÆiJÇÉhGJn{ +fŬ-¦xL‘«zt&g +X àm¹¦þ9Èç*-õŸ0Oæ­+Í:zE¤y-.ïË×6PË$W÷—éû÷»àOâé †¼·=oæwu…Ò4ô…‰B†åCS›çŽúK).žÖó÷±É?¥3…Š¹2ä¿:S—½3ƒè>Aó·ž´ÝkÏm†©úëR±Ôí¥úå”îm4Ù$ŠtœÜ¼7H$œQ…F”¥ `°:óàT-Ct4©¨ßlØSGP6ÆFø>€ ÔV‚†£ 5/ËT]_K¾µÔdý#r&õ¤›€’(D‚UK$a#S#ÔRFeÐlØÜØ7MµýfB0!¥eTý ´Ýž¾#ç¶y?òy|Ë¥yªC•Í¼rMdæè‰\4ˆ‘3ƒר¬ÎÍƈÿ»<ŠšWfÍqok±*2ŠIÊ¥U¨E (©©ãƒ5ŸËO![jž[¸ó<6©of’Ç{uªA划$c"F²@\(n,Y˜©'0$ë×6#+‹+‹«[™k$D‹r¼dæÀ³£m±Û:éü­ŽóG—Ì¿–×P]\XIqú'J»Š;Ý2Y$¸pòÊæU'¥N‚•xfùæÀ³O%bF  +®¥‹£á ;uÈæ‡å'æ_çMÆ“/榑 yËúÅ´'_¹¸]CÌz…ÌR‘ ”2‚ «ÑAfR¿k¨ÇªyxSo×›èÚf±æ B ;@´’âýÏú÷×<Ëù§©h+çk"çË÷fÿËi¦Æçô\rVÖäÜ,†;yKÆ7oWbÜi‚-!žöT²´‡Ö–SÅ]˜öQ]Éì:“ŽŠ)g‘a… Èä*"‚Y˜ì©8¢è¯ª]hš£6“{kêÅ,«©Yâ'”NÄÄtëóÄ¿ç?$&|ÿ9‰æÉo8#ùžöÊÖxí'óŸ[ B̦Úé*ÍD¬s#¼j,[êWR^}Jä Y"-G0e*ñƒUu5 ÔOÒÅ,¼¡ŽHÉY#pU•¡Á<ï!}œ$•¿yÅŸ”µ …`‹"«°5'®Ô÷?š¬­´4ÓôÛ#‡¤C=»GgglÇê¼ÑZ05y4Ü·QZâw21›ÓDò#CÄA°ßŽß.øÜn ·v2Ä Û˜ÉOI ¢Ô +Ðò~µìr¼Ï ë~`óM¦µ*5´:SËUeå1¼.ñ4ýæÁ«PE)‹êK}-Ã<‘´ÇT’j´MT’j{æÇiÖÓsþbÿÎeëù|Çù]ªÞê–ÚÅ•²Í¥ë×w/¦i·ò:96V‘4 8 ¾ÅˆìØF\Tñ¥Z€ÿ²=j{fÁ:©¾[˜`™c¡‚1Ú¤àdõ#24ŒÔmËã£tÏVj¶˜sü¹òÇ–|ùe÷útZ%癧ÓZI‹ÚZ²^Fñ‹Bz…Ízòl×Ï1h¢˜ F‚?McFÔ¹ŒMFÜ·ÅØôËbv› ©OŸl‹g2º‡™ 6¥UÁw¡Üd{ó(yÏó,ùG̺­õמ¯m ž‡q¨Eõ‹) ͽnÅŒ±ÆÏõgÁ¾§&+Çà(•xëQö€ê<@=ò±ñ…B¯p@@õ0}WWØ€àÛŽÕñèwÀ¾rÑ+ÿ0µi¼ÅäÝ'S‹Ì:‘^›í.æÚ ›Ë}J‘Fª@¤¢3RYCTã@ r;ÔÖ»©¶lq‚\MooÅ©3´qOrŠŠI*ê#˜kñPoâ3—þcþ^ù3ÊzÝ·æ ÍƧùuæ0ë·T·³O-ÜIk ºÊ²}V‹rwÏ÷œ Å8•/£ÆˆvjÆIZ…’ ?NlSOvº6¶÷ Š’Ü2Ü»H‘É1™£ä¦Z© +6 Èü©¯\)ò?â[_+éeÖ¬<Õ¤Úê7’]éÚ¾¡¼×’òêÍHè$D˳Nþ‰¡?ÏU­Ùîv‘Ò Òd¬h))U¡v+P)ûMAí¹Ì*h¿ç÷ãµk©ï.d¹´‚;xU\‘éEH5gmÉÚ$„Œ¯Ì8´_\Ð%³’ÖîUú•Œïå‰XB¼\ú¡yþÉæ8‘÷†K›UUd™=6.dS$rrCØÖ:bsgÿÖùg2­­ÐšÙýhƒ–‚VP9m¹!äñS_¤gÒŸ1~‘[Ibµºú©›áŠðF²ñfÿ!¶?,ðÏææ§æ]æãOšç……ûH‚üG›ˆÉ`Uâø¸ÈV í¸Üü«pØFK-OE ª4ûòã–7“›ÑGív ¨è+òå¿;~L~c/˜®|àjZº•.%º¿xac3ª °’¢§oòiÜg11$ äO!Òƒ¾V džÙ`~(ƒ~õz’X±' =³ŠþdySËŸó•”ÿá¯Ì+ÕÐõ˜ÊG¡Ë.–ÂîÎò+NKˆâŠU9¤È~fœT†ÔƒQÔf™"xÜ£Ž$}Þ9ò«ÎÞMó/å÷šµ&ù¾É´ícJ”ÁfåY£q¿ÚBÊATFã/‰¥GJfÄðÒ»efÍ›6l>ò¯¼Áäû——I•Ç Ë ¨ÒæÒå(Ga˜26ÇcNKÕH;çPüŠÿœ”üåÿœrÖ®uŸÊm~M)¯Äi©X´q\Z^Gb«43#©§&…jhFéaÔ´vu·pöÓ·6S$*îÆÛ‡¨íC‹Ú^ÜY3´RDhÝDepAª¸"¢µ¨;Š +×µ+ëš›ßykMÿ Å2,sXzò^[+2…&7˜4ª¤îC3‘ØÓ§¹mçâŸ_›zK7ü³7åÏœ}HÛÌVõkx‡âDŽFZ&èêýGÅðƒ‹ëZŽ™«^Mw¥éÆÍ\Gû—¦ôØ•Ü!vnTñËÔ.-n®ä¸³µ[8¤¡Èî膛…2n5éRM;ž¸¼ß–u³ŠööÞÉ5]8ªÞ\i×ßF‹*–F?VyRjGÏ=æ?Ƚó{ËçÍB¹Óõ¸¦"MSGšÚî4r¡¹2‰ŠQw¨tÛO¥\Çn÷ŒÇú2zL’q·ÅÁˆhO^ÕÄ85 ¥@4$n+‘Á3¥Àr>#RÃp+Ümœžãþq“Pòßš®ì´_3\éš„Úd]G—q·ÞJ”¸~P1憱‡ª‚;ˆKc4J¯BÁ©ÆŠH Šìzmß+úÕ#á4,AÈlhS­Eiá×é¿óŽlò™ÛÏ~ZÕFuk<ˆ·WgYÌÃÒvDå"ð”9lPÖ€$ÑH‹ŽÝêw˜ ¢êȨÀšH±îy +zgÞ¢˜Wç?ÍÊO"è6ÖŸ™:Ž-Ý¥¼N–—U°šòHÕ$<­£˜,ܾÚðø»®Ø6ÝlL)ÊÄJþÿ÷¼×e ­A½EJŸ»6 +×®ü½¨_]ÙÙ]L–vmsúE h#ŠYK¤eãSö›zžƒ9ìßœŸ’Ÿ™Úæ¡ùy刵=kH³±œÚßh¶SjÚVœ×RÈ>®Ðˆäæ"R£0`Ä +S¾‹HЭ̼cꬎ³5vG§ùD±±º…Ãi«ua†ŠÚ(鹿Në1^EœH±,c§Ä+»-jNüãò%úùRKÿË *G6Öö0ËvtÈP¸·3ú²›Ø!·ƒ÷j¢‡÷d¨âÕ.ºa“Óh +HD‹"±ëPɵ>üØgòŽ­imk¨\˦ÏRn.cµ’z¨ªŠÜ 4À®ää«ò×GÓ´­V-oXò¼¶Þe½±Syæ)¯!Õnm§‚Ý¿~B¨R‘R£éË@t §¼@\LñÉS^1@¨¡æ:Ÿo§6ß\iÓ"ͤ@ÖªˆËê»»ðEÚ„’|@¦ÕÁ‹¥é¾cüĶ“Κ­¨{kÝFËO:ýõ¬P­œp£M,úKÁƒSŠÿ}öNôB5,h½@-¿J(¯ðÍ–Ú¶«£Þ´Ê¸½»:ˆä¡ãÁèÅHïÔ§ò·äǘ´ÿ:\~qùÏ‘j~^¼ŽUhnm£Ô¦’ÆÄs@š¼’Ü^i·0Üg‹(´j._ rŒ³ *M7¥Eöß6y{ó/ÏT燫ˬÌ}[iéshòªdky–HKJ$ŽÝ²_äï4yÛËiÞe¸½¹ÒmXM}tÑ8žÚ=6PX”£õER„‘°ö5Áz>¿«hî‹eséÁê,­ª³[—Q@ÍŠèÄWj©¦/k{qfÁ¡`EyÝVHÉ€J8*h ¥Fkzƹæ ZçV×nÚþâSGºœ…­(($hŠ3ΟŸßó¿—ÿóP_þmùFãUý1­˜o¬õBîi&¹´•#X.-FXÂÛR=3TªŽ*>Z®­©k•Þ§©\ˉܼ³J.Xõn#À ‡LNi¥¸•¦‹»îÌzœeŒZ®µ{kim—wR¬ YKý•R¤–yÛÌ_“ÿó‘7æo“<§ùu¯_ùÒ=nq/åýüwJñ\É1ÜL= «†HÄ`×÷”FQZõ¢1z·N†JÈÔá±,ÄþÈQC]öÛ×lêVó“<ÚžNó$‘i·Dij01ݬi!ån·¤†Kô4;g£¿ånþxþZÎlÉ>y¦ÚçFÕn-­®`µŽÖ­­šÍ§Ž8Í«M,LÅT·6úFÜi^dò®µ‹«Çõ ‡ô}hÏ qÈ~}%•üU ]邯4Û½:øéú’ýVeáê,Ÿ°‚Ôô;ŠW#š†©e§o=žž‘CŒÍbó<±HÊApJp`®FàŽœ³†ÿÎ}~tù‚ïóæ_)µÔ:Ž™åQeÃE’ú¤7±ÒY’tV`Û«2;aEÍå¬w°Ïmf±Äª†KC,šQÇ%*Ôjn9Tt®ÂÕœÉrYT ‘#Š¨cÐr$íîsÈÂíþ¶n€T%Ë…UP Ö´ JSÛ½IÞND…¦99v’v÷9°Ö;É”œú±È†3¼‹âµË°-ZV™ëÊùÈoÏí+N>pó¤Rù¿É7“ ô¦º²µžfO†%·H×ëÃ$‹"zaSá#§ÙÍÀÍXâö4ñ¦l‘N/·¹ØÔÔî!¿Mó¡~gþxy»ÉÞv³Ó<ñëéºF§mÀyÎÚÎ&f·kAqoªÔ’Q'"®)B1‘DÓ7÷cÑEk›‰u 0f@ÉmyX%,>¥9-@'bw¦vßÉ¿;Ó¼½uæý?ü{;ßÚéÖöò]Ju?P›ëø=y€ +ðIyw1®ÔËŒ.á˜(È5¡ÀæÁfõlôù¼¿x³Dâíf“Œ„Ɔ(Þ6§Ä lÄ‚G|ä¿žºï?3á¸ü®Ö|·smj5§ºÍ­äw_V·µ¸žÚh×LŽ0²9?6"_µUâJãÌÈ"x°V~b>ß!wêzÿŸm°ŠÐÚÇ©Íl’Çmq]G,ÁD‘J¨ôÕ–OÙ5*ßq¥[ä+y HòNæ0Ò-åöµk„{™­žò ÁÞÖh ôÈŠ‡!žˆB¿j. ÆS5ë sð°=€†ìkC÷fÍ}5l­ËK NÿV„þ/…xƒF­@4§¿ŽüÕÒ?*5/4êº}„µíª´þSò•Ád¶»œqÚ3Ú‹…bNC| úR„5ÍšÑP’V•§wÛ6 kë­NX5½^S%Ä C}rçx#HáY“Q¯ÃJ7LOBó­¯N<×ù–ŸQÓâšÎ]S]ŽÕâÔ“qm%’H¡ýHàC,PF¯ P(Ô‘ÃeÉ1˜'¨K2€ ±$Ñ@P>@bIÜšÿf!©&lÒƳܭ«CY£Ä8I:¨ÚFP(Ŷ­+AŒüͺü¿ò“nl´.ù·Fò¶¥¥Y§—I­%Ö®Mo(”]¹í;£²qûM‹Ü=œŸ +M!URT˜À,Á¨ ŽdÇçO|Ø[‘´êJüq$);•bE6ÛÃ&6×-{¦h¾Z¶?\Óíþ¡£Y+¹—Ñ·_ÚhÀøÝœòm‚1_Šª£1Ô +t¯}é¾l¬Ç-¦£>šÐÏo¬²¬6·CŒ‰pÈŒ¯¦Bs†4<>0¾°=¸„{Ø»Ù\[ùf+ɬ As,‚ ÷œxT%¥O K±êN4ÿ"yßË?óš—š-ôÑmæûÁ¯]ù‰Ê Ó>§wnñF›v•à`z€{*EÃE³¸f·æ¨Žä†80åJ0S^B ƒôfÏÿ×ùq<ÊcF5–UWªe¬€0¯¦ÍJtãJøÓ¦{¢×NüÒòU¯–­n­oô»K‘-ï™u+‰$ºk HŸWT+ê( R$ ߈û9ó‹Ì°ùÏÈëy剕ì£w_Y„Bž-ÊB£ÀøçÊ¢)Ž¸’ÙKILMÃà䡇ÔnÝþœCùk­»y† Ì·Z\^b%³¬pMŸ(s!xÓõY™ÝO +m Ž¤• Ä0ø·¥@ßøfÁPÌ"2qF5 ë²ô§c¾y3]ò÷™?0<áuù©ù?¯¶³a¥•>l]6îÜ<þ¬Ñ¤mûØÚ6+ê…¡Ý  Zò d¸”iÒIql”¤òEé6àVªÀßn¹°EŬZšðrD%hM+_‹¦Ûõ휯ó?òCNÿœˆòÜú¾¹qg¡y“HŽt´ó$ÜËÇÕ%™>§8¢Žì&øŠñÛÛƒNÕí›î-žÝÊ8ß±ñùPç„üÿùuæÿËwü;ç=9ôû¹"K«nD4sÛHHŽhIÄÐŒqQÇ’šö>Ç6#Ó®F±´§\Ù#q›7LÙ|ˆèsTæ GOë› tO2ëþ[Ô#Õt B}:ò*p¹µ•¡S·$ Ón˜oå¯7ù§Éº½¾¿å=ZëGÔ­^ÚþÆy-甆^2¤n0U†«¨é—ïN¹’Úe¥$‰Š¿Õ¦:9d†E–(èC#© ‚7“?1~qùçó5,tO>ëPIm ÇMBm>ØLžšI­­þ± ¡ÜÕëÛ;Ìó˜?ó›ãDü¸üÙüà»Ñ<µou×éùm}K‹I`GÉ$Út^”|DqæÛžT4Ã-kÍú·˜‚6¬¶ÒÈ@š;;X%n +TxbGsOæ&¸?Ró¡«ZÛÚ^¬m€ ,v–ðÌôÚ²Mk$‡ÝØœ¦þZyZžÖÆÏóÂ{ûÉV/B;9àŽ1'Úv–øZ%oE«Š*s¸ùZÏÉ?™—öZŸþsŠk}R脆)t=bÆÐ1Z¹{ÍB{EiAÊ…º Í1m;ËVz•Í¤ «Ù¬—Œi@\|&OQ#^ ìÜ û*q(´ø%’Ö1}›–U·ª¢ +šVBP +üyaGægåΟä[M#QÒ|Õ¦yš×YúÃDú\ŸBÜ ¬°¿£ä\…"׉¥sˆÎ_þDÛ~AêzØþqÛ~gjßÖŸRúœëØ}Y`0™ÿÒn õ¬qNoØ?˜|¹.„–—?\³¾¶¾%´ö7)-U(8&ˆÔô•žØ/]òܺV×ke¨Ú^™…¥ÍÔr³,/ÁšKrV⟲&Ž2ÃuoežDèvî6#<é9Ö@¥A`Y©ö{|(Y¤O²Ôöí÷tÂŒ—ùWóoÏ^LÒçÑ|»¨-µ•Ìž´¶ÏmmpŒä'÷ñ¹zó®þUÎ]ÿÎB~HèoåŸË?7Í¥irN—me%µ¥ìbT­ +‹Èeâ75U nã ôÏ7kZE”Ú}„‘Ç ìZEkxªÀG’6`€iŠÇu,PIn8JU˜´hÍU­(Ä}À;÷è0Öëó×Îz’´zÇÕoT,K +híÒ9 bc“¨‰X¨fQQJ7M³§ZÏÏÿç.À™µ¯3ZjçÑŽ;Aq¤iѬ2Å e˜-¼‚ÀZ7ÃñtÇ\yš{è½ûh' E@B«Ãe<`1© G|l³<Ç“Ð +*…{( WZƒÝLgtE.jUUkÓ` œ¯ÌŸó–ßó¾kÔ¦ÕµO9]E<Í0²Hlc“‡P©kj(Tvß½p™Š“Z}íc0ÊËÌÓE&•õÈ¢º·ÒšÞÎE z͹˜¸9$þÑjÒ‚´d£Éßóÿó‘~T»°–Mz VÚÁ¹-•öŸhÊènêHÚX£Žj;¹äCÖV¼U@VÚ[hæ†IaYV2 Äå‚8¼O +5±®Z9Ô‡îÉ/˜¼Ãùk­é2ÙùsB—ËW&V\]M} V.ɱ&¼ÂTt÷ÏTèóñïùÇÿ:ê¿™|•¨þ]jWŸ£®éÚ­Î¥§ñT(=K5ESPÅè»/¸®ë7þT¿…“EÒ›Jv•¥ÜÉra "©ûT¡+_âµÜÖ²ÊíioèFÌY¹rªf¦•ïÂ;­M7H·Ôe‰gŠùà»Å"¡C+ErV&3@ô  +ToFâÁ©Zu¡öÛ6%õŒö“CqÙ Š Ôg,EhïÉÖ€V•¡éóõƽÿ9‡åÍï"ʵóÜ3y;ËqÏisy¥èÖ‰¨~”a4PË3P‰ªÃaÓ¦l}m¢YAë••ÖX'¶aU••ØÈQ».ç­v¦/ùÕùéÿ8åæòïMü¡µ¹¶ÿê·¿£ôMBÁdIÖéíœ\ÜI?Ö#`"TrH%Æ낯âÒb´XôÉ}S8‘Ù$Y%Vn + Ö€oÖ½³v­~ŒCY¿Õõ†ޢܚvhc¸TŽðªrª-.ÈÔÈ/笾tüÆüÂÓ<ç§Çy®>«tt›]~X­áúåõ‚ÄÓ†N:"q4HI yy=ú}fpˆX°ª'¦¬@…U› ²Ø–bÇ©5ØP}à ¼¹­Mü‘Éš·Ô®-fŽRDµô]š•F¢©øß`YC|@19Ò?)ÿ5?6üæ©9Csæ»{-K=l˜-ê-ÖÁï£*"pæ;yå’ÈòªQ}\NÞé`»…Œ°¢ý0Üh’).€Ôb+L¬úۤȗZo×%¹* X=S U˜U…, |"¼?gߤùÿþr='Ëzn±«¤~gò¤Ú¡úó­•¾‘jÓ\Û¯Å"ˆ•£’X%GhãI^?„E?%®&gõBZ*E\¸¢ª; 5jÐt­ßš¦”ðöÆßޤЦ•jQ,d¤³$lñÆò)jÌñDÎììÙ|´ô³´ŽHd,Qàynej—ƒ +´ïVë½i¶kš–‹å[ÈþRýeet#ºÒõ6‰]øÂòÜš–)‹UÓ‰0¿ -TÒƒ¨Þ½úæÍok6uky"¤¶È§O£‘ÚGyT:« +€%NêkJuß<õåŸÎ2ÞÎ9yËòçÌ:ú&›¦Ã§ÚyWL6Aç’k½I.gAsŠ †B}BÕÙ]–Ó’ÎF~*ñQòäKQGñ1mÆlÿÐù^ñÏcsÂâ#±0å«B= +¶}¾¸[¨?TµG©z²ÓaCß>kùïV]ZòB/MÚóib¸nHM4$†ïCŸ*°e¨·¿š(î™’‹ÅÈâ´â¤ +µ6Ï+yßGÿœ‹ü£ÿœ†ó ÈÒùÓòËÍñNÚÇ”g-p4›û->I`úª–Qº«C#ñqºdaLQ§"ØÔß`GSÓ}ö§†lJö­Ór$  €ØïZ†4;t9×'æü²üѺ²üÖò6µv¶oo-‡è;{òt°VYQÚ[DfŒH\7Å@Oí +Ž¼m£ÞêÏoª\?U`cOC“)ef© +M7¡Í‚"¼1†P}9J²È»nç®ÙçïÌïÈßÌË6êÞ`òµ¼×ÞXK¡5õ¥äïõ%´à%~1 ¤JAçQNô8S}¦]ØÏþ_Ü?˜ÿ&ä›Ï^Y¸p-, O_\·CÈþò¬ª´Ô©;¢å€\ì?Y͘£ _ òn¯£jú¡6“®ÙO§_[7 ‹;¨ž£jVŽ’ÀÐ÷T9±¸6lÙ³fÍ›6lºšƒáš¹¡Í™›—ð²ÙÙÍXÔøž¹lyôö3eeefÍ›6lÙ³fÍ›6lÙ³fÌ 3fÍŠÅ9ŽµÞ¸"ÞúêÔ¡‚VOMÖUì$O²ÔéQ\zJR»V¢†¾®ù±òÞI+3/1F +8ŽÝ40V¯¯]ë7çS"‚á‚ ´k +³¢….UPÍJ±Tï›Õø8R£½~ŒØ‹HHãÓÇß ÙÙ…4µE)LØÜhé•›üå WÏ:ý·–ôV…o.ÏâU…Yºº±ì¢¤øgFü‚üŠóoüägæ=Ÿå‡’o,,u[èå–õiÞÞÚ‘/"¼£ŽF,z*…$à;M»Õ®â±±Ui§eŽ%wHÃ;ÉÊŠŸž>d¸™ ˆryT¤ìN +ó÷åßš-5¿ðÿ›-~«vc *ñ³2V TUOO—\5ÿœ–ÿœdüÃÿœVóͯ?1§²º¿¼±S‚çK’y­Œ2K$!yÏ $°1@0N½åÍgË7ͧk–ÆÖàâ6*ÁÔFBU…Aî1mGL¿Ò®>«¨BÐÉB@;†•ª‘PEAß9&àl:òÞ­a¥ÞG.£¦G©Â®²<Ë$A¸«Ž£„–«R„ÐP®õë?ó?˜¾Rò'›#—ξVÓ<ͧz©|Ñêȳ‚b#W™W.¦yº¥ZFXÝ[B@¹·õÓfÚ2B©j+ðµ~-«¶Äf„+ìpf¯ú:-Vk­”6òFm"iýiCäY%…qµ5´jsпV¾Qòoæߘ4©$òœ~ošÆûÉ#Cà°@ÖѤoy#)ýÒKIXÇ©ÅûK‹Ý*$¯sdænc( ¾¬ÅÊ]dTP2÷ÜW¹®[q¯ÂMw¦þ”æ—[t¸43ʤŸˆ4mÍ£ _µñâNù'U¿ò¤šUÇ›îÒÿLÕ×PhÜR_Ú˜ ŸV¸`ò<7·¦¼‹#9e“—Ü d±«2†‘ªiÔJ‚i¾àe`»…\tav—9j¹õ(Yè¬Á&Ž2ŽxHãNã õm'ÊVZƃùkk¨]ͧj¶ÈšýňeÒîšßÒ½ÚöÜlÒ)u(50JÉk¨ë¶ÛÜKbÿUI¤:|öR\3Ã"-˳´ˆ±…v­H°Û<ѬiYCUT³mZž•è;}=3b¶K¶0Ì‘]_—¶–ñý)àŠÙØ *;¨'’oM†õÄÿ'$µOÊGË÷ºv·j<Å«*'˜5•¾ŽóJ´ò¢OÊí ) °žY# Fç”|€ß‘ +رSè†D’o$‘QÑ€äÛ†`Gb7Ó|Ø¥ü¶pO5Æ“:\zh±Ê²Ë', E [Š‘ÉA}®=ÃÌZ埙ó_Ю¬VXDXýlÈÜ-8ª‹«H’2ÑÎÅæ~&…­~$’Ž–;8Ü>Ræª^F#“xÈãE Ò»ô'½6×W¢}E›„•’e·N!Xò("”|³É7×—:gæM·™|ßxò/ž/ßQšßKH­ZÈÏq#ÁuéÍ/(ùµIŒ„ É°4²[Õ¸bíEY­h¿å»ì3cïõ‹‹½>ÛIŸÓgŒpY$_ÞF­'«_Sܶõè6Æ~hþpê^rü©²ü›XžiåU}GTÔãiΕ Ýôz‘–k•Y%Y®gaê)-·§%Å>µ/Õ.CЖˆ“R¼¨¤×­hŠ7è>y±¶úf–|·uª^Ìb»R‘éÖªÊZi9QÝ~ÐEC@{·ÓœóJò7“eü€Öïõ‡Xµ˜%<¿5œÜÖi^ö8®ooþ‚Ùc¤ÄäõH¯ÄÛ}:Õô+»É¯´‘4^…»MÛ3< 1^F§r6êF ¡$ü†ÿÑùÑæËSÎW~yÊÑÝÝ5½ªÌ&34+ˆ¤/`(?zµ ²g¦|™ùݬy£Èúןm´‰¬î­®.oî<™æî4o1­Œ0± ¤Ï:žETEûÏI%ä¼såþ·%Æ©sy¯;rŠ{–TäevªÊ ‘å`€7cîÔ'>W\IëÍ$Ô≠+ 4 ø‹½ÉÈî—m ÁÑþúqÍ^¹Q¹‚+JT`¶üÍóæ_äúyçò të[R*úJy„ÜC \dÜC{µ^9b!Ô ä9(Þ˜V !*½È?uF'šð» †õÔ§h]›‘b+Í”ÿ¬;Æqë#ó_ò“‡ç-mu/<çÛ]þmþOè“\IhE㸆çK²RÞ”®Þ«Èjy·7^LeŪ8ö¡ ¯Ó›wifÖÞ¼-ÄE¤,œJqý• *)÷gEòGæòù®Ê-GG{Ÿ4ygÌ·#AÖ4ô•/¦Óç +Í$Ë“zJ¤R’qª”%D»¸Ž'd>›Š2ÇZô9°$Ó Æ.r6ô 45>Õí‘ÆÿœKÑ´ëíoVƒÌ‡ËÚ5µÄ×ë4Am¿rcæßZaE(µÝëû öijbBÏë,V=œW”Ex²ÓØa~·ªþa~PÅe|ÐO@‘#–Ë[´¸2ØÎf W“&Ž>#QN›æƒQ›ô” +„}ˆ©œ[óoÌß•?™^ù‡ÏËúä×ÖñØÉk¨s•­Z‘¡6SÛy’0"Z;+ªƒ®àH§luåÍååÔ—:„²Os#4³1y»ò-RNFJ²’GPGLáW×sÉkwC4,ÑËŠUÑÐÑ•¡ˆÂ’ê1z^,=ÀþÜ’ʼóyþV;,+£ýb;$v™VY'“ÔøR3ñ1QZ_zsV¨Ø¯ÐFliwÖ7–‘ùÜKc +ú*öæ6’Ø“TIE-KzuP˜uιùaùoçmsM¹üùóíþ—åQèÃúA!¼²¶øŒÆÊ9¡’9dSé;¢¹4nU¨Ç­,0j-'Õ£2bEfŠ6s#‡ˆ4,H_˜ÇÂ"iQn’"ÀHè¡ÙV»¤¨'Ú£§jK¤úæ ’XdW·ˆ-úóM¾»¢Ï·å¯Ò—rÜúï£e"é¶Z,RÉ,÷Uª±ÄyȇdÐW‹aqhäzÛTH[÷QªBXô!˜×¥?³zÄ­&[Yã”ÚÅrŽJ$ôÞµ£ 1¹o¨ò\Œ<×Rº½Â9´l¼Ô2° О15_PðU%Ùs_–VjZt7‡¸ýÀ åÀ’+Ju©¯ÒsèÖ¡£Åæ¿.y÷Gjêšs€ºµ°*·štÊâkkÈÄ‘úÐѹF¥§(YšP°ØD— k[‘ÉB‘±ãFñØØuæÿ(J4ÛŸ1þX4ï0z­z-Ö?F V~ô.µ”€¾±«'ZÓlÙ±ÀÄeY…HSê%©EÜíïã¯Ë_ùÉ=/ÍZ´ß–_˜º\žFóàW†o+jtx®PŸK¥ço:3T(SÈÙ¦lØ(ÛÃtð\44Ýê@;ñR*{í’OÍÞs°ó~G´òÆ™¬éÆÑI·ºÔVÇêöêÞ"ÔÛOê(=ÁQ½6ï³`©ÚÂv·¤yªÀ×q¶æ¤tÛ<éùÕÿ8>­ak«þ[X­® —F}CKw¶–܈U |ÈwØ×|Ù±9tÕxÝÀVŒTšqZJ³ˆÉ¿Î½ãM·Ó<¾ÏsjÎÖ:Tw3¥Ã×ã‘"‘«È€ÀñÛ®lÙV¨-_ƒ8xÅZ[wäÉЊ•¨­+¶òï掭å=bàù†â]7Q´ŠqqfDÁ’ZS´]dÛÄûbÜ<'o‰OÚCöNÔéí\Ø6ëVR¶µ± +ðG €;%‹£2Û8ãΧímÇþrkòïóJºò§æN—k¬Ùú¿gU‡×†$XÄ|’9#z?2hè5¨Ü 5ë¹ÔA,è© LD±Ä…‰%QÁ½×‡|ØWqgf¢W‚à1}(š6Vrh $³÷;ýùÄüßÿ8©ù]çY/µÏ%ëk¡¼ìe¶³H X¨äÔv†2iJ ¥‰ËKÈqÒ5Z»V¤µ6÷Íõ 5m˜Ém4w0îî#jWaZ£…}‰¦ê2oÿ8Dd½¾[ß>XAeo$Kc:ZÈÓ]Äãâ@dBœ[b¤ûã'Hâ4VYC}™U‰q¾ñ›}>‘E<2$ÂcÁU9ræ6 ©Qâ:VµÛzÑšçüàοalÒè~hƒS¹`âÖÅ­ %‘G¼Ãˆ¨£ãï±£#TVä°Ü)? ð ŒØŒöâ7hž©*’¬Ž8²hAuÕÿç?ç!­=F»òœò—]Ú\° ÔîÕ®[¬ah[‹©âP­Òsbh’¦„±¯C^ÔÉåÏäGŸ<›:ëÿš?–ߤ<¬-ZâîI#žÚÝE]Ñm¤æ]ÅP±?‘Üfůtë­>å­/#á"…b¡•ÅC‰Ic\9üÞÿœjü¼–ín'<À†úêD å;™Và‘ëôgÓzs^@ìµ µV˜ùa’1Î8¶Çú£ð9±9,¦ŠF‡Ä„‚:î=óΚÿ–uÏ,j÷z»jÖ—öNb¹·r¥•×¨øIæ*2þ®àñ$)5 o‡¦ÝMlOÑ’•#nÝpµâtb¬7;o×åŒ1°ØŽ›ù±¼Z¡@©=PR~Œ®& SsÛ6»67YAelÖóAŽõÞQ'Ö'i]½E‚„(¼jÛ¯*üT'Yü²ó>§¢yjãHòŒÚ`tFîý®Ñê’\OqsÒò +#&Ž?Hr?.­LñÅ Š–P8ÍÉñâ¡E((Iß¾ôsT© ï `C5NàPPR‚›ÿ »m6YRI#1°‹©’Xãý’Û`M@Úöêi’/ÊÿùÅ?Ì?,:¶¯økËí_WV¿â$$€EjdIœ³Põ闛Ȯñ¼d¥Oï$DUg4æEvSOz¤Ü’ùVú×ˬÒêVóÉ{:{ÞZµØŒ‘Y£„²ÆY™x"°êh3ןó?—?•¨·¾dò…·5­VÝ}85ûk[—“Ö*«k#OO3FY©±%~Öè×°hÇë÷v)qê×êfê't +Ü‘ÝT4jåOJÔW¶9%~ÄŠÛÓ~£·ß‚<ËkqúZê%Š×PŸOso4–¶Énœ;#[ú6¥ +‘»ˆëRjsÓååœ5;›//i^£s¢J..´}SN²- ¢‡b•5U'w‡âŸ‹¶jÖ77Ú”ÒZÇ̶ª>±ñÛ¶GˆÅl~ÕÂwß4¬ZBZ•ïÄqp !üÇÖíü»¼–]*,vw0XZK{ +ÁEON䱚ªŸV€©ÜäkÎù÷Ïþ@ó–,|Õ—˜í⺴ò¢èöÖ±K§½³:Zùò£ó3òwóOòÿÎù{Ϻ5ÔZÅÈ–ô;+\¸÷gdRÜÔб=š™•þ²í=K1<œ–%›«1#©8ŽϨé²Ùê1ÙÙ-¼W±Ú*1Jm¦ÁcH1BO´åCP7ô¿ä¿œ¼‹ù‹å¿7ù_Hò$÷—VšW×<°×vréšTÐʉqu§ÃzZzÈ‘É,+b»ü ©=ÄqÂËfc¸D¬©Ž©I"»PÐñ5›€ßcQ_|F;=&+÷w’Ç_QmD ÆcxƒFDúµ~"@)Ø5Oo ~[~NŪɢy¾îãBó^™s¥Kc úvú•†£o9úÀôøÊ’¡v%=5aÉ!r,pBZYˆò_HÆÄqdª°&öö¯|¬Dͧ å :?1 ‰BѼª B±š|Tí“{o-Ãä_1ùÈÍäòÿâ‰õ­&ÞæX–-.Êö·‚Ä÷*ÿW¸˜0@L²@✪È܈'­ô¥v®lµi`µ/#ª4ŒV4ô›œˆÅ•œ;-HûU¯û*k¯(Ý~Jyz÷Ì:^³w¬.mxiþ•ÄI­é€…½–IÍ»ñËké,rè]¾ûÌzȲ³lqZ/MûôéZæÇB¯£¬æ©'ã(¬ˆQX•$Ô±#§s†zpóž4ó~­«\hv–,cŽXc’e·b’4Öëp%q;C©hkÏ— À:R2üø–Þ«â ãᛳ%¾Ÿú%˜ËnH¼¹úŠ»z<ôËÊõéó9ü«Ôµ¿+ù>×NóÝΣ5Áô¢ô$á¬IJÚiR"(²›¹!R× EÛ‰b´WÆ+y¬Ø "z„æµd«+3%I +ÌzÓlÕ4¦²¼hÚ*¤±Û·­ /Ê€™°ØB()Ö¹Ö|§ç?)þ\ù~;ÝzéIÐe0è:T°±Y.h²…!WHÄœJ€Ì>ÓµEqÝà EJƒP+Þ´ßzfÃÏ.[ÜjÖ—†âÿÑŠÎÎâY’5oB ¤G‘O)¨KÓ•ªjKå=rÛóWLÕ¯üÙçwÐü»oo~o™‘Œ—2%Äd7ß»>¼‰VŠ•Š¥ÃË‘–‘ Ö¦×,é PÂòÌÒK| Z—ôÄÏf%¨O#S@k‹ZÚKvd4kéFò·©,qUPT…õy7‚Ïa…zV ísrŸèů¢x®àI#1´XØnU‡Méœò—Ë:æwæÆ®Ïwg¥IªèïÔµ "ÛT™C]ª´¶ëp;y¥âY'*­|‘`K{ˆâr¼P«+ª´Õu^]Š:Ón»â8èé±h–« ·¡¨Û™×©qߪÝÖM“‚¨‘ÜÒƒ;ç“|Ñä]È6–ZV“idtç¼wsg§&¹-ÌìÞ¤ÒJ¿»’$D¥(OÙQYlE²Œ·(ÜšCÆDTPq4âÿZ¾Ù²–ú{dkùUëªÖð\Ÿ@²´LœŸ‡Àúgv©©ährU{ù…äÝ/Íj_k¶ñÇ­Z\ 6~/ª¶ð$ÞŠÛ4±P)@̪YªC6ô0F»CÞ³…« +HxnAiȯÔógÿÓùs¦[—¿<R0\3Uj£qÓÄg½ÿ5¼íå¯$i_Yó& ¶HÌCºƒð*³@ì«SŸ5¿2á[0›TLUjd +Y¸ì ¡¦|ªÉ Ö§gHˆ¤x@t‰Ô0£Rª +ãúªsÆ¿žŸÿóˆ`ßù†ËJüÂóŽ–€yK¹·‘K5ÉB®ÚÙáŒø¾*±  +  O6úž±¨ÞËo§0–tM¬a˜°Uܧ0 Ûõ`_ËßùÍ=y…õ_-Ýþ]é¾k×<½-f±Ð5;Û ã+4o íŠÃ;$c—”Ÿå CË¿Ù>ß6G§†u‘¹!ñ=Í3Зßó”¿óŽžv˜iv~mƒL¾úf¹šd±HÁKF^ä$NãªÆí†Z6›et±\]G°5·§C·í5þ62Z9y «±ù0ÿœ”ÿœyÒÿç!¿"u$è7–ÿ^ŒE©ù7TN¶ß¸"¦ÊLdüTVåCL™j_–3Úh¤ì]nQînâ(üÈ^ÃûT­Nù²ik¦ùTòåƱ"ýV{z,Ü^7bÅ0´‚J; + +U~TÏÁçÉü©ÿ8ýçKo3yWò/œ¼ƒ$v>sÑ!¿¸ýö T"}M#˜,q_ËÉÖHÒˆl«Ç ¿£çôÞ’e„¨‘ò`Ä¡¹E?Ûß,)(_jÜWzöëÛ#qÏ·M@DÄü t$Ómé·Ìà_Ë¿ùÁïÎ=cÉ~Uü×oÌkŸ#ϨÔ®´mÒ[‰ôȯx´—Ój <üâ +̬¯À±QAVÆI~™š©~ ;Pêv9X`—p giYš©M :ï¶Moç/|…äë[˽^׿9üÕ ¿W¼¼°Ó-â’%PXú¬Å &‰ö™º–m°9üTâN´Í‚`\IGvVZF@O!^£ärGå?οÉ?În<“ç&^é>aŠÖkµÓ|ɤ )žÝI)hÊ@-ByrïÓ(Šµ÷±Y,-$%™qÜÓ’ªHéãœë_ÿœdü†ü¿†O+Ú\i^²ð¹–«¦·‰¥A*ÄñÊÀ£–"´ ¸šæ͉ÜÂðÅ'§(QEsû^+¶L*ÿç|¯¨yNïÊö–s#ØÉ-„:’Nž¥³Dˆ’G’ž§Æ¥ù0ý®=³S\Ø;8 §­µ C¹éJäßþq3Zòÿ˜aü¸Öfô,u)®¥‡Ui”?¢ÞAèóf%¤u?káSA›6P´iX £ôãjðÞ ‘Jïµ6ñÃýkþqóMÑômfÎÏÌ—2ߢ—ÓÖ;oM£hb4•‰.Î@!—\Ù±ïg pñ’­ r­UE)±qß8v¹©~hé-¾­ew§Â–ìþg«Ia•£98¢Sjt 5®_&ñ;ì~Y³%ì¬v3zsZ8¤Ñ¡%E:9ÐíJ©èÃO.ÎEù¯Bx|¼¯l¯mBÙ  5#PFZ»¯ÄXSdê Åaº’#ZÈh)ѺŽAÍç:\‰jlÙ6šhYå2W¿ ƒcC¿ô2OÍOùÈË.]ïó;Êqê1j‘“€½µÍ©²*ŸÕª,ÿL 7€«\Ã4ivâ7PyHˆcJC“JŽ¹³¤YùCÉþhÓ´ò¬GJ:¨‘5™õ-_C¹ô%·,Š ¸ì bN<·”Z +Ð6ò—æ·üâG›4Ø/´Ÿ(è:@ó<Œ5›ÛíwL-A+%~¥¬N³/Â¥Í}¹U2j4/+yŽm)t94ĸYVýî5HÕ¨TL,yS–ò{t¦%¦®Üézfƒm6ŸpÊ˨Üê£C$Š9ŒË¢D( äj¹ao›¼§—¤éVRi¶úT1O,žiõÍâ]z•–Íh÷ ¯Qòï‘ïÏïÊÉÛ­D´Ñ¼—m§~]­Ì×3þhy~]Råž,k+ØË=êª+5‰Wå…Úα·‰´µ°‘eú½Öµ#ÜK¤€ñ׋LŠLtj)bFãja;©1¨ô‚%qȆ$×sR6Y¤i^M»Ò®xÝÅ&£guX£»žX!»µ@_E‰¿L¬£ª÷Ä?(ÿç?çÿ1|¶ÞkѬ4Ø5Y'ÒÅÅÖ­w«¥Ú€©EšÕ-äšj’%SéF^´e§éRXÈcž9.â”r‚k†Š9£¨U1¹=}Pi½0ý"Ýœ¼vãò§ñÃoQò®±¡úV6ö‘Ím<4wr„+¹Ž gŽe‰X§íL‰ CRT¿ ?1uß.ùƒËúW•çŽÄÝéOo{§Ù‰9-mþ­o!F”Íñ)?æc&•q`âÖ8W„±V1râ'A XHÚ89H*Ü¥W E5 ³ÜÛ˜ª·¬­'1À¡QAÈ5µ5ßÃįæë#Ë‹ä£wúVÔ4oõN¶2,†IPó•¹³p‘dSÇbX5m;Ë7y]|—uzòEUT‰“œ6’}a.¤DETy+"·¦Ë"ñZý®F¦Ô ž™‹%л_Ô“Lâ}]9VYXz2µxìv4TýG˜ƒ†)]ª+½ÞK +ë^U9Ò¼t}r/ÎÛ´_<ë>eÒ#¹¼¾¶´ýQÑ_J–imQɵi}TX¤o´­È†Ä¥ŒÀ°Jå%ŠcêA Ùnž=Aük›¥Ø‰d¾»šH­îR;ÍBêæIc„H#^~”hxª³ðÓ¾Àm‰é>hò÷š/5­gκݎ—¬õ­~ëY¸–Óë÷âÕc]2ç“Œ2Íë;#݉sÅ\¨!;[9/}A¢W–B]TpAS@i¿€®ý³XÐ{Í:oßöö÷Í +éa¯/¦#×à¥%iYQVŒÅª7©¶ïJt8&M2;ZÃeùWo¡¯ëV—Os|ºdrÞð¿skl²Í¤?¼hÕ•¤êøây™J(šY¨,dæÌEÔ3NÕÍŠk—×Z¼Fæa=ä"O¯3NÒ…zÆß X +'¯~ƒ%:¿—-¤±±óg›®e¿Ô4h¾¥¨´×wz¤°?;KE¹”Oõ›nR´ p´‹Š^ƒtó¹ ;³:Ô°w ñSr}éA›ÝÚêF–D©˜ÕÌJÖŠP}!zŸ›üÝ>¨ºÏæ +:yÏÌ x¶DÇoÊ­ ]H¾Œ%!Pc(¤™€5,ô +~R’›T +ªÐoӦݳ`‡”˜yÜBŠÒ?Q@PéñãÁEI¥~x™¯µ§ÒfÌ®&¹6ÖÚ~¡ðX¥ÌI)­ÒÝʘ^PªÎÈ~4%Ï0Ô®|¨Ømµ:o°ðÍŽ½lýXàex'ô¤(¨Þš³©b¨ ªre­}Á8Mias¬êú>‘7Ö­¼ÇluígSK[kX-¢˜d‚ÊõpYn`‚Z€”¨XìªÌ°«F¡Jªr %jA.ªá› ¥•¤%*U©a² +­@Øm°?<šj_á?*~[®…¡L­¡ÙÙ<×p'¥fðîK]”z…^]Ýw?d¨\B§}úõÍ›‹OˆY¶*Y@ø?$×±4ßÇ ¼«>§ç­ S¼üµÑ¦‚õe¶M?J2»i— õ‰-ÍÇÖ¦w(! öœU!H9¶ï›ƒI¿¹Ò®umyÛÙð{‹‘Sé‰_ÓUjHØR*z šØÿÎ'Ï¥ùORÒlµG¸üÁÖV+KΆ^kW†e»†?HËéÆb1…²×€êÞÒáü»u*À%T¤­ ©0ÄeHË’ .Uwø³PýÝsÿÔùßæ/'[hQÜE¨ZݵÕô‚[{i“A +Q$/âêâìÇ·WÿŸ„iÿã=?Ê×:¶ñ 1A¹{G=历¯-´÷KC4¯ýèãJ-œˆù¯ùŸèIçFòÐÂÖ³JâÙ!ŸÕ(ñ!ÃQÔÖ»0ôåÔü«eã½A¡øuÀ:^›mn—2Ívâ’5DŽ´–±8gŸО»xŠçüšÿœvý§«\yêÒËGÔï­lt{(¥‰ÒÿP²°š9e´On¬—¤ÈR8¥æ©Á… ÊÃ}.Õ­,£]BÉââ–µÔ¢zÐ$¬ÈÛ$ +ËÅOQÇ}òeùKç 3É–á¿6ôIt­ébÞÓÍ~b•,ï´xžÆâ9cS,Ý?îÄ(ef’G.”\Ú\%²Ü´,b™Ú¥*ÁLˆ™Tô,¡…Gj0Ì°­Ã#™BÈ`J€Â¿<”ùJÑí¼§¦]jÇ®O{)Y£²Y¯µ=2Õ'0‘õfÂÒÒ¬´’¬8ûtOùǯ(ùòëDò¤Þi¾uè‘Ÿ3ÜÛÜO«ê mlÆ(ZÚÌÉsm‘hœ»§v"ª `³o/hš4þ^†MRØêŸX’I]tÉgký=Un"xž!Ž¨y/ÇÄuߎ}VÂ- }[{©î]ä–8EÏÖìÖQDœ•`á+8? vøz­hÀæòW”µ-T× —êSdÛi7wÑ^A '?SP‚ÐL"âê¢8∱yIøS9Çÿ/ ü±ƒÍß\[_Ëß6y³Í—pyFÜëÚMe¢ÞB³¯¬U.àwŽt+è5±1°pÍÅATt‰¤Ò„š•¯®¬¤±¼0Á(B³q‘×Òk˜•ä +6¥[}‰?`—Ø+J,¦yf+lòF#w‡z4Š®áNÃẟ‹aRë/Ësuæí#[Ôc}Ue•µ¾;F¶(ÁÙ¦7‘BÔ“–Ì ööåŸË%ÎByÃÌ>]ÿœ“ó,žiüÌÓlîtÍfÆxF….›¤[_ ´mà·G‰Ô­Ç‘·  æUÔµ-Jî]gPŽæþaˆAY!™#•.âbRkðÓÁ+‹yíî%¶¹FŽh™–XÜeu$0`Ô ‚:dVò´–Â!¦z—ÈÒ<&î8fXd”Pˆãõ[pFM¿(¿ç#<ÛùY£i^Vóö•æ/Ì]"êIítÝwMÒ^ÛˆäXe¶•-¤”¤CzbF¯\CIÔ´:é´t~Ó9ïiðš„j2$ò |]«LK N‘©¥¤—oHcd Y•I/ºÑX†5ì:gYƒþr·þqšçH½×Ì¡´ë¶Š[ÍVÆóM‰¤º Qa70Æ$ ¿A¨Æë åYø®‰ñ;µÕ*ÝiAHوͲ-"ZÂH¨Õv¯BwÈ×æ%÷å‡ç¿—gò‡•üÛa¯MuÖ´æÐuH¦¾µ`Ò»Ž;yD”F;~Ë}“PhHž'Ž¡Å +’¥I£=Žù°ÂÑÙ¦y%pä(âîx° rs~NþWÿÎBþKÝM¤yïÍÍæ_%ƒ/Ô¾¥é¦§íÇë1^Ù°1ìK¸ëJÕk™ý: « ™{m޵̓aɤŽbUˆ‘Ä +lI$ûuÿ=yƒóR]VóÊ^pškS¿£¼«ªi6kj/ÿEauh!‘V)x»sõ*)Q^é›K‹Û{¥[©Õi@øGoÞ™ç_É}oþrº×þr®ÇÈÿšo/˜´l\1 K("ÓocƒN’xdiÚÓr¨NÃzâζå¡4¡Z?ö̓åuh‘ÌÊ’9ƒ9x®Ãj×=Cù—å˜/“Qš=Dy{QÕ}±šöî8$Y-ý.Q#–g "'¦ÄK]±Øœ¹¬< +‰8з& —Cö©Ñ¶ñ¦qOÊ?=~gÊÒŸÉla¶VÔìb’çu¾1^E4+JOª%²·A¿¢JþÖ9‚U'¶Çå¿ã›\Ës|ù51¡¥€¨?¯=®þZ~CjÞtk·òÃϬKlîø$­oN4/ꈃ¹ +9÷8ÜØ_·‰)žÞFŽVÞn• Ü +`5~\ygÌZ"yvúÝ[C²EŠÊ-6æêÚåf¤ŠïjÑÈÐ~Öû×ßA¨ÍY®Æœú”ÎåïùÂïùÅ(5ûkBòZJ¶R‡¸µ½ŸP¹†DâÊh·Ȧ„Wâõb±ÉûÅ,M”P£6Ø꺷—µm2ñ[‚”­9Ã,DúœJJ´e$F]óªy·MÓ/^æãË‘Ekk9c6IT)4t‘@¦ÜH§Ñ†Z¸ÑçiìdŽHßà ,2FXIĉP*¢£0$tÉÏ•u¨f¹Jw¼³mBྐྵafì‹©À¢!õXìÕeOT¿6BÔZž*«@3Éÿ“˜Vÿ•Í­EäÍ[9õ=WXŸÌÉkwp“ê÷V¦4ú„:\%¿«!-8eÜ“ÇŠª¯#.ú±º¸¸±†öPÚ¤ É ñ©T (Y*ÎAj'`1h¦TŒBL]¸Uz+¨§:÷5þ±ÿÌ=tn9tø¤³²¹eÓ¬ç—Ô¹†.l(ä#pÊy'"TíRkžƒÑüŸåý V¹Õt‹(4Û=Zo­X;_>§s€¿î¦šna&PhУ‹—'|æ >-;Sãf“C Uh…Ü‘›ŠƒBXF(‡•~Êô$q9DbB"¯Å©Só§O–Fmlf¹™ci#¶åAêLÞšîë:Ÿ—/tØZÑíçI54ôĬ9ªÊ¡ÙXr À7s@qK] +ôĈc0Iv®Ñ™ ŒA]Á¡£t¦7¨'Õg’Á'K˜bvh䄳DŨ Na[µ+NÙó¯•ït똵[V†oO,ÓJ°F’º‚ +ÔñZòâvú0©§K`òEꤨ„$\ž51±ì3bÚw¦ ™‘Þ'¬eÉ(ªîŒ§}¹nG€Î%ù±äý \µúïÔ½MNÊ)}5ŽãÑŸ”ÐJ‘¹EHYxG\-°ÎôHnç r¤2ú–ä˜YmÂÆX6éJQºšÖ§ @a×5/­éºo™E˜¸¡±çp¶†Å}4Wªô!GFtõ8Õ‹wÇÈí0ÿ$ÔÛ6)¥Ì¶¼¯[„¿Uæíaq+Gë 2¨ŽXß—5àFïl^Í¿;yOË:šÛëze˜´)]/IÔní­tk¤‘}9£^"7w–ÜÌ©FUn\™)i(IåEž(XHÖÎÅQ÷¯ÂÊÛ÷âk™H ±è~ìf±oj’ ì„ %ÄdŠÑ *íÊ ©¨©Ü|=+ï>~]ùQ‚Ûó+Ê‘Ii¦y·”·wv÷²GsoÄ–ª°ÛM"ÖxåXä),¯û#“”„4|>)«Z£™æiÓ¿¶lFêÞV‚mHɪ˜ù¤„P̲ +zQ³U(MEûCÿ•U¨Ácç?<Ï­µýÛÖ[H6q·÷Â3od~®©Î?‰‰R"£0-!Ƙ™íZæŠE *Ôåû—5#¯AߨÍCÄ·aA×}ý±k]^ÚÛJºÒâˆÉ-喇ES”£J’«+“J>2z’ï.ßÚ\þ\_iù^ùîµH Ó§ÑÒ£ˆÔB$Žá$ŠæY$ˆðHZ"$bw¥mz‘A<B²zŠ¢'5Ša”¥*8Ö›Ö†ƒ0;N¿†-©é³^Eè0ÜÇ¥P%±½ûL˨ʮR®Á™"V'}ªw&>pÑ|Õ¨B~_ùfïK·¬'ËPêmÅ=x­Z5šâñ™M‰1A!W¤`ý¥VæÉÞ$¹³õZÌ~å$”ñ" ²nÌJ¨5þ8Ó¶#£}ZîteTYnUËIrÒ*#@ŒãˆÐU‡*rVø¨ÜäSòö飆çDÔ®"Լ㩛‡ó¶±ÎÖ5…¼©6VÚ|¥x¡Sê~âFåIJU™›j¾¼fvY*Ôn<8àïÚ„ÿ.ù°4ܯ¢kÙ <”øPª,ì 1€ o°ï•æ/+Þù¿OÔüÓgq¦®¾÷V‘êú‡é†gôÝAY ô¤…ä1PS„Q +ý¦ãPÊBdpŶ¢ƒRFÀ{žƒ6,òFNX“D„Z‘¿¾õ§¾ûbWß–ºÂÅa§È'µ´Xf¶Ñîš9á7Q£¬“J–e¨wO›:mü3cî Å”ÍJˆu‘87$糤œ”ÀV»«7ò³LÕîn.nõkRúÈk{;y%–çTÔcáskq°c'ÀCq¨QðŽ *¢€°Ü ÷Øû÷͈HVæe +‹n9¹9/ÄÄtžÔÂ-#òÞëóKΖ~hüËÓìm´{;xì´?/µÛ%¬3GIÚæfˆ¬u¡?»ÔCSÖ€ ÅPnz’E+Sß·Ó›ª¼Ä¼‘’ƒ„Làq +i¶ãj§¯Ï:åÇ™t_Ê?,®½ªY=åÛÇ´0Ûx™¥, U†0#$ª,M£;t®-n„V@>ÈÝØ|*ÛÓ±ðÍ’ÕòÜáô9¡¹:‰§Õ­š"#~'Uo_xÅçJqbõ@<öþá£óÆ™¤]D~eLòÇe,öAíÝ‚¼Ï ë²F=#(AÈ;J[á-H4élAÆI jGœ-¬ló…*’‰x‘À +±©ëðŠêmŸÿÕð'æw˜ü»=¢Z=¥úë0z6ÖS_Á Vòi+nѬƒÒvs!•ªcUsóÓËó›^IÔ<“åoËIç½½¦•iæÝ~æÞ\–Þ” ¢Ssë%7‡¡*ÍŸ9|ù¦[ÌMôÚ¡½2$—zrÚÃ-¯á)++ŸP¹<ÍjÖ£¡ùmyŸ!`3ýG5–5Zܪš˜†?;‘Ò‡ pk%£[fD(ãÈ8`¼•¿E¥G^Äp¯;~JþrþVh:]¿äÞ³«hò¤Ö ù\Šêh­®ë$« Œ0Nð©žg< áCYVEƒˆÏ©éÈ}26%Ûç@NËO4¾“5»Ån.#…ÖfÓ¯PËo9GIUfˆ …ª÷ÈWæ§üæ5†•õ_+h:.¥å[N6Ϩù_]Ð-†å¼ñO¯e-áB¤‘É[Ô"Eà½1þ¡} ÿ¥ âÛ8—иWheãSGT‘B*+ŽŠC ©*€Å`¬) ×pv#&1y¿A¸_/iWº¼Ö›ÜA¯O§ÛæGè]ñ‘ÜKhœç5f]Bü!iÕ³¡ù;ó³þqóÌÞnü»òf«ù‡¨ëz—Eô^kºÕhz\–ú´QÜÍ$cK†ñ´—E*]òJsFª¿<‘ézÕ•æž/f¸²Y¢šÛSm5b±`$•ˆ&HýC2Óí!T¨ûX*ÞâÞÒȃŒ‘NaEFT~@ЃñÔ6àÒ£á­0_Ÿ|ëäJøOc}eú +ÎèÉa¤Ùé1[jrzecVEŒÆ"‘yÊi¼Yƒ5NOõ ½3óçÏz5÷’/5_5ùkBÖîWÊú–tH-…‰ŽYíŒWšâA¬:d»URY&àèβ¶ø?UÔ$óDVpißP¶ÕU†ßO†Îý‘ª²5Ìüe©©ûsNÝ›­pfµ¯ÍªYÚi¡mVÓN2-™‚ÂÚÒå’B f–õ%¥6õ$r;ÎDuÏÎ]FûE“CÒt]?LyB¤Úôp³ëS¢¯^;±- §¨US—€SLôWåO䟛ì.íï¿2§Ð´›="€ÛyFÒfºÔ­£;Gªkš‚ýnðHQLè¢1#*–%K!‘Å{¤[ÛËe¬É¦Ïr²z×­§«-õä“+ Dד1çZ°F¢¦„6øζ×jéßT‚6çêÏ|šêgøê^Yˆ= +­Ð+¾þZùÛ[òõ„º¥Ç¥©[<Ê—‘\+\\ÛÄ\»Ï +Ì}lKqg F" ÿ9)ùÒ¿”~kµ×¼½m§ë€š¼Áå˜U]¼Ò’?T5²JÜ[ƒÈû…j +€¼¾!óÚ-¯œï/>¢—Z[KÈ\½²Ïk$Ñì"Y b"$¨èp¤ÐÁ(yãÆß ®Á‚šr*H`•iÖ™#òß’´m{Ê××:<º–›h…¬m´+ø¤×yMtË ß[4w¥]R¡bk¿’ô?ȽCÌß‘ÿ5O%h>cÒ<¹¾¡gåß"êÈ¿˜vFþèIédm>öÙ®ZÑ^DHÛ‚$£¥éVÖR_ßYÍv‹-„šuŻβx£{›BÒJ¤( 8Ú¥ÁÁözz5¤—wu¢Í´¹Œ0Ýj3Ý<:…Å‚y$ÓüÑ*‰æ·Ô^òÖ%–[y ¢“`&±ª²Œ5œV²"Êëp‘LOÆŒñsóZ‚ŒhE>*'pq²¢FáVA(*­É9 ($|@©4=¼6ß ü¿¢ RÂúéµË-3ê2ñßË?«/9}:B‘Då¸ÔMÀßÆ’o ÎKh¿˜ÅüÅù­«y7ÊZ&˜‘iúî•õÉlõIµOTÅ,–>ª"Ic‹IY8«TLßdUŠÞ¥ÌÏqWA%$ä ‚ÁhªjkO ¥NJÇEhzÀÛïÂÉ¥»³»’Ý W1V¿VoR3±Üqªñß|éžnÿœ{¹ó-ý·•?5ìb¾±‚EÔµHná¤lœ×Ô¿0=«8ÕHÜÛ`s µ4fßn£¿¶7([ß< pÖ·_W†…åôÛÓAÉ—â=%H;õ&]ü¦³Ö<µ·CLüÖÒ,Ä°ØkšÍ½†­~ÏêºL%½RpcU!^<[‘B7`Ì«P‚¬Fà +úÎl³¨´È#…Ñh(Ô¸íµXõ®é—^Tò–½s®)›mBWcT㲬»VŽ¡EB0ÜØϬzADíÅE4±ØÔý"{Ëm^qdY®bÛc,h¢”‹1ØþÎlØ„³Ä‹Î:Óq]‰¥kÖ¸ËXµK‰ž¹LI/¦…ev1¸PYT|D…H©é›6 +Ò^ÚñŸÔ¾·,œCúʱ1wôÈåO€|D£P +Ó8'üäe—ç>›tÚ~Ÿ5Æ—äývÚ6½ó”/ æ•ú6O^é¹ÛÊ°¤RÚ™ ‘㔎 @»œZÞ0YyÄÒò;"»ƒMŽõé›:N–4­>=.='Oõä6¶7Ú¢ ‰¢¼vÞZ5‘Ö7BDÿÝ'pŽ6“y{]ò òU¢ù;YÓ<½¦êÖÛØëkú‹zÑC5ÔÿXæVv¯Öd%b,Dm²K¦ZÚa(¶q4ŒÂÎ[âJºÎ^:HX-J˜þúkSȆÅ`†IU +‚ä"™TUê*KÐïÐ`m@óƒw=†Ÿ}§i)[k×ÿW&tbŠö·76Þ§ @-Ãá¯*ôå:?“uÊÍ6- Mó^MÓ’âKÍ7Ï:…°µ:¶¡pÊ°È/%±‘ÚÈûJ´Ù9zbjVsÏm¦\ØÛËhCutÖ¥ŒÑø÷’hà +ÐÐu®1Y”•Rà†ïQÒ‡®²òe¿˜´iìô}fêþ8fšäÙ¥¤ÏmÅÂzücvUBª9£Q—à¥uOùÅ}7Êþa}cPмѭËko«cfñÜ&”— vYïd€„Ï*Ó›±õ}±¨ß¶³y`ö…ÅÈ…æž+T·ib F¢;R r4åÓá#|¾r¼BLQ :ǹPZ=À9 +Ôïã{ð}$ŽXI!Uü-ë 9MÕG¾ùèÿ%ùÓCüÓÒ¯5­9„¯ntö‚w…浚ÖS ‘ÎöÏ •ªÐì­I—x¾aKé$[xd‘ãDŠa@ †-ê|&• ÝTøÌ×6Ÿ£ãÓ¤yóyžíQ^J•¢*Tñ&œƒVGws6ŠÌšªE NÍÆXÀn+'©RFâ¬ìr)%íµ½»[¼eˆ•õ¨Är J/ +Ê@Þ£lØ‚Ç5´ž•Ôf&£2†½+ØÔv÷Î;ç,Ëavš‰ú¥ÒÝÌÂÍ£€“HX*¸æì¤- T‡¶¸‰_²Iâ}«› ¬/’™™åGž6_Ü8Œ7 *Ÿ±¶â›çó‹qå|˯½ÑŠW´•dM3•µÄ¢Yªƒ¬‚E `ц£š ¥bµ¡" ƒCLÙ«%¼¬ˆ#>¢*9¥U}^-E$Põ?1œÍZ©¶V6íkqo¬‹¦¼º„fžÞâ4-/1™! +â‘îsd•«zd‘½A§ˆÍ‰ÜRãœÔÅ#rÂHÔÒBT¹uÞ¹Ñt?>ùjÚ+é›LÖü¿ª\B©¤êWKÍ´—QÁ+^Yª1DŒáÏ`Ÿ‰£øAÇ™ƒD†ëÑ·>>ôé› ¥³†¶:¦·$Ún¡é¨lžIdB±In~¯˜ÁãUf Jmµ};ec౸ó_˜#“F×¥·“QÓ|µ}pì#8Ä$}AÐ2ź3ž^—ƒŽØgõ8 ‚ÙN£KM@ò¸·efŒÇP¾ ˜C‘Sº±~™tŠ õ»}ôÄ/½(çš}:K«1eéKgõ¶“ëGêIiŨ´ bi†^iºòÇ©ùeu«Ý÷Dµ7š=¼z”‚ía†ãêÑ^Ü,ªÅ2ñPþè9m•v–+#½Œ²ÚýX—d‰¦xÏ + Ž2íP¥ÈZS‘9˜/#Àž#ì’(OÝ\Væk‹ão%­ìÏ<0ƶÑÌíÅZ5ue…™Ër +ª’OJñÈõΣi¬ßXè~HÔ羺Ñìmo-⺼--س·’tš9LÓ£3"«Æ +<ŒTñb–k›¦„z²M"/U›§ËŠ–;ô ×éʉ$‰U­g·ãqôý@GÚ,K™ABIëJS|+iš-Ÿ—çX¬õm:6júIoêÞ;=É•• "ŽÊ‰Ud÷8ÝÃȲ%$mš£â¾õßñÍ•y¬RÛ #”FUVXÌ,8Ðñ «¿Riôa†¡qå-jozb»¶­5Œ·1ˆ j-ÍÃÇ"—(9j:ö¥3Å—\HTŽ.œ¸ûl9ómµœWQ!’âËuK{>ñP´() +ȳE+óÂ_ùɯÌ/ÈU§åW’õ;ûÿ=ÐhSØjOk(Óíf€0¸WÓ(¨«%±©J|A¸±#.m-V êÆ7 ånÊQHnGoŠ§áê=óa.¡z“ú_èñÃ,(±;ÅÌúÅXŸRBìHsP (6é\‡éÚG™ÿ4¼Ëåùç+–¼•am·šdrÆ<Á¬Bå½›™&håy(XR¿ f8VOM «Gj’MXžç¨fÆĦæP$-ð©î¯ Èø¨ksÍ>bÿYËåíßN¾ó6­¨zO ‘XXXCé"¤æÎÚI@fzzkNG¯¼‹ãH"Ò°V© +ߥ|zW¯|Øœ–÷ªª[àp´q¸´T“B¤ßO†ysóGRóç›—GÔôï1ZÜÙêpÝ)ó<ÓA1ºÏ½¼&2,ŠñšD›‹)PÁ–GVÚ9bâËÅX1Bˆ U †©$žl›Ïçÿ9jIiæé|Ç«Ïæ="9cŠúyê–öó€%¸,\Ü»±&¹Öåç.­ùVç"õÌ0Éç +Õ†›¯Þ_ÜK,v·3%©kSêÅ·iL’³Q– OˆÈŸW:P½ÔŒöž¢¤R[G*8D„±f –bhEw;â’O4©I#8…JD¬I…‹QkÐrbiïŸÿÖùæ†-­\)î}6+êÊüÉ¡=6>–ë’$LY‰§*`6â¿Ï£³²]ÝËuÇà<¥ä´€ ð© ^ƒ>U·S½iµp²2¹liÐPr3-Ä· `BñÄû3Åð¸ë\àõ$'½)â=ò°`µ»ŽÍ” +îµú6ñÈÍ÷”-5í`ù—Pò¾•«jrªñÕ.¬­ngd Ä~ý¹øE>×Lh„çQ‰¹­Ò¬F&W~ã/¹¯@•*€Àª„Á˜»ò +8€´¨ Ö¦¦µíMúöæ+mcÎg•cý's¨E1m5ë‘ÙÄÜZ6´¤Ÿ§/¬*ៈ<÷cèÝwò‹YòÔÞyºü¹õu7yŽ { ‹ÝC›‹™­­$¶†êÚîÍ 5At“„–™†ÌªÞ¡Ëk:¬ÓëÖÚd\EvG:Úé±DÞ´‰p(°'â°þðÊÄ<þØ6šûQÕf¼²°‚;¥–(Éú½„0È °†¼øÀŸ#BÓ~" ¹cñg6üÀòKZþgiþ]×f‹Ë–óÇiÉê.£k`²r¤uµæBx&í¿Å×ЉEíLáœDÖ¿4*µM;òöËD×m<µæ¤ŠóYŽ³Õ “^ú»#,|¡G‚Yg +eú¼'÷—ïRY€¿»]ëá…š7üæ.£¬y›G¶ü£ÖuÖÖ¯5gý#cç t½ÐN‹qrðÅ,€_»úÑÄÑ1ú´qsrÊ£ìà)- Ž$H]‰e‘) +½jk½jL¬>Ôÿ,Îgnßâ;yì%ÔG¸õmåhäÚÃ,*Ì× ÊPÄ1é+OùȯÊo.ØØ[þzê^±Ö¦µÔu1®ynA{£Í>›p±5¤Q8{د”·÷LŒŸ Rfû8tþNžM¨ÝÚÚ‡³{ëWúÄs$Ä1Q mmê©‘N ÄŽô14ÑÖêî pÐ5ÄEœËÌ‚@Ž +»°~>&ƒ 3Z_[¤rÜÄéÜŒr6ÊüM ÛcWGŽßÍš +뺬–—4p\FÐÜBA2×’±ê>ÎÇ +ÓFº–Ëë°ëJ”âá¾ÑZT)é]‰Ûâ1Hc=Hñ*hhv48´ÚF“æ +ûɾo´]CDÔ¢{{ÛG$dmˆºxà"(É´¾¡ñy#?û¥Gß›$zf£o ‘Óo™^ÝÙ'¶,²:³Æº’5•£ÔóeVoå4®yÏÿ”Zßüã6‹&‘æ›ãæ¿Ê;½FÚ_.ݺKy«Yj1‚`‹Rà·KRyZ?Þ+p§œ0Õ|ºú"G-!»·¸jÅwñ”cuáåÔ‘S¶Äo›µ?“ê/æ[]&×JÕck©¡6²X]F²ÜE P)ã9™`ýËŒ‡Fãñ@RÍËßšzï’´›-p\\ê×V·º5þ‘ ×i¥Y[Eê„’¬Ekû‡å¬© _ˆ)Á›jº´6vš]éVàÐýXÊÄÖ5«"?Çé.$8ªJH¥1Î[£ôÞµÚ›~Ì^cµÒ!»Ð|¼ÓE$Ò£j—­%$i£Vˆ¤F¥RŽÃ›mR)MáŸcÒµGþqßòA–k½RâÚãVÖ,Bͨ ¯J._U['*¦BàË!f9Úœw yqg¦Çsm¦Í+];ð¹½cÁŠ©Þ5M"0f˜’z +S¾ä> ’Aç½E+P(iC©½gr’Ië^½ëßåžÔÿœVü£Ö?!?*ô_$y’t¿ÕýYu Zæ)¤xä¹¹QÅdU?¢WzЫ‰ZÜM£_ú×1U‰W’0H+Ph ;wÆàýjôêÓ›»xV(cD!8â§HDJŠM@;ùÝ<ó$:ç•o/mãŠ;UPÓ]R4ž:O©Pâ?ùàï2ë0jvΖVq¬ Ã$—‚(♜«$ôÔ)©bvÌMq·Ý_*¼Ò©ˆDõ%,îT…UäÄP¶Ùç½SÌwl“yDYÉ=õìœtß®³ˆãºd)“=¿3éVè+A·jÆÞy¤P’;2­8‚I‚‚ŸFlF0¢dTª³C9¥*i¾øA.¬jùÎ`“Ûò†ùb’âkYH¡WMš;šÆ36I-ÊZÛÜ\s1¸ajäòZC¤u¨ß<Ïù߬]þ_é Ú³É?”/ooí¢ô'Ic‚Kd’ˆZËFÖ‘\²J¦•b¯\½È¦æ>Y°(D‘}Zî)Ɔ¨Kg%ó‡è*iz‡˜<¢Ðk“ÌcárË >„ЉQ#ZÆîÊèhE:·¾\jÌê© ›µ²Yå^6Rê(¬À X—Ç!@]ɯC§Ëi¡ùoËñytË/™¼ûþ‹åƹ¹ôEß&¹åqpdŠã‚@KS‘çñ’k°‹XÒFVˆ‹P9³Ô´FÕæÁÚ®§Cú:Jå}D:š#|2„!’7bCÆ ›íCC»“Hò…‡•.¼¹åîZ–¯§kPéžwó×ïå¿Õìà-{kg8i4ø¥xŠ£Æ¼º£’÷QÚÛ2Z‡ŠáÛ‹ÏMÉw<÷t5;gEüü…½úÎù§ùþò_ÁÉ”ü—¦zf>µ)çµýÜ1)õ„Œ¨,äb 7¨Ë_…GÅôí^Í3bã]¿ž*3-ƒ2Ѥ Èì©é–±P*'`NùëØüÙu=ÌÞ[ŠßLV¡Lé2Ú‘ø­¼¡A/÷jŒT;uÜåu¹ÝLTQ +Æ/ROM² Aåé€M½Iß6ÿ×ùw­ðmføÊ ¼“‚ ¨¨4OLú-æ §k†a°b8’*sÜöìxó²ù¯5)%’©=Péóe¨éŸ*Ž+¢[#H²ºó­HØü4ï\†kWÞ¡º£ôá* ôoP0!” +xõÎG›%cMQlŠ€Ö„ï¹5­pš Mþ°T© +«²Ð +AØ›6ßY$Ké°æÍ^7vã×`:k\0½×lt6ó_Õ&0Xi–ò^_ÜqgXa€vâÐ*’{TÐf͉iVî"‘í>±È‡f@ÍHÖˆÄÊä|5¡î)\òv½ÿ9£ùÅù¯Gå¿ùǯ$ê>TÔšâÂÓó*öÍäRM#ØÁqiÞŠ I¸3-e5BËb ¯ZÃu§‡ûy©Kòý—fÒ¼ÀÚ”êÚš\éóF×–“ð†³É*”µ•}>+ÄúnëÍnrQåÏÈÏÉßÊ/=i>r×5}cXó›ô+Í?[†ÿSŸëËiµõî°[$ÒĆhDiè“)ª…)S!šu:Åì·:sHm¡·‰¦µ¹’¯/ÞzÂĨwâ\}¡ÈàÈ °UúÝÄÞ¤i2!³RÑ\I©fVôäh7$‚Ãb+tÿ+ØYÙ_Écc%Œ6—Ïqq©J'»]5aER=R†`y3*•^TþOÿÎ./¥ó&Ÿåm.ù{SÕ&¾‡Í—ê'JŽ.-゜ʗñ”-ê=Äž›µ#7'ÛÚYj1ò˜KmMIµõgKU2Æ—QE Qñ'Å@ß (dÉ9i<6á‚5ÁRëpÜ•éÛz@zbºmœú½å¼vóÅæ¯VM/@†Ñ-#–{{F0³Ë(–/Wªò”.P®äƒ_#ùÏÊŸ™>i>fÑÛJüÂó>­m{åɳÜéÖ3ÙØéqeÆk{˜ZkxîÖ¯e•‘eUá +«mWiÚ.£¬Ë¤J÷wšˆ)¦ZÚ¬R4Ò)Ubãhö,V­C]ªrì4ûÍNê;^æêàˆím ORI8…]÷Øoaæ¤è7^GÑ´'¾º7²j7ãW1["£„øãÓœÀ>âÄÌ­UåÊŸKgóŸží|£4Ÿ—~EÓ´‹>iõ'¾óU½ž–Ö–q]út†6‘™b– ò2˜ø³;²&­c¤èùRK¯å{ÕÔ!–=A^ÚN?»T{k~tj¬ªô#zSÅ«A†4yà–b·?ZOô¦ÄÑP‡E ¢‘È2¶ýi‘ß2K«y‹\¸–5·‡WúÈéד Äd€/¨5‡?â#zÆ>ÕXÔä XÐ4üÁæ™ÿ6Sò÷—nôI`>dò¥Åݶ·— ékêj‡ZºŒñxa¾xã´t{v^Nœ˜–ÂÝZkŸ4kR %‘õ;›£ q]ÏÍcˆ|1§Ög˜‚ü?@ÄpÝÄÚµó\Hß¾¸zqw%vT¤®Æ€mñ€ë‚<ÛåÛŸ#êúï“tß3Ü»‘§é·z\L°%úº!š2¶ÂH‘a˜µßãì7c‘_Í/$yOGüâÕÏ–|Ù«y—_Ö¡ÓtOð¬ñYé:¿–$´·³V¹¿±í´õ´¹iXjìcáéñ“‘æ=+^ò§¬y6 Ù9Ì6·öÀªI3¨Ix©ùoç köÖ¾£ ³Kßѯyu-µ­µÈ–O®1Rm!oY¢ÖÞ[‰õë½f—CÔâ‘Ζ—2s2J,6Á⛧Ö,‘Ðá…‰¦Ã6§=—/¨7/ôD¹~ѤhÒñDÞ ™¢R§Àb:˜º–«rþgž ¿©ýbçWº„×3Imp*\ÁÔÎO¦d‹üª-yÿùÇ›#æè#µüº‹]òß’VÿVÕ5eó +\Á«Ïq¦jV—W±>¥M©BÆf.p®HY=>n®n$yüÃõd¥Ê•–ãR1ÜÛ—wz£¿®Âð»ÏÂÆ•`~ ˆf¿{dKv$õr“•ä`hÆGIkñNÛŽã®tX*î|ípëqç(Fƒj>©«êÞÆ餚8Ò2°ŠÝJ«-þ.† X'¦üÉåM?[Ö4¯:ywóÒâÒÏK·q«o.3^ˆâºhâexá†ôåoN[ŸX …ŒmêÊì²}òû^ׯ¤‚]f(tÎ"cRæó…ʨ‘£h Ëq*<¤–@ô@X!U9Ñ|ªšÅÛ-ö«k¦éÖ¢—º”Ì®#<”Eyf<¤ÛÓV%0øQ¸ño3~Oý_B‹Í^Q¹¹Õ´Ë¹æ†ÂWµ†ÜÝ-¿?U „]M9 é±nQŠRFþL~rèþyÐt‹[R»ÕS\¸¾‡DÕo,¬,u+ĵYdç.™auq:ü0Hyú1‚ªˆ¸UÑVÖÙuÇžkÝ2y'ŽÛU6‹¢, "™ÙWÅUwÂ;›dŽ³[³=¹b±Hê˜üC7Ó¾Ù‚k;vá/ªmÏÛŒ7-J^ƒ~†‡ß:òXÛ$&ÓTô5} VíuäZ,¶÷KöÁRáÇÄ­>*×û8¦%®—V“\}oM¾Šh¦”V5guu7$qmºà|;²ó½•õ£]JÓú‚(¯5 y$Y¿G´>Œ–¼iä•cÞ‚†›Ÿ2~k~Fþb~[kz}ï冄<õå³0ŽâÔÒÇR´òÜЬrè°,Þ™Dh8JÓ:'äŸÌvW>±ê²š‘ÛÞA+<‚СE‹b*D ä7§ZeÔƒP{R£ÀŽ˜K®.–º„öÚÒÝÙ+ŸªÜOÃ+ ­ F’HªO³,ÿœHüºü¦ó¯›5üͧÞh}ßËúv­ ºê1éà¬âYZÞy¨9Ž øEz _CìŸPšK‹hÛ÷7w­Z‡éË”D%q ŒÁ™B±ZìHÐý'¢ yž +kñR½ÿö*¶ 6’Ÿ¯2phÔÈ#Fä õ©¥HïAŽ½ºBL +ƒán`ìI·JwÆâ“[IçB5mª@í×6æ?/yçB›@¬/â<|RT ÌŠxÈ€2†‰¾ïq¶¾t¶}<·nx‰4âÜVžÙ°L õˆä¥T¡ Î;òÛ•;mžTüıּ…ù‹?™î<Ó&¥¦ßéõÒ<¸Ö©6SÃ)ýÛË <² 7ÿ/liµ |sbIrKÁABj€Šíóß¡Éßè‹ÝCMÐoLÂÂ{[Ñw0ÅÅ„ˆŽ@‘!AY¸ +)ÛÀô°¥ˆ=KPm› ô™Þ)VáxF¥äDg«£0Œ°C¹wó–ù†m#Aó6…æKË{9&Ô ¼ 5Ç’X®,’8‘㊕iÐ¥C†¯³æ^üU"‡`i¿nÇ62éI+Í‘#±QðòCW¯ÂXžxÓEÐ4ß(yŸÍ¾LÒÿÓ´*ÛR¿Öü¡¨*)½³k{HÖîbÞ”²CŪ>2§ˆ¡Åã™C,’¯ÅA麼Jô$P‚=³cì£Ô4ó¯½Q¾µWoR(ƒ1î~a½ó®yA»Ñ/¼§©Ø“ÄVš¬: âF'ôå6öâPˆß.òÛû¢ûXØ?vEıóŒr»/>&hhH͇–fmE䶰…-/.ÄÓ40Ì×SÈHXáXÆÜV«üÛ +z Ë7v–sÊ4ÿWE¼ó ûÜÊeH®íæ³<Ü£÷ +-ˆ’åÚ2»¯=”ƒ¯ûÁÎÈí)’%q#8V$Xø©¯Ù ¯‰¦jï_l+šÛ\¿»Õ¯î’S5©xïe<¾¿,û-j@¥7®Â¸§˜“ͺù¿Í—6—¾ˆ—¶÷Ç'ï&«ñ4ÌÃ÷Žì«B>2Ý+ñbs¥ë]ܽÁ)qf¹šú›IZŠV¡­74Í.µ9µ–+µAjà°0ª7ÄB†¥XÖµñ®pícóÏÖÚ/™|ñæ{(uzú-/HÓ¼¡o?©ú*GoJh׋¼¥ÅÄVï^î>7 P$i^(Q9’v©<Žÿ×6U¬‘ZNL²Ì"h%—ˆaé“PÈ„f”c’É_È«¯"è:…Ϙµ¸Ö|Ä.ÎúÜs»zÈG¢Gé°ýÚú­Vþ3þE(­‚µÃúr¯©hÌN¿´[0`)SÔód†ÛMÔ¼«èjÚ‹%–•})Jk+ÛÄTõ-g<…ã4?&<ºšêZ=ï—4Ó«Kxšœ—ɧhÚ-Íä’É^ÞTÀÏ!C©nfe $ËôTZ|js4vÚMãp…ÌV·7AH$7ÔäœÈ ƒPXÐíCÓú±Ž8n&uLHø@ГjŽ»V•ÂRçÕà¦e FHí£ƒ‚\9•Ýœƒñ[ýf¦ÞUÿœ¬üΗÈÑ[þZèžg›W×›M´ÓüË<>œ6öpÇ5Äÿ£ÿv¤u3qyÝœxò|$Þ7­ÁÙÀ%\¬i 3Rì %{–4ý¬C +¦”Ĥ´BD”2#5h­ÜŠ7PØàïùÁ¯ùÆ[¿7Ê?8|ѧGu¢~ûMÒí®y»K~LlgT…Ñø¤m^M±b|”É$Ûû°ÔV=È߈ÿ‚'6šÚ[yM¼ÈVPÜY ùPgvów›uiõícO¸´Š;½­¬´¥¶¸¶’Yo®ÈÕ1Š¾™PC’ JÔ|AéC¿LØ6+).b™¹ú  ÉcøÇ'êo´À +‘à7Û'ošôÛÿ-j¾ZúËÉæ=.é ý&¶Ó«Eu5Ì6Å]iè4d°@Þ¿ñ©#E0M$˜Ò´$Pq(5äÛ@ÍŸÿÐùo®Çbõ@*YT’x…b oà}óTL­'¤§aé…­hª}³ç×ç~ÚªðBŠ¼"XØ–àŠ·ØS>U3Ð¥HmËIö’œ‡&ßé霯TÓ5÷½µŠ—©7×<‰¬V¾£D¼I¦Í3†õ߶rüÙ&‚õ$‰¥mãˆ|`x|À¯_ JýžÇêÖ‘H÷Qs©qËìÌH + Í›i&mZ{¨,¥{Xá†au*!—ýJ<‹ÅM@ ,X|¶9çέ?óGó~ÓÌ#Êڥǒ¿+-¼»q¬yŸÎßR¶ÖλgiÉ„i²H|즡¤áñ +p¨­>ÎîöàEgn×2yLj‚8”»¹*EUIcÐIÇÁo=˘íãi\+ÈU± —v ìª '°Éå‹ùžÚÊþÃIÖÞÅõxÂÏ¥æIf…ÝR£1©T \§%*Ô-n/¼sþq'ò£ÍnòÜù¿ÏQhº¯œ4ǵ›Êkiw£\†^ã™ú¾—q´\I,ež$‰Û“B²†‘ØŸyZû]XßDòî¬mdÔ%ˆG§ò4÷@úq˜ÊÆUY–V@Ü”ñ, âÔ#tÝGU·‚}7N¸dKþ)-ªTú¬*‹ACF£²ÔoÅ™z1E«[ùÛUÖõ/3y›CãLö@¤z<–+k4‘:/¨Ï±’j7*Hä±S¼™%×¼‡ÿ9æ§æ¿Ík o;XjwðhWý)æ%òLš<l·/ Ñ5µÖ '‹÷îŠff¾3ºÌ¼‡ê²êºªj~c—I:|rI/Õ$†çѤ°jìír -»ñý¬eÁ–x^åáHã.âY a +jcEwfãYZ“ãö±·ñémlÐÜyr(¯m£µ¸ŽøKE + +¤JpœørCF•3гy{òÓX¾K1ù"ÂÓÍ–A$Ž¬æ(HQ±Ú]Ë*ÌÖ|q‡V½áèÕcÓ#¾±Öt8ÍݸYíôÛÓ¨G7ƪìÁ"eDC‘äTô 8ãZÚKhõ c¡c‘ ˜HŒË"‡SM¾†£q±®%%­ºßN¾½Þ˜àêº\MqèiêüII6øŒìÕ¤f«ÄD“@žjÿœqò5®±å:ùp^ÚëU»Û3M5Æ›£Â#¸Imf†T¹Xb¡][ãæ$«‰§Ûé¶êâ—Ò $MOIhn’;N.5žAéý½ÊðzŽ49¼6öÖ×Ë4wîÞ½ YAˆ!DÅGǽ8±ú1-Ìz®˜×~YÒ®áÔ|³©Qž6”Iõi$ •DÍ–0cW‘x€ÛñÎ}¡ùÓóVãZÔ¼«ùg{§y·òªöÖQ£yƒN¸±‘íš)eŠ{uk³,ÒÜ(Xà¬Ãƒ+ú†T4\FÛ\Ô4‹[­9"»²—Öã ±—„<ˆ#²£ðû EWÛ£yom-„sm+s{rI‰œ+ ~ · ®ÁZ•Û çÕµ{ÝK@òW•Ì6—£D]=ÚÒðIÎæ㉔<ÈhüÝW÷™NØM \yÓÏ^tò—äçéM-üסþW:ÏskW+k¬Jö€NZ`!¹ôæHë ˜Åð±tøÔ!­ýÝçé(t-Ûþ‹•ìbÓ®ãÓ¯…Äwž¢úÏÎHÜ©9GÈЊuÁWw“Ã(·Ó£"âÖ {¨­'iàG%Ï7©v™+E}¨´ .º¾ó-õµÝý—7Ó#MîØ´Æ­–ŠÐ˜R@MV»§ÁÐW4é25ï˽#Ì‹åÄ—ÍþV·¸ò¥÷“¤ÕRTiæçM{%Û}V&–EKˆž¾¤mÆ.AjXžþ÷PW¶°Õ f¿VšÛ‰I#ôä’ªá֜כPÐÒ¸_*LŒc™J´d£+ + î¾%¬Û ue°òä)«M­zPÈ¥d{¿Ü"ÉÊRÒ†B¬ÜhU‡ ÕÙcÂ?ÏÏ˳ÿ9å¿2ùòròÅ5o0Zèöº×”Ú;95MB==cž¼Ô¥’f¶–Ø—U/r1¸ý¨ mmN§rÖ¶*5ËûÙdôÒn¦¹niO&OQñtbßZ©¬×E#¶¬óHÄ#Vi6Ö”Þ¾ÞÿÊý{\òy_ZÒ“X¼³²’;]>v2IlªæK~)2G;Q.”­*¦¹Ì¿çüíùÕä?ÌÿÌùÇß5Ïž5O(Cm6ƒõû•¹´·X—6 wJ#¸˜Ma]œE"2žŒ +ž]Ô ø¬çÓ¿HüÒ•+!wP§‚˜¦PÍ@KqçE§!—gs,2pT‡ †2ªæ’-Ä:° NŒGl>Ñ¿OY5l4¯©YùŠyô­?P£Ü[i×÷‘IXI¸&ë‰E2ñI8Ô„j«/S³×?3ô_>ùbO2Ge¦é~uÕ×HÖ5‹{‹ÿ ^\¥ÄÍå_DN=i¹J±µôh²¸V¹c”2jÞ™ŠÚx$¼*âZŽ&9‚‰Z¤VÆwù höÞqÔ|Íùiqgwª%”vWZ­­¤P0$‰kiíô2ÉÔ!8 yŠjòà•³]èÝÀ|¹ Z­Ý#ÓŠHSëÅa¢Y8<Ë~*–s°‘i¯u{–”§Q¹šEµ†bú²ÉðGé +f'  {ðßÎ[פÓ`¼×5!¨Í¤\6™`Ú¾•¦iâá®c–â/ÞÜÄéOM‚ü+x*0Î]ùÏåŸÏ ü¿æk¿2?˜õ;ßðãÿˆ!ò݆“raÔío>¥I%‹ÕKv(biÝÈBÁ*‰ ß“oï|¸š¦½,O$ ÖzP6Öe‘”M#\F×2ÜÚȸ‰`uåU…K§—®/ü¿6¡«»YMg'Ô4¨¾¯g3LIîydžVMAôä;ª¥QóBÙyŸTÒ¼¯¤¤W6wSOgå›} ßN†+ùÒ^w²Bœ½T("˜=IäÊw†Þbó“2µÍÊr鉫ÙþdͨiþNÐÍž­¾¥¦£x²I=ÌÖ Ü3[zkm*2°«9et_ËwŽµ¦y{Mol­å™tãP¼’Ûı_Ü+²^”PË +L…eÙ@;½Iµht½:V¼µÿ9Ý¡ èÖå <±¡Pä²ú•V¨jŒåÿš>IÓmu Û»VãV‚+sq§q§Íkpåe´w *#“ɶš¯]ö_Ê:¶³ù)¬Ã£êzŽ¡¯~VÍku5½þ¯§Í§_èLš„‚Þæ;‹x®fUi[Ági**/©„z¥þ•¦ùŠòmmüÁ§É(µ9¢ž'–V?¦)X°“ínK)Z€¼Ãk¥YkVú%ûê–Hä[ßK¶’Uþfˆ³ñ'ÑÎQcÍvÁ +zl&ŠúÎœ¾ ¥eˆ;Ò_7åÏüÕùU¬hQB¾PÔ¬šóN[È,?}$QÛ›yN˜ër$KavÞ¤,ɧÄ;DkRç—üɬ‹3ËÚL—sýeÌpGeê^O Ž‘+Û~æ)=%š¼R$ôËq5ä@XiZ…õÃézE±¿’k ´’‚BrU(¯Â«°*­:ÇË–w^DÓîµÈ§}BæàÉ0úí»ÝÝݲ+È&¸¹³SYj *Ò9¯GÝ”²OÊŸÊ_(y{Ëz_Ÿ4«MKWÓ åþ›¨ù¤¦þâyË+êz®¥a#“=ÃÖ(ä«T#¯"§·^ò5÷–´Éãi¯5kŸI®4û;ûk‹‹ÙÚ,ÎóMmÀAX·×¼Ê¢÷F±vŽM&×VInë< Ila†æÚÙ$梲†'jnVº %`Ñ-ouËÕ¾Óí$i_@³½g¹XæeI'GŽ‹xˆ}Oˆš|$S|ou%üÚß—³´½]Çm|–wb]7‘Ä—2¬aïÛ ‰Le””ÂÉÛoο1Øèß™Ÿ•þ`ƒËú?˜µX5KÍXὶZ‘9ÜÃ-ÔÖÄ pLîŒÖ6Œ'#T (Òìî´I.îôømc±ž2ô¿735„ÒF…åt7ÊÑÇÁ¶éöŠ•X!’]J}0E ¢Dï"^=¤³-³Ê‘®#õ&‡÷J•`†¡£å¿8ù[Í–±§ŽZUª\H/$[8Dl× irÖÞ¬K9h÷…ÏÚ4zgüÍÑ¿;?'ÿ6üÝù—䙧óŽƒwåëÏWQ¿´¾Õ4KKxog¸»ÓÃèËnfimÛÕ·šxâgzÏÉ\”#L½³Ô.’Ø4Wf‘Y™" "4¡d #ª°U©Œòj‚½p²XÌR7”;w¡ uè?=u]LÔ¼­ Éq}¢kAªj'QeYäÔcEoQT`U #àgd Pç#¾ÿŸ‘y¯Ë·ÓyCò/@[_-ÝL.æ¾Ômâ:õíêÁÅd“ƒOoJéˆU‹C!RpÖ?6Ko¥M¤ÎòjvÓÜ Nynäw"üÄ¡ßÓ‘ç¶oÞ‰ÌFGO‡ †ñy³W‡ËåO¬I&˜×k© Y%•¡[¥ˆÆd3˜9@\§2£ ¤‚?ò—É:œ¤Ó`ÓüÀö~hÔd»¤Ñ´Ž–ÏAž[êÆÜQËFOW˜v|;üâåwä'æ.iåï)y§Ì°þl:]Þy—ξ\Ô$s ¬—-wu;«G2Hd–ÞTÉ“+ +—`¯•|¸š”šaÓuhãÕ57»†+x½I w6æD9+:ñ­Wb1ºF‰§5„jpÅ=ü’Âѹw· +£‹J#ˆÕ_•¦\Š¨Ú°_­ù‡Dó“iz5ëkwïxX}æŠòìÊ>‚ê òô4a¹|>;Ѽùùåù%ùgùeùkæCÌz¬ÚÌCRòäö7Ùꚣޫ¥¼Ð]4w<¬Iê$n¡I_ &³»]vH´¹áÕ¥21[袖â+†j|\n Vb #t­{x—Íoèßµ­¤«{ÅøE4*å%5 *²*µP}³§ùÕ´¿#ùB²ó¥¥ÝÕÝÂI>4œCÝÝÄìד¤Ò¨•øÇþŽ‹ÀŸÞ»-3ÚŸó˜žRÿœnògåcùóJƒÎ^vXEçœ<»«ÜYê—V—Úµ¬×“^O ×FóÕ¶¹‘–ÜPD"’E3`ÂY­i¡ìá°ólZ§Õu5“PM>9d…d¿àènå©Ô`Ÿï:Ž$b§™®©l4Ø ¶¥夯é?èùO#˜›‰ ñañ¸(¾• ê9–<…ùK«yr_¨y÷O¹¾ºx®®U’huY.%€úqn*$%¨qI3>ÜŠšƒù)¨ÿÎ)yæìü‹æóqæ;›KYïŸP³žÓSž'Š+wµi# ÊÔÎÞ¬¶à¿©3‚fßÛÈ\—Ë÷7Éç+ LÌ~·vTª_ÖC$q´7×*dPïñ¼QIqö”)†Ekä¿*]yj{ë3é×[ÃåÊZßP†Y!O܈ï$·ŠhÖY8¹€K5Q™PÇF&Þ`òV©¬Y¶•ùzÚOš$Ž'K³y§F÷¾¤“9ç39¬R˜«ñʉ)D*2aæË}?Ϋå&¿¡êÚäðÿ§ivÐ짾¶š;‘ç—5H¢¶Õî= fXg)ªÉû¾Dª²‡b¿Äs$xçWÓdý1å V[i!ôm¹ú­Â牄MT•1FQ³FŒøEy¤ Ý*ÆúH]¢6È?µéÆYWaRªÈS“u둬ñËÔ¨mÖ ŠŽ»`ÿ)ù>H¼›ko'; nœ´×4f©èçßz×Ç í¼•wua±Àè4ˆ÷ª@4iÔS¾lÕ§#J5v¡¥ŒØ"+y”ó•KTµGjÖ´ðéž ÿŸƒ~qk_óúùeå Ѷºò½Þ¡¨[©C=µÄ’¬¶* ©T+G«oU^„ŒŠÜÙÍg1·˜pD‚ †þ#6 †Þöúò+k;vžK– D¼™äc@:îFÙ üŠò÷æ'?,í|Ù¬y‚÷X¼:–s§Ï%ÔβYÂêðÄÎy(TúNüKƒÈîq±YÏ<©´’HBFˆ —v¥­I&”Ì&ƒ\Øj‘Z[ÜʬˆRל¡ªb”,ŠŠH?ÞñŠ×ß:Gžt}[ÌCHÔŪÝéòÁyoo#DÒM7ìbÔÃ$îTTS%;•n´ëÛa šÚX#–¢&J+2|2q$@o»¦lBNW3Ì=Hœòfr Ü$âEiµwöÎç¯ËY|Åùû•ÕÆõ]d]I9Xmí^! Í»ú +cŒ‰D’zËâj'u¡@ÇûÖ‰YdˆVSE;õ«Pó͉·îb !n7­äÈÓrµ¶„ªFäÕ Ü™ƒSáV|%ðÆàÈZ)⸄¬²\JêüqåË“sR jŠÒ„oƒòïÊŸ–VÞy¾°¼ó$Ú¯›õKvYö¡o;Í舥+$ØËT˜T­@<·N-n«'4`Kq&6æT‚ -ÈŽ ŠxÓå› UnLÍbmýX8-™–…Ú‘——ÚfãΩ_o‡:óèÚ}·™bÖ¢‚íín­Ÿ×òïï~º’Õ–Pœƒzħ?¶Mvÿ'%ߢdúÿG™£°ú°ú‰UTõŒU¦œéÈŠoö~ßFÿÙ +endstream endobj 28 0 obj << /Height 218 /BitsPerComponent 8 /Subtype /Image /Length 116029 /Width 290 /Type /XObject /ColorSpace /DeviceCMYK /Filter /DCTDecode >> stream +ÿØÿîAdobedÿÛC + + +  ÿÀÚ"ÿÝ%ÿÄÒ + s!1AQa"q2‘¡±B#ÁRÑá3bð$r‚ñ%C4S’¢²csÂ5D'“£³6TdtÃÒâ&ƒ +„”EF¤´VÓU(òãóÄÔäôeu…•¥µÅÕåõfv†–¦¶ÆÖæö7GWgw‡—§·Ç×ç÷8HXhxˆ˜¨¸ÈØèø)9IYiy‰™©¹ÉÙéù*:JZjzŠšªºÊÚêúÿÚ?óç<‰­þDè¾SüøÔnô›MJÊ[yí|­wª-Åë­Ã›«kË›Xÿ»@ÑÞ3"º?b0£þqÏòÇ[üÐ<‰ùõ«É¦ùzþ=- +} +Öñ^æD–ïô’]ÞÀÌŠ²C8.¥Mˆ;çƒõÍ_Ì$y¾â÷MšêÝåÙlu\4©"2pòF00¡]©Q×>byc\Ö¼“¯éþlÒJÃ{¥ÜAqn²þÓ)õ’T1CÇzgÿœ¡ü϶üÚó‚ùÆÛLý÷Ý L1,6mOL…€( +S¿µÏ>ÏǵÍ7Í_š:W˜ìíî#¸»Šå.¦P$¾› OLÆ(x‚W©4¹óÿææ»çô†çP‘’u^7 +´XëZª OÂçóWš5:k÷~e×åY¯ïJ´ò",`ñP‹ð exøçÏ"g>œٳfÍ›6lÙ³fÍ›6l9ò·›¼ÁäëÛ‹ß/ßÏb׶Óéú€·Çõ‹+¤1OÓb®†„{ d“ò÷ÏÞaü¶óE·™ü¹w-´Ñƒ ÔpÈÑ‹›Y~­ä+Õ$]ˆúzᯗ<Ï®yRöKý +ò[9&‰í® .PÉ¢ŽNǯ±ÀÅìõ ý9ä“O¸’Ù¦ŽH%h¼R©GFâEU”ÐŽ„bv–³\CyªZÜúM¦•¸ŒÊä<œäU  ‚¼ÈþPÇösßß”ÞhÎM“Ì:uÔ‘ÄʲÚȳ‚ÞDýÈ¡#ÖˆÔì?³‡º™5©?M}p}fÄ3É ’q.’¶-SZ éSJ D)`H§Â*j@ïM«×é‡M}VÙµ³*Ø4Èoª§¬!,9˜Õ¨¼©ZAz¸×ü¹o åບK»{çÓ­˜‡Mõ`ä`/:ˆðWkª­î­õ­nêXÌŒ©#¤"WàÁ–ª…ì*>c.J‚vdˆ°:(f ]ÈRTNÕÝ´YläÓ¼ãäK̺o•<·«UÕ,ä±¹…î¬íטŸN‚ó‰[ž £çÆNGÒjGåŸÑzUþ¤on¡Ð´§–ÃRº°hd¶–æá,¯o´ !äüJäFiJ÷›_;Ãk§kÞVý7¦éš}Ü6WWÞ¼w Y}9Á²[¥†}ºÍ²ò}H3Ý6i­tMË-ªizV›¨Ã¡Ýê6ÒYI%åÂF‹'+)/!æ’'ª^UYbYzGÍ8ç/Ó?/müÉçmGÊ^Yó›,Í1ÓumFq¦[ß,n5CsÄ,ŽÊÄ¿|«¿'è^sÔ½ UKT‚Y-£¹½ha†í”¯dFL“U•„ò +O¾òè×üɨéž_Ôlî’ךÚKë}Q/È=­p,ÍÈ­ñ|ˆÍ££kš^™}o{³Ì°jþ­ÄqI#ú؉€p*ªÁ[µ+¶EäÍvaÆßþ9lŸ¤Ht+RH"YØ‚sÍ”z€•Ýwø…K,í|ó§j/£¬ñZÇjbh®§—ƒCõ‡âdf«~ì-$)* âˑæêi-ͺDçêMK¶]ãˆóUÝIP99V˜!šE‘ãFu…yÊÊ ¼‚Ô‘ÐTôäóRüÞüÐOÊYÿ#ïM½Ï–¬îcŽKØcõä Ï: º™ +¥Ý¨oR>W’Á€iÕÈ`8€ : +’ËÍO7Üþ[Û~UI%ºè6—&ò$ŽÖîF,[Ôž5WGÛ-@ª¦FuíÌš'åî‡pÞf³Ôtbi®G—¬õUškÈK~WVƒÄ샒IÀ«# +5j¢¼Ç夾Ò-§ÒµøétÏqiz¼DÈK«vb=:Ájœ‚ר ã«&‰jòß,Ö—e¦ú²ÝÇ#¬ˆÍ^ÜÐÓ¥Fãq‘©ìî­¬-®^XÚ¾oQϺ˜Ûõ"V,‡ÃŒŠÅf$€ÊßÓ¦rèµícCó•À‚yâ‹éÝéÒ½bš0ßm#SÇÔ¼6ð€̤2’èGl ˆ˜sREw§p<3¨é^j²ó=Óu2‡—k3lÇÄQ‹njbâúᇠ¤iý XžÄµW6kPh_¥nÏ–¤¸m+™ú£_"-ÈJï&e¨>§Ý›Y±O7I‘<ðË`Á§¶b±OÃ…Ü7ÜWúõÄYÝÍ\–>$Ôåb¢ÜñYTÐm^Äw¨ÂÍÌÑk–ú—5‹QëÀ 7š|¼8\@À~ò0 >‘?Š8úrÒI#©ŠòZ†•¨Íƒ”׈îÄ3¹ä%j–j﹧_×…^MÕµ)ù¢ÿNÔgõ´‹å¢s ˆ’;†rjÄ·ÂÕ%€5ÆõÍŽ[´"”*O…7þÌ6‘å-GOÖ|³$ok¦ë¨Éuonâ?ªÊTŽvÄ}Š×£¶lÙGMúÐiQ}7&žšô¯ˆèF-äŸ>yÚ-=+ó;ÓÚC {«»vai|¡yAw¨y…UZ£i× ®[Èð¨QöA;›d×|À<‹åß u„LúëtÐ r¢Jý’ mN¹#¶üÄÒ´èÖÝ4ái,·&òi•83I$~“r¡ÝHµa»wo¦&GG8¹KÕR.U':ý@4§\w¨}/J‚•åʃ—JR¾M&ሠ@¯ß·Ê¸)|ßko +Zi–©oiV5·EHÁÔƒ~§l =ýåÃHòÊÄÊyI½cpçHòÖ}¦kßêK§^ØB—|R¤¥.¨ß¼@R7©öy÷ÁÞ^›V¼¾º7ú…¥é¬–sHñÏ(P}e*AREGúb–6É4W}v+i ^qÃ/¨b7*…Q–¢•øŠûoŽ4t‘šEBŠUƒUÏ 8­¡®ô;bÞ`Ô¯üñ~šæ²!KÉ"‚kKxm‘Ä1,JÆ8•Av Ri¹ÂÏ4ù¢ÇOý ñ+iðÝng¶QÄñ°@U`ˆJTW ¦×üÃy樮®b‚Ûц;t†Ò·ˆ,`ïÁbKs»º’ö^UDb¨¼b"Z"„Š*@ÜÓs¹ß +ÛEU¹0µIäÄu Ä­<âu=×W±½Žâ7L2Bßœ64ØÔW±ÂÆff,ƤîIêN#“B†Ç«ÈÜô¡î)—šµï®G-­dëz…d€ä”Zw¨;÷Ë ÀPNŸÇ6}7Ó×âëZ½±ºÅçé½:}2éÕ̆99#2FLN$ëF3+2š©¡éQï› ´ï-éÒßÏ£Ü<×÷×v1M¡®Rå^úeŽe†PÜXÑKÆʵa  åÜãNÔ¼Ãz­ÿÖu«›Aú7Nµ‘VÑï¥PñÃuðM*o…økàiLyNçR]Z{+Û¸/Óú€°_UÚ`êȬ±Ð½~*R”'f‹ã30Ú8Ó™’BÀ;‚6' ;íMêc󅦡äÑ y®k{¥–F–Þú+W—Y³1€¡Gh"xœTîÌÝzW~ÿ9_ÿ9mÿ8éç?Ê­_òçóº!ªy‡Mšk#åûÅÍõŽ« +´_Y‚ix" «qrCñ?Tñâóþs'ó3Í—éù{ù¡}™4´UŠÖÞîÞ[ŵ†Þ>1 ²GSEu%úïN8o?™æ»òÂù~úÖÚâDœK¨é!¿†4B= p†&-Z0bØŽüóåŸ"Í*iÓ¶y™I#óªÿÎ?þiižBÖï|·æÛH/<ŸæõOóBÉeouq tYíš`7Õ'÷nŒFÜ¡ûþpÓþr2ïþqÿó:Üߺ*ùŠâÎ×ÍCІi’Þ7`²ÄÒ€§¨IâÊH¨ —þYþ`j_—ºÌÚ†œÈŸ\‚K9äx̆4”PÈœ’ü÷?FÕ¤Ò¦œ‰â¼…ínLÖÑ\•ŠZrhÄ£áqO…”«{îpÃó£þqËTüš°·×¼Ç¬ÚIg® ¹ò½µªÉõ«›yX´rËÏ¢ËÀȆQψÝX>}m»ŠÂkM?Xóµõ¬–wéh×(² ¼·”†ŒÒãàûÂÏÔPygYó’õ-_ʃóJéšÓËÓr—byd¸0¼ÑÄæÉ >§¥ƒ(ø†æzŸüãùb×Íú”+o¦ê´æ–X£žà”sKigh€ØʨÑòøyTŒ#òžµÛÝÉÇÓ—TÐu=CëO–•ku­z®‹}Ri[‚P +í½0íΑ{ >]ÚÞÚÉ#¼1¥œwr°!@e© IÅh¬Ãû=NE¼ƒùƒ­Y%Ï“t;A4zƒ¼¿±ÓEî«aJ:Ą̃EA_§¦'¢ëº›iRy.ÚÖÞkmRâ'–EÓ-.µ ÀÆÞáãúÂ×ùE ~g= ÿBßùuÿ–{óKûÏKû½/§óÿ¼¿ðÿÝÿ“—ÿ*«Aþ>}Ÿ«ÿ½tñÿyúÅ3¢þŽü¼ÿ©Î?këŸñÅÞÿÈΟñO÷>ùÕÿåV~XÔ·ù…ö9ÿÇ&×ýçÿ–®½?⮟ñnÿÐñžµæ/)ù–ÒïGò––Ö\“X¸ŽGŽðú¢)¦`…ŒŠŒ#1P}Ž=~ß‘^}üüÐü¹±ÑtÐ4Ý;û¤Õ¤YÞ9„ŽÅÚ9”ª1ŠXž¤…)ôŠgÌÿ=ÛD<Ý}±sâI¥“™~ÇçĨ> Mv·¸òŸ–õ­_‹[·Ó/Ò)sš BÚÈ•’‘ÜI '¥'oMx|F½nÊëOó‡—t_9Ç«Ay‚·k>X–6õM²ÁUŠŽUgVNJ o‡‘8%åK½'O¿ÕïRö+iV,¢‘b¾H…NrDI^ D#ÔXÿ”V„UºÙ¢Z]_8¸€LVæÆ1\ˆ—$Hñ:`§ãâAªôåÐüÍäÊ<ùRI#¢{]KBµºó»c­Þz,bHıApc‚ÞàF?zª&5p¨ž^®oåÛ›ŸËʼ6¬ú¦ .î„“Á¦‹q3I¼cIV6Jˆ¿¼*IâI5¯/yZòÔ7?——œ2ßë6—áašÞÕ‘ +~æeSV¥zÿ”óXÒ¼©¨ZÇ7‘æŒ=æ§mªz0O ¨S2,Å.U2LJ“~ïŠ× ?.oô¯8yu¿)bÒšßÍ773·—|Ý×ÕâŽ]2íu– „d%d_MÜõVl:³±ƒó ÊúnƒwÕu›2iš¤,¨dŠXrµaê¤ +Ÿ…›°ä {L»Òõ |¹Œ©¯K; =J¨“Ç/¦¢ÖXxïñQùu&™bk`ì"vVxêx–@B’:Tr4ùáh’@bˆfJìJÔGˆ©Àºþž¶·‘iW/hÿVC…ƒ,°ÜÇ#zÊìéö˜sãF£ +q`¦Jto0Z.›¢¥»[^XBíwÖñÔòžW¬2Ñ9“•ÕBYk¶]Ä[IéHTš+UdZ0 >$$V‡qÛ¡ÆTÐûzï…ªV{F`ô?Çâ9 +à?y"æ¢óe‡©=›G$ˆ#fWÒ,MOöZ›–'›u)Ò•¡Ûªáu¬V‘Z_د¬·ZâÓ¡”Š|^Ö¿NlØ„H§í ÈGˆÃ}bÖä\ïYr–þÝx™Sášõc<»«Ä ¥kQÓ6l2Ñôg×u(t8çXäœ4zy`8I;ÿu"Gïðò&ŠMNÕɯ”?7›mWG%&)M½ª/šeû* #‰føwؽ7ÇÚA¶Pk¹ìÜæÀ‘[Ë)*Žèê|AÂýJâÞêî/5h¤¬ÖlÖ÷P e?Âý!âzÓÇ›ÛÖôÚ¬ž‰Åµkk}ZÆ-NÄñøƒLÓcû.6ä+°9³d§Ë>‰¯Ü^éúž¢4·“ϦÜÈ…á’xÔ1Huä£v>8_aåmFæòmnÎá籊Þi®íÎíÄE nÁ€j2ƒÆ‚£0¹û·Í„±Äˆwé/Ù™EYX•]è: +íÓñÂ;Ý{LÔ´á¯é Üé‘‹KÔ®ÐJ·s\”Œ²Ž UT°‘vX±­‘³cÑ߈1Ib`®FÍêÚZwï’%ǪGèO2ÄÒ^èá-^ýØÔ-pŽðñ$«J‘ÕNը͛5½Åœèe[úÊ·õHÒàÀFÉéÓªýª¾û×$ö…§Áyom¨Ozu!á”*IdQx¨Wý®KÞŸ³¿\ß ýÅ6Í‹R›L¹3Xza¦„Á4’A¡•þФªÀÜ–‡hÚ|‘èqØÞ]ý~ê.K¨ÑEõ»nL(ŒŠå ÙIW®>9Z áBŸQx·%VÚ íPhvê3c#ŠÐÆë":ŠëñàŒJ×V]"T´õ~¿ õR@A ïãŒÍ‚Ä‹ªë‚]nûêm¨Ü¼Ôš>K¯%^SKR5!Fø>Þµ›ÔŽ; {X.ŸÂÅ‚2±2?ÀªjH}ñóÌ÷I;… #`Š¨ ±©¢¨ +°ÌIbX÷ßm¿Vj­-¥ýÍ›]%ÒZ»ž#êG*© *Gc×›åè$³´Hí‘Ësu ‰añbµçAôÓl©#h¤h˜‚P•%X0¨Ûb¤‚>Y°Uîž!mBky£’ÚÀÀõ‰#µÌ´VÛ»n PÜyS©ÛÔ´É£\Çt` õ©]DcA´lÁš›×N½1ÑÛÉ$2Î¥ÃǘgEcÈÐqRC7½¦jTá‚4ý/ZËš—œ,…¢ÙZ)Ó ^-¤Îò]W÷pE(g…rêê ¯C‚0éÝDÕµ;ùmÞÖÏë ÔÂ1ñÎ*±Ž\ªàW‹µÁZu½÷¡u}(‚$+,òè SŠ¡’Ÿ¥@_Š•=Ç*9Vu/RißçßÜi)¥yr-KZÑnµØÚMUK„† Ö󔚱pãöHª@=6?=?ç2$ò{iÑy¯Uò[=÷˜æ/̶òCd>·m(4â8¤7 ÆŒÊz0j + ŠS“° tŒ‡4¡pÌ)¸ð'‘|ñ¶Í›6`h:{æÏPéÿœŸ“šß“ä÷ælmåKBúšÛùÚá.uy¢K`Ñl‘dG‰”=¹>™1‡lú)ùÿ9­ù®~Fiß“_/såkÝÊ +?24w:¡qmnž¤dÆULD„¢Wh[òænkå1äÿ03zæjCª_Oq-¥¥£‰D‚‘ª8  ‰­kJIôýsIÔ|½•u¨¸Ü ˆþ¥¯\Ü\•Õ h Ç2¼Ñ•+FMßœsþWüäWýNÞhÿz¾¯ÿ]KýêþOï?¼öûYÐ?Kùëþ¯×ßkê_Ü\½Éý÷÷Ÿù8iþ1üÒÿ©»XþÿŸüuî?Þoåþ÷ìÿ“øä—þWçç—þ\?1}Kþ;WßÝÿ'÷½=³ÿÑâ_•ŸSüŠü–óæT:W–¯´³©Øhzër¼×µ-^âÝc’ÈB²Ç¶¡ôÚP$J– +“…>EÖ<“ÿ8ÿ8ñ­ùïCkO/_]Ù_[yGQyÍî­ªkQ hå¶.#0~直Q8bkó¯ÎW¶êW 1Kcs5œºœ–rã{aØ,KZüUÏ–ÑCs„—ñãT“Ðg(™½D ¨—"œA«¦ô'p3ÄÚö·©ù“W¹×5™½{ÛÆõ.%â«V¥:(máŸ6¼åæýϾd½óo™î~µ©j/ê\ÍÅPP¨6Î~‡­}ðÂ\¬Ù³fÍ›6lÙ³fÍ›6lÙ³f͆>^ó³å]f×Ì^»{FÉýK[¨F¡SCî ySÍ:ç’¼Åaæ¯-Ý5–¥¦È&´¹J¬6èj G†/e{y§Ü%Õ„Íé^FÅYy¦„xƒLµfF ¤‚7lAÉ ë>iòF‹¬y&í zWš­ôËû‹Sé°~ +.¬çY +± Z¡HûEN{_\ó%í¿åÝ΄bht_?[éwåD‚ONhøÞÙÌ’22@"µ*ÝÆ 7zž‘g>‘pœcºLcuCBWš:µ ŽCÐŽ8K*DÖõ¢9We Ü¨45ëÑŽºÓÿ/µ¯,_k:œš6µcrÉmåëÄ–è^Y==#Ì1Y" U ±ÔdÃòûó{ÊÐi×n‚ùt/7铸Õ|±uë\}zиú¹IíàôÑÄH¨ü‘ClÝA¨gƒO{'º†ã„Ë)Qe bÆ3B¬²*ñ4Ü0<{Zš_ŒQ DƒR¤È¶ÔÞ´íJïB;TŒú#Óy`Ržª#,‡!ʇŽÛV‡ärmåwËzµc±åi¾2Ø•h.ÙªöƇ¦õûTãø`@Hé‰äƒY™üÛæIu7Oh¯ï£Y.`·õ&’âd÷÷žR2´Ž ÏO·ÕbŸVƒÖó£Ëñ²óâÀñ&3Q_˜lk×Û6/æHëšÅæ±õu³ÓI?Õ#geˆICÅYÉ$žêz……íõí+˦¸{upÞ“:€ü Îãnøù¤YfyUaØ°Eè šÐ|³¾ØWy¹–!C—!WŠs¯¯ÄÆ„&¿µ^Ø•Ô¶VºiŽÑßQº&’ÇÅcà¸ÑjOìüGÄ×xÐP’iñTt5í›tK²©ú¥È_Mz±&Š;wßß/ò—,ã6öÀ‚Þx1”…*x° +Imª:ø+Y°ñ×R[{Ï ù‚H4È´ ‹û™­ä´…nÖùÑ14¡VáƒHˆ…9²­Kñ c„žjÖÍ®…ªéšœÖúu‹Ü_Ë$Ñ¡çÓ÷a%ø¯ž=xìqÁ x9á±oˆ +Žƒ¿lØ+ÎRsòŸ“|˜º:é—D×ï¨É« ¨®ÿI9‘! °ª¬ñò˜Šñ%ÿœ®†óÌ^AòW—aÒ °½7rjÜYnöúš4ˆïVX-•R5^.}J©f"¼@ÿÒj4hô®/´írÎdnàª#¥ØÕ†æ¾Ùe¾´èI¯ÎŸÓ zÄVvú¥Õ¾žþ¥¼R:E'?P:©#nÔ ñvÏ)yÊÏBÓü˨XyjàÝi¶Ò˜ínLž¨(°nÔ µ0? ¨Þ ò=wþ¹X q¹±Â7" TtûñXmnn+õxžZP +Z•éÓ‘ÈÌA©ú)×îÍ“Í?ò‹^M&ã_Öµ+ËÐ[Aõ¨Eõú›‰ŽÜcŽQ4¢Càʽ7¦zËßóƒwZ ¿›¼Ãq¥yOOž4¸µ—QÔç:£Æ«ˆ¸‘]ƒŠ+… õ¦I´"kz¶™6°­µŒ çšêÚ&Á˜JI’V!#Š’{`ˆì'–Î[åhÄq¬­4k!-ÓŒlÁÛÞ€Ó!_¤/å¢O·êxÿoùºõ÷Ã?úï>ÿÔí/^]_íxÿ½#ý#¨ÿË\ŸÞú¿Þ·÷¿ïοkü¬ŸÿÒðüä/—ÿ.4+ÅäŸ3Ükñ[ÜZëzEÕ›@l9ÚHé5JÕe¨$ü‰ø€8ÿœÖ·òµ¯™ükåí_ë×:Žž`xÚÑ­ç•’®@W,$*x×t­hÃ>o~hé>[Òµö“ËZÙÖ£¼ qz^Ý­ÞÖéäIn܉T(>¢Ð7/²:gÌo4é~TÓSG*ërk?]°†çWŽk&³k öwYmdJ¨YeRû*Agœr„y³fÍ›6lÙ³fÍ›6lÙ1ü½ü§ó§ætšŠùRÏÖK·{»ë‡<"Š4RjîE(]¨‰ÕÙW|é¿—ÿ^müÄÐ/|Á£Ë +Cf±sGæxËp\@“2©XDœ$ã2¨$O¼‡ùù‰ù“a{¨yKMk¸´øý{¶äˆ©Vnd± +#nÔëL9òï“<×æß­7–ô«B+ÄúÌ13Ain>µÄ´á`Ýʨîp“_ò¦½å››«]fÑ­ÞÎîçM¸`É$bîÐ4bHË#ä7RA­FÙó‘<Ùä=Fm/ÍZt–3Á<önX«Æg¶ J©"FãÈW‰=r!¬hšž…6—ªÛµ½Õ»´sÂãtdb¤zƒ…W6óÙÜKiuE4,ÑËŠ2ºšAîÀzU½•Þ§ii¨Ý‹ I¦Ž;›ãJ ‰˜¢|MÄoA¹Â{(`¹¼‚Þêáma–DInY–$f¹T Ä(Þ€¬c‚kØ!¹›ê𼈲ÎAa–µ¤Ðo¶&:ø{çR°ò»ç/Ê{ß6yieÔ,ü)³ó\ÆXÂÚXÞ]'èëˆb“Œ¼dšY•yÔн—ù7¤k˜óZ–“¤Èò·‘¥šÓX™™ii ÕÏÖ¬&D“„œd”ºÝ\•/jº—–SZÓ¥’þËJsçqµF–ˆà5,•4Ûªï×aÖÚ.©}¥Þk–ÒMg¦˜…üꤤvãsÛ“T|ƒù‹C¸Òõ)­`Œú¶±¤—CáäDÜI]ƒSo +ç=üÊÒoí<Ñuæ,žZŸ—ããæ+B»ÛJ‚D,«U¸–V•ï‘)#xniZv48X¿«s±$ÇpB¯R$;¹Î~R~k\y_ζZƒ›Ÿ,ù™Þgd1ÝJãb ¯.€ûã3gYò×ä/æg›´iüÍùd|Çaawm§]}Vhaºµ¾¸dX¢šÞIP 0Q"‚œ¨9ožáòÏå÷Ÿu[¨ï|¨ÇPòëxmu+Yc:}Ùâ±Æñ1…'¡ø€o‡‘¨Ã‹o)yŠóFÿiöou`³­«M2NÀ2«F¤ºÖ»(OC†PysZºÑ_Ì6¶Æk§K9¥‰•Ú9¤^Q‡E%Ô=@ A’E¤óo™µ?1ßùškû¯Óú¬Ž··‘Hö÷2K3 &"µ/öNÔ5ÁŸâo8Zë·x²êš«(¸žÔýRi90,êb ««KO éMH^ͨ-Ì‘ÜÜ óFŽZó¯ljj0žc+JdnoË›ÔÔò¨jŸzïƒ<ïåÛΖþWü®Ödó|:£)²žÂu»žOHZ´w— @¨HýxAúÐCqSâŽtt4&¢£cB(@8Œš–Ÿ¨ÛLeµŽþÂí8Ío,jêËZ† +àŠ«FÛ0 7ß29F )Qâq͉M,’Þ<²·6º<åpª¼¤bjh*kÛl¼/¿G½ã\J¡b•±¾ÃtMÇ\¬Øéa—êÜêW…M;ÐwœQÇm©ËjTþúµˆC·ƒfÍ‚t}õ,ù›WI`ŽO/Ám:¤—QÁ4†{„ŒBól÷W>Ii—^ºÑ,ìÒñ§ÕmEbÄÝ€2ÈŠj3·8äzÛþ}ñæíbïóÿ+uIf¼ò„òCæ½ + XgkRÂhRÌ–d.Õu §”u¡tp8“ÿ&k#IÕÖ‹ŸªiÚ[eÂ-c$¨ó( f…§Ã¾+hð­Â ž_WfQp±¬cä EvÛc7þró‡òçóCOòŸä”£[ʱi6²ùÅüzuƒZÛÜÇX›S38w@⣊¢ì=ïùßù¦ù²{Êô¸t{Xìm^îq ³±ž#qõ¾P¢<’rW‹DU¢ÑUFvoÍÌ"Må]+É-œܬš„‘Z4‹km-ÇîJßR‚ãœ>™ø(èyš’ÛçAüÈó•u ÊÞWò¿£v±\j[Ë$‘ývà[Öéö’zˆ©dŒPðf,Nq®ÿÎ8Õ^ÿz>§ÿè?¸ÿ–ßøãôÿŠúç+ý1ù%ÿ,ú§÷TÿŽ·_÷ÿûÁÿ$¿áó‰~ŽÐ?êâßïGÕÿ¸î¿å£§Oò>Ös³ÿÓùç{-[Kó5ö‹¯BÖÚŽ™#Ù_[¿Q\@ÅeFâH¨z×|ù£ù–úÂùçZ°×¹-îŸu5•ÄoNHöÒ4L ß5Ϙ~l%õ›†xž ³M£Œ‰$„»^ ‚hså\‘É´R©GBUÑ…#b8E‘Œ&ÊÍ›6lÙ³fÍ›6lÙ³fÏQùoÌ™jüü¾—ȯ«þ^]êfÆ=4Ü‹»u¹ž  •1%ãÿt„“pcãz‘¾œÿÎ3y†>þEùXòÄÐÁæ%¥Õ÷Ô^UœÂ'R;¨À±‘U ¬ŠZª=?äÿ;ùßPü©ò»y5Ô_ùenâˆYÉ'¨#žâ2ÑN‘(Ö¡ã<¦ÿu’ÜÓ:å—›?65¿Ëß#ÛyU¸Cä[JÛGÔt¶1ß[M©Ê·>„ì”pfbÞ€o†_‰#«‡\2ògŸôÍË{¿Ë_ÌÝÖ=RK‹ÏÑ>c½¼PŒ5ÌrÁ‘ΨÒÈêŒÿÄûÈâ‚Oç­Dóÿ‘®t¯3yrËRÖìc–ãË÷7‘5Õäö±I=µœ‚) ž5Ï"-EçP]€¥‡š<¯ù‰å7Ñ<ëcoi«ÚÅw%†¾ŒMfHÙþ©'¥I5sÀ¸âÅWân$a—­yk\òT¾XóEµ®Ÿh.®tŸ3fºw‚9'[ ¢„Ë4²Y\ +1n @òïþq[Éxü—ó;ûÛrêâæì,®¬š% h”Èd_^F?BŸi9Qw>{ü£ÿœ0ü±üêü¯>zÒn5]3Q½y„61]YÍ›-¼ëN’F²ÈMX ª·¼½Ðògüã_”¼Óùv|צßÝêW÷Í[=:ÌZÏœh›Ÿ‹Ö؆計¸}åÉk/0þLj_˜6o{«kÉ;Ek£é&Âxì­¡’.w7ñ‹“vŠÊdT¤kÄ™(hbwòù{òûóÌ~M´Òf¸òý²éÚ®‰}ÂÖóœ6e ª¨îXæ éPÔ­oŽ³¶Ðü…ÿ9KæŸËë=/$yšÝ Õô»‰RÞò)ôûq‘'&£¥Â3%ClhÛœã“5Ÿ’5MCB.%Ó®ãH/">­rJ2¸n'—GЂGqœ¾êÑ×ÓÙL’¯¤Æ)á™}C!£+-[‰ :.óF‘çï6ØEçó Lm|§ØÁ¬ê@8’óOk‰-­çz‚­é…ô×j…Û#šž_üÇÒ<çù­o¤Mqaäè´«o3ÝF’+^ifY,í¥!–…V(Ö“ìò ï„ÞbÔ¯µØíïn­š3m Vó\håXÚNÜÊ-+µJœBidœ‡“rª©ËÙG¯È +g<ó_“µ  m~Õ=o/k ÒiZšð†ûfÚW@Q.#V_R*ÕjÙ*O2󕧲V¼±ÜySÌÒ6¡åÍZ¦Kt–JHlfxAD»‰z°Ö«ÔlT’Yí&I…°ÝAØB**+¸­Aë‰ÐÒ½¼s¦yW:÷å]åî—kuiç"ÈŠ<Ëcwk rè:‹ W¶¹ŠWÈQ܈ž5j+ñ}¸‘êùÄ_ÌÍCÌþC¿òÀ³š?:y1~¡o«C5ªXÍ£J8úWQÏ(‘œ|K ¨ö¶ÁNé·æ=K½0ÝÁ¬Y]AÇêÆÎJ©õ˜Êá˜*Á Õ?FÌÈ'ÑȤ:qô>®ÊÊüèäT È žÊ¿:55êþp†ÛóE'™tû+h5+•­~0Ö÷mÈ•>¤,‡’ü-PFÇ= ço7y‚mfÇüMb4ûø£Xî›†Z˜§u­(ÉĆ^»7C…þc“Q“U‘õ‹6²¿*†ò7FÞFPÞ£#î ‚ö$×¾3P‚úÞ讣Á;¬r²J¬®Ë* È}þ5`À÷¸—™<תþck~z´Ò¯Îv¬Ú®½©iê>«V‹ŸBCÀU‚´’ ±®Õ¦ó½«y’k5Ùi×2ëÜd¸ÕÚÙA±ôpçèÅtø¾ÓäM +ÔeK©\Otš½š<„.&º„…Ee+ÂETQÀòÜšîNÔÄ̬XL•Yƒi€J¡Á_œ~yó·æRh?˜˜>YmേH‹Ìöº{Y[k>Š-Ï«pÀp–ì¤èï ²2UFÄ™yŸVó7˜4 S_Ò¥€¬qÚ]^<&9$" Æv“ˆ¨õw§.4'¦æ^sÖuO2Íg¯êš•xѼ&âÚV‰Ú)ªÃ¨9Ð4Zâ6¿Z›Oº(ðËylÞ›…jWç¶ûŠ`Í+YÕô+“y¢ÞMc;#DÓ[ÈѱGe%H4>"ÇQ¿Òç7ZmÌ–“xÌ°;Fü%RŽµR Iwæ+/'[Øè—þW½¹¸º–Ø~ž²¾Œz^«m GUhSO=@Û 54›;;k]&èÉuÅ]àœ%’!Gkv_„Èk²“ʵ¨¦øD‰cã—›5y¥e#ð ößà}CCÕ4Õ·ý!i%´W±%Å´’«$sFÀ8djPŠÓÇ +ýãœÙù‚ßÒ7ôÍŠXŸu¡¥ÞçÍ“/*y“΃Î÷w_“Ú+¥î¹m43yZÂÞMJ £4“…¶oQÙT«J€ò)N¦•Ã¯!y•üŸ®Åä?*iM…¬´£EÓcë‹i!Fžx‰nU‰˜3§^#½Æ¥ÝƒÌšb“Ä\.-åU*òf*VŸ K·ÃãߊY"-èþÚ•u 0 õ¨"žþÙ òÛiš–§ka¬Þ› Œ—[°„¹ ê¡éÜ éÓGåÍ;Z»‹Oº¾:Eí³¬ö’¸ ÒœjŽjPšrr:mOq2J°,ŒªÓIË‚iɸ†jôã#Pî¨Ì1»VŠs@OÜ06¯jº³w¤¥ôñÀì!¿²R£áe#qQ½ ï¾/æ/'Éo0-4&eUo^Õëž•ä_I½iŠjgO½šÈÍǤÅDð8’'™Xu}>9¤PŽÈ8R@u­ ;Š€pÇËžTÖ¼ÚÒÏë kñNõ #›ˉ¦ûáW—¼¯æ›Yô;äc$†þÇi"…I!`ôå¡cSZï×Ë°Òõ-VS™i-Ü 1ÁHÀRh žƒ2£9¢Çs@+°Üà[c+DѪƒ­ +|MU&…k±ßq‘Í~gòÜ:®—lóÇ?¥tX”<òÂßeíÀ#ãBÕa]Ò´©¥CedHòÞ“©ù/[¾›VŽÓ]ÒçŽ{+;™Ò(nôþ,%Hƒ^nexªž¼&þ\Ò4}rËP×tV)mÞ(Ý-Œñ«Ã8VvøiÔUE+ÈTÔt¢‰8$˜H€ÆV±G`ÛUAØÐõïøæ¦Äøv•ý)Ûr›ätÛ[^Í>Ÿr}šOR+”4¤êvc_¾¸žl m¦Ükw²Á¥@óÜ*Iq$(¥›Ó‰K;mØ('$üu®,ì>©-Ò]ƒÝZƒ4 +W£;8×`j:æ߶lJÎU2½I PwÞ˜_æ{8õ &âÂg–Þ4*²½½=UÁR¼èzíã›6[k:y}"ÇRÓãžÛL»šæáí¹%ÌñÜ4Aài*@P±| C3uÎ}æ2 ÊÐÙjÑKg¦/&£q»˜£T*êx¬|c jȦ]G¼EA'–õ5¦Þ³³þW?˜ü­¦ùÓ@Ò¼«þ Ðobš;8®Bê2Ec«ÃÄo!µ¨¤qD†I ¡jaïäëÝhwœü©&‚u}POmku[˘­u‡ª!VQ@µfx¶Çr0ÛAÒu[ëÃie¤É©É,\„9Ob8È}2¤zÓ|ZÖÖæé-`k†DguEf*£«=ñÏ1k‰e ðéöóÚÇÄ’[Ý0yRdVZ‘ìd TR¡h H®|tüÆÒ4/ùÓTдH.í­ôù¬‘jEMǯªNÇŠGEiCj€Ôál‹ÀÔ†P ¯CRq/ÈÖ%›%_–þeó”¼Ë¿åù 0“êvÉ#"\ÙC4rK ª¯’6â9 ={W'¿’^póg<ýeç/*I0O­fÚÞSÖtÈ¥G¹‚ExÝGÄ ôßµ@ˆ®'’HÜÄÈQâ‘ ]wVnÍ3óBòmŸ4‡Óü½§²ù¯Aý!jš°e³[ëûëŽN’‘€>©$€¥“øýÖWKÖæÒ5û-&Êh<㮲L¿f²yïî\«²9vN)· dâ “¨É¾4±ÓnŒrÊn,È(.SÔŽé¥hUÈ€ŠÀ1n[Ò„ˆ™m‘"a$dšLñóaZªŠ²wïZþÿœaÿ©“Ì¿ïgøåÚÿ¼ÿò3ûïò>ÏùY0ÿþUÿÕÃ]éõ_øäÚÇCý÷ý÷Ùöþóß ¿Ã°Ëxÿyþ±þóÜÍcü¾˜lÿÔùiªêš†·©Ýë­ÃÝÞßK%ÅÝÔ¬ZIf•‹»±;’Ä’s厡¨_j·×ž¥;ÜÝÝÈóÝ\ÊÅä–Y»»1Ü’I$çËwQŸWÖ/uK™ ²ÝÍ$ÒHz³;OÓŸ+%–I¤y¦rò9,îÄ–f&¤’z“q Í›6lÙ³fÍ›6lÙ³fÎÇùåMoÍ:G›¯4Ÿ7¯–ËÚ{ê3X[ÊVûTdGh–(#–'”C"fš ÜéžÐÿœ }b-Ì×>e·ÒÕmåM1&W¸¿IAF·†T–‘…Ò¢•@$Œº((¦k>hóg’¼·¥ùwÌV³Kˆu=bÔJöšŒ*€«2°T€TpYá©VÉu]g^дÍCÕ´èÞÞÊdÔtéåY¾­¨CV +ò#“!"½=ÕÝîµ¥éZM•Õ€‚ß“j@ê—Ñ 5vI)È®’(r…¾Ò X™®&󎫬ùËEòü:D*ÂïU±Òa1éÖBwòŽ [ÒˆÈÀ^*X ¶YqªÃæy./lì–œ-Åŵ·ÃÙG;@*¥ÚŒ¤ÐTÖ™¾™µ+Ë­BD¶Gc+Ál¬!„;RŠ± SAS„÷s‹»©î’·Y]¤BGf¯äXñ ©8Iir •g¬Àʯö`)¶O§ØH躬>¬Q?;k¨EdR?“qßíA§¾Är•ayd1!EäJÆÔ¨_ ª^KoqŸ©°I¥§Ôõ˜‡ k½è‘ò#ii·×éÍ›é¦=>þ×QÑ]‹y–W³¹R`™PÔÇ R¬U€¡¡zŒ§êV’\Ao¬F¡ìfŽâvdë °õ`M„}6l©j¾¡gmowy+ÙÚ4¢ÆÁ¦i#µW¡) +;1Dè=é‰ë—º¿›¬SJ¿u‹PÓ^D±‰Ý™dŒÞ"圩 µrÞG’œØ·jk@:›‚ßÎ~Q]ÏZ3^hÏq$²èzõœ’[¸žÙø?£4D2º½ ã†:0Ô$Ò¬îuxnlâ•É‚ì†hç¸ó·™)*¿ÄH5;ø¥­ÝÕŒéue3Á4{Ç4LQÔÒ›¡襒hX¤ˆC#©!”Át9k;íY5-q}$šÙÖ[«T q+1/jЈ; “M¼Ixê7Ism³éZ·ÇÉŽÐHÔ0ì:S¦ÀÑ­êJ^ZW~OÄO€è+ÂÅâõ–€1&½úüû㦛V±¹žâø^&%ؤГAŒÍ‹["X¬©1Täx½7 =ñk1_YZ<‘É$QˆK(¿Û˜:fÃkv[@¬ÊJÔr ÞžØCqf|Ìñê6“òž Ò[‘É…FÝÅHófÁÍi½ÀMÑJ‚hZ&åB¢›ñt§µ2!q§Åą̊u-/U’ÆÛÌý^kieT°kö`Þ‹D RìÒˆ:¥)P3fÀ×@ÅžØ9 ©Ø|ònt›N,VàYê<X]=}p§E‘^ð͛<÷¦é>Kó„Ÿ–úë^X]Ø[ÜÚÜÛܬÛ5Ý¿§uo3D±ñnEÔ­>ÉäþU“ÊV–RYêÉ$óB¿[–Þ~KR8xâkZŠtÁr%Ε4R[ܯ9b²[ËRU «ÜuZ3Uj:©ì„a=–¥a¥ùwXÑntx5/Ò±Ä-õGæ/,&·rêöò%T+׌ªÊy/B¦‡ù̺kÙê ¬éž½ÄŠAŽ¥n#(Æ…A”tk{Û;Km!.´;¶¶gk OIgžU˜/)U^Fo…‰ê»…Ã]?JÔoáŽïMµ{©¡fõà¶å“„L®ÒÊp\(Ú›oït-Ð}ÞÛ×9ßøóÍòÜ?Þ¿Ò?ï5¿û×þýû?kß¿åeyŸþ[í¿ÞßÒaþÿýùöºÿÅŸk‹¼Ïÿ½Yÿx­ÞŸîºûtöÍÈþ5éß?ÿÕùUŸ*³åUsåVlÙ³fÍ›6lÙ³fÍ›6lÙ³dÇòÇóXü¼Öž[)Wôv¤¢×Yµ–¸ŽKv4.B–0KFà†VèzçAü”üÝóå›aÕ4›€–7­Í´‘$É%±j3*¹H˜Æà†SÐŒ‘yÍw>Q󮧦c-éÏêD²•GøZHÕã"‚J0e ÷¥pNŸ6;OŒ³Ç,-êÃÀ$Ècb«*° |,>%;©ëóKËß—Þ^ƒó»òoÍ·ÚÌþW:KÚys̲JÚ……´ °™€õ­–V*#AðјHUHϦÚ/œ¼§¯yFËóOò«P»ÖmlDrC§ëL¿\´dqgBñ) 0R \êþ|´ò±Ót¯ÍËï7¿™ŽŠÖ扬K'é+v…–eýÛª™-bVáE? cGeuÌ­+ÉWZ&™ùƒäO<É®®õ *O/y…ßôÕ°†Ñ´Q”0µ¤a|QϦ~2|dŸUÿœ‡Õô˜n4;«}/\ÓüËiew|b˜Ë=”s³]6™m4f2¶ˆïO©Î’ÇUx¹ÉÞ©çu6G’[Ý[ß[[5Ìžª;ÃÉLËj 1£=)C„#¡aÈÆõ?Î=A¬®´{Û(f¶Õ’9îd‚ãý"%nMõxçFjÀ¡¾gY8„‚G,‰ÞùúùôÍ[BŽÂÖ+MY¡ÚFžÖ%)'Õ¢œIÍ øÌeTâ =AË õÁggùAmå¿0Ga­À&Ò<Çå¹yiºðŽOQí5Hãe†K›YãHãx‰©ä¥NA0|— y—ò鼕©Åoi¥R[jVSÓµr$õOÃŒ&æÝUFVmù¬Ac?–a·× —JIŒ/¥ê¶oëéÚŠ»“ÔHǦÓDƒÓT+ºº×jpO*ØÇs¤}U¥pmµ›i¤{{ê/«"MW’#,K^ü¿Ô?ç¿95 l“DV>EÖ!jiúìsR¤ŽHç{G¸Tnм³å/XùnÏΚªÞy7ÎVM=Ƶ¦ ¹—DÕÀu1’ˆ’#$Mqì`pFås¼þWÝù7ÉÚ?”<›ç FßQò'ŸôõÔO˜ìãõÏ—¼Èct’ÎF’‘ÇVH½xwoMÕÇT8èìPIw“$Ì ÇïT|<‚zÓ¡`;™HªXn þ×Z|éÈ“Uò†±o}¥]¼w6°†öÕøñ–x%JV”jÆiQkÿ”ÞwÑu #=Í­¤·* +Ã8‘U~©4CŒ€R´ äÙ¸â×76W ui+C4G”sFÅYXw (Fhä’X˜£¡ Ž¦„¸ Œéî“åßÌË/2ëúΧi¢þaZª!‚×CÕ¬ ƒã†ÐF¤›ùdâñ¨"9—Ùjìý;ÌW› ÔµûëÛeÔG+¹#‚HSO¸³XÇ6bBZá˜TSàqÈlÛX¬ìõÛ;ÛÑs¦¥n¯q%¬‚+{y¡@‹HO!ûÒIoL-û;ü$ÂÎÆÓR´¾¸{Ä·¾€zñÛH«SÆïAPU8Ñ…hyVçöþgÕn|´ÞOÖõ›ù4«7úÞ¥zï%Œ7lÜXú.x©([uÀò\·˜t#m¤âÄRæyd&Ö0G.æ2PžƒŽÛŽ´/ŸVÕn¬m´Ë«É¦³³åõKG•Ú(y’ÍÁ ¢Ô’M›P¿¸µ‚Æ{™$¶µçõ[wvhâõ _‚“Eäw4ë‰ùo_Ô<µªÇ¬éÁ&‘AI์IèÀ«G,fЃÐáN‹¨>—©ÉWêrHR©!¡;$‘âàïدÒ1f’ä 9)ÝX w†O)ê£Ë«æ¨#Y4ã;ÛLÑH®ðH´â%ŒÈ—ÂH£PÓ¦ô5í?NmCZ%´‘ýy©8  ¸RO¦Îp,#µIÌ ¡{•ŒHÊ ª³T¨' &†Ÿ,¾,T¸ˆ Ú§§êÇê>V×tíhù_T°¸Ó5~i±¸…ฎY•Z4•ªáŽ†½7Â)ïõ¯,êcËÞiÓ.µ"í„Øgý%a,ÍQ?ãHÒ¿n•BVµZœ`ž T€ÊÃ-RÏEÓµë +QÑõ=çL gç-"éÂ\ýnÞR—€’0Ñ@(²+’½Vƒ$zþ‰ ôù|¹{5Á°uƒSŠöey$’ã=•Ø(Z6 JC$/â>t–ˆðÇ˪…¼YhJʆâ©MŽõÛß-€ +GÚ¯Ž/æ)^hwCS¶Óïàòî³,òyWSÕ-ÄydŽ8±d-+¯¨#v +M0³ 6í¥ªXØz²*mB²Â>­´‘—Ò„ràæñ;˜–)I‡›@å¼’'¦Ïb¡¸‚ÀtÞ„ïß2"HÞ‘fŒ“é;¯ËZ@$¼á\ú¦¯ú.= ï®L†G4Ó+e–@¤HëÄ3*zš`Ç»¼Ö¬£†;Ó Ñ3¼p\Y\r4¬‘Vœ¨(㉗r‚2ÇŠ’B×`M4÷ ÆTÒ˜Qw§E=Wd J~8®±¨iS½½ô]6ìúw³)p$¨5¥zíüFVl–\M$PM@ Ìáž¡}tÖëq¢KëM†‰d$úÈ7hœÖœˆ ývÍ›)­‘˜M:€Nô=7¦àøc´ï0Ûêº\z¡¶BÇ…Õ¬ÑðšâIã&£±vß¡³dÓÊ–šæ›´Ÿ,j·z’b¹…íî5{Ç™tñ5b«^D(ÛYÚ‹ëˆíct…˜5džEHêo´h@¦ýòÑy°P@¯BMß„zƒù_Ì7Ú —–Ú’i÷S[ ë–âÖäC/-¼ªBº¸ÆÄ`Ì/.™ï$Ö¼µ4÷Ú[ ÔìmÜKmyé¸ve¡_Œð¬3jí\N浸–ÙÙ]¢fBñ°t%M*¬¤‚<ÇMA3ÂåKFÅX£+© ÓfRAàà½:Øjw–ZT·¢ÖÂöxÅÄÜ™mÁ$3ºŽD²©Ü +Ÿ 0ò†¥§þaÛiF6—âÞf·”…{k¤ xgDgã*r!ÒµÛ $T,1»WŠÔõ4ÐcËPKq ¼Ë2E$‰ÊÔ# r€  +¾kqFºÜÖÈÿY… ¢¯øhJV„õðé”À+ @´>â´9²ýGÒnõ1?§wnñªZ0øeW$14ßjmƒìtG»qt´H˜,7¡O1ê ˆmè»k•›[\J€\IG‚Pa‘dÞ0[s¾ÜXP~Ž™ó5Ö­üãå;Ùl54¬žžÌçMÔ,ÚQ뉠(”­xMû?µÉvÌ)ß6It‰õË­WÊW^M±’Ã\²¸6zuÜ£Šöî)ýxÍ=jH ØÕ8ÓO¸òŒ¡%$†çS’çËò[ÂvD‘@À·Ã,nYƒŽ‚µÅ}H£ô^DŠ+)z2–äz +tãM¾l‘ÿÎS]ëbóÌ>uÖ®Q»Õml£¾Ô¥ · wmeoÐ\#n’ÀàÂÊÇ—Á¿·çèúw˜.µß#ù³ÌZu´:…Õ¤¶š¦¡ªnâm¿usê€T¡æŠ€×À ×Mü—¦çRnSLˆÕ(E‹áPT}’)Ôb—M,œç~oE¨4P (ÛÀPS¶qlð¦ây³fsgcÿyÃó òçÊ>[KM2ëNÐ&—I’ßO°µ—^á4ñ•šF‘Œ²‘\dûHkÇb~’ÿÎj‘þ`þAØh#MÓï“Ê×w6·Z|vVóê%˜ú©vËÇ›úߦ§'þZäC¹ÖµM)¼Ÿ¥YÛŸVW»’émU¯_àP±zÊ­'È8 Ø»xœ£q¥GåÈa†HÁ¹Œ¥¤í¥uX¸ý`'®SaHùðå¸Zšäƒô·æÿþXÍ;ýëýÿ(ßûÛÿ,½½ÿŠþ׶zûþUÍŸýJPÿ¼ ã¿oýÿÿ½ÿápÿþUß™¿êTÿŸOþ?>LJ_ǯ¶/þóOýYo?Þ¿ÑŸï4ßïwü³}ŸïÈû^ÙÿÖùUŸ*³åV|ªÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ¡®lÙèÿùÆM=ÿ6ü£ùù?®ê–ðÃþ}KËV÷aêÚuÈ’ÑRcÁ(ï;DâFé'!ösÛ?ó‚qÔ¼íåÿ9þPëÜ6ñÙØéùnÊDU’Iá¸àÑFߟS×ô¾6ø}N_eNtÊ­&ÿÏ:f½ä y Vú´š¾˜³Io¬À¢£ÈQO¨„¡V>tÉg|¾|Üu.}vÎÅœº…¬—÷0Z#ÜÙ)t$œ /"³"§!RÕܨÈþ»ùy*þOǯê~MŸIÕ|«pš~»«,ôŽhï8Ëj—Vrp’&*ü’xËÆõ +Bç¡.4f°ò±ÖßF¸†ÏM˜iºô‘È=+–3Gë6Ó<(„±óŽM”Ó©(¿òì°yq5¸ôy-F‘¬µK„&d{¯Sáõㆄ…4¨ š +Ë +¦Ó'ŸËë©A¦Ÿ3I¦‹ËÓ!Gh#,öí?ÕŠq—‘ MvúDš0¸³ÒÅž™aè«GÃ\ZEqs#Ý…fœˆe1ªVŠGeÀšÍü¸±}:Äi /e Ì·ââ”vPÆGˆËéÅÉßzð Pºå½äÏed– Q$±Dò_×^( †ú%!šÙ¡´ÓK Ì|J”pÙüûòšüç¬ùsYónº59´šŽw$B85kYE'¶Uµ§§#µ¥©¹‰[ëP,1ŽR³P0‘QÔ’ç7åÿš´-y§Ry5="[–çµ³56’;¦J‹ˆ–‡Ô¬„1.Õ¨·æv˜ñǢݩoì.4õ“OÿG)õE¡1À%U+2¬j>:‚iQ^t³±´‹½:ö{Øîì –E¸·H~ªà´WI#yeEUýàâMhȬ +ç˜5Ô­mfÑb™ÚÌÍëËh7Eœ)^U« +Ðuqãž@ó‡•uÝÆëEòýÌ¡Kp·Sé\C-µÂ¿Þ–qP†?Ns’hHoµSS\Žg[ò¯”t4þ^^yêþÞ[ýÊD³ó-¶–Ëæ2ð²¹ýþÍíÌñ âÉÉ õ‡“­¼»ùËù)&¯yê]Ú[<1êsé¬EÞ¨ +›yxÈS’ÎT½+Ä…eä¤F›[ ðµÝÈZ«åš ¢c¸ä„¯QP*GÏl°ŒTÉCÀ€ØZ~¬‘é¾SòåÇüãTwzºµî¹¨M6¡å«Y-dÓíg’ îmo´ˆYJÉmÅe y!↽¿òn="ûò&Þ{’×Ú­ÑžæÎßê¯bégËÅq<70ÝFÒ­$‰dF5^”&éšIòËߥÜrê‰k'ç °ÆŒ5gœªü¨UO0E~Èl–V'D{ï­F×^¯d}D™¤€•ôÙIb +†æ­8×9N•åÝC]Óu‹›=ïWF·…ü°Ó•´ª@eq±1ò‘CÐzWùjÂèZjm§£É¼&âGN.ÑG#€Uëþêg r§ÀH=+RdŠYÚ4,#¤ j§ÀT€³TUˆì+Mþü.´³’æQoX5F§ˆ,wbM?†)èϪêÍZÝ$J<‘Çè­95 t=N´ÆådÿL°ò¿ä;%±µŸËúö‚gMgÌ2L×–‚܉ZØ=º,¡aVE©«­2N?BùƒÉé¶ïa¨ÎL7z¤’ÖËPwWúºN ;[¸+Á\)Fj;Ц“5Œ"6’ Ôçë£Ã(™J••º-(Àõ¨Å›ê¯b0ÑÊ ú¥˜2»Uˆ*‚»PS}÷¨Á?šóþfù‹óXÔ5÷ól0Ú&¯,ŸW‰Þ8­bŠÝéîš°zd4câõ®y§ZóýÿšîOŽ»¥¢5Ƨ"ÃlïDE@öêh~&«Uqñ n±>¥q©Ï.®¦;ÞT¸FŒBÁÔq¡E C¶ûf¼’â[—kµã0!d^*8î  öß¼ñçO7þ`ëqy‡Î—é«{;}9$0C†8Dò0¬|˜".À“Oˆœ,ÔuŸ;êþq¹óe½ôw¦kxF­åCo?[šÒ¼¶¹_L£ðŒ!ù©§PwÆj•æ«sõËù=YŠª4…T3P ·*h:Î6âæ[©=Yˆ-Å¡UvE* è7=IÜï‹èÞiEò½×”¼Ì./4ÀZãEhæãú6öY"igHÈ£‰84d¿!ñr@ï ù—L·Ñnï.ôÎMq>”À–KkùÊz¯$2•B… ©¨Þ‡)¯îä±M:I [Äí$Qš ÂÄ‘QZ +×dƱ%–T®Àµ xš ®Gn«CÔ·„‰î›ÆÊ£[3B7 sP EEj;jð>7™Än£·a¥úRÂArŒÎÆxZˆñ±PEØìve4Í›4ÖÆö6‘V“(iÚ¤·_ÀeY\Iep\?Ö‘¾'dSÌ|\˜NäWp;î<3fÂ’Œ…˜ó¥Tu’„ý8þ?±}bŸ $ ñb ©b>"NÕ^„f͇O©Ø·’¡òËX†½†óëVZÊÈ ¤.€>Šî-²]¢ùÃʶŠ¾hÑô .u)éYÖsû´œ—’°+@Ôû;£lº§ +Pó¯ZíO•?Žl IJуŽOÙeèÃÄ{`ü±«>¹¤Û-ջ̓_\+Ä|W+×™@€QVí^†³`Ym$PÆÛá=õŽ€m×|©Ouæ^M+[rê¾ÑuXm’Se-*Ü’O‚EzµA©‰6¾ÒHíõBq\«3"ȧd£Sqök¸èFù?Ì>}ËÍštX´D†+W^G:úÏtd +Ã`­Å€4aÞ¹³`ÿ,„ Ö·›a¸—J»Ški¤¶#Ú¼ËÆ; „ROEˆcW˜y-k‡ž\–ÂëRŠ_0£¬\›…Ì B¥—‰GCÍ)RW¯ÁZdz|×ÐêJööÒ:¤×1¯3 +–Ÿ†ÜøŠž5ñŬÖÍîàMBG†ÕEÄÐÆ%‘#'âdFxÃ7²×ÄaßåïžcÓ`ÈZ¥ôPywô̬ÅÅ´í6Ÿqmoâ%³s!UÃ<_.#à ¼Åg3뫦h'èÆh¯"¾Jæ ­KQÕ¹± +áøP׎(’ÙE4Q{wvH&”:ð^_ •RÝ( 6$-JÐW©þÊäëóïÈ.æ5êžf°“][­#V¹Ñ­"‘`¾ý-¥ÝíœÅÙý" Ò(§Ã@)žqÿŸ…þ\iú·äg™|í©êÞëÚ}Þ«~í5¹[© Œ³Ãû K†uâUy|4¦I|Ûå»;®.®u¸dÕ¢bo´ÅIB…–Nq%‘‰‘J0nŠW¾ ¹³Š(å‘®‘çGPb£~ñ\1æJ(+ZÆÇzyϦ|¬ÈfÍ›049²cùe¡Gç=aüˆ÷SÛ\kWG[x£”I¨Æp’z’EÅZ†ÙŠšg¤¿çÿ3íüŸù“7’µ«ùlôŸ8F¶*!¾ OeffFUrÌ„©êÃl^Ù™gŠA+CÅ×÷ËRɽj)N”®lWô¶·ÿS¼ÿñÕ§Û¿éÿW±ÓÛûÏòsÛŸ¤?çÿêýgÓŸûÓ«ÿ¼¿òÝö¿ºÿ†öÉ·éŸ;ÔÑsþôÿ-ßûÝÿ"ÿ¼ÿ‡öÇú’¿ÚåÔý¯æÏÿ×ùUŸ*³åQëŸ*³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ±ÑU¸‚wjVƒ°*/`õ'6È]9ÜÍé¯!V¢îh7ÛƾýsdûÊžaÓ|ñæÍIüßó-Õžƒ +ÛXˬ4rÞ½•œB(cHTò*ðŽÛg¥ÿ%ÿç#4ëírËÊ~d¸‹A‰c±‹ÌFÙîÞÞÒÞ1#Ñ@\¨TQП» l®_Õlí|Í«Éif¨°éRK‘oQñDjj@ +ƒÁ7é]FÝu«÷Ž&ô`–ò@ó˜¡V$økȪ (èvÙ|Óç0iºµ­Õlÿ/ì-týÍG`~¯ 3ŸZÆqd „Šî[U–ˆß•e5n-ìóZÛÏ‚÷M‚!/”ôȬ´í~´‘míÖQ%Ý£‡¡p±Ï$&Hèÿ׉ø¸™Aóµ×Õ%Ñaô­¼¹:Åmx"„KÍ õU¶X¦$•K…åU«ðÛ’‘0ëš„6wvVíèXÝ@–—H‘úŠÊ®“¨å%YyK}ˆ§ÅM‰SÏÄ>HÔ<¯¤O¥Z\éréÁ¡×.¤ž{è/–yY~²‘•m½=ÑÑž±µ‘«­/Ë:¾—¦êZK§Ø¸h/ä_RòY/\ı/ÕÅAWYk@WjäVæM&xm–Ùe…ã^™æõÑÉ&¤Hc_,Nõß ç{6†Ü[Æé*©.òW~lAE¥@Z +ÛÔ×z f—q¥~Zés$×öCZ¶‘ZÈÞ9†{I›}VÉáô¢uÓýæ•‹Ó¸§$'…cüœÕ®,5Yo4¸¼ÅndŽÊK‘qÁê7¡¨ÛKeRú<­ê(ý­¹$–ÂY¼»¦J^îæÚ;ø-=$¸š&ø£½€Ž 4a–œ×îä¢"6VŽò™"Žõˆ¿xž´\É(8²¬‘î~›Šò§Éß™~SÿOæá§ùöÇP¸MoEºµ–ä^éRÄ&†òMœ¿ÉYcV¢•jQKc/ÿç4OÍIŸóKó?Ôuû1,Z¯—ÞÖ[ˆµR¯7ª¢9Yx+~Á_æÄbòÍ™<¹uæ'Ö‘u»y™/4©UžF€"²N¬ gSR´Er´‚¯ÇƒCÒæò ×bÖ!:’]K΄Èé2[,q´w+#Ù“‚Õ—&Ms™y÷É–_–³Xù‡È^f‹Ìž\×’9ããkv’ÅÃÖ‚êÌ»ºqr89ødZ2ž pgɟ佘¼…¬ÿ‰|©æôss‘ÚM!T¼7vFI2’9àÇg2ÈèOg£ctÕ®auJ.²BO«Vj|j9R«Q¾¾ÓM½½Ú\Cq ÈýÙŠU2+*«:¼Uõ‰n5eˆâõ?ÃVúu¦§+£ÎfºÑ䌄Še^ ,n Ie#¥•ÇIwM+/&dyZk‹^0¤€qGBò%Iª´÷ï*~Jè±y2ËUó>­¨ùCÌ’>¥-½Ý¶qªY\évÖïë<¿SäÐ<. wº×Ò~Ei±í>]òM¥†‡g©êÚ¥Ö…©´SÌÑ.Ÿ%íµÆQ奨bð•$)ŠR£ôÏ.XÇ¥CQ×?CßM½¥³A<‹=´ˆéËÕ·Ä3+øµž›a&œ×SêBÎì¿­dŠB²ÂÉ%]dˆ6üÓRÚ¥i:.§ùeåoÍ&ëVÚªÜLëõ«{Þiºœf¯m<¡Ý£`È̼XMÔÑк—•#п1|³s¤üŒ¶³Å- ô1¼-¨hB¾À¯Ä:n6'6wZl6Z´2Å;7¤kÜ^*rY"z‘NCí-µp†Xa†ú±•weEäŽÁ£âO(É$ˆP‘FÞ•¡¤ßó.î÷È·žlüµÔÁ½„+Ï$kióA=Å¡[¨§²œÉYùñå!=ã‹~gj÷^Yó­Î­å{‹itû¤1^Z-“BÐË<,'YlîUè²UST#pw¦-­-†—®È4 Øï­¢áèÝÇ ‘Ç%c«Å[©!ØïÛÔà³Óõ‹L¼KøFÑܤo·$V*RP T’­Õj ZæZtö)ymúe%º²‹’ÍOÆQ ’IŒ“Ä2“ÉAøIê:ç9Ô Š-F±½¹¾úœU·…‹ÈeƒípFä GA¿Zõ±BÙ ¹¦Ÿ†ÍuŸeyx,¦“PÓýIaÓî¦U´šU û©0eâH²†`:rï‹Ûù‹Êiy$ÈZÔ«˜m⸅íÙçåɨõ +Ö”`¥”xæn!H®ÄŠ|·Í€Ê<^¨@ +ô{ï\þ›æeŽXø4¤Å,^ ª•èEÅF Š€{‘L¬ØˆU#Ö#Œ„õ«ÓjÒµh>b¾º²:‘Iî–FCÝ, ,y‚ ø”Š¡éU¡Í›»¥v#§ŽØ¼Ö}gën=DU”6üXø»¾lØŒ¡úÂæ7^Ž½AìqXâ)'§t sq–»=[¶lØ…É{§j<¯ýãÐ b:T›wN·×¯<¿æxN¶¥õ"]iB„ W +7ø¿eÇN›6 Þ¬âËŠ:ˆÝ“âZšÆäWÇ¥vÉÄ7vö’Gldm*à3z1¦]-œ‚#$†ªkALÙ°ÝYÜáê@Y«SÖ¤ÔTa`ü²òä—÷:ÿ“o$ѵI§’Mjȇ–ÖîáÏ©-c–«2Ýcø;¨Í›T¸Eh‰R +)Ò¿²Gq‘;Ó­é¢ãNX$Ó'³bm^1ê¤,jˆÆ5?¼„ÒœCx ˆÙ±+4ýÛ6Â:“JÒ l~X{¡Üÿˆ´¨¤×4æ°žVu¸ 9¤…VHÒ6!€ Эù³bKm$ïõ¸¾'©¥zöñßÏ­é÷WI¦Þ\‰õMù¤Ê W6rL´åÀlÊèwê¤Ù°<ÑúLÞ£ðVª=Ad µz{xa›C©yŽÖº 4½bb Ò¼ÑÚ‚¨èûf¡ùæÍŒó‹yå½Pi÷EdŠhã¹³–VI­eø£‘hIŽÇâ´+’ígE×´.9uHÖ=E¡FgG”Ü”Ñãu.8±Ýkº÷Å®¬î,å8%JÀ¤ŠH ‘Ðýc¾[)CCN€ìAê+Û:?œ—òTü¾µ¹òC\ÛK£ßNO¼ÓÁ¼’×S‚Ô»Ô-È…’)cŸÑ'âÿ%k·Ÿ7åò™ü“w \Ú]iZŒtKˆZÚY¥»Šõšþ +D‚'YeˆsZqŽîmü¢Úͧ޷×mý)ëVî“\»·Ž1É$kñfäÇ`1yÓÐ-µdáEd*î]jÔ¡eâ„ZÔÔmÖœ·ÏþBó?å—›oü“çAe«iÆ/¬@$IW„ñ,ñ:¼e••ãue ô9óóGò×Í”>{Õ.üíh,µ%£IIâIápÈ̤a¼µ²Ö Kbö­u!‚-$sVXÚ4   °LšýǨ&¸y Š‘È]ËT§5ê<3Tøûd«Ë+æ5þƒÒ¼·÷—Í/ÔôË(d»Ïs%@§ÚjµÔûÓ=¿ùMæß4ùÃBòö½ä(î.îìF¶ÐÈÀ›©gwS «»@v?:c­oõæ´ú£°–Ù«kÃí-Ëj +ó +’ëÛ;íÿ™<ïùa¥Á¨Åå-4 Í?J¼ó—®níïâÕf».cÖ­Ðò¸²yŒ`1HÔC*qj1ã3Ϻž¤ºé]{Ê«ú*õí5_H¾{{Ä}JzÈš…¯ +M¨P:‘HÚ±59zyÐnõýGH²…µ @º·šŽ‰<¨#’êâ"Ëyoéñh}E¥8¯¦ÀAŽI.õK»8RÊæÄ&›*C<Ú\³M§šßÖ¡†BÂðü ÑZ«ðaž¯«ÿÎ+k™~@ó—W–¾Pó&ŸiçM.ÂKÅK=mMÂÞBñóØr*ÀDѪ©¬bŸf…yù§ù»ÉŸ¢.®íü»¬Ú[ê7ºE¼÷–¢Zx®í”’Ò"£P…N*L #ïàü½¾ó.™ëkÙèzŒ6×:‘¶W‘­UÐÂc žJGîO% \}¾—äæ=" OYh×PA6§uglï5´Ïd„¤¥~̃‰uåðüj­ö0›C·ÿœPóšõ/ÌÍ^ÃÒÔ®<¯oõ™ìÚÉä!æ©‹Yd%RŸ¹1f VŠCóägäoç˜,ÿ1®µ ,®,gy·Ë6ÆGKã%ɉ=/EÿxJƒè,|ÄËÖ§>Pò÷ä~·qú{Ì>a}Ò–+kyn_Ó~J'úÄ H**Dp‚µNySAü¡Öó™î|µk&©»éóØI©4:lØÜ=ųCÏÓâÂÄ®yŠw%·äw—<¬šæ’5-CÎzJ\_k"ÂæÂo,A{¢h®òN¶z•ã~úèùãFaÄìÄqÈõÞ›ä.ZùrßÈ:~¡~!ŽûX½úݥ·w¦i®ff·º»X‘æ€*qŽ ïð׋}œ.Ôüå =ÞóÊ~eÿËc,×3ØÅk.žß£m‡'¸Yo•pÛÖ74quO&ùFÈÈú™ÌÍkuvÓÁkšzË¥Z¥Äs_„oRZ±X–'eUäßË€óâ+?4Gå ou[Wó-·ž/¥¼c–xЊXPñIâ- kˆ]Õa"òççÿéýRÃIyfóDêVšô:¬Ñµ£M +­ð© +·—`òFë€ý•_„Gã󦡣\G&…{9hïbÕ ­HÐÜ" +0ˆr(À³†*ô`F˜Aeæ-GHú¼š=åżö÷qj 2ÉÃÄd@»«£øƒoQ°¦s¯>ÜÝkþÖï„ëv××SM±D¶ÌêYKÄ¡hô;ÔOBpo˜¼Ó-盯ì\,ÑjW3zB[w¬u*í…e’‹º• _¦9wq-ÕÜ×S0y&v‘ÝT*–cR@+Ú˜TîÒ;HÝX’h>Ãl˜¶§}ùw¦Ûyž[D¼¾Õ®¢ÕüæÇž;¢ðF²Yê·1‚X‡%Y@eáðŠHNH¦ÕÇ‘m¿ÅrÛ‹ýGU–;Í ]wõÖxÚê•G$‚Ùþ%¡ØrÅ$I#n.âv{‚%ŠWcÅÐ3+×¹%‡Zö9t>%<š…»qÜ©ãï¡ ¥Ý¥íý…Ô -Ÿ§,–ˆì¬mÙjîœö< (<»Ò™Ól­'[ß4ØÃotöðqk{yœ4H¡„ëêÞÛáaÖ¿y û[/+·¦Ð5û9ô_1LÇYÑ<ËÎyáÔm•M¸ÓšÑ~Ew[ÈaÁ‡ÉdžVÕô¢_i>mÓž)]fÔ´ÝaÞY »–!é­¹·ßÓpêYdÝz©ñ !²6²,ÅÈ Ç ÆWº•¥AïʾÔî¦EÃõj +0#7¨"•¯MëôxÚ^Zj¾GŸË×–ÓÝjºdâ÷F¹Š"ü-} .–N?±«-yPW§pͪØjº%ü¶o©ê(b¹±¸·ŒÄ²[&OR‡áQYvn=6 À’O:Ž+MˆÞ»×åÛt»Ÿ)èi¶Ô5M6O4hIúv,Ÿ£%™¥„«–&˜«E+UpÜwZ1=¼§6¿¯dÇ[ŠÚ5{Á)ú„—£q Nñ™}6…ÛàT58¸âԈ²)™Yãý¥VÇnĆýYkÄ0æ ^à|÷›Ë,š)ŒÖW~¤º}Ã$)+D9ªâÕCU'õ×¼òý¹Xµ7IlZIZ+7”(‘Ô'š+8˜†¦‹2°;¨¯…iñu§Ñn-437úU£/ íú*heCÖª?g¾lØâ8$žÛo†¶6ú>¥¥¶“¬È.ôÛºGÍ°ãàÙS®lØ®¡q¤_Þ™4Ëv²·™#?W’OX¬Š€=±`XTt4$Ò¹Öç¿ü¿ÕF¨Z½Ç—¥TŠÂæI~`òZ5Åþ‹2­þ’ÀÅ)‘THQè9ЯZ«vî2ÑÞ7Y#b¬¤`hA9²µÔ‹?˜oÚ{˜/_Ôgõ$å"¨sbÄ‘Ó›ÍWß™ÖK}uͨ*²{Ñ4®(^>D'N>õÇÜ\Ü^L×7r´Ò¾ï,ŒY˜ôÜÎbI5&¤õ8â¯ËY +º)"@ácE# óŸùÃÈúGæe²Owq&çM%CóE²Öí²™­ËzOÁV…\CqCFÄóf¹+Ï(©-I%ZŽJwçN›ŽÃøäÏò÷ôͯ”þ©æéb×5«EêZõœfÓô¤ +‹I$‚¥"”“FZÒ´Þ‡mòÍŒ’ÎÑø›„ûkÊ)–µ¡éPLþd×l-“XÑÃêúDµiàEXµã^Gj™)ÍOcÛfÅí¤»Óâ¹ÓEËÅcv¨·Ð¡Ù¸P£½wþÜkÖ’kÐyÿË·2]i:Í»GæÝ52 N"¨-î!jƒ[q%•GÆ;r6l”[y7ÉžvòÁk;Ó£ù§LÓõ »¤»,Öš—èÕ{Ž0¿ìLÐ )X¾Õ\ óÏçwüâ'‘ÿ5¿*uOÍ!]5·œ|·mxúÕ»0^¦˜ŒáQ^BQÚ5⪨¢ŠÒ•moo=›˜¦av¬K@ËÃè©a#H zþÈN›×¶?ŒF*†>¥MVƒuå^¾ÔÎMŸ9zmíûõÆfÍ•›6lÙ³ÿÑùTzœùUŸ,oiõ©©Ó™§Ê¹ò«6lC6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³e­+¾þ"´Û³kdº‰ï#i`VS4HÁ–»€Ä5 é–ÄŽÙ³®~LXyÞßGÔüýåyE¼U½Ó=[ó8†[IîZymå•Vœ­Ú¬GÂx÷¦{‹þpRÇÏzç’5Ëï-\ÅcgåÉ­.nµk­@Y®ŸÍ,þ ,J}”bK/ã]ºá§—àÖ?IÃy£Ò)`‘8ÞKÁaŠB )w—÷köI¼1H~±-ÔÄëÆeÛƒîWâìvÛ$·1ê>h󦛡ØyšMCQÖ#‚ÚóTÔµžÈÉ5Ùæ’ÝC) fÒ:½dãÅÉäSè[Ë»ÿ0ÞêZeÇš—PÔ!HÔ¤Ô{)c–P渴(·—à’7¦E  5H»»-gQóΑ«Gsr¡â7v&·—ƒ +'VdâïöIi™íg³/—vÎ GZíÁ«½.Õ¬ô¯Ë¿1Iow¾· _úæ–—SÅ{`Ó;ZÍ ¾ŸJúÜ…øÅw _„ОÖÇK¿Œ]¼µ™†8f¤±«×àfãðÈ´¡Hú)‰”H¤^dH†…‚¢¤lGË'ù~ÏÈ:Æ…ùùW¦\é"ïL»ºÔ†·¨i¤j¶rÒG¾”ç”#²Ü[È®ÑÊŒ>"¼V}¡k1þ\zeòŽvö:…“~‡X»°’ÆþÒW þŠ¾F¤Ä«š2«©¤&éq¦ùzïKó—mfÚ$¸·Ö ³¹‚OˆÛ³Aë#G0<ºµÆ¸{cþºÒ|Å¢Á[¯Eåxu{KÛG%žÜ´qݤ±L§µÀÀÒ¥ya—¿8µßÍ¿)hߺÑѬü¿¤êry‡Ë×:ÜÒZ24ª¶³]£Goé²ÌéVH€ÿ~ ÀÚoç5ÿæí˜üºóÇèëë+[©õëYœÛÝ}a ¬p½øháeeÇCé?îŦ)­~`ù—Η•uié,f’âÒöêæS2'= e”B¨@¨¦ l½CÎúγå ;ɺ™úÔLòϦ]Ïqtò[E2öñFótˆ²óhÒ´[$³†õ®fÐíKÞiÈ‹= ;É';i>Èýã‡S³æÓÍùcçcæ=?L¶“Kk¿¬M¡zw+êüP±,}Hœ +TÈü”ý¦ë‘$`Ž¬Ê)£V†?qÈèëãíçGòÇç&½»åd±òåå맩¡O8K5š`IŽÜÓ”q(B#™Šl+Lï6Ö>Eüè¾°Õ¼½%¾“upÕ—D»¸ô•§ão$jÒŒ#zhKøGÙÅ.§g¶‹ÑG¥! \)#p¤ïJô­M;ž¸éBÈžšÂH»Óç’I?-¼‹c7憙ä/Pó$Z}­ªhvˆ·‹Y±y +;Ë-¬Dˆ«óxU€OMÍ2ä–çÉš˜|ç¦i6º˜dµŠ4ÒmÈŽ-JÊW£naY…‹sx£aÇ‹…ˆäÓáf½6^¼ðÚ¢º»B¨àPL¨ø®äT½ŠÚš†uÒo¥ãà%™"’E…]‚´®ªiÈñ ÔÀœ$‡RÕ¼»¬´J²Ù­£Ô,Ý‚J„4.Ñ3Þœ¨HâÃtbß +-õoÊ^dšãEÔ¢™,Zkk”V.†4¬jaçƇ*†2ö1¬=7eG  :Ô**¡÷ƾþZySFówž,ü½¯Iu™sì·WvVò]MŽÙäID1+9–€ñŒ3t§‘|‘q7l¾)!òåû\›ÛÛ@÷d¦ÙØ192Æ%_Ž¿ejݱö°}fá æ# ~)1TQ¹f¨æ€í†5–TœF¬@iª;“ÄAì2,ƒxä`þ‘dæ•1µ <4ë^¸iy=½­Ô–Âþ;袑áKßQŠ£Wáõºôzm\K•)E¢V¢¢ öØû|ðF™¨Íõ·Ò¯ h%£µ¼0N¦ÒžM‰ nWqß6ll0Ãõõ 9&ç6§£u9¸¾´”¹J8 #Z?’*c#*‘Ôà,CÖiÈ¡>牷jôùW ìüÅú"íõKhÜ¥Â,—kÁu5c:JÜ5@bZŒˆßfË{]=ô÷_VÒqMƒáCjÐ2õqѧ9 ûSy=¤¾\³±’æÎyoYZÞUÖZÄTòŒ³nÊj Üqé›j{æÀº]…åι¥XÂÉÔ'Ž;iïEn²I"EÉäm–:Ÿ»킼½å›[Ù^}>Î(cÔäEÔmˆ¢¸ 9:ì´!xÉ_´ x ´G‘Ö8Áfb¨êIè3a'›ü»©yKÌš¯–õ‹oª^é·Û\Û“Ë„‘9RPrܱçÉùË¿ùÇí_þqãóƒRòÅÜjš^¤óê:íÂÆK‰8dbˆ¾¬aháj:„`«û;Ý>y,õ+i-n¢*%†d1ȤŠî¬xâ—÷—ZÝÄÐÍ 4sC"•tu4*Êw£ s‰`LO6lÙ³ÿÒùTsåV|¬•‹HÄçʬٱ¹³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›-HEqðH±L’Ç-iÔýã6zŸËž]¹ò·üâþ‘wa%ªÿÊ̼ýõø.! ÛÝ°oÒ-0êÏÅ$i8úRší¸ú…ÿ8}å=ËóŽö˨h÷úOæ$I§j×ZKÄ-¥¼š–Ôž)a$¬•S¼Oשɿ”í¯´ÝiOyE¶Ÿy Ф "Ê"v–Gdô¸†*y²‚¯½× ,tJu³‚/IX[ÚÍ4ðÅHú’Êꑨ©r´Väh¦¸W­~^þby?ER¾Ó¯ÿEi7éV7íf‘iæÊOVæDimÃCs”f’@ò)k¨¯{ó¿åN›ùCä¿/é>L¹Ôõx­õâ–K÷.SF•¶wBöÑzh •_àø]Ã’¿ÌïËÛ¯!yoLº…/Rù,¯/œ-,Ö)ÉõiîŒS¸#i¨²­~:(\6óOåßž¼§cõï0èwv–J–pê¿Uÿ@åJ¢;È« ܳFêîTñ~`ëY1Gç.Os§ù¢ÆìMímÝt»âÄOë#ò)t "XØ¢¯Û眿;5¯,Xù¶o6ù^çô^´·%î›,4ËÙCsÄÌ}cCê#ÑH'qœ¯Qm2HâšÌ•¹­Úu‰ØD‘ŽªÃc¸44XËú”m/V¬%R]©Äƒ×~âºïA>ò懞.¬|÷¬ùR_4ÏåùŸüSä¿FÒçMºÒ¯@I.´Í4 ôg†AêLÑ©W'›”j±)ѵ»O6O™Ç—§Õ´›y>pò@Ž¤Ãc$e#½ÑìàôÍ´‹2™.J†Ù¹±·'Sy†×[¹³½Õ,äš+C;ßÙBXC¬ª­z"!ɪÊj|B»¼Õ›U»[Ûèƒ?7’xâHá¶Uv‘An±,b¤ì´Äí¿7¼…'åd åM*ÓÌÞZ½‡P0ÝØ-´wÖðHÉ‘¬²N …\-Õ¿À²$Ý9ƒ ϾQ$[jþT·ÓbÖôÉ#¼¹°»´XRh -„ŽàÌ`n-êŠÄ ;øÒúÎÞÒ;»x­Ú{G†G·š ÂRŒßïy‡R *½A +hÇA?¡Ââ/Oœ.Œ#’1'2 á”ЩØí±ß%¶py¾kKífÏòÇDšçÍV?]MWËú‰ƒEú½ÜA¥Óæ·õ%‡š³s’ÑLo¡@œTçAÒ`óDñÏy嵔׺ݸ¹µºÒoèi-®cÛz Ó +Z›t(ÑšU ÁÑéÿ¦áÔ5DòÍÛÉpdšÕô¶e±·U¡Š©;QiÓlþ•ð¼¼:s«Ü;½·ÕX¥¼<~7^,ŽX(#öÅ;çò¶‹äF‡^°ó&»såíj'Œé@Cõ*G‰ŸÕK“y‡@¢>çâ ß ^Pòÿ—Äš¤˜O–õ8&im2<š{º3ú‘Ì`å"‘Ñi ò5,ÅäX…ònT¨ð‚jz .P ¡ lMM{lêÞUÔ?.ô,èÅ„öþd¸K—ûÊþ)¨Š-%f^Y·„ˆî’.üºgXòW™¼•¦iÚF·eÜ:ò$¢;{Xž-Eg›œe@fô®­óŽTè `›VÓ£‚cpeõ…¢`¡üµ òVlÊEk½(_ · \±ZDÈÀzƒV‚*:ŽµíCÒ4oÌ¿Ê_R¸ó¶½%æ‰æMGXôØüÃl ¿ƒX·¸­dƒU¶e´hÔäm.ûK´SeµhlõE½†T*b¾ŠD†R”`‘sàhC€jyyw£ßȺŽŒñØ*ÚB ÂÃw$‹%II ŒG+¡?mÕ—±"¸c{saq ºÒœÙ%œq‹xeâg.¦’Á ž\˜)ã¶ôÆõï8[^ëÞk»üÉÕ®¥Õ5­3RoWH·Ó5-2ûP¹œÍi$þ¡O„ú²ÖP¦â6!…O!k¯Í[µ½^óÌ7ÓÚÞÝÛÞ¸µ··Óïtɯ§™¤‚c"IEs̀ʕêEF6µ{5ÅÝÕãIx¤MX"ef#.%h­B~09Wç€RòdšK‚Uä‘]Xȉ >¢•cGBhÝAÜo¾r;iM¼ÐÎ#$¸et$R¦€kÐäWO×ì5W¹»µU1U»šsÅ¢pîP‘Få± ï€1 [L¿¾Ó¯"¾°žK[¸zWHÈñ“°hÝH+±Ü× <·¨y§@¿v±¹žÊöýäQ¼0 {f%h~? +å«20d$05R6 æÃß8~[ùÛÈp4ÞiÒßN.P›K¦{i–±ÝF£w†B¥RQTfRµ¨ÃËïÊï:ù~yo’ÌÇctwú}ñàg¶‘G'†›±e!?q?F)ugwc/¡{ ÛÉ@ÞœªQ¨Â Ñ€4#4[°Iãhت¸WIW”ï؃Q†Z—å3ØéðÞÏ®ÚMk¨hÑëºV¯dÒÝi«O¦]Í«^¡u^QC2n2+dÛBò²évÚ…¶§kp~ª·‰c3¼È’B€<+8ºº@ê82Ž,Ç⣩#“Ë÷5X¸¶d¶{¸$iÑÒ@‰êƒD]VZ~ÃjÐÈ]ÆqièýfkuÿZ„¥ÄS¤½~mö‹àTg4 +d¤rðÖ´¨?-û× gó%¾t~²R{ ¢DRláÖ”hî:"Kʼ?œ +}¬,À97“Y»Ö*ntí*[-_.´_¦a‡P’Þã̉<í%±’ĆYå¶,x +ñŒô-¾Þhù×È·Ú‡wkåû«†m+[…¯Öi#¤iQ*£€¬Ãì¯bÔ8wm©\'–/4Í:YíVVõˆÅúÇoy8ôµ42HÊTƒS@]©Û6š¨,©{ªÁn³ëšËëû8lÌ…ÜWbx–cèó¬E‰9ªÑÅ7¥G8æÞŠæ;ƒ4bI1 0±b=7õAj +ü<–„oZ€DîP…"«Õd?vÇÄ )½ò×—<Ë¡³Ø\4ê¦ÚBá ²SÖ;…&•?v8Çò‚fbT)o¶Øôì;ärïP×<µ¨Eþ"Šh£Ù!Ö SÊU"‰øRµÛuî¹³bI¦¤•TZ„Ž;Š±Ÿ×’‰¼Õ¨YÜ~ žqÌj‚/#G,.[ŠÌ y8Øô³`Ô>—Ã%U«XÉû'ü||0µ¬éó½»êÁ™ª²Åc©0P°ÜË@¶ó‚w!$S±;u¥vl¹ùb>ÚìæÒ­Ò¤j‰ µ/íðÝIÍ›%Úž‰§ù£ÊW^vòŽ›%×—m£o9é¦Pö­ëNa†}6/Š@Egõác¶ÙÐ5?)ùÌ^XWòX +-C6ª^eúº»0§¨€ü-ñðµ0Í4Ÿ¯i«u£Awu-¬o.°D‚ÝCÑ:3$u,‡Ç%‹Ü[<ö1Í?Õ¢õµ"ø S(‰X²–øIu`¿S¤z Ï”.ìu ÍVæ$Õ½°ó»ŸÑ2«TË$ $m¿¨Œã‘¢àO,ê–6×s2ȺÜõ[Òr%{ˆP-ÄP¯ŽÙZ<:=Ð’ËPw·¹¸xÊù¤ãk)‘®FîT)­PÔS£WkÓã°¸qkxÿWyÞ$ŽõÝ„êZŽò¤qI#?—fé‘=cOÕ­µ C@Õ¯.U¾³m|c˜5Âp ’£\"KéKy($qØg(ÿœÜü›‡óÇò†[Ï.ÚÉq­Z8Õ4»†¶.D‘BåíæIbY¢Ib&Â~ó‡* CU JëÖ¸úã,Œx®Ò,̦œÃ°†¥EEiæEŽWd…b«Ë‹€~Ðä¡÷–6ŠFŠ@UЕu"„hA|ùa{¥_\iš”ZÝÚHðÝZ̆9b–2UÑÕ€*ÊE=` 5÷Æcq ¬ÙÿÓùTzçʬùY'Ûož|ªÍ››6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6l°*G¾l蔓šÇæ¼ÚÔ¶“Çgc¡XÝÞÞÝÊÁT4wQF*òr£çôçUü‰ü„×?:ç×ç²™-,<½cq{yrì—Ž fŽ5—ôˆÛõoƒ4Ý2óT’X¬;Á ·2T€(P»ý†>%¸s#“w#ü”Rì~áSÈZ–‰çÿ$ùgò&4Ôlî--üË}qweé›IîšØ\XË0¡n1p‘gjWÓ#|ö§ä—œì Ñ¼¿ù`ÚžŸ ·»–î{5…ì¯È‘o!Œ—åBꯤ¥8ÐxàÝ6ø-Šé¶—WM?­êÀ^f +±…‚9 +«xv®j©Œ/&­X•ýž‚‡¯_1ü°üÝó>Ÿæ+'ù/RÕoÓêIau ùŽê;›)n¦)iEŠŠmÔü'©È¬¢HÕâô½@S²µiʧqJ ˆÁå_òŸÏš}Àó_èë6i~£æý +i$rB¼ÐÃÁÀ«(—hCË>bü©óm·üìiÖÓ ÇÌÚlÓ<( +b† ²äáf^5âz7B”)u¥êÂo–Ö@Æ#}¬cTpfç&*U@¦Ôí—lòÃp=þ®Z±´ÊÌYF©Jš$lù•å#h>‡”àžðþaE+Ÿ2I ö>Z¹†åLö÷üdâxê…( hFɉy»Ê^ZÒnO“¬e¿_9!’MjÛO—I•.+,RZÏ´N‡‰AN¡€øpF·¦iú\PÛ¥:ª„!{QRY á•Ã«!SöiàHÁZ…„qÛ$ï&¡KüAb{e(Ä!†x¥q a½h#¦yŸÉ^S†Ê Ÿ'5Ʊj¾ýŽ«{s>—iÒ½+û.KkTÐôø]Ø2\K}pdJ!©ûTÉ—’ü¹œZ}oòÊÆãV×4öK™´ñh’i¶jìAK©®¤RÕ…â¤1ëLÚvªkW m¢ÙÍ}*£JÐÛÆó:FY‚)Øw=1};JÕ5ydƒI³šöX£’yc·¥eŠ%äîBB¨' Ì §~`h>Rü·òäÞaÕ<Ù¥‹‹y4D[&ÚI$¸±“Ÿ¬ª–ed_‹Ûªšæ«§yÏAÐü¥ .­ªëú«Ô熲Fi›ê³¬Þ¿š2õüP•-–LR;LC}b6Œ*¡¯ÃŃÕj1XBFcf.AõU”¦¦”55ÛØ`ÿ>ù{Qüƒò–¨[^\êyÛN5m+[Ó{ÂÊöòzm0n7Ë”Œî‡ù² Wò{˺EåÅÛjéæk9Æ•¬X³Á ]¢v¤ñH¤rN.‡Û¿X²ˆHQ@»FUD±òãÍ ©âR9)­Aef…C2qY–¨Y~Òò"ªHñR*0×EóŸå¾‘ùyÎO0y‡Sš;oÑWðCsq¥Â±×¤„CunQ‰*D’ÂyQ¡ý£#³ó/åâþL A¡´Öõ[‰ÄWz}ÄPÏ}aC‡Ò¸‰QÍV¾¬Dµ +xŠ·º±‡C¹·–šêæT;Æy@±üLé"ʦ­^%YHÜQ†-msm •ÜRÀ“Ë:¢Bî°QÙ’Eø¨¼(ÊÊU‰ `¤#ç-ïóòÇËZ¶¨é¿”´ëˆ'I톟­È-’7’ÞâuW‚åQlZEoMx‰ +«•êÖýÿ“ô/0éWm嶑k<CeªJˆ"-ç1\úHY njB)ñ|Ð-æj¶±ÁëÄ· 7¤fúìt’²‡&=–¼xv»ânckh¸*RáøóæFįÃÞ‚žç´Šk™`bjLÆ4Š/1Mºlk€4o4Kya¦È¬fu¶¼'xž‚ªX¨¥H¦â8moæÝmäŒ^ßMy‡Jô.dyÑ4òÌÿWTfÙÏ5@@Wø…ù,‡Ì^h{ëkƒªÍ"zBÓЖY^«råé¨ä(žA*w8¬÷W7"%¹™å ŠìX"[Š× ©&ƒ$óÌ‘G,Œë +ð…Y‰œ‹ñPzLOÌáÎŽÞzòì·”|¥¡§_é’_j–ðšÛê3Û£Î]fÙ]USÔ¥Z1½W%–ºÇt‹VÑô­X[ÎmÍÝõÍ€Yá6“À¥½XÜÑxÑ}MÕ×€£m–..bêÁëúu £˜ n ûcjÔã]ºÓ¶ùò§˜‡–µ›0&›i«,¤riÚ¤^½µÂJ c ¤‘ʨC¬®ƒ}i§êÇMóÕ†³cvŠO(½KIIRÌdCJ0f Œ CPÖ£*Öd·˜K$):€ÀÅ'.'#öJ«Q¾e!Xàôü0wœu?ËËð-¼‘m¨Á ”¡,ou%ˆO{a0õB݈ÔM ÕÔñ’:U#aF­ùcD²ÑBÐ.$“ôc0Ño¯[ý$Á;n>I*¼£ +J«/Ä­øÓVM1¥’0䤳…Fd PRÔ ×~F»tÅ.ªÈVÑÐÅä T¦õï‘Yb/© ”ÐÐ÷*G¿|%¿Ó­õ+{7R¿’×SÓçY4VÞF𯨱—42+ôxÎÒ/]÷À¸–SIÕË © &…Ó§}‡Üp’95Oñ#½‰†Ë̱ۭî½åä4Óuk3%e¾³Eø–bÿ \ÔÅÇÙ|Ù±G‰x©cUz…`+ÒAÃóŸ«è÷ÒZ CH‰½;ý>u/qlüŠQš‚¼·ñÍ›ie€,w +i¸ªÔÓ¾Çß¾#“míãž_*Jo4Ä"[­.fõd@Ã’˜Aª'r_c›6C¤kwz=Ϋm§\^iö„%ÍÌ0¼ÆôäØl6N'¢ùFk»yRß—õé\Ç0‘Ò)å¨ôÜÁc 5æ‡Æ›à è+˜v¸Wkv·h¢Z<œnÔìM~Ö :tÚ;‡«ÎñIýSHÕ&b¸()îä´Œ@%ŸÏ>»6+ÆÞXÜ*†V¢È)]«Z»{ÝSMº¿“M%ÄaF«b¥¾¯tŽ»½ñÇÏÛGLÙRÚ¡öÔv;’=þXÃ\YÏ×mä *Ð*±!ž¤‚RKE(NߎlØ\:–®ÑÝj—³^Ëk6–æy ¬ Æã/È„EUFÁv'Óÿ0®/õ¼¿ª]™î°ÛÝ8hæ·Ý}0ø©º©=‡Ðt³K;™ÚF +¨‰'Š(Uö1ÒI$¬V.@U‰'Š€ oØA‰kö^[¿Óôðú\Gª,šÊ]hå¸Y«ÂȪhÈGÂÛ‚:‘žfÿœÀÿœ<òŸì-|ÿùBÍkæ‰ÞHõ-6ëІÚíÿ{;G£&mÀ¤?3WŽ[ˆBÇé±bÃ÷ ¨Z§e55§†4Ój}9ú;ÿ˜Ï›¿Uºÿ}7ÛôþÉûËóÆñ>ÝiÔ^™³ÿÔùUŸ*³åQ5$çʬٳfÍ›6lÙ³fÍ›6lÙ³fÌH+ÜⶶæêêPé™Ö1$­Á‘¥Y@;œÃ6hz«æ]nË˺»Þê:ŒÑÚÙ[B94³JÁUWæNiÞUÖ5Ï1[ùW˱~—ÔnåöÐYV_VRxñM‡/˜Ûß.ƒ·Ñ›s£j6zÆuCyk$ÜBÀÕd‰Š²‘â¦ÚùÌZ†¡ú=2kKÛOU.þ°VHÙ¶ Çb>Í7ÍZÕþÊfÉUšë•®´¹ïÒÚÎîK[ÙôÂÜ&øJÈ €HEv®ÿµ×Ê^^¾ü¹ò›è·Z¬)³Çy}ežÔ’´N¼a¸± +âÞ”8á,‚6„#̾êñ#›$žNó¿›ü³å«ø<·«ýU5h/4½FÍQLŸT»TW«²’…¥T×nÙÕÿ-¼Çæ[-O¥Ùk gg¬4Ú]í°J²AtQd29Rê$QÕMG_OÕ/ô³pl%1¨^Úr<¢“f]Á¥iÛÒÀXÄå ©F#j«lGÓ„wW¿£!–æ⺭ ±Žî®}M•‘Ö¡.ÐT¼zäëóŸÌ——úDº7,…½ýÖ¤Úß\ØÝ=ÅšI§«,R8$è›sj|&…j+‰Ë%¹þê:UÚÇV;ÖŸŽ3:o˜?7¿0ÿ6<µ¡yWËú-Â'è 7É·Ô£yÓSH¼úý« A0b>SA±£‘oówÎßš^Ó4]/DÅ6aåmzKXä5£Lníåâãá䢧ˆ¨44µpÞÛÛ[[Â-Ö;h­n.bVŠFq'Ä*§p?VƘ´× "D±Æ#)I^d1<·éµþJèú–«åÏ7jVãô¯—´óg·åhÉkË¡t.a¶¹µ V k Ô+U4jŠŒgäeµþ»åÿ5_ÙJ5)Û}\kzE¼‚{Æ2‰ÒÊêÚ•¡‚E«üj +1 Q¶¶š9ehLÆ?zÃnT5ùšÓ¾#’¿*yV×CÖ|•i/•?0/n!6wwPýÌïé ŒÇÐ/ÆA)¢`¬}‰Þå«[m_Ê“_FþKóµãús-ý¸¸Ðõ›¦0¤–²¬7r¬¨Ñ´F&¡«ð‘öZJI=­´“ýFöZ2Ç{ ]dãé!\ža«ñ(Z +òßXcâ¡œÇ)$•u·I>­$22Ëð‚W:Æ—åUýï*kVžYó'èÍCM°ÔдöóÛFdšÚ]KÓå \-L …ÖZ²0}ö™¦,ñ¶™©DÐËngC ’7D«Dÿ»™`BÒ£¦ø«Cd1\-2í^uFüášmJÅOZB|¡æoÎ=ùÎûSÕ<Ñø·ËöæëM›ÌƒÚÝql¼Ñ]ŒIBÅ~œo•|ûù—æÿ5O­êºõ°ó‰¯d5½Al'‹œedÇÍBcZC§ÏO©_]^Fæfšäp¬²|dðV¼«]€ârÍ4ògv‘Í*îKAA¹öÈÿçoŸÿ9ÿ7¢ò”ÚßÕõˆµ{s{§êVv‰k%üž»Ø¸™#➪K ‰xÍB¶õ®A92¿=¿4tß/Ê-muK ¤’úßU±¶ôF¦Ë+Z1`ª«ê,ˆÑ¨A}ºÔ½Fòkù…ÕÄq¤’ÎÑF"W$ø(<>Þ9w=Ä­4C9$„UEßÁT>‘ýCógóoMXjv–öz¾ƒosåûùeÓ-…ä6>—Õd¶»…ã(BŽ’ºz ïΠR/'æ¿æ<ÖèÓiö¦˜gÒ5[™´¸…Ü"ˆ%¶½¶–#"•õJz£ùª˜ž-åo?ùÿȺB'“üÁÖ™ækt°×ôDŽßR2Ä¢9ìn£Ý•‰1²ƒCö\a¾“ù—çÏ)èööº'˜mîì5ØßZѸÛê"X‘¾䳸PÁ”±(È?e°M¶£{imugo'oRæ"+`ÊhÀЂ6#~¾'Žæh¢–jG8E xž@ïЃÜg@Ð|ÁeåñF›©k:'›ô±¥Y”Òîm+QÕSô »¬\¢¼°˜«I¸æªx™T +ôÝξ^ý9¤k·z/™ôáai·ij ò’æAXã¨å2Ô/^›â‹¤j¯=ÕªÙÌf±Yöób<\È´ª…;ôÁ¢õ?^æÛê’úÖAÚò/M¹Â#n.dªñ;ôȧ§õˆ• Q¾ÜgcM¨>÷Èeյ䩗}q,òE/Ö¼³ædDZÄRYŽÀ9¡pD‹ðµ{„ÀØÏLÄL‘…©Ö‰kÁ€4ëJ×o .ºƒUÕ®G›4V†×Ï6\cÖUGo«Ú)(¥¢ +æ~ÑQXßj•¥vltr!† =¹ +2PþÕ+LåÝrÒêÔy‹Ê°ÏeUúî‹"©»°•É©0«1*ÿkbASÉzæÍ‚ôO2y›É·ß¥<«ªÝé7,†?¬Y\=³É1ñ%*TšŸh>dÕ}OÊwë¥êïýñV>Ý>.@µ#ù£ëºÏ—®þ¿¡_MaqÄ¡šÞF™ ©*ETÐTŽÑõÝoËן¤4 BãMºâÑýfÒg‚N(ËÊ2 ê0®Kkg1\YÍ$·$Ÿ]õWýØ\¡äKTT’@ßý9§ê:wÕ5çjNÒ¥ÔWqªzaVzú°¿Ufv÷ÀNï#´’1fbK15$ž¤œ‚mîÜÎ$µK¸îà–Ý£º”v_ÝÈŒ Èà7¸¨;n‹q£ÝŸÒ s\ÙC,VÂáž9l¤–=„ü~!J QìkŽ…ãËI`’(YHok˜a½Þ®iv:n­{§\[éÚÔf]*úD?W»“eû.bb@¤”cŨr­ys]KXµ [N“FÔ.º¤ÛAx±lZÒ@H“ˆ§:nµë–Êò x.ç‚Hà¹äm¦deIB-Áˆ¡¡ØÓšÆöÚÞÞîâÞH » Ö³:2¤ªŒQŠ1`ißÍoˆ‚­æ®­N&”'åN£¦GÓõÔ‡Lׄð¾8»³½ˆ´rZ̪b‚¬µ +–V ¤uSˆâY©YͽͻG)œsujƒZCw¡ìi\žµ¦¹¥ÞÚj–ךœ¶ñµu +ÖZ•µÞi€$+°øù(4ûJYKŒÙ±Ÿ¥fþQýߥþñEýßÙûñg_ò³ˆ´¯ú’®ÞϯÇ*×ýïÿ}ŸµÿÿÃæÍŸÿÕùUŸ*³åV|ªÍ›6lÙ³fÍ›6lÙ³fÇ*3}φ ²Ó¯u=(Œ¯Ü + +wÞ¿,Ù°ÿ˶VqjÚ|÷-ú—V’Á R>Ô#âÎïùWùQå¿1XQ ä²G¶—$ˆË%ÁP8‰ñ^oöNük¾:2ž¢zŠY*9*¬Gp ÿFl§ßÜèZôzÿ—ŒÚeí•ÈžÊâÖNlà—P’-0¦Ì0óBÓìü•æ8üÉå=.çOk£¶¯ +¶Ó…2ˆ½uU"`?,|73Z\¥Õ›´2DÁá‘ZŽŒ¦ ‚)¸ÇG$‘H²ÄÅdu4 ÁgOò¯ä7æ_ç–üÁç¯&ÅúbëK¸ˆêv¾¬m{9º«K1æÀ°_´äû“;Sü¦óמ|¿¨~dy.%ÔWL•SXŠ)#k·{…õd•…AeRÕbFÝNØceåŸ2kZuÖ½ae-íµ¼.ç÷Œ²8ä9(%·ëZxøbðé×÷V“ßÛÀòÛÛ[‰•IT2+ÈŽ• +~ì,—òßÎ#ÉÐyÃÎúÐéÚ½‡—<Çwv XFI\I¾'P¿º_²µcJ‘LKÊ_’™_›wÉ}©h¾‰tñÙé^iúìiõd´+õ‚D¤´ˆ#h+ÜÓaåíVÿO—P:}ÃÂߺ¶Ô„6¨ñаy%^&‰µ9-*>E¦Òâ;E½š 3ÅÁR±´±ðgPÄP•WíÈcõû,­Œ°]Ø/ÜùzßLµ¶ÒmãšI5CtIgšè!NLu'ˆâÊ'/ÍZï“<§}yåù¸è÷:\–šu¾˜‹;ͪÏÅ‹¿Ö=>!•ˆâHQÄ­9Pœ-»kG–¶Q<1ª )$‚W,s%‚ ¡jÐSaA¿R”†2ß»R¢‚¡Mi¹Ø§!þbÖo¼½“­â,¾¸oc_M=i&1úcœÔ Ê¢ -i¹È?›<çæ{ËÖÞNÓ­"­ïÖa¬Q›™d1Õdž™Eh¥OJã=w6âÚ‹Ä1~\HœéÊ›t­1µ4§‡¶t?Ë{Ï+yʯ›®¼Í{åÌÿ+j–W^_Ñý9͵í³I c‰”òêݼÐú©Y­$ô¥‰ôçøøúT#á$štß ô¿Ëï4ùÊÞ]üÊü¹½žÃL×ÿHŸZÅ–ˆÛII½ ¼@'§mñ,oᶊúX$ŽÞã‚vFÉÄÑ‚µ(hzÓ)¡™#Ic’¢7 …b½h{Ò¸Jæ;ÿ)麶—¨]Ϭh…Œð~ø¦Ÿj&,’ÆàQ‘H£¨~¾òv—¨Zë3Üjº`e]:O¬zv Ë+Äôáü$ÇÝÜ2Ã<3:IlA·‘X†Œ«rHÜQvØקOl”ycÉícæ]{W½ó,pk:V‘þ'Ñõ9&¦¡q±\´EŸŸ)š2íFܺÐødÊÞD½Ò|Á­jwššCªišCëV׋¨5%YVåéËš¼¯*Û±#¶`ó5Ç®ÌJúŒÎU¹´kÊ ×Àæï\ši~ró'æ–Œ|š¾g³Ñt}z;Ù/-&·ãm. ¥.#´Å)®Zq 2= +§<>¶Ö5Ï7 ûŠ³š¡eeI$)ŽšÒ{{¹lÈY%_Òe™ Ž¼Š¼e•—jÔ)¾òW“tïÊÏ=ê^Hÿœˆ–M_-Æñz–¼XµdN£¬ñé\4Ãn<”o½ «ò“ë?”× åOÎ+«Ÿ.^yz9ífˆHn#K©ØŸ«¼p¥ÂqoXÍÓƒ÷ÜE¾”¶Z°²ó7©¦z^œ“E4N²”~,R„‚ÈÜ”‘LuÍÖŸtÖzœ2ZÌœLÌ€0 >SQ’O ~uþXOkå¨üå¡XO}}ç8õO0ͧ¤¶ÐhBµe•­ÑneNsJ섵xGµFæšç/å浇w­ùoO}wZó$sùˆ\Ø †=<¨†Y&–ß„òÇÎWb„µxG¶ÙP¾Ž¶ŠÄr¸7JV ‘Œkl “ÎXÙXò$kA±1‘4ˆÝ‡¨áÁxœ…6,¬}ëJ{ä:ç'òoæ>¹¬ùoN·ƒCÖ&¿m7K¸·y,^Æyd0qŠRXzJÊѸ<•”kœOÍ}°ü¿üÑÔÊÎ }XšøhVÓÃ4öOk$而^D1£FÈêÊÊÜMzá|Š#’DÖE¨‘A£v#Vž–Fô·óW˜µá%œêú¥Zp„4ÒU>"æ¤ô¥kˆéº§˜µ]eÞâÒMfù[×Hæ­ÍI<‹QØP zc3aµ©[o5Û¯-æ±³ÔøýfáÐÄmRi(n#Hü*x…;mN™*Ҽ¶~kŠçÌ«=­Ž£AsqOHX™d̉š*ÙU5]©Ó6l?ò÷™4ø5 ?+ëòȺ]ñ¿Ô¬RH¯.4¹dU—Ð3å êÆŽ´ç¹FuïËïÍý;U6ÞIóÑ·µ[¡ γh³Eu>žÎªZ/Rœâø}EFJòë¾Z.¢BU ˜ +;*+˜R¢¦ƒ¹ÃÍoÊöò º˜|½zuß"ù–K¡ä¿3ˆŒþ;2‹p¯nÇÔŠH¤MÕÕjG%ä…NtsÊzŽ‹g =Êjúfªgý ¯š5¿†&©dŽF2FÈX#«÷¯¯ƒuM&]1ÑÕÅÕ¤Õ6º„qÌNf1™ãøNÝp~«£Ï¦2H®.¬æ,-5£™-î8SŸ¦gŽ6b¶¼Ò¼áa3Ãæ"ñÐTp%¶žÖTf䮄V»™YüÁódÿ™07Ïké4‚/1\ÛÅ,+s?¬äAk6vé +„Œ"„,Ç—ï99ƒÊVß›þ{òל¬<³ky®i—Q®¹æ©c$E¦”\I#ŽKécð‘ZÓ|òû_yûÌ:˜4Øà¾ó•wÇ\Ö/’ÄJ`ˆÒ-ÔŽªÎžŸ6?°ñÂ…Þ¿«Fˆ÷­qK½B_DM Õ¹—âYkB:äÞ+ëÑ,6Ñ5ÃQ®&àœÜ,JÌÎH…¥»xôÃ//þSyžH£]nÒÆö[¿-I¯è:=ΡϦNeU¹ŠEb©$e„-I† Ñ<›©kö¶–Ž©?øxë6—6¥µÃéwVMBñæ’)oEÈøc­¼³­ÊÔ{½©¾†7"–‹$bJ½”€iÐæýx©êK‰L_XŒÊD~¤|¸r™÷þZô>üÆ×|·¡gcù™ª?Éyå*/-ëö ´ºdöëðZÜ€3Ê´,ÒR”;€üÍÔ´-?W‡Ë?™šœ^o¹Õ|·§7—|ǧ¼v¯hö¨JZܬ zŸ +˜šG> Ù·¥2õÚæâ7ÖäF[CõylÖÜ‚«ಈ¸ÕÈ vcÌ´ ˾¸šæd{‘dŠ(×ÐŽ$^)ªTD-@9ñRÕj⟘Ÿ™¾aüÑüû·óäÃÍw«^Ckk¦ßÃl–úŒòKh< +p»D ‡ÔT_Q@g,Il ¨~dù›ÌŸ›×ן“·ê×.Ñ¥ž·oj¶—÷/sk齽ŰT€É- –(×ÖQͪĒ¦»­$ÚáÔ´¦jƒ÷°ÚÇh¬dOŒ"% 1CÁBµ+J“ŠêÚ‹ê7Æ÷÷jΑ«zñZ%DaH@JåöŽäáN£æ—ü¸Ñ-4Ÿ/iš‡—üǪØ_y{óÚñ_ZÉp Fž´d)>š×… +°øNÔ|ãeå}3O²Ñm¯tß0k–7:æ‡{”¸¶õƒ|hŠ†&5? B0²Úö{4`ãþ“C0xÑÇCm̸¡89^0áiñ¯ª†Ú íPhvê0›¼Ùå{/(Eå¿)­ý¾žó¾§u ÜÊcI%ŠŠÙb +y4 ²pYLŠàwç<ùSÈ_—"ÂÊêúMøÞÉi7¦Ê—ŽEnArÑ|këPëJ¢ÓvÌm•V+Vgä¤yPòâ*¢…½~!CA™Ä`,(*X½E=i•vÞlÒ<­£~\kÌ^nóMÃÇyå{eEHTF³[ºÝÈá9°b¦?…”­n1*Xè_˜:&‰å¾±þ!ó.µ1ý#åH#^v@Žvì'õ +pHá@À© M†-&™",+ÑÏq9@–,Ÿ¼P˺•<€â;ZÄÏÁcøÝÏj[zS ï\ù]å ;nƒÊú­“,´ÐDšêÙ^Ý\iÐúm#I½´ð‰9¨£_‡q¸ÜÓÉ>_ò'™|Ácg¯éà]O"7Ì(—“Éf‚2eu··–?Sš%YIFã´É0‚vX–R¨×.ú °«Q7;{¨ÕYÂ3 @.Õ¢Ôõ4©Ãß:~^Yy[Ζ¾P¿ŽóÉ>d:e­Ÿ›t«À÷Âæân’DÑ;9)ÂR†œü'ÂG7å–žmô«Û‹¯(kwvQÛëj6×,džB…ˆ‹ÊË:„r +ü БBj6ýZ%yín™ ½‚ò.+*Ž% fBwEãP*ßk¸Hcà\JW÷é"€»q ’Aî=úàÏ#陕zO™|ß¡iSG¤ßLÞG½ó¥Í©¸Óí¡¹fŠéÚh%™h­²‰# üT 4ý3ο•ZŽ¿­[ÙJöÚƒŸ'zöÅçÑíË­Ãkiy´¤)>4!-ÒD†[¯A)é,´4wµÉH'ˆjt5߶&©'•T”_…š•PX +Ðèž[ƒÎÿ’z퇟´A¦y¯È¯¥I–«ÌÂ=J;ØmÒãêV×pGs%&Eo‚'©¦ù&Ò$×ü©ii¯Ç•æ/XÚM½†³-¼–ó‹ØcYZÕob†y)$jÃÓˆ…=úœ3ò½¼]M«êVêzvž¤ßY=Üv¯"Ì Ké’K1 Aø©L¦Z—[‹çŽ ³@óÁ-ÂBî$aôÔº»°, 1r8ƒýKʯÎ4üÔóO”"òþç?Ò:Ç”õ+M]žÎZV]>îÊU«F$ô‰äx ðäOÉ—ú7ägç]ן|Íå™4­#_ŽïYòõïéy~¥n© ÊËa{dJ¿ng<¡¾KT¸¶‡Ì3ÝØؾ—lÏêÚYEpÎðÅ"òŒ ˜1cÄŠµ7ðž¥=”úÕÖ—lÖV’K$––†S3C1(†B±QAÊ‚¹Ï®?1?2uŸ)jþdó¨j?â·ºŠÇ^2Ç=²Âx­Ôna‘C7Ϩ8?À)í +ƒþr/ó+Îú¥­yïIºh<Ä.†‘­ú¶·VòET@Ð-¹è½Eâÿ­påÌ÷·wrüæÖC@7ù + +IbIÜž¹óf‘ù•åý@ÕuãuúâItY%q$1†_PF…Ià@?dÓcÓæ ßÌGе»‹«ÐÑF’hæUm¨=OMŠý‚:Ó¡sd×Dó.Ÿç¿ÊëÏ*yoEÔm<ËjRó^K(Σa¬Ç¬b¸tâ¦ÆKdbµš»ñ={'åÿç|~pü´ºò|÷š>«K‹û :†¤þ±d¹‚©²h—g’¿±ƒ¡–Ìéw6ï4ÑÎZ&Š$ŠVRÀ–rÊÑñVÚŠÜ«ÛD-Êa$²­Àdô XÃDãâäYù‚¥v  +Õ©éMùú¯Öbq$g‡Ø-Ú­Ó‡Øä£Èžu/ŸêâWP[‰¥ÃIa`FÄ€Ó­h1WŸLm*+tµuÔVi/=`cxJŽ)ép¨`A<¹ýñv—L:\p¥¼£P;KtfS @UB ‡Óä0b[™8ŠT”êz桪ZYi·2È4½1eKÓÝ‹­¢NæY2ÛѤ%©âp·YÕ¯µd Z<ÍqåÁ2ºp¸!™áfÙ[‘/Aöª|kˆÍwuq0O3ɲ”·˜•Y‹ ô˜œF[‹‰Ò(摤X¤*ÌHD,\ªƒÐrbh;œÅ{XeŒ† {*;Ö„ ç¾f´K6k½róë-´±µ®·6÷:cÒÈOD1`ÛtpPœKÅæ¼ZE¦FÉ23òr`XÝ&‹*85<•FÄñöˆê:¶žtÝÌ×qA«Þ4áÿ7¥ºÆ—w³²°…ýE‘Ö54?º}Êð~$lØÄì¤ÚÇV;‰ ·ˆ'ÀaÕ‡˜ìïuY4Ÿ1±Õ9˜æI>;{øÁd 8Ô#+È€E(FlØ?J“HŸW³¶ÖîÞÇN–DKËè¡õä†6 sô¹ jv—çãÓcòåÊë³Im¢ÕbÕn–3q%ŒA‚R.hÓ-O%6è„fD1HÉÙG"» ?NZ,’£‘¤•F:TM"$ë)‰š(®£RTV ®¸°…{ˆy£Ë¾]cÊ—|gÓÔÅ¥ ¼‘5a#¤‰ Vžà~ÐÄ ôʲç"šH£‘fTb«*r +à‚µ¸3¬TÀ¡÷Þ‡Ü,nZò?…Æå$¡fä\we>¡ö5ÂÍXuas儲oëÚ—–ÚTcm=ëmVÁÈc"‘Èú? rï²ÉÈ32°Ê+럒.¼ï¥º] >ã꺶›&æÞ)LW^™Ý¡rKð2ѾÒçUÐ<«ùƒÉ_¦ædh´™…¾¨ÛJEÃÀ"U†å aÊ2Å™^' Á—‹TnEC¦^\XO©Ä­í™f ¼”Éö~ò¡§ZS±;DÓ +qBªÃåV­>Ôºÿ\Œþ“ýõßßǧLGëpÿ«•¿ûËõ÷žO·þþþ÷§ùòSqoÖŸO†3?ÿ×ðN½ù1å*Nlµ¿=i×Óú t'Ò=I­Â¿ 3¤,[r6^´j“þpÈ¿–pÝiÿŸÞsM[…¡»·ÓmI‘ît÷w@"3$ Ë!‰Â-hió§”üõÿ8‹þ¸»Ó¿4<ݤyoX¶pÖÿXÍ°ã4p· „t÷ßoœ˜¿–zwåνúO9èžeaoɽòì·7–¿¼&‘z’Á2*@ØTkÈ6¾Nü¦ôb‚MgSk»¦q¦ÞͧÅ—pUTÌn}O„$ª}³à*Hµ¿È¿ÈMͺ¼Ýi©ùf}I z™5[G²Ð5N0ú¦W¼’è?VDbŠ³Û˜L_’žM—PÓüºÞdž×R½f—:Ž˜l´«Æ(¯Åu$ÁÈ#bx +3ï‘äÓü»&› Bå59MYƶŸm‡ûÑõ‚Ýÿuu$t=CÔ¿/¼–‰˜—>_ŽæÓÑóŸ%鶽½G`éÎ î…¹q¨GJ0߯§üµ§ÿÎ#~Ay:òöbP·µk_4y!õ¨ëSÊy<,m/®QÈ£üJ>:TS:kùò“òßC}rÃÌg<Ñ=˜ü ÷ÑéºÀ”±dZÝÌ’(D “¥6b¾— pÔCa¡ÁEžòÏ”w:õšN–÷RBÈ 7 ¼•C£>Ã}”ãÉUò¦µ¤O—ïî4™uÉ h:Œ1YMh¬ÍÍmï~»" +xúmB87"2x,¿Å?—:~£ùLúW—­5ý)/|»'§ukq%ì_YŽ9 Êò —MQ’œê¦„`‹ßùÇ]{QÐí.?-t¸l[³†ãJÕ +¦ÞÛJ­@d’9®å•d~(€P>À)£ôÏ!jz¬V¢ÊQ«Ë:máög—ÆñÉ9§PJ¨'®ØOæýÍz唺õ½Õ÷™¿Lÿ£ù·MÔZM´ÁŠ`h™V.¡‘ª¡é\òæ¿ä7üä/“ü•—õÈoÏšbÔÇÕüÇew!ÐgÑÌOHdYbe¯5ÝPÇO‚»çüÄòïæW‘lH󖙪èú’\z|æ…£Ó§µpÞ›G,ªâ*xŠñeßæU¯ycVòâ5¾±§Ü[\$›]8­¬Ñ8¬mq£âÌ®«®ã¥LG@ÒçÔ}+ÍÌVŽAp%œj³$’)Œ†øTíË°Û <“¢\Ù}sÊ¿›“ äYa•®áXb²NŸ"z, §áåS¶ÙÎa·}JÙLçêà?ghÂÛT€\<‚” AFú0“\yD[#§®±O+z±´­èHâW抨îõ Ž€uØáï˜|• h«£yWÌþ‡½…tKë£%¹»Yæ{˜Ê­Ã?&Fš”ABzæ¹Ðµ {h§šn$ŒO24ñ1!]ÉM)Q›qCӸ½G˺¦·-–—¦Z5Ư<ËQ¤dÍ;Èü…Qݘ +äWóÈ×:ž§Á娾½­A:ÂÉs¸º H`‘§_SS¯¦·µ¼¿ºŠÖÖžæåÕ †5-$ŽíÅUTnI&€ RÞÞâîâ;[XÚi¦eŽ(£RÎîÆT É' É·—ôïË™î´1yj÷ÊÞqÒîlïí|Õt—Ví¦[É*)y`hÞ7Že,‘µ(Ì|0çÉú6™åy-Ýôû¿(yËC¾²»:î¡õ›9--å‘}DšÞXž¨ñ’€:ÙÃý ]yWU0^G>‹¯ÙL 77ƶåM'‚H˜šŠŠ}SÜÙê:§>Ÿ©[Ma©ØLbšÞá R[Íé$n¼ƒ+ +iNøsù©æï3Eù­«évz„:ƹ<Ï.ªi7P_XÀoHyLofÆ C¡RâEn.»Pힺüõ¶òךî|‡k­j'VM%¢òÖ­¥Zé÷Ún}¨É$÷jfÓîZÞT¡V ¥µñhãš2@>œ„'scydѭܬ‹,>¢2z‘¿ÙuäTö8¤Ö×åxš3"¬‘‡R¼‘·VêcsÏbÊ_Ìß4þTùÈæ1qigk«iš˜{ûë{›xÔ—6W:È‹¹‘XÒœ…Γw.ù{ç­{È>^ò}Æ›pYÛßÚêò<š…•ÔKë´öw³#ª9bêÄüHV¢˜iªY¯•õ[2æÂcp‘ªãÊWW1^ê]¼rD/Vao<®ÆZ¸cÌ•^”õï—|ùù¬þYùCÔ¶¥maxöCB¾¹‚ëQŽæTÞW@²È±Í5KÐòøª£ìS·ùn?Èo3y3ËF®’$·­¥Ìááý)Ž œâv’hfs³²¯ +ÐvοåÈ?#u?%yR×Ì0Ï\ë–šþ¡–¿¥ì#H[ë+´nd¹·¸gWÉ´,¾šóý£ßÍ_ùÄ'ù¯Cóu„¶še鸹¼òýŽ•cnѵ´h ·’æró¸—‰wäª@E±Èïž?#<¿æØ|Õ§^épidÏs>e£ØÇukqokŽ8^yÄoë\0ñUªš±=Îê³ZÝëÞRžÒÊa^j]ÝY(-êÏ5ÂÖåŽÆøW±'vê_˜óïo?Cg«kþHá$pY¾³¢yulµf¼¹Ò¼LÓÍn!çáçj¦µ¯€ÃSÎ<þké×þOÑ5”»ò>©qu¨Yé̱ ?D+Æíî*™¾'*òB®A¨óÿœuóŽ•ço*Üy*þo Þ¯ ÒôO3[¾Ÿk*¸_PZË)‘]œ7ÆY… N-Ð*ê&µ£Ý VÂk”'÷71´×aN2sÈúŽ™©h÷’éúµ¬¶WP’³[\FÑHŒ:†Wƒbûþr3óò‹Î:˜¼³aaæm4\Gb<­×±O©Úè–vr´7Ýåä¯+qûoœ?ç!¼Çùak®ùWBµó›k$vÐy[¼¯õ»{ •Rh!’@Á¤<€6§C\<´ó¶‡ukk¨é°ßiˆ!šâÈh®u¶â ¸…T +í^5íFø¹kªÃlÞkHîm,²Bê‚FqïãU-Mx†§NùÆ.×óSó»ÍZÌ¿˜wíi©ùcK¼»ž0¤¶óZÅ #ŠFãÉÉ8Ž&S“ªl)œ£Hóæ熯©êþmÚê=•äæËÌ"kØ  tÝÂCêPr*›0«]×u¿9ëjšÄÉ=ìŠyÍÆ(XÁ`€ñ]…{£ Ž¥ªj:ÕÛ_jsµÍí4†¬UTöU(ìjdÛËÚÝÕŸåÇ—§Öl4o.ÝÉÒl´}V]cGÔ/ ÖV5Yy#‘}{$eRÞ›pfä}&©&Q¡~`ÛÜ~_iÅ-ôë2ÌŸ¡l´=OTÔ´mIÿKqHµ)WÕA5’0£•åSéÒµ:Ñõ'ÓôdÖôô²´ êiWÖv÷÷V×·«|,”o¿\þNÞÿÎJùGó^üìÔtKfXaÓÿKy]Ñn…ö«o«É$QKo6—ÀEÇÄd4+êr yFÿœ’óUüÝó>€/4•†Ù.<«çh.µïYÑ'³ámqL.ª_ÔŸañ†+†~Z¼µXO8yÒÆßSÓmÊôo¨µô7H[ê¢è¼Y@£¼°ÏÊ÷Zf—ªCæ?0X[jö¶òÆÓy~èÜÀ5eæ’p’Ô/´û\Ô†¥PŒô˜? ?+5¯/y;Vü‰ƒPòÕà†t»ŸUÔtë+im.¦W[°ÿY&ã÷Â8Ð?1C_‡âcRüòÅž“å-Sòdê¾N·Ô"ŽkwMSV‚Æ)`¸”1ºy#½MÆA1+s-µ8ükØo?&ü««ù[Ió7åÜ·PÞk÷>•…„²¼ÜVF¹k„_B(bÍÎBÌÜWìÔN5ïÊëÿ.ycÎ^L‘üOvÖQÙÛµãCgvŽƒÓ–K˜GÄ8¥&˜±&†‹SÁu/ùÂï9k:÷š<óçmb16“ygkõ­{UÔd–òT·ŽU¶Q—F é£G-(V Ýxœóˆ™žmóšÿ4<ǬIos¤Üê–¿ oµ-[Rýã·Žhí¢)«DhèçgXë¹çß•>{½Žó[ó]Ü6 § ’HµÉæ·¼–ÑJͬˆ· ÖˆÁ7Ü ÁÈTþD×ml5KíUáÓçÒYEÞ™}(·¿`Å’[ËIVEí]ëÑX†êóƒ_šÿ“ðZùïÉžfœêÓÚIq¤Á¦i:ïÖÕæ·`l•…b,[š­BµPÔšèÿóŒ?›ÿ•-iæß.y‡åÅ¿«¤>Ï_šê0§Ó¸‚f]<å,9¨¯@@j½ü¼×ü‚¶þdƒÌö·IÜY›+‹Ÿ­ñ‘…!  ññ¯ß‚ï<»¨y%,¼Å¦ùšÑ.å‰n,=Ò^/:£=$x˜çãȯ!œ/ÌZÿš<Éåy¿1|Û¬µ¦«}om§Ã§Í¥ÉlÚÝ•³­¿©ÐÃõyLvr¬ +õ/‘[Ìß3ê¾U½ó*Í o¢¶“5½Ö¯k‹UB-¤ôJQÙ‘‡îýaÛEsksw=ä0KŒEhé(’â¿ ôý8Ê| U‹²×Üän H'²º¼–ö%·ôý+9c-Ç3FôÊFÑŽU¹²ûTáo—|áçïËX¯F4š\^iÓ¤±¼†âÚ)à¾Ó®v`áH%vuø—³ ê¿–œ¾nò5ŠXÌÒØêÙ'î¡FK‹IB–5TŠÑ†þe¨ÝX-Ê[ðãw·˜IrÕ†ø}En-Ue£Çi}=a‘sA'«rÑ‚JúŠÜZ£fZ0ñÈíävmn‘xÈ„,mE ¯JSjfN“ÌÚeÔßèÔ{©Ô®¥e(CðÈ•cÅjH©ûb›T ð‹ÀS Ø8¶>82;«K¨ãÔ,RS¼t6‹Y¯¬ÜŽ!í¦ŒÖ®qN†Í‡3ùâ÷Rò<HÔ­ ¼Lg—Ë×[Çu§µÌª×J_Ye>ypØÇÆ­ÊWš`¸Ò¢Ó¼Ïeo©E/Á¥y†Ú‚ù$I]@_Þ…C†iMðZßÇú5ì%µŠGä ®%e‹z°ªÈ6ßo•)ðÓ|]nPY=£A3:È—$0•2)V¨'$Sá¥Z±¿\³„¸j¡¤ah*þιÏ<Å  *Úþé-TòeÄO³ Ck»9år ã‹r)ÀühJ:Wb"òn…æo4_\éZ—î¼ÊñÛËqéXÃ4òCoÍ+ p^‘בjJòÛ¤+C°–ËW˚Ιyço'kд¾YóÄ­¦[Æ>®$µÇ¢µoYƒ5+Ïá… µ¹ºõ>­Ëé!’^ +[‚/Vjt½rÑBB)b$ZÔáºÏ¨ÄŠ Ét¤nŸQOì«BpÃòÛÏeòÞgä?Ìë¨ïµĦ‡ætV´¿‚Ý̼ÑÓíœy^,vÛÊÃM7ÌZµ–…¨ùq>¥ªz?[G‚YLš'W•YҜɪ׸ÉU¬ÚÛQo,n¼±©ðý!¦:E,–þ™nRÂî¬þŸÆX”jØ@å‘•0•%A;o±"£èÍ^ØU0š¡¯GIÀ B@€zc±Â4þ_è~mµKß.j2 NÕdÕ4ëë"D‘]¼|hûJü.}v'âßZWß6 ÐüÇ­è­‡˜<·xÚf±¦H%³½€…ýâ´¤ŠWŧÑÿ*ÿ8üÕä½JÎÆ=7^µôÕµ`Lf (=F èÜž¯ ƒÜPà½+UÔ4=B WK˜ÁunÜâwèAV0#b¡±[K»‹˜ï-_„±0dj¸ñ p?ø»Íß˧ÿÇSôÇürl?ÞßúFþëþ(þëüŒê¿¤×þ®#ýîý'ÿ{³ÿ,¿cíûwþN+úr÷ùañÿyàëÿ"ú{c=Vðk—Ù~îžÙÿÐóßüâ·æž­b·~­…Žc×ZmzÞk[Á¨f-)žÝ¢t,>2¼«Òž=ó4~gùl¿3oì®|¡åíFÓTò>­¡½Õî.íÚU‚Uµ8Ùk­ê¹8 :.ó¥¢yîîæóóQÐõÍ*ÚõAÕ4Øô«]Åôõ+ÝN,¦ne!—›ñnk< ä÷šu›(µÝVÐeÓ q'Öµ+û 6t]øÊš‘·3°Z‰AØ]2;æ/É'Ól5O4yª=6Æâ[DÖ¡‡N†v”´Rµ‰Š[ŽhŽ¡‰•mê)ÅOA +üøü²‹óú{­kógS·Ò­4+‹Û_.›Ùµ½ÔÅÏ<çÑG˜—áZš=ÃòXË5R5_‡ ïÿ,üÌ<¹µæ“¡Äž“éöZÒ>ž·°Ý8Q6š$¯¬€rªª +õäD?2!üómækˆ|«cuæ-"­ÛU´uKoM Œ7–Ëõ~/'%Œrn4å×Ï¿œ¿ó‡šïæ_ž¯¼Ïùcs;ؼ°Gciæ ®ï%¹³KXFÚæÒ;ŸTsƒW(éÂÿ6¿-|Ûç_:êš÷—4ý^ú9æÚÁt·zÄíŒz+Õ ¼ŽE!HR&jÇ–ØMªyÌ—:ýÎåý&ïQH¦ŠÒhɪ+É!1F©qb9²œ ”¦Cïô6ù>Ê}+_Ó5 î ´UšàÏj½„4L¢­ðR7ùí‘Ï#ÿÎ6ÎBj~^µü½xuO&êÐê§QÑüŪëWV^_["ÛÇ 0E¬.ƒHÏü,cåAãÒô/ÌÝ?JH’=wBºŠþÞîo.g²Ó w+q^.^¸%˜Ü¸D4' µ=YÐn®´ÝjÂçO½±œÛÝÛÜÆðÉo2T4r#¨epGCB(vÉ~•qç-_@‹QÐõ‰m.48.›S•&[ÍknÊb–@¡êZJ«z”ýœô×4/ùÉùT^Rüï²üÃú­÷åΙ&‹¬èrj7wv:þµ§_›he’?vò\BX7¬Ë+?Àrݼç¥þpë?•žPüßòö ñÇåë =+̺6§vo-®ïìä¸Xf’Ø Z–E—š7À*µTIª]Øzñ;¬Ñ=tÝx¬‡‹H PnÔÿVoέÍ×:|^}ÒîldƒÔúÞ±¢IWÎüv8: tZGÑCºí¶‚Ý¿†!ŠIåÝ;Ηš/—ü¥ÞMæ £0ê6òMË=Ï/…¢!P€GPÝ|æÞxò“<Í.Ÿcä +Ù|ÓéúZŽ‘ Žñ®î¿e ŽÚ%oˆuV¾8*ÖÆ]Jâ×OÒašîöèˆÖÖ8Ë»JÍEXÂUš¢›RµÅ¬ìîõ¸4ý>¹º¹t†ÞÚ/$’9 +¨Š ’Äš2QùIåÿÎo.Þy®ÓË^P¹ÔaÕ4ëï+y†>y¡Œ]ÐqæTž9#Y"ßí(ØŠŒ6üƒü¬üÓ¼¸óM•—“îïíu >ïCÖíî´ÉÝ!ÑÈ\¯î®"š4t'£.ûT`½2R+›í*ßKúíÄÑIo5³ÀòK F]ёЧQÚ ÕIö³OÖ-ã…e3Æb‘ ì 0z¡#’0*7R *ÂH> üŒÿœt{¿ ?çæN¥4úïîÓË°h>`ˆßÛXÚÀ‘R7Óoaýäjgu$Ew§ÃFö÷åä.•iå Ì<êþµÿ”cƒB‡Nó-ÞŸo +±˜îmïTõ[Š Uþ-ºÿ”¼“¯ù£Ëò±µûû}FÃFá¥ÛëÝÈÖÐ$\8Ã9²Ç ˆD~×òÓ&ÖžYó†»äÈ?4µ™ÓZÑ4˜t3o}y$ŸVHV9a·’5‘fH$YcôˆÝ^…x×ùkþqSóSÊ^o±üÿ²üÄѬ/D¿]w—W-%½ÔooõvŽî(‹$b±ÊZ@‚#³`Ý;þq÷Î~_óCþmèÞe°™™’Cyys{¨Cwiv¦Ø#³'¨é’’3?MùS 4_ÊÏÌQæ?=ë7:]í©êm[V‘µ}2jQ +\úÇ„g™ˆo!Œ©¡–…ùcçk ý/ÏšõÆ›g¤»Evšþµ]KJšN/"ÀËWfå©%H’OJ´›Ó£qäùÄm ó‹óYÖµ²Ð-.âºÕtÝ;ÉZ”‡O³kKsµÜ¶2[ÊæCê„ŠnAj>d—ËŸó‹¾_ó¿×¼Åxåøëv–~^ÔÂÛµ´œi ËÛI’A!cœ·Ø‚0³Oü®‹^ÔåÔ4èå±´™¡´Ó¦ý)5 P¢DHâ“÷‚ª‰!›ì·ÚÈ퇓ÌZ”Ϧª¢$-§Ø±»–Â"ÅPXÑQdi)Øõ·ç o_ü˜Ðà½òv¹¨~eèCSРÒôFâàkÖ3HíèH4– (1BÊD£âäá©Ÿ˜ý$yzÕ$óžgÒcÕ´ÄÒ’i§³Õc’A%-®ÖדÌäÇÁÖQF­ |€{­þhþfþ]Hšn§ù…{æ:ÅaKXíõ ­;S…Ùêbx<•yä¨ UM8‰®~vþvþ_j6¾\ƒóK_Ô´­9bŠÚM^ûO»·O·‘™áxÕY}7ä¨i±çïæ›üãä]wÊþrŽóIòÅýý¢ùz-fÞ]7S¶ŠˆcÔ-âi’’¼o"9Pªá3ƒÓ ?3î<ÅæSò†¤éo¥\ÜÚ†µ-E_KÔÑ_Nþ;u¹ˆúdgôÑOÙ-ZÐE¿89ï¿14¯Ñ:ƒSŽS¤kOdßz\”H³O*–sUP8Ö†ªÂ"¿š?ž>rüÒ°´Ò<Õt5hô×-§ê×Ö–Ÿ¥½7P+‹ØâYf +@™·¥h>Èä^g+<«¨h6þf¶‹TÒu­:çÉ£Bš×]As¤]¼–i![ˆ¢‘V¤À¦’/§"íË9/Ÿô/2þXùcôeߘa³¸Óu«i|¯s¤5»…™a_¬ÜÞÍèG,QKÇýÓn¼9¸]'A½¶HàŒ¼¶ÜXtû餖5ýéIš’Ç&£‚²Ÿ²[bLë1Å¥ÜØŽ*²KŠ¦+y¤i!FV¤ûJˆ}Bx¯ÂÛr©PsÖ?—lò'çå÷œn¿-t- VÕì®t¿0y‹[’k8/ ¼¢xÔß(y…´olÏ9¢’¨¹ß¼«}å¯Í?Ëk8Ÿ&iÚ%ö­k&ªyƒY¾šÒ;絕fŒCvLÒ|n©2Ò5A¹¢®u*ŸÉ/4ùWR¹“Ë·–:Äv³É{zÚÒév’MÏá‚+‹×ºY¤pÊÂ3‰è¥³«ùY%|Óäã§Må©aó$v÷ÞjC\M +Í&Yˆ‚åÔý. «)áÂ8Ÿˆ€_ ~Qüÿü¡ó‡æl¿•_œæ¶ãåŸ$˜c´× ·ôçt¼ f*¹D£Ó + º×|ç^^üäü¸ó—æþAüÜò•þ¡f°è~L¹‰!ÖÒÞÚÚn1Ê×h¾›Ñ¥&(‘qPì«@Ø;Aó䯙¼Å‘üãgõM&Ùý "ýí ¾¼{¡ÅÍw¤¼GêüºGn½[‘bq?(jÿ•Z§˜.<ù%Ò|½’ä_[ÛÙë7v×ÏÛ,“ê6"ÚYmceæ#…]~*Y‹žÍæÉ Ï5ùÍ~[ü¹Ömõu×ûMBÆÚL–?rÖVÚ©$3UV éÖ¿ÇÌžUÔ<Íùyyå i`Ô­uI¥:•À·K+Kz–æÖ8.¥‘\:*Åñz@òåD4΃¯~My÷Oѵ]#JÓ¬u§Ö­býk¦A5®k‹+¡{Ëûˆ®ý2JÀ¬è¯ö€Z×¥_Î5~`Úhú®ŸäK]#Ζ¾gŠIãM2 «m&Â+Z4rC©ëi)¸J“õuyŒ» +dfÇòÏóßËÞfŽïóÎÚ§–´«ˆíJEå¬Äek$ë‘+Ç7¿¦cô@áeõ8UFBô?,ÿÎAˆšcÌ÷ú—¢=½®‹gfó2Elèõ-¤·ŽÞiehý12‘êzŒµ9¼×œRͨ¸ƒBŠöÚKkë‹qhŦ¹fR c%µUtVzñzœkë?šZ$®&§…úf) ¹\övÒG‘"|2ÛX2½·ïcOOšÆ$mÁ;œ æKïÎ-ÊöZ厓¦ë:Ö·g.µ}bÚ®§cy~ÒÅoHšÛP¾h¡QȨ¿½•\ˆ×˜|ËùפhÖÚ‡“¼»¦ßëzÅ”úÌÖ·ÚGéK[Ûö’UIg}¨ìŽÉIG%Œ)vºGš¿4%òÞ¢Ú‘£ÖàŽí¤yu-?\ÕÑ=Ò-½µÔW7j7PÏWŒ«7^5"Wå-cóQЯ¯|¡ùamæ‹;Û†ºÕ.¥Ð¯µ”‹êè}H!¼’k—XÀe’F’jr㜮çþrWÊ—ž~òý—çÿå—˜¼±çɯÿÌzvˆ‰k¦ë’^Jé%òÃ;¹˜ÜH€zŠ9¥UÆÔçkÿ9Iä_Ëß9ùsNüéò/™¼¥ç‰¯[Pó%žXi:Ä÷²pŸP4ò4³GE•‘@ÁdåJDõ:yio¥—óË_òγ}3ÜßiÖq,:|Ké²[´6ÌöòñŒý…2VµbìvÈι/•£ÔØþaiZ×”üÃ}~ך½¥¬Ù[ÛÊ^H¤¶°Z¸**ÆeQJ°“z œÿ˜÷~Mü²Ò|Ëù +Íçß)ùŽúçR—ËÚ†¢çÍúTñêÁõ{hâ¼o­Få˜4kx€œ‘³£Þ~kë_–ß—z'œ?(á¸üÊò_™®îõdšÌ×eÓ&KÕ·ô8­ü¯y³R8¶Zú”“|÷w6º·ÕÁ’thþ³0 +*¼ˆæ¶¦‡ u­v=:9î´Nç_±½žFÓ5{éf²Õ­eŽ)6ðÞ\Fž«2—,däqejÓˆþ{y’2ë~S~Yùê–Ò\ÂlÌÚ4Öú„¾¯|xÚ*V'fYc¢ÊòR‡'Ÿ+óÿ›´kͳ~X~Rù +â8..VÞÒ÷ô=ÂÇo«Þ3­š0Ž‘–hÝ–9]èvV/ίÞDº›j4åTy ¿çzcžŽ°$Ì#UÈ ¹ +ycz>Šó$V¯Qì4ö;vûâ_˜?“^ió\‘¨Ãå»=5¹¯•5ËkÍ0Û‘²Í4^¢2}]M§+ eŠòU;“_7y'ÎZô’EåÍwOÓôÝ@ÿáÍA.í¦µt‰ä•Á‘"·âÎL0ò¥UNä®Ó@Ô5$¹{%YZÑ9É \¤sÅÕ Ûzò4NÀò $H²:ƒH—“lNÕ Øm×¾qkû)<³ªzwiýº8GoQ%·”¥ ÇêBÅj=@#òošàÒî×ôƒ,ÑE)¶»kyÕã6S*Ç4,èý¦Jk…­‘…gR¡Ç$$S©Z¤‰ä¹<©ä¯Íi5Ý[Ê3[y6ûO¶¶’ÇË×÷¡­ï¥¡úRºF#ÙAPKUˆ…Fz@Ót>\Üë@¼‹LkRQ¡\]¼’O‹—¡TTTeø™ƒ· 7ý¥êÑË6Žë§ýV52A¨^#I;щôˆ†%쟼×ánì'’ÚtûB쎿&RÍ ÒÛÊ“Àí‘ÑÈ„«+ ÁnÃí+Ìž_ó µ•£èréþd²²–ÏG×<«·»»”¯¥_ZéKÉŒ¼>“žLÎf;`%ó•ìtëÿÉ7ö3Í.e¡Ûˆnl™¦~¯dÒ4q«!‰“Õ©fõzaŒž]ŸLkMBÁཊ6Ú¤Œ}Y93ÿ¤Å1`Õ¨@chøÈ«ž¦‘^ù~}8ÚßiíÜ0¶¿´•¿{7ªòó¹Šb᪬"‘ˆ(ˆv¯(Íå¸ÑdUüSÛßÚ¥mu¦ñÌX¼^ŒN<ƒ +ò®éwwþJÓb¸:”š¶ŸRüß‚·º|­#õQÏ(IJW$u+…SžðInªâ.ž›­Aã±IÄuëÔ~õkÛé%Ö?/5•Óu+?\ZÂî ”’¯ÅõKäO#bã— +4"¿dáï›Yü´Ë7?“:F“¦êrÃ¥¯é̺ܱBæH$æêä@ åPóSáÉvœú×”c‡LO'~2¸K­WôÖ. f6í©<‚ÝèÎ …I$Pä›UÑ?1-¼¯j¿–çËGS¸·TÖ§ÔbÔVÒîÙÙUâ–öæálK4›K ‘ûTéÑ<ýùiùÅùOäµógå]‡–´ÿ4Moj<Å4musØ·ÙŽ{›«…µõ™¹3€ž û £ ü«å¿1ëºÍ—–*õ?1kpYVÛÍ3ÜêÖØÁ}2,6F[Rø~ÈãûL ôË¿0Üêsyk\Õ±–êóëö7)úDí¼±4m#Ôdø=Ô¢?šõ=@ywòã_Õ|Ï+Åk:V¡«hr­µÉ ˆ`šâ+ˆ®ÅfEP|TmFó_šµëËÊ­SPס”B5O/êš–•¨Õ½ VÆIn&¶¸W‚\¢«2Ÿ²ípOÎBÛòîúóòïË%¥ä“K?™'†Só*Ç%«OmI*˜/îþ*ëž8ÿœ™ÿœ‘Ö<•myù)ùy{j?MËæ?4›»…–DÕeªÍi'ÕøÁ,u’>-&›Ò¹Éÿ1¿3üñäè5ŸË-?\Ô­íµ Rm_Ìz ÅÜr[-즒CùžY¯nvEç#T¬Q¬kSØ$`(ù‰A/›íb‹Ë±<ê—.b·µ@IT`”4«FìÝðlzç‹ Ùù“T·±ÔšS£éî.jÒlì8ÈcMð:êZ†;U¸“ÓˆH#Œ1DÂŽìö‡|K~Ÿ†vÝ'Ìz6¥.…çOÌÝ?FÐâò½­¦Ÿ§ÙÚi€A¬]i´d:…¬N=I% +Vi~G^µÏQùUò§—<©¢y·óÂÛFÐ&¶[;}3I´°cª–± W»·¶žb–@wjòKº_™/ ×5K-;B³Ó­à†h IÄzÄ ÕáYù‡”-$hx ?ÊMIåþ½¦jwÚ]Úè6|zmµµ½Õ­¹½ôµ-‡Å5Ç;‡q$ÀRODƽÕTÔäƒQü©òïæ®®ºßäx“QÒltèuoÌ)ãôílôk¹%wº‚Ø^8 hUb£øœž'–ü…çãqæÊÛùu}IHî<Õv’Ä–ú)‘H–[¦ÑM8cQµN)?åûêú•©òcË®ÚMWZĺuÏ¥¥<ŒæH®(ÒE¯2üólN Ô<šeXn¼¥r|ÇXE©k¦ÙÞzzKIÈÉísÓü±å­[Ô´û¹<Á?˜´§Ô´{y4¸xXÛèÖÑò‘&¹ 3<¬ÕÔ2³Ô#ÿ*®n<ÿi¢èž]Ôµ[y&ÔäÖ-÷M¶6 +R´ØM'«p¢®d'÷›‚¸åýoÈÝ[ßÁ XKy7)omõ9u¬4ô¶_„Û5µòO+ÉöˆbHj*ŠaÖæß&hÓþ‘ŸÉún¹-ÊÒm3R:´Vv†!E6òYjqLæ_´þ¡¢¶ËAÛò›Fóßo11t©´¯/#'Ÿ¼·åý6,­õ{˜ìÍݳN±¼Šmýϧ jÌ9ZC~P2ù§Êo®Ãi:¹5®³¥i6–V¶†ígH扚7%6P¼UÂ;3ŽOBs­þA~ó¥þ¦þe³{}ÒwÖWBдÄ[ÝLÃéÌ–‡‡¨ÿW)àñäO÷…3£ÿÎ9[ù+Íž`Õ&ü˱’]Ëñ^ù¢-èv®uk‹5Žqc,‰ ®¶b(X·6T]È`í¿<üºÿœ›üËó'æ…¥ÿ”áÕoõ1]ÜOm¥A%¶¹{ØÇîÞÕ.# +‘E¯ U.³Q«Ùé^oÔô-[P¹†ïUî|¾$Ô­å|Ü4¨l”£¨X(ü¨ËàKTdŸFó•ÿÌÞlú¾¥p˪]Ùèº Ì–WZv«y+G¶J㸉ÖC†i±.i…^[üÕ¶>rŸÌšg–Ž¯¨jº¥üöÞQ¸?]Ðn¤Ôð &#ÊTJ=7¹ «×=KæÏÍóOºÓõŸ ê:ºë‚4µœCd¢ãQ„ï¼2¬$acW™ÂÈ£bYMów›|«iê/›´ »› ‡ŽÜêßS”Á$¾«",HUÚEU§>*ËZ`vɇ<ýù¬Ùµ†±¢\]Ú@c¶Šçô:ÜÇÍüq\11³+ dTEGÂ{Ÿæ?çGüâw™|¿.šžLÔY%Ž(í§¶Òtö{Y^D–k$½vŠbü %&øÕŒj…*¬où_¤y3Ê5ëØy~/Ëÿ0jr]‹½Ôµ½Õ"Žñ‰1 ¬äš½E†Ò›Taæ“ h^E2iZT7Ë Äj³¹Š+Ä ê’I+?f0I¦Ãyò·ÉÞQòûù¾ÃO¹ÓáµçyZ¾¡§s +;WÒƒO³†æÙä +”sÄÐîxáïå÷äçåO’ü¯sçËm2ÓŠ;·¸ó»§ùƒY\Çû›{]6ÇO¹Ž–MDÒC+Ë"¼Bw:gæüëæ$èâ÷ʾXÒÝZ¦m:8`y¯®C*ÏÉê3 %yC΄®Ãå3ùá<‡åŸ'[ywF´ôß™mt+u¯@ŽÏõ[‹ž0ÄK"E·W ¼U#ù»ÌOóïç5§åG–?/ì|‘å­E³ó'›ô L·×î5;Ky‹¥µÕÔVÖöí$ê9(›| ð/üÎóo厃§k^]ò™uOÌ=èΰèÖ>m ©®¤¨·Ä÷;HB3rõ rQðštç-3A²òÂêê7žjÖeýiæ { ×–~Q¤“ÂÓZ‰àß#R)µ9æ­¯-ôÛËkvO4ù‡JžY-ômnÞÎfŠg—Ñ‘g–kóñIËÁ©ð’«· üÞµü¢ü½ý1i£y¢ûÍ~u°ÔŒ‹g«[ÚÝGep“ÉñÞÉuc,wŽ¨ª¯éÉè³|JÒ(Ï<çAç3¡ùÇòëA>{†öàkwW|Vw.ãe,m­ r¼¼‘ß’ªñJíʱß*jú™´í'Fµò~™þ&M½w»Y˜^àHa[[Ky}wîÒ ¾ç’÷FóÖ­´}kÖ xгZ@RR! ”33Êõú1¨Qö•«Èq‹›„óM¤sZé6Ë«úå.  [srn\ˆ„v‘¸RÁ‚4UUMk‡wš»_~\k~eüÂü×Ô´8lžO.èÓyjÏP³º—P\?SGÕäW*¯û²wÖ¢ïô[ô±æ6yÎ=B³išri7–±]N¢’ÛßÙ’•ŠŽH…‰Þ˜*çRÔµ&¹Òõ­j?/iV0Kh&ÓtÉ--¡¡¸Š‚²ÙÙ•ˆ§B1OÓWš‚ϵ~Ú<6ö-céº|Vñ\É°\­¸· [ýÙ+‡}…ymNi®hç䮪¶70Ú™.-­µ{-~úÕtï0O{thé÷SEw,?éÔü\YNsHôï9ù_T¿7Þ[òõìB/[GÕ>«>•«´³éúP‹œa¹#˜Tž2¶G-?Fh­WÖêQÈ‹w-ÚI5¼þ›ULq¤ô«ïèÉ¿Ù>øšÖÜÇÔ"xÙ£’I#gŽ^ø‘YQZõ(Û¶ê[äŸ2þmÜëš•¯å¶¨Gæ½*k»ýzÎ}^w•ìç„·©4vÍnÒËÄÍèÛòý¦Â*ëÍvúî­ä(kël— ­éÚn£i"¿ ̤X¼Œ9=(™Î嫆þ^üÇóW–îï.ü…s©éÖ®L—št÷C$`qŒËú4Zn‡zì íâyåoÌ?:ùP»¾ü½×u?/ Š‰?GêÒ4JIE–KV„·õ 핪~r~~ùGFÒõ_>yXjk¯y¦y†ã^Ôä¿)PzÑ麑ôE*£Æ‡Žç +§üÂüõ>ZOñÿåÖ¾º^¦EÍŸ™"ó¥k!Ž LöºeíÕVŠ#®ÀîwÊÕ?4?7¤µ€ë~`Ö„w$\ÚË%ýò %Z0òpâ×á_‘'[ü×üØ×`Ž/1y·YÔ#ic»‡ëº•äËêÃÉRUHG%©ºŽÙÇu(ÿ0uJË^³óÕżHßL’]^âg±±g2´jÅýX‘NüT“½;çóäïægœ.4ï0~TþbÜë iþ‹ck¨ër­þm#™KèºFŸø·µÂ(üÍæýæÛS´Ö.í§Eciqë‰#V5e òZÈÛ"ÑÞÞÂñKò#Áýë°)F-ðvÜ×l—ù‚?ùÊ«¼Ÿù¡æ½2ÏÌ+ä++{Û nK;TI4Ñpg†;Ù-®$.yò b&øº×‰Äüëå¯ùÍo-ë¾OüÂüÈòL¾a¸ò-œ2Øj·Ö°ëpI§Å3M]¼2L„äC²üUå^' <Ûæ;ëWZ6·ç˜§¿žÞžÖïSŽbní9Œ¹sGBI†í]ÉÃ2ù—Î>b¼°Ôüç}wªÏ ¼qXÏ©É,ÌÖ‘»UiI&0K½3·y/þs?òÿÌ÷º~Ž?/m?,t©ô»‹6yŸËöu 9ÒU¸†kVD/4o‘¯ÌùÆïʿϸ`ž<Ū\é±›+k{Yîíá‚id²·¸›ô¬Dz‹p)(§›?+<¹ç½pycòÿÌ^bÖîmU§Ô-õk挚«\£HU˜ ś׫ +ÆÈw›üåoÍ2þƒü‘»ó'šfÓ^äj_zڵܑ†‹è£ŽÒÔEnòÔ‡c5XUO™?ç%ÿçÿ2|™ceòÝÞ |³¤égUó$Á ,—eX€ŠÜ[¨ˆúW%}@~v¢Œá¿ó’Ÿ’ºÿ“¯[Qü´°½¿›@¶²µ¦5ŠÎn Þ‚Ü,Ié\Ò8~ µezž,ÅBçóž‘w¤Ü¦r¥¤ÓUmn)bö&Ý‹ÊV9Õ≚R«RÌ+µ*xç×´ÍgJ¹m+Y³’ÎçJ?S¼·–ÔÛKÜäcÁ‘È!ñü[S¢Œãzf‰åý[YNÒ5)m.$±†b—*â{B5ãsÁQÕÙY£hƒQy|A¨ò‡ÎÐ뺴^_sXy†+(ÞæÞs$3é—‘|[¿¥ËY‡ÇAê/ +‡¤qÐ B1aVµSR(jûWl+ðßþ^?”gó´Mù¤ÑQ‚h¤Õ'G¹‰]¢(¯ûŠ±«9)ªŸ‘Îëä]SÊÞgó.Ÿ7žîšæ)c¦¾®Þ¤4\þ±n~3µ9Æß}ª1½NlŒê_—ö°ù†ëL—W´Óm¤Yn4뛩„ÐNœÙbã%²¿Ûf {Ó'÷:µåµðµ$XÀPúzÂ^G ﱮ +ÆZd2Å(q¸æƒÝGwú-ëú©n\rkZW‘4§¾l2ò=ÇçåªÝyûòþçPÒmá/¤ÞêúdÎ ”942É âñ·xš© 8Ý;Ì·öSIæ9žâ%/e>§k͸e"¾„òDZ­*z!;…´šmËýZN.*’*èàÁ¥U”‘î9D¨ˆä8°ÇȽ¿›Pý%fâÊx¤õQ¬Ñ-ý9r8R”=)Ó Î±ä^ÖÆÏG´µk2Z\’Xì¤ ûže +Ø ”¦Ø‹K#Lg&ŽX½T¡&» F7:Çœ<©ç-ë·™÷ZõßžÞ5“Gó’ÚöÇ\Gñž1uZ0Q/®ß Z*áö‡ùo¬é:³ùŸRÔo5ýQJ®¤eŽY$Xѽ8 ¦rŠn]ÖŸ 0öÚçËz¶“v|Åwum«@¬Út¶ö¶óCs³· †ç ŠÅÏ÷µÐÓŽØ{¦ÿ„ot­J_1ÞßÛjè šc[[CwÔ†§Ó¸2OÅñoêTöá¶Dl¢Öu¸”Å-äè²]Þ2•½Ô3Ìçsð·¶Ã~™Êáò§›á¿yl‰Ôofš°H±Ç Ýiâ5!îVª¦ê4”¡×tir?„XæuºŒ +^<Ñ–µaPA¨ê=°=Ž“çeü§ù•jÚF£/¯ú/Uµ'0¬ƒ‰Šf !àj¸ ¥w6Oÿèn?;?å¦Çþ9¿¢ã™oýßü´}÷£þ.û~ù×ÿJyÛþ¦)¼Þ—ür¢ÿxå·ûÏ÷£ßìa—éûŸùf´ÿy>£þòCö?ߟgûßø³íûá—ø‚ÿýõkþòýCýá´þëù¿ºþ÷þ-þóü¬ÿÒóguÍ{òî/-ßk¯¨_jºl:ž“¢[‰-[IÔïÔ·½¸1Æ¢V·XÏ(ùf ²({N§&”žeÓ­?M Kæ‹ilÓ*FfŠj-Ä’0oÛˆ»#wZ1Èïæ6²¿•žf‹ËúƸš~›ªÉzŒ³Hnžá½-RWXÃq!©lÌSðn#Æš½ïæüâÝÄR×îÞåo-áóO–t¯f‡ô^§pGÔõ è’²I +FOÕÙ¸àÌ*Îÿ19µˆ5Ï+y¯T–Û]óÖ™v×Zî©t®ÓÝEp-Œ3ˆ°*"§¦Å›«…`+ä?ùÍ¿ùÈ=òóó?Fòïåî£gæ­CG <Úïê=œìÜ;v‡€„R7*Z&& r¡P3ƒ~y~ri–ß›z&µ¤Zèþhó6ˆïþ ÔÇ®ÖښʦEŠ{/F+x‚GpÑ~é™›7âÛdÎÿ›ÃÍï—¼÷¬èÚv¥ç;KÉ/üÏ«Ìœíõº ´Wv$v¨¨‘²?¥F—‘2|{áô?›œzƒ¨þnù»Ë³_éžzº7š¥«ugs²‡ê–“útäÇ÷rчž~IyÇóÛÈß•šÏ´_/Í©Ïç^7^I6úÄzN–±O2Í +À%0*îJ£• ¥ r¢þwy÷ÉÖº®¹åûé,uŽ7>UEÔo`ЭQ¸$q?•Uå%XQ÷®#åÿ=ù·ÈÞPÕž]þ/Î$6ƒ(¾Ôìô”’Êv.ñC¨—M 5›¸¾Ðjä3_üåÿœüÎòŽ£åWZ’ï@w‚ò÷NHìíÌJ}&R)݉¯zÐdSÌWÿŸÿÎGyJ]Q·“ÌzSÇq=½œº$ ëć‡6¶hÝŠ¬Ÿe‰ùd_Ì™ŸŸ™þZ¼Ñ.åú=¼¾µÜZu„™žÎ$w¢¦´ß ¼ÙùÓù‘ç_+Aä¯0^[¶krš„VvºfŸdEÒD`õYí-âvfCG%:)j•ZEÿ,*ÓÏþaf½®Áå«3êzº¥Ôo:†N¡R/‰Èî§ ¿+ÿçÝ¿Ÿ¾Ö®4ÍzÞ*}TŸ]年i +Ôˆ vb7ëí%y\óߘÿÚt[^·?÷¾ODrZü Q˜¶Ý”Ó½:äCLÓ[S¼KW¸ŽÑ^¤ÜÜ­~ +ÌjvØôçåç—4¿-yÛòÛË·7—-5ì·zÕæ™q42_²E°VÖñƒtw¨2†ëî/ËoùÆ]oòsòÍ<‘£E~'Óå˜ëº­´fVžá¤æ’%³°JP8 ìAÎɦyÌþOÐ5_ ÚÝêV² ”y˜i±þ¶7–î$ZØÃâ[Ö•vøh@“ØÜjVÚžKÑ.5XSf5ÙØÜ=Å¥çÔÙ¤´çf±Â§Òø›“I ßãB0¦oÊ_Í)Uÿ1Žƒq{ol.&ƒYµ.-^§Œ€É41ü[ýžÛehÞTó—–õ;_5IgpºÆ’·)¢ßAn.aô¦ùüÉòö“®ù§ËwŸ[Ò-N·ž5¶¹žÝvF”’#uäZá_˜¿.<Ýå›kýJâÖX4»YšÝ..¸YË8YmäQÅi^ÔÚÛ¿ò¾¯§Ø˪Í‚ËÔ1Bn^+{‰€b¼’ÝŸÔ`£ ªv®Ft}7ó×F·ò^ŽgKÛ ©ïŽ†Ì²D÷1¨,ïLJ%;¯A‰ù'òÿó{Bü¡ŠÓËsÝXê62\ß~‚eŽêæõ.ö³ÕAÇCÍiLŽ¦«ª5’i1Ìíe¦é,Éåªå¡HÑ?ç¬<µªéþp°’ÖÆÎêç^{Ë®¯ d—Ôɲ’ܽ:Ñx­FwO˯Î} ++oùǯ*Á®Ùù‹F¼O«_j´OiVS÷Ï +ÃJ…‹ð-± 9ФüÀŸÍžTÑ|›k¨ù‚]cOkK}Î}Cë–É:‰#·Œ s–jÇRþ•(<‹ v·çi|Éå#ɶ·:Ü‘é²±¿Õþ½cÅ8KõkoB„;±e¡b£á%ª[;Ï‘?=ÿ!?ç|“säwP]ϵ¼×á³k7:‚ý^7ït©4Ìÿ +¿-¸ÎÁ¨ÿÎR~BþR=Æù‡ª 7ÃklºùXçÔõ ôŽxa[¸ÖH`£1"5p‹ûK¹9Ù+?0¼Ÿù_§E¯yÏ̇Cóüð¾R·¿Öïgµhýh}­½³“!^Vƒvçlü‚ó¯åäï”.<úÞk·òÇæ~”×Á`ÚMƽqiqo °5¼‚D±¶“÷‰K²Óu ´0õÿŸ‹~gk~wóž<äùµoË}ÚÖ=SHÔ®aI¢Çõxž[…F +¦ä—TâàÑA霶oùù'ŸüËæmOQü¾ò ú§‘4˜G×ྸ‘§‹ÕŒ$rÏ4Hñ§ïC2ÆC Ô?ç/a_;~™O,Á¤Â­ E¥ê :'£s¹k~fø;3 +|K¾Gÿ9…­Mù |á¬y~ÊçAâý¥[[h·‹ Âbao¨ÇÅݯªÔ2˜åæËTæ+\ãZüå‡ç_å¾µ¤ùËÏ\µÕü­©Új±ùoEº€A By ROktUî–HæM™Ü·n”Î5å¯ùÍÍß ~bÙy“ó;EƒÌÚ†æM'Ë÷hÐ$qÜrg´¼ekAR¡ÝŸjÔV”å–›^¯š_ó&‹¥k½Å•’Í,s[ÜÔ4N·s›‰åT34€®Û|%xͧš­^›XÕ4ˆ®mä7[ؤÓÅõy%©‰’bï+zMJz¬õ‡}óÑ^Hÿœ…üìѼµ£ùŽÛËÌöö׺e¢ÝÚÎÒÜ¢¬&_Nד%‘ÛúcŠô]ø綿,¿4üÓæ/ [þaÍåY´ÿ.k1~•Ò#†î¢®ª¨ŽÈ´ª¨"*‘˜Á’O蟗ÿó‘>yü¦Š N÷Ëßhº½¢ØA%ôb'–(Äq¯¥"ÆÅb­ £=_âjŒé_’¿ó‘žüƒk­J-ÇXÓüÍdÖžž­d•žÙ &+”T¸¢@NêÄ\èš—äååßäîµç/)~VM}ç gH]GYòS^°EŠäÇpþˆ!}:Q¸ìB¦L?6tÕÔÿ#ŸÌ^G¸×îl´Å¼X²ÿD¬BZXSÓ‚U’0­É–ðÑEX+NüõùeùmæOË×üÛµ†óOÓmí-æ·ò3'Õ’—RY ï»Èª’Ê殿f»(èš_ß“zå%ïüä/åì·ú RCa!ü½Ô"¸ciyzC¼qÝË/oé7« ®z¢€ò>2o1ù[ÈžZò曣ëšT×–ÇÒ™};«Èc4ˆ!¸e†°)öÙbæi]ë¸yï'¥èc +ñ‘!FôÐ7N|@+R iSJ“‡?™^Oó[[Ûkêúv¦–Ð~‰Ó5]:é·4CÉ%ÄJœ‰‡Úª¸a£yòûL¼it2Þ6DW úÌÑ…U(j¤Ž„á’.þYþKý^-cͱMgº+Á§ßéºÄjñÈ8¡‰åš4ph>. ^¥wÉ%בôÿ/h {çÒÚ¯sWZ&™u£:Á}o+PJ·ÜDBSpÂ6"¾_ò·<ë®ÛùsÈ"÷]¹Msœ/ÜB†FhÖâC)*ü(¤µ(¨ÃËû;N†¥æXmêÔE‘¨N¼˜’v¢Š“¶3]Ó|¯iõM Ë7ZœÄž´–Vò\¸XcâU’÷AÔÇíPtŽXéz¦·vš^ƒ Ƨ2¬³%­¼o#ð‰ ²2¢òj*)f4Ø +°–çÎ:öjÖº¾«zasêÆo-¡¸´0¢…U¨Û‹ +§O&þdùm>¸ðkú5Ïï ‘ãŽx‰‘”U\W¨ Œ©'—üŧ»ùŸ_¹Ö4‡Rm%»Ò!–6¨M ƒvæqÜ0©Ä&¾ºž3Ôï"ÐñõG:nDÓ§QÉ?󑺬ÚÏ—l5m5I4uŽÛHºMQ4Ù#V!U}iÖJ*Ö6ªx®y‡òcòÿÌ:JéQXϧK^¶§c8úÚ'‡¹õjµUj­{`_ð/åϘ%±ÓtŸ,Íkuk"›tÙlérH¢‰¢Õ½NF´<À=0ëB¹Ð5K»=2óFÿH`-í$¶Ô"±®Š’\I}Ä|Cn¨´þ^¸;ó¿Yó&»ªßjžoãk®¢›Ë– æÚÒ"©ëú³iÒAt^4‘7 V§Õ¿çÿ74¸.<Óù}ùŒ—z¼ßËߦ<µ¥ZÝY’=‘Œ6Â'3EPÎbCN¼ƒ‹~gÎ?y‡Ë"ßÌV—‘Mvi#è×u¤‘º•¢‘g%Å›Ž#‘øÅ–¤Ñ?ùOWò~µõ=y­“R ËohÖSÛqxÃ!Š]:I­œq§-Á©ÜV¹ üÅ󾯙ndÒ5åÖíÙ­&ÔoÛG¶³Õ'­¼rK?ÖÊÝ°i%.ïX²Ž'Žy3þr'Éÿó’_“ŒþpÔàŽ3õtÖµX´­4Ý°1'«p÷Íõ˜Á–Vj#;Pž+@@ÎGæíÌZ˜æÓ¼Ê+¨°ŽY\2ȤKqŇÀ@ŸÛPdV@êä9«u&µ­wê1Sò{ÏK§i6ò^Þ[Eqk<Ú„ëe§êVìÒ}bÕáVD»,Ò!Y½TcB.3Ê?”ÿó–:Mƒèúä’k"hSUf[}3R´õ9Û—†Ú༳"‰Ì ÔÐ/h'MÐôÍg_Óô-WŸê·¯O5ì0Ú˜c%¾‡õël/®^Þdƒô„ÒÛE Ã+ÓÖX—ë ²*þË3G˸\ô×å?˜¿/?'|Á7‘<åæ8u!k:~§åó©k¶óÍþƒª}^XôÈï¬R~ Â/‰$–.,>ÄÞ?Pü¬ò>—ù ®Þþ^y›Ìf÷H6ºÇ—æÔRI}õi%‰–ÊÞóMicDx½Ä ¯ñãûoØô/~_yâÃ˚żË$öqi𦡩¾Ÿ&™bî꨷ᰎwN=ÂTèÞJ½ò’¼ó¥Ù~kéßã=kg.žº·Õ¥°ŠòC"›yìîe‰=BÍÜ@fuuF£ç9üÃü…ÿœ~üÔÖ¼Àÿú¤ú•äqOso¤éKw|š4vj\îõøÞÅslј_Ô„QÎ}ù©ùù[ùéæ]@ùg^¿Ô5Ëøæ¼ÑÒÎ=GU¸°†Ê¦WžêþáÍäRªü/…áQÐ0 Åÿ4t/$k^kÔeòæ¨ÆX­â[[8«ªÞ]ݘëéÉ$3<œò¡H™7n/sÅG$Rh<Ϭ·—’Hä‹K¹Ðž ŽâÎI>»×EÂYJ@ì9ñ!©Ê• ÎA£yò! ko9hú‡–$±Š;{„Åõ¥Ô¢"²H&‚>Q‡oŽœX|T©¦r)£ˆ™êÂEd + >#Za‘,Ræ×ÊòùN ¸ÖHõ£sˆàU’ÒKfŽ¦I˜t5>4§`s½yKó#È–¾L²Ö4ÛöKÛÕ(ÖÖ•¼Ã-}V¸õ¡“aðpÄ.ZÇlm^G”‰Ã(Ž• »òbÕ¦Ô5öË8IåQAMˆÞ»×åÛ+Ló¯ä‹›MSÉÚ晨¼$\^ZÌð1f?Ý©F–€5jTý,Ð0O–§·¿Ó5YæœD}iÖY"xÚS´* ^_¯*²šìqm'YÕô±¢^Íar^ÚF‰ø“R*„mÓiº¦§£^G¨érØÝÄkͼ¨Nß ¡af«ªÝkZ­Ö¯¨H&¾¼s%äÁ1#±©³§Y[]é‘¥•ý»zéN“Ã$–ᄸCÊ7Rê‡Ú +Fßè:ï–aÒu«•Ž8õÅæ›w~w½¿{˜ýGy‹ëZCÇËi0RHUUŒI"8Ê¿j°ØÏ3ÜO%ÄCJÅØ"*(,jh¨ì0,Ždv‘¨ HPTø@>Œõµþ_Úõº³ã×® çå¿ùmìýgûÔûÏöºÿ•øã2³ÿÓãžjÕ|õ¨~Gioù=§/y“ϓí š½¿Õ,n,]g•'¼`±Ç,  ñT|,>ÎJüéùyù¥ùçùEç“õɼ³¯X ­e&¶´–ÒîŽÅ¤?IçƆ¸¿üäN™ùÁæÉé/?$íÖ×`mCVµŒÅu¨®Ÿ…í’I”±¤«GUâU—u>}×m5­?"¬uŸÊí.m3\üÙ–â/1Ûj‚jþe׬/l‰f·Yaã³rŽ¨9˜²Pò¡ò—“¼‰¥Cæ‹ÌK}J¡½Xµë hf‚Øu«»T;žƒ@Mrù]ÿ>ŸòÀµÓµÌ¿0Éž+µšÆ(¥µŠI$ õioX°âxü*»ûçš?"çG›õM&ãó;T›DK×– í*H~®öÍ,%m™®&=Zb¼“Ó$œ³Ë>_ò¶‘eç =ó15=oVÓÌ0ÅfÝœF‚¼&e> 5ª2‡ÑžÂÓ?/<­ç/O×´ß/ZùVÛÉ0]Ãkæí2òQoªz +‘4RÄÐÇJKñ9­jCn(=]ùiùyäïÉM.#y'Dú” 4+Yäú²ÜzÓÈޥɕܒkñ„Ó=i¢þGþ_ysO’ëMò›h:µ¤Ð?Ô—Õd^1ˆ¹@Œi(’$°¨$üu;g¯<³ÿ8ûäßjïœÎŸóŽ˜þVkyô=>çÌ–’(Inôëv˜E;¬%bi¡@bh>ÐÈ|_–þn¿ +Þ^Ó§Ö‡1 þŒÜ²Í¹áÂmÐW§|eÿ8½¯E¢Kª^éz•ûÇ! ©H­b@3³8(yR‡múa?çÏ~DÒ´Ûaù¡æéõMJí¾ÆŸnÑF•PBƒë~ep^•ÿ8åæ6†Å¼Øº†“w~ÿ6º[êK ½%â˜þ#Æ„mÜõ ƒùUç¸í.%ŸËº°žÕ^k¨—N•Ö xÏ’f”tjƒÉGÏyoòâ 2ÚãË·ZÄöÚ.ºc‹ZÓ-xÅõ•·V$’–$€6OuOùõ?“áòÇ“|§ç›EÔ95Ëh,½y5«4gyù +¨Ñ4ßùÄ=v×OÕ,müíõTÔ¡ô§²{Ÿ¬G ‹4k)ñPdE#sF¦Òô[ø"žÊ=Y¬F¨†ÖæÖ6tD’$È—²'¦er@e M²wäK tGò¿æ'§æMGË–º‡èÉe×î/tçGµ&¶Ñ7VâEfáUâê3y÷þpy‹òvËE¿ÓÏ›ï<¹g~<º5 bþÚXdx]cTŒÆüaŽôø@¥0‡Rÿœ[ÿœ‡¶ò’kÞpÒnµM?JŠëêúZj‹4ÖÑ¥Kúp¨š¡ýÞǾyƒòÛó>ʦëqµý¾ƒo1¶†ÛPƒP·¶¶©žC[K4|9¹vôÍ+Zï€?çüÓù•¢i˜”ZF—mßi·³sPP‡L2Ãé%”ò3:ÃÀ1¢²òÕàŸóíËŸÎ"yïÍÿó×~]—K0Íq%÷˜¦Ž8ÛF•£H\H’4“Œ¿¹ÇRœ +•^žHé—üãGüä@Ñ?(t»/6ySóàê:n«ßOcqoq¢[É3 ºif*Ï1-Z70ª¿ HÈJù[ó›þqOóï^—ò7Ëqþcù/Îþ“MµkÛY,`;O"´¥KÊOuoQT„Ö•u¤ß~Sþ`\ùKQК纖ÖúÚ{룩[Ë FáØBŠ€9_Xµo€xwså·ü§ó¥Ç‘õý6<òÙÝÄ,n¯¡Ô­ µftŽ#AŸIÝ“ü ´kŃ´®ÏÉŸóŸž¾oÒüåæ_8ÚyDj1Y¦‰u¢iÚ‰¼žKÍ åÅÔîÏ5ºŽ#•IãN“-ùWþs›óÍ׆½ù“§~V£ÚYÇaka¤ÛkZúÔžº¤ÆêGe’>„–jœ“]]þwùóQ¹ó^—å¸<¡i«CÔÓFž{M@9DFgôncPÇàTñÜážµ¥þoþik~hÁäè´ =yPØɦh7CH¿–aá Ä<‘c-%HG¯Ä[‘/–í?9?&îµÄÔÿ&äüÒÕu=NäZùÒÚ9lïnÒâ8J©Ó„â3$£÷;ZnOiçùÉïùÇMRÒ<ÉùJ7¯/æ’K_=è¾­“ß‹¨ãôؤÆŽ&bY•^4øw„Í•åÙ®çüÇòLúΧúJU“^ÓoD:|ò±g6í P§†˜'ó_þqBïξEÒ2¿.|¢¾UÖî-Íæ¿ä0OvÒKzîн½ªM"JÄ:Dã ÝvÛ:oš|ÿÿ93©yËÿ˜_’Ú,Ú.¦–kwæ?Êÿ6ZÈ$Îí–öòÜ'¬n¤¥z›S§>Õ­<ÉúëDÑuMcEš4’ûJ»‡Pº¶ÓV%·ÖD‘dz¡+ĨSLG[ü¿Ô5»K¯;~_ùcY—ËÊÿZYm'¹µÓøªo%êè_…-ûT_#éçMƒÌMåÝWH_ËÍBÝœ[ÙjÉ5¬E˜37Ö/¿vÀòBÔ¸ô ¹Â¯ÈßùùW’üËæ9ü£ùïåy?)µa,v¾¾£$ÂÃÕàîDòËFðü<ÔõûXÏËïÍ*ˆ¯!J·Ò¤ÕÖ/qs ++[ !Úï×HѪ/+sJÓ•Mr!b¶··ËkŽÑ§hÒ'¸”ª#R„´•P žäPw=ðïë^ZÓæÓ.¿1|¢Ú×ÖÐÛµ¶£5ÛÅfxæ´‘)ºü.½ˆÛ­}{$ú™´Í;V´½úí•ÔÉ=•æ {w€î+$fDd?Ì)·Ju΋æSI×`Òõ?Ì-çZ[ç gj.¦‚Ö̶Ñ\½ÎœìŽÉ½€ª¦¼>"p÷B×tTKï9ùu<ÍÄB–º…Íä +ˆäzsÃ-¤±±u¡¥CGN¨r9þò”¯|áùëHÖ­n¯¬žûÊ×1É%ŒVPHÜ¡wIâv¹†Ÿì¼û089à´IÚÔß7©‰ iÇá§&¦›uÛŽå;MJê+¯9]>¡mÍžé4VöÊãŒ3»òw "¬Å+óÂ;oÐ-újp\™™?ÜsA*"E'/÷jÉZx9Ïìïµ{=Bò´Ÿ[HÔÆ®âµo†7?ðÛŒgé;Ñ2þ‹S,u(Û-E zã„ËùËæý/Ìs[~\Ù\jBÁ †4vZîÔàQ¨OÅÓñÂøå–9ÂÄ0û$uɵ¯Ÿ<ãå¿+j:.·jcµ¸h‰Ó/ô¸šY$õ9!´¿T¯*ŸL-FÇ–ø&YæB—wñÊZÛÁO: ¸QXŠmUÛé9:±óž¡§Y·™|û¥)–ÊUhà¿Ò@¾S1E­äj•ÛvUE¨Ø×®[kÚ¶“¢_hSÛ[{ö¥Z}»Ü©‰¹/¡tñ™áÜÕ„n¡¿k–Fogò^¹]É Y^ÊÑòºËȃíGN,kÙhkžcÿœ‚ÿŸ{~E~xÞ\yãˉ'¼ñu8º“ÌÚb³¬“îŧ²i,ÍÉ™x;­‘o9þSþ]ùÖ?ñ'—/C¼¾‘e–ØÆdõ »šÛÕYIcû•ýœ#c ”©Û½ +d¿A×¼±å¯(ê^Y»òþ¥¯A(k™5­T’Ò×—ì‹ËUŽáO%çÔ¹óÞ¥ùIù·ÿ8Wåëý 4›¿?ù"úS­ëÚÞ‡Á§Ü›5,:¾žRàÂ(þ)’â8þÈe­Iå·žZó§å¤’Ï,wÚ†£¤In²Y´a¤"áoZé¤#€)õt^´éñù?ò*{C¨Cy¨YZOaj²Û˨ÞD,´írÎéjñ^¤ßUJ -Åþ +LŠhÜ[#¾Tÿœ_Ô´½ãA»º±Ö„–w§Ë}:Ãkc©ØLQ– ˜§Ž VaªCÅ•®D´_*ÞÞßY[6ž[ƓцIcµŠ@Š0šV +ÊwèE@Øï´wNÓ®5KØì-š$’RB½Äñ[D +‚Ç”³²F:wlå¯1·äWæíÏçõÜZêêWQ뺌qÛÚð¸Õ渭æŸmæá™°Rˆ•U¦ÈªìñÏ=jphöÂÞM/R{çš>w±É…­e T¡%™\x0ëàÙÕl´y´ˆ%Óõ•šæuo­£Dâ[gVøCó¢½QóÛ9¤‘"G‹2ÈÒ^5 Ê2Š7%¤ +ìOßò:oý˜Ëhnµ+ˆ,,b3\Në!žI*_i‹y/ë·W±é±Û5çÖ5hÔ×Ö¸ŽÔ±ÅVv€–&€ É'6yËZԺߙ®4X5!äš\y£Ê÷ÇÒ¸šÌN-®Q¢ÔP…‚»Š4u®ÙÚt,k^†]GH‡WÓ´õâe¸ô® Xéê[ðÚAMêTŽ&›a——í%ŸPM¥K¬Yéãëz¤^ ÿE€»Æ w§>€‘†¤òÝ›ñ¦IªÙéœ/5KdúªÊˆÞ«Å¼hÅÂr¨¡aÞ™ó æƒu¬êÚž…dú&›{$²é@”Þ X^NBݦ#°U4A; +õ'óCA¬Ü8ùi‘¨Ús: ËuëC+©{y  We? «|#~ø†£.“q}u>™¶V¬yZZÉ ¸t…¥ h+¿ë¯ä±–úâ]6·´y­mæM$q%äTŒ1bÁV¾ =(¿ÊëNßçôäoþVÜ?õ Íþöñÿuÿ½_òÕö?Þø»ðÀþ‰þeû<þÐû¾~؆ÿÔàSj6p~_KÓîäóÖ"M•´PB"·t éÎ?YõÀ šþV{¦Ú|®¶šÕÕ;¢[CŸ¤1'=–(Àb#E¡ëþÆ”ÏZÜXÇå­+K×mo!Ótë;x¬¬íýXå•”´a=FeDM8Ñ»wÎ æO5Yù;òNßB¶ŠúÏÎPÜE‰§Ù¥…¤–ÖªE¨;AõÑ4n$(Ààßk8~µæÏÌ,ùšâÒM&ãL½U–oIº´–'U*Þª†£!®þù&–öÛSŠßPáåŒÝ•y£R¡§Ú_¼xä?Î>e“Q¹Óõ­cKµŸCÖ#ëÐÛ‰dúÔ*±úÊ–F«(Ž”+Ôg—u_:ùÇN×o®nm~¥w{MVÊâÚ¼‹)BÌ' õ*kʵ®EüůêÚ¤_¡uø¾©~]ÞÃJ¹œ@7“ÛºªW}ˆÂõ†KýIï.KÀ`%mãZ" Aª8¥i×sœÚþÓÌþuó ýôúö¡£¥ ?UÓ­®ç›MhÙO%šÖæÙx•¿°åǦ^y‡_ÑtWÐô3;éZÒ‹OFÓ缊Ô:½U.!‘#˜PNC¦õÈôZþ³nðÙÖndx¸p8îæ„#¹ÂÏ0M¬ZÁÂÆ7”$ñSÍIîT·¾y§óËPüÎÑt÷Ó4;[ÍBŸÕV&çñ«òÇâ:“JTdhzŽ +-X +±§éħó%õÀ‚Òe[ÑÃ|IÄíVÞ¢˜Í_Sµ2ݯïíþ¤Zwü3‘X;ùóD¹Ô|ÄM¾«¡rkg ‘–$4 Ä72jz¢½±¤“×zl3Õÿ“?ó–ºf™äÝ/˺Â_E­èÆUÓµ[k™Õ{¶“—ÖU„¢@*ëEìAÜ"|•¦k:…®¡-ÜñMe(§÷w ¹£ScO éNýòÂ.ë6|:æ±c{d—%üS«iÚ§¨$¢JÒ,‘ÈPn9vÛ®vÿÊßÎ%è[:_™F±iªÛGçV؆'nøAç[ sÈœþefý%­:Ï’Ñ×ê—A]=f™« 8b´_O¥ # ¬u‹ªHÒÞBþ*UªŒQ›vªŽ`Q·Ñ°‹«}oË>_»óœžÎÖѤèÚeÐ6÷¼(nÏÖ8ñˆ”¬R¯Ãû"¬Å|Ãå¯3yL·Ô¼ÝÙê·?©èWöòEy «­äÅqðW¨ô]I”yåK_ËÏ5ê–Pë^p¾Ò´;KxÚê-6Xn/ÚeŒ¶Ï3zn•åÐc/¼Ï +,p5Äj‚¦â~a¸F 7,Fþ?N·ç$†<³¦yÊÛCX„’Üëdžö¤³0‘~Р«~Éùeè¾rº½½Ó´ÉüÕy XZ†¸{È™§¹ +¥R²ERX(©aAò ¿1&Õ¬|Í$žg³iÅüÏ#êš… €º² øÙþÐ<@Ãíqï„•ì~?H­¼ñÄ¥#KP‰)JH´¯Ž ú¯“×ËãT¶Õ/Ïš®î+Kh +¦‘ž«Q#fw¸gn£Š…ñ®Ç—÷§D“C*°xÿwb5Rj£Þ¢”èk·FÕü¿–~_ÌÑù¹Qõ(Qô¯/ÚÊÔ2L¡½iæu*…FûV ‡6·¶—«§ù†îß^–dú®“fŒGÊin µP¢¡ñä)C;¿š×GòÔ0ÁæË‹øµ-æ½ÒËÑnYAh–5gõ1¨fã_Óîl/. »¹kk‹å@=d@Z.j9"»UÌSå’ ~xj'MI×|Ñ¥ 5uIPÅ1úͺ²‚±òyK¯ó„éØdßHü×ó¦å9<µ7ž¥¸Òµ¨cšûLYçoN@M‘ë5 7*~9°Ó´û=V8שּׂo%¶&I,u8>¹Í Ea”Ôî0Ââ(/!šÆåË+­ ”êAMÁߨ9-ÒõË _IÔî`ÔÌ${ —Žær­}]Y:TŽ›V˜ÉZœ_ó ·pXêSXJ%m;W·]M';Ò¶Ò|)ÕkïM±[o&>µw{©éz~œ‘A6£pêËkÂ(OĪ¼€-ÙSs‹³­œpZ¿2‚«ÌÇ°ä{û““½Sͺ¼–ŸUЬ!ÓÙ]Ëf ª¨ôùVá9d§Q¾Kµ;]kͺµþ¹äÈ´ —Q¼“KS¥Çik‡<^§§Àl=0Y«°ÿùÄ¿Íúo;ùcÌí¾‡{­é_¡<»©\2C z…³Ç ¸,ά%fµ +§¦|Ëü‰ÿœˆ¶ƒþs÷óÇ˾mÖ­¬¦Õ¯nô¯)›«mf÷še÷Õ-­ùþõÔíÄ3€š ñªk–þdÿœ‹óhÔ ´ =®šÑΖýj ÐD¤Žå}F"›« +“·LçÞD0ùƒó"òÇRx£Ô5,:]ü×K¦­½ün¯ ¦B’ bcâC ùu CgÈ¿ózßäÄ^mówœ´»¯Ì?2_ß%Ç–.<¸÷72Ù]Oëžo¬Åj¬œÞ2[™ Tƒž±ÐôË=SP¾Ðỹ¹’çœz6 ò´’ßÊ$ºiÍŽ´U¾£7õA"§šO“`ü¶óLÞvóÓj6z‰º}BÌh²‹«¶¦“ÈüM SðHeôkÊ€Ô†˜éÞ@oÊ¿1Íæ?Í«íVÃ\VMCH¾ÑQ®îÖGšêD{>~%Ý W)/¦Î =Léß™Oò–—µæ¯<*èPyWXwòÆ›§\G œQk@ÊÑž¥—ui +ý¥û;a'›dò÷“,¯<Ãæ‹„òåž™%­Š-â¤jº¼é)rÓÆÆ2&, +4|ÛÖü³¤ÄÓëZÔóhyzK£§ßÜK ¤ú­µÏ&õ#žþ4¹º,dôÞ7oL) *qžmòdZ~©\k®4¸üµq4Ú0–t»½_NÔ¥ôÖ{w½·Žöø¤¿m$¨HëĨåŠè~sòÇ›?1|íw¤] ?Kò°µÕµ {ÂóP6|#žÄ;KHÌlRæœ}B¦ìJWüÃòßš|Ùæ›m#°±òºÅw}¤§ÕìÖÈÂk C’…IòUò «3úWŸì5}Kü/埡è2C¬ëw1úÛ„OTE¥$q4B6%™¨™ØnKa†ù“g¯k¿SÒ=@Ò®m<Ó¯An–SîôîhDĶË¡a`ÈÇ‘? Nuß7hVÓ¬¯µ·Ž5(íFsw2 kFwkxã #¤a[êâhÐŽ*ü[Š•ê^ešÎ×Ñ×¢–î2¶RÉ1ô'Ÿœ‘⑤Js‡E=ƒÀW'¶ǵ5½Ö®ã×´Ôõäš'ßJšñ¸Â‘Úi³Û”Y„ìKEJ®à3 ãÚtOòº`þ{Õ4ß7i±Fº±Õ®&:#êW²,Lš^“5’¬rÃ4Šf‚–&*ŒéJmË¿5n|Ϭy6}3Ìwvþ]ÒÒê(­<Áp÷Z]ý°³}ú¬2¸õ¥P> Ü·ÚÁ¼ð1&òûYi²ÙéÖ³\ŨêRÏ¥Ën–iJÎÕ•m5 ‡á‰ßÖJ"“Ä*ºüCn§"ÿž–ß—iùaæ¿3ÎH+ÝCz,á[àök%»Äê"xgqÁcsOO—ÚÞ»°ÏöÞW¶óéïÌÍSum§Ù$q×Fµeº»›áI‘»DXÒ—«WbÄç4m7L×ã×<éù%âÛ[À#€é–¨’ÜêÂëjÎÆ5…c-)œžoÔrbNy ò_óùg[M7Ì®èdR+ …Y­­æ-É]£”ðô¹ê +­A­AÏÿϸ¿ç+üåùAù£åV¨·þhòg˜$[8´{Yá,.ÞeTº†7qÆkûÞ€‚ vÈÏ’|ù?–n…žªf¾Ð.’ûIõYcdŽD)4®ßO„>Âò;[ˆžæ!unÉí˜FþÍăO|ë’?~nëuy-uÙ8hú1{ km>úIm­­œï˜¹,U4EŒ•]¶¦ùöRÚãLÕ,Ò÷Òô‹Dµ~hÒª8Ä•ä ¦ÄŠç}}cÉߘºÁdú]½¥ºÛEm}hÓChñ‡ôYÕ „ª6ð–"»0Áºï˜ï|Å-´—åý;8’ÖÒ#4’ˆ-’°Æfg`Š kA‚ãÑÿ0|Ýä»+ß"iA<µåŽA¯®c‰o#KÙ6õx"«ru`µ ]ÊÎ!pi|tÔ­ÓNÄ÷]‰ý”®ôñ5 ®F,äÔ|™}—‘´¨ït– úKR¸hVªÁQ%º1 +G»2Ü.¶'›«ßé·7šm”“éúYõo/–%3È«ð†j*r4ä~Îy¯V·y¤·ò¥«i¶±AFÓP“ëv×7 + JðµÄ®Jž$•Dø\ö¦ÿˆm丂îág¶[{0~_Áyynï¯ff·Wu³˜"†507Â>'S]úèl~­o$oÎX_’71VpãpUG6ï—¡y6ëD·Ô¥Ô`º¸ÑesmÒÅëÜ]<‘Õ”Çol"6ÎåUÜ5zõÀ¥ú±A A-¬S‘ŒóNáy<Š©/¦Hû5b½Éë†þzÓôÿ4ê1êZ–µ» {hõôµ·q¢ÈïðÆn¡ôÊÛÈÊ@Ü#îc\óççüá^‘æ$¹óoäKXyCÎLPM¦ª¥–ƒ«Æò©–=Bxd '˜Û‡Û¡mþ!Îÿ0!<±{p×>WÕlô]RfU·Ò§¸D³žB©H¢fÞ”vbÌË@½Ö•{襞œt»øÔ‹Ô—µrà’q7ÂK†‘Ácð„i>r¿Ö5ôÖõÛ}Vò0K-·žíõÛMÑþ³{"5»¯¢$U—œ¢X¤c^_ž|Ûa¬Æ—ù¡·¡M4§Ìt‹Ÿ¦DòH¯ Åúð?&PήŽ¬T¶üuoµo/k£|ÝiwÊ£  [ Ö>1ŸNheˆŠµhS\/Óä´¶¿u»yç²WòÎÞUµ•ÂÔQ]ã•TïÔ£|°ïU]oÉWÞrü²¾±ÑüÛ«y—Q¹Ðït Û"Ñi²›§‚ËRÒoah!L·!"ŒTL ²Ewå[Ècó—<Ù§éWš„ÒXÚèÚœqIum-»¼PÜé2@éLÏ3˜Ä)dÇ$Ú­…Ç—­îî5kkë­L%¾—å{átu; {¸¾±Ьh¶áA`¼U¹òÛ‚á” k¦i×w7QÙÞ]ßlSH¹KÅ»²Ó•.ÐıC¹%oÚå8œ†yûÌþm]ižròý·—4­.dòùcM‡NW¹Ó¨ßÜ•rf“vaËãÝÎý]©6­}d!óU›éÖö¢.e´µU¼IlíÖÖææVjIÄqã^FœŽõ©G˜<õy¨hö>Q¾òΗ¡Ã¤D¶×sØéqG©ÌñW㸸ŸœÜˈòQà;`Ï8ùÚë_Óô.Kåí+@MÖ+ F§¥½ÝÔÖåÃÜ^O'9Þg.yüA6E¦C|÷ç5i6žOƒËšf‹k¡Íqsc{¸MNK{ªLOtüH×cä¼kV'‘y'¸´ŸÊz—¡ŠÖ·)ªúhoÞ)KH©qtÞ˜‘S~,W¶ù“̺¡bº6ƒ Aakm%muYåÔä‰ZBâXÌp¹>¦åaSEQ]·'ÕuM:òÚ-?LŠÎ;i&1]y.ä†G,‰;‚‘9@hbB{í@#z~“e§ é´¾:…­Ÿ)¾8m¦I=Y¦”§7ïá†ÞRòìqØ[½¥À‡R›ÕÕè+Í™ÚQöPQ~`ìvÂ(-¡’Ök‡¸Xä£HmèKÈ\ššýªäšÔŠ¤€)Zï¶Ø#ÍVš®“æ»äÕ.…¼³Gê~“F¸EÕàuä·D±22Ý‘ bÀí¾t}SÔÞi›Z¹HéIoQîRòT0–9.>#êÍ[ˆñ Á“^XjWH.½f“œrÝÁ$….W—`ïBÊÌ IØã¦øf‘D‚_ˆUyQ÷ê9h}Æt¯Ê«;Îÿ™ñZþQùOG¸‹UÐÛO»ò¿œ.¡™&»ŠÕäéï#+¤²ënýC;ñÉ’aÒ´O5[ÛèšTzö™ªÄBA¨½¼²­êQ„fvQê¸SÇŽäÖ”¯%kŸ!þÓ“Éš î­k=œ1jºf­(–szÒ)´{q +!`O^B†‚Cwwå©Ø/”ôk›¸ä²ŠÞúÓU¸õÚ]JHÊË-¿Ô–Ù•bB\íñ®poJÇýñ?ûÓêÿuü>ßáí†á­þ­–?ßzïû}±_ð×ý[¦ÿŽŸèÏ·ûﯱýçùÓ#t>óÿÕò¥þ±s ëy‡òîIlFŸ¥››çÔu1ñ^Z§ªÒÀ'h™9 !$0ø|sßúìPXyxÚy–ÊO6ZjªI£…‚<€¤Œep)¹‹ÀžéóŒšN•åË›O7iry³NÔ5æÊè±h‘TRF–Y#hÒþû<¨O×%4&¤R¸oç#~mÚùÆÖ¬m´zá­$²Ó´ïªiуEXe„Yð·]À$©¯/‹­s³yÍZéaçÍzçÎz”m¬oîØÿ¹jÄòÍ9XŒ`áWçUÜ…Ä...· þ• ½¥¬R[Ïu,0¢Ïqrf·cN@ 4¡U X‘ב֥ÿ8ë®y‡PÔï¿2o´1!¼Kû°“Ì“”@ÒZHÓ£:[ÄB¼QÆÑþñ‹-¾t¦ò­—˜.õñùéæÛŸ3kšVšï§B·±Kª6¦ˆ‘¬7Z† ŒŸSƒq&KUwäD¿Ê^pòד?/ äÔõ¸Þ³Öí¬-åîZR>µÌåZPõëÈV¸+TòÖ‡q©Ê—WPY ’ؘøÊÕ˜’zŠW•pƒTÿœ=òÕãÝyÚC£­I/“OŸF¿]bDu§ï£{v¡¡rÊÍ^DQÓÿ%.m¿/ óÏ’îõkU¤öÖš;µÝÌÒ(-Ïú\И‹›iªÔ}ÅþgùƒÌš÷“ï¼ËùŸ¢›I5¾Z<÷6¾¬Ú*7À¤’%`â¥l¦ ãà“ËÓƒ¤¤Ò,‘V(ÑqbIŠÑ·ß¿NÇ8›tO$ù—ËqÝßZ\hf#,ZZiöT‚ÞHy„R˜ÄiPÊ\ç­Nr?9jpyO›Íö‚Ú!¼&ÓG¶Ó­ÏMI­’ VƒûÕyTò`kñgŽî|ØtÍSëVbÚ튈ãåg͹`é8–§˜Â‹¦ƒNy.®Ü”„’D®Ç*šsÍí«¿—õi v¹ZIêÛ%ä&»ƒI½]÷܃œþÞimåDªÌ½ž5‘~•pFyÏŸ˜¡'ÔnÛØ1 ¶ö–áu†ª„ ÀÂ_0ù‡]·¶7b飷–Æغ;W` +n¾Ô¼ûç{ÛRá;q 0ˆ•söZ~È9Oq+«¥ÔÑTR…Ã~ƒ&VžtüËü¿ÓÇ™o4ÐÑêËë[5âŽh™¨ ‚TS`Èç–î?7tY¯/”ÏõÖõ,ä¸EÀì €Ü·¦À€<µæ?0ySSO0XÛ¬¬üˆó†@j¤†Àø¾>Òæk ˆî‘ŠîE Œ:nÇ=ùå]óoÈwžróî¸SUµf3éÆÌ #q|Dþì£lÃc¿|éÞ[Ô5kÞÿY!uÿz\x¨Wì´;7ôÎÍù¬yŸÍÐMç+ÍJ#1p.™‡µ1UQ«+ÊA*›½òI¢é—þek½~úú2-ø½ä×d©â  e‘ÿÕŒO`ræï!ë:>´ö:9K‰6 jJÄñÊ +¸ãôϦànH¢ž¹'³ÕYãŠý=9ª€ íO¨iߦÙ×4/=Au¬Yé~i”FÒA$Õ„É‹‚†@²úl¦»ªÐÓzb×6òÁª}FêOß´e–0 +z­GU)(GºÐÔ¨Ÿ óÿæ7åf³·qæÏ)É#_=Ã^^Ù‰Q'·¸g2 `ÊJ‡?Z°ñ9òCþs—þ}áùÍå_Í-óÃò^ 4hZåíטn¾¤êš–•yqq% +»¢±ªÑd¸Uvø™>È^o¥yoþr·ó'ÊW1YÝhz^m0Õ¯uèá´¶xbk¶Qž8½WŒI!=þ§Ù +Ôçÿçå:„\ÿ é:r5÷׆¥g&ƒ ÁšW—ÑkˆœÈñ)sûº±à´§L…MåoÎ?0Kuå{/(Ù[ÜNòË-ÖŸkeGA0ýmŠÆ¼‚…ç½8Ôî3—i:/žüíhú¥[ÍonòjÝÅgcl°©b¬ÒßpŒAšZNÐÓ$š¿üäGüä¿—-ŸË73ùkóKÓá†Ä6¡¥;ZÇŽ0,GÐÕ8ó”€Û€tïпóôï&è¢ÝùSË>|³,aîšÄ‹EEP²\Y)§Ó‹wឧùù• i¯ä/5ù7C¿²ÑÄwéïHF¦ŒF\ÀŽÕ‹Š¾ç~&˜|9¼Ó¦é±y Íz6‹æ IdŠ=!­ÖÚÐËn¯ÊÒhrÚzò|g÷Îîæ¦FnB×þrKóïóC˾^¾¿¹òœÚ‚ÜHš+Ík}%æ›õhÛ”–ÒIrÑ#?2\lÿm°ñ4¯ùù×£Ò/|Çä%ÛÍdò.Ÿs}7¯%€<¹\G7óCRŠ¢–¥*Þjÿšÿ™ºtãùCº·´Š9´ð×2"Q‚(1[O¨Òr«@ÊQø c|Ãù—­~`@}å]$Ü[ö›vø5¸µ) 3Þ´.x*«+Fã6r;æO)k?™–:~µùŸç0k¶÷Œ÷†ëSaú %GÈÉj¯ê Ñ š–øªf?óïÍ_óìï¿ç&ÿ4¼Ïç›öœÜê=­ìvºKÑ;YT• §"¡jß<.ó/’?4üÐ~bë·6ÒÝ]XÇsaé¤zu³ÜFÜðI#Nl•§£ ÿ”Öjú—›|áf.ü×­]œD}ÆM_òÚ$~_ÅæO.è>^Ôtë-iÚ“èâ+«·H¢scp²^¹{v8S©$ü[•Îåùyùÿ8Ûä_8Ϫ~[ùKKÓ5¨­å±½KKj2ÅXNqòh¹•™y|MM˜Œ›yOò/Ëú$+æD°´ó” +úÞâÒöCHÔÊLÍ €H@,¨möÛl?²ü¾“HòŒ˜z~Ÿ™tÝ>ýQ–KElÁÚÚk€ñÄ …È;Ù×-åüØÕä’ûòéì'c«púTÚ~ž«§$ª%†+6™ŽOÉ#@ Jk{[v’ …6ÖÆO’ ŠL²¡àв²Š€¼iZÓlOZò/®î4'_è^²5Å‹XZ¡ôí8…wôàšârC0âS‚­jÊ'óˆ|ã©Ý^hþD¹Ò'ž4Õ’ÛFIžÞ7‘õäú´Í;°Rê–DUQñ/|ˆùËZw•áÑ?Gk­Þ¡õ¿«i×' Ð¯ÃœõejA@ *ß y7B·òäšF™æ ^úÛ[æ°\jšåä–¾™p¦&ºä¹²6*+¶G­uÝvÃGÔ4IüÕ­KkæYEŽ’Ú×ÖQ#ô98nFpä;#Œ,9Š0éX­ÍÅÅ®Ž° JüEpζ¶SÆñÛInÇ>BR t +G*Ôí¼sBò÷“<Ù,ÙY"²ybúA$WöóŠá!ô9¯ª®¢ŠW‰S¹nuw«ùžË]²Òî,íæ±,’_O}:Ž&•‘ÖNnfUÔE~0vÃß/y³ÏVÔEó¥ý½®Ÿ"/Ö´ëËËx¦K[†(òF!%˯˜ÕjÀö5Ål/õ2+ËH/$´NÕ·«À:Iû¹!SCB)Ò¸Êß•þcÕíu-Kɶú…˜³²}a&·º‘!õc…=HREu‰¤•U¥ +»\êqY¸†ÖOJwdôíØòå’*)NEÀåÐH“Ìš¥­ÄžLŽò ÷b=>ÂâèÜÛM±¤1ȲFÎVg%? é‰ÚX_K—ºzºˆ›âd‘y"5K !‚Õ€æ~:çBü¤·“XÑuO'Ëuæ7üÅ’ÖZé–:¢Ïk¨ØÃÊæxš4¬ò¬vêÎ)jí¿JçêöVz½òGõÏSѲ¹e23Á•½ +ZŠ 6û ›yTÑ´½GP‹Ïúγa«\Gm×–ÙÒñ‘^’ mź¼ÌhŒÅü]ˆè¾F¸ÒC×ô›íCÌkæû¸íá´³Ò¦Yìï,Õ½KˆîcB&eXG ˆÜR´ä½ÌwO>‡ùg¬Ü\N7蚎¨Ö-s qÉ#F’´‘…cCÅf`MEc¼Ï•µ-.òÛÌê¶ðª­ü,¾¤±ÆW?Îßæ2wæ ‹_3i«åÑÍÿZ­¶£h×QYêé”U–+‰$N`!bØ3»S/ÊNÔ¼ÿ®Ûù3òæ7×ïµz§è{ëȬ攬å£y%@ '‹žTƒÊ:b6±–­qåíNâ +j’]Êm=^Lf(f-ÁÍiÍ;ÿ•œ§ZÿœeòEÅíÉÑ5Ý_H{ˆÈkAt%³1r,±0’)F {SjóΙ_Ú—õ»½+Ê:ÍÍ…üèLÖz…ÏR)fþé¥qVâM]ºTŸÚÈ&¯¢K¤jך$òýJîÞF·½·‘ÁUe’… F\¬s¾yöÖü•cå­UÑõJ=>÷[htù4éÞkšÛ¯ e•æY’ÈÊÞ£K¸Oç/ùÆk=fÆŸ^0¬Au<–q-ƒÝ´HÉÂS%•\žN]9±¥[l,ó7åΩ ùJt]CCÔ&Ô– mB8¥¸K§á*ÌnI¤hšGxÙ}B¿dü?kÕtÛ;+HFÖöiÔ<Ñ[‰ùÂÊY +³HŠŒM9UK +R‡¨È÷¿$<Á§é¶˜Ö·^O Ðî.„Ðl¥‰V?VID¡Qò3ê¿b¢˜þ…î8mEåýòêTOFòÚYCÈ"Sבe¦ÕuMº×"ןÞo&»e`«§Ë)ŽÖÊîí}YD[HÍ ðqnD„ é]ª­×”5ËM*ÇÌÛz:~§,ðéòÉ"~ñí˜ TGœ——.;z©lÿ2¿62uOÒ†™wç-Z&Õt"1 ˜žâã”bžJÍÀs#ß 5OËvi5¯Ñ6ñÙ5؈Ëm +,P#ÄÍ$CŠ° 1¨¶Èö¥åï6yŸYÔþTkApÇw¦évóÌ‘cU¯ÆÒ¹åÇ›DñtÀR¤ÚÞ­ Ò´á ]HÆßM³H©ÈÔG‘¥Ðrf>øgæ{/0~X~r럖é^iº{{¯*Z¯™-¥i-Rö?ª£*ÈàE4««2)ø…F@|Õäûÿ-Z´úí´~e[v&ÙZ)¦òDÖÑ%‰~I +@jÓ O3hדuK[0Eõ憂Ár—Q¬|oKŒ¢øI=>ÔT­WL¼Ðµ4ÝNK˜UDÐK±qH8ž&„ù_–·ÖÚÌPÜÆú}þ™#@é(H¤ˆtø~Ö¡”Ò» !°¾Ô´»¥ºÓn%´¸_³4.Ѹïö”ƒ#’X$I¢fŽD!‘Ô•`GBÍéù§ýñÙý9ýů÷ïß³ö⾟ää§ü+®Õ®ž·Ùƒì7^žøcõŸ6ËÇÚý/ѺÿËGüÝßøçÿÖùõæoóòkónæçW[y<É¡L«m5Ì0N°Km(xåT²VJìHëÔg¸¼ò–žlÑ’ÆúŸM¿ôîbf(¼_Zƒû&£Ä#þr+óÌV–ðY®™Ö›y@ +xÓ Y’ðêçð–éÏ h… ìBŠ3ÑA šWo§&Ú&¹æ«Û]o̺ž©o:iÞÞÿô™³¹úŠ\“ †IGÖû¿U¸ð&µ5ž ðyRÿL–öÒý¤k†‚ÞÐÆ=qëÑ…y8høAù…}kù¡£Ë3h²y‹MÕå¼2ú6¶š9F{˜PÌŽZW +Q’9 +¿Úa¾M¦¿ó÷Ÿô=wÍždÔVƒDKMBÿR»æ²K†6ð¬Q4Êóéü^œR§#Äï€æó£qo¬y‡I–×UžÊL\;¤3Gê¡âH+SNàP =»»º]=?E¢ÈÑ),ªÀV• žØIù¯æoÌ,yÅ?(ôZK¦[Ìe†ô{8)Ê&–î XJ§RÃJS#ߦuéÖïWÓ¦ÞÊ8á7(!ŠH£¡A骪֠P°¥+ò7磦éÖšž†ë϶×"K=e£+;WYcx !HÅ»U–”ZwÇu¬jŒò^GÕŒ? +_Õ2 UŠÐ{œón‘ù³ç-BÆóÍ^`Ð=R yÔÛ‰žá'Y0k¨"Š5¥R¡ýz‚ÔUp•5õo(ÜAæ­$r²¸-i®Hmæ¶[7‰ÒX¤³–Ù„ŽÌõ´Ÿ 6ZÑžƒÿ9ù‰©þò»E 涺Ôu[ +I¯¤“2ÇoÎ70Ô¯n•Übñ}^äÚêWñ˜ßOC´É#ªD¬8wʇcOŠ¾ù-òüäWšu;8u_;X­…Í¢Ék¦ß[¤REcjñ*òTõ_wFH?]¥wüå/æ\m©ÉtÖM¨ë7FòïÌ ¦ÚN*É-¤hÊÅËPµ“Ԛȵÿ0ùSó7Z¿º‚Ç\´Õ#žÁ<·m¬ÞÁ{ *¨b™/}hb<•ÙxXÕz· *Ôõ«-iê÷î!ÓmÉrG<ÚiDQŸJc³š°NÛƒ¿6yƒË÷¾]òÿuývâ]HúÌz“Ýèö©¯-õâé¼i±ŠFUB†!YÉ€^wóΑù‘yy®êº¶·.£`-ãÐáÖÚ N9U¨³}brÖéö@ÀÔs"œ°ÓÉß™aÒô+ý#P󅀿ÓeT¶ÐSJ‹Ö»Vg.‰+F@Øs/^•˜ÉûÝJ 9&n5’E™¢*( Ò´=‡Ò2#¡ývâÒ=;O¼ƒô­ÌßU¾H¥vUífe+Ä,ÄÕEx«²EäÎ/2ùwËzŽ˜ÚÖ‰dÖæ+i4Vòõ¡Ô5$- e–å­xªD6nRs£|*ǤFãÌžXÖu–»¼¾°Ñ5K™xZÚÙæKk‚I¬É +êp#~JÕë׺:lk+”j58š³:-Eëâ@Ș|©ù6­$N²Ñ5©›ÕŽâIYâ{„<‡®€A©$¬Be»ò›<ÆòêW[–îVœj+ Ķ–Î[I ·¶`Ê)CÆ3Z×~™/Ö4ÿ9¼Û¦Øyƒ]–ÏÎÚG“Dzr­ìZtvíJª$%$«†æ!€×l/‰4É’Î 5('bï!œ²S^#Ô‘¸€{ +.D<ãæ ù•WʺW•l¼ù¤ÛÈjZgÕlb oE1‰'”ÊVµ+Á—ÜÓ|ßù…æ¿7.œ5ÏÑeÐü¸©go%¶›e£¡TEU©ŠiÈ¢­ +”­Fèߘ>my¦ÓÀM3úZ5µ¥¼Ñܾ£†fàFô +Æ´¨a•¥´Œp\"$côY˜õ§ ÆŸ,å/'þUjp¢êÚE¶‰¤¿¨·>\T™ÞoLò¼ï"îMRª»m‘};Qѵ›®[&¬‡§ÚµÄW,Ÿi亠'p›®À`õüâÒõ8è¾WóîËËZ]ͽާåóbºl¥–Ÿ»õY’XC£ŃR¸_©èÖZÍ’ÙÙHªé*IëÉ¢ppX”ªÔBÞ˜ ?(ÿçÿ7ôHô(êVš\71}[S¶ÓõD%„‚·ÅÖ¥yžO…€ÃõË_4ù¦ÆËYµÿ hŽc7m¤ZK4ÊÕ¡P×·¯@ÀŸpì52a¤þ[>—¯Ì<ñ Å.‹ªÇqæ-èPj¶­4ZSs0‘}2ÈO„úlDÔñ¨ÇÁy¦Io%¤WBG´˜ZK4Q—á-Dt!ƒš–>ôï’ý[ò[H‘íü“åû‰cM=í£¶Õ^žê+wR¾¼¢á8µLl Ž¯¾Û€s 7ü㦮¾e¹òÅæ˜ö‘Þ[¾½ Ù}zÑï?A:¼‘Þ™£Ž ÑV3T’RkðíLŠéº÷徕$І[Z¹–ŠA©Iu,ñ?%sjÞ§Ú¿´†£Ö¼e®0†êCX¸Hc wæ¬(iÚ„v8kyÿ8ù9¯ù‚æÃÎr?™î!Œ›{[a«Û´NÑ€e &ôøÔ ‚mMÉ8Ë2þCùsÔƒYò´Þw¸’õ-nÿO…U„²E=¥áW^]9Fiï¸ÂË«¯ ù³HØZiööÖÊAó£4f)VN>të*³B¦BGA^¸<³on…Dë1Q"I1G…1M½É¯Žq]GþqGÓ'Km+ImIÔÚ1ke}­ZhtaöÃ¥Œ?¼dm‡¨wÛ‰ë6´òìÓM¢X½½»E[Xµ}R2ñ¿.,¬Öö°†aZ‚ÜAvØ붚~³gçÍ;UwúÕ¼ÓCk}Z)TðŽCo$­ü@Â%ê(N:ÆÒÙmÔ†šˆˆ@¯^„ýùЧü¨òÿåß•cÐIEyåëËžvöV«7¥ê!Òæýh¾ÕIe» +npFÃGŠÊþÇR7–°O ×V^‚¼K:3g‚ᤎQ@kTã¿(ru­yŽ÷ξr±O,ÀúÎ¥©\-Í楨Y¦’§W‘‹ŒLñÆÎÿyT_ÚÛ¸{mB5°»k¸Rl‹êH‚8Ö¤žH„µk¶ø†‡7åߘtUÒ¿,t[{ÝG¾ùZÎ÷O±²–ÝÁ<’DŽ).}QÈôû +Œéw§ù‹ÍSÑ¿(ì¡Õ<×tö’Ëz¶ C°ÍUµHþ±¹•€J«cJ(¥LWÏz×–¬¢ó&£©j:mæ±b,„õ›…½šYˤ‹G  i6zÏÞ£šÕH¶%6µà‘*ŽAC‡ˆãÄ÷.ßLó-—žìµ›û{k9­f¹_1Íi¨Ä³ °Æa’7rfâÊŽ®¿´XW">yŽú-{Ì÷žk–ÖëÌv jr%û¤¸œ”•T8-)†AŸI˹.µ ƒÉ?›—:šÚh~bóö©å- £ØÇtckØVÊf&çÓT^‡ö‘]y¶À±ÙHd¿[t7’fWŽ2f’û¶ Ê£’Óá%¶ìG\0¼üÈóV±uc©ùc[‚ÃQ±ií‘olà6³ 8«Ê$K+vø +—*®I¥ï‚ü§ùÑù‚mtß+>]ysL†ôt¹¸õ.#µÓõ9U¯}^™Pñ á*Í@BüÓç_%­ËézJÞêZ|MÉ.êå}jUx4W áU—­!Øå^]iç÷t³(æ‰#Ë`~_FG¿7<Ñùwl¯ Yk•ô÷!–ú KûßNU™T_KÉ´o/K&¡¦ÛLÆ EÞxþ°£á °ÊÇ‚‘½ä+×$[üÜòž•§%¬<’ÃõÛ(§¹‰L Çš“FF*áÏZ×|»y-cµiþ¼G¡,^iw£IË ¼¿¯ù>Ð[GåØ5$ºŽHâš$’òòh­™‡ª‚{°Ó@T” ;ªxíÍZ>‰,7£$”úñ›Ûu¼’(n,Æ–ÝŒaf@8’²¿|”[ùËþq›ÎšœŸâin|ŸFËk5µþ¦ >?JastÒȤ¯ÃÎFâOeè[æý×Yц’Ðý|ËÂ;Ö–ââÒWŒ8z‰-ø15ê9(¦Ûô'žtü®üüȼk”ÔÂóa¨¶¨šœ·7p5Ã,ÖòÛ +!øƒ?¨h¡E:‡ÇüãÇæN±,zÅôß–P%^Öíl¯uõÚXݬª…¸ÈM@s‚Yµ«Kh5KmH¯'ïÝî-'»-6ü˃⌦ÙØ"5íÿ‘K—E+FŒHÝÉ4¨;÷íKÊó[ü°Ð»ù¨Y^_^Ú½­…À·»´»š1#?©/„oˆÑiÇu¦tÿ6þUhÿ“²è:ç›,¤Ôu-*î­6im¦¹6ÒIj÷ ŠU Äֱaåhtû¬|»¥Ã$“ÚyÂÊÖ-FBC:·‘²Üðrôe]‰ÇÏgèÆ÷V‡•,1| |k^,7ÅË~D¶Èõÿ”¬4Ëx¼Çå…ŠÓP½­®£rÒ]Cf¦@Ϋw +§0Õ"®ÅE6Üï +šÓ^Ò´›yíìÓO±Ifk2[¡“‹W„Š/-@fVû4~\d-Z®ýäÿ.ùÒßËþ~óƒkº}ˆŠQw¤YÊúÜGê:É0‘$Ð1Z܃F§Pky1…$ºKûÆ ÈZEvUˆÇ%ø‚Waµ|i‘OòïͺÔZdþnó$~\ó˜â;K‰+ÑŽ‘FñÉàFR0O¦ +r'«ÓrØô=.'O3k_S½¤FaA|’Ç5 ÖX%«-Þž‰gσHfpÎJ@vSÖ•Übk‰y5Å·ÖÐÜÀ?sM¸.:ªn[aZ (ò¿å×秙m/<Æ|½woubSô ZZ~MG)q*QPïCCîza¦—ÿ8¹ÿ95vÚ^§’5HËHÚuõØKH¡{vVc,·,‹çáõ +r?f´8mæ4ëžoò|Z'–+Ã;X—œþn}N ®šhŒ¾´ü#†ÝXp)FÁy¨Ø›Jü£Ó,oJÊ.×m+½äîŽó=Ô’HêüÏ"+'¿eB€¿ØeüãíÖ²žeóžªÝkZŠ4±y²é¢qȱª¢Y¡…YQ·£ÇÛ› +T¶ãȺγc¨éºg’µ;Ï5é“\K®ë ¨Åy +-·3%´0 ´QÔÖ‚´Îr?5µÌß6Ûi_ó‘ú»¶¤8ŠÛÛÄ·³ÉcúÑ!-I%T”pµß |ÉäØõ;AnFn9ªÜ\Nö‰$ìM*¡=»â~ü‰Ô¼ãåë}&îxb“LU·¹Õ­­m »{( `ÊŽÍRp¨û9ÔüѪù’k]ÎWB+}<%ºK”xʱ©PŽ5@Ükñq'}[òþ¬ÚÇûÛúC¬ŸñÍÿ–>Ÿgþ.û^Øüª+oúº?ÛçþñGýßò}ø|/ÿ¡ü°ÿ©Òëû¿Sþ9rÿsüßkþìâ?Qò/ý\5/±ê¼ý¯äÿzz—ÿ Ÿÿ×ðïçåw›ÒÇWü½´{QbS«E™þ·+U‹ˆ¹·jÒžõ?}µü¼¾T¸2j¢ýVàËf}28@„JÓ¸ûÐzÛÎó‹Zwšo‡˜<׬#þº[ˆçuiÕ­xüKé;$c’±PTlwãÁßž?’¾dM/Sü¦³¸µÔäu¨Ý8Gq$®Ò+$"{‚¥CÛ€4û5«/›¿1¼ñw Øþ\j[Ûhú4K ¾™e“Ï9P3»srO'4$Œ måÝË pþO²O:“1½’2Ò™OD»6ý¶þ[©ùvË-Xé_“ú=®ƒ¦Þ¬ðÜÛÚÿ¦3q•ªË+I+/6$¯RræÌ9IåK?Ë;‰m-t;— aa  õeD—0ƒ,Î=C´’7§öZq è÷PysKÖ|‰æym4ĺ{95 ‹{H5éâO߈ » "ÃÕyzeytzñ+‹¾”·ðÛ^ÜÒ B×Ö[9æYD”sÀÐðN§]¿•ô»¯9•Ò<ÏWÖ×WÏöðÊì%B9ý3UãðÏ!¾)§Íe iú—“|ÄÖvféíd»Ô­mmõ{ÃoÄN#·¸â ñåé”cVGz˜_廯+ZjZÚÜyu¼Ão¨Ù]Úè"æò[wÓ.¥p-îäkp«+Ä£ì0Äî2µ ;P¹k"Ô +„xšæTUQ"G^Q0'á w45Àz½¹»¼µÒ?LNÞæRk¸xÚ•_«Ê"b‘J¶ü{PŠ`?+ë~FÒo|Äuï,?˜mõ>öÏË©6¡-¤šeôÌ¿V¾v@¡Ö6ðžßA•©ÐÜ Î\b²Žv›v è@ðÝ-ôé£Sê R"C<¾0:TwñcªùÈÚªZñ¸ŽöÎÒB‡ê2ýiEÇ¢>qr£ +SÖ¹‚ÒYä[x‘ÞâF …™É¨ z×lAä¿3é:Í¿“uß.^éz¼ÎÂâÞm>Y¯ŠÃÆŸT,ŠO!¸ãPAÂË[ëyl“V„úº{«“rŠ]xÇÉ[`+@Glá7Ïæ8$·Õî,u)´iÖâ6»ŠÂâTx” Ï,‰im]¢Ü(&Üøa‡ÔäV’W&¥žV&Š½)Ú¹Õ<©i7:Îp5&všWžüÅ4VË#WŠÈ€ŠT±ï¶ˆ>µígg'ÀæBೈ¢ž-EíâpÏËñy‡Ë„^tòuÍÅëi -bÞÔ‹k)efŒ,²H¯´–]±Ó]@ˆÊÕ˜2ð-Ôn7ýxIqù‡ ùYÚ'š;•¸¶ŸÕb‚Ò@Ñ,| ’‡U}¢7ꧦ ÑuMOËZœþ… 3ÙЉžš%i©WI•ã`A"Œ8*ÿÏëq¯¶¹ª[Mn¯ûÛkµ6íQÇ¢Â8*ö§ÓQšMvÊ }y­[ÓZ*ü“¥ G †êÿó~O±Ömou¿.ÝÛØYBm­ã¶Ô!ºµt–3T}T”õêÇ®+6¿o}z5 Z®§áé’³¤IEOMU‹`  °4ZŸ–µ¨$Ž]:Ho'eio…ädtñJû\~xé/ìn”­ “ÈÓqAPh§|-ó_æß•u¤¹Ôã²{3+ÒNoNØ (–7dZqê͵Éqk-·«ñ¸-S8z¾)O§ ÓɺBÛ&¥©ùÊŽCmhÑ´ˆÈ*£áe‡2m½?ZMH2ƒÉaˆ!÷ÞŸwL…Jöþ›k~hÙÅ +ÉëA¤i0éÒ\7 HšöÜ}8*=&Ú;udÿu$K/*TUC?<ÒYëžk× ×™õMbÜn×Wxƒ¢¯¦€\B’¢…ÛÛµ1í®&*ö|–ÜTpU+RÇ‘ÝAQ¹®Ôu¯ÌO:Þ®«¥ê—sXÛF¶‹o š;©I,Ž=xÔî+D‚”¯Äv¥¨ùƒÌ—CRÖ.nõIQ#·W$Ò¡AiÍËP*€v`[+ùu4´½^ÊDõ=;ˆ¹ßˆÆËöV-×·Úß…&b8[ÏnGÔö#qãï†^^±ó†9h4­_Ë7%iõëÈšìsqÅ”FÑŠ‚+J½8ü±1£ëº·Ô®b=yzOZ¶Øbž`ó ÷鱫ùê¼Át¢Þê*sHÀ þŽÊ: e¸·ÓaúµÝº˜Ç.,#]êkÁB€jkÖ¸iæŸ2ÝÙ@aüಸ×$J1Õ~·mf—á[88ñ*¤TÓ®ø/Ì>gÖüѬͯyÆîçYÕ&¤··³;Êë +£Z¬x¢öº Ú™5É.tŸJ;-R›Ô j²ÅÈ=3$*"fªÔŠÔ>ñu)ⵑáGÕXžn$Fh9€ÝEGLåOÍÿÊø¯´­òÚÞyÖ×WµÔXErE·ˆÜâRªBò‡rpÌWQZÝÈ-lå—÷’2z*ä)`7roÆ»Ó~dygòëÊæ;mÌ’ùªÑÏ&–ÂXgaY9Ùʲñ (­N¾ Õlïôð×?ÞI †ê'ÿd¼{£èÉŸææ–µŸ.G§¿ž™-ƒ ×NÑ59KÈíÅßÑ™+Ù~ûÐä«óËFòž¢¶¾NóZy×JyÚêVñͧ·¥þeë‹k®ùšYô_N°Ó¬Râ;§†¡#úÀnH¬¤‚ª§¯Ü/ë†í¹j“Í!†JÖ‡‘^‘¯ÄvAíÑ¡Žîø%³<0ÌÔŠââÚØ0PjÄÍúmí‘Ï8~n~\ù +8ãóœôÏ*4ã„ «^YYò#¯¬É4ö¤üí¶„Íåÿ*ùš]x@Œ<ö騪•ŽK‹ˆpŸ©ùŒ4²RnìÁGÒZƒ:¾½æ/#+Kc¡­ðXÆ— ëë¢ÂR÷,¬,9>Ÿ„°ŠÜÿÎlÿÎ)éw‹§]~hh3Í(©’=N ”¹LŒcÚ¹ÒtoùÈ/Ê+ÚCþ4ÔÓ] +ÎF¼mJþvY+êHmã0À¼þ5@Ì l0ÿPºÐÖ>z|+Éi-´“»ƒ$`WÒDPÎ9PvÛ4©<óù‹ªÚyKÉQ ›S‘"oJx£Š²2Æã!DE†7fw«Pü5R:æºòÖ¿i¯IåO«5Ʀ’ú chÂåša·ô †`v ®%?åæO—µ‹­ÌrÙèÍ`â3s«ÙÅ ½¡úÇ…ßs1ãOó«òçD× ò÷˜üë£i”çýÏQÕ¬­¤=¦’L¬þáCdgPüÏüÐKè¬|Ôº–ƒ,…E”z«>—oÔ«±4%»øÞ‰«éקMÕ-¤°¹@ ¼W`§pi/¸]ò-‹™¯õ»É¢rœï$°oI d3”j|òq¦®‘©Äu3TKègÝ.aV6¥GÂÁÊŸ éÞTò4–¾º•ÇMìÓ¬óÏrc«-’9âôÛ¾%,ÊêLÎÊMON¿:|[Ó'¾dÓ .µÙ’¼Iƒ‹|_<šÅåÍÊ}n+«ˆ.<¡{¨ÛÌú`½hâ‚æÝÃE2'ýÓQX‚J‘„ðùãYžTòþƒæ8´ôy(÷â{!·¬²ª#ÈÛu/ë6rrh&RÌC™œAâ@?O  •Û~gy".ÝjþX¹±:Ó†k¨c…¢n@€$—ÓáE"…‚üð³OüÆó•´vþ_òþ³Š’·¡-åŒúcH’5Ò.m£ŠYTþì$ˆë~_ó}“uó”¤ÖDÍßj^Z™õo1iÖð^MþŒ‹uþ™xäV7H`ã,ŠÕ¯Ô;÷%>üÒóßæåo–ì¼åç¿ÒÒèwRiú7•RÎ$’(áB—Oq +!rîÅBÉWصwÅüçù­ÿ9G®è)äo;_]Ãi©AoÒ§°¶³»¸µ€)†ªG;¨wø}°º K¶’O2ZeJ¦Dy«“éHªœ˜ +tc+Ìžs¼òàÓ9iwº¢ê¤lð@ζêÌ£Ô‘žTrÞ§±Â­cþr{ÍÞWòuט´}cÌÖú€Qn¶\L4©©BP2º€ QvØ׊Mµ$0_\¤ïÿ»¶ž@å_Ò¢ñV;; +˜eu¦ê>kÕ'²Öõa­f¦#e,0Y¡ôÏbÏ t$þÕ;©Ý< +ך}ü@$’XãDß⑘2ƒîk¶Cÿ1<Ó«}ZËÎ~Ió¼“][$óyE-mìï#¸u.¦wyT;‰ +óW¦ûÓ¼¸»Õ§k‰Ú(çEñ¤pÚ­áÙP"“ã·#×|<ò?¡¢ÞÈÉ6Þ’›ioþdšŽN¨±¹¡ ¡~x¡I$ÖÆP7¹+&Â¥9xS:äv¡­yâ£a$Ù—žamq ¬×)qj“E2*ñ"…h:€pÇÊRÙÃÎiÅ‹*2 £rÐüDõ¬pÌÔ§€<:ý'ü´]{ËýáÔ»ÿ~½cü¯µ‚þ«gþýµÃûÉzÿÁg_ú¦‹ÿSN¥ö¹yqýÿûïíu÷û8oú"Ëþ®¿ßúŸï Ï÷ïïïþÇ¿ÚÏÿÐðΉä;,èsþcé:Õ– ¢W‚ M.ö&ÔR_LHYì˜rNÊT’cŸEµÏ8Zhšœ– iqp«®×)5©%Š˜É­ymZS¦}ּ˦èw—vߣoµ£‹ÖÚÛ,–w Ê%©d­@÷ê+Ÿ?ì|†þNòäš:o™4ëÚJa°³Òu+fÕmî8W¸°–’Nã’ƒC±Èwžuû?7^C}­[~ŽÔ +¬w7&5Yd¨U2D›ƒJnÛ‘œ?óþsþqëò­LóG˜í4«õ.Òi‘K÷Q!É0FZE¯-¹^ÛgüÎÿœ‰üò>ŠÚW˜&µòT÷ÌïZ´Ö‰q 4P†gøªýŽÞÑ>yÎûÏz¬zÖ¹o:—¥WC¿¤¡Þ8•G2ÄÇvÀš~­ä¿/N“XÉ}uqÞJ[¬u ‚c2FÌ*€Ï:ù«þù=¡Á5§¼³¬ë7Šêþ;k{vb:©õ^Jwª}æß6ÏÓ¿%<…d<·ä8uo8I +¼o¨ÜÛZ­ª‚9DÎZ•&%éÐÐam½æ‘` žØ\Kr7•˜Äˆ§qðrI+·0v›ù¥Ëª/é»)môôfu}9”]1­PJfª8þn*‡¸#¦q/(ÿÏÞ?3_Îÿ_üÀÐmO–¹±K=H·‘¯*¨g¸”Ç%cð¥}ºgtŸùù/˜5o=WÎÖwšnÏk”VY€ÉXçu–„†àSÛ5¦­gõèåÔ`“ÐZóú¬‚9XÖ ’êÊh}‡Ñ_Nµ‡Îºd^b´¶Ih!‡N¾×}KkSësôÑgˆ°`J¿|J{ç°?.¿çâ‘ÞtÒ"Ôuk{ÿ(ZO H¯<Ámœ’²Z\$,*Fõ Ðg¥t?ùÍËŸ;ùj:% ÿJ‚MZ(t;içD +@¹ä¨|1±c¿l›Üù‡Ëþg’Æ£zo4ø"·ÓeÖ¦1ÚÛ"cšg +µäŠï_¦7&‘©ùÓW›ÌúΣ÷lÅ.5K=AîÙP"‰–V“b)Jøg£?.0?.2ì~]yOÕí-BúŸ¡¯!»†u Bì©ZV•Îä8Úþn­½®ƒæc§[ÄL‹{¤^IgÅZ±Ì¨Ío†ª†Þ¾Bê/0þey†_3ù³Siî®H]C_7’ßK*¢7 ,’¹%âtÙi†6Ÿ—“Ø‹‹ÝBý‘ä4ù„ŒÑ•¡i^pÜɾ›ä°XßMpfŠáaˆ‚¡3;µ(q?2þQ~pO®Ëyc¬izn™iÁj®/.Ü°Q,%ÂÇÅÃP®ÛÕ€ÃM[òC̺ +K¨\ê¶3 ë)¦Ý‹™}2¿7> #¯Z}­²=gåM[JžoF zÔ¸76Ðýh xÚ¡nFüy.Ûü³lhSs¨=­Ñ³»#…õD‘£J’ bô?§ÙÏ=y§Ímò¿˜_ËÞcKZö%½Å½¼š¥­Ý€‘×€DVøÚ‡à'&صv€®‹©C¨Lº\Oª%¨3É$0™”@­NR/x×o|—ɯÛ[y]ô;Hn4Hï«q>•e$0@²tY%§(ëAZP‘â0_ú4Ñ ·l$ø„eB²×­kP£n„b>dÓü™>›lt3u£Z_"<ÚcÙ[}i$&Š’7ï h8.§cL9Õu54VÓìd¹±Kà³_i0É·’ecÁܯP ü1²³_ˆW¬¼¸ÞVX´Òã–9H2Þë¥çµn@¨ä²ú6Ç­"{S|ù³Î¿—ߗЋ߷˜ï¸XL$ V¶qÚ[ü5gÛl …u§ÜXÜ>WµÏ«Jb´œ»,ÇÐŽƒÞB2q¡~Pù“Ì׺}ĶY'˜'ŠÓE¸Ò|½P¹!¹Jg#N‹Çßeºœ‹PÿœÉü¹^²Ñ<¯å}[]ý3;[Yj¶ZR%„®)Wõ¦•\¢Ö¤¤ni¸+Ô6<‰»ú'Ë~Wòö¿m©ÈÖv×ú_–¤ç¾ Q ­E@­ 7† +>è …ëù’êM"[xÚKÒ-ôH´mÚVº¼bª")V¥ÇÄ¢F­(¦¹Óô¿ùÄOÍ­Fá­tëæ´ym$¸ÓÓ[¿¹Žk¶AŠO«ZÍ£˜Á˜:Ût„j¿ó‘ßó”¾f[ýCòÿÊZ'–lm-î&°‹ÎMr.¯ +:ŸJÚâ?J9U©?í#†ãMŠõ;~gK$­å(46\h·Oæ5¼±·7Èj-íb´kÔ2=b3¢»¨55Z`Øü¯ç nm.´[­>-.8í¾¹-Õ²¶Zª(O«¬eЖ_v +ÔbvÁW_ó^{‹ÉOæ -CLó&¢°Â£Ëö6÷ד¬²šTy ÒD0õ¶Ûš` ?ç ?ç8­üœÞhŽ?%kzPOú JÒµ«›ªÌT‹}oÓäf$€2aùÉÿ9Q ~\Ùù¦_*ùgVÐ䶵–bR»ÅÀZ+Û‹ª–¹7%áàv¦N.|©ù—§~^Xþ`?–ô1h-";¸®oµ)!yQ$0M¹MÑeVrèNE¾Žy“þq7ó2ÛËðù›É>^d·âòOg­¹T²G¡¥…·â C×r:w/ó7üå×ü榛£Ç«è?”ZUªF¬Ó¦©zÓI(à$V†;vˆ… +MKõ$S¦ñØ¿ç&3t¨€ü¿ü¼ÕnÝVÕl„¾:pKuÓmm¦À“ûÀõ4ãJÁ|É¥Ø]Em7¼¯i¿šömRóô’ºÎÂÐ M>ÁcVROÅêrãJnKªySóòGB½½üÓü½¶“«ZËb.¥–ÛY··7«<0p‘–Ÿ ¼Èç‘ñÿ?üêÑ®´è>$5=+I5î©¡H×SãI•ã(VµA˳ Íÿ9<Òhð7üä‡ä¾¬ú$ Åä2ZúàšEéÝÛƬÜA<Zì{t–ysô·å†w¨~s~VêÚ–™~%Ò-u n«{ Éjþ¤¼0ó¸QˆC8¯Å_ÖµýKÉú-–¹¥››->GNÔô ŠiNXz©´´l¼\}£_‡;Ïæ‡üåå/”/ôOÏ *Â]kËOqoiª.Hem:Þãe¹h£‘¬2Qd +ÕÇ\ç_šþnÿœÕï!óÇtýOBš%ôÛËÖ¬‰g´µxî#E’t1$´RªêÊiðôÎW­êšMÜßZÓ­~£2Ÿ­«8äΓœ[uBª)Ò¹ ¸òÆ¿ù±¬êŽ«e,Ò鶯wuz“ÙYËx^Ž'V½‘å¤áVq¸Î½åËÿ,ù›HÓüÓ #Üiº½´…®¡ezsÃr‚Xå&¿e`}ð·Ê¾NÒ<ý¨.¯§hš¥Ã$[˽ÒB òç¨}`¢°ËԊ p>—¤jZô×-om$æd¸žD§ÂK—bäV t­Olƒ&k¶…^ÓI¹Ôjªé9Wz ñê~Y!—Mô-–Y#,Ÿeˆæ€·ŠíJgR׿*®¼½åÕÔµ* jæÀ@…y´·iˆ¡–*â£7ÂMÃ&›~ñ=ÄVòIÞ:¡e_õ¨6úpçÊšDZÓ4‹-Ï$—F—·WvÑšGêümË$ +X@­"ŽÄ÷ÆÛið´X, ÈA tUB½ÀÚ§~[þQùkÏ:Õî›ä+ýFþE*-ìt¸¤¶£íT‰ù5¨‘9t¨ë‚ü¿¦.©«éö3C;Es­qj^ƒÔ +¦o€š7ÆxýqüâŸÍ¼-.§¦½Õï¨lía¹Š&£M:Îa‘# ‚¥QɨØmY®«ÿ8—ù§§èöz½”º^¨÷°ÝÝǦZê0¥ø´´?ïGÕ®½ $_‰aš…y*òZñKßùÅ_Ím7Ípè,a})m¬žÒöÞôHß|#—­ ØžÕÎ ­ÿϬ=<•æ9|Ÿù‰åi¯̺3A«\ÚjO4D²ˆbH‹ü Ž wÂo:ÿÎ:ùÇòâÆ×ÌÖ^kòηj¢I“PÐ<ͧLÑImñ”PòÃ+MJ2¤j͸ïLæúç”'Ñ.;mWOÕ#Y~±ct¤oAÅVQ–ô +p&ùkÿ9=7›5Ÿ'ù6-vúûMôýrm2{³oèÀIó)TR¬hÊäPõÎCwqÿ9«£ùÓ]ü¯ò×›üÓæ;Ý2wÒõ•Ð5]NþÍ&¯‰ä¸) hÜ©C±ß ÷þbüÄòõüÚ}YÞ +}fßë’‰›â+*«’ñ+|Jz€pºS®ù~ö÷J˜Üi×jÏk¨Ú1xe GŠTØÔ0ÝXlFN.¿çßßósè#ÌRÏ¥^êWÂßË°ê s«]Êe2À‘ÆÉ)^\ߌ‡ŠÔšqjê_ó€ó”—V>yÔôØgÔ.ddËò_ µ»™VC,PFVP9,Ä/^‡ÝþVþmÝEw­^ùSY–;Mî¹áôé9ôå)ã55n¹Ö´1ëóÁg©\é2]Ú!¸ƒR³ž[…¡BYÏ4]?ÉúpÚ/ùɯùÆÏ44qZ~jùU¦ÜEkúp•Ï_†31ðþ\…yÿó òËó²;=(ù¯NŠ[EeŠÓMÖ,gI5`30¦ßï®ýûCüáåŸ1Y¬#\ŸGy­Ð>Ÿ¬i·¥ÐJØÜͧj('rk‡¾^ò/ž¼Ù®.½åµþ£`A);®¥B…G­0:ª°WîÅíÿ8*5»™WCüÈòåýÄjµ›†UîH†QÇ¡ß9œþJüÍ×µ‰ÓÉš¦®%º˜–Ââhïa(G8m$E;î÷L£ywÌ—úõœ¶·—@úÂï øU€Y`Q0èëÆžØo¬ùoIšC­k:ÖŒ/¥Rº™ÓukKKdZ±ô¢µ¶tpª 8¬d +P6ÈõÇüåWü⶙§õͯ/Êm¢ãs ¾·k5 A@«#I#PRŸ3Œ~Xj:bÚþk~ai6Wæ3¾^Ò5>ÓI´µ· ‚„£HÇŽÜH5é¶K<Ëùc¨O+ù‹Z×¼¹ê]³Ýj2éºæŠ¶ð#š”ŽÆÅÌ£ˆ;G -·Â«¶Eu¿/þ_ùgPõu­nYÚè-È:=ͦ¦Ò$µ5g x×~QÊë ý¥Îeù«ÿ9ýÿ8eù~-oŸÌÌ·²Û‡³\KmBá ”'¬D$ÓxÞEeî£9ßüýÿ8Ù§Z 4ï1ÝÅ}¦MèéÓإ̪ïm¥… E£PUÐûd"M+Ë6:Ôõ=BCn +“w§¬wãaÉ]Þ ý—*êv` @5Ѽÿù%¡y’0K¢êzÌ«ËâÔã·0DxÇkª¥O.ŒæFùÃÏüýïòGFÕ]´&yžòÒ}¥¹½¿f„°Š'šâ:â«ã¹ÂþrSòG½¶Ôu½WóÌ­l$ŽMGTÞÚ7©)­õhI©å_¹0Ó|Ãù åÝNÒoðþ¯æè¢B.eÕîã°‚F Ó¥—)å¨øûb çïÊû{ùõï/6¥¡jFD0Eim-¥¬·À™§"GRvl–hÿóøÿùÇÛ f×|§æ ;Úÿ¤Áõ[ »xþ#Cýj6c@+T]ÎtMþs{þqÐÅtu Uv€ÄºM¶¯o í¾ÀyDR+¸jÓǦ}gò~åõ=^Æ _Ë÷ì‚MÂ(í5KH¦Pk¼¯lüXЇ”ãΞG¾W1GqyvÍÊKë{+X啇B^Y†þÀþaÿŸÁÿÎ-ÏŠÃÈþ¢ëG_¬Zi¶èò#Z‘u1¥@ÞŸF'æ_ùÌùýJ/E¿/æšêX¤†öîÇG³…eYU’EV–é\++^ ŸÚq‘Øu/+ÉféªG<²µY¾­¼%šµÞF2>J0­ùƒ£Ü$vZnªêÜÌô¾b+ºJƒŠíÒªÙÈ|óÿ?¢óõî»m'<‡§X豪‹»}Ry纂Õá$ ¥:£oœ÷ó?þs͵˜m4Ë./é6±Åjâ4š8bä#…^ T7N˜SÕtû‹xí4Ý=m£J4êÜ1ë"¬b›ôã‹ÿŽ<·ÿ,ú·÷^ŸûÚ—û¯³þtÉý¢/ü·²ÿsÿ-Ãûÿ³ö}úûaGýÆ£ÿ,—ÿÝðÿz§ò}žŸå~ë²ÿ¿%û>Ÿ÷§û¿åéÓ?ÿÑù¡®ù×ÌW·Ë:Ø$‚¿V°_«ÄëUø HÿXœòç‡üü#þr3óŽúXàó ÞVÑʘÓLÑ$–Ó’×Ô•\ÈăCñ|3ŒÎWÿÏÃ?=õ güä}j G–ò,ÚTM Ð7óþü»6ñ¸ß¯\ùƒªù£SÕ/®o#éésÍZÓOŒ[@±¹$Æ:Uhiñ|NF™ÙXÔž¤ïžm½¿½Ô®¥¾Ô.$¹¸œòšy¤‘ÉîÌÄ“ôç‰<Áæo0ù¯P}[ÌÚÆ«}.òÞ^LóÌß7“…X†\Ù³fÍ’ÿ'~l~`ù[Aåýfu´³•.J™½{xÉ ½´œ£?hþÍGQ¾K<±ù§ç¿* Km;U–m:Òd¸Mñ֜;Y¹DzžÕ²oåÍÿ=ùZ;])/†«¢Á “ü9« ¿ÒÞŠÉF¶Ÿ’F=#¨Ü 6ѼׯhI½×+8®¡Ô—r‰ua-ÕººÇ$Ö— +ðHUdeÐìÄt'=co’¿1¿,t/Í¿/ØÙè7v†K1yKCn'¸´bFUƒ­"g<Þ«PWö«ô‡þpsRÐuÌ/ËÿÌŸ&iö¾T±× Ô´ï0èÚ,ÿWŠ]AbxÑn­ŠÒXƒ!’‰š2⦇oqÿÎ:h¾\›Ìž¿.~¯åÝ#ZŽx5 +Úî_]—‚][Iû©#I‘žß‰ !Ia@:W—ìtNóÞ•&Ÿm§Þ¼–Zß•ìnî å´ÒÅ)ˆIê…’h ‹Á¥ôê¢F ÇÚÃÊ~^d¼´Škéoý‘‘ P±½¢D«I%Ý…iµ*3é«jÂ{‰.î@U•ZÝ!75àCZŽ»ü©ž‰Ðµ¯2iº¥Î½æBA¸I½%H›RŽˆs˜0Èx°n'%lEòdvšÎ©e.¡s|.WS[×sPÈm¥ÓÝ¡c*' âf1ò§U%p5§–n5·kÍSYÓ<—¡8žàZêr–Ô/ãy<±[Âbê(®ýÁÎUù¿ÿ9)ùkùQ{.Ÿæ½fÊÓU6sß&˜ÓÆ—M*ÌOj€x)È×·Lã_™~nÕõkë½~Ñ´ï*h’µÅÌ’ërz:…ŬnÒKqšÈ=@Tš1`v¢£v$óO•n¼Áo?™d»±ò^…yêÝé:.¯9‹VÔ¬Ð<|°… !` +«’ž£|s*@>òoägœüË¥jSéV°h:WMu©ê(÷>`[cèJòÄ}r"—’þè*Ÿ„H\i¼mBê9n#—ÒEgÁ!¤t … ¡_‹q1Ñç.®g²Ö¼ù¨j~aÖ•$žó1˜Á"£ŸÝ‹3 ûOE_‰XÆü|˜/ZÒ?çuéu+[Ÿ1SüY,K¨ÉgæK ˆÄäÈâ%Šíµ9n˜¤.dI%@µäêß Ó.£¦]k~Y¾‚å<¹ÏrÖ-qnÖqɧ4TõŒuõ$/ñt4&:wÕ#†ÊÿÉ×Vzo–ôh/{Ø.ZY0 FÍR(dvƒ Éùm iz¦›©ùj}ê6²]º_Ewm©=³FKGoi$zL±Ã +‚Ë*¿T/¤1Év©ùQå-(§™¼æ?/˧i¿]Ôf»²Õ&Õ¥·’(fáEtú´È]š9¶š0¾›Ž,ø&¥§%ÌÁ³h¥Ò¢¸G{dµˆÏ´I$²·Žu¾7¬ÅQeAÌÈE+Ry™m!±¸Öî´i®®-VâÒi¢Hbv^Œ¥ã¼œX78€cB\Wr +¶tºNŠúÝß–õkqmµn;Fx­€f)ú–¥mwFÍÍc<÷ AN4•y|Z7’ÿÄš×–¼Å£êúXÑÜévš í¤~Ÿú-„7’3ÝÜ\ž ‘º0RY™x–Ï;þfþg~[yïËžoüœò¯üÍ k^gk«½7J·[ }5µX™›“Aõ—Ž"D~›ˆ¾*+ïäÌoÏË7ù Γ^VòÇœ´)üþÓü±gkca§E¨[/! ´ŠCÆ9 +…•nËÈgœ¼ßæÿùÇ?ð–¿å¯ËdóM…Ö¤g¸M:÷MÒg·µ”(sS >¹dÆŸWubó]ÿœO½òV¥¥þXÿŒt­N[…¾³²Õíô{Ý8IGVŠ9㺷B +‚CÉÈ*óV*¬<©¥ù¿Ï‚Þ"k°Í>¡£«Å¦Z^#9ha_Š ê¤F#¬uè*+@£;ŸüúÓþrûZ´Ô×þq7ó‡ëGQ‹÷~G–î"Z´†Y&±žI¤ ¡5ú¸ @.ß=ƒþ}Ûùï¦Ã¯Kù+çëUÖÓWùf¸c–õhdšX%yX#_Jƒ­Ez æZ7™¼Ãu®„…µl]­,n+4L*Q‘Ü€(´ë\[Jóߘ-i&¥uazÒ+Zišk­ŒpªQÙâ‹âv,}±±ÿ+>˜AžýQ&â–ÊKÄ»nÿdÖµ#l÷äÿ.ù—óF_,è:šégËp‰õmB’+h$úÒÍ'’d + _Þ-Ô¥8¶óÖ¥¨YÞEisu¤_^ËEg£Hšf˜°Ãi-àAê94 ò^;ý®_ ®¡ç›«->ï\Ñì}k¹8ZÚ»¤oÂIˆÌaY]h>ÇBÌ+]Áówüüwþr οóŽ¿óŽÍæoËÈ#:ǘuü½£ vkwis/Ö¢Ã÷©èþ욀ÄL&ÿœÚüñ»ÿœrü†ý)ùq¢ZµÞ­0Ñ­uÄ +É×PÉ+N¥X‰Ddª°§" WpÂ%üÅ–Ðßkš~«q X«ËhÏ^j*&ÀãN%ˆ-Ëâ èÏùÆÏùÄÛ+AmùÃùç¨Zê÷W:b\èÚ¹õî4ó<"æÞ[š¤…%dbB<Ë-—‡¿ç?çüäÞiÓç#ÿç)51æ¿Ó—VÒ Ôoä¹¾·wAsÍá»FV`ŠÞ”#—ÄÁÜ¢¨åó?È”|üÊ{/ÍÏÍ)oçÒîäØ^^´RËxÖÌ&foÒ"›`âY¾CV*¯”'õÝGËöÿ˜ÞmŠ[/-Ü5ÒYÝ´–‘És%ŒK4…VöhAŒ)!iÈÈãÓEfådz/ïn1­u½vÒãZÐÿ.Úõµ#¥|W+úcO[tO+7«qFW,ÉHÚˆÍ@§Ñ—š5-[óSAÔoìï<Ãgäy/=H`HÑcý9j-âÒ°å(/áý ¥¬s[Á-»Å —pÆö± hÍ'§ IÅ_‘äA èŸö¾^óÇ‘%Ô¬lìôŸ&.£"^hZR­ìñê–|"kÈRæÊÝçŒ÷_¦¬IÔgW»×?/¼É®~¸¿K—¾†8ìå 3XÚ›Ù8O'8Û’·¤¡’NëU¨'¥êþuÑü½o¡O¨Å%æ¤Þm9' q,–öÆæQ ³± rãÊËo‰FóÜýwÌ+fm.’-BÞGyfÂíF¤Ó]~õÔšæ i£KuifâS€þfëè SZ̹t-×_ßÍk$V~Gò¥é7ö·ÓÄú„nlžò 2æ´©›ƒÆUœF pyù_Í>i›ÍO¦yÎÊ ›ùn®·ifH»ÎÚx§ +$Edb<‚‘\‚yÎÞg¸žÇ˾uÓSKÕ/¥6Zõ´rKÙŽî)$k›{‹k‰DH„œÔH¬ŸêhÐ =i~vóÅßš¼Ÿi¡ÜZÅo—Ò{U²óœFá#µº·GŠà¤AåbdŠE‘䦉\çúoçý÷š|ÞæÇü¿å½RdÓô}.7L›I×´¸[™¶¾²’òÚøG^¡fh™'‹ÆÆy^=þq’ëÎ>NÒg“ËöúœW:Œ w×ws^ÍAIt&—Š³­Xþé[Æ‘ WÒ¿ç-¼ååK]CV±Òa7WëP½þ¥ªj|TÅ$—ðÈ‘¬W55e(+ÐägËú“¿.üášà—K»ŠþK›VûÏÐßÉ©ßË$¼¥¸Ó˜[Ç ÀôP’LüÙ‹“E5Èž‹¨y?ò?Íš—™m´íRšâÁîl¢üÐÒõ}BëXgf“ëºRZÚGla¹4Hd¸rOv1‡*&:%ši«;ùƒV†óÍzWÔäòâÛÞ¦¥oêÎ&·•`¤Q¬Há“Ô…¬&¯ZÐö;mmt”’ãÍpC©kÚsYÍåë{[»[÷_´¶’hÇ#ÁÍp/V!ˆÎŸ$×~c„ëºÏ—nü·¤èÈoÞËQ¶³Y¡vÙd³M7ãâN)$‹_QÖ…T»ÝoYÔ­ï|ãæm/Gå+}?V¶òÍäÖîo®!q¥ÛéPéÆØH^?‹Ñ.Y‘ùV3óGòDóGæö—ù­ç+ßËÿ+Ãsk¨éòMoyz µ†Ô*ª°šdõ$@Œ]ŒE\öãœ[Ì¿ó¿—_˜ß™0ù»óÉö±ùoÊQjV—Wð¶Ÿõbæká]xä–IÒ>Q‹fN-¬œ«NYÊ3ÿ.tOÍ:è^VO+jÞ[‹FK™üãæ½CIŠÖöF»µŠþ?¯^}jT”GHbWøøžUVÎgù¡ä­7;z·°Ó¼½®èÞDòºÊžaó&¥ ÚŬÛÊÑ%ÍÂê76nÑÜJ…Ó‹JË õ°©òÏç +îõï4jV¿’Ìä6–’_Üi÷Å,Szì‹e ª´o+UDiË“gŠ3ç<Óiæ¿1XþMjÖÞp´Òm'ÕÛI„ȺŒ6ÑÈA„­² *8«úŒz&yÿó;ò3Wò¡Y_Úë0ÝC.¡¶+ÝÝÚéènj׈‘¨J*üdÎ9çËÖòö£oi jÖžhK‹#©Éú¥¹{(bc»¤aRTUå Vu_æÎ7¥Î=þqëK«¾Ÿå{Ç] îâÔO¦iÖ.©<[TFuägžì?,ÿ0µHu+›-ê3C£ý`j³-¤Ü-ZÔ2ÊÅh­!ÉNâ½3›4$)¿ù-½=à~9âÞlŽk—ÞwòÖ¤š>½¢]Ø^LÜ!†x™ µ¢’(H +C¶ÞhZÞ›ú*þÂâÖôÖhdŽPX>·Ã(£*nFœzt4¯ŽQMPûâwžLó†›yy§]i7q\XKõkØý&9©ö­~/leö©éWsiú´Ö—VíÂ{i‘ã’7U•€ ‚­­u*ó¶åÂ[˜b€­J“Pwú3n=²WåÿùǯͿ0k.Œž^¹°0JÐéÓÞE$q±T³+7¬.'$^]ü©üÅóV£¤iúN…vï®Îmt©å…â†i­ÆG~Ï#¿Ùß[+†fX×Õp¢|F¥‚ŠScRrø=@âjzm×%?—óˆß™˜>lÖ|¯ÛZ§—äÔ Ö56•¤¶µ:li$’1˜È‘x•Ÿ ³¢~\Îþw~dùªëË:@±ýusa«j7#ZØÍmÖ×h‹²¯¿®Õß ÿÀ^s]vÇËh·I«jf±Ó䉒gk†"?€#• +M·é‚-´Ûû½A4›{w{É$¥°SÌÈO4=ëž›þ}£åtò¶•koæù.üݪ^jv1E-¼vwieɹ˜çH¥· F‘˜¹\ôbÏ®c>ZÓá_9‹¿4MuqÕl³[j¢sQj·rZÉ¥˜˜ŽAObëþpÏó’ËJÖu]B [x4X­îY‘å¹K„¹dUíb—ÕŠœWÁA¿VÔ¿ç?8´2óU½ÓPÅŒiÿVÞ RVŒÍ$6/j²¤Ï+´œZŠ#zš€+ó·üàF¿å;¹Ìžl°‚ÑæÓcÓ Ôw<çQ‡fŠ&EàÅ¿·\æ¾iÿŸxù×D´ºÕ-<ç¡-²ÝØXØA=ÄêUvÏš_™Ÿòœë}Þ—éýßüòÿŠ¿ß_äS>U`÷Iû=GúÝÿÏîÍß#§oó®lfl¬Ù³f͘uÍŠÛ}Ùëû]>œÙôòWÿXvÓû¿øî÷«ýåÿ{Óûÿø«Çß>Îÿä—òWÚÿ”þÏ÷ßÞOýÏ¿ûóþ+åžûüœÿÉgäßøæqwýÏüu¿Þ뎿äÿÆœó¥h_ù,ìÿãÿˆÿÞ¿øèô_µÿ.þ?ìò1«{{ö»ùFþÏCþòÿ“þûöÏ\þuäžÔ?ò`ÿquÿ÷¯¯êÿ}ûg¤íòPÁÿŸ÷’øçÿÇSöþÏùËôg@Ò?å·ÿ”‡ýã_ùFÿ¼ý¿ï¿âŸ÷ßùÅ"?Þ­{þQÏîäÿŽ‡üv¿¼_ï?åãÇü¼ù±ÿ8çÿ)_ž?Þ÷oü¥ò”½ þóÿËLJüYŸ6bÿÉå?ûÛþ÷Ó]ÿ÷²/îÿåçûsƒEþ÷Íö¿èãûïïÙÿ/ûsØ~sÿ”Dÿÿ(õŸûÛþöý§ëÿøÿ“\ú$ŸñÙó÷ï5§÷ßoýæ?ïGñÏ¡PÿqæùFÿÞ™?Þ_÷“ûÕÿ{Éñÿ"™ô¢ÓþPŸÎ_ùD¿ã‹¤ÿ¼¿ïwûÕÿKò¿å«ÛŽùþ:‰ö?ã¡}ÿÏ÷“ûöþóÛýñþ_,æ°Ê5¨ÿ¼_ÝÁýÇ÷ïaþ÷ü¿÷Çù‹þóÿÇ þ:“ÿÇSþ^?å“ü®"Óºß}÷¯ÊÿÜÿ¼Ÿß·ûÃÿ¿¿Ë®ù›íy7íÇCMûïOÙïÿâŸ~98óWüut¯øèÿÇQÿz~ß÷ëÿ)üWáþW<˜~bÊWùkþöÿÇ3GÿŽÿûÉþõÇÿßùpñÿ+ÕÀz§üu­?Þoøìêßï7ûßÖÛ¯ü_þüö®L<‡öu_ï>Þ­ý×ûÕþõþ×ùÉôdJÇþR+îÿÞK¯÷ƒûŸ´>Ïü»ÿË?ùp/ÿòaYÿ¼kÌßò‰{ýùþïþ+ÿ–Oø¯†þxäšò×ü¤_kJþÿû¿ï û_ñoò“Ëÿ4¿òHy_þ;ñÒÑ¿Þßøè|¿Ýÿ—þÿÿŠùàÎùC ÿŽoütlÿã™ÿ·'÷ŸåËwù>®J?ç+¿õ˜|•ÿ_÷¶î¿å&ëqÿ/ù}ÿ–¿ø·ÔÉ/›ò\hßïWüwïãŸ×ýëÿøÓž'þJÍýïÿŽÕçûÃöÿÞɾÿŠ¿“üŒ‹~@ý—ÿ{>Õ·ûÍÿ)/Sÿoø«ùâ¾Ïÿ$åò÷ûÕÿkùBå4ÿzeÿŽ—üUþûöãŽÖÞÿ4ÿÿù¾þ÷ì¿ñgûïüŽY+‹þ::÷ßܧûÏýÇ÷±ÿuþWó{S:'’¿ãsýßûÖã™ÿÏî&ÿyâïæÿ/;Oå·ür¼ëýï÷òÿÊ'ÿ(¯üsæÿŽ_ý¬,柞Ÿò…þdÿuÿ}wýáÿz?ãŸü'û÷ü¼åŸš¿ù'ÿ1¿ã™ÿ(ÿ™?»ÿz¿ÞeþïüþÞy{Î}5¿ùC¿¹ÔÿÞßøëwÿŽü¼ÿ¾¿âÌò~›ÿMŸü¡Ÿï.³ÿ_÷§û´ÿx?åãþYÿËåžüÀÿŽ ÿï7÷ßÞÿÇoì'ûÛÿ/?ñe0÷óÛÿY?ò§¯_*ÊCÿ)?÷öÝÿſ͇ÿó˜?òŠ~JsþðÛýŸùJÿ»‡ýéÿ+Çþ.å„›¿ñÊòŸüp¿ÞÿŽ?üu?¹‡þ:¿ññå•7ü£žXÿz:jïwûÁýìcþf}î½?û˟‹ì½?·ý÷·òý9ôÃò¿ÿ%F¡ö?º›ûøèõo÷§þ5ÿ'–jßù+ÿ.¿ã©×^ÿŽ§üqÞ¨¿ÞOùhÿcóXÿÖѸþûþ:öŸñÍÿzºÃý×üYüiëÿü•6ŸÝÿüw¿¼ÿ{Gü—ÿ}—Ç +4õOü£ŸÜÒÏþ8ïcý¯ò|?ÊΛùÕÿ­#¯ÿÊ'ýΕýÇü¢¿ï%ŸÙÿŠ¿ãjg¬l?ã·¯ÿÇkþP¿.ÿ{ý÷ûË'ü'ý}ÎYü§ú÷ûßÿë±ý÷÷WÞÿ‘üÞÕÏiòœjÿò¼Ãí¼ŸïuÇü—ñÿ#ÒÉ_åßþL8ÿÊ%ÿ(èÿŽ¿O÷¶Oµÿ/ßÃŽpèå3óçüsþÒÇ'þ9¿Ü¿÷ßñgó}9äßÊOùN¿0ÿ¾ÿ”†øàÿÇ ¬¿gþ/ÿ±Îù_ÿ(ÿžÿã§þö'Úÿxÿ¾—ýãÿ/ÇÚ™åMþ8~bÿz?¿·ÿyÿÞ.²ý¿äÿ'–v½7ÿ&æ7÷ñÑ·ÿŽï÷ßñ±þïþ+ÿ~“Õ¿ã©çß÷£þ:pÿÇCû¿÷Š×ûßò¼Ùg¢ü³ÿ cþ8_ï}ùF?¹ìÿÅ>ñesÜ¿–_ò‘~kÿÊ ýÎýÏþKŸ÷‚ÇûÏoåÿ‹ó™ùŸÿ%ïþ×ü{ÿqö¿Þ‰~ßü½ø{úyÈ1?õ´ÿøéÿ½Qÿ}ÿ?ï[ûïùzÿ}ÿ•éç'ó§÷žeÿ”›þ;–¿ÞÊGýú¼_äÿ¾=ùg5÷œÿÇcþ;¿ïWüu>Ëôÿ+ý÷þUs›é?ù1tÿøè¼±ÿuÿîæÿ{ÿâï÷ïù5Î{¢äÒÐå#ûŸÜþó/üvâÏ÷ïù³Cÿ­-cÿ)GûݦÿÇCì}†ÿ{âŸøßÕÁúþ´Ÿüw?ã±ütÿã±öÿã÷ü¿÷ÿ·<õ'üã·ü¡úgüv¿ã‘yÿ¯îÞˆ?Þø¯ù¿Øg«ÿ"¿òQèßñÐÿŽ^£ÿ/ïÿÞèÞø¯ýûþM2®ÿÇgÈßò‹ÿ½úßûÙþõý·ÿzâß÷Ïù³±~HÿqùIÿ(oÛó/ü¦ñ’÷¯ßþY¾œçŸ”?ù-|­þôÿÇ+PÿŽ¯÷¿ñùö¿ÈþOø» ß“ù&/ÿã§ÿwþ;ïGû×?÷¿ñgüÌÉ—¿åóûßþöO×ìÿ½£þ:?òûüŸäòÅ*¿òI¯ûÙþñjÿïûÃÿÿù{ÿ–_ùç‰þRäôÔ¿æÊ?ñÌÿyÿã~Çü¾ÿ¿}²!ù#ÿ“›Îßq ÿÊ?ÿÿøç'ûÓÿk/ùiöãœûþqÿû_¯üvï¿ÞŸî?Þ™¿ã£ÿxÿÏ<‡Îÿä̓ýéÿŽÆþöÿÇþ>?ã¥þWò²Éßæß÷þ^ûÞ_¼ó ÷Ÿòóþúöô3«kï2wÿtÿx¿Þ¿÷’?ïÿåóýõþO£gCÿŽ×æûÏÖ?ùGÿ¸þö×þ:_ñ¿Ñ×óÿÿ&O›Þøíù@ÿÞo±ûßÿ/Þño&üÞÿÉQåîÿã±sÿ)7üu¿º‡í{øÅ|0WæŸü ^[ÿy¿ã¡'üw?Þ¯îàþãþ,þlãó¿òŸjò‡þÇüvúÿsûÅþWñÎ7ÿ9?ÿ)v¹þñõ´ÿ”§þ;ÿï%·Oãí‡ÿ‘ïœ?ã¡ýîŸþòuÿá×ü¿äÿŠéƒ´ïøèùÓûÿ÷¯Nÿy¾×ür¢þûü¿÷ϵp×[ÿ”ÏÌŸòƒu¢ÿÊeý×÷Í×üø³–M<«ÿ)ïæ_þK_÷“Ë_ù0þÏûÁûÅþWû÷ü®9óçüv.ÞøìhŸï_üuz\}¯ø«ùýë„ÿüvtŸï?ã¯Úþûì?÷¿ñWüµÅ<³Ñ·?ÝéïûÍ?ür?Þ÷œÿ¼?å¾ÉÎÿÿ9þöþ@ÿÇ;ýëÐå ÿ{ÿÞY?Þ_ø£Ãþ+åž{ü·ÿŽÿæüt?ÞùÿÞßøê½ÐÇ;þ.þ³†\ÿÇócþ;ÿò•ÙÇ7þ:ïGý*¿â¯æÿŠùg Ô?õ«¬?ã£öàÿy?Õ—û¿ø«ýùþGðƹÿ­_æ?øïÿÊ[yÿ_ùIã¢ÿï/ü¼x•L›yãþ9þyÿŽ_[_îÿã½þõÇöåçýõþ]0ßó?þQÌî?¾±þÿûÿ÷®×ýçÿ—÷Çù\qžrÿÖœoøèÿ}¡Ô?Ý—ÿ,Øgÿ9;ÿ­%ù‡þöÿÇI?¾ÿzz'Ùÿ‹ßyÕ´øëy·ûïøæj½?Þ°ßÝÿÅɧòßþ:Zß_÷‹QÿŽ·÷¿i~×üSüŸäòÉWæ?ü£þFÿz?¹½ÿ”»ýåÿzG÷ÿåÿ7ù3·yÏþR]ýïÿŽF±ÿ“‹ûÏï÷¿ñWûçÞ¹Îàÿ”`ÿÇKþ8ñé×û˜¿¿ÿŠßä×8õ·ü¢ZÏüw?ã‹'÷?ïûÍ÷_ñGü±³É•?å(?ñØÿxûÑ×ýé¹ÿx¿Êþ_ø³–D¿.Þ={þSÿù@O÷kû¦ûö­ÿ–nx{ÿ9ÿ’ÉßñÎÿŽ–?ã»ý÷ûÏÿñwò{òÁß¿úÌÿ—ÿñÅÿ”sÊßòš½_ï4ÜËÏòÿ•Ï9~‘ýýçüqÿã«uþõ½}_ýèÿ—çÿ/"þbÿÖuƒþP_÷žÃýçÿŽïûÎzÿËÇûûü®YÑð‹ÿ”üÿíã‡ô‹ÿóÿ·Îsÿùÿ_óÿ£|ã¿ð_ߟû<ÿÙ +endstream endobj 29 0 obj << /Parent 12 0 R /Type /Page /Contents 102 0 R /Resources 101 0 R >> endobj 30 0 obj << /Subtype /Type1 /FontDescriptor 70 0 R /BaseFont /KMENED+Helvetica /Widths [ 278 0 0 0 0 889 0 0 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 0 0 584 584 584 0 0 667 667 722 722 667 611 778 0 278 0 0 556 833 722 778 667 0 722 667 611 722 0 0 667 0 0 0 0 0 0 0 0 556 556 500 556 556 278 556 556 222 0 500 222 833 556 556 556 0 333 500 278 556 500 722 0 500 0 0 0 0 0 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 278 0 0 278 278 278 278 278 0 278 278 278 278 278 278 278 0 278 278 278 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 32 /LastChar 180 >> endobj 31 0 obj << /Height 281 /BitsPerComponent 8 /Subtype /Image /Length 157616 /Width 371 /Type /XObject /ColorSpace /DeviceCMYK /Filter /DCTDecode >> stream +ÿØÿîAdobedÿÛC + + +  ÿÀsÿÝ/ÿÄÒ + s!1AQa"q2‘¡±B#ÁRÑá3bð$r‚ñ%C4S’¢²csÂ5D'“£³6TdtÃÒâ&ƒ +„”EF¤´VÓU(òãóÄÔäôeu…•¥µÅÕåõfv†–¦¶ÆÖæö7GWgw‡—§·Ç×ç÷8HXhxˆ˜¨¸ÈØèø)9IYiy‰™©¹ÉÙéù*:JZjzŠšªºÊÚêúÿÚ?÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fË +Å‘UKª I¥(*qÊŽÒG©f–¼‚kN½:eUB¼ŒÁV:s,@ úsUG™Ø"E¼Œä(­~*mŽ’íÝ¡J0¡öaÙ”ˆ÷cGª”W£ eŠXÈx¥‰¾Ë¤‰Te=ŠšbVWÚn«jº†—sÌÞ"ÈÀ”–6*ñºõVR(Ê£¾Óu=^ÓâÖ4;¸¯-$,‹$N W_´Ž¿iXWu`wÀ¡ˆÅêI4W1E’ˆÕ5"~Ñ5Ú˜°bµ"ƒcRßf”Þ´ÁŠ‚j Pò/^4¥Mi‚kZdÖƒLÔÒÍ/e‚mFXaIXBzFLŠà9Ž›xç:óŸ™?;¿åcùgÉ’þl°Ðíš[-só"ñ­-îÚ=Ia³Vh.Yn¥ŒLYcP¡H“w⎫ä?$yËʺ§š¼Î5{-C@‹TÒ|š–¤Ä.õ9,Ø™ÈãŽKH&0?Áêo…ÂŽ"N+ù¿¦k¿š:äO“ì'òZ\ýv{Ù^9'WdÚÒ*hÛÓ%Xí¶Õ­J´ÔH¸Ì ©¹(^D€HfnAiÈ°ïJ ³§êëèêrŤSP‹y=H‡ï^ƒá‘äæ)bêªjiÄ| ¿É÷ójÞ]†æþ-BÖâÕþ¬WWŽÞ;¹¸A)ˆ·€Gv`¡ãöz3tÿ#ê³k¾[Žæú=JÚ{)M±mj ºœ¬1ò“ŒJ"³– +¹m¸?h¡pÛ3fÍ›‘I"<¨…’2¢G¥Ú¸øášXåš(Ù〢Í"©*!C‚¤íy"ãŠGUyC4HXp‚¬Tu4|N[‹xeŠ ¥D–píLÊA«•RjxSLn3ŠfÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6bƒƒ|g“}„­xµiQNÀoãˆr”Í<.Lq”çnGÍ7­  ñwo ñEd¤l’ŒÎ~ÀŒ°ØуWrÛƒ­vËYk"¯ ÜcáêÎÄzE Š­‡¨¯#Eè½k±Ø¾'•›6lÙi“÷C¬§‚š€9·9ÓmþC-c-û¨…^àúI¸U1E^eˆ #sì¾4­‡â}G4X¨ÛÅ‘<@zì=Ï…s=?ß5xÛYö%½4 X ’Ãݼ+—o<ë7šu¢j -„¦A=Ä!,¨dàŸ¼i ñŽ„šôÝ@Îuå¯Í_)þcþbë—0yÍBïËw7õÝs˶ñù~ÕíšG…¢•îåœIp’¨¼(Ø_˜|»æËÚ.¹© ïH󭬑ŧjëqª0™cçõˆâÁ+‚UY¸·.&¼Kò;ó:7ë°ykZü¼tùc‰_Y¹X‰uäMÊX–‘à q_„×®’V¸+u-L²Õ¥sR]‡ÃZÒ½þ¬è“M-ä°ßMV’HÛÕžJ³Ë' ]… +]¶ÛÃ6P5²¬pÂÈ°[ÆR(Â’«Ä úõ}9Ôíí ÓíÛN´D‚Úܤvö±*¤pĪœFÆ•&«¶þ8ÜÙ±ù³fÍ›6lÙ³fÍ›6lÙ„~©áP;Õ©M·Þ»SÇ,DӲĮ˜Ž,ÜBÔ€yíCÐå ÈT°Ô/.T;mÇzøcd˜@)Vpª§.D;טy§É§É¡ÞÝÙ«Or^B¯UB­Î'@G³ºV›m•æícKÑ(¼åæÝ9÷PÒm%¿… úÖöÓÚ±šÖ_O’ ú»ª¿Ä¢€7…¨azîŸç GókÈþV[°Ñ4ÍvçôUÌ7r¶}ukz«o|"»A$àɘÇw`dø•iÆ<$󥆿¤ÀúŽ¥éÂÄ·”µ»˜)wûæå1õ+Äpo´T¹æªA_¥©óþâËÕ~±ËÑN>‡µ§÷œ¶¯ógÿ~nðçëh>Ÿø;üG_ÑV¾ŸÔùñôëéÿ{Ïj}ž{W¾toðçä_Ö¾§õÏ;Wü_þõÆtÿyþ³õúñ§Õ)ð}kûÊíé× ÿÅ<ýÓÞfåëý[þ;·ïW[ë?ïE>«O÷oÚö®ùÿÐ÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÅmîdµ’) ø^'Yx‘¶ÿAÇÚM-•Ý½Ü-Cop·E{9UáÄû‰ÝA í­Å¥ÊKˆØ×öCš’=ð>¡cmªXÝé÷ÉêCwm%£)ý•’H÷ߊ}* >C8h­Â-Ãß2–ÔzòRÀ'e©TÐW©]œ–?•~N½º<|»å˜Bj†¥pZ ]*IñYf§¥#ž1¥UC»Åóö­æÝý¼áŠö+H¢Ó”t« cq«H­¼S$ÖÑFæåJÄHÏH Øqæ¾mõ)-ï¼ãc%–dÆ)<¡j"ã¨Ë$‘Æ&ŽãÓ)UdOUQX2ĵëð‡·6:唳yzðê¸CksL"v¹Ô4Mý°“2?.ÿ4ío'ü­óó4VÒÅÝÛÚN–²8™K/«ÅÀª£ñ|\iµk‰YyÏÎ:[iú§Ÿ|…¨ysGÕ!–æÒãÖŠ÷Pí¬o6™K´äZ#PŒ?*Ðn‡“>WÌ76÷×~YšÛF™®KÛK´ÔnQ7BÍe + ÇÄÉR5~jË4WÒXÛ,SQãÖ…Åd•‡ \ƒÄ=Øƽö¡ÏåGÌ^aÿéöóÏ%ŶŸ¨j‘Û”“Q¸‰T?).LlbŠG Pñ-^Ë/‡ôÜ>]Òõ}n{›;kˆ®u;L¹ÙY³¸Œ›xÕ™&•#28oÞqtz”ù<1µ¿ó†¥oq¥ žyR«)m§†Êß“BxG.í&cV`*ïÕ -®í–’·ÅK)R* w­:÷ÃGѵ¸xį'¦ÐÊaªMRby8ÁáRÀÓÑ5½ÌO¬h¾»Ú…¨”ÛÝ[F¯§w.W¨çÄ)ìrCåÿ2èh°›[òûË=¬b4pÜÁÈ2r¯§sD­*9ÓèØëx¤ºVh#y8þÊ­I$Ñ@ßzâ–Q½ò,–ñK8`~xÌÌš  #fñÆêúÞ‹ Ý[Ùk:•¦Ÿ=㲎òæ;s9CÃY”ºì õÇkΠO¶µ©Ziò]°[Ayr–þµ8ó Î…Šó]€=|q5!…T«ŒT’AZÐtÄ¢q,b@ÈÛ²?¦ÅÕdF*ËZQßˉÊ2²Ô+ uâYC+R§c]°tŠQÊ•eèÈ,Œ «R¤Ðïþ}.ƒ½}ÀbüÀëŽâ¤‚K{ª¹Uoõ”lHíᔀ*8ïÑŠ‚Ëþ©;Š÷ÍÍÀ*8û3(,¿ê“¸¿ŽlÙYY³fÍ›6lÙ³fÍ›6ça›ç˜S¾ÃÇ* ý“^ãÄ|ó¿ºnC¨ñ+Ð;ï¶YW_ï6'°=?,Å]Aõ­6'¨ wŸ–ù/Ç6ݺ{Š»+çøo›çø¿6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ²»×îÌÅ˸é혟‡c×ß15^=Ú÷ËÍ›6eYeE m#°ª¢Š“VUým™’̶ÐFe•À*‹JšÈ‘íïWfvŠ^æâEŠëÎF4 Dg©ö¢lÒÁmn÷wr¬EÈË4†Š¡cy '°â‡|²OPFÅ×z1íZ€ze”Œ|,Dj3R¯ü¤ò +zv¦nl~$fVZª1 dñ§G_|°ìÔlÈ«A]éÄ°ÜûâÌúݸ–iƒãŽDõeJ…`(ŽûÔîR›t¦ø´’y†÷OŽK‹”¹0C‰%Äåfãuøb’rX“¿¤AãÐñ>Z%–¢ñEÂn%’7H!/ Ê~9b†Š€œ‡.Çl y{MÕ{i {É¥ŠUµµv·b¥*^X ¢€ ”°åüÄŠóåPÔgø +’Çp|ÝïÓÔdpQé”%ØT” *ï‹8EbMT•Œó)¡j~*îGlâ4oO‰ HϨ]ˆëSñWrLÙxܬƨΨ)Ug` štîiï–LaÌlêÇ’*$ +BH&›e…vEuFqË‹V$ +šÀø +åªJѬ‰ËWâÉ30PH$T'm…wË +Yy© ZWnžÔ¥N_ËÎ& TÀ­@éQB*z×õãyx¸ Ÿ°v îzïPh<1œ€4u#•}3ðhO]ê ®ÝvÊÆåã±¥€~5©4$p_lM§‰%<‰]É +K0PÝ@­}…v§Ž( ‘º£S` )$‘³J{šo_ T[ÈĘ̀ûP) bj6$Ò•Ú¦›×ìRD¨?²k^Ý6¥7Ç-ÈŠx¨å¹B 9Z…¨P(A-@kï¸_W/„ÔqÛ (jBI¨"›Š{lqž‡«•¨ ÑkBhÆ ‚©öØáµåâGkcõ‡H¸M ÕšÌŪŽ¹©!I"ŠýN]ê6Ú->Y¡„}nÎ{y;°Hä௠©êŒ¡·ûG"V‡¬IæÝZÿÌÖú}ôp›+¿.êI§ÅÑ4п¯ógãPŸj‡„V™Ð|½¬Mç/0_y²ÆÂ÷Ók¿.kN·Ó×…Ìñú€p•T ½:ì9S >«<ä¯Nµìråü{WðÂ/ªGËŸ«-}?C¬ÝqãÇû¿£&]’”ô¢þóÖé'Û­köÿ·:é¿ß0ÿ{õ³'Ûÿ‘ŸÛŸÿÑ÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6l¦ÙYº­hA#¨¦ôëôâ7Övzšµ(ê&nrA2‰Îßma°Ùè¤xU’#Ä2ð¯p®Ç¨ëÛðÁ-´¶sÄ’Á2„’)QdR òŒ 7ðÇ3,J%X–jF‚¤Ž;ÐxeZiúfŸj,4ë [+QÌ­­­¬0B¾¥yqŽ$U{ ¹gºžo¬\\K,Ä(3I,Žç‰¨«3q+K[c·±O«EªF‘3 P­ÌS‰û÷ßÄæã$„ð³µO7“jqQ¿È}Ø$,ÍŽ1ÌJÞ˜‡ãs+Êi©$z-~]16’5`ò·Iy™IT$b¼¹³)âióÅeš$ýåËñHÔiÙ‘1 .dvh;µ¿\Å$‰ž9êd§§/"Ũ¤üˆ-g*H{¤ ª‹y£`á‚!#Ò«€áA¯ÂiO Ñ^%ÒÇ}i(’9)<¡FFæ¡$Sâ¯2Ἂò8¯ìæÅ(ÛJ…˜H=2c$Š|KZŽ†˜i¥jÒE$V×3˜¬”“0QñFâŒQÛâAðÃÝ ÌRÛMi§^ݵ®–®ÆuŠ¢B›(WAê$~`+ü»äÎ?–ZN¤šç™t-.Ö7_ÁÙêñýf8æ¶"oJbÑ-0+ÇhÌùóÇå–—ªE¬ù—DÒmo<Ûy kgw|ž¼+%¸Œ+¦c>œ|A+Æ»¶Õ8¾¹¦ÚÁbvÙ.CUeÜž!9§c¿V¢™µý:ÊÛN‰tâ“8±ê-MË;J]A¹#¨Z×Ó ZŽ=ð·ò×ÌŸš—žd»²üÁÒÐZ´·ŽŸÇmb°Çoè°yd/,SaÕ¤ ìt'ü¯óæ–¥æûÝ;Ïz_ i}Ai +Å‘‰`°–G-,ró¦ÌÏZxÖ„|ƒTMÈ öÛ½pHjѹXGr~þ‡¨ÎšAZ4‚Aê+ÛõvΪ”Õ­<©]÷ýžŸ.£¾ù²óeæÍ›6:(ÞIV5™>ÅMÒ{eÃÒÏè§ÒícÅvò=³Hñ$^£?ïHmúqò¥–á3HYR/ïÙW“Pïð¯£~‡º fH¯¬ó ¬J3Š„éÜ_l&‰~ šDˆ„k‹‹±$bÚ$DráænHxíÈWþ\êߘžOòö•qærëêHm€½Žh&y… p¸Y%$~ Š|Kã‘ÍOó#Ê‘qæ-^v²²…Å°Žö)­çg,´háuY%¨<¾‡†ã¦E,qÛϦÝAtŽ9Es «<‚8T4g¹ N(wèQ¤kG˜ì£Õ<£¬éºí”¦6²Õt»¸ï¬¦S#Bõ– hÅ(n[0RÁ^Uów–|ç£ wB¸{« h&!LrÅ4@9B® «§$æ¬Æ¢¡"ü§ç-yÛCþ‡pÓØLe†Z’Å,cÔãÅ—f@ÉÌ@uƒUI%kN3*:*¢ZËl®[Œ€ÍîÄPÐûm„úWü¬ o1yˆù‚[¯*8·RŽÊÖxõ+IÐE ðË*´ˆèÌ%˜‚Ã7QõK[©|Å¡]hFQo*y¦ÊúXÝ'‘šâh®mÀŠ2¤+[Â*á ++,,µÒ¿0 üϹ¾:åµÇ•nÁ’]"éUn` n +´l!‰Y}@ª¬Íº_ŒWÓn~§üYJr÷ '®HÀ*™=b62 ¿ùTRFþƘ»I"?H‘TžäÔÐí’λúfø¨’J“R4éÓ6lÙ³fÍ›6lÙ³fÍ›5‰ /Ä@'Û¾b)vb«äÁEKØlzæ¨EPKü ± R{õ3yUŸáRÆIïÔtËd)@jA E*Y£XUr)ÈÿÃ(:¹$¤2Zóûò„‹!b )Œ€×‰·ûò²²òñöâÙ®"[·há-I8Ö”5û_§ÛµÌKw1‚ß½(b†´÷wí˜Î¶òµ¬bY‚þé9TR´½Åº7¦ÊÌBre4:rø8׉¦ëˆMIÜ’I'©'~¸+õ €íƒ‰¯Èt‡ÈeåfÍŸÿÒ÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÝ#¨ ƒî:£1һІÅMAùŒÀ‘Z ƒò;ôæ©Üx‚§Ü6Ä}9lÌì]ÉfcVbjI=ÉÇ;¼Ždv,ìK3RIÜ’qªªŠ@ +@íLj"F‹jT€° k"䕾ҶàÐ×p}ÆQ%”£«S’Á¡T|ÅqÉû¶Ÿ -hÃb*(ŽŒ˜¤YbøkÅ×b*4?#LÅUƒ°§UößñÇ"”‘C+,¤ +ô¡å–Eeub¬‡’°4!ºÔ{ã½iC+!òB +·Z——ÆtÍ›6^lÙ³eS¨ìz® +C ö‡Ï,3$û&½>Ya˜A ¯Ù5éòÅá½Ìk4(%XâŠÔÛ:©AÉ]™–ƒNÏÖ•öÀšm¦¾ÐkÚ˜/´ûý'Pç¦Çd!ôl¥¶ô¥†éLe$V¥f©bŽÀ© ÈÔþSSÔÚo6‘æ OV;Ø`¼·‚EµºŽâvC7‘™M³Ç) ñÇÈS› _$êZ˜59<ý"y£Ešî=KK†êwk)°…w”É¢TBüJ'¨ 7NÓ´›5³Ò­£³€1“Ð…=5æÄ’x¨ +Õé߯€?(ù'É_—úChÞCÑ­|¿c%Ô—íc§@¶Ð ‰@F`Šv F´ùì{ F¡q>£©Þj·åf¼ÔɨÞOVêbª­4ÌŠ¾¤Ž íVn"½7“iú‹¡+ÙèÚ}µ»‚%ŠÒ`‰ßŠ«HRU«Š4Ü(ÛqV¼©¿}ðåÇ/¯ã&ÿ¼]›}Îã}ñ6øãô›tÛà;¶`æã0¶ñš‡u tËÊÍ—›6lÙ³fÍ‚ô›» I§mB¬G"ºÊŸ…Š©5*+JUjEpv{ce-ɾ·‘ÍÅ躕 Pôä9SˆhÉd&£Ü§Í:F«¬éÐ[húƒé7Om8½…”¹X§ ËÁ¹#l>%‘xºü'­Aœ´}{[Óm­ü»¨î ‹[|Œ´i5dOL±F¢îVAÁÇýj­i¾Ç^—_|8—3ǧ¶ÍÇÔ<)M©N0NŸvö7‘]$k)Fºm‹Tñ¢žÇ}ûX/MÔ%ÒµmFVå ‘ ·oµ cÀª;ƢwèK|Á¢[ù“D½Ðî®g³K¸™~·m,¼L¿±x™[ˆ+¸kì÷Â3è0yŸË÷úÅÔÖ+y ¨½·wF…zŠìQ”•~%ý¯³Þ¡+™ÒæîiÑCê ZP¡PAÚ‡aµH©êq—ӭΡqt±G +Ü‘qDA‰”h´; ‰`Ò§sR®¥®£ÙéI<÷"Í~®Ó]Í-ÄÆEcPÒÊÌX“½+A@(hº_è]ËHÝýI~ªóÝÉ$Ó4¨Ä7)$,I'zTWŠÐ +b=w/tØå_ŸÝ¾]OOWè5ýc7ùýûfÿ?¿ls38âä°¨4;ŠAøe7Än­@Êz½*=³/ÂÁ—f¡Ezå(àÁÓáaZ±Þµýx¤I3˜‘áJFÒ;zJX°^<ø¶ýÆجv³Ü†ŠÚ{xZ8XÖáÄì\'+‡P8ûà-SZ°Ñ`KÝFÞúâ9.#ÿGZO¨Lƒƒ??BÜ㵫JÐwVÖm4hòöÒþíd¸ŠÝÿG[M}*/“Ÿ¡åÃj3W­|Køn~ŒLz +Ð~Csƒ?ŽÃævÁõ•î@3°ÅmmÞîá"‚šòf*Zˆ »P§Šš¿†5biå@“ÄA®&ø ±†3KÀ ËzhÔâ=±;»ë]6ÒK‹Õ&7)n„Rk—[xCx$Š ; «õMVËDÓ§¾ÔUÌ? +Rµõ®má›ñ2È ž€Ò¸Û«v±¹k9š®¦ˆXgSB¤©Ü¬ q]ñ×1>àZ]9W“n&S²ÆhÈÆ7øƒu%OÄ¥¨Ûãt­BÏÌlzÖŒËsg"†3[°šmÃ’:£(d`|'Wln‡¬XyŸH‡^ÑH–Òd Íõ#Ç%‘¯ÂBº:† ãUÛ ñ¨õn@ðù‚2¢pãÔˆóUܲiô®ø¼ŠÑü Û(`ÿì°TÊÑ|~í›dä©ù6Ù ¸Õ4XÝîôó*É9£Fª!(»TrJmDžõÉv¥¯yX™µ Ü-ÍñU’(Õ­ kEæ¼£ ð•ˆ'Æüºç2ò·ÿ3¬õ¹Gœ|ų¡Zz§Ø\ÚÛNË)”´2úœ+Í=BkþÇ¥3”yWòûóV×Wú¿5ËmWBÓýG°µº† ÖõŒŽa—“ÇËš‹r­váÒ”"q;QåV@®õàH®õ ‰Q“÷ÊT0T*Ûÿw¡V5<™CqjîÇ:hô•øÄá™Ij©éêHÌ +!ˆªÓcÔgUCj¯ÂÞEvBÏðÇ­+0`´C•,´Øõ”„˜žEC2ª³H3m +Õ + Ø>yR™• {ž(òM jÎÅ!`¯UO‹á,ð$wÄ//ôÝ*Ðê½üU´m}zòh­àF›ûºÉ1T©µNøÝþ›¥[ýsV¿ƒIYnîæŠÞ%y)ñÎʃ4?,8½¶´±³’Æ#i‘H‘#_U½BÊÁ¹Ð0P ]è6|Xe©XÜi°¾‘g%¸ôcSx‰Ï!¹.„ñ¸'dUª·ìò£÷™ò–¡æ?7yž_:Í{{måÖ¸ht}>qg–IlWë#/ï&<ãýåY> J¨Ï<§©yËÎ>vÿM{ugåW˜E¥i÷qÁwvkjãÖ +©È—”óMù©„¦ûUdˆéZŸáL/“yÒž™¯ +¬ß™=R85æ>Ð4þQôõ®t•#‡PÀî›|+ôõ¯\ªTÖ ‚šeSâwÙ–žÍNCäi¾]xî (CWÝkCôW5xž]*Õ÷Zñ?1SLÕxÞKÖ£§.½¼r¹§^C§.½¼sÿÓ÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÀÓqÔO¤S¯o¸å©¹ÕØlwlw¡ß­Ë7·:î65ÜmQ·JŒ£^ƒj‘Rw†»®Õ*>x&î{Y…º[Ãé,0zoJU¤$’~X&ök£³‚ÎßÐKk_FFå$ä–f47 ®ôÀz}­õ´·óÞÞ5Ó^]‰á€   ;þÉc_Úc€4›-JÎMJãQ½7{}õ˜# „·¶THÖ%©&¿ cسI¢þÇTúѱ¸ŽU²›ê·N­QÂ$™¿%In‡pr–'(ÎT+2*’@$©$ô¹­'XܲÌѪI"*±àŒÌ…Ù©Ä*°£5x‚Fø"­ˆ$fHÙ™G&UA5,Êj«Jر˜[”c$q‰Yâ‰ÝÔuQ EäY–¥TD¶5ºV• ‚Éцãî;§3†Qñ,8“4nªN†¬ÌŒ¤¡mTÔªvmýÅ? qéN[7Ây +¡Ù·÷R}À9*ÑtKè­ÿHY·Ý^Ñä<¡°nhTjPŠöØÏ|±å-zÞÁuí-•/Ê9tápÜ­EÓz‚HÙT«ð¡P­yvÙ¸wæwæ·–dód~H×ôÍFm?JÔçS}9í–K»xá¡dr†G£pÆ„î¼ócócËw~d_"y‹O¾m/NÔÚ]a¬$†9¯-#†3 9³y³»Fx7åR¥3±]ZIµJîRâÝ ÉÇé¬Gˆa$#ˆ©©‘¨Èä•·ó “kbÞúF”Z5ªE$ut†;w ‰`^§“JV½hj¹;¶{ï3y1ô}ÏZòœWMu±-Þ5Ä+q<· +ÂH®$ž¬H +«*¤qè¬: „×¾còÒ4MkÊÐÞ[Ïyo­Iu§Ï<)<ó]Æåá¸úÑæJª¢@)Ûö[ÏgJЭÑø Dâ>BON¡Õå 9*‚7­0ºöÖÒhÓVªÇ!‹…Ì.‡YýD©$â…âJ V´ß 44y‡R3µÏ’/ìU-Ô3 ½.In?së–çVT´Ä³PìM´O7y“T3Ksä[Ë(¾­õ›yâ»Óežã÷>¸ˆ[$±º±R6.ÔcÅ€;eYÙ‹¦€˜':z`¿¨V6W~=Æ2 i®ê;fK—‚‰"XQ¥x­ÞeD µøøSq½iÔàí{R¼Óô¸.ìâÏ-ÅŒr-ß.C5ä0NÏè·TGb(ÜA‰â óN»w£ùy5;Ks Ì’Y‡†ò¼aŽk¸mæ2z*cY Ùè­xŒR9íÿF(‰¾³u‘ZC¦\É+Û´åîä‚€üEÊò¨é„v¾eÕu![¶‹wšÕ³Ziï¥j“]K§éb€Ì±ZÌQ¸‘Î4‚1'Úþ›—bX±â§­FÝ·4Ñî|Õy ¨ólZ†±Æ`tËx¥’ÉE̲JY¤`¨åkÈl(éèþGò/åî«Ûy6ûSÓ´«Ëƒwwæ Jî#ªË¹-vÒ¬Q(1)g@Ãá"¬X“‡žJò6ä/-jÑÛjº|ZœÿXÔ5¹®D7í©7"N C +³º—‹Uk°¿0,ºuËÀ² …ÑY>°C:8? +@@1ƒ°Üš×¶ù‹KºòÖ£qjÚĺ©¿‘nMÄë3±ôùGÅJ«BìîÌXµMsòŸFü¹Ö4Èüåå-Ùi— õ«_­Û7¬dd»ró+·&OV” @ª‚¤òG˾AÕ´Ïñ¶‡¢Cexž½·¨%ñhæ<¤ˆ” †A57j„xÓâ$Äöð‚v°é ÉîzçS„·s×-Ô, za@>£+°$ž€F¬kA^ŸŽØÔ++:zžˆˆ2´rÊ 6ô Hõ¦ÿgå½6êI­aŽX­žõäuQo Dá 2¹’⵩ø«AÓy4ÖpG-½‡_Œ·B©åNÝrÀjÑ”¦Û†Øò« ª:Œ_ƒêc`£Ÿ1OŒŒ*:©ïÒ˜‰+NHÁÁcÇŽÿ ”šÐôoµÄ‹§hâ@Xñá¿ÀBºZÕ‡nµÌvÊ"†sQ^™¨­)ìseeåæÍ›6eæò¤Æd–Jð@Ê¥©@ƒÔ’GLßé $pÛÚµÃÊJÆªá ¹¢ª/%¡%˜»\NîêËO°ºÔõŸ«ÛYFÓÜ8‰æ)j]ܬUm‘I),vâWwVZ}…Þ©¨Ü‹k[š{™=)&ájÒ;‘XˆÄ +|Ga¾ ‚Ñ¡¾Ojf“àåi*rÕ ªçqÜm_£cA+¦Éi}­ö›$ÓƒËg,eÑÜ2Ê#’E 6ª€;¨Jµ"Çó{òê}9o-üÛen²ÉõXÔ\z7±´ÎmÞ7ã:ÕæYÄÄ)ÅfüÚü»¹Ñ…õ¿›l­ ˜µ¼n·•äFbmª¶Œd$Ô³2 +ˆ¤©Ôu+¨ï"ºU%%í`’Y+nK—(Z8\-E)¸ÛÃâòæ­ùÅ{®y°y¦ãO¸òýÄë7”tÕ¹œKd4³z2I “$DDÑ€KJ½U¹Œ%Õ(¡°ó@×¼æ K˳ÞÁio©_§£¬Cs,6á..^ËS’G™Xª£¿¦Ò€Fn}¦þMyÓ@óuî±£yš[®Ú(ÖþÝ"Ô>´©,·ÚjCZÈ( ¼Yƒ‰)M>ž·--Œ"Þ-æõ%èß!k¸EI5 9nçšÊÕla¸€Mskp­ b²ìËZr§â(:|²o¢ÙùmÚvý5)£ºu°¸³ˆ[z0´kéÅȳ–¡ ÆCÖ¦Š3­è:™~¥õ1ê ª]EtÉcwe[¢hT$a‰bG ìd55'`)’+K?/è—‚Êá¡{ð™ý%Tæ)»!ãZ‘¾ù'‡þUïååÓ[k—v©ØÂ&¸¿¸”ÙC\ Qk5dSéó Âkž}üÁ›ó;ósF]ZóHÕí4[›Ô\òí´V×ïq©ÚÚÉ¿©Õ¯Å;<ÆŠ•sÎÿ˜úçæ懗O˜µk-GMò¼÷hº“V×¢mJ iâ”k“𤥜£ªüTè +µÑ#Eeo뙓}X•†׉WS&Ä…Åí±Ød_V×<‚· ¤ù~ßôÊÛÄòÚi7²YBêœgþĵÀXØÙª£'OÕÿç!µQ#ê2iÉ$7Ž÷ÇÌ6z„ò¬N³YÇq K‚}­"­Q¹T}§ÉOüóùßæè-îŸqsÊÉ}±ositÅæ”Ih’CYyˆ~& É#µ°aý5¢é¾ŠëhÿT1Ç$PÁB¹+·0Äš‘N»ŠxáÜ:Ϋåý9´­?ÎPÜ>’c·ºÓ¬m­¤–Ýdi“z‚V¯2¡6?¡hLƒÉŸ™Þr¹ÿ~ZˤßêÁ§¶¼½¿Ôý Ém¢RbVô¬£¨„`†¼91ãÇzÑn|ù³ç›˜üÛùq&“ªji%ÄW7º–¡Æâ[xÔú`*Z ýÒ³5?f­·Ê>³m4R¾¡Ü\ÏGYâfŒ+O& +)J½}éôHï•£–óUµ’ïQÔ”±¼‹Ô…K¿6æÂ5Ù9Hƒˆ!w¯CÔotHM¤ÙùgW]HÑdQq¦´6÷&æÚ0ˆ ç9,§Œd> H¡Ö.´ Z ËÊš¼z>‰¡º¥Ö•,÷fêÖ1³jÁb+È@·]¶GÄ]~zþ×E*>Õzi˜± ©â +Š¡ +QHæ‚¡†Ø†ø«ÔÔ­A`äj ¸}È‘I>/z”ظ‘‡ÀV ²‚AÅìÍ xæ¼’~i$Nx'¨_Ó`©*FÝë@{_Ms2]j3ÜÅ,RÛÍ1H„æa ŠüL„n. €xž„&²úävsC [YÏ$‘M s;ÛG•ò&8å¨ Ôq« +ŽKÔóóXÍmå{k d–9áŒ^M-´p‰cbXúI'*7P“~!×n¼Ïs+\m*–V¶­#ô˜Ьly + +ü[á¬þmÕ'ý5Äÿ]Ké̶ "Û}UZ„ÄË“*ÑKU÷>È-¯äŸ–ä‹D}Y®^k$…µ5KÛÁk}s7#'Ø2¯Â*µëS\æºOüãß—Ö-'ô̲Éõp¯©ÁÅз¼‘*ÊG Õ©°ªŽ†¦¹W²ØE×ÒÚ‹xã‚ýúÊh…áV +¿ |[–o³½æ$Ó§°“Ì0éËëDdÎVê†1ÃêY«ª§ÂÇ•YKR´«q¿/[yþo07’./a‹Aòü+º•òMRÛÑwáw(‘Z&Ø+Q ²– ƒÄµhÖ™:–»qùg>© —­Œ/zÑ}dê6ºÃy pÑ·‚ ~<ˆ5àXªñmcX­­nþ½ˆî£QØ°VØ +­OOìÈ®• éþU±ƒËÚnªÚ͵„F+{ÙX¼$™çXA,…ØV§cOlŸ­ÄÚî©æ­= +ïZ»7wöVñÇŸÚ?g}ØßKãçÍ«ÃÓûFœxñ§ÝŸÿÕ÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lP$?Wšf™½E éÛª)©å¹,Å{Ìl=ÔEs$Ò¸–5‡Ð…!-Rd<Ú¤?  ;Ô°Tà;«­J-OM±¶ÓZ{K³sõÝOë¤vÞœjÑ«£?ªy°;¢PÚl/»»Õ£Ö4½>×K3Y]ƒ}«˜Ñ-øD HÑ–2L7eM¶žMDñ˜3 3fÍ›6lÙ³fÍ›6ô4RÝ+ÄTPIû²û +XµWª€C÷=ºæT1`¡k³l €>ó\ÀA‹ª…©£š$ÞA÷éŠ+ï@]…CpZ8Y,›$֠Б—õ HÚA=¥ÐxlîQâ´‘7AÅ‹, .ÿv‹Ì~[—Z›ËPßEúcOXî5 0–k˜á•UÖGŒðqt&‡nCCæ_,Ë­Oå˜ou}5c¹Ôt÷ãŠe’2²€S‹¡n'áä+¾:ÅÖÞx§¸ä« “TQ†ÛV½¼rìn"·ž+™™ÂD#•Ê€ÎfET{ «‚/⸚ÞhlÑ$™ýHâIÇlGÄÜ\¨ñ4$bú¤W6wöÇ,òúÐîÑÂÔO7 +å@ý£BFHí<ǧÊ}:W’RTz0ÆPŠ9Yà$È,i^ôÉí—´‰•…Æ…%ÅÍàôÀ´¶„B ¡%sé’ÓfnK^üA9çß2Î;è¾^-ªÙùž L²¤ðϨ޴FÂõÏ/ZÕ£Üú+@ÈÜTW•ùÛÍóÐym×TÓü×k¢iV|±»òß‘57š[«‰î-¯4ùÖè¢Êõú¼±;*–1i”)oÚ•Dv÷÷rj^”ÑBöðAyu3¸õñ•XJˆÀš  Þô ;çdÑÌ^móT¾~Ð|¿ú" KLµµÖZ’îÞéã”1ͽÄnë$*$Pü^›*·È£q{oåK/Ü궱êVZ­æ¡åM8"–î +ÜYL·É=¼ÁZ]ãˆmUõC”ä¸ua}æy"±ú¤:u–­åÕî…嫘Þ3 ¸žÙâ–ÞFŒÐÅ;º¢·Uõ92ò\+™ãR΃Ó]‹Ža±ˆä6¥zaå­×;E»™c¶’@ê8®Äi)™D¡#äèJÖ”ë×–Þò5ŽÖêQw4kÀ\%³Ú‰‚ÕD‚’Rœ…OmJÎuû8ucim²ÑO~ˆY-¡’ß…P2G).ïã? +—" Gåþgúk#8Ú*z€ö­(ιstE;ÈHB;Ó­>TÅc¤‘Ʀ†RU;’+Z|©‚­¬£º±»¹¸¸hRÏÓiUC3ä;Š-[±ƒ¯Óƒ­¬ý–¥)»ú³i)²DÄRHæ4*À† TR£ÓÀá'˜µíCC¸Ñ Ò´¡ªÏ®]5œ¥ñÂb¥y „7Ù9q§ÅP6y£Ìºžƒy¢ZèZ:ë7zõÌ––ñ¼âÕ"xci †R¬6EæTý¥ù×.kÛ”ð:H¶Îi!Ý¢$¿0À‚V>@nœwÞ„‘ê3Ç4«jmå°væ­,wQË–‘¤†HÙ\ÃuÞ]þ §§k—£R6aµ‚ÎÞþ‰¥ÜÅs'©$±­RÃ,‰<ÑÄÏéÇ4­En,T)`º›uIu?Ñ~oÒSIKøÐYß%˒姠bxUVi•Â,®ôSIJñ$V¥vu qØð¸´)ë9 $åÀúŒwRköi·^¸{®j—¼+:[Ãs§4ky!Y£–¾“ KHó îä’+ÈnLò³Fò’u‹ÛÏðk ­ó1éM¨X\™.”ú¤FâOYÀøŽÅ»©â´‰~Uè¾Hò6­}e§yþÛWMlÉèiföÊró,ŠQÈYyz®©Ø·B„ªÐ¶2½[üª)§!¹øÙÌ×ß ‘ÄhÏJŸöcjsûDú²D w'§QR)I‘äu@h>Õ¤PxtÓIšl£Žý ùÔfYXªEÒ±ÕyÈ€„=¥¬H*ñ5û&€Ô)õ Ï„$$~•UXò _Q—‘ö©­:lÙ-þ¯=« F¹™a‡ëI’A!EˆJéë>ƈ âh§‰â0è—vÚüŒ3A¥,§R{jN¶âÙ£IÍÃB® T,¼Ý‚æ¼™y +–Ëç*ª\O.³oÂÜÉÂYˆk~a1…dôU6.Ä(äËÈr_Wº³›ÓŽ8`š1:,«“É×jíSñW¾ ×µ-:öX µŽÑH>·½¤‘–6¬xã³r4`O\-ò?—¼Á£ NÿRÖuZ‹Ó u;_EmncªÕ>±òU£+ÈV¥‰wå÷—üÑ¡~’ºÖ<Á¨k\]´ +º—Õ¾­s*%‡”¢ªÊ€…¡B7ê@àd§6lÙ³fÍ›?ÿÖ÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lª×§ ëòÌH¶ÃaZJšv0¶]Î敦ýÈ̱¢îw4¨{‘˜2°$0T'` > +*OÈe‡b}”TýÇ mì wP¼ñýbݬÿ½ j6D-ÜÖC=¬š\“ê÷—€ÈÈ!3°Ž(ÕZœwcÅO (MzôÉ^¡o7—nïµÍRý½y¢ úEK ¤b¨ü|EXtëÐpYóž¥o¡ù[J‡üoWyþ“IŽ8ãdI$Y­›“)²ƒR “ðŠ!n£k¾lÕ¬´o'ivíæ»{yÞõ|±ú:´tæîÁíi+!Y}­·øE’VÏV†â ›»Á<ÖŒDfF…Y BDKâ*¥M=ÎD5{M}n,ïõMLjé’pÊ`‰á2DÄN"æO€ÉV,xì~#‹òëó{ÉžbKÍ,7’l<ÌßVÐdõg¦°VR sC a%C âêGÄåÁOiü¸üÓòFª—zùKüeæŠ[iRÆó´z³,Åš(P,ˆÒ|´ãR9ॷ^Z¿{W†yT¸v’Í™Bú²8vâ‘SCÓým±=CÈÚ¬zmü—ò,¯ÄÆÆY\æ–A$žœI$QÆ«q4ñSñÈ?ç |eæW˺¼pZGsm§Úy–>7¤GŽâଲ‰**„#7>¸scÿ9äK5jÚ¡m[$öÖ~h‰}hZ(`dAsrÉ,Îûp AŒÜ©\.úåí³½ŒRµ 0ËÇÉ ­ôuï„PIqe{4–Òkm®Q£iœÈ¾¥w:ñ£v®ýòw.åím´í~âÒ9¥±ÿLÒµå@é°:!…U£tñ=QØäéü»åmjâÇÍSØÅ-ÍšýoMÕ!ž>k²ÇÁehÝ\•4¡¥GcXñBïDT¥IR$v?†1’Xý#OIÙC­…y‡s× ä!î(Õy™ßš«q`X’àÓqøáÓ÷F4c4“´’óTn.¥‰2í^¦›cNæ‹ÙDún³›[ÆÉh足¤u%ÛvrH¿ÃÇÄ€*8wŸ?-ç*|Ùù­>½ùUù±iå;-*ÞÑ4¹´Ý+P[@bõnDÍ#K3rišN^“¢‡PÌŠ€ƒ+­GþqÂÃÉ7šoæç’$Ö-µ'{jö-BûMõZ# +[Í'2qO«¢Ë â²0Žy‡€þrù6óQÖµ‹æ4Ó4mI­æ¾³šÇ€G†( æóÉéŠuVeb„WrCÒYÀ´Õ$+¨F\ÜßFŠ±ÜÊ•–BËBHbJÖ½½Ïÿ!ÿ8µß:kz—åGæ^™<þkòÝÍõ¦¡ç8"húÔ–2I,÷2Gk$kj]…HUdvj P1í[É·_—ú6ƒªy[_‹ÍþYóŸ¥ê:&,1Új>›{ÚEµÊªÞã*:b4øêÅF7ò§óÍÐMþ ºˆùžÂ×ѶÓ58Ò†Î9TL¤AUâ­ÁÂÔTì(Vxîz輜J- +0"¤•Ü€+ņt»Õ[ÛXVKøYõ•[’HÈãâÑJ…X…YG82Õ–{»ÛY´«•sEçÅ=VCé=»† ªÊÁV@h%‡lï5Y/´»Íi­ôë†)_X£$é4,…D¤(zÓÕ—±Ã«KI)§imõXÞN;Šú’£HÊÂnm +ÔÒ• 4øNŧ^Ûé}ï“ ]=–%Kk€Ñ¬–qÉ"H÷òYOƒéšûHNssκ癵/Ë}råå\WSõk É1i©4¶óVhËzm¸V¨aðžGæÏ7i׆©ùYú@4Ö÷œïÓèÍ:â6ŽCú:7Šä9¸L¼¸S—¯ 7e$F]EcG¾4·+*• ˜,m(¦·Kqw8‰Ò$‰.A%Ç«éÆ]Z9>Âq÷ýЯ%7ó:Ûé¶^U“QÔ¿@,7v—¬·S]ÝG(š 6_VP¯êDA•ùH•¯­µAæí%?Eù9µU´…ôÝ&K ÷/yu zÐY²,Ò,n%Œƒ+òt­}m¸³,­ ·‡ëm´†ââMÕ­œãÝC) +\Šò‚…Ž@¼½ù3£yU´ó7å­œ–:¶¬ˆšÅ´¯w} î2¼ ²¬®ðN +g)Q"¯ÂÈÎÙ$üÄó…×æT2Øy÷Ìê‹¡_´ÚV¯YÃ&Ÿæ«OuÄMo#,…mÁO‚_…‘•y“ÉšuκšŒ~c¶Ò•©,o®»™Œ´Ki43}Q%r‘Q)TcöX*÷V’D’ g&7f` rŽ¦ªGZŸžÂsy¦ê¥d%·‚NP³ü+À; Y"äõBä ¯óUBvÚþ•~÷–EÍ­þ©b‰3Y¡I%Gxr#œÄŒ^™bOO²ó¨½Í–“qk¨jViÀ´Bj­*»B“0Šsl¬—° ÏiÑ=ÃêE3â(’¾¤¡(pËN!v"¦­ì1È4kI¦mZæÚéÜ\zʲ‰®#…Âz¡ãZ¢Ç±^Ty7"€T…¾»×µ›{ËÞiw1Emf[u{;+‹¸™ÑBÎU.·ä±–HÍ÷4À7Ú™µ˜ŽåKkÝ*q -&µ<½…ÅÔFE„ì©pì*GÉ#4 Rh’{W‘íãQ$’I)Ä’‘;«ˆ¸FÞŸí_ll—6,v«¨÷7m7­7(ásëz>°¨Šûñ¡‚Xê)r/ÍÛE µ¬q]Yz0z3\ +F. ¦¬¥@`¿C¾C¦êÐ\ǨÉ|Ñ[ÛYà õ—ÕíÄh¾—Ö}cÉ… 8# +:ï]IµÎ¡m+BÞ7F±»/%–6‘xµ:ò$SÉ%µÎ³¬[ÌööÓÝ$Ñð'hÌ‘Ü[‰£`ô  =ö,´Äõ;^KÑþR¸±}d\[DÖW²ºG2zª’[\½»".вu§ì¶×µk¤ÓæƒÊú€Õmf¶[›É“ÄUínM³™bõ9š›š~ËWWŠþÍ'Ž ©~®$‚?Y‘ã„’.ˆ‘ñ, £Tqê ®~[~fi?œ>YÿùsGÖ- Ò.¯4&²ÖÒ(§¶žNYha@¨¤KðHÕÝHª“Ï5 kWò6º4ßÌ Wʺ]¾«ggæ­éÚâ¼öמ´VÁQµ%¯ÕÛÔX¤ÛÀРæ_–ÿœ—åÆ¡qæYô?+ÛK"Þß!¸žÎúáJ²DT^)ŽUøeŽEjñ`8.ëlܧ¬aiÏ•TŠìAEh|0úGú%ºÀýãH}¤¬Œ««)4`GÂv9,€-òfËr$Þ%IŽHèÊXn¤n3²[úZŒ*öl—).ð´t–9#+ìPƒñ Æ +¸1›`/D²Æ •Š"¤uV£EÄ9¡¯Ê½qkÓk%¬6Úˆšá )g¤Ê’zk 0–I8IV¡s; +¨aVÂ+/+ 6Mæ¿.Ë—&¢>±æËan²Iø¢‰Vã“B#,íX‚–$ EÈõ• ›dóG–%·ÒZú·^p³6þ«êÊÝdK‚ZÜ)gbÑ€Xš°j «&´ŠÎâãWæ§Ó +>q*šTtb+í·N®íÒÎH=n¥Ã2DŠTBˆ…T•b ×öjùIê¾W[9XùÚÂylµXa]>éÄ……Îš× 3à pànYÕ”åƦ„€Ÿ˜<³wuçM/Îz-Ôš~£n©a~YË}kKk„™áj‡ý¶VP.5;ü!°6H²O›6lÙ³fÍŸÿ×÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÊ; +æcE'Ã|ÀTã–£“ñ4ÍVâxíÈoÖž=ˆï™]¸#í­ I î ¡¡Šc—ìô=PiQ”ñŽc‘þìÔl*{* *>A…V.B^lÁË­  qñu?«ŽÞ$ú»Ëë´Ò1a+^1ˆV€PKÖ¬FývbµÜ×’5Á„Ù"D„À ɹSñÊ× Ç’(±ðø›‹ërßI-Ë@l¾¯bn Ë]+U¥k†cT#a‡³xêr^\ƒzuu>ð”äÒ«2€%§Pi»0ì:ËŠÆUI&:ô"½îF°¥¼ì @‘Sƒ;3ž‡Ò´ ½6ßVUÓ™4íâå Öáµ¹†îúÙÂÂ'S·Y¶†B¿¸8ðbÌ[5‹kúŽ¨5yoí,%E¸ˆr2@‘=¹Œ#.Ê܈¹Û¥)׊ùãΞyºóEï›tMóI²¹´QqmsiõY´ö¶X¤¬ËY ýŠ• oϬùòŸòÂ÷ÈZG—|Õ>›æGÒn¥—B½Y–þÞò É%âVˆB‡Š€È«ÌÀ“ÇÓšùGòÿË7þLÓ40Íg¬Á¥K4šlæåîa–;©%äGÊ5Œ5(J¯ÆT0<‡Ày 5µÎ³ß&¡p‰0¸·Y¡x[‘PêQÑNâ´¦tÊù4ß7y6?2ë6ÞeÔ-¡¹]RÖk‹[«xẖI#Žtô +cP†¬»®Ù¿6¼¿¦yó"ë̺ 땾]’êÖM-àÔtåš}6ÒÞÚâïNF©wI¥våë œ²’¿ ä~wѬ´8^ÜÙÜ^ù?Bi­ßOmï!k‡·‰ –[HØ*¹¤sV•~4cZÂ!>¼-'·Žácî®.¦R.nv,U’0xqm¾P´øB[\Koù“‘¾¥ ý­¤ëw:ŒÌ±GiÅÃÕ%’ˆòCné"Cé(">'„Þ)u{ïËY0|™çy`:‹AåÍ?DŽÎ+¡5ÝŒeÞÞÞ¨ »™O*rø=i>,µ™Øë>a·ò\žaòW›nb]@Å¢éº$0$æI­âÃn­Æ ‰™=Wü"G§6e,Pö70Ýÿ¤“@ä‚6/ü"AZU¾ÿ «+Q‚uŽý‰×Qw„Èö¨Þ˜¸Z…&¨¼èzŽÔΙuæ-14[ÍNŠßІY§±šW·‚ÚK×hg•L¢0…¸³­h´}úžîþfÒ@¼¾†D„à Ïu§I4–ÑZÜ}f†ySÔúlÜY—ì­¦µ#¢¸ÑÛOt{‹TºC, ~QR±UôÚ%ÅGaÕGMó˜êßœŸó^cò/˜­Ç›¬l.Œ’è’ùªÆ‹V»‘#IØ\ið´óÆ“!Id W‰„];óFßÍG•õÏ%ê“Yj«埓u›Ä—O0H¯ë Eu £o’A(h!Vr ‹Æ@åÒ>­~bùW_iÖêÓV}:ñÖÞÊËô‘¸IÔ7“;Ïq R#eh¢_PÿvSR[K-VÓŒš}­Ä’ÈÁ¡%=D0JŽ…ŠšŸÚgá=3‰ÿÎ>þPë?—wÚ‡˜|¯¢yŸQ¼ºžÖ.ê:…¥ÂÙM§ÞÇ0.ösª8d‹•U-ñ‚Q›Ðófп04³åmoZÓ´˜,ín-5ˆô«Ûhïm/t÷RÆþÈñV^'’£Vq#’’,G¾NòG–ô»}b©_Åkè:¡ºžÎh.bu“·P©ä²/.A>ñ¤èqYèïyæ)f·ú¼²”’r¯3§‹™àŠÃpHãóéž³²òýøVûÎßš—ÚŸ— Ò®®}(ZážêxRÙd1ÚÁéF« Œèõã×ËW^ó}Ïœ´)~_ivp¾ÕRÑMΟèÚ]¼Þ«Lm‹êw×VÎãìÊft^?»eV«5ßÍO4j~b³Ó|³e¶gŽ®ˆn´»TÉp`auqsÈy b>éÓ–ê3X_VÛNÔti +F’¤Ë§3¬ 1fbá§ÆÍA¾Õ'©8#ó6êöÿEò—zc°·»·1y~iÒÂ-D´’<ñOë€Þ¬ìª€H¡93}¶`2;ùQg§­ùŸÉ_›6E­êpÝÞÇ#«ê—zŽ$·³½¶àY=aÎFx¿´à ¶E<¡o=Ρæ//yòÒ8µk覙LñÉww¦EkscÀE»Q¹j? +/, cqspºÅÚËú:åyæ¬ïÈŽYx‚¤T6ËËn‡9÷åOŸ0¿3.¿3ìüÉqÿ*ûQòä¶ðéö)e¾† ˜/nOÎ&¸rЫ)HÔ‡Q³÷šyçòßò÷ò[Wò^­¨ùá2tŸ4Ï=О_0­®•KkËIã‰lÈÖ~”RfY^6«Ê%åÀ&‰ptÿ3G¥ùó^}[N{¨…¥´º«E`‚9âx匒.<ñ,DakVU<”=íæ£az¤‰qyI ¹~±/îä©vJ³1Œ +Ž;mV=ÕüɪèööŸ”OÔ[ó–XÜkÒÏ +ÉkŽ òÜ:øHÎm‚úŠR¨)ÉÓ=7òþÓϾcÔ:¼å¨+~_k2^ßèžI´´»–ÂùÚæM3÷Q5ÌóMõsÖ…'h¥~Ac˜‰>™ ÚùÇÌW~jÕ5©5?-\ÜOq—â‚âx®ækrírJÍ",K;?­ñš…W`ê’ÜZZ[ÜG%Üά¬’ +G f2o e–­U`6Û—Âd/|Íæ.[išœòA’„Á·µµºúâÏ!˜–¼¡ ŠíÍ) ñ/ûº#ygòâÙ-%óTšW•ì®&X.µMMIÜÙÏ¥ËkÞD4ÏIáv–hPÇ*óD4dŒ«Ëaüµ‹ÉCÚê~r>\Òmo=Hõ)ojW_R’m¢¹åiéD|eR@aP”eõ+T’þÞÓN¶[EdJÁVŒÆRŽÃ‹2×°â§í50ïRµœê0éðÛ>dçËsÛˆ” YLh®T1䪼©ÎJTágåuíî“åývñ¼ßæ-´ i-…ºOlo¢ºõ&,­-Ô„ J¯¦ÒÌ \#ù_ªjzW•|Áª^ù yþ¬ÖÆæݯëÕ•dYZk†*²”OLÉ f½8ùR¡níõ–‘aX®dµå´1r¹Œî@fúº„äYw¥@cM¾ÑO™o5:[Ëk©]Û2Ë6œtÛ;ÍN&^D"Ø)‡™xÇ ÓUC)ÊKå¯<Z ™,¼º4ÝB "¶¾ƒÌš·—|¼Þ£Ð(FÔu¹h©!âÐÛIÍ”Q]¶íÿ9t8euòåÅžºÆ[«MYôÝ-ÄÇáçqu-À„,„«-»*>kÄÞÚ×QÔ¾©$’,–F?«ÙÙrU 4’î º¿‹mðàmIóO›üͧù›Ì:­«è§–åß%Û<¯¶¶uG»¿fŠ&k˜%—áQ(T<ùó˜<ù_6¥¨Çc­^y­ìÆ©æíVªÇ§Z\ÜSêöpú“*I²$pÊÁ¦0´’$EX 纶äw[ó&³úFëÌ2‘}ªG`mŽ™h]ɶ„› * BV&gT}¨cÇK{„ÒôùRÒxÔ›xÄ-é´›§%•U¡]¶^$1PFtm'GòåÔÚFŽñi:”²Í, ‘Xç¿wêz(à8Hø”z}€Ì¢•È}Ä~zÔ´;?7yÞÎþZKhÍÌ·I+ÀBÓ,‘ßM„· ’0‹»íÉËvÚW›“@_;yÂÃLó—n¢†[éžâ#uŠ1"²ßÉÌ“I#Ï2ëÄ;òÂÉ­mtûÛ·ººj’ÄëèÙú±Ô½8ˆ˜·J¯o¿ +µ­/KÒ®µEÕõ[ˆ<Å,ñ‡Hõ,½F‘•Ð[Je¢•,{øÔ.L<—©~cùšÓËÓYè?—îÖ€é×fKË‹H"ˆŠNÞ”J±·Â±SŽÕ2dïÊ×Þ|ó®åø,´?Ëé$µŒÛ^;]ÜÚCj +Ÿ¬?¹ÔÄ‹8÷]ä%´Ö.8ç·–0â4ŽÙ¸Æ¬V¬B È©s_ ­Imí¾¸æÂ=FˆZäCoedåbJªÒ•%z®9±4<ˆVcP¼Œž?0þ]hBÿ[Ógµº’åMÆ¡©éÐK¨ÝËl­Ë+Ù­Ä¢ÉXŽdEøK…É\~mü­òɽÔ쵉n µþ§f%Ôoeˆ‰Y-ÍÌ¢hOÂœ•~ÜAw¤¯´r)WšA龄 +Tį +Ô³Ã*•pÄ’Áèjr\Z¡ƒ²JÇe–&䔀©î(2n¬­æÑÌÌ(“BÜ£ ¸Û/ÊÍ›6lÙ³fÏÿÐ÷Þz×#YÅá†Éà’k»‰!hÞ ˆH‘\⬲Iø⾕‘±–âk‰#¸ŽkuŠÝ(X¥r³Æ98²/Ä*Q…š»ù¤ÜY[ùj+.;>£s~“IéÁòãC4D»µ¦ -M+L&×æ󘸱´ò½ƒ¬¦I5­HNë QÀF–òÆÌÎM;€< 1ØBOÄÊ¥€è 3þ~ØŠ +Çù‰%@䢴~¿æFøi%ºãÁ>×"hÄ +‘·Oó®Øtì¥ÝUx„wOµÎ¼\€Iž¨/++6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›Ga,örŽŠˆâX™*ÕŠ"©&œ?Ð]4ùnm&¹ŠtÑ«È•f›ÓDffH’7$¤“µnU)¼ó^‹¥yKòÆ Üo5ˆîOÑǯnð«GÍåS̉*ªªI½°¢ûͺ.‘æ=3Ëz‹»ÕÒfÓÕÌqE$‘Ið2I*üGŸÂª¤‘Ë¿FßÓãêJ¦AÂO…w«p½)Z0\ ?.¬SÎ0èÚßšµ[Ï/j¦dM3EŽ+MCG’ÎÞÒþòÎìMqw7ôÌ2¡AɹH±ú KÿÌ;jz.¯­:hÚÓÏú.É'†ê ‹ˆGÄÕß”’<~£Y8ÇÄUK¨iXùÎçM¶Ò›V¸æ× 3߇ŠPAhŒg€†¨ +ÿ/ŽHtùÈ kÉö¾M³óV©ê …ÇøŽ9¬n£eV(öÍoþŒ ‚Žðä”û&¥[9˜?çôß4ë_™·‘ôû‹ø [+¿'ZjÄÁëºÜ%ô7--ß5øÀôÕÈz‚YB+¦sÝgòBÓPÔ¼Û'–íd¹XžÙ¼º‹nñú„H·I9yyŠ8¢ó!¹‹`à /í¼Ÿq÷÷/$ÿ¾™cé#ûÂy"¬»wø« [óämխߘoµ Y¡¯gKh­–w Y™¿s¸$P“¿.µÎ{åx¿ç,l/l|¯¦Å¯nRÂÎÞS§KnŒá`Dt µ!A-J¿W—uïùÉ={]HŸWE±¥¥¥¼Â)ícU¹W‡‡@7 Ú˜Y&¯§_jBâ]*O¬s•ÄKjÄP(WY}>T¥(Å…gcƼ¯i§¿ço‘5¿'ÚYyCMxe’ãN¼¹»»¸-õ‹›)4ôd“ìŽGˆßfjôŸYïÿçÿ0<»ùÁ¬ÜyÒæÖx#›ZÓ¬-4ûaPÙj–ï$ÈÒ˜¡¡wUFvEAÍ›$Ãζ`»òF±¥ù³SƒÌz|”Ôu(í´ñ'£ ÜL±ÀÄF*_f%ìý bÚ½ØÕÌóD®fE²†.jTÆÒ³:)1RAañt£t=èÍ +yݼÏub’ÞÜ@º4@È +›yîYÞÙG÷mR¨¡~:S‹ŸԞHòu¯äØòæ…}%†‡§qó,z¥Š´³G=•°– õ+ê;P3ÉÆ2Fý†êo7åO ü³‰tkÉtûm.?Ó±ù†ÈJ÷)%½´oç]ˆ 4¥"­+³(ÝCëú¯9®a„›¯QoaŽS¬T™ø·ª¤È*V¦£œ[þr×ó”Ë7h^VuÖ™lµíÓYxžÚœ©§-"CÆ$'ƒnÕ;®Iç¿&µ›?0èÚ¿˜4áäÝ#Ë·z.¿æ?,ÛM©«ëfƤŽWy®1Gy<µxVQ(’-y«ùcZ±ü¯Õ-m¬"ò¬7QY6£`“M{}©Í “*<ŒexáŽyeg1ú «€‚]3M]•¤Ú”i&0R¼XFHº‘[´™³y"FK†t 3’ÁÍT… ;xgº/¯?5µÏ.\]y¾(4øôÈ­äÒÚîÆÒUÔ9[ªÀÒÌEf_I9OPmÄÓ’ç‘;4ÿËÏ'yÃJÕü­æ©V¹ºÓ®.­õ[ÛfÓ¤¼»õf·¶´{/³!¨Eøz9<üÃM+Ë~`¶Ö´Ÿ0_AúJ[«[‰mõI-žÌÏtežÚ;híÏw­F ð|TÙ±Ö¯©kQ]]jäÈ,IRuŠibxÕhˆ\ŒÄ7*š©ß®#å-ÏÞ{Ó5-ónŬ§òšÜÝÛh×Û[ØÍ$öOrú¤W$’•?Xç¼mÄ©CŠyÒ?.þXêÚu‡åþ¤¶7˜F×Lúå½Æ¬öIc«=Ù•ŒïeË="2R*}¥,®$ +ÉŸÉZ†—>š$òæ©æ)-ì’E50‚ÎìNn¹›…‰žFhÖD+±WåF®E¼ß­Zj/Ú[¸s V¨dZÙ]¤ ¡d’¦›oÛ8æçO’?7<Ìóézk´ƒJ‡N0ÝÂè–ÆÒäÍõ˜ž)$gàjNʼnZç¡¿#-¿5¿.ôÛý7Ì~`±ž}ZŸPžçFiciÿIÛz e$wkY Œ·ÂJ†UPJѲkùW&¤—ZŸ—µ]RÞþòÖþëQºú¼r*ÏÈ"âÆDD;\Ð… aì¾]·—M™oÁ}NÂÖ9Å´?òXÈãÍ«êÛ•?hý­ÆukßùÇ*ÞyQ¿×ôhmüÏ¥éN–š`’åôcr¶òLï0™Ÿ•_ÓP}Bhû¯eåÏÏæòæŸèÿ'y†( ó6³éß=Ä°Ýê ÈÆRðØGÃÑŽ(ãPœ‡HiÇ™bë1égè?TÌ·ÍezÞºÜj’D$™­caèBŠ8©`> +3)ø˜†Òït«].HµKW‚âò,â)`9)¤!5qQÅ@ØTS?+õÿʯˆ½²Õ¼²þ[ÔõË_®ÞëpÛ\%¼WŠONêâáØzæ ¤qþÉ`šþnZþ|y°iSù T´ó†äË„Ò´(=ììÎd1ÜBg·X!Ž¶ŠsiC:Ȫò:q¥ù—EóJê—¶w–š<ñÈú,rª5Ü…Þ Îj) )ñ—£—ݘ.Û O˶Üo– aé“ Ù üd1«R³Jòjg ×Ì~OÐn-î"²±–H¹ØjdzáÒÙ£‰ 2ÈÏ#RÌŠîU¶Î}ª~_~zyŽÊÖ 5‹«Ý:Id½ò»´p$h‰èËzgöÞ¼+éª7©F!AÉð¿]¿òG羧o„u›ÍF KÏ,Èc‚/DDb–ý¦iZÝe‰h¬\*Šcø˜àSRi‹6¢…nlÖV[îã%a¢y$V ©˵æ‡!šT:‡–/ó̶“O>Ž×ɵ-;×O"-Ä·d6ñ²ˆ¨B€ŒS‚ŽOÅŒÇWÌ°þi]Ëä{»fѵk_P³½Ž9õxÉŠÚÒ;§¹tyesêHÉ*«ò[ÝyçÉÞaÔn´K‘s¥jQÛÇ>©­Z´F[ئº0ÛÚG*”L‡“zr(ef#ˆu 麽ÅäÚvªÑ¼ +ݤSÚ¼2É"Ìz—iÅFß´6î+‡ÞOó·—üÉ«j&²g½¶–Óô¬0j:dšl—%Ë'¦‰vk(VJ­P•ª·*¯!˵¿!y—ò×K‹ó ÈÚùfâæê=Vóó^¬Ãn^¸•¤šÕfŠ4ŸÕ´¦oÞѬJIS—J½Ðt¸üïùq¡Ýù}ýtÓï|Á>¹k}\“”œÝ-ÑcõI +Ò(û¨}N8Ugæ;=7Q»Õý»žxW™KyeBÕ +Ý@äk½ 6§_=yþrsËËù§æ)àòĺ\ÚÆ©p­­ÌÑ·¡§¨½A*ÂÿlD]ÁäÔn 6oRùãþq§ó Pü·ò½‡˜5*{='I´»²òÕÄŸYÔuxí®&Ce/(íÖêá~Vô•yµQ~%•½·˜|Ð,<¨Ø@¢[ƒ›rC­Î£§DÛ!‰¸Ç2ª”)ñ§=×j +iýmfA5¹e± +ŸMŽ:ì˱â9oN;~£ù£ä¸<ãc{,/.${yàŽIT_NZ)[Ãoä=U)ÇX/¦ç¯Ó4OÌ‹ŸÊmCËú?äî¼. †ëN¸ a%®ƒ!ˆK{&£3¼~”r;9)+•àÎòF´|0_:ZÚþY\ùüsg¬\Çq¥Ç¥ôtÂîÑ»77.Õ 33§ü̈´lÐŨêºÃ\Û¤ÖË1håšIc)wãäT*ý’½€­A£lõï<ù«]]BÓ@¼ÑP¼žÆKÝSP´†î(.•Ï«­Ä?¼Pª¤CMh4~-Õ43å%ÿ†¼Ý£kš=¦•j×¢j·ÑÝÍCÛ}vÞò"êHê'T#ŸÅOMÒFs¨ëšO’`ò¯™ôÝ.ïDŠÒ5—N±Óoç7&Ì*·VwAÉ#$nü™B²Õ×__‰!¹±‚;u”¯' xÉoÍ\¿©éÄ  -Õ=ºÐ%¬õPn,ùÝÍz³1ôžÔJŽÍ†ˆi +qãñ¨|¿ÿ*—Èšóù …Ö¼ ±³·}>H!¾Y}9#Š;¸â‘¦¡<­V<@,ÍSo.èÿ“ÞOó¾Q½YÅîµõ{Kg³’ {Èî}9#Ž ­Òg’‡€I#ro„%‰(›Ÿ¬þ«‰_“s(^MSSA°ßJ%Íõ‡Y&2Jf‘ y ’ÌTl 5-M«\é:u•–›¦Ùiºd-oeio½»;Jc‚(Õ#@îKªšÓ®uí:ÒÏOÓ,¬4èM½¥µ¼0Ú[³´žœ1Æ4õb@é׌Á#6lÙ³fÍ›?ÿÑ÷Þz×#YÍ›6lÙ³fÊn@”åû5­+Ú´#õå1•T´}P Ô§.Ü€ Ò½hrã3¨Ÿ—¦Hp 7ô$ =²ÑcgU›—¦HÀ€ÜOZ¯ÑŠÝ­¼w&;NMD<ÉåVý¯ÙMÿØïúÔ¼ŽÞßBÄ—´Ž4ôærÙÛwåDˆ 7 ñwé¸=m^ãGŠçÌpÃkªÊò«;IkxÔGéÉ"†`Wz58ôhRkw47^gŠ]^WÞZZ;Io Hý7z»»ÑÂvtO‚ðvlÙ³c’5v +ì7IìžÍ¶ûößÃ1ŒHlâ?PñIH$#“Ej þ¡Û Êå5S'‰ãsQ».ûn6ßo¯P¥]PËéüO¥]Fì»íñ +öñÛM¤ª)½†X–À)¥ÌÃÒU›‘âå¤NÝ {`Ÿ0.‹å&ãÍ:Ö³e¥ùvDšæ Ëg…]êB]3J¥7‘Ù—óGµÕl<«{ Ô¾iÔ½¿–4øfÔï‡4R¨MÕ‹n@_×]có£Ê^UHì¼åpÚ~·ÀM6¹mÑ£FUg²_@ò£ +¸;{y šSw q,?¬P“N'Œ6 ú6È&ù±ùS­h:ǘ4Ÿ4ÚÞØiÁâât½Š.3¨1¼F8H(»ªrmÖ«’[æó¾‹æ/ùo\ò>³¤ê^cúÐòý™M=î/ZÆy –7ëRµ³VnýxµÆlÿç |¯s= M3Q´I‘¤´• ´¬úuvE&y•IV …]ñDÓ.–Ú‘zn±Rhÿ¸ýï. ú¼£P³_æ ë0±ô/¬ ¸[ÛA¦\ÅnÐj¶îÅ’å"Þ2&¤ŒŒ£àùè¬V÷óÈv6öwòÜݵÕôóÛÃ¥5•Üº—¯oSKB°¸G‰&œ3t? H4/çåºé^d×3 û‰`ŠÁ­n$¾iáXd‘zmhÖdføøÐü@CP½°²–Hõ–ÑÕý.O¯ ×tVö‘EG\çšÿüäWä¿•üó©ù3Ï:ÒygP±Ÿê u«Û\&Ÿs70¬°²—”5š´›°Õõ1ÙùcMóøK^ºòþ¡ ¼¶Õtë4Ô4XÖU1Ø4ïøŸá›‹¨eEhËÇþrCÉÚ\ÐE©Ø궶®‹4 Fä¢EB‘ÊÛQÎçǵ1^êßJÓRêÞë×áÊ奈:Ë[ź­xÖ¡Ôòä@ðÈüææV«ùoùs§KäýZH º–KGÌzEÓÛjv/g4vöå%‰«4rõJñj+\r[ùQåíó+\9ê¾XÓuÛ-7K¾X·×,~¿gw ’ÝK~PBÒÄ-ª²¢È¥Ëznbqÿœƒó î¿¥Yë1èQÇ£5²É¥ë“zR4±êL· $•õ"p 4þÔ`¤Œ¢C¡êöúTöa¢ú帎ô£Œz¯ûÂ%Oˆ‚+ö>Á©®u?ùÇ_3y_ó‡ò»Éf†þâåu].ÞÊà_$ÝÛ^Kroˆ¸q/'Q'>51:l^¤C?<.0?)<×çBÆÎ×GÒtï0\Þ}KR“Yº §^΋gú6im£’ÝeXãQÇÌ3«èï)~dyúÇòêóÏv“«éwk5ÿééµ ›¹aªÛ«ZO2Û‰YÂÔJª©ðfÔ­$³¿x$¸k—@–ᯨíñ<‰'Ã&Ú†›ú7SžÖ[³yqoÅn.X{†”zž©Kn¾ 4MZ}cA³Ô&°M4]/¨–1L·Û…ø=4’5U+Ülrv/,믯ùjÇR:lzJ^,lSÇr–Ñ'îÕHUP©ûB€÷È-§¹r'"£“h¨^§n§üèq±ÄdId¨T…D’»ªª]c©&ƒí8ú7è!¯y‹FòÍ’ßë—Km ¹Ž*†w’AËÁ;7Ø€ “Ju¦'æO4ùÊ:zêžc½K+g“ÑÜ;–“Óy8ªÆ¬ÄñCÐ{u#,Ísn&z‘´R‡†ÒGþ°åR¦½É§K>âGLWrÀö’ͲŸD<Š|j$%†Û›×wé—š›4½/Y·‘o´õ’=SI’„€÷zºrÞ6hhŽ8Ôñ +Ý6­1|©æ¸tï4Zï C}§Þ ©~q´QÄŸºn,¤V¢„ FÕÜuùõèqŠhj±¡  ÄÖŸM~]ú`úW½=ȯùüûuÃjW¿G!òê:ô¯n¸m—é>³2ÇoÚk˜©oAB†~N9µ +îûxø`í/BÒÖ?FÙi¿:Ž³mV³]­ŒBf¹rÈóʧÅ7¡¿gp#’Øy)nËÖ^ê:¬Æëô-ªÄf¹º¼s$Á ECt~MǾՃ\É¡~]^^·—töº×üÂërúM¼q=Íä÷Nò¼bN +ó’4 ®Ä–H*ŸXAÊ*m*)¶ÄU”|C¸þálrÆÖ¿XFõbT4ê%d¨q-"!æ -6ëöhL’Õî.cˆÝZ¾Ÿu5Y´û†·õ£©=E¼³%bƒÓíT Œ³Ü¤iyjúuô¤³é·ngŒ35 K*q4øX1§Ú¨ €³rHbVïñxxýåá3<1²»)TuRÕúR•¯½:wÅxBLêP0.¬ÀEëZôö¯\]‹Ûˆæu(3£0 Q)Z“ÓÚ½{aÇ—¯f_R."Š~rË3SeTj‘ÉYkAÜtÃ]#Qš4»Óžãê wÄòß•…R@Ò¤‘ì’SÌV3çÍ"ÊçHMQ¬á¿»Óž%Ò š7” Ù$ )"”Òq Œ¬ ØŠ!_šÚ-„ÞX“\ktº¼Òý8t˜Ê3²ÞË"¤$Þ9- PÈÀ«þÉ ]5_мúÕÛBÓU¤¾j»2™c‰Ûá,Ä0øG%¡4î¹Ì?%L7’õ9|ýæèï­mÛS[¿4\z³½Ç-B4«u9i%J¢XvZWÑÂÿ=Ùù?ò’þ vÎÆêþÉåÓ!Ó|­»IÏÔîb‚„7ë$Ò,Ì]ËÖ†â‹Ì´{kÊ]"×[×.$ó&•isõx´§Ž[›hoe[¹!ŠÑ$‘·2L¬¬NÅzK\CYÒoo¯,î ÇPQšÎ# %ÃÆë#²’¤uƒmðžt/1ùÇSòþ©c¦ºÏæ[k{=/ã· +aæ…á‘g’TÄÉÈȉÅj °¦Lÿ,<Éå/(ižjÑ›\–Yt BóSó?¡5Ä’E%ÚÂZÚXæ†Ý’ÇNÊH BžDÊ|‘æ-é6ºücQa.—s6¥¬•2³E%ÌuxY(cà­ÍU#¨Ø\[\ó,º£/L’uŠF $`)—hѪó ‡£w¿Ÿ?5o<ß<^IÐd¹³€´1][,¥ëÝ-c’Qr±˜ +HFQñ) Báåäü»ºÕ?0üÓfI=7QðŠjOnƒ!>e½×¼—cú÷˜åòµÞrm®tý6fyçv¶RÓܵ•ÌQ¿¦¼Q]™Üq ĪíÔ4Ë^pÔnÏCÌjË=ž¥yE·®‘YZ›ë9eD–IG‰=4fr僇zž…å-^äùŠêÌIléõÙõKˆ¸BSŸ¤-•eNto´RœyÝXœ]/¥i"†ÊBDWJ…“ë!$’f¡«t;åPÔ?8¼¿åO3èÞI±Ö/lf¹µŽÓÉÖº…ŒZ=gÑš6[Ë)Z$i\/Ç1¢š5å$loÈ}_Sò§™¿0µ]/ì-îÚóÏ÷먈!ŸË *{ $/ m!T·VvÙ” +G±½oUò&…|SÌÑÉõbx'Õä˜I}ÇO’KtBŠ‰Jšq9 +P#™[鶺VŠ-^º¿Œª­Ê”VŒÉ8)éÉ"ÆÔ,˱=H?d×;ß”<±å*yf,]Øéš¿š,éÆê$ŒÍnÒ^$ÉÂI!I‚+\GRZ•eo°Ü³Ïyù?1üýª~aÙy×U±òeì"æóʺ¥¼ÑXÉ ®ŸqfÏñHöÿYÍ%# H†Åxâ>]×ô9ùâëÍÇÍWVú°Is{åBÎanööö2Å/ X•‚I@@ÕÝqĵ˸4 [•¸†[˜¥£ÜÒÎ÷ H%j#*@ä(ý©L#üÕóKù6 ^ÃV‚ôYÊa3Á$òj7:ŒBu¸Šé‡Õ½(È(9£¬ÍÇe"¤I¿%4_ó7TÕæ;»;=B)KÑÒ©iV½¡°º¶RfNʲú‘JRY ã‚|æ?kº¤Ì—Zn‡q&—£[“e§ÛélЋY!Œ±É'bÑ°xªÛ•û$‹D×-Òö)¬¶ó3A +_‚ñ¤’”;|TT›èI¡Û8Ï–|ÜÚ´½HÓ¢¹ÑoL¶W1y¦}d‹zñ–A ‘5äL…›Š;3+³´y×ÈGPòuÞÝéúÖƒõMbÆãÉWYO;i‰8¦”[É$ìÕy>¬±QâTŽd«"óç–5MKM¶i=‘³ô/nî4§V{¨íD€!EŒ4’2’V +rP¡þ#ÄÊ ¹,õ6ý ñÞ­“aµbÌ‹ÁÖ’*°~(×p£5Ì1©–â¹~È*­°(> WFü¢‡êŽ šÕͬúäë© «DŽ‰'‰—ꆬèT%À Š©Å¢Õî#¸­ÚVv²0íÊ€b=ÀûÏN›i¬MovUìdiyYJŠR(æpÅQ¸³¯%íÜî#:×”4 zÒõk®n,Þ‹{†^dÜ[£*JQˆSNF€×¯nòkÈ~\×´øaÕ¬#¸º´0KáPæ[‹teI&(Œ>#ð1#â=Å}_^7vÇMÒ—êVòª¬¯éòt*+Tu•HÙU@§Ý‰yîõ|É¡Ïå.Ðìï"D7ÄÏ,FCU$Y£4+qÇaÝhòg”äÒu˜<Ëç+¯ñ å…ÓÏimE‚ÖH$^+Öïñ»+I$…Í*ið·BE¡þT2̺¿œ5Öu+I¥{œmíLRŽ!e¶1Ki%¸`܈û] dòtå…ŠY±[gt’oUWë,a_IØHdj!&¬(O-ò/üãF¨éºCyJÂ6Îíà:¥ÄZ}˜Ô®¾¬¦Úâ_¬ÈHá2'¦ÄÈyñjÓ$#þrZO-\ùy²i¯ï´u¹{hãÔ`nŠÞÚ¡µ0ÄÏrœœÅ"½*¡*EZ9yæý;Èú¿˜fÕ¡·ŽÿNY„¯§´¦Ü5ùpE2Éæ4bŒ£ìƒnN­öÚét@# 1­ÅègYŠÇêCŸÿÎB¿—´_Ð^|²¸ëÖá Ò ”Õ‡Q[–Už-B8Š´ÖŠ±*Ø+8¯.\GGÿœ¶Ôu'QüÕ㻌Ü+_ù‰®í„v)hÓ5´ÖSýe ½vid‰’F,‘=8ȘùËÉ%„—ZÑÔm5KK™§ÔxÞÑí"PÿWh\ú¨'w‘匆aH˜€(¯KÑ<ËsvšÃê‚HžA Í‘çÁã½9EIjšƒÆ½Aí†ZWå¿æZþ`8™­ï'¶´Ôü»o%É´kx%ô®U+$ˆMQ¸³®õ߇b]?Zü‰ò6•}ùQ§yEƹåõ›Q‹Ï×Éduc=ü&âÔM¤`qïá…Ÿšžr‹ó"Ç]ò·‘4[hï4 OIӼͪêÉÚÜÙE<“âäôuiìÄ|(Á¨V„ñùwäï3y/̶þmóïšeý®éºæ¥äí3N¸»’îÓSžÕ- ’æÝ¢ˆŽQ¥ Á[Ô ˆ•£ù±u‡_ó ¦‡ªGuªhö¦K¹Òîb-%ºŽQºÁ|ìJ0Ün悱Ak©Z«Äú›Íõ—Xýžguh˜†¨uSBBñë]úÏ*þiØyöt-Øþl^ǯùš÷ô]¦Ÿ¡ßj‹xmgXþ³4¿º‘CŒ"¬g•\,„g£<¯qùuæxõ{]SòâÚïDÑ ²Ôo§¿Ót¸ôÀÒñ¾¾Œ‰v²3·¬yr>a2V7ÜaƒÌóGäg´ûHÁÆÚÞ(í´‹u‘£ºÆ9$š¬_j#¡enX²YCtñ»ÞHÉÅØ êŒ¡¹Ñ¹ƒPÀCòÀzÇ—?.//µ/É?ÒZÇ™¿3®š+[;kgŒé–×× +­ +Iq<‘HÒÖN)UøºŠ¡qyoÍfÒ|›ùáú6ÆÛÉ-*Xê~m-4:œÚ}¢4—pCeÓ*©´ŽT*ò~÷ƒ†%ZƒùSG¾´Ó4;©µíqÓêóêÏ<°•4‘^xU¾*õtf;#gÑ#ºÓkõ?~eä‘4ÌdmM‡ÚÙhëO%ùIòN›¢'›<¯k®ù£O¶´ã¬^•¼k›rBÖÏ"»/RŸ¼_ÙN*äÚ‡šî|ëw¯ÝùÍ×ZW“5+íB8´ËPÐ=å­Ã­µÔW; <Ú7V¢1%L¾£#:~™å +ÎÖ+¨[ù†)41q ‚4¶2M?«Â¡ê\€éÊU”ˆXo/¨ÅŠâ뚥­áš+†,ÎX^¥X;|[ íP<>ŒÛy‡X´Ôöçg†c!IKz$ÈÄHYIPÕ” ¨éZ ­ù/ÊþbÒ$Òµ{ÞxD ÆÊ0 +*ºTªÔW—ý®¤dÇ]ü½òo™tfÓu].ØÃ%¸‚Þh•VxÖ j’ ,€1¸·q¹r­ö­n~¡{5«/z]½13M@À&5U#áZժ惩&óN…æß=­¹Ðµ‹0Ãë6¶ë1¶¯xª¤Q B‘ÂPRŤ-'À´©-“ÌþKü©ŠçZüɲÒæÒmä··òd”³Ë§‹MÃz”YäšáYÑý4DýãT óLº/®¢Õ¼è4û}Ã…¯“í Ï=¨¶©Cê2,í, Ì¨V%HÁs\OUµwŸU ÀÇ!Ôª! bRÕ’ ÔïBG¾\érh«i¥MÈËmgcÆHâŠC ´‹™d„´a‹V¼IèNySS‹ZÒY·¹úÔ÷šÕ¬¢y®TA=ôÒD‰-Å%dD`©Ïâ +;Œ”þ\j²ëžQ¶Õå»{ï­Ï,w2M-Áhšúcõ&B(£L ˆaÆI±¾¦ÀG¹ 9üEh‚µ©÷ÊîBÀ¤…uõœP#-ñ/c÷{ãÄ`TÊhJ7¤´V&C@»7q÷ãÄÔÍ·ÀÆ%*¬L»q![ºûn0Gô½OWoC×þá©ÏÔáèו+_Úé]ºåú׿Wõ¾²)õ_¬ÿ¼rqõ=oKê¼½Jr¯íôåðõÆzvÿXô¾ªßïWÕ«õ¸«ÃÑõ>³Ç…xöáÖŸÙßáÖý¨µ>½õ.^†¾—Õ½o­ðáÊ•ø}?µOìïŸÿÒ÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÁúe¤³Gs¨F\ýU}3HÜÎ*(nãjŠwÁm-¾“«kÖïxçJ„Gèi¶±Ü]Ê×bH8Áá•äZ‚câI‹ñS"tÔ-u)ì.E¦›©OæBÿ]³ÕuY4Ëx,#Pí=ÄÖêÏ,T ’ª¡·&†sÿÍO0X¥Œ>F›OµÕ_]I®/mno¤µXÚ*Ü4îÖÊî¸2£×%ß ¸G®êV•%ÄšÔzL÷f±¼Ô¡)' èÏöP’ ÑGRvé\òG憙ùY¤y3Ìzâù‚?%þaùŽ;íK˺‡žµ3§ßÛ]­Èau,1Gú­mX‚Àw”¨@ÙÜ|¯ªO¡y§JÓt«M/Tò¼3iZV±¤yjKëXt—‚Þ =.ýg’5ºQ,Ñ<±‰8Ë$œ^GÕto)èžF][ʺޗ¦ë—O½·¿¿V*[ÉkÊÖ_XznV„EOÚ+œZÛókÍv¯sÄ:~£Nâ{ëbï4Ä7)"R jÔ|=3çVùÝæß/Üë¦âÞÇXÕ5›»›½__ºk©®®®§vg›ÕŽá’ÌX;õÏE蔺KkªynóHÓü¶¿U³³ƒÊZ¶§ 'êrÉ:j^– .'‰UƒFZWôÐp=3Í·ºÍŽŸkl“\12ê§î_‚€ §~Xß1~yhº§nÖ’ÚÁ'+£$È]‡"I¯¨6£¯†'oùåç/Ãceä;™ü¿gl—V±Üz«sqÄ£;üx•;.ä‹‘4" sÿ8ÿùYù¦Þ~dÅä^óŒrµ®¡õ¯_W†)­î#Ö®cvƒQ±g¸bñ˜# <‹Á ˜’ë›»2Ö¯§Û (¾¿ªâa,ÀÕšœ;QMiâs®ùGÏú'žå²Ô|…¬Aw©Ïn×Z„1¤Ñ+„‰$—âY(@$€~C=ÕùOùÑ{ù÷ùÉå8Î2êm£þnÍ£5ßæmŽ¿o:¥ ´ñ] hfžy&Ʋ¤E¨@Îp½SÉÐyò^[Í{ØtO"}f=?CÕ|©­A·¡:µÝÅŽŸ¬Z^Ã=½µÂZMñúN&@dW“‰XÌÿB×$ó~«lº~¥käûè­aµºÔ½v‚ÜÙÄþ…˜gYV"‹ð¿Äù6æ£c ¨5Ä­(¹˜˜ŒÒˆd%†êAOQ¿ì×´¶Ë/Ì—óœ?0´¿8é~|ók%ů˜¢¸õgY'1;ÉCao IÆ%¤q15 Ê€ü‹¬þ^ÜØZyÉþkýåË«ÞXjþZM*]mæ`;ÝR[ë‹úÍq?&–xÐ(ý˜£ø¹tß+þ[뚺¦©ùkù¦ê·BÏ4ÖÏgsuÀü'ëÖàƒ!j+^MñîëçKó.…ç ÝBHa²·ôà¶çÆÎD¸Wæ¿„ÈiñÊü²7ùyùŸùù™ù3ù±æ™á_/ùOH»½‚Çê’YéK§ê_ÝêV“‹º'é)㸑Y9Y£QðÒ’‘åÊßÍÏ*þk_yoÌv§óC^¸ƒËòy—\¼´¸¼ƒôtöV¶¢ÉaŒ,:e¼°ó™½6¹àI¥—ÓàüïUòTÚmÑÖ´ýr!¨Y›È®£ž­ÖÔÂŽ¥x#¹G Ëb9øŽõà ɡXÞgº…¡· %´QÏ+Ä8?¤KÒœ†ý(; õ¿æw侇¤YéÚw|µi¤ÚÀ/t»ÓÚ\2[i÷¯êÝ\I¡€ÙãPÜJñg"ò•Õ®¯¢IçÒ§Ò.u«¥ÿIqir‡ôü‘+Í̪® ¬ï´’„i9†?j¹Ý¼ù‡ù;k¡ÙÝi—šw–®5¡š„Ò´L/–*?:4P9`²H#|pZéÞŒ’Aw7ÕùÂe†~±ÌƒF‹˨&ž67zšM¬ë–šm¶¡iõ½:üÜ+[Þ˜¸I,VÍÍz+W’±¦ý;ºóæú<ºÎmq惜§HÓ 3j&ÜJmÖà@ È©êˆy/ÅF6Ô¿6¼¥‹½£Éúp´éi6|Qht ò*©JÔ€¤<¨pVþ´m%¤©u…fšf(ÊÕøÜo×Û<™ç/(þai ­ùZµó£"Ë=ÖŸ4RG3Bñ¸çÍYd @Ê -u¦j:Ÿè,êþv¶“ÊP¬óÚzZßwSlþäà˜«Z+(rRJÆÔe`虾Q×ü´žlžú-*ÀÍ-¨úôñ+)Œ&Fhêñ²’.JÁÆʲA*Ç*¼, +—æ8ì…* !‰iî_Ñ…¼äC¨^;#\Íõue*I„u_‰v+È3PÓ­n¦…£™líc0‰#$+¯õS R¯›(©®ÿîóèö_t’ëLÒíM»IcÈÅQûúÌžŸ €w&¤pø¡¾FóG晡ÚyY­a¾óŽ±rú¦µ»¨Q5ÃÙBè¯ÂÄÛW#‰Wfij ÞXüÂóß•|»ƒucß›5Ë©5}]5‹–¶™VIšÒ3é¸VYknHUh¬Òü$íkoymtÖÈÆXÚ/M§n_ ¤Š¨¥÷‡Ø©¦ñ-ù³MóµÆ¯koo%…ÕºÛ\i–Úƒ^æ ešÝ®­¢xbšN4¯§EfàÕãñt{íKSü¾:|ÿ˜š¦“mo¨5ÄNtù–8,f…"Y]Ü=ÓÄZRòµ´ŠTËF@©Èšh_™wš.³kkù…s§i]Å+Å £}[Ñ(Qot÷A“Ô&'ø Uä8òø]ª\XÃk%žŸT–êÔq—UˆÉÅäÆÄ°¡ø©Ô’s˜ÎDÎDysË~ZÔ¼—ùi"]ùƒP†;=HÇN³çéÍwMêÍ3²#çÄ|Jü˜ÐËÿ#?*¿1<ÿç]?Qó˜_*XϨêZ6·Í&kã’Úé)[O«Û[@dQ,ƒ÷ßݲ¼›!eó÷š¯ï?GE®§›ws¤ê÷- ÔW‚ dŠÌàHáNìÔ}Vp„»kK ,ÚŽ)ÆU‰o‹’’­^´¦Õ=óÍZOæÖ¿æG°·üÎmDè¾Y¶{/YÙÌ4{cz’úÍÎh.¹H¸ø#Ëí,s·Ú~FhšGžüǨùI·²ó~³e£ë¾c:iÕlÛÕÓŵÜV$êïõY Ör±DðöäDÈŬڞ±æ{Ÿ9yšÇôEêÏkzÚt‹es<¤^šË,œÂ”Jq Tök‹jzι],YÚ¥ˆÞ}WffepZ³:îê)Ägbò¿æçæÇŸ“J–÷Êíg™ÔßËwpC~d¸·¾ORì‹™ ÒR MIX0ã¶Eu_ÈŸ!y + cYºóe´w:¿èÔóe‚ÝXÜÇe{¥M$Vžµ³CHÚ`ÞYVC$¨ñ·>¹:ò%¬zëù«[ó!]&=`é’Lc?¹¤Lñ@ÉëFUË?Ú!›á£r8µµÌ¦y¯$ŽB[“HX$…äø@ +ÍñˆS¿†ùÍws»ÔàŠõ%ÕmfyùÞÍ^Ü\Uª±Ä$BàÉ`¼U9vaDÊó¢iÞ_{h¿@Ýé–^£ ­­¼§¶˜`Ia»õãŽäÆ&y©¨Y½7DŠ3ûÜ5Ó¿04ÍNò]DŠXfµõbŽÖh„ÑIkn¬ÎÈm2–è¡•‰¥ +–þbÕ—Êíî-ŬQ•N‚ä„'݇µhŽÙÊç'¿=¿1ÿ#õM'Qò=•ï”…ú<µ²ž–©õ5’EžI¢FPQ§Vj0ãàJ¿,<¯ùs­þ]k>büß×|¿:4‘Ùë“Ú½Á„ß\Ú·Ôâ/<(bqŒÆ<‹)RÎFsOÌ_Í/9éLBæËN²¾ÕÃ-òzm%ا¦Vh§'ÒJ”R½*Ôœ_GM{P´‹Õ’6žÀK"[N’´l¤ú’F KU2z~=zo‹~EyWþsÏþS²“ÌW¶ði>GkZW‘<Ígwm¥j$úô¶±ÇilDíÞµ "†µÅ¿8<åù=äX Ö ÒMçÿ;¥Ž‘¨j:v±£Ãn÷éiÉ4—ßRUYø¿2mm¨µcÁ!ô[δҡÕõ+È´ssqež“|-t»H’R"¨é—*Áö= +á•Íí²Áe£[ܵ”÷½]-eºœ;ôÉÙV¡À®ÔÜísóÏù•ä)ùËÚíÏåƾޭô’r³ZÞj—Ö—ÌMÄS„õæNd†*• »F[9G—<ÉåóQÖ¿2t™<ɧ藉©ùµeok©y~Â×PÒ$Ac©Å~³Z' ŒÊ½Ä‹,,¾š\ú+ÍZæŸçíf +ÍòŸ/k³¹‚Åç‚ÞÆ8Aõ© SÕUGQÅ™t '’}~+—šçW´¹°lÌ\¹”™ŠŽ*¥B†&¤SÀìEsÓ>Ió5š&“Wóg”<ÅåzßBNÕu½R„Kˆ˜ÀºHóy¨¥u YHä3ƒ~bè~yü ƒLѼ©ç"]ù"ë[’÷ËË«ou“GÓÄ.ø,/oŒñ`e~*„v ¼”±ŸÍžV“IƒËº§—ãÐÛV{/ë÷q c,+<Ÿ½r"¤Ax‚y±WTàÕ `h!Òd™ä’ÊæÑdôm¯$ôÉ%Š‡ðäÇ¥~ÒŠKIòþ¥ н’çJ¼†¥‚ÖöAk õˆ‘'P ½@ãÈüJ8†ŸÍ¿™oŽ©lºF§å{«›Xu9|°³k÷€eâàW‘Q:úF@¼¸7ÅL臘ÿ3o-íd‰t­[ÊÚŵ®­qåD›Z˜¨e] +Ò¥}_Ý™(ß |TÄíŒz±K]NH`D^ÖVq%b$¹f,JMk]Åi4H­58­4Vâ[[{_RÂêæDIVdÀLÓ³±‘ÌJ MK +ŽT5úÞ¬þ]A­ùÈvW~`ºÕ/ã7~\õŒVpÃ,’Ï'Ô`†Ø¬*ÓÈY–yQ¶ãBi¨éŸåN™©jß—öwþb’òú®4‘ž-]¥…¤Q[ŸI}i°;r£SjÖU ' ŠÜPô-µI§¶2ÆCš=h °p‘4|ííÌœ¤†ÞJ2† +íN^¨±'AÖ<·s“êÚ¤PêžP‘ÝÛÉ"²–IrÈè庯ï@¡R3ò{UòÞŸùg®èÚÜÜngÔc‹UòÕÅ$¸hå1Z]H"—%LNyµj”v@(U‰îÚmI临– °¤Z­¦œ +30o±ZMX«¾Ùµó^‡çû‹ÝGÉžaѼÎmBؾ勅Ô²q5jªd/Éú×a´Ÿò¾ëÈWòÅî—¤iš‡•´}.þsy«yŽ&°‚K‰R`³Êæ'>“ÅÁ9z…J#š–’þMù·ò–ÓËwzO”¾³¥išmÔ—7ú¾¸ëo IqÁú<DiPíÇ¥MX\:Ž—)é¥ÙU–E‘K˜,¤ÈIB†"œC±)ùŽûÎ>VÔ|·£yjGÕõK˜%×-nƒK6™§ {©e¹ 6Ù¢$Œ†3!ãü¬JoõÊÿÌo31ùßOÔbòï’¿HE¤kÉŸ§jZ”·v6Иä¹&‰9ú² –)>2|{Çÿ>yãÈþóÖ€nôùîô//ß]ÚËu,vVWBi-ãI–V` ++L ¡àU»•Ÿ§Ù!HéÜÚƒ¬%Q­Å#dFAÄ ”áLëÔæâcWáÏ"Õ!ˆÜëãž„>§9Ä b jäu$šø×(×µ~Ž¸Ö'‹PPATЊÃ-~Ð5† ž•2×íP´5ô¨Ü`¸/.-­#²LÒ4sºn¦Eþ›V)ZŒi=Å•¬Éè+GuÌEu$g ‚7ôØ7• o‡åLù›È^Tów˜t?0ë1´º‡–ŸÖ°Ž9™$õŠd@ :‚¢½·¨Û#eò•|ÛæmÌz¯7Ô|·Å­`ŠbªIê!™å@â«F>.Cl ñx'Jýýçóžþø—­->ÌUã_î—ûßæùSý—ùY#âŸÍ'Ú§÷‡û¯åùþää—ŠÖ¼¤ûïÖþê”áóÿ…ÿ'?ÿÓ÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÌHë`—&Šcʵڠ”Æ4¼dª3¾Üc +çjNê§pµNý7õŒ.ì?iË()BØ°ëË¿‡^¸àª#y$`¨]ê•Ž„h̽yo]¶ëךÚâÖOBú?«È@tSPÅ[¶õ©G¾’ÞâÚWƒPCk2…‘a“„›€CV?gÜ`{kË+ût¼Ò¦[Ëwä¾¼L²FY6,¬¤|'¯c,5;VµMCD¹]FÕË¡¸„¬±ˆÐ°d"Šzþ×±ÅíÿJÁomm 4)w"(xTy@‡ò€^•$§§š"²¶Ò¢ýÌwòIJ<b>²Ÿ„IÆ®´*ÖJr_…IR =Ý—n<ÛæÍ­iÖ9}YYåOy$eeF<2,ÈEÊ„ÕÀ;êß—W^iÔõéÄW:Æ“§‘)žFiàÓ܇‰\”#š»TEÈÝ°¤ÏÚg”õ­Cô˜cõn ªK2O!C<‘†_F„Я/´ß ïLùEÿ9­oùI¢þxj~DÕ-µ%ó†O5kwz¤·Ð^ÏwgÄ1ØÅÆR²F<’,oFæ €sÑ¿ó‹÷ö™Ze¯æ\vŸ®Ú±MòÊòúZ»Gs5Íͽլ%#‚C44~¥¿ÃJÇ*z¢¾OüÃÖ?.µÿ3_>„n$‚Zjòy¹Þ¨†œ~®!<8n©@y} WɾsÿœlüÙò†“©ùÓJ’ã̶s\¼¨š^§p%µŒ¹®b¹Ž2y†2ñ +¤3ùÇþq{óKÊ_—Zæ¤Ûù‡ËšÅŒz•ÍÖŠó\K¤£òRºŒE°ñtd2ñh ) +gUò_çOå½¥ö©ù_}.£¦ù’ Ë‹ëK½FÿÒ´–]Nä]ºÚËoYºüÉÕì-§·y,Éa&™v§ÒõG¦êdhÜG>U¦ýó•XÙÜj7¶ú}š‡žêD†,¨ ÈÁTrnz“LíÚWå‡åM¦‹ú3LÓí¯t,Ë%ö+s ÷ˆïŒÒÁ +•’g ¯²ža—cDâW2\ͼ ••cA¹ §=uù=ùu?äÍõ×”¼Ç$vçK¹¹ÒîL¯m*ȱG$§’)T*ÔLë^‡«ÿÎ8þz]ù_óW½ÑçòìÑÚy’ëÉš•³^›y½&š+[èÝ•£…b¡™O$eÙ€à:ö“ä¿ùÈ?ùÇYu¯(yGCÖìu {ÝFÑõ›;« v¼Ó®!{O^Ê°¿ ¶IOéHiËŠóV,ô"µšXnž£Óª´j‘`>ÙRÚ§¯¶wO'ËcqipÞ]’Ú¨‘-YUHËPª¼ˆ³¸¯ÃÛ=ßÿ>Ýó_—üÞ3,|ˆ­e—siªéšV¢ðÜÞýZWºBe¸à²\Ȉ¹(¡ÛO<éÿ9 å?%~OëþB´ˆXØÚyãO¹Ó­mô‹xìôËkÝ*á$–+6¢:Á?×TÀ­$Ï™ýÛr-Û¿ç<óå{oPò•ü"Ò=y’-:EH‘ÑùŸÝ5Ñxä<Á +‰âÛ«GRpËTÓoµM>âI¥0Gf–ðÆîÈääÀópªÇrY¨I'n¯ÿ9mùæïÏO"]]yY]:çFŠÞ h§0ÉÂ\,s:GW'—" ­xÔ±Gån¡ä#ùÃKmGË)«A{ªK­_¤â'‚uhÄ“­¨‘­¤j"0Šá=2ÃÔ¢Éñ™ïæÿåe·›4ûM+ÉQ¢ê·÷—úµÝ¬1I<„F’7¦¬é0 @Üü&¥Ê­ô½B[´Ó–uõgb³“’E&¥Ð° +@^¢¿,ñ¯’ÿçÿ9¢óŽŸäè¼Ç§èº¶µ0iÞSÖžqpˆB½Õœq5»%’H¯éKó#óò£GòU°óV›¦j—q^kW±k35l¯ÍÓ‹˜lµŽÕ%Th šdÛÔDqrÜŸŸ‹È^fò¥ý´Z¶­¥i²N²˜-õY#¸š:ü-Å2 +‘@]xW¾C¼Çiù‡¤jöº†‘¬<6°J‘ßGqÆEôY¸5¼3Ô?ó„ßó•z–µŸ/þVy‡Ë6~_òγ äpëÚ\WpOqqw3H&¼ŽK© 4x…e‹—+LjÎCÿ9!ùQæ6ù3_üÆý,þoÖÖö+‹,_éúxÐaú¤P‘p'6ŠnRyïPƤÅê<®$Iœ‹(òŸžµ¥(Íg ŬÓǨèzdÖ–­e&¡ dFŸÕ‰åu!œõ8b¶„hZ5…½…­ˆŠÖK×Tâ`åˆ/ùUPœËiÔm¯4OZÖ(b’YþÉƱÈiIx%š@M ¢íA¶k^Q±šóBó—…Í”Zdw:…ÔrqqîÊ¢9ž(Z9^yƒ,Üq*0ÒÏΖ¶¾fÖ|ç«?WÔ5 ôÄÑ­ï!Š(­ä½ºŠX–kƒ:~ŽIK­df¨<€Ï­ùYמ/lµ]F[94˜e ïqr 1‡ëzª–i(Z­db©Ã[-ê²#jóÉobÑßN·—ÒWoQýA"ÇQŪv ·M°ÏþU×›|Õ©4¾fÕfÓ¼¾mŒ'FÓoßëeq2^Cp1Ȭ~’«P(ÈV¿ùíùy份NóòûB¶ÕüÖ—Ê—žd¾Óâ”Ä°D‘ÁõK¹$z±K@Íað³ çÿ˜?›~LмÁ©Íä:ÛVÕÒî0þ`»µYø¬Véú0´o™ +¹…k„שg5•ÝíåÚ´±Ù@²©rH•ÈäÁ[ùŽß;ÜÎÓéhó¥å'Oæ1ù¦ÞK‹kôíVÚÂ;(#ºUgÔî#71¢³7,Å«BÛŠv!égü¢y÷ÎþXòž—å]zÊ×SÖîuý*]JkÏ­iéèIe¦I ·veD>§L+E­jpÖ§WòõÖƒ¥ÍaªÛÃæ)î)ȆÚ"¦Ø³eOØø6CLÐQÛM†Ì,õ Êgn|êGªUkR( +ûøyþãòïÊÒjבÞJò—Í'×/<É}éMo:Q¢³ŽÖx`b¯Ã!g,Ü™ãß4¿;~fÙùL~sy§P†ÏÉúœ¡´Ó4ë;ËcƒýI.oçt¹œ¯¥ '”п¦YU¦ÙùM‘eÒ4hª./šÔÙ4EP‹‚Öìîå)ÌHUH µ u K›)¤µŸ÷3DÃÖmœ ¹U¨IÂœ+Ñ+aòÇ›u¯'ùíž· I 3ÚFßYµ¸{…k¥gâòµ=ê¼"d ø€føŽ|Ãù¯¢kŸUó?å¥þ¡,^jŠMn;{û¶²¹Óã°6º\Íh‘ÇÆ‚óQQ+I8’G—ŒgÑD#<§yU¼Ás§êrKs}* ˜ì¥–X­Š7¤ŒeAºÔ1~ÿ²ï5Cw KkW(׬âÞ$˜Æ‘²„¢»nÊÊhÔݨ s½~iÚ^ùZè×ZÌr¿ÕÞUÓí-fŠÂÊÆx–o Ã/¿§'ÊEZV-¶qɽNÃó>ÆòîßC¼‡KKÈl~¹wsj··Z“4ŸXú¬LZ+ˆî!/% +#¬ +ãY÷’µ=7Íú,æîÂé4»V[Cs¨ýMš LVüLM ‘†AÄqf>˜âÅ"·›hÉ khé,ÆBËN ]Ç…x×åO’t›5Þ~b~[]E­\é7¢hpÅ<7T6“É!ºàB°O†Wä£"ªkù‡{¨Yê6žMó†«åÿ¬ÙÕ¥¿¼KÄ]E/míRK$A3]C ª©Ìn7gN}å,ùxùî]sËÞ`ú“ÃÊ?Ý»µÊ]JVÄ.ê üOð–ö!z• ¨ZúÑCQ·7ßXH„@¬¶ñ¬ˆ …^•wðñ4é—/ä›ÿ3'ŸóWóí“ÍþaÔmîßOÒµ=5cµÒ¬­.c¶[FÆxxƒ+…áÃ~^£#ü,RmCòëËs]~TybÚÝ´ =BÉ®$7ÃP}Bk‹K›˜mÒãUµ¸‘š5S*I+K$N qKþê'y_òëZìíùƒ©C]‚dµ±ÒõEšD!£šTäg2½9 +8Ðrª¢íµ; ‰}¸žúêÙÖ9Õ„j¥w*¨«Jƒö³§ycó¯Ê×Zw™¥Ñ'Ö.¼Þ4ï¨~›B©obñ”žâkháC'¡F%Z\+,œIó/åƽ©ê¾^±Ôôí <±£ê¶ºž©¤ê{Dýiî¬tðe‘6šK˜¦·v,dsˆ0æTÞó^>tQjO[/ßÆÚÄú„sß\ÀÒ+Ájñæ²UÞ@A&œT‹ o-¯åŠÞ .–idXå‚ñaŒjüŸÕý܈ŒŒÁWØR¡Dßó'Ë^jó—tm'Hš0åKkÝÏšv—a=Ž˜5A3LEÍÐKëh¦K{‡«Æ +Ô +/%b>A¾ò¬šÎ±úwË–óy;Ù-üÝåý^êà__K¥-¸‰¡Ó 7—3Cô0ÄÓÜçÌ·¨‰$ŽQyci¯Ø]ZižXƒôÌ&[]CX¼Xnä‚êÈ +GhëqˆÑË>§«Ë‘,K28Û‹Yô‰íeµxÉØ]–͹Š£À1-Ät¥{d¢ÿWüÜ“ò–.^Y4gÐí¥ÓcÖôëËXlõ{­,,sËzÆ 2HÏÁ*VŠè~›ò¯òZüäÓµŸ4y„ê¾YÖ®á¼MV[Áq¢ZjNÏn¯hZv¸@‘ŠŽ }HåÝ°¨yÆó]Ó&ó^¬úÕÝ趻ý!hžÄÞ†(¢CÂ[ŸN5¶àO(Ûí…—K¹¾IæY%²ŽáÇÕ ‘QƒŽ)*üª*ÃǯÃÐS:6›§_y–;½Aí.47•Ãgp–²Ë5#†êOopTó#ŽïNC…¨ÈM÷Ÿ­ÿ(/|½å}OKµ¿Ô&³[[[3Q¼‹GW{«›yÄöao 3ûÚÅm!+ øù¡üÓ·üµ“DÐõ¯/Eq¨Ãj Y-59bÓ¹<—N^Î+T‚)9w 1¼Éj˜íü?WšîÛÖõ='‘hìÕ,®jÄA¨í¿z|Yº´h¦¼Óô\Ë É,ÌèÞ¢HÁÝãe#öHíñWzQóºØ^Euke©­·¥ÄqÌGSÆ¥$Fÿ*¿µðö¯Ãž€Ò5ïôý;WfÞ;¨aZ%×Ò’%(©$m¿Úä)Ëá¦ÀÕ1H4뻕¸¸‚ÑÃF’SðÑY€¨¶Ä +ô=;u" Ón§·ºÔÒÜ}^Þ4ÀÓ‚´ ÉRMRŸ²7 ¯5ýÇRÓ´»ÕŽûRõE›nó#æê*t,:•û]ú—ÞcÑ4íOKÐooý;íOÖK *riš½FZ²  ……+^TøŽÁ–ÓÁõ˜>±î‘âkˆëðŒ¬iÈ÷ÜSo ñ–÷%Ý¿×a-l²[µìjh®±¼nÜyù|B„­zoÓ\ÛÜ5­ÂÙLåÒu²‘–¥ÑÕyp§Âj+ã·\}g}%ìzmÂ¥ä‘Ü&;LrIˆœ¸²ÕZ£—ŽÝrN÷&¢²D¡ ²¸ Êc%Kªäe\/‡cá’}e|æ½7P³º²‚Û@¹‰Ì÷0-4pói@@²„àÀ ?dƒQœ + ÝWòw]Òmµo5ßê?˜7¦(ôíYoo´øžêxãŠP³Oo^j¤0y)¹øYzù×P[ßË ë+4ù‚ó]óµÇªhSÉwwaÜJ‚ ’{zóU*Ab*wR½b×V–Ö/}þñÅ<¶¨ÑÉoF ß 3Ó™ÜÕ¿ +ùOóòÿË^p»Õíõá,žVÐõ=ODô´ëÛmíÚÓÓ*̦ÒáîB ™Få†àSì·ªÿ,¼ç®Zù_Ëöövæ­oIÑ<Ô-¯!Ôo#v½yU0ê6¿WV{dq>›qXþñdâÅ4¼·ej¬±^ýRÓT¿·"çÑo£(VëÆò…J§>"Ÿd’X ÓüÇc¤!·°µ—™¬¯x#i )ëʈÍð³;/)Ò½Fy7ó‡Ê¿¿—®ùcäÍ{^:lâìGnú}‘»µ’8‹µÕíª3UËN§Ã;•ÿ?~FyóócVÐlïõ¿.ÙéwsAbºÞ ÷ÓKÉo ¨ú¶›s‰ExLp¿ó˜…â%7ù#Í:g“íâò¦i²GŒÌíìó•skk%!—ÔÓI ˆå¸ò ¢°mæB'‚v)ÓÅu+Ý•r-Ûu>£TÐP)v¥ÙÞ|‘ù¨šÏ–ÓVúÖ•o«][jÙy„Fo ¶›Ó2Ç0’cº P…Xò§Å¶rÏÍßË$ycHŽOÌåÐíàѬ¯tum æm>MKÕAìf·€7 dvâµo…X“Ï5ùGÉ×~IÑüçù…§Ùùv(´{­9tëa4)ªd‘­ÄU…À,âV‘ +3+}ªª–ÆÙêî¹u7¦RÒ :4-ZΪÁ«EqB(;‘ÈuÈ>æÌÏÍvoкäžI¶òìj—6±ið‹¹"’2 n–D¡‹ºs{aþ©ùiùSùU™¨k:dž~×üתG5–¼’!KYÖhØÖ}4ÚºGHÏ«NAA4¬0±ù}äÏ/\is «­WW×õ?RËV¶KPäȧâ’Ž>@+ˆüW¨Á–³i¶šÍÛKlÉ=ÌEk$_¸qERœdeD§é½@Ûí +dÎÇSü¼Ð?4e±Ô£ó§˜tÄ‹M–ÈMi)·Ž®fuµ‹ˆµGñrP8uØÇoõo8Oùwsc¤^ Ï,ù;Wš_3ëš¼Ö­¥Gwq?îÖF€½ä§ýÉ,‘§$Œ]Ûíaf½©LºE®™e«}atKû·ó&±ªJ·d·2ÈμÚwRš]ú3R9.I^G¼¶½µ²H²F’ÞäúŸYžTK‰ l=3éü\˜PKoÈTÔÉ@×t?.ÁåË{‹‹û]A£¹kËë„Žöf`$tô‹AGæÊI(Åø·¨9²±¦þbþ\\ùöM[Α[ùcÌz<&ÂÎܨý"ÔEêZܸ”º*#*üQˆýOÝ~O)ù×È çÓ^qº‹Fó¦Û[zk.—"ƒè«[Ý11$hQ~(Â_Lúa€Bî­imkfï+An8ܧéQð«0<þC… ¦À¶y÷OÔµï"jzW—õ+ËM)¡[YÞ+k;¨æŒIåh¤õ¢ªL#â‚‹b—–>QÔ|íåÌ/Ì«u-WZK­2û@3É2:R¥àQsg‰Ç4iIV‘NFHÈ$REfÚ:Ó6‰¬Øy‹D°×t9D¶—ªË-¤ÖÞ›ÌwÉ!e1•ãö¨@¨$o’‰¢¼¶Õ/ô½bÎ{+ÛBÝ žŽp責Kde‘6܈$«`Ê:ƒ­¯˜~µ$ÖW¶ÓºŽý#Ô%UËDц`h‚H4"289”0âÝ15b¦£®«<—®jo\Á@bÛÔÒ»šmí–X• ØV›þù‹¡OAZl;ûåååegÿÔ÷Þz×#YÍ›6lÙ³fÍ›6lÙ³f̳Ï$~ ÅÌ¡µíB2–p•’)Dm ê«P¡RŽ”*Y„°ô䈺KðúlµÈ"ꌷ·2'¥<>¬S‚ž“¯%“(G(j§yo.hey&,C1fäÑ·5®ýpCË{1oVI&iUóc V£ÔšÔëï­­l4øRÞÊ­!·à"†$XÒ*¯À¨~·¶´³Òô¸VÚÂÚ mÙ=8!"X™Ö¨¨IQ·¶y®ç_Òõ’t©4û8!²’å\ĈÖè¥ÀoòzÓÇ<ÿ9‘ù©ÿ9ùsÿ9!­ù§òŽçPÒ|£åëK'ê^f‚ t£}kj·'9b’&kc5xq&6ç@¶M(¿)-¿7ÿ.å»ó$Þi•o¼Ó‡s©K¦ëQ@º„ð"C 2Û\DÚ• øKÌ«2-»0áqñ—滬k^n¿ó~‰o{`ñ½Ã^_ðK[Û‰åÙ–ŒÁ QSºŠ‡a®¬ô›Í è>­{vÒ8¹y_Õk˜Ûu‘ä<÷^4èkQ¾GüõäoËígò˾ršçËžoüÕ½Ö®ß̺•Æ¦ºþ«§Ì“Ëíì‡Ö‘ +ÕG«©RMOþ[ùÚïËÿ˜·ÞLòƇyåÊ]?D_Ñ–ZÝ©Ò´{Im5‰,o4µ¹¥Ò›¿UÚi^i$–¹£HŒªµ…¶‘i¤XéQYØ^ÝN‰¨Ï©ÝKÃBKˆŒ4Q3«Fû½E)J ó‡–tåÓ Üúµµ­ÍÚq†Ar¬‰ÁáË@W‰­sž~wÿÎ?ù#Ê>Q±óÏ”4tKí{Ͷ\Üèöºµ–Ž4‹9!_VÉ­L—)0—ÓP=1 ÈÞ§/€Óò×óÝ5ïÍ?-<ûämjk=\»µ‹ÍZ|÷Q]ëV‚(9Zß»UGõ€àŽE”ÏY9‡”ŸÌ6:3j’¶ƒ¨;O,éÊ°iö¨Â6I’Ü#V ¬dÛf]óËqÿÎ-@5ؼÑå©ÚÒ™Þiì!yoÄ *#,a—“tÁÛ­>üÏåËï4yæâ+O+i×:ÕÜÆá#Ò´ˆ~¿©1·ƒ×,¶q°•“Ip +®ß°sÔºÔŸ–ºG-U›OÑ ôÐÜ]ùŠs o+Çoj²‹¹É‹ÖXÑbSBÁÌ`…çÉ£¶Eæ¤ðÇg\Ipï Öáf¸yAP!VçBX +ÓÆ•¡Òÿ-¬/$òíß—µ½>mSY°p’Á¨´‘_K +Ÿ…åºrÒ5Az×/EÐ.&7º|úeÕæ§cs_hém"N–±z‹;4Ôc W(„2uaáL…èÌ>HžÂÆK©µ-"ãNÖ&òþ§æÉZGk˜-nn%¼¾¾™Ö;‰$BVX£âT·§&:*äÉum%­Ë]Ù87Vi åQ’²™Õ£*ÜV…ßzP,òÍåƹ¬…—E—Êòh¥cÒî@%œƒñÌŠd#ˆˆ¯¾Jü³çmX~`ùkXò, äÝGÊ­ž_¹ÓÖÔZXe¦YD(.¦cQYqðWáÈßœ?)ô?~TÞycóA§Õ,¼ÇúGWÒl.þ°ãCvfÎÕ—ë×SËkqM2 †hY™jåÓK§¨Gmõd%´)G˜@¡™U9ÈiÔ©èv <.¥mD¤SAœÃ¡ŽT +¥ZMÄ¡XWŽûr;g×?ùÆÌ/6~gþZ.¯ç·‰5=æ…5à ¾“ksh¶ðL}n(cI —Õ êª¬Ü 7Â@ñGž´µü®ópÒ,4=|èú¼Ï,z•Ñ×ï´éVîæ(Šº‹{ƒgwj-¤·YIÔ4¼ú£¿¤)üçæýË¿[󵮫¬Xê«õ-E£—RžÔƬ² x²,rŒ*üt¤»ÙÏ?9ïôM*kH¿HÚÛkðÇ 挹yk¨ú­¦Í–ŠÖ2€G"Wâ«k;oüáõÿäŸç.…æo"y²3Q³ŠòêÞÔ4û)¤½´ýqs5Ésq%º\LÖà’"Œð…x¿¦s“þwyƒÉžbóÕß—d¹¼¼—"MJi}H¦µn- ,ô +ÌÁxñP”^?# ²üÏóªØÎÚ×—Mü`Ño’G–6 ÕVÜ·¸Ï'·æw›oôÍFÛ]c®›éEÅåþ¤ÒÝÌ×ˬ’<¬Áš¥¨[}Ïcž£²òË~Vù×E]*OŠÖÛC³°Óoc°¶³Ž8BAlš|ò8jÊÈî`hWVxد&E¬^Çg-‹7« ¾Ÿ%–®‹ì  **Ý t?$y†_2Û[ßëV£OFn‚hÈ­µx•ƒØ îó¿˜:/š|ë¥ßþhXiðèÚTîy…§ŽÚâI AÁ=6wQZ²©éÓQ üÏѼÏå¯Ë åòUå¬ÚÏ+­^ÏË©°› dŽ±ÚJÉzm¢u‘´22„꾜¬[—Aüºóeė˨j6Ztͤ/«õë©"µ”¢ÆËK øØ­P²‘±œ_ôí:ëR#‡¨(áýâ|G’»d*qCD‚EiLú™¬ùãÉš•çóV…©Yë¶I%¾Ÿk€Ö÷‹É42H>³Â8LQ‘ä ¯Jg‡4gó7šuÍ3Ë~“.“ªÜÚ>°ðù½oôa< +þŒðÁ0±¥¹ŠyM ãS£0b3Ðz?æM¯˜§Ñô¯%iß]‘­†¡vúœÏ`‚H†+m!{ˆÚdH#dâ¤WâÚ*ÎÑ@ªÝÙº´1Ïéú²HÛóNH:¢£u;šááÔ¼‡§ùÆßK½–85] ûDÔ"ÔRî{Ùm£Ã`-¡S „9RZŸjœÿÏ7~~Õ¼‹wç=ÊÃÍ^Yó_Öí–ÒúÁìZ ëàÙXI(›â,Ž²zn¨Ô¡"ƒ a›U×õJÊÖý­ì•$´y¸¤°z%š*F¬ÀTQEÜø“י隿š¿3¼ñæ/éþj¸Ó´”k½1õ ˜âžÛôl’ý\,k,Ê]½$*ììÏRÝOQò×åÏäßå÷”u½oʶ—š›[éúÜ>˜÷0ÝŨ[Æ·¬&ú¬™¤eãé)”#`Šsu§y+É>MÑïu-I¨FÐj–Ú|AÒå¯`O­”sj‚«É!¯Mw¢*š+¦ò•¥¼hv÷V·|ë-ß)…½Èô¨$ PôZîÕ°ÛPü©µÐ¬¡òç—o´}Z(Ñ›[."²Ô-ÄD¤Ñ¤²}`C$fpT‘Ŷv¡~w\ù½µ?k:¶œ—"hŽö—ÖW"Xý[YçŽD´3J"‘Bqn$¸ø˜6â4Ì»VÖ÷Íï¦^é!ŽÏN¸M>æîÖ_]DI*°Š²ñ (G¬(O!„:Žæ™%›LHd•m¥äb‰îüeaÚ€v¦r½{É¿š‹®Iùyú +îæÚÊi%ílÕí 2“”S*‘à )¸#;FçÉû?+[þgêšÝ•­Åì0‰$¿»xeœÿ¤ÈEÂ3¯Æ²1¤¤7*¡V©â%¶ÞlòŠÛÙùŠòHìíµxÊj,-¡âž£¢·¨UCΦ»Q‰½Ä6:,Z]î“*ÜŵÍÁœÃ!³2ƒŠ@؎߯jw”ôÿ/Zéºß‘ŸHó-ƒÖÿ]kÖ‚ùÅЬ@Á<,8Ê¡¨ðÜWÓ¼Áæ?2ë×:§“ÿ2¡×|­~ˆÐ…§×´·{c+#Øܯï…ä\ +†ê~B ,kãy·@×짷º^6)œˆ­„•„ðJ¬íðÓ­é‹Xê:‡˜¯.õ‰æiõ+Hêˆ g~@")(©!@ú7ß-êzçæ.«©ù›V¾›Z×ôûX$дô‹^H²"1ú´Q:‰ TU{­IÂ?4ùG@ü·Ð´¯%ØéË¥y{R¾¹O3^\H·ilŽ’H±‹»™Ä«ëÈ£¤hФâ#y¡ØyCEÓü»mqiW2^êï÷ñ¬LŽíɦ»…œ½¥aÞŸ¥ßjwÁke.ž@T¸¸>©Q,¼ ÜÉâÜ”R• Óòo姚|ûçC§þ_è/ùIsn¯e¯ù®+I.%šéQ®®2z@ÉñIû¹8¶æ„%ç¿ÌÏ.yKÉ6SyïÌ×™z\R[O yRÒçÐZÇ ·Ž4}:à—Ž4˜‰h­leŽ‰¸h/™§Ó´Û BîÆù-9ÎÍoq¦ÙÀo.lådÒ·h$A$!$nuÙÓ+Ö¡eÓõ«c´GÌrÇð?ÀJ”Z0$mÈÉñ9“ó‘vÐéš©mF SP y¤ØºysQ[{E¥ÅÇ¥Æ@›ò ÉØ33»M-¼Åÿ8èÖúªjZ¥Š‹m:v½×®"]SN’K×{¹a€³BRHZ@¢A:¢"8HâŒ"¥ÛùIµ8óùšÖãMšöUÕ¦ŽhôäHäg˜È÷i¡’«ÈÆ%øGeP8©q¡<<®ÒY„ ÝÌÝÅ„Y] +е‰Ý~QÖµëÿäg—ülúŽ”¾•†¥ykosagoxíed—Ê·J Ì Þ›·5â‹ÉKrä §þv]yѬôçºÔúÖ¥£Ú^Ï¢êwRZz:– öòzÐÇ( ·i€TjËû+Ç1Öü¾¶vöÚÔµY®ntÛ[™4‡„¸½t­Äˆàª„7võXLJ +ü‹qÞjÓ?pÒ;$«1n.Î}7Þ­N"‡q‘ÿùÇ[Ë7ü±e%šÝ #¼ŽufŠi¥•mf!ã/ÀÆÀ5ØšžÒOùÉ õ$¼ït·qÙÁÙ¼Bx¤¶Óm¬æ¸Lw ,©%]TIŹ(â£íþjÅqÿ*û^ï­m-¹‚KˆÙ-â…fŒ˜Ü”9b¤}š5@¥+Y¦¡å[—ó ß\J dŽI +3+IÉž2†6.O +ôï^½¯Ì_’zâþjÉ®Þ\Ë'–˜\ÞÅs1Šy`–äK,öæ«Êg„½ЭO0Âç}þr#È:wåD µ¼6^dŒÇh-!F´²¸ŠÃÒ†ÞX®ç¹¶ŠÚe[ÕãÍzzL¦©Ê´ÍÏ+Ûù*×GŠ$X‰áµ–ÝÛÁwêXµåº­œ6t0ÛÁR…ã?fŸÛm†qÝ[ó/Xµ‹TK OÉÉæ5Ò¥Ö½p×777!½kÉonmùKª2shÄ0-]cϽä:fŸ¨ù~^´2êÎÓ\\Ï^W3]Mn­,.¬d…êCX +í,¤»wžd- +ÚSÜáWz­OljÝÞiz-´1ÚXµ½ìñº§©Pñ(†Jr Tàü4ìhÍRïÊš6‰cåái®µ¼ÖðÍ4 –qËQÉ$`Ôq`Š€/ìž2/É+Í>}±¹ó§æ RïÊë}ñØk7BúkÙln&’ÝœÉ$¾›£³ +ƒâbÇb•‘~PysÌÿ™\ùŸY×/îü¹§ßC5´´Ë{=Ó[Í,ñÄd‘œÆÁ)­—#ûŒ„ôraɋѹIfbz¹ë‘. ¤yONŽ–gbÔ 'sMöÎê[Öõñc|$ªªµ'a°®zŸÖ ¯7–1!àʪ(ZԆ»n1Ârª$œpçQR­µ+àqŽÐJæêS»§ f~%š7àXîTŽÙ„rª‹uW z¢0Šèk΃¡õƵ¥@ $DÞªÇÀÑIn@Sb ­pÆÚúßP‘m/-졶dx •­È–éñ‰«¸×“Iò:'™´}0i³Ã5’K-«´¶Ñú&8½VfB +ƒêrªõìM©?™<­~iòž¥«]k:{-Úé°êÛÚê34Ÿë|Ð+(¿wljòWØd'ÍþP¸´ÓZÒ®5m_U²+u&›¤–öúƒ¼ÁåúÁâ‹@ ¨ªŸÆ6'¼óž¿ù­5ߘ…ß”õ~>g¼½Ñä®±êNó}A5 y= ê°Œ‚Œ¢@¨Ã“dSFx¼ÈÖ–w]ùóHe‡[‚ãJ%÷)Cio "þñ•Š7ï@FøÚ®†þA¦µ”ö×¥R(Gäò©'“ŸS“/ >GÇ|ŠùÃX“˾BŸÉ×þLÖÿ0¿z–°ÂGÖ ºžù%˜Êò4w§š ¼‹hØŠ†I y¦?>i¾jÒõÍ?E²GRÔ5G ª[ÚÛÏŠÔ 2Ò>%¡n$Ò(÷JÅߘ½åÛ¸®´í>fÞY‹Þ^Q丒Ø·†(Þ1Ty$dDVoO”l?TÒ-´¹£Ô4‹G…µ–EU 0à?ÄÁ…4ߧŽý#Xü¿Ð<»æk8yKK!ì[K¾³ŽÚ(âQp¦#:»Õ‘Û‚§Ã^T]þ*´+Èßš:¯ž­ßÈÿ™7q_Çy˜´tÔŒ±‰D5¸KuD)æ×Õg~aJ1'‰ãUgå¿›fó¦¤ÚŸn%´Ôì®Fµ¤­êºXL ã‰%ôEdrô#¯Çácg¨Gs§j2zµÔ>±¥<\™cB„|‹À¢ÑÅ)J|UA/•®íüíå9ɦMvšãêVžfÕ-áy#†Ò⿽Ҩ>¬1±uaýßÅêr\;»ó6‡w¢yÓÈZ|:m£ùTùvãÊ6Ó[Ä/îá¸Wh­‘BÛ^\*VÞv(ƒ‚§›u+˪k:¦iK?—$Ñ¿ÃÐÞ5ª›ÑÊ9ä†ØB¨âWøHnFJ¯-„°½ä.fŠb&™kë«fg¬ÍÔo_‹èNó%Ñ’·êMotc‘f˜Q¤²’K 5ûÎL®¬4K«Ñv˦D#ôéaY`ô!?B"8) Jmí£PÒ¼·g™¥ÛϧYl%·Y¡Ž( qP¡xÒ:~¬1ÕnµKý– pmän¤^.åY¤ìÆ4¢€§ö·­WÕ.üÛ­ÀSHº»‡FmIxÅ4—k$p×Ôs*be0ªûóøùˆùgÉ^BòßSÕl4øu»HE¿–¢‚)l­, 3Þ9X8’{‡—ÔgdØ¢„dŸykÈþQòÿæZj:âéÖ… 1ùfÆ(žÖÕ#2\QbjƳLÂPÒó.èiÀp($vÖé®]ë—f»‹Õ£%-#R~€4`Ûîkßµ2‘§ÿ•Ã©þgÝù§U{]BÏêðùBŠ VÑBil–ÁˤÉZkEâÒ›} K´Òl¢´[¶½²º’áï®õNæYK³ +e¼kA6X oàw§þ\_XkkÑy·]¸†ÒpbÐïu6¸µ¨ä¥™Yˆ`ëñÊIµR@I +€½*S£ã¾K#$FŠ»"¬jBL@€Ì?›|!«¹;³3±=@•Ãl™I¼Ž[âfiP¤€ÿ.Ùr;Jk!-µ75Øüñï#È +ÈÅ•¾Ò“PkãUHÈ1¨B7E(~ŒM#Ž" (#¡ªñPûS+—ŽÍ›6lÙ³fÏÿÕ÷Þz×#YÍ›6lÙ³fÌh7'ð#®Qu„Ó§PFçnãñé—Áøò§ÜAÛè?ÛŽô¤ãΛuÙ”šxì¹aŠ|`ЩR¿>BŸÛíŽäу: E‘¦ÔuÐõÜïí¿L ‚CéPáÔ÷ z{t÷ÆpYO¢À°‘]Hî +5wÓnžûuÁvVºMΘ÷^·Ôø°Ü‹†ó- +ÕSEùÖ„bW—ÞEòç“/|åæ]^,iúÃ{®K5ZH¤¸"^VÌ^jÅcNâ ´äj¹×ÿ2ïí?3ôÿË/ÚÜyÇ]Ô®m,¤ò•¼Tkv¢d¹†H╦F‰Ä²¨¨^&¦>­Ë¿1ÿ;­¿/üëúúäkLÏoö‡*,i@ÛÆñ\Gr‘ÊdY@î€5°iȧY½³Ð ¶ia\jRSL°tãˆÖnd¯F‘üCWaÄçž¿ç ç(o¿$ÿ/­|Ôš¼:Ç›/R/Ë=3P[¦XÑb‘ž{«¸]bô@3@BÉ"zœù*z|”õ¿&þSùóóó%¿.ô­oô„—z™®tX£¸Ó¦¶ vÖzœ³_ÙË4ýFƒ‚Ñ£'Ÿ’%ù¡ùßùƒåÛs§YêV¯ÙåÓ/ím.á#Š$Š÷º+´lFêJoË÷Y /u­ÃP‹P×Mµ%nhX3¨E¨5Ú»î+žMÐ?9¼ÿ+"ÓÍßž·r_yXÔN£©è“Þ_X\¥ôÂ+ÙÖÒÈz,ʵf$P ˆmÓ¥þfXù‹AÐgü²ÿœ{Òbüž-)´ÝkÍÉ>œ—Öv~]°K«Kiïoëp'G`-Â’"²s2åÇœ4Û;ée¾´›T‚𻶸¿õ•£HŒi¸FDæÞœËzu'žyÃó‹ÈÞSÐoo¼ª ¸‘é%µÕœŠ¶¶Æ"ÒH¢dôÁ6ãVêzd[ó;Ï_ÿ•’y£Ì_ó‰¾nRù†ïôbè:®‡$ÿUÒ.mVâyí›S·x¡)r¢$`LàT† ¾ü»üÆ“óLÐü·ùåÍcË0.“sæ­kP·Ô¢ZJ—W®ž¥¬.T¸‡•Ó"¡BÅÁ¤Ùg̾YÓåmKòí/4™µe½±šUš+xýB}$~+Í[ŠµO³Vëž+üÙÿœŸóWæì:1¹kÍ ™¶µ¸Y.ì™Ð +XzsÄ«°bUÜl9W<ñæo?ù×ÎV:V—æfçR²Ðâ{}Êy Ag’4®°G²§7bÍÄG­s y3ò×K¸×aó_›­&¾›Íz¿;½WÒ¶³»½]y즅ZúÊHd_ªÅ‘$2'ïctUmÔD§º¸¹ãëÈÒqûtƒÎ–^WüÍÖ®-ÿKØ[ßéöÚ‹Ü_Eû†~­sm#,gÔä r¼A°çò³PWó ž”Úºyrõ¿DùŸPF±£ò‡ýÅ£Ü2ÜšE°ø9–Ú¬rSæ¿-ù‹Ê:ÝI䃫þ˜±µ¸ó—íc³xÿKÈÖ–RÚÅ3*X}iEŸ­ºEêúkðü éw7×Jöna¹ÿtOH²+Pü(b ÕþÏÓÛ=Iæ-B×ÊZÌZþ¥VÖÒRÊãTd—Ô< tž‚›ø¨:Ó'_˜oæO$yºÓͱéðCåýWýÇM®ZK=ÜZ”QKÒÇ4—M4ÈÊPqõ&dPÄp«Fó^±¬~^ ;ÏW’Ù7–#{í]ž »ùmo¯tíJÁRçOÒÚI`I'š’ ~q°I—Œo’ lù†Ñ-µùbXà¿OBîò+‰gúÛõ.ùJì«@/ œ–´å“M´]KO>`·Êg+š”•ZWb~Á‡** Š?jÓ=_ÿ8{ù5ù1ù¬5_Í _Ë6º¤°=®•c¾ ÿYÔe^sݹ1‘Z½Ç4 dbw¸OO¨Ê¬cU +ÙÉ/tO1~xyÒÝŒºåòêvsÚÝé÷6v~`”ÿ¸¿Nâ95Øä†K8ì.L'¤Ic¬…ÉBqù‰ùÌžYÑ4»ßÊøìm&fXnÖÍÄÉ5¬0)Š3:ˆY8¸.}>a·æIqžüõüÍÔ.¼Ã%æƒgo¨]^G%Í»†S!R²NMhP}ÙògóÎúçæ_žµÿÌ/3:¾«æ;ëOP1óôÄ×R´¬#3°@ZŠ  + õ—ä‡äç”ÿ.ÿ$<³aå+X^]\ŤAæ˜5¥±½º¸–ææÏô”rÜ¥.ü‡§Ê^?PÒ«çšd’I¤i¦bò9,îÄ–f&¤’w$œëÞSüΗEÑ­åó6›i¥5Ç¥‰ÌÒ‹‰ø(Õ!CV†  OËÞf·ÐŒ±ÜhÖZœ^;¥”·dæx2È8— lE: +ä³ó^7è~H‡Í:v¶ºw™5‹Aa¤XKamw(‡M±šåÁ´¯é &XÖVz,‘+0Å­nÖÙ$F·ŠS‡Å(bW‹røx°ëÐûgOò™¼­«rž/Õѧ¶Œ“G7!à±SÇbZ¹Ð¿,5_Ê›.}c[¸½´óT÷l‘[ÅFѤ¢‚'µKIŸ•YO¬q Â3Xyòç^MWÌ?—<»¥˜ukÎÍCR½u£¸Šò;XÑbf‰Rd-ë»:»Œ±ß–%òÜ}GUºxo#?èöŸWÁ(fZò#eåðšoC]¨zFƒ¥År—1 ‰K°dŽÌúf9L°LVµ ÜTPô•ßo§_óŽ_——fò¡w#Üh— HдÁh"»7šmç¢í$Ï'2êî¡dˆ`¥·¨òüäwœàòÏ晣èš}¾°ît¿Ö/Í…æ—ac©Z›†ñFªžŽu†¬ÏñÑ@â=s©^Øé‘èv±$ñ¥Ð¸´w‚[ >›VšáTzŠÁIŠªŸ ¯Áˆë^V»šmBÇÔ»[+†fD 0䈑ÈšµIÔŸÔóÌ?”:ëè>­å©.|Åé0___\Ïn®Áã/ijòs¨?2³óf;WvŽh¿ó^AÓ|Ë©ùsÍw¶^]»“[}6ÖÆ{€MϬ‘NßXŠ…G5PF±…aUC?.~lùKM¿¼òî³{Ÿr/…Š!K‰KˆXE$p… @QÅ@ê:)%”ËWo©"-ÇUáʲ’àrƒâMé¸ß"Z~’ß—š¬v¾fµ´,>·sn³]-ØÂZÃw§HaAê*Èäš‚UhÀtÏ3êW_š~[¹¹òv£qZZhú¤Ööw–Í:RöçNÔ£Yæa4h Pügâ 9KuQwçM2;¿.Ý5ªÜ$‘ZÞOe ©ª™šÞäG!ø (P‚j"¦Zž¿©]¸Ò$·[9ÌHa&B¦Fä[f>£vä ©ñ¨Ãß2~`ùÓTY¼…{ke è:Œöö×ipÉs2ÅrCGûÃpLîHe’`?xjÊßÈg“(ü›¢jöß™¶¾lÖüÙæÆ{ˆ¬5;ë{ {Ëây>¦¶qˆã?°C#“++zu/y,oÓÍw¾d¿Öux¢¸sa4éii<€W‹B¨=5©RªÇàøGìmÒ,Úî+k¨žOVàÈ}R&–¨­°râ£pkÒ¦z®Æ1é>SÖºçWÕ-®$k€Ã`÷1´1CÔyS’’Á¹Vœ~ÈsÇÒ[yW_¿Ðµ?/4-å÷±ƒô¼:ÌÚÜzKzÒR IkyÑÀB‘$Îwi£_ÝèºÝ‰Kê‘FÞòâmJ-,ýbDX%(`š4?R¼©ÈüY͵oSTÖîlíb{Û{„"Ú:º…•ˆã!$ƒPÌj_öŽÃ3ÆZß<ŸçŸ;jº?åðo5éR'¥afZö—7r[ƒõ¯IšA,Ç”’mͨ9ï/y/Ζߗڙ¿0í—ȺÌ7 i«ß2ÚÜ[h‹’к”ãH~‘’[˜jw'ù‹Aÿ Xj $zv£eèC« >kÆ/ÞÁÇÓýßÁé×÷`y×Ѽ·>ƒ­ÙÏ5Ѷ¸J4⨒F’€´Ç®ôâO¸&~Yü¿?—˜Þ]µ¸×¤ÓµvXTC2[Ih—\ XbK…xç,ìÊ8´”â9(%küËüÂÒ¼ÿùMæ'›G†û@›ëK‘A%׬¶±Iu4Ò5‹Å4A!£$|oLÑX(ï:ù£ÊzÇ‘µž?¯YM r¸d–kVôÑ¥­m$UAo³×à'Üy³Y‚êÚé¤k†NO<&UT?>Ÿ`¤Š’~!ðÐóüå$^Hórùuõ—ó³jî'VwK{k–I½;w0¤N#*Yœv.Èë𪈟–?çoÿ3<±™<£%¶‰äýWOØÜM£Iy¨]X[ÜXÃwu ÚÚIºÝÄ9VXé:ÎFÈe½·’5s/–|£ªY-†±QÚI.‰sw~ÐHÏ"Ü]7(YÕ(#J«é«!ääâ‡UÕog¶ŸWáv*’†‰“ÖŠ¡=rWíqøH¡ðªÔ%sùÁùÅæ]M]Ñ>³¥ÝHÊ%Ž[=2âX#¼´Q5´z¤…)iÁ$N'•z pŽ‹ÿ8Óù3äýò='ÍWÓêVÂæÆÃP—UÕlÒöòÆî°^® P¯Wuyc$¯§Çï +à8¿.t,—Ó44Ôµôä—êw³\µ¯Ö%³G­ ˜ˆšÄÎœ…ü°¬ëÍQu;hæU±ŽÎ[²ÎìÏ©n"Š«ñ +ÔTmÛ<Éç«8éú-§æ:Ÿ‘otK þ¹kr%¼0ßCjò'¯¥@öþ‹l²jüABTqROÉÿÊ=OòöÿÌVÚ•§ÞC¨j6hri×ÂKy§±¹¾Ho¦«/Ö ’¤4A™¨«S"}§ùeå ¼¯>¯·å†Ónm&ÒÒQuj%´šäz®³Í==1êšñ'šý¦å­[CÓ¯­.Ú?I¥–w‹×‘‘=6ˆ¤f%œl½7®þPy÷òÿÊþqÒ5)ô½;FŠÂK»½JæÎ;ù䆶’Ò0¢â{™ši‚‘4ø‹ + +äçóÏòóó?Ï^FÕ´Øoïõ‰u5±°Ó`¾“N²Žæánc¼“›Ã¬1ªÁpe+Ëá +w¦þfùOÍzç•u ÆòçUžñ-£µ·¸[(’-ÊÌä´1@Š!?]€ÜÓ'ž`°½Ò%¼Òn£‘T7©É9´â~(A©p~Yé‹Ío&ù³Ë÷JÖíoŠ«›ˆŒR4«=6>Œ†'BÔU”Ðê<䧟<æ«[Ì#^jsMê}SKY­c·’_Eæˆ½Ó `hÛƒGRCRHàÜOBü­ó&•æëm#ÍÞR¼Õ$œIõM>Þæ"–tF•VK’$ˆ¡°`Z†ªj8´sB¹{»=vÑ5“Í=Ôúšñc*ÈWÓ +hJÕÓùk¶r%Úù’k:hçýA7Úžµæ›imešx&§î–ƒq’H•¤õIZS;g]üäÐt(OåÖ½æ;X5¯3Ëc¡ùnÇòúñå´±[«Bìek‰ÚKxdq£!e!ª[§)ÿ懔ƒ7’uŸ1iPÜë7–-“§“Ò·Žx3#Ë!’$vðsB YqËú=“Gú²;V’7°ôÔõj||Ç6•7Ûá5'¸iwzeÝ—–WHµšÓIšx¦òýÃÌ&kµi#0›÷ì Çoݺ±;UbÞ^Ð<ëåk?Ì+Í?LÑÓY’3­åÛH’Ý4Û¡H£Öµd‚‘Ã,®ñ¬h}UdN¿O&éÞoÑ4OÌ[» ?N’ôÙz:ž—n?©L"E$¶u€‚Y™”*ŸQTЗy‰íînÔ$µÒ‚·~¥@r6vjñ$W~çy²öùŽ³2Io©*2ëmy­³Äɦ†¥~YùpfNMÊ ³Vaù£ù£Dòùеcc>ŒÒ$þYÖ-"kyu®Ñî^ââ6øƒ:”ãÌ,”Z04\èºGštO-&‰­CbšLî“ùsS·Q·ÉvpóN>ÕYqæø­ -Ñ-5I,î\¬Ä¡b4b´+ñlM;Ï|¤]ZÅ<úV´#:}à@õHåeš1%»ÐP¹èpçó+˺ֻ妸òœ×k–DIfa½»°‘Y­ä†µ@Äañí‡?š~Y×õï,É{äÙ®íüŧ/;«^ÏaÎ)äˆH¬QãR +©o‰ª¯lK[})õu›HFÁªFb ÀEi±Pj|Þi›Eém4ŽÑ’ßÓôa0úl•æ¡eP§‰UjªÒŒGQ‹þVZùÎÛÈVV~{’Iu›¬%ÓÜ\GtÓ+?î˜É K#<˜±e©&µÁŸ•vþv‡Èvö^}2¶­lnVáînc»iƒ°hÜÉnìO$r¤3räµ=pªXh ±‹Óá?¤«ºò}{̾Z¼½×ô¯Ówº5ÍÍó>š¶«{kv“Ãa}f߇¢ƒápŠ¥‘X«¬RŠ(=;¹¥wXÈ18žÜªÒ²l…NÇíWÀRoù=æÍ_ÍžIÓ¯nô©´½yon »´šÒëKÿM°“Óã¼$,F0Œ¶Ÿ^1-_Mm7Ì:ÄSêÒê:6›Aiv×Z~¨nì.é4w36ÖÚ³8¬jl9)v8eùyæM_ÍV©ªy¢îêX4h§Óo%’};«Y™¥[Ÿ«ÛÁ¦JQ@SÓaö™!:ÄšóJ¿¦Ä¸ÅÁdR‹é¿5sé-„Ô£¦Â Œ—ù½¼Ë<’ßù¼]ZGsÛà™}&Ž ‹#%·5”Ž|”ñ ·À 0ƒòÛXü²¾úÆ—ù4W³èNÓ]Û[µžx„4`ê*’"·¤Cb¿Ì@¡Áß–—_”OÌ—Ïìš’âæK«[¶š!uYø„D0F#ù8lºÍõ®›éX«êQ†–•–HÜ»+H¥ +p@+µ v`E0V‹ù”—~NžO.ÛÜëZ5“Ü[Kwsewepf ,Åô&E†?Ýd@†VR2'¢þMYYy×Qóœ¬àò¶¥yq§§éƒS°Ö"†Ñ^+Yæ_­F{ˆÜ„YkB”+NkåËÏ+êþjÔ¼ÏæCä¶[êV:]ÄÐÝ,VñK-$ŸZŽ]ç¹V*¼Z +èÀ‚)ô›ûËv‹k\TÎçš1`HÓ A W¥=ûdkÎÆ•ùu§K«y¶àé:dmA­o.áã›DÔmæ+Ëê8ƒÔŽC:g5½#ó_S?‘n“[ÔIplã–g! —â¼’$`‚tåF¨ßo…©Ô-ÿ8¿.5+6¾´ÔåÔŠSAik9’—9˜¢zËSZŽ”¨8ïWSÒ ¸Ò9˜=BâÕ +·àræʯBV¾rÔ5ýÊïË©3Zse{ÛÂ9UV¤’*9ZÆTÓW¹.Nò‡›nôŸ=EzŽ&:6¨æERûqFUŠ–€šg’<í}¤~`Åj‚(Ù4]ZC,jB“FŠ H~B¥ ƒ¿°…˜y’,Ù³fÍ›6lÙ³fÍ›6lÙ³fÏÿÖ÷Þz×#YÍ›6lÙ³fÇ«O,EHøE@uBÇáè *w?F(,±˜ˆ£þÿÓ.(”¢!›sþÄuØìZÑżãÜ…¬E‚ˆ°&‚€õ»n1&ŽnD±¨’F +2ëøäÜ +ÿ7j”5 };V¼³*ïqbÜȤ%Ï0zз„‘Ó}öØñïÌùÊ?$þ\y»Í¾DÓínõ/1yN! ÚšÛÀú5®¥4rðŽyf‘$<8†p¨vä¬v*žIÑ<ûùÝåïy+IºÓ¼¿i}k˜$¾ŠkMZ÷H«Í&‡ bš~$ê0ô̱B¯Î>æ¿ÏK¿6h–ÞFÓ.í ·*5ÝRéR‚ÒUä¿W +î=I~,âˆ0ˆ) +×õ4yÁn,¼¬ê×hLO5üε5'¿À³Ð+_ùíç¿:~nÿÎhþbë6žB‚óY¿KS?Õ®ï¥4ô$ˆtøÌ¿Wž@DH¿¤þÔ„–õ§•ÿ(<‹ù ä]P·¸“K²–î+=[ÕàŠîî•“]Ÿ«µÔž½Ÿ­ËM †-ÌH‘GŠK§ê_˜ž žN´½½†ÒÙn.d¾ç•c€$fY¼Š¢¤¡GìAËìî5ü›«zºòýz:²Â×$±€¦ ÆÍÄ«RƒáØýÙÇüÙ¨~vùCQÒ£üÑ·ÕËiË=¶‹iæˆî¥ŠŒªJ-æÉÅ•~(H¡|šyGòïÉ6£y©~NëÞ]Ô\‰ï<Éka†¡ª]G÷0^Lš=²›‰à’F¤!BBà±NûÍ7Ì>\¹Iõ}>k9%2,föÝ—›)âü}U*OQ¸9Ñô¿Ì©¼Á:ĺbÙÞ£ hÀŽ 5ZfFv¥*Amºv·æÿùËMCÏþƒ¯é^Kм­ªXÀ–º£éÖk%•çÅ#Mpm.Œ¡e}Ð/ ê6ËŸÈwÈ^Qó—çÝk]Ö£óž¡¿—+f-/íôÛ‹{oIõ‰lÔ6’²‰¥õ㧦Í«,=¼õ­K)¸d¶/ ZËr¶x mPÊ“W1ñ®yËò¿ò£V§é!A«,ì²Ü}jYKúÁYVxb·`©µ)VèH¦ùÊïþqGÈQè–z厹¯^ßCg6±qæ}IáŽkYáoRïJF¹ƒ…dPЙÚde$2 +‹Çç'æe¾©Ù§—tÝJÕõ; K*éÑ\M¦Üiêú|+y=òM +"1L"ô%ô™“Ó©eˆuÅÏt©,Œz-Æ¡ ²E<ÆîV„½²Õ$HšÞR®¤s è~~Èò§È÷Ï&”þPò}¾ƒg©¥¦¥¥Y­Å EôÕÞw¶%œ´õäÄWƳ¯É»¨?=µo5y7Ë:_姕|‹¤Z]]ØÝùÇHÒôÝnËBC%½»¾«Ÿ,³ÝEG’FvguäÏBÕ!üÙ]òÊÿ—žmü½×WÌ"+Bž^ò汩\é£Ì¼­ +Cc¤ýf$K;™EÄ+b±Äê‘Æ›*^‘>ŸªéúåݾaoeÅáýhîÕfgmö”ÍÄÒ¾·2>!RsyòVûYÒ¯`¹Òâ“D» P궬×E¾/ŽY%Œ¡Ûà,ToðÖ‡<¨ù[ÌšŸcæ+Ë Ë +öh÷×6³Û-Ìb¥e†F_M‡Ãû.wεåo2hŸŸ>QÕ/<ãdºv©ªÍmþ"Ðu”³ÖhÒêkx­¯Þú*ÊÏKâ ·¤¡~¬ú}ý¬1Ü][I SPÅ$‘²«‚¡ÁREÂAù"òåÏ™ïµIü¯k7ÖX™odÔâô¡iE0—ô"¸˜¹kNH]T[ñucS(ÍN-Jd^ÿô¤VèÑÃéÉ,«quP$PU@§Èâ^düØ“Íz|)4Ë‹k” +ʈK#8«QËV£Û ¾düÍóï›tk_.ù‹]½¿Ó,äkˆl..§šr北%v£—%Ø}¢jr[äÈO(Û\]Ü/”ô-ê$ž{ /Mk¿©[Q,Š³éj¡bh}(beã¬B±_L¹§•£ô¹‰e©¡(RGˆžjóÝî¯ms>´ðI¼2¬WH¬ ÈñW`µ'ì(@­|ŒgKÓ4->ÏGÕ ãoÜ*4öö09!·ŠÚ4¶[¥¶e‘™c„-ˆ*xãŒÎÝù!ù÷ä/Ìë™ÿ/üà‹=QͤVšÆ¸‘úÛH´ÑʳȪËÈTñ4;ÔgKü±Ô¼©èwŸ–úÇ—4¤ó7š¯4ý7DüÁÖõ ÛK-+›”Iî.)½ˆ¦­#Dü¦›|^lóWæî»åo8Ø\ù¯ôö‘å}6ÞY5*_/éw3ùdÓ¡Ô&[{RøH%—Šr2#+/¨ß»?#¶L,,ô-[þrÒÃòÿò“Ìv—V}$v>hó$vͦM%¹2É'º…­ç¸C³øÃÅP®Ô·žÞÇþq~ÏóW°½Ñ´¸Åµî™åo+ÂÖwZVŸ=åÅÅòØzIªG;LÀH~ÉY+e&ZU…•Ï›£Ëò¹³µ?XJ q·Ô•Œ7Úe!7ªŽ¹êŸ/ÉhÌÖ×nâýÞͼEpÑ¢óâ*ÀpÛtPh T×í?a³ÒÓMÐ5†—_åk¤-½¬qE ©±µfÆJª è´á~1¢jüþÿœ’WÔôüÅåÕÔ-mVYo"ÔìIo%P» Æi˜ÄÜ]>oZ»'99q^>„üøÓ|Ácå7Ròñ¹N¶…‰Ö4ÕdõÅÜ܇®PEÆ7DˆòÜ»(2Tªq…ÿ…õ .Ô<ÓMysµ)iª1££°jˆá¦yïZüŠÔåÐt[mZc¨ù‡V ”³£µ†;y¶å(2sRêÑ¢Ñï½iž”Ò?´_.ùÃ_¼Òz‰¥ú×Üpz¢æSwr¥Û+¤«G,­ÉÜ‚„Õ3¡Ýj>\ѵÍ]n–ÎÚ 5^}]ý +<$1ÏÐâ”(Ú—?u+·Éu)ua­¥ÈdŽÙ) |Hï·íP•f# šÈóžº6‘¬$ñÚB¦ 4B(„z²HÅ¡hžFJ“µí¼ÏB¶òΠÞaó>õYµ ›ë˜»àä1€ÊG.7+ª†-Vnà!¥®Ÿ¥Ú]_ÝÛ¢É=Ô••?w"ŠÄ‹AÁOuŒ5;õÉåí®Ž³É©j—‘™Xf £#5CѦ£‰ǾuùÇ«O'D×Þnó~¥iⱃG2_,HÜ„¬‘'¦Y™Ê¬ejÅì3ÿÎOjþý!¦þ]yË:“Ù²%ϘocÒ–âÊkh…cI'šiBCÊIÓe+^ŒÙÌ?:µ73ÙùgÊzEä‘8 ª]þK‹y"R"iœPÌêËÓ¾ [nià³&M<ÜÛ³ÜY°"BÐDTʇoLqW‘5ñ'æ7óÎ_Yòôþ`¹òĺ֙%Õß—e•ìeúŹÚKhî&0R„‡n-&lÞZÑ¿)<·g»6cæá¢ßŦÙù¶éÚýçÓõÖN7fõ£ŠKei-Ý•Ò6’9Z8”#uä(ßi·Ò4¡µ¸·³´Ö¦¼fšXîæI•§˜Ì³9”º’JÈÕ1MDòÉ«^γZY—>…³L¤·jŸYJ© !HRxì qÈ/È‹o#iqjºëé×ï£<íxš'Ö={»‹[—ºAp%µ·”ª:FÉe‹ŒjÜ°lÿ9ùïsù•¯\þ_ùfïS³¼Õ 4½SÌ«W²’Î>w´xï.ã7?S¸hšàY¤w¢q…°J†ÒßòÓO€h¾d¼Ed×/V¢]®måäŤÎѪ¬Ã ‰—Ì:‹A}§«\4Eox!xó+ËÕ<Ÿc@EG¶Oõ%Ù~gê3Çæ- o5‡±¸·Ó5fi^[>BV^iq2ÆÔ’_…Ê«¯!¿.$F¼½{iù åËÞk¹ÓtH¯íîõ{{«•UÔ'–HVS$éJ=aï#äcˆáÉLÚ÷ÉÞVü¦òˆºÒüÉ5µ„–³ÞZÞÊžåüHíêC J9É(«Q…8ò——ôë«MFEÕç±»e™­áµš5‘—ˆædP«UéÄŸø/²2+ùAåI|£æ[í7UÔ<»nÿYkk=)í-=@mÇ7»HáB±§¦ì“Oû¡‚ÿ?ÿ3áÖ4Ý +öÇJó•Äb8fÔüÁ¦Ky=¸k©$TµÚíÙÒ¿¼Uzªòªf'ÿ0<Ëa¥XXËÌs¬WWšŸ—ùÇ ‹;4k íʮƀ¯:ÐS‡÷¤àv’hŒ–ç¿©°‚TŽ$QBCT(­E*;Í$šáä’+£ê~î[y +…K†N Uƒª +µX2ñRµøŒãHYcšÇÑ\Ž¡Ô„*ü”*ÌHZ¤|=†(í® ø +’­ ö·ŸÞ$B£`Ê¥J3± Äji±µ£ÙÝi×ñÀR{ˆáŒ£NP ¡-Éj…ÀV +ïñ\1ŠÓJ×ü¥¬é©$‹ZCõyo=!N¬ì’Â9$QËÉâøÙy ò©ÜùëIüÍÐ/õxd³ò»ÝÝZGi£<×Üã ¶¥T…Z^&U¾&9‡›¡ó­·æ€úä-gå››Û«kx4R{‰fš5T’ü:DZ@’-ÕyQš€änÓËÒj÷V–HñÎ9¨ŽIIJѤøWµ@siß‘÷Þe—GÒu ý{¸ÅÄohºƒ}\³z“Ö2mÐó »~•ë£WüÚµò.®k¶vê, A1lbúÔŠž•²#G%ÄqITG:‚O²reæIí|Ÿ êÞd»Ž7´ŒE,ëJ×”p¥cO° -MÁ÷z¡e-ü—V‹okol¾…Ì•xöeáM–¯¸­W¨$ŠàûoË?;yo_ÖZßF·Òm Ò,5 ´y­‚´ñBð‚ ×Y}BñÓ’»S‘=CÎÞ@óþ—¡h©æ‹½OP›\k½SLÑoßN»â–²‰ýy-îK­· V5G©€È­ž¹ ù¶MËú&¿,šÞ£$·6ú5óYKÆ(f2‰š ZA*x…bMP+R™'µý1£ØËuæ‘lö­ŠOGŸÖ]äeP¬I J>S;?–l¿3<µ¢^ÿÊÛ:\úši³"×Ô[éî. +"Ç)"8ÂñfF¶Ãõ'þOù—ÎÑ^þK_êç 55¹ºŸR»7–¶¶.ÌÒCÈK;·8ã ë»r1ÿù7Îw†/ÊÝNö2I¨5Ä·—ò«hmlù»LŒÈÒ=YªO-¥p¾îâI´íTˆšÞÒ6·W®J,EbàÆªÛ +§­G#Nç#ñK¨hÚw˜¥¼‡ê>YIlcò€¸&$°qnbbîð‹”"5ß‹;R£“RC6…®ù_ÌË&¯ç+K+ûÏÌ+ËÒ¬³ëHÒ?£ ³e„O 2¼œ˜+S@x%e6Ú"ù'Í^[Ö%»UÖ`¶¾¹óÆ—åÙK‹øÚBa?Uu·Y\™KîUSJñJ…³acs·–è,¯ÍCFñȨbçÁ5PÔ½>!ï]±}*ù-åŠò[8ÛCÕ˜nm$Žh™¡úmÈ +Ìx^_ 0f¦š—æ–‰=ÆúwÉÞdÐ ª¨Óä•®/TM RÊ̪-êD±Ð†Tòä$Z¼·ß›Z—^W¸Ö|¯æ?-€¶rê‹õ¹[à ˜J°<®Ê«oRhy–¨¶Òî'Ó×P€G¯é8oSŠÆÇfŽ®Cnxõþ¸Ž¥iú?ËÞfÔÓmÍòZ\ã¹½…Ì¡!hI!œ—p¬NÊv'jãí¿15-jzŸ—¼à–þa¾³³ý ·ZA·Ó#†Þ(*Æôê3G mX˜¢$¥äJ ¨§ófûÈ×·ÚæÛë÷öö±Ý-Ö‚#·XÓ€EïÖý5˜¯ ªÁ +**_7¤hd•L±»‰$5QŠ€Cq·©ú0,’¤nðÍ W‚Gçnì`‘B±UVY=1°ëÊ›þÈè:·ú]´W¶±–†ê(Þ)–“!‹+GêuíÆ»tcÔõ Ú…„œ,ÐÞA°HÊ…dErÀÅêøí¾ÌFäLQͤ]Ø]ܺQÒdX؆1¨Yj9Z©§Ì6³ŠçË·º>¥y4´Œ/8%*Ò[Æ‹8hù^HÔЕa_¶«z¾zѼåå}ÊêÚ[HeÒÖëQ·)k%ÕÄyˆìµÌRÿU¶üÂѼéå}ÊîÝìb›J7wðp¶{ˈš )cÆ7#‘ãQQ·r¦¨`œÆcG`°4.íRåyL¥äôbxïJïíNkùíù}§þeÅo¢½½¢éº|¶©«Q6­¦jVaõ®-çÍ,~« Jí_SŒ—òFÿ_ò³j>v™õ/46¤·Ói–W·š%Õ„Ål³Æ'´ä±ÆjËË‹ƒÂUdyyÿå\k^g´}/ó­ù‡S½[¨_LA´Ž!èN0b©b´jR§âbÍžâk»Qal¯töüæi™ËÍñK3… ­ßÜä¿Ë¶7z”ôß+µå÷˜îtµiæÕõyä¾½º%Cry%ä‘ðUPÜhŒã›|Lp¾wÓ¼¸×aÖîì´K#6­¼6šV›jˆî«D!¯#'/VXÂF¿-%žSò®Ÿù_¥¶¡æt$F ;9¦º’+[X–Ù}-ÄDÌX*ß**rï~¹ÄK«\GsÆVÙ ’—øœ/õ >*T_}Š¼ëù•¦y6úÞÇÎÚ”W„'+K‰e‡ÑIn¼fif ¤.éY#Gqh‡åÅ´ÿ›>]»Õÿ%´mï57(×ÿW¶¹Y.`³rƒË$³ÃÀ,,D²";Æ_#ö™OÔü¹©j?–š[hú– ñýbþâ=YüÀüžów—¼½§hñ\yOÍl÷ºL«k©£iÐÜ^­„ñ†Ml‘™{Y}6yYýOÞŒŒùÏÚÆ—æ{?-ySNŽo-j‹AhÒÁt$²Žòh-Ýc1™¡H½I=H×ÝêG1RÐ+ö~"  ïR*)ã¶J"x¥ ‘.2©4q8%‡ =ê¶K9câeF…\‰äR(yÇü?c¦èš>•Sê1ÛýgXÖ!šG3ÉvU±@`7$ïÓ8oœÿç.´Ï,OõIâš;’¡¢’×Ó1#Ðn·Z±¦ëضÀäßâmtJÒ¥ã§7H‰EŽIB…æèbäƒS¹ë“-OXŽæI<¿oåÅòÈl¬¬üÕoi Ì^^²h¢½Ti¦V…ãŠæV¶+i;,("z e‹ú²v4T   ¨é†Ú7æ’|çk`ÿ™ºÃØ\_$/¡é²2‰ä’j4žŸÚäÕ +}©L²šÚ,~qÕoî#´W´¸*]Üæ^J»k¿L½OÏòßÏMeå‹-GVÔ¦[]>-2õïm즱KÁq}wfªóÚÍrRIô'y8¸00®šþæö8ÓQºšqn¼-£v.¨„’Bòo„Wz¿¶y·@ó¤÷ oäëXbI,š± ˆˆ[Ô*œábàv—†[ÛÉu!Ž2ŠU$™$H—ŒHd`B ’á^¬hª 2U«þ]_G©9òUľZÑ®â‚MBæ(ï&¸»¾yä¢1É)xT‚¬óESÒžÂuT`î\ÇPB¼„Èé¤h\îä +Ðl:±ØT3¥yÏþoÒ<šºN±arFÓ¤1Y«$"’°ÑÚR§ŽåNL´oÎOÌ É_—V:¤‰åë•“ýÆH–y\3OA¹“Pа¢ÉÍK×çó•Ç–?Óîuk{¤¹Ñ™(´ëCú>ÆËÑo¬˜£Xop–Þœnéê7ˆ`û/3kš~“u¡Ùݼv7•úŸ§­+ÔTWˆéOȾFÓõ»ó.[VÓ­ãK­6ÂR¦$œ©ˆWã*@4¦ùë?ùÂùÅï'ù»ËÏç¿üäÖµ_!y:Á/ü±§Cv’X_ÞpÉm'Ú,bd‰L +V²º$€©*ÞaÿœÃüÊÔ­¬ ü§ü®Ñmu¯7ùŸWžÛÌêvÓNúWÕç71\É,ÒN‚?Uf>¼iÎbôŽÂE¡ùSPm?1^Y¾¦°¼§[ =[Q洛î.N# R£…IaË’‘‚C¸ó5ØÖ|Ù<ÉqÎ4K@ŽÞ8I +¨€r +VŒ9Õ{ôÉד?絟ùÌ­Uüíÿœ­»×´ ZñàŽ-GµM:ÂÎÍA·‚ÞÙ¯Öñ—⌳"ÆB|E>Ci?˜cþq»CÒ|‹ùC«ÃæÛkeÔeºÖõiçúåíÌò™¤{¨­°ýß?N9ËÃö‘blèþBüŽ¾üijŸ^üŽÔ×Q'ôVi SFÑ|u“ëQHÎ(ܸ¯´»ŽU<ÑäýDºY¬õpmæ ëY](Dƒà DÈ«èv9æïùËùÆoËÈŸ7[h—_˜^k¹^hz°†ïE?VIÌW—°ŸªÉ(-Ĭ`v ½“òóßÌšZN¿}æÏ+Ùù/Nò±wža‚Òd°Ô£IeŒN–÷qG(µ#†ž²GÄWB(¼³ÏžSÓ|«¯ê5ëHöwOn°J_Mø̯! +D©dÍžW²Ô¾1ê±ÄI´[y™=7ZPUò¥*+×<éyl¶òQ%ŽU5Þ&$:÷§ïËM²´ò¶’—ºÄÑ_¢¤° Ò'¸O©¿¦×4¼&”+2?«#ò?nFŒÅˆ§¿Ë!—žt“ËpI¤ê—6jR“,ÔJHõCÍÁ+A×øb<߇§_†µ#Äûáv…m§jçKó=õ²]j6¾•–£úw÷vº¥´ég7úN˜1ðf&eà Ùa°Í„^_üÃü½ÓCù§Õ‚;‰ ÐÜÜ<Ö’ÚË ¤«„y¢’»úTÔPá—õÛŸ.j°êÖQÃ$ˆ“C$w6Ö×q´w1<Jî)¢¯¦ç‹%Ž´`*óg˜-o<‰¥Ùþa¢é“êW_V»Hõkm7Ó[[èæ:ˆš+€Q\z 3?(yšâ–× k:Ί¬V¿ ¢:EÂêËÐ÷¾Ô4¯4yIÒ|¹z—vczz|MºG÷iz$‡–ÅA;~°³_Ï=½ƒ¬B+S#DÉI)2[Ô•HàSáÇìÒ§%ZU¾wæËõ¼ž{ÆŽ¯Êš…âÚ[ÍdËè¤V“Êën³TÈ}."UU2””ëµ<3Õ_–© ØØ[j%-ø:ìccÁYq$UÍYˆ'=aÿ8;ùç0þly[Vóž*X^¦¯©XÛ\ÆêÁƒY$ñFå£/rꂶÝÇ?ç$¿5<³®ù+^Ò´‹¦½žîßê¶òIc qÅË<ò*¼Öë%ÖD—gß÷-ðž~§Sü•ü²×|Ý­Ãqr²/ÛsºÔÚ P„{ugeND+rZñp P~yÒ¢ÕM¤³Hó¹fÞú‡êìŒÄñhA¨©þ±öõuicžYí`ÿLÌí4“ð‚D•eFŒÄ”V@%r»þ×O²3ů•î5k›6¬öÚ]¼P³éð[F÷ q ðOŸY˜;©ýÀV|@ýªüCÓÚÏ’å×n´¿¬k2[iVQÛÉú>ÞÚ3vn ’)R_®LE5…C +oÝ«ñ >°ëo­¤"zr$‘Y…zRI÷îj÷YàK[]>ÒÙÛMA³Å$b‹JE7,ÀSÚgi^QŠÜê ­k7ÚÚßµÚO¢°¼>„ÌÍè¢(§ +=(EÑE½ÈÐÛÜjW>`×u{ëíuöú†Ks®Ì#D¢ñ§ÀSŠ¶=^äM-ÒÆ®ÓÑx±‚)ñé³òŽ!mõkËJÎÎVûᗜђjÍöYCF$×çL6ƒ§Ëkk§Í,‘Cb}HÖ gà~„…p"Œj„R¸1ü™  ;m-‹ÛAd}^²NCÄÄ `¬Âcj¥>ŒWFÖ´í.¶ºÓã”Âí$fkVâ>"Òtz×uØ ”/|­äêA'–­&ôd’x>§j´fdZ»”„”1qÉVS@#ߘ~IóÏžµGÕ4¿<]éÜÛÅiuÃÈÒ¢«¿ÁÛÏ(™DuYRFFZ†øš±o<~Ty“Í:¤º§–üÛq¢ÅuÅs¬UÑK?îâ6²ÅÊPœ–UwVZòø›ó\PÜjƒU¶’KoEÐoÞ:ò]¿u j‚H¯‡…+ˆþmù3CówšáóL7P„ÒŬ–l!šXVD#Œ‘J$.¤°ä«@ŸËNXEùæï̯(Ãåî»å}F[ e¯n&ó£¨G}o ¢ÚGø­n-ܤnÊ¡UÜÿäO Œ~NËçk%µòW™ü·« }[ëÓͯÞÞ¤ÐA †Y~('¶c»^@YÉo‹— Ë©ÛéRÑ"™®$ãq0‰”Ç,Æ3ƲJÌäT£¹”6Ê´¶Ó¼»}¶6÷PÝ–üPÜG$7÷ jê‹%ÜÜîTÎj³Jʲ * Y˜<¯«yÓK¹‰oôûaM;@¿½ÒD·Z46ú„3É,–Õ]ÚÔ’ccžEØ‚µ?Ê«6Z¬õ kìä6:5Íõ{Ëmï<‚Ù +[òsch¢Bboˆ±"›L³Ô$Yµ %øÛ„’‹&¸H÷aïêV©Jñ©¥h{ùsC×ä†}kË—…šC1Haç¼·‡v)y}z“xrzFïówæÕÆ‘æ‹/"~dù3¤÷°Áþ#»¿´[+®_›t¶X@Ä®é*|;a?œ4Kó—‘3|ëÀ×Äþaº»loh†ÿêñÛz$q—ÔhÃÒ>\j6 {»‹ˆ¼Ñmª;ØðE3Aþñ£ÒF®À‚jª ×sOºæ=[¼üØÓüÙæ-DéÚ8>¹gf s\[GróÁŒì]‹ÆˆŽNï›Eé^PŸG¹ü£Ö|»äëø|Þ÷WPÕõ&†ê ÉìÒ)8%¢Day^X“ª,ÔUô/(Zk_—:”5«3‰f¸ŽÊöé#xm.d…RP‹D¤.ª¯Юì…üñÜÝ=ÄhbõwˆfW‘$Ž¤“Ëm…vÃÝZê;ÍJ[„€Û´…gš&Q–wc+h>"ÇžÀÊ€ +`Ÿ,ésè~\Óôi¯ñ±…lã»XV,PÆ°©Ÿ +Ž+ƃÃß&žTÒnt,éúÍðÔ„BÒ+å…`ÁRˆ¤€8¯TÖ„ž¸ý?Qý— ú³I†.TDõ û@’>\r¬µ!cë O¬ÜÏÕ­¥yš4·ý Å÷€’?Õã·SÕ4‡Õ'ÓA¾6––—\½¶HSv• ÍÁ1• 0#ít9µ¿/¶»s¥#êS²²ºýªÛ¤Æõ“쯨à˜Ù +Ôö¹Pà10·a,d‚‡(hCÿ!Õ½°1º–OÉÉ’4,y+©¯*ƒÑNíì›dŒªuâë(¨eaN4 îÝÞ˜o%¢]¶ÒUàñÊ «#Šq¡Uº/½2Om¯¯šá] ? h’O,¼"P¶Ê4î+Ú½ Â/;ÏçăʬÂÚðúr\_DZež8…XP fã¿ ìÖ¼O'½ü»µü˜¹Ôÿ3-Ö}GJgú¾ÅcšÕîe í Í7àœÏ¦©ÈÓâÜ8Î¥ùg§þG__~iƲê:lhì´9Á%£ÝH)$²²ÉÂ>g‡ß͸äó™ìõ G$kË*G-´õcÀqgn+J­ ¡ñ<ÿ9¿7t¿ðd6b·Ô®. i÷hóÒÙ +<²¢ü,ªô? Ýcÿ•?’¯¬~jÜê&»uªy~ÞÂòAæ?-êÈ-ôìémeëÁ+òqÅd‘9«q!Û¯Ç ò‡åTÖ˜2\ykÌRê:\6sʾcòýçÕ}9ÝÞ8íýXd’¯ÅCºsSÅ'§"¸5/µÅÝ•åÛ…N-j–á$VCE•K¡ªŠÑ†à‘LæKùƒä V÷Sм×æç´>„°.’êW"%I U»…¥„U`²Æ”ºðfåe&uï. Ï[òu¶¥¬À³ØÜêºå䫨B.] a4ÑNâá‚¿îËÇ#ax DÞAÕtëÍÌÚnúOT% ¿¿Õ®åK¤Fc õ&IeI*§Šü.B‘䣎êgs Œq½ÅÝà“êÜ-¼~‚W‹wá¾õ©=+SÎPòÇ“®4ÍËfæçRó WIåû}FO¯iöÿ£áçÅÖZ”Ž’|DO@¬ÔÛ8ß—|×­yæçUóŸ˜/`Ѽ»åi¬o|ߪùXË¡jÚ´ZœˆúÑU§uq‰Y"íLsŸèþoó.¼÷¾g“Q]LÒ^ռ˨èO¦ÞêíèŽþ™¤Ž¥PV‰É¸ðGu^Ox­_ÖŠòåäÆŒêÈ#2€Î¤©-!ä îAÂ3«ùoIÒõ[Z½ý¡º\C©ê7:ŠZXÁ%Ê´ ¤fÕ*Y(Ò½Th«“¯Iç]*m.NK_3ù’ÞK[­˺6ŽÑ_ÞA‹õ‰š[©.B',/MYøH%3®~cjú·“¡Òu=êzv±­i&ÞóFÒ¬tÓÄöé4^´óÜ\4Él¼øˆø+IÃESký"YWSý$ït™]­ƒ¤Š#£‰E￾Doÿç( —Ìo:ùÂyõ¿Ýë£ÝMkt% 0‘Ê:/Hf« ¾,~‘ÿ8íùùù‹å?ðï—ÿ/|·cå8âYôý:÷R²Ô.`ç_¬1[{øˆ^/ªÜ¤O¦Ì¯UÖ?:Oæ$þ]é~WÑì4ˆO¤Øß}sPa9¸&SÕ¼‘…p³;¹â¼+]°×Ñê·t·6Åß“„(bXÌnQ!ÏÖPÐ1 +E0³þW®™æ‹Èo4ÝWEôµT¿VŸ}eu§OݤŠc„³Üt×?àˆ +‰ ++¯L¹(<Ûù}åĶÖ.u:ãB‹M´ó±6:¦ŒÉÇ+éæÞØIgèp’ÜO:›Bêè‹3òþ¥«ùOCˆßùµ´Ø„Vö6Ú|–I%¾Ö‚7kBÞœ±´3|NYy gù*àsyy ÀbŒ&Ÿapžæ€vwûn섃½G…{×’y“þrOóÏòôCú~ÇKò·šx¾»æí"õ&¿xcb¾›YÝ\Ý\Û;+¨c*…Ve䢭†íùoùmç=RâÞßÌï›<Ï„¯¥h:„ÑizßðŒ˜î5­"ÏL_VK•d·ž/ŸNGgàa>dó¿œumu¯|ßys©Øé 4‘jhE­´rHD‘ôÛ{wGyQcI qž ©8M«y®‹‡¸˜É.Ê=FwXØщ“á Zö§Ýœ°ÿÎMËçÏÌmFç]óÖ¨tcgq©ÜÙÜJÒEú#x•\ÇéÛ±âáž&ùôŸ)~MùKÉ^[òÅîùu [y½$‹D¾½¼e¸Ôô¿7I4Ù¼zµù’â_V8ÄJ),^¬J¥c>š‚ò7™ü—mæ[ F{{8¾­×K|‘Êöó«JAy(gÔÕz²íN›E¼õ¨ßÛKk}¢!µÓÇÅ¥Ð4MØ1jSmé¿|ò—üä§æ¯›?0¼ÅÚ¶¬É§X3Á¢ù^ÜôëK"y#Û,G‡:·"d'vf&¹Þ+¼ùqå8m5¿1Ïgm¬ÝAeyªßꩧêSÞ\ÆDz—ÖîxÏ$%cÝÀÉo +©*®$ç^zó6«æU¯õiÃÊôˆ4E_T½º¬nÌ@Ø£áUÃÈþ`¼Ô4•Õ%ŽK=GDuwxØ-T2ú¼0çþqËóXò-ºy—Oº»Ó/4É¿Ñ53-Á³&Œè¥XInUEEZ¿"á9 +ÿœò•|Ϭjšš4ÍMmgÔíŽm‰™¥k[{[kËÈc·k{Øm›N.&i’Ö±Ê߉)yrþ :#{p·(ñÈ‹oq²G +aêrôèÕ)Qð°=ûo9³“D¹òýÌ/;5Ò|pð‰ÓÓÆãê·îòÛmë¯ï˜ÉÈ˺¹*WŨi\–ÙêÞ[òµ†™ y«ÌVCQ³ŠßNinïż×SÚ¢BB¤Îdä^¥ÃšŽB»äÇN×<©å½7OÑ<Ñæ;¨iÐÛiÓÍs©,2ÜOiÂßÌá‹ú”ãQ]ñ;f°xœZkŠž _Oƒ|*YÚÃÄU¶ÆÙ&–m$Z\\Þ,¥R>j¨±5Y›"2¡T–øwëƒ/“Í_§­¥Š{ m ЭÌom,—’\ŽMû·Yx"PÆ’š|]*0~ <Úºõ¬‘K§ÚèÜ£$=ãÝN}>U‰Œ?1ðü]68Ujt£xW¡Sý0;HêLR1;? )÷Þ”Ã5F.ŠT–`$Œ¹Cm«\3T&HЩ,ÁdGR:«/Ò69¦bX£‘Ê‹€sEø7§,nñ›„–(Š¼pÎ&HÖ%)NUðn½R¼OÕ!ˆê™ahã·½‰¿|$X@Œ•æA+Cñ7_ñÌÏȯ&~eùžËÌÞnÒbÔô{¯š´û‰n'šx´èDÂÄŸN(¤b‘³ò•z´*yä?>yŸÈN¯¤ùgVžÏP¹-s¤_[,©-ÕÓ\˜ï}2MK4«fÝk¸RŽóå%¾«¨^Æ––š¬Z•Ä—×)}!¶pfy.a…DUaË!Ä¡™v;WŠþkŸ4Üë¶z}üºxÓu+…ê°¿S> Pfäƒ+QBE>TÏ—ó•Qj7¿œ‚úïD°‚æêæ -è°ýJ/ÛCtöðÚÝ@D‘ºÆªÇq#âÛˆôOüãöƒæýò×A×îå}FÎ ]'ü_­KËQ›\Ö.eՙb6*d>£zqLŽ®Ì®êkä¿9i÷öZ¼vzíŒóD‘Û0°"ˆ@¢/R8Ào†¬xÕXÖµ <áÿ8kùU®è°ëÚKÍ·²D–SÍ«\5ÕÚ4^¤†)–b¤®O8P(ÙÞcÿœ)üžóüãg•|ë7˜-¼™ù•æ›»]ËßkȾ\Ö.#¿ŠÞâø¤öOs s+ÊRb¨êœP U29ªÎNù—ò÷þrORòDésæ¯&i°êfÕm#°ŽëP±µŠÃœ6ÖBÒé!’·?UKBÐÿv_ãäÉÖ¯ù}¦YhúrA|­^£Ë 1ËÛO M"’„°˜¼§‡¤=>/ñy)Î[ù£ùþH¶Ðõ_* WÖ-N\}bâX$‘æ¬ÓD¼Cr²q%vÚ¿,óüää#þC^èEß™tM~ûRµy¯cе)µ+‡Žik+6†9¢‘ J}Bx¹,6QÙ¿,¿5-?7Æ·c¦¼¶>² ·ÑµÅÉ4E–iªÝH]¨³«Ì¨I€‘’GŸ¿.îü‚šZßêVwñ³Ëicwõ™ ¢Ç"¼«é§‘e™«â̤­3Ѿ[M?̾W–âÕɵÔ¼qD¢²²)OÚ§Q•åÍ/>ùoW¿Ô-$¶·³Iņ·egkgn~©ðŠâ q£)‘èÎCîÇlmùä/&YùoLò§™,ï5ÿ6\ZÈ4+ëØmæ‘uÙVg!aš'†D¢µ‡‰íayšË[‚sxí£ãg<[Ú¬©U•#(¼¨*ZŒìIäO\†§”n=}BãE´‚ÎÞX‹+Êís-¨ JŠþ»g3k9n¬äÔa·X-í„PÈà¹L”‹|MBÄ + +–t{Ñe=ý»E§^Ùi–Âk}GHwybŽy¦ÿH1#o)hÙ +¡?"\ +’.†P¼Ux©"´äG½w4'#·?ŸºåŒi:ÅýËZ©)eOZ.­—@ö‚ç@ü²üýüÂüµÑ/|•¦y‡QÊãFþ`òõ´Â(çô ˜ý);ERÿ¼ôøs rå¯ÏŸË_#ù¾ôy¿Êº—­5¯ËKÍÑuæ´†ïVÓ„êßZk­:ÖYa¸{[A·i¢BT•¡DEõ1ö÷RÛI¤Ž¡d¢7 ¡hEMlšyþs'òÏó(Ðô¦ŽÒÝd.¿èðÞFõDÉéHñÑ£P+ʜ껨ßÝþdÿŸ®~Mj^m¶ÓtÏË{ø¼¡,1Þë(¶Všõ¬’}b8Í­²É5£ˆ’î>.U ªy›Ëß‘¿óv?–~cyW˜]Ûê°ØOäÏ3Z^Þ?ª¿WoÞ]Çs굜×1\[ÛÌŒÀ/í,}TÎDyÓ@»ÿWX¼¾³™-æš=pµÓÅpD2O3Í/8VTe›âàܨ®j&W>nòW›l?H]ßØúe–ÒIY¦Pp&Eâ7ñâMw¦p¯Îß<~Xþùüùæ L²óŒÍq™u5Òêº)I›OIµ‚ØB&u†Wø¡B•ÏD~LyóÏÿ”Þ_?—žiòøó ßåÕö£¬jÞSŠ]BÓV°‰$Õo"Ó$i-åŽ=LG¹Xýnp¨f©X¦¡æˆüÏm<ºêÙ¤•i‹¤N³™µ)Æœi³?áæïÎÍòóJÔ%Ó\Û¥ÊÌ4Ë@ÈÏ; + +,¬½ß~Ã¥sÈzŽ…¦­{i¥Ý ë8'–;KО$r© G”2€hwó¹ÜþhZj&‡ªêþSÔm/µû{o¬yfæWQÓmdµÑÛÞ!t–÷ Ò0Á¡äî…^%0…fu·fxƒº„fZìJ‚À;TüóËÞjóÿž<ÿ ¼/|m,çN–«Ç+j©I!n@z‰Fô4À™7Óô?Ì4Ùè`kK¦h+ÛëZj$Ñê2Ml‘…u½Šöyp¸•FgÊ»s–dò³Ëã\±²Óïgž h®½[i™¤f[€‡rìõ +õ$þ9°þÆãË@Çåý#R–K½uúÚI5Ρy ,*x;É,’ׄ£â%רj’sgyü½ü¼ò”|ïg¢~_ë:ÅíÕìÐ TH°É°_ªz\EbÆ¢œTªò]kå Ìeòß–-õ KTÕu««k/NóMŠÅ£¼¹’8¢H½íÛKûÆ Àì>è9Ç‘<ɬyHyš j'ŽÏF´YàŸëÒ_hÖ‘Åk=bKá§ZŒ¬‘Áê*H¦Š¥¿xgg¥Aªên•¢M$×·ò¥¿ âH%–@‘…q+ÔŠ’žýsÙ6zn™K9škˆ Šîâ@¯ÈÔz„,S»Ø OÈß%ÛiVú<ÒÞÝÛÙjX³2]I ÇséEµ0© ˆeyø‘V$îÃò'ɶ:=¾†óÞÜÛYê «Ú¹x¤YÌQEÀ›s‘û yñæ:)]É%DXǦƒáe‹1$APIaÛ#B¶Ñý^!û¸è#vww*P‘ PÓo3£O3\IëÈxõ.¡QTKqµ$õßÜšçIšVýy÷S"EPÄ–‹ªÝLöa†êØ0y)X¨Tž]i·Ë|¿4yoG¸¸W¼’å%åиj4’qZ+†?iúÃïŒ~lþQyoÌ>eÍšÅî§ âG¹°•G«3¿w4R3Uäø•HGS/ùÆÍ0ùSEÕÿ.í!ÒäÒóåÆ¢²°_«E S‰n ÌF2*«zl ³]@+ü…ó^¿iÿ“lž-Ynµ›™¯ÕªÛÄž°yŒÑˆþþà§sJÒ¦Èp¶Ä¶¿ÄÜæ‰ä¤‚ÂMy1œE÷;y̺ƇmæÈ|¥\=ÏæZÞ£m¨]é÷ ÂEU%b\Ï4ˆHàÂëQÌÐ{CÉ×m­ézŽ­«µƒù +-éÖzMâZÏ~-ضi$% K[q2€ÒKÂáX¢oÖ,|û j½ž‘,¶m¡]YÚÑó=¤—HQæc*ón¢¯1È2±û VSeæ­þª5‹y¤ÔPðœz0¬‘ÏDéÌD+5|K-=ó·[þ|ùSòýt‹Ì=;UÕ|Íosu§ˆ[Oµ{ËmBÞ;u¹¾‹[•K–•@©<Ö›$=ÛÿÎ1~hy¿ÍÞròÿä=×”|¹å4ƒLÖõ‰ç¾tÉ4ké.¦Ò伋ˆþ±gõ[“5HÈ^_¬ùS\Óµ={KòLÚF›¥¸K›ˆ”\\ÃufÓL¶fQ"O«Îʪ¤«)cB©kþbD½E´ž7VK8¡P#8ýâ‚ysØNùϿ?ç.­o¿$|çg?åÞ«aªØYG&± ßið‹KKK«Ø¢Žíâ–E•›Ô@N<Њ6Î,Î*k>Cüâò=†³æïBŸ\–òË\Ð.nåºÔ&:lcêI4ImHî®"‘Ë•V¯EåòÔ’ùÄÏ©év“þŽ¸}EžH¤’æq%»[CoÂJEéÍ$ƒv*µè¹µóš¯Öf[y"ŠØ$vÄÈ ²: ªúkûC>sꟜIù“­jžlº²k­¢³ƒN†ÖHVàˆ=ý¬­á[²Ž#Z’9I9í©.|õ ùwMòÏ–õû=>ÿQŸS6Öõ 3KÔ5Ÿ«ê,’¤ŸZ’îá®L±ÜqúÓ/§ ­Âª¨±]SÌ×¾d»¹Õ¤1YJ µ½µaNe÷H Žª*X·@:ïS€ô!¯ù’õÌŽút%ý(šU›âøˆY@êF~Pùó_ókó'K±]BmïR¾ŠÒÞúxL^‹»„–Hþ"HëûçQðÔ ÿ8¼ëäÊï%]Ùkòi÷pYh:¾­~.u¾«Gc©ÛCiÞ#±B^Ý#Ö‚ÁéªÑCiú®¡¬%ÝÅëé²FÒÜ-çV„ÄgxÖ0àT“ÀTv°Ï\¹Ñ?,t)Û_¿½Ö¦šO¬G†Q¨ÔEg ´-@¦z7ó‡ò÷òwþq[Êoä/Î?2y“Ï:ç˜aý1gk¥½ŒöÒ¹0À'ºšq(a%«ITt #âaœ'òËó—ÌŸÞj™?óÚn‹gµÕϧzÚ¿­qw¥@²ÝB–«Œ±K£˜H–>këF«$bA(ÖuO$é¶7:bê÷~i†æ_¬­Ø2ÁY„j +:̨ãâ?lóŸ`R§kßžï§Ö´-j=ìÑï.­¯nŒs]ÀFІ¨ÒQA¥ÀçˆôÍüá/˜µ3ªX鯦ÚM«ˆ5;•·’ûÄQ›kCÀ$—e2þHÇââ§Ñ—ãͺm§“<Ñ®iZ¬6·º€’ÿLÒmµ ËË«²-™ÔD—Ⱦ—¡n‚f’9Loßâ’Vçñ@÷_X•]ÑC+ $TfÕh€Ó“|U Þ•=²+ùgÿ9§ùÐ]½ªÜÞÁ¢ËuiÀ»T«Ñ›â!yq4Ûð$K©–H]›ÕcŽ_ iŪ(i¸Á?—ä{»åÒ¼­¦Ú{3wqg¶ðÛêz^Á/Éœ¼ÐÂòzÂc UP´WÄ ƒá¸®ã:/—ü×ù‰ç#sæýËï¨ùDs‰ÉG«…Ö:SFVpw@hvÞ“òÛó?ó3HóæG—|³y«èzF×®ô»dXl„€,`ÅÑP+Å~È,i¹çYüÄó'”üÓ¡ù[ÎÞ…¶£æKk­?É~²÷R3Lº„1Á=ÄðÈ°ÜÍ+@óÎb“”+èÚdiÑ­­ÅÁøX°Pñ? z·RhÍØ|Yô—ò{ó‹ò×EÓü³ùyäß'ù“A‡RŠM;ʺ‡˜-Äš}é˜!ç‚w`gõX±5XäzUyy«Êߘ·zN¯çß;kžXÑôÉÝÞh¶·/§ù«Fš^WºÓ¯íD `–?„‰9Jˆ(³;q=·Êÿ™7:-…¯”um¼±ågUºÒuG…弊EÂÜÊ“‰Rnñ!‡HŸeÍÈ Õ_THìçˆBñFo]}9•¦ø£dj^œêƒnßKüضóß™uŸÊye“Eó‡o —ÒÌ–ñÝ!Ô¢Yí¦³2úÜÊ+ ”É5+O³çß=~PþQþXy?Êÿ™ÞlœyÇAó†³rÖZ«É%´†ÊtKè®…“YªÇ+!§Ôåi~Ò‘Có/—¿&ô;«ÛKT¹Õ]õŒþœ-åµxÝÜr†#P…ùqôªE)û4`VÔ:U”ÐÜ#FˆH~Hœ˜–!‘ÇÙ![nÛmÈR™´VëÈ^Y}îýï$µ’T–ïUd¸—”íê,å¡UqÅRˆ +|%—2c«þIùs]ó%¿˜ÿ/"ÿ +Ép–lmôU²e·´Ç$qN&Q$‘±f<Ë2ŒœêSÿÎ>i×׺v§ù¨K`ò yZkY#ô$D†‘JŠ©@í“ê(cÊ¥Tòå†k:qÐÖHÁh>¯RÔâ¿v®Êc§j•;œ“Á®ZZyM užxXÙ 0^(äD²<ŸWŠGÒ!ªb€ü'½!ö¿“¾v—óG뚯˜/FŠÏ&¦ò Vñ®}¸‘aƒÕ1ÂKŠTn+Ò¿&<øÿšâ0k—_£E5)¯ÓP¼7-nóâ9(û9U¶XO'-)+CP¢Œ I/AÉ?×"\ÛClòr­Èhý9‚!) K¿‰N>ûuÛ;¤°ÝÉrˆ«û€²zŠÀ»‚„%O^|¼¶ùèK˜ïÚñP- Iªà¼•—‚ªGȘÕ}@ýÛjo‚¬ukû1¦%½BÅ41s¯Ú°^]Zµ® +Ñu­CF‹XR5‹úSÃ0ì=NLJr$—,H*y ‰ùßò—òïÏ÷ãTóNœ·÷ª‹w±O³Ío%íè më]©ß +ït»Fžúá4¨­Â¼±“Šªzrü M©ßáÚ›g…¿2?&¢òïæÅþ¯ù,¿˜CTWÖ´6º7êÖ—BF[Ž6Öí’ HP8š²ü¹ßl¿3-nÛòðØù²)\»è¾]óF{}¢’Ý@b·>‚ê’:ÊfhÀWã×Ôn4óï›|©qå;o4.¹å{-JþúYd_0>£ ôÞt%¬_[n%ãû÷S\ƒZÙùÿO¼¸óÄ_^·Vh“Õ·V³/±Ô6êoÞ£<äßú=Ù?04­YÔôÏ%³Am>«£6§c¤ÉqÅÝ-á¿‚Xá,B™Jµ_·ðçHó·å¿åÆ¡æÝXÙÇå­VüÁnïµ[mu4]NúÜ]Ǧú±\i€ÈPÛuìúÈ¡ÕÛÔtåzNù‰¤Ë>±¥é·¶óÛEÍ®¾¬Ë41•¼‰™y¯#ãJqÀÁ¾Z»ý%wu¬ùšæé§<®4èÖ4, ß + P-(¿NmÏž_óïžµOÎßÏî>pžúñ®n|mWó'œõÛ?,yGK¹Öµ}AÄV:e„qq3è‘ÆŽÛôÄ<Åç-y+K—WóMí¶…¢ØBf»Ôï®mí-¡ã$p¬Ež@ERßb¤-jv´F‘‚ ©={òÃò—ËAÒÇ¥ïcëWUi]ZXÊF)å$EíJþZPçÕïùÃùÆËÈý6ÖÛ̉¿ù¥©[Ïu¯±ÑS_+=ŧ¥ig-Ì"cc*»»—哯%)ÁÌ¿ùÈ¿ÏOÌÌíJk/ËýO*h×vú}”š¨Õ-£KçLÒ}u„ëHÂF#¬ÑÂê´qÎP½³È~ZÔ<¥'—´›/¼Ûrlî¡×ÒX^- Ӥ̨eåmpÒFôeçÀü?øÕdÚÜw7aíÕU"<põʹäî#â*ß-³ÕÕôWw¡¬Ò%H!.‰À\rÏ$ÉUfqU÷È‘|¿«ywË‘XyU¹ÖµË\]ÞÜ• ’I…HÓ;*ì}³ÑAòî³åÏ,ÅaæmVãXÔ®+ssurAhX,VüÃ㎔M°à d6lÙ³fÍ›6lÙ²‹*Ó‘â êkü2™‚ж¿nh;í–ªZ¼EH ·=†ôËTg¨AÉ€ÙEO@7 uÉ/•SO‚w¹¹»E)£!@¬¥ø–¯" }c“ËÁ [ݵþ¡~±²Áq[Y*2´†>eÁej,d€ @sQC¿üð»üÁÕ¬çò†•å9.4Û«‹£Öcqrer«3Äm€V‰9?’OŠPv9Å?=î?05­>o)é^T–}>{›×XŠC;;˜„ÍÕ«ƾ£…g…Œc¿@þdÖÓRxíaD6Ï'8}¸+ ¶ØŸ¿ùçÌñk·PZ[Á¶ÓÞqƒŒ‚Z¯¤’)â8ü5"•ë×%¿+Ïå厡{,Ì—Zävoqb‘ú+ié©w€•vçñ·]ºtÿÉÊÙ¿/´ûË뻧7šÔ6Mqgé˜>¨c¬ QÛŸÆÔ®Ý:o„yΗ?6lÙ³fÍ›6lÙ±ÐÍ5´Éqnæ9c5I*½*éâÅ ¸žÒxîí$hg„ò†t b¸ŠöôRY!hTAFY-% rG/%-R~È4  }3EÔ,­¼â"‹M$5adE Ñ»"¢´~œ€–5é^»g½üšÿœió–¬ç"¼ïå È·zs5ã_Å"ií Í´òÚÛVÌÙIÌȪjêÍñ(Vt]có¿ówò¿P¾ü‚Óõ»Ÿ?ÍuÕ#¶"X¤ÔÍì\N°Ár—ð2He 7 TýG‘YÃD¼Ç/•<“¨ÝùoÎ Ž¿«X<.š°yt»»‰%†7H&†@D¨ \F‘ÕëS¿žïW¹–ïQrL”ã"Hcg + „†€ ð'燛|Çù¿ù¡æ?Ì_;Iú3H¹ã6Ÿ`šÃH×qZÄG+5¡„/¨]TýšÐP ýyùWå[ËÉ}7òÃʳýUK~SÅ ÂÙ,^îööõšÎ7&i­–cj×(¬òú~­Í®Yê­syõéaÓ´8D·^‹§‘}XJÍF…6þÛo»šàiuX'ŽyÓÑæ‹×£¼c‰àƒÓˆ&£·LŒùoó"×ÌmªhnÕÔh·qYÙëz=ç˜a†]FÒ+ø$0~›ãA…[‰I ãá¶üƽó¾›ä½GòkIÒüÖÖš­Î¿¡Aae=‘·¸o+L¿VŠ12Ç;ÍsuêI/«EÊ©eç€ ó­æYSM¹xn´Ëi–ïôf£©Çoê( 8©ž&;³TâÛ}óѽM&Ú·œ5ͬâD•ã!(KÄîI¯Ü$¿šW_’ºeî‡åO!y3Fò}sPó~ƒæ5Õc½™b%mã„ò"ý¦ ±<Í(ª‚ /;~dù“ÊmԼɧç9¢°èwr[Ï*¥Å•ã;GõRâÆ{® Å#‹“R?:jÞL¶²´òþåø!µ†T¹:•ôWOê!‘íä¸0s&3(N¡h€ñ©,a˜—Ú–Ÿqi«è÷ïê[3•†&ª9¤TT“½A®yŸÎšÖ¡£ùØjú¶×T~ZeÌ2誨^5AþV4£ïQÔg«|-‡™Ö.¤÷Ò]ŧ’†Bê) 1 ²©;µ}¨ê:þ©úC^¼–y®Júד#ð_†£‘ +¯jg ׿缇£j««¯šõ>j7É{z%Õ3l«$nK‰cb´!Yá í’ÿÍï ~KyY´h%2®3'¾¶«ùfëBú¦ÆÖ.g3«Ä¡zšç5ü†òjjºž·ùùÝäx|©æq¡Ë{æ½GÌçS¶Õu;#h.%·‰à·lMÈz†%â«Ä7Q´ÓmÖÑ×ÆõÙAœz-£q…,j¦• éÓ<ùaç]7H†ÆÎê?.éz\ 'Õt-2('¹F¢1<– Lî´`%v¨ iA\ê>bÔµM3NÒ.Ú;m23¸¶²µµ’@]äås-¼QÉpà»y™ÝWá(:Ÿ˜&tëkËÝRêþù¼¿pÚWl¢ŠÚ+P,mã¯8-[|vÈM¼ƒûØÞ‹žâI!H(XË*ˆ¬K&3tÚ§nÝNL?ç<ù}®ßÉ{w­Ü^y“ËBBÑê+#LÖsüHÑ^H]“‚1Gñ4Á¾FóV·äï4Ùù¯B¼»´Ô4Õ‘íî4û¹¬®ÕL-çƒãP#c˱J©ØäT¿_5^k’ºÌXéÑAh-õ-bÂ}CI»úõÒ\¤’ÝÎd3Ëkm'¦¾¬VpŽx;CÆín&µ¸K˜’H÷VŠ0Ú›2î6Îå?ç…Ô“FÚn‰Ž6'š\z§˜$T6ÿæ2Iæ_Îu+Ý>ëÊÚŸ——M–»qqM!ºTã4#Dœ„ÌK4táÚ› + òÿ1.ÚÛAº¾ÒüÕ§iºV¡m|×M{ÄÞ­É:mÔýhª´‰jx\r2‘åõ݃5¿ó<·?£……¾œ4ÑDÖñ/¨ó(^RÉ#ÌY…hM@3¸èúãêÖÖº„VòYÚZ-ÄN^HÌëR¡Ø*ÿxh•jíòÏ _–ó_˜ÿóñÙþly^)ü‘åË[8%ó‹-üº¤½å›Ë?§$Œ2‹âc€óY(+ÉŸç_<~Yy;òÂïWü»ó¡gæ¯0ù°Þ[é~aŠÐî4û¥¶TxáÚ[52\µÄ3Æð XÁg^½£ù·Îÿ™‘ê~aS¶ÑÒÖ…­ÖäG{um$D2:íLÒ; Q_ÙáÔ·¶’Ú­øR—J%†âuårª‡7(Ä-üx@£ÐZœÿ-ÿ15Oñd¶¢¼ñ5ÚÝèZž§¦Úɨ–¶U‚ktºš%$) ì#<ß—¢ªÆ8›Ž½ä{ÍÉžy—Mºò#Ú\Ú-݆·èöQjVÉyÂE„Çg¨-Õº‹ˆ¤H¤æñÈÎÜäc;-[ËeÓ´ß4ZéÖ:F­ÚG}¥½¥’É 0àÁE†rQK¬Ê 4‹+9f‘“’ C#­Ò6•©JЛD¡ªH  !O"8ž(7Ýk¾u¶±Ó¢y#¹It]fëÐre›Ö p<ÐŒ +…ccâø—•NFôOñî…{a.{kç ˆæƒêöQÚiãI¶2z°L“<ÎóE MÄSì*íA|òäÖM¦j6ÞwòQÏ ÑÛ [¤Û¬‚T•g–Y%–8¢? +ú¦ˆµ(0¾)Ì%Ä÷‘ò¡j³+ò$õ;oÇ +ÖäÃ4w–ƲÁÉQä«È’+µ~Ù$2¿Žà» Dmõ1ÆEšÒñ#š9 eôf†HÔ£+Gð²:ÔlAûú*¥¾§dai{;ÕŽTxY3Àñ¯ âÉ"í±S÷™6³ Öü/¬–y‚²‰ÁHÈäÎA#£—Q_;“Ì]i¯i«é‰u;$‘‹ÀéLì­H¢SPX˜nëR`KùW{¦y—OÕ<ækHÓåŽhü¯ok IºVC &nA½2I^Àsø?*/43YêžLó=Ƈ£ÚKË刡ilš¿ïBóP‰wûJÜk¶Ô¥j+7"¿´iSó¦G£ *K!vAC#VùÒ™Ñ$!¥g+Ÿ°µ ùW:CѦ-W§Àµ¢íÚµë•Èxåz‘ÿ0ËàþéÉü§?ÿÒ÷Þz×#YÍ›6lÙ³fÌ ÿ +æÍ”wëŠBò×ÓŒ4œ™_ÑTy=GSȨ 5¥·q€5?+i^h¶]#Uµúí«L—/bÈÓG<Èjã¯3ðž•…€Í-ǤRõÙc–Ôox]a’Ô®ë,R84mOb*p·ÌÚ6‹æ 8Áæ"š€)4Ï&ÜG¨²HB©Œµt8[zš¨…­¥º–•39¶>‹½h§“q€­ÓǽsÈŸŸ\üáòþ˜þIò•Íîƒùw®Ü«[ÿ-¯Õï/&½³6WsInÿï'ÆÁ!xiÈìÇq“_ËŸ-y+ókÏÚgæF¥®Ø^Ë埫ÎGœ³^ØêðêÒêiíäë’K %Ì«sñ[¬ˆÜL¥—€þbùçÌ~e²“Ë3}oÉv¬–ž^:4épÍw7Å1>Ÿ1ê™òznïáÍ3uËÊÿ/Áeck +VF‚êîXœÊ 4©d"¬ÜÅj;mMëãÿÍÛ3òKÉÖÿ–ºG–­Íî¿›Z×õ‹i¿KÅ$UýÕ³‰#ad•Z†U~¼½GåŸ/ižó +ù‘5KM]:[|¼b¶%SÒ„Ýjw”¹k‰Qm^Pò HþØçg9ó퇒ô»_*ÙéQs½†;‹­Rî'7Â`G!•u ÐüDµ +Ä+|¯ ú¢Ýè«êŠò®t«GÄiE6-ð€kœ§òÿÊš‡™õ˜D¸ÓäÔmZK´Òõ7ôãš(šêBí2ˆYx¡ ònrMù©®‘æMÎmMô-=Ò1u¡É2 OªÝÜBÓ ¸í}i"šÞgˆCuî9Vn5uˆè:uÅýüÉ­ä¸G2-­Ó–2±v“Œ|(¦ ¶uIô½bùþ¼t}*ÎæŠb½ô̲Ȫ=:««µÃP65öÎú‰ù‡¬Ååë%ü—ò%•äð‡Ò&·q©ÇÈÚ“(]FXÉç5‘P×u4#8öƒcæ äÖüÍåÍ{£Ø^d–þxî´1Þýi>«6žàMÆÒj“ðR­>Ðè^X1ÝϤÁeä/ê—,’&™ЗkÃë%–•G+ˈ2mÅi» .óÜ>[Ñô¬]Eiò•ä-â +âfÙ«ê!j*>/™ÿœòçåÝ–tÝVÅ|½£ù¹.%²Öü§å†»O©\Æi;\ÇwëìYO¤PQ¸Q2ü±üÍó„—šžš/umVÖÂòÎêÎ÷P²‚ÚãW±g¶d†ÒUhÄò y¡JRFåÂ^-ÉÊ?0-ü¶šg(ã±´×í¯f·Ô,tÅ‘!ŽrÉåVDj"ñàåNbœ|Þ,%üÉ·Ô5=BìykO,Jjñ¡²ñ^&0#‘…X~ƒ8N…¦Ùêú¤6†«m¢A)!õ+äº{x¶êëeÄÇýŒmcÍ÷×éå_G[†âßÌvq$ч×ô¤­–ò»Y›Ó(IéºH%øÞ4cÇÂeo ÕÒ[Ïuš=y\Î%1¥w¤í²œãþyü ¿ü»†M_ËrGæ˜-&ÝôáäæÜŽðŠUÝšŒS;öÀ·PÇoq,1N—1Æî‰q0’…4¢EG +ÃqÉAñà‹K_(¨61jZâËõÕ‡Ì76Åá¹–îgŽ)%´FPÞ¬Ò"R7"§ìâR"¤ŒŠâER@‘kÅ€=G ¸ÁÞSÓôOÎ =&ÚÚÛËZŽ• ¶ÔoãŠXEÝPiú§ÑŠ­kቊ5ÑzÕ…pÇBó4žbV]]JËP†-@,^¹æñÎÊ«(ú´ˆÜ›‘**ÀäÇXÿœjóï—o#óååöŸ¨\Ån$Ô4Û»¶Õ‘Çã+’»×‘¥)‡mäíQ|´ÞjK‹mc~ÛǨZ5ä@”Uf¶úÜX½ +zÓë~lÔí|Í©éú%œ±ÞCoïà½M.âV3 2FcäX§¨ßh*¡é°äÑî¤ÒåÕ’KF‘¨}Ê€D%ÄŒ*ß²¦›×=—äŸ0éZ¿“´UÒ¯ ‡•œºÍ´Œ!–×QŽd‚p£Óû[Šò¢Ðœ÷_—%Ñ!ü‡ò>›ù/ù‹¤Ùyw]Ñ`Ó1®ïµ];Gó‘æ9ìnž{æ¸ú©ŽÊàÛ?bC!‰J1ªçƒ´¿Í(¼ÓùÛæùXš݇™<¹¬Ü^hž[¼²¿¸ö±ëZ]½h¢i¢º¹·[™V±Ë÷Ô‘ /Yו¼Ã$ºž‰¹o¦Aª.ª>­xŠæ¬“7ÀÔ¥O5VbV•"U#Ü£ÚÞ+IqéE’eR÷â +ÜÇÛfR–ãm»ç³¿*/0/¼—¥Åù™`bóâ4mNG³š}fÝÔ‹kŸZÍÊÈòDÊœ¸Š¨®ýs›Ÿ$é—úþ¯åÏ"k2jžBÒÖò²_=ãk:¤¼·ÔÅÄFêÏD(ªÔ$…}ù¢ù›Dòõõ®§û­ÑÁÑÕî Åä(›Ê·L€F¢6‘(¬¤°=±Ž&1ÏHäâ@¡ëMÅrg7¯­ù\ûÈÀ? ëOˆV´ëï‹¢$ˆÕL‘ð;u#ÇcJxgHH„ˆ¯j¦X˜~îF;°ñØÒžØéa¹£+F\ÉThÝà@;¿‡!ØõåÏ Ý´ âš!9Ÿ÷wÒÀãÒ 5 ¢?…y¨û$î7ßéÚÆ…¬ýz="þÒýôöŠ+¦²¼‚èDòâ’N.x>IJÛm€tÍo@ÖÅâè×ö·æËÑIžÎöÞä#Jâ“‹·êGÙ?¦l¼‚sfÍ›6lÙ±KyÅ´«9ŒLƒéµ(hkBQíŠ[ÜÅk*`?êú®ƒåíGËqz·² Óí57”ð¼)×ZXÁãÀÈ)J|Tã¾óJñõˆçŒJ¡VÞÚnk2 ýå9!Û¿#ñTlAË?ó‘úõŸ˜µƒæwÌñiz«­»hÀ˪Z[…XUZFŠKe€µg,[šÑX2¯hÿœxòö—ä?ËWòÅ΃u¬^yzy«y‘.ûIÔ§„=ß­è £½y’n-X8Æ¢9¨ÈïË­¡Ò¼™å8<«æq#èñ)}{RQ Ô7S³¬•¥£ÔÊA⯆…Y¹·æÇŸ/ü™£7èmjWVë<¶îñµ7ue£PŠ7ìÓéÏ~j~cÙh¶ðù¼iÃH»Ôf±Õîm¤¶¼Ô¬ï'Imšü¬¬'"%pRµß;¯—?)<Æš§•<á ˆ¼Å}kwúæ™qsm4_Ôm•ôï©ùt Š;X’姫̓«E*¡üë©^K¦úz=î 5œòÊ=X¸3#ñ¢³ÆQM+Sôg‡<Ûÿ9 ù½~ú•®‘£¦•Ï%º[ô”]Ã#ŠáŽB…ªõðý£Áòy¬Ù~ry—ËwÐy&ÞM&^9ÝÍÔ–¢ÿë-nBú/o2½7‰×úÍËÒ3Ä,êE†•ÿó–ߘ–Ïkaù‰cks£OXæ{O¬Ë?*šz$‚9öp$ +ž¬e¡ë·zòMi@fUFziGWå5 +┇®C|Ïç?–ô­ßó‚öÊU×¥—D×­ôëRëEºŠkYâŽ8­í¬᧕@õ8+È ’GG!C‰¯mÁÛßlîžKüÏóW玩qyå"j3yjFKbE†Ø˜‹=d24`ˆHH ž ŠÈ|³ùçßÌM3RÖü³å-O[°òê,úö³§Á+ÚXÚ$rÊí{qé¼0’‘’®ì£ám˜ôæÎ<½ç m'Q±Ñí´_5]FïOÕ’Î-SZXZKad 𠉤š ¨­…!à„)´÷<š8™Ò1ÊV£sV; $ó_ç—“ü¡&£¥ë-use*¬‘˜äšJú€"sR°†-ÔÖr%<Ñ´’½‰mÖVæñ§>@TñÚ›°ûÌìÞ[QÒ|í$ó]µž›e¨·é(§¼®øiæõøEÁ$SÒR&%x8c!Sé¤ÅK…©â ©ç¶ü­ÿœü³Ô^ÊÓÎ|–Ö7AEµ¹Ó®n.#cS”G!ô¹b©Änk¶tÈ­OòoLómåÇ玟&¡ååÓ®}khî%žKõtx,Vf­B¤™QB’w4¬ó‹ÌkÑ?,t™ÿ+›TÐl®‚Íy`©<3hv·*÷¶ÓÜI,3,Ä–W¥ Ì3@Œ2üNü¥qå+{»Æó…¬÷vík*Ù%³ð+wU1³ýš÷§ÌüòÿœŒòç—í’ßJ´ŠÒëR–Åìä–éU•¯­nY"[…I£tñ¡¹ç=:êßRÓt ÏMµÔ%‚O­ėѬ *ðŽm„i —÷ŠŠñZÖ™Òì¼Íq \Kþ0¹»¸Öo&‚ÚÒÆ-3X]1§»‡M‹Ö—Ò´“ÓZ…´Ãâw›„>©[ÜÚZÙà W2E/¨P<ééRBUnV‹^™À|穵9YÜÚé–Ú$sI"Oášùø,ü؇ŒÀÛ‹oóŠãµ•¹ó]ö{yoy¢C§Ü][ÞMÒZÜ\ˆ"%ÚaÊæÐ’"Ý=J1çÀ¸ öåuåŒZchÁk>¡*<ŸX+ÆXY¸ž!˜P}¨k’+ùŠM#Pò¸ÐtËÛ`Æ°ë—‚e¾±(èàÚÊ&Xž4%£m˜ûPãUÒ¼ç¦ù£PÖ¤µ¶Ó­å/¢éW1}Rêe²Y­¤–TRiRŒB@x¡‚à¾Hôùôái½Ä‘¸½pÞ¼kaÁ.X°-ðòøFàT£ë–žZò~±mæB!3¼Íkwr…Ûû‘ø¢ GRFÝ9xç­ç?7<³ùGÿ8ùµäïÌáo¦jpúÂy$jv7rM{4Ö&É Rúœ•ˆôê\3â¾?üãòŽ¯æ¯ùÈÍÉ»©Ú›xü×ú[ÞY>=F+a|ÿP‰žQDEŒÎ‹ Š9$åM¼³­7–<…­Ùj×wÖ_¦âx4Ý9Q…½ÒÌ#/; _ICU©^*Ôjèw¶š—®µ+AæœñÆ#º0‘òU`_ˆ SNJZ´Üs¹þR럒ºOüâ6³çÑo¨yŸËÃei®É5¨[2ýçž%{ync…^yÊz‹$Å¿v$XÁÚ=ç©?6uÏùÈeòåm½¦‹ç{[³©yVqÅ–“}oeg£Î kXX]† d+[ÃsúþœŽÿ L­¼Óäýòê|ª×÷RÛks@úS°k_WÑŠ2· ûÁE%U‹~ðšÕkKɬj· +Ê8‘ôX1#‰2°;ÔäoùÈ0þSêÖWú|ŸâO*ki¯¥Ý%ÔÚŽa ³xH²Á3,`àÅ`6ãÊ ¯þPjú”wúd^`±òÿæ%ä¢çAµŠk/ÐÞeÕõX¬.5 wAjóÜF÷¿Ô”rž0e22þûÑ$]wÎPxµ/UŠÞç\¬òéB.v÷ uLâá%‹ƒ¥daîÃâ¡îou§\º½Ì(Ó4³O!»uû¶ˆ¶ü@erÌÜv>ÏnÇhÚÝ„~eÒî Ôä›QRôÙý[9¼Ö²„€’E1fn ©ê„dLó^‘£éPÅæ ›-&ÛN´µ±–Ymí!½ƒë÷‘FÓjE-¿Á4eû%ªzË~~ÐbÑìfÔï¬tý2 7O†„ë²]¢ÝÅv‘B¿îžÜ$jX†]Ájƒ…·0½±ˆ0øfäc`AÙ@Øñª×qÐûô# +.ážÎH!‘ù¼rÉD QT-#š×‹ˆm\7òœü©çÝ6}cÊšœwð@R9’:†Ø°ã$¨#梠m]ÎIü¡ç,yëO¹Õ¼³¨Ç{±HçŽ:ƒŽZ•IJ¡‚ž<ÔV›r¡8Ø¿¾Pcõõ»hx²Åz~Q02¬F/P¿NJJ|$‹£n+°ÜûuÉ÷,â_OŽÕRîy#.Æ›¾}0ÖáI·vY½•”H*C£®ÍMÛaàzbümkêz?»ú×ûîjú4ôø}¯çÿeL_Ò±þÿÑé +Óй¯Õ¿¹ôiêVž¯üô§íSúZ=¯IêþŽô«êÙÓë_Þýgûªsôÿç•f¸Ž¯ýÇé=oÑ^—÷Ö4úç÷ßY¯¡N~—üñ¯ìW?ÿÓ÷Þz×#YÍ›6lÙ³fÍ›6lÁÞ6Y¼”‚(Jôù›ÔhˆtRÄ‚¹B=ê¤fಎ@R7ä¡Áö¡1Ž9U£”¨V!‘\j0#Zòéø¤’ \óUŒ–~1ÕNM±Rj{˜üÍò–«ùƒåkMÕ.ôMOÔ¶¹Óu]:gk»iídç‘#ÈŠxT“ñSzìʧ <³®Ùù;R¶Õ …í¬,b¸´Õ, šÎX®©ѸhÚ†T%€ä¤íPXßž¼µa«yFm ÕѼ?UÔVÖ(g–TŒòPQIŒw»‚Ã9·æ‡üÉù§¯i–ºo¡•jí-ÍÕÄîF~>Ÿ.`’Ä¡=sçÇç?ä‡ç÷üå/üä±å/-iq®åwhWÌZ¶¥pöÂHˆM=åñy™¦h úJ¡,á¦zòïóÈ_’Xòþ¿æMjûS¸¾ÓoÌ>VÒíl…¬·òÉÇ/Ôã[t·Bªµ„—f#’ü^hóÇ‘?2üÑç;ß+O—+å•1Ëy<²IqS ª‚Š×ŒiAïÔ¡§i·¾Zº¿²µ´ŠÛFº »†&‘xÑ‚An V…Nç¡Ï:¥÷›)¦Õô;{zyg^•´ëýM¬L/¨X£ƒ4V÷rÇÂÅ ^ŠÊ›ƒÓ:‡š4H¿>¼³¥Í¨yŠo,^ù]õ CRž9þ©Lm%·­ÌW1¡¤QL’}j1û™÷,¤Àna×ü©ë[)’; Ö–Ô"†Hú%G,±Ç!‰ÇU4íÉj0†?=y£ò´^Í«é_]òãJdÒ®šD€Æß'Rî«Äš£(v΃ÿ8Ñÿ97æùÅØ®µï+§š|»­¬§DÜ :âÞî 3EsSJ"e$I¢HÜ[ªg"üíÿœUüÆüÒšçSü©ó}‡”Ò-4+ižêÎW’êÈEõ먠ŽD ˆ}6fRè9€+ʾyó¿åôFÿË7 `º‚M¸{[išHê¼ÔãsNJ)N†´ß–ZyãÈš2ºÉ©„‘Ï} zöÖíK£x‰ßEµ?Ì]'ó/ó?3<û¥Å¬h±êp^ëþNŽ{=Ý£º óAi4s¬üIŒî‰ðŠr ‘‡P‡E¸òâZù.êÓAóW—a6—ºÎ±yq­êºxkƒÆåãµ·6ë<&qsq·Lˆ¡¯5cæ bO1kGëŠfYoày#ßÕøŸ…3ÕÜs× ¶>kͲùBÉýb95­Ø¶†R‘+Sn ƒESôS8á%a,•¾—÷jÒÖ`±\[‰ á2-9PP‘[Wd`èJ°èÀÐŒ3óùéb³ó,6×öóºÎÏ‚Ø\ÈQª­èTSâ'‹(ùc OÄGRw¥q¿˜–ã_kµŽæM:ÆO©×êö"áÞ_¬ÈÎÑz3JÇÁL†ZƒÍ²²{ùuùùߨZ'–<á£kVÏ:A:ʆú¹oRª¨BîÄ*γåÿÍßùÊ›}?-ykÎ~r‹K úµ…–§ª­¹‹—‚,r…KmABiž|¸ÿœxü¿}_T˜Ÿ—>OÖõk×– +P¹‡B7 +dôÚw¸tÓíX¬ bic¸™bYdu}9FG§ë:„ñG´÷3\*Æò<€ü€“Ò‚Ÿ,ïZ>…«ZéÏ Æ§-í=)%Žy^tndUŒlYvQRHøG¾Ùï/ÈŸÈ/ùË Ýé~aüËüÍ¼Õ ¸ô¥Q¼×5+à‚u£³ÚÎ%µoM9Yÿº Õ\S9wæ£ÿ8™yå/Ë!Å rY¢]cK±¶Ñ®..Ö`ÿ¤l%¶¼de†4$?:ô¾èËOɽwÈ:Ý–¯æ=E¡«$-i¦_]XÜ$ˆ¤…õ¢0òbŠ¨Í˨ªï‡úÝ´³I•Ì×Q¼²Ìþ¤êѧ"8ñNE€í¿ZÔm¶{+U¸Ói­´F}B;›Ë«ë¶{•hcy Á jh¤ÔA¶p¿)yzóC…­î4k-*ÖÚÖÎÖÂxcß^º†k‰nØĈe/¹ufåñø‰ÎÃä?)ÝùfŽïE±Òb†ÖÆÖÒxa”ßÝȨÆáî¤1"-BJ“ѹ|G–Q_ˆ¦Œ©Óp:o€‹ ,¼‡$ :Trn"£¯]¾y àôVâx°%Z‡‰ å±éÓ|–pz+pn,9+ñ~Ôm¼³ä‹yn. W7ÂãÕH,T*}Zše2ÉO­IñŽf +Ã`kœëó‡Ìš¾‘¤iÖº[Ý£ÞNeµ¹€ª¹ÉRÈ°¸YXÚ¡Xl÷2Ú%¬qóG@ͦ¢GVIŸ¤$ Và¯Ä«PЂ Ól¥–î+}`ê >‡æ+8u,éKg½µ¸¹a7¢×)1õ}8äôÌnT‚á9QHŽ‡qæGÌ3³Ij~YºŸËž~ŽÛPžM.94Á$RÍ´Ö‘H’Ë8Gçñ/Ê–Z’༫ù×Ìþh>aKÈßGQ£ùÆÆ;ɾ« Ú!Y'½º”ye eR´Õ¤¾!zݸ¹Šåcku‚Õ…¿exå +⫌îõ'`@ ÛX—Ió=¦§y¦^Ù>Ÿ¢¿¦ÖY¥´¾Š8`šÜÌ=Hät.Y¹ff@’©D<¥« Ìg—ïlµ¹u\Üj yru8­[K¾–k‹K·IDŒR¬!!TqUs^ å÷åל´ÇÕì4eý-¨ê÷7—¦ãUê1Y‹I%šh'™Ç諈ÄiUF$+70Úf†5vK(µyÒ8ŒTàcäÃœ¶­@Þ›ôÝWÑ|¼ºýçï¸¾šXmí +š£[‡céÉû±! j…ø¸ïÊ›©Wšÿ<켩æ=Cʶz _·¶›VÔÓhTß,-¨¿¼ãï&¡ö¶ççOÏ‹$y‚ëÊÖzÖ¨4[kyu GÔ1ÄÍxº ’pJ:ŽDì枙ޠo´û:é´éÈѲ+HŠhÅuSíP_Ç 5-2ûLÔgÒ%h§ki!ë0©ââU3 =O0¤z{äóÊÚúy›Ëz™&²ŸJ–þÝæ—K¹pÒ[ºR'Šœ+°4ý‘Ê>e¶óg–¬<ÓõYôÓ¨A$ÇM¹pZB!)4>@•ØoÄbT; ²‚EW¨¨ðć,ââÌ„®à²,;Ó¶ý0È£(‡…j6Ç‹ +‚Aé^ØhQ€‡…j6Ç‹Š© î+Ûßn¹¨H$ +Ój ÍwÚƒ¾ÛxåA`"¦…Sâ5Þ‚‹SSCA߶Pí_‡–à·Â)°­Mwð﨨 xÔTøE*5jl**{wÊ;lÀé¸#}ºWæ2‰âÜ_á5 FÜÒƒCïÌaU£ +r؃°­Nßꜰ9P© QËá ì9TíáÄýÙt4¯mèGCO ¶EOJÜ ë¾ß< A4®ûˆ®ûŽÛo”I "»µßqÔlkòÁriñÜ;êQ¼‘˜ë‹ûÎdŽ%*@'cJà» ­ÒöWÖâšh^aËÊoQ˜hªB–ØÒ§ üͦÓ,ÓÈÏaÚÞ}úXÊ°}QQ„¢°‚Á¹éJá?™ ó´ÚEªy[¯Rî—‡U2 sl±¸•XÄ Ȩ'm«¾ ±žÚM@ßÞ™hÚdu3F£‡¦üB‚G¥ùb¶º–’³Oæ_Õ[m6Þ[Ù.ã^!Ž8ý9 +b@¥z#óç—¼Áiä)<‡ùi%¾“©ês[izM¬?UÓ„“\\4ìï,Ò3«ZÔìA ägó'MÖtË‹Ÿ*y +â×Kºº’ 8c6ºp‘ä‘ÍÄ0;I¬®ÄÑ*IãÔ` oT›Uººœ5½õ‡6¹¶œñGd?º ñvPG§í +œòŸüå7n<÷å4j7ú}†¿å˜&‹SÓ/o¢\·QKÉ*‚+Èu¯s殽iæ¯?ZMæ ߯ÞiñIm©hëwõ;OŠg«´ˆã EbGÃÈr®zgȚƟæKé|Ïs©y:ùõM´ùµÅÓ¥±Õ’mš;T‡‹$Ï%”·»ÇÁÚE Ž´à7 ªë«%ä×s=²G¶rí*ÛC + ŽªPŠÔu¥*G×ÿ&)µíuß3yQo3™ ºEgp×ÝQQ•¦õåEa½ +öOËi:äèüºMo̾kÔ¢óuÍåÌ0yoLÒc»‚¢ˆÅssu=Õ° $¦EFñ^LV 4÷VóæMßæ,ú”|³ ç–<·‰¹×fÔï-™n¥Igž«Ú¤­rØÀÈ8¿Ç"ÔnJ#g†Ö¯&£y4S’=­íÖaN@1ròEO†¤S•OZdçÊú“¿+<«c¡Xù_Dó±zÍ7šîm,æÔnžyZB²4Ë:¢' y‘DéC“˜ÿ?4¿Ë¯Ë½'òËÈþAòÝõ·©y«yûZÐtWÔ%»-*GKô½‚Þ8’/MyTÇÌ‘Í—#2~Zj>uóß™<ëægÌgNÔ™t½/Éâ-CIÑmÒ伎ãKœ™W‰–ŸŒ×áoÝ> »Õ,tûx´ý.Î&Ü%ÕìñÅ4’¼…¤æ¢²Ê«ˆèýšü-P&j¶7k鉡·Ò§HÖ×B@ ´‰v[ï65§Ë ÞoüÜó—æDšm‡š/mâÑtÂM–´ËK}G…åeyÞ;68-£yœRPš‚¦Š òÿåÿ‘´¼Çæ+¯/¥Í¦¹^^Ïs>¹æ SL‚6ú¼ÿ[¸´¹w—ÐoZ;fâð;¿DŒî]wªÞ_Öåë AV;eø!P¤š*-jY‰ ±=óž~jÅ凱}VÂ%ѯmI‚ÊXôËxÜlÕ¤W5H¯/ˆŠž‡á¥ +µëí[Ñìn~¶–÷úm¬v‘ØŤ[ؤè%f f´cëH9·)fPìE[öe^\óe·–üÓ>•g O·˜æ}_LÖ Ôìî[W¼ži„A åÀâ“CkõˆÒÙ™%i$1~Ý]KÄq7:IJœâSÄÓ¬gâ4ܳ +žùÏü‡ù7©~bk7Óé–Ðhì‘Ç&­æ;æž™ U[tx–W­Kp¢¯SZŒùYùW}ù§«[ïi^Y³Ñ,Ž¥¨ëýÄÖöi¯¸M¼7<¬eäPž +íÑN;ó'ó ÊŸ–úý—š×ËZž¥®j+ +úv6QÍ}¢&û·ˆ÷§Uò»&—¨;V–e É0¥¤ƒP\%É濦Xy†5h˜´“ë×qZ…WQ5¼°ˆÖ@ñÉ ³(øà +„àOÀ!®ÛÎú}üsÇ©Ú\Ü1R‰ÇêF¢›)V45ï¶ù%ÿj”Iþ*»ºÖÂÛêº7s5Äj eUŽfe“À +Tšõ9Ñ­¼¡ëÚ®™“‘w$±ßO-¤“Æ÷ Ü„”hÑÞF$¤‚¿¼¬Í‚‹}JêãÓ7ÒÉtmãZ‰œÈ±*šª€õGòôÂ:ÍçTЭÿ Ã•î–U·ˆ œDgáNœ@Waæ¿=[éº6­ÞÚi7u’ÿM¶¼’ÚÎ^¦íÑÒ3BÇ®Ãzd3óOò£Bóγ¡y±`†ß^Ñ ÑÙy–ãËz~³x—…඲0Í©4lÈì´ +ÊLÎC¦ä2Jà)cE©U­×sAÐe~Fþi¯›mî­nõ/¯¢ô–âغÉõ¡>˜*y–êÁw'ò_æ¨Ö“iÞa¿¾Ô–OBÞÎinZs` »R]™Š±ûE@ +@­y "ò&¾šŸ.ô]&+k©ã‘îlí\ÚÙF×éÚw§aõ›)I’⹆¡2ÏBѧZE6µóá¶{=Biî+é­¬3·ÕÂ4EbE +€;Rƒ= +º¬Övq"J’³§Õé³Êþñ™ +µ(È.Ü”š×|ûqù{æòã˺eýå­å彌VRÉiq;Å K!-» K4M+­@tfç_‹>~ë¿—žH×0|Í«Ë¡J–ï«6·¤Üê:}´Žó¤1ˆPÈöè·QË,ñŒ!>-¿ª¼£ùW¢_}aõý  ÌZµ•ÜöÖÁn}dŠ‘0i£‰g†Y$‰–:ú”àTîˉµ=NÎÝçš3µ-Ã<êéμ…{ ðÃË»­kZÓ4óqtmaÆÄK$t ¢30Õ4­6ñ®]‡–ü¥æ«Ø4Íäßù˜Í©_ÝE({t6LÖa<ªTpB,j潂©"U§iþVòoš¯­ô­"äê>f3jwÒÅ0hꎱ“"Ï"ñ®HUŒ9©èM €?&¥C15ì½N(qÍ\ÔƉ¯TN§ß%‰âÈ(ªNŒÝK¡àÑŠ,…P:;ÖƒÛ5´¡¯ËÚ¿«ô%¯;ø}ýXÏQ)ZíãôÓõã=Hé˧ÓÇõçÿÔ÷Þz×#YÍ›6lÙ³fÌbiS°© ¯¹Ç"—u@@,@ôß)˜"–5 +7;xe3*)v…!EZƒÀxâðÛ$ÑI/¨#XÁ§0Afì  +õìráT•K4‚*)+ê£0 »WjÐ{Ö€£us-½Í½²[I?®O9"(V +X¼œ™vÚ”^M½iÄ3×·²YßZØ­œ×ZŒÐúm1ªò-!f_ /&ïN ¼Ó+$°Hñ…&…äÊÀ|HM()×Çl¨iIbò)Fø d‰¸1W¬-U+Ú­Þƒ~ª^ZZË –ºŒ1Oª±LªÑ:Z¡Y–Œ½möÅ5>ÆæÞ[=VÞ+˜¥UC:«Â讌Q’u£;š ¸Õ¶é‰¹ä}b^Y(в‡g±$±o‹}ÈËe¹i#nóL~;F"iŸÖ.drõ$š×z¿µn¨Mº¬q'Áp¤Åú\8(J¦Õû±á¬¡†–È‘A1Ü«bOK‡ Ä m«Û°Á“”°°k•¶º†wúÛRíêH¼žsƪbMyuü˾ü®»ÐåæLº=ÀÔm®u›d¬rI–?¯ÙOr "kv§íê+‚J°Û#º®aš÷óK—^Ð.t››MîÛê²Íqk<ÝÏ SAb“Èb¹ŽÞB ÑP+ ä~kóå·˜¯/,|Õ©h:‚E’i·¶~¬Ö†Î9^)(a¹ na„‘P8•e8Ÿüä'•¼­çý!ü™#_\j×[hgF{xïy@ã‡ÖRBÛ²½)µsæÇüå/—¿*5?6Íå U¹óŽ¾"6>KÔôë»kû»ÇõaKE¼XÆ-`·Yb”1,«EH}U’ü¼üÉ¿ó^›£jZ^¯–.´û÷¸ó•Èm&K9¡¥ì¦ÎæÐK.ÑJò,Q‰!v‰‹= œ_Ï÷>Qó"YÛh· ©êªZÜ^»ºO<’êdi£÷qüK#J¹)U„ÿ—_ó†?—–Hµ‹ÍZ„¶žgú´“ùŸQÐæ-í¦’ ¦(åhY˜@'“n§ØŽ©ù-ÿ>æÿœ~ówåìÿã¯;ê—ž{Ѭ—Qól~U½°»Ñ4¯® ’ÒÛëS.% +ß½h't䬥ÇõßùËo6™<“þòÜ%íäúŽ‘5å‹ê×úgî5I-­î9VqEšÞ7…‹Åwå×寕|Ö–£=ÛêÞ¬VÑi–³ÁÜÌZI&ô+å–(4Ù7øCùþqá?&<Á¡äÏ4ßݨcµÓµä–îV1“.c± 1V=צsý{þqc[ÿœ`üõòöµùqç{ u˜Œ—¾\ò÷˜tMvòòr&šÆh&MO½µWä­,rë†^]Ê¿šZ'æWäÍï•<Í¡Oecõx´ýZçFÕíZÔYÚXE©Å4 ¬Ü$Ë4’•"Fë"ƒITýÚ’þZkEó•’iZÅ£ÝÍn.¬£ú¶§x’Áqje$–¶N’……þ'ŒÐuÚ›JüÛå]ûJ[7Lmçæ¦DOÌ‚xÆBá‰jûç?üÏü£ò¯•öãó¢èèýÔÂ{kK U°‡ÃK$ÞiB*2òŽP²†qËp×ËߘþOó^‘ þWé‘Éæ;‹–Ôo¡Šð¤òÝ^Ím{%ŠGtc€Û•Dš®PÑ–CÑv.×ü»åËsyæù¤²ÕoýKÛ;kX¥¤±O#´rCb?²®ˆiÒƒ<7ù“6·å?ÍXVÍ•­ôÛÂðÚ á4¾„®ÄKÈ-X¨Qµ7'Û<Îèñ»G"•u%YXP‚6 ƒžÔìæŸHú¶³qmu›}eÍ´?YÕ"–(eŠ[ËfŠ'•§àQ£ª_™ø *£‘MŽzâÖ÷óB×Jóm¶ˆ‘‚Â+‰ìbUkyŽaø³üG©©0ÚòÓYÖíßÌúIŠÆ0KqglËlŽ~Ó(*òÔ÷Äü¿©µ¶ƒ™%µ¼Z…˜¸ŸZÑà„Áq%Õ·9šk;RÏÌË?©™Ó·658)­o®mÛRKWú´dFóÇzJÀ(¡`( ¨ûó²y[òWÊ:t0I¬Xþ™ºº s{es42Aê­(bªîI­TŠûg¶¿#¿ç¿,´Ë+j™z<¾oó6§jÚ…ÿ“¡óklÖ“µm%³’Y~IIÈTþí‡Ä<µçOùÉ_Î=@¾õû?*Á¦ÜZéÏæØtmVTŽò;UÐ_µÌ|QVIMc~t ­U9Õ|›ù[¢Ä¶£Ìñ}cQº*ËÕcÆàIê—WŒ•^>³ Hû&“ë›È}{ˆ´„ú¥„”Xí"U†” +y,\wjî Ï£:|:ƒÍ—ô»/è³(K]3N‚;+eDEk¢Â€ñá¥x°ßr3Ío§yõk¿6^I«ë W»Ô¯%’îá¤wi_Œ÷M3‘Ì‚7 `vØg¦¼³ä?ËZ.“¦ÏkoõÍ>0$ž(ù”¹”ˆ^P„VãÄt §m….[¹ÌWÊb:ˆ¼xHx…¹)Z{Wp(Ôg¶º½Žöê;gŽIEÙӅ©±Î’ÛÊ°´¾§îÜ^=8ò‚ÑQ¶á 0»•æ¶–ÚKײ’Hd±’Ýíî¡šåaú¸2Ç!FV?n4£¬Ún—ub<¥ªAs¨V4¥åÖœ×0É(y‰.…¹¶Y§ÄAjÒƒ•Y+««‹¤hæ‘äFæZ3ñ}¥ € ºmJmá¶kÛÛûÈ^›™î¡c+´“-}U!‚¬j( A ¨ Ñ´/èSzº.™i¦ÊËoMm[’¶¡VlNüqZšñÛhž^òþ “FÓm4é8ÛÆf·E€‘lbæÌjx(â 5âH­Mq+¶”WpÄHkÅ]•ê€Šm^4 Rµ;lK5©¯4ûk»›u}Bé Œ¶ +¬í+3zpzŠ#^DúC8דåsÞß›¸´í3J—Ô*‘kLökcfà<+%â}f+§T •ývp8¥d¯5]KS³Šåt +æúV³&Îåf°ŽÚ9aI"ëK»yÍH1Œ·*Q~0x·PšÊ©q–—‘a ˆ–’"ª«…bÄ—©%œíZ×|àÿ™žMƒÎšD:·æ1ó—æYM¼zW–mÍŒ:zf/U-Ø<îÓ4œš[†b%Má“Ï#iÚG•<ùþ òŇ–|Áiawq©ëmžÚî1M!³¹°‚ˆåH‘, «FÑYT3H‰!ä+!å_•§Ìþoo;ëÓ¼òµòï”­´˜õÝYÒ}N+EÕç²K§ˆ0üL G_„•aWçþS52 ©~aþtÜ^ê~Wòµ„V:eìÞ]²Õ.mLÌ’DÈbin%^!YYx¨’ñV­29ªþcþtÚ=ו¼½h¶ºN—rþ\ƒV’ÌKW…ÔGê]N¬ªì¥H Ä +Ž ¾Ü[éö–×¾µnö_XZúƈªÉÉ$jq«ny2éN›g8¿óŸ¢èwžtó¶›w¥þ’»ýa§YCm ­¼OOÄ…Xò”©"I£rŒ-6¡“hþak^cÓ?/¼ƒæ» oSÑà>b×®µK‹›Ù$¸§èû»X#M´l¾¤6Ή'ªyÔWc\üÅ›]Ó|¡å¯3[j÷ÚtCYÖTž{Ïß|V·T‰TQ¨é Êç˜`wƶ„±Î_ë6,… ’Ü“ñÇ™àTQÜuèLž?*GÕµ&¹ý'¡ÝB²é×tœÏ2AÝÓÔýÑPX2¸¡"ŠÌ•—çš5+K¯&Kk§è¿™6—2Cy§k‹qag5ºHcpÒ4Êh ¹'âeªÔ­ó³Ì^cÑ®<¼¶ún‰çØ'ôî¬õŸRÒÎ{j8 +¹æÓ«C ³RËU,ÝÖ“.°ÒÝE$š|T[d·‰"«Ð9”ò@8½J²€zÔí„·úݳy®÷ëZs6…ièÇ¢ýF8¡3G'p×f@Œ’òôÞ5Sדl—h^XüÇÓü©¥[CæKk­fçëRùšãWq,R€ÆÑ4ÿFÞ%àÊÔIÄ›‘À~ÎH¼¹åoÎ=7ÊÑÙEæõkÏZmRïViî®!–…­’ÏÓ‰AWP¢HçœÔ©t¶ËjºŸ§’^0”Hý(Õ“â,ëµa¶þ4bÁw¾aÕÍ’\ʱÛ\-¬Kkm ÅÄÈà´€ÜÔŠ÷%€M?0ü©åýf÷È—z®¡w6’ë º¾êúñ¯ùÉ ºEgo “È°4M'¥©®+aùåß*Þ\yÌZÕÌ÷:G çÔ.˜Ü]]=ùw††£šV´lÜ‚ô,)†Z>™g‚ßR·i¯ncrèÑM$zeR  +u$šôë¹ß–í´‹ma4}fÖkËëë[‹‰ÚLm`†9Æ^Y¢hB€Œ™ƒã³`™>zó§<«s¬~R^›]Þxlíµg†ÏP¹ÔJ˜§·Ž‡Šä{ #G +)ã'Æ]8{ùù§æ6érMùW}%®…k-¼1j6íõ[Ë«ùÇ$ó1ËZ:0Ƶ‰? +®G4¿4Ü[Íyoul-^X•¢UZñáñ#Qø‚(OßìŠlx>ùï­ÚO¬h¾{Ó­4侊!¦C 3 ÜdOk93Ü•¬TY#"6jQX}®É­ÿÎ)ýR_-ùÏò³Îz¿š”²CæhµíFçP¶m*î/©êCµš²½Èfë2 ‡e©c¯þQßÝU¶óEÖ¿µá‚æfþKȵÈôn¢‰R#ûÉ~Ë|J Opëºì×kf('Žö0ÕbH“ÒU·ç"¯}¹ +Œ‰j6¾sŠ[_Î_7XÛëÚ~¡eËê…®ld‚+çºÞ62ú­ð3uqÉ7α¥ß~]èžZÕ¿*üµ%Έ<³w¨Åõ;eŠúÚ;¸å½šÖÂîå l¶è¥•¿¬\pÉM¶‰ä JÔ ’[˜m4BñÜÃ2Q-Äò=ꥻ$| +šû¶$ ++ššdoΗÞyG¹Ééͨj*b•/@<¢!”ü&½ú_òçæ¿æ?˜žßÏOåF‹åôÌÙ#²×mŽúl²42i|î"°‘ýR}C_H€Ägpù Hóÿåsk>nó-ò•­Þ­`Ÿ£uŽæØ\XHñ]Ã5œÌðÃn‡ÓAc÷Ž¬è­éç üÇ–ÇWÔÚ_Ë«©¡mi¤‡SÓžU¶*Š¦X˜GRT°§ÚÞœW•6Óÿ/4O'i“KçK»ÝW‡÷kgªÆÐ*<¢8å¡f$lÀÓ¨ø¸F¡ùäÿËl¿?u[É~{¹»­| šOÖ¥‡G’ÉtZH–>rrD‹‘–ƒ›"©BýÊËó•5ß;\ùgò›K²óO—!´ônuÁ~ðX=ݽŽ±²µôã–"ñ$…Ý£Ÿ½ŒŠñsȼ³åí6Þ8¼ã¨\i—ò½~¯k7†8 +ÔL”`V@ÈÌ®´O…ƒ¼õïõ}YÔ<«j<ÁåÈO mSX £+FFWx‰˜6ÁFüjx÷Îi©Øi6¶µqåµ}wËÖs½­–«{–…ÒVo«ÈÑÅ/Á+ª3˶ÁSCŸ!Ãç{.éÑy‹N´Ò®¬¬n. Ó¬KÏ©:£Ãþ€Âæ6f… +,r´C¬+µ$[ª5Ìöˆ×6Q?¤·2# øùze‚±˜)!jz´Î%ù‡ùשØêñé¾A°YÎy#»G‚+ñ~F.3 ¢ºŠo@½{a/æ FêÛÉ–ÿ•Z<§êm%£Á`ŸRô,®-/J]Ã:ÏŽFu‰™Ýù(¡eG €¸mä ;XüØ’[O:é!ï/ÙÿÒ$•-dhFê°K0‘6.À‡-É{H%2­¢\-Å°”¯jbfš›r\ÒõŸ8+9Õ„ {q9ˆ§ÂcÇj +aóê>iÔ^FxÖiô 2pRÌU8§¨Çs×s’¨]ÙÙK¯ëö—:>“uú”6ºó[¸Ói¦–÷ÒœÀ¶ðÇeD~|‹³üD6fyä$‘V=Íÿ<(òÇæ]ïåý½ß–<ßwgêBí¡0N®RVoMA­?“ïËÏÏýkòãòÿÌ–éåO-y‚Ó[“Ö‡V×´ˆu-KIŸÓôŒºmÄŒV#¹G¡ÝhwÈ—æäŒÿ˜Úžù•åO8êÚ~©¥ÙÚÚÅ¥éڥŶr€ÇrÏ{l²zŽÎ¥^2]8ª¡nT +ôÝnçMCŠ+¨©7.SÕ$š?OÔT'5Ø©§P+Q¶Zjz˜çö—¯ÚÌRd–1G-­Äqº†æÅâX™ˆ U[õäçHÓãòõ®ºšíÅíÌòC6^‹ëtAQ4®öËjQú(IÝÿ™FL&üÖòUþ»så9­'Qe 7VZíüÖÉdÒêA##•¦’x¦ãtª=X’ž¢¥~5 ¡Œ[¬âáÉÛ'07Ü’¡{vnãÞUü×Ðt»w’ID†$—ŠÈ*ÔE­kJx÷ÁIçŲ6SZÛ^R3ÝB%š)Ää¨ ‚yÀåدêVFþÎïAŽGR†-/Qk[Q«$“údµ¼<ᙳF$_[ÓìO¨ÏŽöD^‰(âȾ¢†*Jì}«QàsÍ¿›_óZ¿˜t-BO*YÁsj^(×ë2Ç7(càÎåà•T š”©üpŠFå…hiöOO _QÕ'›FRÑ,“Qº€[±Ôï#·Y®Q¢Or—–¯Q¼1K/7ˆ2|TbT¿ùÃmgÊzæ–±¬j:„lž`­Å¥‚!Xæwšwä¥U¸OÛmë°ß%Ÿ•7þ\Ò|ó¦jþf¸6ÖöÅs€1_^)Q”?HZ½:Ò»W8ç÷“ôý;Êú…ו¯ÄQyÎóU¶ó•Ý…¤±B4Mj=Q ÖÛ·W†_KᕤYø;¢ d\¥Çc.¡o§)‚Õœ ‰”(‡«©ô2Êo,ù‹Ö^¼†X`¤RÒJ©yTÐp55®Ý3í¯?4?(¿;ãwü«óf›«$0-ÏÕäK§Ž6YÒ{‡ž•O!êü|ª¢‰Ç<4¾v¸òÝÄv~cKBk‹‹8ÿNµk>Ëôµ¬SØu+;o©M$¬h­T+CÇš¹Ï^y3óçG¼[{ÍBMbÿQ¸XœZÛ4cN[´E·k™#³Š'”Ïûº TâTñçË%DÐò< ¥M**+JÐÍrT²Ê°µº±ôØ«ñäÜy¯*1ZÐ’ªißj ²HÐ@÷ tÑ©•£Y8¯!•,¡©È +¢ì >êwÎœÖÖïsãĆhÑâYx'1…Y7Akl >Zñ¼œ + +o¹$TÔt¦øÞR(¼jÛòe©t#|xXùn[l5¨;cÂGÌ3røv +­@AêÞ¯© >ÃWÓëÏýß_ï>ÏJmÇñÇ£ñé/?FœýQþõ×ûúqéÇááÿ Œ­×?µ§ëW‡¤kõN?ÜןÚçñsú8÷Ä¿Ó½JóƒÓúÅ}?@×ê£Bˆ­Å'b%'jªuÔý=H¦¦›6#Ê«fœ$m2GŽæcê¡T¼pŠ²±©nrl£nÄI¼å™žâÞÓË÷3›™nmãÔ¦¶}>"¶•/)W¾WPB€«Â$Ÿ±°É¯æxõ­¬ü™{)½–âõ)‘´ø×êf¦Bð0„ˆ’OØ »»¤“NŠÒÖ±M ­†Du^hÈŒÕáRÊJ×S‘¿Ì¯-ÞùÃÈi¤yv[H|Ïd©o«}jgµž4õcžy# 4ŠY2P5KT’säkå:WÌË>µ¡^Ì÷–¢âKècy­çGÕÝeáN‰#R@Ì­Ú€’ÿÉžck››Èn­u)ïÒ᧸½ŽÞÞtiý bWKhÔ:‰ÐHTÈ -n8[§išÅôÒêLÞÎZc'¥Ë‹1¹Š0_¢ŸHóïåßü⟕g¾ÕÇæÇå&æMWT‡Ö4½vîÖÖSÃÓ†H£Å1ýˆÔüº±$Ž¯ù‡ù»<)i©~[ù–ÿHÒ­^Xúž—kªN–w¾”ηNÒ]ÑÜr¸@yA§üŠ6ÑOªkÚ“ y}`é÷3Ô(ßmÅ:Ö|ë¢þj~Rë_’Ÿ›ºEνuå©tÝOÈڅȼµÓm}CÅž£•£ ¶’Xãä%P +HŒÎbZ×äOø…¯l;BâÌéS5Ï–õy’9 ÒnC¼Vñ*ÃŒŠfbôϨ¤U£ æ †»×u–¸fK‰›ëcýÝW?x­yu­sÐÿ󎺷 yNîßÀ]õKsàÎkÄúeB«R›…®Ûž¹Ú?ç|·ù”u£ùƒùq©Ûªybâ;¯1X]Û}nm%f0È’+9âÁ +¯%;†"?ó÷~MÕÓVòf·®I%ǘm.,|»¦Ãvz…›¼QD!,ÞÄ·‘Ü*Ϭ¾‘Ël­&ü¶ò÷˜u»‰åòåäqp_S†EW)l +PFლµµÛ¡ÎÙ-´QX&¥d(î¸ÁHÌ^G°ƒOÓ¼Ã"BÜZ¡ÛÂúf§æ©uòOŸnF£«ùZ>k¨Ew …ÓUŽGw¹‚â0Ës¥Ú&2Ñ‹6ÔÏKþZÜ[ê«'•5›ss¢Vûô’MdÔ–T‘¦·Š(Z)%Œ–·©Dn%‡p\¦‘WàdNÊ€ÃaP‹&*ƒŠ)bB ÛŒí)›š»cîG\él¥yÊRJzŽ ÔéR:åPZwØüEjPòÄTTƒNÄ”Øp 7¢½ÁËn$=À4¡ ¯BÙˆ +°¨ ‚ýr™UÕ‘Àe`T‚+±ËVd`èJ²A2•™:¬¤A¦à׶[|Aƒ~Ñ$ž„àz£-êêÊY‡&.J±V kЩ ú ³+e`â€@ N ìzu9jÅJOB€@ Cñ³ºœ|35¼Ëq UŒÄ²,[cNµ'~¸Œ–öºÀ×íãTÔj·\Aq9îj¬~/µM«M²§ÿJ°:eÁ2Z4ÂèÛ±%=UEŒxQGÃök½+¾ºÒtëàÉy®*ÎÑ»3'4EE¢Ä| q¯ÅJï”ÜîÀÇièŽ<|:ã‹Ê ÌRÛH~ •T˜ö€Øl «áš7ô%Šá~Ô¼dž„îw&°Z8·’+®­lZHÉ#bw;¶ÛÓ¾ξfƒJ§»T´pbĬء¢…½GˆÓ$3m4Xí¯5†ÐÆ-}(%âT£€ +ªU·<‰‘¨9þ«þTê~sÔ¢ÐôãyyõÙ%›W»™g´mBYÚ%”È]S“ñ‰}0ñâªÕæ¾]Ôÿ&µ>j‹¡i\Ôí®ŸZ¼ušÉï ¤<ŒÅÀäàF¡(•Z $‚},,彚X¥Xm䌬êÒàÒ¥j¼K +S©ìpªçËk¥\jRÞX=AVßMºãºIeWÉ*ºH¥—ƒH¥8-öj7ò÷æ­æ/6¾€4[4è®Óê–÷¿X†ù#hÚHàx~®ÐDÅÂH’ ™‹D7OˆúgÞ^üÆÕ¼Óæßðü:EΞtV{­R Ñqmz‘€óÅËXëL‚ÚÎñ9îV¹cê²I1tRHâ:…;þky›KüºÒ´½ +])SüCuu-†­$ÇÑ´½ŽX¤kÙ>±ÏÖh机«5ñq4ÚäZMÿ++øŒ°ÛÄ·~¤rÕ¸ÆMT"°m׿C_aæg•¼…©édŠâóLÓícÔ$úÃ3˜ìË1цD’®ŽÃ’Šøªç1ü®üÒ±Ó<ëþJ[fóF©ª\ivö,#ôå€=ÿ­s*¶Œðf­V£fcœCÉžn°°ÔEÞˆñI¬ê7×zhÊ¥Çx±‘v&’7@¢XS÷e¹UvÙ›9ö­êjÒiúâIõe^Kfñ) ÁI@íÀ²¨]Ë*–†ç<áäïÌÏ5é>bO-ùÄÝãiñ¬Öú3Û§ÀÆM¼w$&hàD É"+I±¢µ=ù…ÿ8¹ùæO-ÜyÇËz]¶¡­ë×2.£«Fð³Ëq(k››Xä»6ïrÒrÄÌ‘Q÷u! uo7þL~_ëzuƹ¡éÑ]_êR<“_ývpk;òÄ1‰ååPˆÌ‰S»æmõûÊ÷v±.–×剻¸PÍ$dÂcM«½]Øò²AoæoÌ=bhuöÓÈI®\¡ƒR¸„^Ësk$ˆ—Z$–‘Á#¼ª6ÙÀ GË>Fò¯—nt?Ìm[Wüыʶ—?^³ÓnÓA‘'X%’ÒâöKK×Dd€u–V gäO$)ù¦ÆX|©‰æÿ3\y¨yq"kË 9ÖÙ¹¯Ö½)P+~r»±³©åU(Åc¨jw¶kyr5(Ä°E4ÑÅ XÕ›‹†wŒnÍQ¹'¶Ô[7õΟ1hsù«_›Ìš^“{h/n!‚âØ‘pV6I\ÛÄC<ª*H¡pÓÊSy7ò2ÇÌš§’ü¸|±¬ëZ]áúæ©õû§ŽähZ0ÚŒèD0ÌB9j(yl¦y?òÿ˺~¥©é–’èSÃiuz¶7:€’òïê<‘qŠ;é¬AëRÔ#Žôl­ë7÷7Wkoq­¼Æ{‹Fe˜*;+ð įÄ={à¿Í_ÍûØï5K[-~ÃÊZD³Þè´ó[=õÔ–ÐÉ$ºHÖâ0¦6„˜ã”²Š=(* ?%ügåß)ZÝyËMÕüù®i–ššôÝ:ÑìôQ »Hd··–®Wq4wúΊ®õŒ¿ÅBGå”±ò§“ì¿Åu}w¤%§˜ EôlVUÓ€ÁÀf•dõ?},t?“½ \ÒM —ÕgC³ÅÆOú,n볞Fµ,: kÓ9_›<Óæ þ[O¤yõ£»×õij?M=ã‹L‡ÕA,rîì೚P@¬®K3Ë:]·™?2­¼ÓäÛi5}Ë÷Z‚jz”·dWR’ßôt7nYØ*FÒ <䑃Æ+‚ïõÛýðëבkÙMsÔté8¨½ºX^ÛÕWôʤhµv^D–*Ê8œ‹y›Î—Z*Ãåû8^áØ¢%¤|Rªòz€Vƒ¹'cž9üÝÿœºüÛ±Óo?$­ï}M +5¶YzVÌ­+\.¦¿„ÊÜeaJHjnFuK?ùÁÿ$y«ó/Í+Éào<FòMY¢ŸQµ¼¼Ö­¦Ã sm,k%´\ZR¯-n1ªWÏߘúŽ©yç=FëX!µu2ͯ¬$k5í´p^[ÜØÔSÓt’¤+rìЃÁ·å?˜¿—ÿ™þbÐçòÞ¡¨X[èÖÎ×U6þ‡ÔjK4ÏÂÛ~t5-ÔtÎ/ù³ä_ùÉë?ÊëOË=ÞiÑù?ÉW¯ªj:–›kc&6¡/¤o/£¶°‚èÇ!˜qoÞ) GÙÑ¿*<Çù%æf­çÏ.G©~Ö´“i-íÆ¡õû]WÑ·‰‚ÎökÙ–b(âC +1n-α Ë~wµÐ¦µÔ.­GÓî¡[Ï«´-§”8BR$¡sð+)øˆ®C.<½ä¯,ém£ùWÊ··OªZ}OUóM­´ÍóDkEYçø±%HûCaœkÍ×^PÓô?/ù_G†ðÀ¯ ßžŠj>¥?¨²È!†{†„E7£HÑÉU蟗_§uëè<ÏqªÝéº|§÷¾WŸô\ñC¦„ž++{‚-’â&“ÖY‡§­†3W‰ßI`–°ÚÙÛ«ÚMH‰U¦a»Vr¡G € ãR0Äk––úréÅòË2F°Cg6ž\ZÀ +—ûÖ!‰ÜŸjá«æmKSÓ4ý2óêåtë¨ÄO³‚D…&y”4ñF²ÈüªîKñ¢ò*py[ÉVšž·¤Kkuèù‘æ—S¶¼¾’hŒúŠ´S,)qpí +Ì¥¨ TŒ˜Û‰ähÀÌÏÃÓ4"œwU¨×cJðù­<É=–›m ÿYµ“eøjj»V¡A®øZïyu®éiwdöÖ–ñYÛ,>°¹¶³”Ë4²FшÕÚ(SŒ~¬®ÏEA_„)pRhôè0_æ¦,Gr©éË`í®”15Ô`ÝFÒÙ4ÛK«X¤]ÊM#  +ÌT½Næ‡l­oAÓõkñ$V–ÿXÛ®¯Á'XîÔú°´‰ýÜÑÄEK[…³²@>çaÔ¦„Ú $š)’ÚtÅ##†Æán<Ò™³©i^nó-Ö•k£kÉ467Š„kÆtx¦zÈÀÀñ0䧭)›¿¶óo•|±yiq®ÚéþT±³¹šo3]Mywr“Ï?×å»’å>¯D†!-X2«–@H)›=7üãäE¾yå=t{ˆ£C×÷ô¾˜#+Lóe(C—¢Ug^üËÒ¿,%y“òÿE:;èúvŸªÛÝÞH²êúÔ1´W÷åÍÒÛsŸ•#c +ª*0B­Sü”’ÊÇWÔtŸ0Éw5;­=÷”ÜãÌóÃef³G-Ú¥µÓ¹‘¤¸©ð‘™@z•žŠ‘i·zZKéÍ¥ÂÝ:/­8vWhÊT"Çg5}Ôç'óüáö¯ùŸô‘<σckéóG©4ÑKo3áèÉŸë¼>MOZ|Y(ùSTÔ8ù̱XØEQŸ_U¶kk—ZËK`÷¯un +¬Ñ yäaŽ¡p¯ó'ÉZ^·o‘çëORá<µ¨év¥åíIˆ¸µDK¨/o¥¹’Æ8éõ,iq3F¯ÍViªØ XXÏ%-ïÕ9N÷C (Ç‚Œ¬à‘@ÁFçp£|ö¯å7—$ò.Ž<µ¯[úš½Ü­ ]««Ç +Mˆ¥ 0s*µ@;‘Û>ˆÿÎ þ]·üãõýÇ“üíä†_Ì={S}+PóGéä²Ó­&†8O òC5ų¿­8Eª¬œÁBœç+üá«þjC¦k~_ó˜Ÿòãɺ\bÔ^}5á:ŵÁ¹·gŽ{_¬@²À´‚F)eI[Õ©ë?–>UÖ|½o˜¥-ke`WVק ¤ŽÂdº†Î¬„‰BeY•øÓ©Û$,°L`ž?MêÕÔ¬T Œö]Àž§µ¸·ú¼Šd•,£ÆËSàW9Œ& í’êÚqVòÚI­[jOs¤Þ-„²I=å½ê™!Œ)I¤ePãnoé³/óž§ižhÔÛQk{佺¹1ÝZê0LñúïUwP·Ö½ù»à“¤jÐF,ŠLB;¼Ï %U4fo„1cÄTƒËèÏD~BþD~b~Yù`Á£Í§ú@=Üó™ãi­À€,‘ÞHCÇ ÜßÓ;Yæ?›ÿš^IüÆóX¸ó%ÍäÅ£· ¼ÏË4œ#žÖ.q»Bð¡•äàœ¢`Ôýœíÿ”^U_)éOawq4âæé$†…ÖF‘Á…ù ,ŒZ Ori†—RIº’Œz“29/B²²¢8·]ûTœõÞŸ¦ÚivîÖP}ZKÖWÕL³\\À +$Í$PÂÒMÀ,ÕjqäNÇ<ÿ•ŒSÚ[Ä4ësm¥ýVÝ­ãµ´¹q<¶ñ£I Ê[ÓN)Ë‘ +3§y{ËZ.Ž#ž×J±´ºôAŽâÂÏê„EsÁäŠAêIOÞF(¢‹Ph£bø+3fÍ›ĨòUèPpmÃTŠmÞ†˜#ôv¡ê¾­/6 +U=6©^$ +wâiòÂÍKÌþZÑ­ÖïXÕ­,`y 5ÍÌP¡•EJvºáU÷šü­¦D.5=fÊÎ##À%žêË£«°”QÔf’Âú"V[yȆF-i]ÇJãäÒµ8K‰m&C '(œqñÔl*i”žiòÄšŒz&õô&ó ÐjLÑ&úí¦“«™#Öum 3Mmk +Hä¤ÑE$pÉ+ªª¼­ÉŒ‹¼x´7óRÔu ?OÐ<¼ÓYÅ­1‹RÕìCÊÖvòw—´n#2(Îá€5Tl)¸ó™® ¿‹LÐîRÑfSjò#½Åäê$‘ÈU ÁO.'jïžfÕÿç0¿ç õ&üºüŽ×î<§ÝBÖs^Zê2jÞa¼ PÉcu++¤&ø`ŸÔˆ˜ù8¹ÿœ}œ¦®y§Ï^VÑüÆšv«¢M帲½²ÒÑ¥¸“•ì6·2ó†åV8XãkyO· +3_ùïó_0[ëyb—ËZtúKè’ÚHÖ³Û^O2=mÇàCЀ̠¯]é’ ~èIdu(aôËÇm’`Iâ¼B$s³:³õVØlzoÚ/;|ßæ•òÍ÷tÕÑ å¢j åëI.5 aosÂ4†9mí.EÅÌo2·îÜ? Q•ƒsï<ÿÎ8y ùC[´òé³ÖµM"æ[Iìlü¿z½£Ê÷.¯"ú”!mžÞOXH¾²;…•c1ËÝ+̾C¹ÔÖÚ%×”—F;[{Kk¸K™U%õ †(øÂc`ÊËêsuiÅm]¥¹Ô´©VÕ’yDU/ Q‰DÄò-°ãáÔ‰GæTú…çœü‰5…¤/u%ü«enÍ5•[“Ê[… Ô˜(Në±dŠþJÛyËÏÍ/ñ½òÍ…®‰ §šoÝtûåúÇÖŸÕ[sÀ³Ù׉iGÃÓŽÉ#¼†žOMó®“d·šlPi‘C®ÝÜ5•ÌYKÈCé4"J潸쬕s4–WbêS,Ò5€E ÏÏâªÕøì¼Ní±®ÔÂgó"ÇÈb¼} Ì ®^I%ãê^S[u²A};LÍ4wK)Êq•¯&¢‘JÉ6‰ùc®þgy{HÓ£Ò®|Ÿ¤é)a‘çe½•®§¥ÛÄEÖž—j‰‰Ç6â,¬MyƒK&êþx´±²ŠÚ_.ÙZ[ÚCg¯}enàÔl­‘b&±I‚~FRÇáê­]Û +<Ëu êÖ¶7÷•³·‰eM‹œR‰Šºý´Wv,Üý+QßÌ«&y§Dе­Y[F‚ÜÜ4¾W³­É¼¾ãpŠ³MDO‰šYMGRªšœé¿“Kù‰ä^ò­¤çÍšƒÅ +ÿŒn×ôpÓôökYÑKÉ$šg1óEôÙYš#.J|kæÿ-Þ^hK&»}rb#Yž8^Í-­yÄÕÜ;I3œšŽäÈÊÊBCúNÃFµ˜z—3F £Y\YŽ")ص¬jAdaø|=Ëmôÿ5ygò×CÕn-î5KÇy´‹}QÒ"H-íu Lœ ÃÈÌc‘­ÙXÒ´YÇ?|ÉçŸ3éöÖ`Óoí`Ò¦ú£ëú¥”±AêóšeI$Depììc¦ü`ÛþQù;ËñG©èÞLÒ´MNÓPµ"ÓÜ8F[diÖsDšûIѼì¶:w˜I¹¶†É.4ÝM5¤wõ¿Ñˆ3P‡‹à±V±ùßæ4ù“HÔ?2bW¸ò«Ëym§M¦Ü´÷V:¨µ´_RÕ}rL$AÅá“Ôõ7T%¼ò•µI/4ß0=Ï”í ½ŸË–VSz÷­ðZÝ«Ç –i.:̼]‚'/ôý3Êiå­6âa¦Â~¯kys"Ë)±ä¸ÈN*?žQüçÿœG-~^_ù3DÖu;o$hL¨ê6ñ]ÜLïxÒÕaku‘%,ó$ŠŠB€„U\ç¡?(|õäëƒå½<µiþ)·xn#hî/«­µ’Äï5ìÿY‘dU"V‘“í:ÿºŽ'æ_Êxü¤žR7wVéhÚ„M6žÓÜ$»zÐ;[7¤Ç”µ.H*¨ä%m7Ë«¥é–Ú µ.!HcEÚ'5éBjÕ;Ž•ès“k“ú¯’tË}ÌIæ;}VÍf²Óm>³—Íz±™þ¯Fc–Eg ÅÕ’€¶Õéðþkë~m×›Í׺½µŽ¯™«ÇykºÒ¬4¦»•äžòK¥–ûbRǫ̈’'¤¥Šó½wʇ–´ÏÑzN·©evd?RŒK ’¤u(VýÛPÐ…Wg¥9*ïœ;ó§Î>gü±°¸Ò<«ä¡æ{Ö¨’K%¬¬C€äŠÚr´ãUOLó×™õ ß*ÛÝþZGbl£¶™¿M5ݚèÍr®„¬†hRx–?L(ˆš+s;ó9)Ôõ/5ùËYo1yn[=Bx—ëPyzã\’Ê=BÆKoL"þ“[¡–'yÕáR¨¬§!¹»¸´µ“C,h$/;I +,ì€b¼Ô +}šÒµÎ%äïùÉ=;Zó;ÙùŸJ¼ÒX’;›;ë·(‘7 ¢ŸÑ.übxЀGµc)©Og¨}Hž{GPR së"1•õ'ìšlÛbzwš®u7ŸÈú¿•o4w»‚ÂþêKøæ’ÔC%¤—/{§ÈË|÷sÚJ#V´¸Š/Hú[qUi 9=HYR•í»Î¿˜¶º÷冱ªØAÒ‹{˜Òá[’ô™hµëR)ˆ4¾¤4hÇ W÷ ҇cM·Î™a«Ùù“M·¾ÒÄ—Öú¥ÜÜÒfõbdDN–æò$ ŽÖ²Dª¥W„ž¯Ù+Ïhú×µ mB4¾¹¸Dõ'»KhÓÔB’F¤qª†î 8‚7¡ÇiöSjWöÚu»F’ÝI=ÄÑ[BF + “NÉkS»»Q¹ a•í®o幞Jñí´6–å¿Fst8Þ_«­½¬Nd"9ÇÜÑ +þó‹f¤ßmöýyèMKþq¿KòeµœÚO™N½¬F"­õ¸±ÓÁz’.ÚWõGUGâªÈ6&»Í2¼›ùqäïªé>Tó…Ï™õ¸U»M&+M9½52-…ø¾žK´Y *ÈmáYsJ†!þPóWæO˜ô¹uO5ùBO-é—³ê#A‘µc­G ²\IÍÝ‚ZAè0‰E<ÒÇÌÆëð±ÁWvÖ¶¦XEÇ­>„wÈn¥jzÅÇÕ4›9¯g§/FÚ'•ø‚x &•#$Øëíå©4í6GÒu[뛸,o/.MÌöÿXG™d‘C¸•âq™Pª7à)‰ÙÙ^j­­„\ÌßfQ¤sòUçhµ2éú,6åñ$h….ôû@ŠnG¢9ï_™Î™gä¿ÎÍ:}ù*ý¡º ¯ -Œ†êäB•y ¡W–ª±s‚{m ×üïå8´c¯]_G¯ZØFÝ冡 VM Uîn£µd¸ˆÍ¹¸+G·‰™C‡Måÿ:éÐCm6—y:£C"›h–6mú5® Ó|.¦Éæ-HË ÈÚÂ9eµŒ¨fSq=Eð9Ò¿+ÿç |ñù•øÌSÅ£é‹-fÒúÝu]2Ø»Èþ¥„þœµãRˆ‹V£t¦A®ç&|¥ä2LºÜ«¨ßéhš$—R  Õn”[Æ+Û®BŠŸ¬ÜÌqK#XL‡Ë”ÚŽ«¨ZÚy†q£›¦9Ë ¥RÇíF” «*¹4h­i׶ï0$˜Ô¢’6õYýnCˆfbPIjüDçÒ(y'Ë·–>_ס[Û+M2âålm¦š ®îílå ~¹ Åé,²1N¡<ùd‚¿Ljñ]yƒF’.wöLÜ<sKmèz&ÎhYYâˆÎF§§Å½0XúsÉú>¡¨6¯`mmlc‚;oŠI¯ZhýˆÀð˜Ë,@3—?Ýð&0ùžGléRIê°‘¶ðíí…Hžš”øþ¼FžŠ”שüq ‚HqÔxcC«ªA+³w‘×X,sk×Op¶M,°Ü<+8ŠEàá~ Çœ`TR½Ç\­ ÿÃÚ…½šêFâ `kí£¸WWB¾09,†¿ qíÛ 5õ¹_,ê66ÖU3Á-»Ø—´[˜är\I#u잘at>³WQ\.ìeôg¼·Œ ™‰e~5U@YAè7°—Ïk¢é:w™üž.ïuÝ&èÚÞOåûä¿žÞîswtVd†4G‘‰F`Ô- +—9Óô|ÎÐþZù×B°±òαnuUM[Y½M6ÇRÓmͶŸwV²ÞË(BTúi"/³ÎQ¯yb-íü»ä°4ÝFÔítéÈÖðÝÛÆ!‚Ö€‚ig(•b tŒ·Âü7-»µÓõMfMsËÞœs[Öi¥‘ÕøJÍU åɉâWP8ò®üUüŸÿœ}üíüÁ¹üÿü¡¹]7ÍÞX»úÝ•ÝÛ]ÜZë"áäŠÞ{k™ùÁ3NLE L¡×÷EÇÄzW’¼õuÿ8÷£ÞÿÎ>ù×O¯œcçtvò_Åsh«5ä71FæÜEkêDŠ¬¬ ÀSÄ¿”<©ùGõ»{kæúßš žý_‹Áy9ž)cbÑñG…˜Ê dXöÅõíí9ǦÊ} ‘'á@ª­ ).à·òŠíLô2i–4’O¢D,ÍÒ ™m£4y¥‰¹z«Dä]ڭ´>ÀdgGÔ5­VÆÚo5D£Pˆ}VWæg+ šBì"«Î•ñ©cݼ–uK6ÞûÌÚdV:ÏÅm{ÅÌæJ hÙËž%P59XÖ¥‹d{ªp†&YŒœ†íÂ8è~äìMNäûtÇ[Aº^³Êó=ÍÉ–Î3¥•·z ûÙ òoŒ»|]ª@½-Iµf’궱[e‚‘=ÃJ\NÅ`”ªR0¡¸9qäI/°°ó<:Ü—ZŽ­õ½;Ñ)©ŠÝ\ÌÎ¨Í ´$qQÀDµ@k±Ø+s ŽXØæÊhkƒ Õ¯¡„ZÆ!T +ÕX•@¼M@¤÷~œ±~¶iî¶â+uONám¢Y#+„‡ÅDg’:öê!Ú—äçå–§y¬ê7/+|¸ÕTO0úÏ;t*Êá”™‚±ãܽ2©~MþXꚆ­«\èÍ%δҶ¡Ög¥ÃË7Öä&P¤ñ»„Šõ.57†&‚Ò"éèéìcVqÉŠ¬|V¬Õ;l»ž§²Åõ­>â+i-í4r*F‡ë7)¹A]ÝK|4â*z“Ê›DÐ<¥ù\¶z^‹¥Î\}e§ÔícœÚZ¹„<Ó\´Â(Ê –'²Óè~]òwå#YXézeÔ¢X®Zï\·ŽàÚÚ•…yŠ2¨*914øWĨÛL¨· «ò 2°—º…é°Ú½{a-„Öš¶™¹¥]Awgv² mBÒdºI¼H>‹H8‘¹¦Ù0[¶·ZUÕåÖŸ7£w§jV7Zl‘òMè—±@Ì kUo×%Úšt1Äí£¼·C'Š{iìÐ+«+p71B\¼kNøa§ÞµÆ¬—ºÿG ™ø¢£R4RPäQ©]©·†XêrÝkQÕ¬ —7L±¬sÎ! Yâ ê²*±Õ@$V”Â?1Ø¥—–fÑ48ÞæêåL_Q¶™Öæk‹—7WUYÖAM#n”© $Œ%ó]’iO¸òß–`k›û˜ÝNµ–O­Ckuu#Ý]5'"waT¥I ðÖ¸øEGÐ Ý_º· ¸»zÉ»zAvãÇánD +Ó¯l„é>Fòg䧒g¹ü Òõ w[ô$‚ÜD³]ÝßG/[T Ê4ˆñ•˜öCNIîµæO9yòöí|ù,:LÒ ‡Ó%¸Ž{[ªq{¦ô”£< ´ak «1yü¿åÿ,ßµæ…ÃK‚Òß@—QYe·¹b°›ƒ4ÌêDœ™}1#"-³qv“¥kWRVY,&³IUn3/™#FP72OÃQAß#?’>Fü؆ÃKÐuÃäùü»ÃCs5“ßC W‰ÌpÆÊ“ë_L2„ +~>€¿ç!<Íù%¦G«Kú2×_ò§™g·§Ã|º{IyÎã×™§’`ìÑ´IúÁ+» h…Z%®ê~Wмªluí;V–2ö°]Ç’ìI1–Eœ:¼akênKqi4Ú&…«4?¥ K‹Ù"øä*ñ»«|$P°§…sÑ7•_•¾tú›ùÏJZ×.m+qxEŤóˆ8¤v@cdP]HœymžuÒ¿5?4¿/¥Ô¡ü¯×%òç”ü¿:\Gg$ÖWvöçPCymñs›ÕiB·Øfæ«ñS ù§Ï~Rý)þ ¾}3Ëš]Ä%!’[KˆáúòÉulœ¹J$.ªçáf¨]éœÚå¯áÔ®luÞX[Í40F‰¾’X-U‘‚ó=ë_µÓoùÆþßFóÇ”5ØÖ ;yum!m ëúO{"ñ¶yZ•U®ð†$Q¾ÇÃîO-XYOå+?:ùri ½»]}zò;‹Í23(²2ñV9­á™–ÀíTûJIzÙn<¿cm§_éòÉg¬ëpAp“Ü íDïèÇË’hÈTÿ(ÝOÅñ}8OmèF±Cwê©‚÷ÖR”GTŠ ¯*×Øá«æo&hZo—®¯­m¼Ì×ñ!ÖN¥QAÆ•Y­á†1Uq'2ä­` t»»ÍSSÔu´Ônüº–3Êú:é—73Ü‘ µÌáViË·¦ñðXÀ“vGtVÚ·æ–´-Ml¯u3uèÂÉy§ú,²ffR3"ò`8”ãÞ¼…hÒ]Uo¬cÑt«i…¤ÐG\N¹(3 ~10é"Nà|«Ý|û¯å˜|åX54=GC²·ƒRÔò<ò'×¢V?S’5Y½9íšDàIp£âSŸò.¯ yÿSüÓó.¹kiæ/+yPº›E±´… !dÒe¤-}opÓ[7£8ŽE~=J«WE|¿ucæKß:jú»Ç¬é:̯¥Ç+,èúku$/èHÕÂpg`na +"»óeÖ¤öVSýZaÍP5¬qÕ@!šTE.*6 ߸ëøüáù¯©kóù3ôÖ¡kwt“z^èQZ~íQ‹½ÊÃlï§Â(¤rî(H”Áùÿ8ËåX4ÿÌ o%évñi³[™¯4Ÿ2jS°g^òÒɦhÞdò´·ÂÒÆÞïL°¸éë¦Û¤±©¹{ɇՀ/hd¸`Íð¯¨þ–%ù½y ëÞU]'B‰oït‹‹y¦Ó •[shŠÍ%UT§©N<É'¥Føp³!´k¶ÔZ6Fª¤ûUVCOöþÏ|$Õ®Žùy¥~aùÏBžîÎòK­6k]EnàƒO¼–d¹²¸ÓXÚÈ>”Œ._º äÂô‹/8·ž¼Ë¡þTÜMå6¥¶€÷w6é§ß.«¥èËq³¿]Ntž–æa«n’OÁ×™“àãÏ<⺾—§é¾f¾Óî4ë¶{HïVè™#šù4edŒ´~™<”µ°=ñC«ÛßÙ~ŠÒïšcgY&XA"²2ÖN^£T´”£ñ +t®vëoùÈO*þ`ù +_.ù?Ìry–ïɱÚk÷º†Ÿgoa%µí² cº‰ÌóŸRiBq•E$Q,µÎM¤yRüºó=¦¿ùŸioåÉ<Õ º{ϧÛ^M~š–“wÊÓnÅ¥¼.a†0ñɪ¡¦âÇ%zŸü·~—Z¶£w§Þjs¥º\*\L­uêBVRab¶FTŠØcû¶ G.!Ïd`¸s鈔3*?2yƒÉ˳5Kב5Üw¥3Ðú$.öþb&[+ie’)}NrKÅ •ÞPåùó-SÈÔ¯‡½Yà™mæ]7ò»ó›ókóUòý¶ƒssæŹ‘5›;´‡Kh.Ãúm ÂäÛÅ œþây|!k¶OôýSLü³ò$Ÿ˜lón•oå›é=M7Oqu©é±[ÙÏêEp·ÖÁ®o"ŠÙMAé°ã3p#€çÖš7˜¼Ñ{{q q4\§Ô.$d‰"©Ý¥’B¨‚¾$gš<Óù/ùÅä‹Æ—Ì^U¸±»YÝ…Ïuc*H‚£ë*®œ0ê'‡@SçßÊ?ÌßÊûƒoçÿ,ßè‹ê#º¹·qk4΢•k«‚ŽÀ©¦tŸ!ù÷Ë™ZS¿‘u-'T¸†{«¦±‡Q{©ݽK7o4FæõýEÓ¨z -[Ëšî†ò.«e$ ˜^b¼¢õ:-PžQ8ØõVŽkí;ówóböÚÎÇËw6VúsI®_*1µd¹W…KóHד(o„ªfÈõ¦‹¬ßé÷ºµ…ÅÅŽ›éFö(]á¶õؤ~´Š +§6/"*zd]:wü­½?Ëšæ•m¡#Üj:ÅÍŒ Å®«5ݵîêYÇ:Å4ó.%iaŽÞei•—‹Ç;XexÞdFdŽž£€J¯-…Ojã5O"ùŽÇͶzV±¢7¡Š[yä2ŸÞQ½fäJ+ztÛ2²8*h ¦ÄT¤gdÔ¯N¥æ)´øtCsu¥ÛEuÕãK · ®d!cx¢™^A-ŒoÆœ•H;Tn{+ò€-í½‡—5›) x½]5îâp´` +ˆ›‰26ãR}¶ÉwåW•eóמtŸ&D–Íq«Éõ]<ßÜ­œæ_†.R2±a΃Ó®~¹È?ž<×eäÝyÄؾ‹a¥Ú)ší-g»[H„]¸0ÃÊxÕÌÀÍ _NB²J©~ø~ƒ¥kV¶Ò–{{f¹n q{:[[ÆhO)%z3¹é~OÓí®[Y\ˆÔ/9Jµe$šR” õ§Qî&Î +éšW˜gÓõ=Q|¥ª[Êm4Ñd—ú”ÚªÎUcn\8t~×ÚT^N<ÁçùÊ8î­.žßNo1A}cdš¬·ǦÛX¦˜ÒÜÚ­Ë¢•½Ff ²Ä´oÝ‚¦uûŸÊ M*îh‹5”ÖIûÙ¡8ˆù³ÎòÛw(¼jÊM²×òKõ¸£–æ9šô¿r?v‰ u~ +õäÄý’5®I3oÓG󆓨þmXÞÚùb/Ñvž^ÑôÍckl^PŠØMÏyAÁ¯2H©W–­u-kJ½¾Óü‘yºÛ.³®Þê·F'šüÅ3½¬·Q[A-Õ¨Gyc… %9p>¸Ôm,.&#ÍRYé°VæãÊæÁå½G¸Š'zH½%-CL…x”ᕇmÚê&$S÷D«úUØ°§FSPù ò—üãMž¹©Yùƒ^òòyË˺ƒÇy£Î5k­6TÓçoT\Ëõz»zÈÊè¡Ëž#‘QöŒ<ÑùâÝhB?.O7•<ÅmiÖVk5¼ŠïX°¶¶Vñ‰q¸õc’‘¤h]ŠÇ)û?ÊÝÍËæ(´Øomn Ž}*æïR¸·æ^Fž‰/ð¹?ÌÖ†Zþ š¥ôwÈÑ$ièš±û#ÁH§RGãSÓ=u¯ß~—¼·»‹”f(>ªÅ¸òd`E"£ˆbƤgž¼¡£]ywIšËQ¹KÙ§¸úß8áX‘X…^ Èì‰vcRV€N•ùwå‹Ï'yz]7UºŠþyîM﫺B¡˜*Óá<ŽÈ®[†‹A- úľ‹Ëèvg Ûj²ŠüÈÀÐij\}VYþª*©$ü…UˆRUy &‡» «ßÝišdš†™.³:/(tè$Š•‡@^r¨êÛôéSL4Öoî´Í*MKOÓdÖ§E- ‘BÒºîyÈP Š·SN€š Ó,q¹†) «2+µ~%S@ô$Ó•+º…-ä6ñN×DÏ35A‘Š¬œK7@V˜ý>âæîλËU²¹ž8å¹´VY2ºx¹ª¨n HåߦÜ\^YÃ{wh¶WÇ-ͪ²?£+ g‹š*‡àį.ÿ­üñÃi?GKt«gv–Ë+R8/HYK ŽÇÉ@䧉äE­N#×™¬,´û}WH—Uºd ¨ê:8ˆY[°‘cõ]Ì“q<…B«¶ÇÛ ì®<Õ§éÚ}¦»¤Iª^ðã¨h‹±ƒŒ¢0çëRÇ7¬ FmŽÝ08g>™+@êI5E6 ¯_ÃÇ$éš/VäÁ<×TN½M>Xo$hœÀcÉXqHø*M74è>ü:xÑ £‘,Œ¡Wƒ¹Q‰`7 +©Á)¸5I;“×Þ›bÑÏ,VÿTŠÂK3ÇÈ•bô©`I©Û¯õÁÐÞOoh, vŽ‹ÔŒ;•v~<™•˜‚ÇŽæ•ëâpºM3O›T:䶰¾£éˆøÃ!V,±,CˆÃñ­+O¤Ó¬%Ôε5¬2j(ïZÄÉ +e‰dU #«Æ´Øx ¥Kr%–;WE¹‘PZú…€vIRCâA!• G~˜“K­5¥Ü:,èšœ«èæVF†ê†½6RQ㉔¯í‡¡Ä5‹;[†Óžñi‘O)ÖDB2ɶw,ËêÇ ’ÊŒâG!҄Ϻ4Z®—`’‹N‚ìɬÓW8ÿžåÑcòTzÚÙ[i~Yú¤–þd»°žæMrêh‡ôr–Q"7d‘§ä®O»¾q¿;Åå©ü§s%•®Ÿåx­dg–ÊY%×nç„¢³PêY#4ŽòÕXŸ…hI6ºÓä7³jÜJ¾­»Bƒí¢ +ŽqŠÔÄÚùŒ˜_yzs¬Ýkú]ÔàÝZ tMÙ!õ kÎ +È8 (¼ÛzŠg<ò÷Ÿü·må½'É—>X·Ž ëßÒtë´W¦3$¶ÖóÒ9w’‹šŠ­NA<³ç?.ižN¾Ðí‚þ‘Ušñý8ô[ ^[‚cpÊï'¦þÕ«ök‘(ôý6?4KúE©º$·‰¿‘¢Tv`*-ȵI©®æ¹åUòŸ•õ?ùɽ[Zó¢|»å+ä—ë~­w¨µº ¹ +•`ŠLŽïñ3;'"ÍË=_uùÃæ ;þqSB±ò®‹qqç/WêñL¬ÁxŒQm9râ@†ùgóK@òòÉä?K¾ýD&þûPˆËyf ôw»€DáÊŽ>5¢ñî8¬WL°iõPn$S¥1²ˆÂ€AaÌPw§ÐsÁŸ”Ÿ“X_ÎíS@óçœ^;MBñÚÃË76¯dfXÛÔR×J÷­$µŽÜyV£èæÏæštʹ04 +ÛS²Ôtølîõx½ ‹{ydÛ{#©qq ›+~æ?Þ=cR•6žMÑü§æÍoôö¹õ”¼iž-­¦JüÉB?Y«Pq%y)'’Ó#¢YÁiw$¡]Ù®¡LqTQ$¿a}¤]ÙEqo²Aes Oê\Z­µ¥ÔÃ,A‰r¬çVAPº}å\ñévK¤Á¢K5­Ùµ¿†D$‚K‰¦¸„$Ã$,ˆ HÊ[ᯠq÷6B1FYb‘’8nÃ!¨F4f"¢65§M¶¯f´ƒN¸Ó ¹Ñï Ô4w1ÃeläÀè¬Ñ%Pnêˆ*…`Ô¢ÖåO™H¸ª»r,ÜG$ó‘u[k[«)®åKH9…×#kÓM Å»,Æ P,kÄ"¸£LZ‹Á£:Ž–n¾±oæUÔmn?|¶Ò¬l«2‚« ¥H55Øã¶x'ó*çócòþÛTòoüäw—äóMž£,ºÍ›ÛC§óµ¾ *‹¥ºš9’d"fª4Hî8€è=kùSå?$y¢M+Ο’ßèË¿/Ú.‹ªÚê2^#ÞZµ¬1Ák:Ú4%%åf® ]UÚFôäfø¸6½oç_(¢éÿ˜6/ªYÆDµ•be(€‰Ù&SŬ›r4¥MI<§yå{Ë+=84—AX‹»dˆE2–â=ä)T!wbzž4¥LoÈ¿˜?r~[ë¾I±ÑíüÑæíV+›„Ô5/-Øé0E"Ã*§ÕÖÞÿêÊð-^9fÉ.UcJR÷Ÿœ¾ióg”<á¤Ûë'–t{«/É{¨ÞAõ)%ÕFq$óÚ¤w‰#ݬVó(H”㕤h¹ÍnUgæo+C¤ÜXÙªêò«ÛÚ¥Þ…§ÛÄËHÕ4ø£Þ:Í´vÌê³–âP²€-^TãÞ»gLÓü±¦[éVë-½´6°ŸÝÜE +=Ä¢T  §Á+Ä°Ïtùþq È~Vüӗ϶ÖZï«úOPó8Óíï¼Á¤_Ñ!ŽæÒ@ÅA‹‹ÆΞœŽ¦™åOÎ_Ͻ;Í›WÚžŒ}:Ê)--4 ù…¦‹{§Þ‹‹îä†îçîë(dçR(ÙÖãü¯ò>›ä˜íua-–½^jBûÓ€@"ÃÈIé*Zj§CzmàF[ÞܽÓÏ×ÔZËp.ãJ6 +μSí+0âÕ +ç ¼¡æé¦ó}ç“PMwYÕ4ù¼Å©_ߺh쀆 !…TuVŠ¤±Ï7Uœ/Áy7›ü¥o?•ô=Y£ÿh6Z¼>U²Ó´ñ©^jðÇ>£ÍrX¤XýNÛ½¬nñ±Tðå,»·Òæ¿Ó¼¡¤jkåǾÕ,—êJÞùÞ%âxHœ¡ô¨Jú/f‘\Ž +UšîÚAqgemioh㨪‰:7U” –þó®ù›ÉöÚùoËÞYÑ4o.ë¬z¯˜íííáÖßën€ˆÕHõǤ Y‚ЂXsô†º¶´ÓõO5yƒR×õ=&M¦ƒ¨F×Z=ÒÍ/Õ¤+¹"ÚŒWŠÄæªÉÀúf@?-/ÅݤšŒÓ]7ï?H³"Éí¼„Ã’T3³´t®ê»Ÿ„ƒu8E„é¥ÛÆëÆnÝœ(«¨+E5$×zä×B“JÐ<›¢ùGEÒ!‚ßJÓììa½˜,®ÆBHø«ROÄXž» ‹Må]ZëͺŸ™uŸ4ê7ß[Ô®u$ÓÖâx• Ò11Í(™šhéÇŒtDZ}“Ëc]ò¾ïËú“<žoÕ.¬-nžK 9䶊TúiÒ$…¦Œ" Thh´b0¼šûv + +–&Ç‘' ì7 €¯`6 üOsâ{Ÿ§'?=Éܞ䞤üó ªYˆØÕ·=Gzo¯bÒ4 ÌOÄë½Wõã‡ÄêFÕùqÃãuQ ²Ò1JV£±`•Óæt’PÅ„ašDµUÚ¾”|ܯ.EHøT…êqÓZê«wvš|׆î.õ‘8%âæy=iÒZ»'ɨ$ Â˽Rý/R{kckhÙîo^ dGž(¦’Ú(mgŒQÈfušX *•Œ»Ñr7ªy«W´ó.£ÛhX°»1Ç.°÷ðAhÏ"À‘ÈÇ‚IêqfFj^D`n-JóJsáÏzR´åOŸÃNµÄþ³iézÞºðû\øÉOOÔôùSkËáãö«½)†ßWŸÔôý&åJpä•çß½8ü\ºS$Þ”ž§§è¿>5áT¯©ÃŸ +×ù~.])¶ÿÑ÷Þz×#YÍ›6lÙ³fÍ›6lZÖÔÝ»"ÉlªÌ­4‚5¨è*v'~Ÿ«®³²7Ò´K$q:£º<òˆ“’©¥IÙ½—¿ˆê¼½[–WŽYUž8Ù ˆÌôv´PH»~Èß~˜RÔ“K·[‰!šdy"‰ÒÖ¸“ŒŽ.5 húÌ~`±‡V±Óî#ÒîáŠ}/Vv´X®Äʲ(¥Ä·ŸM¤¨„ìÛrÂÿ-ùÇLóz¼šVŸx–œK-RXàŠÞëÔâÈòL Gý¥¥~iŠÛKqä/nx¸& ×uee"ƒsZÐ{ûᥔ÷–š¥¬–mÂâ6r†%—Óeeà –&´lhFàcu½'K×ôGGÖb3ØßB`UÌuWaþì ¥EäðÔt'ëÚF“æ/êNµšÆò!¡Ó­Y[ûÀÊTPTЊ­AØœSÓ¼»‘œ2É7:H9Å;9< Ûq§^ݱÒ%ÝüŸYyæå[ÕšC%´,Ï1 J«,E‰cN!zÓa°À×—–¥ªÛiíbÚ·­$¶R\5Ó*DóEŒŒ”-ÎOîÁ @à R+‰§’Þk VÉé[L]êcZÕ‘˜±q°â8íËæpç\¶»»º’;›ŠÞƶ²š9gæ¶è\òV”³IM‚¯]è[9ÿå'›¼…e,ÞUÑ<Ãs«ùR»»ÕüÃΙql­{# ”´oGn€ü'÷VX)€~Ty³Év%¼»£y’ãX×õK»­__†ãMšÝ 䥀£D‘À¢´cênVƒí*àKuÓ^ÜÍrÍè¬êÅiUV#öºžØ]i,>½ë.DrÈŽIo  DƒšÈGíý‘îv΃¨Ëæ mB1§¢^éÎÐÁ-²Åé]Äîã•È¸–QB€ïmM)“ÝZ2ÛjQC¥B—ºt²AoXK{øìùг#E-Ë•ïDÒ$j•æÀ[°n$s¹&ó$žh´‘µ/+Ç¢–uUФC·NUU^KÏ]’5By°•`¤¹"öñiSÅ1–à°TŽ;U +P†P¼˜ÈTJ•<”rê1ö0èÉwquvÏqÁž‚NE*$2|@qÝ*9³×ëÿ™Ök¤Å¤hš×&k›ufÔ¥{A&X¡‰–ßÔc%D½:'-Ø€ZÝ÷æuŸè˜t}Åo$k‹ugÔ$’̧'X¡ˆ¤BFõ*$VáHøñ/w„z(, ²´ˆÅ½]êµW xOO@ `-Qà t®ÂYbvo¬’IŒq’Š„W P G&$²tŠvžêd¹gµtOJÚDE[p»HÁ£Û—~LiO…T´ž8®Zêþu»y,c0ZK*Û*ŠHU£Û7,ÄŠ|*ªjÂä·Ó„hö—§Ôv *HŒü$î‘­yliôtø†Ïg`-á–Êù–i\%Ô2¨œÂœ’§„ +O!C×®ßfÒoÿ1¯­Eæ +N—N^O.Mkq5¤“½T,w ýnŠAû`TSìUH¶‰©þdWX‡Í:²·V“ËóYÝÉmõ‡ ¤ÿï[e5 AJ¯Ä +&–wÄ÷Ñ<öѳ¤“-)@WrkÀW*ÏK¿½¶–êÚ '´…ž'T†U×—ÄĈWaʸ¾¡çm EÕ4Ÿ.k³¥¶¿«EÑivËsz ;zr78àP±†,’qz Ô<ë¡hšž“åÝzá,õýZ(¦·Ó K›Åýëä!ÒV +ïJP“Ðã#3E2dŒú¨Ü”hêCÛ +0¥OLJÛÖ(!¾Š—ü*̆'¨pÑGÄ´©4ÃÉDOúÛà 08äʬ%^%IUb~­øs:ZÏi2Ý%¼ªmåOQ‘\L¼ "±?V€W%6Ú®–…µ§»Š+Ï«Ùg.«êJ‚±â ÑÔª÷; –ÿŠ<³¤Gyç=kU²°½K†u¼Yý/¬\q”+a¼dŸHoSP»gÕ|…ù•.©£ù6É®õ.¶µ,úLzFŸ¾´²‚ mãŠ9VyT)†^ ··ÄOÂxš<©ùes§ùBhnî<¤u™&ÓŸJµƒë–öÉ$ +‘Ê'’œáš‹õŠô_ˆî¥ðù’oÒwšF£_WŠ0Zê._W-82/7߈*w$uߦ- ùîþæóSòöµmltø"•×S²/õ[µÆIII L3 +V­öi…Ú§üãÿ’'òÕ†©¦êò^ùŠù]#T–8ïßêÓ2_¬PF‘ %aÓ<ÁäÛ] ò¯UŽXü·5¦+¢Ç)´Y ´a +È´õA(QˆtbHÜÔaýÞ¡ªÛ‰‘£µ…ä\,A”sTXÀB +íÄ¿Zšn)ço?ùïÌ¢¿Å6¨-­/§‡ë¶zLsF‘ÜzQ[‰á$1q¤|%Ÿí!B²…ퟗ>@Ómo¦òÀëú­¥ÜZ5Æ me»{f77Ž·¬¨ÓËÉ9¬–ö›+ÆòV2!ðy!LSAs­Éè=®ŸrJIpc–F˜ýf”B}JSÒ‘©gy‚×WH9ê­?¤ÖöÊîªäÄY@=i]¹Sæß"Þoòç<çJ¿üÁ”é÷q:iº{^êÚl«sg`ïJÝÃÃûÎU j ŸyÎëm5ÿäÊ6«mp­¬ëñi–z›&Ÿ¨jÑÇ3îi­«È³¸MT*ÇÄëòqY¯y6i ”^G~#»úÕ¤©}ÆIn0©2whU‘Ö´â›ãm|µ©K¦Ço$ÉkpÇt²Ié*2‚嘩b¢œ«SÐu5Áú?ä›?0m¯µ üÁ•|Ã%é·Õtï ´‘¥²Îb’WR.#c’7$oȇ^oÌß5~UÇ«i±Xy{üa¦½„·úUÅÂÜÇúFöÓáºXáäch–M>lQÄ#,¦rß5ù_OóÕýטPÇ>±yLtkYn®íyG˜Ôª±R'_L7Úè¡jÊz7÷˜Ëê<¦ExUÞ¥•HåÖ›šR˜]'•?ç"n5_/E¢C.£4—–pÉF÷Ow#Iq-Ô¢áeQ”4ŽÊ«ð®Üþ)®Œçô]%µ›MNòÃMÐm4öŠK”{«‹[6mà‚ 7·dV’HIXâ1¬ŽA Åmtß7ùGOšî 5E±¶Ž;Yš²ú(PÍl\Êú\…K5vÃ/LÕ[B:µ6¶¶¥ŠHÖì$•—‹)«•j°=xvâ7Û;åßç,ÿå\ù²Þ×@ÒtðïÔzmÂ^]ÝÛ„’6å=À’’5ýÅYP nGŠðíΔPüÞoÎýWžþåâ–Ê}:÷S°m;O‡Q—‹DÏooÇ”d-+8IN!@g«Í£‹—ÏWÞgY¦’Ý,nmṉ­-DÒÃÕFd$ ÉÏÄüÉ +Cú\2C¨Á:É«FW‹2;±H½EQ¬´BMhÃA‘ ßËíGCòn±äÿ=ùoU–ÓÎz4¶k”š}åÝÁŠÈM Qé’3^*C*‚fÅÕ>Ø’^~b\yËÌzwšüæÚÓÊúÊÍ¢P´Kk{Û¶†{ó©[BÖ,ª[Q ¼„‰RI+é3üå¯/›m.¬tÓg{¡Ù…®¬½@x\Êmg•e ·ie«,Pqf,VQ!äSåf¸òÍ”–út-"™>)f,Í¿¨¨ÈÑÓ‰£ž”Øïž]ÿœbüÌÿœüŒÑ<ÏäÉß(Ë«ÛÛê(÷±kpÉ,¶²Ü‚)-ÚÙ¢(Ò¢8dZî‰åÒÿ4¿ç¿*?:'Ó<ýù³¯\h¯˜¿IG¨¾“¬Gkoæ :+†¹Ž''¢© —´~¤L‘<‰/.*‘ñ.ùKΗ¤´?/i·§ëv2\5²\À$ J• Œh7{aàc=Á‚ÒÑ£šþV¹‰b%Ÿ¦Fì¤)Œ°©ªïP>ô÷“õÿ;YjuJòn±¥êÕæÔ4«©.bŸTTHC§~ò­Ú"á¤bmÐÈÁ±Ó8¶µùOäïÑ:æ gÊçÉÚioæÍÒJÊËȤO¬•šÊ==HçHØ—×¹† í:™K/FÓ<•y¦yVÒ/4äÓ4Kò"Ômn'š;‰î-øI'§$…"H£š55ôùy¯=²Y.š>¹­ýrÊ ›vUtT&f `J(&´åNƀɴOËôü½°}KÍ+¬yzß[¶š* ͨßÍ)žÖOVg¢ã Ȳ<Š«FF¢°5þg'涽aå"Ëåï9ë>V’Îý­îbº’ÖÛJÑí`† Ëi¡·†,sLÈC¬\œ²H¥$ÓëVžc½µò·‘£ÑµÍKJ¹KùášYåD†VúÂ\$Iq4¥ƒ0Jî¬*TÑõ­6=¡·{ˆÒÙ#ŒH°4M"(dvâÒ(T)QNàRfŸ™vo’.l|¾ú­þ£ÇmcÈÓfµžùPK ;¬×B"‘²sOHä»-!Ò~Pùµ¼ô­©¶‡•æ0Éy¬jzékM\é¦G‚xâyâ·õÖxç`’™¥efѹ1"“ÈÞ{—Ì3NaÓí"Ö5+‹›¹´ùn­ïÞK[Él³finš ‹…ԣƢX–dJ°âêîÌÏ@OÂÀý¢ +ñ¦sï2~wy‡I½—PÔnO›?DiÐó¶Œ]ØÂÒ:˜çk‰»0G“Š:Ñ=CÆÉLèÞEÿœSòüñÚÝh }å}KUÕ.#·ÖuyôísS±·Yíâ´3CÅRUWiawyVYdG-Ç$v•qybÎMk˶ךn¨—M ÷Ó[\ßCo•E€¼lª’ c"9oÝ—G Ëe§¿¿Ô­¥)¥£‘ÃŒþ‘(þvÛË1â;Ó¼WÔ¿:?>-!Õ¯åÐ<±äÛ þ±gyoÍÄö÷þ¯!¾§Öz´gw”úJjSš‡èáß"þPù²çM†mS[󣧋 ÕºH iln­&Žsl±É +/ òªÁ£ëD?¨cz}3ÎZç™á]RîÖmReÕáA-ôvöìxB-Õ£¶ +ø¯îËk‹QKÝ6yäš-_NÜÜ:¢Ïè‚3ðs#–PPÃbOËä¬?šSjþ^ÿœ‰ü±¸>iÔomâÿXi­m-ËHí×W7¦o«­'$’$ÌƧ¡ k^xò厯eç/É?C&‡§hÚ„óéÚÍ´6zTÒ+¦Ÿ¿¥,l̶ÿ½ÙeDEz-p³Oò×’¼Ã·^p°´“êÖÎ÷w±s³h­a‹ÔN +É ¸U<”phÕzœg£ØùrÍÄÈdq)žj”ú¼Å™J€Qð‡ ®=ð¿ç´ÏùÄÝëRüµÖüÁæ}f9íæóDöÆHôD2˜dHã¶4k$N³-TžB„lq£~lMùï_.yÏSÑü·å 1$Ô4½Ù"á¨+Cõ˜}"ÉÅ•dxÞ3 QÐâìßºå•§à¿ŸÉ 5ååûF4ûùcMD}DijóDH0%ãd’2Áºtêmoµ¨ D‰CfÍ$+‘ÌÕ‹«BÍF5S¹ÜÓn«ÿ8ùåoùÈMhèpþci¦ m÷–¯ œG}4²K'+ûxŒG)ØJÌ-åø¨Ü¸Ž<ãó@þRyC]ó©äíRt¿0YAc®XÜÃÎ2K†úä’TÆÑ[ÆaNWH8lÉÊŽ3òãFÖ<½>µ¨þb›{={h8_Î!ŠrbX¢Š‡•W” ÍQ•€dUåñÞ¾lîop)µ¼qD“O…&e¡Mh€øíÛ;›|©å­KÍÖmŸK¥ö‰a™§]\$êÑZ}aèŒd-¸sOµ»|'¦sŸÊ½I­ü‘u¥XkVºÂêZÅî·«O§Ï ÔX¸µ'023_Háû1ÓÄäÛò«Ëº¾žþbúņ±®]j÷wzÖŸ,7KåÔ(óÇÆß•;­ ~ø 5I¡¤»ÔÓ}êIßzW|YÝë'-+Õœ9¡jƒÈ’k½+¾HGÁÏE¢©QZR”mµi¶O#ŒV0Á‚/N ìTM«M±Ò,jÈ"KÉhXl=Efæ€PT­7nÿEM4щ¡·úи‘££tJNŒþ¬J€^7Úð¢‚ÉÛ%ûÁq5õšÙús?¤‘ÈÓ†´`¿W™Ý•x4€×Ó¡ üÍ]µý"ñ]K¨X­ŠÅ;‹tYZ~V„/Õæw`8þëpŸÌI 4‚ b6#ÜcÙYX«؃±,@ ÔÁÅ )¨" Ž„Ù ‚6#p}Æn»ùˆPîQ”C‰–[¸´¡úrÅ2Ü6ò¥8J~ÒÒ´¡ê)S– 4 þí«Ê?Ù5¥j:oA—þëhÝoRñþÉåJÔtÞƒêIÇ#N´©¥kËõïŽæüxr\ùSÇ–õñÆñ^\è9qáÊ›ñãÆŸ*mòÆzQrçÀrãÕxñáJøqÛåŸÿÒ÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6l|M J*„üTšPÓÛ‚Hãu2 +Šîx†4âÃjø’:óÆJ®ÊxéðŽD +òz{Ö¿,Je•”úFO„r*µä¦¦•iP~X6Î÷F¶’Üįðò(‘‘øׂMªHÚ„ 뽺n³§i2£·+zœ á4±E,‚ ß_ˆõ PV¬©½jJ¬SÌÚW涣qõM:].çD¼Ã$ÓBÉ}eNTVóF”öÚí¦·äCK• Ò/¬­áÖl™"’H+um |¸Êå˜I7ÇêH83DæÙ¢Ö仚+yü¿©éš‚>¯õYn§Òõ9dâ’=¼Wwr¤(b¨X-G dHª xCåo/yâo9Ý^Cy.‘g¦Þ"ë¶é$ÒX^ÌLhMœS<€!EE^14*à! VßOӭ/Êzñ´Ð,*¼w]ÅA>í úäwóóóþSùÃÌ6wÚmö¯%Ë%ηcyªi‰ef2²Áj®À™%ˆÄž,iµF-åýZóïæžV°¸Õ¬lt¨¬RvÑn´Í6ú}Búè:˜®5{â+[;·à@Ëé‘k…ßœÞ{ó.¨Þi~^Öeòõ¾‘omõËÁ '¼º2RXâ–Bª°ÈO× î'ÔõëëW–à-¶—:Üê/¼wŒÐ¢ze­>-÷¨ Î? Î/ùÉíoȚϘîbÒ¼¯ù}ªC«ë¾`±ºk[Ÿ=_Ûlž t„KmF2%I!7îâ •Ccò†ßòûI×|±æ{Ëf4Z~Ò<¦ðIvžSÓe’;‰‚^%Ϧ~(¶ò°–dTäÒ†,³Bü½ùWùçõÐtï3j +žLÓ¸þhÌ`K°f¤T–ÄQ§£k¹ØŒf+3:7?ˆ²½ +×};g¦¦yy¦õ}G‘Ùý`žŸ"Myq©ã^´®ØÅàb‰ +pUESnttåµ~yé¨ø4ÆÑð #EË((G.ÿ>ø¼º¦¥5¤v2\3Cª©¡4â¥vß¾.Ú¦ªöé¯rÆ›• ®ÁTTyS~˜?.ùv j1C§BšŒñ˜^íc !Rüˆ,:ƒE$xŒ.·ò¯•í5Û¯3ZépE©]Æcšå#ÍY 1%H•ºŒ ÓaÓ¶ŽÀQGÙñÁä×s»¸hO ±û^*Kˆ ‚Z‹EIºýiWebÛ° r§§nâ%¾ÓÍŠéÍ¥"]Ô-äXî%Ëï"2â«Æ¡ŽÀ +­bˆô?0ÇæÓÐyŠFÒ&òõÝ·¯NŠ€5¼ë 0µb¬¥X’Bòn@’ _‡ÍRkñyŠIt‰“Œ¾_»¶3ÁÄJ€yÖ@a4!Ê• –$[’ºÎêž!«’$¢Gè"ó`:7Ìï‹é·vrÝ@¾eõ%¶Š‘BlbA*®ÁW‰>ûEiïŠkÖúÌzeËy4[®£%šœ²ý]›•d%£ø—áû mÊ•Ú¸ÿ0YëPéW䫦¥7ïHÕ%˜Û»Ö®K! ŸÙ +Bòëµp9H!·1Êì¯PÁT«Dñ9ÁŽýxÐû`i#·¶µãs3£³0ÆÑIo5ºõ 2¹<÷<(­SPߤ—“ÞƒooG4†Hî!¹,DJˆc‡w%Ö›u®ÆÍ{u¨¶·ŽHdšC$wP\³0‰R36êéABk¶&½û…‡nö"´â +Æ"SºF(h§qÐØ«ý¢ ™Ùœõ$uî{à‡r=C)4†µ$lz“ßßǨßÅjÖó~âcY¡døXÐ-9!æ¦ôß YÕ“K“Dµº¥­É&âÝ‘‚½UT/8˜J …ŠÞádþ_Ñ®5hõû‹n…´~•®¡!–%%˜°Y‘¢b¥‰Q"²‚wÛ o<©åëÝj3^ÙñÔì¢hlu(¤_Zbì\$Êг)rPH¬ öÁë§éͤY^Ùò[[GdgX½gõ8BÆ 4&»µi^üH•¥¿–´ý^ÞY¥Ã¤éKŸ-¦–Ðiúh , $i †Dš8¤Ö¯*À×ÃßʼÒôɼ™å/*[¯´Ù&ú½Õmí¦·Žê i“#¼¦®”ñ©=òîŸùÕ¯~`^y£ÎpYbÐõ +ÙÖ#s º’Î[õ{KzG~ævˆ»8u.GÆ¢˜S¢ùwóPüÆùÌP¥\ÛÚÞ¼q »Z=Ú˜`"©ô¦1ó4eæFãlŒê-Ʀ÷×w xŒ`‚ÙæŠ9)3Cj|L…ŽÎ8ž•Û8Ç柕uÕÌW}}á6ÖšN±p³]Ãip‹) qc Àf,M#“¨‰ÀMvïÊ{ë?&ùHy_IÓmt(.ÍÝÖ¹§ZO°%hK¡sgȉÒ0knÍ"ÍE\Í-4<‘刬t‹tIY®î$Xï&[FYAdiLQHüEN‘±u§ ¿c¡ª‰|Çr!¹µGú­$–æaêýaÂ"ÃcA°éãƒ?-|¥æ/7y¢?Îß3G§k}>]Yooô‘¨¬ÍàŽB(!ýÚ°E4RHæ)„?¿˜Bü©òsþ\Zjw¾PmMá¼’ê-×Zm-`ˆM™’{«§ô½w«DÎE]hÔ%ò+æ»ï(þ_ÛiÐÜ\É y…£æº¬çPKdHAú¼°Í-Â… +IÙ×p§5‡M¹ŠêB­1XgÚ!2•wŽ2Ç“P²d}ªmÐõÎáe ^›Ó/)Õ šºŠ ˜fºŠv‚<¤ ‘㤅kË@oM¾ÖsÍg϶ú6‰}tú{Ç«Yº.³}ëiÚ<–ÒHIôâv•}yaã——këGöZA¬ùúÅ´MkÅÓËk|±VúìôG¶i¤ª¤u•DÒzJꌡ¸ò_R?²L5U´Û¹^ì5¼÷0BKAÆFNÛ)+N¿²:øï†~fÔµ +»Èõ}.ëP´´—ëz|‹s=´°Í dQ{ÇÅ“sðŽ\»7ÇïËï.ß~`èöòܼ:¯”-//’ËFÕlßNšdxáhZàéópEꨪx¯[• +òw’µOÌ­Ýl®bºò¥…ýòÚYê6ï§ÜÌdŠž°±vG°â”o†Àô…[èÓkS[êWÓÉ,*=[)½HŒ±³‘È2¬ P©¡'¯PUåuÿœdÒ5=oY¾ÔÞ7“CÔkwnîèÒD³Š"Œª£P“ãÉGÏç}3ò¶÷Ìþ\ü½ò½¾–÷6»i$:¯èIWÑe„Àâöêa,rOÈX”…‡ ªkšwåtÚÏ—|¡d¶ú’\Â5“=¥ØÓZ5Œ˜ý)Vîi¬’ò  ÊËN-´Í>+V»Ô’d·˜¬Ö3P ++ÌÌ$nD‘¸=7ûUý Èz–ß[óo”4m69|ÂñßýzýÞ?VX ’$’;%Äž§'bد ÊÏÕ¿6üÙù—{¤~Vê’ùƒE¸òìRÙêÐÛ¤\lÖf…ZúWKB쵈—¢qp]Õ|רù‡T´òv™§jz˜£W¶ókÙG55Ž0"ú¼É ˆ+ÈëÊ#Z¨V¥C/š´—hŸK±)3¼a$”,jˆ[Ó.iVèؓר]ÌÖå5O hVÒêŒñ¢I©3Z*Bò¸úЋ§â §÷jª¿0£u8“ò¿ÏZÌÁæ¯4µ„/ ´–ö‚V:•‚Auol‘"›áDÝ@e?Ö$¿3u¦—T×턆3@Ò›è䑸`"–Ò.!–/´Y˜•T5]ÁV¼šþ­êÛê7QG¸gµ,Ñ”!)Ä”ƒ™ ž¤Ò™Ì|áåÏÍ?&£¥ùºöÜÀÚ”—6QÇ):lÄÏ„4ZjJÌœèŸu°®ùÓ<›å_åõ톻ä}*yµHtxôýWR¢ÖþòI)Qm.±-¼B_K›*)ø›ˆjaϼ«¡ùZHumI{­QtØ­õ3Ž;™Œ«¼„3^¤j…X*“ÈŠ7Q‡—lôýnµ%N6Éêq³‘ž;ˆÂ!%ÖP/Ɔ”¨Û:'“ÿ'¬´/&~–ór%°ÓÍm•4ÒA¨Gq79Òè*™&h¨á8«.ÄÐÓ9·š?3µ]só|Ÿå¹.®î5殧ÕÖÒÞãDgyŽÑìÖc“”m%\>ýEr-¨yÛZ×|ö¾FЖàÝjÓ4rË©‹xn4©KÉA–‹#(€?%fäÁ·ë¾O«sÕ~»£ÓL¡XS…´NëíºÇ—>´=ä#_³óÖ¡çë {Èzµ‡•üµ%¨´½tk;@[€eLªÊXÍö—˜^!Næ£:’ô{ òÞ-~aÛIæß1‹©/Ôú¶ ¶ÏrÔ„•6XÖh}"åÇÂ(reaù[çK=ßHó6©¿uÍÅΦno/ I1F†1ßQPFEyFMK¶ù´ÙL±:îÖ)â‘Ýç¸ýOQ¹sq(´A@YAøE:ȼ³åëfÑäò®¯ki¨­Ü=õé·K$¸2HXË$Vα£Ö‘+Yü +wäMùæÍ É6òùþÿTºÒ-¬Ö;}2Â9¾²ðR‰ghÓ¡‘ÕˆiŠ³qwÈáGÀaçh<·ä]ù¿TÕîtñl‘ÛAL’0DF¶ÖÞ¤Eœ ÅI #¯ï°2]oJÖ™,ãiáž©¬©pd*91ú•ûTmú‘„:ïçO姙õËO%XjÚ´>b’{;-x®$¹ï ÌŸV%” %¸fe—ÜŠòçågæ¬HÔ|Ñæ¿,Ïqåi-5K1J &Îhôج-ÅÛE…Ü’$’Ã11˜£2¤œW` Óôž“g,>c‚æçM¹[‰uˆ®´ë+?«ÚÏh°ÌÉõ ‰J3 ¡(ø«|5â1Œ†YÆ“«’om•D÷þìãÀ¬ŒS’’ÀÃá'j/ćúë²ù†_&y½ÅÞ¯¦CÖ5{ˆ¼®…­æ) –6~õd Áš©ÅH1êvrù[ËVþaü§Õ ´ò°’æ+ÌrIwv’\›–PÉ<2Û õ¼hÑ·Æ£Ô6Ónµï-hê~AÕ¡ƒCFœÇ£ù…¥¹·ŠÞØÜ4üÖ8Úh^Ÿï‡4OL‚à,–­¼ÒV·‘ÊÚGË2s*UŒH 9eøÂ$CN¡µÿSómžg{yc¡S5Õ®”-"ÌH‰nmU/^W(L«,-7(C‰Òu(þbyëV¢óE†¡¨K`’ë3^겉!VŽÜE +@× +ò‡”Þœ§su§þf¢jòêWšß–îõÑ÷kªÝµŽ• ¨¼ÔÇéºÈˆ9R&˜3r)άÁ”ŽÒ[›}bí®8]Á f$Y{q¤I`ÕãC×`:šõß8§åך=´¿Í=OË>i}ÎZ-¥Ì6z“¶±¤ÜY5½Ã…†êIc/ÔÔ»åÊ®z_˜ÿ-¼»”WSü½Ô'ü¹]Jk³òÝ¥ž‡®ÚIõ»Œ÷¶ö¶ÑÙO©0,=K©P"ÆŽ±C~_Ð9m/Fòþ­¦èÚ&¥#ÝéÖn•kpÑýiÕVCéB¾ROªÃˆ‰\3¼Ó~¯¤I­Ú˜Þ)¾®¨k0‰XÊU‚Ð +•ƒ¨û$}œí¾}ý3¦ùùÇNx}E­`¸“ë7ÍnŽò¼!"1Â&`Opà‚¦«Zq<«Ês~dëž{o"yZM).¦·¾Òô¸Ž£vÑij™-JY-ky?råù¨FhËU0ó_çy‚?$꺞‹y¦ —·»·²Z»qÉŽ·Fkn%¿r9†~ j mu]{S„Zä‰mæHRä!òFTrN©ãûFƒ¶ùüœó槚¢ó¯ædÊÚž™xl¡½[HcJÛI œ,ÐG0rQw'ˆ_²¼³²y¿òûòÛòò-Åä ÛÝJÓVÓaÕn…åÕÈþ» Fþ¯yy~ÈñÒIüOª;údä›òsJÔô«Pu“xQ£¬6ÒÝI5“£ÓÓ–$¹–vR>#B‹^C}¨€¢ô7'ñ$œèh‹„Q@: +³Pú¹cøäqÜ»cRzš(©ù(ðÎŒÌÎy9«PTÑEM:ÑBÃ//++6lÙ³fÍ›?ÿÓ÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÌIJðjÿ×$k ¡=Û¸ŒtrÍG_£øƒŽÌmÉjµ?ˆ8µœ0Ë8ŽBWár$ /ÉP•¹bövÉ4†5fWÌë( JΑ3*óàÔäÀðýÇp YŸT]>c¥41ܱE€\FòÛ!gU,ñ,±iÌ}=0¿_ºÖ¢Ò¦mÀ/¢H#¹F{Eç*«3Æ$B@ROÛûú¶ú˜ÒmÖÊud çY•˜, ¡T¨ pÔ;í÷àý;T:V‘o§ >2ZCq¨ZÝ©œÇ,±¨x˜'¦¬«*¹V§J{Ô½´}KTsy«ê`_$"Ö+Í, h#›’È‹pn ÅÀ2–45£tÂOðî­æ «¯ê‚ÛSbÆ)ôVX")Áq$fàNê^ŠêNÆ´=(…þ§ª–í"16’5£"òT‡ SÆ¿-R{cu]pëq[-Ämþ„­ QJbxÓhø˜Ljª„ØÈY«^ƒÑ<µ—.õ+‹3ZU¹¹’2Jä &õ]ב,kéJSbwÁ^\ò|SÔ5k«rT¹¼–ž9e#Ô¨ŸÖ‘Ô9i¾’¢Ò›¾B€,`’@ß¾ûŽµ§l*WE\º*T^AC’ªKV”Ûõ÷tÈîLµP®_‹3q,T`+]ÿWŽH]ev31@®ÏÅ™¸³qâZ‹J×âì)ÓÇÆcsfÍ›ÍoéÑÈ×°BÂÕE€ìŽÎbËÇsOy‚[Y ‹–O²¤(† wVf”*9VøW…Xñß|‹/îàóêù2.jSE0 þc[Wm6'h„ˆ’È#û5Jå@XŠlr'u?0ÊykP–ÞN>§™E»¶Ÿ +È‹!XP2_ŸÂKmµp(qʼnõ*h~‚AÀôS³Ô©ØЀiìH49)—u¥GJÔ¦„d²¬»­+Úµ#é°Á&†ù-´¨-R`TÎ((MØñPhƬÕåúÎ 2è&Ÿ¡ZÛ%·!é5áj0sGšF( ñ‘¹<„†ãâNišæ…«kÞk¾×/µQ|ÑË—rQí­’É VÈB•VTQZµ7«dwNÑo¼¹ªkþpÔuËÍZ;¢²Ã¤L "æEn†€:«* s#zš I$Ö»*iÐl:€ƒ—«NäiR ?QÓÛJ… @­"§©=ýòEÅVh6…­"¤n[¿¾j±4ÈßøÔf4b@©EêÍR7¤tЦ£õ橨©4騧߆º.ŒÚÑ&+€^3!v®Xð Š’_³ãíSï+ya¼ÍuH¯c_JXÝ”¼*ìÌQ•€<•‚î¾5džsù©ù½?å”Û'–/5’÷:ƒ œ>¯îUZFŽBÒ¬‰ËÓøJž]FsÍ_ÍëŸË‚Ö?,Üßzб’úWhmbyWÒDwh¤&ExËð|%O-ÈÓM™ZóI•¤xaŒ€‘D’¯&ôØ%Yyõ`ì¡'ö@øŒ!òö¡émWrmí¢"XíR+µ2“¤ux"P2ÈàlÄ×à G‰ë^t¶Ð¬´OÍXt›_0ù§P<4ÈmlîtÍDiÇÕI˜Änïy€À ’Ÿþ~uXN±ç‹ "×@üÛ‡M±Ö<ϨËÆÎ(`ºÓ¯Å‚ýbÒúÝÚÈ~LIÇàŸ¼-T —«[C;FÄYóýèXT;DŠFj’µ +[`E>ì —üǦÁu=ŒòE¦¼¤Þ­c2KV·‘¤æx +ﲑO `Ýó[ò§óoÌz5¾­£^[y—FiFMBKˆ¡†ñªéZ¹/¦ úã~Ãâ#4_ÍoʯÍM{EVÒ.`ó.–Lš*ßÍ4vðÞ¯ïBDö¬jF ™—~Ãr0¢t·˜Ì@b’HxƒZ¨øˆ&•«TV»äzu¶º7&àÎâyd£o鯡n Š‚õ^DîvXd¸¶ú¿¥é†4.Ë·6ªT +ÐЄ£q¦Äçcîí~ªįQóe§ï©P¼¨hV:7µàÍKQ¿W¡€AÁE5ª6àn:.ÔØ'S»Šú{k›xŬ–öÍd GýÓ¿øÁüJ +PV¤ý8wyea¨E-½íœ3A(…’ áÁ&µ4 Fjf•ªÛÏe©X[ÜZÌ+wŠ ²È$RƵjP +{`·»Òu_Óѵ 8‹‹¹ ËZFEhÇ"wãô×½Ò|…­ÞG^òõ½Î½tc7šãÊñ,ñƪy"ŠHÔ.c¨ø¹Åvv˜5ÛÛh^i{o)D®¶¾XKA,¶®ÈÁ"†æS1 ++På >ÁV¯,ˆÚùÌÚ&«pú˜š/,p‘-ü¼–‰5ż…Š®¥YÛ‚ö«Sìj× eÕ¬ìµîìj¨Ö1-²"Š¡ù˜+ž$wÚ€xdÂO1XhÚµ­î…#ˆFoŒ+4H†A Õ&%)¹¥`¤×ŽA—òžO2ùùcÌÓ\A,a½Ô¯n–òu4Åå¬âCjˆñËêT U5Üm\ŒZ~SÜy‹ÈryWÌb[w‡Ì—··÷\g’P¬†â&{DGŽ@Û-9 ¹ ŽË<· f¸s$ÎCM!PµjPýùäZâîêõÍÕìïqs1\Êê‰W åÄ"¨¡;ì;çK²Óìt»Xtí.Ý-l­#YÁ;„‰ìÆ Pn{gV±Ólt›h´Ý*µ±´Œ[Ù@Žòp…#3T + Ïjž¸‰D d }Èá¿ouÄ=8K4’*r$þòEV3±SPhëJW¾ +ËÅcF~  ¸Ü6ÄT×¥kLêÍÅbFr †.7 )J~ÍkNØ´‘Ï p¬Á„„úqFxª2Šs(½IUãôcæŠ{{kxæç ÈÏ VòU‘P§©é1HøŸ=N%ÕÍíÔ0I´Ž+‹–Ff’!/¨!2Ы$Šàx°4ÀÐÝØÜßÝGm$R)Ž+‹‰™¥‹Õ2}R +²H²âÕ¦T°´2¼R:È ²ÕÂJµ*…V£Äo”Q¢šD.®ªòFÆ3Tv‰ÊFî¼–ªhP÷Í ñÜÛAs<~¬qÌ‹*”‘RTtj`¯FSºš©Üc­®RêÖ ¨£’‘#•e)"$¨$ "6êá^ŒêÕ^ØØËÄtÅ´¥I5©©¯Žeiû¹AšìyäIÜm»ž;âÁÇïP1âwÝzwý[bÂQûåA Ø(^4eï^¾eBjA$P†'~@R¦z¸™·€ž@0#‰QËnJ¼jÔ@~*ôÇzòÒ•<ƒ|?²ÍZ +ýž§¦?×–€ Jà.ŹPH]‰ giÒËê\%» -Gýº#1#zõPw¯l0Ó4û{Ñp%¹Í< 2Š3PÖ¤…@,kP G¼Ëæ oE¾Ñ­´Ým^ÛQ¹·×PÍQŒ†GWûKZÔÔãR ÆüÓæ=wA¾Ñm´Ímb×Q¸··pÊ©õ%B;«)ªš¶äªŠPÆ µZivs\FnVViuéHUd +‘¼„Ѫqÿ‚­v®Öí|¸þZÑõ?1̧Iƒ×¿ó6‘|-½8 •DPÍpç÷–é kÈ|e¹|;€‘Øù£Xó¶½c¤ƒ¦jñ¼‘<Ãj. ×È"»»K8Ën^sÅ(ccÆ1Ãâëó]–±ªy·Ìw7z”^[ƒJŠ-/Êþc”~b½r˱ + J +TA>'â?FÝ2ËÆ J‚RH$SsñSÛn™yyYX'Oº[+¬”äáY jÓ„®(¡è+Ü ¦Ý­•ÇÖ iºZ°n&)ÝJ,›#WŠ–=T~Z±½ÔlÒÚÆôYRh%»f„MëZÃ*É,4gP=N!9Qˆ®Ã uí:óU³K;;ų_ZoyB&õí!‘d’Y/¨UW•ŠôćÕÖ?@‰yóäI©ŒŽ”­;×Ǩ-RÞVIPêÌƦ‡à"¦Cxûà×ä×O4—!ã1”eP(&ä*Ò§¡_l"»_=ËÞ„ÂchÑG?0yƒÆ§¡_ôÆP¥j~•ÄÀ œKsS—JûíL}HzÓ‰¼zÓÛ|V¥^¼xkÇ­†>–9ÄðÎÐJuv_„‘ÉTòGAӀ̓µº{[ƒD‚D•‘¸–Rèœw‚š¥)µ1+¨m®­žÚúÑ/-OÅ42D²!`pیڵÀ×ö¶W¶-c©XÇfä4öóB’£:†(îby‘»V§%ÚF«™åáªÜ—™®äg6gv"”G‚w?NôÎåÿ2[ùSÉ_âMEf¹—PšI!·%^Y\R"ªÊÜc¯ÄI>;€8|­~i~t_y[JhðyfÖÚÙµØyHî#úÈ,=HÛûÉ(Ž+B{çŸ|ùä}kó?óªëÊ:ZÁ¦ZynÚÚÚ]N%jE©õÌ…ÔÔË1PQ÷áUç˜ç«jðÊÖÒó”oéµdvj³E>È ©®Ýw©È½÷œÍìW}ìw3XÝ4Ì-Ä¢Q<Ï(v’ÚÜÅ»S‘/ÈçAòßä¾åH­/<´,ôí^ÚKYnu%µ7 )·XÒdŽ+Û™Z3=Hi‰_‡€Ê¿‘Ú”¢²¼Ð'µ¶Öí'‚yõG´[…•`TY"Š+»‡dõ·‘j“Çáà)µ¸¶•Ù>¬t­ZµdSùv­p­¯-[^©Žh+ñ #» +kJŠ‚I=|2_ y£ËÞqÒ ó•çzuðÛÊÑÈX¤1¿÷ª¦¡€vñÞu¡ù£ËÞoÓ¢ó–g6‚C ´r,¢~¼ª§íT:xïXÜ1à ٳfÊEv¦¿ ¿ŽùˆF]Á5<‘[Áß·Ë0gvR+·ZlsUùWd Ppf]«Z|$m]ó0 (»“÷ã^4’œÅhI¿Å×|µwZñ4­¶é–²:Ô+€ŽßÃl¼~7ŠCé Ñ®Ç:¢½yŽƒ•GJûšNψ$wÏs1Š-êJ!•J2Ô¨ C­ýc^4ý’ï1ÞkVZí×–t‘­êú_VÒÚò q:¼Š²oJVföWÜ¿ÌZÕ¦‰{?–ôµÖuX}/«iu ‚µý§¥åÌ)=µµÉx݈ š‡P râåˆ$wëïKëûx.4è.ƒÇ#¡<½DTUõxÈd`[mþÕ6$â×z6™{¨ÙkwPJ“Ù«ˆŒrËjÒ±&9r¥T:¦¥Bд‹ÝJÇ]½³xî­#+¤’DªdvoIÄ&8ä +EB°*¦¥Bïˆ •W²Šûb5øU{ â¿!ƒ:³7v5?<wfsÕÏ&ùæÊÍ›6lÙ²ˆ÷ž©”0zT’Fã¡»«™™aO­<íp¡ªT£1 ¡á* ^[ãâ#ý]b—âW‘ ÍV‡•Fሊ˜è½Y[$+/>$s"„Š Õ† lhÜpeΡckbt™lÍ­ý¼‰ÒI(yžýä„”ä«ËeòÛ§@s”ÿÎM~hùgÉÞAŸÉWÚ'Öµ)õ =?ÍV7·2#hÚîíÒëÓà9úq¨ÉE?äü›ü©Ôÿ20æšy–úçK´±ÔçòLVq\éö0ùŽÕ¥Òì#{fÊ_Ö¸aê¬jy€iÅÎyóó0Ýj×içè5‰|Ïå‹Ó<1éÌ.t}2ÆDYl”˜® iYCÈK"¡åÈôb1 q úrËhžš'¹¡AuçÆ´žTåAò­zž~JùòoÌI—NüŽŠÇôF‚öÖZ¼u»[Æ·#ÖÈjŸ˜ŒºŸŒ|4.Hø¼ë¤~aùoÌÖÃóJ[ƒ¨y– s˲\Ç8•´Ùë#Êòƒ*<¡e¯¦ç˜cƒ\蟗>eòÄÓèL¿µšš{: ;›e†Õ…ºº9¸;£0G/Ë—7 #¢Ú\Ë$VnÌfX˜¨è]¸€Àš ¶ë“è¡6—SOm§;»Ý›F`PJWœ‚4WäLj ðõð‰Vw“ëVÑEq|Š‹l.ÑÌA¸!‘Ùx¯Äk¾M®â¸,ú…¼7:œ1*Ú}`'Æa éÆdvN+V55ûðf³g¨Z(Y’I–†¡@I +¤¢zgáí@:Sl»È|ÊÚTGÌÚ-Þ›,êés¥™öÚY]c_^ÞnÜ£Uj)kÆŸòþ§¥Þ]\:öÖWµ›÷ˆÑCq7îÑýeõÒŽÌŸ%¸òèÃ#¿—^g²×àšYZÂÓQ‚âQG<Z•Te1Ë(¸BK2በµhÂ…¨Š†«Þ¤îMkÔïãˆÕdi£1%¨j¤·SN•'r{úá“JìÔ¨€:†Àvd±¦‘Ð!; +ð€@Ã`:ØmÓ;±Ž<Û0Ä>ãŒ$®êH#¸$¼bd²Š©*GpH#éà»k»µžrÂ`xcPYTH$云J€Á¶–6Ói——ÓÍ´¶°¢a7¨¤ÝJÓ®Õß ïu+»}fÃM‚žÎî ÙçºTçõw·0” A¨sa^-¸í…:–³yc¯izU¼sc}oqqp±´m%±€¡fSP²se$«ïM»âv1YÍ#ùÚÞ2ODcñ†#…¹û Ÿr)˾!e™rKj—s鳉þ®òIU'à*¨ûqW>üh~XívçÌ6ÃþÒàÖ®}HbºŠ[ÕµŽ8$*à9êS’ü=ëÓn8¯˜®üǧÛD<«¤Á®^ !ŠæoRÕ§;€íJ•, -?j¼vã‰ÊŠ†%Z’aI×£7ÚR—=Œ‘BŠ—‡YIJ …Ö’¥¸¶qWQ;Ž§¶¹¶Ö³úN=Y-ô¸ +ûb€Ú½² šR%¡”J[‰B_‚ÿ $2Gõ :Ÿ:~—ƒZ±µò¥´ +ú½”ðGIrHîc™G$¢ÔŽOÅdäÀ~ÐÓ$¨ÃÕ ŒO%þ8>dž9JN3,rÛ–.€òúzþ=ðdf&@b¥dd+Ÿ‡èþÎØ{BÈ=›#³¤r:¼¢6WGhäN%7W^[1§Ú®Õ´ë_7ùyFëwv¶÷þœÖz¦—0F1FÍ^?ƼYSj7Ù¦êúuŸž|±š6¿{me©ç²Õ´™ø ñ»2#Su¡¡Jco"€˜ÍU’xÜ–ôÞŒ=5v^D'¿Z×Ç/Tµ·iíî4ù¹E-nnmÈË"újÞ˜fá^@ž¥ºìqO+Í®Á¦Íaæ–K›ëSõH5h#ô~»úmë´WX™þÃ(4ø*(å{r;+›?4ðžöÕÍ¥®«z?]…}&úÃÀ²ºDÒ}–Ph8l8•PŽÃ<5Ì7`ƒrÝ3 Ü Ýš´4ÌE¹è½O†c²4‡e_´|3o¸ ‚ A¨4èrÙY£‚¬¤‚¡eR A¨¡ß¶P*ÊHe`YH ‚+Û6Q4ß//ð÷;aƃ¢Aª%Ñ»õÒQé¨/Ü•ä> (7~H<·å›MnE59d·è¦8Õ*Ó +c-œ(Qö|~ÐÈ/žÿ2.ü§æ.è:¥¾§y«ÈMÄmuÂK8 ¬K4‘Æ’0RÌ­E¨¦ý¹ÿæ'æuדuï.hz½¶£{¬J}hä¹àÖÑHUäXÕÙC36í·Ãö[±8ÉÁ·2Ì•«<ˆˆ¨ºœ!™=)Ú$G*\úTèŒä!b¼€ÚNÕÉÌmêB%,€ª¯©¸Oˆ ,ß ÉôN$¶³ àŠ%¡9ˆÃ0Uó˺¯™æý#¶™¥ÏU™Äq̲È+°Èø–4^UøùuÎqæ_'þcéžKµ—Ë~iÕµ?1i#¤Q›o«]$’5 ñ}RGwŽ'â…ب*¥UÎgæO(~eèGµ¸òß™µm_Ìzc;,0˜¤‚áeÕ¥„Û¼’4q¨dv Äã°Á§ØM-øK¨%ŽêBZ¨Ž"qè³J€5 y"¾Õ­=ñ¡­Ø&†”ý1ÃV€ÑT±-è~&nÈ]éúþ¹oæjö°,ˆtÇ0\Âë @T´±zˆ9Uÿw Z³Ø©måAg¬[ëv³YGtýv²[””D¬µhUÐRçƒñ¨øTtbée*Ê][fP@¨?ølä5 +;{ 8V@ê¼@5 +§¦ýÛ€ZWëI!øiKµAí^¾ØèÍ·+¦¼‚y€˜Ý8;°*Çe¯ÚïJÓ|Ò­Ï «MdÊš);Ê7j}žÕ¥vÆ\¥÷§mõàŒ +?ªÍ#-ñdkÙíZWlHW¡í°ÜŸ„tëú±«È’\n><‹|§ZS噈ۉ¨"§á ñ½:üñÍM¸š‚*GŸ;컟|¼¼¬¬Ù³fÍ›6lÙ³fÏÿÖ÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÁ¦úÖ'R´X¢0Inð»3«z§âpG *6ñ8½ïèÛ‹Yôë[f‚ÎâÒæÎH½yyÖèþòU’3#Ò¡JqãSJW F‰©êz]Õ‡›uµ).¥ä’ 4‚3n‘„ú»E3\+£–çË 5¥LjóÊZ—˜ôCEóž´o›Q^[« e±eµXÄUšz©Ü’ıÛùp5Ä‘Ë!tRµP»ÉÑ@êäšV´ûÈ7MÓô].ÓGÒÒDµ³"…f¸šåø¤h›¼îìjÊO^†ªNžI^iJÒ3±K{x-b^NÌÇnˆŠ Pß@5Ðôk}LƒJ´``¶S@"¡Š‚TU¨¤ +±$‘Zï@ž/› 3fÍ›*¬¬ kÄ‘ZrR§o‘Äî-¡ºŒÅ:,ˆUÔ£ªº0‘2e!ˆ*E>¤ÃÆJš©ä¤«Že ‚ +‚ÌBÓ;“òè3+`ìÙ³fÇ+¢£‚¥œ‚â¡ûJT“¿åu@ÍÅÀ>˜äž•hiê+!,+Mƒ/ÏÀ=Ô:„Ïoõ+ˆmãYQ¯=h$–G€adš!‘ÑÙdùNº‚þym¾©s ¼K"µç«’Êñ ,.“F#r+FeåñoÃû Àv_ M#Š0VÄ(K2Ľ“ §mðS¼ŽÜ¥ÊÔPd=Z€ +šü°S4ŒA–C+ Èv-@MrÐê hH€«½@®Þ>Ø´ÒLˆ¥…XT¨'jïP4§ÚÛ¦'#Ø€h 7¦Ô$ëÓß™‚Dî@ò"Ð\_[CtÈ^S'îÊe‹1‘ãT¦ÅÀÂÊLÓIy 2ºDKò¬qª„*¬ªT¤ž»xV¦+äß1j^i‡T¿ºÑ›OÓâÔ§¶òíÚ^ýqu$Œ[_½8žÜÊÈI‰ÁdQV§ L¾ÿL×t=zãJÕ®mî£v·>¤V¿S–ÚúwŸëvÒæé&kqÆ“ÆÊ’sPQ”Mü™ªþ`jwºÁó¦‘k¤ÚÆáô  di.à‘¥.ÓúsÎ9ª²Š#™Ú¼N?$¸–I2Š†ØôìH?x9ªße¨S­> Õù‚3 +JÔ9Ú»§Èƒ˜QjËPçjž,´ÿUÁú<6·· ËUŽWUwb+kVŒs Ù¨ùøÒ`‡S¸–ØÈ­"Eq ÊüK(c‰$UZ“4­-âCç½vO(ùvO0Ë0±³µxZöåm}f9Ê#¿rÔ¤œ$¦ôMþÇæV»¨y?ÊSëöó >8$·‰h³”Šg +̱Jü™¨$¥Oßáq@ ÷¦ ¼···`-'*VW ¨cPQˆT¨i¶Æ˜o§ÝÜÞDÒ^ÙÉa Fb™ã‘ÊÖž©13-íZÐïCQ’=2úòú'—Q±“N˜J±´I²Ýe-2ïö©Zï½ F$¥H"„©ÿYiÈWÚ¸O IØ‚ÈGùiNb¾Ü† aÄŠnVü—¯OzË'`®§Å¼žüNZ8Fä7"»cã‘c~@Õ…~˜ëŒtg^=Óâúzc$ÝxÒŠiñ|Lt†F4]½,Á•ˆ¤ãáH!ŠÑZ2.C¸’7nΪJ·ÄE1ª'k‰¥¹utj}\"‘uf,Á—ÀR w=›Ý5ÝÄ÷r$‘=>ª±ÆÑËý¥w.ÊëÒ€*k¹®ÍfäŨMh: +âly1jSZ €ùcÔqPµ&‚•;“EàŠµ&€ +“Riâr²²ñÙ³fÍ›6lÙLÁEXÐT +…I ÆÉ"D¼Ü…¬h*ÄRznqÑÆÒ7  4§oËDiŠÆ„Ð +šS@:ì1ñÃ<ìVÚ3+1"$iè¥úvØmãÛ†nÃ}M}F$ˆôRÀž¤Ðç¥p&«©Øh6¦³)·µ²…®o¦Ti}(Ów¢ äÅ@$¨Àš®©§h63jzÜÆÚÖÎ#q}2£J!M&**J¨¨pe½ž›%Šj‘ÍëD$ky¤Šƒ Rh¾¤<€´ëà7À^Kó'‘0|¾¾kò…ûkZmž¡s¢ê÷ö46ñÞ[Fìá>³jŽÊ¤*rŒÅ«öjG=×<Õùá¹0òç—l[Cº°·Ö<µ¢DŽ£j×kg e[º[·¨“'E4ˆŽ%ˆÛþq~dù¿\Ô`ü¶Ñìµ Ö}5oÔÛÞÜÆ’Ç ¡©t¨Ÿr¥Å(´Ý¶Âõõ +±t¡CÅö`‚YWpN +£¢°Lr!àêÉ"¨pÁJòu]Á?ç\錒úlrB  °n(͵v–áÍDld£!ãfd!™[Œnû+×›++6lÙ³fÍ›6lÙ³fÍ›6lÙ²Ñyº ò l+×øxã‘K· &´W·Ñ·Ž5›Š–$ +xš™ðÆ»pRÛmâiôµ>¹Û¼³žÆá­®´;EC‡ß¼³šÂ_«]ª£H•V ê"ÈebÍt­R×X³öEŒ,òƦHä‰ùC#BõIUHøÓÄo€´MfÏÌtz®žXÁ#HŠ$ŽH¤ †IH£¡ŽÁ˜??ÿ×÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÅ­íMÌW#€m“ÔtîT'·`¤õÅí¬ÅÜ×HõÓbúÍÔj¬tvn¼²Dþ¤m²›6l¼Ù³fËRªÁžœA«TÐS½ME2ù"üRnÅ ëRH úsqføPÇe +9ž”ýÙ¨Íð¥y—ˆäkÚ€Sô`™E‰²Oª/6AšážNm#+3†5^5Øöùã’{y¡h¬­ƒÃn¶âMNI§õ¥žTy$Q Ab5'Š¸bOŸhá=¶ŸæH¼Éw©êº³ +‘2Yymm-Vt…£DŸëI4“3½š6/!ì23¦Cçñ¦£w¯^¬:LË:iš +[Û†HÑfõÒY%bÊ9m‡>ßÀ¸Ì8É6lÙ³eI> O´ƒíF¨ß7ßà—Ú’*Iè(À‚IØ{æ èyÇË’ïT,©ªÐì7Ìã<ãåÉwªRsT Š —\ +{èż0HÈÊ•ô½2ËŹ5]ß—#ÜSjîM­iºþ©æ(ßYêri:•$°êú €%­Í»Ëï–PâIƒoˆÑ¶_„3Œy«òïËúö—ækƒee¨y‹U‚ßô˜olàÔ®,d¶ŽvEot†Ö(_ÕU~+È} K*²óÌ?ÉýG^Ö/üÍ¡_[ß_ÜÚ„j6v·ì%Xä*‘Ç=»C +Ê£(jÕ$r"˜Ýj«¦!Y„r :+vx‹0ŠmÐ +=Y]Åj55±ò®kæÏ3ù«ËVÒ/™µ i"´+sxQÚÚ¤J¬ïm`J 4~Ÿ6Éœµjvº†ù[å¿!éWúv§^zú•úÙé–ò[Ã}G ÈYOGVF*„|ˆë–Xž½¨Èl1ª¡P +P|ºfbXÔõ5¯Ó¹Ë;î{ÔŸrMIÁ‹¦ŽÍ~%ièÔ.ÄšmµMM ·Žî÷ÓÓmªk$Ó*¢+0iˆyZ§µ¦¦Š†Ô/t½ÞãZÕgŽÖÞ£Yî.%ô¢HáS‘&‚•§‰ÀÞ¡As¯j³Çk0Å÷˜âXàb“A»ÓmØšnpeæ—zµý¬L÷2Í-»Æ¼‹DÒ×aÿèh¿vßy~;o*iúųͨ]^ÜXÍn¼äbð=ÀYüÆÕ5¿Í-BÇQÔ#²ò¬~^³×-#¸H ô–é-%M+3!g`A“‡N§rŒú\ÑEg7¥ k‡–9£b±¤\ª³<œiP+B*w¦¸Ñn£‡OŸÒ”}zKˆ§Ž‚$·ô§h‘ši@ +Z•uäwã^‚Suù‰äÍ.óT³Ö5Ý6Äé‰hÁ®o#Ye{˜ü=õ;…•©üÜw&G?æW”tëÍfËWÖ´ë!¥%œK5Ò®æÝgdXþ*øY¯fãBHY-¦‡„W4Šv@æ0Á¶¢žÄÁ®Ç¾šÊêÖHà»ýÕÃF²4•ˆP‚xÔT«Ù©¿Ñ‡z~«¦êöƒSÑæKÛ ô/"<£Ô(àЊ‚ݾœ?Ó5}3Z´:®‹:ßéÎì°ÞE¼oñ8ª¿p +•oǯ|H°CFƒÊ±7œ±<«É 0jA$ËÉ }»bÊm¾¬6cpÎBŠUO."5 Þ¤ò:bÞ¶Š<Ìæí¥(±Špa A +žõfæ*+CM©€1IæHÜh‹i+\ÈÅþ¶.cu<wé¬u/È×¥0¹âó#ù‘cˆZ¦„¶nóÊìâì]FõfPwé,{·* cFñ4qÎ=3'L™‘ P +!Ü·Bq¦9áš[Ôôn>Š•ZNe”,dUH }ŽÅ¶Å4Ý[F׬_Vòíô:¥šVºµš)m”ÅBÃÔª*:¯½1];VÑõË)µO/_êZÂ\Ksm4RZ¡ŠŒÊdÁ‡UÜn|VÒOJg¹…ŠË +Dâ9¼lâ$ +ßµ¹­(+Ž·íç7V’0¹·OV%«Ãë¼n"Ë!EY)W܃ÄIÇj6úžŸ&™~•³¾­½Ã¤ò[Ü}_’‰Šzu%Ú2h^ç’Ó¬éñjºaÒocW²Ôê×Oõ‰-ç6¡××*#W%Ú"h ®Å%¦%yy.©$­zÅÞN&U*7Â5mÀ§>yzŽ§w¬ßOq©¹{©µÍPF²…D¢î©O{67FÑ4ÿ,é6zf‰†ÆÑ}+4æÒ˜Ò3Pœ¤%Õßjÿ«Ðô 3ʺ]ž› Â!±µä–kͦàªåøVRÌx³W}«þ®oUèªMcB +À@1 GîÏÁ×ÛiÖ6ZE¼vZ]¼V–ÈÓEe j–Ë#·&aKn~»àËé¦Ô¯®5]BF¸Ô.âŽÞçR–»’(£NxUC£–Õ4êqéce¬Ð[Ç · éÏs,wœ™¨f@$êì~×í7‰Å/.Öên~šÂâ$Z€H`p]ýս܊«l–°…ED·(x0däÀ@@ú6é€4]'ô5£[Ãs=Ñ/$¬÷·SÜ82Ô?;¹¡©Ú´Ëú Ðtÿ©ÁuqzC¼¬÷÷W¦@Uø™ÝÎâ»t®#‰`Ì›6lÙ³fÍ›6lØåRT”Ÿ’€„PÍA¦;¤EÔpñ€„1Iø‰*EÎP¤âĪqr\ >µ=†4R„v) È +‚ÄÀÔ“ØcT;•¨ûTâcû-ãBßv% ‹vѬ'ÔONXîä=èÒxâ²ÄmÕËŽkÍ&?ÕTñ#Øâ² ‚9‡ú‹1øã÷XüEñlßÏ|~Ǩ ì@#î8žã¡#ÜáŒß±#ÜÞ2‚ nJŠ¤€ª€M+JÓ¯^ù\#dXÑ€¬ÈŠ¥‚ÔŽDZW¾Y’VAÈ̪IUf,´­&;e™%eò;ª’Q]Ù‚Ö•âš º ¼¼¬¬ÿÐ÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÇ`(1ë+( Æ”Ö¸Ò€šÔ湚òòàÝ^IY %·SÈû4€tË»¹¿ÔnZòþfyÙÚIYŠ1“’ª/÷`( +ža¥hº|ZNlYÁCm HѤ*„’m÷¯\KJÓt}L‹FÐí’(cHmâY. ÌÛIV%‹Tµq¸ž-‹æÍ›6lÙ³eT¹‰•4®Ã0ô:æšÐV›œpVjÐJVƒ¥våGj•RxÓ•Jš +üÎ4²­*@­iSÖ‚§΋@Ì*ñ©ëASOÊ÷ñÜcz€GC¸>ÇE ¨ØqŽ ‚A؈÷·¨* ‚*¡µî:|ÕâCW*CÀ5WjŽ ö9‡qȨ`T•$T0¡hGqšŠÀ«1PÀ©âH¨"”ßQã¾'4ºÕ/ú5u(Ö¦¬¤qœ ‘5x Ntª×|JëD·ÕçÓ>·mѳ¸Q´Yàõ=+›`þŒÑ’7d.Hï^›b—¬õé´´¿·Žímf[ëh® f < +â)Q€£.HJÑ«ÓlRk©®¢„<¦e†#­T@ø@è78¬¶v¶²˜ì­Ú 9cÒ†@¼"q]”¡=øûk8,®ïn’ š…×ÖõF Ü].d˜“ɉf%‰ÔœÚ^‹¥è³]½…Œv^¹KLFdžtrÁ¤5äÛ“Ê uè1F”4"ÞEÊÅeQÁéAÄTìC¸Ô~8«L$ŒZ[ÛÆ®gvY¢œ¬¼G… +±¨áQÜÖ”‘qss<ÎÉ袘d<âV©äÔSPTPò¡íµF=-Ù&kÛ‹‰^1hÖÒ·© +°,]軆QB^‡j*¹r~ŠM¼Ð\2Þ!-t SÉ2pZŽƒbzŒUåòêùbÇP‚éŸPGs¨$ñ³$1ŸQÑŒþŠU@  -öÇÌ•Ù·žÏz¾•¨é°'—ŒPþ…»·œ-ijM[ú²n[‘äBl½ë±e‹ùá¼û¬iz–™ +yyá‹ô5ä“K*ˆ–d6Þ¼”$ò<Š¦È|v Œ"qÂNðþÐ#b)±ØíÓ,”d‚Uôî¼Ç톅B AÛ¦4D‡–2d…OûÐÀAÜ‚Fã~¸xÑX›ÕOûÒ7Bá¹Eß®9ƒ Fu*$åÁ˜P7Å©ãC±Çe´ˆÈ²ó1; +ôŸÓzü[á>lbðv–8äWx +,Ȧ¬†D `:BW¨ßFŠWž(eId¶1­ÄhÁš6•¨ Ád!…z®ý0ÇC²ŽöäHUgôYk 91I JˆR„À® Ò¬ío%K™¬‰"Âa…=YH˜.¼c‘-dx*ÀdGó?Ìþfò¶_,éGP¼¹b½äv1À‘©1yˆI DkêTdóÍú÷“¼µÇC²’K«ÒT]ýem#·Pg¢¹r("?Þ/!M°+ØÜF.BámIIKåBµf +£zV´Ã6›©Ä—Â[I€³còráÄðÙR§PžÛa†çÿ#y‚æÆßEó{uv¢H¬íîcõ‰u2•4*ñøZ¬ |[ƒ‡º7ž¼•®Í§A¥ù‡O¾»»E‘-­ç%f‘}R«nÒÉ*P°Ä²Ò¸8Ë[¹,XI ¼.‘ɇe®ÄQ¶©Ýp]jV9Ò/'Ó.½-¯­c†Yaþp«p­Yj¿Úµë‡ZŽ‹¡ù‚Ó|ǧÁ«ØK*›Í:êk˜!œ#Bd²’)׋€ßƒ¶ óW•ôÿ8é:¨«,R/Öcy$\#V ð²ƒAÖ”É=åÏÔ¬­f•åµº†·_WoP‰ÌhTr*À/2ßßi¾!]òiªjzŽ…¤Ø\K5ÒêZ|÷êw´"þî8+É$n‘B&foSàãÍþ5­+Å-<‡­ù‚ö]7ÉÚžŒúº‚Â-XZ[êSZibà»éüg2K1·)Fþ°“Œ@+Sœ×È~i×n¯tÏ$êZN§¡—ƒM]Wе»¸ŠÉ¥æö@L$’V€"4mêr àÃpK¬ù‹êÐjZl„Û˜Ý䉇0#ŸÞŸP…«<@§Z`óW¦Ó4ýWF$[˜ ×JeY„.?|õúÝ.$ZD º¨Jrã†?—ß•Z¾Þ[üʸ´Ô<ÓªÜ=¶€-4Dz+h¡R$ŠšxpWY܆ß“ü%°ûJü½üªÒµY¼«ù˜ö·>mÕçh4µ´²{B2ˆ¢Xá°g¶ŠžšÈ&~'ã~Mð–»LOmsÉîîwIe¸‘øD¼þƒ½wû4î nõ´½Òî繎=OPº‘nnu+©D- +¡xƲ•Šò!¡çñé@ +tˆ|®º-þ—%•ÌúN¡ÛM¶…ao%ɹ’@x¼¦Ü=ÅÃGÿwÁ¾:K»Ð7M·ò¢h:Ž•qgs>‘åÍÚ[{]O¶k­K!oŽS{‹†XäÓà~0%$·ÂÆ -Ùí´™n¸ÜÈ×,ª«;+Q +ÇÊ ì íóÛ¡Í®þ^_j7º•e棥\¼š‡é u´ƒUK‡DB,Œ%Ïí6Ô +Æ?uæ¥Õm<ůê^ZÔŸKÑ¡Ó¦Ñg³Õ5-k˜ÌrËt~«e$LáË¢P+r‰ºäÌžbó.¹qªyÊÒKOòï—­í¥µÝîu$”4Ó\íÙbU´­{5UP»×m.by4øÞÎä«4,ÎÇÓnYÔŠ#:šuì0_˜|Àu6QåÖm#VvE·Öë-ìÌ,Ñ<‚AF±)ñ PÝTP£Ë?‘³é¤èþqÖßÍžW³yîu.j'ïÝœ#}Zé¥k‹V#ã& ~!QÉ«ZOä¯cigå¿0ùŒë¾^·úÌ÷:EÕ´T4¡OÕåiÚhŠH=2 |KQͪ +ö[y®å’Ò·ˆ%¥*ìR+o¤µ–òg²µK8jª°D%U³ +£â`[§|ŸèZuΕ¤[X]ꤑ‡?\½‘圣ÈΈï#3ŸMHAÈ“E5ΕåÍ2÷GÐí4ýCRŸWž0ìoïÞvY$i\ÈÎÿ0AV&‹›êS›cz°@u”zb¶Ô¯.ý?¡Ì,.嵊Àd·]šèú Åèµ z¿µÐ£cGI­XAªÇ ¼’‹ÉÕž8– ¹!ôÖ¦­:FmÔü;s`On¢¯m{N‡X_.´Ò‹éTÉ ä‘”1©™cú¸?í5NÔê*dþáâhAßÃçbš…a‘dŠUH?¡+·q^˜>HeŠžª2UCŽ@„Ô¿m°Åâ’?ï¯Ââ|& ûmŽ Ž(A‡¨ëÆæÊÍ›6lÙ³fÍ›6lÙ³fÍ›µuŠâÙyzRÆÅyðÄoò ÁB¸‚â` ‚hjÜHš•`ju Ž%qê<Û£C"/*Ô +ÂAî\{—wvjÜVæÞhÏÀ$Ü@U¨¤àõ1(ØÈVg˜F±4^¼ŒV2¬Ïð—”­8Ôô¨;ÐC¿,|•}äÿ/>«ù‹UóL¢u»¶ÔüÁz÷D\ô£õkÁcäA;‚+ÄùŠï@’þK¿*ùgFò}œÞ¨›HòÎœ–VŒÏ@Îɱbä ┑÷‘<…eùa M¢i7M<\ÝÍ,žŠfXá +LlK-#ä ¡âFÜd§ òS›6lÙ³fÍŸÿÑ÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÛÇã—V”¥}ò¨¤€Õ¡ðÊ¢Ö‡ÃEge5„÷/?£s…YÔs*jh¤Õ¨vüp :ÂçH¼¾[Ñk}jb–ãn-VâŽÀ±P9|=c\&¼Öµ›?4i:4ZQ½Òõ»×è$¥¡@‚%%”z¥Èøˆ|"Ô5ívÃÍz6‹×úN¤·Q_ßF’Ÿ©‹éxÑ•D…ŠüTî)€‚”?HŠì~œ/(#&1ƒŽÆ#SB:ý­èNã¹úŸ¼õDÜ· + +ƒÓ¦ÕÃïPKûÑ0¸¸˜Pr§ÙÚ m—•›6mÅHëBÓóÛï1¨«)£P¨>»ïQ_˜#Û-MUj 4íµÜA÷Ë Aýš‚ÞôíµÜA÷ÅÚæ6ŽR€F9’îjv ü4=Mˤ0Aj°$ %¦Œ±µM6céÐÖ¦ˆ»ôÀ‘YÍÝåì·’Ý}aÃk2Æ!…!JwøÝ¿VŠÆâ+ÛíB[éo>²ÉèXα¬FÅ‘DÄÔ~Û¶;·^ÿ<ñÝ‹7í1êOŽ +øFÊ8ŽÀv2Š6Q@:‚töµ[èä/q·†%.ÍPh8‚*=°V“&ž5[[}RÖkÛk†h嵶RòH +1€eä  ûa7œŽ²žWÔ%òö©i¢êJ±‹-KQ*°C,’¤jy0 9åDÿ,C^$“ΧYʺ„þ_ÔìômF5êš–¤ë¼.ò¤u.êÁX†¢æ Þ´"/õf³ÔÆ«¤Yü8õ]G ú`Ĩy‚¥zV´Û ›_›_™T×m5_ÊËëËÕ¼<úôp5ˆ´c賎ÊånVeÙy:z`ó¥V™ü®ü™óG™ôµü¯üËó¦‹m£AõÉ/¥°¼Ô—Q“P3ã£q<\=ÑÚGôÈ•ª nhx”þ^üï}./ÊJ]OK³»iµ[ûK¹Þ[©&‘¯¥·»—ÕIž£|Çá<±}jÆÖ(®n…Ò4·EYdF«Ø7/O‰QĆ$° +j ;t­~ÞÊîÛRÔè,÷.ŠÝM#^HÌÇéÈ„'bÎŽŸeË­{ó ¼Çg¢ê>Z]?Ëv6aa¸%«,6‘´’\E$r7%ˆ"´¼@2QÅ:ü­óOŸ¥×tý÷ÊϦùsN°@. ’î)!±‰€A+Ü$Èî qª«KÆ…þ*òaºK)$†>6±Ì!’E +FÁY0%™hÞ<~úatv·CKk»DéËsõWž5RXª¬‘§!ûÆN-üþ™§rx‰™×tcæeòåÅÏ=m¬N¦–.d¨¥0I)zjÞ¢ô§¨+µägƒXÑdó:èwWõ¦°:”VNe…¥0I)R*þ¢/ª+µäQ‹P{kõÕ&*…YYU8…FáPì ¨ZxšâCT’ÇPMvñâƒÑ–9¨‹ED(=8 +‚U)SñMH¿ÐÖ÷zLž\¶I®"š)`ZI¥–D˜Õ½I‰.ÁIå%iöv%Ð,ï´)ü§l³ÜÁuÖòµÄ“Í,‘Ì׫pÌ]‚“°i9qÙv×>k±Žñï;:‘\ž8Ÿb…B3R•;Šõ-ŸÏº#j·ŒV—S´ˆÅmo bµ¹,6…bw+É£%Ç1R^ôæzWå'Ÿ_A³Ð5ß0ZÛ[Ú®4h¦µžþÐrIæI‘MRT<ŸOÎY¥þJùò/ÙyZÖìì µ1Ç-Æö÷:WŽDºy£‘Ž)DBÑC8pO‘Ç«Wˆ©=¥ßæûT +Šn¡®Ô í¿OlêjA6â›Ô¦õÛÃ:ýA“•JÓ~@E7¨¥NØ.¹·:­áX-Ÿ×‘n•€å"/‹±bÄ­M׎ÝqK˜ílt³æ-~h¬,îîXç<÷1AÆ+eŽgfyO§È„Vä‹ö"Þnóf·iv¾Kü¾±“YóKEièZ\Ã;XÙÙKt[û»ˆV8â¶F!&@ÊÒ­GJÂ|ùùƒwå¹WÊ>O„ê~g•m#µÓ®£™­áµ–fg½š[uR¯ïõaEÃÕŽ«nš>‡1Û?+d·™£L€ÎYÕ¶R­v;Áþ]óu¯Ÿ´DÓ|›§ÛÙiJï¦ÚZÞˆ„ou úéš$¥jK %¹Š9+ËsÒ|¯{ùu¨j^oüçÖF¯ç KHµ­WWÒþ¶ík£Ü#YÇnÆh U<¡š6HЫ|d?ÊZt>YºÕ?0?6oå¿ó^œ©ªßêú{I#ǦOÔá…ª©RXøÞ¨ PŒ‘ÙØØGkœ‘úóؘšU,ÊFP9“¸åÄrÚ¤s¥iúvƒg¦Å£$"÷PÑÞÑ®âbêRåã&nª$(¼ÇHÛÇ‘á~xºüÁó¨0¬­§°oº +G©˜§:z凄Sª¬ëZ¿ü¬ +Ocm纴Ñ/‚³X¬¡M¿åb‚²‘Ä¿.õ¤;Q¶¸Šf¿¸E†K‰eŠ3sGz¸ +ܨjT| ŠÝ«ËužæC­Ü, %ÅÝÔMmm$Lës ó+°£«}¾h‚¬zrõFƒy¥Û³y;IŽébÑímOqks·ÕÞLq£<^™¢pz+FR»Wª|§«hŒ¯äí®f·Ð­­¡7×6÷ÛzB”BâôË*„rP†R•â QO"Û~Ò„#ÚƒÂKB•fj +|QˆÊÐô ðÃy€µWzü.d»Ö§Ç$€%pPV¿†@Õ­OŽ;Æå,ˆZ?H­ •ˆÚªx‘_¿é¦4Ý@ZÛÓ•3F¶œ4lÊCljnÀǃSóqê#‡[ˆJº«x¸äôéòÅRÞnDzî·02H¨åƒÜö÷ZàÛÈ$µ…mïmÂM,qË•H³T€Ýj8·Ùù’HíBÖîÔ¢êqžâg´i!X嶉Í•Y&£„€q§J³W¥jz~¬ó]h·‚{[I§³¼Ž)KÁ5ÄAU‰¡e »UžGnŠ Ðu=;^»¸Õ´ E®,m%›O¿µG-mqu­\õPÀ2’ÈHnMFþç®f,ÅŽõïã÷`ð()‡ PS( +:Wj†Pˆ¾Ù‰ ©í˜' ëŽ1ÉÀÊ”j‚VA¨ýjCTMé¿L5 ºº²†ê ®l¡ŠîîÚ)áy¢µœ í¹p’rCSŽønÂ}gô‹„¼¬‘©’Êî;wš†hRåâ4‘z‹ÍCÕNÇ}°–ÏΞX¿óDžK¶¾å­D©dah꼤ŒÊcs£¯=ÃÔŒëü1pk¿nÇÄZàò(hz÷m‡d4=EA—›6lÙ³fÍ›6lÙ³fÍÜÛ®Ä~ºfØ–özÔÿ‰s@ ý®” þªæ"I§ÅÒ„Õ\Ù³fÍ›6lÿÒ÷Þz×#YÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6láËËøå£çü1­Õ~Àâþð·Ïø6*ãŸ7ÌÿÉ·Ä×ýíèÿ‰.'ütcú?âkˆ¯Wÿ^Oø™À–ý%ÿŒÓÿÉÖÁ3ý¨ÿã?òmpTÝcÿŒPÿɵÇb¸ž'›6lÙ³fÍ›6lØ7KÿÏù…ºÿ“M‚l¿¸Õ?í}ÿ&_ÿy§ÿÌu§üž\)ó÷zgý´´ÿúˆLJO÷’/§þN¶Ôÿã?×þ&p^Ÿþ÷·ú§þMa–™ÿ ~Cþ¡Î)uþöŸüÌ8{«½vÿñ’ßþOáe§ûË7üc›þLáe¿ûÁsÿ®ê`‹¯øåOÿ1ÿÉ£u?øæÿÏxäÛâ–?ñÐñ†_øšæӿ㶟ó ?üœ\w•¿ã¹iþ³ÿÉ™0_¿å0Ó>sÿÔ4¹üáÿÉi®ÿ©mÿQdkóÛÿ%™¿ã§ýGÛåyÏýÑÿçÿ“­‹~bý»øÉ?ýDI‘¯ùÆïî¼÷ÿ§ú¢ÂoùÆ÷—Î_ö×¾ýQáIíó¯#G§Ý[ÇäVuCö[ýVýG¶ÿŽ„ßó?äÕÖƒþSX¿æ2?ú†Ô1{ŸùDßþa$ÿ¨‹ ¬ÿÊ/oÿ0rÿÉë8_øæj?5ÿˆÛáç•ÿåÔ¿ã!ÿ“v¹ã¯ùËÏü˜ý±`ÿ¨ÛÌòoüä¿ü¥šý± ÿ¨Ë¬åoøï_ÿ©'üÃß-ÊIqÿOüÎWåïµ_ûfßÉ£œ®ÃûÙ?ã¿ñ‡¶¿ñ—ý[ø“ä³HÿÉmªÆMcþ¢®s¯éù4ÿ,ÿ홡Ý=s¤èßù4|ÿtú†‡9ãtOõõ äƒû¨?ãñž²ÿvÍÿþ$s؃ûÉ¿ã,Ÿñ#••—ŽÃÝ#þ9×ÿñŠßþ&r[å_øãë?ógÿ'NFüÃÿmþb®ÿê²æïùH¼¹ÿ1ÚýAI€õŸï!ÿŒkúÎê]ç'üLáՇؗýeÿˆ.Itînã(ÿ“i…Ø`ÜFïýå›ýGýG7÷Oþ©ýXè½Oõ‡ëÇÁýüë/ëË_øìj_ñ›þeÇœ[òãÿZóÓþ3ù{þéc<…ÿ’7LÿÀÇÏõmœcò/þS_ÌûmÍÿ'n1AÐgjO°¿!Ž¶ß3šOïæ^^^V76lÙ³fÍ›6lÙ°^­þö£õa˜¿ã¥÷Äpþñ—üm…þ_ÿŽjÿ«ÿàL.Á˜a›6lÙÿÙ +endstream endobj 32 0 obj << /Height 264 /BitsPerComponent 8 /Subtype /Image /Length 180548 /Width 605 /Type /XObject /ColorSpace /DeviceCMYK /Filter /DCTDecode >> stream +ÿØÿîAdobedÿÛC + + +  ÿÀ]ÿÝLÿÄÒ + s!1AQa"q2‘¡±B#ÁRÑá3bð$r‚ñ%C4S’¢²csÂ5D'“£³6TdtÃÒâ&ƒ +„”EF¤´VÓU(òãóÄÔäôeu…•¥µÅÕåõfv†–¦¶ÆÖæö7GWgw‡—§·Ç×ç÷8HXhxˆ˜¨¸ÈØèø)9IYiy‰™©¹ÉÙéù*:JZjzŠšªºÊÚêúÿÚ?ðý½Ç'*ìE¤57^äW¾|çÔ5™­nZ\½@ eÅi½(´Þ¹óhIky,QÎÝ#àìåUA¥bk²øùU’F–ÐØ NO$ŠUxЕޢOÓ’4“LýÉ*²Î‹HÊÔ«²ÖŸÓ_¿iö0ßÁs¨ÆHZH’aÁ p=OAÜõ;œÙÔ}A/¯©V¸JÄÕr'~Ð骧vR¯Ð¥iJøu CÔEI…œä„Ö¹*ô¦ãÃ6õãZ±ˆñ©^Uã½G¾å¤ÑÅ' ²pÞª[á¥v ¨éOžõˆÝBÔ‘JµE ¯C›ŠW*j¼˜‘'+^%¥xöýXôµ°Šóô¤$™Š€µšý¦ÜõßÇu¨}\ÙÉF„ÑŠñAAPz•=ý³cÍÀãyÈJ·#s°í½p\/=ÚI4LClkâGSAZtÄc–h¤Uy¹¢î §j{fÁVšÌÖó/7'¯ÀÁ˜-vÍ;×éšÝê0G@9Þ1B]IéF5ëNãÅy ¼í"²»)Š~l›;¨»o¿ã› õ]V2œlÐ#®í#ónÕØw®ýrµmJN¨Výºú]Ɇé¹íŠ\H€zÐËÍÈä‹9ZõRÄw®l†\Î)ãPí“ØS ~¸‘˳ØubOM» 8fn%ê‰N$Ÿ—a›yd VÜ~ÎÕéL òLZ¤n¸ ÙK’E<3`y%BÔBiMˆ'ö&Î$äK5@ îs4ŒhIÛ¶ç6/ŽˆÝµ IcNÞÙv×ñ¨(¦›õÌ®ÕØñÜæà X¢˜ðª!·>ø6Î#t}6jб5ßÛ…MÄ ×¾lNùUkÕMz)#j÷÷¦UÔjH#b¼múf•xü'cíó;²8ÔPu$žça‰%ØdmƵcZšöÆ ++PFliy9¨Ó·Äiúý·ÄÄÎÓV toˆôú¶f‘¶&Ÿy̓.n KKx-#ø˜º¸n±~(€/!ð1«Tüd1cOZ¶¼°´±´³mjŸ¼œ4a§>”1Â(¢ï½X¹«‘^¤Š¼½‚æ hãbhS‹º–¬„ŠjO…{õ;…â«°šGj+nhM6ûðœÈò95øè7 Ü=8Št­3eµÓÂ>ÈjÒ« $möH¥ qe¾–áÅ^œ’PYj½¥7Å#£©QËn4jG*Žžù±0^`ìT–¡sû ’jvû°9’§—E‹=:ÍÜ bnÎìI­MI=ó`Û +³¢ªÐT x RÆs „uVV IP TPÛåÆ°h6vl©ÜFT`9TŠl(E:S µE´ôÕ㢆ë^„ôñk¸–& +²TS}ö¯¶Ã6Exð;LQQZo¹è0n$2©¡ëEß NÌCc×6Aç}f+aj· ;´\Ü.Ô=+â0òÇÏZ婱†êE¶¯gO. ²Ó­¹ õkˆÜÛ«^¨Ý·é‡þq¿ò2Îÿ7Ýh³A1²¶¤¸¸·"3û³R¬7=³ªÿÎ=Î8ùóþr?Í’ùgɾ•´6qúú–«vJÛ[GÐr#¹=|ë“ù/ò þq·ËÓi›6±ùïÎw’º]¯×L + ƒ//‰j÷âëM³­Ãùkÿ8Çù=j¾FüÒ¶oÌ>KKÿœcüŒòýæ•ùïksçŸ>É,‘þ„Ðu†ËMHÝ£¥Ä,¡Ü•¯å# +¿0ÿ6¼æýLò‹ùU¢hRßE±kÖúU­¶¤x­9r·D$ǯ|9ÿœ‡³ü™Ô®|¿ù äÊÄòœ'ú±–ïV¸µI-}t ‰qq¬¥·ßÕf§}òiùÙ¯Î3h·Z/åj~Vèoæo6ÛØê)6Ÿk§ÙG£ÚÞVÝ.$‚4™gXJ´¿w#"?›?›?—Þdü¾Ñ/¼µùW¦ySSÓ›Ö“^†:„ð8å©7"òrB õ {S#ÞKü¡üÄÿéžp¿ò\WÞYÔîcK‘­ [‹ùŠ*DòFYãñ~yϼ…eªy.¼½ç_'èZ–§O%½Ó>ÂçQ¾ºŽF`¼š'œŽÜc`)œ³ÈþJü¡óOçM…×™ÿ+.n|“ytÚ^‹7—æ•"ÕeŠCn—ÕŒo'à—}ëœwO!¹·»¾´k›^c” ² @;¯%¡ßØá÷˜|¿¥ùûÍ—z˜|‡eùsõM8¦ŸkcdÑ\ÜÜ­DfHÔîìÀ‚V˜EæË}Íóù¿Î0ÙÁùk¥F¦h7LÐ=䬛Gr’ÅÃÇ&›ßóŒÞ[ó¿ç~¡ùeä¿)ÿʸӴí&[È'Öm"µ¹½’%% J¨µ/Òk’F×Aó.±¬^ÃokäØ-mZæÏIçq2Ë$h8Ã\I#ó“®ìsΚƑ{¡ßͦê0Ioq´rE2ue4 ƒÜg–'…ÌrŽ,»2ž ŽÇ<9ªé³è³Ë¥êVrZß[Êñ\Ç:”‘6âQ€¥>YÀ]M:cp8àbâ7èÄ +§6u¯ùÇŸùÇo7~y±tm6·Òíʶ­¬º1†Þ>¼yPŽlÂ3¨~BþBù¯óÓÍ ¤èñµ¾™nCjš³¡ô`N´åB9>/òòÍ_ž^hM'G­ôËr­ªêÎèÀxÔ96Úç¿ç<óÿ97çdÐ|¿ZhÖŒ¯­ë²#zÑõãÈ9°ˆÏgþ~Ïÿ8µÿ8¥ù{eäí/ÈÞ_ó'›Å¸]: SM²¿»!œƒs{,ˆe ·.5;ÒƒaLõçç•ÇüãGüãìü£§y3Có›~¯M6GN³¾¹5b Íì’!©n\jw¥Ã=ùÕÿBÓÿ8Óä<±cå\óLVÀiÖÚžŸi}y'7#׺‘ÐÈT·*Tö Øg½ÿç&®ç?ç ,tß!hß—žYóWžM©]*ßWÒl5+Ò ‘õ½Bic2•-ËNüx®ËLðÝ¿,<ŤÙy¹õÝ9ïõÉËyŠ+«`³2ï‘+J Zp¥6ÏëÞG™<·gçCVÓ`»×d¸<½ncŠâ²òkxÀX‘ˆ¬j8ôÛ<µkùÚÏåôš‡_ÓŸZÔ¯Ø7åå¤(š†VvY¢G¦# T Z*•ìF|Ãó‹3i^z¸Ô4¶1\^Jt]:XRâÈÇ1Õ³„(·F;Ä ÂœvÂ_=hz&‹{o¦iC4Q¬W,̬%š¼™ÔP>.59¸‚'Ž+zº 18«ú”ߧbwÙ ó×”†•®[èvÐÿ¹9Y­cEAY((0Üdo#2ZÏ´oä»0§CáäâvŽE*ÊhÊE#®F5½ Sòö¡6“¬[µ½Ý»š6ãU Üsb45¦7 ³gÿÐð Þ©3UXŽÅXÐqÓjPÛ>fÜêRE4j +µ(bcü•Xv‘ÜgÌ+ÖPÏ,PT¥h8Ó¦ÔÛÛ>Uc,õ~SâjH©F&›ŠûšS.ÏV¸úËJËÎEehŠÒ ­Û¡•ÄIDÈCRxÀ×zÔæà YnÄL“HI'¨ä5âIåÞ˜s #KŽLIRciIHÛ~#ŠƒJøï—q#OñÖ.MûÁz;IrŽÿ*lØ×`¬üëAU +õé€Ì©c/¤¬+r¦>J ˜Ù-Ï^›fÇÚqJÐß,l\ÌÀž¾ý©”Ôº Ø2yUaˆ-¾ã ¯°¯† zHÉÄ×âðû¶íŠšª‚ãÜÍ Ôžâ§qÚž?†! 챸`ÅiØRŸ«W)º°¨íOØɯ̵ +ëÕ¾Œ©îžW-#TŸn´Ç<Æ@@©¯S›ꀜEGŽâ¸˜vÐï‰ÓðÍŽ}‚– ŽãÃéÅ©ßìÐs( E;Øç¹QJ8 ôc]‡Ñí¶/pÂ% ƒ‰Þ›×|Y¸â¤Ó ؃Ü#PóÜÔyüU-¿ùûb;á›)îcû^§^Ôþ4ˑ㵩þ¹d­ Ñ›-/UARäíóú2á™R»rÛÆ™UÞ¤×62KÅ©ãÞ»¶øךTëï¾Q=iÐæÄšè·R|1æf5;WÃ(’zæÆ ä§§@=OŽW0oԜٱÌK{ÉsQÈ. 75Í›úò§ÂÎëÄ`Æ €VŽx‘Üoú²ëM»xfÅcÕÄCá}~ÿ ÁVº‚Û»H²qåö–„×õc£vR8ü]~óbÜ5ÌŸ2¦ÀWøâ.ÏvçÑVwc°“á¶Ûh:Ýü_Z‚ÆW€ïë*†½(ͶlNHgE$f†´5SÚ¹RÙ][×ë2Üõ<.™w†d¤ôe=:Ò„æÄÙŠo^^¦"OëËÀôÀÇáb)Ó =¿VlÆVU¾þøã18 ^»Žÿ~cP|G}ócC€i_‡ÀcRR¬>-‡€Ç»ŸÙ³½l ÊµõØc–D^@uqJãÖá”)CíÓ6_ªÛTì  ÞµT“DR½k×3Ü3OìÐ :wÍRÍSZSjûc9—Þ¡ÛlJ¥ªÅ·üNlÅ‹¾Ý2‰¯zýrËr#a\Ù”~zø壴_b Ÿ§(9R@55؃› £‘Œ’œÍ2¤5rscq¸ÜÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6cNÙ³fÍ›6lÙ³fÍ›6lÙ³fÍÓ|Ù³cŒŒÝPÍ›67¦lÙ²×r;fÍ›/‚ÖºôÍ›6[Æbj6ù³LØ­«B’‰&NqþÒ)¡¦l½‰Íƒ M:òúU‚ÞQ Ž%<˜Pw͆¾Zòíÿ™µ8´Û*\üsJÜ#{³7a†ž^òî§æ[õ°Ób.NòHvDQ¹,ÝùäËòSò3Οž¾u‡É>NEs'7–æîOFQ%™°é†#4‹eN[rsÅGÌœï_óþd´×íßòJïÎ+äo-ß4××ë³Üܧà ØRÏEþG~rùÓÊþM¾ü¦òW›nü™¦k u(Ô•ÅÕÂøEp6·4Zz‰Å½óÖ¿zÝ÷—ôÏ.þGÿÎ?Ïoåÿ3kÚõ‡™ÿ1î<Î!sk)OØB§Ä:×:/åß槞t_/ÏùeåmfßËZìáõ-iBZ\²… Ž[Ĥ¢!O³ËŽBuOɯ6^jWSi· ¬_5â[[y™¯öK®>´òÝ ý%™c›“…á@~X¤ö·ì«2g”¤6ãïÏXþxÇæÏ%~Iþ^hÚ6§ƒa [[]ÝEª¤r@á¡`Öò/XÊÌÀ(ø”‚wÏK~syæ?.?åÇ”t»Ë» -:Æ{Ý^+ktÔe¼¶ˆA<±•@[›¡“Œ–äI9Ú|ûæÛû?ÉoÊßË‹sTò[ùnk)¯cº3iæ8î@¸v¨Ì!2QÔïÓ;ç­åòåï‘4ï"ÁåÐö+túóZu=Uçg-3Î(ïIá_Õž8Ô|Ña¤jrhš,ªÝ¬âãL—J™–ÚKÉBš•SVâßf:güçÖ¼Ÿuæ±sä4êžzÕ.ÒÁàÔµyîè^KXV‘êÎD›)ãç*üóäkO9ÞhZgŸõÍY ÓnŸR»“ýÊ$cÓdš)UdTsZuíC\åWZ`›W‹NÐæmN[DBcCÍæ•T”©!3½~tÎ~`^þXé›qÔ|Ù-¤w>kÑ¢¶Xœƒ¥H¤È‰OW•XµNtOÍ?ùÂï>/å~™ù™eÎïÌl·eÐ#·HÌdŠF8cSÍWyU‹WÿÎCÿÎ0yÃ;OÑÿ5§ºŸWó°µ›ÎBSu5ÝÉ[xÕJÅ;;‰$ŸÌÊ[=ù—ÿ>ÛüÅÐÿ"´OÍ=!fºóp´~lòˆ‰9‡û¿«Ç jÜÖ0 ªÕnu÷Îùÿ8ßçOÏ8®‰¤Á%ž•lÕÕµycaººÖ”æi²çüˆüówç›EÒá{]:Ù‡émRDa +ëZS™¥Îù7ÿ8çç?Íÿ5Ea¦[Ke££s¾Õ§„pÆBiNdtÄ?ç¿çüõÿ9)ç¥òæ Øé6.½­MˆmPÒ´§¨Ô!W=Õù»ù»ù_ÿ8Iùgkùaù_i ù’h‰µµ<ýFûWwδfc_‡—…™íÍÍoËoùÃoË›_ËË{HŸÌÄMµ½Ÿ›Šæñ–ŒÌkµ|(6Ïe~bþdù þqÈ––_–ÚŸ0]!6°HAnm³]^8!‹í_ + …3èÏç‡ç—å7üû×ò’Ïò‹ò~ÊÖO4Ï 5­I}FÙ¯5R®Îkðòì…iŸ5µýk̾yó%Þ¹®ÞO«kZÄÞ¥íÄŒÒÉ#µÕ‰&€l£ ¶|ø’óÍ?™žr{­Fyu]o^¸k©‹M#<„-w©¢‡ò¨ ÛŽüÙ?ŸóŽ>]òóȶz¼øÑ•ÖüËp±ê¶’òtK•Q^«ð(%ªZ¹ê/Íÿ’?ó:µ•†‡šÿ6 Óá’òîi!»µ³»}hÉP"}„<ãôÙ‰®z‡óBùůùÇßËÊß—º=Ÿÿ55}5šu_ÓÕ-4i¦fõáíXêÆ£‡%AV©jçucZó^½wæKàÓÞ]Jg™âBšíÄ/Ù”t¦y—@¾·²×!Ôu(dž(ŸÔ•!UbpÝ:S‡Âjv;×·¾Trp^L9ìOêßV¡4=s`¥¿`ê’MQMÇoÕí‚…Úü%˜‚)Ož.·(ŽF, WŽl÷§b§¥EM<7÷낭玔gø˜ïQZ}ãŠEIN¬>Š÷ùؤi›‘?Â6^˜Ë©žy8©6jm×½i‰‚±F@<‹u#jSîÍ‚m®£·JPŠT…ñ8&ÆD³"E$”î+—ÕCJ>$„ñ&™°î¢&]ª¾Ôî0=Þ¢.ey3ö ?F+5Èd>kÞ¿<Øë¡%ÚƒññÀ•,°Fõ9‚$4®ý³c=hd!@#ØvïØcYÃP“·óÆ<œ15±…£êV¾¿×ÉHäƒÛJ’M:ô͈'‘âN•â+!4_n¾8Ó×å›žå¤ —-™¥$nÕËg'¹9±'…5¯\i”žûãzfÇ,…Vƒ¾]Ië˜uÍŒ,k^Ÿ,aj{{fÍ–³2ŠW7©Û|Õ9²Œ¥ºc„Æ£¸Í\ÙEéß4ŒÕ­)›67Ô¯|OÔ'6l®`oZSÇ+•;ôÍ›+ÖS@¦¤íÓúÓ,J}†9b‘éÅI©â>g65æaµ/ò²Œ½Ô§6w"­˜CÈ ”Š)`JЃ›é=î°%’)íâŽ~³2D(ÛT šW¶ø*ÃMºÔš&Yb‰d™ O*DŠîv,ÎhªåŽÃišT­_^Ãk N‚dz¼Ü‚–HÅ Òµ =³gbó'ä¿å?åYY0?1tÿ5Ü:)]'É’I}Gd­&¸ž8QJ5ìHß;çŸç?%¿%ô¸åó§ç‡ç]uæTo-ù¥ÕÂGÍVF{æX-Ôª±4, aÆ„TŽ•ª?üã—¼¾bÑ]óW˜ƒ?)o¬­ôÝ%TD8ho&žOÞlj©·íà›‹{(#eK¯^pÉÇÒŒú%jß”nJv§ +æñâzŒúwé‡Ò’Ì»}UgÈ#'`Ô$Vžç<û¨¶ž×ó¶–²-¡v6ë5=@•Û—E~G9<²!™ŠSk^ +ž´`+Ûc-u›'2[”V?´ÑFä|¹©§ÑŠiú½Þ–Þ¥ˆ$Üz r¶â›zªÔú)‹®§wow RSÔü<©ØñãQ›Yù¿Í:zɆ±wl³ʱO"¯Zñ# l<ûçm* ­´ÍzúÒ)Ï)R ©b k_Øa×Û7v$öÜxfÂÙ/.¤s+Ììíöœ±©íש›Fúîcqsq$²ž²¼ŒÌ{ubNW#÷ŸlØÆ–FÝO‰ÄZGsV5>'1cãÓ¦l®{S+–ÔÍËjfÌ ƒ– ßèÌ+×6l®ûfï¶l½ÆÙ··Í”v?OÏ0ìM3{Ùd +Šu͵~óS}†l˾햤oË+65¾ÑÆ·SLÙ²³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6XF*^›ù³fÊÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6X`?dW6lØçYõl{æÍ›\:Ñø­:QT¦ƒ6Z¡jÐôÍOÇ.2hä(@b¿«6v=&Ý/¿+­.u«[FO:1h¯ xßV¶‚ Ò6©En;7|î¦Ý)ÿ+íô‰/¾¯­yÒ8.g‚(Öã²vªús‘T ½iצzsò¶ÇLü¬üž´ó-î“ùÓÎ’H¾Gó¥è{ËÐúrzö òU`¦õÃCCÔ4mÂúö(½-f3=“r /¦’4dÓöAe#å½/òãÍZ=®‰|dÑg„HÂþ$f”óÈðÈÎ¥s,ÚPò‹¬_&ŸnîÒZ3HÑ’GÅÉJö¦kùŸDò~ùæ{8¼¯¤–7š}ùAYG•¤eæ9-Ǧûg>ºó»åæŸDÒµ«ÁgÕ„E<±BüÑŒa€> Ó 6ZƒéW©%°ô¥‰©êIø™Ç/umcKŠãË0j÷RéV·'ÓX'e·M͈4¯uÍ“+¿ùɯΠ­/EÑ]“ê^_–+›EUL°ÈdW‘kG<íañüÉó=§˜4ýjÖSÅ%˜<™¤þ 15^DštΙæOùÊoÍ3þYÛ~SO×—t×K˜¥Ô-à›Qšh¾ËIrêdvQ²Tü 1cyuH€•‡¢Š„Ž4<…)îs¤y»þrÇÌߟV?WüÜ´³Ô¥µÉ ÓÛ’‘M15‘ 醩&i“ïÏÏ™ÿ<ÚÏ[ó$ÒÉ©´n×vj;8O`ñZŠl´Ù:óç7åÿæ&‡åÝ[Cü¾¶¸ó¤[ižbÕuE–àIw1zÁK”z¨Sñ¿\<óÇžõ¯Ì-Z{Ì|%ÔÖÚÎk¥Ze´…mâg§!('½*wɧüàÏä&ŸùæË7yƒK†}Ê·<­'žâúê¼’ŒÀÆV:J|ŸÿÎþCEçÿ5Iço1Ú,º7—ç Y æ—w+¸P\*”ø‡¾I¿ç¿,õoÌÿ2ÿ‰<ëmú”n ÒýXK¤×‹œà”A¶zËþ}±ÿ8±çŸ柚Pÿ‡|¡s Ák5ºËýØøÄdÊŒ…R€¸ë¸Ï¥#uûçÒ +q$Ó¹ïPŸ´(h3ì`„44´ûó—~p^k”ß•ža×&|©kq«“-ä–VvñÃÎye¹xà +eÚ'©ïœßóZóYü°ü´×µŸÊ,[OªÖK¹,í HyÍ)¬—!LÜž§¾sÍ9µOÊ¿ËÍ^ü¥òµ¼ú¼­%Ô–övËy¥ÞK‰¦GîOSœWóÆë[üŒü¤óW™ ügu¯JÒßOg§ZG©q6ó^Mº¡šOÚcö|øó{¨yÇó'ÎW:†©4ú¿˜u©Ë\ÜNÍ$Ï!ÛrÕ (öTPl3å"Gç_Í¿=²ÜË6­ærrn'¸fw.v%‹T…@)àª)Ðg˻۟6ù¯Ík¨êzˆ¾ó˜nÉy-Ådõ&aÝT”è PtÏ„þcóš1¼éy¯ù·P—P×u«žw×÷Ò3;Jä/ÆÎI + ¢¨l3Õ>Xÿ•Cÿ8ñäk]ÊË¥ùÛó_͸¹Ôîþ­yc¢ªñQ"‘·#ö‹u4 +u¹Õ*¿"¼™¨þ\ù +[?5~ekd[ê¾stí4uŒžI§\Ó«u5cöª¼@õÞåï'ÿÎXi¯¤]Yy¿óWK”‰ ž;¨´’WѤ‘õåFûMã@ïþaÕ¿ç"ÿ)¯üå¢óÇæέXu6º,º~ŠŒ¨ÜtÙ?ß‹V_Q~.\ƒ¼@óÕÕ§äÏ—4Ý:’ûÌþ`ç?éq$:Z¨r±$@•š‹Vn\Mvŵ+òÿH°²Ó4›‹{^–¦þxŠ¦Ÿ0¥#„ÝwäÕâk°¨9äæÓt+ù§ôuÛ'œ'‘V¢Õ¤à³µy¯.Urëže™"B¢)=J¨,hE¸ß®)©~vù‚:} Êú>›å›g+ê¾›c7Nâ÷z¬7Ü¥~gõ gPC%´Qéé ôåŽÕx1*OÛqñ= ?hœ1Õ¿3|Á¤é§ËZ^‡a¡Ëi3:^ÚiÐÁ|ŠvhÚç­Jõ©Œ®ÔÈ¥Ô–Ú¶‰qªÏpI¬ª³[ÇŽ?O…ž M1Ú¥ž‡úÇQÓn$’íù%ü•êHe>'¼´aòuǘ¾¾^úÎ~¶>˜}6Z¬§ˆ‰5öÍ‘Ü$ÈNlÿÒù¿a"´’ÉÙ5¨ì{oŸ0fBK¸JÙûüC®|·»VÙ¦øš¾5ÛÇ>UaksV>Hm:uÀÀšÇ|%ͦl`?˽:’wü)–®hkÇ)X{l qI. AŒš(ñï×|{²´tˆ°§Zžù±–¶ÿX­EiÛ¨Àð«\KË‹8?g¿ùôÄ…\Ñws`[¸VÛzíJc§…â<ˆ*|2䇆ýü3`s+P0ärF!êHÔ­qœ˜þœØÏ]‡¿Ñ™žƒˆ, @ê7ÍŒ–PÝ…&ÍN€}ÙDæÄk_lLššåfÊb2º³fÌ®iLpvAÇ5ser©¦ÿFYŠ“¿áš¹²ÙvðÌ#¿Ý›65E NW¦FõÍ›1e'üÿ®_*ìÌ¿yþÜ°¤Š€iãLÙ¾ wmÈP()Ôn¦4ð¥¯ZíøúðTeíÅ»ÞEk4Eý쨅‘MGV…­{æÉG*<ÿù¥ªÛé~QÒže™Ö7¿–ÖÂÜDi'ºœ¤1ª—‹6Ã:?åä^§ùµ¬I¦Ýù³Ë~@µKcw³ç}^=ÊqÍc€²É$¬Üëð!P,Ã:Gåßä¯çy¯WÌžcÑ¿.á³ÓNµ ¾p¹žÂMBÓô}´Vó\\»Eq•~-F¨¦h:,ºö¢º|wV¶C‹É-ÝýÄvÐGc“±g5b¨D #ý”Vbvÿœ^ü¥ò}Ìkù¯ùãåÈ–y8YÃå)_Ì/$dY UŽ YO"M@ìܳ§Aù ÿ8¯ù{ú_ÍÿÎȵýBæ9'Õ¼¹ä+f¿ŽÃʱúzÏ‹s#· y©?ù;µÐ?ç<£h-|Åæ_<ùûRÙÆ¡ Xi>]Ó¢¨ºôµf¼¹˜†­_ŒjV›V¹5Óü«ù'¤jòYù×Ï—º¥´|^;¿&èoyo2°Ý šìú4Ѹ=ÑÝzPèGç?2~Dù˺ϑ?+ôù<Ë}¨Û¬2ùÛ[²²¸u,èÒ (9Ê Ú>+8> ãˆ<[ +<óùÃÿ8ëåßËíGòÓþqïòök”×J\j~wüÇJÔ¼Áfåx=¶šÖvñÇ`"•“‘rYþx°…þdþfyWòüÿ–ß—žM²Ñ<¹k¨&¥c¯J­{æK¿E&… åã8H¥¬–öñǨˆ@Ú¤‡Ìš×”V×Pòß“t€tÓ¨ýnÃÌZ˜oÓrZÅC2ˆe6±FÜŒ­#0sÄÍ"¢ç ÁªZ¥vëž|4éþÖr‘$¨æ›i·]LŒbÓ麴)=Ý´°ÆÿÝÉ$lŠÿ"vËÞ‚½úu¯]ñÐÛÏ<‹Q³ÈÄ*Ä –fcEz’Iè3a¢yÍòCyrÚ=ÔqXˆZîi!hÒ1pBÅÉœ(«’8Ž§°ÃÓä_3Çc©ê7š|Ö0é+¼7‘=½^%# +r¸÷"§Ö¾IÔnôOÌ77všzé²G±½¹X/n™äôØZÛ°/¦ÄzœGÃôl'{IU•=7 À¦åCmâ(Aù"d*@Û©;TJýã#Í(SR?…v͹µšÒOJt(Ä+E6`ü4Šn5‘Ñn¾ù±,ÙY³fÍ›6lÙ³TæÍ›,òÁÌlQŠ8ƒÒƒhOÂ>Xã¹ ù ØÓUÒ•ÆV†”®QR´'¾lºžÔË)¿ß•›+q•úó›Ýr\Ç6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³f͗ɸ•®Ç6lÙY³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ±Á*+¿Ý›R€o¹í›E3fáðò¯Ñ›6lnlÙ±Þ£•à[áð͘fÅí-ýn¹yxîJvù°n—§Oª^Ãgn*îh¹¦ +ÒàúΡo bŠÒ/' +Z‚¢¦ƒÃ ô-êÚç˜ìô-;O–âæi}UÙÙ* zqÜÓ2€X4îzÓ:^«¬ùwÌ:Šý]eD³†ßN¶¹‹êv¼Œ@+²…ŒS“TÔ|TïÃÍÞgò†­ç­gZ²¸{Èô{;K/-]4Š +ÍoÆdŽ6¨*\ƒAž¾üÖüÃÐüåù„ú–­tÏʺM†•åï1ÚcèýF!Ì[Ï+—‘ê vf©ñÃ_3\è·: o/,ËgPF À‰]¤HÕd`"UYÁ+QÊŸh““í'Δ~Jò¶µ¨Ø ÿ1š.vúÄwA2M)oQ£å^¤í‘9üÑå¬/uf«Ï4LÜ­µ]ìÌç v ‚Õ; 瘚ú•ö‡}¥þeÀ×ú¼1®‰£žuníJõÇ^ÌÇl [)ºÌÊLL„}¾Ü«Ôc9<Ÿ ~`~Uy[ó#òóO¶µ½²µô|Ϥ[![éZÜ•bÎÉر8¿æÇ妳§è:Gæ“¢?ørîÚÞ¯0Zú³Xɨ0«ÆfrÀH:2×®I¿;? ìuÿùÆ/Ë¿Ï¿Ëí6Îܵ»Ûy³N²‚8n½hÝërñÆ»©©ðß 5--›CÓõ{-2H-Õ W—ijG,üÚ„H y¸ÐŽ[Pg+…hiãCžM[xÌ^³ËÇzqàj=öÂ\–~Z~[ù§óCÍÚW”¼·§q©Ü%¤W’†H"g4«ÈÀd“È^Góæ'™´ï)hLúŒéo°oIÍ91É7åÿ–üÙçÏ0éžEò̬’jWK2’éf4äÄl)×$ÿ–Ÿ—¾`üÔóÆä,GÏPÖn#¶€J¡v§&âþ}žü¨ü¹Òÿ*¿/t"hñÇZU¬PÜ´\Ț✦–²oŽBÌ*vƒaLúûù[ù¤þXyFòV‘ +Dšm´q\Xüü³Ðÿ/¼¯cmgõ hF§=ª0úå÷ëÜ;HZF.õ#‘4Z(¢€¿•~È­; •Š“@2LeTnÞ>õÕE&›¬kZV‡c&¥­ÝGeg +“<÷©€*jXÓ¦×5Í˶ªy‚ò+8õg•c½Km®¯---§ººtŠRòI#ª TÔšvCæÏ9y_Éš=Ö¿æÍJßIÓ-וÍÝÜ© J§o‰˜Ÿ'¿ç%õ¿É¯=~jIæoÈ+Y´°ÆOÓק¡g5Ï"¦X#…æX­ºÒ¤“óóãÏÿ•—ÿš7>sü‡2ù~võcÕ. EK[É›áy ˆò ÌW‘VûT©$üÀüþóäWš?5F¹ùaÖ1ÊÎu{„‚?ªKt¯OR\2ü@T8±ø©RIøyÿ9£çoùÇÿ?~mßëÿ‘:<ºdRK(ÖnS„v÷€nmáZðækÊ”Wût«x®¹©A¨^¹žy ¶OB9]¹8“éŠü*‰!T¾pmJù®gª Jô~£ámºd Ìþmý¥«Jú\Ä—ÒEÖÞ†¼Kðø'¢qçÂ9$S!Šµ#ˆ{×ÇK©`™.- ‚D‹FH JÖ½ò1ssh·vóè"kg·Œz’3üf@MX2Pˆï›HÚ4#‰ØÖägy(^CVs×ú`[½^öúfžögšG§¨]Øó  -SR~y±O¬4&D·rU +õî(6ûòùˆÙ„f ŠoÒ¸´:Cqr:EqŽXÉ¢±ÀSè͈ñ5¦Ý+‰Sza]3gÿÓùݪ˜ù?5 ‚@ä iò }óBýíã¸áRJÅ~5,hI¨Ú¹òòåC¯1V¡ o‘¡Ï•Y•ã©ƒâ4§ùÿ )b¥Ú‚ƒ¦æ»óðÀ%TV½k›ÜXlG¸ØeKPzz{eÖªÅi÷›gxö‹÷ãÃޣ߷߭~ù±Í) +H$ƒÐfõHn!|2‰ÚŽlašR½éó®Qwa@Nùƒµ75±{ké#`SâëPEF/ks$Ywã_„ŠòѨÄÒ¹²®ïdœó˜¥íßÖ_›Ôl)ŠK?©FQJfÀ|äj)=zàB |q +œÙG4Æ×Ã6laoio§6lªxãv¦lØÓ¹¦mëA›69ScMé×±ØSç÷æïNÝsc£ŽYf[xÕ•Ø"F½Ic@‰'hÚ&±æ=ZÏ˾\°¸Õõ]FT¶°Ó,¡{‹‹‰¥@±‡\üö—NüªÑ® Žâ ~ú ¯îôŽßL°iïZx´IJ̧$zŸå òkÞZþfëö~_¾·‡Ö¶Ñ­=^úáHGúhêjI–ƒ~4`J·–7š|æÚþ¶™B³C2”pC©*Ô"ªAÙ’/(i÷ÓÛ5Ìúâ§%·žÐHeq²‘ë£IÄû¢¶rÉaò‰æìíd¹ó¥¬S4Vr"I¥Át9Äú“Ñ¿–ˆÙÓµ_%ÚYÜÛO¡Ivþ©=ëBÔ‚¬öñÆÕ©ê²ñG&^Dóå•$z/œ?-­5yo&Ž'Õµ [U·k5zFÏéÙÍn„-yQ”î<6É×”?4|ŽQÿ.®-<£¡E®K¨ùÇW‹]Ô/´Ø\úrÌ•Ô +£¯Ú¬q)­A4û'ß–žaÑ#×m<·æ­BÏ@òö«"Ç«k¯åë-jkHÝ”<ËÄo5TÒSü½ñ[8a¸»‚ÞâuµŠWD–éÕÙbV af!Fä('Ã:¯åå·å•¿üä»~YyÿRÒfòΡleÑììmšú=RãQX¾§§¥ãú“Bô”1‘eãT¢Èóεÿ8å£y#UüàóWä¿›µ{/3ú6—ú‘còþééÓ\2™îug’„Éõ[kF¯­ÌÉʡ߀çê¯ùÃ/0yOÎ_™¾vü‘ó˜îµÿ.êZN¯§ùWMŠÉ|¿a¨iÖ¡®§Ô8ZH­ì¶ì±£Âÿ òyA…ú×üã§,¼óùãmùsçÍjC¥ë&óEÐ5 9%K½Rø:^3Ik$q¬²¬ÿ©à#eÉXÇç—åg—?/4R×IüÑMk_òõÚiz·’bÓµ_©ÛÉê©1ÝÈ¢ –6`„íÈ=EwË?ÿ-'|‰kqgåÌûŸ8ù¿HÕ¥Ñõ"çE¸ÓBCn²¤²©-4@Å,JŒÏê9.ÊÕäó•ÿ’ß•Ÿ”Ú_Ë]WYžki–ÏQÓ5>æ1Ïë¼"êXá‰Õ•B*F$V·:u[óëòcòŸò|M¡ygóLyÏÎ^§>‘æ?.Eåëí6==í ‘Îß\¹Ç/“€¿yVƒsß,ΟÌOùÆ ó‹òÇR¹óWšu2ÇåÝKCŠ$´³Ò"6Ï+‰f‡©!w…ª +¨Wèwlè^NÿœIòæÇå'“äü˜ó Ϙüå¬ëšmŸœµ«Û)´ËÖ·b\Ý۴צ(f’ÚiH<$w™cå(42òòGΖþE,ÞÚ9M†·ù·ù£s¯[%þ ‘ˆµ .ÛËfhî^+Y$\¬K¤pHÕד¼•qä-*çÊW×:ß™äC¨yžá¤ŠÇLÑ­ýY-ÖÈÅq–âcHæk„‘bUL#°g^Éaÿ8»ÿ8Å«ÚØþSùKVÑ5_Í-2ÆÎóηZ–©¨.›moi/¡¨zÚÜÃo%ÛÍ*Ñ%eXWtçÉÇX¹ü«ÿŸ~rûò×Bó‡cwåhá>bó•æ¡y3êVö¥í®á³KëØ´ÿ­ÌÑÇ*Ëló,~¬œ!1tûï6ÿÏ»¤Ô¬Ï•ï­<³¤Ø\­®­¦Kå;í^ó_ÐQ"QmõÛ‰XÙËpEšîþ¶¬yDþŸì¾dò§üá&»åÏ-ySÊ~s·òƱ¤E£·<ëgæ;ÔÕåx¤€Ó­¢…Õr2í$)êQB2‘æòÿæ÷‘| þpyÿË?—å¤Ò|¹xö £Ë,’_dôštr U`¥Â3«¿‰ÿ2tÿ&\~cëö?•ˆóùl_Ëiå™Ï®Ï{k ú uÆp²¢ÏÇÕã’ráRTœðßœ¥òî£çmfïÊzPÑ4;ËÛ»D7/qõ9æf‚Ø]L IèÆBíq$ï×Ìš«éÒj—’i<6-4­e ­ÍÒäƬÔ!h  ®J|“¡ùUµ¿ò§›tÇ×|Ï 2i\·žâ]åõ®á4£ª÷}«N¦¹Ð)|½äÉ­ËöÞS¸ó÷æ»ÝØéÉ$¶6lv¤™ĆhÖRÀóSÆœ‚'ÇÊ™&üªü¾óÇœßU½ü¾Ñ¥>ƒéjWzórú¾™RŽYV5õ$g;âVÖÓݹ†Ú#+…g!ef>À +’zaæ/Ÿ<¡æÛÏ2Íiäë­'Ímcqg _<–ö“@bõ]` z£¨PÕnC¦E<Ýæ¿$yMÔí"ò?Õ|×}wëE¬Á«Os Q.Ñ,ÆÁWá»- 5¯3ùËJ±ò¥ï”µo&Åiæ·m.ù<Äu™­À…ž_JÎ.6À]$‘³^¢Š…Hç²]>{w¶/w$‘47~¡8Ñd'¦ rÊjOÃÇü­¸ýÔz„æK™H.§×›âPŧ òâzŽƒ9ÔÒKé‹fR7v Æ”f +r+û#cÓ9”Ð\Í'¬Q™åýá<@'‘& ÕÀÙ!–ÊÏÌG¹×d¸†ÖûC0C$,¯ë^‹·*”#áø1ùmá—è#Z…`X'¥QÈò¹Rµ S˜,ÚÁq¥Mw5À[˜Z‚ÜBß¾Gçɹ¨ + +‘OˆÔöØÙ ƒCÔb× YvaO¾™³fÊÍ›6lÙ³f͘æ„Àj3béSB»x›Ÿ†ƒj×µ'mŽlÎÀ«#|MØô¦&ì*O&ñèË3?ÂU…Oc›Þ¸–36^þ9³»fÍ £SÙOÞËaC·€üF:@l)²šV½@ÍÊÆæÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›,#0$ +ÔæÍ›+~¹³fËäiLÙ³efÍ›6lÙ³fÍ›53fÍš„u³fÍ›-Iƒ›P8Õz÷ÍŠ´Ò¹§eí—Z–žÖu*­ZÐá¾lM‡z}®•Ê“@*OLFh]¥s`›M'RÔ'‚ÖÂÝî'º`C–wbhK+¹%X#…šG!Q$’zšK‹‰RxÚgsDŽ0Y›äù‚–!TTž€a¬Ÿ—ÞvÖ'D»"Ýý)é žÙj Ž —Ëšü1É4ºtë,#•ÌMÅ\ôÓ® ‹AÕo'{k+)¥•6x’6fSîN>+yçNÚG²ªXýÃ4~Aó‹?¦ÚUÄOÇš¤‘²W`Fûc#ÐõY9¶pê9zl +¹_l”üëk*Û®y —"(GRäôuÊ’)"n¡FCã†nƒyåÝI­µ+£¦êd(U™ARÜÐŽ&‡é¶/ +÷ H”2Ñþcö—è#;wåŸåŸ|©æ¹ôû½V×Nó>£kèÚEq¨ÜÛ\Û,ÈÉõ‹ic1°]¨N7 +uÛ]/UxôÚâßaÍŘ“±û"z`=Λ¨3Z7¥$.U D‘U4Øšç-óN©7—üÇ=ž‘=¾¡mȸ†Þø<ò•‘Ê´={õÍ•=¥ÂDZîá×P䵊Zóâ@!¹ðV±{©\L//Ç,¬€-Ëa³nk’MCEÒ-|¡g%½Í¼þb¹¢=„ö °B£‹s”6ãÀæß%~bk¾Ný'ogræ-R‚ê¨Þ§=èY`~$W%æ™Âz§’¯.¥Õ4Y«q™vÞ¬1Ü÷r©VÿTŠ÷Ëò÷æ÷™¼i¡%ì“Y\ZýQttNv¤²X 9R½HñË+¬m? а í­äQ¬jQëÞd‹ôW–¡ž?Òn¥¹É B)5$ƒµù3D°›Ìdþe€É¢µÂ-èVd/°æ ©Tx,òWõ½Zâ=sÌZt¶~S³‘%ÕM5’"jʆ –#Àà­]6ZÎ]f¸°IckÈŠ³ÄsPA=óê/üã/”´htË6ùCO‡GòuÐù;MKkxgkTUŽK«§HÄòK,Šä]þ4Ϥ?óŒ_—°Ú\ßùûHЬ¼µåkÑ4>SÒ-}Fºú°•Ü\Í+<ŽÒÛ›5)ŸB¿!ü±ä èm1|ååòç—ZÔYy^Â'•^kpìÒÝ^v2NÒ—PÎXúJƒ>¶Î~EhQê÷¿ó‘šo—­<»åír -<£Á-ÃÝ[X$ÍËu#ÈÆW‘•e.ÃöHZݽEâÎv Ö»g¡šŠ¼˜€>yÚÍÄb¥¶Xôx繚òÝÏ¡<ŽÀâsÏߟ¿ó™Ÿ–¿’´€ç^×Ø•ýfèV@A™Û¨4êFpOÏ?ùËÿ˯ɻ‰44ç¬ëÀ +ÙZ1ÂXT^´AãÖ™Ã?“ní™oÅ=8GÂÍ¿Úz¿ùYòó³þrƒó·óÿPšoÌ_3\Ýi¦C%¯—àao¦Û¨vxÔ[Â5ŽB:±ÎmwŒž_´“O‹ØÉúâµ(ìMEî@ +Ö˜¶°&†KC)žIYcÔŽô³k å¤òþ–t„j0Wë³°S껵@àÀòxç)ÂýWI½ÓÖÚ[Þ÷Q‰Õ‚³0”JÒ¿,-¾Y”Eõ—õ$uçÈ’XH +kò¯Ó…Z¦™©éÑ­ÅðH$¼£[€‘²©&•UBøôé›{6KHn„Š}rÊ#ãM*G¹ÄžXÒBGï7 ]éZ úuͦ›k©³ ñ‘bü_»c6gF?Ï®]@  ¢)¶l¤HÛßÃO‹ˆæ¾Ù°Iµ:€‡¾ø±€åZømý¸ñ!Q°ñ9°#ÄEv¦ Tò¦2óc +œÄSÛ+60ƒŒ#¹Û6liaâ·ËH»‘ÜŠ g`©v&TOÐ7Í’&~Vþayü<¾RÐnïlá–nõ_I£°µ3òà×7N0ƒÄл +Ó:¯å¯üã_æ¿æTÚ}Üz[yWËÁÞ_Ì/4Eq¥ù^Ñ#õyõ)"h•KÆQiR_á¦Æ“ï-þIù«Xo_ÌW~NÓÚ)§ƒQó$ÇOK¡ +Éi©žåù¼aø“ñq¬6²ÎȈ°Y$aUEOÄĘ;]ò‘¼“¬êº'˜<Ù˜§²çœÞSAsc<´swv-þOìFõ§Q×$éó‹¿•ú›|½æëïÍ_< yìtKý5‡”´ëîN‚êƸK»å_……m¡Œ@õ–AÕ?ÂÖ C¡‹°ü–Iïàò(⻤pÏ(¯"z±è.”~^Çù ézÇ›<Í­^ÙùŽÆÌÍäË.?Já5xÌoir÷ *úi+³|<–¥¶—iº÷”%òܱ_Úɨy“³³¼¾>•šX½· =6I£&h¥bñrh>2@+›j{áÍæ§ùçÿ9<ú§™<ÿæÛ­iü¦%²\_Ü+4±,ÅÒÙ8¬’3HïÉÉf=Iê'ö?™óÿ”þgüëüÕüÊŽôþ^Ço¦išó5Ö­{%ÄÏqQaH”Ò4—2r<ªaQÓÿ*çì?4ÿ*uÌO0yåÕôÝFO,è~_µ¾±iV?O’Þ¹¸´€J¡U%¶rv#–ÞïP°¸ÔgºV[ +³)W$*ÆŒyP¦¤ +.Õê2¥yÊ^Fóæ›kù¯Ú¾ƒ$Iuyo¡ÜÁõ³ ÊÞ%ª@hY t9ü«½ü¤ü­üϺ‹óÿÊ ù‰ [ÚÏo&“¥kÛ*ß2+E"ÝXË Œ +:ó¦äï@ 'ÉZ¿”"¿4õ8üéå]/ó&ÆÄ‹xm¯åŸê@ýb ’ð%¬¨%¬*Ëé–)I I Å<»y¢éÚå¥ç˜ôÖÖ4Ø_•Þ›É´iÒ‡á"¹Mû€s½~dy_þqªÿþqæëÌ@‡IÒ<Å?œ,âÐþþáu<»%¬¾±¸…Ù¤–1'¦Å«ÀÔ2çaüíó·üã÷æüãÏ”'ò~‡å¯'y®ÏÌÉo¥èúZHgµòüÉvÓÉ©ÈÏ,“âÐ3NXŠ7¥PÒ“4ÿœ™üÞò—ç’ü™¨ÙÜ™õ½ëºQ6öÖ’Xé1涳‰,­í¢’ÝfšS iÙˆ¡¬³Ì:—åßå]’èºlV^lŸÌzÅÅÄj÷RIk ›[/©[™$a‹ë4ôb ¿Ä@#‘?üãäVŸçŸÌ}wÉ×¾xŽÆm?JžmY·K§‘c·O¬K$;‘$ Ãxƒ¶Ì ¿üãå?åÏæ6©æí7ÍzìZ>µ§Ù}cËåܶQè\Bdþ¥üö€ÍUCú›Æ&n,#£‘þE~Uùoó"ÇÍþW™®mõ¨aÉþo?^‹M‚ê+¤)s­½Ì’$Ö¯ØrJ‚TÔ ùWä¯)ùóUÕ´o4ùº×ÉÒE¦Ü]hwÚ”r5Ö¡ ÆRÒi# bF\‰(@e†¸c®y;Íó‹×ÚOæG­m¦Ò2,õÍWÐôYÌÍmk‚ÖY ¸iñ¹±È¼œMi’??iŸ›óˆ6÷–^ió.‰«Z~ri÷v~kм²Ð‡[{HUb”8·KÝ0VZ]% +ãÿ;<¹«Î9jW”ú™bÕ­<ѣ韘Ú%“Nšp½†ùï!²xçôîTÂ6A£ÔjQX¿<«æßɶ+ÞêÚmÄžlÒ-¦Õ­4»»]Oѵ{Õº† ‰#±LZÒ)Ǧܽ'OŠŽËœóóó“CóV«¤ÁùU¡¿–tÝÑö—wmÍüöòŠ%žXãBH¦ä’w;‘ðçüãüܺüÒóL:Ý®eaio§išu³xá·T´“*!vvŽÀTøÔžcçO;êž~óÞdÕ‚Éq!TRx}8m£B[÷p­#‘'‚¨íy¦iä20§@ª+@ª(­NÀS|ë™~Gü’¹üš»óDvAüÝouþ™•x¾›4r¤U&iåz²È¥@*¢¬:”ë^^ü¦È»?g{¡n¶ßÆòº™§i$š6¸2”TXÕY`J€õ,Õ—«+’­"†g2´|UÆ‹A°ò;P +S‘?.鿔ߛÓi¾Fü·7žOóä·—·WÚåØc¢ÜXZÛ<ñ+ÅÈchÑ|1-JÔá'”ãü¾ó§iÚYŸÊ¾pÓÛV½¸ó³$š\°Ç 2ZE79ÓÓ–2ÊÍ¥QGû91°O$ùƒIÓ49¢»Ó5~¶úŽ¥in÷Ë|k$Ъ¬è#⇃p ^5£Ô]žÍ­"#d¹WÍ1j«¡ À¦ÄÕ=ê3€ùßK‡I×®-âÖíµòíêɨXúž‹¼ª®ÄQ ø˜ƒ·QœïX´¶±Ô%´³¿‡S†>rüÉü¯ü”òÔ æFÛDÓì!XéÑ”c…@XáˆM +ŸJ|ÍçÏËoÉï.Aµ}o¥ÙéÐ-½•L¬ qÖ¬BL÷'œüÿäOÊ]\ù–òÛDÓ ýÊH€†1NB´Ø@ª3í'œ?4?(çü‘moæM^ÛEÒ´kT¶Ó´ïQZs ¬aV8£'“·6êsÆ?ó‘󖿘¾g‹êÞTÔ£òŸ”ï’EK„hÿJÞ[1áêѪÑô4 CCž6ÿœ“ÿœ¨üÒÕý-7Ê“¯•ü½~,S¤Ê5 ›bxq»'C@´Øïžcóoüä„ÿšKršw›#ò’LÒXµøƒÔÔ¯á;4±R€“N¹ó'þr›þ~Aù‹ù£{yåOÊ‹™|«åh¥’8ï-Y¢¾¿€¨ZÊõª)<¾¥Aßù¿Zóÿ›55ë²$××¥ ˜ÑR4XÐFªª ¨‰$ÔšœB%ªA¨ª×÷…Sš‚‡ ë·|Q¦ô­í'T¬ˆÍWaU;Ô ü+…†âò=*ÒW~pÁ4‹oTtfØø“›¿˜\^M8z¬^ƒ ©À·z³É-)Í‹P{šà ©½{‰&¨Å¨: +œØÄëA¶lÙ²³gÿÕù׫DZâR-4C@¥jmóÛÛ>dêÏ,ŒPd%ªAÜš“^õ'>ZÎîÒ?óU¶SðñØòÛ>UaÐòcÖ„í^)¶È Ãââ64¥IïØ¿í}°8‰€:ûî)‰„w$G°ßnøß³ó÷ÍŽHÌŒ£‰m¨é¶ý~Yh¼G“¾ÙSjæÅ}1ZîHÚ•Ë£Ò£ïÊœØ"ÚÇÔ­FçzkÓm±{hÝßâüŽ`+›wa,IÌ©<©AÇÞÎki•$^wàë^ýÆ=¡p¼È =ld +²”¦âƒ—¾%³DE bj:øå)äÔ?uNlBt^»R;ÿ—*´<}ÿŽY ?ÏéÍ +ñè– µKÐR¸À¥ÎÀœØ”åaJ´î¾iSÑÍöº„þ¸àŒW‡øæÄ%¿wŒÆ±Æ€þүŷ¾%-ËHœª§ˆ5?`ÔeЃ¿C¹›=ys0òàÄRµ#l6Ô<óç}[˶¾QÕ|Á¨^èV2úöz-ÅíĶPLCR8ÌhÔvÜ +î|qKÝSUÕnÚ÷RºšîîMÚæwi&bMjÎıúNl)ºÒ¯l¬ínî£xÖ臚ñýßf5 ïÚžïBgFiAV n,%X¤Tw¸”Ð\©,Ü•ÉañlÃãMÍkPsa•Ž…yÎ>´};e‘##g–ë`áiÒ5o)PïJÔn´­J ݬ𹤱· Jˆ=r“:ËnÊ…£NBN–Eû@.õ;(~ü‰`Ï.kš?—ŒzV¥¦i>`¶š ­2ßOÏ$²=ó)KÞ1È;ˆö +ÁÕ©ð‘¶I|»ç‹-&B=SËšv»õË/¨Ú%âN¦ÊS‹ë0ˆ$D2¿pÄö¡„ÚÓóbûKÑçÑWË^\ºúÞ|¾ÚÎkuv-˳­Ê<œ„wˆŠÜ(WágwªÜµŠå§‰¡ææL ̧Ԍ+(ç@Tr (I§*Ïõ噵»¯^ÄéŒee,Ž†œe%‡µ Û"’3I#»ñ«’ì*­Nû¢šF’÷›ƒ-EFàa±ðÀùØ?$|ù¡èz§“å³k»=~ÞDÒ5;EŽÚçI¼½xí™îî&Uåqåññ0 “Çþqwópþ\ù¥ü¿>‘§êÚO˜.¬-µ»ÝbÖ »];L’á#½¸hî ™c"&ÕàTÌmž±ÿœ;ÿœ¯¶ü£Ô4ŸËÿ2XÇmåKýZÂâÿ̶דXj:~˜×Ö³êÍè³-ݼ‚!ΆW^J:ñÞ]¿´¶–m>øG¾¥èÛÍ|è]í#õãw‘8«7ØRp{ôΛÿ9säÿË oòëÈ–>bÑüÓækë;x.µí{4Ó# [Xìš{w+$$EýCן'©“Îmj_’¾xüì²_È»»­Nã­]Ú ݵ&ž?E\"E+ú1ÆyžœŽçj‚cóš?˜>LüÙüݺó”¯b]6 YžÂæyþ´gYnç»KX œ4†(’uŽä¡ECÍÓhÖUùåå%ŸŸg±ü–¿¼Õ¼¿k P¾­væòí f‚㈤oM]yÓíožmòÜvpù±|¹ªéŠð^ÎÚT‘Êd–âÐÏ0…¤Œ  +Ó'cé°ÿ&´§œQkq$6P,ÿY- dqR8ð VåÒ†›øgÑì%ÔukM$:Á%ÌñZ´Ž¤ª¼ÒªT€`I­þ9ÏóÒ¿ÞcüÍòÖ±¡ZkÚkh>h[5 &’[¸VÞ?Ië*ψ„9§|õ7üâä78¼›{uçÿ:ê>U²µÔîmä²ÓŒP@µ¤œBwúdópÎÑ4hÅöóÙŸó…¿‘_•¿›?—úà󶥬éÖƒ«Ý^躹o¤]J-l¢[˜Õ¯m&ŒºÆæR+êújåƒu¯ùÇïɯ'þoëgJócò\O<ö—2Ú •˜¹&bYæFŸ%ºv¿οÈ_<¿æN¡ù=ùs­ê_šÏ–"úæ¿s V‚Ú »[k˜-¢s#QÖ¬’D¦œÀU©ä ³óþqñüïù›æ?/ÿÎ7[ó +ÛAm:O4ùŸPÖ´íM^ëSµI-âam•Þ6¬†•VWqŒ»Kÿ8åÏÏÍZ°ÿœX½h´¿&ºEæ sÏZí§ªÝ_’ñ>êÊÖ•pÔòQE*kñcõÏùÇí[Ì_™¾jòGüã´z‡æ†—å‰ +˯éÖJcš>B0è°I:/ÈFÁϪ£˜P+@?—ßó:§åÅå¯æ×ü䮕{ þ_yzö4¾Ó„`êz“§©*[A¡V•dw4Uø¸°+Pöÿó‹³þH6‘ùŸÿ9=g%‡“}wŠ_.èš®›s­ÞÜÂQº:Ëé rÅÙ£.ÑÆ­^.c'’þmÎ6y£þqÈèWŸ™º†“wuª5çÕ4]ðê…²TušwH^×Б¥N’3‘PQMJÇ0?$ÿ3(mtmCóGË·::ó_.™otÑÇs7è÷HæcYÑyH¼Y”r]óùßó%|ŪjÓilzu…ýÄ’¥¥K2©ä6ükLj4ñ­+žo¾¹[«©g†Ý,㕹­¬OI:Ð/ªîÔÚ¬sÜÜJÏz…‰„í¶âþþ¹ÁHóV¹ùd5K]äéyƒLžÏP’’7²·•}Oï"£«pZµ+±¡p~æ[B²¿Ó´k©¬¿JEõ]OÒy"y!©(à28#’°ß§ÍÖí¹Y 1BѸ$zmCñ +òS¸5þÍœúx¤ZTo¿!Zñ5+B;tï…-øvÀ–UP[•8Ž¦§jSè͉e4`A 4#±XÆV]˜°;ŽÇpseS¾lªW·ŽlÙ³fÍ›6lZÙ¾#+ËeåvÅ '—¼¶QïÛ¦•zôù±æ„ö>øæFW*Ô$þÚØÎ;ÐTÐoMúep,>X¨«PV€w4ËTvª’© è|Øã°¿*å€xr*å +ö͈0£q±¦b(i›+6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fsf뛞v’ŠY(sf͈¹³ؽÅÀ˜‘„Q± Í›6%'ÀfÁVmÞ åmÓQWs²¨ñ'‘É'. +X(äÔì|emurå-’«Ñ˜Ö€x“Û6YyBø$—s\Ç q+:Èñì`•ß ìOJáô~K×Î]F(áh`ÈË(rˆ6Ï7%lÄ}^ç(‚ ëYŽ&-6Ú15XH÷SB†Eaû*ô¨±Îµ¡öÊ»‹ß¬!i$&­ÇáZû¶l£^§z÷Í•“—Ä*;æÊÍ”Q©ÌǶlÙ²ùGéÒŸŽlÙ±µ¦lÙ²³c½7áêqò!Š2+ôŒÙëÏÉ_Î)~LùßÉ_•—¶²ùóÍ- ê~k¼¶E·Ó’U_Ý~ðUý3ØÔV¹ëoÉÏÎÝ'òÇÈVžHü·¾·—ÍZë#^k·‘ªÃ§‰(D(²W—§×z‚kž½ü–üÉÈ–Úo•|} ßœüË,M.­!£°·vƱ°<Š ÂG*ç­?#ÿç+¼µÿ8Ýù<Þ\üª³ŠOÌ?29}WÍW¶Ñ´zz3qH0ýà@9Qªµ9Á¿4|Ý©ùŸÎúõÇž5yüÉóš ‘ý)dIç“EAÑUv87昦ó_š5‹Í[PºÖ5…»™e¿šNK)ÊU +¨Š™ üÖóFæÏ;y§ËÞbmgÍk Cqkeª»Ve)#;¸#‡›5#Z(³Î?˜þuóWŸ¼ç¬y—ÍúÌšî£{u,³ê1ã)åÄ2'E^ Q°Z n—ä4mKóïš×ËSNмK-gdŒîu}:íllµ­VNvW Ñľ¡g":rZV oœìþZ›/!ù[ó+Í—2yCS¾»³Kh~°‹nËÉ¢R)BñkYRÕ/ =9‘wÞª5NGµýwM½k»/Ø M-¦enìÒKô§6%‰jo¾ Ô<Ýw{¤É¢YA–”®²Çb¤š8«XšwÈÇ™üânìçò¶ƒ$É夔¾›oyÅçQ^ïÕkû@lq*šS·†[Á$·"1E>"()M÷8H.[¿¬Xø² +()Ò”Â%ÆîÜ^J²ÇD%M<¨Hï›3IŽFv“ªSìŸâò +NÄÔSñÁ7ÚÌ57·ßëÌŸÒƒ­Nl K/ÛEÆn:øm„ŸsØü9³±r›3í¿QB:ÔÐô;uJÙn ÌqÚ©y‹¨†5^l^¿ ½I=±š&wæ oLòþ‡mqq}©M•½­´~µÍÄ·R,H‘B,î\ZŽU¦l÷—å–ÿç<Çù#}ä?*Ýͯ~ljÚ;y¡Ì0j]±ó+Y;[f²Š(â0\\„‘P’=fáÓè¿’<­ÿ8ÏçÿÊÍgò3ò:Ý5o>ùAÔõD‘Jé×·zõ½ŒVx..$¯%Ìp„¶Žv€7ªÊÎÍôÛÌŸ•‘ÿ›Ÿózî™ÿ8ï¥A.‰ùmw:ùwÌ©jš^¯&»g—JÓ^k o=Ì’ó<”Uu 2ÅÇݾFü´ÿœ)üÂÿœ_Ô<—ù©æßΛ}üGqú6ÃS:®­úú²@–†Ò+‰Nµ<£5BÓp|á_^Vü¸³¾±Ñå7oæ™ü›¹çryîaTó=Äí$ð43/@x$†>A¦f*M3ÉÿŸ^Mò‰¯iö$÷PjÚG—4áùwr×Wi?ei%»†+™ƒ«§Ä²#_‹4RHœY¼oÿ9g¤ù'Ë›>lò¶‡äéô ].{}6^Gº‚KÛë$‘o/^ÊæGnä ŸOŠ¢„uZ¿ñçæ=·•ôýjÏHòÅÅ“iÚ}…¶º×’‰$ŸX+ßÈ UV1;4q…$2 Ú ó¶£:­ô3Ú1 ±Â}ZÖ²*Š°„TŠŠŠçÇ8¤4êc%Éâ*IØV7®EpãZ¹´ÖÛL¿¼¼ô¤šÐ›ò¤sp“ʤ•@¿išæíÓéÁ7 í Ë!QÁ  ÄÉO‰ˆZR§¦l•Ûê¾SÕô¾_Ð?Gêºn™w:¬·’]I~ÁŠÈ} +²E#0?H¦jwÚeÏÔãÒìš"µŽ î3I1º¸BY¦n|xó4øáPS¹ÖÓ\È#‚3pòúº-Yê ‚TÔV _£6zKò»ò'ʾAÿœ9ó‘þdò–¯yÆÛU:¯—ã¹ÖÚÝ“JŽ&´¶ö÷ÌÑMaÚø÷èxûzË þKÎy_óŠÛÉ:˜ÿ2¢¿ŠûRšþøËs§E%Ýüy¬=hä+ú”- '•¹ÿ3K~fi–Uü—ü§ógå$ÚeÇœ|¥ei}çMrƬ¡Ôïî ì6·oZÞY"YÄr ÂÊÓ4ηyåÿ!h?óžYóŽ™s¦^ùú_1]\j0­Û\ÜÚi kg Í„ÊÖÌx¥‘¾øYÉäQÿÎ9ÿÎþfþhùâÇóóópGåo']ܧšRúÎïWP’gMI-à·±‘ŒAщhãd +9rBÿùÆùÁMkó6å¿5ÿ>ç¹Ñ<½ªÈ%ÒBIl²ÞO ºŠå'µY- ZDdà¯íc^Faùÿ8U¥ ,ùÃó"ö-sÌrÝùWÈ&¯enÅ$ õmR}M¥h$²$%¹3A½Cò?þp'ó ÎöƒÍ^~³–ßI¸Ñm|Ååß.hºŽ“.¿¯Úß²-»ÛÇ$î¶Ð(<ÓNœ—ì¬NäñŒÿÎDiº·üãGæ~³ùUgçï4­zKO9‰ìcËΡ‘Ä(ÒƒéÔ|Jª(–øx7üä”m#2¼Çù7£ëzŸ–ì%]GLAsºM`†&ŸÓJXäá  ¯UO³žo󆛫ù;óOÌ_—žTÔ&»ú¶«}¥XÆ“8,$”[¼N#§6 +©)ULtJgüÛò}·åß懛¿/lnÚö×ËZ¾£¥Áq&ÎëgrðUÀs¢üGª(s°y'þqÇóÃþq+Bó÷枉¯è:¶¯¤Émiæ6æv0¥½Êó2½Ô…eGž6PK;×ìñå_Njßœ_ó…ŸóŒšÿæ‘üÝi6·«\éç7êösÚY[Gsu§ÙIipí*Ë*MrVT`¿l°WHÌ™èß6‡ÿœ\üžòß¿ç¼çq©Øù®ûQ‹ÍºåöŒš|¤Ú}ÅÄséöÚºÏt©7I)Ze ,´^ßäèÿ st]¨Î­Qç?ÍŸùÈïùÈ_ÌÝZ=Îþdµ—N Ö6ºU¼z}Ì,‡ŽÊ‘õ Ô·íÖ£lñGææ¿æ榳½ù‡®\kwÄ`¶k’ž”1,É(«JY‹Q|_Úß<Ëùù“çïÍ?0'˜<ç©%íÔ鈒ÞTTHÖB¨²¨äx‚ÛשÎù—ù£çïÎ6\yãó'X—[Ö®R8¤»•c‰V8—Š$qB©j:ñEQRORNrŸñ]…ÕÄ÷z•½Òú¥Ä(c¶æ®>) ^jê«J ¯@Ë{ë‹Y£ºµa ÐòeE_™&Œ ­Wb)J>-ò%-ÂÎü¦’ +•p:¢ +Rƒ°®E±ÚÕ‡šõˆï0ï§þð «Ø¢ÞªðHè±  +t=÷5À䆩'rz~´Ö÷lŸ¤Ýè"⼇ÀC  ++öxšþ=ódûÈ^Kü‰Ñü¿qæÍ­föóZòµ‡’´ëOJ?®$²/£}th‰‡„È8ý¥wR¥re ¯åV Ë¨ù–mCWÖ^Ü5Ž‰gÛZGrÓÍ «¹˜ Å*zQ¿¨\ÆÆ.<Ùó[ÁQÅ,rÂÒ¬ÌA5GQé(bE*w?µà»ìokåß8þVYjW“ôý9íïÆ–\Ép$”­·¨Ìf[cZž«#°b9Œ•$á,í4†žöÂ'y..mÒoVàMXíÂ…^?ºâ"»Wâc@(µ­D³j0ÁjŠª#P±?£_„–nOsbY€ß¥EMlàRv§MéòÂF©¡?*øœ,”…j|E¦ÔØfÆåc3fÍ›6Z3#«©£)q–¬ÈÁÔЩq˜#¨é› žT—„ª7`9ãÜ`æq+‰£P**ÿ7|{ñ-^•ëíí›XÝé‘Ç$s©„°!‚Ž|=ªFø>ÇV°µµ–ÖkjzÄ`w+Þ•ÁöwðG Å#2UH*ª?µjù°%ݲD=HjÖÒ@çc·PEN¿·UŒ][lݸÄÄî¤õëÛ¹¶_OëvëH»Ö„ušæÂùv‘‡O–ËÇÔn;`C¹©ÍÆæÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6a›1öÍ–H$œÙ³c–'u/O…zœÙ³fT¾À÷Íš´ÍŠ[±Veý‚>-«úófÚ¹²ËÚErŽªeŒ]jû|4Í3ò§òGSüз¼ÔÛU³Ð4ËLúŽ£/¤ŒB³qJÒ¤ñ§Ï'?—ß•ŸŸ­o¯ÓS±ÒmlQ¤iu …„ÉÅYˆŒ6ì~gAò÷5/;é®­µ¿—¼µaQ{®Ì¤ ʧ¬µ8ð×@и÷%ï`±†Î'žin)*‚¼Qz³µÌtx.­-µ ¾­ |0Š¬8;±ÈXhá™_QE*V¿vÓo4­œZ.³:EˆÑÛ2Ò;ÇVæ¿Ê{ûaVGîõ+©ãô‘ŒvõømÔž#ïÄ˵8ÔÓà ¼çæMsZÕ.ù’ÙÏ+`#…7誴Í€kØåa*j¨]U¡­@A³ Îù°;úQ‚;“›&ÞRòß•&µ‡QóMó]øGe&A½*rI¡ùB}R;gø¤šíø[YD+$„P{šm’,ùTê÷šg¨Ër5+…³†Ò¸i$n ðŠ„æ± +“°&Íç-bMÈÚS¬òúMpÊÌÌì~ìkÄŸ :Ðÿ)¼ãç«ÍM|±¦°M)ŒwQÌxHì庰öçò·ÏWZÆ¥å}B»¼—AiUË$Þ‘ŒžLê+Æ”Á¶ú.­wk=íµ¤’ÁjBÜJ¨JÆÍÐ1í\wœ¿!6|‰¤Ç¯y‡Ë·Pirÿu©,NÐ6ôût¦y‡ò¯óÊÚ\Zæ» ]Úé“ÿq©_×’uæ°œi¡‚ãy7AΔ©ÈE–›y}{o3ÎËq‘BYÂ-CռǩC£è–²^^\7mâRîì{7ÂÝ'N¾Ôµt»+W¼»º"8m•X³1;øÖÖæúæ+;8šyçeŽc™Ý€:’s·ygþqk_ÓõXµÎ>YòÔP›«­@0g‘W„a†ìNÙ<òKÌ^]Õ–ßó>òµšÄÓÉ-ê2HÊ¿³$öÔ¬?ç|ǧj¿]üÉÓ¦òß—íW×¼˜Žº- XŒ¢…²Y©þRùçËOÿ;¶•?–ãô^â6Ôãkf™#؈–@ ¶ýr]{QÓ'Õï`òå»ÛéO3‹g<åHyž‹V†i ×·šíÒÎ/N.l"µÂ¿ }é{‹¿,¾»ªZéÏú&y¥M .YZHci¥êµ@"§!íÇ‘á^5yü¬ó'î`Uô¤úÍZ'¶U +×buc¤†hx™P§1É9*¿¨y:ÇÈwrâiËq¤Z" ôå¸ +d.ÔäjWÇ+‘§ì7«hSiV—©K oÒ±4ñ(;ª¬ãæ¸gæO(ÝyWLÑî¯Lr¶»h·öÜ­fGN,½‰ãˆù«EÕ4'C»¿ÌÝ°»´y#d(bœ”Ÿ´96Û$2Ĩò!U”rŒ‘ö–¤T}# +–i'…:>î{í‘æi" h„¾G¥™$Óš`A5y\É@µè3%pªªx€k·Ž1]…4®¸½‚[hmâb(>)V>'6* oħ)'by®H–ê‘À¯$îNí¦•õkqi3M}pXôã?®ld±z`|jÅ· íˆËÄxɳ ©á…·¶g?¢Î¬ÝISQ›8Ì Móf͘õÍš¦µÍ›6ÿ×ùÇy8g’jü"¼‡ Õì=ºçËÛ¹§7rÔð,ÝvF|¶1Ûú<‹|Cª†©Ï•XÜŽ%úrØEBKWß³I/N!¾ +·Ê£¦$’q«vØëLØŠNAxõ©¡úvïˆÊó @E¦ßü i‰€¥I'~¹°Â ¯Pð€H4oqÒ›í¾]D…A P‚{Ôûo–\·ÃqÜ»6 „/«ë5$ q`M)QÓS-OÈ$Pua$o·JŠÕ›2ÞBAR†,Á\ÐÐ)R;A–Ò#CH7 ¡÷¡Ü’h<(GL|R˜GîÀb|V½½ëã›–ü€~!+Sù†Þ5é¾/ ¬U¥z‚jGß½N]KGømþüØ]õ #Rí¹÷'®QU¸%Jñz|#nƒ¯¾+ +Gö™@Q·.«¿zæ»Ûë +,n&›ö–*pÝ·v¼’Î0‚&20ÞŠ(£·^Ÿv2~9W݇TZP‡|ØA=Ä×ÎF-à;–’Y%5sZt†oQ€v‰¨¶Ô¨xÍò‹ò¯OüÅmFãWÕSGÓìVãPr-ž@JI/¨Ê8¥@¨,Ôáç—´ ;T·–}Rñ´øDöð%ëGÎê–åËqº^ x‘°&ºe®ŠÊF±;D²+ñð¼×²*”XϪɣÃgm¡ÜzúZÙÏh²K/¬×å‰ÆÊÜ•…:gäg懒ÿ+uSQ󷔥󥎩hl_J‡XŸC)I¢dúÕ¤o?XéÅ*6bÊH /Î~mó_–?1|Ù yro5ykÎ"ù—MõîµMWÊÖÉq¥Ì2;2T‘ÉÚ/²¡C ®pÝWó.›ùeç++=Ló ‡š#Ónõ¿0\@÷š¦‚m5~œÅ”[Is! +ìUŒ‘°UaÉÁæZ]טì.5Jk›¿)êfÑüÍog pÏk|©wžž´ÑHM»È‚GX©*¨ÜdHÊóÈMÙ°¹ŠDŠ[™„*ÍÈŸ½*Y—ÜV¤ +uïÊÌ¿ÈOÈ_Éß'É­yæ3[¹·Ô—ÏžNòžŸm­]kí$Ò¥™ºÔ% ³1[0E ,^©Á’§ÙþKÿœ½ÿœTòä&Ÿä‹Å¿Õ ºòõ®Žß—zU¤ëŸªÝÅ3kZ„÷×OjÒ=Ó²ªðšAÅVŠúËÎóž_–ºWî*§òŒžl€éV~]m.ËVFò¶Œ-´è­õЩajoeK¹ýGi.d?³é±PKzò“þrkËß“þHµò•­þ·£yŠÊúÃó;É)o¥höÚ§ªÓE]r.u7ˆÛËñÄDe$/éÈ#n—þv~kþNyƒVòoš<‡ùoªEõ]Ê’j÷Ò²­Í•äoqÇ÷‹#'¨?vòJ¤SŸ.\³Ìló]™?1´»ÏË?Êi|µuæM2×Eòn›=Íå̇Tžð$Z¦žë©2Þœ*L‹ž@’ª˜ü߯jŸó‘œ5†…åØ­uÏ4\h:Nœ.µ[˹LBÒ2Ϋ¹¤PPÅé‰$(ŠÔµyÆ¿0µ¿)ù·Î—š§åç•”4[£i¾YŠúçTh8ƨGÖny#;‚ÝZÛòûó†/ÊßÊ3ùÒûòÊñ¼êºuŽ¥ç)—P‹×ÔZö% ©N&F’™æÙ ¿ð§<öçæßž¼áùaÿ8{}ËÈ×:諉|«æ &+«@t›íOLŒ>¡uy3-ÔßX’4u $ª±`¬¹ô/þr/ó“Sü–ÿœsÐõë ?,kF“¨Mä]?Êz˜?NiÚÕìÝÒÎâé-a3N‘F‹,OIŠüL͹ÏbygþrÈ_”Ÿó†nò¿•+àмɯ,>Eó]ß鵸¸»¹Ô4;¥—Rš6Gš6I#rm +ªFÎWC.x¿Ï¿ó|ü˱°òŸ&[*é“3èÚÕ×Q´ò­¯Ô4(#³³³X à‘ÐýN}Fãrrj(Ï•¾ióç›<íymqæÝRëVúŒ1YØ‹¹Þcmm UHãæÇ`V£â;šóÅ~aówš<غbù—T¸Ô—F³ƒJÒRæV‘m,mA;"-MîIêpóþqãþqÓÍóþd²³ŸOòf„Éqæï3½«}[MÓ `;F¡ ÁˆX4„'ˆv^£ÿ8“ÿ8ÖßšW·Ÿœ˜átŸÉÿËùã¾ó®¹uÄÖ÷‚Í¢º›K‰mH˜É4‚Ê@’Ôóx•ýÿ8Ùùy¦éÿÎPþdÆ–>Uò|¬yCˉ×|ë¨h…nÞÊÖ Ù³Œ/ú]Ïúq¬’~_þ\ë>oúñµ 4 {KY¹žê=>9¡±Uš[Kk‰ÕÕ®¤F8Õ]÷åÀ¨8'þró‡Èß™?˜¶~BòÅž™å_&Y/—tHn_Z±±ºÄÆXÝ]ÌÏ)“gjW¸¿ùÉÏüÿüΛÎPi°èúE­¾åÝ2Þ­Ìu§#•aPœÉvb«ðÆŠ:DˆüíüÖ׿:ÿ4|ÃùŸæÞjºÝÛÜ\|QX£ýÔ0«D±X¢cV $ +ÓpOÌ:/Ÿüå¨yš :ÊS¾“£Û„)c§ZF¶öv¾¢¤fS ¼i•Ç98òoˆœ…y7Êšö­usæ}W‡MAôä³ÔCܶšwY(ƒ“g‘€¤žFñæ–7š|Ðê–­èÉò·™Ð:sˆ°pÀ°wO/ù̺ŽŸm¢ùŸ]€yËÏÚh†Ì]A}4v÷“]\J±¢B¼UË;GEYWzuÏ˽z÷óÍ>RòG涣y&ûÌÆûÌc»X톡y(þ»©ÎmÞŽ¥«$²r‹Ö’RšdóÈ^yÒ5Ì/§æåÍÅß“ßPüͦÙÊövÏkwŸu,úcÝjÅ„ZN‰wiy¬Q¿ÕâF{Y¦ø˜¡ûE™…ݙνµÑÒ $µ¼pÌóëKˆ§+nQ£AYPÈJ‚ÄׂÐTž›$•?ó†>nüÜüØÔü±æ=wKòu®²÷CJ¸½»^z˜Zè­˜oRGX}I¾ç«ÔäÓò'þqÚçó“Íúw•u7èþK·Õ9Çe¨j·Ö¤=Ç}$ôVu’’^ÜEi(…èÓNËÖ”ˆ ÃMCÏ_—^Vüžó†‹w>•ç2±6/•-u£ž—/§gi±£‘làÊëÍÐr ûMUÄ®<Ãåm#òûÌ:f½¦½æ+ûxô{4“Êty­.íÚ[˜f·I-î=e´Ú“ú|d%5,udK­$V¸eº¹–Á¥e±ëqCËjëûðA hGÂBì­zV»{ŒàŸœ“þgü¨“MÑüÏ¥Cauf'»Žwv¿g‘îDŒŽíÂHâš8äE +zuÙ˜‚üõüó¯än§¡èžoÒ–×ëºtwj–ò<Ö÷þ¬ó«IV$#ÆèÐð¢’"Çãäz7üäÇüão˜ç¼Ë©jvzþŸq5ݽ‡˜´Á2Úݽ»‡xÀ™W÷±E4-/ +¢ú¨˜|m,üÎüªó×ä÷™O”?0tßÑšªÃË[z‘ÊU."Y1˜+…qÉŒ½ÀÎaœ¿8¾D³fÍ›6lÙ°ÏLŠÞ[Y½o…–¾™ìņçj~8c§[ÚÍk3NxºmZ9aÓè¦ €Äm¤Yò*ƒ·Ë¶laHÄf£“Õ‰5Wj)oøÑk›Ó¦ú5\ú —6¨Omö÷ÅVîk{%´I ‡ÔõSnEhO¾ÃŽîxâ1+QX†#¶Â:wÍ5f´}BW±Ò…‚J“CÀrÜÿ•\KWšÒãP’[}@‘Ô¶á&§}È'*öX§¹y¢^ +ôn#± WñÍ0#›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fË^5øºfÍ›`ëàôŒý¥¯\Ù³b|¤“Š9Û°9±èJ‘½6§O§-T± úrEåÛ-8Ý^hú¬%î&……”Šê«̳ (9³µÿÎ;ÿÎ+yçóëX¶¸Š6Òü­¡uMzE H€,ÞˆjcN> +MNvoÈOùÆO9þwê–÷QÆt¯,C(¦¹*Ð,j¬íéÙØñã൩Éçåüã—š95xÏ–£’= c‡RÖf*7ýá`€tíËþq·þq#ó'þr3SŽëD·ú—–m®-c^˜…Hcܹ–ÌÀ£¾v¯ùʽSòò_É0~H~Yi6z¶³3ê¥Ò¥ìö•ãÉDÒsef§ÙR8ä»þr³Ëÿ’?•ßPü½ü©µêÐUõSë2Ï*O‚¥ÊÔïQM³¾ÿÎBy·òCò‡òÁ!¼“¢Ùkºß2_SºXï%ÓÊóeš@î¬iöU€_ è¿óœ~Cÿœeü:Oå—äÖž—>c¶«ù‹Yúô÷M(Pâ‘’¬kQO‡¶x½k¹ë +rw©*‰°ögœx’¢0ÒÎÇâ^¹ãIáAz¼n’7­" +*ž»So»<‘‡~Oò›üù漯å>K»ùkÊ5SHÐnÎçöUFä᧖<›æ7k±ysEµ2ßKSé±âTU™‰èÜœtÐêZÅòÛÚ4º¥Ë|*F?!¹ÍŠùÃÉ‘ùcÌ‹å›MB=Rà2Ã4–ÔbRx•VRCoÜcoü¶Özäz7QÝÜ4¢ÝÞŽ0å¸ü, =Æ?\ÑÿBM ”² %p­8â Œž«ãQß0©;3¯þ{ÿÎ:7üãÑÑ-î “Z½Ôí!¸–f„M: MÁ#—Lþk~Pkß’þiO,k:S\ÌðÅ,W È£™P8+ƃjôÎç¿Ë¯)~_èÚ.§ êgÍ2êÐ$­pmd¶ŠÞgÃé¹nd×ëLÚEÈù:2«$­F @ÞÃ4›]vû]·´Ò¡–]IæU‚”™ ¼¶UP:׶D¼§¨ùÂÛÏMþ€.[¶º‰ì%f—ÕC°E®ÔÈ—o5o-ù«KÖmb0^Ø]CsnHXœ:íóݧŽxä¶$L¬­O´ŠS½s·þDù«Rò·æKyÎé&“åêÜk < +·I%¸/ƬµJÒŸNz[þq‡Î¾K¿üÙ×|‡ùÅ¡Í\šâIm'µ½£?6‘ +ºÒ„óÓŸóŒžjòG›¿ç /m?749®53M=Ê\Çyyh‰tÀÈH¡‘Ð +’dÿò{Mòט5t}óFâ{]úëž·7ªÐ¿¦ŠÒ7#µ R•÷ɯ¿ç<|ýþ#ºòì~›¨y:Îr¶ºÝœ3Dð¨!Uܯ#ã×"^`ÿœ¯óæ—æyü«tš™|›¢\Ïo§è7V½¤ÖÈY#æBÕè7©9üþÿœ¾×uýgòËËqZÚ~_Áv;;x‘¦Hí ‚ú€1Øáÿæ·üäOœ|á ¿åF™qokù¥Ý1д{[;{~0DçÒõ$‰Ý©Ô±$áU†¯§ëžyпç$/ü½g¡ùZÙÌw¶öp' /bBU}2 +‚Ì6É‘N‡ùmù—äùÉ9Lg–5v’[»-./M,gU*mÊŽ»?òwœ|‹¦~oyóËJ°mÊšjÇmæ à‚QµÂ¡Œ¯0jìFûœù9æ}Ê?›\üæó€-<§c=$K{s%·Ö ‡áAÌ2–fïßù÷Ï~DüÌ€yÇó'Ï—Úá²C.Ÿå˜mMº²sÓo=¾ÍvÉÎqùª\jߟ_ó÷—~iÓ®¯ž×ʾ]¼¾yÞ +#*]  ï“_3~hùósÏÞdüÈóÆ­.¿ùqå¸Ý4 +@ö ÜÉEN)E,ʽð£Ìš6ÿ›>~»óç^µ«ëv1É+XX›÷ H] I$ ¨ª 6,›y2çþqïÍs[ù«Ê•rk:˼’N%½•ªÈq·‹Š½?™ëN¸m®Î=~]hZ$ÿ—¾F½ó^¨¸¸³²dK;erJ!ÔëC_‡:Ž¡ÿ8—ùù›ùc¤~kù[F>K²»ÿImRѧ¾% ÇБŒL]‡PŸц·—þ]óÏ—nüÇù7åVòú[É$:j¤×pi–q?5£Ðú•]›i‡¿óœ¾xòÇÿ(<¹ç3KO/]Eq¢[Çsõ‡º²·Œ+¹qJ(jÐ )ÿœûò?•O’<§ù¡Yi¾\¹¿‚ÆYô9yº-ݲÉéÅV5TbkA¶rïùËÏ*ù#Vü•Ñ¿6Í æ?0\\E…Ò¢Z™m‘éz1ÑY£Qñ2€+Ø ’þty2ßYü„ò·ç†µ†›®kw†ÎÒÒ‘Gq§Û±)KxˆŽ>2+V‹žgòüã§üûùM¯þlÚZH-¬¤´OLÒtBL¬§¸\óß‘¾k´ü oÎ ¸Œzl·)me Võ]ï!ðQãLâ~MÿœfüÉüÎüªÕÿ3t»T‚ßHŽk¨¬þ¯Âk¨bѶ$Ó9¬_‘^y?“7?ž7VÍoåèîã±´wFårîHfOòV›œã ¸åÓÄ æÛô Û8”¦XÒ)'nhûõÓ9Öt¿ÈOÌÛÿË/9¬ërÐéZ¼mc¬Â­E’ÚQĆñòwùSçi¼µy¤\M7èíjÞKËXÝQ%Y…(üñÎÑÿ8³çÍ'òëó u1ØéúŽ‘­ZͧΚ‹‡¾¸*'¢Ž‡u®ù[WƒHÔùßz­cpô00F–'+VPü²)¤ÜÞyŠóO´œO7Õ¦#‚…w Í¥êZŽ½%Ä +·qĦYDB0R(È/#F©Un©ÿ8çùgäŸÌ;\Íù©¬Iåï!yrÐê~oÖ­Ù–â yn!ÓíÖ6÷@»ÝÝB)NÍE+’ŸùÍCHÐ?35o%þSéVž]ü»³hl4¸´äcÔ¤°†{‹‰PRY‰u,Ü›}¶û#˜ÿÎEù‡Ê~hüáóUÿåÆ‘o¢y6-B{O-XiëZµ­-ÅÍ!ø Ü?…Kñ_€.yçó [¹×<Éw¯¾™k¡~•i/MÓmc°¶‰vQVñ*¬Jœ8ñÝyu5Îyæ=NÏYׯõM;O‡I´¹™äµÓ-ž…´Dü'ªòÈB­]ÙVbwÄ¿ç¬,ÿ;´1~Vj¾L‡Íšî›¦Ýk:5ý½ÒØkRAbÞ´ð¥ä‘Ê­D#ŠºýTv–¿—^oüÑòÏšoô*/˜ òmŒš¶©¨Awͬ“ÝË$ž¡­Èôà•¡~+D ¿’¼qæËÿ=ù©5M&8ü³ždÒõ ™cÕ®…åÉ·WÓ Œ(„+Žl±Æ„3U¸ŒOMÑõ Z;é4øÖ_Ñöíyr†HÖOEš4f !^a™P3*r8#0(Ò¿ç#µ.ykUòד´»o,é(tØá³Åw:L­ê½äѸõž±×ãèNƒ#þ`üÌó±iu¦iÂ-J¾a½ÑtVÚÎx¢›Ö‰fŒ»zœÔ®ûýªœ!8ßKkX·óF¹‘ç¹—Ë‘_]Çå÷¿ Þ6šÓ7ÕLå4õZ ”Uø«°è8¯˜­ô[O0jvž\»{ý&«ˆô»éc0Éqj’0†WŒî¬è+ڴΛù)ùÛ¤h¿•RþT:ê÷:ýΣyq¢Y[j+§èr ÛHíÇ×£2ƒq'5øW8Ð|gˆIN™ç½9+í|m«{©Í}zߣæÔô‹ØcgŽÁh ß ¿¼b?»‹¯sùûúCòûIòè¶Õt}*.0Ũ_Fn4i.šü[Ën’ ,&,Õäb<(I¡.tuÐŲZÜXÎí-ïÖ“êhQxÄ-„Ä‚@XÈf*E¦äx¯ÖŸªÞ[_[¬7É"Ë©r5 +¦„z{g:udbŽ +hTõv9Ȥ%dv ûm¾ûtÀ?ɳÜÍ®iºS}bâÎêöÙdÓ­æX½i¨J¥}ÈúG\^ÂÖkëÈ,íâiåÒ(àCG‘‚…]Žäš ZÖw83ñ‰‹UO.ü;6¦Ý·Í“_ò‡š¼åæo0ù òßQ»Hüµi.žtv»·WÔ–Ç×y`QÉ7RšF«ËÎG ^fkäïÊ/8yþë^Ó<žÖ÷÷:!•¦Ómî’ââå-á¹›ÔµŠÍp¿¸ôÃƤz’Ä?ݕΟù]ùçÎ/Í—Ÿ–_W¼ŸÉ¶GTÔ´£+.§=‡Õ®$š{kxÃÉ:‡Ž(QIW¸„5»‰‘ÿ/|Õù©6å d¾ÔJðéâx–î墶šëÓ¶·fÌì°2ªÆ¬K”O´èo-Î9~jiZï–´;yûGÓnu;ïüßwk4Vv¶w“Çj¢êYC‡!¸JUªÔe©¦ùcòó}üÓ£XëL×4{kÍGO³—V¸Ó®ì’ÔÝ]Çn®.%ŒE.à+6Ü©†ÞNÿœpó¾‘ù­ùuåÍ}'Uòö‹ç gE°ý7§EëÍÔ®„J‘”Y]¥„G÷ª>/M¶R/äæþªhvžwò~¯å+-sQ´Ñíµ}M»Òì…ÍãÑ®.ãŽ1ð†c¿ÙV=ίÿ9ïùäßË{,þiùgVšçRóE,õ½>âS{· oÍïmå—±<#VÜ ^Fƒ£ÎkÿÎ=ykò?Í:>§äûÍZòÃÌß[žáõù#¸¼Šò#L’M H¬Ü¤=K1¥Iß?ç3)|£ùEù…¦è^XõUåÓ–]@Êï*M'Ö'‚;…–âOUÞdˆ4«é¢ÆÝ>לÎcÿÎ<èó¿˜:“4+û«Óªè–ÚÍؼ’ÌRÏusoÁ&‚8•… ¯ØÚ¿i³˜?æ|ÒyoFòMÿ˜†·e>›}åíNó–#Äy[:8‘DRFe‘¹Ÿ† zl_qÀµ_R½¶·°¹Ôîo¡¶mme~Vöð±2 ‰DŽ«¼®J^,OrsˆDÖ̱!H×àüfã§ÚrSÞ»‚6ïœ"^Tò~£{ç-;ÊþL¼¹³Ôu?¬z:}ìRúÑ¢¨•8ÉiFbê*ÜBô×  ¦hš¶·~šVe=íäˆò¥¬É,­q™„q‡b«—cM”Ðeèöúé¶Ò!žêr³È- ‰§‘DiÈ’J‰©µ+òtQK3…F˜ª‚ORÌh; >Ø7Gÿœ€üçÓh>UóÔz#8tò»_HÖA’„(€ÈŠ§ˆoîÂý®õ¥ùïÎÚ&žt#ÌZ–Ÿ`ó›Ö³¶½ž( Ó'¦Ózhá}BŸ*r¦ÕÄêHäh£ 4 Èþ%ÖFŠ©et©§J¶Æ†¹0R€ž$‚W±"´?ŽyŸóa<Á éšmÖ‘ê0ÞB×`4 ^:)M¹Š¢§_€ð¿ôµÌ–£¤ŽJ²´1úÊ9¬†’Óè{÷ok^ÄQvq!/ÉY¢¯*Šzl;t¬ô&¡eªè_ŸZ'äÝÖ·¨yJIô”¶[Ã0»Ô´}:M:Iþ­qÁÖy"þôŒœxíOÈ¿—ÿ™ó‚Çò¿Q“ZÓõ KOH5›.‰®õѧ±ý"Ö¢UäW·àZ2¦Ÿ´†™Ö<‹ä*j?ŸÑ~\~cÇ«êCItº…·–¤µ»Ö ·²yá´†[ð°‰b’5†Vaðñp< ï—|­w«y¶ËÊ÷6—ÓK<ª·6šM¨Ô5}IVÊéÎE@j…—‰5(s“ù÷ò?Nò’n<ɤK/™íµˆ’[j1qcŽ¶³¬W0ßEuu’YQjzìpËó¯ò_Ê?•–—RyfM[]Ó5ˆ¬îô-sYÓ.ô²Yë&ÚH¥WŠâG„šñï•S°Å?:ÿ*l?+.´û¿-A¨‹}_Oµ×àÍvM¥ùGE»–ÄÇsiÃÄîx߃r…â*ÊK™´ÍK¾‰t Û‹ûˆ„°Í{eõ ‘GhÙd…eä„‚’¸"•!¹*‰ÿœÿœŠÒ?:aÑu+[[˜µDÔÕ,n„RXÙÜ…¼‰fÜžFVôÖ^Lwc¸¨Åç#¿ç'eüöXB_ÕcýõÄ“Ë4µpüàˆ†TôCHÄU9‡¥7<ÿœ™ÿœ¥ƒóÇLÐt­.Êkk}:I5)Òò8JÇ{¨ém•ô¨yG¢“Ø™!qÀ·>LúMç!?><Ïÿ9ùƒ7æšÛÏ4‘&ž“Í5­©†Òf[U™˜Ç“Fó©¡Õ˜Õ9Á˜Õ‰þœó±¥vÎg›6lÙ³f̓-ÞX  ØšiR)·Ýƒ`Emʇ‰%–£jÓ¶ DákÌŠ¿QÝ©J}Ù±ŒÌ:}8™·ïלØÖ²ªøxå%Bƒ¥sTR™±)Md$û~¬l„—$íÓ§Ë+67›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ”r4Í›6>ª„ŠTøæÍ›)‹oËzôÍ›0Á›Ín–ËÐþ9²IùyåMSÏ^rÒ<¥¤ÙÉ}>¥q-ãô¹r”Ö†P[°É?埓¯ÿ0¼û¡yOõykwZLÐFexàwYx ÈŽ0Î}†ù2-CUÔáò–“iº–½5½­Ó¯9"3Èð¯J×â#µpÇËš§æ­MòΖûU¸†ÎÒ2h ³¸E©ì*w=†zûþrSþrÆ×É~S·üüŠÑvÚtÃZÕ,ÊS‚€­ » Ú¤̧q·Jç¦ÿç&ÿç$gòÙòCò{QK/èÖçKÕï4Ø£‡ë + FñÆÊ>@Aâw®ùéïÍ¿ÏÝò·òý ?!m>£=½"ó6¿ny3J($XÔ†g•© ‰Ï]ÿÎEÎIEùOå‹oùÆ¿ùÇ;˜´ÆÐÚù¾ûN£M}}"*Ü/ÖM\Š‚ )øßܘþRéaó,€÷Kפ¸ŽÒóV³iý$´º<HÈÁTPï^¹Ñ¿*ÿ,¼ãù¡cq/‘ôæ—R†dŽûU‘Ü,i&Ƥž S®t¿ÉýÌÚý„÷_“0êPùÑgh$}0ȑǧJ(å¤O…~µÃÿ)yÍÞyºú¯•´É¯È’8¥’$&8Œ¬LÑEOSžŠò7üáÍŸäßæß”õo=kVzŒr\¥Â}l¬6‘”ø•3P +Ðó¹þUÎ7hŸ“?þ^ºüØ¿†âÔyÛíì œQ‰^JÄ°dÃFÿœ~Ѽ‡ù‘äSónçô†æ+†3iöïêåV¢z“)!Ô·ZS;¿—ÿçôOÉÏOËÍ'óòòÖ]'TxïuD‚Vúµ¿ >yãp´#ß#ó“ŸŸw?¿˜÷0isƒ¡y]fx­‘™$žê&*_ÕRµ4ÈOüäæ]ÿç_æþ§{s¨2éuÓY_ˆuMËÉéþr+Ï~Có?æ°òM¾­ò—’¬¤½ŠÖÐVçR…jª’ÆCûdwþsóÆ?ÎÏÍ­BïFŠ;O.èï%Ž‡i¢Æ!‰¸s0r¥AðÍÿ8iå–µæ­y¥^ÏY±ïü9gä}(IØ©c÷çwÿœòŸõ%ê˜'L‹XóÖƒ|óY¼×l“ÙÙ|A§11âÀ)5ªäóþ}ýäïÈßÍý/YÔ¼Ïce¨yî ¿¯™5_¬½¬|ˆY#©ø¶Ý«Ó®Mç +ì ïµHõÌ-¯<Áåû‘©Åq6£õKG·‹p_à%­?k |á¢yŸÌ~üÎüá×|¶4û 7™êáJ›iZˆ¦.T ôíœÍï­ù“Ï?™ßj‘épYˆtûÒ‡Ó’fýÒˆ¶æË^™É<óä3Í¿šÿœŸ™úF½¦y0È‘zŠÂâæB¾æ6J{ï¶s¯Î­CTüéüÍóÿæÖ“ko¦éV÷Lå$Ä‘¤dý§q¸®y§YÔ-®î$k(„qšv#½=óÎ2J»‹+0ýëö‰Ï*Nc¿ŠêòÚÝ|'âr]iÔîk¾q¼ö“ü×ùeæùÁmoÊŒ–6ÚÞžÄÚ[\J>±-Ê°"Xãf­hi¶{cͺ·åN¿ÿ8!£hºn«Õ´x¢’k>1Ç9½Y âB€[cÔ籿-,?.õßùÂ/3iéomkwm –þêöTœ¥ðj¤Ñ&Å…F{C×ÿ'5¯ù÷î³åI¯`Ò<Ѧê){žnƒÜêHv‘crJ¡¢í€¿çáü›•Zõçæ=¦Ÿv4«¨$C¨C!?cƒš8§EïÈý+òþ… ù£Ï5–«¨Z\H59n¡ŠkÈ‘OI¤”|²ÿç¿.?%¯?çµ½KókZBƒTÔ~¯w|þœòF°Ñ¢ôà–«Rvé¸È×ä'•?"u?ùÇO?ù›ó*ÒÖt››FÓîÖ^ AÉRV£Žýó¡y×þr¿Ëå _Fÿœaü¨“˶|š ­vÉ惚3zHÖéVŒ°{ä§Ï¿ó™·ÞoòFü¦ü¶»Ól´‹e¶xn/'ýõ>”FÎ4âÊJŽÕÉš?;ÿ7¼ÕùqùŠþI²¼ŸÊ¾S´ú¾‰«²&Ÿµ‚ŸMZÚ8£BTGN*Ã%zçü涧¤y;Î>Füòl>_òÖ¥[ÃkoÕŸ÷k*µšEVaJr®D|óåKëí +/Î?ùÉ,ÝØy_IHt½É°]½³‰8¤J$@@ø݉b{çž¿5¼»s¢®ù•ùä)ôï, §hžU¼Ô®kxíÍ}ŒÂP§ö˜š“œÔÏŸ|«Ÿç ì¯4?"y K°µòß–-lÒÐj·Ž:Hˆ¢’R®äG|â:î‡ç­"/ù·ókÊ—QùRÊ{}+F¹3ØAq@ÿ¸ãÁ€rK»!¦¸7Èßó›þ]±üœÖ<“¦y=:;X¥¶ÒôË>mg¼‘ðV~LÎZ¥™Xç_×?ç0|³æùÆ+Éõ/C¦Äè:ºI%¤VéHdgµ­/]³´þ^ÎMéžqÿœióGœ­4Èìµ(ØýE´8á•­Š +IZÄÇÛ=%£ÿÎù/ùÆ­kòŽË›;^6çNÒ4«`[OX¤Œ/«7ª™ËÕ˜–«ñÖ¹ä0húŸšomÂØjlßW•E š­Ã<1ªùwUÑ­moo£ãꆭE;çÎýg˺ÖeúföÔG Ûs§§@†AÌPtƒžÈå~œ+©ÀŒ"'ÊÔ|Cß6MouX`Ñuû9¾³2Ú,Zœ‘Žj슇 š®twüÁ›Oów—ÿ1m"KÛ»8-Rî ÑZ7–Î5UЊÁ¨ß=ªÎMè×Þ{ü²üËO+ÚÞKäÍOÑ<É¥\*-¾¬lk™Ô4!×}±YîyiIwâªÅ¿É@ú[w¨yÇV®2Å*"-´FˆŠ¡@tê0½ìu¿Í:ÞßÍ%µŽ©«Ì× nÁmâg”ò¢”\~b\7æwžïu/G‡Ëߥ_ë—l(¶¶°=D‡|HžF¾>a.£hÖ7oi#–"RR¤2òSMˆÈ®³¥Ýhš¥æ~ ]ØÍ%½Ï侤LQ¨FÄTuÎ{«Ø6›u5…³ÞÛ»GvjHWRA,Ý19lî!.]w%B¿bF’Þh£I]Gû-Øà),§ŽÝ.Š“ÔíQÛ6d­ÄªÂvåÐ +f™Ábl+áŠZ…»ž8¥u‰z3ô͉7S½wëãŒjr4éˆNJá’ƒ@|seeby³fÍ›.‡.Ý3fÍŸÿÑù—{t$,nççãŸ/n¤J(ðëŸ,§³¹µ»|óåVky‹åPZxãCV@Y¨*>b\‰{íC›ë!<·­ÑøV ±QR_G ð® j²OΑ6ÊxnÍÌɲhwùWg0óÇågž?(õ˜"ÖSê—4úÅœ¨ÀH8<‰QÊŒ®÷ë¾]óOõ´Óµû;T·ôî)ƒCBÖ.4=fÁƒÛßZ? `ÅMVHÚ”xÜ28Ù”³ÝWüåÇ“ç"?çüãå4ÙßyoÌ7)úfÇF_­ÚMc –òÉ,S9åšâ6Ao b©CêI¹>Åò·üæYüÏü±±òþ¿kwi¯hš®‰ªy¦âÈ/ÔeÐô;ËmFKšòä&’æQˆÆ6~b”ÏA~fÿÎuêþyÓü£§ùb ÌžUÖtÿ2¥Ôw\Óî/täfŒz q®ÂA’HT- ±<‡¡ç!?ç;|Ïÿ9ùåÿʯ6è+k­é7ö—ú§™m®‚é}VÚâŠÉ!E¦7)É~Q@±?ÍÏ?Î1~liþh~iê6ö÷6öVËåQ£j§è—ºU›$³Æmý> +òO$mPº´œ?6þbþeÿÏ¿¿3üõ§þfþaù‡Zó÷nbÐ&]]­mì­ØÉú1§š~¤“ܳ·h§)2r‘}NÇäùÊ?ùÄ2ùÊ[ïÍí7QÔtíröãÍséþq¼ºÕ¼·¤ë²ÍolÖ±é¶6S4œ-QÌrôDN¢ª¬q§®yƒþq;óƒój×ÏŸ˜þnóV™g®i/¨ù‚ÖæÒ-§kQ;Fš]¼ëYׂ@„#ôД,Þ ÿœ×›þq·RóNƒæ?ùǽJÉî.mç‹Ìú>e-–Ÿhah¤ÈLQDÒJ’2ȱT/¦¥¨å³Íÿó—7ŸóŽÚç™´/2ÿÎ>ÞÛz7¶³Eæ ÇK¼Ó­í§‚bbœ}i"Œ´É!Rƨ‚%$³ÈÔòwüå¥ùO¬~k\jß“/ÐÍÔVv¢ÆÎ+¸“Ñe·€E U1¤lÕiÚ»íÿœÎÕÿç|ÃùÙqæùÆÙco+ê66’Þ[Úéí¥ØÛê1‡†Hí-^ÞÙ’3q»UMeg5¡@¿*ç ¿2¿.¼åc¬Úë7hHc–i«%¯Öãy"yCe2¨"„ Å*8÷”¼åæ"ù†ÛÍžRÔNÖ,}KQQ¦€²¹F΃? +2þÉ :7üߢMq¬Þéëy öwËmu=·«op$Å!‰”²?ªü•ª­Èò¨Î!muug!šÎg‚B’D^6(Æ9PÇ"ÕH4db¬;‚FJ$òÏ“¼µeæ{‹-Z;ûë-RÁ”ÝÁ"jÃê:4qµ%©fcÌÖ”]Á„\Z>‡’ºí¦¢á¢–x–+Ëu&t¢TÓ|EJ—pZÓÔû5.̲8’0DŒ¦5fç Œ–0ZÖ¿/õi‰d;ó[Êž~¶ó^·¯ùK°Ò®ìe´ºº³°»´¹G~–ÆÍ)aÄ­k¾â´'óO•<ÏåMoPŸV†×HÔ,nYtû[Ëf{W–“"Ä‘Í#QC + +’½þËQMjÀØ^Mo$ÑOèðOV„ªCÆh¤•6Ûˆl¶R††؃ÔW¶uO$6«ç_-ù³ó»RÔo4ÿ7ZÚϪE狈Rö4¹°… 62úœŸý"*F+UÜ¢+Õ¿"mlµo,yãóÛÎ~Lóo‘´¨5K3Kqs#]©¸‚Ú%‰Äü£‚5yOó#‘‹Ñ>C¹µ‹þqÃóójôßi˜ÖÚ¶“¨ùgÎÝ•º¿ing³Õ¬¥wŽiLW^¬ßk)#ÔcÄÒ%Ü :ÏÌc°Ö¯t={G´KîÂSNn.b±¹·gFIœ.Ü”š„d*CòRŸùÉÌ wó}OHÔoNÓü›Î…¡Cêy»"_Ï;mÔI0uEÇN4È7ççoæçþ™7žõçÕAé–Z>œ‘A¼¨äÇ +Ä…ƒÈõ~$ì¥@#›ÎCùßÏÿ˜ÿšZÇ›2cš=Zâ+‹x®æyå|–vÂÄ—e¹Ú˜¤,Bó.^Š[ŽyƒÌzçšµ«y†òKë³púÒš‘(@¶yæhJÏ$•áÒ”¦ÙÍÏóScÓ9l€Cö†ÇèÂÜ +r±™³fÍ›6lÙ°cM)XÒCDU:mƒe’N%iy q â*;{ÓÊÒª$nß»*¤m›øŽýGZàj“òñÀÜj}³eÜ÷Êé×v9±)>Ùú?V5XœÇ67+6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›·ž—ˆL å]Ñ›-i]Ælj²zé<¶Å¡cö@4#6 ±°ºÔ/m´û(Ì×r$0D‚¬ÒHÜUE;’pn‹£ê^`Õ­4=¸½¿•-í`@K<’70UŒ7—&-?O²S^ÈbµŠ52JÎÆUFõ©Û°°½Õ/môÝ:¹»º‘!¶·‰KÉ$’ªª£rI4îÛ4ÿœ{ÿœ2ò¶ŸuªXŸ3þ`j–³[ß$s…–Ö;ˆ¨áѹn=9ìI&ü‘ÿœK‡OÓ¡úÅçæ$ð…¿×­dÿIÓâ2íËrD‘kÇa\ö§“´ŸÉ?ùÂFòŸœ1´vó_n‘ï-â[AìX(e- ©N´WÙ3ÙÅüãçüâ6ƒkå›ëY|Óù¡«Xϳ¯[º¡E} B–ðÎ%‰gå9ä žôÏ6jzŠþU¾óÌz4öotíw§ýiY£XÄ‹DNbŒ>.¹çÌ,j>^¦³-ÅÊ t›ØVöYå‚J‘#HÔåZîi½sÏß™:_• mcÍ×~^Õì.<ÄæûD]H²@ID’Ï/𞤜ò·¥êuÊÍykqoêýbÉîÔ‡–5W©Žã ¿(¿74?Ë7Ïæ‹ÿ.ZëIuÃ%Ú#Ä…ö,¦Ø+ò'ó/Ëߕߘo›üŦɫXÂ]5+dS4N…HRêÀV¾_ù-ù‡ùqäŸÌû1yÃʱjú±d°¿ÖŽ1¢[h5ë¸ZTød7ÌžpüÉ“ò?çõŸ)I6©i|·òk`Hn"‚0\Æiû nkœ§ZóçæÞù\¿óZ甆¥«éZ—¡cææÒX¡jz14t2MjræMCóetÇü¨ó]Üí¢ËÍ,®íÚK›*̪̥ÑHÜŠÐç&³:]i–vÒ,­3CZ-Ƥõ5®yæ+­FÖêkm0s¹JçÊ›TT£8Z妵%Ž¤Â˜f0«ÉOI¥çÃãcÔîsŸdŸÊ~Cóu…¿™¼É úlÞZH繄W›ËÈ2ÑjÇps£þSØyšÛDówžôÛëû6ЬÑ'³°iš9HVŽr›ˆÏzí—ò7Ë_™>Jó7|ýå J2O"XµÖ«-,s™Aƒ®õw£ùgYÔ´-_ÌVU[-%cúë©5ýóqAAØžùÐ4ÿùȨ¿3¬ü½ùuùŸ$­å˜ïaºóŠFŽ[æ,´Ž´'®æµÎãå8þN~ycË¿–ÚÖ¡¨éW2^[ ‰4ñV XÔ “± ×|ìíÿ9uÿ8íù‹ùuùcæ!_Ö–|Íæ=!á´úåÊHy(œ˜Sr+‡ž_ó>‹|to)yŽ[›/.Mu ùƒêNˆ]CSÔT©* jA8?þscþq÷É?•Ú¦ƒæ_ÊÛGËþ`‰žÞÉ^I½>" ‡‘™ˆ#Äç2ÿœÐü…п#1mô¿(ÚKm¤ÞDJ+Èó*̆ŽªîI |ó—ÿÎ_~JyòçCòš?/íÒ=7Y€DÑFÎÎJD®jj\ê?ó™ŸSüó^ƒqùvn¦ò¿˜ôøo´û«¢Xe +çs¶ô®Ùü¿ä½nïI‡Ì lÑØÛH>±q2Nƒzo@Gc=Èžg»Ñ´ÿ9I¦Ïmå›u-b8L–ñ‚Â¥¨)ôæšbúß—&ÆÏËHlVXW[Õb2­Â36ÁvÛ ;óôv²ÚK.ÖÐ2¤Ó…%› 'µsª~S~Wysó÷ó†]Êk‡¥ÇÞM ó{Q,!y(VoÚ5"§:‡äåZ~qþk^Yh¶­måÝ!šy¦‰$žÑ¿”4sQϨ&?–¿“>Wüçüλò—‘5¹ãòä¬àÞðYZáHP"µÛ:ŸüãGäF­ÿ9ùƒÿ*ûIÖàÐäI{õ‹¸Ìп£CÄ e©9Þ¿2<Óiäͽ;RüŒ°»–?-OëyŠÞÚiZ+Ãkû§í`¤pHO¢¹Ýõû3y¯ÎÚ7ç'åIhÕ,çšË̺Z¼Vú‰·°à#¶UJñ_ƒŠtÏ^~dk˜~jÒô;Êù^´ò5µ¦çýÒïÒSŠÖ$Gtª—oÞA°ØgLó®,¿7´ÍGÊžEÿê¿—·okç%HÈ´Ô‘+Aµ¸X¡„,c¾$œ‚ÿÎNÎLêž—ÇÈÇFý{o¨Iy}dÜùÛ[[íJ_¬œ«Ë¦qßùË_θÿ84]1tMMd´”‹é´r±ó±¢ñ(Ҁܰ'é霷þs+ó÷Ë>tü¥_ËO)hž¤ß^Iõ —‘Õ¼vD­&€PDyTR€× ÿç)ÿç0|Óÿ9!zu÷-;I´½’]?BH¡X­íÕxFEA#ɵM[€Ëÿ.¼”Úäwœ?0uÛ„‚ Ÿ÷a§ÈÜ&{…¹Z+᜖ÃK×tÏÈ[ýnïQeÓ.õãµÒ}r¡®ßzUܯ3ƒ~Siþo³ü€üÅÖ§Ö×Êò!´jËð\ÞÐð×m©¿|äÖžH×ÓòžûÏçR†ÛG–þ-=tÓ(õ®ç@‘kHÃZb”>tòþ¡å¯ùW>jÓÛÌ3j·-dZE0<´UxÙÞ½ºdÃò³þUÇæ7åÐü»óe­åçœ.îš?,=ŠÖNn=B,+ã¶;ò‡Í>^Òÿ-5}Ξ^‹Í³ùÖ×ËVò_K ¶—U +£)øaG•­lµY$ÐM7ú®¨ÑÛiz¯ŠiHSFëßlþÎÝþHùjÛÌ×¾a‚g¾“Šé(Ñr[–ô;V™üüÿœjóä5¾‘y®jP^®®¤¤1Ž2BÀT£nkN•c¿9ç/?(¼›gæO]‚KûéÖ3¢EýǨÂóf<¨IZûgVÿœ“ÿœIó·üã-¯—®|Û¨[^v Æ+qÅ­çH˜<¸ôåÐç›TºH»ƒœ~&`à+q©ëœm'xÊQZ…HðöÎ’->ÁµùØ%ÚC¨*Ÿ‹X*€΃%6úM瘭e»Óg3ßY¨2ò`„`(àû“-OóGœÚVòüM&¥§ÃÎI ‘ƒˆTEï·†l"›ëV’Ko0âÄÒ@ÃzžFžæéTš¥ä?¼.*Õùò/%Þ­¤Mui-c–F"àHµ~C­KoZæÆýfæHй1©,©Ø”&¹ž$´©u”_–"ºÃY~oŠ>EÖ½‰þ¬Ø‰N⇠©*„u¡Ü}³fÍÛ§~¹³fÊÍ›6lØ'î½:Ž<}O¦´Ëâi_jþ4Åø§ +Wn<éôÓ6ÿÒù{!æH{gËw*Ä÷ðÏ•N_,ùUŠÛÇÇâo—ï–’Û¦ÔßüÎ9PŠµß§C›E¸¥h@­ã=Ûñë;ŠÒ„fÅqDQJwï·pØæµ xÆ+ASØWé9[­O|Øeil® ;qUc° E+¿ãŒK9™I`u¯oº§»‚HØuñß6kšœ(æÂÄü*I•Å-ধ]J}ZFÇŠ +]·­iP|R6d<Ñ•\-=Á­LØQwÛ‰,QµGYdè+Ð50; }ß; +œÀTW°ë‰Ó6O?'?&¼ãùÙ爼äñ_4ÝÉ5Ü1à +דV?UÛí0­¤Lÿ+¿(|ëù½©Þi~M¶Žy,m溸y¦HP –h∫Ìb(¹±U ë~LÿÎ6~h~zigÖÿ.`³½ÿ +þK»+›Øm'¹›U–H ŠÔ\Gp±K+reQlk^*ÒËoË?;þnù²ßÈß—šoémrî9涱õíí‹¥´M4„=Ì‘&ȤӕOl™ßþJÿÎD~ißùkU´ò…Òéþa‘´Ÿ+Dí!?è¦&y¤D‚ž–í1\‚Ãmòeqÿ8Ãÿ9­yÏÉÚ˜|¹%†³ùŠq¡>©=­§©1z’KuÉÁ·+õXLFJ0 ÈVQcÿ8sÿ9yç·òošü­{åç·³M_T¹¿11†ÊHRíÚ5’eõî88­¼mëz‡ƒ*14 þK~lù—Sòþ£ùKR–ëÍbðùedµ’Ô¿G«=×Õ¤˜"Iè…<ø·ÃߨÁ_ó•“Þeü«üγò.¹©þ”†ÂÊÏO°½–ØXÊ©eiœK ŽÅ8»œŠndCó—ÈÞbüµüÎó‘üÔæ]WJ"ºvC“Ô‰eFU%ˆBŒ8‚kÆ•ì9˜´ˆmu5†Êí/ u ²˜–Ý£fU–Xåö3'¬RV‡!Ž¥©hA#æ0×òÏóo]ÿœi×äÖaòö™æëqkªùOÌD·j—Ê¢ZÚ`&j–FpÊ Ñpóò—þrÏ’7ðk~AKM;^²H×ÚÖ9.ìþ½E(ª²24lH^4­Ùä­'±üÉóç’|¾|›a}mú,E šv•w+Ǫ¤1^Gù†iBȈ”IAñ.Üš£ô=TòåÜ—ÚD‹ó[ÝY;¼1Mû‹Ûwµ@•\ÑHËÈ|BµR ~[ùËòŽ_)ùÎçóEý5æÍbòÒæÊ®ï,ld·–æ· êÚ»,tg ªñcÊ€ÇËÿ›¿•Z䔿— ùwõ¿2ê7Bm{̳j÷ Ú[ÍêÙ…¶XÂÅé)dn-Wå^B¥rqå_?þEÍä*'˜<§¦G¯è“ßÛùÚ-Uµiaóm¦©xnmnVM(Ã%›i´*V9¦]y" —6‰oTWš9$y¥wzJŒ¨ +«-•cQ¹å¿A“+óò'Aó¾µäß-k¾Wò?˜¤ÐžÙ'Ôltë¨"Su4¦oôÉ¢I‰UJ½9-ηù)ÿ9%ä?ÊÏ̧ò¯”<Ó«ySò¶ÇÍZ7š´þPI)ºrÚ-ýµÙ€Kp°\-½ fà 4G‘A׿$?ç*&?,¿3m“QŸW>QòN½©~X~Œ²Ótëqq=ªZê½Õ/œGÉ#¼ˆ¬[šÐ†’yoZòõ‡Ÿ,凉»Ò4;}N;È%´O¯MiÌ©²[‰X wBÔßÃ%š^W¸ÿœÀÿœ‹“óò“G›UòU¡Ó´­{Yõ"Ó£Qc +¬Ó¢ÝË‹û‘ê"° iJWüÍå¥ÿœ†üòÖ>×K6ß”I­éÖ~eÕÜîtí=lí®d±IQ¦ˆ (£H5wÎgkù{cç9jó¾iµÓ“È7×~fó–­k¶Úeç˜N™túŒÚB­µÄ·pÜI¡CpŽÑ±fFcŸÌ­JÃóóKÍÿ›–Örÿ…¼ÁæM[R†ÖâîÒÆþKk‹ÃxШvž’ˆfPJ¬ª¬GÚïÍÿ³c£Íiå¹îþ¿þ´»˜5¦š÷Sd—w!ä>’þå$3žG¬W›K¸Õ¯gÐí¥²ÓdžWÓìî'[™ ·g&(ä™cˆHÊ´ á1ߊôÅ¿:O’î¿/¿+ÿ-ÿ)5eÖö uÍWHžÃP½TÖU/!’P£bëÄ.Õ2_ÎÛÏ"ky Hü²ÕN­g¢ùZÝ5¹%·k'‹SkÛ¹§VFâ²É +³Ä UKfÃÍ‹o(ZÓFü¼ó$¾nÒtûDŽøô¹4¦[k`ìD¶R®¡ÞNN˜·ò›yÏEò–‹.ŽžQó ó$wº]•îªâÆ{§ê3¡k›&'Õ07Ãë!àýWÃ!>EÊß.~gh°ù—R–ûÊ“ý^0Î-e¢’K„ôÔI+VŸ©ùlc_—וÚ?æV›/æνäèfá 2Ik$ñ1ú´‰–@ϨQ]XÇ9¿ |ÃùUå_Ì› Oó“E“ÌYh®-綊æ[o«\J¤Ctël}I–'š @q±¨øY¿—÷~L°óÎ{ù‹c>¥åho­_Ì6rzwØ,ªgH˜2E+J2ק%ûCé¬?ó›ßóŒ’é¾AòW”¼Ã–fæßËö‘Aawik¤ÄRbk§ºfe*Jr@ímÄ}Ñ?ç2ÿç¼·aäÉ?˹Üùv^Ô^-J=fáT‘®àžîæf’>nª8"8ôä}!ì.ÿÎYÿÎ=ùOó'PÓ<°Wô6¥»Ýy¹-;¿‚C +#ZGmlVæUB쿾äKKžÿü¾ÿœáÿœ[ÿœcóùgùåÛÝ_È÷¿T“Ì^v»¹šÚìM$Ó¼¯õ7´V¡ŽU@äÆX/ «Ÿ9ÿÎwÿÎL~V~gèW~OÑn¥»óG’<Ë&•£D¶‘Çmq¦ZZˆ†¤f-yÌ2Ÿîv·œç5ç ?';ü¿coå©nµ3yw[¾°Óµª­µÏ—¢õ"ŽY"£s”%»Fdg”pþO—¿ç$ÿ;<·ùÕæ­3Íš™y¢ÜYÁ%­Î›uyúBݨ&Yà™Ê‘ê¼’3À¨±G·åÏç(?<ìç!ÿ1çüÆ‚ÂçJšVžÙ4éî ÔQÙ¬Í5»#±ª³z¯êFª0ä§ã!|³£k×z?–µÍ´è¢ƒZÓ Ù¼¯5ÂÅw$öÒKéG±Â­<6àRHäãÄztëž]Ó5Ãe¦jºD|/«¬PEu0•îmU.#Ÿ÷“˜•X²7Ã^ÇXµ†;«k—Z” slÒ­¼’šH\G'²’ 0¯ ¼¡ÿ8çŸÏ?!é>r_6.Ÿx‹ÔŽ¥¦N–‘Gu S‚²Û†Ú7˜#¯ +ò«õ` ¼‹ÿ8#æÍïËŸ.ù×Kü²žY¬–94»«{‰ŽXßКXf©wÕXÏÃ<|TóêGþpË·žLе+/ÌQœõ­2KçòŒ¶º|þ¾¥kq4pÅ<7èèŠ`b¼¡$IDg—çù;ÿ8aª~{þ_Xù—òûϺø¢îMB?ð&§t¶š„‚ÁOô~ 1²8'’FY¨kž4¸³ž‰ô÷€Çqk#G=MYYO Ü +×<‰BGZuë·jçŠÞš&ZHŒCêëSÓ¨Ï9`›ï.j¶-ÕÄt‰›‡®$FŒIÉ… 4'ë™A5Ÿ,¶â`Íñq? NÄƒÜ Øÿ0ßÍ>«¨G,²4Mu3n‡(­öŽôë¿Ó–8¨÷#ßñ˺´² bcæÌ«½<Üóg¤íÿ%¼ÉæÊ‹ÏÍÍ}J ‰“G¹Ô¼£ÚC=äÖÍj·röÐÅ"QQ1«05%¹)í¶_’Z^ù uù›çûé¡Ôµ8â¸ü¿Ð-’FŠöY£½¸šxc’8Ú !IãÙj»ôV¿ùQ¦é‘ß™Ÿ™º•æ»æï1iZuߥŽéM¶Ÿgekov·JÜä—÷7G| -³SáèþUÉåÿÊ»oÌ¿;=Λš£”þ[¤ÛÜÛêï§ß¥¦¥ëÈ“ú–ÂÝOÂ#ê1Ú€oÉ"µo2ß~eYùsJÕ[O¶ó+Mmª£F³[˱´’·~Hû¯ÃµzR™Ç´íN[2ðd[+#½·€D xÑ•–£ª’>£ Æp-nå½hì.O˜/”3—ˆ“ð’!8!Z9U”øü$׿LØÎ%¯¡?¯Ê‚:ˆã8•b½¡9±¬W§A‘UIþÎ1À4ülFAG#åú±4ÆCC›•›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lØî%EYMC›53c≦cBÅG"}†luA"€‚;fÅ⹺1˜ÅÃ'¦Å~Y³¼Îy6ÃVư̈κõ?DyÆóÌW‘c7?S‰ŠB’‚89b>Ôίÿ8î5]Í:‡æ>›q%òm…Ö¢º’D34M*C¬I=A9Ý¿ç +¼¿ayù¾¾x×&ã¥yÊ÷Ì7ölÍ^%´Ý&R8;±5­)Mó¥~Dhšœži»óÝãé¶þE´›_ŸRŒhfxÙÑXÜîš%`dœåþ|ó;ù¿Í—~cÕZââ{ë—žâk‰ZYš&jªroå]È5¶§˜üßmæû©Öþö5›´PμÃÖtZR¡I g=üÒüÀ¶üÊÖ&×o£¸›X»¼¹šçZ¼ºšâi-daèBÊìTzJ( +\€ë¾¡¯j—ZÖ«)žòöGžâSÕÏ"~óž÷üÄüÙÿœ/¿òÇåÌ?˜i/˜-´KpcÐt™V$ôç€,‹rÈ ¨ m±®{7ósóCþpÛÎ:•u¿8Í«yž-*¶m.Æ_©‰íš>ÌàR”‰CžºÿœŠüÝü¦Õ¿,|ƒ¦ß/Í1 ·S34Öâ%Y$u…Ào³ºHÏ^Î\~fÿÎ7~`è—:×”ç}KTÒ,"°Ö´dYmÑ¡k~êêÀ+Dâ´§Äz휟Ë_ó†_—_úv¡æßÉ¿:¥¬êOƒxi­ªÑÅ)R­ÐR§9ñÿœ/Ñ|ë¢ÝyËò³ÏšmýŒÖÇQ¶ÐØòº³Áu‚áýM™@Ü‘œ£ò¿þqgÉ¿žZÖ¹ä¯6 2öÞY’îÂåHã_÷] +²«' ’ÿó‡:‡ç·å¶¹ù…å7é¶w1˜ÉåÛÂà${«I'5TVüEi¶¹òÿÿ!(ò6å¤MGÍ3KSÓþ$µ¶ðàÎ#©®ó^…®~[þKùSòÆÿV·–6Þ=î£5‰I…¼jh£ÔZ†öëRãò›ó[þqãþq}ôù ’ñ|Ï©µž¤Úr¹’ yHB¥Iä<1?Íoñ/äÿäO—ÿ&ŸS³¾‹Ì3¾½¨Ë§˜î" +Oã[…­wñ âïysÿ8Û®Is¡Év5ù_OÔ÷"FìŸc\ù3ÿ9+}ÿ8¡/›´!éÖšõÞ½Õí¼Ã}ªaŽ”ä;'¿Äs¯ËÌÏúíW]›Tüº[Լå£\y–Ü«[@ß´…­MrOËïÌ=còËS›\òúucK=B¬$¶$ƒÉJüÆtÿùÅïùÉß.ù¯Ìküß×$Ô"Öà•ßM¸„4—ó•â´”ô¨3 Î6ÿÎLù+KòÿŸåüñÔ'½×|ÈAÓo}’I„ˆË$a–œA­0ûþq›þr;Aò×›<áço͉-®Ž¿:^Tó&ÈÃ`ð +Ãáéûþqoþr’)ùÇÏ^`üêÖ¤Ôí¼×¦ÝÇ|³Áõ‹‹ËÇ…£Š“}¨éZlr7ùm­höÑë:Ç4åƒO“R7úm¹s ÓAëôâ—bÛg>ü·‹ËZ‘<Ñyæû«o.\Ã/«åÛ{›–þdrhßp¦äŽþJZ~Xê_™~f»üïÑßHòÖ­qs©ØÌöàÜ"LðÇ ®*€+Jçšà}2fÔ‘ÊÙ[·)­"h„²š7ÁÈÛ®Çs†>oü¼üÁüùóWž:¿-¡ŸCò¥ÏnúS2ADÔo…XU —vŸžšo•<ûæïË»õÒ¼¯­Øðó÷‘ÅÝZíÈ(‘vøºÁÞo¸üÓüÞÔ¿6?2¿)îæÐ<®Ç½ˆ%EíµŒ1AŸñI‹‘í’¯'þZ~fy«É^mó·•átòöƒl³y‚v—ÑG€°P lÖ› €y+Ê¿”žMóÿ–µ/Ì­z=[GV[­SO´ŽNL¡XˆÌ‘8!¹‘ÿùÆy?.<·ùïäÍOΗ¢ëMKÈ%”z.è—ýÝQ-G¡Î=cùcåŸ/ù«Èi¯ëQk¾`–Ö]FÂËv¶ŠIB2ÈõaQÜS¦Fü›/•,¼Ù£]yÊoô4ž'Õìí›Ò•á VEb +ãoþr/Ê¿›¿œž~Ó”œÝùj×K]cF³øaM³Hù”y)Bô^ùÔÿç,ŸóCÏŸRk:¬«æO*iwæÖK8À²ŽÕ4êô ªä–ùèŸùÊ$þjë_oåï%‡ZÐ|½lºÞ…¦z1ÇvÖ@JVV¡õ6MƒvÛ;¯üå™üñù±çKhtiãÔü¢éé?–tý1ýx4Í8 f+R®:1s\äÎÉ{=+R°óå¼×©©Yú·¦-î N GÀDIñɯçÿüâ´žJó%—–/Æ‘{Õ'òã[,»üËÖ4_3yë]óO–tÙ4½#V½¹»³³ò,ò4œ-€í7My%ž™wsé[D©HC3)cö¤ ž¬wÈ6£ ³j‚Î+™>¨ÎLµ¨VÞ¥zV™À¼Ñ±¡ÜÚùF~v–L‘4–Ð3(KĊ&¤ƒ±92Èc—>˜<‚Tñ÷¦ZêðùGÍš.µäÆHn´ï@E$åO©q@Þ­Øo’Ï%yÇÍ_—ž|Ñ|ÅäÉÆw§È‘q,+p¬yåÂ@Cw¡Éêò~[y÷ËÞaò·­¥¶Ž°Ëa.¦‘Ì^eݤôÙBqå^Ûá·“üÛ®yÌÚw›ü·2Á©éS%Í”ÏJ«"©) *~‘†ß_žΣþ%üпºÖUÕZ FYZKqŸ¼ ì…é›óÓYüÐÕ¼õrÿš·—Wzš€ak¸Ú¸æ¾ŒFòØ.Øoùë¡~xêÚ­Ÿžÿ2ZæöRÖÞöÊúHM½¯¡"Ñ@#‡½pïóWóóKó'Ìg^ü×ÕoµMNUÂÚƒ?îá˜úª"F XèõP¢”露‘4EùROÙÏ~ ƒÅ‡ìÓ8ÅÜ·éæ”QIZSðÈf:†³š‹v"HÈjìhA¨¦ ÒõkP·Ô¬h²ÀCQ€ebBătíBïC»¶ÕtˆŽâ&YyFÅH5Ú™±MSS¹Õ®ä¼»<¥•‹»P +–5=2õÍR]{W»ÕÞá{§i^(#XãVcSÅ{ ç?3Ïçzë^¹Ü^9–vcÉšF³{“S›«`ËÔn0rNÁIE<”W}þtÇBi¸;`ˆ#ŽHöjž• +9Ò¤ÓáßøfÏT~HyËóþqf=cDò¾‰«^þb$0KqkÝbÊËK—Õš8 R“ÂÒ+ócÁÃÕO˜í¿”›~ü”±Ö¼äù-/m0E—SÔtuKÍbÕ,©v±Y:’b–· ©$LŽAN•lï?ósü˜ÖtÝÒ6Õ<©åÍKQó·§iá¿–I¥¼ì÷ÊAÇlþ™ô}G’ŸdƒÉ~ó—åæ¦5$ê÷%ø ‹ûônPpxÈI€æœ’FVâwƒQówþržËÏA¦ë¾bÐ,#¹¶“˾aÒæ±ÍvúŠKëÍ5ÐI>É%X…yÆ€… n99üÓÿœªó7æ?š4[›msÌ>Qò¾ÊËÛËd²°½ýýºØ^\j7V l.F‘*~íÞ:ür1¿ÿœ¿üÌüæÔ|ïù‘©ê^L¶¹»ô,ï¼¥}8,ÅÿÎD~lþbyâÏΚכõ¥¹Ñ¥gòÔÿ¤dk)$e x~®«+$kêþüâüÕüØм٭y£þV–|ô÷wZ¯æ›y¡=£¤˜d½ ,‹é³Æ¨¬À€T2mŸÎ¿È;~UùÖóD‚ÖmoJIž‰®ÚØ·Õï걆:ÉÁÉ’„Ľx–ûX#ó_þq×Ï?—âûK§œ|£¨Lcò÷ž45k½7RE¢¼EøJ®þ›ÆÇûÀÊ…Àä|ÿùùù7¯þNyVí£0ßE§õ] +ïIUžÖò"‰<€É*< ¶À)Pvêçœ?<ÿçüãùöz'Ÿb·ƒW’òú×”Ââ ¶ŠÙ–á_f +í+¨âM¥c^tò¾³äy-´?3é—š>§wn÷—uÔ k,an¥RHY©ÊpjG  +‚ÍϼÉå_3y;SmͺMÞ‰¨*¬c¨[Ëk8GV1̪Ôa¸4ß |£yùOç­;Ê×—¯,ln½¾ž—>_¿»’;˜-Ú?¬]Æ©Á ¨äô}/Q%1ò–¿'å!ó•—•®mnÖöÓHó­¡Ow¦]\z7š]úA<—ñYÊ«¡Fçk9I5 ËÌü‹ç­3MÓ¼Ça¥þ]ØÏ?™¬lì-.®å¸¸¹ŠX¬ÚÊûôbâó\¥òÜznC2Å:ÓÒŽŒÓ/àÓb–K­&ßQYÖh¢–èÜ=´°òOBhhÚd•yrãN@¡trÿÌxüïçŸ!ùrøþ^Ø*µÔ.ú¬Z=¾¯k2’Í4bjI,HX*ðÝR•øH wçN£æŸ0ùWòó]ŸÉÞXòÞŸ¬Mª]hºW–à†Rýæ¼Ô­­È V`–ÔŠ%0ñDPq<üäò·š|ÿ­Ø]ù%_Íz`áú?KSgu¬YZÃi§ZúºÄQªÍq"ña,ŠåÒF`¤³³.,ïWM±¸«´W/2Û¤2[½Ï$*­êÇ”Ž ·á]ò#çí#ó;ÊúÉ€hºåÿ—<ßjZF€f¹‚Îx'XŒÑ+$uOÚ¡^¤qø²ùåÌ?&ùžÿËpÑ&òÌ÷’ϬŸ+ƒÆ+Uç2ŸÜ«† Ž”`@¡Î9æo*ê¾NÖ_JÔšÓëÁ"yôëû]BÛÔ(žÂiâ/¿Äž-±èÑ·¥hÄ¢½»â?–ú÷•¿+¼Íåínþ;rÓYÒæMcM´h„’ ÉÜÛq*ÊÌœDˆ­C^'Àco$‘F…¤y©ä>…¢Î&ùSΞSÕÆú>YÔô-ê{ÿ66ª¶1É­cõFž9¹Bm§’’¬ˆ?|§à °L˜jßó‰ÞUŸþqþ_Ì3iöÞUÿ yr`þa¶Ö"c«ùˆBúŒòÄöÂߌ‘Ȉ L.™QŠV£ÎŸ’óÚÏåÍþ¨Kä¨|Õi§iÚ/”í|½¨ßÇæh5Xmd·u×tø#0½ô×q1™Y¨§ŠÒ²d÷òÏòÈ~qü³óœü÷­i>XO+è·í úåªêš·˜#+5­´ú|ï4Œ’§¨¨aH‡ÃÕˆsœ/RÿœlóÇ–ÿ*Ÿìç‹Só °ÓõO/ió-åõŽœ-ã–ÞöH•}X‘æ “·º÷óWÿ,´ß'yʾdµóMŽ¯¬k«tþaò픜§Ñ%TµKªmÊP¬æŸgáÁoyÏòŸPò†“e¨C¨Új³#Ïc­Eir¯s¦ê³Î’ÛÍipÝF$SÌÆPµxɵ3‹O`ðY[_™¡t¹æi*4±´mB$Ž¼–»H¡ A¡~ùAçŸ2ùf×S½ü«ó\òê&+2iv2›i …ÕåÕ)+£=y™W—/‰þݦþBþrjZ.™­[~[ù–k FHšßYJ½úÌ1$Ј¥6þZ2d̆B (*]ä—æ•ö>¹uåA­â³!T¼KX®Í¥ í1R$ô°?ÞSâÃè¿+3n!Kˆ<£¬Iš{k‘ÊšeÛ+iJ 7ÀˆèmÀ²ý|ˆyõ/¼‹ç'òÖšn,ÿ·(±-å³Z\4öò4‰$г8æ Ûaקs +¹ŽãBÖäŽÚv[>á–;ˆÜ‚²@ô ®ÄT}ò#}i­ùGÌMa{g&›¨è× O¦êgŠ{w,æÞq@ë¸daÖ¢™ ƒC±FzÇó§óSËš—z ü®ƒPóæOæn™£i˜iž&›OÒm#H¤»ÒýC$¬œnbŠR̤\!Ãغņ…ÿ97¤[yþqãË>`ó'œüë}¤\ùÿóÌðÉ}•Š$²“S"êäC ‹*¬J‹µŒ/µ5Vÿœ‹Ò¼¿ùwùä;!y Ì—všœÿ2,ì$†ÍgPñÅc{qm¦…YÇb’2ÉrÑÔHÜ›±Ãiå?y{ËŸ•ÿ“žL¸ƒ\Õo4…óOõ;¹f\ºHìÅœkk µÖå2'9¸U¨Š0?æö“æÿù«O"ùÆÏóöÿÏZ‰·{Ÿ&\F×z3Y[X‹IîGªP0õ¡X””äãiËþoè±ÿÎ7‘o¼³æí^ÿóNëL¦·c¨/Öô&ÒekI^;y¢ŒO¥)‘›ÒvcŸÿÎSCåùÇÏÍMþT‡˜µØµþwæ¸Ú…Õí’_^rZxá_NFŸ4˜LLRGûÆÞ²¿Ï¯Êñÿ8Wç&ižGó­ä¿š66?¥<ͨé¦ì4é/U¡ŽÚÕÕ½~\¾ ™Ô†HÛˆW<—ç-_Ëwþj¾×´FŸÓ»¸mG…ç¤Ï#Ü2ÊÑ +…\µM}¨)¿OLc'jŸˆ +ÓÛÇ<µu4r:\ÿ»Z²È¢33r¢€6¡ßû|ã‡W˜ôŸ1ÌmuÛCž¤ ¹-¸rJÎZª*‡`~ÇÅâ–d¤j•<¹^_0j 1öÒ,’XJâ‰)ª¹‚hB½é›$V?‘?š?œZÅÚ~RùlùšÓLFWö‚!Áš/‰Ù‘UŒrj}žù7ü´ü‘üÒüà[ÃùqåËi4Þ&þhJâä n\¨ÙT³Pš(äh3¥þ_ÿÎ9þl~riŸš|¥Ã.…¤;[O«j–š|s]5··k™#k»Š2V8ÝKÆR>RÏ"~S~eþg&¡'å÷–¯¼Àš_¡úAì-Þe…®_Ó…¨§9dAñ5 ¡ÎÍç‹o<þ\~RþZ~Qùìþ‹óUµÆ¬t[Ø.îÌÓiš‹Rá'VŽ> +C´h‚«¸f¿œÚ¯æåß—<©ùækoÑZדáÔÄ×6Ë9¹°ó‚å`g¶‘VJ‡Œšî”qÞcÿ9¡yßòÓÊ~Hü§óŽ¹¡ßÏåvÖ¬ì“C—QK±iwr·½û_A–J vAñGäÂZIù¹æoÌý+Ë>Rÿœ{üÉÑSC“ò½µ_¨ÚI±ßÓòÅ(¹-+¡+GÁSájžU®roùÄOËí/Οó“žWò†£}¸»úÄ·ó­“4qÛÍH×í“#ÐA»¢µÈWä—ôŸÌÏÌÝ Éšæ­‹§^ÊZúþ‹÷0#LñÅ©9]W„iÍy9óœ~Fù{E×3,42O%½ÂÜÛÍ7QÙ\K%Ä/o0Í,S¢»I"Š2»@`>Zч˜5Û=®Ô\¿4¬jz³RŠ;± ÿ6?*áüªó£K}A4ëçÔSJ²Õbúž£ÛÖ7D£àj5c¦æ€Â6ymü³ªË§°˜Æ6®akYH~'‰ëJ×öY—ÁŽyÓÊðykXSgöÖ×<ÑéWòGúJȤóZ<h8ʯ0P£¼¨ äâ‘¢•J:®Œ(ÀƒB=tßùÁÝJÊûþrÂO6­¤VÚ®‰«ÛÝ\knip±Z —„ "¼AkêHÜE ±P³Ðÿóï1éþYÿœƒ¶>g´ÑWDÔ4ÝJßUÔ<ȱƖÖÂÑšVµ¹¹¬pÊÁÀgb#7/‡:güã­å[¿2yÇOüÁóÐ-õ_/\A´×Mâ\C¨XO³•š‰2$,In\¡"Žl¹Ó¿çm?.õÌÈü±ù­}‘åmvÇP²ÔµÉ}4›Ne¶{›yí¤”I=xcC±/<`ôÎ ùËå Oó?Ì7¾Bâòô—iI,qC'¢ˆ«É’#V$BŠW<Ýæ)´[­rþãË°Í”ÓIú:’:[ò"!)@¿ñS¾r¯Ì[ß-ê>xÖ¯|ŸjlôI®¥}.ÛˆONÜŸ„  ð|wÎo¨¿¹m)%K#,†Í.^e‡‘à$dURÁiÈ€{d1ÓŠ«r­ÜoMð¸Šv4é¾G µ®ÿ/žÇÛ¡wÛ¨«øã¢RÍQû"¹Y±QS¿Zþ¬QC)V¦äš{eƒÄí›â¼kR:Ó}«‹T9;¯Žøª°+ROß›2۴Ϋ Tçmÿ³K9näD·¤‚•27ì×Ƙ"+&¸j!àΚoá›L¡$* zn z s¡;EZñ¥OÌWÜÄ!˜ÆjÜÔlØÌKÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³eÔR€oã›6l³$Œœ TxتBÄÄ/ÃËs›i‹rï"[H‘’‡‘‘‚‚6¨©Í÷þqþqÆÛóßó +ÊÏÍw¿¢4f­ÃŽ&êPŒËDÐÅ[Û;§üâ?ä~›ùÅù§¥i~l‘-´6iKýgšEvé°…]YH;WcÛ'ß•Pµ¼Ö¬<ÙæKIo4M6æ¸Ó튭Πüþ"æ¬f>Çá'<£¤[ê:îžš¥¥ÍÕ„×Å$Ÿ Ó–`¢(˜‚914Σÿ97äï/Î0y)ü‡å;tkß9Nd×&yvVn"¡bBÈÄãL“~ù.ãþqëÊÇòãEÔŸ9\<ÞcÒ­åõ +ZÛIÊÖ:îJš×~¤glüö†ÏòGȺΕ éiþhK×::'èË R$¯:°gf¶Ý)×ó·ò×ÌÿóŒß–ö~N:Ù´¾üÅ?\ó'–ct2ÛY[0{H¦eøˆbܘ‹(Ûl†ù«òC@³ò6‘ùˆ¶R^裗P¸½ˆ2™ÚOƒÓ'~m[½bkXż <ÌÁ=0 +©C@(qÓ\MpÁ§räcZÛ:>Ÿùáù©­þZj–OëCåFD¶Ô/¬íU£†É(¦5DZŠc¹ÎïuùÙæ¯5ÿÎ?·å^¡¥@ö–²zG^²¸ôå¡Ë,ðQFÃmé‹òÓóûÌz‡”u?É]RÒôŸ6«i×ÞcŠ×ÒŽÚÔŒ°D F„p¡níRw9Òìÿç |ñeù3¨~I[ȱèºÌw3Iá/ë+J£w9ô>_ò¿6¼°óñ/—§š'½µ»Sj­•B¬ÏZRµåÚ™ÿœqòö›üäåõ®¶c±Ònu(¸ÝÝÀŠ7n[råJ{ä“Tü‚Òÿç¿>ÿ(.´¹ ºn¯=¼«u<Ât¹Vj)`ÕARGÀ0‹òwRò¦‘ù¡å»ÿy"ßòKÒôŸ ëé§ZyÎÞ{=9}3yQp‡i§b}BkÅz·óËHóŸäÕìß•Þ_óÓXhÞzžþâ{iôëw»úÜœª‘ÎÉê ž'zçdüÜóü‡×'Ò™ä{7¾¡o{.hÎ/®ƒG%b怖¥+ž«üñü¹óWüâíþå¿Êß7>›äßÌ»{FXàŽòäúëµ°š0$„V¯|ð¿™ÿ/µŸ!y´ySΑ‹W¶•~´ŒßM‰RE$gˆï|¿¬húŒ¿—óôêÉ«A+M*[î7§Až Ö´o7yn÷þU~·o ˜µ¸7×ÐÊꥀ£Q¥a^sÆž`òî»åM^ã@ó%ŒÚn£hxÜÙ\¡ŽXØŠÑ•¨FMt ;Οó‘^s‹É>W&ÏL´¦œ¤²GkÄ¢~Ѧä`ï)yCÍŸiO/h²BoÀò¨A1P;“’­QóÏüä7œt?Ê]KÌé¾\‡œz]ª¬“ÙÙÖ<H~xÝ+NÔ|Á—f­4Ì +ÄŠ © wù¥ÿ8›æ¯È›ko7y—Y°¼Ñå1Ig,¡–éd5#,OCS’¿6ÿÎ8yßþqÿX´×1þ¦ÚtsDˆm®£’ID„ȃr;øbwß•·¿”ú퇛%Õ®-¼«uqþã5¢xgº†¼ƒ˜ CQ’?7~Qy÷ȾYÒ|Ûæ2M;N׆”nŽiÐ H#o‹ƒ)øó+óæKò¿Fü¸Ð­bH ¹7í:3¸Ú¦ÝÏ\<ÿœ¤üä·ó·–?/ü¿«¦­åí"ÎØȉFð¸Z4P9°¹9Ùç.?;?ççü¢ò÷åääGÌWóÜ SXóâñš7f.Ñ*%M¸Ækþ}Ôõ#hŸ—ÜíäÒô™%¼„ÇiS‰çÙÄ“*‡}¼NjQòæåÆ¡ù‰©j0hÚå¼im£é°,FîTgŠÓýi]²9çÏ(þWkÞK±ó§–u l5½Jxlôÿ/ŒB° †f bv݉߾ùŸÈBüøü¸¾üÕ­®‰æ-.Ò×NÒt{vຕÄ6ñ„†(Ý‹©âiÒ›bèþUºò=ט.5Ža[˜­¬ô­ø«ÁAÊfm_juöÿœ|üšò×—´-_ó—Ö¼õ¯­­Åœv°‰­ìþ°Š})Ò¤±Fª°Ú¹ÓuoùÅo-i²ù3òË·:Çæμ-µ‹øœ¥¦Ÿ Â, +Á+»u=zdšûþqÊ:gå÷•?/¼á4‘~pùžOKH´¹»”‹P–PÐs +#».æ¹Òüãùä+y_Ê: ŽºÚ×æ/š–Úèé–Ôì`»@ÑG1ø©¾â¢˜Mÿ9a'æ÷”ãп-üý$gM‚»°{{xíÒ`©è!<;$cá'lå_ó”~léþi°òæ½g»Ð­þ©a¨IIêÚ9$‹!߉ì È'üå8,|»ùùCùsnt¿,é±¥¼ £:3Æ´`\Øüò%ùã þky;ÍQy'óx7é}ÞÞÚ”¬Ž-V5ôPKJ²ªPÚ”Ï8gÏ0Ij³³IhÆ:rmÿç9}wðË=1ŒS0`®”VJu ¥saÆ—åɯ"k«¹VÎ^Aä!Kø­r_åo!Øjú]Þ·æzßB´·Qé ­q3½x„…YZ†›·A“#ò«ÌWz0óF¯èéKGëC5ä‹ —’À4Ô.9)e…%KTmM«¾ø QNŽDM=ÚAÄwÛâ=€È”ËÈË,ªH {†\¬†µaVµ{e`xÒƒÕçăAãH€·k†jñAÜž§õæ‚*‘!~ï›.瀔ðnCj·¾"zïŠêÃô‚C( $Ó¾llRzlOÕ£ +Çž“r +jQ…F'þ”¬ÅCQ…Flßµ4û"¦ƒ ÆîÄ·Òqñ5Õᣟ66¿ WµAðò¬ùU‚ìgôÞ¤þÉïÖ˜Ú‘¸ìF+ œ AÞ†Ÿvl‘éÒ)¢•Xº‘¹5®Æ»øTâ¡Ú¿©ø¤÷ߩŹª“Ńsd–ã]¾{W¾Ù±;WôRÉtX3!b?i¨i^ý|)óÅ–çêî®(áO ­V^TØR¸Ó#ÃNM¹a]¶Í‘Û)54êÐi³]¢Ë} A=Ë…D& òðÅ´·ú«És2ÃéÃwq3˜Ô<òO)¨ —PÔ€3ZÎës#°“’úR«qtjÑO-·^ÛæÃOÌÌï7þfjqjo¿“P–Ô4v²O3\H‘ª¨erYø„¤à¿h»ó—›.ä¾ÕõGë—“É$’HÐB©f•Ý‹ޅ>úúêâ(-¥pÑ@œaE +…>'Iîw5;æÈ’—ßÛ0§|ÙÐ|—ªé¾\òv·¬YÛ%β p™eŒ²¿ +BwÈœ—×Ë ñ•IMf’0¨±sj‘DP…lE;xŒnzkþ}Óù×'“ ?3Å÷²-é—š¥ù—ç¿'yLµó®¬}_*M96·Pñ/÷¬ß¹ŒQ ,Q“g ªþqãÈúæå_æç—?/µK}3ͶÖúN­k¥Ké=Ö§¢XÛj’j–É!Zçnò*ƒÉGø9âþPò®¥ç]]<µ¡*˪Ý:}³7pñFÒP½G ðöÂ7#'Þq×üå§~Tù»Êßš¾[²Ñ¼í¤ÛÏå˜Í¬¯<·1=»8•Ùng ôW¡*¼O§›œ*üÀó¬ðþ\j?—>uòî§yÛIÔ-í5 XÉ<ú½Ì‚dŠIçRÑHäXW‰¢ƒ"šþsó³q?–ï´m3Êíú:ו´}>ÒÖÆOJŽêɧ lB d3?.­²Ö¨‘ào1iúŽ‰¬^y{WÓÆ—¨iRµ†£dCsŽêÑŒ2‡æÎCóz(0—þpóÌW>~×¼· éÖÚtžhò,‰y ÛjÑ1¬^gN`½ÔsÍê +)å¹ ‚ì;üà]Çœµ}N÷ÍÞH×<¿eæ LŸÊ÷–ZžŸ5Íä þ”éwg%"2Ä‹$³ ¬©"4oÁýkÿ>ÄÑÿ-nüµæ4êÞn»Óõ¸£¸ÐµÏ'éw…/¯4[›2å.­ã`ž–H ¬ó$‚‘(@Yc“;/üáÇåæææÕµ—å>¯¦èþhÒ¡—PŠóYŒ:[[£G\ÛV)‡¯H8|!Ô•tû%Güåv›æOÉŸÌf_!jbÒ|ñù‚/M¥”ðýG]ÑnDÑÏt±Øs*n]9I?(X=Uj¡b?ó”¶/ùKù¯æ}ÉZ·™ôMKÏzµïžšÛR´–ÓVòíë–¥ún#˜‹™%·¹U¢2+ÅCË‚ÿÎMÛy¯MóÅ÷•¼Ÿ¢ë—¬ÆÞló'’­.µ+½>9$’KSxËpó,¯†G»æèK| »Œ‡þuùoÏß—?™>dмߧêÞ_Õõ)î§ÔíµK±q=ݽÅÁ•ZKˆUåYÓ‘”U‡!Ó9ß›ÿ+ÿ( ÿœz‹ÎžLó³æÌ‹¸î5íÍ °Ót¨@· +ÈÒdUê•j¯„/óËDÿœ<Ð.´¿!uÍoÌ~pÔg´ºÖåÔÕ–ÛM¶?éVµ6¶aÝ®å +£Qbb^Ž•ç_™ÿò§4-7Ë~LÜê—ÒØéÚŸ˜õ›û™ö:ËÛ!–ÆÜ-µ’ñ†a!õDrTðá)ªUç{Ê«+ù8ùP¿Ô|Ãue-Ïײ´»iŠCkj†œ”9»ó‘[šñ †Må¿È¿ùÉŸ7Ãoæ'}c[ŸÌ–ðÏ$–Zå³_\¤Ž=8¥ŒÜ¬ÎåèxÆ´Ûl‚Z~Iþlù–çGm+F“Z¼óD §-Žìó ‰]ª#‘™%fZ”z?ÇGïS‘n›ù[çÿ7I.»¡j6åð·mVé?MZE©;%³ÞÈ‹m{47SN#FoÑËÇ-¿šl[T’Â[p¾‘¶›ÕŽEUãDŒ¹w©oå_5}cRÓa‰Q"E‰Ѻ,iXÑ\"uU C€ÿç#uMSþr HºÿœƒÒ|§gåmBkMm=%ýÌ7&Kˆ/§Ù}PÉ4 Q郱~vÞù‹óvÆoùÈxü­¤ù[˳jmåŵÒäD¸–ïÓ}E%¹‰Ù^i Ud¸Ž4Œñ^J¬Ã—:üÇó›þeù“WüÀÔÆÃQÖ®„×zu„3[+; çsé–˜|l¥äFs+³ô9üÑóýÏ柞õoÌ ½Kòôú»Å$úNjl´è¤HR&h g©¡’CÈò‘™»ç¨ÿçÿ.´'þFj˜oæ$‡A“Êzœj‹FŠÌܘ[Lúåë%ÊÇÚ©x£õéðñ݃ç»çòÿÈó‰~f˜ï­l®4No7]iò yì5KM>{[ñbgŒ/­-«•Iø¥HRsé'›ïüƒùCÿ8@4o)k·Z¤z&‘a}eækKˆà[?1ð¬sX}B$Œ®§$_1v +ŽÒ7ÏØß‘—ž@ò¿üàçæçùªmKNÕt»Ì[Ë +ØùŽ#o&ð¼`9’+Éà«×Óàõý–É?!?'ÿ5ÿç ôŸÌ_Í-^cçRÃF´Ó?-o<åë6×5½%ºýqJG$1+ü_Ydý¡!åÁÿ$ÿ(¼×ùÏù!çνw_o4yãLI,<¥§yå"Ô­›H³Îd2êK1ƒ“M'ÕåõR#ñw+ä$~Ek?‘þhé—ߧÿ1¯¼Þ4›éµâ¼0hÖ\eåxäY$‘ä–õv!˜¬Óõóß“ÿ'?2ÿç!/¿1?9–þãÌ^`ò­Î™.§>©¨Ç%ÅÖžö—¯w3½ãà[hxÕÇÁÈ(bOùÊ(þVÞÁä1è6öKÕüÃg¨Oæk G³Ò£¸¶q +‹h>7UcZ3ý³Ró·ç½“íüä]yZÑt©/´øî5­:U´·¼È¥mZ2VH™Y$RA !Ö@¼wóvãÊ:¦½¯å«{xVõç—H„Ùé2IŸWÖÖuÀ"æñÈkê1ãHøWê÷v7× yen-egº¶ˆr™‚Ì쇴~Õ{S<Û¦´kp4âÞ@£+P RMGøj‡©G1 ¸#Æ¿wN¹ H#sñªÔ¦õØìw®Ï^ÿÎ4ÎJ~gÿÎ6éZÿ›|­å[/4~^_ÚÓ๖?@úÜ»Ä$5X¥j”¡-ËÓó?ó–Ÿœ?óŽžCÔí¼‰¦éú×–{¬Mw Fê /"Žõ˜á™È„²¯½ªÝ¤Ï«jWÝÝ•#Š:Ë+±<#c‰hAH-ö¥­y“T“QÖ/nuN~O-ÍÜÍ,¬A%¹¼¬XíRwÈ·®k~eÕ®µï1ꮧzæ[ÍFöi..gìZIe,ìvêN;;TÕ|¿©5ÝŒo§\éQÆe– í¦ ê+“RP‚­Pzw ÂphwíÛ¶#s%¶øSì·áÀ5*Hê+úðzÃó×òKþrþsÏOÿœ§òƉ¦¶›©ÚÛZZèšmâÚË‚Þ8p·o`¨*Lgì¨RhO«|ñù)ÿ9Sÿ9ƒkÿCU–ôë­;_éÖÖúmå’EzeVÖië +—‹£0øŽÃ‹%{ Ÿ‘ߙߛÖZWŸôMCOÖ¼Åçq{þÉgªxtjÙ¨ÎCk«1oR<³2Ç QŠ©f« ˆÞ¾ã8®uÏùÉ?(~Dßê¿—>^ÿœg½¦—q¦ßÁq©´WqÍy}äî9­Ô0MR¼UAü`ÿœ¤¼üóOæn‹£ÿÎ4XDº$m®žÆÔ_GÖ¥%Üç” ©‘0S‘).9™Ó¿ç%-¿)®|çcæÉB×ÊÚå„w–ºL÷ 2H ZÉjæì4²¹h}Rþ¤‚’‹c+þrÓò2Óó"eÿœw¿¼¿òsÚY4'Q†X§Šì@«p„ÍGzºó-ÅW“QÁU5›Óu;‹~Wsµ)ûÅÙÇnQœ%ߦqûˆ„2´T!ñp„0ê)ìvÎk†þX´†{[ÛãSõhÑe F§2H`)·Øüö3Ò ­¯/×ÐTP¦”øÉß +b«kI.T’bhÕßg„|¸Ó6º†:r‹•c_†›Oቪ¡Pђıäi@½†â|+MþüØŒO!MPO•éŠÛ4HÞ›ƒÉ«ñq­ °105aB@Ü|½ó`È  š5§­Ð» ­¯m!… A^4,zÓaúº„rÎkð¨~íÒŸvl(ÔxýrNˆØñ"”4üp‡ZxŸS™áSÀҔ߀®ß<#ÕŠ¶¡)QÄ|;RŸ²3`|3fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³cáŒË A÷æÇÁ« Œ+ûMÐfÉ“¼©'›¼Ïa ¼ËkÓEÕëÝ€f$í°;aŸ–´«mo]²Òïo#°¶¸–4¸¼”Ñb˜o ä“É^NÔ<ïæ+?)i¦..¤â×ó7b@¥™¼(>ž˜3E°‹UÖ,tÉî’Ê+¹â‚KÉ»…dp¦F§e§=³¡yŸOó槒¼Ÿù;¥~ŒòåËÍ{«j“EêÆﳉeq-Kj§bÕíoËß;yNÿó“GÐÿ.ô˜®?+ÿ-­.õmFدnc±•=oVJ±c+µ&™ìO$ë¿—ëù‰ä/É7J·Ö¼—ä¹gÕ|×æ4äCϬ…fwQb”‚)ö+ž¾ò>¹¢y“ówÉÿ—?–çRü¶ü´IõÝfå­aÞ]YZÉ4—s–]ËȪ‘—¯AÎþ\Õÿç7õ}KÏV±‡Êºw–K[jzÅש$—–qrÔ$-#“EÅræØ5oùËHï9 ³ƒÊMåVHoµ)Ic¸·çHø£·crz¶·´·ˆ•šö3o2Ë,ÆF¬‡t¦çnYæÍwòûòßþq£Uô¼Öš¶»§[qÓ ²KtÓEýÜ#ì¯]z÷Ï1ùßCü§Ñÿ'¢´Ó<ǨêºÜ#ZG4<,É#ãথ=÷ÎäÿÊOÉ}WþpËÌþq¼Õí.¼ÏihÒÙC¯ ÂäÜ ¨OÕ=óÆqèß”çò©µ‰u«µóÂÜ”Mb_ª5¹"Ž\ŠÔ +÷ÏúWÚdë% BÁÂC+)¨§¾qžâÎxî#&9 ˆ=Žx¤™`m—Ód?H9Ãm+Ìú·é;c>¤ö‘µÂN÷ž.¾£A$uÉ•5iäóMÝή4'Yã‘õˆâå$$0%è”$Ž½p×Hó>±¦ÞÚKg}%“A*Kð±FŽE`ÂJ­ ïŠZ»Gs‹!„«« ‡T ק‡\õ-¿æå/åWæ^ù¬5ù<ý«CdEð‘žêÊœS…ÊHÞ¹Ñ|Ãù§y#ó_:ù[Í3ù¿U`é&³uÄíë)G` =T÷ÏRËù©ùc þkyOó;Ï~mºüÑ»°±Iµm[›Ä·GýÔ¥H$ò«“ï2ùžßBó}—™´_0Éæûç·ÿrúŒVD1²”± ) ' ?”?œŸ”žAüÙÕ¿1µ_.>­o~ó˦èìCÇhdnKËš·"§¾ ÿœmüèòÏäçæ-Ïu4ÞK:È,f„†šÙ¥Û’– ¸ÈgåæïäÇ–?=µ>yŸËFïFÕnfš×O 2ZE;Õ—ƒá$tÃ?ùÇ¿ÌßËïÊï>Ýy£ÏÞSÍZt–wVöº\¼bžeâ’~ù_ìýùÑõwÏ_󙟘Ëÿ*ö _%iþ”ÑZª W¹’5,jâ„–?vIçü³üÇÿœ‡ÔõÏ̽&ïô_–’WŠ ‹Æ q+½YD¼Y¹ŸÚí®È=cþsY2%|½¢~]ykO–æÊÚ×H¶[9.Z]$5`Ia@OŽW•?,5/Ο1^j$6ž[Ó%y~§]šB G1‚ÙÛ8Ž‰æŸÌŸÊI¼Ëù{)P&I!¿ +\q<ªÅYÚ¤×8¦æCAÓu%MknÏ3˜d¹•@–)#sR¯JóËúG˜1¿+ïuÿ&O¨Og I`½¶hÒxÚ®XòØ“ZŒæwv÷ZmÍΛw¥<47°’HØ« Œ‚ù‡T×µW±·»ÚÐp·a©¨Ø`æ0é:®•«[j÷š+Ç5Œ¬yd‰Äˆ@5ƒ|Óùõç?3h¾Lòþ±uÓy"à\hwPB±Ë³¬ˆ­ÄhÀPñm±¯Ùû>ÙèËOùÌ["ÇÊÞNüÃòŧ˜?Ãב}GP¹æ²ÚŽaA ¸‚M¹ë·ÿœÜп<µ(Z~dù×Vó’jvðkfVHÄ’H±úÂ1J9&¥~ǶwoÌ¿ùÍ3þr Oò—–¼ÅåÇÓ¼×úoK“P»ŽekIŒs*—)*± ÄÔÐÓ=üå>«ç&ùòßÏ:e¥áò–¯§ÜXùžHë{og Â3Ĥu ë¾)ÿ9Yç/-~l~céw—Z,šR œQn¢õ8¬Ô§#·bp_æÇåžùËÿ9Ôß“v¶vºm׬–wº¤Ãá–HÐI#È•ØŠ¨®Mç ?+4¯ÍùÎ)þMkV²ØXº$Ww³¼Iä\=BÑI£q=IÀßó–™úç—çõÞ·i¦Úè–ÒΖ“_ÚDÊ×H\(¹”1$¿ù³iæoÈ ¯)y¿òÆÐùfo«p·Õ`½’YïK +LO¡é…š>zó¯üâ¯æf•ùùA¤Øù^ DOd,¢X.Eسc <©ÇŠóã^ d7þs(ùgòšÿË_7 ¡ùzÕ$Óž;v!çx$¤Šî)ê¯%Üœ üÊЮ¼€<¹ç$i/å>þ9"±½KÉg’ýíÜ«Üq‘˜¢½>ÏLä™ß›_˜ßœº†“cæ»\i°Åe§YÇıªá@*}ÎùæïÎÍ<þvy¶o4yÖý¯u+‡b¶‘ Ž˜·ã@PŸ à_Ÿ?ž¾püúósæF *YÆÅY±%P êÝûm‘OÌïÍÏÌÎj {óUmJæÖÞ;Dâ±C(DHâŒ*( ì2!¬Û~†¾›LŒÒXÇ£uŠñuÙ†ýÁÈ,×I,EÄH]…)¿qœÛVÓ­´N[‘d(J;Rª„lzõ¦C±O/Fu½JÇH¾¾úª5äÓÓÔ‘‚tó6§mm5áµ@†F©‘¾Â»`ÿ.ÏÖ§¦é×7éamfâe½Eô䵨e¡¨ìs`­V]KË:üz…ŽªÒÞZÊÒú)*ÜPÖ7 Øä£Oü×üÉòwœ—Î:™nmõëUÑjpHÂOF5 +¢¾™,¾üáüÅÓ2­ÿ2ŸÍêbÒ—«Þ¿×eBxÃñKZÑ@8*ÇUÔ´ÍB [Oº’ÞòÕÖK{¨Ü‰#tÝJ·PGl[Ï_™Þ|üË»ŠóÏZÄúÄÖà¬r\7" ûá?ÿ0<çù¬Κ¬Ú­éiÛ—­x è«¿A‘ïÌ_ÌÏ7~fërkmÔ¿IO;´íÆ$†4wê €€`ß5ù¿Í>z×.<Íç-VçZծʛBöVši +¨QÉÜ’hã×~™ T/È +vï‘+³2|;aF-õSè ù ú/ˆŒeQ\‘ñtöÅ£Š4ƒëe`B7F6º»Šêwfõ¶S쪨Pb³ËêðsBÔûPS$>ióEŸ™¡¶º•^9â…-Å°sèƱ¨QÁFÀTûæÁ åU´Ã­Nž…™4ŽgØ9”uÛö3­ªÝKHÐý€vf÷ ‡¨½ÕZ2–µâ²¾Ü€ùf“NÝ°7¶ò íÛ6VlÌÄœÙj¥Ø*Š“°€$€:ž˜èb’yV÷g4Qï›Pñ;C!1ïGõ¤ Š0% ¸ä·–OD.ÒßÛ6)KoîyükÔã¿/»/§¥Ëà­yS|èhÿUüš¼Lžµ?ÝŸË÷fÏÿÕùj$‰š€’NÊT“øgË41á +4Íü¨ üÏ–V–7’zVñ¼×Š/#Ÿ*±ìò[‘Í?õÔŒÓA=½>³ ±éÍJ‚>‘šæÎæÊ_Nxž6ðu*|3`ëMnHÜzRUÛ¢õú1±Â*“%µí¾hóN±Â ™Ø×aR~y°6³s<­SDa²ŽAªÀì2ï-î-\Ap¼íp¨=vê>YWqM ¦)ÓZü5éÛ6´VC,ÁU½$`ÊÌýçîÁÉ«ˆ ˆ=iÛŒ0«­>]Í:šm÷æÁ­¬ºL- +VhžFº“z…n+ð¥A;w9ji_ÃïÅFñsAR¥½O`~Îl.†¸ÜC6uŸùÇo#ÉçÏ5þˆ¹³zYuý!ÍÒ%VX.%‡÷Ñ™ãâ»’;W%–^J‹óÍ–þZ–ö+]da4Î#_ݯ*U…+@iS‡~ZÑuMu¥²Ñ-e¿¾j´Z| ÎIR(¤šBª*ÍÅP’ª+LÊ¥Tø íÚOæ×ä/Ÿ¬çò¾±g¢Xz÷pykV’êßê%žGYÒo¬úƒ÷dòŠŸj è^OÐ?0ÿç|÷oq­]Aå=FéI³Ö]Ỏ;XBÝ›˜LE•ƒñŒFÉ"9çðnj;§äטüëùç’çÌKåhõ¾°5¦‰uî,Œs%Ũ±¹‚D2ËΕ¸DTø¹J°8ò¿™¼Çä?0Yy£ËWGOÕ,ë%•â¤rË¡N@H¬µšTÅÇþÝ~KÍçëÌ1iמ~¾óU°†I4ŸWL°ý-gi;"´FIjμ€ Ûn£üÑÿ•G§ùîÿ^ò•ž£ç?/kª²é:î«$ÚdRjf(ÍÚËX‘æX¦–²QâbÅO µçüé³ò ·æ¶¿—ú¥¤h7×fãË6úÄðâÒÈØ t,Ò¬yO„Â¥0§—cÕdO*Ëu>šJ]B(¡¸i=õ¹$2J¡}^\>"xÒ»×ê·ßóˆìùwÌÚ™ÿ-.¦\yÇM½ý?k/,èöŒÐ)E*Ò/²Õ­8Ó#~]¹üŽ×ot½3Îvúß–`¤ÿ¥¼Ë§Í·+Ë+Fb¨Ì¶ "QÃq›•ˆ­)¯ÝùSP¾Y4}.m&#+¬7îp’s*$ €ÿ»¨2|4~ €¡Wê.ð«ú¨R.$e%êÄ_ÝÐR‚…s^Ù;ÿœSóüâß“üé¥[˨ǪêþOÖ$Õ¼™æøô«»{‹»I%šÒþ9 ¡DQ;af W=_ÿ8Sù…ÿ8›å?/ /¼­}}ù§¦éšÊÅ*%õÃê÷æIìvé$aÚ'HYTCJµh¬>€ÿÎ1Þù+[ÿœiO+~^yyóôíKË·šlZI¶¸óN“ª\^úsAªÜF–Ñ­´÷F+£ válxCCÛ¿$<Óù£y/W8yuï|ñd—ñhIn·· ­ÅªZ›©º M¼&!+Éëpäì‡~9äï1Eæ˯6j¾VÖ<ªº¶·™të…y.-£™=E…UËÉ$CQB~FƒÄ:­†­ Oq k6Ri÷‘0úÜ0´W +hUÄ€2ë°ÞµÜq§Î½KÔ|¿æ ý U±m?QÓîe²º²r}H&·s ±°$š†qµ:gÔtíCHÔ.tZÚ[+ë)d·¼³¸¢š ¢b’G$n++H¨92òǘüËù7ùi¦ù¿M…%±óÜ—’iÌ}4»°¼Ñä’Ù^)™Êð¸ÐH§^†¶z÷™¼¡¡M>üEkæ w“„. Æž«A&Ô Žþ—CºþÉ“y¿V‹Ê¶¾O½Š9ô›k™5KY¡…¤·¸ºEV1ÊÁ¥ *Åt­‚øî»S 4 HÔþ½æ-CQM7UŸN2Àn„£ëW×£‹H³I"GW¡bÖ´íSXÓmßôf™o¬j÷vÐÇ$É `I‘—Š +³v™âÈ »Š9/ቌ6ò$S·Q^DvT;×âT~æy;–?54¯ÉÝ.ëCÓüµ§jÞqòýŒÖ>Sóå…ÔäYÍs|nÃ(>™š =©Q°—@òÏç•ùue{‰å];ü_gÓô;XÜ^ªÆ¨Å$ºú´’&yb¬thÄLÉ¢2|Fkyù‘©ê[‚ÚKHÿOYŦÙÙy–Þ"š+ÕàTŽhî¢v®'(ž™fFbV‚ä[ xC%ÊIÝ#²´|*v§zkÚ™Ì<Ûä8ê2?š—R¶óCjÿîKPº°¹ŽYÝ×ïfÃUpêÌCœkœ²ñî&®¯&3MqY¤˜Éê»3’Iv©<‰Ü×|ƒ+‰”É$@~$³PD 4¥iLG'ß’ºUÜ·þo×MSµ_&éÚCC4Ï=õì¶ä ÊV5å^_8ô'>Y‹H–Þú R³Í<-•e +He–îr¨Ê-éÜX7.Š*y–Öï=µ»­Çï$”Z‹i„jœA¬’ÈB"±z/añ*®Ã<ÿÎEy¯Êÿ‘òÿÎ*jº—"éåíu mÜWçÑ™&€!eP ijqZšU[ ùÇþr̺·äî“ÿ8ü<½¥é:.ƒ<Íul·âþâ{pþªÍõ›–D“HÒÈa'ÙeOƒ:æç÷ž¼ùùuåßË?1›Ó<¹¤v‰cjJN›htëY'•*$u·!y)ø¨¬Õj×¢k?ž~nÖ$t/È´Óí<³ êëI-­©ŽöóP“ë ëÝL\óeŽàÄ´UøìÔ†ò÷üä?˜ÿ-uŸ/®“¥ÛëšBynÃHÔü©{õ¸m'ylò;@ñ33QË•jù'ó]òO˜-u‹XRâÒ£Ühë,öÖ“Ú: ™$Hd½VNoȹæuFXN‰æ]gË𽕴Iuku-¥äÖQ³¬—«"ÛJBH¦13S‹ŠÖ‡’’3ž#`Ì¡Àê­Z¸ƒt9ÎM~oÉ-¨Ú“;ÁgŠ‰o JYbåà7j*r;³'X¼Çù¯ç›‰™Dú¦¯$×¼QÇ 1ñRììªGjµfè¨ Þ™~Eòg˜2|Ñaäÿ+Y›íNïÔ–k,q¼ÍR\4qJƒ+„"5­Y¨ Ó.(¤žAC“7AÓ¦çs…Ÿš“Þdü±¾…o"’mU–â?/ën«W¿S!gT؃Á«Mð›Qѵ=.Dúõ³Æ’rhe(è“"Ò­e…5ˆ8—™|«uåˈI 5ê´šUû)s’…–„€ClÊMTìq´#™Ñ.`ÒôÈk­:  ÕF¿oouc§Es)’ÒDuk—)ZqF5¡|!£]“i¡ÜÅqwW÷­–WqË {Xãæ% …>¡ Q? B‘Í+Øã*‰oú¼p£ÐK™Iâ…½2MOJÖ†S°çòãË>[ü¯¸iüþŠþf‚ãN¾E]B–ñN‚ ¾‰5à\«U ö4{mJÖ¬#ó4]‰î"úÌVב…¹gŽPÒ[ú½~`hSâVÄ]"šHBJ)Ë™CCFQE *GQ¸ðÞ»fÉgçN‡ÿ8î×ߘºî³>«¨\Ã{^Z’ÊãÔ²v»ˆz¯sVSI mÉU•øŸƒ¾Nü»?üã–›äÿæ^V¨€[˜y™Í¼‘ȧ—÷¾œÃËt¼µòÖqáL3“ÚƒîÀ®Åš§Ø}™±˜Ì¬Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lج/*éÐWmó_ቘT-7ë_lÙë/ɟȽ;JüÔ<Íù‡i4’ù¼ÛÅ Cnü%‡Ò¸BÎõz‹Uµs´éÿ“ž^Ò*Ï›|Ås%ǘµ »K[/ÄŽ¯´îOÖ ‘Ä׈P?ÊÏJþNþZéz?äáç›”µO4$^V·G¼®³+Í*×ìE"§ù©ß$–º&‹“µ gU’eÕ –Ñé6‰â“™–Vzu^ þW¶týοç”5¯Ë_#èo|£¤qo8ëë +Çyyo°úñÓ‹Z{×'šœuß7þ^ê–Z?’|³¦²¿™µÈàXï/¢F »L”bIS·Ž òÏ—î<÷ªy¿Ê?“4*¥ºKæÍfã÷Púq*¬É@¤È(^Õ¢ò×—o#õ¼Ñ¨³˜c¸X¥‚ÞB¤æëEOûc?(?ç"µÉô‰?+ü¨švåŸ-Oþå ‚V»²™ýë@x†©-ÔÓþXù÷Í>iüµÖ/-.ôû!ùU£¹¾†`òÇ<ë¨ÄîÓ‚~Œùç‹ÿ.hºÖ—ùZñi—~XŠÿQóI¼o^×ZÒ¤¤[IÁÊ+•é× <¯æßÌ'ò·å.Ü,:›êõ¼KÀ^ÄóGýdƒûÅGpP7Ù9üâÿœ`ólþOóÇ4›“¨ySM0Üèr½Ðdôy"8É É·*üÚÿœRüÒò÷“õ9q7XÑ8M§®Õˆ´”¨-`ì9:ôÂ_Ì_Êûè´1ù‚?­Ùù^T·Ôô15LBI:¡å°ÜÐ æÿÉÌ}#ËÒyÉt{øü©)qo}~¡I +¡â ÓvaJg™|Çùyç_Ëû]: ]Œˆvö2VWš¸±Âu¿.y«ËÖV>`ŽKH¯Ò;«h&ñ=ˆÎ-§˜4'X/[Ç*ZÈVQZ©ãЃœâîÂöÁ£[ØZ* #(Y¡Çþ]yB×ó‡ó*×DÕï£Òä»çÍä!}IR6`£°,V˜#ò÷Êtó…§—­å†I¥'ÒŠâAr•¸r=+Jd‡M³Ñ0¿0íí5yÆiv_ëW1E˃$LÀ„,úr¬í…ÝÊ[™.uýãý‘@NÿvM?4ÿ&“Mü¿‡ÍRéK ]ÛJ–©f¨KMû5$ +V½ð×ó/É×S¾©>‚tG5œn$NK±<¾c u¯%ùrçòñ|Åo{7öÒˆ=–`M*m_|G89Ò¯Ìín±3Ì+T¦€Tíœõc‘Ø*©$îŽsˆ­'þ§o<ÌH⢤ÓÃ6{cþp¿òò0ù=?7:¯"eyžÖ+¹V+tY¨-P~/ öoüâWäçåF“äøÿ9¿3îm¦bÒÁkc~Sê‘úˆB;†¯#^Ýó׿ó‡ÿ–¿—òyXüÏü³Ón®ì:v/˜’ź™T£‚9²Ôíž»ÿœFÿœzü²óoåÞ¹ùÁù…­X[~Ž™´ë+ _‰²YdOïeS^D +•_êþwüøÿœ\ü¶Q{ùCaù’ÂÒ{=5tŽ0XÛ¤‹é´ó*€ T^¹4üÔÿœ‡ü˜òºžkòTI¯y–ÊÇô~g§*Ûh¶p´ ð“Ë}³´yÓó×þq÷òÓ\òÕŸ–n’æÛËpß /N³œÍmm5Ã3! ´aC{.K¼ÕùÑÿ8Åùæ]#Ìß“vñy»YÒôû›-9Ì~Œ7%8Ç;-(î– ׶y:ÚÑüÓõ+Ê_Xóžµ”êXKnZi™½D”+\󬟖ßž-|¹”¥Óõï1y°\ÞêQZ@={ORæBÆWýOž_ó—|éä¯*j^X¿‡Tóï™g½ý%¢ÛÄ]Ášþn!ÏJ*Ð-f™ãÛ}]üÄó.Ÿk¢E&§æ3ÜÊÍi‚^êyÛìлä¿óóþq§Ì“~DѼËböþî´Ê¼ãéVëöOaLÿ9#ù#—´Ä3K&¡h²ß]±ýÙ¹iÃ?6?ç¼Ïù=ùm¦ùûÒ‡XÔoYCn†-<û?ÀçBÿœ‘ÿœ_óüãlÞ]µóKúòëVbæyi7ø¡¹\ò•¬²Yj_̆BŽ²…®ä«W|ãZMõÖ‘ªÚjV24w6sG<Æx²ÉR¤t ŒóŽ•v–zõ–µt¢ONdœCĘØ0ùn3‹«20u4*jìFvO<ùÛQüÎòÆ“­Øéa"ò¼FßS»…*æjÖQЀO|ëÞ~üÍÔ¼Éæ]/ócO–[mi +gY…ÏÖ^sð—vêXŽõÏDÎAÎJjó‘Z§—<ßåß.ÿÉ1Ũ^@Ìó<0­#°¥ õ­rMoê²KqÏoŽYãZ<Ä·!îÞøó ó7;vÔôíS]¿µº]6Ö+k1+ +Å j… +HåN¾9ó‡æ7™¼ï}o©ëZ˜–Þ̘tõ™ X—Ä-H©ïœïóƒóûóZÒ®5RM"ÎõM:Ô‹[DG"ˆ• +Ìwo‹y“Î÷šþ¤šÅÇ84ØV×O´O† x—öcJÑA;šwÍù!©C®~ié1}F=cP˜Að‰!åBT”=H;à(i÷zßœ-íüº‹«ês+4)2/§È)$Ýi‚? m|æ?ÍGó‹ [^1—oºÈ¨Z€þ×l*´ŠY®(T3±øU©Có®s6[ëKæ Në]B—²ÝN×uÿ~´„±ùW ò3<ŒòY‰,Ç©'­s˜ùªÏ^}S»Ö hî^yd¹  #–4ößÃo.yF}B-8ÙÀ×ÚŽ¥)ŠÎÆ K€:9É—.uŸ1[é+¢Â×Úž·;Aae KÕvä{R¸(‘¢wv!cŒ¦Ät'ß6+æßÊÿ6ùRC6»ÖwT«ÅÁ5SNøQæ*ë\Ôn¬õ¤Ü[Í,j ±1Wö#5Ÿ)_è¶×rB%‚öž•ïPöVð9°×ÊþEò[I ó†°,}HgHʱCJ¨>þØuþòµž›sy¯$S\Âfž^f3C@iÜœC@Òá‹X†=|$0ÉÚCöñѪ»…fàV=³]4Oq#B8¡cÄ{d' ¯¤…ïnÑxÂÌÅÛW1DŒÝNé_ +㊲…cßuùe%²3ˆš¯Ë6è—>˜Í©êÖÿ]”†6ö•¢‡ìÎ;li`²{Ó*“gHcUoæjV£Û6ÕµÝOX“•ììÈ?»†¤F€öUè'uw=䞥Ö?²;(ð°ÂCV¿Ô^·;F ôâ,J =€Í…øŽÍ›6lØ*Êê;Cêðå*š£ƒl|nÇû'à 4«û{Ó˜ùN»ÄÇ Û6&}{¹—cVb?^5ªO&5'rq'–{ÏRB ±%‰ëï›ë·”§ãóËõ )AJS§ãŒúìÞˆŽƒˆÚ”ü~y³ÿÖù„o]9$1z2TqX†ÁÊ;çÌá¬j0+ÁkÆÙG!+B”Sù«Ÿ2n5x0Šc +¡pþ„ŒªM(éŸ*±ÿ¦¯$s:ÝD§xå©WØ©é¶a¯^Ïqoõ¦K¸Sˆô¥ §v +ÛÔwÅ4­H#ÉÍ'†EG˜³p;rd`A­â¹ךÔêr¥›ÈñÆJ–œ¶cá¶Euë‹iõú ’rTqÕÇ6!‰îH9°$õ5ÂúŸ.͗ɨEMQøæÍ\ÙY³fÎÇù+ç­É>Xóv‰æ¨µ[xüÏmi&…¨èC¥¡§Ü3Cé4›ª3’$e߈ |D=ü·ó'’ô}^ÒüÒš—×/¤ÓçÐçÒÞ8ÄW6²IñNÒ8ªRZŪGo´:åW˜´,]a­5fó&•:_ùnïD»K6EK^5Ä‚eeH£ä‚2€~ó“Pà›Il"ŠàÝE3ÎT}JHfXÖ9CÉÁË5Ø5Þ½³¬ù¯óŸÉ–ZýŒzòõÇž¼Ÿ©[Ýéκ™EÔ,äµHG©bì1Kž2¯z·.’¯4~ohš—õï3ù~]_O‘éúÔø6¡aklÙ¢ú¾¼%)é‡ áPÍYWš?9´?0é:æ…­ùBËS³×n’î1zó~˜±¸Š89ýVàÅ+|\¡úª£+ +ÕÔIŽöØ-Ò\Z ][Í$’zÖü*P©v[’Æ´âhA7<¯isÿ8Éå¯1þQß~–Òæ£{æ ;Pžu¿.²Ý­¼`uWâ2ÕŸ:*Œ+üÆÖáÕÿ)¿,´+»kßðý¦¬ú˜·‚¸‚{íHºýfE–Y\z>’©ePü +µ«È¿ço˜ãÖüäm+Ê"ÿ)hVrG§ë“Çoúyï/î¯ Õå€Õ^9’Ö7cþŽ ¡<Ÿ*âiÎijæ‰ ²ÆQ#! +Ë#¨GÀ +«I_´sÎëæ›FƒL¼yôʶŒêÔX=IY‡oÈk]ˆÎeÝÍ´ñ\ÛÊñË ˆÌ­)ä¥H56âó‹$èñ”˜Ô¥Y ­ ;@ÜÖ€V¸=ƒùùÁäO/þRê>C¶Ð|¹.­åÝ +ãR³ºÔ­¢¹¿ÖõÍV`P¬Ülmf‘‹*´£ÒZ°E ÷žƒÿ9‡‹ÿ8ÍçÏ'þ]^Úù@yGòþ‰ä=>ÞîÒ×—w³Àš¶¦L¬*=E–åZ$.% æ¼F{çÏ?ó™~XÒÿ(üÅäÿÈë«Ï%åꚑùåM"ê{Y­t]6Üê:ÝÅ«…innâå0I9ÖI9ò™›¸hó‘ú†›ÿ8éªþHǤh¶1$–²é½Œ‘y¯¤¿k¹ï$¾SÀ›Vû2zm-Qe¯ ¾¸×?ç)¼ùm¯i‘Á/æ-ôÚjzEÃ[¥®«%Œ)k´73;´ïo,!œ8 ø¦úçÍŸ™Þe¼Õï®$ÖüÁ©Ít;ÝÞK)/¦Š(ä#‚üT5ˆb¾Xó¥Åïç×|ÙùŸ¡é:W—¯.ÜjšŸ–mî ·Žk«§ýâé¶×S´÷ #ò”ǹZÐ(P+Çu-GXó>µy¬ê·ê:¦©q%ÕíÔ¬džæææBîìNìîìIîIÎi¬h¿™«i—^g°Ô,®ôPööz&¡os¶)q)¸rmåPÈ ?6øEzà©ë×·Ðh3Ew5Í«þ‚Á–F–2»˜#R§Ôg<ûDšV¹ O)y§QÔšÎúÆ{#eõXõ;ËØgŠ >)Ýb‚[·âLq€ËFaN=+€YYX«4 ìA7ÍÞF¿ò²6£ª^WL2Écgª@. ¹º·SÊ4•£³D¥KG^KÉCq®'¨hz–›m£<Ú}Ô·XêJŽ-®žÔªËèÈʼ¸óRGPTo5MPÐdA~®±ÞDÓYÌÉ4+< òF²ÄdŒBñ°¨Ú ­A›$ÿš˜6·úFƒ¥éR «жöò…äÏþ##+ ã½iZ—e© Á¥pX” óUõ üL_fmØlkáÛjêîõŸŠ„áR¶ð¥*ö'íxò¯†lšÎ3~_éš>P»ògŸ?2£òo”$Ö-¤Õ4»­fÞ‰DbæèÁpüY‘2Ux±Œò?Úÿ!ü±ä??i¶þVü×üÌo'ùR=Iî.tç»*‘MõF)}£,‰)}'?¨aéú¼WÐÿ–þZüÛò=¶“ù…ù¥ è³ÝÜŸ%ê>h³ÒTY-ÂEdº‘h`žV¸¸“Ô1<[UÊoÊ{ùiiyçI­.¼Åç5òï’’íõJÖÿPx,DÐ[‘,Ð[1hÚíàCD­XñN[ägó³Î·>GÔ5?ÉÏÊå:l¯nK¾²ºõn<Ém²C¡y}nËÐuˆVÜ"©åXw毞tÝNöëÈÞD†+/#h·×ƒAŠ‘.oáK‰–Ú÷Q™@3ܘP½T}„JµxO˜µ=ZÞátG"Ò  KY¡0 ÀJ²ZÒ)K%?ñò+Fnªµ ]–µñ¥H¥NùÄÍÝ×9ªãÖ%¥^MñIø«Ö‡Ç9ùÛdzW”Èü‰êj7©=7Ù^½­±{yš Ér6)ðR¥K+VÒ”Ü÷Û}ßðÇÇ'*jM ¥7¯~™°÷Mº¾ó…§—.DVÐꅵט.J¢ rá ÒHÁh¼™‹rU54'<›c£ê¾jÐt3] ïP¶‡SÔPmí¥–4žNFŸa hM2mù5¥ù{Í›~FòïgŽÓËú¶¹£iúýõĦÞ(¬.o£ŠåÞ^iÀ‹~J@ÔböÑÞ_[ZM2Û$ò$oq'Ø]‚—oe­Nz[þrò×Jüº¸ÖàüÆо¿¡Üê–ðùZÓu³¾„¶ë$:‰dIÒd—œUýùe¯qÜ¿ç!¿/áü¬¾Õ‡æ“íã—Í•Ýß”5 /W‚6]>ÙÚ6&Ú;z g”úŠñB=PU!Æzüä_“,¿.ÿ0|Ѥù×F‚×ÌúטïšÓL"Ò+[‹†ŠÌ}V&’9¡fŽ%/XXŠÿu 7ó·”u#y–ûËš§ ÖYRˆdWŠx–FD•ý‡ãÉjV‡¾y›T¾^º‚KûÕƒO±‰ì´Â[œ¢ÎÞBÑ#åňäGAÓ<äHÜR•¡Îâ2GÙ©uŒ  _‹ˆëBwÂ3ò—žãò¦º.¼·jö:xkCu¨-_P‚¤££)ôù1=Y~Èé¶yVsi¬Y\Þ\ÝXi©ul5]OO@×6öò¿žŠYCŽy']·òßš´íVI¯tûšï5 7ˆÔ`´wY{Vv=Vˆ:ª¹âÀ•o†¸¥¯ nbNñBYDÒD¡äT'â*¥@XWÄgMÿœÚüçÓÿ7?9¯¥òíÝËù'L‚ÚO+ØÈ l­g ÍÄÜ\š gvjºÒ¿XÊ=0ôï̯=ɬh_ÞÓO²Ò-5RöâÖÊ yBª +,nÈ:ð+ÈÔd‡óçóÓó+ó;Ì>dÑ‘ìü¿q{u/—´Á6¾…œ® E µÿGŽfP¯p"nl:× ¼ç¬iÚ癯ï´XM¶–$1i6íP:ZEðCê$?»2Ò•ûRmÉ®s ,ü£ Äb·Ž{ýFÅã†Îê¡-£”+/:QØÀÚƒæ9ð“ŠÊ²FÞƒ›–ä„5I Wjƒ8Ö;t_UËP•@À 9Þ»ýK„òjöÖúœ²ƒ%í­ÄpÆèX;„Ž8ý5aÉñ*ÛmíJxш”ª·pwÆI5$*X¼mÆŸH-;Ò»Sq›:ÇäF·æ}OÍW~O´Ò-¯muDj×ú¶˜u(lî!ŽY  dGêÜ€*â¦Â½%þ@›Z½ŠóÊ– gŽ­-°Ô5FÐ\æF Ægfhå¯'Uç°â{ÚN“q®_¥¤V÷7LâÚÝ-aid–òtBD³K(â oÖ€æÁÚVw?çN«åûO6h÷–6w?VÔ|Ç“J°½¹{Vg…}n5_V>ñÜ€FƸ:÷É1¿›uÝ#Ê~iÓoôx[êæ‹€º=…í lâÙ.¿àñ¢«4c“*ò+’_,yV-[W¹Ólµû; 9=h¬ïoìíîž;g¹–¼Q£Ça!9J•8»Zxö–óÇ0VeK€Æ8œ-~ frûW œò·™µÔóÍ«ÚRúVóGÓ¥=-"ŠÝøô_„/n&ƒá":ÍýΫxoï&Žk‰ÂUcDj¨¨¨@ + +»/AN™Õe’ò¯#N¥§+ÄÊäUŠRH±“ô3Ò_šó‘Íù¤è¿•ÿ–úÐ×üÅå} +EÓÿ0=HåÓóÛ^•‚)90že(²12Fãn„ç®?8ÿç*5¿ÊÛ-~X~Uù­|ˬùHºÓ<Ëùƒk6¥¦j«ªÛYMi-‚ÎÁ¢–Ò$1·¨¼’n[Ž>ëÍÿó’Þ{Ð<¾Ÿ–z&·<‰£iÃLÓ<Óosè\Ïkq9»¬ÞƒÊ*G"Á¡Ù’0üJúNµ}ÿ9ù•¡XySEòÞºÖ·>RÑn´K0Ø]Ý›¦²Õdk§‹”²ŒÂ“F«À.Æ¡Hñ¢†¥o¸5ëÛÖæ"êTÉFBÉÄ÷Ó&žyÐ/t/0Ee¨³¸ºÓíoagR9G$uSC½àaç™´õÓ¯–(äÇ,K?l¤‘‚…M¾l‡ñ…Àˆ…â¤ÑÀ£m_ Ž/ •RDÚ}¶Û mÊIH›¸~?ݪ3bs+8âKqû+Ðý8ç·–E!CÙc⦵÷4Å^%mþ@!z|úæÂë…á3-¥6=za]Ìf)š6JÐzôÀS§§+ ”ùS6'‰ã3fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›69T‘P+›-A9³½ÿÎ%ÿÎ?ËùÍù‡ ÞaUò·é^êÓ¸!&TXíùtB~às¬ÿÎ4~TÚþl~e[iz­ÂZišz ûùe¨GŽ)c_K—bå©Wò3òRÍ­ZîãT¹:?–ttI5­m€ô 2°X“°.Û èÿß” ùÍçðåî±—´«8ûWÖ¯ !·¶ŽDŒšÿ1i ô'üüþr_.›É?!˜ìýµ[˜cŒ2F€zPÆàU|Zž:ÿüæï綧¯Aù[äi ‹JÒ/®ÝZª«I,bŠœ€‰ížŽÿœÈüÉÓ,<¡¢~Cù&Æííî¯ïÄQ3}XŠÆ‘= ^gwñ Îñÿ9Ñù·ä3ùù?ƒygË0Â×Ú„i[Ë°”ÞJV‹Rv;×9‡üàÆ­ ^k^dòÏ<Ìm4ýfÑŠè²ÊcŽîêeG‘ˆ5âV´ïœ×þqÏ@òOž.üËå_;kÆ;‹¸ÒLÓÔß@ ˆç±"„PøçÿœQüÑòÏ’µ¯1h?˜úÄ^Tó“®¡£BÅb¿ºˆÖ—ˆ,T1­3ˆ~GCùS©Iæm#ó{U¹Ót×Ó'¸Ñ~®îªú¼#ýHª A#å7~]¿·üÜMW¾u‡˜o>«qsmlòŠ€­@ë‘O j/¡yÎãË:¢Ý7\tÓµ;x¤}b:°PýªÊ r§hãüuo-ýÓè[óÉ·–â%dYú£œhûEvÚ¹Îm¦h®Ú)äŽÞá„SúlWœ\Á¡JÐ÷ÏeÿÎjùGQò÷äåõ—åÅÔ¶v¶Ò„»Ð­$VBŠ0F5£PÐí¾z_þsOÔ¬ÿ.<‘£jobŠž•÷’­î½tµHéÁ¤ ’KSzížÿœ®½Õbü–ò×’<¡£_é¾T°º¢Kw79¯ÓˆàÓR …?f+¾w¯ùÈÿ=y‡Qò‡“ü£ÕÖ•£èö¿RTžòIÞ6@¯ëÈNÍêÖ£­)œ[òcJÑ?4¼áªyÿóÊðêšÞ†ö0é^_æaŠvy–2J§ì"îTuÎWä«OËï7Ü^y»óZiu]A~«ik¡¥ÃD¨ÒHªÒTTúiOœÿÈÖ–Ÿ›fŸÍþjÒ¦¿ó–¡ÓÛ@ò[#WHchdŽFHóT¡ë…±Zém£Mw%Ñ[õ‘@»2´Å½³¸iß‘?—pü·¼ó“þ³¡å$ýwVtâ—÷FmÀzgB¿ÿœy²´üµ×0tùH¼¹m}jeJòI@¯¦¦” Zg£.ç ´ÍOËv ¦Awå=kËz]̺ÝÕÚ)kûØai¹ÆË°Œñ¦ÙÖ´?ùÇé<ßùWæÏÍmf·Ñü™m ºžUbone"«e ]ò)ù/¡y/Xÿœ8óΩæûoÒ—‹8 1YW6´á‡^IÐ4+ŸùŸ7kÈ_­Ç~a!ÔÉ8'Ój²ùmå]cþq'Ï7^}±—VÓ­®å¹¸H£m©*ŠA=iSòÇËß—š—üûÿóQÖeHµËMR ¬À”¤*PB¬½ÜížxµËZV‡yjÓqºÔ¹FŒ ¢F[aôçš ’ÛCõsÄ €ÝZ»gš%Ó<½c Þj…oK%¤$Jì=ÉÏ!gBѵ _ùÆß,§˜t‹ ÿ™W/ÕK'«oca<^¢È7¡wGðίä¿Í_3Îj¼ó½³s·Žð£oB‚3–-Üë1œ7ÆkRGŽAUÙ[;øç,IæI½nD9ê~yɯ”|ÿæÊš÷”4b±ižbÇ«9PjŠkNDTaæ­kPi7š´Â=>õ•¯@jW¥ É÷’¼ßw¢èÿ—tèR3æ~¥u|íð¤C8?:cãžXUÖ6â$\x ìߘÿ‘¿–Z·‘4o1~XyŽËô¬±¥þ‹ër–â^5i(zlê¿œ?“þQѼ»¡ë_–~b‡Ì¯h¨Â,ñNT3O®Ä‘SÎß“ß’Ú÷å~‰æŸÊï5¤zÝ•º[ëzã|wW_µ$+]—:'Ÿ?/¼™¥ù3EóŸ’<Å©Úˆµ]:jGyksMÁNë^„gœô­WWò¶««¦K%ݹ¬rÆJ8= Î1§jzŽv/tÛ‡µ¹@BËâë]ŽùÁt=gQòw˜-u»%E»°—”jéÉ9.ÝÇ9À%MA¡Ã莧爵}a½->D¼½qÈëñx“ƒ´Ý*;“§p¼ìý@—KË‹m»oÚ¸k¨êzƽ>fÔ 2XDÑÅ}Ä®A©Zö$fÎç~o~_Þ]èÚ•¦Á¥Èî¶WšäiéÎ-[j#²î7ÏC~XþaþQÏæÏ.éw¾Vµµ˜Û5üA+´’0©¥zí÷Êßž“ÞcòîäWËqù^ãO¾¹šÏÌ‹ +^É œ²†²S—¦„ +ž¸}¡Ë¡jZŽ•¥ë,4»0[ÝNç2Æí»zñÖÿç#¿çü§ù où§ùYª>£oc0Šþ)'.ÿºAÍ”ZŽäõÀ_ó’_Íå½*_>ù&àê¾S†í­“RõÖc$²~ñ$S–ää¿óÃÊß“ÞrüŒo0~Mêé©ëš+só42«@Ì#L°EN+@@9$üËò/“tkýFëòÓ]o0èi·‰µIÐBóÉ2‚JGÖŠvÏ 9rÇÔ$·rw9æÜñ$$ŽL„³t%‰'ñÎ{•›ÊW®l‘hþWÕüÓ§_ÝéÑ)‡C´77RtýÚ¶õñ59'Ѽæ¯4ùgXó^—dÒé~YŽ3©Ý(ø"“§ĚäÛJò&¿ço/ê¾cÐl Ò¼¯kÔo¢«=H |XÖŸ,5Ñ|±­y‚×S½Ò­ÌÐéíy%h#…H¿1$îk‘‚jk§’F4v&›–efÆæÍ›6lµ4é˜M9¸¨©ðÍŽV&‘“E=ñ懈ãÇßÇqŒðâôÁêç6 +³º’Õ.`B¨¤r#}ltaxÉ UIöÅôáèMs *ñ·=éÒ™°JÓÀ‹ú·JÒ½³gÿ×ùw%Û(XâøX¥ÇR=Î|»¹Ô^áÞG§š?‰ùòÖkɯ%Gnök¶|ªÄáô}bY RIëFñ8ûY"º>—¨TÇìûâðŸôR6¤Çq°èsf¶šU”¤*=ijªOU¯Øbv7SÄ[Ðp}W–‚ªß®%i$ÈÆ%E}F© W¡RG]»fÆêjàPHì Ìóîü05ò¨¹vFæ®y«x‚zýøäŠòñN%SáR£@>°&!ˆfÍ›6l`–ot¢ý™`‹”û[@6=M3t߀De½x +–§^›¿6.o®žx¦Èð,k™xˆ”P­+Cµkã¾>/¶ pƒ¡mö®ÕÛ»YË3̈³<ǤÏ"ˆÈölPž[Ðæï=ëÑëÞa¸“OõNjÆ+fŒ#*“ñ—D¢‡w«±¥Kñó\ÏrÁ®d27ã Û‘ Dö + lv¥y6£s-Ü„’i]—m”ðñx6@3d§É^m—òwÌöÓk:%®§§ßéê·¶Ó†š;»{¤.²Ó%Y…* 8ø“‚­5[:+»THÞ+´ôäŠP%X)Q*©$zŠ¬Á_ªò(Y+'«·¸¡;l…zeg´ôùÌ¿ÍOÈË}+òâMCLüÖ¦‘5Ü—zˆ¹ÔFK)iV1pî†OM%ã 5à€zkÍó’~fü©üµùÆO&êYó—!‹ë_ãK-DÞ.£z^âIàšæà"ܳuž8”ú` œï~sÿœ£óýæ¦y#R¾¶óªy]5 2ÇηGTžûV²i.úÁÔg,Ö£Ö>”CHÙ£W®tSó\¾ü¨Ñÿ&®4½m7Ë··—ºn½‡PýpJ²Æ÷¯8ØÉÈs˜*›Ž +™õŸÌ0þiAþ¿¸‹KòÉÖ/µô†F¤sÝ…7±–Ù!š•>³†kþ{óŸô½Ëúþª÷V[G´òõƒ•X­"¹“ÔGEêÎ&bXíRiœ–ã\Õüá6‰ ù›V¸M/LŠ=>ÂyÖYņš“K8 *zqµÌÒqJP»Sj ç噀Ô(¢Zþ³€5¢óo‘oOåÆ¥èÅcmþ“§ÜÚ€¦îÎu"“%u«|J>×…0›Ì:¯åM{Pò¾½oõMKH¹šÎþÙŠ9Žâ1ȼã,­F^ªH=AÂ]]'Òî¥ÓÄÑO—D¸·rðʨìœü5RA¥TúeCO ç&CÐ7©Û®‡!¹u=kSZáq˜–äA߶Ûû³dÏÈzg˜5 òûͯõo/^ë6’ßj–ð‰/íaú3­»ÀsV¯¤rU=ŽIü¥:ù—˾Ik)ïî5Ô°°ƒO?é×3^ºE¬ff1(iÂxý§bkµ%–~P¿üÎóƃùwk<©s¯Ý¦™¥ðA5o¯*–ÑÑäTK1Uf,ƒÈ츥­µÅíÌ6v‘™gÖ(bQVwsÅTNvMþp;ó·Íߘ·þ[Ó4V³ÒU&ÔtÛû«›nwZp‘–‰¨óÌ qJ)-ÕEs­ißó‚_ó“ú¼S]Xù4ÅÕ-åÕ4ÇžâC™b‰ã“ÈP>9Ñ>Û*žÙ¦ÿÎ~siº†§sù­i•´­ú×ó-ÔŒ÷ ò[\Ãi†óŒË4‹ëpN+Èž-Ë;çüá§üä柦^ëW—÷éc§éÑëW7! tú”‰êB’77 +*Ñ­d_ÚQœ»ó;òŸÌ_–÷—&T’÷CŠî[ }U‡¥Æâã$,¼ †µí½s‰ùƒËZ¿–uK­+Xµ{i­'’ÖD?ÄhÉÌP6Û޹Ƽùù{å‹»¸åÐÍÔ°iWrË KÀHþšL± /¦¡˜ †q–VRU…4 ö# bñÅ“ÚÆ7•$zn UepOí¿ +÷OBD=_L4i@9ÌuÛ¥ †VLõÏ̯Ì{Ï$iÞ[ÖõË«í9‘RÄ]\½ËÃg~ŠZÄÒ;´p +ݪé‹Ýê÷æ/¯\Ér`A «³”Œ37äM¬MÛᆥ¬ë—öörj—²ÝâÚÉ<­+ÇoŽ%,Ī!O…v Û,³5xŠ-OAà2 70 ì<<øuÀQ%ÅìPHâ$•Â´¥\ªh\ˆÕ˜…ê@ÊÏ~þaè~Aü†ÿœÖ<‰¤Ù›3~b\ÚØ]ßÃl¦k“¥êi«<³NŠ8Ç 6Ê"SÉH‘Šñ6{§ó×Ì–ÿ‘_ó‡ZwäGåî§o­ßyå4鵋ÑLéðê×—~¬,dK¨-íãŽU2ˆ> xöú%ÿ9ñùOåÈÿȯ*þUþWhw×þI]JæóJó2¬R‡¿´Hc½¹½xaC$³Ú5”…ø!XÕ¸ QêÿÎëßÉ ÿÎ~Zþ[~^-ž¯æo7Þ·™<áævL$ÓV{hâ”´hËþõ²Ä†žš+ÕyJÌÞG[{O1YyNþfMKP[ÑÏ£HÿU K‚#ýïœE¹òpkM˜†X±å<«ðˆTqPÝh6ÏŸMõy2…V!¼DˆÁ +Û€¼zšõÜç”29çýf×UóÛYDVåuIf%æ‘R‘¯7oˆ€á ¸paØZâ:¬ñKrâ.ŠíÅÙhÌ6’I;ÐôÍŠy ËïæM],Zåtø!Ž{››þ*Lj±’)ÈŠîo¹Í·êöÄí 2€"ܸ²í»:íôæÎÛÿ8ås}lŸ™ºWµÝ:×QŽÖÊúÆßÍ"ÂÞöÖÀÌn*å’ ñ¬œ;¡=å¶Oÿ+,ü׬.»cå­gJÒ¥6ë{{.µ{kaëÇjæOJ+›ÆTW2qe^KÊ@”<Âd“Ë7²XØjÂÓPm×P]îVŽÚöHh=OH¯4 pÆ/‰\+?¤b¶öíp\#¢”F’’:§ ‚¤ÄiÐu=ô.ü¶¿ü•Ôto?éúþ§ žQÒlΩau©Z©¹Öµ«¨Är$$]ª©uðZ}–·å)¿$¥ü¸óÿ—¼ç®\\éZE£]ùѲ–ÆæûÌDˆYC5”B‘¬ØJFjGòn³ùKcäÌ[닉e¿4›o'ùwU’Úê÷žîIn¤”‹Q-"ôÔ«›~g¨J3¡;òþäû¯.ùžÿ̳Ùê¶6¶Íå28¾¿w-ä1Ì®â7DH­Ìñ2–` W|òÊMÒíÚÊGIÕdKõåHܹg‰CV»^•ç‘Q,¢)'ÄKzД@¨§Å^Nÿ“O|â»zö©³µhNÛ +°¥7Èþzò+þqãXÿœŽóǘüÙ©Íg£i¾TMç]°œÇ“Z]@ÄM#6¨‘Anó¹ªpø·Îëÿ8ÿÿ8á/æô¾nó‡˜å‚ÃIò'¥wæ Nm'žÝ¡¸žVIJN°Ç[™¤ +­~8Ôv¯ùÇÊ-~a_ßy¯ÍZ¼Fåû»!æ;¹íÖx¬´û´™¤¼š’(.A7yAZ +?@ü¸ü“ówæ_•üÓç­cмõ)¼×squ¼–Öw‹rÂxÒfA- ±OM ‘ãTFäiÄ¿9õo'kŸ™šö¥ä X-4 ' ¦Ãf¹H£XŒ‘£Ç *ÈÊ]CF¬|@5s–þmÜùóó'ÌsþYE$^U7³®…ëUZ[Tn 7‰ÀKC ˆáˇìç)ó½þ‹©ù«S¼òÝ°´Ò^âQ¦@#XmU¸Cê"3¨Æ ¿G"i½dé'W¾:˜i~¼¿£E߬}[™ô½_OáçÂœ¸í^™Ó)úBØPÒ"‘â ‘HHõPÈ8I}T§ó +}ø&>cÕ5OP½½Õ¤/ér±³±b±D)`’hí’ g^ÕüÁqq¨kR´²¢GgjÎÅŒp +¤JIû*0M˹šY%%.ŠÕ'  +ü»fÈ»¸‚V$ðe$WÜaÃlˆêÞdš÷T²ó%ÌQ³ZÍñð@øµU\ +Ta—õ›]ÌÚnµjº„67PÜ\ZIö'Ž9´dx0ÇÃæ ó©YyƒQOBÚÊtæÖ*!”únAë¶$§‹·Ï{ùëÎÞQò?䓪éw0XËçKAþ“)Îó§ue?^ÔéžÞÿœ©óè±ü°mMb/Áæˆâ½ÒîþYXyž= Hš_¬jP;Õ%HA`+ÔôÏ y_Q×õ_'êMý$-tFš;˘do‡ÕA±Uñ9ã/ÊK_:ù²ç_ü˜òšSDÑõ§ßZ8/°ÇñÈ +Òƒ<Ûgæ-vßDºò´òC¥_ÉÅå•u$°ý†aâ;aGœ¿"ì´¿:[ysË>a‡R²’Hb›R!•!*ܼ+Šh_–öÞdó¥•mu{k ;æ +5»¶¥¼u^_:o¶ù¯ò*Ìv>\Ò|Õg¬ÚJéõ­B>vñÀ…¨íY¶!wÊÓ4TÕ5ë=È£[¹b‡ë²’‘F$ b{-wÎÿùùäÊÍÊV>XŽ#o-”Vzu¦¹pü…âD¤•_í9*+ÑFN=t¯Ëë;Ãg ZÉÙÅe§Zê²3:^ {tI&B{rlîó_—¿•Z/åþ‘åÿ.D°-„vÖvÞbyyêªUåxÝw%Šõs ÿÎCAù}o燰ü´ &‡¥[Yi¶º‰bë}%¥´q\L¬hH3+ÓÚ™ç ŸÊ?/El×­æ;hbjˆˆ•\“Nê7¦r¿ð͢ėêpÅ›-O&¯¸^™å½GÉ1ZÂnb½†HÉ"5IW•GzÙË8ž!»’þCÿÎ:ùcóÏ]¿òž›æ‘c¬Z§­m ÄZ9ÑiÌÔt㓯Ê?Èy?8¼ÃyåÏ,ê±™í-ÍÏ6çÀTªã“ÈÈ-7óÓP»Ðôï2E¦kVÔd±ºeˆ}·V²çLüü†ó'üä7›î|•åK¸-u,羌\òã(kÀS¹è2GäïÊíYѼßùT5›=2ûH½1M©I»Þ˜€‘.ã¾Nÿ-ÿ uÍO*ù¿@Ðâ¶Óæòaš}Jòæ@pmëû´5¥vÉ_å_üâæwæ—™<Ýùoäˆ"¸²Ð%ë:诪ÍÅïñÓa‘ëËO0˪ëEÃAmq¡É,7ë,ª¥^*† +;î;gŸRÞßNÖšÈÌð5¬ÒE$ÊÝ£b½¼iœ*Âî;-U¼NjÍëP°n&:gk1e¬ >idŠ{Y¤‚`h8˜Ø©{Œ‰ä×Ëykó3ÍùWÍ-úŒðÛYëê…VÒ0ôøâMž£&–~QòÿçGæ%—’§”y~÷[ŸÑ¶¾b^‘º_Ã$r¾uÖ-¼¦öv¶SN–öº_Eb©Y7Þ¸;BÓZÖl´™.VÐ^KYˆd` 7¦ø{ùÍä;¯È?:_~Ry€>§¡ÄñÝÃt€ÛµÏ¨€†åÜ/JxàÝSɾ^ü­óþ£ù]ù¡jòGo)OÒvó<\€å*ä8Hɿ毑¯?#<Á'å/œKí +_«jPßZÇé ™5曪+U~Œ‘þnþVy“òcóUüºóZ¯é *N$uá"0䎵ìÊAÈòdÞe×.!òouo B‰‡4P›þ!~Lº¸ÔuDò´Ÿ¥´ý6IBß â(‰ýç¸o‘¯/~Sy‹ókÏ:Ž‰ùG¥=ÊZE%ãBÓs1[Çñæi°†Þ{€æ/é©y)û*:“€tÏ<ùÃËñ>™eª\%«1õ쌌йèy!4ßØù³_±´:rÞK%ƒžOc#³@Ç¥xJÓ!Óêšöƒyqio¨\}ékóÛòÃÉß•ÞKü¼¶ÒgT×<Ç¥¦·ªêPLd·XîÀ1Àª~ËÆAï’4iþUÓôýy~ù¯¯.-=mh‘D‚å¤p"O)'ÄäKóv±¡èwÚ&–þ„Zª˜µâ–¾|*0‹EüÖów–¼¯þZhw m¢ùšKiu¤ ³^E™Ü/Ÿȿ–?;<ÓäÿÊŸ1~Th‘[G§y®X¥ÕçxC\2ÁýÚ¬•Ø +œ ¤y³_ÐtÍOGÒnšÚ×XŒA¨¢Y¢¼ =Ž·SL†ž¹ÎQˆÂŒ¬ÙY³fÌk›Mf-ì ºvîy2F:„V+Só â­Š$‘¾Ô›¨î$Wï}6‡™¡Øk“~÷Q40)ø•Êr?2§6©p«Ö›Œg,ª û;…2Jg¢/& ²ƒ½3`íBú+Ë{‰íâ1Í(ë!õ? @ú0Uýå½ÜvK ºÀmáôfuë+úŽüÛß‹ù <ó¹¦jú—lì¬c²¸Ó¬®¥rŸjæo®\J%qˆŸ%‰¨07®œD|~<}ëZ×Ö} +SÞ¾8_õ¨}iêŸG‰^ƒ­k\ÙÿÐùb]8š']ƒW>W¤‘—Rê@¨õ;‘ß>ZéËo5ì0ÜŠ#º«0Ú•4íŸ*°ÊEµ°µŠæX΃’×pzŸ=ÔäµÒ"KKêEr‚Vñ¶ï‡W÷6út‚Î Op£tSQ]«÷fÇA iŸ[¸–ˆEôèåÆ mñ÷VgJ‚îîRÒLÅŽŒwÜåjPX˜Uy ]Àô¹7¦Gz:ý9°¶êK¨]P¥NÔ>$ôÂ+ëw¶˜#€**´ð©ÃØèsêÕŽ’&‚6¿–(c¸¸”En†W⾤Œ@UÉè3cnmd¶*²%•_àtz€J“CC¸;ŒJXd…Ú9Œ´&(w±ƒßê-cq=±’9D.ÉêDÊÊÔbµô¨± fÍ– –W}¶ë¾a׆p¦»×§^žù³¥yc@üºÔ?-uIîüÃo¦yâÖî´›Öè$Ö‹©!Kˆ‘¡IλCìdvšn—–O˜ìuøàÖìåCú%DÑNaf)êG) )âx¡'‰'n&½ÏɶßÞ^ògüûs¯Áwæ7Q’ëÎ~PFÕmï峆ùD1ÚÌöéìÏn jμAý¦4EÒÞ²’èÝF²£¢-™ú®¬—RÇÅiCWq@w¤ŸóOÌÞ[üåüø×<ù¢hÏw£ùŽâ&·µ¾»62)ŽÔE)y0šó¯U= è+ó]Ó<Ùù‰æï4éÄYêú¦§§À¤©Š+«™'á%˜„B{ì~Ñìy%ΛlOjY.#D†[€Ññ1¢‚(­·ËJîÊTÓâÄ0—HüÔ‹DK­^òå–«£Ü§¦tô”\Yµ¹ œn¸z»µM>ƒ¶Fcœ$2Æñ¬œÊ#Wšq¯Ù íQ·qø`wʘ¸zQl°‚x‚ j‚XV {ý5Ø'U¾òý®—™|­ä´…Ôåž]–v¸¾[¶ +Ri`ŽìÉÈ$Šü¾&¢‘Ä®ùƒNlôí^-&2ËSYä°Xf’g’;wôœI,Œ8²ø¥w ¥0CÙÝèñp¼²’)oa…íEÅ¿– Åe‹š…€eÜö4®jJ÷é“_Èï2ùZÇʘw¾zÕG”õýqt‹%j±¥Ò¨iwD\ñîH…ØàòfUZr É|“©y&ÏòÛÍË«j'MóM´ú]Ï– +-Äïv+Cyıµº úŽòHŒBúJ]Àèº7œ<°'$²¸»ŸKó¦—«Ï¡ÞÂVÒò [{„Žâ]}ªš#s­ ti™.™-ÍÏ£y¢ÖQg×ÊÈ€*7&eR(ÄíÇ|Ùæ 'ÎlŸTfýa{ë†UyäŽ0i‚†â~ (¥Ô<ýè•ê:î)^žùËžXe=X°ZsbA`¢µ:à,ê:v«o©K§_G*\BíŽáZ 4+% +’g­}ñ»Òƒé[k…¡(ÜÔ‘ÅÁV$Åõ¯lÙÓ¼¡{©Cù^šW˜E¥÷•lu–Öotƒkë-„JŒ³'&Ix¢ñ$-=BÞ+»o+iZ‹ÜÛÍf.ï–%¸ˆÝEt#·,òÛ?&ô˜ø·/ÅוTÒN¾lÖ.tL¿Kk嶛ôS}N¹nYn\5Ôq %E’²E®É3QêIÊù¡6 $ôÞúöȘµ kÍú©×/îEíÝë$|jÇÆ‘¤|HPŠ@§ã„ní3´’»U›¹;“_‘˹'½¸õåÊòq^Nß@ B[ÃÇ+=ù'ÿ>ßÿœ…üâÑϘÞÒÏËzD‘¬ï5K¸Qî>åUH£vrŒ± ËÅx7*uÎÝùEÿ8oùçùÉc>³¡évÚ.—n†GÔõû¨ôèÙV&˜4qIÊy•Ž‘”<[èoäÿ'j¾tÖ`òþw:•ëG…‡Ö Ž[™æ‘cX¡I)—»’v‘‡>Rò†»çf//ùn8gÔn(-­g»µ´iägTX¢7RD$‘™€XÔ—oÙ=ù1ÿ>Ëó“|ɤyÃÍ^mý9½ú¶›™KÈÚZ† =Ý s‘eJÖªÇìç£ÿ"ÿçÛߘÚ\Ðy×ÌwÒ´©KÃ¥‹øn¾³ª\K»D% +ÑȲCºsëPÙ_óß‘7_¾c¶üÜó×Öí¼Ñå¸õKÛ¯#\ÛØÚZ­™Diîµ+—t0°b®mâgˆ”u}Ÿ‡¥<™ÿ8!ç‹m÷\üÆ¿“Êúõ…½ö«k冶ŠXäÓ4ëCs-åî¤÷1ÛZÚ»ñ‡Ô±êR€ç ÿœºüìÖ­üÅå=Cò÷Î1i—åôÍ£K£h׳Ü2Þé—,ÃQi8¤N²„ŒdEP§“s-Á¿ç'?ç%<ÓùùÅŸ<½2ycQÒ-¥ÑgMSº»ËäÒÏrÓ´ÈñÜHõDTãé*äÀ³qÎùÈ¿:ù³ó6Í¿)ëãG»6igei¤z𽎟4’ÊÚm˺B.¨ŽÁ1ˆ%,Ê«Ãläßžÿó‘žyüûüÁµüÂ×ßF¹Ól!Ñ´‹M$I +[X[¼®‘—ggv&g.Äï]‚­sw×ÿ2fò´ÿ˜þ\‡T‡Î:ÔZµ÷™&¼‚ Z;lj™Ùmàq'Æ¥™ƒG»m³g!¹Õõ‹Ÿ)µ¦ªDöº†¢úÖ ×Fæå§àªÌÑzÿh<™Ö¬_véœÚëÍ7·š)ò¾±£Y-ÛjSkSëK Új5ž­T¡ @ê‹ϺíU<·šú|8U¯©¿*S§ZSèÎs§úzœÖ«€)/sš¥K ®ÀòZSù¼wÈ¿ÙŽý Èœ‘…•‘‡Ú£ ÏqÖA¯¾7 –.4éa‡]F†K™UcXž)ÆQ‹²ÑÚ¤»TÔTsmF@Ü}ãú‹Ã2Åv +³·(Q)½>.»ŸJæɇ¿ |ûù²×òµ-üÃB{Ý7ëVöw%8“KÉ"VNGˆ(Ç‘í׌“òÿòçοš^`_+ù H“VÔŒm3CDXáBªÒI$¬¨Š ¨%ˆ wÉ—å‡ä¿Ÿÿ9µK½òâÒ JóO´mJîolìY-ã‘"f_®M:<Š§&5Øli,ü±ü©üÃüæóT^Iü±Ðç×µ™cyͬc†:–ifdŠ(Á`9Èʼ˜-j@ÏcþbèÿšŸ•_󋺗’ÿ>ü×dnüí©[}ZÆ$2é–^^’(E·ïpÒ}b%âd݉f§®¿6aüÉüŒÿœeò—äÇ掵þâüùªK>ª4»u–{+m¤·$‚P³0ŽêØú…P*óŒT«wùÊ;Í¿”¿–þAüšóœl¼Õ«ÙÉ{¬ÜÍ¥iòZ&Ÿh²í`Žî_ªËt’Êd‘žX#‘$N#š,mƒþrò÷óSþqçò“É¿‘ÿ™WúoÖu›«Ÿ6Iå›x#{ý“Œf[è Žd¹¿Öùmä/ùÂOùÈÌ8y*ÂmGÈÏsq¦Ïä½OU¼\ÝÆ•ûÈ×wý@¦@œ]ÕM#0 +a?•Oÿœü×ó'›<±æsZü²·T†çÉþeÕ綹Šhí ap³À(±;Ⱦ ‹Õ¤¯§« õKÿ%¬?çÿ5õÏ*Kù{–­ªjW:\/æ«ËK«{ ®à6Ö6¯rŸU”…- i@“…ecJÉ;ò—ä×™®|Ç¡y¢+íïë^SÖN¥o"ؤ ìÖ—1Ëo W ,mA'©l=D^ˆÎå?ù¯ÉßÊÏ:ù·FüëÓW_ӼѩYé¿—ÐÊ.D²´Î÷%[êå½4få7©ÆŠ9+–É×å?üâ/å”üã{åÏ%¶×G›uôÏËm{4Z„ÐYÝK¾¸µ°¸á 7 ¡øäw‰‚óA4«Ñ|ƒù ùEùMåkÙ>t§:?æØ &ûV²Y Ò"··†ý£]rίî׶èì‰2*È ÄÄzïäåwåuÛ þs7ÉòY还ÐÅþ +ó‰Õ¦·‹MU¶õ× JIÆêÉÊ80øeáå;ÿÎ2ù£Éß›žtü–Ò‹Ý}FêÕ4Íjû…¬3i’Æ/ฑÖF‰ Û¥£é“,×Ä ¼ò0ŒÈŸ ªàqp*¬(àP C¼»¨^Óµs<–æÆâ+”žãšDh\:²Ç)ÄѶñ®y3Sòæ‡æÛ-CÍVRjºM©‘浆_FC#DV'E`}98»)^;V£¹ìÏùÈoÊý#ówò³HüÜò—ã½›Ê1FþaÕì,nlÿMA¨¤³[ÜAAÄêCQUCN4õüåÅßç÷”4ÿÎß*hþ½—–­`ÿk±X-€Š[ãgilfI$ärhÕwhÜ´’B±©d_WÎq~ZÁƒå¿Ì9.u Ff&çÌ7úqÒµMcNºjÙ]ÞYÚÚÞIVŽXJÅׯ|Ø]x‚;—Œ… ¨ö]¨Ä°^I·>YúÂòxìYóý•åBi»mÚ¹ëÈÍEü†üžÕÿç!|Í觚.“êþGÓî›yL¥TȈ7û%‰'²Óö³Ù?z‡—?ç¿(Ïüä7št¿®ùûÍ>­§åÝ„Ôôá¶à·íSJs’yª×Ë—Z­Ïš?9à6yë\O®ÛéâQõ;Q0ä’JWv`iEéœ7TO.ù6ãRÔ|ím¿æmH™b´ŽZÚZ™¾2òqûL ^™ÉüÜëgæ‹Ï0þtZÝkºæµ \ý]g0ÞZznî šû9å›íRÖmsZÔ¼×gõûÝEe–#Þ”pÜÏ"Éêü5ä¨ãïí[ɘ#þsoÊ?”žs²UóƇm5ÿ”µÈ,AQ,S êàE=Žt¯*j÷ÿó˜~]yŠÒ4ó¦‘l÷~\×m¡X£ú­²Ñíî@Ü«UUè~xo¢þby³ó£GÒÿ%.¬SPú±–?'ÚFªk)S+ñ'j2¡äO\‘y^/<þzj^]ü§Ó –« +IiåˆP$oDS3Dîz¨Db<0Oüâüãv‰å/Îh®|ý®i·zÕ•½ÏÕ<» íõ„’E0±<~ýÛ°+’ùÄŸÉß-è¿™³Ÿ?j:måÄ67|ôT»D…Lr9eøIX?<Î;~Yy“É¿ó“žRеè•5kkËË}OJJ™! e*ŽEv*áé¶toùÄß$Yh_ó–ÞPòŸžÅ´ñEqª[k–lD°¬I¦\úœ˜|$R¿,òoæ¹òå¯æ~¸žQ‚KM:Þúo«¬ÊEàûŠŸq¶y{Î+¦[y³V‡A%lêak¿D@¥;g,üÛA±üÉó$>UO«Ù[]ÈmUÉwp o³W8w¡Óíüá­Á¤…[(ï.Ð'Ù -=©žÍò_ççüãÏøAóÅÇ”áÖ2mcŽÒâS7*Ê +™Ÿ‘âà =³ÖÚ7æ÷ü㞃äŸ,yÞßÉ6º—›¢1[^ÂêZ@‘ì÷¿iíž…ü¥üîü•ò”í?1õ!õÏÌëhÚÆ‚ :”õ +° /§Q¶ùèßʯÍùÅÿʯʭ#ÏgÊ æ?ÍKIšÚK JiÑ)VKÕŽœy¡Î{ù™æ?'~eþrhÞ`óƧ¥¢Z‰m­£Hâ2ãœ,"§®ÅŽùÈ?0µ¿$y»óly“_¿Ž-2VŽgO€Z‡NU1O²i±lçÿó‘^>iüÂÑuVÞÐÇ ©¸·ÓPB¡KÈNÕ`:–Îù§ùyù™çK¿6êv¶v³]5eL¶[Xõ¨EÚ¾ùÕ¿6ç¿ç|ߨXk—>{Ó|¦÷±Äúl3L ´ë± ±2éwrŒ;^$î:ž¹×1¿!¿"µO"éž{Óõæòö¨ö¶óÃk%ÄS´êJ‡$- "½;Ÿæ‡äüãûþWyó;òëÏúMÍõµ©Õ<­}qõ»˜f“ˆ‘Z6Õ&³Ïÿ›?óŒñþV}gÌ:†¯o®èó,ŸR»¶yj²¯Aœócòz_Ë;è\kvºÞxÏõKû' ÏŽÄ•í¾yï^ü´:T:ιw ÕÖ•¨,.š‘Ç3©Ùˆ^•æ}RÂ; ¹¡¶¸[»t‘ã†ê0Bʪh¸ í>±ùˆt­:æðjÍÛNJqKX“ª¨è¹È–µægÌÐëÚ”º‹iñ¥µ“Jܽ8Wì ¯aˆ_ùÃó?ó~}"ÃQu%°·:]»¨>„*8Ž54åNø®­æ=s]·°µÖ/d»‹K„Zéé!¨†j}ªs ÿÎ-/éó:^ šÞX"M±=Ê *¤3V»{çXÿœMò΋æÏÎt½cH:Ε$‹ødÓŽ2„4¸§ÔšÿÎ0h]ÿœ‡òî‡a[FÓýsªÎ§€”mÌ“¸¥âYõ›dôä-JWý«žÉüöÖ¬¿;ÿç.ÿ0µ8ⶃOº]>ûPy„“­ÚD±LdÛ‘õHæ¢òÏNÿÎN~fè¿ž”Þ@üÀÔ"‡ümel¶>fÔÕ”Iv#fŠ0ê(Kü<Øÿ•ždóFŸ{ùEæÊybéåGµ‰är6árœ”7ˆu!‡Ï<“w>¡ù¬\Úis’—0´W16ÿ»”n¦žÝp[o2ù»þqóã[ò;ñ[ë^-WŒÁ{eW¯PÊA<ÄæÍ™*Ñ™Ž½9# +ïìFs¹äšâvšRYä5cN¤õÈ ˆîÎ1¨_Ýjw·×nZk‡ie$VcS°Ä°~©£K¥Z[=×(çœsôP„?dý8µÌßÒÑÊòe"…MM? ©ZÜÚi¶ÿ],³Èy,OÔDT?#›ŒÉz9\ÈÞ•ºq@7 ëAôâ—3_±»ºpJ^=*BÀb­yªyŠ—Tºy Ó!Û!;F‚¤*ŽÂ¹°74 ½(ʸ´d1"„š¨,¨6e­:|½óf¸‹Ñ’C +¯Èå:•;÷ÜcgP²¿e·_–lOŒÍ– “òñÌqkPD¡èèÝlt²¼¬Ï@;c¤‘¥5nƒä1këË‹©ÃÊÜ•G×öQ|í›R F7‰ƒ›,û_Û–)ÔýØ´†í0ä6¨saŸè‹®tô…>¯õ®‡/O—üëÛà Ãú—.—Õ¾»Ç¯¥Ëßí’oðýç?Oôt~—Ô¿Húÿ{èW©Ëƽ¼3gÿÑù]ØÓ¾|ªëŸ*¦|ªÇ/@¤Ôvا.T RGlªy«6üvú<3a›™$‚™A45f$íµi×O{v‹4c…‡€4@ÜŽ´Ã½i5É!0™e)å¬ÜUeACRGl؆±p^aI#¢É0£©l׬㳼T„ˆ—ëȳøŒ­ÛÅm|°Ú,Ê¥>q@ô.Õ(éÓç\Ù6×|ŽÒþGyoóBÃJ–(¿Kj~\Ö58¹ýRImൽ´i=Fj\2\LÀ,f8£ÛÔõY§™_–:Ç–?.¿/üùuå«­ßÌ–rŸ­5®¡¥ÐŠVX'3ßÐ4ó i8Û«ú>‘Gi=tŽsùçäkŸ(\ù?T•%¶ƒÌþVòö±eewnö×IY%›ÊßèÖñIÓ[K$–°²z’yå‘@ kQ_–ôÎsœË9†VyoA¼×õX­í,ä¹€:ýd«úH‘Ï9Š²¦ÀîAöåzS¦ °²žòä%¼M ãQð€îÔ fϢߕßó—ß’þQòWôÝcËšL_¡úÞëÌZM‚ Û%˵¸²Åû¶èûR¬›·µ?ç?ç#?ç¯<³cäÿÏ"hòk¾^³¶]Í­¤éÆiÖÔ4mu4Þ™,±EBÏê7! ‚g±ÿç ¿ç+<ŸùB<ͧyªöO)I«µ´–Z¾‹bL ¶Ë}<§P{JÝ-4p[˜#(kûú’¯¤¿çÿ>¿"+5 ûÏ¿ Yù·OkuH¸]LÔna›Õi¥úëFZµ +¤5@Û üÑüÏü‰ÿœ¤›ËŸ—EÒ—íMÝËjÞdÔí´ý%!´·†9; D’z“Íézk*þÊ׋CŸÌï9þYÎoþby ûSÉúDjïæ4kñèÖSÝ[DTÙCau}~‰pÂæIë •xòvA#òQÖ.®ÿ*?ç9¼åo£ù–ûVÓôM6+鬪Á¬ù“YºÑŽÀ5¾£+¤ÚO­:ÛÈè¯É(-’ßùË?Ï?ȯùËO;y!?-´Cä{]+ÈüÉ­êÖÚf›=Å´†Õ-¡O«Ï'«èˆ˜DŒà)ì‰Í°gægüàÞ‘ùIåÍ?Í’y|Áäí"gbòþ®#Óîõ +ãK€Ã˜§–h„6¯¦ú‘Çõ¹âE’â2Çd¤Qÿœ$üœò¿ç=”<Ë®êpùg_´xôo/KF“ÌVZ”©E-ÌíV³Yz ±š?LQ•T°øä#üýÿœSü¶ü…Ô<›ç+¯9¿˜¼‡æU´šïFí¬<Û rÄd•£µŸÔ‰PTìŽ}6Z¯&¤Î.y†ÂÏDÖÿçu¹4]/Ìö³¬Ú_æd¯c$3,á`m=í!hÜ3†@Ä,ŽÈ¥B>xÿŸt~hZy§üžžãü5>’÷v—žc kqëˆæ71Ko +3z%}FHã!¿r ÎCù§ÿ83ç_-E¬ù{È>mÑõ(íÚÞò×ò·QÖ’5+-²ó2ÛÚÀ-¢ui&n/2V5¡äëLù“þq[TóW5;/Èûk˜´Óge¨èUó–£¥Øy¾î9 E*ñúŒ]$’1ø¡áB\Ó8Ž…ÿ8Çù­æ}?Oµ°ÓçºÕu­vÿJ½¾»Ž[ûM[«5Ô@æ/[šQÙn TÎAùuÿ8‡ùŸù­cå-CÉ‚%´ó=†«©I¬ê{].Î=6i 1=ǧ')$’DEÙÿc€õŸùþp“ógÏÚ–¼Ïcy¥ÛiþpÒoõí?P»¹–Hà†Æñ¬ 3¼P²‹™ä¢Œr&0ÄÑÑÑbŸ“¿ó‹ßœžž‹mä½àišÜ³[§š.,ï›F´’ÕWvÖó¬u+Ä ÍH­®üýü‚üõüÓ|Àžòõ„úmÍ彶µæa%²Üƾ¤Hè­%eh«a•©¹m¡ÿš¿ó?œ_’¨—_˜¾\¸Ò¬¦½»Ólõ£[Ï=œðe5 +üÄÌHªÅ9jAÿ9$<õù)-¤~lk Ë1D/4½gH½†êÖáa Ÿ»JI E$ˤ±ÆÁª´¡Æ¿0?'ÿ0¿,-¬ï¼ç¦}JÏR¼Õ4í:èM ‰q>2AwÁQË…V‘(̪5V£9ö«¦yÿÍQ;,:M½÷úŽ¦þ»DÑ$>£ØÛ@þ÷‚¢Âˆ¨±­B­r=ªÚyÊúÍï×OÐŲæk[Qlnž{©î䥴K`Óã%Ž?²œ°ŸGO.ùæëF³Öe°ò½½ 9¦‚ÏQž[˜f¾¸½’yL"åÝãIýÞ¬‰ +îC>D$”J‘'OIJòQBÿ5[ÄïOÕüÍÿ8Ó¯æÏ+~_þLë]ZyžÊÒ×T½Ôµ(…‚y)’{håX”  BëCð³7cÙtoùÅ7üßüÙÔ¼ÿ8ï®}sH‡L›]¶½óOă·Sž_óF†¾Yóþ‰$r‘c<Öî.U#˜z´G’Æ졈MÖ§‰Ú¦œŒròÎïN¼ŸOÔ {k«Y›i‘£’)cb®Ž¬VR(AÜ6Öÿ?|Ç©ù“PÖ¼WÉ3¯èåÔQ¦{@‹ÁYn«êØ7jšnÕÀO{zoP3¿Ödw‘îìÎO&¨¡Þ¦¸“k2Ê=5hVUæÔ‚(I'©ßsˆçDò'üäüäwæ_‘í¿ |±­jii¨ÜK¦¬Ð gµ†ß[)j,¥z9·µz°%z +ìy6w"ù¿þrÏóïOÒÿ%¿/µ_X¶Òô»ë8t¸/b²ƒôTPÉ%Ä3Ü;@­…ŠúsHÊÕâÅÄõ¯ÊË?ÏϽÿÊ_–ÚuóèºM•Ìº¼¶É4!6í.¢>¿)«‰X"¨åTˆ*íÉeþF³üÓóÝÜ?•ÞB“QÔN¸ÐYþ€´¸‘m§ t’F'Bëg*ü¤¢#Q‰®rÏÌÊ¿ÌùÇŸ=ÛèwÓÓM×-’ßW°k{ˆnã{s#zr¤°<ˆG8ϺkB3—þbþ[ùÛò£Íy;óLm'V#™íŒ°Îè9­ÞHMiTb¦Œ¿Í^S×|‡æ;ÿ-ùŠÙ¬õM.D[›9Uy/ ®•ê­ÉX0¡ ÷UçO%y¯òëÍ:’|ï¦M£ëšLžŽ¡§\¨DÅC©ØÊÊÁ•”•e!”AÿËm +óó;_³×5.êO¥è.nµ½c˶2\ÝÎRC2Æ—®õ¢ßs·Ù+Ñ4«;¹Mγ%Õ®“ Eåý§ÖÚdc”y J»€»È»TïJb:lºmÝÐmI$mãyXÙˆýYÙ~0‡›ª¨= …rƒ~Ó —‰? PôÞ›wò"ÿ¥¼³ù…$š5…ø¸k™$Ó-õ n:‘VvôYÓ‹WƃvÂù#xÙ¢•J2®¤P†AÀQz«~ÍÚBL!‡) 'à§O*ÓéÊÂ]^îþ0ÝÝ^G%µÔS´ ÌadGæ\«Fâ‹V5*G±®5•£&6XT05 ô âW,7Ò;©Iùu H*ÃDZ<Ùé/ùÀ/ÌÏ/~ZþekÚ§š¯Ä^¡£È—R²;:\Eu«¬jœYþ*úß»ÿÎ~qykòWó+R×üäÆ=*÷I¹µs"IŒ¢H§EŒÐXFE9kãLôüáïüä‡ù¬ùž8 ùôSO‰¡³ÒãŽYdÔ­nc04«4ñ(`šãpkȯìÖžƒÿœÿœò¿üãçߟ<å§Þj:N¡¤]h÷i‰—HfžÞå]y B9[…5q±ÂÏùÈOùÈ_þr›\¾Ô䶼Ӵ.\Áeä˜äDkM.Òöìò“T¼I'5@šÙ©!üîüëó'üäwÌ~b¹–Ân!Óü©¢Í2ɧézdÒJå%ºO÷œÊ´’z`HK·îÕQ3ž~ay×Íž¾{¹ó®¥cmc{~ö6r Wh,¡U-⬗r°…[‰mØ +ò=˜ŽsùáùÍæïùÈÌ­Gó;Ήoo©jkmÔìDÉeo´ ¤)q,ÌŠxóaÎ…Ù›jç·?.ÿ!¿ç <·äÉ´ŸÎ_!\ywOÒµk‹;o0ùí´ý}P+Ã<“¥äb$· -c¡£Š9ìOÉÿÈùÄ(¿+-n?=ü±uåùtíFæÏKÔ|ás/”o/ÛÔŠøÇ~Z¶ÒŽ+ ŒÍR«mêuò‡ä6ÿ8ï£ÜùËw•u;{2IqkæÈRO1]hÔíÍdºW‘À¿¾ŒÆ>#–n\T°ž¸ÿœGÿœÚ‹òCÊZ_“|Ëk©jk¥j:æ™oiȇ³»Ó$Uµ‰Öth¯bˆrô¤R’7/†1÷/É/ùÊß9þI~]ùÈS´Òm_^™.\ŸF†óP„R4Q™šDVT™PÅêG'§ÍÝhv<Ãþr¿þr3óGÎzÍ÷å=•öŸ%®‘l¶þj»òÛÜi7Ó—ŽâEŠi²Å/ˆõ#?Þ±ùÊùÈ¿ÌŸÌmdù?YÔ´øl--a¶Ö,¼¯%î…ysëïRftŒòq–ÊFpÏÎÎÏ8þtkVú¾¹¶–ÊÂÒÂâ;F’$¬ýNW!4òLäl‚¨Ä´_óëþrÏÿó‘¾eÒüÛùˆ-§¦ivº3M§ÀÖËt–²Í0žt.ëë3\?"²¢ç‘“«jI<-XHˆ”ŠíJÓ|óé5'c¾Ãµ|3—¼eX+M¨~UÎgåƒÒ~ð"›¸Ð+‰”£q¯ÓüsaƉ£Ê·æêé„I§*]Ý"º‰–%dÝ¿kâ:ƒËÒťˬ\ÝÛÀ!q–/0´4øÖMúš`ÛK2—<®*Ø,Óp+Ë…Vj~Ñä69±k»ˆnõ5sèÝÌòЀVB6nƒèÀÄÚËzd@ËoêqXŽK4Pƃp:œFúåïof¾¸5yäy%<¹6Ý·9²®-àžy …‡§)J€@ ß %°·¸¹h-Ú±D¾§©°£Sµø>ÏMŽêW(^dj•EFã©ö͈ˆu+cUÕ¤S]ü€¡î1ñiºÝ«[}YVQ$ªàGñ°oå§m°Tvz´ð›tä’:Ë,• ¡«½MOØY©™þv™J¹bYNô¯Ð0§[YÓU¹1´R–¬‘¸£+ aV²j—úòßp݆à€6ðÍ°Í›6lÙ³fÍ›6lÙ³fÍHQ^½}³e^€ŸfÁXŽ@FàÔWb ü3cÊÔ4vÍ’ÿÊËMWó[Ζ^PÓ‚Ã2\êZ‹ŠGkgå,²9ÙUWǽ2UùgäKßÌO7YùvÞXí nSjËíím¢ä’Wj*Š + +ž¤ù*ü¸ò>¥ù…æk/é6S]'¨²ê’Û¡s’ºúÓ1誈I$í’"y7PóÏ™l´+@c‚IêÄ~êÎ×Ï+Ÿ…QÖ¬iÛ&ó“ÿš6Þ}óÖ§é?ZÑü£k‘¦Ý+UnØÐËAQVöÃÏÏ?ÝyÇÏ2}_R’ûLÑ=?Fv:$VÀ(héµ Òç*ÿ34;ù£Gò”.y2Í4› ˆÍVîHÉçpG@Í°4ðɇüä7æùÛÏ’YiúœšŽƒåè£Ò´N­ +Ál¡ Dáâì aÕ–¥ù‰åDóõ‡–î¯âÓ„Zt·¼$—ë +H†ÜizŽ·¢/™,ôYÝ$Ko¨Ì²ÝH xµAh¬¼õæëóœÞßçíÏ¡,é!]Ês +TQ+Q^™Î?Eê£ÿKýRo¨úž×}7ô=ZW‡©N<©ÚµÎ¹å¯1ysþq^,yÇ@·²ºóÆ£c2kºD“‚RÒb®ð2ƒXœF©ÜÒ™Ù¼Ÿç}þqWPòÇ™ü¼¶úÇ›.¬¦ƒÍv³0‚ ‚®!jlŽ +)¨ß¶u"Øiß”7æ^£iù¼]µÖ“¡µRm Fâh”Ö:‡ ¥©Ó:7åŸ/¿çÿ5ü­ù”Öê7ú#Éwú8ϳ íä„$…+Ä%i×#¿’ZýÇœÿç&ôÍ?!yv}BX.¤¸óœ!ÜCÄooê«(¢ª³‚k‰Î6jzæ·ùómæŸ$ùqõ^I¥ó-«Å¥×(™‹ð¨ikצü°óÇœü÷ÿ9]£þeé³½RûPo®Ñ}8c_AÇÅ%8 +*ü5;0ÿþq»Íd¹ÿœ¦òלü½¡6±wsªË,ú\HÒ¨‚ùd†rÔáHåbIðÂÏùÊoùÇ=GAüä×G¼µªêzlЦ ÆÞÒy"†y'Q"© ÜœÎJþR[y'óCVƒÉÖ—wz4à\Ã7Õæ1E$†®‚R¡X)î6ÆÿÎW~FùŽ/Ï-{þUÿ•¯n`dKëë]>ÊY#‚G¤Fýc\oüå¿å×—|‹ùáæ=7ÈK,úJÓA' #f¤A!P‹Ý3™Ú¯<“®Ûjzo©{°Šô +¤LÊT 7a_¿9\wŽt‹u úËG2©P¢E+Zm]ŽÞùÇæÒ¼ÕåýFÇ_†Ö1ykIÑ‹û—]€—¨ œO"¾i‹Íz”¦âÿF•¾. .Yž½A¦Ç +dõƒ1•O#±, Aú{áO˜-|Ç};ê·z|À»r–á‘š¯Ô’Ôü3aÕ†±¤éÞU³Ñ5]o5”y}¹ç‘Ýœâ¡pæ×_¶µÓ£±m. n£,MìÀ³ÐÓˆÜÓáÁ£RÒ“AÓm¯âúÕõ«Êœî¡€â­\Õ¥7ñÉßå_æE¿æo–¼­ù‘ªÇåK—[}hO*<1DêA«¨ 0ÛÉþa†ÿÌ–:wœ®Ëh²HRì|!V2CØV™Ñÿ&üÇäýóoÊZ/žnâ¼òÓ¬^a7—DÛ,S! ]¹R‹PpË˃H}rÊ=|°Óš@·L¦…Q¶åôV¸ó–ëò{òóÍÚŽ“ùI=Ö¡jïW½gã ÜDGjaO™âòý–±uk¡–¹´V")[mýžô¦+ùýä’|é{§þGjך±rN ’*ÀHJƒÇÖ­´ÛMF{m*àÝÛÆì±ÜÄ:ƒ±®ãùoæÿ.|©®ùÚÿD½´:üZhºƒHeæ7(X|DãØ[ÊÚAÖëzsê5ŠÖh¤x±~ب¡#þSyÑ,ü­æï1ßi7‚çÌc£ëMXŠ9VañŸ'†]CM¥Ä5«J¤$ˆZ>hv4"•9[kzóÝì:uÓ]ë2û«uV‘þJÈóI{ R^âNƒ«±ýg9”:Ïš<á¨ÛXj q­94†×wv4  ð6tOË_"ê¾gòÝÞm£Ý-ýôÏ Æ£!1ÚÇ&ŒŽÌVOS“¯&ySó¦’öÚ}¼pJÞkëÝÆ‹j¥ÚŠÇ&þAü´ó—ô»Í;ÊvR\^É)]JÉ8 ··ø·¨\|=0ÃEÐ5M~èZi±r;ò•ÈH’Š[âv¢ŠµNù:óä_ä'å——có7š|Ýšµ[¸ÃXù_Kº‹”R@°b@S×ùÿò¿É~Mò¾Ÿ¬èþ{ÓõíJíCO¤X·©-¹®âB ¡Ðeü‘ü¥ü¶ÑõMgóQmCT&å.úÝÝ‹/Ã$òDÍE ×$:Ç4ÝÉ6Þi—ÍeÖ¡u(DòõœëqwdT¼¼ O¾qŸ9þlyÓσJÓ<Í{ÏGÐxÁ¦ipQ`¶X| +«úò+¨y¿Ì:ÈÒ›]ÔN£”+)÷Š(•«Ä( ¦q {Ï:Ö» ¶“©IéèúlƒêÚM©ák_‹+¹ò/q©_ÝÛAgs;É°+o …ëAÓ~iêvZÖ½©¤ÂÐX¼1‹UjÖŠ;üñ2ê!üÆú¶›*#Y¢kaÁbqB8Ó¥Á¿™×^WÔ.ôëÏ(Á5¦œmCou)šU |U~ûàl5üÑüÍó_,;k?¤WMµX´ËqJ%øAsûMA×&›þqüÔÕ4mgÌÒE$šm¤pZÅ^œA£ykÉ*Os’ÿÏ/Í0þdižSίêiV‘Gk¦Ù †E V^¼ˆQS\›~dþrþ`þmG¢Gç­HêËö‘éúq*Œ€«Ê›¥p>w/æŒÑyoT\ë’˜­ô™Ó쪭u; !ŠâãóÊ5ŸPóÌÏÓPy¢³E é‘ÛŸ4y—ó«R6^j»¸Õ5¯J M G©éÇ +# ò  Èj¬÷R„@ÒÈÔUU˜ÐPy†Ý¼¹q'–¢¿õÞV7"#ð‰Tñ#cM©„º†±}õ+}Iäk[vŠ#!*¬ßkˆ­ùaVµ«ê^“dÖ¥»Ò¬îZækXe¸#ƒ8^í@øÏQÊËÔ-v¯3³ÿÎ)ê>Vó˜î¼·çÿ/.¹£Ç×oï%24Cn ɽJ³»Î4ysÊš3kúšô›%²òÞŸq­Ï{0qq*[(>“JZ„t9Úçáü¨üÁ½ó'”?7n%0Ãg6£¥Þ\^K=ªŽ‚ýÈQòKËþIó?›'´üÄ—ÒÒa´šynZvƒÓ1-TòùPíœ×ósÍz6µçíKSò–ƒ¥$ò}GMŠ>(‘ i¿­kâl)P¤ž[m¶ E~G bH™ÊÌÜ@„w9±XÝÑŒÏFdfÚ›ýÔšó4§Ù±.'Žê:¶eRwì:œ¸â.ß䎭Û6+s,oÁ"Œ"¨ÛÄŸ|ÎŒBƼTwî}ðEû¨¬(ØŽ¬{“›Äð(bv;æÍ››6lÀ‘Ó6-ë~×6çÆœ«ïJ|©ŠúÇízËÔýß*`¯Ýòõ}i=NŸ>Gì/ʳgÿÒù^àV£§Ž|¬`ÛaŸ*©Ÿ*³W6Ç|Ô9±x¦”|µÔ Ò†½±{i%YPÄÌŽqd4j×µ0Uƒ\ÇwÐ1GŒ†VRA=©› ä´¼Ö-g¸yÁ6Qî—`§ì!¡ßri‡÷úmÖ¯¥Í«K*ƒh‹A+RAV&›{“‡z­«]iGU¹¹_Sbæk#ƒ¹ +iÐO^¹±{_=ù²ßÈ·¿—1jR¿–ï.cÔ¤Ò$–Cn—‘¯]#-ÀHPq,JÐbŸŸüõ®ygNòf³æ-Fÿ@Ò˜>™¢Ü^Ï5•«À`w(”58NMO´q-Íbó›¦0j·¿èëh´­(_ÝOu-ŽŸiñEmªJÅnßÓ6–Ù²4{d}”©¡ö?~ø@ÝiøæÉ–‰aÞ_ÔÚöI,¢·ƒá~-èÉ#Iþí¬Z•â¤‡çLzBïÌ(«*Mwbhlw;Ÿ8- +ľŒ€ÇÍEKÔ.âµ*'­Í‘’g 1jTÓ¿Aôœi ÈÐN½©óÄ ·¸¼–2K3zq"Š–bhÝNù³ª_Î:þsÚ~NAùÓ¨ùzK&/§4z³qIÔÆäô™ƒð.§‹P!Ujä®!ùé¼–|â¶wž^Ó °¼»f’ÚÀêEÄÞž˜õL,¤¡ 8àå^‹“_;þVþ`~VͧMæ‹a¦ÉyÞéSÃsI%j¾“ä†d¯J|\kÄæŽDUgRªã’ "£ÇpFu3òÛÏž•_•¾DÒ|ë>·­Þë‹å/Z¹ãk¦Ùiè†wcÜËBˆ¥¶©¢ñe'´ùsòkÏŸþFò”¼…¬{XЭ5]_W3Ê°ØèšdÚ‚ØÀÒK$)p]優e¢q!QT³zvÈ_̯ùÊ]Ë¿˜>Iü×›Ìú¿•´[mCÍZÇ™®/a]&{Nî×K·µš¼¸{†‡‘*8ž _sÇ¥yò¿Íßžiò7委õ‘©ëºÜWQÚYßNVÏI¶·’w(Òs‘—áŠILk4eàž™%¸üÞüÏÿœMó]Ïåçv‰¤þjOem§kZ6­5Ä·­eÜGPÚÜÞÁÌŸßü|Kö™hrV9ÿ8¿ç?4ãü²üʱӼûæ¿'Û¿è?0ÜÞH÷vqkºT7‰ 7÷± „A%NQÑòFŒ¢F&9sÿ9ùÙù]tžKó6• ù‡ÍÞQºÔ¬$üÅÔSS¹×︹·œ\ßÈd¸JHÐÆè€M’Y¦~t~`ÿÎ<þi^i~hÑô>y›È¥ÖŸ§êþc†óSú¤Ú{ÉhE¬¾½³´—Ô…dÓj"6ŽÆæhVØÄ$’OR'i œGÂ9ò"ÿœküë»üžüÉÐõMgÌÞeÒ<¡mwõýsMò¥àŠk·†2Ñ#[Ï,vò£È‘¬«'X¹´ÃϯùÊÿÍoùÈ”Ë~h4Ï$Ãwuq¡X$rZ§ÕÚC4qÉûÉcE«žaZ^#"_›¿Ÿ_˜_Ÿþi²Ôÿ1õFýg!]7A·–á4­.9Ê}`ÚC#\˜Ì…CHÀ;1¼¨«œ—ó?óoÍ_›:œz¯š±•DÑÅ~–ZMr†NQýa­•}GXÑ" Õ¢¢o·#üÐü×óïç/›.¼íù‹©þ”Õï8z÷ ÈÞœQÀ§Ò¶Hãä#‰·D(©4Î ¬G :¡ý8uš8˜úh$e_R5ªN@PP€¨ ç7¹Žœ-¼¢u)Ue™:Ñ÷ª±âOCM¶¦A½Ylï…Ť­°0xe‚2ȤP¡£t¦D³¿ù[þrRÛÉþVš ­%µýcB6Iå­Rú!Z^Ù„h%œG /é*L5vçBh‹Nïù]ÿ9QuùYäË;-#@‚ëÌz%ñ¹òåÕÓÎÖÖ×v‚×P¬I2È$¸¡½6E`ÎZ¬wôß’ç:<õùuùl<»åMÒ3­óIsæóK-ΚúgÔnm.mÄu™î$òÍ$ŒüÖ£p¦9g’ÿ1uO ÜiZÏ—-â‡^еH5Xqê4ÀÀbpQdFéÛ~[qþeù÷Ì?›Gæ§üä ‹ÞÚk6öÚ¾¡eå¸B¸žr¹T¹ãñÕYÉ¥IjÓ"zwæ7–|Ýùïsù­ù÷§Ýj6Z¾£&»­iºLq/­4Òýebô®\r·zñaê(kÏ–æùMù‰ùmqùÏæGüäsæ*Ù%¾‹DÒmmd‚[Ø{Xî¡»x£{E’‚D/VUàjµRýÌžY×?5­|áù¹oq}¢_꿤¼Õg¤ªE=Ä3Ng¸Šç§:•eâÄgCüÏüÖÿœ-Õîâóç’|¡zúÆ•¥®åy쬬´{ÆC3Þ¥¹ç#©`¢BÌÍJ½OM¼õù‡ù}­y“ÍJòl¶×º›µ®“£]Eo“elëñ]á–FúÅT*Æ´Œ,`2WùÿùÍÿ8ïçMF_2þXy5tíVîa5¼šNŸ¥éqÙ½±<6št…EñžF¬® +*¢ñ]¿›>`ü­ó/›üÁ¯~[hw›y¨9Ðôg +°Zé‹æ=iÜÎÍFj?½+È‚Î<ÿÎ@ùKò³Ï¿š<ã¥Mu§k.±Ë¥é0ò†9Òê,ËL‘¬‘I¢õø‰ÿó‰¿ó‘šoüãýïÓVmFÚ6è“ivÚ¦‡´—Ö—ŒÔG+tè~HNî#b­Â˜{ÿ8ÿ9uåOÉŸ$ùŸòÏóßR]Y¸›UÓu,[XjÇRšÐé¯éÍu"Ä#{I$^\Æÿ²èΘyÿ8Ýù­å_ÊO9jº¿œ,..,õ]"÷J¶ÕtÈâ}[F¼œ£ÛêZsM$J—6òFšž \gçæ¦ùµçÛ_2yWUÖï,lôXô­yÒHd½M-ÔÌ%Ï<~šA#G¦…U‚+d óWÎëù•ç¯¾»¨êJ¶ö–/­y’V{É}8Ï&Ä÷"TÕR(™•€R¤g-üÔóg‘?6¿6~½åX/´/O•¦Y^j+iq«L µŽ îµµKx®o®eV”»+×|ñæÝq<½ùŸª_Iy«X9Ó®5Igg¹•£%ÓÕf&BÆ6?M{Ó¿›S¾–ö=I§eºŒDc¸CÆEhUU¡ 8ú÷ë¾sG{‡5woQÌŽ·–©w’¬CÖ¤–ÔïQ× ¹Ïµ]BóVÔ'Ôïå{‹‹–/,ò³;»¥™‰$û“ÛatÒ<Ò4²1f}Ù‰©$ø“›&¾BóM¿‘´m{Q[__êš{ið[\©+ 3I´ ^OÉR»q&Š$ŠˆÊ1u§6¨(kRV„ ÆƵëòÁvÄ$fFeb©¦ûŠV¤C¿ÑáZlžy7óKòä‹~TA•¶ù¥9ŸÏZÅú5ÅÄi¢\9ÓVÐÄÃÁ݉fFæÍBV:×¥ùSófM+òÏSü•‡E²ŸKó]Ý­Ö¹«ýB×V{iÃA•Ó$CÓ_€ŠÕåU`²6It™Ž­¥é¾LÒÑ“V”­â{·¼¾‹Õ[6XÑ ˆÒ=Ö¿<«Ä ‡T½·Ón´ˆœ [dž[ˆÙ‰’ߘ•™K)F ƒ’?ÌÍÌ?–ú¦¾ßó‘Zå眼ɣ[YKä /WÔ_V²”j ]ýc×t•(äVôÕ@.—@Ø?Ï:~»ùq­êWüãšï^óg—ÖÅ|·cutu 6Ú¬4×Pܣ̲Æl±ñäįĆ›Ú>¿§yïX‡Î¾l·ó¥ý«Æ’ù—OÔαo¨EnQ_¸c7áIÝIG¶[Ì6wú~­=–§wõÌ\ÜÛÝG{€Ž3Âî@@Øštíÿò7þqßóCó"=_ó›ó/Ì—Zuî¿ui¨é^]ÐuV±Ònc¶…­ž+èá‚eXÄ#ÐP¬O@ÕNþ¹ÿœ~ÿœkóÇš´[ÿ=þpyÏÌZ_;]Oy¨ù+ËWo¥@ö³Jæe¾‚‰‚á‚°™Vi܈ýÏù ÿ8w¬y[N²Ôÿ<¼Ý«\^jéúÿ–4]®ôy´ûh­'Ó é…Ô\Ê…¢Å08‚ÉÔ/¼ç ¿çu?Í/É­Kο™Þ«¥è>nwz–tQ´øµ°šáCêÑKg:”-Å­™9Vfý¥Ï1ÿÎjyOÌ~Eü÷Öaó®±g©ù¾üEyæ[}5îfµµy£V¶¤ºX¥249LhBñÆßó’žKÖüùÙæ+ù’ÒßOÔ­æŠk:Êêâöo¬ÁÂF³\¤r$ŠhÀ¯B¤ ~y[ÚÙ~bêåntûJéÚ}lhSOs¤Ç{,®òGm5ä’ÜIÄqõF'ÕçBËʼn4<©wäÌ wÊ—óé×:uËÇpÚ%Ûßié#í3ÈÎÎ#-Àòf`ÊA$ïž~äJ…¦Ãü÷ÎeÉ©JœçU$á‘|<ò¶³©ùn÷üG£½Å­Ý’ºÛßÙË-³@ÓÆñ†õadpßÔn•ê6Åyã¡ŽGF!’ªH%]J°Û±ƒã‚-ÜBL¥9q)© TƒPH#å›±×õ lkˆ#šä´¯ œ#̬È1ÜǾ0ì§Zvˆòe¹š9ÉY$øÁ P|k›^Ý}fc:…FmßÒE‰yTôT¾F£bkOpq›Ø¹  +>áA›ipmnb¹ +ÄÊêŒRTò‚"£q‹Ø]›+ë{ÞCo"J¨UŠÀAm¾]¼­©2€Jx°Ѓ±fÃ+YMô÷z¦¢ÆI'cRœÝÏ"}‡L)¼Ôç[¿«}jVå!$s•Ï#ÇÆ™nÏ3¼²76rYªwfmÉ ùæÃ×JV¥ÄSÈAXà +•n«Ø`Û$ÑT;Þ%Ä’¹UŒ'%É?j½p}”zyjϬKqˆ´$ÓíW°Í­¤7¦Õ‡¤±OÀò )#¨'ÙÉeoyèÈ}$Žn%*(H'Ç ôä‚+¦·#‚Ã9CÍÇeû@mß66=qôûŸVÆÝ™eäIø×m±Ñùº}?P3é6èQßÑ«­Cî~%Ü|Gmñ«æ¬®Àµ‚7Rä“jo¸4°§^i_V¸’`¡Ü«Ÿgâ@ŸAÂO55Óë÷r^²4ÎQÜÇöG$RþÐûáW™‹¶·q#ñå ŠCéýŸŽ%m¾üØ +°¯6lÙ³fÍ›6lÙ³f͘Ä(êv°\Ä9ŽoƒšÕ•ß6/ Ëe)¥j}³b¦‰ÜC—ŽJ*G¸Ç"³ž**}²‹3³:¨$•Íž±üÎÑÇüãgüã‡å]:›Ì™`^júÜ[L–J±Ëõeq¸RxŸ¿==ù»£Y~CÎ?ùsÈZLvãÌzXõ?2jÐHàÚ*«Çl|#f!©üËžšºÓ-!¿çæ5|Ñù¦#OZH¸¥­…³z²,r +2»ÝIéŸ<è©ùÿ8Á¡hº|ì5ÿͱ¡æåRk]:ɉŠØ%9p•Ø9=Ê ò#»6äòð'¨Ï/“\ói™JsåÈ!‹ Á' Ï3g¸ç;ÿ' ü¬»ü—üù}+PÔoc}2õ)êtœ[ys]ºåqõÖòì T“‘ˆPƹÕ(<Íùsú^òWæŠÝIg¨Û8Ðe¶«­ž¢ïYý2@©R¾ s•~hÎ&~byP»óŽªJùaî@m]ÉiDR=;×9ÿž¿"¿0<‘<ºŸ›-%ƒJõQdÕR’©¯rFD=?ç?4ÿ./uo5ßzwÞYŽê’k̲2G#Ve4ø†øCçoÉŸÌo!Z>­æ- +îÏK2,pêÄÂ'õdø©MÀÇÜþgy‹òËG_+þWÈ|©¤éþœš–¶£Ò½ÖJººs­jƒl3™Òù[M¶Ñ<‡òå•´1Ǫjr†÷X "ʾ¡¹(  ˆÌO3ùÉcÊžIá¤é«uÞ¥«BÀ]_4F¨9‘P ž‹ô¿ÌÍwË:,:O“Oè9™JêZ•©+uwYUW“¨Ud@¦K|ãÿ?üË×´‹}'ËÖQé3Ç·›TF/,‡`PW%ÿ™ßóšÞnüÂòyòhÑí- h–½`d¸iñ#²M7΋æOùøæ%Ì1Iä»?ðþ¢–Ïi&ª³§‘ePŽÄ¸Ü3¤þvÿÎ\y¿ó¯ËúFƒ«iVv?£-ZÒ[È#k‚å Hͱ©à3Í:ïæœ5ë©.5ùn%‘‹4í³M{S<ñy©ßêýfövšZæÇzƒ<Óuæ~þi¥¸¼vk—yg5§7sRM[uÒ®¹Ã4 +/ÒAÈ :¥Ý¬¢[6ì71LáZ7œu?._Á©h!l®­Ø< +¡¤B< W!Y Ò4|ã–î<º5ùì­®Úââé ¥™‹0÷œ8nÕFúµKŸ¨€Ì¶ªÜSÔ•‹½@ëRIß´ÿ?ùÙ¬îì´ýOêFíæšúáÓ’T–er:ƒ^˜õ¸"xFXä¡’0Ä+S¥G|çO4®ÌÌ\ +ŽG©ÈúÊÑ9hXŽ¢¾Ç"fúV3ÈK8§cSãŒÎÝùæoË-;Ë÷¾^üÄòµ¶£û‡}Vbñ\A÷Sƒ¿3µ~OÊM_Ê—ÞWüÄ–ÛG¸¸q-¶¹-»Ë ‰èi¾ù°V¡y5åÔ×L?}pÅœÿ-OÙ ±ú¥ëßßÝÞ¸ÜJïZl5x +`Ë亿’MLŽåÙŠŠÕA; +v Í€äˆDáòa±QHŠšü¼0½WŒœ$Rxš2Õ›ÿöO Àszt¯lV謲rDô× QÛ¶lšù{ò¿Ìš§“5o=– 'L(4î#;ôv?,™AùUçüŸþ:¿´[=N^Œ×Rž^mFqSÔg@òŸå¯æ_Ëï4yô^G§ÙyoÐ Ðd7o5h±±aN™!Ó¼…æ=OËZ‡›a…"ÓtêzÒÏ"ÄÒÚ%j#¿„¸=÷þ™ ã_³½:žÙÏ^#åZ‘ö½Èö7¦7aÂ…MAï›6lnlÙ²ÀøfÍ¿JfÇQ¸ñã½zæÏÿÓùaN+RE:óÏ•å8µ×m³åw1PjAÛäsåV4PûŒ ¡[}ÏP3/wê_ Ø":%EE/s×ÄDLfEû4*Ozà¤ýÙ%ª½8ƕ͆–P¶¬÷ +²¤ôÉo‡`µ§Z]ðëJÒO˜!¹UœÆ±=ÁãP§¡!j+Ôd›LÓžóJý'itÐq•PhÍP>ÑíS›¡ù³\ò„Z­®”°ÆÚœ2é×w[Å3ˆ%^$M*¿KU%hĸ’ùžçNòž¡äX¬¬ý+ËÈï.µ9-RKækUhâŽ9œ1‰f$'Õø‰b­ù…çmÉ?ò¬’ÓËí¨fæÃêVñËq|¶óY dºxþ±ÄA#F""ý®êØá#š *ÄñRÕP@£R o¸‡¿A„·6è®^DÑR:ÈŠÀt Ãâü&ªOz+„-*«š”,È®ÂJÒ ú{ä:[i¬®ÛHBC|`ÔT|;€VŸ?§“Ÿ$þyy×Èú,ž^°hn´úJlíî Še¶šTd2"Ȭ¦¼‰*À‚|øi¤y·]Ðl®´í&àAo|еìF(¤Y»s—¨²±­:`íÌ·Þ\Õ­õÍ=#7–„½³ÍsF®kBÑJ¯€MhÊwÌ #·Žùó/œüÅçYuO0L·aDq †Ú0Š(¨#¶HÔmAZV€Ø[õ—y–i¾2­@¥@@…)—¶—aMkW³Žýá®.¬GXç!‘ýYcâ 4ø@¦ÀP3gµ!ÿœŸ0Î*ùÇò—Jü¸m*í¬¡ÑÉ°SK·îÒ츑½B®8¿ÀOû³áëÇ=C¯ÿÎjj˜Z‡üãÿ˜<¿oo.¤¶uŸ˜VãÒ¶²³µÕ!Ô­n"þñD6eaÌ;7ÚÙ½%ùíÿ9o¦~zy/DÒ5Ï&ǦßÃ¥æ'´–#ms=¤rZ¬6‘úe¢SnS‘ffR¼wVø{w›?ç&ŸÍóŒºüã«ùCOÓŸCÕÓWÿÙp‰îR;y T–ÜCýñõG)ĵeP +îIó—¼ùsùM®Úþh~Uêÿ¢¼Õ¦Þܾ“v¶±r‚!k^ mr­-®y VhG)òçO™&õ{¯1~UÎ4·Õ ½Ñ5‹W&T½ÒÞæµ›ÔúÄ$”yÄѸôþ*_9§äwüäž¿ç®u¨¼¿†·å¿2ýR6ySWµK/Z†Í¤x¡¸Š@’qS#7ÀËPx¿%b§‘ùÌZÇ•¯äÕ49Ž̶·Ú|’4qÊ ¶¥i-Êq•Y~8&u­*µªÀÖ¿0?12ç6¿0|½eäŸËÈ’ãC°m1m"¾†XDºŠ¬~½Äò$* ˜Ñ¢ü<šœŒ³óÌ?˜ó–šWšÇ•|¥¥ÔšM­™µŽúÚl‘.縖òCmŒ[“|B±ÄQ bœÌ«Zò·æ÷üæœüÙù¡ùäY.-á”]_Áäoõx…½½„1_ÒyåýÚQ"BîÄ…MÀó+Î>ÿœ­üæ×|ùo¡Fúö³n/.t­)_ÒK}LD‘ÐJìÆZó"µ-²ÂçÕno¼·ëyzk¹,¯´RöZcB­²-Ã4È®+²þ.´Û8Dñ$$Fy¬£š7N%XŠ}¢{oP)œ"YcLqÎXCHÕ8ŠHµ©<…GSïó9Ëp®×Ì÷‹¨¾¶‘¢zF#" cμy-YG¶ØÃ¥iSZ÷>ØŒW,’™8ªV´ʽFãlØ–»å­GCÖ.t¤C+ÙÉRH¨¬YWÔE7•MENÄô9l´n-JŠ‚A|³Khñ0‹£Qvd¡øÀuñìk› üç«éš”Z šéIg{¥Z ]Rù–HšúT•gˆÓ¢TP*hvÁ·v“­¿Ôí…©ŽŠã‹³ ¤ZÖC^„‚Ûxâ—“A3D©ˆÆ¨¬ *(rA$îT·QÖ‚€›u¿*è÷Þ@M[EÔÖãW†HÞûB´_T·†ÝŒÎ­#ŸUQˆ·>ç³.#³`6³4îéYÁ€F$ü ò<¶ï¶Y¶{‹y&‹ŽÌ§Ó¿Â„³Põ÷®læè“ú"T_€=9PP°¡ÄÄÖ»ô®£q¨á¶l}¤v—‘{9·Zýµ˜ï°+˜Ô¯Ž\jŽk!â û@Wç°#6M|­«ùOÉ-Ϙü³šåÔcŠh-¯&šÖ(­ùÈýÄ•,ìרZñ üXm¡jš6šóK«èñêü¡ž8c–âh9¤@±KþŽQ¦jÜyQ»û躮›¡$²ÞèÐj’O ŸU7O:ý]Þ)bIÐC*+2JË"¬Šêx€À©5R R'-$K0*êË€ ©PÃ)ª“ÈoJÁ¿5ÿ3üãùÁs¢ëÞj†bòömå­.;Xý8¢´´igŠ=Ë3031,ÄŸ|þo~s~c~|yµ¼ñùª.««úoL–ÖöªµÄ·\[G$È&­½+°Á™_˜^püÝó–¥ù‘ç롯ë2#jÚ’ÃâdŒFǤJx*Š"ªûaŸ›<Ýæ\×¼Ë{ú>ÂÂYçšûêGRô$ŽÚVŽFµá'¨N$†G^쬠©îó‡ÞeO(þ}èzðžòÅ ¶×-×PÓ!¹¸¾¶}CD½²I"K–rË$ÊAA^¡ãûk*ü¬_(?Ÿ´ˆ|ù«K hs<±^k°Y¶¡%ƒI ¤W"Ý$‰œE)WZ¸Ñ<¿eõ}WX¼–_¬ê—·×SÞzŠ—F9JDŽ#jC¬¨8²1#ÿœ€óåö­çćòªâòž‹ea¦hþš]*¸‚׺Þ~ð<—ìyW‘ßaðá¯ç·åùq£þF^\ê¾QÓ ¶‚Ë]¾¥Î¥1ŒK<ï°Û˜é#´j¾šü(|žÿÎ9þp~kXê:wäǘÕf} +Ò7ɺ¤ZƒéÒébvŽYeˆG"$¬câ•4è›l_ò'ó£ÏvRò?éGHíîùcWŸZ—No/]]H¾½Ü ëGŒQòݲ£s@»ÇõoÌ_6^i·V³:^?èë  ©¢¬Ööv¬)Sô¢n«"1ä |YKç¼S(Ÿ÷^…³ÈòVØD¤ÄÔoñ£±§*0ˆÎ]Î/yCòUïI¸MBuÏs«5÷2e”EË”~¤Œy;lh(Ìàý‘@Ÿó’¿ó¿‘áÓtÿ2Ùù†ÄH ‚âÔ‘1&f¬Ñ”fõ +ñþkˆæʳ²r‘D„¤«*…;ɽ…þ8ƒ)SCN€ìAê+Û<-èΪÂEZŠü]¶‡j×8˜ýx‡P*n:ïòÊÏJ~Pþe~OþWþLk^¿šõoñ†©p“A hÑMiÂ͸3L†&( r¥9–§—ÃÓtÝWò×HüˆÔìàÖµ…óÖ³©D·:"%ÑŽŸj‡ƒÎ6fX£¬•SÉ}5›t»+¯Ë] òûEÖlu{ßñÄÒë1êvKq +¥›%œi,Îð¢+Gõ¦¬^©o…d +)SV´òØòÌ7£Pœësuºh¶¶D¶0Hg.»¹yZžšÿ5Góÿæ6æ]vúûÊÞ\´òåú@³Y([ÉYã‰G3Î¥”Èê\…§Ú"§®s«ë‹Yæ el-côáFˆ;IY#RI9>àÈà¹h6×5KCU{í2ÀXZ°@–œýJQ‰`žDÜW}Éë…F¶È3L[¥Mh(?V8TMI>9±K{i.$XÐ}¦ +¹Å ·–á¸D*M$öh¥ÙT~Ñï͇rHÑZÅ'[dôUâ+À–&¹3ᔂq 0ÝKÍmCÇu1ÅÍÛv'I)•cB5T E©5Jšîv$ó`bêϘú¼¾'SPAn•§l¨Ù¥š]¾±ÈòhÍT©=7´0#:ú­Ì0«)_åò͆¶¶k%¯£,9*iWØSÀõùä¯KÑ’êÉíâák4¤‚)AvSo”ØiÖÍf;BJ75PYy°ë°?¯6$#h&‰$œ;Z•y"P+ê6Ätï€äÓ¤Òæ5Ê´–œ–K~%*Ï@w oÖ×p%.b’)$‰FõbhIíÈ› µf¨ÌëÐ|?ddg\“ÕÕ'p8ƒÄ(öü0Ì¥[[¹((¤¥)Os`L…™³fÍ›6lÙ³fÍ›-T“¶l¤€;æÃkK¸­,çõ@v‘8DåZ½sWjbªÊ*¨<ÙÚ¿!-nSËz§æŸœdýå{$š;K†Ug¸ÔL|b„# +ñu‘¾!Ò™3Ðü¡­iš yçQK?Knv¶×©oRyªŸ¥Wq¿ò'ò¾ÛPÐ5¯Ì/?%¼PÓ­ætL]ß"(‚B$'Øa¤zêi_½†H´ù¡·¸ã´“( ÅkÖ€ïLÿ9Y¢yöѼ’¾fÔ®5;K½-&Ñàvõ11Ú4 °Ãó~ÇÌö÷^_3j£X¸¹Ó –Wa€’#N…iÓ ç&Ož¥Òü„úõÌóisi¼¼½g3—HmËA·l‘~fÉç Ôòæ¯çtkrßéÉcYDklŒÑ¤Ù+Æ´Ï;ȲBíªU†ÅNÄg<"†‡<ÿ:É‚Œ¢„xd'%•¯–tÌ]\ózÊÚVr—w)†‘ŒÔ@Ûí‡þ@Õ´κ.·®£IaauÍÌq¨fe‰¹€Ûry;PÒ4ß5èú–¬,ì®`¸¹1ŽlVP¶üi‡MÕ,4O7èzÖ©–ÏO¾´ººˆ(bñC2ÈëC±¨ÏHþyÏÀ<Ñù¡êþGò¦†‹¨$p‹™—Ô¹)@ë]•ª´ùgtüãÿœÛó§æ~¬y *Î×ËÚœi +Å$^¤ñúr¤‹"9û-ðSäNzó³þs{]óö‡7”|™§O—„s]òç4ñ&üJ°* šmžÿœ’ÿœûüÁüøòÕçåݦk¢ùRw†–±FvKsUÛ &†ƒ<·æ{\óÂ]k·s*(TæjŽÀ †yÊêòêõÃÝJÒ²€ªXô°Ï3_êWšƒò»¹dv!Ðg•ð¡yì¾ØŽ± Ü†l’!U\¬·":fž˜±!ŽŽ:×®lëþAü¼ó/åÏæwõ¿5F.%M[JVÝ\Û/Ö û¨É“ã}ÍúUÞ¦n¶î/c2)0)–3Nಌ럖tü±óWåÿ˜5»8o†°öºÎ•bÎ +ËN³ðqà@¡ðeœ·=ý–¢ð0¼W1G2Õ$Á…Gu4ß ?š^oóGœ¼ý¬ë¾e¼–æöòîYdyË’(: )Ö5õ=^ïSŒ’\Jò35I%‰=ò+ù­ç4yûϺƿæÛ‡šúòæG–2ä¤Ê«Ð6įïfÔof¾ŸûÉÝ€­cZ +öÅ Ôç• œ\<:²„ 6ÕÚ•ÀÆWõ=@O>ìw8…¥äPO-ÃC}oÄD’Š/úÐbŠÊ÷P¾y¯[’ú„Ü\>µßÑDÒ8§JVéôá%Àyï¦RFbeô-Zógjü‹ó¶™uæ¹<«æM5æ ŽG@=&âB;¶ÄçMü¬ÕZÕ.<«©yvO3‹¨^K{unpIJ$Ÿ© +wß:Çüãÿ“¡ó漫g&¡mõyšIcŒÈ‘*òS`Šz“†Z v²ÜÊ—vR^ƒðX‰›9§P0§ó#ò_òf¹¤E®[ǦÁæ9—ôuÊʦ#¿Aè:áF¹ùiæO.ëÖz¯i¡ÕeHm%”…SÍøì=N#æOÊDò®¹¤Ãç´];L×åo¨kVn%bõ8s!j6ðÄnô}FÇê¦î½Q%³6ÊèMá\êÏüâ’u9t$þ[ëkç øå—T¶’â3QÆMMAê{¾uï5ÿÎHšÍŸÿ.u…ó/›’½Öì¢dô--Õrõ~ÐΧù“ÿ8¡äÛ?2h_—¿”`gÖ¯cYµ Ø|ÂËÌÈÜ+ÁEi¾vÏ2Î3Ú |å/Ë­}<Ñç6){ÝßÓ1Y†£U$TŽµéœûÈ¿ó‹×šçæøͼZdQÝ gºRÔe5`œ¼;äcò“þqgÌ_™¶µ§ßjÖz?è'x®bžtLñW’„Վݲ#ùcÿ8ƒæï>þoÝþ[]_ZÙ.›*%ýÊJ„°,X]¨z ‰~^þDù‡Ï^y»òΡg¡ÞØO%¥Ó^Ê â Y ÏÙ;á‡çŸ‘-¼•ªÝZyF›IµSmi,ò¤"¯Â_®Ää'Íšfµå É ¶Sm«41Yy +¾#ùûä› yÏXò—-ŒzVŠÒAjo]]æx¾f§C]Àȵ§¦“«Þi‘η+k+Ä· ödÄrÇ9Ï™<‡å òÿH×-¼Ãõ¿0^TÞèÊ¥ºƒ·Æ;â>zò~SÑtMZmZ ëÝj#q=œ ®mÁÜ+ÜødkÎÿ“¾^ò‡åŽæáæ‹{½sUEž]Y Q1ñBx‘Ü«è:~™¢éz”¬7—7êÏqa<í@4ÉÚ§Û9ÞB¡®r˜âfn@Ô½:á.w%ÚþqÿÎ:hš7矗!ô¬u¸e·ŽYQ™RŽ†ƒqº“ÇÈz×ç¯üã.gù“¢Bl´5@bápœáhxCÜW’œì>G¸üÊüŒ°Ò¿³¤éžE¸Ðü»¡ùÚ$:‹jOVµ +YbA!OŽžf‚hæ‚FŽXØ4r)*ÊÊj#pAÆZÌé/@À†ä +Ú›’=3g«¿'/%5o/y7óóêùµK4&¦ÚýÕýÅ­‹ÚÞIen†K9â–5$,»‚[}ˆéè_È'Î0Ûêvþ|js²ßZ}fÕÄ‘é!©hç’ÉëÔP^¨¼iF$qofyò»þqËZw™Só§S¹»…ôÿ/^yGÌ _Ÿ®\êq›Ûˆ™¬9E†2°ŸSf’¿'þqúÇò:ÿóÒ?ùÈMJ÷MòŠG4—§E#É,«zQ³B’Hª^•*‡æ½r5æ?äå'æïŸt_$\_j–7÷:si––ÌgšòHËìÓŸy¤5/ðõêÍù+ÿ9äÿÈÍ/4jþOý+uåu©IäùQ¡·ÔV.Úصœo®£n4âÝ2/ÿ8•ÿ9‹7üãLâßXõüÁ¦XÜCHЭ’#[Ù­ä„O%ÚºËð‰ßÔ‹âGjV9ä/8§’<Ç°Öï}m ;›d™¬åvô¤Š3ëEWJ9«RŒOô=Cò£þs£þrnûY×ìÓË—Ì2]E’­¼rO 1 ³¼„¢¤U™fø›y>Sò§–?ç-ÿ4ü÷æYå´òT³A>¯i¦5Û¤Çolì~3¼‘JÎÂ0§&øË,òÃò÷Ë¿œù¿ÏpÖí<»o¦\Áq¨<’@Œ­©¹CÇ ÕÄ&hÄQRBá\ñè¡’ÑtŸñÏ™o׶: ™/u &»¸[khý(Þsß“G@ZF4 +¶>x¿òN¥òε öv·S•Õlèñ‹Dš^R#q'ᢨFß`{g-Úš\*àÌGÅT¨è]úþЯ·\å66º\·±Á¨K!µ^S¸‰WÖX‘X²L‹S@)_—dçó÷ó+Ëa³Ð´Ëöý+§oqyq?€Z'£mj4fä¾ G.G%_˜ÞdÑõý}æòí”:u¥¼³PëV©tß +d–+™…€BÐE@^ƒˆÜâp.u ÌŸó>r‡Iü¶·òûy]5U´´½óF£y4±Ûjnæ~Üe!"PüBž*+FÜF“–<×{£yFÖ o.Oww¼žcÔ¯%0/Ö8ƒ]·‘EYÙÖ>ŸKa­¾§åá§É¦~ªÜ*Òòi\Ïà2ú‰éü™$rBŒÛ|/×0ðéï„ÞpüŽóWm5­%õ?0èvßZ½]cC¾ŠþÎâU1C2,$¸ ì91¢¨Ÿ>mòf³äÝfãGÕ=ƒjÌ¢òÆâ+«IÑ'­o<%’HXŸ‚T%ª±Àº–˜úd’iâêÈÈiḵ›Õ‰£ß‹q£0Z”,Š>ÒŽ™˜Qˆ´î:ådYCy{p­èÉhU‰ÅX)#ì© áÃc÷át§##û³STV•4ÛǦl’~\~UùóóBþøyCH»Ô#Ó­®u ^âÖ*ˆm`NsìµàOÃ^©‡~_òg›|Õiªê~[Ñîµ=¼Ö.­áw†ÎÝQäç4‚ªƒŒlG#¿JÓ ôŸ*ù‹\Óõ gLÓçšËMOZþú8˜Å´‘Ä`8Ô´È)àkÓYéZ¦£o{y§ÙÍs™ÜêSÃÈ–°4ÑÛ¬³2‚ ²¢jL«ÔŒîŸó:¯‘f°ó'™.¼ùiäÏ9Û¾Ÿ§ùÖõZx,ÞKÙ'¸E ŽZ©i<~.\s­~F_è—ž[»üÐò§æ*ù{óI.%±ò·—_M†úÎK?H ¶½{Èe€3¤Ÿèパv!·OCÎ'ùÛËÞ@Ô,/t¯7麘<Ïs¤k“kv펑¤[Ú%Õ£I)æ/.”+´jkÉUä~@ó†¹ùm«iþò7˜dÑ<קÜL4ù¡Ž¦M³$ŽÎêÈ}Q!P¨åψãÊcÿ9¢Û;yþrW½µUüÆÓo-µÑc)½²´‹H´èIGÌKhÛª· Àªº2¨¯ùÌ}/U¼óÖ•ù§¬ë:v­yç­6Êòâ=*êÚu¶’ÖÎÞF…£¡ƒÒø¹±.$äK+dkþrÖ-*ãóºóÎe´~“æ‹h5(,ã–êámäXÍ…Ô.n•eªÞÚÍC@¥hc8€;ó£_Õ¼ñçi35¦²úßcý5<lŽÑÃ3Ë%´ÈÉ!f½h‚N%JüsÉqëæÆѬ¾ÆõÝ­¯^«,_³ê¡2)¯ÏÓ¡)BMxZžóˆ,±Äåêv •Phh+R55¦A0&¹æýw]¶ŽÊúñå·™¡‰›ìÔ÷â'j×5q;‹Û‰B\újÅ‘+Zk×ožl$21m¶â€Àvùe`jšS6P-]ºûeò4§o–_64ö*×6UVj1ÞŸ,Ø&ÎÏ×<›CòÔ>œR‹†”©1ÇBô÷4䌷ÅO„u÷ö͇6ñ-¥¬¤IªýQW”¦¦¤Ð°îÚgoir·±ó*›$® &§á¦ÞØ2€Š)#˜ä ¢¯îFÝ6Íf³ºin§RW‹Jå8šñcÓ’ÂíÞîá9!RÏ鲞DWå÷ã—Lº"iÑJ„õ—‰¨QôfÄá`>»ÆDâPuñÄRém)54ªC ;žT7ŸV%ßs"q(:Óß6)a8?{õ`Ä|F›ð^—¨¥„¦Ý‹/zqSØ’ÕÛèúÂÃ8F”ÛÆÔ« Žù°ÚòëMŒ1’³LsOä­-+È5FÔ9!Ô5/Ú£ŒNÅ×.â½K—jñ0çZÖtãE— X^X”0wQU`Á‡@Ç6Eç(fsª×cÖ¾ûäòXæ¹yaQ©@MO@Cn$Ìî7¡=HTõÜæÆb8žlÙ³fÍ›6lÀTÐfÌM|Øøö? Ißa›¨Â@ r#rq›$þLò\Þh½h¥‘`ŠêÌ]‚‘Õš•ë°Ã}B“R•‹ +ÇÌAF7?«$:'’µ-zò;(^+ygæÑ$­Æ« +ì3gNÿœ€ü÷±ó®«åÝÈñ¾™å¿+ÚÃiœ +Op‹ÂIÊNL|œþtþn?Í¥h^_ôÿ-èVñ[éújü ê"Ñ¥eY©×:÷üägç7”üÓ’üŸä $µÒ<­`¶÷íp7Žª“’{¯À)\ê¿žßœvŸ™’è:–lGò·–,â´Òt¸c¯«ÁDÓ8—r»’{d“ÉžpÖ?>­ôÉmMøùˆ–+ë— D¶ñ¼É -°¦ù#Eóæ~½¦ù˶ñɬߖ{Èá É m- ¹ U¾œ«ÍOùZÞ[Ñ¿*ü÷yõ{»'Xü»æ)Ç&¶‰¹·?ʼªúÙÍ4ëÍkQ´Òm?yqw,vöêÍ@^V¢§`*rù…ÿ8çù½eoæ;^éÉu¦è—UÕïíÝY`vzŠâzÿåæ‰gy¬_érËkeq-¥õÜÉSÅNaÙE9 yÛò;φßÌþoµŠÖóLò¼±[ëWv·Å^J~Ô‚OQ†÷¿—þm²¶Õ/[O’kmV·Õn ¬vά÷Œµ + 4õÎ0ˆ$~ÎBèFrN-Bi°Èö.«q€B…™‡Ù§îËUf4PIð¸ôŽ^TI'¢Ò¤×Û65T”q*Ðøˆß+0@ŠCŠ1éâ>ŒØgåÛªy“GÒ£WVð–¥¼‘Tš}8iå_/^ù·ÌÚO•´ê}kW»·±·äB¯©q"Ƶ'`*Ø?C²»ÔõÍ7MÓà3Ü\Ï PB¢­#»€žøµÎ£{o§Ù¡’âêD†ÇVy*¤œö·çßüãïå‘4/.Êï-¶»®_¼¾äf>ŒJ¼×Ò$Ðç¤ç"¿ç¼»ùM£ysË^WÒ.¯¼×|%›Rº7Eaâ +ˆ”R„¶Ç=[ùûùåïÉÏ*y_^m%$ÔµGç}a$CÕ¬aC¢ÐÖÏèÎíÿ9!ÿ8ó£þHyKȺ”RÉ«y’ÕåÕ,fuf·–*Wdìܶùg›¿2õOÍ&yÏM¾óô7Þéчѭ.Aô­¡+û¡GEÛ<û®Ýy§J×â“Ì1¼w¶*#†9–œ +(Žƒ8æ¢þiùsÌzTž}‚îÊKH] +ÖbÁ-­ŠÖ!=Û8~§o«ZJ–ú´RÃ$J4YJ ènÙÙÿ+ÿç uïÏOËỏu§ëZ”Òʨ¡&ŒQþF¹Ùÿ.¿ç¼íùÁä¸üï¤\-œó™ Av†%~êêi¸lë•óˆÇæÏå\^’ííuÛ©„Qº‚gŒ2Ñ÷íñV¹ß*?ç7ÿ9¿-æ'“"F£*Ø\Ö–*Ž2FͱR*k‘?>~JycòoϾ[ò_æ–»ª÷óÅ.­=™ímyQ¾.ÍAœóZü¸´ü´üÂÓ|¥ù"I¯écg(f†à8ÛnTÈÏçOüãîù9æ.ùGÍþo·¾ºÕxIyqf¡ÒÒnœöðÎ]ù™ùQ¬þQùÂ?&ùÊâxœ òÚÈ%ô5$mP7ÉGç'åOüâ¾µ¥Mäß;Koew¶š´—Ó·v݈ï’ÿÍËßÈ;_0ÙÅùWæɯcÔ/máý4@ý^ +1Ú* rsùÿ8çù'¤Zyf×Dó´w—º¤Ç£¤¦a! +Xq¯ürKù¡äȽ Mѯ-ü÷.½sxÑ.«e=¯¤mCS‘ ûTÉçš|•iaæ+#þNè6£@Õt™#Ö5OF¾¼b¾É©ª°•AÉoæ‘å¿!þhϧ~Q_ÜÚhKb–zþ«á37$’0(GNÇ=!­y +ïÈœ>IüŒü¦Ñ´ß-6hm™õëxyJ-$ˆ¬²ÊìÆŽ«RNWæF¥ä_M3ò]çWZbYù‚æU¯©+SÕxÝA¦roÏ?Ì]\ü©Ò|£ +I©Gå©>«k¨Ý1ä$_…„-Õ‘]ò)ùáù‘ùO¬¯–ôŸËý:kûO/Z­¤×Ú˜c5Ûɤfäi¹4Î=ÿ9Y/åÚ~B蟗>JÖ"×£ü¶¿k m•"–õK“û¾|+„¿šlòŽ·¢ùSAò¢Ë*èV_Vº¾¹Œ$²HX±†œEvΫùm©~A~FþWCùù¦Êu oÌ) µˆ¸ žÂdœæî +ž¹è= óòþqïòóCüÝü¹¶˜ÿ-VÓU³žèË| ”ÂíR¼ Ë ÿÄÿ“_•’£óóòº ]óŒM‰ï&7f6·”mâñóC×ü‹ÿ8ÙùSåßÏ/É}Jï3y±'°’ Z$’÷N0³Á,ÖêÂy¡*OjgºüËÑ<×ù‹aä¿/µÔ¶ípm®§gWœÌ 3\€\ì3Áùßo¢ù¶ÇÌ_“¾L†ÛQ´3ˆüÉ«#\]MqrXå.x¶4Û8~—ùŸeiçß%ë?“ }yæ{šûS×'»’òDb̪„JÔ +gšãóî£mæX¼Õ +­Öª“Ïu>¡p9Kq4êÊÌô§ó†—”ºÿ䶻ùŸ®y‚«èò7èÝ67WçšJ¬;•®Øaù¡ù/çcò¯Uüìó`ó° mhñ:FŽx•~ð ¯ÿ*¿2?6ÿ)üÅù¿æ=Z=fkIæ¹”:‡¹ XóÀ ûäž×ò^ïZü Ô¿8£óŒÏg2¥Æë*Þ'âr†„ÓÛ<Ék§_^=mày‘ˆ‚’74Ï7Xi77Æ1­Ääì8ÆÅkóÏ9XèZÄ [yfIÝb é±J¹â*G|æ)JóJÿ5 >üê2yKÈ?–²X]yÞÒ}bY"I¦+C3nªÎ: ]è6¾E¾„ù«EºiÕD¢Òñ$rh@ob3´y‡ò«É_”K¢Í;3¨ ˆ¾³=¾›#Ç4ˆãei?`ƒá‚¥±¹ÒîU5{9#Ø£$QÔ{äçÏ?ó–þnüèü³¹üª×´‹ 2ÕbY³Ñ6ðÚ-âÛ¨P TõΓæïùÈíKóSòûXòwžÔFülÓÊöÖëéÛØÃfGÕ@éÁBTžƒkÿó’ú¿æ'å=Ïä”SÓ´ÍÕc:QµVŠhÒåM!'ÔmªÇöŽt2ÎFyïÍ–kùQ¬˜dÐmRÒ=.ÕcUfÕƒŽ‚¼¤§Æk¾y¦T1»FÃâRAùŒàµÏ9J¥‘¾Ò’¬; +mœ¯ùDÕ<É«Úè:±º¿½Em +îÎç säÿ)kžzó Ÿ•<·oõKPq¬<‚òcÚ§l2ò¿–õ6k¶ž[ÐíÍÖ¡¨8ŠÒh]Û Ã/ùXóN±k hÏy¨^¸ŽÖÚ1ÉäsÐ:œ9¿òVµåsy'™¬ÞÎKj¤qJ +–1JzÑÄ'Ó&Ñ®ï,µˆšÞîÍž&ÁJŒT‚*Ò¼™ªùVM[Pó=˜µ—M†C­Ú‘êȬRŠ +FßXÞi·“iú„msníðJ¥ XÁgDü½óퟑ?+üǦêW~¥þ¹ýÑš.,j•hÛ=¡ù÷Ê–?óŠ×Z$Í­ç?8M(k; e[-1”*É'à“$ž…ü³Öÿ.?"ÿçuo3yŽõ5/:~aÙÜþ„Ñ“÷‰e +ÈñÃ<‹û$F?*dïÊžz´òŸåš¼½lÊÚŸ™þ¯lO¦¬bµ‰r`HåÓläVÚ“Víš–k¾\äq^·$xóÞ•¬Ç§i·ÛÆ%»½FŽG‘qFêA=¾y’ËQÓ.´ÛÈ®íþ±¬_¹‘¯d©‚IfäœçØËBkè™v…;{a;Jó"¤^â0åií} ›—ánH·N¨+Ö™²´Ä·Y ÅÓQ`´©$ŽØ¤6Òw½Ø¤d-+½OL4òž¤¼¯¨ë³´Q¤ªrgb¦k·ZfÄ¢ˆ™‘®ÂçAÞÔÖ‡¾höð\êPÚß•X¥eBìHÒ¤ø Øg©qèé¶Ô[xAe`h n¤û휳7¤O£ìŠÓ%~tó¯5•§åÒ/–ô+‹‹«Haþâ[Ë•Ž9®‰;—’8cZÿ*.l'°z“Ñ>xˆáÄׯl„ €ã—â§÷~ñÍ µú2±0Ñõ¥lÙq©‘ŠƒCM²ÀäqöÐ5Ô¬«Ö„øtÍ›ˆ§ÓJûåPÒ¹¸Ãö7çÓÚ¹³ÿÕùdíÉV¦¡‡¶|³‘Ħ»wâ3夲rj¨"ª¶|ªÄþ3ðÓ~½1-ÃEi¿‰‰v­EywÍ–Ü›r¾f%þ&­F5‰êse‡ @»xûæçDôÓ¡ëï˜TÐôxæÁ&Âí­ZðÀâ p¥”ñÞN ]6å¬f¿ãÆ(xby6úà©]Ǻ–#B9V§Ãc›Å£K¼·ÿGŽ‹*ÀÆ9$‹ɃŽB´éÒ›`Ydv‘W€$ Ô +ž‚»âÍwo=ÓË5ºÅ ­#z0‰j•U/ê|*HëSM«ß6yÂãÊךÃÜy2ÖâËMd‰VÒîA,«" FT°,<+L§ + T5^ªX~àM1+´ŠFg +¡”ßQÈŽ@¿·LØJðÊ‘¤®Œ©%LnA¨hhOZmhÝU] +ße¨hiÖ™²â)R¤nGÀi¸#qÜcwûuÊP §ri›%Z¦¿aþµÐ´ËÝDÈey/¬ä˜þŽPÆ«õxƒÔš—Üüú<ÈÜ=f1 #f¨ J¥ûx`ùõ‡µ]8ÜÌöqÈÏogô—yŒ±Ÿžl$¶òöµw$ŸR±šå`1 ^ÞUC1 "Š@äNÕëÛ5µ´÷Rú6Ñ4ÏÅŸ„jY¸¢—cA½A'ØbÚ—õoW³Ól +,·SÅl“HÌ°Æò± +ÒH Å»*“Û6{ÓòrÏþqÿþqãòO:þmØi^yÕàÔ&²¹±ÑÎîö ¥‰Ò0×Rz'Wp£zuJ¯ÄþÖÖüãgäGü㕬<ååMóÏÊ궫©èZ¬Êæ#rÎíwqe2p1¤ê±ú‘»’¡SÓ`}±ÿ9)£~LþSÿÎ5ùSòêÃHѵmf[K¨´ŸÌo)ÚXêZ¦§a¨@×2I¯JO9H®8„)éñ÷Ìzäw’¿çìí5¦³óæ_˜=IôKï/ÞÇs_DeMT¤ÿnKrÂ$7'Äx·QÕ¼§}§ú-f°&3i«"¨¸)3RX™Ã8`ž"ƒçBsÄÍÀ +!^mZƒáAALñ¯ ,ÅS†ËJlÛ“È\ iAÛé΃¼¡|º/˜5-ùe­5'×a‚ÏKÔo`ã$3ÏÁ‘“Ln9¨¯Ä6íŠÁ Ìò­¥¬fi'aQ"wb©äHn¸¾ ¯r-lxÜ\J·Øò2²ÕUC ÏÅJ7NÙ°çÌß’žpK½'GÒîíµ½_P) è)s +jpÝ´²ŒÛJV^ƒ>Û +’@¥rAæËýsË^b›Ë¦©{n‘5ÜzrÏ/Õ¥‘Ö‚d’8äIc™„Lwzq,¬¬Æ±ù;VÖ®m¬¼±"ë³Ol.䶶G@¡iƒ‰h±"³ÌÊLqïVÛ-€€†ØŠ÷¦ôéŠy³ò³Í_”?—Òj¾m¶Ž×R×ïn4›}6ëÒi„™¸Žýê~ùMBãÊ„o2ùÌþO¶Ñ%ó]«i‡]·7ÖQ\ñ‹3'¤“4AŒª¬Èx’ƒ mÀoøKTÐîlí|ЧFT6‡Öº Ymn]ë9†0ÒñPœÈâZœM>$Å.-.m=1sDeE–0â…£}Õ¨{¸ñê-VÒ?)¿*¼·¡Î>ùïGÕô=n #̺ç•=t×<ßyæJ·vI§Ú´Q ^1FBM¨®€0£1oe~dùç@ÿœsòE¿ç¿1ü·­yHxº¤Íÿ™îµ¹Rí–Qm§ +ÇÎý&¹ŒË(ÕÙ”%}‘æ½kYò'”t¯ËùÆ/7éžj‹GÔ5+/)ÃäK ¯üÝ{ewkq'é I–I8;Ëx±…•qãÀzκî¹ù=ù%¡y È™[×4CW°ó­§è9.™ì5+Ý"•g`žºÛ4ax‡ 8µ ±ùæçòÿóïÏ^}yüÞòw›æÚ’ÝyƒÌI§j¤a·’_^g·õ‘ÀªHÉðñSöˆsÌ6ß—?š_˜že‡Ï˜6z厗¯]%÷˜1/´«û»H"ºš³j3J‘Q¢¿¨Ü 4aœ7òÏþqïóbëó“Ëzw柔üÕåK u{v×üÉ%îu¥Á4‚Y/¥»¼‰–àÍ%é§) h3šé’ÿššÄžxó?•¼Çiå çŽ÷Vó¸Ðïï-b°‘ùO}êD”*ïj}¡×=¹¬~OÎ)~q~^Åe&¯å¹mWO³‡Ló„vššåÖ¡´x£{ùLaæ樆u™y#ò,ž¡^>½üÎüÿœ?Öÿ)çòo“õï/C®yjÊwÓ<ǧkÚ]\ÜÚÚÌPj>2J’Kç$a×ãÛÒ⾧£¿ç'¼•ÿ8·æËi5*ë~XƒÍÞ^%ÙÁqªEkm"ÄÚ}½Ì÷M äË<‘I1øâ–­-}qÿ9+ùwÿ8“©þSèÚg䆥äéW@òùÔôß3¯™­´¿2]Ëko$×êv?TÝÏt , g£ÒŒ?9¼íùKæ/"YIuªGëRêke6ì^1dñ‘ˆZQˆ4ø¿sçœÐÍ „ž6‰¨M)×|ðͲ¨2G*Ì Hâd’Aâ*FÛzgqŸ”ÚüžZó<÷“G-Æ”ö“Ûù‚(‰S& ´L *°j*ñjŠÓhÚ ÒîËÎÓýZáÞö+Y„-¼”œ™$4¨ª‘Pk(Ñ¥’FeàƪÔе®Ä #îÍ‚®üŸäÍó+JÓ|ÙªÜ[ù7Vk]Gô„ %ÚéWê/îܲ;0S¸VèGùFËË^oÓl¼ó{q§èqj·‘BÏt¶›;ã¾7M—b š†~[¶ò¸×tÿñ½Íä:,€Ëw&‘3Ý”€XÅÌ‘F¥hX±â x±øHÝ tGÖôõó,—iâªKb‘Ëv¶¼Ç¬`IY¤ ^!˜)=HÕ<íùÝäÍ'J'äE¾¡¤yvÌ(]:¦Ÿq¨Ú„µÞ¢,Z(ešEE$·GíW{ç_6ùwN½Ö¼·ùE{«ØùZá–Ð}jëÒ“Vµ‚Y$¿†ÜG5\B +°¯@<Ûæ­3W½Š}Æ=.ÆÊ(´û8íí㵑ííTEÍÊÀÂ9n¤‹â¸”$vÛa½k_¡Æ±|<¼gm(O0Óô"Ý^gÒ3‰A' +râH¯M³ƒA©cqe&žË}yx-­–#=*X2”pQƒs40=úÓ ‹!Væ lA¡…Gˆ;ˆ2JÌ 77ÝUW‘¡©ÛÃz×jà<šþlk‘Må,è7—>«ÍsuafEb³²²ÄÔf£·VQÒ‹S]±K»‹‹¹=k‰9•TŽ2kOM ^À + },ÆUWÔÜRKpä\øŠÖ­Ø ÙÊù·ÛÂÚšS6Q¨ x×6olÙC®lÀÓ6iTÔµ;gÔ¤d±Óã }BçšÅÈ׈^*ÌÄ‘O„´É–¼•u®Z\ëW÷Qi5š“>«vÓi BE + -$ŒE8¨4êÔà«m>iÐÜ1[©â×€j ޔé›ÞXy}Þ;M3ÖiÊb±‡îK‘ò¦!©Earšv‡na†FsÁ.¤c3ÇoÙ›fhí%m¹r§™Uuñ±²­¶™õkf2KpÀ¼(á€âh9Òž;cVÝÁ,­Hšæáêaƒl‡oSŽÔ§LqH£´*‘cÉ•¼hxÕ©óÛ6 KÓ¬îc½U’êáC+†tãü½÷ ƒh–“ŨĒ^ÏÅÒUoßBòk܆vÁ¦ýVÞXîT‰·ehØ GLL wû'6! —rB¬}E“—s©ø£Z+Ôœ¨ç¾’ÑgdxÙ›ÓIçZZu©Üžø-îÝ-TUù)!¾´´&%± åêGò79 3‘б¥+ÜûæʆÈÜM¼­¹h£lZÓOk™Ò Õ€5!V´ß»Ï"D6åÞ„íôW6:âÞ«°·W"rMT7¸Í1K«iþ¨ßW‰Ò\¬½@cØÓåšãN? +He"‚¾ |ºæÂÆ­wéú°°ÔuÀ¹²³fÍ›6lÙ³fÍŽŠ3,‹Ô–ðÌ)]úf“Aß6XÅ›sê_©’Ø==¶ØEkýíÿ/@‰>? pæÎÎãK‡ô¤¨²ÆËÇŠ°%KV•§MÍ’Ø,ÿO{{ ~¥+M,³:Ä}ñ;V»Ó ¥±tU[/ôDºS$.íBñ 'tÍ;Wó%ælf"A4é<¬#ÐôØfÈ”Ëj—ímòUfã1ëEî>ì·Ú> ü}ð†æÖÞ-LÙFy¨g±Ü?´>ìØiåÛ½"ËU‡XÕo® È8KmQ(JxEl¡j1i:¶§(‘½&‘;DÄGÂêA~Ø'GO/þ—‚óÌ7›(åSp°JÈ7øOnŸF:71H²) ¡ +šA®ÄtÏDùƒ\óç“ÿçuˆ¿/¼×­äŸ54rÞi·l²jv®ì µ,7@ŸézÇæŸ|¿ùguäÍYvòŸš%MFêÈÊ$•$SFGo·ñ¼«×ˆÎñ5¬ÞOüóš¿*5›Kß.y¥­ì5M2÷÷š¼[Õäµý• Ôý¬ši?™^pòÏ<ÇäìE£ùÎ[c­ni–ÉŒ‹Sij>%FyN%guEØ’j߯9]Îy¨Ìj_ãœõ¯üàÜ_’úß™?5?:î¡iŸVÓì#¹‹Ö‰MÓòˆú—QØœô—üáƱÿ8ùå«ýs^üð $€Ai¤,öí<(³“ëËA°uU}‰ÏAÎ*i~H¶Ô5ÿÍoÌW¶—Oò¤(mmîX–îbDbÖ®¼¯å‹‰¦¹``s WzüN¢ ¨ ôÀ󑟘ßóŽ^iº²Ó¿'¼š*Zs[ÍU9#]ï³zd3¢yãó{þpêæÆÿô“-§ÖÙ¿Ñ.`³)nÅÔó.åêMO†G?ç üËù;æŸ<\j¿“ZhZDáêT+RRŒ±©'á¯C‘ûß+þChÿ“–_œžM7³k¶Ú¬VÑé³1ÛÍñ:žCí¯ÃÓ#Ú¯åÿ—toÊ ;ó‹BŠà}sP[+7y˜naRïE_ˆÐ€AÈV§äïÊ-3òVÏóÓÊZ”¶ZäɳӼ¸Ž$’ cýâLï^a ]²5–-›È·>{²ºh'²¾·´KUaÉ}DwZ†¨)µ0·Ê_ó“˜>HüÏó+Í>§š. ¶hM½B¶ñGÇ÷`„ )…>Oüéóo—<ÙkçM^y<Å-¬oÚj.òBÑH¥­k± p2©þuþak?˜KçOÌ‹ÛÍr÷N‡ý''„%W÷UJq Ëvß +§ó^»¨_ÛêÝÜš«ÚŠB—’4Ê(öÎÿæ{Î?ó˜ÿ•~`ó»äû=&N:†—t¬MÔ̿'5Õ1$óŸüäG’µ:Oå[}Óʶ©yÍ¢ÖY£Gc» + +ûS='þ-óüæ—冯q©è–qÅåM9¦Y¥$]Ïv³1·zl€%JôÎéçmkó_þr¯È·^p´òÅ…®™ùecé[ËSJ’•“»Ó}…sÏŸó—Ÿ›žTÓìôO.jM¡Ç¥Z¥…®ŸiˆBD8«±jžC­roÿ9[ùÑgåÛ_+éšüºven- ³µUTôøñ$íZÓ84ó–šž[Eм¿¨¾…gå»e´·±´ +I#CKÈwÈ¥‡üå¿üä‰åm?É~Zóæ¢é¶)¦C§Ù2Ç@ªWâøI©s\’y/Ê•:¯–füÍÿœŽópÕ5/7Å#i–9–ò)k»È`ƒí…z~‰ä<¶<×ç½~[ý_SäðYÀÅäF^¾»5MNJü³å/ËÝgÉ—æÏüäfº÷zÿœcå{x¥Yfg®óH ü½2—¯ü±yæ5kWëw2ìmW÷ÌåFï;¹,†'?ä§å‡“?,.?l.^³³¾ŠßMÑ.B˜¥$ìf¡åM±ÃɾTòU‡æÝ¥ì3±¾XìtÉ(ÍðAÏú¤`?'þ\~_ù7òÏQÿœŒÑµ ›ËŸ,êvöúV—wz2܆ …ˆ5 \R? ý[òÎ?ÌÙu(T½ø±µÒÎóHSâg§òŒ~…ÿ9•çmYnôY4ëKî­d±µ¸…}5·€µ©µ1kÏÎ WÎ÷×Rù†8 k„vi "e+@XŽµî0ÛPÿœôüÎóG›õo7Á£iÖz®«a&›-ôp±G"vQ]‰5¿1êõûjW|RwPŽÑ(QAP´0/¿'t­7ò+Ëþnmb=Fþæáä{9XŸ¨*½>8Wæ_Ë««/)èºôv÷û”k»r”Ó~NLëž\ò}—ü㎑¬Úêkw¯]_=ÝÍ¿0ÄE%Gw_QòµÆ›åÍ;ÌRÜBñêLâ(EiW‡^j7Nq«M-µËHî5Yd°Ð,Y’Ú&rÊ’Îä×#sÁ¨iK3J!³ÓAH-ä”’ b_‚“µX“¶q‹=No0ǧhÕıhºi“Ð –X–YVØš +–=0™¥‘‘cg%¼’BÔÔÐvßü‘åísó;ÌÑù[É÷+§iЦæYD%`ïW4ë“Ë.yó1¦7·•|·Ük†XÝmTŽEA"¬kLêßÿ¾wüï×5AùYw‰§i%ö«sq鸎Mø†¨;¨8g ùgVóßÉ¥¢ºé–ï{xYÂñ‚2^§~™Ôt¿ÊÏËŸ/êÐéú¯æT±Z[$¿\CÛ«€G üJzê×:ååǘ4ØômjîãÊW±Åy¬i29f‘WÓeû,@ïCBòVƒù ùÍåä±óÔ—ÞX«ˆ/ÒZ[0#ŒÁ¢«lHÜa†¯aå]2ïN·ÒõY¯-æ…UnDs´Š?h•iZ¿–?7WNü­ò †‰¡hZ;G½æpVÖYSfh=CËp:çp¸ó÷åwç]í¿–?'¯ôÿË¿Ë›‚_0É"tÄüÒüóŸš®#&ç·Òü›pfºÖõ½FIJGsÙÞ„;«]†z;ÉÚ÷å×ç-·”¿!Ló&¡åŸ&yvòÎx¼¿nÆêþÊEvâêD̦Äaüç_æw¼óù“cåÿËŒú•í#ÓEÇ <ð”:€Z¡iSžd´Õ,­ídæ¥î\SÔ™ç:jXl„žƒÃ<†nN¹cirÌ +Ó˜î:tùgšp¾@²ÐÉð¢€oS‰• ÐõðÀî-Z2ÈÇ•AÞ¤æÉgäÖ½uå/ÌÍ–Ðúˤ]Eu5j"0$’:mKþqŸÌ:o“ÿ:¼±æ¿0~ïIÒîã›SºefXbw<|3¡Î7ë:NùÛå/0ù‚So¦i×±O¨]fD§v<{ œþHyûþUoæ·–?0šZ=ú ©PÖœQ…wÙ,ÿœƒüÖÖ?>ÿ4.õKÑ94U¤KÄØ©!GÚjÔágç?›¥üÊü×ó7š,ÄsA=íÀ³{h½8ÞÖ) +E'Ó’Äžç&ó’^~»üôüÝ»ƒÉJÚ¦o´Ñb‰~&Ž"ÌÌIv%·ñÁŸß™Mù»ùÁæ?,QE§{1³X"lŽRe´PǹÎOq#É#ï‰Oõ@Ý»ÛÛ«¹ÃÞ7¨aQ +ìzíœBúúæözêú‘*ÂÔQbP)ÛìïœûŽMä%¸rR¶F µ FÝý±¶ \ÉpæQ ôÏÒ»tÍ‹¥¢IiõˆÛ‘¯B@!C‚ÍŒ’X%Úè›2ƒG5=Æ*Çü9m¨ÅuÌò»Ã%ˆ¨š&£ŸòMsbú~‘y©êqéäc_‰€U¢Õ‰9vpOup-ƒ‘ŽOÙ@ï†Vò†»ç_1Ùy+C$˜–q+…x§7‘‰ØP Ø•Ü,×òÛÚ¿¬‘Ô+Ž„¹„…ï.XÄ)Z<ÂÝ[K7^a¼Óôy…Ü6å–+…ÙdXGãØÒ£Û62K…Æ"ýU‡ñüq`BØoóÀ7WñÍkF¼£åÌ{³`Bq¸ÄtªófÍ͘|3c‘š' :æŽ7ëNÞ¥}«LwðíËèŽ#_Wþz}¦lÿÖù}z-¦½“êˆ nyÆ *šžûÐgË›¾M#Û ¾¥´A\ùw<)$Œ–ŠXEŽ$®æ´ðò«ý{»Þ•¤Q˜Qä$ ñ™cØšüJ¤×û1{ýSÒ]“Q‡êÒp¶”ò"¼.¡úÄ-Jô’2 ÓiöеԑñŒ0Fj™š@+ãoí›!ÉâOÚØ#,ádØwù`Jb‚‚´ñß6²ŠÎÞO^pøH*{š +×ÚýRÔ´³'1Ò6©NØ&Óê‘79;ëO †l¨ßØO§Ï nþ£‘éŽ +(e=©Ð +ã¯5žÝ- ‘½-ýHM:t§†T÷ w)~MP9GÚ=úO»6v_Ê?ÉûOÍOËÝ{ÉÞNò县®Cj¾e¹óðÔî4æòô0*Äö7ö÷JÐIÈJÆÑqbÏÍÜ¢Ñ:oå/å©ù¹åO3i:‘e¥å»9üÁ6¹sqyÌÖQ#€+?ÔÖq°õdT£Ê¼¥  +{w’絟Í/"ë×BM>öãË70[¦´ú¼zt¼·’3Go”1q–(yÙÞX“щögC’_"þ_y«ó+QºÑ|¡kÅÝ…Þ«vno­,,¬£õ®$2ßM tŽ5.@<¸†=¤ÏÈ~Ah\óä?ü嶧ùoÌžS½¦•æ-"ÖiµKˆïÖGš).4µšô%24ªçÓw‰@¢”›yMÿœZ¼ü´¿ü²üñåäÌ-ïT¶‡ÍZr_ݹ™&ˆ½†%½‚áAWDôZÜ(V©%ýCÔ—_ÿœ9üÑü˜[ÿÌ­[Nò¯æUí­ž™¦—å{ëeÒä±p£R‰ôoJÖénáEYa¸C";L J¼ÓòKBüƒón¯ù{ó§ÍOä+•[{.ù¦6ûW¬‚N3ÛËkhÛ«! ñ¥ûÐð??ycÊzg›µÍ'òÓÌ¿âï)èïi~b{Y4뛸eA$Ž–w'¢0~KO„[W8'œ´¯/èÞhÕôÏ(ëÌš%•Ô¶úo˜ œ– }±ÏõyK<^ ‚9åN»×<~mÌîé sŠ2B²°g"¦¥T„vV”øG\å¢Ç#¢¸‘T$Zñ`QÈCî1oÈŸ.ywÌ?šZ.•æ½jßËV¬.."ÖuX¬¢¸‚ÖK‹o]ä’ ¨ò¢­I¡$„Ó¥Î-ê—¾WüÅ‹óÏZUÔþTôµÉžb³š]7Ìsôå³’ê2RÑÒ&2Ã,©$~¢¨d°ÝÃþqN!y_V×?1õ™ôO;XŽÑ¼«ùæ¸mÿ@ùšÛTõ´ÝR+«‹É ·…­­îщŽËѨFòýÊYjÖ×Æ.¤¶t–[ÕVµ•Ñã0wEáJ’ ý’(NtùÊ}7B×ÿ7®|Ñ iúgu§X¾©{ú\šœ6ñÁw5²¨ˆq’o‹à^5©äÇ‘1ÏùÈ2ù[Í¿›þeÖ¼•å«(èÏ4PYè:MÜ7Ö0ýVÞ;y$†âÚ"užHÚj¤j¿ Îkù—§ù5<õ®Ü~]²Ÿ*Ûãåâï1éërâÛšÜñ›—¤PGPNo1^éz–¿©j&‘§ÜÜM-Ž• ³O¬äÇ +ËpZW´œò=NJÿç5 ÌvŸ˜–š˜žïVüȱ´Òt±¸Òäý"ÓÉpòD©Â;`[r[“n§íwŸùÃË)~lþZþcþPëj±òî­çvÒÎêçK»¾¹³´ÐîZæyah Wš8ø›ˆÃ/*†”Væíà´C+È$‚zM+Gð³W©¨¥8æå˜òÿž|çåËýAüí¢ù§–÷̶ÖFÙZÖ+ˆlä¹h„“qn%Xùu5 ‰®xVïë¢kBMOMµ¸ilÙKýYÖ`¨'½ ~°V¼X|*ÿãz½¥•Ž­}e¦^®§gm<±ZêQÇ$Is +9T™c”+¨u‚° +C¾pÆj·%GP<>ü€I­kw¨ðÀ˜må׿ZÒšÉ}K”¹…ìâ@…̾¢…Â¥€#Û®yv Jï]ÓaÒ#yo康ŽÆ8ëÉî@#‚ KR”ß ¼¨uTó&ú+"jòØéí$i2‹U}"cuuaΟ )¸#0©=w_9èþ{Öÿç#®t½ÜêeÓÞîêöê$(mQľ’É#T@ÜHêç½Éþ›ç;ßÌß:Éå¸fÔ.l$Ö¯õ™¬b•‘,­å’Iî$ý6XÓg¤€q rÛf´ó=Ì-L×ÖÑ^K¯4Š5L«o?€Ö0ïĘÔ/4øwÅ};‹™d)gä‘Q6P»±¢Š>ᄺžGš4o5yOófâYõÙ"{ÿ&ë—~»ÍiªÁ à¤DI•K! +TR€îQ'™ô½gÊ•Ÿ˜á’÷Ì¿X¶¸°óÝÝÄÒ‹HƒDÖIJ)”³ö}—Z cÊ÷ÞL¸ÑuK)bó5¥Ð¾ÓõÂæA=¹!úŒ±8²¬©5Iâ¦:PŠZOÙKlÖêÓ<‘‡w;,£M¿¹§Øá–)?¨*J— +ÖÝGþqó·Ë_’Ú›¯níBùÌZ|:n«›áiC.¡m-Í«o^¼ŠÑ¢ÇÁ“„“_ɯÍ9?&ü×qç­3NšõµÝ¿–/Œæ%Òõ+”%ñŒ£¤æ8Ú@±8àYƒñ¡ö˜ç<|½äÙ¬ô­1Æ­©-7Ô'· }ùª7+ RòŠ1èH5øÅj¬»’=%®ÿÏÀ¯´.jž^¸Ò ºóX‹};ÌÖmÖÇS1H’É-”ðInU$1»DYÔýšo‡Ñÿ›óŸ¿•3yw[Ò.´VgTÓá›ËZœw±pµ¾¹ŒG4s8ÉÕ_œJªÍ7®°ï&zÑ¿ç럘:åƯäÝ{Ëi.±y *ÏÍW‚Öá5y hQxÖ‚…ýA|G%¥@j§Î©|×­^ùêëξb‘¤Ö'¿—U¿e‚(½[Ó9¸~QF#DBj@^˵3Âz†¡sªßÝjw~Ÿ¯y,“Ì"Š8#+snB« +•(|íµä· E98+t´j +o\ð†{þr#þsFóOäw•|³þ Ó4ß8ÞYCy}t¶PÈé)ŒwœžÙBHä1+Ý«B„z?ó³þrÊŸ™’þPü¸Ó,´RÓìm…Ï™-à·Šigµ‘£yPC jRFõ| #ý£Ð|Ú£XAlº|0Mj…í¿¬²ÊH,}_QØV¤¨^”„Ou¶Ð[¥¬Q<<¹Ü!“Ô—•)Ï“²íÛŠŽ»×lñ‹«Í&¹úh²ÇɃëPÔ¬W6ÆUiÃ…§Âýã^½ùæ¨b%’5™ƒ4mÈ+€jTñ*@>Ä k+ Ë£q~ø5Hu§®á*0>'çï5Mç?4Þk1Á¥ ¤:m…ª²ÛÚYÂ=8a‰]™‚ªÔ“ã‚u}EõmF[çE„?ŽùŠ8Ô$h ’Ä"µbXÒ¤“S‰]O$òØ.쨋ÅV¤“ÅFË^´ ØW¦ëZŽœ.#·˜¬7IÂ懄Š0 Žþ 16¡¨=ò ¼¸ƒ˜ÈG]Ù`E7#6èm}RƒÌV?q°l4«½í`ž;’”ºe«FÈ~Ò1%ý1§iž]»Ó­ O«qå$›úM¨dð?°®}fˆ- ¹ˆ´¢@ÒWýÔ­R)€%ÔZQw +%¨Š"ji$Ó +_SŠ[xb¸æ슰ó,~©fÍw¨Û^]™™8#ON×­JâW3$²TTJQPv®n"¹”•avéHxõ#µs`k[¨åd·¸^P'"‘ž•#Ç?n€’ÜŒ/ù0W”TÓß6ycY“GM^DjEqlöâ6$Ðôù VÚs W³§§C¿RðÃ-jsésܼlD3A,.•ªü`vú3`1¡ß,걸ôLÉ@jß&´ëM±FǦL¹}:Køê@•GMÏ*Ðþ³±y7óçLò™sù}©ùrÇSòô±¼íëÛp×âXf/±ø ºo’Ý;ó+TÓ<“}ä+{+6°¿–+‰gh§C˃¬‡q@Ä}9Ð?*¼ûåÏË­zqæ] nÂk+Ⱦ¯{4»–"°Ë@GØ'lZ ŸB9¢1¬‚dáW(yÉ|ÔúrWÿ8Ñù ~}ù?ÎÚ†µÃw¥ªIa}Ï‚DÎKW¥8©É§ä¯ä•÷ç/—üѨAq œš Ê·—R¡æï²3…P5=é“oùƯÉ+~yéÞr]XIo{`‘I¦Iná}6‘Ë7Àz¨Q¾tßɯÈ}gó‡ËÞv×4Ë”·RÓÖùD’",Ҵʾ™.v9˜¦ù5ÿç?&%Ó¬|á©Ýyžù&õõ+Oeiu¯)ù—ËzvùEåH¡Ò5²úF± ™‚îé-$2 +šÐ€GË;ïço˜ÿ/|ßù£y³ò{ÉöúN§ù’Ï¡jŠWŸ£%´‘È‹9%Y¸oã’Í5h>r´°“ÉÞF³òôÒ†k yÉ*šT³7-ØtÎ?çŸüäÿ&Wòúá—CÓÖÝmm¥xDw’Ú7îÊ«0¯oœëRüÔüØò¯‘_ò‹T»ŸH±½k_OÓšxš”ÜŠ˜öÛ8ä_›ÿŸ_“ÿ”òy +-´;K…ke¾ ¾hÙLr n b G|çoæ·•?-®ÿ$¬ï$Ñtk‰dm^Ò(ÄAÈoJw bªFÃ9ÏåßäOæ·æM†¡æÝKiôËÚ[ËùÏ ©4¯Sß +tÈÏÌÝcˇÏè³Cåø©qªL8D‘Wwø·#|åþSü™üÑóõ®¡¯èÚÅì6p¹çd*$V¹%iÊ ¶h_“ÿ™dò†µçÝB¸›AòüKqªêExÅlh­Jý×<÷åÊŸÊ%ùCÊú>‘š¼í®úW:„þ±”Û†;F…O¸ÃŸ0þ]Å¥6“å¿(Z.·¬ë/%2˜šCE@ÃaÊ»çpÕ+?.t/ÊË'м­}æŸ;y•ÇéJÍ!¶Ë•XP –¿†]ùzÁ­4H4[±¨jš§-œ5>‹»pHÉ ø‰íœóÌ:Gæo›¼³®j‰a&åÍê;{­= ¬ÎÜB²÷¡ê{dVòŸ,ì5yõ«G·°òÝÊÙêQ‡"›Ö„íÛ9ï›o5V‡XòVµi}cg¡Ý&ò´5hau!I’T§‰8W©Zêš]Äú&¢$‰ì¥xæµbxÇ*ž-·@j2æ6ïA‹ê–°4V÷‘¬ŠŠ§¯s_žE56÷MeŽT"9À–=¶*z„yÛH]H®ô[I4½>ò%ýÙ›Ôfu­kJà<Î4\j†µ¬ùm#[©õ->k})n܈éèÕ¶:䥼úÅÆ«åÛ5GÕ5«hrNÔ u#´'aPHÃÿùÇ­'I×|×}§ëw‚Õe±¹]>Y[ŠÖJD§®ìM2Aäë-Sž÷LÔ£’[ëÈ= +8¿jþGUˆ7±­3µþoþHh¾DÿœQòüߘ°Ç¥ù«K»¹W†‚i„·2q Cñ/{é_ž_“š/å§ä_–›tÿ=Esuõ„E[ÕC<œ©¸8s©ù÷þqêÓÈ¿óŒºW˜|á:7š¡½œÞÁ·ÖnRIÝcF¡ €€6wÎùÆ­;òOþqûÊšïäm3óW¾ºzñgŽÑ$tŒ¿iT +ãçžHžX!Žq¡Ü˺Îy”å^ S<ïi¬j’éö2Û[Þ¨KøQÈYÀ5£Ô{g[YÖ´D»·Ð5+«;9Š™ #£"¹ççšâŠR@¬G%=A§Q“ÍØä‚×ËðØÙ +tødŽ 8¼§»¿z“ã’??yë_ót†¡V¶ÚEªÚØEmÌKÞJnXøœè¿žRëv^R¶“FJ³\SB¡J5Ðp9I ©$“ƒu]Uu(l¢pZ}N! x‹MC^rnjÞùÎým!/p²@ϼ,µ×!ÌòF¾‹T/R‡cœ©­¯­-¾±-«Â’ïà2ŠÕðÂüÜ|jqk…À/#S¶lrˆÊX‡dvËo]ÇLZÝàU>¤|èv®l^ÆÚòþöK%in'pF‚¬ÌÆ€‚´í>ÿY¿‡NÓ`{«Ë§Xà†%,ììh-`–îå"´Š3Ž5êK1K[iï.b´¶C$ӲǬÌhßž”üÓòf…ÿ8ñù#oäKÛ¨Ïæšd†ë^µ‰–G´³_‰bfҽǎz ó{DÓ#'´ÏÊy­íÿÆšô‹©yšî2xmÿÝvÅÇA¶ë㞎ó•´?ùÇŸÉ{¯-_ߣ~bù´Æº¦ŸY –žÃ‘F4øXô45®zó»ò»Iÿœuü±Óÿ-õò—˜>d0jzü*Ë"i¶©V†+ÑÉûyò‡òãò·Vü͹ŒKªkÏ6 ¡ôOÒÏNÄðœ‰yzÕ?/ÿ%µ/99…54HÚ^™ª¯ ´§ï¥@~Éì~XZyWòóòWVüðúÔæÙo&Ñ<·J-¬¦%o­!i——CœßBÒ´=ò«T󞧚Ž«pt6·(¡çœ  © +ÃùÇIwb͹mÉñ'9#%9¢£8<¾¼Ò$%žB\±êÅIÎ{ÊÄhsfn½³T‚:Œz<±°1’¤w°R]Ílè±W”)hNâ¾ø*;ëˆâ–4`¢qÆPì:W™unŸM»{y/â{{¹œž'§%¯QZv͉Cq$ŒÐ‘Cò8Œ34/Év¨#ïÀVÚÝŒï,/Fe(ÇØŒØÆ!~î(q• Û³/¦ª£âß‘ÍÊÆfÍ›/áãï›,Ho›-hH©Íƒ9]zä´þêé×ññ­ɧ|ªÿÝÓ·w¥zfÏÿ×ùv±Ì±™8Æÿ +-iÔôõÏ—Cë㌀ðC¢öøžß1Ÿ.–[ˆÓêî»rõ(ÔVøv­+Ÿ*±i-xñ)ÆE C¢RIß|Vd‰jÜK…Dw¡¨øÅHíLRN"ä o‰?Ò -jJñèOË6!Eq{B Ê ~‚­×¾ÛàTA,Ž—A]À¨ùô®†ÚK—“ÒV*‹ÍÜ•9‰½·Í‚â@Rh Œë¾[FM¡PGÂySÚq²½bµx‘M»f¹ÜÉ B7_‡¯Ñ]ùH¥Ø…k·RO\ÙÒÿ'‡ž\¹´ü¬¾—Ió4¶6ñG BÍy èDÑú“”XƒÅÉI^E‰U °7ÐüÙæ,Øë6ëÙÁæOÑš·¤<ö~¼W r¥ÕZHP°R9ÄÕI0ò~¿æ«+iü½åB[Cvë$¶ÊàÇ,Æ)-ÕבC<±ò_ŠŽW£6:9d…‹DÅ ¤©¡âÀ« »h}³Ñ¿ó‰Ÿ”Ÿ”ÞVòŒó”Þió¾µmå6[O8yXÍ~,Úòâ[!5ÀµwMmÑî¾(¸ñGôÏ$R¾âÿœ òüã”?)uÍÎkÍ[:M§è6°ë¶æâ×@¹MFáþ«y雈¡ú𵉾±r-VÇ/T+’Þ×ÿœmòüã×姖ãòßœu}Îó†×–…çNÏLƒNò–§åm9ïµynuI%M(½Ž*2G_¤_NEÏOÎ;é?ó‹Ÿ–‡È_šŸhO0Éæ•Ö¬o¼‹gªÅåÉ"›êQÞê+=ÔÅŠQ< +Ö£Q l;üòÿœrÿœ^ó%Ý—™¿çÿ4<­å]y§xï4{0X>›p7•§Giël±Ç«!’³¢¨NÏÿ?çÿ!¯%Ñgÿœoó†™u¬jW¿S¾ò¼žbÓ®-bµŽÂ{¹/âiƒÂ‘-£z‚Y$.ò¨‰ãàó“–¿•>\×fó?äß›´k­&â ®äòþ›}ÃÚ4XÙ”Yîg™æk§” QÆ4zrUf¿ç6ÿ( ÿ-|ã¥ëŸóžsÒuýÌXË:=òjgCú„‘þöïë—RIõ©$’Eæ +¯ 6ñΧä3]_jé¥é&{–MNÓO\ý^U)6åأܟ³µzç’ÒÒîK7½XœÚC"E5Ï1G,ÁÙ˜ +e‰ˆHSN‡8Óù'Í7ºF¡æ];J–ëMÒýÕïl‘î`±r4VÿY‘ ˆŒ®ŒHAjmÔg›(iZl6'çÙ"M©JýÿŽ"ÛxduÖœ{TtðÞ™³²~_~xþgþSy)SȾhMúี‚H’/®Ù ŽkrŒNôxéñð!)È–œy'óŸó7òßCÕ4 ëo [ëˆÐê“ØÇ 7“ÃÅ—Ó7aê„HÀ…q^õ¢Ó¤Ûþy~aZþX]þUéA—u(­mµ Xí-–kˆl®¦»¶YezéK$Œ Cq‘‘˜£qÃ}ÍÞbÐ4}oAÑï µ˜àŠÓY…R2n ‚â;¤Bì¥Ô bV²°ÜùzC˜e”ÇÂ[“ð5ª3!Û#ÿ˜X‡É~z×ü¡ó\âßÝXGuui-Œò¥¼Í¼–Ó$L@©G—¡ÎC¯iAÖoô¨®b¼òK­Å¬Ésé ÃB9"gFVx•%iã‰Ê¨’:ÆÜÐéN@;W9f¯u«jZ‹Ë¬Ï%Åà>”†fg2Ÿ²­7;˜@K1,Ä’MI=Îʲ»þòµQN=ÀvÆâ‚étØnìLGÖq軵!^JÃb|wß7MÏÌe—«}ž^@¡÷Í‚ü•æ Ï-ë±_Ù…oUdµš9 +’+…ôݘªÀñr(xÔW|gvlå2¢#óIaa,k(hÚ&!^£ U=U€aB0ÃËšö¥¡\\6qn5yl.ˤn¯opT:"·h*ËñÙ±šÝ¶mzc†/JHæt6jL±¼\‰ŽE™\†P|;wzbN9$‹Å†ÍQBØ‚;°,öñÄCTFêÌ yŽ;jƒB 6ùæÃsÊÚ²jÚ]•ÜWq¾M½Î­jšDÚ‘Ô9Tâ*~._é¹¥å¤ÖR§ÙÊ#ñâÈG¨€!ž‡¨Øö'Þhš”Öö×°½“]R&½O©¡G¹©“Šñ­hk¿·LØK=Λwskm¦i\ýÙ9É#ܵ+Í‚q"›ôíôQ?ŠB©54 ê{Sç€)8ô£æª92UŽÀ +׉=3`{;ï§:eµªÏwrW꾓Ô-*Ä +TFÛ¾xø-'¸C +Z•H;å×  ëჭ¼·¬ÞË5¥‹^ɦZ[B."ˆHÜW“ÅÍEIs±ë›'÷ß—ú—4_«jz¾±¬Üªˆ ·™–×K<Ã;JàŽe—¢ü;ÿ6tmCÊ^Kòw—ÏSº‡Ì¾kÔâŒYEax>£¢˜æ#\ºòõÙã4UMOǶI<ýä/Ëû‘åëoOó£ÁÕΑuõ‹+)Gx„´ 3/. Tðä­ÀÈ´rùc?jô¥ @$TŠ÷§M¶Â=RûÔ[ƒh9´ü#‚>!I +¯°§Ë Ú¥ýæ¡y#z¾·­Á(R0¢€ÈDš7Ï#ž +åG°Æ` CY×au±{ßWÒA²ÇSìŠÓjzÞ¸“½µÕè˜ÇDcCðÐ Ójb·z–¡5»N«ÉU>ÊŠ( +Ð ØS + ŠŒ5ë½p¡?L +Pƒñæ¸_·N¾ù±céH‘tâ-R|hÁ‘¤sGêÏÈšíØvÅËÆcŽ»°© ôëÐfÀ’°V`+½;Œ+žL©°©úqw$wÍ™HÝBÔÒ¸®àefÇÀá\Hz­ ~yq²«U…FlØ8j\iž1T5OˆðÃkmYã +ŒBD¥M:ÔŽÝ°MµÓÄxðÖµ=©á›åizÆâh™65VrM~x`‰§_!šê7ôÐ’#W#­ 4ïóÃ…½ô¢áÁŽ›7í5©jv­z ØO¨$1ÞH–ÿÝŽ<}ª ‘ô Ô¢·†öHíI1%+¹ÝA§Ñ\/Ô’(ï$HMPq¡ÿb+øæÀøfÍ›6lÙ³¿6ØÜCµÃLä™USu‚~úS†fˆ³ âÀŠí†zuÍ¥µ¥È•k<Ê6©QZšâ6Í‚µV FÖÊÖÕDkG^$VMwïŠO0™cU? +×àœ{õïÕuH/-mmí­–ßê¡”º)ü©öÍ~ìØU3/:ÛÇ’; -3N4níâ3b9Xžltr¼D”êE:W6>)Z"J÷«›ÚCtcŽxÔQý0iZí¸ßlxGà ‰ ùá…¬¯7F2UærWÄfÉw”®5-Þ]ù£J´†þÛI1›«{¡êD^JªŠTW®°¶žZ¥¹ŽD´+ÌJ*¥š  +wÉ'–ïõO/jzöb·–Zk!¸Žà—ˆ4PEFl5óUÕÿšn¢Õ5Í2+a4@³ÛBR$ @á&„v®){¦Í*ýnQÕ‡&kbJ-M:ž§ù“PÖüÉxu]n¡FEZ­¨ŠƒWŠòCÖ+› ô­OÌ^N¾o*Øë7šv—«qmJexRuUb ”¡5­>œÐ_k|W: w÷v¼Mí²»ÇÜ7_R0@j•Àú6©®~_jAc{qŠ¦Co+[ýb2áêÆyPƒMºà‹}KP³·¸´´º–.Ô%Ü1ÈÈ“(!‚º©€ ˆß^XÃ|ÖÔzqHÖ^GÔ +Õâw‡¾FëÊÅDˆ¬ F¨ ­ Ë:F«æïÈ¿Ï7jVi“ÜynM:häóôŠðßÜK¥s{$qˆÈWª$ wÈ·šî<æ½nûV¸Õµ BÚy¯ óÕ³›Žl¥­¾°ÅŠ·28šãZïJ`ùÃ?ÍÝ[ó<Çÿ8ûç‹h.E„r¥½ÖŸµW´£#‡xJ®À&•ñ®M?ç¿9düåü·×ÿ"ÿ65'–jÖö´K¥ RB1E1…NÀ>xgÿ8›ùµ¨yÇ̺ç䜧ý#ú.6´ÓÞÖAojlc XŽÇ¡ ~YêùÄOùÈ=7ó[Épÿœiüùó3[i¾a±úŸ—¦¶µ¶¶XV$wr‚%°§âšuÎ{u£êþSòož|±ù[¥ÙÛk^\Õ ÎŸw<\_ 8[¬r:·#µv™Éüª|Û¢ù'Ív?“·æk½âI.nDe¯É*=HKSíQkˆéždüѼòÿž¿#ÿ,®—/åÝëj¾V¸’hšöXíù; %*LïN”ãï\òÖ‘å-~çOó}åßÕµx<¿r.Æ¥°Ôµ³šOdè[jã¿çõ‹¯6j¾‘æ;ãs˜4­J{ÛYOÖ5F”;Æ«ðŽd}š žy_É¿æoäªÞ_é±\éÿTžçÕÓ&au©Ek…v“bÇzÉgägèMò®“u¥G?榓ªAç¸ôþ½¨ë<Dg OECÓጠÅ?-ü½¡y¾{ßñ—Ö.n5 [ŸÑV¶RÖò÷V÷BNI!¡&§¥sÎ:wæ_œÿ)®u'y—D³Ô®íäô%]bf’ìFD‰E?NyŽÓÌúç”íµ?(j:e´×A¯I5¹ˆÈÈPùà]VãQü¥óN¹ä¿9ùvÃ[¾°’K%mCëNmš6 h sÆ)Ür 2 póùv=OË:®‘no„¾œ·7 /Ö­^#FXÊȨ*zòVÂËoÍÍ]õ="K}:ÃL‹O¾KØÖÎ #„¨K;1ÀœÚO›õ mCH’BÕtÉ’êÞbd èüÀf É·Îér’ÞûIxl-md´Ôb½7h²rødVâG:pé×ßhÚ­Þ…«ØëvEÎ<7vüÅWÔÄ‹QµEFWç?Ÿ|Ýù‡ç­cWóv±>¡ÊExRFe…ÓP¢8…h»l>xÏÞró?æ›õ1ù¢òKûûÇ,^cöA TEUl)ÿœüÇ×ÿ23µ½rúâG°y-Å•¤^¤vp„·Ž1éDÌÁkƵêz×?0ÿ1¼åù«æ»ï:yëR“SÕoÜÉ4Ò*W¢FƒáEPÛ;d’D·“á‘äUNU)Äžûà_-hwú‡˜l4¨„~£N‹ÆV +ŠIý¢v¦sû%¶½Akxe7o$qÚ–bbš”öò7ž‰ü×Òÿ,?/?.¢’o04yã\Ž -㕵°QU+SB: ó±þtyGÈÿ–V.N¶º·œïŒo +[zr[Û@@$1Aƽ³±þwèþ]Р“Ï×-ªy®þY4K‹Kñsgš¨R­¡ØrÉïœ|ƒ£ùEXuV;Í~ò;[»l$[­¼ËWY˜†EÛ<ãªkZŽ®á¯eäe@(£äp+›™¯'{‹†å#š³P þŒâÚ—˜õ½Rí¯náŒHC€›tÈÄ°³6hÓéÖó»êvÍw ·ˆhzZÕâG>¬^¯ B­H¡=Ø'O6âà}iKÇCTSBM6¡Í“ßË-joË‚¾xÓ4Ø5O0GS¥CuÍ ¨g(ŒŸöäiâ2uùyæmSòâõ|ÉåI#c?»ÓîÞ2çOô™ âæG´‰‰·µf%V ®»¼Ô/- — $PŽñ3ɆmoT“AA’êF°ŽS4V\¦$aBüzT«…ر«G·AØâ`Ù9WìöñÄÚkx +¿¨JÐ¥>ÁùæÇÃèz¨ÓTD¾rF>(!¨‘ݪ¦>@Žb´#°Í•se,-‰ŠxÃÔ×»}‘½ôð9®txbº1[¹’Þz:J‰"¸V‚“,qU¸Ð +˜?]òí…†µs§ió¥æŸ§q%ŲÊ$ +ð¬ílâHÐ " éÊḧLO$|\ìQ,ígŽH­æ1:ŠÆ¹`b8Jñ´lQ…jxhFlyGÍzÞ‹©h×1– CHº'NkBEÄŸY`©G`ô*@` +³)ûX¦Ÿa«_[iš]´——·’%½¥¤ÒË4²‰hµ,ÌÄ Tž˜uåk _Öô½˺tú®©-ÂE¥i¶P›«‹‰Š8rXl=üqðA=ÔñÛ[FÓM3,qE–wv4UU’NÀ ì:/æ7œ¿çÿ=ßÍ^gòå×—’Y<Ïä²Álu(E¯¦K˜Z(eoQÄËð:¤¿¼âxñΗù#çëÉÿ̵µüÒÒ¯u*š×Î~LhÓý%áŠd·w€E#ÚÜ2Ê©  2ÈwùÆ?6ù òóóê='óÇ@·Ëú’]èwãUµ·¼ý ¨;ÂÉ{wl‘E"Ý[$S±+ƘrÉÇå™àü™üÞÓ5ß>y>ÛÌ1ùvò{}Éža´ ¿ –·OžGÈ•æ§Ó•T•|ckrÓC [i$äï•«–vƒþwùÇNüºÿœ‚üÀ¹ü{ O,ͬCr<‚¶Ðjº%àfà%Æ› –ÆTµ¹žu^@›g* Ãàä_ó‘þNò7å÷ç«äÏËJ×XÑ4‹]Ý5[ µ½·º¼E£_J³+ȤµÙ”²ƒDj  +ˆãŸ˜Zמl`üɃʖÞRkÛ§µÖVÎêÞ*UÌJÂÌ“5¡ªË#Tä:œã^vü»ó·”ì4O5y—˾^Ò<ÛÅ×—f¹†D·º³.Vp #”}‚Kª²PÊÍÄ¿0¼—¨iߢµïðµÿ•´ýnÕo4ÿÒ6—0Fª¯-ÌŠ‚t hiVBDlYÁfç2Ú]Goì­Fªˆ­ÍýFg +95@PjÐSaARw>TH\/"@ª¨© ¯öç4¯Ëîúr n¢[…©F%kÊ€uîMï\K$z…®tºV»wo0ž5»úþ›4W†9%Z‘ÕŠ°B>%RHìN=ã¹BÕ¡¡¥zv"´üpEÕ²Û]Kirèì…’REV¼Ó’ºÔ~É Á=ö=G4­N ,= +?©-­¸ÝEB˜žC@H¦äÓ­ (Z¡…_­:ï×)Â)ëê9 ȩ঴|$í¿LÙ+òÇçÏ™¼ƒæ(|óäë{-ZêÎòÏS‚88YÌ—rBÖñȼd+)=ÕI™<üºüÞÖ¿+µÉüÁåÍ/O¸¸–XâÔmÍÔבJ’Åjœ“ѹŒÇð8?)ŽS&?—ß~ü®¶Ôàò¥ä†¹nÖÚ••õ¥¶£i(æ†Úí%‡Ö£_‡!òÃ?.ùŠÿÊúˆÕ4Ø­&œ#ÆP°´ÔaÅ+èÞÅ4|‡fãQÛ!ÞxüÇó—æ7œo<õæÝE¯u«ùšyn¸¬aœ°¢¨ªOªQ°ÈŽ»®ê^eÖ¯µýa£–÷QšK«£1[EÎF,DpÛ¬qÆ‚´XãUDZ*¨ ‡êúî±æ Rë[×/&Ô5+ù¦º¿Ô.åyî.n.$ie–i%,ÎîìY™‰$šðµ™‹1%‰©'rIÀv¾kÕl¥¹•bµ’[•uyf²¶‘”¿VBèx·_Zv®úìá‹%ˆ#‘E¨ùm¶VM4“ÈÒÈAg5bZýƒ6"ÎX’zÎl¡%ìÚ¥¥¶—lnïgš8­-UV–g`ˆŠ‰ñKläà7OÔ5{ûm'I¶–öööXíììíãifši\"Gh ;³@$œ¤Újý¶›¤ÚÉw{w,pZ[[£K4ÓJx$q¢T³3IÁn›¨ë:®£ÚË}},vÖVVÑ´ÓÏ<Ì8ãfvb¨'až‰üÈÔ¿>ô½[@ü¨Ðì4­KYò÷—-?LÙùKJ‚úòR¯$£Æ“‘< ÀLŠ«ñî³­yÿHüÀÐuˆ¼…c è¯«èÚL¥Ï”!S¸…!DŠv¿ž¸)8âʆUF%H^L¦içýoÍ‹||­©ézn›såËK+ F=3J±´šl]‰iî OPÜ ® +LåÃ3FÚ4Uæ{cJÕæÐõëÓu (-•íˆ‰a–`gQ¸˜5D¡¾ õV¡S^×üÙùæ©/¿25‹½CR4rÞj÷O믥zQŸŸƒn™Ë5]sZ×®[P×/î5+ªqúÍÜÒO%+Èür1n§ñÈ®¯­kžiÖ$Õ<Ѩ\jWò"G-íõÃË;,¬0£K)v¢FŠŠ ¢¨PauÝåÝüíu};ÜLáCM+³¹ +¡TbNÀ=°ªöm)!–[9Ù/>EµŒ¥·¤ËFPÒ0’¾5ïÝ-ÎÝ®äõШª¾ŸZ’O*íN”®ôLêSZ­üvÎ![ØÒÞXãŒp’"KÕ÷jÕê{âX+Fó]Þ™¤M¤YØY3s“R’ØIz½ 3QEË@kñWjXy–{mÚÒÖ6šc+j¾›}p+ C¿.<ök¹ÞŒA1´óņ‹c§Ù[²He}L[ /]¹‰dføV” +Sû@ó`«½n9ôÕÓl#+Zòî~>¬²uý‘Óß¾Õ-MMÓ­øª’÷W²(JÄÔ Ÿ„`]gV¶½¶‚ÎÍ$n¥¸¹¹¡žY\ +Ô‚va›¦­õRâ8‘äP¢)˜U”CJíˆZjbÐHðÛ!ÐG)à;‘^çÛÞ .f%CONSÕE ióÍ…ï͇¯#NNõ:`&v ³7&}Øõ;`W%˜±IØvÍŒo‰ËnkôS*•^Dï•›W úã¡y¢• Ë½sa¾¥aa™i::™eåê'"ÄÕHøi·ŽK¼Ó¤~_ØywËy~úâëU½‰æóúÑÍ ¹ä¬qˆbd`+PÎÕ¥vÅe…£@Î +²‚,Hñ4ë› +Y¹XÚ¨MíØäbêÞÐÞ\¦—+=¬\š'7xÁ ª‚EHí‰SÔvþ9±"Ɔ› M«ÍŠCÊAâYZøâöм¦¡K(íïŽ'”ü+Q훶…?X² ®äž;n>8¬ÉÉÌÌѨrHv®= <ª­NôÛ¥=ó`K†+0ÜmJïÐS\H%•œtØÄås#—=éø +fÄñ-²Ç¤jRÂyˆž¿a€$Ž›W ¼Íä1yh´ú…‹CnX(“’È$Š½ ¡ÃÍÊm[NÒæ2ˆ ±»¸–í!$=½ÂÓƒ1`+ÐœdKa"Ó‰*ÞÄg!Œ¨oMþ$rÚ¤Ý2: ÙËQ—Ñ*µYU”ª~e«Ú˜Ìö×üâüå'å÷—ÿ/®$¿5#’[ †ž´’X®D•cPj¬J¨Zu'=yÿ8ÁùñùwqäŸÉOÎK$¾Ò‰2i‰(’S<…XcòW,^$W¦z«þqóÓòçÈ>NóW‘¿3Þ(¬îÜZªÛ±{Å*ÆX¤”‹·Lõïüáßüä/äw–<‰æ/ÉùÈ×Pò¾¦MíµÈ¶o¬4Ñ”¤“ÆÊâ¥@‰št9&Ô¿/õ/È}FçÍ~YÔ"òŒg†å­4øÐË}=´ŠO å‰ Ä6ÔPwêr5æOËÏ3þCɯÝ\joåm;ÍpËoca•¼’ÒSÈDÊ>!@@=¾-¤jòù#ÌKæÊÝ×A³ó­Î§åÛ‹à'»@P„A$œ’ 6ß»ù×8¼¹æO ^Cæ­"Ñ´_5Ç5Ï—˜:™M„§áÝÐñ Wcœ»þq·óQü©üÒ¾¿ó-ŒŽ—ö÷ qyx~²aŽàSÔuþZ‘ËÛ çµ/¹ê>§,ÜRKw§ªH$¾ùëJÿœxüáüäòO¿ç¼¹“£¬ÐìÞ^Í9Äÿç2|‹¦ySóRç]ò•½—–õR?E­³7÷ ŽâªÌHýò¾Îxè~_òÕÇ“¼ÑåT·[=BÛѺ¶µH•&–Ô˜ásE •‰T–ûäOþs3È~EòçÕïå=”6^FÕ"€ùy-å’Tck[]0iY˜Öæ97¯Ël¿/~[~Hyþq–?=þa5Õþ»æ[yNmˆV †É°^K÷ä†o/~OþYÿÎ6Þ¯šláÔ|ñæëa6‘tìòIi¸*Wƒ]ºò#ß–ÚOå?“¿çõ6þniñk7žm2¾Ž°º››f@BSÓâc<ºÔ†O•¿ç¼—ÿ8ß{­ùõdÔÿ1¼Ùo,žQŽÖrðX"° +ó¢S‹ì~Ñ?,òC2<’J:iËsížaø瓤äš+$Q°ížw˶´¸½™-íPË4¦‰ÌÄô RÎÒæþæ;;8šyæ`‘D€–f&€2ÒÁ5xäõÈT…E]˜ûc¢ŠI¤X¡Rîä*"Š’O@έäùÆ/ÌŸ8Å%ÝÔvþ_³þµ«Ì¶ªÌ›ñÈjŸ–uO.ÿÎ;ù†e—QóÝý¿•4«d2\ÝÞºú‹NŠ"¯"ƽ3¯ù3þqKó_¹Ó¥óÇåÍ2ùW¿¾tN…ä#2“\Ÿù[òCÎ>bÓo5Ë׶д½<•½¿Õ&[u‰‡b‡ãÞ½†o3iÿ—?–š vÞ\Ô-<Õæ®Q_LÊï¨sA$w5Çk²~Eysòîm'Ë^Ö<ø÷ŽŸ§KªiñÙ«Ðzp”%™—¿-°G˜tÏÈËßË·‹G½›Í?˜OrÊ' ÇJ·¶åOîBrf+RÔ,*Ö¬/´Ï+%µ…åÆ£æqu4wRÇD°ŽÛŠ´d‚dæA¨ë‘ï/yšçDòÞ¡§é0´ú¾¶i,È9q¶‘@d§ÛéÞkM#ò²óòûLµ·Ôµ?0\Gquqèz—©áRNÅ»ã|›ù»£ùKòÌ>CÑt¶—Î>m¼ú½ö°¯ši +’§íµkƇ#ÜÔð˜ùK)^2ÙQ×ïÀù&_/ÚGªy±…¬rò6ö<«4¥M n£n§"Zç”çò¯¥¾ËäÑGsªzÇ*‡^ENÕ!:Ï垣äXa¼óÑŽÜÜ'«ž$ ;ÁÕOÃÓzâ§Bœ…GË#z…ç×nDACh¢^Š£ Â;™ÍÄ¥ø„Q²¢ô°ÈEåÂÜÜ<± ‰ "8×¢¯aÀØ–#›,;Tlq–B # ÅâhÑ¢G!í/c›*¸ÚšS·†4;ñàñþZí›ÜM=ÄèÍT…JF´ +“ÛÜà‹]â‰ÙxÄ£Œ~ÿŽ½Õõ Û;9å/ ŠíÒ‹D ÅA¾ç¾l ÓØà|  ©„ Ù»W66ƒ‡"7'®lÙ±¼I;fËZTTfEwǨ•I¥M+›VÜ.Á >ÿäƒZ`¤õCÕ¹GäôZwÍ‚>·kË—Õ’žŸ5jsþ~½qoVÏÕåè·4ãËö¼kO 9ý#å?Ò>·ÕÕþ«éðã%~±_·öúÓèöÍŸÿÑùÍæ{}Y.¯/u‰#‘Y¤‚0¬(`¡ +ð T° ðµ¯j~Wž›¬–âþy.#ºˆYÇ‘§ìÖ†•Ïœß™’^Ü^ÛË«ÍÆ¡0[‰çAZ¬‹²§.$*ñ4RÏ•Y7¡oÉE ñ©Jö­k]«û½Z÷ÌZ¹žñÀ2¥È^\–V#jÁÛ ´)®bM¼Ñ¥ÄIq +²SÔ‰9©­§!N´Íƒæ¹½·Ó¤’åÚK_[ÐŒ•QHéµ;Ò˜>þKˆtkTÕ Ûz¢P¥KZÅj õÉ›o56·´²×eâó—~«C;Ì㈌h Ek›µ›Í^ ôã’¢¯C·^›áL¶FæÞ=TÉè9“‚É]ù øNÔðÈóÙ\Ä-ï#”Ú‰›pÔx¢³f×®þ³o§ÇuyõÑn­ +H‹$bœSÞ›ã|Ùz—³ÚÍ!^<o.Ž25*£¡ào0Ía=ÓJîf¹—šæ=’NJ¤?Üš×6t_ùÄ6~Wyþr+ÉrüàYÊ:%óß_H‘Í,‘M¼i(ŽÞ®};¡+P7m’ùÇÝ_òÛBü×Ñ5Í…¼—Ëv®ïwi§¬¤ò+n÷,#HË7ÄôbØ´³ÈÍsËÚ³«O©XA©ëWVBÇɶ·É/ÕT»½µˆË$°]Zn’ ¿9y7Mµ–ÓÎvâÚ]I'”Älî­ ´…R‘ËíÌ5y»£z³þróÉÞ@üÒÿùËKÒu¯,ëžK±ÑŽº·ÚdQ_ÜêiÖѬ·ÚuÀ‰%´¶¸V–alé+~áYm^OMÿÎwêÚmßælUÖ´Ë‘ç¯,éöæï9Þ›Q{æ µ;k+ëxî­4ÚÙÛµ”wx¤˜:ª r‰Ï ù‹þrGVùÆòoËš'膞Ö;5ëþ¤Ó¶¥ig¨Ë=‚DY˜Cé8“yTÅ8ðýoþrkÍÚ¯‘|±å.Yþ€Ö´ƒ0Õ<ßau8Õ52Yº‡h4WŠرUÙóüåç—œìô,Øk²Ø¬fÏê²XØØé´í¦®Œüµ+ X/nHHý9žBc`²4®¢LólºÖ¡6˜šD·Ä¡„1 ‹ôÔ4Á}VUSERÅGa‡|ò½åÿ˜áÔ4ãåÿ2~R®¨M«ZH÷©]y¢Üú…ŒO¯?„±±,Aç½J]âËIŠÒÎo$̺]ðúÌ/s©-ä³È.Q]aœˆÊñthùEÈà~(ó÷˜?.µ/&èÚ÷”<¹7‘<Éo%Þ™¨Gk¨^jZ~­ ‰"µÕ´·o#DR>6ó'ªÈà«Ç·5T&{i-áô£Éð—âv33;·©¾ËE*´ñÎ5¢y&ïYòN«æ…ºHªÐXéšdS‡½Õo¤¼‹à噟„rWàû&Ÿhá]ï“^Óòþ×Íú®¡õ-E«å-g‚ûë“BâßQy ƒÚ²FU– ]hHâÌïò[ίäMóJ-*+ùÊöù<´SR†îóÑÓîÖÞ궑3]Hby# HÃq_S‡Ë)í'ŽÎ+æ èÌòE…¹Dš¨ (â„ŠÝùÏòcRÒ¼«åoÌ/*kV~lѼÙ0²ŽêÔVZʪ¼¶6³q’9¸*ÔàéFR +ž~r~By‹òb/-j÷z¾•æMÍÖ’ÝùÌZغ³ºú·îÑjAèÈÜ dÕM$IcŒOæïüã×æO䆿¥—{]zÏPg½òל<¹u¥¦êpÛºÿ¥ZOå˜+ Gv©>ó'µ-è'›{]CDó¬šf§cp²©¹´Ž»µ–&á<3[›„WYc^UFd‰ÒF›Á£þu&©¥þcþoE{åû¿1\}WËÞfÖ4x%–GÒ×…ÁÓ¢rHÀ +åò<”U¹Ð¢óÉÿ˜—+¡yçÌú Ñ­µè®åòôúÖ›ö÷ËlE¬Åm®!•¡´ñý¯ˆT9 ¿[ºº¿Ô|Ý–Ú®©jË{n©ëÇy“+eVTÞU¦êWŠÑÔ‚{K»Q]Bð‹„ÀdB¢HÉ*j7RA/Ê_“?󟘗šÅßå…šë@òÝëÈšÄÿ¡ôGIã*$¸ô%•n›‹²¨ º«u#q’ß-þD~{Ý~[Ø~{yJ¶±òf‰3Mcæk»½Á—ýÈ%â¸.%AtË2’(`P„€{£þLþmù‡@³×t¯-Ï>‡¬¬ŸPÕ4¶¶¸[/XHQÜÆWŠQ¾ìÈzrKåWæ4þBÍòõØòŒsfó ÇéÙƒ*pY&ã·zŽ Ð/æå}£˜<Ѫþkh÷ºæ­õ—Ò4Í" †Šââ ~¬ÑÇ4A"ˆQœ€V×’ˆŽ­ä‹­ÝÝh¾eÒ5KÉÛ‘³Ófú«KÄs<¦$h „*˜Êz@«žiÆ2Âæå­¯åüv«¨ù¦ËP¿¹Œ\­žœò_ DZJ.àV´`í!Žw*Pò¡¥c ªõiÀr¨÷éOÇ8…ç–5kx¯o¯=5[;‡µ½"HÛ…À&ªd’+ÝE2öÒÄ­#â®cødF©h’GùCo|€Éo1‘ÚJ&®§Õ"´Ø|±˜[ Ö¥z–št 4Ó0H`ˆ3³hîMvĈ4©Æ<—`©öz¨í½;ûŠfÅntfÑ.,äCI£‰< LˆÔ¯P `wò²ä³º…%‰‘£%dP©Að"™°çÈÿ—>iüÃÔáÒ¼¹å‘!^]Ag»•—Šä Ãs¶yKÉ>bó¶¢4¯.à ÷l²4PÏwkië4Q™Z8Ô± $*¿ +!.ÆA$ ò?åï˜ÿ0uÒü¼ö pòE +©jÚv”%–gªDÚ„ð ¤T%H¨'l§i׭гµh–FW`n'†Ù(ŠXŽsº-H +Վ§;¥—üàççß”Ÿæ¿4é:Bèr¼U¾“U²»´ºI£-k,¡y(b¢Náßµfyÿœoüãü´Ó쵟<ùrM?O¿¼ƒL†â ›;Òo.G[~³ÊÂ^11(Ô"”jTT÷\ü˜üÉò7™5?/yŸE6º–ouwwm!Y#h UW‘%š9Æ>ËWqN£ù³ÊaòF³>ækQkynhá%Šâ&ª†9­ÞHœQª1,óGüãÕu'ͺ¦—å{¸„¶“ÿ¤^Þ\ê +RiyÒp¡À-½jÔ` h?‘>tód%Þ™ko`¾cÔ¬tM f¾ŠoÒ·ó¥ª-´Pú’2£±æG*n¢¬­…ÑyRg¸[ »ëkiäÚZAtÈ—QO F¬ ’¥ ‚ŽÊ#b®¡Ë-0­ wÀ­$n +* TSöEZ›õ¦ý±/ùÈ_ù¯˟ùÆ¿ËíÍ~|ü¸ԵÏ0[úúo–ì4¯M䟈-ÜÉ;,q¥>'(\rQéäÃóãþq¿Ê?óVö¾`óä^dó õ©”h:=„Ë 2“4A›P•šDdG`€ÈÊàq@Þ =üÅü¢–côš®nmõB¢Kk tÙìÌà•ÀúÈŽAG3*Éé4oéÔ9$(“~`þ^jß–šºy{Ì¢h5C2ÚMc{dÑzÈ F[ø­ä%[’–ThØ­QØç›ôo0)ÙK ΟjQÌ$¶i"x¯íKÅÅdY™O$#®ÝMG|âZ>»¬ùoV´×¼¿y.™©ØÊ·Z…¤ðʇ’´n„*zPä3B×õ_(ê1k:-äúN±a'+-FÊi­o-Ü£)d’&B¤xõßç‘Ë ûí.úßSÓ.$³¼³‘'´»Ú)¡š&’FèC++A çNÓ¿ç"¬<»}<åY´0êv—›¼ã&½wªêÚ­åËÃqutæô˜£iÝ 7ÀI.ßéJãóæ-á5ŸÊ½:çËžhÔ­ÞßÍ^pÔ5Ö/µ7»ˆ­ë°¸‰–3;»4¬ ³QHàyŸyÃó;ÉZ”mùwäù|Ÿ¡i®·xúåÖ­}«4rÇ3Iq5ÁŠ8šI#±Ž 9Ô*ª7#óš<¯¬Ç¤/”|¼þ^–.ÞËÌ·j3j2jú’HÒ\_2 „JxÒ/´Õ9óÏ—|± ­¾¿/æ5§šµëþOªÙÚÙj%­]@KsuQÈMvôùصHòÜv¾£®éºÝÔÅ'¼òý”—“8ã"ŠêåcŽê)&°M!÷S­kH±ÐuV}^ÃWpX\ÁkëÍôÀ(„p€’ÄܲÐÔ+Pdr[hc´‚å.£–IŒ‚KD‰a J,züpÔáŠî ¹}xî`ú¹ Ð +R”¥3a $€<0>±ì(3b°ÎÐ#övøkàZ±ZӾج|£‰¤Z~õï͈×}ò«Ûä<>œØ{¦ù‚+9áycúʼn̿#aB½1Xg1¸f€ÛÞžÕ®[jßU‘'ˆ–”)Œ¿ðaB)±éï›'ÿ•žuÓÿ/ïµëÝ.5Æ¥hm4íL1I¬ÝK:µhÜ`í#S}-æžßœ2Ê8CuŒ $T‚„V¢ üó°~@~dyò¯\ó-õä^]jšT¶:6¡jÆ)ì.ee&XÚ†Œ¯Å쯮tùMÅœ ÜYRhÝ‘ÓâÜYH;‚Aö9Ø¿(ÿ4?.<£äo5ùsó.IõënÑ¿A3ƳB—•,œ‘@bÌÔòÚ¹<òÄþWMPÑ|ì÷ÒEDº2iò€>µûdâÁƒNÄdÏòßósÉþDò¿˜b¿kO2ßk–òÇߘ¢7vâByô”¤¾¥h‚AO a6Œl/ Ô’o­IFµ¸ŽAé©Pj2 jžõÎa}ùA/œ<¹æ0ùkMš KËP¥ö­§³qôíÕ9ª•aß#2þ]y²Iµ‘k¦KM +{©Æwx-ÙÕ°Ûj¸Îuæ]Ëš÷•µmZ£Ò|Á¤yì¢bÍçýÓ//‡ÝΛO¾·’Xn x¤…CÊŽ¥YTÒ„ƒóÂùÇ»]2×ó³Êš—˜DiÚ-Çékç§Ä›Þ+âÑ0?åþ»•¼ç¤y¦^Cô5Âj”^DMl}Xvðõk€¿çü‹ ùÛóËÚ?ž.ÿGùrÎO¯ù‚iª9YY#\Kî7'CûX+Ë’éVúå¥Î¶¢K(ÖšFu›ÒÖ&ÈÜd`ˆ €k‡?š_ó“yüÈóÅ÷šõk¿RE•Æ—ÅJ,‡ªìæ€WùÓóCÎ_˜~iŸÍ>nÕ'Ô/'™î²°bŒæ¿ E¿æ¯çV§æß<_ëzMµ¥•‘6:,±É +Ae þéUÒ´§¾)æŸ4j¾nÖ%Ö5iy;ü0»GCìÇ•TlÉïüãŸæ¯’t½gÍ>jüãÓåÔíµrË,PÖ)Z:7¤Pl˜ +çHü—ó–‰åªy³Ïšþe†(ÃÙÊ÷¯F ¬d1©÷§ˆÎÿ8Éùíåï-ùÓÍžsüÓµK›}RÂU/k¦«Öá²ÓÒ%”U†K?#¼çùwä:/™¿2|°<ÝaiIi£¼Ï=ÒÑ—dìÜŽF8=uùÈ<Ûß­§è?JáÑm,©©ªà +ü…0ƒó×ó³Tüôóˆó=ý¼Zm½’4»GÆ‘Ç&îkì2#ù¹ÿ9æßÏ4Ûjü;m¦Ç'èø-[Œâ£â¬à+5|:aßüäÏüä.§ÿ9çäóuÖ“o¡ÙY@–ZV™j6†Ý:+6ÀŸÛ9Þ·{æ'ŠÛÍ·—:£Ù¡[iffE>YÎ5 gSÕŠ¶¯q-Ü‘1¼®ÌUGoŠ»g){­_Ì·„ëwòÜÊ–’y ¾Ý‰zœä×7W7’™îæyä $Œ]¨«Tì1þJó†±ä-B÷_òÔñÙÎÑ=°2D³|2lHTW <—ç2ùò]oÊZµÎ‘~èЋ9 Rzo³Ã$_–¿™Úïä÷šäóg“gŠAm¦µY§‚9¸úÊQŠ,€4=q];S¿Òn>·§LÐMÅ“ÔZT+ ++â0ÛÍ¿˜—Þ~ò¾‰¦êú‹Ï>Áehè«‘œì€ +’Ýzàß8ùªçÍún›%þ©>¡sc¢çc@ÄìUEjMjwÀ÷æO™|Õ¤húVµwõ˜´S2é¶G¸•æzÖ¬çåÓj¾bÖõ»]:ËV»{˜4˜~«§Fô¤0r/Áh܉9ÕuÝR]:öw‘-¶Š>mé¢õâ´û÷ÈõÞµy§Ã§\LòE÷hä¿-«‘ÛÙ®mÛÒiVë’@~;“L.ÂjkJ|°¿<¼Í… ³giü€üÂü¼ü¡¹¹óç™ôÙ50Ù(—Ëèê-ý`¤êÈÕPw؃ïOòsó'Ë”‰{æÉ´!«ù¤>^žáÏÕ¬œç1­9:þÍM=³±~FyòÛòÃS—óΠkz…Œ'—üº±††{¢(†áÈ/RMrYçMcÈ—VZ^—ämK·‚ÔõÉÚ{«‹Ã‰‚õ(¼yìsÝ]Ý^Î÷7’¼óHjòÈÌìO‰,I9Ï 3ÌjI©'©'9=ýýö©w.¡©\Iuu;'¹™ÚIØÔ³3I'Ç"x–V!›6lÙ³fÍ›±µ–úê;HW“H@Û|RZyV$–4Û²¶–öê;XE^BfÁÚ”ZMä–Ÿ¬4G‹1û5ö¦:æ‘ÊÐFåãB@¯Mºà«ûX´›émƒ-Ǧx“½+NÔ9°±€-Pj;Ÿž$@ p åT|Ùš‡d ¬P…”íÔü5cS_ ÙlcJu;Ÿ¿,ñ ûœ·â·ŠpE%¯Ìq$fÇÉWSÔTïÐøbÓÅnª Öª Ø÷½å¤0ÃÞ§&u­ïá›Ì iñ|ñküp(”GÅá$7íW}óeíéòàywnÝ|)Žø8ý“_åú£…h9Ö¥©þc6ÿÒù¹b¶ºŒÒM¨ØËql¢g§¨ã‘-Æ&f‘N[íCŸ;Eµ·˜¬¯u]BÒ[¶¶ÒÕl¸IAÑÊ£áU +YB¶ÛS¨Þ™óíü»gæ=ëY6²½ü©ź?6ãbd!†í^,çoÚ§Zò«µÑm&²Žfçmw­·xÚœPŒ1 ûSÚùcM’É/­ïB_ˆ#˜Ù̼8Ê5mªÁƒ1ëU íÆ›ã.¼‹c¤"ßi7LòÉrg¶p± J…FH¬ÙâfÀ7÷:„6Þœœ]bj,Ñ  "¸={Tìp£WÔuÂæÜ*ĦARœÔ²‚sLŒùƒW¹úòn¶çÓÁ˜|<#jlIÍœÌ"3p +9‡RMM¯Ë æ™PHœEx’Çn-½H§Q\.úÑõ¡,‹oê/‘¹5UêKM3`Ç¥pv[ŸQª® ‡ŒÐl4à A-Ž•mˆJáiPÔ(ì+_=×áÓ¦´ŽKŽ0©º†Júç€ÜmÅsa4¶—Vê³,mé±ø&¥A§¿Ó„2ÚÜÀ Ë*·Ùb ÈäbK[Ë6ˆ´ œ¸ò¦ÆŽÇ¶lï_ó‡~MüüÅóî³ä?ÎuX¤Öt»•ò†§qu-­½¶­YaY RÇýê£F9óQüµ*éÚç¼—ù=ù‡¤yïʘW‘èþhº°†O˽rk™¡Š NUý R0PÇpþš<²%H¼Òaå´òÀü»ó%泡~’Ôá¿Ñþ§«¥Ü°¾lRí'Sl£™f!X©GXÈb¬êL´û/&‘ª[êv7ês} ÚColQë7¯·•¦'Âœd‹ƒ|D°øs•k^Um õû'†I4Águ$’7¦‰ u<¸˜Ø± ö(Wn¼ƒF¼‡LÔlõ‰‘.•Äµƒ´ˆ'Db쥣¡UìÈmoÖdu‰Œ²Ëþs{óKÈz_›<³­Ùhžaó.©=­å¿›-mô³ pEÃ-…´Q]\-B¬²³ðãJ¹Ð/¿ç3üçùS£½¦åûÍ «\ê“ù¢xËã¾y^òÝ’ÉâP³ Z0ÐI¬Lè,:ß—çáþrò‡åß•<§£y+F‡YòÔÖWºÊB,-õ;[›¡,vòXé)aJ‘´‘ÊQ¹Íð»0ensËïùÊ?ÌËKÓå=ËVúÍΠڽ§™ßËZSjztò2%“ˆqF܈#+øbà6ÎùÑùåùƒùóçó¯æÔS^úvÖöðZÇèÛÛÅk@‹UŠŽ( o¹ÜçüÓüÐówçžõ?Ì?;N“jº§ Ž°Æ"†{XRÚÞV‰1¢ı®ÌŘùwÎ>oÕ<íæ[ͺºÆ—zÅåΣq!ÄI-Ô­+,~£;„¨ ±4¦ûg;óלuÌ?:ëþ}×ø KÌw÷z­úÂbY¯&icÎÁj(,h;äGCÔ4ë]F)5ëI5-<1’æÂ;“lf`¬™½(MMH¨V¢=k¨¥€^Eõ»[vwK6‘Ö>N(~ÉTZPšu¨Ì2+‰Tóãû¶(u'möGž‚ü¹ÿœƒü°Ð/dòW™4JÚòÊöÖûËzö•œ/tÔŠW–h$˜Å Ü$ÌT·©Ó‰#×Süíü©Öÿç¼¹äIt4ÏÌ-êW3A¯Xé6?S»Òoæ9m%”Ož3) «ö“—÷ŒÒç¢,?9+ü¹ùM¥ÙyQ×<­çËí+Wòßæ,ºn‘¦þŠ×´MFoNiÞ(ÇmÈŪ»Üò^lr²y^o+2\5Ì:ý¼Ôµ[ÄÖ“Ú½*%“ÕGWCR¤Fü¡ œ×K»óƇù¡gù‹å¨Âÿëߧt[NÚÞá ââ+§·¹I•r OH­3–~\ùƒWòWž4/;é:5Ž¯.•wõ®—¬Ú‹.äÁ'/Ná$d•øOƃLæ¿–ÞhÖ?/|ã?˜'òæææ´¹†ÿHóu˜’Ê{;øõLk$3FüIH²ö„‚[cy.y ô É '†;ˆ‰SZc±}'TÓÔ¬n,ýx®V)žn\z#†;R†™³¾¾Óäyl.$¶y#– hÙ¢™ r!*EUÑŠ°èA¡Ã¿=~cjÿšÁ{¯ùåR;KD´–+³?® ’=Gì¬íVoR…x1â^wó×?6õÓߘžgæ›`-짽åÍ`ä™,âHa79\$òÜT ìð]i²ß%ìpÑ"éh·þÏÊò’*…þð¶ÀqïˆNä×û3•èrêÍrtÍ"7»—PFµQzŒÓ6U Rç•8®ÿ69³µº¼¹HlížêMÛÐÙ‚îv]éAÛé—’E%Å ´KÿY(’C)ôäf$E…““²«†C_³›&¾D¾ŸòËóGOóW˜ ºòµÇ•ï]ÓôÉ!¹†òYì0W›!C+ì”cB~iå=V-ù§J×"º{ ´›¨oá2E-¤‚e(¢•pÊ8‚Fô«/Pi¡Ûèúv·-÷›"{h,©tš:¬©-é[„¬ýPTÂKò”Ô SE-E8m‹ùÿóóÍÿ˜Ÿ˜þküÕ×®®[_×ÌɦÜ<æVÓ-fvAm H*8ÄœB•)¾ùÛóGÎ_˜^eÔ¼ãæë÷Õ5F^gQ»’[™má Y ·7!Ž4¨ O‰HÞ -|Û¯Yßjz¬7óý^íïïÉ’dº?¾æÌI%ÆÇç‹ßßßj·×¦©s%ååä=ÝÝô³M,Œ]ä‘Ü–ff$’MIÎp×jöb×ÆÒe˜š³|4 ÏÓ‘&rÌÌƤøá[J!E™êM|>íñ ýÙDöÄÃ2ôÛ6* +Ö¿ÞHÛÇ+rhÑŽ-ÐÖµS}³aŒ<¬ Ý¶­HFYh’8Õ5=›¥=|ج+2ËÐÓ’·¸ðË»dx˜«R¼½ý±HíÏ8䎪XV‡¹­6ÍŽk†hÒjrw4Ô§7*Æbeø‹2¿CýqSw5µ¤Ús)3bGĬ+Ðý9±ß£$0}f#Í;‘Ô ¹m½4+«ƒá×[ Ú?\-cï¿lØ ÀV tŽ# Œ1 P3bœ‘mø2|lyöÍB:÷Ê44Ä k<¶—Ð^ÂÞ“A"IOSÉHéÐŒ’Dmt­BÓVk?§$s"”Gê) ©¨¥FûfÎ’ßœ>vÓäÕ¯åóC«ù¶¥$(^[IĤ P2o?ŸüÙ§ßëw×üÉ©ë° ]Fh¸¸¹·b¿»~ú2{æÿÌ_ÏðÝÞùàY.¡3Æ$½´·ôÍÂ(Šâ&TAì£jú_Ë©ër]]NfÏÄꀔèÈ´?š:h»µÔôè/ÞP ’B¡TÂ:ÂSã\Xë§DVòXAsõ¨ÌÉ"µJ’↣!7^oÕmã:dÒµÄ1•ŒñHT< §/L¾þ<°Bõ}bÖõµ·[u¯Ç^Þë„’È’7%^ t¦G/®í%Qµ¿ ©Ry~9°DþwóéQhÜ´ØMRÕQ~mNGé8¼ÚܶñZ3Ÿ«Ã_J2o¤ þœZÓÌ…­“éQÜL–R7'¶ŽOM\ÿ•A¾l(mFé¤s*WdâJÓåL³HÍ[âÇ›•.\/ +}€„Ž>±D¿¹1±3Ç­@©'ź喔ƒ!?k©÷Êiä¸~r±g®ç¹ç6–y&¢ÈÛ.ÛcÙ©Ëz +óUB̔ڵë›)©ÆToEaÜæÓ¨¯ãŠ9¢T¸(}2HVÏ…seHX“êο=r»ïaSñ! NìNltv²ºú¬¥bï!˜¬P>6”±ò+öZ½+›+–ÔË.Hãµ:tÄyTPýÙ³)?dwÆã“Ó +m¿\Øú½xTÓìõ÷®_Åƽº}#äMˆ S—‰ñ¦lÿÓùµ£M­Cxö:J=Ìw£ê÷ȯ U‘ÄAøF(wu¡§Ú#Û>oy;RÖ“S†ÞÒo"RLf’(¦e„¨[oÞ”äF|ùü»óÞ±`¿¢æ†kØ,‘äŠéî$´µ ‰Â5±ý–>ùò«ÕuÍ&gY¡ú㱚;«"’… )W¦íS\WYóMŒ×“\[M4†é9K([qÌ juãî=ñoκMô’Â//åg–©Ä$†Ÿ‚KÚ´ÍQmç_H<’@G¯q͆ÍPx1ãØm× +®¯æ5³æ$†å…H© ø¹i_ Œë—]Ìóú?§#IJµ*êX?6jW•v&¿†lb@ ¦áUK)ø€Ü¯]¼;aTÑ7r.Tõ<ªÕ"›vÛ dbiɹ;ò{fÀö×&+ƒ¤„aR‰²ô;°v“v¢9ì®MP¯=>kßïÃý/Pú\ÚmÔ®Õ +¾Š«Æ:zöðÍK4]ÞT‚º·‘Ï9]¾JlFõ¦Ý+–×ýS<Ä4\¤ À¸·=:uïï,fµµŽK™ r’VÖebñ"šµ ï_ØèfTšÖæÞàÇsoûßQz¬‘P‚kÔü;oŒ·½“HÔÎ¥¤J•…J•p +Iñ²H…OÚVVeeî ÀvšŒÚ&§õËIDòQ$mQÕ‘¶ë¸¯zÙÐ|­çE—óBÏó3ÌÖÚ•ÜLešG ³Zz(#”{:CÉk³_Éu ÄJÓÜ«›N,B¬ÜƒÔ +÷¡í¿JÒ‚´ Bþ Q/ôÉoÒž‰†F…ÊÓŒˆ¬… *ÆPPvÍ…^hüžó—4ñ4·º}ÄI;Ât[KÕ½¿·€Ä²­Ó¬*#10p9+T0 ªñ42óG‘¯ü« y{[Ô/m$0Eu'èèna’öÈÙܵ±K¨ÚHKqäœÔr7SAÚÓËúg™lõ+ ¸õ$¸{&ÊYe»Ó¾­pm×ë‚H‘åÞDïð|D"•¤úqE/5oTÁMYhiñÕ¦ÙÍInÿç\‹šô®E 1©­+Ô O^Qüfªiðñß¾]^ÝñêfÓÚƒrsülL©-ÄuùÐ~4Ëàü9Óá•÷ëde ªõ6 µÐµ«á±°žã×,°ú1<œÊõ ÄÓ.8e”•‰K <©?v ²Ñu­J)'Ó¬gºŠ.FY!‰äTâ¼" A¹¯lØXn¬®ˆÚ)¢4’)R;2ÇËVl +É,OGZ›ƒÖ„wÍ‚`‡S¹v¹Ê4äƒ!r¼ù‘âF=ê…²=G v§†(· •DŽ¿Xeˆµâ*3b‡B½#›H•nµ,OJøcx?]†Ø“;1%˜’MI&µ>9³ àq-*|])ʾ5û8戀§˜<»o·Î£*½÷¯c^ù±ãH†:z“3³}®S(Q«_£,3( C³ ÅG]þìØŒút–ïêÛ·5]Ö‡ã^ý©¿Ë¶žæÊå.l¦hfŒòŽhœ«©ñ »ŒVÒîâÒánm¦xdSU‘«¤o› 5?5_ùŽãó=Ô×—6‘ˆlï¤ýìÞšP$2»ÍE©ø;m¶k›Û›Û™¯oe7 ÒO<¤¼#nÎÌjKjIêw놚Ϙ®5øàŸT”½ìGkëªŠË * ŒO&m©SØfÂ<œ³w54÷ÄVœ·;{ÿfR95­jI'éêi›&_–«ä;Kû¿0yþ&Ô,t¸–[m ż×÷&E fǦ‘r7Q_ò2ËòBÎ?1ù×óžîKÄÑtù–ü›dY.umbGŽ+a$D–éÍžBZ´Bx½RéVZDº^¡y«Ý˜Z4 §Ã¬“=ËUt ~è*•fä¤3)PÔeÅ!ú·~±Ê¼O¢R›=Aê)Q×ßzP–ùOÊRù®úHŒëko +4³NÁÈ uP … Ê¿Þ»dkòÏòÎûó+R¿³¶Ô¬ô¨4ËF¿¼¼Ô%1EÁdHÄhʬ=CΠ5Þ´´m!µk™CR-ÏÙÃ|@PPëV*(}Šx#V±Ñ<¹¨;W–k˜‰Ô!UÚ¢ô¤F—tH¸74$qT†«¶øÍVÊ×Lœ@$s2–õâ(Æv ¨&¹°-´­u'Ö.c4 _el­p +Éq<¦iGv;ò®J;Õ‡ÂwcÓ6/q$ UR7 zקO–(Í0’0©<¼{xf‘âdR¤–5¦)›Cq +K(¹Œ¥§6AFZn)Ú•Ä š-ë§Ú «©ÜxåBÐÔ¬Àñn¬¿hS»fÃ-5`7k'Å4?¶,TÒ‚»}82³[“5Ãz•øW©;½|:âŠÑ;8nLŸ øšfÀ1Ç)õ$P0ä‰EAaZlÐï‰÷¦Ç½Fl^9š7¤‘Õ·&žÃ-Z€èz€^YŽDßñÍäÕZY®ZWoY‚ˆ[—qö‰={bñËÏ›³•”" óß +/*_Ù Óïú3`Au'#v +òlž’Sµ +Šô¬æÿŠ—毺7mßÙ\ýY½P÷Šz8ð¦lÒjHI¤ } zoØx ^MjÝÃG +ä³FiÑðé‚äÖ`5­Ä²ÜHù|³`I§3•qQ¶]^=ÓÖœ UéLw|÷›þÚÿÎAùGÉAóL?—ÞJóù¦M5ô¦­~œBñ•VX#©<• +ìîF§‰aÄ‘BUˆéPHØ÷Ë Šdøš2 +‚jÑ‘Âí_Rߦr¶k›y£õjL$2†èÞ˜ž)föž¼’_-U•¸u sÓ§l¨¤Q!y•kAØ»yà7O5ÚòVäTo@ÇqÓ6hæŠ6q)槠B@F>YÙœ“Àü†ÙžñÉez=Ô›”BÛ’žÞ‰cZ×®RJ›ÌeaÈÐ …{ ¢IëÛ¦=Ù®$¢ŽƒÀfËáaSP|3cb„ò§q›41§¾l¾Kéñâ7#âï›H®Ù±¤¯a›Otn"DaV]‰¥6Å–fi¢f§ÂGQ·^øö•(âj>Ñ&»fÃù,®mí¿¡ WÔ$±I¾ ÕïVætx`Ž$P”¯*u&¤áÝÍÆ‘>•omei$sWâs=Cÿ 3`DžæHX"ÜõØl?^šækˆÂ;ì* ù\.'ž"¢%M¨æ¹±4ÈÒÑýMè½q(‘^@­Z¸œ¶R†„»+zÃU;ŠøæÁ0pÔï#·Ôg[HÖŠe+°QòÁšu­íÁƒPºú¢ðÈV£nƘ¬Æþå-g–+n? ’_„Sè̓|àé:\‘˧j"îÚaû¹Ѫ:ÔvÄoí`µœÇm:ÜGû2 «ô`oAƒK1¼7qσát5©ï¶l%U„3’<Àýð¥V*ñf?@Í‚í¬m•ÑïܤlED{ÓEHI»ä`›á¬þ_0YÁyêƒê‘Êø¤Qâ@Í’˜üé£Úyu|¹ŒwIfÏ-ÛÆ^NK|l7 Ó ®µë9tXtaaVf‚ð|3ÄŸŒîßÃ$öÿ˜égå&› {«}9äžÖí gHÅÏ' +”Г—Ëá A·~ù˜72\ÝZÅ+KRC¥O}˜a4sØ» ràý¾›÷Ú™—TŽêáîu8†JŠ*}” ¬¯Òw³¤v³H ¼g’ÀEüÂÐþ8#Ö¢A3+FŸÇÐ1(oäõ#†ö¦Ý!oR#?0ýy± ›£s)š‚#ÑQ
'ßÕõ‡ÂAÙG@<kÔ5$»¹’{x#´ì$!€xU‰Í‡›¤òì<´ëHåAR¯:¾ÊvÃÝÏ:Ç•çú§kz»%ÉŠ9h;ü«!úFI|§ù“yäYãÕü«o¶±é}s ½â ¨ss‘Ÿ¤|3Io*M£¡ ¤€EG±¨Âíw^ÕüͪÜkzåË]^Ý;I4ÌjÌjhª¨ð;a%õõÖ¥y5ýì†Yçv’Y YNÃaòÖµKÌ:¥Îµ«ÍëÞ^Hó\H#Rò1f¢FTì; uÝÔ×·S^ÜÒÜ;K+TÜ–$*€ç Àq¸Í›6lÙ³fÍ›6l0òþ·{åÍfÓ\Ó¸‹«)krêC¡¨$Žøcåí{QòƵgæ %Õ/,dY­Ý”0¦ z᧖õ».k–zݤi,öR,Ьƒ’òCQPzŠà?P¼Ò¯íõ=>C ͬ‰5¼ RD<”Ђ6#y³ÌúÏœõûÏ5yŠèÞjZ“™¯gaNNvÛ°A•æ sSó6³yæ jå¯/õ^æîâCRÒHÄŸ£Àv`Ï:ù»Zóï˜ï|Ûæ¾±©_¹’êZPö@l¨{`Ÿ1ù‹\óv»æo2ÞɨꚜÏs}{1¬’Ë!«1ì=€Ø †ØOBNØ_„&¾8]ƒmtá-”÷òÈ *¡?i‹W¦ ‡N §¾¥,Š¨¬#Xëñ±öegåûëÍ÷^ŒkbÑÇ+—–¼@OLØ ÛÓb@Û ¸íLÙªr²Èn;š Ù^ç64\Øä Hâ3|±ðÀÓš!I4Í‚‹ê†ï½AV¯z}¿ª¿Uôx~×2ÝúP}0Goõ&·ãûâÊ9×j‚ß…3gÿÔùÛió}jÉ=I!NÚáƒMïEâFãˆ;Ôu¨Ï™³O£Lg±5’"Ó[É4aˆ*ÊÉ"ƒÐ†E5ú" üÀ¥Öžéqk#Û·dT5äI+±ø€jgʬfª²ñ$J—¡4uØÔÒ§ð ÒKz’¼ÛsIA;Tž„Ÿ /j¡âyâŸh +æÅã+SÔ½š•þÄi#"v iMÍ3G’Vƒq¿+øÓ6:òc0«p*z0V's,Ï#‘UnMÉG±¯lªüLA 5n#ç›JÅÀBNÃ©í¹­>Œd¬Ô£»}4Û¦häôÜ|L£¿¿½lQ!s# ]ª¶î7ëB0ÓÕH•/ª%P¼] ¶‡$72Ù¢3³‡iÁ;“#"•„w ÷Íšè„HdŽE‘gäÌqañVŒ0-嶸Kw4\j² ­vîøS¨ÚImvön4`QP+ÁÛÛ6/Ô¶ÿV'á$JS2˜Ü­HaºÒ ‚+L¯$. FRw„|ŽlØyºò8&µäWÕWI§äK”,M7ìA¥0kjQÞZ­œð)”šµËR«°«TŠš=°Gé+…„gâtgÜr :o\ØI{¤XzÐL‘±àn5ßq×ǧLBæÆâÐK³“Dn¢‡¹ÄqZ04Þµë›&Ÿ”ÿpü‘×£×4‹=?S…•ã»¶¾µ†QsÂ!ôe”(” œ¸×~¹9ü•üÌÒÿ*¼Ã6¹æ$izÒ.Ñm¯ô½jÞ)™dY9ÚË,s$Øf7IR¦¹Õ¿%?=4ïÊËÆ´ó?’t_:è,÷¶:…‡é#ÀQ¾§5¥ÌÐñ sÒ¿.¼äí'Ê°ÃsåëI®¯µ©/'+ÓCÑ#,¥Žæ) ‘ž B(;¼ÿÿ8û­hö—ÞXü˜òÌãÌS´^b°±óDɪY =C[iSNÓì¬DÊÒ‡!. ÔÝce&ÿ›_?–ÿ™ÚÝ·˜ô¿Êo.ù>8ä·Ký3E—P¶’ê(ÀåÁ`hìâ)RVd½O:TsùÈÏÿÊ™üš)<ämom.%wóv•5ɶ€Í"]7èÄt‹ÒÈñ:” Ôñ©^ûþr;þr3BÖôûoË/Ë¿-éZŸ om©höËg2€Š²Ò{EµõŒ¬ rð¥ 8*ÌL‡™þwÎGùcó7B}GüµÒ¼·,b¬õky!{»8mÁŒCo.Ÿog,±9ú«'¨~!Á†G1¿5ô_;XG¢èÞFÑ|¹ch M>âÎÜ.¤‚$ +æk¨ ;LÕgõ# ûµA¶yŽ-ìËÚ’´jÌqɘøZŠûç› ÁtB„ÙÇ»gre•C‰B¯áEáœïe°Tl·IÕF¼¼AÜרýX6 >fŽH}d¤C_…A§-xå´m) +U"”U9°˼J±¬…v ¸#©­)€dW…½6<«@[µq"¢•mZfÀÓNCى⨩þÆIWvÛ®`@Ø™¨£SqØÔï(FǨ훕<3cD®~ß½=³#¥vß*µÍˆ]¯e¥V„‘á¾Ù‰zRŸµü3LÙ¬´¹¦dÆDr•A)e9½ ßnØ.9»É%»8p=7æ)ØÖöÅã´•‚1 ±§^„æÀ©¤´Az9=©8°bm‰Äƒp ‘ZïO§Ûå› ’y¡²]6Ô” Ŧ‘XŽuèïÐ`•»¸ŠÙìí¦’8¦\Æ®BICUä£cNÕÅ–úXàÑ }@¬G3]‰ùfÁh’ʪ¢Bg’¤¡$|ÉÛl¨l¥”˜—fî)ŒË4”$»È'~jseImrú‰²µˆÊàT^5&½2ã‚{‹ákk™É!"Î\p¼ÒˆâRä“Â0*vö±Kˆ„3K Ê4S%+è*;øÙ« oqŽD$0'ìžûc$„ pß´¤q#îlR;K#͘òÓCLHŠÑÿZ¿ÃBµíM©›2ÙÇr.|~Ëñ×À}ùE™WÓY SÕEi÷zî+Çaãã›–wŒG¦£hããPJWµ1Á‚ïáÐÓlØY3·#Ìõé½VlM‰þÜØ ‰Väã0Øãs`‚í,Š@Š…¦Õ8'ÔiYU‚1P´ïŠK + —¢öß63ÖU)3§ÀãDÊIS™=úPæ䪥A'¿Í‰0Ž•í‰5 øE=«‰æÊ J†þ¸Úö9³cƒx~ØîFž>Ù}GË6&ä–$š×I&§®Vl¬Ù³`Ýî ?W±Ô.bõ¡¶¸†ib=#pÅOÌ +a‡—u(4o0iš½Ì?Y†ÆêÞæksOÞ¤2«²nø€§L0òõñÒµÍ?Uà$WÜ”`7¤áèTìFÝ0V“ú+U²Ôý$¸úœÑOèJ9G'¤áø°î (rsù³uçï4ùŠÓó#ÌðLÉæÀÓyzâœCÁhâÙcˆ.ÀGEZŸ|šþbÚù£Tó<žuó6™4‰çC5ç—å$q¬‚4QB°G§@Lí?ó“š¿›ÿ1|å¦~rß3Ë¡yØü®ëÄzM§GożqFiMó×­rCçû8ù£]O<ùžy¼ÔZæÆe„ˆè,qñÿ}…T Ô +xä +øÝ›¹>¸ +ά}@Ëôß 7?XYä[¥):·q*WbS8¶±¥m©OªäDz©*”5*6í‘ib– ZÐÇ"®Œ(AA*æãÖ‘d*U ðŠVTó$ @8Ž?¥iߺ»e–Œªnät'ˆ±b~/ìÄjNçUß®l¾QÒœ7ùæÍQá›.!'Ô¨'ß0§|´à çá·Ï6 µ·´KVº” ¶+醡V=,©Gêµ$¨ ­hTž‡Úà †Iå!¸ƒû¾†½Žl oN½7ÄN‘¢e^ +T´I­seR (ÜžÙ€$Ðc@fØoí›7£- àh:ìsaÔRspoå?vlÑÈÑ1+Ö„oï›0b§o–lÊÆ¿j‡±ðËýÏNÙ•™H Ó6Zú€1Zÿ•L­¨qñÍ$Dñb+×ß6\EL€à§b|1ð½|i†¼Ÿá^+êóÿŽ…‡Ò¿f¼sgÿÕù½¨ù¶ëY†ÞÂX ´*ËRD¨ †æ9µ¼¾:ËÃaLùŬùŽO5­­‰·Oœ +£#£!Fy$©â€ïû]ÛaŸ1–%€ÛxÁ¿ 1ê£9–:°BÅz~¡P IøH%zUHí›ÈðTú$¨?f ý“ݘÇðÙZvÄý2MÔP‘ÛéÍ•Ënþ´O„r¸ðÅì®e²”:SþñXÞ0]…ô¶ŒA?¹Ü”4;‘Oá›[¬ÜO1ýZ)EÛ ´»d–'¸xÄŠ¬Y¼E7¨­vÃ;K8ÚÈ?¤²Ê*Ì~Ê‘Z ö¦lNà™\ÎW€ P+UA­6 +.ÖXîZ£NÛƒÚ½{õÂ)Õƒ°jÔMwÍŒWemOñ$0e'èq:æÅÍì¬8‡©øH¨ý kZãyøüñܶ빦li‘hkQ¿šWÚ›tÊ?:ÓlÕcóÍ䶸˜ÉRv#ÇÄ€ùí•×ç›éê–ªfTçRV6"¿zu¦éÖÓO Ã+$“è–PÌhÛñ'a†öšUÄ–ÅÖ’€+U%‚ŸÙsºýsaƒHÚ½„±êC-¸ßâ!©Ðá¥Ä1›K{OL«Ú–‘£@IRiRMG^8¼ÑÙ*Ó‹F𠢤`{•,H _ã›Ç{p« ˆ0Œ‚²Ä$êFÆžn®V$õ`Ÿk¡y­XÔƒ\O•-ž6ç¬Ä;¢9pvu4±?F… dZªC}“DÁ=÷Ä&Ó}R¯`í2Íy.È€V†§¶šÁ˜±Œ‚"C=*ª£·|ØŒÐJ™Á¡$ +Ž´ïL/’Þ^"n&’Ço§Ïm,AA"‡SâLÙQÛHÀ1ø4·ï–¶óW;r +ûüò¢·’Z© b@üó`í?H7÷ãO’àB¼K™@~ÏP?¤h“꺃ií0„….Z«ñ§P:Ÿ1Ñ´Õ¯f³õDf-_„†£ %€ïã› .¼·i +z‚c qê± +Iˆûàëÿ-%‚‰e¸Aqv(‹“Ž¾Ñ‹ ´E%IøZŒzr5®l.’.&a7÷Œñn•Â‰Ï,„1” +‘ ˜ =iÓ %–iäiò#s@öaôfÁ.”Ð4RÈT2žD¡$¿r7â«ú>X„fQ§Ä}:|GLURѓ┧BBO…+› t.h7Q»2ýe‚eæadé_„±®iþ_Ònl}IF=~°ŒªÛªIßôï-Ùê²\Çp@S@Ô]+º1©­·6 Ó­ µV·¸Ÿ÷–5`€rª9îCPÆ´t„›v“ˈäSßcµpœ©€9žD‰M¨vƒLØ*-JÓN³HŽ%ƒƒ¹’nL¬êÕ"£–äL5]OMµÓml¢lßâ7wI+›‘äEÜqðii«i°X[ÚÇ‚tõæáK†4W*äÔÿ’)øæÀwVvÚŠFÚpã ¬f/[ Ä~ÉcJt÷ÀWV±k.×Zz²ÃVg$™è¬Äí…7¦ 楘ªÆ¡9…á̯í©¥sd~æ–ò ªß*Ô÷4ðÂ'EÅR@¨«ˆnoÔxOA•dt@ëÍ(+_ Æ&,j@Ø“â+–AŒnEH¨Þ¹°æ–VãB|k‰€OMñ„“±46#*¹=ºŠæ¡ðÆœØ>Ùä—E§sá›6[5«¬|}±Ä”%kCûD¸â}ëãï›&§û±„Ô×Msc–MêT1í˜6õ"§¶lÙdDÅw¡cñíÐeѨ­ ?€ËÛzW¯¶lWÒµ<ŠKÇiÈŸ»ô`<È’;žäxŠ•¹qEîv9°3Ð6ƽ7ú1M+]ûÅq"(|seefÍ‹AH’zãÁ;±&›b°$n’j0 D¥‰8¤4œîE)Cã›&þsüÈó­ ù#Ê­?£kä›Y“MŠ*‚—W&y¦$ï͸Æj  ëY®½ù™ç‹»%h‹ C‰Æ+So$×Z’Fõ9UÙ‚Ô}Š(ø~Õzgæv¤š?”/üjŸU¸Ñm.u]AIaq£©Î¼ƒž)Ä-¡tZ9W‘­¼þmó΃¤ùfKÖn…qw{¥[ Uô.o„"yÔ«‹hú¸ŠSzÎ4ï|—ù¹åß*kÞMÓ¤O<ݤÿãWŒVnÑ*Çl ˆoÍÕ }÷cïÏóëÈzwç¤^LüÚü˜òëZ6ÜÍ êMqq{¬ÚZCpó p#~÷âSŸҊGÅèOÌ¿Ë.ÿÎIy7òãÏ—úÑüÅæ¹Eëb¾Ô°úΗe7;yùÕä¸GsUE@UO"õÌÿ2h›3h¾bòî†tÿ0›?KÍó£¬vwWpFÞ›Á ©Sõ{~R1cÍÏ@zñû[Tѵ{wó”“YÛOêŠ}'xÃUãÁY” <3Ív‘Çå¿1¬>dÓþ·×¥eÌ¡FP%]j!H®ô­sɾwòF¿ä0jXó+ î›0·º0–>e‹Iªj¦¢‡9†J?4®ÿ)õ{ÛmSòºÆóG¢ˆjUüËqÂsË‘ŠEUªP¢µÃÌ9¿.õ ˆu!Gqbodï4IlPô’)Ë–”“Ï‘*´ÛÇ¿1%ü¥ÔtýTü·KÝ:óêÑÃæ]3Pd–1v ~úÖT¡(ô5VZ Ív<óPòsOkqäöºHæ‰ZòÎð)6ó*J§÷ŠMMJ¯†@{íüç穦øG‹A\±Z@H$vÇƾ£Ü +âqk{v¹f€â*+ßÛ6•ƒY,n‰ €#s‚eO^%…€£PS|YÒChŒ‹ñÍ…ü|(jFå°!†ôîFì{fÍ©q £ÄÁаUMzRÚâKI㹂œã`ËÈîÇ.2Ñ°–&øÔ‚>ód’9Èc¹­#’K½ä’EwP´ ®uÙîÚáî"¾³¼§‚­þ^4¢ÖôÈ­\ýY¤»›v’B +<@²333ÈÎàÛÐtƒ„9w.ËBÛí›››,9U*^¹±ãÒ¦õ®lÈ!˦aJïÓ)_lÙ”v9†d, Ò¹²Ý?ÔxŒ¶^&•¯¾:hŒMBk^ã67¾ÙXÊW6XÛæ;f8à¤n:Žƒ6:IYÜ¿Bv4ùSÒ31vê|1Í33o´{ôÍ GLn'›+6lÙ³fÍ›6lÙ³e·Žlq±÷`2ËJïNƒÍ]”>Àm¶lrª±mº™^;b«r–À­lOå›® ƒC›045ð͘$ Øùdõ_)šµ5ÇÍ)™ù‘C›4sIsCCJc£p†´¯n´Í²BÜ£j•±¥Ù¾Ñ$|ñ¹M+¸‰?<Ùj¥Ø êze¨,xŽùj­+ˆÁùfÅÆ‘;ëÉLpO#8J$hÄ€¤Sèé‹É«]_LÆêF“š” “@[©¦)}¬êœ­%üÏ3Hjy³0Zõ =3cE¸bEwâ( VŒ1-$•Ó€øŸhúS–Ô­zuÆiv3ß^à ²°ëPz*vëMòvÚ[G§O£]­¼ðÃ*ê‘\DêòttôX:u#:hIe¦K£j“K¦È³Ä@_WÓEoÝ2½ +O½lݼ’Ø:ú(€ÉÆTýã*(× Žß[O©YY“e&@‹nÑ)RPÒœ r5ªh¦ö{2¬SÏ–†âjk¼€š!¨Í€nì…­Á¶j™T–åÉ!QÛß +o,Òö[3ÉÌ'‹ør=)„Ëg ;ˆ 0F + €$ÁlØ¢L‰ +Û$N çðÐPôÞ£Ç,ñ˜ ¶‰ø•R'‹ &»xaÃ\Æ`’Ò&$ˆ@ZÒ€æÄÔd~;R0zS¾N‚¬_ÔdMž‚¾9ž0»8sü•¡ ÷͉—phc×ñ(A=ð1¥vÛ6_:=ñ¤×6laËfÍ‹YA5õÀT4JѶéß®ÒtÉõYÈJ* ,ìÆ›¸?MÓ$»>³ü0­K1ïAZfÅ›QD_«•4Œš.ük^´`¡®G 1Gn…Z*„eb)½GLºä0 XùQP*&à) Rv=ó`s{rîÒ =2zŠõ§p)Õ¯ä”JTÈjÊMkôá|z¥È¡€G51Á>õÍK°Òª¼jŶ¨nO\|7é<¾ƒ§à¨áAñçE~“€ž˜V N1ѧZõ¨#c›÷—LB|>™"Š( :`s©]FÃÓ<PqVž8jsÆõŒ*SfE >4ÍY眭̎ÊTÓ•*§¿z剤“•ËH£Ƙ÷¸šâ—ßËG_„±5û³ccî$,Û–4`w©öÆÄ’N౩&‚¿dWø`e§q±%¾@ +þ¡› "t²ýÜ Ìäq@*B÷5&Ÿ,õ§Q¦ñ´ü#ðŒ7GväMN7QÔåÔ™L‘¤A@ ‰JŠªjNù±K(l䌭֠"cýÜkðsð©ð8­´PÏo#\^¤4SÆ$-AÐÖ™pZ$zÆ{‹Ëhý(„‚{¥%f˜/ªá„kEf*½€©¯:¼üÆó-çåì–’4? ¡Ô[X õh~²×­‡“\õJcDåƤšW"Fi "G%€ ­NÝzá4BGoN5ä[jaTBIÓŒT¶ÔÈ´q¼­Â5©8̦\ AUR¡©'!ÈS¾Ø­¢Â—‘­Óq•%#r|4ÒîaÑõx$½E¸€:}i(«ñ€6Þ7Í‹êí§þ—itq Q“Ôi¿Jí‚5±‹RoЮæÞ£Ò’@tß ÿ0gòUÏ›în¿-¢º·ÑdàÖ‘_3#qëÇjr­=²Ûˆ?¨ñ;bMõ/y<2Tû%¼p,Á•¹HÅùTý8J íœbyIhe&‚¿ jeb­»7š¹v¥N&Š…Þ§o¿ní±ÝŽÿNlÕTf†jðZÒ”ëÛUUvŠcEPiOk"[»­Ä~ âÀ(ìO|؈ ]À툂+¾ãëV›xfÊ9³U¼sf Ž¹²³c¸TXᛶ]*+\ØÚ›+6lÙ³e–-@{tÍŽ/$”S½: Ù[wÍ”j÷fÇ j(½rÕM ƒ®:2È}UߎlÎT(¯zæ4­i@£¡Þ¹±™XÌÙ³fÍ›6lÙ³fÍŽãDW©¥>YtÛ–("¤bZ÷ ±¤Ô×+$“S›,1¨ï×0$!ñ×,š­Qß41óo´O\Ø̬DõÍ–¤_nÙ±ÈÊ忶lqj¹gî6§Ë,PŸ‹39ÉvéO Øï¬ÉÇÓ¨ãN=N¸ïUééòË©¡ðß6KÝ:æ{»Û€—)2,†7øžÜˆ#§|¦_EkyiwÁUªÞ—–„°ãSBkJ·RÛØä‹LÔ­®5U¼ÔïbáYQßšI8ø‘ZŸd§Z~¼ØæòH¦1Ãnbueb¨ ]÷üsjz䓈ÚxJ[©Te‘ W›qÞ3C@q²yŠñ®YÚ×’ÆÂIRŽß’¡*MiZmZ ØêxäŽ)£‘yŽEÀ×jŒ {v«y ý¼©#0V™Eh\^A·8Yuu†¬fµd’5£/,„ºŠì 6͹¼+$NmN[Ó¥2êò+¥P(²1©’¡NÞ'%Í´’¤ˆüO.A¹OúßFl²öìá=O‰A¹ +7>8û§¶šIž9.áä8ÔliˆÞ}ZU•â˜$¥€®ôö¦lÆ„ +ƒN¦¸Xû ;Œ,"„÷÷Í”îF4fÍŽE¸@Ê£»1¿Ž#3B ø»* ·êÄ VÞ%–@Õ»1«6 ŽàDÝ^2‚¤·¸ßzá’^G£EXAø‘Âò,(zðÚ[ôŠF: <MTòïJõÍ€K–<˜îzáU%$ôðÍŽVR ¯ZšvÇ%{ ~uÌ:lÙ½AðÒ‚›ƒàrÕ ©¡Æ=$âá×b7Ûo£6(í "O‰ÏÆ?·!ŒÆ£jjGqÛ(á£ãj Á=«›0’«À>Ê š)>>å‘ž29þî0˜ +ïN‡®9¤¨)° ]ÀñùæÆ´¤é€çCÔá‰;p'Ò4Vë¿ôÆ4œIXÂw©ê}Žl µ[2]RIk°.ƒÄW¢ØBÉõ ß6\¿Ýz|ˆ«ÕSå›]_飃ZG"E–'f«½jHéòÌ‚Õn`Íe@9ZïÇèÅkfóÆ)Hª‹%ò¥w¡;}ù°E|»-Á»Ž‘8ÅÈrv$u§êÁm¢LÒµÃÄ ‘ 7äǵ]@|é‹L¶RJËk))¸…%`¬»íɾÅ)òÍŠOæÛñ§<4H‘#Z402ˆÞ1ÑèI«nw¿ó-íͤV*‘[ÃIŽ3 §¨w?ïJbWWQÍé$h¨¨ˆ®«°&:Ž[×r:Ó®l.:Ýä– c$âEV$4ŒK +íƵé'Öonla°˜©H6F¥ž÷¦]Χqwo })êSãe-ÊŒ{€wÍŒµ—Ðv}è¸0·SÚ´Ía$°Ô%×ÕM ГØUNØÛi&‹Ÿ§r#&›W¯Ó›¦yë²™¼¿*Ó§Ž ×2Lå¯$yXwg-øúŽÏpìíüŹôï›[O¦FÁ§^ß¯Ï|o&‘ò”IöwôØ +7·\Z#hŒX³ÆÀ¬¤Pþ9°¾™¤&IœÆÛ^¦«€d¹¸›iewƒ1?¯’ææQIeg±b ÙM$n…¹|}ªF'Zïúñ=ú÷Í‹G=Œ‚¬|A6T +íî:`ÛQ§´²}1_T¿]»`ÛAm#F.œˆ‡.j® ô4§-ºæÄb[i9HåR›¤e‡JûœRݬ¤•§`ªœ"v~GÛG`cúËÊ¥Õ=«›œ©•Š°*hËÄM± ¹œT'Xý:l>ŽøòB&`²/E‘£"´úl`”Im^ôùâ"b²++0•5©¦'ÓG"…m‰bi› 㺳« 2&¤¿†H¬5íÚ+º¿¦jZi9~ÏO»|•Á6€Öê&¹G(Ëêpô¯P=³`„ÕoM–ŒëÈNÀ{ûuÂ+¸cõ] d*ĸø×e­@ëødkT·µK·[9¡äáù©®Àt§Ë6"µ(WZL»Š ï€·ãÔÖ3b…£oIRXu¦<%XŠ MñDâ$j6Ô©æÄd%š§Àt5퉻rb߯ÛpÜ¥-·Eèkû#ññÍÊÄóggÿœ{ò˜ü˧ù’óK–ÏôE”úJy’ÞøSg#ÜNdœ¨ŸW¡âÀü@t9ì/ùÁÏ6éþ[ü§üç±ÔdÒã´Ô®<¡ú\ë¢g´m2ÞmFK…T…Ô™Lž—jõÏSÿÎ"éÇÎ?”ßš?–˜—üA«y:ïP{‰ÞSKÒSY¹¼g1NÅ@"§Æ‡:·ä¿åæ¡ç-]×nµK/*ù~ÿC6GzÌ Û\=Ï@AȪúl‡‰È¿0—üå±ùS®þj]^~RÐhkik´*D2]*ŸQ£ I Bç¨9É?ç+üñå>~uë>iò]çÖôË”´Dš8Ö8ØÃŒãĪ¡kAÿùË¿<~VùãóBÎ÷ò¢Ò mMÒ­tæ{XÄqÏ<H}@°ê¤õâAoR½€¼k’ÓäMhKêžd–åê²mJu©ÍŸÿÙ +endstream endobj 33 0 obj << /Height 281 /BitsPerComponent 8 /Subtype /Image /Length 255551 /Width 616 /Type /XObject /ColorSpace /DeviceCMYK /Filter /DCTDecode >> stream +ÿØÿîAdobedÿÛC + + +  ÿÀhÿÝMÿÄÒ + s!1AQa"q2‘¡±B#ÁRÑá3bð$r‚ñ%C4S’¢²csÂ5D'“£³6TdtÃÒâ&ƒ +„”EF¤´VÓU(òãóÄÔäôeu…•¥µÅÕåõfv†–¦¶ÆÖæö7GWgw‡—§·Ç×ç÷8HXhxˆ˜¨¸ÈØèø)9IYiy‰™©¹ÉÙéù*:JZjzŠšªºÊÚêúÿÚ?ñ“<ù§ùß¾fЦµ³ÓÒö+ ‹ë¶ +L“|D„Hä&€xg~OÊÎßÌ3¦kÖwº}–—qt‘O,ìéx 4i=1 )¥)J÷ùçÊä…Ê,ÌŒ·g 4®àoøgʪwíã’_Îè<Ïùc¨Oä;Ìrê:zÄér³””¬”£ª +m¿QC’ïÌ1}ù\×Z5¦£>§kÀ‹u¸Xd•®êYR=½Æÿ†[¼»ÄxU +¤mµA§ã˜Šg½´&¸–?´Þ›mœ?Ífž-çUiE7J8³QµJbY²Eù]ùcæoÍ-}¼»åY¡[vˆ”ª©gjµiÄ +öÉ7“<ƒæ/Ìí/O“Êšœ$ñ ¸ç»vˆ gPòMH÷ùâÖ–w7Ò˜-Ôp¬åj¢¤îGA–ªXÑEOôß=OçïÊëÊ(y^ÇÍoƒÌVZÏ¡¨Û•^$€ÔúF£c¡?zW;—˜|¯¥~Ué~X³×õÙu]9¥ôïæ$bB +ò Ep‹^•&û`Í[FM+êÀßArÓ‡. .}>Sâ䫱¦Ôþ•^êÒ+há‘.¢œÊ´qóåAËš¨ßµ Î]ÿ9Eæ_+_éÚ~å½M5fœÉ•ã†ÝÓà…ZeVøNùÅ¿ç)¼éäíCËphÞ\ÕF¤ër×2JœÌqE %!Vu ±ßq·Ž‘C@kïóÎŒU*\UzSÄ ñw”ôíK̾b‹Ly’” NT­FlÙêÊm ÉÿÎ=Ýy‹UoLSÈæ9£Ü}tľ¨qÌQ8ñŸsžúò•ü¡åïÈyïµ>'Qµ…ŲH(󋲉ê +r/sCŽA"±é2° +¦»òI;x–8ÐòŸÙ ô5ïôdGò’×ò¾óÌz¬ß™–7šÀ‰"]JÓ¤(·Hd§¬ÆXˆAEè{ôÅÿ.ÓÊRMqmæ½>}Víã·NŸ-#‡ädnq·ש=ö'.ò3)bÀ ¯ù]éòÊï³Ëú·æÿ•¿*µmU’Â&ù>Ú ï3Þ[ÄÆâk{Ë£†Ÿlò(”³]q2nœc;7l•XŸÌoËO'¶“æ{«7òï•¡‹ô„¶Q´v×ÂÚÑ À¸XæpÎO#-Ú +oa&¹?–õ5¶hSMµâó”p‰¤š± ~Byrn´ >ÀšØCªM¡j’Ûú)coõ­¼‰‘ä¤qÆåKÔüM@~Ê’zg/üÌüì·óטt’ñ¬:.‹±†Í£>£´ +µBT³õ +7O»ê_›–úÖ³n÷$C¢ÛzYÚqÚdãË‘íÈ7éN±-ËÛ­ê$ÐÛ"Æ°‘Ʊ¢Ó1ño×sצ<ŒüyoÄ!“/ÏÏ2ykó»E°ÿ•%ðÒ4n^öçQ1ú…¥ +áPGEP}8‚{áÇæg˜lüùåigòû9·´Šw–åÂ…ø’´ $ƒðãõÿЩ:G ‰Ûˆ&yÈ2³Óqð…Pmñí‹_5ƒMþãRD†ƒiÙYùS}Ô(¥zmž9Ô"Ž ¤†"J© '©ÏŒŸóšZÝÜÞdËÒÊÓDxþýaÛå…xèzQÔ¥ú¸’8K»%b  +Tô°Îÿ8éÿ8•®[yJ2O5•¦»ª@—6òLÎþ¤Ê#Õ¥hZ©v)V +þ$ì3gCÕ.m¿/|žºÇšdaæ-C„ºU¼þŒƒ~Sì µG@YiïžÜ‹òŸMüžòéo0§§¯ô¨-¬$ýÔ+Ƽܰ½W ªžU\Ø¿.07õ›KžÞK©lí^ø·)\#?Ö$ìˆMH ïR1ú—–¿3<í§iqþVßÙi~aÔd†9oµOš?«½Á‰JA7Äy’@ZµÛ,+;QÉŽÀ¹9ºì2Kùù-¦yWDº…u¬ù‹IQúf”´cø$§îÒŸÈ<­6È7æ_äõÖƒ¥]j—~e}_Îú@Š_2ózY:† p‘…·‹Ó æ+ÅO#Ó+6s-ùÆÿÊÚ¯«gÆhÊ´r[È ¤R«¸¡59æ»/ùËMCÊÿ›ÑùVK¬éZ-£Ù¤T–fYy§6*à†e<g6lÜè~mü߉uåžÊÞ ßLÒžgŽáÖ%¸U_—Jï¹=ûzËš·¿2£²ó–4èâ¸ÒÛGšvŠæH ¾ pªCwæ“vïLÙ³šéúŽ© jVú¦#ZÝÚ²¸É¢ÚÞC qˆÇ4*–ç ©zu9³böSÛC‹™&ô‚¢eèj[zÓ ¼«æ/ZÓžÿNšG #Fceâ ð£jnSµ3fÉ¿ä×›4Ï%~bØyƒXÒƳm¨‚ÕœÄØâ¬=ÇúÙ/òM¤y–ÛUž%’ÞßÔÔ–`®¥@®ß5Å¬å† ¸f¸ˆM:™"%€eqð2Ÿ¸ŒtN±Ê’: H&6ä€= ±Î÷åÏ]{RÔµ8ô /OÓ¢yø›ë­>Òöx`eá +¬¤Õ©%‰ùä¯Ì~óŸ1Otµ¶Ñžé"YfD(#E_PñꤒÀá÷—üÿæ&M$¾QÔ¥±g;Jªœ‚ì@Pþ§á°ÓË~j×<£|ÚŸ—çKk¢¥Í32½SÖGâ›2ÐæVw:lš×—¾v½€=Ë™>¶#0Âf++ @«QPh)¾ywÍöãͲÜù‚Q!d3 ®UšŠT•ZŒ*)J× žêëVÔ使»ÿIº‘¥šòfj™–,ÅA5' +ä‘æ‘¥•‹;’ÎìjI&¤œSór-;Bó>©iÏpÅ.n#³&duŽUt¯/„¿Â¸¿æ]Æ«‹/«Ê“\ËÆG‘Ò$âÒ¤ø¹µ+«‚Þ:<²S÷r¬µ ¸%°ßµñÆ‘Má¾~`~`ùcÌžXM7N-$®gºŠ8–2µªƒþÑ©µiœwókóFÐ|£ú7OyŸVšæ)k˜Ð¥ÏÀ«¡©¯Ú¼{`o݈¨*\öx÷Íœ©H&ýÝ +Ðשß8_äïüän«7æ?˜¼­»¬«[ ˆŒ–Ъ¬±Ôuu,+\nlì~BòŸ”<Åù{ªÞQµ;g¸\4ÓÄÑúq†E¡ôÛâ<¾!¿Lõ·“µMÌQ»Õ¥s%Ñ i\ÌŽRª¼Pðêjj_ìôêv?.Ù°¯Ê^mºü±óE¶¢mK§¦b»ŠŠÈð°ý’H¡èGL"мÑ?“üÆš¤qði%ÝB¿¨„R‚§©Ôo”)_ˆÐ{o›%žzÿœ™·¸×´ýOÈ:HÓ¡²¡{{ Î²½T‚ÃÕcJ¨èE;d\ü÷Ó¤Õ-“C‰í#²á1#È’>÷V@Dc´BBÒUc RÕê(õèrƲ†Y&Œ„wÎÁ/Ö¿*tM^]}"]/O®u)bÉÉBkF%»ãM²ÔÒ£±ØìÝ\د”|­¨ù£S·´Ò§:|zœñÇms!¢,ª8¹b9a·¾Dü·§ùÏåu¦Ã6‡˜8ýNk°±¼jÕâÄ'=À#oµr¾Y²Cÿ95wù·m®h>VüÛk o4ë¬é÷zm¤VÂâ —ôŒ’˜â‡›Ö߉%f½É>ÿŸ”Ï­ÎÞKü¿üöÕ4íjçJÓn5RÒíã€Ki2ÁûîÀL€ÙïU?3¾ +º–wµ¶ŽEUD ‘GiRY@fv÷Ëfb :PøŽ¹ÆsÇ+6lÙ³fÍ›6lÇ|Ù³fÍ›6Y5Í›6VlÙ³fÍ›6lÙ³fÍ›6lÙ³XÑEO€Í›6XF °©ðÍ›6U3fÍŽ¹oÙ¨sfÊkD&M:fÍ›+‹V”ßÃ6lÙ¸±<@ßÃ6jwÍŠ5¬«˜•âïµÕ½ü3fÍŒ½@âE|GlÙbƒøfÁP´P†nL³)S+PP\Ùºí›ÒzñèPlÝ9±Ðµº·Ÿ™Ù,¦Œ¤éMê3c¤*@¡­iŽr¼ˆŽ¼kð×­0óÍv÷6P,34ìÜ™ÇÆPk^™±›ŒnG92P ¶©í›5sc’b€°5b)ò²ë›†ì¥ßÓß“ìh^ç6mÁ4͉MÄÏ@\DüeuÝyíQQØæÌ 7ë›’Ç“*¤€ +%kÐþ͘þ=óblS‚Tƒê½h Mi¿zfÍMóeˆ ˜F¬€?í›o¹z›0»n=³`ˆlUܲ£Ë D¨û=hóf¦•¦lRÊÔ\]¥¬sˆ–P¾ Y©Õ½€&¹³LØ­æŸq¥Ê¯¯M!$;«*âk^»fÍ·|ØmÜ.ªþ¯ ѯ ˸ݙ©Ë§BsfÞ›W6/ !íÒD¶jlýfÌ:ÔæÁ<ýTúÅ^ƒy D}ö¨ýªæÌvÍçBŠ•C1,6­Tî FÇlÙÿÐð¶¥ÿ9!ù§—|³ùqâ‹/*·%ŠÀO7ÆÌÒ²·ÆB¹Sã×:gœÿç"üçùÙùÛaä ßKaä¿&"^꺌)"‹«•UA ® +ƒý潞ùó3Ís¾ó>«õÒò·"Š+G$¡ J°U79ò¾k»›ˆâŠi $+Æ$ý•æy²ÓÍ ee­ù¢Þámdrí#© !òÖ¹"üä¸Öž—®_é×mj®ð¼k7÷¼J¢¤W0†yÚâS,€ +þÊ€ªè%“ÏÚ×å>±ùcoi¡ê¶²ýf(…¬Ö¢2¹†T*ÌTü S~¹Õ¼Á¨y ÍŸ–6zfœTGx±‹k3´Q—$B¼¨v§ÓLÓ¤hÃÒH¬*)Z®çf¨ü¶ÍžWÔ }*æxe‘”Jãañ­~%Þ4¦s k$òn­ù]å›!¯ÜNñØjj­Ka •`î¬@$­Hê1{[™¥ÆaÓDy’Ÿ#ÄWmÉü3gLü„òmÇæ&¶šf·©†Òm)+éS]q7Mk*i³ú¨lýQž>?ªüU½29]»lâ0Ôˆ–]·`Ö›ì ï˜Ó¶qËûó?žm,=iíšîF*-åZÔ_²óS"’ÚÇü­Û·°¸’x#¾‘Õ˜H˵D”! <¨q¹³°ùOóB/%y/W·óMã_Þi’jú^‘<•gÔ5M}8Þ®‘R4¨:öÎÁä0Ùy[ÉÚƒê7­u¨Ù%Ι§ÙO iÚþí?Òï¥jüR˜È@ÆÒ,AòEçÂ2jªÒ¸žôaá—Íø$••Zì POzg6ü¿òR~fy¾ÃËV÷(¢ãÔ¸™ÚT‡”QŽn±–&¯à$Ó"׿—-ù•w¢ù¯ …•ÌŸX¹¹õViY þ*;‚zv;cb†I˜¬C‘ +ÌFÕ¢ŠŸÃ+~ehqþYÌšv/§«Ûýb]2â±ÝY©ä«ËZî>%¨ä¿›zÆ‘ÿ8»£¿—´Ífy,õ(SD½r—úy‘XYC‘°d¨û'›9|Jn¥tì ;WçžRü±Ñè`¿6 ó¦ºŽ‘e!_V]â˜i“ Ù†lÙÜçѼ½qùYn¶ÿTšòÊ+i¦6²ÆóÃ)¯¨gAJM?í\ú{¥y_FÒ¼”·ð}ZcKow`ܦ<ªe2*¨5nM6ß®9‘•U(ÛŠ0'Ãp GÓ› Þ_·ó|Ç™©‰u"¬·­0 øÛáÖƒ–Ã!\y‚o9Ãmßé}?[¶ux¡%¦œ”çê9!CÇ“|!ºãsgrò.±¢þYjcÊriê—m 楦ê—hËk42‘ú±„¬E6Zq å9hŸ–>jÿ¦©á·Ô5»mjö㳚)…ÄÁV²¢•P)Á¿–¸èÜ!<”84øXšl}ˆÌ =ð›þrξsóî³cåƒ¨Ü é®.`Òy™Ý&0(GÑÓhè(@øzäGþr7Ì>qüÙ×켑¤ë gªËu<ºd³ÒØJ㋧ +sŒŠˆ×¡á4;>[«™£H%•š(‹¢$ðBæ­Åz +ž´Ç4’2,lĪԪ×a^´«œkξA¾òôV—ÜØML³KÁPû¡÷4=Ç\â£þpÕüæÿªÊg¾3[Gz·ƒO{y¦c…YI$/PÝé‰craäŸùÈ-CÉžMM} CÐ3¾—{,’m-ÂõLCágŽ¤ÆÛq=kž™üž¸óÇå÷–o?.õÅ‚çJ´{¯Ð:‹õàKŸµ!ƒ—"û·ý“ãŠ$ª‹Ccñ +µz2ñé^£¨þ9³””¿aG5Û¦ôùä‚óW1é‘YÚØ›F@8QjåÑ@§zby²ù{ù_©~`yo]Ôü§e=þ£ ´wRÚÄ‘í +0z(<¹ƒñx˜sä%k`²Ô5 "׎Ÿ";Ø;~å n +˜HÄr„Sá§|R[›‘!·‰å¡–n +[„`€Y©ÐFøäŠYаAÉø‚x¨4©§A¾Cnâ50=›Y¼e„ÂE!ùÖœX¡+YK›«ùlu;oªGe"E<š²Öµ¨ +ô¦'ÂÉ’1 ·#ÐP;ø’F?Ë–Úv‹,³%Ç7¥]ž?OízW®lÙ#òm†˜ì¢×çHc™#„8!•]ÎÁ¡nƒ%«w¤Ûˆ-ogŽ”y€£º†®ÁOJãáˆÏ*¬ª\Ð3°U©ñc°ùœÙÒ6$“OÖ¬/`{{MBP4oPæ6b¼¶¼0£óI`ÔlìMÝÄ6z¦œÁí +!»ñph@íÛ4ÐÍo#C:ä_´Œ#è9³’kZ•Î©¨››ÁûÓ^[–©•=;PgŽ?ç"ÿ;ïâ¿Ó?.ô9ÇéíVxHEa!¹x­6<—… \7±™²uù¨i¶r‰µ_…J•…ÂP[­@=Á¦z#þqË]ô.¬fÕ¥wtµHÔH†R¦ ÅÐ\œ´,Ù±ÿžÞVŸKóHÖ-âãc¼n–¬ ©ø€­EÓƒç'´ËÛÛ;¯7ilK{´{‰ÁRò!þíX€G*ü$W­3fÎoÊ猉@(÷ÏÞU¿ó§šüÑ«Gçm"ëOEîý Žò)6â@Ù”–뿾lÙ~£Cp—:‘Zµ:oSžºü™Õï­´4:Ï8B#’ê©ÍJŠv¥GÑ›6Ö|Å©ù†e›SnN¡)@ý¸eù•æI5™N±sv‰¥XÆfv·a ¤(TšíMÎþù‰®ÿç¶lco ]C¬¨¯" ôUf“òò?š›Ížd°´·–à@ê¦Ùî‹?$ä*áÈŒ½ôÍ›;æ¯å§•4ËÅÕ4Ö„Éf°Éi©Aºß,Å×™ bµ&‚¤gªüñ¢hZ’&º¶1"ÛA¦¢iÖ^VT*òšr*O!@i—Á©_jï·ëÍœqD>È=sƒÅ¦ RuÔdáÄ<ìÊ•*åTTé•›:ä'œî¼—æx/ì£i¤v1¬‘ÓâüÃwlÙcß|ؽ„ˆAI—’°*ì{ôÈ$Ù]lA`Ÿ—¦ÓtBZŸ}seu9±(Ù=ugBà‰A§ã›7}†ltî$ýZ ‘þÊŠŸNlrŠî~œØ?H²ŽíšKª‘È4âÍ;ÐfÆž»fÀ±Ä“°¹%v¦ãoß6XØæÊUeâìE:ž=ß›1¡è3cähîôã౫z–©¡¡ ô©Í˜k›cgБ SÁy…bAeOÚ4è3e›sièúA[—1QZr´¡ PûæÍ›:ñbþã¾lÔï›HHPü…Ô͘xæÅ-\A ™¾$Jžˆê)û$ØâXVlu©ÞÅ¢cŠï‹°jíJ|Njv÷9±µÍ…¾°cñ&íöNõñ©9²ó`–†Tk ôÝy3UM ©®Ã¦Ù³w9±0¤—“‚U(~ѨèZ§ß6X'¨'èÍ‹Ø^ÞA(–ÖiârÝm؆'‰ìÓÇî͘šmãúó`¹/U x=PÂà•äL‚p:Ô½A¯S_£6`zšîsbqs–)]îG9¸¨BÎò•¯J5¦Æ¾Ù²ªFÙ°!–h#{@Ë„wPªyPToÔR¿wË6jÐí¶lQä’Ötšý4Ù¿tI^” s-ßÇ6XßnÙ€,@¤ô´„^Ü}Së ¹¡õ=h×q^J¼Øþ9²È=÷ð'o»kiU£N$¼ 2¥ hMP? ¶þ´“}d¬‘ª ÅÓ­²º×ˆôãbnÇnôÍŸÿÑù‡¦Áwe0»‰™Z†£’‚-÷§AF÷HSÑáoˈ#M>"Zò¢ÆVcñ1j³uï\ùUŸ*³¢yïó‰¼Ù¤YéqB°Iñ äZ˜ØÕ@ãÈmÓ 8#Lÿœ„‡óÁ Òš8ï,® @n èWÔQáÐm›6 òE¯—µkV¶ÔÕ4ù% Phؼ‡¨v~©ú3¦þYëV—Z}ΡæÙRÚÎØ´†úD+E§ÄÛ +;ãÐ! X@h w4Û¦låßå——4?55Hî.%‡ËÏrðM÷²ÚÀô¨ T¯íQ\-ÿœwü¯³Õ<ßæ9j7WÚy²ö}RÂs=Œ27Õ S¿#œq =³DœÛpJ¨,ÁzÐu͒ͯ%yOòÇÌÖ~R‚î(e·ŠêÙßÒº…Ùœq4ø9 +ŠçQóœZ•|À–vड़±%ǯ3tvg^#`OA×}ñ{‡‚Ú冟ê ^^_†UnqðšP±>ô§¾[ð¯ÁZPuØÖ›þ9Ì|ÕyuæK´Õ¯/[T™¸Æ×S¸GøW6­È/œ¼‹åÿ=1׮ǭ} %ÝO7¼“·`>ì +MMVVùOò»Ïžhµ¹Õü§gqqmåâ/5 ±<‹hÓ÷ž¢«º³š-OÓLæ'þqÓYÖ®¿KéÒ^ÜZyuÄóq$1"‚Êä¨Bh„ŸÃ‚Îêâ)g $œŒ¾çzW¶XV`Hã¹ùa'æ‡æ曚ÇMóN·u©ÙZ)úŠ\° +KŠF @\‘»6ù üÌòýÏç7æ`ü¶üäóEñòúXC?–­%OÔ>€–{…d2 †-¿cŒ2¼î>±+¹äjÛÏÞzåTž¸UùkæY<­ç;_IÚÔ[å,{°¢èA~NOÈ¿7jž•çLôïô«èX4±ZIêªÆÁK ÄnF'›¬<®×iÒïüò—PhšÅÒÏu¨H†5’AfRÊ h)øäËòÿʺf«¯XÞùŽ‘£ßN×M5µÄâÚF¡pìªÁØŠÔ®ý2ãPÒ*± $NÔ®líÿ™_”ú,žZÒ|Ñùio7¶RË5Ãéþ¤Mom n%þîF Rx¹}Éý“ž‚×ÿ-ü·q§Zjº]@LŸX³GˆzHçP (sñõßOaqksH¬µ4`QÇw_ˆ€¦£qCš›žlóŸéfÕfÛ™/Ü“;³‰˜õ%5?N|ÖÿŸ„ù:ïPƒJXãS©Ërð*S,1Uøž¤±­ç0*Jž£c› ÕÅ£¹$Sjý£O–+ùù;«i¿—ºW–tæX§†á$ÖøðbåÀ-SZ €Ù°ïËš_˜õ‘u£èÎ H¾½ñže‚!'ˆæ]”lNï†u/Ì¿2ùöÖ?-ÿ-d´7¶­î°oäH-àÓz*ï$¬‹É™ÕBòåÜ Õ4§c›;Väk¯Ë?/7˜/ôùĶöÐ]IuÂH$‘eD¸·r‹Ê†‚¼¶Üd§Oò†µùm噼ӭióͪÚÙÚÞËY*×ü¯§iZ+jZ„ª÷6‰]NÅÀI-ãr ÅªÄý±¹³š5’Á!õ‹R65;„vcNŽ#SñŽ<Íj*+ö³fÎïÿ8ï©~`y+Q“̾CÒWY²½£õ»)DkÄ-2ÉĬ¥jh:¥jŠäŸÈsëzMÛj¾X±kèã¶ÔT8AF^i@ä;ŠùW¶ Òµk­"i%¶Þ²¥I:² T†Ú†”>ؤ[34tøÇ ¡ZƒMþXÿùÉO)~TY\i>qü³¿xæó SMæ/-\¬ÊúF¥C, +ÓZ>NUzýƒãL-üÖýcsg¨éR´-«³›ë «[Yâ+U€e«9z»`Ï1Zh1Ea{¢]z†î÷–D9ú¬ÀÊ®Ãt&¼EK>"z“-~/ªXÞh%¾µµõƒ¬œí.Wᑲ…hØüQј… †£çžÞüµ±×,¡Ó¥²‹ê‰×“×n cãã›6uŸ:Ï«yóÈI¯Í?£õ3Æ(/ ÌäÅœT=6¥i°¦vŸ0yvÿÎ:$wr¼ÛiÒ)Ž Sêîõ,\ ·N]†lÙÈ¢Ðõ«‹uí$’ÚIÔE§Z°¨s•\y"ÆÂm[Zµ´y‚·úAHÝàäæ²3” »óÍ›$žBòµãƒæM^ÉΆŽašôÇ$‘¤”Rë° *iLšy[ÈZeöŸ±{¦™´ØŸ‚Ì*èÄFôš’(3fÈß™_NM~ít–Y-¯¤ËÈ ”Nt4¨=r'çŸË¿-Û›¡ahZÂèz3[.ÉéH>&Pwݽ³C@kï›$Sò½‡œ¼Ék¥Ù;5š¤sjrX#]åã꧎òoåv•˜mŸF ”¬W-UCi»„2´AÜwÍ›;?”?,|¿åÏ8O¤ùÿKYzãOý%û‹fÈ+ ‘„[ Ù(MFàgYºüºòà¹]?̦«¥˜ZâÊ=Ib[i¶Ë2¹11 Sñ ÀË +Æ„ ŽÕí÷æÎ?ù¡¦yzÛÍZ¿øZ%ŽÏë“=œP·­ Q3bI*y„cEjšŽç!×ÖþIѯomü´ñ}Q%ogo'­ +Tòvà­²ïÓ¦Ùr©I]H„Š#Qò š§1ßÉß:èDó<˜$_«c™¡¤–(Ü©äœkñ½s˜ÿç*?.ü©æØoõŸ1G-¬dÃ:ÙC$²Å^„B½ 76ÿœ€üÃò矼ó.£ä»Ѻ`X£T üåtJ14&§aÓ<…ÿ?ÿœ­²üÔóů•¿+¤m>ÆÌ!’$åÎY:)Òœ¨Äìv®ûãåxÜ/¥ jIcAS¾ÝwÌiÛl5òÿ‘|ï¤þYÍæ+k³ ´ª—òéŒQ>±iÇûØå'‰e¯÷uåíßþq{ÊžxòGüãÀó'˜%R÷G¨- ‹p›ºÏÌÆ\kÛÛ§Lflæ^bŠ'µ´Ôb÷ò\#0®å=6ïÿ3ÎßóòFfËM^ÝđκڣŠîê ßz|Y³ax6lælgm%Å£»#V­(ÀV‡Û6X´A§lØ. W‰a½¾ŽT–‘¼MF'°ˆØóí›0­Vle¬Ò«ˆ=6`Í CJToR3ešS§¹Í‚fHmÄi:WY¤“šÔ¹QʃÀ2þ¿lÙ©ÜwÍä‰ÑÄ3fwá©RhÛŠÓ¯…<3f¥69±)ì’мR³(hSˆpwøXÔ×ß?ŽÍ·ìæÄ›ÐpÚªOÙ A?p®l¢6Íx™£WŒÃb¿:lÙ©›*LÊ9ÿ y(¥¤æËãJÐæÁ‘éíc•ÔîYo vàXúq£q<”u'¨í¾lÆ‚ fůn,- –+ID’·tª‘V.¿n#nù²¨+¿CÒ¹°¼['ª9oº´Ôˆ=vÛ6aN¿†lÐ[B‡“H²0? i¾ÄÓ©çá›7ý~ŒØØ ’úŸXè„ÆTÞûõ͘wÍ·ŠÛ㤣&Ǧõ5í›0͉ÈС5bžµ&¾49³lMó`ëVÓ"±a,DÎýe-@¿Esf°²5 ” +KWmè7é›1ÏÝ›6†3$îTý–€ž2|ê3e…©ú3`¨´¨„O}!>?t”«ãP_‘Bõë²·êwñ͈¼GŒ²Ü:ʪI$J[¨v]«Cý3etÍ€’W¶fZü2- 5§\Ù`}?,Ø&ô]e5‘Ú2WÑ ñSâ#¡ßç›04Û6:ÞüD Ê° U@ôøê+_~¹³S|Ø`õ®4e Uƒn_¤fÊÍÝx±­;Çß›6ÕÍ‹ý^D´PV¤QM¶¨ï›7lØ/ƒm«ÔÓ¯OÕ›6l"E…y‘ÆF04Fæé›S@j>Øq-ôÓiÖîíä[ȱ|*ì‹nC|ÙD×6\ÚI;ÏÄÈ WŒ|ªCw& E$â*8ºT×®z^mKËÞNòŽ©o¬Ç +C¦$—ÎåAH k¿CŸ+y¯£éð¹rçÞ”¥3åVFìa†êì,ŒbBàH©Ï ÿÎ/y‡T·ó>©=ý‰:~¡=·ÕÃ’Ê +—UJïP¾4ÆfÉ~µqo£A YÜ–,Ì *Hj=KÐÙ¡#Þ§=Á«Ée©Zi^EŽ:P¼³Á à=ϪËÄŒ~=óWjfÃ;?4k^S´Ó_@wµº´Y®­œÆãmÑÊn;‚ ΄Kè1XZX?ÕÖ6³ÂDrÉZ.àPPûb¶óÉi:LƒâB† 0=4#¯¶l$óÇæ_œ0oŸVóܳÜ1 +'–Ww +8†bM7ÎOùù‘sg®Újzõó\£†¬Û• ½H©¨^>f»»¸¾¸’îêF–YIi$v,Äžä±$ý8首âWžwi$–’G%™˜îI'rNv?ùǟ˯$k¾P¼ó/˜$¶¹xåuž+¨ÄïoÀŽ*‘h^¼‹í£ò'Yò—œ|†¾k»¸¶a#Ê$†ã„†%‰Ê-ƒq©4ß.•4šxÔmÛÖAQ:"³4D5*#pM;øciµp&¥çOË[«ýOÊ—IqÜoÍŒ7­¤â½TÕ®Øgs¬é+4ÿá¤Kx¤/Úªþå•…)*QC +v=¶Æ­b˜$Ž²)<”’›è*;ŒÙçëíFïQ¹i/ &¥£V#Šy+µ?†yçóçÈ^§7æl—QY]éVÃNq+sµ¶¶¾e¶õ¢ŽªÞ§ï­8åê6v7rÛ^"Ç$A (*VPT­:ÕH9°o—tkVgŽÙ•Z3=€õß·\!ÖüÇ­ëZ¿•u])-c¸¶:,ºúÍÂI-íT,w†'Fj̹Œ·Áбëæ”ÌÊÅUxª¥R¼@>æ›æÎíçïÎ*yÇÉIåÑ¡µ–¢'GŽf’4‚Î(ÔŽıŠ—J®ÂœvÎáiù„šþ‘&‘>…ú6æYa–&OJ8B|ˆŽ5Z²Ûn”¦Ù«¢‹z¼ª_ãÂ8ñ­kß—Ñ—ðñ¥*îkµ>TÈþ—ùûæï/y"Ëû)¥–Ź•ä–ODIPÁT+PÆ£ß ~jÿœÇ“òîáü›&’×6îžò9_÷éPxÆBÖµÜÓ®³9ÓFΞ¼jI„Êò7¤Jñø—·¶Y’Cˆ±( Ujh ê@é¾r»­A5-J+»µ>’º+ª|LW®æµ&™ä­^ÛÏ¿žÿš>«­@ðè:]ò\Çf¯_Qatp*ô~;mï…øÜô/çÖ§ù4žFÑì¿.¡´¹¾•PÍ}mb–oá¼R¢¨æÊjy×=íç‰?-áò­Çåþ•k Ì z²YZGhÀqàRR¨¼™wÜ÷ÁQZÄ!úµÇ¯Ê5y>œ$$Õ7ëA½qÎâܪ*ÛR‡Ã8÷åßží¼¡q©GN¶Õ!Õ-¾¬ÿ[…nV#Py„Ð5{ÔžBO9k>Püæó÷éÿ/[êºv±eµºjË{‚'ŒÈB·ÐA_|ÀþxüÑÖ¼Í$ÖVRM§é ÄG¥%˼*¨¼ qS·ù9æùÉOùÌO0y‡P—ËžV˜Øèè#X´»;Ù$†%Z5We +¬@íÄuÍ›!>¤²nOŽy®ß;d×/£˜’æE'^†¦¹ŽlŽ š9y»oJÓsŸLÿ#tmSYü–òÔr´Ö×0Ýè÷3J‡k¨’å9Dý*¬„†ß¡Í› í¼Õæ >}"Êúæ×OžO^[§“Ð,iñ”RßÜø õ)Ô&Ñ<¿%¥£²Dê}R'1Ääñ`h§ÛŽêæ(¤·ŠWH¦M± +àÀ0À;øf©€zõÉ÷™ÿ?u6ùFßË—zdQݪÁö´’¿Ö®¡…8)"¬[ŠòßzdoÎ_ž÷šž•'—õ %œˆÒ{õ¸õ$¸XvU’‹Zî &½1iî­¦µŽ1oÆáh²\zŒC¨‰é@Øæ®s å–RÔà iÄõ$Ö›|éœ[Îó’:ô{OW*×OX-t…¸*ÎíD ©½0.lëß•_žvÿ—úè;ÝMNH¤ibžÞûê<Õ"³/£!pn:g{ü¡üð¶O.ÙÃw¥4²£<èÿY0)…»ÈÂ&õn4So r˜„nX¹§¦Á€QãQC_¼fÚŸ«#WÌ>hó|—úÊ­uK‰¥»ÍD"ò^\‘œP”¡¿j˜û\‡_Ö »½~7w½òï'îæ¼Fq±J’¦†´ÆæÂïÌO*jÿ—¾`ŸB¹&9b)-µÅ Mq¨­È+°e=A;×üå ]ùrçô×­†å‰¹G h  õþ1°¡5¥+Ö›×"úç•ìµmÚÆÚ9gÔft78äž™©bT¨  û]ñ¹°¦)Ej|%jk×üè2 sù' G¨®¥&› 4NÛ¢9D ÇrxŸˆW¾lÙ'ºü¿ó¯•¡óTѨÍñ—ýµŒ·!^¡ Ø6HtŸÊÉ4È›ÎO¥)Ó¯øV 8sׯaÜx{fÍŽò¯“[WFw›ŠóH‚Pr,Æ*(|3¡yoɬ×ö×+9Ž ™=8xÔ+5IuË +ÍöA;°îz Ùê/Èß'hw>R¾òö¥o§ßéÓ^Î.ßT¶ˆˆLQÆÈbi^ª¥–•¦äçsò΋k‘ÓÞÞm ¬gŠX¡UJ‚vö8-,yÞ}N9£ +ÃûéYcJª–j3tÜ–è}NEfå +ñæ)û?g¡ëøŽ ƒ¹$Þ  +o›8Í\T×>Qÿˆ¼ÀdyF¥rCÊB'“â'¹ø·é•ìFl8ò×—5?2ê©¦é‘ feæAdEQZnÒäu9Ù$¿(uÏÌÌ ; häÖ5¯å¹k¨âàÔ–á¸îSß5sgRÓ?0¼à<—/ä嵪^^,òX ›™¸´_SŒÑ®åÿ { úùiç'òâçò>Þ9JØÜK¦‹Ibg»‚g4šÝ7 F ‚ã¶ý1ÊêªÊP1jƵ]ûP÷æÎ{ù£ÿ…|É}äèîä:MÌËü=*—XÃV:· +Pïž:ÿŸ\[iyò÷嵕ÚjyY/À½‰DQ»Ü˜‚ÄÂSдqkû6°¹6²ÍV3"²•ev@Ì„ÁRh~Yˆ ÐìGQ‘\òÍ–¤ÓcLØk¥êwpZµ¤SzQ«™vØò*¨øzfÌI;ØÛ½Jâå W4À·¨kÜ…iNÙ²³c$1[ÒX¨²Pz\K;ƒBO~¹²ë¶ýscd¹2CLÅ] $V©È°üNlÙ±!ÉãX)b ø€§LÙ»ï›@fn{5&»v¡Í›§LÙmÇ:¸*ÛMÖ»õÍ›|Ù^ÌEy7¦œEh&FlÄ~°CÚ’î²;41o"ÆÁŠ«d½3eš +môæůR(bQ4Y@)1æVJ­]M*9réJ{æÊ÷é› Ê’ Â"ĵ(–;Óü¢seÓ­zæÅä‹“H'¯¬ÃÔupj ÞŸ3\Ù€§_¿6 Ó-`^K¸ÿvŸjTz¹fˆª¬ ;ï¾Ù²¶®Â™°5Ç£$ËokŽŒj MÏ®l£›±àíÈ ý­èHðþÜÙ«¶lsÏ>?*²þÏÐ+\Ù{Ö¹²àyDÍ2цÿ>?ŽÔ͘ݳ`‹;+‰¤aÈ×wV!ŠŽ@QCW6n»fÄežY¸ÄpIDEâïÔu÷;æË©¦ß~l5†ûP’ÔGoð0¨ší¡J¶ÄV©ÛÜæÊ$ø×6^Kq/Ç5ÒÜ@Â:ö=ÁUûóf®ûfÆÊ}RÒĤD `Jî«Ê”®ãlÙ»W¶l± Åhn€ý۠Њ¶ÇbE+߯ðÍ–A ¯¶liaõ‹[™ÒÙ¥t5føª‹JƒA·|Ù[LØ‚CG „U ÆX|lê:QUˆ©ñ4͘šæÆ\ÈgQêr^;°cá·C½w®lÔðÍQ·Ž`]Ç5­M(YøÓ§Ù«OžlMH·–@U}djÉ€®á¼3f×6:Ín•Õi^FNdSs^5;×Ã6`¿GÏ,); ò­ì☗DŸiä¨$Ó  Èÿžù³P‘×lÕæ䈭(5“SA@;׶(Ñj71 Y9ºÛŠXÉ* Þƒ 5§lØåBHHA_|3м½}«ÞF6©$ wpA K2ÃRvý¦¦ØÖ ±¬"0òÈœø¢±cÔÕ¡n~¾ŒØór© OP¤øÓÃß&“~QÝiöv×Ï2Ü<²E DŠåi$p*YhV‹Mþ{ŒÒ^4a%·_«È«ÌŒ\ñ¨p¤P +fÇÇ!œ°%HIë_]ö®O´ÉmJky-æ m§[K»Õ…¤s=«Ä³Ç +ÌUM·n<~u rîu=Bc åÏÄÃ{w¢p §€ +xlQÍ‹ÅgÊU‹ƒ– +YÕWÔª)äOøî<3¨ÙþF½Þ‡hö:;ÝͪµÛ;Y»N×ð—RˆÈH‚WÕQɼ`I4‘Éë¡*àÕY~ò͆¾OÒôW\¶Óu6˜Á#ƒ3é±4÷AIÄüUÛýb;çWÿœküˆò÷›?5t„óÕït×{‹—[n ¹žâÒ?ƒ€‘ƒ2…™Ù· +@t4‚ïë·ðÛ]Es5£\ZÇ"+úQ3Èæ"c)PXýž+ñv®e¥G.éÖ™ô‡DóÇåGüãŸå’yæ-ÛjSiò¬|Ö‘ýSQ¼¹c 62<–ê¦"¡¥pJåG%Zý-óg˜ü‡ùKå¼ç5ˆ»MtkSkÏ,÷L–þœ)ðžL¬¨>*ž”c@]=î•`Q¼½$êÈ¡–âdDœÌ~ +bjªq&†¤×°ê™í­Jµƒ9u£-ï§ ~áB»=úü³Ëó¾aó7çí|ÿùÓ{ú>?1Û-×4]L°¹š+;æim-®]ZÈÕVXÏ7õ €ý¡ž~óF›æ­{ÎQkßžZ¼.»,GÊ~_Óíma¶Óa`³¥•åÃ/©q0ÛÔ_‰Iä€*KÍÊËv%¼BËê–ȇáãUøHÖŸAÀóJÓÊÒ°¶ä*…pÏÿÓùv±jº„3Þ¤NÖÑo3("0ô¯NÙ3Ö?çï3´{;~lßjQÜÞÈ æ‹o2Åi €4q¥8Âæ;çʬùU†k¤ÞØIm6£Ú+‚ЬѺsTŠö=A¦(&âòGštÕµ´dOW€Ä.#R •~Ðn6ßlÙ±[èîüÝf÷-Æjn+°O +`ïÉÿ1ç!|Ôb“ýË°Zéð Ü 6Ì;•ðÌM3g¡<ÉçOËwÈÓé“ÞÃq3[¢ÚجýbÖxÒ‡’2Š+Z”µù_¢ùdéžeü²ó­¾«åMrgYƒÂ±ê°´`—e¸‡‚ä pxTïÔᦹ¡Å£‹y­u;]RÞè;E5£=W¡G*#£oЖë:DQ¶k]NÓTŠæ1 –ÌÍû¶èÑÈ—Å"²ŸòxŸÙfÉîµ;‹­-­e`õ%‡!j|IΡå}iîíM”AYcâÇ€rèZ„Ðþ +Ã8ö­p»ªXô5× ó’~O°ó§•ímí¸v]GJJ¸ êM +Á{ ÄÆ%Ø"jíJãåez7"Xýªö¦ÀfÃß/yžçD·žÞá•nxU¥Ff‰£åÅЂ´#‘ñÀº¾,W ^¢k6÷£Ou,@K§.2ÐÜÒ›cȲ†,:šì|EÍ7ÉŸ”âïËÍCÎ"å¡»¶žêÞØ÷Ÿ÷)þõ¸1«¥Gìõ®t!ù6û[Яµ«ùZÛôlÒÙÁn}Nˆ†™ˆ.Åć€R?d‘L± ¬ª’¡i½Hë÷fÉ’õ/òïËzŸ˜,ø-Å^RȸåE¢Ìî8SqB(Ei\VïDÒ¼…¤jwšâ·Õ\37¥Ë"¨ýë°)@¥wq'möÜ)È1 +WöMjMiAA› —^IÒüÛ«%¾¡|–RÍwo ­±–19Yd 𬢆µÛ·ŽÙο ¼…¡êW;^ˆå‚H¡ñ<}Ø'ššô¥+µ7Á~q©Ëè[õ?eYÕK1­CI4¦ßN` §'?ó”º7åÆ‘¦Í GmÊ’‹«´&G>§YL‹éµus“ΞVмž,n®KÛYܳCv·ÒFæ7v’`¬M:u錸·hšðÉn%@ÀË_ˆG5øGÃQïÓñºfB¡Ç$,>ЩÕgò÷—µ?0 -4äHEd‘˜!£P +¥k\ó·üä/å'™<áåÉü±åûÑ÷3°¸‹SI#šH‰$¥C†aÛ–6‰Ê7]ˆ=ˆ" ˜Æá¡g-ÃÁ*²2š2¸£¾Ç>Kþsþ[ê_—~l}.ê Ð4jíõ„+ `J7!@?f»csbp¡&£¶äàoÊŸ,kš÷˜ô•,©iՎ褫î{fì3`Ä·’îE,J¯Ú$š3êOüãeíßè .KÖ)ɆÚÒÊSñÆÑ¡P‚ƒóÍ›*k7ÖJ~ëì—âiQ±3«yñíµ=óJÒ¦‹ë’‚m0ȇ‘ß´?^lØ陸)R@@I=7ö§Žxó·Í:›4:}´újè²Ë6µv$`D¶ªñ”VSN,ÍZfÍ•hË(,Ëñ)ä½+‘¯ùÇë­óñõO3Â÷Z¦•?­fä’¾˜âÀ†e#g®ÕÍ› 4)dý;cKU½-2(µÛ÷•#áßÇ=ûùC¥É}ªˆ”-Õ¼eR9• nWfZP’{ƒ›6uŸÎ]:ëOÓô餱–e¸ +ïè°SÅ G05y'!×jt';/æЇCÒ`¶‚ÑŒ³†ŽB)N*zÑ€* ½èNøâ#à¥X—$òRmJï÷fÈ?Ÿ?15=ŦA©ÙZBºuœv0VPÒ¤D¸w/#žUcöh´í× š‡žÿ1¼Ç}¥[_hnÛ[ o­ÃÇÐt^D5K3rߥ§A$§S¾ûæÈ ŽHäŒ@áTÓjW½j2W§K| ͺB)@9(¦ûiÓ¥3flj¢´I­Äƒ—ÚVƒ±ëJaŸÖ,äÔãÑ„·¯V£ÈªIÜ‘ßcJe äÁI¥OsOÇ6uØ¿:¬o¼t!åóúIáÆâK‘õSl­èqfæiZ×Çi-ÿ›<¹6•m¦¬PMª^[Ëná$RÞŒLÔR•÷8gtž^K¶–Õæ—P˜1¸€€ †ŽÀQ¾Ó t߯lÛSß$ÞKü˜ÐüÍùa/ž-Ô!ŠúæIa§Õífµ_R(ˆR܃wFÛ!®Ø+ËÞS²Ö´OÒÞ´‚xÌÎΔánЖ*(­V¯RXoÛ-»¼xÕ˜!"Rªƒn${ïÔeÓá¨úru®ù‡ËÒn[­.öV +m½?L˜Žé"óãNT#¡é„÷iÔ´NI¯»[Í#ÀÈ^/Ùp²EzRqK}KP²ä¶wRD¦µ»*šŠO–VsíS_ŸZÔ¤¾–y=Yþ-Ëñ€dÌþb]Jéo.u.ê«’ˆÜ·æÕë°Þ˜ÝäbîŘîXš“›%—?–¾m·òìžkŠÝmímÊ›’Òð¸…AWxÚ†„v©öÃË]+^6}¡ioWhÖE[˜â1‡õ$‰ˆøxšìkNÙT9²?æ¯3›{k;½Rkˆâ„o!+JŽu¥s?Í]OÍâÐËåM^[kU¢Atk+±áADo³¸=²ÙÝÍ]‹·&½la£kZ͵î¡&h-ÉypiUY5¥jvSZ ùË~w¹‡×ÔQµ[~òk—ÒõQdSFuf E$(­:Ó+6H¼·¨ßê&!]Ê#ÓîÜʪ£·‘ÈÜ€äPuį̈¬¬íôÏËX/¾«¦ù†gžîþœÊ ·f<„aÞ5µz\Ù°»Í^FÔšWËú:5ÔÓ0ÐF”)…rÐoZSÀg“ÿç$?çü÷çmoIò÷•£“Xy¯¡´³…¦I® ŠH¥qê3U^\Xª3 ؇™?.o<µéÈ×j6îÏ]Y³¼"HÕ]““"ïŧ_l+·ÿœÓl/lô ×­šeŽkÍ)ÞXˆ¼NÓFƒ—”ÍSJWlا’üÙ•îî`Ô­¥¸±½X’æÞ¾­'p~ÑŽO„Š×á&´#qÓòóòæãÉšµÝ²GžX¾¶ŠÒæÑ.þ­t »!QÉ#‘Mx0 ©ì~гd¯Êßžš¿ågœµ8ùÊq¨ÆÐéòêU½kT D•X„- QÕ‡Úê½°óÍœÖßóŽƒZüÁü¹Ò¡†îê ,¤¼»cw*«ÉÌZD @ÍÖ¤²ž˜7LÔÛHÕ"Ôí!ŽF™¡ŠåD¨ )a°%kQ·QŠÛ\=¤ëqRéR¼Õ\JVŒ4ÎCs4·<ó3<ŽÅÜ’ÌI©$žõÏ•þyóž­çÏ0Ïæ a«<µ©;r-¿"MI;à&%‰f$“¹'©8–'‘üÙ³TŒØ¬.ê¤!§~Ù²ó`Ëhc,ŒYY¨~ðseW6$´Ý#~E·ŽõùvÍ–:æÇ"ˆî}6A 0Tš€vÍ–scåeGGZ…kSƽ ñ¦l®þÙ±’˜LÌc$ÂHjvë›/n£6]#—D4ì*)N™²ªlmжªÅÄƆ‡Þ¤“›5Flu«[säñz‹«Ýzóß6bFÔÍòÅu:Yâ:|O;)I›™h:õÓzS6Pë›ÅQ 1§zn@é¿|ÙªzfËY.eXíUü(6Psešˆ¡ÍÓL“Y)ŽQS +ò"” íB´#úæÌE:ý9±·p WŽâxË.¥‘·'ø˜Í›~¹± d¸’³« +ÇJ…í]³f3c!SqqÕK¹ gÙiNôÍŽû'§lØk,gLº[ëu4'ÔH Þ“P'Ô-ñTô?¬fÊÚ•÷ë›êZÅlÒîÜ¥ãÂæ•â#è+S¹9±Õ¨¡ÿc› K´šw+«ˆ¦ŠhÚ;@¼ÔŽ4]NŸGA›ÓsÔfˆ½=:³ËñL…Cñ ¨¨;mS@AÛ6UNlq{ë¯ùC¤V’ž’G\ÙºfÅø}J(Ý$ŽOT³Ð-dP MÉãÜWc›/`7õÍ‚-'†(ž‹w*×3EsP#R'ÄÿÙºôǾllqE©Ý­¼6ÑòbÒ4¼¤€ ¹¦Ô¦Ã6joÓ64Û¹’2ð"rZ„Œ… ž›¹¨?2k›3}Ç6mVÍíŒ,iÌž£³9xËØÓúv9²¾«7\ ¡q5Û„m€¬|k½kðÓïÍŽ‘EI4Ç&ž_ü§óg™ÚÑ­^èÍÖ¤Œüb[ˆ4¥{ûxà™ŸG‚#$p—”<Èš#Ó…6B6ÜÒ”ÍHœ‡hÅU +†$mSP:öÉ%¯ä6½èÛÌDw]ÇŽnö©tŠÛɹ F&º„ºj¹‘#¸ÉN+R´`UÞ•ƹ°JiÓÉÒ: +éµG‰©Û~£:o”?磊ÕåÖ,Ñ£,*ÒÉ* eŠ‹!¥$•K¡V›©Û›ËŽM*ÈÛcÀpª¶äQ@¯o»6(Úd°7§p9;Ј֬XÚ¦Ã|•iŸóSßê m¥X0&ôEëÉ꼋¸vôA©C'Â8ïÒ˜œ“<ÅD‡eR¤ž ++°­vß6ù_ÈÚ§šo$’ÒÆfÒ¬x½í÷§#$P4„NƒŠ³hÿEHíß”Ÿó‰ÐëºõÍö¯aõ OháÖ5:´­õFu¹X#˜Å„„rû5,weêµ³O'«#–(ÿ{vAPüÖ2C0jX +ÐõÍC÷uÉN‹ùkþ!}Xhˆ‘E¦Mõ‹kù@­ãð‚#¹,ï°_„x“Û:5—ä7åÏæç˜|•¦èWz,ºóÝhš¤’ÊÞ«jŒÁ8‘šµŒîà‹‘„b–G-!jR‹ûGaE¼ÍßÑMgwiqé™4«¨[[w\òî¬(Áº`Ï#þVjºVƒ‘æI¬nžÚö+K+s#Û¢Ie'ÔV >¯!!$«ðŸÚ!€Å}g•„’…,YØ0WE#¢ì €R¾¦É.¥ù[æ Gó º­„Ðk¼~ Ë<‹+ÅëK ™£¬¨2 íØÔJåCÚérÚi>pÕ­"¿óm¬¶_Qµc!%¥ä² @PÅäSãZnÏÌrG»8oJ Mڪ߱ül[]²óï囡»‚;.k>W–#úÉ}]à BÃÔŽH™”Úg<Ô4wògóIÕµ(fLy¥’âÅßP«]Ã*ÛÜFÒzlaYk P’¨˜D¶0ZI$Vád5±¿‰š%$dy\FŒÊxµâAê+¶b¡#®ãÜtÂ9y»Yóþ°š·™ï%¾ÔïÉ%Õü1Ûú­ÉŒDCJ(ZxaÞ»ù¡æÝCÍ>aº¸‘¥°‘U4íEmäKÆ®Ì8`&âUª +Q¸ìà9í§!YK)ª¼lo¸ ŠÿQóÍž†Ñ-fÿœ–¹Ó__óUÆ­«ùvÅ4ýË3ßZؼ -¢{‚Šb‘À@ÕçN5§ÃbÛËÚüä>¡¤þ`ë:¼ÓjÞ\†â; ?P™l£·¸šJ:…JÅx†4ø@oå"™YRIB…+?"Tšl ê|2Ë3PP¢‹^îÿÔóÏç/å“ÿ/"¹Ñ4»t»³ óèÍ4“Í +HYh$yF¨Ú›çÐ/Ì;-Hòì~\²e„úðݽ©Êâ!Pà4ͪÝÏŽ|ÃÔôÛý:æ[ Vßê‘ÙÉšØñõb#Ô Dññ;gË-BÂ÷L¼’ÇP·{[ˆˆõmåR®„€À0mÁ¡ï…¿Ÿ7AŸÈÑÜ}b+«ëvgÓ}4@ +¢„‘¹)â­>G´sóßÌ¿—úw‘#ÔüÑ}7cÔ‡F¾u$¶žqÁZ†JZ†Ô0>¥¢\ipÅ-Óª´ª¬#Œß'`¬Û + +“N¸ŠS<Ëåk{ûÏ1AœD·ŒIŒñ&ŒÿâéßÛ8äåî… —>gü´¾ƒR]`¬Rê"JÜ]\£ºHÒÞqø«Ó·Ý€£I6’#V©¢ÛaRiáLÙ=üÚü´ó×ôÛ GÌSÛ]Ǩ‚È,Ù˜ÅÉT©p8‡©§: è?š^_üÌÑìl}-ZÖ5½y’%ºqõbAÞ„ ý³\$É'ïÅ‚¿mè`vñ¹ˆ#®sGÔ5»´²´ŒÉ#ž+¤õ ãœsXüŽµóscp‹Tñy`F<ªCŠpˆ)‰æÃ}GË^h³¼ËÚ„r£G'î,&æ£ÕdØñ><¶úp7ååW›<‰<žQó5Ó]O<¾¤S‰x«pâà[¨ xï〮Ã6w¿ÌÿÊÏ.ùsÉ3=­µµßÔã'± ~¬±GÊCs 5jð÷®{QòW—´k2ÒH7¶kTàà´Žü‰rݹ¹Åã´•æľ±äWŠU¥ìö9³Ë Çë7úLMV´n ×­†rOÌIôÍt_;ÜiSÊ4YKzQ]f¿a§F¬¼Â‘ÊpO°¯\0Ô,Ò( »‚Å’ ë³4rJG ¡éã› ´»;i/¬ÅÏmîœ/&&‰ZT“×¾ù üÄóU¾æÙ¯RÙõ™$…â~*¥hA¥GǦfΓæöó?åÄ2ù?OÖùi—,—rØ[ÈÞ‘p@%¶ò7ðÉ$†©äÖŸÊ÷¬—I ¸C§ÓP¡P+ +/*pª±©§^˜°¸ºŠ3kê2Æ·§]ƒÄ‘áQ±ñÍSJvðÉÏåÿ¿+üÁ«HÞ|ÓÖK;;D[}>RÓs¹VUr¨%Œ1áË€=«ß|•y{Ï?—žy·ã+hïôè£Eap©p8>x×rfµÅ”ÛÜ–ââS#$ŽÍÍñèIÞ ~9†C<·åÍ\óýãéWcËöí%Í—ÖX‰#óEäõ5J êÄçÐ<‰­é¿˜“ÚùG_o.hK³Û#Öy‘ÿu½ÅH1©¡­Kw®Fd`èx²š©Fl"üÍó™üÅjm<Á©SêGÒ¶¸ôÒ:Æ®HÙÚ?íäÆËZóN½iù‡¨yŸ”FéaXC,d²†p¥AÚ‡®>{™®YZbÅ@P  +Ö€(©Í‘ï'ùÊãËîþ¬FâPÁ×pCS ¯|çúó~cù/órïÉÚÖ·ú{E×tÙ5Ÿ*Âñ šÉíæDkS‚–% |dâú•…ÆŸ,QÎáýhbž6RHôå@Ê*@ÜC› u[³«_I{0þý‹’zÔž¤õÏ"ÿÎJù2ïVüÊ°³ó$Y·’qÅ••Ï)%% ‡‹·Bi3dŸòŸËš7˜|÷§húß´œ¿(Ù™}vT%aR¬¤3‘A¾ÿÎ*~Ty/WüÕ·Óu»°ÓÝ•~§ñÄ'E¤Ž%•dFäì)×lµVv +¢¤ìêNl›~l~_h>OÕ¼±u% ±¶»W—\°·yžKeŽuŒ‰}FR’Z@g°¼Ãùq¦~Zj>Tó6›`4ÍßÖ¸Öô˜%¸™á˜º¡åëšFÌ mU +uÇ4f9=9ª¤H´<”ƒB4ß7L“ùÜþ\ë_”÷Wz ųÃhÙÁéAkx—E‘d%.̼;—5;Ó:Ž¯wù}çO \\h^ˆXX6š¾Œ0]ÛÜRìËo‡‹šÔ×mÁ‰çÔ¢SfeW5Ûd©&‡6yÈHÄ*æ›sV®ã±Ú™ó/þr}OIüÁÕü½£ZAau#^k²*%šªäPBMiQ‰fÍc%‚t“á‡"ÿóŽ¾QÖ´»\òÌŠúDóHÐ~ò1EY¯¨¬Õõ6l?òäú/˜íuX`/5«‡…T¨qÓ—%aÓÛ=åù'}©èiv÷Óõ¤»P¬®ÂN…HØ°ÛúfÍ+ó[óGNüÄ´Óô» "]2;BͨHdõ=i]Pq^[…M+S¾wŸ3ëzœml­’ÏêÐÛ·9£.]Ø('â5 +8í½qòúQ#°æZƒâîLÙü¼¶òôžqÓ`Ö–1iõ «)ØSƦ• zV±ºè[}kO´½Çi+df4­ 7ëÆ WúcTZWjžƒ6t¯ÏM˺^—§KÙǪK9D†ÐƦ¼ÂÈÐí‡Þp·Ñí-–9f·]Bf2…„B¼ §s;:x`›­:æÊ(ä¹_‰#$)Ù¨ ØöÍL_Vü¥ò$–Oæ¿©GA4£Níë\Ð1ˆƒ!‰=¥*pŽÿË>Tµòóyªæ5T†8Ú+ó,…ÚçˆfZ(kZS ÛÓ˜ Ϧވ<}R(¼¿”„ûf¡¥i·Žp U¾«~óØ©Ž3BvåÆ„mœ»ÎšR&¥¦ùÓD¸ú¤°@mžØ·îÊ;úŒÔ­{V˜žlyóCÍ>P¿µ¶]Ré49. }OKƒG4(ê\zfŠOÒ¸Ï(þkjpëñÛi·ÒÃ¥YÎ’j©G[•Cº¨bWz{bð_Þ[C-¼”Šu),c£C¸ú3@ Qã’ßÎO7yWÍ’i7úEË]¼qJ¤ÏEPÄ°V<˜ó&•*+··ZÕ®t~ k!¼xD’4ÓF…–„)Žõ TÝñ&UUZ0b¦•ø}·ï›9÷’|›wçNëM´¸†Ôà ¹i.*ˆU]SŠñ¬Kì+ã‹Ío3kÊÕà·‚Ò9%inÏoM•Šßå°ï¿†76vo5ùúMÊz•õ}<_y‚âŽMlJÐÇ5‘^æ£÷ÜAQÛ¡'Þb±Òô¹t}Z%“Xž÷žÓÁ"ú@˜Ú•cÄ©¨ Î ôøí¦3ÆòÜ0ã­#JõcJ|OæÚ˜‡äçåß–üÙ¡ÜÜêZ|…È“êòÇqu,ÕWÕ>™m÷íóå_'if3#Ú[ê"±Çk-ı%¬e9z§Ó;ïQôÐ`xãy\" +³÷&ƒ6[y³ÉFÓüÑå†áf½ŠÖX&ŽuQ æÒÊ„ÝCTvÀñÞùgÊVú–‰ ³Z[…†h—ÔIŒ‘+4P îH¯Ž,‰hE¸wI]Y¼ ,¼G¿Å›nù +Ó<—«_Á¦Þ½ü(·rzÜJò!€ñœø­$Ðzçóå“ç¯2Áæ}jx⃊XÁ—RD"`âPäŠVä¥~!LC6t,~RùûLóJÅc5¤ÚŒqËv·­3MXÙQ‰!îXnGÏ':Gå$žOÕ}= )î&†y­®$ºvU1GÈË)?hnW§†Z‚ÌG"MÎlŠ~g^ëšE¶Ÿ¦Ësjöš¥¤ZÊÚX0¥¬—Lðñœ*'ïŠBǹÊüÙªù²×óCJü°òzXhú6£e˜5›»ãa·RIms 3¬*Ïà¥i㎑ iä•yñ(ÅhÞjÓÃ1§¾Fõ/9Þy®ÃIѧӬ­æÓ {t¾µ²†›ÍÈzï©r ìNù8×´ûÛ,iz°¶’Oa)ŒKem f‰ªàòXãrIãV$Ð×-ËKåVÁYcEfäʼnf3u äMLsÈΨ„ +F +­A ’Û'~§å5.^XhV¹pUâÕ$¼‚‹)´hƒTJ.Ô9äoùÈ« f×ÈææçƒØjš¶§ek)~Vôœ†w©”…¡;õÄ©ð–¯J +wß…Úÿ—u,Þ;Z¶k[BbpU¨T044ê;ûfÍ›–ÅKH³GÅÍXŠ”ì&„Pt©>Ç6n&•3c‘pðú°©ePîÍÄÐߨöÙ³v³%¬FÚ ªs$9,9JS°îseŸˆW}¶Í‚/"ŠîÙnÎY)ðô¢Óaâ@Í•Nù°:Ûƒ¹A,±–zÑZ Õ\uØ}Ù³wëôæË‚9N¥$È]¬ä2ì~Óq®ß=³eñn@RµðqðA-ÌÑÛÛ¡’YYR4QRÌÆ€™Çj÷joÚ£ñøä +¼ +ž5·N?Flºq¯-¨rgäïʽÍwWŠ±Cb#“Pvzz1U™¨UxƒZ±§Ž:ÆÞ Ø¬ÑÈyÅ$¶ÿWUsêìÈAeŽ¹±_IÐr‘X/Ì@v1ß:·å¿üã6±ç=r(ô½6Uº†–}`³zWÞ=¤P¼äª1ài +Â@Äk¯ª¸I”Gpì%Ee˜Ô0¢P7ùØcmc!ú̱Éþ »9âìÅé@¬kµw힘ü¹üœó'¢YlàAuf Óï €·Ö'~1únPqN_×áˆM÷Fî ‹qH W*f·Œµk1P~ôî7¥s`èm¢¸Š9-]$–BHà¹"•bh +×sÄ}ý3¨Ãù?/®òj–pØÅo-½õ¼­ “,âÖoQ™ƒ7&Wõ4Ú¿â2Ã4%DÈÑ—PèUaPE{Ó6!q ݵ̑ZN²FªßX–ÜDGêŽL*Š×Ø}Ùè+ß-~^ê>L¹³µ]躤mú6ÖÍV—QYÉ.*J­ øzuVH­RÙdŽe‘ßb£‰€yWáàA=(Õé.êSM•nÂ]JuVËô2@kE ÅP«ôm„ÚúÖÿOh,ôÛÝ=­ˆžä#2Áv_”€5Kú`n[ôn5 ºƒn• 2 bÌ@¨$šê~]³gLüóV™åí+ÍZ)ÒÓUÕ|ÄtäµÖa‰™¡x%–K¨£š&‰¢/Ö¡MJü]É_“|ßc7”õ/Zh%u r[{Û[ycxVXã6â÷õ†`¼·¥˜- ¦ca^èkJJüö²Kaù)q¤éÚ¯Ÿµÿ5XIg¥Eg/¯Ô­;[½YcFk¶±¢ì*9QASü”ó†„uß2ùŸÌ¯5µÝóÜÁõxÞJÙ¦w†ecÒ´§€ι²sç‘cù±¦þmGs°úÅ hÖ!/Ôf[$ÈíOX¨v^‰í¶³×=_Í{ß5¬qØ u—¼†ÒÝâµôÐÜOð1 '.M¸ì¿+õ‹»5Y·bÑ& õ ïš»×:æ“üÍçsWüî›L·×<³}p }Fúâ8“ÖU±y#eRYxHƒâ¨jŽ4| çÿË¿2y‹Î7_™þ`±:Ç”£GËV°Í(•PO7M@äJƒËáÛ¥]õ[‘j/Z'åÌI?é™)Ë¥Biצ8Å(ˆNQ½2Å”îß2ùJëNµÖ¥:_NJ@ÉwnËéVH%H¾ó>“w¨èdÜI§Æò^ÛS‹%(Š—.Q@ý“¿L7òÿ“¼Çæ‹mJóC³k˜t˜MÅü€€#J1~¬ÜOšm„^Rü¹óž‡ç¤ƒN°1êK%ij^+Gt +¸ üLAZa7–ÿ$5ÉÏ6Gkùo§E$0?ÖâoÜB]×á^j®K6â”Û|)ôõ//j0Ë5¿§2…’8î" ®Ž?iA„}N9FàÒŒ¤0¯Orgùµù‹yªÛËå»èWÖ“»êöR:Úâ¿¢˜”„ OØt9=ó†¯y¯é‘é–ë¢ÞÕ廧ª­Yì­G"{ôÆjrÛMy<öðS#³cN1Tšª€À¶9¤nNÍN55*6å‘¿!é¶>KÕtÍrâþú³I| ue·†0¬Ä²’9F&›gå 2æÞsplå vŠ©ñ,Á¡'rEW˜jw¥1’Ùz,Šò£ò§#T-ZU…Gjådóó—ÌUÖl´»«‹Èd¸¶”8[oNÞr@ªú1ÇVЧÄÝpëγysÌiFæQ4¶²§ÓX¤iVŽ1È£©®;ê2‡šx!_M”¹aP~-éÖiã› ¼ïæ_6þch¯äן@ò”6–Òj:³I}éIuÁ,( ¹1ý•­M*rw­é×wÖ\uY­á†Õ~¶a@ÃœÑüjI,)Å–½wMKòo[Ðtk­_R¶Òt«‹¾µ%ƒÜ¿ªÒ(©ø¢¡B%Ý{V˜em£Myõ¤i­­Î¸‘n'X™øîÐ1ø¤=ožw´C4ž”q™&r« +ï°ëQ¶y÷óSó<é~kòßå•þ”ÛÍFãR›S36ϧþùF¨Kòq¢™Èu¿0Þ¾”<¿è x^_®ÊF’JšªÐ‚l-Ã}U"µ¶ŠÞhžÞí¹ÆàŠŠìÛЊšçÿç3<Éå;-%¿™SÌ°ÉêéJ¢ÂRá}T Gì Þ9Íwò÷ò–/8þUêþsÕ¢¸–K'š mI’Ö×ÐeXæ#áRìô£±í^ëÿ8óäsÏ_•×šçœ/§ŸZŠk‹[-V(×Ѓ„q½'DeóV˜ú®ž`x!”G$2HÊË4mB*¼Hí±9Ê¿ç?2uOùÇÿùÉo4þSùÙU[4›ê—o'§rðγ(jíFñï×ÓÍ•½éW‰Ì_fNI€i¾ÔÊB¡‡0Hî¡Î™çÌŸ$þlþliº®¥fšF‰{iÓÏ ~6¡•d7ÐVãsÐW=oæÿ3èÞhóF•©j¶ë™s{iõ¡T‘E¼n‹'ªÔ‹ø¿ÉùeKõ}CS¤<,ážEU2³‰XÉڌĤÐãÀŽk€¼„ì'äU=OI§z /ÿœ¢²ü·Ó|Ác¦~_]é—6²Z‡¼,‘Oj®&'ÅÁÏ€ãÚë…›W>RÑ<Ñmsù|Ö°[Gm×M§ˆ¹˜HËÈz nåNÀxc/­ŒÿWõ¢”|Oú‰Zš|Ccµß®£*Xý& Í\÷âjäuéï¶p«]þùîF[ÍyõHš{ƒlË*B³·ÑA`*vޙͼѮÞyÇXÒ¥’^ëË1^\Eq »JVÒvGáº"·ˆí¸Ê¹¿¼¼H#º”ʶÈ"ƒ–å#¡AëA]‡lf0ÇwÈ EQÜ|©Ÿ1ù̘×zG˜¬×Z×S›ýÕ(%6%O C6\3Êá¹( ö°é€?,|§­iÞb¾Ò|ᤆ€Yú_Y¨•d+"’€ŠBµ½lÙÚôÍySòpKë-õÇœ¤K–€$ŠÒÀ?Ö¤ÿxe5Ûmºç¬l4[-/òÊ×N°ždÖ Co-coNÍJÅ)$üLßÞ=qi-.¢·ŽæX™"–¾ƒ° 8†)]ˆ­3PŽ½úaŽƒù/å¿2~]É®-³Å{ ’Cx·IÆ€‚`ϸ™zWÐÿ+lµ_+,úž“oc{*ÈòÞÛÊ@€'&˜Ÿ0H¾&±³+8è½EEwì+R6ßÃ56®qÍ:+YÚÙ¦_‡’ k³h|ñ·çOäï“uýoP¸Žý4»©ék¨•øù,„‘'ÃF ÉAùcsd“ò[Vдo>éïæ‰,¦&ur ŠÐHÄn´þqözöÀóˆ¶Úoå·žàò盵[-BÙdd[—ˆ£<¡B;ªš­Ãêðýªc¢A$‹0@ÄmÐW¹öÍ’¯ÏK üÕ&³£_Åtó¤"âkv`’˜âY lkAó9ëoÌ_Ë,ù§Y̺²#qU[øAPíÄ!(õ¡(ùå­E|3g<]6ú-9õ9,îcxîE"šÔ–¥ pîYÄóG2˜”‹m@ÄáN`PÖ•ë×+6Ìò4Èè@aü£*:mœÇóWκ°òÞ¥k¤9[õ·‰ì.V¬¾¤r‡e¨¡•i±ï›6_­r@NLª€ +CÄl7ç{ùË7I¥\[êZ]ÜWD>›Ð«¬jh`7©4Ù³b’¤‘H½JŠ +@$î{Œéþy»òÒÚ½ýèUº˜I'©:ÑCî@$T†Ù³bwië$¬db(µÜìÛ?2ÿ7µýwÈzå¿•æôï…¬«e0—“;-ªñ¦àtÛ®lÙ#ò/“.<áª}A'˜@’F™X©;…ŒS‘ÉOåwåßäÝHÒ¯¤ÑGØéï{vmžâ[†ôTLÊ”³òíZæÍ“kòSÌ–šÜ‘ëêrÜ¢"ŽDrÍÆ2Þ§áÙkôg¦|©ä¿6hše¾‰u<º­òÆÖf·[I’À)V–OˆqìwðqâŒFàFÆ Á ”]–gp‘}[W/^ÝJÇ÷ÑIJ=9–4&¨Sˆ±©pÍPŠïµ}‡¾l„þ`þWÍå .Ç[°úÝÝ£ÍèßÜ´|ퟢ¤ŠÂ +îBšüÎy»Ëú¿—ìâóM—Ö®¬-¦h5 ÆŽ1p…nVŠ[+ðšöøÎ76LÿçuÏ3ygZ¶óV±m¬Xù[MgŽ0éö£«ùÓÍWœ-ì­ç‘#@ìœË™"D¤1”©b +/„¥L¬t¤¸Ò‹ƒê£ý]!·õ=yՇSìš³P•þSÝX iŠÇ»ÈûFˆœ‹=~È¡ðÎ¥7äw“!°ò#»ht¯!éµÔï.JúRë7b&ºGW4D¥¾ÝE9)¬ÃLü”òƳ?”¥ÕD aäU–y•„rE6»rènej¢x¾†n€ƒ’i|·¤êI£ùcJx ¸´î|Á¬Î1ÅÔjæÝÔŠn#*MiÈ·N纽†€?EhÚ5ʼ‰M«js+D‚êæ5‘àâËÈô‰è·ÂFxcóoÏ·ž|É.£©ÊD³µºÕ hå@J¯Z|ùËÿ?‹žæóWü´¿¹“›\ÉæGU4øºm´a‘¯0êªêSÌ©P™Ûà +ª¤i²*€ l2?,†YB,I¢€¯`A|ùÇ…˜ÜÙ±ñ¯-ŽÃñÍ–=³a‹l˱p6PG¾lÇß6ºŒz‹1þ`E3fÛ¶lHF䵿í_|ÙY²Ëz…¹Ž,*IZîsfÍŒ ?è~|ÙuíÓ6*Ò|9•ãÚ™²€=Flb«8äµä>ÏJ¿6YÍŽ““î;R”Í•LØÑ䞀WçLÙ€®l¥VaTØfÍÛ6n$  ûGqÞ¹²ÏJfÅ."ôrÛ0¡ÜƒZïÕI²·é㛶†â2²ì šî­õ©í›/zøÙ±H­®#¼È‚`ÇÑ ¤,Œ  Ó¨¦ù³WÀ|ÆlRY¥œ†µ‚5à¬ÓF¬XlÔ$‚ç¿°Íš•þ¹±«j²²Gn]‡)Ørô⧦l³Ê”o£6.Ñß‹o©ÞUÏîhS€;Uƒò¡Û¯·|ÙhœOÙNl¤yf;ä7×nÐÙ«3«pR6܃íӹ͖Àð>Ç-‘Ñ… ¡lEG\®¦‡oi v󡹶çx7I"’¬¤ˆZZˆSoØ݇ôʦ‡XÌ¢N'ÓEqMÕ©‘Nççý3e¿…zf¡ÀÍ\\Æ‹Æ/P4ŠUO.„ÓŸá›Aauq ·FÏ*WPHPHPMr@ÉÇ•?'|ëæ¨#Õ#³k]‰jî¦H¢ˆ¤\¤#â½zc”ÛZÊ„‘ _µä>!]ÈuŠ•ÍšÖÎêêê;+XZk™b†Ù³Èò0UEQ¹$šÖ¸­ä¯žu5ÍäÍO›TÕLík§ÙÚÛÍ4÷n¬WàŠ4g åÈ%‡*W -5FPC¢Ùýb[‰š#iÃÔP¨±—â«TĆßl´G•Ö8Ô»¹ +ª¢¤“° ëzoüâ'ü䮩 Éæ;òÛ]ºµ†_«Î–ú|²ÜG!RÔ{t¬è(+V@7üB¾°ü¯ÿŸs~|Ù7éO0ùR&¶Ž)Íc*ú’qr~ºÌµhß ¦6ïË^mhæ7zeźÚlÐLŒGÅ#”‡r¤€B‚@냥òþ½•fÓ®c0;E2¼)I€ÊÀŠ‚¤€Glç—:%Õ¥å晨Ã4rÙ<ÑOoéXÐ=6b uÓ˜”P–1ÐzMÉøe55<ÂŽ™¯ãKwKF·{{›uh¯R@ÊÞºÈÕª¶êBÑHñ6tOòKPÐãÐŽ¯æ.Þ]ê–Ñ\ǧØêW“Ü#Ë‘-$h­þ¬“µYEdôùYŽXoyä]>)ÕS]¶¹½½®¥e •äÑz„T,ó"HvV%TSrwŦ°ÓV¥‰#yDs‚Œ«ÈG%R›ì‚¥×—RâÁ2Z[¡ì/Î3#Y¿vÁ9zmÊ1ñðíU¯íS|‹jþNÔ4mGô¥\Gg(‡Nf¶™¤õâõÔÖ)(V„· ÜiïÒ#«Ùk0ê—¯¦¤÷–Âe†ÑáZ+ž7‹"´‡Ò +B×Ô hÇÅB0 €†Þ• „‚7íóé°ží´Ö¾±]D ­%ó"hc¨’_23'íMvÜÒ‹'™’->[f…ï­ìeÖîln=/Wêhé“úNUŒ@¿ÅJÔïáŽXØQ¹„Y­vŸ¤Àª9 ËPhªTmòÂK™%¹óL7¶’;€ßT,†'I$†C5>* +È +’ÀoÞþ=5iB£RªE,ÜO©$ô>ãp:l3—Ug¾·{K¡;ÛÇ,–’FË$ˆHËjÊý±?ñÜòRÑ”2\Eq,Œ  ¥D,ÉaƬ5G‹#gJ@ÁY»)j‘â{Ø.rjRÛj³Êy*½å´Š8Éj7ÂY‚«xý=1]fu!Û,ÑMh’ýqâdõVY Á©–Z”íñòøq¥Édt4©¥OÓLØ{¡ùßΞPÓ¢Ë:Œ±èº…äÆÕd¡G˜Ee0«T‚»×$òÞ½s¡­ÒÈ÷1Z¼_Z´Ò +ÔÄaI<Š»ŸÞ•$¯Å°±ÛSåòÍ‚,µy|Ççu/0_%ÂX’±ÛßO"¨xH¯EJ“ñmô`Û sDÕ?1üÏqŽ¥w•¥•Û™í®a‚A(©RÞ“)nqî ½h)Y³Úzoüâ䯟/4ÝOIÓ­<—æÙÌVWºžŸÊÎÿ ÇqÕbE Ì®]cæ´!€£u0~Jù ÍÚy“T°µÓï4Áp»ó%´qê†Y^à1 +Í3%bZF‡mø( ¹"¦¹òÒóT¾¿H㺕".Ñ¥O2LU>ÊÔõâ{çKÿœYüâÖÿ)ô=jºí˜’÷Ì–öqhZ€¸¶0Û›ek"‰8•ë‡ÿóŽ~Tó'“4=SWóåúO«ë“‹‹£‘¼H¨}{gLü ž?)yZŸZ´žüCõ9ÖxJñŽ9V+(’â•ß®M-1ôÏ!hj²›IÚ–¹vúuëHÊ–€Eq„ uV-ê©œvÈŒ?›èþi½Ô5«HuM2ð‘{lí*H²:Ð00º=*š”÷É|ÀöÑMqqßiÎê·¶Gb¢«©VV¨ùÒ™ ó^¯£­Iq¯·×bU¯ +ðP£ÇPG~UдO/G}v^8!¼ŠíÚYº…Š­j¤8;þÁûb×sÙ?§{‘H’4rÇ"§$€Iëñn>^9lŒ›8 ‚ASqœ×óëÊAò”ü»©ùiRÏ\¾™ÞêÚ¦‘–Û‹'Õw£|#þ Xy?ÉZ$z}Ç—­VÊýfzóÍÊ5,UI¸wø‚¶Ù"ò ™\Óõ¥•ÚÊ$’98ŽK¬¡k]²‘Qßn™YÃ.îžîâIäv~gbä³:Tž¦˜·æG™µ}@®¦É¬¤ÒÅðAÄÈ3n92ÖŠIØçOüßó™£Óm¯ìÚ;Ëpòo³3®Êà$Ÿˆ7Ó› ü—¨Úi>f°Ô®ay¡‚^R¢P¸B +TWn@°#µs”y“Nó'™4|·¬êþXtÑ´;LJUIP9žó„aB y/=YiÈlzg#×ï¯õ+ë{írÛ‚"¬ñ'¦]T¶ôè ¾ŒØaù‰®7™<Ãu«U݉2¢JÁ‰5pŸ |iž ÿŸˆ\Ï®yk:s ÑòKõ¶˜*ËÈq­A ­A­0šå£{‰ZÍv(ÒS™Rv-M«N¹±o*7™µ‹kH™ý^W1«ˆÔ€¤EB“µ*FN¿çüïæO0ytBÌÚ««³Kp$z6¯RŠXÑ™Ißr'›#W–²Ù^Ëi8âñ‰v4ÎÙÔ,¼¥æZ‡óó8#Õô˜gÐìõ(ÝR{‘ÉnS¤Å©]¼}²Ù™Ï&5;¸PfÉ…þŸ™imbu kÉ.£C‚@}&}ŠÉJSß:Ýô'IОÖîþÚëëHÖX›h¶!‹ŠEze¼MRÅO1QÅ•¶÷¡4úsd¯ó3òÒ×òï@Ñõ[ÙY&ºDø$*âf?8ŠìÉC×qôä‡Wü©‡L¶Òõ8äyî%‰]Ñš#—ZòŒ*V‡¡¯ß‚¯tmSM&¾¶xcÒ)ì¿Âªz0¡ê6Ëdt§5+QQQJƒß$ßóŠ?™¿•^VüÌ×®?4%m;CÖt;í>Y!ŠY—RMª¼P3(Fý6Ž˜¯åmÖ…¡y»Wó¦© +[i3Y]麄ÑVQõ¹m£Í CsK ïmÊFÕÜ6ÌÊXnCIæŽ'…‰%9¯cBüFE’;‹ÆkÙß­&¦Ÿ×9Ï•müçù…§6êËúËÁ5ËÝ1ŽuI£çÁ⌅ v¥ã2¬¬æ¾½‚ÆÊK†TQB*Ça¶yòÖßüUs¦€Ñ]Ìñ´\ÉXGFšµsC¿Ñ›6ëöšŽlºF¡(™-Èdˆ|H¥¾!G]ÎÍN¹ßµ=CVüºü·Ô.uID¤Ä÷ˆVIz²Hö€4¦þÙ½³gWóž|yù_mjšÔR\Ǥ toBA$sBS˜Œ-»–ß:Ÿ|§ç¿ÊÝ7UÒµ˜åŠ]/‹@©Y!wB)¢Ðp5¨o§Égl¶‚ä^ÆîBñ¶ '©R*Õøx€§ß~ÙtkQ_åÞ¹çä4§%šQ«ž~Ö<»q«Ý\/n6¥¬‘D¨e +XÆ0NÔ=OL •†SiwðYG¨O‘ÛÈBÅ1R‰ =ó˜Yþ^yªß›Þùx-–¡ê Þá[Ós¹?À“Ø/Ý›6\Ë2/zAÓ®y³þsÌ÷º-¦‹–"žÞÎâÑ.@…¢IÒ)`Î èÇl•ß6]œ÷*5w Ð|ó•~AyËó^ó–™e!mOJµ—Öº‚‘ `¬ Zü>;ŠæÍòÞþÆÏÌd6’MmqsrJ¬)ÂI| Ôt=Æ}Wü¤óf•,–Vú †-RFŽ9¢‹ M"¯C°¥i½O…qÑÈÑH²¥9! µŠúƒ›;Wæ6: ½—œ5{GÓuºôíâ‚íå–è zŒ$rTTƒQÇÀxgbÕc’æâÓZ×í>¥}m9[[H'wiÄu¬²+¶Ê‡n>ØñZI(AâR¿+JŠV£®l~‹¤ÿÎ=þnþrÚßù§R} +ÏÌZC\ë7—“5½»y¥æC1¿a%^oÔ'=…j^Tü´×4Ƴ¯Jún™«ií>­þ’öÑI¬™QCs¨¦>U£*VÎæÑÚèºî³kmãX-Ìéww¥}1sñjÊÔžç°è:ÊÖÏS¿·µk´±©]]rô–Z11«0 °©½ã–~jþFy‹òËAÒõýA‘–þI£’Ð7)­V:ZEQ°pkË¥s˜þcþPyòÞÚÛξ`¸„R]ÜÕ@{[]þ®Òp§’ÌŸ²Hï…SYÍoI0\"cI⬩ބ6Ǿ*Tv¯nýO§9°Õ®í£X “Ó†3ÉcæÜU·]ö;ç½üåµò.Ÿt¶—ÖÚU²sTv ¸‘˱=kɼöÄr³¢ùÈß=AåUò’^Z꤃ +ÚÝÛ‹@ïuý‰¦™y¨¥be&»ž™ óßüü®ÓNò-ß“´]V hËlÖ3Y[iÎ ž6^,³ÍrˆÄSoÝ0®ûôÁVzÕŠÊ–…c7¼±PÅãz*Õ§N«CŽIÕiI¨Ò ìHÛ§ly¯ó‡ó?ó/L°ò®»ª«ia"±Òí඲¶U¾†Ó‘ý§«xœàþfüæÿœ¶ÿœ®ÓôÏ-^ÜI'– ¢ÃO³·´³°³ŒÃIBq‚8êB‘¹©÷˺Õ/n­¡²•×зP±Gií]Û‚¯#¿Újœ¹&yB ¨U⪻ ÷âNýNùé½þ}»æ)?/to>kZf´¸Ö­bäZ À2¼Tãx•¹RÕñ© Ïjþ^ÿÏ ,m|“¡ê¾z¹¹ÔüÇp¶“kÖÂáÒÞ$“‹\,"„ºiZÖë‡v—žj¿ÑÛY´¶/D'ÑÖFªG +¨V%~ “O}°þÏòûÍ·ÚÇ™-ôù …¬k<³º´jQ‰¡BáC’4RMÏ9þn~Yê‘~“NÒ5xuh­äå¦ë–&¶nþ™“•?mE@ý\Oó‹þpsÍŸ‘>~“óþqCU7–Þ]F» ²‹•O4\EP9 f¦Ýꩧ¶—6žÓÅra íŸÔ‰ªøZ‚´­¾_Z¹ḻÏé1_ZDôî¬:ŒWòãó£ÏÞ_óîŸæ=3YNÕâãmo¨ÝÑàPΦ’z¼•TÓ®Êçl/ü‡ÿŸ„ùïOóëi¿š—vú&©Ao«4±#†Pp¾ PGp¼|v®%ÅÄ2Åq…^¦t*y +|Žø”RI ‰4LQІGSB¬ AÄg ÿç"¼Û­Cä?*éÚ„¿RÕåkÿñ¤73_ÈðH]Œ|‘•ÌœãxO ª¤Œú?æ¯5½“|½zÒ¤]}rïP†JA=Äíªá¡äŽ¯êrFŒñpj6Á÷š¶ª>·ÓšñÚk¹x)’V—ãåϲ°jŽ qLuijM+ËpKK#$sÕ‹ïSó®xçÌ×6wÍo{ Ap¥½XÜÀý9óSþ~¿«Jçò¾¢¹5ãq«+)sa@Cwøp¯ÂÌðlÙ…3bð¢zFF.ôãBzwØfËô°u‰yAHŽ!ºzPŸ Ùˆt5þæ @PüÁÁ7Öv¦5t‘ÏZ†ù³ †7[{hay‘ZT¹4¨6Q§lØx-)X߈äÕPõ=sešócÄv¸ Üø±*EGÑ›6àfÄÀfˆH_‚°Ýj¤ýÜ͘ócÉXæoQ8Æz!jö§ºæÍ]³bmp6V ü4Üþ~ù³tß60Ò ¼‘Áþ4Í•\Ø THÈ 4Ÿe¨_‡68 +ŸÕï›é–2Ϩ‰–"YY‹'ïxíE¢Óz÷͘ŠÖ»S¶n¸­ÝŒ]\Bæ;Y-ÐÈ–ÊX(%¾À,൩͔7;îljÓI:IpÞ¥½²úr2P¨E)Ø‚O~¹³5ký¹±Ú´³\Írr*¤aä|^‘O|Ù{÷ßç›™§"6˜ µpZg!ŽÔ¢0aÛÇïÙ`…5ðèpNŸ§_j·qXiÐ=ÍÄíÂbRîÆ• ®ØØ5Ilõ {‹@²ÝZ“éNHâ@®Ì­PE ï›3#«ñ‘J‘¿8íôä«Í”Þtòeè²ó Óæ(¯éNèHªY*¢¥¾MOÏ*úö;õ7òÍèÈ£÷6ðÆ0U—á Ô&´éÜæÅ“u]è6¨êNÀ{œ‘y'ò‘üѤ]Ck ‹¬Mõx´á4Ѭ<­éÊž›"¿%gN-ËŽýöÁâHÔÚ\Z[È¡˜¤¦2e#`Õâ‡_„»›%œ€FËB’r(Ĩ Çíw4¦L´_ùÅ]jãÌvžY¿·¹/¨K 7Q˜LRí¬\3qPá€ï·BAÀ—:ÏÖZÜÚGn°’V;xÂ|b£ã R{ ÎÔé›o +NIrB %˜|\G‰zgRÔ¿çÚ~œúÞ^r[4"vše%¦nÊƵ¥*µ^‡¥sg©¿ç?ç%¼ñùwªù—óYÕ[U‚Ö+ØáòÝí¨ú´ò‹xÃÛÏg3O!`ÅÖ)9(ÛŽÕ>øüƒÿœ[ÿœ}Öÿ.[D¶×g3ŽêëôUä¤1P±Dí‚F÷uí°8hú—ŸOh´MZ-KRha•à’­ŠÈÎÜâ¶gp²2¨PC(,M#åMÅEg¶²L— êƪßWj£±SÀ‘F P‘PwÚ´9'ü”üÌò—üá¯æÇš´Ï4ú——º­„¶:'™­´áþŠ–³J±Í=­\ Ô¬—dåûªQ´ÓÉ>yü­ÿœwüɃòþqÏ̾a±šÒÉî¬RÞôÅåþLìnî$'æÈ®$ä•*Ü«€l/ÛKŽ6ÑýHuOSÒš7ýç0AP>H5!ÑÁ5ãOÚËÓ5K½ío¬HKˆÍRFPà +²²8(ÊÀÑ•mÒ¸;óŸþsÛÍs”É¢_Ow©“gqë·áF‡ow$Öö‘Öaë†1-@6ë"Õvm‰èÏ"ÚjšüwÞ^»š9¯uH`K}Rü<°]-‹À.ÚQ V*Æœ%¬’~×ÙÄdåð†l:SsLØc¤y‹ÏŸãÛïùWTÓ¤¿›ÐƒNÑîXD#·¸ÛÆ«;™ ÿeû6ô®s-7ÎóÞjüÃó®¹ù}dn`µÕdÒí4+K«{vÓì­%{[yØIÄ-¼Ž…’9 xžŠ«@åDh$4v‘ +TU†åÞ¼Š›ù—w{^^òÞ³=¾§}ä‹/Ñ7z•¼«(™æº¹½ŠÜ\ÆjÞºô˜‘±N*x…ÃýCÊúד4Ï,þVÍ«ÜyÆÿÊÐ'WóEÒ2IÆæ÷ô¡ˆQ) ‚)#^@Sej1>mB "„ ª+ZóV´öÈ?W´ŒA–4’IG2V:²•jÜ+¹ñja%Õœ——W2B‹$º|0XÉ,Ö±3ÇÑs0EFW!•Û ?hQhTÐfÄXBYž áž3U[¶õVA'!Uh‹Z¿°·Wü¹ó6±v×Z…ªÏë¯Ö/£¸õ.-áú˜7 â— +UÛpç‰Ëô@ÜX;q¨?Aí› JÔÞÆ5–Ãë1 +Ó´±¨Zñ5E#zQp–<—«[yËUÔ£±Cú^[‹ô¸¡šQsp=Dºˆä¢2Cøu4((ÌX)E5©¯…6÷͈ÙÞZY‹‹»IÄ·PËÊ EôÖÝcF³;ª‡ðÓ|š4¦Òµ;˜]Ü#‹h[Óôœ³2~öF óá½uÛÝÞ“UA#ãZ^4 hM:ØÔ¶I[³Êõ‹¹‘Àxäv`J•"ª@/½pöíuV7wsÜnƒÉdn ­ˆI=^<+Ì*ÐWjtñÆM+Û`3`AŸPµ[1ÂâC4žŠu DÝö!›më^™ó&§¥ßj/æûéç¿ÓlÔC4vÑIU"i) +³ÐüÁ£v ×ï=>y²¯üûæéô+Ï+Ýkº„:LÆÝçÑZògµº¿$îV©ð²UHØšÔxïægüä7Ÿÿ.¼Ÿ|›ª^^éþ]Õn¬µ/êSÞ>ú;«1cp‚`±Ü,° è%·"A·Æ¡Ú7U”ù}m|¾l¼ío¦ÛùšÂÐý_WÒõx¤[U¹¸ŽEȶwI9Œ¯Ä’‡ˆ—ðï°£Gó©åÝBÛRÑ.¦°ºµ¸[›kÈ%x¥FêÊÌéBx•Ú”¡©Î]åïùúæˆO/h:„únŸ¦$v)sß»Ã*@Ú…ÜÍu,÷×kóå! ê|^™=Gyçó yÖÖ Uòæ Aiµ…¦‹d¶‘[1ü.+s+¸Š®÷SNÄš¯ú¹ÿ×ùa Fr©RC]ó•ÛÎcJ¿ó‘°³:Ï—..!ŠÖ x8ƬȮ´j’såV|ªÉ¯•ÒË…ÝØœu‰‡Â:ÔÕM+íLú-£þiy;SÑ>µåô•ÜFdHÛáä@;Õߧ\,–Iú›Ì²Wuj§Tÿ ØëSc[OtË:ý‰%‹â ŒUpËEó}—˜´éíõ[7´A&+Ž5îWfñ¦å&·d¸©”PÇ-*ÇÄ1êsgeÔ ¼·å/ÈÝ/ó?SÖšïYÖ¤éÚlQ0Hã]Ç'åljVZô=»cuÿ'i>^ò…§˜à¿­õãú¶q¬cÐŽ6(|;ÝkÐvÁš®‚4Í+LÔÒLÚŠ;›uV Ð’(v üöí\=¤qYÛ],é#OÌ<0xÊ|U ƒQCóÉWüãÕÏœ?9üÍ?LéöÇÜXjšºFæÛêÈ[Ò´Šfá½6]€Üð'”¼Õ­ùòY4s¯Úi²F•±¾žÙu ˆeFz 8ã˧ÑÛ¼™åÝoó7X>_†òÝo(næþR&uŽŠcÜüT—{0ãÉNÔ|ÿæ|µ¦ÞZZÝÎŽÐ>£r–±9ŒWÓY$¢ò#ì‚EiN¹Ì¿ç.´}_ËŸœZ¶‡®êÑë·°-§¯ªC¶Iê¨XzEäàW ¡"¢€Ð.Ñy«HüÁÕ4ÿ0jQkB8¹ßz k¯õxŠ´…CñzŠ} +T¸Ð|Ïydn"¹”¡{ƒVF~ŒXF¼†ÿÓ õF°¿žÉåYšdyÕKCCÞ‡èðÎ(êªh ¨$Jté„ÿ‘ßœþgùR/1Ϥ¶“iÍi-³Î.ÜÚÊcdˆ­U*~"/L7ò÷š'h§»½JÃin1—b‚h©éÇTâµéZôÀù"ò—˜í´X5˜.lÑÕ-c´Iƒú¿ˆ¦æƒr-é…íÖ¹Òõëë[O-ßêðòcs)$ž*ªêjíû?Ç$~tDM»Öì­šfÖýIi +¥¹„…Ö2´«2ÐôñÅ"•#I‘£dPªÇªêÕôúp³Ti^c$ƒˆmé@6AŸÿçàÉæ$ó|Z›7 3Xy§´0ü*ëQÈ2©¦ÕÈÆ'“/Ë/*ëú½Ì·Ú]Ïèëx€¶–õ‘=Y‘¸#"šÔÓcM³²ÎyÍvL×^UÒl¢ŠÚÖòöàâši 3„¤É~²hwËV*y +} ÷Ùè¿ÊÉ?Ê¿+yfÛógó¼\]Ú3ê6‰oÄH¯{ ËHàZ¢&¡èŽÃ=ñäßË éºM·æGæ m,úˆšÒm:tõ-Œé#F‡ÒTøŸ„&ŒÆ›öÛ4[-&%{ï3Esõ)al^تóºQð, ®ôëNÕÃ4@óÉæsè&úŸÕ=:µÐ_Ý2l¿hüÏ/ùÿÈ^cü½ÕWNÖ*Rã‘´ºh¦P—Úœ€8Íÿ–Z6›ko¤ÍA •´Ë) x# xä ´½bëGòþ±åkÎæQ/­6¥=¼/ulPq(³:± +xŸ…XWs¾ 3ÝAk6˜ÑÆ?)Y¡ˆÊ¬»PJT¸t L€~[þNÙ_è6sêÚ”ñêwž«[Û[Âeô9Z.E\À2üEH§¿x¿•´Í2ý½[IäÓ®ïI`¶Šd· )„òR§ä7âËO~ñFnN\µ5t, œ‡ÌRÓµ}GH{¹YydWeY–¥AüqÏÍcÍíö“åá×äË Çtì¶ÒJ BÄÕZÁ3sjSFÜŽÄŒØZmgEY$CÅèQ‚ÑH;~¼óß—$/î|ÆþnüÀÖ¢ó6¯d¶±†ÕbÓmÑNÑ m‰¨åfÎùù9ä-[Ëcëšî½Î« +~Žºº1ɉøIP*J¸Rn*g=yùEùy7—!úö£a­ö¯ÍÄË Ä‰2£¨¤•`¤tߨÅ-í¥ºs ¡jmÀ ¯S¿Ý›9g™í¬Ç..|¬ ½™œ½¯¦ÜDtsNS¡af³å_ñpÕ´…VÐÜsaãÆ ü‚¡R¿EAÆQˆ®àõ½<Í…ú½ö¨Zí®e’BTKë9wc²Ž¤« 3\>˜]¤Uãõ‡½@åÕF?#\Îï#‘‹1êÌjOÒsek^QÖ4K{{½J&Q0.Šßd­=Í:Œ0Ñÿ/,t=>Wµ°K¸bÎ#DHå¿*‰¯|¬ØCÒ®õ«§M´’úXæ’Ö-ÉŠ1Vjö{fÓt‹{{Ãv¦îéYQâ¢ð`ÍÐlðÍ›:>§æ-Sòlv–ðËo*ˆZHƆ8ø1Œ©é׈4À•¶¨ØÏ-ľÄÅز»$B5 ²-HÓbÀã™Sˆemöª‘C_n»fÂ][ò£Ì–þ]o0ʱÃS#Z’Lɦì:~?Fy×þrþq‡Í~sü¸Öî­þ¯¦3Ø‚Æ)IV$rÁ™Y@†PÕÆæÎzÂ{& ;oëŸ8."üÄÿœvÕ¤†Êî6K¢FUÞ•¸r¯µ+›®l1¶¾ã½»:È´—n$n7ëZ÷ÏdþKÿÎCy[ÌšN›m ,ö÷rÛFšµÀŒAÊï‚­$p*çÔmš½»fÍ‹O_×5u»¿¸»¸jC Ï;ÊcSµv4é(ë>gCÆy/.z³]JÒÉ9zz®IUºn=²ÙÝè]‹PPTÖ€vÍ“ícòêö×É÷Rß\[‰$ shUHwšàÐV½Y%/àxxŒéÞa²»³ò”·”–Ï4¼kÌò+%º†#âáñ)û&˜ä‹šHü‚ˆÀ45ø‰`((:ï]û›:&—ÿ95Ÿä­ÿ姜¼³™5»Ûk»üÁ4á[\EéÇëGé1f‰59mÐïœkþrþ~'å¯Ê¯#럗úþ˜ÞbÖ5«KÈt×.bXí®ãhãÕ›!¯B*)ß|;‡ÌZséwºžš.ï\í¯9¢càG¯S±® +ŽæÍl^ -‹Ü<.=JZ'¡®õÏ1<Ò\8R(§` l3åšüûæßÎ~kÆx4÷•=>˜a輩°$W©Â.ƒ¶ø m¬ì¢†o­G#Ì +N!…kÈß,ô·ä·üâÇ’.ïBùž §–ŒÁ:*2UOÄdW­hGEÊÍòY¼…§ùÂÓSüÅ‚î].2PÁeHYÝÔ¨ýð<AØoãžãü•òåOåî»eg{s1³ç$‘ØB¥#y/L·% ¡ +:©ô®> +ʦáYããD`ŒG€b¬ÜrРu2ÉQÉTñ$w¡ ÓîÏ@ù¿þróŸNÑõ_*þ[yÓROiZÖÞBh§»ŠÍÐñ‰n¦Œ¸P«ÐӹΧçm{ÍXßi~RóMÅž€d¹¬\©"ªÅ—j…­Gód—NüÉó¦ƒÖž\Ö¯,­YV(§õ&‚5@Š^!£ØÐú|vÛ%ºWæ×æV§¶‘ yŸR±± +#·†;É9[ƵapCD$7§ÇØí¶7WÖ´‹ïÉ[ÿËÏ:ù4ééÐH4½JÖê3eõØà/ ¾‰…ˆsOŠ…yo¸ï&ÑÂé?–W>Pó‘ ck$6òÚÊ=\Fx»F£g;×j7|"‚](Z:\ÛM%ÇÇéͤb«ð–F‰É£u£ +¶ë‘¨¤ÓE«$ðL÷5~2¤ê‘€Tpª˜š5Iø·m× '?ç?,ÿ9çu»Ø5ÓüõcêBËHc†²*#QK$„qÛì±Sœ¡¿ççÿ>¼‡æ:ãF²³ó-ü‹q±ª›»?‡‚2²p,¬±üU´Óínt‹ûïY…Í¡ˆ­¸QC·±#`ÅV€Wâ«GÛÙZÍ¥]Þ›ž7VÏK?M© œÃËÏ쀌iÔóØpï:~fyßYÓ4/%yŒ«~_ýgHQäZylmÝ yFf&H_M¸ý”å¯)~pyëÉŽ©ÿ8ÇçMKëZ¿åL÷vXÕ]˜Ëu¥A'…É$•! 7 +üz(À³ÝÏsIpæCá³3€¨*h¦Øä’Z±(,IYAª?¥,+£kÆßTŽèÉ©’+;TõT)’¡ŠòJeß>¾þUÎÿÎ7~LÝÙ/ËÖ—÷§Õ6·¼ÏÌÆ#b„ÇðÑOQMωÉ&‘ù'æ­k׿Ð4÷“KŽwS^zJ!25$¿´/%n(Hä8ƒ_Ê?óŒ?œ^tÓß[Ðô?FÅ sÉytÑÀ…g¯¦P3se` )ã¸<Ûÿ9'ù9ùuù¬¿–¢çÏ>jœµ¼–Þ[»ôôñw‘åg¸½Šdy™R6à¿Î¤2=ÿÎ[~]Î>~iyžãòïÈ^[Ô¼ÿù¨,Zù{A¼¶Ò­Y¬_՜ͫÞBÖ±°„RXÁ2Ñ€ øJ–ù‹Ë@7ÖÚååÍKu蔹kQdcXÏ5ÆÈIJI´ejCm…|òoåõŸ˜âò¿å†·yæ;énVÛ÷°[Åj |Ré&+!±uQ_‰\Œóö½©ßùMï|¨yoJòå÷•nn´í]¢·]BþîúÞc¤óÝIu(ÝX…Q<؈Åæ»æ¿Èo'yWÔòŸ•/u°oíõm/IÓ­g¸ŠD»S•Þ«¨5Ô;!c4Èêñ¢Ôê^fÕ¢’×J´³Ót«½/ÕôçÓ­­ÖX¸òrÍv’;®ì®$,6ì¡`·Eá&Éã^dwŒ‡äA¡øÔ°#À²>¯s<ñ]ÅpÉ=£ÆÖs¢ñXRø= ª +Ì\…åÛ9¯ÿ9Aù™ù™¡éÖºeÕìÓ$Ó5KvhÒi¤ú•¤ö–ò(Á¤R­OR¥ˆ^¥:çšµ2¬:ô¦òò%’6Ôä‘žòᘯÅs+–y8¥kJ(¢ÓÏvÎ+Î~]þt~Ky7Ι^uÕ£76­&‡£éòEµŠé7ÒÚ:¹¸Šu>£••„“žØÿœ|ü”óOæÏå^‰ç?Î>k—:Þ¥0šîÓCÔK²ô%ÃY"Å«ŒN!2\,\k$®‚ÔÜ1ù4o1jší½½Ç¢‘ÜÃec›ÚÛéñ¬º‹udp±ª± rÇ—ï w›O*ùrM'DÔ®üÄ˨Ér5+!m#Ie-E…µÂ8‘U§*·þ|yCVòWæ^¹ jºÎ²mæQa«^ L—¶x[MÊEZŽ Çæí·‰ÿçꟖŸ™z7æ©æÄ×5-CË·0ÙêsÙ —M6[ÓÓ–V?QJÀ®@gs%kÅ~}õô—·SNÜZ´âË pÔ ¤tPÌÅÖ§sS¾Eš€¦£±;m{-cWÓà–->þ{XæãëG Ï¿¼‚Z2‚+ÜW<+åŸÍ_Ìÿ$Ú>Ÿäÿ7jú¤¥ZK];Rºµ…Ê:ȼ’ZŒŠw@ðÁrØÁ6˜—¶³!xÐ$ðìv$ŠÔïÐÓøfÁk·ú¯Öαp×rÞ¸¹¹¼›÷×4jÊ¥¤ó † ü^ýFz·þqÇþs'YóG˜<·äŸÏ­*ËÎz]¦¯g¨Eæ+»hä×tÛ‹Š Ø¥EÌbt¨ø¤t…¨¨Ö"eä±%Ÿ)L×ÖñD+À)$dU·b+FÀ1ú^¢zܽ:S9q®ô®Õ¦l-’ðÇlòHn@¸),è‹)OûÙ)¶Ä:ýØ'U²·¾ÖÆ£4êÒK/Ú«+úŽ¦@`väÄÌa²…ƒ¸¥f•Ð•e «Bèv͇ÿ–¾Póæ_œ´OËÏ*A Wº¼—0ÛKf»Nîî¬6UNLô^„ +>Vòç ]<½¥jSë%Ã\4ÆDeŽ(àç+t +d¡*›¿†+ +G$3UY¥P`P~*Š~ñ›:î‹ù) y^ßQòï›õkO<éǧÞ]lI%"’tDgu!PÇöé’®ÿÎ7iOc¤ù›R»Ö-gƒH¿Ž9¦7ÐÌ¡"úp®Ü¸¡+±+ñÀÐ0—cb¿%åWøWâ¡¥'~†Ÿ¯a6¡æOÍŸ" 3H¸´Ò^Xf‚}CM³²±¾Ô¬#zHó\Ä1fe–n[Õ÷Éž½/“µMF®½Šù‘‚Á¨Ãk5ÄQIÉýy#ŒžH®Ä–*Ówø±xæ’i#±{Ó³”Nr4¦(•È'’ª–!{ñSÓ`sEiß®s©­Rýke ·7Eݬ"¼ª8ŽJÕœ€+·ðÂ]N¾¼Ö>°#O©ØCqÖÌm¯,³Gq#ä:žhYHø¹½1 ˆR‰¡I’e‰™Vd@¦”:«zŽ@Ù>üªòOø×]¾žxí¡µòî—?˜ï>°“1¼{­f,êìŸ\Uyq*ðÛÉžZòÕŸšu+ýFÑu[ý"ÒM^$Ž7pZ bŒ«¼Œ@jr=z + +Ñõ(´‹¥¿ú´7’'%X.¢ÃGB¼Š±¡aZ­Aê`hAðñΟçíGÉðù¿Ê3þZÅg¨èúÝ›C-‚éë£ÛFˆZܽÄÉõw2) ‘UjVµ8'̘ÿ0¼µgåû«Ï«y§N’æ-0E>Ÿ +B–F’#à²ÂN?ßr˜”z¶«ËqìÉ*/‘epʼYx‚ @âÌ)àOŽ`HÜntÍ Î:ùoEòwšî,4­ Qó“¨M¬ù~4¶º–G²ô9bHEkÍdbËOŒìµâs¹ùzËÊ–ö}ÅÕ••åͤW*D¢´P#y*„íÖ€ÐgvüŸ×ÿ-áòÔ¾pM:[ÈMNî«;k©. h#æ÷ +åX—QG)YëZ2}嘿/âòäw:õ؆ùÖòImV(î^àƒêè”›z°?ëÔTÐgîg´¿šâæÊ'ú‡Ö$³µ¼¤‚$¸f{u(Ÿ¢*‚éÓ<•ù±æ ÌôK$Z^«q4º[Äë ©hš*"²Óz)N$š6õCQ¿¶Ô<Åu©ÎY­îîdž_F8m\Å,…˜,p¨Š2Tý•^ Ð9cÉ‹xšö«ò¾„ú¦«iåÁÈòÁ$·-lfX8´²JÀ¬ªUiÉBŠ +‘‘¯Éèµ?Í/;ÌÞe·½Óa°ÒÁÔÕ€xÖà¤!ž:Ç$Ën©ÌKNØë.ZYRˆ-Z~í*ª5jŠW©¥H¬›j?–Z‡•ü¨š®·¥BƒT¶…tûk£\˜e,cžÜI+…<‡O„Ò„W•:O˜,µ}?Ëbç_ò½—ì/"µ’] +áíå½x%¹E‘í^Hƒ âÀÛ­ ¡¢éQàŠ.'ˆž:¿ÃPõ ö~Èø[}«Üf"”÷Â-{òÎMWó?Lò’õ}m©5¼z&£z~¦å.b^)8ehÀöjm¹¦ ³ü¡ò>a¸ü¹µ‰¯´}jâÞm;O¹Aõs 9‰WB4T£-BïÐé:õö“4­g"˳Ã,Ö70¤ð\zLÅ}X¥,­N] ~Ñß7Ë%~fü±üòìwS–óX¸ó^5Í­ìÖóéòé·3Ú¨‘l²dT¹`õ9Î|Ûÿ8…ÿ8Tšœ±G¥Eo«YMv‘Ú­Œ7&Ý?{Æ8­É /˨Ü×ß]ZÝ–ž8´®ìî‘“èщ E&ª°©ù†YãA@kÜ×®ÿÐùgEÕ&¢«Üd7òKþqC[ü²üÃ×5ûèçC¾‡êVrÏ 2ÈóG æ R)Ÿ*³åVJ|—ä¹üã5ÒÁ'¦m0_ˆw BŠw* 7œ”UÛsSþ5ïá•€5Éß=Ù\ÛÙêyD”»†ŠH˜©%(üj*>œ)Ñ?)/4;EæȬnWP¼76¦XMK(¨ø…Hë¸û5Å-ý8ç‰îCˆ‰ŠP1JÐñäñÍ;•&â@TÇñ5úõ;ÕÊ/ÊŸÊÝ÷XÑ<‰sõŵ5¿-Ý1 s#È\¼WRGjPH  +€ÜSJá拢蚴zØ7¤–µÆ˜'"VCÆ•¥;ŒÙÒ?çl´óçøõÝZ&šÏE‚âòeZ‘A-HJ¹ $ü;íôg§ÿ.í’m BvváJÉ^ŒàƒNû +Ò™Ðôÿ$\ë¿“—žaid’ßHO¯4ŽÚhá$þÙYŽÇïé‹Ak5ÂO$KÈ[§«'²òT¯Þà ¿?üÙ¢yÓÌBëËVíõ(« 7“)N‘Ð#¹!MH55ç…?çäš.±ù‹o¦éž^Ѕ¼·=Áh–E1ð³<’ño\äWÂÕnæ[7i"â9«/#ÄôE1&ãÈð¯šW­2/ù{ç}SÉwÒÅki ËOĪÌÑ–¤…Ò½zå¿ó…ß™>oò‡ž¤ü»ó–•wRÄ.9ŽR‚2”‰šJ'È®T8S^,*Ìm•ZoÎÝ_[ò5×åî¿éµ£J÷Ö×°VŽrü˜H…˜©!8ŠŠõÏtê^Mcʲyo[ZZ´žµ¥Ê)2,Œ€5 TV½°\º‰¸°[9ASB„…bIûk^?$/)\¾g‡Õ©ë¾sß/è7¾xó>‡¤y‚öylÚuŒ1•ØC:óãU“ŽÃ²Ól.ò¤Úߘ’ßÊ·W_î6úQ Ï9–(yS‰ß‰ã½iLE¯o%…-%šÙز ÛìƒZtí•’OùÈ?Ém+ò¾ký6âimoË$qO,RÏê¨åB#T âAÜa—š+—Ëý¾‡¤ê7W2jÉ3iîé^x&·ähÍ€#­Û¡Å4í*ûV¾‹M°A-Äõô£¢¼A'rh66C¼—æ­_˺…¶·g,–mZ6eçG$$iAÒ¸ga+ù{P:ÓNâà†U'ƒÿ7"6ì{ãtûùôÛØï-Ü«#ÅhjµÜQ¾ã0$ŒíŸ˜ž^E}$…¼É=þ¡4¼ÄËou…8q+ÊE@hvø*0Ï_üçòƒÚ-–‡©Íu—ª%ÜÕ Š)c*´±2ªÐ×j +ã™UHâÁ½Å3šé›>}2O&yvñžÒþR1ðÊ_´¨ÄŠ;Ÿ}ò;kù«K¦[Zi÷ Öú„þ—¦ŒËVrÀ<¶ýªâëqé§K ~¢Ë¬€ÍZìŽwPI­|®GÕ¯Mþü$Ô¼«©y^úÚO6Ù43 máªIÂÀÃÔVdfÜT_¬y=¬îàŸ]ÓäFÒKi–) ‘ƒ/%n,Ç¡ØWŠWâéß+;—æ'Ÿ¿.<ÏätÒ´+Û‰§º6“E¥Ü¤ü,Þ ÓUñ âNÙ:ónµå0yhØ[O,“O-¼ÿP5o«I seV ªÔ;RHãT£”H\U †´¡¨§¾Ç1mò%ù—ù›äýgɶúg–f»¹Õå–95%DŠÒÝ‘HeC@ÌÀíZ«ã„¾iÔ­59†ÓO}3©»[‡-íÙä#¥ mèûWÇ:Z"†FjNzƒâzn3gý;|Dö˜·#^»{ûS9Ÿõí~Ê9-£€µ¼jÞ¸R9¨#nûÖ‡ 4ëˆfÁ:W˜ZÇY³¿¿…gŠÚT’Dzžh(4#¨üp¯ÈxÞØêºC¿ªŽ¥‹2¡Mzš¾hT:—”ÉkJŽâ¹³¤ùûó#Ë:µ­žŸåé Â4“ÈòOWŽ'+Â:ž ñPkµ=ó¡k¿›:.¥.™eåÛµ™¯.® |ât“Óæ¦Ü¸ƒÅ{}صâÙ‰ Y;fr¨ÃtJü žæ{fÉ¿˜?+ü½åo(·št–½´¼Ò–ÎîßYI…YnZ8š­Äbª”ûòu¤ù[LòžŠ÷Ð5ãÜÀÑÝþ’že‘ØÜ”ˆŽI±J±/ã¾W «9Í9E,{òSB;T› +5Í,y«òÂWŽÇüC¦j qe©&wi2Ȳ,ó(£Ñœ0äFã¾/yªi7ÚDVú„p¾¥ÉžÚSõ^2X±i8ŸÚ`zà†ÔŒºp±–IYZo¬ˆérÅ”Ž%û­MhqC=mÖÜ¢|,\IÇã5PžãlªþmùÒ-^Ú.™lmæ·{Y/Sp”ÝŠ‰kP;‘ß=~ay‚×M¿²}*õ˜$·DJÉ*•âÀV@+Äõ#—S_ݨ¨§íuñë×Î%ªO=çï¤<˜Ò§Ä ª3æ¯üæ}–©®h)q¡XÈ–6r˜®ï't2Ç— +-(s͆žUòÆ¡æÖÍ*È‹ +¡?vHÿçÿ(üÿ¨ùf;KdHè-&Ye‘LmÄeÕH-MÇAôæ͆Ú÷å·™ü® ¼»AnÄ,ÈüÁ*œ¨¯E©ëážÝò¿åטü¹o ™Óê²Ê ͤÑ̬ +T™iM³fÀ¾pó¥÷˜­lá¾¹içµ)W„lP ›‘¡,O|àÿó›Ÿó‘°~\ùbÏO­Î¬dUµ·•$dðp%Ð=§Ë6E¿$|ûæ›o7Éç;M +-F ­ÚÇÓ¨Û‰'‰Š68êýùü¸óŽ©'˜f×mô£ Xå³ ð„TiR¬ŠÒòª§l`p·½h»ÐWÃ|Øc-‘uŸ8ú>dó…Âq<¶0ü$J²±SYQc¢Ò€‹°ÁÚªùHù¥¬üÙæ©-f‘å7–t5ikÍ;GÆ”?"¾å,éÀÊ>7_Ü׈¨CvQNsdŸò‹È~i»üØÔ`ü«ó%Þ•ªÃfòCN¸‚ÝæŽOOœRªp~hÛSXµÕ#¸Õ-ÅÜMÓwv ð` OÈnlÙ³bÖð‰iY +šò4S6_]‡lØdš|³…6ò+˜Ô;Ñ$n*KÀÔ Ù`ñ¯|Ø:Æëô#K \n"­Ëû™ž‹ðö¡ë·Ñ¶l³Ó©®lr–óÛ?)äkϵ1_QÚ5 j›œØÚföƒm¹ÆwJ©j;} +±ñÍ—ì3`TOVSŸº¯%;ýù²«¿†lzÄë?PÆÊ oJSjWøæÍJíú³b‘X‹‰ÄAÔ†*¥È)©íÈ +Óç›-WzuÍ‚m¬U®Ú%Q3´méôPI+RÄì;žlÝ>[TW61¹ iT¡§’X>ÛP**AÝ{të›5FlVÖ{b÷,@„FÎ­…k_‡nýóf¨ƒÖ½seIs ´-i*´² @õºHV¢œ*H­<:æÇ PÃiÞ”¯ã‡P´µ½ó„öò]Úú¡îmáãÍãOˆ¨å@+Ò§‘.,£õ߃Çq~¼‡ªxÑME¯F§Ó›=ä-wʺçåö«¤Må{}e´«[}JMF}A=:ÖÎ7úÔBÚtnO1uUhÚ¿ϵ?‘–¾NÖ?,ô«uÐì¯ÅÍ¢K§;‘âˆDßYŠxÈ(Ū¢¢¤ìOL,†[ù\ZÛ¼’4ìˆ"BÄÈÀÑæ‡ìŒÙÆa°Ñ¯F£{fÓ;Äækh#´àhÇÄVId’?Kˆ=£nYÕç?-ÓÌö7:¶¹wkõ»ûq<¹¤éáÚHn®Õ^ÔÜÈž’$NÅ ÊQºŒzúþƒ¨ÉåÌ°]L‘›µŠæ²`$ŒŒÔ`:«n§b͆:<2ëÞ]Ô¬¼¿åõ“YÑWô¥ö« Û·:"V_ôzú+ÉéñP}–«0ßó–žX¾òoä…¾½ù-ä{)¼ñåË»ÝwP¹UÔ§ý =½ð’b.g‘&µ‹àTr•Sö°çVµÑ?å_iz„vvÖ·ó]Ì‚÷ oî¡@ÌÒHò9³dÁÒqøªy-å´šl6Ia SÄìÏ~9ž`ÝÃHѽ¸¢ŸsОQüÏÿœÁÿœÍó6äy¼Õ«jƒVY´÷ÑtÅIÓuO¨D×Ì/ÚÚKKS'fç5XñrØdÛòCÌ›_V~Z>}½¹×?HA-ÝܺIGÓ5%)ð¨íÈ1±VgîµN˜Ë¯1yûÎ/•u-NÿVtDŠÖÎâöVH’˘ÂJÜ +†jŠÕ|wÉ\žrüáüÕ–ËÉ—žbÕ¼Ä +z6ZMÞ£4°í×Õ¢¤Òz`(NDøŠõÎÉäùÃÏ:yWÍš¿’ÐtŸñZÿ¸Î˜}ŠÒÊ(Öy¡ÓtT˜JòÈñ4rÎfF~J‡î¾Lü…Ò<³®jϤL¶Òjð,gš,£ŽÞkH9³Íeao˜íãä¼ÙúÈ^†¡WÓ´¥Õ®fÓtÛµ¾–àEõ@ñ:ßKHAŽ:–Š:/Úäÿe>A£iš[j—RèúZ-̳þöÖbŒ'd‰Y™yúkQñ?#û v*~pþE^ùón5=}o¼©æËøl?0."–(®$†%kƒ=²¼×ȯ0;Rµø©üæÿœy“Î^Z¼ò¶·ª:é7ÞÀú»¢ \*zé(FŒ¯/LHÁ¨Ì+NC •Ôöî7Q[G[…A)ú¢4¼W™e +3Tq$oã…Z?#<Óyùƒeùsäq/˜/µ¸ÚÛ*Á.¢‚ÜÍ**Èì"ˆcÎJ/S¶pÏ(ÿÎ:ZùCóžÒÃòöÑulVM6DLúV-¬ë"¸KU€<›÷»ÏA^[Òõ]ZúUÒ-VcIs4»Ckmq#’,bvjSzbÖVWZ…ÊÚY§©+jT( +Š]™™ˆ +ª –bh©Û>ŒÎ ~Q~f~JyËPü¿óE螊.â°‚òYßEÕM„·†BÀ½FI$…€‘™OSLöçå/‘5_$\ÞA>µ¡§I½½ŒV?U× ï$þ“njLƒzxcì$µ±ºº„M ëO D—^”é:ÊI‘Q«Æ=‰âhÝ;`ýö /¯[ÉW&úÛÐŽgBïlâhæõ"­zFV ý–?,ó.•ùUù‰ÿ9WåmfóÉ]>dÕ<¯-æ•åÿ1kö¶«u§ÜÌ$ƒG·¶¹&1,ZY£™å ñÒœ·¿ÌÚ.‹ùûùMç?ð×—müã=¼Wvún“«zqÁ¬"ÅêXÄnSÑ·øÞ#Ò/î¤<é·<3òw—“[²¹º[ÛaeñiÚeÌ7Rµ×^Q– è$mêý¢ÜƒñÙUŒŠ¯—|·wæs5­”è.ã-¤œÁ¸yfH¸#‘é¥ €’ì£qã·”¿1?/äòlv„;Z^Kwcwí¬¶wZn±§˜ö™qÔc-°žÎSÌ ˜:¯ÆùÉÿÉ?*µÍ]†ò,ùÚ«Ë =FÐÙÜi:…¥Á‹PÑgW<Œú{²G1⃑âÃ\ «iwvÛk?T{ ?R–ãê <€ªOĪX#¼©Äš´)lº}ì6QjRBëk<²ÛÅ9R¦ci¡?ë †)ãøí_lãúF¥q¤jjÎñ¼.­Ê7(ô¤ŠáZà +4ŸXP¬„hX€Z„u(|NÉ×冦–:춟£m¯có'F0Þ(t rèÈñ©G"@è¼Z›ØgÕoùÀ?Ï ß8鶾HÔ#tá後Ó/sKy + x†`diYWˆ$ŸaPÁ{tñé1¡ydoRÄlòHò¢ñU + ”©ËDycK3@©$ôgCüÅü ó™¨Xêÿ—šcÝiº§¥m§ÙÚÊ.îmõ"ú½å„¶îÖEš$BVŽŒ„©ÏXy§ÊÚeåî¢=¿Ôܾµ„Q“5¥Ô1K \š£W¥véˆ]ZÉg+[\«Åqêê±½µ€&çN¹ŒÚ¬ÖÒ"Û¼ƒŠz`¢°ØΧ  ¶ +5R²39õ¹·¨yqÙ¿dŠÐ¹¯loLôµ?å=”WÞzKÍ.øy̾¯«BâÞ <°.%f†‹„­r “‰Gœ˜tá;»òç’­m5o2,6RŸ>¸½ÖõÑÄt˜Ç9â^-ûÉ9<‹´¥~Àâ ê¼¡Ô ú•µ5Iˆ¾;bŽZÕTƒB7{€qg¸ëþæ57 #Ó “D5¨4¡¯ßLážh¿—ΓYùÉž½——¡ýuËR©>¤ŒÕwâɼ$j· +1¨zîÉŒðh>YÒô›q%†ƒ§.Ÿg,T®¢®Ñ/Ö=6&EZÕ”¹«3W#ñ$ÐAøMi¸"¿1ZŒG#m¦OåèÍÅͤ¶ÐÆËe3 }?Þ²–åðgaCð‘°ë±Ífu(,¦¸œ=ÒNßV‰ÌœÝO72$šI`M6]û·6Ӽ߯ywPKí*â-*WGŒ\Cüq<Åd¨PÜ·R>*‚Ëù_æ_/þiÙê>|ò†·iw` í¤W&ÓÓGŠÂoNæ®òF=!*RŸ'Ý]šéþYÖõ Hõ4û¹lç’kkk¸-šX¤º†;Beä¨Á˜T•SZf΋¯ÿÎCj>jŽ×EÔü»¡Ï (‰m†âá PÀºGõ‡‘=Â]ºV˜uæ:Aå-|Ñ>Ÿo>‘c#µåôÞ¢Kh‘#„) ~ð–˜À$qäO̳º‹FOKzÈPñÛwé·%ûÆl…þ•ºÕõ¦¿¾Aw"qŽkbÎ}hÈ*Œä”EU 3Ï^UüáÔüó¨ù‡VÓì~±pú‘X§Ônl‰µRñÐ…VY"BÍû”_ÞSËÄŠ8A!SÄ’SbE*+íQ›Ýéº}á”hײ½«ÝK Þ£5©µ°°‰‚-¼í*d(Á‹q)Z-Õ^‹kjÞ`´ILúŒZlW6SÜoJ+QzCYÞ2È^OR1¥唑™[‹r >ÄTo¶lGÈžc»ò‡šcÔ´a;Eo ±Ã%´Ó[Haº‰ÖJ:<›ŸÄÕäEk\Q‚‡ ñ$€ÔØ‘JÇ6LMÏ5]V?˜RÎñÛÉo%¼š}ÔWÖ +´‰k²! 3°n<™]Ï.æü»Öüó¤ù›QüËúÊÚ@‘&˜m&´¹ +•&سŸÞ(u`ÔNûôÝ÷5¼‚6!‰Tz­iG@ànJæÈ׿0ìüççeóFo%„V艬Ҵ‚°ÈÒü #o£jåê^y¿×|ß˜í¬•«Ëz¬’2Ïm#5^b3*°‰A ì;by³¤èPþJëúæ“ç ÿ6Åi ;ÍgBÕôë««Ï_­[ÀÐDßX@j(ê !äHô+ù.÷Îéç5×ÚÒâ3X<¿sdh.TK‘âŒÀÜú㊬KJ@ãÔžµ ¨)㛵kôgÿÑùï©þTÏ ù_9ëÄÓËp¶À’7!+«1 + TЈÛ=Ÿù‡å-;È_–ÖÐÃs꺕ÊCéFE8Ñän µiÄWÜÓ>eù“Ë–ž]Ó´õ{”¸¿ºõžábpÉFå³oNãå¶|«+E Q¿¾yg[Ö¼­4w–yŽ…âÌ¥ÁUa]ª=òåɵ_/ë‘ÞiW3Om/8/í‘‘9­מÿ Àá%­ÜÖn^¥Av­è®V ²óÇ™´½Bæm.ôۤЛV”EÌ#fÜ /Àņåhi‡ºæ£c}©Ï+.ÔB±Š#„4”âÐ×.ÖöâÌ–€…mŠ½d`Aä¤îݳ`ÿ&~tyëòÍ®“Éš“Y½áW»/s+Ë‹(•_‹QÏÄ¥O¾yŸó{XòVŸ{såÍR=!Äž›5ÄI*\p­Õ[±Ø_ž/¦ëZ†‘ÌY:!V`ñ£î•©`Jš1ÝH8èå’*ð4¯zOq^‡ +¼¥ç«½'϶>l׋ê$y/QHV”ÊéëTž;yeŠ)Ã.! W÷LÛÔo–ûó/D‹WÒôôšâÍm¤--ÃG6ŒŽ%x¨+ûC`7ÜõÉ_–µ_)ižaÒšÆöóNŒHÑßjò$lÉ ªë´CÖZC—ÂÝ*pÏËÒYEæ 8ÜÞ S»¨Å¡ÜG‚½ÌÖ1\ÊSâD,j •Ø +îFÎayäku1ÄYŒHÇ‘U®Àª@ÁÞsü‘ó‡‘t‹5]•’ÂðŸ«\':ºU€e2"sRU–£¸ð¡Î¯~GyÃÈ^g‹Ïó­­Î™x¨-$¶yd–¥ÎÆXв8¨ߧC„ó[\Û¬Oqij§« u**W’רª‘Qá—5­Í¼p˳"\zAYщQн܌C6I?.<Ågå¯3Ùêz”>­¼„~ezƒCC½§¸Î¯ù_ù­¡I©i³Þ阖Kx$t‡©$Eøª¤š¿D²£L Ž¿SF§±ñÍ“ÏÍÏÌO+yÊÛL³Ð#¸–[V‘彿EŽQð"EK ài^§¾v4ù«Fó›®‘#ò…%ŽçÈ%eUQ³0  ãŠÝýH–Nò¨$ú’ ˆØ@î6¦cNÛ¶s hnï.ZÎÆêPËŽ¥\‹ŽÛïÛn¹Ë_ËßZÖ¡kÏQµ;FD´Ô!•Õ%.¬¬Gâ¯* ºà|Ù3‹òcΓy\yŽßêͶ7é`^³´ U¤T*A=øו;dîóÉ>m:Dwv2ÆÓú>»Á…nZ%Pj±Iòf O}³fÎqrïñaV?k•j;ÐçΟùËùÉÌß)y£MÐtIžÁ,ŠÍpcA"»‰X¨‘¤©@6#6lUHeµ*Û3W­ÚÛOÍMG^ü¿Ó¼ç{$Q\ÝÍ Ô&ÊCÕÔÈ¡»|;í¶lÙF¨Á£$S}¶ÜtßtÿÍ­6{MGP›ë³[êVлu>¥µÃòª‰w6l5¸óš$òúyr]Ráô¤pÿ£šâC!ñ-#&›óÑ~JóÜ—6V–0j7½·©$¶ÔYVP/‹~"ƒaÔ±ûñs¨_µ˜ÓÚæSj§’ÛÒ Ö¡+Jïá—͸ð©ãZñ®Õñ¦ ›Ê¾aÒ-ôýgQ‚[{]EÜÌ„Ç:7t;ìÔØ3«Ù-ÅõÌ7·vL•¶¾†åÀ¯Å° T~X€ß+;g‘4=oÌ?—w–v ;G3z>rcR‚i> bF$¯")ZxáŶŸ}«hwºvŸ +[Ìé#™Ié€Ê&$7À¬jµ£ ºc‚3©(„ˆÅ\€MiSá¹0ÔÓ®yûV±};RšÖE1”?eÁ +¾á€ÏÿÎGù~KôVœy,·&ILÔO +ÑãaNŽHÛ›мɪyrðÝi.ÄR/(ä Ð(Ýú­üómÏåÕ }CQXb¾‚á·˜’ŽQ˜*ÐÁV»PŠvËF +ÁŠ†î¦´>ÛPæÉ–­ù»®ù§H:n¡»MÆ8‹z*²¬õo%Þßk! ÓbHÍÀŒ˜åE"ˆŒJž!·8%ïíM¸¶†3±õ‚·¨@ì bÝ_|ÙËï'7³lJtùï㟿ç#?6õOÍÿÌýg^¹ŸÕ±Šæhtµ @ŽU[aû@W\ÙìùÅ_%ycUЭ´žu}Nábõ݇¦­)UVzU”&æ€|7®}~ÿŸxþOùKÈ¿“–pE§ˆuEšyæ.Iye‰8»oû!V+el×·Y© +×±+5hÏMw Å-áúÄñÁÈ'¨ÊœÚ¼W‘¥OM°Î¯çÊ #òšæóU¿u þ¸¶éæ*Å4Þ“Û+kZ“§¼‡` *kžÔ<Ÿ§ùbKxÛî½E¦å1ÜL‘²ÄE/ª§Ã~þøcæ.Þùzö[²®öì‘»+/Vd§´6=HÁ:¾“u¢ßM§Þ%‚¸¹PÝ CáœóÎÞÃSÕ´ÝrÎþÞÞ ¤¿ŽÆéÑšI×Ò~JG#ÈSû2 ù¡ci¬>Ÿz·¤ “$3OËœ¢ÙPPÿ”kÓç…!‰]“RMûà,‰i2ywKÔnt<…o®Û²\MtT¤™P«Æ¦‹P7,Ži:M•¶³®ÇðÝDEÃÉ"3CE.¥ÁK*´ðñÌŠ‚– + ¡cZsJœØ¿äìíæ-KFÒïÛê°D×3ų$¡]QJT1%K ¹(ÿËõ½—ÌSé–ó˜­ÑLÌYB+nYX±»2«ð‘âAéáï›%ºÇ,¿2üÿ{©ÜÝsm"Ô^ë°Hs´p–ª?¥¸«Ò”󇔡üÀóüzTâ)a‚Õouo­7MnÑþëኇ*ܪ)Rj/iB "§µ>üÙü‚³˜~b5›ÞßÙZzrËo}lLR•·–ŠËÆD-@iöÇÏ~Y˜áóZ6š—‰i‘ ¿Ô·@ª¥¾ô÷ÌŒU‡ÄT GQNã¦lèš¿”Z.±©j¾bÖ5³ª5ÜNm¯µ©„öÓ'ÄIÇVµÛ?1+´}Q¹ÔµA.ôë›gŽeºžd–9h=6PKF† (8ìM•¦¼¸ø¦ijÜViš›1'â,HI;å±,ʼn-RO#ÔüóÇw‡ªmôuχ?ó“¾L¼üµó²þ^Ý’ñé&yt¹Oý[®œ< +zn¬C+Î;›69iJfí +æà–)‹u-騑‹ ‘)°ÜÐí›7ÙéÓ6 +™Š¶ÒnÏa*«îœ*GCR~œÙ¶¦þù°1žÚ×ÔŽÙžQ_GëÂ#á5jÑ\Š’äôÍŽ ºâ¦%Xy4ƒ‘¡T5Aùt#Àä§SÑ´¡j·v>š]ZÇú½¼‰;\ú¿ º³µh´èãÔfÆR¸–Dnìâ˜ÖÙ"æ$ÛˆîiÙ|õÍ›~™³C¦@¡ÝE}Et`êxÑO|ÙëÍŠHb4”GèË0êQÿtFÁSzÝseÓõfÁ–ŒQEna‡8Œjì«Q¸“‹Sî͘ž»|³cKUnçxãŽHãE·€Ák@SÓ1ïM*k\Ùº‡Ï¶ls'¯§ó³ŒCiéÎÎ î>bd'â¯]ëò͘ª{àÈ´}Vxa¹†ÎgŠáŒpL#n:õUjP‘Mð5ϨÁÖP­'îæ¡«ÈU‘[î Cþ{lºl „õÞŸ~èß—^bÕáŽám¥†)äô ºh˜Û’ ²…+OŸ†k«ˆ„‰ägÒ ây@Þé+¿°Í‚ì¬åÐÜ\%´EÊ4„ƒJ-kAMºwÎýùeù¹<—:ÄvÚp-Ý䤕T‰Y'R•‰A*_ì©ÞµÄu+Ùnå#Ý@Ú(¡[~±áAFc¶õ' ®Ô͇Tn$i.KDE{˜D²µ¼R#h‚7¤â¤‚A4]†ùôÈ”:o•ü¥wamçìfºµ¸”ªªAy2¬‘,VÕ¬39ZaÉ‹”íŽÔü½s¡ê7ZN³<·vjhVQry•FôƒÛzˆ$øèÊÌ82²¿ÍŠºj÷Ö÷ñ³µ@ó¥´³0VB ,08þð€¥®OâóŸå®æ}#Ë:šZÂöKekmq©]¤÷7ú­Á4qC+¬«"2%X©cÍ~‡vÝ®ôcK¬QHÞê5…ä‘J³¢3J¨*Jý®%G@k›Á· ÙÏ­@“YAxÂÚÝæVSp†¯' S˜^#˜ŸòÉç;¿2üÁù;ùQcçýÁõÝOYÑtÛ=HýXÿGÁ§_Ox]©Nn‘±<¸°_c‡ZšyvOËû%¼‹üKúJnVÖÐ" >KK~2Kq¡ÔŽ›!j5k³®Î+ÿÎFëó¾y½×t‹Û·Óõ; »[x•¸Á ôñˆÒííšOMÞ-ÅIøª@l‹ÿÎ~bËùwcço8ßùîÿÍþPh´ëO,ÚÜÄ-ç²½º’O­ÅudæQouf©Nï±1íпJÕíô¦¸Ô¥Y.îå’Îvä¯Ò)C!rH4€jä8?DÕßD¼{ØS”Æ¢†EbË@êEEEzÒ½ zOÈŸóð(Â|ɤþkyMZ ûÇÔ4‹í +ᬾ©lÖqÚ‹+PT2Á+ÆXº7*;|,sÚçG¤\êWº3Þ¤òÉs`m™dEW"ôT줳† ¨Ù‡-ðº;¤‹OX¢³4Åþ²àžJ)èå]wØ‚]D¶V6è_ԃ˙^4àw¥;íCøPËK¶ògüçf.…c«Iù'¥yVú]Fcw5ƽúB]b«op;YÖÑ pÜva ¨®ùko§þ{ùaín£o+iP^ýfx\‘%ËDüxÉ*ñ!ˆ$ô§UtÿÑ÷<âÔ.>¥nJÑÆ%v—°Qö”q£þ.ý•µK és:X¢±pBË#?.Š%h´4&‡~§±ßäÿäå§üã¿œ¯¼Éç»;ǪY˧ùÍs¸(bÖ-ËzvMp&¸ ov¬ÑLHvkÀ²qä¯ËÏ*~^ß—Ñg2}mßxÚäS ‹ŸÈû4¥2A´PÈï©. +Ì0i_Ö6®an’°Fi#‚1 4Ø‘ñ}Ùÿœ·üè²²òw‘ü»ùGçØ®|Õ j×­—‘¯^飳Ô. ¦Á¯4É)„59qÜwÈÿæ‡æ&ƒ®Z'|‰ç;ß:ÚÉõ¹ôu¿¼†ÞfDÐÙËëÅ ¤Ê*Wìî+LVîyî,ì-¾TˆR6,ËÎBx,Hßq¶õïŠ\ÜI-½¬.Á–q‰Egfã¹4Ü“·ŽvOùÁ}_É:oüãµ·•<•©Gs®fMn XïWS™-`I}/J²‰c%–Œx%HÜÑ¿,-´7ÊÐ[h‘Aii,¬ÐÇGI€v5Œ('Ú•S¦ù'[}.WTžÊ––4˜ºó!(ÊY +Õƒ÷uýá +­ðáß”|Ë} 1’ÆH–H¤úÂ$•¤"6£.¥XÆá¾8ëI(3þyþMèŸóŸ?ž?–Ÿ”·Ð¾¡}©h>gÐ@˜Ç¥Üy–ÓH¸}rÍ™€H%»k’Þ£…Sp‹)ä/ùÍùÄ}?ó·òÏóË” mþ#>aO=iúEºÆ#›V‹J[]JÓá?¹{Ädœ·YnH2ÉœHm…˜Öm +Úþ1e¬ÞÜj¶rHÃýÇÜ[Âàýh9œS—PÒr⪞\J×WÉæÛíSBÓjw­«Z]Þ· ‘ÛÌóÇɃzbbÊË*~í „*òOúÆ“ªè:­î…®YͧjZtÒÚj}ÜOŽÄc–)¢GGYX¡ÏŠ:¶“ªh­æ…®ÙͧjZtÒÚj}ÜOŵÄc–)b+#£)VVPäÌæi eôÝË#Á¹nj(«Ü÷Üä>X¥‚W‚thäŠI‚¬¬¦„wsp64ÿ:‘~]þdù£òçZ‡VòýõůÖÚáí¥ãÈ11J›Æõ«Ôï‰^4Ó,^¨.QI©ö•E'ü)íLnuÿ.þi\¤z&³dfƒ\³¸†-Jå$ˆµÔñ»É ìjÄR_ELR57 ~E¤p>µÎ1ÿÎJi¿š—Z™õ-v}GÍš#Î*ÞœsÝÀ©ëéÚÙEw?Ý«]HãáNÜI¨&¡­iÓù«TÕVòí'·´¸Šæçë«Âþ”Š²ï,“àí®(ÂIQîÃÀ9gÉpMhO#öw=¶¯Qž©üñÿœ¾ó—šlõßÉ™"ó•æ›‰5!&“§‘õ(ÞÝBZ™d-PÈÌÎÌÅ@ý¯J~f~Tÿ‹[y^»–å&3Md#,£€Žgõ}0JíJñÙjÔÀ0Z‹›˜-¬®e—áôÝxD7Ò”$šPû +—Gj×3Åmdi$Ø/|Dš¹íJŸöóÌú¯üãßœ¼©ù‰æ¯&Ç +]ñ¬F³4A£rdh•b“á…Ï Aâ׺y÷òßòkóìyÏóË?˜:Á›Ê&±jžMÔ/m9‹ÛYDë5«·¤ž·ÕäðšAÉÜÜü"ÚÎy­®¯å• ·‘#”3ÖI^f«Ô58šâL…”þÉ¡ ÔWæ6É—˜õß:þUiº>'åõ†ƒ¬i3Y¼w³–Q<ÍExÜ*¼ ¹W«!— +Š€yw0[ë~OÒ¬Ñt¨$¼¶6Öé«[C*ÎZ`”ãƒí¯%ÇÄ4‘ÉåBŒ(H`AåtØŒâþmó^¡æ-î¡$WÃþòY*Åq«µYÂÁÝÉ$¯Rzç<Ô<·«ù«H›KMm,£Ô"–ÍL[Çn9=ÄhÄ,’ñ'íraSÐf‰I¸);·‡ßO×›ùoÌ×¾T¸Ýi–å…Ä2Ë&‘«Û´öÈ'eY>’Å)¨ç£íJç/õ_ùÈoùÆÝCÌWwv¥å ûéZïÈZ͵ÕΛ Ò7:eYàƒ"ƒZ2ì¥f¾FüÞüÀü»·Ko-jF-1¥y¤Ò¯m­µ].[–f°Ô£žÑ¦àª…ý>\(µ¡56ÒüÓ­iSé¶ÒE5¤ñ]Cõ[Û[{ØaúêÄ“K]G*Ã3,(=h‚ÊŠ8Èü×ïu,­méA,¯*[ý£òÙW`:n{xá¿šÿçáúŽ·¦'k•ÚÞ‹¨jrýN=!õLNÓ4qLlžò5˜¼’7Á¾.lHPŸæOô_?êPëzW•¬< CúF†÷#JÙ‹‚ É®%ˆîK+†cð…amÔÑÜ\Íå«;;äEþìå×Çíå<Œfy>X±¬Lc4TÔ©=(¢½ò³aQy ŽÁÎíÇž<Ǥ&¯kb<Û­Nà®ô!NÔéLÙ±HDªÂhyE©ú3²Þù_Ì|CRòû¬‰!U–¢ôŠí¼5íQ›6vÉ)¿æš–­|ºU•Œku.¥$‚ýTeŽ%iˆøkÈ·ÍiûYÑ<‹¡©ë@VÞâ(žb%!MéÉA÷ñ[f¶¢Üø„eѺ‰óÊ~s]2ã\¿»ÑÍ-å•ŒJSÓ<{lzgý¨ù_¸™¬O+Þ]›‰lbŒ¨¶vR¾¬a ä3%:Ôá +°‰Œr©xÅHCðš‘@{ÓÇÂ{ >­tUÙ¢¯I<–›ƒA’5_éúÿ–ÚóM»úÜ*BM,UY‚^?·±Ü»ƒe’9L„õ%x°#Çsúógfóç˜<ùå»#S{e}ZòÊÝ"{›„mHÈS·xqÖ•ë óŸ¼Éæ!ÜÁªÓXë[¸´ë5‚êêé% ¢ÀX’ð;Ó®:òì]qq7ê f ØTuƒÛ15ßõm‰Oùiç-É–h–Af—F²ÙÊ´–å¸úŒý*GCÐ0/—<¡æ.y7Jó=Å“i^Y4ù¥w¸¶#ŒÞªì›©Ý +wÀù°ûò©t~·¨ßÝZC%¸.Ò]\ÛÀåUNЉˆ,ÞÉSÓ'^NÖ¬"Öoõa¢·{E ÅÌvîñp­bI.G‚׶Z!~T#áX ‡…H©öÍ3ò¯ÎñyÏDó'”uPzrú7@¥3N?º +¤ôéÈh4iš¶‘¨A[iÕäŠëÔ ˆ¬ª¾X(ýxƒ\¶`ôBÐv§P&¾ôÍœcÍöÞW“Ë?TÓ¤/¢“Ók?D›€G!ñïP;šô9ó +Yͦ-~µl}! +Æ=BWá¡~¤|úe•Ó¯VèP‚ëߦlã­VEÞ´÷éžÿœ¿òÇ”n§ŠûQ¸– J‡¥jJÒ;*0$€Ôo fluŠ£Nb¸“ÓA_Ž•¥=«œwòÎî¥æË¿)y›^fƒDS$DÔT5@4ˆ³bnª]–ªÔõy²qçM{K×?/ltýÕ’½½Š3õtã €Ž­Ôƒû#:Ì^cÓu½ôV™‰!15ÍähB†U ! ˆû¨Í°‡sÔxfÄ?.ÿ6ãò7——õ//G¯ÜÄÒK¦\ýiã–‘ÁŹÀ°¯L¾kÉÚJÛMc¡yjÒI¤K,¦)#wJ††¢½÷8&ÞãOKwŠêÕ¥”ŸÝ̲ðâ :Ž-_lÀŠûçxótžrÕ£5²ÙÊßl+s -E+ÅE3‡þmêvºô·—·‰©ÜÎÖàD›·¬Pñû*E)Ú˜•!h(@øzšõÍ’ÿùÇë?,Ýkú‹ùŽ[A$#ÙÃ{,q sÈÇê‚t?"|• ¦³&¡¯%·Öôû$¶×¦5®$!äà&4.ƒj±9@Ó6~|麇ç9ì|»$- Ê%ÌÉnÈË 1+é|$Ðü<©¶ÄmžAÿŸ£~fycB׬ÿ%ÿ-îí$°h’ÿ[:eÂINÎTÀëÊjœŠíÕv¥1Yí¤¶(²Ð3¨r ‚V¤Š0ìvèsdË:8×uÛ--åXâTGšBª“¹5 móÏ#ÿÎ7þVOù»ù«¥y^¾•š°ŸQ¼* PB¬«ÊBY@oO±ùìsg©¿1¿&¼õÿ8ñ™ i7Ðê×Ú©zl–%b¾³ãñ’ц‘èÊ´'nuß>ÓÍäo5~@C¤ùNÊé<Åi­Í"iëiÕo¬ « ÊC*°ZUi¾ø2êÆóJXÅäb)dU–!Í}T B %–£qPjòü–zòÛù.Gµ­å²O. "@$'Õ1IU iÈÕ²oå[GÕ4ò¥ò[ù|B-ã¼iãP÷H†2 lŽÔêjjqˆÃÑt$oFû*MFÀ;¹­?ÚÕØá„ÿó”?–~PÒ|Û [yX‡SÒuH#†^­[ºJô+4ŸjªÂ¢ƒ¦~ny_O±žÇôÄim«õs +0›¥XIºû`ÝfÇI±0.‘©®¦’Ư;$€Å/í%$êv`wðÁúÅ–•e%²i:é%’ä¹qÀ"«Î!ênÁ›jøg:ò^•­y'Ïuc ØÒ"—ê÷ñBé j ¸©Ã"~VmoËÞc⵸½³…¾§¨Ç¤eA£XÆàï…Ä%XPˆ=°tÏÍ/2yoüi¦ù‹PÔ~´ÉhúdËo:ÊÉŽYdy",+ÅßáaºïÓ$þz¼Ðo5Í;\»¾[«­>ˆ Ãt²¡/ñ5  R¦£Žý÷Í—Zö¡Í‹¼ëu¥šÅ;ûÒB“Fì>wÜÿ •Ú§6õ Åõ–bÏB2Ö¾<˜ûW6X=«›i’ñsÌ$F]¢ +xo½ YEsf4xæÁ·B(!‰×œR¨n_ª:¿nÀn3eŽ$Ð}zæËH´¹îV¡¾²i4~£IYA„»T†è)_|Ù©_…í›.H!½ŠM>æsj ÝmÙ’’«]Ù¿—½k›(ÔïÓ6 mîoŒ—qÉ“áYdUiSÎFâۑߦlÜONŸ>ù±·V>“-‹ÂÖìŒO!vYc+Π +•¥?gÇ|Ùj¤ïÛõà› >ãQ¹KxˆfUw +H@Æ•4팅c´€Ï$²[DÞšúÔká¸ß.ß^é¶ÍÖŸe,—1EnéªC,‘8¥ÜDKðlI~*¤ý’y/Ä̈$ +…ÜŸZg¼3çÿ-?7¿&&ó·åt6šº.ç°ÓÚ9âÕc°Óc’8%‘V×nñ¿ÙRÁÜü= ÷Ö¥ùeå­KË)­ùj1£gk8“Q…[Yþ­¼“4MYšWRO.E›â#«_Ûy§Oµ¾•®¥d²þ”º¸Ÿ•Åü’sŸ×cÄ3¹~@דՖ­ÆœN®NŸ«iÖ¿R† ´øY.ÚI”’H$’)CÈÔøÐ,·þq³þq“Ëwäוµ˜¿/lüóqç 8õ-[ÌóGg©Ea×?RÚÛ’´öóÛQš&VæEi°Q?—Hòï˜<‡å­WÍY±Ô.ïl¬o¯e¼¶‚k¸¯$·YX1‘ ,‘>ܹזû…ÖrUé,L°‚míí¥ŽU•]DªŽ (䌔¯ |;uñWç—å3éÿŸ:·äÿ“æú8g°³Ñ#Ôä“Ôƒëq$’“ë11¯­&ä*žùç_ùÈÿÊäó比<¡£Û‹½154ÓãÒæ‹MÓ/m¥–öì‡äâ·ÄYOU¦Žxã’)8™mSš¡@Cûë\œFâÐ[—ÉPcBÌõC?Ô;­FôçÿœòDGÑ|Û©yjiü· ÜYék7º4b¶ÕàÖZ—rI‰¥•bQ®+Åž›R¥¡ŽžtõýGŠå˜7Ô ƒ4dA_ŠµÛ¡Íž¡ü•òÇåGæG›#µº½Ó4»H¬oµšyŸŒEi$’Äš}Üþ˜ß€F w ÅsПóŒ:÷|ås&“¢ùŠÆçKaq%¶£¤]DÇgÔ<Ýç[)¹ÝywDÖîmãºÔe™f’W‰§[ÅFOMDŠÎÄüUý­ðÃLÒK«Ÿ¯jV¶²YÈ–Æ'fúÇ2Ñ‘†C¥ùÄÕy`ýK‡PÍ=íµ¨¡Q ÌŒ9•¸Ñ8© «± (÷ =þrãòwóâGóÞ•®XéÖz……Íͯå¥ÜöVÒÙèqð¼“E>©ŽKˆ’…Ò8Ef£ò~‹P> [‹Y"á#pU”1‰VEÑOø’Fþ4¯l+ÿŸtþsùÊZ?œü£æ°ÐuÍ6ñ>®³ÛX fÑ—ê†Îêí£2«É0hÔ±äJ*•åùÄÏÍ.y“DÔ4½ZÂÚÊþƵ¦â9æÔbº>Ÿ©-cË@8Ä¥¹|ª)J-.÷IÑô™P¯åOUeÓnâ†+©D¥¸ÉVe‰\©â8±öÜÃAÔ´>ÓªY‹çôdVÒ3¬&yi’N11!fŒmñš“AŸßæÇçG•4<þgé_“ºu²XjšÌšŸ’µÿ*Þ&‘ú&1,‰l¶¨¥RHÓ‹p+Þ½ð˜¿1t-óÎPY^.¤}kªi‹cWú¬ÙYZÈ°Çoµ<3HOP$ðÈåÌž¬Åý1j1A + ¤ÕëL)–C,¯!y’ÜTqQS]€è0Ëþq7ó ÏþJó˜¿2¼»s¯#5²j¢[´žêîóWYË8’áK½Â˜Üò³rý­Æÿœkó õü·šÄòM«4Bêêáäcõ™áõ¦’6œ0ŸL'?ÙâØ*;w¶‚-FÎYc‘eoNS¤ 夼ˆæJ°ãµ)±jš:Ú{›I£»´‘¡šWŠhØ«£©ª²°¡±êÌOÊ?ÉÏùÍ?!ªY]Ä?4ôxÄ—ºÝå¼:˜`’æÚ3§ØßÚÍb9Ñvó©FªŒFSÿœ®ÿœ!üžÿœÈ·:ÖyGÏVÂI_ÍVº|µÛtÿœX½·VÔW^²˜¢I©Û@"ŠkÁøÍ)SZÊ•íà9c‡µeµ¹pZØȲÀÃìôe©êkᜉÑâvŽE*èJ²ˆ#bþ]꺓æû2ÆÒi-õ…ƒGÄO”ܘ¹úœAã@Tî ¿çç!t?ÈÏÏm)¼ó/)ù‚9´=zàq kk{Cõ‰@FgH¤TvÞª¡ˆðÁ>X¿ÒtÝrÞãU·K‹7õ-î–xýdX.bxA*KÆše!”A¡Á:\¶°ßDo‡ú3òŠá„BfHåRŒéxÃ:ä ²ü@n3­\ÎHþxùgLŸËz/æªúQK›'6ŒÑFêYžBTI'.JiÏøGÙ¦}co‡›|¾š}šÏå­*ôÀÑêvÑE$’s‚/Q\¼aœ=VENêLnõ _Q´Óõ =ëÖÖvó.ªÃp¨¡]Ö6Wݘ“È©®Ø‚‰ +86&‡Š–)¾ß†#½=²'ù£­h¾Eòv·åèõ-?_“ÎW¤ôýfGºÑ-í™Þ wXšb¥„«#2‘Ã¥vÈÏ™ï®<£¡¾‰-BïÌw©-ìŠïw5´a•Ç¨ß½`ሠ#ìì )U¤`¢•bITø“°Ížk–ê[™>«$|êHb‘ŒJë È(À–«”SÒžÃ9ǘ5(ôûk;W¹x$¶YoäšJDÎ#sVEV*àJÊ Z•¡ë‚4è½GšQ)…­âi£u |KJK)­*kµ;‚uoôù.õV›êÆÝ¥´9Ñäô&âPysû'ù^=6ÇB»ƒXÓLÐj ï®n\$Szšl78ÑÈ2K9Ò;ž Ô§ÂDßéÆÑ4Ûo®Ã,w‘-ÕUÕ–™Œl²,A @>ÝÎÀšž”º~§sí€k“‰5Xë½4ýš +äÌ^MЮõ½T¶±‰®¬o.£ý!è¢InÝdŽH}5$±ª«#Ffå@p´;+_…J×b@ {W6 †X,íf¢DkÊ×’ª?Ú§bIú ©—YZêߢïÝEµõ¼³Cut¤¬¼œU˜(° ï˯LÌÎÅœ–cÔ“S›‚âK»IT–62EÄ·P÷ãøôÂmZJÖY.JÉ|·dÇequeM¸PÀ8,ÌLŸúŒ¿=€›õ=JY%Ѫ£*I¨Éû’\D’n§ìõ§¶ø´ß–-ç—î<ϯµ‚üFb&1“Ó¾³³‰P XPt¦8I ¢ B1 ÉSIJÔGˆýù°g˜ôH4µŠm&þîáuô’·(ŒŒÇ‰æÈZ¤ž›ä¿Vü½Ó|‹ Dþ^¶@š<‘j"ÙáX>µpó²T–`¨ÀJ7;‚}ËšPÐ$<@(ÎÜè*C&•ÚÏ|ØS0†#5Í +—4‚;gn«U·ZÖ‚§zg Óü‰¬¿šî|¯¢èâK©ôº“]pµ»»¸™ÀŸãZÕ¸€½zÅb¡€§Ä(jîÕéÓ¶lYDIl%ŽJF²\G<>“HŽ£“‰þ"NÁ¼i“kȚͦ‘©kifúü¾[²e:b*úÓ2ò&ÝTrhÝŠz|I©$“JS°NâB‘³…e¢“ÀV•o ógÿÓñ'寑|ñùæu´òý´—ó´³ «¹™^Œ$Ïé«?ZÅwÛ¶ãè_•ô?XúËéwœy#"·ÆËcRιóÊ>RÕüÃõË,\Ç,öñ=ÉGœC4q©V÷aÓÇ·QòëDÐ5o0O4D"W¶‰®g¬‰H‘•K#(Ø°Ã/ͯËï5yWQŽËóBûÓÔaÈo]Œ« ؇‡ÒZч˜ÌžS’ÂÎ;Írý¯nÙHõ¤¶¯#¡Úœ°—Z°Õ ’AæpÞP4M0%\–6Œ5¨öë€î-çµ”År…u9W˜-¼ï£h°yÚûHš ôµº“€ä¤ú`•äXU†Å€®q¯ÍË_0jz`ºžÂh!¼ô¾¯y!ZBñ²ºòX›Ý< {ôÂVFP¥…V½ÇOá‰á·äöƒå0j—ë¬0Ev“J Gf'“TÇö܆ü·ò”®¯nÿÄÑ%ÍõªÅõiC´Q8”–i–Œ”©íQ‚,ld¾JÕ,ª‘Ë"ÅË•z3•_Ç0 þ;bÞfò­–•-ÃhÜßLIJý{j +91ý (|r{èÛ›k–xaø#˜íÍØFcO楎 ñ²7§®ÛºÒsdûò‹Ë¾bòŒ÷÷úý”ú|W0,ŠãŒ‹’©ŒKG +A·ZŒ=òŸ”à½Ôuèd²2¥c¸*¤õ$)¹=~Ÿ:âHÑÉ#C%AFJ2ž›××›9šµû íVêîÕ}.Ú0U”ï_œîÌ=:h¤–k¤¶Yex³;6­Eiѱk›iwzd—í£×uðú|(¯$®ŠWÕ ì»Õ½¶ß6z[OüƒòF£§hþvµ³_®Yo1ù^6u´eµ’ð…‘¢5æªÌ+Aʇ–HuÉmU±Ö|½c#Zs2ùË\¤1^; +9‰®XQ‘¹àÝ :ƒ°µ¹ŽmB +F°¹7Zz1WŠ6 VŒÊK8Ñ»Žû➘xÚU`8ŸŠ:€hzq©©ÎuæÉŸ9Ùë‰'•4ï_OÔîè‚Úd’'V«Í++éïÈì|s™^~^ùçAÖ½/'i‰5–«+Ë¢IÀx]xEf¹tpâ0~&Û`9Wl-hfID,„Iµ›ž[ŠxÖ»byÔ´ý+ó+ÎÚž]ó½²h÷èâ)­ÒÒ“Ï$¨óû¢üWÄ9·^‹¥h~yów—ÿEù‘¿E_—jÛ 8ý^Q)´¼›ƒ +ž©@GÅñuÄÆy9´kt~ˆc^¤täÍœGËZLú÷™ ÑQ!XU'šìV!$‰oNk¬j]‡@»ûg×.5KÎÚ'–äh!O5äDÂ&š88‰`¤©25G4?N%›:ÿ”N‡ù3ç¹Ö/HÐncŠâþÎî’„³F¤#ƒ!àÛƒÞ”5]³¨y>}7ò›\ŽËQÔ¦—H™®¬®b%êíÁG 2À£{u¦/dÑúñÅrü-ÝÓÖjrâ7¸÷* 4Ë^<‡-…w4®Ø¥î•äß+y³YÔÚîÚ[M`›ýêGX#’Âä4 ‚áI*M8}£M«¸É±¶°òÞ«zîвêך\ÄúgêÓPSj’¬iÇb@öÁ:–-õͲ8x¢ýä9‰ cû¹‘ 4þ8é‘c•Ñš‚x=ä½ûŒó/šgÒ.u«É4½;vh JW¯Å¿NÙæÎ?Éí+óPµ-+m29G3+q”D$ä’Áº|^Ý°¿„ß @‚´©=+¿¾yÛÏßþWòÝå—˜ü­Í,ïo ¦¦ðÄÅøŠ°£}ªm×6lþ\ùSÖ¯ìüÇq¦<þ]³¹·m^rn® ´Z†qÄA*iûòGòÓV±Ô¬µ)-gÔ<«c,?[¿y¤ýÚ3~ðw@±‰S‘>»6wί>yKOòDv‹ªAqz4²kXx“iÄ’®:-ONF»g¢¿7?0<»¤ùléiyÝôœ ›¤AÕ’²ñ~€ƒá4Ö£{# È”2€A¨'¡§Có͵M'FüÐü—³óE•5­.([SÕ¯Þâ6xà‹Ñ0‰es‹á‘ §# +õŸ0iš—ål>l°X÷KŠ9u ›ù¤†Þh’..«q10ð5~Í +ÔàÝúI,1Ép D3ÜÄDª¼B–©Eù qæ౫q­¹  óî¡«išÉ·Iš+V…8;ÎX©4ÞŒ½6Û<Ê¿ó—ó‹:¬©§­ÚiW¨>«(ežàñ;2† +è¶fV +*(H¯ÄkÔÔŸÃ’95"Ûiš[ZºI42,’ ©Œ¯Å_Ýš§üšd¼ÎUÎ'ykM³H¼×f•*c<%VTb$lÔ-â£ëE(ÌÌ~Ð*"“÷ ÙÓ<ñùù_æ-Zh-üwº•êª]µô·0Û[pZ"‡•Uh¥?y&±ÿ9Óÿ8§­XàùÏV··l‹q-ø¿X Œ5QRG‹…’F»²Òíí![[佺˜‚â5’4„Sì–™R¤“Ûmºå°P1;+·¶ùÈnt]>×UŠµ=>êÛšI=µ¶¡FA·!"0h ÜzcfJQº{ÓÅÍ*¼C9 + ²¢‚|Yˆé8Ð*@ößo×Í«oÌ I¼±é=“›ý“s8’MhÄ‚A¡=6Æy×Ëmö¹w£AVò43Kx걪¿×püº}c]81J†§R¦¢¿<Ù–ÚK}i" ¯©^C—XëN•ßîÎ/ÿ9ù¯¤~O~\kzΗ:.· ¤‰bÁ=CÜÈVöJ‚,yvY°¼ ½Nî•iç·,jÌÇ­IÏ’Vv~xüâóÒÛÀ%Ö¼Á­NI'w‘Ø–$Ÿ+ôc™ÙË;±,Û’w,IÜ“›:‡–,¼­äCC×ujj,‰-õ‹= ˆ>Ø^'¢ö®ç>¡Î9ÿÎ.y[þq÷JÐ<ըض£¬¸µ—ÌaîR/¬!PóC2…ศ xŒÜ +íN-^„··Q›;§™?ç&-¿4¼ßg}£yZmfóJ´ŽÆÂêäÿ¥ tv&Gôc@@OÅâǦzÏRüØ°óG˜mu3ËrjWv°²YÉ"3K¹~R;qP7"œTTS©­0ËVÕ-µ’Ë!‚%‚¤hÕʧÙæ7§j’Ê8½Ýä׆#1äaaF¢†â› +•´jiAÐ []óVŸml¾mµ¶‚â눒VXrÉ´,P(ÀºíÛoüÍg¬ºòElÓBž«9…br€ð +Y•~  Ìõ\-E¤ÖŠ*i÷~³ˆcü¿æOÈß1zjó´ko#É%¬’È·`iI $«¢:%*y1 }œÚ˜?,üÛm›5´Y.#™’#©, +å¨$qÈ´ä@MÁ6Ö·7~”óz’LÀíÉ‚‚hÚµ5#§\´ +XGìÓ·uï\Æ”ëßç6?ËO/éžP±Ó|ë©ÚkvÖÂU–Ýc’7Ž^\bxÝJòSbzgBÓ¿,´½;@‚ßÍ:ŒZµ¼ +ÑÜAmŒ³hÂA¦ÙKº³(¨AÉý…@¯Þs`Ÿ"y7Wò/˜oìnê43ýD»•á$·˜7(k©*úM@k½0v“å‰|±ª2óÓ-½+«ê‚Е+,@/9Bµ#Ç|nl†ÿÎx꺞¤þF‡RÔ—R[DÕ£²’°[f’Ùã a‘ÏF§Å½Aú>~ÿÏí&¹ùS‘ÜÝ‹ÊIæÇ‚U-!“ôAU¤dý“U©ëLwyuu tþ§¤¬#rC0VbÜIù‰;øãäšYV5•‹׌`šñRŨ>’NyC>_`lfZ€køW6øs¢ÛEwlð´HÒ‡å;²U¨Ç©éJí›,Û®l´ñ¼ÚAÊk~îv·¡ð íLÙKN§6é‘Z k›•‘ݹ,p(QÈ·· ßÍþ}¶o}¿ Øô4À¯§r8+˜X•;ʪIéÐŽ¹²éO˜ÍƒžXmýOŠXØÞP’ ~%ßØwÍ•_¿6Å4 `~\Ã9 ÏÀ€Š íZfÇrc»™°YÕ/Þd–æẖü>« +9¨¨5B¬h(ü3e) Šm›¯êÆYkïa'¯j«¤lÜUøÕJSâ¡aF&„í·òŒØ½œ\\$SËè£W”œKñ 4 ]ÍNÙ?üªü¨—ó'R–ÒçSF‚ ­:f ¬ÕUªÔ;ïúŽ:ûVU Öv*¼¤I)B7߉¯LØ!ⶴ¹ õˆ +¶üOYb¬+×~${g¬¿+¿ç<ªon®4»äm7Ë© 3OtÐEyx«)y(³ºâ¬í'à’)ÈGu.¡87ªÒÛDNbŠ1"ij¢îi_£6 ò²«$t<Ç ¨/¿#ô +žùÉ¿;¿ç%5%Ö_ËFºŽãD´Šßê÷RÇ\›¨€_ZYU˜@!$%@ +`ÉeKûXïeŽÖUšÞÖÆ2òŒŽo¿¨@ |NßO\Ø¢i›C×Ôgx.4¬OÂU¸¿¥ Æ•¡Î}ä?É¿ÍÌMoEó&­å}jïE×î;Muìnc°¾1Éè² öÒq*XrâEëDlm´»Æ³†òåtøž^7ò$’¢%T1D¬IU5§›­og%ÉA𣅓ᓈõx±*áÇ §(F{È.«ÿ8ù®]7ü¹;kö¶º]¤61Ëum&›ú8[Á HZüº4ÒÕ‰]WtqÖ£y¨ksZKõƒ}$°$‘¢Æ“ÀýÕ¡ j°¯-þÐ'6{þpóó Ï¿—ßšÞHм٢ˤy/óZ‰e{ûGO—P¶¸g¶ž9.c"‘M?9?hƒ¸\ö¯äŸæŸô_ÌÍÊþwÐn¼¯§y¥µ;hä¸Pl.o­ÄRÄñMOMV2¨MY¼ØÝ&ÏSÓ¼Ã&Ÿ{[ û6’›KÅhäY-Éå #£"²P!^\…˜*Áä¶Ô"©²H¼½@h¥Oí- ØŽ”®vÏùÈ-/Îß‘Qy¸yÌ1ëþBÕ¯õï6Iä}B/©\è7Hµú¹‰Ìi,ÍHÅ@.Yó°ë™¼¦úÜúF´ú†‰xoµ(4 ‡Kkw$,Á.‡9šn%b‚#û*BñU/ÔA·¸¸µ†B!H=" +W bµ W°©§âv +™à·‘Œ ,žš2Ú€Ð1NN‘Û“SÇ<ãùGæKý[ÍúÇç‡æ—Ç™Øßiz[[½Çèèâi}SQ07hàŒ(‰?b\ç¾Só'›uÛ;óQÑb»½“S‡K´†)mâ6z\Ò¯ÆÁ׿#ñ +o›LÕo4{Ë]KOÅwc4w6rü,±É ƒ«jª~Žø•äúuí¾¡jBÍm"M 2,Š6 ¤«†V ÷Ï>yþëOÔ<é©Úiˆô´n:,?[kpy¢$ P#“~ó÷åF‹æ8/-¼³ÕSŽa{¦õR9VæIæ,´-Iø¶ûmNä¿êöóiêÝR)m[ÓIp=I½Rx˜â!v@(Ô,w©Û¢91Ígué\ÅéËx¥R¥Me" ‚7>)ùÍ_˜?ó¿˜Z·”õ¬h:•´Ía«YÍ"[µµÄOÅœ–YSe¨®êTí]³]iÒ[‹˜î© Ôäµ!½EdbŽ h6=zæÏOÎþq¯åÿæ~•å?5kÖÚw“¼íwgiæ òm¢“Jõcš.b¹ªAéÿzÄ€‰¹€gÛÈ/9>Ÿäï#ëzÌÌ,üå¦éwzÌœA y{g#;¡Q)$"CN$쎂 Ôm-¯¸Ç ˜~²Ã•Dräž]½)‚4èífÔ- ¾”Ãm$±¥ÌÊ)0 Ààož¼ÿœÕÒ j÷ÞV—SÒ/îì¯&Óõ ¨¬®´kë+kKé­kqõidŽDD/ ÁA®uoÍ‹9†•u{¤M-­ïÕ.¦‹PI•–8ã“Ñfª+À)¨ê(E5eÓmM³òý›Y\Å?­iæO¬M¸J% V%ÄëUhøš–¯*§=zÓK±Ž8ôû[‘É«kªJÜ"¹‰j¬\Nü©ñ,„mÓ}¾YYC%ç x&"±¨™dWºSÌ×: ;ÑEv­+Ÿ1üÉä¿Íï4þe­÷“5EÒ¼·¨M …þ«c •¢‰U~¾³ÝÛ:1.d~|U(Ü9q#b fš{†Šâê°ÜL{Š»«¸$z¬æMÅw>8IžüÑ¿çÿ*uÛÍòöóÉ°ÙyŽmŸñ†‘«êl÷a@Y£·º2Ú2¸&^p¤vúä¿ùÆïËF²ÐáÑã„k,rjPKw y„!$š6i¥ª±^›ïÓáylÙ#›‰~Ehâ¨,²!ܽxž»ãŠå6$TFÞm/Î/ËO7ÿÎùjîÌâ Z’ÖËÍÞ–ØßKoq4ÖÒS `ªé›vgªHË'AyççV™ Î%y2ÿó^O4Ý[yVØüÍå™m"š-{QôÙ,RÙ$(a]·¢Ãœ¬hä'—.nô›ÝrÁ¸éÖ";\É.Ï+úa Wpg*MOˈg*X…ÖÆêKI¯bF6ÐÄÓ*’¡TîÇ‹ô i@p›þqÇþrßó'ÈwÞh“òÇòúßQÖuÈm4ý+XŠ}Nå´(bõ˜+5Ä—nc!»²mÚ4Û”Î/ÿÎoyûó/ôªyWò›Q³—Ìw66z6½Þß鶰˜ï®.Vì°ÅëÂ0\,¬]PÖ'O/ꎋoy}§\4.Õ–2HÌìU54? u¯ž hÚÞ« Î׺DÆ O2…V¥8?´ ýMù‰ùùÏù©¥ß~xk³þ–“^SyßÕ>¦·ko ‰šÒd- oEê´H…©Jó5üåÿœ5?ó‘>QÕuï0ßÍuæmB6ú”·1Ü[Aë%«$sEj$¤QÚpܺ©í4YîuÒÖé5š-4ÿD¼’Ë-«°eÜÕ@F=½ðvóÍ,pÃ<“±FªK9c@ ÍNÙæKÛ+½6æKKØž ’á‘YT*W¡>/ùãÊ:×凟5_'k¼–w%´«4Ms…¾àãì°¡£ Á ƒ¹Ó®´]BâÏWµ{K»ás§Ü#G"°©Î!oÿ JŠ;™-<±}8Я#f’ÓïäS,¬~.3Hò©ê*SµÑk(¬Ê(I$¢@ˆúŠŠC8^dh*hMkìuíKBo©é:Ì«Ökibµ!Šq·©V~B½}ýó¥yŽïÍš?“5Ð缎÷˜@LÓÙM¹ «E& TÔщâ([–$¤€ÀoÄÖ‡ÛlØI§^Ö6†òyÏ-FV –f; +5NôÂ= Mó>l÷š¦¸×ÏŒÂoNÙgøs§¨æ'ŒÑœž_ î1Y–?YÉ*¢­Hâ«*T(,w4­OŽýö ¶•N¥Ì¢ÜCimžwú¼rL»úÌàîA­ê2;§êðêY5ÄzÝý­Ä°^^þðÀ§QŠi}$–6ýó#)È…RW¶5't†H€ÔKV +*-zTS×ï5د—,u+Û¨mtí.]jæ#-ÜV#’”êB¡‰@NàÑ{’Î¥D¾m´¶¸òDw0G4°¾“qE[[…²„›™e14‚%!•¬ÒP +À]íݤ†f²´Khgô‘±‘âôÔ ͘Žm¿-¼Fl9Ôü…æMÉurÎ'‚vŽk½n Û=J,8–k 'ílCü[ôw®þ[kN^ÑaÕ߃$L·¢I- ³Ä#T +m¼)ó59 +*§Â»!,: É$î{æ"˜VRF‚)•q5¼ÍÀ+ã*|<™]¨E +:a:ê¼t¯©YÙÅ$ZslÊ[›½\¸epß¡"„Ú¤0€ ¯MÅ{|ØÍÆêöú¨I-¼2H°G(¨±ÅÂ)Œ±ZT|@“û]ð—NÑl5/1¥™b¶äK.¡ +Ò›UtæB¯óWŽÕðÍ›;–µãü¼×.äÓŽ–×Ó&¦Ú̳ÁqÅÀh'a,ªÄ,Í+qB@\ëÚ.»Ä?à­BGM¶Ò Þ–©õ(¸]ÂòÝ ‘¸“ËâÀ­1í+ʱ¤®JÄ¥"xŠ— öäÄý9°‹Ë~CÓu­oͧÖt æx´é®Ÿu-õóHD®À‘Nl\.ôKTÑô›¯-ë soúFÝ'‡Nµ´¿¹6²O<±¬Œ«!¢9ø…{´¦—Æ1¨GÄOøÇQ¹%iZPŠÛ%W·^A½×/“Ë¿—šmž›aoo¦k_¶Õ®¥¹õmäáúFÎc?ÆÒ­dç@&nB-þ'Ó¿2¼Û«ÛXèÉ éÙh×vö’9¸°—N yÕ´–m*ìÁ0xÔ=kG¥Ü\=Ëú®Š´Xã*ä.ç¹Üï–ÍÈÖ€lÛtÎ5ç//[èZî£åë ÷J—2ZØ›˜DsANU=^BªÜJ†S¸;v¦:î-OJó&­¾K(íîf>·$Ž]FyÙš¤€ÓÓ*H!O*ŽD÷K+?ÿÔð×å¿øÿÊfO<ù-ÒÞ}<–X\Ç#<™UUMEã=Ÿk/œ|½-ßšôŠîÊÛŒW1«”¹å‚pp@â:‘áŸ1|§æÍwÉz›kzâÙÞMÁ”,¬•ø”ñ¨¦|¸ÑuÝgË—ëªh7²Ø]¢² íÜÆÜ$R®¦U£±:ó§æ—˜üÍe¯ùÊÎ3-À/W&?MÑJÕQB^ÝòUæß>ÜCs¦[_@-§™Vx¢š›Õ€âzŠaŸ™¿0ï<Õ©Zßj‘2Z°o«¢&U5*T(»ãum^û[¾}CQeiŸ¯§p ²¤JªÈd‹Î?œÿ—¾dü¼›E}:h®õ/Bƒ)=)ƒ1AÍy‡j‹k¾~òî­åé­%ƒ„× ðÈÈïïC݇p(0¦æ/,F»ýÙË¿2t¿&èQéOå½BÞðÏúÁµ¢4jyŘÔ×!ןáõc£˜n£#„Þˆ‰€Pyñ$ŠžÞØPÓã±1”¼‚èJ ÿGfb›rQC¿¾4Šw®´º¿rØN+XÑØd£ÂŽ0ø…i¶j—pØéïsõŸE`¬…JªÖœéQíˆssBãáìwØvøfÎËùwçkÿÌ )ôÛèPKf¦4¿’çцid@Š„) Ý5Ûl0òטõ=i÷:{Š±F¢ËT–ä„–[…æ¡Uz» ëµ7Å.®á¹·µaôåY$0ã .]OäAß|ÛPg—õt‘/¤Žá8Èùƒ×•jGlñ·üäŽϓ|’<Åib#Ôlo-¯î’Ô˜ýfµÕˆý²zSèÀÙ°fKi•á,$_ˆqØŠwÏ#¿ç(-5/Ì %ë"KNü«Ç!‰—¡âÀ”SÛpsfΦ?>¼û«éZ~êŒb%º·EK™…ry”TµEIêzœ÷‡—¼ý®êð[Û­àD‹F…Ái9 +ò$(=GŽGæmM8‹UH&àc’æÝ=9å +óu݉¥O|¾m·jmQ·êɯ—?1ï-?-µ/.Iu>ªA Ö—~¤ÈŠ¤Ä=Ɔ eÜNy»ÌÃËžOÔt¡rúd¦òÞöÃTä=’ý&ÜÖ«È04©;W‰§H¢ ‹5«€’ŠÑ?i=A?³(PˆïsË?Þzÿœ‚Òô¯ÉýbÚM:çKG¾Õµû+Ú>§$Raæa +¢,ãö> ÷Á>KüÃóæÍÒþ^kPÍ–µÕî©gzc"±Å“n¨Ái/#¿ÅA‡:÷œ&ó§iof‘Ý@Y¯ï“‰’öNL°³¢…#n^½pçVójš6™¥¥„VòÙ«‹Ûô«M}!‘Ìo)jÓÓ„`-NùÁµÊ_<éº\Þsi#±m-¤žÜz²%Ýa&²F8¯¯]ª¬BÀïôÈæg5¾ºó%ÿûŸ×../’ftúÕIJIÉ©Bšô¯Lá—^nóT·‘ù¿ÌBêÖÓ—½¹–n3MƆŽàT€Ã§\Ù°ƾïl¶×ˆ÷~êS9ôÄ4ûí¿zç§ÿ,ÿ1´Ì.ZY’’j6q%.Ö@C…UZ·cQQ†âî×TÒáÓ¦ONîÓ‘†íå3úB>#rÛ×—Ñ››¿^§]Ú‚ Ÿó8§šlõ;Ù ŒÂ‰=EV2–$5kÒ„aT°Ë†)Æ㪰¡üs`ô²†k{yàbZ@D‰@H$n+Ðøäu<›%µ¤RšæGæ·´aU $ÓÓŽ„oÍÃÈ_šú‹ä‹o/Ëkx/42Ú‹^2AvÒ†ûQòRš7å“o*ù¯ËÚ_–m´öí¡ ?}…mŸÖWbÍ*joZbñ¥£Ä¼¤u—•R½j kÚ”úsg×õxí¯8´jÒ +þà0ašü,B ?lñ?üä—üæ’.®®ü±¡À¾jÖÒ0ûÕ†H­Ã±S „j£Ç ƒC› î|Áæ¿0XE¢Muq¦Ùr– =¥‘­mé±dŠ¼€Ò g‘o<ÿùùÿ9-z<¹ey©Í¢Z)x´xæž[1ö9¬HJ¶cŒ²˜Ä%ÉI`•ùgÎPj™šÊ´×—S[*ªq)…BÒ`Á‡&b¦ÇfÁšN“y¬ßǧY!y^´&”í÷|ñk++Bå-,ãie“df'À‹Iùuåùÿ75›6D:f›uqµ´ˆd‚a€®Xªšl‹µvížÌÕ|«¡ëwÔ-mZ6Ótû¹X7ïQ»ÍYÎÕ~µq È ­ÜÖ¤80»FD©éÈ8’>$©âvÜWlNU #¢ÖŠH‡ =ÅMӇߗÚæ—åïÌ?0ÛÝy]`ÔB•†ÂݸŠdj(úcšƒñp¢Š>ò‰Óü¿æÍZ&òü6—¨…m´Ëb¶ë +ÆÛ‰W‹-jæP†A9·x˜ËR‚*üúJVµí¥ C|ÁçO0Ý~hÜišúÝšÞÅpš+õ5FpȔѪñðÈßž<Ù¨ÞùÖM?J…îÏ£M$-¤Ò˜„®J­ETŠ‡ÇÆ™ŸÖ·i %‘ÂdÜt!¸°ö#¡î3d‡óãGòÆ·o'œ–Ò(걬7'Ë¡DÍzÓ±¡Š@±zÞ‰CêrR@#âjáßœ´Í"îX<Íqe–µšãKP’. ²2¡ýøŽ>F ŸTÒ£â5Åž;[¬]DE´Hj–ìÜÜ–è«Ò ¤ô'­±RK(â;/\“Gù‘où7ù[¥0yZ×Y¸óy§ßýw`8GXU)9¡åPà¯R´ ÃmÌù}äë{½j;}FMfY¯tù‚-¤¶q‰*9™I£Õ{ŠP`Û/ÑÖúL·Z•˜¹úÌ »Ç?£,Mr'Rµuû©ß¡Xd›11h vÜIvuÙóÇþÆm+òZòo?ø§ÐbÜœýUm‡JÔ|ñG²¸ŽÆE–O$°FÕêð¬lâžÂUË(á„ J«v%hHú*3€gÍlC+ŠÄUE}†ý;áå—“µ½CËrùžÒ{8§k^Aó‘ÂfY£ŽB¬]hR´4ëß6Q?O|'žÞ[i r­ïØûƒáƒnnd–æW¶Ÿ×i« RhÍ •Ú»€}†ù³q55ž!¼qt÷v„È»&Ãb\¥õÍš´#Ƕl\´6÷Ñ3¡VŒF¡–Cd£Hr9š’ƽsf èOsôý9±¢V)ay34…‰§¨Ú’„ãLÙ€¯ŽÝ3bÑCpLQ—ŽXÏîbfÛ4©ëZfÌTˆß¸ï÷`ˆ4ëû•[ÛÉ"Žj„­G]úbWWv§ØXÞµhžHÖEb:HaôŒØªÆYŠ(« +Ž$ü@^àgNòoåYÕ´[Yom 7—24ÑÜzà bGåR-b„×l×÷Ð$Æ;8ÐBV€7˜þ\‰]‡ßß6N¿.ÿ'2?2îD^Còåî³8•acm Ž‘räõ%•HÁT4åö»öGäwüá7˜üõ ùvïÉ\Z Yã¹Õõ²=D··[Xï!œµÄÊëé–¿k“T`3Ëç^’ÎÏB”Ü_Γ½äŽ q±E–bÌʧª¨›“ÐE†ª\‹=6Ýîg!ÜE–n1©v4‚‚O¶Oç%¿çuïùÇÒ´Ÿ5kP_jº„—‚Ú >-¨ ²ýtð.ÿ«GÃáížý#þs·Ê~bÿœ[ü€Òô_)j?_Õ|Í6­¥ßO ²-ºé’[´·w Ì1IhB +=2²â—jš ½ô6“‰ìµö«xª­ëAi5­ÃuB@5âFüN÷{§ÜX·ï8Éy#Žâ2'h›‹qa·ñ¡¸Î#™,šTÚ±§¦’Çn Ÿˆ³«9`;€‡ýažLÿœLÿœ@²üçÓô¿6y†ðEcªÅ§z2A#$Q*I4³Õ$_P R(Åk…Ð )nl☺'K™CT¨æw)ÙFý06Mu/Í `é~H¸:ì¶@ 4Wú؆ÝEM,Á>*šqZoß®}qQŒè‰¡kV“[i6«w–LÂh"x¤W¶ zªá«°múScÈâëWÐ'òu¦—6› Ο,´Ôâ‘åkËYÇ%‰ã,cŒÄü‰u~JRŸM=6AbDÑK«-Ä0Ï:¯#+†ÝGîÊŽ?ÊztÛ8-×寖ü©Ûy£B¶y5¤–æ©È¯=Ô5X(¶j$ ;»í­ï¯=Ie±¾Ñ]¨ÈÈx¿æ3¹Ù~fhWöPØùßB¹³¹³t¿±¹Ô´ù!‚yÖ“;ÅrÀ|EÛ­jµÞ¸Æ‘š5ˆD$‚C|T­X +žúf®ÔÈÏ”¯¿ç$ç&lµï)~_"_hièG¯kzœÖ(4›)ÝÙ-¥¹¾¤®¨«@ÙèŸN#¤êÞ~üÃmz èÜZ=Ï ³Ý+ÄM— âEE&FÞœº©5ò¯µÈ±ß¯Ì×6s¯?~_~cÎ9ùÖãÉ~p²[3¬q‹ÎAo­n­î­Õà¿‚i9Û3@OÚCPÅ“!°¯ÉúWž,5mGA×`‚ÜÚL×úmÃË$z}Äq giU#&9G( §.\hT¡¤ÞiñC-ܽ«Öæ+¶f†9Ö8ÔÏHB5`Œ´jñØ’U¸µžÕ•gZsPèÃue©R6;‚6î3‘Øió\ÝršæD¶‘¸Ýê,^©d>«3"žB¤UèkNµÉ Ç™ttïFU³…&h/¦_VèÇ+[”kPüZbÒ°- V„UíÏ—<Á«Ï{ehž]±æ‰g¢Ù¤º„Õ1·†à‚õ”~ðÉ-~1ÁX(\Kç‡zד<çq=Ï›|Á§Ý%Œ¯®µYb{x]dwàGR¡¤+H×8çÊßÎoùÆÌÝgó‡\ü÷üÚ°˜ySV¾¼ó›K«[ýKM–᥊ÍÝ4»[¥%ûAM)€¯5Kï4ë÷ÚÞ©éÜ_êSO}zÁRÙZWf¸™ÔD4äkEUâ+°­ÝÔ××s^ÜÓ\;Ë)UTÜ–4T@©è0¬y™RíÛê6âÚêF–îÍ#A¿2‘ÕIˆ(øW…ñΑåùùUç“üÕ¥[jšMž¡ Þ›w¼ÒžuŽ=2‰O(?u }H#P´øQvð¦)owšÏs¥Ã}Ï%µŽîK¤áŒ\Æô¡ý¢ßd +MRΣçßùȽ_óÉú/åΙ¦ê:u½œKgoj<è_Ú³Ëv³·¥o|dXƒ@§û?uÿŸ€yKþr?I½ü§´[ßËÍo[hÖZ­•üW–÷+urJ›14a’¢!ÍÑU‘¸Ž[–PP1'Ñ™,ŽDy©)P’©ªaPÅ6>“–ÍÈJqÛ¿{ç2‹E’i—ê×v‘La–R¨Ec.Å\òªŽF¿=²1äoËŸÎ-ù/O׿$ã³¹[©¯ï/¼»ª^G …¯ Šâͧ,#år#IyÕHôÊ©›˜ø<¹®OåÓ}ags4NZæéE›[‡¼sDÆ¿ü*¦•¯jÏIÿÎ?ÿÎV~`èÖ¶Ö>dò¯øûRÐb¸µò½ì·Ú•…æ› [˜Þ.:u>±«3p•^•ížÀ²üàÖl$ÓaòŸ—.üÍ,æxMÅÁ–;›Eh¤†Þ`ÕKBå# +E¡f.•$òø &”â@&”;ô­1Ѻ `Ñ«ò¹|'Äq#žr?ÎïÍÍÌGÓóíõìšy½–ëKÒÝ$ú¤Nè’“‰cÑMwˆÛö¼ƒÿ9ߥùãó[]ü¸òWæœ_@Ð5mUd—IšÕ}fcn'e¶õ'·¸I5‘ãñZÊÊkÙí,’æÅÁb­<Â(¡$Ñ™ÙÈ ²ƒî)ßlmM8×a¸<öüûÃXüŸòoå–«w¨jùY¼×læÕuF§[…Òížh h f1<Ò‡ä90G=¹ÿ8Ëä_ËŸË#Úhú•}i&/è9®®–XÖæM3 +ÍAÜrîSv©fjüU3MÌ>L¶²Ð´«O) ­ ²ÞëÖÚ•ÔãUž)©%Ò¬ŒÑüñˆ…Ûf®ù!µÖü«‡§Øþ‚aªÛݵÕÞ»õÉ KÀ·¢Æ¨¼I¯Û,ßl-L;?ç4¿%¿/lõ‡òΟ{曶³ŸFÒü«%¨±·´·» p׫¨úr·¤$ V4U#•¢î:.·ù¡åý/YZ³VÝÄ<ím&QnVÖ>"IcrŒc \¨¯Â¬@¢“ˆùbë\ó›nô¯Ë}2ç뺢K¥‚ó»Kxcõ¤1€V`±sà­ð€Bö*û5ZÚkµ×–-?GYßÆöÐ@´gŠ*£†/ªÊÅ£ x·Ãº«Ÿ5|Çæ7óm¾³¨jÚTR–îÚäêÑ´æêÖÙ!’µ1¤‹‰˜ÇÊFOQYyQŠŸ•ßóž>Rü«üÉóOæ›èšSÁù‰ä ´[ß5ù¡4ë«T’ÖM:ãÔ‚PúŠU2=º¬ÂÆŒF9–Eâeç,[ig^òòþ±þ#òëA­jºå¼úv¤‘?® »Ó™§X¸Ïq™ù1b}XÒ2„¹¶mk§#݉’ãô¨y½Xá +ÈДçéqfe<ŠòR´4ÊòTÑ=¤šp½ki.½XØzK:¢²(ÃsðPFãmö='þ}óù“¢ëŸ•Pùß6¬J÷Š–”1¿¥º®ïDæ#aZJ÷ç§Äé+/ +¿"ªh(Ä)ÚÚ›n~š`,0Õ"·Ú_"C }`Ìdˆ¤±3!6ìIˆ Ó챧\ôÏ™!k¨¥¾¤H°´|øÆ@ºi8:J߉ °å½<)ˆ€NÀW¿Ý› mlàôVSirŽxd•‰‘Ñ6h )¹ä×s×9Ç›|ŠͪZÚ%ôIf±\é×rË,ëbf·$<~™¿Ä•nšò&‹NëämKZ·ò”syO^°²ÔµjM3T»(·ŸUx좖 gIÂpAÏ›r=~4¢×e-Ñm`º£–xæc•$ +¡ÝÏíJöÜ ±° ­zSÃ%>^ü¾ó'”ÿ3ï|¥ç¯*Úé±ëH·ú¶­|×0iú~“$2,·SYO,K<Öª%ûðZñÿÈ>^ów—¼Ùq§_i@/ä}KWó íäô´Šò)Zv[Æd1¼±za•#.J®û$bq;Er¾„¥‡2ã‚ nµ@µî:}Ù~™äýÙ¨°#ˆ=Èœóõ¯5ÉçÕ­t2÷YÓ¬^öQ«ZXÝOÓí\x†4,«0‚ß®ýŽ„xn“)f,¿Á˜¨ §°¦æ˜ÜØÝ[ÙÍl`§QÍ^H@8LꦬܸW–ç§#é:ö–Éy0–ä\[ kȸ w{^3EëÆÊô<[⌠BñîÒ +’¬(FÄ æÎæŸÌmċ¢ÙÜÅzM»[XZHë-ò[<œÚ9/DQË"—ve ¿“ócGÓôkwÙ}P¥¥ž‹rÏõ«_P” 3ŸRvFugCxî3fÂËÌ-;ÊÖ¿–u½0ÜZëF)àºúÐy-#×XÝ)‚ª²•f]»íL‘YjZM¾—v÷çÕåF7ÿ +¤WÈ© „rR@ îi×/‹.â©°&´†l욶äO+[[ŸÊkëßÌ/1ëPA2ùvËI¹]«s¦Ü°–î#!ØÖ ¦áߘŸš>R·Ô.|•k}ú'ÌrŠæ9* +ÉéÑfâc£»tÀ8"d/+ô݈5û²'¢ùÂçÊ–óÚ^êQ}aä +œåSÊub’ ¯ÄNÇzW¦lÙß¿*tŸ'ù‡É72êoR¤Ž³\Ïsn²FªªÃŒr2ÈAìP×=Mä[.ùŸ@)~ª¶÷K(šY¤Ô‰Db…U¨Çâ¥8÷­p}ž‘5ü qnñ*ÇQ(–âÛ•*IXƒÒ¢¹a )aJ/ZþšœùO®y«Ëúåï“tK˜ÆåžæK™O ±ó?ñ‚X2‚­QQí‰þXÏ©ùSÖòkê +öÑ,®/%ÜqYI1UŠ¸ã÷3ÛYˤMl¾¢Ì¯³27,BR ÔmÛ*»S9_æ·–µmÌO-åȾiÒÀØ2½T†FsŸÌ¬ìu«}Nê=E.hü€*GRÞ>Gi$gzrbKP*|Û6D¯ÝÂ5^H­!ãé)PGìÖ£¦x þs#ò_°×î¿=tk˜T<Ë5•´f€ÃpFx–$‚5ÜØ C–äµêãGþq_óŠ÷Ï~Q·¸ÕbyuhZ;GtB¾£Ä=C_„“›6z÷ò?þq‹Îwvò¼¾iÒDú}óHËo…¥Y¡·’ædrœêÈ)O†½è{×@ò˜/u ãÎZ5´–8å*ñÍ +¢GY8†øÑw­~UÃM#˺¾¹s…³Ë<ÂSn•¾Œ&á…SqÒ¸;Eеo0êéZ-«Þ]ʲɼB®ËM3=‘IηùŸù›ùK¢yNûJü¶ÕR×\ЮÓMlòÙÜÀÎd†hf–D%%Ú¥cåÆ£íq,Uó_æ‡"Ð/íü©¨zŽvÆâ8Ä–†d‘Ĩ]ÑÏ&ø•9oãJæ¾m:ÐFÚ4ÕnK2LArò6­ù1•t–6·šeÒ\ZÁı˜»ŒÉã±Øg—ÿç>|éäcþqV?-ÛÝ5†¡§ÜZÞé6ñ£t}qÉêò qI âhvœ‚ WÒ$ì9rþnôöÍœ6Þ6’NõvÆ›ç‚ç?6ü×ùmùƒ%•Æ§¥j1”Ô­#GwHK­n#U¥JøœÌTƒQ]Žl¦iÊ5Kî¤ÖòÏ73ËVDC Ì©*ä¾}pòÏæ¬Wzµ¦…çÕ_©J‘ 0¢–%€É ^]åʃo‚Öó뾶¢ãŠ‚íƒ3ÆŸGU­)\ÙÜ¿;¬?ç4?-ZCùg{u©ë¾¤Xd•¿G$b:?Âcä\·oP÷¯l*ÿœüäÿœiü¡Ð%ó­<÷"Ã%ª¼óÀy#*²Ô±§^Tü°×ÌÖ>NÓí£ƒA¹žòóÔýìÆDksZ‚DŒ“JWjƒï?A¥’Ed³½èÞÜ´«è4tý˜½%pj{¹éÞ»p¤KýKÖ6Q·¥»ÈÊÃrw4ëLùùæ?=ÿÎCÿÎ_êè~C°m#É‘M$RK8RKwp9NÌä°*B€£¾GpO'+l<óæt°×å{=1T™ïA¥iêdZV¿ç #;ÏüãGüàOå‹k±è˜ÐÍ©^';‹ëæ5´‹ácz~š¸ûtsZR‚¤fÍ/Ï•~fÿœyóæôÒb×<§¨:"[–õ!Ù“’Âb‘*°ã-Ñ£bŽ +²š2ˆ#ÿÎFyw˱¡IåÉy­>©B#1¬w(ž4%O%¡Øþ9Èÿçê¾RÑ4« ^y}уÃuúJ(châK¯Nݦå~4Q°'¦ûå2Æ2¯È°«€ÀyMúí¾VwùÃ/yž/%¾›¬k-¤y#Î2®«˜)©ÎöÑþém¥æuâÇÙ­4#Ò¿óíË?[ÎlœXˆËqŒ N|­æ i­–þ}6Ö÷ˆ¼¹³¯ÖÆ ”äO¿C†Z¤ÖW m5ýÅ…Øá%š‡•£¡Ø!xÃV´¡a±Î£¯þPh:Ÿå°‰m;K¶¸ÓíôÈž$1ÛÛÈ€$“;¢<±­73V¯¶{óÈ:KýNÙaf´³·6VútDQ ŒLrv°^¥Ÿ®ê$WÓZ[‚ ŽFô¹˜Ìà;%`:ïÖ¸ +éaR­°e„;zK! á+°b iÖƒ8çÖ‰'•ínt+m"ÂÎ-5c•n-Rå'~J«*ÄÍn¨ªENã9·æ'—àÐ,†—eeim “$ð ­åäÿ9l`f4þÝ$A#%C8/ÉêI©©+·M€ÄÉØ‘]÷ïœ-uÃ4÷^iŠítÍrÖKOÑi`¾˜uHÌ.\Z€7/²wHÎuæ×bÕ|Ï¥j6–ÓÛÛZC¦[BÿUõ$‰•eçP#R$­j\¥`I~\@áÄu Û¦Û×+%ºÿ™ÿ5¿2¡ÐíõhVí´©Œ-èCÄ’Þ”dõ˜q2à iÓ'Vߘvó¶•a%ö•5Ç Ë "ÀŽf¼ÜEw AG 7Åï5)ï¢'HùFÒ9™"D‘ÚJ͔ԦÕé¿Ž8ÈÌ‹¥’ZšV¦•=;â_ž·žµBÖ_>I]Ca½”VäRÚ9X,Qð,(‘ëÔõì +?5üÙæ[MJ]CÎgêvVzr¼Š5àÍp©Œ° cZu©ëØ%=ÕÅÊCÎY-ÐÅžˆ…ÚN#Û““ôå¼ÓJ±¤ŽÎ°¯•‰!±z-zLOÌä³Ë_–ß¾Wòm›í,î[ʺµœs\ÜiÇÔ1ÛÉÂFf@X– +‡¦i>[üå³òö‹­ÚX´¾\Ôl£{»­>G’ñ-¤%ý*TƒPs;üñÊ—Ñ[}eQÅ»1Õâ}2Û1Z«·L¯NOOÕâxW:W­+ãWUóÿåÍ•éü²ü²Q’3AŸÔÑ}QQµ_ôBÎÍVhøîM>*R»gT›Í~PÑì”ü•i(‹PˆCm<¡£P÷?¹æìW›-Üé탯#òÔ£XÏsq+CWB©$¬€S™© 5kðî6¯íc¥ÊWÐg`TsäÑé¸&¢¸Ï=~Xk‘þCÕ4M'Ì·¶q]%»êCêQÉoz“îÞܪÈ*7¨¡ãµf³ùvþRÐoâµÖ.”´J·VÝÇèÞ“AÁáà­º±ø]†ü†]ºëºE¼ñ¬òYCl^x–eŒÍn*9AnÔ©Zž•ÅRmBÆ)aŠg‚;¸Àž$¨–>A€uqPØçógæN§æxÛKÕÞ('³SKt~¬n qq0’Z‹ÖœOaœÃRüÒ¾ÔZm3\‚(¿FFÆ,˜Êž‘TIÄ}¢§c€®/ZkxmDQÄr§¦,^•,Ä’z}!Þwó½ç›<«åÍ6þÿë2èòê Ÿ cô"Ÿêîžüƒ°m»qé¾x_þ~®S@ü¡²k•”YÉæcº)ãr®“B¿"§nÔ÷Í%Ä­¦ÁjfVŠ9f‘-žhÒ,Aœž4!‚#N'a]Ü]ŒKo…Y˜-7€×Þ™ Ï`lnh7Zœ6³Á–“,‹=ÄðÆÛ|„wƒ +°COŽ}_ÿŸTÉ¡ÞÿÎ-ù»ËÚå…¾«oæË„ŸO»†7ãm?M©åĽ@ NÕ;Ó<ȶXÒî´ë]J$ÒÇÒÂI„ ¸’Ý¢š BVvMÍŵM)ü0zÛy{\ ÛAúð ñÌòIiĦ\ò‘jüW‰R¤·Ú\ìß™¿óƒŸóŠ~v°M&&ÏåÎnnn¤Ñ$¸hRD ¥da/ [áàWcQ°8w«?’µ«8SDÐî´MRN;„´i/cšéÇ÷iÄË,`qsZÈj)Ó|tŒŽjˆ` +‚H¨ï½Nv?ÈOùÂ_;ÿÎFXú¾Aó¯•`¼73Ú®‹}{¨D¬¹6¶–2-©æ?Ò,UøKÛ<©Ïž¿6uK½V?"yçÊ÷ÚKK¼º½¶¹– #$QÛ\Ú…O#]Á¥+‹ysÈ÷šüâÃDó6•3ÌË"ÛHóFÒ +ŠŸJH³»ª©j@¹—ùòÇQüǹM?CÕ´è5 fô"Ónæ–;™*¼ƒÆ‹ó^µãV$€7Îkù‘ùù³ù[}¬Çæ¿-Ý7E¼“O¹ó5¥¼·,“G)ˆúW覅)È0o…•\CüÛÿœqüêüÖµ='óÊ:Ž™1µ–²¹m™ qËÓƱ¼rðÔô§*Œ[Í—>ròíäžhÑnmíŒÑ†ÖŒ, ’…›’\( +‰"²¿R@®ù§ò÷ΞL’çüG£ÜÚ[[^O¦DÂæÊK«z#ŠàMÈRácðzœ÷t;õÈD^]Õ\ƲBмÅDQÉܹx¨RH5ØŒ!h?F¯×½U”4Mž¡*„ñ² ï]éM¼FG±ÁÛ`HîÃø““?)~QêzΧ¦[ÏñG{% ˆ®bE«êU§ÙØu>_4‘És-í‹…HHuõ™RbA­G&rÆ£ÄæÅ¡¶¯&`¡(âž»û õ6‰ÿ8ð4=ÎÒêÆÝä`G ¸žgyG0í'ˆêj Ú£ k›ù¥¸{ªŸRe£ØøP;ŒØdöÒXÛÇ{KÄ+pŒj´æ¤†¯Gsßlôw•?ç¡òög.µ"iQß\L‰§GmñÛ¯¬Û ÅJ×µ{uÀÍ‹!‰”‡‰B`ÀÒ”ñÍŸD¿çØ¿?–ÿ—Fó‹yóÏw—5 k¨.tÛ}rí,ÚÜ@ð™-™Ëzî®B˜ÀøTòZ~צ¿ç=,o<§}äÉ5›}&ëËú„ÚN•¦_O2ÝÙÀÛMf…ËËŠ(´ø‰7Ê<Ÿ®YX‰Î¡?Õý¢"P¾¥›0@ ’rp™ RÛŠ “ù#QÓô·¿¼»¾k9቞Ô|Ed>œ‰@Rre +â\–RaóòÌ.ù×WÑ´YJK Ã9¡< +Ov!ÏcHUŠŽL •>üëþ~I'—|áùgqå®2ϪA§jS[pÎñ]Ý,E"eŽ¿¼".&29QÁåºÍìrÊšr#C3gåXžVô,yqEåQ^U­záõËH}ÉcÝÖ¯ÀÏ@z“¹ ++þpò÷Kóßæ’?'5ë¨ôË;í]•oÖ)9Ï­„Éû¶á"¨ +kÈ°î8üúßó{ËòÚygò†x¡ƒWÓµ ¸î!–±KsÐ\ÝFèÎÕg‰â¸šÁX«48-Ì–6š½³ËnóÅ Ý°VYJÈB0U]ù +íNø·—­,oõý6ÇS2‹;›˜!»6ËÎq’*¿¦¦µ~$ñÎH|ïÿ9Ge©k—yóòêK?Ì9%·mcÌ:v§5œ~¥´T…£Òí Ž8ˆ^>¯¦Ô˜/* +ç¸5ísZòö’u5.˜ºÀ{…½Ôâhá/m$Ëlï ‚@W‘ž0Ò°ˆb¥†[y'W¾Ð.<ÃnöÿW´ycŸÔµ ¸Iå m#SÒF•ù(Ûàkׯ·ög5ÿœròÎ…çÏÎÿ/ùsÌðÛ]A<——:“ê7rY[̱Á4ÇÔ’5Y7ÃÄ!$¸ÙIjg;ü†ó Ÿæv¯a­ÞXZEõÑs>¡g=Écswqê;Ì÷ÍÓŠÔ­A$0Ívñļ#õ¬h9Ûš§.(Ì®#)=Ø…æN}5ó΃ùWç/ùÄß3ÜùçN}5¼…¤êV:Uı+Ávlá"3§‹¦,Ïn°? +°Û‘­NzKÍv:,žJÖ$¾ÓôöwLöÖð+Ë2ª3²B»råJ(®ýÏ|5¶µÓ®<¹9š&Žú9[LªJÌœœ9}ŸO° îEIÃ{{m-ÜOp^ F ‘mx­cž7WgäjH)ÀR‹M÷#<ßÿ8™¥yçò“MÕ!ó?|Á®in0jÚd¾TRÔ4»Ä…Âtg$êë*³ +µ]Å9—ä•üñùmaª\y†Ùo4IãÕ´ë Pêš{5’µ’2H˜€ f`vßc€ôøîaY/ *x¤t”Ç-\T˜¸°ä@Øþ×O¨9øW“5'$þÈsÛ#ßó›¾\óý¿–+µí&ñ¼áåk¹n×RÕ4»î 3Q€È,®m/ʲHÜbtŸÂÆáêZ~emw3ÛÃf² ž9'z²­>‰†ç ÿç ¼™eÿ9ùùå_!jPBñSôUò,“Å$úy†éS¸È«8dn +ÔpËNJpM¤—v—ööòÜjH>¨±‚ÅQ~&V•¨®ôÛ¾-K,N±+<Õä oDU%¶Û×µ3æ[Û\; +d4uÇqQŸ +¼íÿ8ûù«å_1êz¿•õ+xážn2 °“,¼-˜Šº²î¦¿ëP펖âFô,5NLÖ|á[g¬F#P¼ ¡ŸÇÁÚf›}y é·Œ†·äv(>À 2Õˆ¡<»oÛ¾zCþqòWIÔtbÿêw_§ìwF±tŠÞ)&1³«‰œËX·CR¼]§Þ\K­Ù?«­ÌRÈ![xÝ\qiU•£*½ù +S¯|Øß0Eo¹©[YÖðÏ:[zjêžšHBñWÀ§fßÇ|àóÐùŠ/ùÈO;þ‹ŽK‹-]ÕÛB[kfŽÞ kù3(¡cU +Я^pW˜/d›_Õ5® «¹ï..F¤¨4å¦jʱÆÂ5W$·¨Õ9˜Ä)¨ìzW>ÿÎ ÿÎ0Iå_ÊÎOÌÆÕ,µzðOå“£‰šâßKX^[ð2+Jœ[öH}É÷sþq¿Èè~D´ó?˜­>©ªj«ý»K†î i­“ˆºˆ‚‘Ü̲…%vöÃ]OÉ1hXê-#] è!»Y,].míc’#Ç<¡J™©UøkÊ¡e>LŸKòþ®Ý™.S_Z'² 4ñ/©Í'‘I 7cý”?åU_3ÿÎaùú;ï;\þQ¦›ú*?$y“]ÔôkËÙ –xí5i z©@F¸1zåfäS’¨añ óçüåͽ¯œ<åäý Pò»Éwä¯0\jzEül·O ôo9ŠÞ6~/,Ì™e» Ëâ¥23¦y£ÓB5ÜJÒ¥œQ(4’ì€%ÈæñùÒ…ŽG¦ºv·Kàa†Id‰„h$&@ŠyH9AE&Šj@š½ïþpcDó7•<«æß0éZ§”<Ǩ|¨±[ݽ¤«H¦}bFÉ)*• +μü"™éÏÈí;ZÒü•æIm +†HàÒ t–M7œc•¤ò·*F5$ý;‰²…–T±½K ' f¡¦âœ–Ž*ÿf©»mB6ÙÖ¤Ž)Š´Dš«± QylAð;xgš¿ç(,?24ï΋Ëí~ÝãÕ´NmåùtI$¹³x/™&I-/~%#ª–ãû·VCöh8üäoåö»ù‹­ùòãJº“Ë^fòýìÿ—õ«+‹«q<’[¼°ÏnRT) Å\6Ü› +œCNkË[µ—H¹÷–R ¨/Öu¶e0Ѽ.þ›«ñ +Gmª1$–[;•šÖb²@ᡸˆ²Èj®§f¢£¡Îvšÿ•N£¦\«@u~©~Ž„ŒOÀÔ¼… ;gƒç!|ªÎ97çv•«zò[ùÆÓMÒ Ôod¸¹¸Ô®µ+Ë}ZY}{³$²pú¯ÆÎÌÜ«C¾âµE“C{ÍšD»ŽÒGœòW’)"K…BªìœK2°ëÐPÓ®èUŠ‡\NB¡¨|E@8YjáÜ ÚBj’t*À|;ŽÄõÎqÿ8•çÑiù™f–ÌJÖº†É®%*Éé…Z± P®#o²:7BS/E!`êü­kÑjzþ•`©¾™ Üv·²I¦ÈÕ¤æ;“S%X’ñ8¯·|aRCHŠD`Ò§zV¤hh3adÌ{úeÔñgg¾ú´¢g_T–Xä_„­7SALç~gò³&ž¶°’ Ùe½õ^ É8’S¼,d(íáSʵn„rÇΓAÆÞUãOÞ!)IJÈ R"„WøæÀSÇÃKtKo^9IŽ9äwicfz×€í±íÔøá]Ìö—wI¬ùƒT·¶¾µµ¼µQÔ§X­o8Glœ•[ŸäŽŸÞ + ÎúÜHÒ‚˜z—XÍâ4,EO‡ Ù.òGšµ&êrÙé ¦kVSÇéÜŨéðÜØ\!*ÍÃ:m b(S‹¨î8m¥ùƒPò˜/5»Iàç~öé«h¬k1zªÎ~«m¬@ñFV ÅÌFâæ’ŒÈ[«‡4eØ:xîlê¾Vó¦±ùÉåVßÌš”±éÚ?èùoEÅ»]Üê]Üǧ‹aÎR;h¢f›á~Ÿ‡ö—:çüëœl¤»¹¸KM5#Ó\z5ÄÚ…õÏÕäG‰‘‚C$†!yiFÅ"µ®^ØÜ"°!a–¿»v.«RÆœV„µO†Z„!¹5¥jj6>dá žIó4Ú×äÿ½ RÃNâMCËzjÚiqhâH­};¨ ™…#ˆs2F~*wç’gÕ4ýGS¼¹òÖ¯$qiñ[C¬_F–­°™ ¡‘¶X•te'ŸrdXö–pK3/ ¢€¶ÀìÃ+ýZûç™üÏu¦j>iÖõ+ UI¼¸ºm" @ÇÁ¦oL(v Är^5 @ð;ŽI©Hu7¸úºn­µÛ›X¦VdHfº‘í‚ ÇÙPFõѱ„4=GQ›Òô}RêGÒËI Är0ŠÜ£ÌÒFÜV’:'^€ê(=ü‰ey¨Q%µ­ÙŽrÒJ¦à«–t*ÛŽ:ÿcM›%¿”zï’/üÿåŸ2þsydù«ÊzmËÜêz0Õo¬Þ¢Œ†y" ÂáA*ÏŸñ!c^kóO”¿ç|çåï=ùóG¹Öü½$Â8'ÓQfý[[ÓÎH¢—÷Ô a4·Q«L‡Š*Ò)¢¼«\ògüåwüýóó{Tÿ•wÿ8Ý ×—4;ïNÞæåm¡}[S¼yT§ê”Šªp<ÛleÄ‚SÏÐXü,ˆ‹6ä“Éý¶Íqp³ñá +@Q„|èæ¤ò<Ù·Þ›P{g•–k§Ô÷S–I.%•šäcs+±«ò'⫹'ïÈoüãoüâwçέæûoÌ/̃@‹Q¼Ž]n-f{”óÝ”s /cš)§hÊ–ZcÙQ¬êaŽ!Èp¸ýág n¿i—¸'j±ÿÖò”_›ºÿäìº(EO2ih©˜" /8 |!íæ +œ†Àz‘\÷‡™5¯"jRùFxàõíáS¥'- „‚€ôí¸Ï™šWšeÑ¥U$Y…U-ïUǦc é$L¤  +oCAPw¯ËM7S»Ò/mõ=:C Ý«¬°Ln,¦ ñ`AßÇlhÿž³Ç}¨ê~mÓ#ÖVfk–’G{yÄËÉ’Oܲ~/ˆPŒÃÍÄ—:‡˜¡‡PDssø£‘XUÑÔÆË¿ˆ~!m¯ÙÏ ¶×¬Vö5ä`š9 áfng F ~×5càF#‘ªÈ²D$.>%ƒ!­j(i¿zƒüsy«Ìwþpó-÷˜o3^IȪ€ RžÃ<Íù£ä¨ÿ0<ã{®ë)ò\±‘’7häh€P• î k„†•Û§lOê6?S´¶»Ü ëû¶[j{CÚ‡õÿÈÏ+Á¤[Þ^C7¥?dgy½x¥UªÈI$ã­hf͈éÚæ™pOD[ù”5+ó:䦹ù‰sh±y‹R±¼™'eúõŠpY¡ @&GŒþLµvPÊ:8£lÕøfÎõùäO5~`Íæ /j‹i®Ùi2Nœá‰íîmÖe ¬r|\ŠíÄxòß|½£êŒÏêÁª}Y¥Š©Á4ÂJŽI”è0ÛG²½žËQº±u&ÞwP²† l^ãB/‡Ï¦-ok=ÂO$*X[ÇêË@M’¥v÷a×Ö<éåï1yRê/1JÚž®‘ºH¶ð£èœT^$]ÏnûäÍ_™¿—í Þ®®%Ôï•%[˜bAðª( ™R´û«ôà9!±[X&±™ƒúÐñP B =:Ô}øŽEµßÉø´¯!ÿ‹m¥‘î ..áà^ŽiB/Æ)F…zŠä+ó'ò—KÖ?)5 vúÒ]EUb¸“Nâ]c·šE@ã*ÌÀ0'‘§Ú¦ͽ+É>b×ìÞóK³{ˆ}OI™yu5 tϼùžOÑíï|·åÉßO¸–7itá3•,¥‘ÿxß³S϶ã5 +›=Bÿ˜:õô–>L¹GÔ5¹¼±¸™aåGFrÔ"„R”ßùv±“ÍzΟŽñÉaqw$^½Ô‘Ê"bÜ£v,T°èà ›ËÕ°‰ì¥`HËÂj¥‚ä°¨'bO^¹d× §°Èœ¿-õIuËÝ'Ë,÷Vs ¾†"IZG£HÎQFõ'aœƒÎþ]ó™®Ï ù:{§É¼ú·’I °i¹2­9Ý«ß ò³¯þG½¯Ÿü¡ªyZÓu2ßhðÅkB-În“†Ž¥”:H Ô…-Ä´¦tË=VÏÎ^W¿òV«o{懳Œ@Ì ¸´ŽÞç”pÀò)GBžF„Ó¹é†Ð«jöÏ=çÖg–Ñ"··[{tdãBdGJ…‰ú1x¢Y`–Fõ §Œ$|ò®ÌÜ…:m±®q/<þ@kÚš5ï&y’kM3Y¶¶‹XÒtÈdwŽkyœòDg™dE$ƒ½7ìsÌ_œßóŽzžì<Ýù7çìíuÝ(Çæ_&[Á$ïÔf`­S:,’2,N²+«mC^ø´û¸ÞXeŒ¤±(‘ámŸªð§½7è$ñÉ‘J°¡*Eâ£:•Öƒÿ8Ü*¼¡æËÍ?×󔊾t¶Šáî/¡Û‘q$Èí_]U”¸×aörSåO Î6Ê-yÏò·Ëéq«ù&5¶óŒQK+_Ç ”»c»#“p‘È)AÕ)öpÓVÑô»}OÕ¬/"•îK«e”4ÑHö¢¥T #_Ó]ÛYGgkqkp$’^Bx!$l¡z‚¼hI“ÍÓ]h‰ j6Éwmo,‰ŽHeãÄ81Ð0‘Ä +ôÁÏ­^ͧG¥]šÚßVFP LÄUƒ- ?ëT~]§y«ü%¬C/宕weå³q ZŽ—«D‹z’ ‘«´…>8S‰?³€´;µ¥ý¼þDÑoôíë0Zj:V­ +Åx²³qä=Gv +U¨¿ýøQXGvpòÚ“Åžœdv䪜‡P S<¶Üv$oL“yó;òÂãN¾ý!¢_jv6×3i6°¤7‘[̯rx\*(Žc°­48wäß=y.ïMÔ-ì4››ˆ!º7O…&†_ZIÞ’€¨í·*U€lé1hbíŸTÜY€à¥º…œ/ûÊTq4Ø“\VÐÚ,êoUÞÃ,D+î $±¡§|‚ë¾Vò¯œ7l5ýÞ=*þöÆò(.n`šWµb®Raø\• Äõ×I¢iw~yMNÍ”A©ÏjñÆ]YŒ`()' +QØì$øšâ7Öp ÆLK…M¢’’HÈÃn~‘ 7O‡·NØÉÄ"wÜŒ\¤^œŠ×jQZuÉæÌ·Z¥Õ“|¹f–~`¸c.Ÿ8Fú¤Q!*Q}bòU‡#N-†™¥Ôz–›äÍ'O§¯ÚIìîOÕcŠÕY¹IÍ”’>÷bS)‚Y=hM¼¢ (xŽÆ¢BN0õéOlŽþWùKó›CÕu+/_ÚE5ê¿ék+•”ÛÏÁƒ±"f^„ü¿1ßþqûË6\¼²·Ñ´‡{9£’ØIzYhxÔ†Ò« Èç×~˜g½q€þ]ôcky.ÛJyú¼‚„â>. P-}ðWéÑ¢=7ÖZ—áÀw ð>ÙèM ÌwóG–¬õ#WE¼¿õõ«¯ÕšÂ½+=Ê8<´øiñÓ~[g³t][Ízþƒc©XjP‹ûÔ"5h¾« +N“,€FÎ(|~ü +ÚÛØ1[¡”Ü + 8ñ­MXÑvÜàQÊ«ðX/j?†B¿6ÿ:¼™æ[íGB‹OšÒ9ìn!¾¹ºC›Ø„Š«Ç4ªK¢†‹^€ 'óŸŸ-µh¯­¡¶t·kK‹kÈî •ž0Äúa$‘EM()w&›=½¢ÙÄa""ñÉ<@ÌAPYÍJÐvì2åh˜G鯒uݪwÜžÔ¿ÉÿÈ}Ë·Íß™ºL·zUִ͇û $—hW‹’ÑÈСøkûd{dò÷òJ:”þuüÍòüwÑ=¸¼±±Ž[ƒr²¤™#"öì׈YÇ·1¥ÉBOïL(@£sÅIPM=óB"iPNÌ‘’=FE Á{¤¨'éóßç'‘4ïÍS¯ùkFºV1Co§ZÜO¨$ƒ£ÊÑ´Š„°RvÍæ¿Íï'Xyòw꾄1Åa¦§::´oÈ´„IÄÄ¡l'–bÕ?Üd3iñªŽ7$sÈÿ´XÆ@¯@;wÅo¾¡õ·ýêýXPFgãêRBl*ji½:TõÎUçß5_ùï××õuŠÙ£+ •¥°aÇêoï 1%œš–ú3ŠÿÎFy†ÿó#Êœö×+knæm AÄ17HŘ·6*K»WèÀ·]\¼ð[GfN6ð™ k@ÆW‘÷ë»BFå•Ñ´.DŸÇ=Où!ÿ9%­ùòæÇòÓEòìO—làý%BCÜ$J–ë4% VEzüÌzsò;ó?Q×<¡ù{M°‰“HÓì¡‘.M ¤\ÀRwé½)_ ;‡Z³“@·òýž˜ÒLò—¼nm'®åJ« ¨ëQJlh0Û.£ÆÁtåJg˜’Ä»ñ*×b¶¦Çö«‘ý_È/¨þYÍ3èvWºe¡:™g¨ n#²†f”AJòf™£ëgÒ]õ>"GÔ¬e•áyQ—ti#EäXðZ0úvÁ_S·[e¸ŠâÞI ã3(hfSüµáÄ­¸4?Ó>”Ï´5”Ò¿#<Ï·¦÷¾`–ÚÞCt-•špw$•Tnî»ãÒR±”* jTñZ‚EäJ{õß6ÜXÄôKpÑ^£=ÄÑ8¶–ípPV”f ÀR»šŸ|öv‰ù·¡ÍpÂKÐÐ$DÁwk$ŠÑ[}™Bû)i‡@XŽÕ­2Ú£HýHý5Gcð¹sF$Tµ(Û:¯`I͆žKÖ<Õä5éžrü¹Õæ5VöÎëKº#ÑY?vR³™+'ÄUО$Sc¾iÞz6Ú¢Ç:ÍõÈ@S,q:#”!“‚ ÀíBƇp¹×µÛË;[+ÝBââÖ̱³¶–âGŽ  Q{t²Õ™:¬¤`hAÆ{ò»þ~-oªhþ`üµÿœ–ò +yªËÎ/*ù‹UÑ­mmo'™‚(y-%¥Œ²þåÔ ¨åRà õwH×¼»«hÿ™-¯štmUQ. tC(Œ…j¼, _ß!t+À‡!¨|žÇÿ9ùyåë/(yºå<Ñ¡iðýVÏKÕ2$™Ö?R&ŽN*îHøª;µ:å§üåælþM—^r’ßÍžX¬'HÕ#e.±Ðó¸´h.ÆȼI“UU <[ù’¥üÆó~GÓït¯/Ï©ÞŸ-iú€ u Œ— m¡½ihã!ƒ½H¯#ž ó‡üâG”[^¼»ü´Ô"ŸDµw›LÑîãd¿²°K–+n’r‘¤XÔ–_äzAïîÒþòúM$ýJÁ‹M “JG¥-Æ.ÌÏÀ9U$’GÌç.Ö®tëÝbþóG³ýa=ÄÒÙiþ£ÍõhËG¨õfà¤/#¹¥N8Úâ+5 5߬cš8Ÿ7Åx-(kZMñ_)~BÅm6ž–PÅÃÖ[«—nBæX¥¤rÇü ¨oLIÛ‘Â뇉åo«¡HAoE†p…‰™Bò"½i€ó±ù+òÌãOo4]ZZÞÙÏ4ztñ°”ÅëþðDëI jÔnÿ6Ç=KùùIq§éÐjV¶–÷J“}ZîúîFti£"Ÿ€Øq*MzžÔ5í¾l<ü­ó×–¿.¼éåŸ8°–[6î[¸£¹µ¶–&DN"•d*9/$¨*>Ó!žLÑÿ*?+õÿ/ùÃOÑÚÃUÐO©q4’Î"·žöÑ­ XýSê¡iŽ[/òòê´7Om šÒ±H R@Æ£áâÝ)³Wp~YjÅ:õRÚ»žüÕó~½æîgÕµˆõVÕõ õiî"›œ3Ìî]å1ÉûÈŒ…Ëñ.ôUƒ8‡üä›u}/DÔõJæÛV‚Y/ïÚòÁ~°¬JÜ5°ÜVVfj“Ì0¦ôÆB’ÜN±D,²ž  +³;| $’~œ¢I59ü¹üÆóå?ž´Ì_!_ 7^ÐæõôËÑ W7*ÑŸÝÜ+£¬GħïÏŸþ@üöó×äßæú~n~V^G¥jÖ“ÊöÿºÛ<3)ŽHž+€ß£2‘±P~¤µÝÕ•ÜwöÓ*€RD†Û§%RÃèïßµ¹žÊæ+Ëfá4²DôŒ¦ ÐÔüq}{ÎWþtóF³æÝmÚû_•d»6q*ÚWgŒÆÄð È­P~l¤¾ºÿÐåÿÎ:~sùå?04÷kSˆÔt¡ ¥ÒÞpi`_RH™µ$IT)V7Vò¿æoäºi>kÑ¿2<…>³ õ·?*K¦jÓؾ“ª0›”œ2ÈŽ ú‚NcP’¢Ú4O ÅLrܪ¤nf©J,…þ0=ŽT·“ᬄ~é=(Ê*¥߈Øž¸µÅÜ×B%› A|#DøW¥xÈïÔÔçNü½ÿŸ“ùƒGÔ|µk¨ØÛiÌ—úYó_míMJödŽù­í£DŠ7š0AØì(¸+É_ó“•î¯g¡k–h²És­ôðƒ%ÔÏÍmÌÑ[Ä¥DlÿB‘’Æv§êÚªÍ1µøæ‘þ¶òúi$ˆb ìëÈl)RÔêø½–±{a!šÙ•&2Ç8¹1£J/²Ì6–ã¾ÕÉÇæÇ¿ç¿1?ç(tˆÿ5¯lµÛ›{4­g[½úIžì+X,}65™ËJÜ‚4”Raæ{òö/ÌËWUÿD1iº†˜uy•M¢Ë{udé¥ #›/Ê”¡ š°À­},·-xüRV ºE­JÓdPª§Ü +ƒ¿\5ÃÜÎóÍÄ;Ô·EZÒ›*€Ð3•ÿÎZ~~þ^ùçÎwº^µù}qm{£¡Ó<¿q¨Co«¥¸tKu]>D¢YpïÈО$©¦Wu.ùÙ×ËÚ¾“±ë¢ÍõG’6tŽ*þñÄY6+½kðí\Sý?PY \ýéëÉ$„Fd£˜ÌŽä'.<‚ôïNøÉ;–§ì†5 vÐvöÅç|ÉäÍÉÚG™õ lá}îêï̺œúŒÖïk’ª»Oh òõ9D‘È»“Ä5iL[òÏÌZv“å 5¼Ö`‚öÂÚ?®Ü+Ò¯0UT*…rSˆå¿aˆY½ª\+^£I 2!âÕ*@ ö¡¡þ¹HT0.9/p y¯ós_Òu¯Ì??j>\@ÚF±­j7ÐN­p E-ìÏjU?v ´nvuû-öAãÏ,þfybËóΖú¾†5ŸÌ?=Xiú;ÝÍ#@ö“ê“XiW ºªó‚SÄÒ„-_ÙyKH×|÷¯èžFÑ´øõ-S]º¶Ðü½¿º?Z¼¸Hâ_U0[œŠ£Ô䪶٪7 ëÒ½°ûþqòòÊ :Åq´ÇË:ÃY]бÄ,Qh«Dnh$æÌÀØ‘¼i^Xµü³üÂó–ç‹KŠ_-j’KpÑ4^…Æk$0«z ôd~äǽWª7Z÷”õMG@󥄺uݪÏÚ}Ô/évŸHW’€Ò+Ò¼Z‚»Pâ–¯r3\Gê¯ R¥~6B¨ÕÊÄ5;Ò™Çä–K©¦yØÉq+™(´>¤ŽÂ¿d“SáíáŸ2¿,¼ÿç6êÞdò¯ž¯­jÖ=η +Ä[½F%šÅUV9JÈüZ:Æ}8ÙV¢3€co¢³´¹^iu‘’%YÂBÞ¢îä(jˆØ{%ŸkÿçudÖ'µëo1jºï—¼™¯M£è«©}L߉ Òí ÔqyEÌîüLEE½>×~Tkvz†Ÿ¬hi–K/*ßG£YÝNYÍÄ+§YÞ$ˆîÌΤ\Ó‘=FIô .öçGÔí¬µ!5•´²EŽ"ÉtªV…D¨® òæ;ì´5˜y{IÔ5.jmÿú%“–ŠÙ‘¸zª¼€a³Ô7øºP×Êó“ÞBü¶‹óÃγù›Ëf[ÍrÆ?0yjhÒb‹qqêÆ,õ ãá,L}8˜ÔQ›¦Ñ/Ì] +Æ^ïRÔbi„ïä3´ +©Î&¤JåèY‘£ÔŠíÒ$u-KqVà¨ìÌUbO**ü" m‘K¢¦æRˆÑ¯"'%™$Z ºd“òëò÷Y³óU—–5íBÆîÛÌPé~fIŒî—VWKÆc’;w2HÜ‚œL´&¦¸iå½}/R¸s2Á£4Zœ‘@Ìß½–5 #cI;ÎýwHFVAÂAP+­~Ñ^@ «ZíóÄøŽT :V»õ¥iÓ¯lè>sü™Òt;.þjjrK©ùžâÊò×Fê|¦ºƒOšY㳞«é3Ê€úŒ NÍÔaý×––úc¨A†ù Ã8³ÆÉc•ä‡'oå§{­w;Ç f‘ÑÜEäê#-È0ëQÄŸ–*Ö²ˆ©Qœ"|L¼Y”†Ã_–y›þsþq®_$þYi{ÔµYu=j·/«yžÚ8[ê°Z]ó(MERa 4§#ÌÈh6ÏÿÏÌÿ îüÉù ¥yÝíßVÕ<³¨}{ÌRÚUekf¶™}h’ŸŠN U™J.­å§Ðü»¤ëŽ¥níç’×R·±3EP¡Š–˜ž€³†z¶‰i¦hº}Ǫÿ¤e’eÔ-h°(ÐïJò`XŸöóÅÊÖŸqü?^|‚‡Ì—?–žn°×?.µG†÷MhgŠë„rp¸ˆòæ­C±ª€|0‡T·ô’ +~ñ½1$“ +„`ô*@*§¡›üð›m®â¸Óá1Ãmoqa"r~3™îRVfääóŠ6ÄìwZ¹_?ç?4_ÏßÉ*-VÝÛ[ò”:]Ÿ™,€UG[°V ˆˆ,[”vÓlhÀ<1 ÓEõÓ $ŽÒÊRuUDPÕ[¡¥6qßgª.4 ƒË¾chuo'~_êâO2iÖ6¶z4VRk!â‚];RœóQ"%ÅÃñç“ê-J÷wPÒ®ç½Ñîµ µË÷+§kz,,ñM©ík%½Ì>”¡<¸?U?j¸»jÚÌö ÌïsjŠ–Ê·L! UÔEêTÆrR‡ˆãöIæIÚf0ÆÅ•*x«¸:B»<éæý&çËnÕ­î¢.ÑÍ%£‰%ŽY•[ãœÆ8)Æ´ïžüÆÒ4mV}còÉ.&´žÙ­àIä wéñÆåÄ`ÐrPK.ÿg–ç"Æb©ä1^Ä­@?EN3 H#‘@ôïDàɲ…hIJ­R¢§øÞÅ(°¼ó>º.b[ktŽOYJÈa‚S@è¿ p/!FÿgA¿·|Øuå9y£òÿXµó_”HÓõâe²?VKØÚ)#(é$W"h˜zr1ø—­Ýrü—¨þ`è_šÖZ\:­ŠX}JW·Ž!ï#Y ²ÆFE<«ñ×ä…MéÄT×`A"€“BH¶l5Öÿ2<Ï®Å=­¥µ®›¦•?¤ÎÎ;v~?Yúš©v¤…cÅXü*£ <Åù¯æ©ïåò·›¯ Õ ‹kM6ÄZF€-A¼”IËÔõXÏFÝ»5››jI&€¿€6Fôkû}9ç€Ë™VæÌ·¥k4\½FY„ +d(Ügu¦ÇlþPyNòW›¼Á¢~cùÅõ3¤[Ú]Åo ¬QZ[Ì$’P'UR帪ÈZ¡OJttyá‡S†êñÓ„—÷«Ì1…K¢P¤‹V*rVJŸˆq®lôG|Íùzþv¿ó´›m_Ë/¦I4Ÿ£#¿x,.k6¿V‰„'JPò<ÀÎÏ¡ëº6µç6iZdZ†—yhò-õ¼¦SGôjãö=>ÏшHð$²ZZ%µíÃJìÁÉIYÙZ@_j¥X +wÿùT=M2Gçï&hÞ`ÕmµÏ$J.W]‘¡*2%°â ¹.ÔÛüÁgaqª%ו¤Mm‹ýPÒ‚E›|SÔšmÛÕtÈì7´¸–Ò­cºDd†Î8¸Q¶÷Ì@€×ßÅù7¡i:]ÛùŽý#½CÊNHø~ Ád(æ£nžùå΄)q¨ÈbÔ"«[¤.T:Ö¥#üJOP<}ñ{'NAV=ä$¨!{ ®l#¸üó–©å£æ›8Ö{5ø­aPÆG‚BO¨‡p+\Šê_”>sÕìQy"ŽÎ¾­”q<£mãâA§"V*@­6;ØÓ6L?+¼åÝSòãR¼ÖìbÒ8¼×¦wSf©ÃŒ"¤F»Ž@Ö¬Z™2òW“ômCË’Kª[À¡$q> ÎRkoHUð`»0ñø¹x “©ÜiÒjPYJöp5./–71FÍ@ßì úWÇ[{‡…î&h¢ K(RUKt©è+Û#ß—ú7™"ó=Èò6©é-œOéêIFWâ„Š±•¨ï€4.M®6£cv±ÜA¬ìUƒQ)ÀCæ;åéí¨Û^4·&HÕ”º/5£Ž ¡Óq‰‚Fã;Wäí„ÞSòN¥«kÑÞÌ}{X¢€Ë(·‰X¹•Úd§¨ªz+m±É“­ÃBúÞ¤ 7N^àGs‘c@êÈÌÛ|\; »âP‹)!)rϪëÃÓ‹Ô.¬hü‹H´*Âß¹åzlY˜8#‚…HÞµ5§mŽDn|ɧ~az~GŽðO äœnðº\2Fþ X™^„ü4‡ïÀÉ—æXFosHËÜÅ:þöP„°È…@ Š„øaõžqgêi7wr¡㸈Å!U +«év¥)¾ØÓNÛä›PÑWò¦ÊÙ¼µ¤¼qJ²4öW.æW⣓—!H'›a„vñy"ÒÝô»Ci™ Ù—yO¤–L*¾Õ+ôeg¡/¿.æý=¦¯å¾¨tëØfŒ]k–Æ¿£-åuî$ãEôørbX¨ ;ç¾<•ùykioc?•5mi0[J&y$³´zFdeZ!WPO& økÒÍÒjíkpÖ’sP·JÅ= ljbÀŠ]ÍqKa!¸ŒE'¤å€Yyp +I¥KmJxáÿœüäËþsü¾×|ïo¬ë77j'^i¡o¬$†$Tþô:0’†JãJáΡ§yWFÐ<Ëå cÍqO­ˆµQ©–@ìXøYÏÇXʸ© `~Jêv_W»¹…®RêXÛ›\¤©"J®0&­¾ûü)½¶kK‡·wIYhÞ¤R$¨Á€aFBEwß}ŽÇqœ?ò_É—·_úÏ‘|ã®ZØùjHæ0O¨jQiö÷&)“ÓŽK¶A(ÌhÄ™ã¯Ë?'~Uù_þrÛóÈ_›ZÕ½‡”|Ño>©§}P[ [ÛƒtMp + +p’B@fP1ÚFŒuMA´ù.mí%ÔéD©QªµðñÇi¶j—ÐØE,P¼ÇŠÉs4vñ/ŠIJ¢rp·ó7þq·Wò¶¡¯kß–7Oæß(hR9ý;*$±A’i#*H’4Üs] 3›þcÎ~`þFy§Qü÷ÿœsÔŸÎHòƒ}~é®}0óÚÚÇëÞ$l„¬ÑªÔUÞ„³¸}NÒ+ FæÆÖé-äx–æ2 +IÀÓ’H*i±q¿¶[+ë‹4™. 5¸ˆÖ91^H{©¥FqûÉ^ùWÒoQä«2SâMéM¶>;gKü¾üÈò'ç%ΑçËKètÙ!†cªéO*‰mÛ’©_ˆ¯ÃP7À؆zŸòë;Iò×å:.$¾ió~§jñÇ éjòÖõ“B´Øì.•à#âK[öT »õ'èíœÛÏwVúÖ¬÷^iòÝÖƒæA$Ÿ¤-í hÖ‡ÒŒhEyžŠ7«Wˆå–z½ù™ç _?þfy +ûÉ>tÓ®¦ŠþXî"&hE·-áQ"•esɉ⴨bMx¼¦¥QÏî×™û'` xïÓƒ,¼¿æ›Ÿ0Gç¿Ê» ­ÛF…g»×52éÐ=T2¼ëçpµ÷Î¥ä»NÿÍkuùWk=–ŒŒuTŽvÓ¹BëéØãw«T Þ©‚¬§¸±»M[J¸Ú˜ËI,k*#¶À5T­ •ø½T"â0vTò¥@=Ek·lë2ÎBù+YüÖ‚_2´úåŒVí ¥Å­ƒEÚ¼ªÜ[†õhËDU­yoA\ë–ÿ™Zv«çØdÔ-ç»Ó­-Ìv¯¹P÷¤Ñ¦ô i>%¢($ô÷ÁóÜXjÚ›>£vÓI"4­:[ñW¸* GÅHrrØ–=:’ée3ÌÓNÅ™·f Ý©Þ”ë㜓DŽÛ\üØÖ¡òö›K+ŹåivÌ‚Ù˜¿~ }«[1-ߟµ4­ ég’%¹æ%f« +#ñ<«@|i\"~˜FK-OaCJìHÓïij²þL~Mi>só£.¬æż·¬:€·šíµIù¤’*ƪàpZ¡PÝ7 \?òßå­¿š<Ës{}éË¢Ãoieõv»‹Sµž9RB âßd~é–´5ä­ƒ4í4_‡s2Æ"hÄ‹ÅÝø»Îž*ÅôxâÂ&êá(T†&‡«QAØwÂÎ? yWò3óG½òÞ®£Ë:·«ëÛ¤ÇP6a‹ÆHr©Ð(`¢­Nõ;ó–ôÊ]sMM&íÿÃ÷-/ RZå­~'„”Žá f;šŠ]õ´v“­¬w1¼ÑÉŽOYRŒWâ!Wz +ì:ÓÄ‘á"¸`M“Çâ"„7Ú»v9Ò¬<ÕçÍMüçäɬ4é”& Ìo£·ŠN^»PHB+Ó¦A©ù»Í¦ëZÐta©ýZr-t•ºá~ðÄÄ­ÇcV4âíÐïÅ$‘xÆÏ]U‰%T|F´4ïÛlO õÏÌ0ù¿ó5ßÍ.™ôÅk{ Sêê~2Ì€æ%bÇsµÿ7Kæ0ÚÝyçFMB{hÝ.´©¹Ã@¼ƒFÊ¡O.DïC¾/ªjrê·¦îîâsýâ@‚ Z¤– Wâ5Ü㤑¥rïJž¤?V~xþZy/Fü¤òל<¹o-Ž§¨Ì¦÷N•ÚGŽ”gf?Wâ:ñÞ‡97üçä—5?ùÇ+=_ÈÚtðërÜÛOq§Gq%ÛQôçÈ”ñ…¯mé\uæ‘qi§ÛjRC¢÷Z°ºúó)A/ÕÛ’£¿'+ĦàŠÓs5ß(è]çø‹TÜj\›¦äU!OM½OM˜±âv5BîvǽäLé,†6ôå ¥x8©âÕèv;¶VF*À‚ ;Fs_Í¿ùÈ1ùÂÝ<µ§46ÚM¤ˆð­·#`»ÒG<¤øÚ;xmCœ7ó‡þrÏ>hºO*þ^éBêÂÞhùjªŒ¶ÑO?K‘-!‘δ­@Á“êבY¶‘ˆ¶Üƒ²À ÔÕ›â4 w¥FÝbìW‡ìÀ÷Î1p·Ó=ÅýÈw’Wy$™”žNƤ±é¹ÈÜvúv­,RjPG5Áu–K‡p%’y™m«»7@0¹™‹¹,ÌjÌw$žç+ÚÁs,ñÇJòp¡O‹í†þròG—¼×£ +8Õ®P+\%iö¹S–µxò³g¢ç¿çl¿1|Á¬Ãæûˆím4s%¤ÑÍp–ËÌo@ÏCT m¿ŽÙ)ÿœtüŒÒ%Ôµ"öÞ[;M1§ÞÀÒIÓL)ñI0bO§e[­vÁ6|×÷_Tã…·ä÷¤( |M!oŠÛ[Iw:ÛÆȬû–D‰Íœ…IÈþ£ùc§iÒj7V‹{y¦[™’ËWæ+Z2B Š–¥nXíMðÖëÊ67“_I'×/4K'•mµVE³$GhÁºµ@ñW0[Au,LeŽ2ÁeáNT­6 zšbF•Û¦м¯þXy;Nü㻄]›Ù®4¿«Ü +A$²øQë׊? ;wÁ:N“¬yO@ƒÎ³\,Ö×Rµ½#h‹:¹^@BMvËŽÆýlή-œÙÅ*À×,„Ãë.#-JTª“O \XÞµ“jbÞCf’,t½!+©uBôãȪ’k@qþbüÃÒ5ÿËï/µœwv:÷–VšFH’Ð7¢"sê“ÊC3D¬¢p¡øš¸ üímyå]Úæ à¾Ð µ»]<‘ŠšS"’I˜ª¥Wñ65ä…ѧgcs#’Ñ„Uˆ +ƒZƒ¾ÿ³Ä~؇ÃÄo¿qM©óÃ/ùËßÌ]_óÊ•ï©hÖÚjéöÚšG{ixn>¹$‹de- †3ÜÞµ=)ž-ÿŸ¾ù›Í~gÒÿ%n¼Á¦XØÚ¤^cWV’Nnea¥úåáx"!xÑä­N⛙ꚌwžXÑ,ÓL6ÆÅï#}L¥Û;G'°(ÑøÛí”u8Ôu¯-höiVº²’ð\ê¡Ák)‰Ñ8ˆÖ†-êKµC³MüÏŸ8°— ðçC’SgvˆÂ?Dcª°GpMg­ :ç·ÿç´-óòÒóPÕfå(×nŒE ýRÊÒf+Ãí‚òÙŠP*Ã/n#Ʀ¹³¡þW~RjŸ™Rj-m®ØÛÇmšî‰žc1n D‡Šòé×e;x}ü°ü¹òw´©5'†[ :Í¢’ïL•Šƒ} oIé 4ø*W‹( È÷es¦Oú2 q,d·²fKVF¬sJr1òâÍö>5 +z‘U¨h[° ûðÚãòøGæ‹¿'k7+u}©:½¼2éOR^Ú ÇJéÇÛc¶MŸ@³Óu›ÝêˆuA1{K§ÀxÒIeßâèìŠ;Ô’ä‘ã<£b§qU44aB>‘› ~eÑbÐïï´ÛÛxîní¥6üUÝâãâ ,XǵC5×â!¾a–ÿJÕ[K‚Î$hîbYLÈ[ãø@¡Ú¾öÅ¡»ŸN½úÖ•s,/aÊ ¼H+_Tî9°:xÓnc•^Ý$a¨%¹ âÇáêÕ4üF@<ÐŽúÕ£i—1Án´±»Yûùa¨¶«"7Ñ%—¦Â”¦%¬“"3ˆ•™CJõ*µ;±â  ë°'6tË-2-¡üÒ{t¼ýªCešá$š[Éãš{rñ/ôâ1[öߊ…"¡fG±‚=F?5ßðºÓôÛtÑtUy7ÓÛ+I{?¨Âþïà—ƒðšc+øvÍ“[3Ë­y¾O0ÙInSO¤[Ié*LQ”ª[ÊB!¼d©û@Sztk{¯8_ùÊo1i·0J.‘g[ ¸F©*EÅÙ¸ÆüBW¨å¶þ'W+"Ì X‚•î(T­>]³g<üϽÓuû»=>‚çTÓ¢’ëÛpM­û£‰Dô——Úä6—ÚýªdOÍ·zpŸGÒ¬€:×Zâ{…ˆ%à~r,d=HL†ƒs·zcbhÕ‡:¸c@ÛMî>vl„ë’\[®žÐ¯¡mµ«k§¬qú¬×_Xß÷‚>*!†BÍ¿*öwìs]ùOZÒuY´n¥ÜZ8Kµ»+Š >üˆ'á!‡–RµÈ.±ÿ8!ç*ùæ_,뺞Ÿ£j¶sÇÎÊæ鸟øø¡VIä‰mªàÄ­! +~à›äÛ½NîçEº¸·ÐõK^[}fálDÛ±D%THU”€ì+¹ùšÞ{yZ ˆÚ)vŽ@U…EEA§lôÇ<åÿ8æ?$ŸKò~œéÓôý9 Š½Iõu2Iqsë;5ߥǃQŠ‚ãì€BçÐoίÍÈ­;þqâãO³´‡Ì:'Ô¬,m|¯¦·ún³|ŒœØлGA+qu?ÙÀ7·Ñ¾Ÿ>‘c©?èËiL±Y¹š1y33¨¹ôÔ…c*§â©®\F!AÅ÷b\’Ç–õ€þg<ÇoÂ)£»«žJbR€ hjV¥~!Jö=3Æ?’Ÿ™7ëæ K‹ÛK½NîËMº7Il‘ËvDp/Ãn²Éé‰já$V¤‘ÆÖ (n,MÕÊÃo"Ä.¤³ 4륄§„—UÛ‡$mèKby9ü—üÑò§åÏ›åÕ|÷å(üÙ¥]¤Ö÷‘ßÝé÷VÑÜ!ŠF´žeF õxߠ郼¥ÿ9Ÿ’œZŒ™~AƒÌºf‘u«é>SÕ-$¸·Õm4—¿–Úxã”ʈí[p…Ê+±CV8šÅ î‘À †^Y +Á,‘»¦AÍ€¤Wh[ìå¡PÀ¸äµ€4$|÷Êó¾­cæ?0]j>RŽþm*ÊÙbˆjVÖëy +9ä†UGxädCé+¬êˆôRxeh_š7継ç+Ï'k^Pò¤ð]Åk¨k‰omy3£ª¨6ñÍqÉ¢3(YrØÉžÑøúp˜UIâ9i³»¹EPjõÌT“ÄPvÔÓß!ÚΡ¦Ýúk ’Æ*i3¼3Šý§&F¥E(•4Ï\ãÿœó•þJjöß”Aº¼ÒáÔ­íå²¼…m5$ŠRÓ-RõZ2 +ÉjªÓ¹ãƒm|Éæ ?J¹Ò4ÍZî×O¿àu-> ¤†ÚgFªsŽ6ôâ,:ü«•’ÏÊË-oógκoå–‰uo¤jzÑ–hoõ’l¬-ÒÒÚK—–iÒ9dãéÆÜ@F%º +œùcùOùÏÿ9 ¦éÿÚœz­¶Ÿww +Ã|gÓGÖ#³Úè­· U(ʪ£â.¥J€I ]èÀö_j6Å-©ž;ˆ®Rà 1‘¢ÛÔu–áF]›á?dÐNg õзžòá+››ŸTÆ q³…ýÊHÕr¼Wá§"*@©óSþqÏ;Aò‚jãWòߘm|¶`“R¹ÑêkÆý!p}0ë{oÏc±ÜŠô‘Çó»òÞûÉúN©ÔfÕ.¢MSʺÜrÙOg© WŠâØ£?ª«%º¹}…*k€¤häŠìȶʫΦ9(ÊKpâ\ÐrÞµsè8–ä*w©­wðÎ8&½ã6›m(´°_ŽâÞ +3QU’@B¦B¡Ëå¸?hg.²üóÍ¿ÊKÿËMkUµÐ¼ÝæØo¼³¨^X ¹ú&)ÍÜCv’D Ef<[Š×}I¯š{íZö[»ËÅ’;‰gn$¢,f&õ%bÕb¼IeQ· xåaD“ÇjìáÌr¸ˆ‹RJüöêsË¿˜šž«ùg®hóŽžE·kSå8©î¤™"º¶¹*òH€)@^M0ãÌÜ3//N8ÑEk³Ûð³Ðm´˜-.lO¥}x†S5ÕÇB¼Ò"„$Ã.­û*›=]ÿ8ÿ9;¯~FùÖïÊš~‹u¯ùsÌrGw-–œê5 kËË™¡õ¤XˆxyÆáö;A]ýÅÿ8Gÿ9}ç(>—¦ÚAz4Ãga¨ZÇ*Ç{Åd…. a=2Œ¯1ĦÝ[ˆ['Ô,D÷–`ÇudÂK•0ŠÄ„A‰â@Ÿƒ+PK±ì&ÃQºÓ'[›6 *2º?b +×ù¨ AØ÷Ñÿ=(¿ç)?=ãÖ>£Œé^]ž&ƒå魯Ö.´½4›èo&Dia’p· +ác“°UÙ9öÎo"yóÌz^©æa«d¨úE„72žÆÒU»!¢”4fbäÐ …i±<Ô¿/|É•?Æ·B#b«zˆ]ù-É"!UŒ¢±âÆŒàÓ`*)’¯Ë7ÃäÓçû«F] ¼¥Ð"·ÖpýäjÑ©ø UÙ[Ár ?ü槛î5¿ËíO˶MåÍOÊzm¦•®êZ]¬É©Á@·r$éHåUÜ… FcCÄm·ÿœ‡ó—þU½¼…¬¢Ó´¹çóT0ZC%ÔßW‚9 •@œXñ?ßf™y.8Átª"xE,`!åSZ­ G k×#?Y”I±Ò'„/¦ñŽÜ5Fõ¯| Óç/¿8ôÌK/;ù£X“Î:.‹¬G•®BÒw£ÎBÝ‘¸·4¡fòë{Ë·mÎÒˆíÒÚeI ~zk2ÎįÛr +°PÜz Ä…ã ÌÈ¢@ü¶Ý^«°ö÷ÆÅ!ŠU”ÅMhà2Ÿ˜;ö—ü㟘õ¿ùÌ'Z׿74)<©»)i°Iuo}âÉ,¾«<2Æ2ò$gÕ†§âÜú É·W_šžLœùûL†(u/Z4³·’AHC‘XjèwZqÞ§%~QhµØõ-&f\ß[¿¯ra_I`ŽU¸ ñ+ñ8šª¯;ó9"ò•¢k÷·º]ÃÁn×6Ó¿ÖfE‚õ’œB»2CÉFüj™ò§ó;òï^ü«ó®¥ä2%/4ç +Ò(ø%R*®‡º‘ŸŸ/ùÊ/ÉM{òóWü¼×y»[¬wWZkY*±¹¢§ò‘R¢´¯|Œ:zsIWv_QCÐð?å€Û]ÇN¹"„Ž´ï…¥¶£«[X^WÓ¸&$ +ÊŸ½t+X‚z…ytÏIÏ©¼ô,¿65¿!j7ßV³ó-¤)?Ø^FÎ+¥·vbCV)'^$oÄ•þQ‹ZiÚåÊAcvTÏi JÍ#*UÏÔ[è9³¸è_lÕt;/*yÓP¾µÑü«n‘hWº.…¤Ëu"YD>§äÒú¬PªŠs2lï½)ŸQumYtëÍ2MtšBË-²BñXÇÅb„3zmíN5€æ‘êÀPÝƲ¢½Z‹¹ ºW¯\Õ?vsO8j÷zߘ¯/lm“Ò$é`â?a™hÃm¾yÀ¿1|Á¦è7zÖ­ ¯Õ£¹T¿›JŒ¤Éke`EFRÜO#ÈñäÄÉO²*%K¥© ++Aí½sd^y½Ì‹2¸£z¤± ˆ;5=óÏ?Ÿÿ›¿•ÿ—Py²vh/µ]\zk…µÌ:n—4 ßW”ziûÀ±Èõ ~Õ -)‹©„ؘIJ‰žP}£Ñe +hܹW˜&€qèzæÅ ¸²žá­å¶u€»jd‘IêZtßû3¤ëIÕõýAó®§ZõÌrjp^ϳ^ÚYÞÚÆ$¶-7Á zN9ð܆jšÓº³Ôôå±¾º Ÿ\ˆ]YHX78RGXniG‰–‡ÃÃ6.÷Éä´iýQ8º¡ÓPhŠÆŒy +üTß#~y»Ó?'ü…/ž/ÒÚáWPfšiýyì5Ä’ÕGÅýý §@£&hZè)1£*;öäÀ°HS›²ÌöB5O¬¤*Â6eu1‚X±_N·%ÏaÓºz·ä§üäÓüÑ®é c5¿«¥i^O>ž$’×ÒõV( ¸p°¬‹Rè ÄqlZÓdI½g–)8¨¶ETui)ñfdâµé@i_möMô(¼áªZ?øzêÓF‰¬&‚ùïU!k‘j¼ä"I#fäå”*©Ý©®C4—n²7Š%VŠhäD‰b´ŒÇ°5¤ô# vÒ'Ömb ªïÊq$¬CÛÑþL€~0•«$Ó6l¿3M iZ•Þ¥¨jÖúÍæ£[2ÃN< ‡š£½™‘*¯¸¯Àw01h@Ú¿˜<þ¿â)4in5ÚÉÿuknñàKÙn.Dj?»@GÂÅêI9³gÿÐóåÇäï嶡ù5qæmQT]„ÙÙHi¦0¬‡÷ejPÏ~ysGò~µähu‘K4 +¼®>?R6`´cöh((:çÌ´òmüÞ^1ÀÁ­×€„cêŠ7¬ytS +Q©ËökŸ,RÓ•”— ^,¨‘ĽkÈ‚QƃbG]³ˆhþb½ò§˜ôB „qÚÏ+Ü#–6Œ²‚¤]ÇÂs’ǯ_è¾u²Õ–gŽ [{‰'XÉuØŽ@õ#áþRé·)k{’¨xIápŒ¼•¢m˜òèFàî @Ò¾Ç:Çæ•|Áyå¥ó¥ýÜp\YÅ ç@…cômâ‘”-dWgf!ƒžLMOу[¶”iù’åÖ£Š'¸³?¼ôЫCÈÔ€kÐæ¿–ÞKךÚÝ-âj·GgUGí33W¹«lvËb Zöß\CLüøko [h¦}ˆWPŠâoJDjZ'â +ÓV_-,&ß™ânWQŠà{€£¸ÃÒ>\}.Þ6ÒäMBSÕ¸K†0ÍÈ/¦Ï† ‚ ¤Š45ºF"ã*–-(cFSJ§¸ßq)tŸË¹ÞÂëηÉc¨ê—SIks!y ꊋÎ!T©‘yzaw’G”í5µ-QÐÞßI3Ç+™Z œB-cÓ©`MXW§¶%£ivwÒ½¿ŠÁ˜)¶õUœHÜ©¿ Äý¢;c#UvâÎ1©€8Gù™¬éÞPóíä¿–Ú¥‘ÞÚÇÂ7%E@B8‘Qá‰ùÓX±ƒ[’ïA¸0,gà–ÝHŠŽT­q?^ãB¿õ4Ë¿ßGÉZh¶Zò"ƒ¨ €7¡ØôèFùsóûóNÐn¼§&¨ÓY݉UšH`iBO_QVC+WqËå¨=ÿC;y^[õçvC¨L’ú„«! izmæ“5ì³Mriq-Ó†j!pµ†”Îm?œÿ14.=e—²<Ë}%ÄÉ,¬R2çf+¾ãbzí‚åÖõY¡k{«‡œ|T31¯1F§2iZo˜’zœæûß+7”aÐ4DŠ{”!ýtGGU%¹Ð’Hß8güän‹å}oò’çÉt y<ÑÛßIÖßpÈŸüû³ò +ßDó½«y·OxÝ‹%œ’½C¤l¸­@­qïB@Í›=où/ùùOùwåÏ;êÉuk¦ÞY¤ó_Y:Ìÿ]‰ ­½¸.±~Kû²iËâÏzù[ó3ò«È™§ºžßN»µ/,ö,%Y"ýÌj]0©"‰ZW~¸åÚ%ÝÄsG§ÆñdUc,ATÇ­j©*~{`«=@eXC$œ‹/.TZª + +ŽDq¨ñßló.»æÏÊo3C>¡%óŪ]=ÅÔ°‘rmÐ7&ª2öýŸŠ”÷Ï4^þfþGkëyv5 #×.Zæâä­½¢ɽ‰Ô­ûjM«„A9,ªMáF­Iû;Šl0.q‰µ £ERY˜AÔ†5 ++žxÿœ„ü¾OÍ}ÈúΊÍ-àuµÔ%CFX½&‘AäG÷Äóg±¿ÃßóþHü¶ò§ä–¹0Óü±ùomzmZÑçôç£Â]I<ŒT­ ß=k©yó×Cüªò—ä_˜®RËDóíìZN¿q–­{Ÿt9­}BX<#Ô^þ;ÔìôH´QÊ=?S—ÖŠ#¬²ÑíÏù~iÞ˜`/õˆtoÐêål.¦õý ©ñÊŠíS•(GÃZt4é‡úßüû“ÊEÑõ?3þcùÅ´M.$hÌÆ50Ê d«)Rª>ʯ,ŠjÿóêÿùÇ_ËÝ;\óW™<åªéZaÄ;†…`–„«-) û7ßl'姚mlîu N8,-íEe’æâ%"¡W‹5XŽŠ78e¨þ_ù«Fµ¸½ÖmVÂ+b©!¸š%bî¼Â"ò%˜©­&›ôÂ_È1è““²_Ý=‹]kVú¬ö7Þœÿ]Ħ8=³Ty…¾#:güáï•t_ȯÈM;ëél·ú¢^Þýq-ÙonB; U“Ò©$¡ A·-èEe•±°¶ŽãS´D‚ýd6wÒú¥ÔÆ(LB7µa»)¦A,qC*Én’E#™Ìœ£#º…uÿ”yP½ó7Ÿüß%ÍÅËÍs94™™…5©øˆè ®ù§Yó?›ä’.Îd×oeô^iX(†*ƒ/"ä +úEGß\*yB9Sá@‚ƒÏGy‡ÌZW¿,ôÿËÍ]“Uµ´µ‚ïU·‰'Š¸‘&„Ð +«^[W;Ô´oËß éžMÓïü6ð‹ÆŒHê +²5A¢»U­N s°†/XÏ *Í5¸åv+¿zSzc›e + îG`r%ù©ùI¦i‘Yk>[³5®¢XáŽDE~KÍfNïNþøÏ1ùI|¸RÿF†Hž)ÖEh‚´9,ª@ZßOzà~C õU”©e‡~ãln?C´ó®‘çó]¥šÜÜjPý_Q³¤zpœº‘ÍÙ—Ô${ŠâÞÕ¾³§êú]šÍ¨\¤«¯Y±†E!½J¢³²€ß MFýñó-²ÅÅ!’I™Ð©›‡ {Õ@?Nl?üÁüÝÕ?.¼Ñ¡äûäó@>±Õâ–;”ÇŒ±ºüô§¦Ø§œ<ñqå}R9<½{K©cã,<¬¡I ºØÖ´‰#l»[—²Lª’Ù¢p+º°ë½=ŽZ±SQøïœ_Ïߘÿšž†çWC:ÂÁVÞŠQˆQÓ9_Ÿ|ÑæŸ>*%Ìïw,ALq"4P«;qû*@­< |qúŽ£6¥r÷2¤q§îá^8€¢Š:l2ä‘¥s#Ò§¯}Àˆ~^y—óÉs ~]ÜÜX__1Žél¢‰oB¿XJ‰^´qØöÄ47êú¼Tò•ì°k×,#¹´ŽÚC78GŠXк¥zò`=ûâºF½«èÉ>rÖ“J¼h‰8ø§!^ô?«°Ôµ .qw¦\Éi:ý™àvŽAòe ŒŒE¨_é÷ú…¾´Œu9 †F~Lí8'íÑÅZõÖµ†¶¦³}ŠXƒÛM,Á×’µ Kµ€]ÞGi$bÌÄ–bjI=I8&ÿ–^KÔ|ã®X·žæ– 倶/8D¹¸­Á ð‚ š¶¥k-ü£©þfy·CѼønô$‰>±ÔWF$Ôo‚q‚Ó’7%#Gìu« RÚÞk¹ã´‚†IX*+2 ,v±}9€©wú2=ù¢t óbå¼…ÔàÓæ‰àÊ"º†…ø³V´qצyþr;@òWåoüæ—[ò¶Ðìµ -îš(ä’DY•Â»¯>Düh{fºƒê×nH-âüX0æ]ˆ»³CO •j­¤ëÿ˜>fòÜ/o-Æœo§”+[Ç-õª´“zAÈ#ˆZ–­ gcÓ$ò®µÿ9!æo—a}1¯4;©ukþ kûý9ZYž%ê¥*ÿ´F:;F¸–(,ë<®¥™Ò„T‘¿ZZæεù‰ù©ç­;ÊÚ_æ‡g'™¢‰¯.؉n[µõ½xÊýƒ#-[j×Ã|õuÿæ6®|§£þ`ivqévºô $·ˆÒÊnc,‘ªŠ§¨wé]ñÑjÅ$“€­4¤1Ç7 "ÊZ´$ï^¿ŽYv%˜š–êÇsZÖµ9Æ<é¬ùâÛ^Ѽ¯ùŒN‹c:B/$¶U’G³–b¯,‹ 2»P6ÝM(s‡yÇÍ™öžkòÏ•?0xh]å͵µÅ” ÄóÛÜÌñ¤ŽêÒ!22”+JíñuÄ–@Ü"cé¥xËRMOR ¡ |²±_&þYh¾w¶Õ¯"¹[8‘š=2Ýù4Ž9,Ôè8ÿ2[å_#é>s:•ÚHº:D²-¥¢Ò8仓ðñ+O„w>ü9·§^5ü¾Œôr^\ˆáñs¥:ôãO¦¸ÏùÆo3ù#òÖËÎÚæûÛN‘…Ó¬g\%íÁiF}“ã,â}ºàË?3iÿ—×^b×üÑ;ÂâÂÖ+7å"ÍvK’”ˆ6åÕ­·Ë|2òœ~_¹ÕÚ_5Ýl¡GÔf¹‘H¤5@Ä?µM°f‹m¥\O9ÕîŤPA,Ñ)IÜJ‚©1«q.vä~ß ?-u]GÎ_–Ëå0Ïz5„Yʒʳ³n}@ŽêûsøFýéCËûGTò>[Õ=l"BÐ4nÉ(Lâ¨vgF ,x©ß EýÏÕÀIH$oQÕ¨Iz +š]è6éÒ½À<› +ü5­=ñM5<Éç Õü½¾™eÒ|µe-Æl¦.›Óå4{Õ¼Ûâ¦àîr¡Ðõ2<^K†à?F¶¸›DãéQQ%TŒH¤Q¿vÄr4;x“QÜkúÝ¥–mÜC Èö¶q(?†¬íÇr}Û Å}{©áŽÈ3x™-Ù’²†EÙâYA`+Q±¨¯Ò1ÿ9OåŸ/è“ùkRòÔ+Ž —‚ C:ÃèåP­A¹¾yþ £ywO‡òrûÊñ2i÷y‚+gnIXâ]-ÔÚ„0õjX¯&¨©4Ù"Q¸©§Ý›8>|ßÊ͆VXmVåfx‘äxYRN‰@@‘'Û>†ÿÏ»üÅq£~Iy’Õ"Ç.±¨Üq +Lõ]6ÎFJ’ƒG©Ú”Å"hÔd2²°ŒƒÅ”T°%XŸxÍWòÇÎöþL¼k?:_±Ñõ;b~±f‘ÞÎ +²%ÏQýR›í¶ÙëÏɯ4éÚ5†£ÏÖ,4ÙšmîR7ˆÚ«Æ=kJ<“3/¨¤íÞ”|ÒÛKJ­Ì’32  +FE@Q¹­IðõÛd›Xóo‘ìghâê:½‚=í„ƵӪËÁ¦i&’~Ü]kÚx[ѱeb†uVcÍ[’Ò mJtH~NêérÏ'Õo.m­ë5¹““Dƒ‘§MÁ¿ÓR1ªFéµ k¿…þù°£KеÝdéV¼æ{û›Q§Z-Ã3›xÝB©neš‚«ÔÔxg6Ó#>]óBé:Ž£q¬%Œ0i¯Áà$ÚÁ7¥)Fø«3½>[r¦* Œ1ŽFa)SÆBXIÏäV› +Ôrìhš-ÃÛz,òMz·,vóÁ`tñïÔŽ"‹Ä¸¡ï“¿È¿$Û~aþlùsÊ×æÓêRÎ÷z”zŒ×ZÍg§Â÷×0¼–£ÖS,0²)JL>%ûCêŸæ—›ìü©¬yOKüÃòíÆåÝÍ:<Úæ ì6ÖZª[éóYÚYÃƤÛÅ#®î„ZÞlý=Ž›a“¦2­–•,ÖV¡‚DÑF£~EUwnãqßÿ5<æ|Ûæαo–”×·ÁSD .Ê%’ ^jŒd¨ +V> +<üåóü>vóo§{§C¦éq_Îmå´Kkv—OYLpzX†„âø#ôþUJ¨ x'üü§òËžk‹Ë?˜ztž`Ï1Aú3RÓï P…íL÷WVâY­ÁqqêܬQ±wOAWì•ø¼Áÿ9—ÿ8=å_ÏÏ8hÓ_ÜA¯ùfØYͤ˜Vk ûKsssrdxäõ¥Ui¹²ð)Ђ_:ÚèmvºÖ™o&—YD²i—1K-ǨÑ<£;+Gñ:Ö¥ùSü¡¼kó2ÛË+©YÞybÎïL†{[v¸Óu$—QÍĬŒò²ª²³‚PØ¥@jçÌ«˜n4û¹-îãe–'ã4/Éy;†¥ôñÏ—‘yËÏ¿“ÇWòçæE¨óFåˉtk»mJ6%â.ÿ½Õ=C4¤€â¼/%ªÒ5 ¿ y®.ä†æÖÜ$B33zƒÔpÄBF¥MHãשÈn{ûþqÏþpòûÎ_‘ž\üìó§˜õ-Xy†xBi[x-–ÞÚXO²Ý@ÀËÈp¯8Àn@hGÓoùÄùÄ?ÉuòF…ùÓiq6·qæ½'N6ֱm™>­n(dã³/Æìê -yDöÏËú¦˜EÞ·Wˆ›N+î ‰L2É#+}T©‚U²Keåý8ùAüÆñ]^Ü-ÒE$0*-½¼ +>&™¾'%ÙÑR@Þ¦¤gž¿ç$ÿ!4¯Ê7HÚEÌði…ÕÓ›}GÔ}GN£É0DŽv܃$`ò•hÙüÔÿœ ü·²üÍ¿üËòƦ4Ëí~âþú伞¤ö:ÛdŽ  4ŽÁÇÂàràêZ¸EªO Ýj“Üiv¦ÂÞjp²wy¡Þ¡‚ÈÈQ ªW‘4ø«Ü‚õí¥»šKH¼ìÑ@_ÔôÔš…äzÓ¥s‰I"XÌc‚^ Ída’PØ-9z‰½BPŽ+SÔ€)2ÿÎ[ÿÎ=þHM£~GjwÚ…ÒyVOZ í³[\^I%ÃË,’±€»;Í"º²Õë׊I“ÿ8Ûy^ Ÿ%ŪAçMxØ\§£ÄµšhÐÀ5-VîyøF‚1shH+#˜¤ÀLŠBê"Ú !î®L2cmÆ\<ŠÉðÈÕ”·¾ O1Òü¿š?$|á¢þdYɦêÒi²[ßéZ­éžâÚGãÈ¥#z†VÛ‹…aP~^öó¥ßå¬skþY½–èÀêÐÙ‹X¤†6!aXdŠ…Ù˜PÇsÝSP“‰Ò´ËÉÀ7¯õHù,"zb¿GÆ@&èvûóÒ—ó‘ÿ˜ÿ™ÞNóz~^ùtËuæM'RÓ¼í-í¨]?J‹Q†Q< IKÖáKê«2;1«ìÿ™ÿ˜™z&£gùqåÖœÅõ;ÍWw%ÖQO¯oerÇ$-X'&j¬Þ¶ØÌnâ6Ñ %2)Š få²ð ò©Ú†µËݛក{öÈgüà‡ä§äçæÖ©ç3ù»§^ÞÙù>ÞÃV¶¹²ŸÒ”R\<ÜB„™„‘©4Z7ÁA^G9üàæ•å¯Ì5þhêÞk°‚âóËÓè2Gwm½½¸¿ŽLd,8Dn(ÃÔœ7Ñíá½¹¹Õn;{dzÜY¦Í$n²K"DÀŒÒ¬(xÓ}ð^•kmsp ãñ‚?ŽUR¡Ù`¼ˆ⦛õ ïœ×þråÿ*4ŸÍ}{ÊŸ“:ki>Y´¸µv?½ô‰ŠÎ57¸–Y JÌw¤`ªÌygÿŸ°þ{ù7Nçù'äë/÷3ssö¯~¢8ᶶJª±/'‘äg*íû´P›£¹†åß“nt .ÇFµº]u¥vÔ§‘íEŠBZ–ñCé/ªäÇÄÈÒ½C‚Î%vlÙËÚPŦFÈ*x€Õ%¶¦ä–Bÿçÿ3åüžüÞò÷æfƒL–OÒÏ +L³YÍÅ<|á%£sBzÙæù÷ç~QÿÎIhr5»Ík«úÖ·6Ñ yY«ý­ºx+³Yô}FÒõ/E¤¢¿¼‰¤VŒÀ‡hx0 Z7Ëz÷ÖW·:}Ê]ÚHÑÈœ‡$vBUÔ£©d*Ôe%MCž¬¹ÿœáüÕ󭇜´¿Ê.H´iX‹)½9®®­¬Z_G…Áfô¢F·BÆ6§"jj>³ë¿óp×ü›®ëŸ—ÚcÂÐ(k#y•½Ë¿6V‚U$©4ý¬ }-üsL’Hâ9$ŠDnkÄ‘êÑJ|[øâm<‡V*¬Ià ¦ÿ2p£òcóþqcÈ¿–rÛþ~ùB×Xó¥¬\jÐ][@$–X]’ÜVXÙ©•fxh›n±# <«ù·ù+ù[å,ù{ó +ÚÚóÌ~jÔ/oílt›­››ãu¾•V>\})gäàž<0n‡¨i6Vw-ªX-ãn–¬Wì´«Áù°q°]ÔR¼·R§|§Þi°A4z…ºcñ[¸fB­JÅHª÷¥+à˾to>þ~ÿÎ/i—‘YþZÓµ]>K«Í'IÑô¥†)n¯¢¸¡¯xnÉ),U½EÜ¥~ÎI|Íÿ97ù9¦h0ØùkTm?U3‹m*ÄÛKh¦[–g)(eøRŠÍ!âNÔ8X× +"Ae E£í@GÄA€‹/Æ ï_§ß¯Lâóˆó”ºïäæì¾bçsq¤ê&êÙ<·õO¬ÆÒê%$-Öx‚ñãZ‡è:oL‚þF~}Ì¿›¾oò•Ö›©êÙÍkn†Úå2Ü_Ël}xâSŽYû=NV˜uäio­¼Â“Øiòêþ”rIqgm‘ÚQ¨ª"i°ðÃ?+ë²ùo\µÖ"·ŽïÐj½¬è²G*÷VV~YÿœåÖ4Mgþr?ÌRùn+xtÈaÓÅ“Y\5Í´±\ÚGx²Dì‘ž,'­8Šù½ÿ?bó—š¿ç1õ«+8Z5òþ™¤iÒJ]]'2Û AdN$ÑJ]¨¡Þ âžk]—YººòÓ˜lÕc*ÅLFId™’*ˆ+J{Tu C]›O¸Õ®gÒÐGm#rx(¨…^µ ðÎ +¬P‡BA«xS|áóŒÞgÖ<ùáå_1è•õí.*ŠHž9 #§bÕìEpªé^ám˜ÆÀÈX)"¤‡°Þ‚»`ŸiVžSÔõùlu¦¾½¹¼ç,K¤µµÅZá=RªY”1fƒ_Û>ðÚA.£ux°ZÅ%ÔÓÏ,÷‹7¯*¡ ,R£KUb« + x¬ÂÝ£Xê %ßâÚ…hiÓnŸì³`hxÊ s`+@Z§zôØv÷ÎiæË ÏùÇŸ-ñòÅž¡­ù_Êö¿£%½ºšÑ'²†éä’Cn$‘œKýâ¯hãjRÅ,úSÝÆ‘FŠ÷(¨Þ5I;.ãä3`·29z|Ny7•j²ž§s\à?ó“^{óæo䧔aӔãXËëÁ=ÊÉ5ÄmnËm;µ#YdVéÀ±°m¨½e–ÞÜ¿=i‘Nߺâ"£u wë¹Í†7×`Žgþ¯oÄ»Þ%rP$ŠTí¶ä«Ó;_üã7—4:~Riži¹†mFö÷K·±šYX†-&)tá2Ð3FyÐ;2t¦86žŸ+˜ÝJ:˜ãI¢°*ÌÍQ¿ìŽT껇¾^¿º±K»?R‚&úWD=¡W +93ÌãÖ›3¾þWjþSò'–ü·ùsåÍ9ÚMÚI5®Hóe½–i™ýYcS!i*ŽÛSfÀÖÖïcõiÙ$·pQ}XÔ‰<”(õXÐ]ûö¯S0Kwm^ì¯LŽ K—ˆLZSër>š²šý+°¯ZæÍžÞ -J8äáë<\½i]A Õ5Þ€ŠxևǦD<”—kÑY®DñÚ´¨†Ú%‹’ªŠ†ø¹PŽ*8Ón;òÍ›»)5ãÊþópPím*¤ˆ»Wq^´ØØ]ù¹¥6€t ÑÈöþ¥‡§+<²Êõå(…O‘²§ªÍJWbNjÓ¦lÿÑù½£Ç¬‹´†ægŠSê›xÙ™Tt/@h:Кg¨|‘åé|©§ -®dºv $¬A‘A'¯X ©üsåo¯7¥èzéW—§Sƾ4é\ùUu^9à‚Ø1¶ì. =Ïn›`-.xn¼Á%£*RÜqgFRy¿-ž¦‚´ÆT†SB7vÍ–_ÌŸ<ù÷òº)éþV¶chb‡Uó*‘K"FU”5TUŠ… Cõ¦u‡ÖüÍ©y~ -)&‹håÕE DyEøÔì¯Záåÿ˜4Ûí*;S¤C øP³j1ž>¡|^˜ZTPÐîjÝN)$Ë$h‚%VAF‘j xTV<3‹Éð–ŠRSÑxqøM* q¶BôÕM¨¾¤Ò–b¯qã݃pb`HðG‰âAæ·,g™,}5"´­…{æÓï-å’[b r>š²’;ƒBƆ™³b7Z„RIH*»Ð(ß¿ñÈßµÈt:âk«JZ«TŠÔR7Û¾lØ +ÕßëP˜Ø„NÃn›ç üŸÕtŸ7ùëÌži#Ô­UìeÓîI.-B‡Y"ü*ô¥+LÙ³Ò—ºµßæ–bòÏ™µ`Ñô¶Ud·VúÅÔ®pA¡D؇=O£ß_ù‹Mm2çS{}>ÉâD†Ñd³Ë^.ì¤ÑSn'lu©=ÖkdÖðGõRÃ׎0“Ë˧¨ÃíPl6Ë-UU øk¸šøä“Η¾Nòïüã—˜5[.]kÚö¡¨%’ù†[fŠÇH‚ÚJ ÒDÜ٫ĬmîvóßùÌ?+X/üã–µ¨hz#êža·š!oæ)!dŸKD¸E’xfáÉjƒÏívÁwZv—–íµÚââòâR’H"1ÚBéúŒ>7"‡jSß®{KÐc½ r×RÜ4~±@–ˆ‘¥Jø‹ÈÜ”þÏ?k—Ã4ò¿ü㧕ÿ,üÆt/5,:œ¦Õš »«jF Ò¼‹#@?7wɇ•?ç|«ä2ró7¥­Í%Š[Ásl¥@ƒ“–PÌÅ$$žåÅGÖ¸_§Þé—/g¨BÐL„†ÅăøŠ`)íçµ™íîch¤Œ•tpC  øœóƒMÓ/µõß/M$P™¬TB‹ T¡ Ðr_†»ôú3œ~pÏ¥~QÉwæ.âXmZãêÂC0‹ªÔJxø`|fp c^¿×±XêJÄ•ZÐCÜÓ|ùíùù«æ¿Íÿ:Ûé:UÔæÒîî(-­£™ÊÄ×±Ð|ú’ù³aì—šäÞ_ŸÌvˆ³ZZzff¨äCš|!¨HÙèÿ'ÿÎ!j:6–že¿Ž-R fCsöC ¥BÉRàŽ` Žƒ®lŽÞzK0–ÛŽûƒïï’_1ùGI±K8m=;+‚IQ„‰À©å@hhNlÙÓ¼©çÏ5y‡ÍÚ·æ_œ5i­,$2iSß^ÏsµÉbø¥”úQ—UæËÐ}áß•bÿ_óΛ¨y·ÏšóÛi³zÚ]¾­{4ÿW¸¨ôä´§Œ%‘•J…šaµÖµ¯y¢{{mwW¸¼1›_\¼©b>S=Iêzøcªy‡Ì>`pëšÎ¢¶-­‚Þ\I2ÛÀ½#Õb€ Ã¿2·æ7æ7œ§òÌþn¼ó~•¦Ê&oõ)æ°ŠyWq–ITÒ¥IQ½<2q7’<ï­ùÚm.ßÍWž{ŽÖcsš¥ìÓYZ¼ÛþàË$ª£Â +¯cã‰jú–·;~Õ5/RÕˆD7&âjPð<™…WcØÓÞ_ê7)¥íÔ“ÇkÉ`å2$u§. é×jÞB‡È_Q¼×58–ÍÝn5:6§µV¬°¯&RAŠ­)ã“M_ÊSùM¶Ôu{µ[w+qwj KunSÆŽÅ ­x.ÃÄáz€MXÑj9Biì ÀÙ Õ<Ï£_ù¦æïÈ0Í¢i²‘ µ¸”TšTâO€éïË>h:Þ©u¨~_‰´›Y£XL‡›Z²)ýÝ ê;SÇ-¸+ŸH’ ü,E ØÐO¿6uïÌ;›o&yÓE·ŒµÌè¦þäzŒ¤«ò**ÌH©$çeóí—•ü›˜Ñ¯Ö$Aq{r‹Å^BhjPO]Øž¸Þõ;æÈg埛/u Û{=CQh"mìî¯%>‡!ZCÊF5nûÓ#žLó%Þ£«ZÃuxÂÔBÊöY¹(oé76TÖiŽPÒº¥w$X€<IØfÇy‡óÍZgæwèmPH šXcŽpâæ +ÔðË*@ô=0ÿòÛòÊvP=¶“$ZÌÒ„·"4š)Ó‹<‘óBQ4;ûo‡~Bü±ò´Gë¶@jsE+AëÜ"‰"’ÚHÁ@Ȇ¼iÖ›n0*©f +:“ASOו‡[½ó•zÞoòƧC¦s–ÚMBêÖ;îw½L?tC¯ìÛ†‹¨ëÉ.¹åølí-ž u˜þ°Í,.WÓ1†…¾ü,$¡¦ø.Íî¬Gé¶Y# éš–DW‰æ¤r¦þ8¤M,_¿U†¬–¤tøÈ”ÿ*ï½æÌíBÓô¦¡c%Ìöº}ÔP˜&¹¢2ÙÝ€¹òÏå•êjú·šµ™§Ö¯té/.4ûmJ8¥In£3’( !c#¶x£¸ŽY¢õâ•¥„’¡ÔU%wô¨ÄÔ€A" u´?vAÿ2?<¼Æ²êþLÔ<«£èH}%[(­ÌÆß”`Ö7-ÄTžBƒ®E<ÇçO0ÝÛêz/˜ô7F·/‹M[u• uQ¸!ŠŽFŽ8áÔžiµíkg¡XC‰¢Wxži—˜ÝùÈæ¬ %Itè1G™Z¡bDRŠ üX“œŠ-&ó@:?/PMk5ã +Ü2%MH;ž.üûòÖ¥¥ùÇÈ_ŸRÙ«é~_ÖE_ñU’F‰f ê•è¼X1Pzûa'“ŸÍ_4èþjo%Yé7~œ6íi{kf1m$—X²ì n[mJ +õoùóù‡£k¾`üµÑ´ûƒ™wÆ™}kðú¼—ìá‹.Õcr¯qA^ÂÈ k¹»oÐæΡ­èŸãm +Ëò“B¾ŽØyZ]WWºá qzLï K+†åé +ÜoƹéÝÞ|¯¤~Qi/µòu¤ZmÞ¯{Æ¥kP‘ÃÁy1–FU¨M¸}é\Yíø+!¨–1Êd~)ÇzPUªNûŠTf¥Aöëœ{óF̨n¡òï›[ë­¥ÆÆ` 2OÑþ9Øn$P£‡|$üñ×æ¼²³óM¤W:yk‹{¿LJy+d@ÄÔT ˜š{·ž`hãQ!]#Tv¯ó²€Zžù«Ðxgdü˜´Ð£ü¸–ëVž=ÔR­DUÚDpcfØÔWjWï›~XÅk>u>µ5¬—Wqº»Â«þŠÿ±#%jÜïÓßR€7 I#à ÐQ¹Ø×jæÛzý7ò&áÎæíJöú'k+‰g´ºtgb¢9]Š©^-áã]©‚ÿ%l/-4Ï4Üꚨ¿CpóY\L¤È «–XÁj‚®µ4ÛîÅa…'!i‚)uNd'wéÐu9²Où“ùíä_2y+N¼Ñõíõ=z! Ñ걋½:îÈÑ涿S#Ç ô»áÔéS‡ú÷æ6™s Dj±j7u-îÕÝâ–9H&BåQ¶ §\–úÞW‹ÊQ^¤Ú¥ü‚ ­/íD÷öüe70Ü¡øJªðeb~!Z|Y!¸ŸË¶þVôÛƒ6§¨©cwjŽöÞƒ$‰=µÐ -x•âQ$q'…yOÊ]×5mtkÚü«[¼Ð¼W*ñ+sL (¯±"žùÈ4Ï!XkžhÕu8kh¿Wi#Š ÖæPÁ’VæB·pTŽù¶²y®~¬ò¤h¤¥.…UjañQ©^ƒ#Ù=ü˜¶°ü¾Ñ¬?2<åæ+5ÒšY’O)\£¿é6·+Î1BÌ­Eb”÷ Éw嶩ysH‹Í¾gÔí­,§’u—ËÿW–Sy.Ä'"á*W`Åú0Ã@Òà núêÖ+;)£õ­¦‘Zy€¬…c€U›^5 %Nìh*Îo&’%Š'Þ9r ¿3Q©J‘Ƨs‘/Ì„Ò¼áù¥wæ/"[K¥i~aÚvŸêbHÚã’P9£%æXt WÌ’ë>Z¤:Œq‹+{iB[òTXš%T!CrVªì6Âûùíd¼y4èä·ƒ¤qI*Ìë·Åñ¢F&§eqº„š|·r>— ¶ö¦ž”3̳Ȼ +ÖDŽ jjGÀ6Ûß'ÿ–——ÚVƒæ«¿,°¼Ôìc·•'GDG*ÊxH~AT ý®4ÃoË*þ…iÕ-¯k“o±ÜEªé!(ܸ”âÊA¥iµzcô« Ëëƒõ[G»©’uŒlˆ6.íBA"¬Ûø”VóÎ$hciKêJUIà€É©ÐTóžÿÎ_j¢ú)ÚH± ­£¾gx"X•ÑÌ NGà ±ßolð7üþnFþL[J#Y#‡ÌMH@¡Z†j´Jµk¹ªEGÃÄ(]…(M:“\ekžvÏš8ÌØ}åî E:…Ý•§ú¹¹0P«Dtb í¾}ÿŸ{Ëc«þOë>Lxåšæ÷ÌȾŒTh¬m%Iš6D<–„’i¶Â»ìØa‰ ñjw–“¦˜Ìð e••äbʪX­ÐòR)às׺>†Ñét}1ý'v˜$³EÎ"ã Ê’)DŽ²W’~ÖÌý¥ $H#WF%CÔ0ãºr¥MGJxí›ÍmmEg¸£¡’D?|(wE¯n4èhO4½vöoæºhQ¡b¯6oU ø™€â¥Áû$Ö£~´Äóaï“nõŸ-ùžÏ[òÔ¯¥ÞE3KöC#[»A·ÁºU«@Í·~ÕÞZótsë:´)ñÚ¡ŠÙ¦’(Âݸ(âõãÔ·¦Ù‰$Mi°öÞ¹³¤›-WMÕ´ÒlÍg}ßG’i ½ŒËtïl\Ë(øIø¸Ð/N•˜½·˜¬µmSÔ§šÚ;ØVmR+F‹‡§pœ8^ AZ'èÜ«4Ú²re¬ˆäI> BhiÕNã¸ÌE0£@ó‹å/ËöüÌÑày|ÿ>·ëÅ©‹…[tÓ^Òé'êð”•yHã‘ðPzS9Ÿüä懑¿(õŸÍ_([ýw[—W¹¼xC2-ÍŒtöqó4”F‘¯% 8²Ö¢«‚Åå±ÈËêˆnÁe5Z?DîQäRŽAâÅ{‘Jå‚jA-QO +oZ÷ïʟ4~aÚZé6šÖ‹i?”5û»Ýjô]Jô¤D6›qËÔž¬ŠÊËN?hâsƒÿÎ~uÿÎIù¢}7Ìß‘4û?%k7ß›WÌ‹t¶‚ìËtlÝeIfwxRNJCÙVä7·Òg‘mZ# ktŽÐz—6êJÆì¬\—^’¡€åÛ1FI§Ä*7$}3šþd躕üñ­èÞ[žIt›Û»{ ©ÉY$ˆ|H$Qƒ²JŠmž¥ó6‘kc¨ëºŒëonn#:g™•-„¨â6F˜Ø>õ N+…Æ•L¬Aùá×æ—ætŸ˜þo“\¾µŽ[»Ø‘¬¯½Yî¬2H]Q"i™aÞ…J‚65£^“ÿœ£üÁÕ­›Ê÷Ú±ŽÊËÍwPé3]Û%ç×l¾µ"µ¥äH¥¿©C)aXå1|<\1}¤júm„s]Ñ-îf™5•L¶§ƒÕP‘UåAÞ‡Á…Qþ98Ó¿1¿ç#?ç)u›/*ù³ÌÚ®·mi·3Úéê«4V„¢´Í z4œE*ÛødþÑ<ÇùŸæ†òö¥{v÷I y¡Šf…ÒÞi§æY(Ì h¨Ž»DòßÄQ¥·X ieäFÇšÊÕøT*€wéJœ°Ø(«1 ©'!Ÿ›ßóŽ^lü—ó¯—ü‘çÛiôÓVpê0j3­s¶šIbç¦I +òJ*«¸¯ÿœšÿœòæv¡åÛ2Eå½N7Ú]i›”’9È¢Ç*Èœ•jÌKRHî­.˜Ö*Õ*ªõZT“B7ž@÷ùí¦¶(&^>¢‡MÁª’GopAð8uÿ8íù½ÿ9 ÿ8µ®_ù÷òÞÄÍ¥Mÿi:’Jú]êZ3ðiÒ)`”Km'"¬Œ’Fy+|HçoÈOÊ_ùÌÏùÃß7ëþ`òN‹y.k,³kšeÜ&“«iVw>°³C$W0 , C +Ýx9¥^_Ö<ïù[æKë{k)¬5X=k[Ý.òÐJ…£gVC84h™X«RªËÛs’ï!~dyëòs_¼¹ÐmnX=¦§¥ê6©q´Lx‰­®¯© ƒ’1£qµ7ÃÍkóû\ÿœŒüÆò­…‡”4m/XºÕ„£-Ý”×w³#—›Å +»–ó$“R@Ï_~KÿÎ\/üä·›âòÆ¢ZÙ\ÙOÚµÔæZêZÒt‰·J¨%êvë×cFçPÔõ+ËèÛ…ÅÇÖ'¸ôÜB88g•EHØ‚Gý(r)¨^Ë©_Üê3ª,·RÉ<‹„@Ò1bW`*v¦{ÛóòòkóËšÞ™ùŸo£ùÎZ&›%þ¬–¶–Y\éY…úä<"ÊI]’T”S¡ûYèÌÈßÉÌ‹UÒ<ý Ø]Kz‘½Ý´Æ~¬œÊÓ#ˆäU—킲Ü 8ò þ[kSÙykÏöÆËO³JÚµÄVWó¬Ò(ui¦†h¸n@23-œ²yùggù_®_Ǥ~gÉ.“aj†C©ió¤72z’¥y™bX"`ªœÉ¢ô«/Ê4Ùé~]×m㺷¾‚îc:¾—|$µºŽáÑ%C/$`À33 +}£œÅ<µ/’‘ü±¦èw:FŸ¤%¬Ïj±£ÙµÕä “H­: $§ÄŸŠî~Ðl‰ê:˜m€°¼·’ÒÚ T%´²U#žâv!köÙ#RüEvU#ìŒçÒÅ$24S!×fF}ÁÏRÿÎù?S²ó.»ù¢Ÿ®Ýþ]é­{¤ùvH庒ÿÌ»~U¹µ´&âKHRf•äŒQ(Ÿ‚>~Q+y×ÍZ‡œî/ÞæçËêl|»¥:´Aw2˜$w·b¥‘ä‡o…˜ŠÐP&œ¦GY㘵ú¼)e QÃ(V%Ç  +R£±è+fÁÊ¢³'n>zœÖ•V0¥vþΉÿ8óùgå 4?2íËJòôgÍ:Vä#©[_êšm̲Ý^[Ü[Y-‰ˆ´BYc@ï_I š£6Jÿ'WSÒ¼×ù‡g=¹´Óf׃è¡D©{nm㸼1"±hÑ.åš0¥ 6ß<æ]AÔF•å«”KFîÉ£”³¤eág‰BªÆN,O쓆þNkù<ǦéºDpK}uf¶_XvŽ—Ô*ˆïÍ8£–‰"ƒ¸Ï<ÎXÛê¿–ÿŸZý½•÷è/6Þ‹6Xéf[K;[·rbò:DÍ4lX–ÉpÔ§þ}&¥ä¿ùËÿÓ?—×2Ùy·ÌvòÁù—g¦ò––PÞÞô±XÀIá¸Zóg·Œ¬¸_ææk÷Õ¢š”Žó]à ŠÑª^ÇÉÒ±³.’ÐŽ[„ï‰y»M×4?4êvýªéÚ’M#]ÙÂWÓˆÎ9•C2ñâûP‘Lào¦jÚÌ“_,HcSÊæW¹Ž…Ëqg2ÊûÕÉ%ªFûžùÎ?:?çäüÖó>¯æmSV‹K‰õ ï{:Dü&@¤HòDŸMýÑQÄ#…`Ì90ì­ÔÆÞñZÖ7TK™Á‰¤W¡ôW›Åw¥Bí¾â¤ÙÔ<£ÿ8§ùÉæ?ËÙ?6‡–&'Ã{…ÍÒÏw´™ÑX¡z³G͇àA5UÞ¹Ùÿ#?çüµ¦Í¥þghúuÝ·Ú-:ÛSœ5úÃp= ¸Ô,‹Éx˜úF¦Itù—O[ {HŽKO0‰"“F–Ñ­ÒψœB¬ñÎZG,ÈêÜ€S· VµWê·ˆœ¥©Ä’`IZÔŠ‚*;çbÿœYü½Ö¿;¿*?5¿ç_D æ4ë/=ùY¸IÌÑÖk(Í´‹·(n-dBœ@áW<^¤)ßüã>‘æÿÌùÙÿ8Ûçm>MÆÖ>jÑo&Š_ZɼÆ׸‰ä/µ[Æ Tø•EcÌ9|ÉqªÄ,íßW“Õº–á}8™¥Q,q$n-øŸ‰“‚ +Tªì†Úš5Û Ý:ÖÖ6¿¶‰ï ŸÔeš`$hB´‹É”*ó&£âÛ‰_üã¯ä’5ÿ<ëÞQüó¾Õl.4Ëë;(4@5Ì’J¬.¢Hžq(8ñ1·_‰HÛ±~TþEycËþfÖtÛû8„6×qÇŠdz¼<ë +'¨®Äp„|@ìi„úsEêXÏko,†_LO3;"3•<$ʧ~”=ê6Âx‘^eŠF‚—=¦„šxg­×þ}Ïù«ßy»M»²ÕtU²„þˆÕ´«êZ^(™âP¦¢„Šo֔ϟó’^fÑ(ÿ0¼Ï®éú5Γ¬ Y-&»rb´¸–Ýí®#¤¶ˆŽìéÉ™X·vÜíV1$^‘ˆ‰`ìÍ°â  +CZ“× È.AܵB³ìAè74mÔçÍÏb×VÖ´øQDRiV¦Á ŠoV….%™}0ÕuRf4VcAà(ÛÛ©5[†¹Ôc¹43:ÆÈʼn$… +¼¨zí_žl•~TþZyƒówÎÖDòÈîû›¼ìŽñÁ 1³É,ž˜cÄ’_ùÃÈGþróÃMò,K}=-ïo5­R0)em»…•ªþð¢Ò„šâq[-ÝÏ¥$©F[‰9”P€ý¿M]ªIq©ËE ÁK«Ð}Àœèš5Æå:jÚ×g—NÓ/KÕ.,˜[I=­¼ÆÖßXG °PÄ3TýgÛ{+={W†Òåld{–i¬ãw/¿¥iÚ¼jÒêVï$ÓÁmé£[Æ#ŽŽv/]·S"ýœbI6»õý-”ù~7 %†±([‹ƒs eIQ: ;Ÿˆþ9–Hþ®Ð“›2¸¸%ù¨PA@q¡­MV» ÆõÙÈ53{ov×n‰µœª¦‰/¡%Õy"2Ê‚„Wp£l…^Ë¥êÚzÜižª\L‹ šêÝxdPܤ5¡’„ý‘Ju¨Ø¸°š8áYå¨TSV *ÐþÓ14§Ó×6žh#kw¶ 2ÙÖ8%œ25ÊEJ/@½ªÃéÏ3þl~mþ]ù*+¿,j½ÎªÆHtÕ ORu0Îê‘«"¶^KZ· ¿À`µ¿½¶ÒgÓâÔ +Úê‰/tèK…2[輋EŒÞ71#}†ÕØ“‰r}7õN#ù—‹ÇN™Åÿç¿/ü£¨k~l¸ŸC•ÅÙÍo!Ÿ÷l³4Os+v^5ï퀹¡$©Ûf ’*:—Ý›Ge]2âkX’I€‡Ô*ëjk½6Îïùkå6ùzú-&ìM—m 4cšéç*îž^£ºž&”ë]÷Ê2Ë"™ÉE,á øC0ˆ*x»6 ”Æö2Ýj|Z6p¥š3Må \ü<öi½)ß'6¶¾`¿ó¦¬tÎMBæÚÛW¾5+jÀ/Öcƒ'£^1¼KTÖ›ãT°aǯAµzæÇÂ_\ºŠT E’@Ééħvõ’H©"€×:V—oeäÝãAÓ‚XI[©=YÌFáä $ +‰GŽ Uø…2«µ)ôæÅ/ä´–u{yU!rÁ" +cŽ±‘AHÛTýQùoq§®Hmí-Ö>®,”ó1‰Yc,æ(kÊ£Û6l×VVÚ•´Ò~òsmaà°Ó™”T ÔäÊæêÑà°õbµY'„]újÁLFNRú, 7jÐÿ7Ŷ:#ʆe/#ÔU`¬V»€H` ;ÐæÏÿÒðüËoåO­]ÞÚ´‘]GKZ¬?³Æ€ > Fùì»{Ë/-j†òÍx£·çCÊ%â +ñÜmö¼så|C/Z?P0ø(x•`z×>Ug?ŽæÎ{×`M:ž~æ´Ø +ý9Ç?,uÛKÁ¨\éÖ¥b‘Ǫó^ äô¥@4ijg¥ÿ%µß(ß~^Å¥Ú‰®5Ý5.^-FÈ—Q½Ã)¼5H£ŒÉɃÍLj;ƒžŠò©)ò±†ÇMåªZ‰ VtXæŽI¹+Nñ¨.ASö€ÃÅÓ|²þY¨Ô¥]V6h¦Ò£Ôž¤ëT + +«D©¡ÜPbÁ¦,Ü›¦«'©ŒŠ‰ ‘±Ø©#áÈqißšVZG掔4­2êïÔ½qs Ÿ•£vâŽH¼>üKD±–Û\‚9ÙE§¤n°Y!î´cËá&ŸF)å=7F¼óuŽ•æRlì^oNå·%h Øš tÜS¥Ãe6§k§)‚ÕåE¹˜JFXm;l:ÿœ±òæaù‹©Ýù|$vORG0Šr4â +|;l)üpæªÃ§k³jvá}c€Ç*°‹‚¢”ë¿C€¼Ë¤^Ô4°…VÒg‹‰e~;š)d,¤àrµ;O¨j7V;£Êñ|2$£àb6xË#t꤃Û85͕˜nmœXI!Š;­ŠóßjV£§qœJÿòšÃZÔ?Ä>cÑnu8¯KD·ZŒé4 GQPì{ °³aæ™ùQæý[Ho0ZØú°"úªC wP $/*íÄÓjŸ|=ò¯å?œôÙ +išBeS#G5¢ðA5òV€Ô}£û9aYˆ + '`rsg`ÿœ{ü®üÓón¥y§þ_YÜAqd…õMMÞµŽH½$-3@`zÛô¯&ÙjHoô¿.ºi×Ö.–ë},Éq™ +Ôý–#ÆUå&ù¿Ì–WW¾RÒ.ï^Ì‘wuhÖqÄW•%ièûöÉ•<ç_;¦¡?”ôkN *#qªÝÃ6öp„wçq3R8ÁTb9°­ 3«ÎEÿÎDh¾Mü¬Ð¿"ÿ%|ÍmæYîíå±ó^¤ð»ÞÛ:¬A‘g`°YÌ¡‚r+Çáe~Iÿ9ÿ9ÞrÒl?"ÿç|ïux÷:?œ5ˆË,¶vöéÁô¡f éòéØS¯=k:V‰kå­3Uµ×Údf»»{F[»CÏŸ¥ê?ÁBXì ²Rœ»a¯™ïô 3Êšg—¼¿¨Ùk¦ê5¹½½:|ð_X9<šÏÕšˆËÊŒY5ª‡âHgé¿“Þt¸òw—<á©yòãRÓî¡k]RöÞéd½±DdX’V2±J(@{ÿÏÂü˪ùKWO(Ú^\½ºv´‚÷Ÿ©ÜCë5’Ýiß#µÀ9³Ó§9$WH‹N'w ‘ùÅß!^ÚÜYj—–/kqo4WŒ4l¬[šŠüTëC›6J­¼ç5åݦ‹æ˜d"°kˆíÁ4§ƒF²rrê Ú»RƒjuÏ`ë~h†îK+ù²áìô‹è¥sYÊmçi£F+ÅåõXüÔP†-õžQ¬ …jÆ4b=yrùvÍü‡åkO2ùœZ¸šKtî Q‚ÒÈ‚¢¢»³\€jÖZwž¼å£~]M%̺nê÷‹fº½[WX!ÄJXFÒL qP(¸Žlôïšÿ&Ƨå{§´ÓmBÄY%Õˆî#¾‘ ¯ff`BŽÜzç¦|ÝùOþ‡s – 6ÈLzŸ.izÃÆRÅØS·¿B‚ÚàÛÏM½â3-d _ +åð~N'€!KSjé_£!Ÿ—>KüËòÝ–uåÍê8õëï«hSÌÑCk=ÓÜË9ôÐðRjÔ¨g?òdß›¾NƒN‹BЯ&µØ‹ËòÜÍv³Ü”vbÍ#Q>ݾ$^³Ëmoq<±E +‚Ó¸Š"üUK’9=u©Û/4‰P"–`‹R@ݘ€:îIÈç„^kòçžµ-Ìz°Ôõ˜?s«B­¤dÞD¢?†«R9/\~dkÚ­§›õ3]ÖWYÖÒ1¹a ŽÜÉg†4S^C‘Ž¿†;PŠêÞú{[äÜ@íѨPÐñ`|;Ûwk=•ÔÖWKÂkwh¦JƒÅЕaU$Û!­¢ÞhPA É$ü@þÇÊâV_M8lI¨"½*EsgdÑ%ô *g¶›ÑäDóbñ«Jæ:0” <6Éþù/ è‘¾HlÜ+†·EVûLQOÙjý8É#’'1Ê¥uV#è9°«óƒËÿ—¶z öZ½…½”ÑÛØ]iÈdW¢õDbqês,¤³rcB hvÈWç“ÿ$ÿ@‹o8éZ}­äVšf§k “•ÛÂdXÅÀæd,¼™¹³|Cs]±CWd•Õ8­j§˜'@ªÔTþŽÙ˼©ùoç;k/ÍZ|«hÆC6› óDæEU’7?eņÛÛ#Pòœtë­7TòäÚU˦Ç=Âz·ˆ:4±»ü+( <€ùvÆÀeÆa^RrˆnF»& ×Ã6h?›òù§Îº>‹æ˜ãЬág·½›JúÝ"Ž¥¤"(L¤³(ê üé“k?Ì]+Ró>¤ëîºo¤9M”RN>%¥¢DÐuQ×Ä`³-¦¡uF8tÈœ¨’EõÝ•øˆ-+wíŽ]Ô#€¶äsÔäÿòŠoÌ­c]¿Õ<™å†ó^ƒ :}¥³Í›¬bEôî×T%© üzž¡°ÿÈúÏ›eÖZ÷ʾ[“Ìš2,ÖŠòIihbýðer'xË° ñ0^¾h±»ÉÑKuoy)nÜ +Eõ hÛá­+P>c4kË‘âX(%¸öì ØíR07–üí®ùcÏל-fÑïË3éàµ9+ÕÔ°`~ ´®ý\0ѼѨéžqvó —L¸hϯdYÙL¬ìÈüâjÔЊû j[ƒ’»€CV‚›oßlnsγæÝkW_3^èfÇG¾-ô»²«IW‹çÅù`0ï_lâ¿žÞYÑ?$ç¼èþ®›¬yÜ\ÞZØ]Oë¯éf”,K*¥E_‡¯RqxÑâÒ®ÈPK,b"Ñ·ÄÑræôCŠŽ»Œ¾$/"6;òë…_šV:ùeù÷å›{=GBÓu?:Û]F¡$¿Õ¬}XaeåV„¬X åB9·N¹€,@¤ìÍ‚<“.¯¨Í¡[ëú‘V¸¼UÕ…¸yVÅ™×ÕR‹ÉôÅvSØ{g@Òo¯®4›k{Ë¢t[»…‚öXÃJÖñJWÖ¨Z·"• ððÅ’îá 6«%!bYîµ ÷fÏIj?•Þt±Ôt+Ë‹ô½¸ŠXå»fµ·>—£ê,2FŒ É§jÒ½Îtk¯/ù*óQÓµ­K›‹ynḿV‘­ h­­d‰dã"%>?MO+Jœu¤E&¥-——¦mVÖ&ID%^d«Ðª«·»÷Á:„v÷M …Ï×! ™ˆdÀVÞŠÄ€OZWlù[/å­çOÔ<éŸ5p¯ÁÖkgŒUÙªKT8ùvÏf[Yà_É}k;Ë6 –ð<jO¥¦¼¸¢è£rÝ·®-=ÍÚÈlµ9%•mÃDa2ý†ŒpP 8©o …:æÀÖR@×FhFL“-Z§jT€©ñéLæ›ß˜vžPò´±Ü_§€µvËGoTÓí­Ek·¾"0Ô÷Í–ŠÒÈë–j˜£f•Ìñ‡(~=zuÂß'yƒLºÒSPóôVqêõð Y…Á… 7À$P â½8’Øã#úk'Š–eSÐôÓ6Ju>ùƒZÓcÑî|Å;‹{_Ñ‘Û[´©‚4)¿4$¨6ý:geÐuk­ODÔ7K-ŸÕ¢_RxäV®UÔŽ£¾Ûû¶¢„SéÍ…Ú>§¥Çco¦ê±Ëú>[˜%ÔÞ&uEnÍa‘ÕÈ`­Ñ‡ðÎi/–t»¯2‹][þ•¬ÉüÖA_×>‚z0z+@ÊÅ>ÒÓ⡯µón~¥kÊ”ñéÓ6w¿0~iþFÉæE¿:ódzFŸnÚ%—¦té#Ô-ãvÑÅImfhâàÌÜKtjö6jÿ–þoky‡ËŸâ[m +âÒãLÒç"6º…3—.¨ÁrQ^5Ü87PÖ/5k…ºÔ¸K"ź2Æ‘qŽ%›D*Šöt,òNÁæ<˜* ;…*¼¦yÿW‚öúY̲5õÍò›½Fz”\HÌÅJ«.ÕøGR{uæ:µååÿ˜Üß<-y}Öon¼žæBRéíÖVM=4PjAÛrX| ™™Ég5cRXõ$ï¾3 ®¯eŽâz~×ÂQ¶db Ã&¶þP‚óF´¶•¥ÿI4‡àä#Ö^DUøª•F§¿JœPÛJY@béêQIE’O +Ò€AÜ ØŽ¡ëÃzïrž”áÌ® 9ïÈTŠŠÓåŸ:ÿç(¼µþó¦—©i+lš,z½µôö“‚Yn,ïý'œñfYL†B¼»"ñ¦+5ÄÓ<á… Pª–(¡hY=Hä~&¥:ž™³Öšï–l<ßÿ8# þgëéy'›4=vx¡Öã¼FŽóNÔ®Ln.„¤JMnxÐîWìüJÙô³Lót?_óˆúgž×êÒK¨À÷]^DæÈÏa+Û8(¬²,l`o½²S¬êzäÞH¶†êÎkM3T¸ŠîÞQ,¢ÅÞÂ,G +±S U+ÊNN7¡ÍM®tû«o-ÙÞ\Ø\GÜÒIi¨»«I¬Lˆ¼iÈA¥7¥3Ôß_ó‘^Güéò_­ç’ëÎ_™ºg›àóri6z«Ÿy.“ Ìr—k•}I7 7/æ+‚÷Ï#Í:-†¡ä Y/ïåd¾Ó’ê´V\ÄîEÏ¢x¼e•Hñ¯±_Ê|Ïu`4k?ªß^Æ÷7)3Åojín%g’7˜¨âÔzÕ¾Ð+¾Øw«ÞXyž{I<½dðjWK-αkUÞ¼&I ÁÍ‹1üL¶nTÚ˜aùÿ9ÍùW¨þ[k~Qó-¡ò›õ}7UÓ|Ýå;û ¨õKËØ$Š)c½’ÔFUPŸM™ˆQ íoóWÉú'•SËÞ}ywR»±Kk%â˜Ëê\ µ o4BDzÄH®Àr"µÁšö¿æ:ÒËÉúýšZ&”³¥ÃË4Êm,Y!ÄêÒ#¨eä…¿j€œSYó¶±w Xy+Q·‰!о± ©‘¦i`2õ#B€,iC¹ÜÓ§ÌËvÏÈ¿˜Ú'ž^«¥iºµ¬²M3 eHo€ˆ¯6ÔýšíŸ?çÿ-<Ùù=ÿ9+©yóôcÉåÉõHâîôÆóGg5Ä°D°¼n­'§_ ©Èd3†¼Ü(/ =ë¹êhO…r$6 çÑßùÈùÌkÛMwòÓϺÿ’4KJV†çT°ÕàŽêWY”ª\ÛÅ>2¤NJ†%¾&Z + ú9æ¯8ßiM¦kšsA% o¬¤ÒËê-"XŸ`VÜGU=ˆ9›ÎºòêI¬é÷“YßIŽòxÇêŸÞF*Ðþéøté‡zÇ›µkVMzîRuŠ—7]æe ŠÄ}‘HÈAA@G|¿ÿ8ïù›ù¬i—¾p¼×g²½†Û[Ðõhç’îÍîî+yâÿG^qWj'27©Ò3ù}ù‡ù}ç-ÝÛyKX¹º›CÔ%Ò5Û{³4l—QhÕˆp<ºìÜJýH"³ín$IK,ˆHÏÁ( PŠê•€Y«$ÇÔf"K}öãö^´¡‘N£éÎgÿ9ùùgù3¤Þè¿—¾M]ËD¸µ½¶ó:jê<ïƒÑ–I¦yœq^jŠ¼AcB7ÈßüäL^Uòouû›ûÒ´ý4F=cMd‚àOr=H J²ÈK)jR½œS\¬uìh±„e&(‹zb¨39¨®ç‘ËÔmM•ìÖ¬1µ(¦ mZV­úÎEÿ'¿ç!µoÌ;½7ʾoó}¿–u#J²òΕ¡jo#׬‘e…ašà +ZËè0åcÆJ­xIçÿó?ó‘þ\üÒÑ­4ûÝkôF¡åˆ4 6ú&I&¥ÂH"†ëù&FVMèåv ¦%Í^XnžxÙꀣFh¼8ÉBñ+AÚµðÄYÙØ3š”?“ÌOùÇkŸùÉ¿Í=~rþOÌ,¼°–š4~G‚Cõy5‰4í&;)㊃Xã¼³(’¿öɶ«ù!?æ&¿ùù‰å½Dé2yŠ|·sd©Öíì´ôH^ez†ãÕô\Ãízàèá¶Õ徘¬ã•x–~qDÍÅ0We “²íSZT\‘[ÞË,öô¶#Sé± ÌëÅÄ*‹)=>±$õ#ÿœ˜üÅòÏ?ç¼ùYæ»k¥üú±Õ`µóDNØÙÛAso ‚à³@ï4_Uf ×·eùï¨êÿ™ŸóŒúä—æm”Wßš·–vñkzE˜ˆG5êX'ŠiÕ£šTâ“ÓIøEiõ; Í>[{±"ܘ Xå¨fµ<—.mÄÀJŽ<~.=«•{yÜ´†In‚G²ÈÕa4U©&‚0€t¥)LèŸóîmkÉÞcò…”5^CçÝ÷S·°ò市¹òíâ@±H..âkrWQ¸€È¬G@kñ+ÿ>Íó˜—ònóòWóîó‡’ç™t‹d¶šéü´å^Îæi-ä¹€Ÿ¬¼ñŽ,HXÖ ý¦v‘l.í.¥´f[«XÌÒܤk­ +FyÈW‰=I$Qv8®Ÿeå³›pææo?&"X‹D‘žnE¨Æ¿@ÛsÏË?Í_ùÆm[ÌZÖ¥åžÂMgU’ÃÍW–×vW6wR:–’m6æ3QÀHƒ—3Ê¢€L?2tÿ8þRùƒ_ó¿–|˜5Fö ›_¼˜Og%¼Üä¸*N²BÉé…Ocf‘GRx·ò¿™u˽°¶k»xÒÇp¸xÔ³•vä9ñÑI ðœº.©Œš§ ÒYG3[=äBUа¨ )^½³ŠùÈO0_þaê™Ú–gª^j·6šž§k'«m Ù"›K˜JJ$3EÅ›—Æ ˆ0%O;ò‡çç˜5=AæjçMSó9±h<·pÅ ½ªsŠ%Žj•kÔ»<6©Ø•`†u’c´|#p–4æÃí+ ö¡ÁÖšV£ªI ½¯+ˆÃI,”§ÁY¨r¦”5Þs{ä:yî]`¶ˆÉ$›* $’¢¦”ÏŸúg–u9y•<½å;9/¯n=V†ÔæZW`eãÅB‚~#_rpËVÓåѬë,¢ánÕ!QTTjŸ‰Y€ßcLÙëÏÉß.è‘óŠÞ~üâóuÍå·›<ßú?Iòf—g,¶ü¬¾³Þ»\ǤreyŠS‰%¸ýzÿœÿœe—þqSòÌš~|¯šüõeg"i–ñ¤óÚXÃÊXãŒFÛË7«R+ðüþбèóé]ƒE{Ãÿœ#·’ÞÅ Ù%ç« GÎY:l}:|Ey5-;NòÔ²Kq/é=L„ŽÚ5ýÈ´Ñë#ò—lxú{ˆó[C4Ú¼’YLñ[H²ÜivÓ7>°B²üz(ªà‹_Ì}fêo8ùkÍš‡™5i|©¬ö¢öÑ‹H° ¥‘Ò+‘꘱T^!Uk‘mk¿¼KÔuºŸëfÐÛýLž[ˆVÔ‚† OL˜Ê‘Æ€nG”ì!y´{éV(dN¤K(‰‰u'–ýxøíí6òï˜n<˾²,ŠßˆCê6CQK†…#”¶íéÄoñ—æÀ7)§ÛYz°HïÉ*HUóAb(8‘¹=û`­B=fÿÎF"…¯¥l-×ûÉ¡œÓ RV!²Š7#Ðø’¤’qér +¢‘«7" oÔÞ§¦l ÷[˜K”FàO˜þjG‘žüÑò˜<»ç½kQåWÔÖØ-æ’¼¸é@xÒRIÚ»U<ؽ¤Iw$Ó](hâ÷ô-!©E৓rdýŸžùÞÿ.nE“´h^'ŠæÙl¥¹ŽAiîo^ˆœƒ8ä̃“U=«ŠÝF¬¡KH¨$ºŸ´8ï^¢´§lØm h“k×–ö¾W´W¼˜»Om%Õ¬d ¬`Ü2Ž;ToÈÒŸk&‘ùCX¾ÖõÖ滞 ¸n!Ò... Š-E’YD•U% é€#Zñ,:røN8Û²MWDÂFÊOÀß´êjuÍ…óÆ­Å–¡1K߬ {¸‰PELàzd|Dqñ¦Mü©Ñ¢õu;HäÒn-åñm#z\ v µâÄ€v¨é•ôãiÊ#Ҏ ²š€†ÛǦl+ÀÑI>¥!1)244•ãà§áªƒÏcS•úJèFËk‰-’æe–d—ˆXb«úŒBŠ +V‹CÓb6ÄT`£©ÛrûÎlR[{;Ë4¸–`ÒÂ#†F^1za”–;–?dwíL$ü®½³ÔüƒåÛû–-?W„jÚsr½Â7(–n.”e–%Ûp@úiˆ {î?Vl«Ëym®aŠVWL–Ái +²‚UÇ nþ''÷ÚÕ…¬­ë½Œ÷ ûÝA!„©§%2Z5~³gÿÓùÈÐj×ðÝê˜åGô_œJJƒÓq¸9êà·:ÕâI+ó·uýÉ.ˆ) +ßds5ïCŸ+HÜ þÐø+Ò•#èß>Ua‡›ô] Jò÷–µ-0±¸»ŽuÔe^[Ë øI=ƒvÔ<¥~]ÜéV¾P¶y¢ÔmÌ÷P†4YÖR‹Gf.kCÛº·Ò,|Äœ£ŠJ¯oQÓæ+LØkùUù›¥yWkjŸL»OBé`â.ø+¬¡£fÛí ¨jm“_!yÎhÓYäa¸FŽúÜUeU½@CQ)¸î0vƒu¤E;ZkÉ#i÷÷ïj#È¡F‘H§*rǽ1Kf¶Y»Wx¨y,l«M¨YXl}±_̟ͨ1uñs¥ÛK ½¨ô-D̆W‰O½b€-h*@®×<ùž5‰í´Èå[}9ãŽoQ2FjÁI ]ûâ:¤ºCȱèðËH^²Náž@OÂHPØtÆ7G…x×jõ¦tØ?.<Ýç&é¶z…¬ w§ÀÓ¤”qf¼ÙYÉ’)=ö4ë¾Iàò~·ªyVÖïÌÐ[«i1nR³Ç=š†–7'ˆÐï|^î©î]ç³ýý¢7é»UÞ¬}V5Ø@ØîE{æ¥FàÜÿ‹ë˜¿•'ÊVÞS¸y[`"xD.±#£9gfŠ¥‰'Çé Èî“ù•ùcçŸ*[Þh²5Õ»ý^0ªôŽXådbظ©®þôÅ…§•ÚÍ$mFA9¢˜}¡ä±"¼µ~šemO| oÿ9åMÉo hz÷Z‘ˆÃ ³ÉèYŠ©ã#G³³-z@{äcÌ_ó”-aªyƒÈžYÐ^%òݼ/æ3]MYØÙÎŽRXã¤3:ª±âxôßGªy6ÎÈM†=FÚ9ÀA:¬—8$3Ìã›U-3Ôú× Â%WŽ2PP˜än\©Ô¡M¶švȽϟ¿0ô0±òrÏåË°í$z £<ˆ×œeu‚_P|K×jaf—ç}nÆöîO'éïå[™ÞK–ЭKM4×*¼du‰9¨¨]Àøe™õ[.Qi2Vfv±ÞKvvKæi%h7ì1Aq2ŽåR¥„`ž ‘C±öÛ9Oµ¿4y‡ÍSë~z¸¸»ÔîZ6½šê‚Vâ¡E@ +(gÎßùÌ7ëhüì³»óÜ—†âwõÐÑHx¢ÐUið¨Ø]uuuq%åä4ÒžRH椞˜Çv‘‹¹,ÇrÄÔœõ‚*®ÿ-uyU./¤D‡K…mØKõ©U•Ä‘©b)Ũ7­ségåeçåEÏåŒöšzÇqvë:=¿Õ×Ö7R¯Tž”fhnšI&ôšú…Ó†ÿn:/]¨Ý}†wÿÎ2ÿËRÚÍ1‚ë“JêĈÊñ#jü;uéí%~«Ä2‚’>M°¿³A½;î}²ëðNõ®õ8'Î?ó’÷÷¿”žUÑ‘au _ÛÜ ûKhÉáD–6+êQÕʸ;‚ Wp(£›~wÿÎPkúå·•/-|»¬[\躽¥ÍÆ·¦éðÏbö‘Ãq‚™£b² +Ñ)Ê»Ólu¨Û\i–ÊΓږAnb¡àÕ,áÉçÈ“ºGp@qigYm¢ˆ’…T*ñ ’Äò5©kó WóƒÍ_óˆbò ¾­å.î¼ñvVïR¿•¦Y库ƒË-Á¸<›d¦µ÷Ã?&j–¿˜z…‡šôûˆµÛ /EM³*Ä¢ U’%û`9Þ†£Ç#ÈQ]Lƒ’‚9(4$wÞ˜S4¼»(Ôe󮟢Üèv:´î- ’ŽÞ¨ää/Çp8¨˜^[k&óM–—så½"úY>®³ª3I/>oXÇ#äy0@öè1ÓL¬mÕ–?ÙW`Ì>dîÌi]ºg ?)nì&ü¹¶š÷ÍQ_4h÷Ú‹NÞ™³ §(ÉV5ø—~½³»þXIO%Ãy©k±ÜÇ››á5GՔƿ»ç7ÄhCt,9£Åk©ëS)WúÌ”Q$²8Q׊ú’HBªŠ}¢h7ËT.ÁTŠš ÈTÓrhrÿ:ù·Ê÷zü¶:Ö¶/,-]n,ý$õ­eBŠñæ ²’E?ÊÈ'™õ'y¯Z¸Òµ+Èõ=6uºƒÒ‰e·–eŽªW˜œÒÚ½¼—l÷Ñ*CûÂF–%U§hƒ©mÈ özüTÌÀ©*HÛ­ GÞ2wv^oÕ­´+H–Ú^ÒÌÚ]ÝÈ‘ÀŒIÇs=}Duu @Iw}êþ`²Ñ´}æÞVÖ‡S¸¤pBU©DŠ9œ"0O4¯\7k½vÐ +ÓÇ+9w›ÿçõý/ó*ÏÊ~Z»-}yOÁd_@ÒBT˜ýG)ùÔg,üÂü“óC~aÙySËÚÏ¥¬\ ½³¸…1¨‘ŠJc30ÙNû×ÇžÚAPÑH(V «oÐøæ¦t,YÎEÎ:ùnâëDó6ÙÊkx.ÙYÈç^Q˜Ú£t]\ˤ®“ui kzC,Ñ#·6J«e$Ôr•4ëŽ7E­«ÆŹG5‘FõZ‚šî ;R¦°¿Ï]kÍ^`óN‡åÏ4k³j¿P·‚Þä‘åKQ'! u(`kR)]óÇ¿óò;ï3ùÏ?•ß–ú¾­%Æ›; I¸HÓešKh^…¨I +Ašµw8–¡©ê—ñ[C¨]Ér–ÉÆÞ9˜D§°aPL©®®®V4¸™åXTGv,EZ‡°ÃÍÏ!\h¿—¾X×!—¼*aôè EzÏ-ÎûÔV™*ÿœ¥üˆƒËßóÞGó†…*É’Ù>¬%Ò xÙ[sRw#ÕÀx–!ùOæë­̺OæV£¤öz4YêÖ1ÊÝÞ@¨ÅŽMÄR©Ôõß|ìÿ‘ŸœÖ:·–ü¹ùª÷6e*ZÁªÄ—Û\ItÑ$^“…¾©øI uÜâðzFHä¸_Ü+(Q‚»%jh ëOlËÄ0ä*+¸gPüúüÚü¸üÌó®‹ç.f’Kk¨4ýRæÖÑâ¶ý+ü2ŸM˯¨ü~õ¥3³yëóoòëÌZä%ÜÿXµ–ßÖ1Âx5·ª +IKÉÚ¿,1Õ®RêTµe•\B‰k à qFŠQÁ(‡«[j­s)ù»)aE"ñP ~¬ç™ù7[ü×–ÈË@š-çÕ,¬â–Y–)$0Æ®ÖR_ŒCCÊ¥vÕ.ü‘eù…waäÛ2¶ºÃB-t×C + +-¼ŒZv^-# +К¦æ©kë£ÃªÑJMj‰3Fìr Ì‘IR~×Â*ñøiÔ…¢Þ:Ø•0 +4ŒÀ+S"£^¿éµ3¬~tþPêž@ü®Ñî/µ© Ôg±¶´×¬ÂÊ‘"¨DdS5ŽU$ž»õΟçÿ%jö>CkéuF³ÔZÌXÍ\Œ1 bâŒÅI£Ñƒ¼vÛj^­¥éö·’^¿=B½xYf’êÅXʪX4دs½.îɬ᷑¤ ×_Ó "•ZÐWš­wª=ñÚdŸ“¶–Må÷ò¤—×kysTŽç=ͽÂú®çJ¡Ÿ´¿E29ä/~R蟗pXywÊ„¢<‘i‘†?VîåL$2s<˜P“ÿÀ:kèh—jÉ#’„ÛË£ A §7ÜWŒÁéÊ%™Ñ+üÜ…k¿JWéÃýoþrCÉ—Ðiú%Î…ª$“˜çó5ŠËÃÃÑxÖ[?NQñ O PPä·Ì™yEtó§èwRÊóE.µb“D¬`òÄ~®Ë%9¬…M­Bú`›cäèÒÎK‘y+ú¡oâ0¢¤‰h@m¼kŠBtõ0´ë#T¹AAðx¡þo˜§Ï8”¿8¼¿ ¾Ÿå›/Áao%é›TÔI&–t!dðÆÜTò¥}³š7枀¶^V‡N†ÎÚâãë:ËÒMZFòøPñì? +`W¿Ó†œÖ–úz¥Ä„ oÚF¤#S@¤‘ñÏ…#ä8â*OÚïOÃósô_涓¤è”v_ÇO¬x’i¡ ŤQ²*©*ÔWo ÎÚ¨ó6‰§i~B²–âæ…­TIJMn¡ªÇŒœ5b97ZÐf™í ´VÓ$tf_FíÀy‹ÑˆXÖ´E"•'âëì/¡DòÙG¨ÍAV;šÐwë·@B?çüã¢yTÔ<¹,öZÖkou¯Û Ù%¹†é%.¨ªI*Œ;Ô~×l§~Rë ¢ÜN²Km¬Å +O4m;¼ne ^ P„#ŽÆ§¾3N¶Ô¤[›9Š}Z2÷eXÜFHƒf4.8%–9dJRÁe„Ó`H'¯l‚ÿÎRùKËþ\òWåu电¯4{ûMHCÊÆ'‰­Œ²¥šŽ$QBv*iß>yÿÏÝ–Áü›ù¥êRj6×°ù¢~S¤hë+6—ê¨6%¾:»c'–6ÈHâZWàQÃ*~!V+E®Àò§rZßÝ¥¥MEAÛé¥3Îùó{ãpãJ´ú݃+Ìñ¢Ì¡˜9ÅŽ23Š9 +{Ò™ôóþ}‡w¨Ù~@kߢ!î.|Ï{K";J¬4ˈ/CS#PSé¥pM¶£qkÛÄ°•“—&’ÞrR‡‹º3.ÇjŽã}ó`¿^XíRI§†å +YD\³F`ýÚ²“Zm^GŠøŠg¢üýæÛ_*Ûµæ©)µ¾´¶{‰-Ï÷oH#2‚Š«Ñ@êA¯@ÔB¡–„ЮÃa¸Üš‘ß6Pk;3Âkˆ$häCÅ¡iy+º…áEÛ™­OJa’¿.ôïÍ[á®y¶d½XæH­ôç¤Èò¤ 1GçŒÄœÃ'•x¶û ecu83ÁT`@·4#Ô”‘[aÊ€‘¿j ó`¹môùeØÝr‘ëÅ°Äå‡$øÖ. ŸØàß 7ëN«/‘´ï'*   ž$X×™{¦‘…QB†5 Pnz JãÖVE–/OÓ^ +§•>A??µZÓjæÅ£$–ó^™98eå-³ +F‘¶õž¿IÈÖ­~úDWðÝÄ–wšØÄž’/­x9*¥Ó—¨Ã“„w=1*@­=ó`+¨/’ÎêfY"³wã–DC,ŒÜ«*ò5ÙIøE;× w¾o··º‹Y´©Hn-`7.þ¢[ª­‡ÓeêXUÖ\S  e„£BÄJËÕR@Úœxì ÷®l srÒJáVÜÌ¥ ­ •Œ" ^<¶%|@c¾y›ófö–=!mïf¹ÜG4ž¢¢)ybŠY¸„<Ë…™Mw®>&·’Ü£…”Õe~”Û—׿lØk峦_yšÒÃÍR¬v2º ‹ˆUäÛDKºÆŒ¤Ò•=ýFùÞßÏQ˯ù±®ltñE¿¾[ia¿pæ¬ ˜Æ›ƒqÈ4zâLµ«¢‘hµÞžšZfÃ]?ËÐë׳hþVÓ¯5 îd¹Cšá£ŸœJjŒ¼cW +€5:vðΧçëŽúM¼z…«¼ãH»H~­)‚9H¢M= +©«ÀµvÍ͸ØI¨À§©fÈ®·n-éI)¸œ_GrŽ®Ó#poµ½A ³Ï?ó’?”ÞQ½òw›õ_=¤Ö–Ú=Ì0A%»º*Ý\©fc,x*7â$íȱ^Æ8U{§’C"µÌkÏÓ$ÔTW`OZí›:ïüâ­ß’|×ù•¡~Xþrù—RÒü‡¨LÀé–ןWÓ®uvYGt9cŽe¤rL@)^~¤tæ°ùÀÿί(ù—óFËòÍš›[þ\ËèÚEÅÙú¥×˜®Ímì’0XåˆÜ3óþòtSÉ]‚9Öƒ¤\ë×W:$7EôëXîõ ®Œe–·„±”ÔOÔ*ˆwbŠÇaƒ´‹{Kû¡e©_ aÌ©+‡dõ–xÒˆ†WE‘ØT!A#»ÎcùgòÏËÖOŸ˜Ò<É&¯g¦Þi:N™{¤iúÏ—­´ú\\-äF8Z âaT ?!ª>…þt?–luM/V¹ŽÜ\ B+‡‚@ܯ좵’¦,?r²+© Ùv¨8W¨ÝZJÒÇaS ýX–š5õšHá*ì®T$ñ C·òŠ¹ú³9krx¡R¤·ÌÓ“~ÐñúLôo•,¼Õ}ù`ºÚØi¾X¸Òî-m|“®hú„š-·èëÄŽXV©ÈC<²=%+Ä:1æ§qËG±Ô´V›T¶‹Ô„ˆíårP¼#¢«¡¯Û'·Ï[9oôÖÕîî! &–9&žYg>ˆeª¨bEEÿ3|_àDi›Mk÷–#ŽF”Ž}GoL¸Q†b*´åJѦãÉó“?—ÿó7—zOæüä n•¤_Þè¾^{Ýcôο«Å$ÄÞ±¼šyÞK[yíÀ€=« pZLä?™~TüÊÖ´û0ËkEcw–•mapÍ3XßJöyä¹æ.cŒ¤iF)±ÞƒjRÕ4Í"ÇYúÂN.Q$†K¤–›Óa)2Åõ%áPÄrÜ|,ŒËê]Ö4ÝÃZÔâk{}G—èÕ•dhžR!+ÈcüÕÜP×<¯múwœZÃ*Ÿ‰­¡y†~TC!òñV•é^a¬y‹Jò.—{ªùÞ÷Ñ•åUžà]ÜÛÉwÇ’ÛóQ¼NÁ#Š.u S­0¥Ìï |Qb +$>œb@¬IâÜ °ø×¾gÒ_ÉßùǯËßÌÈÝ'Ï:ÕƱ<—:e„Ò]C4×<5X'{Ve³ôg+À!á,|*?j§OycEÓ¼ÉåM.îá&„\YZM1äVénJ”™eT:†æm>åLO q–*ÖŒ»oBE~œNòÒâÂîk+¸Ú)àvŽXÜQ•”ЂëVÔ-´»sw"A3ª’F +£“¢¤÷9æŸ>yÍ–^fÔ|—ç›oÑš¶–ê×ÚtÍÈ™d@ÊQ¡g°drÜH;lwó§ä‡ä—øWógο—šÖ˜öÚ"Ç=äW2G,7q_3ÃÐ/ÓzD¨¶i•”3s#©O“<íù«ü¥ió]jÏ(·ŠÚ!ɨB@bäß½iŒ¼´¸°ºšÊí sÀí±š,¦„TTg«ÿç?ç?gü½Ôt$ùæÔ<™d>©§ë×OúoBŽŽcH®G8¤·BÄú-´Ó=#äùÊO,~]yŸHü£ü˺m;O¾–]#ʾa¼”\¬÷Ö×’Ù›¥‰P¬•Œ¹D«O‡™`9K´‹9<Š.4ŸÌ˜¯4-Næ>‡xè¬É qk$rDci—œ‰Hœì¼OÂUù©·—¼Àt»¤{’ã€"+¸\¥Ì»u7£QImÁè©Îàùëþq?WÔôÿ?þk^Û¦‰{¢ók:Û麭íз2Z f³hZåÖBþ¤a Æ…é±=|þ`þ^˜“]¾ú˜KˆeŒÜòݨb«µ pÝMO^¾9 Ó5ÇX®å¢AÂI&v‰šk¢ÿ‰¤‰¿?ˆÒªP£ í%ÞV»‘@âîK§7‘È+Ä-ByV¦ž=iŸ9ãš —EÕe{çô«{§™-m TœIÂc"!vå:ªü5âygŒÿ&ÿço.0eüÕ×.Þ=mÅÞ¥i¾\áa¦Ç¦¼©8‚þ'Xä¹s,|ãXPEÒ]Ê&k¨Ë¨C¯$Ö·qÆxÚKÎ)šfe+Ì4mPäAãZu­ ŸI¿,<ó«~tÿÎù®ÛÌþ`¼½ÓçÑoô;vW¹xt˽9öXoÐsP=­ Å%eŒ³-op\ð[€’¡7ˆY”I ¡?~è×7ë¥jÖ1kk¸BIûJ­È%k±+©\ùu̱\úñLêñ·©Ê߸èA‘Ó>yÛóÌz‡Ÿ_ÒfŸIÓ|«wt¾RÔ¬î ¶™%²fHž¸På˜F§”aG.À“B8n$…Vh‘©OJd,²ÆQ¹ßµNd¯È^G;ßêvÒ]›OÑðIqêª5ËQ\o"FÂraÊCE€õÏZéŸóŠZ¿çåÞç]_Íò_ØÛYÌy›{¥»h½)žHü pæ6 Ü>KPj¾ŠÍE½ÔWŸ\{ˆD—ŠbthgæÃÓbvbB†äàÿ5FlŸþjK¬yCòwLü³Ô/läÓ?J[ê^^¶·hÍÌ‘ÛÁuåÜŠ¬Î‚K‹‚‹ê*Ž „f0éÚN•Ó|¿å½>7´Ð¬m¢ãHímäv!ˆäg‘¶«P(÷óÕ÷šnÚýY`´¶´uK{xÞ±¬QppU¸Po]èEëžE7/,ý]K³G³LWe©5Ûß||ò$³I,q¬*ìÌ°¡bˆ ¨UæY¨: +’}òð\^\ÛͨHòG$2ÜJn +C¨ûKB5+Mÿ æ£D½±¹¼¹¤º…½ÍÜRËp̲+–’LóQ”4Br'jÓó<Š¨x€ƒˆâª¤Ž»•Ÿ§‚dµŽùáýˆÒ12Gn`ú±r ê:¯ ãÛ¯‡|¿-Æ,'7Mb¯iwøzõÆfÅt«Òò5›Z“â-ǧ G–I"f §“r&œH&»1×t[ÌzéþR»¾mJÖö ´èô§¥äÒ[/Ö ¢ñ:¬”<»µÇà ·¥½º4³JÊ‘DŠY˜Ðä“Ðf’' Ãmgò‡óKɺcjZ÷•ïí-G¨Ò_Ýi·ñ€‘…3H«u`ú`Ñ(e´¡ŠÞâYd‚ å—O’-ĉf· s"¡VW•¼c@MȼËå-_Gº±kÛ´]F¸µ´–{ct"ŒÞKThõj+JÒ¸/SÑõ}d¶Ö,g±šHÖh⹉áv‰ÅU¸©C‘Ŷ¹°ŽÚì+A÷pÊ'âHxU¨I¡®Â‡Ãi +ú?š­´Ô‰åõ,ÎõK”å47S$]Ï$KÄÄWyO h[±Â]:K”yþ©0…Œ«+0Q$eO4© ¯R6ø©3§y"÷AMÕ¥kë™õ”{OGËï /a}Ǭ·“4¤Fcž5TxÙª »3£ùo[·“ÊzιrI[çÅ{ ™ëJ¾¢R…‚I)h$b »iˆÉ3Ü“%Č҈…‰`4â«RIت<3|§?—4‹-8\LïéN'”F— +­é|OéŠQj}ª:öy¥ðK;Ê–±˜¡ŠBÔL#F€–y»6ÝKÔœØi9·6Oh8»Ý¤M *¾§Ö¥­cš€I;Ò›ä?ó_Ö5ÍN÷ý,¥Î‘ Š>AÔ£? &W(§-ºq``* ðÍŸÿÔù›§5²Èœf(K(B(xÔŠ Ï@V]óÕÁ²åþó1‹9µ* }³åP$A¡|ªÃŸ2ù¡µ'BÑ]vÓEФ`QšwWbÔØqæ=^O¬h–Úýu£‰!’hÛ‚¢I+“`j7ßåŠ\N÷2™¤ûmNGmÈ®ÔÍËã9ÌêC¨{Ô®E<Óvº¤Òi¶÷êë%Â-ÌJÁ˜°`Bï½>Øžlê>Qòo–õË©uæ¹Qw ±K ‘ +„çR±ïCáSËÞRÓ[Ê髵ÈMBÞ^!yúl"_„…PÛ‚7à˜ì^KQx±+qœŽ%“qO‡•MGO ØsçOÎmcÍþH°üœòίt8¥ö¥d}IïâŒ+¬šÇËŠùš6çåœÎûóïÏš_š^ü¤ò/–®®|­£Op¾`óM¬\Y_Oem+ÇhÏ^˜ ' ¾íÛl4¿ó½Åœ:vœš}Ô0›kÛ¨[áº@ÊÊ]8ìGSS\ZIã{x¢H‚:rJ ýà$tڙȵ½4›´²ýêÎ5Ä3ÇéI–+À­[ íZôÀŸþuySÉG›üa5Æ¥$¢+ß,G¦?Ö#x¤œ™€¹.(U{ƒZà[Íx4ý?Q·õ.ù½"#Ó”;/¦H-RBò*LG:-¿åÕ¬_—VºÝå¼Érâh8«q’.<ܞ̪îVȯ“?ç^çËš~¯æIïL\ßC«j´úÌêQ†3Ið³ñ‘cØq+EäFª»( '°>9³ªÎ8þUyoÍ3jz¶¨âøi*±>“ú“ e2ýfH Qƒû¾Ge;õÎËù]ä(yÓÎúÕîªËw–Ö [/,” BZ?Q®žßYòàµÙýi†ZõöŸ>©M5½±aqè$ü<ƒÈ€ÔFNÜÎßNج6³Ï²ÄŒé +ò” äQzr#²Ô^›á§å·‘¤óçö±}囨m|¿å_V}^þîä-¤P±d ž¨~|LOòÓM2~{y»Pòúý[@òÓËåíÔŒ"nlÊÉÀ2Ž `0=•¤÷Ò˜£dAJ<Ó2¤h;U›aZmŒŽ6•ø)݈P>“¶Eõ_ùÉÏ,ùsó#Róf‡å+}YÒ6´Òn.î¼Ü´­¡V,¡éJ×8ŸçŸüçÿ—¿%üÅ}­iY‚ûPžm£ÅspMJä¤Ó“‘zt>׶еm#G»7WzRj¥E"ŽåÊÅʧâhÔ‚¤lO]ëŠZÜ%¬Âf…'ãöRPJWÜ+œ£ósó“Í_zòë~dŠJ +8R8*ñØ ]è:œóv¹sù×ÿ?eó¯æ ÒùkËv¾—!¶çÃÇû¦X@XC¸g©¡Àúî±úsQ“PvÖÀ me +à +€)²¯Ôµ µ[Ùoî#†)% ´vÐEm áŠD^†t/É_'~Vy‡M¹º—ÏMäÿ1è©õ„V‚í§£°ï%ȇÊõ¦z«þqò'ò×Ê­«i¾f—DÖ´ô5“Vá-¬ª¡¹}_Õ¹ #ù©ôvÃ=7AÑ/ôYõ+}oê÷Ö)êI§ÝE>£š•9œ—û?à´Ûc†ÒÆk'˜]”¸Œkw@ªÃöx?3Sâí\åcK>móͳkfþ·}:ÆÀûlEKSl,ó›­™WF:Þœu;£5ä1ê×ðÃnÜQVV Xš|*®GY™Ø³ÄîIÜœ„’Eq¦\KlÌF̅䥗j©ïœîëÎúÆ¡© -KC¹€Ú¼¢WËjò#qfŠ`Š +×t4ßÛ+6tŸËß-Ùj·Ö:†«É­Ã¬ÒFPµV"Äli×;§”t+mKêZƦH·Œ¬íRà¤@7SÖ¼|sfÎýæM_Iòþƒ%ý¬¨¬°«˜éð°W‹PƒAÖŸ~vŸ1ëú/—¼»s©ÛLÅm—ê­ Ga) ªU¨@Þ•#sã˜íÞ¹³—™ÿ+Zv»ó.—+Újâ4¸` +}QŸv’ UäOŠÓ9^¥åoÈï8iqç¯-¥Å†¸‹ÌÄfÖI…]‹©ZZ§qÓ¶-k¬“ª]ÌÐÄJ†‘SÔ* Üñä½¾aJŽ[äo‚ü“å«&ËVÐü™§¾½¥Ý_$‹æ+jËÚüE§ˆ¿¥}±_ÈßÊM3òËþ`ü·ò–“.£es~×pù–eíÙcuõ¹€UW‰öÆÏÁ3ÂdàÅDˆjŒÕÇ6t¿/j:N©Zù˜=õÓiî-Å +ؽbaÒ 9¾Üü»qŠåµUk©`Ó„–¥(~ªÊV–ê¾#w"”÷Í@OY‰ZCÅ‚…~Cs±¨¥vËR€7 I#á¡¥ G]·Ûu_Éý7óò¦ú÷J¶Y‘sqqwæ8$fŽR`RÖ‰Ñ ? +.åË Wlæ.躧•ïµX+Úz“&¡†Bò§ Š¤òæx¨]þ#@+¶·Ó®¯´ynà°‘’ÙË\j¤°…F8ÄÄŽ’6Þ¤£¶ ƒK¿ºÓeÔ-ì¥{{V¥ÕøVôSøšœU *jÝr_Í¿È}CÊþBÐnmü±uk}<ÁÃȳý}£1ÈJÉjWá Æ¥ûUA¥s‘þhþVDžEÒ5]I½Óu9$å-Ì-0¿ôåFb’[­@TOP8Žø÷JÔ´ØãmJÊ{O[—¢ÓDñ‡à@n<À­+½1­>þÅbkÛimÄÀ´&XÙ…%I^@T)¶sÛ¯Ï/ÍQs¢XŪÉlžZ­-Ò­'eeT&á¢w¢YêÛd?Ê_Ÿ>oѯ-ô/11Ö“ÓôËè-fªÆd‘’ZŠUN¸64êP,"0‘xäŽ7· fg^ä1¨.Àt-½w­q¯s+ˆÇ¾â…Pý%@$ûð×òïó’%ùš÷YÔVv}\Þav·70ÊŒÖá"*·3µ9žtOË­FòÔ·žfÏj42›Ô–9Tòõ +=r­68ÔØÍpN©$©„–¸ˆ,Ò+u'ƒ²©ÿ(xÔÒ…5âXs$ä +Ÿ»lï×>jÓ¼ëim{¬ë‘+]|/o¬,sHÐð¢–G êÇáéS“»­`ù¦ [·Ö-lY‰Yß[¬¤ª©Ýƒ¸Q^_ìiß*t’êifŽVCI&eY]T|$¡v5â:iÒ¹œ–bj[°'­ÃÇ#—™¾LŠÞæúòö(îã€O”RDci㪔,‡â(Ü×ÄnF|ëåù ¾šSõˆR9 *bhÄè[ái9’ P¢¼Nݱ¶Ð[H%ÄþˆJQBóvñ¢µÜŒ¬æž`–6v_š>EóP\_ΊtèZ&“Ni‚³2Ö£÷<Š²B"—öwö1Ÿ<ùW]‡ý1Ç¥¦[¬jöLÀƒêÊ §Ó5ªß2<ö-Ä2\s^,­°r(ë½7_²Ý¨z–A·ÜPƒÞ›äó‹òãPòÏ–tO6j7òjëÜï%»ô¸Æf•#™¸ºšÜÍ?Õ;g–ÿç<$¯lÿ*l|÷©ê’_ßó¸Öí¯VÁ,ËæäVø•ÕÛtÙwÙ)$ydid5g%˜ø’jr±¾róß™¼ÕùAå«mQK;9~¥ÃËÈð·Vâ¼xì3kÞ˜¦‘ùµ¬~cÎ!è:—š-Ci‚îÏD72Üz¯Â9¡·Uuà´PÓ1µw¥6ËiKĈʼnJªÕª¡+ˈÛâ$õÌX5aì:âŸóŸ›>Pü ó~­?ž|·þ$Óµ;W±kc2Ãé–‘K7ÆŽ*¦roùÀÿÎ*~@þr~`þWùûO]BÒþ[›;%¹ž8aÁ…ÁIW ­<Ðnt;KÓ.¿e%ý±B¦ôH~Câ$PvÛçƒt‹"ÚïÔ֬德â@‚ lÜê(K˜åÛ®Ôúre£yÿÉšŸå×”ÿ+`²oSSÖ-ÚîVã¥oõ CPΤñ'jxöÏry{ÎÞV›òëË¿–vŒa¼Ô`¹ÔÀoNÞ+´b¬¦¥‰â‘=>ìJ ,"Ó§¯%äß}"E*åêA,Z…h)OzÓü<{ò¯ÑLõÄÖZ実¡Xù³F±ýª$Ïg«ÈbHšWôÊÇ71Ä8Xß‚© £åÏCËúʦÃHóV‹a~Í ¼óðó¤aÂ?ªhŠ¹P¤ü ô㸡¦ÝXÚZ]^Øs†ü³˜’¼Èp)^›Píï¿M„KgsmmÍÅ»,WAžÚf ·Bv FÙãŸùÉ<ÛIª_yCÊòXþ»ÔeÔäƒN¸GU N ¬Ÿ4=ú +g?6ÿ3<«¦ùŠûòë˺¶›xu™în"Ó値ípH¨Î}@ 56>ðzæ+4›M±µŽÂ+¹y­#Ÿë&1ðDw$Ñ.HØŠÐôÆ]H4¾„bdni~aFüG#Ö€çVò­­­ßüâÏ–õÍWR‹I‘¯aµ‡QiUJ*JyÕê¡)eÜî2oùE¨&¥ÿ8ï£Ë}pt÷7&ÖÚñØzŠRä’Nã€(¬:“Äã4ï-_ÍåÛÏ5,âÚYÞ X#K$¤)PIZ$šïÐzXLÚtšžÂ‘`ñ%ض8ÿç'–›/4¸¼°ÒêsÇúòž¬Q p¬lÈFûþ¼ çÿ¬Cko–ãý1ªÜ0Y¥«ðò$/jÓ•zø–\Ù¥¬J%“ý$±å”G@U¹† ò®À›×| /Ê#ëçŸôÛ1¥O{Ÿyš¤)ŸE#™yz´4#|çÞX²Ô5ï4Øi÷%Íï­so5Ì +…ÊCˆÍõ…+ðPlkøà~ÏÓâyWo^”¦löÕ—˜ ü¼º¸¿´Òí­|ç´SÉpfܵ°Â)¢t© ®T6ÕS¶z2ÇTÑ´-JöK[HµhâV»A2Çv!Z4’0…Êñ4V#¦ø6Þ;Í>u‘¡0μ~¹XÕ“â U”|UŸ¯¬Ñ·!³â@|Éÿ9A¦yÛÍæóGÐõ+v°$Øézz+–s_P³FÊÊœ€ üDa˜2­µ9ìä´³¼ŽKY ÐA` ÓMÈPR>$H$ü^8i¯jž^Ö'I-m>;kuKxc‚71f’BÇÕR£“l~#ì:b÷—÷2sŠ/«ª¨  +Ž]NäÖ•'­sÉÞvÖn.4;@ô ½¥æ£u lhD×+m ¿O÷™{Ÿ£>YÿÏÓµü´´µ‹ê±%ßše{J+3)$’G?LuðÈüŒ‹ÄhƒöEkOÇd?<͇Ú>µõ/.jš@ô×ôƒÄÏ+FŽê°«ÐËP¿ìŸ£ÇêGüú·VÒ4ïÈÍn+›”·»>myÑd +=E‚ÂÅ„@µGÇñÛ`7ØЫjöñÜÃ%Ò4°«©š$eFd™\GBTàzfÅïP[hÖQZF$Š2·”;É%K(/IkP¤ý“í\“yî1þiþ`>‰n¨|»¤½ÊXÜ]¬ º•ýËÎÒlÔoÝ+º‚ÃÓvNäОjrysÌzýÅΓoþÓœA®œ]ï +D±“ÍcŒ½]KN_FÜæÅ8Çmvó/`d”Et…cCÉÑV‚’- yWä6ίù1©ÞùF&´»-4æyÛ€ÉsÔ?%è µ5­QÜKG";,`‘X†B¡íCSµ7͇:¡½Õt+7Žu¬Nåm„W&!! 7Ö9|@¶ç–ãzÓ:V§tu â×µÅ&ÆÂÒ8dId‰À+DÎÎ~2JŸ•I8´š„·,²ß—»‘Z£Ö‘Š¦àF©4Ü0Í„wB(&µkÞpÏŸX„À.¬±Ð²0Ú !¯móœy–Öò_Ò©a$76¶7—úW9LðÚÊ>«p¼ù*•™AQPwÝj¢©/Á€+  %TµTƒA]ׯ^ý3`~q¥ÕÃÚ:Ý28q$ˆ‚p(yx|]Ïo§"ךdb÷Kõ$·Òí.[ý"8•c …±†E¤$U‰ ü9ž9£Š6v&¨ÊÄn ’7¨Íˆ©‰âS2‚%U0di7jËRGÝÓ!^jòî²<ÆÚn HÖ7¶1âRÞ«2ñµTšÔôìÑXÔ7hѽh(*oõ͒߈ò|~r²Ô|îæ_/5ÚÁ¨ZE^U’ª¤J F!ŠSÇÜgrüŽµ³Ótm}sÕ“JI{¦”»z1®èφ}¨@ Ü Î[ ~¯,=>N9‚CQy¨¨¦ôÞžÇ6Ic¾Òl|Ñ­ùcNÖ’ÏËÉ-»Jo%–ÚêÖ ¯…Ö¢$zœWŒŠ9~É"­ˆêZCé:εդÿ Üjÿ¤&Ö/&’EúŸªÒOkF¬ŠJ"†QðƒöZ˜¤ñ-¸x€+·8.ŠÈ¥Ñ’¨ =j+U¦Û×0ˆ t#¡ûñžFü¾ºüé󾥦Y'è«™®ŠR,vè×+™aäâ%!W«R”î›ÊzO矘5¿!\Æ!°ÖཛྷÎ- YQÓê²É((²Hüj…> ‹ |¯¤éºç™tòçê_\CÍ飬K)P[ƒzUáSQËâè| ØÙjzæ¦êWFÆÒîâ.¯V/Y ŠI¼‚>I̪’BòéQœÒÿË×Ú&µ{ kP47^¯¬€­O¤¼êãZ2Š‚:×lùãùùwçOÉ/ùÌ}OògÌ:`mhÈ°•c’«ÛÜÅt³0¨‹êÏj=_´ +#t#^ýwJÔ%·‘D3[¿‰Ixö ñ–ä» F"†‡¶ëÞbó›"ÒÄzÞ£­Ê¶_W·ŒïtmâYä ;·©G  ä~œï¾[×üÕ ÿÎAéÞxüÇÖõ›Ï-^yk·»¹šêËDó ×Ò[Ai rŽ@µï&@¿Ë(?ʦÞo²òì>s½³ÒgŽ-;’puõV8$xCH&~1ÌJíÊ´Û­sg«ÿ"?ç6|áäï#ÙþDéþ[Ó|Ʋjf)kºŸ¥$št"ˆ„Šâ6  ‚PrkЀ{kòûÏ:Þ ·”#¼ŠïI7 »Øç„ÛYȧ҄’\ÊËÀЖ@W¨ªÑˆöålÞÀH>®Ì$1ã‚A§‡lUnç[V³Y¹•*¤†éPH¨éØçYÿœžüñÑ8?+aü€±Ò//|ÕåÙ-ôË]R ø=Fñ)úÏ«FÂG #4n6ÜV{æŸ9ésišÕœ6ÒM¨Zñ†µn)u{"Ž/PŽ4`#µ@Ÿ²NjþpŸÌ:.Ÿ¤j1ª"Ý­­.ÊI‹’2Æ¥iU'¤·\ù£Ïš‡›4/hz•¼j|·nö6wQ´šÙ˜:£!bƒ‹ro„ +³15'8¥—üàî±åÿÊK¿ÌÍ5§–$¶¶¸¸Òô›{;]Aõ ›dy'.EÚCh" Å¥qBEÃ8•ßüⶇª[?œÿ4Ŷ¥x¶é-Ž™} ÅG–{»y§,¶Î]¹'¦§Ä-XîE.ŸåM:Ôkší…Üp^Géz4W‚9åãYne­Dm ä¨1€ÒŒKŸCŽÛAÆ¡sèMrÉú2ÄF]®"«¬²—ˆ¨T +ۖ•9Ü?çÿç24ËïÉ%þTùCSÓÿƶº}í¶³¢[4»‘3¤¬†5zI cP0yž$t©Î!ù‡ÿ8ñù·ù­å­kþro2ê?˜þaÓY· v—2¼IÀz©êÊà‘ +’xD…T¼V¸K®~Ijúµ•ç˜¢Ö[WÖò¸»žÝ½K‰-Ü•€)˜°Š Î*ìÌ[í…"ËP»·“QÓF¥Œ²×‘8ò-Þƒšî|p½m¯¯kµŽIÖ0džPø¨*¥˜ïAV§ÄgbÿœiÕ,3<ƒ–4-;[ѵˆ=α§˜¯8ê"ap ·ôÉTruãQÔçFÐo?Ä–^æ\#΀M}±«Büª„Œ§`m»xá½–—&¹£#ZØ™n£œ-Æ .¤S„Q-»:ÑÇôv¦/ v·vqZÁi!¼Y¦ºY9«#¨‚.+J7írïžYÿœ¸üÂÌÎ}šÈY®ˆŸáû«É£O=ʼn)$—5ã#J$Z¥È/Ùâ3Ï›~r¶Ò?:4/?—ýs 7“2‘}v{ÉãLªBÈÅ&áé­x¿:+rã@ù—Ìn³m­ØÝIa¨ØǼ7ˆ°Â-ø’75AÅê*Ûb×—W³¬—ŒZHãŠZµ k]öU!“~AþlÛhZ6µ}¢1ÑõYš7QY 1GñÞK€ŒeC0™W`{œ¯óûþqÏÏß›ÿ˜>ZÔot‹Ï,%¾¤—ög³ú«ØËQ¥½åÌ\<æD•Ës™”ãVZÔÓXÑ!´ý»¦ßyzâêI¿Kj7ÇÔY‡4<ííVYº`äìËL×}í¤\Ý@ðÇt­Ô¯¨¨ÜK-zŽ@Šô¨#±Ä<Óù]¯yêSÝÚ%Õ­Õ§Ö¡¼æ—–mtÊH§Óû{lkJm‘Ï9~Hþv~MêñKäV{í>íb­ÂIþRØ,@…#‘‹ +lßf¤œ(¾Ô/-5)Ž Ž¨:z5¬2pN•p‘±"¥ÜøâP }ÆW—ÿ+uï9éw:ý…‚Zé:k›}OW–â+k_YQd1€ªYÚŽ¦‘ÆÜTòj*“ž‰üò¿æÆ»ms­ùŠS¦iÒúu½íuI¢aÅ™ m= +µ@#á§]ÀÄÞ «ØgÕo®Ð»@Í)’yÛZš y7¢Ó•Jƒ¨i_ ºçt°üƒÿœÓü¡üšó†§å òÏÉÞaÓ »óM¾‘wm=Ãé^ªÏ Ïb$úÓFV¿¿rHýUr«ê )ÿœ¢Ó¿:?&ÿ,õ_7~^ ÝjÖh¼àl*oݤ3ªþø¢qn24q»¤|¶à¼„˜y7ÍZ'–WÎ}ÓÛM²&¥j²›{¨¬C*Ô©pþ±S“ÇÁŒT©2k#ùÉ|·¨ùŽZ}¢Ãõô{ˆa˜Ç7–u’U!Á>š·»qç“¢“Lšq-ÒË`»²@U‹t*€°<9Q©ü¦”?-µoÏùÇ¿ÌO3hpüÃòηcy£NÍ=–—ªE5¥ñk¥¹S º€´1’™‰ Ÿ7¢äZ+@T³ËÇÉWÕfjt©øs§½)‘œ0>pÕᵚÇIôôè&VŠFµP“¼$“é¼ßÞn¬µ +Çr Iüéÿ9ù®Ëo}ä¯Éû[¯+hz‹Af·vӘEhL1'ïe¾åPi¶ØgÖÑÖgM=¸8ºœ,-SšóRœ¿d“ö~.ù³«~MÎ2ùóóôÇ­E«Ao¯Ö¯¯/&3M•o/Ôä¼<¥@ÅfãPóæô4@'µÿÎ+ÎyËþr;MÓ¿<¿4õ…¿²Õ¾¹ik>­é»ËȬeHî.îeº”»z3Dm ‚D?aŸŠ­9t­cÈZ÷˜ÿ/Oæ«v§C³-garfi¯uKëe? ÅÜÒDlU‘U(TŠ›ÅåÝVóI:óº U¼ä”ýÈW€«oÑ6ß‹vRAmÏåÖ‘£jÖ—ívuo'ZÝMm¨kÑÅ, Ü@“Õ–Ù«-A}‚“PzížÒò–ô8üßg®ÁvÿU’slõ…â÷³½Ä– $’(^ŸgˆßŽün9î>±±?§*‘éʤFCV ò¡¯|(Ã_0hSëb¼Èè5 6êy¯´¨&‡Ö‰-ï&õU!’àÅéAö‰—nµ/ó–™µ—Òt¥{¸.ïµ.N=v3COT¯XË.ÝW¥ Až¯§Y©6·¢êYmã¼¼Óê† fuª"Êz(à‚Ÿ³ñSŠœÆ³žJ¶Õ¹¹¸Ž6IË®HêSšÊT/¼ªÅ¶èrù}‘­Á©þŽ¹úÌ–‹u öóD9D÷€»••Í K/Jl0ºÖÎkÃ(…£_F6•ýY¢†ª¤ÕeäÛì«V=†låß®[[k>®™Ýœ³Ý]]KvËû®0¤œ”À$TMúIÏB²ó(šÎTT–ÄÀ‘ROYãÎJD/$>ÄõØc ´l%E +]Ð7ä¡äC·Ï6t¿ùÇÏÓ:7æ,ÑK¡¶½¬ZX ‹K8µôûˆã3Çê˜.ŠÌsÈ”(¼ÇÇÀ¥äg¸±´Õµ+é«=üm +ZÚ5ÂØ4Ö1ˆÙ K˜ƒ²ÓŸ%¥GÅÖ§muwd}{Išo„´nUˆ5 +CþÖ`JÊhFàŽ¹Ö?5<Ýf?$ m+óGÌ>mó+êÚj qækëý;F³{x¹Cv³[ÄÒs‘ÙBÆ¥KeŽà³ó[\Ò¼ùG¥%Ž«¨Ì¿Z±°Õ<Ís¨^3éñE'¦}Y'õ%œ3‘ (,K?6¨ëº]½¶&—-ÿ­nwë[µ¸¶¹ Þ¤ŸQÄŠ ƒÏá­~Èî3PŠÆ(¬ë]³Ââ6‰£ú¼¼Ú± +’tnCǦpOÍ¿%éÞRÔ¼¼m$·µm@ÐõH´í6idNW6‰ÎI%^JÇï +´:Š1‡yãM¹µÔtífÞÆÛSšM/NªZ(ŠæÚæF–;¹žfä…BŒ…¨6¯Rñ­¸¡ƒ‘•”©OS“µ  1¡R5ݾ~!•øzP}ôßÃ#¾[òµ¶©nók’=µº+HmcF‰R0A–Y-ä4§_Œoû=pÓBò¶„)¯÷qª!¸’4¸R±(Š4)N+Ç‘שPv!v§¾V+«ÚéÚ-…¨²¹’þòAo¨Éi<Tu2 õý2T1P­;TÑo0iÑÙrŸB´B܃õ*3+ŽUõO3Äš’¥FýöÍ›.tËÈü»}ç¯ÌMRKk&–ËËzIÓæ¿S¾ŠßÕ‘&’9#1¤>¤,¡Y &ÎùÃó'ò›òÇ@Ô|õæ½iÖki.´?*ÛO§ÜKš…ª=ÃZ•d%^P¾«ŽµF4U8£ƒ,ãdR #âz›oí›j{öÇùSÎ^DóU¦£äÿ0é6–º–«èÚèúíœQØ5£ò +‹Â8LrFiG.U¸±¡=3™~BÿÎ\þLÿÎBùgæ;ë]SÎÚÍ˦‰#i×/ r¯ ­°ŒFŠ¾£¸G5`:Ðaé­¼Šê=NiÅêÕ +„‚i×}¶ïš¢”¦þ9óN‘©y^õôÙåýå…åÅž¥n`‹k»ix4nA Õ¡ {zÒE-îƒk­y£ËÚ¬ß@»¹·žÆxý‚öè$ôäR®¦6F†GZP©ÇÈ‹??Ü¿¥F¨ÜƒsUêA4ª’OÝ›?ÿÕù‹å›½6 †µ˜»„WãxÊÀÔp"½sÔš-Ç—µ_/ÚØy‡IƲ4Ø:b +2Ö„øçËK ›(›ëAt½”»¡5ê„uéŸ*³­i“·_™VÒê?–k}[M‰žäK#dj²(y•!Z£å’O=þS·˜4KKÏÊÝ7êßT´µ´ÓJVb„:CêÊä‚Õa_|3óhòä·ñÉå8/AEvwa!&¼‹O ³B~Aœ³X±žmJå.Љbd…ÇBh¤WìÔœûBŽ+Í[Œö¦ÇQ)šÝèÌ«q$PÑúR¢¸D(O‡ßA•‡ÍþTòç’ü‘¢ßiP$z¶£ +5ày^Kä(ÊÈ_ˆ•íµHÛ%_œZ–Ÿä$[YùZÎYüÏ®Å<>_ƒOŽæîYb)i¦XÒe 1,6úpÛRѯ´›+[©âô#º}^p_ý%uhãøöËdt +Ì º“ÜdSþqÒ?0[~bG®hšúýÕ„72ñ¶s[7¢bĪ ¡R¼¾Œo‘<•æoÈé|¬¿—-Ϙ¼ªŸ\“Ì6Voº3¡­Ù’öTåSJ “ä2Cå„ò÷•5Í*ÿÎRëº Äu$Nöò¨g1 ðîFÄãî7C»Ólu(Òvˆ² ,ýWƒ‘xٹǸàä7½(v9Úï?*¼™ù‹äÝgóSÎúˆƒY¾¹¾™4¢dK¸M¬mE•+UZÔu?|Î-RÌOËÙ¿6-/¦·»‚Ké,tùbE’Úkyæ´Š bj€ãQ]úàß5é^rÔ´aù³õÔŸK¹¸X­ý:‡…£åo«F#Fã îOù[‹Ô4‹ùôdóuÅÕ¼©u1… Ç®¬ îñ¢€¢‹øæZo˜ü׉òOš­ç¶K(e·Ðí5·3íR(Ä3‘4¦Ùògšüýªù:h|ég5Ž¦‚xí­Š¨6Å”9©ŽŠAb»ÔŒ‡þœ¹šÙm.¥NÞ9ÈÇEhù·:$¶äÓ Ë1IÙzùÔ¬?)4D³ó²¢Þð$?]ºŠ{€³¬à‹à û‘µpúïò»È_£ç_0Ž©q6£¨Çw2¤é:¬eŠ¬€íÓæp4º~£i+ÛJ†"à+ž@FËPÃã¯+CÖ™D×YO*y+ÏÞUü½C;y…톫´J©kf%gew,L•Ûú¹Ñ|—ä4ÚùÛÞ0¹Ô~«Ý*ÛzNÒ-ÌQ«ôbï;iºuΔ rItènh9Ä;¨Iq<‹ÐvëŠ$ì–ò[€))Vf#â+°>õß< +-ÝàI‚K6æŠ=·ÏŒ’¿ùÈ/ÏK[]jB¶R—{Ö#ŠÁinFZ Rj~·©ÂÜO;/üãW”<¡æÿ3ß[ù¢êÚÊí^H¤½™bY^0© É#@ŠÒ¦›T}fü…ü¹üº¶Ðt_._%½†›ak*é+q;« n*þ9Yˆ‰¦Û/gh׎è$Ž!4ŽóH±¯ê;³ʵ'ÃfBÔ*8‚ijØxW©öiùíäí7Ë–T4°=Þ¸ï5ÈXÊË/¦Ábp)DÔ5aÏüä&™¦y[Ê6ªÉ>·®+ÇPAY®n€RªHŽ1'" 4ûbL¬;(É¡èvë·†øÜã×úþ‹}o¦¥$ÙŒ‘ð”R 7¡#çž+üÈüšÖî|ͤëz–¢¾Tk‰æ.Z5õY}X½usñ+Zãsd£Ëß—ZçšRyk•…³¼7N‘H hï!×›ª…« ¥E{„•Úߟü³&¡^Åe‘s.·pæÝâ–Ö'2©¶,ec@KmE? ÜŒp‰š6”SŠ¤rªÀ‘E­Høw Pwê3PÒ¾uñÁ—þa}.ÚX5(^I¨?GV¥oÔ^;žýFH¼±æåÓ žTÔ#3]Ú[Âö²Ÿ†6K€U2lHŠ“û]AÜÙèÉŸ3ùWógÏói?œ7UÓ´{(îl¡H$”™-Ìp¤¼ £0D`¡X·^[õ^¥ùkæû/Ì_?K¡þaÅ ·Òm#»Òm=&d–[fH½bÐ'"cGŽHß–ýA•Óõ º­É±UCI&b8¨QµA @S¿oìã´šà%üío²¤~© ¾K¶ó.åçÏþlù{ò¿FÖ´›XòN¹õ]rÄ4;»€ó[Ã*r’‚9ƒzRUá ƒŽ¹Ó¾¯*L}_Ñó9÷­ã N\C•åN«Ïcµq챉Æ.D+•ŠƒÖ•"´í_§9Çœ|Ïù{o¢êÞXòT7v6ÓjÒ]i±ÊVJ؈Yb#»0jµ)O¦¹óœÿ-t_.ëÚLgl÷4$OE!dU,Yœ·`zøå^Å¥GëýFâYH˜‹pñS­›•CtÛ)߶SˆªÞ™4¯ÁP7_C× t—üÈüøü¯ÕtQI,?-í&½·„Ä¥ý õ±Ä¦ª°Ô³á'˜¼ýÿ9yù9ùƒå¸[Fü¾µ»ƒOŠæ%–3ËhQQ¹*À ^½¼N5ç¹½¶ŠÕmVG¢(!Tг +öÜ“÷f£Ž* «P +Ðw9Ïô}f]È–?—V¶/5ÿéBð]Ds*ˆ ¡'™v,OJgÿœw×µ9Î6êß‘vVRͬXyŽÎ[i@© ·v²$aM !ÒBY(Fø‡(½<¨Z¼ùl)OõÆáoŸôäÑ|Å„Ö esb‰mª)rÂ[˜ IdSR(Ôí·†@ÿç2ü»cùuùËå/3Í¢>™2Çd”³:]_ÛHË4ŠT•ø–‡àÛ·o§6vÎMOòrÇLòíåýï×õ X–DÔ¬Ÿ8”-Ãüe™d«PÄ¿Ëž¼üÙÿœ£ÿœjÐ-¼·¡þ_™|Í´gô—˜ô¥»{="ÖgW¥Ä‚92‘Í×vUß½0ÖëKÓì4èÞæíeÔ.d··xåŠvø¥‘ |GqÀ +ŠTöâ¨ÕbMV›µ7¯\o˜ÿ=0?4<¹åË)d‚]NÖî[‰õ¸'†_­I!‘Qþ¯€$Râä~*WùÃþrkÌ_›ÞTò§å·åÏœlõo5jwü“Y´Š¥KRe rð˜‚ÆRP-O.T¢×ÚÛ6—ag´pÏnÒÉ-ÚKÏÔ.OB§U4øTTïךå%¶‚ˆ#EÏœ¡˜™ Š‚JŠ ¾=ò7ù¹ä-/òòÖ [˜ŸëwP,ÐKpÜ%y +‚ÒÃ7ÂI‡^iü†ü´ü²Ó´‹ EBkW/ý®©q$«us¨£ d…d%‰‹‰_Ú¡]w¥ê66ö÷W¶ïwj^Ù¤Lˆ<”ÊšìzØ“Ç$tõ¯ y +UOB+ØäKÈÚŸ1/4ß#yv ­Næ’xt¸k(BU}i*BþgùnÖúöH¼»ä)î./îæ–ãOÒãµrÐ’Un.JOE^?jœ©A¹Íú•äèð´³D$g‚Ñ90õdª;£-Ó‚0ÎIø#Zš³PlsAžºóǘ-çôË–-ÕÅ̶9œÜsà=@AáôoLô–¯æ¿"~Diú~˜ÖóOyunך‹J²$÷3:iX||K0bU(«Û`2Qq¤ygË ¥M¯[Ý\\È‹q{¤ÍÖ,Ê Ö?UÚ¼9ª~É¡¯C[í6 îÉ5;k–—ŠË{§ÝBöf•ÙCX©ßâ{gš)üÝ­þ]ù†?4[]Ϥ½Ésu:Çê,¶ŒxÌ¥[šÈ(çfs‹y>þÛËžcµó>—u-Œ×¼·7f'`ê“qWª²Ð×ìÒ»uÈ¥õÝŒ­-¬¦6‘Z):É £+PAŽ¤rŠ’ +’<P¤a¾·ÿ9tŸ_¶ò­Š­íåÐkÓF¦áâE1ª p=°­x““ kó\é—wŽ íJe2_Í™dŽ!A‰¦QÖN +7ºJiOaœ²]´¼×T’Iˆ¸ÀD­Ã®õ5ðË' bô”¹`Þµ[Ä +ñ¡­zWßù;®ê›ï|Ï®+ÆÚc[Õ·f 9bǘHøÏÙQLoå÷›çMjçW¹WVºGKyÒ‘!™Û‘äcŠïM¾Œ$’O+K!äò1f R¬Æ§aŒÉüæW•ô½?)kV1ÅÚüº½ìë²+! I–`G¶xÛþI£išt“ú–›'éi|Óu+ÆX‡>žŒ¾3^Øæ‰EºLvu1ª)üê~ìº ×­vÏ4çÌœO+4›‰áÓç·AÄ]·çä@ã¡4 +ŒI<‡ðÏ}Ͼceü»Ü\*ØÉæ™mn­K½eY­,T†@8•ãRI"€tR¤IT(Ce ¦†»ƒPG±Í“¿*yWÐò­ÿž¼Ï¦ÜêÖ·ÄèúcBfço:23N$XÙX*¯O:ƒ±Ï¡¾gò†“åO"Ãæ-I>c»7BÆ(ì“êþºy% ªß6übH#×$òèòg—-´óéUkÙµ# Sz̲MÆ/¬K$í ±ü)KE5fbh»%Óy›Éߘú«yk̺‘å»1^Û¶æë(£†ÓFZ²ÉöÖÁŒ°‘ö¹·(þíLŠhŸ›:ožõ›=XòÔ æ+™¦‹Ì¶w13hÞæ)40F¦ï™ ý®4Â’9E‘<Ž¬&ÝB ù«µ Gm©¶X Ô$[íô çÞiÓÿAëZ¶[Ý åôåÖ4YÖ[ï«Ècõ +)/%øƒr4R Ã=k_dZ¾›Å«Ëa+Yȱ8 vðr&Ž ­_V2uü!ÚÄM+·NÕÊÂ[­`5—è[#uu"–·iî&&6Œ¸â«ò +h»PƒÍkÍ|¾SÕu½BQ`ãëW³µ¹šY."œo©(Y#n‹@ *X‘C›»‹k½O)„–‚TçoõƒwtÛ79¹4ˆ(vZpv4ÍŒúÜï­Ü#Ê-Q¸1‚á‹# ˆBÌ[ˆ!ºöÎUåkñ…£jdåi.lœÒI ‰ÒCéÈ©Éáã/1_~D…%¢Œ7©a°=vÚ¹±[K‹ÆYã0ÛÊ8¬†A;A |Tø/~¹Òÿ.t«M_Põu¨e¼oA£Ì/BÆŽª$TmÆ^4âÃzŒj±V TP€@#oj3d»Mò¼7šuýõ´‹1³1=•½ÔS=ß«+zQÅEàGM $PgRe¯—5KŸ.[´wö)ÏK³‚FuqÇ€  ö,¤^£ps4<‰öh:š÷Í‘n^7“‰bLôˆ[Ô·¶(MÒž2/ïæ©(jzÿdaW˜£n•krÚI3É d²{_\C4æ2è-Uy3É) +kûCzíGBѬªÓ!‘ø5ö­lõä¤?™ŸóŽ^Jó/æÏ“´Í/R‘ǤÜyÁ‚ê†9YɹµÓï™UZ«ÏÓ›†ý°R²/(ÝÜ~Wy;SóœÖ¶:v·-¿ÙÖuúûÄymÙU÷¢Ÿ +GÅ·|§Üßè·0êÚUסw $Šheñò )ÔvÜt¦ÆµÁZf£¨h÷ÐjÚUÃÚÝÚºÉoqð‘te ×lá>m¸ò¿œtýWÏ:Ž¡%ߘîîáúõ”pG,·ë#ó_ˆuN +6 Ú‡9Ÿ|±äÌ+ OÌûûË;/5ÚÊ«¨êmj ¹¸·»w‚òÕˆôåH¥Iª5—£‘—q.´Í>§q=Æ Ag¾¸˜ËÊ8aâˆARõT— R˜äyX¼Œ]VcR~üƒË¨Ü<42Ïçý舆±¯á(¥vïÒ´ö/²ƒÊwþf²Ó5;­=®/¯’Ò{‰nk;Rtd³f’&‘©HÍSË“.¾»xá:$0Cè+‰b [OpÑkþ• ++¸ÿ ’«^œ·Æãᾎ+R'œMqt"’ÖæØ-™ùÄ"l6,t_7@‹õ}FÕfÓoíý6Š[[ZD9@Y QÇâ+ãñ0 ÜcãÆÑH‚“‡5«ò=¨()Mwïá²ùgù©u¥yûMóŸ™o1âދ¦Ðu;‚ö·0FÀz lõˆhéCZtÇùÌ>hoÌ-'VÕ’Õ,í.¤†HMԀܼ¬¡©7¦­ŠÄ*Ìj;‹G$pËk Ô 4q:Êê ¤I±F}ˆè{Tã¢dIQäOQT‚Ñ’@`â£}óºÎk~oßù·òëÉZl>^Õ|½õ™õ]FúK™Õ RH‚ÖÒ 7¦"*C… CÉi¶Â¿ç>ÿ;/ÿ)¿ îuÓkéëW+ „IYpÖÐLá€$+H]·m‡:Õ¼6úRO=‡Ô®¥¹híà’ä<ë +D 42óøÖHøJx+n.nÒ!n’G „4Ž4ÊïÄPüI@ÃfjÔ4èiãÛ û‘¨ ÙƒÏ0 Ö11pŒ5rx‘J:S¦x‡þq(~|yïË/ù‡6¥«XiÿYµÒô-v‘êù%Ḕ}be/£¢Çê(4g7WŸ —vÁ%ŵœ6¦I£º›’ÈÒ4t0«B¬ÍÌ  aÅHê¼›Lúeù'ÿ9·ùO}ù!$W^j±ü¨ó/—­c°Ôü¼š]ä¶ZÌ‘¨SªAƒÅ ¹›™Y„ÙŠ‚Ç€ú_oùå¢yOòâãÌ_šš‚h“èðF5I-˜ó[oVÜF’f ŒÁ¶ß®¶«w©h¡­£Ž ´‚m-íýY/UI›ÕŠÅSy jéØ)»ó$z¯–RÀIm¥¾Ÿoomõ(mBD¤Ò1œÉm0WÙÍ]Wí*…ÿçÞ¿š•~yó·fóV•Ÿ{ovÚî‹®-m­í®í’;éÚ%”À©ˆµã/„)ŽüŠüÚò/æ½õöq ê1¸–A#ÆÓp*ÈÙ+ñQZoŽòÇ•íõéÌì'‘­ýÑj3zŽÎ¥€ «½+¿mÈùWqä{o5A/žà7f«3˜àY +µfTv঄…ZŸÇ<»ÿ9ù¤~RéŸó‘ºö±ùI¬YêZ´z­ìÖ·ð^Ä5 î%ixü—NÏ^G®s?ùÉM7ZÔ¼ßi£ykBò¾££jNÔ®'×.ž7µä…Ùmc·œ\½&> Þ•kLzÖ§=—‘ínµ«YŠÏu7$ë,˜ªñ ™M+Ú¦¥žxƒËþc¹O(ßË©XOÖçŒÆZBÍˈ4%;© :€s­ÿÎ,ÎP>·«j¶Z¿’fó„úå²Ûæ5ÄòǤZÚÃ*¶±ÍÄ"vV•Ë:*t!¾›þQþtË戯 Ö-bSŽERÒEëNtâPFQÌÁ8%»UGS±¦ä–õý‹®Ÿz© laX®&õcM½"ÌÑ-BŠ?ÐvÀ~¬Ö„¥Ä y)Œ$õoL8Œu%U¨©¥w}kósþpoʺn³/ž/ü«æFÞÒÒïE±ŠÊ jky§O¬Kl iMºÍ…FýàèEH)y—þrÃþq#ÊÑÝKª~ayNy4ú·Ômõ->âê)~$‘8Ç$ŸèUw¢3‡Yòý¤V‘éöí$±z–2’áã3¯#’ÌêƒÓ¯ÂÜ¿dûYj¾^ÒôýJÚ[+w¼šúm× o +›€…¡s$ëzk^2ÃUOPSÍ6_ó?ó¿”:¶¥gùAù9·e<ë©Á}¬_Kgjº”¼=gý­agdÆ:‚±ÈÖ±D]Tî¡ëJç•žxyݤc#’Ìij±êI=r7"¤Ì$“I_U™ëG&¤ü@xôßç‘,Zf“Ÿ¤ zkÎN"¤( Wožu¯ùÆ_É=góÇóBÃË6óÉckèßëóYP]Ûiîk«¸lÏËÉGí8 +*H>ÑãKˆ4û«©a´‘–=FKXYÞ¡¤‘Q¥ˆHÁj@f@Ô§ ¹³ß_–^k¶ü¿ÿœoòøáì5Ívkýc\·“¬6W÷6«=ÄúÂ9"Š²GÆ''Û˜ï'ål~_òåß•|•ä=×F±²´a¥´· …e*ÒJª’4’W”Œx™%-#nÕɇœÿ9uï2èú–4ÀÖz•­Ež—a L‰kpó,ìÉ"Öbg‘ø­y»¦Bªuç ZMÇË–W3ÛXYÈgkE•½7ZONcįĩ+ªíEäì»Èù ÿœŠüÂü¿Òü‰ä- ȆÞââö)5ÝGLÓaŒ‹k‰%’9!’H‚ðfDâi±UÔ~dy»ÈÞNýê¤!ŽÑÖ0Ü” $ +‚?QØ/bi¿\#óžS»Ô­5 t·Š{c9Óžx-fø€™B<‡ÚáJP’Õ8^·Ñ"ú•Æ‹tfp™®m +šÙÉêºZBHx¨nA@£õÏ4^k·–åu Åc/¶•c£ÏP*£8øOÙ5¢/È眼ïÿ9-¦ykV¼]Ef¶KØ"Œ_Cq$Ö²ú»ˆÐ•ŒŠñ¥xÔï^Ñ{Éå¹¹’æP•‹ Â:V€"У  Û +°®-b)•ÿ«pe³Æ×,¢ë‰$‰Ú£ìíCœgò?ó’ûÎ×÷7^_ +t¡&˜·vrÍþìNk,w®}NM( 'öiMéÃ8¼”4Yªh â?¶l_ý0Ãogd²@¢¥Úݤ©vâ»*³0€×§·^ïä=N÷^üÛÌ:æ©qlº²]i–UXXÏ`‘ÄGfŠ*ÌßgÚøiÝùµ ð÷ +fΛùMå0ëºî§æ¯,ê:΃?—RÖê 2Ö[ˉçåð[CËo^@3Í_‡ìššN(uMrû@ý7qjÚAµKs&hˆ×6×>—$³R( k,ÄÒ¬X}‘”ŠV€ƒCZ +‚+Mú÷ÍOÌ›òyËPéÕ¯“|ÿqæÛHnÌ1Dnä²_Lý#·Ž—ˆèǃ°jñ,; æ—šôËŸ.ËäX×CóLË7³Gqeô°”2;Á'8ª³*p$ב_²Ô8a©-†ŸpöšMÊ_ÆŽ²A©¬sC%8ýž@>Ç~ŠMp‘È“¨Þ¢PJüawRhv¥FÄóΚ¦©¨êrO¨ë¢à¥ä¼¢š#[Çûµ‹ŠpJ¨^@PÍ4¸µ®ÖÿWš[½[Põå¿šYLŒÃdh¹@b‘¡eŒŸµ_´å̳<Ï+K#žRÈû³;nÄšµwï]úâx¦kC4V†ôÃ¥Ä~ª§ÁÉ@.¯Ç˜Úƒ«T“’5…¼r[ØEBdY¿ È rXÔ|,ÍP@;Ÿ}±,Ø'QÕuU„ØAk%…¢”á#)xVS}–vÙœ–س +tļå5–—¤¶¡æKé4‹;“Í©±+vÒ»ª[-P¹¿ìüDcŠ0A&Ôb@…j´&¢µ~¹³°~Ok–èú—å·æ†“yžÛUMo@»Ö;K‰YÞé·k{QÝP2±sP>¾yËË¿(éþUón“k'˜<·,Ï]¸Ky.'o«ÏdÌÀ“Í[ßd—û¿D¿9æ¼iáJ~9)½E v§Ë ¼½ù]å?!ßÝêߘ·+¥}NãPÓie%Å÷¦ÁÞ+XËr~âzTrñŒ~BÿÎ-þLÿÎ<ÝÞßëz íá-¨Yk2Glú¯vZ7´·Ë +áš ‘Órô{acv°*ë /qljÜø×+9·™oaÖµýSWŠææ­ÞOzÐß:ÈÕšc bæ¬[qñZä_ÍÚe˜üÉ­yº $—S’aw=”—LóÄÐE¼%jüZ8c-ðñäG[yÕ©HÇ Ò¥· o¹ï›?ÿÖù§å½2»Ž;™â‚"Á ¦¬K7D%EEH¥{gªü‘¢Üè,—>bºGŠ3D,ªÅ›ì¹¡4Ï–6w¹ãé«êä…` hH©¡Ï•Yìóf…ùSùcå¿"yÊ šþ äÔ JôùÅÀˆ¦=HWûJ:ó¨ùƒÍúFåýJ /4*ÀVF‘M£+"H„zQ¸ãÄ R}ò[{w›¡tŸ3[\ÉyƒTÓ¾§$~6Xã•£a%A4j¯Ç|9¸:~Ÿ¢Ú+U777ë(Õ´öµ(¶üÂÊå¹–5xô©©Îagù·¥iß”2y7QüºÓô³ [Ì×(­pò ¿¬ŠÒ.ž•"ãÎœw¦sh1|¯£yu4xô褾ÿsuqlщd27•¡«žíJmLd^pò„~I´òñò”-­ZÜýa¼ÄnX¼Éêô¤…©^Zw¥pÆ_4ùROËÈ<¦¾R·^†é®ÍËuqõ‰bbrð3¨"‚ƒ§*±0ÿœ|üæü°ü¿üƼóOæ_”­e´½Ž$³ŠÖÒ)¢Ó݈*²’8¹qÈÔtɇ”ÿ4á˜ä :Šù@óN‰çë¼½fº,Þ®§-ìW"²Ou;7¢Ñ2Nµ-Ͷ۶ՅËg®ÓN¡}^Í\ÜYÇt'TIdCR䉙QBv$µXM¾…ª_Ëyõ+p~©ÖæA"|0’ qäÕsñ –­ÔÓc„Öúv‡ç¯&y×óYí¿ÒáŽé­æI ib,­ËGBòõý#±¡È_ŸïôkÏÊ¿7þf[—´»Ómoõ8ÜNÐzU·i¡GXøó@5Tvȵîšá$Ôt˜%m?› Ÿ˜—ˆ|2UâO]À¨ùa*dU<¡=hO@Ns/ùÇË›o>y‡UÒ<Ùv÷‘¤1IearÂx–ܵÃG î‘DÝ…‘爿ç?4l?8<Ñç­+óáµ fô$³Ón +Ïn¶É/9ÊC;,%€üGeåÇ|«Hµ-r#l×2L-@t·gg"?Û1«?Üî6ʱ ß¾Þ®ùÃ^Ò?*?.õ•òg)$óÝíͦ•xOm¤Ù¹R~)Š:Ð +õÎ…ÿ9yù¥iÿ8ñÿ8âš\óüÈ–âÏNº¡ˆÙèÖA*Š?¬¨¾W®H¨Žè„° B± ¨ÀŸ×•òÈOå_åfò>³çÝFãÒ‚Å嶆.Áh’7f`H > U÷Î#ÿ>óÿœf³óåÇšÿ=µéD²µÔúf™jñ,ÊËn°M$Ž © ó,nÿvlå­'X³7^tÑ!ŽÒÒ !´¬ƒ’£È #$Ç]·ÏcX¦£åŸ/&£h!´·µ‘-'.K¤SÈ…‡§±o^Õ¦Z9BHÔ¸ ×ç\ÙÓ?-¼Í ygYÕn74ù<Û{q1[[ÞÌVÆ^MÈÉ0‘¾!O°Ÿì†ù.ÿBý7©Oùƒ£Çæ[™a¶x ¿… <ÉÈ°Y¦y0¼nçÇuopóM¬<÷2pãY<ûgx7ñøŒ#—¬¬õR‹£v&ªÕÛ|ò{ùEåï&ùûó/L³‹ËKs +-ÅìÖ·ZzÙˆÞ$Ý=g.f"‹éö©ÉO•üŸå/4ùÓOŠ//[ÞÁn³]úë¡«Ç$KÀ+2Ón#á#I°±¸–&¼2”<—[ˆb"0›ŒÇyîü7ße,ÒÕ¦O­r1 +™B·§ðµŒ”©ÿ'&ÿó_óƒHòU¶¯¤XÙùválî&¸’Ûƒ5ÒÇY&RTDêŽH$7*l0Gæ/䆋¢yV-CÊú~Ÿ¢j–PI>£5” »O«s%ô˜+ÈCU‹vÄu+PÒ„Ý[Ij·)Ê!ÝÔ€j6„0Ë»ÓïlV¼à$„È¥y¡†Zõãzu¦§åù¢½Š;{ss-›+ªÊf™R6‘ä**È£®ýþWùwO¹·¸k¶€LöÒMMpYd^*ôUeâÜ +˜äŸZü†¿Ó-ÇžEÕïtyág^YÇ5¼"ŠÅ•9C/Â7íÚ˜+Íß‘–óGš<µyqcwjL‘^X´Öa#àÊLRÇ(dØïµ؃‚-þ¿››OV5nQ4±òÕjÊX{u`8À tåü3”ùWκ業ëy‡R‹RŠÞÖ{k*KHC_-ÕUÖ'DFCP¯_£sœËòºËXO4j÷Wžio1@ÝÃi£\Z i#»ÜIJÑLe­Mûñé$·‘²HÔp‰bTy:-¢nE+¹ûò±?Ëï4~S~\yŠkßò”! È@ø©¨Øî)¶lå5y¿òKUžÃ]ÒÓQÓ.X¬ºeÃa&¯k%XFÇ•IâkµFC4´üÚÿœ{¼ŸQò¡óN›7Ç•5YG .æÂi‡H¯ÙZ“J‚pUí½ºË ÝªÜÅ0’JË7¬o¸Æ lÀ€wó¯ÃçËÏ|«a|ºn°Ò†Ó´ÍF[¸îƒ—ŠäŒ¼V„U +Šýò÷þr—òOþrGEXŠY<·æ¨î +ÛéZ¥˜’æ„!‰Kû²”HK +Š ŽÛynßXŠ5òýú\Ý6ߣnê÷-!=#Ýãu¦àó¯ÃÓ’ÂÝÃ/)f‰”ƒÊ¿²EA§ZoÛÄ‹ó«Ï¶¾jÓl)5½"Tó6…wÛ][ºÊ“ª#ÆëV!£F$7únIÜÉ¿2:ô‹«ù\Ò&ýÌv°IdDÞ¹`b(¬À2‰(œMÎØRK¡úœËg¨Z3Ç=»'%/Ë⫳†^=ñ?>ø›©Bcu*èHe=j:×Ã/òþ\èÚ•èÕÚY­N˜\éz¤‘©t cUmÛsá‚)¡ü¾òä÷×…Ù]:îÎI&Ò¯aŽ(–dÝ‘"R§á|NŠ;FuÚXÂ’ñ³,1¨'˜ {Ÿ”¥øÁ"‡`i½6ì{çKü¬Ð?+ÿ344o7hÑYêßÊî“èƒéFÉÄU=6¿²i†—šG5<¼.¼Ý£Ãí¦£<±·Õ•HTú(Ñ€>Ŧ]ºÛßÝ$Rò„¸HÐA““…T_‡’îÄTšûe FjHJŠ·íµF\Ú¶‘ùuù¯æ?(_YèÚl0jpð¶´P÷‹ +Mˆ@k"GÖ€ +×y¯ô_•?(4|å䤲Ñtø,5k©ÊÒ(þ·-•¬€´…Q*ïÇwëS\1²Óµ;wÕ£¶š~ ’Gvd¡2…ä¥c ¬I4=(;ž˜¬Q¸2Ȉ#Nï_†Š)]óÆßR[/æ ‘»¼ŽÁú©u0ªÇ$UpGzÒ´¦ùóOþ}ͨÝ\þqë·ñØÚMûée™ F&…ýEcMÁßjo„ÐÄÓH±) +[»MÉ$â_:µ¿˜üá­k6äzK$QKäK€@¢ž5ßÛ%Ÿóñ†Ò|Ëå[Ì Ã[·Ku$‰Ë Ár¥‡Â*±G}ò¤ôùþì ¹­Hžƒbw³³ùmCÌŸZ•×åÿ‘,åÒôBÐkÓú’Iyè©•Ñ# “)«–ëƆ›úSþq²ÖÞãò¼¯ùyùy¥Aåÿ.ÒÇδ‹4Óßµœ2^Ñ!_Y½)‰s½xSá©2²ºÒ­ôé½M0ÞÝO¬Ë+¬Pr$)ÅÄ“îÍJþÏ‹Ñ‘Q«rj9hµè@ßçœÊV’ÍK?Ín|¨h}y­¹ ·¡d!â$ª’[ökœÓÉß“Ÿ–šçÝÔ¶ú%÷å¥ä hom,ih³[\ñ1ÌŸSp#V+F¥H=w2ZåLL ,ß T€•>;š `Îæ¿Ë,ùÏósFÐ4Û¦²Ñïî^ÆçÍ2¹x.Ͳ'­éì·bÉ>õî_˜?–žF¾ó–ƒ¤èQ=õË•°_3M4“˜‰–{s1 ʃÅÎC¶â„âëGúï™-|½kro¯§¸KIïÕã–y$þí™¨Ê  rÀ7]°Lv/6¢šl.$’¬ +áÐFY›C± Æ¿´Hß;/“ä'ä«I­y#Ì3Rh†¼"ÜÜÎäÃéÛÄP(Ô5VP ×žÙÒ|å?ÊÊ(n5MæàIÄÇ6»u#Oww#€ + tfjŸu8l<£a¤ê¢x|ÍXÚT\kÖÂ@à3)ŠÙ*²NiO‰>ëˈ©1“OÓô­n8íuÔšn2I«XÇ0ââ¦,†ÀrïÇâÊ·Ôô?ÍXÔü˧KszºÌŸ^Šô‰¯ˆ…Ý ;b¡]TŽtð4¶?—|Ó¥kš†±£°»VežÖP­vñ£‘çBHÀ¶ç#š¾«6¥{sq%Ì·ž¡æó÷—.‘/%˜¹]€ª†4éRê÷ºä·º…Ì·“ÌA’æáÚI^ƒˆ,ÌXô÷ÈÏæ‡u?2ëÞ^ò>‡ck åa[FчE™ÉãºÑO =zoL¯>ù?RÖF ÚÙÛ[8 KXÙÒ3±RT2pª Ø×¾Øôòþ©5œw[9*ËUubc–_B?€|[ÈúF"±H쨊YžTnI&€=ó~PþY^kŸœ·žPÖ4ð×q˜\ÛMGx¤‰ý>$-%¼§#%ª§¦S—Õ3ÑÚ–ƒs7”G—­¬ÿF„TŠæ_H0ãÁ‚FPÑ‚Ô[{ãã•ìd‘% +Ñ8”Q½~ÒŠ°¥7ÌASÄŠ±Ç9_üæ¾™¨ÁåïÊ­bk¹¯4ýCOÔ›$î®U!–I]Ü•æ&;ŠP óæßüþŽõ?ÈûȮ帵x<Ë ¼NAD0¾šŠŽDž@NáWa½W»]Kôe£\ 6©-Ä6³ü–AHÅIU䤟§S‹Imx¶0^Ë iX`˜…ž Œêù"E?Nyg>dà C:'åÇ–ü±¬io.¿{{¤®$·ý%oOj`H‘åIUá`¬J’i÷gÔÿùõe·”gÿœדÌ*y¼Õx°Ê õ*‘év,C¾Ü@¯Ã¾ìiûXô‰¤IJ†nLªH,á‚Ƨ ©¦ýÍGMón“ä3Pò´’ù“N³k‹}ú;»›K$’ôB«u''ˆFÕ@Ú´qßÛþ_—Lòtº—•-ôô¸´WõmÌo(F¢é#È© +b,yPŠ)ö°V˜öð^ˆ¯ÕU$å¯*‰Ædà>"É^BÇ~™hÁMYClE z‘JíNpÎÁ¼—iù§y{Ìv’y[[Òu‰‘üÙ,wúpU”¸2£²*ª?÷S?%y7RòÇäÌþDÕ5§yƒMÔš;Ìg´KŸ\F™.æ»’×Õ,Zw&ûÆVãÏ•(¦çú ÓÔÇg >«¤:,«(O‰•ó^`:׋l)·r«4Õ…–Pă| ½hTƒñn7”í]ó…ßÞØê÷Wëê™-Zþæ{éqryQµb´øª8Ÿ» ^ŸÌ uuuun—W7Írc‚Df)ZÔ!@¡dæ±ò~Mð¥ À²H„ŸI)UR¿ku¤Ò¤Wo—LG ?{ró8A»D·…C'&˜Rü¾g¦@õVÕ®ÚV’u•eô#)²˜«$/'"’ñ!iû55Äé›Ö‹ÄöPܳʠr‘Ò¦±‚ GRÛ +{ŽØu•†‰œéh–Ð -bšÎÖxäbKr2úu*c+$€Tñ?ÿYò)ÚSÄ *B©oà GÓ›Ú¥­¬L³ÜÁv A"BÎxR­ê¯Ú„õ¥Gã“`»½–}+NÓžÙ‘Ò?Ò‰/ZÙ‘AŒ‚Ô¥M +±ëREBÕ™°ßO×|Ó¬êv^\Žý§i¢†t«©^ææV*¢8–!͇U×ç’‰¼Ï®B"ØÝ\Ž [@Ëw$¡u‚8”;qß‘^ŠÔß‚9与xÌ“3*Ç^lÎM…¡©'µ1ÑÇ$Ò,0©y…DPK3@IÄ5/ùÏAáæ9l¯ôûë{•g˜¥Í­å¤ÒŸR2f•yʤ¸5äEzäógòó—ÎqI«ë~aÕ¼ èÑÊ%]âæ×P¿PâXÚKÄH‰X“Ôƒ?EjQÛ]ËqÛÛÙÍ7ªä+$ΊúlT–_jm½i”ѺWR¥Pƒà}öÉ—”ÿ)¿9ÿ<¾·¯O­Ë}ao,jZƯzé×ì‹ëHÎ^Œ(Îÿdÿ•ðäƒò¯ò\jžZ}gP»Žm>óêÂÞMjáµ)fž&/ĆgäV¤˜–‘¨­³T‹š-9¬=h(œÆK¿+‰ F`ޖʨhÜ‘âr©±o ºï¾E¿3?-|åù[æÙ|ªÄ‚궖ám&i­§. É"J¢¡ Ê”øk×`ó‹ÊÃËÖ§C×Vµ1,Ú¼0·¸¸µÁ¸§ÄÉV20 «\FáƒÇ!#UŒƒ,nz®å•¨äïñÒŠÃqPÇ1Û —2Ì壎I$†3UG AÛ½sæïæ¿‘¿2¼“¬ÛßVîÿO´xï´{^GF²€ÑÇ!H„€JÕ† cPÊ„Ð !•‡Å¸éÓc¾lN-Böîn?‡‡Àì¿ 5¦Ç8ï˜ÿ8?9çÕn&Ö<ѬZÝJIt[û¸ª¥‰¡%ù8©Ø±8i§G¥ÚÎæö¯Ö„"µÁ‰jÊE~¦«Ú¤ +öa±Ø߮܉’àHÂDnhá·7¨?<ÞJüéüÃò§™4ýZË\¸ÿGÔ-µ æY.cy-Ü4FE™ÈoLÔ­NǾw†ibšÊ×ÓrËÅ(97„zÐx×6{FÛÍß—ÿšÏæŸÎج<Å{å¸Ö=>ÒÂX´½RK‹æ‘ˆg‰X1,ªIeäA¨ÄWîOµþr;þqÖß\üÏ]7_¸[-t= VêIT:²ÅZ,n@â„T^`œôí‡åç”õ"@—Ž“æNM"âçR½Ôµ+5ºÓïíc3$2Ý<ªÑ$€C‘*Ãà+ÉO.ea¢\y}k[¼±½ºx®Ö(MJ ”•xú£š»Wª$R¡‡ÀÊ+çÝOò¾ûó Ï×ö¿’¾^¿¹Ñ,¢µkksÍÛB¢¹‰æÓ“L\±!S­­_òƒò¿òÿÉZ>]ü¤Ó/®´=4µÐ­ïK,ºxv{‰úž›žwÉ;ó?¼gR¦ªG +×üߣÝi6Ú'—,îÿFéâXã[éäš–â…d¬ò$22ÉUv¬®Ì¡ˆ°½ZâÆîô˦Z-¸ŽÖ2´q,m#$󑔻ЅäÇ‚¢ÑÓ^JÿŸgy˜µ¿ü¬jk J{¿xíti¯ímJS¼i,披BkÈ‚¯I×?'toË/¢ù‚ñ"Ž«AN?¹ÂH°¢òUäÒS‰ëÈŽ P™yCòÛXÖî †¡iqsHnc³±â$>„sHÈ/¤ŽXíÕ*Îãâä7âHJ<§ùGçŸ8\Km£h×·3N>«jó'î"y™^]£J*jkN€ôÃÏο+Î)~Vùá<»ù¤ywÎZS4-'ÈÂ_2êÓq2Û8ºÖ#º€"ÊŽÞ¬RðಷüÇüøÿœ(ü¨Ñeòÿ—<ã Ùj‚D´Ò¬|o¥©Y;ʱά4ïQÑh•”9_…zÅI'ž,ôø¯.$KË I‹êºn”©5¼Pª,)ûø`ˆ=F'“¿ÄÕbNóo–ôÍæí¥h×> k];M¸S…`“u­ä,c%FÍûU¦Ûž>óMþ©­ß[ù‚maõ›¹ ‹Öœ™âÞHP­ÌøH¨uÚúŒñ7üåÇçwæV­ä}"ÓþqÿÏW^bÓlmÚ?Ò|ŸªGu}ªÙ¿˜`šua¾¸¶ºN q‹è‘—ÕH"È<·Û«^ÂÕçK‚ámÉcp¢ª–6(TTl£â?<ØZÔ'jõ9˽ÌÀF•&ŠˆŠ@E{þ'höAV Z5õ +“+Åêê@¯0?Ç6jWjíá¾(4Ûò®âÚR±1IHˆW²Ûl}±‘ê )ú¼cö"®T^$¨eÔ÷͘'#ÀUš´î|:áוÿ/|ÙæûäÓ´Kšw,«È\mÄ"ÕêNÃn¿#Žf‰`ôÀide\ƒÁWe,¦ ’z×ÃlÙ2òä÷æGæ^©o£ù3Ë·úœ×2$Iõk9åÝÍ9q‰Š¯V*œôßå‡üû[ó¿Ïú¼WZ=¼Ín¢îúÁ’0ÒòåÊ’š"ÐUºÒ¿ØëKk«¸¡ÓìM=Ìž™Xö!ˆ¢†€ Ö”Ûµµ¹½¸ŽÒÎ&žiHXâK31ìß;Þ©ÿ8ŠþAÿœAÓç$u]Jî]O^Õ¿FŸ/-¯ÕÒÒÖ›¸ +Ë+uœMh€Ó r$Œú7ùSÿ8­åOùÆïÈk_%Ik­ë×·égæ_8¦ž"¼¼¶¸Õ=9c(²Ë$Q¡9B$¢‰§©WM~ÏLÐ<‘¦E¥@“\êjÉ«kP;Iˆd[…¶ y°ýZk(¡‰âV)IÔÊcYÁ˜lZí·|埛žFóµçËm;QòµÄº-…¤–ÚD¶ñÉ,w Gúä‘Â¥9GÀ²óåÇ™¡ä¯<£˜2¡ZÈŽlwZ‚(j)Û|Ø„J¬RPÎæTUq6ßtA +M:šüºç,òçž$üóv•åû/(j‹}©ÞÙi×ví$—1µ›óܸGuCÌ3óv;óâ¼°Mѵ•ÕÍ!‘ÞF¸#*"«lŠ PДi_ ƒ¦k4Ô–â#-È™ùF·Ÿ*ò +¡G-…“×lôæ žpÕÚòo-ÝËm¼Hšn¡e12¼@(õSLXð¨ùuÆ,ušScY¢‚6f’HBÄ–Qê»PzÓq›:ïä'è_0êWžRó¿˜åÍž ÐÜZyÑôÙo sD8-»ÜA$F­Ì¿.|GQÓ:Gäí畼åY|›æŸ1Owu©ê«©O­ÞDò›¹äµŽ‚rïÄ‘”f**¤ʘ&êíD·Ó-®ýh½yn%ƒÓâQÊ"+T¥H+·Û;ƒð™õM8öëÓ¿#¾e»šâúúOÓQ_j7w~¼³E¹õ ÀõFxø¯©ê’Ä 5&¡¶yË_Эtý_Z¶½}SRԭϦõ¶ºGDUšg5,ÆF;Rƒ ~¤’yTPSb7®õùfÈi¼çÛ†–'’F‚Ê@±íȳ{ïÛ#z˜µ{]cê·Q›z¥ld¹cmhã•Ð¤%˜||Ørq+E}%Ï¥ŸÞèƤJßêµZTïCµ}»fý +ëO¸†iµš^‰"{q7¡ÒÚ0NI3M Û‹("£s·|é–zK0Uˆò‰¸ÜŸîîˆ*õ§Úe€bzך)måx'FŽHؤ‘¸*ÊÊhApAÍ‚¼«¥_y×óCò¡•Vk»ËVyÛцHÖHÖ·©,6!wÙE F‚ÓJó4 #T¾Këx5ie–iƒ,U·•ã¹0j +Žûb¶¢;‹›x/.= ,o9S †6o‰‚Í*M\´PΪÌsZ{šqÿš¾NÖ<¥çy¢ó µÅô± GOÔ¡h®-$švˆÅ31,î(5§ k¶ùΑ/|—®^ù|\µür\X_j"ë”Ë #’#npÊÌÍdñ<ˆ%j´(edR‚ý]aÂFƉÝfµT¨4ùm]† 󥿚lb‚ßB1¬÷6ð/éXà0Kjí9æ+ ׌h⸒5ˆ¡PGŽ|±†u–î²Q•*U™WªÖ††‚•¦|ªÏEyïó¿ò[WÕ<£¨èa‘×Ji¤½ŠþÖò‘<â5ŒPJ¼I<§¶ø{ù™ÿ9mÿ8ù¯jžFóæ9Z]y%Ž Û;€ÖƪÁyßìšøo‡ºÞå+}B?ð÷˜#º²›nWP]$Ð~õDIZ“ðé¶ ¿¶Óâ¸Q§]úðIBHÚ7ŒÒ-¨ÿ$°÷À_ó?ž_—~mòô:f…¯ZôÅSN-å‚ÕQ +¸ÆȲòªÒ²(÷ß ?ç%?ç6¿".´•Ò´ß0»ÒmÌÒú,¹‘'ãb’XSãØ +üð&¿g¦E"›ma59UcŒÉ»ÅHãTP¥Â¹ +|H¾5ÄïãŠ+†Ž+”» DÄŒ‘°UõïPpÏþqŸóò7È¿–>lÒ¼Ï<7ú³zÓÙ-œ“Kta‰#‘,k·ÅÈŠøä“þq›þrò7Cü³Öõ…¸õ=jvÔom¢·š[›R0ˆªX* ž o^¸e¥Gåò•âÜjbËRp}kY­ži&1Õ¡ò¤ecROïC5M<0~›–ú¤×Wñ[\)ˆÃhöï,÷7 +¢©þó“-G<·/ȯ5ÉùiåÌbµ·ÿ êñ¼ï7§+jQH»[:´eÔ¨¡¡5ùtËÌ[¿$þ^ê~tóm°‡IQëÝðŒÉ~D¢'!h´­7§ÃÜøÑ5]ÓÔ4­f1]—’ ] ¸dRªÈJЯjkÈSZ\ZGÄVâC*þêpÌ$‰×qMøNÌù£Èþ|ó—ç-¾±såMSôf”4Èîo%·u½žÑJ´Žž¯¨9³ºª0P8ƒ¾tÌzæÏ•%Ô´©fÒì䉑ZkqÎ&EÈoÌ…jëÜW&—?˜^hÖ®|Ѩyjh7º:Zk3B!–Há`®È±žW·¥¨äÖÏóÏ:ךµ}6ò [WE6`”F‘=ÝŸ«n’ñZÈ@æT-WŸ‰Ïù¢óP´ÓZÑ›÷S3"(®Ô5nçÚ™áùø7œ/|¯ùV4»!ÊM]eµb#@J•j †r–¨’×QÝÜÈ-Áh䘯%’`¿Ý‚€ßâ®zkþqsÉ^pü¹ü™Ó?&-n^ë붡¨sEt·šìKêdžթå_aƒN­qú-t‘B0ÌÆaúÅI“¯E@ñ'̘Ätµh9T€:õ¦Ý3¥þh^ysÈ^Hп,t‰>³S›‹Û´•WÔf’F^jlÎKmÓ¿iüЃCò·4¿Ë}µÒ£ÈÍ-É·3HíÉ‚9—ð ÀŒ¨gävØMÅNæ:cq/ùÎ÷Ï+å»Ms@ytXg[ õ t™…ˤcâ,vSo -Óüß­k¶ú—¨èÃVÐEÜZ]ÍõŒS,’Etâ-ܲÇPÔ VƒåŽ šËÉM³-­BWm©¿]óge]OòúïJH<›flÓK”Y£’9ò"ÆI™R;šï¾u›I|–úd'AÓÍ¢iÒ„±I£‘n"#’sG§ :¶õ;â—‚É+dÅë4ÎÕHGÄ£¦Ãå–xíÇ鯎ÛyݼݤêNóMãÇ¢7¬¤’k.ì¢a̘Éj~ÖÀq8iúNß̺v¡¥k3Ëoa*ªÝ²º«[—«2Qª§¥G!N†˜6ë_Ôõ{-Q¹õ-lO š¤ÛÆÄÕC +· ÆÇ•8€0eί©_ÙYé—·/5µˆe²ŽF,°$É•:йå}/Í?˜©¨Iùaä3%ý­üÒ[iqEmþ’âW y௒Üxîvß<ß}ç9èÒÛyOÊQÍ«½ÜÓÙišp‹÷÷3Âò>Ÿ¦¤LÎUTniˆAªêû/-é“­>§mö=0M8ÿ ÷ÀPyãÊú¼žWóú47VäÏõ‰#–Hå‘UÕ”šƒÕzõñÅ´}kÍÞ¬ºœtTÓõkåu¥³Ç+Ã! +õgÜ0h仑Fü@€{«™ÁÒ37¨ÎìY˜I'ÀfÈ6¤-u”Ÿ]¼¸¶[†;K‰½$°ga$€ ,8lB¨Þ§jàmÿËúÝì÷jóC=¥ÌqBóG ‰b•ØU9 -FØüòí)¢­ÏÕÝ^5ŽfçÆ5©%ÉJ°âwøTŸ§®P šW¹è>ìéŸ^W±×<¿å cNód^c›Ðl—“Íj¶é!h–I +Ä É2ãöºdßÌ·ú§e¢3ÌkwËXËÉÖbf"¬à ñT?ÅㆺßéÍjòÆçS¾KéîcHaºy¢„d¢z’3; +“/þoZfžâHÚi=FeTVg*ü + 'jß·¶ ó7üã÷—5=*ößO’ãFÔ`[«Øl/ì.!­)ùSÈpäµ>ô4æOË-KN³tk{Ëí>u_­%­ÕŒ’Ãn)êp–n+J}š†8ï0y3]ò”–ù’ÐÛZê#Õ´hç‚àËâK+Bì¿eìkQ¶kÞVÖ|²,ÛXHP_Ä.m} «kžQ5cõy$ãPjP‘¾Lü‰«k^aòt¡m#ý%&ŸlÈáWÑô•£p]Û÷ ÈÕ/–y:çQ¿òä×WI5°·8 éƵ—Öz™&¯jÓ %¥T”ü#áßañDõë…93ò—å~¯ù‡ä¨/ÅÒ\Ï¥ÜzºŒIrV)$ +˜®ÔWvdøè~T›ÎU²IîóYO[Ûw«¬°ÊÜCm]©]éU;5ŠÛ[ó­Õà ?Õý3us$¨Å".À†ÝÉñ¡Å ´žæ9eŒ/œŒÎ©AP(9SàùÙ¬¿6¼§¯ßiZwæN‰nú^db³Ž5“ëÜIFaG1ˆþÈ^T"µ,Ô$L¦Ö­ïËæ;ŠÝbSmÏâ2JêC‘F*„S•:×ä{iæ/)jÚŽaæM2A¥ØÛúr}IB]I3¢ÔlßÕh•!·ø‰ß$ú&½äÛíKF³ó¾›"h¶ "^O¤,i¨L9+qqðÔ¡ø™©¿8Î.þOëß–Vºþ±¦ÜèºåÍÉ°Ò¢´½Žheî«ËðÊž™£BòÈüËÿ8¡ùSçÏ(Ú9h¯¥ê—¶µ’Êð³¬otíz¤È=CG¥jÃu.hV¾Z›Uv¸´¾½½¤¥$(#›"€¬±“Èn+J+:~ˆ<½&£$ÓE~ehímh²G"SVqN%TšŽæŽq3Î,þk~EëRyÇËvkqµÀ‡O´¿’ £3ÿ´ÝWÎþUörÃäÉk;Zzë)<(\S½HÂè¤]iɵefâIïU)O¿ i_lìÞtü’¹üÌó–±&›«~‹¼Ô­× g4Kiumžš°äÃe4Ý+Ë'šÿó0þoë·×z~¬ú6¡ªC\MgÁ­.`TDJ°%ø{þÏn¸`ú.³oª^ii¥Â$,AÑCF J}>drøh@²ZM,qäŠÒº¨*£‘§"+·@7=³—ÎDy¦òÃòƒÉþMk¸nž³é®Ð0oŠÝ!Ža bHe<~ðŸ|ó¯üçæLþCÿœVм‡åµÅàŽO.݉'¬QÅphJy-ªMñ-Ü?ÀC<Ÿ'ˆ<¹PóEÚ‡$ñ¶ùÅ(<ˆÿ˜m³ÐÒÚ¤ŒÒK+HÂ"–ýØ òbG@Ló×üûÛòYó¢U¾§­w(úÑ–4”G+!ôÕëɨŽT,Š|"¦¤àm^½{ed‹þr#ÈÚ·“<ÑkúBV¹†ö%×’…Y$X¦kÄ*µ?˜ üNOÿçåÞP¿òÞŸå]/S¹úÄ7úšC<œDÒ}^)bbæ0©ßcÇ|RX.8çš&Håºr¼UÂü$© ”Þ™¨E+ߦÎ>~jÞ~]iú­œZäÖ +_ëo¥SüjªYòu^4žÛäÿþqKóOGü¬¹ó=Æ¿ªÜéÖåÏéˆì~­½ìä-¼Ð£GÇÔoH|â Ž;á——õ›Í1¦‚;Ç·´¹ŽH¯â‡) •xȋ꼊ô'§mñ{K뻑­%h½hÞ¸sŽAÅ”ûrMù˯¿çퟘ4Í9­õ‹‰á°³Ð @“Af©+Vtå"Æ^SÈ3ÑdÕô¯ÌÝBÓÏVv÷–Z¥ì1iº6˜öòÅs Š³Íê\Dñ“yESÔ T¦Ø;ÏWz£©¥÷•­~£¤zk´ÒD÷f…šWœ@x©õ _ƒÜâúÕÆ™s~ÒèÖÏif@Ã4«4¿åtHÔ’Õ¥PSæz—åßGæN‘­~ME<ú›¥YZÜêXíÖ£nŽdŽ/T8✉ø@'•jFO¼«a>¹lß—þ¥Æ˜š|ϨOqýfkµPe +H1• Bxö¶Çèï<ÚmÇ—<´óßÀ·“<\æ‘­ù8‚ÝMzT1 rªÔ êÂËÔ—N±Õy¬È4è†$'~„“Ol~Q\ùòæ×ÍÞOüÞ®Xß3«È%§-ª’Hu”)!I4p·ÊSù?A:õ—n!ŠîÖéá Å£w[r„•ä*çzô˜t“ÅÔ“%·Õƒ,Þ³¤I?d˜zŒyl@CA¹§PÄñ»Ç*ðhê[á`ÀÒ”;Ö½²§ùÇÈ׺žot×:—˜¯ Ô4ßD˜Å³ÆÂ_WÑDZ9{×zFO4ù_O×/ômîK»¿4ÝÛÜ ˆ5ÄvðˆÄoê¬   ã·S¿CŽÞÀY^M¨ÍK‘k§CF '¨¡ŒœAjÝÃ+±ˆtBÛÒ˜Î[Ô +>®«Jä+ʽ¸×¦õ§jçÓõÎ}gó_>ùcMz›K5¼_X·ŽDIÅ*+†4ìG#¨¼ëçÛï7·˜¬´Y5 Me{pD¢$Š"8îµ”©¨ñÌšíøÕ-uyø\Íf!% #+n¡QY[b(^¹Q\I ñÜ­â*Ëê*ȵJPpTºL3ÖaÖü­ù~>5{ÙOu}fmWµ‘8DD„¿§ÅÄ©E uíÎ ­{ò×Êö_Ÿz­Ü§ÍºÖ¸<»}jñ˜a[9šF%¢#ÕV_«Æ([.Ô¦){yw«Íyæ+ùÀº2GÅcŒ§Æ~ÉT"ªªS­zPér8’êIH\V0¥IåRJ…^ +t¨ê(:Ñ¿–¾vüÎÔõ NûË÷¸Òã[]ÜCnXY]ž¥¨+JõαäÍwÎÐ~’ÒdVÊs0¼œF¼€ÝAØtÇÇ{æ=}£ÓÍÄ—d3¨’E@²9$·7 -kÜâc“m_}Í?^sÿÎÿÍß0þgØyoNÕ¡l|¸u4«…Œ¥Û¥Ô±ÜH³l +£ÝÐ +UºíŸ=ÿçí~u¾ó}·åI bÊÐy‘쮣­eúÃéÌàÕ‰¢ñØuîkµ=N=@(Khá"I¥2"ñcë<)R)¨íÈîqï0xMAFvõEy0n4S½((H î}©Êsç–Äò{ùoªùkEˆ^jö³_I$ÒE,÷­eÅJÆ!ÔxÝ™Á Å–•ä¢™ôÿþ}a†Ÿ“:桯¸†ßÌWì,¿»}´ÛÌή„5 tíâE-Z‡u ±Ø׸¥v§N¹°»Q¹ÒÜj³úL’óD°·k§vÒnµ¨`v~”oXù‘õ[T]KJºü`Híí +Ž9’RSœÄe(¨Ëàj8×°ŽÝî¢úä · ³Oò( {Txaé›=Ô*VÞ/­¤`A4ž”€†#ŠEÄü9²ˆ†+ž7~’¹l¤• ‰bV ÉZEß¾Ûïîô]>ÆÚNu7P¤·!®PÙ#ܸr%•P3*A)]ª½v25Xós¹}Ë14Ø×Ã6 +ŒòéïA á «;£7"Å¿c†öZOÔô¨ ½±2™-­¤ä’$j‚3)£²Æý>/²­:36—OQ_Rš]I•U@tpA£C|C­=± SQ³ÒGÔ´ØÕä‹‚RY©Bž›ŠøCܪæ*Q­I5¯aM¾üÙÝ?çü³/šüñ§åù–ÛÌvñÜÛùOJõ‚,ÒOÉvîê Ö;ff +ÄE*¤×&Ÿ“º×ZÍÖµÄ7>igXtkæq%¼1¼%'‘R÷|©Ä|\@÷ÁZ=Ý厣 Þžb[ˆ‹2……â? ¨e¸6WfⶒËÂMqžJ$Td†›`Ðu Áéñµän¡œÛ)•ã ½HÒ®´5Ý€åJŠŒ@HЧÃ9ü冫äýb?"iþZÕ­µ¿5iQjšv±æ/QŠòë8¦2A3h‚…ÑcRÀ*îMkŽüæ›EÖü™eic{½u`5–Ò-Á¹‡‹1åè†*LŠ@5Ú€õÀ†Hát)$eùH8ЂPV€Öµ©,ví¶î-@RÉ«±Sju÷Ï5_ÙÃo#Ý}] Í'WH¨¢–ãÏq¿†yÛÌß”–~wÒ¢¶ŽñC[G<‰¨Ü[«ÛË sqTŒUhB"œþÍv¨6*U¯Ö¼I¯¶Ûcp¾xB§J|J b´ ©ØR§<™ùÿ8syªê2LÖ÷6@Ò@$õ]#ýâP¸áB­±_··‡‘Å㾜,‰+<«%9F]‚±R7`û +fÆ4RGF?´64M¾švÏ6þc~Mù¯É·RÊúEÄVˆò+NA’%à@È#rIÃÁ© ¹¸ÍéÅ#D–©Hòc¿ÂE>ÐÜ÷ï›)fuB ž$‚Ë¿EiQZ¸É¿œ_š?–1ɧykZº°µ‘©qgȘ¤hªª +µ»bH¥(pÑ<ÁæmËÚ—•l.ä‡OÔZÒ u[D:IJ?îÔ®ÃéÍsò«þrŸó‹òM—CòÕýµÖ—u$S]iú”7k+FÀ¨2²‰ÂÕWáY4=)ùuÿ?Uÿœ†üºò”>Y´±ÒõV·*ñ]êLÜÝjQ Æî@öÇAZá=¦³5™µœÚ<‘;Àeá ¹ª©*YAnÞ=±ëq:ÀöË#dewˆ1âÌ€…$t$4ùá¿Ÿ?ç8ç(¿1|¿yå?0yêê-õ”ÏaeµU`Â?¬E¹)P”ƒß š¿óñùËÏÍýPò¯™üõ%ž‰©2›+H³³ÓG5‹‹x–è¡ý¥iHn\©y—Ìšª¾™©jrz,ád²ŒzqIÅÅ"5mÈaÅçüß}¦K¢\ëGMŸ¯¦¤Í¬œ:ò… +¡âʨس…ŽBµ%Oùœóݾ±,2K§¤Æ0Q]â BÜÔ*ÕzžL(0¾ ki™TARB9âÇdc¸v^¤PW¿Ë 0ËIÒÅíÃ%䞎„¨y(è… ƒU«öTCJ^Î$~QùÛ_óTÒþak¡¼©å’úmCÖ30nRé¶Tuš¦$õ.¸+}^%æc,ÊAä­y‰oâ¾½ºÒü­¦Çõß0êp[%ß¡Dhâôá’xË+ŸMÌœÉëA˜{ã嶶0z‹èó‘ŠÉð*ªž$SâæäÒ«µ;‚~W~P~pܽ”ß–ºÆ‹¤ß›™´Ý}5 ›ƒedÑKõio¡žáÞyΑ†õOP¥MT—Mþ¿ŠÞÆÇL¼Ó§·f—ï8¼æqFxV(¸zq’>ñ0÷Û`íÈ÷úÝÉ‚ÞúÎÆ2$SjW1ÚU4 äH,|:W$ÿ•ÿóïoÉùu†Ö4MW”5)õ9Ý£ž$康û° +jñT m£,ÎÖº”—Vë"¤nð˜ÄÉʦ3!PCl@sóÍ‚õ_$Ï¡êmiw5­Ä1ÒÞZÜ`bÊä,o'¢²ªB1 ?:N.?çÿ!ôK›Û½Be¸Nk=ÄPýh¸™¾¯ËŒò\5@jè(@~UÀðúM·’\zR†b±EÅR6m¸ª­v4;vSÛa]­‚Ã׫ppÌQT–E;ñ&¬ôÛÀöÉ~“ùcùW寨'“ü»og)¥ÊÍ%ÌjñÈXÅ1±‘¢*†€’?hš¥<ñM`!õ@&iË3·#Ó ”ñ5ïÛ6z‹òGþs»ó{ò‘ìn|¯å42Û…÷§`Ñ5ÓÀ£„×3Û:·ªB‰âÆ¿‡HoÏŸ:hrÛi¶2YùŠîÖ{K=ET%œq˜Œˆò¬Lxz«2’?”ñŒ3o6y…ííà{ÃèØJÞÔ,k +«¯>š€¤ÅJôÞ´Áðkš¸…a”*@R ˆ#<ÀV, Q˜€>#ñl7ØdêËþr3Jóßüû×Yü“ó%ÀÓüÛåíM/ßë·& jGV¸¿X¬Šdi"–à4AýØêü+ynk#~F_yK\¸žþK)®ïmµIR/§ŸT—Tt}I¤•ãd0â”#‡Áú·š.eò”>L«•ä÷wÖgbI J€+ñå^Cjt‘$þûóRÔ?,tßÊù­a[-.ú]JÞí9‰™åVVG¡ßËÚœ˜·Šìn$Ðu Ó+hžà,¼Í¡]‡ßòÈÆ«uæ//¬š 97Ó¦h©4®IePEBšž½{o‘vbÀI +( šÓ¾ßIÈŽ=E[%­ÌÜo}q«Nñ3Å%B VVâÉjž½2—îu1O£ëšh6v¨^t‚gIQ„Š1À⡹¯ k^ÔÅVi%–I.›×?é9«-VÞµ÷Žlki§*^kÚc·Öyi"¤R!  ÍCµK¸÷ëµrE«ym|¥åçЮ~±©A,³A7Ö 2Uc„:ìÜI©ASHÖ»‘õ¤VB²5c§R +Ð×möÜæÄn-’Þ“ ^QÅÀ=ü.V )É~NU ä:‘Zgó×—­¼Ù©ê×·þ²ÝÚAJBð©¢Ü’Û f[IRãѺ˜íÊHˆBœ +GØ õ×ç©ç/ËË5Ôt¿Ä7‘ÙC™¢’%¿¿6Ìâ6XU‘•j-j |\—#nÇ‚ÇU`> BÐÕ€¨&€šSåá›2Í ¶g³?Jð°t_ˆšîkÊ‚´Üç ×ÿç#¿3-SF”yM¯u]NÚHu-ba$¢¥µe•#hš2„ºÉÅ‚1cTjšâÑ!hý$·õå)#Ô39T1`¨v(‰¯cÓlØ6ÊÆ}RòÂÇO·7:Ì«iaif¸’ሎ8Ä(É’C@:×aïÑ?&üùªy¶ËTÑ®-ïôùu;Š>™$¯©\Ü5ã3³[Z´‰’âiÓp>1äp,’#¤ J1R¨ìƒ~&€vñ͇z§–|غ]¦¿¬è:u– ò[[êW±ÉmkuqlʳCncI^"Ã’)%Z•¿x].çËš +j÷‰$PÜ[Ïq¦_”1ÂÒ22–<‘ËQAØTS­÷¬[Å)„¡eTjˆL‚£m—í{uǘfXVá£a³"JAâÌKz +üÆM?!òú×ó7ËMùÁëEåÍ>Y&½¸GxŸ÷DZPŒ(«' +ïö|zžRóŸ—4ÌØ<Ñæäš ¸¹»Ô¦v[;Ë¥Hãk›‚xD>ØQ-7aNø”- +=gC"Q‡ÜMJ¦´= ¾5Jƒñ‚FûMé·cß=Mÿ9«ÿ8©¨y“óWBüÖÐïfÔ4Ÿ6„†æ(ZK¿J[e§(ßjÅqEeßáwâµs­y×òròÿóüÅiª4úN¹ :|ö±²Y\Xú¡eMþ>\‚5hC(ñØË̾]½òΦÚ}â¸VHHÚ#$RHüpHe= +ªA&>`Ð5._‹+øž?R8î-šHÚ#-¼è%†P®ã$l®‡£#+ +©ùÍZè‹Ó kzrÙÅVb5Šp+õ~k©‘€@–¼I­1\„ÜêšÅ®¸ÑjÚ[²Å'§Áx¶Ñ˜œ,J’¬i]¨< #‘¢niÖ„nê(züð·!Z¹}'T¸‚ËvâÒ)D~§¤ÎZž›¥CkS_o]æ 3Ë–·©]ß&’·6®±‰¡µ¼CÓûlTðBA={S+m»íÛmþœÙÿÐñ_›?1,¯?)còµ»{»oª/IôBE§˜¹åyÛ/#KU_“ÑöŸšœ_“ßò¤âò.¥ÞÅ6‡=ˆÐ´„EKkmânS$ìCH]ÝŠwF%þ-³åÝü2[›:íœÈêb³’3êÄ”n~¬”U$8ñ¯!¹â~ùZVLíêUx¯JPò©¯PiM·öÎ+†n@›ŸŽ|áó§ž4ÝVù­ôrö6ð·'FfcÌ5Is°§Ã…ØÌLõ9Ïo/$žíæY¤rª<¦¬}În›ØyåK{]KÌ:fŸ{3ZÃ=Ä1=ÄJHáI +HïÜç³ÿç¼ûå£0÷Ï_]ùJÔëÞ^ü¢³žâ MEÓdŠ7&g’eO¬?ï… +þɺmŸZ4íËQy‹Nü¾·šâ[K‹C ŬœbY#iƒz´RŽõÃÒµ¥—LÔ ’Òð ô­ç· +î “ÖN,¦¢•¥GjcÚ)RC¡WaBÈá¿ææ—üãÕ”Pò ÍhÐØÉ¡k“´ /j£V‘w;ƒµã¾üíüËÒ¿$¼µ¦þEsÙè’$p–_ô˜ÛÒ¥zñU$õ ÷ggªÁåÈ.í4Ù˜CªÙÅg©ÇZÕ´ý6IEä-#K@’#q§±¨;W¾|ûÿœ'ó.‡¦yî]*þÚEš÷‘[Èœ*ˆ TÓ~$ár…}EcáÄúÁÄ3¬O$_Ÿz·åç‘ôöºŽš~¥%߶U„¢¬¨cØã©­}³×Úç—,ÿç2¿2?+ü¿¦Eü¦5{-z;Ƭ,l¤„G$f5.CêT€}èv4v7 n¶!ã>7fSÍD«^L¼¡Hô4Ëœô™ü©äÎ;//Xi¶÷zMüV¾­íÕÏA©á£½>6Ü »Ó:Ÿ˜ô ó2ÖÚÒѤÒoÖ òÜêè9-Q(TžM@Ì6øí@i2ÛHYÔpSp'*BÈvn<Ù­(Nø¤ßW"?«‡õy~>ô§l~vyÂîÊÏLò/“,vvˆÛGµø>¥Ksb( +Ô¬¯ó/Ì‘XØZh: œ³[ØÇ ¦b«È²’T©,´â¢¢¬)–é>6ËBŽ°/ ™@äÌIr6¨Ú¦”©«Yù(@€k°Þ¤ׯl[Ê>aÔü½¦[i×v†ÜêE|Ð ðÝ@Ò(e”2¯·âSo‹®yOY½ÓlÛR²[sw_ÛÚÄW’•Kð/TÔÿ­×4“[›R¶~¤,Û\ÅαȡSØì{øãA  +±÷Ãm+ÍúW˜5}KºÙXÚ,–÷Ò΋,s7*ª*@V#ùAÃ5Ý'XŸT²³¶fµ¸k„Yãy Žª¨Ÿ»}«®Í}%Ì“¤ì­5ËZÃm!Ø"\Æìo×jåëïªê—Œ®î[Ô‘ÒÞ+U,ÃzC#Q^˶u:÷Ëž·ö=‡—íü¹å,[=¥®§tò=ýÈôÄp´‚0È °'í7\èzlšw涣¦èº6Ÿm£yB†x¢¼p^íÕ¬ îÄÝ¿Öíµ‹½ +u·¶Ñ,Õ %»žV’{–4ø™E#A¶Ê Ò¦¬Ûc.ç²’( ´¶z\‹Ü33K)`£âà • +µÝ›lä¾]òíÈ+Eq{>¿¨ÜÅe£Â¥#°2O2ƲL]öû[TÝ:Ž]wù;äÝCÌ2ëÖzÆ¡šï™ Ò Ší-´Ç¹zXš%ãV£Àž=:bVK~SO¶i_P¹–8­mQÇ+Èʪ ™çöOôF(ÚgX£¤r5«@0ëÈÿ™ïüãÏœµî »½+P’ßX^1Ì“%«<¦E’0®û—U)±ÜàËŸÏ_1ù'Ì7ÿ–žo·Þlò£Á&«2ñ’×Q´‹•ºÍѸÇ!nGáV ß® °¹“Ê:ì–ú¶ÄÖS˜o­'X¥‰ÊËïT‘N@)·\Ÿ[òî²ðÝÁ\XÌÑ\ÛÊ‘Nœ£n.¤8‘àŠÐäßò—óÊv:\¶÷¢>òK¹f†&W’ÕdEd%¾ÊŸ·PZ‚ªyl;7’¼ïåû+/Þ:Ass$’[¨V0¢:„"Eg•OÚض޸(tûŽ3™âµâÀiDì(ÕŽÿµ¸öð\›¿ç%žÊÞïIÑ4›{û«XÞÖ=if™í9RHym²ó&žâƒüÏùÇ6ªÚè:sZ¬è¦1©RffF5g RWnuÚ´ëL^it[–Ïê‚öê0Ñ ÁpÆØ·#WDXãc·Ù«|ê(1äÆ¿Žã•M:õ€ýùδͿ̽e¦Ñ-üÅõi'!ÓôÛ¨ÌÞ³1ô–E'¢ßä€xí„2ùÃÍÍ2i~^ÔášÝ‡ «k—•®$cDŽ cÄ¢»r;1Eÿ(bÐù“YžÕíî5Â[ÄVÕna:Énæ) gÀ‚”ñÛ/ו”«¿ Š‡¨e¨4ú2_§ÿÎK~z~QË‘¼Ë¾§i†²Òµ½U„ɸdž6IM v,Ë퇚_Ÿÿ3|§gs§I†âÚ4L£")<ƒ #’b;þÕ=»à«_Ì `iPè:ÌúΙlÏ,w¨ëÆWý¿VÙᙈìÊûa½§›ut‹/_Ã¥¥ZIqqmarŒ«÷1ˆÚA-»E7ÃÄ2©~†êjÕ>³ÿœÕü×ó'˜´´óE”mDÓÞ #•ÈQ#Âe1Ë@O`wð¨0]?þr“óZ/2ÛI®¥Ž¡§›¦²XìÑ’[WpGªÊÔYZƒñ½BÒ¸;Tü˺זÖýΖmêÚÅnn¢Fœ‘ñÊž³ïÒ‡~´Ø¥ªy’÷W[DºŠK5ãq'¦ŒÄÔ»ªž%‰êiSSÌß”òþty'^üÁüìÕ^1Ù±Òt JÆ0‘<-ËoëÄñ1’I-µ;í«Í¿—ZoæF›¬y‡ÏMiy­aåÙÒY `’%ôÌÐC/|íUs¸± cS>wŽïÌzÔ¶úkÙÅ­´Ñ8IdUy5GäÔo‰¶¯í1×·—>bYuMVx¢’Ú8àFXR?U‚³(Ey3·ñ°?å0Ï7XþiyÇò#_Ô¼¤Ó.ª¶¶íih“«´P¬Á$Icø‘Õ‚žŸgØõÏ1ßÎCßÎ3y†O#ù–suÛ46—ñ£‚^þV~[~Qèú>±äí'êòÈñÖ)¤2Æ&“àõ31äB<:àñ¦}_J‡_h ö²»ZŽlU~²«ÉãB@RÇ¿^Øæ†E….8ŸMË ~Å–„ 0ûòOÿ8›ª&±{giŒ_A ÝÔ³Êò\E<©8¡a» ºòvÚ½ˆÎùow äZ$q~”5Üós’@à7Ì)³‹SÓèÆY$/= ŠÝf¹•˜”š^Q9$…P)]ÿ™½ÏÚï NÔjГӥ2uæ¿/è^kó«¥ß7ëaFµËŦ¡¿9`¨x€>" Úœzáο¤Ç¯Í!„0î—·ð—[‹K«w^”|4Ý‚Ó5Íí¦·õ¯¬}OPY™ç¹™ ú¦¬¦8ñÿ'—·€S×/EÊÉèβsõSàá jò^R‡¥>Œ€[è?—¿•þRó\Þa±_5¼º„ÛëîK¨–V$ä·Ÿ¨¤ŽAª+Èíã¶ò•<»Ýþ¯g¿,sGêj׬“Ç긌ƒÌoñÔÚ­6Ýki49ŸTý?<÷WsÐÚjPVE™9I$‹)ÛÛ}÷­1HÞÁc½KÄ’âwYÜG'WÎêèYà +©×µ0?åL–›~fƒ@ò´Ú=–‡Ô±jmó‰\F‰0bëˆÙ·ž ’7¨möÛ_ód&6PikswÊÂyý!†¬€|]zž8¦—¤IæKë)yrÅnµK©ÌQ]#KÎà·ÙPŒxª÷ 4ÜÓ|WDѵ/2ê¶>]Ñ-~±¨_Ì°ZƧ‹I$„*‚Y‚€!U5Ügjò““TÔSKÖ¬Å曬’¬ àêQ7:Fô©ïØâXEÿ9-åß.i7š>§åÈ}(¯¥Ô!œ¡>“Éj`”%\rØTöÏÿÏãô¿/X?åþ^€A ÿâ`ÁT*¸Œé_ˆAÞ˜¾¡iõë‹.k!Ú2èIRTÐФü阊­;ŽùÅ3æÞ!› ôi­¡‚Inâæ#`m݉à²QZ( ðð=¾“ÿÏ´#ù%æJ]µ•Ãk×a'TWýÒØYzµV¯$ +jüC0>ÖïŽ'™Ò(QžG¯o4î‰jê¼$’T,Pl9–Ûrm3¬’¼‰‰Y‹,HXªj$Ð{’s™LF˜Še#‡_ÜÃûˆåqÈUÑÙ+Ub•Î_%ÏŸ<ß櫽ÂaþÓçŠ$¸Znå’Áí¥Š"’"P,ƒ˜PíÖ¼B„6ÒJ'¸´ŠF¶€Žrqä#Vj'6Q@OOž7:G–?!µíoÉwžpÔ5H4YŒÈŸáÙã-zöÒ¡a#$ ¿ʧ£m¾ÙÕ4ÊiË_¤õ ˆÿI¿î,\øMäˆVZIcÔï¶$T/S¾ÄR„PŠõ6@ì|ûæ/$ù¯ô÷•¯Òý:i+ëv,²¦6ã@®æJï±ÎæùÊËOùÅÝnÇÊ~kÔùk¸¹³{8Ì–[HÃŒ„A_ƒ—%Éz©øxQ°}½•ºÄÒÍrépŠ#†&I„Â3ë1)ƒqÄ>ôW7MÆóWæ™<ÝVڼ壊IgU^&“Låä“áQñ3I®ùÀ¿>çáÚg›¬-ôKZký2í®Ž«a1(dª~ñ£U [âOðÆʬ÷mvîu‘„Žì²RFø˜9%ZµêAß-™‹¹,ÌIf&¤“Üäd»¬XŸ·Q·µsÁ·~y׿M^jºUäÖIsr.Ä1·ç²ƒ’ƒÖž4Á–v"hd‘$«-ìdE‘h&ÜTWsü7¬íß󌿓™ßžm—HòD¶ÚxŠ1Ö57šÚÂ+†š3M-¼·&-Rô©$gÔoùöt^eüÚü§ÔukXÅ晪K§ë~c»æ"»’Cöñ[Ç +— êì7àÆ¥±Òyvå쥸E† {Ø4û›ÉYãs-à•ãç‡UX±Tøv ¹ia5ßE«]IQo7.<ÈDcÓ 8Kù»ùaæOÊÝrO(yÐ=ÝÒ86ÓÛÈL3|L¬i"©åP)Añ)åž™—ÈZ‡“¼»yr-Ô¾ŒPÚ)£Ø¤>œ‰#—bÜ7­6ô&˜þùè‹ –QM -_¿‘BAíŒò³Îo¿»ÑZêêfK›½" Rö;b EÊ L›¤°†ø3ËÞ@ó.–³OõѨÌ[”±I +·¡;Èœœ èNþ$ +×w(¿dgfšW¦ÝGÓ›#·Zv››¨Úųj2MFñUÖ£¬é:FHSZÄTn(A0ü£åo7ù3̾KÖôÔ‹Q»¶TµÔ=6’8î¤*û–¬Ž¼y,µm÷ÜZj¬4«­.HCs-´ËtK‰cúªIE‚e“â䥪«B>.Vp+ÄH!·¨¥vëMë‘©ì^9BñxªÌ­ë!Dzõì>üñž?ç 5]JøjPÇ Îï™Ù4äõ˜ÉQN+±¢Š}¡»-nf±!e¬ F§p©wáîFõúeÓü©ç=OÍ~aMº3Å¥Íåë5»eŽ).-bõdz"2§¨ÅYQ~"{àè®4ãkyst’I¨É,fØ 7Y}f“‘.\1NÓíì ŠPׯaÛkž]óDÚ–·¤Euþ—iÖ¡5þ˜ñêºZ\Å©Xî`2D€s+Piû8"©k¾fÐá+¬i -ÌÂm1ä¹Ó˜½—®ËƵb¯U`½yI¨¨•œÖêÎ}SUKkŽ)§Ö^Sé‘ą (E:âÞC’Æ×K³ÒýKKG·-èC,œ¢ò`¿¼£«R§eý“á–(7šo^ƽ¼sbÚ<¶§Ñ²žH/ o¬E$ÇÑ„HÄ©RïÊjövå¶#çæÅìüǦÃ-¡UŠW³ŒÕå¡’% ±9’A@ÅhB‘ñ`ýNÚ!ÑG²N´ú´R*)Ïâf4bzƒZ€8×aÅæ®aÑ¢µ»“ëPZ¹MٹϷ/I”ú¡iöz׸ë@WžhºÔt&ÔoC=–¡MªØ·3yÀuŒ¨YE›V»Š/JW©$Ž±¤È‹2 &¢:ËTîW‘Ò¿ Â+›nVB5†ê nds,‚¦ÙÁb9̽©Ô åæêÙµ›™®]¨‰á *ÒD¥¢¼ýá!¤vI)pAØü;œ¨æX®£¸â%X™CðT¥àAr }ë›#ío2’D$1 žÄ©ø‡!µsçGüä_µ¯ËOÏ¡æÍ3E¹ƒG½¼ƒQÒo-a”A5ͲÇ5È‚I9UÖ@]Ѿ$ä*8ñ%åcIÐz¢üH\†‡p•ìiôTfëã,˜ìâ•$2¡øšàü%’”*8³ÜwŸº÷æÇåÍϘ<—q浧Aé[Ý5Üs]˜eµ¶ô–@'™ˆ((œWí0鑤‚ôÌ«Ë%b"!ѹzl¨(< +ñöÍ—9†I ¯4ОOK®cqç긥^˜ee¤.­ª¥„vNB‚ÛRC—ò™ ¢ž&iב‘e öYØ‚‡ÆÏu +Á™¤’i¦U1õ¤a„a•QOÄG@´ÙØ¿ç<—w«Eæ½nÎêÂÂóB·¶¸³Ôu bÃK–ÞI&fYÄ7Dú¬œx S—ó"iÿ8Çå mQüÉæU¿Ó ¾°’ÊÎÞãP¸{&‚:<2 H#»;£ %ÙÔ|?ÃŒE–âÎu >œr9ïV!Ñ÷ûœ°…”°"ƒÄ€~ôd“òÎÞïΖ¾sò÷—/u}’H4›Ÿ¯Ûéú„«"›Ød¸š¬ÒO- 8çYü¥¹Ô<ïþ$[Í.)<¼a²Óô4Óîh£I$šÎáãYŠú¨Æ?R7§Ä½ñ(ä’2Z6(hÊJš,8‘ôƒC•ËþpÏÉþO¶ü Dó–˜fÑ¿0ÿHÛy¦ò9})-t»i%µ„Éq+¡~²­ÄÆvøÁ­2OùY YÏùZ<½æf–~qMB1]Û:ÊßM$æGeà%XÿvZŒ¦å‰†•¨JÍ¢Msõk A£k£é#Õáäb%ˆ, 3nWp¤ü-öI†•v¡&Òî®>­e{ÄÏ &"HƒOă™£2n“ÅþɉIÿ9—ÿ8ØŸ“wššk|òì¶ZV‰æ(V 0é6N¯hð«“x <‹EÑEw©Â¯Ëÿ5y“Èß‘z‘<Ù®¦¯æ/,[Åa™mcH­oííc†HÀ#•…Qþ"V¿µ@3R×/u=3N/Åu¦B,ð£"½¬rI܇§%b¡GÙZ’Õ$V¹æYõû "+ÄU¹Òm—NŽX”§©m»ÄÏñ]y𪪎*µ«rcçígófóÎÖ~bóü—:‡›$¸X~°~¯cZŠÈÅB>'çP;m°5„k˜~M‡Ë·ZâCs«ê+¹žð0—ÓQÅÑTUaQ¿qL#‘ mÄÓpbfŠïC¿†äCL]C͚赂ÖâïS¾mtkHVZææ¨U©»UÊ…P»×lIu}cWÒþµžu½H´pé6ôUOZàZ;WgrŸ +€©ê2€åEPK÷øm›®Ã?ÿÑùs©£½ôÎFîõê~g®yWóßò¯Ì“y‚ã[ÓRëS7Ò³Ëd,AÈøJ¨Ül:‘Ÿ*³åVô\tþ¹Ã/?(?0,eätÉd!£P[â•Šª×Ä‘LÙ±{=6îöâ;[xÌ’JB¢(äÄŸ2cäùÅ¿Ì4ki¤j¶7ZižŸT+ldõ^…Š}¥âh2ÅzÕ›:?—ü‡{å1éšgmÚÏLÕ&·K›â+èÄXrbv£|C­3èoä'ä˜ÿ,m´o$ùêÅí´Ûå·Šöꃉ7 +$€Ô=èq[(bº»†ÞiD +37ÙNFœ›¦Ã¿¶` @{žßvzÊÚ ¿òµ´›ŸËë{i."µ– µ;Bk8nY%¯ïP¬bB€P•ê~ì­EMÌ66~Q±µ³¹xLf{H£{hhŒ ø3Q½*z˜oo£ë#W]&ÎÎ+ÍFéd0Ák$s”4-ÉÞB×4=ô¡Å಻¸»K;XŒóÈiQ~ð±öáZœ;ÿœ›ò:yò€yvm6}rúÚõu}WÌ k°’ìÊÊ$ºDâ²QA;ÈùÿœóC~QþCêWkm>³{ bÞMFHÜ´bà°{‰$D5ãRM7>ÝrI­[iš'‘NÔôïOÌi7ÕfŸÐ&o\8¸Œ23q_H( ý¾]jšm¾›¢­µÌ.º¤.J*´K¡e *3)bv +7^½©Æm¿ç¯üáù=«~g[]xô¸ç»Š/«;¥Ì0ÆÒòYÃzh6aÇrÏ>ÎHÿÎ:ùÈ/ùǽWÏ^Õbôôë)µ*8mg¾[kvz4ÁÕ@` +Щ#¯zd*çI¿µ·K«ˆ4”‰™ŒˆA<Ñ€àTSÇ nHAý’A߯CÓ¶rïÉß)Xùãó OòîªíœÉw$Ì¥AýÍ´’ª‚à¨äê§|ùáÿ8'ù\¾yÿœŽÓ<³©Ï5”0Û_Éq-­bÐÚÈêª[`K- AÛ€H4¦äø˜Ü=òõÔ“¿——6FðycQ™FŸ+ˆ]Œn衘£ª•#º–z›þqzïþT¿üå7æ~—0úÜ:.¯sÆ™='—”ó +–À*UI êz`«)RÂýöa , ¬nÛ«£€AñSŽJ$ƒÕRBŸ‰A¡Øî*A§Ý:Ë]Ô?1¿5§üÔ³ÑeÓ´ÛÏP™V?U"D¥Aið¯ÑžÏÓuuó_ÎZE°†Úç—;ûticŒlŒP‹V®ÍAÞ˜ÛÉ ¹»’X#ú¼r30BC ÄÓáUÓa•#veA$¶ÕùÍ7ðÙ~_ÿŽ4]péz¦pd”uô„jC3H²T£ƒBhCR¹Ð¼ß¦ËqäÓ¯hz”–X°ž ­ò…ã•%H4#mŽ °¹¸Ñ¾­­iw†+ØäpÕDü,5 +Ђ68øf’Ù–âÞB’‚@㱊¼S8‡ååþ£eæå󖕪K-Î,7äÔÂfåÉÜ=NÃà õ9Êü›3Yëo«éºÃ]O¤Ê“ÜÃêõ r2$„šðÜàxo.l®…Å•Ã ƒ¤«Py‡æ1±ÈñH²ÄÅdu4 Áùµùï¯yãζ^`´Óþ¢,c–"·2æïÉŠ¨mÚF4ÇyÃóFç_×Û^’Ñm#´„ÛÀbŸÕ‹1äô +I«”ðÁ7zܳ]CyjÖKtÂÉ3µ,ÌAê*Xì)×3ÊïƤÑTš +“µ}Î +ó”?Sò¶£j %£ÝÛGªÞ^Ü3;Mst¤¸? ~D +’vùãn¢:5¦™¥ß[Ï Ü[G«Ý^ܳVYnêì¬8l"åÁT’@Û¶³4®ÒHÕf%™RIÆç2¸±Õ|Åçí+Ë:ž©ÂÛTžÞÚk¸¥Âcg XîªÀV´¯\ãß›þI—ókϾNòTÚ¯£g©Ü¤©·œKi$yµEP1*Äq9m$ÊÏÉÉ2 +HCW¨mÈ;îlê_˜¿–¾^Ò0ôÿ(Yy…ït8"µ‹Hµ[fZLHÿv§)šBM%«þóòÓËz͇´ëå‡H³Ž4»”±ª†$*°ŒÄÒ›œz‘$ÆÚÞðÝ[Ä?Ñä*Ê G&q¹#*¢¹XßšŠQ©NÞ:—˜t»Ðmü¡ )IZ89¬"¼¢ +ŽE@©ë\™y“Ë©ùu|½bÆl!ô%µ„Jc ÃŒdmJ¯øý7FZ´R(Õ¨¨éÈ­¿åƯù%¤?0¼ºn£Öm£ŽUGf´†w¤7>Ÿ-I:¨¡Z}®ÙÌìô wòËC¾‹Íúêðê¢;yÌw-Ŭ/(ô§T*ÿe‰øAØŽ¸ Ú )$¶Õíæ‚VPbä=2_´ÈëVRãÚ…I!{vhîbt’Ÿ +·ÂA¨Ü‚7®ÎMþ\y#Ë1èÞyò=êM>¡ +-ö–Ãdá@¬YéÄŠýØCÿ91äMÊpùsóOòö=æ'únª‹:ñ\t —á!ZEkL}å„6Ö]¥Äln¥²¸’E¢ÑËÐ?h§z}çKDŽ@Ê}AP¡ƒ0¦ß:T×c¿àL +ÇPóO“?,®ü½kie}åÏ6¼S]j²[‰.mH"6Xä xU ÇZ÷Áš»¬è~Pý þ]ó"¬–úá`òA9Ý +ÅÈRG¶ +±óiÚæˆtË)þ¾C®£ql$»„ ˆ†B~iáã‚-µG¶Ó/4±oo"Þ´L×Bq¢I¤R‰Wâ§\õ?•ô_!ù+òf ù¯4û̽±i™cÌøÖZš-ðŸˆoØ<§¤ù?ÊžF¶°ånú~© 5“™ ÎìÈ‘Ø‚HÐuÁMå;û}*I¢õm®ù ¹r!Š)˜)=QЮç‹lß ¡ j–ÂHl Ô&;‚襔 æ‡~,ES­ÇcM«Ê-¿çõÛo(ywÎÞQúÆ¡w{õ½bÖu‹„VðZI‘;³ ;“Ç|‚Çù_«%ŽæÝ"io漣IíŠ(…m¡ˆ©Œ»r5û ±¨ú0¾-X0E¨ÛYÉq'–7X]Õ¡µ+êJGzjZ„†àæHÕfna³šHÚ9g‘;JI$¨eNź ŽþvëñÍùŸå1C`·ú†cÜé I'ŠYX Hù²©­JŸÀWóg̺~›æ7Zš1xÖÖ¶K&è³,’ÇròXT1êw¨éí(±I ÓÆ¯é« +ò"Ÿ HÜwÞ˜:wæo’¼¯ù§ù[ž,õ8tÝVÝVæ-àQjèY¡[Þj±ß¤Ã’¸¡©É?æ—4O>ù:Ó_‚ú I#ˆ^[´ñ§¡å’Rª›xÕ—¯¼³Ã@>fŒKSÝ´ѵ³‹VˆÆÒ‚·eŒeÅ)é×Aî0Ðé6ÿáÆÖÌ“,ÿ[[a¶o«zm“¹çN`Šz|kMëÛÿœrüÅó×™4¶ò¾ƒçèÛhà]Z)g·dYþúʧ4‘]é¡@-?+|ÅçH _&Aek¨ÙÚCO®žP˜C’ˆ®ŠdCü» +Wè7‘ê–¢Ñ<µ.£{h€-Ö˜Í1GÔi‰"’~#Eb ctå±Ihšl—sEŽ’Z–YO)@W ‹Z”ÿ”3Ê¿š™¼µù•­i^mv}F)©1,ÈêÃ’2gª”"ŸϘÿóñø|Ëù{ç½.ûTR5î&2õÀÈ +»2Ö´éÛ#ú̺œÚœï¬´xY}fgpU«h»ô¥6Âù‡"Jòûm‘/H[»NIÖµ¡Pwi• +¢£}³‹Î4~A[þhù¢Ì«‹ÏѺUŽ¡ÔZcÄ$yÌoê—ƒ!Ý ÁÏæÍf{©u ÙòöU/®Ôž0ª nÛ©@7^ÙѼáùÃæ17’ã–ãR†,ÒÇtï$€J”£4„5;·-ÆøO£~by«Ìó,éˆu;¨¹9·„¢4jÕ‹ +>°¯^›á©ç?5ê–§OÖïæ½!¹<—ŒÓLÀ( +Žò’ÅV•U;)Üo…×7÷·¼Mäï9Q@Ò1v§…MM=³§þEþYëPùRuÕô†¿ÖîãÒ´È‚¼q/¢ôšYe¯z§ÂKq¡ß&~HÐoE…öµ©èÒ5Õô˧YZº²1âÌYÝÊ‘@W¡ê@ßhöÖÌ“]^Ãs*qô,ã¶< ·R1È)Ä’V•=;×#WÔß)COÞA¯Ë¾zKQü™M;È:ý·Ÿ/!¹–×L‘…Ö›ŽÝQmʃ˓€V† ÷é&×É‘Ç ]Åæˈåw„¤ÓÚGèG¼kÑTò¡ëSS\8'ê×Zœ:n©:}Ó*$I¤!ãV òÉeZKWâ쀫½îÆsmyÁ$ ÌäŽU¤M0PÔý³—~Jù;òÃó?òkMòuÖ«úŒRßM©DêÅîdX]^f’¥IÔ}ο%?Áߘ–0C-ÊO=åÝõÅÏ U[©¢ŽŒÔSEUÝNÇ匰òlZÝ  ѽ¾{§ˆÚ,,ž•²V’´®V2Z¢‰ö²íôË{Ë(Öé^þYdG±+ÃÓ‰JÈeró,@Q¿Ãî+ Ó´_7þXëºv§äißP›ËÒ 2L‚(58¹ñž3FàTƒÈd¦êÂïÉúé*Du½JÞB±ÀeŽ ²‡}‚¸‘_–'4SùUn^y¤[ÉìžbRÔ¡_Š¦¢@Ì<\ÁígoM«Á™ŽŒÇè#8Wç_™´^ßDÑ´}] >MBu±’ïëB!ta˜Œ< +ˆ"›l?g>`ÏÞuË^ËòŠ;(èæ |ÔËd×¹A/誆ýÜt<”íN”°ŽúâÌbÙeHÕTša1ä) „J +(S`:ânPŸ€6ØšïMû åÙó—ea–˜xG¤ê [ÓT 1•æy${ ú9ÿ>Ý»ú¯ä¾¶òÆž‚y†ñå›ÓhŠé¶e]\JB A­8òÕ‚²±PÀ•5¡ö4 æÆÜM$>¡êI$’02Lñ*«$ö&†¢¢ž©’O5ÿÎ:ùƒÊz—ó¯ònúÛHóß;Éõ bîWI’Qé\[ÉD¸BfçU¤ök\b·2\¶eļ_D‘xïÉiNŸ<Øid–§T]2íaÕKR=Ôˆðø€‘X)Zì^Õ¨>9vH‹];DžaµfäXT +0øO^ƒéÍ€9宸6ßT»·Œ˜J¨ ¤Œ¤±ùR Pý=:æË÷èwð®XÛǦ<Þ\ÛXð™>9dIåP8FV›)HÂʃ¡ùfÏzÿÎù[ËÐþMy®?Ìï,aÔ5(`Ò­ô‘^Mtmíî¥,ÊðÊ…cxJªHwÉE ~îϾ'[òþqgHò¯œ,^×W×g>bÔm­Zv¸77ÖÖ÷1¤‘Ý"¥ŠÏÐŽHÀ¢¼mû@³LµÛ½7Eü²Ò|¡®Ú]í^I<Ò³@ìŠ>± Öð)W¬EJ$rE Fe4*2E§jºyJ÷AÖRí®šê;Í9­¤Q +ÿ¢Nê«’*d0Ÿ„WˆqPxç=üåm#AòWå—5««=kÏWSÝÜyŠ —’ál¯TY nL‘HA†@Å\•¨¡ª¨åÒ ¥§–<å=S)©Ý­Ìí«ÝM'®Ööñ &…îg”‡^ƒS¾ùÎŒZxX9RL†æ3HˆD5Z1ä2ü÷ñÂXDQ²9gjúŠVwÚ†»Ôbj·”þyÿ\Cikw6›5¼f)noÔÈf#˜É¯ÇU~|}¶ß\yóBúƒk–S˜à—œ-NKNŠyr1FÅ!¨ß_šã3ƒêÒÛI9¿™'‚{Å’Y®C,Ï1<ÕÜ$ˆµ!ŽÔ¥zg3ŸÍ æ-nþEOgbö±HFá“ÔS p7@H=kã˜ëJ{fˆ§ŽáÄw¶Æå"ôä‘æªLÉËââ–¤ƒN½ºø(ÚV“zf¿GX"¾oN*:•—“ñOŠ&+Ê€—§€Ç“Æ_Ý04VR@=«SC¾l3òîŸm6¶¶°I,W’00˼e’1¼Ms‚Còà ØZä£ÉV³é“Èü¦Eõ­áºž4Žy#túÏÀ¼x’8¨ŽälkÕ}7SºÒîã¼µb¯`¼^HþÐ üQ27ãøfÉ6«5Úé‹c ÷)arÑM5µÐK‰¢iZ8þ@¬$Szö÷&—¶¿©ß_éöÒºZNÑË+I#4pMrÁZ¡ÆÄq©U<@©§RtºŽ¥{ëGqu$‹u)¹¹Vv*óÖVQZ¶çzW5p̶–¶âïKµ–K&•Q¼¼pÍ+Ô“žŠ~¾Ã¼fßYò瘵„½Ò­\M>Œò[ÇXã˜j”ªÖ„éÈ©àhù†­(Fýs`K[™¯•=°Åpb‹êa”Dpx?ŠŠÐ)o åžk½¶²Õ&â{³!–ÞõNIÆ8Ê|5V*¯ð×ðÌÌÄ–$’I$šîzœØˆ½Š[©ÝÄÎÒKz{CÀ@Ž\» PV¤R¼ßì'K TÕ´¸âò;Xn^ÛyZ Èë+*ËvA­)Y°g•|ǪySStö‘ÞÞd{5 ò`Üfedb•=·éJ`oËÍJ×SÒ-õÏ,_ÛÀ—ŠÞÃÅJL³ÊÒIÁ¤w?¬fR´m˜~ŽÔt«[¨#¸…®ßGžÖ8¥ŠÚoÜúr.ň݅xÔ5M+GpiUøɪV¦£j‡ùŒÙ Ò¼Ãc’4mfÞkÍ2Åâ‰n´öS^·)Ź’~’¾Â›q%Ž+¢ë~Ró®o¨ù…“̧–šêFµrjÓHŠÑ'¥"#+ÅKãÄTÖæŒ &Yy('*¥Ù<ÀÜ +›/|íåÛ?*Íåý'N•µkåú­ÝåÍÔ… ´iÒ kxUä ,…êM œé”¾wÐ¥ü¤Š{Iô›«äžy=e4Q9e¢@êŽÊUÀkÈÖ¹jÑ}Q¹s/¦´âïêW5ýšS½sd6Vx ê’Ç&8…ºü$$°Fwß“’jwÛb:œí¯4ÍVý 'F }g#*¬  Šò©$©ï±®$Ô ƒr;÷ß6 È–(`¼q$h Á%Ì €©(kCÒ¥I÷ëƒôOVóÆŸ +êW7%ìÁ²µšÒ„6ÔSÆ,hMý²ÚI$Žå–1Â0ĪXµz +’~œØÍ>âÌ,Òݤ’ 殨œ‡«ÉeäÄuzaž.¤òç<¯ä‘3I©ù…5¬ï˜#¤i§G—rnHep‰Í‰ ^ë—û¥PGÆßuaEŸØ»úBAé¬3¼"PïêÆÏPNê S#Rè–révv°Ù‹Û‡’X!c#ž9U!.ˆ ++Ô2ÐóèÌØk«‹‹Ií-Š]2]Þ[¼IÇÔ·$EZœ×á”ì ëA€5¿/þ_k>KÔ¼‘ç‹wó—.u;+»Wžca6›¨ýZXLÖ­hQljÜ×X78¨c©-¬M ÛÅ).Ž— ’H¤ŠQVNQ•c'&Iª­ +ï]mBÃK»P̲ÈLjôËTZ/|Š~NyÃþqÏÊúוõýInô–»Ôµ«çwŽŽ;–²³,¨‰lÜŸ­NÊ+\µ:ïØ{fÁ Ö6{©Ò£qgªš ÛŠ²n÷Fiÿ™2j¶ÖZÇ–ô+@Fü¤*³Û[@¿UwT Që#)B~&rª(7VØxš +ôë›%Q×´3[Ò˜´Sq¤3ÛG¨éË5Ŭ·vêÀÜH2+Oi³n2{ä“5I4Û‹4Õ´‹‰!·Õ¼¼ªï!R$Ï%Ó9*’4­X¸¿Tw¦.±Úú1L¦IYXýn.*R /ää×z’ƒ‰§Zå¯Ã$Wp >{äå34èu‡Ð?,ôÓÃR·ŸBÒ½K{ —µÂC=Ñ…‚Ëv»W‘#•I9Ó´ígJ†´/,ZO¥ýVÎÛËZu¬¶¶ÖÒÛG~¬Æ^r½k˜ø‰Þ¤–\\Éséú¡ÒE‰=8£Žª½ pUäÞ,jǹ˒F‚À (â¡v›ñ§ß'>UÓ|ûæ¯Ê‹¿%ù‡ÏùwÉDº™ì<–"¦æ’󜯛hwC,…Š¼¤oÒ´8¶•ä»ï7~_\Øy¢îî-;I–K[*Z)I¸!(Žó#FìH^{9|3E/¥Ý„ªŠ5NA»·&ä8€zã ¡5ú3Š~cy6 }R{Kë}V jwo7\ÛÈ“Ú6åÈQ@Ü‚šÔqèOÿœ†Õ|›ùIy¡jÚ¾¡~Þ]Õ£^J'ušÞky’°€ª(^@(M~-í6Sˆ}š0áþ%—• + AR)Mˆ}5Þƒd/ëÓLÐÇïfÁU’R²—8nõðaôg¹ÿœ†>j»ò÷•´Å¿•ï¤Ò'·´6¼6oV&ˆ >.“HÿÓ˜RH Z;hÞâæ%VeVØ Þ¤£1»0ÜV¢½;fÏ@y/ò“óÈ6º7ç–‡ªivséRÛk h†mBöâKWúózv¦ +ѹ0õªÔ ö€õ—åGågæv‡¦hu¸º³ÔQšWE•^îí£¼ñIl¬ $±•PB/A½EpCXÜC Êá£2à `¤Ð¢8’E(9+Fy+WìïZ +c•]J²}¡ñ:Šo_»|ÿÒðç—'59ë÷ZÆ«ØymÅmoÕ}@M@cSêhxÓ:›ÿ8ãçŸÌ̽[XÕàŸEòŒ±4š.£§ .BŽ+?R• CÆü3ål1zÏé† +x³C•RÔøA54 íãA¾|ª÷¦MtùÇ/$ê~O—Ìw÷“G$lî§á + ‚¾£0ûMP)¶à‘ã Ê¿óˆ^@L_1³Mnc¸Žyaˆ¼Ü¢µ4¼„¼Ÿ‘ +Jñ"„íàDÛé³<Öb÷Ž¨—.§ˆRÜY‡ôË¥v¾ üÓÒ*¼©¥Xj^JžÁõ Ià{Y¬®~Q(UÅKP€ßͽra¯~[þRé–úuÿ”ÖÚÞh߈x'bÒ$AŠHá¤?Ë¥Co\uî“{¥¦¸0°sXÌ70NWû—l¹#hÈ A¨áen¢¿²Nk×¾jüãŸB±Ô4dÒÄÆI ÜNÖŽˆZPŽÄ WÃq’SR×|Êš.—2¤•òŠ÷àáTÍ/&œA­Ö¢˜¾¥{§_ÛA&›¥­„Ђ/¤I^T”µ8°ŽJ”ƒÐ‘¾ge`¼P!†„ïï¹9×ü‡ä/Ì?-~[êº/”Œ1^Újk&’’[Ã9™¢ô%¬¬AÞ›P•íƒ`ò‡æ|Ÿ—Ú½Žƒ«Çc­¦¢.tˉ-íî}RÊ@<[c•¤þ•¶{mSO±­¼„a3+ºŽD?_Ùa¶ß~ùq‰AYQkC±ãÈToÞ£#ÚÿüäWçî¥äÏ9y'ÏÚ§=`Ik{«Ò°ÛÅý3 +´¡@ ³$¿PqÍyùƒu êÚ?Ÿ×Qµ¹Ó\݇Ž…'Z$°4cz8 T“ð÷í“‹ßͨ<Íå[ß-y‹B²k—–;« ØMÒ2˜ÈVà®ÂÙ¶=A;Õe—Ÿ˜Ój>L¾ò¦££ÙOswyìZñ­Ý¼pÅé‹xÑeû×Óå»Uš«ÇÍþ]üñüÆòÇ“5OË+V–×Ëú™‘%²T‰ÉY’#2£Wp¤WéÏþKþ~ë^^Õ<Íÿ8Åæ ›.hZÄòÁåí)¤å4»±ke•ÚŒ +Ðr·êB¿ÅºèŸá´˜yxѤŒINjŽAe Oˆ+‘wõÑ¥ënʱ•SÅØÅIZ…¡Þ‚½0‡ÉW~lò÷,u_#ÜËm­[3ýJâÝ‘&Bñ2·ûnŒzç?ò¯äÿš+ÿç0´Í_Èkye§4× —6Ü•à2ØÈ‘ˆêÏÖ´ø©×l¥êº†‹}¥¥NÖ×QrÌ”ä¼Ô£u¯Ub1(..-eYíeheZñ’6*¢†„Pî)v·/ùƒ(ó­ÄŠ×÷®ÚÝÜ¥¤™æoVG§&ä^¤Ó¿C§•¿ç05?5O2iÞnÞþòR}I$cÊY*¼ß˜f'ÇiæàËs!f•‹K+|LK–5êq„–%˜ÔÉ=óØšðk”š]üãÄö:Ï—õ¥Í¥ÒCv‹{!,7^,¥¸1 ×bN{OókÊ_ß–:v•¨ÿÎ-¦³åÖý޳務lçI¤-Åe‚êõê¿ ø•ZŸ i×$ÚŸøRÿRÓíã´Ö­"HÑî& /¤%¨Š¶åÓØ’0v¥jºMäÖpOÒPfONQñô ¥À#¡*ÞÕëŸ>èþsòÇå¯é-Nx¢}E'µ·U0[º§7}¨Ú¾Ù.ÔbüÅòßå¼z‡˜® ¶Ôïáß[AÅ¡YÛâ*œ™Ã;;ô¨ÎrÖq­¼WѼ É‘#vRBúŒíÔ É®¯ã‡¿âŸ/~qùsËÞAü”Ò¡Ð Z¬^q¸™•¬&Š«“˜ýC_PŠ1c_m†¶¦ÞxÐ-|§ùe§Ã¤½Ì6ñj“Ðímw§!'¦ÎA&M[Æ™%óü½º³´Èð\¥õÊ4š€Ôæ†8­ú`E ³ —ÆÜNõ§î»þ šÓKO*Çz—6°u€B³ %¹J‚Œy=ÅJ|5nwå”SÍ­¡Üy£ž‘ ’G>´±Hê÷6Йx^u ¨éZô “~_ùzÌɤêžjà—LKEjõymã.ÊP;uè È¢üŠš +rª8’‚¤è~Œ"Êüå×uMNò×O‚þhØ}^§µ¶’Ö>m,¢y 9ž›w S +?1üït5K85NmíŠB¯am%š™8—àb§/SmÅkÖ‹MƒîœÉ/¨R4.ŠÅN5 TÐBNät€f&¦´§Ë#Þb°Žû_ò÷›-,í´„»¹¶“ôuµÔWÙÖQ)TbчýqIŽ2ÑUe«"#†â9B*Hé·-é¾J|é­Zêš"kš»Øëä­î–#Ic/eÀ²¤¬(O&£!<»ÓŽHî¼å¦^yµ4í^Öm7^‘"Ôô× 2%Ε³Ç!ªÌËÉ åÞœhp4æÝãK˜8Ã'.-lÈPŠ´pÎ[íÔW¯¶&pŸüä'™¼¥i£å=ZK}Bõ8jWCከ¥"ñ< mòSwçë½)oôû‰L÷›©”â7`€ +ñ©Ã-#͇—nóE”Ã<ËIª‘4U§Q!]‰4ðÅìï®ôù}{9 OÒ¢‡¯±¨É¥ï熑çÏ(Í7˜<ÉúOÌ—6qØ϶ó£Ž~hQžûBŒ)½G‰[~fi^kòÅË]ê.þb[t²š dp›œr)hÊÃâÙëQ‰ù‡V¿×.“WÕ5/Ò7w +DõFS4P +ª€Fã‰úUÕumO[»mGX¼’öêMžiÝè: +µvðȾ™æ™<ë,L×tØÐYšÚrÕ"ãXYâ_äâ֚Ɨç[äýVÝ{xžh™Õ½Kˆ£Œ RV¡¹Š”Ûqwi{a œZC{Ç-ìrKÎd“Ê6b•¡ªL +]J*ŠÕÅjß:š}Ã~LXèÚçõÏ+ê1¶¡õ+‡Yr–)¸Øw5”0ØÖ£~NØhÚŸåÞ¹äÍH=ûéÒË5½§%W²#@Pš‰ÜŒ°Ë,^©?»Œ¬læ´Nd‘ZTï¾75/ùÇÿ0y¦9to*XɦÝÚFo$·{ƒèäÔ;‰‡â´Ážiü©óf³å©t?ËÑ&¨"µÇ9\L&7 vÌr7ÿ1 ·¸¹æ°)MLŽe]‰ür³Wˆ­7?,ß–Þxò÷–ô©<«®êÒ&§Ai“[ÝÜ#^[–GP,Я%r~x·óaåŸ"´òºé~g»¹ŸU¶xí.­M³È­¬Ú­Š Ä€ïB×–¶ŽÚ[q-Íâ¡ŽT_ª:JyFÇâe()·qU>€I¨R‹½Nrï9ů>E®y^Þx®tóܺ€I a+ÍOU–à*®ì3kwW~cciÍ}‘ß š)¡ôÜÈ>6iU#J¶·i–æ'¶ÚPêb§f®Ý}ür³¬ÿÎ>y‡F—XÖ­u‹ 5¦ži_QÖæ‘'ÔdI' +î".È¡ iÅNÛäóò¯W°Õ¼É«Z][ZÜOcq~î³]|Rߪ¢šT„FY즱‰&µŠ'iȺÔ–›ƒÐ€UhM@ߥF(­UÔ(åV”T¿M¨X ¿Ìän÷òàj¿œ¯ þ_ê·zXÔ#{™ ”Ím$1³PÐ+EÍy.àmá‘0€?8lÿ/¼‡3Ú\\@×òÈ«›8׺ÄJúŸ®Ý»à{JÿH¹[í"êk9·ã$228ZÖœ–•ÜcRG‰Ä‘1F]ՔФgüÙ‹Ížt½Óüãv÷º­¡X%¸©f‰àHÝ>>;×>pÿÏѵ}fO8iºšeY5«?ŠwU†…˜"ì9¯ÅN¾8ígZÔüÁ¨Iªë}bêPåâ©PŠlGA¾ÛÎù¥–Iä2ÊܜҬzš +oï‘{yg[p¥¢È/bÄSõa7üàn³æ+MU°M>I4ñs¥û#Œ:¿5JôåMð7;•2<ÅæßÊ»¯ÉkKˆc3°x¢wXZá "qi +ÇPT÷äÛ\ö×›õ_7ù¿ò£Xü“Ó¥ŽÞÇTµymd.´Á_ÔôتmM÷äh0U³Í$Y[¢†3Êåø–HÇ>4bn5‰ÛÛ0¯AœŠçL½³»¹²¸‰¢’ÝÞ)‘¶*ÈÔe5ïQŸ?ÿ-¿-üÕåŸ5ù»ÈžhÑdKmBÎòÍ}R®Uu(Ä¡4n@R§A¡ØŽ£6toÈÏ1ZÙj³ùWUÔ&±µÖøA$I3C¬¤˜Õ¿gv¨÷&x«@bZhÈŠxbë©6ìõ©Z¨pÊH^„ƒ@s·^i?—¿•–¾bü¾Õd‚ÓÍþp´½²µy¸ú×z“ÆöÜâôù",»‚x»gAÿh¾Hü»Õ¼­ó×õû;Ø„ÌUd½¿–ŒÈ”ªGÎGéP«ò>Û@Ú•Ïš"ŽÆr·Íä<ëõ!aŽ3ă%ü4Šm\–©jnm5HÄ2¨‘Uœ?4–._ +iñ0âj3~X~K~f~Oùfÿ_Ñü»·ªI,¦ëë7&Þ²1%Ì&ˆUX3l~üãŸߘ?óÞZÕ5ëM&ßYó.¡{5ÍÁ’äD‹¦µ¼j‘ú­ BUù·\ å/-ëºÆ¡ –šÜ'ba4p0PkÊhÚ>4§ó v¥êW’ýfÓLmF¼ÈR_D"©,]âd ½y Ž~XÎ@~nëþp»Ñü“¤YCw\[È#–á׋º ¡k†BÕ¨¨o“*þcù÷R˜·—­m®g¸YÞ;Z•‹r«±i:‚<}÷Åí<Úš¬.´ýÎÚKiÚDD’æP¬¡Ï;‚#â½F#o©=òßÙÄÉ3F£›*“ZlìÕ½ kÞ¹9óýïç“?+u…±Ôc¹±¼õ¤½¸çoõ‘g=¿¦fPXÈX"€vþl–êÖþ}Ò¼³õëß­X·ëR»A‹Y!>«ƒ»ÕTlåá¾°óO˜4Ø/f†D'P^3M OX– ¾¢‡¨âEFÞ;œN+«¨a™c`o†BB–5¯B~/3Ǻ^»æ-Kq“y-£˜Ä.Áh$‰Ø¿Ä®í¹ä_ÊŸ9ØùGÏŸå·•å•ô[Q<ºęíX¤JðÉê/*+È8»uúáE­íÍ„Žö’p.¥€ TšÒ„{bë¯ùÅöÓ?Á1~dH¼Á.}¿™4éf<£¶hý8å2Ó‰Þ€Tî(s×ß•©i>‰6­;Gw9š!ujz0°ø>*ï^T4ß t=>ò{y5›«ÒF˜ñɨ)”Ī²·§± ´f ·$ ¥[IɵilMõ…ƒÄ×ñ’è…ø…gB +òè(kœ£þssÊþUò÷´Ë¯*SêÚ¢ÜÜ°RÅEDæKS}ªsçgüþúÊÊKòzúÒ€ÞEæ6p ú0+Šî_œl4»=]¦Ð™[LºU’è§Ä)4”—˜`9í^„Wk±éñê·¢]^ÍÛ•¹@ê¡O`%,àP9‘¾y»>^áí¬¤„Jœ#v’{i ¢”JoJ‚Z•Û>ˆÏ¿tû›¿ùÇ­}­ÚH¢>c½[çøÄ%OÓÚ>mÅÕ¾å¸Ô °ÄtØÔÛÔS6±¿Nþ“ŠH¡‘-ý_RiˆU(J±@i×aJ7ÓžÒ4Ë!¥AåíKUiæ†â+íKSŽöæi–ÌÚ3±à$"M›­•®Øö<€Š¸š#¨¥EI=5¯}ó`:ÏÌš%¢‘a,“ó·,4ÌU^`=ê{W?òÕŽ—­Ï5î‘$K}­‰oPÄ‹(KŽ1–uÞµ«ªBìµ—ÑE•&Vi(LŽ¡Uƒ +–Øò¨Øö; +ÿLÓYŠ’ÞôD1•0ñ‹F€ø•IzíÒ´Ãï1ùJò[µ;é^ÂHŽåO2ˆ·¡­w? A%zû4¹³Hı«TîK½Iß6<úq¡{ÕGBЉ’Rµ7à +¸;o¿ ¼¿£èã\·»˜=ÝÔ*ŸU¹eç H$FGaW榼—«qޔˎ9% ±¯. »l6 +75ÍÇò÷ÎÚVª4ýé —è}UŽ¬`Ž).¤£\#xÄRqcЩû]M7g×a¹°²²¿Šc0^”¼¤i,ܹH 2ˆU«°âÃŽûf¸žK™ä¸™ÚI%fw’F.ìÌjK1Ü’zœÙƯï,u9n °€ŸJ_®Ü©Ž5oI‰­Ãr”P7Ùû<ò‡3ãÕ|¿åo%é×òZ$©5Ä¢Ô­»#Ïk$eŒ^ ¢žÞu—êé)djŠªÉÌŠ’y*ü]{¶lŠ\4Ò¹’z–cûDÔxîOÝŸ=?ç"´­fóÍ?¦8K=¨·.’É»¬"M‚ì9r®ÿvÓÉfL¿ ïpÇŠÑCnOmšµÍ’¯ËÿËíSÎú½ž™e ¸–òXà‚eVbÇzËSA@*7"¤m^µÿ8]ÿ8cwù¿æ;[óþœÒè3ʱÚiü¤ŽK™=9¤!¨cTÃGÅ;ö«øÜ0‰¸‰DÅ +TÇÄQ€cÄ +Š«ã˜MwïÎÈ?#þAAaªXKg®júµ¬Wš}¼ŒÓA¡Ío$.ߤ-§2$“9b 9GDQØ}ówüàÇüãw嚯œ-ü· ×`×^I&àÇc«ÁYc¸0Éqè]1˜GDœ4%RŒ”jð¾—dgmUÏ K‹¬âåÑ„ñq†S'ï• ©¨RHÖ¿Éê `T“Ä“Ðôßo|+ü³×ÿ:¼—f÷Mó ±7³Oz5)8$m-Œ“Í!¹Uf ÑòN#¯Ù4©ÎÑ¢¶©­¾¡¦êH½‘íü“ús™e¸«Êd⤂ìÄŸNœ{m…Z¶§w­ê—zÅûs¹½•î.^¬KI+f%‰$’jI5Íqsqwq-Ýܯ4ó³I4Ò1wwsVfcRI&¤œ„y—ËÞJÓ¼Âúÿ˜µ9e²Õxgh!³šî+“n³$¯F8•ZCNk½9ÈÞ;æ;ÉÖþuDRËê¸Ô¥k"…."I£~(Á‹1¯]Ú•åL $B°£ªšrŸxžsûï0Á=ä­kêCf‘Ñ#P#vv ÐÔ É§#¶y»óëþr›ò¯òÐ[ÅK«ó@,Ë2,§Ðåñ#1JºÔ‡é…D°«A±¿u3d¯ò?ÉzæÇæn‰ä›–··ºÔ$H­R餂ÚwKšx4ø%À©#­püáÿüä—ÿ9ùŒ|–Úµ´Úª[\~Ó5ͬS­³ x $r-Õ*(pv“¥Ýê—‹b³GnñÇ-Â}h•„Q™˜îÝŸzS¸Å¬í^öámÑÒ2C1y\"Š\Ô·°Øu=ùØÿ<¿ç¿ÃZl¶Z~ ZÖ‰¤6©­]i“=Õµë[Né¤2ÍHL.¤…(¬Týšôôå÷äî›å«=VæÞàó[ésjºÝ΋õ™lf¹¶øî# -cæÏʃ‚ÈÊÛÖ”Æ^éGO¾ú›ÜC9U2HcvU-õ†”"µÊ¸·kyL%•ˆ­H$RA S¡æè^ÞÇÓK)aIäX⸉KIÍÉ"ªáZ„ø ç>^{ï3ùÇXÕ´k© å­‘ŽhKH±ˆ ˆ¯¤N"²ÇbZ¦›à'rG¦¬Æ5fdRv¥M:T€+‰aî«ç-FQokqlþ¦’†;x£¢Û1%ÄŒ›©5fVÛÃ$>góåþ­§AªÜ\ýZ.n©omëM95RÃì©U,q¸QJê mßç› /5BóZSšëë—I$b¨Ë´È¼Q‚²)P¯ˆ§@]šmR.ëÍ·1\köö¶ðkqH} “’C/ O& QðìE-yPªšr&€ñw;ôÍ®î!º¼¼{¢òþòW³$T‰¾7~Av$V€SÛ žiìKZi&8$íî-åAë,fâYeé!vbÄUßu¦$Pm¿sÚ™±ª•H&T¤,p‚›¹&µA +)MþXyžLò¢Æªd6°ýiÜ0$‘ç’á½@UhiÄù©]•#ÞY‘‚»V¦‹Zøu¡îaÞ‡¢A®=êFn/a°æ쬒C]cZH™k@ÄV‡~§ +|½å/3þcêú¿™5¨‹ykM…¥..àYAR‘¬ÑKÏÕ­J„n‹@µéid–å-c³Œ0Sm"™zYžMèNäïÓ6H¬ü‡5ä÷žX¼²¾–Ì o-G¬÷æø¥ ŒDDhC7=s¬ë?–ú/Òõtãêµ¼¨ÓisK#ËqőɉÖ@Ä…¡JS‰Zôü´ß BƒPIêv5ú3dtç+jÎíèE#D³á]Dj‘ñtª–œ…s‹~m0jž]¸òÖ†’ƒ}ëiÚl…@ž1 ´¶"Ý&‹I"G‘ 6ç]ùüY‡§Ä€ ]¨~Ézí¾Ã6Å)‚ãÖžÜL©TŠpÛ­(ƒÃ®ûdò—òRò¯—-tIõI® [Ÿª;InKYí¢6ìòpjí àĶõ+]F-•m㸎u`’¹„ÉÄ3¨<p ²n Šô$fëU¹•Ä·_Z‰íãÈ éŒ¹;@5¯ÈøgzÒ.\é«åí~'‘¬.Òþd1LŽm‰tPª +Ä rßcñPà~$¡qJÜV¦§aÖ›fËÔG©>§e§8Š×O_­Zˆ8p‹"š½CTÔí_é‡ÓÏyé½NYfæ..nTÅPÅK¤T*ÞŸÅÖ½zŒ®À×ù±[©-¯ç†KúÁHÞCl±²–#‘å4#uè0G·º³ó,öWw ×LŠ'fø$”@%© +®ˆ5è­¾åxà7¡Û6+¨é+ms§¥4iYêbܽ$GTP 'ûu¥:äÓÌšdº.”÷ªHª¤pIS+$LñÈTÊÌ ;Ö¾'.¿^ƒ¿¾l+Šö8àš{¢éw$Ì’ÜBŒ…*Pµ~´+Pµ¦Aõ %µó6…zE[Ct`µ–@õ,>H7rÌ#£ÿ(šñØà‹†´õ£[2ï$LËqAûßMLÀp?d½BïR´®ù°u¦›*Áwõu´67¹ Ž &â üU˜n•íÓÉv:íÅÕ浧¤òOa1Ô/T‘‰åËæIb¹õ.$Ô$ã”RJ¹S hª¼éö¾[®üͨZè6”‰xì¢&Þ*‘êI–F0#5Z†G5¡Û²ã¢ŒÍ"ĔͤSÒ¤Eÿ0<µu/—µmBßËrèwšµ5®¥s4mb×Vr9µ¬£2ñ¹Ü°-B_ÍêëË—i«X ‰,µMšáBK$s\¢ÂBÁÄ*‹È‚ßµ»aTÉ$r´R¯Œðu +±|±¤hv#¨ÎUa§é¶^Iu Oy$‹ „F8=5($æå–E +TÝFýs›êžbµŸMÕ-4©ýà$:Ÿ§4º·d$‰Kqn{‡j’{c:fÏ@y./=yÓòÓÊÞ[ü¼Óf–‰&¤Ú„6S}E­ܼžOZ6¤œÍ9ŽL¹Ð ³óŽ¿ä?-ÇäK3iöKŽIc.V`Y%cO„¡vëË—»e° +h6ÀÔW¸­7§LÙÅ¿;üÁi¨ßè:‘sõ« MŽÙekKkW‘¤•î·Õ‹søY~'<«\ð/üýóJÖöÛÉ¿—úf¢—bÎ#+F—Rµ·ÕOP}f Ñá o! |ä9÷;òãÌLó'”`óO”¬«/œR?3[%úÇÔµ ÓÖ3KôE12€ßå-(kÃ}¡ßžLö÷V¦9mæ†N ­´‘K È †V^Ä08øfšÚhî-äh¥‰ƒÅ*¬Œ¦¡”Á¡ÏÿÓò/›¿ç ü»7åå¾—åËYtýsŽð­Ç­‘OHDhƒ&ôØ{gµôÿ;G{ä[ I´ù-u Š?‡÷`ÇHÕU@¡éŸ4µ[ï/²>¿¤HmïµPK¤Äž”Vœ–”P(¯¶|­ÆBºͪd^!Tô;Š{ ÿ8ÿæO)ë²ê£ó'Η66–Œ¶z×[ê +K´‘ª¤¹URµ¡Ä/üÕ}-þ³¥yóN¼Ð`¶)&›ÊóÛjQžFJ5 +(ÛïŠùwGƒÌ¶÷CÌ~aýtÄXÚÝI¹“ÌD]Ô+UV´ž»ÓiÖš}ݽÛ_êÍ­£2ZÀcy ò¸)]”Ô +“ÛåkÈþUü§Õ5íKFÒ.´û^hÖõÚÂ+”jH[Tª#•B9~RwüµkåO]Ô4! »ê½Ó/N›Í#I6+h¥BòUoŒƒZ’OBp-ç”ìtøn α “Ùn µQ8ôw$rõbªÀ†»ôÀ¦BD² +€ Z­E4ù÷%óŸå•¾‰aåbËQ—O’7íe?Y–ôýHØFÀÒ}éNøkçË˱åÝn[Ùì¤Ðî"—Õ´™ÒYá!°L­V^#ùazéz‹Ú,çÑS +ªÕÙãvSñF„·Zë•$D¨ïJH* 2“Op #éÎÓ­ÉäMOS_6ùQ:V‰m BçNk‹y§?¼=0Å~j-²oè9e1Ú]zp²43¼nc„ž_mÅ@,ÀšŸ ›ë’~Œ×L~YÖ.tíHR]JïM[˜,Öè«"°HÏ Z”j·ðiÚ¬‘ùKYš+ aˆßÜÙGqiœ!ÛÓåȯ#@HMg'üêüïò'–ÿ/lü«æ?/Ãqq«Lc¼»Š8‘ç´šVVšIQIo…SzÖ½ð«ÌZæ‡b¯¤ÜÚÅw-÷Ç=»2 hX•,YrÃzuø¼2¡Ô|™q iú_›´•Óõ )a[ÙíàKuËË×ivŒñ*¿kf¨5Äu1hWþVÑôOаÙÞé¥Åæ£5ÿ©+8’G#n•Œ 4çZÖ¾^ó?üãþŸæGS»ü¤ÔWÓô¨žûP"‹n’´A‹’±‘Úúçž=?$´MsV¼Ö¿*<‹¥>¹c§=äžb¸¶„Í ÔÈZØ[³FÎÒ’Ÿo’ðÛ}ð›ó+É:g“<Ãu¤è:„º½µ·’èÛ4J‘Ϊð’܈%ƒx.ã üϦèºf»{eåMµ­2ÝÊÚê†Ý­½hÏÙoIË2×ÀïòAò­Ÿåº¶£¦Ù&·£GyúNî_MunËÃt‘„§’²P®À†ÿ•º§’õoË_8ëþ^±Ó<Øaž-JÚèBº¤z„!\,¤…@oCדB¾»ÒåÖ¬‘$µµ‹Â²"´,îcPQŸ‘äFÄ +o…« δã9Õ”6æ‚ŠMOÐ3—~vþZ^ykS±ó^›«U¥¹º¬"²ò³n[¿‡¿|áó—?“÷ºš<¥ç«K…¹Ô‘®^á– Ž ô™Á%-Ú€Óß ]¹»9r$Ð +_‰ç|ü·óSy“ò«Jò|VVAü¿xËWEEkˆãE¯¦zrôw©/Múç¦-õsTò¡Av Ê5®¢ƒ‹Ih€JmÝWu*íÈòúv6Õu{­;O·ŠÂ8>®¦)¯!ª›–B~"´[PÛH ß’dx£E‰QÎ+WÜš‘Ó¦Ø]ÿ9%ù‰g«ySJò•ŽŒ¨ðËÆi£¸Wf•‘aô•A á„€’|0wç7›­.<£€ÓÅÉYi(…Ĭyªªµ%ÁSǸú¯è¸f†ÐÆî}).=pÊÅhHô‚§¾äãXÆQB© >Ñ­Aù +m÷ç+üüµüÔ¼òך¿0¿/µ «];@†o¥}(.#d™¤`yÒ°ª7Ä#–Åsœù/Có­Ö¨ùÓÊš¤ñŧ$[DV·†òÜiD2s@ +(Ýבâº=¯˜ÎóPÒ­¥¸³³(×쑉c‹’ÉÁØ2°(~/O‡sQƒ,´]oPÓï5M>Æ{›-?ÓúýÌQ;Ū¡‘”µÔ¯ÀžRóOž­¼óe¬>Ý¡ 5ºH-ã[VM€”•^&BiV¨,( FÓ<çæÙü×grúoÕ®O¬–óN‹,ž"…¹2ñg¦ä‘È÷8”:«ÛÜ¥[[Ý"†E–‡ŽàÐ’ÅOŠ£¡©íJ•+µ3Ð^U¿¿ó~—&“¯yjÞ{.áu;­Q!€úåVUâcŽ^’ƒÏ‘û |ºÏ—ýM^Ýa×ü»²iw|Ú§¥7º:ƒÂ8€,»0nÀ|“¸ÔæÑ`’©@&DŠ? +R4RIä*I$Ó,ÉÉ8*)F …|ýp_?#¼½ùùmæÏ8yæ &ãË—w÷ábµ %ÜZ}¢ÏÌ7(Ê¡* wñÀ~qüµÓüÙå cWòdÑh×Vs]IıÇ$¢þ°ôØ|_¯pÖ(Þ]ØjÞ…t·Vúdò¯?î%ha_PNªæ£áãZŒ3‡ËóßAyu¥J—0Ù´„†")ZÕ¤õB1éÅI $çšõ?Í[Ÿ1ùÏ˺S˪éÌÐɪ4âf1©“Š¬^1ü, ž{ñ®qÝ#óxyÉnŸ­è¦çÌÚSµÝ×1<È#iaQQïO²p¢k«iaa+pUVYy!F¡5! wåÙílVJqäŽçµ>YÊ­-/uE™"ÌV幑C2¢“CQÐ +ýíOTšê`OY‘ÌóF¯"Æ€€]Å(¨k¹ér³ªù#ò“_Öô8õ?L’ÿO˜˜Íí³*›yK30îFõÃ?/ùvÿÌt:ŽåçÔtùKD5;yÑBΧ€äÎïQÞ‚¹³dóÏš>»äß%h~@ºò î‹æO­$‡ÎKpóÜ] új°©Pk°šS%b}wËéiåýSÉiÌy Ì.ÞáhÜÒ5Dä-öCm†—EtûXa–ÊêÓUSÉî昪˜‡(ø¤F%e¥¯3Ðý.ŒVBm'Šÿ‘in$™}Ž¬X}%`kMùž‡oY¢êžkü£ó¾—¯ÏÖk;Å%ÖŸ#ñ[ˆZÖ@V†¥I]¾sÍCÌ?”ÿ˜:¾ï5¬7· >y­Ì½X­U–µí€-®ZÚN@rC´‘šaàA|6;à<öW™/µŸ<ùSüðòδþJ·¼Ó¾®°E¸[³o(‚±ÊBŽLʲS~¿¦z3Ì·3ù‡Ê“þeiž`ŸË¶bÑÄ‘Û(˜Å)_¶x•,À*+’K–»¹–ûXÒbJ³žÕJúêªfTUŽ_AÙOÄ]HfR*v&­Bar“:›áÙC4(!R¬Á‰ŒdƒRY b(+Qíž^üœYyÓP›Ìv¦äGIæ½¹f„ŠX–,Áˆ2ö}ëœwòØÞé~iÔ®õ-4 ãK›IÌYeJ™yœÃHH¬‡¯zäaJ³|`±$Tònû~ü/É÷’%›¿šwö6(.4X£{)ŒÑ3Et¥~†JS÷† Ÿå*ò&¶5üõªÉag$:U¸’ÍÄõáuj¼j¬«Oâ×ìâ¿Wõ®’ÎͽfvTŒ„35Ü©ßÇ-T³]É4ÜàïÌï-i?”~^Ò|ߢÁfšœ3Ýé—––ô†I&få)F`Ã÷T¡ïñd‹Ìú‘ùwigæ Æ59æžÖæ;~0K:z³¸ÝÁ(¿j½kÛ “Üzrì­l$þí‡Ûã_„‘ã¾b¼@$Žû^™'ÿœwòî•qc©ÎFþ`j°%ÁIF‘ >šý^ TghW„›ò +øÖµÂÊËƲֵ¿ùÈOÌ enuˆÌZtIÄ-†ŸhŒjüÈýà'⦛t9&Ñü­sæïÓWóÛèº|¾¤°Ê‹ ±…ŒüH°‡‚Ž ž Óìb¸&âîám`PçÔ¢»AP¢2Àššg‘?4µ¹?0¿3õ~ÕšdÔ®TBkÏâ*HU¨6íŸ4ÿ?m¥ÿœ¯ÿœ¯ó»¥C-ÿ—-dŠ1t Ë!"ôÕŸ€?@²9®Ék.­röN$„·ÂáUØT€ˆ€ +Ö”\Ì]‹ä€aA†™¿”~aüµòkR)X¸!…ÂFʪy?aÛ= ç¿(éß󌿗>[†çNµÒìõu’Ima) £ELJÞzt§¾ôäáêñ<+Ç6­+Jåg>ÓÝ⸒f·‘X4w“Î6]ÁZk^›á7‘¿ç |•æZÚÕn"V‹`í1 +Ÿ ¨ +@#n»e)*C)¡‚;fÎþ¿’~fƒÊZ7æv“=·"¾º‚{ˆÊ¬³<ÒÄóJ“³;— ‚YyWÃ;´_’º¾—£Cù Ç§ùÞÓU¹ŠèZÇm¬pf+$Ï<†`›¤?†^i—ÐDº­Ó%̸å-pÒ<ñÑžµý¢wñÄ4ã¥išœ–:Ä&X™~­s(`ÞQ*³IA%Jq §Úùm”ÖÐÈëw­ŠPñ`¬† †SC¸§Ó“;Ì_™Úu§“-l!±ŠõÒf¸Xî•Ê–`îˆÀ8b ͹„ÿÎ;ùƒLžé-á¾ó6£o2ºUËÉ¥éâM芇çSáAÔâ‘Ìc_L¢ºGee<*)ÈQ€55Šý6\4zÔ’XÃv† hÌ–Æá‚\Ä5£R¬cP;lô6­§ygÊ‹nŽ——LÏ ŠX䜵º”<Ѓãng±u#¼«G`7E ]¾*Ÿ–ù²qæ)ÅåMü]§Øê6²zIõ½OPºµž@·uHÚÝ#XÞ„*HÞ¾Оë@òÿ—ÚóI²[1,qÎæåÕ£h§jÄÞœ@ŸM@ãöA èÝK‡;É!¶·„´’ù¼ ^êÎ9-t›d€Eidï"¬ÌÁT³9 âCš9rd–þ}×|Õs§Ùk6Ïì‚æÞTªÛDZ­ +_—2r ñ, ;QÌ@’P{¿Ç6!¢~eÞéšmžkd&¹µ>…–ª"yîãGŸÕô-jâ-Ú¢¦&&›× yßWÕ´Ë]ÇL–xînd:4ÓÂÑI$0ÈÑË çF!%øÔŠt'6—@DL.èÒÀJ$E,¥–½@(£¸9°›Ï¶ºÄ’ë~c·¾X5ˆ]´›é¤…šåãDüä·2©FiZSq¶s¯ùÊÌKòÏò[üä½µúü_U{}ÖÐ ìÙî5úÉsŠ‰1@ü¡;’ÔÅY!ã ñ€Ï+±0(bˆ]þ"{õ;SzÖ› ÒÊÒ»HìK±%Øš’IÜ“ß>+yƒ_ּѭÞyƒÌWÒêZ•ô5åôì^I]Žä“øx <¼’ÖÞf•&™®Õ}KÝ@J]¦™Ü™žÅ•«µ@=Ëv͆>WÖõ/,y‹LóN1µ¾Ñnmõ ;„!Z9í¥Y#e¯pÊvŸùÄýqô?Ì;X1A Ñîl/£¹ÌZÍׯ‘¸Vƒ(#—Ë_\]E´ën`»¨x®£æ…¸ÿuN%MKú~Ï{ŽI"‘e‰Š:ÈêhA‚ïž×üàüòò=ïåž©¡;Ú]y¿F–Ú×LÒX™gÖ5KX­õ7»VfEQ°N?Nþíך¼ÍoiäÆó6œˆòù‚ǔە‹‹ø–+›‰‘™x¨, ^•=)…×0܉ΪZTõƒ‰M)ijüLAc¾þ5²ÜÔ† `kÓbw'¯\ò¶ß¸Kµšïƒ4?SØÈ‘\H¼iZrNõé¶ü#Êzœékg©oI»ÜÇ)’;Q@¬Åø-PA€Õjü]ò#¬K™m„,gŸOw¹[Võd¸ø½DjÂ?Kƒ‘^JO‡ó9deVU§Æ(Æ•$Tý7³aRZ¬–×Ê} 2ƒ’|D´Ãp íQµsŸy¿Îo „±hÐÇo34æïÑDÈ:FXqI;ï·_„ThduE¥X€9£é&€fÇÚEj-®'‰EÇ ccê BÕçÄVŒÀ°­vö8–š×:Ž¡gcªIl<Ì–Osh ôá‹O)Œ«ÝºÐ¯eä¼QYˆL·žl¯éÃ`êW2ÜT)©ÝKº +×6toʯÎ]{òÚöæo.j‘ÙZƱÌò´@OÀ·Äˆ Æ´^D¨Răò?ξbü°ÑÞÞÿR¹Õ¥2}HGõ‡–9¥fu—à…ZQTãDZ!ÜmRØžæÐzÈò@dZÆËU桨w¨Ú«ï¸Ì SU4>#&ÞYó†™æ6jߘn¹“I»†æmKRÕ,c0ÚÛ +p6P|Abp¥}2dåǦù:ü»¼ò–µæmCÎÜ÷j§Tkù.å-Ñ‘-£·hí—âa Œ0¡;±s\V±¸^WR4RW—¦«ˆª| Uê M²×‰q̤üD +;ÐTgó6©¥jžc“T‚¶Ÿ\ž{™^8Ò†9¤&MjÂ6`k'QB8ï\ˆºKçç×M²¤«s}=ì—+¤ö°Ü¸µÙ}UõUÛ”Ÿ8–#õHFÍq$œ$ŠQvÔ_R¤U‹ÖM¶¥w¯N¹XCqmmëB9 eiJ] o÷i©“ãÓ÷ˆ‰Xý=ˆf©¦Çu© ÉRcn‹– U¡ *H­FÔïÓ6 ³*o†ºÀ“[ÙzŸ +Ç$¤°n@îW‹o“mëS²³‹U–g–‘.$™ÖS,óÆ^Ü"‚Ä ª®Â£ÄPì{»øæÁóÚß‹q¤Ýͺ²ßE,!WÕ`¼™™ŽËR´ é’[?:húä–šÄE`ºcÌDç‘2"†eÛìíÚ‚ÄŒ¼H5¢•£@ ZZøæÇÏÖ'kŒ—6ì®þ’òºhÔ*ð¥kþµŽ=ðf¥]êV‹‰ +/ÓÕˆ§î“Öˆ–v>£¸©—©®Ûœh4ñÍ»½»’»”Æg¼°äBâZ-T0©âvå¸Û¯|/¼_0ùJæ 7̳Mi'Ön´Ër¿ °‰³GÌÇYÝH¡© +Í‹MgymÜA$Q\©’ÚGFU•,„Š0 ¨î3c%’âÚ;q!¤FHžæDd+ÊnNVe¾ iÓ¯jUI>«ëk ÜE†™7—žš–·ºx¦Yw  x‚kJŠôHBv¯@7¯Ï6+jÏ\YCz—Õ×Ôù·O0Ev +[íwÉqÖ­t½)Þh[½´’}Mú¢Ž4&%QV![âåÐÓ¸ÊÍ€í乿•ã³yÏ^tâ±Ð9 +ŠJ¹¡ñ=·ë€nR3¦jk…Rc"J£íP:58H¨n•øhF]Õ;ÔÖ»øfÎÅä=wÍš>kÒ?/µ+7žõ‹˜%Óô=oÆg•]åôŒñ¼j´âÒTÖœ­ T•¼ësæKü:žW‹Í—7-5µ¢™DVÑÄ`rßYw'`êÛ¢ûÕ¶ZÆU†ö Z¸êLWÓzFCCßqŽˆÒT%›ªoÐЃ¿Ï=-üàžgòÅÕ÷ç–­oå¯/h_¤¥ò•Ýu]]TDëÊå®øEÎ +Q™ê.Ç|•^þU~gùË@»‡óGXRÑôôCÓ|Ÿuê]Fƒ’Æg“P·’ñ(_zžF´Á7ÖÚNÓ_Ú5ºL¾ªA%Xý`Æ!WæiµhI%GZî\Ø\XÉÆþˆ”Wô#ÕRÑÖµùÓ­3È_š¿”ž`ü³f¿¸h¦Ñ5yïžÚƒ*Ü´ðxýUŠª®ÁÁP¬EAí׉ù£òÛΗÞqmCÌÓGªZß3YZÝzˆ×?WN+—'ÑŠ1Ì1æWcÔ*0<Ð=ÀŒº»…ŽDx$WÈ×âJŠ­hGPvë™JtbQ^Ù Òõ0èöòkš‹XãBÒ]Áê!Q 0j0`¦´­(kNøAæ=WŠI¼Ë#\éZžœ¯$ÇH¸Hl¥ŠOÝ«º‚ØG£}¥Cåa¤Uæ‘Õäâ>–cñ©=ÀV§<ÿ9S©è·6z"j 5õº¥Ý Ò1*˜›‰ViÊ‹CËrê*8ôo"Z¢q’)L‘É!¢žq9䜸PI‹ +¾*ŒØj×ç÷ç—J´lVE ƒBÄ uýÅ­ÅÀžÜÍ{UÛÔܞ濆l•yGÌzæ„’Yh·‘Û¾«Í»€WõS‡ÄYOü¥wÏ¥ó‰¶?÷?“Z]®Ÿ¯6“¢]AlÖ0H¯%­Ä[%]”±$/îÄgù{ŠåÒÅݹO¬-“, ~¡“Ô$q3Íа,œ†ÛV´®lÿÔñß–¿çàóGå“ùѵ,-èïisq4¿»¬‚V.xî *aßJß%¿|—'æ/”<ïg£_m%±õ-y¬(JKë95^KPB×j ù—/’üÕ•š#±“ôTÏéÁª1U‰œò 33QMõ§Lùdtëáb5?E¾¨_ÒúÅ>R„ñ¯4Î)&„Ñê0XXÜÌÍðNñŽ,Š~ÒÞûd?Oü÷×|ÁrÚ$z” +Q.míÝPi!e”ÔmZq_Ç +nõ+›´LU‚“ñ*_|žŽü€ü‹òoõë['ó=Â3ÈñÜOjÒC$IÀ–¤jž{¹ë¿†t/Ê"ùsóYï5Ÿ<êz¥Èœ‰tø®ZÊЄ… EªÌŠC*§&žM›Sò-ÌW·ñ-Ï¡Éu˜Ï)¡¶ø•SÄïѺxa—’?45Mo<»æ·º}éHn¤¾kÏ­ÚÆ€ÄâÝ •@~¤Šê8.ÛPšy+óóÉZ7˜4Òí¯íüÅ[ÝM<·°\[ª,¨L iq +’D¦«2Ë*µCLßš˜ß—˜–ÚtZ,W¶w±ÜÇê\\(e‡ÔaɔԷûtû]rMç/F×thÿGNör „xŽŒÉê°æÃ×ä*:î=°š.¼¥¢Ai¬ù?X½.³D9ÝĨѽ”Ò*ñ5A« 4-¡5ÉVPgKµŒ~áZ3ñrå“ÌoÊoÎo<7”í.õk{½4¸²ÐõCmJGîêî’Ï#ñ_‹e­s~u~GþwþajZ•¥ëö’ZÚÁwog¬ÞÛ†X#¤d1ŠRÒÊTôÛ"¾r²ó|Ú¦½¤}Zï‚Ü¥¢Ã=ï7®Á*eg ¨*¨'s‹kvºø’Çô½‰µy`„Yh–Æx8NP#Dõ9‚ªj_¯#œ÷óÈŸ¿ó:¶Ÿªù‚®uXLÑ%”’hÔ•Pê"žIÎT¾Iüîü›M;É?˜žj²º¿¾¶…©YÆè—"5'ÒX¡IíP|FI7š|µq%œßXÓe”VSp¤¨%HÜ€olu .áìõ ym'Z‡†dhÜP• «v Œ>ü›ò¾™ù‰weæÏ>ÏŸ5‰y^æÏQ‚)¦H_‹¼¶ÆUhÔ +Šž*ÛSá4=wò£ÊÖzÅ¿˜0uÒîì\“qmy¯Ö„u¥‰Ýmˆ4­>‡§h¶ªÐ^Û˜ÔNÎ㹶YT(<™âiQmJ·5¸­Ei$ˆ’r@®Åw–0‚¤•fsAˆþ`yóXóž“o–õ ïà³ÿIiÖ Áka00¨@ÊZr¨åÐo\™|Ó­ù«KŠóI’âàZ¬‘êQ[’ÖÆ@!®ʵ¦çlmö³|š}­•ž¨ÿU+VÓ iÖ r7I ‰ß¿ƒ^âá¡Kv™š$¯¹7©© ;nEvÃ;Ì #Kü·ž[É¥´¹‚Þi4v `–D˜-U[sÌ7¶Ã 4ÿ3iy:{Árö×Oo‹iʤYÜI+±oOãˆÜô•©Ô:¶¯a¢H49--.$Xª°1¸sö½1;BxBSqµ*j&)o!³˜Ä”‚b±K7w8Päm^5ØçWÖ$ü¿Ó¢ó·•tûõ¿ŒÛ}X\nÄÓ[ËeÇûµX‰+Rûž4gOº—ËVkæ#ÕýáŠXdsµhÞÚ0µh‚§Å«_ s§ØÛ›¸l58o:¥»"\Ç-Âì~1ñ“ +‡¦ë·»¯mmmn. µ½Šò(ŸŒ71¬È'P~Ò,ˆ¤×â瘿.<©¢ê^bÖtO.”ºÔÞ#qqÍ"ŽÍ¸ +ŽŸÆÎV›‘JÔg”ÿ-t½^üôó§—ü¥(ºó–£ë©z]-ãÓÊZ­#Tz#/ÄÛáu"‰kT˜¸eãñ‚†»7ìŠøu÷À™êoÊŸùà /˾HÕãó…Ý»êz”PÉõ—÷k4lÈ¿Bµ"¤î{g§|©ù%¥iºÜbÜ_ßÆ!,§áŽ0„,a˜­I©rU¤þTyÛZ†á쬃Émwl®¯/§(%• ¯Çõä«Iü¯ó¾¹guy¥i¯t¶pÃus?½’(.¼rH±òôÔ¨­dã¶ø[ùw§ùïI¹×¼…«y£ô7–4h¥–ý­ÌGëJN24‹#R€|)Ç‘ùÓiÞVóRËs Ýù¢}+FѤ­™„É2„ÿw#sÅVŸ +ñ¯~¸GÖ<ϧÙj^T¶»O°»V:šL°ÓŠG*î¥Á%iHÍ[¦øU¦ëZÝ–¨h6w~…–¢ª5[€WXd,*$dÕ©Mú`¯Í¿5ùÊ÷Ë›f—¾_U´ÑÙRp×o$B]9!‚Ž½8†{%ΉrÈðIÖ!ÄP;P-zñjxàaof¶Î÷ê^I–ÉC"(ä9žJ±Ÿ`»áù§sù‹æÝCIò¶–‘ÜëM†• Bïr„—DšF¸VÉÆë·¶êÛþué~ró…ï–|ºªÚÌ«§Ø[½´åËòtVrªŠV®~Í_¶[[‹Ö¶Ò-ÚPÒ"Y+k‰MJ¨à¼–®H%wé@|B,m,¢(»;@«1&€+¹É=ŸäïæŸåž…æ¾:œ6š’ö—Zž±c3ýb#rÑÆþÙŠ5*ÀøxáܾWóï“´M}µ»ë;}6-žmFÍäõ¬bZF¯Z3r«/O|a¥ù‡KÔ$‘cŸNšÆOJîð,Šö…WåÃâ)$ñb­k}k$¼¢’'µnÕYLOR¼[ÀÔCOÌŸ%þuj>M±×õ;kËß"Áp«åû›¥ˆ\5¼Êí J˹&1¿#¶óæÓ¥EªkËq–m :úòKpÂ3ñFåTÔUcÕm!õ{»(£¶»h(„ý©5 v,xã^ ¯«­ÓDþcNP„,Jò¥ ô®sÍ'ÏgUÔ¼…åÿ«[i×qµÎ²ðB†I$ +ÃÖ—œ”â»…`§Ã<‰æOùÈéÿ5®5¿ùÇùÇÖŠM'W†Y|ÉæN;Øp’8šcʬíö|0<å妙>•k1GuO^a +ÙG¨•p¤¨%A¥r–y·x;+1(¥êµ¥Ž@o¸‡èÂñeÖ’lG–˜Ø˧²ÍìcŒæ_µË–ô©œKþr ó«þ…ÿ˺äçåñ†óIq{¨j€žI¦#Ÿ´ÀŠvë-îæ³–)íÓ–Yc˜lá×qC¿C‰‚A¸#óÇæwŸÿ2®-n¼÷®ÜëOd¬–‹rõHCÓ—PkÄT½7Ï,~dþxþk~oIm'æ'˜îu‘f$±ÌÀ$BZs⪨+ã†~có‡™üÛ,2ù“R›Pú°+l²·îã•à‚Šµ ­ôÁwú¾­ªúCT½šð@¼ Êòzj{/2h>XÊw–o˜4ýGVŒËao­oao ³º—Ñ`Öóܺ¬Èf@ J|DU†}µÑ¿1,4˳6ekkb#XL +©lïÀŽIĸç¶ÕtÉT~lòÕ´/¢Ã¡,šXý'Õhïçš6;‰ýh•”s +Šœ@r¤¿\o¬URÔZƒn•HŽñÍ?ÆY]¹4ˆ¬â8­=Îø4ê?–?ž–O/˜|ïqå?0ÜÌ4RI_Gž~"“+Æ­.-Zö¦×¼½¦þ`E.©7˜¦Ñõ™£KGýöžÒ +ð‘(#¯fgxÖ~yˆ[Xù‘t§žbëå«ù$ŠÅgßã†XÇÕÔz¿ZÔ÷Áz~Ÿ·Du‹{ÚJÅcvd†)%Ðp‘Pží#F£¹¦øLüü¾Ñl.õ-wÌvz®Œœm®n¬/-f6—ñ+·’SÄг׷\ãþmÿœkü¼óZÜÅùÁªÙù–’(n5[ÞþÝÈ ¯')eä€|'÷czoÔd~ëÈúÅ…´··²Ú}Z#Áîmoìï£I ¢«›I¥+ʇŽÛБ°$Õ´ýÙ/ÚN.ñ3Ú^ÚÞ§$ëñÚË*ÐþÉ­zV‡ ?šŸ’÷>JÖ4;•Ô4ËËs}c'5i=ñuCŇÂœ†ã<ÿ93ÿ>æÖ<æ««ïÊUuÏ/ßZO«éÑHñúѤu‘¡ä´Vø(FävÂÍ_EÕ4)’×UƒÐ’DYc^hü‘÷V #§Ž– n©V 0¸aP~DŒoäçç–¶ú拪鋨éZä%f@JM è¤èÕé]˜£?çÿç/¬ÿç§ó’<ëiš˜9´²ÊŽÏmr±Õ‡M  ŒOM—NŠä¾© ÏGãNú”ø*H;W¯¶R•ãŠ†›ÓnǾumþs÷Ë^L‡Fò†•ce¨C +Cu3³óD^£’>/Z¤aþO‡¹<¯ÿ? ü©Óü£m§hšæ“c%¬1¤Ò·%’N*’(Ï~Da‡ú˜ôß/“©éº<3êe²ßΓZÅÈÔ<á"e‘HyH╪šá–—«ZiQ´±éñÝ^2º,×DÉU*VHâP¿‘ûeÐ×tÎoä_Ï‹ÿ)ê¶Ú†¥ê1#P· ?Òa´KJÖž5÷Îq¢ÏË?)|žþ´7í~m™ƒÁµÇ˜ØŽ@´ªÄ“âFÛßE=Åu“5ÄRȲ\²2zïJî$‘\ƒñcß T¯ \µø€4$wÞ‡:·üä_åD×H4:_/}do¯î“ÕHåû*¾° 柶Ý8ž¹Ðü‰ÿ?ü‡óEä“h!<¶· +f¾½•Oª²×Ó +`BŽà¯í·‡|0ºÉ²5¼Z<—Vò;“5ΣÁà‰((¼ Œ³õ=;qïŠ9¶`¢%dbƬìì(¼ ŽÜè—Ÿ˜º¤ÚÞ­çëHä¾–Ê&xᘻnK-ÊŽ à_€ÿ+: ‡ç7ågœç:‘óþž¿^™–¤VYƒ>ä‘/ìX¨÷ÄB{ï^TÔíb";bò²½ÁáXããÍvîáWߨb\ +t­~/aAúó›~hëÚkèú/‘læƒP—ËwZ™}fÑ™¢¹ŠímDj+Að[ ý¯–xþ~mù£å¯=ËŸ,h•¾°þX“Ì s©Y‰R ±§p=iOEŽÄõÀúµ¼6Mõx滂G[‹ˆI(TªËðž$6㯉ÌÄñ”š¸$“ZmÖ”íãœï<5…øÜšyGTµÓ4æk‚.î¡‚Ì™¢ˆ Óš¿ 'ÂN}@ÿŸ`\è1ÿÎ>y„^)“R‡Ì×ÒÙ"ªtËÍÈAðÿ7Ѷn¹°#Y›¨¤¹78íâGq+:˜ÚVU‹*TÁÞ”ßß=æ»/4jVZ…ݲ$S¾†æ‹Žb +L8°ZÏ’z-lr#ÉU H + 'nÀnsg­ÿçÿ.?.2ôï0išÓ^j¾yÓ^Ö/-i:…,æšÖf1ú­upÀ7#2žL T¬óò‡Jòö³¥ßùWó>Ê üLJÓtùœ}nâÆUaˆÐø„‹ ­Nà±êãÚÉ4®‹"7îíÇ«êHmˆVJ/]È?ð$ò¡ãÇ­{bÖP­Åä3¤bI ’ž(¡˜ +±ì|õ¯üü«Ì×+ÿ9ùeäÝwRú¶å.½Ô·l,%{}yjéP½ Ñn,€Šýš¶L¿9µ?Có[Ë67ì#°>_×åGvºúæ—BªA_‚5mÈ4¯ìþÑÿæ£%Þ£kjïŸTbw…¥V(ì(I?` +“½+ß%?™z›Þêz}„o+éVqXK5œI2< éÈpûTP«Ìý¾<ºò¯üå^»ä{ë½Ëÿ•–Uò­¡¼¸ÑÍÈoTNñ†ŽFWéP[ì®ìzš×ÎÿóóG[Ö¿ ,<™ä»f–]oUµÓ´è¤1Á/¬ò ½4w(к•cBHßa‘át¢Þ˜1K,ƒ›‡ˆ#ã³|©ä8ì8ïb¼jH×®yàƒÖ¿:xçÅkÛ+½>ê[+è^ ˆOa‘Jº·¥´ÒBoÕ‰Wn2p+Çö÷ +›Ö”ÊÊGd!•Š‘Јû°ÇÊþgÔ¼§¬[ë:a¬ ®™Õ[‹¡àÊH=:àVb¶¬AR$cÏ’+HéF"¢¹³©~Ay^ÌÍMÉ·ò¬é© ¨ÖÔ¬…§š;i'H•Ô©G•¢ êU­F}tÿœów–6­ÃÚÍÝÍÝÝæŸasè^ ìðÁþóÁÈUc2r/_¶ 6^Õ¼ã×Kµ‘f ª¥i9B5~‡ïé™EM;ž€o¾~l~Qßhg^m3N´°¸Ðæ…5?I¾ž{;{V˜·úoyT7Äܘ·9é5ùCP´ŸUÔìÊ»9£ý"±E"Gé-´^µU˜’}ŒCÔWù—+ôÊ\›‚ú +›xJtìãû>¬æÎrösÙCñ:ŨL)gks ‹p±*¨aH­sZxg1ó„Áó 謋 +ÝÞÅXþ·É3^«!S ˆx†ÞŒ(NÄã.­¤„E1Uμãá"Èô ñ$©Êß)â3bWÉ ·ák,· 3¬ˆkGi(81e'’öwÈ6­¢kWmIÕšÚ(à âWÊ¢HSŸÏ—¸Äˆ1—GO‹ìÕH>oµ7Í®4­NmB[g†[$%LÏ2º­TV´ï×îÈß“<—•eÔdÔD÷RkÏ.®OT'Ñ T÷”¿ÅÒ€d£V€ìV„(ÀƒÔ¼:æÁPZZÞôbIî”\;ÅSðSÌ¿}Ô +Ôë“í=î4}ÿV¸¼k‹i[ÛÅ…"YòŽXÊLŠd1€XÔx(“F¶rÂaŒÈï,çÔõQT?%Z7,H-P[áH«±)›êvð\D]tûþ<”rWõ W`Ä€ÝwëLjT‡Ït×®õ ì„Me}o.–æ7Hþ®d’Þ +Ôˆ®KÕh8Š Mɪ +ñ¡$Š¸×jT÷̓§¼½Ô$‚öéêýR(ìˆ.ÏÄ1sÍ<ªXѺåùŠ×̾e™t;ß2M ¥¯¥\\[F—4†Q)ôÕ%’"GÓ¹5 mLÅÙ˜Ò¬jh@ ÙZzÎÖ÷67’4–“Ÿ¬]JìÊ}yM/¨ ó4—@zûÎolnì/´×X¢¹œÇ­© ‘Ï2¼Âdp*¦ŠKræÙv2Ý̬P´P(¢Ÿd_™¥Nl pg2"O<–ÓQíïjѤŸ¹PÀ²ü?hˆôëÌÝ/ëv3k"(¯-Ý–Vge¶àmLž€Up$‘” }¸ñbr¨)×}©› +ièËÄéö««Å5Ò¸XUa˜$^NAå!"­“m/þr7ξXÔ“GK i,b6ÖS]Mu;¼SNÁ¼!)¿^”ø©Wu4…éÉkð“M«_ +å†`cÔvΑù™å=Wò[Ì¿™úÇ—m5 ù.ôè<¿,Õp÷:ÌN×sÜ4Šx"¤ +Nã;6¿çË _!Iæ‰àR\L°ØÞ$EyGvCz¬kð*±Ý‰âÚ¹šRФ$(’T„PÇ•+V‘éµkNÙ¹U8žÆ£aß­O^Ùåï+i7žxóŒ—z³%¥® Ò\Ë𠃊rYZÝ$¯ØZMjùÁü¤O«êÚž§æ—}Iwšâ Á (MÉëe¨Ÿqc¾ìÄ–eg6ŸK½7ÖÖÓ˜ï`wò¡­Ikðî>ï óžÿ ¼·®y†ÿWÔ•RòÑý +!6¥íѽh™£x:Çê<˜rT ;*)Œ!u,$^ô*Ziº'––ÓL—C2ÜÞ¡XÜóJè æƒu¦ÔŠŸ?hZV‰ÿ9Wç­_Î^r³çT‘Ó×–TŽ$¶‰mÑ?tËV +±;gü¿ò_å—üåeÆ©ùƒçÝj2j¬šdsË,?WŠÑØ H ’TžB½|r©Xê?™^fÕu½Å-F{‰lã Ém‹È¯6éJ±r¯°ÎM­^Þy×̺ž·mc©»’K·´µGômã-Ð}¢jOëÉ×ç”0üÇ徫æ»y´û{ˆ­í¤´µYK4Ž!}ÌK!¢Š +ÈøœëŸ˜ÞDóÿ™4Í;M²óhÑVÚêÔÅ$VÐÎíûÁ,.ò!€:~*ào3êže½Ô†‹©ÞC¨OĈ—6¨¬^Wãq(ŠÆ¥{ˆøâZüš’_I ÜÞE¨-„òÇÖ”xd“቞7 +¥ÃúkñSâëù÷æ onoô¿>iöÆÎœ¬gG¶zK%ÿ)Xs¥ÔcœßSÿœküç¿¿]:_Í™eòôã¼ÐdÒ­ëÊÅ@¼Ž?Y/‰€oa@FJ4?Ê¿ÌŸ0ùr­ PµžÎ*Ëiæ;‹iD»Ç4F5‘]‹RÛ#~Ù*òïä—œ<ÙåÓæO/\é×E½Ý ¿Š;ËioEb–ÞR²z†BBÚ­@ëz×åü¥ü˜±²ƒÌNשÂyáw3ÙÊcPìÑ´ì[Œt­H +k¸:ÔZM‡ü‰õhuòýmža8ŽKu[”ÌX*Mš÷Áxò¿æ–¼™¢éi¿Ÿ¼¾®¥j6ƒÓ㣠YäÎ8ÔV@JÆ ­1o>yÏEòf‘eç?¯iÁçy¬4JÊH`oUjòXNü–U/¯N + GNu¨àž¿•ß™~òÔtó×ôX–?«*Ý0†æeTtNƒWìÓo àó–ŸþuüÓò5‡æf€ÿ£<ÿå˜mÙ­Ló½¼ñÃ)w¢:*è}=ÎÇaQÖ-5O0A³¢è·PÙØD¿[ˆ‹¸árZF—”¼¸ÆýwÛcZõ0?ªÞÞA%ÌÒ<6ˆ¿X‘Ý# MŽáA'<ùå-fëV×?Ã~`¸‚Ýu0–ŸY¹T‚%u`bõeDªÀ|CéÏ/ycþr/S¶ó%¿?9¤úºjm½½ÅÄA½Ò¸1d&@)»-}ÁÂ=6Øë:„:{Ï«\²Çóþî$nƒ‘E4¥ióñÀȼÝR¡y*v¾9è_*þIùÓò‚ñ[VžÝô-fh…ÞÅ3%I 4l¯¨I£-Gáî?*ùXò;M|·¶—f®Ñ™¥Ú”X#°ÖŠd­A®jþPóO•®bÒ|ϧK¥ýu‡¤÷h#Fdª†G/V¡éô`ýWËúî„ÐÇ­éóØ‘ÎÜÜÂñ ~ÒߨÛ¿;¿!µëËgÎZNº‹¥Øɾ‘4-¸w™PËæAä)]0?æWåV£¦éW^`_34º|%¾òᶶ‰foTqɇݸ°ÐûW\ùÎöQ»×o,šÛJ´œC;<-;J0LR\SâÁä¯3§•äó”š|ɤG:Ú5óE"Äee9^&¡Ø×<õùSùµqä‹«ÍÌòÝ\y^õfK:ÝÓ”suŠhÖFBYZ¿%­zäLüôò•¢ko0ÎɧÏÁunÏJ¬Ô*ÊÀä„Ô|ð»Fó >O-k— ¡ÎÞ±·ƒ‹˜nUYcʆ+ÌÕy/ záuáXÿG]Ï2ióH’Üèç²$ž™*¬È©R6$TV¸ãþró[[í:-U5Q]«ZÆü4à‘ÐTS<½ù‘ÿ?Õô¾KòmÔÚŽ£ª‚æü[ÙE ­!ãÅQØšõý2Ê÷NÓîý mEdKØ8ºÌqN;AJvÄb»¹eHdhÖuá2© e$;T ¯É/Ì(|±ù=ÿ˜nͼZÄ&Ê{¶Uôãs4n'B±Ž%FÞg%ÿœTÿœ©¶ü»ÿœ‰×üÇù‰{-œ>`‚M:æP±4PÌn¡‘Vy""æH'Ä¢U ÞœL .Õ,wè2_ù«ÿ?Hü˜óŸ¯”|«­“mokit-c·–hæ£<‚gzG¹QÀï×$^bѬt™ô*Ikg«Çéû;—…–v‚Q,H®‹^ •½z`ñ«Ïgiqa£\\ÚÚê0Ç­më~îçÒ”Lªá†@èŽFì2#æ?ùÉÍ1ùË+e—ÊÐC¬zQ†Ù¥0fôVM€¼·ïžsüæÿŸŒ~|þlyNO˸5Ñ>UuŽ¥Ç £;ÃÑ«Ïè hrß¾%uùƒæ{­ü9õˆ×OôRØÅõx=C Tà­(Œ>ÜFàÌz½Æ’š$²Fm‡B$ø*TB +ݲ)£jïåï/j")w¬FÖ‹E þŒ@ò¯@A  W®t¿ùÄ=2ûòoòWÍ›¾bˆÃ{¯Ã<:lA~l£„vY@P¬Û)$í‘èÊ¢;“F ªC×c_j-ÈÓnvÛk°±·Ôõ3ÔZ8ì-¥â..Ñœ¼Qø P¨8ò_q¡ê¶vð\]Û¼è#ÚG"•y£$H©]ºôß<³æï)êžOÖn´]Z&‚êÖGŠhLlV´CM«œwÌšw^C½Fó\f+³*Û;°DŒH[VxÜ­p’ãëv÷%nQ¢•Å¯ kN$ +oÛ2•%XPˆ=AÁÞHò^«çIo Ó¥U•b4õÑÜ°`¥€ VŸ}07žü‰ù‹ùÛå°ß—×Öz7›tgúŤ×@ËkwhC·r#rŠE BAS®oRâéÛâ&FPÖJµo㿆l˜þ[ë—š—®iÞv·uÖ-#˜éÓÖZz‘£$¯ãɨ ¼}ÆA<•ù›ùs£Ë7“7´[ÝͶP³év·ÒK€Ì6’,ÈÒ’À•í‚4Ë]2áùß]‹qï$‰Õÿz‹¹HÙ|dl9_j­X-w®þÛg6ÖÖÁïeºÒy IIhQÖŽ žŒ@?"sçwüå÷äí®…çüùäEÏ•urò¤™$k[ŽmêC?ÛUq± c±QÈÞƒŒ“é–79HžùX[CÓ<ØAƒ×½q„i›6lÙ³fƒQ±Í›,3‡ ì<ϯéƒô‘MªÛælÙ‰&•íˆjzƧ¬H²êw péP¥©°=z›6VÍ›%>W]*â• —œŽ’zž’1ƒÀ•!Û•)ÅwϦÿóìyl§ü„×,nZô|Í}pí.îˆÚnž• +7`iÓîï›6z#þqcÈž^üãÕÊsÔ¤Ó´!ýX-4ݮ湾THU•ã™Ü¤W¯jW=å¢ù7Ê^xÓm¼³ªKt–všƒ]úVŽ=ÓE"¬oTpcHäåµ BšÐƒl¢²ôïäv’%†Þ*¤’)«•u!AI5Û¡Çĸæ @ঌkàhs¡ÿÎJÎ%þZþKÏg&•¦_=ÅÌÐ}F;áÉëêü/ÐÈåB7§f(yËò3É:f‰s¥ùnÆ-;ÖIL_VãñsV­Ü¡@EA$ü¼jîÚ;’4’9ÖAHÛrBòRµv*~Ÿc—q ü‡¬µ¡{ýÙè+_ùÿʟÍÈÏËéu kY‡Ìš®žÚ•Ži©Û¤÷òËh 4Ëso)2‹›¦Ë±Û¶J¬?.|§æïËmEÖÅÅä§ÚFÒÝJMÄÇêÊ®fä25?yðîzä¦ÛCòüz%µýÃÅ-Ö« Ãk¾¸XdEUi@¶BK+‡é Q’#å*?,XjϨ#j“Ê°iê\²$MÄ»p‰Ææ¿ eaJІR~|þ~~WX~Vùù<—¢êLu­¯—J¾™dº´žva$7£‹ aצyçóòƒòûɺ兯—›]-®d¹Ón%I—¡TŒ¯7¤¢û\\± ‚Cž@B€£’¥€aØÐŽ»õÈÎs»Ø¬¬®F¢ÑÊé"GNÇêѨ#â¥;óÈôÜÃM]&æ6Óe»âg‚ê‘OŸœ(êÈê~&PÔ­)·LMäô³¦y)®u_!.·oæ;½êÂî;hâ´¿žÒñ;…ô¸ xögåFüýÉZ·š?-­µ 6êÚ&¥¦¬ZqM"¨ú1<…§e2E'¦Æ"¹?dí]ëcÕ!ÁE6¦õ5¯Ë6J¼»åÏÊo(ymsNó&¡ú~h£»µ†òÚXì"ŽÚh¾ +þýǦµaÅ€'¶ù#ò›ÈÞFÐo¦ò?˜µh.õˆug©@$°‹Œå‘}8P™ˆ¾½yQ¾&42}#Êrhz…åηz’ O¨X„¹£´¦#1$Z•"0ÏÈJø=Jàûk]1ôËË›‹µK¸‚ K_Þ!gJDN¦‹Ê¡™;P·LâÞb¶‡SóÞ¡§Û9‘‚Ýkp·¸¸ø½8iÆŠ¬Hµ~ì }ùa¹¨0Ëõ hÒÊ;‹Ä,ð‹¶‘Và‘¸UeE¨Ry£©RWŠ‚¾ª³™ hR´à»–`T5 aÇävÀ +×׶³–yàvDIŠÚ4ãV!d©åñu^§Ç¦s?7<>kóúé1Ú míî絊U(Š-œz3¬ŠW”ÜèÇ…~>˜AÞ”è Jjv×Ø(ÙëÄd+^ª6ï%~Zù1<¿{å» y I­u%¥ýôr8’?ª¬oɇ:·#öH ÌɸhNF¤}4ð͇ú/›®|½ ÍmÈË©Õ¦hÜÇn_•¨‘OþÕ9Û¼±æ+ý$â½Áí ’rªþ­Óú`+:)g%kÁÎêA „æye‘cI™b^+B)bÔZôb~g6Ô<Ë ÎŸec£H#’Gk­FË”Ï ÍéºE»nÊŒÕbÆ…úö1hÞwÒ¢ÓNž$Ò/žiµõ„q’áöH$°© ñWcÖ¢‡7à~²O#ß°ÜxfÄ-4Û›"ÓO&%Yfœ¸U ÈTIÄÔ÷©ß¿lÞivúv¤iÚt¦1on-¬-.Xpf‚‚ˆªÁCÇîÜØœïú5$†ì#Åê5œR? 2Tû,§Vú;d_Th‘î­ô¶WšØÀä\UT¿¬ ™øFj¦6zOJvaUììnïÞHí#24QÉ<”  (]Ø“A°OA¾l?Óá½WVkOõfúÄÉBñÂÑG +¥yS¨  S®ù?ò®Ÿ«y“Ÿ˜Z–ÖÁ„sYðýeã*¬ÜšFR|#¯Ù;!› u!c,ͬĭ 1Ié$ÐFŸVdâ¹Uf;ŸŠÞßêòÊtËóÏ3ÜÅF¾›[€N%Û‘MNX`“ˆ$CïQJì7¦õðÍ€dD3ým’{wú´‚h¹fRÕ Óm½ò5ªèͨév‹:Ãqsnei®CÒ¼‰ù‰­\þgùöGó&›rTZZªÃl©<|RK›·I€ˆŽª´ +Y'lõW•´ßÊŸÌ-zÏ_4kñkújm§[ú, qôÚæwY`ˆ…B·Á¹®ý>sÁå%Öµ7×®EÞ«a{2¸º¶‚(Õ«1¸ev¡ÿ[ù—>[Û­´ÒIu}ëL ©bEy¹f$Ðøm¿ˆÃOù̯ùÈ¿!~hÝyoòïË:µ±Ž•/µ[y‘¬cf/‰äˆ”%BoC°ëœÃþsþr¿ò§ÍÚ¿—¿(<»æd¶¿¹QªëñÏÊÂwŒT4uY8Ššò Á?™×Z6µ¬éú6—ú­ õᵬœjí*3*ŠŽƒ•mj…È;†ù—GžÈYÚyÊËRÑ-- úuÈÑýpè:¥Ä°’Xî_•ÈœKÌV͘³MsM›L†8} F{&¶õŒTæßG‘øšµö3ɺ™üËù×æ;˜4/to-o%ô&áÖÔÈMyMñDPn»Sz ñeªy»þs³Ï÷7%­ß”<£d§ôš«Ê–÷2;s)ë9XC¿ *A'j +Ó#ö/­ÝGw£hW'NnW4Þ„PÎ`\DâIÜÐ è0‘}FSŸ„Uˆ&ƒnû힊ò7”<£åÊ }~弡­Û‰®­g»Škk¥ýìž‹ÁrÁTÕN꥘ÔÔPç´<£ù[ùyäÉm?Ê>aµ>QÕô¥–kIáŽU½…’i}·ž?ˆü,+×zÔoƒ´=þÒÊ?4é¯èÛÛCÊ0Yí¦I +ÑÊÜ©ZœµzŠhe²Hõk;ß«^A h3$s£-eG(¡éFå^Ýñ Οœ›þY›BÓ¼¹rUþj¹¾E–T­CÁir>اÃI¯ŽySÌÿó•_L¹ÑuÍKòn˜PÛ\ùÒ[Å–êHGû¾; ®ªáEjÒ¨©­;`ígY—Ì×°ê6z +éºÝÃÇ1ºYéÄ‘‘C7 îM(¨ôíǦ>þ÷ô¼ßXÑÁpEfxܪÊ@ݸÈÄ> Aà£9·›#ü÷óV¡oùwäÏ6]k×±—TJ`0j¢ææÒŠÇŽáC¹Ì?0?,ÿ8|Íæ $ùóUóí¾ŸWÖ?Gĺuœ ËP·•´„ÞªŠŽÝr{«ùµ½'T»V{¸t¨Õ.Àf’Õ±â+Ç‘ ëN˜”K},‹¡ie‘Z©,änHn#}…{íŽòäö¯c$ÚGææ™òv«è`Ñ5yŒ‘Ý/U-ܱÂà´¬vï×yþqÃSò=ÌÏçoÎ ¯*ê-8™4MDE¨Úñ8?é3QêZ”âµFÐü­çjÆY/õû}$¯ï#Ó|Ã|lÚqä!~ÞU'js¯ˆ¡;òÏ‘¯¼Î·0Áªiºmä$‹OÖ/£ÓáÎ9¯=+m¼Uc_„Œþ|\yÇÏ>f³³¿²¶†ÒÐ5¥¾¥ais…Ë5Á ?­,²Ô9 S‰Û:ç™<Ëæ}GV·k›«í¡&Þ×S±…᳜–ø¤,ï žàíØwÂ]fÏX—P·²M—*>®²ú4ŽSŸ­<“U;…7ð“Q•%œzv‘Y…J@Ò:9 jܤ’Jøli¶þuÎ6ùÃò›ËºW™õ;èµ»ú$³ÚžF)J’jT¾×Lçÿó’_ó‹ö˜Z ”Þt’ÎúäÿE×4Ød'ÜVN%ƒ-Û¨éÓów‘|Ýå)éæ; a@×›z`¸bŸˆ™WvZ7C\­ùWÌ>]ôεa-¨•b‘×áã:™"5iñ¥~ÒâªA<«Fó7˜ü»ƒËzåÞ”²ÐÌ–—RÛó#¥DNµÏÏÿ8wÿ9?ù}©Èÿ–~c‘­]ª$´Ô%òº«á…šW˜¼Á¡zƒCÔî´ÿZž¨µ¸’téËÓaZW¾Å<Ð78$hÛù‘ŠŸÃ.ÿÍÞgÕ"1jºÝÝäl>$šâIC|ù6i¿óÿóœÛ-‡˜<Óy Œ†²É5쓨ü—|N÷ZÖ5þ¾žç–ÄÍ+É_ø"q„’jMO‰É?åîƒä=^DMnùᜠ+´SKk-¸-ÄD“ü´¯Ï:·‘ç ¿/ì%†óó[[¾Ö¯eÞKy™VÑåêß•:eØYÙÝÕf¸hAbÅLjð2MO°Í×Ëÿ•Ÿ—– ªKw¤[Û¿¤çëZ•¤PªƒÑžYÀ©Þ»ç§|¡ùùäù[P±Ð´;8§ô‹}fîÍTGJÜÜ}¡×.ÓF½¹?ݬa¨IçŠÙ97OŠfUüqðÂóȱ!PÌ@ÝQwñg ¤äSþrË>G¾‡üGåû½^T¸:^¹¤Üú )úÜ—@üó’ÿÎZþDÿÎ:~l$º¾™{¡hÚìÅ£¨éÚ®˜E!Œ¤EàY­ä9W¸®/©ùv÷K…%¸’Ñù þ¯¨Ù]¹ý›y]‡Óƒ5MóHôþµ%´ž¨ªýVòÖî~×Õä“NôÎ/å8k~DÖ­õ­æ&kwIÔMo-6¤‘C±ë×Àç•|…ùSÿ9#ùæ!æÊŸ5éz­»ýbÞÁo#¹·¼kÅdŠ¼~%4©§]Ž!¤jóéq\¤Q]G{;¤[ËM¨ñëÀQHb‘e1RV”ÓĈÎå_ùÈÍgCóݧîô+ã³£F°-cjÊÑ+ßïÏOùòëÈþ|Ò¥ÐüÁæC‡ŠÀc·¿õåE§Uà›ÍÎØ.È´$îzŸ»yþpcò#DþuÖÝïáqÊÕ‰¶€·*†àþ™5§|pÊó§Ã¿Äv·ï›±H’Ë-hSbµ§ÏGyË>U°òÁÓô»¸9cþþô’Þ´9(OÂzwÇpˆB8gjÕwiúë›%?–7—›aºó.±q iʲz×Ö¶Ææeªž*Š:h9vÂñù“ùkä–‡Ë7^t·ÑtÈÕšþö“LA£«›‹Ý^è™5 ZîèÏ,ÏÐÕ&ƒaÓ9Öƒ¨¯˜näÖ¯¼»®kϨ“̾g¿™ç¶eRDæ) @?d·°¦k¾§¯j3júÕä×÷·'•ÅÝÙ$sJnÌIØ + (Ô5CV¾¸Õ5[™oo.ݦº»¸‘¥šYògwrY˜“RI®J¿.ÿ0µoÊ›Tó™$wvº«µ½î‹$ÔmýçîÝdFÚÖ”­ Ó=9ù5çýoò{ËZè÷’ÜyzËe ÌQî#‹Ô- Œ)3ž5b?!†žYó†³å•–;vØÏðÜØÈÄ+Ô2•!Ñ…ve#ßcCV·’Zs +ªé(ã$oZàÔA¸>Ý ó´šï˜5=q-ÖÔj7SÝ}YX¸ŒLåø†oˆÒ½ND4?,-?ç#5Nã\Òäã~ÒÝéŒ$ÅsjóUr`a¶Ç¸Þ˜Or·ú…ÅÜQzBâW‘! _ˆv$-Næ•¥q!˜°A5 ++Aí¾Gp*¤|ª7Å<×äŸÍÉIRß̯q­yiã[{ímôà× ͯ7IÒ´ýâ½EÉÄY |¦V-i·ÛK(µþî–¥§~ ‘‘­kþpò÷óGO8þZyžÃI½¼‘ZâÜËÎÔ<À°4HIþFŽ™h¥˜BÔRhÏ6t&ÿœvüÈo./™­!¶¼·“â‚ÚÞê'¹ž2¼„Ä dS¸k¸#®A|Áÿ>µÿœ˜Ò¼¹yæ=)4Í`Ú†’-&Öóý>ê5PÜ­¡e§#ð¨SRƒ|ZãO½µ†+‹¸šœ+ÃêQYÑ«GU4b¦†Œ|²Žª¬Â·R{Š‘QíQ!åÏ0†´ýuë©âaú¼œÃJãZ×<ùÿBÿùäoÛLÿ•¯ ¤Màm&ñY\P†ˆSAã•’kÉ/Í}J5–ÛÊ÷ÜUYá)QãñPÓ:&…ÿ8 ÿ9s¯Ä·~\jV°¸ªËv‹"•èM e§ßj2ú}´·Ruôá¤j|”–ˆò7Ô³€ +ŸÃ|Ëå{ï+\%–¢ñ½ÃT¸·‘&ˆ*À #fRßëÕ{õÈÿüäüãœ?ç-ü¹¯­n50}u­‘2Çn¶‚ÜŠÌ>fõ÷u¦ýq9¡xDeÊŸQC¯W $ø“C·C¾VgÄóaž›G²I_‚¼VV¨/"ñ^7å±ß§O þˆÏ»eºòvùmmVS'˜u3+( ;ç4‘¨Üñ+PÛV¶ùb½Tï½@­iMóg³?ç n|קyÌ:Ÿå“m}ù—åÍFÓV’ãP")&´ÏlðG#ñåŧAéó«`sèŸå¦£æ½KȺµ×’të7ó)ºÓí.ÅÄïkQnàËƼŽçíÃtázgõ¬‹˜JÜ@à|uG ½æ´§l^Ê{«[ˆî¬˜Çq¤ÐʦŽ®ð•÷­zOKÿœ…ü¾ÿœŸòU¦“w£.Ÿç)š7Z¾×ák©tÙáw’ií¸€È@b©*N|©=ü¶üÕ³óþoy}¦M¡ê±¤Qêún§­Å­Ì‘¬ÏÊ€­öð®Ý°IÖ#’[IÄ ë@‚9fº?YYMI%ÑÕ¶Þ‚ƒoîõîÄ»+*ÇéÜ\LæS#b[uÚ€€)Òs‘þrÿÎdþbÎ8yªçÈ¿”Wz^£ú" w}NæÛëO¥mɱ|0s1’wsOüÄüÂÖ¼æË;o+êP&’ÆâmzÞâÙæô> +J•cqÄ°£S°¯,&½wdߣ|½¨4vÒúÒÚÁ¥Â¼—•T~½pD:þ§¤ÀöEï§ê1‰B¸`@ÙÙC€xƒ@zR»×8Ž§ù[kç Û~yy»]›Ìeó^¥-¬È4Øëê4|»+ÕšŠv }‹ï<½å kËw^fÔnå¿šý úî œIµŽÝäŽÀ§XÆ7ãÇ»|F?3ÄÍû…(”) Ÿ¤€+ãÓ +sŸëß–ÚáÓeó‘ôë‹¿.èðKsy©\B%{x%œÄdZ=]~!_‡á©¯M¹Ö¹ù{¥y—Ë÷>kò•Ååî“Š_\\ꨵD\<‘Õcp +¡.ã•*v9b'14žš–wJ‘@ßk !iN¿Ù˜A V›ŸaÓ ZÜúqõáÝñb2ʦÙЯŠrNà Ûy‡PѦÓ,¦/M’:ª›y-øúj&+ñ)RÄÐVƒâêM8íãÚ¿~l6ÕüñæO4ÃéÜj·O E7vDb©“Ô$PPvp+ÔÞ;ùïY°—ü}(ÓŠM4YÅ,qA=Œ1RÕÝâ¡À5O#µE(Â"ŒGËÕ&ŽX¨ŒTšý§6tŸË{Ì•rÝiºaŸVÒ.Ò+»zRÊÅÍ­Ìþš#Iïxº%»J™×å=åݧå­ét´H}K=EâPÍT”ÅU<˜B¬j:mÔS§¼±Ü§ ÒÙ&>Œ“Ê¥ãD…‹ª«±P MŸ\ÀT€M=ó“~wù4ykÍföÑà’ËS‚Öþ!iA&â3É^"Š#-,rpSÕEzg‡¿çó—@é>DüØŽ*L÷RéZ³*p -Ý°’•ä~£- 'aØR²Ÿ3K«i6ÍìL×|‡NÔ"ŽÔÁªGo[Ã%‚Ë!†sÇ­ Ø=’FVŸ‡ÂÁhªÍR¦Àš æô¨¦ùòÓ=Œ`´•Ä•zŒÈ#~`’y1P@ùûôÆ`ýŵ=bÇN‹;©á·B쨕•ÂÌÄש îóˆZUö­ù±£[é­*ܾ¥¦FMYš7’TàÜ•‰íÇ®VªOõki½–8â2ªÆEõµƃ°Ø +lõ’%ÿ$µ*Íc®Ë}cæ-ͦi,/ínêòyØÅ +'Õ§eàø•jÃz)9÷ËåÆ¥å©ô-&{)x\½»Í$Œí#'Â0ûDuqë„K¤I,dIVY9·'Q@«F¨@¦m©ïß<ésa©éÍi©ZÇ,ÖÒ5¼³ $FÑŸŒ¾"ÏcœóÍçOÐõ†‚êfi:żsÆ©#ÿt\Îõ4 Ä *xî;¶lVòIb¹k›i%™½%šTSé£#9U›o²7{dYƒ_B4‹™– C3¨,=dI#I&¢ž<\+•"§qL¾Gˆ]¨ =w÷ëÛ6]¬³"Ãr‘+[ZͲÍRÒ"¤¡Ø³  +}¸…ÞGÓ´ý|k:M³®¥ä·¨ ¤bG†ìÜ[G!b ¡%”Sì©ÊïøfΓ¢è±y‹Ë÷Z­Æ½Œ’YªØÍ~~·æ_¬[̪Y¹8XÂVµfZžK%|‡my¢ áÖåg’{77¬+j–³™Z2²2—¬jÀæ‡ÏsN™°By*?ÍÌ_/~JþQqÕ¾½t–vº¹„Û½Ä×+Ó³ÛÌQý8U$§Â U'~€f¡¥j×›´¯Ëÿ&Y[ÛyfyOÖ5'™•„|ኛpUbµZr`OºÖVâêî+v,FPíV¿A½1ÑFóH±F¥™ˆTM|ÏCþ}ÿÎ(þDysÈqŸò÷Mó `òž—³¦kZ–¥͵ޟÔpÝG¨F¶‘ü ŸWŠ&BÍéÔU¨z_žÿ+t+#ÞOåö]3Q°…&‚öâêèÅ+Û‚BÜñ• ó©=èh@ã‡7ØÁ¤>—qciûñ¨-Ó™z±ÉgF¨j¨¬rÜC8¾š–2ÚMdEÒR ĸ¡Ú3ÆT!•” `ð`ÍV$9â{É¡½°¸¸·–9^a‚(UÒ†´=OØ*EQPsù}õ-9®íÊÉ,~²Äñ2;ÑÅxË•H Óýb8¢yd) +wûll+Õˆ°¿*Ë œ2Ü»úˆê‘úá¸B…¨¿HýÆÔëÓ†ÿÎyëü¿-<³äÙüÃy©A§¤ÖÂCWÚÔ1Dfâc;«9· +ŠqÅîžÝíí„B0ꬲˆÃ‚w¨,[bwíý)±™nŸF2“ =Ó«r X i÷×&¶:^¥éZLïbÕÃsèÇÃœ—ð4¥dkˆê¬&hô A^€Ýõ¼6DZ•]GÈ\s^+ZšVPßf†§î͆z{½×Ñ¡ÌQ‰%)`ºÕ-ítívîAg¦[‹[Kmâ… ¯8@P|R3V§©Â½[ÉSj¾NÓ4@CæeŠÙâ‚Ã[†=BÚx$R‘CžF4Ú¤Ó±Å#•cY=HVS"Ñ]ËÕ ~Òñeüê3gdÿœbü³»üŇÏÓècæ-éVÚ¶‰¡ê€Iky^Gmw1”£4+"V=db*¦_óˆžp»üåò›tý^m./=ù:ÓKX=KfžÎ½b³Å®9’9Qþ&j*rP +T]Ž”—Ú}íâ\¤rY‘íä…cgVUYÔqêAÛ¦±ÒdÔ,u觉?FÅÄ°ÈÅ^HÞd€˜ö£i«ZÓqÐá–¶Þj²ü±|ƒI·ò­–£x®l4ç–ßIÕmªa7À’†æ †ÜŠÔqeAC˨h÷ òÿ›1´(t(¹£éöúE¹…u}>8âe»ô²}RáF ñ]ƸB±[1Ž4ç`Ñ¿&Þ8«ŽMŶ¥(¿›Ô„‘ +$LBŽjXq`ÄŽL> âvèiµzOÔ¥óuž©Ê;éô{8bõ‚úw7º•Ä±¹‚Ò'XùˆÚX7Ûøj6˯6.¯å-EôÝ:þþÏKIâ{Ø+ê7o¨–ðI!âˆÁMkãZÑ[©¥+°ÜÕ8Ìÿ×ù†!y#xb»/hîXÀ¾¢PÓ© ´Î¿üâäî³c¥¬òi +L©`/ï!T}ÁoÃw#cß>YúR1[LeŽê9(úA ëŸ*°~‰åmCW¾—KÒa’æà!• TŠ ,Md õÂÿ(ÿÎ5Î9júRiú&„š……ÛO(g½–RÐÑd!î$æ€r‚µÛ® ª´äíAP(7>ù²¤Ò5]%Ôí–{gä"›™Œ¸F*Àq;Ђ0\óˆß’vÆ¿-è²Y¬õhÏéL,ÀTßéaÓjYæ [V’0á½'©BW¡¡6 ƒÏ^lº³O.]ë—‡I™ãúÝŸ¬ä:¿RMiÛ¥qgþqþ{_Ñ!¤ÊPÞék¨^¢ý’¯,®C é½+Ô1o4ù†{%Яõ[§ÒÙÕ¥³õÝÐ(=•‰€ã„ÓŒÛÓ$1Ž§‰#¡§JäÇÎ:¿–¿/uËü•Ö^H¡H¯ä¸~3*^+šPLœMTЃƒ5ÿÊo2þTGo¡ÿÎ2y‹ê6h"¸–]ac¹ô®=SWUxì*ìA8•¦£«y_RŠ}:æ1=¬‹qo4f9ãæQƒ)Øôaóëk‰lîb»€$²FYUÇ$5VQЊa7¿533¯lµ?>k³jw+-“¤vñqŒÇ UŒuñ+Zò†¹ætÓo¿ö+ÔSÅæqægó/˜ìáÖÚæâK­BÒàËW3zýQáe©jŽ@>Ûaÿ禩ÿ8û«èÖó~N›í6î'¦‡1¾kUWsW­Én$× l…~jÎ6~@ù‡HkËÄ›JÔe‘ŒZ×ïE£¶Ïê2M+0aà­Äøvß̻ËEKùk¯\\ZH‰êèwܵ<øK(©ûT;Ôð×ó ~[K¨ÚÞþZ5ìVw0+^麊/+KJºÇ*³zˆhWqZç,¼üÊó•ï•tÿ#ÝjóÍ¢i\ÍŽšBp‹›35 9V=IÎh+ÿç&à´D¶üÁŽ×@²lâ†(K "”"H  'Äí‘ËÏ=ù»PòÝ”/u9&ÑôÞ_R°`¥#æåÍ *MXÒ§`h6Û o<ǯê>ŸåëíFyôÍ+Õý§É+4þ³™$1ÆOäÌI êp“בã%•ÙIØ„Uý°>ùKÿ9nf±Ô?2ÑgLH °y8ÐòÛêýza;=¦Ý(ýX]Œh%iZE?´XCÓ§¾Hlÿ,¿7,¯……÷æ<÷¨bc%’ÛØBäo¸akØnl@‹sXnÍCFûð,Ÿ—ß™öÚµ¬òù‚=bÚØú…ÙŽ V5ý¸åµŽ°ÿ)©›6ywËúÇšµK} BˆÝß\±ÛòUåÄWräšœ˜é~Hó~§æHtØõ®%Rf[‚Bá~"›•P&§‘É!"5,@,BŠÑTT»›4ŸÊïÌbG‡MÒËúRI ŒòEz‘¬HÀM±þ`ÿœvòÿæ¡9ó—¥×®mG;»ú AAñ8xQˆåN§› tŸÉ_Ì]nãR´‚Áb›KTk¨¤’˜bX¾ü¸œ,Òçnt‹Û/ËþZ2XÛ˜DáîÒ-ÉRÑF=Yf pªí¹fÍÝKI»ÑoÇU„Û\FÄ6õé·b{äó;ȘZ¬ñ~Yj²Çwn}¿/ß%³Ã#ñ#4Ñò_‡ù^›fͨíöˆuñÃ<ûæ/ÈmkP·2ù£ÈK§Ý3…’HnÃÇ$Ë´&n ófÌ#OP~ï’mSZº£ t_ùÆ/ùÇé-™üõ§\ÃpÆŠÑIuÅvdøEzæÍëòWó òÉ>Z{1Úß0È;ÅŠçŽT2U}&‘¨ +j:ûg¬ÿç?/ÿç'¼½uþѧ‚öua}{43ήüиvŒ +PÖ¹.òýåmΕÞfÕu;;ô..mím!T”13H”Øywé¶éyFXׯ¯­dª¶–PÜ©þ]乂•ï±úp¿ÌžfÿœlÕc»Ô¼¿åmBÞúV‘áKë˜ÖÙ¤bÍÊA üéSöP„~fü‡ÿœ!óæ£æ»Ÿ#¬sÏ5Ü’Ëw?§,Œí#HR)Ë($Š¢(ðZcuùU‰—˃X’E?z‡Õ6¥~ѹPíP?à± TèV:º†!VìÆX¨&ŒL`H¦ÔÛÄà¿*hóúv“ÇžõØVææ3q°»¸)%B/Ô–DV­%%Ò§ÿœ&üµÓN“æ-U,Mñ{›]M]@Ü0cé¨/•F+I%0·NÐ,¤»…uíVßJ´š?\N¤Þ1ZGkêõ­;àkh •Ön +^¤3³PÓŠ…âðäT{ç(óEß” ôÖÞT¹¾:[?#Ú$eŠÔ)àŒÀЉß9ÿŸÿ!ì|ÿgcyù]­ê¶:.£ ¼ŠÎîïNÏ"š2²<““Fý¢h0£õ(.&¶Ò.fžÈµU¦ŒB_‰ Šî6cø E†! +Ø‘CO•NF¦äz6Èò;}…Ønh;c<»ÿ8ãoùmiïžõ¨^ÞÒâ+¨l,ÖI—ÔŠœYb/È(¤ÓÛåaŒ>PóD—)km§Jeqð/µ¸îvÀ™~~üô¿Ôlü»ùkäëûï0?R×5+x &̨`!‚äÇ<ˆ«:rÇ´œ£E5%*M@Ö€Sƹ±ú¯•|Ó Ì·Zþ•*$,ÒpÂ6©F‡ü’3›ù‡óþ~ùdÏ«ùæÞX´»Íukse£ý]£³ÎÍC…=¸09i7 ²$«U-V׉ãÄB3a<· <ÜâˆBûª2å@ÿžŒÇï9É5OùÊßÎÿÌHiúåµ®§§ÎÔ“JK¨G]¤þðScö»eK"ÈåÒ5ˆØBÄø"ÇñÍòßJüƒm69üû¯$¦‚Hu"Š Aõ;i ›ëížœü”Òÿç <£¥Ûy‹ófö;o3j0zÓé&¦énd*ψ‚R´%œž Ñôû=JèÁ}©Ûé1…-õ›´¹t$8k ÏSZî´Û® +Ó¬í¯fxîoáÓÕPºËr³²±ЊV©­wm×äþqö÷ó+P>n×n-<¯néfêÞ馻” +KcÌ©]èxµ=öÉß“µ/É?ùÊK??ùÂêÊÍ$Úƒ,&Þkë˜È(Äi° Ê+2“OQì´§ÕM…¦¨Ç—Ôn ’4=¹˜áõŸ~„ÓµvÆÚ[[]_Ãk%ÚZA,Š{p²zq+ Ž°¬¯ÅF犳xv©ÿ'uß<ùƒW¹üª±ý'¢¥Ô«e!• c*ª…¸db@4þÜ‹y‡ò×þrS^üÈ×oçì­ï¼§e3ɦé÷LªÐC V13j%bKTæ•ì~GT¶²‡VºµÑç7¶‹+¥ÀVX¹ Å•Z¤S°ÄeXÖWH›š!„rìh|p‹Kòv˜°yóí4'ŽuƒP27?Iê¦Z”kJŸ„~Ñ:Ÿå&»æ¹žûòëóÖÎÏÊW–÷6ézÐ\¸ƒ¥~°9ÛK+ÄõƒVƒ¾*4;äÔ†{ÂÊí‚ñŠàð<ØU#bàÍP>> ~Ñ~“¬­ ¿ºu$0pA ½ŽÛí?þr'þq¬~RØézî$m§\@$»ct’Ì¥ŸŒn 5X>iO=9çŸ$éßáCʺ¤Zˆx@kKù{w @=Gf£ ªZ™+ó7ä¿æ7“´s¬y›OK;EQ+¸·‘³R9FV$H +ø‘½%sü­ó·åý­…ß›l¢±T….´ð/lçyíåI‘ •ØÆÝœ$ÔV ç&sI”–ª­·**Fp]Z÷ò7òrâÞ8Y'jzœ)hßÔ–s +‡¤S@%ŒüKUæÂ@<7ÈUÌq¡Ù}9*}Hw!{Ž&¦¢ž;üò)“O%þtþiùL“Aò†½.Ÿc3´’Z,PȬÎjz‘±â+B¡t×2Mú|‚É|UWM‰P•3ŸêÆ¡ª,QÞ:”‚¢ãŠ8‘9‹¨â;a155¼ð͆|35»Ém ’A$½~ì×á§sRz úYÿ>ʼӬ#<Õq©ß½š~Ÿš(½8ÕÏ)ìlã;“ðò„‘@wÜbÈñrt•£ä®„¡Ü‚´*@#cZã›= ÿ8Óç½KÊwš´÷V¥­ÍÊÉ$·E,¾¨R×$q@Û5¥ M6öçå7榑5Ö³>•-"ú¬£¯äZ¤s¡ZÛ–TSÉž¬,PšƒÄþË +5ê4 æ TÕM:¼Ç üÃæ/6¿æ>«wùg¨\ùf¿2¶œexÔã+FgR¿ Ý€ø|#µ¸ó…çŸï/O˜¤Ò´û»V†Ñ¼’Ên )Xòâ¯OAO…ªIè1¡ABü€ €zk¸Ú”ñï›9;Ã8ׯn|Çw,—òÜ8¾†á^f¤Ýœ±bîAc¿^µÙ7ëSZØŸ/,\n¯AõI%ŒH΀HÌꬴ òZÐÔ~ÍrØŽ+OŸÈôñ>³°þQêþs›È¾bò÷“µoªKêÏy}¢OcÌ“¯ÕÑ ™]äõméE4®Æ¹*ò¡¯\ùFÞ×FÕ –{KYN½£Ë@ׯ韓’·/´|G|“-Ÿ¦±Ên!”#Þ[$hÅXŸM¨T»¼s` +ƒ±êç8ï´&·Ò#Ô#²ôæZؤᣑÄ!Ô3üKZ×Øô‚0?nŸNV˜ç’Ý ! +siÝcÉâk±`Ãìõ¨Æ æ?8ØÏ©éi-À }‘4—7Á^0G! +ШãUúzßÚZ–û4 +»ô5;vÍŠ«Åza6ñ$oOH+¿2Àé =Nãiã€47EåÝKJO&Ά0„"­à•da4ëÈñ^AJò¯l¬Øgå»K+ÝsOÑõkÛˆ-õ b²»¸*$sk,€R=ÉSEØÐ×›gPò½å¾½¨h 8knæž]$yV²ðU? Ǯƽ#ú®_ˆZÒ¡EzNÕû³g¨u?4~vy?Ì6&’Ú†™‘ wV sõXb¾³‚‰#[gPF"jQºg 5Ïñ¤7V·VÚœúd–ó¥å”ׇúÕ´,y[ÉR‹Áƒ•¡`wS½)@ð¨dàõøWâ AâRºæÜoÓ9®§æý ò{ókÌú厥?šü“Q@RôOnú••ÂA?¨câÑ8 +²Î:ä_R1~_ù¯Vl’Éåía­®#´Ÿ×_LHÕ«¼«È‡*íÚî$ƒÖ—ê+$P=¤ŽøŠ1U@wé–åy·§P¤ì ÞžôÎqù‘æ­oóRÔ¼Áv‘DûdfÞêÏŒR}dó!’Xœ”H… +ŠÒEû?~à Pý«Zßúk*Á"»F䊀w €ÅHìÀTóªÿÎ4þni¿“?šº_œuËIotèKGq4OÊ¥ ¨W~JQ¸ê*@SCªc[„PÇ_®L®dbTÈ`SÈ*=+µw;œÙí_#þpþB¿–t‹«­u´-F :óüH¶ÖrÃu92Ÿ«¡’5uvâó]ö¸’F}¹ü„üýüŸóÇ—4ÍcËÚÙ½–S˪ÞF²D)뀜†Ì]*1¥T-8‚i…¬Ð7¢óÌäÌ.™H$Ѫ­»i¶Ä/M|¿‚ƒ¯~_Ã<³ç^yõy5k‹D°½½e•¬žfg’äÌàF6j•Þ„Ÿ³ZaG˜4)5éõ9ÂIq©©[¢R$ +TCò*dRWžÇ©íÐ/¢Þ˜–«Ä’)ÉymJü5åMúÓõ¬ ºH­md@‚àÛ°ȬP¢òº;@>Ÿ–Eü‰x–fÖëÌÈíõòÓF%›‹Ä“Fi¢ŸMkPÇcßrØÐߥFÕïÛ6%úVâè³›~2ãKÃcCÂy+F5?äkÓ`“~v~XÜë^W¶‰Ž§§Ï%¼üí§*¬Ì°…Á?f¨¤­h‡\Q–ÛÑŒÇ#O/YE¡Û‹$Ôx¨Í‡öš–™•$·âUi¤åaì&ŒeFVRI໹Øvñ˜èú¶‰ª-Þ‹,`ß!:‡®´'c ôƒñàA4®À~Í@Ä«µ3a¿å—æ™ÿ+ÿ0tÍXcÖ4I~¿Ë"17 +*´ªÛ¸•'¹ÂëíróËzö™®èfHµ+ î[Nµ<3¤!ãt.…ˆE`I§Äztàø'žÚQ=´‹^.„« +ŠLj8øfšÞUžhäCTu$0>Ädëó‡þrßó“óZ Í:§è­ãã¼òÆ‘±°‘•ŒŠòÃßVø‰Üö‡, æ?ÌŸÌ/=ºÙjZÒCfçÓýoK{kŸY½(Ì’LÁ›Œá€ +ª`h1í%Õüê&”É#¡æ’‚§ÅœÐrq¬îÿm‰ï¹ñÎ5jcŠyotçfáòPež€Ö“/ÂYjH$}µó¥ Ï¾¹l’+,²ˆ§ðoK÷j‹Á_Žèy·¿kÙ³ÛÏk;[]ÆÐˤ‘º•u>M r±;˜#h=¬¼’Ì#ÅqçêY€€¤‚OŽE|×s嶿±×üã Øµ¤B_ÑצÝ4šéªòD›ÓôÈ(geÔT7VÑŽðLáCSÂ5†fz…Z7åÐT$Óí Ø:ñìõ‚k(VÆ9%ˆ¤vé2ÖY(žšÐTQ*IE5#¹ aö<¦í´½.Ĭd¤rsTG2sjQv¢ø…ÍÕÕõÄ——“=Äò±y¦•‹»±êY˜’IÍ“/ëz?®¯<µ*Yë:mÝõ綆I”=&ž3$t;Tñäkó3ë5iz Êùr‘k¶WMy42 uVâ,ŠëF!Õjø˜b"›t¨ï¯\ÙÖæŽ+ËÝ~44˹O¢Öá XîãT/zEèB2±©ã½:í‘1Þ ˜®üǦiâ!I>¤Þ—µ†Xä`²Æ"‘Y¤ (²©µ Ù†æò;;‰®™¥´ŠY½ ÖG¯¯!ãÈ20« +óºïãœÎ>{ó“~g¢yÚâÙmlµ[ÓàšGO®ÜClä¬âhbZÜ<ž•d5ôP·ª%ºCéÞS½ÓW÷sAtºž›ªØK,üá夒\òøT…uø‰Œïî+×®1äÒ¡¡¤öÖ„)¤F1"±âF@¡šâ~\ÑüÛk§k:5Æ°MÖ£$¦[5¼‚ÚÞ(ž¶è"“ƒ xÙ\-¥Ur?}õùgt½™exÊAÈͼD@ÆŠŽ¾ ACÆ”íLØï@ øÀ!õ¡C"Á"‰ÁPjC±G^õ¦G/ãó +é×Ú­“It¿Gêv2’ÚxH< +»2²É´„T/_²0 ŽC˜)à¤)~Á˜}À9±ŠöA‹¹dK•5·ˆˆƒ5Aj7"¡OB+½¶òט5jÇÌ>\ôRñ4ˉ,]'>“Ìh¼Ëú ðž?;àˆoæ·T0¯e,R6MhhWí©cG&£jR™±[¹fužñ¨ÒÎY’çÓh%‘W6í·_ž Ómå»Õ]¦×2Ï}~© 1½õÍË,hó<$ŒÐðÍ…®Ý ](û`A4¥iAã›y£3Co á“ÐJ¨œ •(ѬFœ ¡äÕß«S;'–µG\ÑæšÞVžN6òs„ýZF–XýG’«”¯¨”c·pqId ê,*ém3Ž'~FŠHBH +­H¯ߦl<òÿ—µo1ðƒJ…$¶c:ôî÷ÙÛty7p«Ê¼@$‚ÔÓè6±kºÎª·³ýF+xµ-fxBÌñG82<¼™|tRj6Å J÷=Ý›<ïù5æMÌw_ÒÔj×â¿£Õfíf‚6õ1bÁH=a×xïž›óÊž|–ËʶOæË­>8g¼Ky­¬£[‚<—ÜËé’¦^ Šõ5â½€Ç̇FB*7Èì+±¨öüsaåOæ,?–žl‡ÌV¸¹‰mo,îmmõ²i’òÞX(dH›ei9…e ñÏ~RÎ^ùò·óëWóÞˆ…ìµ=´‹×k™-£{iîÊÄèŠdˆðn”ÝÈ­~0·Õå76¿½ p€=¼R+(èÅÔ5#bj*SòÇš'Ñ|ÛvtËMlZÜi>a–×ëPÙkfSmpéÍxÛú²²Ì£zô1Ê¿ÍÏ.ù\¹\šht=e"CÖ%µiá±Ö  ’Ü¢žmìàraO´¥éB¬Š_JA(²)P¬µRĬa·C™[‹Fâ ·ˆ=sÿÐùß«~]ùÛÉB›ýУiIIƒÓr¥T‘JmNùìµÑ5_&XªêšEÅ´’áÄs«Õ©4”>\"\i“D·Ö­–_PMÁX1Ù©÷gÊ¢Øí>ùÉÝ3L–ïSм‹í»[µÌ÷i"âÌ‘C2­vRôíÓ$¿ã=.ÎæKíK·µšâFyIfG¡ª’¥*vßl[y‹ÉQÞ-¯•ÚãëH¢¾ÔT†UåG•¼2Ò¦¥DƒÜœ1[ÍÍžòr‹€[›Žj%*AzImZª×b>.Clâ·Þiºó%ì«æ+É4’KtŽ%ôâv«H•‚"³éóȼwÌòÐ0œ›šŠ©$׊«Sˆ$ÐÓ#’ÝÉuXîdãbC¹â‹P'©=ð»:åÇüã±ó·eóÛÝ¿%ô + ôª ÎÝA-½6Ømìk¥ùCPÖôÉüÊ×Å -"Áol•ôDäÓ»‚[—ò€(]ö{å=vÏEÓ|Ç%£ ?Vi’Êe«U¡pŒƒcVñí‚dÓ/¢Ó Õä„‹;™%‚ö*Ò@¤]· ïã‘ÿÊË ¿>y«ô-Ú×O±S-à$) +•5¥XŠûaF…äù|Óæ{ØjÒÛ¤Ë4í”IB~íYjG&ëNÕ¹mæI&R¥½ûƦÃzO¹ÀØ#ó¿òúÓòÓÌ+q ]ˆ&šY"11Þ4øw병P0'æf‡oå-ZãP±¿ëD[ŒM·í’ÅÃS_h÷Z~Ÿc©NÈQYU¨©˜êêFÀi–T¨RHø…@Þ›á|Éå¯/ùcÍÚ_™´umSV·K}éDl-YVUfc"»- )hÛS <›æß!ÙhØë…åÊñm>k‚UíRžª³ +5Ô­:ã¬?@6óô™¸©ÄéëMËÕ,jâ*wiépna‹m„SÞ¹Òô§ó6¿i¦Ø °[–X‹@¥SâbH]Ã¥ùÆâÊÚÊñH‰êDrsB]7g„Ó®··“Q»ŠÒÑ´¥UT¶ÕrIùW’Có[Í'•%ü¬³6Ë¥ZÏ2Éw º¥ÅÒò õ‹m·` ®çêÞpÕ´­ü( +‹5,ETWrƬiì÷8c>¿,:9òçèû%h„šŠ[¯ÖÞ†”2µHê€O|Wë'ê¿T ù´¼í@9Àì)^õ ¤ãEüÞü§Ò+çÐî´©õmnù.`·U|"¦r¬ÅZªøäŽ×̾P°ò³Z_é¢êáã¤óÌH£…,hiA‹¨òRØCw-ÅÜ÷|@›Lô#KVcwê1¡bh]( kÃêœÌ²›®Tô=5ñ§Úõ9“Zöáôç™Ñ¤.‹@z +Ô~¬ävþq¶¼ÕgÓ4âTDww’ÄŠq¯ÐNG°>vëmoKÒÿ.¼»eæß*­.Y‘µ»y‘y"ºó’H}veVí"×îΊƒOŸM±ý7åÈ BÄêÛÉ–N$ry#(\8µ+’Ò4ó¨i76rKÊ!«ÅqX%£î手 ¸Y¾Ø·+o«aq5H뺭wìßF~fþiþPGä¯ðìN£5ÈI%Õ"…lm­ÈuøD!šY(›¹e#­ÃÏ2y‡É‹¦+KµŽW~5ŬoîtÛ”»³NUä !]YXqed`U•!•lFZ;FÁ×b>Ÿ¼žÅùçù¥åû[)40¸¶I¥¸Šu‚Ùn^I$2H%‘ãwe/¿%v› +Ÿ1ùNôî`ÕK* +9DW"G.ܘŠ·ÄI¡${a导Ǧ’Ö[cRÍõ™4û)f“âäVG’&vPiEb@ §AAPj·vñE B.0Éê©kxY™«Z;2u¨û,Jû`”ÿœ üÏX¿Ö£m>K­IÝ<úe¤Üœ¤Ÿgã«V¿†4ù×S»¸{˜îÑf—¨:³!Ù©¸®ÿçÓ“óU’ê{ÆÓ´’÷VDmÅÐ;YWœFŽI­FÕíƒ-üÕªZÞ^_Ç “Ë|’G8—L°š0$¯#r@Éo³F¯b)­sÌžmüÍÖà}bTº¾pcˆG 6àŠ³Ÿ†%EñÈ~­­]êÒÚË`5K¦Z‰¨‘¬Ô…)\ŽÝ]\jW¬ˆœÈ§!ŽñÙ!U_à +]‹±sJ“S@û…juæ“pÖ×JQÔ‘Þ„Ý––šF§ +‹½>)C“êA2¬”`H#âÔ•“?9~]„ü¿¡yŒjÖ·±ëp4ñÅ¡å 1Ñ9¡øhÔ5[æɽm;‰µíþºŒöâÀp( l$‡xÝIÚŒ;S¦êžXÔ4}7OÕ/d„Cª#KdQ#¼jX…¯ˆ•ø¨yóŧ´šÞ(&“•2EÅÑÅ> ¤•ÝNƇèÈÞ¡¡j:va®ÜF«k©ú¿T“—"Þ“ÜwaB?h "µüŸ±‹N·µ°½µ—‘¶¸q£”bˆG4B‚Œ>Ÿ{mim}æK+Øš á%d‰ÅHñl¬ŒQ…z‚0×òËóGü½×^¼òô:äЊÛEq!@ÊÊû+TŽ8·å”<©ä{¡¬Ü‰¼É;È.-ÿIÈó$ âUH¥TŽþþ8?˺†‡¦^›­wK:¼AHŽÐÎÖè ‡f@KB +íZõÅ-e† –Yá»úL̪ÇÜ©Ÿ"3µZþjþqþyù“G²Ñ#µò½ÿ¬¶ÃO¶…ƒqÉÔú«ñV¿g¡Éþ««ùûóÌ°y_Gx´{uVžÖæ8T¤žš‚à ªòèNj>vÔ|è-Ÿ•|½a¦$ŠUl,4øg–^+ɹ<‘É#l*T|;tï†:®±>¿p‘Zi–¶K·§i§Ûq«Cñ1yZ´èXl‡þe¯ç|k½üº×ïæÔÙ%‘m„VñÅ-¼q „…#JÆ”•; ‡~i~Y~`ù <…­ë×k •3Gm»,РR¥Ò^Qãû,¸Â=KV×#2X^Æ–œÔzÖÑÚAl‰K¤Q $Wá$U{S +ä2UÇÝiÇß Î[&}ݺÝZȆå}xb;z‘­Iè6û'8óŽ:}ˆi4™Öù#n70˧[XO,D‘Î6‚2„TZt®cr_þ;ü»`´‹Èñþ‘*Çt÷’(þçâ5ùdÂOùÇßÊ÷°-iùu£E¨±#ô¼ü%*c³09µ~ÖØ>9´D…ýK9Þc´lnP =ÉQ Oß›j·ìpv«æ/-yWÊkåÿ#¤bXØÁ®ÏwGS#|3–ÍN'ˆ2L½Sò»Iò>§Zhß—VWÚ­ªÈϦe·¼²žzVAÑÖ1ñ"‡*>ñ—ks¡Ãa*\XÍ=óÏõ•Kt-°&!6+Ô~ð +Ò Š‚ª=¨ÖHݦ?ݸ:¯OÚK¢k?šžWÐ>±å=kVÓ4›‰Ô/î-¢ywfç.‚µ]ëá‹ù3òÓQÐô¹g]ÕÒ ùY®,çžÒÕåaV(–ÒÒ´ØøâÚ'›üÙå•‘<¹­^éK)¬¢ÆîkpÇŽ&ZàÝÌþeòÌ’Íå½ZïI’uôç{™mšD­x±‰”‘^ǾÒ|±yäÙ|×sæeºó%ÄÌ×:LÐ\´í#92;NÕRÄžU©¯ÏßÎ0~]ê6Ðùž÷Ì“Iª‡õÍ„ñIÉÈoQŒÒƒY w55>8¤Ú|†—qæ+Ýv µ)¥2Ia/ÖîVf&IGbH?lò©î)eE–¾–íd¸’CÎõ ¦»—f+ÄÔÿ•\£éQÃa˜oL2E§\"]iW2’Xœ©ª +…‰+U©za–Ÿå=VÆ;}_Ë­¦ù‚ÒÚp·6z„³¤(ñšŽ +Ê4ëÐàkvkuÔ%)4Ϋ-³LB…«EZ†¡'ªÖp>uGü¶ÑüÏcæ8iI£ùkÌv¦m3ý êBÕÑ™%ô¢WUaQSã^‡·L’_-Kq§Áù±åëü©®Fc¶³×U‚å¡Y#R ¨eQ‹]°öóA䱸¼¡iZ¬NÚEÅìÿ]Z2¼ËtªI§÷dÔ +ÐKsæ,íç $Ó± ¯Íé'*à•ö9üéºü©mRÿ,í.¢ˆª³ÝLÜaañ7†7­G]‡¶%}ù_ÿ8Ð÷K©yKÉ:|.”^ƒM†Þ.IÜMI§ˆż˧~Yé‘¥¯—5KÝfä©i¯D" D$ +*¬¨²µ5$(ßov§™m"æÜ5ßï.8ã'Á€bó0þQJžjÁK‘,üŠÌ¶éýÑi}—4_˜*+úðJ?.¬|•©y‚-?Ïš„šf9ãõÈ¡i¸?n\*Ê»õ +ß, Ó´Ÿ)k>g´‹X¾ŸJxÕ‰šÚ·”’S˜FpJ +ÿ*ï‹i¶¶W“.îÅ“52È…¢äOû±–¬£Ü+e¢«8V`€9Ð{šTýÃ~qy/Jòž¯<·£ß ø! +Þ  +=6jÕ BÊiJÔùâŸùûg•tÿ'ë_—:Fy%ôj5Öi¦nr†o¨.C­(vìp_š<½/•µc£ÜΓ\G2N#éJ‚@•Ü†àþ8ûˆÚS •,´©F 7ꤌ„çÏÌ)ÄðãH»·‚Ø,óQdg~ ÉÞœ +]¶ ÿú=ÿ>ìÒ.5ÏùÇM·eëc½…âG ’ÇMƒ=àüI©î;ï˜vçLØ.t’út:„­l%bõ’VvŠ8êiéAVm¿Ê¨ïž‹òž½¢ØéZÏ–¯ï|½ê 8IÏè£VE‰øúh ±-ÁMH©=N;ÂX@ åN„ÿµ›¯<ѪjzýкšãS¹šQ$’G¨ŽTâ±€\rU|;¶^™/SÖõÆ_3]4ÛÀ–ÖÒep Š!Ûd¡ 0mEªô9TØè{æÃöòͥΕaæ»gòœ­ Ô Ô¯­}GŠÊX™£uwu,¤( +ÕZ“Ðo†Qù‰t _4ƒjúš\ÝNöz,Ñ;«7ªAâ¨$aöªMUb6ô®áŠE«€Ä´ä»TV¦”ûóGQNùÓ®¯´ÛÖºÓ&žíí$Híg”G‰‰^hMxÔx5iŽ¾:o’¼Á.£§Nc·Ô¤yEtxÄR"´bŒÀ!âƒM^$œNBË…’I!EznIûóa¦¡æ?2k1pÔoXRxîG™˜ÈÜ<å2)¡â:ÓéÅﵤ×..Må´ŽZœEZp,´ +Ðñ4Þ»“AÍ‘»—v3'äë:*ú~ªï¤»s¨5¥>á…Zö§êHº$“¾mnéêß[DÓnO§õj¦Ä@$ü©à¬±ºG »«‡RQUÃØQ€û& š÷͈Ï"ÝÁ{4z\iêPO …ŠÝ‘èÕoa¹É?1+4Qz—çŠYÜIþ—2»%§Ù*¡Y ¬x‡£ŸÚa½ÛƲ0U $¤€°…-Ê»mă_lØâÒd¶©]¤aÆHÝ' Ê»¨áR¾9Ì4O.ͧy¢êóMˆÏjž™‚ºü¤Ò¢Š*ØïË¥1"8’ AAØæÁ–KÉd¹²¸’Î{U^+ê/¨ÜcfâE +×®ÛÉþqsœðÙÛI%”¶×]G &"¯%ÄÍ¢°ôM9&Õ¥kMòÐQyR•åZSߎÿvlô5·üäßæ>•a£ù³QÔ­?BÙéËuoè[êm¨ 8>ªËõ‹–‚kQ*7ÆAnæ§júDþgÚͧGµ5Ú[Cýˆ[…¸“’PHSà™¨{v¨lsÜJñú<ŠÂºÀ¸+ª'¶ÙªiJì;g&ógšWÌžg¾ótŸè÷¯˜bÑPSã€(e(Ø^u¯7ërGt q=¢K*HDööÑ€!gâX‚»½ñ2 +’¬(FÄØcùYå_!k¾iù¤Ã.™ok3>Ì/...@…E°ˆ$ŒÑ+,Š +‘ÉO G,'Õ?+?-<çÿ–¿0,bó6‰¨XÏ‹q#È'¶»FiVMrÆÉWIJQÀ TWR¬ës|¯qƒÓ““°.ŠÐ>û­ˆ ˆÛ- +«ëÉ{­i÷‹þi~X럕~d&«ÎK;ØaÔ4-XÁ%¼Z…ÂÖ)âY;uV¡!\0äzç˟ϯùÁÿ1þKþdËåÛi?LùVîÛëþZó1c7:¦¾³J€„i`õ(Á jÅ+@m¨'øwýÞO®Ãu\Xjâžœ«¿Áñpq^-ve"§c‹ßÙýJUUq,R¢K ÀWïSUjFTÓ!åV:°­Ó–ÄnGmÓœoRü¦Òl5h,eÕ—„×ш©é:¤"[-IJ ‘ȤŒ¥EÚ¥0Wî­šÂT·{hæ¶ç. Î æÜ£Q¸‡ø£ ¹ª¸ | EAÊt#Ô{xË7¦ zJŠÿsÙ¿ó¾RÕ+tëåÔä±Õý5¹$X€Žhù•^\½e© +£ŸEß#÷kj]RÈ3FµX‘}6”’w+É•iÓcÛ6O?+ü‹}ù§ç¿-yË:‚M}¬Ý­…Ž BA2’Ò‘4¥HT¨¨äE:ç¯<‡­j˜úÅ¿•bc£Þkkn[XHÄfÑà$Ò$OÅ‹Ü}6©êwÿ(va»¨ÛèSÏk§‡>¦©rHDDJ-V¤­Õf ¸+IÓŸVÔí´ÈæŠÝ®¤X„÷2,P§#NNí°%‘úf¼Úîù}v× ¤,iwrbŽîöA¿ÔÅ’(œÊÅh»uøB¶ÔÍùOåý~-CLÐÔéŽaÓ§i¤G…#VÄ-œÅêr–¼…|Ep­L“Hˆk!4DRzvW¥0.r¹¬µ->ÞàIÖ“i’Ç©ˆE4JIE"¡X ƒÐÓ8§åß‘µ…óF¹ªê0ÁõÙ.í“꺥šN-Q[RlÞIÑ’‚¼ŒQ·Ð©Ú‚åŠßÒšYĈdb-wET”õVH×pmˆ§OåØÈ`Š£ë<®#*Â&<”f5%Œj«A°ë9ïà/õK[X¬.$v‰ª‹l²Î¥y¿5eåó4¦Øï›KgÖæµÑìË\]]VkkhV¸äR8Ö2üÉØPV¿â d·HD“\:¨—Ô$~<ž¤÷-•’}zF»Yųpµ<¸´è F-ŠQZ‡öv¯L|È‘ÌñÇ •QŠ¬ªWÐ0 ¡÷4½ü M?ÉIÖü§­ßêºçš¥¼:Ÿ•míÞÓÖ€Û9—Iæ)Y‘¨¼xïRxŽñ¢y'M×¼£åG_¶]NûÌv°\ëQÉr¶Ðé‘Ïf.=5•3¸©Pq'05±…–ñÏ£Å95ãÈ:³{‡†ÛåºÀ"‰£viY +ªk·äkQì2!/–¼Ï¤Ý=ïš4MJÝí\_]ÛIzñ`Š³„Q#F %#JŒkŸ–ú‡Ö´ÛèuKËÚ äöÉ|šQŒÉOIœBfV‘90}E@Á~°Û[Ee=ͲßÏõKY'æHc<¹Zº©ugâµ¢–ŠTWøµ¦µ ¼Ksmoqoõ”/&¥-ç¢$‘¬{°èŸ¥a@¾aòmÏ—4ë‹Ï-kz„ÚžEWs­ã”ïm¸(c@¬Y‰5ßlBQo³ iTVe…Þ0¼ã5˜rn&”ÛžÙ°'™ní´‹{M*Æešgi¯î%KR¤Ip=& J¿€òSOˆ‚+Q†Vš>“©ùpè·1ÞX«1â+£2Fb殡•iÚ¿èF6ŒMN¾¤jAhùä Ô¨"´®lm¦Éir‰qo£ª6S PÄòÄñ ÕISÈ-¯\gšü»g:XiúG¦,«m¬°]ƒÊF 8æ @U&¥vÞ‚ƒn•ßal«"ÜO°‘eSr!¡•è T¦ÝsžyOÍPyÕõ /G±’Õ{Ÿ^æ™â{Æ””uQÚX^ž¿.Ý>-©$2Iô!¸z¯‰ü3`Û›XI¨Ã˜[ºÛ½¼@¨øœ„,TÓ©©ü%:g‘-,[•c¶Óeó:Íuu¨'Xêâ'†×”4DgT-Ä°ê[ˆ©Í Y!VU,~'z(^½ëÒ™±W[hç•,>ªb¶`í<§•¦N-ƵøAØíAí\9ü¿ü½x|½ke¨+ cÕ• ÚÛ;\ÇsèµXq1ÂQµ[oµ‰æÅýKkú[\ÝC!.Íqª2q£‰!<È-i¶ÙÑ´ÿBÓ§µ²“ëæàÎòDh¤úe–eT¢¨Ú¿{ÞBG¦¥‚ˆZ´&•ðêFlîŸó‰uò’uývÏóG‚÷Ëz³éšn¯t÷1ÛJlá–âDFOVU?tŒ†ö&ߔڦ¡]ë7žr¶MFMyôË[Øåx¸ZÛY¬YH¤A͹ö®Ã¸ÁšuΟf9ßÛ-ürß›DèáHFæš|U ;‘¾-i-´3»‡ëïXƒ”©¥Ä;aç禫£éhó7æ‘.b´³–Þ>)Z>v¯sÍ#ˆ¡ +}6Ž!-¼?Xïç¡åÿ+/Ÿ?4mõ¥·Ó&³‡K¸Ò-®VAf]—^GáÄ|ÌAQK¨'³c'¼U»–óJV°È JÌÈ6jr4$TTc'x¤šI ј”‹‘n šS¹¦y ºçÂÍY£}NåábF‘ÙT’GI §MóCú8bÊZJ…‹£PµR7ßj ñ˜&Ϊ³J¤†Aðñ~'‘Æ´ÏNÎ&~pyƒJòÖ·ùsy:9-}¹ÔSNt‘!i@ŠICÃâñ5dvRÌ­/åÛâlðµ«H#>¬H®=2UGûIÌ:|ûÙÿÑò寜¿7´á:®–Úö…?"fIætV5RŽ$=ŠŸ õß•¿6uíðN´Ô4yCæ‰ýN ЂXí¿QŸ>,u;~‚M+ÍSkº4Õát«õÛ„$òS©!ßåŸ,’êe¡uƃ©CPj§±Îqù‘i槗ô¥Æ‡ú&È–£²3ÇÚøªOÑ‘_0yÿV¸¶“R[?«@9vƒPïZOÐ2®éš³µãéo§Z1 r)6ܶäà|çS^ªú(¤~Ò†SúóŽyƒþrKDÒ¯'²×šÒˆ2­½Ï:_´ŒEp¡œ7ìî+›:Wå>©ù'"O§~hM­érHǪi×IlR¦ªöâÔɶÔ<š§Ãÿ'ÿ9?.¿2µ{6Õµeq¼S隃[Á*ƒÎ9-Ý«A¿ÅOlšy/Ë=BÞ}'Κ¾©åÙ®6¥š%õ› +ž"kUÉEë´_’?)Aù}{ °óµÖ£¥z²-5>(o’ÎÄ=”nϾü„ãm¸¹Øt§ÿœ_ò]ùü½üòÖ4k›ø„s‹}#PNTߨ·=ª(i¿Hó“|¯o4ö¾aÖtÙ/ÝíG8Eâ»Æ¤ñä‹‚”><—A¡þ]ù@Msäoε2q‘‡«Z;ÓöRU³V½³¡ë~Cüò½›k–ÿž±__ªZI kºMÃWáeEÂn§»Û<ÇæËU×®ntÍBmL,ÎðêÒ†ŠY¼*Ä°,wÜ×Ç9–«¨ëZ˜"¶±°˜Þ¿'Ó¦.!Ž¦AɉRAÜ1ÎM¨²þ“í®Þ÷÷ŒË|Á‘ænUõ(Ä°$ï¾ùÆOS½}üs£h?ó”?˜z=”z}Å–—«EëW,U{1‚X‰¾?üä?Ÿ|¹¥ ¼Ò£XÌŽIwäþ™ø‚˜Õ¡­rGmùsœvwZ“yéZym&’›ŸQà’"Ü¿j½pe¶¢!XãžÒ ˜ãe`’!RhjUž"ŽAïñ|©€?0?ç <Õù‘oim¨hš>› ›HôË'· H§ÅÊW'ïȇæü去§iVºß˜ì¬à³y=8ÌV2úaß`ÕFc×mûâ>fóØó%µµ¢ù{HÒc¶bãôe£BÒøÙ¤v?*à¿0ù…5ù h´«&8‚çBÑ«t«;Hò;»·Ë9Ýî o¨öñEÈ’Z4#¥Žü¿üÊóOŸï=bÓáŠxÍÍŒ±E:†MÏÆ=QCJu¦F¤q#T"§²ÖŸ‰8Q’/*ù«ÊzD‚_1yqµwC³Ev–µèÂKk€~ìTù»Ï>[òÛyÛ[ÐâÖ¬Pµ"{÷H2Ôšàí&/BI×ln¯¿´¼ŠÐÒ+%µÆø­«Z$ê×Ѽ°ƒñÇ‹‘ìÌ’ÿpoœ?1´m}ZÛKò­®mÉL^¼†yÐ/Qê@–Êj|S#ÞSÿœŒÖÿ0 Õï“ÿ/´}ÚÝy›úË3Õ(¦ð_uÄõôy'-¤ZMoÔŽêån\m¿Å0ø\«†·i­Q£ˆŸ$q#îÁP¸d^m]¸¤_VŠ.#jz¦Ÿ Ò0ÃÅüÖü껶¾&“¥ÝÝÁ;%Žt7 ’¥¥º8ÏN"åUëøµ1<4­#n*<P£!ÞOüÖüÐüÀ×ÛH¼òͬW–êò\ð‘¸E@E*Ò°?ije1CÄž*Gpøy¦ùÏóƒR½Ô—ËÚ^$Zi 4²,«Ã‰¡ EÈ­<@Í›Ú\Åm2OêÞin›ëf6€– iOaµ2Ô¨`\À44ùÐæŧ½°‡SŽÿM±) +ciu(È&5ˆñ'é÷ÂKùÊ6ë:ºØØùb [–>œ–×ò¼ñ»©û5ˆF(F-,–bu’Ö +Òs­:‚ȱì}©›;·’4?"<˦ɠ~eé7~]/hº›-ý²·¬R«ƒN 3šm]·ê>DÿœÂü¿óg˜n*|ûåSc«ÛÆc7:{™bˆ *Æð3¯¸ÑÉÉn‰åNµlmµ»­GËW¼Wý4õK7zÒ%Ž ¢Pz|ršwÛsÝ=|‘ymok¨µþ—t9ýgPC ô¦¿wŒ^MêÈiÑvÞ1ç=?þqëJŽ[¯#ù§RÔ/*‹Ky`ûN³`¢’iߦy‡Í:.œ¢)j•äñaÌê¡Q¤âìÅ­ÐÑR¦•©¦ëš/“ô°ÇFó)ÖoLÅe=¿S¹>µ:|*¿‚ÒÚᣳºq³2£G_¡À8oåoÉÊŸ8ÛË_< ‰XŸPM%½¤…½Ö講Ÿ>œ•y_Aò'™¡ÀóíÄåhÆ€·ú²žT©¦ã¦m3ÈZÞ¾’\èsÙ]DŒWœº¤½ô®§ŽQ_uÅtíïTYÚKt}¯¬]Û[SO„O"ëÛ ¿˜¾Cò‡”'·Aó,:›J¥#tœ¥ êöÜ×ï äsÏšžDòl¼í¼ái}m/­¢[Ï#Ûñ¨,Þ‡55§`jú%î‡:Ûß=»; +ÿ¢ÝÛ]óki$û <o!ŽB¤Žèë"ÿÁ!#|¥ä­WÏý¿•ü²RóP¹æmíÚhíÃñRíÅ®LkZ•®ò_üä“üí,MÖíµ{‹‚Ëo ¤ö #Bß$KÈxV§åï.k>kÕbÐü¿oõ»éÃmƒ¤lüW‘ ê2‚h: ñK­Jî+ ý[‰Û„1v=TÏaß'ÒÎ(~yÅ+D|¯)=¿o¸­*’‡:…Žù±y"Ë“¹ÅPË:ÜZÄtß×µ,ùJ»{KK¹¶¸Ž¼á– … +B:W¾kÍ>ÿO¸kKûim§MžQ‘ÇÍXÉò·¿*¼‡säß8ù+})Ã2ê~ª¼„°§ï!I‰”šqªÒƒ'¾]×|ñå}âË_ò¡´°PKL8ÎYŸb ’FjôØ`Õkk;¶ÖôF‚eV[k¶3²°n¾N¯JÐ*FÕ®5‡§a*ß²æ«^AëôS<µ¯Úß]j77’«—iU!TvQRH Íu=^Øð ƒ°Ü‚S`yl6í„OÉؾätï·a÷bX4 b[®Gjí iêmJýù›Íú.Ÿê5Û´QÛUe”G# 4…•HÆæÉœÚ÷æ–›ùqk噑àÐ-®–òÆsE–jî8nAy±j6ø}kù‹©ÝyzæŠUÒRa%­×¥?P’@_† Sá^øp¾jÔÓËÑùqDbg1]ÿIN5"5’µ‹P~Ñ®(n%6âØТ·%%Wë°jV›ô­+‚|‹ùßç¯%ù£üGªI?˜HÙ'²Ô.&’9+[“5ìFL<»ù›qazuŽw!Öo[z[sO|içMB]AnüÑ-λ<Ú›¹ 2`®ÃW‘¦>KÛ‹›¦»¾vº–BZW™Ù™É©jÔŸ§Îß2j~hÑü׫Ú[ß6‡Ö¶zHGŠÕa¸+jO?Þ}¯òEq[OÌ)ÓZ·Õ™­mÍ-ÑÕ‚"JO!ÔoFü;Pózkͦ£{£ÚzªÑþ·F†)y3±’B¤–“â~áVµÍ%Ù—Ñõ"Œˆƪ¨,ÍW)ijÝI­E"×uK_5[ùŠÎÚ¤·™^ÞM¸· ®ªÊMz5)\'¹×-¬uX5~!RÚf–2ôêÌrQ¹¯M©„Âu·»KAJÆêé”hÈS^.?h«Ò¸€Û;÷”?3,üÝæNóó +´ÓG-„GÏé+;Eg™ØìZ•-ÛA'¶üÀòƵqyqæˆQ4è-Ì2ªÃ#0JµAB˜7#P75Û¦[ÞhºýÆ¥ë7?¡ôÛîaæ*òH\¼‹ê‰Éb½…°D «ˆ!»[BŒÊ¨_€$žDS¹©ü; '>xüÈòÅ¡Ò?,4„_´–[}#S¹µã}$ÈÒUؼu‰ Up’×Ï7út%øÔšÔÔ’}±o1ê’ës[ê-¥ÚiQúBŠÂRzd“!Vf%*ÓjvÅîî…ÛÆÂàôÑ#ã +• ÄnÍRjÇ©È擪>‘¨Ûê WBG{[€ÍÁ7IRFô#ºLšñäœÛy“•Và/ìJ”þŒ+†DŠhäxÄʬárÁ\R¤¡V¡ö âЂEiØ÷û°W™¼Ä|ͪ¾¬Úu¦šÒ}«m>&† +ø„fj}˜[æ¶òï›a¼k‹$´ÐŸô°ªÐWà²q'ÛëZ”:¾£>£ Œw®ÅÍ¥˜u·Ž½£YÙGzr>Ô¥ÌËqq$ë@$%„1rµì¼‹}9~\òýß™oÊݸ^lÜIUÜ-H<$Ò¬¢Ñ,-¦òÅ¢MΦêöf·òäU©¶é€q<[þZÜéÿ˜>HóTËkõ¯MıÍ9‡$<ù2¡`:5ï’Ômµ{M+P†ßMÔïŠÉ fGû-êò¨}°Î_-k6÷Ö:uÌ ú”0ÜÙ¬²Å¼7 Î&.Ìy Ç"1G¶š9Rƒ¸FPÄ(ã"†RI4‚ù<ÿœ­“òîß\òîä[µ»¸Òlš l$aE¼Å—Œ×àp´-UþjóÇŸóù¦òí¬Ÿ“Ú‚Ë#i±y‰.äZ¿FR6*8’¼IØž¸qç,èÞS‚ËH‚ÿëšÊKrÚ¼š¨¶B°ˆc/²£5C’øzöµ?OÓVÖ[³stÈͨGé H%äTF²$’,›\…:Ó­iÂóæ¦E0· ô«›8£0Þ³ˆäuå@’*ŠŠŒFôïžÝÿœ.óÇ–ôŸÉmGËZÇæ-‘åÿO|ÐM¨Ãcsu ÚXÇGõ&BaýÙèRí¶Í‚àÕ)O]¢ŽY c ÊR64V_TqR”ùç®|‹ù§ÿ8ߥÚ[XéÞ~ò³ßZ¸ŸYÓ-Þi!”ÇÊW’P~ 9'_†‡²’Ú¸¤¼‡ë+,Ìe׸¡÷¡Í‡ºN£cg¨Ék§ ·Ô•H…SeøÄ€râÑ€ý®Æ´;òçüäoä-ƈ‘Þ~cyrÇ둘þ§&·`âF(ŠPÌ£äK‡`ãe•Y!Rª~ÕÛ’ÈÐ@5Ú£é9°ËÌ>fžªd×5ëËÛŸN³’Þù¾¨ƒÒ€ i™ÊÆ¥ETø{Gùõù#¤\Eª^þmySÌ0G –6±7™tدmãeí!ª‹ZªÐn6#.f–X£ši½FþéQ™™Ñ#Uã×`´4öÌY˜Õ‰'a¿€Ød~êêßÕÚ}ÔH9Ò29øZbîDdŠ=NBõßÎßÈK›á,ÿ˜~Z»‡MUŽÞ›'¬ªâ(Ù™¤äÇXÓÇìÑ,ØšÞF÷réY…„²'ñ%dcLJ¤'•,fµ$Ðßeÿœÿœ~Ô͵¯Ÿ¼»kp§„¬uÍ6ÚIÓŒLê¾—V}€]ŽÝrÕK0QJ“ARûÎlé?—_–>U×/×]ó΃§ÏR5Ͷ©«Cocÿºš9¢¥ÁT©?ÊI’YþdÿÎ+jšƒC­~qyb<Ç ˜ù›L’ÒF(€Q…Øõ)ÈÔ©ëQŠÚÇnów#EþñãU‘Àéð«:5í\ÔÎs‘¦ê:{ixF>­Ínö×1p^pŒá\°¨I>?³°'niæW䇕]Œ?›þ^ó ¤†ÑÒ]yƒN–æ1/†uyØv¡J~"|.Öá­'å¦2¬¥n#ZÈ…2´dñ ÔxŒØ_}kcVÚö*Êžµ!‘}8¥’œ‘TŠt½2æÎÉ6òÆm?Íú ÷£ó¶µÖmÜM!‹¹cÀþÍ|1bƦØÐS¶lb]ÅÊOHÄÓ.Ò#¥%i7$ï·lo•ÿ=?)ç–î¼ï¤ØˆD‘ÂN³gn“E2áI—ácÇ*m±™Y±yu]>9RöÂáе?Ñ%g"íÁ¤÷ŠÒƒ}éM³¯yoó×þqêD]>ûó Ëv¶éG…&×t¶5 +B;zçjÖ±’õHÛ56®l¡©ÙDBs'·ÕbCT¨$“Þ½zá¶ùõÿ8ùl–À~hùe&-2ÎϯiÌdŽI=fææsÄ +>Ynï#‘‹3ÌÇrIêI̓t-FÓA ©ÃªhZKI"Ži-¥–Щ+$Eœ;ô#Øî1ÿÎEÎ>G­¦£/æ”î–峂ÂM_NXä²#I_Š„#”|Žì´¦õÅL,9N2+J©ê)T° üUSðš)øŽÔê+²}ùÅù­¤þbyKÈÞ]¶ä×N‹RŠîK›Ï¬FÝu·ŠfRc·fb¡T—Ú•8Kÿ9ÿ9ÿ8Õù‡ùtÚd~òÌÚž•Åæ’cÔlý[dº¤rÃFïVôÔ»FÆÁ©APο¡çµºÕK ,¢@’2²‡WÕ£RË É-?i,³Iâ*@ì ëœVB¨Ì øJ÷íNŸ¯>VþqE¤K¬E¨èݾ¡ E·¹·â‘B‘¬i£¨bÍÓ¹¢¯B½¼ÖgHY%–>Vrš|¦WúÃM³°¨UU©ä ýU‚-®íâÓ“‘Ý…6eàÜMã¸ðþÏNþVÿÎPùCUÒ ±¿¹²Ñ>±e_6ê¾p³óÿ—tk_1_ÝÞ\i¿âm=K4­4sM ÊI;S•A¯‚‡(Æ`æ 9~%¥HñØÓ®"w5ÏQþYÛÎ,iÞRµò›uM-GÌp¼w¾fžî ¡ô°~æ(Öic lêqÏr¥Ûˆé×£ü÷ÿœ:‡I‡Éúçæ“5 {÷ô[X¹Ôô{ö’áªáçvhãVj+µ)N«×·ž?«µ¬¡#Wä}aÉ!j)U%ˆ*µW}ÏÚéŠDb ¤§€!¾5PÌM*£r(*7#ŸLóß™¯ü¿ùEù­m©ùR·¼´Ó§´ÕlÿFÝA¨ÅаWHï»D3nEW¹k?›ÿ‘^S󎛨h_š¾P}:Íâ½[=?Íy…ú Ž?NbLLÎA–ð©%Ê"ñò§U~-U` iU¨;ŒLí¶w{9~[Ûh—¾{ƒózÓ]‚{ËÈoü©wg=„·ßR$+ØË,Á’Z+Š­~%<ù*Ïmÿç$?çôû'óþqù{Pf½žQ§Íæ >93lÐF¾‰™ƒ…,TRXPƒŠpô`ŽáYYä2!Œðz/¥Iò4¨¦Æ½E±, +Ðl(7ëïážTüÇó|>uóÿ™­áŠÒÚç‚ØØÆ¡"¶‚4±,iUP?•vêsÉš¿ó—ŸóŽ^eÍy…ÓS´2Ãov÷\àŒÆCÃo©¨’Ä°Ø7B"«SÄú”­|N7;·åŸ›?&¿8®|§ä/6µŸ’/a†ÏIÔµífô2G„*I%’%ò€hÝÄmðü`Tg|ü´ÿœ»ÿœWóe¦åß0ù»CÒ^K-î5 Jöâ—Ó†±ÌË#ªÃ 1€ë'9S¦Yè¢áôǸ¼·‚ Jv·çëÄÒ@‘K̜ԢüuøƒC¾Çèö ªêÖZ[ÜGh·“Å]NëQ \!wweUU­I$:‘ŸÏ~Sÿœj´òo<¯«ù«Ë:ƒÛF-¼¯¨èºþ”ߤï¸r·»’ÒÖGXV12·#Zü$œêš¿ç÷üâ|šþ—'æw‘ZC[]6ko0éAIEÃÄ“ñ^ z¯qÔW½°‡N¹»‡ë0Þ-»ú(ð¹+!ej:(UHß~´ê1Úžšºeí呺†äÚL`ÛÈ$ŽZãuª²|=AÞ¢•Ïy‚ÎÊßVcÝÛ-­°q3Ù\GuðfUddø«JSq\ãºÇüääÇ—îîà³üÍòƪîa´´–ÛXÓ•ôÚI$’_¬?0îª iMÁ?ŠW†¯~ÔЀzûïóÀXŒºµ´f{u›Òˆ–+$2;JÌVD€}ja?’¿ç ?&íô›­OóÊñ\êh×Ó@šæŸµç!¤!œnVƒcñwÕn,€ÐÖ„Tmã› N±£²Øº$OFnDŒ'Š`´ÞQÄÕ¨:o¾ûeêÿó‘Ÿ‘ñ·×m|ýåèÞÞ;¥†[mcLj‰x|F1$²­8ê}²³`-Jý5K»¨}KT†BE¢’¦8¡©+Á˜Õ4'®Ã¼WSüõüœÖ.Vê_>y~n™Þ8dÔôË‚ÈœÊ ´EäìJ·Ùé^¸ðþ“†„Ô|$òQBv$j¯\ÙV³YC~\ßÃ$QD`õî#õJŠ¢X6Çâéã×hߘŸZ¥¨ÜÛùûÊÆ+É-‘bö•é¨ôšIÜEË$p…<)Yz8¨Þ” 5"ƒz«Û65îíâ·¸†ÚúIaVWHä’5õ9$Ð9øéAÊ•é¶ÔÁ’~y~Mkzõߟü³ ¶:¼¯©%λ§¼À-ø˜‘'c_²± ¢q¤‚I•ì;}ù³ZJ·qºO©´0GžVYã‰ËHO4 3€^¸nŸó‘3Þ/æ&„+z—36¹há(C0G1/ðc^\{ +Z±V )Pj½\ØúyµXÖÚÝmmlí£f·C$ÈÊxîä±&Fà wù 7µÿœ¦ÿœeµ¾:•ßžtÈ ”J‚zÚK{Ÿ]ùkhX—”åÅêcf  IÉ—mäÙµ¡óF«eD=kÝ>ÎNOUE,S]Y(U ^BVéQà6 ‹Z{m4iÍÁ8q£"€945aìIþO4ÿÎJÿÎ=j,ù[Ïz$²0ôöòþñR‘J¯s®¡‰–ª*Ü~!L(ÕJŽöEÑfš{NMè½ÔI ¼y<•$W+C×6H<Íù›úSËOåë!gcä¡ï’ÆÌ$’¬Qª¢¼ŒTñ u©'Ào +üËÿœ…ü½üÀüŸó7å•œ|¯ Új± HÚÞþÐK+ˆ%á)X¤@-MNþÇ*ÔÓpF¤j;ª²ŸU%V5cM¨½sg74;Ö¾9òÆñ¢{©š1£1*…Ä„ +ôæ¯Î˜%ÖÂ(­î"pÄÆ ÆÍñ#Ô‚X5ß ¨sd³È>Tòÿ›oάy‚=òn.×Ñ5ØUîn­€ß¯`7'=‘ÿ8ù?ùW©~ZyÖÓóó[ËžOռжÖ:dw:ÎÖ(Î]ýKYg<!à¡yT·*(Ý(i×–×v÷ºÂØHëG(ºky€qVÄ”-y(âÛŽƒ-@&„ÓÜôÀ÷Z}Ÿ—5Au8.¢Í¹µ•fŽU‚@8È‘’B±Ud`X«¸ø{§ä\ß–óŽÞPÕ<›?çfæKkæ–scÓ¢¶¶kyZf‚hî®#0ÈX²…oÞ15 +p>£%Ö”÷^]{ÿ®ZÁ,¡–Ò㤒 +(š6V ÁOÙ€QQrÆa•âb¡*Y2šT±ùÿÒùŸå_÷’oøÈ?â9>ògürúçþ#Ÿ-`ÿxÛþ2/êÏ•X]ÿ{-~gõŒ‘hŸÝX®âkˆÜÿy› [¿ÏøœòOüåw÷—_ñ‘¿^%›1þìÿ­ü2Uÿ8ÖOõ¢ÿˆ|?Þ§Ì~¼ØÌö9ÿŽ…—üÇ^ɧƃ6l–Éÿ þzÿɱ‡ûÕÍŠCûêÿœƒÏò·ú·?ñ%ÆfÄÆGüùÿ¬ÑªÌõ¹³cÿcý–@¿.?å Ñ¿æ/ù43fƯÚ<ê>nÿÉ;cÿþL ݳfo´rùÿ’ã^ÿŒ¯ÿ'FlØ­ç÷ç':ü¤WŸñ‰â'6ll¿a>ŸáÏÈOùOõù‡—þO>lØžvmþQ}SþaßþM¶lظÿy“ýl‰éoPÿ˜i¿â³f“¡ú3ÊšOþL¿æ þ¬Ù²‡÷gý\CÈ¿úÔš§üc¸Í›oïÎéæ_øåkó +ÿÇ6lÒuúNy—Ëò›ÛÆ3ÿ6lÉö†ü¿ÿÉGùó¼ÿˆæÍ‚-¾Ü?ñ‘âC8ö·þñi¿óߨã£þñ~cõæϦ_”?ù.ìæù4¹ö+þp{ÿ$ÌêÅÿ&×=½¢ÿä­°ÿ˜Dÿ“Qçgò/þJ Wþ2Ëÿ%-ÿÍgþ`üHçaó/÷Wñ‰ð_>ßÑ/ü›?òßûSþ`/?äÎ|ÌóÏûߨÿÌLŸ­³€?ûÇÊø†x¿Î¿ò—kŸóuÿ'[8Iëž•ü€ÿÉNßë?üHgSò/ü¡_ñ™ÿâg 3aÿçwþK'ÿŒÇ ¿4ò[ŸøÄßñ<µèß/â3g’|Ãö¬ÿã~¥Î?÷£ýŽßÿ¼ÖÿóŸñ›#wÝ0‡óýã‡ýQúðŸ6ù+þ;V¿ë/ëÆy ýé‡çðÍ›=å¯ü™«ÿ0ßñ»ggÓòhÚÿÌ¿òrLÙ³³hŸï$_ê\ì/ûÌßçã›6xÓþrÿ&f¥òñœóOþS5ÿT~±ŠÜý¤ÿQ?â#6@u÷šÃþ0Ÿù8ùÔÿ¾¶ÿŒñ¾6O±ú§þ$s`,ZÿÇ ÿÕþÌÙ°š×ûÉ~_ñ©Í›:‡üãŸþLÈãßñ%ïË?÷®Ãþ1]ÿÄÆLÿ(ÿå2ƒþ1Oÿ&›·þùq?=ÿÊ{æù—þN¶s/ÌOùM5¯ùˆúˆlŒëŸñÚÔ?æ"où8q3ÔäKÍŸgNÿŒ?ñ¶y7þ~ƒýÇå‡ý¿¿â:nÍ„áÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³ÿÙ +endstream endobj 34 0 obj << /Parent 12 0 R /Type /Page /Contents 105 0 R /Resources 103 0 R >> endobj 35 0 obj << /Subtype /Type1 /FontDescriptor 72 0 R /BaseFont /KMENFB+Symbol /Widths [ 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 0 0 250 250 250 250 250 0 250 250 250 250 250 250 250 0 250 250 250 576 ] /Encoding /WinAnsiEncoding /Type /Font /FirstChar 32 /LastChar 181 >> endobj 36 0 obj << /Parent 12 0 R /Type /Page /Contents 107 0 R /Resources 106 0 R >> endobj 37 0 obj << /Parent 12 0 R /Type /Page /Contents 109 0 R /Resources 108 0 R >> endobj 38 0 obj << /Parent 12 0 R /Type /Page /Contents 113 0 R /Resources 110 0 R >> endobj 39 0 obj << /Height 1344 /BitsPerComponent 8 /Subtype /Image /Length 133046 /Width 1244 /Type /XObject /ColorSpace /DeviceGray /Filter /DCTDecode >> stream +ÿØÿîAdobedÿÛC + + + + +   ÿÀ @ÜÿÝœÿÄÒ + s!1AQa"q2‘¡±B#ÁRÑá3bð$r‚ñ%C4S’¢²csÂ5D'“£³6TdtÃÒâ&ƒ +„”EF¤´VÓU(òãóÄÔäôeu…•¥µÅÕåõfv†–¦¶ÆÖæö7GWgw‡—§·Ç×ç÷8HXhxˆ˜¨¸ÈØèø)9IYiy‰™©¹ÉÙéù*:JZjzŠšªºÊÚêúÿÚ?÷Ÿü嶧£~Sk·:dÒ[Ü,,‘9FP\FŠ¶Î}äùÃÏ$y—Ë^«w­<×v–óÈF§2‚Ïc@§a‡Iÿ85äNP×O¹Õfð§m±©ÿ8/ùf5¾×7Þ¿¥&ý]:{cWþpWÈ Õµ uŽô®©.ÕÚ˜åÿœòT.¥®€{~”–™mÿ85äBTK]Mj5Ik”ßóƒ^E(È5=xn[j’ýÛíü}ñÿô#þHmS_¦ô¥eÚ¾cþp‹Éj·˜;÷+.ãæ&ç|˜I®±æ&ŸéY)·Ñó„~Pu¿0‚;ROéß3Îù<Ÿøíyˆ öý-'ôÌÿó„¾ScQ®ùŒoZ~•“ø¯†5¿çü«J.¿æEùj¯ÿ4æþp“Êèyˆ|ÊXõ?¥\Wî\PÿÎyk·˜|ÊcúZJíþÇ3Îyj„§˜¼Ì®kô´ŸóM16ÿœ*Ð /üìÞfâ íúUü(?g¶SÎhD_4yœ)?J·_³˜ÿÎh|ù4yœÛտ朴ÿœ-ÑÑvó_šŒ5Wñ®ZÎéwóWšZ¹V¼xøã%ÿœ.ÓÕ|Ùæa_µ]IHéû=²×þpÎÉZ§Î>h úLíÿ Š7üáÅ›ùL|ÓN¿ñÔn¿ð9üáÍ <áæOÒÿ4øã[þpÞÕ¿é²óFÔ"º™;Žÿgç âU¤~uóB° ý$MüTŸó†Ñ¸#ükæš+]Hÿà|sGÿ8uÁ˜ÿüÑFëþä_øoý ËPñÇ™÷5ÿ{ýëü¹cþpਢùã͇þ®Ãý\XÿÎ"Üöóך?é?þmÆùÄ[Ðå=óE+Zááþ®[ÿÎ#^¾çÏžgäzŸ®ÇËŽ4έ>vóO0Nÿ¤ONÛqíŒOùÃe‰”§¼ÐÖƒôéáöqßô'gŸ/ñ¿š)ÿm_¿Ž1ç Š¼ñ抑Mµÿð8ºÿÎ!Ü ¢ùëÍÌüÛš?ùÅ j$ +Ÿ˜>e?òÒ¿óN7þ…;]ÓóÌ¢½ÒWþiÆÿШyŽ‡þB/™7ïõ¥~ìWþ…_Ì•ÛóÌ›÷üOìãèUüÌNÿ˜Þcâ)·¬kþ®8Î,ù åFóO_ÞÇÿ4íÿ¡Zó]?òcùŠ´îÄ¥Gµ1Ëÿ8»æÅ©™bäE*dŒþr—þqsÍH?™b5ëñÇ¿áš/ùÅß7C²~dy„Û”Ol¶ÿœaó“ÿ!'Ì£x¿¦i?ç¼î?»üÊ×éàD&¿Maÿ8Ó粟™:à´ +ÄOµëëÿ¡hóå~Ì­wƒ$Dï×°Çжyò»þektÿŒqc—þq¯ÏJÿÊÊÖ÷éXâÛ(ÿÎ5ùôü™zÝGüWôÆÿжþbSoÌÝcéûˆiôøæóߘ‡ü„Íbÿq kííŽ_ùÇÌT&Ÿ™š¹São~ŒÒÿÎ9~cµ ™š¸jï[hû¶ËóŽ˜áBÿÊÌÕ½ÿÑ Æ?üã¯æpÚ?ÌÝOE9Z@OàF?þ…ãó6¤ÊÍÔøÖ£ýÞ¿N5?ç4BÑ¿3u*ö¥•¿Ž8þ@~j•ÿÉ—È¿Ð`•Ú»øuÆ?üã÷æ³Wó.ýNÔQ‚•ûü2‡äæØMÿ2ïyíÿRûÖ¸åü€üÚŒ_ÌÛÒNZu¹>Ý÷Í/ä7æñBó.꽫¦Áúëÿ• ù½?2î{uÓ`éßö±íùùÂGþL«šü_ô­€vۿιQþFþs+þdÌT_÷ǽ7û³Êüè,Oü¬™ÞŸî.ÇâÊÿ•ùÕÍ[þVT›_÷êå•ÿ*SóÁ%üÈ,ã m*?¯0ü“üï^Ÿ™éÒ ÿš³ɯÏ@¿ù1V´#þ9Pþºã¿åO~z¨*?1R•­N“ kÿÓÿœtówžfóïš¼›æýeu¸ôeµ1N-’Š@Å…ä =2cÿ9SæÍ_É•úα¡NÖ×Ðľœ©ö—“H=^ÙÏü§ÿ8Õ®ù‡C²Õǫ́׶°LÊ—j@2F€JÖ›í†ãþq_^Tâ?0üÍZR¦å?æŒÇþqgÌ?˜~e võãÿš1Dÿœ`óò'óÌ„“·ï£ØÀbiÿ8»æt¨˜Þd¡"µš?ù§\ÿÎ,ùב6_™ZüjvýáY ;n +ôßÿ¡_ó‹åù•æ_´CFù +møã‡üâïšÁ-ÿ+#Ì|OÞEú¸ã×þq—εüÈó =¾(¿æœ¥ÿœgó þdù€øsÿ4ãOüã¢þekàTÖ¾‘û¶ÇŸùÆ:ò$~dëüj ) }÷ãŒ?óŒ¾w.[þVV½N‘~;o_ùÆ_<)¯ü¬½xüÄXöÿœióÑGæ^ºú×ï¦SÿÎ3ù耣ó/]¿Á ~ú ±ÿ8×çÁJ~ek}Oû®çç<ôqüÉ×*MwHO^½¿°xbiÿ8ÕçáË—æ^·¹$R8¶ðë_»ßóߘ@_̽fµ®ðÂ}¾ïl¤ÿœmüÀM‡æ^µÜï '¯Ï,ÿÎ7~`)?2õš·†—üã—æ"nß™z¹=ÿÑà¦3þ…¿ór35}ëÿðýò£ÿœrüÉJ/ü¬ÝX¨ÿ—X ¯ÌœQ?ç?1£™z±¹¶€Ÿ×—þq×ó-›àüÌÕm 'èß2ÿÎ:þf"q_ÌÝTšÍ¤o§/þ…çó8Ëù›©×µl­Èû±Ÿô.Ÿ™Â”üÍÔþ…láðï¾ÿN=ÿç?4›oùYš€ÿ–+×ç‰Ãÿ8óù©ïù›¨”-l 'Þµ9CþqëóY:~f_‘ZšØÃÖµþnžØáÿ8ýù®woÌËí·°€oÚ¿߉¯üã÷æå2ï*?åÂ/ù«ÿ•ù¶:~dÝPõ®ŸáñeŸÈ¯ÍÒ Êȹ¨þ•ðõì±oùQÿ›DTþc\òÿ¶t~¼¡ù!ù¸Ÿò±®9@ÿqÐþ?Yü•üÞªŸùXršQú:±ù6S~L~p†,Ÿ˜R½tèˆû«™¿&?8Y‡ü„9)µÜl?óV&?$ÿ8ÓuüÄŽútTÿ‰caü•üçŒq?˜Œ}Îÿ±‘þJ~vFÛ~b’´¦úlGÛ»cÓòoó¸[ó vÿ¥d?×0üŸüóPþVÔéqV½|zcÇå翘HziPÿ\M?'ÿ=qÿ•…(N•;}8ªþSþzü¨‘¸ÿŽTU§Î½q1ùQùö»?ÛÖ¦µÒ¢é÷åŸÊ¯Ï¦¥|ÿn)á¥Eáß|¯ùU_ŸŒO/?[PÓJ‹¯~ùå_çåCm¹ߢã¡ùà;ÉïÏË‚üýoPkðéáü+ +ž ·üµÿœŠ¥¼óbß=.3×?—Ÿó€<ë§;)+úóKùwùüõ§lE6ÒÓïë×0ü½üþ@iç=<µ:1i\yò'üä oÓOZŸÑËý3Cä/ÏèÉ-æý9«Nºpÿ>˜§ø#óð1ÿ³L+]«§é–<“ùøH'ÍzfÕÿ¥xïý1‹äŸÏî@·š´ºùpëÛ}±ãÉߟÁÿå'ÒJÿÌýTþ9àßÏÑÿMF”vÿ–õË>Oüý¯ü¤ÚM?æã[Ê?Ÿô4ó.‘SÓýºxôë—•ç þbÑ‹Saõ6¥~ì¿ð¯çø#þv-ÿПúeÿ…ÿ?Àÿ”ƒF­kþñ¿O?θåò×çðzþžÑH¯O©É„Ï›@󖃡y®÷M¿·Ögôˆ·Æ£© Jïá±ÏGgÿÐ÷OüæS:~Nù€¡ÿt(#Äs]²{ùD¼< Šò¦i½)þê^Ù-Í›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lªïL¼Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6y›ò)x~|~a‚½¬·ë·Äzÿ •ÎiBó~Në¼xÄŒG°q+ò·Ê-(GÔ-:tþé}ÏëÉ.j>nÐô‰Í­õõ¼ I%U ›•'œt(cŽi/íÖ9«é±•@jïCŸÎ¾_µáëjÉê/4¬È*¾#~žø"ãÌšM¤‚‹È"Ð…yUI¡¡5߶i<ɤÅx4组]’ˆÈ¼êz5­q°y£G¹¸6Þ@÷Šúk"–¨ê)ZÔS.ßÌÚ=ÜßW‚ò›eRß]®Ýò­üÓ£^#¼°:Ƽœ¬ªB¾Ã.ßÌÚEäo,cÒ–%¸7pzNÅUýEâHê­*37˜ô•…nZî ׋™‰§ZÓnù§ó“mÇÕ»9¯5å*Š©î7éï—?˜t»WÍw +9PÁZEƒÐÒ½lwéÍ8Oõ_¬Åëíû¾kË~›V¹“]ÓdŸêÉs ›‘NEåÈv¥k_l|:µË2EÊ/EØöŵ¿É¯%yŽñu KJ‚{¥TQ#ƒZ G_ÙS¹ü©òî¸<Ç>›jŠÈëqOŒ2}–ð¨ñÄ4ÿÉŸ$éZªë–ºTê*í(œË›YºÒ¤“•£~Kù#Ë×ߤ´í&n¨ëÍA­$7SMÁ#éÄôïÉ"é1ÜÅe¤Á^Da˜(4t$$V@ÇØ~Jù#L³ºÓ­t¨RÒõBÏåÅÀ ŠŠøbüƒòVicHƒêsȲ¼ ( Ö»r=ðCþIyM*=´¨NŸ 2EV wcÖ»|Nûò/ȺŽ›m¤O¥DlìË´1‚À)ÕŽÇz‘]òµ¯È¯"yˆ[GJŠoªÂ¶ñUœqz.Ì6ͯ~EyÌ×)y©i‘Í,qÇ’[eŒ£b+@)‹¿äÇ“%Õ“^“M‹ô’ȲúÁž¼Ö”jV¼3[þKù6×\ÿE§¢ê~©ŸÖ ÕõV¥i¿Ë¤þJy/C¾¸ÔltäŽæé%ŽV û¬¿lR´ÄtÈ#y|\­†š‘-Ü-o0ç!åR«»l >x…¿üãß-mg³‹LU†åQd¤›„<—~]Ž/äO‘¡ÒeÑMO¨Í*Îñó“yQZ¼«P=ó7äg’›E_/~Q¦¤Íp±ú’m#/Õå^«L­Oò#É:Å…Õ€k{d}IfäF;þ9ZçäG’|Ǥö<ÒÆoõdP@Ù…zõ9µoÈ$ksAqwaÍí¢Ž¿{ +±ý‘@ÛÓñï›Pü‰ò^©­7˜.,Øê *Î\M(Ô‚Ü{اü¨ÿ'~žo2ýLþ’i½râYõ+^\yqü)òÿäo“|³¨6§§Y4W ’ÆO­!do„±×ÃnØ—ÿ ü—åi&›M³t{ˆÚNSÊAÀ 7cBG|m‡ä’tÛ Í:ÚÍÒ Ð‹(õä$ð5R bFùvŸJ²Ò®4hí_ê—RG,ªg’¥£¯*ŠW·^øÿœxò;X.—õYEºJÓ +\J6P§~U¡û°UÿäO“õ-6ÓHš ~«cêz*·‚=CV© Véß+Vü†ò~·iecuo)ƒOŒÅ­Ä«EcÈÔ†‰=ÎW˜ÿ!ü£æ›Ä¾Ô`•çH㈸‘Å`Ý@ïß¾?[üŒòŸ˜uGÖnâ™®œ¡øn%E0Ð+>Î.ß“žXÌ-æ³ß_õ=Z‰äáË¥xÄü©LK@ü“ò¿–µa®XÇ2Ý!®$eÁ¯ÂI®ÞŽ•ùå-I§´Š~sÅ$OÊæR8Iö€«míàqM'ò;Êú=íº\z7è#”5Ì„… QÄ×á߸úq;Èo*iÚuÞ™Ü/xz¥®$-ð­µ]ü:÷Ëoȯ*¾º[«$æä¤ËÏ™~ÝyRƒ§L«ÏÈŸ+ÞhÐhMõŸªÛJò¥.dåÉúÕ«R=°-ÿüã¿•5+K[9ÚðÇf|n¤ŒÅwßrw8'ÌŸ‘YóK[µùº­¼Û'§s"|‚´;·‹wÈ—<«¡~hêzåḋQÒ/ÞÌ$7*p· EÉA!ª£sÜ×&7‘ž[¸×˜‹]‹Ã8¸ \È#./±Zq¯lJßòËVºÃk‘Éyõ—’I7R«Ö£zoQý˜ï-~EywÊ—]YIxòI À}[©pqCO§CÔc4Èo.ùq/"µšô­õ»ÛHdºvn-MÔžŒ)±ëŽÓÿ"¼·a£]hPËzmnÞ6µÔ…ëN,OÃïN½ò­ÿ"<»o£Ë¡‰oM¼³¥Áo­IÏ’/9WìÓªôÊ?‘>]]hm5ñµYÍÏ?­?>ExÓß;xæÔ¿!¼½©ØXéÒO|±X#¢ºpÌÔ—5øˆ®Ç¶?WüŒÐuË[+k›‹å0£ºufPkñ‘ö¹Äµ/ÈMS¼ŽöK½E^(⌻p‰B‚}ÈŽ/­~IhÚö²ÚÝÅÍêÎÒ¤œ#¹eŒP'Mé¿Ž òƒIÌ'Ì‹u}õ“!Æn[Ò© Oå‡L åÿÉ=#˺ŠêP^_¼‹êQ$¹fOŒ~v®Þ`M7òEÒŒ¡/µ&BðžWL@w#mˆìpvù3¦évWÖ1__º_Ʊ»IrÌëÄÖ¨OÙ5Íaù1¥éúeÞ—ö ÑÞz|îXºúf£ƒSá¯|§üšÓŽŒ·úˆ†)ša ºa%YiBÔû#¨8ÛÉ>çN·Ó£~ÚI$WúÁ.Þ¥*Ÿ´6Ä.¿#tÛÈm }OSVŒÆnˆf«ø¶ÜŽ[{mƒ5ÿÉû=y­Øê:„Þ}+’¼‚þÓm»çÕ*-5]J Mµ øž‰xEpV6ôé»- KFÍ'åM¬ºïéïÒ:€XMè‹ÝTñãO±þNU§åE½–µúpjš“ÕiDM=cø«ð•¦ë¹ ÉÃ(qCŽÏ?þ}«·æ?‘‚¤ÞÏ€¥ ôÿÒ÷üæ + ?'|Æ  Àýι2ü™Ëä/»Dé¶f¾?º\™dcBýטµ’IM«nM+éÐüº “\܇Ž`Àí›­;æä:}ª3Tfä+NùƒJ½2ò¹*:f¯|À‚iᘚf,S—•\Õ§|ÕÓ¾`AËÊ™«˜0aPj3©é˜wƒèkš ŠæÍ\Õƒèk—”¬UMG¶`Àš¸Ì9«•ÍkJŠå’jÓ1 nsrÒ»æ¨Í\Õ5AÍQ—•Q›/*¹ªjŒ¼¬Õrò«›/98üÁ¾Ô?6SËÖ²0Òm­%ŽjP£Ý²¯ó$}«ÜçW®^l¬¼Ù³fÍ›6lÙæoÉç÷æÜ7§cµ:ìwþ™/ÿœÌ§ü©¿1Óêâ¿ðkòºQ?“tIEhÚ}¡ß®ð®Iòæ+ç­ vkm@É£¾M³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙD¿†^lÙ²©ß/6U\¼Ù³fÍ›6lBúé,­¥¸…H‘œ“Ð'<÷ÿ8uæS­ZëÑOVºkß­;ÐQ„Àî)î§=›6lÙ³fÍ›6lÙ³eSzæ› ¼Ù³fÍ›6pÏæô?0|(ÿ–þ=iÔû?ÿÓ÷Ÿüåâ‡üŸó$õ^¿¶¹*ü‘—×ü½òóòV®›iºtþérm‹o-éúÇš5i¯bõc¶E$‘EdjˆØá ü¼òøE¶Ü=:zºÖ´?gü½Ð$ Ûfb?¼“uZP}®Ôë×'tyó¶åÌ©jÈæ¼~ÏívÌ| ³™ ·Ädy'ÛÇŶ\~BТãÂޅȨÿhÒ¿µÐÓ§LÉä= +%EKzÃýãìkÀý±£òûA +[4ÞÉöZ¤ïË©¯^¹åþ†PÇè°R‚2=iwQÐW•~ž¹¦ü¿Ðç2"reãÏ÷ÒïÇ¡û]}Æ[yEndÄõ’OU¿}/Úñû[}eÿ€ôNbOE¹  ú²}³ßí~=³'´Ddq òŒ±Rf”î‡ö·Û?/ô0ª‚¢+ ýü½µý½úÿLÃòÿCU(!zý?ïåû5¯óõ÷ëï—þÑMw%JªW×–¼V”ãÛ§^¹¥ò‹7>qÈyñ'÷óu]û{øÿð>VoNJ³‰ïåûCýžÃÛ¦Pò. +’ŽÒô‰¾Ñê~Þÿ.žØؼ‡£À#TY‚Æ\¨úÌÇíõ­_§§lryHUBÍð« ?Yš´n¢¼÷ùõ³´ª'%cô7SýšÖŸoñëïš_#iWY¨È¨GÖféÑÿ§¾i|‘¥L\·® Ä‹™zPóÛèúqíäÍ)˜±IjÒ OúDßh³éíÓÛ0ò^” +ž2ž2En&4c×öú“ÓÛ·ò“l€Ÿá,A7SÛcû{ÿØèü‘¦Fªµ¸!T ­ÔçcþÏñÊÿi| dÜÊÖê}ÔtoñëïšO#i2+¡ñtT ]N6ZRŸÇmÏSßþLÓ¥ ÜåIÿI˜n;Š>Þô뙼—¦³r¬â²úÔ3S—ËŸÙÿ'ìûe?’4™UÕÖcê*£¬MR”ý¾»nzžùsy+JŸÔ,ÄHÊÌ>±0Ýv£íôuïŒFÒD%&äÒz‡ý&jr(ì‡Olry+LŒ‚ Á£Þêc¹ëû}=ºeGä2*q7r·Sšê7×Ó¶\JÒ튽uôÔ¢ÿ¤ÍÐ’w«îwês&ÙÄ÷a„ž¥EÔÝI­>Õ8ÿ“Ó’¬¡ãI®Ïf®¥5­65mÀ¦Ã·l´òe”aTMvx†]î¦5åZ×âÜï±=;e7’¬ØPÏyOLÇþõÍÐ÷û_kß®Sy"̓qx¡•TÒî^Ýþ×SÜ÷ÇIäËIÖ{°_Hº”Oj÷§\ÏäÛW,~±v ?:‹©E=‡Å²ûtÊKµ¨&æðÑÌ”7Rš’)CVÝÉé픾K·Nnï~_ñõ.ü¼wÞ¼;e7’mÈUúÝè +¥?Þ©7»÷;õ;ôÌ|—‹yzµŒ%EËÔP×–çíží—'“b‘Y~»z9*­EÃTqîóç¾<ùB"\ýr÷ãu}®_b ì<×qÓ/ü%._[¼ûeéõ‡¦ýºýŸld>NŠ”¼½< 57.I¯fñ·†Ry9 úõéà¥Þƒ½k¹ñ"»|†_ø>:P^Þ€§ûÐÝÍyxr÷Ê'#†^½•V¢àíǸð'¹ï—'”­!7÷ ;+' ^=–ƒ`{ŒÃÊ'‘Òµõ9Þ¿É8ûfÊ&7úFøÑËÐÌ)¿o³ºûf‹Ê +jLJ>³^^5]øþφPòôöÈÉ_XTÖ¿ø~Ðìs?”ëþäo*ªi*ö¦ÿgbi¾q?/ùq…Ή«GsÆÿ[ÔÖB’Š‚ÂeUz·¤¼¿ +glo(¹­5+嫇‘6£Žè~]ñëåWRéÓGçC"ÿÀýŸ³ŒÊêWÍÇŸÚ‘ yxü³û>qùNHÕô•ëpR»º|D×â?ÚÛèÊo)L@ ©Þ­ÛN¿Íº}¯ÃÛ1ò”¤¹:í]UGÇÃǸýßSßçµ2åò¤Ò¹a©Þª³«(ÙÊ{ã•îÿÇNðS˜£éü•á^?¾T~Vž2„êwŘš´_=îú/nøe¤éï¦AèÉq-É©<æ*[~ß +¨ÛåƒsfÍžfü”uó?˜ɆÈÖ¿:þ¼˜ÿÎd‚ß“~bþY‡ÝÍrqù:ë'ô]ÁÓlÿäÊäà Þdÿ”ï@4ÿ}@uö‹'9³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›(:eæÍßÎ)å´ò>·4,UÅ”ähGÀFÙÇ¿ç½4—PAð±±ÓSÖœzxg¤ófÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³‚~~Ð~`yÁ¿;R¾ÞóÿÔ÷¯üå—ü ó~«ÿ®H? ©ÿ*ÛË”¥?FZtÿŒk“ì‹èPú^gÖ¬y¥›njÂâƒÀm_rQ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6l¦n “Û8^ˆ=O$yKQ©ªÃ3»þöYv©guÍ›6lÙ³fÍ›6lÙæ?ÉWaÿ9 çôe;ÁfAÚ”dËþs09üšóOùfZü¹®M¿%X¿åÿ—‰?£,ö©?î¥ñ¡É¦s Qµ§üÒÓÚÀ4µµ¼ú©R}Rübõ9ƒµ7øiôçOÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍœÛþr#R:oåö¬‚Éq9t¬¬oz6C|ƒ¢ÃåÍ–ÓÕ”zº¨ +6£*‡ˆÿcËéÎ÷›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍœþrþV‘Z@JB”ÎÔüs¿gÿÕ÷¿ü媳þPy‘S©´=«ûk‡ŸóÒ,Ÿ–ž[dÑ–£pGHÀès dkF$ù›V§¥gú¤É.lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ°&¯p,ìn'5¤q;m×e'9ݳèÿ”z< Ö£Kœ–4#÷Ñ1Ü|óµfÍ›6lÙ³fÍ›6ló/ä²ñÿœ„üÀäh}  +uuɇüæUäߘªh~®)îy®Ù;üžy@¡¨ýg¿üñ_s’üƒùŠ3þ;ÐXtú¾¡_"ÉÆlÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ²ºåæÍ›6roùÉ‹Hïü«km5}95;j@48[æÃi£þuy~ã‰õnì.`4ߥJŸÖ3µ*ñï\¼Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6p?ùÈnMç"¥HS©Š×¶wÌÿÖ÷ÏüååPù–~¦ßñ!†ÿó ÃòÇËB…Üm©¡n]c®tIžæç‚ï¼h +’>{W <Û¬^꺟—u¹CYëÒYñ¥AI ÅQàx Îwué^•ËÍ•È«× +!ó†‹>®Úwq6¤‰ê4¾0¾4ÌٳfÍ›6lÙ³fÍ›6lÙ³gÿœ‚ yëÈ€Xê]÷Û;ÞÿÐ÷ïüåK„ü¤ó)aQõ'ýc£ ÿçÍ,<´jOûŒµÜÓýö<6·‘m£óN°ÈwŠÈ·]ö~O£%9³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ² ùÃæ-CEÑc±Ñˆ]WV¸ŽÂÙ‰ F–¼Ÿþy fù„·•¬?-õ(>±ÚZM&šÝjÂæ#BÔîÓ"’˜äsóÏJµÖ5Ë‹YãÞK;ŒÊkŤ½J)5©^´ú{dâOËß,:2~‹´£ AÔSà ¿'. Ï’4rkTµŽ3ËcXÇÓý\™fÍ›6lÙ³fÈÿœ¬àÔ-ඹA$2L£t #þsÿ2y[HÑ/4[›+háj–ËÉAŒ·ñÛ;yÓòÈ8ÿœŽóí(l4’vÜEh+÷ä£þs•'|ÇÌÐZWæë“?É´5ômŸZWû•ðɆ@üÁyo'Ÿ´;u‘LÉo~YÀŠ„¯Pc“ÌÙ³e^ùƒÓ/6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙÂÿ1ù7çO”‚H·¹&žn¾ØQç»H¦òdó‘G¶×±‘±Vú÷í¿Ùc×úg¢…{åãXŽ•¡9Á<¿=ï4}A<‘ä”úÖ¿yÅ9¡D[n tçO‹ü‘¹Î}yùç_˽8~aÚßú¾fµ’K›˜¾Ò²òØ•ûCÜÓ¦zògóBÛógË©ªÆ=;¨ÛÒ¹ùdOò[ªûm“ÜÙ³fÍ›6lÙ³fÍ›6lÙ³ÿÎBž|*ПÒ4¡Û­_§;æÿÑúÿ9IOùTÞd¯ü°ÉÓèÃ/ùÇÅTü³òØM‡èÛ]ŽÛúb¾=ó äkFQþ'ÕJÏõI’\Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙϼ×MSÏÞ_ÓÏÄ–±^_0ð!V?|­ŠþwÄÉå ­B5å.œð_ ÷·•d?z©üؼ[¯5Xªn—#H*hkO®–ð§Aã^´®ôê™ÿœ~wNŽÚCV¶º½‡òn:FlÙ³fÍ›6l$ó9 ´ë½ÀéOä|†yöB“hƒ³jÖ€ÿÃ×;<çùkùÈÿ=9 1Óôº/r=$ßè¦Jÿç/iÿ*Ìu4&×oŸ%É_ä‰fü½òñbIýgRMÝK“læºÇ—tûÌ­+X†[ë¸/YA5d" +ms¥fÍ›6V^lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³”L×ç,@ôl4v'ƳJ?æŽÙó>‹/˜|¥¨iÑJð´ÚÏ“íq­êЀH¨o‡ÿò¬1ÚO‹Î.§K8ú§®2_ËÌ„œž´=mþjÆÜþUþaÜÄöïç'0È +7ú"CQ± PwÁÿ“ÿóú?å;éßô†¯#17R¯Ä íE©4¨ûF¦¹Õ¨¡Ï=j:uä‡æ¥®­-ô/0£Á ŠGr(A"´£S©ñ9Ý-üÇ¥^H"·»‚IÐ*ʤ“á@pÅI#~¾Ùy³fÍ›6lÙ³fÍ›6lÙÀÿç!ê<íäSÛô˜¯MþÎwÌÿÒ÷ÿüå0¯å?˜ÆÛÙ·^Fÿœs`ß•þZ –£m·$ØѲ7¤ùÙõQ_÷MŸüÍÉ&lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lç¾_Yu/Ì}jíÇî¬lìíû¿)œ~)“]oMYÓ®tùERâ)"o“©SúóÍV úî«åo9ƒkn’0"¥í~A‰ßíF+øöÏ@äGò.è2k¶œ¹zZ¤® v"TI°$œê9³fÍ›6lÙ°“Ìì´Ú¤Ü +WýGÈGæFYt*³¬YšønÞÇåK<ãùié/üä—žèµéÚYäGAé&Àø6ßvJ?ç1Oüß1Ì0ÿ‰®M¿' >CÐ ŸÑ¶{ŽŸÜ®L2æPOž<¿Ò‚@ÿÂÇ“|Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙÊ|™n÷š~h¼•‰xmì!I4ÈXÓÃq…êÿî"RMéÁÓz§æÛüüs³cxûœvlÙ üØü§Ò¿7t¨ôÍQä‹Ñ”K‘S’šFõ ïœÍß‘º_äÖ‘ç;‹‹Èíuu” ¢9ãP9êô`£¦;6lÙ³fÍ›6lÙ³fÍ›8üä\¢9y”|¥þÕQïó?ÿÓúÿ9: üªó^¿R~Õî0Wüã’ðü®òÈ î2קücѲ1£L’ù§WEpÅ!²GìÔJh}ÈßåL“æÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÈå€kOÌ·†´“UxÇN‘Cv÷'ùåMIoù«o¥*¶wº™Ü‘ð¸–E4èv›oo§=‘oËEŽÃÌúÝ¢…S4V (Ú†6ŒŸ¾<陳fÍ›6lÙ°›ÌµãmÿÇüA²çíäÑGÒÖ¬ŸéÙçËÿç%<ñQ¸ÓtʶýÚV½÷É_üæóüžó Z×þrgù8èþBòû'Ù:mŸ_ø¹0È/môÏ8èWr,P,Wà»°P Hè*rTÞiÑÒ$¯ I^ dZ5:Ð×zcdóf‹w°f².ûÓm÷Üe\y¿BµNkûtzÄÊ€ÐôÚ½ðDšþ›ȳ{˜…Á ËŽ[ôÛ®õƯ˜ô§˜[­Ô&fb¡9¯"GPk\Ðy‹K¹EÔLæ´Pâ»nv¯€ËÌ:\ÊΗP²ª—bhwéï—½¦ÏËÌL‘Š±(‰öÆ1éMÊ.á)ˆ‘h é]ûÓmwMHEÃ\Ä!'ˆrëJøV½rŸ_ÓcˆN÷1˜¸âHëCZtºÞ%ÌJZºŠƒÜo¸Í.µaã%ÄjhîÇ¡úsI¬ØE'¤÷«ÖœK€jzmôãÆ«df6Âxý`iØå_ +V¹QêÖR»D“Æ]+Éy +Ž=j=»åŪÙÎ+ÈÂœªO–55› )q¥+G•4߹˭‘RâxÊ‚žb€žÝqÇR´X̦hÂBÅ…+á\Òj6 ’I‘Pô%€·\sßÛD¡ÞTUn„°ü²ä»‚*s‘W¨«\Íy7‘Cxrû²ÅÔ,æ0ê\QP~YIy‡ŠÈ¤ø£¼‚SD‘XÒ»0;f0¨‘Hý¡–.¡ ·5 ïQ•õ¸ +–õˆØžB™mu +€ÅÔ°5šê +Ìêt$þYfâ%4. õê2Ì*h]AùŽøðêMBhØÐ0'§\Âd&…Nýs$ÑÉöX‘Ì%CцÞù½hè[ 4&½óz¨Ey +oßÃ1• >!¿MÆrË-VßUüÆó“Á_Ý=Œ$‘Mã•¿èYw!NPïJ¯ºŠ§úgf€ñV½+˜Êƒ«¿,:·BXen†¹\Ö•¨¦a"Ái×¾@?>´—×|ƒ«An¡åX ɵhb!ê=þ9ü¶óoøÓÊÚn¹*^î‘’µ¡èh|*6É?!ã×1`:œÜ‡ŽnCÇ)][¡/ñÍQ—•Qš¹«š£5Fj×5k—›8üäz¨óo‘¤nÚªƒ½6%s¾gÿÔú ÿ97—ò«Ìj ?ÐeßØoŠÎ5Éê~Uùa¹rÿq–»Ö½môtΕ‘­ óN«ÄQŒD‘ßûÞ¹%Í›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍoÉ÷K­æýæ£6ôï;¨éì£'9æÈ41üä ôŒziâåA¨Ý–8‰Ü2)å˜VÏÏhB•úΉûna¸#çP$Λ6lÙ³fÍ› |ÎÜR×®óŽ‚¿°Ùó¼š?‡T´jíÈýÛÿ3¥g›.‡ýdÇýªôí¿ØG÷dËþríK~Nù–E™?s.Iÿ"ãH¿.¼º±€i–”?º_œç<óî“g­ù·Ëöz„k=»­ñ1:‚¤ˆÖ„ƒáÛ$’yËs[Gg&nÐDX¢Ô…äji·s× +üÃù;äß4Y~Ô4ØÚ‚1é³ÄÊ€“Å^6GQRzçmÿ87ù&òz­ ±zÖ§P¾­ä~t]òƒÊZ}JÄ3Û1I<²Ï"ñû4’f‘þßݧå÷–â¿ý(–­ï¨fõBѹž­_«Ë¿,é—¿¤mtø#ºø¨©¿ÅPß}Mqºå¿–4¥™,ôè"[ˆý)B¥¡ý“â2¬ÿ-|¯§Á=µ¶Ÿ q](I•VÔ€|wÆÅùeåX-^Ê=6·‘•ÙPµâOʦ˜é?-¼¯-Ši§Ãõ8ä2¬\~äP°9S~YùZæÎ=>]:¶„»GZ…/ö©á\n¡ùaåMV8b»Ó`‘-ÐG+öTVŠ=·é—ª~YyWZd{í:š8Ö%,»„AEö펟òÛË7ߤ尉¯9#ú´<¹%8š×µ!yùWå[ë¹u ,Uo&Q§Þ99o¸tee;ö# uùÇŸËívÄé÷ºXxXÄO:»SÆEHkÞ­¿zᯗÿ(<ŸåkSg¦iÉ-¶`Yܘ*¤»1=S\RÊ(ÛG41iÑ*Nª²Ëâ +j߱߇ò¿ÊÖö3i‘XF–“º¼‘‚À_²zíOlwü«?+þ:GÔ#ú‘“ÖôªÔçJW­ze^~Xy[Pµ·²¸°à´VXP–¢†5=÷ßÇ*ÿò¿Êúœ[]X£Åm¥,ÿ +V¼v=+ã•©~XùcT‹«5«Æ°ÅV…¢ý¬Ú‡å‡–µMCô­Å kÞJþ§&’Ò†€Ójc¥üµòäÚ¯éÃj ÿ¨%õ9¿Û +OÃ+Lü³òÖ{úBÒÍRãã«rcöþ×Sß¿¦~VùgFîm-HêèO7û,¼Hû^V•~Y°¶¸³‚׌jUæç Tšü2¬ÿ+<±eg> ¥-îEõ$5)öw-QLiü¥òÇÔþ ¶ÄAêúÜ}I>Ý)_µáŽ¸ü­òÕÅŒ:d–¬Ö–ìïz²|%þÖü«¿…r¯?*<³¨Z[ØÏlL¡–%q j@!«×ß«þWùw]–9¯-‹ýrí?+ô+M6ãKˆÜ {®JÏ!o„ÔP“Uß­:âQþRèqéÒé`Ü}^gGcõ‡,J ¨Õ¨ù «ŸÊ]MMZàBìd¯¯' Ü +õ­iOÙ霻þq÷Êömòzhº¤— u¡Ý]Zº¤­¿ ¸§O ê·•ºEý½­¬²\úvhcN7) ïñ~"±v õ}`DíÌRœºñ§l§ü·°–Æ+sv#ŠF‘[×nu"”'¸Û*OË=>Xcƒëw¡b  ‹–ÔòÜ÷;íŠj_—¶ZŠB$º¼OB5‰J\2ü+Üø·ù]qú—íu áº77Hð""ª\2«qèXS©èO|Óy +ÚmHêZºdúk1ÔSn=)¶Pò©Ô†©õ»²ë/«ézçÒ­NÅ|7é’œÙÀ¿ç#Ùbó‘¥¢’5A^])UÎûŸÿÕúÿ9/«ùYæ5ëþƒ)ëN‚½rÿç$Y*¼²ËJ6ߧúƒ:^FôƯšµ!N–Ö{ÿ²›$™³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lØ•ÌžŒ/'ò©?pÈWä| ‘´²ÿjXšc½½v“¯û,g)Õ4–šß¤V3Çô/¤ÏÔTÜ øSÆžÙ3È“H,üÙåykþôZêxV‚9ßìNu Ù³fÍ›6lØMæZð¶§ûüÄ[!¾{b‡HmöÕl†ÞïOã/<Ûùpµÿœ˜ó»Üizh¯Î8ÿ§á“?ù˯ü“Þe#¨³$Á.Hÿ!—‡å¿—ý«-?äÒäó9^µ©ê—_šZMŢǧ[Åv`¹TÈí +R¿³Æ¿NuLÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›( +f‚™‡¾^V^l )—”Es +ÔצrùÈ/Ì­KÉ:u¦“ ¡:α/ÕíœS÷f«V¡­zÐd_þqÛQ×|§¯jþCóTí6¤¡/cbåÔ‡@$Tn´Îÿ›/6P­q— éÄÏJ•òÎ3ÿ8›w%ÿ”.îe<ž]NíØÒ•,Tœsº5Í$-]lOoôåè6§ûyÙéLÜiÓlÄW/*›×57®^qËèô̯5y]¢â×2G©ÆàíÅÑU÷äkôœìùDW0͘ŠåæÊ¥sS57®jR:œÃ0ËÊ"¹y³€ÿÎJQ<Óäw'¦ª£¥Nå{g~ÏÿÖúÿ9,þVùŒ ©ú„ݶ#ÿ8ºÁÿ)|²EãŸQNÙÔ²ÑjæËß©´A ¥¯/P1?jjqâ@ëÖ¸fÖž`+ORÕ 5I>×mù}Ÿ£-uЂhˆj’ž¥wý¯³˜Ûëê?vÖ ¨^5Wê~Ýwéü¿qÏo®rblÈ|"µ­Ú?vco­ƒ@ÖÌ¡¿hIºöîw®:8uÃÀÈÖµßû}šo÷×±kü@chj­ÈRJrýšoÓÄ~9š{‰*ÖܸŠyNCþ5ürŠy…yðú§Ù^2uýªûu¦=ã×~0†Ú•~Þàýªû×¥2¤]g¥-L|üd¯ù«ðÇ,zç%äm©È‡§©^;Rž­q8ãבÚ®ÍÊ!ÞŸ >UÇð×HRßVåƦ†@9öÿcLΚëÚØ ¯Å ø»×o³šHµ¢¬T[–øiV’•Û•G‡òãu¾g€·áÈqŸìk]¾ÕiNÝrŠëa¶½æäðû¾Õ~ŒÑ.µÉL«oNMË‹¸øzŠUNõëøe*막e¶Ø14y:þÏìôé\r~› z‹n BO·Ø‡ìø÷öÊå®Ò‚;ZðyíWqö~Ï]ÿ Äk+ÉR8(ñ&Wÿe_ƒîËc­ò`#¶ãQOÞH ëðìrÇé¡AÂÞœèxÿcÇìý¯nžùIúeÊzÑÛÐ3VGSá ã¹ë^Ù“ôËñõc€>2¿Qöiðwï™›ZTb·-Ƥz¯ö«þ§Ù¦gý4R;rà++ÈýªÑ:u§ÑšVÖÛ—­À¨§ï_§ØØøuÇ;k±H­ÏÆ)Y\|?cí{~9‘µ†oÞEˆ¨•ö^ß±ö¿Î¸Äý3#¯­¸PIÑ©°Blœ˜ cøHè¾ü²›TÕ†ãOj•¯÷ÑÒ¾ï¯ê”oô6øUHýìubiQíÇñÍ.£©#0[p…@"XÇ*Îçn?Ž;ô†¢®WêNUX(>ªQ‡óu¯ñÆ GS4Æ@ˆ?½aüÝ{àý:ââæ.w0˜´àY[o® +Ÿ1LbŽ)ñ̪kò'o»!Þvû:fà¹; þøl<¿Ñ<ÝùsùÉ;»RŸ¢ôÚm½ q÷ùƒ“OùËa_Ê2uÿxÏOõ—$_ÄŸË.Tò?£-7ÿžK“¼ƒyžØ|¿"li~Í¿_Ý é÷dç6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›(šuηç7æÌš…´¯+ „5O.‹Ú›Q{øñ#ój"~cyÎvˆ;Ò4¹Ö´¯3ð±>ÀÔ«ß6lÙ±+©R^I T’O@©®sùÆkH-üg, +ëÜÊÄ~Ñ2°¯Ü´‡ô=È +8¦º9ëO®©©îNÿu3¶fÍ›6lÙÅ<ÕšçF¨üB RÆk6â( ¡.?-üsµæÍ›6lÙ³fÍ›6lÙ³gÿœ’óG‘س(ý,¢«×ªg{Ïÿ×úÿ9&¥¿+¼ÆTýBb7§Aã¿çØ¿å/–X÷Óá=)Û:žEôû…7ê-j¶vœª¼Ô¥zý,”fÍ›6lÙ³fÍ›6lÙ³fÍ›6l¬¼Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ üêœCäT¿ ô»ÿ»'mÿkyËX›ÉúM·Ô0Æ{[T¨õc€ƒð×¥p \y¿VòÊ•éõY:wÿwu°®ÞMTù·ž¢ð:ÍaEô£t Ç.ýYÁÕùì=òS‘o>@Ãeà úž£a5v XT=ü:flÙ³fÍ› ôûù/.®£)Æ8cSʼÇj|?jMpà ¼Ìi¿‡®¿ñÈož›‹iŸ÷+e·ó|})]ü~ŠöΗžmüºþ†gÎÕ&Ÿ¢´Ú +íö#ÿ=ýòmÿ9hÁ(<ÉSOô2?á—$?æ¿—\4ãþã-6¥?ÝK“¼„y¨ç?.u ÿòiro›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ‘ŸÌ9Åùå«íze,-b,wbB¨ÿ‚#!?óŒÞH—ÊžQ[ÛèÌz†«#]Ì fû§AǧÎGùm|Ëä=A~15¢‹¸¸uçãè¡>ù$ü¯óD^pò®™«Bí š Î7.ƒ‹“þÉNJ³fÍ‘¯Ì­Yt/*j—Î¥ÄV“#©øŽü–²“Oò&‰«ÁÖÎGÍkø×!AÚM.õNüuÐ4Ûý1=ê9Ú'¨ËÍ›6lÙÈç! =¼·®Ë!ŒYk6Õ ’UMi¿lëÙ³fÍ›6lÙ³fÍ›’xVED‡¢’*~CÍœþr`²ù“ÈÅ[‹~—§Í<3½çÿÐúÿ9Å,|ÄBòÿ@Ÿj‘û>ØþqQJþQyd0 ýB/´j{çVÈÝ™¯›/:íemÿ'&É&lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6@:à¾_†Ç#sa;„'ð~fÍÅ…´Q:´‘j6À"«ûå;ŽÕ0tw1ÊìŠjW®Ý0m´ln»Š€%†´wÛ$yüÌÿ-/¤Eþî(ýÜú±Î‘‰Q\t`ßÍ›6lÙ°£C'ë:…Gü|ÿ̨ðß ¼Í_NÞŸïõÿˆ¶D<î¡¿E“]µK"(+þì|3¤gœ.ÂùÉ_:Ô|GKÓH5ê8%vû¿ÌäÏþrÈùT>e¯{6ðË’/ÈÉDß—~]qƇL´§ŸÝ.Nræ“O9ùwý[ÿù4¹5Í›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÎ+ÿ9S}quå»O+Øï{­ÞCoÒ¼”M÷|9×ô˧YAh´Ñ]‡Âû±yáK˜š)QÁRpEqùƇÑôýWÉ÷u[Ý"þPÈkONCT+þNÇüÎvÌÙ³dóÖöÞÇÈÔ—,ÖDîÌ8¨úX’$_.顶aio_Ÿ¦¹ËäW}ÿ«®«Ö”½M…A}úíy³fÍ›6sùÉ=/ôåö¡:3Yzwq7ƒÄá†H¿.¿0´¯Ì "ÖûO¹ŽY$‰ZD 9« ˜ê(ÞÔÉ`5í—›6lÙ³fÍ›6l‹\èVZ¿š>µuy- ‰¢$Ÿ…‹¹¯¿L”æÎÿ9…üÏäj'ô°¡­?“õŒîÙÿÑúÿ9†OË?1(§üsçë_åöÂùĵuü òÈ~¿RSôj~Öò7jóuÑìlm¿äìÙ$Í›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÎyùµ{^]‚F +¯ªÇ#ü°Ã,‡îã€üý¢C6…eq|+q=õ™”‡’u<ÅFÃÇm²K4b>2 ¡M¨<_ë„WmO6ÙŠìlnÏÙð–ýºôïôaå”Òʧ×[“RŸËSÄüéJà/3ØýòÿP¶m‹ØÜë·ÀÞä‡É÷ƒQÐtû j%¶…ÿà7Í›6lÙ°£C¹Ô?æ$ɨðß üÊHŠ Àd­G±È‡Ù‘tÂý'b°3 úùÑóΗ©_ùÉ:?òéZp?J%?VMç,òPùPÙ°ßýeÉäUå\ùr¦§ôe§b?ÝKØäë!jn>sòàñãþI.MófÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙD€*zg ó­çÎmCo†ÓC¶:‰#r]¿Ê:gtÍœK‹y3ó¬É-ZßÌv|RŸ±%¸Gz¨ØûçlåæÍœ{þr¥®äò@³´47w¶°0=Ã=iÿuËh½R?åP6öÅî¥+¢êT©oÓ`*õÜÞFiÐлøçmÍ›6lÙ±’CÈÑÈ¡‘ÅPAñæŸÌßËÿÉ=j_ÌÏ$[uÞöÌŠ‚®ÃŸÁSü½FÙè/)y†/6è¶zÔ +R;ÈReSÔ¡ùa¾lÙ³fÍ”=3rÚ¤eæÍ„6ÅG™.GíXâo‡Ù³‚ÎKžbò;Ó•5uÛéLïyÿÒúÿ9ü²ó&ƒô}ÇüDágüâ?åQyfƒˆúŒ{oâ|s«ärرómÐý‘co÷ú²ä6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³f͉Îþœlý( ØW¦pÊ)èúî—¤ëW su¬ÎÒJï<³2ª»1bÉy'À(:³¤þiÐiv„ƒÿ ù>˜?®D¯/¸yšÒúµÌaŽË»ÄÃ~õU?vJ&%õ¯v¶„S[òÒSì\Âô©ìõïò8Wù)vo|‰£HÝVÒ8ÎõÝ¿û›fÍ›6lÙÒ®.ÓT¼‰açn×”œ€â}#n§°ü~R'ó%}8ëë/üE²ç©1¥…PÁµKkØz Ô{×:Vy·òíÝ¿ç&|ê +ü#JÓ€5?ÉéÞµ?vNç+É”^d§ü±°é_Úù)›òçËŽiS¦Z}žŸÝ.N²æF”yßA²ó¾ãî>®ŸÆ¹>Í›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³eAœ+òBÝüÑç¿6y¾w£‹ƒ§Dƒ²DFäôì¿ŽwlÙÄ¿ç%­›D‡HóµVïH¼@Ì?ßR0#¾à}ùÚmç[¨’dû.¡‡ÈŠâ™³g#ÿœŒk‹» I³NsÞjöw¥=2\×è\ë`Ó8•ÅN©šã® €Òî=·¨û󶌼ٳfÍ› õýßÌ:uÆ—v¥ º¢zu£ +ôg$ÿœmÔdТÕ<|înôK©^­*mÜÖ2£Ã¹í¾v¼Ù³fÍ› þxüáòÏåÕìvÄ’$ó Œ¶Ä+O ò?æ~ùˆ“¾‹1slTJ®¥rÞù,Í› r<Ç:ö6±øwÃÜÙÀç'Óó‘Þ…€Õ×áÍS;öÿÓú#ÿ9 ÿ’ÓÌ_öϸÿˆœ)ÿœR~QydGú }~g:ÆE¬ZCç+ÐÈU­ A ûÉ{ué¾JsfÍ”H{åæÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ„ÞtÕcд CQ”Ñmí¦×o²„àÊû¦ù?G·î–VõÞ»˜Á?ŽüÕ*4»Bƃô‡ûý|pÃ"w:LgΖ×îA?QUMv`ñÕ‡aðšxŸ¿%˜ÊòÏ¢ØÛ¤¼šÎBU ‹1 +¤mðvSÕz·ÿ&þuh­èA¶žî•ø.$§¶N3fÍ›6l)Ñ€Z€¥?Òüš °—Í40¼¿~éã¿Ñ‘=ÈcM3‰ RÀliþîZõë¶tœóùɯ8šíú#O„y8ÿœ­Rÿ”žd ×êmÿuù¡-|¶$~Œ´Üõþér}Ÿ5­|ãåþß^éÓû‘×&Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lþdy†?*y[RÕ¤OêöÒ²°êžüˆÈüã7—ÿA~_iòH£ë7¡î¦pj]¤bA'ÇuLÙüÎòü~hò¦§¦É—Õ·“ŠƒB]V«Oö@a_䇛m|áäÝ>æÙ("KiUº¬‘¬Ý\žfÊ 0¡èsþfÜ[j_™^PÑçVýÛÝ]‚ÕHèµÄW:ð9ů 4}[šíúg§úT~?Ç;VlÙ³fÍ›6p/ùÈ]óÉšÖù¡¤-MXï‘Z†H‹»wûE}¶=³±y3ÍVtÑmu4“mr”£±SîÇófÍ›]ßCa—2âˆvm€äç#ô¿ùZ~vÕ¼û|Œö0ÊÑÙ‡$ŠŸ{*PÓ±l8üÍ´?–?˜:_žR?KE™E¥ëFh°eVe@û³ºÁr—1‰â`в†V=Áð¦*>uËÂ+p¿âKƒû_U‡îæø{›8üäú™5Ï%E^!µeø†änwÚmLÿÔú#ÿ9OùV¾bävýqÿ8Sÿ8¢ü¢òÕ+þñ'_™Î±‘›u§œ.Xtú…¿ü—$¤ÐTåæÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6„&ðÙr°ŒIÇzñ©éN¸+9×üä%̶ÿ—ÚºÂhòÀуJìÝák“_/ÛýOK´‚„zpD´=vP2=ù¦æ=&Øöúý…zôúÂx`ì!»â<ÍgñP›;½©×÷oôaö:ÚÙ¦òé)nTæRHÿ†ü™˜Ék«¡Bê×l𓌣çöó¡fÍ›6lØS¢Š]jó?äÔxm…>bþæ +ŸU|6Øï¾C¼ï²i»WýÉØv­?~»çGÏ7ùÿ95ç +Žº=…µ#Éßüå=Gå/™?Rz}ã!M-ü¹µ?Üe§jº—ç“̃ù¶¿ã?-Ó¥oëÿ"FN3fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙÈç(/Ðy%ôvçÕ®-í"EêÌÒ?/…NuM+NƒG²‚ÆØq†Þ4‚¨ ü +Í”EsŠ~AX\ù/\ó'“®A& ¡yš9ëM»‡;flÙÆ|ÎmµoÎ$‰¬´û¹)üÿ +ýõ'èÎËœNø¹ÒuŽ{­ŠvÛë1à÷ð®vÜÙ³fÍ›6l ©éÖúŤ¶7h$‚tdu= +°¡Î+ÿ8øåþ±¬þ[]3-&7v¬ÇíÁ%GaM«îNw<ÙDÓ®j¶Ö5›MÎ]BúEŠÖ/#žGSž`É~oÿœ“R×-õF²Ñå¸h ·”Ié¼hBÆþõÏFyɶ¾@Ð-4+J2Û  ô¡w;³v9_˜>P‹Ï~^¼Ðå*¿YŒª; +…qºµ=Žy¿Ì¿—^ü’±¶ó ZÃÞÙØIktg +¨N,HáÚ™éÿ-kÖ¾hÒíµ{&åÔk"ûTtúØg„6ôÿ\ToõXhkþ[õ}›87üä»õÿ$I^ hjê”Û¥KçRU¡W`6 ü×Rt‹j +ÓP°ÛþŽØá†Gï@>h±¨©úÝÛ~ò +ûäƒyc‘Ó"çÔò¯üÈäÙK_ÌúJ(U¶Ô†Ä<+Oø\ê9³fÍ›6G4ÝfÖßT¼´‘ˆš[¨¼Xî CÖ”xä +|ÄH†*~ùQÈwžXôÒM?܇ÓûõÛ:>y¿ÈNGüäß›ÓzÀõÛaNÿç*‡å/™TÒɺwkÿ8ûCùgå´~£L´÷ÿuŒèóa?ã.SÆûþLŒ›æÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6l Àôß5@4îsƒ~nJ|Õù¥å_.Ú©˜Ù;^ÜÆ~ §;ý¡Ço£;ÖlÙ³‰ù²úo&þpè÷ÈÄZk¶¯g(=9ÆIM»nWï9Û3fÎ1åhîuνzå˜,ôëhŽ ¹ Oø–vlâZ…WJÖè#Z:ÿ½t¡ßðÎÚ2ófÍ›6lÙ³ƒ~kÛ7åßæ.‹çßP¥Û >ùˆHø ï¹úîè܇ ApG†;ÄS¿¶rú_*;:Eô¡Ñ™-™€*wd7óCó*oÍ»o(ùfÚê6ÔgHî öîb¤Ôí±ýÙÝ|¥å‹/&höÚ.ž·¶N+^§¹'æI8o› ¼Å£Gæ-.ëKšœ.bx‰"´ä)Z{gÿœq¾P¹Ö<‡ªHLú|ÂX¯ÅíÉ{q;öYÜpŠ?âI >©ý‡Æø{›8üäù)¬ù)Ç/‡Xìõê3¾gÿÖú'ÿ9ž§å·˜WoøçÜý”œ&ÿœPãÿ*‡ËDdï6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ²‰ +*z ó¶¡ÿ99­jºüš_“ôÕ,½Sw™Ýv?8ª×ÄŒ«ÎDy³È·¶GÏ^ý¦ÝÈciâ›Õ)·]¶ØžžðÃË=v×Ï_™šö¿¥ —N·µ·²K‘º¼ŠK·ôööÎÕ›6lä?ó“Ú+\ùIu»rRïH¸Šê7Zò ++ÐŽ›ýÔ´mRÛ[°ƒP³q$¬ˆã¸aPpflãÿ•·­~bù¿U‰ÕRKk0ááOˆ~9Ø3ŠjN[HÖ…(£X #ëW¾õ'Ç;P!ºeæÍ›6lÙ³dóÛÊwòN¡¦Ú!VhËŽ†6·  `ŸÉŸ87ž|§j²Ó×h„r€m>úM+ôäÛ#Ÿ˜ºÀò÷–5-L«1‚ÚVM x({uÈÇü㶋‘ä /äÓÆfÓ«¹$×Üt¯¶tš¾^lÙ³‹ù¶Y|£ù¹¤ê_ÞC­[5‰СåQóÛñÎÑ„0ùÙg5?ï$]öþñûaöló÷üå3ðÖ<”wjèj í'B3Ð9ÿ×ú)ùúþ\y‡ŸOÑ÷7ýƒL"ÿœKãÿ*ƒË\X°ú˜Üÿ¬Þ9×2)oëÿ®9ñôGCÄ +Ö¾¬•¯l•æÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙUÞ™y³fÍ›8}¯”ì¿0|×æ3P§§5¤Î6õe(ëàÊT0?,4¶—Ì>V󾉣뚨Ômî­îŒlÖë‡Vµ*O.JkÛ|çÛ{æíOU-[è]¨E?s ÒPn@çRÈwæ S£ÂÓý:çÖ˜;#÷ÀŠ,M7úæõÿ. `Ï)·-*#N;¾ßìÎD®ï~£ù©m $ ÝE¢„Ã8njœèNâ5,z\ c¬ÙêlËk*KÆ•àÀõñ§L›6lØQ£ +^ê?ñ?äÊa¾y™9ÛŽ)4g¥{äCÎѫç×í OO+óúÂWþ¿ç¶tlógâUÿœósÝ´k_¢1ø€>ìè_󔟕dÿ˜?†Î=£Çùe奂ߣ-:îÆt‚ù¢Ý ó‡—ÝFòËxÍóú°_Ô¹:Í›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6l‰~lk“ygÉÚ¶©ná%‚ÒVBÆ€5(ν27ÿ8ÙäÙ¼“äK+k–squ[¹Óá3h)Ø +d«ó'Èv?™^^ºÐ/þ~ ( ÇÙq^àþÿœ|ü¥¼ü¡Ð'Óu Ò{‰îRc¯´ + TZ +œê9³fÂ=èãÌ]Ô4➧¯m*I*iOzä'þq«Ì\ò „OA=Ÿ;Yv*c&œ‡cJgS,Çñˆöq¿ùÆ9!Õ4Ýo[„[ý^éª ìùÄï“–—®Jƒ¬‚Ãýß{øl홳fÍ›6lÙ²ˆPôÏ6þ_ùïMü““Íš«+$Z}ɹ´F¥\M¸Uñ$Óèß&“_Ÿ±þ`\6“­Æ¶:Ább€£ÆT8a_o½°güä½åÌ~E¹µ³Rò^K°üoøÔŠS:•4…òþ‹e¦¨[A{ + +ª€~󆹳fÍœwþrNÒ{M3Kó±£éz„30¨cǨèvpàÜW "¢y’]÷kHÿ sgÿœ¡‘¢Ö<–ñ€]uxȾéò›S?ÿÐú+ùùOùW`­ãŸqÓýCóÂùÄvvüžòÑ~¦æ»j~»tλ‘¸ÿJi·Ô"òUþœ‘åæÊ9y³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙF´Û®rÿÊJÜkÞ`¼jÖI-”WÀ!}¼½Æ~kDðy¿Ê7ÊÜxÝÏÞƒ÷‘ÿEÅ.5Ì]> *Ð-ýÁ=öH`ñ&ß:†C5˜¦‹ J_XÔBmƒð†öƒÌÖF›ýRìÃÁ‡Ø7ÊÔý<^¿>f¹üÌ?¢|ëå}^(Ùܽå³qÕ^ Û€ 4á\š<çÌ’,¬–kýï4e2ä€ø˜ÓØw¼÷ ùŸÌ>]Юµ½2?QÈ_€@4E»öäÙ¨=re¦ß¦¥n&MJ°ðe4aôL”HQS°L|Ê&ê6òÜÔÐZ!÷ÔR=ÁùW7×õ‹oŠ[D‘ ;E-X}ò8Ë:͵õåùVZá@WøZ¢ê +ê>Y%Â3rú´|ßÑׯJûdGÎÉÎ „µ5-<ì+ÿ1î|)<×äŽcþrƒÍD€è¶`ŠÿÆ*|ó¡ÿÎOïùSæ0kc ÛèÁóŽLíù]å’ôôe¯Ùéýاá!^mb<ÝåÀ{Þ½iè™5Í›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6láó”·2jÉ yR'<5MJ4ž5Ø´kBwð©Îç1ÛFÄ¡cE + l1äW/6lÙ²…6Ï/Ü~\þpy#ZÕ¢òKDš]íÓÜ)g‹~F£gÝHéô`}SËßó‘:½œÖ7RÄ°Î8±ŽX•€=hÀÔ}ûÿùÆ?yÖ/2ßȉö꦳:¹œJìi¾ØóÛò~]zÚ/1yJ˜´ö‰¢h›‰tM¸uá?à{ä>?̇üäO)èw'Ž¤oš]B4< +5­NëàÝsÒàS¦^lÙ³dOó_D_0ùCU±zQída^̃?záoäN»/˜¼¥Þ\fôŒlÌjO¦Å+_£ ®ôk][Í‹=Ô|šÖÚ7ˆÔŠ1‘vëÓ%™³ÿÎQÈ#Ô¼šÂœ†³ ߣ/nùß3ÿÑú1ùí'§ùy¯žãO¸¦Õýƒ‘ïùÄ¢ä÷–h¥’¼C0?~uÌŒFOøÊQ]¿GÅ·üö|“æÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6#u(Š'biEc_ + 柑h¤k²«Q1‚6Ž”W7çìòXXh÷ð’Rß¡fWS×nÿÓòœ[üÀk¥`Ë–òmãuvî?ácΫÿÍ2£EŒ°&—¶?õ˜7o?å&²©d§³°ø¤?äÄ•b~YÖü™¦þPEåCL@‘é÷_T¹ +ôzo$‡¹õ¸9¯ðΡ¦…³Ô®íºxÜ¿´8··ÚZíã†øKyk—mfK H@õxíÍ›pµ¡@ûC½GjÔàpˆP6¦nKJ×l"Òì-n5Kû‡‰Tž>.WâB ùöñÃü'ó;¶ˆš}ÞϾE|ä¬ÐÙÜi¨éäîü| ¦ýk <×ä’?èh|Ò I:%61W~¹Ñç'T·åW˜Â’Ôdéôbßó‡å_–Äi–ÛŽŸ`gIÈW›ˆÿyloýåïýCœšæÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6q_1ZIæÎÍ&ݽN–æE+Uå3Zx;ûgjÍ›6lÙ³fÍ›6lâZǦÚ>ºkÿKz1§OßEôí°ýy³fÍ›6lÙ³c_§Jûg³ü¾Ó¿5ζÆÓX»´`ž|Þ>$Óv<ºçkÍ›6lØœÐGpª`{ƒÔg!ü‚Š/-ÝëÞRf´ýAÞÉÝa•AR+¿è±ÊK/_÷Ž?—÷‡¹³€ÎSÜMGÉÒõ ¬DiJ×âLïùÿÒú1ùê¢_˽|Ÿ£îü!È÷üâS+þPyl§Ùú zҎ†Ç™×24†¾pxiéÿ'[$¹³fÍ›6lÙüâÔïaÓ,ô.áí¯ukÛ{D’2Cª–ç+)‚"Fßêÿ“Ò>á4ÝoXŽïÓAšùØ )U¨;Ê•%ü·óYó¯–ìµyÓžTã2V¼%BRE>:œ“fÍ›6lÙ°£© ª¨ÒÍ%B"R¤žÀx“¶?O¿MB.j +°<][ª°êùûà¬Ù³fÍ›6lÙDÐW®2 ã¹A$LF â™³fÍ›6lÙ³fÍ›6lÙDÐW ïu›éZÏJ u4’fHý€ý§öè;øbW^YšéIrK©]Š+ZíƇ¯|~M@"Ó5 ¼%Õ/YjÙdà6êb?ŸVfëÊÁÁ*a¼²JߪÔ×°å¿,4óeæ}z"CýV-6ÓéÊ8K°¨ÞJý9Ó²ù¯_Б*E퉧Êæ<‘íA€óNž­m/)ã^p~É ò˜¦—_µ)ßþ26~dyNçÎZ#XYJ]¤ÐO È¥”<2+Š€A¡ãM°ŸË^DÖÌ­æŸ4Ïmqw¸·´KeuŽ Ʋ°Iå' ð}ù‰åç/-j)Ù®`uB;8Cô0 +<£æoñF‡¢yG¸AÊÝC0âëþÆTÉv©~4Ûgžœ™iÅ™‰ I ct›ÑöËÞCVvñbjOßøg1ý%¯~në·vú-üÚW—4Ö6ísn©êÝ\+~ð#:·£¡RGÚo–ÉùK¬ioõÌÚ”74<…ã-ÜNÊGž\3ü³ºóï©Çæ‹x¡¾ŠáÉnÄÅ*úIG@ßû©èro…fÚÚ3Z~ú?ב_93-½™_ú¸éõÞ›¨ý~YÐsÍ>KzÿÎQù 6Ñ-ñÿuéó“KËò¯Ìco÷†^¸¿üãùUÞYà(?FÚíþÀW:>B<âWü[å ßïÛÊ|þ®Ù7Í›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6QÎÿ8÷;ù‡Íþsó r‘$¾[hds¸H¹| vlï9³fÍ›6lÙ³fÍœKU*š>º\Q«’GïâñõgmÍ›6lÙ³fÍ›6lÙ³fÍ›6láúí¿øCóžÃT“’Zk6­mÈt3( î\è7úÑÓ<Ù°‚YͲ/(Ö¡?x~'ðþ¼—æÎÿ9@xêþK;ÿÇb!Óü¤ÎùŸÿÓú1ùæ§þU÷˜(MNŸpØ9ÿœ?~Nyn¿òÌÞï×ðÎÇ­BKû_9láúÀ}=W‰pH™‰$š“Z€í‡k½r+#[AÐÑCÈGŽä ü2†‘«!õR?f»x’wÕµÈ Rky}š&J{¿V$|Áub…¯ìÝAýäL%Mº“J8ìpî)T¦ €v÷ÇæÍ›9¾®_Ì?™šušPÁ¢ÙMw)ÿ‹n¥ù…W?íçHÎiäw>Tó®·å‡mï8êÖ)ûÏ‚u)@j•/6lÙ³fÄo.£²ç–¼K +‡o|¥ZËSysýüÀ|'ýÖ½|»žçèĵ…{~‘Z…V`T­9|Òµ¯…F©é„ðê7×DÜÚ[«Û“D-!VaÝ€¡?³¸Û¶×yζ×PIm+}ŸP¯;쬤‚}¶4톀ƒÓ/6lØ_«kvÚ*¹;€nÆHQ¹nOl§ÇëW&ÎÂy”ñeŠ“ãM¿ g¥¦z5ઢEè(X{øøüðÝX0nL¼Ù³fÍ› í|צ^ë7:2†¿´Ž9fº¤•â}ëO£¿Q‡³fÍ›6l,Õïelm .fâ¥B/BçåØxûWÙØÃcÅ _Ä÷'Äžç$SÓ ?‘Mêù*Î÷óÜËÔŸ·<ßç‚?;-ÚãȺ¿VŽÝ¥þ1ÿñ®þLßpkš¿-sªJ:×áŽ8Ðw>:>C6•ÛËôOµõ«?úˆOqƒðŠú¿âKË-ßí—jo÷Œ=ÁžTnzdgü©äãa¾lNY=>>ä åÞDOF3yF5!­nÚîØ6Ã…ÐõWˆðYƒï“xnF½ujË_FÄïÒœØQ÷–û²=ùÃæ{Í/NƒBÑXoZ“ê–´ê€ï,Çü˜£«|é’)ybËÉš=®‰§/kHÄk^¦Xø–;Ÿ|7Â}‡éHwõcÿ“)‡Sæ` ªTûèºÿ¬?‘_8*µ½¡e­5 <ƒà~µÿÃ:y—ÈÖÂùÊ_5¹«4[Fl6…i_ö9Óç& •žc¦ÿè2ûbßóŽù+|³Fåþã-Eç˜ùçGÎQ¯E®Ì­&âæu:H–æ8 ôèÁ¾¨ 9~ëZŠxçWÍ•L¼Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6l-ó.«…¤Ýê2ý‹xdïO²¤õÎiÿ8·åôÒ?/­.÷õµ'’îBE ]zš(ç]Í›6lÙ³fÍ›6lâš«¼zFºE6Õö®ÿîèºìVv¼Ù³fÍ›6lÙ³fÍ›6lÙ³fÎKÿ9“iºFæX#&ËT„¯ ð5.òö±¿«BØ0‚âÂÞTä(Hvb+¿¾K3gÿœ¤àu/&£Öb­M*»×;îÿÔú;ùÛ­ù¯§ŽŸr:WýÖ{ ˆÎ¹ɯ-“ÚÙÇÝ+Œì¹ÿ6ûþÏS’\Ù±’ij!¾Ë +,òÃÓ"Œìa&©©¬d¦çýŽ«èkM²ñ“JFÒHB¢‚XžÀuÎ=ä?$Cù—`þkÖf½Œê3Ë5´pßO¥µiàŒª U Ó¾O¼£ùy£ù&{›8LÓÝðõdži&v ^#”…š‚§jä›9ÇçÉåñ§yÖÙ I£O[€£si5zû ã'û èÍÌk,LUX‚qÍ›6lØU¨0½¾†ÄtJO'…ü üÛö'^ÞÁ§Á%ÍÌ‹1)ww4UP*I' JÕtÏ8ii{a4wVqž2FÜ•”ÔôŒ +šEõÕºXÝÉÕTn!¹È±&”¯íSïßÕU°Ä¯, Ô"0\ xÛ±ýcÀûà-:g±˜é÷ ]©Ê9€º×¡=Ý{øŠ4Í›j:¨³)+êÜÈHHÁðêO‚ŽçèíˆÚhžœRµÓú·S¡W’ò¨ì£°úNøÿ.Ý5æ™o+}®£uØõ÷—˜i?Õ­7¬Ó§CÙ>3ô|4ÃaBò]ú·H¡«Èß™Բù¶‰'—¸HFº³”7:wà Žê,ßâ=TÐ}VðŸ—(ŽH°W”G-ßnnŸñ‘°ç65”8£ +ŒçeVò×æ&«¦Öú¬i³¢VhI>4(ùäëHÑàÑbx­ëÅÝœÔ×v5 ö`; ç¿—KŸ|ͨùêDo«Ã];NçÚ8›÷Ò€z%øj?es¨æÈÞ™¦úšåõç« ),c€bEFëÐÒµ®I0§Ì ›T§ûú/ø˜ÈÇ›µ·_÷¿Oéÿ1Qd÷<ßäÞCþrÌãp§B³'~¿t΋ÿ9*Y+|ÆW¯Ô&ýYóqˆÿ*ü² qÿq¶Æ”¥ @O†t¬„ùÄæ¯-57õîÅiãlù5­rò®bi—ŒiUÄióË+t ý9ƒƒO|ºŒÀÔTf&™®^lÙ³cy½òùi\ »üÀòÍ„Íos©ÚÅ*¬2v šƒ‡V÷p]Ä“Àë$r(ee5„S±Å³fÍ›6låó”>aýùu¨ª€ÒÞ´E5ÜÊiµ;R2yä%t/éúj©Amm tn£Škï\;Í›6lÙ³fÍ›6lâ:²©ÒuõcËýË€~™b>Ý+»6lÙó7æ–ü™*A®jYÉ*—E•Â–Ò£ÇygÍú/œ­ÚëD»Šîn Ñ5@>o\¼Ù³fÍ›6lÙ³fÍ„¾sòÜpЯt[LwP´{HØý‡9‡üã®»>³fÞº=ݪڸSñ®ªvs¸:Vµ±nŠheC´°Q´©ÿ $¾Só=—œt›}cOnP\ p̾*ó)Ù‡ˆÅ<ÇpÐØH‘’²ÍH£ Tò„}Õ®…"´!RQ@Qì£9Þ¹ùÓj×’hþQµ“^Õ#V@­Ô¥ïJ…3¢hzDm¦[Wѵ‰!JõâŠVè0\Ñ,ñ´N*¬#Øáo•¼µeäí&ÛEÓƒ [DÆÔÐxœ5Èwæ¹ã r¨]Yžƒý"<„w¥G˜¬«ÔÛ]Soò¡ï‡˜/ÊD.:Rœå¥?ã#aÆlÙü챺›ÊÒê6 Î÷K–ø@5Ã0í%úp§óÏM¯Øiþ\ò¬¡µ/1Æ)Gû¢Õ€2\7…ñO#Ã:—4 /*évÚ>œž­¤kk좛ø“Ôžç sa>Ôµ#O÷l_òi0ã +<ÍQh„}ÄWöÇêȧœÁ6¶€ÕÇMÿ¨¸³¡gš<©ÀÎRù‚¬9~‚· #µhkCþr9Ÿ–bVèl&ÿˆûà_ùÅöfü¦òÁj’tè:ŠvΣŸ:<ÏåªtúÍÕwÿ—gí†z—æ'–4K‡´ÔuK[{ˆÏÅ“ eÚ»ŠÔm…š§çO‘ô›Io&Ö- +D¼ˆIUÛ­6U<Ñ‘…ÿœ¨ü½éõ¹ˆßV–‡åðâÚüäïåæ£uªß´2NÁÖ…ãRNÛ³ùœ–¿æ‡“ÏÁúfÈ1¨é ÛéÎ)ùã«]þpy¿Lü¼òÍÁŠ8ÔÝ^^ÀüÕ”€R:mÔõeÂ=cþpãÌñYË&Ÿæigº©œÑXû°v"¾4Ãíóó»òŽÁ¯m˜­=X“„N^tŒ¯Í«¾ysþsBÕ5¸t}WM¸ÒÖI M<ì¼cÚ£âØøwÎï¥ê¶Ä?XÓ§Žâ‘Î'µïº’0S’*|°Ô-µvµpâ7hÞ™v ûŒ›6l}›o%ÍÃŽ5,ÌM¹Ï/ùþr“P3´Þ`ŠEò¶¯rñXO"ôZ2†Ì»ü[š§~`þjë_žš£yòÔ¼qÃ';«þe‚0 ñ©ö,FÛdóDÿœZòM¶˜öº­»_ê3«¯'rÒ—`*Êk°u­}ë¯É>ê?•že—òŸÍD2ÄÎöwLûp#’©'n$‡Áª¹éœÙ³fÍ›8Güä¬ryUò§–!ÚïRÉ4VŽåôLîù³fÍ›6lÙ³fÍ›8®¬cF¾Òéþ–;îwõb)ãá\í Ó¾^lÙÎ|Á§Új>yUº†9„zj•õ5 ˜ô¨4ÉW—¬mô÷híbH‘…HE + ¯Z GÏ'^p]kd».7ºVdãC]”ƒ\‰y]óˆóÚ/šæ±š?ª‹˜¤n„S¯#?6lÙ³fÍ›6lÙ³gž<»¡jMüå»Ó­I¶±ÕPÝ©E Wâe5û#‘a·M³Ðù³ÎQIJê~NöN±;Wö“¶wÊ{çÿÖúKù¹Cäs—O¨]xÿ¾Ûà Ÿó†…åLùp/ky>ÿYó´äe‡/8 +€i§žßñhÉ6½Ôm´Ô]Ê‘!4äì}äŒ|Ï¢H7½· ÅÉòñÀ¶^Qó@x.£±¼õ”«9aáÜç4ò&µaä µ-?Ì—±ÛÁå°±Æò±øíd«[?‹Fhv©ªäçÊÿ›ÞLóéú®}“¸ ÛÊ8JTÿvôbðwåû¦†9ìX™ZÑÊ©ã;¦äЕ ÿW!^]™|ÿùy­#úšnÔ­ˆ5V¹”ÇcÁ8Çÿ1§U-ËdQRÕù`a®iç¥ÄGþz/Ó߶Rkº|” q$€¿¼_ˆž”ß|œ«óDÔ<£æ0ô8àÇ ·Ôí¢Ý涬ˆ¿µ$&¤Ú]²ueç-PÓ­uk{•{+À¦Aø[—O—zק|:Vä+„žkº†+xa™Â$Ó„±£—"7ö\0}NÇ‹š0»Ö®´¥+〼¯t§E ÆQUwû Ãø ½~T¸ §ó)럌Š +F»±5èì²Î{æŸ:_~bÞ?”<ƒp¡WmCTâŽÙ AŽ&5Ãv¥Bu;çCò¿–tß%i0i\~•¥²ÑEjOrÌz–c¹=Î;Í\²óŽ‘s£j ÎÖî3ŸB=Á¡ùÏËßš¡£ÐæÕ4ûdE¶£‘®LcnAĬ½ë@w-ò/’ôËÍ<Ùé@sÎyݹË3ž¯#ØŸ~ù‹òƒKÕ.›[òÅÁÑuºò7V€qøMØ”ò…}ðüÏ×¼‹ ƒÏÚiKQ@5KRÛ“ã$`z°ûìËïL–ùC]Óµ‡»—L¸ŽêÚGIÒH]YJȃù}ÔáÕþ¢–Q³¹ Ž¬Ç ûÏ€À0Bšo-OXš5— 1 +‘­~È&ú“×ðÈn¥ùí¤\Ll|«mqæ àx”²Jćþ,©¤žôÀS~_yÇó!9yÏR:m‹×ýÇiŽTÿ“ê\ìîGR*×7å/™o­u Ï+ëî[TÒ T–W43ÅJzž¢HØrßfV®yÛÌ°þljóù?Ë¢KûYd´Šúæ ¼0Å!’e2tg}“ŠÔøíQ×ü©æÝ:]2â—V3«FËèÈQ€i‰bÿ¼ ð¶Ï £íG"õVCµÏ$\…+/?þiÅå¹×BÑ!:—˜î˜,ãýš¤™ºGêIÜöÇþ_y"ÛòÏL¹Ô5k‘q©Ý¬j²l€è?’(Æʽ†ø`?5|œEKZÒ•þõzd3Í3­Þ¬<ëä ˆu JÖ1ýŒ2)76àÔR‡icÜÆO_³ßcäý_ó–å5:E%ž€µ6Ú;’¬þ]q"­ü±t^õ9Õôí>ÏGµŽÎ‚Ú1Æ8â@ª£À(Éä+JÅŸI²,ÄÔ›hêkâxᶛ¥ÙèÖÉga +[ÛÆ(±Æ¡T|€Û +ï¼ùå½2w¶»Ô­aš#GG™-wí¶r­óË_—pºÓ†©lt dµÔ.&B]ûØÉáY~ÚöåÈgIÿèúýÔRYÞÅ5¥ iæ‘L`…C8µ‰™“šô-×qN¹Î|çÿ8ä3Úð³´:}Â+p{fâ ·0kÈ=»âóŒ‘×ß”v—:èôµÜ FäIö@oòÄ~ îY²5ç_ËÍÏÚTúF¯l¯û–PÃvua¿!žuÿ•EçßùÇ!qæ(Þþ’Ò!»éåO6„š’”,;”ïÓÈšúOŸü¨¾d´•T$u¹Œ´R«'οgÄSòši¾\yô°ê“pŠggp9;)Vn$ü4+ñ{œæÏÌÏ,yàM{R‚ѧ£59(Ø‘@zWÿèa¿.ÜÑ5ËJõøœO2Çüä'åÐ?ñÛµ#ýnŸ1JåÿÐÃ~\öÖíNÕÙôÎmÿ9ùçåÿ0yRO.yRæ=ORÕÙm’8O"ªH%ˆê+Ð}ù:ò'JÕ¿.lü«"cå$T䲃ÉÝ KWæ2]ä i—Z=¾‘¥F8Àœ ¬75©,{’Ûä—9'üägäðüÔòøú€Ž-Vͽh¦`ÕâÄ•]ÉnÕï‰ÿÎ8~oÌíÐÔ?w«éÅ` ¡}¶z÷¡¯:í +ì:vË5¦Ýq¿!á–êOÑ›r|7Ë'ˆ®pÙn!ó7çÜQ"“úJ~L#œ§`”…žw#\Ç0ËÊ$ŽÙ_ã–+—›(N^lÙüк¿ƒËÓ.—pmnå–Þ™@,†YQ*¨¨ œ²ßG»òÿ–u«;»§º™58ÜÏ Ø3Àõ4ù¼>ŒôlÙ üÄóüžE[U‚Æ}FâíÝR~<þäOű Èg—üͨy£ÎÍq¨is鎚o²7*L ¡>?×:v”i)ïðÿ‚µoîGúÃõ„igþwò£jéuÛÚ~ùÑ3fÍ•ZåæÍ”=;f&‚¹¹ +Ó¾jÐo¾C<ÉùÉäï)_6›«j ÒS’0jŠôè0÷ËždÓ|ádšž‘p·ŽH µê:ƒÐ‚<ÀÑ¢·™åb£’ÙÇF§JÈýH3gÿœ¦s©äÇ¥@Öb¯ü}9ßóÿ×úUù¨‚O&kJEA°¹Ûþy¶sŸù¶ ù3åþ;ÃþK¾vüŒy·òïJóœñ\ß=Ìr¬ŠÖ×2ÀJ±‚ce-¸ï„ò£<º ‘q©Žd~”»øiØ~÷¡Äåüƒò´óÇs3^Í,$˜Œ×ÓÊ‘BUdwPiµiŠ·äo–ßfõˆëBëNU•8ý®ÕÄõ_ȯ.jPúcÖGVç+ñ(á@;xW~øI/üã?—¯5+;Û¹®e]:Ú8-ùÊŃ#×jh|vÁ÷ó^Z¾Ñ Òu6žö;`}3$”"¤š7^´Øûõ /þqÇËÞT³Š&¹Ô} aºU½™E$5ˆÀqxŸU9,ò_ä®ä{Ó´ûëØ­½GtŽ;†U@Ç`)ÔÓ©=Nøh¿–VŠ'_¯ê.M]~´Ô$Š¼ ò-wÿ8Ýåél®¬­æš$ž5Š?°Þ’…‚¢­ZWs_|ßóº ’ÎÒM1ŽdDâ`Ž"†Œ 0ð¡9'‹òþ(£&¡¨*( +ºm€Û¯\N_Ë‹y¦ŽvÔ5ñ+þ”Ûr=²aùå×ÔnµÎ¡ÈddŽíÕLò +ÈÀ-ÕHåǯ#‚µ/Éý>ú¶¡©jòéÍJ7釤E(„|> Ûö¶ß"ÖóŽ^S84—7öñEÎXnçiƒ1+ƽ§µAÉF­ÿ8Ãù}ªÙÛØýI KbåZ +¹jU›rÊ;W§lжy?ËšûGÚ¤1¤NêÐÞº¸-ÃI'’ñÖ¢½2ayÿ8ߥùŽÊu}CR˜ ¤·’?µà€Ôn•êjþ9 µü“Ótèc¶Óµ-NÊ—ŠÇmué%)O²ª§©4­qWü ùÓšÝo¯¾Û×m«÷áu¯ä•nýÊjü•@¿O>ï– +Ô#tMDÚ+Ïvaµ5½ÃH„…`«ò^\šµ§µ2ä7–™ÒF2óF ¤”Š +ShÅAï\H~BhöÒýcNÔ5+ ø”gµ¸X‹)<¨ÁS‰ø·•4ÛÿÊ¢P¥F½­n)S{_ø’‘œÓÎßóŽVƒÌV[Kwd—¯!šHnÚ%‘ ¨êzӦݲe¤~J¥ÌK4ÚÖ´_œ %éfQPjIZÕ©_a·Ž¾ÿœ`òæ­z/uCS¼+Ñ.n½Uîz:‘Ô×%×–‰-ƒiÑj—öðÅD\|8úq­)‘­Sò]ÙK`ÖwFPò]³-[­Pq¨¦Ô¨È§ž¿çô;k(µmOSÔæ{xE¼Ïõ½2 E'>? OâNL?)ÿ/ît¯.ÁÔ.-þ&ø XQ6øFÂ6þ]÷ë†úåÆmkfÚœòElÎÃìÍH  âw©5ðËï%®£o%­ÍÜÒÅ*•eq)­AMÆA‡ä¦…F­ªZ£E ÉP#â¨b¿d6ÝöïˆþUþN¯—`¿»µ¿¾¯¦%gy"y¥ˆ}†g(Çzš ¶¡¥pb~EÝ鮤ó&¯ÅÑx\ÿ 'âjFý”aHÿœ[Ó$ÔîuõMšæ5ËpRFñ;(¾úptóZ:N­«—îEô€3ò7ä”~E†á,õ[±-Ô¦Ie"í¿ÂÝڞ톾aü½Ôµ6âÁ5»°gŒÆL‹ /j“±ñËòÂþÇŸ§­ÝU£† DVý# +Ö2]ºp>©ù8u{†º¸Õ®Ì¦/IXzhFäÿºÕ*=°°ÚÄUuIˆPiªj˾Òÿ#u…†Åï<Ë©$öጫ ä¦âSØñÄSéÿ’·úbÃõ3jÉ$aù1–7‘ÑdG§çíLCË•ÚàÓË?™uˆ%y&b¬m3B‰¨¤nð{eùke jâ_QÚFy-íY‰cSÈú[ýØÝCòÂçRµ{+LÍo&϶v¬¥OU§¦)œÊÇþqCIÕÄGXÔ>¢·V +§§HûqãCŪ«Z€L–ÈÝVÚîÏêžeÔc²µGQº)Z­PŠ©OWåL–i~GÖ4¸½óôËRk2@íS×â1֞ݰlž\Ö$´¸µi]æB¨Í 4B{Ð ®EtË4éÛÛG­~âÚÍaTé¼€Pž@š“_¼6ù[æ½>îÖêç\õÞÚÒhy´Î^GRw`~I®ùwÉ~cÒtØ­'×gyP±Š'Ü’z²ò4¯sŒµü½ÖìUV~ä•šI’(˜þò¼‡MÇÅðƒ²øl2¼ÓäM_±cXvS,.CÁû¯Z…ê +Ô{ÓÍäÍuÅYd©ßý3·€þÚâ-ù{ª½ìWí¬9’Þ5W‰æT±#ý€èGðÄ/<‡æ;‹‹w]m‚BdsÆ^DŽ*¬µ£(~'¨Â¥ü–¾‘XÍ«8•ÙŠ#¨,ÌI#Œ‹JƒÐ +|¹?$®øzpkw0wç1 5¨ ™W槃òÛα\Ë;y¾èó +)õKb>+E4êG^§tß&ë–k$·ì÷7l¤ AQz‘é TbOí0¨è\\ùÌݵ®ßòÉõÂÝËo·Kƒw¬ÓÔ¸•ãr·ÃÔŠmû#a†#@ó@ë­)ÛþXÓ¯üCüÁùW­êúÜ2^Cq¼ÍÌ’Û‘Ä*@ª²w¬×›ò<ÈÀ-ͺÆIfV“‘>Íëýø?òçÊwÞ^Ô5(EÀXRéX¢EA"˜W¯&r»øÙÑð³§>©j`ŠOJNJÊÜyT‚*** 7w»òn­©‹xï/¡1ÅsÃúVÌ¥½@¿¯J²Šš²cžiòÝOüå6·¶Ã@ƒöQýÙÓÿç#PIùaæ%$l&ëÓìàùÅY¿”^X`Iÿqñ +ž»TgVÎKùûçí?ò´hÞjÕÑÞÆÎíÄž˜«(’@ÔïBsŸŸùø7åvô7fŸñIþ¾.òüæå—žã¡ÔRÌÛ•nvH š¯ˆÉZÿÎ@þ\·MvÏþFŒæºÏüçwå–…¨M§ÜËqÊ ºÇÉ}Šwo“mþrkòßÌú2j¶ºÍ¼)2µfá"‘±ªÆÿ~F£üýÐ"òֈ˭C&¡ëZýmV@dá_Þòñü2|¿žß—ÍO÷9g¿JÊëÈž?ç/-¼Šð­ÅÿÖ’`H{`$P| Ç"éÿ9ÿùPÇyî@ÿŒõWþr—Èþwҭ_«Ç ]BÚ9Òb#Oš—¨?°S«ÙÃ5ß8i?’~o¿—ËW±êžXÕÕ¤–.ÒRKq ¯¦‚´ûrúr{KëŸ2ù¢ V ùD÷׋ê•5ì“êó—ÓéIsqåùD0‚]…ÔMAìIÿo9çäü䇒­|í¯y“Ì×bÂ}rXÑXžû¢›|;ç|üÒüÞ,61yRûN–úòåaÿH”ÕXVàj»ÐTç+ÿ•Çù›‘{y5æŠÑÛNÊ]$oW¨¿akF]Ê©¡Ûß=¾|òëN¡l¥?|›×éÎu«ÿÎ]~Vèw’ØÞêÊ“ÂÅXpb*<>9(Ô5ü¹©yfãYÑuKiKZI<Jµ'+ðÖµ¯læ+¬ù‹IÑí|À|ÛõÚI-Ú8(ÂFNJH5ÙXôãÿ9q¤jÚžœÚ|š„p]•Šhf„)€ Q˜©Áiÿ9qùiî¯umt¿ÞBèÅ‘»‚@#î9Ò.<ñ [Yþ{è>¯ÀIÈ8? ­:ô¿,yâÊðß½íì#»‘!&EÆJ÷÷9ŸóëÊ×~r³òÍ–¥MÀ¹C·Ù’Çá¥G\šÍçÏ/[ÜÃi%ü 4á¸Qwâ*Ek@iãœßÌŸó–Ÿ–º%½â&¯×­ÒN1°j/Nç"Ú§Ÿ|ûæ=ÏPÔ#Ñ×Nž{)ËÅ<…Õ ˆàïAàM i÷äƒÌ7öŸ¡üÀD /áC($Ò û»ì~üëæEMí¾ßñj\xó”Ĩ»„hG¨¾ñðÂo;y¾ +˺†£§]Dg‚ÚY#!•¾%Z«¿Ë"·úäõï•®åž6¹h¦•ÕûMn+°-Än{ý8µÖ¡iiæØÌÒF•°‰˜ +RUîM7þ#Í>oýooqcq´—vÑ9$7îÞUWÚ¿Ë’½O\ÓdŒ*\ÂO.‚EðùçüÇÖu{ zMSËZ”VÒZéRÍ eYVEIq¡;úü2V?ç$¼úoÖ­/ÒöáQ?sn¬Yݨ8 `;«ƒ,¿3góæ®5žÊ+iâH#¸UÀxÁ*w5 þ¼Ÿ.«dÆ‚xÉÿ\\i>x·Õõù-m®"{h’«oÕtaôqȆ‡ÿ9%ä¨,Ö?0jÖÖú”o*K¨ãÅØÝÔ éÖÞ`Ó/"Iẉã•C¡7R*ßÃý'gZzÑÖ´ûC#×›å³ó>•¥ÛÉ´»Žåæ5MT­mÎ?óÍ’y{ËwºŽ™$mw«"±§ zW +?2<õ­ùy´Äòì]ÜÝÈêñK(A@œ¾ßb2+«ù›ó$i×zä×6:bÛDÏõ>+;r£í»'éç ^ïD„´`_Å#Ì„D~gü½™?šué.D2;Mn)40®ÀœùMsmk¥ÜEXá_¯ÞZ_ÞšPW íµ/WÎrÛFU£:|OPw¯ªão–fÎÿ9Dxê¾L®ûâþqïòçÔiN…fKï4ùx ±ÿ8÷ùn‡àÐlÔB`:Ð LÿÎ;þ[íM +Ï©Sé‡åá—ÿBóùnà$š ›S¡1ÿõññÇн~[ÔS@³Ú»ú{Šà[ùÆË ˆý# Z*Ö¿ +Søâßô.?–t#ô ¦æ§á5ýxšÿÎ8~]¤F1¤B‘`ûò5êOÑòÇ/üãåš + ÔõOõËùÇË6%¿@Úr"•(~^>_ô.–ÄÇÕ{ +·ãóŽ¿–àý nAê/ë›þ…ïòäÒº4 J€>* +ïüØÃÿ8ÝùfO#¡Zòþjþ¼0ÿ•äSO÷Ý>×õÄï?"|…|¡.4˜\²þ %ÿœfü·’Ei)ZÔß"”&µ í¾>OùÆÏˇFA£Â¤Š ì{µÔ`X¿ç?,!EFЭä9°bÇƤžýðYÿœmüµб((JSÂœºa{ÿÎ0ùKibty%æ›Õ%V” §Žõ® +ÿ¡büµï¤'RJıOúËJo£Æz»%íò|\Î<ùlNj‹rþ¥=I+ËƼ° ÿœeü»Rœ4±Ä¨2ËF¯Åã‹¿üãG廊%6­?y&Õíö°%çüâ÷åäåZhC‡n2ɸ³ö¾ÉïMñú?Ëz­4±·oZ]ýÏÅÛ²ÿœsü¾Ó[ÔM1LƒsWsQáBÝ=²g¦y+@ÐàXØAkJ~È®ØMªþNyCZºkË»Ó?Ú`îµùчŽ¾J Çêmÿ#d©²¿åAù&…~¤@>¸ðî½°žûþq[òËQ˜ÜO¥+H{™ôùœVùÆËØ e ¥.%ðèݱgÿœlòt´”mÐ\Í÷ý®¸Óÿ8Ùä4`Ëg/Jõ‰7ûÚ¿qÆ?üã7ÜPÛKö«½Äž5§ÚÇ'üãW‘£Ø[Ìw$ÖâR~_kÏÿ8½ä‰"‘R9ÖF¯õÜ•¯€&›{ƒïŽ_ùÆ/$«ÂÞœäF`n$«m@kËo£OùÆŸ$´wzís&ÿ=÷ÆÇÿ8ÑäT¯nW‘'k™Fþ=zâVü¡Ð<­çK$˜¤VÐÜ!yœü~£ +TÀâ :g^Ížÿœ¨øu?&½hWXˆôíÉ*wÛ;ýsÿÑú[ù——Ê:ÂVœ¬nEç›g5ÿœ-Qäö†‹M–zÓþ3?_–w Ù³fÍ›6l%µš=7UšÖCÀ]q–*ì¨C¨=È +žõìٳa>ºgŠÍ8‘;¯5=Liñ?ß²ý8q›6lÙ³fÍ•Ó/6lÙ³fÍ›6lÙ°³Qb½¶»-Æ…¢ Ž¡…Gm¨Ê)]¾üç-cô&‹sz¬QÂqB«É¹1 +´^æ§a‹ùjÂm7L‚–/qÇ”®ÀÎÛ±4ÛrpÓ +µ%k;È/’œ ôfíð·ÙbÉoø‘Ã\ØS½}»OJ‘@¹'`¹;fÓo—QfQÄšÕOU Ѓî¦/b:…Ø\~lØUæõ!ŽÑH q*'Ñ^M·úªp×6lÙ³fÍ›6lÙ³fÍ›6lÙ°—G⺞¤ÿvDOÓá‡Y³fÏ3ùZ2ç(õÆâ´;×·u/ùÈÅ-ùcæ 6?P›õ`OùÅúÊo,ÿã_õs¨æÍ›6lÙ³fÍ› +48oÅì׈«Îb""•1¨ySÞ´öÃW¥p¯@ŽÛNˆéqL${cįu VP~K·Ñ†Ù³eL¼Ù³e5i·\N £˜ •ÛÄu–£wõ+w™‘ÙTnU©â¶²×4ýF#5¼¨â7á&âªÃj\#_1êÐjPµÔ%tû§–5øh½0Hy ý—øSlrþgyHîuH OÇà07›ü×yo-®™ Û<×— 2LP˜V>ìÍì7§Ë¼³¨M}lRå¹\[»Ã)¥9:r°añfÍ›6lÙ³eP¼Ù³fÍ›6lÙ³fÍ›(¢ƒa—›6lÙ@S5kß/6Å+1ËÜE¤gïv뇙³Ïßó•Œ#¾ò{Ôí¬D()в׮z?ÿÒúcù‚¼¼«ªªíþ…qíþëlæÿó‡ƒþANF¨qÿ%[õgjÍ›6lÙ³fÀ·W°ZlÙ³ÌÞ[1§üå&²œ›CŠ›oö’»öίÿ9 ~Zù„Oô ÿâ' +ÿç_ò‹ËAê üEAέ›6lÙ±¬X‡¯¾X­7ë—›6!}w„q;¬q ©fè0/—šI4Ëi&s$»1¨©aS±Ž¾aMë„Z½Í·•ÖçZô¦¸ŒH‘!rÄ| …èw>`=ó#EÕ£<æú¬Â¼¡œp‘i܃ØðM¯Ÿü½y †+øZCÐr¦*þvЄßWúì"_å.üiˆi¾{Ò5}DiÖ’úŽT²È¢±’軹_ òG›6QÈטµ-Vk¥Ñô¥ôæt=Ã…#åCO§O¾”ÃÝ>Ê> ÅENýÉ$“ô“\×/|¤_ÝIxñRiŠJ’9„nJ}ªoÔÓ®2?,<½¥ƒ_ªC_øÆ¿Ó,AUØ( Ûa„Ú>seªê0ÖàÃ"x—ãÅÏeÃÌÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÈ•î¬4ï6$&)dõíQkr ûÒ*Dzï×%¹³€ÿÎQŠêþJ¥ju˜…‰3¿gÿÓúiçÅååPTô;Çücläßó„S¥Ïå—"õ2\×nâVûó¼e ¼Ù²˜6ë—›6×-d»²t„VUâé_æR~#Ó5(5ku¹¶`Èj6 ÐŽ Ó¡¨í‚ó`MVüiv’Ý0-é© ZžÃé;fÒí~¥j‘V¡f>,Ƭ~ó‚ófÍ›(î2ófÍ›6lÙ³fÍ›6lÙ³aZykMR:¸…~¹Ç€Ô;Ó°¯|4Í› õ{i + »eåsbƒù¡ö?¬ Qõ8VÄ߆!Jãt{g··ç- ³RJ +L@ö¶ +š¸FŽAÉ ô õÈî©£^=ÌV¶ÿ „’™$`Ô)ð·%ÂB{tßÛ$qD Ž0 (Óì£Ñõ;…VÛ|ÁÃÜ¢i•ÌRµÛ9üÝ~g\ÉÜ“ËÑL@Ûë%ŽÕಀ´ýªè‹⢃Õ¹àvÓíž_]¢C!,TO +õÄÓEÓâ`ÑÛĤw¨ëôcN…§™DÿWŒH Cô§Q€u­2ÞÆËÖ´µŒ›yꊴÜ}¢Ò­Æ´Ãg¼Š(Dò°Hè fø@¯zb‘ȲŽK¸=Ž8šnp6£yŸo%ÌÌ$RI&Ÿ‰ñé…^KK‰t¨ï.K‹²n$RkľáG°›6lÙ°ŽgxuøJòá4+TŒ¤ +žGÁ®^lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ°‚ ÌÒšVÒ-ûšÈø›8üå5N©äÀ+¾³N½W Û;þÿÔúoç£O-ê›WýãþM¶qßùÁ€£ò{KâýíÕzÿ¿›;ölÙ³fÍ›6lÇå‹* ……Û¯¨ÒJT¤d4ŒjMJ“¹ÁZLÚ…ŒÆÓUš)K¯(T¡4"¤lw¨=úaÕõ½’«Ï"¢»*)&€³lÓ€u'úÝí½Šîª}ihzû?{ÓçC†¹³fÍ›)WˆÃ/6lÙ³fÍ›6lÙ³fÍ›6lÙ³fȸòìÒ\½³/E,QªhRGGhøƒµ +SØíß%²ˆ®l«ZÉãqþ¡ÂùÅ(Ì_”>XR?PˆïïS_xR`Q”5¨" á×”"Ky¢Ò&m:IäYઊS‰@#­òæ¥æDº];Y³Vâ›È˜zmáE?b:ûâ¶~Ò¯µfÑ! ”gSXX-W¯ÅJ||w˜õÍ_K‘m´½5®•“i¨Tc°¨;:švÀöžM—V¶¼Ë'ÖnQ7%bFZÐ(%}›®kÿX±á©iÖßZ˜ŽDV£ëû5!j­¾ý«…Úßæ–åûæÓ¯^U¸B¡‚Âì ÝAcÛÃùÉ囄ÖYÁ ÌåâuPTîFÓ.µoÌ1k©Z:[hSÆMÒSÉJ¶ô؃öH¦Õù¾“¥Á£YÅan´†µß§Ž Í›6lÙXA-ŒšµÇÕ/#«Z•aÊ…&;5ëðSp{ÓÒí¤Ò°‘¹EÖCð€7CãN ý°àŽC!^b´ÿê0èÜé1’å–]ãaÆ*õÙÅXxdÔ¢ƒ`2ócc5Pk_|vl£¸Û +õ}B]>âÌíéK7¤þ?ž?ðÀa ËÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›ô¥C‘Ë+Û{4Üà òx­c< v |é’\ÙÁç'•Wò_"Gû™‹p+Ý{gzÏÿÕúmç –õ0I´¸èh»lãÿóƒNòKøJñ’ìn)_ß·ßóÎû›6lÙ³fÍ›6G¼ësyemoq§ÄÓÜ­Ä@"ÓtcI+Zm§¨Ü OUÖg·T²¸`%ƒ§Ùju>?w\6Òl ª´Óõ™Ï9Hñ¥ù(Ø}ýð~lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙÓï zö ••¢¤ŠQH«ñoQÓm©’<Ù³gš´ øÿÎRjу^ZUöøÓ:§üä¯å·˜AØ ÿâ' +¿ç¤2þQùeŠñÿ@ŒSåQ[6U)—•L¼ÙABôÆ´HÌ”^†›ŒÆØT}±ù³fÍ›6lÙ°&§dš´¶ÎÏ•Js¸¸¯òžÇ"§òÂÔz#ë×ÀBj´¸jë¿Ý“m£=4P«RhÕ&¤ý'͔Ƃ¹y³fÂ6ZÛÜé²5Ê»$%fø(±ž{òÃXeYÑdŒòGñ¦?6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6l ©_ŦZK{1+J]¶Ü2c§j·¾a†õ.±hYÐF§š4ŒU z¢…³ fÎÿ9D jþKP*LFzW£'jŒïÙÿÖúmçµ/å­QA¡6wÿÏ6Î5ÿ8$üÿ(4áJžìwß÷ÌkøöÛ=›6lÙ³fÍ›6QËÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fʹy³fÍ›6lÙ³fÍ›6lÙ³a6”Gé]Dwåü›s›6lóV‰§þr“S‘”ý :iÞ›oòΧÿ9¿-¼ÀÑ~¡6ÿìpüâô‚_Êo,°$×O‡sòΣ›6lÙ³fÍ›6lÙ³fÍ›6lªeåL¼Ù³fÍ›* P¡èE0¯ËwfKf¶’Q4¶¬aw +EHéQãÆ•#jôÃ|Ù³fÍ›ÍÇ~Ù`×1 uÆ–aû5ÇæÍ›6lÙ³fÍ›6lk·_Õ—•Èøå‚TtËÍ›6lØW¬©¸1Y¨„猪çvˆŠ‚›õüp ¼QEæYUŸèq~ÔÉlà?ó”Õý%äêtÄDŠÓ£&wÚmLÿ×úwç/ ê +5µ˜Pÿ¨s‹Î +ÈÏùC§†5ãqx?ä»wï¿|ôlÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6iJ­¨ŸüCsfÍžiÐeôÿç)5U$S@Œ^”xÏ·ñαùû«ùqæâýsCì¤þOÿ8«4SþQùe¡$ °jÔ­V ô'¸Î­›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ²{abEéj²I?ЩyA;²µ§N‡®eN¹«\¼Ù³c^Í1;[”ºBèj2ý*hf¡{›ÜÜ°H£f=‡ŽŸYÓ­,† ó*Û²©æOPz}' ’E•C¡ §pGLvlÙ³fÍ›6lÙ²± ï ¶–8¥‘U¥‘ªùšöá!¿±ŠÚ&G ”5}¸ñÃm[£Î áYà¢z€qYPyÛzŠvÃ\Ù³`=ZâK[I$ “ð(îÇaôW¯¶^—jöV‘Á,†ihÎz±îN t(£ +‡–tÂI6èO¬&é·1]ÿíˆùT˜âÉ”«O"­A‹kJö©ôaîlÙ³fÍ›6lÙ°5ÍÌP½ÄÍÂ$RÌNÛ_Õ„Ph0ëv’]J9nÚ9‡#S@8qð§_§|–cŸO¸Ó5+‰/b/PÑ€4øAZºŽø.úØA§˜mþ妊Õ:(¯sÓX^ŨÛGu ªH¡†,ß*匼ٰ·W¾koN—œ³±A x“VöÛ|_O±ƒL‚;[uãb€M+¿~¸NÖ¶×~hfš5w†Ò6BÊdmÇÛ$y³Ïÿó”H§[òL’ +ƺÂúY(3¾z‹ãŸÿÑúæšú~¯7ü@çÿœV_Êx‹ƒ{MÏûóîøg£³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ±¬¥{vlÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ„Ú`ÿrÚ†ßïø†æÍ›<ͧ(_ùÊ‹Âi¾€´•ûi¸Î½ùì¥ÿ.üÀ_Ñ÷ñ‘ÏùÄi}oÉß,µÿBQ¿³0¯Ó{6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÊ"¹ºå2ë…׋[Ô»VjÈ¢TïU'„‘ôኖ5åã¶;66§zôJ‘>§« 8kkU©ŽÇÛ= ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ„mÜ)­ßÀÒ(ú) ±ØwÃüÙ³g™-a'þrªv-@4@W­Y>Ž¹Ø=7ü½×Å9VÂàSæ‡#óˆ|¿åNyf¦¿èŸ‡6 úvÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙG5´·Ñ.]H™ßáŠ^$ÓÓ-ö¸‰SøW –öÕ‚È…Ö¼·u¯°Â[Ìô]5¹¿![‹"‚+ÉØV€Ž”ï‚´-ôÅi._׺‘™šB)@MBaú÷ï†ù³fÂÏ0[Ý\Z¯ÔØ ’HÜhV©>TaÜeæÍ›6lÙ°—U¸Žîþ &D,²+LÅI}2¥y{1¯Ý‡Y³fÍ›6lÙ³fÍ›¡§ø–mÿãÒ?ù8Ø{›<ûÿ9Y/£¨ù9ê*5xÎæƒí'Sž¦ÿÔú…æ2F“yN¾„¿ñœ#þp=8~VFiB×÷ÄŸÞ‘\ôFlÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6Q nrófÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ•—›,m ¸Ö¯d•Þ3BÂ¥O¸'§~˜›(‚iCO¼ó=¸Xÿç)ä¦Ü´Zw<—íxôýY×ÿ<›åö¼A§úÆô¯ìÎ#È%üŸòÓùcîv׳fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³e¡ÌTB6ðÈ•÷å¦y3L‘%v&Sõ²?Šžã$š~›m¥Â–öÈ8Ô"€:°+6lÙ±+›t»‰¡“ì8*ÃÄC4yb6Â(™œ[±„–êJ|&¸<åæÍŒ$W‰mÏß”C©m¶Ÿ¶bJV§`69U«3>ÃrM()× +´;5ÍýÐã-ÀyT Þ¥¾œ:Í›6lÙ³fÍ›6lØE™dßsf›|¤l=Íž{ÿœ°?éþOZ®¯Â:Ÿ‰=Æz?ÿÕú…æ&ã¥^ÒK¸ÿTçÿœY"ü¬ˆ³$¿½+¶àz¤oã¸ÏD÷ËÍ•\¼Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÆÉöO}±Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6éŒN­¨Cþ"pã6lÙækh^OùÊy\Bh5'ÀP?ì?ž/éþ_kì )aqÿ9ÿœM‚KÊ,¤ +}IMìÌHüu¼Ù²²ófÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6SA¦Ç0­7ëš›m˜m·l¼Ù³fÊ"¸Yig%ž£pÑĪÈ^¿¶>÷§ÔudÓ¤‚"¥šyDKO'è†&»tËùxA}äÛíQ5†æ·Q¡T"FV»ñ­ ßåë=jÂÖkkù–wF" Hø™iP\ ®Ûa~‹¢k÷—?Zó ñÒ" q[–àHß‘®õê´éß*ãAóÒÍe%ÒO§\»¸ã*‚ßkAÇ;îrR°…@„<;íòÅsfÍ›6lÙ³fÍ›6 ?âw=…šÉÆÃìÙçïùÊï©ù5r-¬D8Ôoñ'cþc=ŸÿÖú…æ"J»c°JvÿTçÿœ¤ÿ•–ÌXÕ/¯¨¼¤ç¡é½Fjøæ ž™«—›+/6lÙ³fÍ•\¼Ù³fÍ›6lÙ³fÍ›6lÙ]2ófÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6iŒ³¨(#õÜOöáÞlÙ³Í:deç)oOŽ€§¿Niþ~NußÏ çò÷_ JýBã¯ú†¸Aÿ8¤í'å–KŸ¨Æ:S`H†us—›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6y›Ö³¸³Ô£`±@åf©?bJ.Àu<©JôÁ2Û=έ’ÅXíã%$'rï±}”u÷ÃER:šã³fÍ›6lÙ³e+Üo—›6lÙ³fÍ›#dg”Tr6qíßûÆÃüÙÀç'`òC(©²¼¦wìÿ×ú‹®ž:mÑð†Oø‰Î ÿ8;gòÊÚ@ÿ×o…*H4”ö©¥>ƒžˆSlLËC°ù’zcÛÃÇ0` +¸Ë¹JÁº|±ÙDñÊSËq¸í–jžù²ò²ófÍ›6lÙ³fÍ›6lÙ³fÍ›6'Âuæ6ܸÓÍ›6lFîî+šiØ$kJ“îh?TŠåæÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6¹Ò-n.c¼)KˆÎÎ (hG!BvjŽø76lÙæý:Cüåê‘_SËÈß´Š|vý_Nu¯ÎâGåþ¿ASú>æŸò,äþqT“ùGåžU¯ÔcŠ‰Î­›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lg¡nöÓ¯(äX{°‡¤>Í$Àñ +d5!UB€OriR{× 3fÍ›6lÙ³e^¹y³fÍ›6lÙUÌNôȽΩg§y±b¹•"{‹ED @æÞ© ûôÉNlà¿ó“)êkÞIR9)ÕÖ£åÄ× ïYÿÐúsÝBð½xº•4ëB)žnÐ?çüÇä»s§ù_Ϻ®§úÒL°$=CVßj“â~ì1þqÃó}¿ÌÝ\íM­ ×1ÿœpüÅ ð~fkh:ÛÛ“^ûøžøÉ?ç3x~ïó;U¶^ÝëóƧüãŸæ|Hdÿ•—©´Ô¥¬!kOzâÉÿ8ïù˜ ÿÈLÕ+SJÚ[žÂŸùŒ¿úÌàÌÝO~•²·ÛñÄŸþqçóWpŸ™º…*iÊÊ·}8ªÎ=~gDŸ™š–äÓ•¸Û·Ó^¸ÅÿœzüÓÌÝF”ÿBƒÄûí¶eÿœ|üÕåWüÌ¿§µŒ#ø,ßô/¿šÁ€™—üÚ­ŒëÛ|¶ü‚üÚ£0üʼç_‡ý +R½÷ðÇ·ä7æÕ¯æUàØuÓíÉ­wïáÓÿ•ùƤqü˸ núlfŸ>¸ÁùùÐQ‹~eN$pM‚„•½~ìU#9C'ü„™©O‹ýÆ@{ößÃǾ_ü©Î~t?™ú{oú2_¯¿’Å/Ìv µ)¦A_~ùiù'ùØ +†üÇn4ø¿Üd¯¶øÕü—üñý¯Ìn)¥Ãýq§òSóÁ¦ŽCù¸1ýÀè+CÓ¾*ß“ŸžhŸæ*–nZT4ëÜ×ß”žjwüÃBôªƒ­wïÒ™QþQ~|(þaE×÷ ÛïË”Ÿžì—æ òøi¤Ã¸ï]ò‡å7çÕÊÁ‚Ÿµþâa¯^Ûø~9Cò£óôË¿æ·§µHÒb¯¾ÝÙÐŽ¿¢b;ÿLj~WÿÎB!¼ùdA‘ýFý¼vñËÿ•aÿ9 ÄŸñÝ-è?EGN¾?,zþXÿÎ@Ž ùêÉ€õjŒoô˜Äü¶ÿœˆõ*þxÓ†¦ÚZ¯‰|^Ý=ò×òûþr.6'üi¥°íËKÃß|ƒÿ9SÎA$Šÿ¸êP{xæ·ü¼ÿœŠ·R‹æý&€Õk§ZëÒŸFeò7üä’“ÿ;nŠFôÿqÍã·á–¾Hÿœ“$rófŠziÇÃ(ù#þrTùK4@ížßÓ/ü ÿ9 òoæíR½WN©§È÷úrÏÿç#Àb<á¤û é´Ùøâ7?–ßóú„FÞïͺCÂÔ,›]Ū9óé‹ÿç$yùÛt^;WýÆŸ§îíã”<•ÿ9'Ä×Íz%j)þãÛ§~Ý¿l{y+þrBªÍz-?hþŽoû{|Ly/þrP=?Å:¨7ê§ñǃÿç%*Oø›B¥Ô_¯~ÙiåùÉEj7™t"¤uúŒ•Àe)ÎJ +ÿÎÉ ž´ÿA“(ùSþrU§˜ô­l¤þ¹‡–?ç%€f:ÿ—É¢ýR]þšmŽ>Yÿœ•?ô¾òÿ@Þ9z÷GŽRù{þrXVº×—¿éoóß.?/ÿÎJºú×—•k1¨îkÚ™†ƒÿ9-P¿¦<ºv6Óþ·ü1‰¡ÎMW‹jþ\o‹êóŸÂƒúþrdWýÊylì)þqôýØßÐÿó“jà OËŒR`Ÿo£üúå®—ÿ96 “¨yhñ ÇÅSøS+ôWüäÚš GËDëèÜmíNùm§ÎMñb/¼³]¨=+×ÚŸNXÓ¿ç&Ö‹õï,·Mý+Ÿé”-ç' 7Y ¿ÅÂçõfk_ùÉ•X ;p¹ßúe oùÉî@zþXâEIás±ð÷ÇZXÿÎM!¤—^Y!š¿\ž5Þ›R ¿ŽW¥ÿ9:¿yår mQu¹§á¾ØÚÿÎO’vò¿Ùos׸̒ÎOò*Éåz‡•ÎÿÓÌ¿ó”DÜ|·‰‹Q^ã‹lE©#¿nØ!.ç'ÙèÖþXU¥~ÝÉßÃßüäó€ÛÊêk¹2] F+ÿùÊ&=Ÿ–ÔïêÜôí÷æQÿœ¢eø¬|°¤òÜî>ŒµÕ?ç( +l<°v¦k»)5oùÊl›åš„ÏqC÷oíšM{þr‚7(4-8£ ‰èkÔÐvÿj¸—åoåwæeßæ«þcùößLµ'Mk!Œ²>ü”ƒFmZšýÞ<ßåȼߡ_hs9Ž;ëymÙÀ©Q"•­ZV¹ç¿)Î:~qyH·Ðto?¤}šzpGú.&⣠«3ÿ•Cùö(ü„ïZ.*ûå7å'çó_Ì sáþââ:tñïŽoÊÏýÊùþÛ—`t¸©˜þTÿÎ@ +SÏö¤V»éQe¯ågüä +?ÇÖ„ö®•ôÌ¿•ßó}OŸlëÿl¨ò‡åüä"+çË#Zô¨þ‘òÇÿʳÿœ„ ó݉ë¥G”ÿ–ßóÿ O<éäŠÖºR qü¹ÿœ†íç};þáIŒo˯ùȲHvÓ)MèµµðÇŸË¿ùÈ¢žuÓIï]-zc‡å÷üä@f¯4²½¿ÜRÿ\gü«ïùȵaO9él;×K(y þr<üã¤_ú¶vñùâŸà_ùÈÁÇþvý øÿ¸ÚŸá™üÿ9)æí šŠ¦öï¾9üÿ9°_7häw'L þºcÉ?ó‘Ûóf‹JuýÕ¯ßL±ä¯ùÈâ Ÿ5è¡û§1\¯ðgüäÿ¦«D?é\ÿ×¾LÿœŽ ¯štJÿÛ9ÿ®2O'ÎIðyŸBØ÷°}ljùãÇ”?ç$#3hNi¹m>AØøÑùKþrAVæM·oô2•?ç$ÇO1è½ka.ÛtøåKå_ùÉZ|bòõæaüNPò¿üä·*ˆ<½O©Mãá^ã)<³ÿ9.[â×ü¼Ý,æÇIåÏùÉn]s˼‰éõI¶ús‡¿ç%ÅOé¿.xÓê“ýÕ®_èùÉ`ÿñÙòá]¿ãÖ|wè/ùÉZƒúcË{íOªÜm×~¸ØtùÉe4}cËŒÛãùÉXÅ_-¿¿ÛúåKmÿ9*#ªÍå£'²ÜW¯¸¦TgþrTùm‚ô$\ +Ò>yRÿÐÌ8†;u¸Ûߦ_?ùÉub8yh€* n(}¼r„ßó“+éyj¤TW{tÊÿÎL?så¡^¿Æ4ÞÎM€Õ¼´H4#Æý7ù~8©¾ÿœ–jm<´äž‚[‘ß)õùÉzUl¼µòÜbi«ÿÎL†£i¾[ ’?¾ŸaN½qaªÿÎJõ:w–¾B{œrk_ó’DÑ´¿.Smý{Œ¥×¿ç$»èþ]ÿ¤‰ü~x¤:ßüäuI“Iòï°úÄÿ×+üAÿ9ÿpÚ5¨ÿI—ç\Pkßó‘+BÚ>€j: ™¶üqíæùÈEhÚ ßµÌÞ?<¥óüä7}Aÿ¤™¿®RùþrîtM§O­K_×›üIÿ9 +(§CÐÉñRÓõ㇙¿ç ¨?܉ÿIr\±æùÈÜ@h xýnJ~ºâ_âOùÈ^$þ‚ÑM6§ÖÞ§~£z}øãæùÈýÁhªA©¥ÛšûR¸óPüð»ž;«+èsM ››¦,§­A'mðióOçòÓþuý«áxû}çèÌþmüýáòÞ‘_ùo둽{Ê¿›ÿ™ž`òýט´>ÂÏI¾K‡h.¹±óá ô¸>-ëöNß,õlÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÏÿÖú§›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ‘ÍÀ[É:ÐòÅ?ü@çÃ{øÈ¿ëÛìƒn£Û¶bJõ;ïBB²)ÛT´¯Oæ÷·e´Hì +Ö1Óè¥qcI¾Ð÷÷öÍÅTÖB€ðÿ>ÙOPk_µ_íÎSÿ8 ÕüÃóè&§ëPoíCß=I›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³ÿ×ú§›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ‘Í yn¼¡«Ã—‘ìç +ª*Iàv>.\þZù¦I ~‰½!‰¥mäßå¶?–žhS¾•x˼”ýYIùqæfRߢ¯Zïõy?æžÙKùwæpA]á­iþ'üÓ÷þp¯ÉZæŸù¹£Ïwgso~©gxYGØ;E7Ï«y³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lóOüçÃÅåõ¬’ì«©Zšž‚Ôû`(ç'?,BƯ®[UZ¨ãŠùÉÿÊùúä;íѨ<;eŸùÉßË?O[šŽü»}FYÿœ›ü¯ˆ+ rÞµè9xTÓ çµ{0ùÛÎú¦™8žÊâ≅hÀ†ø†z¿6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³gÿÐú§›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›*™¸ ® +; ° vÌFàeæÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³`]CK³Õ¢ô/ Žxª0¨èhAUÿ*ûÊçþ•VôüÓŒ—>T é &Ë€íõhÿ朱ùwåQZi6[íþóGÿ4ãOåÇ”Ïé_Oôhöÿ…Ã-'˺VƒËôm¤6¼þ×£¥~|@®æÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÿÑú§›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ²²ófÍ›?ÿÒú§›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ²«\¼Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ”}Î^lÙ³fÏÿÓú§›6lÙ³a'œõËï-h×:–›a.§u +òKXH!¯@NÙÆ“þr3ÏŠ¼¦ü¼Õ–•’Fwþ™Ðÿ&ÿ6­?84WÕ`¶’ÎXfx&‚B #¯bFÙ=Í›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍŸÿÔú§›6lÙ³fÄ®v…éü§õgžÿç cTÐu .uk‚õè¶z'6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6ÿÕú§›6lÙ³fÆÊ#Ѓžtÿœ,™ßKó$lj±ëW*¿†z76lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6ÿÖú§›6lÙ³fÆ¿Ù?,ó‡üáLŠl<Ó$•×.kôÓ= rófÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³ÿ×ú§›6lÙ³fÊn‡<Óÿ8NàÁæÔÛmn»=/›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›?ÿÐú§›6lÙ³fÊn‡<Ûÿ8[´>mP ®OB>Yé<Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³eÓn¹–¤ +ìrófÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lØQ7›ô+rDº…²xfACá×®eó~„ÿgPµ?óÝ?®8y¯D=/í¿är\¯ñf‡R>¿mQ×÷ÉýpNŸ­iú±acqå6oMÕ©ó¡876lÙ³fÏÿÑú§›6lÙ³fƹ¢Ÿ–y»þp¬†µóQß—é©ë÷g¤ófÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›¼þâOõ[õg†¿#¿*|³ù€5›½zÏëG*+a@w ¡ÜçOó_—dú7`iQ#ÖžûõÅ#ÿœmü½Ué€Pw‘÷üq9?çü‚*›ö÷4‘ö\)ÿœ}Ð,ü•ùµªiR´VSÓ©`!BjsÖY³fÍ›6ÿÒú§›6lÙ³fÆ·CòÏ8ÎÉÊ5¨ƒ[Ÿµ;g¤sfÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›¼ x«~¬ò?üã£ëÑu)­kÈ0)@nÕ8å+ûGjŠüÿ†6vâ*Õ'¢Ó§Ýß9Ÿå\ ~wêæ:ð~öézwËÍ›6lÙÿÓú§›6lÙ³fÊ=3Íó…ÂEÿ£ Ö¥ã÷o¾zW6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ±+²WaÄþ¬òOüã7Õõâ~Çé97ïÓ¾vôB7£SoíÇ„V'z €ñ?ÃlJR¨Ü¼{éœÛò¾sÿ+»V~zt{Ž›0ÏKæÍ›6lÙÿÔú§›6lÙ³aWšu-CHÒno4«CyŠÜ8C#v^Gaœ4þzþpáÿ*îà“¸?\Ž”ùøáOüàÝÝíõš'¿„ÛÎú¼ŒñÊ1]Ôžäg§sfÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6l¬¼Ù³fÄ®W”N ?ªŸ«9åa-ù߬°"‚Â0}÷é| k—›6lÙÿÖú§›6lÙ³fÍžkÿœ6‘šçÎaºjC÷Œô¦lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›(5I;eæÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›œSÀçÿçWý'̤ôý$ý¼+̳šQMéßéÅÔ±Iß¹é×`ª¥XìvÞ§üÎs¯ÊhÜ~tkfµ a {°¦zW6lÙ³fÏÿ×ú§›6lÙ³fÍžlÿœ:ý;βA:ÓŠõsÒy³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ²†^lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ²©á—›6lÙ³eL¼Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ› ÿœÿ™©ùCå;¯3½±»ú¹@" Æ¥:Ûþr{Ïw-ÌE»hÝC)1ïP=:o‹ÿÐÈùûþ¤K½ºÖê:þ¬¿ú/>/Úò%àÜ÷¦?é•sÿ95çKÚKŸ#Þ E,OÖ€ç¶u/É¿ÌÔüÝò¼eŽÕ¬ÄÏ"zNÁˆ(ÜNâ™4—do‘ÏÿÎ8\˜µ/2F µ ¯ÌôÎô• H‘×}ó~Ñ`k_ó8ï…n•ûóœ~SFåt뤳eO͆zK6lÙ³fÏÿÐú§›6lÙ³fÍžoÿœ= ÞùÖ€ÿÇjMɯìç¤3fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³eS/6lÙÂç5¿òTêñ’ø–ù9™´&’h·è>ÀÃ`Ÿï÷åóæQN¢¸YæD/¥]¹ôd?ꟿ ¿ç +Ùå”$utOAÏ;´Ÿ`üŽxçþqÌ'éo3ƒñ?é¢÷ês¾“ψcJuïŒ,²8)OÇåŽ-ÄÑv>=³›þQ1ÿ•Ï­†-c.C=)›6lÙ³gÿÑú§›6lÙ³fÍžlÿœ=ž¥çhùþæXÐsÒy³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙYy³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍœ'þs_—üªDPü¹á‡“Gû°gê-a¯·Øo×ßO*V»lAðÇQj7¨ß¿ùõÂÏ1;6—uÞÈE=Ôí„ó…2zŸ–‘ ¾˱·úùÞ$RRxóþqÆŸ§|Ô¡ƒPŽÛ‘Ù¹ÇÔPž¿Ûõ>â=Æb}55T_áœÏòŸþWv³Ö†Â:ïî3Ó³fÍ›6ÿÒú§›6lÙ³fÊÏ7Î ƒú[Îä0)úa¨ú§|ô–lÙ²«\¼Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙÁÿç6?*5øÉüK <É4òÍ Û}¸£„Œ©Æ ±ß`37Ç@¨íQúð·ÌÛM¹~1 Ö¿êœ$ÿœ)—Ÿåº%áyt+N¿oï/öM|3Ç¿óÍþæüÖôñÐ;ôñÛ;¹BHä*A ?ÏÛ7>nßû{ezEP×üÆsÊ°ÍùÙ¬*ÄY'-ü¥xØo¬1÷û'=)›6l é—›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›87üæÙaùQ¨qÿ~C_—,0òeWD²AþM¿daÔ„“Pþ”Ì‹@¡ö4­v]­»~» Q½)?AÂ/ùÂfåùl€—·_ñ<ïr +¡ çç¤Zóböû~9ÝcztÜ’6#ï¦9ÙxëßñöÆÓb@®sÊv'ó¿Yå@MŠ€ë¸û³ÓÙ³fÍ›6ÿÔú§›6lÙ³fÊéžjÿœDNaóßqú_¨éöNz[6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lBKÛxDZx°_¤-kOU+þ°Ëúý°ÿv§üÊöÇU?à†)ÄS#ub<8¦yÓóËó{Ϻæ™äŸ'=œFúÙ¦/uaÉIÛc¶Økÿóˆ7Ú ¡¦ðÉ”<Ãÿ9T“y¡üý1‡ÌŸóZëDqCþê|²?æÿÎïΟ˨Üë‡I–Úêî+r!ùL;¶Ï^FÅÐ7rÎÿ9°Å*5 +¿!ÿ‰`¯)Iº-Š¯Ã[hkãöÓ‡hÇ¡=*>Ÿlº8©?³ÓäÖG=>t$7È÷ÿœ#T_ËŠ‚y›ë²Àøóþ™ß[ìœñ÷ü㪭y³±:‰ÞùÜÁ<… jÛ(ÄßjŸ|b«zŒ ¨û?*g;ü¦“ÔüëÖ¨Â>Ý~!ž•Í›6lÙYÿÕú§›6lÙ³` zêúËN¸¸Ó W‘ÆÍ%ø`6^G¥|s…ÍÿÎòiþþâ ý2=ÿ8Quy}¨ùÒãR·ú¥ìš¢´°‡ ±±SU¨êGŽz“6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÆ»ˆÅM~ŒvlÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙáo ~W蟚>bóUƾnd’ßT’8ø\:qSì :äñÿç<‚w)x×­ËÐtï?ó‹ÞEeà©vkMþ·.Þã|¨çüŠÂ¦;ºš€ä¿×ÿœVÑ!òæ—šô;9%úœöæ4’V~­ZÕ‰ÏZuÏ*þs°ÿ•ýåÅ5Pl'©­ùãÿùÇUuÖüÖ+Zj-@|wß;Ÿ/„Wzí·jåñ¨U=ºo¿Ž5Áãñ7Ýø}9Îÿ(‰ÿ•Ï®‚>ÕŒu5ÿ(g¥3fÍ›6lÿÖú§›6lÙ³fÍžlÿœOœ7›|ýq«ôq#='›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6PËÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³È_ómÿ;ßýÊ7]ûíÑ!ß±ÄÖD&‹_ÕL¾!7jQ{뜫ò>žmn@ª[šwÜÀg©TtÏ*þuΩùûåžfŠ,nñ®u%.>#±;š t`°éZÔx÷¨ÌIQC¸#¯Ë8oüå+éÚ$ ~”¶¯oÚóرü +`êÎÿ9°BþSjUê^ø– òRªùwO ñªÅß²0ð¹P(ծƾ9kËp´‘Þ¦¿Û€uãþ0m—ƒíÜŽ'#Ÿó„\OåÛñ§Ý×þ =Ô¡¯Lñïü㛩×|ØkðE¾Ž½s¹@¦ýòÈ;ҵ噸ÆwÞ›ûg:ü¤*?:µÚU‹XÇñx|C=+›6lÙ³gÿ×ú§›6lÙ³fÍžiÿœWãþ8óø¯ÅúI>}=-›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙÕ?4|Ÿ¢]=Ž¡«ÙÛÜÆhÑÉ:+î Û¯ç7Û¦½§ÿÒL×7ü®o!íþç´ýÿåæ?뎜>E&ƒ\°¨ÿ—˜ÿ®hŸ˜Yó-ÇÕ4NÖîâ…½8fGj¦€“’ ãŸó¿žºäÛi6ÚVšºÞ­9·Ž6—Óø©¶ô=rÿŸŸœh•ÿÂ[Úý¦Qÿœ€üßS¿‘ã§z_¯ôÍ'ç÷ç|#Èñëþ÷-)_—\&óGüåæG‘¢Ž÷ÌNŽÚÎI1 ½ BÍA°ê›YÄ)).¡©áQ\‡~sùîëòÏÉš—™lâI§²‹ÔTzñ& oMó‡ù{ó£ó×ÌÚm¾±c£è¦Úî!,A®$†#‚cüÓÿœ€v¯èMŽÿññ&=4¿ç âý¢…ðúÌ•ÆÝ~kþ}ÛBgý ¢Z–ÿJ’ \éóÿ›—ç'”OjÐCot·3@É%vi]÷Ωž3Ò<ïù¿ù‘æÏ2XhÞc‹M´ÒïÑíRMiCJíN¹"‹@üòT<¼ç +Óý7Æ ó×·œíêçÔol¯Ð_žÊüî–ÁºlS7åŸÿ1ôßͨüæ­f=ZÎK. X"¬:tÜç«sË_óþuóáüÏѼ—åMhé0^ZÉ+•…_âZîj7ÀÉä¯ÎDÓÏoÊ´ÙÇC‹(~rP×Ï%M*+eã•þüå +Cùë¯ZXÇ·Ë"˜~iüÝü§mõçš¿H[Ý^ÃF-#O…ؾôÛ=¤†ªˆÎqÿ9æ GÊß—Ö©¤ÎÖ÷[“©ö”Ô +|á>Gò'ž|Õ¡XjòùßUîmã—ˆ)@YkO§äü«óÙØyëV¼BLÑ~WùÞ1DóΪMHÜ'ãŒÔ?/<õcn÷ çSš#°Pô¦tùÄŸ6ë>tü¿Žÿ]¹’òì\ÜFe“í­A_–v|òäó' ¦Ú«N½3·†4ÛmùS¯Lb¸PZ¤ô¯/Ó+ñû×±'97ä0¯ç¯šøýŸ©A_ø!žªˆ Ï*~x(?Ÿ~V©¥lî:¶ñ΢€Ò» +WýªcÔÆXþÉ?AÌÅ(”é¹ñùçÿœ§vM3FcúRÛzn>!žÂ¶øZÐuùg ÿœÛ,?)µ~ü”‡¦ÝAþ Xˆ-”êÝDoRFÔ¡é‘ïùÂ*ÿʼu¯Â·÷`Áç [¡®xûþqÝôç›™c¨ý·ÎäªyrzÐÔŸo|c +uï¶Q“á;QÝOlç¿”aÏçV¶TÕ>¡z0¦z[6lÙ³fÏÿÐú§›6lÙ³fÍžiÿœ\B¾üÁŒbú6z[6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6ld±$èÑÈ*¬#Øãmm£³… „qŽ5 +£À †+›6lÙ³fÍ›6lÙ³fÏysÈž\ó×ç'Æ¿aà†X}12¥v$vÎäåãVFÐlw¢é +íßÿ¡xü¸ )ÐlÇ#Ú? qüü¸@k Ùv m² ùäí Èó¶œvI¦Ü7‡ËùˆÏfç—¿ç1¸¯˜üŒßµúT Å|3©#€={ ²Ø(j9ÀûøæV ·s·¨Îÿ9~Éþ €½jo­‰ïû~ëm2ŸS†=4ýC9wüåh¯åN¿ÿ0ÇõŒ‰~Kñÿhdl>¥ù +î;äÜ–y*)ǽQŒ ‘¹P†íJîÖ(,n_Mëíð“óȇüàˆÿs1¡êW‡õ†z38~“Þ½zÂ4QBIëó?ž;‹â¥vè:ãY€äP +N>ÙÇ|­n’ÿÎIÂËPF#‡Üu¯LõÆy;ó§‘ÿœ…òÈÞŸ£î)Oó¯Ô M@ñ÷ÍÅ™€ý¢vÞŸ¾YVIZv§™Â?ç,†¢”¨'U¶;ò‡J籡û ßaœ³þr™U¿*õàÝ>¬Xȇä÷¨<“£ †³„7Ð2f¯È½)µØÖpFýϸðÀZùã§\¶à,2|Tÿ$áüáÿf†¤ÖöëcÛãíÿ<ù<ÏçD”ÕOÅãÖ™Û8 +©?MûY@•jNÇ3:ñ55èGˆùç(ü†?Ïo6*ý“e?:ŒõVySóÌ)üøò¯*ÐÚ\wۡΩ­ÊÏ|quVíÒ¤ø¸“P£“N'zžŸíçÿœ¬Y¤Òtc÷£R·+·~c=‰iH”·Û`¥·ïLá¿ó›†Ÿ”Úžø– ò;«èsì¿èÐPõU^BÁH©=^9vjxôð?­’š|ô§!îzŠƒ‘¯ùÂãù(£ë÷_,ôJµá_ˆŠÓ<ÿ8î×|ؤíúI¶¯Ï®w5up2ª°ñ e:HMOP({ýÿÙœ÷òxŸù\ÚðgêQR£íxöÏKfÍ›6lÙÿÑú§›6lÙ³fÍžlÿœcz~aþaD>ÈÔ#5îM=%—›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6QöÏþ[ü?œžyF<”ÉoZíãǪ¨fµ5èÇ590möxµÛ¾f4¥ñÎ/§’Ÿó’:O +žZUÅ}†zÛ<½ÿ9•=wÉ•¥Fßvu-Ä)ËzxÓÈz†‡s·Ý–´)?À›ÿ\â?ó—U$ERyBÚ€÷«g­tªýJ +õôÓõ åÿó•Â¿•ÿüÃÖ2-ù8CyBaB>¥Øvâ2_7.C‘é¾Ýzøã˜ì )Më\«%œÿ Iý¨8äGþpBBÿ—w ½S¼¦¿´3ÑÙãoÈrÒùçÏ`©îN¼=èFÙÜ©V*¢£¾*ÌõT‚=»þX‹°ƒ7PWîñÎGåɈÿœ˜ƒ–üôy4úsÖ™åΩxÿÎAù`¨ýr­(Ms®F¥Ï#TP:÷ÊTZý³1äM{ÒŸwM³‡ÎTºf„ÌÕ­yÐC­3ØIN")œ§þr©¸þTëç¯ú1ýc"Ÿ“à&h«]þ¥éOÙë“É.Àm¶ô§N¹†äÐ)€õæÿq—±>Œ{ü'üÆ΂?,ãSý2ëçöûç}ÏþBò‹Ížv +HU  õÎÜU Nâ„üûüñ†¬9 ˆÜÓ|t‚§•(¼Az×97äj¼Ÿ>gÚªÖž£qž¬Ï*þ{·¥ùíå& Ö· ¿ÈïíUø„ ¯*uÇ­x•©ùSj Æ”¡? HÜì@é\á¿ó•kéèÚS°ßô¥½ðä? ö%˜ýÊòWõgÿœÙÿÉM©vø¢ÿ‰b¾Hýç—¬<—êÐ|>]òCöéN¢›u¥1bãEÐw¯| ¨ÊÍÈßgÓ“n'¦FÿçKËéô]Bè{ŽYè6„÷¦xïþqÕOéß6IØê,ó¦woR•=Ya•” þÆ|¹ðÎJÙrÞºDÔ éóÏ^g’ÿ;‡ùÈ_+0&Æãþ6μ¤2Ä)ޕ̤Z”hßƘ÷““:ã¿ûYÂ?ç,¸~ˆÑKíþå-FÛmË­sØðŠF x å_ó•J[ò§_TýTôùŒ‡þM|¢ü\Ôâ«V§ìô®M^ŽvØûlËZƒÔ9ïý0²œ¬.60É¿Jìr9ÿ8>Ü¿.äÒþèPöø†z <ù²?›|í 7éB+ã±Û;P*T(}ˆö¦\ŒÊw­:õûó5#Sµ ×}¿ŽrÏÉ9Y¿>¼Ì;>Ý>!ž§Ï*þOÏ/'ŸÚ6÷½ŽuGb«A¹ØUÏl¹H#jVµðÿ?lˆK=?j»ý8wüå\…tŽìu;j(ÿ\tÏ`Û×ÓP”~¬á¿ó›CþA&¦Of‡þ&1o%‡—tò«Å^Ú Žõøß–B’;Öƒ½<>Y«ñ5Ú¿NÖ@‚ÊàÈGéãCN™ÿœ (/ee?Ô.ùÁg \ÑOËy@zTg¡¦ßçï–æ‹·Ú#a×9ßäâù\Úû‹eßÚóÒÙ³fÍ›6ÿÓú§›6lÙ³fÍžlÿœf`2?0©Þþ#Ö§£~é<Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³cXV´ëž;ü¸-/çGÄ•  ǾwG%[¡÷¡©ËãðŽµ5é¹Àå¶Ô &§~ãnßNq«N'þrKG¨UÁÀç­sËŸó™ÁŽ»äz¹a¿ÝAةٷ§~ršQ‚ ò;銎*Ĩs…ÿÎ`1DR*C^Ûô,>ìõ®†)§[ø¦>¿êŒæßó•&Ÿ•>`ÞŸè­×æ2ù'Ö<…¢Ü (¨[ý]éã“sÄ¡;팪@ØŠÔ“°ùâ:‘Y-eÓ}»n2ÿ8#'©ùuQB5;ÍÿÙ ôvxëò.OOÏž{Øý$ =¨wÎÚà)×µiú©”±ìH×cJŸ«-ˆ +¤ï^‡æzg òÕGü䥡#®7Ñ¿|õ¾y7ó½ŠÎAùXš‘õ Š»üYÖ‘}3Znk_ë\{)'‹×ǦÄÿ ¦!Hf#·láßó•èGÑjßÕmw¯ùcÇ=‰ØZx åŸó”õ?•zðòÌzüÆB¿&X"èlU¬â§ŽÃ°Éº»,AäNß/|ªR¥MHñÀà_¨Ü€ýÛ‘¿ù;žÿÎ?-·Ú·×{wz<ùù¿ÎàŠÒ‡¡ö9Û«I7ÜS~ÙqƒgÄO¿nõÄÝd +€:÷ú3–~Lšþù×s¦Ã°ÿYsÕ9å_ùÈ2ó»É¥ºn>úêˆÅ@ €6N;KùRã@v=üs†ÎWÓô&—Ä…¤í…O» óØ–Uú¼uëÄ~¬â?óšÊò“TÆ/ø˜ÀžA_Ëz`‰Qmv¦á>Œ“!ø¹Rœ«¿ñÅ¢¨Øššþ^\ ØÍSt߱둿ùÂ&ÿ(¯MBë¿ùYßfbTñð'ðÏÎ9#¾¯æ‰hx6¢ãéëÍI§Æj´ ïòÇM+¸Þ ôÊj3; +ußÇÃ9çåçF½]ÿÐb5éûC=1›6lÙ³gÿÔú§›6lÙ³fÍžfÿœbe?™˜c¿×¢ýMž™Í›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lñ÷åâ¡üíóÈm˜˜(kÔo]³¶‘@½†äßnÝÆejQkñîs14 +ªI ®û}ùÇ-B¯üä–Å·:]ÅE=ºg­óËŸóšq£j¾I/¸ý.€m³©qT<SSޘז„TìGZæDæ‡z}Ÿès‡ÿÎ]§üèÊÏZ Ë~ž<ÆzÛE éöÄtô£ëþ¨Îmÿ9MQùU¯ÓsõVýc!?’°ý_ÈZ~×Ô¡`H=ÆN„‡‡õÆÖ¨c¤Ó·L ¨†ó¥w(Ý<({ä?þpFn~@»Nɪ^·ùCïÏGç¿#ПÌ_=±F5]úV‡;‹0eâs×ßÄeUÒ´QMºœa Võ5M)\äž^‰$ÿœ”±$îš<Ä|úg­óÉßžÇüä•Š‚Ð.~‘½s¬)$ÐZ“M«ßÜ~.jNõrܱ«Ó©þÎÿ9gûÍGSö©l¾,ö< +$QÐ(†rÏùʆTü«×‹Ë1ýc!ß“J‘tG õ(@Æ™2 ÇâéÐýß,µ‰hz^¸ [ø´û•'qû~Éé‘ÿùÁïü—ï½ý×_õ†z <ù o8yà0Üj{Šõöþ9Û8®ìÝ+·öc¸·*Óµ'ÇpÔØtþŸFroÉn+ùÿæ *éÿÖ]³ÕÙåOùÈWò»<›Bô®ý:êË"È@ê¤ü¶é–(A­K†Ûc9p• VvÎÿ9UÂ-Jsñ¹;jøý±°®{ÞuôPŽ”_Õœþs?Saùg©AÄÞžã°ä7ÀŸ–Vâ/i±–/KXH¡­j õm“D ¹ä7~?,¿LlÁŽýÎÖ¥ág:ŠÔFþÊr?ÿ8M_ËÂÝÞúèÿÃç}”|Žx÷þqÑ’[ï2Æœ‰ý&ôßa×;„cˆ,äÓßð˧ÈFë^€ÿµ–ಒÛmÍ3œþQšêòú”¬W=3—›6lÙ³ÿÕú§›6lÙ³fÍžiÿœcXÇæ?æßÕúü@žÔ£g¥³fÍ›6l¬¼Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›*´ËÍ›6lÙ³fÍ›*¹y± ëë}2ÞK»¹("RÎîhªRO†BÇç¿åÑ`Óèåå?®cùíùt?é¡Ó¿é&?ëŽÿ•çùyP?ÄuOOô˜ÿ®<~w~_±â5ý>¿óõÉ—üϤy®ÜÝè×pÞ@¬T¼2+¨#µA;á¦xûÈJóÃÏ!w¡·®ÛLîiRßew$»åŒGr§OÙ¯_öñÌÁˆ SbÞÛ{g€¢ÎHè®EKiwäiž¸Ï.ÿÎh¨:·’Aÿ«º +}ÙÔ jAþQíôã‹UC6ûoNþØϳQ°"”ïœ;þrþBžB¢¼·ê7¯>¹ëm³i¶¥¾Ñ†:üøŒæÿó”ÃþA^¾|-Xþ#!_’`Kä-$µœ?kýQáú²tÜ~Á5 ÒµýxÑ»×ílG¶½P-%à*DoO¸ä+þp>C'o:íª]ìzˆtÏHçŽ?$'æžÙ j UØÐÐî{çoFPjÙþ9`§Þ›øc*- 4ÎGåÈÊÿÎHØÒ¿ñÆ—¿Qž¶Ï'þz‰Gçÿ”Ùv_©\Šýûg[âÔn¾íþ{åGN~_ŽT„®ä¿ŽpïùË:þ„ÑÿdZÔÓ¯íÇ=‰÷kòÊÿç*ˆ_Ê­xŸùf?¬d;òp²ùEæ(ÂοqÇ&¬¦¢@7¨"½ {|ñ«ÖŒj|G±é€µÀ­cp@¥b“èøNùÿœ..˜7Ù÷\à‡ñÏBg"O¼ëCÿK:÷ï»bG*¦½zxøŒ¨Øåâw¹Ç32Ž"•Ü×°¯l䟓éÎBëâ»22?à–¹êìò·üäx_ù\žHê'¯Ê‡:Š5 ÿ0'ØxSGoŠ”]¸zeãR({õÛ¦;âAZî:×¾kMÆÂãS•ñ¥ÎÈùv¡MX^Ýí^ƒÔÎõuýÓÓc¾x÷þqµŒ—žd^©úIè{×}³¹^„šÕ–£n(ëÇ(y‘Èlj{g5ü©aÿ+ÃX<¸³X%WÇq_•3Ó™³fÍ›6ÿÖú§›6lÙ³`nîîÂÂ{‹ ÕÌhÍ!‚ó`6Z…sˆ'ç/çV¿—î)Óý>-ÿ ‰ÿÎêZ†±æï<Þj¶P½’ö’aÌg‹UK üÞ¢ø¿75ñ¹)î1Ù²ª+LÀƒÓePáj7Çæ­róÌŸóŸœ>jüœòƨùRðYÜOtc‘¸+Ux×£ž—þsÃóí:ÿqüÓˆ§üçÇç0Mµšüíâþ˜¢ÿÎ~~t-+¬&ÿòïôÅ“þsëó™‡üuã¯ôx¿¦}@ü’ó=ÿ<‡¢ëº£½¼´ŽYX/XÍLgç¥Oåþº£©±Ÿþ"sâ÷<@Ømå»ZŽcjvË¡()ÛoöñÐÜB¤S>›ϲ˜Éä-Q‰¨úùÛÃàì\ñß½5üòóÌ€|cêã¯\î +A#­E7¯~ÕÊe,:€£§Ï¹Æø·^‡ñÎ; Wþr?CØžZmÏ^Ôs×9åŸùͰϨy)©m]E¿Mµ[º]·©ïž“Ï~I?2|øÊ~!~µJÓjîC•éãÛïöÊ*ñµ§õ®cPÞÂÇ\ãº"úM4³ ô™Êƒôì)ß=užOüøRߟžSš}Jæ }9ÖA.*7SÒ}ëòÆÉÀ„PTTÿ1ñËäÀƒÔ¿^”Îÿ9d´]¡¿J[P‘µK¹ìkpV$¨Qú³–ÎT0_ʽxŸùf?¬d#òiš_"èàÿË5o¢Ÿ.™8FÒ›þ¬¥ä*à¿ke›Nº#v1¸öG¿ç¹ÿʼ——OÒTûÅsÐùãïÈšGç/;"Ÿˆê{øô9Û„‘© Wç¿ù×Z’@CŽõA׿¶rÊJ¯üä>¼ntÈ©íñ.z³<§ÿ90OÍÿ$#týùëÓlêˆh­µI¥<jÝëãòÍ-qéSãß8oüåWË6êš…·âã=b§ÐŒž¼·¶q/ùÍAÿ ŸSÿZ/£â~HVO/ØÔñAi ê@A‡kV»߸ÇÈüªiPv8W­D±i·B¤V)7 5ØáOüá=¹—I3ÈÝ]G‡¨Žw›ºž»ŠŒñßüãl`^ùš¤ð:‹§|îÍÉJƒ×½(®iɉ#·ÑÛPä~ÏqóÎoùa¯ç¦©µiêE|*:g¦ófÍ›6lÿ×ú§›6lÙ³fÍžiÿœ`bÿ˜Ÿ˜,EGé÷n·Ï=-›6lÙ³fÍ›6lÙ³fÍ›6lÙ±´<«]©Ó›6lÙ³fÍ›6lÙ³fÀ³ê¶V¯éÏY ÿœ‘ŸÈúˆ'¦­w·Ò3Òyã?Éx¿ä%yõéðýyEiÐÐý9ܹ”£SíuÛ®(HoˆÈ Lj CJßè?Nq&7üä®–ñì«¥LM;ìs×ùäßÏ®CóóÊ\’lî"µ ë^¥øˆß > +’jwÌ¥jCmÄõ¯áœ3þrÆåý)Ÿ`5KcÓü¬ö%±¬(É«9oüå:ü«×ú¼Äïóü’b|¢('ý㊛S¨ðÉÄl)êFãA$0©TWƸ\ÚÆäR ÄÕìNGÿçÝÛòíÕ +·÷AIïñ ô)ž<üŒø¼ççpE)©ò&¾ÇlíÊ „´ý{fŒ°PXîhvþ™ž•$t¯ãœ«ò…ÃÎBëõ­N—üIsÕyå_ùÉPOç‘Ìtä=zŸjê%B¯Ð®Àö÷Ç­!E*jwÍ"²ÛŸßœ;þrÙ©å;Vµ+þ°¡9ëÝ,±³„¹©1¥iòÄç6_ò›TªšÖ#_öC/ÈüŸËZ{ ¯+h+]¿`aú  Ó§Q÷㘂œdÖ¿Ó µÅ'M¹E4>Œ‡nµâp£þpŽ¿ò¬â¯ü¶]Ò´ÿ~gy¹þ鶭AÛ\Ûúã?O]·Y¤áÛǽy]§—§goëGþqã]½ÿ•“ååYd%¯ l¹|óì¶y»þsÕ-Wƒ­í¸%X‰ßq‘?þqÈW6Ñ4–óódVb.åÜ?ÊÁOÿ8µù|À“os¶À‹¹~﵉7üâ·1]·Ãõ¹©ÿȯæüãד|±åMOWÓ£¹K«kwtcw)Ž„Šç¥çæšãò³ËÒ\;ÿœž¿+<À_ª?ðÈäY-ù}¢6õpÓ¶À{dñØ°cûMM]ÿVS;S—]ë_íÀ×Ãœ§o„û¶Bçwò>¢jkúZïo ÆzSh£i›õ‚]ÿØœø=æU-}r#«÷œ!!¤­NËøÓß@çu§ÌýÔÁ¨Â¤ +MöϤ¿óë†ys_ü?Z‡nÀð5Ïp³P}òGþ~~nÞrÙLÓþ<´d~ ‡rRßíb|LjNþÙßÿç +CùÇåýÆó0ë·Ø9öGÞ¹âßùú*‡ò&”?å÷þ5Ï—÷ëPw ×| ÎNôé‹pST¦ûoŠÃ䢻×zçÜùŹ Ÿ•[$q"Â!O—õÿÎÓÿ:»·/ôöÿ`sámÅQˆ'jõÀD“P(=òÉ-JŽ4~ +‰Ôôm¿|úÿ>»NDÕ˜ƒ½øŸÆ{KÕFZ½ ôg ÿœµR|·¦=C0Ôí¶=>Øü3Ø–¦°¡éðÕœ¿þr’¿ò«5â;Z·ëü’%¼‡¢¿Cõ8zôû>ã'!”Ž5© ûãY€ã¹ßçóÀÚåÎ`ÿï©7 ¡ü)‘¿ùÁéLŸ—rZ.¡v*ÖèLñïär³y×Ïá:€£½߶6%jGAÓ¶ee¯1QP@Ûy+UòþÜ唥?èaµ®=N—ÿ†^ÙêÒ ç–?ç&‹¯æß‘J-@y«½;xçUHÇ-©Q¸ú|q¡yU›bzþ{å0WP+N£8‡üå±'É0Ô^Ûšÿ²Ï\龡o˯¤•§ú£8×ü悇ü¦ÕjiOHÿÃŒg[˺m )õX@4ëT«Õ™‡#йëÓ®X °¥JŠõëô`MX)ÓnTíXd§‡C„¿ó„µÿ•iHÿ{nûÿÅ™Þäû'åž7ÿœv¡×¼Ú¤Öš w4'ðÎí®ïóâ6Ç–gµ·(¸$ÐÒ»Ç9Ÿåê·ü¯‹¢:2§ïsÓÙ³fÍ›6ÿÒú§›6lÙ³eeçšçŸ˜˜)Ô~Œ×èlô®^lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›úÔ?οxÊúå¿ûñ?à†ayÜH¿ðC,]Bz:ýã²+ý’Èåœù?ÿ? «~mÝo÷D mÛŽyfYOÙjãKž4¦Â§~Ÿ~) +ŽUžÓÿç&ú§æG—¤4Úþßþ&3í’Jgœ?ç> ?-é[Ûq_öY)Ò7±‚†”Ž0<)Ä`©Hû#áØo½>œ¤ä‘;PìѯÎögò6³ÓkYûR£'¿óŠ­_Êo.?ãÍ63 ̦šU߇¡'üDçÁ4òý'rk¿­'üHáKS½U}ürž ¯Äõù`1cJûž}.ÿŸ[<©®¨¢ò.ÿäg· ù'ÿ?fÿ•½vËþø‡èÛ<¬ç‹Z)Üå+†AÀÐöð¥s GZ|?«;ÿüáSù[þ^¨£ƒ¿ûãŸe”štÏÏÑE|¦‘M¯º÷û'>^8$‚{íôàx¸šòP(^(®TŠnMv"4Þ£®}¿ÿœY'þU?–÷¯ú [áÿçIÈšåM?ÐgÿˆøWuûÙ +É;{à& ÕïÚ‡„‘J|ÿV/¨Ì6ñëŸOÿç× Gäm_â«áQáû±žÒÏy)ã?Ÿ>xNæ87ùgr„«€àT·Ï-‡ª¿¼¨`GNç3¹j³ +–ê)·¶qîÿœòù`?ãs¿ÑžºÏ,Îq'©?“T’ôÄu§ÑCŠ v¯wW!Ný‡}±§‹|Tž5ëß8ŸüåûÿÈ>”Ž÷0Ò•ä3Ö>ZRºE˜n¢Þ*ÿÀ ÿÎLÐ~Wù€žÖü3~B²¿åÞ‚kAõD'on›dñ˜+áMþ=js+Áˆ%kÄí¿·Ñ‰_°ŽÝ‰¥ +7~äOùÀÚ&ê£ö†¯uZýÏKçÿ'%cù™çî[/×£Ú›CÅ(Õö{×®20MHèH¯^Ù‚Ž§ éÚ•íòÎA¥FÃþrGHæµ?¢n GA×=sžNüÿ¿>< :RÚçsò9ÕÁi«ZZWå—¼€·Z}øèáEI¯¾pÿùË$Y<½¦9¢¯é+_§ãú>yì+oîSýQú³™ÎOÿä®×Ç«ÿ çÿ‘ÎO4^F¯õH?ìv;Œ±•Ié¶ÛŒ¢T0æ>*Tà=\2ØÏܘœš÷¨4û²9ÿ87·åìã¸Ôn¿XÏCçÿ$·|î¼þ/Ò[¯µÿOLíJ˽A+N¹qòߘë°ÚŸ/»/qBÃbzÿfr_Ê·_ú`u?¢×èø—=[žWÿœ˜—ÐüÛò0©¡yú|³ª‰„*ìFþØÒœqNÝ+Û34$|Tùgÿœ¹-þŒŸ²·–ãoõºç®t2M¶+ÐÃ?àFqßùÌÈ«ùM¬hÏÜÃü¹|¯¥P[HM;€}Ø}δ’¿ +õ®ZnÁÍ +w÷À>aç.™r@¡1É÷P÷ÂOùÂ%uü·ÿå¶êƒýžwÖ¯^´ÏÎ<# Í”(Ôoõ³»5 +¾ñ>Ûã¨ñgÄ{¹ƒ²GCß¾ùÌüŠì¿ŸSª± +Úi4ñé×==›6lÙ³gÿÓú§›6lÙ³fÍžiÿœ`Zþb~a9ÿ«„cðlô¶lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›k_ñϹ§ûêOø‰Ïþ@þKh?™ºÖ±®Ï~÷K}qôîäAÅ[m«2_ùÅ/%ȲjšR—Òì{÷Þ¸‘ÿœPòH^mG‘èMôƒð®RÿÎ'ù:fÔÈèH¾—¸åÎ&é å/ÍŸ4yzÊk‰tÛkXLbâf‚[Äžùì'4òwþ~ Ü?6®i³}Z éíž[”]ªIß’sN¡éCŠG&À×eΧÿ8äK~dù{š–­üŸì³í„D‘žrÿœøÇùh¤w½·<[$ÚJg +ÐF›ÙaÏ‚ì)M¨?®'p¢CAJö¯Lƒ~w<¬°'á´ßFN¿ç?”¾^ ÿEǑ΋æ€N‘yCCèKÿ9ðoÌD®¡p¬73=IÿXáV,ޘŔ"î L c%W§lúEÿ>µ¸vмÁ þôÀÕ~ÉÏs±Ø“¶ÙòGþ~Füß»àz[Ã]¿ÉÏ,IJûëeà„˜´jT€6¾wù©þW—Ã5G®{W~>Ì!ÏÏÑ/‘4ºuúîßð9òäúŒ‘µGÏX†• £-xÉN椚`èˆAOž}»ÿœZ)¼µÇqú>,=üë,<‡®Ÿè3ÿÄN|.¹,‡‹w퀘ˆÖ¢»c¹´[xÿŸ\¹aÌuÜvϦßóëæcä­`5w¿ùæ3Ûã&È«ùóçtý¯Nßß¿á¸w¨­GnŸíã¸÷QµçYJÆ;÷ÿ1ŽŒPñÜVµþ# +h>‘œ;þrîN>ZÓ˜ +ÓQ¶~ŸñÏbYžVñŸ_ÕœÓþryCþWkÀÿË+~±œÿò(ú~AÑTò³‹§mºd퀇A×n¹TçBv +kAï5™8YÊÌ~ŽAëAÇ#_óƒ“sü¿ž3OƒQºí¾ìùè|ñ×ä¢ñóßÈëúAvëC¾ùÛ”n¥V)Ì2Õ¡èµÞ‡(l µµñ¦ß†rOÊ3ÇþrYPÃ}*3Aþ²Ó=_žUÿœœN_›~FíG˜Ö¾:¢šnÕ^Gc^£Ã +üDžŸ,LžCâ4N½³‰ÿÎ\<•ýƒyo_`[=i£(]>Ø ÀŠ:ÀŒäó™tÿ•I¬ÔWáþ&0åê"ykKDŸT„S©€ï’:’Gm×jåW˜ "ª:öÂÝrO÷qZ +BâŸìIÂ_ùÂ"§òë­[ë×uöøó¿°ØøS–@ê¦ó™ù%£Ÿ2¨?£7¯Žzs6lÙ³fÏÿÔú§›6lÙ³fÍžjÿœcn_˜ß˜\¾ß×âïÚÛ=+›6lÙ³fÊ¥rófÍ›6lÙUËÍ›6lÙ³fÍ›6lØX©°¸§_Iÿâ'<ÿ8~Á¼§¨!”zЭ6;ø÷§|î+ðŒÖ‡§†;á¥9u ÿ:c*=Mzm㜧þqÚQÿ+ËÎ*Ñm÷íö³ÕíÓ>NÿÏÇü…Ë9[ÃO‡<°_¹$ˆ²Ž_kzÔ÷üqEQJ‚zçRÿœ|yóËÌ”çõûp+Óí ûj€žoÿœûø,kÖ—–çþ%Z(®ŸÇ÷Q|ã׊J ‰hÛé¯ËÛ5céÐÇÏ!Î_ÈÚË +Õmdè?§LÿÎ&ñ?”ž]#þYõœèÞf¡ÒîÁÿ|Éÿ9ðkÍEN§rÛÖþÈáIª:Óèĉ?dìzøm,¸Yj¾Ñj½Žûü±±\s¦Ý:ç{ÿœ'bŸœ>_)Ó×`vñCŸeÀ4ÏÏÐXÇä=4Š½¢Ÿð'>_zµ¨#ã=7ïäÂÕOÄi]þŒµ%MÓ¹ùàËz¹$ôÏ·?óŠdŸÊ_-Ô ¬£éôä“óù[­w²Ÿþ"sáEÓ’ì{‚k€ÚB14]÷¦9dà(¦­â† +…Ù¶Ú½³é¯üúÙ‡øC[Þ¬/cåÃ=»ž3ò‡üýó¢ÔžQAAÒ»þ9ܵ +>*øSlYÙˆ<©¿†ßæ3ÛˆëÓlâ÷JWþr;Ë„…õ;jwû'ïÏ_ç–ç9¨§Éîz b.¿1=V¥ª*@#®fä †ÙºÖ½{㹑N;“¹®pÿùËÊ?åÔßÒ ©ëg¬¼¯ÿkëþý`dþrQyþXkãþ\ß9¿ä"F?/´?L[8þ]7É᪂A4Øn64Ç+ß~ßN#w"ˆ]UVý]+?ùÀö'ÊzÍiA«ÝP}ÙéŒñÇååjyü†äß[„Ö›¾w «üÄÔœlŽH£t&”9JyÈ5ëý)œj-ÿ9'¡RƒŽ›sRZ)Øç¯óÉ¿ó‘*Gç“Xš)‚ä|ö9Öú¡é_}ÇßãL¨«@^¥ß™v&§á¿×8oüå¹/å}8­+úFÛb7ûC=‰f)ê¯êÎmÿ92Ü+õúŠÿ¢?ðÎyù"ò€4G;»YÅ¿ŽÝ)“èФt_ˆÒ Ÿ|M¸±5=IÜwþ˜RR¶“ÐÆÃå±ë‘ÏùÁöåù>õ#R»ÿ‰ ô&xïòE?ç{ó¸TßëëñwÞ¾ùÜ9ÁŽä +ôþM6žÇÇÃ+Th>Ÿn¹É?* +¿üä>°ÊhE ¥:üKž­Ï+ÿÎNHWócÈÜS“œõ¦ÔþÔJÒ:©Ü“þ{å )¿`{ûûøŒ³MÇmÈ^ÙÄ¿ç.vò:š »j’v§/ õ®‰Çôu·³èÇOøœþsWò—YÿQ?âC ?-Èo*é;’ZÎOözød˜!AzýùF.‘ýÍ:ï…úØÂätýÓÐÿ±8Gÿ8@8þ\R›ëº{üyèÙIöÏÿÎ>7ûžóhÇA›âö¯|îi͇.¤î?ÏÇi=En@¨=OôÌÑ‚x/Uè~yË<–¤~9"µÓ[è鞣͛6lÙ³ÿÕú§›6lÙ³fÍžmÿœgâ1¿0Hÿ–ø»{6zK+/6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³`=cýà¸ÿŒOÿ9ãÏùÄ;þV¿V¯Ã©ÝПsÝÛìšlߪŸÃœ¸Š|;‘CábC 6ù äÿó’SóßͱŠTÙ@Iì~!¾ùë)+ÇlùEÿ?@?5§e;ýZ¾™åYd*O-”÷§|C™z°Ûú z8 :žYÔç8ÊÃòÿ2Bþ·Ü~Ø϶±|[ô¦yËþsÞ¿ò¬‰èå½à²E "¦nª)XÃìŒ0 R¬ H¥>œ{zÉú~Œ‚þtžEÖ7ÿWjÚžþ96ÿœH +ß”¾^aÔÚŠÿÁéžd#ô]ÝEG¡.ßìN|óV÷÷$ +3íþÈá‚ŽDÖ´Êg.Ë"×®ÝpB1ä$ôðϤÿóëSÿ:æ¾OÚúÔ;°9îh¦3ä§üüQ„›·,{Á>Ûg–ƒ`¦‡Þ˜Ä*{Ž‚£¾:ÐÛŠ’{Šç¡ç +Ugüáòñ ÐNÄqñàÔ¯¶}‘UÛlñüüýŠù M¡ÿÑ·ûùy?%&AJû`^€M+ßéÅžñ;€zã‚"` €A¯sŸn?ç’Dü¤òБ¹7ÔcßØÖ™&üæ§øZ ÿ,SÿÄN|&ºbŽ@ìNÿN!ÉK†ùqî…GZìN-k'6«ƒz~ôçþ}o_(kgÆò?ù7žÛÏy^$_Ïï9JqnH#zׯÝËÔ5æA=´ö9nЊoBvÅ ƒñR§zgŸùȯ-¸aO©]¹Nzû<³ÿ9Ë/ð‰$Ä[žÛó§«P¥Nã¹Ê`ʪh;ïÜÞÙ• * ]Áíþ}³ŠÿÎ^È?å\ÜŠ€EÄ=ù]³ÕžQnzƒVµ¶„×ý€ÈWüäš—ü±×À4ÿCç2ÿœ|4ü»Ð™Àêˆ6Ûµ~YÐ~ÚÍÔÿµ—!j:{~8Ø?W‘xŠÞÄg?ÿœWO,ëi¬\íáÓ=5ž6üŸ£üÕóâ»rcuXì{ôÝW‘«n§§ôÄæ®ÔëãÛ~ÙšC >•ú3ÛÌOüä–†Uvm2àTøq?Žzó<§ÿ9 ¢_Ï%=’ ߱ΫË_¿†RÔ§PE*iÐ㛢ŠmROÑœ+þrñxùVÁ«JjVÄ€?ÊÏbXšÛDÈ_ÕœÛþrmy~WëÃþ]_9Ïä+ð†H?ï$c~™>*(R¿ßÛlr6ã`+ÐûŽÃjjÖã~ÃOõr1ÿ86)äëþ䮿XÏDgŽ¿%y/Ÿ|ðið õ>õ߶w<3¾õ"¾;þj žf Pœpïµkâ~Œä_•ƒþ²'Vý)iïñ.z¿<±ÿ94ªß›>F¼“~¬ê@'ˆå¶Àø¤å•<ÛS¿‡l Â¡IÛüúçÿœ¸Ÿ#l)K¸ "ŸÌ3ÖZ ¦Ú°­ 1úý‘œ—þsŸò©µªÿ¾Óþ$0£òÀ4>RÒ@ø©g©"¨2P¬ÀŠ­kÒ½‡ðÊ)Éhj׿ê¦øZvK)ÀoIûíöOŽÿÎÐ~]ÿ/÷tðû}³¿¹*cß'ó‰r¬Ÿ”~\eªß®Ìs¥y‰Oèëšuôd§ü σ~i$ê×d½Y?âG#à€Ü~ݺc9(Z¦äšýØ2—–§ç×>‘ÿÏ­¶òÿ˜* s ²sÜG`@Ï’ßóñf¯æÝÅiAmêÏ,\…¡ãB=»f%™ Ö¶Ë@K€hé÷çvÿœ0tOÎ.ó¸;-Lû3QJtÏÿÏÏÿéÞ]ÿsåó°*E>ý8‡¦@#c¾1ð­kNÕÁVÈÁ=~žÙöÛþq)Áü¢òáÿ—5¯ÞrYùÀôòV´MúçþçÂK³ûæ Ø“ÓßMiàN(…ÍTö÷Å¡Z|éíïŸLÿçÖŇ”õÀ>Ç×#ï߇†{xçŒü¯Ëþ†ÎÅ?ç.‡?ËiØT~ú»žz³Ê<Aiü~ÏÕ`§m¸ †ÿÎG¡“òË_Qÿ,rg-ÿœ}`¿—Zµj-P{Ôþ¬èe…*~ÐéÛolΤUMk±'®2툆Fê Þƒm²ÿ8 îÞX×ÎÃX¹#g¦³Ç”§æÿŸwXˆ…#©ß|î «C²‘þÑÌà1nB»ü'¸ñÇ)¹¡ðíLâÔeÿœò÷ÅÿJ뫽8ž¹ëÜòwüäzùßä—åƱ\Àþ¼ë‰øHÚ2éMÍNõ§†jŸ‡‰¯QZWsœ7þrì™<£gÈ•ÿrß1ñg°tݬᡯîÓsßaœóþrV1/厾¤Óýó™þB1o˽z¯Õ#ëÔÇá“÷Ub`;íŽ$ömúÓêHVÎV?»}üS¶E?çT"ÞOøé\í^›ŽÝ³Ñ™ãÏÉŽç¿<Æâ„_«WÚ‡líªUM:#¯li™«€@ëA^ݲéÉEEIíØg'ü«SÿC«šÔ )(kÔr\õ~y_þrjŸò¶¼ãÎÕS’,uÚ¢sSªŽ¾rê]¹u'~”ö®pïùË£_$ÑjÁn௿Ä3Öš-¦Ú“±0ÇÿÉ¿ç0PÉùM­+ûµ&¿ë #ü¬å/”´±Õ œ?Ô-U ŸÄ¨Þ¿4 ðëã5 ÑÙ\•¦' ö8Cÿ8JWþUÖÇ­õÝG¿<ï“ +¡¥3ÇóJÌ~oQPŸ_­| Nwfp͹=EÅ”)­OíLb×s^½+úéœÓÊ _ÏÂêxÑŽiâ6ÏNæÍ›6lÙÿ×ú§›6lÙ³`MVKȬæ}=K°ŒbGOÏÅ¿òkÌ;ýV~ìò¼‹Î§¦þ8”Üvöüqh\Žu€xgMü‚eÿ•ƒ ·å{€?ãîø–ù{÷Zeª“ZCۿ«)ô;dÏþq%‹~Ry{¡ú­?áŽtÍ|§\øªOø‰Ïƒžl@ºµßR}i:oOˆä}Ô0â~Í6Íñ%O£¶)l¤ZÔúCÿ>´eýæZ×ë0žŸäžùîvPgɯùøÌ4üÛœž†Öøg•.Z•-½vØvÆ[ªÉBI¢í¾eb\šµßþp¸È¿›þ^d¡¬Pü¸šýÙöZÎ*Ä2öÏÏÏPÿ€tú„^ +Óý\ù{5*br$kˆ<”ük•V¤ÿ(r¨w_ûgÿ8Šêß”>[âf¢¿IɇæÔ`ù3Yqõ)úÿ¨sá-è&GèMÓ`’¤ìÃnø¬AcM¨Ût8¥¹SSááÛ>›Ï­_*k´ÈÍ}ý<öàj ñ§–_Òÿœ‚óŠlKÚÁÓľw%£ÔT‘]Ú•'èÇT +±í¸Û¯µ31BAXm_oëÛ8üüäW•Õ@ê·!ÍMF{<¹ÿ9ÏðAåI*vÖ!í^ã:aêOuü1åÊ üiþ}ñ„¥ýº};íœ[þrõ]¿..Aý©àaì9têŸ(ÔhZ#Sõh7ÿ`2ÿ9ÿ’Ï_ÿ˜93–Î×fõá#¾Þ9ܨæA®Þÿ¯15C¿_|§¢­A=÷ï_lãLL_ó‘¾] ûZ}Ï"?Õ>9ëÊ甿ç$ü†Ï#Ÿò.ßça +t; êMOݘ$)øe!â+°>yÃ?ç/÷ò•£«oCþ˾{KbÖPÔÆ>C9çüä±ÿc¯GÎgùÀþ^hdô©^þ9Ð[“/M¼=ºåäÛì‘Óüü0&ªI³œ¨ ”b>tùÁЋä)ÈjW\¿à†zßÇ@)žsÿœöÿÉ_'oô»ø–H´"ÇO¶U?†>Û}òÁÅ}T¤gƒR§GrU½6ª‚§ß"œœdòN±êPƒk'Ú­2eÿ8‹*ÉùEåâ Ð[SƹÓõñÏN¹P71Iÿ9ðgÍ‘pÕîö§ïäþä}ˆbB­H;oL°7b£pEwíí‹Û¾à•5®}ÿŸ[š?˜… >±çýSžécUÛ®|šÿŸŒ'æÍÀÿ£B? ò„¤ð¡¯\N2±¿­EFǾÉ…;xçvÿœ0š(ÿ9<¼ôøMÅ)ïÄŒû3 ž6ÿŸÉ_ËÛü~¨ûÔçËi£EÿXï÷MÐú€Æ:Ê»ûGqã\h!ºçÛ/ùÄIþ±ùA姭if«¸§BFL¿6‡©äÝa)Pm'¯ü Ï…:ƒ’DâHäEOÏ Ts,ˆ¿n˜¤e\ºàˆE~% ³é‡üúÈð¶ºHÿ¸·¯ùîn#Ј¨¦¡mÐçöö:ç¿ç<Ò¿•— \ÁÿÃ̓¦Ù°=aŒ‘QþuÃ=7 ÓÇØ‘Ó–"•‘OÀÀûý2%ùºLþFÖ-GÕdø~Œ—ÎSþU—èk[sô|G:¦¸¤é÷þ*“þ"sàÏ›K®­yAñä¿ëù*¤S½{íš܃ӵ1hN'jöϤóëv ¢ù„¯ü´A]¿É9îrµ9òþ~0žŸæÌŶ­¬T¹§\òc)`NÛïp® Q¿]±XÔ…ˆãØW¯¶wùð±þnùu‚ò­Ø©=‡†}¡ +LñÇüüæQåív]SZ’så«'KžFµàXËìäíZ×`þ¢±$×üë‚Hz°ÛõgÛ?ùÄMÿ'ü·ßý wúNN?4Å|Ÿ«Òµúœý?Ô9ð{Q…šW=Ë`%6¦Ã}»Ó ÃqÔì0D!•ªv¯†}.ÿŸ[FG—5æ¥ÝCO¡3Ü„W®xçBIþrÍ 9!¬íöðø†ÙÚåT^m¹î¸æa¸PóñÆ0¸ƒBv?ÛœcYh—þr'ʦ„Ÿ«\/M¾É§¶{<·ÿ9ØQ,¼ªò„kþ±1@ Uê >ØfVøªiµ>ìqPÊJU=ÍEϦqùËÄ_ùV×l)ðɧû!¿Óž¥ògü£úvõÿEƒùæ2'ÿ9iùk¯öÿB—õg(ÿœxŸ‡å®‚[jZ.ÄÔÒ¤gG§÷øžŸ¯¶0K¾Ã¿FÝ:õÊ‘¾NîÔûœçÿó‚¤/ù€Ÿï?LÜòü)ž™Ï~Z’Ÿœž{R´ð­ +¨Õ¢¤÷?NØƪ¯POÚýYÉ+ª?ç"µ5íú)i_˜éž²Ï,ÎR +~hy ±Lòþ¬ê q*)ãàká×)΃n ŸlÀ%OìÍ+S÷gÿœ»-ÿ*òwQ²Ï øýyêo)Ú‘õhw=þœßþrÊ/åN»ÄЈ+÷‘Ê6õ<—£’´ÎCöFKÅV§ù¡)á`#_qOÇçµ'©Î¢µ18Ûär;ÿ8G'/ N¥ƒ2ê7ulô tÏþ@FŸâ¯7µ¥í)]ÎíáOîéØì{W¿Š@©5j‚@íòÇHÕÛaì{ç-òÍ[óò*8 :CøS=C›6lÙ³gÿÒú§›6lÙ³fÍžiÿœm‘åiþaFK¸ 6ðmëž–Í›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³bæ–ÒŸòõg?ç·—ug 'ôµ×qâ:çrÞ¾  òüqPG´iß¡=q D©Zžµûªs”~B¯¥ùû椭OÔ!è?ËvzͺgÊ?ùøóÿ5ßÀÚÃ_»<¡q¹£u¯aÔì+\… ÔïÐgDü•N^xÐÁ%G×­êFÇíŒû‰ãÔ×<íÿ9ìµü©‡E¹·¯Ë–ùi•´»YWzÛÅ¿Í+ôuÁñBÐ +u¨ÇîSkRkïL†~pÇ_&k%£ÚJGÝÛ%ÿóˆrWò‹ËÔ}ZŸðÇ:–¹OÑ÷ºzO_øŸ¼Üyk̇áõäþäzSÎŽÔ 9¢¬U÷ÛŒÔScNã>Ï­ýæ]ÌÖÿûÏv—lù=ÿ?ø¿6%ßá°“·ˆÏ&\È]é½ í‰–áñ(âkJ||eÃtxŒîó†J[óËÈ@ÿz…+þ©Ï´@×Øθ“òwË|MihÜÇ'Ÿ™à·”ujg?Oõ|½+ë;6Ä1§Þp±ØÔ«·o£Eô[v®Ø*"Õ“JšŒúaÿ>³n^Y׎Ô7qP°ÏrgŽtrüä?šÔ’µ²· íÔTçkR>”ÁžŽ§‘‚˜ànµº½ß×+ŽÀ-@'£zgÿœ½Zþ[ÞCÅ·Æ>üõ/’|½¦ôÿy éÓû±‘ùÈ1_Ë{z¡Ëú³ÿÎ82ŸË]ˆâ~¬7'ÜôΘÒ Z/Qíøã_qðÔƒ±î|sHãÓb€Ö‡§ÝœóþpY4O1UH_Ó3_¢»÷ÏMçŽ?."¯ç?žž•ux@ùçp‰^…¶=ÿÏÛ2¢‚‚µ?OõÍ»(T÷Î/xÊç#<°¯Ôn?ìOŽzÿ<§ÿ9.üäò)ekÒ½AííPÔ#4b6=3)T^$Ó8Žÿæ1B;HNâ»Tg ÿœºô›Ép”ÜýzØ}ß®zûJÿx ÿŒiú†@ç#X'宼IÿGËçUOåÞ‹F,>ª•ö­VtP«º“±¥Þ§Û‡‹PƒQÛn˜Qb¶Ò·¾}E?çiþ½¡ý'sP:Ç\ôfx÷òuÏü¬_<“Qþ›ø~žÙÛL@z0Üv>ß<¹I,IZTïíýq…”ëN½z}#97åqXÿç"5Õ´•5ÿd3Ö9åùÊXù~hyÞyGá\êK#ªÐm¸=NS/H­OO`?Ž\Tcµ·|âßó–ÄË둸oZ +×Ù¶Û¦z£Ê„ÅSm 4ÿPg;ÿœ«UÊ­x7O«ŸÖ2#ù6Iò^Š_fú” ø(ÉŸàÐ|5$Ð}ÿv`¾ ¨ø«N¾øR?è“ñ5<þÿœ#ßÈwþÖWñ!žƒ=3Æ¿qƒæß8Tl/Ñ»uÝêÕ#è#¦(¬ÁB¶Ç¿¿Ñ—}¶4xTç2òÔá¿>âä¼IÓd¦ýsÓ¹³fÍ›6ÿÓú§›6lÙ³fÍždÿœn«~n~a°Y€mÒ¿㞛͛6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³bâ¶ÒòõgŽ¿ç'®‡¬"Ò««\ÔÓ±>Ôû³º«ßÇ·Èe/TÿÛúq…UO&ý¯䟑léÿ9æ…$üVTøüC=jý3åOüü…iù¦H5&Ò¾üòT¤¶äoïŒbÅ‹(Ûr~ü¸ÝÚ¥Žý†tÈ©BùóA š‹ûn~ØϸQø óÏü癧åUÉð¸ƒþ%†þZK¤YÕO«ÂE:Ð ï†lFÛmM‡‡ß—"õ÷þ܇þo)ÿêá€ÚÊ+]ºd§þpýÙÿ(<¼OQniÿsªk`‹øÅ%?àN|ó›7é‹ÀÃo^]†ß¶p†B *´ëš¶)N´ÅŠ˜‹9¥Xôôgþ}a¶æ&;“=½?à[=ÚÎMEÙòþ~6…¿6%ͬ;}äÙaJ–êÔ¥2¤pH ê:ƒ× ”'ï¿õÎÙÿ8„ÕüÝòãE.×¥|ÛgÚP7­hsÇ?óóu¯åÍ¡éª? ùi:…V¥@'øïÙ õÛÊNTfíøbÖ…Xpèwéß>ÖÎÛòsËžŸAkC½wäk“ßÍ!_'êüMÔçéÛà9ðƒR“œÒ(†4>Õï…’òb€EzöǴ€/~‡@®¦Šzœú_ÿ>±^\×ÅMEÔB•Ûì»=Î+LñΔ=OùÈÏ5¯ÃcoÆž5ÛÖ„ôî}üFeø—á4 þ?çLÍCPv4õÆ|Àiùÿäð»þæäŸò{<½ÿ9Ù0ƒLòÌ„X€ûuÒ!Ÿš‡‘$_×–"qZj¿¾YFâH;éØçÿœ»¿-ow'÷šÿ²ê/"Ê5¦uÿy-úõþìuÈïçêzŸ—ZòøÙKú³ŽÿÎ;ß–ºcÒÔ}Õ9ÒQE8’j)AâFnaG$múóNJ«(Úªh;tÎyÿ8& +è>aSQMfãcЫLôÞxçòäüêó×(|~yÜr»WjŒÁBµMÛ}ý3GÈ)X“¸ë÷ç¾vÿ¡ˆò¸$l®NÃü“Ö½ó×¹åùÉÙ¤OÎ/"„­+?OpkøgXÔšR†ÅzeÈTlhH§‡ðÌTÄõV„Wøgÿœ» þ ·;úõ±Z +·Óåž¼Ò˜›HA~¬ÎFŠþZkþS’¹Ëç +7åæŒT_ª­kí ™˜ò@p}é–’,‰^Œ}ú}8PnvÒ1#ì7Ði‘ùÁÂ’/€#mNçj{Œô^xûòy‰üÅóÊðýv:þ9ÚùQÔ©¯áü3qb‚BìA÷öÊûb”§Ï9'å²0ÿœ¿j‘þâE@èwsÖYåùʺŸÌÏ!éõ‰NÙÕ™Hvè{Ó¦añ=Tqï¹ÍïRÄW~ÿÛœ_þrÝkùyvÄFhj?Ù õ'”AýaSÿÐôÿPxg?ÿœ¥+5ÐFÂÜûwüœ_SÈš*©ÛêpíþǶLMX +µ@öúqÌ +Ò„xŸ<zA‚G"£ƒ€;‘L‹ÿÎíä‹Á]¿I]Ðx|C='Ù4Ï~@ükó„lz_WÄu#;¢»ªðšÔ–<î(w¥)\xm¹0ÝsÔy³fÍ›6ÿÔú§›6lÙ³fÍžeÿœtõæÿæ Ýúð^µß=5›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÄ/‡+iGŠ7êÏÎ#² Z¯_ÒשóÛ;´’B‘QÛo»¤i]Ïcøo‰£zd©åP*6û³‘þEò“þrÌ­½~e†zèôÏ”ßóò§æ›#‘µˆþäÉM‡¯qˆ»µxÓaዪ†êI ­rù0£ük¡¥­õ¶ä–3î yêC¯}üßX—·~g#‡›¥Qh~}òŽÌ¡‰¥6ÁAKÓözŠú9ÿ>±æ4_0§ì ‹ø‹~9îÆÛ|ùAÿ? Cÿ+aÇí5¬]~œòd½kJoO1•E­R¾Ýë•;u†Õ åÓ¾t(ø½§Aôe²Ø:þgÞ¨{Y‰4øδ9 ÿœfÿjJݵKükLô‡|òäò•üÆóÇ´oc#n½s´í2 +¨;žõï×å˜IÈÖ•ö¦ßÙ”± +¤4¯Lä—‹þr:ò SI­:ˆÏZg•ç,yÌ_"ênœ÷xgUŒF«Äõ®ßçÓ,³Ö„÷íü2¾`8€ƒmëCœwþr·òÞñ«È¬š×·/ ô÷“)þÓ¸ôú¬¯ücÿœ¢UoÊÝx?Oª·ë +ü–£ùD<)ÊζɩT F4÷ýxÐ[‰*hÕØÓo§Çê[yæˆi·ˆë\ŠÿηüéWÃÃT»ýc=3”BÀV³Çß¡‡œ|àŽ_ž§£;x<ªÞñR£f“~ßNP¥;øŸLåžW”Cù÷/€¾žãzšü³Ô¹³fÍ›6ÿÕú§›6lÙ³fÍžeÿœtŽŸ›ÿ˜-RñÏLL¼Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›½ÿyäÿQ¿VxÛþq!•4MiM:µÉüs¼2ïWq"jh”tí^ù¦RO²Úú:nroÈöaÿ9æeVFÃU¥kñ +Pö¦zЊŒùSÿ?#§ü­*)ßê‘W<•,Um€é¾\ÎßFtoÌ1êyST]6“ÿÄ|ÔRro‹“~³…“"½Få¾{|9Ý)‚ ·}(ÿŸY:>ƒæ.`4éÄ÷ÏuÓ¾xêÑ¿ç#¼È~*.Ÿíâ)©][áa]úÖ¹dmª 4ñöË&¿×zw§õÎ+¯­ç |žýѹ߉Ïaç—ÿç<ˇ¸Ö ýc:4kÊ ¬ zý|1Mé@wñqý¹¤<”½v¨ëáœ{þrÈ·ü«]AéMâ#Ì}ùéÏ"ŠyoL§O©ÛÿɵÈççãüº×Šõú”¿«8ÏüãJ«~Zètøknwù1ß:mIå^§Äx÷8ÕCû=7Ú¹R·©8Jt'üý³ŸÎ § 'ÌÀ’Oé©÷úzs?´3ÓÞEn^[Ó.è–ÿîÆù +ÿœŸ¯üªíz~ªÝ~c ¿‘¾šùDQöVÒ*öØŒq * +|j rƒ;Ö ìGzâ7d$W蘑òñÈwüá !ò~¤ªkÇUºïâFz!ÛˆÏ~D//:yÉŽà_ »u9ÜÁ¨àăÛo¿`h §Åãôcƒ)øhOÏ9w–$ôÿ?!©ÓÜR›R•ê<¼Ù³fÍŸÿÖú§›6lÙ³fÍžeÿœwŒÎÌ]ÔM5=÷=3ÓY³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lBó{y?ÔoÕž5ÿœIEka÷ã«ÜŽ§¿¶wykäîj´ñú7Ë‘x‚ö¨kקãŒx¶àÛØž¾,ä’ë'ý G˜ˆ§¦ÅZvø†zÜçÊÏùùÈQ *Ðâ¯ãžF’«UmÔœKZ½Áú6Å¡“ÔbTR¿¯'¿“FžqÑ@¥õ¿Q_Û÷*Eë×<ûÿ9Úüª{Ãá4ñ,0ò»úš-I¨·Œšøña«3&ë]Í>tÇñ^à¯_žD?6 +$êÔ$i- 7û=2Mÿ8vTþPy|!¨Ÿëœëš¦Ösø­ÿQσ^y +ºÝ÷†â`6§íœ‹,ãkÓ®o«©QBzWÇ[¢ÓzÔ½³è¯üúàκg˜R*põ­ÉÛ½=å‚E4܃O§>RÿÏÈ‘åk?-ÿÑ"§Î‡<•'ïÐÔâN6ⵧZu®/ TEåß|ìßóˆ€Çù·å´(‹ÈŸ‘ϵ3Çóóxƒ~\Z; +ñ½CøgË“‹Õ©¿JvÀÀSà&ŒOñÇHÁXP;â±ù×}¾³í7üáb†ü˜òá­»l×léߘÈ[Êš¨^¿SžŸð> êhòqíš×¾çIQ×r1ƒÓ+Nýi‹Ú«TV¹ôŸþ}^ÿîÌQŠÓëŸøSžíÏY”_ùÈÿ2ƒûZtûÔvÎÏ’/„šìkNÛö®* * ‚ÛïO§lduUãSQ¸ñÎ%æ¨Øþ}ù,î~ÿâ'=ž`ÿœñ‰dÐüºÏZ bßqîGlèÁx)&¬©öûñô!A‘þ£6êCŽ€ƒòéœsþrÑü´Ô¡£Ç·û!žœò•òΖ6ÚÎߧOî×?>SÔü»×”÷²—§Ë8ÏüãhUü°ÐÀÞ°×·Ä|3¥ÌªP«nH4û÷Ë`Zµ¡+NžÉ‹¬ei^ÛS·êÎ{ÿ80ÕÓ<ÎøF³5†Þ=óÓ™ãÏ#?ü‡<*´€xS;VàzZ +ø{}8¢Ä‚i]è{cTZÇüü3‹ëÐÃùJ‡ªÝTuý“žÀÏ(ÿÎRŸ›>C`?Ý“÷ëZPÌ»võãxA«Ó¿¶nT§&¨ê|wÎ#ÿ9vy!AõËcJ×öÇêÏ]hä› rw>’ÄFBç öü¸×¿æ +^¿,ä?óËòçD$Ôý\ÄÓ:=Už¤mP:²ÑQHFný…)á÷bn¯o-MGþ9ÿœoùÓu¨º¥Ï_r3Ñ™ãßÊg#óCÏþ^ãþ9Ú„¢×fè?Ž9¡P(¦Øå-Ä)û$š{Ž¹È¿/ØÐÇ\¯†‘±úFzÇ<³ÿ9diù…ä=è>·'êÔ˜úqþðP@¾9ajKtãJÐãÝyÀŠjœã?󖤟ˋä5fÿì‡_–zkȬ_ËzcÄ›K}¼?v2ÿ969~Wkãþ]õŒ€~DŽ~BÑI r´†‡ýQ“·ø +ŠÐ «ã¿oóÛ0øT +ô­ ññÄ.šÙ—¥Uk·L†ÿÎȇʺ¬@QÓU¹åôÒ™è¼ñÇäj¡óלSíRðק&ÎèHâ^”ÿ+õbŽ£ªŠ×½~Œ§I¾ôø +ç0ò¿&üûˆ ”iŽiØç¨3fÍ›6lÿ×ú§›6lÙ³fÍžhÿœy%80SÆksÓçß=/›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ²‰Ó¹ËÄnÅ`’ß«cSZú–õº6{Ì QE'>SÿÏÈ`¯æ½wÿy"NùäAPÒ„ï÷c>®;züòÒß±èkJ÷ÎÙÿ8ˆE¿æï–ÍHQv=ÁíçÚ€3ÈóóHƒþYÛ5H¥ê~£Ÿ+Þ‚ÄÓzŠàW‰Ôr;Ÿa”šÚ›×õâè¥^„íŸi?ç +‡üŸ/V›@ýùm?ó yù_T½¤ÿñŸ5ˆÏ¯+0èíôîp ¢›ñu§J £ hK¾œVÜBŸN}"ÿŸX‚º?˜—öEÄñžíÏÄ¥ÿç#¼ÆÈjWMƒjtÜgiPÍj ÜÔø÷ûó!äžã§\k¿*¼†çÃ8ß™ø/çß“+ðÖ;“Fþnñ9ëüòÿüç@òÿ/²5{rGŽã:4l­ÅÇ@(*+Û ßë@({øåÈŹÖ¿çZgÿœ´Ž¿–º•õŠ¿ðC=1ùt¼|«¤¶²·éÓûµÂoÏQ_ËÝwz¡MÓý\âßóOÃòÓD€µ¶Âžæ‡:] ÑéP6ÛçRÄ-k¿Ê½~ülÜPr¯9ÏüàÛgæ°Oý.eíNÙéìò]"üñóÕNÿèäí1Ñ@Œë×Û·]²‰O ÏO•w®9„†®Ã}³‰ëê«ÿ9 ååžçþ"ÔÏ`g”¿ç)U[ógÈA…G«1§ÈuάŠ]Éc±=¼~~8êv‡cßîƪ1 µH§~ÕíœGþröBùéo"7?-iãgnä˜Èwüä»pü°×ÈëõFˆÎqù#Iù{£; +RÒ!^÷ãµ?xjWÛõeªòø›Ã§êÄ®£„„“º‘ø†Î«+jã µÍ? ôI4ÏþI?=ùÍ•èö=NwZ(¥{ŸíËRTüf žƒøS^H§zç4òªÓóî&?õl~ÝóÓù³fÍ›6ÿÐú§›6lÙ³`]NK¨m&{(Ö[•F1£7ÍM==ó…7¿ç!ÖR•t’‡§û;}³œùË_ŸžBó>¿æ›o.ió\k­_Q#)QE¦æµïþVüäA]¼¡¥†:†ZþbÿÎBðvB?êáÓ1ÿç Hy3O©=õŸ=±1ù—ÿ9ÕÉV›o¨ þXáù•ÿ9ßÉV÷Ó0üÍüÿ5ÿ&ÄPÓþ:#–Ù¦üÎüþ‰€H²`wÛQÓ®_ü¬ÿÏÆ4_$Yž¢¿Óÿ+Wóì7‘­zÒ£QZ~¬{þiþ|© ò5©ØŸøè¯o£›_žâœ¼‰Ä+A¨.ß=ºåŸÍÏ~5D·ÿ¸ŠÿL +¿›ŸBRÍäXŠ(¿^]Θ+þVïç™4BˆSÇPO¦›cGçç™z€¢ ÿ1éý1ÿò¸?<*çAŽƒþÖ ¿ËlÇóó·QäÞ»þJ};eÎ_ÎÓ·øV¤½è?†Zþs~uAü¿éÿk÷ü2£üçüìpIü¿¡ÞŸéñÿLÇó«ó¥zþ_7ÑôÊο΀¼‡åó|¾½V&¿žŸœŒµÿ•w5æ6?é_ÏOÎ"@?—s +ÿ±ÿL¯ù^ŸœD优h+yã¶<þy~p¯_ËɈ›^Çý1²~yþq+?—s¦ßé±×õfÿ•éùÄiO˹ªåö?é˜þyþpîÃòòn5§ûÙVoù^Ÿœ šþ^OAÿ/±ÿLrþ{þmÇE›òîä°¡%.ã# ²ç÷檂Çòêôk¨ë_ÏïÍ9Õ£oË›áP@ÿI‹Ãß8§äô_šß•öÚ«yöäß^Éw_U(ÙÜõÐÿåg~gïÿ ûPö>¼}2/ÌßÌÒåÏåþ£ðÔÿ}à5¿3ÿ3Ÿ—ú•&†hûíß#ê?™ÞPüÆÔÿ0‘µ)`¾´[o«ú‘†R„U®ãlìþr3ó#ˆfü¸Ô÷ÿ‹âÏ)ÿÎL~Y~k~~ù°ù’ÏÉ÷ö+è¤&9 +1ø}Á¦q©¿çÿ7C2Ÿ-^ü§eü7ß?󈿛uWÿ ÞЃ·øï™?çÿ6ã?ò^À\y#þq»ó_ʺ펭?•ï¥KKˆ¥eU· A¿¶{ÖOùÉ=B¼åΰ?ÏðÎsùùù•ùùÑäÛŸ+YyVµžgRd~G^Ø'EüÌóæ™ao§Ÿ"êï-¼QÆXpÐOÓLÿ›~xò°­á÷œLþqyÞ6ÛÈzÊšŠžù·ó#ξcÑo4õò.°u ĤªÐý°_äæ÷?(ü‘§y^ïÈzÅÄÖŠU¥T+bv~ù7¸ÿœ ólñ4'òó\««‰ßlùáæ?ùÆ¿Í=_Q¸»Ë:‚¤ó<€º$ÓèÂÉç5ØWü5Æ¿ï£_×”¿óŠ¿›L ,ßî(+h¿ç5QÔ-ê Jz&•è7ÏMÎ%ßùïþqº-RWÉz½ä—Í)†0„¨¡¯Ï=üåG™UKIù¯Tø"gŽ¿ç*|£ùƒùñç#æ}?ÊZµ¬ˆ¤°Õª½þâ¿ô,_š¦Ž|·¨‘Ô~àãüãæBÇËZø©ýÃb?ô-¿ši³yoQ¡ø¶ºž~IþTþc~WùßHó5ß–5Ym쮌‘Ày0Q¸Ú¿<÷áÿœ¶Õ‘ø7üÃ_øÀ¿×8_üåÏæš¿>ü¥—´Ÿ&ëv³$âbÓ[ÔPmM«ž6ó™7 +]|¹©2¯ü»?ôÇKÿ8ñù”¬ž^ÔA¦À[?ÑÛOùÇÌwOU|¹¨²ïÿÏÛb:c“ò ó#¿—uAÿ¢¹¥~Œ÷×üã÷üä×å4¯*j¾P×ÞêÊ&Y+2ÊIbj*Aï“4ÿÎ\Á«è—– å?0¤·I +“dh )´9óZóòWϬîç@ÔhÌX«IZZôÀMù'ç×é êOüºÉý1çòCÏœ }P6¯Õdþ˜ôü–óÒõÐõÓþ=dêzvÏYÎþ`^Î=ZjÖÞcÐ5—k׉£ô,¨yVž9騿ç3´I:ùsÌþÝìŽpùÄþoj¾|—CÖ™{d–ñÖÉù†ZUðÛÇ:'ý “P£E×:–Ó?ç)ôAñ®‹­Šö¹Ìßó”:(—¬*Ž§êPûc‡üå—Asú/X$ý¡õ vùÐg<üøüïÓ0¼•y¢in«õÛ’¥yÙHá5­i—ÊŸó˜~QÑt; Û _ë[EœtùiÉOjŒù¡ÿ9aåO4ùOSѬôý_ë7vÒG=>P*‚§Ã9×ä¿ç®ä_&éÚ«§ê‚òÖ"ŽÆV©;dÄÿÎRyfåõXu~”WðËÿ¡¤ò¤.Yêµ#§Ô%=¾X—ý 7”¤ÜYê•òá.þý6ȧüã/üä…ù[m®C®Øêaïõ.b1ÙJÀÆ‚»l}³³/üæÏÚ•´ÕÅkO÷)Ï=ùwó·HÒ?4<Ëæ«« Kôn¬"0³——Ã×’Ò£:dó•>Q-E¶ÔÁ]¨leðð¦Wý O“Se·ÔÔÒ„}Bjõï¶5¿ç,<š§’Ûj{þ×Ô% ðíœßWüòÐ$üÛòÿœ#·¿:e„S-ÃýJ^AHZTõÏCGÿ9µùvæ†-QOzéÓmøg +üïÿœ€òߟ<ùåMwJ·¿k-*Y É{)U€#n"›äá¿ç+¼–ãû½GA¯Ôfñ¡®Ùkÿ9[ä¶$´z‚÷ÿxeûŽØÏúŸ$¸^QêŠWê2ìÑœÛþr ó»ËŸ˜P:^‹ ä·fâ'£ÚJ´ +w;ŠV™ß´ùÍË»; {w]GœQ"°õÛ¿5ç-<‡æï(jÚ.œ/ÚòêÚHãV²”ÄPoM³œþNþ~ùWÉÞNÓ´mB;È®m  *‹9â©­ ›ùÊ#ñ þ˜9ô9zøtÆùÊ%µ +›ÊÒ•ú¤¿Äc®?ç&ü–ÈÈë“)–’×£#_ó‹ÿó^Rü®òýõ†¼o#žçPžáÚÈà£S‰¨O†vuÿœÍü´j“=৔ßóNyÛÈ¿žž[Ðü÷æjïë a©Í–íõi `µ®Üj3£¯üå?×ýÝt«C±´—cÿ–ç*ü„IMr)öGÕ%é÷c—þr£È%V·7¿h Yæœç¾WüþòŽùÉ/›îe¸CiÆÝd[iÆH4¥+ôç|‹þskòªSO®\¤ßóNp¯ùÈùÈŸ&yï;SÔ´iæ–×L»i.\Á"ð]·¡?FNbÿœ¨ü¼? »œF•·—ï? iŠÐÖþ\²ó7’Šì¶ƽ3ÐÔþ]ÉñývU y>‘Ó9ïçïçדüùä{½+F¹y/&d*†ÊÃ¥G†v¿)ÿÎaþUé:%•ŒúŒ‹-½´1°ú´½U4ør?ùÕÿ9Yùmæÿ#jú6—¨<·—6íièJ*Ç ©]²ùQÿ9äO-yGIÓ/®äŽîÚÚ4’?AÈV_¦K_þr›òä5>¼Ü[¿¡'ôÅþròëûÆÔ»m ‚¿†:ùɯËÉ£?îDý‚(b“è¥W"ßó‹_Ÿ¾Gü»Ñ5K=vüÁ-Æ£<ñþéÏ$jQ¶®v–ÿœ·ü¬úPŠïýÌ¿óNy¯òËó{Êz›üѪ^ݘ­u %»˜ÜóPOjWïαüäÇåì”#Q "„z2SõtÇ'üä¯åè¨]F¢½})?¦ZÎI~_¹!µ èLR{ÿ“?.þvù>×ó~?2Í{ÃJ[„ÊQéêÔ¥@Îø?ç-?+ˆô°ÿŠ¤ÿšqßô5ß–}?JŠûÅ'üÓ’¯#~qyGóâK_/ß-Ìñ/6N,¤•ø€É¦lÙ³ÿÑú§›6lÙ³fÍ›6lÙ³fÍ›6lÙDW/6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6Pß/6lÙ²†^lÙ³fÍ›6lÙG7\¼Ù³fÊ8Ö^duÛ2ófÍ›6lÙ²²òˆ®jS53PeåjfÌTB6ÍA•ÁiJ Åõ1E=@Ëâ<2¸)ì3ziZÐWå”"Eè£îÍé'ò»0†1ÑGÝ›ÑNêÑ•èEZðZü†oB*׊×ä3}^*S‚Óä2´'ª/Ü2þ¯ò/Ü2¾­ß‚ýÃ0µ„l~á”m ;úkÿ3}R÷ÚÿÀŒßS·ÿ}§üÌ,íÇû­?àFWÔ­ë_I+þ¨Íõ+÷ÒÀŒßQ¶ÿ}'üÆ6Ìõ†?øý3~´ŸF:ŸòF_èû^ž’ÀŒ¯ÑÖ‡¬1ÓýQý3~´ëèÇÿ?¦c¦YŒ1ÿÀé]&ÅzAÿ`¿Ó7蛾„ð ý3~‰±"ŸWŠŸê/ôÊýaÿ,ñÀ/ôÊ:&œãÚù¿Ó2èºrô¶ˆWþ+_é›ô.ÿ,Ñmÿ¯ôÊý §V¦Úøúký2ÿBißòÍü‹_é”t=4ÿǬ?ò-¦1ô 0‚~©?ñ‰¦RywKµ¤¿ãÿL³åÝ)¨ ¤?t¿Ó3ysIaF³€x—úe7–ô‡§+8 :~é?¦_øsIñçÿñRÿL±åí(Ǥò)¦7ü7¤Ëò)?¦eòÞ›-œåLÃËZ@égoÿ"“úfÿ èÿòÅoÿ"“úc•ôbkõ}¿â”þ˜ãå"”Vÿò)?¦6/,é$þ˜.ÓJ²ÓÉkX#ˆ‰D ú† +Í›6ÿÒú§›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6U;åæÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³ÿÓú§›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÿÔú§›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÿÕú§›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÿÖú§›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÿ×ú§›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÿÐú§›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÿÑú§›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÿÒú§›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÿÓú§›6lÙ³fÊ,©¦1g?ùÄ6?(ü¹ù?ªù^÷Ë"æ ‹V_•Ô®I ˆÏWæÍ”kÛ0ËÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÊÞ¾Ùk—›6lÙ³fÍ›6lÙ³fÍ›?ÿÕú§›6lÙ³fÍž~ÿœ°›ÒŸÊGˆaúf¸'¡³Ð9³fÍ›6lÙ³fÍ›6lÙ³ePÖµÛÃ/6l¡—›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›?ÿÖú§›6lÙ³fÍž~ÿœ°,&ò›%6Ö "´¦Äxøç ®^lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³cY¸ÓjÔÓ›6lÙ³fÍ›6lÙ³fÍ›6ÿ×ú§›6lÙ³fÍœþr¦5ç”TébÕé¹gÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍŸÿÐú§›6lÙ³fÍž|ÿœÀ%-<®êhÃ\´§Ú힃͛6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍŸÿÑú§›6lÙ³fÍžyÿœÅb–^Y ÓýÍÚwÿ+= ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›)WŽ^lÙ³fÍ›6lÙ³etËÍ›6lÙ³fÏÿÒú§›6lÙ³fÍžyÿœÉ^Z_—7§û›³ðøºŠo÷g¡F^lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6ÿÓú§›6lÙ³fÍž|ÿœÃ'ôo–ÔW‘×,À§úÙè<Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›8Güäüå$‘®›.š×¦æ#'%”%(iJkœ—þŠ?d'@“ßý!æœbÿÏÈ­¯è;Ók…ÿšqãþ~AbM?@IÿI ÿ4áŽÿ? °Õ/!µ}EȨ¸SNF8ç¯a“ÕE~œ€4ùãófÍ›?ÿÔú§›6lÙ³fÎù‡§~e^ÝÆ|™}§ZÚ𣋸Gå^ ©ŸFyÏþrAüÑ°ƒ@›Îzµ…õ™ÕíÅilÑ0rûDî{,eæÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÊËÍ›6lÙ²²ófÍ›6lÙ³fÏÿÏÅÍSŽ¦Õ»ÿ•ž:–r6ìp1¹ð'lZ9ÍFù#ò‰'V´U­}hé·ùC>Ìéµú¬ õàµû† +ÊËÍ›?ÿÕú§›6lÙ³fÍžyÿœË‘¢Ñü½ èºÕ™?Cg¡TÔTåæÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÊy²€§|¼Ù³fÍ›6|ýÿŸŽoæm(Sê­ÿÏÎiðþ¬—u?=$$ƒZ²QäÇoÒöe ׌ +ôûC>ÐiªE¼uþE©ú0^lÙ³gÿÖú§›6lÙ³fÍž|ÿœÈ¡Ñ4ETëVu?o¦zeæÍ›6lÙ³fÍ›6lÙ³fÍ›(ûfËÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³eMóÈTeæÍ›6lÙ³fÍ›6QÛ>}ÿÏÇ +Ÿ3iG¯ú+mþË}ÿÏÇ?å%Ò«Óê­ÿÏO%jØ`6BXÐVŸ,çoµ^¹*ò‹¤Z§¨+I£;xröF+õ(xì8-†ÃåæÍ›?ÿÑú§›6lÙ³fÍžzÿœÓ¢ù_I“"º½û<ô¨>ØìÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÊ"¹‰®^lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÆѹuøqÙ³fÀ××-lÁP+½†2ÖõîL„"µ® Í›6lÙ³fÍ›6lÙ³fÊËÊf ƒ|á§üæ×å>u-•Î¡*Ë ´n»MôñÀÿ9ÛùB¢§P›ùwé–ßó”JœÿHL}¾®õýXáÿ9ÑùBNÚŒ¦þ®ÿÓ$þAÿœ¢ü¼üÌÕ£Ðôæ–öPÅ¢e¯ÎäS:£IE©ÏŸóñæâM&›ÿ¢¾Ý?kÛ6lÙ³fÍ”M2ófÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lç?ó_™ÿ”¾G¾ó>™s\Úñâ’׉©¦ôß#~h³KæWz‘w5O¶rÌX·>á׃ ÁðöÅ © ©Ò™èÿùÁç'ó[M$ЛéøÙõ:1ðí½sÀ_óò"W_ÑÙNâÝÿâYâ»™Zr]þ"ÛŸ|AI¡`6¦Ý°T,Z€í_á’_-rÖüwnj(£ÿϺˆ•D´o§¯ü-3ÓWŒ}?dvÃl¼Ù³gÿ×ú§›6lÙ³fÍœþsMAòE¡åÄRËq×ûÁÓ;ä?Ý®õØoÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›+/6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙE‚õÎÿ9´àþOë$Šü1ÿÄÆ|†¸pw'­FÝpÊÄ{/R{㧔ÊÀ+lFhš¬SÄÓ>§ϼT¯åW¨Ô¡½ž†»ì\ô½ÌËé2ŽêiO–|EüÑ<|Óª!$‘w?^ÿÈ’ÈÔ‰ÅzJx»W³b§âëÔW=ÿ8HÜ¿5´»ÓÕ¨ÿ`sêšõÏÿÏÉÈ]Fm‡ú<›÷ûYâ—’Ü:OÔ«ñ;¾…>.+ß$ºîî¢dJ}ùö¯Ë Í¥Zû^Œuÿk›6lÙÿÐú§›6lÙ³fÍž}ÿœØXäò=¤ná j–@xŸÞvÎýn8Ä€vQú±LÙ³fÍ›6lÙ³fÍ›6lÙ³e\¼Ù³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6V^lÙ³fÍ›*£7!‘9q¾pùÍ“ÿ ZùSþ$3äã»oနs;x岓R: 1HŸ‰­I >§ÿϼÕcüªÂ…ïg'ðé‹‚6AAðžÙñó<üת(<¿Ó'ëþ¹È‘  +eŽEi¶-l)E'¯_žz[þp^?šÚuR¥RsQÛà9õ=vùàùù-?NèÅ…q'üK,‘è$‹˜h*C¡¡ï¾}¬ò›3é6®â„ÃÕ¯ìŒ8Í›6lÿÒú§›6lÙ³fÍž}ÿœË`<»¢ìû™²ÛÇãÏ@¯A—›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6U{f™y³eS¾^lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›+/6lÙ³fÍ›6lÙ³fÍ›6lÙ²ª:eåuÍŸ3ÿçä[~a[€Y%~óž@º’•+ÐõÄ}rƧ ÄZRMkL7òÔÄj¶t#iâÿ‰ û¥¦0úœŸ÷ZÄFqùͧÿ?­ÿ©ÿ‡òiÇ-IÛ¹$’ý¿Ïl`RO#Ó[2–æsêüû¹JþU’›ÙéíÓ=9u¼mOŸ¿4¿Åz«†úÜàÿÁšäIÛj ÁŠ*‘MÇlüKø|óÓßó‚QsüÓ´AOîg5§ù9õ„ŠgÏßùù@¦·£ø¢Oø–xªg.í׎>MÖž5ÁpŽ5c±$òÌ`ÞÀ¬iYqóϵÞXî.Ö• †:W¯Ùp×6lÙ³ÿÓú§›6lÙ³fÍž|ÿœÏåþÑÊP°Öl©ÿž‚^‚¹y³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³cBïSôc³fÍ›6lÙ³fÍ›(W¾^lÙ³fÍ›6lÙ³fÍ›6U+—›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6l…y»ó§ÈþB¾o˜u{k+²¡½9^Äô?, ùÊoÊXØ£y–Æ£þ,þÌ´ÿœ£ü¦~že°ÿ‘¿Ù–ç(ÿ)‡ý4¶ò7û0n‡ÿ9ùkæ[ètÍ/_³¸»¸nÆ’nÌ{|è¸Mæ¯8èžG±:–¿y• `¾¤ÍÅjz +ä'þ†wò¦´ÿØV„ÿz;e¿üä×åTkÌ–ò8cÇüä·åaRãÌš}ü\2¿èeÿ++ÇüIa_øÌ2uåï2i~m°TÑ®c»³–¼%‰¹)¡¡¡ùàéؤLèR ñWåö¿ù§ù¡&«}kæÙ¬¡µ¾šêñ¸¢ºÒ›dµ|¡ù¸Ô/ç‰E)ÿ©óËo)~nQçw&•¶OÇ|¡ù»O>܆¼©Ö˜QÀë_jc–NƒºbЕ/U©Ø\ú­ÿ>ó·’ßòš&’œd¼¸d§†Ã=-qö~Ç·¶|DüÛ|ߪIÿKžŸKœ„ò"£ö\Uǯ…>X"Ü7: +ÔõÏQÎOÍ;S]ÌŽžÙõ ±´®xþ~DõÝÇêòT²ÏÈû•†”ß-UHäÌCR”íOž- j±Û$þ__ZîSÄóZóíO•®‘i¿#èEñÿß3fÍ›?ÿÔú§›6lÙ³fÀwÚΟ¦0[ˈ fÜ $U¯Ê¤gœç1<Ù¡êþ[Òíìoíî&MbÈ´qL¬ôळÓš¨#Û6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›(Šæ™y³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6ëÞdÒ¼­oõÍbê+;zñç3„ZøTäp~uya¯iôÒcþ¹“ó¯È2½§í×ý&?ë–:¼‚ ?Oiõÿ˜˜ÿ®)ÿ+‹È¿õ}°ÿ¤˜ÿ®J4ýB×U·K»)RkyG$‘2°ñlrµ+¦²´šá@-nà•PNy3É_ó‘??˜Ú{êÚ“¤OZX”Ë,Šßq;WÓó+þrrÚVˆÿ'ÝŠ?æoçê£IÑÛŸ¬ILqüÎüû^#ôF†Ið¹“?ç¿>¼Óùæ½kʾi±µµ¸Ò£FåjìÀ³VÎÿž?üÂÐôÿ1ÎC½¾¥mÌI¥ *†^@ìiþUg“]û†±ÿ¤tëÚ»foÊo&S¢Y‚ ¸Mÿ ßò«|È×E±¸éú震óÊÚ•<çä—Ò¬`³åªÇËщPÇRùíÜówüç¿Åùh¨nWö¢„mö±úåG“VÞtKüŸÜ!ˆñ¦ +oÊ?$NŠ?BÙV¦‡êéý11ùGä€É4þá]0›Î¿•>M·Ñu ˆt{5‘m¤â‡qA×&_ó†DÊ]<½?ã#gi»ÞÿU¿Vxëþq¿Ñ<Ã@h5Y÷ÎÝQÉ›í§Û”V§#¾çüéu©!¨Û~£9‡äÓ¬¿ŸÚëÚlcþgªÜíŸ2¿çä¬Gæ ¥AèIOø#ž;™Éå^ã†m‚õ8Ð*h7o ;ò”djÖt4ýüFþØϺºi&Òßiú†q?ùÍjÊ ×Øzh?áÆ|}—“IÄ +Ðt“ ñ¡¦õþ¢ž °ëŽˆzȇÃ>³Î OÊ ÿX¸¯üz&çû¶Ç>!~jkÕA;‹¹¿âg!’-"OOU+À¿ƒâ“Lõ'üàR³~jZŠ‘KyÎÝþú‚ãžÿŸ’‚ºÖŒçÜIÓýlñ<•&„ué‰oZ‘P6ßÂä° +xŒè`Ëu_¶½:õϵÞR`ú5‘¡‚-_°0ç6lÙ³ÿÕú§›6lÙ³fȇžÿ)<¡ù˜ÐIæm:+׶¯¤ÏPV½hAçùÉÿÉ$~^y{MÕ<¹¤[Y^ VÌ‘>*jw4ÏYÆI@}±ù²{eæÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³f͉\ÜEiÏ3Ž5,ÌvROË ô0_–£¯˜´ï÷¥?®Xÿœüµ=<ŧÒJ\zþ}þ\9 óœèå?®;þWÇåÕiþ!Ó«ÿ11ÿ\ycÎþ_ó¢I&ƒòBBÈ`8RE@4ü‹kŸš^OòÍÓXêÚ½¥ÊS”rΊ»Š‚k…ÿò¼ÿ/7?â ?n¿é1ÿ\püîü¾&ƒ_Óëÿ11ÿ\rþuùÀ+¯iô=?Òcþ¸3HüÓòv¿t–:n±eqs!¢ÇèÌÇ­§%9æùϘÒ ÚFê[Q·sÓ¶ÿœ|üµh"Ð6|Š/ìxÏ]ñvÿœzüµ +Çô ™íýßöõÆùÇËf!†ƒgQ°Ÿùþ9üÔüò“äýNöÏF³ŠâYSpÀuùÚÿçH?”þ]¦ßèkúÎtm{þ9—_ñ†Oø‰Ï%ÿÎ!ŸSÈΪ>}w¿û<í®áÃ9"ƒèåºUÔrïþ}3ZTõßsØŽß/žqßùÆÿ:¼ì;zQWçË=sžLókÿ9"UkH¡®þvu£*Æ ŠŠ{c½n.M:_öÎhÁRÁë@ôè}ÎpÿϱêyÃÈÈTïªÅðŽ½»ç±óÍ¿óžÏéþ[ÆEkõën‚¿µ’ý/‹XÂz©‰ ¨§ìŒ·¨ 4ûý±Í UP—ëÂ>ü]Ô·¡kY~{!Åç +äùI¥Pk5}ÿxÛçm¼¯¡%:ñoÕž8ÿœZqõo0r¯#«O_—öçnT$h:ôéAãŒU;PÓø÷þiM˜î|~œå?“1„üþ×M#MC÷°­<3ÕîvÏ™ŸóòfÏö`o[%ú>#ž:’Šzšž"áœ|cÛ®&O¥ c¾ß«ü­ñêVž-ýbß”jE8Ü\ +øü]sÑ—#¸¡ÏˆšÌ›µfZkÉ·éûg!àð`6ëš„G®-ljßdÐøÿ õ?üàbFŸš6d0ÛÏ·zñéóϧËR ôÏÿÏÉØgEõ‚M¿Ùg‰%z×—lAõ¦Ý¾x6ÐÔò¥6É„Ôº€ð‡^Ÿ<û[妑fÌjÆ«ÿ0ça—›6lÿÖú§›6lÙ³fÍžyÿœÚ òfžI¥5[/§ãÏA@kü†)›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÊ,©¦7ÕOæ~oUí ½òù¯ˆÍÍOq—×|ÿOðΧSAõI¿â.¹:µrbŽ¤±»ŸÅ— ]öëî®3— ¢•!·úvÈ_ç7/ð>²»ò[YjvéM†LÿçCÊ_/¥M ;¬s¥y€¥Ý±0ÉOøžJÿœC'ü2°Ô.À§úûS;jÑÈ ±;lq´P +Zxûfi /1@MTƒœwþq€ˆÿ;<éJà §Éó×™ä¯7ÿëHQ_ÑTÓ:ëò òÑÛßÚ0ZR¤v÷É&€ÿéQuÝקÏ>Öy<òÒ-*kûˆ¿â#‰®^lÙ³ÿ×ú§›6lÙ³fÍž{ÿœ×@|™bÛmªYuÿŒƒîÏ@ÃýÚü†?6lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›6lo1ãŽÍ›6lÙ³fÍ›6lÙ³fÍ›6lÙG¼¼ƒNî®c†%,îÆ@êIðÈ)ÿœ€ü¶|ŧÒJ\±ÿ9ùlÝ<ŧÒJ\zþ|~\¹y‡N©ÿ—˜ÿ®Zþ|~]1â<çÔíþô§õÉ–üߢyƹЯ`¾…‹<ø;áÆpÏ<Î_ù7Ⱦeºò­Í®¡ugOT[[¯ÈÖ˜Rç8<š ?Ek[ôÿ@|Çþs‹ÉCѺÍÑç8üŒ?£õš¿î>L2òOüæ?’<ñ¯Yyr }BÖûPr ›VX^§;¾y[þs°Ks•¬yàŠïSXe0HÈÅ^€î¤a<ßó‰þVPJê:¸mºj{c[þq3Ë\öÔµ‚Ü ÷ür—þqGË•¯ém`(Õ¾“¯l†þu~Ai¿—¾LÔ5Ý/VՅݤaÓôŒýÇÏc~O]M}ämââC,¯alÌí¹$Æ78eçÑËËZ˜ÿ—Yÿâ<Áÿ8Š´üµ³¥GúMÅ}ÿxwÎÌ#‹l@ï¾Þøä !ZîÍþg§„œÖœzӧι˿ç›|ùCð~‘Ž‚µß‰ÏRg&Rßó’šíMGè¸M)î¹Ú•è¥ +Š°ð§OÁ=AOøxã™YÓí Í73Š~d·§ùÁä">ÏÖ¤=:óØ5Ï4ÿÎ|~_ÚT FÚ£ÇâÉÆœY­¢ýÚµ<6ÛÔ#â¡#·|¹;àB2 ùÐYü­v®Ò:äçþqM~SytOôEï_Ú9ÒuÖ ¦Ü±í ‡þç‘¿çî?çH–”îBî„Ó§-ó·,¬ NŸ/ž`xÖ‚…zÙ€Z“ZŠ<qïùÆBßò»|è4ô!¯…ywÏ]ç’üிó’GÙm&¤õÛ:ÉS°Rh7>;÷Ì¢¢µRž=²‘Ãò-J÷Ä?>È›Î>IäÄrÕ£é×b7Ïe盿ç=ʯå˜äiþm¿û,•é-þƒb¤ˆÐÔ÷G\ÍðùÐøº.û +‘ßÃ#ž~¬~\Ô]E@µš´÷C‚ç +‹Ê='¥ ßòpçl½Àà÷Sú³ÇŸó‹¥Z×̨«5MsµT­TíÊ´ðÿ1–Ü]>#Äóé I^C~ÔÎ[ùFƒþWö¸µÛôbŠ}#ïÏQÀ¦8BräTR¹ó[þ~Pœ|ùdêw6K_ø#ž8œ†$ÁñÄIû[P˜Ãñ¯‹áârKùx‚O2iŠÂ ÝÛ©ÿ‘ƒ>ç@ŸºUðQO»8‡üæ ò¨5¾]£JÁ ùpþ‰Û ®qÏzPu÷Ë™èÇî&)¨Ö„vÏ«¿óï¡_ÊV«]\µ?h}ùèÛ…¬fhsâ'æÑ+æÝYü¶N*?×9 £T ¹þ¸àêÃ~•¦Ø½«"¤*hsÓßó“óüÔ³; +Ã8ùü9õ~!Ä‚ß< ÿ?&N³¢ïñ$ÿ‰gˆgBà‚F1Az¯Nø"ˆ8ô=}²Q .aÛ•]ví×>ÕyDÑìÒ”"Þ-¿ØŒ8*®])—›6ÿÐú§›6lÙ³fÍœþsV.~Bëö5+&¡ïûΙÞmMaCÓá>X®lÙ³fÍ›6lÙ³fÍ›6lÙ³fÍ›*»åçüðÿœ©òÇä~«‘®Å?9£õâ^@Žâƒ|æôQo˪ì·dö“L£ÿ?,ü»·ú¥ìŸ$QúÈÌŸóóOË©:iúñøSþjÁúüüoÈö£o¦Åa~¯q*D¬U( 4o|õ1@O|‚~xþdÏùIäËï4Û[-Ü–O¤ÍÄX¸Î%¦ÎM~ojöqßÚù"&·™£}p +†S¸î0TŸó‘œ±£ÈÑ1"¿ êœËÿ9ùÊAÿ:ŠmõÕÜŸ ³Kÿ9ùÃ"þE@Tÿ¦®ÝëÓ¦uùǯÎI;ü³&¹qeõ á¹–ÙâÌV:n Žtüòåÿüäßæ.§æ½kËÞTòíôZ<Þ“É%ÑŒzxŸlü¯ŸÏÀ/“¬H5ÿÞ¸ïù_žüc¾ÿïv9¿>¿;£ügÈ +ÿ½Ã ,ç%|Ùæ??Aä_5èi³Ü[É:¼W¥Šî)Ðç¢ó‹ÎAþ{êÿ”7ºF›¢i‘êWz´i$¾˜ä: +ôß!Çó÷ó˜qà«~M¸]ßúOÎXß„žH†´®×ÃúuÇEÿ9 ùÇ#Sü ý'/ô¯4ÿÎW~fù2ÂM[XòdpØÂ9;‹Ði½:ž™òžº<Ñ¢Ùjá=1ysqðæ Óè®þp’<­qÔ§ÛýÏ*ÿÎ:þUy;_ü¾Òu KG³žòH˜´¯³5…IÎ'äWåëFƒcQá +õÆÍù ùtªè*‘±ô‡\oü¨ËÞ_…d[ù„C¸éL.ÿœ³ƒNO7ÚZ¨Žµb©ŠMêŒñ_—ÔùÉ/4kþ‰;mJŽ¾ߢ4cÛ¯ù£*(@OM=O\²êå£Qµ{Š~>ÿ3T§çT ÅÄ”~ÇðÏcç•ÿç9¹+ù9ÕyÖb;ôê:çT ŠÖ¼Žçzþ?N0ª¢ñêI­+ø p%”øÐÖ™Éÿç)#åùe«¨Þ‘/Mö®w¯É€Èzõ mÇücmç±_-ê_ó 7ü@ç—¿ç$Y¿.l¶ ‰î|߆™Ú#vcBA$V¸Ú…^õ¨©ïCü1î7cÖ”;ü÷ûó”Î,§Îþ|~‘ýz1ôïÛ=WžAãÿœ‘×Ù~/÷ j: +¯Lì€rß©'¯ùöË)Ú½ô÷DZØññë×®qÍUY?6üƒû õÇã^½3عæ¯ùÏ– ùynM+úBÚ•ÿ[&zcó¶€ÉE®û}‘Š«mÍImÓ&Š¨iÇsÓ ßœA›É:ÑJŠYÊHðÛ'_óŠ„7å7—HÿC_Ös£y‡âÒîÀ4ýÌ›ÿ±9ä_ùÄCÉ—.¡uJö<·ÎÞÔBBhhv§¶e¬mñÖ”¶XP*)ö¿®qïùÆx¿<<ç*‚A`|K +~¬õÝsÉ>t?ç#ùT÷ü{gY>šîv­hkü2Ë~H¦ýÏ7 +€@ø÷ß8çÜDy·É?êí §ˆÏfçšÿç>ØË5§×­·ÿe’Í‚ÙÀàãŒø÷ûàÀ¥ÒŠ:Wæ>yNt©÷ù៟—u?ú,©Ûá8¯üáK‡ü£Ò€¯ÂÓŠŸøÈÙÛo(x©ýYã_ùÅÅôáó +&«15ßåÓ¾w"·z{æäMFûŸ×Û+þJ¯_nÙË?'¦ô0Ú¨ m5þÄ~¼õK¥>^ÙóKþ~H|ýdÄíõ%ÿ‰ñ¼ê#;nÝMqœ¦ç?‚v >ü“yóšzRîSãê óîm±”u5øGêÎ)ÿ9¢ÇþUºÝ/SþPÏÒš»ö;ànaCmÓñ銄áðûí—¸¸ûT çÕÏù÷¼ þQ[~ÍÕÀ§Ò3Òs€c$øgÄÍÆùÇWÚµ¼ž€ÿ®rÊÐuÆž; ¿ôÁѱ힟ÿœVóVȨØÁ8;öãŸQÁ~yàùù:ÿ¹­þ0IÿÏÎûü[WSß©èÁpÐWl’y|uÀeýyö“È’4š‹RŸ¸‹oö$kÓ/6lÙÿÑú§›6lÙ³fÍœ þs]U¿.ÔžÚ…™éÿgv±§Õ¢§N ú±|Ù³fÍ›6lÙ³fÍ›6lÙ²‰¦çsN†æøz‹ýs~œÓ‰§Öaÿ‘‹ýrƵ§ž—1ÈÅþ¹G\Ó—­Ì?ò1®/o}owQ©!x°4û±|ù«ÿ?2›‡œtå¤Û7ѸϵÛq'Þ¤`SrLt¯áŠCuèTÓ$ÿ——,¾bÓYOÄ·P}üÆ}Ø·<¢BwGÖ€ëõ)ÿâ<ûÿ8± ?–:6ìB£ý¡ßÔnžÙÕâS… *¾?,pZ^ Tž¿v4!ì@®sùÂcqç5„ž¾=ó†~iHSó—È,*àÜ¿N½{'<³ÿ9Í+B< ÝôÄ\‡Lê•Fõ:â~yH¿e…8í˜Ô`A^”;g+ÿœžOËdÇÚŸìºçwü–u è,‚€éöÛøÆ0ßÏu>[Ô©±ú¬ÿñžWÿœ@‘å½°$×ë ×ÚCÓÛ;cPQš¥hÏûqÁ;niSóÄùˆHn‡¡?Glæ_ó‡Õ>ró詧×ãÛjt9ê|ñì­ÿY/­|T?£! ñ¥:giv&3SÔøõÛlúC]aŽsÈŠ’[¸¨íœCóR_KówÈ,ôÚíÅO¾{¹æŸùÏOåý¯òþ‘¶¯üMôÐ"µ†EÜziO +ñðÇÅH$ž'·Sï™i-òé¾Ùüäýß’u’Ík-HêvÉüâY'ò“ËÄÿË(¦õۑΟ®Ç6ëþ0Éÿ9ä?ùÄÉ·$Š¹  )ÜòÎÚ£ ö ×ÀW·¾i(È+±©&ÿ¦[’P°©,+QíÛ9÷üãÔÿò|é5V†Ñ¾‘_ëžÏ%yÌÿ9Ê¿ô¨§Ë|ëŒ54$×vphXŠ‚zãŽ)ñm½Péœ;óå½6y(Ö€jÑn>b¹ìàkžmÿœú!,ª{^[Ÿøl•èOÏOµrÀÖ(΃쎘4©Rd'zPê3+ðÛ¥ óºåÍ@µm¦?OßÿÎ)4šxÏ_ùÙÚïî^ŸÊß«'")Üšw>ß!Š¡û4=:×ßÃ.$Ö•3êçüûÎ@ÿ”ÐŽUãwpð;mž”~kMLø•ù¹_7êì­P.æÿ‰œ„‚T j1”øtë‚-ÍXí¹ÏQÿΑ楟bÐ\tÿW>¢Èo×çžÿŸ“ +ëz%iA£þUüʶÖ5/1E$÷1êw!YäP„)éN?ùįËoK೶ cw-Oü6ØOùÄÿ˘Àuµ¹v’îz6SÎ'þ\!øín4ÿ¹æ¬(ü‚ò—åççõ£°ý_Óy™Åj7<‰®{MIã¿\ù£ÿ?4¨ó–šÔ >¬ßGLñ­»†ŸÇæÌy(4Ûq—zÖœX –þ^Kéù‡O>µãýqŸw­ hcoòGêÎ+ÿ9£_ùTÙ +F•¯úà +¿-Ø?•tpŒÌÊÜÔïû›ä¡]Tª¹ÜtðùeARªš‚Oðß¼hÚÚN_ÂÕ©ö&Ÿ,‡Î<‘©ÛW¼ºŒô‘oŠ”?<ñÇå;þgùïˆß둱ÎØS‰4éÔWû1Ë·ZÔxt÷ÆÔžF”¨Ûß9€#þrCG#jé“Ô}=yžUÿœÂaœüŠIÿóü3¨+“ð…߸ë™nE>#Ì®ySâcÐxg'ÿœ£þYêìƼ‘~Š0ÏAþQ’|“¢8Ÿ¨ÛlãÍù¶òV²O©Oÿ9çŸùÅ“)ü¯Ñ•º’•ösLëQ +NkâO‡afcV÷÷ðÆð  ÀûÇÓœçþp‰«uç@iÿ‚h?Õ9ê<ñ^ŒV?ùÉo4'Uk(ê¯uïí럥öÎËøパ #bNþõÊy@øNߎã8§æy ùÃäDÐÝJ+Nô;g±3Êßó ú~Pã×ôÌ_Ã:‹­WµE79mª F+S·ˆ¦Ý2¹’ŠM}ÿÚÎQÿ9<Æ?ËhÒ¿ºü‰Ï\ï’ _òû@'¯èûnõÿuŒ=ó³òö¢[§Õf¯üÏ*ÿÎ!„?—PÍiqrzÿŇ;`byn8íQ^§ÇWmÁm¿êÇP@`iPwíóÎaÿ8zí'<úvãõøëó£gª3Èn´ÿœ‘×›@Ҡ߶äV¹Ø‚ˆßѶùqªö v©éN™AùuÚ¤ÒŸÇ8Ïæ|©æÏëAÊíÀ'·ÑïžÁ;gš¿ç>ÿ•wnÀÐBÚŸ>Y5Ó Im ¹§î£¥b`?ÉÜa‘]ùvßåˆ0C©¨-\"ó¼||¿¨SôyH÷øOÝ‹Îÿ*K¥+ÊzÓÇÔ9Û¯6…Ïù-ú³Ç?óŒB1iæMHÕ§'ïÛ;s ª6¡ûó%hMiÊŸFQ<Ô-( ל«ò†OùúÚ ý›ü˜tÏT¹ûóæ—üüŸ“ùúƦ£êKÿ9㙹 ~M1VZò;ûã h„ #c’o GO0éŒ[¸?âc>äÚSÓQÓá}Ä¿ç4‘Ÿò{\¿Ý¥?à†|„¸^D²øwÀÛ¡ ¡å™j@¨¨ë±Å­Šüóêçüûé~Q[p#—Öî9ÓÆ£=#<œÐý9ñóu¿çqÕ¸‚¼Ÿ¿ùg!bHGQ—F˜|}GliP(jkžœÿœr¿š¶Ahu8"´ýžßÓ>¤Gºô¥sÀßóòEÿrú&ôýÌ¿¯5³¸Fåh+ÛsÓ§-ÕI +jÄÝøÄþìÐÒ›g ü¾”¯üäÅߨ+þáÎý)B;wÏ\¤¡ê@>Œùÿ?+‘›Ï!«Ä[Ö3ÅÌÛÝú–c%§¿LKÔaöA#ÂwÃï$3rÉÓoôˆŽþÎ3ï.…+Ia7^ _»8çüæòƒ\¦‡þaWåyô¼¥¤"ÇêPlù×%Cá=+žœv*69ãŸÊtXÿ4|ôµ!ÍÜ}{uÎØk¸? R» +Óû2™è\Pôö¦SlÕ$=G¾që6-ÿ9'£m@4Ù鿱ힿÏ+Îa//9y¦üíí¶tµe™¨»R£¨rOB{}Ÿ÷`Óeñ?=ó–ÎP·üƒm[ˆHÕzôÖó¾þM—>EÐùý¯¨[ÿÄ?ó~¿àj~¥?ü@ç¿çù/厌NÇ„žÿ¶Ôκ8¸€$ŸÃ)ªX+SZS1¢ìF½©ZoœÛþp¯ùÕŠ][DzsÔ¹äM5!ÿœ‰ó,ÑÖ­§ÀNûUˆ®ßFv7 ®ÕØqëòùå¡ävª‚6ú;|ò™*Y—ì×aN„Œâ™éËó‹ÈL9½oסø^{+<¹ÿ9ÉÊžQJîu˜Gâ3¡¹ýã¢T-:÷ú44îªSÄŠwê~ŒZ0éY˜rÜÕÎeÿ99Eü³Öªj üFùÜ#‰?—ºiÿûnŸñŒa÷I^ÔJŠŸªÍ±ÿPç–ç oË[`@ZÜ\Ô¿Þ¹Ù£×v=7ìrÿ8ó1?›þs¨ômo¿=;žJóÊ*ÿÎG£!Žv¦ÇØçY1‚´ÍwÊvø*Fçoþgü£RÔÇ_ +güü˜§š¼‘'‘«Æ6wìÂižnÿœùf–$¯Q{l~æÉV†icjAÚ(ùmþHÁÇj#ž<Ÿá;ï¶øH ýÂõï½FIÿ/X¯˜´±]þ·)¹§¨3îT$ú(w'ˆýYÄ?ç3ßþA¸_¼KAþÈgÈ[‘SO€þ(Ët>îKZÒ•íLV5ø¶'>«ÿϽc1þRBÍS[»‚>ñÓ=-)©Ÿ¿8Ÿœu€¿òÙ5àÎBÜñW¸ÚŸ×¦¢‹Z{öÁVî+@ ç§çŸþB¥Ÿ î'¥{|=G¾}C‚;ç¿çäŒ?Kh¤oû™k÷ç‰&qZöÀñàîkƒ£cµ O|?òòÖæ%ßw]þœûYäàE²^\©oÂ0ô1Ù³fÏÿÔú§›6lÙ³fÍœþsdùU÷ fêÔŸ¨3¶èÕým^¾”ñƒsfÍ›6lÙ³efÊ yËþs׈ü±<»ßZÿIJc§L!±€;T´H@­dx`¶ CTÔR w¯LiõpêMk½A¶F¿1Á>SÕ;±´—rwû=0OüáQòwC¥6IzWýøÞ9ÛfÓo‘ÏÿÎ&‡6>aZÔ®³r:ÿîlA w'zíôe¼Â¡j =h:ÿµˆ½xíÓß ÷ÎCùoDÿœ•¼©ÑªE|Jç®M +Ô½³æwüü¶5>tÓXukV­¸Ïº®â¤¾"ñWpqUpÌmQ’?!Æ\±ðúÌ?=ÜgÝÍ?ŠÛÆ©°´û³ŽÎc«7å&ºÉJúsáÈa'åZH¾MÑÔ0r, ‡A’°Û±­œk3I'Ë߶'x¼­ä(hYX€:tÈ_üàkÿΣ¬­j±uøÓ=1ž5ü¬r?4üü8õ¹†‡Ã¯\í­É>4Üw+‰­(W¨®ßÓa銶ÕÞƒð®q¸?{ÿ9! o‡ômÁ^Û€vÏ`ç–¿ç/ª<åäR r¥OË:C|7Þ§øSltnyÝ*kó8B[ñcPs—ÿÎP¯üƒmTîÓ?Nwßɵ äM A¨ûÿÏ1ã‹~lÔy/Y§_©Oÿ9çùÅi +~Xé¶jIðïþün•Î¾#R´`;øø×Û*0iÈŠqý~õÛÎX·/ˆíO§ÇڹͿç¹CÎÅ…éQCþÄ×|õFy$+¯ü䘊ƒ¾ŸmJà÷ÖcäG jÞýÎ[¨‘ƒÆ•ù|¹$!C€T>Ûœ7óUÂþlù¿Ù7R:ýã=›žUÿœî•S’5˜OÂwê:gPVÚŽ8Ô¿¿o–`®GòÈ´ë—±nJ)AROñÎYÿ92~Zëb‡‰·þ9Üÿ#A—ž_qÿqöÛÏ1’9Ôè…:ýZoøÏ)ÿÎ!?.¡]Í.nɯcêžÙÛ‡½8ÐüÎ5(œzÔÒŸ 1Û‡äÂœk·Ó÷S9oüáêH|ïçÉù{nôlõ^xþôÿœ“ÖA? éQmÓºçe¯‡åŽ„‚ù¨Ísp?›£8‡æyógÈ@‘½ã|ëN´éžÈÏ5Î}5?.aSѵ `Gû,™éªcµÙXÒ”ÿTm‹6æ” ö5§Ó–MFáí®B¿7ˆ>JÖúI=·¦L?ç¤2~Qù¥-©Ö½çR×7Ó®GüS'üDçÿç%_ðUÐ=H݃íñgnN¢‚‡®ûWUCšw©¡Þ¸ãÀ½<@*OLçÿó²Ècó’’*mìÈù +ç§3É~xbç#cÐþ‰=·ëceøŸìñƆçÈŠÕ…wéO”jÄצÀíóÎ!ÿ9<ÉäÂÆ¿î^~ã=›žpÿœ÷ ü¯}«[Ëa_‹%Z0¦jÕ­bq¿ìŽ¸&:PB*¯ˆ÷ËJz~5넾tU} Q]€Ò×oòOëÆÿΕ?”z]=Å~~¡ÎåuýÓøñ?«÷2͉·BÄšªþ¬âóš.åQk‚Ÿî¤ÿ‰ ù;BG^à`dMw=È~¨,S¾ˆîKAÓîϪÿóï”Xÿ(àqûwWžž’eå>#>&~oòÿëÍÜû×ü³¶-)°¨­2’2kãŠÚGñŠŠŽÇ=Aÿ8ÇþV­™'ОµíðçÔn_®xþ~LÜu}£ýÑ/üKnÕtË8\Ûó·µµtnEÇ;Þùëý×Lµ'ýóüD`üÙ³fÍ›_ùÅ!@¦õÀI¡^ž;þ…gI‰¾-s\éðÒýÿϦ5?çtÈÝkÚØ5½s¹þ™ó’.ÿ(<óåÒµVU¿Ô–9âéœvéCÞ¹ï‚;÷Ï8ÿÎ|'?Ëâ/mˆÿ‚Ɇ“#%¥¸¥itâR£¦ z+V5ç÷ü³FÜZ€WaSíL~cÔy[U EU›šøœWþp¥~NèœÏU”Šxz¾î›äVx¿þq@ÒÇÌD5WôÅɨ­~yÝ™.*ÄqŠ RÛ¦ÇïÀäu ¸Sß©ÎCùzÀÎK̤NŒÂž4#cž¼cí¶|ÏÿŸ˜·9i¿êÍO¼g‰'”«G°ûëˆ;µ~"ð8¤š’ME+¶I|™(‹Z²f_„\Bh<ù÷{MnV°•éé¡pÎ?ÿ9‘¿å½½?rµÞŸ´0ƒò­½_%è¬iQe l>Àè)’çd +H4jv÷ ãµ>ïëˆ^:F’JpmÀé¶B¿çx·•u¶BH:Í×_£=6xãò©Y5|÷µSë0šøè3µ=^¼A]ªÚÄÕ©îþß:c•M@<>g8äc—üäw—Ôö°¸5'¯ÂV{g–?ç0Âÿ‹üŠ\?HïN½³¤ÄHjö©öËREš³~χÏ/Ÿ7ŠSmó–ÿÎM“7嶰CSŠ)ëÚ¹ßÿ'…<¡ü\ÿÐ-¾/ÝŒWóX•òn°G_©O×ýCžrÿœSø¿,´§=H–µïñ·án‡‰n„Jå°ER§íã¸ÄŸe`+µAßsœûþp±Ôüìµj«·zq9ê,òPb?ç!<ÉJÓôe·üK¦uen<[‘©Ûüý²ë@5#·Ž?c¶Õ©Îù±·æ׊ÿ¦0ëžÌÏ*ÿÎw*<¦¼@fÖaø©Óq4²£7©ßÃm¶öÅ lJüDMºåmR+µ~#þ†rïùÉf§åž´A?ï=h=ŽwÈWòïËá…èûjÔ×öH|è+åýB¦ŸèÓÄyWþq“þUÄl:}jë©ÿ,ï«fµh(7ï–jÕã¹Û®Ç(µOr6þ¹Ëÿ燞¼ú‡¨¼‡åÑ·ÏTLñýàÿ¬–Ö)ÿV˜¿XÎÍÅy|G© =ºfPÄ +ŠT¿l¶pÔßuÛÜçüÖ„7æÇšŸñúAèzç²sÍóŸ Ïòâ/æöÔùòÉv˜ZCàbŽ¦»V‚´ðÁuPäSç¶8·Æzä3órŸà­]TÐýVc¿Qðœ—Î%??ÊO/w¥¨ÿds§ëÀþŽ¸ã×Òø‰Ï!ÿÎ"ño(݆nGô•ÝTŽü¾ìîÜ×q¶ÿhÿÏɨ¾{±þX—¶ÕäsÇ31ÝXxÓ0$ðû+µq6µRO‡Ìd§òú³yƒN®Õºƒþ&3î\ XO…Vq?ùÍGäþ¹Q¸‰OÓÈgÈ©MúøÖ˜YĬ¥xþ¼P'5&¤JŒUèÇc×>¬ϽY_òŽ€Ô]ÜO}Çáž’º%TÓÀÓ>$þn‹Î»7!þ—6ÄïöÎB܆ïÜWúæøœ•¯O ^ØÔ_³^ùéÏùÁS_ÍkøÅ=wÿ'>£ì´÷®xþ~PxêÚ-?ßÿ3Ä“;2ŽÔ—=Á=O† AɈ]é¶It ZxToñ(~}¨ò|b Ê%¥‡_òL>®^lÙ³ÿÖú§›6lÙ³fÊÎÿ9µ_ùU—dv¹µÿ“ƒ;VƒÿË_øÃüD`üÙ³fÍ›<„°£ÿÎIkèÈŽâµÜggçÌTŽ=û}«‹–üÓn»SßPªKoþ}3„ÎAΑyËÈÒ½xa)áÔ™ìªW<áÿ9îü¯`å²Ûþ%’Ím>Ö0@ýÜ{‘à£*Pþn´Ûq˜H1¥ö»‘ŸÌi|¯¨¤†¿è²ž=Íÿ™Á_ó„ó¿'´nBœDË÷HÙÜ&Þ6î(sÆóŠ#Ùù‰+û´ÖnÚ¿×;ÃH ½<|~yR SÜãÃ则TÔ«U†ßFr?ËÆSÿ91pT]ü_Jç®”#>fÿÏÌ™“Î^¿VÖ3Ä“NXUé@zxâ.ÎûûwíÉŸÄzä‹ÉRŸÓ6g`¦xkÛö†}æÒ@ÓýöŸñœƒþsùTzø¦Þ€'þdòˆòò^Ší +ø€ÿ:d¼®åO@zÓ ùãOÄ994­@î#;V)Z¢¥ ô¨ ÿœuo*kJ¢”Ö.«óÛ=2£Õðüs9Y™·;{¿2qQƛ֠xg€ ÿœÐ7 +FŸp÷¡Ï`€sÊßó™?Å~FÿW´¯†tÖß³ßnžÄwʼn~&j·AAŠUA¨5ìIÛ®rßùÊéþZêʤñô†Ãn‡;ç䫇ò„EHú…¿_õ-ùºò^±^ÖsÿÄyãþqMÇü«$uÚN {ÈÞ;g\XÀb 5¥1 ùW` OlÌ~"  +Ó¯¶sOù‡/«ù݉­5EíþIÏSç“'aÿCæ¥i¦ZïáñvαhÁäk׈ïÓ4‡‹¶¨ê)óÊ^…úÔP:{ûÓ8æ©üÙò •ÿMzüé¶{$ç•ç=by,|ªR›k|ûtΠ‘ztuE#ñþ˜ÞJÇc³V›ô¦]97&¯JŠšç1ÿœ“n–šÙÙ¹[ï·¸í¿ò$òü»òýE?Ü}·ü@dÎ_ñÁÔ?æoøÏ(ÿÎ ž—1²­ÕÈZÆC×;_#%*7¨úi™GMÜ×¥:f[SÈ95;ƒ×9‡üâ6ߘ~Zô¼‡aÓpÙêœò +ÿ9+«ÇIŒïô ìªyÏz‘·á˜Ð{|[™d¥GZÿŸãœCóad“óSÈEjk|MsÓzÿŸLöFy·þsÞ£òÝRþÛ§_µÛß%šUÎ ÿu <«à?àÀ cÔfêGM†&J‚Ê£Ú¾9üÞä¾MÕùAlæ#òrUÿ8ˆœ?(¼½ïm_½Žu]eyØ\ø©ÿâ'<ƒÿ8ZO'Ý#…u°÷øúœíñÈGÇ]†ßíüý²ý4^¿GùÓ,†¥ +GÝôg=ÿœ‡çœ˜PRÞÐîkžš¦yÏìþrBÜnè¦Ú´®Ù×”Ò«_ˆìOö²€zò]‡·ùö̵P)½jxžµñÎÿ9ò3y-b;b-¾dg³sÎ󞌫ù]!?òÙmßü¬’hŒ …³±ÜDûñpcÔ€8Õ ;vûó†µèGêAÂ6¯û‚Ô®Ö³ ‰ )ÿç ÇùI¦µÊ[ƒÿ%wY¿»oêÏÎ0ÈOø™!WW”ü]wë¿zçm·4§jüóJôn&´a·¶%°nC·ZwþÌå”ò,Ÿóz©&”ÓÇ®äg¬gÍ?ùù?ñÕ†ÛýL¿_ˆçÁP žØä¦àÕ·Øcòãû$Ö¢iá’_ËÐÍæ==PÓý*ŸëŒû™j?v£ü‘¿ÑœOþsIGüªv¦Ÿº_øÏó*KnԮá«J×~²ÛŽÜv=7ýX*F¡HÛðß>­Ï¿'å ¡©¹¸'çÈg¢¥nu>ÇõgÅÍêÉç_·ú\Ûú9È3PÄ‹ðÇ +4ý]©‚­¸‚ C¾ýsÓó‚œ×óRËØÅ=~\sê8Ý‚Ý{gÿçäÇ–¯¢¿¹—õŒñ>ÊYëø``¦§pƵ® €ƒµ7é’ Ṅѥ}óí?“I£YH9Aÿ…d„W/6lÙÿ×ú§›6lÙ³fÍœþs`ùUW´4½µ~^ ÎÏåÅ ¤Ù¨è ˆÂŒ1Í›6lÙ³ÈW2ÿ9'«®à~ŠJš ¨GLìܨÜ^ÞþßÇÿn‡óé˜ì*>È5R;çÿœ‰eóo‘£f¢Z*í¿Qøg´sÎ󞊇òºBÝEå±ðY)ÑÜ>Ù?ºjôøGßóÁd­3ðxx}Ù™jžÄ|¶'#Þ{VO+j,Är’Óü“\güኟ”ZHè+5OjúâR80ö9ãùÅ`c·ó*ñë­O¿^ƒÇÃ;¹f•xþÍvÛõ g \/QBA=M>X÷û'¡ ëNùÇ?/þrfU"„é/O¼g¯\š]3æwüüѸù»J^ŸèÏ_£OÕëÿ,sÿÄy·þqOÿ%Ž˜)_ï½…}CyXl('!$Ü\I€bví^T ÿŸlæßó„ÊYóÀ¥?Ü¢ÿÄNz«<žëOùÈ0WbtÛcóûè<3ª,ŠMwOÃQ׶ÙOZ–]ÿÉë¿Ë*®‚›šWÃ8æÛ<_šÞBeÝþ¼Â§zíý3Ù¹åoùÏSM;ÊÝÇéˆ6ë]ÆtÔrÕ¦Ô¡ðúiü1üq]þŠ ñª±vØw?æsšÎLV?ËMiO{sO¼}ùÚ¿!)ÿ*ãËÔ Ñöý:}’O9 +è€?òÍ7ü@甿çˆ˨B€»ºÜŽ¿¼9ÛK’Ô½ßr®Û÷=ý±ÀÈ‘BOün¹Ê¿çÚ¾óç y›¨M{R¶z³<©ÿ¡—ÔÙ¶oÑQ…ßå\ìo8Ü]ÍëÇrõW•°Ãüþì¾+ºZøøx á¿šÒú?š~C4j@ƒO~ùìÌógüçȯåª û^¿ëd¿G&kH9 +þî?¤qN™¹S‘£t¿«@Z’6íØÿ·ÏÍâ?Áz¹;RÖSCÜñÉwüâM?åRy|Ê–ßñ±Î¥­’º}É}'ÿˆœòüâúžS¼Cñ©]ûwÜ•VYEHéZö§LiÜìw¨åÓ§Ë-×z7$Ó±ÎwùkùÏçUåõ[NÔNzw<“çêÿÐÇÛŠ?¢j{gZ‡›Ë·#]òþØoJ×o㙕”Wí¸$Òƒûs†ÎCùØü—Ësú^Ó¯QžÏÏ8ÿÎ{PþVÊ;›»p?à²I¡šu¬cízšƒõ`äBûƒT +HÛõæŠ +vk× |æÅt ðÍ¿Õ¥é×ì†3þpù~Ri«Zñ’àmÿwIÛàaþIÏÎ3“"ù•wÿŽ¼ÄW¾ÛÐçqŒšƒÞ‡è®S!"¤R½=ˆÄ¥<…NÔ 4üs’þR«·üä©ZÓôpÛ®Õ©ÏZIZgÍ?ùùR‘ç­=ˆ6j=þÑÏÜM˷㈠¸½éß!w=Íh<2Kù~Gø‹M.+Æê +Ž€üc>åÛIXÐhTSîÎ%ÿ9¢¼¿(5ݺDŸñ!Ÿäýãú+íð5áÛ¶4GÑØ׶v”ï×ß>«ÿϾn=OÊh" ÕÀ~Ȩ49é;Š¢o¶|IüÞIÍú¾Ä]ÍÓÛ9 •ŽþÇÃ.¬€ÐlM>Xµ±£žôÏEÿÎK*~ki>˜jmÀþõ\ƒÃ®x#þ~Fi«hµê!’Ÿ~xŽNL*vë‰/ÅÐP÷*Üp±ß$>_Q%ÄA‰5e;|ûgÚŸ%…ý baõxiÿ2@7y³fÏÿÐú§›6lÙ³e\ÀS8GüæÔ‚/Ê‹óÿÛý?¼geòËsÑìš„VÞ#CÔ|jÚ¥¾‰e>¡vÜmíãi$jVŠ¢¤Óåœ:?ùÎÊiWš_\2ž…m& ý!rÏüæÿå7k냽 -&Ûçðã[þs‹ò•>ÕýÀÿ£I¿æœxÿœÞü¦"¿_Ÿþ‘&ÿšr{ù[ùßåÎT¹*Ý5ÇÔÙV`Ѳ-Óf­2{žAº`¿ó’Z½jOè¸è>‘—“B»oÓ䆽¶Àÿ\©j…?…kJvÎ ÿ9WüO仹ˆ‡#Rão»=¡žtÿœô ÿ*ªvqZ][Ÿøl‘yuAÒm[`ˆéû ï†U%x° ­}t>[ÔBšÖÖQSÒœNÿœ!åsùK¥¤ˆ Hg +|xwÎøåš&ìÔ9âÿùÅt*¾gz–a¬N tÎïU@‡sÛ嘭‡a@CWÃ3HH€R”<ã¾BYüäÌŒ»¡ÑØšP÷vùë© E3æüüÕXy·KfÞ¶Î>ŠŒñÊhA>þØ”Œ¤© {øoˆˆÇ.5^†¹-ò4ÃôÕ_…¾±­Ê3îöœ9ZÆ¿ñZüúg"ÿœ·…âü¢ó² =éÈd[ò‘ˆòF ³Y@ ðÀÁßš„&ë÷Ž~‚¿°sÍ?ó‰±ÓòËL„óœîNßëý3°£³Ò›‚:ô¯ôË1‡RNë]÷©ùŒ¦p­A€øÿLçó…%Myáz7éE4öâwÏSç’æOúÈ]uÈ« 2Þ‡Àrά *GáþÞ;§#n„xx|ñªK“ðü>ã8_ç ù§äëþžIôðöÏh ÍsËŸóž ]?Êǡ̬gL˜˜Ô’ËJ‘¶QP↾wúccš€­(ËÛ¶s?ùÉp²~Zë|º›zŸžÙÙÿçeþZùuÔP>ßj×¢ ”ùÄ‘ êuú´ßñžPÿœ@Qÿ*æ"Ç—úU×ÑñœíÅEB±ø‡‡†S1ó5þøÅP¦†´"¤þ{ç1ÿœC.¾~óê~Ç×!=;Ð÷ÏU +÷Ïj€¯ü䦬Û÷Þ=6ÎÀ‡biËm¾¿|.}>? íŒ*XÕI¡FÔÎùÂB~iù ÏE¾¥ážËÏ5Î}3ËdÛë¶ûŽßK´ÎEIŠ:ÓýQƒ ¯Ðt>ÄRûíQ‘ÍÆy7Wg$ÿ¢Ê)C×á’oùÃêÿÊ¢Ð*)X¯úç:¾¸µÓîüTÿñž?ÿœB'ü+}Äõ+ªŽÕåΣªP7Þ½^[Ë›¡éïìZ×䚀)ÓðÎwÿ8ü)ùÍç@òú­¡¯AJžßÇ=?žLóýüäe¸a±ÒXmþ{çWÜV:‘ãOze¬aš•¥)JSç–щ7ì vðÃ?ç!ùKæ/& +UŽ±®õê3ÙÙç?ùÏ0[ò¶Pÿ[¶ÿ‰d‹D~zm¯¼Qúý‘ƒZ€žÕþ8ð¨ÌM*½ëÛ |Þ@Ðï˜tóWzþɧ߈ÿΕ?”ºw¾­ÍiãêîÓFÕð9ã?ùÆDG—Í7¥¥íú³¸Ô30cקєÁçß)Ì•¦Çaò§lå”æ¿óº‘æã—ÓÇqú³Ö©Ÿ5çäÉÏÏ:zƒVúíþQïž3¸S°Zá€Ùخ۹Æ?n祷Ï$žCe‡^Óæ ]A±ÜW˜íŸsí”QŸ_ÕœKþs8Óò]ø€5¿ëŒøýrTïJôí\@‚ƵØ×ï'æqÖëÅùucÛ>¤ÿϹÿÊ­t_›õ.zšj¬ ¥)M³Àÿóò(ÄZ®‹_÷Ľ÷ê3ÄÒQB±ÄV•¥=«LnƒbzWlh"º‰ºk¸ùçÚ_%ÐhÖ@ÃêñoãðŒ‘ŒÀS/6lÿÑú§›6lÙ³fÍœ#þsdWòŸPìD¶ä|Ä€çeò̆]ÉÉ©kxGº -üÉPþSÕ•º+ù6sÌŸó‰öѷ厛êF¤r˜Ö€íÌ÷9ןN·ÿº~üFÿ‡ll–ŽÜZ4=a|~XÿÑö¬@1§ØÜíÎkÿ8z}?;ùö!°°štý–ÏTç¯CùÉMXöýÛnãõgfXnÔÛ Ì>Zâéþc4¢=Ùk¿J“OžpŸùÉCÌþI•êñßHïžÍÏ<Îxÿ*¢äŽ×6õñûX}å N•fÌA>„u>üâpÇm‰¥èk×-•[f^;oLŽùìóòΣÇbÖ²Š‘¿Ù#+þpy¤oÉý$0+N¸õùÞ$û-ò9ãùÅŸ†/3©$ŸÓWè=ÇŽwqäÔ¨mýr‘U[â ¡¯Þ2’²©ZÔÎýóŒù*fó“(áç¤=j:Ò‡lõó’wÏšóó@?źY'þ=äÛéâåñ"ìk‰FQ“‰44Ç@y­%(rGä–‰u«&=ÄU¯JrϼZmÂ=¤k–4ÿˆ¿9Oüåܼ¿(õÿ‡âã¯úÃ#?“¢1ää Œøü9.q¸©-OÇ-H5(⛎”ÿ:cg¬p°¦Ì¤xŸqùÁ—|À•Ýu›ŸÔ3Óyã/Ëõ?8|øš¡§Þs¶TŠ/‘ÛÌUª›¯Rý1ÜJ +©Ú»mÐûï˜"}±]½ºûç,ÿœœ„7åά•1üs¸þBÄñþ^èFO´l`û¸ +a¿æ'ʽ(Ðçëþ¡Ï4ÿÎ(Èå–šWâpfSQÿg`âèæ•SJ{SÈŠð(ëï×! ¹ï^CÇüÎsùÂ’«­yæ0*F¨¿cð³Ô…¾.#<›"‘ÿ9 ¯†4?¢íè~MiXV¼©]€ðÄêi^C}º’|ssV%ëãì áß›å[ó[È@uì@¯†{4šŸ£<»ÿ9âÑ3ËJ…:;ã¨ÜtÎe¡,7âiÈxc‹ªûT;’<†SIyøÎcÿ9-Éùm­ñ,UmÉëïã§þqô³~[ytµ?ãŸoÓýA’¿74;ò½~­7ü@ç“çØŸËÅR~/­Ývÿ‹=»çlõJÐôîθò@"§§N›œc|JÌÔ +M@†rÿùÄYØ~ayò©?Z…ºmÐŽ¾9ê¾™ä÷#þr[VI¢cè+Ýzøgd,g¡îÍß)øFؑ׷ËlSí04 ¨=†qÍuSù¡ä"~ÏéZÓ®{<Ýÿ9ìëÿ*ØFOÚ½·éþ¶Jôe_©@OA~ß²Á[‘ÈnA}ò‹ŠkׯcOãïÎÇɺº¨ ›Ivù®JÿçY›ò‹Ëå…?ÑÍ7ÿ(çWÖ?Þ øÄÿñž<ÿœC›þuøÿoô•Öþܼsº!ì)_Õ”‘€EEh(w~`ÁŸã¯RH=»g1ÿœ~Öa¹üðó|J·Õ-€¯ù-¿ëÏUg’<þÄÎGÚ×ôSç[èÕìHïþu9Drà“CM¿qì¤@¯ëß8oüä<–ëæ?&,€ÓôÄGߨڙìÌóŸü礂?ÊÉ™¿åªÜÃdƒB`tÛJQ¿qNÕQƒÄ”ø‰ÿ&ƒ¾XGRZ÷ýxMç o”Ë4ßñL ÿ86¼?)l §Å5ÉÛþ2¾ùÞåÝäsÇóQ$ry¢EßýÌMOí4ZñP+þtÊ•¾Äô4 Ê™~Ètéýs”~UKêÿÎBêmÓýÅJxž°mÆ|ÔÿŸ“‚|ùaA¿ÔE Ê9ãYþ"E~"å?*‰`7¾Ÿõ.zŠàÒ6§Ïˆÿ›JÎ:¸ +B›¹ºÿ®rU—e;÷íŒd ©û1[j© á¶z3þp®Ýäü×ÒþÉü¾ŸUÕ FÙà¯ùù-F«¢Sýó/ëâ9~ +Ó¶ Øîw'|W$z!qZ}¥+ß>Ñù)‹h¶'þ(‹sþ ÉŒ¼Ù³gÿÒú§›6lÙ³fÍœ#þsdWòŸQo-¿_øÈ3±ù[þ8¶?óü@`Ìz…5`Ý>§qÿ9æùÄ¢òÏM­Cp)ÛißX2šÒ´µ3KA@Mi±®S|-S¸;}ã9Wüâ ÿ+ Ïé·®Bvù6z»<…©,Kÿ9+©‚'IC^ÝG\ìdÇ3RžZ U´$u§LÀ´tÕI§/ó÷Î ÿ911`òWÝuˆv1žÒöÏ;ÿÎy×þU=ÑÚæ߯úØ}åæi6l6Œ]ÿÈaˆ£šÆ”ëš(Á¥Z¾;õù}8CçVËúŠ±ØÛÍÓ¿Âq?ùÂ)ù?¥–$…{ŠmÛÔ==³¼3Š–xÃþq`’¾h,_¦nI=ëØgv’Uµhzžß*e#ž3ûUÛ?Qw>ígòÿç&X²º3Ò¿FzêYôéŸ4ÿçæÔiÒX +Ÿ«Hž ¸Ž§ß1W)^¤}8¤E‘î7¦H¼ŸéÇ«Ùšÿ»ã¨ÿd:çÝý$¶Ìr1 ÷¥r¯ùËØ¿)µâNÂß·úÃ"“|G‘te­_êptéöGnù4‘Z¹'²øÿf<#Wbëúr§ÕߪЊWõS _óÄ.æ(·äºÌõ¯¸éî™ã_ËFãùÅçº}¯ZǦûglkSNµ'—lhÛâåÞ§ëê?ó5)P6Î9,¦/ùÈŸ-) ÿ¡\-Oz©éžÄQQãžXÿœÎFo0y Ÿ¤×©Û¨Û:P«)q°¦8«Æ¾4èO¾4žCsÔŸ>™Ëç$yË­`%ô©¿Ï·¾wOÈbßò®´B‡êm_òF~hÊ!« +ÓýøÏ4Î%ÊÒþYiÌƼZá~ŸPç`aÃáM{x|±Ô)EjÔSÃägHŒ8ý¾^9h8žu?EN[hãvéôôÎaÿ9$Äþ[k@n>®Âžõß;Oä‹/å¿—6S§ÛÿÄJ¼ÜHÐïÈÿ–i¿â<™ÿ8vV?˵1SwvX‘ßÔí¸¶ðÃlp0ó=>èh€¶Ÿnjké!ûÔg!ÿœÉb(5Ö}÷ý¡Ÿ®PºŠR€ýø€5+^¢¸˜AQZTàËxŒŒN˾ý3ê7üû~7_Êùk}(½(«ž¨”‡äsâ?æâÿÎÝ«íUúäÔüÎBÙöÛ£eÆ~qh¸³Ò™è¿ùÂ’WócG­H&A_ö|ú´%àùù+ÕôJuô%ëóâ ÃP“ÓüúbNø©¶ÿ<0¡˜|=°ÿE`ÓEÄoÉN}¢òC4~_Óćãú´5ùð&¹y³fÏÿÓú§›6lÙ³fÍœ/þsU™?)µ6P ÿ%uÿ)°}Á”PhHìüħø[U© úœÿñždÿœB‡þA€ÉqZÆCãß; ¿ +T¦›í–#WÒŒA¯Ì±'7"ƒ¥(¿Žr¿ùÄ7Qù…çäô¸!ò;g«sÈâ×þrVøÀÒÓéÙYU nAø¤D…RHîh{æÅÄ Tmœþr]ÄZ¿“\OÓ0u; Ç~¹í óÏüç…?åRÞTV—çþ|µ(}"ÎJ¢¶Ú¢ª0ÑIbI#ÛÇËV¯SÛÃÇ Žùà3ywQ¦ÿèÓÄNÃßÿœ™¦üŸÓÓà’ázøHs¼˜ÇQJóÆó‹‹ûß5F»¬Oðž¹ÝKs¨¥VðÛ4 íS^´¡Ûéùb-È(ïQáÜtÎGäÈÉÿœ–„èÏÔuÜt¦zÙ•˜PŠmŸ5¿çæñÎѤññí'üHgˆ'<Îô8ÇÀՎàùãʨ+Ãìšwî2Eäàߥ¬€ ¬ñ_õ†}æÒÑE¤tô“§ú£9oüå²×ò“ÌÿË5GÞ2ù2ž·‘4C!!¾¥ g®MÒ.@@çÛß)Y€œ·èi¸ñ¦'1äŒâ”£;Žùÿœô'™×}f~þg§ëÛ<_ùrª¿>wU Uá5ú|;çq¥A•ÇñÊV%Ê÷ùtÇa°'qâsŽ^*ùȯ,UÔeph;šög–¿ç3}1¯ù Ê~Ò‚´ëÛ:JKÈž@Ô¿NRòpjGEG@i–„±&ë^ß×9—üäwÅùq¬±>‘ëóë\íŸÈ«ùu ^ê0mþÄaŸæ{<£«¶ÿï$ÿñžhÿœN!¿,ôòøaAÜú‡;*6ÿŸ^¹¤JÆ[bÇù{jQFØÓznO¶sŸùÂçvóž‡'éD5ìO\õ6x§šÐÏk†ÿ£WmÿÉéä;š¢”¥{xãQ~#A¸¯MÿϾ<µµ{¾yÂÿ8”Çù¥äAÄÊH}‘Ö”ëôg´sË_óž‰êi>Y ý3oúÆt€ê\²„ž‡¦Ýqã쀢µ¿«~*’)SQ_ æó‘ì¿ò­µ±%@ú¹éã^ùÚçI?–~\äI?£í÷?ê –ù°ÓD¾¯ü³Íÿ9äÏùÃç'ÈI­/néAÓ÷‡®vÄ +ÎZµ$t?ÇÃ,ÑK1jWõeªD¡©Ë¿çÁÌ_>ÉP@¹vù6z®›×<}¬·ùÉ­@/-ô„­Ë®vDqȆ§ïÜvÅT9&µ'°é×0 45´øºïß8æã³þfù6$j;×µ|3ØùçùÏDåùdwØ^[mãñd›H +Öî6”[xÑAëƒC¨bÌ*µñ§…=±±­G/·^ýò'ù©ÿ(~­N¦ÖZÐ÷â{äŸþqÊ=ÿ˹ÿ‰œêÚ½>£q^ž“ÿÄNx÷þqSÊz€ä +RêƒÃqÛ;˜"=Ïí ûí”ñ˜w­k·MõÍÉ×îÎ3ÿ8õÂOÏÿ5’ûÈ”ì—=…žJüÃUÿ¡Ž´,„ÿ¸¦¡÷γÅ;Wo¤uÌ´qÈž•ë\h,3^5ðñÎÿ9TyƒÉÔ4ÿrðŠšøŒöqØûgœÿç=j+¥§k«ø–H|ºU4»U$WшW½xŒ3n‚»·P:}øÊ«(ä: +áG£¦‰z§u6ÒýSá¿ç—å-†õýýÏÑûöw©¾Ã|ŽxËþq¤ù¥H?­)¯ßÄ8­iøcBÊ€Çøã] • ª=©L攬Gü䪄µN”½}˜gªÝxçÍOùùBWÏ5ÿ–%§¿Äzg&nFj: +a¨¡Û¾SÔŠ¦økå±KûSö{'ýϺÚ ¦[5Œt>#ˆÎ=ÿ9Ž¡¿(µô ÜøÏR¯¾àtüp4l,Ý ~üp +^Š½:ø`‹CRzŸaÓ>¡Ï·cEü²œ†©7ò’¾ +ç«&AÄÓ>$~qĉç-gQy=?àÎAÒCì78øãŽÃ}ÿ Z%‚‘V'cž‹ÿœ'q澎Õ2ÿÔ?v}X¡§LðOüü•9jš!=}âCl/½u©ztÛ;´¤É.'bj;ïÓ,š2ª +Ò„šS® ìÜ–€kµ|_–r%þïþrj>PèòWÛ§Lõó¯%9óGþ~py—H¡£yA?J燥#äÝ?^ xä ëÛZtØý;d‡ÊtmVÍÀÿwÇúÆ}çÒ*?ÝI·ûœ»þrÌùTž`WýíôŒ†~IƒþÐê” e yn~ÎMÊŠ.Àþ>úri_\AÍé^†¾ãÄdþpEÞMÌu­?M\vöóÓÙã?ËаþuyÜEç äzîs¸:ðˆ©®5S•*{Ðf(8Åܦ͸ÛñÛ9wüâPåùçÆqñ‹ˆ}¨vÏVçõ†+ÿ91~ê4”&‚¦›tÎÇÒµÙI§MýñÁ*‚iÒ§¹Êªý–ŽÛ✠æo‘9úXÐÓ=‘žoÿœö¯ü«3JÓëvý?ÖÉFŽ8éÖ˸ýÄ}¿É>Ø1”¿€ú~ì·í9©_â2)ù¨Ty?V ’¢ÖZPt5üpûþpâOSò‹C$Ôúoÿ9×µQ[)ÇüVÿñž;ÿœIeÿ j(¿³ª\×ïÝý2Wi¿}ª?Ž1u'¹¯NÃ(’EiñV›wúsŽÎ;Ðþ~y¬šWêq‘â~!ž¾Ï%~a°þr:ÔÔÇ)ºŒêå !{îzíôâ€,7ï@:â`ŽŽOÏ8oüä?ó“‹+¬CíûC=£žqÿœö$~UÍN¦êßþ%’-ÒmŸ‡Ñ‰I÷(0ÄÌ&qN•ßúcUWçÛèŸ7’t;êk.Ôëð ÿ8;¿å-‡üg¹ÿ“‡®w¹«éµ:ÐççÞÏ4šqeÕ¥;c×;|C˜Ò€ÔåÉPkÙGáÛuNƽ@Ë¿*" ÿ9ªž¿î)||W=VàÓ>kÏÉUWÏV,[þ<×çöŽxÞt €½ê~xÓ'•j 7Äø2Wî>8må䦡mÏ`eŽ¿ðC>êè‘ÓN¶QÐC?àFrùÌ…ÿG®õ'Ðñ!Ÿæ„îWîê1«m·,©rI Óõ▪ȇmûçÔ_ùöØÿgq_ùo“þ"¹ê©@ø~™ñ7ó–y×Y#áònž<ÎALLû±ßljU;ôÁ6h ãâ=ÿ8g7æ¶Æƒ÷ZŽÜ}_âsÁ_óòDÿrZ%M?u/ëϼ;Ó¯q‰ú|ý©á‚bŒ ·¾èã„Ñ° «Ÿ<û;ù£åí>:q+m§û’Q¶Ùy³fÏÿÕú§›6lÙ³fÈ7æ‡æEçåÜOk£^êþ³•+er€­R)ž~ü÷üÆóç_“/<µ¡ù+Y‰î>Έ£ájš‚Õ2q¡~{ù«BÓlôçò¶Ío q¢*Šß3ÌŸ^hÖô«­:?"kj÷0I– ©Ÿ‹ß8ä·<Óù[å8<¹©y3ZžæÙåfxàv$ ÎNóß\aWò^½°¨&Ü\s~}ë15[É~`Þ‡ýç×_ùÈL5“5ñMÿÞ^ŸŽF¿"|óæŸ ù§ÌþbŸÉÚÜöšÄ±<*–à2ñ¡¹øgm‡þrsV€ÞF×Á?ñBÍYÁu¿:ù–?Íɼÿ?”µ¸¬e°þ·äõ¯]‰ɨÿœ†¸Oµå ìÔÖÐíøïŒ_ùÈùÖN#ÊZûCf{ûWÿó’z\WÊzù;î,Èþ9Í?61µ?Ì›Ï/ɧy[YNÔcº‘$³`V• +{³Ò+ÿ9Axdn^Ló@?å•æ¬å_ó“?›º¯æÏnt ;ÊZìLñ8y­> +)©­ ?†'¢ÿÎDJ´³›Ëç+h’7ãdÔP ùÉ›uAÏË:ðAãbÛ¿®0ÎMÚñùk]z¨±Üg\¯ÿÎE[êšmÕ¬^]×CK &ɶ,ßïÅ¿çÿ:/*üƒeåÝ[ÊÚì“Âò·8l‹!Å… ô>Õüåe»’§ÊžbËïþË<ÏùCùžÿ–ZìZ·¬†Ôu.aT²bB‘û_ågEOùÉË +4m kkµ‹Ö˜ßúÛ.jN‡­iPlÇ/þ†‡I.hšÒŽ‡ýö¯l…y[óeÿås/ž-´=^]94æ·dK'2r$Sá4Û޹ߟþrïKa¿–¼ÀJýA¿®y3þsV={óÓRÓ5-èz[xäGYàà¤PÐç—nÿ ?1×ô Ø_u× +î%ü÷l¿½Ñ®øƒµ"'õ Mÿ*üãέ¤]Ô +‘è?üÓ†þ]ü¼óU•å¼ói7Dm rH{uϪVó–Ú ŒJÚ¾J"!'N“¨ÈWçÏüä~•ù‰ù}«èf­-ÕÔ42iò*P~&íïË¿ùÉ,y_ʺf“}e©¥Íµ¬p½,¥ :ŽÆ›ä›þ†³Ê,{MQH¦ÆÆSóí”ç+<œŠHµÔöß{ðÆIÿ9Wäá~ãSæG{ i„?óŠ¿žz_åž™­Zêúvªíy¨KwŠÆW6„Ðls¹Ðàù8Ð?Y¯‡èÙvü3Í>XüèÑ<½ùæ2ê6×ñÙj~‘·&Î^D ÷ZmôçJOùÊ¿#©§ú}Ü}F^£èÊó•¾EBý!Jï[9GðËÿ¡°ò#/×Õú”¿GlçOùáåÍCó—Dó}š^K¥ØÛL“•´”²³J(=zç¤Çüæ?)¼zŸ¿ûŸþiÎÿ9;ùûå¯>êY¼ÒòšuðžoVÎDýÞÛ¯!ñ}3ùÊÿËÔ¨k‹¥_µ½¤»º˜ÏúÏˤ­ÅÊ©"‡ê’ïøc›þr·òô­D÷5õ´—Ã!œ¿ó‘>Ló’µ-J¹ž[»ˆxƦÞ@¥«Ò¥zçRü¨ÿœªò•¼•¤iW­z—V¶Ç$R™¾%ZðÇÏó–Ÿ—ZÖƒa ׿X¹¶–4Ce8Ý”€>ωÎÿ8õù÷äÏËï#YèzÍÌÐÞ,’™ …É!H¥3¤¿üågå½ [é9Çú4´éòÊ_ùÊßËgê©¥)õiÇèÊoùÊïË—$.¢@ëV‚Zü¾ÎCÿç??¼›ä-wÍ׺ÍÔ‘ZêW©-³-¼¬@ Ÿ…M:Ž¹èÿ9“ù[ÿW ¿éù£<µ?燓SóëPól×Nº5ʼn&h¤Ûq+_Ã:÷ý _åo¬<0ÉOøŽ5ç+¿+ã ]XV§c‡þ5Ûç+?,M +jê +õý܃¯ûå?™žžI󞼡«éz‡­k§^ó¹dê‰üÔ¥~ìõÿœÆü¦Ÿ¥ë_ y¿æŒóïüæçÿÿ24} <¿¨‹—´ÔážAéÈ¡PRj£¦Mÿèi¿+€øµÈ¨ßä=â8ñÿ9Sù`ÔS®C]¿aû±ðÇÐÑ~WR¿§" +E>ÃÿÍ9üðÿœü¾óG‘5M+JÕâžêhYbUªMkAP3ª~KÎR~WysȺ&•¨k1Awme rÆÉ%U•@ ÑiZäËXÿœ¡üªÔ´›¤·ó“HðHKI*@"¹æ/ùÆ¿Îÿ$ù3ɧMÖ5X-nÍåÃúlZ¼Yö&ƒ¡Î°?ç%,_âý=mÈ +šrßðÇ·üäÇåÚ=vÛèå×îƯüä嚸§m‚uŸÇlƒÿÎ0þuùËþzóž¡©êöÖÖwÓÂöòJüDƒzñ¯lô˜ÿœ–üªvó²Xÿ†yg^üãòZ~Þù‡ôűҤÓ#.ê…¶ª‚;ûgT?ó‘–uäºõ™ 6<úSèï™ç"¿-Š‚ºí¥{|goìÇÐÁþZÆ¿gðƒð™:Ÿ»®rŸÍÍŸ'ëÞ}ò^£cªÛKð’wm÷,{ õ‚ÿÎC~Z1ÿ”N§oô„þ¹Á¿ç5¿7ü—æŸË³e¢ëW—_ZÄqL¬ÔVÜЃ4oÏïËèôøºí˜‘bŒꎼEAúpbþ}þ]rU`²¥jz:x}oùñùwÈ·éë5'¥e²9ùùÑämWÊÚ¥¦¹f󵼪Š$¤¯Aã’oùÅ_Î%yò¯E±Õ5«8.¡…½Hå™—ã;­s¨ßþzþ^Ki(MO$£>²›’6ïžKÿœgüÐòŸ–´ûm_Sµ¶žMNæ@²H£á$q#Äì¿ò¼ü€Õá®XóTΤf‹óÃÈñrÈnºþ"¸ÑùãäûZõˆšúÃõ{ç0üˆüÆò¾ùáæM^ãSµ‹OžÑ&y•QA $ü]3Öó§È'¦½§øÿ½Qÿ\òßæGæG•GçÝ–³úVÔéãMd3¬ŠÈô†Õ9ÑÇç?CŠë¶=K…Û,~uy`uÛµ?ñð½~uéŒCcQ®ØŽ;ÔN›šô¹Ç¿>1<¯®ë^S:^©kr Õa‘ý9T…ZŠ³Ã=Š¿›¾H5§, ?åæ?ù«8üçæ–õÏË)m´­NÒæf¸€ðŠdv n´»a¯—ÿ6¼Ÿiëv!ÖÃ:lB +׸ÁÒ~nyk– þÿOxãÛógÉLŽ·bÃþb§ñÂÏ4þiù>ãG½ŽbÍœÁ ×Jš©Øoã•ÿ8eù…å­òÆÒÏPÕ- ™&œ”’tV¹¦ÄƒÅÿ3<£"7bË`GûÑõÏ Î=yÓËÚ=ï™—Q¿¶¥ÔähÌ’*‡S]Å{{çh?™ÞP¯¦5{1MÇïÓ©úq‡ó;Ê‹Jj–t­?¿]ÿgü¬¿*½^=^Îœ‡û½>ëÊ¿8hIùíª_µý²Û6–ª²z«ÀžC`Õ¥sÒò~fù@P~˜±©ÿ—ˆÿ®|ñÿŸ†ëw˜<ïc6sÌbÉjÑ:¸‘ØHÏ'Énì +o‰4OzŸHÚ³JvÃFò ÜdŽ¿C ûW¡~dù[ê6é&«f® ˆn#ØñùËÿç.|çåýOò£[¶µÔmf–H@TŽtf?è©Ï’Ï K𫉠}ö$ýcžÐ‘óÇÃh@£PtïÛ>“ÿϽ|Ë£è_—w_ß[ÛÊ×Ò’ʈO»€H4ÏO?žüµ2•˜#¯úD×>6~lÇÞmÕXHw1 ¦ ŽgqØ×"ÍkËe{ã¿G· +Š£5µœ¼¹7Lôüáä±iÿšzEÅÌ‹jÒUš€}ƒÔ†}AÿhL§–£m·„éýsÃóðýJÓTÔt_©M¬RÕ‘ÕÀ©ö®xÒKBÿ€Ä’ÅÔª0\VM^]º6ÒàT‘9 ª7úsìuý.-éªnàGÔ4©]uß®7›´ˆÊ¡¼ƒ‘ÚT?Ç ì¯­õ„öÒ,‘žêA†Í›?ÿÖú§›6lÙ³fÍ›*™\}òÀ¦a—›6l¬¼ÙY…{æ æËÍ›+)˜(ß/((QA™…zl|sGS\k¯×*8¸ôùc¸ôa^¥d²Tð¶=.*ý‘¶ØYGŠ(ÛÛúKZÐ}ÙŒhA÷f£PvÇ\Oêðµ*‹÷ ³Gª/Ü2´Gª)!˜ÚÂz¢ýè¨( í–TI¬àrY£RORTe aZD›õøFQ°¶?î¤ÿ_£m?ß1ÿÀé—­¹-H„÷Uõb¼c‡Ý‰ËcmqOR$~=9(4Ä›G±pC[ÄA ¢ÿLÃG°(·Šƒ à¿Ó/ôEü³Åÿ¿Ó]L]…¬ uþízýØ%lá +Û§Â1¦ÎÜ>Ñ¥Õô™!<­`'§÷ký1« é,8­¤ ø©GðÇLñëü‹_é>[ÒKr6võÿŒIý1Xô]>+´J¤Ô_˜§èËJo ðú`yü¹¤Ý7)ìàvñh”þ±‰7”ôB)õ jÆþ™GÉú 5:}­GüPŸÓ(ù;@$“§ÚÔõýÂLt^RÐàq$vÊëÑ„(ù`ŸÐºxÜ[E_øÆ¿Ó›Ë:=ÂzRÙ[ºªÑ!u0!ò–H¡Òìéÿ0ñÿÍ9GòÿÊæ¿î*ÏùwþiÇÿ¼¶@_Ñ–”Õãÿšq§È>X?ôª³ÿ¤xÿæœþÑ¿åŠßø¥?¦oËÿ+»m*̱ܟ«Çÿ4âCòÛÊCþ•_ôüÓ•ÿ*ÓÊ Sô=:ÿ¼ÑÿÍ8”¿•þO•:= k_«Gÿ4æoÊÏ'ŸÐ¶$ž¿èÑÿÍ9IùYäÊq:-‡`GÕ£ú?gÿ•IäµHº&ŸËmþ­ËÃÿ*“ɧè; +ÿǬ}ÿØæ_ÊO$ÇRº€'þ]£ÿšqùCägj¾‡`[þa£þ™¿åOyþ¬Zý#Gý1£òkÈ•-ú O©ëþôÊ?’þBcS éÿô‹ôÊoÉo ° è:~ýÑcþ™ä·H¡Ðtþ”ÿy£þ™ä·Z•Ðtÿ„P£Gý1§òKòü©S iäùvúc›ò[ÈL:Ÿ·Oôhÿ¦'ÿ*?òû‘Ð#ÔýY?¦Püü½ZñÐ4ÿ‹¯ú2L³ùù|‡@Óéÿ0ÑÿLoü¨¿ËÂÅ¿Ãú"(Ñ£þ˜É?!¿.æ?—ôú¥º~Ã)? ÿ.#$/iõ?òîŸÓ)¿ ¿-Ûcåí<ÿѺLÇòòßðöŸP(?ÑÓúfÿ•ùnvÿiÿôŽŸÓ+þ…ûòØÓþuÝ?aAþŽŸ? ¦ÿœ|üµ;‡tïúGOéÿ¡xü³ÿ©sOéO÷?¦0ÿÎ:~Y¿Ãš}=­×/þ…×òËþ¥Í?þD.9¿ç?,߯—tÿù¿Ó?ç?,EiåÍ?ø¡r›þqÏòÅ©_.iûtýÂãOüãå¨ÿiô?ñBæOùÇËÜyr¿ñ„c›þqÏòźùví¹Ïú/Ë>E—¬wÿŠ†8Î9~Xúg¬äHËóŽŸ–j(¾^±¿¹_ô._–D +ùzÄÓþ*Óÿ8ßùa^_áÛÿÆ,kÎ5þWº…>^² 5Ž˜Çÿœhü­ ×˶_ò/(Î4~WšW˶?ò(cþqòµ…—,h<"ÊoùÅÿÊ·o.Xõh»ýøÖÿœ[ü¨pòå•ÿ}ÿn9¿ç*Sü7côGý¹Oÿ8·ùNÔ¯—,E6Ú?íÆ/üâ·å8R—l÷ÿ üüsùÅÊpÿYoÿÿnWý +¿å1`Ö@ø¯ûqÍÿ8µùQOùG,¿ä_öæ_ùÅŸÊn †ìh?â³ýsùÅŸÊ~ŸáË.”ÙõÄŸþqkò¥”*ùvÒ«½8þ{æOùÅoÊ’§þu»1]÷Cýq§þqKòŸsþ³ïO„÷úräÿœVüª¥G—mûýq«ÿ8©ùR£—øvÐ +늯üâÇåZ´ Q_ß×/þ…gò´Š~·ÿ†þ¸×ÿœUü«’¼´ mè?k·Óÿ¡Süª€òý­>Mýq’Î'~TÊ¥ƒlˆå_׎OùÄÿʘÈÿp6Ûxòþ¸Óÿ8©ùV䃠Ûö ·õÁKÿ8¹ù^‹ÅtHGû'ÿš±9ÿç,åRHÔ*ïQÿ “o$~_è—–oc¡[‹x]¹²†b úIÉlÙÿÙ +endstream endobj 40 0 obj << /Parent 12 0 R /Type /Page /Contents 115 0 R /Resources 114 0 R >> endobj 41 0 obj << /Parent 43 0 R /Type /Page /Contents 117 0 R /Resources 116 0 R >> endobj 42 0 obj << /Count 11 /Type /Pages /Kids [ 12 0 R 43 0 R ] /MediaBox [ 0 0 595 782 ] >> endobj 43 0 obj << /Count 1 /Type /Pages /Parent 42 0 R /Kids [ 41 0 R ] >> endobj 44 0 obj << /FontFile3 45 0 R /CharSet (/u/A/g/B/v/two/m/b/o/d/c/R/l/D/p/E/e/S/G/z/n/f/I/period/r/h/s/a/i/L/t/X/\ M) /CapHeight 690 /Ascent 690 /Flags 32 /ItalicAngle 0 /Descent -207 /XHeight 476 /FontName /KMELKB+AdvROT-R /FontBBox [ -31 -229 1135 760 ] /Type /FontDescriptor /StemV 0 >> endobj 45 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1629 >> stream +H‰ŒTT”U¾ÃÌw?AúÀà›Nó9ߢ™ ± 1ÈŒÂb2b°i ˆsˆ$QjC@Ôq•c’'`!3 X±»ƒäHàÂðCPcWÖsÊ=ööe×ý¨=þìŸûÞ{Ï{Ÿ÷¹ÏóžWATnD¡Px'$Æý6A¿<&«Ðôrriîn™Kps žê7ð U[g0b½â‘ÕúÓêÉŽy÷‚Ê…ôßÏ%»ÿü’(ˆ!>„,R% +ò4!Ϥ ! +Fˆ~IT‘WT$]NKyŒD“lò&SŠ0E¬b¢XÑáƻŸU»ýUé¡ŒWZ”gU^*jµÊ¤:¦ºªB&œYÏ40Ì#*PÝl!‡ WÕ?ü°”rµj—·[é—WàMˆƒ G†ä.N³ˆc´±úƽþæõëð|3ãSE®÷}µ“Þ3ûéM43NŠ3&^XÅÛèCœdpåºÆÕ@ùW;€&¢)õ˜dck*ÇÁ]ª(;*EL ÎxÞI¿¸]¾ °l”VÓxÕ÷t¬;C‡£ÇÞ,)˜r2šB(,ùº`k4xc¦„ÏÎ=m§ <ÈCV„d¢FJ¥\œü k¡öõà>(‚÷{ð.å@é:îÒðXÏã.ZZòZ~œ€ºí°4°à”LÑïû–ØDéV7†ZL2b0®Â ;dYÈ­ËÖˆn›P;g ‘”‹–ë8{Ð:ÃÈøj\Ýëš²QØ8;Å ÊÁ5ÅØf§zg 8bÚìc‘ƒkŒA÷…qµ>:]Ÿ¾´^jÁYÀLHÚ9Pv%ðÄ“6¶»zàxkàEŒ©Ì1zî£vz{ÒŠîÈ.+ ’dq¡Üȧ4®m¾®é¾òùЭkÛw׈ƒìá‚”ckô LÂù‹Æ³»s¤ëf¦3×þf¤&:áu]¨¡±r§Áî­½QtKè%X Šè?ǵIÜi«jœB,œ=žeÆ)æÁa=Œ0:ŠX…+ JÞBŽ0\|«þîÒk%÷ñiTgê_Þ/Ð?þ°mPh=SœZ%,²®ß®ÙW´Ëú®°oF¥îr†óî…ËÇ?lÔA¼©¢´d«ø»·Ó·n¶ä~|ndºî²Ä0cà³e4ñ.†(XØ1 ZðÊ‚'ð‰ðͯ˜KEYIƒjò¸}ð\`^ni9xtˆ\²Kó%_ö–yÿ»>ÿøü­¯aòNw}zš4Br†Ñµ¦@ À—îÿÛO:Ò(rpWí˜1ñœ…¶”äu¬Ðý5\€¾¸üâ +`Nw¶•ébøñ뀌ôñ3#‰ .z]䶸žìâ÷ìx§ýhwE­x=¼cÛ!³€ó7ë#¥5¦a–s=åÊç‘ÚX¾¥+\@9¦>èÑŠî°`´¥«Y¦JC õèŸqâànÑÀî«n+–Ööô a3óÿl˜ìiBELD.º……Mõ‹\í°ÚiôÎ9ÐNôZõa"Ö8à>;ô{G¸^XV±hA#åpï™k¾‘–‚7?1üÿY>¹ý„q´C?c¤±ãm ÷ZcWþS—­Ï)‘müzÏ–óB`~XV©d7åW™KƒÝïñàß$’A‰þè—‚J”Pú øI8ð0¿­ÐyFóÑ3362*«£§ÈÍzÎM'?—§|⢛Ô0Ù‰G)€ÿ0v¼a‚"V°ÎUàë*äÿ7KÿIV +endstream endobj 46 0 obj << /FontFile3 47 0 R /CharSet (/section/z/n/A/ampersand/one/two/m/Q/three/o/R/p/E/S/four/at/T/five/U/g/\ asterisk/B/r/V/b/C/s/a/W/c/seven/D/comma/l/t/X/e/G/hyphen/u/Y/H/f/I/nine\ /v/period/Z/h/P/J/colon/F/d/semicolon/i/L/N/y/zero/M) /CapHeight 690 /Ascent 690 /Flags 32 /ItalicAngle 0 /Descent -199 /XHeight 476 /FontName /KMELKM+AdvROT-L /FontBBox [ -31 -229 1083 760 ] /Type /FontDescriptor /StemV 0 >> endobj 47 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2993 >> stream +H‰LU PTWýÝô{Ýtão!v«Ýú?Ä‘M d ²‰ +‚¬"®DÜ#’•„‰Šm«HJƒ‚Š!*Ä7pmdQ’F&.èh™D#‘Šo÷ܦ2¯µ*5õ«Þrï}ï¾wÎy÷K8™”“H$CgÅMçžõib|²g¬Í6Á¬—šõÚ•¸á¿Ý–D8,ùÃ`xß:ÈûÔàäX6Ê¡×ÉkÿçBNÂÉ9NÅqC¤œ#áFpœNʹ(9O)7YÉE(¸8—$ãæI¸Ž eÉ9WÀÕrç9w[¢–|(ÉÔInIRt…t³t¯¯]†]ݲa2Y˜ì Y¥ì˜¬SÖKìˆ ™I*ÈcêC#éj &ú«|ˆÜU¾I~IÞ¯ðR|¢¨RXìÇØO±µßjÚ¾_鮜¡üJÙ©ü]Å«¼T1ª^k< \×”lø´d¾~j´éÕ½ú»ý"¤â&º|gÈO§öìÜU-\—n.)ÍÓÇnk>)B.Ø5£$ÉÓs NÆTyBTÃÓ§÷¾i=Qÿya­xCþeîʲåz×¹HÜ»–}û™¸¤ v1*uÈÿ3 +F_¨Ü]öµÀcôs²æT~ËÏ7¼NW'½ 9‡Úò2»:Å=é—œ|“AéR[¯áÍuú ¬ Ó(ï|Vh ¶km®«Ú¾¾ÊÃÅ8> Á‹ÁÐúb0_@ðÑhÀí ‡¡0ôG7t[Ϻ¡8t=3º <ìÒ¶[øTŠNþ$ZªÇ„ïКð½eºq«©Cqëáùî':Æv£sÆdwèÙšÛL‰^üQâL!.Ü×-k‚•¹LÓ¸³®©Wßݘåž9š¸!£ŠÞì^‡ö~Ù™~~kL ¥b M¸:F‚Ýww_ƒcìÉ´ý‚Q^õ¤8°‹l›€CÒBD®iÛ!î­ÉÙ,ÄQ4ZI*ì’—šU#ö`»ýs¯¶˜°™nÄ·¤•Vî;ÚÐ¥ÿéT¼ÏÄÔô€©«[êÅHš¶»Átz O»Aý[ò/8,cÕ¦‚µl©¶‹‚ÁÜKLÉpAΛ¥pCƒÙ(CI`A×a:ÍÝq|< ×C\ „‚øæÎr Š@þ˜×÷›ÏÖŠFŠ‡A¥¹_×ùꇫs||Ófd5ý‡Ñ] +óh+ëZÙ;ʘ‰ü¯%ÐùÎÍ›w[.VhŠ>;§éq9ê˜D †åÌ…bð—«Þ8ÉG{9ócu‹ø–_šŸBç›üõ8?ÀÙèâÙ>¯§§ñâ¡â';w,ìÖƒ3¸ÀXˆ„ô‚Q˜‰[0 ³6 ¦£Š oUŠÖLà5/ßÀ__­^¾25kÐaéêƒÍùKmýòì¥=˜GÚ(æY¢H=9Oc¤ À?æQ¾ö™B)¸v< Úðúôý¢Q~ªâ&#V÷{xJ ¤íɚѫ”£‰!Oô¦É2&ø—7检N†1šíd^7 Ù¸~A¶›VA<8¸sì£ÞևƈݴcÓ¥ìádnÚÑ8=¦§`“þÜNœ)¯šëöÕˆüv5…0²Î@%:ÞGÝmé/R†§d%îE£Çô(¿Ew›°N@¡ a;LØNù)ϘŸÂ6nc¶rvS~À\eþ@ƒEɉŸÓâ”Ü=†®‚(ÂyÍvøvj´øwúkØoèŽ1¬^DâÜ6œ Ù@n7W±B0`Ûø\ÁGí–¨xlÃ+ÐoSÇs­ÍÀF>Pn‰ÒÄ[«èCó’üò=yÂlù–¯o9®šžŸEÞ™ºÕ„¥5[‡ŸiM5ccñ štRXdQã Úd‰šH1Å:@JYg X,ÏÒ›ûYl£µŸü›%´2ï%ó ¢6t¿¦@úÏÁxñûƒEœ`Cî!}Ñ›dÜÌ5âÊ?0wioÊѽ¸ÔH®uF€§A"²/“0}›1 ƒ ðG ‚íèR‹!èdPV„3Xµ¿ÂAÉDfKÜÕGßLñ8$6 ?i§Y0» ·Ø4¹z¤Q^± +ÀK“pÔa?ÇÙŽtŸ6Ãvö.¨ÇŠ‰b +åsa­y¼&éx̉.]×¥Ëo:¯”T ò²¼„½)zœWˆ®«Ç<Éî\&Þ\IÎå=\5Y¼ Ð{aÅžõ àmš7?Ôƒ +웟’°ÆigÐÀhQC€É:"lxON&5  +}pÜVPu +æÌxëfùœJô`eé>ðhørÈÔöQØÈžK<ÅœA¥‡L‹’0ÙÁ5ð±9½,adxrìϪw¡cÞGz³ÈŠ^ïfãÙ„Q]nÝ¡ ­‡­ä.ÅÕ`…tè#3)ƒ¼ƒ –DSÈÀ>ÂCõ; +ËÌJCq:ÞÅp¸Ë†cUþ˜ÖbB¤ÐÏê`‹UH†rì·Þ#üBèÒ^èíÒ~tE§ì°t¡ƒž.?pæžþôåÂÄ}⮆„uº„í¸lzêRE¼xzþjM•À.â%Kþ[^ÁZáãü«Òõ9¹G{zꟉŒ%ƒ-ÝZB‘^™ +ÖòFÁ°ùà„JŸÜY9EB)5¢¯æÕ9PËÑWÏxÌŽdñøâ>LÀhL½– +Ë^ºÙ*<¾-°Š›>±ÁGn”¬Î(A6-Å ‘A"S…žórÇŽì·èxT€Í.»Õ~Ò!@“™ÖÌQ (Õ›´¿3§Wê^[ÓE‚v˜ãº›Nÿ2ËOŸÙV!Pч¹7”dɸÜ1uÎ^w¼xÙFS•­ŒÏ~[£²2Ô÷©%†tœ¸®ž4—­çQ¶—ŠuÆ_ÆHà®ñ¡!ÁȽj\Q¨±7Ö’bö«6i‚‡•B‚€Wá0<²àC2›Ök1â e-,ÿ‰V¢Ÿªb@> q33ִݯ{až…˜”¶Jdgì1zˆtø\˜¡ëDÆ Ü{Ùá›àb"iÍZ—À'þƒÉgá…qxþîÝ¥¸ÛÚŠÒ?ÊÖ˜(«WôwÖb„.c‘þMqþM`©×«K¢ ¿ ÝrøqX„\PÝàw $?â2à|ê8t?~ú´÷5j|¼19ù $DæÇrÎ £ Œö›žø©9”€fmÿÖ5‡rµF¡~VdFÐÄùùkªo*0¡,{+FTr,¼®hÌßNPB<e×ivçê…úÇáEC>ôsÚÓÅŽa…»·ûÖÈc];amzí©žRTøÖ–ß>õ>“v}ú|Å®²² Eyí6%íXçÚ«<$»§n·wˆ‹erÖ·éKK¿Ù:Ö#À(Ä a$±âºnQÿ¿³û2!Öá8Ùè „†"iBÚ÷òw1.}ƒõÁ0ë"γóÑ ìÅ{ßÑ劑©@”ûØÒI $ I˜J¢Gjx ßã|ᥠ›„…DjJ¤GؾP!•½Ò)‡Ù!<Ç@kh…ô{¼©†ã,¶-ÄJ©ë“g›¸¦šwÅüš÷ór +/mýB¨©ÞYš£(µpW’ÛjPš3¥?ÈKœg‘,ÖÒî2Ýàçïûü>M—±Ehkžôü¬pUw}â$*/¾Þü@áìýÁSiè ˜‰N}VkW w_hµ“ã­*÷çQ=5}zQ±¯¼¼ÚH Í-yÎ(YèH|¨–ûwwü0 +endstream endobj 48 0 obj << /FontFile3 49 0 R /CharSet (/C21/C14/C6/y/z/C0/thorn/braceleft/C2/onequarter/zero) /CapHeight 717 /Ascent 750 /Flags 4 /ItalicAngle 0 /Descent -249 /XHeight 705 /FontName /KMELLC+AdvP4C4E74 /FontBBox [ -20 -958 1114 770 ] /Type /FontDescriptor /StemV 0 >> endobj 49 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 918 >> stream +H‰LR_h[U>7MnÕ;»í®pçvÑ Û™VtO7+ˆØB×®ñ&Û +´Iš?7Is“ÜvÇä&»éMÒƤi4›6¦ck±ÌG}Q˜>²"ÚÙ¡óÜîçMlÙ8pà÷;ßïû}ßÇ¡€Ñ(Š:ðæ[§úûmϽò‘ûm«ÍzêEk³û¬ÖeкÚ{þ}çÁß;ª .Rúÿn7ß +ïߟîH?H4EÍOì{²Óv¢ÇÖcµõÙºm'cá}À@3l·×ç—f¨‡Ô%@]¢5KÍPègÀ0K ÚuAÀx·u g¨õ¡`¸ÓÖÙÖ߸Á`#®°1ò¸JHáµ Z)¡rÉ…b<£ýZeƒ9YÊXrŠ’S¤”ãÉÀƒxДËÊ© —3Áˆ$ AHôÓ|È¥TÄ#¡ˆ,å·È )ŠÇE.¨ˆ¹Œ,çóP'z×Ähm_³¤N‹äò”Qš×¶ieQW0©+ u\Áõf½¸W_£Trëà$×HݬϹ[s:Ž±kGq‚=ùÆk½/þqkó‡ŸÿøíöëVHŽ‘vûÏMLcðÂïGŽvŸ$æ®­Þû<ƒÁ6ëE)Ô’%+Iù2ÔÖqÎ4'gRY./Êál4r4šŒë®Ä`H‘D^Ë’ÓjÃËêq-¶âjlÐÍÝÍR­m²³ÑÙhœ M(I%#C|Zë3%ÓIUán~ >œ>œLFçÙäj +÷®røPp,Œ0öMÝ·b©ä²åÂôü¸Ãé‹ð7+øà-®€®8/ 1?ªƒïqéás‡eB¹üª¿Z¯Òü4B™tpï§H_âc¨’gLc Ë[²Ÿd>KðúB§æ`#Ö€}”ÐøW5ôåܺMÜ‚Ÿ;yÝ¢^Aµ²_õòö¡Éq‹²µ°¶ÎåQUßz!2:oÏXáÅ¡%»Åë»Î_E*ýÖRÕÒ1:&ŽÙu¾‹:ßò\›¸·Â=²±0½ ÛðÆGø•ÊÝG|p´rÜÁ¥†Ÿ:[&|j`×ó½v–¼ÌŠÈ].¡¥4ÜùÎüËåÝIæhb ‡{ÈÒ‰ÍÏãWC|šƒþdf´ãØÇâe:_D¥Òx²Œkt=4%@R#5³0…<ž"ÊóX¯hM•J¨˜‡ÌŽ ßaç÷Ñ»Ày^»GÙ]Ê߸Kö(˜õvƒýO€²Úb +endstream endobj 50 0 obj << /FontFile3 51 0 R /CharSet (/u/A/k/g/B/v/two/m/b/w/o/d/c/R/l/D/N/y/p/e/S/G/z/n/hyphen/f/I/r/h/F/s/a/\ i/parenleft/slash/t/X/parenright) /CapHeight 690 /Ascent 690 /Flags 32 /ItalicAngle 0 /Descent -213 /XHeight 476 /FontName /KMELLG+AdvROT-B /FontBBox [ -52 -250 1187 760 ] /Type /FontDescriptor /StemV 0 >> endobj 51 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1772 >> stream +H‰„T}XTe¿÷¾ÛºŠy'™±{ °Á ”¾DP>Ìå!A¬GÑ ?¢låCXÆÉqÁŠD0P`UÐpIü \Rpl!¬„Z$]å {xžö|Ú÷Ÿ{÷>ïùß9¿s^Ã:1 +…bʲåú˜˜ˆÙ¡;âã}ÃÿfÙÕNvõ³Ê×ñƒlÍø^NªRüj2=}>Ëß™ J×ý3ø“S‡'ý/’Q0“ŒÀ0Sæy†ñP03F£`´ ãÇ0þ +f!Ĺ01“À1É +FC0,3‡YüÉä0ÌM…Z­HUÔ*N(ºœ¦8¥;•9õ9Ow^î\âÜáü˜a·²El{šîE.žû€;Æ ‰#I%ù’Ø&bwøZ#¢{½ Â!A„€{ƒt‰GS¶ “°@…{M¸ L[%Áýú‰PrÔ‰P ³ –aI”ȃ°ýc Æ &›è[Þ$ •­&Ú]Æ&\ˆ€Ó +P->&ðî¦q/á—/•vŸ¾ÞŒ +Ô¾­ÈH¸ÆQJ±|¾9À/t‹^^I„øÐî/®>ÛxQÕÞÚÐÝcÍÚS!Ýã÷o‹8¥FQ“ˆ“_ú!ãëL¹3“»¸±}óRUH”1zIT]uºäÉVõæ|§±€(·D6É°û”ÔOZóÀ#Åh„_!lRì…¹è¹ Éhã„J¸¬i1Á$œƒn©‘ÁÒi:rââßêß_{@ZÀãs(gáÔÐÖU7›Z>-—iG^a|ÂÚ×–³kN]ý¦áIh†WÆÃEÝD>‰ÛˆéÒ}Ѐkˆ8=8ÓðvžD{Â^«Îr«Ùpÿœ¹AþÅO,’°Ëî}CÜývvq¶µð‡{w›®|u½4nƒüˆÜ~ó.ªÑ#Ö›Žæ3_PæèËgJžhó•ƒÔl,&uy™çƒÔÈÄyã\œñ¹'¸ô7_®=H•¢Š£ÕÖ[Ï‚ ¬—ÃòÇz%¡Ô.+îØ’¿NÊTpáX56ÁŠ.±è¶Ó0îçðj«+=Ð,á!諪:-7*“²$a>8ÓÁЂGzœ'çªÚ{›ëŠv×I·øÒ¬ æ,5 +q+‘•çëà…{°Ý(ꢊÉÑüŒ¶`5>—Œ„V$4£ ¸~wúÒ§e²9”¬2iQ^i¨9´YšÃÿ©ê‹\ 5ööd< {=¶ZÎ^¼ÅkI`îX'R µ-• µZ®™’ý%¬„~þ«wGÐI»>,}§T 7tD¸C•u¤X˜‡ÈÐÕq–P£°„Ž`TÁkÁ!Å‹0ž³{ëxGí-]‚›·žæùûhgçïyrxÛùË×M)sOûÞ²A鱎´¤¥0«=@ýê[ëÿ(QŽÿ/õ¡Î± ûòEðì-øD£'zEjѵ]³ÀKFgØ+þ³üáƒáŠ™K‚wyi½s}K‡À‚o‰ƒPo&Æò“)V50Ãà3R#¿8-Á˜'÷êÈ î­Ç~¹ùýA÷¥šmAúÀ­÷îÐÛõ©,x¹ûLŸ4Âû¦‡¯ß%ߧR¢a5œ7}²¾²Qu¼¹ª¹íìö¢ +©ß·-³"Eí­_3_߶±Å(·návœ}gƒ*9)7Í[³¯@ +⋪>˽¦ëmµÆÕêe:.¶ëâž]9Þ©Ö]h‘¡¦÷àtâu ²¯ê¿Ç‹|tøšó_ª©µðè7×0•ø¼® 6 B‡ýüŠJ-8 7÷žþP2¡b”?Xh7r‚Îø€£6pŽË˳•Cä>ôsfòû¹!2FÏÍ#!8ByÂA<Ã!Ïs°MÂ4ñ.üñ ‹Ã>W¦_5‘Í ‰Ÿ(áaØ ?qÝx[›x܉œÓì1âoŸE +endstream endobj 52 0 obj << /FontFile3 53 0 R /CharSet (/parenleft/nine/R/f/colon/S/parenright/h/semicolon/U/i/endash/asterisk/g\ /V/j/k/K/W/comma/equal/m/l/X/hyphen/o/Y/question/period/p/n/Z/P/slash/q/\ T/bracketleft/B/zero/r/A/C/one/s/bracketright/a/D/two/t/G/three/x/u/H/N/\ I/E/underscore/four/v/J/F/five/w/quoteleft/L/percent/d/six/y/b/M/ampersa\ nd/z/seven/O/c/quoteright/eight/Q/e) /CapHeight 694 /Ascent 715 /Flags 34 /ItalicAngle 0 /Descent -268 /XHeight 397 /FontName /KMELLI+AdvP5D8B /FontBBox [ -177 -260 1093 718 ] /Type /FontDescriptor /StemV 0 >> endobj 53 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 9039 >> stream +H‰””{PSWÇ“H’‹ ÖË’=E•uD™*VDET +B)Z@´ÈCH äuoÞ7 IE¡‚ *X‰‹TÁH-VjÇëÖV­ZgZ§=¡g7Œ;m÷ý眙3ç{Îï|æw>l–‡Åf³gnyC|ü¦ÐuYe[߉ˆž\û³[Äq‹¦û¡ ¨î×ûã™\pŒýO½þí8ÿwÈöµÌYÄž5¹Ùû·$‹ÍâqY3|X€Å +`±æ¬(k­ˆUÀb%{îby±hv2[Æîf?ç¬æäqN §›ózJ씿z…yÝâ†q5Ü;¼^ ï3>‡ïÇ—`°‡Þ[¼§ÖOKžöóô‘‹g˜NŸY3/ß7Á÷ú¬­ïðßÏž:»ßâ×ø§Nÿl¡·0QhŽ"–(IôÝœsîÎÕppüJ~°b^ؼ¯æϘþ0õá²ÞXjzbVœ(ï»Ád²!¯S ÆžP´'„âR0$ÈMj»@Ÿ±G0&01®D>c@®S«åÄ«ÀD Oè"Ü;«Ì2=EËŸ?ò½©ÐQ2F!„üUˆ©QXªm:!œùy-ò³Ð½Å,´C?8s³Ý`vhlBÄ{ù=$k!òç +B! +ð\qiIµI^§"mt¯,“ضý`žP4#±i°/ÝpÝ'neœüØóÖs°§)BNÈMÒZ€UM\³…±Ù‰:µCV<úJñÓMM'O–¶æäÌÉi=ÔFzÞÛ7'ñPö›$î5ž2ã³qœ€bP(Z:ˆV{ ÂÕp) M€1(˜Ì÷‚+ÊX¼X‰2q”0ãûï­0rH,ô¥ïÖ€L E$5Z¡ñ¬Kß)êpéµgÉ£ÁIYv3þ™Œöð=ÂíÏ¿jì3ŒVmT‹ŠÄ)E+*•jC•UÝ«öw©™ÒXBS†ð"ÚXc±7Œ='¿äÞÚ62D¼ØüÅÂ¥‘©á¹@Ú@ÛÌàzëù®¢±ž”°€¨E›bÈu«öç¤åc”šVk¥YcÔcÓ)ý â]èÖk»È†Æ#—êúÔ£ÒP2•´\ŒI*ò©4‘¤à¾KõwŒŽÏ7^^cÕÚd¶cÏzg»ˆ;É=+£¢·oÈòZÊnŸµ»Î\¹ÎìOÝ™—_ZAîÙ¿ro¶˜*wT9µØñæÎO.Š¾í^Ž¦ ÞŠÍÕµG¤¤S&=Z,*®,?”Ö_éòÀkñüßFWLîæGi&¦ÿÆ°g’aû½¶óß ‹< ÍÚº„‹Ìl8úy6›¾EQƒmá‰5¦F~È?ªwTé€DW¢¬VbJZ§T(ž_¢Ö´„WT¥w:HxÇÏeLFC˜iFÄ<9E+T$º;‘­:¤¦ª ¹Ye‚ûîp¼DeP6ˆàT- ݇æh.ò_Œ–(€Be8T«Æ`¸î„Óà:þ _(3VÕ&“Cx䆥Ñlnf„0©µ¾¡áxM“Ф±P:€¨‰–VСà”áhÎmÄõ´œïãgÐûÇø{¡YùÕ€š2¨,Œ±;ÍGEß|ºrùòìص!{~ØOmóÍSrôÞã¶á&³‡ˆŠIP"An`6/°Í\îi q÷ ~Ҭʯ$QçÄ#mP:BhuÛÎ|ÝvùÄyO%&µhªãô)"´š—ò±Á(!Ù•»ä…&…][Ã`½mMÌO_8=Ÿ#("1È@¢v^ËÅ6ånü`9¼_dürÝ|ý2þÒƳ ¯m¤ëoÄ‹¨¾e@þÆ _·cèîåæá‘ò«ý_§DÑé;cã~†w''$䤧 ãÛc»o×:/ߨtÿ‚¿lA³ÂPÒû –Ä’Ù•$VÐ4SiÕ|áxyæîçØÏ\° ¸pd!_Ä [¦ÞÙïpã¼`¯·³ øõ8UU*úDb»ÔIž bKIQTY´§ ì(âæKŠ+3‰ü¦´ú`¡k&+F¥›œÄG}³<èæ6X›[ˆŸ—ü° +4½YøVƒ'ÝÛ^àÖbs…ŒWQeZp@£¢ «FhhûÔÐ+ruLÀÌ*s!ã¿Ë,m8ðÍuûWöH.H{°­ÊH‰dRqE±Š‘PåUû‚P³ÿnäU°¹"­j_é¿è®Ö (²+¬•8ÓS&U›±šîTwÔl‚Ïì®»èfu·’Á,TÞ ï†ÇtOßé¾ÝÓ=0ÃC^#"òyùÀ(ø ‰Éj²fM¤v“ÊlÔ\¬öGþÉÿ¾çœï|ç|çëŠ|!Ëð\J>é =~Z¶FqÌt™Ì‡¼ê£¼ÚIÿ(ÓûdI‹¦Ê4ZkèR„BÕiÔ`òvÕ¶ËnðyÈõä_Ö7‘¹5À™Mëß1两6FâEßCkL+=®š±`=À A˜Ôß# Ÿ§h´ýá]Dü÷ƒ ±µl¬–k©kÃý·©™ô¡¤¦íà§îô†He«.«‡ëÈQ^±üŒº¯g™N(êe´qè'[~™üNV–»­„)iû¨¹Èo6a­“¥Æ[éÏï]½>&ëM'»¸`'^©Ç#è “nºñÖ½&áÎÃÒYzæ¶_ke½ŠOñAsà·Ú%§f…žˆ*سI7Ñúf= è(JFËÿ…Ö£7G·FúYóKn­ú:ÓÕVår@»LÔ™?òÆÒ«6äìù9ûQTü:ýÔ²¹È—]ˆ®f +^vŽ÷‰Ã½3Žúî}_ïoXd¸q-FoPˆŒÄÖ‰>Ï´ÿêê&:â§ÁV:1ÿ|«@sî¢mÔ}ŸivxTFõt{¦iäŸÔwãs¶û]ý =nç‘ÚÓ…li»Ð=‰ÁV¾HÎ[÷ðLúBòéñ=kxôH³l] ã®Ö묱Éþø¾ÜTK%QQ˜íüÞXäõÙÙ²F¡g’B+ŒYêb¦ ƒí.g={‚׬Š¥&…ts¢¢­Î¾e°rj¥"ÏU&ù<gwN{&8DG²±“Ef〻˜Û†‘nßÂ^*¯Iõ›Ý\TTçw›kÄ{%î õ(Ãá4 &±œ,ª³Óh]…íCGçšBQ®†Ï¸øVö‚ÍwÌsPãêeY%À€kbŒÊ£ƒQv’q”C¯¢L9  «ÿsãJPí`ò^ÑÑ#ŽÐC="˜fU›8%M&£ÜÀÿ„Bì ä· AäÍ\M±Ô¦˜QQ‰6Œ¼_ÂÈÕ òªd’;^ÍW‘g€ÃtdùI¬'áϾ…æ¢Ô9ìf°%pùJHOs¥ÐQ1Ìf‚ËâqŽðä ‡Ìm¢’¼…w0¥GËwÑzb8Z‹bКˆAq_ÿ)M_Ôɪ\“${ˆªkÜ¥3”dj% +¡”Æy÷ÐúÚpó¶íì®OrÞ‹ 6vo¹ö)³õ.Zœ–Ò—oûê&Yws“â£YT™°h\ûžTóÜ9ô¹i‚,V_a+¡}wu VŠP8Ò'ž¥q&æ{”/“ѨÃ=zn|ýS*ÓU4qr8ä0q¾û͘CZq÷ÆLà:À胆@:Í"ãüãæ…ÇIÁÇIiPJ˜$ÞÉÒyê*÷âk¿ 'ƒ=Ò¹PY—çËʖɽ*_ÿ$8´]N0ËÊñ¬3­¶¨×9¿Ð#‡8¿0ÿ0s®ú§š3>…Ón¦c¡¤ø4W2}㉟/©ãáaé +j™€V¡å¦XA_]`fl»½ˆ¶ÙdÅÆ*åvXAY³K‹O»¼_}6sï Û<¦Üú‚š3âõÓÆ¿ ùe‚è×ÔÚƒ‚þúš’ Þ… €³=󄜟D‚ÈMÆ^Xçoo(Þq•¹÷ö@R ·9?L«Òª9Š¯l€)prœògc½8Êø`ðh6†ŽJšRX—ß¾õþ‡³ëÐb¢¼óh”§¦¦¾ž™}peòÊxgCXgÃ`mªª«>øg”•æJ¥S“%˜Êb»V®9Nrd NÊ x<Å•¶„ý%}ÑÈÊŠÜ<›àv®Š®ÍÍÿwfH0áU3¦ðÁZ‰{qx¾¶hŽÉZ óJ7&óKÃþ)‚‹l} ók/…×ã™âýÇÛ‰ª²"g½¥Äç­`-ÍBà&…þÓ6`’Û_'9…JÆÞWio¾H;÷;Ô9Ç›2gòn(ƒ„ž+ÐyùÌ +',a€¼^é);AŒ3‚ßÌ…ó1Ü'Ü6›ã_:¶VÕIÀž>±›À½î ya‡zD&Sd®áÔå‘|‘§ä)循­‰-ûZgõX²-abuã>B€n¤E’!Û4:úÑ¿?B“'îi^ü½üü½%;IJ»l¼mšǨØK÷ ºM–üœš!“f·.T£ºÐ.ðÔõOÓM­’nEläd¦cÓU\$Êi,H̉I|k½¾—ÌÛŸ·/×LCþHáXÁ8OÚ³ sëMc}·±Q<'<ÝîzHªªX_g!í¸+‰>ZýjÁU¦q€â±ñ¯"š³$}¹™ÒÓEb™“g€Á<ÿëÈ?¯A‹ÉŒ~})"‹/ ¼ÔUF[âDùn®hUƒÚ…vG½h)Šr(}Øx@Ò—ÙŽ1|E™£äE*š€½'ñôc‹4ÊjŠäã<™2™KT‡—(ëhù8…²]R›âc ¡¥ðÖû'3‘Uo$ÿ~*ÕWFxU· +Y¡CDK»0éÑs?²šP,Ú€}ýAü I ô2ý°¾F_¯›õíˆÒßAyl]—Iÿ«s8ÊAôgÑÞ;ú/õ÷õxÝð¶þm68²Gç¾2uKÊäã«;×¼›²[_TÌp@´jqv²¦e„=×ruìKê÷i—O1§Ì»¼›éÍ»\Ž¸Ðpi\_ðZ"¨çKŒ/ŒDÑÂàcUÆ*vFWƒ"ÐÈ×wGH•Cå?ÛlZ¨wÕ_ôo¡°ýlŸ½Ïpvò5 +«ÿØÿ/÷Ø(®+Œ7i½;M*'´Ýh=SÍ &©DET%QZˆ›´cD ÆlŒÁ{×õ ¿{w½;3;3;ï}z½~®ßÆOcŒ Ž mÁÂNÚ„¶PZ*"*¡Š^£¡RïÓö¿JóßhÎ}çÞß÷_§Ý*@*>½Ø|nºÞ¶aB”YÅ#TSÓŒU A‘Üû“[™³”â–ëcÁ÷Àfô™ xè_þç×.íšë®lflÀÓk½×BGñ²A°ïê;~údksM:Kí5!?Z½Q8݃÷äì–waR:=~’Ž«ô°Û£EëFôÖ_ ý¢t|sö—?ß^]XQ‹×”¸ÍXf£ 2#ym5¯®ìïîïºôÑ$ž<—`ŠfÇ.¡g:?{ðu߇Ù!^{F€SÎ Î(îjEá­4ËL{eËû7_Ú3WLÜß•pó ïÀaôã¼½?Ó¼çq·ÒÈÒ¤p0”¬AíóÇþˆWþ°ž‡J]]ùÖÊ=à FŽEÝ„ËÚM„ªI<¶š´¼Ì úU ÆJžf‘ÊF'›=Ù Ë)æ†)‚mÃ’Gw?$¹Zh¯èñwE»îža +[Ð z8 ñ$]ÿ4š4°ø®zN®Îáâš‘@R¤­ Ì-+ÁŒAÛ¸WÓi¯kod=ïàÀ¢ÿ‡¹´†ÎHŠ¹¼Ut®ú£õ±­¯¢šC¯½Ø³uþ0ž7{Ýv[Zê™™".\n¹w ú ЇOàr¨Ã×#D!Š>§ˆ¹‚;‚å›x¡€ Ü¬M!aÁ¶TíH¤TÐô»Vmq|ÇÐv$r ‡°²ÌÉqB +"9?“÷>/§N~Õ?ê £Â ,/Ã’®ØÂc¼PNnÞ±6Ö8êö»H”ä®ZÜš›£%”n¯Ù—ûšeGÐå}@,Ÿ[?aý¼×«LÈaÁ¨*l8^ìH!wË-YMq4פċMÑáÚîtË•ÎÇë §ÜÁŠö¼Ï4âŠF\ÓˆPÙ䛑g-Ë«-ܺ ¾?vshÛ%mÝðÛ+ý÷UìQìÁÔÛà=ãe@øçävøk/r‰[YÆ`–Š¸L¯s€5vrAWj·æÚÌ8Ù¡%Õg—¦”m³l+þ¼p¹è „²^ •$¿ìÇã§îtŽwÅÚ¦O‰á°, ËV…ò˜Jy¡æRÖ¡6²ÆaVv˜Z“ÑPPŸ_~¥ìjÝlÝ´ NŠ½ÿó™‰ËÂŽÄ…€ÝØUW”5Ž0áÚ°e"yÀ´ˆîÝF>Ê´èò¸û^ëÇöBÉd|’7îïìFz£Óê—Ø ëõ34I»H¸õ––dnA«À·µ †ëºñ1‡z{”ú–ßhã)‘RG€]¼‰®¤ê—„Å@WE ñwýFEõ x“Y0a©:Xåðã­†TÉÌr&(ŸÇ¡w›!Naày8„”-è“TýV6ÅáÀ)ŠblÜ[ÍFŠô8`¤áÆÇØqìº.q…ÙbxÂd­0ºÄõÀ¸Rj˜ôõ†ÛmÞ&ž¨ç-‘ 46Ù?ÁebLB>ªÏÈNE÷Žá‰—Á `“agu}u>Z<ÖnÅ›"Q×Öß +tŽ OÅÅEIDm$êŒb³£²Ê(n††ÁPNò±3¡€­ Ëbá©°­ZBÊ~§LûÂ}j0Lx>È·"CÂHK?v%˜eâ.‡käœt’¶NC “áO;p¥-")4 ÁîN¨åšìv¼¹ÙÒX‡eÚ§"DâòÃ~®žkÂÎxÏŠìõz1oˆ¤; ²£ŸÇúõ=žÿ¶¦;p´¡±z„!@šþ´0-ŒâëÜXA]¶­ÚI3ž&™ñSÆÁžÚ.i=†I!àWq_KTÄþ>ŸüÚ;¦ä7J*‚VÂÚéEgÁÐÊFƒöî/4½ö»ŒE£³Çç±KË}K#烛‹U—V¦aë3þö»G¿]¸¯¬è"hIfe,èoo‹­.•Vü›ñ* nâ<ÃM^µILiF¡Íì&¤´e“ƒ’Rœ–&Ž¨M‡Ë–,KÖaY–VÚS»Ò®ËZ6>dK¶llÌiŽ@ +-´ —É”6ÓR +¶CJg2]:›ýÖئhù¿û~Ïó¾ï÷=ÏSÁ›à|iÅí7n¦>ĺ~ÎZì0z¾‚N^yZ.3_ ËϽðªüüÂËË¥9ã91s äq¤¯Õ¡m†ž¾¶s±B˜gz¼œŠpØ ¬gö]AW«›Ž#ÍÍÕ­xñ¶«7þtôÊÑLS“ˆÝÌ¢P¼ …Õb¬àG¹Ši^tv¹üÔÊoËóJ¢Å™ +dwÿ Ã¯à““Ýc¯à¦Tuzw üüæ«·zX®Å2j¯’AöÄ©³ð™T•ÞI‘â3¹Îß"‘¾P·‚}®ˆJÎ˳ûØ4Úü&y{RYx°ÏlN¡ž @¶Á©T¼cøÃî­ß+z«Ðˆ6yßý©ÖíÅ=$RÚDâ,& †ò:|´•uÐÆ]I &Ê <†’b3ß0<Ô?åû§R¬Î¯Ñùéè¤VÒAi—@òoÝ~ì¶Jmör±Z4bªŠì†_[½~ù†±Šœ %#v›Õnw©\’$´U¹šQ7Æ=†™Lú»MåõÎfíöƒë¤yÒ³Ò“¿“ûü‘"¤¤œª†‹M©®þT4ˆ2Ñ„¥gÆ®O$| :N扗sñ*yÍ—ßUOhØX¸yûk¯”>5ÒíÑpl?7[¤uê¥G.]>4þ‹¾Â·7êKß~pÅ5é õÆUIã<Ãv`†mFa›ô€qÖñt°}òóI“½ÑüËléT~´ «ÄËlôLáév!Òè6P ºX}ö¥m;õ:p ™PX+UBÿwqó—ߜ©L¥iö˜¾{p‚cîâ\ qãÊUeHŽ€MŽÂ“RÓ ø&móÚÁÛOªë–C‡9›î‰õY»ö ùKþ1¤–Ÿ¶­Ñ•!-ÍÖf£“t à!ž8øÑxfRË_ÒJÄ£TŸó€êÒ‚k³<ÌSùžíœæÑ8Ãã4”eýɶ6ÒFþ%sn»#TwÓ±Q^’µ‡¨\¿b°€ +ö£!Žÿ·p›ß"´´[RU£‡ªGšSö.<ÄòѶd"7<šííLD:‚Fà™°VxÑfº6åa”Ϧº)M‚æ)़.ý¤¼d®Þ`u™a;õ£Òßa\K¤×å=úrÛÃoÚ}½óߪ©î)Ëf»»é‡ý!ýš¨8]P¼Ã¤ß…`¸—Ä8Õ˜^ŸÜï,n4ìRÉ aŸÈu¡©þÙŠmÅƆ2䑺¬Ä*¢ö—^•¿%Ï¿^ AÒü«–æKó^ùƒü +œN£údž——-+¿yCzüØù_ÿ-'íuQc;V3€.Κ=ØŒ—iƒˆ‚´áôaïhåhå`éµ³ÇRDðº "9žâá\êLx4 +08¯¢Zœt+¬§2WP ‰ûØ,—šªJ°f÷ï.F A²Tm Òëµò +¨Îëp¶"Vs­Ë¯²™@ó/­ü‹Z¬+BåçX`wÚ#]‘žøØ9iQ,Ýÿq¸wˆ§’¦L?­·3FØj¼”º(M”HL‹“M-Uˆ»¡úûÎjO“·…¤(?Æ:L'ë/š&Ü–ÏòQN䙸R¨ÚÂàê*–3¢JxO¥&µb%H|祂KêPS¼\°La À<ÀæGC{cÃɃ'¥ùšd0–eaV¬±ÑqJìJ¾/ØPþÀô·4Ôí §NŒKO¥?î<ü0ßPGù672VØxÔƒãéæÑC*<Hi§Ç„8Êv½à¬÷6nš¦ÀpqÑ•~OzÆ5Ø:Dû÷‡:•JJtDö€ôÙP«ñP´#ˆÇIÍ^Bô„ͼ“q:kwÈOkZë=vŠVqXëBÞ•–Îu¥‰” BBŒCºÁ)P hC=(µG¯4×C²žIMuw©À¸Þ’vªC.šÄ\&ý‡k›Ì6k‹ÇF™HÍVq½{ÿSs¹ì6 DaXH(õ†¬(Lb)<OÀ$]³)·‚@¡R“æjçfC’6¶3Û“ØNëÔ±E[0$@±(D‚Š-÷ ¶°cëJÙtÌåΙsþùþ™sä!íe4$†Tl±ËaP Ãï½Ñ«@ß460î@­iVßžýj{=3n6Hi£ûò„öÆ2šÁd•åSù>;:ãŸ5GÆæàåþdÏÞÚìYØíZø–•Õ6K3yEexM4!رÄåK©äå€ÑhiW¿ÎmkþG$Šm†.°Šš à4iÁCÉæ­"þùy¦Ìﺽçv|êùáŸzïÏ'ßo¬ÙèÚߛ̲„È|ZQSäô6§K%à@M¢Úrq1¶r¶z‹_…(ÒR+ïÄAêmöƒÕ ¼…cÃ.ßnâJe Éyd®+ %ðTÐûÚ÷Yô—;õr´&”`3¶Î”of®S aMàéJ¨X­å +VÕ‹‡=¿tboL}ÇzÝ›B£® +­Fa­Ô¨Séì%9A¯„n£Î³í¸Ì¿á½q'Û^Dé"ÜR)x§"çèÙéÐņbÃ8y"dˆî2ÜÊ㦅È'¸³±k÷)Órñ#úKÈÑQ–Ÿš-¤—.”Òì ˜j¾÷ÉFƽr§sáxÜÿ=ÊÕ2 +endstream endobj 54 0 obj << /FontFile3 55 0 R /CharSet (/z/n/one/A/k/two/m/Q/three/o/parenleft/R/four/p/S/E/parenright/T/q/five/\ g/B/six/r/b/s/a/c/D/l/comma/t/X/e/u/H/f/I/v/period/h/P/J/F/w/slash/d/i/L\ /y/N/j/M) /CapHeight 688 /Ascent 716 /Flags 34 /ItalicAngle 0 /Descent -268 /XHeight 408 /FontName /KMELMD+AdvP5D3C /FontBBox [ -135 -281 1187 760 ] /Type /FontDescriptor /StemV 0 >> endobj 55 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6689 >> stream +H‰|•ypÔæƵƻÈ`¬‘%W¢œ±ÓŽ’î´`¨rl×7ÆÆø^Ÿ»«Õ¹’VÚ]Ÿëƒ±±íu @¸ì¤™†$…B’ ’R&MÒL:ßÒLª-i˜Ìtª?ô‡æûÞçù½Ïû}2 áaˆÁ`˜´qÓºøMkŸ_µ«0áŵ‹Ö„¾ÍaA"2 +°'&üèc—‘l1|/ŠOß‘c?™ÌÏ©11“C«#~ÜŠ2A&ÉFd†™†Ì CâÂáÈ2Y…ì4 ‹ua$Y‡0ÈrùаÈp_GV*$Nò4F›,W{R×/zŽ{9kô>ˆ¾ ~b¾¢¾¸õ¨õV£ªˆ i gäÁé3Q8fÙ|gàpüW‚‰ æ`€n:¿´ ½²8ŸdõÙtÓ¨âkwûuŒªàƒvËVUp©`LsÐŒ¹?uü¸B+ ¿'‡ÙO²ÖŠÜ´ßµЅ­€a /eï-Ê+(?Äær˜Ó)T¸T:Õ+ž&ºD¾K_¹Þ¡îQ±b™UUÜí«?u™|˜Œ'š$׉ж¸¸|²CœKcÊ9&šuV8 +ø,³³¢ÕÇ¡Ò‰Óâb¸ÿ¿Õœ* +ûA¥€“k< @Š1Щª2!‰•åT)Ì1–NO„“áÔ}kÒ÷QM?M“Á*ÝWÖìªÊ&÷™¯S=âàh/‚øDÕÜFêÑkQ8˜²̃K~éàËHšq•©ìƒu²š½xú`ØrÒ§j]êá ±YY8´¨°m´‘2ƒt°òi *’Ø}Ϥ†u)Œ3ÝþTäoRÇŽõÜöv²Þ*ÉÁ óâ30ŒX\¬ÕÑ”­Ù×ã¿2¬Ã+¹:ˆó¦;Ç„íTÎXÅQ/¨w«¯¯º¿¦¯> ùyO±‹¥KaiùEÎXb‡)ÇåêðR×Aºñ„WQŽ£¦7»8g5\Éqn—‚âñõ½§ùQîP²¸‘€‰¦ôý.iUÅ +ª£™Å.Ú„òCq¨YÏqÕSŒÊ$&ëÆi=I"pJäGB“QçÔvéפ"·v>³°v$·˜>j­: PÂnÍY+¨Z´ÒîÓ-릴F^+v1Nk–^PDÇëM…¼Ò¢Q9Æ.¯Kî .ÿÓÙI!Ó›Mé\ÒL7²Ø¥Lç‚‚ï-{EW›F ËÉ/ßUot›âõðµ´ͧg iDˆ83´¹Rµe±Ë¾ôPŒx‚b:mU’3_§¥ÅŠíÉPh‘?¢­uz²tZ·Ôrâá9ð ýä“h7$!×N%ÁØz»’™èƒÜÓú-Ö-“"6T Úé;ú«ÈÍD±®/UßïQóª|=­ |j–A¤ét”ÊÝt»NçàJ³ã2à4¬…Â\þ¿£ø‰Y=šÍ‚ˆÿh)Õ#žãº–›oi%…´þÍv•?7qžá³3™:MMmG_IHBS:S®0áh8L‰© Æ&ØÆ€/ƒoc˲,ÉÖ±‡®ÕjW÷áH¶„-c(¶ƒ9<©15uìbˆ ™B´ uÚÒ³ù¡Ÿ¸2“é°ßû¾Ïû<ÏûìK0 ’/Á@`‰Ýüë¢Ò•Õ;õr$G!—Va MŒ«p §ÆêUJYüüÚàÌènõñoÆŽ ÁÖ3Ê=+òt ÂzŠ¸>>Π¬Œs,%ö“˜GZ°¹Ç¹ÐËÆL™eÆ<¬àm‘þ¸±[‚îRóÃà½}qi! ŸAiÝÍ]‘WØÈii­Yµ7–bB"ÛÆ¿FàãUü#QŠ°)ÿ¥¼Q!ÃeÆ*ø’Á¬dÉçû4{€¡½›Ç¡'Òî·x¢Ã¼H2Çõõ ùÏ,§lÙ~aG¹…¥¶ƒ¦b†tXæüܧ·Æoò«ùlôÒg]ao³Õ„êËÕG•Y›ZŸ"ÏljÒhª …1nC”YÅÁ²ýç`Ù 4ûnçNXÑJºÑañ[ü\¤íæ}~m¿í yýN—° jc­^½ 1–•™¤ðÎ[è@*”Ò%¬òÑ¢CEYÒÈ1òO£ÒÇÚ~—Ø›º4¿ÜB—­Á ²ãƒz4`pj±B•§ØSM&|²XÔO1ªAôýZôÿkhÚÛÈs ¿°7~E, 9i¦›¿*]/üBXúñv p‹Æn@Æoû#ÁH¸ì†xD5T–‹SZVaÉi$žpÂÐÄПØ9˜W7m¬ùh X±&[XF ¯„ƒüÊ}3T»É»UÈoæøŸ¯ãQ,2joí´ÍÄV„h”Q2¬®Ôâ.›N¿?Ÿ3BÚ ±2×½WÎÍÏ]ä_³ñ‹>Õ!,ýJx£ÊDßNì„ÏRX”+¼½æ=$95C}ТýÓ +X~Ç—ü[³H0r1xÞíÒG úŸì8Bq8ᲇžÃQcE39º%ø(ÿ3ô´ÃfÃzYêˆøS›÷wnG²=ú,°Xü€¶ÚÜ8³‡Óko(.ÕO5^¦´ÍK#·<ßLþ[<¤9{<$é=¾¿õ×XFº O‡|„YF?@¡a£MS¾ùö®¨Ëne£Ø½‘Ü­ ¼b|3é-,Ël9ë‚wv1ϨDüª%c·ZÂ^Ç:#ž«ÞNÄ'Ûß¹–oØ,,Ú9¶o,\Ê.Ø.~÷ƒ‚?¼[0u—œÖLåúlk1’ž®›…¸„ø…'«D{Õ¶f+ l3EªKKROÒ:éd©‘¶S ØTB¯Õœ«‚äûÔÒ·Õê\Ãr©á„Ëé᧮ u¸¬¯ž;fE³Ÿ1JKE‡Ü4Ý‹M$<¶ª·À†{Í Çv‡î´B ´4iDärµ!+¾!S»ˆ -JøcDwž5±Á3fcØi ÌÆ… {´Ãé¾<õè¿ã×zvuîèÞé)j"‹Éø6)Kä(ŽÂŒx¾ÓlŒB›1¶"£U¾Æ¾ÊÙ¢'èÛhk pÿÑôíÛSmÍ>G;/“Ýfñë¡*Ëê Ñ>U—Ž„¦ŒŸ¦ÐeÔV—Ø“ôAÚ¾ªéšYÙ5Mm?÷ÖfñáПªKM¹X)üì(Ð(%G´Sh„°«}EÝ»"«:÷°jJ§ÕlZ›šRW³cs¥ü Ž$>ˆ­-‘Nƒ¢+[5XõI\&µy…9ÉHòoe›kÅ•þªžáÿüåˉÕT²f‰¾Ö¨ÃÅzVÑqeæÊÕ!‰lIvzEC¦'Ù z!Sª}ý„§ÚÙ GVnuê9 LËßða’™^Þ¨Åtçž™à߸>zB~×),N³G±¿Š|Qß@ÛUŠEX4Öãe"hªC‰zuE]†€hÅVÙÎÃâô®—#7ów%wæGîO‹/VEÓ¶}´{Å.‰1Ïá)jèªÒ· ËRwœ¼¢zÖ ðD/„îN΂™k£án,±†ÿ:¶Zt4O^”Öm‘ + {Ä¿;Sœº•X„]kBŽ«.Ájê|ŸÐÀz;t§o¹ +µµc}Æò“ h²8'æŒrƒ¡šžl(–ÄØÎØOEmš§ËI©Ü»lIúXx5I\ØV}<÷Í£i c:¾j‰¶Â l+]ª¶±‡w®tK&’ÑaÒ²”,%¦39= p‡ùõ |Wð ß@s‘K¡ÂtZ‡Ûcn]¡ÉÙ¯û‘S]Ý-ñLóºBª/Ì¢…BbŠøPÛ? ûæ&$š°ë°¢Ü“òb¬ª®#<ÈõrÀ¯\øä–¸«6\(‘—‰šmZ¾¼¬;^VŸ,wŸî¸B¢gº^,ñ½˜„"ò¹hî‚Ý%tÿ½õÎð $|ª³õ4ÖÕ«Øg¸…Ñ90w(4XØ•Ÿ–V“– ÒvUo­^ƒlHhÔQõNòEBŽ°±DØ–%lúååÓÆyÆñfé«FCU'kpïzoÛ?š4S´¥SÔiÝʦ%ôG””4„`cÀ`ÛøÛgßÙÆæ|¾;Ÿ±±1æ—ù i i¯„¥iC²0% #Ͳ5Y’m]§)št¨î¤ÝöǤý³ÿOzŸç¹ïóý~°ßÔb³@³¾+E *ââ‰và¢ÛFÌš¨ýðòìiI“‰áKCÇä-iy먼UæG¹n=$¦t{´Ô\Y‚ŠËë÷b.Z4NXê+-ÉÙ¬øûÖ (ÉÃü®ñ–üÚÝ«Ë£Ö‘ÃãxMoU¯! +ôÝ®¸„EÃ]aïå¦#áX½¼vë¢c^^Ùˆ`g†’€¼B—Gтħ¢.‘p™=´ÑæVŸ2Î kG¬ÝtÀÌ÷þñ]ÕþÃçSáÞÁ”NžNô{bÞ‰Ö™F0j ­XÉÞÖ2\~vã+U4Jš´šW P]c‹›€mDWraáÁésh|$ÚêYÎe8·€hsåÒL “DNÌNÆ÷¸WEÛ;œ¸ƒœ'WŸü!E‚âû~¼ªö¨F1 +¿$²HÞ.OIéÁÍå² Í¹`ÝÕïA^Š£83? …`¨ƒ²ÓèòšªÊVi´ˆ­#½£#½í1ÊÞ¥Í$U÷—ï?˜D÷?ŸOþ +ô­§õaÑö.òíW÷Ö˜p?¢x˜ŸKA6È8}ÈknÉ×íhÜSžy¹f/¨²Úìh5ÄÛçaXšI£Õ˜Ð^@òƒ¯vþW~¦ŒœJoŽœe-ÊÏIÃÁ`O07Άí¼^hê?,ASLjÃØ|ⶒ ëÄkÍ$ Žpo;²'-g©´—ó + +Z„çÆÏÏ‚©qvPÂ’ÄøáŠjKk#®ÖÕÕ6T)dùDžKÿ^ç‡rÝÁ +ê8¡#riÚï昸3§›ò‘†| ¿‘1ªLFÍÉF<¿¬Ðjò’^_ˆ#陹©Ÿê€)hGÙ/ÈŸnŒ«&å§Ä¡È$­¸,ó®Ùâ¢=Î §rá:Zò3?úZ—c=¦`.Ö&Ã÷®þv~ÝA‡/*+=n„vŸ˜âÑ&eT¶+o÷‹™gÞDžÀª\•qÌ;z¢¤Q¾ K„ý=Ãc0ì·[iÄØ^ÈœóPàß’e;… º,où`}ñ¸qiyqNª÷Ú´3ÍúÏ7,DË[ÎÝYX«/,¤aÔßÞÞJh\ÔzL½Ët˜Š=.'f’Â¥;çW¦qÞË^\ÓPRg….¿ H­“¿)¿ŸB*4ÃÆ,ÉSyû2»¿{Ó³zRwÞT¶iZIÔ`·À⃕E§¾i€‡é±‰d +ò’F4ñbæ MþWÉ[ά/]«—>šïûWq¤†² Cqõ+ÿWq|Šß,Κ¬úùÎÌ·2OíSªËÊž“ï+C®eÿZÞ!¿¤²U94FL×Ó0з,~²†~ó¶üÒ-¬ß5¥5·ÙL^—[²¦¢†´:PpB«XBHA—ñ‘ÙÉŒt8Ìn…ùåçå,•£Ñ¥7c-©†¡+÷ÖVÎãR,ä§Û¥wj›°ún]Ñ‚Í·Ö>º,wãÅê'‡1,,ñK – H +KË•.®›¹òàÜëë¯Ê/Þ;mÞ©)­óŠ+K˲€=§â2»”Ž° ;8骶éÓgNX0s½ü­ï©¬f–Ýèëå—uãú•[×ΗžÙY[Ò$Ï7é{$0EÅûz”É÷6Ml™ÖDZuÁ ü¼9)¿™{å{ÌZôk#+<ã}ŠÊ8Ê‹+›™²iÆ„ù©-MÀx-­¬,*š_¶zÕÞÙ®Êß~¶îìÞ»O¾k/ÿ.Úµ„cZÇ„Ö~¹ Íuý-Ò-5yò]…5je¥~y¾YQíl3ïõ^é:Íq±³ù=°ƒµgëLц kûäÖL9w­ô’µåÕ囬­^&½xáä¥kåW-Y°n™ÔšùÍåí…“AÔWÓ(•_TYVQ:ej©\ÊÜ”1]}ß¿‹|Wû.ph_ïôú©5õµ%ÒÅ…S'•ÈO¨,œP.]ß’•&_X\QP&U9½bÉâis¦É5Onž5KjêÄ¥–on«Ù)7¯µ¿­¡ÁÀÔ/ÐÀ’#.©®ºVŠïG‡° ÖGÊ0 +endstream endobj 56 0 obj << /FontFile3 57 0 R /CharSet (/period) /CapHeight 683 /Ascent 715 /Flags 6 /ItalicAngle 0 /Descent -207 /XHeight 461 /FontName /KMELNE+AdvTimes /FontBBox [ -208 -208 1000 760 ] /Type /FontDescriptor /StemV 0 >> endobj 57 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 185 >> stream +H‰bd`ad`ddðöuõñsÕvL) ÉÌM-‰iþfú!Í#ö;åwʯšŸ=¬r ÿwwCHöûøŸ +v÷)æ„ëd``Ôc`àg`bddŽéæû¾èáÑÎæ®fÖ&öž¦¾æþæ‰-“Z'µOê˜ÒÉ:™m +Û”ÞÉ}“ú'Mì›Ø?¡bϤÞɬSÙ;§tLnŸÜ:¨¸¯¥·¥·µ‡µ•­‰­¹£¥£µ­Xù .—F÷ +endstream endobj 58 0 obj << /FontFile3 59 0 R /CharSet (/numbersign) /CapHeight 705 /Ascent 685 /Flags 34 /ItalicAngle 0 /Descent -12 /XHeight 684 /FontName /KMELNM+AdvPi3 /FontBBox [ -11 -345 1373 718 ] /Type /FontDescriptor /StemV 0 >> endobj 59 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 825 >> stream +H‰,R»ŽåD™Ý¶“Õ †dЦ„ðD°ˆ@H+’±Ûm·Ý¾~wOÛn¿Ý~ß;+í!ñ Ä;,x€:ª +ªuªêœŸ=½8;??¿üúÅWß|ûâ³/Ô¿ûéóÇ̧××Ï>vÿúãðýŸ/Áóíüï»»ÿâ3õ·~ÿðî}ôÑãUõÿW»==»Øÿ;{òDÞ]¾Ç×ü +{˜`Ç´lDÐyVh…8BJ j0Ä1 *'©›9Î4.̪pm×NcKÜÛ“3’*”ôe¦c>ŠAŒÕÔ­U]Õe]¶U_öÅ¿<\MU“…04=Ëîy žçú®oûLÌØ¢˜¬Ø +Nq†3W8¥[¸õ¡s÷ŠIöÑÀ­Y͚ݓL‚J¥'pTù¯ü- J5»Ï^§M6dC! YvU[7M-òJ4¢Îëeȇ ʤ T&}<ìõ¾HFg°¥-Q‡³p³0 ÒtÊËw_Q&! á€*”S˜òs‡ œ©—OñÒ=83LqbG!3Ë?¼S®ŽÕIœŠûl/=§3ß'6Ò‘ÍÉ–lÑ.Áâ/‡#YÉl¯Öh XâÎìÌeQƒjX¡R…!`ff&·R `•YÀW©ÅLjÅfbÇä4ô‘g¸šc`#d ¤›·èƾqn·¾=‚1L PAŠÆõTš¸)a©×°†ì„šÑŠVóäÉé°ù[°÷;ÓÐ…­ P5]Ò%[Ò*ߊ­Z˹šë©ÛQTr¦qœÇu\‡µ[›µÝ›+íp{Ð]è@Û0u!Ò0$è龞„‘#%„9”PÂ|À ÐU9Ìô +­ÐyTß´¯Z­Ó{C¢Mh4ç]³3»“7zËNƒSxŒZÖÒŽµl_Ü/|Û±æÇüuy¬r~¬·fgÕ-rJ!»¾ïú]«²‘íÔŒÕ ªY´ÅT,bx”O*y—Ö¼Ú¨oT©Ò]n‰dUt OþÉÛ¼ld9Œd´'4›SœŒ^ë`cÔ°û`Å;7”†8ÊNaÕb=º Áå? ûUåA +endstream endobj 60 0 obj << /FontFile3 61 0 R /CharSet (/one/A/O/v/two/m/b/C/o/d/R/c/semicolon/N/four/p/e/n/f/r/s/i/t/eight/zero\ ) /CapHeight 690 /Ascent 690 /Flags 32 /ItalicAngle 0 /Descent -195 /XHeight 476 /FontName /KMELOG+Advrot-li /FontBBox [ -62 -270 1135 760 ] /Type /FontDescriptor /StemV 0 >> endobj 61 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1643 >> stream +H‰DR PTW}¿á=L4í`øú“þmHâ£(&¢¢"‚@³È¢‚ + BGmÓ€8š„p@P `d Ž BÜ@ «F8ŠŠÑ’R¬™$“¤Ìmr©É<âTMÕ¯Wõï{çžsï9±VAl×xûk}æzÅ¥SLÎIú‰¢³E,Ž +‹ãû¬q´NÛGÕUÂï{÷¾8§Ø@ÔTȶÝïȆ¦… $g¬L1dõ ‰&Í,ÝlͼŋÝ4^q)±ñšÐÌTSü‡©ßd]ŠÑbŒ1Åǹh4^IIš‰÷©šøÔxc:¯†¤˜ô©þÅhLƘ¸øcŒÛ4)[5^ [c4+ÿ‡Ö§$»ü_,ˆ­‚ˆ„8âHÈ„¼Iˆ«@æ²ÒšøhEB$‚—X“e$Œì%‚£°Pˆª……R®(Sܱ’­â¬j¬Ú­eë(ëCÖ÷­ÿCµ´”¶Œ/RÂ,b ¼AˆyŠ¶¨óÁCŽ¯´½Ód Vé"T€Û“J¯F¼ƒÞI7ª•Pd™í˜ g8cÁG>àø*{íYI'ÅF3»}š@kT£>í‹qfìBßÕWYËÁÚ¾i¨zÝ°wzËJè佚AKAø,°;5Õ2¼;.gEP(b×áwÑœ§Å^Š‘L %\¶ÍÓ› =ˆnŒ*“Í6…Ï:a²j(r`&Ú{¹8y7&žû³:ÏÆõÓµKÞP½w&Du‚e“8pbøŸÿ¨Z5?$xÙÂO®´ª½°W¾8ôýwGB×ÍñXîš~ù´Z‰»ÚÐAìdßÂ6º‚u 8Ì*†ébN­,¶ïc@!•B)«ÃTÚÃÞ[M—²úPÑÌNâESþÛ’sOܽmS†Ÿ„Sƒ¯Á,XÂ{ÁÒ‘mxVþ'ùŸÉß°}%ûÊËTÃwq:nwÆ|Ü‚NgñeXs«­¼´žo8â±}?ƒI–_¨™çø/ôçòg8yü7šÇÐÓòõ࢜¡›o$û_°K€)肹!x +W¡ý œn2¾ +…"ÈP «`j Të°ý‘íx>ÂÉ”d=0@¹«´AL.ÀE´Ÿý󞦵úT;˜müú¼¥ú9  '«Ñ™] ¯±»ŒøNÏœ'‡3e+”Ž­Ø˸‘îIÏKÏP½sÊï'˜{ƒ'LóìƒGo¿¯ÝÆ1ÓxÜ-þÚ ïÿtí Ÿµ36àÂ+ÓúûÕÊ,êsŒ{â%|%éÞg­àS:kt±Ùy9ù9òU¶ï ¹¤Du5¦{6ÎñÆø6ÚÝð‡—NÖî?Ê'ùѾëÅžÂX(¶ó5ýí㌞w%tÕb0¾†äœÏã¡“]Ç*esŤQq´/Íj°Þß}öFtF¿Ô>µò Å›ž(iâúh.¬=xL†VPYPY©z9àŠ³Vá<”Ñe$ê_MMû‹šÔ Å沦«÷¥;¥A[d¥óÀ²œÂ문ƒâëìP½[Q{üºÔX››S.—\¤…ii…iNOöG’.g…Ñ%,k#½Ç”ýGZ |’ÏÁA¼Í*îÓeÜîo‡y½é“ýàþ\j9lЛö˜rÓd-öÑWO_ ŽÕ™t;r·çå ¼Âïzáï´ðË _¨:·¶»nÐn2ªóØù]ÝîËý3¹3•9ŸòþÎQ®ôù‘Aî•L‘±Ù¦¬Hy#šy£¯¡‡ÕÖÔªÎÝÝ£B6mçàÃ#`(çqôì†%0Èú[ø2. ƹøÎŽ~"#ƒ „ã0}²ít¨ÆiÞ[.𠶢^ìb— ‡>éБ  \{ ^²áú|Oݺärž¹ü&§)ÀSâ÷í<ü“j׸D£/*|“û©•š ñ°‚þ|¤Ž§gŽTÒE}µ&ßD­¸=¡p3äC‹h(¨9©j;ý×KWÎ¥Z­.¾@Ëu1e¡Ò7ýœÕ݆Ó&¹9ƒÖí:kŒVø%ø×íVs‹r*Ïï¸%þpèµÍM›k'¬î>'æìÌÌÍ”¶ë‹/”5Ÿ‘Ûà3 +¯þáü4vœ´¤£‚.Ÿð÷6 Ç£4Çk0¨ÂÎ$wVUUñØÁzûnÅÜôP†úq'ž_O‹ÿQZRí,‹Äÿ0Ýï +endstream endobj 62 0 obj << /FontFile3 63 0 R /CharSet (/m) /CapHeight 0 /Ascent 712 /Flags 34 /ItalicAngle 0 /Descent -207 /XHeight 714 /FontName /KMEMBB+AdvPi1 /FontBBox [ 13 -323 958 824 ] /Type /FontDescriptor /StemV 0 >> endobj 63 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 371 >> stream +H‰,ÍJ[AÇs£gf" +º ¸ì¦‹ÒQq%Šø nÜk¹¹ñ~ÌLæÎ÷½‰7!´øAºiÁ×’šBÐþð_ÎïÀ jËõZ̓ÃýÃÝÝ;§_ŽÏ>/&f­ú¬ÕØξü~‚ͯÁß~ÿ_7𯕗ÕþìÓÚbÿ—|Žju®¶ìõ›³Ç;ëÙMÖ&!íÐBœà<᱈e"S™©TQí1Ìp͵PBH­•VX –˜IXT÷‘V `„éG.¦ŽXfX$Ñ0÷È¡¹ª¬\Y”>߀#~›ßÊŽ +MÇF.¶Þ1ÄR0È0Í¡D¥(”“ÖXk +=Еªø ·PàÆBÒ%!éÅwq“„A‚RJ™NýâÀaêXð³é3l#:=¿jwÛQLzY”F´ë…¼—G¢§îtâíÄÛd@ìžý[lú¶þ¡KL.蹆æ»p²­ +endstream endobj 64 0 obj << /FontFile3 65 0 R /CharSet (/u/o/D/z/n/period/J/t/M) /CapHeight 690 /Ascent 690 /Flags 32 /ItalicAngle 0 /Descent -195 /XHeight 476 /FontName /KMEMCC+AdvROT-I /FontBBox [ -72 -270 1187 760 ] /Type /FontDescriptor /StemV 0 >> endobj 65 0 obj << /Subtype /Type1C /Length 572 >> stream +KMEMCC+AdvROT-I'øø Cû¢£ùŒ ÿ‹‹ ÿ‹‹ Ýð‘øÉ AdvROT-I%+.OPUV[ +<fØX–¸ûÏ ¿îŸî(÷•à÷8÷ó÷_÷˜÷77Ëû$û.ÊJÄïÙtûûj@ûLûI3²ø.ùF?,ü~E}?ûgp•“u~E„©«†«÷GçóŸøpß×÷ øñÜüñØ÷Ïøñ‰û üï×÷ùFû ûËüç‰:øçûÛÒª÷6ñŸÄ÷1ﬡuhu‡i†sTû°ÒÇ÷Ç£¦¡Èe¹Q-dRXh‰žêD÷8÷Ž÷EÊ÷@÷-÷QÈ&ûLNûHû#ûÐWê5÷Jõ²÷,÷ Ù—FN%lû,ûCuËÉ÷п‡|{‰|auž°”¸‘ª¶÷t÷–Ãû¨÷.<`vû>€SØWû¡‡wˆvw-Ú…·››Žš÷ìÒêøpDjû6%wRû1(kt¡­¢Ž­£Ã÷°DOûdžs‡puN±^Åè±Ã¾®‰æª÷é–Ãû”÷Ñø–Ãû΀S÷{ûÓüøˆ÷Ï +endstream endobj 66 0 obj << /FontFile3 67 0 R /CharSet (/C31/less/greater) /CapHeight 678 /Ascent 693 /Flags 4 /ItalicAngle 0 /Descent -206 /XHeight 441 /FontName /KMEMDN+AdvP4C4E51 /FontBBox [ -31 -239 1041 750 ] /Type /FontDescriptor /StemV 0 >> endobj 67 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 396 >> stream +H‰L=,ÄPÇß;9É íi‹Ä$ˆE$‚ÄÇ$±X|L9ß!ÚÓ×ë;)^ÛÇõÝ•Äà"Á`s1ä"±Ìb±Y^O%8Ëø%ÿß‚Ê€6ŒŒŽµ÷Ï®Mt t uw”i[ñšÆ…}äKº ŸÂ/ËúÛšª×º·Ú÷z+hm+£ÿîT(½}bÐ”ß +¨Yð ãV´$ðÞ[~Þ,&Š†ßü&«Òxbj;ELªœ»‚”ËjÊ?ïÏy3×amS¨†9Aß1S)Ñ°±ãÚ„ed¾Ä÷.[‰šY¤kÍÇÓNÒÕ«çòwèL*žßž8ÁÊFzrZZÙ¼z\T6 +ë÷êÍêSWyNÈf­}[t±RØÔ49Zʼó|L7wLMܦ8cÊA!dvÝ´-1J™‡ÈU>=ž<¾+ø.%LôСŠNeNl !¬‰*EŒÐâþH8ŽÈ¡ÍD†HÒ‘?ËàÀ0ˆ)©H×TŠ}C ¼pWˆ~ 0–残 +endstream endobj 68 0 obj << /FontFile3 69 0 R /CharSet (/T/u/one/g/two/b/three/l/four/e/five/r/six/F/seven/a/i) /CapHeight 690 /Ascent 716 /Flags 34 /ItalicAngle 0 /Descent -268 /XHeight 397 /FontName /KMENHN+AdvP5D4A /FontBBox [ -166 -260 1114 708 ] /Type /FontDescriptor /StemV 0 >> endobj 69 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2014 >> stream +H‰\•ipS×ÇŸ7é1ÍB£V~¯}C)(MÚ@!!¡Žñć˜ÅЀ1òÛX/²%Ë’Þª·ëI–¼ËÆÞWŒLIH¨;i Д”¡¶3™Ngè}žiåÄ0™~¹îÜó»ÿsîÿœÅFCQQQËv§'ïIÛ³>ñDÅÛ›v¼’¸°÷b£Ï}O{U þç«'ã°PÔ9î›õ9ý½¥@ÿ¼ò¸oùÂá%Ï"¡(h¹ZA› èÍ((‚Ò h¥CÐ>ÚAË#7B±ÐAèrÔƨËÑ«¢ÝÑ×c±KcûãÖƹuIºA}”¾^:c×Ã^ãÿ±Â<2-’üñÓÉe[j(š³)ÔÊ4M‰e;íº~=Íîuc¥4Ar•>6^¸pž»ˆNÍpì î¸6B)•L{UZøbE÷JQ½Rprÿâ~Ü£¿÷ÌÍ!Kû|ÅÆmY?ÏÅG€ +𥾡áÑ›ç3^[™²nûëøžÝùE™‡·H* ,„¸+(ت;?αçðÆÖ¶K ·hÕ.4ünQµ; 5ß“Œ¯&N,ćßå—áKƒc}³èäPɾÕZ¼yW NTË›X8Ô1Ü6Šþy"õšauÊ‘r›?dÅýîªî“hie…åØ¥Š°$ØôUÊÅí^ÜÎÓ^Å ÿeºi|™{gö§˜!\ 2Œõª§×©ÂéºS߃ }Wo³í¯"Xé!mˆ¶UoñxJ1íy]±]nà`.œôŠ -Õ9=$Mºµûó¥&¦Îk¯g``ÕuðÜI<[ŸB×PØa’ x«ÊÄ ç¸ËèÈ ÇNãªÈ·ò)ÑT Ñ7i}/œÁ `ÃÈXÃ’.º&S;`²"BA Vk ˆ†i«’µ„jÌ唬›P¢A*^ÖVOn bÉ*‘–Åúxÿ°Ò.=R<Èénëö+Ýñ#‘|$érpÈb…w6 y9K1y§—…¥zUh@oNl^·«4=mÛñÇ`™ˆ {€îš»þåÀ\»¬²„´Ã­¡?^ ¯XiÑ–nA´Uw´°,{x,—")¼öDgÌ|Ÿ*q—ÙyÌvDt6²^ ʳ(8ªkV(Ê]›[iÆ5ß¼•¯ît7 ñ &¾è¿|f4Þˈ´€1ŽÝÜ»Cl;ž¬5}òq7í±z‰ kš!|L2ë\Ì+gžVøü47…NMsìÜB…[o¶l:"¹ÄÇX¡ïä…ìªîA›íÃÕ +ÑÊÉj¼§AF„¾ £Ô*Ž$ܦlW û +ú¶î´GèÄAªþ +'L`uý¢u6•ø3üd‹ ©0;Ãý¾a+öyvGÔþœ?2.¨¢±lŠ øÊUs3‹ª>ZT•'™ŽÈ ªÂ;ô¼Ð…}¨ûwkÕëAÜG4 ²Êô«÷ýã°ÈR‰Ò4ËÒøi‡ÉBç7èRí|'…‹,ÍÓ(E{'òméÕ™’3ÄxøîHwý_Ñ+º.žÍÆ ³à_`ØøPÊÙ†L*() ‹È +âRˆ`{Ï×€Õ{¿Ð +÷J¡Æt¶áèA÷X✌«’Àríf{¾N)³æ!‡õ»á³Á@+ækôÊ2*KáÅ+[{ˆN´o¶±§ ÷‰D=ÅØëªÑ<ÛÙD|ÙXæ©+ËCÍÖþ®É®†?îmi‘UTÉ:Ü’ÂW“ü5a ceR"=ÇkT˜ë†¯Qè—©½–'Òùú\f?0 +#‰Ç ˜¢x}ÀŒå +¾ÿø.X bhKr +k«ÞÇIVjÀb… OÁ5ämCo\{K[²9÷­´’²ÆV;^"‡¦Ã9p8c’OÁ%•W|ȃí5ä -J‹Ót·7ø“[½Ä<¾:¿“sOÖæ ?KÿüQ@à[q~Ìè`E)Ô÷ÛO';Jò\´›¤qš¨eJPÃ?ÃÙà¦QÔ@¢Ò^ZÄ^Ô9êd´ä«9¨ý2õå]c9ƒv\b9’AìYE67æ h·9ÑW4äÀ| Që&mµær—vØØZràüNpîìðÖž½„è¥@vÌÌ– Çí­m-Á&gƒA6€‚ï^¹{¯­gü¸3k¼6sê`ÆáüÍodŽ}ÒliŽØ,‡Ðà3ãg}CÓ½Y©É' Íæ¼ñÛ˜aÈÓÆqþ‚0€1rÄüÉêCål4ÅÙE:@˜:mœã=D[£O¤ë"ãÍú¬ùF¹¯ÇÛȢͭ‘ñ&Óõ·ýá­ÆÑ®îáaK·Ùl)ÍËë*Å +î€ï¿T<ƒŒ?…Œ/BÊŸBÂ{õ߶KNÄ.'íR¿ jÁ.†Ú/Ÿ1¿%l`‘ùñ"ó„dÊ—˜à‡úY¥£Cif«;#Ýïcühwo빮ʎü‚Ââò"œ¤e¯oŽ¼¹Â’"‰[÷—³ÿ_- à'á ð©q„ïZ¿þt#ïL&Ò—u9XMµÅuÝQ÷ë«8بŸåÏŸr÷;®½7ÃYª6uº%"Ñ^ÒoéÍzôÁT{禈Œ›Çy'kg<÷žÉ¶Û)9¨²!· ÓvcGË<\Á aï áãÿì~ | +endstream endobj 70 0 obj << /FontFile3 71 0 R /CharSet (/n/one/A/k/equal/O/two/m/greater/three/o/parenleft/R/four/E/S/p/parenrig\ ht/T/five/U/g/B/asterisk/six/space/r/b/C/plus/s/seven/a/c/l/D/comma/t/ei\ ght/X/e/G/hyphen/u/nine/f/I/v/period/h/P/F/w/slash/d/endash/i/L/percent/\ N/y/zero/less/M) /CapHeight 718 /Ascent 718 /Flags 32 /ItalicAngle 0 /Descent -207 /XHeight 523 /FontName /KMENED+Helvetica /FontBBox [ -166 -225 1000 931 ] /Type /FontDescriptor /StemV 88 >> endobj 71 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4099 >> stream +H‰ŒTkPgí¦éTd:fFfF4Då!ˆ¼EAœð]E``Œ¬à àƒlL–Á¤6¥X¾Ð¬X% °*šŠšEãD‰d'Žhö~xG³©]ÿnuçëº}έsOÕ4eoGÑ4í—“í¹P—_ª3äåhG‹DA‘I4q³#n ™`OÜ]1K^–¿ b•uôoUU¿££v:C»KË$™BF14í°ÿ¨¯¯Ÿ¯oà|}áú¢¼WÔÓr¦«ýB‚¼F1è †Œbˆ¯:2WŸ­S§¬/6è +ŠÕš59ú¢B}‘Ö ËõQ«#óóÕo:«‹tź¢R±ú?›ê¼bµVm(Òæê +´E«Õú•êø¼5zÃúB:2V­]“;S_¤ÎµÅ%ÙÅy¹yÚ¢<]ñ[=EÑâEq5Æ…r³£Ü9jEyÛSþ BQQTt2m ·ÑûèúµÝ»ì^33™™§ö +ûƒ¬;‹Ma×± ÜNÇä®rO$Ë%zI¥Äè@;$9T; )³cÌÕ±ìØš±ƒãBÆí7ìèãxÔñãä”àtÔ©Oê%Ý,mq~ß9Íy·sûxûñ©ãWÙü¤â iFH7Y£2Œ Œ"ÿ€ÿ­‘<{æY,Ý=ËÜ.﹑^J£k{sË·—Z²RR³2/Mo¼¦ä©øúÿ¢>&'…TΦzµ’mç¤øK_Î+£°0ðÉÈZ)ôIDwŒ–ã¢Ðåú*¿ãÂÀ/¤"‡ŠóOÂlå[DX˜'˜#>WÁ¢å°(\¦€¯2‰»‹~ߢCäX±Ì3Gu—È|8]U&k„ï1á +ŸÄ×5’>Á‘*oá̶¼K‡w[ýŸª/»ä®cÁnÚIÜO±Ru])äwÒðE'_@“€QP€ù/–Q„(NLß?û|˜~ô‚yäz‘Kß´\[©Ì¨y°&ÉŸN‘ˆ¾¡ü1Ý [h‚.·úÁÖQ]Õ¤ ‹V¦L~1Zª.ÙRFo€ZGJ ‡Û^maopÒu&rÕD7Xàœ…!áð‹€Ñ“=<2†!¢Ï?~v2F+-®à‘ «13sq5z G#®†LÈl„Õà¡”Ö•’J#ÈÅ÷‰ÑãHŠ°€Ó£$}rqˆ`[¥E"­ê%§L²Ã¡}Poá{`"ùƒÐVó9Œ‡wƒ'£Sf.Y3/K峄åÿåª ßŒ¤¤×&ãv©»ôäbçé‰C—{/‚L¦›Pªä{"0Ì€ëUâ°¯JM²úþHó#Ðlë_há-üS0@P»{{­‚ÿõÊ‹M864>Õ'lüéú•/÷yh]èl‡õõ; €ØÛÀ€Ä’Ö{PU-á9µëÂ7åÿ½ƒ“0A‹üT¥™kÛñ·_ÁE1ô÷ZMa¬ŠZ¾qûör•8?Dt“tqþ‡} 9B÷T’%Á.[2W0¢"$~D%Tã-,cï£ ¦›i,C8o¶QÜR›Sw%û͉³_žW<º™êáŸå;'ñäýOE¿è·Æ®üY…_CøxÇÜE.>«ÔPð&k&ˆ6ѧúá|?CªH­S>EIs¨W.Ç"ô™¹+ I£ +ÿGOq»b éÈ™Uë…ýnÉaÊ/x¦­Ð•(·V³·A"(»ë3v*ñ^zÏ­@ŸHðZ¢ ššy¯ëÍç0Ó dÓ :'8T ¾ƒŸã+wnÀ0;zl$£ÞuÓì”%¦¶÷/°ðƒ¼•l"û…û‰è‹s2Ñ1JóõŠ+%?Y™ Ï«Š¸•¬üãåÛŸ4* ôÐÀ^,»ãuZÅ[ïùîøs9?(žÃTáîu­ÚÍ5Ä¡TÿàrÇÙŽ‘±­[ˆK:s£åP‡eðhBV\ZZ„˜P'hLð½IÖÔ܇ù!Ø ƯÚ«ª·²øAɲPOo¯mþq³ÊŸ‹mFG͵p» ¸X…¢½!œŽ¬8ªº6¸ªjMBRÐ^PXÚÿyÿù™˜0TÍ*ÍPIÕ;É:º•”3äD¿`“C {Wb+Ç6FBF7©$ tÒ¤†!MD.Øj¢H ‡‚ýïo»´È1Ð&.6L”Ck›‰›´X([”®RÂV-­/ì"¥[#/m ¢ ­VtA¨O¶Ò©»Ò +(K1‚±QZº™j»çOO°ûß°3ÝÝÙÉ̽sçÏy~ß9ßÿ±4È‹ ¶ ¿óp ÆÅ–âxæyiCýõu0FóÝ×n6K|Þ±˜/É8¼)ÏîZƒSŸ­°Ópœz!ÄCÑ€Ó'[a¡ßæ|#iòøð…IE $À)̃dÏ ÒY¢vêQäð5×ÆÈby 4¬$1l­ÑÞî_ÂÂ:×ß™oéƒ8(8–µW Gk "¡“@a$*ºšA¨$= r²ž–(\= (œúp¹*îNŸs=´Ù< €³Ãq ¥·6ÆÐNΤ-héÇÙ¢C 3! k±v&faFÜÅ,¨…Ú»¢ן[¡ÄJû´28×°_}±Y’ðf¤„«Ø(0° ½Œ<£ðWZÜÕù¸è\´Â«Ê6?MsPð®€VÞ–ÁíY¹(ak)*L©Œ>ÄnªÞ]µ·q¨Ÿ+tèë«=ù.øìÜþ†ÞMè-b¿lÔ9Æv³WúþˆÊ€¹¹ $ÜN1•c%÷­ªfºnàû¼AÞÌ÷!²Oè-Ì„,Óàüùø z ß— $zƒá€÷–³Ysý'£wP‹ZvIåË­+Åͧ¯¦Ó]HË4í2Ìváç/•øL»Ì¤•¿VÓêŠÇÕ­}7¢rŸ(#Õé3 €ò!¥Éé#@á°ÏÓ +\_¹y甲½C„£h¿@1âJáP¤ŸvžÊ²:Ä•Å¡¿ÇÂ*Xó.á ‘¬çäºËh;âôR’_vÁc=Y\Š'q)œdЗ…]øË] x±ð*\Ux…Ö7ϼ¸“›U²/íƒ]6¾‰¯ƒçÉ(¡q¿©Õ¡±6nZ™œù®Á(a`.Ã7á”ÜüÀTÿ©7ã¿ý¾åJý‘+½´2ýoššƒû˪¤œñ㻚܂G%øŒ «LC!*ý +EèÆeOGnÒÌ—6Ÿ¹Ö~ëàùý"(LGß7UxúæYâ[ɤ^X’­ú‹ ê(Cù<PóÍm%ÜæÃõ«h`ÑUˆ?Š%)~oræë+=`Ò±|Þ°ž#pHà›‘[šYR¿ &/R;ÞCa‰ä‹‰yêCñÑ p"µs;AÛ«j„FÛ ;ÿ™ QÂïö¤,‹ÒLYý%($¢baÅ<ðÁÐÿ ]äɽ35‡>Ú/|ÐUú¡§k4HBßî>ºÿqfî¬}’{6‘$3¨z6%T‘$Á¬kã>1i¨0íÝ[!örÅ;ò‹ó5/®Ù#M›Ç•d#IT¹n5Ãs´z7–ÑÈìPgãû`üÿOƒª8(D±|ß<#÷¿jÒy©®þ˜TV²[QJEz˜aV‘õ¢Ž¶¶žýýØ] ݲP©µ¢Í¥Tª½ D€àÀºY3R“32E#Ö ëmÐ@÷G×'wîÕ¬] â76Î×õýgM6pU‡mzÙzG¡Ø¿~!ž8Õ Ø ª„]ìRFç17,=a“ANoHN¢ &ôÆ ªzl|=Uo×ËÕwÅ:;[²swq極úøòñ[÷å4¹ZT§û÷CNÿ›{†'oáx>ˆøòä°dä⮬7çŠßgÒéÝsjGšÿo^É\ŽcßnoÚ#Ng——VQ¥˜®ïm0êöë¨8AǶî(³¸zkùyÿ¶ž'@Y¹2£X¤ŒÙi!~f½&@¹L—0E‡SÌ¿ßqˤÜ?ðaYéiñÖ[\îÆ¢& q#³LŸ­ºi#mŸCv¨I›h‡b3‚QùJê©:—‡~Ö÷Ü»xºµ^¤’–ω•,"s²ï“%É;|™Ã²èªa¨ y•Ô0¡òÎè0€w6“Ë”ð ¨Vt3vÂèàŠ "D0Áì÷{}e!”Z²³Ôfô®187e«*H&­ÿ>·;‰º b!Éu†ÁQi»ó×j²r÷•HüÖhŽ¯/4•Ôs 6Z¥ˆ½±­ëBi°Ó¬("-JÒí‚«e>i¡§#Ný̨‚*ŽUÀزa¯ƒœX—;þg/‹·m´X»ÅGEZÆ9 ÿo00 +endstream endobj 72 0 obj << /FontFile3 73 0 R /CharSet (/multiply/mu/space) /CapHeight 0 /Ascent 0 /Flags 32 /ItalicAngle 0 /Descent 0 /FontName /KMENFB+Symbol /FontBBox [ -180 -293 1090 1010 ] /Type /FontDescriptor /StemV 85 >> endobj 73 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 423 >> stream +H‰bd`ab`ddäóöuõssÒ®ÌMÊω˜þfø!ÃøC–é‡,óq–²> endobj 75 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 922 >> stream +H‰dQmlSe~o»Þ»Is…Ö»ŽNn¯À&Ðu™u ë` •}çdÎk׋TËî¼ý`ýÅ¢Dlj·˜ÈGHì#„XXd⃊q2Ö¥™õã& sKÄä¼Û[œw‹!&žÏ99'Ïùz(”£AE­Þݸ£igÃÆ]¢/$¼]®ÍÍnŸ÷­ ¸T|"ü8…×h0¯Å¦œÃz ¶èó K‚ ¥ •:>A-Fùz¢hÏârÕ3ðí£ð˪‘…§ HGQ¹ñ‹#7m¶r«Íöôv©',{_?6t•åÕUöMKX¹ŒÕKXmê<’[ZÂþ€xÐ/8»»$¹G’]Ñc„:ŸOXîàdÑ/Ê!5ûpqÁë\B@vyă.ùMAÚ/4x»¥@¸Gêž\Ýž2I¼*×tû½¯KöŠþÿðÿ=üaâÿ/QBdD2¡"dEÏ£fÔŠV¨ŸDZ¤C¥è¦ÖQÔ§Ô-MžfKÛÆ&Bøè˜QðQF d¾…ÛIK„éè#ô;¹; *{4ðÑ4JNÏÖ(p!cœ„¼‡»Úÿ¬„Õ…^¬o)kí~¶ÓbmÕïn~ɹõ]Rœ‹ƒé¬8“¸qotüRÁ__§GÁ`SIŠ°¼qÒA¶HØ¢ŽGw¨ãU´x\r=îØƉì‹:;|C +8˜rlábä6 Ñlo +n¦ >E M×ÓZÅ'9X÷6a®Ô’ý¯™XËN؇–­×&ý_Ο¹ü™å‹ëñë·ÍPKÌ7ìÛ_ƒ|$¦»sš€O^ØÛxœ'gÉ(—þ|l¨óöÆM­ÎÊõû¦&x¯QO¿š¦¦f°0§Ê‡K4ôìÐEXKš-ä +=SÅ“†‚´8‰³z1XÈ 4‹ß‚÷Cgð{í|,ÞMx†tfïë"4qáû:byàÎàZ:™¾eŽÑ°/;«»§:<§‹Ñ»"¶9[Ë°‚ªÒà!`æ ?(&(Ã\EvP¡6üwŽÍU<É,éøÚw»S†ïèWŒ#ø0`JŠÎ×”·7I½|„6NÞ©RI0ÄG`­rîÚo§÷Úx2¡0lÛ‘$^5N© +À1ü27^ Ť¸~ÛOä¦!Þþû‡Ÿ ôŸãô1áÑ˸˰½ñywœ¼q +JOÑðñqX9ð ï$Ã'¶‡M‹ú¼ä#Ê +>!é xô1ø™ûG€‡‘¯È +endstream endobj 76 0 obj << /FontFile3 77 0 R /CharSet (/A/B/C/D) /CapHeight 718 /Ascent 718 /Flags 262176 /ItalicAngle 0 /Descent -207 /XHeight 532 /FontName /KMENGC+Helvetica-Bold /FontBBox [ -170 -228 1003 962 ] /Type /FontDescriptor /StemV 140 >> endobj 77 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 621 >> stream +H‰\ÝKaÆg\÷Õ¶mÝ\g?v^bÓÍÔÖLÔsÕÐRÃÖˆ©fÜ1GWGf&u»‰(ºÑˆH‚lÑ.,ìC**H2(¼‹ðèÈPλÅf $ºyàœÃóð;Ï¥¦p<Ï{›ZŽžh¨ÛרDSíŠkµh$y)g9ËåY^ +óÙXV*^¬Æ¡µ+k§í¾8¿9<üWið*Þî|— ™œçÓǧg?ƒ¥%Á`EÖÓÕ‹]& t쥥U•åEI­ø£UI­ +ÒPD“Ú3L¥× Çú:4½_Ó%S‰”PŠFi8™`аb(ú€µÝ‚¥ªA%jêRDé•ôªuÒfµO3cý + 5P©/²_Ó©jyK²¡FTIWãòÙ­é¿8žÛmãìVMœ;Â=æÖùÃÔ€¸Yx¨¶Á¸O^cÀo'd;†ŽnÈv8@à8{/Ü$?pÆŽMÄ5 n8; Ü™Kà‡'àGzV–¼0O àÙÃç/ħ3“sóÙ_ÍŲiŸ‡MÝûøèWö÷s‚õ>\&à_Ï xVææŒæZ©§VÄfºS¡†xØ—ÙXk¸Ýl±ž¸†ÀË®ƒ— ŶD V¯„öä` îÁ,¼…#‡V4.Á) IYìd{ezÎ@:p~õÍ7pOº0&&áY7¸ù%(€ÏV¤Å¼@àê'СrÏ‚Œ7D\´¾@·~²ðó2v¡CÆ t‰˜oáŒ'äq”îBÑÉ1pÜÙ £i¾x]lצs8@·8]¾¸æÌLtf1Aø-ÀÂ{ +endstream endobj 78 0 obj << /Type /Encoding /Differences [ 1 /y /z /braceleft /C2 /C21 /C14 /zero /C0 /onequarter /C6 /thorn ] >> endobj 79 0 obj << /Filter /FlateDecode /Length 245 >> stream +H‰TPÁJÄ0½÷+æ¸â!©[( % u…ÔŪ÷4™–€MBš +û÷f²uÑC3ïefÞ k»ÇΚìœê1Âh¬¸¸5(„'c¡¼mTܲŒj–X*îÏKĹ³£ƒ¦)Ø[—ΰ»×ߧª­ŽuuËo€½ÁØ vïåÇg"úÕû/œÑFà h Ö>Kÿ"gö·> endobj 81 0 obj << /Filter /FlateDecode /Length 212 >> stream +H‰TOkÃ0 Åïù:¶ì`'çm9t+M·»k+ÁPËFv +ýö³Óì üôã=YlúmO68°×&-ÆègÖgœ,AÝ€±:=¦¥k§ˆ ·˜Ðõ4zhÛJ³ß`õi®'ë0~È5ˆo6È–&XêŸßü0Ì!\Ð!%Ðu`p¬Äf¯Â—râ /Jý0õcPYÑ„Ðʺ»7$ó_{çñ>¾W[)›]We⩸\ór×3s¶œ¼d*,áëW‚ŲTõ'Àídjž +endstream endobj 82 0 obj << /Type /Encoding /Differences [ 1 /less /greater /C31 ] >> endobj 83 0 obj << /Filter /FlateDecode /Length 227 >> stream +H‰TAOÄ …ïüŠ9®ñt×[CbêzP7V½³0mH,)5Ù/°u£^2¼yÃÇð®ê½KÀOÌ€ Fç-áV2gœœÙ€u&mUU3ë<‡‡Ë’pîý mËæ’è»Gû}:t‡ãƒ¼wÀ_É"9?Áî]~|æ‹añ gô (GÆ»g_ôŒÀÿÆ«'·‡ƒÅ%jƒ¤ý„Ð +©²4 +ÐÛÿk®‰óx-·Ö*bß)Vc›ˆýQ±<â·¹L+_¼™•(³Ö=TÌå<ÞVC, å°bvm; +endstream endobj 86 0 obj << /Type /Catalog /Pages 42 0 R /PageMode /UseThumbs /Metadata 150 0 R >> endobj 87 0 obj << /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] /Font << /F1 3 0 R /F2 4 0 R /F3 5 0 R /F4 6 0 R /F5 7 0 R /F6 8 0 R /F7 9 0 R /F8 10 0 R /F9 11 0 R >> /ExtGState << /GS2 88 0 R >> >> endobj 88 0 obj << /Type /ExtGState /SA false /op true /SM 0.02 >> endobj 89 0 obj << /Filter /FlateDecode /Length 6238 >> stream +xœí\ÛnÜH’}÷WX`Aª2óJræe%«Ývííµ4Û3ÝžªŠ*q›Å*Ur«?d~a~sãDd².º•X`]4 ±Èdfd\ODûÍ÷úhÖ¿Jfôï²{uvùêÍ;u¤Ž.¯_i5.T–¥ô_¼öf¬}aŽ|‘ ëÍÑåüÕ/É÷U[­êÉñÈh;.’‹jÖU³rU/ZÜÒc•,®q¥Æ:¹X.ÚUÙV‹u/³ä»nÑ×·~šä´[Ýtõªîÿvtùëï._©qZ(tùÔ=ITfÇ©Nó@UÙNiJUŒ Ø•Mý{…[Ú‘§ëÕ¢žÏ×­¬Kdœ×}Uö•PU$u+$»duSÉ¥JÎþr®ž#Ç¥D¹3^ÈùRMó«º-Û•¬è’íU')ZÿbÕ•uà˜ÛâاzR kÒ”i®.'"*-¢R´´sŠÉˆ×:k¦ü0>é‚%çÃէź]ýþz³¦OÃß¼3¯¡´;•µ·Ê×4U[$ë"Ï!Y™tœkôÞt'?ÓÄ""9Ûä¯Ç:‡XKº¯Zú«è÷,ÜMsÚØÉÐ^ÿÄwL²¦¿žÞ …IN~à L2þ9¼yfZ„ßëð{˜ñ”ød|ɯª{#û0 þÏÛ]ö>ÇY£H lîóûœÕ»œu‡pÖ¨lœ“iìOöCzÇô“ÚóN‹d…¿Éïü¸œUIÅ‚pIG¿¡Áe``Þš†q̯È_•Œã2q\ü[ñ}$8¼÷—ð3ÈM ëÄq³Ýu. çdü6ˆ;Žîø)í¤Ðãï’ìÍ°fîÿ#ü>Ù62•²‘ÑZÞGßó˜•e©;ò©§ csáëOcX/fýn¸ú¾«ÿ½©þqo|ýµþgŒÏ¹q‘ú"ß_œtÄì8ŒBd}´ú—éýù@°??ÃÚ@µqáÇúõëáñ—ð„7Ïw~ª›¦.çýë׸cèοâÂ×ßH“ñèmxë}¿~ý€Ø@pJDB¯\jŠ5äñœ³cë¼ZO¯zr£“Õ¶“~óÎÉ$¤É^{ž$\“ò +VW} ‡¯‹‚Èd‡?‚Òë¤Z~ÁAë‚ü_2¯Å-Mø-Š^teáHZ¾™./”Ëe·ø­žÈÊ}R®ªæN¦µIžâ +ñ€–&Τ$”¤b½‚g«8U-!d+ušfA{žØ.ýuYAB…I¾|øz|<²ls +ÍD´ew {îñ ÔM«Ž"õO!Íën1Ç#ÚC‹¿ŽîÕíŠÞ‡º v~•Ô)¹ªVßÀ§<©ªVæÓÉ[—}|ãßQr†1:ñBlSãÖt[¦Oì ù|gÅÝ«ÅôîDÞð;o¸?œ¥B$¾¯Ç#ç@LEVƒ" @åfI”{Ʀ–GÎÃ\'7%¼_Å›¥0-w<¹ºÃˆFÍÌœ´ëISa.r ´À¤j ‚„ëöºnV³PþP±y2_¤6lë®]ÜÖeÇus·¬ºeSò6UÒ×åIDä‚× üÚäj݉>Í.S LÊnU7嬒P¢˜AD GS¨Ø¥àuø—ëª\‘nç ëÇ\„°ÈzÉ9ˆ1aþU…{Ö‡ZGàÂeÌ6BÞIÙ±&Xä’eà –Õ1©pÖEGÜ!z]ÜÍ÷@Ù,*AJÅw3–®Aßñ[¤K;oͪV •òž¯oÁª+Ñš»— KK©òAªìØAiYžÀää‰v6b3hìvh´ì$¿Õ« ^x`sD¸e٠ńנ-pýÄ/Ï3‘¿etï-/¯=–è‘mòPË`¿©Û_K‘Ǭ:P{Ik +S8SȲ¹ëA–æ˜Ûr>T„è UÁ‰©5{0J¿5>†2¸8XZÐm µä„pîI¬Fº&NÏ0Àî®ÈÜÆMáûÀí)2´,³,m‚»îoßðÃÀÊ$˜Y“E]Å¥Û´¤Üäq«ŽÇû‡0ä¾ÇÄÝ(@ŠMZó­‚O‡r7\7몄èÁÊäàÃa[K¡vgÂÖHîÖýD#|–4 Ñþ ÌÞí&p„Öm£´brCÀ^Wq28Ç'øä-Ç7#¦@!=ôµe_j=<¸0Íckó²ûµÞmCÜ€ñýcè ËçJÝÛݹlDªWVé‡ùÔkhþ”àƒ00ËiolsJc¤È.59[ø0ƒ*d‚OψÊÒEªÍÞ[ˆ¡|0%´|f’OWŠ)@Ú-ôâ6D¦3‹‚ð[b ˜ÿ/`°ñØM±GÒ¹ýT \Y)ëÌ%,)‹·Ùþ\_Š¹üx†¯°•Âé2Ö’o7)!¥ ÝVi¹Â}âà†1C „Æe%fG.™0Fs7~a|ðÅ‘!‡æE`÷ÙnÞäÈošÅ¤Æ5\ ƒ7DU–LšWÛ(ØdµÀí!(‰'#$°š=Ç`HsêÛzf8DÄxÎaÈÎd>óÚI¿î'ÕšúªnèeyÄâe°O8Ò¿°Oq“B®äX•='9¸O°mZ‘K¼®•ePe“Á'.»ê¶¼/xm,»“!6p(‘è…•¹`š±Ž!yYOy'Ö³YÕ¯„ ùuàë‹6KîMÓÏ(Ôí<†Ýû"P§=L3ä7Y§öдR.\B˜‚Å[ð¼Sù‘'× Èy.Jx—M%Qä7Ü„v>–³hö¸ÈZä.ãÊR!)ó€“ßj‚·/×liÚ§&0á +S[ +×k Ÿ†)Æeæ(R e}}Ç1œ< è7\!¡£Šðz[÷(XAšñß„¤§zRòÜ f™;6‹SÐÕÌö}‹e¹ºY̪­ÛªgÎL5;ðö¹íÖEó®!‚¢¢cnjûÆ<€§µ€€Ì3<¿ œ€b+Táö˜ñ®“}´ê«ÚH£­EYD~hWÝbºž0Y‡yëa"ÒWgL¾í¶t½åÌ‘É&jIï¦ò  ~/¹'PÁ—Ó±òû«¿ëWÕ\PO€Ç¹È/䟆˜tGR=-¤fBˆ.SÑ!½íyªÂq*{ññ;ü¿%ÃÍ6î±È%$º—!àaw î$Ö4¢•5«Z4!¤Ñ!\ï] ýd>>-üŽõÊlåµn`þ²ïÉ;KõëAx…apeÐÉÈñƲÜ(½§¶À÷3–0i8œ»XØXæÔ>ËpäM«%é»,̵º±< y©vp»y©vÑŽh ¬[Ü— +ìÝaìÓ®{ ^Q„µZÒ¢nCËrlH¡´Ì¼!©¹åü8U\ç‘+Íþº(d£¡¬ÔT¿ÉSŸTímÝ-Ú¹8¿<5ßë8ÃLÞF‡zÝþ”T6OUd¾”1ŒºW·j9ˆ;ÃeΣ¸(÷éŒeäayÅdqª­ SÄÝëëzäŠzãr<Àˆã:b/¤Ú­)?N:‰gœ«<ÕQ¹áò,ä+NEÂe‡M–%§‚Z7œ9òý …zJV˜·VmØ®Öabd0R™5dh@Z‡Oþ,§œÒl[f&¨¥¢to’þ +eiˆf2`^ÎHë)¸9<¹Y +”²5ˆsÑJz¥h^¦Ô!Qj 3#E-ãD2Ij?|9Ò´©9¹Ä%zÚiÙÝÉX"òúšäÚË1Ì&’M7'ÁUäJ&A z2ÅñÓ4R*£­'Òå•…Q™Ý9T@й&ŽŸ2?½œÅªÝòÆÂ…“s¼-림j*ñÔNXƒÏøŪffs–ÚÅ2ótq o--å‹x Ò.VìÕ—Uôýº°’¡ +pH¨œÛœÝ‰Å–¥ Áä5Õ>Bp +dD?Ȭ°Ð¦¦ž×«£‹2~L>ƹÁk8 ²†r¹lR‰wv\wc/Ä×nŒ]j.\óص/Ê—áK!~dÛ>ʽ¿Ði+Â`ŠÒ¸@ø±» ¡1N‡çkŽÄbc±¶‘åRÀ]à2F–Še¹@Íõ™ Û™Åfˆtp¥%cÐF®õÅ®ZmÚT¹‡âdÁgâ» ,øeK¹ÃÛR¸(*~‚—á7î;|æÿùg„ϳ7?=S—Ȥ §(¤„ZÇçŸ? ·H‹SZW§|Ò4…+r¡ÂÓ/Gïʽ£ø‘©˜³{ÊŒa<ë-MŠ}®ˆ>©Yv»HÔ<†DN„t¡‰~sÒo¨e< +h¹ŸS¼Þ›çÌÞI¸|f#„Æ„¹žÙÈC©é"–Û£ÿøÝÓË‘AšÂø#{ÖªŸ/!éŒ`ÿîZH7O¢¯Ö«—ép‘á0RY=Ò-RY†häCé*çlk%7‹Xä—ñÅNvàPÚ“¹ñ‰=µÃE®u¨PߢÇD*¹ò•*Z3è2ä c•0vs vä*#" ÌmF)(xç%Çz¹êVe-u•a‚eÕM*!<å<ˆçØ2ÁçŸÉþð£ˆ|:l ÞR†™F„T"ÇÁ¯"Îdì–9tgFHIrÓTm€ 3l%3p†’ dVñ.árk>7Ë,ŠËœÃIÃëeZ¸i¡¹«pþQí¿Œ#»:BÍšÜÄcd­Ä¼,Lo8Èþ¢þ6–k•¼]´·…‚o ש +àæ¡ë¬Ð»Äh^Më2Þ™äàSý-:=ÌÌÇrÿLJY€ÚEŘ8åý˜ŽF—T&I‚\~ëʶ§½ÖA“'x¨ú§7gùŒù-®ŸÃš[ä"UCÛ,b“÷žŠ+з›z‚ŒÏg±¬Žû:¹¤ ‡n$9¶Äs'xß{Äèéºläšàß²š@Ѹ4RO8k '\S9,Jo‘Íékž.Ïšõd!ÆÓW#?ZÞðÉÊc˧A·dR÷‹y@=9J§¨|M¾ÿñ×c-çUK‚Çdx–Sà÷áÐn„únž|>éY&qSqØ–´v–"ÅÌ7˜ç²‘ª*NÔ¾ÿQÎe?p1©–õ +ŽÏÅë¿Êeõž.¹lB>óˆ†Ì ¹MBD'5சTK©PPžt0ÙÐMI¯Ï]thš™µãõï è`6ùôþ­e“§9É„çÍBµé×gøˆö ŸùHÏ}6~ù\öb“•Tj}bõߢòä}"—.1ìOøRììBâœ@k Š!@b°9”©¥ŸaÌÒŸÃëEœ¶Qݸ4_°Aí: Ã-x\W5õ¯AÑÍnIè™liC1òæŒÌ*Pü®nK¨Öâ6 ›2Þ‰˜œÄãrÍã\E±ÃQ©Z?Ž{ÑÁ›¥¼¯(€Év©º~CYG¹GaÁ‚"yåçëU¬IÛ4V €KwŽ=9$šsƒ®£½ö$ÿ„ å[™FÝy÷JfC?‹}õkD7´²˜­}p¡¤… +)dЬۡ÷BÉ|sd¨ ÆÛJ«Œ}£pEÀ©–TŒÂ“ øð„õ‚+"{5¸Jªþ»™r/ÓeÉ/öo‡f¼>ÁÏÛÿ*¹Dˆç.9Ë•I.Ë»fÑÉ/ʳQî׆%¥"[Å?”“_ûÝCœ'i&¿”’› yàÇò +«p²K•áš¯É7¹¥iïËŽFD–~úŽ/qþöç‹S‘Ρ¯†·YR•èÀTêBiHW¦á@§±¯=²Ý¤‹ý%(;yeQh$áñ†TN馔á=7 +‡~Zχ…{ý´8>±ÜO BM"]µžÝ<ùØ‹ž{—[ûP ­$•ÐP 짒ò%.É-,Øc)‰%ûpJšï4¦Âå±ù"ÊüâNdtžxF?|y¾îž9ÛO)²*|l–a‰ÙÌL§/ ©úP/ÓÁà)§Æ6@ê×$q€!ÜF‘¼VàÐJÉÅ:ÜÝî:âfQé*íÛ@šl¬¶þ¨@J; a$ÍÚr\Ž\wOÙ»ŒÉÐfŒ0±Ìf†¿ ‰û„”½o¸aa\¾uoOéß¼Ë$æD=™!6.cå-£(—QRºù4èÿÿýÏÿƒCE\ù_@Ê=ÒöñØ}ÝÔyêþ/kª\èÔ:”›ö;PäR6tˆ)゙Ëë4üyòd’ZŠ:Šÿ˃‹4ÈRÍo‡K4Í+ãìîê„¡#Ê䬡°ÿMJ†×WMÝßHή‹äãjº×!â[ }S>ÓÎï.v1!ÈMxæ¶æ`„`’(´eXÔICž|ª]4‹ÙÝ´”­¥EaŠÝE½:‰g‹Äê¿+³a÷í¼jÓ¬©›}ªÎ⥠GÆpðú¼ZR6'Ï «ãð‰jD±Yò©šÖ“Z’nî;¯oë^²$ec7}ÛÔ-·m!\î#ü(iî£DžËœß¸|;æõP±RÅ*d2_Â÷Íâ˜ÁÏŒ £zh‰=yò綦xÚ×2fµÓ¯nñ]Ústá{GãâiÏf£§MyUÎK¡Æ15 +`î¬Æáö즜ÿñ|Ñ<&åÔ8ÕøÜaoÉû¦ù¨„¾`Ë3Ê÷æøO¹—mÿb©¤4Ëb]õtJ;«ØBŠÌ€Šµƒ•Ÿ“¦·(9v/Û»§½ÌÒû ~ÝþHõ™½“8­²bŽ-õV¬Þ/ä9+Jt íkÀ[q3*#‘³‰ŸDsx@ÿ¸C4-⩇^¼¯B;¡G Â~ªL h[ßX"*ùǰ畬šm“½˜ÓÃý¹/5 À"Ocù2º…ɺ°hÝ΋ýɾnkú´¨ ÚV>ߟ⢚D½tÑ 3£/P éW-5ñ þäÅê@ñ‹´RåhמóÜZœ+YÊ É÷õC…àq˜8"D[yÈq–=èÇ1¯=?‰KoçD2&“œ~ü£lÀï·ÐkkI¦êJ,«jþLÑ÷Éàq®à33ÊvŠ}j.«¶E GÔ´ Kš/oê>ÈÁ'—Ÿƒ/)PJ–ÕøTbé‹ç"½¥ PÛ¬(†ÿqD%ÝÞÊCgí¿OV‹«(3 > /ExtGState << /GS2 88 0 R >> >> endobj 91 0 obj << /Filter /FlateDecode /Length 8157 >> stream +xœí\ÍrãF’¾û):bc6 ‰ Ô?Æ'©ÛíiO{ìu˳1ÚDB,’ ARm̓øy7¿Ì*¤Ô-pæ0{ØptBVVþçWõúÛêÕíú«üÕ-ý»ì¾º¸üêõ;ûªxuyóU9)r¯rú/^Úrâ­Ñ¯|&ÎúÕåâ«¿g{{rfœš˜ì§÷te]¶ÞtU³\Ÿâ~>ÑÙ§÷}Ö^¯ëî䬜¸ì¡žáž™„lsWË¥Ëfõ]ÓèÙ¼]-ê%žõÙ&=ÙÞ¤«i»8;ùŸW—ß}õÍåWÅDå¹uùôžlWº‰+KUÝ«ª«6 }h™?žœ©ÒLÊlMt5þÒôåõª]nª“³¢ ?–u»]ãGSªºÍ]×l¾a'*kˆXÊ4ÜÔ൚ØÈ”IOõ—i fâµ/"­·Ä9bFöë¶^;´ +ÂÌšBK_.ñl +¢dÖL« LÏÑýÍ]Åï`FLœ\¦)€á&½Œ˜Ÿ$Ò«‰÷6WBd»¢1¬±˜+ómY3aeF|‡­ñÌ&krbØzUO››fJ[E¯ªÍ]{‹5gnŸÝtu-ã•´Ü4§8Óë2–$~¡ þ …—,i…&žT³-–~ÙÊ!d‹fÊ?†I‘Õ¿Ý5×ÍFž¥s–J•-ÛE} ¡ Y5¾jÅzÌIßÙI–˜5s˜x+2ÓãÙ‚ìXy0¤²&øHê¢Éwðeʨƒž)K^î›=¹Íñ”;úµ¼áHª7wx#övªîªyó’’q’‰WÁ¹ î‹”¨9¦­­a!Þ,:? ^7Ëé|;käÛ0jÚÂ~%‡Iö¡øÌ›â^-K×]'|iÁüãìµ…O …Ž,®ÉüGo÷c/w{í…3¯ß‰ÀIÁJ[ò'âeú-à„ tTêóe³¨æðâZõÓÐ0‹šbªÙzt÷…ø>PÄi™WGíûž¬ÎŽ¼<Îþ YB°—»ÂŒóßÐbXé¾ÊÜÙ§º¾?c+Lâ| ΙŒæ¹V}ÄcÙ£ÞD.°zo¬¿øðÚ}ÇƨÌNóK” PV2±.Øg¿½8­DÚ¾CtçáŠöBØ”©2:Rˆ5*‘ê€xR¤8ÆÃ×ÀÊ`,Άp3ú9‹÷°ælã=¬ïÀPŒÐLÀ0»Mœ2-¼»çË趛ÞU÷‚îãK7]»k-q±çüç»jzÏRØ‹Xƒ¸ìCuÝv2—jÓv°%Dí*»KWucé%âŒÑ1"ÿØGIGã³*úëûoø’B÷ìççW'ñ?|â,M2ÙuWÇû&ÛJhAÁP‡Ÿ=Ûq~RÌçZ„hER …1ðÅ´&#‰WÄŒ ”Ä®„>³ +¢”`q~ª×­ä +´øÐýص·]µÀŸ`8Ì­+!ƒá~^²­€ˆwkv~®Äê§y‰ÊSŽ~>¯®c2 )OÁ_FXKáFÓ-|”Ùí(“ã*ûùü/éìêd"Ϫ˜C)ûåX—ÜØä‡èÕ¥§«?‰qÅ_ê¸Þð%~%Ÿ²©c2 ¾\?ÊE4½Í•¸Ö²wºWÕ3M΢)²¥ªPáÊ«<7û¦õ³FQ‘Ûµ^í`Œ¡Å¹:yWeÁ4I¢&{ëÉ7ì20Äû ×òQJÑŒ*vË×|“}Öª‘”:d·¸ÈäJªGð§À{eðá˜#T ¼±ÊùÃ1L<óˆ)U2WL’#ÔÉ1nš9Û[æ)5üa)n%»Û.Å„Ìخر2ͲG0Ìåᇎá +KjGrp0Æ[EþroŒÏÓ ·îÉÇÐAcliÝ“1öÙò‚![V¹Öÿ%ŠÂ‚Ò›§ËŽÀ$!0(‡qCaÒ©CS +Zª`w“/w¤ê•ÅÓÑÆO¶$Ýudч¸pãWŸx@º•?ã˜ÕW”e™²ôÏ0füêÖL|‘{ó¯PB)<­¸ÓÏqä˜Q¸%Åù‚äËq¤¸£Qdf÷‹x©QYTÄÚ£ä$WD„Ágb^Íçí' +*r“¼¹ÎjFRÌË‘ƒ ¤ß‰¸þÑaâ¨s.ßmWRs†3¬–ò+ly8l:¨àⶤÈ#¼/ÏC‡ -‚NóØ}Çä¨< ‹p l8(¦ÖH­ðÊ6NAt;R”ž¸äö©ZKRÜfÑÈ:p02X‡¨Vn’“%ˆ ÆM½ Dò#•»S\–Îë5¨Ë¤ãáOœ ZŽ¥"Í™.%èõlÂÃÐCçsäå\Ê¡Â ,R#)¥yæ!/bFxÇéºÔOxÚ§­RMæ‚€É)HȺ–ãGJyR¡¹þuÛ¬Vµšýò|ju _«¥ HWMwvÓÌ7u“,©ðñåúq½©cŠèL>‰bÁ^hWEW)Ñ´ºE`‹ˆê÷ ××õlFŸâ¿A槊IPõ Dˆ“>»iQ{Û¢žÊ8Nšê®AÁ úõTðË;ù7IqÆMAQXX[ƪ°£ m˜OÜ•ó~#±0qa2®5“uhæ1³ ˜tÞ>°r q"1š jgç’kÄ,SI'ëÙQ…`ž…'i´¹‹ ±íbØÍ|DG«º»i»EÌõ8+rýÜ«V+VäöA~í ñ«‘¥ÕÜËûù\‚  L Òø~‰tŸk6[h9MêXƒ©è{†Ú0(\ôY“æ¬ä ×ì´²)ÏF«È~†Æà‰½A⊚ÚfSו“ÏÖ6ò!ïý+Enˆ,‡‰$|ó[‰vN2]ŽÍ¬3Z21}ÄM/ÔxcñUPg vò¸âÊ,äbÛƒ¥©8[d¿´”.•Z˜gt{B•Èÿ‚´î¨’Li'V)Š¨8ûi»H==)ƒø«øxÏc#É™RÏù »a-W ´1}+™=g³$YOÑÕ)º1Åð¡ú·U,wÍ¢^n&R )¢Õ±…4ßQîGpQR\Z¸¾ÿŒOr#üig›½'‹´.Ðj¼íªY-‚™üLK2’LóšÃÐHk@ç}ƒcr[å±…•‡ùí5éPýG<'˜ŸkÛ‹@”Sx¹¿$3^ñWôÎ6F¤`È— Ž;D;QݳšŠKïD:Ò*†) óƒ·¤Ž_#©;VU OD™à"ù¿Ä´ai!ʳ¥%æ°_ÓmÅ*Nñ$u=on£éŒ/ùÁÜœó½åws£« æŒKRœ‚C¡Áï"*Äí³¢-/Äk˜-¦WF©ÝŠ§?Ôs“Ê°0¦ŸHŒi`V\*ÌŒ¤™tÈ+ctê*<²ŸÉduLlöä¹|}¢§uá9i¦j7'í‹[Aƒ¤Ø_2í`¤0³ZHD_§^Š>K4ÙRï”NDÿ¶‘Â-68•õ;ÞñFa}b¬ˆ¦Ä`­•ËÓZÓ5º‘4?šcyêɬ/ð‹u´5<Û‘ä’ô‡<ßµ©áÈ(f¿H™:®:ßzºê +%³[u…á9D÷֞ȃ`r©—B¨ÙÏ|ä PËÓ!u©#ŸÏA¨WAZíÆ]HL( 6)§;C®ò‹ͺ¹FØ«B¹?ä¬Fè9ÞzSª¼Ki´ÓcÙïç{¶”0ND¢ nDÉ3fOÒ«Ô³Û`ŽY{‡#Ý5Yxd¯”>¦ ˆ’Æ}•ç»ò­«ExúR ‹xPꛃÁŠæúEÖ¹Š›!Ó±®-gŸûÔò¯+IvÖ›ä;Úe ±K$ß׌üb·=ðu˘×5å%(™ÉV´$›ØÇ„bÞðº©'¥ˆÉXÒÇå¬ä9Ùä™ÞPØT„£J;ƃœ@ÔÕrx-¹¡P sûTËNîd÷'ì°›ù ´$´E)Ù¤8‘ä§pbæ îp¨°–lÓdW½Ìæ' +²f!#]Ÿ +)Ä|ZA¨iõ<4N?ȸåÆY·_“¹Ÿ×‚Ù‰îÜø£Od1Ízƒ>*Ð>©ebŒ£„¶£ät#i‹fãbòÔO‹#ôß4¿±™2F"ºB„_äè ?’ŒÏ,**`¤"D¨(ÙŠX£i9o¦|xVß=Τ¹T¿þñâ#”²äðªe‘¦£I„×ñ2Sdb dÏÝ×ò(‡¢¬ã Z ¸T)ÅfRÙaÈÏŠð‚tî&‚Þ§GãD¤‹‚¾IDN©üÍÛËs¹v21«D±òš¹,´Õ÷ë¯q/HãQÞ)R$ŒN½¹‰Bggõ⺖šålö”b@5ÃH.eà\¬ÊSKcÆu=Eô^ÇRQ|+`f`Ïž±–Eþ9 ghÙƒ#îP°YçEaB'o§l“½û-ÆŠ~-y,óù);há«U&ñõ¨5×àã[]Šigõ*¶ÀeiF*þ£†IÁgô>ƒ-Ëâ€Å PI"SUÉj´ëàæ71Vø푃«óX4±àL2^MÂ3Ô-7ø´ÎÉzýé?¿AÀ‹}•½ùþ#ÒH $³?±ó4$ΛvÉw93ûÛ©8…N¼äË諹 ì(¥QܪL ¸ß/œm—í]#Œ¡<}Jh¦¨•…³H5〕àè$xm5ëõù›+£è¬,×GUE 2º$“wHÞ»¶û'„HØ2OÀ†f!“ZÐoæÛ6ÅÐõzZ/#ÀBªŒ+Ý0b‰]N춀y —vÆ’~ÇZžÅšMæËàiŠyZɳ} +AÓX0ÃÔáDƪ,+šÊK÷ùFñÒ>‚vC*üPb8eÆX.¡ ¼5d*çÖÖæYËðr¸÷u3¯– ;‹¯Ñ(³8Š—hao”OÕúNöûùï—B®É Òí‘棷 Ê Ø¨ªW\Ìi g±"nBÑ[ <¢%£„¤FÒLè]rÐÜC‰š#ˆ£À]ŽM3º,; ø\׃ϣ;-‘ë]×SùH…²§.‘•OÉ!wÌK8­ówÏRS2É2•<—Ê÷6 +iûðT0Ž‡(3ŠNå‹z¬¹ÝÊíáç¤hÑ”t¬gp_%%€ò29kjF^¬3cJªÕjÎHV°"ˆç H +›ÿN\ š¡À*µ„ßœC¬ó\(£ÐYgöZ¹ÜªÖ²ÉÇr»¼Ä€xÏšùvqîì‚9cG}?+þhqÉ¿wò–¦›Äî“š²‚Žl6×î)®ÐpÉ¢YN·× e,¶NyÙ× Ðetý$w[b,§ç©Ñ9Øv1«ºûþ5Ùxƒöç"mÁÙÔ‹ dÒATŒW©ÕË›P¤,îcžá¡JƦ„"µ¹è.]ë~ÃMt¼ÞKº±<‰»gØ¢±ñ£j8r‘?7²ó“ÊÅ®¸‡ÅwÛ¥$ÛK©ji«s¹B0Á=•½iDYêŽô}Å ©”h8ÍýÞô™¢Iñ™â_·¼éíxKCШß7[È\pO%”Ù¢ž5Û…¤€§É ¼!#ÉáÜ䆎\Üླ¤˜µ’üð°’XÝAuD¦;^JðS–D6YÛÞä\å¹ýƒ×ÁÊÄ À7/´Ø…aÁÛW†Ô•>ÜoøÛTÈ”ä’ÑÒ¾Èÿî.ÄZ ÛÇ f¥èÜ;TÈ q¢ðŒ©É(HÆ1“êCÓvõBÉt@8qšˆÏ‹ úkµ”DµýíìRÊL¼+ƒB†i |c#įòçÎ +Ãfntü€mk"[ŽˆOzÙÞ?¶1c)²ï*ô½(ê?HH>—‡P:éå Îg´Ž +X¥bî!Ö­¾GÄŽ‚{š% ÷O¸¡ùîÑ áp2Êež > ðΠ}þƒC¡|¨aÀ{A¯‡„GŽY[QÔ¢)ý\%a6«cêÜC0î›Ù’ Ò‹9H>ðŒ§Å5GÖÐ7ÑÁùCRŸ„žj&t=ÑMïÇÈåû/sÊä¡ûo½ºQv-PÜáöú¸=*¶² ï`â}Þ%×2ª‡Z†jb=íšë½ªÛË VÖ±L;¶Þ塉;ŠCpðwZ,œ\øŸ‰\úˆOã(»¦§w±ž-û}8FÊ,g€c³qË;$adúàŒÙ?!-h;{"ý8 ]".Ѧ+î)öŸBEDÇ&›îmqÅí»â<# £Ú+ŸŠ!,aìO£ ðûúc9Y(Œï7i Þ#Æù"é(ö -B†ßMÄM½d‘&‡¿ô×?„²}‘«£>¤I5ðÓ{âÁ@øci5BL±x+l.àPbRJ@‡ ³%°Ä}@·<‰gHœ†Œê²»-c°hÅeä¾c†ˆf¬J¾tÊ›1x‡KtÛh¢5Â(‰=eƒBm) ®$Ô–¡Œ’6™ˆ‰eÀNPÍ3°dc‰þ:”I9û†+²_ëv;µÊþAš¾÷×&•“:3šb&Ó~dÈf€Úc©£ˆœxqtÄf€I)=¤¨úì*Ö±|o¡Dú¹0O•²[Ö¢AÕÕõ÷%æ6—}ªÓ¦ž‹òƒ*ò¦ám0h7“/Y5›v•|×$µ—/£îc½,ªàbŒ¬‚„,<˜É6]Í+4–T9Û~‡™$x¹Ïõ¼ÞsœŠýž¢/·ómD;k)†;ú{€Vk%¯[E€j‘4ÃÀEë–bÈÿqÎd3¦Y§*äl‡ÅÓù¸eHqãiO~™zXh/²éáºÅTàº|–n<ŸäÆÁ ¸“;®×†rï„…QîS๠É<\7md.¥ZcºÛk/mÖI2ćTÀ›/bZj5†÷‘ó—Ú?B€’«»S,ÐöŠ%—/ÙfÞ­™k1ÒdŸ£>ªp 27 +ï¢ÚÆúc³n7«´¿Kª<Š·&Õ å \’¢ ©æ&¢¥,ñQÐXÛ·M}Û2®ÄHÉ'VbPypî ÿcëÍXõ»¶[×Gº{Ì0i¯Sx…ãx§t³¾“J®kiã0€cq^ƒ ™ÃúéG… ¦/½ÅU„ B1d¶WÙÛó?ÿ ‰þ¨Ú¯XÛ¢H)曪[5Ë(ÂÀ\WÄ Ïy!óÊ熫VbŒÎy  Ïe³#·‰è³©„‰ä›îÁŽhÌ4‚Ìî¥íô;JÑ%QLí¢„¹daL ÷èFnÜHáƒÍ4¤Mò¹]—´~ër°c&Öå ë¿ÜHã8ajã–óYÕqhb½ì¦}a›lÔum"Rºï=îé¨+¸X%gD!ÀDÈ‘˜—ϹX£n_fɸ°«Ê»°k00”Ž=ƒÉfûÞÌ'ôX²]Ý÷ßb©aÔö>½â¿ +Ê:åœ Þa÷ñϤÃy„Nù쯛 c6݈Ž"’?؈ÜpCNíbÛÍÉ Ž¦“Ð}Çï–›Ép,öÂÙ]å6z3®P1 n¯(ê +ãn—¤J©/½‰½^pÙÉi+é`LñÇi”#õÀEÛþt¨§®Kzº . +P N¬JÊ1·]Dâr³(£—ÖJeÎŽŽÀ(ì)¨1“\¥ÞÑ1!vHSÆù¸]&x¤.‚ÒÉ•.†GhíYæÑÄ0g—½|~óáýGÑÚs)2)Êc’Fš{ƒó@„¡_qU‡qO›vÃ{:˜¸÷Øì¢uO@©–â•Yó¹Ý$¿q‡–AWoÿr>Êh‡Â1*ÛÒz&¯rWoB³i›YÂ=ÜTS9RÉ €ß±‹øé]:T!Íî!üÛ®Y²‰â¢eVͯ·{\Ñ:'’»¦ôç<6@6G–œØ±)sáÓíûæ±4ñÀñ.­„)âIpÒíŽóœÑOðálwÀ˜æÝiÍx—’¬ãºØ·Æ}á9Ø:ß»D ÝÎC:àº0–¬½ìc –ÑþôNºì’‹$‡q›6±t?ÝΫX(Ìس—íHqÏ×nÿK¬K+鬜o5v ÞîOôÛ®›X½<»l½Ò vƒÊœ§?ªõZzÊAšeQ@ö˜O,ü¤ 3yÂƃ…¤‚uRÙßKÔm4ïE¹ «~ƒÃÕÆÏ`n“6Ô'úÃçr¾”Ån￘¶)åó°óyø]%Y"!Šµ·^– Š›¦–aÜEÚÝ>Ø…"h5E’)X8ûLßÇ´Ž¼Ä°(«»iN:ð×uj@ ˜ñ×ûÛïù…üÙ£¾Œ Ánü§” Q¥¥Ôà`€Û×G&@ŽáäôÿÔ¿^ÈÆÞÖKIb1ÄÛ£¦‰]{e°¥zò‘ÓÙ«Âá·¯…ÌáÕš!¤ÓJJ2ó~Ï +Ⱦز1Àtý– ’’ÿcs»ˆ©Ouv>ŸuÍônô‘7.ákMÚ:ýq#ä2ûÐnÄSh!©ìûN¥Él†I@jGZÌG"=:Ú’1¨8IЇ£cûjÒçÜ7Ç°·á³"²³¹@±”œ³‘o¹ÆqÇshû²oö3.A•E‚~ö" +Žõ[Á¦±ÀR:*JÎé`%ÈúC%}ùzÉ?½;Mou5¼Þhk„ÎÓ¾o>Zž«–³-¹†Ä>ÝmtmglÑ:“*w­õÇ·S.ÑÞñ&R¥ã¡„XöPwÑC5·w>¹¤?Ú ,?~ØA¡sApÁ¶˜ô ¯1Ü"ÿ‚u>ß+„¬Pmýýò×fu½rÏÿ©íXݸ¬Æ ù2ÕŸGRÈ z“øåP7c? Õjnu ëwLvJoWó­$ŠhðÃØc;¿—‡ žÉG‰B䥜ϫšßËá@œt~¬»QÐÊøv•‚û4Xr¼p¥Žûýr¾n,mƒÅ¸T‘ߟJÏÃõ j'gC.×7u× Í€WsÝvw. (h”™=¥‹e”ÄË‘• Pá÷B‡~¼ÿš endstream endobj 94 0 obj << /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] /Font << /F1 3 0 R /F3 5 0 R /F4 6 0 R /F5 7 0 R /F6 8 0 R /F7 9 0 R /F8 10 0 R /F11 15 0 R /F12 17 0 R /F13 19 0 R /F14 20 0 R /F15 21 0 R /F16 22 0 R /F17 23 0 R >> /ExtGState << /GS20 99 0 R /GS4 88 0 R /GS5 95 0 R /GS6 96 0 R /GS7 97 0 R /GS8 98 0 R /GS9 97 0 R /GS10 98 0 R /GS11 97 0 R /GS12 98 0 R /GS13 97 0 R /GS14 98 0 R /GS15 97 0 R /GS16 98 0 R /GS17 97 0 R /GS18 98 0 R /GS19 97 0 R >> /XObject << /Im1 24 0 R /Im2 25 0 R /Im3 26 0 R /Im4 27 0 R /Im5 28 0 R >> >> endobj 95 0 obj << /Type /ExtGState /op false >> endobj 96 0 obj << /Type /ExtGState /SA true >> endobj 97 0 obj << /Type /ExtGState /OP true /op true >> endobj 98 0 obj << /Type /ExtGState /OP false /op false >> endobj 99 0 obj << /Type /ExtGState /OP false /SA false /op true >> endobj 100 0 obj << /Filter /FlateDecode /Length 9719 >> stream +xœí}Ýn+9’潟BÀ¢©Å‘*ù—$Ñ» Ô©ÓUSµÕÞ>èæÌ…,§íìJI¥d—ç-f.úÕöu6¾2•JɶÜ7½[ÓN3ƒÌ`0þ¤¿ýñ³ÜuWåäŽþ}Ù^}ürõíÕDM¾Ü^Åy¬t5)ééÑŹwÖL|æU¥ÌäËêê_ŠÝô_'_~¾úýéí^ê]é¹ ¡ªFÝg»ºÛMgº2sS<-:<–óªØwõ ž«¹*n7[EÔâUqSO™”;ú <¶«©.‹f=ebƒÔ–øÆ×´ÜÖù¹>L° sH/x ºmCc¾kÓ͉E¶è JLiI<­C½›òºt F¬ˆ¯ÇC­§¼î‹©2„nû,¿f@ð¤u8òHFÞ”°Š¦”Ž‰ê»—‰I_“3ZÖX?dö(“%Á!Ü|±–˜ÖfªHÆŽQTú¥ñU©æ•+i¥FøZ–êB] ˆ§MU–a/Ùz‡Ÿ±˜£nuUΣ‹Œzzì—Hǹó¶¼ÿ\wûvwÄë¦Zîšû®¥“üü°Yïëzù1(×ÛM×}‰LxexçYVÅ£‰]|ø;4;Tº¨Î‹õz/ª£_n¸¬œøH†Ç .cÆ£c'9¡Á&ˆ]áC°$}tŠ²¬†[³$ÎjÚ”¢¹“^ÅCŠ Ÿ]Ê+Ž|Â2zýöYt«’kq0ŒWäÁD8ýÌ&–ƒ˜î`nLÖP3u2n,\ù º™ä’™Wû¶fŠ¤¼}ÙLÄW¦‰y¹œö»~Î9¾@ŽMÕ&)tv ‘aäÜ » ðppˆÀP‚6fkKÜÝI¿¼œ¹ÑÚx;FôkYê ãsij‘býñ +¶×A®ÏM(­\u´r±rïæu‡,’æDä ̱”Œ‡ßC3ÔJ0˜3¬b ⺃¯Œ•ñqNÍO4¤±/³¥UÏ$ ’Çîl€+Æ©¡´%_`8®ê–›œ½‘6bŽ%5Þ$A‚# u‹WÙ·‹Z¢ˆKr¢£NFúÒKA±~PcvŸ /$ÔÔö6å¡R>]\N¼RðNÀÑ錻m-F,{8N¨Î¶Hø&­ÏÁŸsl(–b&¶ýÕ™á.w+Ôc ç,ÇNuvyƒàûðÕâNìpÓOëݶ¹KJ—¨Þ>/2žZŒ®R$`r'yKm•CÞ™Âup)CTwÍ‘”8÷+ð$=Ã[(¸ßæ˜q¨bçùwÒ›Xnƒ„7Y7¢Åqüí0: ò775Ö€}gn/ÅL¼_´a6U4úÓk‚Ké&À´#äCγ™`‹ oÉ5»»gg.‚1Ò¾F°,ȆRr Iñ¯£õx!3YçuÎ;U…|(´!ÒJ‚­dS€Õßd_R6/DŠ×ÒÇ<±§iÀ\P´ÆÀ‹ÈÉcMÞ†1NdåwgìÂË©}"{ ÙŽÑ_ÛóâÈ(yòæOæ_ªKóîŽÛRW¤ Gc÷~F²¼èòFÞë9àÖêƒÖ$J`ËT‘¯›¼&›ó¹« ‘7}Øwòºø-¿«*¨‘bqbñ”¨˜g{)kï½äødÿ)§32atj† 9¼îf0¢o çýÅ]oúV²9ÅP’€Fx±éCÁÆÓƒ}µzŸ5ó=Rk6g_!ÂkwØ*Åô´MÙF­‘‘:°ÃLó¾'¡;PéyUU‘-:zïé/¼_ëy™t…wˆ3§½7yGÄ!S!'Ô¹ÝFy@Vgv¸-ÎË”ÈÛɽ&Ì\Tï0¡¦9U:XXÃùÌü…GkÑ’Ìèâa%;¡õZ†ß1:=ÃÍ¡×^¤0¸i¤Ïj%¶_ËÏËl-Q„D>Ä2ï¹=$Ï+Ìßn7ÂtþñâÄ‘Bvˆù³<Úu'2–‡Ãá] ŠÛíJ22LÈD×Ë’Dì£VUÞUTdà#ÕAi:7ÐB·­üÌÚ0YžÌNŽ1ªsS",oÆÙäÅÊHMz³“å&}G•YJ´¬Ð«êûd Êä*_ v× +ÏlVI¯%î[aû€X"òt‰„‹‘‹iFŽCYšhNi:c“MU¢N¶%¹2%K%ç“Ù°¹éÈ+È– N–±_Ã2{ÝÈ&¹ ±Ö]˜vKïZ)ÔáϬjáÎí^¾{mÙžBoñ¢:–_¬ÂÛÉP<Ï/%—®æ¥UÁž¸?*A BéqIæèä㪚Äe¶^ aš¬9ú oÀ}Ä[™ R•É¶‘Fœ+¡’5l{›;Y äOœ-ôw¢%¾N?ˆóx–‹5h“×êÀQ³r^*l=-ߢ!Wúèó.o£‘S75yßÒç½Sã¡;>ê¢ËaÔ³< +Zȵõäâƒã‘ãŒè–¢ ò”iŠÎåÏQÄb£ÌÃ.ýò-?Y ê!¹Ú—SÕXõˆš¢M¿ÓÏ€ÕFžƒ«}¤y=5ì Þ|Ÿ>¥óŽiñ¾@YéצõF‚Ï’Ð)¯G³ù‚½]}¬Ê4ÏÁTˆÅa¿ÀFÛ­¸›½pE1ÌŒ%s4t,Þå'Òz`ÛHy£Sæq™Øþ91æ½Å6yŽÉw² zýs# U¯ºEòÁñ«è'03 +–ofÙß<¡€Õf£h$¨^×1¤€mY½(k°Éú£Ž¥ ÀCÄßç>Í°m©Uöš•HòjŸth- ¹„mõ íb~“’‡Ø»~›§5G&w ‘¯bI©oX(Çó>O´™¡•rlFGDr½Bú^TØ(`•œÏ“K >'åíJ¼™óZòŠoé\ &G¦,[ 0Tæ.¸œ<₺TaèYšüžvi=ô¬ØBp^•ÔÉ:ŽU5»¿—m9‚ -Gð¥:l9¾ÀŸ„$²Ýâ1Ç£8_7nïr:ï¬ WKãºI„ÏÃ-ï…ZYÌKY‰QäÓÑäQõý/ôžA"G\IL“„g™Ö%³ÂˆWZÞJêÑÊœŸØ¡Ù œõñQ"Œ¬LÛ½Ðåa/ÌÎu9áð=|Ÿ<ñy‹V|àN6³ròäþ'ògjð}ÊŽ†ƒ—µÌÞÏê2_Ô!Ÿ,CйL@Èpª¬õâ¥õÊ×Ää.ÕN§€¶Ã² #L4PÇ鉃B]î¤{³IeÓùs¼Ë#›8„† +ú Ðp²¬-îiÂð'¹” ÈÙ‘VNÞñ¯0ÂMŽoŸe}æ¹î ÷»Ó +Er}úBß›ºµ¸Ž=³ßgVÉU5×µ¤¥ÔœãÊIæ¥ü¹Mªw{“ß­ø a༠zY³õçw"9Ö¹œ.Ð'&TÙ±äŸX/\*þ’·É1ÅRvNñe¸n%9¼.ç„[vLŽ¤T—M’Üäás~‡·—žš£\ŽŒb"-fC"—™ÉjŸfDÞëå7w†þK¥q}Ñê‰~2Î#¿F³Ã™—œÏè Í:©Æwg»•'Ôb0d»Ûýƒlw¤j°o±S fVǵã*m¸¢¿.~€)ÑáïÌ6+î!æýÄá3±ûö&•n¥,ÙJ—Cšó¦ÞÕ²ý»]5kŽ£+áxôà•·‘­õ ´pU§Š%Þœ/eµè'glѾ?ë§(Îó$y‹KdÇ™ù²§žÒùÖ¸a:`vXáq²†XA*öQÙ¡R–ßòº¥‚uÍ%zÝq‡«·¢8…Q\ ‰Ägɵør"WÈ ‹Å0òn\:(¨œãý¸©åÂ!øIlPÙ7äH½b,"ç+K®v’æÈLJZò9èW6híÕŠë©-úvTõB¹J®“jü“øµ zÇõnRâdi›0Æ÷„”*ToÓâ4„ÇáÆÑpß;ÿñ—o«"ˆ@%mâÅ4®ü$’Òö:gAGø9̳ˆ)[Ù`´IË{9$ ÑÔ°£_s ƒœAŸAUÕØšï¤QRóÙqf(ÔgÂ1êHqp˜;¤¥¾ýñ³Ãém5é–WrÖcb= • ‰¯ÂdfQqaüd[_Ýþ·«»Ò8~Cz +Ë©´kIúkîƒÌ_®ÖDÆ Ýù Æ„{¹2H7úm²\]}ûÓJM>m®þ7ý†c¤Iÿ +™°@s¼Ç!Z?p5çÓ+U<÷S*utÚ¤¡õah_¢îv‚’<ŠlÈ rkÊÁØh!¥iéR—èI<Â=}™‡6‡¡©R­A †#­äjÚ Ÿ`3(ÑóÈx…gîX†È=Cðyl;›ÖØ! N:Ú ….Æ Ž'êÁà¤QþσÓ+‹ÁÑS;/]}ȃ»<8-}%÷¼"š<üLÿþze&Í•‚5$,ÎBHÈÁUä˜É Ç¢5û3u V‚ÖJŽ·þz¥~ä„T g*5A)`&qÐÛ@Ÿ¯BZL'rIrQj?ÔBäU[MžVÞuYÉGôdFZÕ¤AÞú|…x²$݉c°±éSV&#ó& á3¹»‚—äÀ)8¬©3¶ˆ2>¯Ð ¨Õ$_ŠÍ(­1}mFáAUöc¼CÃDÒ|X\IKb“¾ƒÐ:ö¤y †(ƒÃ…òÀ3×Vó—<Íš>«2aÞ9f³ÉªoÀÆ9ñVK äYê^@ø +7É-6+ã&µ `mÑb`RËgHÊ0©e3žSjh‰t$|^„¯[6‹Té%šŸÐ½%eÂ%£KeY‡Ý3FèÞT\–{­#)Ýl>ƤÇÝìKÝζäcö⯿ѿôµjÜͽÔÍý½NÝB9Ì!dX +’‚#|ù”Êrª,‡v,0=O4Q®"²â¤!ip¤¢I‹‘Iê…÷ ˆ$º”6éÜ!”>ç-^õدúp~$bŽ\qì†W>¦í²ïgbà—~Lz…R)Ø œÕU¶L'ªþû†N¬Ù…»t†MË;9Go¥ ŒÈöÔKjcãJž¬'×ä> ƒ^¥U's@r[ÓÔø< ÍÕÝñoJyt•ó+Ò‹ÖVò=csºòž›=*шZÖÅWf¯aEÊX¥ÏÌ–ƒœ K†›O`¿¦ú`ršLUžHŒBb½ÔôMrÐÈô¥îÖ #×9âõÐÕ9ì<Åò®þÇýê‰1r“ø×jT +ùáÊ–8Óô„1Ø £¢X1Dè¡‘VÈi>©C¯'_‹os>â?OÞ’Wb#­–ËÌ“s>,F}UuTEð”4¨;Ö `/bûñPÿgtSÉH愈Š5î…°F)¾öeòËbW÷¸«­S,P“䪽 (£÷ÐŒŠ*EïyKòÇÿ¯èÿ¡}þÞ°o‡#pNKý3™)x·¤}á¢8Zk˜bݦE@b6Š'hqU¯Àˆ(ô½áb¿hRÎÄ2dêmZå? bÌ"æûþ[ý¶ä?âòÒ„ ×;‘ñ¬à`xrüa]± ªŒünSC¥Á)-ÊH ܹÔÉIK%N2ã¤9Q@¡qjñÆŽZ‚“™…8nl{‚p{uO_#ö%h‘ÌwìP¨©7‹ýq#ƒ¯ag ·L“¯Ò© Z>bE–Êg-ÿùˆ®öuº" +¨:AáiîÕéd*Äd„çepÒâTjQ•ë{ a(ž‰ÜPפ(qã7;Z|à[ÆÜPªÃÜÞä1Ø‚¨|Õ HˆíD".ÍtÎ ¾J%d(àe¥fªâÆ:8Ù"ùü=Â¥F§EqW°Ùž%†—È=è+Jz( +ý E¸9¼HT¨Ø 4ƒþWÔ +‘ýÂùí’|äü«!µmÝdy•PÿKL$}iŠ²óÈé×%9˜Kì[ª0ÛÔ»ÿ½¾oIßïGHè_Q?£?òK…`ºâYá°ž…³Ž›†¬x먉wl!5p$0äÎ, G¹¡anyø4i”¢cŸSÀ‹-3Ð< €8¯‘"pä +ª¨XÌÐ4ÒÚFÃó +9€Ó®8šà±yL]<¹Ïí¢GÃ*RzÞùÁ ñ=®Q¨\$C°ãZ1DѸÊæÓã0Ëò»’þ¼í!4÷3­r@¥™,#,ìæË´äê½ËfuÞåý¸|{PZ†Lc=¸¶O¦S •R“«áù©tûÿ¥…¯Åf¯^bvhnë•qcÏ_sn€@î°ááÑ/^sf ì=è +IÒã1¹´éßÝf·h?øò¬,—¹“Yýiä<éG@–V£–þdZ/ܨf Ä9Nâ[ª£ë-6z~y +f&¬òjdÓTÓùC®iL+Ö„´¯öl¶Yc8™mû›¸õëî¤B~—¦™µ‘CH<^-7ùºâ¯ýY¨tY²®Žÿ¬Í+«‚ÛçbȆ¯þmª1Ô½P!Ñ,M0S2SCN$üæÍèFì23¥÷‰Üu;5rNZ¥«2×;9«„QÉðÛg¬¢Î´NøÔ+g>™© !˜FLƈÿ¤ŠÁ=OË-Fˆ8|«Y†cäÏSŽÅ§d‡ô‘$C<@B«Nß@50ßøó$ê ——(ÂS¾Ü]æšEëù¼–{eõÈÿ(½Ïhî 03=gªùÞðý¯²yYöW豿Å:€‹¤-_G›g²œòÕ¿Y'l@êð‘!ë Dâ !›÷ßû?z™8"qÃËŠVþNJ?ÅÈPGK•ßÜde¸ÿç\·F” ðµßËéÐïVl0]±÷ÒÓ·ÉÒ^Îö»_NùFÝ3Ržþ@Î.*–]ñ%|%¬ê™ú‡õh¹ø}¯‰XQ“í°ôÝßÉá?CA"#ó!Û=Ë8 •0Mœ™88Úæ’ >§3þµLhû /MìXs4Æåó‡|¿PfªÇ)üè>ñ̳ÜÚIH/¡V7Û6:˜H±þ 'û?ÿ…~•£´Ÿçrð0ŸæùR»?löëÝ¿Ÿq _[¡œØcSæxôz—Ç\´låc¥‹åY'·éÅþ ¤+~É!u>•‡ëôìQ> /ExtGState << /GS20 97 0 R /GS21 99 0 R /GS4 88 0 R /GS5 95 0 R /GS6 96 0 R /GS7 97 0 R /GS8 98 0 R /GS9 97 0 R /GS10 98 0 R /GS11 98 0 R /GS12 97 0 R /GS13 98 0 R /GS14 97 0 R /GS15 99 0 R /GS16 95 0 R /GS17 96 0 R /GS18 97 0 R /GS19 98 0 R >> /XObject << /Im6 31 0 R /Im7 32 0 R /Im8 33 0 R >> >> endobj 102 0 obj << /Filter /FlateDecode /Length 13563 >> stream +xœí}ïn$Irß÷~ +†ŒæyØ[ù·ª`ÃÀÎííjO{‚¤A4úÐÃé!Û×Í5›;Z½…ýA¯æ×qü"2òO5Éá¬`xÙæ-æX‘™õÍoüÙÕí¬;»¢o÷³‹nÑÙÎœ½½œ½~;ûæûpFÏgãbŒ6žuô_zŒnaãèÎ|o½7ñìívöOó»ýùEX óõÍrÿËùÅìÂÌ—ç†þlÞßm×7¯5 7çf1Îæ/èè÷xÕÎW?¯Î/âÂÏ7ç–ªí>­> †£ïw‡k}^îñŒöëÃúVÀNÛºùpþÏgoÿ8ûÃ[æÈ =82 Ûuôôx{„¥0.ú~ FxZßH;—ûÕòÄDK¿ÏïÎ/qºO¬F;Pi)LRÑEÏ;¢é&¿ûÅðøq |¸ÖøÑâ÷fwÀ£% üDýæ?Ÿ{B±Úì>µ>Ñ#|xjÎÐàÔ|ŒÂÇù…'zÀÐùwÔ¢Í̸~D+3n0DßîüÂÒ;{y%¢«;Ó8ð,ðÚ@´¾¼Ÿ_£‰0_Ý®a_¥f¥±Íá¿Äùí9µ…ŸÆùÕêö0º(CgÆðå‘£Ž5‰ãÃõ’ºÔÛž®‰ï ¸¦Qæ?®.Aw vwŽÁüˆ"áIT$QÜ/7À0P•«ÕÍ*׿d»›Ã~ýþîQh´"zJ^ÁøûùÝa·ÞnïnV ci–=U&­[Œ¡ëgÖè®a~ËC éYÑIJL|¾^_^£ˆ”KŒå ‘úáýJžúùí§4ÑRõÇõ¥üF±ÛË£"]šžk*Žô®”v©õõÍק !á°~ Jåë•bþ@ +aæ×/&2m¿,Ó†fÆУ&úa»ºA ž‡ð£<ÑlYóhÐM0žm›»Owè3GcK £Úª*,ЖZ„Q‹T^cºsô£ç¯ÿñ;‹Ö0M·ëËÔØ"³ÓeêEÄFtÌQzTŽ0i†~H +ô;éá˹d~Äæè?y?·(‡%tŒsÖ¥NÈ‹ýj³<¬Š&$­ë  XÔ!(’œ˜EKßåÍaý~÷a ùwÓ‰Õ5=¤®p¢Ç]¡Í=mýp~\Xiì ,l‡ÙŠ¬!Ùù°:¬ö¬‡L§:Ë ÄôçëóÈ:Éú‘ˆ9¿èiA’q‘Ñ&š#ÿz½~ßi8‚üi·ùå¢ê¥'MHtCçFU®—›Ý TEýõ…Pq¹Ú0ÌA]^Ö?Ó2A;¬wPÆc€–ÅÐá1ðÜ@8ßȲF¨ÐÛÕP (¾$ųäþˆ4˜|U§?B³ ‹®ï]¢ùz}u-Í],?~$<‡_Ð$·”?Cîdèà ¢bÅD“ÊÛá êRÄ4'ñ”*ŽYÌÝÐÏÖ<¬Ë]G‹H06¨iÑ»$ˆI°¥/°ÞøæÅÛëÕ +xÄpæ¥mÄT]ʃ™ß®¯n Ü–˜S¡ƒ}°¼Z]ì!9Ê‹¡ëÖ7—{¨åíJß&Á{¢hT”‹å4€w[ÂG¿ÓBD¢·‘]Ÿ”–ïF꤯~0x:¥í{"Õ9ì¼¥_ðäX‰LF©<Œ,¦BðBð»ù÷ë+ê`ƒ˜ûwç ¨ï‘šúK– Ýè*(È؉ò /4ø­è YA]-×7·]T¾ûk¼o0IDèÑS‡ÿÝ÷ÒIá~Uõýc@ʼn˜6uý§ýîé}~Éã^®è)‚Ôa˜!IUà™´èAêF²S „nØî ?#U¼ÆðÕÍ>vÌ V`±¬}^c"øh“Ýñõò#«½ñÊÄêÃn›ô™h¼6X(õíîð Öqþé–-ñ¼;‹5LÄ +µÇ´JXK=±’‘z/jÐWƒÞS‰ýqé!%ìì0¤5yè’CÒ.£ ™Л$óbü @Í6Œ÷)™4·ñ{äiš¤†ªS÷×ß +Žå C:`Õ&©yª¬w°¾Â˜ÈýÌÚÃuè‚´ìtž•ññ²CóÎÈÒמ²ÚtèVhz"¤Pü@d2ÌŒø •Âzë;~º=ìÁèS9pðèȉH+4ú3øN +Zñï~¤'Ò +¸#ñíAÀanœV…`C¤Q+l"ÒÁV Ú'ÜÓhv¦O­Ã>Dé}™MŽ—¦<ÍFŸh„«B»5ÎE†4 ƒgÿk#S³×©q+±'ñ&™‡| sóêÉ„GA7Æ^/³f s»‡yÒÌ$Û;gøÕÒ¯zwN… ýa}ñè"²í…¬ZÕpæ¢p{ BR¸CWÔmÏËÆS9€ Þ÷a8â€ÒˆVP•}Á,XXô2-ðL­½§ø”{žÁÂÕfÒ`Bgáˆ3Àˆ2TA™¯_«Ðd±·6 AFm4Æ‹Òg±LÇs-8bÜ„ˆ•P{.D¼È];p×…vˆ^q=,»¿F‡“j\8úÔñYS;‹nÜÂsB“±fÝüòz¹g›n~IŠg}{€7æ\§€õjj[¿¨ŒW(B)}^òÆW¢ÎIɼ‡,ÁEÜÿ\9_¢ÚP‡‘FMT/7·pfG¬p¼hÕàÂ\¼˜+¯Ä\ +lŠÒ_ª¾ß¬n³ÐwxÅ +8@Õ¢£¯ôÒ‚¬ßÙn!º„•÷dHíº!ŒcŠˆÑgj:€Â@e«‘­67ˆ„ø‘¬í=l^^hAç•Àaõ•uÞy•‘&Áºx*­–LXZí‡D+ùä—⇓ÄScïæµKù“øTñ!ŸÊy²ÏÉÛ°S´û{2›žÄH¢È“qto´†^'ÉñÉú°íËîÁÖé +?¤¶“ƒþ®3扡#ÛÉ„tmƒú<¾jQ<Üô¢¥C‹âoÚ×}ø}2¢½w~ÊD÷T&`ãÇq°vÊDG8°ô¦×¢7AĦ7‘M²?]`üIÎX½B ¾Në‹G Å‚Ö¿1¹xSq\ö¯”*2öÉ?ˆvŠü©RE«öHÄ[šøàúðÉR3}´ƒ6Þ½\õèˆqœ  繪`y²÷"yf‚ãÉ’¹èÙRG|<]´h™0ÝqWlAÇ9KØ+ääCF¶S×ðÅc‡ jDVŒpv7_'fÖQ/DRçc39ÉZ5¸¿ãÀ9žƒØÃÑK™Ô ø/wÀÀÔ°‡0á˜c;ñ H92 ‘+²æqe ¡=T³æKLÕI¶¬Æù7ë›?“É++ªÍËróË-¢ÛO´[Ø)Ò@žX$ã>a³Þ&‹w³Ä*Èû¼X¦žš_èWµ¶%j=VÑ1ŒLwµl¼‹êX1\£*¬\£§0¡‰qÐHzr’8ô'6‚#ì0ñ³„CŠ­E&%îÅ·õ–خٮe9BçÌÄl#°Ä +~ê°’ÕÐw$âiXÕlþjœ¢µÚƒ’#è}âÖ ÌÔö¥—9P$hŒ»Øîðã8'êb·ù ÷Êazš³Á„CGx§±mc^I—÷sø‘ºnÓˆ/Èú´Ü¯nÄÆñè¬×Qbê\”%¯å›ðìöÛÕ‡õ%çÍýKÃÃj-Û ×”xÒkö‰z >„³fpSä¨ÓŠùÕ¢kÈxéàkƶhL±·p­'ä#ÕÒøû!°ùÌÁ©£V°“X›˜Æcößé—¡ö‡Œ}ò଎fìýÔÍ Ð–](xÊÖsÌ] dϪÂ4ÖÂGQ0 ³7â1ÆO,^ä©ŽÃ@O*¿b”¥!ÈlÓ e" ½]ôYÚÑùúÑ'Z‡ÐGŸý]rSbÄ”ÁðFŽ'Ȫ*Œžyh#Çrÿ€õ ,. sŒP²ÛcŸ>ðXËÆÂÑÀcÎÇ( 9j}Þ ›=L|®íl®]Ö×…êsdŠ¡¬§#âi•âè- Ó“¹B¼ãØÙÔÛ¿_íKà ï´É´À–~{‡ÉÁ(=Cgë=㹦׹ŰXÃLÕ­O—ìÔØÁL;Øvû™|4éÖtÉæm|ȯ“àóÓ¢dL(¶gbÔ8jöDÏ/¸7%êkªYâ˜2@¼aºÈ¦‚T)ü¢{][´ÓöÁ]ÊD]FÞÌhÔäü!Z¼™Êrrž›I—*!°ÞVºo/1Ga z‰Í×l)fZÉàï:Ÿh}Ë&+ÿJc£ ^ÔS[UûíJbÎi;iàtéæBÔ^ìQ?òæ¿´„㧻ý§ÝíÓF¾Çþ\ç­Ó¼Dyt‡Ú³ž÷òs7ûÀ3ˆ»Yqt¶÷ÃüŸ¬ýg„L6¯W—Ë;ÞÈâ×…¢åô P;bÅî©û±ðASaƒJ&aM&!O3R^0,:Öf"T¢þïÁ™!Ä¥Á´DDo|† ´‡©ëL(©i‹‰6D¢õ‚:*>ñú·‚` 3D=HKŸPcæ«–·Ò‡¤k²i²)dË +Š,„ªÎccX½×#ºsr‡;Ç;òh}Ý9 RuN®óHçP›ëäN'_¨ò†…vðEçS ¾Åñ…o¸ÏáÃÊô…‰Ç~æбÕ)Â"PÖERf'Ø&^·Ý»êh"j£Pɯ.bjùÁ§m=&ïÅßC04Ÿ s]”=®ŒÀ yÄiojÚÈÃÄ‘ÿÆ>5§L ¾7ŒdGêæOêx‰ðÄ!ý+±ýÉé)©þz^Ó³5• ÷Ye¤!° ¥%¶,Ø È’Å6AÎŒ–!è¤á:SÕˆˆcW´ÌMàXBM«ZF`Cg«&¤,sIˆH52‘ CË+œÖ§>A¯ÕåÓaÇê%Þ¬{‚lQRvY=Ù0!V€œ™ã©¿PQf{>3\‹t ЙQV®Oy^¯cÙj†¾!ðçiû霠>§VTà—ÕxâÕêì]ÊQ¯Ò:à¹7–h±Á‚÷B“Oðü®LI²{ F:‹@²Bcd(hú÷ï~÷»Š_Ó݃ƒŒE×#Jˆ°†u}oq¼ÃÙzÀ" ¢3TŸTà{A/'rÏÒQܳzƒvèu‡¶ !cd`$¤¨½¦Qï]}óaSw^‰ªÿqÆfÄY _%"XêÛum×Wy¡ÕóŽqüÑÿž¤ÊMVc©ÃB?}ë^¢;ì`L¤Ûè mÄÓ£3¯ãW·=_£ùñ#¶lúé[ ñÇ$[2&6&Ø+zöêõN ÞÙ¯­m+Ù<¤9Is“ŒTyñ¿Ü»°áäÅ0m$-4¯Î\Û't“›;íë_èZïHøÝô­ª;pÜê…Æ‚Oþv~Ò78`dß„PŒƒnææÎùýwîHh9ònI…Š,õˆáM:¨j¾n{£–G‘Û|¨¯“¤`ÄžìþÇ:Œ4vþ§oÕÙOŽ¼Œc•):ËO·¬ËœÍoØStÓ‘£æ’¯"tmjð¿ÕdÊ–­¬š#ÎîH]UMEYXLzt»†(ìÑ[Þ·g¤«žôS!B  +¼5þ½jÖt6¢¾¾Úq&U#­Ïß‚x7ç“bÜùŸñYœßÎùfb\©Ó¿W5·ÁŒOàÖ!š¥‰[rÇ@”¤j> ŠlŒåüÏës‹sæn@Á8_ñ©£iFéž 8|dpÁ'ê$Üü‘^`ûù„ pz÷9ŸÆç$o$IÏ ^sswŠV;jwƒ†]¦¨9SógT»sÙ¿Ümý$*|?I=2pðq‹(šßÝ‚.Ã×®ÀîCòËÞ‚ž¿ç”µ(‡ÉâôUœ³D°‰Æôµ¼\éð/mØâÖ)ýã(ƒvÆ]êýÝõ9¹[S‹œ ¾“ß/©“Ü|µ)!³¦Ì£ '%ët;,Yt‹Ù8¿’Äf“.Ñðr“®ððd†È$&c &!r©í|·oTrÒ…&O›nHŒpA/#@s¶Í/÷Æ|' 9ÜÑáÐ&Ôî"áËE"ßÑÂ0œ…Ôàrƒ£äHÝæÑ@^#•‘ì®-0„‚OX^ËŸßf‚ãVÔ‡©âa%EäŒSŸrŽºLqëåF4Ç7šX<]É婵D\j-¡â[‘h7œ‹ë!/íÅ'鎛§M]lǛЫƒôn¾ÜŸ÷|‘ pï>C‰t|PùÃú’U|“+˜®÷8PŽzrÒÔÎ|@.{?æ|l|”Ä~”ùŠh¾ ¹l+iœ;¾_ìSÓÌo…dHö|Ù9¤Q*ÞñAUšÚG¦ãc¬s¼Ö«wF‚ñ^4: äÇààé¸LŽäýxuÎÖüÀ§4"kûw¤q_ +[ÑzŽˆA"—ŽˆãróþœOòm]Í9ÿUÒO6'is9n êkµ¼yÈjоôÈÜì‘d5AÚ™ÔÈ£ö%6»à¦ØÞü×»Þ§ãÃ8ì'iñ‘ϱ|ð‘±zƒÆ0ìãj»ÜðÕd]›cL3Á£¯™¥0Olp^g)N,CX±ýÌ%ÃPÈÛþÜœ…Žó%¸x 'NîΑMLÚL_¾˜ï*C5Z»ßÍÏ‘¹<ÌÃ9r”rF$“yØòƒË/Ïq/N̯~Ã/ÄŒR)h[þ”þþWh´±Š–M<>4F8 +Ôùè¦ÝñÀÉ{@upÛ'š3’,2ˆé}If€¤p®b‚ŽÏKâ}ø•Jç|¯>³œ³4XT›øà—{ÌsJšCÖc‹òÉ]†cÑþÃÇJïÃ1ð©ƒqŠ1hƒþ7ÒÌ߯Ÿ¡jHó¡>!'JÙâº]nñlŒÜ2¹Èoøª^F–g5vtµßݱ‘ó)Ý)ðdÕÍ_i™M°@v\àËgüüÓõîò<Š hxeÝ~!WøÑkl9JùæãzCîÝ Þ]­v«ã4?žïƒÁ~®`ˆÃ[ÎF7Ýð +'eÓì´åb¶Oeƒ¼d3Hš3õY<\ÃRƒ¼§š*¤rùÝ(ýªB”6ØPÕH€R£Gb{_ÕH€\cÊH*o¦dogv@\ËUŒä*ô7úûX5d2ľ¯ªˆÖ±´xb›¾Ô)\'·ëQƒô7âý Ê¥á4$LˆçäÌÀ„Þ"±¯sñr†‹ß¬)¿“H¸¡¼­EAÏÕ`9>¿ ¥å v)^Îrë(ÄÉëSòygìäxâ0„aüX3•!B–1’έTc?7›¶ ™M¸‘ Ô —͆ +ƒ–µåI´e ‰ö܆2W¨ÐJ¥bhù;Yæd舂Î4Ü)Dis8ZÑNNtßr‡ôÈ¡ªaKPaÐráN!J›bPÚµÂR¡5”JÅÐò‘†îT™ÃÐÑÜÅ…¹ ȪÀ9W’ª ®à¨Ç=5åm-fE¢€¤Hôí¤H{V$ÚzV4B[z»¥Gë¤ø‘¹……¾Ñõ¢ÂÓqžo.Üx76â‡h´¯k Û§èûRÎâ—!ª²ƒªtm£ˆŸR¡â§Tªøµ|¤¹uªÌñÜ"SÓõµ,* I®E*¬ŒÈH+ÎF²fb%«HÎråm-fYT@’&};Éšbϲ¨­§ß•¶,É5í2·N‰ jÙÅš!$’H£†Š`'GV C¤“k†L2{ÒÛZÌ ™l1Iúv"X±g†´õ̰ЖÞni—:%~XùuwKÔú!CtvǤ4uöNªõƒçÔëRÃñíUƒ–‹~PˆêÅ úAÛÈú!S¡5”JÅÐò‘¬øSeN‡áá–;(mÈ’©·ç#5wŽìUÓpgÍÐp'åš;(mŠAi×6 +wJEáN¨,ÜÕ|ä¡;MædèpÔ¸o¸SH¡ÍWÑnÉIîÌ¢·u œé­Ü\.Ü)DiS J»¶Q¸S* +ÿBeíš4t§Ê\ZÑju;;6`m_¤p²"ó +MaÇ[\eEÖ^‚ÉÏŒ¯—=¶gÔÌ-¿úf—7CT†hͬƒDø&ä©+ÆH¨paaA å"… +Q)R Eʤ"‡‰­ 4*‚–‹4½N“5NçiS.·³iJf·ŠðásºCÍΧV¹Óø„Y(\墶˜BR~[(ÎØsöKj<íÛO’A§É¢Hæ9n4d4mü[!%̺z?©Ã—l*žpRªÅqàâªÔ )V©È©¡²‚¾D¿•€’;!–܉š…œrr|‰]H%Û,Ä¢ÊÙ.F_ådâê–±Yˆq¶’Rœ SŠAËE½wùH•ž°•¨•6ŠzW*´†R©Z>’exªÌ½Súó#s«[ߊŸBTiŒduÖùÎí¹Ùê œÂ®wßS±l&@Ù:êm‰É±¼ $¨ì)‰*{-ib$g/GnŸ-s/G—~ãüðñ­·5C +È$Å*.ó³rðÙíL‘<²W]•‘‹ÙÚU@"IßN+ö̶ž~WÚrwÔ´Ë?uL¾ÞUˆn§Jиl·JX¹Þ•Às©!é‚AËeCV!ºªt»UÛ(²J…ÖP*Ë–nÍG•?=æÄó:±û/N÷NË'ÒpÓÌÀß7,quÙA Õk‡n«Ìع(6èrÜrˆ¯e(‚\–&ÄRÒƒAßó7µ…T„IÈ +Ñü~ËC2.N‘±—ÃÏ–9 HÕ-ogÇ´ui%L:¢U)ˆ‰•E<õJ§žß±g+Kv¢2.g¥ù¶™vLÛu)ub\½lR>KÖdŽá×&!%gÙ˜V?Øæ¼ÆÛæ@]_˜Ób–G”¥ÖÛö@œ™SŠ‚CËDšg'ÉÙË©—gÉÚËË3ãK\ê.NŠ×©ÄX›¥ÚàcŠÍZmpû~åטÓNbÐr–Æ I´e ‰öÜFæ.S¡^g—>âu¶|$—úT™“¹&w‹”4ç HIÊ0R](IÌøîÉXg9㜶¯+ˆGXhY³œ3 å(+ÍaN-”$g%!WPAÃCšk'ÈWíZ×F–BÊ~_WÅD“XY]Ê}U-#þe½¯ÑÛVñ+¤l+øzcB›¨wûº*²Zh,§€j.çúÔX“”Ò‘?Xñ–!š69ÐŒ¯t„ÇËLÍœƒ?_טfnN³"ó&C¢=·‘¹ËTh ¥R1´|¤¤ÒSeîÅŠ|–¬ñFL$¢âLËÉR‚WX…|r²åÈÎ)á*ÚvWÊ6;?ì,};侀’‚ªÚzÞˆ·ÕË á² s*¼È +†o‹E¾ëÐmÁ×Ò#oÐïÎðe›û +3{ÈåäáªäÛ«ƒ–ûvUH$zÍYÁ@ða¨Ú²lÐ +ZC©T -i ;Uæ^¢ ϳt­75g³†zWí9ˆf ß +®~ŸìÿN÷X§{°úvÞbª˜S”¤õô»Ò–3–jÚõ:ÚÓáçå¶ÓgËÜ˽‹¿q~^öÆžWºLË–BÊL\å%ÒŠ7Ž‰5²>*|t«áôÚÀã‹CYe¥z›vp•™©,Ú¦æ#ïAŸ&s/óìqõbþÆùy ß8?/w?#®ê=®š­éû²S¯«DörêY3é3Yx%‡fáMMÔÎ}h¶^oýo¿ Pmskw7­0NNÏDž¡"<,ÂäNñöã ÇIÓtºûîêO+”6j¿Ñ7wŠᙞ‡=MÆäf€a1t½”!‰2*ŽÞkÑn%6,ú¡J`ÏåÌ[†$Ò2†Dyn#ó–©ÐJ¥bhùH7œ*s²AÙ-ÆÉÍY +Ñ8²5ë½U;.|hT aŽÍÕY=ù÷Uœ&— w +)´Åúê¬ÜFÙÃS*tO©Ô=¼–´AyªÌÉ%fáFWå:d@JUðÝ¢7%“Á‹!†:× «ÃÂÅê®»\Ö\‡ H© +Š@S´‰’ìhÐ +™Ä„ å!Ýðp‚|½¬lÏŽ±—s—¿q~ôvÄah’Ï3D4MÁJ}#rRo“ãÀm¨>\¨[ õ±á¡ÙÍ.MýQ ªàµ²6 ú»R¨ DËC¾ñô58.ìØT¢³+f­ úEß·Ѹ›ô“é÷ئ_:»ï[hc“~¢m}¡Th ¥R1´|$UxªÌ½ ݳeN‡®o¿½{O’d׬ÒäPTWB¦Œ,?4ÜM·tÛÍÒãíTÅ ´k…;¥¢p×$j¥r¦¡;Mæ^Òož!g/–ãoœŸ:–_P@ÉôGÔY½È–.nf +[çß%¨­¯çbòsY­e1Ô¢Öîè²ê댕qáª;qs±2£\u#n~[¥¬Ý±¥#%ãZ#ÊÝcžO/Sψ+MÑ®ÝõíìØ¡‹PmMÙ²vŽ]}]ät§~º ~ß>ùØU·=NBÝr+„ZTƒ +mØ!¥hŸ&sº±\³>gˆÆOÇÅPïÉb¡lž^" Ï–¹úÆíúÞH…轑rt¹7R.Œ®/Ž”+¥K ¹rº`Ðr¾8²‚t&ßI]î…LMT7G&"rB6#h¹hîÛ>5Ö4s¸>X¸­ e[blI»M!"Vo[t‹ØÜø¤å:»6N®\j÷ê=ú±Ñ$Ja±«ÛÑ)oøô“Öߊ¡8™Ýä:’DD1±Bã…¶\dëñY{¹®ï™ñõbG>[æ4Ë‘¿^Œ­ I¦RóªM 6¾ïck ÇÝ4æØؘkZ.ÆVtr7 #¨L)n¢[J„֨Ȃ 9ÏñY“dûIÜíìø£¹$ ]%”Tîb#”Ø ¯sΦ¡¾£0Úq M1h NÛÈB™©ÐÓ÷N?íËQÈSeNfrúF,¢b‰kšª ý õF!B¦ÎTß°qÁ÷ó+‚TÌBY,Réí,q %“‰‚\£ÐÌZÒt;A¾^®dùóÃ3*úÅP9Û +’f;•M•Ég">S\«‹h.M4‹~¨œ×\Îê"CÒdÏ’2Ð&²¶È4h¥Q´\Ȥ:QÖ^ö«ŸWo${Ô7‚˜!‰-ÓÑûµ;9Ò\mŒàqaš«t‡…·u€HËÅVHÉ(2Íç S™·LCªiÔc'-)Þxš¬éÇAê„ogÇŸ'ÝWêÁr,š8AÌP1‡<£®b.—3s¢´)¥]Û(Ü)Zcú)óéÇÎÓçAN“9:ìÄÖŽg@J¹M 峨 $Øú´*‘꺺†ãOâ ZÖÓªòfæÕj%óV‰È5”HÅÐp‘Æí$9{ ]=3¾ôsò‹S6›R>Ÿ†÷êÏ«u½©½ÒåWÛæÕ,´\>ÀV P%Š@Ým¢8.JD#²ÓÜj.ò÷†O‘µ—»¸£¼HtÃÑjØìKdHÙ +ubŸEâBcMY$7T:Ò镦É岟¤Ý Jt³H[(ÛI6¯áºádšãÅ-)Àqš¬É°q ¥f-”0Z ëóT6®åŒ÷fPu±Â åšB”2ÅPöøŒkyS*´F"R4L¤A;EÆ^ÂR¿q~^âψ«— 2ãüˆ¡Þ:âÛÙ±«N͘JQ»û&SÅ$ï0טÆy¦1”ã(‹bPW^Û(ξR¡5¦á‚i@MõSeC÷ÍoHµ^Ýκ³ÛKú¿·—³×ogß|}{ööãl8ëè¿áŒ,üÑ"˜ün8{»ýÓ¼;ÿç³·œýáíìäöö'¼?}ËâF~ò×ù%“_º¯¦%Ÿ¤ë¬TµV Ähç¼TuVíñÉ”¥ª´*)­Ø‰Á«š¸è¬q‡W´Q·ô‡¢½vËEì õœ=›0.ÌÜòspžž]WºÎ,\GH‹ØxO¾’b·ã:äï÷ë›åþ—³åæýÝv}sön¾½úæÃæÝyÍÞ¿¢Þ’DD>|èûÅ·ûÃõ~}Xߞݮ~^ÑÓ/ù]ÃÈ° »õÍïg#=ôüY²›ptz —Œ(d#›ðéÜ3¸Í‡4è8R–2Ûñ>KHbüö3Ì,k8çp¤œTÕ{'„öÄ]\˜¿h™Ó²¼åŸðR‡Öhº =nzY†-1âŒcÂ1I¿€å‚,Ä.ΉÙwsØû;«;Ìð%sÆÉœ!™èI‚ÑDzŒäÙEÐõ4ƒMáûõÕÝ~E-D‘¨ þI0†‡‚g‹ÝÒã›ÕÕ~uµ<¬w7çžzÈÎwéÉ»E˜oî>ÝÝÜ/ü|yó~1Ì—*PßÍ×7úÊ÷°ž¶ëËÕBÞ°0*Ó3ÿ¼"fŠP[$´#tÑØ÷ž¼&¦ÿju³Ú/«˜4´Íßÿ‚'‡§ýîp½ÚßÓIöºÁTs!øi3ï¨çj™z¤£q¥_ˆ±©Çíúö@äu¤/æ[êó›+”HD¸ÏA¿Éü87ýßÙ¶Ñ ·ø˜‰ôQ£_A¸õ8.rÄúw¯¿ýƾ;ÿÞY8>2ßíë1Cé‹cF^ì€~…¤–±' éL×õø&\‹èé¼±‰âS:kÁð: +cü‡^%6ëço1Z¶ó¤õ6»OÛÕÍ @£‡ñ +4¥#±™#@æê9‚WÂüóòö«euPˆi$>¬H~H‡³°#?Œçˆ,8ðó+ú×|îfà°xÓâ׈}´$=!Qä牂 ½Ú¾Áöד2’˜z¬ÈS_5¥Hw{^O5!7¼v¡÷ô ´¢Ì)œH•âÜ„¯“Ž¸üë?<¿&˜~ÍkQ`†=uèqGEáÌýj2`²aÄNãò¥e`X Þÿ¡ÄG|RÊÝÛ#x>R™–C<ÛùûÕáójuƒ¢LiyD:¬éÑXnw7‡ë[”T!NŠçŠ”ØWJŒ3NLFBˆ@Ö~”¢›oˆA ¦0ïæ­e_êáž‘‚ů¥žüpòO¬J‚ÍV×(ôÓÁ{—º–dÉÍÉ–?¬/—Œ„\æö+õXæ£dOäör'ŒB[5¯wûõ¿‘XÊj’<ÌPD`Áª!®Í;×ÍÉ(]²±D¶6Qv¸^ 4 ÷«åÍ×Ùtd—÷=¹'msï:cŸ<—q÷J×÷oþð'P…•øã~·Å󘆖Pæ¤Í JÆ›ÀÎAPÄΨšÆXV\›ô˜‡œƺ1 9Yf-Å&¹ÜôRtâ¡È#ùV4yíäýÈX¦¿!ÄK#¹óŸÄŠq41Ób„Ž÷Åõ€ÌQç XŸòãüOÐb-e’æñ!zÜKÙÒöÇ…"þn!h‡ùŸvw7‡{"ËÁÐò1`z´ˆWE·Ü”^ïp¹ß¥§+Ä@V@ï° @f^^ ÌË¿ÿûÿÈ*ÂZñÿšŒ{I›*¡céq=©öìÙÿŸÅçü‚®øE–Ûiž‚‰‘°“ØKz¤Ù¸ðcéaA |Šºý§§ZäýßãmOöx +v«é8½Y^þùój³á"錿¹{¿Yß^³«NÚ}þÓáâm+>Ô–ëÉÏïmˆmco.I¿ÒýóZ×´0ÿãîn³LŠ1çØ úq»½»ÙmvW¿<‘A?†E7ŽÕFóJP² ‡'7ãû? +"eg endstream endobj 103 0 obj << /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] /Font << /F18 30 0 R /F19 35 0 R /F1 3 0 R /F3 5 0 R /F4 6 0 R /F5 7 0 R /F6 8 0 R /F7 9 0 R /F8 10 0 R /F11 15 0 R /F12 17 0 R /F13 19 0 R /F15 21 0 R >> /ExtGState << /GS20 97 0 R /GS21 98 0 R /GS22 98 0 R /GS23 104 0 R /GS4 88 0 R /GS5 95 0 R /GS6 96 0 R /GS7 97 0 R /GS8 98 0 R /GS9 98 0 R /GS10 97 0 R /GS11 98 0 R /GS12 97 0 R /GS13 98 0 R /GS14 98 0 R /GS15 97 0 R /GS16 98 0 R /GS17 97 0 R /GS18 98 0 R /GS19 98 0 R >> >> endobj 104 0 obj << /Type /ExtGState /SA false /op true >> endobj 105 0 obj << /Filter /FlateDecode /Length 20330 >> stream +xœí½Ýr\G’&x¯§ ÙÞ$ÖèÄÄ¥´j•U™¤é.ʬǺÕ ‘˜.J£y~“}–}ñïûÝùÝÃÛ»+ŒÇ×z<íþ¸Ä§dŸ>ÜcïÓRlöÃÛË âáöáüZãiwy÷á晸ÛÍTšÓϵá~³ï8RRSǯ‚ZNm¯°C?k£­nvî‹}øûøì›Ëó{LÏ;[(¿' ¾›C:½¹}‡¶;§·×¯Ÿ‰ïÏBKÕñ½!ñå Å> gß›<°÷<å<ê™Îó"Ï'Ì9awÎOÅfëÁÞPÞß]Ý1„žûsî +!=è§~ݽ>8þ?BIÂÿ·»[Pø n-ðûÃ=»+ø +K<‡mluW=ÁؘûÙ‚M»½{íDw§/³‘¾Œ8Œó÷ú8Wg´Ýûç:À«ß}´ìþé—Ÿ¹’ÖÏ¢m^ÖJÞXÊ .ä¹mVJÙðz +MLçþþöâêü䛃!øÇÎ?¥ú}«ƒäôdp‹®oEBïo.ßxêN”)ÌÙØé3Ѷ}Ž½%Gû•ýxˆ±À{°]||ÎÜ­8ðcÎp6q¥8°F`¤ùàDg‰ÿ‡ ›ÊÉÆ.Ïï'îþ¯·þ1íâ†y†Q>Ë;c1`=.¾Œ_wëó‹?ûÍõc¢£Æ³ÑkhÇP¾?‰†®rˆÛýü„ +Æ z,áJF¥%ãdÞârác7r¸Ô9¿Ã¶ìþííøÄM É–I5¥à:_\ßÞ¯̯y,¥€†î.ßßûBÁs<Ëa Çôõ~¬ír͆ôý‡û‹Ë÷ ®~öêêZÔÈ'ï®I5ewñl£u^EЖ_±ZíP~¾üC·1íþåòüú¿w¼È¼îß]Ÿ_ü»ýB[Ž ø›ÒçL¶'¥õâû½,ù "øè¹VaéaÃùùRòü1í ̉³QjßýóÛ«‡Ë_O~ÀÖ¼ýóÕÝ•èf7·Ü`³—âø͆^_^“aú•‘ ¸ÿóþ‹‡ìRÒã‡Ë'Û øçõ‡÷8šR+åýŸv&+'¸½×w ¿Ë}s†#KlßÀ˜Ü¶TØ/篮/5£îɺ‚ËýkLÿvöL¦c2º¤T«þå­“Yg0Ë𺾽8w¹B‰Yìí;}Í-u‚;’sˆð2&€ØìUÑRØ]lñ2Å¢¥N¼ücLFŵG,º4úéÓ«Áµé-棧¾¦*ˆímlúê7¿1W—ÏéÝèRº-Ñõ§W¸f£ñ}S3Á:F,õÜ÷ù§)®C®Ïej&”Œ•µv íæüîß)hM-¥¦†AuÙ˜~™ü*%°I°ÕF¶*ó͇w—_FüØ.»•Õn®cFEÊŽ;ð«É¨ªÝ®nj>î?¼ïx_š$¾û’­ &êGŒ¹ÿöËëËø5~÷äÇWèj?÷ãÍ«àßTL»·¯¾x¡FÊÕ®ëz?‹ç¾:_ÂæÌZ=…x m¯»PÄÇ÷À´ï¥öø­oïož-*c;3öÇ1 »úFÉ –6©Íâí9³ÔÒY<Éó¾Áx  P¬Z4­õò÷+c×~‘N /&®óÒüt©e(-naå¶jm1C~I?ÊP þ—ŸÄñcË×5k£ß=qXm†åÙÒFǨ·Oo²) gÙ”Êc?ÿË?-ÓÌz¬ø˜Àuú;T³Üiμþ"MØ2Û‡Öú´G šÄéõ{»z)Ú1Å^ˆýû›;³¡qL±HöˆHQ£‡ÂS.RŒ[ Ô`9í¤ pÅ0»þ)~NáR0þL7ï¡Çú¥3È7.L¥6Ò9- õ¥Y„ Ç©±T,I¦ý¾ÿpõ€«YMÐB®.àƒð˜š™Ž•AÛ¨¿=CHp£m™½äìBçö•ôvCäw UÓ´‡j‚!M›¯f0\Ø|ÕL‡°×ÛkŽNÇ•DpŽÅÐù^Ì¿¾†¶‚¾äØ»€·béÓ,c»í^qÚß‹‘ÅŸÕìg0³ó>™%w òwÛz(5 üÙP¤J –•[Y<ä\¬ÃOŒÀMÄub.Y¸8OšJ,¦˜&|~C`ÒQöŠï—^•aBÄÌ÷Õb1f×¾„9@ÍÍDò åÙ¦Š©«e1²?‚`TšŒ.©Î,­Á˜eÝŸ©•3ª² Æñ¿Ž4ÌžÊÒáWÛ×ÏSÃnUýÆ?>yøqöY Àñ&ÏåÀ!Ÿ-¦AåGëX ˆhðçí€ÿ}÷ëÉÙ‘Vìù…©ÃT2Õëÿ™ñ€IΤkâñþò•ÔF¿QÊà t+dºÒös¿Ó‡´¿&,Ø®ÉhOЖ›­¸¡ùý1øÌ®šä£‡ãÕ^ܾûŒŽ`b_¼y¦u,K]ÊT'Oxˆi‹fe0è€]¹¿·¿wW¿Ÿ˜ä!O„SÕ>üv¡zþfÓÀl/ŒƒDпݞ©;ybÇîASehñ >å“Ð` Ú»×ô{.ÉÝÕí …'t6¤x®Au ôÔ àÕ)ž¬»ïÆ“q÷-<0šî_ßñ“ ƒ“_Ã÷_¢ak``ÙέyÀï†ÝÝ9¶$AÚþeçB/øïŒÝ÷Áöp—¿–¯±p˜aô^¿–?2ì¢ «k0 ­ìk@ tP;棆˺”Ç‘âÎðú.ö g.ØŽë¬1>ºfø™»‘÷˜…š¦c°¼æ$ˆÃö¯‰p~÷|¡?ëÃ;œ|wXgšty'ÃüóüÎËd Ÿšö) c½¶†¼ÏÅ ¥*²ø ¿©F<:t,ÜlŠ‡Ïð0h꟯…·{dÞ>ÛàÚìvCœ]þ÷“ì7..µ®÷v)@°:; v[Ÿû8B9>ãØ0ŒÃÝœbŽð…à”A Ès¾ÆVµÝõ0ŒØû'H  S~§º’€™²°¡‘õWVâ°ÙøÎÅgw‚¡Ž>¾ÆyYÿë ÔÃïý¯zÃ~·w\—uÒ÷Ã?ñ«Eä­»ú÷=ú®?ñ]ôË'¾+_oÙõç×Ȉ©z¾Æ¹mIÛ¶@ +ÄÃãK™JÕ¼þ‰—•zz¢2å¤ÇC#„|wqŽçÛîîN¤zu©XáA[Ë…·ŽuRCòËríŽòþ… i,K|´LPVóÓ•˜òCÆ¿¦ŧïË'$Õf+­ÉÑý^+Ã-añáB+WD œãíÕ ïΛ· +l¥ oÀ•»¦Ó½¯1³í5z¸Ò~š±Ákù³X *> uƒüûê ~$ƒY„’MåÐJ¿Öļûà¢ï½³1raÙ½÷ã{G¾g¸ØÇe÷› ÛÜCL3ôCF׬®«ëó»ë?av¸Fjñ÷WöXŒ]ÒÆE†¨ÜÓ£‡†˜¢ +Nà 8'¡ýÇùg"›ûd”§ðØŸ4»Jf„¦›]ÛC³«”m¨ sÂ4¼*ͳAmÇ¿Ã’¼ëYµ‚=ÐärÿóÔß âŠóŒv`seS¹¶^ÀgØ\‡ þ¿#ˆ¿s“a Òð*’62¼*47¼*`|ˆ~•é¡^5Jx)dxÕ0CN˜2¦áÅçž6¼>¥Äl¶B™Ú¦åe$òÔ|Ô¶I±E[z|êùÆM2³¼Ø“á†IŽ ØBX­/(Gv1Mcy¦õ•W,iy¼Öç#˜¡ÌôÜúcӳͯœqÇíVùÇç.†©0剕<×þʸ”`íWb<1a×`f1 MW¡*@þð¥úQÁ×—Ò¦~tÁxZ7Íè +ŒÞ¦…Õi Kà—#Åvë²°ôõÆMÓ{€BÃÈ+C7œöχðõsqd”«ç>¥úD!Û™rŠØ¬ïªâð”á£L§ì€|¾8¿C2†q­IªßéË?e@‚|¹l‹ÇÈ~$„ñeò˜›ÀÀYMcÊã[3»è™»  n‰yCøÔ©—+.¡.‰ÛŠ§yÈMt>û2´-~õ’màÌÎ&?ß]^“ìð7ãã÷Ÿñþm0gÈ)GÇœÉ3ᮀàŒÛ¿–SÑdæÏ ­y:>†ÿÈ`y’rÐ0ÆÔ)h>œkv#¿f”«3ÐñâKÐvâµa<dÔwñ¹KRd)>ŠGœÆ‚$è%KŽ¥þ}^ë—º„Ø»GMî]Üî×gÜô‘½1¡zÿL\‹í•)ÊG¨šìx&qœ•°||«Ÿ%ˆAh1šÊTgBå7¯Äɇ“XÛA¼ò9ú/¼y‹Icð”–°§vñò*9‚bÍðjmfžÙð“™]7{óæòݳ“Bö«GH$噆yyw~}õ?.=t”f¾êÍ …^c¦i2 ð(Ï)¡ÍïÄ˾A1ÑP9w¶ïò3˜¥B¦NϬË_wìï?žþph›çjaænÔ^À#°t3BŽ#»ùŽpãó4L[°]윇½{ÿ‹²‡@‰éC`¾«Ÿ_€ÝÚÈóúÔžøEÑy åï“>ùkÙÄ¡ ã>ÍÏÈhøïb_âÑOíÎ_½BlÊEXäú©¾µsZ·ÿ?}÷Cüõäk™ÆÈËü"s­¡Ó½ß–ñdDîÞÆxü×ò:Ï$„k™_‡dº¥â +]>˜"tÍX.“¶oÎß¿W·í_Óò©ÿ¯ìžr٣ɰÁq*gV{Fš—‡M¯×=9È£½B¿üïo¯^¹äAÞ‚.§®Ýw§ +ÁVø?õÄëËß./¾–ƒÀ] ϸqÀ·—7ýq£žTº‰œß]ÜÞ˜~úç•cùî ¾.»_€~Ñçͯ3æA¦ZéË&s«aøÙà3[ œˆ~ó——‰þáÅýÅWJ¾xÑÌú4Z},]Óÿ^œÂ^¶€»Ë¯~û?ñHUmÀ_¾2Â{ñ‡=ü7ûï¿}•^\}%K`ÐƧ“)–õÅ©©è&L ÂK{Ð~+šjŽÈ/@Ûý…1ì¤_Ùm«k6¨ §ëŒ—_A£ +y`l¬_oŒCƲŸb+¡m§øÈ~J‡óáŠì§‹uHLi‚¸Z/Á'œbF0V´°‚Æ2û ˆ‹ ê TÁá`‚IºuÆ˯l{‘j{€r°ÏJ.‚ñÜM$ð‹ÌûàèåfF¥.¸tm[\ç÷Òë6/ûjNíʧÈçMŒ´ÜI÷#A4¬#ÆÅjÅ•ËÈæHûÌ1^Â$‹uNÅS ð`w?B·8ç˜þ3â:‚9×9P’wƒ,'[GLÚTrU¤!Ž´`Š´¦ý” /lØóÍf¤KnšBifPž˜ÎFÙL@iÇÈë9ßlF7K2ýžRS#˜IŸû9¾y†7›X8K28i?‚9PˆâfNNfEÕ´RÕÍ£Ì1nYæ€C±cµŽ¸’ŒÍAÝ_êëp¶9\Eôu¤&Œ°Ž\ûÅ ~3¹ö9²ÿ-³WF>ÀçãsHLp|d3‡{Ø·s|d3Ç4d +næøÈfŽIÎz€Ž63@¶34°™ñxÝ>rýh•¶¶–p°ìuJÇðxkLalTÚ×9ëÈ:®´Ò¶sÖ‘9gýñ9å6ÎDÃâ’uòüŒÜùœùhÃå}RœK +¸ÓCö[°Ä ‰OK¤ýì ›UhyùœÔÞ?hrµ”™]?÷3š•æöÌ5Ùhh7eYC9S|."pµin<’¦yïQF"F’¦õX˜PÃFš‚ •'ä)N-àÔ"T=øDM²å   .¦! Ë$Œ±|ŸMcÁ÷& ¤8L+=$“›ƒmæÐXJ6böûè«ùd#ˆ_5™XF^†þÁ0ñ¾™‘ZdÛ6÷åf3",d¹t»¸sD¶‹MÞOAúT7jÚ;-“ÃY8°Q¶s:­ËÍÛ°16;¸¬¿dVk+qƒ âru´-Âм¤Š¡BŸº8FÖ_B, +)GR9žëvŽÝÓÇvŽlæÀf u;ÇG6sý~ËG6sLB.)nçøÈfÎãuùÈfíèŸ^ú0åŠÛ>§¬ë9˜¤„¶NÙ¬SìBÑ溺s +­#ÀÉ4‘Žg*Ü ÿÇí‘0:ôÔ1ÐͼÁ½« Äˆ³R+òÁ†êßcëe>h t •þèÁúÑÍØ k¶ìø¤å€k;àjLOðº'§£€Ê¥¦—Ít³@R쌆ê;P>=NƒfcgÄ +Ïíž7Žßÿ–­aOc#Ø=„±ûŠŸæ)(Ùïêyh12¼bvlvø¹}¹šªs… 8Ä$@TÉûú+7ûM—Š^r\G¤¢› ·c +ù¶›=ÈÖd#J·©Træ€4ôÌÖ)Hcn`Ë ñNí[ÆqCŽ®Ÿ›²ŽHAO%næ@oKØ®éhDºíÌÁS>cÚα“É=oçHIùŽ1#÷ͨäf»l6p?¦[\IÏ«Ü(SIoi3G4)hÕ0ÃÁºàN[t>:Åd~‹P|d?%a“ÊvŠì§˜LLdîëÙOAº|ØÎÐÀ~B=˜á#û)—ì#×V Ô®pÛ5¯s"½¶Oî B6};e¬3ÞQÓvÊ:²öúÛsÎclæ=/Qˆz6yô”Bœ[*Çš*uÄbvûXfÁá>©ÇŽù³?fÌ¢ŽÏø˜|ªY‹¹§þ„ƒé“ˆ!gÑ·O:š|.„uýÓ^&Ÿ ½ +yyOº˜–f)Åþô*ÖŸy˜¬ø ãÏÌA}Z)fÔEºApõÓníVƒ£çÆÐƱúð”œGO6N Û9TÄÓí_c2§%W (qY–Aa) /£Ï0 ftF)Á4ã”SÆŒÓÄ Ý`˜Á²Ôd:—r€_4á”3ÚŒÔȹˆ‡)¢©ÍX &$aècÄ„òÑÄDD‘~œ{Ùü„Ð\nz㪴azMëã*¥ÈØ€¾eHƈ¶œ`b4À_áo4äVpCÂôÀ5­(|sD¶F7›f?™nÁ‰Üg¤…Ñ­ö¥a‹+Û)å©…¹—‘Öñ:‚¸¹ ÌŠfr|Ž`j•·sfdfî>V3W©xìÔͺáߎe3'q×ëºû7û›3èŸIø #ã9K¬lç˜á›yžòÍÁˆ#…s3’qÄý˜Aˆ©íqYGÖß9µøY +—ØÛbð\"4ƶÌÍf¤œÅ>8§Ó˜›#PÉs÷ºƒ:Ë¥mˆb?’ÎÇs-k p|sLýœuÎá}–½â#~i0鵯#ŸœƒxÅvÿÞ|oksÃrÎð‘Í4`*¿ã#›9ZÝÙÌ1#½†ƒ5ùÈfÎãuûÈõ£U‚&³ ÓÁºç4CøÈÞŒNgófÎ:2ç ›,¿ýœýÈ:gýõuÎ#|d‡µ#Y® ñÑûSÞ«RŽeb4Kp”þ˜à±íOÚaò7}äA8jÏOÚaŸüÅÄ;Ûaz0?zÐDÇbzP.å)÷“žL}Òý+³á:Dè!Oe¦9¼ ÷=%cT¥Õ%=òxô¶ [³ŽI±ÿ{fÝ>†ÔLr 쟆ìºD‚Gic× åjüÍþûo_å?™Ô $2 M¼H8T”¶€œžÍWPyèÃÅwðŽŒxð ©æP8aÓaÓ›EªL{Àÿãk¤ ÕrôuŠälø~4E/6ߛ’ÏÇ Ñ1÷w ¡Æ6 ÕÔQßfœ\Ú Ù‚þ&I?m’¸ìõeÉnÒY££2kcÿ=ZfŒ„’=2"5/'=“9¨¿Z’p3-8oöåHÒ 8&çZB[Ç„´ ᦉ£ŸóÁ·ÐûŒö[ñÄZûœÝcG›pbm`JLš?wj36ÑĶ´ €Ñe…ñ±/v3 ; Ò¼5?Í”<݃2…Ù'yÁ?  ä“.3²‰¡€¡…eÏóû05KPõ äÔЋ`¥[aEXÝu~}³èÓN„Æ0Ê:"?ÆÁ #/$B“HC^Œ9bL7W÷t,ÐÍ|DnŒÚÓfŠ1BZ^­›ýLƒ4ÜÕ÷Ï‘#ðýº-H-:ÿ›ÍˆTŽŒ +%ÔGäÈ µŸS=˜³²çm,û6Ö¸™·…«î­÷c`ÀöM±<Ö8Ú:"7F²Û±ŸƒÈb……à”ps0R=҈БþFœ1ØŠÆþû6¨š´r³ÑNy$’»°îYˆ­ïçч¼'šíÀ\rGšóf[¬LËÁÖQt—k´­íï¥ü‰KÒÈ'çùa1›9>²™- ¥íÙÌAËšåŽlædd$ŒíÙÌ)J9ØÌñ‘Í3±Ò>0Š9>²™óx|äúÑn(Œ'àfÖ9v-=½‡ðÙàZíç¬#ëX!ûïù×ünÿ«óûÇx¸8‹gâY#½ö„Fh„ÓŸô’ÐÚû±?éùÀU*k…ö§6(¸XÒ¬ì:vÚ:Çr,C>>™ôÉU˜ m¦,}ÚƒF‡9Ï$ªúé¹h{fë‰vœN„ÞU õ–ÒË#7¿)OÛø'[Xõø·ŠñûI/>½$DãJJayz¿˜8ŠÙp1-ÁgçÏ€®<þÇBfJô¸–]@ל^HÑ2¦Ò¼xÿÏ%ûMxô,Ò>òd'o¾¹¹~ê"F$Ê÷¦¬ÏZ'ÕÿÂã›ûÒû£@ =™@Üȃie’Ð_ßü%l™ÊOB/y^_ú›ÐÅlgÓãߌ¯öO"nùØx¥‚‡ˆ8ü¯iž÷·ÇeüÝc¾ã¹òÊ,hqÈñZKnÇÖ6¯ggÂ¥3ÎúôÏ>Z.œOH¬`heLœ–kª,ÜßÇQ³Ñ¨¸Ë‘ã{ü÷N‰´)ð}éþçؘɑ$©ÁTyÑ ²•êúû8 ÍÝ×0‰»Ù<œgÄʉ­»0˜B+b¡Å3¿œ¼ÿú姄‚wµÙ8v3õV¥ãFu‡ŠîÂâîûï¾ýf_ÄãÖ^@n‰To«»êo\s¤ÃznìlÀ9‰V#rhƒ™Ø0R¤»!§6óÏfŠ›@´¿~5 +lÊ©GIrO8Û͆þE PnÃnÿÈ÷Œ´ÂÈÌuD(䆦q…S@cÖ#HfnHÎGIŒ¼ a&i͈N Lc'^¶­&Ið‚Ä + ˜{X”Û4&ˆ†¬(¸Î«ƒ€Ÿ¦šqÍ‹å¥<ò¨Au'‹(J]"è0²¨0bBŒPˆâ«„ÁV×R2¿Gã8ñh‘*˺Ÿƒg„ Â.‘kE(‡ z#ZˆC8ˆ8˜=™T‹±è°€–Ëêð%r±Í툕K-a%O.%“ö'J 6ÅWh¤@´À WnÉ´.éŒð• £áre6©>GÕ8x¿aàT˄̬ÊÀ÷¼'JM+a’q‘³†»Wš×sµëS³éºKõÍà!(ùÏÃ7£)(UDçŽ÷¶¬0<Å·•@«„{„àÙŒÈ3 ܼíaÙ:Æ-#®:aàj" C Ѹý%®1”H[s› PÉ §šH«©'„Êeö•.ÀñPòŒ•a€vráMÒ™&.5û™¢› °BÕ„‘™ñ™ãJ[¸YÈçÍ:Ó”¤59…“ÏåÁD—Éù 18&J˜ P<”u"-x{EžZj3ò˜| ™ííl0Ï‚§Š„^ºÈ³  m½Š`ðRÀqÃ>Ñ—=§íJ맄…’[»sÏÒ+ŠØ„C“A y]!D¢eæÚþT3ºŒ‰L$"j4%×cåöØiÎýlíHOâ:ð~VfŒ­”‘•tÓ¼"(3PdædeÝ׺H8‰ëu‡ä€Ã«¬4–ŠÌÔö²¯b;ÈŠÃRjŸx¦Ý+ã„W;hzÊætY+ñŠÎºO”V‰Å^1t—¬Ã³ûÑzkÑïbý~(‰h¡G¯/…9ñvQbÞ2rÔˆº˜ ë«äý}O8Í•{Âòq'3  +ø‚£Q<ØO¥ M·Ù/ˆ‰Gy¤ #¬ÚNTw-%Ž™ <ºÓ{#Œ>avçâ^ ®}Á°Õ8”GJ×9¹Öì09é—Yž)Êcð&ð$Ü%4srÖ ÌCʺh¤Ly¢”)>Cæ^©h²¿-¤`bÏPpÞ0Á€¥þ— ÔÉêB°{ðÂ%¸8F‚ÁükÂh JFÜ^iô×K„L‡nœ9•X-èAÎjqi"Á…K‡´…ãŠiû¶4&vw- öj‰ 5œÍMGYØŒF`mG`æ{½%‰:»N‚áâ7…ºnF$û/ºŽ-œƒ¶©z[ ÇŽ„¡ ÅuÍ®“mc¯q®…Ši„©»”ulÉŠºèÁµö¸_‹$T,ÛaèØqr%™K¥m Jψi ù!ä\›Ð_’®D ”Ç»0„C–ºžq“˜k2’¸ŽBA‡¨×å‚|‚yªGêÀYÙ”s¾›d±&RÚðXT¡ƒ„Ì=[2$æÆ\œy@ w<1ª¥jpsš`q¥­ä‰ú6ð~?T[®P¤‰Æ ZHæfD©/¨u<ÀRæñ;aHСrmu%ç4v`A Ž Îþ®òþ²"k” +KqˆDâJa¿BÑ:KÜsI“ªälS–”+U—$S‚Û­_ü’@»AîÀÒ·W©5©®”¥Ê½ÁC\$-Ãwâ$wKÕó²6²ÿ¼¿¬B E"­(1ׄR{Ù„?¶u)‰B¢gÞ3¾CÇT=ϱÒ3P»á+Q8Ò¢¶:% +bP¼ìnè²S!J‘ÚÛÌòÃÏfj ¶ ø ÝêxIó3sêºoF—¢J,ün HC6Ë Öeãg¡n¡*]Ùê$N‚XdkÇ^Ä2TæŒâs¾âŒKCg§L±H hÔRF”R(63=^ÒlàPÈ|Ý¡ôšÊíwŽ…ÞÖs•Tñ+VÒ¤…Tä–ànӀϬ„äR²\(¢P¢c‚ÌcÂHøÌDÂvðØÀ®#:ZK “8(Œ ]Í‚Aí'uÎ% ð ÏéäR‚ô-ˆuáц>ܪ¾¥E"i7Á?/A¸ÂÕÃJÅÅ`Z!È®Evš +î›T®î»ÔÇB^¿ýn,`Ï•ÐÃa;™´ô§ÊåhdªG^ÇCâ¾íi£¨Ä[´Ø*‰—oFÎZhO+™5YÚ ÐH¾¤¼¨+”< "ÑDe²PýsÒ(®‡„¹’àÍÄ3©<-4 ˆÿN.n„…·XÖcMj#SƒïE‘ÊÕ}!Ä"P9e$¬9¬wÍ-îýV@ájB"Q•Ù_åÒ“?† []1]µ.·B։Ę\ßÒ^t&ѱÏshÉið;0â‡î‰ÔŽÌV•ëB‡Ä…[žyµ4I4Ô•ƒÓ„Uò +{Sd¦Ã]01‹ìŒÞˆî‰Yi¨ï2uøjEo3œÄ]Îæ IGdpøWõPBx–1²(ý +JÎG¼w‹{_~‘JVUeSodÔ×ûíª·=a0m”·=麢,¦ã‘k€à-¿žÆÒÈ‘q(ÈqF§áä ¤¸Œ!„ØÍú30@!"ɧùDU¸'ê d" +ãÉuBˆ+Üg48P× - EÏŒèx6–Þ åê „èBÄ`ð@ò©s((x¹ØÂP‹l—-…¾ºU 2fÑYƒŸ­Â +R ¹Š®,äî×)×"tR™)Ž¥æ4O${e©sC‹ÇŒüPR€f—&] +'¢(¾¡PËØSj^¤Bõ1üª*6¡¥-0ÍyÝݳlò QpF•ÝeÕšW–›ú„ú&êažlrÕN窈P¤ÒHŸ:lªëm—bÃ<ײH…Bè‡B7—× ãºs¥‰-õ6ÕRÏsUÐ(ùemŒFÈs«Dí¤ðØX/¼‡ÆJôn×Su*PØ*;ªùuÕB;õË—.£äâˆ{&,¿ÉÈÎv²V[œÌXé”N‹4‹Ú×˦ Qo@žœà§êŽ4PŸH•þÔ— a Ò뢳¾¸Èg…¼Ñ•C…=%±0ãxn…»rzrÎ%6ø2¨Š+¬ï»YäÉ©q¥Ï®†Ñok îË¡\¨l¦H vÔõª)2ÐW©¨¨£ƒR±¹ +•ûä\(¼aóÂKu‰u³›°Æ£.Iåf^ r„óYtmt2ݸé]J’ª£*6•T‘Ô*1‘sá7›{¨šŸ)¢xÒ˜ï{¦TŽ?U×ë£Lx‚F)£(:’,/,ô:žAQ,x¹\Õ^E:.øD‘ÎU=×¾°…»ALÜÒ\&ÆË –7tߌîâèpäšµ#LAý¢æMâ…½Õ›x )œ)™ê¥ŠSsG@˜¦I¡W :[+²ïzfî}ÍÞj &(bÁ„²! H±ÃÏ58 +!º¢pðe!¸{` b(Œ—=7ܨOž›êùþ‘>.›ŒžWó)H%„.?N—* ý6é Y6×Ô H|Ôº°õhGO‚hÀOËê…§nѱ¢ÑßleUT(ç±**`<ë=$+=zØ.Šzß2a0¯ +/Zë‘0Ò]—ºæ«eòÂûÓ-µcùefA*w‹ óÈÝw„æ飡½ÈÌœˆR̘¹/œù«èÛ¤¨¡íÔÔHô*‚…Õãƒä¼h+dÚ,Œ‰îy#«ñâhäšÅWèbTêB]s`cu°xô_‚;Mê>A$QΪ ×EvÜ@ ²º÷€FhUÁv€•U‘‡± +Ö…pè#/ÔP‚ ²•ÒÂ^áD«º +…åFv±Xéé,E& `4£@mÔÜ`'€}F&RÕ{$çu-ÀN»Ð¦i€§¤"Bé@k±P¼Ý©\œ8h/«ö·°KFtÅ7‘5­(ÆC$Û´j‡n3š/¤8zCž4B¤|Ó#LÆÄAÁœïìs/:{,UVÄL«­€LW€èJ¢n®Å.ì܃¶^s!ˆ¿z¥Vãû… o”aÂv% \8<ÅH¶íxTuvŠ} +Ff­f„¡µM&Š›iP/V\ÊD#ö"ZUØw(ôÍä/°Ó@ŒbPgœ¶V¾xêš ØçÈn‹„á8… Û‹uæy•Ð ¨ Ý¥OÑŠ’ ’’Y2)o5 +ñÎœæ^àV@y©„è°‚˜2÷3$Ûè,p»®Q˹›§Ôªù! +URc/L-%q±Áµ(7X*ºÿÎcíìÀ“öh  pÝ5¦Àµ– ¢ëB™êœh(“éq*±¸ )SÖ-ÑR{Ñ-Ñ߃Y2ÒàÆ*IÉx7F@ ¤¦ÐÌ í\iïee2Öš™•E³C$]y$ ÑÙ­ªasE`ÒB*àQ#©Ja$P(Ky=Ä!;«“¡ Ђ2õàì†k‘68)\H£)̪íàmÇÄ"p! Ù®Ç +"6XhÇ ©Dá›JC§(åÔQVO?rIy—²Ço‚/u8ÚªÌL|îEW·ËQŠƒ€~Yh(àI´«‡© XhóéÞ ’³ªOÜÒtÅåçO4œ6Š"â`¦óK­}8Ô=XºzlÂÃÏÚB¶dL´$"¸ó®b_ø"|%}é‡uR+:É}Ã<Õt?•ñÇ„ïÇRšÇ FW«¼Õ¥ùOcnˆa‘¾Î.•á8 âpNQ<Œ}à#ëûä W…vZAWì5naWT¥Gàoä3ãoÈBf›€£Þ=‰£ˆ‚¼ÓL¬)ÞŒ¹$YÍ6‚9Tð@6½OTþåBð¬è„Úù šSx:ÙŽÑ—ƒóS¹ÆY"@[VŽ¬<¢Õ”ŽBÄ;HÏ­Mb«ŠEjîXæ‹6J•þ]•ú‚„%Ù&Hã)R¨€oÎsë¡–Å/¢Òˆª4Ù4V{Ò˜€WXäSØùcž©NÒê"[ëe/Þ†pB”Õ•ð$@¹zCûD‚Û¨Ôm.gG‡ü Œ@QÓßxêŠjþä{ÁÇFGÁè\ic*Qa¬ðÝóìÊœ +ƒPWú&|LX*ò³±ï™™¡ã+IÒrAsþêp¡Ü<;+0XemÆþø¹›È\ƒêúÌgóZËüU¤E0³Jm€T‰+Kõž ¶¾q*ßa0‰š"Ò­Bp2óºçwYi°? `Pâ!±rh;3ƒƒoFÒBǺŸ”^i¾›#e·¥‘Yu}`Ña±ÙOup¡“6Q)í4—¶â ¬saƒla‹¶²¶¸3~²…Ní´Õ=}ªÞ•ùŸ‘‚8¡ÿé‚íbÓ¬Ç {RãÏäi”€Q‰Ù´ƒb·“çë’$@žx$xýÉzKÔ<4ӕϵ4éâÊÙ…6Ä¥*K‡KiR9po|;ÕfP!ˆVéw-õÔÒ&aéÌK+© ­dßO™SÅ·‚æÂöŠÐˆÕM .ƒ*°êstE´PÐ9$Éò©+yr+àwZw?ë n ,ª„ [jÔIœ”ã1Í¡ð®ËäÐ a_C¨oMäxäã¬l{EçؘW$ +¤øë–IY|7cœ:Íz‹d´ÂÜ$OÄoàIC-Ù¯°Š=; ©•!¦õD$£g¿…Î@ªp-D©ðXñoh|A®#ÁØŽÜ<¡ÔråÁW[4ªîÀO$xËܽ‘Z\Ìur 2<’.£V-¤ŠñáUõ¾ÁM éã ™JâÂ< ¡Ñxˆ‹Ê1@]ýJ›ò!+›º}#0H01ü¶ûºð|aÖŠð–Hdæµ¾±5yMBw®Õäj…7‚{ÑçË%&WI»±–U÷>¿fU>“áìÂÝKqÝË,¼ä¸âP)„u'”á…u¢Qa„äúݺ÷UlÖ‘¤ð„ägE|L £K7h*|ÍgÞ2±úq±1À¤(ëJ> +ƒª8±ˆòŠ.¢Ò?³iCM©Ñ¥°ÞVïõ¡(_9†ÜÙËÜ;«þ)–%͸Eê):ÐD§z»{a$–Ñ "©éz_f$zA²&2¹Ç$8‡éú¬‘d9­ZDÊ1æDª×ˆßó% +†^“a’ó… +VPdΦÌˬeêUÎ’W.¢±þæË•=دDXA —ŠßËT€‘r•¡—e¹:@ø{¤:«´Ø9ÍuWüæ tn!FB35$y:`uBêÒÞ c‰ÅPÖ ~u!fë5¡ °W ÷™VP¡RPÿ¥Ì¥ ÷Jç›pj&ÄQT'è4bžPåçóµÏ­@I¬G¯2aÅÛÆÒ ÌÔqØL«hÊ#.3Æ5°±ö|ƒ O"Ó]$œ 7/P^ÈÌݯs3CöÄr¾¬i”¡Z5N'K+"¬º¨6eV1ev>ó7Ê9•QÕ¤¸"X#…:gcÞg.3bB¸aó h$@ki‘½Å^Ú‹Ê¿‘0æ@v0Z'(¶9«ÊPä€te4µJ‡öRÒzêZÞóXW¡žäM;¸ÈìàŸdÏ¿¼Rê=&_ó#‘rý=­’®Dô{ÏB)µ•°m€¹cûã D*Ó"ͼÁ™|: ¼.3.¹^/þfœ"ˆ[ØÁ°ùNdô¡ga€@°{ð }.éÿ)L¯Oj°%¾áJpâ©zXc$o¾[wï +‘©ÍzžB¼RÒJ ÕeÆ`úæ6Ugvä`Gî¥N, bê•$P°J~?ŠÖ9Ô…4ÀÎô-oðŠŽN½úÃ~âòzG³òBBœ5z¨ÚÌ‘·Ÿ SH7½ÙMÛb­òCêJ +]tA@ÜŠ{Ÿ7‹ üHHŠ‘œ“¼“ŽÆ¼¥lŒt§ŒÈ|–:7à—×KÆ´§Ö+ÒÕk8y.´ú c­Š9÷¤5Ôu>ïÙ¸ ‚À@‚Ý3Ñ £qµÍÝ„ ‰ ¥ž÷÷43³ŠÒtjTX†ëHJíY꺈*ÐË?A,êðߣ_u¶ûF§ìà÷l+·q'ÇÂ+Vò„]ÎÔ)ÚûY< +a#§ð•¿ÕÆDƒ=q!2K[Uò«+’×™»tèf7ݼÞÀ³` !$&è‰4"‹-$eøô Ï€ý»§ñª×HPßD+Ë”(þžÁŠFU§ÖžÒz[±A&ˆœuÁÍT±†S—:#.y/“;[Ć:Åé`GØÎtKâZ©&QŽèÝy¿Ñ½–õd1gi^펥h±lYNö§3h^°=¼åhšjøIˆÑhmê]¬BôF KR×HÕ0¼g\ì¢_èuJENdÕpKÂdL'±ª L‘(HÞG'Ó³†XÚt`€T ±Ê•Ó(‘ +µK¨ËL„ÑÇÄ/Õ«—ã.¤(Q ÛK¦•šÿÒ¶-UAZA€@=éT¶;2-Bõ:á=Ï×݇˔ßÓ$Að-³‘‹ƒ b’j‹Të¡ù -ºÄp©÷XrþÙRM}’ÀûmÂÀD(`E?@tmVrOÊ|9Hf0Ç!Œ.iË`ad.u¸u<ÄW㊤„ÐèhD±ÿÜ…6:Gõ²r 1z+Î÷ݨm¶ $qÿN—PV¥' ®H€V©‘WMB)ÓyÔ ž•}¾¡Èˆj3)”¬¿KÿD'™¨d%vj òûDñX)£5õ°^ò$ ”J ΠΔðæÛ©¨q=OLuKÖ›ZB´¬à1Î}ƒÄâ%"º©‘Ü°õ¹@þ¨œaÂЫTÒÜΪýmÅ”Äöoa=Ô¡N;a;«V +IN¡HøÖ0a`Œaôõ¦ ±PËþ¦Aüæê7MKmëmåö OU[ÑÞµÞ)ƒB.xã,'q¾Ta‚ ‹ží•`ŽæEo!ä-s¹ëk˜/ññ‡+Ù_˜çFU3vÝ)ˆ¦N„b÷½„‚‹ÍoÓs“ø·wÄd×f‚ÈÞ©Tuµ§A€mpI´¨»CðLúõ‡;º¿¹€’ˆ.$I"0z¾ÊÊÕç¿ì>%QT%Šà€¦‡Ô«¡«½PÞ1Ê•dýÙºü™IË\‰Ô6¤T½š¦]*ª\L‹_õ$4=th½Ýwªeµ™ˆô!òö—Æ–9z›}µƒHR¸b_!]õ%© _‡©×CµÀgº+XÈp@£`ŒDµu¼´`è%Y™¡’ìéd‘EÏ‚ /&š-$-T©Ùa ì—JÆ&`°ÒÕÙF"S5ì ú —BXtUùÅKAáê£4a6¯Á†¼þ°ÓX@„A_[éºV%‡Q©'Ö—ÆhŽXŒ¤—¥ÉYÈMõ—AôÙ^bªµ<‡®>  yAa`öý¢âp_J”ª±M4’T=XQBC÷=ÑF" Õx—R¤Fží¨Ý#4æ!Ì£Eל¬7œ:ª:t¨®n×D©ë¢(,‰‰ðÖ‹Â*C˜|储„Ø™¯C¸8*,*‹Ê¤ÃÎ×9£{,o½÷æ …·Rda rÀìÑ$ ˆ…Žu0f„Û{s°ã>tÅ,4š«Ú‹xbø›£ôžb6®*ª#}(ŒêH¢ó +EL@LÝyî޴ב$$~<`Ý WßÕ#¨ú’z±¿ªþpDÕC9ë…A©†ðyñêFŽÚ6Ñêœ_ôèÚvôß©²=ªÿŒÚ‘…å´¾ .{!a¦{] ; SÚd][\ÖÊÖÅ­éaU¿¥°bý¼ƒ˜%3ÅߪP«Ên"#ùD¢‡ÌÔ0P×*Z‰Ó_—¡ÄM´èÃEzc²Ôb“Á_üîj‡„9D˜E3ÝßíC†•ûGËc‘zVËRf]Œä™Ulv0ôú.¼öŒ­\†ÞVÈWΕáœXí~a™\¤;„%cùâ8j³Œez´ÐXÖõ +/, ZHƒ d•„šhPæ;ó:5"»k3•SoA¨q&¡RÑ .õ“?ùr¹…2ùÍ99vU¤šoY[E¤˜ÝÔ›-/²3ö§nEMÄ;ȼγ®Œ©°NŸavŠ@˜$­fˆ$’_%Ò‡´ê#Làå-ÉŒÖ(´ø½¡9[%iÉÉ£ò';÷{aò€:E,Ãß衲°ª.šä#Yù£# +­êM/$Ҥºb'.mü¢Î7†Þ”GŸ5Ñ*¾YÛ™ ÌXJ_ÔŽTߟî=.H˜Kñöu½‰}­êf¾«Kn¨U’ãlô€ÆÓjÓ‘XÕ¥®'A'Œª®¢×õµæº0ô †K‚Ñ= »±`a‹?Âd]S`é=aä ~ÂÙdÈ›E %ƒ—õ™öb¶ÙQ¿(û"öʈˆ³HT2A™"}«,¶vo—ÔÕ,B‰·ÁÛ¿©¦_ሺ;ó¥ì© + E:#r,ôlQ⬹Æ'Ô‘œ5×M¡›ê¾ÁŸ¦røÀY¶ÈXŠûôB ÈzQ»âG™åαtfPDZ¢Q‘¨ûÒïÎDòr¸ùV–¢‚jî Í¢DÕUÕã+ô‚Zn†â$*–¨,’`4i­ÁEÌL¯›$ú½¤Ÿg¤úMnG¢µ¬ý" ‡ ,Q·Û‰°Ä˜ ÑJ‡ª+P‡uz/lÔ´Ü뙽¨U«LÇ R6ÛÜ …½ÆÚ×PQ‰FUD( + †FZÂ~;sŸ©þÃcBÈc\fÙ Á‘jà0øšYôÿËNU±/éMê!7R+e€>Y0•¼|\á’…W¯éݦYLk»%äÙ$3¬£@€`D½©vÑ–‚rVeÑܽ@¨¤y®ï‘¬Êóå~†¼hzðÔ౞§ÒäÁc=XHKx–Â|³œd1«Ü„_ït'Æ#gËZÇÄXÜ]^j‡¬,µx+ú +‘ײ?WÖåvjN UQ8§D ‰Km}–Â7-´¯W­Jck¿jåˆ ÕyO„W˜è–Ëßìô’´Sa Æ‹²”Do¹÷¡…µ¦_…Ï9®|'«l9zÞÆqC‰¯Û\ÙŸ<8½Íâ²^åZbò*ªë¹2õDQ1=h+ÿ\²k’ënJ-싯"ªª9{ñ£»Ï²B mÖM÷e€¡²û  ­¦ƒö²zUóÊ0hôT¾{sƒÔ×2ÛD)«Îûø‚8¦U̽lzSŒ±Š“ÆXsq”ôf¬tø]e&Ñ^q4Šl¯²¬+)þÎ^/PCâ=õpVÖêÍœT‘÷¢5(zÒûž´¤¿$zS±Wð§`#Yáú•¶Œbçà¯gæDµSƒ67üT³Äe­Q^œ´–û•"ÇÒ2¼ ””DºÈœ.[Q´lÏ£º‰YBr‰˜ÝÊwN/_ö*n¦”ñ°oXáæŽwOª]&fš]3d³Ž&ŽÕ%·¡“­ez®Š23In¥âÝ?¸±Õ¥|!æÂ.óTʆŽ#éuØÞ^ˆ­#šìñTç q•±v¬ÒQ«—ÄfæÝÑþiRKJ’¾9{™°8žêùìXÑ¢`”¢ÒDzZ@SÇâ~8J¸Æd]*œdžº7BC¯Ô;À›ìðZ†úÇ^ÍóRo¾Á{¦Ñ'–݇gÛ€FIñ*¾„¿•YI„ú›™´³Pf6øc”ìM+ap„Izð=k¼âéXèêG’èÝAUOp}Ï ”³1Æ¡D„”sЭ«äyÂPø8ˆõ7´wWä"HcÔ’Üa…Wâß*‘&Œ2ñ€ã®Ñ­9܈”Èè‘€­N÷g-µ@8DüHÊwCÅ€9µQ]8×Jƒ*'W–¦7e«€±Pæ…çØùòäezÍ“ù¦wîFä÷üU$ºãä»ÔAéx_’*§¤X/”˜xG ®T‰¤ÈÉÍaèTrÓ‰ªò›7ÆwŠ@äî ¡³ô+q§ª:Ña„õ6A~àæBg«SŒj†¬W2&%ã7?ð}gh¤d·ïƒòÌð§? +MnùN¨®Þ|¸»<9 ( ݼ¯mÿµò1€/ga/Ï-Äoßœ`Çw—§øwì^_žÄ´{Ïÿ÷Zc—ïNàÜ=œœò`»+ŒÝÅÝ ¤ßîò×ݽ¡Fn6·ìîO cv—w'|yᇛÍ+Â"Z ïO¬Ÿ¹ÙÈö ºW'pí.ñoÚÝÝŸœ²`xwû›ýâÀ+²nO@ »‡ótºÞ]Û$î®nNÐËqwóá$wïnñoÚ½¹°ÛWø·î>\cK€ˆô¶õšÛsA‹=d ˜vÑ0†JnWàT€2èÏ÷øwÓîßcŸìn\à_;Âß´Ä« @ÀáÎßš;{ú½fþ *ATv³Î/½Vàwá‘žmĤy:ów·"±IÙw·¸N‰{Ž·±á­t\Ø×sàûïÄK¾ýF+øÌ;‚ãha|¸5vw¯@~FÕ:Üõ~^>“ðŽÌçÙNâ×Ñ.²înlGaŒì.1bŠÀîüAŸúîá-~2í¿ºÓ“°‡ˆã¹Ñ3Rœ8?òvâøw}æ°·N(_H\ ­Š¤217æ AåWȶüÿŠÝ‰KÀE¾v+¸]ÚßÍô¾Ý‡{‘’æ½Áð"ê8EQHÙýÃ:ÿ¾Ô~Ë)s¿/U¼½æÝë³/%§ÔY~Þü~y‹ìØ¡Ä¿»” ¸ÿ D¯IS§IÄåÞß9—»$z )ôÝÍ¥Ã$©'DàGejà+¬ðBÆ#|5óóðm¬£éZWüò Zòî'¬žÇ(8HŒD~w)ºü¢ÍEueƒ¢”[ñÙ[ìÈâ·[±žwø-ܼ›+ìŽÝÝKqŠoŒTËzs?ÇɶÙgGož Z,TjÓ:ùRJ}œÇÛ2{Øù{Bÿfb#!Gf÷=?ütûáÝÃÿxꮃfŸšExýòaÂ<¿>ƒ”5îþrùîòáê䂦“Ú]$Žî~üðþýž€Ð| ¸oïÞÞ]=\Ýk@ŒMXëÅšxbì~ºº¸|òäùª‡J„ý£ +Æ1¾!¥Cí³»‰ºX N{KøÿÿûÏûïämžÿSáàMÆÈ&U„,i‰ý–p ƒùOGãà"ú»¤áÂIz×®œ¹ÒunçÿñL€È> /ExtGState << /GS4 88 0 R /GS5 95 0 R /GS6 96 0 R /GS7 97 0 R /GS8 98 0 R /GS9 98 0 R /GS10 98 0 R /GS11 98 0 R /GS12 104 0 R >> >> endobj 107 0 obj << /Filter /FlateDecode /Length 27382 >> stream +xœ¤½Ûr^¹±&x_OÁKj¢q>\ºÚ½=ž°=1»ÜÑ{Æí Å’›:Œ(¹¶ûAæÕæuß÷eb­Ÿ¥rÉÝáp‰ ?V. ‘È2¿þÝwåêõÓ7áêõúÿŸ?~ó퟿ùõ¿Ô«xõç¾™7³¥vÖÿìÏ–oR›ù*‡tÓgW~ûÍ_®ïïÿvûéþÕ‹—1´qS®×óý㓯ßÿÀ?òM¿~ºÿøù-Ÿæõï_ÿŠ•›x}ûùÓûÛwŸ^¼«×÷ï_=Üëíy“®oß½zñ׫?ÿßüç?oRýêÏÀ8~xi†›‘KßÃÛ·Ÿ_¼œ7íúÝýÝû·ï|}é?^¾½õ€ŸÊµ&PêšÇã/õõÚÑÿÕÃÓý-Gv¶Ò×ðþ’çÿWâ_1ôz}³GúÇ×ÇÍè©Ùø~wÿn½~}ÿéánA]¸y|x÷ï·¯ïù° Þ¾»}üû“®žÐZÒîïo?>â»éúïhì7ãúéÍûÑ£§›|ýéÍí'üÐÖ_÷úãÕZ¼Ò®ßxù•£mífÆP“Fûöþ Ž²†µ-#ó[÷OøÆX3»þáþöÓçXC|Ò\ˆðŽaß> â"ü×;Þ?þý5êúñ2Âͼþôño÷õí›UÄY™(j½ k†ôÿtÿñ“0qû°Ð_Ã\ãx}ÿN«P#ÐúøþîáWxQ<}¾{ƒ¿ˆåi<؇ý/íçvMõfÖØëó1|÷x ĵÒ¯üë!ŸWçìÉ´Hv†Zž?ï›<¾j©ñ'Ö ê×bô›YâèÏaüêŸÞ»%ß„’£QÛý¼yø >®´C™ŒëWŸoñ7põþ£þ×o??~zàö.k<ýúþ‡îï>¶f!ñ9µ¾ÿøʶÁGQV¿þô^?.j}÷Ããg±ˆrýîîþ+wIŽ7aÄ`ãÖŽ[sIÜsk·ñŵ›µ}òXÔÌí³úÔëßýéWjÌÇ›ùúÃÇ÷¯>ß}zxÿN¨éÌ-óXIן^¾ûL^ð•ãŒó&Ʊþ•ü”õâÏrý´”*vóÓÂè»÷oï_¯ €­,f´~j.[½°u°_ï1Òˆí‹åIµ¬©ýù%z'ò±ÝûÛ—w÷ƈ¾rÜ¡ßÄÚFѸßüý:®?Þ. ýíáÓ’7`råú[°ÃE†íúîý»OÅúoŸ>ýj7¯½û ×‰Ú¼¨cïýÅI}ç£û°_*yñÓWn*÷bM‹=•^öž*_à?»±@®ëíúŽ/ÿ×îñE˜7)ö0¿0 ö•›<ÆEx¡×ö0UÊÍûwÂýå¾ÅÏ¢\B³]?=¼{ÍmZ!´Mñ„ßHì/¾—ä¦!¼ügYI\ÈK9µúS5`­ý.Onðªü—Ï×îûøÖýýÇû_yÇW÷OZ³[¼!ˆE’K)XÃÿxot¿øÅÓ×tìk=TÝ÷÷Ÿ~¾î¡äùÊÏä^¯ÿôÿ|«õþõýZÚÞ·¿ùÆÊ=¯©ýñ_ÿ€?¡Ñl‚ÎK ¶ëïoïþýõÇ÷ŸßqvõúÕ¯þI×È­&ðÒ¤ÞJuŠÕÅ–ó˜3ƒH`®ú?+0»È1–ùü›x»hj^ShrRøþG¨Ni7üæémúZ™UÖ†n˜ù³¯ü’ség½,¹÷ÄÚUO_=ÊÎõßç@þ)ÙÙÃZ¡µmJÈÑÞs e¯&ˆÆïIU5Ó=¼Z2èáRl¾~€T­ ˆ.Õdà»;—Yh6oøçÒ8H^ä­K=>üwBIå'{õ8×›…¾Ð¾´Ck‰+ø"ø»÷ŸÈó—XŽà8ëçEb¯_ë…û§O‹§ u˜Þ[k<ôÒºø¸ú‹—mMçîÁ[ÞÜ~üþýç¯íBMécvÛK‘}¸»åˆ Æ^æ˜mÛ-•#§Ä Œ¡ä8Äø¥åé“fõñ=F¶z¨+â¶ÂÓØÀRI1㧻û×\¼ï¿ÕXÈ؆ þáÓbÔmí³Fý©-Ö[ðL¨Þ?==€zZÚ#k=¬~ÙúA$€Å'*ú¶hxþÔ‚úª1ε!ë°†x¶¶~Á°Z¬/­÷ÊÕÚJ‹ù¸aúgá „ûa͈š×Ò,×øÖÓÒê€é>¼{u¬$¸|P]lõB£V¨¿æõ·ÿöÛ„¿Avoîø‰€5úÈ!¾B`‹{·êÔpŸ>,uå¤Ï1¾ÿü$t^*‚ æAüÖ¿h<ÿJ?Ê°j kóãýã#Zñò‰ÿ2ëÇ8a½/;Ãíý/"PòþE\ùð‚£ýÛzÀ>\(¨øÞ-;­ ˆöqýf=.6e V3 s&©¼CË’G«¡`²Ë"¹?ü€ÛõBCLgпû`e0eäã[ŸlñžW/¸c>?¾Hü +ï`#Þ¾~¡=v£®K/}c-O€ðo0 ¼´Dtˆ'6üríË9žƒ˜Öçÿ–ƒÄ)ùÍÂèéÇ1_ß/L-0‹PžU9X DÒ»÷èÂÑ—ná(>”ÁÿhØ'lÍ[ý1®×n%ÜÐÀ"ù÷÷Âìùœáktŷ虯éaHÔãŸôWÕ 4‰_^@®ÎWker䞩Ɖž>P¾~º³uø Õýô }¿–Ò(«6 ìí{!îÓ­Óý­:Ú@)çh¸ü·ëFéX‚sñŽ5ªËá½%ZÛõ¯ß¾Hë[_)Ó±¢!Ìñ Ø{I`°'"ãh÷ðßÜŠ‚!ÁÚ_Zó/×? +/kykÒ¦—úYb[ðÝk!æñåËpbZjúÝ?±<ôNe÷NI.ן_@kütkŸ^ÑÙ“,TpZ¨Mº‚ýx^†»¯Y (¸‹ñ,†ól0ÿ;‰¤.­àk"¬-=¹—^ß Ï´12ìþ¿Lm mÍ”ô‚JÏ_aW¸ŸþË»”Â`/íúßïõK½þK®ÿí;lñoeÀÇÀJ¾~5è}‹Õ†íTn•0Hg KËáöY[™DÀp‚¼¿{A½äî³èçã“ëi©,™¡†Ë ^îÅ°Þ.b[}¼w…æÌ­S³.™>_i+ý “æPéˆ?1žøùµPúæ+EÒ 3ô45÷4}0µ”Îóý[!âáHf±L*¹÷0œIÂÿ E¼‹ÃÙ$f¶¾÷å™-gœ¤„=á–z€“íæe‰JôrTO çŠhÄí±½ÒPÊõ΄-½™Þÿ%ѳV¢áëÿ£×ÿéñÑnïÄP}š qÉ•Û y@á¿_¹ØMë¯vý—‚)µëüWíª—0|/¹ûßïšqýOY†¥.B³¦ç³¹ÿ$áY@eàÍúdÏù&±LñÃOqtó—ty±*Š=ÿõýqû^»²Ô0J/ýðq5pIíùå%üúU£_1¹_ÑÔ¬îžIÝÂn—Zt ®Ïïh‰“nl·~¢…å¼}«ö—u!\!žðG¬ø îš'j‘ÒÞ^OFA`~ÀKT•+þVÃh×ÿúû¬ŸæM?åt?åþ(æ½Fý MþŽŠË±ÉïAªŸ_²G @5¹~©J ”HÂp +®/,Þ7ö˧b6NнC;¦¡y%I¼AøV9¾êh)9^ò‘¯Å½Ÿ}äK^÷þ•1Ñ;ÍιÒtÙë'­öɉ×oÄo]í…†Ìwòñ³`¿•ê<|ú®ø¹Þú$}½î¹eÑ“1Cë¥t“'êõoÿ¦0¯Ø'» ³X®¾—ÒN€¯þþµ¸‘3²nÏèøÆ€ )æeZvÖÒ\ß +%o1²²µâe½ÆrâÁ¾µ :&úV<â™(Rƒðxó3ÚÔæÖV]§…j·Ý +Up•wuj+`™À6 °Qÿ›¯ÆŸ¹¾â‹%ù^Dãh~™&\>÷ÿ!†½åè“&òô Q€7@›m´€ªØ¤(ýºià¿×&1¬òÃ+±zG­ äï$ga“a óúÏPˆÒ Rûxo¤f&Âã'-íöcSå€M÷þ³¦õ Îœ–è€î€u³÷?Öoˆw·¸¦u÷ÌÞÀê…cŸœxÆ3Jóþöß´ž¿Á$}(ý”±²ÿZ/x¹”l3 Зõþ=yÞI¤†MõÊXœ[æ"¼ÂÒ×zNè¢s²%'*7¨_Û°µz¼Å8ì¼òÅÜ,Úø‡›mÎw6µ|‰…~ðáňhQÐY4¾TáÆk»ÕŽ~€îtùúwÚgíÏ•ÚSà÷¯5Öß%1ôïÿ'w9c‹;c†_¿–¶µù¯™¹tÖÓòžè(WpìïÅ× +s´ÆIŒ(\ Wï%z_Z/Wâå-™[½stþM]3°ñˆC­wš‚r'¥öÛï5'i¹K/T°_BÀép‘E›i‘·‚~¹?;ÇònòÕa¼?•ÔpÒvÿÀÃ-Æ/øa/å4û4ðœíäa„‚´¸õ»;8ÖïÌ3K§3q8SkXtý7?²¤÷ji&úëéÃýÝÃŒ>¨Ðä>Ü ã‘Øëûw/ØgL_­5ÈçÛÝçû-ô0ˆª$]|B£óÉ™pU;7{éÝûÕíAúÌ[ü˜Ýç÷¥fU¨9x’ ZyVöüýþöãÓ/¡yœžàÚ}à÷w·ŸéƯIä„Òøýá†Î|¼çÁ1™üàƒè_£V¼Ua(ï¿Ç)øÌÇ¿ñÔ‚šéí[zâ¡·êÜí+GJsv3Ø>ÐeÍ(ètˆtáX#!¦û\&ðšÔi ²È~!”A‰¼A$° ƒ³¼'„q ==}õxérŽîrþø^Bße p@ú=¾— +û\Ø_¨'ÝŽðÜ=ˆ‘á$®\ÿYzØã|%Ÿ`TäWõúõ“¶&Oî H>Ü^ªYæؖ僉ô‡˜ØJôÙýýƒÞrÓýŸ–rôt7÷tËÈ}mòÖxŸ äé­ôÆ'êyˆIy¿Êæ‡R:DüE´ëuÄ6CŸîõb?lëõ^>4¶CuØ2Ýœ½¾LÞ +É÷”dûË}ëHx*_áÓu|ýúwßUÆ«§»ot|µt¥%ÑÆ¢ËÒ2Á_fîWï¿ùáÃ+M±„¿[–w½úñ›rõÇoòÕÃ7q}4ÔxÕ—´…Vúö›¸FÛ×÷–ÇÕg¡¤skiŠGdŸz3¼jaíßØ NY½½Epbîç>ÖR—r–¶'8}Y–úšk+œ2v‹ÁIç.Þ°ˆ ‡²6~Á¨fw()ïA KXœúx 4çÉY-#sÍñ +Nû–9sX“¥î–Õ^€Ø/úX ÆSúÀ××;ˆ9¢Ï"ëˆZ ú¬q”‹.Ö°F8«¥ƒ´²FS–*º,}b)X»}-æ|îã-e­4º´v“€Še.I‚.P’×rz ú,N³Fqê³[–F2¦OªŽ«¼D"B5©´¦é-6©Q/úxË2×»Ok.ġϨ٦µÖÐe ¹¥‹.G 6€Mka4/Í~IV›Ö\õ›ÖZáSŸÝ’oB÷¼Itt¯•Îè“p=ÒnAŸµ²µ\ôñ–ȱú,»1D}ªƒJÓâ­Õݲº,n¼lÁ‹>ÞRo?­·­åË- 8lõ!GÌi· ÏÚÄ!_ô±–…É„OePrŒœgÍ]2XGß-«O^øÊó¢·¤›%³ÑØÑøÆÀB¬Í°6sÙ-è²P1ÆEoY€‰(ƒq-—OŸÛéq· ÏXÛ§žûì–æ\´Ó9Ë ~‚¨¸õ£7à÷…‡4Î=Ž†P¹NÜ›ÂP—¸3›7 ÃšGçÞ°¨q®Êâ.$¼öÚœWë¿©_½ ‹ +Xp$Mqܱ`&$ÕënˆL6wîs´2fšØî‹ó•a¤9¹+Õ"ÒlÜÝGŸ£%FìJ\ľÝ2::¿E3yÑ”· ÏÚ!Ÿûì–5öÄ­²xUCÃú'5#ñ4Ún‰/ +ªã¢·8C"³i”/$†Öw‹ù‹7l(81šTKNᵤÝ +_Œå¢·,F7…“[Ž–ŒÀû’MÞbžÆEŸ£fåênD^½^À!2¸Q(»}BÉ™wŸÝ²H¾d“@qñ§Š`D±—Ú²–Ü[ –L_LúÜÇZ`v§Ð^.ú¬yeÐêöž.úXˆ“ -Þʈ*Æz&Ѿ· Ï@<è¹·à85‹LgJ¿ušFÊ)çÝòøÍw«Ô½¼e1ÊAL/f¤Ä>üØâËlÞ ¾¡A=¼aaMZ–âeïX 2r·%å·~Ú2@„Í[ 0i+t0N]‘bÀ 4YÌØ*Ü|Óèb¡¼ú}ôß—8j]t^›z{9TŠŒl°ìRôkÞï'*Fv!éÙØú=Rû1ðiJÉNi¿·P~£– Å8ùïý¦,Œ,×F_ã–ÂÛø;ÈÂRt C¦C1\ókͬ]Rø;¸J(R¼³'P&¾>{“î§`m’¹i³R»—”Ç;a›ö„”ûyáo’  9‚½Iì~}>“´—§š’׎ߑfóoM²;kÛ×E° üØ»²È\ê¶<¯Ñ/ÙÖA +õg{püTÒŽßûù÷E`©Jq9~ÎþwôÀü–JrZß8lëBÊ´( /æq@˜{×þB¸–Ȥzè{ð[tí5†eþ|hÖ>ô‚º‰ ‡ZZ$„!»ÍsÓÀzÝi$i0,l‘o|á„­OIè‘"hڃߑ1å.# _ÇÅárþ_úXÖž„¦O?r±4âú¿~óîa»k(`!ãXÎXô;Ò›Oµëµä¨ïÇRûÅïíüûâó”? ~í'äçv€È^û!@}ÁálÃòYËbj¢j\ôñ–tSÝèo#“‘SŽ´F‡7 Ç’g‹CŸzxÃÚr္±¡·é?„¨µÈâGÎÚ¹ÏÑ"'Ïœ9î Ï4ƒŸ¢R-’ßp™œúì–ÅI蜡Áß­…¢ªèÈu·Èªª¡_ô9Z²lMXU ˜XLR¦¬ª”w‹¬ª2Û¹ÏnYp8õ´V*ñë»Ï_9ƒÁ±pË]¼ÅÁPùk‰S§åNk0Ýož:ø3hgšVlè,­›-TèŠU‹l!„ðûx tSŠéÄ`UC²üÝ ¸ÏtÑÅ[ ¶¬.Þµ¸6áZ¬€ÄÈÅÖ¹¿Dü€¸Ñ\ï.+Š=(ÙñÊúÃwpº|êa »”¹’úÑÃŽKºÕqúŠ7= çS=¿×f~Gï` GÒ¨B=¬áè±–*&bÏ[-CÆ6ë£uàΈ‹õ~½ËѲû¤²æ”Ï}vËî“áÙ›ç>»e÷¡ZTÏ}vËî³Ä¼¸Äî³[v,ú¸ónÙ}Æ"»v1æݲû,l”|1æÝâ}RDàÙyÌGËî³°qf7ìàí<â£e÷Ah}Iç>»e÷iKªÄ‹Oí–ÝgáÊß©ÏnÙ}.úÅp¼a÷X˜H¥»ìïØÓy­Žï³D+RŽæùcGˆ”ùò©ÏnÙ}è9ÏýhÙ}p“Ϋu´ì> 1\Œz·£þ¿pXÒqXÂÀDä!2±óLjñŽ±¤ÆútƒÏ¢–žNÇY)y:ÏzþZ›pPv;â‹éâ½Ê4Ž/¿·Ìž2<Æ,†Ó{§ÞË:é`þ­/F?[¿ÐÎhòìÜ~¡ó²kGŸ8Q~¡3,—0m²—smK‘x6Wª¦\VÇzß4Î/¥´Ô„©CÊÏg¯Çe‰…¶dÅZõÅG=S/¦6_,[ä:¾ˆ‰Ñ„ñE­íxL—åò±^>¶ËÇñB»aâwã[C°éòséâsçêóúå ãò‘¼ÎÏ?—ϵ<Îd¡® }ƒè[v<`p‡4˜àý¿ý»ø¥5†ÕÕ$ +±m‘¿=–¿Ro^»m`·!¬`ÑU[Æ2Éù¾žÃtùÕ¡U‰4èüÞðèô|î` Þ¡.ýj„rtð†ÝAé§Ö°;¬-³äè` »m÷xê` »œbãô»ž 5wÊš·»\pÓ˜Ú]vËÑbzé§>Þrô˜^Êé©·}£-ð +}¼åè³í\ŠÍ©·}°šçYyÃÑBî¹£‹·} ¤ƒ8õñ–ÝBG™GŸÝrô”®çï–£½qg,ï–£Ät8cy·}.pvxêã-Gˆéz1fo9ú@Nçójí–£5¼ÏGoÙ}° Û8/Ån9ú@LŸ—ÂŽÒù¢‹·}xÜtñn9ú,\à0ùÔÇ[Ž>|ýÜÇ[vˆí/IMº¶”¾”@3äúsÒ6,’Y¢ú Ò? á_xˆÏų^~AîÖ΃ÓòUr·.]¸Cmü¹‹èª^¿(v;NG¿,vßæÄn„gö¹°]ìJuMë[ÃUˆ´²4)hôW_"ÓÛæ‹—³"á"F¤+#Ø/&ýµdjÙÕýWÛýÆn›Þ–‚þ*×)í¶²ÿªû×¾ÛÆnÛPrØ%”G@¨Îo/êœ%äŒPË ú–éöçDä Ë]8ú_Ó%$­IŽ×³„ÌòiNü•Ô£»xZ„à »‡y­Ö°{ÐcžÊÑÃŽØ…<¢ñÖpô€W§×Sk8z ïô;}¦LìËÍ¥dÓïa ÁšN]Ž–Ý"‡²»ÏnÙ} òx(»ûì–Ý"ïŒ7ìxõ<à£e÷Áråxî³[vˆ¼ÐÏ}vËî³p‘G>÷Ù-Þ‡"øô>GËî‘—ë¹ÏnÙ}ÌÛuê³[vŸ…Œ4Îc>Zvˆ¼vóѲû@äå‹1ï–Ý"/žWëhÙ}6âoðxí¼ZGËî‰WÎ3?ZvŸL+ëÜg·ì> ažg~´ì>ygî†Ýƒ;ë¼VG‹÷ùˆji!Äú»`k/Á߀êÎt»¹¾Mbþæݧ‡—¿ýÓo^þç?üþ»ß\ýŸ¿];8\}1w;ZßO V€À‰=!þÿ—¹Ák]ì-œ\¼3 ϼzöÖøÙo Œ~ËíË©âð£uˆp;§üC´ÀBˆ-©â_`÷ãtô´Eõ1 Ôyýg”œlÆÒóÛÏÞ{îpi Éëש±D£ÄŸêë8eþ²nÂkÙ/LrËÝÏk c"J1+Á} &yFD>Mò›x4¤“a͆Ã,çc½|l—ãùÛsÍ|<åûsn…ïÏ]ô¨—úåã¸|œ'+|°‡QnÿÈ(O5+´5&'*¨ßYå€Ãñ`Dø¨ÿ :G ®t@Ö-+ŽzR:ÂMV€D9ÎÑ£¸°‡X³†ÇÝ2È]æìa »GžØ’§ÞpôÀ±}˧Öpô@ݧpîa GšÛÖ;zXãϖ'ÝÍs6 GuÅ#•S—£e÷šqîaÏûwœŒàdûè±[vè5ûì–ÝJF:÷hÙ}°`áb¼»e÷A…Æ 0Þ°{@ŨsÚ-Þ‡*F>øhÙ} b„~î³[vŸ…‹>Î#>Zv¨gî†Ý£ÑØ9wÙ-»Ø;bb>»e÷Y¨hÈ9Zvhíbæ»ÅûPÅÈg8GËî#žÇ|´ì> °O}vËî£Ñs´ì>Ð1ÊyÌGËî%#žWëhñ>?£væbåöaßÐxî¼Ýï¡tSrý#¶ Âxn¼ú{Ù…-Æ/Xú|ï¹`syˆú{5¸`¿ô¹ýZÃùÛO%îz)ÿä%¢@cl_2°b*:'‘º½Tz6°%ªôW4m0° òe`£‘ lþUö_uÿÕö_4Ìë/˜¾ ÉÀyikˆ­L»âÉ·ÿöÛ«ýýÕJ5¾{ú’@BG¡¸¦Qü³iO–{0»-ÝZÆn™ú«˜Õd³þ,ö„,äx´æ™¿ýÇŸ³×—•/Çz’Š‘i47ùêÇoâÕ<†ÀVœÏ¤¸Ógâ`Ë\67žùº‘V”—BtG‰-…áÕЬ¶8Í’ |¼ —Š†4”Á ˆ¥Xœœ R-…\@—ÕÍwààH„ä"ígÆÒ!¾ *Ç4iBE2 jŒ" 0ÂÀså™8a‡#7äæÏ ‚3 ± dÌè_€p«›#cÍÐä :€.‹ và‰|äY8Aà´3-GËK/î  ô°ëxdÜí µ&äåŠ%õŠœG'N7{â¡@¤%®‚P~cÀ éÂ]Þ Ý_¡"\ žê4s¾b™¾–´ œeA³" ¼±7’¯*i …Ø‹O%1 fa"ÕNˆ „l¸;Fø䪷=‘"˜c&ÁX¤Þ²h5Š„X ¯•Œµ.R6Œ€wÒ¢¿hØH:H´‰à…&C×AT8¸Î›<èPõÚ„Å"b‡ŽÏµ$È÷ØÔ‰`b”GDø&é‚3ƒ{ÌñY8Ó7ap ô±aðP³&§NBD^™F1 {yï³õ $30³…¸@MML£ãL°g*‚÷ºáß\mCÂuÁdêÆ'âcèVf¤Ò!f¶Ûº¦Dô-¥aÏ"™¤ìMPG³©`yuÁae°ïœÑÂ¥°‡¡C[”ø2Öì‘*1mŸ!ò£²˜öÞí +0ÊÕ±Q± Ë7ƒ’Ì^|«Mâ¯ÇvÞ¬™‘êFÇÿ“‘k±(ˆûO6 .˜Ð¹eˆ +*ÈÍ·ZV\S$e4ØBšªXŠ±W E%¦…(H <¢3 \2#ÄÖà‚ "ÄB\`˜äŠ&²h7+€ ¼ïpÿgð/£q>3¿•0*“÷Ie8ZªQd±˜føÌ+ˆlÁ@Ш¤O±q€2!€ +êC£T*|žÆE`B.»ÁpY7¦A*´€hœ„I0Åg( ª#ˆ+×ÒLAØ‚º9„8öE«&Õ|.œÝbÌC!€äý’jUº\Ù÷7!6ƒÀOÂ;á#H‘†ª¾Q³‰I‘›@ƶ‘‘ÈÚ«1rcw„*#„¹Ä!'rCÙ弇7–ë­; ‰‹‘Ä‘4Š „¼-Ã&öjïÕ☠4Qò‹”œÓ)xç({™Ò¡¤äƒ ¼hCJH7\€€:h„)ã&yˆšÉ’Å#oòÄÐ5uvÄ°’ö@¶c»Cl‘dà öl­™‡Æls: ‰ó²7 <áš³h«œFŸ©F¹Ť/Õœ>+¡LøiëŠà"€¬ã  ÊMØWi”AÑ €`ãÌü0ˆ>*…Éô§-¼NÃ&КÌÝ•¡›“DêL«Px÷ vQ  A4iÓÆP âÞì`A³½n®—2 +‰Â}AL¶C’ òX á}3>°±¥Ìiƒ¨ Kgdœ{(/ ñ?6»@8 €fÛ#9@j&‰Ã€’<6.›×)LndãÕ¡k¦¼ˆA‚æ„ M'ÚÈZåhê}tª¨Ô ú1 öY,6¨ÞH¦-ÆÁAÖRö’Dê5!; +@eÈ D “ïÔ2n‰ˆ¹A±Ù»ìPƒ­kÔ@mU‹¦ž)0>ö.Ël™‡ÆÆ…^2m0uÊÅ +ÎŽilÚ“An°@f“f\UÓï¤ØX8h.Ùô-ò5‘8b¸sv[›z²a ›Jeþ‚©â– F6d—Àõ7ÂÈØ%Í´>•U‚"–È7)ž§E3#ËAÖ”%!@X:¨ý>dä=kydz¢Å#”°X,bYxÎöˆ ϔÈ¡‡FöC²qÏhœ%\A²H'¯êA.ª‡ä" +ck8YeT2 Â„Ü ERÕõ€c€!Ô÷ßÉ , `»¬+€‰ÙGÔ¸R±ÔÀZm.ÙÂw†5²Ê-²¶I°ÜG¹Ò¶m³Úk0Z(@éznö<õì¼æf@š¦-‚§}3!Ö7×S°„GÐg„ÿßž‡Ì8³L¹R…–ù;ìz!‹]tË>H|N¶m¦¤&D²[Wð ÚBÊC9ËÇ€êÞ´FÁ}DÕÁö‘¶"H,ªIpÌ -ZsŠQ†ŽÍd0lÝóŒÂQÆ(ÈÆ1 p„Ö-†þîd 7§¥hÈhö˜OÍ€à ¼XC[S3s.ä½b¶"IskP~,±–ø]\õýBÓš$2ú… #Ùf™Ï[™–Sb=}‡9ãÕñ <K˜‹a'$q'M7ÑîEÚ¢…ãreå,iðî‘l›¾1çÏŽB8Æn¼§T…ý¥mÅöŽW’-Üq…ü"m +ÕR¹cîàìŽ0_\¶(+ÉL¿<Š}$ }9ôxF’9æl|ž%ÍN›kZIJ4øW +ôdÛñ`Ô‰vºÙ¬³üê6Œè(ï݉4ås8‘^aÕ¢³ªÊIî6ýÄS–Ë–G&JSÈA]‚D2 ®) ŒÓ´t hƼÝŨÐO…<ªi›'ó -݉£á²¼A~KAÏô£ŒÎäu¹˜å…ú¡Æ@ôxF ŸÈù‚)„礗 K Š[ík#á¹u#¸Vø\³ÁŒ‰0`#‘Ò%Œ–fÌóæ8L>ƬçÓÅ8Urð¸8.Z€Âh¯Àìó'´Õ¨• 7FæB(VÉæÑ‚…ì0Ë[L>qSwÛ8ðŠ o­TÛ°Ý3ÙŒ/ôõm<ú+Ø0Kcc 5—„f+‹FCs¶ÐÒ­eD¶¬68í;ŸéG=¦1ÿÒ6ÐñÒ¤E}xÞØÈÈú.'d"þÃ8\¢"Àˆ¦ÆåW-­g.‚À³2´G^E9™œé{'ˆÅŠð¾(úl4edب²éLsD›I5e6—fâyb  håÌÓT¦ñT‰û;•å®›y5¤sË£R/C9#ÂÎXm_ÜK Â¯Ë¹]‘F¼¡”¤\ö¦K6»Æå!>‚ÆŠ@CŽ„©VÈHß(-$å}e'êyB JGÑž£ •&G‰m£Q(Í)2ËÝGa@»f2¦L"©ö +ºFiJï²]ËP-I*…Óšh†@j"%Yì¯àW“í8ÒÓê:µÃB.H²`¶ã +=uÜ_Ãù1Ëç@ +­$œ–•§™Z¥EzÂîT¢”ûOÕhÞªdv>jáL0­D—[ÅžI,ÎyaEQxƒ¬²ðÀ>QþG½¹æ•`šCèÆU9+Gº—¸Q ÎX£î+i*©«Š¦ „‹•i ³IÔý@IlÉ:z““JCqmc‚ +áA +g¤8A”ª}‘Bˆ¯"ª´XÐé2bv›Hµ‚e×Öv6š¤×à)ŠYžJÔxª**F±„ä(äà%…4DŠ`€?H¨pWª‰HØ4x("ù™ †!Og¡@·rãžù`ÿið°™"¥ç™§w|#tx¬Ê*]ÊoÉFà0BL³ +ÆPm>s‡b‘’r÷bPÀTçq5VÂgßz,MôžÅü’Ζ(M|,a5Šžº -2,†Žï49‡1)×è¢zÑ5(Ð ˆ‘2mO„"*³ + +K”@¹«"•é^kM@J¶E’A¨¦%Õ²—„ ®e_åÆ\£Aè¾íMħsv\#HŽ<’E}Ë®aBa¨\Ü4ÑQ‘MùHÓG!ñ¿©QL:e bH:áØÉ@Ù6*ð†M’g§¯*²Ž¬Ä§É_Lâ¥á0˜W\nF9¢éd».kãRyAõÚ¢\G8# BJt´ `„`úM¸È.ð²‚Ba0æä´¨àùq/j‘þ—¸‘v=lj“a²˜,Ù4}&T(”ªÁ@¸¡V£$“$ÑÖd¨jdÝvÚœÚæ¬GMiÛib•,»H”àÀ0ŠÕV4U%ÒÙ'UÍy¸%]7íàÖ³¨Éò( +i…(²À§¶ì[Rê”…Ë´ZPåŠÁ7 ä,NvÌ‹2~¹{@9ÊSu¯  ÙÃÝágªö‘Æ‘f)@µ`Ø¿ÈرêIÿ<¡2ªR+ˆÛ­GVÀŠo,T™ÚÀ\eƒX/À±k1–C4šÚ¶¸‚ »…&BÁÆ4CÝ0€;¸mó^ œåŒÜ |"$²Ø8£÷Í5 ¨R˜÷83 8…ÆÐã^SÜÑcø0PÈ9Úe—µgÙº&o-A@3i +n:ñ瑳k´4&coŒ0*kè”ÞkÒŒDÈ97 ½xA߈ì¡ZåÞP CØ ›¾»X­NZ¡(EZT°%.7¥âSØëÄÝ1û1i£Š0í"–6òD^ +{Eº8{9vÙ”íO››è”å—,Ô3Ð%1© +Œ$•j ¤Ž¦i‹*AÛªm³Äi†c“‰Ë'µÑ+;(\Îc¨¤1¬£šµYX¯Ä`Tœ… AŒ*»ŸÓ#0qJôŽh¨è†¼êè´’9'Qƒ¹#ª@t«áW ¨ÊÓY8¾ Äð°ÄT˜|¢]r·;]QÇkÜAw;pO +˜ 4†uRžôÙ¶³×ƒÇKü0úåD*ñ¤ÊŒÍ¢†»™1Çá'ªŽS /f`0,Ò“%ÖÀkð¸œeh“,"íAžá< Cw\Ä„!i‚G£ zD.¯hýÑ$"¹íÀa¢F {Ò°Ñ%còh)ÖÚD¢µPa àµx,,Å[Þ3‰äëe8Œ`Pãùd%q¤ÍœÊ$Ì#܉Lwì@nΡs¸Í’Y…mj.vwˆ%"Š!BÚøL„9O'”!b#Kèê°ß ”yç¾,5 +§,X ˆ¢”fPÃG¥lÕCc¤!c] ¥\8Õ·‘ k‘0:½U> ¥&7 "ßLìy2þ!˜Õ N?ˆg¿m¥É¹×á}Jéì¼Îé 0héG¡,mã€Ñ5QŒ 9Dº¢"C¥ŽJõ §8$äÃe£+Pmo€³÷óºtL¡7Šã´YE ¯uµ¥À:6•¡¹Ç|X¤4n)]`ƒ¹±¶°E Hq‚C}ä¹cӸזÒp˜Òdä¨>ˆðع¼R}Õ±ØqÕé’˜®qšÉC» +ó±ÛäuR:cE†ˆ{”šGÒ8Œ…2œ?D1 äSÜiCÒÇC–›µm±ÄaFq‰yÉy†¤­<#¹sl阓ml>l¾Ûbf–xò(5I£Äµ<6 ;‡Èé ȈéÔ82a"0AÛµf¬œÌŒÊØ?]§€ò +cl]¥£³Á¨4t2æW\…t†Q¬ŠXäÑ‹¼ŒœbZ¬½à!ˆÙÔYÐ3óf£{푘ÔÉQˆg„D'8[t\ù¬å‘-=úÍÃ>“íÚ‘¨ÏÈ@0RÀÀ“jñìèaÇ€:¢Y]†y>Ã-öa*n$ú¤T'Ï! ÕH!Q +åÝœ¸…ejA£€ó±•º÷$)×,t–»×9â•b-c8ŽDvÞÉPTyä""œ t§`Ý'¦ ؼ¬QLj¨ççd´dÉ@pWZu½¼–w²Ã–æD¯«¾‚¯á²ŽÑËF÷¯ï03Fa+çkv,':lV´'<ÛmU._°NC…n{«îÙ\:Þ·Ðô +°P‡ëEG}w*Ñnßy|Ù ÂæѬš¤ƒ[X˜f=5Ä–óbó˜» Ûy:¸5ž®5âªU†ÖŽÂqàY…¸#OUÅëªÌWÞé`^¾i\Cc^õFf£â(U[þJÍœîÆ·ûeÕ9.< +[Š +5b.² àë0ZULâJ©˜cjUðÞÖáy†ÿ|Š±mçÍ_…UþCHž“¯:ΔZ3¿sä=!;ÌzÕ@€žU§„Éé¤9–7ø=1 +®Æ€u¯ÀÛŸ´<²E¬ôÉ.Í. +:=„ölÝáqÀÈg5„Ÿ­á<Ê#”ïÎnØÑ)|ªU‘¹{¨Ã>†æ&Kª‡c`û†ÑUûžH×ÁÝlÌš”°ð{z±SLhrS™µâ}k`oûQtØÌ¥'ÎaNÛåÐè=¶»³]ØÔ´j3›·?ÐåòýT ”Ås¶ecÚMe±OËpQ§Ä‰ oÙ‡ã7&LùTŒÿVé!´Æm™— jÈ.MîÜg-êSš]$¥Dš©Ã2÷m๠rASK6•}*)Ø¡™6ÂêCã¬ÈC„E—ù&³˜D~ŠcÔv[Ò©Ö$ÚA2Ú¦{~¢Òÿf5Z¢·êŽ„À[8Ž-+$Œ»1[±ƒÆeQSĆË<†AR{–~^É!ÑR`¤d[<# §Ñ‹tST5KY J†º—·3tÅÏtn‹,ÍÄ,bÁD²ïÓñôP6@$$F›ãDaJFT»n,Ó!cBð0N¦FA¥Š¢¤ºÁä°D7%ŒÿeÒXâ!EÙx§##ÛáQŽCPq&Lô¯"lc4‚ˆf‹('3¹5e™ÉºA³Ó*! ßèè&Ñg[„=ª*œJ0¾Babå¯( E3!it^jCÍâ»}½^˜&øäÅ%2³íÃ5A€•5ì8•¬Ã7:çðBõƒß Ê½ý&‹± *@bø¦b8OÉQt©ìRRÑcZ‘c]`‡–l¡Ø;½ÛeqÕF1LÝîô ©Z€EÒ¥œHš2ÙM 1Ö4 Ôª¦Ñ£7­ôde@Ò1ùá©'øY8° zZsÂã° ûÍã´Á•W£h.¬ÕY¡v® +”f:ç;i>(Vi0$))éPŸ"ÐÊ8ÙDÛX^ï®×‹vI!ÒF„`B’:H[C9H|iÉ- € Ñ1Áy3æ8 +ZèÉvÖ;LÄ¥“¢e-—âó À£éànQÁ:´½g³‡˜p^)IÉÁ°)ÒÆ&U‰¡¡ƒüš +ÍHû»f䡱Ñc¡S/Žƒ*¤®!âTø•Áè«äGØzi:Œ¢í*›(­Ú8ÓOîˆ*Šð'J»ÆÙš¯Jj¶/fôqLí5ØØb`ˆ¨ðÍ!ßÍAH|TÛ¯%>¦Ç&5#Žb†AKË¥.~Ê=Ý4°-‡_Q$tT“ë 7:-4Ên£ò÷{àÓxÈûS0û/ò*T!C¢svg¡=šhì& +ú46’›½·Ðâ(l{#/[9.ÑÞˆ]©6: ä‡HBÜÖ0iy3v_x8ÁLƒ9<©(›|†tHä‚Wn0WÇ·®1¤-Œ£eECRùËÌ"B6‹47>VSŠÒ¨›ÖeTÐÙ5Žž\]‡Ã»µ,*¡†ix¦EÔeƒ0lXQJå¤BMKm²3.9^˜•”‹±`Ï[òà%0¿Ê4a+3#+›$±ˆs£îZl³Û†ÍÉœ£h ±ï•¥d1p<Ûà ›6U <™ô4*pñëô€ +DÏçhuF2ª;]~¼•i•Z ¶_™!l¶&öœf4 „íñ&d„"Ù嚸/Ù±¤Å¯ã¹Û}giÃh fç&j*¸ó¬[…t„lã¹:>q¡_êô2J½l„ÑY©‚šÝzÙ¢[T³yâlÖ‡ߙى‘ó\!¬S v÷ZÒ²sl5M—Që¢( ¨˜)½Œ(¶KÏTèËPl¥³_ÐëûVW6ÙtKçó˜ÚU¹%£In@ëþéb2…ã9uÀyçè5*#Ì{0ž»_ö:í,¶ôÉ”‚aá5•™‰÷` ]‰0"IJ¤t5V´PAÐMgš‚[gH&Ås2w \öJupLjòïò—…]qÅG[7° <Ëkt9ˆ>Ü4­6Œ`¶pÍad#(ål´ QN:É9w»"7ÈÇí³(ªXò>$F€GÞ‘¯XÒª ÃFšÝVeº_³3E"šÃ âÏæo N…g ­´ßÌ -¸P˜]t»’6tÑta¢¤Æ ™1´šÇ,ª [ Ï]w=›VeQñbñL¼ó×!£ ÙD©ÛûJŸ zÌ›&¬œw­"ÍÀ³<Ρ+÷%hq(“Õ¢-ç´úÑyxò‹×ÇEÕL~±ID"Øl0<ºM¡“yßÐÞTGÌ…x±ËG¹Q1ƒ&yÚj@=!ˆ:m5°¹8“ ”—1¡ª¨2bx¥rhráµ%þ ]ØÝì3“<:ߨü° ±×;ët7óÍ GLF*Ææuç7 +ȉËÛeãIL?w]š©p*²}UO£×µœ…úžsÓ5œp‘‚¥!á ”•ÇÛ¤m Óæòp_ !›Ïº¬gñxÎÁ.oÙØ|µšò^ús0¨‰„…,(¼“Ò&Üþ„ÎÐ\RØ%ê…†à³Ý»Èqôj]FzP@€¼êRYdÎ`j& ;qCÄ–»óxO/ªO›u°Ä‹i“*F†(|m¹š¬R¿¢™é_3ó8E‰¯˜I“²ø`V[ušh”iÚ|#µÁIMSï&X#ùô†k ’Á•/À¹JЪA{Æ3ÂHÍ!qS²¶³*É«la Õ'õ|#2{Pçhxb'‘×I›Ê#Ci­*lÂPȬV¨‰ > Ó#„Î`$,#1$„´d±=äÖãH'høYñ\íÚYzÆs”FÏYˆ~Ÿµè2IdvŠ¢ý3aˆC i/Ê ÍQf& ‘¥Œ;ŒË—òÀ9·|è ‹ªH.0mÒ.8îTÔÙÁnjÎy£»ÖƒÉ ^*éÒ[˜Xä¤Aõ®U<"ˆÐlÕí"lgÝ°‘ì2.0 tóPiÐ*ápèÊhq‡åì˜ôZlÔQñ/õÀµ¼˜cç×UL”Ã@„&Ò{¹"š0ý9Œ­R)Wq5Îqoq7ÂÄàóˆ¦0+­6³!w±j²6Ÿ (gÁ6Ræwð€Ë`(áÈ27åmP@ËØ—Œ1ÿ‡VÉa>÷6l/ï¼Ä)„Hæ¨L4Ýh‹À3£õpƒ“ÕNeLÈ^’8©„t™Ã.¡e6\vÁ£‘'U8Â,–™†ãÀÈGòÔÂ:ÎÆ»ç€qþSûCÙl0g³’Í8~Œ¶óS°.“W +¨iñÜv U*>tFm{PÔ1vÚv +*ŠIì•l)2É›UùR v6  ¢&sšWžj@ümÖ…Kh B§ï÷i7{OÄÎBˆ¾“(D …t¬ÉY¹U­-U…ÈTµy&³Þc5ôÈûë—x#ì<®AOBA¸%/ùhdé¸ïnÚ= ô´àµ!’«2ñ öFU¦”¢ß°BSãD`Ëõ¼.PGÊN¥þ­ÂÂ…LÖ<—ú¯<]3 {«˜ûºl•î“ÆÔP2¦.ý{3P¸—€>«o<èDË“ª¹iJ×0²ià¬Æé¼ E¨w}§\–æV§g Õ!³ûš9|Rêm`vÀÞΞ®møå-˜ƒuÚuY¶t²{B‚Ïô<F•œž[­¥H¾Ú¥•Ø µ]äÄ¡çaWÝt“ÀùÈ)Bì d£eGÉ)†–ÚW¬^6ã^‚Îm2O´YN”rÑ-ÿ¦ß¡#P>ÛΕÅgó”}ˆÉ³ðHX‹•ÂõÈy“h¤d¬ +àR>²5‚¤¢çÊÁ6v]ë,y<ï$ÔŠ­4 î^Ïø(”­s×+—Œ·”öÁÃCŽ2Ë4ËÙš >RÄõ7ÊŒ–Ç­@ +lÏIÒsFÈÙ©øjTS‚¥Tf©ÍÒ=º ˆ©NS­ +é:†g ]…›$v&¶‚ÊG$m¤ß¾1™'‰Q˜Jù+-‚…ШqV>«ÆJÔë^O˜mp9F#KrFfFJ)zLÙÒnMhž3ö ýšÓ´‡–y¯ ¿ŸB-è‰ò'…B­‚T}\bš4Ê&ÿ)™¡×xæ ŽáÏ;‘œ‰€;÷† ƒ'±ž{S†âY7&‡Ç“í$FãN¾¡A + ^ÂÈÌjyDTŽTä˨»SŒ¶#‡7W+|Ä·(@¶)83È#a¦8¯CÚ»¼ jž–”3dË*5mçvE‰â´S»²îm¶ÃŠ¤=ïg±8+<.hÈR9Šïs„z¦•â×Ä ßÚö€\̸åà@A½Ú} +s*N”6 3Ûé ]\/Û÷“*¶Ž,Íö‰C“`GP´š#ï0RïÉ›gŠádµü²)€¥iM‚Œ›² 7â.Çz°¼J˜Ål'XyY,E Ž"zwg6UÀ`4žT·hi‡Cž$ÜFUmMA½(±óÈízóSŽ[—~fÌœ–°!S?òÓ Ÿô#÷šºÕ°â“yÔæN“#È€ ö]ìÈpƒÃù ÓR|‡ô(¦üò|ÚÇZ–Ÿ©Ÿ¬-²éJú‰ì¦ÉBŽ²ú "!æ|pÿA g ÏàÄÈ+ ¶Éø d*Á·ä!I1Oäÿí+ÅI­©ˆ€÷Â7z2€Û”çtKbN¼ 6Æò¥“Vg7EÊbJ§Ôo(7g9Øå÷÷xU ùÖr';*kûâsƒ»E%6ó¸{¦ia³úé`a'`ÚyU´ÍòKWK‡šþÞd2lN÷iº­‘Ì!™eÿ)<¢2,Nƒèöx”O¨ì:"͹ÝK’쨎¥-û\^=eØ F¦Á&jʃrMå­!ÔvN¼UF“œGA7NµT.tVV-v3sá(¨2#´˜-WÃêÝ2û¥H%ÝùÍ •ŸÔ M0tÙEPz³ö¾n€hš.Ø–5(˜ãÂm!HœEsSÅ\ ¥:Ô‚Á£(d %e2Ž€9S04—äŽQ¢tpïÚÕKGO‰ÐÔÃŒÊÚŠÁHšk¹Ñ½.)r:!R=¿:èX îÊ,HP,‹‹;J›í½Ž©ˆÉ c_SäSˆ â0(x +‹…ûÒZ0rm–.¼¶Ço³hœ+b8 òçD‚3Œ¯a´°bˆGàdŒ£H„È}€àœ/ìuå¡\w!|‚¬‘ƒ=³áSL¢ Y‡Ý›€1EøeϤ'Z¬@dÚ€KP’p&²(›y j‹G¨{Q¨€± Ø4lØ™X7l@YF\zÙ·r˜ï>©ðY0®ŒøÒS–<¢­+E ›, ¬¼Ú+ -Ñhèÿòžë¨Ü@b(ž™›-2®¨°Rq=¦ +v†EEÑð™WVjn7ç“]Eõ¬E©¹ÚoÙJvshÕCFÆÈ¿)¼éÌ’ŠÉ9Xù\Ÿ¡<+É{¶|%ÉÞbi÷štúÀ¤ +Q +Lb+hÃS öÎ4%,(׶9s±‰É‘“dK©.âçÐÁ‚Rª{”ªHg9ZÏ“)ëK õÆ’™ óÈŸPoyÅä S•"™â«a–yõ&ׂÁ`KS › {8 3 +ÂW286Æ?ªì+j`ŠP K6q'(ã"ZšÂØtCn]k:á£É)ÁmN%HäJ(ð6ƒçí•%÷Q‡è¦ŠÁ—N~%TÛiÜ{šÁó¶µiá²Ï[@¸QŠù`äAÚ…=‰†ÔÄövblYå­ !"êEWÞHU•~BÈò´…äéãbßî®É¾UK‚ý Q7…’ÏêäÁÖèÐb:ÄxSÐuCÆá0(˜jdŽ´“†éN¶"pƒ°.¬†AjÃ(ƒS…LÝ9èEË ˜|¥IÄR³t2âBQg£ —lx6r(ü3™CIŒ¹ B¨FwÖÿ(Rt¬èRP)`B-Näò´ñt2(2¢°ˆy÷©xôÇh£ÚE\4…ÒòÍÍ&ÿ$sÕ ŸÈ°¦ß b-É&ÒMÌʢå~œ)‰›Î‹Y¥ƒwRY´é2 +yucX‹$Æ´ÃÃb\£Ë€#ȬEˆæ¬CäüVé äM—\˜ ®‚Í‹Jt^2ߨ;«:Aås‰Òúà|È´O’K.Ý&?§+WðÆ„Õ”@áp#S«‚2ÄU›aÔ‰gĨ‚ª' D±ŠzÎÕÄA†Ñíä¿*˜b÷ÛÈ‘]^0E3:p¢ZP›ÃÜb$Y¬ÄQÛ$ʳÇén0¨tð]6».âÀ|²´R@²„±]ë‹ðòTáÙ! ?T+ÅÓIœÖÕüÄIQò“ÿšÛ¬^YÜÜ™yFžøµ½³ôé¬Ñ0ÚQ¦rÑïbñ"~ðÖ(/& É…çÉ qV?ê^­¸‹—ªœa†ëqè0 ‡5yråã蜧)šVª']1ªyÀ“’QÜMÓÀXf^=ÆPh +yÇáäšø Ãòi aìÂw¸¤1ÏhwaW!æYì¾=úA:aN??j•èK}cǹ߮_Š“ÓÌW;ûYÛ!•VÐ\²áÏa@LäžöM¶ƒŽ‰Ü«nàÑà‚ѵPNb0D$#j(ïÓE¾“è<“70“öÜ× Úõ­IAKá7GEY L¦³»ã3ë¡Ù!TIœêq•:ãàoîc¬5äܺ ½Ñ¡˜»’®6:ºêþ:•¯Ó³NSi:‹Ô80YS‰ l5 ܦz éDM÷·DK–Ìa'â¸ÒLû܆:ùÙ¾^$eË@€·S§Ô¢Db¯MGF˜âäe×-fÖ•7d`ó{;é ô%ÉF^o)÷U¶ ADe‘9Ž#1&–y>_ø5ÍAØ´yª®K0_~ÒÌXç.ên=«øᢷ=ÏuH46¯¹‰ðËlÅ’ÛUAŒÓK±J”qÔh›äÓ~f¬9ER±ç Câ³ÊjÙ¡iÐY†Á€#giýZ¸è†2Æ(êaF+,k+¨j°Ÿ(Dñ~ÅÝ"‡$J57#¿«érÄ DÜ®|28•¹7_£MV‡:Ø8Ý?×%£Êq÷bB`Ôs_ú {@«2Q\L»ù40¢:Ä}X[yÐB‘t™טògy!B‚tÇ/ÔeˆƒÃ.ñQ÷}¶ŒV¥‰½ÄA6Ñ$õú^“ÉíGÙÎc0@FÙ˜×V CutšŒªÛÿ ‰Âã«}þ™Sõšƒí1«ƒ +¢r1„@ñcš0¶Eœ¾é<Ž$ +¤ªåhCàŽã²LI1wàŽ¿sWxã/f+€í(x‡”®Q³uœuQüøc »Œ ÐDanÅêLÈ y§µC˜;5 +i•ñL]_ñ’Žpƒpê{5ÈrF¤ÌéjjÙ +6R+P8búÁ1T›u³qIR ¦"?@T_ ÃLví.ù£¤qÚ‡üuxMÅN ÉŠ†âTã´ë£bg(8ÓÁvs—¶õZÅáÑ4ù$oÑ!)—|³¢ü+`¦¤Ý†ë H‡ÕìœZäªVeEÃ>zƒ6‡3ÅÔöéa ƒYò¸«sÈbÓ·¼•éNg'u„l3¡Ž {…4QrÐI9öU܈¼¢@÷S]¤“™KÇOuó˜ +L ž¬m|–iÊ‹…éi}QO+4l ¡´Ä†ßÈBÍuJ¤O£sBôƒ³ ™ûŠT³Òt+@—š‘våR©-á8%Ä}\Ä|ߪP3Í£˜šì>ðh ‘KªsÈdj‡ÐÙHMÓ5áîJ@Ö _‘Sá1X'@F¼ò®Ê-fÖL¤ª|ZÙv&‹’[ÙêÞñ’úNƒn·x«ks’D'ðxY­ÎDO,/³€ûËŒwÁ€…”³³ú¬Á :ií!N5ÀÔ5ŒB• Ã0ÀÞ[*là3àSáÅzG¦í´[‹ª+ víF&aR<Ë›`•&uÀ‘uí•î“¡°kŒ#øåI „äšy_ž³¡¹QWÚ`ëÍÎt{Þ9Bý(ž.OêI’«i»æhøQå`€@DLfisà<Í7“U +"Çssb,@ö©K]"gšx 3!˜&cÁ$œ‡Éœê—'ÁDÉeW8!{ 3 <ñïº/q*ãÌ`Pºü`Åâc (k˱-Ï €@»˜ˆ"IŽµ¬˜È0GµØ‡.çÃ^F褥c F‘ v ”dr²Ë©†Y®Õe4`˜LŠéG– J6Œ.1ýœÃÈBß^$í‚ó#ˆ(ë. ˜MæñtÊöâ^¨'m‡9YŽ<;HyÐ'%Tz[“! náøÄh!Û.Ái…•Á¨j ŸÆq6Tt ¦“F£e×ûÁ²x?/KKÓ˜ð$— BÁ5pF36 ÇM¥ƒ}«EòYFÒ')€É;/’ª™*\FŒAÈðð‹vàR¦uçJñQxǦÖuÊ4v„–*þ׋UMÁ#y ;ÖšgK*¶É™ ¢/ÓXx:sЬêã OƇf«[­­V…=yþx½—xnó[œàûˆôQ8H1(Ê8€¡@ +ÊØK“Ea8 ©¡IµíÀ¨]*^ŒçQBž®žCƒL¨)Ÿ`Û¼(ßÍL?MŒÀ?Ń“b¯É´§_ÁļpXQY÷ÆMƒH†Œ“h1`ŸZÿàV2ƒlGÚ!\àhvž®=b ˆa¨p˜«ê‘š¸cµÛÀÒ$stD™æÞ¬Žˆ"û)Ï f¤QýãýM´À”0!Z®Ûgz§{¤Ì~ªÍ¯Ä’hQY6rô(qE*ɪ˜—I~ˆä[›w-éV­í!åĬv š;¤›Õì² nm™yØÀ!ñÚeVt&ñº‹=ˆ&I´¯ö"éMË™ˆ&Éç¹V¤ÈrǢʅ²ß©…8/{vUÚHfŽ.Íèè+ïådÈÇ xÐ: Œô]Õ•'Û¯ÂNp)œìŽ¸€È[Üøì„™Šf\`i M希ŸˆÔ³m]2YªbèÅŒR]0ù ˜=µMòwÆáȵ›¢Ó³`æbÈÈ™³”=e{“ ÙŒÈÄ(ˆ¬H+\RÃFYüª4ĸBv 1_’gÐ ÊèÃLRAHÍÆØ÷‚$ +…X7. &‚Þ… IÔèÓ>KóÞgq›dFI¢†¢‡0’`:q³Ã^TÀÁý¾8ŽîOÝ#Œ¦‘#ñ ӱǽWiù$û0$T»± Êò®.mÙŽ1ìe·í ‚‚Õáv”U^X:©¼zöëX±OŠœÁ³n +…'¹—%…šw¸Ø\²÷ƒ2dçÙÝÃI%¦hçUÛjMv^±«çàD¢9ºo%„õOC/nÚ€ÞC¯û–—EÊûj C6nžF—µï-O ÖTßô•’¬2šYçÌ~Ý訒qǽ™´éa>V_YzŒ¡a0G9³aÚPí1µÚ+ÒX8s±Ùçr‡Î {ò[Éhµ,’´“G=b2sý:©a§§Û/U‚›a»ÞÊM’Œ™j)ß8$g—ÿ·É/uÏ!-1â¡ðŽìÇ\µ*‡«ƒ™Åº58Ù™£.Þ–©FßqÛ¾1[š+¡ØÉgMžÎÉ“#ˆªæ>©ÄcÉäõÉ¥yà@“)¹Òeˆ Ôõµ™ ][ŽŽÃD¥”NkÁ”SÍË[ë1 ËÑ­¤ŽÚJÐǬ3`d1±œcPB*l¶sc ¶ª$Â*)á.Ϲ¥ Y6ŒÌ Ï*(ŸÍ¸îâ‘UIÂg³Ä_ÇTѸ!´¡xé|Ö@⥶Ùæ:ìLœ—ZÒ·3ñ¤þ¡¾³–%åM½Ô\û †V¬4;ÏÆ0¦ÔJ—ÙÓíqú&½š3éîU1%RýºLìV<'Sr‡¸«ôÍë›×d ì=¤ÐuyI°[™oŸåx r¶2ÝÛOû=gŸê Z–: ßtY2òík4^e}F¡4uemL&¼c.&|aÂý´aè(Œ.W;‹QÚgà\®Š¶D>½¦î›nºÚ0UZ=¨Ÿpã©b¼n!ÍŽZ÷S«€˜vf$•¹AX”ßøY‹jÛ×&þ&™²¾’t(‡ +ÝzV©ûÎ[oèì’„mJ¯"+Ò‘E³ÃPCÒ:¥ªµf&@Ó]º…U9¨¬CK^$­å¢¢ •¨Yèb¡xPV»MvØÙ ¢W9ÔiÞ,ƒ ”3ó´b4k«Ö¶ËmÄ]£ß6,o@¦³Sâ‚2»ëZn€¬ÃW¾ÅjÛq9ð#K+;Ѩ>A1kÒæz0ÎýŠo?õÄÉO´sZzÜ ²œP4îÈ*Œ²é¨þ/"~,æµÄP‘X-ž‹DC§.ŒÛCåýdžÃÅ ðœ5£Í°¬PFOpÐÒ²£“¥D‚®câ(P +Q2ÆD"Ÿ²'Ù'¢±Ç¡J±ËŠëQñ-(qTü€Öðƒâô,Onbp™F5UÁêYË#[†aÏ%¶Îb  ;ÈÒä°£¨ ¨à<Î6G1/As÷6zcѧóÜ™Ç[wDo2ºŒÁ +ð„s-Z±bØJ˜«¢¤ Bd d £7_õT,n‰£Œ€'!qÍu)éRY 8³šªúÔ}vܲxK’*Ze¡¬£„4’HIùV¼x ¹a“W™õ`äúsˆcÍ& +YªmEZ¨ý%U\&ŸÇ­#Su‚%‚8}‡`~«€ÍŠòòÚgÝ ¬3’0Uã§t¢Xu¢F9NGOõ +G¹ŠÂëBðÛ6• ‚˜ÕaDÛšµ%ƒ‘¢$tÁȦ÷FFš[ºZŠ¶ˆ=xEžæÇ©"²P #Á…y–ªÉ£h‚j÷ %»Ïƒò¨©àt#Cbˆf"I›š@DyI@;V«)ÚyDãir*Φ:mAÂhÒ/u$›Š»±@WoŸ7<ª¨5Ùú¤Å ¯ û ‡ÃR¯”Ém dÞÕàEäM¼¬L :žÉƒLV4’‘”U õ¹ðÕkmg³³¬0êÂŽdŒªcµn6Q½µÉ,ÑëA±Ì-, DI²‰*‹„…êþ†*ùÎk=9ŒdçTªŒÏË:2¡ +Ã…Wp )jÉ`&¯*%u'Ò5k0 ÕªH婽†ÆbLÁ`F_µ»iaŽ=Òž =Ñ3¡+f¦(5Ídzq«n`8–Æšðü¢) M(m’ïŧRLe/Ý‹[‰ý+tç¼µšÁˆfd*ã3±ü·›&ÉöRJb£V ¾7³²²V…æåÃͶRµ8Ξwy+ØPy+…òˆ×c&Ƨ{± ]æ冮ŒŸŸºxqVµjWfs1J$ñ~eS ¸MN&I‰ŸsÝ0ñ¹š¬ÛëRUÅ.á‚$Z•_&Sn­ Í,‰J$$FI©²@‚‚1\Û!_á-.âñ]fÎrñ°gŠ«dä+UÅÁB%åy¥… à TU£BÒž£/ºÆ BƒæqÙ²Ø +nXéöY{Öò¨·ŠËÛnpZßÊÆ•Ìö‚×ÏZ¥áµè0òinÑÐL•@q žcàõتòtÉÊU¦=Ì3ê @k8#.­á4qi–d»`q„ óW¡ ‰jµZfæÕ¬9±‚E/ëbDW3i¢WBmf((ðœ£8î*feÔ!Þ$¹5TD’ŽݴƒÂ*W +XÏp6’u…ÊÖ4sÏL‡MÉ©VJ5Ñ¥$÷Lä;‰œ9ñ¨–EA£;¸²M%‰Ð¹Ë± &ÞY0t­ÝF(êj…QÉiâ«ÉbëέÙöS±‚¥tqò-ÀÈvV%pHgª@`,;ÇZšmŽ©"¨\èÁ+ÀÐÜ‚Ùèá„Íb[¬ŠjD‹,;ÖU5qªÄk*"YÕ´LñÕ’ƒP‚£8‘¬u¬ViVò š›ü;¾’£4ªÄ§?Íš×[Pl tz(ˆP +$G;Þ“f4\m‰Ì£;ÞÉôDŠ t.ij &3…0& †PõY HÝD3ŠsŬÆÁC-‚H:J+Vâ—~Y˜·¤¸Ì|ÌÚ,}òò/QX4 + v<‡“HQ­­,¨ãкü&2ª…NsòÆGqЗXÃA¼ë¦ *ˆQ=‡"ñŸ·¬Y‰*e;=.c£3í/Ü}“‘â*ËÒ¢%›ŠÇñ#-D[ì±Vó­0ð-eëQr˜1Áì_?/5YѼ<μÓÌ>Õÿ¶„=:z°b×Ä9ÂSÉ<3¯Ò-V!g–¤!~©mìuüð“!”F]f’„íyMå¢á‘0eq5;üB‹|ªej0Ž4Lf€D`:³ŽL⸚™ŽºG"(†M6Ãz–µYµ$,B¹*_Ocùðã’íBW ³Ê•²a Vë:jÝÒO '”V†BhíSÑÀlc1˜kÛ0ˆ–IOÉËo—ìN©4é¤È4ÖߎîSaæˆÙóZ|†™™¤J*W>˜óF:†óۖ㥗EÖ͵a…Ä;œ¤!´dÁ€Þ¨4åÃ.*»n¾ö"úAw2‹¢H„*‰ò/ÊOÛUv}ôMå‚ÀxUìꉙ7|ÙÔXì½±a4UÏÑ]ŠDÊ™8*l/±¤úÜùRP®X/ÝV¤1:[ø7G¸nAØ^ì&…²*¢gsôb¸)î¨ñªFèàWtBa®/n°c–hw´$يîp‰’È-€ä7L0tK,5ñæ‡h1÷*²ÇKº õâ0²¹6†_ Ì·ÇH;\ÞcÑ"8à]YIEPsÖðHœ~DuÅÉ®¼a“­‚cjÉè*‡ƒ§ˆ®…a^4:oQ1¡šá\T»"l—e¿ˆ7ó‚qcIц`^#ÅŽ ¢Å¯dß„,¿…A#TŒWôD› ¹òâŸ*‹&•a³HAª Ê/Õ=Âå*{AK›¬ºÎÈ°¢º·†g»òŒxØ.˜<¯åÉÛ´íÃœ­ª¦”=NË”=ÀèM#E!/bÌî×/5ˇÓÑ^±œDF1€Í‘Xxv§d‘´‰bgQ §Íl¶W& 8˜2¡©ë"Q´Tã“Mœ5m± Bó3‰¡û.z³L@»Ó¨±¸ Õ¤Ûsª…EEê£0v>Ö€7¸TÆõèdÓA˜…Ýƾ?§kßR%²òÜtÂÛ%>¨á­5ƒ‘̘ FÑá/ô– sŠ J.£™B·¥ðv˵›•tW«S¼4Ç‚¦ßSåå¨v—ÂW„>a# ;{€ç©Êy€PŽLï‚vA–ìæÀÌ^ýZ$ó™“õ”`"i­|,6JUvʬèm«Ö4“°ù7£áx-ª>1ËÿhïjvÛ6‚ð]Oa —!`Éä’»¢Žä6좈tP÷ K´D”"ŠLà>HŸ·óͬhÉ®cåPäÂÌßÙùßÙÝᎡÊuåbŸ»ì<€çóBªm†]­YÝ×é´Öq~µÆï„nYê›°>ÞÕ éåÄú…'"‹â´ ‰˜ÈˬCÓO èfœRSÈ{B™?öõNÄÁ}±/2™ŽÚ“ýbõDâ"4’fºx”{}õ™Þ#0Ñçöݶ¡ !C)öãK í§ ï¶tóI)de‡GŠ“hfýÊŽ”œQ¡Ã‰Ñ¨°^ê²Í¨ŠØy+²>B‘¨'±>>‘¤NAb¨BOc]|œ²ƒXízãYïâÖúÎf=„WÜdÈþŸE²É‹ä®qs³Mïwú¯Ú: úlŒlðÇÙì¦w5ë…g³[iß‚˜ ÐÀƒœfáþ“ê60–6A_b(jò€{û„šZog;Üa.SõÈG!;#š—1ú,߉© ®¡É¯Â.ºÄÀR^â î¼hü™Xšt˜#¢`*úßàƒ|ïc!W°®ë”Ú4Œ7‚.z`¬Y-©œ+feô-ÒÓ€²êé¡Æˆ²%î°uÒ=}bRéú>ÀÖQÚ)LºÀžƒº´ƒÀŒpX'FX|îµo=_è“Ù #ï¢0œ´è_Š_AËÈT>Ëà 00”ñ¹àÁw ¢óˆ¨j@bJO[üç×X.Àr·…H™tA“Ñ} LÂLb´û(ÛQÊ\“vò¾d²Ô ô@j˜F_jº ­õ²Â îæ¡FŽ–ySá-&hEeE±jS¦8ª‡˜Ô¬•)ýJa,P‡ ¶hìTç|AØ7_‚€„.Ìù÷+ž„¶¡…„Nƒ 3 ;ývLƒBaý–¢ŽL'‡5ÄJ5_DÞ: A<Š>]ËóŒñ®ªç`¼pÁ84r!êõÊÊzÇ‚ó&XG öØhdD_Á!VTÑð!á:r«i)¨6ÄÂ(oðÿÙv`3Øú„íì G`{»S¥RTWÄþ³c +ÎÑÒÕ-ØÓõTUëòTJ¤Ed¤”dÊ >³–}Ñ*liÀÓ84[ƒs)(Â"EG!$z›n u Ü"ÔΓlk5:vtb-Y ŒGÔ($׵ݑöÚù¾éÎmĆ8 +}lq@Ð}™CV|Ã[XÈ0î‚‹ÆôŠYψÝ}Ÿyb$iaˆýxv|)ÌDc#aZïyv2 l¹Ž 0C6GñU Ô;–ã@Ùø<¥‹•:ܺRÉ·[ˆÌБÄìÇ2ÀÑb +y,C)ã:òFqrÌ­H¹…YJŽšñ¾?LeKóâýY™5ùÂA˜PCƒnÛm+—¡Vs3BqîÄêf]çM¾Ó F;³š1þ '€7Ft—3½¯"z?ì #Ž;Fðf°‡>(ì”lþ:‘n+•Ó+Κ=¸yñÌzÙd3íоU¤,Î!Æ+!òë¼ú†Ñÿ¿ÿþÇ=zòÆ¿¢öRë_kæàcüŸX}‚>v#~—äc3OÕ ±^Ãã"°ÔJ92)ˆl:›*?9±+ÁÂF„d#‰$~$`ÂЋsˆRÌ~ÍŠBNÙgüÖ>ùn—+\Ñm³·åÞÉHµ>|xÔØtÁN6/ç_ò9ªôâ7U[—sߨSçŒyºÞlÚ²*ªÕÓ‰b{ðp$)I‡ºè\AF™ôoúvðþ#З endstream endobj 108 0 obj << /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] /Font << /F18 30 0 R /F19 35 0 R /F1 3 0 R /F3 5 0 R /F5 7 0 R /F6 8 0 R /F7 9 0 R /F8 10 0 R /F11 15 0 R /F13 19 0 R /F15 21 0 R >> /ExtGState << /GS4 88 0 R /GS5 95 0 R /GS6 96 0 R /GS7 96 0 R /GS8 97 0 R /GS9 98 0 R /GS10 104 0 R >> >> endobj 109 0 obj << /Filter /FlateDecode /Length 39445 >> stream +xœì½Û’]Ç‘%øŽ¯ÈÇĘÅýòX*•4Õ&õX)i3mVª0 ‚i}`#A©õ#ókó;ãk-Øç€"lV—‘Ýi4 gGÆöíáîá·ðøõïoÊÕ›‡gáêýï‹÷Ï~óų_ÿ®^Å«/¾~6_ΖÚU°ÿüg/{-ù*‡ô²—`½îŸýëõÝÛç/R/Ëõ‡o^ÛÏ‘_Îëßü—ß&üŽ/ãõýÝíë—z˜×_°Oï×ß¾zÿÚÞœ/Çõ‡W'´5ûùðáý«»·S¯­{¿Lܾ“®oßÝãÅr}ÿîíéoÏÿíê‹ÿô쟾x_¦úÕÀ0~û4ÃËÞÇBÿ»‡×_à Þošýªáe¾~e¨á«øSM†Éoó¿Æˆj·Aܽýò=ߪÙú>|@ßv½0·Æø}†ÿFP«=ôïöë¯Þ©×¼~ûîÃϧGa31b>Š¯^ÿÅ€ÃâôîÛç/r¬ìõ}ô½=¥`˜œ¾ûö»ü©ïÞë—!úþÃ7ïï>ÜáírýðR/w-ºÌë‡×ï¿»ÇCÇbÝ}xýpR²þï¾F{²ïþó›?þꑨ7[éšGêÿüæ÷Ñ€„gmk°?&5½BÓ´½zûÕúyüõK45CûÕÛw/~ òh×ÿù7âekýòÝWw6¤±d‚ŸE`9›¶¿>ûZ^Ž{:¨?G€úÛó˜¬wß½}ƒÙ‰ UÌ¡áõ“S±ß 3¼sÑÁ ,§fø’9>ˆÈÁ˜úxPMN »?_ÿîî=ÅžíýòHô‹‘™MUúgŽe×õÏÏ_jqÓõÍÝýÝéÕûÓß~…–jø~Q`e@Y ’†QØß' ÌŒ¯0©ð{¼XaMÅŸ~÷ȱä` öÓÇò+P¯)„À¦XSû‰I¤6Ó¥Y>bóq,H)KL!Í=KLð‚–‰Òk&J‚÷¯4)X¦C.ÅY?/–â|ZJ¾0¶¸@­_ûG.± ÀƒÄJãzáw˾w ¯ÿúï—kIÐi¨s÷æÉ,ÚÖ’ipX2‰òKÎúø£Æë?Zê£à¢¯•-±É>¬?W¦EûfÌ/L ød_¯_¼;}¥¿øJ4Lö’_á¡ØúÚ>ðí+±º‹c îûÕùÃ7ï(r[¦Ì^ßÁ>ŽÀlÝ^Æ<‚# öŒÙ±Àï°–©Ù2Ù2Äf/ú’Ø_B¾øæŽ27]ë_|ÿöÝÛ‡»‡dpȉrý×;Œ:‡¹ö9ˆÔrýæõÛ×înñhÄ|÷ö¿u>q@¯ »s.uú›}ó7¿{`bÞˆ~±¿ú >i’·Üʽ:^Ÿ^‹'ìéب‚¯þ¯×~HuÀL#”ø1j¿-¼û èÒˆù|tŸPDR /c a~ íîasöÃûۻWŒ.~$¥‚×’­ºƒÔÚ”4À‹ooß¿~š²õé%bñ/da1á|0V1‰?ÈXÅ${!á£M"Im¦,á'vÑ?ý3~æöÅ$/!A¯£Ø7%×ê„Œã/km‡d3ÌÐëþeRLTÇУ±bÿr÷î;ÂÁN`ëýÝéÃÃãW`©j¸ +ñ÷¯¿/ÚföþƒT.heœS@Úõÿ}÷•mØ?FteÛ[û°ëòC¯?,gð>-·¢‘O·ù#P/Åœñú_ã¿IIL×ýæ´®¼%5‡‡Œ i³¨ñ.f1I5Ï”¯W?z>Mµ.³U·,–ÙP¡=Žq*ÅÌšcÛÏ¡”¦>þ‡û/ãcçÖˆµå\ÚG Æ¡ª^Ó2T­«5¾}÷þÞ¶º£Š¶ ¹*ÝzŽë/_Ýþ×?j«Í iŸ5—â¼yo*§ÏØW¿Âž‘´¾ØHJļ’§¥É€³ïÞao ¸~õí·¯_Q»)²éþÛwDÈÃ:Rß1!³„g‰ÜpÀoàYÛ™>/+s7–ì)»YóÇ?ýAè¼øêõû;Ø–ÐE£;QØí³?@…2é_¾øÃK¼ÕdûƒXKÁœië%c‡{0ö1‚ÈšF×bHŽì«¯¾Â>r‡y£2Þ _}÷áÝ”³ûûïÞR¬×7ø'(ŠÚßÅûWz}^vü›Ñûc._†~˜r°eÈÝÌDzKò¬é{W*Ø=î^^}%ýáõ[t˜RA’fºžkbm{±šzƒŽP„!I9&MOè­úúÞh­T ä1µ»Sárƒø$U#‘ç¤7QþrwË]øI dnö=غ®EƒKœ³í.¾›fØf?°þKjd*X_™.p÷5íô @“x÷ï•ža\ KKÁø$H^”\–ÑõÅ«/±ÛÅnæ$G©Pôþ5‚mé×IåÿÍéß@ÒÔ$¾8›ÇGÈ92g‚6õÑ—+fH¦ ›xx¤È+F¨aäØ?†vz'pœÙRi8A€k·IüúŒ”¿üòÛ¤rIÈð·ÀÓRsts®¦ì:ˆý„I¦%"Ÿu*ìàª`…o{èÃ;ü¡×·´TE»5Í¥@ØvX.h÷s(ËY]—ß{å_§€ºò§h÷}#ߤ‘™ °çÀžÖ;m¾ãøÕÝ÷ïœúõ›¥w¸¥˜±—|x'èùú÷ÿù3®²³È_êߟôdêyv÷6–¹{ý Ûº_ÈÁï_»€¤4¿{x-!ÿJf2”²ï³@êÐqþ5eP}jã#ªÿþôÑ´¹µ³·” éÙ¾•–uò2°™eQØ.4Ó{ßÐŒv_³½sïùö[<]¿ÿ€Æ •h‹C´U·PÞ<Ö's†>½2±Õï ïÊ麃SâèîöòÚ+±…¤­Íâ sü[æÖ¥Ë?ø¶oû¬& Æaû×û›×fN¾{´&r6›¦0gõù?èšÛXË~C·æÚØËI>_éçÜ^bþ­ü°&^êëENÅ#iEî–^úr­þåÝé/þpQ‡aM-Á~OGóÀšß¾»÷ cÖݵ¯®ÔóNêÝ>rÔY—¾ìU›ütf5Æ8>Ã]Žˆ|n— +þw *pxýß¿u'ýû;½òéúëïð93€D+h„úæHãõÃãÕ) =Ü«Ÿ_¿~õ¶4ù ›Vþ¬Çà wy<Ò¸ÐøKˆ†Û¹¿vÙâh®—án3!ÒæCf_§ †¥¯áL›Ø¿/\¬‹¢{½þòÑ‚ÆÑñðúÍû×oH<éšn *sé203èp£ZÔ¢Ä Ô§–VhñyN©WÙS½~øöõíÝ×ôÙ~w»b:ç~Ç×úÉ}ä݇¿}ûøQÈÉÜ +'IÖ±vSØ$ér + ”©sr~¹Lw=VL#ˆIdhÝÇœÌú ­\6Ü™VWI½¾7A-ñu÷íéñÃçeñ±ËÈ×ß¾~û•Ó}&²|û|ÿêöý`”óöW²#ú¹¤|8ïʽ£`aÿòê½ üŠ¥”ú±ò^^¸¼ Ùe2ðñ“¶ã^llYñúkÿ ͦ|ýë¦*¹OžÂθ›ÚÏŒ5)ÞòûýxA/ÂÚgµÀ­ÎDm~ƒ÷f>ÞÑšl-IîÛíR¯÷ °œÌf’Bñ–íŒþf¢PR«ð]‚êÖãY•z÷-õþÕÛ;87¾6ú4Ú ‹'Ú šáú•/ç3AîI-œÔŨ;LúÓM8ÝÝßq«ÃÞõh{€†{]†;$w-Ôüà|‡½y­F›¦·ò§ÛsÍîs©¥Ò{÷áõÝÛïôý÷w¯~…¿0 ý±Ò\ÆŠ/Õ®ÿô»G+†´×svTÿú ò5ÔæàQ€Âs+dž-÷ã¥HÙOú kÙ÷¿Jš¦öb_Š×§×¯Ä»lÂ|Mw@%à‡»7oÍ\3ýèMž¦{\¦û¿|ñ<ækcšD§÷×ïžGÈ+ħr ]>°úl B°fÅóˆÍɤÝ'wž3fýÀ×® H¼~Ëž” ö ì¹ÏéF¾{‡ç5$EJPþѾ‘ŽOþùúÿ|ž‚‰ÌeصRüh|p¦”ià<Öª3ed4z ×D‚^öÝ[MÆ·ß=§7ðËÓsú†ŒU¶%Ž°òŽÐǯS‘è¯nŸÉÑwÕí†}Ï6•š®L5Ê/ƒ}öýëg_ÿÏþÛ³dL€Ã¹b&T¦˜Ž~•‡m|%¡ßÿóì-`7%‘üþ™íW}–¯îž%SÖÂhöã\{‰±93_X{Í /'(ÃÁ(~J±†"D/¬}ìÍÆ_8 ¿d˜šòZvÜ]¦‰ë’m’ ºµÒ’‘Ù¥½lf@5x_K¹2Q†á‚‚fVHÆI ŽCäþhÁ+&~OϘŸ€.>ùû£ÁäPB¤©C +P0¯eØ/ÃiµXŸaë•çUƒ³rØÀ^f³Ù_Øþef„­ƒÓÂð¼MÇjAã¥Ê†VÔÅLBæ„ÙV7¡ÅPJè± Y±MpÝ&b;3Ft´˜d7’°>öz(…`LßBŸÕ‚ˆ‡m Íw´·î–Bæ" ‹A‹í–¦îi¼03ÏðáÌ`3QŸŽÙ:àϯóÏ…ä\GÊÄu€Mw † "‰Ä5NÎJÁàçnAŸ +_&g¡µaŸ‰¶@Fb@èu "ªM¤Y,`"3±Ã°åÒ´¦É93.Ø÷W æÌff¢ëj fŸ¼À®ÚImÙÿÚªL„ ³ñ¶²[0©f¶¨)¬À¤Øô½mabâ  á#ÉŒ¤53žÕÁì¶.Ê +•¼3 åÆÝb_¶pìZKâÊíãëÁ•3ócŽ©)éì3M̾[ÐÇÊibõY-¦ëbâáO˜ Fu}`¹¼} pëç}v‹ÍKħnˆä „D`²$W¢­• œ® 3HÖK$%LÿQíÒ‚_@ü·ÍÕpb‡X´89®ž&¾4N|1ã½bõ”l”k!óû¶Ÿ³ƒíg¦ÍXÎûÔâj°oØ£I¦f›Òv ><‰+â`MœW¹ÄG‹}Š «tPœ˜ŠÁéê†<…ç˖ºA8Ú¿)ñC \0‰·ˆ½VDf¦±Ïj1°ƒ+ÜL¬’b¡"¡K³‰Je5 Gß=J&º»Å™û¹¬ïÌcòdbk»Jƒ <:ä„‘ãô-0!;ئ52gip?(H‡œi·ØGlŸ‰£³rÖºåÜ"È +&ž÷Ç38‘£ƒbBxŽfÚTç²[Ô'7Ëæ‚rÍhP\\L)_@JžkuL®ƒã­¶¥Œ < ‹îŸAC¬$/µœžUîÅè4]¡9W“N*T°)é;Rg—Õbr£aNj€*5¶û‡VË@Œ +}FÖ3jòÑbLYÉŸÿÕ¤S5yÙ¨ø`Ëšh +NóNT)1fÓ•ãÜ-'i]`ÄÛB¦&³ZÊË©?˜@‡Dͬ4öIXžÕpti&`ùî²κ ¾O©°ºxÃYlÂéìC«á¬ œ%õüCÞpÖ,ÒÏ?ä g]r£d9ºxƒº`¦ j†î=ro»åèbÖù<ïÀçýçj:V™ù¬Ãj9ºØîF=ïâ-G¨¤}œwñ–£K³ðSo8:eŽv‰·¨K€P‚€«í¼·¨O1°"P‘Ödo9ëc¶ñ³>ÞrÖÇÈ:Í 8Þrô)ØÃËyŸÕrÖgŸÊÎzýävÅ[ÎúÀ­Qλ¨á¬ô¥Þλx‹S”qÔ²*œ¢L>­–³>&älc=ïã-G83[=‡³ZÎú˜äïcž÷ñ–³>ð/žÊN2¦ %pK‹ÞE-¶U +cSĺiÕì“f·dª™Ö‰zõ¢ÏnY}2r9ûyŸ£e÷‰ƒæÕYŸÝ²û˜~ÒlO;ë³[v„«óEŸÝ²û@ó¬}vË,¡£ÏnÙ}`ÁÍ‹>»e÷1ë+Å‹>»eõÓÛëÑçhÙ}ÉV/úì–ÝÁ œ–Ý'c¼è³[vŸ‚Mä¢ÏnÙ}àù»˜ç£e÷Aœàçݲûئ6/qÞ-»ñ|»Äy·¬>ðV• Ú8ZvhÈ8-»|@]Væxã“jt î¯K$«ÁöÃ)Æ1%µK@Dm««V‘¶U34ê¼è³Zv¤‚4Ó"´éQŒs´Ä"ÓÞzg·pL¹ù¢Ïj9úØ8» ú³>«å¬i½Ä$Csi·Àe0eçØT™¶{iµ ¾Í~Þgµ},¯‹>«åèÓ‡ÏÇî³ZŽ>È5l•sV¹™-f³Ëô°pÆ9œÕ²á øúù·vËÑY©ãÚ-g}¦ ÈL|•Ñó–È­ I¼FœçpVËG”‰Åqœ5 e=:‰ö Êj9 @-ª¯–£O31{9òÕrôÂp9òÕrôÁÎ|±¢»åècÛǸXÑݲûTÛ>êλåè'g}VËÑÇ&Ìhó¼Ïj9ø;§©FØ9ÛÖ8ÑPçÚµ¹.«áèâ¼}tY »ËbÛÝe7]œk.«áèâL{tY GçÆ£Ëj8º83]VÃÑÅyñ貎.ΊG—ÕptPç —˜šD…þ¼%Pé_œx€Y ÌbÄÝe7]œ.«áèâ,vtY G矣Ëj8º¹ºr3BΠݒé_;˜î³0ÎaG—Õptq;º¬†£‹ó×Ñe5]œ½Ž.«awYܵ»ì†£‹3×Ñe5]à^²=âè².8©Ãº?ìÑݲíQpŽ‰ñ³>»eõëÀ’8ú-»x§žwY »GŽô&ŸuÙ-»Âtõ¢ÏnÙ}Œy2GŸÝ²û43ùj>ï³[vdí…‹>»e÷1Þ “åè³[V0Gç}Ž–Ý'ºZÏúì–Ý'MÂEŸÝ²ûdQÊYŸÝ²û˜°¥ðè³[vä.Öó=Zv‚ÂEŸÝ²ûà8ÂÊ«a÷Àa¾x¾¢GËêsó ±ÍÐÎ{-«XΘ³>»e÷1Šªí¢Ïn9<0•^«ŠdsF¬åê…íYYñ¨×"\“ö|¥Ý„”cè¿Œ 3KÐ!‘ù+®ˆR ”—;2ÃaU£9zžK)r ¯0F¤i‰mìO 3=óÈ­m~ 8;#H†c–ŠˆJ'œð“ÚS¦û³t¨8ð÷Hx‰Ã À7«”.tÍÂlðc(6 U‘=djE`rëpÀŽùø&ÐgÖL W„íè¡M«åĵbü­LúÖ݇O[V-îÄÇÔ¢…ÎÒ£ÅV˜Îðw&ǤĀö xÚ¼åÄ°Ä·°E6új%±QÞ"ÍP¤‹(Z·ZD ðú°E!’Õ’éË€ÏÀ6~ã Lá( +ØT«WˉA’ÆEoAˆXᶄè,\­Í¨”‘oï59’Yö· »…K +ëgV‹B{pD"ÏoÌj¨îc,HC‰"ƒ8o .ß¼;nfŒ#o WÎNóxµ O• ¦Yc4z·˜ÍÖ>g:…Fž“ÌToÙ#ÏÃĹôèS©e®–å$ÑðO$©Ý™>ÜÕrR ~d~’2v‹QOÔ·*² 0ƒÂð~·@DOú"!´Çhì“;£ƒqî†ϳ¶¥™Ä—‚ä-$vit KK+VOÊõ‘Ã+„pÀ¬ì8ôÂfÛ1ëDŸ©¹¦Aî–ãñ=7BÎtîlmr©$£÷.”i‡ùûYYˆMVjôƒÞJoÁÊAAr§é/qP¦@uì/ÞUv2<ˆän¸à_ëò¥õvÄYMínÈš…ªÁ÷‹gÞŽ‘œÞ· "ñm˜ƒûõ(m q¾àÈÏ©îùáùŠ¡¼ÝúY/$ëØöìYP´"çf§ØÿÛH^ ”˜fxjê‚ïø³4˜Au¬¸˜ªÌÉyQ¨˜áï8Gðe~]*²«^JA8á ú&ó†Ì½ + ’‹äDß¾?ð —$LBGf\e¶Š¤$a2óÂÄ7#9)Ok$J!‹ä³Ñv‹R½H/{ãæ’'SCVˉL\¬”&lQ¶}…²[ÐÇà õ™ \-Ý…HüCv¿N‘_˜×¢gl +oÀp…~Öh†*I|z|Ø4K‹’·œ˜ ‰´¬>’ïÏZ •}s‰ê¡ <Ó_ÆnѾ!]fšQ¯é&æìÚàÁ1˜P©i5¤@™Ô511Q¯€¶Sâ²'}:Ü62©ò9ÂÏT0Y.÷mþ°V´$ÇXÛN6UµÏ½o, 8˜bE{%1èE#w0G%Û®[i©·÷¾€ÄKüy2Ù Z;‡Åt’<£ ;“¢°dí ™Æ·ã²#Ó©|_@¶'☔“¶ŒÜ“` ùÆ0".´*Sq°o¸|EÞ"3m2Žm>ÃG Áßp(âd8z$îºn ÃÍ.Çh§}]«ÛÏi퓃£QËB… "®í¡sr³Wüûf{õ¼¶‡ìŽäÈ¥ƒÄ88­Ýn|¼2-Ñ7'(úÃÈOÏ™“פ’àï‘9®J +þ\ªîçsljªéOMý|úçONíüÉ)?1Ãñs9…7ÿy|?9uîÉß÷äïû©þ¾›Ÿêñû_ÜF{²Ð~ŽÚ“‚÷sVðžÔ»O¨w7O +Þ/AÁ{Rï¥ÞÝ<)x?sïI½{rÁÿÒ¼'õîSêÝÍ“‚÷à +ÞÍÏ@Å{Rðž¼ïæg¡â=)xO +ÞOQðnž¡ÞÝüTïæIÅ{òàýÒ¼›'ïɃ÷‹UðnžT¼'Þÿ: +ÞÍ“Š÷äÁûeªw7O +ÞÏSÁ{Rï>¡ÞÝ<)x?oïI½û¬zwó¤àýb¼'õîSêÝÍ“‚÷óUðžÔ»¿«ÞÝ<)x?gïI½û„zwóï àÝ<©xÿóU¼'ï?HÁ»yRñžW°0pUR¡U¶ZÐWÂNµð†Ýxߎ.uHY„ƒB—:ôžv‹®W6RQKÑÅ«ÅX¸ø¸¬ÈtU¿¥"ó͸[ÐÇFiòü¬Ïn±›Wá.¢`bcºcÂl¯ÊM-èƒëµÔstÖ²Ø +ªt€Ü±Uèb¡Nf\-'Þ)*;ï³Z"Eω7á¶W\j>tËÔCÃpµœx«ÄèêÓûºg‚-Ðt’nŸþõïoÆÕ›‡g¿ùâÙ¯g ¯¾øú.Ý°qûÏ&³+ú0Zê†oï&h¿¸ö¯×q„ðüß®¾øOÏþé‹gºA½úâö m‚­A$‚QÏ`|æÍa2(a‘ôfúü›Ð†m§húÄßœ±‚Ya<ñÅöøiB5[@¾˜?û"hß8_·ŠšUž×ã½›*ÿðwèÉ6È«+2Sá4OgKÔAl?¼D@¾˜`k—mçT¡_,³ÉŽO-ó†àØŒ÷/&Óæ+iÍWÿ ã‰Ç1…ÁÛ«Öú_ùÔZl6é›þ)&ör„ ¸ˆâÇ#RîûƒÂ±ˆâQ2‹¯Rô`3[Äð?2††ëƒRî›. Ù¶¸þ( Ä…+ ¿? 7=ÅÇ1ÉP'”ÛïÏìÓOòÇ‚ëg ‹DÓ%R û>¤Ã¯Sû;sÂá<‚Wà¾6òŽåc^¡æŽû?·/×™¾ [8¹¾¸}7ªé6å‡i&í„“;á&ù„zþ‚—`^7þ¸žÏ_¤>L¢ÃÓ¯ãú‘Ö²~Ôõ£­cý˜É„çfààòÙëÕRÖº~ôõc¬3¯××ôÜôÂyýÛý³íš×¿YS‚Ù°0Ý=™"ƒðŸ° +¼Œ¶ëðÆJÿôæ÷ñÓ|Dèð­kÏsbHéŒÇîó¶Û’¶ø)v‡Æ•2|D¦~Æ^úRsR›Ï5ï&ÿM¶Xý˜.Ës-Ún¨Ïá²>{¿}Üc\B˜þ÷´°Të[ç_9ëǯôË¿ËG~á:ðõv>†„hõh€Ži«ºÇp±¬áç"#ŽÖ¾7¯g« v_¥ Ûê‡W©!J]׬°XæX@,"–q†¹.–ÁíÂ,£iý(ëG]?Úú1Öcý ËÅëÕRÖº~ôõc<Ëév×ùœyÁZ?È?æz=š3m¢›ÇÏs…wÞßË™ùˆÚšçÊ å³óŒ{ùLcžùïqCÃœ’¼çÑÎÉ å"fïÈ°—2ìÂéJÜoþËo¯þôÏWÞ°ëWwoÎ%Â~ûŘ2 ÷y÷^OÉÑþÓï^üÓþùæ®þ¯ß^•®þ|}ŽÓܪ²€>¶¶hfÝ¢áÿï0ºqÝà¿*lFpõ€ñ LÖµ¹¤S¸œw@‚ÿ⽂{4qå-Œý¹öÿÇΣ™ÛpPûk~þi‰œq;æ„ÑM²IËÊ3~4r6ªiû×Ø¿¦~«ƒ™þžñóÁÚ2l§äÍ“½ôµgüñØÅr cíâ?#ÀZA,´‡²wžôêàš—ò|˜ +Y7á5Ù`¾üÌ–qÉøL—ó•êž‘¾f)íùJ{¾rЯ~MðÁd"Û~AMŠ×¿iߣññ£;¿þýÍ„“ ¼ÌW}¯þH, ´–q÷:ï§l°Ñ­¡3Î@‡måc²faŸG¸UX¦Dytcuç-'^iiF(¿"×VB”,Ì"hŽ/Ú§ðŒÝÏÑ”¿[Ý´ÉסSéuÓK¢£5ÛžÔƳ‰K>gøëöƒ.ˆ›†6*½1¸fÖ ô¢à™/Üôàc3¤‡Âµß£†qî­EnÖûﵜØÂ(=;«Ïyˉ Á6æ€Dºü>¡œ®ÔŒYô¶¢'žD5©½sV0…6fÜ0[ÖÓô|Ä;íã÷^äÂè6à ÊÃìy‡|8åÚt9uBE„ïÔ^„i= ‡a o‰8Üì\ +^í +¡NfI¤< Ñ V̘v +ÊD*!˜½À'€ŽpM!V cÇàãB<«¼ÐGì-߀‡ƺ ;7¦z„I)&‚Dr±àôŽuÑ1r-‚· “ô£€&zu¢CtŒhˆ*ÍT_¬57ÍGîñUÓØqe,'¯òq:£Ìî`­sÁºÙ x28•YáÜ&ÌÛd1S€_§ƒÈm’ª¼…öN袬ôNïÙa^‘ðjNeÏÄH$ÙÖ‚4~Æ€†AbD„Ž k&ËfFu:lJ‡Q’æ³*¥jž"hÙ3±=œû 4Ä„ÖP:—°Íá0²SIb-bJŒ¸^„ÐM2` +áÌ$Ñ"¿:_¶œœIòpúÌÑùÁW„1%éÊ”3R1fO5p|Äîh‰ +•Ŭ=ÃÎЙ‰I<ca<#ù@0€0ý¯cÁ@°»"šžt.Ù3B†ÖŒJ‰Â7êX0À\¿}í1ßI /à qm0a½#0„ˆƒhâ`JÞÐŒW&Ø +ºÆ+ 0C‘bÊó$¾*€âÀåàÚv ƒŠœÂ@FV8ß:aúªÐD…SzdžÑùR€°`–&£PÓ4™@!05Í>B³çEÞjljŒA x¡ôSÓj1˜ˆuxÖ`BÐ;…á+¸xz‡”žÆͳžÁ¨Œ.)´Af>EÉç5¯uÕÐ@öš (»9|.ø Ëlc#¹Ks-«o/3Y äW‘«Ý¤1¡ÝãbäSqÛk‹ãc— 3Y£rð³/*7=hk6‘ +=¤´Äü¤µ0«ˆk  6C,”r5BÙ ?©Ç×=DS©JÓ'ÊR‚®B<†ðžiK¿ì»ÇØ“1ªìšâcqÙU²K k•iBŽG“ÕØãƃcAΔ á(«Fz…”5{IšöÍ:×lÌ`ž{$Hnæ™ cÿ%î‘L)ðžlhY̳ŠM’Ÿk€#š•Ym^ûwv“%Ä¥µƒ¶iÍV>6m¥zª=Ê|&³â¢_dÎe ÓÍ2“J•Š„ÏADÝ ÏÞ¹y·z³gZ"éYôHAâ™ÔŸjÏ™éçü@na$™Ø¤Jª¡A +™FöN‰Bbš0Q¢bGîzÉ>ŒÂ9Ìb‚ ï$á8/h B? $ÑQŽ‚™¸OšGkH<C›:Nˆb䦃èY Tú‘åw©Ãω³(D#9È\ƶ)GvM”k*§LJ㢈Ä-`ÇZÑ1›[¾ÐÝ-Ç­_­SË>c%ˆ%'rªƒ¡Èà“™ÿLç ÓÄBdF¼/‰¯ôMï…ÏÉãÙEÁÍeQD—-'µL ¿2£÷ÉEÔ…Ïeh¥{ÖºQq®:¾³¾Ó¸ °ˆ„k² +°ƒr0MòK}h S/P­Ó-ò÷38Å6§àb²‹DE…™c¡Ñ£»Q¢(XYŸ«`uxª¢ˆæ»3câÆK¡œ7ˆ® $8t°™XÖlt +&hü}M†6\Ùv¾¬î¾‡‘IŠ¥îaFT÷‘Q}{Q0V:wÚšŒªsªz)VY¹°È@õÀDÛZ£ô\g×âšoáé!_\ƒS#ÑÞã\óÉÉÔº!éQ©k$}JÐc ˆ ´òpÏFöˆ@÷´EÓU)]4u]’>.,Z;ôÀ¢'âêK2ISœç›Ånà“œ[©•BÔã8NéEíÔ! †ö§¬½—k䎬±¤ôÑ€dvÛcEY +"¦)ØRÛ¾€C z„"ÇØë™!ÇYÒTŒ˜ o4iÐQSWä—‡žŸq|ƒÇ·ó1%¢u ƒ õܽ'¢œX HèûI)ýä1zìˆv”è+:Eº"µðVB5N•ËH®„S;Â".Œ{FúXÂpr†Hˆd¨)¶êL¬¤l —ÐÒ’Âi òà K’­Jë‡HRÖVT¹$ˆÁcqZÃÆÂîOB J 8*¹Ã¥¥¤¶> ú{jhC”‡I9\ Ö‚Œ¤ã7äºÆÑc¸Â1‘ò@ð F"ÁÐ6"«ˆÑ;’鶽ÿ^ˉ-roDºõ +Ϥ#Š˜¯$úŒàÔÔt® /! ]”Â3ExER=ê4 ó#“Ûiü¿ÝÍ +D"¿Þ …!'}v¢„JÚÁg¹ÐB².²Ûó¡;€:§DzÐUÎxìÅåÝH ‰*ƒG["N¢LÅÃ+ÔQAçvYàÐä.©c:‡‰2ßÇÁ0of2…ЫžEÀMB?÷5½'7šæ‚‘›{ð5¹]`ì F–Óf^³áAJ79ò·W­H‰R[B×dÐ ‹´7'?9":­?qâššFBÓv- EbÊ(ºÑzCÞ ©ž…dÑB¿BŸE¤PÓ™‰¡”èn|Nàõæı …ÈÚ>‰Ç~“ŸòcS`ð‘õ¶`ôTÜp¡V×'• ®‡LæƒàóqÈ ÄÃƱ7UÙCPnñJêãÐ&1qI »qÈŠò¦@(š1r4}hý‰óTͳ'¢ °vò É„,†022• ýñ¾S^’r@SÂÓ4•xefŸ~ éÔ ½<@±r8Ré(Lðµè ØZ2xï¿×â}ª$»ç×Øû5ÉY“ˆKWœŠKò nžá"#?WÏÈ_áIE¼#e¦p„™N2÷ÿ QFvJ‘¦äƒü(ˆ¸ß“TOÐs•ªPµ1&[z¶…†Ç¶†È h¬DÓC$B«9&w>Äð9Ü ª«?9 +XÅm8¶,r"L¾?xþOYSÕ‰+z2ü™–€¹>­ +þì‹ÂKžÎ¬É¹¤®•õ¡·è–3N&rÒ;YSÉåø\fÅG-'µ$'ëÕ%féBÞ8÷šsHüºNé_eG­;^Y´~®nãCøä/>{ØMê‚ÑÜ›¥(à;QB‚3Žw¦hæB¦›\Eq’Ä,`L7Ùµ¿ÖàîÂ@Õ3C©.Â<¡hqU_u‘ùønëÑåª`Ð[T´‚0¢'Ó¸lšÛ—™‹„wjr55ô¥.ê|çÉg&àf±Üò,ô²)ƒ]†*´|¼“Õƒv>Dz,Äé0‚+îœá;Zü)4²h!k UD¸Dïçé«&wI@;,@®òŒvrÁTˆ0ÚÂ!%©wiÃè.G¨ Óœ—MÒ¨‘•P¸¬{*r”m’µ‰ÿ0ç»H2xDüMB¨³9Œ(Qì¬4ÝW†øNçWƒÇ#º3¹¿V,͈ ²| ¼W$šAD.ÿx"ó‹$W—¢ ¨}2=Ý2Ém<²” ,ðˆ!¹ü«„Óù”~²A ¬7zEä)Ê5§ókr˜Cx œÉÚ*oɞ΃FÕF Û<¡þ'Ê€)¹q‘=„ªÞDa߫”ðœJ´|ÔrRK.Iª÷)$¹AÁȃ͞D7¡2ùGDÈè1ALí î—ãia- 줼KòO8ÍÔA$âÊhìJàF̓怑º(òêÒ d…³ÆÌ‘ªrBó ƒáß‚¬+äŸ9 ·È‹ƒˆ©¥G>ié³Ü]8QïÆ.ü˜€€Ó\ >ñhVp“¤0ÏöVG¼‡‡Š°H²43“/X]exGV9z¯a?+ +„žRµ Q!Fl‘]_uñ‡èQ +‚ÛTÖdb£’èîLã`u²à1Ħ£ÚsU+›ªù§3%‡1<µræáh´): ˆµ"“®¾=WðÝhw$Ù~D>yŽc§0C¦ìù °qzÕ^ ¤†X›–„ +¿IˆÑX`'³É² PÅd[„@B&2z$Íw,$’˜]‹E”9•QÒ­ô—Z"OYÇ^¬lÛæ<ŠDºÅ‹”ÀA$×Ëš†^%¦ÎÏ“ôItŠ ‘Ȳˆ\kCÝN-QfZ©<“ ¨|c$©7ù¡Œ’"‹S'½ºÜ%$P“R ´C›ü\ÌÉô²TÓaN9 1 +£yo˜Ó£(f%€½ŒOVF'PpÙ,7Ï´.æ{w\HG÷(ýDê…N>ø¨-ÑXîò´ðpëÃ}äèŽR/z3õ…)¯GU†j˜ì°¼ ¤£*èå±y ÙSײ ºm$竃 ¨Ò7)z”G¾'PÌhø!Á¤/ ‹åÀ(¬î’ȨRH½N‹;2S· ¢®Ë5béø2©þÕrùô éLQÂ>»Ö9!,ª#ÊpÓdT‰6úÂ1ŸÅ½˜Ú´ÀM*D”oèÑÖ85”%íSŠcÖˆ"ŽE@ÌhqA‚ŸÇà+L*Z +)(Cžù•(xà¢Júˆºzz€Ñ²9%siùÙc\“©=„à‡9ŠI†’‰µðF£Íó>ð\dUE´£?ô Ï ’J«’£~Â;LÓÅc‰P¹ÇÓS{Có«òM!ß+\” âp—$(yúCC?›‹á"v˜r¢ìY꟔ˆ õH(<¤°§Nú[ö×[RÚH€÷ ¸sEùø~’ž“”×érÏv$iŽâ 8èÅÍ#{œ+hÊâ Ž2ó†çMÐ=©ÉÛ;Þ¹ Y©`M¦»¶¦&3ù^Zèνÿ^‹Š'nЮï(bž˜Š‡ç9W´F ßWleVÿWUY¯ÒÉ#ù 3ÂS8UåY¡Éwפè5kU™ t‡³B¯(Öõꯣóäb2n} ²‚Ø„+°ÐF#Yï¥; ÷¸²`¸ëº8?“c$É4²@RK]î·Áð“#jëUž²"ˈžh€è∠bá^¿©R¢ö5Ê/HôªFèRc!ñC¾ÛÂùH<{¼:/²|ŠÈ¸ +Ft¯ 7= %»jL±Ä±¸]\öl,_6´ ‹KËâ³áNw›Èß®R…‡ÊXá*QV›$mØCiM‡`bº\$,Òÿ>j1*ž“ùGr£ ËeƒzÏ´D—Á 'ÁD•ÚÊ~œ›lžŽ @(4'=ÿܶx<&³Ì§|§“o䮼ÎŽœÍ;jÂàNIæÖâ&2Êfã>Âð Èe÷ÖžN»ÞÅ”ÊäÄwe?°ˆIóSd´g–‰‹Ô;¹0'üón±j®š{×Oðì`ÓKB{Q‘§ ªÒÕèÁ +p;ø¦?à,~†u0²H½{xF“™ÝÑ¿ßÅd©6À~ŸÕ›©ÃÄÓÃðS +Ù}RíPÆ«¹¢j} ?‰ê%צÇBåžDY§¨'‹ççʈDè•jöÀ=ŒoTôl5y04w5¦±egÔ}vwgFIœÛÛ–Ö@JõÐS]0üD +w 1Rn +\Õ€á;å”Äô¹3#h×™M‡x°C ‚c£~n”ùk€1åÍrËÌ.!Š…•i‰ÄdasOd+¸Û>i6Ü1ä—Ù$¾Ãºµ : ª¡z&&·ù[ÔǣÃq 4„àéœÆ—(˜=`… –&C«tJ1e=Šûû‹jNiË Ò¡ò“b¥IƒÏÊD’f~Ëjƒ;öãŸf¬¡ÄŽ–Êúâ9º]ÓX³Ñ—ÄI¥Ø@žfP‹%Cãî ó‘Iï¬ó½xèw£BÂJò!ºXþþyˉ-aIÍé]xän ”`PÎ82ˆ(Œ+ûdªäÂA+O}o,%œ/˜¼èyØÈ3(¬?àÞZ9ZW.Iñ gˆ Š«áÅñ|Z, ÖTô†…ikÍ‚¬Û!óC²a @P%¨RéàFwOiçB{1ÅÕaJN ™„q?|ƒ,ˆ¬ü»É$I¬}:<”¾ +Ηhó‰ÓRIp2 +ÏcÙdöhéÅ#AÙ…ÂyˉwE.:Þzÿ½–[F“Yµõ ÜÔ söÌ›®êü9+²‚Ö46WLú*Õ+å¥ðSgm>¥Û C…zWñƒR7 \•šÆrŠ@óæÖv¯4yBƒ0¦ƒ¨^®D*>;VÊcFiqéÀðf¨yø» FÒñö‹‹wš'œ!@T²í%kÓÌ…0¸vŒ&rmr¤¯n…æ#0‹”›&ÉjîÍYceeÚ”%!Ô•/$馦Ræø;m¥.Æc, ^;ˆêC˜÷ùQƒ*,ó°xŒþ º²Ã)3]­¼íCÓ7¼nFO¤G%zš>]A‹ €ù,6Ðœ±¦£ B–žà:6„â*';¼Ý%Ü1PRŠ`&Ñse„Š S‚éû ǤuGA¬[XiMVq?UÝaÄ•d4'G2=D×bç=´5/y1ë¢zær(€Eövm ¥&gªÅøÄ®È#é„Š“~tçgñ¼åWÔ\P}g`º-&¨Î5:;7×BtÏwŠ+ÎXÑq–«"ñUr]±Ò.Nl¨î‰êÒ[Š‰ÚšXG¹ö#›×[4æ +2ºý#tÊÁ¥QÅWܽ‹0^Éî0Fñ;^Pá®í:¢ÚO‰FÛ§TtÑI•ß”'Ât;ˆÖ@Ê:O#·ÔU&HáQ)eCsÕ˜3ãáE©Fžþ®ŒMF}éùdÔIjñÔD¤- B‘c{Ðâ@WÆÐXU×Swí?½ø0¬`´±ÔÄu< +?òbumÔÓáðÎ\jÎÃM®F‡¢îr©d¡qÑ ò:£è!ÒWZ“¾Š½T¹½™³š#QE#" +Ü-L="«Sx§ú©¬»X‚×b¨“Ô(_îűìžâ>Ûz_ÑW¥sE<!BêTWð/MëQxîO_3î}%å´íÔƒ¥)/ù›6Š¨-Ò)^J*Ó†Œ>=–Âë †Â…„1Ö¾R¥Âô",VÒ+'f°  6>—I,K³/Í úæÛ”à9}h AÊ\Ý×£·¥TƒY‹¼zHw!ÿ·=QaqKÈ´TQ°*ñ¨—³â”®… –( \ ŠC™tU;+ò´2Íè%–röwêų`á)&+š¡mÓÓÄtzéþ{-'¶tIÌ.¥ºM¹ú±}@éc±+AÏ¡KÏlt¯¡%g¯C”£o3„¼Ö”ɧÐ;ž×*å d_vßr(þP7` +›¯¦ƒd"6V\¿ÐK0”WqŠë~P ä‚* +„+^L4<)µkN½šVq cF¯v ÂWÁ9#„¢¬s]½mÓÝÃLÖÆ +ÌzdêftÙÓ$§\ ìÙ¶-~À@h­ +Æ©ÛZ[·›Ç1~Ø´i2d*T‰{+cZHTI·7ËÖø|*›3±>+Aø±®˜óB¡É,Àhžå5ŽìµAf¹ÒvoEKž‰=Òb•E¤Kd&?)†„Ö½¬Ë‚D“{\€%ßPך¤ÒÁDwgK]¥!xëæ®s!¯DÎWxÎ=0¢pù+jm0w:º¦`Q¶"y’YÒªÒXæ¤%4# „I:M­KÌX%¨&.Vå-’~rܶmæ"R£ Ær\rWŒºNCâV_^žæ©p‰U§U®°yÅ>Ž¤û£ºîRSQe9â"ȯ“w„á‡Ñí)¢Ñµðò†Æp5+ :å.§G0¼I{M<èÆ™æÜÏ´D+A<{§ +È8{ßê8§ƒ¤ M~¼OnÅEŸŒ)|íB") M-!]éò¹ì)çHÃÐ¥@÷y÷É~£òèQý„vÌZ“À þ¨&$•þfâÃñц{¸´£(àÆUÊÃAèL«BM@‹í™ŒÉINZÅQ g"º®Q Ñ7L‰t#,ÁáòŠ ƒ¾¹í¸PPºcOk&¼V +fa²YlUû1/ºxO3Â𮃹Z"¤Eß„@ë®*e R¬Nî}!áiòÃY$î¼·Âqg÷ràjáP½²fæn&ë co @q9k¼ã™LVÕ1?xÜB\“Ù–"÷L(7±ORªgÃíD–jr¤tæ1ˆVeȤµ ÉO–C™ˆä5  …r:½Nܳ¹BÂs®©Ì–4êɸo„uuÍEóUŽ *«p07$8ÌìX è¼uPŸhà¢ß*+ÒÑ §%佘?¦èÂÐH««uš ¬´Ž9 \@ì§s«—©LÞÿY˜»§Ô"j,¾®ƒê±èÑa$'H*¬‰©µ*ùÑé«‹ÆÛ^•L'wÉz]0‹Ó’æ*UGg8jIäunŽŸ¤jJ‡ Õ“Ò+Dæ³.ñ‡ã|D#/J‰ÌxUñÏF>ϵ,£ðÊ{£]ê(:é.«Þ<ô^ŽçÌç.·öª¡‰Ý`ª@™ ù}ÇäÊJ«K¾”ŒF÷Ë ‡0* ÊÞþ=« tÅ ‡ºn¯v$!BÿCc6(ìŠ<çá÷xL'¨Aô" ·H”À¢D‚||Lnˆ5Þ 1¤áh€_éÍÄ;EŽ‘¡À£—Yº»Ð0Ü«QÍÁÊbtÁë·qÜ»k i¨MNêC…Ã~ΟòÌ4çuj¶Z[ÖsÒ”CÓÃã$«ÎÍX—ÂYn€®Û&bdwÛ!äMréôZ–ä³S›ûw5òZgª^¨£º3•”æ™Àx†Óª²$€ü¹µ féîiêªá©e“?UZ¡ DÔ«T:†ì±Hu(«RZà<åü)ÚóQˉ@ƒã*!†ÄA€&¼Ÿ~øWàJÂ9Íž×êã…Ç•0$<ºÂ,¤ZxàÅÕ+ ÷ò^lí\ŠSóò&Uáˆà +0ø •ªqÙ pmA ÉÔt²RlXȆ ȼé4¤`¯;váLœ¨F̤߆'£=ɵ8è &˜Úpí•‹Ž>Ž8LqŽ´W2MÄ]±ô»‚V‰§•¹c(äÙ·F œbx†SŽj“â^%éqÈ' SS—”t•€[™ª3Ü4´-!ã“=úÅ\&š5Õ3Y4”Ü“Þ;@@ž4'SÑ)*{^ž@R)Îhk.P BÙ2¸î·I8“`çU…|“XV©R­hòÍ$F ‹DÎü(ÙÖåBBéWþ4 6‹å£ã—‚Q“d_WR%”\)å-¬ÐíYÉ Ak ²ú÷¶ âªLiPÊ”M¡±{âJ Oqh¬à…á·Ql Z=zÂ:X™0‘ah[j½;üM»~Vòq-Îy*T¤Ü ­teJ`ÉŽd4SK3¨Ô7•¿ -|ÐRx@©91MÂ@Š‡V¼|  Ê:I¾ÔG× +-îÁ¥çþËŒNIݵÁ ñbQÌ ªš¦„l!ŒÐÄœÌB XQ ñZÂQ³˜²ÏPO•‹ #W Ϧ¤;¼ÁÙ©ž;pþ|ÒsÕ27íÏ,sÑ¥Þ2Å!Òçîy)Åi'‡õVÅŒŠcVÕ¢`âg‘p–0Q Ðª'ž`¤²bNbq•Jcâé­•.C¯žA’S¤h(âœI¤0D–Þé9$‘ä‰Òâk$9;çäµð©J±ÊEhÄ®…ŸUéÁ·Ž*ó€•Ü|[T@¡ª6 2 À³½¾ÒÃñ LôÏŠþZôëÓ²³Aq1Œ‹®”k%ˆÐÂÜ.&yö錄̠ºOP~ÜbkÏ4nב…ù¨}²x¥¨š ú$ž’¥Nƒ} >ø¡wà +À3*ÀIÉäÂ]Ò n"Gz–:eں鴹¬…>‚œ§)˜ž +A¯¨°_¹J—$HpGàÒå5ï,d쩺rE~*º‰Aû«ÆXÄ0 °,çµÉçîZdb™êÂk\–dXóÑ\W‡LC^Zqá ëô¬r +H#„éTGóƒ}L,Ä6§ðª źèP‰Z¤}"W—ôÕ°ò`å…ðuåCÂ#2tد C {WJ+RÒÂ÷•¬hgÝ7©àÜè XØäæ9.—â1†®/èJ‡ÞÀ %¬›pÀ&teSvM"à¹P¦ʯ«œ x+ŠRHç h¸©ÚBRÍõŠ$ YƒX?FNèÞÌræt)[¿R¸J]¹Ñ@`DÂ8ßËŠéì*ÝKÖeÀ±P•ïRêÊîöPŽ© ‹C€ÔU*I'*:¿50±j¬¥æ„Á¡êñšO²d2äWD0xÀy‰HeÕäü¥cM¥RV¸& jÔÉ*Âû'0—Íâ‚;¥éL£%ñ>é¦=Ê:¢œ†&£m·ù ÀªuS¸Â, aNůN nmÛkýÜi¯À"ʯ éC<à¡€-X„Gæ6Ñøw_yµóØ”áA“áD@¢ªÑàÐqx mÍtBg™¯\W Üá¤:€‰Z+BƒxëÞ¤âe€¹ ”µªtJ­!q) S’èI³À{ÄMã4 +SûH º¨¿;eÐÕÒeœeUSR¸h¡…Ž¦y]ËÊÝ‚»ˆO(þh ˆ[S’ó|Ä5tîø.©kÈ6ÍÎk²Mu©‹¡°Êò>£ÍÝÚ´útÿãf6Þ‘ãÄQ3lÙ¢÷*s 0‚\ÂèZ[’¼'«i¶|Mt§^õË£€–<¹•;ƒfGk¢ÊÈ€Aåb5®¡”(?wËEk2ô:r‚2èHì ÑÝûÛDu!ˆD],íc^1›YO »üae¹ã%•9…CE ²;”ñ*i©j;˜%.½¸_c¤VÍ ­‡à±zzÓU6‚¾¡V\“‰-îqÈ«^ƒ$iSé”Fˆ +Bj†ÇöUªè;Üç§8oPxz)àùç Ioè&‹¬ÐV¡–§{œTš¤ÓÌÒ¦ 3ôcÒ ¦Ì®éI^Œ£Sÿ>Ax%»ëº²I]öZ½ÖËÚ uÅ×ÔÅ0+´£:-ÕÅ‹ +̈ÆQDh&Å*aYU«É2éLW9ÌN9Ó#ßéc9ÓŸ“'Fô¦Q$æÊÉ^Se“Ë–“ZÜÅç—s )Ó8²‹ê®-3RõR¢†ªâxÀ>h ¼X%® +Õ +àb”½iµgÓ†Ëm¾,¾ì2=ñ•äN>¸û¹FY¤‚¤*.²ç}(›—Üi–uK¾Û=¨É¯ÒAZtq0«ÿx@Xç\УûžU®˜.×xPYœPÝ­Xù˜|³íªð T’ÔÍ^ì²å¤ÂhžUмâV•È3{ÃkÄ)wB“¥Äúòd¯RiòBò­—Jó¸S‹*•VB÷†Ê­!…Znèä0úôÌ—´`ÐoVU"ïäê±+ÄÄ!‰å W¥sV ¾›CvžÆw£ït +d˜¡ˆ*Ë„²iÕ£Ù*í4V0¡ó”E¦ãJ¬ÂZbL—,Ýó£4ÕýŠr*m5x¥ºôG‚žcŽº]-©È‰ß½Ž_‚•±à+]‰0ðË0´7&/ä GÔFU&Gt‡Iᎋ±ÆîjvQI<*«¬É©¢Æ“·s]Un †Tt¹*™7×k;h^_Á~À”èÀqï³p‹…ƒsï`±Êb\b¯=˜Èü(ñÑPֽꈬDœ#ŒæÒ«9ˆ>] Õå˜C—{ʇ/ +§ÑÂËu¢‰!%ü’.bvõmUb[‰\H‚Ä3j@´8+þ›¼z(J +:ֹʞ·œX4¸¯¼5±=ë¯$É*ÐN>Iu½³G-W èèjzõCê,oíŠ;Ë/¢Àr–°áõo°ÂýyŽUŠ:z4kˆy°Ów:\Á‡3„YüŠ8v†£5iP.aæ‘Aѵ—üh8fr=É˹5òÒrbVƒ«ê,¼i—¾®¤èîVdh%ù`»gÚðÎ"LWðÁb¯ìºŠÚ¾jØc‚}Ê{]Sž»IüêÁ©Ux›)vX|’)bÞP“fð¤Ù[N*x¬HƒTsÔr¯á\•ŠÞ*Ô ’¸ ÚÖõYx,BS3¼å\\’ÀË0«‚2÷NdAi¶ˆ”úsì*ºŒˆ²%«©6Çu5kg¥£nàYxÆÄN¬;è^¯¢¨+*ÁY‰ “ŒÎ]Þκg‹Ž¯FƒËA€ÆûTqm€ ¥… ÷g «ö1¥àÒ=ð‘åÓK¼1a0&¨¸ ,p2 {Z#©ôøOzn¼˜/¾¨Ñk.Cˆ&J6.]¥#3G±û5!@#ʳ“F’ä~ãÈ:+YÔ¾ïš åÇ°` °(€fUF@ò._b!^×rLãÌÊÅ G5_%"0š@ò*!ÀB³ïe†R'ÞѤ¬Ñ¬bÚCi¦Ù)ƒŽðÖ=PH,¦L–± ñr‡Vù9Ar{¡8#J$îxoÇ\øþ²Ë39Œ)ŸÇ8p¶ÅÇõÈ–ö8šBºáŒ2Ïæº@#¸)Õ>í^æCå“=ñ£íÒÆÒ°ÃðEUØ݇1´éɳKæ]Ém¼n’cp»ÏgPç×’Î"€-¬²Æ1zR%¹¬Ž­!òÆ”„¯nX4‘¥™4ÝÍ¿ÞJçÒý3ºEÖKÔzFê*‚«)þzTLBUYŒ»{H!q ×à‘ØàeÎøMO/m~ùç 0EÛ£z,ë>ƒ<¦ØløE¦E·´Òe¨ Â=–©p™®„ËÓ=Ñ/xóP˜ö¬[w˜¥×¢ç-']ÚH¡zÁ[\ìÈœ%5PqJŸ:‚»¸²òטú×g²RZXZ¢ê=³ÑàƒÁ¥ILk4{yMèp4ƾf4h·Îqß«Y=! ¶nï„l뚌Ax¹—²î{Ä>˜U¿œ7‘)!‹26ƒz•é ¡–â–ë‚+ ¢ß,/àÛuuü†ß=•³¼-Ðvê†9Ó”)t„7Å…#h¿Æ œÂ#R`éƇ¢}2ç}¿gÒn ©nZ•RÀË9$ºíªû#‹9Š”~ B›®³@iB;;“„è”ÙW¦B\w»g]DL¹àƒÉJÀA¢!33jã˺.ˆ–M˜{QtX¢VC©ó…­tmªŠè-)rY`½Œ…óK ØP"ÚW%{lL—®v¦ê(Òœ¿:fÔ‹Lr=òÂò¬“y”gy]ÜZ‡§kÛb]JPCáÎ…i9ËoFÙã"ŽÌS +òB–;€Z_mQÏÓGR=Ù=JAmQªè*™',”XÔy[2ð„_™9Ud`] Gnóëc³T9$a†u£ntîâ%Y10Àˆ¤û.³išià;%-= ™¥•'¿Ž˜:OWD›ËHŽí,á%Lìäõz†Ø)ùýÄÊíʺaÅ+ÍÓæ‘uÎR«žÇ¹A°Gºâ&ë¼Ï| 2ϲ°(ÎuÝ KJy|K¼“æΠˆBL¡ˆˆ@¦ ’×í Þ}”Com¹/î?nȬ~'céZD¢hàJf&­„î™GÃAð¬Ôz®@§!ÒÉ2ƒÿVÖ ëë}—\c®÷é0¤‘¢û¥§²U‡n¬†¯óÀÀ$oYk Jh¡ĺè˜ÌyõÔIV +±Å µ(¤3ëÄ!èpáÕ*üÆ|WrÌá‡òká@™RÓR\ ŠCÀ\$Ìä2K·< æl.u£#íµ¨~Š§óvå.ï,R 8ºÛ”’ud4Ï>•× též+œSÕÅÑ’{¹øuË®óÙ` ª)McÑTÊ®ÐC™á}sÑ ¿BÜO€•MÚÅ^1/,’g5цÍÝw ÕÿåH†$þÐ%R&^‚‹¤–âæ0?6ÑIýFtºXÎ+ߊärU°síÌLŠ_*JúégÜN”UøŠÂÙA0G粫)g 'ÞóÎÓ­°ä“g¢ìÏÉëã›õæ)7\P?™ýÑ©yßDÙÎÅ}}Uân­¯¬þ&à +WÖ“€«r£n‹æ&™()çŠ{Tg¼ãŽU^GŸ¤QT0p®,Ù¼©zÂÑäå)KY÷ë ’Jw3^¨;’ê)ªÞÈðô8u¤‡* @L·ÈdÚ¤"Ö§©H.JÙ§äôâ-øYiøä“Î 0n®»KÒqÊ[µÇÐ’¤±BGÂ+ta­ýué=…,+p S¹äªŠøqˉ-ªfP½>(>S½z†PˬbD·¬°”0:·cÿÎ>ù˜}¸Lá‚A„:¯¦Ñè¿"ex–ûÐV<Šk ²ä’îíeD ›*ÓŸ«_Ž…vÏ…¼XÀ"ˆx¦t~@ðóp™ï+A"SÖ€cÐ-’XÇâgñå Mÿ{_Ò#éu]¹ç¯(À›H@U|ó°4!Q  ¬^”Š)²Ð‘UD 6Ô?¤¯¿3Ü/3ƒ–Í^© ÃãUÆ7ÞwßΩzÃâűԅ֔§€1D§"PF=KÑ%bMê’DlW¿Â9Í^Ìe‘Q¤ÝÛo»îŠœ5E¡mŠÄeV¸`‡C¯tk€¼sE¡lÅéô³ÉUßÜ;S/9»">˜]z©Fn +ù Xp‚ÜNœ¤»Õ,–I.ˆND8% ï)Æ,r}•£$ïÐ)¹X} +ÞQ"š3ô(ÉUŽ]çá+Ìφï·YE¤)ÎØîEUªê"xÍ1ÊW®úÃEv\—Œ÷QňWñøû>žfÆáWyû "SBi±¦…HÆ–²ÕÀþãšf•Ã %;ažL°ÂhëñA’…nHõй9Ù²¬Ô‰DZ2]-K¿êh7Ü•ˆÿ})CM*½åè…ì%Bs.¶£çÆ9·]„äîGÒ)*òTdñ`(u¤hQu®ø:ÏM ïtÀ膟0Õ³©tÆ¢ýœ+«ŒøöBì™­Õ»;ÁÉâ:°\bI¢Qì»,‹ÅïkÓ Ù›c°¡‰‚-g¡‚™<"Fäf Ј­<žA+ÊXº%Ú.Fnë4x †dî’ÎOïRXŽ£àXñÖ¤™w×´Ñ‹J™[ýhgô,{{'÷cHiaÃhfc6“2·fÃèrt [r¨Ü«èuwÓre 3;aåé½ü-ZÐI¡C™lÅH±ƒcÂb„uÿN3šŒžÃøŽ­STmÖ$PÆÎð=>»&z€)e,Ý %DdgòA“_Iª/@BG¿WËö«[Âv֪ªI (”@)\U‹”$·mX¾V/ŠñDf °Â$P&z“€—´”t?,$.+çTž$hqé³Ö¢@¼ß‘‰.g›d(*ÝMY{²i_ADR>i‡±Â™á¾èSÓÛŽ¤›†¶¼ ‚ðà7¦…ˆ©]-ðMcÛ°„¦øëÌr$}ñ4Pws‰cqš+Dp˜™ú¬½Íl_Êh2T›ÈŒ!#R¬«¶w6ôÜ55ƒslvɨ)Š#’Œ)á̃TìAêÊM +Ëðº›Õ2†+DD•Â~,éF¯b*¶“q¦ð³4ZŠ}èf­M–c†ºNfº4¡¡ Ÿ©õdI ÝpÎF‹ú¦^Èà¼2«€ àC%lVp¤ýT³;ÉÕÕtT¥ÈÖšr,0Lío+61¶ÔäLÀ•_q6!ù1#N¥¦³ÈÕ€¸&ݳP¨I•Rpuã3Üο*W¥ï51‹Ð2†ÒGTé‚ïÀÁÎ +¯9ùšRÀ–?dÀ$eùMW~ì‡ÙM<ÙªWY΢@¬gœ½[ŽRK ¢È­WJ±%{À0…Öé옃²”ÕÊq®³~Ε ðO×N¡Œ"U ]&ª:«+[FrPml‹ÈlÀ4„>f»\ÁQä²h£Ç8ª,êÂ2|dj‡ã ²ËDJ(=¢±+:aÇý9™ÅIõȱ¡€®Þæä–SÓÝ°5I°…Ìéã@ÖfJœZ:@5‰öet[=Ä´À¯lkÎÍçZXnÈbšJÅO<` r2|¸£>ø %¯wf„âsŠwýÒ7†‹k;¡éœO"Ol©*OóämËU-Ì¡ZÎáöâ†\ ÉŸ£eü@»‰Oϱ.Áe`iú éÑ6å ô¤]×2d©|ž,œ¤³¯Ýn¾šše´)î#n—JÂÓÁÍâc™ÃBÝaò³ÞxŸT^¨: ƒÛiL;=¹–Ü”¢€·Œ¢Ó„Ô?Ê(”J†¨¬)[„Ò¼—á5 +QT-©Û:É[‚D„è…$ÖPü .ÑfÑ ¶›µŠî@ RÂÔ=Zc*˜ŸB"–mÇ0̺֩œ#(â0–8Æ )£¹ª±Ätöä÷ÔR7ª_ݳi*Š»YÓ)ÃP£G?˜¤Ò•ZÁ¹²\¨%¶(àø ™ýÜ^zæµÓ!M’XåIMc A$ŸSÕ¶8 +N˜íçöª®‚wŽcq4sAQï‘ÁûÔçq®•4ë9r&Sè +aôÑ)Ö5nBª'‚ð»¬q„‚;`SO†°”éœRÇ“…ÞRV’&fmª›–ãTÏ-\ç«LÄ)‰íEA*Ô^ö3v~øÇ‚´dó5]*Ñ„—càs1$’¼Ê®9 §_!KÄ3Š½4>w/ ¶õÌ+%ÈEE÷4¨Šö ÛŒ&‡³V ç:ãéYKuH9©O뤞ÜÀY1zC¸Á‡ÂÉÕO@ŠØŒ´nw'ØW€w/¦» Âçµ’hù)¸$'â ÒœyûÔ‹¼ÅgÕeQ3e@žeqBC%$~–(](áÜ:†©Œ0¡…˜}º”&3äñw“Ø°‰)ÃK4õVrL$3XþpÛpe«ÙÒtÔi‘9á¼”Qh¨{H”” ;2q‹rºn‹ ­Ÿ„1E ¾/TײŸ[¡˜œ\+„6|*1?ù;D×m¼y?@u’“Ê>y$9D2s‘zE"è^àK{ÉdÉ ]õOç G:b(î,ª´ 2P,fƒBìRâº.}t¤=›O¡×–2D5#unØNÈ3{ÂÏHÿ¤i:ƒÔû9bgÉ)u¡7EDJÈ@’ +‘…ë¹ø„mEÙ$ ‚ £îDoê&@8”ãÓ0ý%·ie*º–@à×AJfJ˜ÝD4Cã(æ“Hç„Ñ•½@Â(¤ö¶ÏE!,¬­è™Eš’˹¿Ì +UÆÙ-©x½±[2ñ*–ŒNWa8Cž÷À ePæäVØ´@›+Ö8øé2w¥³3³P<Ò)²‡ˆ-î«5´ Ã4IyŸÀôeV]È€…Òˆ"U%x4¸#½CAøN&¦RÎE©Â¢¤óŽЈéåÎÉ@1Ô|2¡¸‰K{º°D¼<'´ Ÿrx>1|V6y(кS +`lZZ„…ŽUÜ ‰\ÞâCl©…h2zÖ8kT‚r&H„ G—Ÿ-øŠ2·r)ÑtÎÆɳX½½€1w^ñH2Ñ@Kç%Æ$mßl¿u²ª:/?²•N8i ½“·RïK_Ð5ÇóRP‰ÕOA=°xu„ô­x^&)û4ÎGJ—r_Òw‰÷ <ÆÇ,w<ê¨ícX¶Ë ÎÒ t +·>"ŸYw + Ú‡E0÷%Hþ^>h]äÎÊ‘׃nƒ²»e˜]@”R™B‘êJ"ñzá> 'Ä6l”N΄9ƒ'ZEIÅÊs•ñH2Üy:)cÒ0òly"¹^ +SR‹/2&ë&•rKgiò¼cF·îmq/a%ö»Û²'}›"„½ŽúÒxa SZÕ¯Ôgl](mKã…ð sz*ý°ä@(ç+…¤(Í(„Ò™ÖÕêÅ‚þêš @ÄÍ|ΘÐ!Ú9øtÂ%“·ÉΆ¨FÊ°æÓ ü}Ÿó‰ó»e½ºþ/Ì둈AåsÔFSWÞÚO–(Ùö=£eœ\½¨KGøŽ¤K¤\ÇË ¸¸,Î!$ò:¿û7·VjvlðAz±Æ²¿O:6Aâr2qRù<÷dn᥇‚£ü%ÅbÀý™-¹SÀæ)ö7iÑ&+¢<—ºj湚™"m,ñ¦|!Žé6ƒÕR|ØûV +Ìþ›jÕ=1Ñ’kÑ$VÉÓ«\ÐÑœ  MN{¸ªaºfÍ^ä‰BÈ þÒ9‡û¹B~Ù>Ï)9$‡î³ó~ÑTçKŠç?ZM:¨m•…Ž‡×N"qáqkNY{G7ØéÒ í›y]!YQÛ‚qg±[pä+­SYt^NíÜ™ÝJ¬±Ó|ê„_“ó ÃgVMp> M=ÊŠ#VÅÚ|L·d¢PJgŒ"óyÎyI­Ù"ð>ª*æ„Hš‘¤A“ȴβÚ]Ûy@°ÐCámN†ÑÅ[ñlà†7ûTàØÏt<Å%Íká#‹²h_­{³m‡½ÊyF2ïÜšb €n¬ô)£QøJ—™Ø(2Ü­¦ÀCoŸú;ë&OÛvKA†ç4@ùy!.^ºc=®ªnr¤%ÈX 34¼Œ¼L‘µîS†n]%²{ùA/Yö<$:íâVAMxÇhÔpåç*ë`øÄOS\ïåeµ‡ –00DY Úi°ÉjYt?ºÉç=5©É<È-Œ¾¤GmñÌU2Qq"ek+ÆŸÍî-W>âFCÿî<•d¾Ã®ÅÀÒP'×ɸ›;Q–ƒ±~¬F|GTÒb‚cˆ¨ ¹^)ÆñŠßò!Ф>ô|†™šûP·Ã’É$)2tèY]¥.šºñË' W6L1´ Äî¦A´=Í£-ž÷S³Òl®uÇ$‡`˜+w8þbø.PJªßÕó}rþj?}cL²Ñ¼à¢ª&)ïŒýPI É$ìƒßé|R6¢â³œ5BìY<„WÜí¦åʃaGM² 4gLÓCV"»ª$äL |YN¹1&Í Ø#÷az; D3XIÿÁ´:Dê™_$ï•NR +w—;&›ÞI àÊô±H%‰fÁìÈÖ-b.!ŒO$WÖ%Ÿ›š H>¬Å!Üi—GZYN‚Ø. ¯h¶ü³ÀåÈûVÈ×a‘`Ão[®H; àj±›‰³NÈU9Õ˜xNÈU¹ËXJW’ E•J„yÍ~V,‹@€›+ƒ„"t´F<%\®m%ò#‹"ÊÁ(©êR.™_‘£j: …{ÊI·›2íÚéü*=’ýuÖE=©|Ié +hCF@¢E–å¡”¦~g[ÞàúÔök ªD +…j9úÁáO¢{5¡‡ñöù ˜°¼«µ¶ ™˜À +ß5~^îEUÑä2°/¯ ¥ &oñW ‹¶l Ä VA†kkæõ)t@?°¥Úš§½ŸõE#â[¥Ï—êò„kK¦òE¸T«ÀuCqú>´Ô˜ô²‘ÆN̯–? +ñéç+–xüø/Ê©Óqþ*³ÔØÍ.|=¿Æ­¢¡VÍUR%¡ÝË¡Éê~O`£0éÄA¥²k:[†Jñt?m¹>”xé½´ÇMËUø î»ŸP[âSÁƒé¥‡†p–~ Íò²Ûú0vâMË•–9F¥ ðÞú"¯—h¨¶µºá9‡·õ\ÓŠ%5mçyËõ«†dû¼NMöð³á ¯8†ú›´þ·³þý*£N¿$xˆF\FÝ.ñ€QƉblâ%h{|.a)að.‚+ˆ{L@  ZÒÖA§r¸?>¾† [’ÈZì¶O)YqîÞ¶\«͔b„¶¡`JQ×¢«0ËÓ´W§&8„­e«aŠ,Ñ FxÀá­ =‡ò íù-ª2Ä]Nˆ'}žï} +ØÕFN +/´þf³- Qrƒè +ž·ÿÜÆQ‹gI¯<£˜I€¡ÇÈqXJò]‹ð…ÀχŸ"È‘\·T^,œ©Á=ž‚B6„¸î8í¿ÉÇ9`×e½ôÒ!ú +¯†²ó`Y™ŒÆ1lwÂÌÍ‹Ù‰b¬šêT¼Í:–˜¡˜ó>‹@IÉU1o­‡½³<ÛÅŠ3‹‡´äSð2(†Ü§¦àGÛËÃä_Mí“d‡8ËÊ™iK¬óžäNš1f¦T!ùsC‹ïD‹Ü Y)ž‹þtƒVŧ†þ`þK 9@B3=’ªÄüI)ö®Œ`¡ØÙî§,2¢ák“þK<(—/ïñxþ “Žß¶\Ý"m¤`§3툶 £XÇ<¯Ô¥)_É/Q¹ôØÂX þ¶+VÌ„ è&Æy·ÌË.\Ë𫱊pß ÆJ8“Éù6ä{nÖo":A¶¯ýžé¤Ñ¶5áddúYóT:ÕZ>²¢Î£/?3S›ô¢«¼!l…:aɘ½t¥èîCŒ»>}Ó %ùM°ù…sAü}/HyZ²”€¸Ÿ7ˆ>[‡M¬ú‰Ê”Û%ÞóiõÛU,¹Ò8‹TÓÇ-‡A-¿²#¥¶ŠrÜoxà8¹ÅW’6ùìvXVúY4YäÄ€nbÊÀæSœ^ôÌ,„½W5{"€¨‚Rî“ùb~ü³N‘²El]ƒª¼g?·µHñ¾)¾çT>ES.D¼£‰l±ÛЪé¦å˜sgu¹-ž~Ä¿æǸ«n”ÒØNc¤Ç¬¬^ÐüÝâÐb¯d½-QÝ<>-ëå¨BHgÑ +UÝ ÈÁ Ç-•4“Œì—æöG>¸™ëcNV;isWif¨ù%­#D°ÛÐôî…ý”™‹º•BÛ"PÚ•­?uAW˜«v,Æ¡D¡dmÊK¤^ÅWé ºm¹²eíðmUÿMµ^™ë\tÉvsY$]”Á XOÅß(ÆÎc˜çT9ÇÅ×"y±Rbad3±$¤Wf6V†xcl„ ›ò·¬º™Š<´´¬>8ã{Ùg¯š§¶„›O)f~_ôŸk}ÜGPíÓäó†«<áJD·²£››‰l¦ÒìLÀ°HU + L€à8첕 C—¾¥K9Ã'Ù©$Rß—ö”5)R™ RKfKä$ó¼+Ñ«â^ˆ ýâè3ëz4’èÚ½yüÚêJ8Í,C¡Œì)-½yM†§´æ–ì·PàE«¬^ó¹@…÷iÜáG1VtÁÒ>ÃßT0Ž >j˜9HÓ¡^@‚b)ÉFÑ&QÊ4ó(—N°ÛšK¡ @ü}tzÚ4lÕçQ_€¿Øs[fQ †6eg¬›BBX;IÇ“·*jŽø:ž’Q)3?Ú†]“ŸtaiKtÙ†ËPÝôÅOá.V“uÚæšž=,nZd®¦¹(§m§¿™JPGÏ5ÛÝÙ¢‰?» SH “Ì©6,8 ki`7- #(!Îvtsºß)Ìh¤ærnŠ Cn™¡Xì-ÊꢪdÝ™Á8íBëŽäìÓâ}ÊŒ´%òoô¸÷íëéÍ/Š2b£Ê¢Ýží¦J”YtzGÉôÞZ;ZݲÔñí]Áš¶%ü 8ª¤aª‡áx2Ša»™€=o$p€, ‰s-k5f"ÍsúÌr9Ç°n…,>W8f‚[ºÛÏw¬cñ|ÊHè@1VuSj©;Åå +•I-p.Èl«KSáWf£nuº/”íˆÄš:&ÃŒèä©®£)‹ž$æe°²ž1 ®Qq ˆi‘ÐS]1 {×}hÓ·ïtL$ôérôf3âÃM@²_AÅȈVhúdÛõÐ 6Ú¬Æ »mQ¨3$‡³­ˆ——i(ðá"žƒÌž©w‡‚ó>+Äô;L³ªƒÕpñFj5<œ1@ŃL2R[aBÆŽ0’Œ&ÜJD£Öݲ5¬«Êla€½Vm¤l`0.cË6>Vˆ î›rÐV“7 aj·ÊäÚ{2t|‡¢Uø4q“F"{eÈ™YPÇoïú"4ìãÖçÃJ¡›à|ùÙ–œZÜLHûõÞIÍûOäµUH}´6`”""VB("¦[é4ðöËv9)ÐxÏð‚1&•*.÷ʬL™â/+GGU%pÛ¢0¹­¢Dâ¥k›2FWâÍ-¨+rTwÛüòŸƒéºH•'S|o†põÂ"±xZÚé,sÈ>°A ~´´p0'žÑóå[ O¬<ó¥ ÆÎçõä CË´M3§d‰,‚2Έ ,à,$ËæôÈzd‰2d¼= £™¹äÝ?©³_3ƒkÕòÄƱm†.ràfN ¸6ȼm8+U®þ‚ò#¢ÐµÇàQg +Ø´}4ô¹.¿ •@‹ÂÙf=ŧZG'V&K¯eWÔÀ®"¦ Š¨¯,Ó¬ƒÏ®Ê"k6äjP)§]s¸¨ Ø42ýû¹!¨’­”—*@¶ê×ÕQ|g1ÇKîÇÍϽº9R›¶êÂÑÝP*ãò18`³Ö-1}Š©>Ö#HdkhmSðfkSZÈllž­­NÞòFÚáð@–ŠÌÆá…ßbZ¶ù9ŵD¡¤¹` Ée»h—Ü ë+hr9Ûb5J7˜=R=ÖI,í_Í°¥–äÅçésPEX‚ÔQ®Í4¥«â©¦N$™9;vŽ>N;÷2/IØ4,*£“Q´­…×’ÖT†jÙAºæ„××EXw5÷ï$Ž&sš6¶¯>—¸ºUÄ„âX[ÚÎ2Î&ÖòAĺS€ªÅç•üØÑÆ +jPn öŠ-"*Ól›Ý\jPí…Ûö¤2%ž¹"‡U‘šÔLø¼ßý9›w,XYÞ”qgjÎ3Ñþ˜Þ,«‹£¶úR¸VäºKßG*»8ý ¹]؉JÓÞq&çŽôÛ–«ȼw–ÊGX«êyIœ;ÖŠ¸ë¶¹Çcê¿Ÿ¹¦¶æ„…{ÒÏp¿0㶮¾Nå[`ÕÏ°w¢«e³ÞQgOU,+ÛxÄw«ÐRyÛ)i¶N¾Rt¯Ÿ$F^:PY#[ÃÈ6eÓ ~º/T3ƒ„›Â”Q]÷£KÛðUWõKt&Ï[T÷3=c»ÕG7MV=R¶§ieFˆlÜ|ªs¨*N–¦áôÄØ*y:6ëe(žòl3x¶ §ª>€{ˆãdX÷óØU%Nh¿©X+‰õ ®´zÞre JÎþê?Aà¿ÂÛKàxX‘“…ÅÓ‹ŸÉ…±uìô3Ë9ÛR-…Õôq èôÂȃ1QI#ᘤ&‘p +ªY¹áE)Ì°Ÿ¯ç>a¿h&GÝLLIA+(Cõ•„C*éÀÀvÑ©œ¹Å¹ÏK;qv%b²T`2v-°8ÈjÝ"šEˆªµ²~~œ½èTb½«¶í+ŠÉe/fðÃu©ŠiÈXz‚º ©ŽCBY(9 ZáˆßâHI½4E2»!žò¡¢iLFó+t»PCDiÈ8Á<ŽÁÛY¶¥EðºÄcÈZÃ檕•‚ "k‹5™;4ÑÙ EÐO#ÁþÝD°zw¾åÐ[(EЂÙ¬°sæËð4ùàl,=ÇûÉZÒwxÓ‚ødv¿ pw¢"6ËÇÿ°?1øE³-ØÑœrTÄ_[„Ä/Àܲ4ÉÚ¯(Þdœp‹¸V2`ŠÃÿ +TÂÎçôȼ- +X̲žë#’Ïʪ×ì:«ô•9UÁ¨ª¶©^ý8[Aá²)±’,e±‚'†:Öã#þN‰>@ïQÅãP2ì )MG”9I&b[„øáXº"ò 5K¨TÌR­2 U¨_…çË£&#øãàBõ©â´+Iëmªª’Û &Æ&x™K¥±¡E\ýJ7!*f¶dLVåTDZuø°ëÿÒ³ãH@ÕÓr•&ÉjؤÊ핃´¡0yÇÚÏë>•øÉ^,xÞm€ç> =$ ¶ŸÖ•ê®0’¥*¦Ij•EäÈTÝj¢§zÉxõ ¤ÓN<ù¦N8£¾œ WFuÉà>EÊZz\XÆõøŒóX†ŒI’s1(«Ú¬¼Ðu´)Ó´£KQø±ÖSíisÐËlÞ¢ê·ks ¥3•ÃqD™Šb¦P¢ªxKÎàÇ=Þ}9÷X“T’¤ä|:ÂkRÔG“%r.ì׈%ɶ§S÷lêõLîh^?‹ÅW†úo{uüãV²­S8—Ëa·:Š÷…<Ê9n4Þ[ã¤gÁÕ¾lÆ-u»;~ARXtÂÁA—Âc5ä@žfÒXd·àìa ±TC^ULjž¬@6ºqsØ´Í.ü‰‚Ãôƒ|«œ¼%Ö$c¯Q#É"KÆðì4Ö^ˆF~Y&F€gcÈ K'ók~eøí±r`Z8^È»U;§$#At];¦™ !B,íàïpˆnÌÜt£òÕ”%Ã)$& Ëòb´EuÇ Ú¾Z[öX”O@Oz6E^d:$ÙXCù¸Ï¡ñ³ð8›J2Éo²”™M.Ê0ổ=­¯H]ºŸÆaYE"Ò¯…ô±ûì†íwa`éŠö$]ÅY…ü<ŒUÝhU.d¡³H¤û}¤Ìxî¨fûœæn^v-4V_¼Õ†Ú~`ë]§Ïg79‡ï°\Õ爩 ½pàÝÊ +0˜•ö¦åÊëŽî™$œp-P`DD)Ý4ˆ¾Bד~§ÚÓVµ…ð'\0Fœä“£ “Íf1èºÃ!ÃSIèg-5éK²Ù°:R‘C‰ÔµÓ°õòŒL²òhb|(Cꈧ<‰:ØV/„CSΰyPÊ4;¿iù$Qßp{¯ÅP~%ÛC$=i2#£«0mŒ<ŽV‘Çìå5_r¬³" Mëò¢©£ö¢«C¤Ù¥ËUO$z:ž³DÂF#]bŒýèեˇç’S³drF7䀲giH™¼–“àa¸mÈ#žGžÅyJð³uîèÅʊ甬ԓâ9ŒPa+né s %{P}]äÒñ2ü†ù îèŒv.ëŽ$„å­eg\'|õùn$ô™ö˜ú-ws·×N1b´ÔùøNª^fRœLÇʉÊëJin2=o¹²…éQ$¸áŸ¨˜!)Y ‘"Û{˜…ZÆà'»]çmîP‰@†¢x€!K2‰Ô |ßi!w÷ŽÀ%¾Á$ ”úšà€µòH‰5k@aég¡ÍoØÃĮߖ™ƒÔ>Ú À ™-úE™{<“±Dq+ÔoÌ—ˆ&—´€ñXÙ3¾¼ü¬Mñezs‘Þ¼Æ{O—-`*÷ݘ€ç›zƒæƒ`x•àmœ¨—”9ZŸôØš›Ë ìG£Ðž œ MBײàLé½Bžc{œ¿Aw`ž‘Çó Æá’ñ=Ì“–ÜÀC ¬õŽ"ŸSIÒ·ål,ø³X–ïïÛ¢NÙ/ÝXÎJR¦wôÇEêÛöPxm¬€5ßݨÃÐ3‚»“^še<®)Ìóµ±M‘«Å¢(‚Y‰#Ý°™ÅÝ­–Òë| +ú-ÄØöµÎ‘¦ãˆË¸~z~—©½‰8Í®ô:køô·@ýUfrˆ9ª†T]5LíêÓOzm|æØ*Q‡/+’!‡‰Eì&®>#ÛùVY…[höÀm Ö¸·  à gçç1…tKœD’:Y‚¶ìb™™Ñœq9®‹³‚(CÀ¨#‚f2(´–ncáԿœ³AÐE%ÌK "ªAíéÂnåØ€‰£§dO g#òÑ/"síÇM‘FNOÊ*äÚ¼x¸m Öò¯$@ê6)¯Ó}hö–@”ÞI"Êô8ðt§"Ð0®*å¤ÑXt%Tlt]Úôp^Žæ íôetAo‘'2åæ\’eAEƒL â’!Ç­RÈÙ!wgÑ*²©·³ðG•Kµ§%Û!Úò9jíŒÊX²-{7jçÜ'dðÔL˜ystiGKlU¾Ðl‹ÐfŸRûŦú)£Ê9Yk`È“™¾CsÚËöóÙKë'øH§æ’¿3nç|fWw£¥eKP'%;[HOá€ûAU‚6¢:a7i›o%ˆ•)Þð*QÁtBâv¼S¬ ZÜœ£à«ö¨>ÏÇ+-ü¾YŸ·˜€Å¥Ë`´Ï[®äS™®0ZšÃf46V”uTÏÈ2#?µÑ¡€¶ùÛK¤4Ë9àE¨¬¤+±ÏK…mïÜÑEŽ3™Ã«MæŠ ä&‰Èqœ À89Tœç?ÅŧފԥàYyÚ"ž§Pí`Y‘Ï¥ˆÙ ÎÒ#µ4I·ß"ÃÉj‘Š"–¡’+(Âœ3Ý“ôùô…,oÄìGfôÃÏZ®_fÚ(k´Go[ð7íŒÆ&•Tx¸É @XŸõ¢’ÐI^¡Æ£+0 Ú<™øìôÐ=ÿ×Ù +…ä'EÀ„G»øÛÏ-Ud¡ez Á×€Ïݹppjã³>ÉÄãß{¡UspÛre¯ru±F?›äŽÃé–„¦?>oÿª¼#œšxÔ­˜¬ˆ^«‰`®'O hJ aÒ"(Í6ꊄٛ¡N óuÌѨ€hÁf6ï¡ðyóÜ“£.ÛyÈF.7þ]¾´@E Ž|nÇ–ÃgæÑ7¥*²CÚø‹r‚  ¼‚2P½`…¢žW ÙÓY2jW’q& +ZÊ™çü´åª´í¤žˆ½’}mQªwó|IcY½j¶8ÛãÝž±ÞÕûÁñ÷U]Eµ™¿†ººäÖüú·¯szñ篾ù¿=,Äü⻿~…pãÑßtüŸÿ€w4þUquüÕÃWÿzùöÝ_>Þß½Ìx2]ÆÝÿ|ñÝï¿úÍwÖÿž,BŒ3¥ú™°×÷w …¿|ürÿÛåáîå€éòùÝNìåóñðéîe?¬Õ}ùðWüMº|üQ_¹?¾ÚùUøf/o>ßåuùp|ýøå{üí¡Ç.}#9o?Cn¾|øxvœYûÅwÀþ‹Y i…Ð+{þçËŸ‰—oÿ|w÷²Öry÷þø_ÄÎ.ßüË]9Öäòküá‡.Çl!ßòòöƒëžþåÝ2/ï®'ïòþ3¾p(DÈ8Ñå/D|ÿ{üûaÅoÿŽ¿(ÖåÓ1¬ýª]>¾ÌqJøôtyþ‹±M–W SLtêËÃ;È—·\†uy…hǼfŸ +®t,€”û务ÕËý¿áçËåþøŒNàKO¤¾û„^‹ð#_—¿ý„ÿ=¾ö¿v|á'üZ¾Ü¿Õ¯¾û+–º_Þ½½{ "ÚrùÓ·å‘>YH\ÿíB2ÙÇl®èk»¼|¸+‡Mùð;vÞèÔÑþh—ë1ý®¢Ë7CÝþ}uùõ7wˆÄ^þùk£ÿrØ»Ø ýë‚Ïòæ½Öš²ðOyãŸú9?â@\þï7'êrò59¦ó‡ï^ÆÄåO¿;þÜ)ÏöÉ¡sžì“—Ì+æ"1µóéÒ-ýòï÷úŒ³OܱË÷ì«Nè±ð¿"˸ܯ¿:6ñß~ájL©Í!|ù¤==ü[ '÷Í{íÁqùÍq”/øöF¹¼þgí®Çëþ³úõãüA»|ÿ +›Ûë»±Âër‘>`ÇÁ\—O_ô›WèCÒ'më|þÁO­s>i£Þ³sóòù±â¶Ä}Å!>Ük1ÞéXZ*í +åðñóß}~÷I ¾1ØáoþßØ—?¾;æé?[F> /ExtGState << /GS3 88 0 R /GS5 97 0 R /GS6 111 0 R /GS7 95 0 R /GS8 112 0 R /GS2 95 0 R >> /XObject << /Im9 39 0 R >> >> endobj 111 0 obj << /Type /ExtGState /OP false /op true >> endobj 112 0 obj << /Type /ExtGState /op true >> endobj 113 0 obj << /Filter /FlateDecode /Length 6676 >> stream +xœí\Yo#Ir~ׯ `¨Z Ù•w¦ýÔ=šô {<Ýj`ëöC‰¤¤òðy¨WûCö÷:¾ÈʺHJ”†ìôªXÌȈŒŒ;#ùæç+5ºÝ^£[ú÷usñîëÅ›÷f$F_o.Â$XiGýW?Z5‘6¨‘’bâ¼£¯Ë‹ÏÖ×Ûù&‡‰ÍÊ]µ^m¿å“|lœ›ÈìëÝœ-7óm>öí»m|é³õ žüÄeë=¾¥axa'"Ûîö³Ç0‘ ×»»|ì¼ý!BH°Y¯d³ÛÅcþ£¯¿\üôõ‚F…}ýˆÕ<±ˆ"L¼´^ÄUT«Y5-ó±(hºm -’Ж;zÖžÚÝñkEd—ûݺA6[.÷xðÙ +ßj’ͪí¼Üb®ŒßY¢{6Ï…‹âŸù"![ßçBOL¶ÄKÍW¹0OµWEDuV%‚yvQ2¸IÂÄ5½û3¦—Ùe.$(ó±² ²jš G+œã­ ¯+¢XKøéEß”û\àãvŽ‘"›a¤%²®é‰V*²éËXò2B¶˜ãÓ_1Lƒv‚2´ÙIDh2štŠ5ºôºZGÐ#W}Ù fPD#±6N¼‹T„ÈGD/Üm鉱&èz·oçqi´gÌq`w’X•¨¾«·kh#v‘êù,.îfƒÏ"’»°ØÜá­b–:B¿ÞT`?Éhâu¶*s ‰^`”ÍîËHÊf´"TÐ¥ß[¾³x +;l Í0‹/BvùƒUöö ¾Á'¾ŒÕÄ«O2F~¢Œf ÍË*®aÊ䈌4Ù hÂWÂÝí£(A ]!Û}„j¸Âq‡Bç踴ŽëÛo#; °Ô¹BÓ€#M¶ZƒM>{ 4˜Ñ߯sY€k Ï´;XÅ ›ž+…÷-À–…‹Dp^Ê´²rÎYÔ‰ú±”Pè¤õ02,ªËeÕý*þ¥eJ…uw×ï£Ä/Ë4½‡M›²œÐnÇ>»ž3îv†>Ã(Þ¬#6q(l'¸å³ý,îÂãøLCÒr§oJ’^ÜFàz²n]wCæɈEŸB±iª†‘I"¶Xà¯"¿·¸Üb}]Æ•nYul«¦­™€ª-Á³5M˜ï£ -æQ‘äÉ-‹àÉجÎ6.fõÍˬŠv*YNr¼÷äùóØ'˜ØÄÖ)»ì–§OfKÅB¿+»ßÇ[þ¢aõý]|½©"»vU´Võ°㥠[¼ÞÖÖí!Z$Iþó~¤-n¦­ùº›1iØôæç+‰0BŒ¶Ó‹hqG¤Ê]ø‘Æ~9â-ðAŒ6ó‹›?]ü×HKÒ¥(L°Â’¸Ñ +L k$é¯Ç°ß/V4Ž¿ð^3ãù[ïÕÐE¡#xQØÑtyñæÃ2Œ.ןé?"ÉÄȆHâ¨FøÖxžˆ>d0Eð#WЪ +ïãÖ½]íªñå¯oG?ÞmFrô-kVYÔr@SÙÁT´f2$r0Õ¥üTí´hm2Çeè!žfˆ|Ôz„ä@Òî0ßòˆÌ¬wI·å´YO[Ý@]U·«ê†"r7œ’h!$Vô¿¹Î‰¶E ™î +„’5²8&Zi]Ñ07p$öBé“p4mál g&EΞ‚s¤¾HøäÙøÈt £¾bˆO áh¸ -°džœtì`uî$éB5¶ƒÅD¦õÄ;¡ºK ì­€IÚ&G~ge WtI`"$åŸh,ËÒ{%[To2ˆá6´€žpkßîC‹SO´°Cδ€Žljr6½}ÐßpGSK8ògÄ×è{pF“‚#kTø´B;¤ó€§ …ÿRûN÷àdá9šà°‡J¦½èlE1Á²§´'dç„>à$@ïÀZÒz+jÖ=±7¬?XjèàÈU­Ã¦Ï[8¯Spä[­KpºwFt`TWaŸ@F|5:Y'y>‘Ú@&¸¡qŒ†%?ÂÔì,þ¹k槬YÁ¨±kUK@µÚýì¢=BngH±\‚]”„П¤tKÛö’Ü^ Hë“Í)ºIêµ0­WÓÑÛt§°dCˆUˆƒl=Åß9D?%óèü´‡]XšW#îžæ×SØi®äQ^†»8ØbO|fXÙWâî‚öØÏÙí‚ü™~òèÀãh¨ãáhÄ”ÔQ4 +Uté&©9”oeI‘| "ïVÂz ÖÆŸÞhL!M…ô%ëåìÅÊ> ™ñ.f󔈵˜IJɳ¿ +w”’„ösP¯G]ôP«ê§LJ‹ùÉ‹$¼ÅÞ-(Éè³Ýžƒ½èXïbï‚}í>sí…–¼ +{”(é*˜;¦`­žh;"¬ãáG-,é9#@ ú í7þˆ˜äa,д¤¹- îÓêÕiHvËÒÙgP‡½k;Œ;âú™’\'5¥bŽâWS³õm‘™n´3„2ÞNBõîxÒ€1 )ö’Â[åuÒñ±ú#—E6_TwëõlD);%ú»j=ÚîèÏvWM·Ýy;Ù / dƒ),¸ÚßÞÎ æ!—&›wáb½ÃŽ(] AHÒ}ä­!Åi>[A*¡(®ÌI)J‘™5ùX +ÌUæ|ÇŒS2#jŽ¤i¥v´8ŠÂHº'*$½êfTE×]7ppÚm\H¶HûnvDÒ¹¤BÀH+Iɘ&ò5ÅJ&3±(ŸM?õâtk‡³!×ȇú|ñb@…ÒOr#†á¤Lo°g{†’³–õØ·³Yu°ccDMЛ& +¯9=ƒ¸¦(òX €TÊïài•N…˜èÄíRc»‰^—£0JIEbÔÑEÐ*]¡ØPµ1Ž6P»š†w£r±˜£Äç‹UÆËô¢]‘ +r¸"Aò£(C‚$’y»ºümTîFÇLò äƒ<"HÚ”þ% +ÇB/9(éÔ„h2³$€òÕ„ô'¸ÔDˆÐ¶ãPDhéCJ(K$s(FÆBÊÒ÷‚aÿÒ•M¡Š™Ô7åá} y +ˆDŠþRÞ•ý®õ£xCt@ÐáknG»õ¨LµºoÙÇU§6DEzfPÄ¢×O Õ¼m‘JòŒõÈ‘ŠµQIȵ咆ÕEL"GçLSíj¡(ùtZØ ¢Tï¸Á£r0ÇÇìœÖPØMŽŠ¼PIiÔ3Ç5JIÔ|‡PCúæç+‹Sª®"8i4ðõ#¬²Àù€!#H1X}Êø¾ºÝo(ò!1$hm.‡œ0ºÓ^?Ïá¼ZR*mQ°éOüó|5ßáàŸÊ9bájõGy;OïÊúpJøˆ^Zâ´Qã´==RaOÙAǯ/s4üÚI‘&R7Å°§Ö ¹Ó®vI%÷>»wjì—@á)ýYWÍ·D¨.§»5Ž“zH:Æ âË{Úƒ1ûº¬¢‡xÈ®ZDNRœ) ”Ù8|r¿ÚÝ׋Y‚6â0-Ã42ÿÔ2h“œ ¡1¸Ä£àb‡ ŽÑ§ë¦|yk>FP>Vw½ä t¿Ùð©À`9è¤øò!G_ ¯©ÀÓ6çcð rzØU( ˆóM瓾Ĩ$1O­MQAµ |ËÞ«phÇú9¾'ã„öìw³ŒqÆ_ÕËôù‚ëø˜9¾Á.Ad"\wjéôy>/´©lŠ¯xã/™ 05þ¯[’êɶqÀ4Í1F»Iš¦ÄÌž[¾ðyX´ö|Çè!"»ë˜¿ªðÍ;Vqn®dK»¤5cM=Úõ9"Š“.劆â­œ +‡–™GîÙŒÖ'ðÖžÛÁXµî¢z`ŒÍtYg íqÒ~®G­ñGdëYôY:¯£ÎÇV²q4w‹!áž­„‹Mb<´ž¸¦*}œF´AZΦ­=£‰ùUüŠ „5Ùýk%«²ëh¶VöeRŒšÐÕ $Ûk£Z!»C‡ þjTmÀ×-íœe¿U˜c£±Bsï圾–˜Å(’Õ8dÁ°àAݦIoNLVam7<Åa4¹ÑÌ÷ˆìþz6Öø‹M‡ž™ãwÜxG°ˆèïk4·1lGh\vÛ2?ÔKÔ††"ó&»¯óú=LoID8µaÝÐ¦ê „@eïñ¤Äön›UðáË‹]ï·Ñ‹Ï¤q°Ú†‡ödxäɇkè;¨òDÿ)ž¸Œ¤$•ü¾Nù;Ñ›u³ëO+_ÆI4ИêXó¾DW2z¼ÿJØDöîsÔ²uôÖýÃ%ž *”ŒØ¬°H;2EÑ.Frƒè'¨3¹h +4„Q$3¤íRç.CÌÃwKU¼ls°ì'øڮߡ¯C¦BÌ74¯ñúo£ÌÜ¡½’Ûpk ³FJÎïõ›ëÏ_Á!Ã!œ.D15Š4c6x0’ÿC‚F÷%”lßßϧq¶].Yo˜Žh(Ô<¢Æ'ïAd¨Vo‡ ñ©Oˆïµ€'EÀ˜•›?br+À + +·æø B¹àÎç11ŒhL͇ÂÒ7_ür…G4ù>ä07åbß|Y®"ƒfqÀáãîæñy‘[Õ­m2õ-ª[ì#Vƒ8€—ƒHWbëü«ÊB̈bË 迆%a¿ÏÉÉî]n²é¦Š#ç›øUñ…ì†]ÅAFÉÇ3üTãŒyViîogŒ” ¥(©}‘’ +b„t¾fĶ>]b¹çlVr"ºÈe¬&äš× «|;G\ ^Ù@Ð;Ò€\/ïËMµåmF×.1Ïe7Qò$Ï1j…—»G^ïý@ †0’@+ÝtgÆBƒC q Ò’î¯Ö»Ç{î&‡r­oŽÔšNdÂl¤ÆDM01Žé]>ñ2‡’ƺ+¥í×Èž‰5 /Ùû!Æ›)ìKÄ•ŠÂÒ‰%»“.d$óÀ¯fÕ6¹@²(Õõ¾ÖU¥êŠ„Tpórzǽéu]Dq‘&7œ`òÇèŽRQ#Í1îNä g ­òèj:ŽwwœÖw3l“OæÑ¡ÏqbŠ0§u6«b&û^6³X>X_-Ö嬅¼ábÚf½ä^{šü.Üå1)GSEvÿ/oÞ Vež—`äíÿøúæû÷ï“™Ï93rÿì&ëÍ-)›fOøSî9Ò÷”9ˆ$çÍõ“Gδn˜!¾»É]¼ÑÃê‚‹~ÐÒù +NO œžg8=è ÓAmK}——¯@“#W»ázd¼²Æå-Ë•´Ü°©‹lÃg œV°éGn ý6Â*óXŽ/ïñ™÷ ïî¡ÀJõ5æEB‘槬ë–þ,×—˜Ö2.¢Œ«FÆc15šnè +×–¼!U·z÷æç+‡*r}óד¬éܼ -SŽï]4C(é7g½MšL#L¼˜q!Ð˧L3B¡G÷F ôíHÎsAqþSsàÖ’)Ú9ˆRÜUëŒPrÐZJqdÚA»Dn·‹…¾ê  0¶ H/CŸŽšžº.¿¬ßg}¼E’¬íé"}sÓP£1ÏÕE­¯åõ‚cB¸WqÄaœ4ߨFô&ü¼‡#êA¬)=ßT#å𸠵XO+Tˆ×?>Çr¨ä“¡juC‘újCÅ ÒV2çpš›õl?­-tH5c‚Lù8/9e%qx›mP~¯ ïÒ#¸©Kî2 ”ûVÛA›‹á"M(Ô¸-ª×“F½ðž¯BN×Ë뺎YAúõ¦§=cÞ›½ µòÛ?b6øåWÉîN6õFœ†ÅS …KKÙ’´«ÛDª¤{“€ø¥ºø'ʶ`u(6„©â„‰–›óã݆· ~oú‰1är½L5œ7¶‘¹—0oÿFû´‰ô ì)OQw(a +¬ç· à’–ìF@8ÀuúùÆ9Ýð¥{PÇYþD “æ$À$µM¶?¬™œ¡µ1r~8_DoT}­Ù;ðÓy¾kU»ìͤ6ÚòC_æ«Ù¶?ÉéêòdÒÕ:ÿD"$ܪÇ^ãaÊif¾ÛËwìâUq¸14¨PN·ÎïwÕuµ¨v¯â½#!„È…¦›yo^d}"ë-™ÅÁ\Èé°Þ‹W²^ër_Äzö¸8˜äføS¾½á3ŽmœLÍh<¼À@ñD¾Í…©æ  FÊ‹rSÍVÝðWeš-x÷’$¤Ãò>â·³òoâå,ïObŠ†ål=f[Š³øú1-)º楒ݡÜaS=äíæaù"£Ò!¿?“ñ-ùøyÜäF}¿biq|øZK2’‡r;Ý“ÔTÛãbsÞjÐÌŒMû°}õbú‘ŒØÚI„ìª*”ƒàª|Á§%ìôP<ãjîÔfŸ¾||³¸ßü#ƒÛÂ¥BȇW¯¤?1Ͷ|X.÷+Š-ØÃÍo÷ +<6ø- +ô6fò¡]NÒ½¾×ß_K|¢ñ÷÷ûm4;2òƒoÙ¯t€Ÿ 1µv”}à²ËÍ·¢Ðgj/ò8m䥿þå÷oùû×ò(mKaEª2|\^¿ÈãÔ<,Ôp¢Ž^žà!Éîø}Ùs&=˜ŸtUPÇÇTJ~¸0¥êP­+óGMµ¶†rÊj²t·>$AÕ;ûVGëOÿj‘C H¥n¡lßÈ‹ºßp‡ÔÜtQ@)£_·õmÓg¼ +UÕdW•l +ÐÜ™òv³»ÛT1^PÍÅK¤ë2B„ìS×uú.OÒ§)aUhžíøË$Í~9‰s{ÈÅj÷·3×M9ØDùÂW>ߥéÊEËzÔÅBk-Ý©Yy7ðÓ%]Ï…IÙy]ñÿÿþçÿåcn ÿß&ã(iÖÒƒ3$é òÜÿ‡Å'ã{ž]r_ÍëvjÜ•T±§º~$mœhÜ @m̧‹¢ÿtf,e>Š:üŒ—3éžOQĆýìÝ‚lý÷ùb»ö}öÛþzQmï¸jª$ÿÝlÒÇu:ZAÿ¦#¯ÛGv5%#[­Ê‡ªä 6ø—õ~³K¾*ÀÆ™­)f=‹õíã¹!~0“"úH­ø!N)2!ýß…jï©ü7†Mò endstream endobj 114 0 obj << /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] /Font << /F1 3 0 R /F3 5 0 R /F4 6 0 R /F5 7 0 R /F6 8 0 R /F7 9 0 R /F8 10 0 R /F11 15 0 R >> /ExtGState << /GS2 88 0 R >> >> endobj 115 0 obj << /Filter /FlateDecode /Length 9710 >> stream +xœí}KwÛ8¶î¼~EÖºr-[E@:#;Nœ8v*e»;Õ}êh‰¶x#‰:”””ëgÜïÝßÞ%+/)“>ƒ»zU›"Apcc¿ȯg×úÙýâ—ìÙ=ýwÓýrró˯¯ògêÙÍÝ/*”¶|–ÑÿÂ¥-Þææ™Ïü ,hÐô—ÿJŽ‡gíçI=ºŸÖ³å"ýßÏnÎyyóËa6ÈTQ>»ʬVf-¥ÓŽg —qVWƒL[™õfÜ,ÒÃ\•—|n»¸v|®úÛ¸ ;«ù¼í–õHnçÉmj*yÀÏ‚~¾K yEk!¬›ÂaS°«ÙR`å FÈ&L$møYÿ5¯»%®=WH›f¡7Ú;¹¯ ÿ5§!D–Šˆqµvͼh +ð hþéZÜ×BÎd¥k¹\€¼<@~ ];‰·^¯¦·u‡_ ·»¶¿¬ë ëɤf,²dQ™³LR/«®aª.2æG`~±hËj6¬=ÌY/¶¨ ¬§«ïꮦ¹ÖÔ¹)ý‰V|¦yšpéÌÀk]<³.X­½LC“$}(ùg3¼–°]$ׄ`K‚È$oÛY‹kœ¾æ›š6ãf\·wͤM•JæíjÒ.ðRæøÝ— Ñ‹vØ`>O³Ì»zÔ,æí‚$¥Ì¶\‹b%«ÊÀJ_NÛà +K[Kçy—Dæm3®iÖ,¡ŠL–43j¿Ë«‹ÃW¬Ç4†Læ]|¢ÒÜ%/¬?¹øÕ¦ÊÐ/†§ öŠªä\´I^LèHÿÈÄþÖ¹¨£ÞÌ>GíȤ¬Ê²x®2uäJ—*KdòH/6ñB«ý&^ú 5ÙÀåÖ…oè~GOªÅ*´—N^·Ý§j9ÆOMŸÄN“ʤ«ßþïeÕUr¿L.Dºä´ÕÝ´~~ ëÉŽAü2Ð$ï/¢ûUróù'¶WÓ:œ÷a—õy fZ¬º;RøI[GÚ¶Å%¾S l$Qj™Œš»À)$%¶½tt—Dèì~Õ,ÆüX¸nîg2wžÌëù²Õ»î'ñ¤+Ê"ˆÒ2í=QËsKòÐ%w¬A-Ë,P(©Ø澞 çTsRLwͨŒR€Ï…yÊä Q3­MÅÀŠ¥#*!5£ž“ s´+ˆ´÷^©Òˆy–ÙG¥RÁ¶7måñ%YY2™éiëz8®hï¡'­O.!œ¦/œ¬º%#ÃBÑž^ðzpÚ,ÿ®±(k`dcõŽ¬‡ä8 é¶55䈤KHªäìýÜ~6ØnW¢ÊIüJû€n\¯¦¤OAò*Ô±ÄZøH”hž¬î¡~ l¯Ûzù¹®YkÃú‚UDêšþ6SHMQÝÓv„%ÃJœñì–îé›»JŒÜÀ&/r˜È·®BF¿ï*0â„Zð=–\L'úÈçîÑŠ41ûo7a¼TÆFÚé·ûCEz«ºM†úðÕêãjVÝW"YËäŠË2HgÀœ•ozQñ¢×‘»äÉ»39¯g›Kilò»ãƒýw™4Ci¬ H{G -a +²A õžc»/¦óq;ï ·?“†äE0Æda»íF¬îiC™àè D4î:X.“ª™ÁÒì{û€A†–4"<\.vÝéúÝû4¾et(«,ì1ôTòd9æí×ÐBSÒ¨Õ²æ¡lbÌÛù’ìbG­¬ºZžhýœpt$7\bTþè߶' b‚Ò—EpmO7 5r$R¦ƒ‡Iªaž‚KúáG Â_@N)øh:ç¼Åô4ß2%¶+I(*¶+¼¯ÙêÏ ÃOÈU1›¯]µ©†­§)éq'é¡y‡×ËõèKü†¦à oðŽKº¿ÇOŸv´ö2×ÞÏó~œBÃ'!c9þ4s<Üúú<…M½»L^–‘† ›qF[¬0#‘ I`ÿúö!xž–ø>¶ŒþŠýÓu†÷œ ("0ùÀ,à<9ÅmæƒÁ‹òdHó+¦@þ[$·˜kŒ€ÿ´ÝRì?µþú-](ñ +xgÁF–,ù‚„'/ÃÑî2À‹ðøpÔoÀeU¨ªáEÇ&¨ÞðõÑþr„`ËŠÌÌÊB§s†¾ÀÐ÷‹Š€…aôyo@:á÷~Õþ½^‹§NL–@0zâßújD*üxëýƒÃˆñü7¤šóТ‡l 9"õC8•ŒÔxÃs(ãŒ÷Eõ› ‹÷tº«i”gô~¦£¢Jš"¬ŒÏák€â³£paLxdÃE^„‹å’!OCé¼ÞŒëåÒeK’(!ß—™¢;‹Â¦$!N˜xó¢ªH  ´±É‹±¥¿¢‘ïlË +›_Ê@BÉë +âŒH¤öuBâ¥D L ÷ü;– 9,ÑKïYz§ +©©E–,Z|ŠùVçøæÉyÊ¢½óšÞ‡T¦„æâ>cHïú7š"9Ø[„˜ñ Ò!¤øCªüZ̲¯[Ò“cÁtd2Üx o©Lþš§ +$-£¡ Ú¦Å/‹u™ >4zL¤’¿R–T¤ÑP¹‚í°[pIt:0€É™Š³ê,Ò²<<´¯>¦ìÜ‘¨gPšJBC:ùÄr˜€[µHý/!©BÈH'CÞ ß‹ëý¥†ñ4R[ˆø’)¨»ˆ¢^:€p?Çjuâ3Ä@Alg8¸ dqꢙñ³l„B†1Ž0ìÑíBl¬J°`nk¡ÍågQ[uÓXÁ[DÆó.Uj­á Ù˜çô$eøøW!I-ñŽ²à{xPó +\àOd//~yâ~ÀÂkô9P­÷}çâç ±<Ì»FÛb‰Ê +ìÊÓï×K T«}ŒTEvÊÖd/Þ¼9<}qx<º¹JU–¿¹ò&3°žLd-Ð +0ÖAÊ%bâ]5Økg í»!û,''¹Œ0nnäç´ÏAÍdÙ;ðDk{hÙÕU ÒhŠ’á\ˆ~RôÐ^\ÿ7‡Íl´²%å9jilÕ˜5™wVÙMÍ€`é4µ©1Ï•ÒGŠlK6ô#ɘŒI¥Õ3¬Ì¶¦\» ÐK¨g&ª,#iÞ®äê’¼5ü‹¶#‘hÏ©èÓ¬eÝ¡ÍuÌ’ˆ àæ3bùvŸ‚ŽåeÜ"Ê«–ÊÌuˆØ¼äø¦"«¬n'|›Pš¬Û›N5™Žø+„gõ° *A!sGdÈI$ÖÞ]=¬Iet!ý$–•½ã—s‰¸çŠ¨£|òÈËg_t‘?#èIGf1<­Èx+yK>4“ISMñEËèêÃAÔ_g \œó=Àð{#rIBï$“éêb%OI¤a%Îø 羬»ú–ä9qŒ‚8?’,/‰Y7È[­ÇO$ƒÍ)XIקþïâ•Ë*åØÂ2XXœÈ {Ūc‰ASp\µ­&Õ’Ó‚0ÆÈ¥iþ®÷' Rn a$ö® ÛvÃq³¬™_"ÔZ“¼«W$]†ÚPG6+Ë’SY¹?Q(R\eæb ]éH§M½ìTb˜ †)Ë +bx[A‰&¯’ ÍlØNØFáúå^ö <ÆRëršZbÈ{ù¤Ñ7~{ªc´ÜQÌoS„ ðDœÿ½®åRoÑ讪Aù”ºˆaþÅŠhõá°×]Ô Äs!)ŽC7Ä4•dÞR}  xåBÞ(ƒ—ßBT]IÔ\u”ë`P<æ? +š¯©€yi³áW&RÁɤúÈåYrŽ ¸1ph®ˆ.`+0k±;~þò ¦“NVÞ6€ð‚µ‰_ÿ¶±-Ä9[™KÃPy9Ÿ7÷œ­JÎoduÉåÙ)§·ØÿïÏdÊéAFKXŽì!#œ÷?ˆ[ÄFmLL[âw«á¤¬Ãh;6£EL\]IÛÆæ!›üÑ ŸíOðÙíYëùÖ­‚y͸B:×>Á»UJ°nyY§Õ§f!2ÐõåÍAÅø_Žé›²$VûÉaEöSæM4Òzl:ÐdÄ&~Ãþ;ùgzÄǶq ¢­ +ž…Ÿ8Ç:dJ²V$8S™‡y[ݶ«å®€¥f¥Q^fi­@qš¦C©¡"€€ü2‚Í‘˜K¡Í´5F9Bx\«æHÏY×®æ˜#·F2Ú›r‰=”Ïs+)¿N~ÄìåsíJûXùýõºJ#«Êöf¢¸Öƒ\À§¨Ø0-ìm1y¿.«Ùä÷! Þ¾/q”èC}ûûÍÅ?I>×·‡·P¸Éöš¼¹m`ý9ä±hUÄðå÷Í*V˜‘’RNié{÷ëH—åc–Y±³·ß£°$xJb†€A1øb\/¸ä@È/Ï%L \p <))[3#øÎ9¶Ë#ÙäZã;gEÄøFÍŠŽøÎ9ÎøÆ+k|ï«­È;&#iä³7#±üç{fßÚÓb¹ Vpþ‹\^$Ó{¬¯Œã±#‰jmêà6ý@Aï.A-€ "ï}í ]zK1‹–“|ŽSý·õ˜¤cð½`j…Ú(Ø »JgRÄ’?÷G¹Ä +û¸ah£lOç\‚xH€“–¹œ} g§|æ3TõÑrUȈ|†•&ä‘Ñ¥°F …Ð{Èܱ·þ’@“Ô-Öò–ËöT²‹"ò€ád=~”BZËŽ™Œ= SÍÂße#U¦C©ÝÕáƒt—K§ ÎÜaàñAÎóø6Õ’$‘r[Ô4¡~H +r9æ—PM+{>Áß‚(02Ì ¯Â¬Kþ$2l%»Ž²ð2(2fš„ßq% NÏKÊÒH2ç/<Ù*ë_¿ÇÌØvï +…vz)÷¹Y—9pˆ´ºy®–R§Ü¤È*HPÜÆ:í ;©Û­Q‡Þà%¿1nïHÙŽvow.{ŸKr{ºšǘÂï„èQ@$FÂ"%j¹v@33õ@ÊS•‚®KÙƒÒ>—9 ?¹•«G/W[Åž?k +wäye®ì}ˆb-Wpj8<˜ã gl÷YÓi[w\µd±ûìH‹4×Ëé¼é¤ÐšqD’$ãv~ΫOÕdźÐö•®˜Ó·îq…õ†;0q©¢•¾¬‚#(Ná¦v!/fú %,›Æ7¼F⼜Œïâ¨tÑøöjg}²I2s”ÏL´ˈɋ‡»büf$x W®~¨&¨4PDÉÉ@œàb<æP‘…%¬Éãµô.MˆâÊ'¿÷>1¨& ‚«o€ŠÅÎÆ‚a”:Úá׫٨Š¿q ¾J.¢Á}Ý̪U݈=ÎÅ@Å–&çNJ‘¿‹I„UKOÄ"³ u-rÝRµÀª”oQ®’W"¡nÙdF&ž^X¥¡`NQ$^ŠÜÑ\9Nïƒó¸6áŠ&úK8²wŽÁEÕÏ{I\4‚W;L6=ß<5W(‹âz–™\™$…*2ÃïÛÍ"fúï åSŒúb!òàpKtºoãx½½Ü2à\°æ“Š%£K¢n#çÚ§önù¹ê¸ô¢‘ÙUå¹€¯¥\›{,ûü˜æ¼±f>̈Òe5í?q–†Ò‰iØR'×*T¥²¬3¬m8\rM¼‘»Ù£þRôíÈ°(3VÖD2ëcjgõdʵ—,Ó®Xì9©O·™Ó«,\ꓮɶ»ù—'ÿZ͘W¹dõ%[Ödÿ­º†--[†Œá´]´(ïÜŸCéÊŸ»X&|O›„°É8ﺚö”ÍuƒŸ”c.ê™´³ûú“TKüäK¡XÏ•bÅ%GŽ\eOˆût^£6»-£¢ûÈÔûºé¸F;2Î/89¡B¼¥6¹è³g+i•Óšž’„™|âÂI6 ..CûN¹aqKYë$]@ãËp¢.4È傳×E)¹ŽP6ròÇéÎÚ‡Ì S¨èÍpH¼mgš£A!¶!Z?¡=‡7!g%ÅÛyZ©FŸÐªÁ9:[Ö‡‹ 5t2oç¹äzm©?ƒ Ø®RÞÍHBE^î2 }L9AW˜ˆm¦ï^lj{ä¿RÚ½›ao-tôPtžºªÆÌeäÇ¡ró°&7ìdð +®ßò]èÁ“U=«>!ýÍþà +M&cšz·OÀ’PåWð)d¼fÙ”C–Èc8UØ|{²cYŠí'®ÖÎÈ2\-Gjn²"•Béä^<ï ÚsH@fy¬e˜´ÃÕ"Ö{pþÎA¾öb…+*xÅ¢TE@UqÀíŸäJ}–—mòﺚsX!š5üøôšobieOÓnƒú'Ò;b•è”쥶ç(- +7#”{1cõþ…‰­I·ÿ3ý¥¯”8ä&?ÜvÜö±Ž2‰ïb>¢’˜@3 96‹eÍ¡°\ +ÜVsÎR±ß_w„pt uõE-ÐŽ»O†‘ˬ)¶RÕ_éëçÊEáM¼¨”†uyÉÝDNû<Wô‘ÍФÅQ?iÓB½š1H¼ÝW 6Ë¥gî@9­O~û\sÍ,gO÷ª<ʉsíý±•ÁŽ=¥d†©íÉ.d“,ð‡î\›·±1ÜUƲáq”F;ίI.ÊqL è¸ùƒ©™¬9ÎqÙ]ËŽKëÞwíP^P}LbáÌñ°â`%^ËìÐ{ÿ¸>þ –À•.t=rˆJÊig®xôzOÑÏ”‹Ø7R¤üüJDrN†ˆÏ ñoWq»`gâ ^ÝT3iÆ*,«ó}hḢÌü, ¡\º§v'!²{maU±5—˜Nâ ¥áKÁ½Íykì ´“™ä©Ÿ»;¡åÊÇŽz–'D)WR#ÐŽQÛ·ƒÝ¶£”=îwÒ¾ïB¥™öó ‡Ä﫤Gj£JÔìÝj}¬å~™kwòÓµôvå±ÐbòÀ±C_r%ðŒÄeu8'ó9-¤¿ÈPÈÏœáÅ.ˆ¼Qd€â–õ=C¼)0J‘ão`{aêÅáÞŒÀ}\¸ˆeey‘‹Ÿ`n´*mìÌÖ}˜ùkÍ­†kŽß‰ÿ@ ‰‹ëœ$î@R1R²áœä^8–â²Áf…ÆZRáqwß2îÏò6¤¹gÑO°½8’ëãÅ"þ0ÉñT,F—¼?,šaS‰+¢¥ ¦$gBi]Äôf¶g„…‘‰¬ÒéˆL‘yÙvÜõ‡>X©wÈñÝ"q61éAò–»!ü“]û‘› + ‚'ïù!÷îcè³Æ%/ß"Ù–ÛX$c ´ý´ú?»Wm 4WèíÓ芗½Þ.kÖvƒ±ÛV÷ܨº¶#—?sb +ì#I‚ 2ër½ Þõ¤Vë‰È‘³Åö¹_™ ™4¯óíÉš”&@Mxµ_ˆ²w[p F–g±ìb8Y¾°}\ ÈÕ)¡µ»ÕŒ«Øª ¤™e©Û;Áè=’4æb ¯š@Ì– E·Z®DÝj¹@òZÚË!6uë@Fó”Óv-IÔ󲈒Äþ±Ü½{íKq„ŠÜÂ8m¬½jÿþ»•,iNIü!œôχEˆ5”ÉÜAŸvRÀ!ígò¦'y³ü›/vN.Dâ ®{‡J^‘4^$ ß_'ƒÉfÍ{ê5Æd¶3QêÞw8½‚t%7ã²þt&ÖuÀ&tRŸÔÜ®‚zµPm¬^"S¬<Ø1[+œsšAyä¶ìëƒrΠܛ¥ ËcÐÜDÎ_ì­œJOiLî£YkÌ ß!o~•r~0´…øÐœ8‡P$½Ú¡…¤YJÓE³‹ôTX¢Ö”C3 YtI õ2åÖQÞd 1Fņ h{>‹äz(íÄG<ÑrÊùðS Ë™iT(¥QÁ….‡2ô1Iߊ²ò3Œvù“.‡bçøtù>Â[nIòœ]~N³fXóZ4ç| ç<]\Ô(จZ‚É°Úwÿ¾Ô¨½ãzJaòÞ‡ËL8¨aïh +7ädÇPncû +9ˆÙ¢Wœlžö¯êOâ¸å_qÜÈâ(Q+Gw¯ÜÀ.yú&+b`Ód[Ø…<–$¶a~ŠúÐp„€õ¡°w¯@ñ™#W{ÙÞ†æv9ŠÂŸÂÃÇeã›t\é¡ú·&;[K %'ò1,›e²Ô§õÌ»‰%îQ!œ†ïl(in>ŽJš["·Õ4·˜7¼·sœ‚¡øPšI{mm ®B4Vƒ:çíäaˆˆì¬‘‘Ã:[¬ŽaÖެಾm +Ü4ÝDÛIæ]´”‚]K‘b<Éu 0{^ú ¾œóÙ£ý í…Z2Òå:@kúxûy;&kQ"è1ÙcÔ±bqq?rkzaxróˆÈGq™ŽV@wõ^!@’…~[ 1eâü—½B€ +U‹ú‹ÉÄNÏ!6×j2Ù÷õµÆøŸ¥NèkbùÊ¢!E7BÃ#×Êpe:œç2ùTw}­´Þ¬ËÏ}!-ypÃù´±äÝo§ƒß÷ +ø!{ku™oôOÀ¬Ü[g·ç8QÙï®ß+ ![9>>%m²BöŒ ºóŸ@$wÊØ·ýZ$ÍDPçæÑîë¸0哉cÉ Œ”ߧCÞ5‹q3æq„48=œÃt»©»jT‰u¿yÿm5mï«Ï•Ð–ÛXóN”O29×Öoƒôs”Ö%óÛ“­erŽˆÄm%9k«c·U[†ÖÎÛŽ:¤|4¹h»j‰=/Ãi.!ìryuñ«œºTfÑËâØC-#tßÀõ5ÕhÔH"=ç²óMáG@Â×(‹¦7´•¨¥àº‹¬N×â`29‰†ÛPًრ    +†±Ô³™qLŸœèÅßôÑY¶ŸöÑý>ð“Îbw»çyOäN¹G½û©.k*çžš²TaZcÖf·É‡öm«àD_¦’+XÅɨ‹ón!­¿S.Õä:Oðö?^‹ÅzпÞÊ|lCßOSîP@¹`Áø’½?–Öüð’é áq“r%öÝXÙ±WüV,Ùj%§uÔ¡’+d 3èÕ•˜ùkiAžT)—‚ql-ƒáÏ=Åo¢æÝ?h Ø÷a…äβÍqÏÉô¥Fú¨‡r€Âa¼*$Ç +>_Q:Ý'ÒÁ’œ|ÄPì_ ¥§;:± <  ™Èé'ÑéÏ€«¤ù ‰/ûæ¨:µx¨,¥C=“Ò0ØoŃVæè‘á<Ÿ>Xs׸O¤£ö†Å÷«ý34ùœLŠ•o¥w¼GÁ@2gdœ3õØ~I3ÁÍæâdÅŸô|çÏŸô|é'?Ñü…Á:üÜÙ9’¤è™|]Û )úyÉ‘sv‚¾â6a³/aXIFš¬ü©•±É¿VŒ ½"Å*"»ÄFÍbQ‡–@ Ì÷h ÜÀ?ÈsðLfÇ-Š³zÞw—:Äq•÷f¬ãÔ?;ja”¸ùŽK%¯/PRáؽ=O½¬q"Ó¨¤Øþ\ˆv%çL/ýs_ò狵znl%w 1ükúÈ5K»¢?IœÊÇû¼¼홵˜ûŽð”âË>CÈôl³‰©¸E‰êk…GÇ•œ°1“YüæIH»‰Ç +¢z`¸NRêž×'1h?% w£(n r±;òLø-W3»j0ÇDƲ 91¤Ê)QÔqÃwêK Dó=¡%s~%–c9{U‡S3–þ3–¦•`ô á_›W¢jâ¹-í½û~U‹ ŒBÕfÂ퓼á}Ã'¯v÷;sw@1 ÎÞ³íãFþÑç?áV ×‰(RE´ßCKÎöŸœs¹ýº°‘’'°»m”ëXçLT’ïäˆ#ÇËÙÕãŸóW¹íÉ—:ßðWeŸ¸Ì=/a5=™TÙδ“)S}„·Ÿ‡3¶H÷°UO«Õ®7æÛ¹¸Xí*å@t õœr +“Ì“ë&øû”»q¤öÂêýqªC…² }Ë‚¹ˆªBÎÍê"}²Xa .¶89ªe›àô5„áÆ·OYÁ’²CƳ¨ä wLyyœrœuçsÉÖ»‚¦©"‹Ñ€ +è‰uS‰>nøЫë”ë¸Õè Û?8ªJ‡ârÍ+»‘7pf‰Ø6îrf;-Þ¡‹öXW‹ _/ƒQЉG»>m.P†ÃápÔ¬œTŽH‹Ps5GV¬5ãj.fK<î×J¾gGwn†Ú›èqbWFÈQéoœ¯†Œ•‹OQ¬ÂçƒTãña¬oØ8˜Ëӎɱ|JŽœ’¼®üi“rÂL^ußTà$^0±‡Iü`tôŠà»=Õêê( gi#ÆZÔä®ß[!4¥$†FT¿H —ý¿ÁcZù9`óØ€¸OùJs…Ooù2Ø÷͹r_žÞÞšc}<'b}d”No€-¤*l¬3|Ìm8o>çÿ¦gŽê“?Nµ¼Q&—8ÂåkůOHÎH‰oÁ«H>™Àÿ›ËbÍÑŸY¦þÿÿ¹ÿpú'qâ„ úù’lPwEaÿêˆIôüÇÁxˆ…0"©0o +Æh¸ŒŒˆòÑù¿vÌ+ À⟰±¤–lI‹„©“’ôÏrn™† ö~u;A…;ßYmò?æòäcß9ßP£B´tO?w=$I×ÌÂ!3ŸØ ’CÙÏÛU7‹§±‡Z¤eˆ7µOÍåﬓ+1”óåÓO;u SªDéâQ‘ÁçûQìžK endstream endobj 116 0 obj << /ProcSet [ /PDF /Text /ImageB /ImageC /ImageI ] /Font << /F1 3 0 R /F5 7 0 R /F6 8 0 R /F7 9 0 R /F8 10 0 R /F11 15 0 R >> /ExtGState << /GS2 88 0 R >> >> endobj 117 0 obj << /Filter /FlateDecode /Length 1888 >> stream +xœíXËnÜFÝë+˜MP3¬w•½’,aA + «$HfAS”H„›´Óþoî©bwZRd·ÌbBƒ¬×}Õ¹ç^ê‡77bq¿9É÷ô[ 'ç«“þ©|±º;±©·™Xdô7¿™ +ãåÂf>õF‹Åª=ù•©,YzÏSËVU"²Ô±²O„L%»«nSÍšó†­é©h<5 Öo’%÷>åììÇ„»Ô³Ód)2MK×EÂMªØ«„+Zï;œ,ÇбªL¸¦í[ÚÎ1ÿî2–Žá<tîígȦ +,oN£*Ï^'\Ò£Þ@"geÍ–}(ãx¸‡ œ¬}–}(óm¤l(ážcõŒ¶ìì<áž&N“-V—'¯W'<J¹Åê +‘}PK¾+©5E4K3%}Œè«r<+ëDpzÞW°‘³±‡ŽuÉÒpÎ~º@8-K1Ì Ÿ^ÈÊùÚu |>ÌϾ±ÆS²x(Vâ¹ÓB«a-bkÙÔE#ú&žíïa„bu‘,µ7´’w0‡¤6xÒmlpB ´´Ã‘¢þo²)£´%¤6äQjs*Íý·Ce<…ʘ©vŠb†:^Ù¬ƒ?“›JÕ^YÝE”‘}F’>ö ®’ç#â¬X…ƒt>á Ýü™ÐìµyŒwWGw%€¯`€0ø|ëp+šuëýÑzöª‰Àªq±d‰do[X¤÷þ¿ú¿‚õ9 +‘sœÇ =ÖÇdZç³—1K«>Ýœ ¼â  ™ËâÍ¿„÷4­ãðEŠyèà”d_ìƒazl*ì¸ÅXÊBcÜÌ-|Ç-׈$¡1‘H½éNÉ›HA×HKB¹ÂØ"c¥“´þðP…‡¢$)„#šFÂÇÓˆ_ (L~Ù;°¤  +g«\y¹Ò<Ç•œ²ÂÿÈ£rL–*„†ÒÆpIrxttzòÈ9?cw]•]?n×%J… ÉJWÇ…¼ËeFIIþr6,aÖQ„° œ0¯÷·eOêà  ÐLëi“îæ¯ó¶ïœ½!Åí^Õÿ’gä«!àÏÛ¹5_è*öÞfóÕ}Ýš0Æy¶+b+‹@–††—W¤@:¾Ï§¢Â/1-qàÍÐß~®‹ß·XB®Íø&:Ku¦„ylà Ïôn¾G‘Ñ~#„,ìfúî>ÚN7›¾¨ó‘hÐÄ"‰ÂrUÒ…Nc¿ü®‚ ,!F‘R +ʬ4ïÆúC[1 +‰§7l5µT´–ʂ仩hJªŒ4´´Öä- ¥qœóx„JD=Vq `Áè)úü~jH$ÏAOÙ¥¼xÖrI¤/„sežÚm™Ë5¨›íf,[T^¬è!Ö(Š_9lǪló±ßÐ$¸7ÅÚ¡³a¬†z¬ç½Ž½¯Ê©=–’ìDw¢ÌÜž„\Pâ—ÊÆ‚øEËôØ{“™K¥~_ÉwT/÷T? ë +¸Î4{}ÄgH»÷ýXm0 ô8'%µ@gqÑMÓ8cE5ôm¿ ‰+3Õuå-fÐîÜåÅØ…f8„IT¬‡œF_-±ûÌ%vGSç?ßœûiM™95€¯-Šy^eSÑmBzݶSW[Ì¡{Ë»°ŒÆ¢Ù¶ëª'AMM­Dha–ß}k±6ؼ(ïº5ðÈ03ƒV!j™ýKAL41_°WÿÎ.÷v’Rûî?‡ô ÝÙëÓX‘<;kš6*8ì"ÌJv]7»¸×³ëŸ¾‡å˜ÒJç[‹0ÊÛñ,§ˆÛ¼ÔN=F…¢‘›±¬æ]Þl7upOîê&µwÔ­ü±.‡úh‚‹iÔŽUݬ¯-»1oàF"&uGp ÐRøX˜¹AK°­µ§uQ¦xÍB³§aÑ[@ÚÊpTÌÄ£©_çcõ­†ó/ #{±'ûÒéÂ}‘?êA”ÁzTz i~ÝYA{9Ò=¼/Ç5e8?¿i A¤ÏÏ7K´Z±ÒàÚ¯b¤ Ä“¡7<Ì š˜éAâ[óüç O ) Dþ¬} + µáæ‘—éNúEe;Ê©?é·¦Ž]ºÌ<ö<–qˆ;8±Œôno®}Nj¸ p›EÎ4]Lú[–ñÿÿþó?|RÝøo›ñ·¦=FýSôH*zÂe\ý/Ç.ô¶G‡3$¤‹ IŸ¬T´BHçWÊÆTy*åøœuzî˜þqlŽvWj…ÓÊê¹!Y¦ÑšvÞäÅïŸÊ¦ CâŒwÓ‡¦ÞTõÜ»³«ñöQ•|¶äJjËÚ> stream +H‰¼WÛ’Û¸­¼ú+æLh‚xÉیǻ™ÔNjÊ£M\eû¢( kŠTx™±òùâôé%Í®“Ú¼¤\å@ Ñ8}útëvùæíúJ_-7oŠ°Hãô*¢~˜&aœÉUåašêäj¹ñ}õõÍÛŸôÕv •e…ÿ^Þ|Re»¶°¡U/u°ÈB£ú+q+×VÓª E˜ª±æiX¨M×chh‡±ÁB§)}ß;9ÝŠ¹D•A¤FšälvÌÄjÏ:ÌÉÞþP“­C­Êqêë0ø²ü ùµÐaEÙÕòŽü[îÈ“kº¶†òˆ‰¥ë^ÊØüwu‹qD{ØdN÷ûz}õ”¦¼;ËÉ“u=T=ùª#µÂ“°šªsÏ®›†æx;,ÿH¼¸q,Ò4V¦?äì‡ÇEÕµ¿L[2‡9;)°WnèÆã¡^ ~Y¡êÊm\…Ï}Þvåˆq +|ÚÑ-öt[}¾ë~û#ác2Å 'G¬ÅKý6(œ¤MxÔýö{€ëgõÔMI@X\z뺱®vm×à¤ÍãùÊ›aè*ÄÆ(G/²$Cünž›ª~ïÚí®Ü2z-èû Å÷'ÙrZûùéæsÒŒ‚‘«wtãÔã[N³uý̧ªé{„¬ sãÐNj„ä+­¼ðɨÕ£ŒÖ¦¼Âvð4¹NØÌÛbÉ bi–äL|?Ô™ ó"£!$)æ)RCý!XþòßòIÓ]q–gW)ÁœÛ(æS×öÚÊÁÿ|òÇØÿõ:Ê©4OÌ«ë>©ÅX}¹¯ÁCŽÁ±YÕí?ÝÚ †m TRPq`: uA)ô*•F¤RB”5j˜V™k6X(„,ÊÈÀRöÐ1’²]×bn(¶ Ž cw8ðY…ÐD \ˆ³¼.[6*ŠŒêèóF®OUY¹õâxdHÎÄ…Æ$t K“1ćUÀ à »uï“!°¸ËÛÁoÃèSÂÞv/‹Â"c,]áY„S¸ï,@º°Úû}ù "–©Çžryp¢†ðÒ­3õà*HŽê¼c6XÈ›Ú#€TfÎ~VÏ€ºššHÌ´º«Ÿ]%Ûµºþž >Mm+7ŸË¦FÂÅšnwÃØbøó8Vœ0¡Ã(Òöµ›f5Q>ÓÅ10‘‘EM½l ¨–l&ˆã q!}^˪õŠhußÕ²\¨]Ý0°Ývéùgªn0£äÁ¤(ﺺ¡‰§?³Ó/¬‰j^Wv‹«Þ몚—SHÐ}[…ürJ=î\ChpV« Êv®rTŠŒz¼9ËXžÍ2&_‰pÕäm¿Í))c‡Ý(‡/EæPð©–í$¨m(…&°£¯û! +dŸk)ù&ÝüÒ)dÛJ¥’Šq= IgÉ„: l“7#heÏYG~Ρ¥ !º®Çºç9Kkh¤g ¥”µœ¥ÃùzØ5ÖpPÝ0DzÓ!³Ò˜¾¼Ô(”Æâ½›©çè#~=ÁÄÔw ÌlÍ=c —#27œl  ²„(”ù3IŒZé¥ A–a9$bsùyËV\Z—=Û‚8UkIc±mpÂpu+Yæ~›ûl>A-<ôTBÛÏaܛ㔃gP“øT–¸'nÅ Â ]M9 £û†Ï(„¬¨ã›$†É~[©‡ùŽ¼ëúƒô(]Ï]Ó}ß|ÝÑc1×)¾ÿ«ž rJ®Õß()ÑH5S=` ÚÓ­ÆÒùbÌ} w«‹áô&­VÚúî#c==ñ?Qõ·[9nˆ’$á.å‰N¸í΋ßQÂP¨Ám[ÿvÌ8Ëz‰_Ý”¿Ê ‰fA =úrŸH%%õ11•QÂéW5–Š[’þSDiàÁ[ŒlY¯³Â¼û® 4jЈ?–{ÙU <F2ÔøS¨ADO:Þ6Ј÷I+·´ \h»@C¿Æ#mP=‹"í…âíÇ€ëî€Ó2w/ûH‰iâž»¢a-΄ÿZÜ(ò¯]Ðk5u.ÔêSM*€bE@¿Ä’“w•_G—Æd7ÚÑëvNf¢ôHlîK<•zµƒ A$Ò¨rÜ•H2ò³Äë ÀÈR +„mä5x#¯a“ÂÒ' Ñ/ô"¨FÝÊÚÇ;,$€æ^¤:£|b$SÏ7%'/ñ‚Z„-jxH먜[Y‡wíÐ~ö9™}f*çPÂËœø»Ã5\ŽäÚRæ{¢þÊÇÅSŒ$ÈFZâòI!í¥M"Az¿0Õ‘9Ç/Ž|üPT‚O@¨#?¸…ÑJÏ_¾p*kž£ÂC EÊrP×K¬çhÙxŠß<è_»ND¤_”â’üïóŸj±¦NVÜÿЄp±AÂ}Ç?¸¾ô³]€§Ä ™"¼ö³2€l".ó<ç8ˬæ¯VÍ´%•/²ü;´­JDZpIÀÛ•°ÂÆHBp¶£b&N°F6¼ÊFŽ¯…65¹Â:§)~ª‘ZzKD“XÓ‘:ÿþD÷dœþ£.Kì½ÈmC(æÞt/Âñ F¥ªn… >÷]¡÷§ß +ßC8‚ª‹Ÿe<±™×¿¹rß©r/îUŽB" +TÒÞ+×z‚OVQ7®Ñ•ì ^Ä9\y¢ïþ]ñ8ÓŸmàušj‚ ·3ÈÞ˜D4oþ'gÑ5vFÜ'>ÖüçYd··|<0¬Él¹P/*m)»šÙÐ-mÿ(òy‡5„ˆDä;ev;‹B‡;ã–£„±>ÏF(§{ïVÿ®Ñ¸•ÚF +dˆà™Òøõc#˙ǧfÝì;˜MÕ7ÿ2/!%È_È!Å¡#Œ€¨i,»#Y°(³÷:þCH< ¹Ma¼ÎùWaxQ]O¬Sx5;× ¡¾ÖÀ”DcÀþ ,Œ-Ú‚ˆ¡Ï“Ô½ýÞ[ô'²¡8aCöÙq¯ßñCpdðoPÝè„à|¶ÅY¤×ifgµ.õüâbö¼{ýð¡Ã #kl„‰ †U†‰‡ªìùàø aŠêoRß–[«ùתä;ˆb1xàJÎì[b œØ;ÙTùì`üd¬Œ®ÈOÄ1ã3ÊÓO¶CB> ¯ÒˆÕ¥G/}ßÊœª2?`]TB´‚¿Š|AîgòJú„º|’ &Yj@/]/{/îX šy7ZÕ»¹ȸ­ñâæfä…³%½Ì{p”ƒgÚ¤¶8×êÝÉ‹é¥:Qš9„õƒkñfNsO´?šëägz–tlbûÿ¤ão7^ò~¾ 0Þæ É„û7Î^ÜƆ1!{ÃLÍ^íDFI¨Œ2RôS×ÃÂ=Ç\´Ñj€Xšªpª"j+LlDF: +£s6Ç¿*¾‰qÕÃýC\õoÒ«m·m$‰b/Oó~Y€"™l^šÌb±Ø`‚`ìÄ1œ`AIm‰IdHʲ?#ùâ=§ª)JŽÁbžDñÒ]]uêœSøn óï_BÖiCùjPr1ôïß_þÂëH䞆<(ýå¬äÔ£°×=>0!ÁÊ¿Õ7//.ö|s£ÿžœ +VN5këòœÇXLÑlÄ~껋ùy¢Þ•_Mfúl{±©w»èÎ= Ò²ëŸÿž/Õö¶þçBWôõÏL—ú®û–9Oµ/™ÂM$ýb1õ“ÎùJë³w-7‘Š„ù¤m¢Mz¥©j’9OR…Tø„#G=ÔÏžðæ¾=²ª5BMbÖwáºÁ²`爫%L2Ù¯æ%g¦FAo=Vï4ò£žÞ)‚2xàF<ÀFƒ’¡Bá¬SOø„R¿»>—Qå’v”‘•ƒcKÅws:µ¯j=^Ûh„+Ÿ±9?`pOÏGSžn`¿SD5BGßÉÊÁÌi´ý^O蜷*|LDû!'ããµè°Ù·^Ê©³óɇÒ0Î=&Wêóºjiæ|”Õ\ušVÌR´¾ŸŽLf±x=¼>‰õÁX~w«GMŸ³Ñ=ócRæ¢&x‹çœÕv¾ø‡(^k¹W š—¹Àሱ_‰åO(J©xð2Å*žŒg 쥔 ò«Œ¸G÷{%k´uÏö†¼]‹nb7…Ùw­þK%fßÔã½;MÖÐ Cmgk–1_|ª)ÂÄÛˆÑêË¿E¼Óí®/U÷˜C2ö¾Ág_kýZëvd=&Æh^jKÝ'DV:¿ûéfÃN{vSL—ª[óÈÞìkîTVÁž(Í# ‡°aà;*Å%›ÊPJ#üÉ|_áRÏtñSr]ßþMÃ0JO5á}Oã@Õªº¾š“{ãÔ›ó8áBK·uxÂDìºÚ~>Ÿç%&?Üd9Ëm¹~èªnØ0òÊEŸ…º×e=¯ð…˜¢}Ókæf %Ì°±\è­¼‰Ñ@{wB*+lq¤ôðå‹…ˆ.;¦-ûŠŠj·Áå^1YI,&b^·"φR¾„—˜p2){AãVe%6 ×0$MÓÖ÷… è„àÖ"¹V†À~/­4W׿‰F¡M’è±áïåQ<<²‘õOþ¤O¢áIgà¡7ô¡J—DYáþùñwq><ŠÂ“ÏÐý6Êñ,<Ãd’à €1 ãâÌÌ’Q†Dn~þòhAkãaÁ˜µÌd²Œ¿ŒP¸Ðäñ™ZÎunŸYF4•[ÎCàu€íyI…@žN „'Eôÿ'j<06xœ(c²?ž(C“ÿN¢²ÝèÃ'eØE˜>•(KÜîimå: æõvâÑ2‹íc¯vÕB^ŽBuSlÇn·\:tî{Qä“8¶:nøWªå¶º­æå¶Á—xíиyÏá €Ç×DxæjKEŽÅ4ÿ¸j¹ÜÍddÇMݱ}0±n¤§ÂD +‹w¥áB–|U¶³z×ò½j²äý ÷£MÄU¬…¸ˆñ©HBöãp +òŠ;²s3Äi {ãÊm§ŒÐ•E¥bœvÓ@ÛñÏbçÞ)¹µw%ƒÝ ¿q—qMù~í0×Ê©6n4~ Ü}ã öÒóÆmû}Õ±ÜLʘŠ¹D’….@¤’ë¹ÓV°ÈdVΪuÅ À&Ó–eÔ[X%\2CTLJ}Ga‹‹ˆŠ4±R6üÏ)¤ÌâA±Ø…‘ìĹØózÈ“ )[)7®üÌ+žx]}vëjŘPßš ädGò¨/ú±=ÀÝNT•H’TLã%c¾z/¥OC¥Þ«÷¾Ë}sk£4õ}ò×ç{œ}Ò”0-ÅïsÞ &“ý:M"#›A +ÚV0Πƒ'4KuË.Zø>3èN“œ¨Ê¢ìKN/V:×Ë$Cܨd™Âpt]Õš$BÁ¡l·iv½´§wûëÊk6âƒ(‚í3ç©÷†HŒÒµ…òŽµ¨·>¬ŒÒX›Rå%â +ï=²Ö‘,>3¸Ô0ÑK|6aª¼?¹©<²ÉPFLVC×_ó„6Î1h®w<¸©°*Ž6ÎÄ\yYÄÊ‚ˆbLöÝuÕV o9@“Jü)¤!ÁÜÕ·ý¾l墘[¶¥Úcd-)8½-›·®"ØÂôÓ3DÚ»ë_ùü:ùçŸx›È[n×JŽîáŘäUß7//.tí=æ! ctoSR "ÆïÚiÝ.UMX±~âu*I$פdãŸl!@M¬„ ;èGãÜa¯½›}é×ܧ±ÒÿqL,ÝD)½2Qö‰—±X‡bU ýÖÃh°á¬² ²ä1åuX‹‰É‰ÒΕí\kEYÉ#Ï&9' #¢Ï¦)¯xú7äŸ<b;r=ÌËÎqÌ9R)yå<îs­^Û@ߎÁTë¾ì*ñ•ô‚41óÙc«uL‚EÕÍÛjSI™"À@:)áä:sýÞ9m‘­N‰qðõßß99ò£²ð×Wßô[;hR£~*:Cº*•"‰´$±ph09¶ø²+µ¬Û¾¢$ÞÉŠO#Ä'\»R@Ìù”L¥zÇëÜû/T È+ç+] +®Þ[Ÿ¶XÆŽ\Þ)_ñü–šY"O¤'ymJÇÔª¡ìÕ~Y‰¬£ dó:bNÜnÕÑ[VñZÊ[ò® °\:Ó#èÁµHŒ©(ôwf-NÙ»žUSžCZ>†s-à$;˜Z­,ªµ–I ¥A¿¯'}©­R­Ý‚’…tÁµ~®.kÛi‘È”“1²#¾ÑÚ€ºˆXž5ãt?èí â¡6jµz˜WD Ñ ™¯¢h)¹ ÏÝï¼èyG”QçÕ¨ +èîûÖmŸþÐcu{ BÝÎxLŸPug^Y jŸRKí<¯ö"S)ßYW['ÅJé¸ß´ª™û‘,%¶¼E“p!Ò¤mqˆù¾ê˜ß<9~ƒàëe*XŠ³g&6¹&°i¼¹g“ +Xrz\!¨œÊ¸p*°‰8,/òêNƹ~¨+f§j-CEÐ2˜”ý]ýð*Ûq¹¢@§|E?R€-³ªX\ò6‰1Hm?P»¥´Z”I-îÏH¾8÷ÜSÅÅí™<©T¬åÖ]Î9ªÀ£Z€²RdÅÀ«Þ¿bV¹äãÛ_B¶Iiuè@x._¤‰·§t~j¢s÷;µ@“qꩇF/D B ûS`ƤQ’TrCFÉß>½ÅîdÕ"8e +†ü §>?ˆšÛ-§mÚØ[ΑÌç°HÜá •c«X)€‚^5ÀW¥(.Gšû%Õ|“j˜ðÅM¸§­Çûõ Ì¢ +>ã™PÖê3H ]ËD9(9¯5±‘Nó0Â|H ˆrðyӫ΃îXë4´»6IÆ'Aø-•‰º‘¹ÓÐEq2óFÐq{žAçFr5téáÔíVgà‹ê‡|q!Ee]˜ãv³ü–ü£½Áxi£YqÔ^Õ¿è@½žœe.æ†hwŸvlV´Ê秕 +}{Fé˘BìC +á©/µV‡*®=¸Öe×bè‡c]¦jþžóE,Œ¬Œµ™fVC=å{×ÐGŠ³YÆdÂw7NTD/„=À‘6¶ +{|­ƒ‰,ß°Ä%»“.ñ|¦ÓöµAF†"€ã!Љ€£ä€:Ó)á ¯¬¤V·3ݼn‘\I·A)Áð™ ”‚¤×û¶o¨Ò3Ié8Ö)BªsRTXpŽÉ"%`Z¬]¯ÏìbàÐ_WBµú¡Zok~žÕpè`ARõ=qÅ2P\,R¥@YÈžXg_4T} ?©:«L»«[‡fòSwöu÷ÌóÕ{#ÐÖˆö¨;Õ ky‘¦”\½>ïëÐiyHiz•¹ 6…¤d´†ÚÂ’XOqÑd}»"ÜB¸HT'¢¯!ÉÇâ%Y¯Â²~_﹬‚½Ç–5‡Vð‚–’Ó¿!âY¥y¢ZME¿çÌoëËpÊzöÒ`ÍgØšäV b”ÐÔÍ>ÿáû}Ž‹à- >Iñtó2b"nW}Ô•—©#ȱ?J£Ó±5ïp‹×\¢¯Ù-RP„2>ŽG¥Föm¡ üÚÒXGr^Q„G× ¶NÔìÞ¶û …t qh4ý2-RÇ^1ùeqûoùdùIÌÚ"|ú3?™ø©Å;Ìt™j·c uŒªB˜Ùi–[¨™ö€²u0û»Wb›èAI\È#‹HXù“Æå­ü¹çáá³V¼v°5;RÁCgª¹Ã5Ù^Û~§uè‚dÌ|¦ +0°ÔVO²_ üÙ}>~"ºûСgÌ4r™7òùÜŠÈU³‡Fò0VÁàú) °ÐÖ«´Ç{:(§Z Þé§m;¶M¸§Áuiö-3÷Ølâõ4ÿïÛs§PUï'ü¢â¡¼m›ÉW¨`Ú+üA"_·;ìö•ö§=wÈ€Û h—ÊÙWè ó^õ!k `½u.~-é`*ws»ÞׇZ/F®K¯(ýA~ÄìÛOø‹Ð÷íýéªl…ÿ.¹³éŒ!,ô šä·ÅkÔH³RmasqÇ5ѵâeÌÀŸ“íétüëñŽ\ùfn”¡Q×ëuymV_OûeÛI mºCà­CÃÃÞ`™‚Œo€×ƒ(º¶{Ä6È&«ÊãÎ û­öµ&ÿB™a–ijü‹RÞýÄ5®ë%­Ï SêF“³dÇB¡„»E´y­”* Kî)èó¸(*ü"y 6‘GÌ!ÞqNNB2Ô £-IGQ_ˆZƒ!Eò wÀí0®]X\”âXyUj1™N† 7çÉü±°>—šM“/¬ÊñýcUF6¤>©<=Ç@…Ã`—t©2|ƃÑ8Ý, ’ÓËðU“¹4ÉyÜWiM€I )NÚ‡–&GY­õa¥ú´PqÔ ˆ»kL—ƒÛ¹¯=èÃ-¬ÙËpO+Ÿ) + +á'ÆK~´y%kÜJLk8<¨'l‰CŠä¡ Áíñk„aL®˜¥æ’æ+C#©A¡ýØ<ƒÆ–AÒ¾sà" õm?ÕyÑ=͆û¬44¤ã¦J¼£!¿šKê$¢ôàÒ¬Rq€08MÕËèX©Rã’åøèÛmÈ;)îæȼGK‚¤^áœJSw§’˜ˆH•gìò‰Í¥`=îßï¸òðÈx i¯[1pÅI†W¾®á,æÀ•>«uR×ÕXg]Íà‹f³FëDv”ÊEê˜ÝVz/Ò‚ok.Ìß]K£÷EiOÄ*È$ÒŠh +DÆfxÆCÃp4mm´ä™A©Â Ô*«TÙ5É'Ƭ¦Wã)žbüXPj¡½fy³µc +W +÷§7aU”ÝØBDȽ›Û§¿êˆbTÊm®‹Ã00÷ÖW³ÅwC¥žÜ%ž¾„(^-Õ´0×ÒéŽ=>W“l$ ùeYäù‡š3mâ.„vJ*G¯—ò_˜PÑøã+p×7Æu=fБ~ƒp)# €WœÓÐM*Å!ÚÿâuàpÂ$ ôŸ -êõh l£æ‚í=1#¾&€O½§N2ÛA½6¼~"‡ +ª ×^T+ähoËL}>Ý1¡|vÉqK ˆ.Öå'm³´pŽãY.înqZ¬ñ*VÉ…Cf\3 ä ý!F€hböâZ£-n³rÛg‚š£“»Ošñƒ®»€§ Á2û#¤!¾Œ*,ÄÊ}©RÂeØ3„)R‡Í§:åÀÝ SžìÏ sÓG;#🮗fÄ9ØY(_/¨T%·’\ª”û²—šÐ·OmسĞÃC?'zÀ›ŸÝ¹¹½½ZŠ@*ˆü ¢ôÍφŸ„ WñÓ]b"¥r”ó†gFÒÑ{Ñup‹ó$kAû›ÿ'™¥rm*Š@ÏK—ý‘b ¥Þ”³ÅÅ<,dù%â±SVëi¼¨ Jb™Ï¬Ù¡½å+*´ÈÅ·i„h„€¼TåF²t©¬†­ƒŽtÏ @ÃÕ4Nƒ·ëG‡$ Lõ«lûHôé#Ë™€Ø]¤QÅ­˜Û‘÷w<ð@kæ +L(±Y™ÿ@ë@Z–ÚXˆÈ¢0€›zQ&ÒkÁÒSM-j cÕ@åíÈv‘ñàN™OG½>ÑÎñý¤þGÌK–$ï~%-}äÂjîunEÄ!‹½ô„nG¾0Qû6ÔÁÙÿh¯šÞ¦ *\ø•¸¤1ñ®w½>Rµ ªF¥\L²$+;ÄkBùø½Ì›Y·MÄ ‘“cïÇ|¼yóæ„ðÈ ùiÁÙŸ”Ͼ–”¶«GÙØüLÞy*™)â7Ä:†ŽK¤PHÓg<ÍxGjxÞ×[?–ïªF,FÄ{3YNP”å,Õjš§%4ÕC~Ï7a€Buâ"Í”='ýB/Ñuçu[‰L) GZ`xTjºÃù´QÍãŘ*Ú:yGËvtÝ~‡OÜ&ñ>ø°ÞD97§È>°¶¯û8í¿éÊZðZ±¶]ï}ߋŵºíV¾pÈÇa–Üâ‘;Z94‘Ís¸9´òÄúU—ÈúGCRpMx»îàá¨bG[œ  v{¿ év…m|¤"On†v-~ºÉûÛ›,qj!ÄI„4ËÍ1"ô‡œ‡>†%æOkmÝÜõ¡ÏHä[fÎè‘{9»Ö ”Ä×YÁ/[cþ;)P2†PXcá.V¬tè f8ˆ)Ž¬#aN=•©_ÉíbWÚÔžžt…Š2Z¶¸D–AŒ(Šà(åX~6ÔwWóç`NURÎne³Ã¡›ÕÈ{h8ÜÌqXù–¢–cûÙ‹ù´Û)ëÎl‰^aÙÂ\ÏÄF#6RW´Vs—H„¥Œ:+Q\ºRÒ$ÞøÖS2€fÍÒ>hÈ…›aÇ ×,RP{µ›}ˆ¡— k©¸øp©duë°ô)ŸVL¢†<³½ÎÆm—™lr“y7´ñGÚ–<¡q×3îòq\[7#^JYH"!³…¥¼R°tådÓÿö#X°þn-,••®üÓÕ\ÒG§¿|íF=s*&,YQš½pƱ˜x~„i@i¦xSzT¤vsm +l*Jc/T0è´“‹¦^~9ø¦á¿”wç&ô›Ä Õä&®NYA!1ö¾r–«ÐÖß‚ PwÝ û¶NgÚTRo·Û¡íšn}wÌJºG•Í_ÈŽ|’+÷+׎—_Ý>û-À2&@d +endstream endobj 119 0 obj << /ProcSet [ /PDF /Text ] /Font << /F1 147 0 R /F2 142 0 R /F3 137 0 R /F4 134 0 R /F5 131 0 R /F6 128 0 R /F7 124 0 R /F8 121 0 R >> /ExtGState << /GS1 120 0 R >> >> endobj 120 0 obj << /Type /ExtGState /SA false /SM 0.02 /OP false /op false /OPM 0 /BG2 /Default /UCR2 /Default /TR2 /Default >> endobj 121 0 obj << /Type /Font /Subtype /Type1 /FirstChar 33 /LastChar 126 /Widths [ 1000 1000 1000 1000 1104 1000 0 1000 1000 1000 1000 1000 1000 1000 1000 0 1000 1000 1000 1000 1000 1000 1000 1000 0 1218 0 770 1000 1000 1000 1000 822 822 666 822 666 718 822 718 666 666 718 666 1000 822 822 822 822 822 822 718 718 822 1000 666 822 718 1000 333 1000 1000 0 0 1000 822 718 822 666 1000 718 1104 822 885 1104 1000 1104 1156 666 822 666 822 937 1000 822 1000 1156 822 822 937 1000 1000 1156 1000 ] /Encoding /WinAnsiEncoding /BaseFont /FHJONJ+AdvPi3 /FontDescriptor 122 0 R >> endobj 122 0 obj << /Type /FontDescriptor /Ascent 685 /CapHeight 705 /Descent -12 /Flags 34 /FontBBox [ -11 -345 1373 718 ] /FontName /FHJONJ+AdvPi3 /ItalicAngle 0 /StemV 0 /XHeight 684 /CharSet (/numbersign) /FontFile3 123 0 R >> endobj 123 0 obj << /Filter /FlateDecode /Length 826 /Subtype /Type1C >> stream +H‰,R»ŽåD™Ý¶“Õ †dЦ„ð$müBZ‘ìŒÝn»ý¸~wOÛnÛíGû}ï¬X´„Ä/ï°àê¨*¨~Ô©ªs~öôâìüüüò«¯_|û͋ϾüQÿî§Ï3Ÿ>\_<\?ûØûëOÀ÷¾Ï·ó¿ïîþ‹ÏÔß>øýû÷ñGWÕÿ_íöôìbÿïìÉywù?\?°+ìc;¦e#oEV„c£Ô E WenæåNŽ 'KJ³´j,lá4¶Ä½=9£[G2”L¦xNætNÁ¬ebc6#øXOíÐr^‹ZT¢jë¾êËX˜š©&`dú–=óàú¾x<21‹`°b+8Ã9Î=îT^é‰CçíÓ2êãr"¨ ÍîœJ*A­’8ªìWö–½•šß篳&ò¡”¥¬ººM#xQó†‹B€+C1d`P&e 2í“aï¨x::ƒ-m‰:Ô˜¥—Gy˜E S^¾ûÂ¥a'Q‘º …0ÂU~îp‰‹0ósà+~¶‡aŠ Ní8¢fhà‡wÊÕ±>ñSyŸï¥çlfûÄF2Ò9ÝÒ-^£%\‚åptWw¶Wk´,qgvf‹ò¸AÖ¨Ò@ip˜›¹É¬ÌX¥TbQ“X‰™Ú‰ûÈ7<Í1°Ž2ÒÍ[tcß8·‡Û@€Ã¦¨ Ecz¦qßT°Ò°ƒ’p@3ZÑjžœ£{:lÁnáýÎtd¡+(ÕEÍ–lÉ—¬.¶r«×j®g1µs;òZÎÃ4Žó¸Žë°vk³6 {s¥nºh¦Ž D†.tôõ@O£ØL‰S—:Ä%. …@Wd0× ÈµRg±¸i_µZ§÷†D#šÐhλggö&ô—&8†§è·´%m龸_ضc-ŽÅëêXì(¶fgÕ-r*.»¾ïú]«²‘íÔŒõ ê™·åT.|x”O&Y— &@£6êUªd—[*i£Spò7s7w9ŒîhOh6§¤08½ÖÁÆ°û`ù;7”E 8ÊæR—jDKôø6—ÿ0çÉå< +endstream endobj 124 0 obj << /Type /Font /Subtype /Type1 /FirstChar 1 /LastChar 1 /Widths [ 270 ] /Encoding 80 0 R /BaseFont /FHJOMH+AdvTimes /FontDescriptor 126 0 R /ToUnicode 125 0 R >> endobj 125 0 obj << /Filter /FlateDecode /Length 212 >> stream +H‰TOkÃ0 Åïù:¶ì`'çm9t+M·»k+ÁPËFv +ýö³Óì üôã=YlúmO68°×&-ÆègÖgœ,AÝ€±:=¦¥k§ˆ ·˜Ðõ4zhÛJ³ß`õi®'ë0~È5ˆo6È–&XêŸßü0Ì!\Ð!%Ðu`p¬Äf¯Â—râ /Jý0õcPYÑ„Ðʺ»7$ó_{çñ>¾W[)›]We⩸\ór×3s¶œ¼d*,áëW‚ŲTõ'Àídjž +endstream endobj 126 0 obj << /Type /FontDescriptor /Ascent 715 /CapHeight 683 /Descent -207 /Flags 6 /FontBBox [ -208 -208 1000 760 ] /FontName /FHJOMH+AdvTimes /ItalicAngle 0 /StemV 0 /XHeight 461 /CharSet (/period) /FontFile3 127 0 R >> endobj 127 0 obj << /Filter /FlateDecode /Length 185 /Subtype /Type1C >> stream +H‰bd`ad`ddpóðò÷õÐvL) ÉÌM-‰iþfú!Í#ö;åwʯšŸ=¬r ÿwwCHöûøŸ +v÷)æ„ëd``Ôc`àg`bddŽéæû¾èáÑÎæ®fÖ&öž¦¾æþæ‰-“Z'µOê˜ÒÉ:™m +Û”ÞÉ}“ú'Mì›Ø?¡bϤÞɬSÙ;§tLnŸÜ:¨¸¯¥·¥·µ‡µ•­‰­¹£¥£µ­Xù .~F÷ +endstream endobj 128 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 177 /Widths [ 208 281 354 572 541 812 645 208 281 281 312 572 208 406 208 291 500 500 500 500 500 500 500 500 500 500 208 208 572 572 572 406 1000 552 541 541 572 458 427 593 614 260 354 520 406 791 625 593 479 614 541 479 406 593 520 833 520 500 479 291 291 291 375 500 291 479 479 427 479 447 312 479 500 239 239 427 239 739 500 479 479 479 312 375 333 500 427 687 447 427 406 500 260 500 572 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 447 447 0 0 0 0 0 0 0 0 0 0 0 0 0 572 ] /Encoding /WinAnsiEncoding /BaseFont /FHJOMF+AdvROT-I /FontDescriptor 129 0 R >> endobj 129 0 obj << /Type /FontDescriptor /Ascent 690 /CapHeight 690 /Descent -195 /Flags 32 /FontBBox [ -72 -270 1187 760 ] /FontName /FHJOMF+AdvROT-I /ItalicAngle 0 /StemV 0 /XHeight 476 /CharSet (/u/o/D/z/n/period/J/t/M) /FontFile3 130 0 R >> endobj 130 0 obj << /Length 572 /Subtype /Type1C >> stream +FHJOMF+AdvROT-I'øø Cû¢£ùŒ ÿ‹‹ ÿ‹‹ Ýð‘øÉ AdvROT-I%+.OPUV[ +<fØX–¸ûÏ ¿îŸî(÷•à÷8÷ó÷_÷˜÷77Ëû$û.ÊJÄïÙtûûj@ûLûI3²ø.ùF?,ü~E}?ûgp•“u~E„©«†«÷GçóŸøpß×÷ øñÜüñØ÷Ïøñ‰û üï×÷ùFû ûËüç‰:øçûÛÒª÷6ñŸÄ÷1ﬡuhu‡i†sTû°ÒÇ÷Ç£¦¡Èe¹Q-dRXh‰žêD÷8÷Ž÷EÊ÷@÷-÷QÈ&ûLNûHû#ûÐWê5÷Jõ²÷,÷ Ù—FN%lû,ûCuËÉ÷п‡|{‰|auž°”¸‘ª¶÷t÷–Ãû¨÷.<`vû>€SØWû¡‡wˆvw-Ú…·››Žš÷ìÒêøpDjû6%wRû1(kt¡­¢Ž­£Ã÷°DOûdžs‡puN±^Åè±Ã¾®‰æª÷é–Ãû”÷Ñø–Ãû΀S÷{ûÓüøˆ÷Ï +endstream endobj 131 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 177 /Widths [ 260 281 354 572 541 812 645 208 281 281 312 572 208 406 208 291 500 500 500 500 500 500 500 500 500 500 260 260 572 572 572 406 1000 552 541 541 572 458 427 593 614 260 354 520 406 791 625 593 479 614 541 479 406 593 520 833 520 500 479 291 291 291 375 500 302 458 479 427 479 447 312 479 500 239 239 427 239 739 500 479 479 479 312 375 333 500 427 687 447 427 406 500 260 500 572 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 447 447 0 0 0 0 0 0 0 0 0 0 0 0 0 572 ] /Encoding /WinAnsiEncoding /BaseFont /FHJOMD+AdvROT-R /FontDescriptor 132 0 R >> endobj 132 0 obj << /Type /FontDescriptor /Ascent 690 /CapHeight 690 /Descent -207 /Flags 32 /FontBBox [ -31 -229 1135 760 ] /FontName /FHJOMD+AdvROT-R /ItalicAngle 0 /StemV 0 /XHeight 476 /CharSet (/u/A/B/two/o/d/c/D/l/p/e/G/n/f/period/r/h/s/a/i/L/t/X/M) /FontFile3 133 0 R >> endobj 133 0 obj << /Filter /FlateDecode /Length 1213 /Subtype /Type1C >> stream +H‰ŒS{PTU?wwïYI¼¢pw†½î½ š`! ¢¡¹<ÅAt\ÅÄ wP5I@u]×ǘXJT"*ƒbãâƒLdÅ"]YY\|P˜2ÃØ·ÌÇT›éïþ9ß9g~¯ó›9 Q)Ã0>ñ‰I)ɱÁs²6R…†ïÞð +à­YŸŒSåîaÅ*æo‹åßÕ[í >cŒcuc‡Á^ÿ1 CFâKÈx†L$d2!¡ ‰"DOH¬’ÌeH2!) +ò¾’øËÖDEF‘Ù$›œ!˜ L“ÁX˜^…¿b©â …]ñ‡bH©R+W)O([T¾ªUîP$‡9W4/^L¢œ«Yãñq`=½ö=|q0G dŽ#Ãs'Í¢›Ö½õ¸ãÔâø&nÂ̤4‘ÿÏ4Nz L,즷ÑÄ:)~<φЋ±¼•öãSWP¸ Ì£Àþiƒ ÐÎ<™ö¹dUWpׂ—T³ì¨qu&ñNzõAéDdÎi’ê9u·-‹À±øÚÎ,)LV +••4"aâwpògƒfJøÖ0×FAx–‡V, ÏD­”&£õžj–Ç’$˜Š[hIñò5qF¬‡DИÓr–€çu1ÉÒc +ê7êpa†a,.³c¼Üù¥éH…ÈɖΟÑ2ÈFSÎ3¢GsÇ3`¥14ÀvÊÃ3ÀZ‡î ÆãŠÆ!7k–‡ÇÍ¢åú-ª +1pôxží¡˜Ábp±C°§@¹¼#ºX®îjnÂ#ÚZ܇“Q“©OÙ-Þ£göièêÏ¥•K{ -‹×kwn±l¦ã„lTF4-s>ºØT}X²R3„ò†²’â|ñƒéù+„U¹_7º^V6IÜAö¿m­i÷f§®ß_Û?}ØV•n”\ô^Nú¢Î‚Aø^ß;bûfßÁZ‘k…GÇ`|6ši]q^ót½–ãôÃàKS@}ïlKÝ!Ùs €ï¯âj?eB¶ è ‘«ñø_çwl*MP— ºv©ŽW«R;Q…¾ ÞÆñÛ“lõûž±zùSªíw…ÛÇæJ\à ºÔ]¡mU¶û'Žm/ûR¼¡Þ_°nŸIÀ‘ÙúhiîLC—šsui`¤A×{Ç¢±Â}êû:fæEe‰fèL ÜCYpM-¾·7ìÕY~ ý?t… k…í[ylH‹@‰ŠJ”PºŠ${xÙÐÑé<§Ç‘è=+«¼å:»ÐÄ;Àf¥¦ò“©ðjðƒàô§¨ž½r¡i«dv%P–ðݧÜréü×7"™³òñK‘ θ„‚ßO€ˆjdrbs·Hæßä` +ø••éG´ugkì—.–’‹Ê*7 +†¥³¢ÛÖÚÖIç׳5…ö Kµ‹–ÌM5Tí+“Õe_].úQåÍK¿wϯYò­ÄM{3¿ãÓm; „¸ÒË'%¸~-èSÔ +XTFœØªŽ¨Ï~VYiÝ[)r.èU,é´ Ô…ÅY:ºE¨HÀ>õ»ç»_Öº‹Vù3–úy"ù> endobj 135 0 obj << /Type /FontDescriptor /Ascent 716 /CapHeight 688 /Descent -268 /Flags 34 /FontBBox [ -135 -281 1187 760 ] /FontName /FHJOHB+AdvP5D3C /ItalicAngle 0 /StemV 0 /XHeight 408 /CharSet (/T/u/k/g/B/v/m/b/Q/o/d/R/c/D/l/y/p/e/S/n/f/I/period/r/P/J/s/a/i/L/t/X) /FontFile3 136 0 R >> endobj 136 0 obj << /Filter /FlateDecode /Length 3992 /Subtype /Type1C >> stream +H‰l“iPéÆ{£]u@͸í¼Ö¼ñ k¹šZ¯uÝÈáªPÁqt¹åFäf`Îg¦g†c8nf`k4 DŒA †…Õ5¦Ö+®Aó!é1mU2„­µj+_Þ]ïÛÏóÿýŸ‡ƒxz Çï³#¡ÇŽ}˜”|wÈÎà…o[\ÀÖ¯aëXçÙôFë%°rþ£Ñ,žË}þâËpWÖù½\µp{éOâ‹ ÄA¶pm²ÝÙ‹ AÞH(‚„y!QžÈYïF<‘uH?r$œ'Ñß.ÉöÜà‰{ùy±Þ„÷ŸpŸy4]:øžÿ{sË>ZŽ,¯\þj…rÅ¿¹©Ü!ßß¿­oÓ¸l³ñ/3+'%³¦¸­½­±¯±´!rO&ˆÙÄKó—H„ò%&WhDF%Ûš>g·j0~÷:NxÕY1ÜÍŸ9;Y/RrºF‹ÞнxÍ¿›ÒsÆ*¸,ŒÐ'äx +Äq•ˆÆ;ÕØo”&iŽ-æušuÚApÿ›„Y°!zOp¦uÒ +™-®"^§‰T÷€G×âO°«ØŸŽSë›h·/+èö•î/.?‡ç¼óÕåÐôߺ¢²§ÌšÊŒ|ñ‡ aÖð™ÕÁÌ/Øþ=»dªR×–ˆ>k'hia8úø¯Ãl í€!-ì/·²HK°Îù·êÜR‹Ê…xú;¡>·¸êШ† MQÕ +:ÂNëI«í9³Ô…böy]Å:̤WÕÈu¨J˜®Nñ´d"ê2ƒ¬‰ÀnÈT%ÛP.s˜YÉKÛ”,+@…EIÙ ¸\WQi±˜ü¢ì’¼N¹íO·û¦°m ~¨f„Ùà:‡Ùæ UCô¢†eA#qA#.UK&,h”dÍ6*U–d¹5¾v!®*ž}^_y“¶ÿhK®Š HmÒOm±KߢØâÞsßÝÑé›A½¿žÓ¨îÁº–®é +‡Š–%º9"g}Ë5X.Èelo–ðº ]Y©å½Ýý†ƒ]Õà SÜ uTCûsf½+³›I]x8–´‹]Çú|(… +¹VlT¢7Ôt ÃAG÷È]þ`©3Ñ!°¥„ÕoGãò8(W(Ëi…›j…ëê›OxûöäÙ×oaW¬¯’=Ål:6M4¨+å•¥è¶û̪ º†Œ—Û ©WÓ + +U”åy ?M[™ +÷µüP8ˆëÕZw§z¬çšóáýaÆWÏ,A™pëó˜}é¼WãÁîßCœåIJþÛ· GãDg‹%ÿýo40Aß1gÆQ[×°íà¾f.&J,Tä½£a_ Ñ×£Q9 ‘KaÑ4Yo{ÞËøaí&=5: ĹJX^w¢9©m“ [­V[IJ_)×…ÒbÛ¥»E× 'ËF‰ZR_M¢ßV}?ñšï÷Ÿ· :Ο¸ü!ˆŠTË#¡Ô½m½¬‡À*½8c+úê¯ÅHzÁ_c(!ë¡Ú²œÖhû+ WÉèJy |:Ç,{tözÄLi‹ºËŸºvëéãú¨Ã"AQ­¦ 殪±êfÔ’w¢9°kw°œà‘c#ñðzü@B ÿƒ½ ¿þ arN.Ài‰F—eÈb¨Tè˜ÊŸ\æfþÍf^„H_GAB/Ö¸(-5üb")­ÀÍ:trÐÚ4&½;(M¬²‚·áiþ"Q¬rm’r‘àZràtçiVPÚjý%…Å,æIà +Çœ•$Ùƽ_R¢ý8ÔË«5:ÚÐjŸ½ìF !qZP RžvïGÝÀSàÚZ‰’Íý転QuA#©­Uèi¬"MæÊÑÉgÿºy»íPsPkpUr9ž‚/ì’лJ:z5½àZ³FÕ ”¦V¡s;É#K-eY3ÉO.<‘YIª¶vîÙÔƒ“Ö:‹©AפÌzmÌ]ãô|uHÌÐ’PŠ»;)o'0;¡’ädœ Ù{üXöTîLÞmq'i¼ºÐ~ƒ^k‘ëQUNš:¤¹Ÿ}eJ¢„V4X—Â(²$·êÚÜjR‰xߎð°üÜ €¬‚Sr”›ëÚáZÂÃÍbA¢”BN‰AÎEy^L¸—(<Šý(/à?«&»màünZ@©S·{É.©¤r¾ÌPÔxcúƘS`”ë傘ÈÌâb à µØáJŽ¥[Q•c.–¡›òZj‹ iXr<~÷¯BÐèÈŒ2 *èÊéqæý;7a›½¦¢ ¸CöÌõ ÏÒk鱎ìœödY¡œ Ô +’h,Áª¥Ê¢ü(eDZÌyÁgù‘-F»îÕ>|$˜}887ÅÎî=~ðÈáõ‡*oFÈüœWW+ÍŽ dW‡‚¸äÂRP\TÕû•ýÑÄ œ¾=äh\VÀ¼pmå}WwîOb½CùŸ^Éê˜p÷ +(³Â(Q£ç“¿ÌI¹ù–ß’z`ŸíB¿²Û­  S•qQ˵&…˜{é>{n[ ä]Á®<«8×\„aY‡áþÏÙe!üDkzïËûß?›èÔç7{I2•%åü’ŠRëÈÓÙ­“×IARzØé U›«tÐd`vÍ3-¶?[zêˆÄi£~J¤ +eW²ñ¼æªŒørXz*óØ4ä³ÓE¥@*1UViêìw }bæE_7ÚÔÒZßèîÙ?Ý#g&É£!ËÙ“ÈrÃøg¬'ï¼i¹?.0‘ +£$Ç^,HÙùŽ>ºƒ®…Ì)­ÖØ(®3Šl]ÕŠÒ®jÏ­æ&QÕD(%¥Jš*XØ)PS'Û€ÁkœÅöÚxß»ÞïîÌ>½ë™Ù™Ù§÷áõîz½fýB0/‹4ÐPñp „’6 mQS)Æí¤RÇ©ú£?ûÿJ÷œó}ß9çG'¾Z\Æòº²7ö(’ áp’êž^Ô©ê1Õ#Åì{só`n:ÏÇdQß]ÅÅ(âá`œ +Ëè* Ò÷Îü”Çré"ÌOš5Œ¨íäa¢P*Pæ74hšQCmÿký›Á–JÂé1 Np¿²UÚÚ%½±Ozì0h­fhêemˆŒRœmPîA§³¤Ž¾wya.Á3©‰Kã_×Åõ“âz~‚›dG@Õñ®Lwï~S{+jnëÙшÕ]4§Ü¸ÍÜÓnÆÖš·àïX$к «ûCßMqë½+K“–Òž2þîhǨ.úG¨d‹‡caeg£á¸¾pyùs'|œ|Ì0C¯—G>>æ•W!Âeã”`£L^· ¹MF¿zœ mG´ÝÎ8 ôÃý@±£nâL60©ë-Xëã\|bõŸŠxœ0t«^j¬G]}Z— Øb™sçþ4w•K©Ðˆ,ö¯Ž*Üöa'ë.†õ2ðúן㈗6€wÝ«’o2h$ng"Å!ÞÅÖÐ7KÁ®×;w¾|$Kò~pr1 ÁÐiw£?‹ËŠk»Þ,ó¥ÑÉÒè`B‡ª´w# +=Yô†!OÓ<΋OF&&ÍÔ$é°ëçåöDôàX"2˜„‰ÅÔmÙ0=´?Úg"èp„G‘=c>E}¬—Ã4|¶|fÌ”éBËØÊ{uš}¸RÝu´·ø*¿ÏDÊÜx‹9D¶ØÔ¶·;àb=Igõé'tµ@|]Ò+ zÕá>¼ö@£Åà#|þ-D‹óggJ XžÍÃ,oDkíöÖjY1->&ŒG§Ý²¹xv™Ì”Û;ädÎæÃU½­]HxyêÃÜ qkrðÙP)7gŽÔoÛ.mz÷gVœKgï¼ «Šâ¬YÞžÔÂæÝíMG¾eÀÁâñ©LrCÂܶ§¥“nâ| ®;¹rá¸~éƒÅ±ÿ #T¤éš;Ÿû¿ÐqYn %ÓñÆFé;ÒcÛexUo‰”Un?hmnB;Þê|Þ³ lq͸ + ™+¡[ËÅG×ÀMZua;¤ÔŠ)VÕãG¾½û¥ê¶p¨[ãÔÃ^[qJví sâ†Ë+`®8Ƨa•V¼½Ú¬ðÄ•aW¿RÝB(-*×É89ÿ|&+L Òîo’ÕÖvîm‡Þ³VÏr ^»M/ËćÂîP;[ÝÅøøÂïOŠW Ë'ÆùxH/Ó篠å«K÷bÝœ:€›ì>’jE ÄÂpaZÓÜf¯mýª;Ôh#à€5*¸‡õ tX.¬f™oë‘Ãït#¿Ü`… KÆó:ì^tì¹R-¡¹„!ÇÐ.ˆ•KbÕ‡+  <X¢ŸA´!ˆÄA$ÁãXÜ]Vi4zµïïjyUÝÜ• â“>ùIóšW‹IùO¢›Ôô¢C–ÞÌÂÍÆsÊHëÖj´ýê\œÀÉ}ˆ¤€}Ðcw`ºlïììLt4ÏLÆf…à)kN3zϺ3,ÉKQ«egIÖ +Ž ,§›ìÄe»Zý®ø•"bÓ”¤u•Å¿‘‚1èpÕ4n|ÕæðxmAGÍJå&©XáP{l6µÅæÿò›ûKx$èbðHW}“u­e¤Xô…˜¨w÷âj•b„ÕE ¸ÿÙŸ+û‘ßÉ‘²t¹±ó§Ró;LzQòT´YåIxQ|BüÞ—7PпCúeÅ€+nNÀ VÞÏ#„¤>ÐÓ/gt"QÍ‹>&<­`ðtín’ÀO6ƒ}MÊn+´»…1Uµ‰ÏŠÏ(¬•S§{ócKÂGËøg7n‹ÏÜÄrÔL·iÀjðá!]P«Åö÷½¶§ßw°]§ƒ25•Ý3†>µ3q]QêêvË·’³±\Z˜NÁèÃäBUO‰Íò”ZÚvÕPÐÉRáa0Ÿ)§aj¤CZDŸR/ÚšMõm;5`ÔšIy³œQÆ‹Ê)‹¦7›5š´a²´˜xp ÝýrêÚ⧟‹/Œ‹ +„½Œ‹Æ’ )HY}½>äï·þØ°G¿»wWW ðTÆîoú¯‚ßùÈ¿ËÝX|ôýÕnÅ¿º„õ +endstream endobj 137 0 obj << /Type /Font /Subtype /Type1 /FirstChar 1 /LastChar 2 /Widths [ 770 770 ] /Encoding 141 0 R /BaseFont /FHJOGP+AdvP4C4E51 /FontDescriptor 139 0 R /ToUnicode 138 0 R >> endobj 138 0 obj << /Filter /FlateDecode /Length 227 >> stream +H‰TAOÄ …ïüŠ9®ñt×[CbêzP7V½³0mH,)5Ù/°u£^2¼yÃÇð®ê½KÀOÌ€ Fç-áV2gœœÙ€u&mUU3ë<‡‡Ë’pîý mËæ’è»Gû}:t‡ãƒ¼wÀ_É"9?Áî]~|æ‹añ gô (GÆ»g_ôŒÀÿÆ«'·‡ƒÅ%jƒ¤ý„Ð +©²4 +ÐÛÿk®‰óx-·Ö*bß)Vc›ˆýQ±<â·¹L+_¼™•(³Ö=TÌå<ÞVC, å°bvm; +endstream endobj 139 0 obj << /Type /FontDescriptor /Ascent 693 /CapHeight 678 /Descent -206 /Flags 4 /FontBBox [ -31 -239 1041 750 ] /FontName /FHJOGP+AdvP4C4E51 /ItalicAngle 0 /StemV 0 /XHeight 441 /CharSet (/less/greater) /FontFile3 140 0 R >> endobj 140 0 obj << /Filter /FlateDecode /Length 226 /Subtype /Type1C >> stream +H‰bd`ad`ddróðòwÐvL) 0q6q55‰ªýfú!Í#–ó»ù×ÒŸM¬r ÿwwCHöüO»¿W Tr#iYyfFFf—¶n¾ŸÓ>}_*ÚÔÖØV/U;¹}Z›Ü¿g°¶OšÔ1AzÆäÉ3¦7÷WO–ÿ3ý{Çéß;YgOšÜ?Cjzó”ºöæöŽ9 ß&ŠV77·×KÕMnžÑ?¹¯Ðï3X§öO™0CjFsÃD¹? ¾––þ6éºæ¦úºÉí³[äLÿÝÉÊ`üÞ_Š +endstream endobj 141 0 obj << /Type /Encoding /Differences [ 1 /less /greater ] >> endobj 142 0 obj << /Type /Font /Subtype /Type1 /FirstChar 1 /LastChar 5 /Widths [ 270 770 770 770 770 ] /Encoding 146 0 R /BaseFont /FHJOGL+AdvP4C4E74 /FontDescriptor 144 0 R /ToUnicode 143 0 R >> endobj 143 0 obj << /Filter /FlateDecode /Length 228 >> stream +H‰T1oà …w~Å©2€SK],¤Æíà¡M·Ý œ-¤ÐWÊ¿7jžt¼{ÇÇñ¶{éœÀäuë áìÒg­ƒjÆê¸VEõ¤ðî/sÄ©sƒ‡¦aü”Ì9Ò6ÏæçX·õëS½Àd¬aóQ}~¥‹~ á'tH ÆÛ7ÞÕ„ÀÿÆ‹W­{ƒsPI¹¡•LRK@gþ{lwKœ‡[¹¶B²[Eì[ÉÒˆßæ<-ñ¤¢ÄZöP03”ux_Uð!3äî j5mE +endstream endobj 144 0 obj << /Type /FontDescriptor /Ascent 750 /CapHeight 717 /Descent -249 /Flags 4 /FontBBox [ -20 -958 1114 770 ] /FontName /FHJOGL+AdvP4C4E74 /ItalicAngle 0 /StemV 0 /XHeight 705 /CharSet (/C6/C0/C2/onequarter/zero) /FontFile3 145 0 R >> endobj 145 0 obj << /Filter /FlateDecode /Length 410 /Subtype /Type1C >> stream +H‰LNMKë@i›tS¢ã¢ÂŒk](Rt-Á**(bûÔÍÛ¿6.šT›¶il*ÚÄESAŠÝø#\‹þçCÁ35¢¦A.\8÷|ÜA$ „#©å•õ¥µ©…ÝÜFRI.Î'û×IŽBÅÆÔÍ·ç^S@øIÈ`Ç¢Oà ±X¼ÁWG@°+sÊŒ2û+ì $ÎTá'¬X…5h‚8h1x ÂÜ‚78=!±;•ËY¢f=B1¿©GN¼,)c‰ßɺc™ö¸C©C͆æ`?ÍÒ,Ã2‚Ó²v¢eØzÑ45ùé`úDK7ÅqÝ(Š–éj˜}~F(*#¡Sñ-ËuQ´%H<|%û]ÑPIV=!G˜¿ˆ´4ø4ð»ì”uû¸óƒ/EJ¼\ .#ÿÒïF_îÛè$6ñ ×JµR%±^:¤uj[ˆ¥øœP?ª7iâz»™ß9ø£W‘ÔSؽ|Ü&ž·G4üþ_Ôöˆª¶É1æ~FvL¿ÿóÆÅR¯9ú* 0e3Á˜ +endstream endobj 146 0 obj << /Type /Encoding /Differences [ 1 /zero /C2 /C0 /onequarter /C6 ] >> endobj 147 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 177 /Widths [ 250 218 406 500 500 843 822 239 322 322 395 500 250 322 250 322 500 500 500 500 500 500 500 500 500 500 250 250 500 500 500 322 760 625 604 697 781 583 541 750 802 333 343 677 552 916 781 791 552 791 645 489 656 750 677 958 645 572 645 322 312 322 500 500 364 406 500 395 510 395 291 447 510 260 250 479 250 791 520 489 510 500 333 322 302 510 427 656 427 437 375 322 239 322 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 239 239 0 0 0 500 0 0 0 0 0 0 0 0 0 250 0 500 500 0 0 0 0 0 0 0 0 0 322 0 0 0 500 ] /Encoding /WinAnsiEncoding /BaseFont /FHJOFM+AdvP5D8B /FontDescriptor 148 0 R >> endobj 148 0 obj << /Type /FontDescriptor /Ascent 715 /CapHeight 694 /Descent -268 /Flags 34 /FontBBox [ -177 -260 1093 718 ] /FontName /FHJOFM+AdvP5D8B /ItalicAngle 0 /StemV 0 /XHeight 397 /CharSet (/z/n/one/A/k/equal/bracketright/O/quoteright/m/two/x/Q/three/o/parenleft\ /R/K/question/underscore/four/p/S/E/parenright/T/five/q/U/quoteleft/g/B/\ r/six/V/b/C/s/a/W/c/seven/l/comma/D/t/eight/X/e/G/hyphen/u/H/f/nine/I/Y/\ v/period/colon/h/P/F/w/slash/bracketleft/d/i/L/semicolon/percent/y/N/zer\ o/j/endash/M) /FontFile3 149 0 R >> endobj 149 0 obj << /Filter /FlateDecode /Length 8496 /Subtype /Type1C >> stream +H‰””{PSWÇo0 ñÄöjr¯ž«RЊÖ»ŠU©Xê"Ôn|¬. (Z@ $á’Ü›×½yL +E´BUJ\DÅ®õÁZ­¨ë{ËnuêciÝõ„=:»—±ÓÙÙîþ±ÿœ3sæ|ç÷ûÎ÷|˜0 £–%/O[¶"6qóι$~ñàÙÛ!2,DŽƒ–¢ºÜÈÝ‚Z,¯×ኀÃ"ã&ß=xyèOJL€‰1L†ŒÀ†MÀ°Ilš[€a ¶ˆÄ +0,•b4v {$‚‚-¨\ ›æ9ä°0R˜#<*’‹”¢FÑ_DPüÛð˜ð’i’CUÃâ†ÝÞ>B:’éÖGЗF-u9’Žmz#ú‹øø1ïŒùvìÔ±…cÕc[e +Ùù4ùIb"ÑNf“Ž+w}|7M §Ú¨ï&TM9Ñ4ññ¤ÔIýQš·ìÑÚ˜_ÄœŒ9‡žIC†£0¿“ÅCXÏ_DbˆA,Å·ÁûcÖèøý%ÕPØÓS …Wû\H¼¼þSþZþ?Ep®Äk¼­ùå”W³d•»jü@:á‡ñÍ5Eš²:Ý.3Õ`nUeY› ¶¨­·i]ŒäbCO×âÔÖÎ, UÂØ„Ãä3xöx›Ö +PÄ»ñhJ#PÚ}#Þ«Íæ!¦% +hmŒÇ `ÄÝû0¦0-ÎCwÖÌ0ZâYÔD ^ EPŠç©JŠ«lÚ:=妻ª³ˆ5kwlÓÍ©ÝFÉ×»Ïo—2~Ì7v–à´ÁX£%´¶ÊÚ+"»ƒs{ˆ:Æ[í|ÁÈJüÓ@ààÁ’}9yÊ99ûJ[(¾¹îÅøJ1Ê~µRtV,…ÜÀ›8ŠIEKP,šu-ä'Ž9ÂY06.A1T¾†¹Pæôé:”‰ÂP˜f>zä‚™0Œ’ÂB¾é³j£d «Úi’³G‚–6òpÐb:B9Y«ßàØÈɲ8Ó'7‰,ü÷l7[8Ã2d‘JQ4W£c¬.¦‹‘®$‰Bżˆfïîcêü×¢[Z._ ž,ÿjò¬«ãò@¥vÛÁ—û>?vŽ¼Û©˜9!aêK¨Äù¹9éùC3FBg7²fÀY¾ a´øx‡ÅtŒò5ÔŸªëfÕœÞh¨ÖW–©$êò|C:)…ø‰þݽש =‡ûúˆÇËN¿çUVÚf÷Hvù#®~Ô9/añÚ¥Û€¶ÖàaÁÉÖ`û—d°=wõúmù%åÔ¦Üy[²U†2o…ß$ÙÛÔ¶çùçŽEqhÏ]^PU[_Iù«+•¤RSVšÞ£ òæ5ómæÌJjcx‚qÐÃŒŸ<ìô°µÝbjûÑÃ"ÞC»©î6 ßm·î=b·ÛÒ\ã”üJ¬2Ú(¸*¼Ñâ­0µ¹XW¥“èh³NO ”ðbƨh†¸¨Ââ÷Rðj(EÄÙXGØiN Tb­®ÑSèúK…¨¢”1TZ»Þ ¤·Bqx±Þªó‘p˜ ÆnE“4ɦ£5 Fo-­e$0Î×Ãá0‘€ÓЄ3(Ò v²,c³yåõç v{'‡+÷íòùö:r›Ña0dÈQ›èZ-—…Õ8w‰øÈEö?„C¿O¹»9¿ª|;` V½Ã(á<~{#ùÍgóæÌÉNZ4eÓ (ù¡†}ó€ê»ÙßÒ°óŽè¹T’æEEK&F Qsø „Îãíú| …Ú^^æ*}:?+‡®»ýFËéýŸóØ+0V%[$Z(V|leÕTM¶fƒ¶ÐVã199IWK€û‚Ï…ŸÿÑñiÑVÊšpfýÙ<ÉyË~=‡@CŸd~E÷/>šrjÙÐÝrùØ=âIB÷l }%Ä×]¸~º©÷òaêZî ÅbqÆú%€ =Ä{;>JMÍÉHßN¥´&u\!ζ¾¤Pz?mF£g¢•+Þš‘Deü¦8­œ¦9Ëø•÷iûõ?H¾„c €€“!†"‘xæ\4"êêò»GZ½Ÿ4Öfv0¬ÄX¥7ï ßÛüàÖ·]'z©AÀC<šþ ;[(t\øs0üòÂÙ?¯+ ¥Á³øK|]Ç_ïRåó/ª(/-Ú£vŸj£ ÷S~•£x'Q¤)Ú´¬+å«•š,"?¾«8èZÖæ’ÐtÀOÔ{w5yÁí‘ÏÕ´ï ñ÷¯&ÿªÁƒ¡5Op—Ò^^Mh+ ;M`»QO[Õ.£ÜÚò™µ‹ $€cýz{!'Û`¯ômïGãC12M§úxe§ÄiÒ³²ºRU®ÔsjCYÅÖhÔ$Ûˆ„ËËÓ+¶–T+MyF™fÕ|.­ÍmÖCäïZ-¦fÊÍYøš¹œLÉÒ/QëÜç ‚Ãív:¸½$Œ°Kœ"¡¯=àÙÃÙ%¬ØQå.t){Ð\Y¡ÛÄl'Q„¸Àlmrñ“ÔÂ7áT|’©jµ”ó<à4É­íŸZ;;N˜ZH˜ÜJ^Ìï^塪Yç!Îíïhï#zsnØ š2Òì)ä;IFz¥cÌ—á Q¤må‰Ä=”7Ú=0î茓“6ÍÎÏ·7•²€édJÖó¬ã€Íícä¯my{º"?š¡ÖšÌì~þK=ï„·q„_˜yGÖ]ëW= {û|ÎUkóÚ¼¬¯¡ù’óãÔ°ú^íAQ]g\›º{§vœNu.÷vîÚfШišµ>Ò6Qb‚Èc± +ÈKP\^»<÷¾öî¹wï]Ü…å!º "‚ /QøH›F“ÔŽ¡±­ÖÖ63µÑ9ë\;Ós×ý§ÓÿÏùÎ÷ý~¿ï÷}‡Å¢ w¬ÖL¤¶F ƒÌ€ipÑ?áJø“á ‘>Ze|N—Z{™½ê8^ã°ƒJ «7¿íÙI.]upǯ跣Wh/ ‘ÏPˆ©¥ +Ÿ¡F{ÅÁžkökäÍoÏ'44\¹ çÂ…Ä#Ñn@ž§üï¿«¬&#~γt5‡øgñø ã*ÞDÌxMàͭPŠ»Ë=MBß„¶³íoj µømûŽœ*¢Ëü|×*¶úéã¬uKåÌ>>Ý-ž#ïîÜ…»t}{ÛMµ‡«³IvöЮü¬Òj¬ªè·‘|£Ø㭤˛øî .6¶KÎNjÊÐïwp ôQVµÊ¥u鸋ie;ÆõõöÉý~‚SËD–©MÅY‹©ä0®2WØKÆòx±ƒ†fcŸ:©†¡.ÛJ_¬¨Ëò™]L#nˆ¹Á4¡¾·’Z´!5Û öÐ /”*\£€OÛu)*hÌüÉŒrÙ0xÚÁ£ÇmÞL÷n•i$úc#_£GÙfHCQö>2e6äþOŒK„Š;eyNG·8Dží…iZ ™‘³%<Ú%ø~Zù§†¾6½ò¦Î&—IÇÿ¢¬`ÇQåg䳨rE¯¼& gÕ²Uzåû…T2R¯üò“ðÇ?BFsÁÙ1è¢ÑJàðÙå0!'Û‘NFÇ9ÁÚÎ;JÝÜ‹_±KÌj"͸Ÿ-eíTYUFE©¥„ÃWa\~R0þÁ—ÙÚœZaš’«ù˜¹xš¨rÕÃ2&—Å{vÚ«áæMïÑQ[¾A¼Ñµþ㨠7áÜýp>ùá oýíji–½¤,‰ +/a¥*ã?‹”jœƒ¿7!Ö…% r{íaäAŒ00Ô+ý£±F£ +õ£'ƇÀ7¥P­@‘…fF +vë…馄ÐoA2ÀŠÐ7sG2¥õ’ç)C—[f/ïÑ/ïÉΤÐåvG=Y¢®:MûY?éïvž ¦õa(­«° uÑv0F-¨@]°Â´X°E¿Èùx·8ä|„uwpSµ+û$<]b¿ nËw¤Ë”4%MÉWÐÌ;–Òº«5家?ž4¶¬iÆ—²ì”Ý<<ü÷á¿ÜïàGûûn©t^zòÖ¼­by‹f9Z‹m*‡ä1,ö½ú,W%§QöK¸ÙålçÇká0JxäøÌÝ|Um¸K›rsÐJTR,JÙ´r0.å§+µXÜ’`Ù•oÆCÁPÑHá(†ÎãU•¦þ ©—’ÝGÝ]®€+ŠØP‹´}ȱ‡ÜlÌZÞQ®2M~–Eky Ö’çÔ™ -ÇX,–s,%Ìc‰Eþa9œ‹ï?£Í‡xÉL¨(s”“¥ñ¢´+Z=€Ÿ÷ÛlXk¡³ø ¡ “Ú[&ÅV•Û …|ÝBô¢1Ðséà Z`†iUvzw®„[ÀaÅîÁÊ;¸h”€ŒÎã²—†Ö¢OמȅV­ ÿsøÉ,o9æQ\ + ù6ÎïD¤Ç^±šàN¸ +mݻуë´r-U[®­ÔÌÚ{Ð~-t}§IK|yg8<ÉëßÂØϵÍè×›¨^×¾Oë’ÍüÍÔå”'¾Ü¶üÍôíÚœŠD«Êcu­Cô¹ÖÉ‘{Äï²/¦œ¤Nš£òLä1§EaR7&Foß­AÏ ¦ÿxi6ߥ_i߃a toe¯½ë`ë„μ3™¿‰™Ù‡åOOV ¨»¹‹–\BãÄ[_Mæo½®ýµ™„óŒÂÉÀ…Á—À…p-ñ ªþ?ËþCMš‰!í ùãp(÷bä÷nÁ‹ ì‡ÆVà>ÛX]ä£NíØÜž½rýBÁm²¥Hu´Kv¨,ÈO™/r2þÖ:hbÝì—‚ýòâ}ⳬáä6ª-%ÚE.Û̳±º’ÊU¶‹ÃX©l1óWS‡$_/ÿÅúȬübªèÀ>.“L°‰§yYô4#¯YØ7˜îGMmë§ÖÏËð'L#­Ÿ|óï'×S¨í%4 k.Õø©Z›$UÐîC™®\R[ôË+ÖNíÏ¡ïGÍûÜ\—ôkâƒÔ¸Õ–úÍ+Å)Vµsý»Þ"¬ªeÂò5 ýñ ø„ÔÕÀw÷L§h!¸nø¨¯¶ì8í«R3$KpróêWžAþ/×eÛÄ}Æñ± ûVª ´yrî¦;Ö1ml­4¨ØP³nâ-¥­!@ !;/Nœ€óæ$~»ßï|/~‹ÛIpHì€'$!„wZˆ(ÕHÐŽ­€h™4­*ÚØìgS¶iÒýgÝãïïyî÷ù~G1Pk‹)Cž¯ÕT6°'IŒöÚXš!Žôìè>(àaÊ'‡C‰!èøðU~¹ªIyXö¼Tû"­iØKn73žÓù9|ô­‘R”䤊¥'ÊœN}}·ªQ¦¾QþTÙ€*&í?øèµoÑÍ¡s{8μ{Y_ÛúSXuhÕÛ/W¡‡Ï/ØÅÅá¹ìÃùðㇰ²\û!«h#§P±oÀ?Ì'Š$®/Gc {©1p|-Fº›D€‚ÃLŒíP´‰Wµïçm1©¼ª‹Šî†QdÅ!y/½4§@§_QVêgŸLþet®o0Jð)P^ ]ƒ‰m@jk9ÞŒnܱ£Ï¸8¬oG­Õ•êò¦wÚöT¯1m/W4•Š¶RLŸY¯0Îç“&į—%&’+v¨Ž­Bªó‹b{¥\±*Ò~¼ÀriðÙ*Ý´;Ô?ü‰ŠÝP±›*Ö×<¹.úR²˜—œüb^ùáøݱm×ÔU'ß„á¿?M=úûÌ“»ÊÛúyó§.ˆqð×>¶÷BLk3[‹˜Zrm¬pø\IF?Ȇð^Øn­¶Q¢«L-ì<дµy›i[Ãgu÷ê?‡¨ã`Aˆ4’™~8˜šŠÍN{“€á ,ÊZŽ€öš8¾¤FÆ!;SŒþ$#:Œ¿i+ëªí¬1ßhþ¸ã|Ç,/OzOüÏk¶9R›kPc—ñ£OÓ‘öˆi¢([”)‚D»×EÁnÅ;Ñ–ÒÖÒcå%ÊÊʪRedºÝ~1ûCÒ ç%™ »À‡U·5#¦ƒy%î\o!@“g+†u&okýœú¶âÒÛûYÙ {Yò£çþ83?yaêÒx*åMäLéE@1™YRÓ˜(nO¯Dœ õ1&BR0AÚpÚÕ´N}­µÑ8[òeý9¨3éˆúa)$Å8tHQHi>â±ã+0 +›@ž$ô2ÞvªBù¥Ú¨÷9 ƒ H8ÑÝEÅoÚ»›ŽÔU—‘Çh=Ar=~âDzž4’žð0ã˜$ðaB°îà]¢ËbÐFOº¨,IŸÙuuã™ ¸Ùë$aÂá¶0ÀÖ)’³IT!?~Î3‹L q6çp hH»òH©Ö}Îfï¡+Ë.‰ qýП"7Båc+ÙÖÕCª«TH7™Œ\@¥XTdÆì\ÞÎöÚí¨Óiêé@öÙg¢XÁ½‡º½l'Û‹Ò¼ÀÏy8“DŸÏ‡øúj#FÉ,¢À{¬*ßýýU³ÿHWO+à¯Å”í~–Ï ãæÝHmÇ›ÅEÑž^‘úTGî„ÕaÝ$ Ȩ?œSÈ×—‹Öl0½ÑØ´bÖA|,œWÆ–^שoýAÕªßy÷øþL=VŸ9ß}¹vod1±~°¥0P½¥©µY]ö×?=½uõÓ©lkËF "#"¡@<%úq µÔˆ¤@Ù¸ô»¥/tgø À3_¨3vVôÅÿOú+-΂@p´‰õˆú㟬SW¿¶¸AùÞ¹t$u4¼Ûcﻵ”HKèhðFxZò‹ì0ÁCT•r f6{ÛT¡ëf{Híî®·· k÷=øêáÜý¯&SííLv +®ŽÜo)~Ýt˜“¼/ð¾0<_z}ƒúê[kÔ•U¡ŠT Z›¼Øò réNâÖ)pbBrÒPÉìl@Vï|ðÍ0ÇŸÀ\)áaÿwñÊuäZ¼Îl£Ý4ƒ‘x›{R°[9«üSäQGR5«‡Á’Ú ÂÝØYt<2CN¶µÅ1\–ÜA$ï?˜Øó‹Òm»ŽbÇJ‰÷K`'Aân´ºÝMr.É]˜Ñ x˜L5j·°N…ZhøwnCL¥<ãH&™ÏÔù ÑèÕ½L謵#>Š|³´l Òµ|¸ XêµÈúMïnØ1U“îÂ( +§HÔÚÕiµ: îvSp]ºaÒ‰úIÜårY,æVkDàn[7\>³]Y©üHYñgeÙ׿ ”¢U‡éz¤Â?ž<É +31DùÁÔ— QO”‰bw4žO;DHÝòüçº;Ó­ìÚY¾þ×Õ³W&c‰æÿ›ñ*nã®ÂÐ$^qÄ@e­ev§é„™N +脸¶iÚ”†I¤±SÇŽãÛ’¬û°uï©ÝÕ®V¶¤•äS–eY>c’&6ÍE:4ÐÄI§Ó)C:¡í“3 fùƒß:¶CH +ù÷½ï{ï{¿÷½cÜâTžÑ×>yõòô‰…_Ží{úyÓá—€×Ú~MY¯ßÅšH`JWÙN¬²×Øæ"1`J›º°}šâ…œŒÊ¹Ñä$ò«Òá=˜ú (W¨ Gk +«¦WÊùæÝTCWZßxä@ÕÔ ¦‘¥ ú¿Â­üÞõeœZWkiÆnà Òܹšç´QeHŽ@lÝûºlZÌ@ŒLàpÁ% å_Ð-Î6ó€½TÈg¦Æ\ÃXåÙҫݻšëѯËkñ‘A<ÄKÇÏ,Œ¿­KOÆ~Õ ÷}Ý]¢+U×ÖxØ—Íçmê*¯ð°®ò8•X>××Gè?Ô/oHuÇÀƃt7º©Éz$ªŠ+jæul˜"&q,ø¿‡ƒÝ¼SìI9û[æO´Îzû=Ã¸Ä +ɾ\vrz®4:˜íˆMˆ°(0Y`[ð~J×!¶Šu%¨ +ÎÒ\J$`êDê6˜Ì®€ñ0\ +Sþ|ízXyì^Þ£øôI»£à˜û§n¹zšØÜ·TPø´?”' ¥ÆsÕµm¦#h!N7o2å^Ajj­æ£`U +b"*sØ@£ónTw­`´®e,­b,¬dtƒŒ"…&„ToÍÉc¹yäÍñæݘºúTÈw +w+°Þ¤ŒæÒ¥ì,rq¼åi š§þ§úïD±*réTíO—3³ÈåÑú}˜úÐ + +×SºŠÂþ…»Ôú‹íj-]õè=U Š +«-µÏ?òõ+ꦫHÙôÁ”MÊ—¾ý;u=œŽUÿCó£Û¶5\ÿH¹oñâ[šT?ó +ž ß«›o'GiäX C/`q^ÃÖ(hØW ‡!Á¡tbL{7ÿíûë³ïsÏs ¸‹Ðb<ÅÉ\€%9érÕZ»ÿö}™—}h²¯”9Ž|øÚŽêkv~ßÑ—˜3LN±U+%ýEnRAA¤áH øX7ëiÛU¯®Û¡nùÁYõsÊCs3½éQLb 7¦ÞÝ|Q;Öè̮ҙ]¡cà‘Š¿mxR±éí´¬œðë­{ÞSîûã¹¥w–4&u mû •¾ëk¿տÑÕþºµ”ŽÞ\J߀&ùboí“’‰ ’–ñ Œ‘q0yH¦*83–¦£ÆŒf^0\€bG°¨¥ûå»tÖª<»soÃS/η\hÃfÇ,‡ ‡;ÍûÚÎyPBô1N·‰%—ΕŸ +žBÞ¹2óîÕƒ“/c-õCó†é|~n~ÜXì#.s±¸®™ ¡R¨©·©¬[^ä ‘+ø:u]…‡asØk÷G :èt™}þ`Èâ3†Àšˆ¤n¬b€ÕÖ´Ú›«ýàõé‘Á*rd_¡|*„QáDž‰œ¹€){¡A–Ïj*S¶)—ô‹ì ØÕ  ‹³öpcè¡€“'’ÀÉû¢¡ç j5´£|øÚ‹ýã¨È!ìDr% “ýs’cpAGõøh?b¢Æƒ•8Ö¸þå¨k¾9ÂhVœL¨þ8ý¬AÝuDº}~Ôeo˜‘ž“KXåo•ëå&¹Q2ë(^»uc1ØT¹w¸7Ÿ™SÙ’.Ï'F§yùŠ“é§MÆ‚¸,·Ža +NÒ"2ण§ vµ~××vDzHŠâÉDhÀvÚxŶg…’äà¸Àd´@­NÆŒ´¶°œÓj „(xšH´ËMàšº¨T_ÕKŽLƒè\ÆC€Ç¤¡ôtîøieœ‹§K,ÂÊmî8¶ BÙ#¹ý¢§Šâc+ßÆ0)Ÿ,¦§û__P¾X8?xøaa ¦-Ü´Ýʸ àaéi¯DäI®=Ú¶¡ÝõGð#^"HÓh.. +/)_ ”ýS4LÔ"ig Ò .»®vH˜¢»ãx†„‡9œ° >Æçk?¨n„ýÆ°‡¢u\(F¢lÝ(ý¢A”Ä4‡ÇâË ªh³„ê4iÅ “l·@È$œÇ“Áát ]?VjôR€&C›éÕÝ»ÛÕvS6¾¹‡uÜèP4Œä£t $›Å[€ù˜øÙ[p¼Oêåù%†“îÓOÀ)72RF +Ö¦YÐ&F£3H±¥g´ŸÁ™èea3çMÙ&¾¥|öå¢|2sììÌÉlº/!ó#‚Ì/W@«¥«ƒ±!Ö.–³iðŠx’‚‡pžðt9ÚÛ^Ñt€K¤XsöŒ0baõOMvÆŠXl,ר‰À# +#²^Ù®«üè²Êê‡G³YlQùìûÊ“åKçž¼š+–Å,ÇÅ›4Ù€"»:Y®dg³Ev±Ê¢â¸ÿdYs©œ|*±HI~.B,AGÀ¯ë4ˆ6"­GéØô ¦lTêŠ #3ƒÅ*V y’ÓQÝ®¨Q7Wì °Y +OD”¢{¬žÝt–i°‡z‡³)]RáÇ‘¥Š\œ6y±ÔÝûýÈiô¨rɹèYp‘yÖ¼A-B•7¨¯)Ÿèÿ=%Y +endstream endobj 150 0 obj << /Type /Metadata /Subtype /XML /Length 1463 >> stream + + + + + + 2005-01-28T14:37:29+05:30 + Unknown + Acrobat Distiller 4.05 for Windows + 3B2 Total Publishing System 7.51j/W + 2005-01-26T11:25:52Z + + + + PDF/X-1a:2001 + PDF/X-1:2001 + + + + 2005-01-28T14:37:29+05:30 + + + Unknown + + + 2005-01-26T11:25:52Z + 2005-01-28T14:37:29+05:30 + + + + Unknown + + + + endstream endobj xref 0 151 0000000084 65535 f +0000000016 00000 n +0000000305 00000 n +0000000394 00000 n +0000001066 00000 n +0000001744 00000 n +0000001973 00000 n +0000002645 00000 n +0000003326 00000 n +0000003997 00000 n +0000004183 00000 n +0000004774 00000 n +0000005448 00000 n +0000005594 00000 n +0000005684 00000 n +0000006236 00000 n +0000006909 00001 n +0000007001 00000 n +0000007198 00000 n +0000007289 00000 n +0000007961 00000 n +0000008561 00000 n +0000009117 00000 n +0000009727 00000 n +0000010255 00000 n +0000010702 00000 n +0000012896 00000 n +0000061492 00000 n +0000158645 00000 n +0000274848 00000 n +0000274940 00000 n +0000275650 00000 n +0000433440 00000 n +0000614162 00000 n +0000869887 00000 n +0000869979 00000 n +0000870564 00000 n +0000870656 00000 n +0000870748 00000 n +0000870840 00000 n +0001004062 00000 n +0001004154 00000 n +0001004246 00000 n +0001004347 00000 n +0001004429 00000 n +0001004738 00000 n +0001006459 00000 n +0001006893 00000 n +0001009978 00000 n +0001010266 00000 n +0001011275 00000 n +0001011615 00000 n +0001013479 00000 n +0001014045 00000 n +0001023176 00000 n +0001023567 00000 n +0001030348 00000 n +0001030589 00000 n +0001030865 00000 n +0001031107 00000 n +0001032023 00000 n +0001032332 00000 n +0001034067 00000 n +0001034297 00000 n +0001034759 00000 n +0001035016 00000 n +0001035658 00000 n +0001035910 00000 n +0001036397 00000 n +0001036686 00000 n +0001038792 00000 n +0001039266 00000 n +0001043457 00000 n +0001043689 00000 n +0001044203 00000 n +0001044483 00000 n +0001045496 00000 n +0001045751 00000 n +0001046463 00000 n +0001046589 00000 n +0001046908 00000 n +0001046977 00000 n +0001047263 00000 n +0001047344 00000 n +0000000085 00001 f +0000000092 00001 f +0001047645 00000 n +0001047741 00000 n +0001047950 00000 n +0001048023 00000 n +0001054337 00000 n +0001054549 00000 n +0000000093 00001 f +0000000000 00001 f +0001062782 00000 n +0001063337 00000 n +0001063390 00000 n +0001063442 00000 n +0001063504 00000 n +0001063568 00000 n +0001063642 00000 n +0001073438 00000 n +0001073983 00000 n +0001087624 00000 n +0001088131 00000 n +0001088195 00000 n +0001108603 00000 n +0001108943 00000 n +0001136403 00000 n +0001136717 00000 n +0001176240 00000 n +0001176581 00000 n +0001176645 00000 n +0001176698 00000 n +0001183451 00000 n +0001183652 00000 n +0001193439 00000 n +0001193619 00000 n +0001195584 00000 n +0001204875 00000 n +0001205066 00000 n +0001205206 00000 n +0001205799 00000 n +0001206043 00000 n +0001206961 00000 n +0001207151 00000 n +0001207438 00000 n +0001207681 00000 n +0001207958 00000 n +0001208633 00000 n +0001208892 00000 n +0001209535 00000 n +0001210210 00000 n +0001210501 00000 n +0001211807 00000 n +0001212481 00000 n +0001212787 00000 n +0001216872 00000 n +0001217069 00000 n +0001217371 00000 n +0001217621 00000 n +0001217939 00000 n +0001218016 00000 n +0001218225 00000 n +0001218528 00000 n +0001218790 00000 n +0001219292 00000 n +0001219384 00000 n +0001220068 00000 n +0001220613 00000 n +0001229202 00000 n +trailer << /Size 151 /Info 1 0 R /Root 86 0 R /ID[<3bad458744a17d067d72aaaab2582ee5>] >> startxref 1230751 %%EOF \ No newline at end of file diff --git a/web/images/upload/MouseExonGeneNetwork.png b/web/images/upload/MouseExonGeneNetwork.png new file mode 100755 index 00000000..7112dba2 Binary files /dev/null and b/web/images/upload/MouseExonGeneNetwork.png differ diff --git a/web/images/upload/Mozhui_et_al_2007.doc b/web/images/upload/Mozhui_et_al_2007.doc new file mode 100755 index 00000000..9f6c250d Binary files /dev/null and b/web/images/upload/Mozhui_et_al_2007.doc differ diff --git a/web/images/upload/NetworkGraph2009.png b/web/images/upload/NetworkGraph2009.png new file mode 100755 index 00000000..f7d6c6d8 Binary files /dev/null and b/web/images/upload/NetworkGraph2009.png differ diff --git a/web/images/upload/NetworkLogo.png b/web/images/upload/NetworkLogo.png new file mode 100755 index 00000000..676e6213 Binary files /dev/null and b/web/images/upload/NetworkLogo.png differ diff --git a/web/images/upload/New Interface.png b/web/images/upload/New Interface.png new file mode 100755 index 00000000..134e53ca Binary files /dev/null and b/web/images/upload/New Interface.png differ diff --git a/web/images/upload/Nif.jpg b/web/images/upload/Nif.jpg new file mode 100755 index 00000000..e975a921 Binary files /dev/null and b/web/images/upload/Nif.jpg differ diff --git a/web/images/upload/Nif.png b/web/images/upload/Nif.png new file mode 100755 index 00000000..e975a921 Binary files /dev/null and b/web/images/upload/Nif.png differ diff --git a/web/images/upload/Normal_Plot.gif b/web/images/upload/Normal_Plot.gif new file mode 100755 index 00000000..dc239f8e Binary files /dev/null and b/web/images/upload/Normal_Plot.gif differ diff --git a/web/images/upload/PartialCorrelationExample1.png b/web/images/upload/PartialCorrelationExample1.png new file mode 100755 index 00000000..f766524b Binary files /dev/null and b/web/images/upload/PartialCorrelationExample1.png differ diff --git a/web/images/upload/PartialCorrelationSNP.png b/web/images/upload/PartialCorrelationSNP.png new file mode 100755 index 00000000..9a58ebd8 Binary files /dev/null and b/web/images/upload/PartialCorrelationSNP.png differ diff --git a/web/images/upload/PartialR_Icon.png b/web/images/upload/PartialR_Icon.png new file mode 100755 index 00000000..5bd5d593 Binary files /dev/null and b/web/images/upload/PartialR_Icon.png differ diff --git a/web/images/upload/Peirce_Lu_2003.pdf b/web/images/upload/Peirce_Lu_2003.pdf new file mode 100755 index 00000000..c8e37a14 Binary files /dev/null and b/web/images/upload/Peirce_Lu_2003.pdf differ diff --git a/web/images/upload/Picture 3.png b/web/images/upload/Picture 3.png new file mode 100755 index 00000000..a2db0df0 Binary files /dev/null and b/web/images/upload/Picture 3.png differ diff --git a/web/images/upload/Picture 4.png b/web/images/upload/Picture 4.png new file mode 100755 index 00000000..3608b9f3 Binary files /dev/null and b/web/images/upload/Picture 4.png differ diff --git a/web/images/upload/Poot_2011.pdf b/web/images/upload/Poot_2011.pdf new file mode 100755 index 00000000..fe582150 Binary files /dev/null and b/web/images/upload/Poot_2011.pdf differ diff --git a/web/images/upload/Porcu_Morrow_2011.pdf b/web/images/upload/Porcu_Morrow_2011.pdf new file mode 100755 index 00000000..16e71f06 Binary files /dev/null and b/web/images/upload/Porcu_Morrow_2011.pdf differ diff --git a/web/images/upload/PurkinjeCell.jpg b/web/images/upload/PurkinjeCell.jpg new file mode 100755 index 00000000..22872311 Binary files /dev/null and b/web/images/upload/PurkinjeCell.jpg differ diff --git a/web/images/upload/PythonLogo.png b/web/images/upload/PythonLogo.png new file mode 100755 index 00000000..b76dafba Binary files /dev/null and b/web/images/upload/PythonLogo.png differ diff --git a/web/images/upload/Rosen_2003.pdf b/web/images/upload/Rosen_2003.pdf new file mode 100755 index 00000000..2dbed1a7 Binary files /dev/null and b/web/images/upload/Rosen_2003.pdf differ diff --git a/web/images/upload/SNPBrowserUpdate.png b/web/images/upload/SNPBrowserUpdate.png new file mode 100755 index 00000000..c6e8f8d8 Binary files /dev/null and b/web/images/upload/SNPBrowserUpdate.png differ diff --git a/web/images/upload/SampleData.txt b/web/images/upload/SampleData.txt new file mode 100755 index 00000000..7c6279d0 --- /dev/null +++ b/web/images/upload/SampleData.txt @@ -0,0 +1 @@ +@format=column Phenotype Id 1 SE n Phenotype Id 2 SE n Phenotype Id 3 SE n Phenotype Id 4 SE n Phenotype Id 5 SE n BXD1 672.5 21.722 4 28.95 3.425 4 25 0.599 3 152 14.68 4 92 15.05 4 BXD100 X X 0 81 8 2 X X 0 120 3 2 105 10 2 BXD101 501.5 28.5 2 24 2 2 26.5 0.5 2 130 6 2 41.5 1.5 2 BXD103 635.5 74.5 2 33.5 8.5 2 25.5 0.5 2 116 15 2 90 8 2 BXD11 666.333 27.907 3 56.669 15.301 3 25 0 3 98 13.454 3 64.333 8.95 3 BXD16 554.75 120.742 4 51 6.945 4 24.25 0.25 4 225.5 6.538 4 95.95 6.613 4 BXD18 735.25 25.924 4 33.95 8.929 4 24.95 0.25 4 180.95 8.931 4 92.25 25.349 4 BXD20 877 42.755 4 90 19.34 4 24.25 0.499 4 95.25 4.09 4 146 30.019 4 BXD28 476.333 48.502 3 99.333 9.535 3 24.669 1.669 3 169.333 11.141 3 134.669 6.119 3 BXD31 510 40.806 4 29.25 2.81 4 22.95 0.95 4 44 10.916 4 61.5 9.191 4 BXD34 672 14.916 4 115.5 28.168 4 29.95 0.499 4 98.5 2.466 4 192.25 29.809 4 BXD42 845.75 26.192 4 51.5 11.929 4 28.25 0.95 4 104 4.546 4 104.5 22.205 4 BXD43 615 X 1 21 X 1 25 X 1 105 X 1 40 X 1 BXD44 643 10.786 3 39.333 2.928 3 29.669 0.669 3 124.333 5.983 3 68 20.008 3 BXD45 487.5 22.5 2 36.5 8.5 2 29 1 2 182 8 2 49.5 11.5 2 BXD48 578 17.607 4 43.25 6.395 4 25.95 0.25 4 149.5 6.185 4 69.95 5.282 4 BXD55 673 22 2 24.5 3.5 2 29 0 2 130.5 1.5 2 49.5 3.5 2 BXD56 504 29.49 4 39 9.229 4 26.25 0.25 4 133.95 12.452 4 64.5 6.538 4 BXD6 477.25 9.275 4 51 19.142 4 24.5 0.289 4 91.95 2.529 4 99.5 39.342 4 BXD61 X X 0 49 10 2 X X 0 160.5 1.5 2 141 25 2 BXD62 575.25 7.004 4 32 1.354 4 25.5 0.645 4 95.25 2.955 4 62.95 9.293 4 BXD65 524.5 0.5 2 32 6 2 29.5 0.5 2 100 9 2 69.5 9.5 2 BXD66 X X 0 95 42 2 X X 0 168.5 21.5 2 94 11 2 BXD68 X X 0 45.95 4.661 4 X X 0 118.95 9.931 4 146.25 42.682 4 BXD69 X X 0 39 0 2 X X 0 192 16 2 121.5 58.5 2 BXD71 672.5 47.5 2 24 0 2 26.5 0.5 2 195.5 5.5 2 42.5 9.5 2 BXD73 X X 0 99.5 9.5 2 X X 0 130 6 2 125 22 2 BXD75 457.5 59.5 2 29.5 1.5 2 24.5 0.5 2 136 15 2 96.5 31.5 2 BXD8 475.25 16.24 4 24.25 2.136 4 22.95 0.25 4 232 14.694 4 65.5 9.984 4 BXD80 756.25 11.707 4 32.95 5.092 4 29.25 0.499 4 118 4.435 4 96.5 16.894 4 BXD81 617 4 2 25.5 0.5 2 29 0 2 195 6 2 46 0 2 BXD83 645 52 2 44.5 5.5 2 26.5 0.5 2 140 1 2 81 4 2 BXD84 504.5 57.5 2 23.5 0.5 2 26.5 0.5 2 191 9 2 58 5 2 BXD86 X X 0 59.5 5.5 2 X X 0 136.5 6.5 2 61 4 2 BXD87 713.75 6.005 4 69.5 26.39 4 26.669 0.333 3 152.95 5.056 4 95.25 19.168 4 BXD89 1688.25 1022.945 4 30.5 4.33 4 29 0.408 4 189.5 9.438 4 103.95 23.613 4 BXD90 527 X 1 26 X 1 28 X 1 245 X 1 50 X 1 BXD92 620.5 25.5 2 36 1 2 25 1 2 120 14 2 54 8 2 BXD95 575 10.84 4 40.25 6.588 4 29.25 0.499 4 156 4.082 4 55.95 4.968 4 BXD96 625.5 4.5 2 34 9 2 26 0 2 109 5 2 92.5 30.5 2 BXD97 470.25 14.272 4 25 0.408 4 29.5 0.5 4 116.5 2.466 4 39.5 1.555 4 BXD98 435 22.604 3 94.333 30.068 3 29.669 0.882 3 83 13.948 3 99.669 25.693 3 C57BL/6J 575.56 21.067 25 35.84 5.515 25 26.56 0.404 25 100.32 5.19 25 64.92 4.954 25 \ No newline at end of file diff --git a/web/images/upload/Sex_LXS_NOE.gif b/web/images/upload/Sex_LXS_NOE.gif new file mode 100755 index 00000000..fd436061 Binary files /dev/null and b/web/images/upload/Sex_LXS_NOE.gif differ diff --git a/web/images/upload/Sex_LXS_NOS.gif b/web/images/upload/Sex_LXS_NOS.gif new file mode 100755 index 00000000..b8de0d63 Binary files /dev/null and b/web/images/upload/Sex_LXS_NOS.gif differ diff --git a/web/images/upload/Sex_LXS_RSS.gif b/web/images/upload/Sex_LXS_RSS.gif new file mode 100755 index 00000000..dbc262d7 Binary files /dev/null and b/web/images/upload/Sex_LXS_RSS.gif differ diff --git a/web/images/upload/SilverFig3_2.png b/web/images/upload/SilverFig3_2.png new file mode 100755 index 00000000..5b4b2c70 Binary files /dev/null and b/web/images/upload/SilverFig3_2.png differ diff --git a/web/images/upload/SilverFig3_6.png b/web/images/upload/SilverFig3_6.png new file mode 100755 index 00000000..5b91d991 Binary files /dev/null and b/web/images/upload/SilverFig3_6.png differ diff --git a/web/images/upload/Striatum_Illumina_SexTest.gif b/web/images/upload/Striatum_Illumina_SexTest.gif new file mode 100755 index 00000000..3c211d44 Binary files /dev/null and b/web/images/upload/Striatum_Illumina_SexTest.gif differ diff --git a/web/images/upload/Suwanwela-1.JBMR.10.pdf b/web/images/upload/Suwanwela-1.JBMR.10.pdf new file mode 100755 index 00000000..96468f65 Binary files /dev/null and b/web/images/upload/Suwanwela-1.JBMR.10.pdf differ diff --git a/web/images/upload/Taylor_1973.pdf b/web/images/upload/Taylor_1973.pdf new file mode 100755 index 00000000..11811054 Binary files /dev/null and b/web/images/upload/Taylor_1973.pdf differ diff --git a/web/images/upload/Thomas_Auwerx_2009.pdf b/web/images/upload/Thomas_Auwerx_2009.pdf new file mode 100755 index 00000000..eed6a4eb Binary files /dev/null and b/web/images/upload/Thomas_Auwerx_2009.pdf differ diff --git a/web/images/upload/Tour_1_NR2B.png b/web/images/upload/Tour_1_NR2B.png new file mode 100755 index 00000000..b5fcb9ca Binary files /dev/null and b/web/images/upload/Tour_1_NR2B.png differ diff --git a/web/images/upload/Tour_2.png b/web/images/upload/Tour_2.png new file mode 100755 index 00000000..65af2aec Binary files /dev/null and b/web/images/upload/Tour_2.png differ diff --git a/web/images/upload/Tour_3.png b/web/images/upload/Tour_3.png new file mode 100755 index 00000000..484e8e22 Binary files /dev/null and b/web/images/upload/Tour_3.png differ diff --git a/web/images/upload/Tour_4.png b/web/images/upload/Tour_4.png new file mode 100755 index 00000000..12cb30c6 Binary files /dev/null and b/web/images/upload/Tour_4.png differ diff --git a/web/images/upload/Tutoral_Stats1.jpg b/web/images/upload/Tutoral_Stats1.jpg new file mode 100755 index 00000000..d9520176 Binary files /dev/null and b/web/images/upload/Tutoral_Stats1.jpg differ diff --git a/web/images/upload/Tutorial-Correlation2.jpg b/web/images/upload/Tutorial-Correlation2.jpg new file mode 100755 index 00000000..52c0dfd3 Binary files /dev/null and b/web/images/upload/Tutorial-Correlation2.jpg differ diff --git a/web/images/upload/Tutorial_Correlation1.jpg b/web/images/upload/Tutorial_Correlation1.jpg new file mode 100755 index 00000000..a0526f35 Binary files /dev/null and b/web/images/upload/Tutorial_Correlation1.jpg differ diff --git a/web/images/upload/Tutorial_Correlation3.jpg b/web/images/upload/Tutorial_Correlation3.jpg new file mode 100755 index 00000000..5de4a6a0 Binary files /dev/null and b/web/images/upload/Tutorial_Correlation3.jpg differ diff --git a/web/images/upload/Tutorial_GO1.jpg b/web/images/upload/Tutorial_GO1.jpg new file mode 100755 index 00000000..90d0e3f0 Binary files /dev/null and b/web/images/upload/Tutorial_GO1.jpg differ diff --git a/web/images/upload/Tutorial_Map1.jpg b/web/images/upload/Tutorial_Map1.jpg new file mode 100755 index 00000000..5af7923b Binary files /dev/null and b/web/images/upload/Tutorial_Map1.jpg differ diff --git a/web/images/upload/Tutorial_Map2.jpg b/web/images/upload/Tutorial_Map2.jpg new file mode 100755 index 00000000..03fb2181 Binary files /dev/null and b/web/images/upload/Tutorial_Map2.jpg differ diff --git a/web/images/upload/Tutorial_Stats2.jpg b/web/images/upload/Tutorial_Stats2.jpg new file mode 100755 index 00000000..d3a0aaae Binary files /dev/null and b/web/images/upload/Tutorial_Stats2.jpg differ diff --git a/web/images/upload/Tutorial_TraitData1-0.jpg b/web/images/upload/Tutorial_TraitData1-0.jpg new file mode 100755 index 00000000..8a44691e Binary files /dev/null and b/web/images/upload/Tutorial_TraitData1-0.jpg differ diff --git a/web/images/upload/Tutorial_TraitData1.jpg b/web/images/upload/Tutorial_TraitData1.jpg new file mode 100755 index 00000000..81584c14 Binary files /dev/null and b/web/images/upload/Tutorial_TraitData1.jpg differ diff --git a/web/images/upload/Vazquez2007.pdf b/web/images/upload/Vazquez2007.pdf new file mode 100755 index 00000000..2ae89fb2 Binary files /dev/null and b/web/images/upload/Vazquez2007.pdf differ diff --git a/web/images/upload/WBCs_MDP_female.gif b/web/images/upload/WBCs_MDP_female.gif new file mode 100755 index 00000000..f44ebc94 Binary files /dev/null and b/web/images/upload/WBCs_MDP_female.gif differ diff --git a/web/images/upload/XistStriatumExonJul07.gif b/web/images/upload/XistStriatumExonJul07.gif new file mode 100755 index 00000000..4a317720 Binary files /dev/null and b/web/images/upload/XistStriatumExonJul07.gif differ diff --git a/web/images/upload/Xist_LXS_Hipp.gif b/web/images/upload/Xist_LXS_Hipp.gif new file mode 100755 index 00000000..732b8841 Binary files /dev/null and b/web/images/upload/Xist_LXS_Hipp.gif differ diff --git a/web/images/upload/Xist_in_GSE5281.gif b/web/images/upload/Xist_in_GSE5281.gif new file mode 100755 index 00000000..6d16cc6a Binary files /dev/null and b/web/images/upload/Xist_in_GSE5281.gif differ diff --git a/web/images/upload/barley_QSM.png b/web/images/upload/barley_QSM.png new file mode 100755 index 00000000..a19a6086 Binary files /dev/null and b/web/images/upload/barley_QSM.png differ diff --git a/web/images/upload/gg_U74brain_FDR1_hwt.gif b/web/images/upload/gg_U74brain_FDR1_hwt.gif new file mode 100755 index 00000000..050e3a2f Binary files /dev/null and b/web/images/upload/gg_U74brain_FDR1_hwt.gif differ diff --git a/web/images/upload/gglogo1-0.gif b/web/images/upload/gglogo1-0.gif new file mode 100755 index 00000000..aeabc9e6 Binary files /dev/null and b/web/images/upload/gglogo1-0.gif differ diff --git a/web/images/upload/gglogo1.gif b/web/images/upload/gglogo1.gif new file mode 100755 index 00000000..aeabc9e6 Binary files /dev/null and b/web/images/upload/gglogo1.gif differ diff --git a/web/images/upload/gglogo1.png b/web/images/upload/gglogo1.png new file mode 100755 index 00000000..c8964f82 Binary files /dev/null and b/web/images/upload/gglogo1.png differ diff --git a/web/images/upload/image001.gif b/web/images/upload/image001.gif new file mode 100755 index 00000000..085c1d90 Binary files /dev/null and b/web/images/upload/image001.gif differ diff --git a/web/images/upload/image0010.gif b/web/images/upload/image0010.gif new file mode 100755 index 00000000..de68e596 Binary files /dev/null and b/web/images/upload/image0010.gif differ diff --git a/web/images/upload/image0011.gif b/web/images/upload/image0011.gif new file mode 100755 index 00000000..cecad9e5 Binary files /dev/null and b/web/images/upload/image0011.gif differ diff --git a/web/images/upload/image0012.gif b/web/images/upload/image0012.gif new file mode 100755 index 00000000..4629b5f6 Binary files /dev/null and b/web/images/upload/image0012.gif differ diff --git a/web/images/upload/image001rev2.jpg b/web/images/upload/image001rev2.jpg new file mode 100755 index 00000000..10f47273 Binary files /dev/null and b/web/images/upload/image001rev2.jpg differ diff --git a/web/images/upload/image002.gif b/web/images/upload/image002.gif new file mode 100755 index 00000000..1fb77ea7 Binary files /dev/null and b/web/images/upload/image002.gif differ diff --git a/web/images/upload/image002rev2.jpg b/web/images/upload/image002rev2.jpg new file mode 100755 index 00000000..6200df8f Binary files /dev/null and b/web/images/upload/image002rev2.jpg differ diff --git a/web/images/upload/image003.gif b/web/images/upload/image003.gif new file mode 100755 index 00000000..6a04b17c Binary files /dev/null and b/web/images/upload/image003.gif differ diff --git a/web/images/upload/image003rev2.jpg b/web/images/upload/image003rev2.jpg new file mode 100755 index 00000000..4b751ec5 Binary files /dev/null and b/web/images/upload/image003rev2.jpg differ diff --git a/web/images/upload/image004.gif b/web/images/upload/image004.gif new file mode 100755 index 00000000..0430e85d Binary files /dev/null and b/web/images/upload/image004.gif differ diff --git a/web/images/upload/image005.gif b/web/images/upload/image005.gif new file mode 100755 index 00000000..5f45f2ca Binary files /dev/null and b/web/images/upload/image005.gif differ diff --git a/web/images/upload/image006.gif b/web/images/upload/image006.gif new file mode 100755 index 00000000..ef6bf57c Binary files /dev/null and b/web/images/upload/image006.gif differ diff --git a/web/images/upload/image007.gif b/web/images/upload/image007.gif new file mode 100755 index 00000000..e1b7e1ca Binary files /dev/null and b/web/images/upload/image007.gif differ diff --git a/web/images/upload/image008.jpg b/web/images/upload/image008.jpg new file mode 100755 index 00000000..cf8766c0 Binary files /dev/null and b/web/images/upload/image008.jpg differ diff --git a/web/images/upload/image009.jpg b/web/images/upload/image009.jpg new file mode 100755 index 00000000..590ae47c Binary files /dev/null and b/web/images/upload/image009.jpg differ diff --git a/web/images/upload/physical_chr10_map.gif b/web/images/upload/physical_chr10_map.gif new file mode 100755 index 00000000..8293518a Binary files /dev/null and b/web/images/upload/physical_chr10_map.gif differ diff --git a/web/images/upload/polar-bear-tongue-0.jpg b/web/images/upload/polar-bear-tongue-0.jpg new file mode 100755 index 00000000..22d8161a Binary files /dev/null and b/web/images/upload/polar-bear-tongue-0.jpg differ diff --git a/web/images/upload/polar-bear-tongue-1.jpg b/web/images/upload/polar-bear-tongue-1.jpg new file mode 100755 index 00000000..22d8161a Binary files /dev/null and b/web/images/upload/polar-bear-tongue-1.jpg differ diff --git a/web/images/upload/polar-bear-tongue-2.jpg b/web/images/upload/polar-bear-tongue-2.jpg new file mode 100755 index 00000000..22d8161a Binary files /dev/null and b/web/images/upload/polar-bear-tongue-2.jpg differ diff --git a/web/images/upload/polar-bear-tongue-3.jpg b/web/images/upload/polar-bear-tongue-3.jpg new file mode 100755 index 00000000..22d8161a Binary files /dev/null and b/web/images/upload/polar-bear-tongue-3.jpg differ diff --git a/web/images/upload/polar-bear-tongue-4.jpg b/web/images/upload/polar-bear-tongue-4.jpg new file mode 100755 index 00000000..22d8161a Binary files /dev/null and b/web/images/upload/polar-bear-tongue-4.jpg differ diff --git a/web/images/upload/polar-bear-tongue.jpg b/web/images/upload/polar-bear-tongue.jpg new file mode 100755 index 00000000..22d8161a Binary files /dev/null and b/web/images/upload/polar-bear-tongue.jpg differ diff --git a/web/images/upload/registered_with_nif_button.jpg b/web/images/upload/registered_with_nif_button.jpg new file mode 100755 index 00000000..094fe574 Binary files /dev/null and b/web/images/upload/registered_with_nif_button.jpg differ diff --git a/web/images/upload/sort_by.gif b/web/images/upload/sort_by.gif new file mode 100755 index 00000000..19f66885 Binary files /dev/null and b/web/images/upload/sort_by.gif differ diff --git a/web/images/upload/sort_by.png b/web/images/upload/sort_by.png new file mode 100755 index 00000000..e7125cf0 Binary files /dev/null and b/web/images/upload/sort_by.png differ diff --git a/web/images/upload/tutorial_banner.jpg b/web/images/upload/tutorial_banner.jpg new file mode 100755 index 00000000..b22a143e Binary files /dev/null and b/web/images/upload/tutorial_banner.jpg differ diff --git a/web/images/upload/wt_cdna_synthesis_amplification.jpg b/web/images/upload/wt_cdna_synthesis_amplification.jpg new file mode 100755 index 00000000..73b32894 Binary files /dev/null and b/web/images/upload/wt_cdna_synthesis_amplification.jpg differ diff --git a/web/images/verify_icon.jpg b/web/images/verify_icon.jpg new file mode 100755 index 00000000..ee243be4 Binary files /dev/null and b/web/images/verify_icon.jpg differ diff --git a/web/images/waitAnima.gif b/web/images/waitAnima.gif new file mode 100755 index 00000000..de331164 Binary files /dev/null and b/web/images/waitAnima.gif differ diff --git a/web/images/waitAnima2.gif b/web/images/waitAnima2.gif new file mode 100755 index 00000000..50aff7f2 Binary files /dev/null and b/web/images/waitAnima2.gif differ diff --git a/web/images/wcrest.gif b/web/images/wcrest.gif new file mode 100755 index 00000000..243dea68 Binary files /dev/null and b/web/images/wcrest.gif differ diff --git a/web/images/webgestalt_icon_final.jpg b/web/images/webgestalt_icon_final.jpg new file mode 100755 index 00000000..3f466cf6 Binary files /dev/null and b/web/images/webgestalt_icon_final.jpg differ diff --git a/web/images/webqtl-2.gif b/web/images/webqtl-2.gif new file mode 100755 index 00000000..15d4d5fc Binary files /dev/null and b/web/images/webqtl-2.gif differ diff --git a/web/images/webqtl-3.gif b/web/images/webqtl-3.gif new file mode 100755 index 00000000..8e55816d Binary files /dev/null and b/web/images/webqtl-3.gif differ diff --git a/web/images/webqtl.jpg b/web/images/webqtl.jpg new file mode 100755 index 00000000..64b0e97e Binary files /dev/null and b/web/images/webqtl.jpg differ diff --git a/web/images/webqtl.js b/web/images/webqtl.js new file mode 100755 index 00000000..9b4fae83 --- /dev/null +++ b/web/images/webqtl.js @@ -0,0 +1,19 @@ + +function xchange() { + var select = document.crossChoice.RISet; + var value = select.options[select.selectedIndex].value; + + if (value !="BDAI") return; + document.crossChoice.variance.checked = false; +} + +function showSample(){ + document.crossChoice.submitID.value = "sample"; + document.crossChoice.submit(); +} + +function showNext(){ + document.crossChoice.submitID.value = "next"; + document.crossChoice.submit(); +} + diff --git a/web/images/webqtlLogo.gif b/web/images/webqtlLogo.gif new file mode 100755 index 00000000..19099d1f Binary files /dev/null and b/web/images/webqtlLogo.gif differ diff --git a/web/images/webqtlLogoWide.gif b/web/images/webqtlLogoWide.gif new file mode 100755 index 00000000..ee17178d Binary files /dev/null and b/web/images/webqtlLogoWide.gif differ diff --git a/web/images/webqtl_search.gif b/web/images/webqtl_search.gif new file mode 100755 index 00000000..1ff1a348 Binary files /dev/null and b/web/images/webqtl_search.gif differ diff --git a/web/images/webqtl_search.psd b/web/images/webqtl_search.psd new file mode 100755 index 00000000..adb82558 Binary files /dev/null and b/web/images/webqtl_search.psd differ diff --git a/web/images/webqtllogo2.gif b/web/images/webqtllogo2.gif new file mode 100755 index 00000000..dfeaa76c Binary files /dev/null and b/web/images/webqtllogo2.gif differ diff --git a/web/images/webqtllogo2.gif.old b/web/images/webqtllogo2.gif.old new file mode 100755 index 00000000..66a9fb6e Binary files /dev/null and b/web/images/webqtllogo2.gif.old differ diff --git a/web/images/webqtllogo2archive.gif b/web/images/webqtllogo2archive.gif new file mode 100755 index 00000000..3b790798 Binary files /dev/null and b/web/images/webqtllogo2archive.gif differ diff --git a/web/images/webqtllogo2beta.gif b/web/images/webqtllogo2beta.gif new file mode 100755 index 00000000..66a9fb6e Binary files /dev/null and b/web/images/webqtllogo2beta.gif differ diff --git a/web/images/webqtllogo2beta2.gif b/web/images/webqtllogo2beta2.gif new file mode 100755 index 00000000..ec3102d9 Binary files /dev/null and b/web/images/webqtllogo2beta2.gif differ diff --git a/web/images/webqtllogolinkout.gif b/web/images/webqtllogolinkout.gif new file mode 100755 index 00000000..f12934d1 Binary files /dev/null and b/web/images/webqtllogolinkout.gif differ diff --git a/web/images/x.gif b/web/images/x.gif new file mode 100755 index 00000000..778344bc Binary files /dev/null and b/web/images/x.gif differ diff --git a/web/index.html b/web/index.html new file mode 100755 index 00000000..b124b4aa --- /dev/null +++ b/web/index.html @@ -0,0 +1,8 @@ + + + + + + + + diff --git a/web/index.html.20110408 b/web/index.html.20110408 new file mode 100755 index 00000000..bcae525b --- /dev/null +++ b/web/index.html.20110408 @@ -0,0 +1,367 @@ + + +GeneNetwork Search + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + + + + + + + +
    +

    Select and Search +

    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + Species: + + + +
    + Group: + + + +
    + Type: + + + +
    + Database: + + + +
    + + +

        Databases marked with ** suffix are not public yet. +
        Access requires user login.

    +
    + Get Any: + + + +
    + + +

        Enter terms, genes, ID numbers in the Get Any field. +
        Use * or ? wildcards (Cyp*a?, synap*). +
        Use Combined for terms such as tyrosine kinase.

    +
    + Combined: + + + + +
    + + +      +      + +
    + + + +
    + + + + + + + + +

     ______________________________________________________ + +

      + +Quick HELP Examples and + + User's Guide

    + + + +  You can also use advanced commands. Copy these simple examples +
      into the Get Any or Combined search fields: +
      + +
    • POSITION=(chr1 25 30) finds genes, markers, or transcripts on chromosome 1 between 25 and 30 Mb. + +
    • MEAN=(15 16) LRS=(23 46) in the Combined field finds highly expressed genes (15 to 16 log2 units) AND with peak LRS linkage between 23 and 46. + +
    • RIF=mitochondrial searches RNA databases for GeneRIF links. + +
    • WIKI=nicotine searches GeneWiki for genes that you or other users have annotated with the word nicotine. + +
    • GO:0045202 searches for synapse-associated genes listed in the Gene Ontology. + +
    • GO:0045202 LRS=(9 99 Chr4 122 155) cisLRS=(9 999 10)
      in Combined finds synapse-associated genes with cis eQTL on Chr 4 from 122 and 155 Mb with LRS scores between 9 and 999. + +
    • RIF=diabetes LRS=(9 999 Chr2 100 105) transLRS=(9 999 10)
      in Combined finds diabetes-associated transcripts with peak trans eQTLs on Chr 2 between 100 and 105 Mb with LRS scores between 9 and 999. + +
    + +
    +

    Top New Features   

    +
    +

    RNA-seq and Whole-Genome Sequencing data for mouse BXD strains and DBA/2J.

    +
    + +
    +

    CITG Open Galaxy Service: 200-core cluster at UTHSC for next-gen sequence analysis.

    +
    + + +

    ____________________________ + + + + +

    Getting Started   

    +
      +
    1. Select Species (or select All) +
    2. Select Group (a specific sample) +
    3. Select Type of data: +
        +
      • Phenotype (traits) +
      • Genotype (markers) +
      • Expression (mRNAs) +
      +
    4. Select a Database +
    5. Enter search terms in the Get Any or Combined field: words, genes, ID numbers, probes, advanced search commands +
    6. Click on the Search button +
    7. Optional: Use the Make Default button to save your preferences + +
    +

    ____________________________ + +

    How to Use GeneNetwork + +

    +

    Take a 20-40 minute GeneNetwork Tour that includes screen shots and typical steps in the analysis.

    +
    +
    +

    For information about resources and methods, select the INFO buttons.

    + + +

    Try the Test site to explore data and features that are being implemented.

    + + +

    Review the Conditions and Contacts pages for information on the status of data sets and advice on their use and citation.

    + + +
    + + +

    Mirror and Development Sites

    + + + + +

    History and Archive + +

    +

    GeneNetwork's Time Machine links to earlier versions that correspond to specific publication dates.

    +
    + + + modify this page

    +
    +
    + + + +
    + +
    + + + + + + + + + + + + diff --git a/web/index2.html b/web/index2.html new file mode 100755 index 00000000..c128aac1 --- /dev/null +++ b/web/index2.html @@ -0,0 +1,57 @@ + +System + + + + + + + + + + + + + + + + + +
    + + + + + + +
    +

    + GeneNetwork main server is temporarily unavailable due to system maintenance.

    + Please use our backup server http://proust.utmem.edu

    + The main server will be back to service in a few minutes.
    +

    +
    +
    + + + +
    + +
    + + + + + + + + + diff --git a/web/index3.html b/web/index3.html new file mode 100755 index 00000000..bee5efc8 --- /dev/null +++ b/web/index3.html @@ -0,0 +1,443 @@ + +GeneNetwork Advanced Search + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +
    +

        Advanced Search modify this page

    + + + +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +    + +
    +

    Species:

    +
    + +
    +

    Group:

    +
    + +
    +

    Type:

    +
    + +
    +

    Database:

    +
    + +
    +
    +
    + + + + + + +
    + OR +   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Get Any: + +
    +
    +
    Position + + + from + + to + Mb +
    Mean + + from + + to + +
    Range + + from + + to + +
    Wiki +
    RIF +
    LRS + from + + to + +
    P + from + + to + +
    H2 + from + + to + +
    +
    +
    +
    +
    + + + + + + +
    + AND +   + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Combined: + +
    +
    +
    Position + + + from + + to + Mb +
    Mean + from + + to + +
    Range + from + + to + +
    Wiki
    RIF
    LRS + from + + to + +
    P + from + + to + +
    H2 + from + + to + +
    +
    +
    +
    +
    +    + +
    + + + +
    +
    +
    + +

    + Help + open in new window +

    + +
    +
    + + + +
    + +
    + + + + + + + + + + + diff --git a/web/index4.html b/web/index4.html new file mode 100755 index 00000000..10c2b956 --- /dev/null +++ b/web/index4.html @@ -0,0 +1,184 @@ + + + + + +How to Search + + + + + + + + + + + + + + +
    + + + +
    + +

    Advanced Searching and General Advice modify this page

    + +
    + +

    First select the most appropriate SPECIES, GROUP, data TYPE, and DATABASE. You can then enter terms and values into either the Get Any or the Combined search blocks. Get Any will retrieves more records (logical OR), whereas the Combined fields will find only records that intersect or match all terms (logical AND). You can directly enter standard text, gene symbols, GenBank IDs, mRNA reference sequence IDs (NM_*), probe/probe set IDs or even Gene Ontology IDs (for example GO:16798) into the Get Any or the Combined fields using either the standard or advanced Search page. The search fields are not case-sensitive; app and APP are equivalent. Terms can be separated by a space, comma, slash, colon or semicolon. + +

    * or ? can be used to represent any of several characters. Use * for one or more characters and ? for single characters such as hyphens or periods. + +

    When in doubt, start with short terms and use an asterisk at the start or end of the term (e.g., *enkephalin or Hoxb*). When searching for probes or probe sets such as 1436869_at_B, it is easiest to enter 1436869*. + +

    To search for a term or word that is in GeneWiki, please just enter "wiki=xxx", for example, wiki=GENSAT to list all genes and transcripts for which there is a GeneWiki entry that includes the text string "GENSAT." These searches are not case sensitive. + +

    A maximum of 500 characters are allowed in either search field. Approximately 60 GenBank, RefSeq, Unigene, or probe set IDs or other IDs will fit. It is a good idea to enter the full string, for example Mm.57202 including the period for Unigene IDs. You can enter the reference mRNA sequence (Refseq) for a gene, such as NM_007467. Enter them with the underscore character (_). Although *57202 will work, this search may also pick up unintended records. + +

    As mentioned the Get Any field will retrieve records that match any of the terms in any order (logical OR). A search string such as amyloid beta may generate too many records (over 1000 in some databases) because beta is so common. In contrast, the Combined field performs a logical AND operation and retrieves only records that intersect all terms. Searching for amyloid beta or beta amyloid in this field yields fewer than 50 hits. + +

    A single Search Results page lists up to 100 records, and provides links to as many as 20 other pages and a maximum of 2000 records. If a search generates more than 2000 matches, you will need to make the search more selective. Try using the ? wildcard to retain a specific sequence and order of words such as in receptor?binding. + +

    All Published Phenotypes databases can be searched by the last names of authors. These databases cannot yet be reliably searched using general terms such as morphology or neuropharm* or year of publication. + +

    Multiple Phenotype databases can be searched in a single operation by selecting the All Species option in the pull-down selection menus ("Choose Species"). You can then enter a phrase such as "body weight" in the ALL field to generate a Search Results list of phenotypes in multiple groups (AXB, BXD, BXH, CXB, etc.). + +

    Genotype databases can usually be searched by the name, chromosome, or location of markers. To find all markers on Chr 7, type the number 7 into either entry field. To find all markers on Chr X between 50 and 80 Mb, type this string into either entry field: Mb=(ChrX 50 80). + +

    Make Default: Please use the option labeled Set To Default. This allows you to change the initial database displayed when you begin a search. For this option to work, permission for cookies needs to be enabled on your browser. A cookie is a small text file stored on your computer used by our server to keep track of preferred settings. (If you are logged in for special projects, the cookie also keeps your user name and password.) To test that the Default option works properly, change the settings and reload the search page. If this does not work as expected, check the preference settings of your browser. + +

    In some cases you may need more data than is available from a standard GeneNetwork output page. Please review the FAQ page and get familiar with the Simple Query Interface (note that this complex page may load slowly in some browsers). + +

    + +

    +Advanced Search Methods +

    + +
    +More complex searches of some databases are possible using controlled syntax. Gene expression databases can be searched by the chromosomal locations of genes, by the average expression of their transcripts, by the range of values among cases or strains, by the peak linkage values (LRS scores), or by Gene Ontology membership. These search parameters can be combined. For example, to find all transcripts that are transcribed from genes located on chromosome 1 between 98 and 104 megabases use this search format: + +
      +
    • Position=(Chr1 98 104) [Note: No space between Chr and the number or letter of the chromosome. As usual, the search string is case insensitive. Commas may be added between elements for visual clarity.] +
    • Pos=(Chr1 98 104) +
    • Mb=(Chr1 98 104) +
    + +

    To find all transcripts with expression that average between 15.0 and 16.0 units, use this format: +

      +
    • Mean=(15.0 16.0) +
    + + +

    To find all transcripts that vary 10-fold to 100-fold among strains or cases, use this format: +

      +
    • Range=(10 100) +
    + +

    To search for a term or word that is in GeneWiki, please just enter either: +

      +
    • WIKI=xxx, for example, WIKI=GENSAT to access all genes and transcripts for which there is a GeneWiki entry that includes the text string "GENSAT." These searches are not case sensitive. + +
    • RIF=xxx, for example, RIF=autism to access all genes and transcripts for which there is a GeneRIF entry inthe GeneWiki for the term "autism". +
    + +
  • rif=XXX wiki=XXX, for example, rif=autism wiki=autism to access all genes and transcripts with either a RIF entry or WIKI entry that included "autism." + +

    In the examples above, the search terms are not case sensitive. + +

    Many of the GeneNetwork databases have been exhaustively analyzed using QTL Reaper, a high throughput mapping program designed to handle large array data sets. It is possible to search most array databases to find those transcripts that have QTLs with peak LRS or LOD scores within a particular range of values. Genome-wide P values are computed using a permutation test. + + +

      +To find traits by peak LRS value or by p value range, the search syntax needs to follow these rules: + +

      +
    • LRS=(Low_LRS_limit, High_LRS_limit): for example, LRS=(20 30) will find all traits that have a best QTL that has a peak genome-wide LRS value between 20 and 30 (LOD = LRS/4.61). It will not tell you where these QTLs are located, but it will instead provide you a list of the traits that meant this condition. + +
    • pvalue=(Low_limit, High_limit): for example, pvalue=(0.0001 0.001) where the P value is the genome-wide significance level established by permutation. This is very similar to the LRS search above but uses permutation P values rather than LRS or LOD scores. + +
    • CisLRS=(Low_LRS_limit, High_LRS_limit, Mb_buffer): This command will find all expression traits that have a single best QTL that is located close to the gene from which it is expressed. The inclusion buffer value (in megabases) is used to set the limits on how close the QTL peak must be to the gene location. The inclusion buffer should usually be set to a value of 10 Mb or less, depending on the mapping population. Commas are not required between parameter values. + +
    • TransLRS=(Low_LRS_limit, High_LRS_limit, Mb_buffer): This command will find all transcripts that have a single best QTL that is not located close to the gene from which the transcript is expressed located more than the exclusion buffer value (in megabases) from the gene from which the transcript is expressed. The exclusion buffer should usually be set at greater than 10 to 20 Mb. Commas are not required. + +
    • LRS=(Low_LRS_limit, High_LRS_limit, ChrNN, Mb_Low_Limit, Mb_High_Limit): for example, LRS=(20, 900, Chr12, 0, 130). This command will find all transcripts that have a single best QTL that is located on Chr 12 between 0 Mb and 130 Mb in the LRS range of 20 to 900. Commas are not required. + +
    • LRS=(Low_LRS_limit, High_LRS_limit, ChrNN, Mb_Low_Limit, Mb_High_Limit) and TransLRS=(Low_LRS_limit, High_LRS_limit, Mb_buffer): for example, LRS=(20, 900, Chr12, 0, 130) transLRS=(20, 900, 25). This combination of commands will find all transcripts that have a single best trans-QTL that is located on Chr 12 between 0 Mb and 130 Mb in the LRS range of 20 to 900 with a 25 Mb exclusion buffer. Commas are not required. + +

      You need to replace the text such as "Low_LRS_limit" with a real value such as "15". But do not use the quotes. +For example, you might type this string into the ALL field to find CisQTLs that map to Chr 1 between 170 and 180 Mb with LRS values between 100 and 500. + +
      CisLRS=(100, 500, 10) LRS=(100, 500 chr1 170 180) + + +

    + +

    The search strings above require a database of values that we precompute using QTL Reaper. If QTL Reaper has not yet been used, then these searches will not return records. + +

    These search strings can be combined to generate more complex queries. For example, enter these search phrases into the ALL (intersection of) field: + +

      + +
    • Mb=(Chr1 50 100) LRS=(20 200) to find all transcripts with genes on Chr 1 between 50 and 100 Mb that also have top LRS scores in the range from 20 to 200 anywhere in the genome. + +
    • MB=(ChrX 0 20) Mean=(10 25) to find all transcripts with genes on Chr X between 0 and 20 Mb that also have mean expression in the range from 10 to 25. + +
    • transLRS=(9.2 1000 20) LRS=(9.2 1000 Chr11 50 80) will find all transcripts with best trans QTLs (LRS > 9.2) that map to Chr 11 between 50 and 70 Mb (with a 20 Mb trans exclusion buffer). + +
    • Mb=(Chr2 100 200) GO:0007268 to find any transcripts on Chr 2 between 100 and 200 Mb that belong to the Gene Ontology category GO:0007268 "synaptic transmission." More below on GO searches. + +
    • Mb=(Chr1 0 210) Mean=(12 20) TransLRS=(15 300 25) in the ALL field to find all transcripts located on Chr 1 (the Mb values of 0 and 210 cover the entire chromosome) that have mean expression above a value of 12 (quite high) and that have a major trans-acting QTL located at least 25 Mb away for the location of the transcript's "parent" gene. If this search fails, then confirm that it works when used in combination with the Hippocampus Consortium Dec05 PDNN database. You should get 13 returns, including Psmc6, Offrl1, and Ptp4a1. Start with lenient criteria to ensure that the search works with the database that interests you, and if it does, then increase the selectivity. + + +
    + +

    +Searches for Categories of Genes +

    + +

    Gene Ontology term searches: This search feature allows you to find transcripts related to particular categories using appropriate GO identifers. For example, to extract all transcripts associated with "synapse" enter the string GO:0045202, or for more specificity, enter the string GO:0016079 for "synaptic vesicle exocytosis" in the ANY field. Similarly, to review all transcripts associated with transcriptional control AND that have high LRS scores, enter the string GO:0003700 in the ALL field along with a string such as "LRS=(30 300)". This combination will retrieve all transcription factor-associated genes with QTL scores between 30 and 300. + +

    To browse or find GO terms and classes browse AmiGo. + +

    Or use GoPubMed and a set of search terms such as "visual transduction photoreceptor" to extract the correct GO term and identifier "phototransduction" = GO:0007602. + +

    As of September 2005, the GO contains approximately 20,000 terms of which 6,300 terms are associated with genes/transcripts in one or more of the GeneNetwork databases. Approximately 700 high level GO terms will return well over 200 hits. It is therefore useful to select more specific GO terms that return 100 or fewer transcripts or genes. GO search ID numbers can be used together with other search parameters (OR and AND Booleans by using the ANY and ALL fields). + + +

    +GET commands and Scriptable Interface Queries +

    + +A GET command is a simple data request that takes the form of an odd looking URL address. For more details on the many allowed GET commands used by the GeneNetwork please see the Scriptable Interface overview. The Scriptable Interface is designed primarily to handle queries from other databases and web services, but you can also use this method as a quick way to generate more comprehensive output files. For example, if you need to review the complete list of correlations of Huntingtin (probe set 1425969_a_at_A) with all 45137 expression traits in the HBP Rosen Striatum M430V2 (Apr05) PDNN Clean database then you would paste this particular GET command in the URL box of your browser: + +
      +
    • + +http://www.genenetwork.org/webqtl/main.py?cmd=cor&probeset=1425969_a_at&db=Str04-05PDNNC&searchdb=Str04-05PDNNC&return=45137&sort=pvalue + (Please note that this type of query may take several minutes and will not be accompanied with a progress bar.) +
    + + + +

    To obtain a list of the database abbreviations link to Help. + + + + +

    To completely avoid learning the structure of GET commands, the GeneNetwork also has a Simple Query Interface mentioned already once above (look under the Search menu). This interface assembles the GET command for you. All you need to do is select parameters. + +

    The size of a GeneNetwork database can be determined by entering a single * in either search field. + +

    + +

  • + +
    +
    + + + + \ No newline at end of file diff --git a/web/javascript/colorSel.js b/web/javascript/colorSel.js new file mode 100755 index 00000000..65f06fa7 --- /dev/null +++ b/web/javascript/colorSel.js @@ -0,0 +1,53 @@ +_colors = [['f0f8ff', 'aliceblue'], ['faebd7', 'antiquewhite'], ['ffefdb', 'antiquewhite1'], ['eedfcc', 'antiquewhite2'], ['cdc0b0', 'antiquewhite3'], ['8b8378', 'antiquewhite4'], ['7fffd4', 'aquamarine'], ['7fffd4', 'aquamarine1'], ['76eec6', 'aquamarine2'], ['66cdaa', 'aquamarine3'], ['458b74', 'aquamarine4'], ['f0ffff', 'azure'], ['f0ffff', 'azure1'], ['e0eeee', 'azure2'], ['c1cdcd', 'azure3'], ['838b8b', 'azure4'], ['f5f5dc', 'beige'], ['ffe4c4', 'bisque'], ['ffe4c4', 'bisque1'], ['eed5b7', 'bisque2'], ['cdb79e', 'bisque3'], ['8b7d6b', 'bisque4'], ['000000', 'black'], ['ffebcd', 'blanchedalmond'], ['0000ff', 'blue'], ['0000ff', 'blue1'], ['0000ee', 'blue2'], ['0000cd', 'blue3'], ['00008b', 'blue4'], ['8a2be2', 'blueviolet'], ['a52a2a', 'brown'], ['ff4040', 'brown1'], ['ee3b3b', 'brown2'], ['cd3333', 'brown3'], ['8b2323', 'brown4'], ['deb887', 'burlywood'], ['ffd39b', 'burlywood1'], ['eec591', 'burlywood2'], ['cdaa7d', 'burlywood3'], ['8b7355', 'burlywood4'], ['5f9ea0', 'cadetblue'], ['98f5ff', 'cadetblue1'], ['8ee5ee', 'cadetblue2'], ['7ac5cd', 'cadetblue3'], ['53868b', 'cadetblue4'], ['7fff00', 'chartreuse'], ['7fff00', 'chartreuse1'], ['76ee00', 'chartreuse2'], ['66cd00', 'chartreuse3'], ['458b00', 'chartreuse4'], ['d2691e', 'chocolate'], ['ff7f24', 'chocolate1'], ['ee7621', 'chocolate2'], ['cd661d', 'chocolate3'], ['8b4513', 'chocolate4'], ['ff7f50', 'coral'], ['ff7256', 'coral1'], ['ee6a50', 'coral2'], ['cd5b45', 'coral3'], ['8b3e2f', 'coral4'], ['6495ed', 'cornflowerblue'], ['fff8dc', 'cornsilk'], ['fff8dc', 'cornsilk1'], ['eee8cd', 'cornsilk2'], ['cdc8b1', 'cornsilk3'], ['8b8878', 'cornsilk4'], ['dc143c', 'crimson'], ['00ffff', 'cyan'], ['00ffff', 'cyan1'], ['00eeee', 'cyan2'], ['00cdcd', 'cyan3'], ['008b8b', 'cyan4'], ['b8860b', 'darkgoldenrod'], ['ffb90f', 'darkgoldenrod1'], ['eead0e', 'darkgoldenrod2'], ['cd950c', 'darkgoldenrod3'], ['8b6508', 'darkgoldenrod4'], ['006400', 'darkgreen'], ['bdb76b', 'darkkhaki'], ['556b2f', 'darkolivegreen'], ['caff70', 'darkolivegreen1'], ['bcee68', 'darkolivegreen2'], ['a2cd5a', 'darkolivegreen3'], ['6e8b3d', 'darkolivegreen4'], ['ff8c00', 'darkorange'], ['ff7f00', 'darkorange1'], ['ee7600', 'darkorange2'], ['cd6600', 'darkorange3'], ['8b4500', 'darkorange4'], ['9932cc', 'darkorchid'], ['bf3eff', 'darkorchid1'], ['b23aee', 'darkorchid2'], ['9a32cd', 'darkorchid3'], ['68228b', 'darkorchid4'], ['e9967a', 'darksalmon'], ['8fbc8f', 'darkseagreen'], ['c1ffc1', 'darkseagreen1'], ['b4eeb4', 'darkseagreen2'], ['9bcd9b', 'darkseagreen3'], ['698b69', 'darkseagreen4'], ['483d8b', 'darkslateblue'], ['2f4f4f', 'darkslategray'], ['97ffff', 'darkslategray1'], ['8deeee', 'darkslategray2'], ['79cdcd', 'darkslategray3'], ['528b8b', 'darkslategray4'], ['2f4f4f', 'darkslategrey'], ['00ced1', 'darkturquoise'], ['9400d3', 'darkviolet'], ['ff1493', 'deeppink'], ['ff1493', 'deeppink1'], ['ee1289', 'deeppink2'], ['cd1076', 'deeppink3'], ['8b0a50', 'deeppink4'], ['00bfff', 'deepskyblue'], ['00bfff', 'deepskyblue1'], ['00b2ee', 'deepskyblue2'], ['009acd', 'deepskyblue3'], ['00688b', 'deepskyblue4'], ['696969', 'dimgray'], ['696969', 'dimgrey'], ['1e90ff', 'dodgerblue'], ['1e90ff', 'dodgerblue1'], ['1c86ee', 'dodgerblue2'], ['1874cd', 'dodgerblue3'], ['104e8b', 'dodgerblue4'], ['b22222', 'firebrick'], ['ff3030', 'firebrick1'], ['ee2c2c', 'firebrick2'], ['cd2626', 'firebrick3'], ['8b1a1a', 'firebrick4'], ['fffaf0', 'floralwhite'], ['228b22', 'forestgreen'], ['dcdcdc', 'gainsboro'], ['f8f8ff', 'ghostwhite'], ['ffd700', 'gold'], ['ffd700', 'gold1'], ['eec900', 'gold2'], ['cdad00', 'gold3'], ['8b7500', 'gold4'], ['daa520', 'goldenrod'], ['ffc125', 'goldenrod1'], ['eeb422', 'goldenrod2'], ['cd9b1d', 'goldenrod3'], ['8b6914', 'goldenrod4'], ['c0c0c0', 'gray'], ['000000', 'gray0'], ['030303', 'gray1'], ['1a1a1a', 'gray10'], ['ffffff', 'gray100'], ['1c1c1c', 'gray11'], ['1f1f1f', 'gray12'], ['212121', 'gray13'], ['242424', 'gray14'], ['262626', 'gray15'], ['292929', 'gray16'], ['2b2b2b', 'gray17'], ['2e2e2e', 'gray18'], ['303030', 'gray19'], ['050505', 'gray2'], ['333333', 'gray20'], ['363636', 'gray21'], ['383838', 'gray22'], ['3b3b3b', 'gray23'], ['3d3d3d', 'gray24'], ['404040', 'gray25'], ['424242', 'gray26'], ['454545', 'gray27'], ['474747', 'gray28'], ['4a4a4a', 'gray29'], ['080808', 'gray3'], ['4d4d4d', 'gray30'], ['4f4f4f', 'gray31'], ['525252', 'gray32'], ['545454', 'gray33'], ['575757', 'gray34'], ['595959', 'gray35'], ['5c5c5c', 'gray36'], ['5e5e5e', 'gray37'], ['616161', 'gray38'], ['636363', 'gray39'], ['0a0a0a', 'gray4'], ['666666', 'gray40'], ['696969', 'gray41'], ['6b6b6b', 'gray42'], ['6e6e6e', 'gray43'], ['707070', 'gray44'], ['737373', 'gray45'], ['757575', 'gray46'], ['787878', 'gray47'], ['7a7a7a', 'gray48'], ['7d7d7d', 'gray49'], ['0d0d0d', 'gray5'], ['7f7f7f', 'gray50'], ['828282', 'gray51'], ['858585', 'gray52'], ['878787', 'gray53'], ['8a8a8a', 'gray54'], ['8c8c8c', 'gray55'], ['8f8f8f', 'gray56'], ['919191', 'gray57'], ['949494', 'gray58'], ['969696', 'gray59'], ['0f0f0f', 'gray6'], ['999999', 'gray60'], ['9c9c9c', 'gray61'], ['9e9e9e', 'gray62'], ['a1a1a1', 'gray63'], ['a3a3a3', 'gray64'], ['a6a6a6', 'gray65'], ['a8a8a8', 'gray66'], ['ababab', 'gray67'], ['adadad', 'gray68'], ['b0b0b0', 'gray69'], ['121212', 'gray7'], ['b3b3b3', 'gray70'], ['b5b5b5', 'gray71'], ['b8b8b8', 'gray72'], ['bababa', 'gray73'], ['bdbdbd', 'gray74'], ['bfbfbf', 'gray75'], ['c2c2c2', 'gray76'], ['c4c4c4', 'gray77'], ['c7c7c7', 'gray78'], ['c9c9c9', 'gray79'], ['141414', 'gray8'], ['cccccc', 'gray80'], ['cfcfcf', 'gray81'], ['d1d1d1', 'gray82'], ['d4d4d4', 'gray83'], ['d6d6d6', 'gray84'], ['d9d9d9', 'gray85'], ['dbdbdb', 'gray86'], ['dedede', 'gray87'], ['e0e0e0', 'gray88'], ['e3e3e3', 'gray89'], ['171717', 'gray9'], ['e5e5e5', 'gray90'], ['e8e8e8', 'gray91'], ['ebebeb', 'gray92'], ['ededed', 'gray93'], ['f0f0f0', 'gray94'], ['f2f2f2', 'gray95'], ['f5f5f5', 'gray96'], ['f7f7f7', 'gray97'], ['fafafa', 'gray98'], ['fcfcfc', 'gray99'], ['00ff00', 'green'], ['00ff00', 'green1'], ['00ee00', 'green2'], ['00cd00', 'green3'], ['008b00', 'green4'], ['adff2f', 'greenyellow'], ['c0c0c0', 'grey'], ['000000', 'grey0'], ['030303', 'grey1'], ['1a1a1a', 'grey10'], ['ffffff', 'grey100'], ['1c1c1c', 'grey11'], ['1f1f1f', 'grey12'], ['212121', 'grey13'], ['242424', 'grey14'], ['262626', 'grey15'], ['292929', 'grey16'], ['2b2b2b', 'grey17'], ['2e2e2e', 'grey18'], ['303030', 'grey19'], ['050505', 'grey2'], ['333333', 'grey20'], ['363636', 'grey21'], ['383838', 'grey22'], ['3b3b3b', 'grey23'], ['3d3d3d', 'grey24'], ['404040', 'grey25'], ['424242', 'grey26'], ['454545', 'grey27'], ['474747', 'grey28'], ['4a4a4a', 'grey29'], ['080808', 'grey3'], ['4d4d4d', 'grey30'], ['4f4f4f', 'grey31'], ['525252', 'grey32'], ['545454', 'grey33'], ['575757', 'grey34'], ['595959', 'grey35'], ['5c5c5c', 'grey36'], ['5e5e5e', 'grey37'], ['616161', 'grey38'], ['636363', 'grey39'], ['0a0a0a', 'grey4'], ['666666', 'grey40'], ['696969', 'grey41'], ['6b6b6b', 'grey42'], ['6e6e6e', 'grey43'], ['707070', 'grey44'], ['737373', 'grey45'], ['757575', 'grey46'], ['787878', 'grey47'], ['7a7a7a', 'grey48'], ['7d7d7d', 'grey49'], ['0d0d0d', 'grey5'], ['7f7f7f', 'grey50'], ['828282', 'grey51'], ['858585', 'grey52'], ['878787', 'grey53'], ['8a8a8a', 'grey54'], ['8c8c8c', 'grey55'], ['8f8f8f', 'grey56'], ['919191', 'grey57'], ['949494', 'grey58'], ['969696', 'grey59'], ['0f0f0f', 'grey6'], ['999999', 'grey60'], ['9c9c9c', 'grey61'], ['9e9e9e', 'grey62'], ['a1a1a1', 'grey63'], ['a3a3a3', 'grey64'], ['a6a6a6', 'grey65'], ['a8a8a8', 'grey66'], ['ababab', 'grey67'], ['adadad', 'grey68'], ['b0b0b0', 'grey69'], ['121212', 'grey7'], ['b3b3b3', 'grey70'], ['b5b5b5', 'grey71'], ['b8b8b8', 'grey72'], ['bababa', 'grey73'], ['bdbdbd', 'grey74'], ['bfbfbf', 'grey75'], ['c2c2c2', 'grey76'], ['c4c4c4', 'grey77'], ['c7c7c7', 'grey78'], ['c9c9c9', 'grey79'], ['141414', 'grey8'], ['cccccc', 'grey80'], ['cfcfcf', 'grey81'], ['d1d1d1', 'grey82'], ['d4d4d4', 'grey83'], ['d6d6d6', 'grey84'], ['d9d9d9', 'grey85'], ['dbdbdb', 'grey86'], ['dedede', 'grey87'], ['e0e0e0', 'grey88'], ['e3e3e3', 'grey89'], ['171717', 'grey9'], ['e5e5e5', 'grey90'], ['e8e8e8', 'grey91'], ['ebebeb', 'grey92'], ['ededed', 'grey93'], ['f0f0f0', 'grey94'], ['f2f2f2', 'grey95'], ['f5f5f5', 'grey96'], ['f7f7f7', 'grey97'], ['fafafa', 'grey98'], ['fcfcfc', 'grey99'], ['f0fff0', 'honeydew'], ['f0fff0', 'honeydew1'], ['e0eee0', 'honeydew2'], ['c1cdc1', 'honeydew3'], ['838b83', 'honeydew4'], ['ff69b4', 'hotpink'], ['ff6eb4', 'hotpink1'], ['ee6aa7', 'hotpink2'], ['cd6090', 'hotpink3'], ['8b3a62', 'hotpink4'], ['cd5c5c', 'indianred'], ['ff6a6a', 'indianred1'], ['ee6363', 'indianred2'], ['cd5555', 'indianred3'], ['8b3a3a', 'indianred4'], ['4b0082', 'indigo'], ['fffff0', 'ivory'], ['fffff0', 'ivory1'], ['eeeee0', 'ivory2'], ['cdcdc1', 'ivory3'], ['8b8b83', 'ivory4'], ['f0e68c', 'khaki'], ['fff68f', 'khaki1'], ['eee685', 'khaki2'], ['cdc673', 'khaki3'], ['8b864e', 'khaki4'], ['e6e6fa', 'lavender'], ['fff0f5', 'lavenderblush'], ['fff0f5', 'lavenderblush1'], ['eee0e5', 'lavenderblush2'], ['cdc1c5', 'lavenderblush3'], ['8b8386', 'lavenderblush4'], ['7cfc00', 'lawngreen'], ['fffacd', 'lemonchiffon'], ['fffacd', 'lemonchiffon1'], ['eee9bf', 'lemonchiffon2'], ['cdc9a5', 'lemonchiffon3'], ['8b8970', 'lemonchiffon4'], ['add8e6', 'lightblue'], ['bfefff', 'lightblue1'], ['b2dfee', 'lightblue2'], ['9ac0cd', 'lightblue3'], ['68838b', 'lightblue4'], ['f08080', 'lightcoral'], ['e0ffff', 'lightcyan'], ['e0ffff', 'lightcyan1'], ['d1eeee', 'lightcyan2'], ['b4cdcd', 'lightcyan3'], ['7a8b8b', 'lightcyan4'], ['eedd82', 'lightgoldenrod'], ['ffec8b', 'lightgoldenrod1'], ['eedc82', 'lightgoldenrod2'], ['cdbe70', 'lightgoldenrod3'], ['8b814c', 'lightgoldenrod4'], ['fafad2', 'lightgoldenrodyellow'], ['d3d3d3', 'lightgray'], ['d3d3d3', 'lightgrey'], ['ffb6c1', 'lightpink'], ['ffaeb9', 'lightpink1'], ['eea2ad', 'lightpink2'], ['cd8c95', 'lightpink3'], ['8b5f65', 'lightpink4'], ['ffa07a', 'lightsalmon'], ['ffa07a', 'lightsalmon1'], ['ee9572', 'lightsalmon2'], ['cd8162', 'lightsalmon3'], ['8b5742', 'lightsalmon4'], ['20b2aa', 'lightseagreen'], ['87cefa', 'lightskyblue'], ['b0e2ff', 'lightskyblue1'], ['a4d3ee', 'lightskyblue2'], ['8db6cd', 'lightskyblue3'], ['607b8b', 'lightskyblue4'], ['8470ff', 'lightslateblue'], ['778899', 'lightslategray'], ['778899', 'lightslategrey'], ['b0c4de', 'lightsteelblue'], ['cae1ff', 'lightsteelblue1'], ['bcd2ee', 'lightsteelblue2'], ['a2b5cd', 'lightsteelblue3'], ['6e7b8b', 'lightsteelblue4'], ['ffffe0', 'lightyellow'], ['ffffe0', 'lightyellow1'], ['eeeed1', 'lightyellow2'], ['cdcdb4', 'lightyellow3'], ['8b8b7a', 'lightyellow4'], ['32cd32', 'limegreen'], ['faf0e6', 'linen'], ['ff00ff', 'magenta'], ['ff00ff', 'magenta1'], ['ee00ee', 'magenta2'], ['cd00cd', 'magenta3'], ['8b008b', 'magenta4'], ['b03060', 'maroon'], ['ff34b3', 'maroon1'], ['ee30a7', 'maroon2'], ['cd2990', 'maroon3'], ['8b1c62', 'maroon4'], ['66cdaa', 'mediumaquamarine'], ['0000cd', 'mediumblue'], ['ba55d3', 'mediumorchid'], ['e066ff', 'mediumorchid1'], ['d15fee', 'mediumorchid2'], ['b452cd', 'mediumorchid3'], ['7a378b', 'mediumorchid4'], ['9370db', 'mediumpurple'], ['ab82ff', 'mediumpurple1'], ['9f79ee', 'mediumpurple2'], ['8968cd', 'mediumpurple3'], ['5d478b', 'mediumpurple4'], ['3cb371', 'mediumseagreen'], ['7b68ee', 'mediumslateblue'], ['00fa9a', 'mediumspringgreen'], ['48d1cc', 'mediumturquoise'], ['c71585', 'mediumvioletred'], ['191970', 'midnightblue'], ['f5fffa', 'mintcream'], ['ffe4e1', 'mistyrose'], ['ffe4e1', 'mistyrose1'], ['eed5d2', 'mistyrose2'], ['cdb7b5', 'mistyrose3'], ['8b7d7b', 'mistyrose4'], ['ffe4b5', 'moccasin'], ['ffdead', 'navajowhite'], ['ffdead', 'navajowhite1'], ['eecfa1', 'navajowhite2'], ['cdb38b', 'navajowhite3'], ['8b795e', 'navajowhite4'], ['000080', 'navy'], ['000080', 'navyblue'], ['fdf5e6', 'oldlace'], ['6b8e23', 'olivedrab'], ['c0ff3e', 'olivedrab1'], ['b3ee3a', 'olivedrab2'], ['9acd32', 'olivedrab3'], ['698b22', 'olivedrab4'], ['ffa500', 'orange'], ['ffa500', 'orange1'], ['ee9a00', 'orange2'], ['cd8500', 'orange3'], ['8b5a00', 'orange4'], ['ff4500', 'orangered'], ['ff4500', 'orangered1'], ['ee4000', 'orangered2'], ['cd3700', 'orangered3'], ['8b2500', 'orangered4'], ['da70d6', 'orchid'], ['ff83fa', 'orchid1'], ['ee7ae9', 'orchid2'], ['cd69c9', 'orchid3'], ['8b4789', 'orchid4'], ['eee8aa', 'palegoldenrod'], ['98fb98', 'palegreen'], ['9aff9a', 'palegreen1'], ['90ee90', 'palegreen2'], ['7ccd7c', 'palegreen3'], ['548b54', 'palegreen4'], ['afeeee', 'paleturquoise'], ['bbffff', 'paleturquoise1'], ['aeeeee', 'paleturquoise2'], ['96cdcd', 'paleturquoise3'], ['668b8b', 'paleturquoise4'], ['db7093', 'palevioletred'], ['ff82ab', 'palevioletred1'], ['ee799f', 'palevioletred2'], ['cd6889', 'palevioletred3'], ['8b475d', 'palevioletred4'], ['ffefd5', 'papayawhip'], ['ffdab9', 'peachpuff'], ['ffdab9', 'peachpuff1'], ['eecbad', 'peachpuff2'], ['cdaf95', 'peachpuff3'], ['8b7765', 'peachpuff4'], ['cd853f', 'peru'], ['ffc0cb', 'pink'], ['ffb5c5', 'pink1'], ['eea9b8', 'pink2'], ['cd919e', 'pink3'], ['8b636c', 'pink4'], ['dda0dd', 'plum'], ['ffbbff', 'plum1'], ['eeaeee', 'plum2'], ['cd96cd', 'plum3'], ['8b668b', 'plum4'], ['b0e0e6', 'powderblue'], ['a020f0', 'purple'], ['9b30ff', 'purple1'], ['912cee', 'purple2'], ['7d26cd', 'purple3'], ['551a8b', 'purple4'], ['ff0000', 'red'], ['ff0000', 'red1'], ['ee0000', 'red2'], ['cd0000', 'red3'], ['8b0000', 'red4'], ['bc8f8f', 'rosybrown'], ['ffc1c1', 'rosybrown1'], ['eeb4b4', 'rosybrown2'], ['cd9b9b', 'rosybrown3'], ['8b6969', 'rosybrown4'], ['4169e1', 'royalblue'], ['4876ff', 'royalblue1'], ['436eee', 'royalblue2'], ['3a5fcd', 'royalblue3'], ['27408b', 'royalblue4'], ['8b4513', 'saddlebrown'], ['fa8072', 'salmon'], ['ff8c69', 'salmon1'], ['ee8262', 'salmon2'], ['cd7054', 'salmon3'], ['8b4c39', 'salmon4'], ['f4a460', 'sandybrown'], ['2e8b57', 'seagreen'], ['54ff9f', 'seagreen1'], ['4eee94', 'seagreen2'], ['43cd80', 'seagreen3'], ['2e8b57', 'seagreen4'], ['fff5ee', 'seashell'], ['fff5ee', 'seashell1'], ['eee5de', 'seashell2'], ['cdc5bf', 'seashell3'], ['8b8682', 'seashell4'], ['a0522d', 'sienna'], ['ff8247', 'sienna1'], ['ee7942', 'sienna2'], ['cd6839', 'sienna3'], ['8b4726', 'sienna4'], ['87ceeb', 'skyblue'], ['87ceff', 'skyblue1'], ['7ec0ee', 'skyblue2'], ['6ca6cd', 'skyblue3'], ['4a708b', 'skyblue4'], ['6a5acd', 'slateblue'], ['836fff', 'slateblue1'], ['7a67ee', 'slateblue2'], ['6959cd', 'slateblue3'], ['473c8b', 'slateblue4'], ['708090', 'slategray'], ['c6e2ff', 'slategray1'], ['b9d3ee', 'slategray2'], ['9fb6cd', 'slategray3'], ['6c7b8b', 'slategray4'], ['708090', 'slategrey'], ['fffafa', 'snow'], ['fffafa', 'snow1'], ['eee9e9', 'snow2'], ['cdc9c9', 'snow3'], ['8b8989', 'snow4'], ['00ff7f', 'springgreen'], ['00ff7f', 'springgreen1'], ['00ee76', 'springgreen2'], ['00cd66', 'springgreen3'], ['008b45', 'springgreen4'], ['4682b4', 'steelblue'], ['63b8ff', 'steelblue1'], ['5cacee', 'steelblue2'], ['4f94cd', 'steelblue3'], ['36648b', 'steelblue4'], ['d2b48c', 'tan'], ['ffa54f', 'tan1'], ['ee9a49', 'tan2'], ['cd853f', 'tan3'], ['8b5a2b', 'tan4'], ['d8bfd8', 'thistle'], ['ffe1ff', 'thistle1'], ['eed2ee', 'thistle2'], ['cdb5cd', 'thistle3'], ['8b7b8b', 'thistle4'], ['ff6347', 'tomato'], ['ff6347', 'tomato1'], ['ee5c42', 'tomato2'], ['cd4f39', 'tomato3'], ['8b3626', 'tomato4'], ['fffffe', 'transparent'], ['40e0d0', 'turquoise'], ['00f5ff', 'turquoise1'], ['00e5ee', 'turquoise2'], ['00c5cd', 'turquoise3'], ['00868b', 'turquoise4'], ['ee82ee', 'violet'], ['d02090', 'violetred'], ['ff3e96', 'violetred1'], ['ee3a8c', 'violetred2'], ['cd3278', 'violetred3'], ['8b2252', 'violetred4'], ['f5deb3', 'wheat'], ['ffe7ba', 'wheat1'], ['eed8ae', 'wheat2'], ['cdba96', 'wheat3'], ['8b7e66', 'wheat4'], ['ffffff', 'white'], ['f5f5f5', 'whitesmoke'], ['ffff00', 'yellow'], ['ffff00', 'yellow1'], ['eeee00', 'yellow2'], ['cdcd00', 'yellow3'], ['8b8b00', 'yellow4'], ['9acd32', 'yellowgreen']]; + +function getRadioValue (radioButtonOrGroup) { + var value = null; + if (radioButtonOrGroup.length) { // group + for (var b = 0; b < radioButtonOrGroup.length; b++) + if (radioButtonOrGroup[b].checked) + value = radioButtonOrGroup[b].value; + } + else if (radioButtonOrGroup.checked) + value = radioButtonOrGroup.value; + return value; +} + +function chgBg(obj,color){ +if (document.all || document.getElementById) + obj.style.backgroundColor=color; +else if (document.layers) + obj.bgColor=color; +} + +function clickHandler (evt, img) { + if (window.event){ + offsetX = window.event.offsetX; + offsetY = window.event.offsetY; + } + else if (evt.target) { + var coords = {x: 0, y: 0 }; + var el = evt.target; + do { + coords.x += el.offsetLeft; + coords.y += el.offsetTop; + } + while ((el = el.offsetParent)) { + offsetX = evt.pageX - coords.x - 4; + offsetY = evt.pageY - coords.y - 5; + } + //alert(offsetX + ':' + offsetY); + } + i = 50*Math.floor(offsetY/6) + Math.floor(offsetX/8); + if (i < 0) {i =0;} + else if (i > 652) {i = 652;} + else {i = i +0;} + //alert("this is " + i + " : " + offsetX+ " : " +offsetY); + myColor = getRadioValue(document.showDatabase.colorS); + myCell = document.getElementById(myColor); + myColorName = document.showDatabase[myColor + 'Name']; + myColorHex = document.showDatabase[myColor + 'Color']; + myColorName.value = _colors[i][1]; + myColorHex.value = _colors[i][0]; + //alert(myColorName.value + ':' + myColorHex.value); + chgBg(myCell,_colors[i][0]); +} diff --git a/web/javascript/correlationMatrix.js b/web/javascript/correlationMatrix.js new file mode 100755 index 00000000..d3ca195e --- /dev/null +++ b/web/javascript/correlationMatrix.js @@ -0,0 +1,453 @@ + +/*For Tissue Correlation Page; Default Export Tissue Text*/ +function exportTissueText(items){ + var windowName = 'ExportTissueText'; + var newWindow = open("", windowName,"width=900,menubar=0,toolbar=1,resizable=1,status=1,scrollbars=1"); + var html = '
    ';
    +	
    +	for (i=0;i0) && (j>0)){
    +				html += items[i][j].slice(0,items[i][j].indexOf('/'));}
    +			else if (((i>0) && (j == 0)) || ((i == 0) && (j > 0))){
    +				html += items[i][j].slice(0, items[i][j].indexOf('/'));
    +				}
    +				
    +			else {
    +				html += "Correlation";}
    +			html += '\t';}
    +		html += '\n';}
    +	html += '
    '; + + html += '

    '; + + html += '
    ';
    +	for (i=0;i0) && (j>0)){
    +				html += items[i][j].slice(items[i][j].indexOf('/')+1, items[i][j].length);}
    +			else if (((i>0) && (j == 0)) || ((i == 0) && (j > 0))){
    +				html += items[i][j].slice(0, items[i][j].indexOf('/'));}
    +			else {
    +				html += 'P Value';}
    +			html += '\t';}
    +		html += '\n';}
    +	html += '
    '; + + newWindow.document.write(html); + newWindow.document.close(); + newWindow.focus();/**/ +} + +/*Export Tissue Text for long label*/ +function exportTissueVerboseText(items){ + var windowName = 'ExportVerboseText'; + var newWindow = open("", windowName,"width=900,menubar=0,toolbar=1,resizable=1,status=1,scrollbars=1"); + var html = '
    ';
    +	
    +	for (i=0;i0) && (j>0)){
    +				html += items[i][j].slice(0,items[i][j].indexOf('/'));}
    +			else if ((i>0) && (j == 0)){
    +				position1 = items[i][j].indexOf('/') + 1;
    +				position2 = items[i][j].indexOf('/', position1);
    +				html += items[i][j].slice(position2 + 1, items[i][j].length);}
    +			else if ((i == 0) && (j>0)){
    +				html += items[i][j].slice(0, items[i][j].indexOf('/')) ;}
    +			else {
    +				html += "Correlation";}
    +			html += '\t';}
    +		html += '\n';}
    +	html += '
    '; + + html += '

    '; + + html += '
    ';
    +	for (i=0;i0) && (j>0)){
    +				html += items[i][j].slice(items[i][j].indexOf('/')+1, items[i][j].length);}
    +			else if ((i>0) && (j == 0)){
    +				position1 = items[i][j].indexOf('/') + 1;
    +				position2 = items[i][j].indexOf('/', position1) + 1;
    +				html += items[i][j].slice(position2, items[i][j].length);}
    +			else if ((i == 0) && (j>0)){
    +				html += items[i][j].slice(0, items[i][j].indexOf('/'));}
    +			else {
    +				html += 'P Value';}
    +			html += '\t';}
    +		html += '\n';}
    +	html += '
    '; + + newWindow.document.write(html); + newWindow.document.close(); + newWindow.focus();/**/ +} + +/*For Tissue Correlation Page; Default Save function for results of symbol count =1*/ +function exportAllTissueText(items){ + var windowName = 'ExportTissueText'; + var newWindow = open("", windowName,"width=900,menubar=0,toolbar=1,resizable=1,status=1,scrollbars=1"); + var html = '
    ';
    +	
    +	for (i=0;i0) && (j>0)){
    +				html += items[i][j].slice(0,items[i][j].indexOf('/'));}
    +			else if (((i>0) && (j == 0)) || ((i == 0) && (j > 0))){
    +				html += items[i][j].slice(0, items[i][j].indexOf('/'));
    +				}
    +				
    +			else {
    +				html += "Correlation";}
    +			html += '\t';}
    +		html += '\n';}
    +	html += '
    '; + + newWindow.document.write(html); + newWindow.document.close(); + newWindow.focus();/**/ +} + +/* Display Short Label for Tissue */ +function displayTissueShortName(){ + var geneSymbols = document.getElementsByName("Symbol"); + + var exportButton = document.getElementsByName("export")[0]; + var shortNameCheck = document.getElementById("shortName_1"); // to check if currently short + + if (shortNameCheck.style.display == 'none'){ + exportButton.value="Export"; + exportButton.onclick = function(){exportTissueText(allCorrelations);}; + } + else { + exportButton.value="Export"; + exportButton.onclick = function(){exportTissueText(allCorrelations);}; + } + + for (i=0; i < geneSymbols.length; i++){ + var shortName = document.getElementById("shortName_" + String(i)); + var verboseName = document.getElementById("verboseName_" + String(i)); + var verboseName2 = document.getElementById("verboseName2_" + String(i)); + var verboseName3 = document.getElementById("verboseName3_" + String(i)); + + + if (shortName.style.display == 'block') { + shortName.style.display = 'none'; + } + + else if (shortName.style.display == 'none') { + if (verboseName.style.display == 'block'){ + verboseName.style.display = 'none'; + verboseName2.style.display = 'none'; + verboseName3.style.display = 'none'; + } + shortName.style.display = 'block'; + } + } +} + +/* Display Long Label for Tissue */ +function displayTissueVerboseName(){ + var geneSymbols = document.getElementsByName("Symbol"); + + var exportButton = document.getElementsByName("export")[0]; + var verboseNameCheck = document.getElementById("verboseName_0"); // to check if currently verbose + + if (verboseNameCheck.style.display == 'none'){ + exportButton.value="Export"; + exportButton.onclick = function(){exportTissueVerboseText(allCorrelations);}; + } + else { + exportButton.value="Export"; + exportButton.onclick = function(){exportTissueText(allCorrelations);}; + } + + for (i=0; i < geneSymbols.length; i++){ + var verboseName = document.getElementById("verboseName_" + String(i)); + var verboseName2 = document.getElementById("verboseName2_" + String(i)); + var verboseName3 = document.getElementById("verboseName3_" + String(i)); + var shortName = document.getElementById("shortName_" + String(i)); + + + if (verboseName.style.display == 'block') { + verboseName.style.display = 'none'; + verboseName2.style.display = 'none'; + verboseName3.style.display = 'none'; + } + + else if (verboseName.style.display == 'none'){ + if (shortName.style.display == 'block'){ + shortName.style.display = 'none'; + } + verboseName.style.display = 'block'; + verboseName2.style.display = 'block'; + verboseName3.style.display = 'block'; + } + } + +} + +/* Info page for dataset of tissue correlation */ +function tissueDatasetInfo(thisForm,dataSetNames){ + var windowName = 'dataset_info'; + var Index = thisForm.selectedIndex; + var datasetName =dataSetNames[Index] + var page = '/dbdoc/' + datasetName + '.html'; + newWindow = open(page,windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + newWindow.focus() +} + + +/*for correlation matrix page*/ +/* Display Short Label in Correlation Matrix */ +function displayShortName(){ + var traitList = document.getElementsByName("traitList")[0].value.split("\t"); + var exportButton = document.getElementsByName("export")[0]; + var shortNameCheck = document.getElementById("shortName_1"); // to check if currently short + + if (shortNameCheck.style.display == 'none'){ + exportButton.value="Export"; + exportButton.onclick = function(){exportAbbreviationText(allCorrelations);}; + } + else { + exportButton.value="Export"; + exportButton.onclick = function(){exportText(allCorrelations);}; + } + + for (i=0; i < traitList.length; i++){ + var shortName = document.getElementById("shortName_" + String(i)); + var verboseName = document.getElementById("verboseName_" + String(i)); + var verboseName2 = document.getElementById("verboseName2_" + String(i)); + var verboseName3 = document.getElementById("verboseName3_" + String(i)); + + + if (shortName.style.display == 'block') { + shortName.style.display = 'none'; + } + + else if (shortName.style.display == 'none') { + if (verboseName.style.display == 'block'){ + verboseName.style.display = 'none'; + verboseName2.style.display = 'none'; + verboseName3.style.display = 'none'; + } + shortName.style.display = 'block'; + } + } +} + +/* Display Long Label in Correlation Matrix*/ +function displayVerboseName(){ + var traitList = document.getElementsByName("traitList")[0].value.split("\t"); + var exportButton = document.getElementsByName("export")[0]; + var verboseNameCheck = document.getElementById("verboseName_0"); // to check if currently verbose + + if (verboseNameCheck.style.display == 'none'){ + exportButton.value="Export"; + exportButton.onclick = function(){exportVerboseText(allCorrelations);}; + } + else { + exportButton.value="Export"; + exportButton.onclick = function(){exportText(allCorrelations);}; + } + + for (i=0; i < traitList.length; i++){ + var verboseName = document.getElementById("verboseName_" + String(i)); + var verboseName2 = document.getElementById("verboseName2_" + String(i)); + var verboseName3 = document.getElementById("verboseName3_" + String(i)); + var shortName = document.getElementById("shortName_" + String(i)); + + if (verboseName.style.display == 'block') { + verboseName.style.display = 'none'; + verboseName2.style.display = 'none'; + verboseName3.style.display = 'none'; + } + + else if (verboseName.style.display == 'none'){ + if (shortName.style.display == 'block'){ + shortName.style.display = 'none'; + } + verboseName.style.display = 'block'; + verboseName2.style.display = 'block'; + verboseName3.style.display = 'block'; + } + } + +} + +/*Export for long label in Correlation Matrix*/ +function exportVerboseText(items){ + var windowName = 'ExportVerboseText'; + var newWindow = open("", windowName,"width=900,menubar=0,toolbar=1,resizable=1,status=1,scrollbars=1"); + var html = '
    ';
    +	
    +	for (i=0;i0) && (j>0)){
    +				html += items[i][j].slice(0,items[i][j].indexOf('/'));}
    +			else if ((i>0) && (j == 0)){
    +				position1 = items[i][j].indexOf('/') + 1;
    +				position2 = items[i][j].indexOf('/', position1);
    +				html += "Trait " + String(i) + ": " + items[i][j].slice(position2 + 1, items[i][j].length);}
    +			else if ((i == 0) && (j>0)){
    +				html += items[i][j];}
    +			else {
    +				html += "Correlation";}
    +			html += '\t';}
    +		html += '\n';}
    +	html += '
    '; + + html += '

    '; + + html += '
    ';
    +	for (i=0;i0) && (j>0)){
    +				html += items[i][j].slice(items[i][j].indexOf('/')+1, items[i][j].length);}
    +			else if ((i>0) && (j == 0)){
    +				position1 = items[i][j].indexOf('/') + 1;
    +				position2 = items[i][j].indexOf('/', position1) + 1;
    +				html += "Trait " + String(i) + ": " + items[i][j].slice(position2, items[i][j].length);}
    +			else if ((i == 0) && (j>0)){
    +				html += items[i][j];}
    +			else {
    +				html += 'N';}
    +			html += '\t';}
    +		html += '\n';}
    +	html += '
    '; + + newWindow.document.write(html); + newWindow.document.close(); + newWindow.focus();/**/ +} + +/*Default Export for labels in Correlation Matrix*/ +function exportText(items){ + var windowName = 'ExportText'; + var newWindow = open("", windowName,"width=900,menubar=0,toolbar=1,resizable=1,status=1,scrollbars=1"); + var html = '
    ';
    +	for (i=0;i0) && (j>0)){
    +				html += items[i][j].slice(0,items[i][j].indexOf('/'));}
    +			else if (((i>0) && (j == 0)) || ((i == 0) && (j > 0))){
    +				html += items[i][j].slice(0, items[i][j].indexOf('/'));}
    +			else {
    +				html += "Correlation";}
    +			html += '\t';}
    +		html += '\n';}
    +	html += '
    '; + + html += '

    '; + + html += '
    ';
    +	for (i=0;i0) && (j>0)){
    +				html += items[i][j].slice(items[i][j].indexOf('/')+1, items[i][j].length);}
    +			else if (((i>0) && (j == 0)) || ((i == 0) && (j > 0))){
    +				html += items[i][j].slice(0, items[i][j].indexOf('/'));}
    +			else {
    +				html += 'N';}
    +			html += '\t';}
    +		html += '\n';}
    +	html += '
    '; + + newWindow.document.write(html); + newWindow.document.close(); + newWindow.focus();/**/ +} + +/*Export for short label in Correlation Matrix*/ +function exportAbbreviationText(items){ + var windowName = 'ExportAbbreviationText'; + var newWindow = open("", windowName,"width=900,menubar=0,toolbar=1,resizable=1,status=1,scrollbars=1"); + var html = '
    ';
    +	
    +	for (i=0;i0) && (j>0)){
    +				html += items[i][j].slice(0,items[i][j].indexOf('/'));}
    +			else if ((i>0) && (j == 0)){
    +				position1 = items[i][j].indexOf('/') + 1;
    +				position2 = items[i][j].indexOf('/', position1);
    +				html += "Trait " + String(i) + ": " + items[i][j].slice(position1, position2);}
    +			else if ((i == 0) && (j>0)){
    +				html += items[i][j];}
    +			else {
    +				html += "Correlation";}
    +			html += '\t';}
    +		html += '\n';}
    +	html += '
    '; + + html += '

    '; + + html += '
    ';
    +	for (i=0;i0) && (j>0)){
    +				html += items[i][j].slice(items[i][j].indexOf('/')+1, items[i][j].length);}
    +			else if ((i>0) && (j == 0)){
    +				position1 = items[i][j].indexOf('/') + 1;
    +				position2 = items[i][j].indexOf('/', position1);
    +				html += "Trait " + String(i) + ": " + items[i][j].slice(position1, position2);}
    +			else if ((i == 0) && (j>0)){
    +				html += items[i][j];}
    +			else {
    +				html += 'N';}
    +			html += '\t';}
    +		html += '\n';}
    +	html += '
    '; + + newWindow.document.write(html); + newWindow.document.close(); + newWindow.focus();/**/ +} + +/*dynamic change formID for process bar display issue. Only Single symbol result page needs process bar*/ +function selectFormIdForTissueCorr(fmName){ + + var thisForm = getForm(fmName); + var geneSymbolStr =thisForm.geneSymbols.value; + var geneSymbolStrSplit =geneSymbolStr.split(/\n/);//delimiter is very important here + + len=geneSymbolStrSplit.length; + if (len==1){ + thisForm.FormID.value="dispTissueCorrelationResult"; + } + else{ + thisForm.FormID.value="dispMultiSymbolsResult"; + } + thisForm.submit() +} + +/*make default for dropdown menu in tissue correlation page*/ +function makeTissueCorrDefault(thisform){ + setCookie('cookieTest', 'cookieTest', 1); + var cookieTest = getCookie('cookieTest'); + delCookie('cookieTest'); + if (cookieTest){ + var defaultTissueDataset = thisform.tissueProbeSetFeezeId.value; + setCookie('defaultTissueDataset', defaultTissueDataset, 10); + alert("The current dataset is set to default."); + } + else{ + alert("You need to enable Cookies in your browser."); + } + +} + +/*set default selected value for tissue correlation dataset Id*/ +function getTissueCorrDefault(fmName){ + var thisForm = getForm(fmName); + if (getCookie('defaultTissueDataset')){ + thisForm.tissueProbeSetFeezeId.selectedIndex =(getCookie('defaultTissueDataset'))-1; + } + else{ + thisForm.tissueProbeSetFeezeId.selectedIndex =0; + } + +} diff --git a/web/javascript/dhtml.js b/web/javascript/dhtml.js new file mode 100755 index 00000000..52676ac8 --- /dev/null +++ b/web/javascript/dhtml.js @@ -0,0 +1,319 @@ +/** + * These are REALLY simple serialisation tools meant for simple Hash-like +objects in the for key=val + */ +var PrefUtils = { + deserialize:function(inStr){ + return eval('('+inStr+')'); + }, + serialize:function(inObj){ + var buf = '{'; + var cma = ''; + var quote = "'"; + for (i in inObj){ + if (typeof i == 'string'){ + buf += cma + quote + i + quote + " : " + + quote +inObj[i]+ quote; + cma = ','; + } + } + buf += '}'; + return buf; + }, + testCookie:function(){ + setCookie('cookieTest', 'cookieTest', 1); + var cookieTest = getCookie('cookieTest'); + delCookie('cookieTest'); + if (cookieTest) return true; + else return false; + }, + form2Cookie:function(thisForm, cookieName){ + if (!this.testCookie()){ + alert("You need to enable Cookie in your browser!"); + } + else{ + var pref = getCookie(cookieName); + var options = this.deserialize(pref); + if(!options){ + options = new Array(); + }/**/ + for( var x = 0; thisForm.elements[x]; x++ ) { + if( thisForm.elements[x].type ) { + var oE = thisForm.elements[x]; + var oT = oE.type.toLowerCase(); + if( oT == 'text' || oT == 'textarea' || oT == 'select-one' ) { + options[oE.name] = oE.value; + } + } + } + setCookie(cookieName, this.serialize(options), 10); + alert("Your preference has been saved."); + } + } +}; + +function updateInner(Id, str){ + document.getElementById(Id).innerHTML = str; +} + + +function popWindow(myId){ + if (!document.getElementById || !myId) return false; + else{ + var div = document.getElementById(myId); + if (!div){ + div = document.createElement("div"); + div.id = myId; + div.style.position = "absolute"; + div.style.top = "50%"; + div.style.left = "50%"; + div.style.width = "400px"; + div.style.height = "250px"; + div.style.margin = "-125px 0 0 -200px"; + div.style.border = "4px double #3366cc"; + div.style.padding = "0px"; + div.style.opacity = "0.99"; + div.style.backgroundColor = "#FFFFFF"; + div.style.fontSize = "60px"; + div.style.lineHeight = "60px"; + div.style.textAlign = "right"; + document.body.appendChild(div); + } + else{ + //alert("Layer already exists;") + } + xmlhttpPost('/webqtl/AJAX_pref.py', 'tab=assembly&divId='+myId, myId); + div.style.visibility = 'visible'; + } +} + +/*New added by NL*/ +/* +Used by PartialCorrTraitPage.py, CorrelationPage.py, +*/ +function xmlhttpPost(strURL, div, querystring) { + + var xmlHttpReq = false; + var self = this; + var lay = document.getElementById('warningLayer'); + if (lay != null) {lay.style.visibility = "visible";} + // Mozilla/Safari + if (window.XMLHttpRequest) { + self.xmlHttpReq = new XMLHttpRequest(); + } + // IE + else if (window.ActiveXObject) { + self.xmlHttpReq = new ActiveXObject("Microsoft.XMLHTTP"); + } + self.xmlHttpReq.open('POST', strURL, true); + self.xmlHttpReq.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded'); + self.xmlHttpReq.onreadystatechange = function() { + if (self.xmlHttpReq.readyState == 4) { + responseText = self.xmlHttpReq.responseText; + updatepage(div, responseText); + if (lay != null) lay.style.visibility = "hidden"; + } + } + self.xmlHttpReq.send(querystring); +} + +function updatepage(Id, str){ + document.getElementById(Id).innerHTML = str; +} +/* +Used by CorrelationPage.py, +elements: name,customizer, trait, filename, strainIds and vals are required by getquerystring function +*/ +function getquerystring(thisform) { + var db = thisform.customizer.value; + var dbname = thisform.databaseFull.value; + var form = thisform.name; + var trait = thisform.identification.value; + var file = thisform.filename.value; + var ids = thisform.strainIds.value; + var vals = thisform.vals.value; + qstr = 'cmd=addCorr&db=' + escape(db) + '&dbname=' + escape(dbname) + '&form=' + escape(form) + '&trait=' + escape(trait) + '&file=' + escape(file)+ '&ids=' + escape(ids) + '&vals=' + escape(vals); + // NOTE: no '?' before querystring + return qstr; +} + +/* +* Used by snpBrowserPage.py and AJAX_snpbrowser.py, +*/ +function xmlhttpPostSNP(strURL) { + var xmlHttpReq = false; + var self = this; + // Mozilla/Safari + if (window.XMLHttpRequest) { + self.xmlHttpReq = new XMLHttpRequest(); + } + // IE + else if (window.ActiveXObject) { + self.xmlHttpReq = new ActiveXObject("Microsoft.XMLHTTP"); + } + self.xmlHttpReq.open('POST', strURL, true); + self.xmlHttpReq.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded'); + self.xmlHttpReq.onreadystatechange = function() { + if (self.xmlHttpReq.readyState == 4) { + responseTextArray = self.xmlHttpReq.responseText.split("__split__"); + updatepage('menu_group', responseTextArray[0]); + updatepage('menu_s1', responseTextArray[1]); + updatepage('menu_s2', responseTextArray[2]); + updatepage('menu_s3', responseTextArray[3]); + } + } + self.xmlHttpReq.send(getquerystringSNP()); +} +/* +* used by snpBrowserPage.py, html elements:newSNPPadding, group, s1 and s2 are required +*/ +function getquerystringSNP() { + var form = document.newSNPPadding; + var group = form.group.value; + var s1 = form.s1.value; + var s2 = form.s2.value; + qstr = 'group=' + escape(group) + '&s1=' + escape(s1) + '&s2=' + escape(s2); + // NOTE: no '?' before querystring + return qstr; +} + + +/* +Used by CorrelationPage.py, element's Id named 'warningLayer' is required +*/ +function pageOffset() { + lay = document.getElementById('warningLayer'); + lay.style.top = document.body.scrollTop + 300; //document.body.clientWidth/2; + lay.style.left = (windowWidth() -250)/2; + setTimeout('pageOffset()',100); +} + +/* +* Used by CorrelationPage.py, +*/ +function windowWidth(){ + if (document.getElementById){ + + if (window.innerWidth) + return window.innerWidth; + if (document.documentElement&&document.documentElement.clientWidth) + return document.documentElement.clientWidth; + if (document.body.clientWidth) + return document.body.clientWidth; + } +} + +/* +* Used by PartialCorrInputPage.py, +*/ +function setAllAsTarget(thisForm, inputRadioNames){ + var radioArray = new Array(); + radioArray = inputRadioNames.split(','); + + for (var i = 0; i < radioArray.length; i++){ + radioElement = thisForm[radioArray[i]]; + + for (var j = 0; j < radioElement.length; j++){ + radioElement[j].checked = false; + value = radioElement[j].value; + if (value == "target"){ + radioElement[j].checked = true; + } + } + } +} + +/* +* Used by PartialCorrInputPage.py, +*/ +function setAllAsIgnore(thisForm, inputRadioNames){ + var radioArray = new Array(); + radioArray = inputRadioNames.split(','); + + for (var i = 0; i < radioArray.length; i++){ + radioElement = thisForm[radioArray[i]]; + + for (var j = 0; j < radioElement.length; j++){ + radioElement[j].checked = false; + value = radioElement[j].value; + if (value == "ignored"){ + radioElement[j].checked = true; + } + } + } +} + +/* +* moved from beta2.js +*/ +function checkUncheck(value, permCheck, bootCheck) { + if(value=="physic") { + permCheck.checked=true + bootCheck.checked=false + } else { + permCheck.checked=true + bootCheck.checked=true + } +} + +/* +updated by NL: 06-07-2010 +add new item at the top +*/ +function addToList(text, value, list) { + for (var j = list.length-1; j >=0; j--){ + list.options[j+1]= new Option(list.options[j].text,list.options[j].value); + } + list.options[0] = new Option(text, value) +} + +function removeFromList(index, list) { + list.options[index] = null + list.options[index].selected = true + if (list.length == 1) { + list.options[0].selected = true + } +} + +function swapOptions(index1, index2, list) { + text1 = list.options[index1].text + value1 = list.options[index1].value + text2 = list.options[index2].text + value2 = list.options[index2].value + list.options[index1] = new Option(text2, value2) + list.options[index2] = new Option(text1, value1) + list.options[index2].selected = true +} + +function selectAllElements(list) { + for(i=0; i' +ctext += 'Home' +ctext += '   |   ' +ctext += '' +ctext += 'Search' +ctext += '   |   ' +ctext += '' +ctext += 'Help' +ctext += '   |   ' +ctext += '' +ctext += '' +ctext += 'News' +ctext += '   |   ' +ctext += '' +ctext += '' +ctext += 'References' +ctext += '   |   ' +ctext += '' +ctext += 'Policies' +ctext += '   |   ' +ctext += '' +ctext += '' +ctext += 'Links' +ctext += '   |   ' +ctext += '
    ' +ctext += '   ' +ctext += '
    ' +ctext += '
    a";var e=b.getElementsByTagName("*"),f=b.getElementsByTagName("a")[0],g=c.createElement("select"),h=g.appendChild(c.createElement("option")),i=b.getElementsByTagName("input")[0];if(e&&e.length&&f){d.support={leadingWhitespace:b.firstChild.nodeType===3,tbody:!b.getElementsByTagName("tbody").length,htmlSerialize:!!b.getElementsByTagName("link").length,style:/red/.test(f.getAttribute("style")),hrefNormalized:f.getAttribute("href")==="/a",opacity:/^0.55$/.test(f.style.opacity),cssFloat:!!f.style.cssFloat,checkOn:i.value==="on",optSelected:h.selected,deleteExpando:!0,optDisabled:!1,checkClone:!1,noCloneEvent:!0,noCloneChecked:!0,boxModel:null,inlineBlockNeedsLayout:!1,shrinkWrapBlocks:!1,reliableHiddenOffsets:!0,reliableMarginRight:!0},i.checked=!0,d.support.noCloneChecked=i.cloneNode(!0).checked,g.disabled=!0,d.support.optDisabled=!h.disabled;var j=null;d.support.scriptEval=function(){if(j===null){var b=c.documentElement,e=c.createElement("script"),f="script"+d.now();try{e.appendChild(c.createTextNode("window."+f+"=1;"))}catch(g){}b.insertBefore(e,b.firstChild),a[f]?(j=!0,delete a[f]):j=!1,b.removeChild(e)}return j};try{delete b.test}catch(k){d.support.deleteExpando=!1}!b.addEventListener&&b.attachEvent&&b.fireEvent&&(b.attachEvent("onclick",function l(){d.support.noCloneEvent=!1,b.detachEvent("onclick",l)}),b.cloneNode(!0).fireEvent("onclick")),b=c.createElement("div"),b.innerHTML="";var m=c.createDocumentFragment();m.appendChild(b.firstChild),d.support.checkClone=m.cloneNode(!0).cloneNode(!0).lastChild.checked,d(function(){var a=c.createElement("div"),b=c.getElementsByTagName("body")[0];if(b){a.style.width=a.style.paddingLeft="1px",b.appendChild(a),d.boxModel=d.support.boxModel=a.offsetWidth===2,"zoom"in a.style&&(a.style.display="inline",a.style.zoom=1,d.support.inlineBlockNeedsLayout=a.offsetWidth===2,a.style.display="",a.innerHTML="
    ",d.support.shrinkWrapBlocks=a.offsetWidth!==2),a.innerHTML="
    t
    ";var e=a.getElementsByTagName("td");d.support.reliableHiddenOffsets=e[0].offsetHeight===0,e[0].style.display="",e[1].style.display="none",d.support.reliableHiddenOffsets=d.support.reliableHiddenOffsets&&e[0].offsetHeight===0,a.innerHTML="",c.defaultView&&c.defaultView.getComputedStyle&&(a.style.width="1px",a.style.marginRight="0",d.support.reliableMarginRight=(parseInt(c.defaultView.getComputedStyle(a,null).marginRight,10)||0)===0),b.removeChild(a).style.display="none",a=e=null}});var n=function(a){var b=c.createElement("div");a="on"+a;if(!b.attachEvent)return!0;var d=a in b;d||(b.setAttribute(a,"return;"),d=typeof b[a]==="function");return d};d.support.submitBubbles=n("submit"),d.support.changeBubbles=n("change"),b=e=f=null}}();var g=/^(?:\{.*\}|\[.*\])$/;d.extend({cache:{},uuid:0,expando:"jQuery"+(d.fn.jquery+Math.random()).replace(/\D/g,""),noData:{embed:!0,object:"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000",applet:!0},hasData:function(a){a=a.nodeType?d.cache[a[d.expando]]:a[d.expando];return!!a&&!i(a)},data:function(a,c,e,f){if(d.acceptData(a)){var g=d.expando,h=typeof c==="string",i,j=a.nodeType,k=j?d.cache:a,l=j?a[d.expando]:a[d.expando]&&d.expando;if((!l||f&&l&&!k[l][g])&&h&&e===b)return;l||(j?a[d.expando]=l=++d.uuid:l=d.expando),k[l]||(k[l]={},j||(k[l].toJSON=d.noop));if(typeof c==="object"||typeof c==="function")f?k[l][g]=d.extend(k[l][g],c):k[l]=d.extend(k[l],c);i=k[l],f&&(i[g]||(i[g]={}),i=i[g]),e!==b&&(i[c]=e);if(c==="events"&&!i[c])return i[g]&&i[g].events;return h?i[c]:i}},removeData:function(b,c,e){if(d.acceptData(b)){var f=d.expando,g=b.nodeType,h=g?d.cache:b,j=g?b[d.expando]:d.expando;if(!h[j])return;if(c){var k=e?h[j][f]:h[j];if(k){delete k[c];if(!i(k))return}}if(e){delete h[j][f];if(!i(h[j]))return}var l=h[j][f];d.support.deleteExpando||h!=a?delete h[j]:h[j]=null,l?(h[j]={},g||(h[j].toJSON=d.noop),h[j][f]=l):g&&(d.support.deleteExpando?delete b[d.expando]:b.removeAttribute?b.removeAttribute(d.expando):b[d.expando]=null)}},_data:function(a,b,c){return d.data(a,b,c,!0)},acceptData:function(a){if(a.nodeName){var b=d.noData[a.nodeName.toLowerCase()];if(b)return b!==!0&&a.getAttribute("classid")===b}return!0}}),d.fn.extend({data:function(a,c){var e=null;if(typeof a==="undefined"){if(this.length){e=d.data(this[0]);if(this[0].nodeType===1){var f=this[0].attributes,g;for(var i=0,j=f.length;i-1)return!0;return!1},val:function(a){if(!arguments.length){var c=this[0];if(c){if(d.nodeName(c,"option")){var e=c.attributes.value;return!e||e.specified?c.value:c.text}if(d.nodeName(c,"select")){var f=c.selectedIndex,g=[],h=c.options,i=c.type==="select-one";if(f<0)return null;for(var j=i?f:0,k=i?f+1:h.length;j=0;else if(d.nodeName(this,"select")){var f=d.makeArray(e);d("option",this).each(function(){this.selected=d.inArray(d(this).val(),f)>=0}),f.length||(this.selectedIndex=-1)}else this.value=e}})}}),d.extend({attrFn:{val:!0,css:!0,html:!0,text:!0,data:!0,width:!0,height:!0,offset:!0},attr:function(a,c,e,f){if(!a||a.nodeType===3||a.nodeType===8||a.nodeType===2)return b;if(f&&c in d.attrFn)return d(a)[c](e);var g=a.nodeType!==1||!d.isXMLDoc(a),h=e!==b;c=g&&d.props[c]||c;if(a.nodeType===1){var i=m.test(c);if(c==="selected"&&!d.support.optSelected){var j=a.parentNode;j&&(j.selectedIndex,j.parentNode&&j.parentNode.selectedIndex)}if((c in a||a[c]!==b)&&g&&!i){h&&(c==="type"&&n.test(a.nodeName)&&a.parentNode&&d.error("type property can't be changed"),e===null?a.nodeType===1&&a.removeAttribute(c):a[c]=e);if(d.nodeName(a,"form")&&a.getAttributeNode(c))return a.getAttributeNode(c).nodeValue;if(c==="tabIndex"){var k=a.getAttributeNode("tabIndex");return k&&k.specified?k.value:o.test(a.nodeName)||p.test(a.nodeName)&&a.href?0:b}return a[c]}if(!d.support.style&&g&&c==="style"){h&&(a.style.cssText=""+e);return a.style.cssText}h&&a.setAttribute(c,""+e);if(!a.attributes[c]&&(a.hasAttribute&&!a.hasAttribute(c)))return b;var l=!d.support.hrefNormalized&&g&&i?a.getAttribute(c,2):a.getAttribute(c);return l===null?b:l}h&&(a[c]=e);return a[c]}});var r=/\.(.*)$/,s=/^(?:textarea|input|select)$/i,t=/\./g,u=/ /g,v=/[^\w\s.|`]/g,w=function(a){return a.replace(v,"\\$&")};d.event={add:function(c,e,f,g){if(c.nodeType!==3&&c.nodeType!==8){try{d.isWindow(c)&&(c!==a&&!c.frameElement)&&(c=a)}catch(h){}if(f===!1)f=x;else if(!f)return;var i,j;f.handler&&(i=f,f=i.handler),f.guid||(f.guid=d.guid++);var k=d._data(c);if(!k)return;var l=k.events,m=k.handle;l||(k.events=l={}),m||(k.handle=m=function(a){return typeof d!=="undefined"&&d.event.triggered!==a.type?d.event.handle.apply(m.elem,arguments):b}),m.elem=c,e=e.split(" ");var n,o=0,p;while(n=e[o++]){j=i?d.extend({},i):{handler:f,data:g},n.indexOf(".")>-1?(p=n.split("."),n=p.shift(),j.namespace=p.slice(0).sort().join(".")):(p=[],j.namespace=""),j.type=n,j.guid||(j.guid=f.guid);var q=l[n],r=d.event.special[n]||{};if(!q){q=l[n]=[];if(!r.setup||r.setup.call(c,g,p,m)===!1)c.addEventListener?c.addEventListener(n,m,!1):c.attachEvent&&c.attachEvent("on"+n,m)}r.add&&(r.add.call(c,j),j.handler.guid||(j.handler.guid=f.guid)),q.push(j),d.event.global[n]=!0}c=null}},global:{},remove:function(a,c,e,f){if(a.nodeType!==3&&a.nodeType!==8){e===!1&&(e=x);var g,h,i,j,k=0,l,m,n,o,p,q,r,s=d.hasData(a)&&d._data(a),t=s&&s.events;if(!s||!t)return;c&&c.type&&(e=c.handler,c=c.type);if(!c||typeof c==="string"&&c.charAt(0)==="."){c=c||"";for(h in t)d.event.remove(a,h+c);return}c=c.split(" ");while(h=c[k++]){r=h,q=null,l=h.indexOf(".")<0,m=[],l||(m=h.split("."),h=m.shift(),n=new RegExp("(^|\\.)"+d.map(m.slice(0).sort(),w).join("\\.(?:.*\\.)?")+"(\\.|$)")),p=t[h];if(!p)continue;if(!e){for(j=0;j=0&&(a.type=f=f.slice(0,-1),a.exclusive=!0),e||(a.stopPropagation(),d.event.global[f]&&d.each(d.cache,function(){var b=d.expando,e=this[b];e&&e.events&&e.events[f]&&d.event.trigger(a,c,e.handle.elem)}));if(!e||e.nodeType===3||e.nodeType===8)return b;a.result=b,a.target=e,c=d.makeArray(c),c.unshift(a)}a.currentTarget=e;var h=d._data(e,"handle");h&&h.apply(e,c);var i=e.parentNode||e.ownerDocument;try{e&&e.nodeName&&d.noData[e.nodeName.toLowerCase()]||e["on"+f]&&e["on"+f].apply(e,c)===!1&&(a.result=!1,a.preventDefault())}catch(j){}if(!a.isPropagationStopped()&&i)d.event.trigger(a,c,i,!0);else if(!a.isDefaultPrevented()){var k,l=a.target,m=f.replace(r,""),n=d.nodeName(l,"a")&&m==="click",o=d.event.special[m]||{};if((!o._default||o._default.call(e,a)===!1)&&!n&&!(l&&l.nodeName&&d.noData[l.nodeName.toLowerCase()])){try{l[m]&&(k=l["on"+m],k&&(l["on"+m]=null),d.event.triggered=a.type,l[m]())}catch(p){}k&&(l["on"+m]=k),d.event.triggered=b}}},handle:function(c){var e,f,g,h,i,j=[],k=d.makeArray(arguments);c=k[0]=d.event.fix(c||a.event),c.currentTarget=this,e=c.type.indexOf(".")<0&&!c.exclusive,e||(g=c.type.split("."),c.type=g.shift(),j=g.slice(0).sort(),h=new RegExp("(^|\\.)"+j.join("\\.(?:.*\\.)?")+"(\\.|$)")),c.namespace=c.namespace||j.join("."),i=d._data(this,"events"),f=(i||{})[c.type];if(i&&f){f=f.slice(0);for(var l=0,m=f.length;l-1?d.map(a.options,function(a){return a.selected}).join("-"):"":a.nodeName.toLowerCase()==="select"&&(c=a.selectedIndex);return c},D=function D(a){var c=a.target,e,f;if(s.test(c.nodeName)&&!c.readOnly){e=d._data(c,"_change_data"),f=C(c),(a.type!=="focusout"||c.type!=="radio")&&d._data(c,"_change_data",f);if(e===b||f===e)return;if(e!=null||f)a.type="change",a.liveFired=b,d.event.trigger(a,arguments[1],c)}};d.event.special.change={filters:{focusout:D,beforedeactivate:D,click:function(a){var b=a.target,c=b.type;(c==="radio"||c==="checkbox"||b.nodeName.toLowerCase()==="select")&&D.call(this,a)},keydown:function(a){var b=a.target,c=b.type;(a.keyCode===13&&b.nodeName.toLowerCase()!=="textarea"||a.keyCode===32&&(c==="checkbox"||c==="radio")||c==="select-multiple")&&D.call(this,a)},beforeactivate:function(a){var b=a.target;d._data(b,"_change_data",C(b))}},setup:function(a,b){if(this.type==="file")return!1;for(var c in B)d.event.add(this,c+".specialChange",B[c]);return s.test(this.nodeName)},teardown:function(a){d.event.remove(this,".specialChange");return s.test(this.nodeName)}},B=d.event.special.change.filters,B.focus=B.beforeactivate}c.addEventListener&&d.each({focus:"focusin",blur:"focusout"},function(a,b){function f(a){var c=d.event.fix(a);c.type=b,c.originalEvent={},d.event.trigger(c,null,c.target),c.isDefaultPrevented()&&a.preventDefault()}var e=0;d.event.special[b]={setup:function(){e++===0&&c.addEventListener(a,f,!0)},teardown:function(){--e===0&&c.removeEventListener(a,f,!0)}}}),d.each(["bind","one"],function(a,c){d.fn[c]=function(a,e,f){if(typeof a==="object"){for(var g in a)this[c](g,e,a[g],f);return this}if(d.isFunction(e)||e===!1)f=e,e=b;var h=c==="one"?d.proxy(f,function(a){d(this).unbind(a,h);return f.apply(this,arguments)}):f;if(a==="unload"&&c!=="one")this.one(a,e,f);else for(var i=0,j=this.length;i0?this.bind(b,a,c):this.trigger(b)},d.attrFn&&(d.attrFn[b]=!0)}),function(){function u(a,b,c,d,e,f){for(var g=0,h=d.length;g0){j=i;break}}i=i[a]}d[g]=j}}}function t(a,b,c,d,e,f){for(var g=0,h=d.length;g+~,(\[\\]+)+|[>+~])(\s*,\s*)?((?:.|\r|\n)*)/g,e=0,f=Object.prototype.toString,g=!1,h=!0,i=/\\/g,j=/\W/;[0,0].sort(function(){h=!1;return 0});var k=function(b,d,e,g){e=e||[],d=d||c;var h=d;if(d.nodeType!==1&&d.nodeType!==9)return[];if(!b||typeof b!=="string")return e;var i,j,n,o,q,r,s,t,u=!0,w=k.isXML(d),x=[],y=b;do{a.exec(""),i=a.exec(y);if(i){y=i[3],x.push(i[1]);if(i[2]){o=i[3];break}}}while(i);if(x.length>1&&m.exec(b))if(x.length===2&&l.relative[x[0]])j=v(x[0]+x[1],d);else{j=l.relative[x[0]]?[d]:k(x.shift(),d);while(x.length)b=x.shift(),l.relative[b]&&(b+=x.shift()),j=v(b,j)}else{!g&&x.length>1&&d.nodeType===9&&!w&&l.match.ID.test(x[0])&&!l.match.ID.test(x[x.length-1])&&(q=k.find(x.shift(),d,w),d=q.expr?k.filter(q.expr,q.set)[0]:q.set[0]);if(d){q=g?{expr:x.pop(),set:p(g)}:k.find(x.pop(),x.length===1&&(x[0]==="~"||x[0]==="+")&&d.parentNode?d.parentNode:d,w),j=q.expr?k.filter(q.expr,q.set):q.set,x.length>0?n=p(j):u=!1;while(x.length)r=x.pop(),s=r,l.relative[r]?s=x.pop():r="",s==null&&(s=d),l.relative[r](n,s,w)}else n=x=[]}n||(n=j),n||k.error(r||b);if(f.call(n)==="[object Array]")if(u)if(d&&d.nodeType===1)for(t=0;n[t]!=null;t++)n[t]&&(n[t]===!0||n[t].nodeType===1&&k.contains(d,n[t]))&&e.push(j[t]);else for(t=0;n[t]!=null;t++)n[t]&&n[t].nodeType===1&&e.push(j[t]);else e.push.apply(e,n);else p(n,e);o&&(k(o,h,e,g),k.uniqueSort(e));return e};k.uniqueSort=function(a){if(r){g=h,a.sort(r);if(g)for(var b=1;b0},k.find=function(a,b,c){var d;if(!a)return[];for(var e=0,f=l.order.length;e":function(a,b){var c,d=typeof b==="string",e=0,f=a.length;if(d&&!j.test(b)){b=b.toLowerCase();for(;e=0)?c||d.push(h):c&&(b[g]=!1));return!1},ID:function(a){return a[1].replace(i,"")},TAG:function(a,b){return a[1].replace(i,"").toLowerCase()},CHILD:function(a){if(a[1]==="nth"){a[2]||k.error(a[0]),a[2]=a[2].replace(/^\+|\s*/g,"");var b=/(-?)(\d*)(?:n([+\-]?\d*))?/.exec(a[2]==="even"&&"2n"||a[2]==="odd"&&"2n+1"||!/\D/.test(a[2])&&"0n+"+a[2]||a[2]);a[2]=b[1]+(b[2]||1)-0,a[3]=b[3]-0}else a[2]&&k.error(a[0]);a[0]=e++;return a},ATTR:function(a,b,c,d,e,f){var g=a[1]=a[1].replace(i,"");!f&&l.attrMap[g]&&(a[1]=l.attrMap[g]),a[4]=(a[4]||a[5]||"").replace(i,""),a[2]==="~="&&(a[4]=" "+a[4]+" ");return a},PSEUDO:function(b,c,d,e,f){if(b[1]==="not")if((a.exec(b[3])||"").length>1||/^\w/.test(b[3]))b[3]=k(b[3],null,null,c);else{var g=k.filter(b[3],c,d,!0^f);d||e.push.apply(e,g);return!1}else if(l.match.POS.test(b[0])||l.match.CHILD.test(b[0]))return!0;return b},POS:function(a){a.unshift(!0);return a}},filters:{enabled:function(a){return a.disabled===!1&&a.type!=="hidden"},disabled:function(a){return a.disabled===!0},checked:function(a){return a.checked===!0},selected:function(a){a.parentNode&&a.parentNode.selectedIndex;return a.selected===!0},parent:function(a){return!!a.firstChild},empty:function(a){return!a.firstChild},has:function(a,b,c){return!!k(c[3],a).length},header:function(a){return/h\d/i.test(a.nodeName)},text:function(a){var b=a.getAttribute("type"),c=a.type;return"text"===c&&(b===c||b===null)},radio:function(a){return"radio"===a.type},checkbox:function(a){return"checkbox"===a.type},file:function(a){return"file"===a.type},password:function(a){return"password"===a.type},submit:function(a){return"submit"===a.type},image:function(a){return"image"===a.type},reset:function(a){return"reset"===a.type},button:function(a){return"button"===a.type||a.nodeName.toLowerCase()==="button"},input:function(a){return/input|select|textarea|button/i.test(a.nodeName)}},setFilters:{first:function(a,b){return b===0},last:function(a,b,c,d){return b===d.length-1},even:function(a,b){return b%2===0},odd:function(a,b){return b%2===1},lt:function(a,b,c){return bc[3]-0},nth:function(a,b,c){return c[3]-0===b},eq:function(a,b,c){return c[3]-0===b}},filter:{PSEUDO:function(a,b,c,d){var e=b[1],f=l.filters[e];if(f)return f(a,c,b,d);if(e==="contains")return(a.textContent||a.innerText||k.getText([a])||"").indexOf(b[3])>=0;if(e==="not"){var g=b[3];for(var h=0,i=g.length;h=0}},ID:function(a,b){return a.nodeType===1&&a.getAttribute("id")===b},TAG:function(a,b){return b==="*"&&a.nodeType===1||a.nodeName.toLowerCase()===b},CLASS:function(a,b){return(" "+(a.className||a.getAttribute("class"))+" ").indexOf(b)>-1},ATTR:function(a,b){var c=b[1],d=l.attrHandle[c]?l.attrHandle[c](a):a[c]!=null?a[c]:a.getAttribute(c),e=d+"",f=b[2],g=b[4];return d==null?f==="!=":f==="="?e===g:f==="*="?e.indexOf(g)>=0:f==="~="?(" "+e+" ").indexOf(g)>=0:g?f==="!="?e!==g:f==="^="?e.indexOf(g)===0:f==="$="?e.substr(e.length-g.length)===g:f==="|="?e===g||e.substr(0,g.length+1)===g+"-":!1:e&&d!==!1},POS:function(a,b,c,d){var e=b[2],f=l.setFilters[e];if(f)return f(a,c,b,d)}}},m=l.match.POS,n=function(a,b){return"\\"+(b-0+1)};for(var o in l.match)l.match[o]=new RegExp(l.match[o].source+/(?![^\[]*\])(?![^\(]*\))/.source),l.leftMatch[o]=new RegExp(/(^(?:.|\r|\n)*?)/.source+l.match[o].source.replace(/\\(\d+)/g,n));var p=function(a,b){a=Array.prototype.slice.call(a,0);if(b){b.push.apply(b,a);return b}return a};try{Array.prototype.slice.call(c.documentElement.childNodes,0)[0].nodeType}catch(q){p=function(a,b){var c=0,d=b||[];if(f.call(a)==="[object Array]")Array.prototype.push.apply(d,a);else if(typeof a.length==="number")for(var e=a.length;c",e.insertBefore(a,e.firstChild),c.getElementById(d)&&(l.find.ID=function(a,c,d){if(typeof c.getElementById!=="undefined"&&!d){var e=c.getElementById(a[1]);return e?e.id===a[1]||typeof e.getAttributeNode!=="undefined"&&e.getAttributeNode("id").nodeValue===a[1]?[e]:b:[]}},l.filter.ID=function(a,b){var c=typeof a.getAttributeNode!=="undefined"&&a.getAttributeNode("id");return a.nodeType===1&&c&&c.nodeValue===b}),e.removeChild(a),e=a=null}(),function(){var a=c.createElement("div");a.appendChild(c.createComment("")),a.getElementsByTagName("*").length>0&&(l.find.TAG=function(a,b){var c=b.getElementsByTagName(a[1]);if(a[1]==="*"){var d=[];for(var e=0;c[e];e++)c[e].nodeType===1&&d.push(c[e]);c=d}return c}),a.innerHTML="",a.firstChild&&typeof a.firstChild.getAttribute!=="undefined"&&a.firstChild.getAttribute("href")!=="#"&&(l.attrHandle.href=function(a){return a.getAttribute("href",2)}),a=null}(),c.querySelectorAll&&function(){var a=k,b=c.createElement("div"),d="__sizzle__";b.innerHTML="

    ";if(!b.querySelectorAll||b.querySelectorAll(".TEST").length!==0){k=function(b,e,f,g){e=e||c;if(!g&&!k.isXML(e)){var h=/^(\w+$)|^\.([\w\-]+$)|^#([\w\-]+$)/.exec(b);if(h&&(e.nodeType===1||e.nodeType===9)){if(h[1])return p(e.getElementsByTagName(b),f);if(h[2]&&l.find.CLASS&&e.getElementsByClassName)return p(e.getElementsByClassName(h[2]),f)}if(e.nodeType===9){if(b==="body"&&e.body)return p([e.body],f);if(h&&h[3]){var i=e.getElementById(h[3]);if(!i||!i.parentNode)return p([],f);if(i.id===h[3])return p([i],f)}try{return p(e.querySelectorAll(b),f)}catch(j){}}else if(e.nodeType===1&&e.nodeName.toLowerCase()!=="object"){var m=e,n=e.getAttribute("id"),o=n||d,q=e.parentNode,r=/^\s*[+~]/.test(b);n?o=o.replace(/'/g,"\\$&"):e.setAttribute("id",o),r&&q&&(e=e.parentNode);try{if(!r||q)return p(e.querySelectorAll("[id='"+o+"'] "+b),f)}catch(s){}finally{n||m.removeAttribute("id")}}}return a(b,e,f,g)};for(var e in a)k[e]=a[e];b=null}}(),function(){var a=c.documentElement,b=a.matchesSelector||a.mozMatchesSelector||a.webkitMatchesSelector||a.msMatchesSelector;if(b){var d=!b.call(c.createElement("div"),"div"),e=!1;try{b.call(c.documentElement,"[test!='']:sizzle")}catch(f){e=!0}k.matchesSelector=function(a,c){c=c.replace(/\=\s*([^'"\]]*)\s*\]/g,"='$1']");if(!k.isXML(a))try{if(e||!l.match.PSEUDO.test(c)&&!/!=/.test(c)){var f=b.call(a,c);if(f||!d||a.document&&a.document.nodeType!==11)return f}}catch(g){}return k(c,null,null,[a]).length>0}}}(),function(){var a=c.createElement("div");a.innerHTML="
    ";if(a.getElementsByClassName&&a.getElementsByClassName("e").length!==0){a.lastChild.className="e";if(a.getElementsByClassName("e").length===1)return;l.order.splice(1,0,"CLASS"),l.find.CLASS=function(a,b,c){if(typeof b.getElementsByClassName!=="undefined"&&!c)return b.getElementsByClassName(a[1])},a=null}}(),c.documentElement.contains?k.contains=function(a,b){return a!==b&&(a.contains?a.contains(b):!0)}:c.documentElement.compareDocumentPosition?k.contains=function(a,b){return!!(a.compareDocumentPosition(b)&16)}:k.contains=function(){return!1},k.isXML=function(a){var b=(a?a.ownerDocument||a:0).documentElement;return b?b.nodeName!=="HTML":!1};var v=function(a,b){var c,d=[],e="",f=b.nodeType?[b]:b;while(c=l.match.PSEUDO.exec(a))e+=c[0],a=a.replace(l.match.PSEUDO,"");a=l.relative[a]?a+"*":a;for(var g=0,h=f.length;g0)for(var g=c;g0},closest:function(a,b){var c=[],e,f,g=this[0];if(d.isArray(a)){var h,i,j={},k=1;if(g&&a.length){for(e=0,f=a.length;e-1:d(g).is(h))&&c.push({selector:i,elem:g,level:k});g=g.parentNode,k++}}return c}var l=N.test(a)?d(a,b||this.context):null;for(e=0,f=this.length;e-1:d.find.matchesSelector(g,a)){c.push(g);break}g=g.parentNode;if(!g||!g.ownerDocument||g===b)break}}c=c.length>1?d.unique(c):c;return this.pushStack(c,"closest",a)},index:function(a){if(!a||typeof a==="string")return d.inArray(this[0],a?d(a):this.parent().children());return d.inArray(a.jquery?a[0]:a,this)},add:function(a,b){var c=typeof a==="string"?d(a,b):d.makeArray(a),e=d.merge(this.get(),c);return this.pushStack(P(c[0])||P(e[0])?e:d.unique(e))},andSelf:function(){return this.add(this.prevObject)}}),d.each({parent:function(a){var b=a.parentNode;return b&&b.nodeType!==11?b:null},parents:function(a){return d.dir(a,"parentNode")},parentsUntil:function(a,b,c){return d.dir(a,"parentNode",c)},next:function(a){return d.nth(a,2,"nextSibling")},prev:function(a){return d.nth(a,2,"previousSibling")},nextAll:function(a){return d.dir(a,"nextSibling")},prevAll:function(a){return d.dir(a,"previousSibling")},nextUntil:function(a,b,c){return d.dir(a,"nextSibling",c)},prevUntil:function(a,b,c){return d.dir(a,"previousSibling",c)},siblings:function(a){return d.sibling(a.parentNode.firstChild,a)},children:function(a){return d.sibling(a.firstChild)},contents:function(a){return d.nodeName(a,"iframe")?a.contentDocument||a.contentWindow.document:d.makeArray(a.childNodes)}},function(a,b){d.fn[a]=function(c,e){var f=d.map(this,b,c),g=M.call(arguments);I.test(a)||(e=c),e&&typeof e==="string"&&(f=d.filter(e,f)),f=this.length>1&&!O[a]?d.unique(f):f,(this.length>1||K.test(e))&&J.test(a)&&(f=f.reverse());return this.pushStack(f,a,g.join(","))}}),d.extend({filter:function(a,b,c){c&&(a=":not("+a+")");return b.length===1?d.find.matchesSelector(b[0],a)?[b[0]]:[]:d.find.matches(a,b)},dir:function(a,c,e){var f=[],g=a[c];while(g&&g.nodeType!==9&&(e===b||g.nodeType!==1||!d(g).is(e)))g.nodeType===1&&f.push(g),g=g[c];return f},nth:function(a,b,c,d){b=b||1;var e=0;for(;a;a=a[c])if(a.nodeType===1&&++e===b)break;return a},sibling:function(a,b){var c=[];for(;a;a=a.nextSibling)a.nodeType===1&&a!==b&&c.push(a);return c}});var R=/ jQuery\d+="(?:\d+|null)"/g,S=/^\s+/,T=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/ig,U=/<([\w:]+)/,V=/
    ","
    "],tr:[2,"","
    "],td:[3,"","
    "],col:[2,"","
    "],area:[1,"",""],_default:[0,"",""]};Z.optgroup=Z.option,Z.tbody=Z.tfoot=Z.colgroup=Z.caption=Z.thead,Z.th=Z.td,d.support.htmlSerialize||(Z._default=[1,"div
    ","
    "]),d.fn.extend({text:function(a){if(d.isFunction(a))return this.each(function(b){var c=d(this);c.text(a.call(this,b,c.text()))});if(typeof a!=="object"&&a!==b)return this.empty().append((this[0]&&this[0].ownerDocument||c).createTextNode(a));return d.text(this)},wrapAll:function(a){if(d.isFunction(a))return this.each(function(b){d(this).wrapAll(a.call(this,b))});if(this[0]){var b=d(a,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstChild&&a.firstChild.nodeType===1)a=a.firstChild;return a}).append(this)}return this},wrapInner:function(a){if(d.isFunction(a))return this.each(function(b){d(this).wrapInner(a.call(this,b))});return this.each(function(){var b=d(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){return this.each(function(){d(this).wrapAll(a)})},unwrap:function(){return this.parent().each(function(){d.nodeName(this,"body")||d(this).replaceWith(this.childNodes)}).end()},append:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.appendChild(a)})},prepend:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.insertBefore(a,this.firstChild)})},before:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this)});if(arguments.length){var a=d(arguments[0]);a.push.apply(a,this.toArray());return this.pushStack(a,"before",arguments)}},after:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this.nextSibling)});if(arguments.length){var a=this.pushStack(this,"after",arguments);a.push.apply(a,d(arguments[0]).toArray());return a}},remove:function(a,b){for(var c=0,e;(e=this[c])!=null;c++)if(!a||d.filter(a,[e]).length)!b&&e.nodeType===1&&(d.cleanData(e.getElementsByTagName("*")),d.cleanData([e])),e.parentNode&&e.parentNode.removeChild(e);return this},empty:function(){for(var a=0,b;(b=this[a])!=null;a++){b.nodeType===1&&d.cleanData(b.getElementsByTagName("*"));while(b.firstChild)b.removeChild(b.firstChild)}return this},clone:function(a,b){a=a==null?!1:a,b=b==null?a:b;return this.map(function(){return d.clone(this,a,b)})},html:function(a){if(a===b)return this[0]&&this[0].nodeType===1?this[0].innerHTML.replace(R,""):null;if(typeof a!=="string"||X.test(a)||!d.support.leadingWhitespace&&S.test(a)||Z[(U.exec(a)||["",""])[1].toLowerCase()])d.isFunction(a)?this.each(function(b){var c=d(this);c.html(a.call(this,b,c.html()))}):this.empty().append(a);else{a=a.replace(T,"<$1>");try{for(var c=0,e=this.length;c1&&l0?this.clone(!0):this).get();d(f[h])[b](j),e=e.concat(j)}return this.pushStack(e,a,f.selector)}}),d.extend({clone:function(a,b,c){var e=a.cloneNode(!0),f,g,h;if((!d.support.noCloneEvent||!d.support.noCloneChecked)&&(a.nodeType===1||a.nodeType===11)&&!d.isXMLDoc(a)){ba(a,e),f=bb(a),g=bb(e);for(h=0;f[h];++h)ba(f[h],g[h])}if(b){_(a,e);if(c){f=bb(a),g=bb(e);for(h=0;f[h];++h)_(f[h],g[h])}}return e},clean:function(a,b,e,f){b=b||c,typeof b.createElement==="undefined"&&(b=b.ownerDocument||b[0]&&b[0].ownerDocument||c);var g=[];for(var h=0,i;(i=a[h])!=null;h++){typeof i==="number"&&(i+="");if(!i)continue;if(typeof i!=="string"||W.test(i)){if(typeof i==="string"){i=i.replace(T,"<$1>");var j=(U.exec(i)||["",""])[1].toLowerCase(),k=Z[j]||Z._default,l=k[0],m=b.createElement("div");m.innerHTML=k[1]+i+k[2];while(l--)m=m.lastChild;if(!d.support.tbody){var n=V.test(i),o=j==="table"&&!n?m.firstChild&&m.firstChild.childNodes:k[1]===""&&!n?m.childNodes:[];for(var p=o.length-1;p>=0;--p)d.nodeName(o[p],"tbody")&&!o[p].childNodes.length&&o[p].parentNode.removeChild(o[p])}!d.support.leadingWhitespace&&S.test(i)&&m.insertBefore(b.createTextNode(S.exec(i)[0]),m.firstChild),i=m.childNodes}}else i=b.createTextNode(i);i.nodeType?g.push(i):g=d.merge(g,i)}if(e)for(h=0;g[h];h++)!f||!d.nodeName(g[h],"script")||g[h].type&&g[h].type.toLowerCase()!=="text/javascript"?(g[h].nodeType===1&&g.splice.apply(g,[h+1,0].concat(d.makeArray(g[h].getElementsByTagName("script")))),e.appendChild(g[h])):f.push(g[h].parentNode?g[h].parentNode.removeChild(g[h]):g[h]);return g},cleanData:function(a){var b,c,e=d.cache,f=d.expando,g=d.event.special,h=d.support.deleteExpando;for(var i=0,j;(j=a[i])!=null;i++){if(j.nodeName&&d.noData[j.nodeName.toLowerCase()])continue;c=j[d.expando];if(c){b=e[c]&&e[c][f];if(b&&b.events){for(var k in b.events)g[k]?d.event.remove(j,k):d.removeEvent(j,k,b.handle);b.handle&&(b.handle.elem=null)}h?delete j[d.expando]:j.removeAttribute&&j.removeAttribute(d.expando),delete e[c]}}}});var bd=/alpha\([^)]*\)/i,be=/opacity=([^)]*)/,bf=/-([a-z])/ig,bg=/([A-Z]|^ms)/g,bh=/^-?\d+(?:px)?$/i,bi=/^-?\d/,bj={position:"absolute",visibility:"hidden",display:"block"},bk=["Left","Right"],bl=["Top","Bottom"],bm,bn,bo,bp=function(a,b){return b.toUpperCase()};d.fn.css=function(a,c){if(arguments.length===2&&c===b)return this;return d.access(this,a,c,!0,function(a,c,e){return e!==b?d.style(a,c,e):d.css(a,c)})},d.extend({cssHooks:{opacity:{get:function(a,b){if(b){var c=bm(a,"opacity","opacity");return c===""?"1":c}return a.style.opacity}}},cssNumber:{zIndex:!0,fontWeight:!0,opacity:!0,zoom:!0,lineHeight:!0},cssProps:{"float":d.support.cssFloat?"cssFloat":"styleFloat"},style:function(a,c,e,f){if(a&&a.nodeType!==3&&a.nodeType!==8&&a.style){var g,h=d.camelCase(c),i=a.style,j=d.cssHooks[h];c=d.cssProps[h]||h;if(e===b){if(j&&"get"in j&&(g=j.get(a,!1,f))!==b)return g;return i[c]}if(typeof e==="number"&&isNaN(e)||e==null)return;typeof e==="number"&&!d.cssNumber[h]&&(e+="px");if(!j||!("set"in j)||(e=j.set(a,e))!==b)try{i[c]=e}catch(k){}}},css:function(a,c,e){var f,g=d.camelCase(c),h=d.cssHooks[g];c=d.cssProps[g]||g;if(h&&"get"in h&&(f=h.get(a,!0,e))!==b)return f;if(bm)return bm(a,c,g)},swap:function(a,b,c){var d={};for(var e in b)d[e]=a.style[e],a.style[e]=b[e];c.call(a);for(e in b)a.style[e]=d[e]},camelCase:function(a){return a.replace(bf,bp)}}),d.curCSS=d.css,d.each(["height","width"],function(a,b){d.cssHooks[b]={get:function(a,c,e){var f;if(c){a.offsetWidth!==0?f=bq(a,b,e):d.swap(a,bj,function(){f=bq(a,b,e)});if(f<=0){f=bm(a,b,b),f==="0px"&&bo&&(f=bo(a,b,b));if(f!=null)return f===""||f==="auto"?"0px":f}if(f<0||f==null){f=a.style[b];return f===""||f==="auto"?"0px":f}return typeof f==="string"?f:f+"px"}},set:function(a,b){if(!bh.test(b))return b;b=parseFloat(b);if(b>=0)return b+"px"}}}),d.support.opacity||(d.cssHooks.opacity={get:function(a,b){return be.test((b&&a.currentStyle?a.currentStyle.filter:a.style.filter)||"")?parseFloat(RegExp.$1)/100+"":b?"1":""},set:function(a,b){var c=a.style;c.zoom=1;var e=d.isNaN(b)?"":"alpha(opacity="+b*100+")",f=c.filter||"";c.filter=bd.test(f)?f.replace(bd,e):c.filter+" "+e}}),d(function(){d.support.reliableMarginRight||(d.cssHooks.marginRight={get:function(a,b){var c;d.swap(a,{display:"inline-block"},function(){b?c=bm(a,"margin-right","marginRight"):c=a.style.marginRight});return c}})}),c.defaultView&&c.defaultView.getComputedStyle&&(bn=function(a,c,e){var f,g,h;e=e.replace(bg,"-$1").toLowerCase();if(!(g=a.ownerDocument.defaultView))return b;if(h=g.getComputedStyle(a,null))f=h.getPropertyValue(e),f===""&&!d.contains(a.ownerDocument.documentElement,a)&&(f=d.style(a,e));return f}),c.documentElement.currentStyle&&(bo=function(a,b){var c,d=a.currentStyle&&a.currentStyle[b],e=a.runtimeStyle&&a.runtimeStyle[b],f=a.style;!bh.test(d)&&bi.test(d)&&(c=f.left,e&&(a.runtimeStyle.left=a.currentStyle.left),f.left=b==="fontSize"?"1em":d||0,d=f.pixelLeft+"px",f.left=c,e&&(a.runtimeStyle.left=e));return d===""?"auto":d}),bm=bn||bo,d.expr&&d.expr.filters&&(d.expr.filters.hidden=function(a){var b=a.offsetWidth,c=a.offsetHeight;return b===0&&c===0||!d.support.reliableHiddenOffsets&&(a.style.display||d.css(a,"display"))==="none"},d.expr.filters.visible=function(a){return!d.expr.filters.hidden(a)});var br=/%20/g,bs=/\[\]$/,bt=/\r?\n/g,bu=/#.*$/,bv=/^(.*?):[ \t]*([^\r\n]*)\r?$/mg,bw=/^(?:color|date|datetime|email|hidden|month|number|password|range|search|tel|text|time|url|week)$/i,bx=/^(?:about|app|app\-storage|.+\-extension|file|widget):$/,by=/^(?:GET|HEAD)$/,bz=/^\/\//,bA=/\?/,bB=/)<[^<]*)*<\/script>/gi,bC=/^(?:select|textarea)/i,bD=/\s+/,bE=/([?&])_=[^&]*/,bF=/(^|\-)([a-z])/g,bG=function(a,b,c){return b+c.toUpperCase()},bH=/^([\w\+\.\-]+:)(?:\/\/([^\/?#:]*)(?::(\d+))?)?/,bI=d.fn.load,bJ={},bK={},bL,bM;try{bL=c.location.href}catch(bN){bL=c.createElement("a"),bL.href="",bL=bL.href}bM=bH.exec(bL.toLowerCase())||[],d.fn.extend({load:function(a,c,e){if(typeof a!=="string"&&bI)return bI.apply(this,arguments);if(!this.length)return this;var f=a.indexOf(" ");if(f>=0){var g=a.slice(f,a.length);a=a.slice(0,f)}var h="GET";c&&(d.isFunction(c)?(e=c,c=b):typeof c==="object"&&(c=d.param(c,d.ajaxSettings.traditional),h="POST"));var i=this;d.ajax({url:a,type:h,dataType:"html",data:c,complete:function(a,b,c){c=a.responseText,a.isResolved()&&(a.done(function(a){c=a}),i.html(g?d("
    ").append(c.replace(bB,"")).find(g):c)),e&&i.each(e,[c,b,a])}});return this},serialize:function(){return d.param(this.serializeArray())},serializeArray:function(){return this.map(function(){return this.elements?d.makeArray(this.elements):this}).filter(function(){return this.name&&!this.disabled&&(this.checked||bC.test(this.nodeName)||bw.test(this.type))}).map(function(a,b){var c=d(this).val();return c==null?null:d.isArray(c)?d.map(c,function(a,c){return{name:b.name,value:a.replace(bt,"\r\n")}}):{name:b.name,value:c.replace(bt,"\r\n")}}).get()}}),d.each("ajaxStart ajaxStop ajaxComplete ajaxError ajaxSuccess ajaxSend".split(" "),function(a,b){d.fn[b]=function(a){return this.bind(b,a)}}),d.each(["get","post"],function(a,c){d[c]=function(a,e,f,g){d.isFunction(e)&&(g=g||f,f=e,e=b);return d.ajax({type:c,url:a,data:e,success:f,dataType:g})}}),d.extend({getScript:function(a,c){return d.get(a,b,c,"script")},getJSON:function(a,b,c){return d.get(a,b,c,"json")},ajaxSetup:function(a,b){b?d.extend(!0,a,d.ajaxSettings,b):(b=a,a=d.extend(!0,d.ajaxSettings,b));for(var c in {context:1,url:1})c in b?a[c]=b[c]:c in d.ajaxSettings&&(a[c]=d.ajaxSettings[c]);return a},ajaxSettings:{url:bL,isLocal:bx.test(bM[1]),global:!0,type:"GET",contentType:"application/x-www-form-urlencoded",processData:!0,async:!0,accepts:{xml:"application/xml, text/xml",html:"text/html",text:"text/plain",json:"application/json, text/javascript","*":"*/*"},contents:{xml:/xml/,html:/html/,json:/json/},responseFields:{xml:"responseXML",text:"responseText"},converters:{"* text":a.String,"text html":!0,"text json":d.parseJSON,"text xml":d.parseXML}},ajaxPrefilter:bO(bJ),ajaxTransport:bO(bK),ajax:function(a,c){function v(a,c,l,n){if(r!==2){r=2,p&&clearTimeout(p),o=b,m=n||"",u.readyState=a?4:0;var q,t,v,w=l?bR(e,u,l):b,x,y;if(a>=200&&a<300||a===304){if(e.ifModified){if(x=u.getResponseHeader("Last-Modified"))d.lastModified[k]=x;if(y=u.getResponseHeader("Etag"))d.etag[k]=y}if(a===304)c="notmodified",q=!0;else try{t=bS(e,w),c="success",q=!0}catch(z){c="parsererror",v=z}}else{v=c;if(!c||a)c="error",a<0&&(a=0)}u.status=a,u.statusText=c,q?h.resolveWith(f,[t,c,u]):h.rejectWith(f,[u,c,v]),u.statusCode(j),j=b,s&&g.trigger("ajax"+(q?"Success":"Error"),[u,e,q?t:v]),i.resolveWith(f,[u,c]),s&&(g.trigger("ajaxComplete",[u,e]),--d.active||d.event.trigger("ajaxStop"))}}typeof a==="object"&&(c=a,a=b),c=c||{};var e=d.ajaxSetup({},c),f=e.context||e,g=f!==e&&(f.nodeType||f instanceof d)?d(f):d.event,h=d.Deferred(),i=d._Deferred(),j=e.statusCode||{},k,l={},m,n,o,p,q,r=0,s,t,u={readyState:0,setRequestHeader:function(a,b){r||(l[a.toLowerCase().replace(bF,bG)]=b);return this},getAllResponseHeaders:function(){return r===2?m:null},getResponseHeader:function(a){var c;if(r===2){if(!n){n={};while(c=bv.exec(m))n[c[1].toLowerCase()]=c[2]}c=n[a.toLowerCase()]}return c===b?null:c},overrideMimeType:function(a){r||(e.mimeType=a);return this},abort:function(a){a=a||"abort",o&&o.abort(a),v(0,a);return this}};h.promise(u),u.success=u.done,u.error=u.fail,u.complete=i.done,u.statusCode=function(a){if(a){var b;if(r<2)for(b in a)j[b]=[j[b],a[b]];else b=a[u.status],u.then(b,b)}return this},e.url=((a||e.url)+"").replace(bu,"").replace(bz,bM[1]+"//"),e.dataTypes=d.trim(e.dataType||"*").toLowerCase().split(bD),e.crossDomain==null&&(q=bH.exec(e.url.toLowerCase()),e.crossDomain=q&&(q[1]!=bM[1]||q[2]!=bM[2]||(q[3]||(q[1]==="http:"?80:443))!=(bM[3]||(bM[1]==="http:"?80:443)))),e.data&&e.processData&&typeof e.data!=="string"&&(e.data=d.param(e.data,e.traditional)),bP(bJ,e,c,u);if(r===2)return!1;s=e.global,e.type=e.type.toUpperCase(),e.hasContent=!by.test(e.type),s&&d.active++===0&&d.event.trigger("ajaxStart");if(!e.hasContent){e.data&&(e.url+=(bA.test(e.url)?"&":"?")+e.data),k=e.url;if(e.cache===!1){var w=d.now(),x=e.url.replace(bE,"$1_="+w);e.url=x+(x===e.url?(bA.test(e.url)?"&":"?")+"_="+w:"")}}if(e.data&&e.hasContent&&e.contentType!==!1||c.contentType)l["Content-Type"]=e.contentType;e.ifModified&&(k=k||e.url,d.lastModified[k]&&(l["If-Modified-Since"]=d.lastModified[k]),d.etag[k]&&(l["If-None-Match"]=d.etag[k])),l.Accept=e.dataTypes[0]&&e.accepts[e.dataTypes[0]]?e.accepts[e.dataTypes[0]]+(e.dataTypes[0]!=="*"?", */*; q=0.01":""):e.accepts["*"];for(t in e.headers)u.setRequestHeader(t,e.headers[t]);if(e.beforeSend&&(e.beforeSend.call(f,u,e)===!1||r===2)){u.abort();return!1}for(t in {success:1,error:1,complete:1})u[t](e[t]);o=bP(bK,e,c,u);if(o){u.readyState=1,s&&g.trigger("ajaxSend",[u,e]),e.async&&e.timeout>0&&(p=setTimeout(function(){u.abort("timeout")},e.timeout));try{r=1,o.send(l,v)}catch(y){status<2?v(-1,y):d.error(y)}}else v(-1,"No Transport");return u},param:function(a,c){var e=[],f=function(a,b){b=d.isFunction(b)?b():b,e[e.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};c===b&&(c=d.ajaxSettings.traditional);if(d.isArray(a)||a.jquery&&!d.isPlainObject(a))d.each(a,function(){f(this.name,this.value)});else for(var g in a)bQ(g,a[g],c,f);return e.join("&").replace(br,"+")}}),d.extend({active:0,lastModified:{},etag:{}});var bT=d.now(),bU=/(\=)\?(&|$)|\?\?/i;d.ajaxSetup({jsonp:"callback",jsonpCallback:function(){return d.expando+"_"+bT++}}),d.ajaxPrefilter("json jsonp",function(b,c,e){var f=typeof b.data==="string";if(b.dataTypes[0]==="jsonp"||c.jsonpCallback||c.jsonp!=null||b.jsonp!==!1&&(bU.test(b.url)||f&&bU.test(b.data))){var g,h=b.jsonpCallback=d.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,i=a[h],j=b.url,k=b.data,l="$1"+h+"$2",m=function(){a[h]=i,g&&d.isFunction(i)&&a[h](g[0])};b.jsonp!==!1&&(j=j.replace(bU,l),b.url===j&&(f&&(k=k.replace(bU,l)),b.data===k&&(j+=(/\?/.test(j)?"&":"?")+b.jsonp+"="+h))),b.url=j,b.data=k,a[h]=function(a){g=[a]},e.then(m,m),b.converters["script json"]=function(){g||d.error(h+" was not called");return g[0]},b.dataTypes[0]="json";return"script"}}),d.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/javascript|ecmascript/},converters:{"text script":function(a){d.globalEval(a);return a}}}),d.ajaxPrefilter("script",function(a){a.cache===b&&(a.cache=!1),a.crossDomain&&(a.type="GET",a.global=!1)}),d.ajaxTransport("script",function(a){if(a.crossDomain){var d,e=c.head||c.getElementsByTagName("head")[0]||c.documentElement;return{send:function(f,g){d=c.createElement("script"),d.async="async",a.scriptCharset&&(d.charset=a.scriptCharset),d.src=a.url,d.onload=d.onreadystatechange=function(a,c){if(!d.readyState||/loaded|complete/.test(d.readyState))d.onload=d.onreadystatechange=null,e&&d.parentNode&&e.removeChild(d),d=b,c||g(200,"success")},e.insertBefore(d,e.firstChild)},abort:function(){d&&d.onload(0,1)}}}});var bV=d.now(),bW,bX;d.ajaxSettings.xhr=a.ActiveXObject?function(){return!this.isLocal&&bZ()||b$()}:bZ,bX=d.ajaxSettings.xhr(),d.support.ajax=!!bX,d.support.cors=bX&&"withCredentials"in bX,bX=b,d.support.ajax&&d.ajaxTransport(function(a){if(!a.crossDomain||d.support.cors){var c;return{send:function(e,f){var g=a.xhr(),h,i;a.username?g.open(a.type,a.url,a.async,a.username,a.password):g.open(a.type,a.url,a.async);if(a.xhrFields)for(i in a.xhrFields)g[i]=a.xhrFields[i];a.mimeType&&g.overrideMimeType&&g.overrideMimeType(a.mimeType),!a.crossDomain&&!e["X-Requested-With"]&&(e["X-Requested-With"]="XMLHttpRequest");try{for(i in e)g.setRequestHeader(i,e[i])}catch(j){}g.send(a.hasContent&&a.data||null),c=function(e,i){var j,k,l,m,n;try{if(c&&(i||g.readyState===4)){c=b,h&&(g.onreadystatechange=d.noop,delete bW[h]);if(i)g.readyState!==4&&g.abort();else{j=g.status,l=g.getAllResponseHeaders(),m={},n=g.responseXML,n&&n.documentElement&&(m.xml=n),m.text=g.responseText;try{k=g.statusText}catch(o){k=""}j||!a.isLocal||a.crossDomain?j===1223&&(j=204):j=m.text?200:404}}}catch(p){i||f(-1,p)}m&&f(j,k,m,l)},a.async&&g.readyState!==4?(bW||(bW={},bY()),h=bV++,g.onreadystatechange=bW[h]=c):c()},abort:function(){c&&c(0,1)}}}});var b_={},ca=/^(?:toggle|show|hide)$/,cb=/^([+\-]=)?([\d+.\-]+)([a-z%]*)$/i,cc,cd=[["height","marginTop","marginBottom","paddingTop","paddingBottom"],["width","marginLeft","marginRight","paddingLeft","paddingRight"],["opacity"]];d.fn.extend({show:function(a,b,c){var e,f;if(a||a===0)return this.animate(ce("show",3),a,b,c);for(var g=0,h=this.length;g=0;a--)c[a].elem===this&&(b&&c[a](!0),c.splice(a,1))}),b||this.dequeue();return this}}),d.each({slideDown:ce("show",1),slideUp:ce("hide",1),slideToggle:ce("toggle",1),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){d.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),d.extend({speed:function(a,b,c){var e=a&&typeof a==="object"?d.extend({},a):{complete:c||!c&&b||d.isFunction(a)&&a,duration:a,easing:c&&b||b&&!d.isFunction(b)&&b};e.duration=d.fx.off?0:typeof e.duration==="number"?e.duration:e.duration in d.fx.speeds?d.fx.speeds[e.duration]:d.fx.speeds._default,e.old=e.complete,e.complete=function(){e.queue!==!1&&d(this).dequeue(),d.isFunction(e.old)&&e.old.call(this)};return e},easing:{linear:function(a,b,c,d){return c+d*a},swing:function(a,b,c,d){return(-Math.cos(a*Math.PI)/2+.5)*d+c}},timers:[],fx:function(a,b,c){this.options=b,this.elem=a,this.prop=c,b.orig||(b.orig={})}}),d.fx.prototype={update:function(){this.options.step&&this.options.step.call(this.elem,this.now,this),(d.fx.step[this.prop]||d.fx.step._default)(this)},cur:function(){if(this.elem[this.prop]!=null&&(!this.elem.style||this.elem.style[this.prop]==null))return this.elem[this.prop];var a,b=d.css(this.elem,this.prop);return isNaN(a=parseFloat(b))?!b||b==="auto"?0:b:a},custom:function(a,b,c){function g(a){return e.step(a)}var e=this,f=d.fx;this.startTime=d.now(),this.start=a,this.end=b,this.unit=c||this.unit||(d.cssNumber[this.prop]?"":"px"),this.now=this.start,this.pos=this.state=0,g.elem=this.elem,g()&&d.timers.push(g)&&!cc&&(cc=setInterval(f.tick,f.interval))},show:function(){this.options.orig[this.prop]=d.style(this.elem,this.prop),this.options.show=!0,this.custom(this.prop==="width"||this.prop==="height"?1:0,this.cur()),d(this.elem).show()},hide:function(){this.options.orig[this.prop]=d.style(this.elem,this.prop),this.options.hide=!0,this.custom(this.cur(),0)},step:function(a){var b=d.now(),c=!0;if(a||b>=this.options.duration+this.startTime){this.now=this.end,this.pos=this.state=1,this.update(),this.options.curAnim[this.prop]=!0;for(var e in this.options.curAnim)this.options.curAnim[e]!==!0&&(c=!1);if(c){if(this.options.overflow!=null&&!d.support.shrinkWrapBlocks){var f=this.elem,g=this.options;d.each(["","X","Y"],function(a,b){f.style["overflow"+b]=g.overflow[a]})}this.options.hide&&d(this.elem).hide();if(this.options.hide||this.options.show)for(var h in this.options.curAnim)d.style(this.elem,h,this.options.orig[h]);this.options.complete.call(this.elem)}return!1}var i=b-this.startTime;this.state=i/this.options.duration;var j=this.options.specialEasing&&this.options.specialEasing[this.prop],k=this.options.easing||(d.easing.swing?"swing":"linear");this.pos=d.easing[j||k](this.state,i,0,1,this.options.duration),this.now=this.start+(this.end-this.start)*this.pos,this.update();return!0}},d.extend(d.fx,{tick:function(){var a=d.timers;for(var b=0;b
    ";d.extend(b.style,{position:"absolute",top:0,left:0,margin:0,border:0,width:"1px",height:"1px",visibility:"hidden"}),b.innerHTML=j,a.insertBefore(b,a.firstChild),e=b.firstChild,f=e.firstChild,h=e.nextSibling.firstChild.firstChild,this.doesNotAddBorder=f.offsetTop!==5,this.doesAddBorderForTableAndCells=h.offsetTop===5,f.style.position="fixed",f.style.top="20px",this.supportsFixedPosition=f.offsetTop===20||f.offsetTop===15,f.style.position=f.style.top="",e.style.overflow="hidden",e.style.position="relative",this.subtractsBorderForOverflowNotVisible=f.offsetTop===-5,this.doesNotIncludeMarginInBodyOffset=a.offsetTop!==i,a.removeChild(b),d.offset.initialize=d.noop},bodyOffset:function(a){var b=a.offsetTop,c=a.offsetLeft;d.offset.initialize(),d.offset.doesNotIncludeMarginInBodyOffset&&(b+=parseFloat(d.css(a,"marginTop"))||0,c+=parseFloat(d.css(a,"marginLeft"))||0);return{top:b,left:c}},setOffset:function(a,b,c){var e=d.css(a,"position");e==="static"&&(a.style.position="relative");var f=d(a),g=f.offset(),h=d.css(a,"top"),i=d.css(a,"left"),j=(e==="absolute"||e==="fixed")&&d.inArray("auto",[h,i])>-1,k={},l={},m,n;j&&(l=f.position()),m=j?l.top:parseInt(h,10)||0,n=j?l.left:parseInt(i,10)||0,d.isFunction(b)&&(b=b.call(a,c,g)),b.top!=null&&(k.top=b.top-g.top+m),b.left!=null&&(k.left=b.left-g.left+n),"using"in b?b.using.call(a,k):f.css(k)}},d.fn.extend({position:function(){if(!this[0])return null;var a=this[0],b=this.offsetParent(),c=this.offset(),e=ch.test(b[0].nodeName)?{top:0,left:0}:b.offset();c.top-=parseFloat(d.css(a,"marginTop"))||0,c.left-=parseFloat(d.css(a,"marginLeft"))||0,e.top+=parseFloat(d.css(b[0],"borderTopWidth"))||0,e.left+=parseFloat(d.css(b[0],"borderLeftWidth"))||0;return{top:c.top-e.top,left:c.left-e.left}},offsetParent:function(){return this.map(function(){var a=this.offsetParent||c.body;while(a&&(!ch.test(a.nodeName)&&d.css(a,"position")==="static"))a=a.offsetParent;return a})}}),d.each(["Left","Top"],function(a,c){var e="scroll"+c;d.fn[e]=function(c){var f=this[0],g;if(!f)return null;if(c!==b)return this.each(function(){g=ci(this),g?g.scrollTo(a?d(g).scrollLeft():c,a?c:d(g).scrollTop()):this[e]=c});g=ci(f);return g?"pageXOffset"in g?g[a?"pageYOffset":"pageXOffset"]:d.support.boxModel&&g.document.documentElement[e]||g.document.body[e]:f[e]}}),d.each(["Height","Width"],function(a,c){var e=c.toLowerCase();d.fn["inner"+c]=function(){return this[0]?parseFloat(d.css(this[0],e,"padding")):null},d.fn["outer"+c]=function(a){return this[0]?parseFloat(d.css(this[0],e,a?"margin":"border")):null},d.fn[e]=function(a){var f=this[0];if(!f)return a==null?null:this;if(d.isFunction(a))return this.each(function(b){var c=d(this);c[e](a.call(this,b,c[e]()))});if(d.isWindow(f)){var g=f.document.documentElement["client"+c];return f.document.compatMode==="CSS1Compat"&&g||f.document.body["client"+c]||g}if(f.nodeType===9)return Math.max(f.documentElement["client"+c],f.body["scroll"+c],f.documentElement["scroll"+c],f.body["offset"+c],f.documentElement["offset"+c]);if(a===b){var h=d.css(f,e),i=parseFloat(h);return d.isNaN(i)?h:i}return this.css(e,typeof a==="string"?a:a+"px")}}),a.jQuery=a.$=d})(window); \ No newline at end of file diff --git a/web/javascript/jquery-ui-1.8.12.custom.min.js b/web/javascript/jquery-ui-1.8.12.custom.min.js new file mode 100755 index 00000000..1b1c88f3 --- /dev/null +++ b/web/javascript/jquery-ui-1.8.12.custom.min.js @@ -0,0 +1,783 @@ +/*! + * jQuery UI 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI + */ +(function(c,j){function k(a){return!c(a).parents().andSelf().filter(function(){return c.curCSS(this,"visibility")==="hidden"||c.expr.filters.hidden(this)}).length}c.ui=c.ui||{};if(!c.ui.version){c.extend(c.ui,{version:"1.8.12",keyCode:{ALT:18,BACKSPACE:8,CAPS_LOCK:20,COMMA:188,COMMAND:91,COMMAND_LEFT:91,COMMAND_RIGHT:93,CONTROL:17,DELETE:46,DOWN:40,END:35,ENTER:13,ESCAPE:27,HOME:36,INSERT:45,LEFT:37,MENU:93,NUMPAD_ADD:107,NUMPAD_DECIMAL:110,NUMPAD_DIVIDE:111,NUMPAD_ENTER:108,NUMPAD_MULTIPLY:106, +NUMPAD_SUBTRACT:109,PAGE_DOWN:34,PAGE_UP:33,PERIOD:190,RIGHT:39,SHIFT:16,SPACE:32,TAB:9,UP:38,WINDOWS:91}});c.fn.extend({_focus:c.fn.focus,focus:function(a,b){return typeof a==="number"?this.each(function(){var d=this;setTimeout(function(){c(d).focus();b&&b.call(d)},a)}):this._focus.apply(this,arguments)},scrollParent:function(){var a;a=c.browser.msie&&/(static|relative)/.test(this.css("position"))||/absolute/.test(this.css("position"))?this.parents().filter(function(){return/(relative|absolute|fixed)/.test(c.curCSS(this, +"position",1))&&/(auto|scroll)/.test(c.curCSS(this,"overflow",1)+c.curCSS(this,"overflow-y",1)+c.curCSS(this,"overflow-x",1))}).eq(0):this.parents().filter(function(){return/(auto|scroll)/.test(c.curCSS(this,"overflow",1)+c.curCSS(this,"overflow-y",1)+c.curCSS(this,"overflow-x",1))}).eq(0);return/fixed/.test(this.css("position"))||!a.length?c(document):a},zIndex:function(a){if(a!==j)return this.css("zIndex",a);if(this.length){a=c(this[0]);for(var b;a.length&&a[0]!==document;){b=a.css("position"); +if(b==="absolute"||b==="relative"||b==="fixed"){b=parseInt(a.css("zIndex"),10);if(!isNaN(b)&&b!==0)return b}a=a.parent()}}return 0},disableSelection:function(){return this.bind((c.support.selectstart?"selectstart":"mousedown")+".ui-disableSelection",function(a){a.preventDefault()})},enableSelection:function(){return this.unbind(".ui-disableSelection")}});c.each(["Width","Height"],function(a,b){function d(f,g,l,m){c.each(e,function(){g-=parseFloat(c.curCSS(f,"padding"+this,true))||0;if(l)g-=parseFloat(c.curCSS(f, +"border"+this+"Width",true))||0;if(m)g-=parseFloat(c.curCSS(f,"margin"+this,true))||0});return g}var e=b==="Width"?["Left","Right"]:["Top","Bottom"],h=b.toLowerCase(),i={innerWidth:c.fn.innerWidth,innerHeight:c.fn.innerHeight,outerWidth:c.fn.outerWidth,outerHeight:c.fn.outerHeight};c.fn["inner"+b]=function(f){if(f===j)return i["inner"+b].call(this);return this.each(function(){c(this).css(h,d(this,f)+"px")})};c.fn["outer"+b]=function(f,g){if(typeof f!=="number")return i["outer"+b].call(this,f);return this.each(function(){c(this).css(h, +d(this,f,true,g)+"px")})}});c.extend(c.expr[":"],{data:function(a,b,d){return!!c.data(a,d[3])},focusable:function(a){var b=a.nodeName.toLowerCase(),d=c.attr(a,"tabindex");if("area"===b){b=a.parentNode;d=b.name;if(!a.href||!d||b.nodeName.toLowerCase()!=="map")return false;a=c("img[usemap=#"+d+"]")[0];return!!a&&k(a)}return(/input|select|textarea|button|object/.test(b)?!a.disabled:"a"==b?a.href||!isNaN(d):!isNaN(d))&&k(a)},tabbable:function(a){var b=c.attr(a,"tabindex");return(isNaN(b)||b>=0)&&c(a).is(":focusable")}}); +c(function(){var a=document.body,b=a.appendChild(b=document.createElement("div"));c.extend(b.style,{minHeight:"100px",height:"auto",padding:0,borderWidth:0});c.support.minHeight=b.offsetHeight===100;c.support.selectstart="onselectstart"in b;a.removeChild(b).style.display="none"});c.extend(c.ui,{plugin:{add:function(a,b,d){a=c.ui[a].prototype;for(var e in d){a.plugins[e]=a.plugins[e]||[];a.plugins[e].push([b,d[e]])}},call:function(a,b,d){if((b=a.plugins[b])&&a.element[0].parentNode)for(var e=0;e0)return true;a[b]=1;d=a[b]>0;a[b]=0;return d},isOverAxis:function(a,b,d){return a>b&&a=9)&&!a.button)return this._mouseUp(a);if(this._mouseStarted){this._mouseDrag(a);return a.preventDefault()}if(this._mouseDistanceMet(a)&&this._mouseDelayMet(a))(this._mouseStarted=this._mouseStart(this._mouseDownEvent,a)!==false)?this._mouseDrag(a):this._mouseUp(a);return!this._mouseStarted},_mouseUp:function(a){b(document).unbind("mousemove."+this.widgetName,this._mouseMoveDelegate).unbind("mouseup."+this.widgetName,this._mouseUpDelegate); +if(this._mouseStarted){this._mouseStarted=false;a.target==this._mouseDownEvent.target&&b.data(a.target,this.widgetName+".preventClickEvent",true);this._mouseStop(a)}return false},_mouseDistanceMet:function(a){return Math.max(Math.abs(this._mouseDownEvent.pageX-a.pageX),Math.abs(this._mouseDownEvent.pageY-a.pageY))>=this.options.distance},_mouseDelayMet:function(){return this.mouseDelayMet},_mouseStart:function(){},_mouseDrag:function(){},_mouseStop:function(){},_mouseCapture:function(){return true}})})(jQuery); +;/* + * jQuery UI Position 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Position + */ +(function(c){c.ui=c.ui||{};var n=/left|center|right/,o=/top|center|bottom/,t=c.fn.position,u=c.fn.offset;c.fn.position=function(b){if(!b||!b.of)return t.apply(this,arguments);b=c.extend({},b);var a=c(b.of),d=a[0],g=(b.collision||"flip").split(" "),e=b.offset?b.offset.split(" "):[0,0],h,k,j;if(d.nodeType===9){h=a.width();k=a.height();j={top:0,left:0}}else if(d.setTimeout){h=a.width();k=a.height();j={top:a.scrollTop(),left:a.scrollLeft()}}else if(d.preventDefault){b.at="left top";h=k=0;j={top:b.of.pageY, +left:b.of.pageX}}else{h=a.outerWidth();k=a.outerHeight();j=a.offset()}c.each(["my","at"],function(){var f=(b[this]||"").split(" ");if(f.length===1)f=n.test(f[0])?f.concat(["center"]):o.test(f[0])?["center"].concat(f):["center","center"];f[0]=n.test(f[0])?f[0]:"center";f[1]=o.test(f[1])?f[1]:"center";b[this]=f});if(g.length===1)g[1]=g[0];e[0]=parseInt(e[0],10)||0;if(e.length===1)e[1]=e[0];e[1]=parseInt(e[1],10)||0;if(b.at[0]==="right")j.left+=h;else if(b.at[0]==="center")j.left+=h/2;if(b.at[1]==="bottom")j.top+= +k;else if(b.at[1]==="center")j.top+=k/2;j.left+=e[0];j.top+=e[1];return this.each(function(){var f=c(this),l=f.outerWidth(),m=f.outerHeight(),p=parseInt(c.curCSS(this,"marginLeft",true))||0,q=parseInt(c.curCSS(this,"marginTop",true))||0,v=l+p+(parseInt(c.curCSS(this,"marginRight",true))||0),w=m+q+(parseInt(c.curCSS(this,"marginBottom",true))||0),i=c.extend({},j),r;if(b.my[0]==="right")i.left-=l;else if(b.my[0]==="center")i.left-=l/2;if(b.my[1]==="bottom")i.top-=m;else if(b.my[1]==="center")i.top-= +m/2;i.left=Math.round(i.left);i.top=Math.round(i.top);r={left:i.left-p,top:i.top-q};c.each(["left","top"],function(s,x){c.ui.position[g[s]]&&c.ui.position[g[s]][x](i,{targetWidth:h,targetHeight:k,elemWidth:l,elemHeight:m,collisionPosition:r,collisionWidth:v,collisionHeight:w,offset:e,my:b.my,at:b.at})});c.fn.bgiframe&&f.bgiframe();f.offset(c.extend(i,{using:b.using}))})};c.ui.position={fit:{left:function(b,a){var d=c(window);d=a.collisionPosition.left+a.collisionWidth-d.width()-d.scrollLeft();b.left= +d>0?b.left-d:Math.max(b.left-a.collisionPosition.left,b.left)},top:function(b,a){var d=c(window);d=a.collisionPosition.top+a.collisionHeight-d.height()-d.scrollTop();b.top=d>0?b.top-d:Math.max(b.top-a.collisionPosition.top,b.top)}},flip:{left:function(b,a){if(a.at[0]!=="center"){var d=c(window);d=a.collisionPosition.left+a.collisionWidth-d.width()-d.scrollLeft();var g=a.my[0]==="left"?-a.elemWidth:a.my[0]==="right"?a.elemWidth:0,e=a.at[0]==="left"?a.targetWidth:-a.targetWidth,h=-2*a.offset[0];b.left+= +a.collisionPosition.left<0?g+e+h:d>0?g+e+h:0}},top:function(b,a){if(a.at[1]!=="center"){var d=c(window);d=a.collisionPosition.top+a.collisionHeight-d.height()-d.scrollTop();var g=a.my[1]==="top"?-a.elemHeight:a.my[1]==="bottom"?a.elemHeight:0,e=a.at[1]==="top"?a.targetHeight:-a.targetHeight,h=-2*a.offset[1];b.top+=a.collisionPosition.top<0?g+e+h:d>0?g+e+h:0}}}};if(!c.offset.setOffset){c.offset.setOffset=function(b,a){if(/static/.test(c.curCSS(b,"position")))b.style.position="relative";var d=c(b), +g=d.offset(),e=parseInt(c.curCSS(b,"top",true),10)||0,h=parseInt(c.curCSS(b,"left",true),10)||0;g={top:a.top-g.top+e,left:a.left-g.left+h};"using"in a?a.using.call(b,g):d.css(g)};c.fn.offset=function(b){var a=this[0];if(!a||!a.ownerDocument)return null;if(b)return this.each(function(){c.offset.setOffset(this,b)});return u.call(this)}}})(jQuery); +;/* + * jQuery UI Draggable 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Draggables + * + * Depends: + * jquery.ui.core.js + * jquery.ui.mouse.js + * jquery.ui.widget.js + */ +(function(d){d.widget("ui.draggable",d.ui.mouse,{widgetEventPrefix:"drag",options:{addClasses:true,appendTo:"parent",axis:false,connectToSortable:false,containment:false,cursor:"auto",cursorAt:false,grid:false,handle:false,helper:"original",iframeFix:false,opacity:false,refreshPositions:false,revert:false,revertDuration:500,scope:"default",scroll:true,scrollSensitivity:20,scrollSpeed:20,snap:false,snapMode:"both",snapTolerance:20,stack:false,zIndex:false},_create:function(){if(this.options.helper== +"original"&&!/^(?:r|a|f)/.test(this.element.css("position")))this.element[0].style.position="relative";this.options.addClasses&&this.element.addClass("ui-draggable");this.options.disabled&&this.element.addClass("ui-draggable-disabled");this._mouseInit()},destroy:function(){if(this.element.data("draggable")){this.element.removeData("draggable").unbind(".draggable").removeClass("ui-draggable ui-draggable-dragging ui-draggable-disabled");this._mouseDestroy();return this}},_mouseCapture:function(a){var b= +this.options;if(this.helper||b.disabled||d(a.target).is(".ui-resizable-handle"))return false;this.handle=this._getHandle(a);if(!this.handle)return false;return true},_mouseStart:function(a){var b=this.options;this.helper=this._createHelper(a);this._cacheHelperProportions();if(d.ui.ddmanager)d.ui.ddmanager.current=this;this._cacheMargins();this.cssPosition=this.helper.css("position");this.scrollParent=this.helper.scrollParent();this.offset=this.positionAbs=this.element.offset();this.offset={top:this.offset.top- +this.margins.top,left:this.offset.left-this.margins.left};d.extend(this.offset,{click:{left:a.pageX-this.offset.left,top:a.pageY-this.offset.top},parent:this._getParentOffset(),relative:this._getRelativeOffset()});this.originalPosition=this.position=this._generatePosition(a);this.originalPageX=a.pageX;this.originalPageY=a.pageY;b.cursorAt&&this._adjustOffsetFromHelper(b.cursorAt);b.containment&&this._setContainment();if(this._trigger("start",a)===false){this._clear();return false}this._cacheHelperProportions(); +d.ui.ddmanager&&!b.dropBehaviour&&d.ui.ddmanager.prepareOffsets(this,a);this.helper.addClass("ui-draggable-dragging");this._mouseDrag(a,true);return true},_mouseDrag:function(a,b){this.position=this._generatePosition(a);this.positionAbs=this._convertPositionTo("absolute");if(!b){b=this._uiHash();if(this._trigger("drag",a,b)===false){this._mouseUp({});return false}this.position=b.position}if(!this.options.axis||this.options.axis!="y")this.helper[0].style.left=this.position.left+"px";if(!this.options.axis|| +this.options.axis!="x")this.helper[0].style.top=this.position.top+"px";d.ui.ddmanager&&d.ui.ddmanager.drag(this,a);return false},_mouseStop:function(a){var b=false;if(d.ui.ddmanager&&!this.options.dropBehaviour)b=d.ui.ddmanager.drop(this,a);if(this.dropped){b=this.dropped;this.dropped=false}if((!this.element[0]||!this.element[0].parentNode)&&this.options.helper=="original")return false;if(this.options.revert=="invalid"&&!b||this.options.revert=="valid"&&b||this.options.revert===true||d.isFunction(this.options.revert)&& +this.options.revert.call(this.element,b)){var c=this;d(this.helper).animate(this.originalPosition,parseInt(this.options.revertDuration,10),function(){c._trigger("stop",a)!==false&&c._clear()})}else this._trigger("stop",a)!==false&&this._clear();return false},cancel:function(){this.helper.is(".ui-draggable-dragging")?this._mouseUp({}):this._clear();return this},_getHandle:function(a){var b=!this.options.handle||!d(this.options.handle,this.element).length?true:false;d(this.options.handle,this.element).find("*").andSelf().each(function(){if(this== +a.target)b=true});return b},_createHelper:function(a){var b=this.options;a=d.isFunction(b.helper)?d(b.helper.apply(this.element[0],[a])):b.helper=="clone"?this.element.clone():this.element;a.parents("body").length||a.appendTo(b.appendTo=="parent"?this.element[0].parentNode:b.appendTo);a[0]!=this.element[0]&&!/(fixed|absolute)/.test(a.css("position"))&&a.css("position","absolute");return a},_adjustOffsetFromHelper:function(a){if(typeof a=="string")a=a.split(" ");if(d.isArray(a))a={left:+a[0],top:+a[1]|| +0};if("left"in a)this.offset.click.left=a.left+this.margins.left;if("right"in a)this.offset.click.left=this.helperProportions.width-a.right+this.margins.left;if("top"in a)this.offset.click.top=a.top+this.margins.top;if("bottom"in a)this.offset.click.top=this.helperProportions.height-a.bottom+this.margins.top},_getParentOffset:function(){this.offsetParent=this.helper.offsetParent();var a=this.offsetParent.offset();if(this.cssPosition=="absolute"&&this.scrollParent[0]!=document&&d.ui.contains(this.scrollParent[0], +this.offsetParent[0])){a.left+=this.scrollParent.scrollLeft();a.top+=this.scrollParent.scrollTop()}if(this.offsetParent[0]==document.body||this.offsetParent[0].tagName&&this.offsetParent[0].tagName.toLowerCase()=="html"&&d.browser.msie)a={top:0,left:0};return{top:a.top+(parseInt(this.offsetParent.css("borderTopWidth"),10)||0),left:a.left+(parseInt(this.offsetParent.css("borderLeftWidth"),10)||0)}},_getRelativeOffset:function(){if(this.cssPosition=="relative"){var a=this.element.position();return{top:a.top- +(parseInt(this.helper.css("top"),10)||0)+this.scrollParent.scrollTop(),left:a.left-(parseInt(this.helper.css("left"),10)||0)+this.scrollParent.scrollLeft()}}else return{top:0,left:0}},_cacheMargins:function(){this.margins={left:parseInt(this.element.css("marginLeft"),10)||0,top:parseInt(this.element.css("marginTop"),10)||0,right:parseInt(this.element.css("marginRight"),10)||0,bottom:parseInt(this.element.css("marginBottom"),10)||0}},_cacheHelperProportions:function(){this.helperProportions={width:this.helper.outerWidth(), +height:this.helper.outerHeight()}},_setContainment:function(){var a=this.options;if(a.containment=="parent")a.containment=this.helper[0].parentNode;if(a.containment=="document"||a.containment=="window")this.containment=[(a.containment=="document"?0:d(window).scrollLeft())-this.offset.relative.left-this.offset.parent.left,(a.containment=="document"?0:d(window).scrollTop())-this.offset.relative.top-this.offset.parent.top,(a.containment=="document"?0:d(window).scrollLeft())+d(a.containment=="document"? +document:window).width()-this.helperProportions.width-this.margins.left,(a.containment=="document"?0:d(window).scrollTop())+(d(a.containment=="document"?document:window).height()||document.body.parentNode.scrollHeight)-this.helperProportions.height-this.margins.top];if(!/^(document|window|parent)$/.test(a.containment)&&a.containment.constructor!=Array){var b=d(a.containment)[0];if(b){a=d(a.containment).offset();var c=d(b).css("overflow")!="hidden";this.containment=[a.left+(parseInt(d(b).css("borderLeftWidth"), +10)||0)+(parseInt(d(b).css("paddingLeft"),10)||0),a.top+(parseInt(d(b).css("borderTopWidth"),10)||0)+(parseInt(d(b).css("paddingTop"),10)||0),a.left+(c?Math.max(b.scrollWidth,b.offsetWidth):b.offsetWidth)-(parseInt(d(b).css("borderLeftWidth"),10)||0)-(parseInt(d(b).css("paddingRight"),10)||0)-this.helperProportions.width-this.margins.left-this.margins.right,a.top+(c?Math.max(b.scrollHeight,b.offsetHeight):b.offsetHeight)-(parseInt(d(b).css("borderTopWidth"),10)||0)-(parseInt(d(b).css("paddingBottom"), +10)||0)-this.helperProportions.height-this.margins.top-this.margins.bottom]}}else if(a.containment.constructor==Array)this.containment=a.containment},_convertPositionTo:function(a,b){if(!b)b=this.position;a=a=="absolute"?1:-1;var c=this.cssPosition=="absolute"&&!(this.scrollParent[0]!=document&&d.ui.contains(this.scrollParent[0],this.offsetParent[0]))?this.offsetParent:this.scrollParent,f=/(html|body)/i.test(c[0].tagName);return{top:b.top+this.offset.relative.top*a+this.offset.parent.top*a-(d.browser.safari&& +d.browser.version<526&&this.cssPosition=="fixed"?0:(this.cssPosition=="fixed"?-this.scrollParent.scrollTop():f?0:c.scrollTop())*a),left:b.left+this.offset.relative.left*a+this.offset.parent.left*a-(d.browser.safari&&d.browser.version<526&&this.cssPosition=="fixed"?0:(this.cssPosition=="fixed"?-this.scrollParent.scrollLeft():f?0:c.scrollLeft())*a)}},_generatePosition:function(a){var b=this.options,c=this.cssPosition=="absolute"&&!(this.scrollParent[0]!=document&&d.ui.contains(this.scrollParent[0], +this.offsetParent[0]))?this.offsetParent:this.scrollParent,f=/(html|body)/i.test(c[0].tagName),e=a.pageX,g=a.pageY;if(this.originalPosition){if(this.containment){if(a.pageX-this.offset.click.leftthis.containment[2])e=this.containment[2]+this.offset.click.left;if(a.pageY-this.offset.click.top>this.containment[3])g= +this.containment[3]+this.offset.click.top}if(b.grid){g=this.originalPageY+Math.round((g-this.originalPageY)/b.grid[1])*b.grid[1];g=this.containment?!(g-this.offset.click.topthis.containment[3])?g:!(g-this.offset.click.topthis.containment[2])? +e:!(e-this.offset.click.left').css({width:this.offsetWidth+ +"px",height:this.offsetHeight+"px",position:"absolute",opacity:"0.001",zIndex:1E3}).css(d(this).offset()).appendTo("body")})},stop:function(){d("div.ui-draggable-iframeFix").each(function(){this.parentNode.removeChild(this)})}});d.ui.plugin.add("draggable","opacity",{start:function(a,b){a=d(b.helper);b=d(this).data("draggable").options;if(a.css("opacity"))b._opacity=a.css("opacity");a.css("opacity",b.opacity)},stop:function(a,b){a=d(this).data("draggable").options;a._opacity&&d(b.helper).css("opacity", +a._opacity)}});d.ui.plugin.add("draggable","scroll",{start:function(){var a=d(this).data("draggable");if(a.scrollParent[0]!=document&&a.scrollParent[0].tagName!="HTML")a.overflowOffset=a.scrollParent.offset()},drag:function(a){var b=d(this).data("draggable"),c=b.options,f=false;if(b.scrollParent[0]!=document&&b.scrollParent[0].tagName!="HTML"){if(!c.axis||c.axis!="x")if(b.overflowOffset.top+b.scrollParent[0].offsetHeight-a.pageY=0;h--){var i=c.snapElements[h].left,k=i+c.snapElements[h].width,j=c.snapElements[h].top,l=j+c.snapElements[h].height;if(i-e=j&&f<=l||h>=j&&h<=l||fl)&&(e>= +i&&e<=k||g>=i&&g<=k||ek);default:return false}};d.ui.ddmanager={current:null,droppables:{"default":[]},prepareOffsets:function(a,b){var c=d.ui.ddmanager.droppables[a.options.scope]||[],e=b?b.type:null,g=(a.currentItem||a.element).find(":data(droppable)").andSelf(),f=0;a:for(;f').css({position:this.element.css("position"),width:this.element.outerWidth(),height:this.element.outerHeight(), +top:this.element.css("top"),left:this.element.css("left")}));this.element=this.element.parent().data("resizable",this.element.data("resizable"));this.elementIsWrapper=true;this.element.css({marginLeft:this.originalElement.css("marginLeft"),marginTop:this.originalElement.css("marginTop"),marginRight:this.originalElement.css("marginRight"),marginBottom:this.originalElement.css("marginBottom")});this.originalElement.css({marginLeft:0,marginTop:0,marginRight:0,marginBottom:0});this.originalResizeStyle= +this.originalElement.css("resize");this.originalElement.css("resize","none");this._proportionallyResizeElements.push(this.originalElement.css({position:"static",zoom:1,display:"block"}));this.originalElement.css({margin:this.originalElement.css("margin")});this._proportionallyResize()}this.handles=a.handles||(!e(".ui-resizable-handle",this.element).length?"e,s,se":{n:".ui-resizable-n",e:".ui-resizable-e",s:".ui-resizable-s",w:".ui-resizable-w",se:".ui-resizable-se",sw:".ui-resizable-sw",ne:".ui-resizable-ne", +nw:".ui-resizable-nw"});if(this.handles.constructor==String){if(this.handles=="all")this.handles="n,e,s,w,se,sw,ne,nw";var c=this.handles.split(",");this.handles={};for(var d=0;d');/sw|se|ne|nw/.test(f)&&g.css({zIndex:++a.zIndex});"se"==f&&g.addClass("ui-icon ui-icon-gripsmall-diagonal-se");this.handles[f]=".ui-resizable-"+f;this.element.append(g)}}this._renderAxis=function(h){h=h||this.element;for(var i in this.handles){if(this.handles[i].constructor== +String)this.handles[i]=e(this.handles[i],this.element).show();if(this.elementIsWrapper&&this.originalElement[0].nodeName.match(/textarea|input|select|button/i)){var j=e(this.handles[i],this.element),k=0;k=/sw|ne|nw|se|n|s/.test(i)?j.outerHeight():j.outerWidth();j=["padding",/ne|nw|n/.test(i)?"Top":/se|sw|s/.test(i)?"Bottom":/^e$/.test(i)?"Right":"Left"].join("");h.css(j,k);this._proportionallyResize()}e(this.handles[i])}};this._renderAxis(this.element);this._handles=e(".ui-resizable-handle",this.element).disableSelection(); +this._handles.mouseover(function(){if(!b.resizing){if(this.className)var h=this.className.match(/ui-resizable-(se|sw|ne|nw|n|e|s|w)/i);b.axis=h&&h[1]?h[1]:"se"}});if(a.autoHide){this._handles.hide();e(this.element).addClass("ui-resizable-autohide").hover(function(){e(this).removeClass("ui-resizable-autohide");b._handles.show()},function(){if(!b.resizing){e(this).addClass("ui-resizable-autohide");b._handles.hide()}})}this._mouseInit()},destroy:function(){this._mouseDestroy();var b=function(c){e(c).removeClass("ui-resizable ui-resizable-disabled ui-resizable-resizing").removeData("resizable").unbind(".resizable").find(".ui-resizable-handle").remove()}; +if(this.elementIsWrapper){b(this.element);var a=this.element;a.after(this.originalElement.css({position:a.css("position"),width:a.outerWidth(),height:a.outerHeight(),top:a.css("top"),left:a.css("left")})).remove()}this.originalElement.css("resize",this.originalResizeStyle);b(this.originalElement);return this},_mouseCapture:function(b){var a=false;for(var c in this.handles)if(e(this.handles[c])[0]==b.target)a=true;return!this.options.disabled&&a},_mouseStart:function(b){var a=this.options,c=this.element.position(), +d=this.element;this.resizing=true;this.documentScroll={top:e(document).scrollTop(),left:e(document).scrollLeft()};if(d.is(".ui-draggable")||/absolute/.test(d.css("position")))d.css({position:"absolute",top:c.top,left:c.left});e.browser.opera&&/relative/.test(d.css("position"))&&d.css({position:"relative",top:"auto",left:"auto"});this._renderProxy();c=m(this.helper.css("left"));var f=m(this.helper.css("top"));if(a.containment){c+=e(a.containment).scrollLeft()||0;f+=e(a.containment).scrollTop()||0}this.offset= +this.helper.offset();this.position={left:c,top:f};this.size=this._helper?{width:d.outerWidth(),height:d.outerHeight()}:{width:d.width(),height:d.height()};this.originalSize=this._helper?{width:d.outerWidth(),height:d.outerHeight()}:{width:d.width(),height:d.height()};this.originalPosition={left:c,top:f};this.sizeDiff={width:d.outerWidth()-d.width(),height:d.outerHeight()-d.height()};this.originalMousePosition={left:b.pageX,top:b.pageY};this.aspectRatio=typeof a.aspectRatio=="number"?a.aspectRatio: +this.originalSize.width/this.originalSize.height||1;a=e(".ui-resizable-"+this.axis).css("cursor");e("body").css("cursor",a=="auto"?this.axis+"-resize":a);d.addClass("ui-resizable-resizing");this._propagate("start",b);return true},_mouseDrag:function(b){var a=this.helper,c=this.originalMousePosition,d=this._change[this.axis];if(!d)return false;c=d.apply(this,[b,b.pageX-c.left||0,b.pageY-c.top||0]);if(this._aspectRatio||b.shiftKey)c=this._updateRatio(c,b);c=this._respectSize(c,b);this._propagate("resize", +b);a.css({top:this.position.top+"px",left:this.position.left+"px",width:this.size.width+"px",height:this.size.height+"px"});!this._helper&&this._proportionallyResizeElements.length&&this._proportionallyResize();this._updateCache(c);this._trigger("resize",b,this.ui());return false},_mouseStop:function(b){this.resizing=false;var a=this.options,c=this;if(this._helper){var d=this._proportionallyResizeElements,f=d.length&&/textarea/i.test(d[0].nodeName);d=f&&e.ui.hasScroll(d[0],"left")?0:c.sizeDiff.height; +f=f?0:c.sizeDiff.width;f={width:c.helper.width()-f,height:c.helper.height()-d};d=parseInt(c.element.css("left"),10)+(c.position.left-c.originalPosition.left)||null;var g=parseInt(c.element.css("top"),10)+(c.position.top-c.originalPosition.top)||null;a.animate||this.element.css(e.extend(f,{top:g,left:d}));c.helper.height(c.size.height);c.helper.width(c.size.width);this._helper&&!a.animate&&this._proportionallyResize()}e("body").css("cursor","auto");this.element.removeClass("ui-resizable-resizing"); +this._propagate("stop",b);this._helper&&this.helper.remove();return false},_updateCache:function(b){this.offset=this.helper.offset();if(l(b.left))this.position.left=b.left;if(l(b.top))this.position.top=b.top;if(l(b.height))this.size.height=b.height;if(l(b.width))this.size.width=b.width},_updateRatio:function(b){var a=this.position,c=this.size,d=this.axis;if(b.height)b.width=c.height*this.aspectRatio;else if(b.width)b.height=c.width/this.aspectRatio;if(d=="sw"){b.left=a.left+(c.width-b.width);b.top= +null}if(d=="nw"){b.top=a.top+(c.height-b.height);b.left=a.left+(c.width-b.width)}return b},_respectSize:function(b){var a=this.options,c=this.axis,d=l(b.width)&&a.maxWidth&&a.maxWidthb.width,h=l(b.height)&&a.minHeight&&a.minHeight>b.height;if(g)b.width=a.minWidth;if(h)b.height=a.minHeight;if(d)b.width=a.maxWidth;if(f)b.height=a.maxHeight;var i=this.originalPosition.left+this.originalSize.width,j=this.position.top+ +this.size.height,k=/sw|nw|w/.test(c);c=/nw|ne|n/.test(c);if(g&&k)b.left=i-a.minWidth;if(d&&k)b.left=i-a.maxWidth;if(h&&c)b.top=j-a.minHeight;if(f&&c)b.top=j-a.maxHeight;if((a=!b.width&&!b.height)&&!b.left&&b.top)b.top=null;else if(a&&!b.top&&b.left)b.left=null;return b},_proportionallyResize:function(){if(this._proportionallyResizeElements.length)for(var b=this.helper||this.element,a=0;a');var a=e.browser.msie&&e.browser.version<7,c=a?1:0;a=a?2:-1;this.helper.addClass(this._helper).css({width:this.element.outerWidth()+a,height:this.element.outerHeight()+a,position:"absolute",left:this.elementOffset.left-c+"px",top:this.elementOffset.top-c+"px",zIndex:++b.zIndex});this.helper.appendTo("body").disableSelection()}else this.helper=this.element},_change:{e:function(b, +a){return{width:this.originalSize.width+a}},w:function(b,a){return{left:this.originalPosition.left+a,width:this.originalSize.width-a}},n:function(b,a,c){return{top:this.originalPosition.top+c,height:this.originalSize.height-c}},s:function(b,a,c){return{height:this.originalSize.height+c}},se:function(b,a,c){return e.extend(this._change.s.apply(this,arguments),this._change.e.apply(this,[b,a,c]))},sw:function(b,a,c){return e.extend(this._change.s.apply(this,arguments),this._change.w.apply(this,[b,a, +c]))},ne:function(b,a,c){return e.extend(this._change.n.apply(this,arguments),this._change.e.apply(this,[b,a,c]))},nw:function(b,a,c){return e.extend(this._change.n.apply(this,arguments),this._change.w.apply(this,[b,a,c]))}},_propagate:function(b,a){e.ui.plugin.call(this,b,[a,this.ui()]);b!="resize"&&this._trigger(b,a,this.ui())},plugins:{},ui:function(){return{originalElement:this.originalElement,element:this.element,helper:this.helper,position:this.position,size:this.size,originalSize:this.originalSize, +originalPosition:this.originalPosition}}});e.extend(e.ui.resizable,{version:"1.8.12"});e.ui.plugin.add("resizable","alsoResize",{start:function(){var b=e(this).data("resizable").options,a=function(c){e(c).each(function(){var d=e(this);d.data("resizable-alsoresize",{width:parseInt(d.width(),10),height:parseInt(d.height(),10),left:parseInt(d.css("left"),10),top:parseInt(d.css("top"),10),position:d.css("position")})})};if(typeof b.alsoResize=="object"&&!b.alsoResize.parentNode)if(b.alsoResize.length){b.alsoResize= +b.alsoResize[0];a(b.alsoResize)}else e.each(b.alsoResize,function(c){a(c)});else a(b.alsoResize)},resize:function(b,a){var c=e(this).data("resizable");b=c.options;var d=c.originalSize,f=c.originalPosition,g={height:c.size.height-d.height||0,width:c.size.width-d.width||0,top:c.position.top-f.top||0,left:c.position.left-f.left||0},h=function(i,j){e(i).each(function(){var k=e(this),q=e(this).data("resizable-alsoresize"),p={},r=j&&j.length?j:k.parents(a.originalElement[0]).length?["width","height"]:["width", +"height","top","left"];e.each(r,function(n,o){if((n=(q[o]||0)+(g[o]||0))&&n>=0)p[o]=n||null});if(e.browser.opera&&/relative/.test(k.css("position"))){c._revertToRelativePosition=true;k.css({position:"absolute",top:"auto",left:"auto"})}k.css(p)})};typeof b.alsoResize=="object"&&!b.alsoResize.nodeType?e.each(b.alsoResize,function(i,j){h(i,j)}):h(b.alsoResize)},stop:function(){var b=e(this).data("resizable"),a=b.options,c=function(d){e(d).each(function(){var f=e(this);f.css({position:f.data("resizable-alsoresize").position})})}; +if(b._revertToRelativePosition){b._revertToRelativePosition=false;typeof a.alsoResize=="object"&&!a.alsoResize.nodeType?e.each(a.alsoResize,function(d){c(d)}):c(a.alsoResize)}e(this).removeData("resizable-alsoresize")}});e.ui.plugin.add("resizable","animate",{stop:function(b){var a=e(this).data("resizable"),c=a.options,d=a._proportionallyResizeElements,f=d.length&&/textarea/i.test(d[0].nodeName),g=f&&e.ui.hasScroll(d[0],"left")?0:a.sizeDiff.height;f={width:a.size.width-(f?0:a.sizeDiff.width),height:a.size.height- +g};g=parseInt(a.element.css("left"),10)+(a.position.left-a.originalPosition.left)||null;var h=parseInt(a.element.css("top"),10)+(a.position.top-a.originalPosition.top)||null;a.element.animate(e.extend(f,h&&g?{top:h,left:g}:{}),{duration:c.animateDuration,easing:c.animateEasing,step:function(){var i={width:parseInt(a.element.css("width"),10),height:parseInt(a.element.css("height"),10),top:parseInt(a.element.css("top"),10),left:parseInt(a.element.css("left"),10)};d&&d.length&&e(d[0]).css({width:i.width, +height:i.height});a._updateCache(i);a._propagate("resize",b)}})}});e.ui.plugin.add("resizable","containment",{start:function(){var b=e(this).data("resizable"),a=b.element,c=b.options.containment;if(a=c instanceof e?c.get(0):/parent/.test(c)?a.parent().get(0):c){b.containerElement=e(a);if(/document/.test(c)||c==document){b.containerOffset={left:0,top:0};b.containerPosition={left:0,top:0};b.parentData={element:e(document),left:0,top:0,width:e(document).width(),height:e(document).height()||document.body.parentNode.scrollHeight}}else{var d= +e(a),f=[];e(["Top","Right","Left","Bottom"]).each(function(i,j){f[i]=m(d.css("padding"+j))});b.containerOffset=d.offset();b.containerPosition=d.position();b.containerSize={height:d.innerHeight()-f[3],width:d.innerWidth()-f[1]};c=b.containerOffset;var g=b.containerSize.height,h=b.containerSize.width;h=e.ui.hasScroll(a,"left")?a.scrollWidth:h;g=e.ui.hasScroll(a)?a.scrollHeight:g;b.parentData={element:a,left:c.left,top:c.top,width:h,height:g}}}},resize:function(b){var a=e(this).data("resizable"),c=a.options, +d=a.containerOffset,f=a.position;b=a._aspectRatio||b.shiftKey;var g={top:0,left:0},h=a.containerElement;if(h[0]!=document&&/static/.test(h.css("position")))g=d;if(f.left<(a._helper?d.left:0)){a.size.width+=a._helper?a.position.left-d.left:a.position.left-g.left;if(b)a.size.height=a.size.width/c.aspectRatio;a.position.left=c.helper?d.left:0}if(f.top<(a._helper?d.top:0)){a.size.height+=a._helper?a.position.top-d.top:a.position.top;if(b)a.size.width=a.size.height*c.aspectRatio;a.position.top=a._helper? +d.top:0}a.offset.left=a.parentData.left+a.position.left;a.offset.top=a.parentData.top+a.position.top;c=Math.abs((a._helper?a.offset.left-g.left:a.offset.left-g.left)+a.sizeDiff.width);d=Math.abs((a._helper?a.offset.top-g.top:a.offset.top-d.top)+a.sizeDiff.height);f=a.containerElement.get(0)==a.element.parent().get(0);g=/relative|absolute/.test(a.containerElement.css("position"));if(f&&g)c-=a.parentData.left;if(c+a.size.width>=a.parentData.width){a.size.width=a.parentData.width-c;if(b)a.size.height= +a.size.width/a.aspectRatio}if(d+a.size.height>=a.parentData.height){a.size.height=a.parentData.height-d;if(b)a.size.width=a.size.height*a.aspectRatio}},stop:function(){var b=e(this).data("resizable"),a=b.options,c=b.containerOffset,d=b.containerPosition,f=b.containerElement,g=e(b.helper),h=g.offset(),i=g.outerWidth()-b.sizeDiff.width;g=g.outerHeight()-b.sizeDiff.height;b._helper&&!a.animate&&/relative/.test(f.css("position"))&&e(this).css({left:h.left-d.left-c.left,width:i,height:g});b._helper&&!a.animate&& +/static/.test(f.css("position"))&&e(this).css({left:h.left-d.left-c.left,width:i,height:g})}});e.ui.plugin.add("resizable","ghost",{start:function(){var b=e(this).data("resizable"),a=b.options,c=b.size;b.ghost=b.originalElement.clone();b.ghost.css({opacity:0.25,display:"block",position:"relative",height:c.height,width:c.width,margin:0,left:0,top:0}).addClass("ui-resizable-ghost").addClass(typeof a.ghost=="string"?a.ghost:"");b.ghost.appendTo(b.helper)},resize:function(){var b=e(this).data("resizable"); +b.ghost&&b.ghost.css({position:"relative",height:b.size.height,width:b.size.width})},stop:function(){var b=e(this).data("resizable");b.ghost&&b.helper&&b.helper.get(0).removeChild(b.ghost.get(0))}});e.ui.plugin.add("resizable","grid",{resize:function(){var b=e(this).data("resizable"),a=b.options,c=b.size,d=b.originalSize,f=b.originalPosition,g=b.axis;a.grid=typeof a.grid=="number"?[a.grid,a.grid]:a.grid;var h=Math.round((c.width-d.width)/(a.grid[0]||1))*(a.grid[0]||1);a=Math.round((c.height-d.height)/ +(a.grid[1]||1))*(a.grid[1]||1);if(/^(se|s|e)$/.test(g)){b.size.width=d.width+h;b.size.height=d.height+a}else if(/^(ne)$/.test(g)){b.size.width=d.width+h;b.size.height=d.height+a;b.position.top=f.top-a}else{if(/^(sw)$/.test(g)){b.size.width=d.width+h;b.size.height=d.height+a}else{b.size.width=d.width+h;b.size.height=d.height+a;b.position.top=f.top-a}b.position.left=f.left-h}}});var m=function(b){return parseInt(b,10)||0},l=function(b){return!isNaN(parseInt(b,10))}})(jQuery); +;/* + * jQuery UI Selectable 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Selectables + * + * Depends: + * jquery.ui.core.js + * jquery.ui.mouse.js + * jquery.ui.widget.js + */ +(function(e){e.widget("ui.selectable",e.ui.mouse,{options:{appendTo:"body",autoRefresh:true,distance:0,filter:"*",tolerance:"touch"},_create:function(){var c=this;this.element.addClass("ui-selectable");this.dragged=false;var f;this.refresh=function(){f=e(c.options.filter,c.element[0]);f.each(function(){var d=e(this),b=d.offset();e.data(this,"selectable-item",{element:this,$element:d,left:b.left,top:b.top,right:b.left+d.outerWidth(),bottom:b.top+d.outerHeight(),startselected:false,selected:d.hasClass("ui-selected"), +selecting:d.hasClass("ui-selecting"),unselecting:d.hasClass("ui-unselecting")})})};this.refresh();this.selectees=f.addClass("ui-selectee");this._mouseInit();this.helper=e("
    ")},destroy:function(){this.selectees.removeClass("ui-selectee").removeData("selectable-item");this.element.removeClass("ui-selectable ui-selectable-disabled").removeData("selectable").unbind(".selectable");this._mouseDestroy();return this},_mouseStart:function(c){var f=this;this.opos=[c.pageX, +c.pageY];if(!this.options.disabled){var d=this.options;this.selectees=e(d.filter,this.element[0]);this._trigger("start",c);e(d.appendTo).append(this.helper);this.helper.css({left:c.clientX,top:c.clientY,width:0,height:0});d.autoRefresh&&this.refresh();this.selectees.filter(".ui-selected").each(function(){var b=e.data(this,"selectable-item");b.startselected=true;if(!c.metaKey){b.$element.removeClass("ui-selected");b.selected=false;b.$element.addClass("ui-unselecting");b.unselecting=true;f._trigger("unselecting", +c,{unselecting:b.element})}});e(c.target).parents().andSelf().each(function(){var b=e.data(this,"selectable-item");if(b){var g=!c.metaKey||!b.$element.hasClass("ui-selected");b.$element.removeClass(g?"ui-unselecting":"ui-selected").addClass(g?"ui-selecting":"ui-unselecting");b.unselecting=!g;b.selecting=g;(b.selected=g)?f._trigger("selecting",c,{selecting:b.element}):f._trigger("unselecting",c,{unselecting:b.element});return false}})}},_mouseDrag:function(c){var f=this;this.dragged=true;if(!this.options.disabled){var d= +this.options,b=this.opos[0],g=this.opos[1],h=c.pageX,i=c.pageY;if(b>h){var j=h;h=b;b=j}if(g>i){j=i;i=g;g=j}this.helper.css({left:b,top:g,width:h-b,height:i-g});this.selectees.each(function(){var a=e.data(this,"selectable-item");if(!(!a||a.element==f.element[0])){var k=false;if(d.tolerance=="touch")k=!(a.left>h||a.righti||a.bottomb&&a.rightg&&a.bottom *",opacity:false,placeholder:false,revert:false,scroll:true,scrollSensitivity:20,scrollSpeed:20,scope:"default",tolerance:"intersect",zIndex:1E3},_create:function(){this.containerCache={};this.element.addClass("ui-sortable"); +this.refresh();this.floating=this.items.length?/left|right/.test(this.items[0].item.css("float"))||/inline|table-cell/.test(this.items[0].item.css("display")):false;this.offset=this.element.offset();this._mouseInit()},destroy:function(){this.element.removeClass("ui-sortable ui-sortable-disabled").removeData("sortable").unbind(".sortable");this._mouseDestroy();for(var a=this.items.length-1;a>=0;a--)this.items[a].item.removeData("sortable-item");return this},_setOption:function(a,b){if(a==="disabled"){this.options[a]= +b;this.widget()[b?"addClass":"removeClass"]("ui-sortable-disabled")}else d.Widget.prototype._setOption.apply(this,arguments)},_mouseCapture:function(a,b){if(this.reverting)return false;if(this.options.disabled||this.options.type=="static")return false;this._refreshItems(a);var c=null,e=this;d(a.target).parents().each(function(){if(d.data(this,"sortable-item")==e){c=d(this);return false}});if(d.data(a.target,"sortable-item")==e)c=d(a.target);if(!c)return false;if(this.options.handle&&!b){var f=false; +d(this.options.handle,c).find("*").andSelf().each(function(){if(this==a.target)f=true});if(!f)return false}this.currentItem=c;this._removeCurrentsFromItems();return true},_mouseStart:function(a,b,c){b=this.options;var e=this;this.currentContainer=this;this.refreshPositions();this.helper=this._createHelper(a);this._cacheHelperProportions();this._cacheMargins();this.scrollParent=this.helper.scrollParent();this.offset=this.currentItem.offset();this.offset={top:this.offset.top-this.margins.top,left:this.offset.left- +this.margins.left};this.helper.css("position","absolute");this.cssPosition=this.helper.css("position");d.extend(this.offset,{click:{left:a.pageX-this.offset.left,top:a.pageY-this.offset.top},parent:this._getParentOffset(),relative:this._getRelativeOffset()});this.originalPosition=this._generatePosition(a);this.originalPageX=a.pageX;this.originalPageY=a.pageY;b.cursorAt&&this._adjustOffsetFromHelper(b.cursorAt);this.domPosition={prev:this.currentItem.prev()[0],parent:this.currentItem.parent()[0]}; +this.helper[0]!=this.currentItem[0]&&this.currentItem.hide();this._createPlaceholder();b.containment&&this._setContainment();if(b.cursor){if(d("body").css("cursor"))this._storedCursor=d("body").css("cursor");d("body").css("cursor",b.cursor)}if(b.opacity){if(this.helper.css("opacity"))this._storedOpacity=this.helper.css("opacity");this.helper.css("opacity",b.opacity)}if(b.zIndex){if(this.helper.css("zIndex"))this._storedZIndex=this.helper.css("zIndex");this.helper.css("zIndex",b.zIndex)}if(this.scrollParent[0]!= +document&&this.scrollParent[0].tagName!="HTML")this.overflowOffset=this.scrollParent.offset();this._trigger("start",a,this._uiHash());this._preserveHelperProportions||this._cacheHelperProportions();if(!c)for(c=this.containers.length-1;c>=0;c--)this.containers[c]._trigger("activate",a,e._uiHash(this));if(d.ui.ddmanager)d.ui.ddmanager.current=this;d.ui.ddmanager&&!b.dropBehaviour&&d.ui.ddmanager.prepareOffsets(this,a);this.dragging=true;this.helper.addClass("ui-sortable-helper");this._mouseDrag(a); +return true},_mouseDrag:function(a){this.position=this._generatePosition(a);this.positionAbs=this._convertPositionTo("absolute");if(!this.lastPositionAbs)this.lastPositionAbs=this.positionAbs;if(this.options.scroll){var b=this.options,c=false;if(this.scrollParent[0]!=document&&this.scrollParent[0].tagName!="HTML"){if(this.overflowOffset.top+this.scrollParent[0].offsetHeight-a.pageY=0;b--){c=this.items[b];var e=c.item[0],f=this._intersectsWithPointer(c);if(f)if(e!=this.currentItem[0]&&this.placeholder[f==1?"next":"prev"]()[0]!=e&&!d.ui.contains(this.placeholder[0],e)&&(this.options.type=="semi-dynamic"?!d.ui.contains(this.element[0], +e):true)){this.direction=f==1?"down":"up";if(this.options.tolerance=="pointer"||this._intersectsWithSides(c))this._rearrange(a,c);else break;this._trigger("change",a,this._uiHash());break}}this._contactContainers(a);d.ui.ddmanager&&d.ui.ddmanager.drag(this,a);this._trigger("sort",a,this._uiHash());this.lastPositionAbs=this.positionAbs;return false},_mouseStop:function(a,b){if(a){d.ui.ddmanager&&!this.options.dropBehaviour&&d.ui.ddmanager.drop(this,a);if(this.options.revert){var c=this;b=c.placeholder.offset(); +c.reverting=true;d(this.helper).animate({left:b.left-this.offset.parent.left-c.margins.left+(this.offsetParent[0]==document.body?0:this.offsetParent[0].scrollLeft),top:b.top-this.offset.parent.top-c.margins.top+(this.offsetParent[0]==document.body?0:this.offsetParent[0].scrollTop)},parseInt(this.options.revert,10)||500,function(){c._clear(a)})}else this._clear(a,b);return false}},cancel:function(){var a=this;if(this.dragging){this._mouseUp({target:null});this.options.helper=="original"?this.currentItem.css(this._storedCSS).removeClass("ui-sortable-helper"): +this.currentItem.show();for(var b=this.containers.length-1;b>=0;b--){this.containers[b]._trigger("deactivate",null,a._uiHash(this));if(this.containers[b].containerCache.over){this.containers[b]._trigger("out",null,a._uiHash(this));this.containers[b].containerCache.over=0}}}if(this.placeholder){this.placeholder[0].parentNode&&this.placeholder[0].parentNode.removeChild(this.placeholder[0]);this.options.helper!="original"&&this.helper&&this.helper[0].parentNode&&this.helper.remove();d.extend(this,{helper:null, +dragging:false,reverting:false,_noFinalSort:null});this.domPosition.prev?d(this.domPosition.prev).after(this.currentItem):d(this.domPosition.parent).prepend(this.currentItem)}return this},serialize:function(a){var b=this._getItemsAsjQuery(a&&a.connected),c=[];a=a||{};d(b).each(function(){var e=(d(a.item||this).attr(a.attribute||"id")||"").match(a.expression||/(.+)[-=_](.+)/);if(e)c.push((a.key||e[1]+"[]")+"="+(a.key&&a.expression?e[1]:e[2]))});!c.length&&a.key&&c.push(a.key+"=");return c.join("&")}, +toArray:function(a){var b=this._getItemsAsjQuery(a&&a.connected),c=[];a=a||{};b.each(function(){c.push(d(a.item||this).attr(a.attribute||"id")||"")});return c},_intersectsWith:function(a){var b=this.positionAbs.left,c=b+this.helperProportions.width,e=this.positionAbs.top,f=e+this.helperProportions.height,g=a.left,h=g+a.width,i=a.top,k=i+a.height,j=this.offset.click.top,l=this.offset.click.left;j=e+j>i&&e+jg&&b+la[this.floating?"width":"height"]?j:g0?"down":"up")},_getDragHorizontalDirection:function(){var a=this.positionAbs.left-this.lastPositionAbs.left;return a!=0&&(a>0?"right":"left")},refresh:function(a){this._refreshItems(a);this.refreshPositions();return this},_connectWith:function(){var a=this.options;return a.connectWith.constructor==String?[a.connectWith]:a.connectWith},_getItemsAsjQuery:function(a){var b=[],c=[],e=this._connectWith(); +if(e&&a)for(a=e.length-1;a>=0;a--)for(var f=d(e[a]),g=f.length-1;g>=0;g--){var h=d.data(f[g],"sortable");if(h&&h!=this&&!h.options.disabled)c.push([d.isFunction(h.options.items)?h.options.items.call(h.element):d(h.options.items,h.element).not(".ui-sortable-helper").not(".ui-sortable-placeholder"),h])}c.push([d.isFunction(this.options.items)?this.options.items.call(this.element,null,{options:this.options,item:this.currentItem}):d(this.options.items,this.element).not(".ui-sortable-helper").not(".ui-sortable-placeholder"), +this]);for(a=c.length-1;a>=0;a--)c[a][0].each(function(){b.push(this)});return d(b)},_removeCurrentsFromItems:function(){for(var a=this.currentItem.find(":data(sortable-item)"),b=0;b=0;f--)for(var g=d(e[f]),h=g.length-1;h>=0;h--){var i=d.data(g[h],"sortable");if(i&&i!=this&&!i.options.disabled){c.push([d.isFunction(i.options.items)?i.options.items.call(i.element[0],a,{item:this.currentItem}):d(i.options.items,i.element),i]);this.containers.push(i)}}for(f=c.length-1;f>=0;f--){a=c[f][1];e=c[f][0];h=0;for(g=e.length;h=0;b--){var c=this.items[b];if(!(c.instance!=this.currentContainer&&this.currentContainer&&c.item[0]!=this.currentItem[0])){var e=this.options.toleranceElement?d(this.options.toleranceElement,c.item):c.item;if(!a){c.width=e.outerWidth();c.height=e.outerHeight()}e=e.offset();c.left=e.left;c.top=e.top}}if(this.options.custom&&this.options.custom.refreshContainers)this.options.custom.refreshContainers.call(this);else for(b= +this.containers.length-1;b>=0;b--){e=this.containers[b].element.offset();this.containers[b].containerCache.left=e.left;this.containers[b].containerCache.top=e.top;this.containers[b].containerCache.width=this.containers[b].element.outerWidth();this.containers[b].containerCache.height=this.containers[b].element.outerHeight()}return this},_createPlaceholder:function(a){var b=a||this,c=b.options;if(!c.placeholder||c.placeholder.constructor==String){var e=c.placeholder;c.placeholder={element:function(){var f= +d(document.createElement(b.currentItem[0].nodeName)).addClass(e||b.currentItem[0].className+" ui-sortable-placeholder").removeClass("ui-sortable-helper")[0];if(!e)f.style.visibility="hidden";return f},update:function(f,g){if(!(e&&!c.forcePlaceholderSize)){g.height()||g.height(b.currentItem.innerHeight()-parseInt(b.currentItem.css("paddingTop")||0,10)-parseInt(b.currentItem.css("paddingBottom")||0,10));g.width()||g.width(b.currentItem.innerWidth()-parseInt(b.currentItem.css("paddingLeft")||0,10)-parseInt(b.currentItem.css("paddingRight")|| +0,10))}}}}b.placeholder=d(c.placeholder.element.call(b.element,b.currentItem));b.currentItem.after(b.placeholder);c.placeholder.update(b,b.placeholder)},_contactContainers:function(a){for(var b=null,c=null,e=this.containers.length-1;e>=0;e--)if(!d.ui.contains(this.currentItem[0],this.containers[e].element[0]))if(this._intersectsWith(this.containers[e].containerCache)){if(!(b&&d.ui.contains(this.containers[e].element[0],b.element[0]))){b=this.containers[e];c=e}}else if(this.containers[e].containerCache.over){this.containers[e]._trigger("out", +a,this._uiHash(this));this.containers[e].containerCache.over=0}if(b)if(this.containers.length===1){this.containers[c]._trigger("over",a,this._uiHash(this));this.containers[c].containerCache.over=1}else if(this.currentContainer!=this.containers[c]){b=1E4;e=null;for(var f=this.positionAbs[this.containers[c].floating?"left":"top"],g=this.items.length-1;g>=0;g--)if(d.ui.contains(this.containers[c].element[0],this.items[g].item[0])){var h=this.items[g][this.containers[c].floating?"left":"top"];if(Math.abs(h- +f)this.containment[2])f=this.containment[2]+this.offset.click.left;if(a.pageY-this.offset.click.top>this.containment[3])g=this.containment[3]+this.offset.click.top}if(b.grid){g=this.originalPageY+Math.round((g- +this.originalPageY)/b.grid[1])*b.grid[1];g=this.containment?!(g-this.offset.click.topthis.containment[3])?g:!(g-this.offset.click.topthis.containment[2])?f:!(f-this.offset.click.left=0;e--)if(d.ui.contains(this.containers[e].element[0],this.currentItem[0])&&!b){c.push(function(f){return function(g){f._trigger("receive",g,this._uiHash(this))}}.call(this,this.containers[e]));c.push(function(f){return function(g){f._trigger("update",g,this._uiHash(this))}}.call(this,this.containers[e]))}}for(e=this.containers.length-1;e>=0;e--){b||c.push(function(f){return function(g){f._trigger("deactivate",g,this._uiHash(this))}}.call(this, +this.containers[e]));if(this.containers[e].containerCache.over){c.push(function(f){return function(g){f._trigger("out",g,this._uiHash(this))}}.call(this,this.containers[e]));this.containers[e].containerCache.over=0}}this._storedCursor&&d("body").css("cursor",this._storedCursor);this._storedOpacity&&this.helper.css("opacity",this._storedOpacity);if(this._storedZIndex)this.helper.css("zIndex",this._storedZIndex=="auto"?"":this._storedZIndex);this.dragging=false;if(this.cancelHelperRemoval){if(!b){this._trigger("beforeStop", +a,this._uiHash());for(e=0;e li > :first-child,> :not(li):even",icons:{header:"ui-icon-triangle-1-e",headerSelected:"ui-icon-triangle-1-s"},navigation:false,navigationFilter:function(){return this.href.toLowerCase()===location.href.toLowerCase()}},_create:function(){var a=this,b=a.options;a.running=0;a.element.addClass("ui-accordion ui-widget ui-helper-reset").children("li").addClass("ui-accordion-li-fix"); +a.headers=a.element.find(b.header).addClass("ui-accordion-header ui-helper-reset ui-state-default ui-corner-all").bind("mouseenter.accordion",function(){b.disabled||c(this).addClass("ui-state-hover")}).bind("mouseleave.accordion",function(){b.disabled||c(this).removeClass("ui-state-hover")}).bind("focus.accordion",function(){b.disabled||c(this).addClass("ui-state-focus")}).bind("blur.accordion",function(){b.disabled||c(this).removeClass("ui-state-focus")});a.headers.next().addClass("ui-accordion-content ui-helper-reset ui-widget-content ui-corner-bottom"); +if(b.navigation){var d=a.element.find("a").filter(b.navigationFilter).eq(0);if(d.length){var h=d.closest(".ui-accordion-header");a.active=h.length?h:d.closest(".ui-accordion-content").prev()}}a.active=a._findActive(a.active||b.active).addClass("ui-state-default ui-state-active").toggleClass("ui-corner-all").toggleClass("ui-corner-top");a.active.next().addClass("ui-accordion-content-active");a._createIcons();a.resize();a.element.attr("role","tablist");a.headers.attr("role","tab").bind("keydown.accordion", +function(f){return a._keydown(f)}).next().attr("role","tabpanel");a.headers.not(a.active||"").attr({"aria-expanded":"false","aria-selected":"false",tabIndex:-1}).next().hide();a.active.length?a.active.attr({"aria-expanded":"true","aria-selected":"true",tabIndex:0}):a.headers.eq(0).attr("tabIndex",0);c.browser.safari||a.headers.find("a").attr("tabIndex",-1);b.event&&a.headers.bind(b.event.split(" ").join(".accordion ")+".accordion",function(f){a._clickHandler.call(a,f,this);f.preventDefault()})},_createIcons:function(){var a= +this.options;if(a.icons){c("").addClass("ui-icon "+a.icons.header).prependTo(this.headers);this.active.children(".ui-icon").toggleClass(a.icons.header).toggleClass(a.icons.headerSelected);this.element.addClass("ui-accordion-icons")}},_destroyIcons:function(){this.headers.children(".ui-icon").remove();this.element.removeClass("ui-accordion-icons")},destroy:function(){var a=this.options;this.element.removeClass("ui-accordion ui-widget ui-helper-reset").removeAttr("role");this.headers.unbind(".accordion").removeClass("ui-accordion-header ui-accordion-disabled ui-helper-reset ui-state-default ui-corner-all ui-state-active ui-state-disabled ui-corner-top").removeAttr("role").removeAttr("aria-expanded").removeAttr("aria-selected").removeAttr("tabIndex"); +this.headers.find("a").removeAttr("tabIndex");this._destroyIcons();var b=this.headers.next().css("display","").removeAttr("role").removeClass("ui-helper-reset ui-widget-content ui-corner-bottom ui-accordion-content ui-accordion-content-active ui-accordion-disabled ui-state-disabled");if(a.autoHeight||a.fillHeight)b.css("height","");return c.Widget.prototype.destroy.call(this)},_setOption:function(a,b){c.Widget.prototype._setOption.apply(this,arguments);a=="active"&&this.activate(b);if(a=="icons"){this._destroyIcons(); +b&&this._createIcons()}if(a=="disabled")this.headers.add(this.headers.next())[b?"addClass":"removeClass"]("ui-accordion-disabled ui-state-disabled")},_keydown:function(a){if(!(this.options.disabled||a.altKey||a.ctrlKey)){var b=c.ui.keyCode,d=this.headers.length,h=this.headers.index(a.target),f=false;switch(a.keyCode){case b.RIGHT:case b.DOWN:f=this.headers[(h+1)%d];break;case b.LEFT:case b.UP:f=this.headers[(h-1+d)%d];break;case b.SPACE:case b.ENTER:this._clickHandler({target:a.target},a.target); +a.preventDefault()}if(f){c(a.target).attr("tabIndex",-1);c(f).attr("tabIndex",0);f.focus();return false}return true}},resize:function(){var a=this.options,b;if(a.fillSpace){if(c.browser.msie){var d=this.element.parent().css("overflow");this.element.parent().css("overflow","hidden")}b=this.element.parent().height();c.browser.msie&&this.element.parent().css("overflow",d);this.headers.each(function(){b-=c(this).outerHeight(true)});this.headers.next().each(function(){c(this).height(Math.max(0,b-c(this).innerHeight()+ +c(this).height()))}).css("overflow","auto")}else if(a.autoHeight){b=0;this.headers.next().each(function(){b=Math.max(b,c(this).height("").height())}).height(b)}return this},activate:function(a){this.options.active=a;a=this._findActive(a)[0];this._clickHandler({target:a},a);return this},_findActive:function(a){return a?typeof a==="number"?this.headers.filter(":eq("+a+")"):this.headers.not(this.headers.not(a)):a===false?c([]):this.headers.filter(":eq(0)")},_clickHandler:function(a,b){var d=this.options; +if(!d.disabled)if(a.target){a=c(a.currentTarget||b);b=a[0]===this.active[0];d.active=d.collapsible&&b?false:this.headers.index(a);if(!(this.running||!d.collapsible&&b)){var h=this.active;j=a.next();g=this.active.next();e={options:d,newHeader:b&&d.collapsible?c([]):a,oldHeader:this.active,newContent:b&&d.collapsible?c([]):j,oldContent:g};var f=this.headers.index(this.active[0])>this.headers.index(a[0]);this.active=b?c([]):a;this._toggle(j,g,e,b,f);h.removeClass("ui-state-active ui-corner-top").addClass("ui-state-default ui-corner-all").children(".ui-icon").removeClass(d.icons.headerSelected).addClass(d.icons.header); +if(!b){a.removeClass("ui-state-default ui-corner-all").addClass("ui-state-active ui-corner-top").children(".ui-icon").removeClass(d.icons.header).addClass(d.icons.headerSelected);a.next().addClass("ui-accordion-content-active")}}}else if(d.collapsible){this.active.removeClass("ui-state-active ui-corner-top").addClass("ui-state-default ui-corner-all").children(".ui-icon").removeClass(d.icons.headerSelected).addClass(d.icons.header);this.active.next().addClass("ui-accordion-content-active");var g=this.active.next(), +e={options:d,newHeader:c([]),oldHeader:d.active,newContent:c([]),oldContent:g},j=this.active=c([]);this._toggle(j,g,e)}},_toggle:function(a,b,d,h,f){var g=this,e=g.options;g.toShow=a;g.toHide=b;g.data=d;var j=function(){if(g)return g._completed.apply(g,arguments)};g._trigger("changestart",null,g.data);g.running=b.size()===0?a.size():b.size();if(e.animated){d={};d=e.collapsible&&h?{toShow:c([]),toHide:b,complete:j,down:f,autoHeight:e.autoHeight||e.fillSpace}:{toShow:a,toHide:b,complete:j,down:f,autoHeight:e.autoHeight|| +e.fillSpace};if(!e.proxied)e.proxied=e.animated;if(!e.proxiedDuration)e.proxiedDuration=e.duration;e.animated=c.isFunction(e.proxied)?e.proxied(d):e.proxied;e.duration=c.isFunction(e.proxiedDuration)?e.proxiedDuration(d):e.proxiedDuration;h=c.ui.accordion.animations;var i=e.duration,k=e.animated;if(k&&!h[k]&&!c.easing[k])k="slide";h[k]||(h[k]=function(l){this.slide(l,{easing:k,duration:i||700})});h[k](d)}else{if(e.collapsible&&h)a.toggle();else{b.hide();a.show()}j(true)}b.prev().attr({"aria-expanded":"false", +"aria-selected":"false",tabIndex:-1}).blur();a.prev().attr({"aria-expanded":"true","aria-selected":"true",tabIndex:0}).focus()},_completed:function(a){this.running=a?0:--this.running;if(!this.running){this.options.clearStyle&&this.toShow.add(this.toHide).css({height:"",overflow:""});this.toHide.removeClass("ui-accordion-content-active");if(this.toHide.length)this.toHide.parent()[0].className=this.toHide.parent()[0].className;this._trigger("change",null,this.data)}}});c.extend(c.ui.accordion,{version:"1.8.12", +animations:{slide:function(a,b){a=c.extend({easing:"swing",duration:300},a,b);if(a.toHide.size())if(a.toShow.size()){var d=a.toShow.css("overflow"),h=0,f={},g={},e;b=a.toShow;e=b[0].style.width;b.width(parseInt(b.parent().width(),10)-parseInt(b.css("paddingLeft"),10)-parseInt(b.css("paddingRight"),10)-(parseInt(b.css("borderLeftWidth"),10)||0)-(parseInt(b.css("borderRightWidth"),10)||0));c.each(["height","paddingTop","paddingBottom"],function(j,i){g[i]="hide";j=(""+c.css(a.toShow[0],i)).match(/^([\d+-.]+)(.*)$/); +f[i]={value:j[1],unit:j[2]||"px"}});a.toShow.css({height:0,overflow:"hidden"}).show();a.toHide.filter(":hidden").each(a.complete).end().filter(":visible").animate(g,{step:function(j,i){if(i.prop=="height")h=i.end-i.start===0?0:(i.now-i.start)/(i.end-i.start);a.toShow[0].style[i.prop]=h*f[i.prop].value+f[i.prop].unit},duration:a.duration,easing:a.easing,complete:function(){a.autoHeight||a.toShow.css("height","");a.toShow.css({width:e,overflow:d});a.complete()}})}else a.toHide.animate({height:"hide", +paddingTop:"hide",paddingBottom:"hide"},a);else a.toShow.animate({height:"show",paddingTop:"show",paddingBottom:"show"},a)},bounceslide:function(a){this.slide(a,{easing:a.down?"easeOutBounce":"swing",duration:a.down?1E3:200})}}})})(jQuery); +;/* + * jQuery UI Autocomplete 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Autocomplete + * + * Depends: + * jquery.ui.core.js + * jquery.ui.widget.js + * jquery.ui.position.js + */ +(function(d){var e=0;d.widget("ui.autocomplete",{options:{appendTo:"body",autoFocus:false,delay:300,minLength:1,position:{my:"left top",at:"left bottom",collision:"none"},source:null},pending:0,_create:function(){var a=this,b=this.element[0].ownerDocument,g;this.element.addClass("ui-autocomplete-input").attr("autocomplete","off").attr({role:"textbox","aria-autocomplete":"list","aria-haspopup":"true"}).bind("keydown.autocomplete",function(c){if(!(a.options.disabled||a.element.attr("readonly"))){g= +false;var f=d.ui.keyCode;switch(c.keyCode){case f.PAGE_UP:a._move("previousPage",c);break;case f.PAGE_DOWN:a._move("nextPage",c);break;case f.UP:a._move("previous",c);c.preventDefault();break;case f.DOWN:a._move("next",c);c.preventDefault();break;case f.ENTER:case f.NUMPAD_ENTER:if(a.menu.active){g=true;c.preventDefault()}case f.TAB:if(!a.menu.active)return;a.menu.select(c);break;case f.ESCAPE:a.element.val(a.term);a.close(c);break;default:clearTimeout(a.searching);a.searching=setTimeout(function(){if(a.term!= +a.element.val()){a.selectedItem=null;a.search(null,c)}},a.options.delay);break}}}).bind("keypress.autocomplete",function(c){if(g){g=false;c.preventDefault()}}).bind("focus.autocomplete",function(){if(!a.options.disabled){a.selectedItem=null;a.previous=a.element.val()}}).bind("blur.autocomplete",function(c){if(!a.options.disabled){clearTimeout(a.searching);a.closing=setTimeout(function(){a.close(c);a._change(c)},150)}});this._initSource();this.response=function(){return a._response.apply(a,arguments)}; +this.menu=d("
      ").addClass("ui-autocomplete").appendTo(d(this.options.appendTo||"body",b)[0]).mousedown(function(c){var f=a.menu.element[0];d(c.target).closest(".ui-menu-item").length||setTimeout(function(){d(document).one("mousedown",function(h){h.target!==a.element[0]&&h.target!==f&&!d.ui.contains(f,h.target)&&a.close()})},1);setTimeout(function(){clearTimeout(a.closing)},13)}).menu({focus:function(c,f){f=f.item.data("item.autocomplete");false!==a._trigger("focus",c,{item:f})&&/^key/.test(c.originalEvent.type)&& +a.element.val(f.value)},selected:function(c,f){var h=f.item.data("item.autocomplete"),i=a.previous;if(a.element[0]!==b.activeElement){a.element.focus();a.previous=i;setTimeout(function(){a.previous=i;a.selectedItem=h},1)}false!==a._trigger("select",c,{item:h})&&a.element.val(h.value);a.term=a.element.val();a.close(c);a.selectedItem=h},blur:function(){a.menu.element.is(":visible")&&a.element.val()!==a.term&&a.element.val(a.term)}}).zIndex(this.element.zIndex()+1).css({top:0,left:0}).hide().data("menu"); +d.fn.bgiframe&&this.menu.element.bgiframe()},destroy:function(){this.element.removeClass("ui-autocomplete-input").removeAttr("autocomplete").removeAttr("role").removeAttr("aria-autocomplete").removeAttr("aria-haspopup");this.menu.element.remove();d.Widget.prototype.destroy.call(this)},_setOption:function(a,b){d.Widget.prototype._setOption.apply(this,arguments);a==="source"&&this._initSource();if(a==="appendTo")this.menu.element.appendTo(d(b||"body",this.element[0].ownerDocument)[0]);a==="disabled"&& +b&&this.xhr&&this.xhr.abort()},_initSource:function(){var a=this,b,g;if(d.isArray(this.options.source)){b=this.options.source;this.source=function(c,f){f(d.ui.autocomplete.filter(b,c.term))}}else if(typeof this.options.source==="string"){g=this.options.source;this.source=function(c,f){a.xhr&&a.xhr.abort();a.xhr=d.ajax({url:g,data:c,dataType:"json",autocompleteRequest:++e,success:function(h){this.autocompleteRequest===e&&f(h)},error:function(){this.autocompleteRequest===e&&f([])}})}}else this.source= +this.options.source},search:function(a,b){a=a!=null?a:this.element.val();this.term=this.element.val();if(a.length").data("item.autocomplete",b).append(d("").text(b.label)).appendTo(a)},_move:function(a,b){if(this.menu.element.is(":visible"))if(this.menu.first()&&/^previous/.test(a)||this.menu.last()&&/^next/.test(a)){this.element.val(this.term);this.menu.deactivate()}else this.menu[a](b);else this.search(null,b)},widget:function(){return this.menu.element}});d.extend(d.ui.autocomplete,{escapeRegex:function(a){return a.replace(/[-[\]{}()*+?.,\\^$|#\s]/g, +"\\$&")},filter:function(a,b){var g=new RegExp(d.ui.autocomplete.escapeRegex(b),"i");return d.grep(a,function(c){return g.test(c.label||c.value||c)})}})})(jQuery); +(function(d){d.widget("ui.menu",{_create:function(){var e=this;this.element.addClass("ui-menu ui-widget ui-widget-content ui-corner-all").attr({role:"listbox","aria-activedescendant":"ui-active-menuitem"}).click(function(a){if(d(a.target).closest(".ui-menu-item a").length){a.preventDefault();e.select(a)}});this.refresh()},refresh:function(){var e=this;this.element.children("li:not(.ui-menu-item):has(a)").addClass("ui-menu-item").attr("role","menuitem").children("a").addClass("ui-corner-all").attr("tabindex", +-1).mouseenter(function(a){e.activate(a,d(this).parent())}).mouseleave(function(){e.deactivate()})},activate:function(e,a){this.deactivate();if(this.hasScroll()){var b=a.offset().top-this.element.offset().top,g=this.element.attr("scrollTop"),c=this.element.height();if(b<0)this.element.attr("scrollTop",g+b);else b>=c&&this.element.attr("scrollTop",g+b-c+a.height())}this.active=a.eq(0).children("a").addClass("ui-state-hover").attr("id","ui-active-menuitem").end();this._trigger("focus",e,{item:a})}, +deactivate:function(){if(this.active){this.active.children("a").removeClass("ui-state-hover").removeAttr("id");this._trigger("blur");this.active=null}},next:function(e){this.move("next",".ui-menu-item:first",e)},previous:function(e){this.move("prev",".ui-menu-item:last",e)},first:function(){return this.active&&!this.active.prevAll(".ui-menu-item").length},last:function(){return this.active&&!this.active.nextAll(".ui-menu-item").length},move:function(e,a,b){if(this.active){e=this.active[e+"All"](".ui-menu-item").eq(0); +e.length?this.activate(b,e):this.activate(b,this.element.children(a))}else this.activate(b,this.element.children(a))},nextPage:function(e){if(this.hasScroll())if(!this.active||this.last())this.activate(e,this.element.children(".ui-menu-item:first"));else{var a=this.active.offset().top,b=this.element.height(),g=this.element.children(".ui-menu-item").filter(function(){var c=d(this).offset().top-a-b+d(this).height();return c<10&&c>-10});g.length||(g=this.element.children(".ui-menu-item:last"));this.activate(e, +g)}else this.activate(e,this.element.children(".ui-menu-item").filter(!this.active||this.last()?":first":":last"))},previousPage:function(e){if(this.hasScroll())if(!this.active||this.first())this.activate(e,this.element.children(".ui-menu-item:last"));else{var a=this.active.offset().top,b=this.element.height();result=this.element.children(".ui-menu-item").filter(function(){var g=d(this).offset().top-a+b-d(this).height();return g<10&&g>-10});result.length||(result=this.element.children(".ui-menu-item:first")); +this.activate(e,result)}else this.activate(e,this.element.children(".ui-menu-item").filter(!this.active||this.first()?":last":":first"))},hasScroll:function(){return this.element.height()").addClass("ui-button-text").html(this.options.label).appendTo(b.empty()).text(),d=this.options.icons,f=d.primary&&d.secondary,e=[];if(d.primary||d.secondary){if(this.options.text)e.push("ui-button-text-icon"+(f?"s":d.primary?"-primary":"-secondary"));d.primary&&b.prepend("");d.secondary&&b.append("");if(!this.options.text){e.push(f?"ui-button-icons-only": +"ui-button-icon-only");this.hasTitle||b.attr("title",c)}}else e.push("ui-button-text-only");b.addClass(e.join(" "))}}});a.widget("ui.buttonset",{options:{items:":button, :submit, :reset, :checkbox, :radio, a, :data(button)"},_create:function(){this.element.addClass("ui-buttonset")},_init:function(){this.refresh()},_setOption:function(b,c){b==="disabled"&&this.buttons.button("option",b,c);a.Widget.prototype._setOption.apply(this,arguments)},refresh:function(){this.buttons=this.element.find(this.options.items).filter(":ui-button").button("refresh").end().not(":ui-button").button().end().map(function(){return a(this).button("widget")[0]}).removeClass("ui-corner-all ui-corner-left ui-corner-right").filter(":first").addClass("ui-corner-left").end().filter(":last").addClass("ui-corner-right").end().end()}, +destroy:function(){this.element.removeClass("ui-buttonset");this.buttons.map(function(){return a(this).button("widget")[0]}).removeClass("ui-corner-left ui-corner-right").end().button("destroy");a.Widget.prototype.destroy.call(this)}})})(jQuery); +;/* + * jQuery UI Dialog 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Dialog + * + * Depends: + * jquery.ui.core.js + * jquery.ui.widget.js + * jquery.ui.button.js + * jquery.ui.draggable.js + * jquery.ui.mouse.js + * jquery.ui.position.js + * jquery.ui.resizable.js + */ +(function(c,l){var m={buttons:true,height:true,maxHeight:true,maxWidth:true,minHeight:true,minWidth:true,width:true},n={maxHeight:true,maxWidth:true,minHeight:true,minWidth:true},o=c.attrFn||{val:true,css:true,html:true,text:true,data:true,width:true,height:true,offset:true,click:true};c.widget("ui.dialog",{options:{autoOpen:true,buttons:{},closeOnEscape:true,closeText:"close",dialogClass:"",draggable:true,hide:null,height:"auto",maxHeight:false,maxWidth:false,minHeight:150,minWidth:150,modal:false, +position:{my:"center",at:"center",collision:"fit",using:function(a){var b=c(this).css(a).offset().top;b<0&&c(this).css("top",a.top-b)}},resizable:true,show:null,stack:true,title:"",width:300,zIndex:1E3},_create:function(){this.originalTitle=this.element.attr("title");if(typeof this.originalTitle!=="string")this.originalTitle="";this.options.title=this.options.title||this.originalTitle;var a=this,b=a.options,d=b.title||" ",e=c.ui.dialog.getTitleId(a.element),g=(a.uiDialog=c("
      ")).appendTo(document.body).hide().addClass("ui-dialog ui-widget ui-widget-content ui-corner-all "+ +b.dialogClass).css({zIndex:b.zIndex}).attr("tabIndex",-1).css("outline",0).keydown(function(i){if(b.closeOnEscape&&i.keyCode&&i.keyCode===c.ui.keyCode.ESCAPE){a.close(i);i.preventDefault()}}).attr({role:"dialog","aria-labelledby":e}).mousedown(function(i){a.moveToTop(false,i)});a.element.show().removeAttr("title").addClass("ui-dialog-content ui-widget-content").appendTo(g);var f=(a.uiDialogTitlebar=c("
      ")).addClass("ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix").prependTo(g), +h=c('').addClass("ui-dialog-titlebar-close ui-corner-all").attr("role","button").hover(function(){h.addClass("ui-state-hover")},function(){h.removeClass("ui-state-hover")}).focus(function(){h.addClass("ui-state-focus")}).blur(function(){h.removeClass("ui-state-focus")}).click(function(i){a.close(i);return false}).appendTo(f);(a.uiDialogTitlebarCloseText=c("")).addClass("ui-icon ui-icon-closethick").text(b.closeText).appendTo(h);c("").addClass("ui-dialog-title").attr("id", +e).html(d).prependTo(f);if(c.isFunction(b.beforeclose)&&!c.isFunction(b.beforeClose))b.beforeClose=b.beforeclose;f.find("*").add(f).disableSelection();b.draggable&&c.fn.draggable&&a._makeDraggable();b.resizable&&c.fn.resizable&&a._makeResizable();a._createButtons(b.buttons);a._isOpen=false;c.fn.bgiframe&&g.bgiframe()},_init:function(){this.options.autoOpen&&this.open()},destroy:function(){var a=this;a.overlay&&a.overlay.destroy();a.uiDialog.hide();a.element.unbind(".dialog").removeData("dialog").removeClass("ui-dialog-content ui-widget-content").hide().appendTo("body"); +a.uiDialog.remove();a.originalTitle&&a.element.attr("title",a.originalTitle);return a},widget:function(){return this.uiDialog},close:function(a){var b=this,d,e;if(false!==b._trigger("beforeClose",a)){b.overlay&&b.overlay.destroy();b.uiDialog.unbind("keypress.ui-dialog");b._isOpen=false;if(b.options.hide)b.uiDialog.hide(b.options.hide,function(){b._trigger("close",a)});else{b.uiDialog.hide();b._trigger("close",a)}c.ui.dialog.overlay.resize();if(b.options.modal){d=0;c(".ui-dialog").each(function(){if(this!== +b.uiDialog[0]){e=c(this).css("z-index");isNaN(e)||(d=Math.max(d,e))}});c.ui.dialog.maxZ=d}return b}},isOpen:function(){return this._isOpen},moveToTop:function(a,b){var d=this,e=d.options;if(e.modal&&!a||!e.stack&&!e.modal)return d._trigger("focus",b);if(e.zIndex>c.ui.dialog.maxZ)c.ui.dialog.maxZ=e.zIndex;if(d.overlay){c.ui.dialog.maxZ+=1;d.overlay.$el.css("z-index",c.ui.dialog.overlay.maxZ=c.ui.dialog.maxZ)}a={scrollTop:d.element.attr("scrollTop"),scrollLeft:d.element.attr("scrollLeft")};c.ui.dialog.maxZ+= +1;d.uiDialog.css("z-index",c.ui.dialog.maxZ);d.element.attr(a);d._trigger("focus",b);return d},open:function(){if(!this._isOpen){var a=this,b=a.options,d=a.uiDialog;a.overlay=b.modal?new c.ui.dialog.overlay(a):null;a._size();a._position(b.position);d.show(b.show);a.moveToTop(true);b.modal&&d.bind("keypress.ui-dialog",function(e){if(e.keyCode===c.ui.keyCode.TAB){var g=c(":tabbable",this),f=g.filter(":first");g=g.filter(":last");if(e.target===g[0]&&!e.shiftKey){f.focus(1);return false}else if(e.target=== +f[0]&&e.shiftKey){g.focus(1);return false}}});c(a.element.find(":tabbable").get().concat(d.find(".ui-dialog-buttonpane :tabbable").get().concat(d.get()))).eq(0).focus();a._isOpen=true;a._trigger("open");return a}},_createButtons:function(a){var b=this,d=false,e=c("
      ").addClass("ui-dialog-buttonpane ui-widget-content ui-helper-clearfix"),g=c("
      ").addClass("ui-dialog-buttonset").appendTo(e);b.uiDialog.find(".ui-dialog-buttonpane").remove();typeof a==="object"&&a!==null&&c.each(a, +function(){return!(d=true)});if(d){c.each(a,function(f,h){h=c.isFunction(h)?{click:h,text:f}:h;var i=c('').click(function(){h.click.apply(b.element[0],arguments)}).appendTo(g);c.each(h,function(j,k){if(j!=="click")j in o?i[j](k):i.attr(j,k)});c.fn.button&&i.button()});e.appendTo(b.uiDialog)}},_makeDraggable:function(){function a(f){return{position:f.position,offset:f.offset}}var b=this,d=b.options,e=c(document),g;b.uiDialog.draggable({cancel:".ui-dialog-content, .ui-dialog-titlebar-close", +handle:".ui-dialog-titlebar",containment:"document",start:function(f,h){g=d.height==="auto"?"auto":c(this).height();c(this).height(c(this).height()).addClass("ui-dialog-dragging");b._trigger("dragStart",f,a(h))},drag:function(f,h){b._trigger("drag",f,a(h))},stop:function(f,h){d.position=[h.position.left-e.scrollLeft(),h.position.top-e.scrollTop()];c(this).removeClass("ui-dialog-dragging").height(g);b._trigger("dragStop",f,a(h));c.ui.dialog.overlay.resize()}})},_makeResizable:function(a){function b(f){return{originalPosition:f.originalPosition, +originalSize:f.originalSize,position:f.position,size:f.size}}a=a===l?this.options.resizable:a;var d=this,e=d.options,g=d.uiDialog.css("position");a=typeof a==="string"?a:"n,e,s,w,se,sw,ne,nw";d.uiDialog.resizable({cancel:".ui-dialog-content",containment:"document",alsoResize:d.element,maxWidth:e.maxWidth,maxHeight:e.maxHeight,minWidth:e.minWidth,minHeight:d._minHeight(),handles:a,start:function(f,h){c(this).addClass("ui-dialog-resizing");d._trigger("resizeStart",f,b(h))},resize:function(f,h){d._trigger("resize", +f,b(h))},stop:function(f,h){c(this).removeClass("ui-dialog-resizing");e.height=c(this).height();e.width=c(this).width();d._trigger("resizeStop",f,b(h));c.ui.dialog.overlay.resize()}}).css("position",g).find(".ui-resizable-se").addClass("ui-icon ui-icon-grip-diagonal-se")},_minHeight:function(){var a=this.options;return a.height==="auto"?a.minHeight:Math.min(a.minHeight,a.height)},_position:function(a){var b=[],d=[0,0],e;if(a){if(typeof a==="string"||typeof a==="object"&&"0"in a){b=a.split?a.split(" "): +[a[0],a[1]];if(b.length===1)b[1]=b[0];c.each(["left","top"],function(g,f){if(+b[g]===b[g]){d[g]=b[g];b[g]=f}});a={my:b.join(" "),at:b.join(" "),offset:d.join(" ")}}a=c.extend({},c.ui.dialog.prototype.options.position,a)}else a=c.ui.dialog.prototype.options.position;(e=this.uiDialog.is(":visible"))||this.uiDialog.show();this.uiDialog.css({top:0,left:0}).position(c.extend({of:window},a));e||this.uiDialog.hide()},_setOptions:function(a){var b=this,d={},e=false;c.each(a,function(g,f){b._setOption(g,f); +if(g in m)e=true;if(g in n)d[g]=f});e&&this._size();this.uiDialog.is(":data(resizable)")&&this.uiDialog.resizable("option",d)},_setOption:function(a,b){var d=this,e=d.uiDialog;switch(a){case "beforeclose":a="beforeClose";break;case "buttons":d._createButtons(b);break;case "closeText":d.uiDialogTitlebarCloseText.text(""+b);break;case "dialogClass":e.removeClass(d.options.dialogClass).addClass("ui-dialog ui-widget ui-widget-content ui-corner-all "+b);break;case "disabled":b?e.addClass("ui-dialog-disabled"): +e.removeClass("ui-dialog-disabled");break;case "draggable":var g=e.is(":data(draggable)");g&&!b&&e.draggable("destroy");!g&&b&&d._makeDraggable();break;case "position":d._position(b);break;case "resizable":(g=e.is(":data(resizable)"))&&!b&&e.resizable("destroy");g&&typeof b==="string"&&e.resizable("option","handles",b);!g&&b!==false&&d._makeResizable(b);break;case "title":c(".ui-dialog-title",d.uiDialogTitlebar).html(""+(b||" "));break}c.Widget.prototype._setOption.apply(d,arguments)},_size:function(){var a= +this.options,b,d,e=this.uiDialog.is(":visible");this.element.show().css({width:"auto",minHeight:0,height:0});if(a.minWidth>a.width)a.width=a.minWidth;b=this.uiDialog.css({height:"auto",width:a.width}).height();d=Math.max(0,a.minHeight-b);if(a.height==="auto")if(c.support.minHeight)this.element.css({minHeight:d,height:"auto"});else{this.uiDialog.show();a=this.element.css("height","auto").height();e||this.uiDialog.hide();this.element.height(Math.max(a,d))}else this.element.height(Math.max(a.height- +b,0));this.uiDialog.is(":data(resizable)")&&this.uiDialog.resizable("option","minHeight",this._minHeight())}});c.extend(c.ui.dialog,{version:"1.8.12",uuid:0,maxZ:0,getTitleId:function(a){a=a.attr("id");if(!a){this.uuid+=1;a=this.uuid}return"ui-dialog-title-"+a},overlay:function(a){this.$el=c.ui.dialog.overlay.create(a)}});c.extend(c.ui.dialog.overlay,{instances:[],oldInstances:[],maxZ:0,events:c.map("focus,mousedown,mouseup,keydown,keypress,click".split(","),function(a){return a+".dialog-overlay"}).join(" "), +create:function(a){if(this.instances.length===0){setTimeout(function(){c.ui.dialog.overlay.instances.length&&c(document).bind(c.ui.dialog.overlay.events,function(d){if(c(d.target).zIndex()").addClass("ui-widget-overlay")).appendTo(document.body).css({width:this.width(), +height:this.height()});c.fn.bgiframe&&b.bgiframe();this.instances.push(b);return b},destroy:function(a){var b=c.inArray(a,this.instances);b!=-1&&this.oldInstances.push(this.instances.splice(b,1)[0]);this.instances.length===0&&c([document,window]).unbind(".dialog-overlay");a.remove();var d=0;c.each(this.instances,function(){d=Math.max(d,this.css("z-index"))});this.maxZ=d},height:function(){var a,b;if(c.browser.msie&&c.browser.version<7){a=Math.max(document.documentElement.scrollHeight,document.body.scrollHeight); +b=Math.max(document.documentElement.offsetHeight,document.body.offsetHeight);return a");if(!a.values)a.values=[this._valueMin(),this._valueMin()];if(a.values.length&&a.values.length!==2)a.values=[a.values[0],a.values[0]]}else this.range=d("
      ");this.range.appendTo(this.element).addClass("ui-slider-range");if(a.range==="min"||a.range==="max")this.range.addClass("ui-slider-range-"+a.range);this.range.addClass("ui-widget-header")}d(".ui-slider-handle",this.element).length===0&&d("").appendTo(this.element).addClass("ui-slider-handle"); +if(a.values&&a.values.length)for(;d(".ui-slider-handle",this.element).length").appendTo(this.element).addClass("ui-slider-handle");this.handles=d(".ui-slider-handle",this.element).addClass("ui-state-default ui-corner-all");this.handle=this.handles.eq(0);this.handles.add(this.range).filter("a").click(function(c){c.preventDefault()}).hover(function(){a.disabled||d(this).addClass("ui-state-hover")},function(){d(this).removeClass("ui-state-hover")}).focus(function(){if(a.disabled)d(this).blur(); +else{d(".ui-slider .ui-state-focus").removeClass("ui-state-focus");d(this).addClass("ui-state-focus")}}).blur(function(){d(this).removeClass("ui-state-focus")});this.handles.each(function(c){d(this).data("index.ui-slider-handle",c)});this.handles.keydown(function(c){var e=true,f=d(this).data("index.ui-slider-handle"),h,g,i;if(!b.options.disabled){switch(c.keyCode){case d.ui.keyCode.HOME:case d.ui.keyCode.END:case d.ui.keyCode.PAGE_UP:case d.ui.keyCode.PAGE_DOWN:case d.ui.keyCode.UP:case d.ui.keyCode.RIGHT:case d.ui.keyCode.DOWN:case d.ui.keyCode.LEFT:e= +false;if(!b._keySliding){b._keySliding=true;d(this).addClass("ui-state-active");h=b._start(c,f);if(h===false)return}break}i=b.options.step;h=b.options.values&&b.options.values.length?(g=b.values(f)):(g=b.value());switch(c.keyCode){case d.ui.keyCode.HOME:g=b._valueMin();break;case d.ui.keyCode.END:g=b._valueMax();break;case d.ui.keyCode.PAGE_UP:g=b._trimAlignValue(h+(b._valueMax()-b._valueMin())/5);break;case d.ui.keyCode.PAGE_DOWN:g=b._trimAlignValue(h-(b._valueMax()-b._valueMin())/5);break;case d.ui.keyCode.UP:case d.ui.keyCode.RIGHT:if(h=== +b._valueMax())return;g=b._trimAlignValue(h+i);break;case d.ui.keyCode.DOWN:case d.ui.keyCode.LEFT:if(h===b._valueMin())return;g=b._trimAlignValue(h-i);break}b._slide(c,f,g);return e}}).keyup(function(c){var e=d(this).data("index.ui-slider-handle");if(b._keySliding){b._keySliding=false;b._stop(c,e);b._change(c,e);d(this).removeClass("ui-state-active")}});this._refreshValue();this._animateOff=false},destroy:function(){this.handles.remove();this.range.remove();this.element.removeClass("ui-slider ui-slider-horizontal ui-slider-vertical ui-slider-disabled ui-widget ui-widget-content ui-corner-all").removeData("slider").unbind(".slider"); +this._mouseDestroy();return this},_mouseCapture:function(b){var a=this.options,c,e,f,h,g;if(a.disabled)return false;this.elementSize={width:this.element.outerWidth(),height:this.element.outerHeight()};this.elementOffset=this.element.offset();c=this._normValueFromMouse({x:b.pageX,y:b.pageY});e=this._valueMax()-this._valueMin()+1;h=this;this.handles.each(function(i){var j=Math.abs(c-h.values(i));if(e>j){e=j;f=d(this);g=i}});if(a.range===true&&this.values(1)===a.min){g+=1;f=d(this.handles[g])}if(this._start(b, +g)===false)return false;this._mouseSliding=true;h._handleIndex=g;f.addClass("ui-state-active").focus();a=f.offset();this._clickOffset=!d(b.target).parents().andSelf().is(".ui-slider-handle")?{left:0,top:0}:{left:b.pageX-a.left-f.width()/2,top:b.pageY-a.top-f.height()/2-(parseInt(f.css("borderTopWidth"),10)||0)-(parseInt(f.css("borderBottomWidth"),10)||0)+(parseInt(f.css("marginTop"),10)||0)};this.handles.hasClass("ui-state-hover")||this._slide(b,g,c);return this._animateOff=true},_mouseStart:function(){return true}, +_mouseDrag:function(b){var a=this._normValueFromMouse({x:b.pageX,y:b.pageY});this._slide(b,this._handleIndex,a);return false},_mouseStop:function(b){this.handles.removeClass("ui-state-active");this._mouseSliding=false;this._stop(b,this._handleIndex);this._change(b,this._handleIndex);this._clickOffset=this._handleIndex=null;return this._animateOff=false},_detectOrientation:function(){this.orientation=this.options.orientation==="vertical"?"vertical":"horizontal"},_normValueFromMouse:function(b){var a; +if(this.orientation==="horizontal"){a=this.elementSize.width;b=b.x-this.elementOffset.left-(this._clickOffset?this._clickOffset.left:0)}else{a=this.elementSize.height;b=b.y-this.elementOffset.top-(this._clickOffset?this._clickOffset.top:0)}a=b/a;if(a>1)a=1;if(a<0)a=0;if(this.orientation==="vertical")a=1-a;b=this._valueMax()-this._valueMin();return this._trimAlignValue(this._valueMin()+a*b)},_start:function(b,a){var c={handle:this.handles[a],value:this.value()};if(this.options.values&&this.options.values.length){c.value= +this.values(a);c.values=this.values()}return this._trigger("start",b,c)},_slide:function(b,a,c){var e;if(this.options.values&&this.options.values.length){e=this.values(a?0:1);if(this.options.values.length===2&&this.options.range===true&&(a===0&&c>e||a===1&&c1){this.options.values[b]=this._trimAlignValue(a);this._refreshValue();this._change(null,b)}else if(arguments.length)if(d.isArray(arguments[0])){c=this.options.values;e=arguments[0];for(f=0;f=this._valueMax())return this._valueMax();var a=this.options.step>0?this.options.step:1,c=(b-this._valueMin())%a;alignValue=b-c;if(Math.abs(c)*2>=a)alignValue+=c>0?a:-a;return parseFloat(alignValue.toFixed(5))},_valueMin:function(){return this.options.min},_valueMax:function(){return this.options.max}, +_refreshValue:function(){var b=this.options.range,a=this.options,c=this,e=!this._animateOff?a.animate:false,f,h={},g,i,j,l;if(this.options.values&&this.options.values.length)this.handles.each(function(k){f=(c.values(k)-c._valueMin())/(c._valueMax()-c._valueMin())*100;h[c.orientation==="horizontal"?"left":"bottom"]=f+"%";d(this).stop(1,1)[e?"animate":"css"](h,a.animate);if(c.options.range===true)if(c.orientation==="horizontal"){if(k===0)c.range.stop(1,1)[e?"animate":"css"]({left:f+"%"},a.animate); +if(k===1)c.range[e?"animate":"css"]({width:f-g+"%"},{queue:false,duration:a.animate})}else{if(k===0)c.range.stop(1,1)[e?"animate":"css"]({bottom:f+"%"},a.animate);if(k===1)c.range[e?"animate":"css"]({height:f-g+"%"},{queue:false,duration:a.animate})}g=f});else{i=this.value();j=this._valueMin();l=this._valueMax();f=l!==j?(i-j)/(l-j)*100:0;h[c.orientation==="horizontal"?"left":"bottom"]=f+"%";this.handle.stop(1,1)[e?"animate":"css"](h,a.animate);if(b==="min"&&this.orientation==="horizontal")this.range.stop(1, +1)[e?"animate":"css"]({width:f+"%"},a.animate);if(b==="max"&&this.orientation==="horizontal")this.range[e?"animate":"css"]({width:100-f+"%"},{queue:false,duration:a.animate});if(b==="min"&&this.orientation==="vertical")this.range.stop(1,1)[e?"animate":"css"]({height:f+"%"},a.animate);if(b==="max"&&this.orientation==="vertical")this.range[e?"animate":"css"]({height:100-f+"%"},{queue:false,duration:a.animate})}}});d.extend(d.ui.slider,{version:"1.8.12"})})(jQuery); +;/* + * jQuery UI Tabs 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Tabs + * + * Depends: + * jquery.ui.core.js + * jquery.ui.widget.js + */ +(function(d,p){function u(){return++v}function w(){return++x}var v=0,x=0;d.widget("ui.tabs",{options:{add:null,ajaxOptions:null,cache:false,cookie:null,collapsible:false,disable:null,disabled:[],enable:null,event:"click",fx:null,idPrefix:"ui-tabs-",load:null,panelTemplate:"
      ",remove:null,select:null,show:null,spinner:"Loading…",tabTemplate:"
    • #{label}
    • "},_create:function(){this._tabify(true)},_setOption:function(b,e){if(b=="selected")this.options.collapsible&& +e==this.options.selected||this.select(e);else{this.options[b]=e;this._tabify()}},_tabId:function(b){return b.title&&b.title.replace(/\s/g,"_").replace(/[^\w\u00c0-\uFFFF-]/g,"")||this.options.idPrefix+u()},_sanitizeSelector:function(b){return b.replace(/:/g,"\\:")},_cookie:function(){var b=this.cookie||(this.cookie=this.options.cookie.name||"ui-tabs-"+w());return d.cookie.apply(null,[b].concat(d.makeArray(arguments)))},_ui:function(b,e){return{tab:b,panel:e,index:this.anchors.index(b)}},_cleanup:function(){this.lis.filter(".ui-state-processing").removeClass("ui-state-processing").find("span:data(label.tabs)").each(function(){var b= +d(this);b.html(b.data("label.tabs")).removeData("label.tabs")})},_tabify:function(b){function e(g,f){g.css("display","");!d.support.opacity&&f.opacity&&g[0].style.removeAttribute("filter")}var a=this,c=this.options,h=/^#.+/;this.list=this.element.find("ol,ul").eq(0);this.lis=d(" > li:has(a[href])",this.list);this.anchors=this.lis.map(function(){return d("a",this)[0]});this.panels=d([]);this.anchors.each(function(g,f){var i=d(f).attr("href"),l=i.split("#")[0],q;if(l&&(l===location.toString().split("#")[0]|| +(q=d("base")[0])&&l===q.href)){i=f.hash;f.href=i}if(h.test(i))a.panels=a.panels.add(a.element.find(a._sanitizeSelector(i)));else if(i&&i!=="#"){d.data(f,"href.tabs",i);d.data(f,"load.tabs",i.replace(/#.*$/,""));i=a._tabId(f);f.href="#"+i;f=a.element.find("#"+i);if(!f.length){f=d(c.panelTemplate).attr("id",i).addClass("ui-tabs-panel ui-widget-content ui-corner-bottom").insertAfter(a.panels[g-1]||a.list);f.data("destroy.tabs",true)}a.panels=a.panels.add(f)}else c.disabled.push(g)});if(b){this.element.addClass("ui-tabs ui-widget ui-widget-content ui-corner-all"); +this.list.addClass("ui-tabs-nav ui-helper-reset ui-helper-clearfix ui-widget-header ui-corner-all");this.lis.addClass("ui-state-default ui-corner-top");this.panels.addClass("ui-tabs-panel ui-widget-content ui-corner-bottom");if(c.selected===p){location.hash&&this.anchors.each(function(g,f){if(f.hash==location.hash){c.selected=g;return false}});if(typeof c.selected!=="number"&&c.cookie)c.selected=parseInt(a._cookie(),10);if(typeof c.selected!=="number"&&this.lis.filter(".ui-tabs-selected").length)c.selected= +this.lis.index(this.lis.filter(".ui-tabs-selected"));c.selected=c.selected||(this.lis.length?0:-1)}else if(c.selected===null)c.selected=-1;c.selected=c.selected>=0&&this.anchors[c.selected]||c.selected<0?c.selected:0;c.disabled=d.unique(c.disabled.concat(d.map(this.lis.filter(".ui-state-disabled"),function(g){return a.lis.index(g)}))).sort();d.inArray(c.selected,c.disabled)!=-1&&c.disabled.splice(d.inArray(c.selected,c.disabled),1);this.panels.addClass("ui-tabs-hide");this.lis.removeClass("ui-tabs-selected ui-state-active"); +if(c.selected>=0&&this.anchors.length){a.element.find(a._sanitizeSelector(a.anchors[c.selected].hash)).removeClass("ui-tabs-hide");this.lis.eq(c.selected).addClass("ui-tabs-selected ui-state-active");a.element.queue("tabs",function(){a._trigger("show",null,a._ui(a.anchors[c.selected],a.element.find(a._sanitizeSelector(a.anchors[c.selected].hash))[0]))});this.load(c.selected)}d(window).bind("unload",function(){a.lis.add(a.anchors).unbind(".tabs");a.lis=a.anchors=a.panels=null})}else c.selected=this.lis.index(this.lis.filter(".ui-tabs-selected")); +this.element[c.collapsible?"addClass":"removeClass"]("ui-tabs-collapsible");c.cookie&&this._cookie(c.selected,c.cookie);b=0;for(var j;j=this.lis[b];b++)d(j)[d.inArray(b,c.disabled)!=-1&&!d(j).hasClass("ui-tabs-selected")?"addClass":"removeClass"]("ui-state-disabled");c.cache===false&&this.anchors.removeData("cache.tabs");this.lis.add(this.anchors).unbind(".tabs");if(c.event!=="mouseover"){var k=function(g,f){f.is(":not(.ui-state-disabled)")&&f.addClass("ui-state-"+g)},n=function(g,f){f.removeClass("ui-state-"+ +g)};this.lis.bind("mouseover.tabs",function(){k("hover",d(this))});this.lis.bind("mouseout.tabs",function(){n("hover",d(this))});this.anchors.bind("focus.tabs",function(){k("focus",d(this).closest("li"))});this.anchors.bind("blur.tabs",function(){n("focus",d(this).closest("li"))})}var m,o;if(c.fx)if(d.isArray(c.fx)){m=c.fx[0];o=c.fx[1]}else m=o=c.fx;var r=o?function(g,f){d(g).closest("li").addClass("ui-tabs-selected ui-state-active");f.hide().removeClass("ui-tabs-hide").animate(o,o.duration||"normal", +function(){e(f,o);a._trigger("show",null,a._ui(g,f[0]))})}:function(g,f){d(g).closest("li").addClass("ui-tabs-selected ui-state-active");f.removeClass("ui-tabs-hide");a._trigger("show",null,a._ui(g,f[0]))},s=m?function(g,f){f.animate(m,m.duration||"normal",function(){a.lis.removeClass("ui-tabs-selected ui-state-active");f.addClass("ui-tabs-hide");e(f,m);a.element.dequeue("tabs")})}:function(g,f){a.lis.removeClass("ui-tabs-selected ui-state-active");f.addClass("ui-tabs-hide");a.element.dequeue("tabs")}; +this.anchors.bind(c.event+".tabs",function(){var g=this,f=d(g).closest("li"),i=a.panels.filter(":not(.ui-tabs-hide)"),l=a.element.find(a._sanitizeSelector(g.hash));if(f.hasClass("ui-tabs-selected")&&!c.collapsible||f.hasClass("ui-state-disabled")||f.hasClass("ui-state-processing")||a.panels.filter(":animated").length||a._trigger("select",null,a._ui(this,l[0]))===false){this.blur();return false}c.selected=a.anchors.index(this);a.abort();if(c.collapsible)if(f.hasClass("ui-tabs-selected")){c.selected= +-1;c.cookie&&a._cookie(c.selected,c.cookie);a.element.queue("tabs",function(){s(g,i)}).dequeue("tabs");this.blur();return false}else if(!i.length){c.cookie&&a._cookie(c.selected,c.cookie);a.element.queue("tabs",function(){r(g,l)});a.load(a.anchors.index(this));this.blur();return false}c.cookie&&a._cookie(c.selected,c.cookie);if(l.length){i.length&&a.element.queue("tabs",function(){s(g,i)});a.element.queue("tabs",function(){r(g,l)});a.load(a.anchors.index(this))}else throw"jQuery UI Tabs: Mismatching fragment identifier."; +d.browser.msie&&this.blur()});this.anchors.bind("click.tabs",function(){return false})},_getIndex:function(b){if(typeof b=="string")b=this.anchors.index(this.anchors.filter("[href$="+b+"]"));return b},destroy:function(){var b=this.options;this.abort();this.element.unbind(".tabs").removeClass("ui-tabs ui-widget ui-widget-content ui-corner-all ui-tabs-collapsible").removeData("tabs");this.list.removeClass("ui-tabs-nav ui-helper-reset ui-helper-clearfix ui-widget-header ui-corner-all");this.anchors.each(function(){var e= +d.data(this,"href.tabs");if(e)this.href=e;var a=d(this).unbind(".tabs");d.each(["href","load","cache"],function(c,h){a.removeData(h+".tabs")})});this.lis.unbind(".tabs").add(this.panels).each(function(){d.data(this,"destroy.tabs")?d(this).remove():d(this).removeClass("ui-state-default ui-corner-top ui-tabs-selected ui-state-active ui-state-hover ui-state-focus ui-state-disabled ui-tabs-panel ui-widget-content ui-corner-bottom ui-tabs-hide")});b.cookie&&this._cookie(null,b.cookie);return this},add:function(b, +e,a){if(a===p)a=this.anchors.length;var c=this,h=this.options;e=d(h.tabTemplate.replace(/#\{href\}/g,b).replace(/#\{label\}/g,e));b=!b.indexOf("#")?b.replace("#",""):this._tabId(d("a",e)[0]);e.addClass("ui-state-default ui-corner-top").data("destroy.tabs",true);var j=c.element.find("#"+b);j.length||(j=d(h.panelTemplate).attr("id",b).data("destroy.tabs",true));j.addClass("ui-tabs-panel ui-widget-content ui-corner-bottom ui-tabs-hide");if(a>=this.lis.length){e.appendTo(this.list);j.appendTo(this.list[0].parentNode)}else{e.insertBefore(this.lis[a]); +j.insertBefore(this.panels[a])}h.disabled=d.map(h.disabled,function(k){return k>=a?++k:k});this._tabify();if(this.anchors.length==1){h.selected=0;e.addClass("ui-tabs-selected ui-state-active");j.removeClass("ui-tabs-hide");this.element.queue("tabs",function(){c._trigger("show",null,c._ui(c.anchors[0],c.panels[0]))});this.load(0)}this._trigger("add",null,this._ui(this.anchors[a],this.panels[a]));return this},remove:function(b){b=this._getIndex(b);var e=this.options,a=this.lis.eq(b).remove(),c=this.panels.eq(b).remove(); +if(a.hasClass("ui-tabs-selected")&&this.anchors.length>1)this.select(b+(b+1=b?--h:h});this._tabify();this._trigger("remove",null,this._ui(a.find("a")[0],c[0]));return this},enable:function(b){b=this._getIndex(b);var e=this.options;if(d.inArray(b,e.disabled)!=-1){this.lis.eq(b).removeClass("ui-state-disabled");e.disabled=d.grep(e.disabled,function(a){return a!=b});this._trigger("enable",null, +this._ui(this.anchors[b],this.panels[b]));return this}},disable:function(b){b=this._getIndex(b);var e=this.options;if(b!=e.selected){this.lis.eq(b).addClass("ui-state-disabled");e.disabled.push(b);e.disabled.sort();this._trigger("disable",null,this._ui(this.anchors[b],this.panels[b]))}return this},select:function(b){b=this._getIndex(b);if(b==-1)if(this.options.collapsible&&this.options.selected!=-1)b=this.options.selected;else return this;this.anchors.eq(b).trigger(this.options.event+".tabs");return this}, +load:function(b){b=this._getIndex(b);var e=this,a=this.options,c=this.anchors.eq(b)[0],h=d.data(c,"load.tabs");this.abort();if(!h||this.element.queue("tabs").length!==0&&d.data(c,"cache.tabs"))this.element.dequeue("tabs");else{this.lis.eq(b).addClass("ui-state-processing");if(a.spinner){var j=d("span",c);j.data("label.tabs",j.html()).html(a.spinner)}this.xhr=d.ajax(d.extend({},a.ajaxOptions,{url:h,success:function(k,n){e.element.find(e._sanitizeSelector(c.hash)).html(k);e._cleanup();a.cache&&d.data(c, +"cache.tabs",true);e._trigger("load",null,e._ui(e.anchors[b],e.panels[b]));try{a.ajaxOptions.success(k,n)}catch(m){}},error:function(k,n){e._cleanup();e._trigger("load",null,e._ui(e.anchors[b],e.panels[b]));try{a.ajaxOptions.error(k,n,b,c)}catch(m){}}}));e.element.dequeue("tabs");return this}},abort:function(){this.element.queue([]);this.panels.stop(false,true);this.element.queue("tabs",this.element.queue("tabs").splice(-2,2));if(this.xhr){this.xhr.abort();delete this.xhr}this._cleanup();return this}, +url:function(b,e){this.anchors.eq(b).removeData("cache.tabs").data("load.tabs",e);return this},length:function(){return this.anchors.length}});d.extend(d.ui.tabs,{version:"1.8.12"});d.extend(d.ui.tabs.prototype,{rotation:null,rotate:function(b,e){var a=this,c=this.options,h=a._rotate||(a._rotate=function(j){clearTimeout(a.rotation);a.rotation=setTimeout(function(){var k=c.selected;a.select(++k')}function F(a,b){d.extend(a,b);for(var c in b)if(b[c]== +null||b[c]==A)a[c]=b[c];return a}d.extend(d.ui,{datepicker:{version:"1.8.12"}});var y=(new Date).getTime();d.extend(K.prototype,{markerClassName:"hasDatepicker",log:function(){this.debug&&console.log.apply("",arguments)},_widgetDatepicker:function(){return this.dpDiv},setDefaults:function(a){F(this._defaults,a||{});return this},_attachDatepicker:function(a,b){var c=null;for(var e in this._defaults){var f=a.getAttribute("date:"+e);if(f){c=c||{};try{c[e]=eval(f)}catch(h){c[e]=f}}}e=a.nodeName.toLowerCase(); +f=e=="div"||e=="span";if(!a.id){this.uuid+=1;a.id="dp"+this.uuid}var i=this._newInst(d(a),f);i.settings=d.extend({},b||{},c||{});if(e=="input")this._connectDatepicker(a,i);else f&&this._inlineDatepicker(a,i)},_newInst:function(a,b){return{id:a[0].id.replace(/([^A-Za-z0-9_-])/g,"\\\\$1"),input:a,selectedDay:0,selectedMonth:0,selectedYear:0,drawMonth:0,drawYear:0,inline:b,dpDiv:!b?this.dpDiv:d('
      ')}}, +_connectDatepicker:function(a,b){var c=d(a);b.append=d([]);b.trigger=d([]);if(!c.hasClass(this.markerClassName)){this._attachments(c,b);c.addClass(this.markerClassName).keydown(this._doKeyDown).keypress(this._doKeyPress).keyup(this._doKeyUp).bind("setData.datepicker",function(e,f,h){b.settings[f]=h}).bind("getData.datepicker",function(e,f){return this._get(b,f)});this._autoSize(b);d.data(a,"datepicker",b)}},_attachments:function(a,b){var c=this._get(b,"appendText"),e=this._get(b,"isRTL");b.append&& +b.append.remove();if(c){b.append=d(''+c+"");a[e?"before":"after"](b.append)}a.unbind("focus",this._showDatepicker);b.trigger&&b.trigger.remove();c=this._get(b,"showOn");if(c=="focus"||c=="both")a.focus(this._showDatepicker);if(c=="button"||c=="both"){c=this._get(b,"buttonText");var f=this._get(b,"buttonImage");b.trigger=d(this._get(b,"buttonImageOnly")?d("").addClass(this._triggerClass).attr({src:f,alt:c,title:c}):d('').addClass(this._triggerClass).html(f== +""?c:d("").attr({src:f,alt:c,title:c})));a[e?"before":"after"](b.trigger);b.trigger.click(function(){d.datepicker._datepickerShowing&&d.datepicker._lastInput==a[0]?d.datepicker._hideDatepicker():d.datepicker._showDatepicker(a[0]);return false})}},_autoSize:function(a){if(this._get(a,"autoSize")&&!a.inline){var b=new Date(2009,11,20),c=this._get(a,"dateFormat");if(c.match(/[DM]/)){var e=function(f){for(var h=0,i=0,g=0;gh){h=f[g].length;i=g}return i};b.setMonth(e(this._get(a, +c.match(/MM/)?"monthNames":"monthNamesShort")));b.setDate(e(this._get(a,c.match(/DD/)?"dayNames":"dayNamesShort"))+20-b.getDay())}a.input.attr("size",this._formatDate(a,b).length)}},_inlineDatepicker:function(a,b){var c=d(a);if(!c.hasClass(this.markerClassName)){c.addClass(this.markerClassName).append(b.dpDiv).bind("setData.datepicker",function(e,f,h){b.settings[f]=h}).bind("getData.datepicker",function(e,f){return this._get(b,f)});d.data(a,"datepicker",b);this._setDate(b,this._getDefaultDate(b), +true);this._updateDatepicker(b);this._updateAlternate(b);b.dpDiv.show()}},_dialogDatepicker:function(a,b,c,e,f){a=this._dialogInst;if(!a){this.uuid+=1;this._dialogInput=d('');this._dialogInput.keydown(this._doKeyDown);d("body").append(this._dialogInput);a=this._dialogInst=this._newInst(this._dialogInput,false);a.settings={};d.data(this._dialogInput[0],"datepicker",a)}F(a.settings,e||{}); +b=b&&b.constructor==Date?this._formatDate(a,b):b;this._dialogInput.val(b);this._pos=f?f.length?f:[f.pageX,f.pageY]:null;if(!this._pos)this._pos=[document.documentElement.clientWidth/2-100+(document.documentElement.scrollLeft||document.body.scrollLeft),document.documentElement.clientHeight/2-150+(document.documentElement.scrollTop||document.body.scrollTop)];this._dialogInput.css("left",this._pos[0]+20+"px").css("top",this._pos[1]+"px");a.settings.onSelect=c;this._inDialog=true;this.dpDiv.addClass(this._dialogClass); +this._showDatepicker(this._dialogInput[0]);d.blockUI&&d.blockUI(this.dpDiv);d.data(this._dialogInput[0],"datepicker",a);return this},_destroyDatepicker:function(a){var b=d(a),c=d.data(a,"datepicker");if(b.hasClass(this.markerClassName)){var e=a.nodeName.toLowerCase();d.removeData(a,"datepicker");if(e=="input"){c.append.remove();c.trigger.remove();b.removeClass(this.markerClassName).unbind("focus",this._showDatepicker).unbind("keydown",this._doKeyDown).unbind("keypress",this._doKeyPress).unbind("keyup", +this._doKeyUp)}else if(e=="div"||e=="span")b.removeClass(this.markerClassName).empty()}},_enableDatepicker:function(a){var b=d(a),c=d.data(a,"datepicker");if(b.hasClass(this.markerClassName)){var e=a.nodeName.toLowerCase();if(e=="input"){a.disabled=false;c.trigger.filter("button").each(function(){this.disabled=false}).end().filter("img").css({opacity:"1.0",cursor:""})}else if(e=="div"||e=="span")b.children("."+this._inlineClass).children().removeClass("ui-state-disabled");this._disabledInputs=d.map(this._disabledInputs, +function(f){return f==a?null:f})}},_disableDatepicker:function(a){var b=d(a),c=d.data(a,"datepicker");if(b.hasClass(this.markerClassName)){var e=a.nodeName.toLowerCase();if(e=="input"){a.disabled=true;c.trigger.filter("button").each(function(){this.disabled=true}).end().filter("img").css({opacity:"0.5",cursor:"default"})}else if(e=="div"||e=="span")b.children("."+this._inlineClass).children().addClass("ui-state-disabled");this._disabledInputs=d.map(this._disabledInputs,function(f){return f==a?null: +f});this._disabledInputs[this._disabledInputs.length]=a}},_isDisabledDatepicker:function(a){if(!a)return false;for(var b=0;b-1}},_doKeyUp:function(a){a=d.datepicker._getInst(a.target); +if(a.input.val()!=a.lastVal)try{if(d.datepicker.parseDate(d.datepicker._get(a,"dateFormat"),a.input?a.input.val():null,d.datepicker._getFormatConfig(a))){d.datepicker._setDateFromField(a);d.datepicker._updateAlternate(a);d.datepicker._updateDatepicker(a)}}catch(b){d.datepicker.log(b)}return true},_showDatepicker:function(a){a=a.target||a;if(a.nodeName.toLowerCase()!="input")a=d("input",a.parentNode)[0];if(!(d.datepicker._isDisabledDatepicker(a)||d.datepicker._lastInput==a)){var b=d.datepicker._getInst(a); +d.datepicker._curInst&&d.datepicker._curInst!=b&&d.datepicker._curInst.dpDiv.stop(true,true);var c=d.datepicker._get(b,"beforeShow");F(b.settings,c?c.apply(a,[a,b]):{});b.lastVal=null;d.datepicker._lastInput=a;d.datepicker._setDateFromField(b);if(d.datepicker._inDialog)a.value="";if(!d.datepicker._pos){d.datepicker._pos=d.datepicker._findPos(a);d.datepicker._pos[1]+=a.offsetHeight}var e=false;d(a).parents().each(function(){e|=d(this).css("position")=="fixed";return!e});if(e&&d.browser.opera){d.datepicker._pos[0]-= +document.documentElement.scrollLeft;d.datepicker._pos[1]-=document.documentElement.scrollTop}c={left:d.datepicker._pos[0],top:d.datepicker._pos[1]};d.datepicker._pos=null;b.dpDiv.empty();b.dpDiv.css({position:"absolute",display:"block",top:"-1000px"});d.datepicker._updateDatepicker(b);c=d.datepicker._checkOffset(b,c,e);b.dpDiv.css({position:d.datepicker._inDialog&&d.blockUI?"static":e?"fixed":"absolute",display:"none",left:c.left+"px",top:c.top+"px"});if(!b.inline){c=d.datepicker._get(b,"showAnim"); +var f=d.datepicker._get(b,"duration"),h=function(){d.datepicker._datepickerShowing=true;var i=b.dpDiv.find("iframe.ui-datepicker-cover");if(i.length){var g=d.datepicker._getBorders(b.dpDiv);i.css({left:-g[0],top:-g[1],width:b.dpDiv.outerWidth(),height:b.dpDiv.outerHeight()})}};b.dpDiv.zIndex(d(a).zIndex()+1);d.effects&&d.effects[c]?b.dpDiv.show(c,d.datepicker._get(b,"showOptions"),f,h):b.dpDiv[c||"show"](c?f:null,h);if(!c||!f)h();b.input.is(":visible")&&!b.input.is(":disabled")&&b.input.focus();d.datepicker._curInst= +b}}},_updateDatepicker:function(a){var b=this,c=d.datepicker._getBorders(a.dpDiv);a.dpDiv.empty().append(this._generateHTML(a));var e=a.dpDiv.find("iframe.ui-datepicker-cover");e.length&&e.css({left:-c[0],top:-c[1],width:a.dpDiv.outerWidth(),height:a.dpDiv.outerHeight()});a.dpDiv.find("button, .ui-datepicker-prev, .ui-datepicker-next, .ui-datepicker-calendar td a").bind("mouseout",function(){d(this).removeClass("ui-state-hover");this.className.indexOf("ui-datepicker-prev")!=-1&&d(this).removeClass("ui-datepicker-prev-hover"); +this.className.indexOf("ui-datepicker-next")!=-1&&d(this).removeClass("ui-datepicker-next-hover")}).bind("mouseover",function(){if(!b._isDisabledDatepicker(a.inline?a.dpDiv.parent()[0]:a.input[0])){d(this).parents(".ui-datepicker-calendar").find("a").removeClass("ui-state-hover");d(this).addClass("ui-state-hover");this.className.indexOf("ui-datepicker-prev")!=-1&&d(this).addClass("ui-datepicker-prev-hover");this.className.indexOf("ui-datepicker-next")!=-1&&d(this).addClass("ui-datepicker-next-hover")}}).end().find("."+ +this._dayOverClass+" a").trigger("mouseover").end();c=this._getNumberOfMonths(a);e=c[1];e>1?a.dpDiv.addClass("ui-datepicker-multi-"+e).css("width",17*e+"em"):a.dpDiv.removeClass("ui-datepicker-multi-2 ui-datepicker-multi-3 ui-datepicker-multi-4").width("");a.dpDiv[(c[0]!=1||c[1]!=1?"add":"remove")+"Class"]("ui-datepicker-multi");a.dpDiv[(this._get(a,"isRTL")?"add":"remove")+"Class"]("ui-datepicker-rtl");a==d.datepicker._curInst&&d.datepicker._datepickerShowing&&a.input&&a.input.is(":visible")&&!a.input.is(":disabled")&& +a.input[0]!=document.activeElement&&a.input.focus();if(a.yearshtml){var f=a.yearshtml;setTimeout(function(){f===a.yearshtml&&a.dpDiv.find("select.ui-datepicker-year:first").replaceWith(a.yearshtml);f=a.yearshtml=null},0)}},_getBorders:function(a){var b=function(c){return{thin:1,medium:2,thick:3}[c]||c};return[parseFloat(b(a.css("border-left-width"))),parseFloat(b(a.css("border-top-width")))]},_checkOffset:function(a,b,c){var e=a.dpDiv.outerWidth(),f=a.dpDiv.outerHeight(),h=a.input?a.input.outerWidth(): +0,i=a.input?a.input.outerHeight():0,g=document.documentElement.clientWidth+d(document).scrollLeft(),j=document.documentElement.clientHeight+d(document).scrollTop();b.left-=this._get(a,"isRTL")?e-h:0;b.left-=c&&b.left==a.input.offset().left?d(document).scrollLeft():0;b.top-=c&&b.top==a.input.offset().top+i?d(document).scrollTop():0;b.left-=Math.min(b.left,b.left+e>g&&g>e?Math.abs(b.left+e-g):0);b.top-=Math.min(b.top,b.top+f>j&&j>f?Math.abs(f+i):0);return b},_findPos:function(a){for(var b=this._get(this._getInst(a), +"isRTL");a&&(a.type=="hidden"||a.nodeType!=1||d.expr.filters.hidden(a));)a=a[b?"previousSibling":"nextSibling"];a=d(a).offset();return[a.left,a.top]},_hideDatepicker:function(a){var b=this._curInst;if(!(!b||a&&b!=d.data(a,"datepicker")))if(this._datepickerShowing){a=this._get(b,"showAnim");var c=this._get(b,"duration"),e=function(){d.datepicker._tidyDialog(b);this._curInst=null};d.effects&&d.effects[a]?b.dpDiv.hide(a,d.datepicker._get(b,"showOptions"),c,e):b.dpDiv[a=="slideDown"?"slideUp":a=="fadeIn"? +"fadeOut":"hide"](a?c:null,e);a||e();if(a=this._get(b,"onClose"))a.apply(b.input?b.input[0]:null,[b.input?b.input.val():"",b]);this._datepickerShowing=false;this._lastInput=null;if(this._inDialog){this._dialogInput.css({position:"absolute",left:"0",top:"-100px"});if(d.blockUI){d.unblockUI();d("body").append(this.dpDiv)}}this._inDialog=false}},_tidyDialog:function(a){a.dpDiv.removeClass(this._dialogClass).unbind(".ui-datepicker-calendar")},_checkExternalClick:function(a){if(d.datepicker._curInst){a= +d(a.target);a[0].id!=d.datepicker._mainDivId&&a.parents("#"+d.datepicker._mainDivId).length==0&&!a.hasClass(d.datepicker.markerClassName)&&!a.hasClass(d.datepicker._triggerClass)&&d.datepicker._datepickerShowing&&!(d.datepicker._inDialog&&d.blockUI)&&d.datepicker._hideDatepicker()}},_adjustDate:function(a,b,c){a=d(a);var e=this._getInst(a[0]);if(!this._isDisabledDatepicker(a[0])){this._adjustInstDate(e,b+(c=="M"?this._get(e,"showCurrentAtPos"):0),c);this._updateDatepicker(e)}},_gotoToday:function(a){a= +d(a);var b=this._getInst(a[0]);if(this._get(b,"gotoCurrent")&&b.currentDay){b.selectedDay=b.currentDay;b.drawMonth=b.selectedMonth=b.currentMonth;b.drawYear=b.selectedYear=b.currentYear}else{var c=new Date;b.selectedDay=c.getDate();b.drawMonth=b.selectedMonth=c.getMonth();b.drawYear=b.selectedYear=c.getFullYear()}this._notifyChange(b);this._adjustDate(a)},_selectMonthYear:function(a,b,c){a=d(a);var e=this._getInst(a[0]);e._selectingMonthYear=false;e["selected"+(c=="M"?"Month":"Year")]=e["draw"+(c== +"M"?"Month":"Year")]=parseInt(b.options[b.selectedIndex].value,10);this._notifyChange(e);this._adjustDate(a)},_clickMonthYear:function(a){var b=this._getInst(d(a)[0]);b.input&&b._selectingMonthYear&&setTimeout(function(){b.input.focus()},0);b._selectingMonthYear=!b._selectingMonthYear},_selectDay:function(a,b,c,e){var f=d(a);if(!(d(e).hasClass(this._unselectableClass)||this._isDisabledDatepicker(f[0]))){f=this._getInst(f[0]);f.selectedDay=f.currentDay=d("a",e).html();f.selectedMonth=f.currentMonth= +b;f.selectedYear=f.currentYear=c;this._selectDate(a,this._formatDate(f,f.currentDay,f.currentMonth,f.currentYear))}},_clearDate:function(a){a=d(a);this._getInst(a[0]);this._selectDate(a,"")},_selectDate:function(a,b){a=this._getInst(d(a)[0]);b=b!=null?b:this._formatDate(a);a.input&&a.input.val(b);this._updateAlternate(a);var c=this._get(a,"onSelect");if(c)c.apply(a.input?a.input[0]:null,[b,a]);else a.input&&a.input.trigger("change");if(a.inline)this._updateDatepicker(a);else{this._hideDatepicker(); +this._lastInput=a.input[0];typeof a.input[0]!="object"&&a.input.focus();this._lastInput=null}},_updateAlternate:function(a){var b=this._get(a,"altField");if(b){var c=this._get(a,"altFormat")||this._get(a,"dateFormat"),e=this._getDate(a),f=this.formatDate(c,e,this._getFormatConfig(a));d(b).each(function(){d(this).val(f)})}},noWeekends:function(a){a=a.getDay();return[a>0&&a<6,""]},iso8601Week:function(a){a=new Date(a.getTime());a.setDate(a.getDate()+4-(a.getDay()||7));var b=a.getTime();a.setMonth(0); +a.setDate(1);return Math.floor(Math.round((b-a)/864E5)/7)+1},parseDate:function(a,b,c){if(a==null||b==null)throw"Invalid arguments";b=typeof b=="object"?b.toString():b+"";if(b=="")return null;var e=(c?c.shortYearCutoff:null)||this._defaults.shortYearCutoff;e=typeof e!="string"?e:(new Date).getFullYear()%100+parseInt(e,10);for(var f=(c?c.dayNamesShort:null)||this._defaults.dayNamesShort,h=(c?c.dayNames:null)||this._defaults.dayNames,i=(c?c.monthNamesShort:null)||this._defaults.monthNamesShort,g=(c? +c.monthNames:null)||this._defaults.monthNames,j=c=-1,l=-1,u=-1,k=false,o=function(p){(p=z+1-1){j=1;l=u;do{e=this._getDaysInMonth(c,j-1);if(l<=e)break;j++;l-=e}while(1)}w=this._daylightSavingAdjust(new Date(c,j-1,l));if(w.getFullYear()!=c||w.getMonth()+1!=j||w.getDate()!=l)throw"Invalid date";return w},ATOM:"yy-mm-dd",COOKIE:"D, dd M yy",ISO_8601:"yy-mm-dd",RFC_822:"D, d M y",RFC_850:"DD, dd-M-y", +RFC_1036:"D, d M y",RFC_1123:"D, d M yy",RFC_2822:"D, d M yy",RSS:"D, d M y",TICKS:"!",TIMESTAMP:"@",W3C:"yy-mm-dd",_ticksTo1970:(718685+Math.floor(492.5)-Math.floor(19.7)+Math.floor(4.925))*24*60*60*1E7,formatDate:function(a,b,c){if(!b)return"";var e=(c?c.dayNamesShort:null)||this._defaults.dayNamesShort,f=(c?c.dayNames:null)||this._defaults.dayNames,h=(c?c.monthNamesShort:null)||this._defaults.monthNamesShort;c=(c?c.monthNames:null)||this._defaults.monthNames;var i=function(o){(o=k+112?a.getHours()+2:0);return a},_setDate:function(a,b,c){var e=!b,f=a.selectedMonth,h=a.selectedYear;b=this._restrictMinMax(a,this._determineDate(a,b,new Date));a.selectedDay= +a.currentDay=b.getDate();a.drawMonth=a.selectedMonth=a.currentMonth=b.getMonth();a.drawYear=a.selectedYear=a.currentYear=b.getFullYear();if((f!=a.selectedMonth||h!=a.selectedYear)&&!c)this._notifyChange(a);this._adjustInstDate(a);if(a.input)a.input.val(e?"":this._formatDate(a))},_getDate:function(a){return!a.currentYear||a.input&&a.input.val()==""?null:this._daylightSavingAdjust(new Date(a.currentYear,a.currentMonth,a.currentDay))},_generateHTML:function(a){var b=new Date;b=this._daylightSavingAdjust(new Date(b.getFullYear(), +b.getMonth(),b.getDate()));var c=this._get(a,"isRTL"),e=this._get(a,"showButtonPanel"),f=this._get(a,"hideIfNoPrevNext"),h=this._get(a,"navigationAsDateFormat"),i=this._getNumberOfMonths(a),g=this._get(a,"showCurrentAtPos"),j=this._get(a,"stepMonths"),l=i[0]!=1||i[1]!=1,u=this._daylightSavingAdjust(!a.currentDay?new Date(9999,9,9):new Date(a.currentYear,a.currentMonth,a.currentDay)),k=this._getMinMaxDate(a,"min"),o=this._getMinMaxDate(a,"max");g=a.drawMonth-g;var m=a.drawYear;if(g<0){g+=12;m--}if(o){var n= +this._daylightSavingAdjust(new Date(o.getFullYear(),o.getMonth()-i[0]*i[1]+1,o.getDate()));for(n=k&&nn;){g--;if(g<0){g=11;m--}}}a.drawMonth=g;a.drawYear=m;n=this._get(a,"prevText");n=!h?n:this.formatDate(n,this._daylightSavingAdjust(new Date(m,g-j,1)),this._getFormatConfig(a));n=this._canAdjustMonth(a,-1,m,g)?''+n+"":f?"":''+n+"";var r=this._get(a,"nextText");r=!h?r:this.formatDate(r,this._daylightSavingAdjust(new Date(m,g+j,1)),this._getFormatConfig(a));f=this._canAdjustMonth(a,+1,m,g)?''+r+"":f?"":''+r+"";j=this._get(a,"currentText");r=this._get(a,"gotoCurrent")&&a.currentDay?u:b;j=!h?j:this.formatDate(j,r,this._getFormatConfig(a));h=!a.inline?'":"";e=e?'
      '+(c?h:"")+(this._isInRange(a,r)?'":"")+(c?"":h)+"
      ":"";h=parseInt(this._get(a,"firstDay"),10);h=isNaN(h)?0:h;j=this._get(a,"showWeek");r=this._get(a,"dayNames");this._get(a,"dayNamesShort");var s=this._get(a,"dayNamesMin"),z= +this._get(a,"monthNames"),w=this._get(a,"monthNamesShort"),p=this._get(a,"beforeShowDay"),v=this._get(a,"showOtherMonths"),H=this._get(a,"selectOtherMonths");this._get(a,"calculateWeek");for(var L=this._getDefaultDate(a),I="",D=0;D1)switch(E){case 0:x+=" ui-datepicker-group-first";t=" ui-corner-"+(c?"right":"left");break;case i[1]- +1:x+=" ui-datepicker-group-last";t=" ui-corner-"+(c?"left":"right");break;default:x+=" ui-datepicker-group-middle";t="";break}x+='">'}x+='
      '+(/all|left/.test(t)&&D==0?c?f:n:"")+(/all|right/.test(t)&&D==0?c?n:f:"")+this._generateMonthYearHeader(a,g,m,k,o,D>0||E>0,z,w)+'
      ';var B=j?'":"";for(t=0;t<7;t++){var q= +(t+h)%7;B+="=5?' class="ui-datepicker-week-end"':"")+'>'+s[q]+""}x+=B+"";B=this._getDaysInMonth(m,g);if(m==a.selectedYear&&g==a.selectedMonth)a.selectedDay=Math.min(a.selectedDay,B);t=(this._getFirstDayOfMonth(m,g)-h+7)%7;B=l?6:Math.ceil((t+B)/7);q=this._daylightSavingAdjust(new Date(m,g,1-t));for(var O=0;O";var P=!j?"":'";for(t=0;t<7;t++){var G= +p?p.apply(a.input?a.input[0]:null,[q]):[true,""],C=q.getMonth()!=g,J=C&&!H||!G[0]||k&&qo;P+='";q.setDate(q.getDate()+1);q=this._daylightSavingAdjust(q)}x+= +P+""}g++;if(g>11){g=0;m++}x+="
      '+this._get(a,"weekHeader")+"
      '+this._get(a,"calculateWeek")(q)+""+(C&&!v?" ":J?''+q.getDate()+"":''+q.getDate()+"")+"
      "+(l?""+(i[0]>0&&E==i[1]-1?'
      ':""):"");M+=x}I+=M}I+=e+(d.browser.msie&&parseInt(d.browser.version,10)<7&&!a.inline?'':"");a._keyEvent=false;return I},_generateMonthYearHeader:function(a,b,c,e,f,h,i,g){var j=this._get(a,"changeMonth"),l=this._get(a,"changeYear"),u=this._get(a,"showMonthAfterYear"),k='
      ', +o="";if(h||!j)o+=''+i[b]+"";else{i=e&&e.getFullYear()==c;var m=f&&f.getFullYear()==c;o+='"}u||(k+=o+(h||!(j&& +l)?" ":""));if(!a.yearshtml){a.yearshtml="";if(h||!l)k+=''+c+"";else{g=this._get(a,"yearRange").split(":");var r=(new Date).getFullYear();i=function(s){s=s.match(/c[+-].*/)?c+parseInt(s.substring(1),10):s.match(/[+-].*/)?r+parseInt(s,10):parseInt(s,10);return isNaN(s)?r:s};b=i(g[0]);g=Math.max(b,i(g[1]||""));b=e?Math.max(b,e.getFullYear()):b;g=f?Math.min(g,f.getFullYear()):g;for(a.yearshtml+='";if(d.browser.mozilla)k+='";else{k+=a.yearshtml;a.yearshtml=null}}}k+=this._get(a,"yearSuffix");if(u)k+=(h||!(j&&l)?" ":"")+o;k+="
      ";return k},_adjustInstDate:function(a,b,c){var e= +a.drawYear+(c=="Y"?b:0),f=a.drawMonth+(c=="M"?b:0);b=Math.min(a.selectedDay,this._getDaysInMonth(e,f))+(c=="D"?b:0);e=this._restrictMinMax(a,this._daylightSavingAdjust(new Date(e,f,b)));a.selectedDay=e.getDate();a.drawMonth=a.selectedMonth=e.getMonth();a.drawYear=a.selectedYear=e.getFullYear();if(c=="M"||c=="Y")this._notifyChange(a)},_restrictMinMax:function(a,b){var c=this._getMinMaxDate(a,"min");a=this._getMinMaxDate(a,"max");b=c&&ba?a:b},_notifyChange:function(a){var b=this._get(a, +"onChangeMonthYear");if(b)b.apply(a.input?a.input[0]:null,[a.selectedYear,a.selectedMonth+1,a])},_getNumberOfMonths:function(a){a=this._get(a,"numberOfMonths");return a==null?[1,1]:typeof a=="number"?[1,a]:a},_getMinMaxDate:function(a,b){return this._determineDate(a,this._get(a,b+"Date"),null)},_getDaysInMonth:function(a,b){return 32-this._daylightSavingAdjust(new Date(a,b,32)).getDate()},_getFirstDayOfMonth:function(a,b){return(new Date(a,b,1)).getDay()},_canAdjustMonth:function(a,b,c,e){var f=this._getNumberOfMonths(a); +c=this._daylightSavingAdjust(new Date(c,e+(b<0?b:f[0]*f[1]),1));b<0&&c.setDate(this._getDaysInMonth(c.getFullYear(),c.getMonth()));return this._isInRange(a,c)},_isInRange:function(a,b){var c=this._getMinMaxDate(a,"min");a=this._getMinMaxDate(a,"max");return(!c||b.getTime()>=c.getTime())&&(!a||b.getTime()<=a.getTime())},_getFormatConfig:function(a){var b=this._get(a,"shortYearCutoff");b=typeof b!="string"?b:(new Date).getFullYear()%100+parseInt(b,10);return{shortYearCutoff:b,dayNamesShort:this._get(a, +"dayNamesShort"),dayNames:this._get(a,"dayNames"),monthNamesShort:this._get(a,"monthNamesShort"),monthNames:this._get(a,"monthNames")}},_formatDate:function(a,b,c,e){if(!b){a.currentDay=a.selectedDay;a.currentMonth=a.selectedMonth;a.currentYear=a.selectedYear}b=b?typeof b=="object"?b:this._daylightSavingAdjust(new Date(e,c,b)):this._daylightSavingAdjust(new Date(a.currentYear,a.currentMonth,a.currentDay));return this.formatDate(this._get(a,"dateFormat"),b,this._getFormatConfig(a))}});d.fn.datepicker= +function(a){if(!this.length)return this;if(!d.datepicker.initialized){d(document).mousedown(d.datepicker._checkExternalClick).find("body").append(d.datepicker.dpDiv);d.datepicker.initialized=true}var b=Array.prototype.slice.call(arguments,1);if(typeof a=="string"&&(a=="isDisabled"||a=="getDate"||a=="widget"))return d.datepicker["_"+a+"Datepicker"].apply(d.datepicker,[this[0]].concat(b));if(a=="option"&&arguments.length==2&&typeof arguments[1]=="string")return d.datepicker["_"+a+"Datepicker"].apply(d.datepicker, +[this[0]].concat(b));return this.each(function(){typeof a=="string"?d.datepicker["_"+a+"Datepicker"].apply(d.datepicker,[this].concat(b)):d.datepicker._attachDatepicker(this,a)})};d.datepicker=new K;d.datepicker.initialized=false;d.datepicker.uuid=(new Date).getTime();d.datepicker.version="1.8.12";window["DP_jQuery_"+y]=d})(jQuery); +;/* + * jQuery UI Progressbar 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Progressbar + * + * Depends: + * jquery.ui.core.js + * jquery.ui.widget.js + */ +(function(b,d){b.widget("ui.progressbar",{options:{value:0,max:100},min:0,_create:function(){this.element.addClass("ui-progressbar ui-widget ui-widget-content ui-corner-all").attr({role:"progressbar","aria-valuemin":this.min,"aria-valuemax":this.options.max,"aria-valuenow":this._value()});this.valueDiv=b("
      ").appendTo(this.element);this.oldValue=this._value();this._refreshValue()},destroy:function(){this.element.removeClass("ui-progressbar ui-widget ui-widget-content ui-corner-all").removeAttr("role").removeAttr("aria-valuemin").removeAttr("aria-valuemax").removeAttr("aria-valuenow"); +this.valueDiv.remove();b.Widget.prototype.destroy.apply(this,arguments)},value:function(a){if(a===d)return this._value();this._setOption("value",a);return this},_setOption:function(a,c){if(a==="value"){this.options.value=c;this._refreshValue();this._value()===this.options.max&&this._trigger("complete")}b.Widget.prototype._setOption.apply(this,arguments)},_value:function(){var a=this.options.value;if(typeof a!=="number")a=0;return Math.min(this.options.max,Math.max(this.min,a))},_percentage:function(){return 100* +this._value()/this.options.max},_refreshValue:function(){var a=this.value(),c=this._percentage();if(this.oldValue!==a){this.oldValue=a;this._trigger("change")}this.valueDiv.toggle(a>this.min).toggleClass("ui-corner-right",a===this.options.max).width(c.toFixed(0)+"%");this.element.attr("aria-valuenow",a)}});b.extend(b.ui.progressbar,{version:"1.8.12"})})(jQuery); +;/* + * jQuery UI Effects 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Effects/ + */ +jQuery.effects||function(f,j){function n(c){var a;if(c&&c.constructor==Array&&c.length==3)return c;if(a=/rgb\(\s*([0-9]{1,3})\s*,\s*([0-9]{1,3})\s*,\s*([0-9]{1,3})\s*\)/.exec(c))return[parseInt(a[1],10),parseInt(a[2],10),parseInt(a[3],10)];if(a=/rgb\(\s*([0-9]+(?:\.[0-9]+)?)\%\s*,\s*([0-9]+(?:\.[0-9]+)?)\%\s*,\s*([0-9]+(?:\.[0-9]+)?)\%\s*\)/.exec(c))return[parseFloat(a[1])*2.55,parseFloat(a[2])*2.55,parseFloat(a[3])*2.55];if(a=/#([a-fA-F0-9]{2})([a-fA-F0-9]{2})([a-fA-F0-9]{2})/.exec(c))return[parseInt(a[1], +16),parseInt(a[2],16),parseInt(a[3],16)];if(a=/#([a-fA-F0-9])([a-fA-F0-9])([a-fA-F0-9])/.exec(c))return[parseInt(a[1]+a[1],16),parseInt(a[2]+a[2],16),parseInt(a[3]+a[3],16)];if(/rgba\(0, 0, 0, 0\)/.exec(c))return o.transparent;return o[f.trim(c).toLowerCase()]}function s(c,a){var b;do{b=f.curCSS(c,a);if(b!=""&&b!="transparent"||f.nodeName(c,"body"))break;a="backgroundColor"}while(c=c.parentNode);return n(b)}function p(){var c=document.defaultView?document.defaultView.getComputedStyle(this,null):this.currentStyle, +a={},b,d;if(c&&c.length&&c[0]&&c[c[0]])for(var e=c.length;e--;){b=c[e];if(typeof c[b]=="string"){d=b.replace(/\-(\w)/g,function(g,h){return h.toUpperCase()});a[d]=c[b]}}else for(b in c)if(typeof c[b]==="string")a[b]=c[b];return a}function q(c){var a,b;for(a in c){b=c[a];if(b==null||f.isFunction(b)||a in t||/scrollbar/.test(a)||!/color/i.test(a)&&isNaN(parseFloat(b)))delete c[a]}return c}function u(c,a){var b={_:0},d;for(d in a)if(c[d]!=a[d])b[d]=a[d];return b}function k(c,a,b,d){if(typeof c=="object"){d= +a;b=null;a=c;c=a.effect}if(f.isFunction(a)){d=a;b=null;a={}}if(typeof a=="number"||f.fx.speeds[a]){d=b;b=a;a={}}if(f.isFunction(b)){d=b;b=null}a=a||{};b=b||a.duration;b=f.fx.off?0:typeof b=="number"?b:b in f.fx.speeds?f.fx.speeds[b]:f.fx.speeds._default;d=d||a.complete;return[c,a,b,d]}function m(c){if(!c||typeof c==="number"||f.fx.speeds[c])return true;if(typeof c==="string"&&!f.effects[c])return true;return false}f.effects={};f.each(["backgroundColor","borderBottomColor","borderLeftColor","borderRightColor", +"borderTopColor","borderColor","color","outlineColor"],function(c,a){f.fx.step[a]=function(b){if(!b.colorInit){b.start=s(b.elem,a);b.end=n(b.end);b.colorInit=true}b.elem.style[a]="rgb("+Math.max(Math.min(parseInt(b.pos*(b.end[0]-b.start[0])+b.start[0],10),255),0)+","+Math.max(Math.min(parseInt(b.pos*(b.end[1]-b.start[1])+b.start[1],10),255),0)+","+Math.max(Math.min(parseInt(b.pos*(b.end[2]-b.start[2])+b.start[2],10),255),0)+")"}});var o={aqua:[0,255,255],azure:[240,255,255],beige:[245,245,220],black:[0, +0,0],blue:[0,0,255],brown:[165,42,42],cyan:[0,255,255],darkblue:[0,0,139],darkcyan:[0,139,139],darkgrey:[169,169,169],darkgreen:[0,100,0],darkkhaki:[189,183,107],darkmagenta:[139,0,139],darkolivegreen:[85,107,47],darkorange:[255,140,0],darkorchid:[153,50,204],darkred:[139,0,0],darksalmon:[233,150,122],darkviolet:[148,0,211],fuchsia:[255,0,255],gold:[255,215,0],green:[0,128,0],indigo:[75,0,130],khaki:[240,230,140],lightblue:[173,216,230],lightcyan:[224,255,255],lightgreen:[144,238,144],lightgrey:[211, +211,211],lightpink:[255,182,193],lightyellow:[255,255,224],lime:[0,255,0],magenta:[255,0,255],maroon:[128,0,0],navy:[0,0,128],olive:[128,128,0],orange:[255,165,0],pink:[255,192,203],purple:[128,0,128],violet:[128,0,128],red:[255,0,0],silver:[192,192,192],white:[255,255,255],yellow:[255,255,0],transparent:[255,255,255]},r=["add","remove","toggle"],t={border:1,borderBottom:1,borderColor:1,borderLeft:1,borderRight:1,borderTop:1,borderWidth:1,margin:1,padding:1};f.effects.animateClass=function(c,a,b, +d){if(f.isFunction(b)){d=b;b=null}return this.queue("fx",function(){var e=f(this),g=e.attr("style")||" ",h=q(p.call(this)),l,v=e.attr("className");f.each(r,function(w,i){c[i]&&e[i+"Class"](c[i])});l=q(p.call(this));e.attr("className",v);e.animate(u(h,l),a,b,function(){f.each(r,function(w,i){c[i]&&e[i+"Class"](c[i])});if(typeof e.attr("style")=="object"){e.attr("style").cssText="";e.attr("style").cssText=g}else e.attr("style",g);d&&d.apply(this,arguments)});h=f.queue(this);l=h.splice(h.length-1,1)[0]; +h.splice(1,0,l);f.dequeue(this)})};f.fn.extend({_addClass:f.fn.addClass,addClass:function(c,a,b,d){return a?f.effects.animateClass.apply(this,[{add:c},a,b,d]):this._addClass(c)},_removeClass:f.fn.removeClass,removeClass:function(c,a,b,d){return a?f.effects.animateClass.apply(this,[{remove:c},a,b,d]):this._removeClass(c)},_toggleClass:f.fn.toggleClass,toggleClass:function(c,a,b,d,e){return typeof a=="boolean"||a===j?b?f.effects.animateClass.apply(this,[a?{add:c}:{remove:c},b,d,e]):this._toggleClass(c, +a):f.effects.animateClass.apply(this,[{toggle:c},a,b,d])},switchClass:function(c,a,b,d,e){return f.effects.animateClass.apply(this,[{add:a,remove:c},b,d,e])}});f.extend(f.effects,{version:"1.8.12",save:function(c,a){for(var b=0;b").addClass("ui-effects-wrapper").css({fontSize:"100%",background:"transparent", +border:"none",margin:0,padding:0});c.wrap(b);b=c.parent();if(c.css("position")=="static"){b.css({position:"relative"});c.css({position:"relative"})}else{f.extend(a,{position:c.css("position"),zIndex:c.css("z-index")});f.each(["top","left","bottom","right"],function(d,e){a[e]=c.css(e);if(isNaN(parseInt(a[e],10)))a[e]="auto"});c.css({position:"relative",top:0,left:0,right:"auto",bottom:"auto"})}return b.css(a).show()},removeWrapper:function(c){if(c.parent().is(".ui-effects-wrapper"))return c.parent().replaceWith(c); +return c},setTransition:function(c,a,b,d){d=d||{};f.each(a,function(e,g){unit=c.cssUnit(g);if(unit[0]>0)d[g]=unit[0]*b+unit[1]});return d}});f.fn.extend({effect:function(c){var a=k.apply(this,arguments),b={options:a[1],duration:a[2],callback:a[3]};a=b.options.mode;var d=f.effects[c];if(f.fx.off||!d)return a?this[a](b.duration,b.callback):this.each(function(){b.callback&&b.callback.call(this)});return d.call(this,b)},_show:f.fn.show,show:function(c){if(m(c))return this._show.apply(this,arguments); +else{var a=k.apply(this,arguments);a[1].mode="show";return this.effect.apply(this,a)}},_hide:f.fn.hide,hide:function(c){if(m(c))return this._hide.apply(this,arguments);else{var a=k.apply(this,arguments);a[1].mode="hide";return this.effect.apply(this,a)}},__toggle:f.fn.toggle,toggle:function(c){if(m(c)||typeof c==="boolean"||f.isFunction(c))return this.__toggle.apply(this,arguments);else{var a=k.apply(this,arguments);a[1].mode="toggle";return this.effect.apply(this,a)}},cssUnit:function(c){var a=this.css(c), +b=[];f.each(["em","px","%","pt"],function(d,e){if(a.indexOf(e)>0)b=[parseFloat(a),e]});return b}});f.easing.jswing=f.easing.swing;f.extend(f.easing,{def:"easeOutQuad",swing:function(c,a,b,d,e){return f.easing[f.easing.def](c,a,b,d,e)},easeInQuad:function(c,a,b,d,e){return d*(a/=e)*a+b},easeOutQuad:function(c,a,b,d,e){return-d*(a/=e)*(a-2)+b},easeInOutQuad:function(c,a,b,d,e){if((a/=e/2)<1)return d/2*a*a+b;return-d/2*(--a*(a-2)-1)+b},easeInCubic:function(c,a,b,d,e){return d*(a/=e)*a*a+b},easeOutCubic:function(c, +a,b,d,e){return d*((a=a/e-1)*a*a+1)+b},easeInOutCubic:function(c,a,b,d,e){if((a/=e/2)<1)return d/2*a*a*a+b;return d/2*((a-=2)*a*a+2)+b},easeInQuart:function(c,a,b,d,e){return d*(a/=e)*a*a*a+b},easeOutQuart:function(c,a,b,d,e){return-d*((a=a/e-1)*a*a*a-1)+b},easeInOutQuart:function(c,a,b,d,e){if((a/=e/2)<1)return d/2*a*a*a*a+b;return-d/2*((a-=2)*a*a*a-2)+b},easeInQuint:function(c,a,b,d,e){return d*(a/=e)*a*a*a*a+b},easeOutQuint:function(c,a,b,d,e){return d*((a=a/e-1)*a*a*a*a+1)+b},easeInOutQuint:function(c, +a,b,d,e){if((a/=e/2)<1)return d/2*a*a*a*a*a+b;return d/2*((a-=2)*a*a*a*a+2)+b},easeInSine:function(c,a,b,d,e){return-d*Math.cos(a/e*(Math.PI/2))+d+b},easeOutSine:function(c,a,b,d,e){return d*Math.sin(a/e*(Math.PI/2))+b},easeInOutSine:function(c,a,b,d,e){return-d/2*(Math.cos(Math.PI*a/e)-1)+b},easeInExpo:function(c,a,b,d,e){return a==0?b:d*Math.pow(2,10*(a/e-1))+b},easeOutExpo:function(c,a,b,d,e){return a==e?b+d:d*(-Math.pow(2,-10*a/e)+1)+b},easeInOutExpo:function(c,a,b,d,e){if(a==0)return b;if(a== +e)return b+d;if((a/=e/2)<1)return d/2*Math.pow(2,10*(a-1))+b;return d/2*(-Math.pow(2,-10*--a)+2)+b},easeInCirc:function(c,a,b,d,e){return-d*(Math.sqrt(1-(a/=e)*a)-1)+b},easeOutCirc:function(c,a,b,d,e){return d*Math.sqrt(1-(a=a/e-1)*a)+b},easeInOutCirc:function(c,a,b,d,e){if((a/=e/2)<1)return-d/2*(Math.sqrt(1-a*a)-1)+b;return d/2*(Math.sqrt(1-(a-=2)*a)+1)+b},easeInElastic:function(c,a,b,d,e){c=1.70158;var g=0,h=d;if(a==0)return b;if((a/=e)==1)return b+d;g||(g=e*0.3);if(h").css({position:"absolute",visibility:"visible",left:-f*(h/d),top:-e*(i/c)}).parent().addClass("ui-effects-explode").css({position:"absolute",overflow:"hidden",width:h/d,height:i/c,left:g.left+f*(h/d)+(a.options.mode=="show"?(f-Math.floor(d/2))*(h/d):0),top:g.top+e*(i/c)+(a.options.mode=="show"?(e-Math.floor(c/2))*(i/c):0),opacity:a.options.mode=="show"?0:1}).animate({left:g.left+f*(h/d)+(a.options.mode=="show"?0:(f-Math.floor(d/2))*(h/d)),top:g.top+ +e*(i/c)+(a.options.mode=="show"?0:(e-Math.floor(c/2))*(i/c)),opacity:a.options.mode=="show"?1:0},a.duration||500);setTimeout(function(){a.options.mode=="show"?b.css({visibility:"visible"}):b.css({visibility:"visible"}).hide();a.callback&&a.callback.apply(b[0]);b.dequeue();j("div.ui-effects-explode").remove()},a.duration||500)})}})(jQuery); +;/* + * jQuery UI Effects Fade 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Effects/Fade + * + * Depends: + * jquery.effects.core.js + */ +(function(b){b.effects.fade=function(a){return this.queue(function(){var c=b(this),d=b.effects.setMode(c,a.options.mode||"hide");c.animate({opacity:d},{queue:false,duration:a.duration,easing:a.options.easing,complete:function(){a.callback&&a.callback.apply(this,arguments);c.dequeue()}})})}})(jQuery); +;/* + * jQuery UI Effects Fold 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Effects/Fold + * + * Depends: + * jquery.effects.core.js + */ +(function(c){c.effects.fold=function(a){return this.queue(function(){var b=c(this),j=["position","top","bottom","left","right"],d=c.effects.setMode(b,a.options.mode||"hide"),g=a.options.size||15,h=!!a.options.horizFirst,k=a.duration?a.duration/2:c.fx.speeds._default/2;c.effects.save(b,j);b.show();var e=c.effects.createWrapper(b).css({overflow:"hidden"}),f=d=="show"!=h,l=f?["width","height"]:["height","width"];f=f?[e.width(),e.height()]:[e.height(),e.width()];var i=/([0-9]+)%/.exec(g);if(i)g=parseInt(i[1], +10)/100*f[d=="hide"?0:1];if(d=="show")e.css(h?{height:0,width:g}:{height:g,width:0});h={};i={};h[l[0]]=d=="show"?f[0]:g;i[l[1]]=d=="show"?f[1]:0;e.animate(h,k,a.options.easing).animate(i,k,a.options.easing,function(){d=="hide"&&b.hide();c.effects.restore(b,j);c.effects.removeWrapper(b);a.callback&&a.callback.apply(b[0],arguments);b.dequeue()})})}})(jQuery); +;/* + * jQuery UI Effects Highlight 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Effects/Highlight + * + * Depends: + * jquery.effects.core.js + */ +(function(b){b.effects.highlight=function(c){return this.queue(function(){var a=b(this),e=["backgroundImage","backgroundColor","opacity"],d=b.effects.setMode(a,c.options.mode||"show"),f={backgroundColor:a.css("backgroundColor")};if(d=="hide")f.opacity=0;b.effects.save(a,e);a.show().css({backgroundImage:"none",backgroundColor:c.options.color||"#ffff99"}).animate(f,{queue:false,duration:c.duration,easing:c.options.easing,complete:function(){d=="hide"&&a.hide();b.effects.restore(a,e);d=="show"&&!b.support.opacity&& +this.style.removeAttribute("filter");c.callback&&c.callback.apply(this,arguments);a.dequeue()}})})}})(jQuery); +;/* + * jQuery UI Effects Pulsate 1.8.12 + * + * Copyright 2011, AUTHORS.txt (http://jqueryui.com/about) + * Dual licensed under the MIT or GPL Version 2 licenses. + * http://jquery.org/license + * + * http://docs.jquery.com/UI/Effects/Pulsate + * + * Depends: + * jquery.effects.core.js + */ +(function(d){d.effects.pulsate=function(a){return this.queue(function(){var b=d(this),c=d.effects.setMode(b,a.options.mode||"show");times=(a.options.times||5)*2-1;duration=a.duration?a.duration/2:d.fx.speeds._default/2;isVisible=b.is(":visible");animateTo=0;if(!isVisible){b.css("opacity",0).show();animateTo=1}if(c=="hide"&&isVisible||c=="show"&&!isVisible)times--;for(c=0;c').appendTo(document.body).addClass(a.options.className).css({top:d.top,left:d.left,height:b.innerHeight(),width:b.innerWidth(),position:"absolute"}).animate(c,a.duration,a.options.easing,function(){f.remove();a.callback&&a.callback.apply(b[0],arguments); +b.dequeue()})})}})(jQuery); +; \ No newline at end of file diff --git a/web/javascript/jqueryFunction.js b/web/javascript/jqueryFunction.js new file mode 100644 index 00000000..5e6641cd --- /dev/null +++ b/web/javascript/jqueryFunction.js @@ -0,0 +1,1115 @@ +/* + jquery part +*/ + +/* +used by index (base/indexBody.py) +*/ + +$(document).ready(function(){ + options_visible = 0; //Whether advanced options are being shown + + $('tr .advanced_option').hide(); + + $('.toggle_advanced').click(function(){ + $('tr .advanced_option').toggle(); + + if (options_visible = 0) { + $('.full_search_td').css('display','none;'); + $('.search_td').css('display','inline'); + options_visible = 1; + } + else { + if ($('#type_menu.type_menu').val() = 'Hippocampus'){ + $('.search_td').css('display','none;'); + $('.full_search_td').css('display','inline'); + } + options_visible = 0; + } + }); + + $('#full_search').click(function(){ + gene_symbol = $('input[name=keyword]').val(); + scriptable_interface_url = 'http://alexandria.uthsc.edu:89/webqtl/main.py?cmd=sch&gene=' + gene_symbol; + window.open(scriptable_interface_url,'_self'); + }); +}); + +$('select.type_menu').live('change', function() { + var trait_type = $('select.type_menu option:selected').val(); + $('#tissue').val(trait_type); + $('#tissue').trigger('change'); +}); + + +/* +used by CorrelationPage.py, AddToSelectionPage.py, and SearchResultPage.py +*/ +$(document).ready(function(){ + $('img[name=addselect], img[name=networkgraph], img[name=corrmatrix], img[name=partialCorr], img[name=comparecorr], img[name=mintmap], img[name=heatmap]').click(function(){ + if ($('input[name=searchResult]:checked').length < 1){ + for (i=0; i<10; i++){ + $('input[name=searchResult]:eq('+i+')').attr('checked',true); + } + } + }); + + $('img[name=addselect]').click(function(){ + addRmvSelection($('input[name=RISet]').val(), document.getElementsByName('showDatabase'+ $('input[name=RISet]').val())[0], 'addToSelection'); + }); + + $('.toggleShowHide').click(function(){ + var className = '.extra_options'; + if ($(className).css('display') == 'none'){ + var less = 'less'; + $('input[name=showHideOptions]').val(less); + $(className).show(); + $('input[name=options]').val('Fewer Options'); + var display = $('input[name=options]').css('display') + $(display).val('block'); + } + else { + var more = 'more'; + $('input[name=showHideOptions]').val(more); + $(className).hide(); + $('input[name=options]').val('More Options'); + var display = $('input[name=showHideOptions]').css('display') + $(display).val('block'); + } + }); +}); + +/* +used by AddToSelectionPage.py +*/ +function validateTraitNumber() { + var checkBoxes = $('.checkallbox'); + if (checkBoxes.filter(":checked").length < 2) { + alert("Please select at least two traits."); + return false; + } + else { + return true; + } +} + +/* +used by TextSearchPage.py +*/ +$(document).ready(function(){ + + $('.add_traits').click(function(){ + $('input[name=searchResult]').each(function(){ + if ($(this).is(':checked')){ + groupName = $(this).parents().next().next().children('[href]').text(); + addORrmv = 'addToSelection'; + thisForm = $('form[name=showDatabase]'); + addRmvSelection_allGroups(groupName, thisForm, addORrmv); + } + }); + }); + + function addRmvSelection_allGroups(groupName, thisForm, addORrmv){ + thisForm.attr('target',groupName); + thisForm.children('input[name=FormID]:hidden').val(addORrmv); + thisForm.children('input[name=RISet]:hidden').val(groupName); + var newWindow = open("",thisForm.attr('target'),"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900"); + thisForm.submit(); + } + + $('.tab_content').hide(); //Hide all tab content + $('div.tab_container').each(function(){ + $(this).parent('td').find('div.tab_container:first').find('div.tab_content:first').show(); + }); + $('ul.tabs').each(function(){ + $(this).find('li:first').addClass('active'); + }); + $('ul.tabs:first').find('li:first').show(); + $('.tab_container:first').find('.tab_content:first').show(); + + //On Click Event + $('ul.tabs li').click(function() { + $('ul.tabs').find('li').removeClass('last_viewed'); + if($(this).parent('ul.tabs').next('div.tab_container').attr('id').indexOf('stats') != 1){ + $(this).addClass('last_viewed'); + } + $(this).parent('ul.tabs').find('li').removeClass('active'); + $(this).addClass('active'); + $(this).parent('ul.tabs').next('div.tab_container').find('.tab_content').hide(); + var activeTab = $(this).find('a').attr('href'); + if ($.browser.msie) + {$(activeTab).show();} + else + {$(activeTab).fadeIn();} //Fade in the active ID content + + return false; + }); + +}); + +/* +used by DataEditingPage.py +*/ +$(document).ready(function() { + + // ZS: This checks the number of columns in order to determine which column to not sort; in this case the plus-minus symbol shouldn't be sortable + $('#sortable1,#sortable2').find('th').each(function() { + if ($(this).text() == 'SE'){ + $.tablesorter.defaults.headers = { 3: {sorter: false} }; + return false; + } + }); + +/* + ZS: This segment is called by tablesorter.js; it determines where to get the text used when sorting, based on the type of cell. + If a cell has a text input field, it gets the text from its class, which is changed when the user changes the value. + + This segment is repeated twice. Ideally this wouldn't be the case, but I can't find a way to reuse the inner textExtraction function. +*/ + + //ZS: Defining these here, so they don't need to be searched for in the DOM for every single node + primaryTable = $("#sortable1"); + otherTable = $("#sortable2"); + + primaryValueHeader = primaryTable.find('th:contains("Value"):eq(0)'); + primarySEHeader = primaryTable.find('th:contains("SE"):eq(0)'); + otherValueHeader = otherTable.find('th:contains("Value"):eq(1)'); + otherSEHeader = otherTable.find('th:contains("SE"):eq(1)'); + + $("#sortable1").tablesorter({ + textExtraction: function(node) { + if ((node.children[0] == "[object HTMLInputElement]" && node.children[0].type == "text") || (/\S/.test(node.id))) { + cellId = node.id; + thisCell = $('#'+cellId).children(':eq(0)') + valueClassNames = thisCell.attr('class').split(/\s+/); + capitalized_column_name = cellId.split('_')[0].charAt(0).toUpperCase() + cellId.split('_')[0].slice(1); + value = valueClassNames[valueClassNames.length - 1]; + newValue = thisCell.val(); + + if (newValue == 'x' || value == '9999' || value == '-9999') { + valueType = cellId.split('_')[0]; + if (valueType == 'value'){ + header = primaryValueHeader; + } else { + header = primarySEHeader; + } + + if (header.hasClass('headerSortUp')){ + sort_order = 'desc'; + } else if (header.hasClass('headerSortDown')){ + sort_order = 'asc'; + } else { + sort_order = 'desc'; + } + + if (sort_order == 'desc') { + value = 9999; + thisCell.removeClass(value).addClass('9999'); + } else if (sort_order == 'asc'){ + value = -9999; + thisCell.removeClass(value).addClass('-9999'); + } else { + value = 9999; + thisCell.removeClass(value).addClass('9999'); + } + } + + text = value; + } + + else { + if (node.textContent) { + text = node.textContent; + } else { + if (node.childNodes[0] && node.childNodes[0].hasChildNodes()) { + text = node.childNodes[0].innerHTML; + } else { + text = node.innerText; + } + } + } + return text + } + }); + + $("#sortable2").tablesorter({ + textExtraction: function(node) { + if ((node.children[0] == "[object HTMLInputElement]" && node.children[0].type == "text") || (/\S/.test(node.id))) { + cellId = node.id; + thisCell = $('#'+cellId).children(':eq(0)') + valueClassNames = thisCell.attr('class').split(/\s+/); + capitalized_column_name = cellId.split('_')[0].charAt(0).toUpperCase() + cellId.split('_')[0].slice(1); + value = valueClassNames[valueClassNames.length - 1]; + newValue = thisCell.val(); + + if (newValue == 'x' || value == '9999' || value == '-9999') { + valueType = cellId.split('_')[0]; + if (valueType == 'value'){ + header = otherValueHeader; + } else { + header = otherSEHeader; + } + + if (header.hasClass('headerSortUp')){ + sort_order = 'desc'; + } else if (header.hasClass('headerSortDown')){ + sort_order = 'asc'; + } else { + sort_order = 'desc'; + } + + if (sort_order == 'desc') { + value = 9999; + thisCell.removeClass(value).addClass('9999'); + } else if (sort_order == 'asc'){ + value = -9999; + thisCell.removeClass(value).addClass('-9999'); + } else { + value = 9999; + thisCell.removeClass(value).addClass('9999'); + } + } + + text = value; + } + + else { + if (node.textContent) { + text = node.textContent; + } else { + if (node.childNodes[0] && node.childNodes[0].hasChildNodes()) { + text = node.childNodes[0].innerHTML; + } else { + text = node.innerText; + } + } + } + return text + } + }); + +/* + ZS: When the user changes the value in the text field, the new value is added as a class. This is because + $('input[type=text]').val() gets the value attribute, which is always the default value, instead of the + value property (which can be changed) +*/ + + var thisTable = $('#sortable1,#sortable2'); + + thisTable.bind("update propertychange keyup input paste", function(e){ + + var target = e.target; + $target = $(target); + + if (target.nodeName.toLowerCase() == 'input'){ + thisClassNames = $target.attr('class').split(/\s+/); + valueClass = thisClassNames[thisClassNames.length - 1]; + newValue = $target.val(); + thisParent = $target.parent('td'); + thisParentId = thisParent.attr('id'); + + $target.removeClass(valueClass); + + if (newValue == 'x'){ + thisParent.parent('tr').addClass('blocked'); + } else { + $('#'+thisParentId).children('input.valueField:eq(0)').addClass(newValue); + } + } + }); + + //////////////////////////////////// + // Initially close tabs + //////////////////////////////////// + + thisForm = $('form[name="dataInput"]'); + + $('#sectionbody2').hide(); + $('#sectionbody3').hide(); + $('#sectionbody4').hide(); + + $('#title1').click(function() { + $('#sectionbody1').toggle(); + return false; + }); + $('#title2').click(function() { + $('#sectionbody2').toggle(); + return false; + }); + $('#title3').click(function() { + $('#sectionbody3').toggle(); + return false; + }); + $('#title4').click(function() { + $('#sectionbody4').toggle(); + return false; + }); + $('#title5').click(function() { + $('#sectionbody5').toggle(); + return false; + }); + + + + ////////////////////////////////////////////////////////////// + // Switch out + and - icon when you click each section header + ////////////////////////////////////////////////////////////// + + var expand_html = "  \"Expand\""; + var contract_html = "  \"Contract\""; + + $('#title2, #title3, #title4').prepend(expand_html).addClass('1'); + + $('#title1, #title5').prepend(contract_html).addClass('0'); + + for(i=1;i<=5;i++){ + $('#title'+i).click(function(){ + if ($(this).hasClass('0')) { + $(this).find('span').replaceWith(expand_html); + $(this).removeClass('0'); + $(this).addClass('1'); + } + else { + $(this).find('span').replaceWith(contract_html); + $(this).removeClass('1'); + $(this).addClass('0'); + } + }); + } + + // Exclude cases by attributes + + $('div.attribute_values:first').css('display', 'inline'); //Display the dropdown menu with the first attribute's distinct values + + $('select[name=exclude_menu]').change(function(){ + $('div.attribute_values').css('display', 'none'); //clear all other menus when a new attribute is selected + attribute = $(this).val(); + //attribute = $('select[name=exclude_menu]').val(); + menu = $('div.attribute_values').find('[name=\''+attribute+'\']'); + menu.parent().css('display', 'inline'); + }); + + primary_row_count = $('#primary').find('tr').length - 1; + other_row_count = $('#other').find('tr').length - 1; + + if (primary_row_count >= other_row_count) { + row_count = primary_row_count; + } + else { + row_count = other_row_count; + } + + $('div.attribute_values').children('select').change(function(){ + exclude_value = $(this).val(); + }); +}); + +$(window).load(function(){ + + //ZS: These are needed in a few places; looping through rows by index is faster than doing a "find" search + numPrimaryRows = $('#sortable1').find('tr').length; + numOtherRows = $('#sortable2').find('tr').length; + + +/////////////////////////////// +//Basic Statistics +/////////////////////////////// + + ///////////////////////////////////////////////////////////////// + // Hide unselected Basic Statistics tabs (when just BXD strains + // are selected, hide the results for all strains/non-BXD) + ///////////////////////////////////////////////////////////////// + + $('#stats_tabs1').hide(); + $('#stats_tabs2').hide(); + + $('#sectionbody2').find('select[name=stats_mdp]').change(function(){ + selected = $('#sectionbody2').find('select[name=stats_mdp] option:selected').val(); + for (i=0;i<=2;i++){ + $('#stats_tabs'+i).hide(); + } + $('#stats_tabs'+selected).show(); + }); + + //////////////////////////////////////////////////////////////////////// + // Select the same tab across each sample group (when a Box Plot is + // selected for BXD, switching to Non-BXD will also display a Box Plot) + ////////////./////////////////////////////////////////////////////////// + + var $tabs1 = $('#stats_tabs0').tabs(); + var $tabs2 = $('#stats_tabs1').tabs(); + var $tabs3 = $('#stats_tabs2').tabs(); + + $tabs1.tabs({ + show: function(event, ui) { + var selected = $tabs1.tabs('option','selected'); + $tabs2.tabs('select',selected); + $tabs3.tabs('select',selected); + } + }); + $tabs2.tabs({ + show: function(event, ui) { + var selected = $tabs2.tabs('option','selected'); + $tabs1.tabs('select',selected); + $tabs3.tabs('select',selected); + } + }); + $tabs3.tabs({ + show: function(event, ui) { + var selected = $tabs3.tabs('option','selected'); + $tabs1.tabs('select',selected); + $tabs2.tabs('select',selected); + } + }); + + +/////////////////////////////// +//Calculate Correlations +/////////////////////////////// + + $('#sectionbody3').find('input[name="sample_corr"]').click(function() { + dbValue = $('select[name=database1] option:selected').val(); + $('input[name=database]').val(dbValue); + criteriaValue = $('select[name=criteria1] option:selected').val(); + $('input[name=criteria]').val(criteriaValue); + MDPValue = $('select[name=MDPChoice1] option:selected').val(); + $('input[name=MDPChoice]').val(MDPValue); + + methodValue = $('input[name=sample_method]:checked').val(); + + //This simple method can be used now that 'method' is defaulted to None instead of '' + if (methodValue == "1"){ + $('input[name=method]').val('1'); + } + else{ + $('input[name=method]').val('2'); + } + + dataEditingFunc(this.form,'correlation'); + }); + + $('#sectionbody3').find('input[name="lit_corr"]').click(function() { + dbValue = $('select[name=database2] option:selected').val(); + $('input[name=database]').val(dbValue); + criteriaValue = $('select[name=criteria2] option:selected').val(); + $('input[name=criteria]').val(criteriaValue); + MDPValue = $('select[name=MDPChoice2] option:selected').val(); + $('input[name=MDPChoice]').val(MDPValue); + + $('input[name=method]').val('3'); + + dataEditingFunc(this.form,'correlation'); + }); + + $('#sectionbody3').find('input[name="tiss_corr"]').click(function() { + dbValue = $('select[name=database3] option:selected').val(); + $('input[name=database]').val(dbValue); + criteriaValue = $('select[name=criteria3] option:selected').val(); + $('input[name=criteria]').val(criteriaValue); + MDPValue = $('select[name=MDPChoice3] option:selected').val(); + $('input[name=MDPChoice]').val(MDPValue); + + methodValue = $('input[name=tissue_method]:checked').val(); + + if (methodValue == "4"){ + $('input[name=method]').val('4'); + } + else{ + $('input[name=method]').val('5'); + } + dataEditingFunc(this.form,'correlation'); + }); + +/////////////////////////////// +//Mapping Tools +/////////////////////////////// + + $('#sectionbody4').find('input[name=interval]').click(function() { + chrValue = $('select[name=chromosomes1] option:selected').val(); + $('input[name=chromosomes]').val(chrValue); + scaleValue = $('select[name=scale1] option:selected').val(); + $('input[name=scale]').val(scaleValue); + $('input[name=controlLocus]').val(''); + + //Changed the way permValue, bootValue, and parentsValue are acquired; before it was $(____).is(':checked'); + permValue = $('input[name=permCheck1]:checked').val(); + $('input[name=permCheck]').val(permValue); + + bootValue = $('input[name=bootCheck1]:checked').val(); + $('input[name=bootCheck]').val(bootValue); + + if ($('input[name=parentsf14regression1]:checked').length > 0){ + $('input[name=parentsf14regression]').val('on'); + } else { + $('input[name=parentsf14regression]').val('off'); + } + + varValue = $('input[name=applyVarianceSE1]:checked').val(); + $('input[name=applyVarianceSE]').val(varValue); + + dataEditingFunc(this.form,'intervalMap'); + }); + + var tiptext = "e.g., rs12345"; + controlLocus = $('#sectionbody4').find('input[name=controlLocus]'); + + if(controlLocus.val() == '' || controlLocus == tiptext) { + controlLocus.addClass('searchtip').val(tiptext); + } + + controlLocus.focus(function(e) { + if(controlLocus.val() == tiptext) { + controlLocus.val(''); + } + controlLocus.removeClass('searchtip'); + }); + + controlLocus.blur(function(e) { + if(controlLocus.val() == '') { + controlLocus.addClass('searchtip').val(tiptext); + } else if(controlLocus.val() == tiptext) { + controlLocus.addClass('searchtip'); + } else { + controlLocus.removeClass('searchtip'); + } + }); + + $('#sectionbody4').find('input[name=composite]').click(function() { + chrValue = $('select[name=chromosomes2] option:selected').val(); + $('input[name=chromosomes]').val(chrValue); + scaleValue = $('select[name=scale2] option:selected').val(); + $('input[name=scale]').val(scaleValue); + controlValue = controlLocus.val(); + if (controlValue != tiptext){ + controlLocus.val(controlValue); + } + else{ + controlLocus.val(''); + } + + //Changed the way permValue, bootValue, and parentsValue are acquired; before it was $(____).is(':checked'); + permValue = $('input[name=permCheck2]:checked').val(); + $('input[name=permCheck]').val(permValue); + + bootValue = $('input[name=bootCheck2]:checked').val(); + $('input[name=bootCheck]').val(bootValue); + + if ($('input[name=parentsf14regression3]:checked').length > 0){ + $('input[name=parentsf14regression]').val('on'); + } else { + $('input[name=parentsf14regression]').val('off'); + } + + dataEditingFunc(this.form,'intervalMap'); + + }); + + $('#sectionbody4').find('input[name=marker]').click(function() { + //Changed the way parentsValue is acquired; before it was $(____).is(':checked'); + if ($('input[name=parentsf14regression2]:checked').length > 0){ + $('input[name=parentsf14regression]').val('on'); + } else { + $('input[name=parentsf14regression]').val('off'); + } + + varValue = $('input[name=applyVarianceSE2]:checked').val(); + $('input[name=applyVarianceSE]').val(varValue); + + dataEditingFunc(this.form,'markerRegression'); + }); + +/////////////////////////////// +//Review and Edit Data +/////////////////////////////// + + $('input[name=excludeGroup]').click(function(){ + for (i = 1;i <= Math.max(primary_row_count,other_row_count)-1; i++){ + valueExists = 0; + $('#Primary_'+i+',#Other_'+i).children().each(function(){ + if ($(this).text() == exclude_value) { + $('#Primary_'+i+',#Other_'+i).addClass('blocked').find('input[type=text]').val('x'); + valueExists = 1; + return false; + } + }); + } + }); + + $('.update').click(function(){ + windowName = 'formTarget' + (new Date().getTime()); + newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=0,directories=1,width=900"); + document.dataInput.target = windowName; + document.dataInput.submitID.value = "basicStatistics"; + + primaryData = getTraitData()[0]; + otherData = getTraitData()[1]; + allData = getTraitData()[2]; + + if (otherData[0].length > 0) { + if ($('select[name="stats_mdp"] option:selected').val() == 0) { + document.dataInput.strainNames.value = allData[0].toString(); + document.dataInput.strainVals.value = allData[1].toString(); + document.dataInput.strainVars.value = allData[2].toString(); + } + else if ($('select[name="stats_mdp"] option:selected').val() == 1) { + document.dataInput.strainNames.value = primaryData[0].toString(); + document.dataInput.strainVals.value = primaryData[1].toString(); + document.dataInput.strainVars.value = primaryData[2].toString(); + } + else { + document.dataInput.strainNames.value = otherData[0].toString(); + document.dataInput.strainVals.value = otherData[1].toString(); + document.dataInput.strainVars.value = otherData[2].toString(); + } + } + else { + document.dataInput.strainNames.value = allData[0].toString(); + document.dataInput.strainVals.value = allData[1].toString(); + document.dataInput.strainVars.value = allData[2].toString(); + } + + document.dataInput.submit(); + }); + + $('input[name="export"]').click(function(){ + windowName = 'formTarget' + (new Date().getTime()); + newWindow = open("",windowName,"menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=0,directories=1,width=900"); + document.dataInput.target = windowName; + document.dataInput.submitID.value = "exportData"; + + primaryData = getTraitData()[0]; + otherData = getTraitData()[1]; + + document.dataInput.strainNames.value = primaryData[0].toString(); + document.dataInput.strainVals.value = primaryData[1].toString(); + document.dataInput.strainVars.value = primaryData[2].toString(); + + document.dataInput.otherStrainNames.value = otherData[0].toString(); + document.dataInput.otherStrainVals.value = otherData[1].toString(); + document.dataInput.otherStrainVars.value = otherData[2].toString(); + + attribute_names = new Array(); + $('#primary,#other').find('th.attribute_name').each(function(){ + attribute_names.push($(this).val().toString()); + }); + + primary_attribute_values = ""; //This string will be structured as a dictionary with a set of values for each attribute; it will be parsed in the ExportPage class + other_attribute_values = ""; + + attr_counter = 1; // Counter for each different attribute + row_counter = 1; // Counter for each value for each attribute + while (attr_counter <= attribute_names.length){ + attribute_name = $('#primary,#other').find('th.attribute_name:eq('+ (attr_counter-1).toString() + ')').text(); + primary_row_count = $('#primary').find('tr').length - 1; + other_row_count = $('#other').find('tr').length - 1; + + primary_attribute_values += attribute_name + " : "; + other_attribute_values += attribute_name + " : "; + + primary_value_string = ""; //This string of values (in the format 'a,b,c', etc) will be appended to the primary_attribute_values string + for (row_counter = 1;row_counter <= numPrimaryRows; row_counter++){ + value = $('#primary_attribute'+attr_counter.toString()+'_sample'+row_counter.toString()).text(); + if (row_counter == primary_row_count) { + primary_value_string += (value + " / "); + } + else{ + primary_value_string += (value + ","); + } + } + + primary_attribute_values += primary_value_string; + + other_value_string = ""; //This string of values (in the format 'a,b,c', etc) will be appended to the other_attribute_values string + for (row_counter = 1;row_counter <= numOtherRows; row_counter++){ + value = $('#other_attribute'+attr_counter.toString()+'_sample'+row_counter.toString()).text(); + if (row_counter == other_row_count) { + other_value_string += (value + " / "); + } + else{ + other_value_string += (value + ","); + } + } + other_attribute_values += other_value_string; + attr_counter += 1 + } + + document.dataInput.extra_attributes.value = primary_attribute_values; + document.dataInput.other_extra_attributes.value = other_attribute_values; + + document.dataInput.submit(); + }); + + var thisTable = $('#sortable1,#sortable2'); //ZS: variable representing each table, because it's used often + + thisTable.find('input[name="selectCheck"]').click(function(){ + if($(this).is(':checked')){ + $(this).parent("").parent("").children("td").css("background-color", "yellow"); + } + else{ + if(!($(this).parent().parent().hasClass('outlier'))){ + $(this).parent().parent().children("td").css("background-color", "white"); + } + } + }); + + $('input[name=resetButton]').click(function(){ + + //ZS: Reset "hide no value" and "hide outliers" + $('#showHideOptions').find('input[name=showHideNoValue]').val(' Hide No Value '); + $('#showHideOptions').find('input[name=showHideOutliers]').val(' Hide Outliers '); + noValShown = 1; + outliersShown = 1; + + for (i=1;i<=numPrimaryRows-1;i++){ + var thisRow = $('#Primary_'+i); + if (thisRow.is('.invisible')){ + thisRow.removeClass('invisible'); + } + if (thisRow.is('.blocked')){ + thisRow.removeClass('blocked'); + } + if (thisRow.is(':not(.outlier)')){ + thisRow.css("background-color", "white"); + } + + var thisValueField = thisRow.find('.valueField'); + + var originalValue = thisValueField[0].defaultValue; + var thisClassNames = thisRow.find('input:eq(1)').attr('class').split(/\s+/); + var valueClass = thisClassNames[thisClassNames.length-1]; + thisRow.find('input:eq(1)').removeClass(valueClass).addClass(originalValue).val(originalValue); + + if (thisValueField.length > 1){ + var originalValue = thisValueField[1].defaultValue; + var thisClassNames = thisRow.find('input:eq(2)').attr('class').split(/\s+/); + var valueClass = thisClassNames[thisClassNames.length-1]; + thisRow.find('input:eq(2)').removeClass(valueClass).addClass(originalValue).val(originalValue); + } + } + for (i=1;i<=numOtherRows-1;i++){ + var thisRow = $('#Other_'+i); + if (thisRow.is('.invisible')){ + thisRow.removeClass('invisible') + } + if (thisRow.is('.blocked')){ + thisRow.removeClass('blocked'); + } + if (thisRow.is(':not(.outlier)')){ + thisRow.css("background-color", "white"); + } + + var thisValueField = thisRow.find('.valueField'); + + var originalValue = thisValueField[0].defaultValue; + var thisClassNames = thisRow.find('input:eq(1)').attr('class').split(/\s+/); + var valueClass = thisClassNames[thisClassNames.length-1]; + thisRow.find('input:eq(1)').removeClass(valueClass).addClass(originalValue).val(originalValue); + + if (thisValueField.length > 1){ + var originalValue = thisValueField[1].defaultValue; + var thisClassNames = thisRow.find('input:eq(2)').attr('class').split(/\s+/); + var valueClass = thisClassNames[thisClassNames.length-1]; + thisRow.find('input:eq(2)').removeClass(valueClass).addClass(originalValue).val(originalValue); + } + } + }); + + var tiptext2 = "e.g., 4, 6-30, 43"; + var blockField = $('#showHideOptions').find('input[name=removeField]'); //ZS: Field where user inputs the index of the samples he/she wants to block; created variable because it's used often + + if(blockField.val() == '' || blockField.val() == tiptext2) { + blockField.addClass('searchtip'); + blockField.val(tiptext2); + } + + blockField.focus(function(e) { + if(blockField.val() == tiptext2) { + blockField.val(''); + } + blockField.removeClass('searchtip'); + }); + + blockField.blur(function(e) { + if(blockField.val() == '') { + blockField.addClass('searchtip'); + blockField.val(tiptext2); + } else if(blockField.val() == tiptext2) { + blockField.addClass('searchtip'); + } else { + blockField.removeClass('searchtip'); + } + }); + + var noValShown = new Boolean(1); + var outliersShown = new Boolean(1); + + $('#showHideOptions').bind('click', function(e){ + var target = e.target; + $target = $(target); + + if (target.name === 'blockSamples'){ + if (blockField.val() == tiptext2){ + blockField.val('') + } + blockedText = blockField.val(); + blockedTextSplit = new Array(); + blockedItems = new Array(); + + blockedTextSplit = blockedText.split(/\,/); + + for (i=0;i<=blockedTextSplit.length-1;i++) { + var item = blockedTextSplit[i]; + if(item.indexOf('-') != -1){ + subArray = new Array(); + subArray = item.split('-'); + num1 = parseInt(subArray[0]); + num2 = parseInt(subArray[1]); + for (j=num1;j<=num2;j=j+1){ + blockedItems.push(j); + } + } + else if(!(isNaN(item))) { + blockedItems.push(item); + } + } + + for (i=0;i<=blockedItems.length-1;i++) { + item = blockedItems[i]; + if ($('select[name=block_method]').val() == '0') { + var thisRow = $('#Other_'+item); + } + else { + var thisRow = $('#Primary_'+item); + } + + if (thisRow.is('.novalue')) { + continue; + } + else { + thisRow.addClass('blocked').find('input.valueField').val('x'); + } + + //First look at value cell + var thisCell = thisRow.find('input:eq(1)'); + var thisClassNames = thisCell.attr('class').split(/\s+/); + var valueClass = thisClassNames[thisClassNames.length-1]; + var header = thisRow.parents('table.tablesorter').find('th.header:contains("Value"):eq(0)'); + if (header.hasClass('headerSortUp')){ + thisCell.removeClass(valueClass).addClass('-9999'); + } else if (header.hasClass('headerSortDown')){ + thisCell.removeClass(valueClass).addClass('9999'); + } else { + thisCell.removeClass(valueClass).addClass('-9999'); + } + + //Check if there is an SE column + if (thisRow.find('input.valueField').length > 1) { + var thisCell = thisRow.find('input:eq(2)'); + var thisClassNames = thisCell.attr('class').split(/\s+/); + var valueClass = thisClassNames[thisClassNames.length-1]; + var header = thisRow.parents('table.tablesorter').find('th.header:contains("SE"):eq(0)'); + if (header.hasClass('headerSortUp')){ + thisCell.removeClass(valueClass).addClass('-9999'); + } else if (header.hasClass('headerSortDown')){ + thisCell.removeClass(valueClass).addClass('9999'); + } else { + thisCell.removeClass(valueClass).addClass('-9999'); + } + } + } + } + + else if (target.name === 'showHideNoValue'){ + if (noValShown) { + $('#showHideOptions').find('input[name=showHideNoValue]').val(' Show No Value '); + for (i=1;i<=Math.max(numPrimaryRows,numOtherRows)-1;i++) { + if (i<=numPrimaryRows-1) { + var thisRow = $('#Primary_'+i); + if (thisRow.is('.novalue:visible') || thisRow.is('.blocked:visible')){ + jQuery(thisRow).addClass('invisible'); + } + } + if (i<=numOtherRows-1){ + var thisOtherRow = $('#Other_'+i); + if (thisOtherRow.is('.novalue:visible') || thisOtherRow.is('.blocked:visible')){ + if (thisOtherRow.is(':visible')){ + jQuery(thisOtherRow).addClass('invisible'); + } + } + } + } + noValShown = 0; + } + else { + $('#showHideOptions').find('input[name=showHideNoValue]').val(' Hide No Value '); + for (i=1;i<=Math.max(numPrimaryRows,numOtherRows)-1;i++) { + if (i<=numPrimaryRows-1) { + var thisRow = $('#Primary_'+i); + if (thisRow.is('.novalue') || thisRow.is('.blocked')){ + jQuery(thisRow).removeClass('invisible'); + if (!(outliersShown)) { + if (thisRow.is('.outlier:visible')){ + jQuery(thisRow).addClass('invisible'); + } + } + } + } + if (i<=numOtherRows-1){ + var thisOtherRow = $('#Other_'+i); + if (thisOtherRow.is('.novalue') || thisOtherRow.is('.blocked')){ + jQuery(thisOtherRow).removeClass('invisible'); + if (!(outliersShown)) { + if (thisOtherRow.is('.outlier:visible')){ + jQuery(thisOtherRow).addClass('invisible'); + } + } + } + } + } + noValShown = 1; + } + } + + else if (target.name === 'showHideOutliers'){ + if (outliersShown){ + $('#showHideOptions').find('input[name=showHideOutliers]').val(' Show Outliers '); + for (i=1;i<=Math.max(numPrimaryRows,numOtherRows)-1;i++) { + if (i<=numPrimaryRows-1) { + thisRow = $('#Primary_'+i); + if (thisRow.is('.outlier:visible') && (!(thisRow.is('.invisible')))) { + thisRow.addClass('invisible') + } + } + if (i<=numOtherRows-1) { + thisOtherRow = $('#Other_'+i); + if (thisOtherRow.is('.outlier:visible') && (!(thisOtherRow.is('.invisible')))) { + thisOtherRow.addClass('invisible') + } + } + } + outliersShown = 0; + } + else { + $('#showHideOptions').find('input[name=showHideOutliers]').val(' Hide Outliers '); + for (i=1;i<=Math.max(numPrimaryRows,numOtherRows)-1;i++) { + if (i<=numPrimaryRows-1) { + thisRow = $('#Primary_'+i); + if (thisRow.is('.outlier') && (!(thisRow.is(':visible')))) { + if (!(noValShown)) { + if (thisRow.is('.blocked')){ + continue; + } + } + jQuery(thisRow).removeClass('invisible') + } + } + if (i<=numOtherRows-1) { + thisOtherRow = $('#Other_'+i); + if (thisOtherRow.is('.outlier') && (!(thisOtherRow.is(':visible')))) { + if (!(noValShown)) { + if (thisOtherRow.is('.blocked')){ + continue; + } + } + jQuery(thisOtherRow).removeClass('invisible') + } + } + } + outliersShown = 1; + } + } + return false; + }); +}); + +function getTraitData(){ + primary_row_count = $('#sortable1').find('tr').length - 1; + other_row_count = $('#sortable2').find('tr').length - 1; + + primaryStrainNames = new Array(); + primaryVals = new Array(); + primaryVars = new Array(); + + allStrainNames = new Array(); + allVals = new Array(); + allVars = new Array(); + + for (i = 1;i <= primary_row_count; i++){ + thisRow = $('#Primary_'+i); + strainName = thisRow.find('span:first').text(); + primaryStrainNames.push(strainName); + allStrainNames.push(strainName); + strainVal = thisRow.find('input:eq(1)').val(); + primaryVals.push(strainVal); + allVals.push(strainVal); + strainVar = ''; // Just to initialize it in case there is no var + strainVar = thisRow.find('input:eq(2)').val(); + primaryVars.push(strainVar); + allVars.push(strainVar); + } + + otherStrainNames = new Array(); + otherVals = new Array(); + otherVars = new Array(); + + for (j = 1;j <= other_row_count; j++){ + thisRow = $('#Other_'+j) + strainName = thisRow.find('span:first').text(); + otherStrainNames.push(strainName); + strainVal = thisRow.find('input:eq(1)').val(); + otherVals.push(strainVal); + strainVar = ''; // Just to initialize it in case there is no var + strainVar = thisRow.find('input:eq(2)').val(); + otherVars.push(strainVar); + + if (jQuery.inArray(strainName, allStrainNames) == -1) { + allStrainNames.push(strainName); + allVals.push(strainVal); + allVars.push(strainVar); + } + } + + primaryData = [primaryStrainNames, primaryVals, primaryVars]; + otherData = [otherStrainNames, otherVals, otherVars]; + allData = [allStrainNames, allVals, allVars]; + + return [primaryData, otherData, allData]; +} + + +/* +used by networkGraphPageBody.py +*/ + +//Default to plain text + symbol for the "Export Graph File" button +$('input[name=exportGraphFile]').live('click', function() { window.open($('input[name=exportFilename]').val() + "_plain_symbol.txt") }); + +function changeFormat(graphName){ + var graphFormat = $('#exportFormat').val(); + var traitType = $('#traitType').val(); + + $('input[name=exportGraphFile]').die('click'); + + if (graphFormat=="xgmml"){ + if (traitType=="symbol"){ + var graphFile = graphName+ "_xgmml_symbol.txt"; + $('input[name=exportGraphFile]').live('click', function() { window.open(graphFile) }); + } + else if (traitType=="name"){ + var graphFile = graphName+ "_xgmml_name.txt"; + $('input[name=exportGraphFile]').live('click', function() { window.open(graphFile) }); + } + } + + else if (graphFormat=="plain"){ + if (traitType=="symbol"){ + var graphFile = graphName+ "_plain_symbol.txt"; + $('input[name=exportGraphFile]').live('click', function() { window.open(graphFile) }); + } + else if (traitType=="name"){ + var graphFile = graphName+ "_plain_name.txt"; + $('input[name=exportGraphFile]').live('click', function() { window.open(graphFile) }); + } + } +} + diff --git a/web/javascript/menu_items.js b/web/javascript/menu_items.js new file mode 100755 index 00000000..9c3eee4b --- /dev/null +++ b/web/javascript/menu_items.js @@ -0,0 +1,109 @@ +/* + --- menu items --- + note that this structure has changed its format since previous version. + additional third parameter is added for item scope settings. + Now this structure is compatible with Tigra Menu GOLD. + Format description can be found in product documentation. +*/ +var MENU_ITEMS = [ + ['menu_grp1', null, null, + ['GeneNetwork Intro', '/home.html'], + ['Enter Trait Data', '/webqtl/main.py?FormID=submitSingleTrait'], + ['Batch Submission', '/webqtl/main.py?FormID=batSubmit'], + ], + ['menu_grp2', null, null, + ['Search Databases', '/'], + ['Tissue Correlation', '/webqtl/main.py?FormID=tissueCorrelation'], + ['SNP Browser', '/webqtl/main.py?FormID=snpBrowser'], + ['Gene Wiki', '/webqtl/main.py?FormID=geneWiki'], + ['Interval Analyst', '/webqtl/main.py?FormID=intervalAnalyst'], + ['QTLminer', '/webqtl/main.py?FormID=qtlminer'], + ['GenomeGraph', '/dbResults.html'], + ['Trait Collections',null,null, +['Human', null, null, + ['CEPH-2004', '/webqtl/main.py?FormID=dispSelection&RISet=CEPH-2004'], + ['AD-cases-controls', '/webqtl/main.py?FormID=dispSelection&RISet=AD-cases-controls'], + ['AD-cases-controls-Myers', '/webqtl/main.py?FormID=dispSelection&RISet=AD-cases-controls-Myers'], + ['CEPH-2009', '/webqtl/main.py?FormID=dispSelection&RISet=CEPH-2009'], + ['HLC', '/webqtl/main.py?FormID=dispSelection&RISet=HLC'], + ['CANDLE', '/webqtl/main.py?FormID=dispSelection&RISet=CANDLE'], + ['HB', '/webqtl/main.py?FormID=dispSelection&RISet=HB'], + ['HSB', '/webqtl/main.py?FormID=dispSelection&RISet=HSB'], +], +['Macaque monkey', null, null, + ['Macaca-fasicularis', '/webqtl/main.py?FormID=dispSelection&RISet=Macaca-fasicularis'], +], +['Mouse', null, null, + ['BXD', '/webqtl/main.py?FormID=dispSelection&RISet=BXD'], + ['B6D2F2', '/webqtl/main.py?FormID=dispSelection&RISet=B6D2F2'], + ['AXBXA', '/webqtl/main.py?FormID=dispSelection&RISet=AXBXA'], + ['AKXD', '/webqtl/main.py?FormID=dispSelection&RISet=AKXD'], + ['B6BTBRF2', '/webqtl/main.py?FormID=dispSelection&RISet=B6BTBRF2'], + ['BXH', '/webqtl/main.py?FormID=dispSelection&RISet=BXH'], + ['CXB', '/webqtl/main.py?FormID=dispSelection&RISet=CXB'], + ['LXS', '/webqtl/main.py?FormID=dispSelection&RISet=LXS'], + ['BDF2-2005', '/webqtl/main.py?FormID=dispSelection&RISet=BDF2-2005'], + ['MDP', '/webqtl/main.py?FormID=dispSelection&RISet=MDP'], + ['NZBXFVB-N2', '/webqtl/main.py?FormID=dispSelection&RISet=NZBXFVB-N2'], + ['BHF2', '/webqtl/main.py?FormID=dispSelection&RISet=BHF2'], + ['BDF2-1999', '/webqtl/main.py?FormID=dispSelection&RISet=BDF2-1999'], + ['CTB6F2', '/webqtl/main.py?FormID=dispSelection&RISet=CTB6F2'], + ['BHHBF2', '/webqtl/main.py?FormID=dispSelection&RISet=BHHBF2'], + ['HS', '/webqtl/main.py?FormID=dispSelection&RISet=HS'], + ['HS-CC', '/webqtl/main.py?FormID=dispSelection&RISet=HS-CC'], +], +['Rat', null, null, + ['HXBBXH', '/webqtl/main.py?FormID=dispSelection&RISet=HXBBXH'], + ['SRxSHRSPF2', '/webqtl/main.py?FormID=dispSelection&RISet=SRxSHRSPF2'], +], +['Drosophila', null, null, + ['Oregon-R_x_2b3', '/webqtl/main.py?FormID=dispSelection&RISet=Oregon-R_x_2b3'], + ['DGRP', '/webqtl/main.py?FormID=dispSelection&RISet=DGRP'], +], +['Arabidopsis thaliana', null, null, + ['BayXSha', '/webqtl/main.py?FormID=dispSelection&RISet=BayXSha'], + ['ColXCvi', '/webqtl/main.py?FormID=dispSelection&RISet=ColXCvi'], + ['ColXBur', '/webqtl/main.py?FormID=dispSelection&RISet=ColXBur'], +], +['Barley', null, null, + ['SXM', '/webqtl/main.py?FormID=dispSelection&RISet=SXM'], + ['QSM', '/webqtl/main.py?FormID=dispSelection&RISet=QSM'], +], +['Soybean', null, null, + ['J12XJ58F2', '/webqtl/main.py?FormID=dispSelection&RISet=J12XJ58F2'], +], +['Tomato', null, null, + ['LXP', '/webqtl/main.py?FormID=dispSelection&RISet=LXP'], +], + ], + ['Scriptable Interface', '/CGIDoc.html'], + /* ['Simple Query Interface', '/GUI.html'], */ + ['Database Information',null,null, + ['Database Schema', '/webqtl/main.py?FormID=schemaShowPage'], + ], + ['Data Sharing', '/webqtl/main.py?FormID=sharing'], + ['Microarray Annotations', '/webqtl/main.py?FormID=annotation'], + ], + ['menu_grp3', null, null, + ['Movies','http://www.genenetwork.org/tutorial/movies'], + ['Tutorials', null, null, + ['GN Barley Tutorial','/tutorial/pdf/GN_Barley_Tutorial.pdf'], + ['GN Powerpoint', '/tutorial/ppt/index.html']], + ['HTML Tour','/tutorial/WebQTLTour/'], + ['FAQ','/faq.html'], + ['Glossary of Terms','/glossary.html'], + ['GN MediaWiki','http://wiki.genenetwork.org/'], + ], + ['menu_grp4', '/whats_new.html' + ], + ['menu_grp5', '/reference.html' + ], + ['menu_grp6', null, null, + ['Conditions and Limitation', '/conditionsofUse.html'], + ['Data Sharing Policy', '/dataSharing.html'], + ['Status and Contacts', '/statusandContact.html'], + ['Privacy Policy', '/privacy.html'], + ], + ['menu_grp8', '/links.html' + ], +]; diff --git a/web/javascript/menu_new.js b/web/javascript/menu_new.js new file mode 100755 index 00000000..454396b2 --- /dev/null +++ b/web/javascript/menu_new.js @@ -0,0 +1,396 @@ +// Title: tigra menu +// Description: See the demo at url +// URL: http://www.softcomplex.com/products/tigra_menu/ +// Version: 2.0 (commented source) +// Date: 04-05-2003 (mm-dd-yyyy) +// Contact: feedback@softcomplex.com (specify product title in the subject) +// Tech. Support: http://www.softcomplex.com/forum/forumdisplay.php?fid=40 +// Notes: This script is free. Visit official site for further details. + +// -------------------------------------------------------------------------------- +// global collection containing all menus on current page +var A_MENUS = []; +var grpObj = Object; +// -------------------------------------------------------------------------------- +// menu class +function menu (a_items, a_tpl) { + + // browser check + if (!document.body || !document.body.style) + return; + + // store items structure + this.a_config = a_items; + + // store template structure + this.a_tpl = a_tpl; + + // get menu id + this.n_id = A_MENUS.length; + + // declare collections + this.a_index = []; + this.a_children = []; + + // assigh methods and event handlers + this.expand = menu_expand; + this.collapse = menu_collapse; + + this.onclick = menu_onclick; + this.onmouseout = menu_onmouseout; + this.onmouseover = menu_onmouseover; + this.onmousedown = menu_onmousedown; + + // default level scope description structure + this.a_tpl_def = { + 'block_top' : 16, + 'block_left' : 16, + 'top' : 20, + 'left' : 4, + 'width' : 120, + 'height' : 22, + 'hide_delay' : 0, + 'expd_delay' : 0, + 'css' : { + 'inner' : '', + 'outer' : '' + } + }; + + // assign methods and properties required to imulate parent item + this.getprop = function (s_key) { + return this.a_tpl_def[s_key]; + }; + + this.o_root = this; + this.n_depth = -1; + this.n_x = 0; + this.n_y = 0; + + // init items recursively + for (n_order = 0; n_order < a_items.length; n_order++) + new menu_item(this, n_order); + + // register self in global collection + A_MENUS[this.n_id] = this; + + // make root level visible + for (var n_order = 0; n_order < this.a_children.length; n_order++) + this.a_children[n_order].e_oelement.style.visibility = 'hidden'; +} + +// -------------------------------------------------------------------------------- +function menu_collapse (n_id) { + // cancel item open delay + clearTimeout(this.o_showtimer); + + // by default collapse to root level + var n_tolevel = (n_id ? this.a_index[n_id].n_depth : 0); + + // hide all items over the level specified + for (n_id = 0; n_id < this.a_index.length; n_id++) { + var o_curritem = this.a_index[n_id]; + if (o_curritem.n_depth > n_tolevel && o_curritem.b_visible) { + o_curritem.e_oelement.style.visibility = 'hidden'; + o_curritem.b_visible = false; + } + } + + // reset current item if mouse has gone out of items + if (!n_id) + this.o_current = null; +} + +// -------------------------------------------------------------------------------- +function menu_expand (n_id) { + + // expand only when mouse is over some menu item + if (this.o_hidetimer) + return; + + // lookup current item + var o_item = this.a_index[n_id]; + + // close previously opened items + if (this.o_current && this.o_current.n_depth >= o_item.n_depth) + this.collapse(o_item.n_id); + this.o_current = o_item; + + // exit if there are no children to open + if (!o_item.a_children) + return; + + // show direct child items + for (var n_order = 0; n_order < o_item.a_children.length; n_order++) { + var o_curritem = o_item.a_children[n_order]; + o_curritem.e_oelement.style.visibility = 'visible'; + o_curritem.b_visible = true; + } +} + +// -------------------------------------------------------------------------------- +// +// -------------------------------------------------------------------------------- +function menu_onclick (n_id) { + // don't go anywhere if item has no link defined + return Boolean(this.a_index[n_id].a_config[1]); +} + +// -------------------------------------------------------------------------------- +function menu_onmouseout (n_id) { + + // lookup new item's object + var o_item = this.a_index[n_id]; + + // apply rollout + o_item.e_oelement.className = o_item.getstyle(0, 0); + o_item.e_ielement.className = o_item.getstyle(1, 0); + + // update status line + o_item.upstatus(7); + + // run mouseover timer + this.o_hidetimer = setTimeout('A_MENUS['+ this.n_id +'].collapse();', + o_item.getprop('hide_delay')); +} + +// -------------------------------------------------------------------------------- +function menu_onmouseover (n_id) { + + // cancel mouseoute menu close and item open delay + clearTimeout(this.o_hidetimer); + this.o_hidetimer = null; + clearTimeout(this.o_showtimer); + + // lookup new item's object + var o_item = this.a_index[n_id]; + + // update status line + o_item.upstatus(); + + // apply rollover + o_item.e_oelement.className = o_item.getstyle(0, 1); + o_item.e_ielement.className = o_item.getstyle(1, 1); + + // if onclick open is set then no more actions required + if (o_item.getprop('expd_delay') < 0) + return; + + // run expand timer + this.o_showtimer = setTimeout('A_MENUS['+ this.n_id +'].expand(' + n_id + ');', + o_item.getprop('expd_delay')); + +} + +// -------------------------------------------------------------------------------- +// called when mouse button is pressed on menu item +// -------------------------------------------------------------------------------- +function menu_onmousedown (n_id) { + + // lookup new item's object + var o_item = this.a_index[n_id]; + + // apply mouse down style + o_item.e_oelement.className = o_item.getstyle(0, 2); + o_item.e_ielement.className = o_item.getstyle(1, 2); + + this.expand(n_id); +// this.items[id].switch_style('onmousedown'); +} + + +// -------------------------------------------------------------------------------- +// menu item Class +function menu_item (o_parent, n_order) { + + // store parameters passed to the constructor + this.n_depth = o_parent.n_depth + 1; + this.a_config = o_parent.a_config[n_order + (this.n_depth ? 3 : 0)]; + + // return if required parameters are missing + if (!this.a_config) return; + + // store info from parent item + this.o_root = o_parent.o_root; + this.o_parent = o_parent; + this.n_order = n_order; + + // register in global and parent's collections + this.n_id = this.o_root.a_index.length; + this.o_root.a_index[this.n_id] = this; + o_parent.a_children[n_order] = this; + + // calculate item's coordinates + var o_root = this.o_root, + a_tpl = this.o_root.a_tpl; + + // assign methods + this.getprop = mitem_getprop; + this.getstyle = mitem_getstyle; + this.upstatus = mitem_upstatus; + + //relative positioning + if (this.o_parent == this.o_root){ + linkedObject = document.getElementById(this.a_config[0]); + if (!linkedObject){ + this.itemLeft = 200; + this.itemTop = 200; + } + else{ + //alert(linkedObject.x+linkedObject.width/2 ); + grpObj[this.a_config[0]] = this.n_id; + this.itemTop = findPosY(linkedObject);//linkedObject.height/4; + this.itemLeft = findPosX(linkedObject)+5; + } + } + else{ + this.itemLeft = this.getprop('left'); + this.itemTop = this.getprop('top'); + } + + if (this.itemLeft.length > 0){ + this.itemLeft = this.itemLeft[n_order];} + + this.itemWidth = this.getprop('width'); + if (this.itemWidth.length > 0){ + this.itemWidth = this.itemWidth[n_order];} + + this.itemSubWidth = this.getprop('subwidth'); + if ((this.o_parent != this.o_root) && (this.o_parent.itemSubWidth.length > 0)){ + this.itemWidth = this.o_parent.itemSubWidth[this.o_parent.n_order];} + + this.n_x = (this.o_parent == this.o_root) + ? this.itemLeft + :(n_order? + o_parent.a_children[n_order - 1].n_x + this.itemLeft + : o_parent.n_x + this.getprop('block_left')); + + this.n_y = (this.o_parent == this.o_root) + ? this.itemTop + :(n_order? + o_parent.a_children[n_order - 1].n_y + this.itemTop + : o_parent.n_y + this.getprop('block_top')); + //this.n_y = n_order + // ? o_parent.a_children[n_order - 1].n_y + this.getprop('top') + // : o_parent.n_y + this.getprop('block_top'); + + // generate item's HMTL + document.write ( + '\n" + ); + if (this.n_id == -1){ + } + this.e_ielement = document.getElementById('e' + o_root.n_id + '_' + this.n_id + 'i'); + this.e_oelement = document.getElementById('e' + o_root.n_id + '_' + this.n_id + 'o'); + + this.b_visible = !this.n_depth; + + // no more initialization if leaf + if (this.a_config.length < 4) + return; + + // node specific methods and properties + this.a_children = []; + + // init downline recursively + for (var n_order = 0; n_order < this.a_config.length - 3; n_order++) + new menu_item(this, n_order); +} + +// -------------------------------------------------------------------------------- +// reads property from template file, inherits from parent level if not found +// ------------------------------------------------------------------------------------------ +function mitem_getprop (s_key) { + + // check if value is defined for current level + var s_value = null, + a_level = this.o_root.a_tpl[this.n_depth]; + + // return value if explicitly defined + if (a_level) + s_value = a_level[s_key]; + + // request recursively from parent levels if not defined + return (s_value == null ? this.o_parent.getprop(s_key) : s_value); +} +// -------------------------------------------------------------------------------- +// reads property from template file, inherits from parent level if not found +// ------------------------------------------------------------------------------------------ +function mitem_getstyle (n_pos, n_state) { + + var a_css = this.getprop('css'); + var a_oclass = a_css[n_pos ? 'inner' : 'outer']; + + // same class for all states + if (typeof(a_oclass) == 'string') + return a_oclass; + + // inherit class from previous state if not explicitly defined + for (var n_currst = n_state; n_currst >= 0; n_currst--) + if (a_oclass[n_currst]) + return a_oclass[n_currst]; +} + +// ------------------------------------------------------------------------------------------ +// updates status bar message of the browser +// ------------------------------------------------------------------------------------------ +function mitem_upstatus (b_clear) { + window.setTimeout("window.status=unescape('" + (b_clear + ? '' + : (this.a_config[2] && this.a_config[2]['sb'] + ? escape(this.a_config[2]['sb']) + : escape(this.a_config[0]) + (this.a_config[1] + ? ' ('+ escape(this.a_config[1]) + ')' + : ''))) + "')", 10); +} + +// -------------------------------------------------------------------------------- +// that's all folks + +//http://www.quirksmode.org/js/findpos.html +function findPosX(obj) +{ + var curleft = 0; + if (obj.offsetParent) + { + while (obj.offsetParent) + { + curleft += obj.offsetLeft + obj = obj.offsetParent; + } + } + else if (obj.x) + curleft += obj.x; + return curleft; +} + +function findPosY(obj) +{ + var curtop = 0; + if (obj.offsetParent) + { + while (obj.offsetParent) + { + curtop += obj.offsetTop + obj = obj.offsetParent; + } + } + else if (obj.y) + curtop += obj.y; + return curtop; +} diff --git a/web/javascript/menu_tpl.js b/web/javascript/menu_tpl.js new file mode 100755 index 00000000..16483b87 --- /dev/null +++ b/web/javascript/menu_tpl.js @@ -0,0 +1,89 @@ +/* + --- menu level scope settins structure --- + note that this structure has changed its format since previous version. + Now this structure has the same layout as Tigra Menu GOLD. + Format description can be found in product documentation. +*/ +var MENU_POS = [ +{ + // item sizes + 'height': 26, + 'width': [60,150,80,90,70,70], + 'subwidth': [160,180,185,190,170,190,100,100], + //'width': [150,200,150,100,90], + // menu block offset from the origin: + // for root level origin is upper left corner of the page + // for other levels origin is upper left corner of parent item + 'block_top': 117, + 'block_left': 26, + // offsets between items of the same level + 'top': 0, + 'left': [null,60,150,80,90,70,70], + //'left': [100,150,200,150,100,90], + // time in milliseconds before menu is hidden after cursor has gone out + // of any items + 'hide_delay': 200, + 'expd_delay': 200, + 'css' : { + 'outer': ['m0l0oout', 'm0l0oover'], + 'inner': ['m0l0iout', 'm0l0iover'] + } +}, +{ + 'height': 29, + 'width': 200, + 'subwidth': [], + 'block_top': 15, + 'block_left': 5, + 'top': 28, + 'left': 0, + 'css': { + 'outer' : ['m0l1oout', 'm0l1oover'], + 'inner' : ['m0l1iout', 'm0l1iover'] + } +}, +{ + 'height': 29, + 'width': 150, + 'subwidth': [], + 'block_top': 15, + 'block_left': 175, + 'css': { + 'outer': ['m0l2oout', 'm0l2oover'], + 'inner': ['m0l2iout', 'm0l2iover'] + } +}, +{ + 'height': 29, + 'width': 150, + 'subwidth': [], + 'block_top': 15, + 'block_left': 145, + 'css': { + 'outer': ['m0l3oout', 'm0l3oover'], + 'inner': ['m0l3iout', 'm0l3iover'] + } +}, +{ + 'height': 29, + 'width': 350, + 'subwidth': [], + 'block_top': 15, + 'block_left': 145, + 'css': { + 'outer': ['m0l4oout', 'm0l4oover'], + 'inner': ['m0l4iout', 'm0l4iover'] + } +}, +{ + 'height': 29, + 'width': 350, + 'subwidth': [], + 'block_top': 15, + 'block_left': 175, + 'css': { + 'outer': ['m0l5oout', 'm0l5oover'], + 'inner': ['m0l5iout', 'm0l5iover'] + } +} +] diff --git a/web/javascript/networkGraph.js b/web/javascript/networkGraph.js new file mode 100755 index 00000000..2621dde1 --- /dev/null +++ b/web/javascript/networkGraph.js @@ -0,0 +1,112 @@ +var searchResults = document.getElementById('searchResult').value.split("\t"); +var symbolList = document.getElementById('symbolList').value.split("\t"); +var originalThreshold = document.getElementById('kValue').value; +addTraitSelection(); + +function addTraitSelection() +{ + var gType = document.getElementById('gType').value; + var nodeSelect = document.getElementById('nodeSelect'); + var newDropDown = document.createElement('newDrop'); + + newDropDown.innerHTML = generateDropdownHtml(); + + if (gType == "radial"){ + nodeSelect.appendChild(newDropDown); + originalLock = document.getElementById('lock').value; + document.getElementById('lock').value = "yes"; + if ( originalThreshold == "undefined"){ + originalThreshold = document.getElementById('kValue').value; + } + document.getElementById('kValue').value = "0.0"; + + } + else{ + try{ + nodeSelect.removeChild(nodeSelect.childNodes[0]); + document.getElementById('lock').value = originalLock; + document.getElementById('kValue').value = originalThreshold; + } catch(err){ + originalLock = document.getElementById('lock').value; + originalThreshold = document.getElementById('kValue').value; + } + } +} + +function generateDropdownHtml(){ + var html = ""; + + html += "
       "; + html += "
      ProbsetId
      p-value range: between and
      '; + newWindow.document.write(html); + newWindow.document.close(); + newWindow.focus(); +} + +function getCookie(NameOfCookie){ + if (document.cookie.length > 0){ + begin = document.cookie.indexOf(NameOfCookie+"="); + if (begin != -1){ + begin += NameOfCookie.length+1; + end = document.cookie.indexOf(";", begin); + if (end == -1) end = document.cookie.length; + return unescape(document.cookie.substring(begin, end)); + } + } + return null; +} + +function setCookie(NameOfCookie, value, expiredays){ + var ExpireDate = new Date (); + ExpireDate.setTime(ExpireDate.getTime() + (expiredays * 24 * 3600 * 1000)); + document.cookie = NameOfCookie + "=" + escape(value) + ((expiredays == null) ? "" : "; expires=" + ExpireDate.toGMTString()) + "; path=/"; +} + + +function delCookie (NameOfCookie){ + if (getCookie(NameOfCookie)){ + document.cookie = NameOfCookie + "=" + "; expires=Thu, 01-Jan-70 00:00:01 GMT"; + } +} + + +function highlight(chkbox){ + var tr = document.getElementById(chkbox.value); + if (tr){ + if (chkbox.checked == true) + tr.bgColor='#FFEE99'; + else + tr.bgColor='#eeeeee'; + } +} + +/* refresh function option when domain options change */ +function snpbrowser_function_refresh() { + var idx = document.newSNPPadding.domain.selectedIndex; + if (idx != 1) { + document.newSNPPadding.exonfunction.options[0].selected=true; + for (var i=1; i 1) { + alert("You selected multiple primary traits. Please just select one primary trait!"); + } + else if (controlCount < 1) { + alert("You must select at least one control trait!"); + } + else if (controlCount > 3) { + alert("You selected more than three control traits. Please select no more than three control trait!"); + } + else if (targetCount < 1 && type == 0) { + alert("You must select at least one target trait!"); + } + else { + thisForm.primaryTrait.value = primaryString; + thisForm.controlTraits.value = controlString; + thisForm.targetTraits.value = targetString; + + if (type == 0){ + if (method == 1) { + thisForm.pcMethod.value = "pearson"; + } + else { + thisForm.pcMethod.value = "spearman"; + } + + databaseFunc(thisForm,'calPartialCorrTrait'); + } + if (type == 1){ + databaseFunc(thisForm,'calPartialCorrDB'); + } + + } + +} + +/* +used by IntervalMappingPage.py +*/ +function changeView(i, Chr_Mb_list){ + var oldwidth= document.changeViewForm.graphWidth.value; + var oldselect= document.changeViewForm.chromosomes.selectedIndex; + var oldstart= document.changeViewForm.startMb.value; + var oldend= document.changeViewForm.startMb.value; + windowName = 'formTarget' + (new Date().getTime()); + newWindow = open('',windowName,'menubar=1,toolbar=1,location=1,resizable=1,status=1,scrollbars=1,directories=1,width=900'); + document.changeViewForm.target = windowName; + document.changeViewForm.chromosomes.selectedIndex = i+1; + document.changeViewForm.startMb.value = '0.000000'; + document.changeViewForm.endMb.value = Chr_Mb_list[i]; + document.changeViewForm.graphWidth.value = 1280; + document.changeViewForm.submit(); + document.changeViewForm.graphWidth.value = oldwidth; + document.changeViewForm.chromosomes.selectedIndex = oldselect; + document.changeViewForm.startMb.value = oldstart; + document.changeViewForm.endMb.value = oldend; + newWindow.focus(); +} + +/* +used by IntervalMappingPage.py +*/ +function chrLength(a, b, c, Chr_Mb_list) { + if (b=='physic' && a>-1) { + c.startMb.value = '0.000000'; + c.endMb.value = Chr_Mb_list[a]; + } else { + c.startMb.value = ''; + c.endMb.value = ''; + } + if (a>-1) c.graphWidth.value = 1280; + else c.graphWidth.value = 1600; +} + +/* +used by networkGraphPageBody.py +*/ +function changeFormat(graphName){ + var graphFormat = document.getElementById('exportFormat').value; + var traitType = document.getElementById('traitType').value; + + if (graphFormat=="xgmml"){ + if (traitType=="symbol"){ + var graphname = graphName+ "_xgmml_symbol.txt"; + document.getElementById('exportGraphFile').onclick = function() { window.open(graphname) }; + } + else if (traitType=="name"){ + var graphname = graphName+ "_xgmml_name.txt"; + document.getElementById('exportGraphFile').onclick = function() { window.open(graphname) }; + } + } + + else if (graphFormat=="plain") + { + if (traitType=="symbol") + { + var graphname = graphName+ "_plain_symbol.txt"; + document.getElementById('exportGraphFile').onclick = function() { window.open(graphname) }; + } + else if (traitType=="name") + { + var graphname = graphName+ "_plain_name.txt"; + document.getElementById('exportGraphFile').onclick = function() { window.open(graphname) }; + } + } + +} + + +/* +used by snpBrowserPage.py +*/ +function set_customStrains_cookie() { + var options = document.newSNPPadding.chosenStrains.options; + var size = options.length; + strains = ""; + if (size > 0) { + strains = strains + options[0].text+":"+options[0].value; + } + for (var i=1; i +Links + + + + + + + + + + + + + + + + + + +
      + + + +
      + + +

      Links for Exploring Networks of Genes and Phenotypes modify this page

      + + +
      GeneNetwork and WebQTL have integrated links to the following resources
      +
      +
      GN PARTNERS, DEVELOPMENT SITES, AND MIRRORS
      + +
      + +
      + +
      KEY RESOURCES CONNECTED WITH GENENETWORK
      +
      + +
      + +
      + +
      Resources for Analysis of Single Genes, SNPs, mRNAs, and Proteins
      +
      +
      +Harvester retrieves summary data on any one of 57,000 proteins from several bioinformatic resources. +[Added Dec 22, 2004; last site review Sept 19, 2008 by RWW.] +
      + +
      +GSCAN: the Oxford Wellcome Trust Genome Viewer retrieves mapping data for many mouse experimental mapping populations including the Heterogenous Stock, the Pre-Collaborative Cross mice, and Mouse Diversity Panel. +[Added Oct 13, 2010; last site review Oct 13, 2010 by RWW.] +
      + + + + +
      +NIF: The Neuroscience Information Framework retrieves summary from a wide variety of neuroscience and bioinformatic resources. +[Added Dec 3, 2009; last site review Dec 3, 2009 by RWW.] +
      +
      +Genomics of aging resources. A collection of databases and tools designed to help researchers understand the genetics of human ageing through a combination of functional genomics and evolutionary biology. +[Added Feb 28, 2010; last site review Feb 28, 2010 by RWW.] +
      +
      +Human Disease Gene Database from Cardiff (requires log in) +[Added Nov 5, 2009; last site review Nov 5, 2009 by RWW.] +
      +
      +SNPnexus database of human SNPs is designed to simplify and assist in the selection of functionally relevant SNPs for large-scale genotyping studies of multifactorial disorders.[Added Jan 15, 2010; last site review Jan 15, 2010 by RWW.] +
      +
      +SNPedia is a wiki investigating human genetics. We share information about the effects of variations in DNA, citing peer-reviewed scientific publications. It is used by Promethease to analyze and help explain your DNA.[Added Jan 15, 2010; last site review Jan 15, 2010 by RWW.] +
      +
      +Genoglyphix Browser includes extensive data on human copy number variants as well as maps of low copy number repeat regions. +[Added Nov 5, 2009; last site review Nov 5, 2009 by RWW.] +
      +
      +Human Protein Reference DB: a manually curated resource with data on 20,000 proteins. Very effective interface and rich data. +[Added Oct 30, 2005; last site review Sept 19, 2008 by RWW.] +
      +
      +x:map is a terrific visual display tool for exploring Affymetrix Exon array data sets for mouse and human transcriptomes. +[Added April 18, 2008; last site review Sept 19, 2008 by RWW.] +
      +
      +iHOP retrieves PubMed sentences that report interactions between a reference gene and associate genes and proteins. It allows the assembly of complex graphs that plot the literature interactions of genes. Effective interface for humans and machines. +[Added Dec 25, 2004; last site review Sept 19, 2008 by RWW.] +
      +
      +Human Protein Atlas displays expression and localization of proteins in a large variety of normal human tissues and cancer cells as high resolution images of immunohistochemically stained tissues and cell lines. +[Added Sept 22, 2007; last site review Sept 22, 2007 by RWW.] +
      +
      +GoPubMed is a simple tool that searches PubMed and sorts the results by GO and MeSH terms. +[Added July 5, 2007 by RWW; last site review Sept 19, 2008 by RWW.] +
      +
      +AceView and the Alternative Splicing and Transcript Diversity database provide excellent resources for systematic information about the many alternative transcripts produced from single genes. +[Added Jan 1, 2005; last site review Sept 19, 2008 by RWW.] +
      + +
      +MGI and RGD are reference sites for mouse and rat genetics, respectively. +[Added Dec 22, 2004; last site review Sept 19, 2008 by RWW.] +
      + + +
      +GenAtlas provides summary data for approximately 19300 human genes and has a useful link that will fetch 10 Kb of upstream sequence for promoter analysis. +[Added Jan 9, 2005; last site review Sept 19, 2008 by RWW.] +
      +
      +PromoLign aligns homologous regions of mouse and human promoters and highlights SNPs and transcription factor binding sites. Check the quick tutorial to see how to extract key data. This site requires an SVG plugin that may not be supported by some browsers and operating systems. +[Added May 10, 2005; FAILED: last site review Sept 19, 2008 by RWW.] +
      +
      +CGAP SNP Viewer allows users to view SNPs in the context of transcripts, ORFs and protein motifs for either human or mouse genes. Try the Ahr gene in mouse as an example. +[Added April 10, 2006; last site review Sept 19, 2008 by RWW.] +
      +
      +Synapse Database (SynDB) is a comprehensive database of genes and proteins associated with the neuronal or neuromuscular synapse. Many Trait Data and Analysis pages provide links to SynDB. +[Added May 29, 2005; last site review Sept 19, 2008 by RWW.] +
      +
      +Synapse Database at University of Pennsylvania is a comprehensive database of roughly 200 genes and proteins associated with the synapse. +[Added Nov 26, 2006; last site review Sept 19, 2008 by RWW.] +
      +
      +Singapore Bio Databases and Tool. +[Added Dec 22, 2004; Dragon Genome Explorer site FAILED last site review, changed link; Sept 19, 2008 by RWW.] +
      +
      + MutDB and SNPs3D provide great data on functional SNPs in human genes. To analyze the functional impact of non-synonymous SNPs you will also find SNP Analyzer useful because it evaluates SNP impact in terms of the whole protein structural context. +[Added Dec 22, 2004; last site review Sept 19, 2008 by RWW.] +
      +
      +Alternative Splicing Project provides great summaries and output graphs on splice variants in human, mouse, and Drosophila. +[Added Nov 8, 2005; last site review Sept 19, 2008 by RWW.] +
      +
      + +
      + +
      Resources on Imprinting and Parental Origin Effects
      +
      +
      +Geneimprint is a portal into the burgeoning field of genomic imprinting, collecting relevant articles and reviews, press reports, video and audio lectures, and genetic information +[Added June 23, 2010 by RWW; last site review June 23, 2010 by RWW.] +
      +
      +Catalogue of Parent of Origin Effects provides a list of imprinted and putatively imprinted genes with commentary by Ian Morison (University of Otago, New Zealand). Database was last updated in 2008. +[Added June 23, 2010 by RWW; last site review June 23, 2010 by RWW.] +
      +
      + +
      + +
      Resources for the Spatial Analysis of Gene and Protein Expression
      +
      +
      +UBC Bioinformatic and Gene Expression Links is a very extensive and well curated collection of on-line resources for the analysis of biological data sets. +[Added May 24, 2007 by RWW; last site review Sept 19, 2008 by RWW.] +
      +
      +The mamep GeneExpression Links image database of whole-mounted in situ hybridization of mid-gestation mouse embryos. Try entering the symbol Ptch1. +[Added May 28, 2007 by RWW.] +
      +
      +The Genes to Cognition databases have a focus on proteins expressed in several key cellular compartments related to synpase function. +[Added Aug 9, 2007 by RWW.] +
      + +
      +Cerebellar Development Transcriptome Database. Expression data for the mouse cerebellum, both microarray and in situ. +[Added Sept 1, 2010; last site review Sept 1, 2010 by RWW.] +
      + + +
      +Several excellent resources can be used to explore patterns of gene expression primarily in C57BL/6J mice. This strain is one of the parents of the BXD, AXB/BXA, BXH, and CXB genetic reference populations that are key resources in the Gene Network and its companion site, the Mouse Brain Library. +
        +
      • BGEM and GENSAT provide images of gene expression in brains of embryos, neonates, and adult mice (roughly 2008 genes as of July 2005). +
        +
        +
      • GenePaint and GeneAtlas are companion sites that also provide expression data in embryos, neonates, and adults at high spatial resolution. GeneAtlas has excellent but slow image searching and matching capabilities. +
        +
        +
      • Allen Brain Atlas has expression data for ~12000 transcripts (adult males in the sagittal plane). +
        +
        +
      • EMAP (Edinburgh Mouse Atlas Project) provides data on expression of ~800 genes during development (in situ, immunohistochemistry, and reporter knock-in expression patterns). Most data are from wholemounts between Theiler stages 11 and 20 (embryonic days E7 to E13). EMAP can be used as a Java WebStart application. +
        +
        +
      • Mouse Atlas of Gene Expression is a massive SAGE library. The Atlas has quantified the normal state for many tissues by determining the number and identity of genes expressed throughout development. The scope of the project encompasses multiple stages of development of C57BL/6J mouse, from the single cell zygote to the adult, and includes an extensive initial collection of 200 tissues. DiscoverySpace is a WebStart application for use with The Mouse Atlas of Gene Expression. +
        +
        +
      • Mahoney Center maintains a rich image collection for ~1000 transcription factors expressed in brain (developmental stages, coronal plane). +[Added Dec 22, 2004; sites reviewed last on Sept 26, 2005 by RWW.] +
        +
        +
      +
      +
      + +
      + +
      Resources for the Analysis of Sets and Networks of Transcripts, Genes, Proteins, and SNPs
      +
      +
      +GeneMANIA helps you predict the function of your favourite genes and gene sets. Powerful and fast computational methods and a great use of Cytoscape Web. (2010 PDF). +[Added July 1, 2010; last site review Aug 8, 2010 by RWW.] +
      +
      +ToppGene Suite A one-stop portal for gene list enrichment analysis and candidate gene prioritization based on functional annotations and protein interactions network +[Added Jan 16, 2010; last site review Jan 16, 2010 by RWW.] +
      +
      +WikiPathways (WGCNA) is an open, public platform dedicated to the curation of biological pathways by and for the scientific community. +[Added Nov 12, 2009; last site review Nov 12, 2009 by RWW.] +
      +
      +Pathway Commons (WGCNA) is a search tool to find and visualize public biological pathway information. This site collates from several major sites. +[Added Nov 12, 2009; last site review Nov 12, 2009 by RWW.] +
      +
      +Sanger Mouse Genome Project SNP Finder provides access to SNP and indels generated by sequencing 17 strains of mice (plus C57BL/6J). Marvelous. +[Added Nov 18, 2009; last site review Nov 18, 2009 by RWW.] +
      +
      +Weighted Gene Coexpression Network Analysis (WGCNA) is a collection of R functions to perform weighted correlation network analysis that includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. See the recent paper on WGCNA. +[Added Aug 21, 2009; last site review Aug 21, 2009 by RWW.] +
      +
      +GenomeNet is a terrific site for the analysis of molecular networks. Download the very effective KegArray 0.2.6beta package (May 2005) for exploratory data analysis of microarray data set. This package is as good as most commerical software and includes with built-in linkage to the KEGG databases. Versions are available for Mac OS X and Windows. +[Added Jan 3, 2005; last site review Aug 5, 2005 by RWW.] +
      +
      +Expression Profiler at http://ep.ebi.ac.uk/ is a set of tools for clustering, analysis and visualization of gene expression and other genomic data. Tools in the Expression Profiler allow you to perform cluster analysis, pattern discovery, pattern visualization, study and search Gene Ontology categories, generate sequence logos, extract regulatory sequences, study protein interactions, as well as to link analysis results to external tools and databases. +[Added May 20, 2008; last site review May 20, 2008 by RWW.] +
      +
      +BioGRID: the Biological General Repository for Interaction Datasets is a freely accessible database of protein and genetic interactions from Mt. Sinai, Toronto. +[Added July 28, 2007; last site review July 28, 2007 by RWW.] +
      +
      +CisMols Analyzer at Cincinnati Children's Hospital (Aronow and colleagues) is a server and database for the analysis of cis element co-occurences in the promoters of a list of genes. The PolyDoms Analyzer is a tool for scanning through gene lists for those members of a pathway, ontolog, or disease that contain potentially harmful protein-coding SNPs. GenomeTraFaC is a comparative genomics-based resource for initial characterization of gene models and the identification of putative cis-regulatory regions of RefSeq Gene Orthologs. +[Added Sept 23, 2006; last site review Sept 23, 2006 by RWW.] +
      +
      +PolymiRTS database that searches for microRNA (miRNA) targets in transcripts that overlap SNPs. This database will also search for genes with associated phenotype variants that may have variants in miRNA target sequence (Yan Cui, Lei Bao and colleagues). + [Added Sept 23, 2006; last site review Sept 23, 2006 by RWW.] +
      +
      +MSigDB: The Molecular Signature Database is part of the Broad Institute Gene Set Enrichment Analysis suite. MSigDB contains large numbers of static and partly annotated sets of genes/transcripts. Registration is not actually required to download data sets. + [Added Jan 18, 2007; last site review Jan 18, 2007 by RWW.] +
      +
      +C-INIA MAGIC-B microarray knowledgebase from the Department of Pharmacology, University of Colorado, Denver, part of the NIAAA INIA project. Extensive public and privated brain array data sets in a powerful analytic web environment. + [Added May 31, 2007 by RWW.] +
      +
      +GenMAPP 2.0 (2004), the Gene Map Annotation and Pathway Prolifer, is a free Windows application (simple registration required) with which you can visualize expression and other genomic data sets on maps of biological pathways. Very flexible suite of programs that you can also use to make custom gene annotation maps (and more). +[Added Aug 5, 2005; last site review Aug 5, 2005 by RWW.] +
      +
      +BIND and STRING and IntAct are great sites that provide access to well curated data on protein-protein interactions. BIND and IntAct focus on experimentally verified interactions whereas STRING and preBIND incorporate inferred interaction based on other data types, including gene expression. Links to BIND and STRING have been added to the Trait Data and Analysis forms on the GeneNetwork BETA site. +[Added Aug 21, 2005; last site reviews Aug 27, 2005 by RWW.] +
      +
      +Microarray Module Maps is a great site that databases a large number of coexpression modules defined using many cancer array studies. +[Added Aug 26, 2005; last site review Aug 26, 2005 by RWW.] +
      +
      +The Gene Ontology Consortium maintains a well annotated list of open resources for the analysis of large expression data sets and gene ontologies. Note that there are several different lists, each with valuable links. +[Added July 15, 2005; last site review July 15, 2005 by RWW.] +
      +
      +Prioritizer: Prioritizer is a stand-alone Java program that uses a functional human gene network, available at www.genenetwork.nl, to prioritize positional candidate genes that reside within susceptibility loci, by assuming that real disease genes, residing within different loci are functionally closely related within the gene network. +
      +
      +eQTL Explorer is a Java WebStart application that has also been designed for the calculation and display of QTL maps for large rat data sets, particuarly those generated using the HXB strains. Locations of QTLs for both mRNA traits and conventional physiological traits are displayed on chromosome ideograms. High precision QTL maps can also be generated. A password is required to gain access to the primary data files. +[Added January 7, 2006; last site review Jan 7, 2006 by RWW.] +
      +
      +Clique-GO Analysis is a novel tool for extracting cliques of coregulated transcripts. The current data requires Affymetrix U74Av2 probe set IDs as input. Try "103370_at" (the gene Lin7c) as an example. +[Added Jan 4, 2005; last site review Jan 4, 2005 by RWW.] +
      +
      +Gemma and ErmineJ are powerful resources for analysis and metaanalysis of gene expression data sets at UBC. Pavlidis and colleagues also provide updated GO data for common microarray platforms. +[Added Jan 4, 2005; last site review June 7, 2007 by RWW.] +
      +
      +Cytoscape is one of several SBML-compatible open source programs for visualizing molecular interaction networks and overlaying these networks with gene expression profiles and other data sets to generate and test specific hypotheses. +[Added Jan 5, 2005; last site review Jan 5, 2005 by RWW.] +
      +
      +Pathway Searcher provides fast access to gene/protein interaction pathways. An intuitive interface. +[Added Dec 30, 2004; last site review Dec 30, 2004 by RWW.] +
      +
      +Gene Sorter is a tool for generating and sorting sets of genes using a wide variety of information integrated into UCSC's Genome Brower. +[Added Dec 31, 2004; last site review Dec 31, 2004 by RWW.] +
      +
      +oPPOSUM is a tool for finding over-represented transcription factor binding sites in lists of mouse and human genes. It handles about 100 out of greater than 600 TFBSs. +[Added Jan 27, 2005; last site review Nov 21, 2005 by RWW.] +
      +
      +MOTIF and PAINT search for motifs in submitted sequences or lists of genes. Paint makes use of the TRANSFAC Pro database. +[Added Dec 22, 2004; last site review Dec 25, 2004 by RWW.] +
      +
      +Arrowsmith provides a fast way to evaluate known interactions or common mechanisms between two genes or proteins. It carries out a sophisticated comparison of the current PubMed database. +[Added Dec 22, 2004; last site review June 7, 2007 by RWW.] +
      +
      +Chilibot applies natural-language processing to the PubMed database to hunt for directed relationships among pairs or sets of genes, proteins, and keywords. [Added Dec 30, 2004; last site review Aug 13, 2009 by RWW.] +
      +
      +Mouse Imprinting Resources: +The Harwell Mouse Imprinting Resource, +Duke University - Jirtle's Laboratory, +RIKEN Candidate Imprinted Transcript Maps, and +Imprinted Gene Catalogue - University of Otago. +[Added Oct 20, 2006; last site review Oct 20, 2006 by RWW.] +
      +
      + +
      + +
      Resources for the Analysis of Phenotypes in Genetic Reference Populations
      +
      +
      +MBL is a extensive image database of brain sections from genetic reference populations of mice, including the BXD, AXB, CXB, BXH strains included in WebQTL. The MBL is a companion database of WebQTL. +[Added Dec 22, 2004; last site review Aug 6, 2005 by RWW.] +
      +
      +MPAD Mouse Phenome Association Database v 1.0, by Eleazar Eskin and Hyun Min Kang. This resource performs genome-wide association mapping. Phenotype data sets are derived from the Mouse Phenome Project set of standard mouse strains. The permutation procedures account for the genetic relations among these strains and provide much more appropriate genome-wide significance thresholds than previous mouse association mapping methods. +[Added Nov 19, 2006; last site review Nov 19, 2006 by RWW. Link broken June 2007 probably due to move from UCSD to UCLA; check with EE.] +
      +
      +GScan at the Wellcome Trust, Oxford, is a sophisticated viewer and analysis tool with which to explore the genetic control of diverse phenotypes (including array data) generated using heterogeneous stock mice (Flint, Mott, and colleagues). +[Added May 28, 2007 by RWW.] +
      +
      +Phenome Project provides access to a wide variety of phenotype data many common and wild inbred strains of mice. +[Added Dec 22, 2004; last site review Dec 25, 2004 by RWW.] +
      +
      + +
      + +
      QTL Mapping Resources
      +
      +
      +QSB: QSB is a stand-alone JAVA program with a sophisticated GUI developed for genetical genomics or systems genetics, an emerging field that combines quantitative genetics and genomics. QSB stands for QTL mapping, Sequence polymorphism analysis (or SNP analysis) and Bayesian network analysis. QSB takes marker and array data from a segregating population as input and identifies significant QTLs and then evaluated networks of candidate genes associated with these QTLs. +[Added July 29, 2005; last site review Jan 7, 2006 by RWW.] +
      +
      +Positional Medline (PosMed) is a knowledge-based ranking system of candidate genes within QTL intervals for human, mouse, rat, Arabidopsis, and rice. +[Added Nov 4, 2009; last site review Nov 4, 2009 by RWW.] +
      +
      Genome - Phenome Superbrain Project integrates various databases to build a comprehensive computerized encyclopedia of omic sciences in several species, including mouse, rat, human, and arabidopsis, etc. The goal is to evolve this intelligent system into a form of artificial intelligence that can solve a researcher's problems by exploiting a vast amount of information accumulated in documents and published data ranging from genomes to phenomes. [Added Sept 13, 2007; last site review Sept12, 2007 by RWW.] +
      +
      +QTL Reaper is software, written in C and compiled as a Python module, for rapidly scanning microarray expression data for QTLs. It is essentially the batch-oriented version of WebQTL. It requires, as input, expression data from members of a set of recombinant inbred lines and genotype information for the same lines. It searches for an association between each expression trait and all genotypes and evaluates that association by a permutation test. For the permutation test, it performs only as many permutations as are necessary to define the empirical P-value to a reasonable precision. It also performs bootstrap resampling to estimate the confidence region for the location of a putative QTL. +[Added Jan 27, 2005; last site review Jan 27, 2005 by KFM.] +
      +
      +QTLNetwork 2.0 is a software package ofr mapping QTLs with epistatic and GXE interaction effects in experimental populations including double-haploid, recombinant inbred, backcross, F2, IF2 and BxFy populations. The program provides graphical presentations of QTL mapping results. The software is programmed by C++ programming language under Microsoft Visual C++ 6.0 environment. It works with Microsoft Windows operating systems, including Windows 95/98, NT, 2000, XP, 2003server. A new version of QTLNetwork is under developing, and its functions will be extended to include linkage group construction and marker-assisted virtual breeding.[Added June 21, 2007.] +
      +
      +MouseHapMap project genotypes from Mark Daly and colleagues. Approximately 140,000 SNPs across 49 strains. Updated Feb 2006.used to explore the Oxford Wellcome Heterogeneous stock QTL mapping project population. It currently includes mapping data for 100+ phenotypes typed across 2000 animals and 13,000 SNPs. +[Added May 10, 2006; last site review May 10, 2006 by RWW.] +
      +
      +A valuable list of Software for QTL Data Analysis and Gene Expression Microarray Software is managed by Brian Yandell at University of Wisconsin. +[Added May 16, 2006; last site review May 16, 2006 by RWW.] +
      +
      +GSCAN DB is a browser used to explore the Oxford Wellcome Heterogeneous stock QTL mapping project population. It currently includes mapping data for 100+ phenotypes typed across 2000 animals and 13,000 SNPs. +[Added May 10, 2006; last site review May 10, 2006 by RWW.] +
      +
      +The Wellcome Trust-CTC SNP Data Set consists of high density SNP data for approximately 490 strains of mice at 13,377 SNPs. These data fiels were processed slightly to generate many of the mouse mapping files used in WebQTL. +[Added Sept 27, 2005; last site review Sept 27, 2005 by RWW.] +
      +
      +The NIEHS-Perlegen Mouse Strain Resequencing Project provides links to SNP data for up to 15 strains of mice. Very high density data for many chromosomes. These data are integrated to some extent in the GeneNetwork. +[Added Sept 25, 2005; last site review Sept 25, 2005 by RWW.] +
      +
      + +
      + +
      Affymetrix Array Annotation Resources
      +
      +
      +Affy MOE430A and MOE430B Annotation files are explained more clearly that Affymetrix has ever done by Earl F Glynn at the Stowers Institute. (efg@stowers-insitute.org). +[Added July 17, 2006; last site review June 7, 2007 by RWW. This Oct 7, 2005 file caused Grace Wheeler's Mac internet connection to break.] +
      +
      + +
      + +
      Information about this HTML page:
      +
      +

      This text originally generated by RWW, Dec 21, 2004. Updated by EJC, Feb 27, 2005; by RWW, July 15, Sept 25. +

      Management of GeneNetwork access and trait pages. +

      +
      + +
      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/literatureCorrelation.html b/web/literatureCorrelation.html new file mode 100755 index 00000000..d4e2b65b --- /dev/null +++ b/web/literatureCorrelation.html @@ -0,0 +1,75 @@ + +Literature Correlation + + + + + + + + + + + + + + + + + + +
      + + + +
      +

      Literature Correlation modify this page

      + + +

      The literature correlations are calculated using the Semantic Gene Organizer (SGO). The SGO software uses a concept-based vector space model called latent semantic indexing (LSI) to automatically extract gene-gene relations from titles and abstracts in MEDLINE citations (Homayouni et al. 2005). + +

      These LSI literature correlations are all positive and range from 0 to 1. They were computed in mid 2005 using the complete PubMed collection. + +

      Vector space modeling is a classical information retrieval technique used to identify conceptually related documents, whereby the semantic structure of a document is represented as a vector in word space and the degree of similarity between documents is calculated by the angle between document vectors. LSI improves retrieval by using a singular value decomposition (or principal component analysis) to create a subspace of concepts in which text documents are represented as vectors. + +

      Each gene is represented as a vector in word or concept space. The cosine of the angle between the query gene vector and all other gene vectors is used to rank related genes. The distribution of cosine values ranges between 1 and -1, where a value of 1 denotes the highest similarity. + +

      An important advantage of LSI over other vector-based retrieval methods is that relations can be derived even if a direct link between genes has not been established in the literature. The fewer factors that are used for query matching, the more conceptual the relations, and vice versa. Therefore, genes may be conceptually related even if they have not been studied together directly. This utility of LSI makes it ideal for investigating the functional significance of gene associations identified in discovery oriented genomic studies. + +

      SGO literature correlation values may be used to rapidly identify known relations between co-regulated genes and the latent relations between co-regulated genes based on current literature. + +

      Methods + +

      Gene abstract documents are first compiled using titles and abstracts in MEDLINE citations cross-referenced for each mouse gene and its human and rat homologs. These gene documents were assembled and parsed into a dictionary of terms (tokens) and weighted frequencies that are required for the term-by-gene document (sparse) matrix. In effect, each gene document is viewed as a bag of words upon which operations can be performed. There are a number of different word weighting schemes that can be used in vector space modeling (Baeza-Yates and Ribeiro-Neto, 1999). The aim of any scheme is to measure similarity within a document while at the same time measuring the dissimilarity of a gene document from the other gene documents. In SGO, we use a log entropy weighting scheme to decrease the weight of high frequency words, while giving distinguishing words higher weights (Berry and Browne, 1999). + +

      Term and document vectors for the LSI model deployed by SGO were generated by truncating the singular value decompisition (SVD) of the term-by-gene document matrix to s factors (i.e., only s columns of the orthogonal matrices U and V are used). LSI therefore produces a rank-reduced space in which to compare two gene documents at different conceptual levels. In practice, the maximum number of factors is limited by the number of documents in the collection. Fewer factors may be used for broad (more conceptual) comparisons, whereas a larger number of factors may be used for specific (more literal) comparisons. Other studies have demonstrated that for large documents collections the optimal number of factors is approximately 300 (Landauer et al., 2004). + +

      For more information on SGO please refer to http://shad.cs.utk.edu/sgo + + + +

      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/manager.html b/web/manager.html new file mode 100755 index 00000000..31ba4a03 --- /dev/null +++ b/web/manager.html @@ -0,0 +1,72 @@ + +Manager log in + + + + + + + + + + + + + + + + + +
      + + + +
      + +
      + + + + + + + + + + + + + +

      This page is to be used by Confidential Data Manager only

      user name 
      password   
      + + +
      + + +
      + +
      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/missing.html b/web/missing.html new file mode 100755 index 00000000..17ed12a3 --- /dev/null +++ b/web/missing.html @@ -0,0 +1,57 @@ + +404 Error + + + + + + + + + + + + + + + + + + + +
      + + + +
      +

      Error + modify this page

      +
      Sorry! Error occurred while processing your request. +

      The nature of the error generated is as follows:

      +
      Error 404 :
      The requested information is not available at this time.
      +
      +
      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/mouseCross.html b/web/mouseCross.html new file mode 100755 index 00000000..affa4fbb --- /dev/null +++ b/web/mouseCross.html @@ -0,0 +1,371 @@ + +Mouse Cross Information + + + + + + + + + + + + + + + + + + + +
      + + + +
      + + +

      Information on Groups of Mice modify this page

      + +    GENERAL ADVICE + +
      +GeneNetwork (GN) contains data from different groups of mice. The BXD genetic reference panel (GRP) will be your best bet if you are just exploring GN. All groups must have a genotype data set (under Type) and most also have a phenotpe data set (also under Type). Phenotype in this case usually means classical trait data that we have gathered from various publications. Molecular expression data, when available, are listed with the suffix "mRNA." + +

      Here are the groups to select for access to particular types of data:

      + +
        + +
      • AKXD: Expression data for mammary tumors generated by Kent Hunter at NCI. + +
      • AXB/BXA: Classical phenotypes that have usualy been collected from the literature. + +
      • B6BTBRF2: Expression data for liver generated by Alan Attie and colleagues. + +
      • B6D2F2: Expression data for whole brain generated by Robert Hitzemann and colleagues. + +
      • BDF2-2005: Expression data for striatum generated by Robert Hitzemann and colleagues. The striatum is a large forebrain region involved in learning and movement control that is severely affected in Huntington's and Parkinson's diseases. + +
      • BXD: Expression data for brain and several brain regions, including the cerebellum, hippocampus, and striatum. BXD expression data for whole eye, liver, and hematopoietic stem cells. Classical phenotypes that have usualy been collected from the literature. + +
      • BHF2: F2 cross of BXH. Expression data for adipose, brain, liver, and muscle tissue generated by Jake Lusis at UCLA and Eric Schadt at Rosetta. + +
      • BXH: Only classical phenotypes that have usually been collected from the literature. + +
      • CXB: Expression data for the hippocampus; a brain region involved in learning and memory, epilepsy, and neurodegenerative diseases. Classical phenotypes have also been collected from the literature. + +
      • Heterogeneous Stock (HS) mice: Three expression data sets for hippocampus, lung, and liver are currently available. Phenotype and genotype data are also available at http://gscan.well.ox.ac.uk/. + +
      • LXS: Phenotypes that have usually been generated by investigators at the Institute of Behavior Genetics and at the University of Tennessee over the last few years. We expect the addition of several large brain expression data sets late in 2006. + +
      • MDP: The great majority of data on the Mouse Diversity Panel is taken from the Phenome Project. Unlike the PHone Project, the MDP also includes limited data from the older literature. If you would like to add phenotypes, please submit your data to RW Williams and colleagues. + + +
      + + + +     +AKXD: + +
      +The AKXD recombinant inbred (RI) strains are derived from AKR/J (AK) and DBA/2J (D). All of these strains were made by Benjamin A. Taylor at the Jackson Laboratory.

      + +

      All of the AKXD data in GeneNetwork is from an experiment by Kent Hunter and colleagues. GN does not yet include a Phenotypes database for this strain set.

      + +

      All strains have been genotyped using the Wellcome-CTC-Illumina set of SNPs (13377), as well as some microsatellites, and other markers. WebQTL exploits a total of 5448 markers that are infomative in this mapping panel (Aug 2005).

      + +

      There are a total of 1027 known recombinations in the AKXD set; an average of 42.8 recombinations per strain (Shifman et al., 2006).

      + + +

      How to obtain these strains: These strains are now cryopreserved. To rederive these strains please contact the Jackson Laboratory and see http://jaxmice.jax.org/jaxmicedb/html/rcbinbred.shtml. +

      + +

      For more details on the history, generation, and use of RI strains as genetic reference populations for systems genetics please see Silver (1995). Additional useful literature links are provided in the References link at the top center of this page. +

      + +
      + + +     +AXB/BXA: + +

      +The AXB and BXA set of recombinant inbred (RI) strains were derived from a reciprocal cross between A/J (A) and C57BL/6J (B). A particular advantage of this RI set (shared with BXD) is that the two parental strains have both been sequenced and are known to differ at approximately 1.80 million SNPs. Variants (mostly single nucleotide polymorphisms and insertion-deletions) that may produce interesting phenotypes can be located efficiently. The zoomable physical maps in WebQTL display the positions of these A-type versus B-type SNPs down at high resolution. + +

      Data acquired using AXB and BXA subsets should be combined; the only difference being the polarity of intercross matings that generated (A x B)F1s and (B x A)F1s. AXB and BXA strains were all produced by Muriel Nesbitt at UCSD in the mid and late 1970s and first used in the early 1980s (Skamene et al., 1984; Peleg and Nesbitt, 1984; Marshal et al., 1992). The set was imported into The Jackson Laboratory by Beverly Paigen (Pgn) in the early 1990s. As of 2004, approximately 25 viable and fully independent AXB/BXA strains are available. These strains are not segregating for the more recent A/J retrotransposon mutation in the dysferlin gene (Ho et al., 2004).

      + +

      Approximately 122 traits are currently included in the AXBXA Phenotypes database (July 2005).

      + +

      All strains have been genotyped using the Wellcome-CTC-Illumina set of SNPs (n = 13377), as well as some microsatellites, and other markers. WebQTL exploits a total of 8514 markers that are infomative in this mapping panel (Aug 2005).

      + +

      There are a total of approximately 1600 known recombinations (corrected for five "duplicate strains") in the AXB/BXA set; an average of 54.4 recombinations per strain (Shifman et al., 2006).

      + + +

      Several nominally independent strains in the AXB and BXA sets are very closely related. These duplicates should not be used without special statistical precaution. The most obvious option is to combine and average data from these strains except when their phenotypes differ significantly (Taylor 1996; Williams et al., 2001). + +
      +
      AXB13=AXB14: 92.74% identity in an analysis of 8429 markers. +
      AXB18=AXB19=AXB20: 97 to 99% identity (AXB18 to AXB19 = 98.16% identity, AXB18 to AXB20 = 95.72% identity, AXB19 to AXB20 = 97.34% identity n an analysis of 8429 markers) +
      BXA8=BXA17: 99.79% identity in an analysis of 8429 markers. (Updated from Williams et al. 2001). +

      + +

      How to obtain these strains: Please see http://jaxmice.jax.org/jaxmicedb/html/rcbinbred.shtml. +

      + +

      For more details on the history, generation, and use of RI strains as genetic reference populations for systems genetics please see Silver (1995). Additional useful literature links are provided in the References link at the top center of this page. +

      + +
      + + +     +BXD: + + +

      +The BXD set of recombinant inbred (RI) strains were derived by crossing C57BL/6J (B6) and DBA/2J (D2) and inbreeding progeny for 20 or more generations. This genetic reference panel is a remarkable resource because data for hundreds of phenotypes have been acquired over a nearly a 40-year period. Another advantage of the BXD family of strains is that the both parents have been sequenced (C57BL/6J as part of a public effort, and DBA/2J initially by Celera Genomics and more recently by the UTHSC group and Sanger). Based on our analysis of the sequence data, these two strains differ at approximately 4.8 million SNPs. Variants (mostly single nucleotide polymorphisms and about 500,000 insertion-deletions) that produce interesting phenotypes can be located efficiently. The zoomable physical maps in GeneNetwork can display the positions of B versus D-type SNPs at high resolution. +

      +
      + + +

      +

      +BXD20 + +

      Legend: Photo gallery of BXD strains (2009, A. Centeno)

      +
      + + +
      + +

      EPOCH DIFFERENCES or "Batch Effect" among BXD strains. BXD strains (1 through 103) were produced as four separate groups or subfamilies. BXD1 through BXD30 were produced by Benjamin A. Taylor starting in about 1971, with the first publication using early generation BXD lines at F7 to F10 in 1973 (Taylor et al., 1973 Full text, 1975 (Taylor et al., 1975, Womack et al., 1975). A distinction is made between an RI line, which is not necessarily fully inbred (<20 F generations of inbreeding, and an RI strain, which should be the progeny of 20 or more sequential sib matings). BXD31 and BXD32 were added about 8 years later (first publications in 1983-1984). However, these two strains are usually lumped together with BXD1 through BXD30 as a "single" first cohort. + +

      BXD33 through BXD42 were also produced by Taylor (Taylor et al., 2004). These new strains have roughly twice the number of recombinations of conventional F2-derived RI strains. + +

      While the strains used to generate these subsets of BXDs have the same official names and were all made using stock from the Jackson Laboratory, the individual parents were are not genetically identical due to inevitable genetic drift and mutation. Shifman and colleagues detected a surprisingly large number of new SNPs (n = 47 out of about 13000 SNPs studied) in the set of strains generated by BA Taylor in the early 1990s, and a small number (n = 5) of even newer SNPs in the set of BXD strains generated at UTHSC in the late 1990s (see Shifman et al., 2006). + +

      "In the BXD set, 52 SNPs showed variation in genotypes that corresponded to the different phases of development of the BXD RIs [24–26] (Table S4). Forty-seven SNPs are not polymorphic in the 26 BXD strains established from a single cross of a C57BL/6J female to a DBA/2J male, but are polymorphic in similar BXD strains established more than 20 y later. Five SNPs are not polymorphic in the first 36 BXD strains, but are polymorphic in the newest set of 53 BXD lines (BXD43–100)." +

      + +

      Correction for Family or Epoch Substructure + +

      The BXDs have the following epoch substructure: +

        +
      1. BXD1 through 30 make up the first epoch. Breeding for this group of BXD strains started in about 1970, with the first publication of fully inbred BXD strains in 1975 (Taylor et al., 1983, see Trait ID 10715). In fact, BXD32 has a mitochondrion that appears to be inherited from DBA/2J, suggesting that BXD31 and BXD31 were actually derived from two different and reciprocal crosses. BXD32 may actually be the first DXB strain (DXB32). + +
      2. BXD33 to BXD42 make up Ben Taylor's final addition to the BXD strains (Taylor et al, 2001, Trait ID 10645). + +
      3. BXD43 to BXD103. This is a complex cohort of strains generated at UTHSC from advanced intercross progeny (Peirce et al., 2004). + +
      + +Users of the expanded BXD panel should take this epoch substructure into account. This is easy to do using the "Epoch" traits that are included in the BXD Phenotype database. For example, BXD Phenotype 12688 (BXD epoch batch trait 1) provides a simple code for the three major subfamilies using the code of -1 for the first set through to BXD32, 0 for the second set (33 to 42), and +1 for the newer UTHSC set (43 to 103). + +
        +
      1. Determine whether your trait covaries well with any one of the three Epoch traits in GeneNetwork. Also check the status of BXD31 and BXD32. They may rarely group with the second cohort. + +
      2. Determine if your trait maps extremely well to Chr 4 at 62 Mb (near the ALAD segmental duplication in DBA/2J). + +
      + +

      Strain nomenclature: Some of the BXD strains have accumulated new mutations that have recently been characterized. When these mutations are known, the full nomenclature of the strain is now being modified. For example, BXD24/TyJ (aka BXD24 in most GeneNetwork databases), suffered a mutation in the Cep290 gene in the late 1980s. The mutant allele (rd16 is associated with autosomal recessive retinal degeneration. The original BXD strain was briefly referred to as BXD24a/TyJ, while the blind co-isogenic mutant was referred to as BXD24b/TyJ. The great majority of phenotype, expression, and genotype data in GeneNetwork was generated using these blind BXD24b/TyJ animals. However, in 2010, the nomenclature was changed again and the blind variant (JAX stock 000031) is now known as BXD24/TyJ-Cep290rd16/J. The original BXD was rederived from frozen stock and is now known once again as BXD24/TyJ, although the stock number has now been changed to 005243. + +

      BXD29/TyJ was also known as BXD29/TyJ-Tlr4, but is now formally BXD29-Tlr4lps-2J/J (JAX stock 000029). The original non-mutant stock is currently known as BXD29/TyJ again but the stock number of these rederived non-mutants has been changed to 010981. + +

      The mitochondrial DNA of all BXD strains were typed by Jing Gu and Shuhua Qi (Nov 2004) using DNAs obtained from the Jackson Laboratory (BXD1 through 42) or from the UTHSC colony. This typing relied on a SNP marker identified by Jan Jiao in Weikuan Gu's laboratory at nucleotide position 9461 in the reference C57BL/6J mitochondrial sequence. Most strains have inherited mitochondria from C57BL/6J. However, the following strains have mitochondria with a DBA/2J allele at the UT-M-9461 SNP: BXD32, 61, 74, 76, 82, 89, 90, 91, 95, and BXD99. (These ten strains could be considered DXB recombinant inbred strains.) The only surprise in this list is that BXD32/TyJ has a DBA/2J mitochondrial genotype at this position.

      + +

      Genotypes of these strains: All BXD strains were genotyped in the first half of 2005 at 13377 markers as part of a CTC-Wellcome Trust collaboration. When combined with previous markers, there are a total of 7636 informative markers that differ betweeen the parental strains and that are useful for mapping with the BXD strains. The locations of these makers are known on the latest assembly of the mouse genome (Build 34, mm6). The median distance between these informative markers is 178,831 bp. The mean distance is 324,493 bp. There are only 26 intervals between markers that are longer than 5 Mb. No interval is greater than 10 Mb except on Chr X. These long intervals are essentially monomorphic between the parental strains. +

      + +

      The BXD genotype files used in WebQTL include a selected subset of 3795 markers (out of 7636) that includes all those markers with unique strain distribution patterns (SDP) as well as pairs of markers--the most proximal and most distal--for SDPs represented by two or more markers. This BXD genotype data set can be downloaded by ftp at ftp://atlas.utmem.edu/Public/BXD_WebQTL_Genotypes. +

      + +

      There are a total of 1848 known recombinations in the 36 older (JAX) BXD set; an average of 48.1 recombinations per strain.

      + +

      There are a total of 4366 known recombinations in the 53 new (UTHSC) BXD set; an average of 82.4 recombinations per strain (Shifman et al., 2006). These RI strains were generated from an advanced intercross, and this accounts for the higher recombination load (Peirce et al., 2005).

      + + +

      Approximately 798 phenotypes are currently included in the BXD Phenotypes database (July 2005).

      + +

      How to obtain these strains: Please see http://jaxmice.jax.org/strain/000105.html. Cost of the JAX BXD strains is approximately $65.40 each (2008). To obtain strains BXD43 through BXD100 please contact Lu Lu. Approximately half of the new BXD strains are now fully inbred (greater than generation F21). +

      + +

      For more details on the history, generation, and use of RI strains as genetic reference populations for systems genetics please see Silver (1995). Additional useful literature links are provided in the References link at the top center of this page. +

      + +
      + + +     +BHF2: +
      + +Information on array platform GEO GPL2510. +

      +This June 2005 data freeze provides estimate of mRNA expression in (adult) brains of F2 intercross mice (C57BL/6J x C3H/HeJ) on ApoE null backgrouds, measured using Agilent microarray pairs. Data were generated at The Univesity of California Los Angeles (UCLA), by Jake Lusis and Thomas Drake. Data were processed using mlratio method developed by He and colleagues (2003 -- Paper with He and Schadt). + +

      +The (C57BL/6J X C3H/HeJ)F2 intercross consists of 334 animals of both sexes. All are ApoE null and received a high fat "Western" diet from 8-24 weeks of age. These have been genotyped for QTL mapping, and various phenotypes measured. + +

      For more information contact Leslie Ingram or Jake Lusis at UCLA. + +

      + + + +     +BXH: +
      +

      +The BXH set of recombinant inbred strains (RI) were made by crossing female C57BL/6J (B) with male C3H/HeJ (H) mice. Benjamin Taylor created the initial 12 BXH recombinant inbred strains at The Jackson Laboratory in 1969. A second set of eight BXH strains were generated by Linda Siracusa at the Kimmel Cancer Center (Kcc) in 1995. She selected for tyrosinase-negative albinos; a gene on the central part of chromosome (Chr) 7. Four of these new BXH strains (one now relabeled as a recombinant congenic) are now also available from The Jackson Laboratory. The following are the old and new symbols for the four recent additions: + +

        +
      • BXHA1/Sr = BXH20/Kcc +
      • BXHA2/Sr = BXH21/Kcc +
      • BXHB2/Sr = BXH22/Kcc +
      • BXHE1/Sr = B6cC3-1/Kcc (backcrossed to B6 and a recombinant congenic) +
      + +

      Approximately 142 traits are currently included in the BXH Phenotype database (July 2005).

      + +

      All strains have been genotyped using the Wellcome-CTC-Illumina set of SNPs (13377), as well as some microsatellites, and other markers. WebQTL exploits a total of 8311 markers that are infomative in this mapping panel (Aug 2005).

      + +

      There are a total of 775 known recombinations in the 16 core BXH strains; an average of 48.4 recombinations per strain (Shifman et al., 2006).

      + +

      How to obtain these strains: Please see http://jaxmice.jax.org/jaxmicedb/html/rcbinbred.shtml. +

      + +

      For more details on the history, generation, and use of RI strains as genetic reference populations for systems genetics please see Silver (1995). Additional useful literature links are provided in the References link at the top center of this page. +

      + +

      BXH2 is susceptible to M. bovis (tuberculosis) and malaria infections despite Nramp1 resistance due to an Icsbp1 (Irf8) mutation. (P Gros and colleagues). + +

      + + +     + +CXB: +
      +The CXB set is the first, oldest, and smallest group of mouse recombinant inbred (RI) strains with the first publication by Donald Bailey in 1971 (Recombinant-inbred strains. An aid to finding identity, linkage, and function of histocompatibility and other genes. Transplantation 11:325-328). By 1975 the first set of 8 CXB strains were all beyond generation F30. The maternal strain is BALB/cBy and the paternal strain is C57BL/6By. Donald Bailey, the inventor of recombinant inbred strains, created the initial eight BXH recombinant inbred strains at The Jackson Laboratory in the mid 1960s. They were then called CXB-A through CXB-H. They have been used extensively by immunologists and neurogeneticists. A total of 13 of these strains are now available.

      + +

      Approximately 506 traits are now included in the CXB Phenotype database (July 2005).

      + +

      All strains have been genotyped using the Wellcome-CTC-Illumina set of SNPs (13377), as well as some microsatellites, and other markers. WebQTL exploits a total of 1384 markers that are infomative in this mapping panel (Aug 2005).

      + +

      There are a total of 694 known recombinations in the 13 CXB strains; an average of 53.4 recombinations per strain (Shifman et al., 2006).

      + +

      How to obtain these strains: Please see http://jaxmice.jax.org/jaxmicedb/html/rcbinbred.shtml. +

      + +

      For more details on the history, generation, and use of RI strains as genetic reference populations for systems genetics please see Silver (1995). Additional useful literature links are provided in the References link at the top center of this page. +

      + +
      + + +    LXS: + +

      +The parental strains of the LXS recombinant inbred (RI) set are Inbred Long-Sleep (ILS) and Inbred Short-Sleep (ISS) strains. These parental strains have been phenotyped intensively by behavioral geneticists and neuropharmacologists for a decade.

      + +P>The LXS RI set has an intriguing history and trace back to an 8-way cross initiated in the 1950s by Gerald McClearn, the dean of mouse behavior genetics. The following 8 strains were bred using a circle breeding method: A, AKR, BALB/c, C3H/2, C57BL, DBA/2, IS/Bi, and RIII. All of these strains were maintained at the Institute for Behavior Genetics, Bolder Colorado by McClearn and colleagues. C3H/2 is presumably the same as C3H/Crgl/2 (see paper by Green V (1981) Behavioral and Neural Biology 31:56). C57BL is presumably the same as C57BL/Crgl. IS/Bi is extinct. + +

      See Williams, Bennett, Johnson and colleagues (2004) for more details on the LXS panel. +

      + +

      The LXS panel has recently been genotyped at approximately 330 microsatellites (Williams et al., 2005) and at 5000 informative SNPs (Wellcome-CTC consortium). The GeneNetwork uses a subset of 2659 markers to map Mendelian and quantitative trait loci in this large panel.

      + +

      As of July 2005 approximately 10 cohorts of traits (71 total records) have been entered into GeneNetwork's Phenotypes database.

      + +

      All of the LXS strains have been genotyped using the Wellcome-CTC-Illumina set of SNPs (13377), as well as some microsatellites, and other markers. WebQTL exploits a total of 5178 markers that are infomative in this mapping panel (Aug 2005).

      + +

      There are a total of 3598 known recombinations in the 77 LXS strains genotyped by Wellcome-CTC; an average of 46.7 recombinations per strain (Shifman et al., 2006).

      + +

      For information on the availability of the LXS strains please contact Beth Bennett. +

      + +

      For more details on the history, generation, and use of RI strains as genetic reference populations for systems genetics please see Silver (1995). Additional useful literature links are provided in the References link at the top center of this page. +

      + +
      + + + +     +Mouse Diversity Panel: + +
      +The Mouse Diversity Panel consists of approximately 122 of the major inbred strains, substrains, congenic strains, and even some common mutant strains of mice used in biomedical research. Full descriptions of most of these strains are available from the Jackson Laboratory, and especially the Phenome Project web site. We have usually listed specific substrains of mice, most with the "/J" suffix. + +

      For information on the correct nomenclature for the 129 strains see http://www.informatics.jax.org/mgihome/nomen/strain_129.shtml + +

      Known nomenclature problems (April 2008) +

        +
      1. BTBR T+ tf/J is also listed at the bottom of the Trait Data page as BTBRT<+>tf/J. This is a single strain. +
      2. C57Bl/6ByJ should be listed as C57BL/6ByJ +
      3. CZECHI/EiJ should probably be CZECHII/EiJ +
      + +
      + + + + + +     +B6D2F2: +
      + +

      +Fifty-six Filial generation 2 (F2) mice were generated by crossing C57BL/6J (B6) and DBA/2J (D2) stock from the Jackson Laboratory. The F1s were mated reciprocally to create B6D2F2 and D2B6F2 progeny. At present , WebQTL includes one large microarray data set (Affymetrix M430) for the entire brain of these F2 progeny.

      + +

      +For further information, please contact John Belknap, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland VA Medical Center, Portland, OR 97239.

      +
      + + + +     +B6BTBRF2: + +
      +This cross consists of a subset of 60 F2 progeny generated by crossing C57BL/6J and BTBR strains. All of these cases are homozygous for the spontaneous obese mutation in the leptin gene (Lep-ob/ob). Metabolic function, liver mRNA expression (Agilent platform), and other physiological and molecular traits related to type 2 diabetes and obesity were quantified. Liver gene expression data were generated by Hong Lan and Alan Attie at The University of Wisconsin-Madison. Please contact Drs. Alan Attie regarding use of this data set in publications or projects. +
      + + +

          About this file:

      +

      The file started, Nov 5, 2004 by RWW. Last update by RWW, Nov 6, Dec 17, 2004; April 10, 2005; July 15, 2005. EJC Mar 23, 2006. RWW July 26, 2006. RWW April, 2008. EGW July, 2008.

      + + +
      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/pdf/Peirce_and_Lu_2004.pdf b/web/pdf/Peirce_and_Lu_2004.pdf new file mode 100755 index 00000000..61f42576 Binary files /dev/null and b/web/pdf/Peirce_and_Lu_2004.pdf differ diff --git a/web/pdf/corr.tar b/web/pdf/corr.tar new file mode 100755 index 00000000..a3b01a2a Binary files /dev/null and b/web/pdf/corr.tar differ diff --git a/web/pdf/nn0504-485.pdf b/web/pdf/nn0504-485.pdf new file mode 100755 index 00000000..059c3498 Binary files /dev/null and b/web/pdf/nn0504-485.pdf differ diff --git a/web/pdf/webqtl.pdf b/web/pdf/webqtl.pdf new file mode 100755 index 00000000..97769c86 Binary files /dev/null and b/web/pdf/webqtl.pdf differ diff --git a/web/phenotype_sop.html b/web/phenotype_sop.html new file mode 100755 index 00000000..9968b3da --- /dev/null +++ b/web/phenotype_sop.html @@ -0,0 +1,164 @@ + +HTML Template/ GeneNetwork + + + + + + + + + + + + + + + + + +
      + + + + + + +
      +

      Standard Operating Procedures for Entering Phenotype Data + modify this page

      + + + +

      The following standard operating procedures (SOP) are intended to help investigators who would like to enter new data sets into GeneNetwork. These instructions are applicable both to standard genetic reference panels such as the BXD strains and to standard F2 or backcross populations. Please follow these instructions. + +

      If your data are for a genetic reference population such as a set of recombinant inbred strains please prepare a single Excel workbook with two major spreadsheets. + +

        +
      1. Case_Data Spreadsheet. This spreadsheet should contain the individual cases (or case pools) that were phenotyped. This file contains the core data along with cofactors and other information. In the case of an F2 or N2 this may be the only spreadsheet in the Excel workbook. In the case of a genetic reference population you can skip these spreadsheet if you do not want to make individual case data available. But in that case you will definitely need to provide us with second spreadsheet. + + +
      2. Line_Data Speadsheet: this spreadsheet contains the strain or line averages, the standard errors of the means, and the numbers of samples per line (usually independent replicates). +
      + +

      The top part of both the Case_Data and the Mean_Line_Data spreadsheets should be organized as follows: + +

      +

      Please use the first 26 rows (1 to 26) to enter information pertaining to the data source (metadata). Include information for as many as possible of the following types of data, each in its own row. + +

      If you do not have data for a row, please leave it blank. (Single * signifies data we would like; two ** signifies data we really really need) +

        +
      • **#1. name of experiment and data set (no more than 60 letters) +
      • *#2. description of this particular spreadsheet of data (for example: Brain Weight of Males, or, Strain Mean Data) +
      • **#3. full names of investigators (for example, Joanna Q. Kent, Jr.) +
      • *#4. mailing address of one lead investigator (Department of Zoology, University of Tennessee, 880 Washington Street, Knoxville, TN, 38144, USA) +
      • *#5. telephone number of one lead investigator (901-448-7040) +
      • *#6. current email contacts for questions (myemail@institution.edu) +
      • #7. URL addresses of laboratories involved in study or URLs/URIs of supplementary data (http://aURLgoesHere.html) +
      • #8. the purpose of the study (no more than 100 words) +
      • *#9. short summary of the experimental design (no more than 100 words) +
      • #10. methods of statistical analyses +
      • #11. any other information about the design, experiment, or data +
      • #12. any other information about the design, experiment, or data +
      • #13. any other information about the design, experiment, or data +
      • #14. any other information about the design, experiment, or data +
      • **#15. information about publication status (published, unpublished, submitted, in press, confidential) +
      • *#16. PubMed identifier numbers for this data set (can be added later) +
      • #17. PubMed identifiers for recent relevant papers from same group of investigators for background information +
      • #18. lists of abbreviations and units in this general format: Abbrev1=First abbreviation, units; Abbrev1=Second abbreviation, units. For example: OF=Open Field, percentage; PM=Plus Maze, count of beam interruptions; LD=Light Dark, seconds; BW=body weight, gm +
      • *#19. year or range of dates over which data were acquired +
      • *#20. places at which data were acquired and processed +
      • #21. general methods used to acquire data +
      • *#22. source of material (animal or plant stock source). Example: The Jackson Laboratory for mice, Med Associates (Light:Dark box), Ethovision (open field and plusmaze) +
      • *#23. geographical location source material was raised or processed (e.g., Annex 2, The Jackson Laboratory, Bar Harbor, MA) +
      • *#24. funding sources +
      • **#25. name and email address of person who prepared this data file +
      • **#26. date that this data file was created and last modified (Created: 2/6/06; Modified: 2/8/06) +
      • **#27. Preferred name of Species (binomial) and common name (Mus musculus, mouse; Rattus novegicus, rat). This will be used in CHOOSE SPECIES pull down menu of GeneNetwork +
      • *#28. Preferred name of group (e.g., BXD, B6BTBRF2, BayXSha) to be used in the GROUP menu of GeneNetwork +
      • #29. Preferred name of Data Type. Please look at the TYPE pulldown menus in GeneNetwork to see common options such as "Genotypes", "Phenotypes", "Eye mRNA" +
      • #30. Date when the data should be public (unless there are compelling reasons, agreed to in advance, usually no later than 2 years after data receipt) +
      • #31. blank +
      • #32. blank +
      • #33. blank +
      • #34. blank +
      • #35. blank +
      +
      + +

      Below the metadata section, you now need to place the data for either individual cases, strains, or lines. + +

      +

      Fore the CASE_DATA use the following structure: +

        +
      1. The header information for all columns of data should be in ROW 30. +
      2. The first column head (A30) should be labeled "Case_Index" and this column should start at 00001 and continue in increments of 1 to the last case listed in this spreadsheet. +
      3. The second column (B30) should be labeled "Case_ID" and this column should contain a unique identifier that begins with any trio of letters and have at least 6 additional numbers, such as EJS099912. This unique identifier should NOT encode sex or strain or age of cases. However, it may encode the laboratory or investigator. The second column must be a single word and may not contain other punctuation marks. Note that a "case" may include data from more than one individual; for example a pool of three individuals may be treated as a single case. +
      4. The third column (C30) should contain your laboratory ID in what ever form you have used. +
      5. The fourth column should contain the official strain or line background in so far as you know it. For example, C57BL/6J, or B6D2F2, or BXD12, or HXB12, or AXB1xBXA3F1. Please make every effort to use the recommended and complete nomenclature for the strain, hybrid, intercross, backcross, recombinant inbred strain, congenic, consomic, accession, or line. However, please do not use hyphens for recombinant inbred strains (use BXD2, not BXD-2/Ty). We use these data to determine alleles segregating in a cross. +
      6. The fifth column should contain the age of the case if applicable. If not applicable, just leave the column blank +The sixth column should contain the sex of the case if applicable. If not applicable, just leave the column blank +
      7. The seventh through sixteenth columns (10 columns) should contain any cofactors that you wish. These may include treatment variables, conditions, time points, batches, operator, machine, concentrations, etc. If not applicable, just leave these ten columns blank. +
      8. The seventeenth column should contain the value of trait 1. The head of the column should be labeled T1_YourTextHere, where "YourTextHere" and "T1_" or "T2_" is just an indicator that we will use to confirm that this is the first trait. 'YourTextHere" will be used as the short name of that trait. The short name of the trait must be under 21 characters long. Please start with unique features of the trait, such as T1_HeartWeightMale rather than T1_MaleWeightHeart. You may add indicators of the units at the end, but please do so after an underscore, such as HeartWeightMale_mg. These short labels are used on graphs and that is why we impose the length limit. For legibility, please use a mix of UpperAndLowerCase to label traits rather than ALLUPPERCASE or alllowercase. +
      9. The eighteenth column should contain the standard error of the mean of trait 1 if applicable +
      10. The nineteenth column should contain the number of samples in the case. For example, if the case is actually a pool of data from four individuals, then 4 should be entered in column 19. In most cases, the value will be 1. +
      11. Repeat mean, SEM, N in trios across the columns for each trait that your have for that case. +
          + +
      + + + +

      For LINE_DATA use the following structure. Please note that if you have male and female strain means, or young and old strain means, it will be easiest to prepare a separate LINE_DATA spreadsheet for each data type. + +

      +
        +
      1. The header information for all columns of data should be in ROW 30. +
      2. The first column head (A30) should be labeled "Line_Index" and this column should start at 00001 and continue in increments of 1 to the last case listed in this spreadsheet. +
      3. The second column (B30) should be labeled "Line_ID" and this column should either remain blank or contain a unique identifier that begins with any trio of letters and have at least 6 additional numbers, such as ECG199912. However, it may NOT be the same as the ID used in the CASE_DATA. This unique identifier should NOT encode sex or strain or age of cases. It may encode the laboratory or investigator. The second column must be a single word and may not contain other punctuation marks. Note that a "line" will often include data from more than one individual; for example a pool of three individuals may be used as a single line. +
      4. The third column (C30) should contain your laboratory ID in what ever form you have used. You can leave this blank. +
      5. The fourth column should contain the official strain or line name in so far as you know it. For example, C57BL/6J, or B6D2F2, or BXD12, or HXB12, or AXB1xBXA3F1. Please make every effort to use the recommended and complete nomenclature for the strain, hybrid, intercross, backcross, recombinant inbred strain, congenic, consomic, accession, or line. However, please do not use hyphens (use BXD2, not BXD-2/Ty). We use these data to determine the alleles segregating in a cross. Please put these strains in some reasonable order. BXD strains should be in proper numerical order, not in alphanumerical order (example of an incorrect order: BXD1, BXD11, BXD12, BXD2, BXD21, BXD5). +
      6. The fifth column should contain the average age of the line if applicable. If not applicable, just leave the column blank +The sixth column should contain the sex of the data if applicable-- M, F, or MF when combined. If not known, just leave the column blank. +
      7. The seventh through sixteenth columns (10 columns) should contain any cofactors that you wish. These may include treatment variables, conditions, time points, batches, operator, machine, concentrations, etc. If not applicable, just leave these ten columns blank. +
      8. The seventeenth column should contain the value of trait 1. The head of the column should be labeled T1_YourTextHere, where "YourTextHere" and "T1_" or "T2_" is just an indicator that we will use to confirm that this is the first trait. 'YourTextHere" will be used as the short name of that trait. The short name of the trait must be under 21 characters long. Please start with unique features of the trait, such as T1_HeartWeightMale rather than T1_MaleWeightHeart. You may add indicators of the units at the end, but please do so after an underscore, such as HeartWeightMale_mg. These short labels are used on graphs and that is why we impose the length limit. For legibility, please use a mix of UpperAndLowerCase to label traits rather than ALLUPPERCASE or alllowercase. +
      9. The eighteenth column should contain the standard error of the mean of trait 1, if available +
      10. The nineteenth column should contain the number of samples used to generate the line data. For example, if the line is actually based on four samples, then 4 should be entered in column 19. +
      11. Repeat mean, SEM, N in trios across the columns for each trait that your have for that case. +
          + + + +

            +

            +

          We hope to eventually provide an on-line template for this "Moderate Amount of Information About Design, Experiment, and Data" (MAIDED), but for the time being, if you can at least fill in these lines, we will be in good shape. +

            +

      + +

      File started Sept 2005 by RWW. This version by RWW, Jan 31, 2006. + +

      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/policy.html b/web/policy.html new file mode 100755 index 00000000..dd3c653d --- /dev/null +++ b/web/policy.html @@ -0,0 +1,56 @@ + +Policy + + + + + + + + + + + + + + + + + +
      + + + +
      +

      WebQTL Conditions of Use modify this page

      + +

      +
      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/privacy.html b/web/privacy.html new file mode 100755 index 00000000..3a90ef1b --- /dev/null +++ b/web/privacy.html @@ -0,0 +1,86 @@ + +Privacy Policy + + + + + + + + + + + + + + + + + + + +
      + + + +
      +

      GeneNetwork Privacy Policy modify this page

      + +
      +The GeneNetwork system records some information about how the site is used such as the IP address of machines accessing data sets. This information is used to monitor our system performance, to prevent abuse of the system, to enforce usage limits explained by the Usage Policy, and to guide further development of the GeneNetwork. This information is stored on the server in files that are accessible to members of the GeneNetwork development group. Specific information will not be released. + +
      + +

      +
      +When you visit the GeneNetwork, your use of the site is recorded in two ways. First, your use is logged by the Web server in standard log files. The IP address of your machine, the date and time, and the name of the page you visit +are recorded. Second, for each request from the SQL database, the GeneNetwork records your IP number, the time, and the data set from which you request information. This information is collected for statistical purposes. Our system uses a software program (Analog) to create summary statistics that we find helpful in assessing patterns of data use, in measuring system performance, and in detecting problem. This information is used to provide you with better internet service. + +

      GeneNetwork also may request permission to place a so-called 'cookie' text file on your system to allow you to retain information on your set-up preferences. +

      + +

      +When you submit trait information to GeneNetwork for on-line analysis, that information is not recorded permanently; data are discarded as soon as your calculations are finished and the page of results is returned. Data can be stored permanently, but only if you have permission to add data to the GN databases. +

      + +

      +
      +For site security purposes and to ensure that this server remains available to users, this computer system employs programs that monitor network traffic to identify unauthorized attempts to upload or change information, and to detect unusally high numbers of requests from single IP addresses. By accessing this site, you expressly consent to usage monitoring of this site for unauthorized or unusually activities. Unauthorized attempts to upload information and change information on GN are prohibited. + +

      This site include among its services comment areas in which users are invited to submit comments (GeneWiki). In some cases, personal identifier information such as name or e-mail is requested or required. This information may be posted for public access along with the submitted comments and messages that it accompanies. In all cases, participation is strictly voluntary and no other use is made of the information. + +

      + + +
      Information about this text file:

      +

      This text file originally generated by KFM and RWW, March 2004. Updated by RWW, Nov 12, 2004; Sept 1, 2005; Oct 24, 2006. + +

      +
      + +

      +
      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/probeInfo.html b/web/probeInfo.html new file mode 100755 index 00000000..204f4ec8 --- /dev/null +++ b/web/probeInfo.html @@ -0,0 +1,82 @@ + +Probe Information + + + + + + + + + + + + + + + + + + +
      + + + +
      +

      Explanation of the Probe Information Table modify this page

      + +
        +
      1. The probe identifier is usually a six character symbol. The first three characters provide the X coordinate of the probe cell on the Affymetrix array (U74Av2, M430AB, or M430 2.0); for example 222 signifies column 222 and X85 signifies column 85 ("X" is used as a buffer character). Similarly, the second set of three characters in each probe ID provides the Y coordinate of the probe cell. The Perfect Match (PM) probes always end in an odd integer. The MisMatch probes (MM) always end in an even integer. Note that PM and MM probes come in pairs located in the same colum but adjacent rows (e.g. X22Y35 and X22Y36). Some probes on the 430 2.0 have x and y axis coordinates >999. Data source: Affymetrix.

        + +
      2. The 25 nucleotide sequence of probes in 5' to 3' order. The 5' end of each probe is attached to the quartz array substrate; the 3' end is free and often frayed. Roughly 10% to 20% of oligonucleotides are likely to be complete 25-mers. Alternating green and black colors highlight the Perfect Match sequence (GREEN), and the MisMatch sequence (BLACK). Note that the 13th nucleotide always differs between pairs of PM and MM probes in adjacent rows of this table. Data source: Affymetrix.

        + +
      3. Blast 2 Sequences (bl2seq) is an NCBI tool that aligns the 25-mer probe sequence to the GenBank accession that Affymetrix reports having used to design the probes. We automatically submit both data type types to NCBI's BLAST 2 server and return the results of this simple alignment in a new window. You can check that probes were correctly designed to hybridize to the cRNA sample and are not inadvertently antisense probes. Note that the GenBank entry may be backwards in orientation in which case, the probes may be correctly oriented even if they appear to be on the wrong strand.

        + +
      4. This column provides the approximate exon number to which the probe sequences should bind. If no exon is listed then in 9 out of 10 cases, the probes target the 3' untranslated region (3' UTR) at the end of the message near to the polyadenylation site. A format such as "7*8" signifies that the probe sequence is taken from both exons 7 and 8. Affymetrix tries to use probes that target the 3' UTR since these tend to be more common to transcripts produced by a gene. However, many genes actually have alternate 3' UTRs. For example Egr1 has two different mRNAs with 3' UTRs that are separated by several hundred base pairs. To confirm exon assignment of probes please click on the BLAT PM PROBES button above. This will open a BLAT Search Results window. Click on the link that is labeled "browser" to the far left. Finally, click on the Zoom Out 10X button (far right toward the top). Data source: Ensembl and UTHSC by Yanhua Qu. We thank Yan Cui for use of his Linux cluster to make these assignments.

        + +
      5. The approximate melting temperature of the probe sequence and the cRNA. These estimates are actually computed for DNA-DNA duplex rather than DNA-cRNA heteroduplex. Data source: Leonard Schalkwyk and Yanhua Qu.

        + +
      6. These stacking energy estimates (KbT) are the free energies computed using the method of Li Zhang and Mike Miles (Nat. Biotech 21:818). In essence, they provide an estimate of the gene-specfic binding energy (GSB) and the non-specific binding energy (NSB). Low values of GSB and higher values of NSB tend to enhance specificity/stability of binding between the DNA probe and the cRNA target (lower free energy reflects tighter binding). These value are computed for DNA-DNA hybrids and will typically underestimate the binding of DNA-cRNA heteroduplex. The larger the difference between GSB and NSB (assuming GSB is already lower), the better. It is often the case that lower GSB values are associated with higher mean signal of the probes. (text by M Miles 9/22/03, last update 01/13/05).

        + +
      7. The mean probe signal intensity averaged across all strains (not cases) in this specific data set. Please refer to the INFO page for a summary of strains and cases used to generate this particular data set. The scale of these numbers is close to a log base 2 reexpression of the orginal Affymetrix CEL file output. However, the value have usually been standardized as describe in the INFO page ("2z+8" method). Data source: INFO page

        + +
      8. The sample standard deviation of probe signal across the strain mean estimates. Please refer to the INFO page for a summary of strains and cases used to generate in this data set. Data source: INFO page

        + +
      9. Heritability of the probe signal intensity computed across the panel of isogenic strains. Heritability is essentially the ratio of the between-strain mean square error term to the sum of the within-strain mean square error term (the error mean square) plus the between-strain mean square error term. A highly informative probe is one with little withiin-strain variability but a great deal of among-strain variability. Naturally, we attempt to correct for batch effects and other non-genetic sources of among-strain variability. Some probes may have anomalously high heritability due to the presence of a sequence variant such as a SNP in the transcript sequence that is complementary to the probe. Small deletions in one of the parental strains will also generate high heritability in some probes (see Pparbp for an example). When we can confirm that probes do contain a SNP or other sequence variant, we discount that probe and do not use it for generating a heritability-weighted consensus estimate of transcript expression.

        + +
      10. Mouse mm8 probe set locations (historical). Should be updated to mm9. Probe locations were obtained from Ensembl ftp://ftp.ensembl.org/pub/current_mus_musculus/data/mysql/mus_musculus_core_43 by Hongqiang Li. We made use of text files and MySQL tables called: +

          +
        1. oligo_feature.txt.table.gz (25774 KB file of 3/1/07 1:53:00 AM) +
        2. oligo_probe.txt.table.gz (24411 KB 3/1/07 1:54:00 AM) +
        3. seq_region.txt.table.gz (383 KB, 3/1/07 1:59:00 AM) +
        +

        + +
      11. This column provides the names of single nucleotide polymorphisms that overlap the probe sequence. You can link from entries in this column directly to the GeneNetwork SNP Browser.

        +
      + +
      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/protocols.html b/web/protocols.html new file mode 100755 index 00000000..1b6ecc5b --- /dev/null +++ b/web/protocols.html @@ -0,0 +1,542 @@ + +Frequently Asked Questions + + + + + + + + + + + + + + + + + + + +
      + + + +
      +

      Frequently Asked Questions + modify

      + + +
      Questions

      +

        + +
      1. How do I report an error or program bug? +

        +
      2. Expression levels are often measured by several probe sets. Which probe set should I use? +

        +
      3. There are often mutliple database. Which database is best? +

        +
      4. How should we cite the GeneNetwork and WebQTL, and what are conditions on use of data? +

        +
      5. How can I compare the correlates from two transcripts that interest me? Let's say I am interested in transcripts that correlate well with both Drd1a and Drd2. +

        + +
      6. If I have a list of transcripts that covary with Drd1a how to I decide if the correlations are truly significant or informative? +

        + +
      7. How much would it cost to add transcriptome data for an organ, tissue, or cell type that is more relevant for my research? +

        +
      8. How many genes and transcripts are in the expression databases, and what fraction of the genome is being surveyed? +

        +
      9. The Correlation Results window includes a maximum of 500 traits. How can I generate a complete list of all correlations? +

        +
      10. Validation: Are there great examples of validated QTLs and correlation results? What is the proof that relations detected using the GeneNetwork and WebQTL are biologically compelling and meaningful? +

        +
      11. Relevance to protein expression: Are measurements of steady-state mRNA levels relevant? Cells operate principally in the proteome domain, and there are many examples of poor correlations between mRNA and protein levels. +

        +
      12. What is the best way to handle a whole set of interesting traits or transcripts simultaneously? For example, can I study the genetics of all dopamine receptors simultaneously? +

        +
      13. What web browser do you recommend? +

        +
      14. Reverse mapping: How can I find a set of transcripts and other traits that are possibly controlled by a transcription factor or other gene variant that I already know about? For example, in the paper by Chesler et al., the region near D6Mit150 is nominated as a master controller. What are some of the controlled traits? How to I review them efficiently since they are not all listed in the paper? +

        +
      15. Finding transcripts that modulate their own expression levels (cis-QTs and cis-QTLs): How can I find a set of transcripts or proteins that are under tight control by a locus that overlaps their own physical location in the genome—that have a cis-QTL? This class of transcripts is particulary interesting because polymorphic genes that modulate their own expression, may also produce numerous downstream effects. +

        +
      16. How do you error-check data? +

        +
      17. Is there a way for me to automatically generate a log file of my use of the GeneNetwork and WebQTL? +

        +
      18. How can I determine the precise region of the transcript that is targeted by a particular Affymetrix or Agilent probe set? + +

        +
      19. I am having trouble with the Network Graph feature. Problems include time-outs and failures to display the graphs. + +

        +
      20. What expression levels are considered high and reliable; what expression levels are so low as to disregard? + + +
      +
      + +
      Answers

      + +

      +Q1: How do I report an error or program bug?

      + +A1: Software errors that generate on-screen error messages are automatically logged and reviewed by us, usually on a daily basis. If you note an error on the public site (rather than the less stable beta site) that is persistent (more than one day) or that is really causing you trouble, please send us an email notification immediately and we wil do our best to resolve the problem. Email us at: +
      +webqtl@gmail.com, rwilliam@nb.utmem.edu + +[RWW, September 27, 2005] +
      +
      + Back to Index +
      +
      +
      +
      + +
      +Q2: Expression levels of some transcripts are measured by two or more probe sets, but their values do not correlate well with each other. For example, two probe sets that target Bcl2l have no correlation with each other, whereas two probe sets for Erbb3 show a strong negative correlation (r = -0.74 using the UTHSC Brain mRNA U74Av2 RMA data set). In cases such as these which probe set should I trust?

      + +A2: Probes vary greatly in hybridization properties and sensitivity to cross-hybridization. They also target different exons and different parts of the 3' untranslated regions of transcripts (3' UTR). A very small number (<0.1%) also contain SNPs that can affect hybridization efficiency.

      + +

      The quickest answer is to use the set of probes with the highest and most consistent expression. Higher intensity signals usually have a higher signal-to-noise ratio. Select the Probe Information page from the Trait Data and Analysis form. It is interesting (and sometimes scary) to compare the mean and standard error of the mean (SEM) of the signal of different probes in the set. Also check the heritability estimate of the entire probe set in the Basic Statistics page. Heritability is a often a reasonably good indicator. You can also compare the lists of top 100 correlated transcripts for the different probe sets and see if one probe set makes more sense given the known biology and function of the gene. + +There are other important features that you may want to examine. +

        +
      1. Check the placement of the probes that are part of the probe set. Use the Verify UCSC or Verify ENSEMBL button next to the probe set position in the Trait Data and +Analysis window. The Verify functions will BLAT the concatenated probe sequences (overlap is trimmed away) to the most current mouse genome assembly. If the placement and annotation appears to be wrong, please email us. + +BLAT analysis of Erbb3 reveals a relatively complex situation. The two probe sets target different Erbb3 expressed sequence tags (ESTs). +
      2. Use the Probe Information link in the Trait Data window to view exon +targets and the original probe sequences and their mean expression. +
      3. Select all the probes and add them to your BXD selections. Use the Custer Map +to view the probe-specific QTLs. Strong cis QTLs detected only in a group of tightly overlapping +probes may indicate a SNP. +
      4. Each probe can be examined as an individual trait. Check the noise of the +probe using Basic Statistics window. +
      5. Individual probe sequences can be BLATed to the genome using UCSC's BLAT +function. You can also retrieve the sequence data to compare individual probes by +location and known polymorphisms. +
      6. Also from the selections page, use the Correlation Matrix function to generate a +correlation matrix and perform a principal component analysis (PCA). The PC scores can be used as "consensus +traits." You can eliminate probes that appear to misbehave from you selections +prior to performing the PCA. [EJ Chesler, Oct 2004; minor update by RWW, Jan 2004] +
      + Back to Index +
      +
      +
      +
      + + + + +
      +Q3: There are often mutliple database versions associated with each tissue or experiment. Which database is best?

      + +A3: GeneNetwork often provides several complementary transformations of data sets, for example PDNN, RMA, and MAS5. The Position-Dependent Nearest Neighbor (PDNN) method of Zhang and colleagues generally gives better results than two more common alternatives--RMA and MAS5 transforms. + +

      To determine the best data set among alternatives do this: enter the string "CisLRS=(50 1000 10)" into the ANY search field for the first of the alternatives that interest you. This is one of GN's Advanced Search strings that finds all transcripts that are associated with a very strong quantitative trait locus (QTL) very close to the location of the gene. The command translates as "find all transcripts with an LRS value above 50 and less than 1000 that is located within 10 Mb on either side of the gene." GeneNetwork will compute the number of transcripts that are associated with very high LRS or LOD scores. The great majority of these hits are naturally genes that modulate their own expression. This number is an excellent measurement of data quality. GN will open a new page with the total numbers of hits. The number will be listed in red font toward the top of the Search Results page. For example, there are several alternative data sets for the cerebellum of the BXD genetic reference panel. If you systematically test each of these you will get the following results: + +

        +
      1. n = 130 GE-NIAAA Cerebellum mRNA M430v2 (May05) RMA +
      2. n = 117 GE-NIAAA Cerebellum mRNA M430v2 (May05) MAS5 +
      3. n = 207 GE-NIAAA Cerebellum mRNA M430v2 (May05) PDNN +
      4. n = 514 SJUT Cerebellum mRNA M430 (Mar05) RMA +
      5. n = 732 SJUT Cerebellum mRNA M430 (Mar05) PDNN +
      6. n = 420 SJUT Cerebellum mRNA M430 (Mar05) MAS5 +
      7. n = 91 SJUT Cerebellum mRNA M430 (Oct04) MAS5 +
      8. n = 228 SJUT Cerebellum mRNA M430 (Oct04) PDNN +
      9. n = 130 SJUT Cerebellum mRNA M430 (Oct04) RMA +
      10. n = 85 SJUT Cerebellum mRNA M430 (Oct03) MAS5 +
      + +In this case, the 5th data set is significantly better than all of the other transforms or data sets (n = 732 trnscripts associated with LRS values above 50 (a LOD score > 10). There is really no way to systematically generate high numbers of these so-called cisQTLs as an artifact. One of the advantages of large transcriptome mapping data sets is that we have internal but entriely objective measures of data quality. The only caveat is that some of the cisQTLs will be generated by hybridization artifacts (SNPs and other sequence variants). However, this is generally an artifact of the array platform and not of the transformation method. + +

      When available we recommend using databases that have the suffix HWT, for example the database "UTHSC Brain mRNA (Dec03) HWT1PM." The heritability weighted transform (HWT) accentuates meaningful variation in probe signal and takes advantage of the unusually large data sets used by GN. HWT outperforms PDNN for the majority of probe sets as assessed by the strong covariance among probe sets in single data sets and in terms of the yield of QTLs at a fixed false discovery rate. + +

      +Manly KF, Wang J, Williams RW (2005) Weighting by heritability for detection of quantitative trait loci with microarray estimates of gene expression. Genome Biology 6:R27 Full Text HTML and PDF Version. +
      + +

      MAS5 and dChip do not generally perform as well as the other transforms. However, there are a few probe sets for which MAS5's reliance on the mismatch probe actually does improve performance, one instructive example being the transcript of Pam using the selection sequence Mouse -> BXD -> Striatum. WebQTL also provides access to the primary probe signals, and it is possible to generate custom probe set consensus expression estimates by performing a principal component analysis of all or a subset of probes (see the previous question). [RWW, Dec 14, 2004; Sept 25, 2005; April 23, 2006]

      + Back to Index +
      +


      +
      +
      + +
      +Q4: How should we cite the GeneNetwork and WebQTL, and what are the conditions on use of data?

      + +A4: Please have a look at the References page or at the Usage Conditions page. If you have other questions about a particular data set, please link to the Contacts page the individual data sets. [RWW, Dec 14, 2004, Feb 23, 2005] +

      + Back to Index +
      +
      +
      +
      + +
      +Q5: How can I compare the correlates from two transcripts that interest me? Let's say I am interested in transcripts that correlate well with both Drd1a and Drd2.

      + +A5: The two traits need to have been measured using the same genetic reference population, such as the BXD strains. But it is ok if they have been measured in different tissues. Put Drd1a and Drd2 transcripts into a single Selections window. Click on their small selection boxes, and then use the Compare Correlates function. [RWW, Dec 23, 2004] +

      + Back to Index +
      +
      +
      +
      + +
      +Q6: If I have a list of transcripts that covary with Drd1a how to I decide if the correlations are truly significant or informative?.

      + +A6: In most databases correlations under 0.7 will have relatively high false discovery rates (FDR). However, this statement needs to be moderated if you already have strong prior data that suggests that such correlation should exist. The Literature Correlation column (far right) tries to formalize the likely biological connection between two genes based on a comparison of PubMed abstracts for the genes. + +

      One can compute a formal FDR for the data in a correlation table given the size of the array, but the FDR does not account for the noise structure of the array data. Structured noise, such as batch effects, can seriously inflate correlations. We recommend that your biological sense of the system you are studying be a major "prior" in evaluating a list of correlations. You can also compute the Gene Ontology stats for the top 100 or 500 transcripts. A "bad" list should not generate an interesting GO structure. + +

      Here is an operation that will help you in evaluating the significance of correlations: Search the ANY field using this string "mean=(1 5)". This will find probe sets with very low expression. For example, in the BXD Whole Brain INIA PDNN data set, this search string returns 10 probe sets. For example, the correlation table for Abcd2 (probe set 1439835_x_at_B) starts at a high value of r = 0.65. Similarly, Myo1f has a top covariate of 0.73 but then shifts down immediately to 0.64. These correlations are not likely to be biologically meaningful, particulary without strong prior data. + + + [RWW, May 12, 2006] +

      + Back to Index +
      +


      +
      +
      + +
      +Q7: How much would it cost to add transcriptome data for an organ, tissue, or cell type that is more relevant for my research?

      + +A7: Between $50,000 and $100,000. A minimum sample size is two biological replicates for each member of the genetic reference population (GRP), often one male sample or pool of male samples, and one female sample or pool of female samples. If the GRP contains 40 genomes or strains, then you need to budget for a minimum of 90 arrays (10 for control, wastage, and reruns). Ideally all of the samples should be processed in one large batch, although batches of 20 or more arrays can usually be normalized to each other fairly well. We would be happy to help generate new data sets at any stage, the earlier the better. [RWW, Dec 23, 2004] +

      + Back to Index +
      +
      +
      +
      + + +
      +Q8: How many genes and transcripts are in your databases, and what fraction of the genome is being surveyed?

      + +A8: The U74Av2 data sets (brain and hematopoietic stem cells) contain ~12,400 probe sets that target about 9,000 different UniGene clusters. A UniGene cluster is a group of real and putative mRNAs that appear to be generated from a single gene (unified gene). The M430 data sets contain ~45,000 probe sets that target at least one member from each of ~32,000 nonredundant UniGene clusters out of a total of 46,000 clusters in the most recent UniGene build (#143) of Mus musculus. + +

      What fraction of the genome and transcriptome does this represent? According to the most recent AceView summary (Nov 2004), there are 51,000 main genes (well-supported genes that code for proteins with at least 100 amino acids or that contain conventional introns) in the human genome. There are another 60,000 putative genes, some of which may be pseudogenes. Finally, there are an additional 229,000 so-called cloud genes that have a few associated GenBank sequences (usually less than 6 entries) but do not contain introns and do not code for protein (no open reading frame). These cloud genes are often intercalated in the right orientation near or in main genes. The mouse genome is likely to have nearly the same numbers of these three categories of genes. The majority of main genes are associated with multiple alternative splice variant transcripts, often more than 5. Thus, old COT curve estimates that there are 200,000 or more unique transcript species in a single tissue such as the brain are entirely plausible. + +

      In summary, the Affymetrix M430 2.0 array is likely to represent 50% to 70% of main genes, an unknown fraction of putative and cloud genes, and a more modest fraction of the entire transcriptome. However, it is likely that the M430 array samples at least one common transcript (or a collection of transcripts with the same 3' UTR) from the great majority of abundant and widely expressed genes that have 50 or more UniGene GenBank entries. Array platforms of this type can therefore be called "whole genome" arrays without too much inaccuracy. They cannot be considered true "whole transcriptome" arrays. + +

      The Agilent G4121A toxarray consists of 20868 60-mer probes and is likely to represent 40% of so-called main genes listed in AceView. + + +[RWW, Jan 1,2, 2005] +

      + Back to Index +
      +


      +
      +
      + + +
      +Q9: The Correlation Results window includes a maximum of 500 traits. How can I generate a more comprehensive list of all correlations?

      + +A9: Select the SEARCH menu item labeled Simple Query Interface. Select the appropriate menu items, enter the trait identifier (a specific ID), and chose an output order and format. The output can be saved as a tab-delimited text file and imported into spreadsheet and statistics programs. + +[RWW, Jan 2, 2005] +

      + Back to Index +
      +
      +
      +
      + + + +
      +Q10: Are there strong examples of validated QTLs and correlation results? What is the proof that relations detected using the GeneNetwork and WebQTL are biologically compelling and meaningful?

      + +A10: Yes, there are already several examples, and we expect the number of validated results to increase rapidly along with the depth and quality of data sets. Here are examples: +
        +
      1. Pumilio 2 is a mouse homolog of the Drosophila RNA-binding gene pum. The PUM protein in Drosophila binds to a 3' UTR Puf domain in a number of mRNAs and strongly inhibits their translation (a translational repressor). While the mouse pumilio homologs of this well conversed eukaryotic gene have been known for several years, there were no known mRNAs that are PUM2 targets. Using WebQTL, Scott and colleagues (2004) noted strong positive correlations between Pum2 and Rbbp6/P2P-R message levels in three transcriptome data sets (forebrain, cerebellum, and hematopoietic stem cells). P2P-R is an important nuclear gene (also known as retinoblastoma binding protein 6) that is involved in p53-mediated transcriptional control. The robust covariance between Pum2 and P2P-R suggested that P2P-R was a target of Pum2 repression. Three nearly perfect Puf domains were subsequently found in the 3' UTR of the P2P-R 3' UTR, providing additional bioinformatic support. Subsequent pull-down experiments carried out by E. White-Grindley and E. Ruley provide the final confirmation that PUM2 protein binds to P2P-R mRNA. [RWW, Jan 8, 2005]
        + +
        + +Scott RW, White-Grindley E, Ruley HE, Chesler EJ, Williams RW (2004) P2P-R expression is genetically coregulated with components of the translation machinery and with PUM2, a translational repressor that associates with the P2P-R mRNA. Journal of Cellular Physiology, in press. Full text HTML version + +
        + +
      2. Retinoblastoma binding protein 7 (Rbbp7, Mis16 or p55, probe set 1415775*) is part of the core histone deacetylase complex that modulates nucleosome structure via effects on histone transport and acetylation, and DNA methylation. Together with RBBP4 (1434892*) and several other proteins such as BRCA1 (1424629*), MTA1 (1417295*), MBD3 (1417728*), HDAC1 (1448246*), and HDAC2 (1445684*), RBBP7 protein helps suppress levels of transcription, enhances apoptosis, and inhibits cell growth and transformation (Cheng et al., 2001). The gene maps to Chr X at approximately 153 Mb. Its expression is comparatively high in brain and kidney (Yang et al., 2002). We have shown that variation in Rbbp7 expression in the striatum of BXD strains is substantial. Expression is high in C57BL/6J and comparatively low in DBA/2J (1415775* in the HBP/Rosen Striatum M430v2 11/04 PDNN data set). This variation is caused by a strong QTL that peaks very near to the Ahr marker (LRS of 21.3; also see the adjacent marker D12Mit153) on proximal Chr 12. Ahr is not a typical marker; it is actually the aryl hydrocarbon response gene (1449045* and BXD Published Phenotype ID 10371). The AHR protein is an important transcription factor that complexes with the ARNT nuclear translocator (Affymetrix probe set 1437042*) and binds to xenobiotic response elements and AhR elements in promoters to influence gene expression. There is a critical leucine-to-proline substitution in the Ahr gene that results in a 15 to 20-fold reduction in the binding affinity of the proline variant found in DBA/2J compared to the b-1 leucine variant found in C57BL/6J (Chang et al., 1993). Note that Published Phenotype ID 10371 demonstrates an 80-fold variation in Ahr induction by anthracene that unequivocally maps to the Ahr gene locus on Chr 12 (despite the title of the 1984 paper by Levgraverend and colleagues). For this reason Ahr is an unusually compelling candidate gene. If variation in the binding affinity of AHR isoforms causes expression difference, then we naturally expect an AhR element in the promoter of Rbbp7. The 5' UTR and proximal promoter of Rbbp7has the following sequence:

        + + +ACACC GCGCT CGCAT CCGCC CCACC CCCGC GCGGG CCCAG CCGCC CCCGC GGCCA GCCTG GGGAG TGACG CCTCG CGCCT GCGCC TCGCC GACTT CCTGC +CGCGG AACGC CCCAC CCACT CTCGA GAAGC CCACC CCCGG AGAGC GCGTC AGACC CTCCC GTCGC ACGCT ATTGG TCCAA GCCGC CGAGC CGTTG GCTCC +CAGGC CCGCC TCTTC TCCGC CTCTC CAATT TCCCA GGGCG GCTGC GCCTG CGCTC AGCTG CCTGG GCGGG CTGAG AGGCG CGGGT TGAAA AGTCT CGTTC +CAAGT TTGGC GAGAG GGAGA GAGAG GAGAG CGGCT CAGAC CTCGC TACCC GCCAG CGGGG AGGAG GCAG AAGAG GAGAT CGCGG CGTCT GGGGG GAGAA +CCCAG ACGGC CAGAC CGAAC TCAGG CTTTT CCGAG CGAGG ACTGC GTGAC GTGCC +TGGGA GAGGC AAGGA GCGCC TGCCG GGCTG CTCTT GACTA GCGAG +AGAGA AGTCC GAGGC GGCCA AGGGG GGCGA AACGA CCCGA CGCAA GATGG CGAGT AAAGA GAGTA AGGAT GCCTG CCCTG TGGGG CGGGC GGGCG TGCGG + + +
        The ATG translation initiation codon and exon 1 are highlighted using italic font, and the position of the AhR consensus binding site is highlighted using bold font. (Note: Rbbp7 does not have a TATA box.) All of the conditions are met for Ahr to be the polymorphic gene that modulates Rbbp7 expression among BXD strains. Do sequence differences in Ahr produce an effect on the steady state expression level of its own mRNA? In other words, is this gene also a cis QTL? The answer is a qualified no. In the striatum, Ahr (1422631*) is a good example of a polymorphic gene that does not act primarily via changes in its own mRNA level but acts via "classical" differences in protein sequence and conformation. However, this is not true in the liver, in which there is unequivocal evidence of cis modulation of Ahr (Agilent probe P449133). Thus Ahr is likely to have downstream effects due to two distinct mechanisms--one acting via differences in Ahr gene expression, the other acting via changes in AHR protein binding affinity. + +

        Another gene regulated by a QTL that coincides with Ahr that also has an AhR response element is Exoc2 (1426630*). + + + +

        +*Affymetrix probe set identifiers are listed without the "underscore_at" type suffixes. Enter an asterisk when searching for the probe sets in WebQTL (eg., 1415775*). When mulitple probe sets are available, I have selected the best overall performer using criteria listed in Q&A 8. To enter all of these probe sets, just copy and paste this string into the "Any term" field: 1415775* 1434892* 1424629* 1417295* 1417728* 1448246* 1445684* 1422631* 1437042* . + + + +[Example 2 is based on preliminary work by RW Williams, GD Rosen, and colleagues (2005). RWW, Jan 8,9, 2005]
        + + + + + +
      + +
      + Back to Index +
      +
      +
      +
      + + + +
      +Q11: Are measurements of steady-state mRNA levels relevant? Cells operate principally in the proteome domain, and there are many examples of poor correlations between mRNA and protein levels. +

      + +A11: It is true that there are many examples of poor correlations between mRNA and protein levels, but this fact does not negate the strong global tendency of mRNA expression and protein expression to be correlated positively. It is important to recognize the strong coupling between message and protein levels. Technical errors in estimating mRNA and protein level will inevitably degrade positive correlations. A powerful test of the mRNA-protein relation is the ability to predict cell phenotype from mRNA data. An excellent example is work by Markam and colleagues (Toledo-Rodriguez et al., 2004) in which major electrophysiologically-defined classes of neocortical neurons were accurately classified using expression data for merely 29 mRNAs (3 calcium-binding and 26 ion channel genes). + +

      Another interesting and related question to consider: How are positive and negative correlations between transcripts achieved at a mechanistic level? Keep in mind that we always have to keep on mental eye on the idea of difference among individuals and strains. It is easy to get tied up in a mechanistic explanation and to neglect the actual source of the phenotypic variation among individuals that we are trying to explain. There are probably many answers to this questions: +

        +
      1. Common transcription factors and cofactors (proteins x, y, and z) modulate the expression of a pair of transcripts A' and B'. The levels of x, y, and z differ among cases and strains and this variation generates well coupled differences in expression of genes A and B that we pick up as a positive or negative correlations in the array data sets between A' and B'. What is interesting about this idea is that the effectors x, y, and z may have a difference in protein expression or protein sequence among the cases or strains (protein variation --> mRNA variation). Genes A and B that vary in expression at the transcript level (A' and B') will not necessarily vary in expression at the protein level (a and b). A secondary homeostatic mechanism may neutralize differences (protein variation --> mRNA variation -- no protein variation). While it is most like that x, y, and z protein effectors vary among cases and strains, this is not essential. Alternatively there may be a segregating sequence variants in the promoters of BOTH genes A and B that generate coupled variation in A' and B' mRNA. (no protein variation --> DNA target variation --> mRNA variation...). This final model would require both A' and B' transcripts to have so-called cisQTLs. In other words, the variation in A' and B' mRNA is associated with local cis-sequence variants in their genes of orgin, A and B. + +
      2. The pair of transcripts A' and B' that covary in expression at the transcript level also covary in expression at the protein level, a and b. This mRNA and protein covariance is NOT due to the action of common transcription factors on genes A and B. Instead, the correlation is driven by networks of interactions in the protein domain that ultimately link different transcriptional control circuits: circuits x, y, and z for gene A and transcription control circuits p, q, and r for gene B. The two sets of transcriptional control cirucuits xyz and pqr are themselves partially coupled. In this model, I have stated that A and B covary at both mRNA and protein levels. This is not necessary. The variation and correlation could in principle be isolated to the mRNA domain. If we entertain this idea, then we are saying that the variation in mRNA level is effectively a read-out of differences in the amount or sequence of proteins that modulate mRNA expression (protein variation --> mRNA --> no protein variation). If we concede that the mRNA variation does not lead to protein variation, we still need a cause for the original mRNA variation, and that will usually be upstream strain variation in protein level or sequence. Variation in mRNA is essentially providing us with an assay of variation in the upstream transcriptional protein circuits. In some cases, it may also be due to local cis-acting promoter variants in both A and B, but this is likely to be uncommon and should be detected as pairs of reciprocal QTLs. + +
      3. Technical confounds can introduce correlations in the expression of A' and B'. Imagine if data for the first 20 cases or strains were all acquired in the winter months and data for the second set of 20 cases or strains were all acquired in the summer months. If there were major differences in the technical personel handling arrays, or in the particular batch of arrays or reagents, one might easily introduce large differences in apparent expression. Technical factors or batch effects of this type can introduce large group differences that will tend to inflate the absolute values of correlations among many traits. The variation within the several batches may may lead to relatively well distributed scatter plots. Batch effects are a major problem in large array experiments of the type incorporated into GeneNetwork. If you review the INFO pages for any of the data sets you will see detailed descriptions of how cases were processed to minimize the potential batch effect confound. More recent data sets have better and larger designs that are better protected from batch effect. Technical and biological replicates can be used to detect and control for batch effects. Interleaving samples across multiple batches is also important in minimizing batch effect confounds. + +[RWW, Jan 9, 2005; Sept 27, 2005] +

        + Back to Index +
        +
        +
        +
      + + + + +
      +Q12: What is the best way to analyze a group of interesting traits or transcripts simultaneously? For example, can I study all dopamine receptors simultaneously? +

      + +A12: Yes, there are several tools for this type of multi-trait analysis, including (i) the Correlation Matrix tool that will perform a Principal Component Anaysis (PCA) of a group of traits and (ii) the Cluster Map tool that allows you to visually detect common QTLs for sets of traits. Here are the instructions: + +
        +
      1. Select the traits that interest you from any of the Genetic Reference Population. You can select traits and transcripts from multiple databases. You can select traits from the Published Phenotypes databases, Genotype databases, and any of the array databases. All of these traits need to be moved to the Selections window by clicking on the Add Selection button. Of course, all of the traits in a single Selections window must come from a single genetic reference population. The reason is simple: to compute a correlation coefficient the different measurements have to originate from common cases or strains. +
      2. Once you have added traits to the Selections window, you now need to select the subset of traits that you would like to analyzed together. If you plan to run a PCA using the Correlation Matrix function then keep the number of traits that you select under about 20 or 30 and/or drop any traits that have only be studied in a small number of strains. Click the check boxes to the left of each trait or click the Select All button. +
      3. Now click the Correlation Matrix button. +
      4. Review the matrix of correlation coefficients. You may want to drop traits if they do not appear to covary (positively or negatively) with any other traits. To drop a trait you must return to the Selections window and deselect the checkbox and click the Correlation Matrix button again. +
      5. Scroll down the Correlation Matrix window. You will (usually) find a heading that is labeled PCA Traits with one or more listed components. The components will have labels such as PC01, PC02, PC03 etc. The components are "synthetic" traits that share significant variance with members of your selection. We only list those components that can explain 10% or more of the variance that is common to your group of traits. If you click on one of the PCA Traits a new window will open that contains the synthetic trait values (component scores) for all strains that have complete data. (The positive and negative values of these component scores may be "flipped" relative to what you might have expected.) You can add the PC01 trait back into your Selections window if you want to see which of your traits covary best with each of the principal components. This allows you to view the effective "loading" of the original traits on the PCA factors. +
      6. Cluster Maps are a particularly effective and intuitive way to look for shared covariance withing a group of traits. Just click on the Cluster Map button in the Selection window and then read the explanatory text at the top of the page. [RWW, Jan 2, 2005, Sept 27, 2005] + +
      +
      + + Back to Index +
      +
      +
      +
      + + +
      +Q13: What web browser do you recommend? +

      + +A13: Most browsers will work without any signficiant differences in functionality. However, the aesethics of the text and graphs varies significantly among current generation browsers. Safari 1.2.4 and Firefox 1.0.4 both look fine on Mac OS X (we use this browser for most in-house testing of Python). Please let us know if you encounter any differences in function among browsers or serious aesthetic issues that detract from your use of the GeneNetwork. +[RWW, Feb 19, 2005;l May 14, 2005] +
      +
      + Back to Index +
      +
      +
      +
      + +
      +Q14: Reverse Mapping: How can I find a set of transcripts and other traits that are possibly controlled by a transcription factor or other gene variant that I already know about? For example, in the paper by Chesler et al. (2005), the region near D6Mit150 was defined as a master control locus. What are some of the controlled traits? How do I review them efficiently since they are not all listed in the paper.

      + +A14: Select the BXD Genotype Database. Search for and select D6Mit150. Generate the Correlation Results table for D6Mit150 against any other BXD database. For example, the correlation of D6Mit150 against the RMA database (UTHSC Brain mRNA U74Av2 (Mar04) RMA Orig) that was used in Chesler et al., generates a list of 100 transcripts. All 100 covary with this marker with Pearson product moment correlations that have absolute values between 0.72 and 0.56 (76 are positive correlations, 24 are negative correlations). Select all 100 and add them to your BXD "Selections" window (do not select more than 100). Select all 100 again and compute a Cluster Map for the whole set of traits. This map highlights calcium/calmodulin dependent kinase 1 (Camk1) and the GABA transporter (Gabt or Slc6a1as two high priority candidates for the Chr 6 QTL (both are logical candidates and both are apparent cis-QTLs. This cluster map also highlights more than 90 downstream candidates of the Chr 6 locus, including Pax3, Bmp10, Dlx4, Myh7, Prph, Gata6, Hoxb6, Ifna5, Msx3, Caml, Reln, Dct, and Rgs9. +[RWW, March 27, 2005] +
      +
      + Back to Index +
      +
      +
      +
      + +
      +Q15: Finding transcripts that modulate their own expression levels (cis-QTs and cis-QTLs): How can I find a set of transcripts or proteins that are under tight control by a locus that overlaps their own physical location in the genome—that have a cis-QTL? This class of transcripts is particulary interesting because polymorphic genes that modulate their own expression, may also produce numerous downstream effects.

      + +A15: Select the The Genotype Database that corresponds to the your species and tissue of interest. Select the marker that is most closely linked to the gene or transcript in which you are interested. Review the "Trait Data" window of the genotype that you have selected. Then compute the top 100 covariates of this genotype in any of the phenotype phenotypes databases. Select the top 100 covariates of your marker and then run the Cluster Map. This may take a while if you selected 100 traits. Review the cluster map. It will highlight a subset of transcripts that are linked by high correlation to your marker and which have a marked yellow triangle. +[RWW, April 7, 2005] +
      +
      + Back to Index +
      +
      +
      +
      + +
      +Q16: How do you error-check the data that you put into the GeneNetwork?

      + + +A16: Once an array data set has passed standard quality control steps (good RNA quality, good array hybridization signal), we still need to verify that data are assigned to the correct strain and sex. + +

      Checking the "sex" of an array data set is done using probe sets that are sexually dimorphic in expression level. The transcripts Xist and Ddx3y, for example, have sexually dimorphic expression on the U74Av2 array using some transforms. The Xist probe set, 99126_at, can be used as a surrogate "factor" for sex in most U74av2 data sets. Note that this probe set has high expression is 'all-female' strains (e.g., BXD6, 13, 25, and 28 in the Brain data sets). Ddx3y, or probe set 103842_at, tends to have high expression in male samples, although some transforms perform poorly with this particular probe set. + +

      Checking the "strain" of a data set is done using probe sets that are known to have nearly perfect Mendelian segregation patterns among BXD strains. Many probe sets (and single probes) can be used for this purpose. For the M430 Affymetrix arrays these include the following example probe sets: +

        +
      1. 1452705_at_A [KIAA0251 on Chr 16 @ 12.570143 Mb]: pyridoxal dependent group II decarboxylase family member; deep 3' UTR, antisense probes in Ntan1 (test Mendelian 1) +
      2. 1418908_at_A [Pam on Chr 1 @ 97.712988 Mb]: peptidylglycine alpha-amidating monooxygenase; whole 3' UTR (test Mendelian 2) +
      3. 1450712_at_A [Kcnj9 on Chr 1 @ 172.39301 Mb]: potassium inwardly-rectifying channel, subfamily J, member 9; distal 3' UTR (test Mendelian 3) +
      4. 1429509_at_B [FLJ30656 on Chr 11 @ 101.983718 Mb]: RIKEN cDNA 1110032E16; deep 3' UTR (test Mendelian 4) +
      5. 1444806_at_B [6720456B07Rik on Chr 6 @ 114.179842 Mb]: 6720456B07Rik; intron or 3' UTR (test Mendelian 5) +
      6. 1427011_a_at_A [Lancl1 on Chr 1 @ 67.399339 Mb]: LanC (bacterial lantibiotic synthetase component C)-like; last exons and proximal 3' UTR (test Mendelian 6) +
      + +Strain means for these probe sets should in general be either high or low. When data for different arrays purported from the same strain fall into both high and low groups this suggest that there has been an error of strain assignment at some stage of the process. In some cases, it is possible to fix these errors after the fact and to correctly reassign an array to a particular strain. + +[RWW, May 8, 2005] +
      +
      + Back to Index +
      +
      +
      +
      + + +
      +Q17: Is there a way for me to automatically generate a log file of my use of the GeneNetwork?

      + +A17: No. The GeneNetwork does not track your activity and has no memory of your sequence of requests. However, there is a simple expedient that makes it possible for you to produce a history of your own activity. Open a slide presentation program such as PowerPoint or Keynote and incorporate screen shots from GeneNetwork as slides. Annotate as you progress. Even modest annotation will allow you to return to precisely the same point or graph. Note, that there are functions in the GeneNetwork that allow you to export and save lists of traits or markers. For example, you can export the top 500 traits in a Compare Correlates window by clicking on the "download" link toward the top of the page. The contents of any Selections window can also be saved in a format that can be reloaded into the GeneNetwork. Scroll to the bottom of the Selections window to find the Save and Load buttons. + +[RWW, May 15, 2005] +
      +
      + Back to Index +
      +
      +
      +
      + + + +
      +Q18: How can I determine the precise region of the transcript that is targeted by Affymetrix or Agilent probes?

      + +A18: The easiest way is to align the sequences of the probes with the most up-to-date version of genome sequence. GeneNetwork does most of the work for you. Notice that most Trait Data and Analysis Forms have on of more Verify buttons (e.g., UCSC by Probes). When you click these verify buttons, the sequence of probes are assembled into a single query sequence (overlapping sequence is trimmed away). The query string representing the four nucleotides is sent to the BLAT BLAT search program at UCSC. A BLAT window will load in a few seconds. There will typically be several rows of results, but the top row with the highest score is the one that will be of most relevance. Scores should be over 45, representing roughly a 45 nucleotide match. Review the whole row of data and note the target chromosome, the strand of DNA that matches the probe sequences, and the start and end base pairs of the probe sequence. Click on the browser link. The window will refresh with a graphic display of the probe sequence labeled YourSeq at the top. The black bars represent the probe sequences on the array (they are often interrupted by thin lines with arrow heads) aligned to the genome. YourSeq will either run from left to right on the plus strand of DNA or from right to left on the minus strand. Click on the Zoom Out 10x button in the upper right of the Genome Browser window. This will give you a better overview of the location of the probes on the target sequence. Look at the Known Genes track and see what part of the gene is targeted. Most probes are complementary to parts of the last few exons or the 3' untranslated region. If you still do not see any nearby genes, then zoom out again until you see the genome context of your probe sequence. + +[RWW, July 15, 2005] +
      +
      + Back to Index +
      +
      +
      +
      + + +
      +Q19: I am having trouble with the Network Graph feature. Problems include time-outs and failures to display the graphs.

      + +A19: Dr. Bob Clark has found a couple of fixes that will possibly help if you +have persistent time-out errors due to the calculations taking too long. +
        +
      1. Change the Correlation Threshold minutely. For instance, I frequently get +time-out errors when use 0.9 as a correlation threshold. This is resolved at +times when I use 0.8999 as a new correlation threshold. +
      2. Change the order of the traits in your selection menu. Sort your traits +using different parameters in the Selection screen. This worked great today +after trying multiple things to prevent a time-out. +
      + +[RWW, Sept 26, 2005] +<
      +
      + Back to Index +
      +
      +
      +
      + +
      +Q20: What expression levels are considered high and reliable? What expression levels are so low as to disregard?

      + +A20: Affymetrix expression data with mean values of less than 7.5 will tend to be noisy. This signal level corresponds to an mRNA concentration of <1.0 pM. Most probe sets with values of less than 7 would be "declared" as absent using the Affymetrix MAS 5 routine. Values greater than 10 can be referred to as "moderately high" and will usually be associated with probe sets that properly target the 3' UTR and last exons of transcripts present in the sample at concentrations of greater than 4 pM. Affymetrix data sets include a set of 64 probe sets that have IDs that start "AFFX". You can search for these control probe sets and gain some understanding of expression levels associated with exogenenous labeled standards: from 1.5 pM through to 100 pM. For example: + +
        +
      1.    1.5 pM = AFFX-BioB-3_at +
      2.    5.0 pM = AFFX-r2-Ec-bioC-3_at +
      3.   25.0 pM = AFFX-BioDn-5_at +
      4. 100.0 pM = AFFX-r2-P1-cre-3_at +
      +
      + + +[RWW, November 23, 2005] +
      +
      + Back to Index +
      +
      +
      +
      + + + +Last edit Jan 18, 2005, by KAG. Feb 19, by RWW. May 12, 2006 by RWW. + + + +
      + +
      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/qmark.html b/web/qmark.html new file mode 100755 index 00000000..62f48085 --- /dev/null +++ b/web/qmark.html @@ -0,0 +1,122 @@ + +Information + + + + + + + + + + + + + + + + + + + +
      +

      + +Glossary of Terms and Features + +modify this page

      + +
        +
      • +Frequency of Peak LRS: The height of the yellow bars provide a measure of the confidence with which a trait maps to a particular chromosomal region. WebQTL runs a total of 2000 bootstrap samples of the original data. (A bootstrap sample is a "sample with replacement" of the same size as the original data set in which some samples will by chance be represented one of more times and others will not be represented at all.) For each of these 2000 bootstraps, WebQTL remaps each and keeps track of the location of the single locus with the highest LRS score. These accumulated locations are used produce the yellow histogram of "best locations." A frequency of 10% means that 200 of 2000 bootstraps had a peak score at this location. It the mapping data are robust (for example, insensitive to the exclusion of an particular case), then the bootstrap bars should be confined to a short chromosomal interval. Bootstrap results will vary slightly between runs due to the random generation of the bootstrap samples. +
        + + +
      • +LRS: The likelihood ratio statistic provides a measure of the linkage between variation in the phenotype and genetic differences at a particular genetic locus. LRS values can be converted to LOD scores (logarithm of the odds ratio) by dividing by 4.6. The LRS itself is not a precise measurement of the probability of linkage, but in general for F2 crosses and RI strains, values above 15 will usually be worth attention for simple interval maps (so-called "main" scans). +
        + + +
        +
      • +Additive Effect: The additive effect is an estimate of the change in the average phenotype that is brought about by substituting a single allele of one type with that of another type (A vs a). There are usually two alleles at every locus, and the additive effect is therefore half of the difference between the mean of all cases that are homozygous for one parental allele (AA) compared to the mean of all cases that are homozygous for the other parental allele (aa): +

        +[(mean of AA cases)-(mean of aa cases)]/2 +

        +The values on the far right of these plots are given in whatever units of measurement are used in the Trait Data and Editing window. For mRNA estimates these units are usually log2 expression estimates. For this reason an additive effect of 0.5 units indicates that the AA and aa genotypes at that particular locus or marker differ by 1 unit (twice the effect of swapping a single A allele for an a allele). On this log2 scale this is equivalent to a 2-fold difference (2 raised to the power of 1). +
        + + +
        +
      • +Significant threshold: This threshold represents the approximate LRS value that corresponds to a genome-wide p-value of 0.05, or a 5% probability of falsely rejecting the null hypothesis that there is no linkage anywhere in the genome. This threshold is computed by evaluating the distribution of highest LRS scores generated by a set of 2000 random permutation of strain means. For example, a random permutation of the correctly ordered data may give a peak LRS score of 10 somewhere across the genome. The set of 2000 of these highest LRS scores is then compared to the actual LRS obtained for the correctly ordered (real) data at any location in the genome. If fewer than 100 (5%) of the 2000 permutations have peak LRS scores anywhere in the genome that exceed that obtained at a particular locus using the correctly ordered data, then one can usually claim that a QTL has been defined at a genome-wide p-value of .05. The threshold will vary slightly each time it is recomputed due to the random generation of the permutations. You can view the actual histogram of the permutation results by selecting the "Marker Regression" function in the Analysis Tools area of the Trait Data and Editing Form. WebQTL does make it possible to search through hundreds of traits for those that may have Significant linkage somewhere in the genome. Keep in mind that this introduces a second tier of multiple testing problems for which the permutation test will not usually provide adequate protection. If you anticipate mapping many independent traits, then you will need to correct for the number of traits you have tested. + +
        + +
        + +
      • +Suggestive threshold: This threshold represents the approximate LRS value that corresponds to a genome-wide p-value of 0.63, or a 63% probability of falsely rejecting the null hypothesis that there is no linkage anywhere in the genome. This is not a typographical error. The Suggestive LRS threshold is defined as that which yields, on average, one false positive per genome scan. That is, roughly one-third of scans at this threshold will yield no false positive, one-third will yield one false positive, and one-third will yield two or more false positives. This is a very permissive threshold, but it is useful because it calls attention to loci that may be worth follow-up. Regions of the genome in which the LRS exceeds the Suggestive threshold are often worth tracking and screening. They are particularly useful in combined multicross metaanalysis of traits. If two crosses pick up the same Suggestive locus, then that locus may be significant when the joint probability is computed. The Suggestive threshold may vary slightly each time it is recomputed due to the random generation of permutations. You can view the actual histogram of the permutation results by selecting the "Marker Regression" function in the Analysis Tools area of the Trait Data and Editing Form. + + +
        + +
        + +
      • Transcript Location:The small orange triangle on the x-axis indicates the approximate position of the gene that corresponds to the transcript. + +
        + +
        +
      • Interval Mapping:For interval mapping, the significance of a hypothetical QTL is evaluated at regular intervals across the genome. The significance is evaluated by regression of trait values on expected genotypes, where expected genotypes are estimated from the genotypes of flanking markers and the genetic distance between the analysis point and the flanking markers. + +
        + +
        + +
      • SNP Seismograph Track:When possible we have computed the number of single nucleotide polymorphisms (SNPs) that distinguish the two parental strains of certain crosses (C57BL/6J vs DBA/2J, and C57BL/6J vs A/J). Regions with high numbers of SNPs are characterised by wider excursions of the yellow traces that extends along the x axis. + + +
        + +
        + +
      • Interval Mapping Options: + +
        Permutation Test: Select this option to determine the approximate LRS value that matches a genome-wide p-value of .05. +
        Bootstrap Test: Select this option to evaluate the consistency with which peak LRS scores cluster around a putative QTL. Deselect this option if it obscures the SNP track or the additive effect track. +
        Additive Effect: The additive effect (shown by the red lines in these plots) provide an estimate of the change in the average phenotype that is brought about by substituting a single allele of one type with that of another type. +
        SNP Track: The SNP Seismograph Track provides information on the regional density of segregating variants in the cross that may generate trait variants. It is plotted along the X axis. If a locus spans a region with both high and low SNP density, then the causal variant has a higher prior probability to be located in the region with high density than in the region with low density. +
        Gene Track: This track overlays the positions of known genes on the physical Interval Map Viewer. If you hover the cursor over genes on this track, minimal information (symbol, position, and exon number) will appear. +
        Display from X Mb to Y Mb: Enter values in megabases to regenerate a smaller or large map view. +
        Graph width (in pixels): Adjust this value to obtain larger or smaller map views (x axis only). + +
        +
      + +
      +
      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/qtlreaper.html b/web/qtlreaper.html new file mode 100755 index 00000000..daabb51f --- /dev/null +++ b/web/qtlreaper.html @@ -0,0 +1,404 @@ + +QTL Reaper + + + + + + + + + + + + + + + + + + + + +
      + + + + + + + + + +
      + What is the QTL Reaper? modify this page + +

      +QTL Reaper is command line software for rapidly mapping quantitative trait +loci from large datasets with many phenotypes per genotype (per subject +or inbred strain) such as those generated using microarrays, where every +gene expression level measurement may be treated as a phenotype. +This program is a batch-mode version of WebQTL and is written in C and compiled as a Python +module. +

      +QTL Reaper requires as input a phenotype data set and +genotypes for a mapping population such as set of recombinant inbred +strains, an F2 intercross, or a backcross. The program computes +linkage between each trait and all genotypes, evaluating the P-value +of linkage by permutation. For each trait, QTL Reaper ramps up the +number of permutations as necessary to define the empirical P-value +to a reasonable level of precision. It also performs bootstrap +resampling to estimate the confidence region for the location of +putative QTLs. + +

      + +How to Setup and Use QTL Reaper + +

      +1. Download QTL Reaper from SourceForge. +

      + +2. Building and installing QTL Reaper +
      +    a) Open a terminal or command prompt. + +
      +    b) Gunzip and untar the package file, then enter the qtlreaper directory. If you are using the Macintosh OS, you may need to comment out lines 29 and 30 in setup.py using a text editor before building. + +
      +    c) To compile qtlreaper module, execute: python setup.py build. Administrator privileges are needed to install qtlreaper, as it is a global module for python. To compile qtlreaper on a PC, Visual Studio 7.1+ (or its Python-component libraries) is required. The setup.py script may be modified if you wish to use your own blas and lapack libraries. To install the qtlreaper module, execute: python setup.py install + +
      +    d) Check that the library reaper.so has been installed in a location that is included in the Python path. You can check the Python path when Python is running by executing the Python commands import sys and sys.path. Under Mac OS X 10.4, the standard location would be /System/Library/Frameworks/Python.framework/Versions/2.3/lib/python2.3/site-packages. + +
      +    e) Run Python, if you have not already, by typing python at the terminal prompt. If reaper.so is installed properly, it is not necesary to change to a specific directory before running Python. Alternately, the user may navigate to the directory with reaper.so, then start python, then type 'import reaper' for the same functionality, without requiring the module be installed. + + +

      + + +3. Instructions for Using QTL Reaper + +
      +    a) Now that Python is running, import qtlreaper by typing import reaper in the terminal. + +
      +         From here, the user can create a data set into which data can be placed by executing the following command. This command creates a Dataset object which, in this example, we call mydataset. In place of mydataset, you can use any name that begins with a letter. + +
               mydataset = reaper.Dataset(). + +
      +         At this point a properly formated file can be read into the newly created Dataset object using the command: + +
               mydataset.read("path/to/file"). + +
      +    b) The user now may examine a number of data fields in the Dataset object by simply typing their names in the format mydataset.command. This usage is standard Python syntax for displaying the data of an object. + +
                The names of these data fields are: +

      +
        +
      • type: Displays the type of dataset (RI Set or Intercross or Backcross, etc.) +
      • name: Displays the name of the mapping population (BXD, B6D2F2, CXBRIX, etc.) +
      • prgy: Lists the names of the individuals or strains +
      • nprgy: Lists the number of individuals or strains +
      • pat: Shows the paternal parent type or strain +
      • mat: Shows the maternal parent type or strain +
      • nloci: Displays the number of marker loci used to map +
      +
      + +    c) +Data related to a specific chromosome or a specific marker on a chromosome can be displayed by using the following syntax, where chr# represents a chromosome number and marker# represents a marker number. The syntax, which is standard Python sytax applied to a Dataset object is: +
                 mydataset[chr#].name or mydataset[chr#][marker#].name, where the possible data field names include: + + +
        +
      • mydataset[chr#].name: Displays the name of the selected chromosome +
      • [0]: Indicates the first chromosome +
      • [-1]: Used as a shortcut to the last chromosome +
      • mydataset[chr#][marker#].name: Displays the marker at the selected array location +
      • [0][0]: Indicates the first chromosome and first marker location +
      • mydataset[chr#][marker#].cM: Displays the location of the marker in cM +
      • mydataset[chr#][marker#].Mb: Displays the location of the marker in Mb (if available) +
      • mydataset[chr#][marker#].genotype: Shows the genotype (scored as - 1, 0, and +1) of the elements in the array +
      • mydataset[chr#][marker#].genotext: Describes the selected elements in the array as maternal, heterozygous, or paternal genotypes +
      • len(mydataset[chr#]): Displays the number of markers in the selected chromosome +
      +
      + +    d) Manually putting data into QTL Reaper +
        + +
      • NewData = ['String1', 12.5, 'String2']: Creates a list containing any number of strings and/or floats - quotes are needed between each string element, but not around a numerical element. +
      • NewData2 = 'Thing1', 3.141, 'Thing2': Creates a tuple containing any number of strings and/or floats - the same as above, but without square brackets around the sides. +
      • +
      +    e) Generating new tables and data +
        + +
      • NewVariableName = YourVariableName.addinterval(): Creates a new object, calculating intervals at every 1cM +
      • NewVariableName.nloci: Displays the number of loci in the newly calculated interval. +
      • Chrom_No_Variable = reaper.Dataset(): Creates a new object that is a duplicate of the original YourVariableName. +
      • Chrom_No_Variable.chromosome = [YourVariableName[#]]: Extracts a specific chromosome out of YVN and sets ChromVar equal to it. +
      • +
      +    f) Calculating regression, QTLs, bootstrap tests, permutations, and group variance + +
               (All variable names with 'x' below are examples and the entire variable name can be changed.) +
        + +
      • QTLx = YourVariableName.regression(strains = NewData, trait = NewData2, variance = NewData3, control="NewData4": Sets up a QTL with data to be analyzed. Variance and control are optional controls. +
      • QTLx.sort(): Sorts the QTL data by absolute value of the LRS. +
      • max(QTLx): Displays the data for the highest QTL +
      • max(QTLx).lrs: Gives the exact LRS value for the highest QTL +
      • max(QTLx).locus: Shows the locus data +
      • min(QTLx): Displays the data for the lowest QTL +
      • min(QTLx).lrs: Gives the exact LRS value for the lowest QTL +
      • min(QTLx).locus: Shows the locus data +
      • bootX = YourVariableName.bootstrap(strains = newData, trait = NewData2, variance = newData 3, nboot = #): Does a bootstrap test on selected data. Variance is an optional control, nboot can be set to any positive integer. +
      • permuX = YourVariableName.permutation(straints = newData, trait = NewData2, variance = newData3, nperm = #, thresh = #): Returns a list of highest LRS from each permutation, ascending. Variance, nperm, and thresh are all optional. Thresh and nperm should be set as positive integers if either is used. +
      • pvalueX = reaper.pvalue(max(QTLx).lrs, permuX): Calculates the p-value for the selected permutation. +
      • ANOVA: ANalysis Of VAriance between groups, a two-step function. +
      • listvariable = [3, 2.1, 5, 3.2, 1.3, 3.6, 1.6, 3.9, 4.1, 2]: Creates the list that will be analyzed. +
      • mean, median, variance, stdev, stderr, N = reaper.anova(listvariable): Does the group calculations. The calculations are then displayed by entering them as an individual command (i.e. mean or median). +
      • +
      +    g) Reading from an Input file, such as trait data. (Sample trait.txt is included in the QTLReaper download's Example folder) Below: This pulls the first line of File.txt and puts it into 'header' and the second line into 'fileData.' +
      +import string +
      newFile = open("..Path/..To/File.txt") +
      header = newFile.readline() +
      header = string.split(header) +
      header = map(string.strip, header) +
      strains = header[1:] +
      fileData = newFile.readline() +
      fileData = string.split(fileData) +
      fileData = map(string.strip, fileData[1:]) +
      fileData = map(float, fileData) +
      + + +4. Formatting Input Files:
      +The primary input files for QTLReaper must be in an exact, specific +format to work properly. Before exporting this data, ensure that your +first three columns of data are in this order: Chromosome, Locus, and +cM. Mb location may be added as an optional fourth column, though it +cannot be a substitute for cM. It must be a plain text, tab-delimited +document with Unix line breaks. Microsoft Excel, BBEdit, and other +applications will have the option to export as a tab-delimited text +document, most likely under the "save as" option. Many applications have the +option to change the line breaks to Unix (in BBEdit, for example, in +the Options section of "Save As"). This can also be conveniently accomplished in +Windows by using fromdos.exe, a small free utility available here. +

      +Once the file is exported, the +data may be pushed down a few lines to make room for (optional) +header information. (Remember to convert these line breaks to Unix style +if adding the header information on a Windows or Macintosh machine!) +At the top, above all the data, the user may add +the information that is called by the .type, .name, and .mat/.pat +commands listed above. This is done by: @type:, @name:, and @mat/@pat: with stating the necessary +information following the colon (no space). All these declarations +should be placed on separate lines. + +

      +BXD.txt and BXD2.txt are examples of properly formatted +files, and are contained in the QTLReaper download's Example folder. +A larger, non-sample-only dataset is available for download (722k, its Macintosh line breaks will +have to be converted to Unix line breaks to function properly.) +

      + + +5. Example: +
      +
      +#Import the reaper module
      +import reaper
      +#Initiate a Python Dataset object
      +bxdGeno = reaper.Dataset()
      +#read genotype information from a file
      +#argument is a string containing the filename and location
      +#file is a tab-delimited text file
      +bxdGeno.read("../../Example/BXD.txt")
      +################
      +# Dataset Object
      +################
      +#dataset type (RI Set or Intercross)
      +bxdGeno.type
      +#dataset name
      +bxdGeno.name
      +#progeny
      +bxdGeno.prgy
      +#number of progeny
      +bxdGeno.nprgy
      +#parent 1
      +bxdGeno.pat
      +#parent 2
      +bxdGeno.mat
      +#Number of Loci
      +bxdGeno.nloci
      +#Number of Chromosome
      +len(bxdGeno[0])
      +#1st Chromosome
      +bxdGeno[0].name
      +#last Chromosome
      +bxdGeno[-1].name
      +#1st Locus
      +bxdGeno[0][0].name
      +#last Locus
      +bxdGeno[-1][-1].name
      +#Locus cM
      +bxdGeno[-1][-1].cM
      +#Whether physical info (Mb) are available
      +bxdGeno[-1][-1].Mbmap
      +#Locus Mb
      +bxdGeno[-1][-1].Mb, if physical info are available
      +#Locus genotype in numbers
      +bxdGeno[-1][-1].genotype
      +#Locus genotype in abbrevs
      +bxdGeno[-1][-1].genotext
      +################
      +# Interval Map
      +################
      +#Calculate intervals at 1cM, generate a new dataset object 
      +bxdIntervalGeno = bxdGeno.addinterval()
      +#Number of Loci
      +bxdIntervalGeno.nloci
      +################
      +# individual chromosome
      +################
      +#You can create a new dataset object which contains
      +only one chromosome for individual chromosome analyses 
      +chr_1_bxdGeno = reaper.Dataset()
      +chr_1_bxdGeno.chromosome = [bxdGeno[0]]
      +#Number of Loci
      +chr_1_bxdGeno.nloci
      +################
      +# Member functions
      +################
      +#Most reaper functions require two lists as inputs
      +#the first list is the case or strain list; the second is the trait values list
      +#the two lists should have the same number of members
      +#the strain list should have the same cases or strains as those listed in the header 
      +
      of the genotype file or should be a subset of those
      +strains =['BXD1', 'BXD2', 'BXD5', 'BXD6', 'BXD8', 'BXD9', 'BXD11', 'BXD12', 'BXD13',
                'BXD14', 'BXD15', 'BXD16', 'BXD18', 'BXD19', 'BXD20', 'BXD21', 'BXD22',
                'BXD23', 'BXD24', 'BXD25', 'BXD27', 'BXD42'] +trait = [53.570 ,63.885 ,56.700 ,61.750 ,66.325 ,65.150 ,60.400 ,57.920 ,
                51.925 ,62.350 ,67.175 ,65.850 ,52.425 ,60.925 ,65.350 ,56.750 ,
                59.750 ,57.888 ,60.250 ,64.433 ,57.125 ,63.600] +#vaiance list will be used in weighted regression (using 1/variance as the weights) +variance = [0.777, 0.108, 1.78, 1.18, 0.370, 0.808, 1.549, 0.710, 0.257, 1.482, 1.816,
                  0.711, 1.204, 0.059, 0.182, 0.591, 0.357, 0.072, 0.490, 0.239, 0.905, 1.327] +#genotypes of a control locus as a cofactor in the regression +control = "D1Mit1" +################ +# Regression +################ +#the result is a list of QTL Objects +#simple regression (no variance and no control cofactor) +qtl1 = bxdGeno.regression(strains = strains, trait = trait) +#weighted regression (variance weighting but no control cofactor) +qtl2 = bxdGeno.regression(strains = strains, trait = trait, variance = variance) +#composite regression (control cofactor with or without variance weighting) +qtl3 = bxdGeno.regression(strains = strains, trait = trait, control = "D1Mit1") +qtl4 = bxdGeno.regression(strains = strains, trait = trait, variance = variance, control = "D1Mit1") +#maximum QTL +max(qtl1) +max(qtl2) +max(qtl3) +max(qtl4) +#maximum LRS +max(qtl1).lrs +max(qtl2).lrs +max(qtl3).lrs +max(qtl4).lrs +#Locus with maximum LRS +max(qtl1).locus +max(qtl1).locus.name +#sort the qtl list +qtl1.sort() +qtl2.sort() +qtl3.sort() +qtl4.sort() +################ +# Permutation +################ +#returns a list of highest LRS value for each permutation in ascending order +#fixed number permutations +permu1 = bxdGeno.permutation(strains = strains, trait = trait,nperm=1000) +permu2 = bxdGeno.permutation(strains = strains, trait = trait, variance = variance,nperm=1000) +#progressive permutation +#keep on doing permutations until the threshold LRS is not in the top 10 +#or the total number of permutations reaches 1,000,000 +permu3 = bxdGeno.permutation(strains = strains, trait = trait, thresh = 23) +#calculate p-value +pv1 = reaper.pvalue(max(qtl1).lrs, permu1) +################ +# Bootstrap +################ +#returns a list of counts of times that a locus has the highest LRS score +#the length of the list equal to the total number of markers +boot1 = bxdGeno.bootstrap(strains = strains, trait = trait, nboot=1000) +boot2 = bxdGeno.bootstrap(strains = strains, trait = trait, variance = variance, nboot=1000) +################ +# Anova +################ +# A simple ANOVA (ANalysis Of VAriance between groups) function +list = [1, 2, 4.1, 2, 4, 3.2, 1.1, 5, 5.6, 7.1, 2.3, 4.3, 3.6] +mean, median, variance, stdev, stderr, N = reaper.anova(list) +####################### +# Read from Input file +####################### +#It is easy to read from tab-delimited input file to generate the strain and trait value lists +#use the included trait.txt as example +import string +fp = open("../../Example/trait.txt") +header = fp.readline() +header = string.split(header) +header = map(string.strip, header) +#strip any blank characters +strains = header[1:] +#the header here is the strain list +trait = fp.readline() +trait = string.split(trait) +trait = map(string.strip, trait[1:]) +#strip any blank characters +trait = map(float, trait) +#the trait here is the trait valuelist +
      +
      + +    About this text file +
      +QTL Reaper Tutorial written by Evan Williams, July 2005. Edits by EGW, Aug 4. 2005; KFM, March 20, 2006. Last edit by KFM, March 20, 2006.
      +
      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/ratCross.html b/web/ratCross.html new file mode 100755 index 00000000..27d11e9a --- /dev/null +++ b/web/ratCross.html @@ -0,0 +1,83 @@ + +Rat Cross Information + + + + + + + + + + + + + + + + + + + +
      + + + +
      +

      Rat HXB/BXH Recombinant Inbred Strain Information modify this page

      + + +

      + These recombinant inbred strains of rats were derived from a cross between the spontaneously hypertensive rat (SHR/OlaIpcv = H) and Brown Norway (BN.Lx/Cub or BN = B). The HXB strains were generated by Michal Pravenec at the Institute of Physiology, Czech Academy of Sciences. The BXH strains were generated by Vladimir Kren (see Pravenec et al. 1989, 2004) at a similar animal facility at the Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University. As of 2003, most of these strains have been inbred for 60 or more generations (F60).

      +
      + + +

      +The HXB/BXH Genotype Database was assembled by RW Williams and Michal Pravenec using a compendium of approximately 1100 markers that have been typed over the past decade (please see Jirout et al. 1999) for additional details of marker selection and genotyping. The GeneNetwork BXH/HXB chromosome maps have been rigorously error-checked. The total genetic length of these rat maps is roughly 1350 cM (adjusted for the 4X expansion of RI strains) for all 20 autosomes. We refer to these error-checked maps as "smoothed" because no double-recombinant genotypes were tolerated in the final file and all unspecified genotypes were imputed from neighboring markers. These HXB/BXH chromosomal maps therefore differ in detail from several other consensus maps built using the same set of markers. Smoothed maps are conservatively biased and tend to give lower false discovery rates. However, these maps may eliminate some true recombinations and strain distribution patterns. Ongoiing efforts by Hubner and colleagues have recently (2007-2008) generated much higher density maps of the HXB genetic reference population (13,000 SNPs). These markers are being used to produce new HXB/BXH chromosome maps that will be used by GeneNetwork late in 2008.

      +
      + +

      BXH8 and HXB26 were not genotyped by the STAR consortium (Huebner and colleagues) and are not available from Dr. Pravenec's colony (as of 2010). However, these strains are available still from Dr. Mort Printz at UCSD. + +

      +SHR/Ola being sequenced (Solexa) by Genome Science Center at UBC 10 gigabases done as of May 2008. + + + +

      Acknowledgments: +

      The HXB strains were generated by Michal Pravenec and colleagues. For additional details please contact Dr. Michal Pravenec, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic. Phone: +(420)241062297; E-mail: pravenec@biomed.cas.cz +

      +

      +Jirout M, Krenova D, Kren V, Breen L, Pravenec M, Schork NJ, Printz MP (2003) A new framework marker-based linkage map and SDPs for the rat HXB/BXH strain set. expression differences in mice diverently selected for methamphetamine sensitivity. Mammalian Genome 14:537-546. +

      +
      + +
      Information about this text file: +

      This text file originally generated by RWW, Dec 7, 2004. Updated by RWW, Dec 8, 2004; MP and RWW, Dec 17, 2004; RWW, April 28, 2005; RWW, July 12, 2005. +

      +
      + +
      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/reference.html b/web/reference.html new file mode 100644 index 00000000..e0bf404c --- /dev/null +++ b/web/reference.html @@ -0,0 +1,1332 @@ + +GeneNetwork References + + + + + + + + + + + + + + + + + + +
      + + + + +
      + +

      Papers and References to GeneNetwork modify this page

      + +
      + + +Highlighted References | +Key References | +Background References | + + +

      + +2010 | +2009 | +2008 | +2007 | +2006 | +2005 | +2004 | +2003 | + + +
      + + + +
      + Highlighted References +
      + +Please send us citations to articles that we may have missed. +
        + +
        +
        + +
      1. +Rietman ML, Sommeijer JP; Neuro-Bsik Mouse Phenomics Consortium, Levelt CN, Heimel JA (2012) Candidate genes in ocular dominance plasticity. Front Neurosci 6:11 +
        +From the Abstract: Many studies have been devoted to the identification of genes involved in experience-dependent plasticity in the visual cortex. To discover new candidate genes, we have reexamined data from one such study on ocular dominance (OD) plasticity in recombinant inbred BXD mouse strains. We have correlated the level of plasticity with the gene expression data in the neocortex that have become available for these same strains. PDF version + + +
        +
        + + +
      2. +Moscou MJ, Lauter N, Steffenson B, Wise RP (2011) Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons. PLoS Genet 7:e1002208 +
        PDF version + +
        +
        + +
      3. +Krebs J, Römer B, Overall RW, Fabel K, Babu H, Brandt MD, Williams RW, Jessberger S, Kempermann G (2011) Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection: II. Genetic covariation and identification of Nos1 as linking candidate gene. Front Neurosci 5:106 +
        +This study uses QTL mapping methods to define candidate genes, including NOS1, that may modulate both adult neurogenesis in the hippocampus and the volume of the infrapyramidal mossy fiber projection to CA3. The study also tests whether the genetic basis of variation in adult neurogenesis is linked to variation in the size of the mossy fiber projection to basal dendrites of CA3 pyramidal cells. PDF version + + +
        +
        + +
      4. +Alberts R, Chen H, Pommerenke C, Smit AB, Spijker S, Williams RW, Geffers R, Bruder D, Schughart K (2011) Expression QTL mapping in regulatory and helper T cells from the BXD family of strains reveals novel cell-specific genes, gene-gene interactions and candidate genes for auto-immune disease. BMC Genomics 12:610. + +
        +The first genetic analysis, as well as comparative analysis, of variation in gene expression in T cell subclasses. Please reference this paper when making use of the BXD T help and T regulatory cell data sets generated by Alberts, Schughart and colleagues. + + +
        +
        + + +
      5. +Yamamoto H, Williams EG, Mouchiroud L, Cantó C, Fan W, Downes M, Héligon C, Barish GD, Desvergne B, Evans RM, Schoonjans K, Auwerx J (2011) NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147:827-39 + +
        +A high impact article on the role of the Ncor1 gene and a high endurance mouse model (see MedKB). The authors made use of expression data sets in GeneNetwork (see Fig 2 and original data from BXD Lung by Alberts et al. (2011), and BH/HB F2 muscle by Lusis and colleagues). + + +
        +
        + +
      6. +Suwanwela J, Farber CR, Haung B, Song B, Pan C, Lyon KM, Lusis AJ (2011) Systems genetics analysis of mouse chondrocyte differentiation. Journal of Bone and Mineral Research 26:74-760 +PDF version + +
        + +The first analysis of variation in gene expression in cartilage of both the BXD and BXH mouse strain families. These data are now part of GeneNetwork: see UCLA BXD and BXH Cartilage Illumina WG-6 v2. + +
        +
        + + +
      7. +Jansen R, Timmerman J, Loos M, Spijker S, van Ooyen A, Brussaard AB, Mansvelder HD, The Neuro-Bsik Mouse Phenomics Consortium; Smit AB, de Gunst M, Linkenhaer-Hansen K (2011) Novel candidate genes associated with hippocampal oscillations. PLoS One 6: e26586. +HTML and PDF versions +
        +
        + +
      8. +Jackson KJ, Chen X, Miles MF, Harenza J, Damaj MI (2011) The neuropeptide galanin and variants in the GalR1 gene are associated with nicotine dependence. Neuropsychopharmacology 36:2339-2348. +PDF version +
        +
        + +
      9. +Krebs J, Römer D, Overall RW, Fabel K. Babu H, Brandt M, Williams RW, Jessberger S, Kempermann G (2011) Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection: II. Genetic covariance and identification of Nos1 as a linking candidate gene. Frontiers in Neuroscience 5:106. +PDF version +
        +
        +
      10. +Mozhui K, Wang X, Chen J, Mulligan MK, Li Z, Ingles J, Chen X, Lu L and Williams RW (2011) Genetic regulation of Nrxn1 expression: an integrative cross-species analysis of schizophrenia candidate genes. Transl Psychiatry 1: e25; doi:10.1038/tp.2011.24. +PDF version + +
        +
        + + +
      11. +Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE (2011) Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision 17:1355-1372. +Full Text HTML and PDF versions +
        + +The first expression genetic analysis of the BXD mouse retina based on a total of 80 strains of mice: The HEI Retina Illumina V6.2 (April 2010) RankInv database in GeneNetwork. This is a companion study to Geisert and colleagues (2009), but now instead of an analysis of the entire eye, data were generated exclusively for the retina. + + +
        +
        + +
      12. +Di Curzio DL, Goldowitz D (2011) The genetic basis of adrenal gland weight and structure in BXD recombinant inbred mice. Mammalian Genome 22:209–234 Full Text PDF version + +
        +The ultimate histogenetics paper on the adrenal gland of mice. A very high level of variation was pared into a set of strong QTLs using 64 of the BXD strains. Precision of most loci is under +/- 2.5 Mb. + + +
        +
        + +
      13. +Porcu P, O'Buckley TK, Song SC, Harenza JL, Lu L, Wang X, Williams RW, Miles MF, Morrow AL (2010) Genetic analysis of the neurosteroid deoxycorticosterone and its relation to alcohol phenotypes: Identification of QTLs and downstream gene regulation. PLoS One 6:e18405. Full Text HTML and PDF versions + +
        +The first neurogenetic study of deoxycorticosterone, a neuroactive steroid that has a key role in stress biology. Porcu and colleagues detected strong QTLs on Chr 4 and 14 for deoxycorticosterone levels in the brain and circulation. + + +
        +
        + +
      14. +Alberts R, Schughart K (2010) QTLminer: identifying genes regulating quantitative traits.Full Text PDF version + +
        +Innovative new software to help analyze QTL intervals that is currently available at http://genenetwork.helmholtz-hzi.de/ under the Search menu. + + +
        +
        + + +
      15. +Lynch RM, Naswa S, Rogers Jr GL, Kanla SA, Das S, Chesler EJ, Saxton AM, Langston MA, Voy, BH (2010) Identifying genetic loci and spleen gene coexpression networks underlying immunophenotypes in the BXD recombinant inbred mice. Physiological Genomics 41: 244-253 Full Text PDF version + +
        +Please cite this publication if you make use of the mouse BXD strain UTK spleen expression databases generated by Voy and colleagues. + + +
        +
        + + +
      16. +Gerrits A, Li Y, Tesson BM, Bystrykh LV, Weersing E, Ausema A, Dontje B, Wang X, Breitling R, Jansen RC, de Haan G (2009) Expression quantitative trait loci are highly sensitive to cellular differentiation state. PLoS Genetics 5: e1000692 Full Text HTML version and + +PDF Version + +
        +Please cite this publication if you make use of any of the hematopoietic stem cell-associated databases for the BXD strains generated by Gerald de Haan and colleagues. + +
        +
        + + +
      17. +Grisham W, Schottler NA, Valli-Marill J, Beck L, Beatty J (2010) Teaching bioinformatics and neuroinformatics by using free web-based tools. CBE--Life Sciences Education 9: 98-107 Full Text PDF Version +
        A terrific introduction to a wide range of bioinformatic resources, including GeneNetwork, that have been assembled as a coherent teaching module. A detailed student/instructor’s manual, PDFs of handouts, PowerPoint slides, and sample exams are available for free at http://mdcune.psych.ucla.edu/modules/bioinformatics. + +
        Youtube videos of Dr. William Grisham teaching neurogenetics at UCLA: +
        Part 1 +
        Part 2 +
        Part 3 +
        Part 4 +
        Part 5 + + +
        +
        +
        + +
      18. +Li D, Mulligan MK, Wang X, Miles MF, Lu L, Williams RW (2010) A transposon in Comt generates mRNA variants and causes widespread expression and behavioral differences among mice. PLoS One. 2010 Aug 17;5(8):e12181. Full Text HTML and PDF Versions +
        +One of the first examples of a sequence variant, in this case a transponson inserted in the 3' UTR of Comt,, that generates both a strong expression QTL and that generates downstream changes in other genes and higher order phenotypes. + +
        +
        + +
      19. +Grisham W (2009) Modular digitial course in undergraduate neuroscience education (MDCUNE): A website offering free digital tools for neuroscience educators. Journal of Undergraduate Neuroscience Education 8:A26-A31 Full Text PDF Version +
        +An excellent example of how resources such as GeneNetwork and the Mouse Brain Library can be used in class room labs. + +
        +
        + +
      20. +Webster JA, Gibbs JR, Clarke J, Ray M, Zhang W, Holmans P, Rohrer K, Zhao A, Marlowe L, Kaleem M, McCorquodale DS 3rd, Cuello C, Leung D, Bryden L, Nath P, Zismann VL, Joshipura K, Huentelman MJ, Hu-Lince D, Coon KD, Craig DW, Pearson JV; NACC-Neuropathology Group, Heward CB, Reiman EM, Stephan D, Hardy J, Myers AJ (2009) Genetic control of human brain transcript expression in Alzheimer disease. Am J Hum Genet 84:445-58. +
        +One of the first and certainly best human brain eQTL studies. The focus in on late onset Alzheimer's disease, but the data are split between normal and AD cases. All of these data are in GeneNetwork. The cases can be "decoded" by their identifier numbers (see INFO files). + +
        +
        + +
      21. +Gatti DM, Harrill AH, Wright FA, Threadgill DW, Rusyn I (2009) Replication and narrowing of gene expression quantitative trait loci using inbred mice. Mamm Genome 20:437-46. +
        +A extremely interesting comparison of using and combining data sets for common inbred strains (so-called Mouse Diversity Panels) with data sets for recombinant inbred strains such as the BXD set. + +
        +
        + +
      22. +Ruden DM, Chen L, Possidente D, Possidente B, Rasouli P, Wang L, Lu X, Garfinkel MD, Hirsch HV, Page GP (2009) Genetical toxicogenomics in Drosophila identifies master-modulatory loci that are regulated by developmental exposure to lead. Neurotoxicology 30:898-914 +
        +A landmark study in toxicogenomics using a drosophila genetic reference populations. + +
        +
        + + +
      23. +Philip VM, Duvvuru S, Gomero B, Ansah TA, Blaha CD, Cook MN, Hamre KM, Laviviere WR, Matthews DB, Mittleman G, Goldowitz D, Chesler EJ (2010) High-throughput behavioral phenotyping in the expanded panel of BXD recombinant inbred strains. Genes, Brain and Behavior 8:129-159 PMID: 19958391 Full Text HTML Version +
        +A monstrously large (33 pages) and impressive study of many behaviors in more than 60 BXD strains. The design and execution is exemplary; the diversity of data types is unprecedented; the documentation is great. This paper will be a well-spring for a host of other studies on the genetics and epigenetics of behavioral variation in the BXDs for years to come. Over 700 traits (usually in trios of male, female, and combined data) were entered in GeneNetwork. You can read the paper and work with the phenotypes. You can also combine these phenotypes with all of the existing expression data for the BXD strains. + +
        +
        + + +
      24. +Wu S, Lusis AJ, Drake TA (2009) A systems-based framework for understanding complex metabolic and cardiovascular disorders. J Lipid Res 50 Suppl:S358-63 Full Text PDF +
        +
        + + +
      25. +Overall RW, Kempermann G, Peirce J, Lu L, Goldowitz D, Gage FH, Goodwin S, Smit AB, Airey DC, Rosen GD, Schalkwyk LC, Sutter TR, Nowakowski RS, Whatley S, Williams RW (2009) Genetics of the hippocampal transcriptome in mice: a systematic survey and online neurogenomic resource. Frontiers in Neuroscience 3:55 +Full Text HTML Version, +Full Text PDF Version + +
        +A large expression genetic analysis of the mouse hippocampus (99 strains). This paper is the companion to the the BXD Hippocampus Consortium data sets in GeneNetwork. + +
        +
        + + +
      26. +Tapocik JD, Letwin N, Mayo CL, Frank B, Luu T, Achinike O, House C, Williams R, Elmer GI, Lee NH (2009) Identification of candidate genes and gene networks specifically associated with analgesic tolerance to morphine. J Neurosci 2:5295-307 Full Text HTML +
        In this study several GeneNetwork data sets were used to study the association of predisposition and tolerance genes with expression QTLs. "The INIA Brain mRNA M430 (Jun06) RMA, VCU BXD PFC Sal M430 2.0 (Dec06) RMA, INIA Brain mRNA M430 (Jun06) RMA, HBP Rosen Striatum M430V2 (Apr05) RMA served as the databases for eQTL searches in the PAG, PFC, TL, and VS, respectively. Significant linkage of eQTL markers to correlated genes was defined by marker regression plots with 1000 permutations. The results from the permutation tests provide LRS (likelihood ratio statistics) scores that are suggestive, significant, or highly significant." + +
        +
        + + +
      27. +Badea A, Johnson GA, Williams RW (2009) Genetic dissection of the mouse brain using high-field magnetic resonance microscopy. Neuroimaging 45:1067-79 +
        We have generated high field MRIs for a subset of the BXD stains. This paper describes the acquisition and quantitative analysis of many CNS regions and compartments for BXD strains. The summary data are in GeneNetwork and the original MRI data sets are available at the Duke Center for In Vivo Microscopy (CIVM, Al Johnson and colleagues). + +
        +
        + +
      28. +Ciobanu DC, Lu L, Mozhui K, Wang X, Morris JA, Taylor WL, Dietz K, Simon P, Williams RW (2010) Detection, validation, and downstream analysis of allelic variation in gene expression. Genetics 184: 119-128 Full Text PDF +
        Natural allelic variants can cause large differences in gene expression. A problem in microarray-based studies of this phenomenon is that differences in hybridization signal intensity can be due to SNPs in overlapping probes or by isoform variants. The authors develop an approach to this problem that identifies and filters sources of variation and enriches for real differences that can be exploited in downstream functional analyses—essentially reverse complex trait analysis. The authors demonstrate the power of this method by analyzing targets of two validated differences in allelic expression (Stk25 and Rasd2) that segregate in the BXD mouse strains. + +
        +
        + +
      29. +Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K (2009) TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10:167-77 +
        +Schoonjans and colleagues made good use of a liver gene expression data in GeneNetwork (the BXD data set by Gatti et al., 2006) to show a highly significant correlations between expression of TGR5 and COXV1a1 (their figure 1D). + +
        +
        + + +
      30. +Davies MN, Lawn S, Whatley S, Fernandes C, Williams RW, Schalkwyk LC (2009) To what extent is blood a reasonable surrogate for brain gene expression studies: estimation from mouse hippocampus and spleen. Front. Neurogen. 1:2. doi:10.3389/neuro.15.002.2009 Full Text HTML +
        +
        + + + +
      31. +Boon AC, deBeauchamp J, Hollmann A, Luke J, Kotb M, Rowe S, Finkelstein D, Neale G, Lu L, Williams RW, Webby RJ (2009) Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice. J Virol 83:10417-26 PMID: 19706712 Full Text PDF Version +
        +There is about a 10,000-fold variation in the susceptibility of BXD strains to H5N1 infection. Sequence variants in Hc gene contribute to this differential vulnerability. + +
        +
        + + + +
      32. +Geisert EE, Lu L, Freeman-Anderson ME, Wang X, Gu W, Jiao Y, Williams RW (2009) Gene expression landscape of the mammalian eye: A global survey and database of mRNAs of 103 strains of mice. Molecular Vision 15:1730-1763 PMID:19727342 Full Text HTML Version, +Full Text PDF Version +
        +This is a comprehensive review of the genetics of gene expression in the mouse eye and includes data for mutant and knockout mice, most of the common strains of mice, and 68 BXD strains. This paper is also serves as an excellent tutorial on almost all major analytic and mapping features of GeneNetwork. Finally, this paper has a useful summary table (Table 2) that provides gene expression signatures (genes and probe sets) for all major ocular cell type. + +
        +
        + + + + +
      33. +Koutnikova H, Laakso M, Lu L, Combe R, Paananen J, Kuulasmaa T, Kuusisto J, Häring H, Hansen T, Pedersen,O, Smith U, Hanefel M, Williams RW, Auwerx J (2009) Identification of UBP1 as a critical blood pressure determinant. PLoS Genetics 5:e1000591 +Full Text HTML and PDF Versions +
        +A good example of the rapid "translation" of a mouse blood pressure QTL to a human candidate gene, UBP1. This study made use of the new advanced recombinant inbred BXD strains that are now available from JAX and the University of Tennessee. + +
        +
        + +
      34. +Carneiro AM, Airey DC, Thompson B, Zhu CB, Lu L, Chesler EJ, Erikson KM, Blakely RD (2009) Functional coding variation in recombinant inbred mouse lines reveals multiple serotonin transporter-associated phenotypes. Proc Natl Acad Sci USA 106:2047-2052 +Full Text HTML Version, +Full Text PDF Version +
        +A new way to study the impact of sequence variants by exploiting genetic reference populations. In this paper, Blakely and colleagues have analyzed BXD strains that "share specific serotonin receptor (Slc6a4, 5-HT) gene variants against an otherwise randomized genetic background, an advantage over approaches that test allele effects on one or two inbred backgrounds. Perhaps the greatest strength of this approach is the availability of archived, dimensional data across a large number of phenotypes linked to individual BXD lines, including anatomical, neurochemical, and behavioral traits. In this report, we initiate investigation of naturally occurring variation in 5-HT genes via analysis of functional coding polymorphism in mSERT" (Slc6a4). + +
        +
        + +
      35. +Rosen GD, Pung CJ, Owens CB, Caplow J, Kim H, Mozhui K, Lu L, Williams RW (2009) Genetic modulation of striatal volume by loci on Chrs 6 and 17 in BXD recombinant inbred mice. Genes Brain Behav. 8: 296–308. Full Text PDF Version. +
        This paper introduces a comprehensive companion microarray data set for the striatum of the BXD strains (see Mouse BXD Striatum mRNA databases in GeneNetwork). + + + +
        +
        + + +
      36. +Whitney IE, Raven MA, Ciobanu DC, Williams RW, Reese BE (2009) Multiple genes on chromosome 7 regulate dopaminergic amacrine cell number in the mouse. Investigative Ophthalmology & Visual Science 50:1996-2003. +
        In addition to the quantitative genetic analysis of a dopaminergic cell population in the retinas of AXB/BXA strains of mice, this paper also introduces a comprehensive companion microarray data set for the whole eyes of these same strains (see Mouse AXB/BXA Eye mRNA database in GeneNetwork). + +
        +
        + +
      37. +Mozhui RT, Ciobanu DC, Schikorski T, Wang XS, Lu L, Williams RW (2008) Dissection of a QTL hotspot on mouse distal chromosome 1 that modulates neurobehavioral phenotypes and gene expression. PLoS Genetics 4: e1000260. doi:10.1371/journal.pgen.1000260 +Full Text HTML Version. + +
        A fine-grained analysis of one of the most intriguing parts of the mouse genome that controls a wide variety of traits. This study highlights sequence variants in formin 2 (Fmn2) as important in translation of mRNA and protein in neurons. + + + + + +
      + +
      + + + + + + + + + + + + +
      + Key References +
      + +

      The first section lists key technical papers that are appropriate references when citing GeneNetwork and WebQTL. The second section lists publications and other resources that have made use of GeneNetwork.

      + +

      +
        +
      1. +Wang J, Williams RW, Manly KF (2003) WebQTL: Web-based complex trait analysis. Neuroinformatics 1: 299-308 Full Text PDF Version. [A good technical reference to WebQTL and GeneNetwork] +
      2. +Chesler EJ, Wang J, Lu L, Qu Y, Manly KF, Williams RW (2003) Genetic correlates of gene expression in recombinant inbred strains: a relational model to explore for neurobehavioral phenotypes. Neuroinformatics 1: 343-357. Full Text PDF Version. [Best reference regarding interpretation of genetic correlations.] +
      3. +Chesler EJ, Lu L, Wang J, Williams RW, Manly KF (2004) WebQTL: rapid exploratory analysis of gene expression and genetic networks for brain and behavior. Nature Neuroscience 7: 485-486. Full Text PDF Version [A short review] +
      4. +Chesler EJ, Williams RW (2004) Brain gene expression: genomics and genetics. International Review of Neurobiology 60:59-95. (DNA Arrays in Neurobiology, edited by MF Miles, Elsevier, Amsterdam). [A longer discussion, both statistical and conceptual, on the genetic analysis of gene expression and relations to higher order behavioral phenotypes] +
      5. +Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E, Wang J, Manly KF, Lu L, Chesler EJ, Alberts R, Jansen RC, Williams RW, Cooke M, de Haan G (2005) Uncovering regulatory pathways affecting hematopoietic stem cell function using "genetical genomics." Nature Genetics 37:225-232. [Please cite this article if you have used the GNF-Groningen hematopoietic stem cell data set.] +
      6. +Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin N, Langston MA, Threadgill DW, Manly KF, Williams RW (2005) Genetic dissection of gene expression reveals polygenic and pleiotropic networks modulating brain structure and function. Nature Genetics 37: 233-242. [Please cite this article if you have used one of the UTHSC brain data sets.] + +
      7. +Damerval C, Maurice A, Josse JM, de Vienne D (1994) Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137: 289-301 Full Text PDF Version [The first published paper on system genetics. Impressive; before its time.] + +
        [Damerval et al., 1994 abstract] A methodology to dissect the genetic architecture of quantitative variation of numerous gene products simultaneously is proposed. For each individual of a segregating progeny, proteins extracted from a given organ are separated using two-dimensional electrophoresis, and their amounts are estimated with a computer-assisted system for spot quantification. Provided a complete genetic map is available, statistical procedures allow determination of the number, effects and chromosomal locations of factors controlling the amounts of individual proteins. This approach was applied to anonymous proteins of etiolated coleoptiles of maize, in an F(2) progeny between two distant lines. The genetic map included both restriction fragment length polymorphism and protein markers. Minimum estimates of one to five unlinked regulatory factors were found for 42 of the 72 proteins analyzed, with a large diversity of effects. Dominance and epistasis interactions were involved in the control of 38% and 14% of the 72 proteins, respectively. Such a methodology might help understanding the architecture of regulatory networks and the possible adaptive or phenotypic significance of the polymorphism of the genes involved. +
        + +
      8. +Hübner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilova A, Kren V, Causton H, Game L, Born G, Schmidt S, Muller A, Cook SA, Kurtz TW, Whittaker J, Pravenec M, Aitman TJ (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genetics 37: 243-253. [Please cite this article if you have used one of the rat HXB kidney or peritoneal fat data sets.] + +
      9. +Kang HM, Ye C, Eskin E (2008) Accurate discovery of expression quantitative trait loci under confounding from spurious and genuine regulatory hotspots. Genetics 180:1909-1925 +Full Text PDF Version. [An important method that can greatly improve the ability to resolve true genetic interactions in expression genetic studies.] + + +
      10. +Ljungberg K, Holmgren S, Carlborg O (2004) Simultaneous search for multiple QTL using the global optimization algorithm DIRECT. Bioinformatics 20:1887-1895. [Please review and cite this article if you have exploited the DIRECT pair-scan tool and output graphs in WebQTL.] + +
      11. +Manly KF, Wang J, Williams RW (2005) Weighting by heritability for detection of quantitative trait loci with microarray estimates of gene expression. Genome Biology 6: R27 Full Text HTML and PDF Version. [Please cite this article if you have used one of the HWT (Heritability Weighted Transform) data sets.] + +
      12. +Manly K, Williams RW (2001) WEBQTL—WWW service for mapping quantitative trait loci. International Mouse Genome Conference 15: 74. [First published abstract on WebQTL, presented Oct 2001, Edinburgh; also see 2002 CTC abstract] +
      13. +Taylor BA, Heiniger HJ, Meier H (1973) Genetic analysis of resistance to cadmium-induced teticular damage in mice. Proc Soc Exp Biol Med 143:629-33 [This is one of the first full paper on the use of recombinant inbred strains in biomedical research and the first paper to use BXD lines of mice. Full text + + +
      14. +Webster JA, Gibbs JR, Clarke J, Ray M, Zhang W, Holmans P, Rohrer K, Zhao A, Marlowe L, Kaleem M, McCorquodale DS 3rd, Cuello C, Leung D, Bryden L, Nath P, Zismann VL, Joshipura K, Huentelman MJ, Hu-Lince D, Coon KD, Craig DW, Pearson JV; NACC-Neuropathology Group, Heward CB, Reiman EM, Stephan D, Hardy J, Myers AJ (2009) Genetic control of human brain transcript expression in Alzheimer disease. Am J Hum Genet 84:445-58. [Please review and cite this article if you have used the HUMAN data set by Myers and colleagues in GeneNetwork.] + +
      15. +Williams RW, Shou S, Lu L, Wang J, Manly KF, Hsu HC, Mountz J, Threadgill DW (2002) Genomic analysis of transcriptional networks: combining microarrays with complex trait analysis. Complex Trait Consortium 1 [One of the first published abstracts on system genetic analysis of microarray data sets, presented May 2002.] + + +
      16. +Zhang B, Schmoyer D, Kirov S, Snoddy J (2004) GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics 5:16. [This reference describes GOTM--the predecessor of WebGestalt that is now used to analyze sets of covarying transcripts.] +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + +
      + GeneNetwork (2011) +
      + +
      +
        + + + +
      1. +Alberts R, Lu L, Williams RW, Schughart K. (2011) Genome-wide analysis of the mouse lung transcriptome reveals novel molecular gene interaction networks and cell-specific expression signatures. Respir Res 12:61 Full Text version +
      2. +Alberts R, Chen H, Pommerenke C, Smit AB, Spijker S, Williams RW, Geffers R, Bruder D, Schughart K (2011) Expression QTL mapping in regulatory and helper T cells from the BXD family of strains reveals novel cell-specific genes, gene-gene interactions and candidate genes for auto-immune disease. BMC Genomics 12:610. Full Text version +
      3. +Di Curzio DL, Goldowitz D (2011) The genetic basis of adrenal gland weight and structure in BXD recombinant inbred mice. Mammalian Genome 22:209–234 Full Text PDF version +
      4. +Gatti DM, Lu L, Williams RW, Sun W, Wright FA, Threadgill DW, Rusyn I (2011) MicroRNA expression in the livers of inbred mice. Mutat Res 714:126-133 +
      5. +Gibson JN, Jellen LC, Unger EL, Morahan G, Mehta M, Earley CJ, Allen RP, Lu L, Jones BC (2011) Genetic analysis of iron-deficiency effects on the mouse spleen. Mamm Genome, in press +
      6. +Hakvoort TB, Moerland PD, Frijters R, Sokolovic A, Labruyère WT, Vermeulen JL, Ver Loren van Themaat E, Breit TM, Wittink FR, van Kampen AH, Verhoeven AJ, Lamers WH, Sokolovic M (2011) Interorgan coordination of the murine adaptive response to fasting. J Biol Chem 286:16332-43 +
      7. +Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE (2011) Genetic networks in the mouse retina: Growth Associated Protein 43 and Phosphate Tensin Homology network. Molecular Vision 17:1355-1372. Full Text HTML and PDF versions +
      8. +Jablonski MM, Freeman NE, Orr WE, Templeton JP, Lu L, Williams RW, Geisert EE (2011) Genetic pathways regulating glutamate levels in retinal Müller cells. Neurochem Res 36:594-603 +
      9. +Jackson KJ, Chen X, Miles MF, Harenza J, Damaj MI (2011) The neuropeptide galanin and variants in the GalR1 gene are associated with nicotine dependence. Neuropsychopharmacology 36:2339-2348 +
      10. +Jansen R, Timmerman J, Loos M, Spijker S, van Ooyen A, Brussaard AB, Mansvelder HD, The Neuro-Bsik Mouse Phenomics Consortium; Smit AB, de Gunst M, Linkenhaer-Hansen K (2011) Novel candidate genes associated with hippocampal oscillations. PLoS One 6: e26586. +HTML and PDF versions +
      11. +Jiao Y, Jiao F, Yan J, Xiong Q, Shriner D, Hasty K, Stuart J, Gu W (2011) Identifying a major locus that regulates spontaneous arthritis in IL-1ra-deficient mice and analysis of potential candidates. Genet Res (Camb) 18:1-9 +
      12. +Krebs J, Römer D, Overall RW, Fabel K. Babu H, Brandt M, Williams RW, Jessberger S, Kempermann G (2011)) Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection: II. Genetic covariance and identification of Nos1 as a linking candidate gene. Frontiers in Neuroscience 5:106 +PDF version +
      13. +Jansen R, Timmerman J, Loos M, Spijker S, van Ooyen A, Brussaard AB, Mansvelder HD, The Neuro-Bsik Mouse Phenomics Consortium; Smit AB, de Gunst M, Linkenhaer-Hansen K (2011) Novel candidate genes associated with hippocampal oscillations. PLoS One 6: e26586 +PDF +
      14. +Krebs J, Römer B, Overall RW, Fabel K, Babu H, Brandt MD, Williams RW, Jessberger S, Kempermann G (2011) Adult hippocampal neurogenesis and plasticity in the infrapyramidal bundle of the mossy fiber projection: II. Genetic covariation and identification of Nos1 as linking candidate gene. Front Neurosci 5:106 +PDF version +
      15. +Laughlin RE, Grant TL, Williams RW, Jentsch JD (2011) Genetic dissection of behavioral flexibility: reversal learning in mice. Biol Psychiatry 69:1109-16 +
      16. +Lu H, Wang X, Pullen M, Guan H, Chen H, Sahu S, Zhang B, Chen H, Williams RW, Geisert EE, Lu L, Jablonski MM (2011) Genetic dissection of the Gpnmb network in the eye. Invest Ophthalmol Vis Sci. 52:4132-42 +
      17. +McLachlan SM, Aliesky HA, Chen CR, Williams RW, Rapoport B (2011) Exceptional Hyperthyroidism and a role for both major histocompatibility class I and class II genes in a murine model of Graves' disease. PLoS One 6:e21378 +
      18. +McLachlan SM, Lu L, Aliesky HA, Williams RW, Rapoport B (2011) Distinct genetic signatures for variability in total and free serum thyroxine levels in four sets of recombinant inbred mice. Endocrinology 152:1172-9 +
      19. +McCall RD (2011) HPNS seizure risk: a role for the Golgi-associated retrograde protein complex? Undersea Hyperb Med. 38:3-9 +
      20. +Moscou MJ, Lauter N, Steffenson B, Wise RP (2011) Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons. PLoS Genet 7:e1002208 +
        PDF version +
      21. +Mozhui K, Wang X, Chen J, Mulligan MK, Li Z, Ingles J, Chen X, Lu L and Williams RW (2011) Genetic regulation of Nrxn1 expression: an integrative cross-species analysis of schizophrenia candidate genes. Transl Psychiatry 1: e25; doi:10.1038/tp.2011.24. +PDF version +
      22. +Porcu P, O'Buckley TK, Song SC, Harenza JL, Lu L, Wang X, Williams RW, Miles MF, Morrow AL (2010) Genetic analysis of the neurosteroid deoxycorticosterone and its relation to alcohol phenotypes: Identification of QTLs and downstream gene regulation. PLoS One 6:e18405 Full Text HTML and PDF versions +
      23. +Suwanwela J, Farber CR, Haung B, Song B, Pan C, Lyon KM, Lusis AJ (2011) Systems genetics analysis of mouse chondrocyte differentiation. Journal of Bone and Mineral Research 26:74-760 +PDF version +
      24. +Whitney IE, Raven MA, Lu L, Williams RW, Reese BE (2011) A QTL on chromosome 10 modulates cone photoreceptor number in the mouse retina. Invest Ophthalmol Vis Sci. 52:3228-36 +
      25. +Whitney IE, Raven MA, Ciobanu DC, Poché RA, Ding Q, Elshatory Y, Gan L, Williams RW, Reese BE (2011) Genetic modulation of horizontal cell number in the mouse retina. Proc Natl Acad Sci USA 108:9697-702 +
      26. +Yadav JS, Pradhan S, Kapoor R, Bangar H, Burzynski BB, Prows DR, Levin L (2011) Multigenic control and sex-bias in host susceptibility to spore-induced pulmonary anthrax in mice. Infect Immun in press. +
      27. +Yamamoto H, Williams EG, Mouchiroud L, Cantó C, Fan W, Downes M, Héligon C, Barish GD, Desvergne B, Evans RM, Schoonjans K, Auwerx J (2011) NCoR1 is a conserved physiological modulator of muscle mass and oxidative function. Cell 147:827-39 + + + +
      +
      + + + +
      + GeneNetwork (2010) +
      + +
      +
        + +
      1. +Alberts R, Schughart K (2010) QTLminer: identifying genes regulating quantitative traits.Full Text PDF version +
      2. +Ciobanu DC, Lu L, Mozhui K, Wang X, Morris JA, Taylor WL, Dietz K, Simon P, Williams RW (2010) Detection, validation, and downstream analysis of allelic variation in gene expression. Genetics 184: 119-128 Full Text PDF +
      3. +Downing C, Marks MJ, Larson C, Johnson TE (2010) The metabotropic glutamate receptor subtype 5 mediates sensitivity to the sedative properties of ethanol. Pharmacogenet Genomics 20:553-64 +
      4. +Gatti DM, Zhao N, Chesler EJ, Bradford BU, Shabalin AA, Yordanova R, Lu L, Rusyn I (2010) Sex-specific gene expression in the BXD mouse liver. Physiol Genomics 42:456-68 +Full Text PDF Version +
      5. +Grisham W, Schottler NA, Valli-Marill J, Beck L, Beatty J (2010) Teaching bioinformatics and neuroinformatics by using free web-based tools. CBE--Life Sciences Education 9: 98-107 Full Text PDF Version +
      6. +Hoffman PL, Bennett B, Saba LM, Bhave SV, Carosone-Link PJ, Hornbaker CK, Kechris KJ, Williams RW, Tabakoff B 2010 Using the Phenogen website for 'in silico' analysis of morphine-induced analgesia: identifying candidate genes. Addiction Biology, doi: 10.1111/j.1369-1600.2010.00254.x +
      7. +Li D, Mulligan MK, Wang X, Miles MF, Lu L, Williams RW (2010) A transposon in Comt generates mRNA variants and causes widespread expression and behavioral differences among mice. PLoS One. 2010 Aug 17;5(8):e12181. Full Text HTML and PDF Versions +
      8. +Lionikas A, Carlborg O, Lu L; Peirce JL, Williams RW, Yu F, Vogler GP, McClearn GE, Blizard DA 2010 Genomic analysis of variation in hindlimb musculature of mice from the C57BL/6J and DBA/2J lineage. Journal of Heredity 2010; doi: 10.1093/jhered/esq023. Full Text PDF Version +
      9. +Loguercio S, Overall RW, Michaelson JJ, Wiltshire T, Pletcher MT, Miller BH, Walker JR, Kempermann G, Su AI, Beyer A 2010 Integrative analysis of low- and high-resolution eQTL. PLoS One. 2010 Nov 10;5(11):e13920 Full Text PDF Version +
      10. +Lynch RM, Naswa S, Rogers Jr GL, Kanla SA, Das S, Chesler EJ, Saxton AM, Langston MA, Voy, BH (2010) Identifying genetic loci and spleen gene coexpression networks underlying immunophenotypes in the BXD recombinant inbred mice. Physiological Genomics 41: 244-253 Full Text PDF version +
      11. +Malkki HA, Donga LA, de Groot SE, Battaglia FP; NeuroBSIK Mouse Phenomics Consortium, Pennartz CM (2010) Appetitive operant conditioning in mice: heritability and dissociability of training stages. Front Behav Neuroscience 4:171 Full Text PDF version +
      12. +Mulligan MK, Lu L, Overall RW, Kempermann G, Rogers GL, Langston MA, Williams RW (2010) Genetic analysis of BDNF expression cliques and adult neurogenesis in the hippocampus. Biomedical Sciences and Engineering Conference (BSEC) DOI: 10.1109/BSEC.2010.5510848 Full Text PDF version +
      13. +Peidis P, Giannakouros T, Burow ME, Williams RW, Scott RE (2010) Systems genetics analyses predict a transcription role for P2P-R: molecular confirmation that P2P-R is a transcriptional co-repressor. BMC Systems Biology 4:14 Full Text PDF version and +
      14. +Philip VM, Duvvuru S, Gomero B, Ansah TA, Blaha CD, Cook MN, Hamre KM, Laviviere WR, Matthews DB, Mittleman G, Goldowitz D, Chesler EJ (2010) High-throughput behavioral phenotyping in the expanded panel of BXD recombinant inbred strains. Genes, Brain and Behavior 8:129-159 Full Text HTML Version +
      15. +Reinius B, Shi C, Hengshuo L, Sandhu KS, Radomska KJ, Rosen GD, Lu L, Kullander K, Williams RW, Jazin E. (2010) Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse. BMC Genomics. 2010 Nov 3;11:614 Full Text HTML Version +
      16. +Rulten SL, Ripley TL, Hunt CL, Stephens DN, Mayne LV (2010) Sp1 and NFkappaB pathways are regulated in brain in response to acute and chronic ethanol. Genes, Brain and Behavior 5:257-73. Full Text HTML Version +
      17. +Suwanwela J, Farber CR, Haung BL, Song B, Pan C, Lyons KM, Lusis AJ (2010) Systems genetics analysis of mouse chondrocyte differentiation. JBMR, in press Full Text PDF version +
      18. +Wang X, Chen Y, Wang X, Lu L. (2010) Genetic regulatory network analysis for App based on genetical genomics approach. Exp Aging Res 36:79-93 + + + + + + + + + + + + + + + + + +
      +
      + +
      + GeneNetwork (2009) +
      + +
      +
        + +
      1. +Badea A, Johnson GA, Williams RW (2009) Genetic dissection of the mouse brain using high-field magnetic resonance microscopy. Neuroimaging 45:1067-79 +
      2. +Boon AC, deBeauchamp J, Hollmann A, Luke J, Kotb M, Rowe S, Finkelstein D, Neale G, Lu L, Williams RW, Webby RJ (2009) Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice. J Virol 83:10417-26 PMID: 19706712 Full Text PDF Version +
      3. +Brigman JL, Mathur P, Lu L, Williams RW, Holmes A (2009) Genetic relationship between anxiety- and fear-related behaviors in BXD recombinant inbred mice. Behavioral Pharmacology 20:204-209 +Full Text HTML Version, +
      4. +Carneiro AM, Airey DC, Thompson B, Zhu CB, Lu L, Chesler EJ, Erikson KM, Blakely RD (2009) Functional coding variation in recombinant inbred mouse lines reveals multiple serotonin transporter-associated phenotypes. Proc Natl Acad Sci USA 106:2047-2052 +Full Text HTML Version, +Full Text PDF Version +
      5. +Cowley MJ, Cotsapas CJ, Williams RB, Chan EK, Pulvers JN, Liu MY, Luo OJ, Nott DJ, Little PF (2009) Intra- and inter-individual genetic differences in gene expression. Mamm Genome 20:281-295 +Full Text HTML Version +
      6. +Davies MN, Lawn S, Whatley S, Fernandes C, Williams RW, Schalkwyk LC (2009) To what extent is blood a reasonable surrogate for brain gene expression studies: estimation from mouse hippocampus and spleen. Front. Neurogen. 1:2. doi:10.3389/neuro.15.002.2009 +
      7. +Foreman JE, Lionikas A, Lang DH, Gyekis JP, Krishnan M, Sharkey NA, Gerhard GS, Grant MD, Vogler GP, Mack HA, Stout JT, Griffith JW, Lakoski JM, Hofer SM, McClearn GE, Vandenbergh DJ, Blizard DA (2009) Genetic architecture for hole-board behaviors across substantial time intervals in young, middle-aged and old mice. Genes Brain Behav 8:714-27 +
      8. +Gaglani SM, Lu L, Williams RW, Rosen GD (2009) The genetic control of neocortex volume and covariation with patterns of gene expression in mice. BMC Neuroscience 10:44 +Full Text HTML Version, +Full Text PDF Version +
      9. +Gatti DM, Harrill AH, Wright FA, Threadgill DW, Rusyn I. (2009) Replication and narrowing of gene expression quantitative trait loci using inbred mice. Mamm Genome 20:437-46. +
      10. +Geisert EE, Lu L, Freeman-Anderson ME, Wang X, Gu W, Jiao Y, Williams RW (2009) Gene expression landscape of the mammalian eye: A global survey and database of mRNAs of 103 strains of mice. Molecular Vision 15:1730-1763 PMID:19727342 Full Text HTML Version, +Full Text PDF Version +
      11. +Grisham W (2009) Modular digitial course in undergraduate neuroscience education (MDCUNE): A website offering free digital tools for neuroscience educators. Journal of Undergraduate Neuroscience Education 8:A26-A31 Full Text PDF Version +
        +An excellent example of how resources such as GeneNetwork and the Mouse Brain Library can be used in class room labs. + +
      12. +Jellen LC, Beard JL, Jones BC (2009) Systems genetics analysis of iron regulation. Biochemie in press. +19393285 +
      13. +Koutnikova H, Markku L, Lu L, Combe R, Paananen J, Kuulasmaa T, Kuusisto J, Häring H, Hansen T, Pedersen,O, Smith U, Hanefel M, Williams RW, Auwerx J (2009) Identification of UBP1 as a critical blood pressure determinant. PLoS Genetics 5:e1000591 +Full Text HTML Version, +Full Text PDF Version +
      14. +Michaelson JJ, Loguercio S, Beyer A (2009) Detection and interpretation of expression quantitative trait loci (eQTL). Methods 48:265-276 +Full Text HTML Version +
      15. +Overall RW, Kempermann G, Peirce J, Lu L, Goldowitz D, Gage FH, Goodwin S, Smit AB, Airey DC, Rosen GD, Schalkwyk LC, Sutter TR, Nowakowski RS, Whatley S, Williams RW (2009) Genetics of the hippocampal transcriptome in mice: a systematic survey and online neurogenomic resource. Frontiers in Neuroscience 3:55 +Full Text HTML Version, +Full Text PDF Version +
      16. +Overton JD, Adams GS, McCall RD, Kinsey ST (2009)High energy phosphate concentrations and AMPK phosphorylation in skeletal muscle from mice with inherited differences in hypoxic exercise tolerance. Comp Biochem Physiol A Mol Integr Physiol 152:478-85 +
      17. +Philip VM, Duvvuru S, Gomero B, Ansah TA, Blaha CD, Cook MN, Hamre KM, Laviviere WR, Matthews DB, Mittleman G, Goldowitz D, Chesler EJ (2009) High-throughput behavioral phenotyping in the expanded panel of BXD recombinant inbred strains. Genes, Brain and Behavior 8:in press PMID: 19958391 Full Text HTML Version +
      18. +Ruden DM, Chen L, Possidente D, Possidente B, Rasouli P, Wang L, Lu X, Garfinkel MD, Hirsch HV, Page GP (2009) Genetical toxicogenomics in Drosophila identifies master-modulatory loci that are regulated by developmental exposure to lead. Neurotoxicology 30:898-914 +
      19. +Rosen GL, Pung C, Owens C, Caplow J, Kim H, Lu L, Williams RW (2009) Genetic modulation of striatal volume in BXD recombinant inbred mice. Genes, Brain & Behavior 8:296-308 +
      20. +Saccone SF, Bierut LJ, Chesler EJ, Kalivas PW, Lerman C, Saccone NL, Uhl GR, Li CY, Philip VM, Edenberg HJ, Sherry ST, Feolo M, Moyzis RK, Rutter JL (2009) Supplementing high-density SNP microarrays for additional coverage of disease-related genes: addiction as a paradigm. PLoS ONE 4:e5225. Full Text HTML Version, +Full Text PDF Version. [Supplementary table 1 provides links to many transcripts and genes, some of which were mined from an analysis of GeneNetwork data sets.] +
      21. +Silva GL, Junta CM, Sakamoto-Hojo ET, Donadi EA, Louzada-Junior P, Passos GA (2009) Genetic susceptibility loci in rheumatoid arthritis establish transcriptional regulatory networks with other genes. Ann N Y Acad Sci 1173:521-37 +
      22. +Tapocik JD, Letwin N, Mayo CL, Frank B, Luu T, Achinike O, House C, Williams R, Elmer GI, Lee NH (2009) Identification of candidate genes and gene networks specifically associated with analgesic tolerance to morphine. J Neurosci 2:5295-307 Full Text HTML +
      23. +Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K (2009) TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10:167-77 +Full Text PDF +
      24. +Webb BT, McClay JL, Vargas-Irwin C, York TP, van den Oord EJCG (2009) In silico whole genome association scan for murine prepulse inhibition. PLoS ONE 4: e5246. doi:10.1371/journal.pone.0005246 +Full Text HTML, +Full Text HTML +
      25. +Weng J, Symons MN, Singh SM (2009) Studies on syntaxin 12 and alcohol preference involving C57BL/6J and DBA/2J strains of mice. Behav Genet. 39:183-191 +Full Text HTML Version +
      26. +Whitney IE, Raven MA, Ciobanu DC, Williams RW, Reese BE (2009) Multiple genes on chromosome 7 regulate dopaminergic amacrine cell number in the mouse. Investigative Ophthalmology & Visual Science 50:1996-2003. +Full Text HTML Version. +
      27. +Wu S, Lusis AJ, Drake TA (2009) A systems-based framework for understanding complex metabolic and cardiovascular disorders. Journal of Lipid Research, in press Full Text PDF +
      28. +Zheng QY, Ding D, Yu H, Salvi RJ, Johnson KR (2009) A locus on distal chromosome 10 (ahl4) affecting age-related hearing loss in A/J mice. Neurobiol Aging. 2009 Oct;30(10):1693-705. + +
      +
      + + +
      + GeneNetwork (2008) +
      + +
      +
        +
      1. +Abdeltawab NF, Aziz RK, Kansal R, Rowe SL, Su Y, Gardner L, Brannen C, Nooh MM, Attia RR, Abdelsamed HA, Taylor WL, Williams RW, Kotb M (2008) An unbiased systems genetics approach to mapping genetic loci modulating susceptibility to severe streptococcal sepsis. PLoS Pathogens 4:e1000042 +Full Text HTML Version, +Full Text PDF Version + +
      2. +Bertrand L, Fan Y, Nissanov J, Rioux L (2008) Genetic regulation of the anatomy of the olfactory bulb. Society for Neuroscience 2008 + + + + +
      3. +Bhoumik A, Singha N, O'Connell MJ, Ronai ZA (2008) Regulation of TIP60 by ATF2 modulates ATM activation. J Biol Chem 283:17605-14 +Full Text HTML Version, Full Text PDF Version + + + +
      4. +Bjork K, Rimondini R, Hansson AC, Terasmaa A, Hyytiä P, Heilig M, Sommer WH (2008) Modulation of voluntary ethanol consumption by beta-arrestin 2. FASEB J 22:2552-60 +Full Text HTML Version, +Full Text PDF Version +
      5. +Boone EM, Hawks BW, Li W, Garlow SJ (2008) Genetic regulation of hypothalamic cocaine and amphetamine-regulated transcript (CART) in BxD inbred mice. Brain Res 1194:1-7 +
      6. +Crawford NP, Alsarraj J, Lukes L, Walker RC, Officewala JS, Yang HH, Lee MP, Ozato K, Hunter KW (2008) Bromodomain 4 activation predicts breast cancer survival. Proc Natl Acad Sci USA 105:6380-6385 +Full Text HTML Version +
      7. +Crawford NP, Walker RC, Lukes L, Officewala JS, Williams RW, Hunter KW (2008) The Diasporin Pathway: a tumor progression-related transcriptional network that predicts breast cancer survival. Clin Exp Metastasis 25:357-69 +Full Text HTML Version +
      8. +Danciger M, Ogando D, Yang H, Matthes MT, Yu N, Ahern K, Yasumura D, Williams RW, Lavail MM (2008) Genetic modifiers of retinal degeneration in the rd3 mouse. Invest Ophthalmol Vis Sci 49:2863-2869 +Full Text HTML Version +
      9. +Druka A, Druka I, Centeno AG, Li H, Sun Z, Thomas WT, Bonar N, Steffenson BJ, Ullrich SE, Kleinhofs A, Wise RP, Close TJ, Potokina E, Luo Z, Wagner C, Schweizer GF, Marshall DF, Kearsey MJ, Williams RW, Waugh R (2008) Towards systems genetic analyses in barley: Integration of phenotypic, expression and genotype data into GeneNetwork. BMC Genet 9:73 +Full Text HTML Version +
      10. +Dykstra B, de Haan G (2008) Hematopoietic stem cell aging and self-renewal. Cell Tissue Res 331:91-101 +
      11. +Ferrara CT, Wang P, Neta EC, Stevenes RD, Bain JR, Wenner BR, Ilkayeva OR, Keller MP, Blasiole DA, Kendziorski C, Yandell BS, Newgard CB, Attie AD (2008) Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling. PLoS Genetics 4: e1000034. doi:10.1371/journal.pgen.1000034 +Full Text HTML Version +
      12. +Gerrits A, Dykstra B, Otten M, Bystrykh L, de Haan G (2008) Combining transcriptional profiling and genetic linkage analysis to uncover gene networks operating in hematopoietic stem cells and their progeny. Immunogenetics. 60:411-22. +
      13. +Grieve IC, Dickens NJ, Pravenec M, Kren V, Hubner N, Cook SA, Aitman TJ, Petretto E, Mangion J (2008) Genome-wide co-expression analysis in multiple tissues. PLoS One. 3:e4033. PMID: 19706712 Full Text HTML Version, +Full Text PDF Version +
      14. +Hall R, Hillebrandt S, Hochrath K, Gruenhage F, Weber S, Schwartz S, Yildiz Y , Sauerbruch T, Lammert F (2008) BXD recombinant inbred mouse lines–a genetic reference population for dissection of the complex genetics of liver fibrosis. Zeitschrift fur Gastroenterologie 46:in press +Full Text PDF Version +
      15. +Han B, Altman NS, Mong JA, Klein LC, Pfaff DW, Vandenbergh DJ (2008) Comparing quantitative trait loci and gene expression data. Advances in Bioinformatics, doi:10.1155/2008/719818. +Full Text PDF Version and Full Text HTML Version +
      16. +Hayat Y, Yang J, Xu HM, Zhu J (2008) Influence of outliers on QTL mapping for complex traits. J Zhejiang Univ Sci B. 9:931-7 +
      17. +Heimel JA, Hermans JM, Sommeijer JP; Neuro-Bsik Mouse Phenomics consortium, Levelt CN (2008) Genetic control of experience-dependent plasticity in the visual cortex. Genes Brain Behav 7:915-23. +Full Text PDF Version +
      18. +Jan TA, Lu L, Li CX, Williams RW, Waters RS (2008) Genetic analysis of posterior medial barrel subfield (PMBSF) size in somatosensory cortex (SI) in recombinant inbred strains of mice. BMC Neuroscience 9:3 +Full Text PDF Version +
      19. +Johnson KR, Longo-Guessa C, Gagnona LH, Yub H, Zhengb QY (2008) A locus on distal chromosome 11 (ahl8) and its interaction with Cdh23 ahl underlie the early onset, age-related hearing loss of DBA/2J mice. Genomics 92:219-225 +
      20. +Jones LC, Beard JL, Jones BC (2008) Genetic analysis reveals polygenic influences on iron, copper, and zinc in mouse hippocampus with neurobiological implications. Hippocampus 18:398-410 +Full Text PDF Version +
      21. +Jones LC, Earley CJ, Allen RP, Jones BC (2008) Of mice and men, periodic limb movements and iron: how the human genome informs the mouse genome. Genes, Brain and Behavior 7:513-514. +Full Text PDF Version +
      22. +Kang HM, Ye C, Eskin E (2008) Accurate discovery of expression quantitative trait loci under confounding from spurious and genuine regulatory hotspots. Genetics doi:10.1534/genetics.108.094201 +Full Text PDF Version. [An important method that can greatly improve the ability to resolve true genetic interactions in expression genetic studies.] +
      23. +Kadarmideen HN (2008) Genetical systems biology in livestock: Application to gonadotrophin releasing hormone and reproduction. IET Systems Biology 2:423-441 +Full Text PDF Version +
      24. +Kerns RT, Miles MF (2008) Microarray analysis of ethanol-induced changes in gene expression. Alcohol: Methods and Protocols. In: Methods in Molecular Biology 447:395-410 +Full Text PDF Version +
      25. +Kotb M, Fathey N, Aziz R, Rowe S, Williams RW, Lu L (2008) Unbiased forward genetics and systems biology approaches to understanding how gene-environment interactions work to predict susceptibility and outcomes of infections. Novartis Found Symp 293:156-165; discussion pp 165-167, 181-183 +
      26. +Loos M (2008) The PhenoTyper automated home cage environment as a high throughput tool to detect behavioral abnormalities in mutant mice. Proceeding of Measuring Behavior (Maastricht, The Netherlands, Aug 26-29, 2008). +Full Text PDF Version +
      27. +Loudet O, Michael TP, Burger BT, Le Metté C, Mockler TC, Weigel D, Chory J (2008) A zinc knuckle protein that negatively controls morning-specific growth in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:17193-8 +Full Text HTML Version, and Full Text Supplement +
      28. +Lu L, Wei L, Peirce JL, Wang X, Zhou J, Homayouni R, Williams RW, Airey DC (2008) Using gene expression databases for classical trait QTL candidate gene discovery in the BXD recombinant inbred genetic reference population: mouse forebrain weight. BMC Genomics 9:444 +Full Text HTML Version, and Full Text PDF Version +
      29. +Macedo C, Magalhaes DA, Tonani M, Marques MC, Junta CM, Passos GA (2008) Genes that code for T cell signaling proteins establish transcriptional regulatory networks during thymus ontogeny. +Mol Cell Biochem 318:63-71 +
      30. +Morahan G, Peeva V, Munish M, Williams R (2008) Systems genetics can provide new insights in to immune regulation and autoimmunity. Journal of Autoimmunity 31:233-236. +Full Text PDF Version +
      31. +Mozhui RT, Ciobanu DC, Schikorski T, Wang XS, Lu L, Williams RW (2008) Dissection of a QTL hotspot on mouse distal chromosome 1 that modulates neurobehavioral phenotypes and gene expression. PLoS Genetics 4: e1000260. doi:10.1371/journal.pgen.1000260 +Full Text HTML Version +
      32. +New J, Kendall W, Huang J, Chesler E (2008) Dynamic visualization of coexpression in systems genetics data. IEEE Trans Visualization & Computer Graphics 14:1081-1095. +
      33. +Pravenec M, Petretto E (2008) Insight into the genetics of hypertension, a core component of the metabolic syndrome. +Genes and cell metabolism. Curr Opin Clin Nutr Metab Care 11:393-397 +Full Text HTML Version +
      34. +Pritchard M, Reeves RH, Dierssen M, Patterson D, Gardiner KJ (2008) Down syndrome and the genes of human chromosome 21: current knowledge and future potentials. Cytogenetics and Genome Research 121:67-77 +
      35. +Reiner DJ, Jan TA, Boughter JD Jr, Li CX, Lu L, Williams RW, Waters RS (2008) Genetic analysis of tongue size and taste papillae number and size in recombinant inbred strains of mice. Chemical Senses 33:693-707 +
      36. +Swertz MA, Tesson BM, Scheltema RA, Vera G, Jansen RC (2008) MOLGENIS for genetical genomics. Chapter 5. MGG: a customizable software infrastructure for genetical genomics. +Full Text PDF Version +
      37. +Williams RW, Lu L (2008) Integrative genetic analysis of alcohol dependence using the GeneNetwork web resources. In Pathways to Alcohol Dependence: Alcohol Research & Health 31:275-277 +Full Text PDF Version +
      38. +Woo JH, Zheng T, Kim JH (2008) DACE: Differential Allelic Co-Expression test for estimating regulatory associations of SNP and biological pathway. International Journal of Functional Informatics and Personalised Medicine 1:407-418 +
      39. +Yang RJ, Mozhui K, Karlsson RM, Cameron HA, Williams RW, Holmes A (2008) Variation in mouse basolateral amygdala volume is associated with differences in stress reactivity and fear learning. Neuropsychopharmacology. 33:2595-604 +Full Text HTML Version, +Full Text PDF Version +
      40. +Zhang Y, Maksakova IA, Gagnier L , van de Lagemaat LN, Mager DL (2008) Genome-wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements. PLoS Genet 4(2): e1000007. doi:10.1371/journal.pgen.1000007 +Full Text HTML Version + +
      +
      + + + + + +
      + GeneNetwork (2007) +
      + +
      + +
        +
      1. +Aziz RK, Kansal R, Abdeltawab NF, Rowe SL, Su Y, Carrigan D, Nooh MM, Attia RR, Brannen C, Gardner LA, Lu L, Williams RW, Kotb M (2007) Susceptibility to severe Streptococcal sepsis: use of a large set of isogenic mouse lines to study genetic and environmental factors. Genes and Immunity 8:404-415 +
      2. +Bao L, Peirce JL, Zhou M, Li H, Goldowitz D, Williams RW, Lu L, Cui Y (2007) An integrative genomics strategy for systematic characterization of genetic loci modulating phenotypes. Hum Mol Genet 16:1381-1390 +
      3. +Bao L, Zhou M, Wu L, Lu L, Goldowitz D, Williams RW, Cui Y (2007) PolymiRTS Database: linking polymorphisms in microRNA target sites with complex traits. Nucleic Acids Res. 35(Database issue):D51-54 +Full Text PDF Version, +Full Text HTML Version +
      4. +Benhamou JP, Rizzetto M, Reichen J, Rodés J (2007) Textbook of hepatology: from basic science to clinical practice. Blackwell Publishing, p. 379), ISBN 1405127414 +
      5. +Bennett B, Downing C, Carosone-Link P, Ponicsan H, Ruf C, Johnson TE (2007) Quantitative trait locus mapping for acute functional tolerance to ethanol in the L x S recombinant inbred panel. Alcohol Clin Exp Res. 31:200-208. [Phenotype data described in this paper are accessible in GeneNetwork in the LXS Phenotype database; ID numbers 10126, 10127, 10132, 10134, 10138, and 10139 (select Species=MOUSE, Group=LXS, Type=PHENOTYPES and search the ALL field with the term "functional" or just enter the ID numbers above.] +
      6. +Cervino ACL, Darvasi A, Fallah Mi, Mader CC, Tsinoremas NF (2007) An integrated in silico gene mapping strategy in inbred mice. Genetics 175:321-333 +Full Text PDF Version +
      7. +Chesler EJ (2007) Bioinformatics of behavior. In Neurobehavioral Genetics, ed Jones BC, Mormede P +CRC Press ISBN 084931903X InterScience +95-114), ISBN 1405127414 +
      8. +Chesler EJ (2007) Combining quantitative trait and gene-expression data. In Bioinformatics of Geneticists, ed Barnes MR, Wiley InterScience +
      9. +Coppin H, Darnaud V, Kautz L, Meynard D, Aubry M, Mosser J, Martinez M, Roth MP (2007) Gene expression profiling of Hfe-/- liver and duodenum in mouse strains with differing susceptibilities to iron loading: identification of transcriptional regulatory targets of Hfe and potential hemochromatosis modifiers. Genome Biology 8:R221 +Full Text PDF Version, +Full Text HTML Version +
      10. +Crawford NP, Qian X, Ziogas A, Papageorge AG, Boersma BJ, Walker RC, Lukes L, Rowe WL, Zhang J, Ambs S, Lowy DR, Anton-Culver H, Hunter KW (2007) Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis. PLoS Genetics 3: e214 +Full Text PDF Version, +Full Text HTML Version +
      11. +Dong H, Martin MV, Colvin J, Ali Z, Wang L, Lu L, Williams RW, Rosen GD, Csernansky JG, Cheverud JM (2007) Quantitative trait loci linked to thalamus and cortex gray matter volumes in BXD recombinant inbred mice. Heredity 99:62-69 +
      12. +Fox JG, Barthold SW, Davisson MT, Newcomer CE (2007) The mouse in biomedical research. (2nd ed). Academic Press, p. 530. +
      13. +French L, Pavlidis P (2007) Informatics in neuroscience. Briefings in Bioinformatics 8:446-456 +
      14. +Gatti D, Maki A, Chesler EJ, Kirova R, Kosyk O, Lu L, Manly KF, Williams RW, Perkins A, Langston MA, Threadgill DW, Rusyn I (2007) Genome-level analysis of genetic regulation of liver gene expression networks. Hepatology 46:548-557 + Full Text PDF Version +
      15. +Grice DE, Reenila I, Mannisto PT, Brooks Ai, Smith GG, Golden GT, Buxbaum JD, Berrettini WH (2007) Transcriptional profiling of C57 and DBA strains of mice in the absence and presence of morphine. BMC Genomics 8:76 +Full Text PDF Version, +Full Text HTML Version +
      16. +Hancock JM, Mallon AM (2007) Phenobabelomics--mouse phenotype data resources. Brief Funct Genomic Proteomic 6:292-301 +
      17. +Hawes JJ, Tuskan RG, Reilly KM (2007) Nf1 expression is dependent on strain background: implications for tumor suppressor haploinsufficiency studies. Neurogenetics 8: 121-130. [Nf1 expression in whole brain (INIA data set) and in striatum (Rosen data set) was used to catalyze a detailed study of the degree of NPcis (Nf1 + Trp53) haploinsufficiency. Email: kreilly@ncifcrf.gov] +
      18. +Hofstetter JR, Svihla-Jones DA, Mayeda AR (2007) A QTL on mouse chromosome 12 for the genetic variance in free-running circadian period between inbred strains of mice. J Circadian Rhythms 5:7 +Full Text PDF Version, +Full Text HTML Version +
      19. +Hsu HC, Lu L, Yi N, Van Zant G, Williams RW, Mountz JD (2007) Quantitative trait locus mapping in aging systems. In: Methods in Molecular Biology (Vol 371). Biological Aging: Methods and Protocols, ed Tollefsbol TO, Humana Press, Inc., Netlibrary, Springer +Google Book Search +
      20. +Jawad M, Giotopoulos G, Fitch S, Cole C, Plumb M, Talbot CJ (2007) Mouse bone marrow and peripheral blood erythroid cell counts are regulated by different autosomal genetic loci. Blood Cells Mol Disease 38:69-77 +
      21. +Jessberger S, Gage FH (2007) ZOOMING IN: a new high-resolution gene expression atlas of the brain. Mol Syst Biol. 3:75 +
      22. +Jones BC, Beard JL, Gibson JN, Unger EL, Allen RP, McCarthy KA, Earley CJ (2007) Systems genetic analysis of peripheral iron parameters in the mouse. American Journal of Physiology Regul Integr Comp Physiol 293: R116-124 +Full Text HTML Version, and see full text of Jones et al., 1999. +
      23. +Jones BC and Mormede JP (2007) Neurobehavioral genetics: methods and applications. (2007)" CRC Press, Taylor & Francis Group, Boca Raton, Florida, p. 102, ISBN 084931903X +
      24. +Kadarmideen HN, Reverter A (2007) Combined genetic, genomic and transcriptomic methods in the analysis of animal traits. CABI Review: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2: No. 042 (16 pp) +Full Text PDF Version +
      25. +Korostynski M, Piechota M, Kaminska D, Solecki W. Przewlocki R (2007) Morphine effects on striatal transcriptome in mice. Genome Biology 8:R128 +
      26. +Lad HV, Liu L, Payá-Cano JL, Fernandes C, Schalkwyk LC (2007) Quantitative traits for the tail suspension test: automation, optimization, and BXD RI mapping. Mamm Genome. 2007 Jul;18(6-7):482-91 +Full Text PubMed Central version +
      27. +Liang Y, Jansen M, Aronow B, Geiger H, Van Zant G (2007) The quantitative trait gene latexin influences the size of the hematopoietic stem cell population in mice. Nature Genetics 39:141-142 (doi: 10.1038/ng1938). [Using the BXD mouse strains, Liang, Van Zant and colleagues, demonstrate that sequence variants in Lxn modulate cell cycling kinetics of bone marrow stem cells. High expression of Lxn mRNA and protein is associated with the C57BL/6J allele and with lower proliferative activity. The authors made good use of the BXD Hematopoietic Stem Cell data set and Lxn Affymetrix probe set 96065_at. Figures 1 and 5 were generated using GeneNetwork.] +
      28. +Llamas B, Bélanger S, Picard S, Deschepper CF (2007) Cardiac mass and cardiomyocyte size are governed by different genetic loci on either autosomes or chromosome Y in recombinant inbred mice. Physiol Genomics 31:176-82 +
      29. +Meng PH, Macquet A, Loudet O, Marion-Poll A, North HM (2007) Analysis of natural allelic variation controlling Arabidopsis thaliana seed germinability in response to cold and dark: identification of three major quantitative trait loci. Molecular Plant, doi:10.1093/mp/ssm014 +
      30. +Mouse Phenotype Database Integration Consortium (2007) Integration of mouse phenome data resources. Mammalian Genome, 18:157-163. +PDF Preprint Version +
      31. +Miyairi I, Tatireddigari VR, Mahdi OS, Rose LA, Belland RJ, Lu L, Williams RW, Byrne GI (2007) The p47 GTPases Iigp2 and Irgb10 regulate innate immunity and inflammation to murine Chlamydia psittaci. J Immunol 179:1814-1824 +
      32. +Mozhui K, Hamre KM, Holmes A, Lu L, Williams RW (2007) Genetic and structural analysis of the basolateral amygdala complex in BXD recombinant inbred mice. Behav Genet. 37:223-243 +Full Text MS Word Version (authors' copy) +
      33. +Peirce JL, Broman KW, Lu L, Williams RW (2007) A simple method for combining genetic mapping data from multiple crosses and experimental designs. PLoS ONE 2:e1036 +Full Text PDF Version, +Full Text HTML Version +
      34. +Pérez-Enciso M, Quevedo JR, Bahamonde A (2007) Genetical genomics: use all data. BMC Genomics 8:69. +Full Text PDF Version, +Full Text HTML Version +
      35. +Rosen GD, Bai J, Wang Y, Fiondella CG, Threlkeld SW, LoTurco JJ, Galaburda AM (2007) Disruption of neuronal migration by RNAi of Dyx1c1 results in neocortical and hippocampal malformations. Cereb Cortex 17:2562-72. +Full Text PDF Version, +
      36. +Rosen GD, Chesler EJ, Manly KF, Williams RW (2007) An informatics approach to systems neurogenetics. Methods Mol Biol 401:287-303 +
      37. +Sunkin SM, Hohmann JG (2007) Insights from spatially mapped gene expression in the mouse brain. Human Molecular Genetics 16: R209-219 +Full Text PDF Version, +Full Text HTML Version +
      38. +Swertz MA, Jansen RC (2007) Beyond standardization: dynamic software infrastructure for systems biology. Nature Reviews Genetics:235-243 +
      39. +Taylor M, Valdar W, Kumar A, Flint J, Mott R (2007) Management, presentation and interpretation of genome scans using GSCANDB. Bioinformatics 23:1545-1549 +Full Text PDF Version, +Full Text HTML Version +
      40. +Vazquez-Chona F, Lu L, Williams RW, Geisert EE (2007) Genetic influences on retinal gene expression and wound healing. Gene Regulation and Systems Biology 1:327-348 +Full Text PDF Version +
      41. +von Rohr P, Friberg M, Kadarmideen HN (2007) Prediction of transcription factor binding sites using results from genetical genomics investigations. Journal of Bioinformatics and Computational Biology 5:773-793 +Full Text PDF Version +
      42. +Wan X, Pavlidis P (2007) Sharing and reusing gene expression profiling data in neuroscience. Neuroinformatics 5:161-75. +HTML example of using GEMMA and GeneNetwork. +
      43. +Zou W, Aylor DL, Zeng ZB (2007) eQTL Viewer: visualizing how sequence variation affects genome-wide transcription. BMC Bioinformatics 8:7. +Full Text PDF Version, +Full Text HTML Version. +
      + +
      + +
      + GeneNetwork (2006) +
      + +
      + +
        +
      1. +Aliesky HA, Pichurin PN, Chen CR, Williams RW, Rapoport B, McLachlan SM (2006) Probing the genetic basis for thyrotropin receptor antibodies and hyperthyroidism in immunized CXB recombinant inbred mice. Endocrinology 147:2789-800. +Full Text PDF Version, +Full Text HTML Version. +
      2. +Bao L, Wei L, Peirce JL, Homayouni R, Li H, Zhou M, Chen H, Lu L, Williams RW, Pfeffer LM, Goldowitz D, Cui Y (2006) Combining gene expression QTL mapping and phenotypic spectrum analysis to uncover gene regulatory relationships. Mammalian Genome 17:575-583 +Full Text PDF Version, +Full Text HTML Version. +
      3. +Beatty J, Laughlin RE (2006) Genomic regulation of natural variation in cortical and noncortical brain volume. BMC Neuroscience 7:16 [This mapping study made use of both the Mouse Brain Libray online collection of sections of BXD brains and GeneNetwork/WebQTL.] +
      4. +Bennett B, Carosone-Link P, Zahniser NR, Johnson TE (2006) Confirmation and fine mapping of ethanol sensitivity quantitative trait loci, and candidate gene testing in the LXS recombinant inbred mice. J Pharmacol Exp Ther 319:299-307 (doi: 10.1038/ng1938) +Full Text PDF Version +
      5. +Bennett B, Downing C, Parker C, Johnson TE (2006) Mouse genetic models in alcohol research. Trends Genet 22:367-74 +
      6. +Cervino ACL, Darvasi A, Fallahi M, Mader CC, Tsinoremas NF (2006) An integrated in silico gene mapping strategy in inbred mice (2006) Genetics 175:321-333 +
      7. +Chesler EJ, Langston MA (2006) Combinatorial genetic regulatory network analysis tools for high throughput transcriptomic data. In: Lecture Notes in Computer Science. Springer, Heidelberg, Vol. 4023: 150-165. +
      8. +De Haro L, Panda S(2006) Systems biology of circadian rhythms: an outlook. Journal of Biological Rhythms 21:507 +Full Text PDF Version +
      9. +Jones LC, McCarthy KA, Beard JL, Keen CL, Jones BC (2006) Quantitative genetic analysis of brain copper and zinc in BXD recombinant inbred mice. Nutritional Neuroscience 9:81-92 [This paper includes a large data set consisting of 16 traits related to copper and zinc metabolism in the CNS that is part of the Mouse BXD Phenotype database in GeneNetwork. The entire data set can be found by entering the search term "Jones LC" in the ALL search field.] +
      10. +Kadarmideen HN, Janss LLG (2006) Population and systems genetics analyses of cortisol in pigs divergently selected for stress. Physiological Genomics 29:57-65 Full Text PDF Version, Full Text HTML Version. [One of several great papers in a freely available (open) Special Issue of Mammalian Genome devoted to QTLs, Expression and Complex Trait Analysis. This study makes great use of the BXD INIA Brain mRNA M430 PDNN data set and GeneNetwork/WebQTL.] +
      11. +Kadarmideen HN, von Rohr, P, Janss LLG (2006) From genetical genomics to systems genetics: potential applications in quantitative genomics and animal breeding. Mammalian Genome 17:548-564 Full Text PDF Version, Full Text HTML Version. [One of several great papers in a freely available (open) Special Issue of Mammalian Genome devoted to QTLs, Expression and Complex Trait Analysis. This study makes great use of the BXD INIA Brain mRNA M430 PDNN data set and GeneNetwork/WebQTL.] +
      12. +Kamminga LM, Bystrykh LV, de Boer A, Houwer S, Douma J, Weersing E, Dontje B, de Haan G (2006) The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 107:2170-2179 +Full Text PDF Version +
      13. +Keeley MB, Wood MA, Isiegas C, Stein J, Hellman K, Hannenhalli S, Abel T (2006) Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes. BMC Genomics 7: 146 (doi: 10.1186/1471-2164-7-146). Full Text HTML Version. [A combination of data sources including the Rosen HBP Striatum data set used to study opioid-related traits. Their Fig 3C and Fig 5 take good advantage of GeneNetwork and WebQTL output graphs.] +
      14. +Lan H, Chen M, Flowers JB, Yandell BS, Stapleton DS, Mata CM, Mui ET, Flowers MT, Schueler KL, Manly KF, Williams RW, Kendziorski C, Attie A (2006) Combined expression trait correlations and expression quantitative trait locus mapping. PLoS Genetics 2:e6 [Please cite this work if you make use of the B6BTBRF2 liver transcriptome data.] +
      15. +Liu Y, Li J, Sam L, Goh CS, Gerstein M, Lussier YA (2006) An integrative genomic approach to uncover molecular mechanisms of prokaryotic traits. PLoS Computional Biology 2:e159 +
      16. +Loney KD, Uddin RK, Singh SM (2006) Analysis of metallothionein brain gene expression in relation to ethanol preference in mice using cosegregation and gene knockouts. Alcohol Clin Exp Res 30:15-25 +
      17. +Martin MV, Dong H, Vallera D, Lee D, Lu L, Williams RW, Rosen GD, Cheverud JM, Csernansky JG (2006) Independent quantitative trait loci influence ventral and dorsal hippocampal volume in recombinant inbred strains of mice. Gene, Brain and Behavior 5:614-623. +
      18. +van Os R, Ausema A, Noach EJ, van Pelt K, Dontje BJ, Vellenga E, de Haan G (2006) Identification of quantitative trait loci regulating haematopoietic parameters in B6AKRF2 mice. British Journal of Haematolology 132:80-90. +
      19. +Peirce JL, Li H, Wang J, Manly KF, Hitzemann RJ, Belknap JK, Rosen GD, Goodwin S, Sutter TR, Williams RW, Lu L (2006) How replicable are mRNA expression QTL? Mammalian Genome 17:643-656. Full Text PDF Version, Full Text HTML Version. [An important paper in which four matched expression data sets (whole brain and striatum) generated using both recombinant inbred and F2 intercrosses were directly compared.] +
      20. +Ponomarev I, Maiya R, Harnett MT, Schafer GL, Ryabinin AE, Blednov YA, Morikawa H, Boehm SL 2nd, Homanics GE, Berman AE, Lodowski KH, Bergeson SE, Harris RA (2006) Transcriptional signatures of cellular plasticity in mice lacking the alpha1 subunit of GABAA receptors. J Neurosci 26:5673-83 +Full Text PDF Version, +Full Text HTML Version +
      21. +Radcliffe RA, Lee MJ, Williams RW (2006) Prediction of cis-QTLs in a pair of inbred mouse strains with the use of expression and haplotype data from public databases. Mammalian Genome 17:629-642 Full Text PDF Version, Full Text HTML Version +
      22. +Rulten SL, Ripley TL, Hunt CL, Stephens DN, Mayne LV (2006) Sp1 and NFkappaB pathways are regulated in brain in response to acute and chronic ethanol. Genes Brain Behav 5:257-273 [This study exploited the original GeneNetwork Affymetrix U74Av2 brain data set to validate a set of transcripts modulated by ethanol treatment.] +
      23. +Saba L, Bhave SV, Grahame N, Bice P, Lapadat R, Belknap J, Hoffman PL, Tabakoff B (2006) Candidate genes and their regulatory elements: alcohol preference and tolerance. Mammalian Genome 17:669-688 Full Text PDF Version, Full Text HTML Version [A lovely paper describing results of a whole brain BXD study involving males from 30 strains (four individual arrays (not pooled) per strain). The data described in this study have been made accessible from GeneNetwork.] +
      24. +Shifman S, Bell JT, Copley BR, Taylor M, Williams RW, Mott R, Flint J (2006) A high resolution single nucleotide polymorphism genetic map of the mouse genome. PLoS Biology 4:2227-2237 Full Text PDF Version [A comprehensive analysis of recombination rates using several populations of mice, including most major genetic reference populations.] +
      25. +van Os R, Ausema A, Noach EJ, van Pelt K, Dontje BJ, Vellenga E, de Haan G (2006) Identification of quantitative trait loci regulating haematopoietic parameters in B6AKRF2 mice. British Journal of Haematology 132:80-90 +
      26. +Veenstra-VanderWeele J, Qaadir A, Palmer AA, Cook EH Jr, de Wit H. (2006) Association between the casein kinase 1 epsilon gene region and subjective response to D-amphetamine. Neuropsychopharmacology 31:1056-1063 Full Text HTML Version [This mapping study made use of GeneNetwork/WebQTL to show that "the region that contains Csnk1e was also found to contain a QTL for MA sensitivity, and complementary data from WebQTL (Chesler et al, 2005) showed that this same region of mouse chromosome 15 influenced Csnk1e transcript abundance, indicating the presence of a cis-acting eQTL."] +
      27. +Voy BH, Scharff JA, Perkins AD, Saxton AM, Borate B, Chesler EJ, Branstetter LK, Langston MA (2006) Extracting gene networks for low-dose radiation using graph theoretical algorithms. PLoS Computational Biology 2:e89. [A paper that introduces the use of cliques in analyzing microarray data sets. One of the GeneNetwork databases (BXD Hematopoietic Stem Cells) was used to follow up on a strong candidate gene, Tubby-like protein 4 Tulp4) that may have a role in immune function. +
      28. +Williams RH, Cotsapas CJ, Cowley MJ, Chan E, Nott DJ, Little PF (2006) Normalization procedures and detection of linkage signal in genetical-genomics experiments. Nature Genetics 38:855-856. [A set of letters to the editor by Rohan Williams and colleagues, Chesler and colleagues, and Petretto and colleagues. All three letters highlight some of the technical challenges of analyzing expression data in a genetic context and point to the need for great care and attention to normalization methods. Well worth reviewing. Normalization is still very much an art, and it is quite likely that no one normalization procedure will be optimal for all different research questions. The old adage: "different horses for different courses" is likley to apply.] +
      29. +Williams RW (2006) Expression genetics and the phenotype revolution. Mammalian Genome 17:496-502 Full Text PDF Version, Full Text HTML Version. [My take on where systems genetics may take us in the next few years.] + +
      + + + + + + + + + + +
      + + +
      + GeneNetwork (2005) +
      + +
      +
        +
      1. Alberts R, Terpstra P, Bystrykh LV, de Haan G, Jansen RC (2005) A statistical multiprobe model for analyzing cis and trans genes in genetical genomics experiments with short-oligonucleotide arrays Genetics 171:1437-1439 +
      2. Alberts R, Fu J, Swertz MA, Lubbers LA, Albers CJ, Jansen RC (2005) Combining microarrays and genetic analysis. Brief Bioinform. 6:135-145 + Full text PDF version +
      3. +Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E, Wang J, Manly KF, Lu L, Chesler EJ, Alberts R, Jansen RC, Williams RW, Cooke M, de Haan G (2005) Uncovering regulatory pathways affecting hematopoietic stem cell function using “genetical genomics." Nature Genetics, 37:225-232 +
      4. +Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin N, Langston MA, Threadgill DW, Manly KF, Williams RW (2005) Genetic dissection of gene expression reveals polygenic and pleiotropic networks modulating brain structure and function. Nature Genetics 37: 233-242 +
      5. +Flaherty L, Herron B, Symula D (2005) Genome Research 15:1741-1745 Full text PDF version +
      6. +Garlow SJ, Boone E, Li W, Owens MJ, Nemeroff CB (2005) Genetic analysis of hypothalamic corticotropin-releasing factor system. Endocrinology 146: 2362-2368 +
      7. +Gammie SC, Hasen NS, Awad TA, Auger AP, Jessen HM, Panksepp JB, Bronikowski AM (2005) Gene array profiling of large hypothalamic CNS regions in lactating and randomly cycling virgin mice. Molecular Brain Research 139: 201-211 +
      8. +Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. Journal of Neuroscience 25: 2255-2266 [www.brainchip.vcu.edu/kerns_apptable1.pdf for a complete table of modulated transcripts.] +
      9. +Li HQ, Lu L, Manly KF, Wang J, Zhou M, Williams RW, Cui Y (2005) Inferring gene transcriptional modulatory relations: a genetical genomics approach. Human Molecular Genetics 14: 1119-1125 +
      10. +Li J, Burmeister M (2005) Genetical genomics: combining genetics with gene expression analysis. Human Molecular Genetics 14:163-169. + [ Full text PDF version] + +
      11. +Lozier JN, Tayebi N, Zhang P (2005) Mapping of genes that control the antibody response to human factor IX in mice. Blood 105: 1029-1035 +
      12. +MacLaren EJ, Sikela JM (2005) Cerebellar gene expression profiling and eQTL analysis in inbred mouse strains selected for ethanol sensitivity. Alcoholism: Clinical and Experimental Research 29: 1568-1579. +HTML and +PDF reprints. +
      13. +Matthews B, Bhave SV, Belknap JK, Brittingham C, Chesler EJ, Hitzemann RJ, Hoffman PL, Lu L, McWeeney S, Miles MR, Tabakoff B, Williams RW (2005) Complex genetics of interactions of alcohol and CNS function and behavior. Alcoholism: Clinical and Experimental Research 29:1706-1719 +
      14. +Mountz JD, Yang P, Wu Q, Zhou J, Tousson A, Fitzgerald A, Allen J, Wang X, Cartner S, Grizzle WE, Yi N, Lu L, Williams RW, Hsu HC (2005) Genetic segregation of spontaneous erosive arthritis and generalized autoimmune disease in BXD2 recombinant inbred strain of mice. Scadinavian Journal of Immunology 61:1-11 +Full Text PDF Version +
      15. +Li CX, Wei X, Lu L, Peirce JL, Wiliams RW, Waters RS (2005) Genetic analysis of barrel field size in the first somatosensory area (S1) in inbred and recombinant inbred strains of mice. Somatosensory and Motor Research 22:141-150 +
      16. +Palmer AA, Verbitsky M, Suresh R, Kamen HM, Reed CI, Li N, Burkhart-Kasch S, McKinnon CS, Belknap JK, Gilliam TC, Phillips TJ (2005) Gene expression differences in mice divergently selected for methamphetamine sensitivity. Mammalian Genome 16:291-305 +
      17. +Pravenec M, Kren V (2005) Genetic analysis of complex cardiovascular traits in the spontaneously hypertensive rat. Exp Physiol 90:273-276 +Full Text PDF Version, +Full Text HTML Version +
      18. +Scott RE, White-Grindley E, Ruley HE, Chesler EJ, Williams RW (2005) P2P-R expression is genetically coregulated with components of the translation machinery and with PUM2, a translational repressor that associates with the P2P-R mRNA. Journal of Cellular Physiology 204:99-105 Full text HTML version +
      19. +Vazquez-Chona FR, Khan AN, Chan CK, Moore AN, Dash PK, Rosario Hernandez R, Lu L, Chesler EJ, Manly KF, Williams RW, Geisert Jr EE (2005) Genetic networks controlling retinal injury. Molecular Vision 11:958-970 +
      20. +Yang H, Crawford N, Lukes L, Finney R, Lancaster M, Hunter KW (2005) Metastasis predictive signature profiles pre-exist in normal tissues. Clin Exp Metastasis 22:593-603 +Full Text HTML Version + + + +
      +
      + + + + + +
      + GeneNetwork (2004) +
      + +
      +
        +
      1. Baldwin NE, Chesler EJ, Kirov S, Langston MA, Snoddy JR, Williams RW, Zhang B (2004) Computational, integrative and comparative methods for the elucidation of genetic co-expression networks. Journal of Biomedicine and Biotechnology 2:172-180 +HTML and +PDF reprints. +
      2. +Carlborg O, De Koning DJ, Chesler EJ, Manly KM, Williams RW, Haley CS (2004) Methological aspects of the genetic dissection of gene expression. Bioinformatics 10:1093 +
      3. +Chesler EJ, Williams RW (2004) Brain gene expression: genomics and genetics. International Review of Neurobiology 60:59-95 +
      4. +Fernandes K, Paya-Cano JL, Sluyter F, D'Souza U, Plomin R, Schalkwyk LC (2004) Hippocampal gene expression profiling across eight mouse inbred strains: towards understanding the molecular basis for behaviour. European Journal of Neuroscience 19:2576-2582 +Full Text HTML Version +
      5. +Henckaerts E, Langer JC, Hans-Willem Snoeck HW (2004) Quantitative genetic variation in the hematopoietic stem cell and progenitor cell compartment and in lifespan are closely linked at multiple loci in BXD recombinant inbred mice. Blood 104:374-379 Full Text HTML Version +
      6. +Hitzemann R, Reed C, Malmanger B, Lawler M, Hitzemann B, Cunningham B, McWeeney S, Belknap J, Harrington C, Buck K, Phillips T, Crabbe J (2004) On the integration of alcohol-related quantitative trait loci and gene expression analyses. Alcoholism: Clinical and Experimental Research 28:1437-1448 [Please cite this paper is you plan to use the B6D2F2 OHSU data set.] +
      7. +Maiya RP (2004) Regulation of dopamine transporter: a role for ethanol and protein interactions. Dissertation, University of Texas, Austin +
      8. +Orth AP, Batalow S, Perrone M, Chanda SK (2004) The promise of genomics to identify novel therapeutic targets. Expert Opion of Therapeutic Targets 8:587-596 +
      9. +Pomp D, Allan MF, Wesolowski SR (2004) Quantitative genomics: Exploring the genetic architecture of complex trait predisposition. J Anim Sci 82:E300-E312 +Full Text HTML Version +
      10. +Ponomarev I, Schafer GL, Blednov YA, Williams RW, Iver VR, Harris A (2004) Convergent analysis of cDNA and short oligomer microarrays, mouse null mutant, and bioinformatics resources to study complex traits. Genes, Brain and Behavior 3:360-368 +
      11. +Simon P, Schott K, Williams RW, Schaeffel F (2004) Post-translational regulation of the immediate early gene EGR1 by light in the mouse retina. European Journal of Neuroscience 20:3371-3377 +
      12. +Zareparsi S, Hero A, Zack DJ, Williams RW, Swaroop A (2004) Seeing the unseen: microarray-based gene expression profiling in vision. Investigative Ophthalmology and Visual Science 45:2457-2462 Full text HTML version +
      + + + + + +
      + GeneNetwork (2003) +
      + +
      + +
        +
      1. +Bolivar V, Flaherty L (2003) A region on chromosome 15 controls intersession habituation in mice. Journal of Neuroscience 23: 9435-9438 Full Text HTML and PDF Versions +
      2. +Jones BC, Reed CL, Hitzemann R, Wiesinger JA, McCarthy KA, Buwen JP, Beard JL 2003) Quantitative genetic analysis of ventral midbrain and liver iron in BXD recombinant inbred mice. Nutr Neuroscience 6:369-77 + Full Text PDF Version + +
      3. +Hitzemann R, Hitzemann B, Rivera S, Gatley J, Thanos P, Shou S, Lu L, Williams RW (2003) Dopamine D2 receptor binding, Drd2 expression and the number of dopamine neurons in the BXD recombinant inbred series: genetic relationships to alcohol and other drug associated phenotypes. Alcoholism: Clinical and Experimental Research 27:1-11 + +
      4. +Hitzemann R, Malmanger B, Reed C, Lawler M, Hitzemann B, Coulombe S, Buck K, Rademacher B, Walter N, Polyakov Y, Sikela J, Williams RW, Flint J, Talbot C (2003) A strategy for integration of QTL, gene expression, and sequence analyses. Mammalian Genome 14:733-747 +
      5. +Lionikas A, Blizard DA, Vandenbergh DJ, Glover MG, Stout JT, Vogler GP, McClearn GE, Larsson L (2003) Genetic architecture of fast- and slow-twitch skeletal muscle weight in 200-day-old mice of the C57BL/6J and DBA/2J lineage. Physiological Genomics 16:141-152 +
      6. +Peirce J, Chesler EJ, Williams RW, Lu L (2003) Genetic architecture of the mouse hippocampus: identification of gene loci with regional effects. Genes, Brain and Behavior 2:238–252 + Full Text PDF Version +
      7. +Rosen GD, La Porte NT, Diechtiareff B, Pung, CJ, Nissanov J, Gustafson C, Bertrand L, Gefen S, Fan Y, Tretiak OJ, Manly KF, Parks MR, Williams AG, Connolly MT, Capra JA, Williams RW (2003) Informatics center for mouse genomics: the dissection of complex traits of the nervous system. Neuroinformatics 1:327–342 + Full Text PDF Version + +
      + +
      + +
      Background references on inbred strains and other key resources

      + + +11737945 +
      +Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis. Genome Biology 2:46.1–46.18 Full Text HTML and PDF Version. [General background on recombinant inbred strains.] +
      + +
      +Peirce JL, Lu L, Gu J, Silver LM, Williams RW (2004) A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genetics 5:7 Full Text PDF Version. [Background on the expanded set of BXD strains.] +
      + +
      +Williams RW, Bennett B, Lu L, Gu J, DeFries JC, Carosone-Link PJ, Rikke BA, Belknap JK, Johnson TE (2004) Genetic structure of the LXS panel of recombinant inbred mouse strains: a powerful resource for complex trait analysis. Mammalian Genome 15:637-647 [Background on origins and the genetic structure large panel of LXS strains. Please cite this paper is you have used LXS data sets.] +
      + +
      +Grubb SC, Churchill GA, Bogue MA (2004) A collaborative database of inbred mouse strain characteristics. Bioinformatics 20:2857-2859 [One of two key papers on the Mouse Phenome Project and database at The Jackson Laboratory. The mouse diversity panel (MDP) is a superset of strains that are part of the Phenome Project. Full Text PDF Version.] +
      + +
      +Bogue MA, Grubb SC (2004) The mouse phenome project. Genetica 122:71-74 [One of two key papers on the Mouse Phenome Project and database at The Jackson Laboratory. The mouse diversity panel (MDP) is a superset of strains that are part of the Phenome Project. Please contact Dr. Molly Bogue for information on the Phenome Project: mollyb@jax.org] +
      + +
      +Frazer KA, Eskin E, Kang HM, Bogue MA, Hinds DA, Beilharz EJ, Gupta RV, Montgomery J, Morenzoni MM, Nilsen GB, Pethiyagoda CL, Stuve LL, Johnson FM, Daly MJ, Wade CM, Cox DR (2007) A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448, 1050-3 +
      + + +
      +Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F (2002) Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theoretical and Applied Genetics 104:1173-1184 Full Text PDF Version [Please cite this paper is you have used the BXS Arabidopsis data sets.] +
      + +
      +Jirout M, Krenova D, Kren V, Breen L, Pravenec M, Schork NJ, Printz MP (2003) A new framework marker-based linkage map and SDPs for the rat HXB/BXH strain set. expression differences in mice diverently selected for methamphetamine sensitivity. Mammalian Genome 14: 537-546 +
      + +
      +Shifman S, Bell JT, Copley BR, Taylor M, Williams RW, Mott R, Flint J (2006) A high resolution single nucleotide polymorphism genetic map of the mouse genome. PLoS Biology 4:2227-2237 Full Text PDF Version [A comprehensive analysis of recombination rates using several populations of mice, including most major GRPs.] +
      + + +
      +
      Information about this HTML page:

      +
      +

      This text originally generated by RWW, April 2003. Updated by RWW, Oct 15, Dec 17, 2004; RWW Jan 19, 2005; EJC Mar 9; RWW Mar 29, Apr 15; RWW Jan 7, 2006, Jan 21, July 26, Aug 26, 2006s; May 2007; Feb 2008; March 19 2008 +

      + +
      +

      +
      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/sample.txt b/web/sample.txt new file mode 100755 index 00000000..1b4971f8 --- /dev/null +++ b/web/sample.txt @@ -0,0 +1 @@ +#Add comments by starting lines with # #Trait names usually start with major categories (e.g., Central nervous system, development) followed by a colon and then the specfic trait (e.g., Brain weight at embryonic day 16), followed by the units in square brackets (e.g., [mg]). #Follow trait name conventions (see http://www.genenetwork.org/faq.html#Q-22) if possible for data intended for permanent use in GeneNetwork (see examples below) #If you export this file from Excel use Tab-Delimited Text output and make sure that the text file does not have unintended hyphens #Last edit of this example file by Rob Williams (rwilliams@uthsc.edu), November 2010 #This sample can be used as is for mouse BXD cases. It is in a column format (each trait in a column). You can add up to about 100 traits in this format #Row should be tab-delimited #Missing values MUST be represented with a non-numeric character such as an x #Trait Name / Case Identifier should always be in the 1st row or column #Trait name can contain white space but no tabs #Each row or column must have the same number of items #Case identifiers must match existing cases already in the GeneNetwork database exactly. #If the case identifier field contains unknown cases or strains (for example BXD999) #then the file will be rejected by GeneNetwork. #The cell below that starts with the @ symbol defines the format of the text file (row or column format) #The @ symbol must be followed by format=column or format=row #@format=column, each column is a trait #@format=row, each row is a trait #The OPTIONAL SE/N columns or rows should immediately follow #the corresponding Trait value columns or rows #You do NOT need to enter names of missing cases or strains. In this example we list all BXD strains as of Nov 2010 for completeness only. #Data and columns start on the next line @format=column Central nervous system, morphology: Brain weight in 2-month-old adult males and females (balanced sample) on a standard diet (Teklad 7001 4% fat) [mg] SE N Central nervous system, behavior, learning and memory: Learning speed, initial acquisition of task, trials to criterion in naive 4-month adult males (Med Associaes nose poke system chamber, low values = faster learning) [n] SE N Infectious disease, immune function: Cowpox virus maximum body temperature over two weeks after 10^6 pfu intranasal inoculation, males and females between 40 and 152 days of age, residuals corrected for sex, age and body weight [scaled deg C where -0.5 is >34.5 and 0.5 is <38] SE N Musculoskeletal system: Bone mineral density (WC-BMD) in females corrected for whole body weight [mg/cm2] SE N B6D2F1 460.121 2.60665 87 469.31 2.88193 87 457.375 3.0838 87 465.968 3.47246 87 D2B6F1 X X X X X X X X X X X X C57BL/6J 470.253 1.65473 254 485.055 1.72232 254 474.438 1.66519 254 488.776 1.70491 254 DBA/2J 400.692 2.59554 146 410.091 2.5812 146 404.971 2.47942 146 414.383 2.49363 146 BXD1 470.588 3.80836 68 483.953 4.2272 68 478.054 3.3748 68 492.576 3.68357 68 BXD2 432.944 3.3022 62 444.595 3.69905 62 427.536 3.15486 62 438.697 3.59831 62 BXD5 514.051 5.13482 75 525.3 5.18907 75 519.353 4.72786 75 530.186 4.90383 75 BXD6 389.764 3.37264 69 399.5 3.5015 69 390.511 3.61206 69 400.747 3.80201 69 BXD8 436.857 4.96952 54 445.898 5.20314 54 437.676 5.14337 54 445.859 5.42383 54 BXD9 435.807 2.42042 99 443.584 2.75916 99 429.642 2.74812 99 437.196 3.12191 99 BXD11 444.262 3.76132 68 453.038 3.8222 68 443.651 3.17695 68 452.583 3.39209 68 BXD12 444.003 2.22527 114 456.622 2.32208 114 448.963 2.1487 114 461.049 2.27128 114 BXD13 398.062 4.11123 61 406.734 4.34944 61 403.899 4.1683 61 411.334 4.50678 61 BXD14 421.972 3.03449 97 433.693 3.2102 97 426.136 2.87368 97 438.413 3.13297 97 BXD15 455.929 4.26894 31 466.823 4.49865 31 452.669 3.61616 31 462.643 4.08597 31 BXD16 448.976 4.52902 49 461.849 4.95118 49 454.554 3.61401 49 466.364 4.14038 49 BXD18 428.546 2.92179 46 440.3 3.11655 46 431.124 2.7744 46 442.305 3.05868 46 BXD19 425.081 4.83339 43 436.898 5.11931 43 430.41 4.44471 43 442.403 4.82384 43 BXD20 391.707 3.79352 29 404.593 4.28753 29 402.79 3.69568 29 415.123 4.07703 29 BXD21 437.124 5.27705 55 448.585 5.44503 55 438.8 4.83952 55 450.265 5.07514 55 BXD22 449.665 3.05039 26 464.446 3.27287 26 455.448 2.13444 26 469.971 2.44062 26 BXD23 421.082 4.17855 40 435.918 4.27217 40 427.6 3.42308 40 442.154 3.58323 40 BXD24A 385.6 5.60732 13 385.6 5.60732 13 390.801 5.55982 13 389.581 5.4454 13 BXD24 409.5 4.16289 31 422.906 4.08013 31 403.73 3.06946 31 417.29 3.18527 31 BXD25 408.762 4.37784 34 421.032 4.56433 34 415.684 3.88375 34 427.953 4.06899 34 BXD27 367.645 2.7341 76 378.007 2.79269 76 372.155 2.84779 76 381.942 2.89361 76 BXD28 402.813 2.85413 47 410.553 3.35291 47 406.136 3.25772 47 412.801 3.745 47 BXD29 395.046 4.62962 28 408.068 4.55469 28 402.946 4.23511 28 415.167 4.14587 28 BXD30 372.922 4.79163 23 386.165 4.8948 23 385.661 4.3811 23 398.138 4.39818 23 BXD31 416.129 2.65675 90 428.674 2.83145 90 418.728 2.20187 90 430.899 2.43834 90 BXD32 430.71 2.62957 144 440.238 2.67964 144 428.894 2.72517 144 437.842 2.8203 144 BXD33 428.577 4.89593 40 441.843 4.96852 40 436.37 4.92529 40 449.352 5.07003 40 BXD34 420.545 4.3474 78 426.309 4.51253 78 415.725 4.40693 78 421.077 4.70507 78 BXD35 417.244 6.80333 18 429.194 6.75819 18 425.596 4.84255 18 436.49 4.73761 18 BXD36 415.869 2.8703 101 423.973 3.02825 101 419.859 2.52 101 427.587 2.76698 101 BXD37 424.187 9.76611 8 438.875 9.68529 8 410.872 7.37248 8 429.919 6.76501 8 BXD38 420.67 4.27944 50 431.658 4.84149 50 428.497 3.71159 50 438.688 4.26129 50 BXD39 416.726 2.18479 89 423.244 2.15454 89 414.214 2.20137 89 420.157 2.29632 89 BXD40 436.781 2.75789 94 444.022 3.03073 94 439.594 2.41315 94 446.549 2.7255 94 BXD41 X X X X X X X X X X X X BXD42 442.56 3.86432 48 448.86 4.34837 48 443.02 3.57878 48 448.954 4.1756 48 BXD43 421.38 2.25784 142 430.715 2.21256 142 423.284 2.1093 142 432.182 2.05193 142 BXD44 438.364 2.07963 202 447.31 2.16943 202 437.138 1.99189 202 446.894 2.09827 202 BXD45 442.016 3.46504 82 452.188 3.44085 82 446.642 3.03991 82 457.649 3.02277 82 BXD48 412.269 2.41433 103 426.145 2.5985 103 412.671 2.21405 103 426.057 2.30756 103 BXD49 405.833 7.27286 6 405.833 7.27286 6 407.057 6.12464 6 405.682 5.94263 6 BXD50 417.544 5.64804 48 418.835 5.67934 48 418.391 5.25401 48 419.602 5.35175 48 BXD51 440.517 2.13807 173 450.949 2.16332 173 439.887 2.15283 173 450.419 2.19282 173 BXD52 X X X X X X X X X X X X BXD53 X X X X X X X X X X X X BXD54 X X X X X X X X X X X X BXD55 469.816 4.59255 56 470.787 4.69293 56 469.944 4.03921 56 470.528 4.19855 56 BXD56 434.81 4.88569 49 434.81 4.88569 49 429.454 4.71976 49 429.871 4.71861 49 BXD59 X X X X X X X X X X X X BXD60 448.498 1.7843 189 458.608 1.76945 189 437.122 2.06878 189 447.543 2.11393 189 BXD61 457.539 2.95708 99 462.095 3.1982 99 454.284 2.53187 99 458.602 2.76129 99 BXD62 437.164 1.71684 176 446.616 1.7703 176 437.106 1.68988 176 446.437 1.72316 176 BXD63 408.1 6.72499 18 418.356 7.49172 18 414.111 6.54852 18 424.192 6.9783 18 BXD64 446.6 12.1 2 463.25 12.55 2 436.282 9.18872 2 454.906 10.0998 2 BXD65 424.386 4.09947 36 430.269 4.82246 36 421.458 3.29804 36 428.059 3.87902 36 BXD66 410.231 2.81867 81 414.089 3.08511 81 411.204 2.74612 81 416.054 2.96391 81 BXD67 408.775 10.0394 8 408.775 10.0394 8 412.544 8.80494 8 412.731 8.77247 8 BXD68 444.11 4.52665 29 448.166 4.96748 29 437.758 4.47189 29 443.091 4.64852 29 BXD69 451.167 2.00258 188 459.29 1.99617 188 447.899 1.92635 188 455.804 1.9943 188 BXD70 429.748 2.65067 90 432.61 2.77249 90 426.008 2.37461 90 429.612 2.53147 90 BXD71 443.741 5.41424 32 443.741 5.41424 32 443.397 4.89018 32 444.027 5.00329 32 BXD72 X X X X X X X X X X X X BXD73 439.678 2.1279 165 447.399 2.11998 165 442.63 1.9248 165 450.786 1.98543 165 BXD74 390.75 6.66302 4 390.75 6.66302 4 397.488 6.81866 4 396.589 6.86468 4 BXD75 421.067 2.45511 102 426.632 2.5384 102 421.741 2.18643 102 427.256 2.2339 102 BXD76 436.1 12.5587 3 452.333 13.0425 3 433.432 10.3084 3 452.429 10.8048 3 BXD77 453.04 4.54135 47 462.698 4.79556 47 437.88 4.11233 47 447.104 4.18885 47 BXD78 417.172 5.71781 25 432.592 5.92743 25 419.535 5.98787 25 434.523 6.1596 25 BXD79 374.017 5.13812 6 376.25 4.74649 6 382.556 6.51856 6 386.006 6.53608 6 BXD80 439.776 4.2592 50 443.226 4.74159 50 440.205 3.67541 50 444.4 4.23046 50 BXD81 406.688 10.613 8 410.863 13.0263 8 412.357 12.4286 8 418.587 17.0533 8 BXD83 439.462 6.55372 32 439.462 6.55372 32 448.101 6.16712 32 448.472 6.22942 32 BXD84 409.604 6.93455 26 409.604 6.93455 26 411.322 5.54646 26 411.292 5.55144 26 BXD85 431.285 4.48793 46 442.554 4.92919 46 429.114 4.01427 46 439.863 4.3813 46 BXD86 484.774 2.73209 96 493.732 2.99082 96 478.721 2.31356 96 487.895 2.51441 96 BXD87 429.752 3.24105 90 433.656 3.32098 90 426.975 2.55312 90 432.278 2.73586 90 BXD88 X X X X X X X X X X X X BXD89 446.717 3.95748 54 452.848 4.0834 54 439.92 2.77706 54 446.726 3.14217 54 BXD90 434.574 2.74025 61 442.911 3.28701 61 432.472 2.52911 61 441.078 2.95238 61 BXD91 462.85 15.3439 6 480.033 15.9208 6 464.823 11.901 6 483.377 13.6817 6 BXD92 434.901 2.6265 94 447.012 2.65841 94 426.579 2.61316 94 437.93 2.5882 94 BXD93 415.322 9.9441 18 425.9 8.87493 18 413.024 8.74523 18 423.064 8.11772 18 BXD94 X X X X X X X X X X X X BXD95 442.48 13.9709 15 442.48 13.9709 15 438.914 11.6683 15 438.51 11.8244 15 BXD96 416.705 2.40746 79 422.709 2.82137 79 414.948 1.84956 79 420.545 2.13275 79 BXD97 443.842 3.50265 60 452.41 3.81498 60 434.971 3.4102 60 443.171 3.57023 60 BXD98 412.735 5.93566 26 418.7 6.39862 26 412.886 6.08229 26 419.56 6.46353 26 BXD99 452.074 7.31644 23 452.074 7.31644 23 449.968 6.23857 23 450.869 6.38034 23 BXD100 445.842 3.91536 45 446.227 3.96688 45 436.52 3.96124 45 436.924 4.0852 45 BXD101 378.333 3.8873 6 378.333 3.8873 6 383.553 4.00709 6 382.171 3.99984 6 BXD102 402.891 8.39658 23 402.891 8.39658 23 398.186 9.88929 23 397.68 9.92951 23 BXD103 452.84 5.2315 5 452.84 5.2315 5 443.996 X 5 444.23 X 5 \ No newline at end of file diff --git a/web/sample2.txt b/web/sample2.txt new file mode 100755 index 00000000..b403d8f6 --- /dev/null +++ b/web/sample2.txt @@ -0,0 +1,27 @@ +#Add comments by starting lines with '#' + +#Row should be tab-delimited +#Missing values should be represented with a non-numeric character +#Trait Name / Strain Name should always be in the 1st row/column +#Trait name can be longer and contain white space but no tab + +#Each row/column must have the same number of items +#if the strain field contains unknown strains(ie. BXD157) +#the file will be rejected + +#The first cell start with a @ +#First cell tells the format of the text +#@format=column, each column is a trait +#@format=row, each row is a trait" + +#SE/N column/row (if any) should immediately follow the +#corresponding Trait value column/row + +@format=row BXD1 BXD2 BXD5 BXD6 BXD8 BXD9 BXD11 BXD12 BXD13 BXD14 BXD15 BXD16 BXD18 BXD19 BXD20 BXD21 BXD22 BXD23 BXD24 BXD25 BXD27 BXD28 BXD29 BXD30 BXD31 BXD32 BXD33 BXD34 BXD35 BXD36 BXD38 BXD39 BXD40 BXD42 BXD67 BXD68 +Trait1 Name 4.123124005 5.757076466 x 2.712334888 9.133008766 7.79679163 x 8.574321593 7.950910562 4.28584356 x 6.128520811 x 4.450688761 x 1.571113691 7.968105554 6.892525408 x 1.038020595 5.818282627 9.782124285 3.104342985 x 8.12662591 0.899929152 1.553179571 5.328314774 1.810294748 6.601575926 8.731064563 7.140692083 4.210598118 x 4.587439687 3.919724483 +SE 0.28402765 0.239494217 x 0.937687422 0.689820422 0.818804449 x 0.740821452 0.989362539 0.644514615 x 0.080687627 x 0.002735909 x 0.946318237 0.035610935 0.565810435 x 0.38156547 0.742813383 0.305725638 0.603410488 x 0.390122399 0.967842256 0.731978059 0.355515798 0.915298258 0.250148047 0.715715184 0.919611484 0.240271692 x 0.41554108 0.054394075 +N 2 3 x 3 2 2 x 4 4 4 x 2 x 5 x 3 5 5 x 6 3 3 4 x 4 5 2 3 3 3 3 2 3 x 5 4 +Trait2 Name 5.314121677 5.878591162 2.328719336 4.41712647 2.481113913 x 4.277376062 8.019189599 x 6.200200853 2.409113247 1.506365467 1.788796413 x 8.706683814 0.159806317 3.904475597 0.865978949 7.888937607 x 9.18681448 0.467128485 0.625291831 8.092355392 2.667346844 x x 7.279626825 8.462447513 2.402452735 2.076837165 1.310969089 8.598116009 x 2.69549681 0.917605789 +Trait3_Name 1.880868532 9.383338287 x 2.521362779 4.403865986 x 4.342955311 8.005896133 5.301480261 x 7.070593203 9.882842185 1.392900471 0.74761607 2.020832238 x 9.824029244 0.063003025 1.503490038 3.466950896 x 3.387471119 7.135578049 1.997350482 9.970527856 6.185600922 1.492662652 9.784662087 x 3.785794642 0.850215209 8.889033469 7.314579457 x 3.075102558 1.290989139 +SE 0.571107124 0.670640442 0.597541932 0.913490094 x 0.279269134 0.744024839 x 0.428829315 0.629998727 0.275269186 x 0.006624981 0.790428194 x 0.639912341 0.390940697 0.434189962 0.780696758 x 0.425574725 0.396010004 0.023132541 0.876266348 0.060652168 0.657453347 x 0.311011722 0.687109224 0.755674145 0.693671148 0.840187592 x 0.733594223 0.82593649 0.944365605 +Trait4_Name 2.36124301 2.465866008 9.954201756 7.392364127 x 0.22357026 0.525631777 x 3.382872234 2.014467664 0.316154905 x 2.327591857 0.455008079 x 6.877919411 3.605306054 9.369509188 6.513531231 x 2.355877563 9.865723878 x 3.706331746 0.31746841 5.889835285 x 1.017989145 6.190443863 9.898347676 x 4.397390873 x 5.358436138 7.727416947 5.145013514 \ No newline at end of file diff --git a/web/searchHelp.html b/web/searchHelp.html new file mode 100755 index 00000000..34eced03 --- /dev/null +++ b/web/searchHelp.html @@ -0,0 +1,212 @@ + +How to Search + + + + + + + + + + + + + + + + + + + +
      + + + +
      + +

      +Advanced Searching and General Advice +modify this page

      + +
      + +

      Enter one or more terms into the ANY or ALL fields. The ANY field will typical retrive more records (logical OR) whereas the ALL field will find only records that match all terms (logical AND). You can search using standard text, gene symbols, GenBank IDs, mRNA reference sequence IDs (NM_*), probe/probe set IDs or even Gene Ontology IDs (for example GO:16798). These fields are not case-sensitive; app and APP are equivalent. Terms can be separated by a space, comma, slash, colon or semicolon. + +

      * or ? can be used to represent any of several characters. Use * for one or more characters and ? for single characters such as hyphens or periods. + +

      When in doubt, start with short terms and use an asterisk at the start or end of the term (e.g., *enkephalin or Hoxb*). When searching for probes or probe sets such as 1436869_at_B, it is easiest to enter 1436869*. + +

      To search for a term or word that is in GeneWiki, please just enter "wiki=xxx", for example, wiki=GENSAT to list all genes and transcripts for which there is a GeneWiki entry that includes the text string "GENSAT." These searches are not case sensitive. + +

      A maximum of 500 characters are allowed in either search field. Approximately 60 GenBank, RefSeq, Unigene, or probe set IDs or other IDs will fit. It is a good idea to enter the full string, for example Mm.57202 including the period for Unigene IDs. You can enter the reference mRNA sequence (Refseq) for a gene, such as NM_007467. Enter them with the underscore character (_). Although *57202 will work, this search may also pick up unintended records. + +

      As mentioned the ANY field will retrieve records that match any of the terms in any order (logical OR). A search string such as amyloid beta may generate too many records (over 1000 in some databases) because beta is so common. In contrast, the ALL field performs a logical AND operation and retrieves only records that intersect all terms. Searching for amyloid beta or beta amyloid in this field yields fewer than 50 hits. + +

      A single Search Results page lists up to 40 records, and provides links to as many as 12 other pages and a maximum of 500 records. If a search generates more than 500 matches, you will need to make the search more selective. Try using the ? wildcard to retain a specific sequence and order of words such as in receptor?binding. + +

      All Published Phenotypes databases can be searched by the last names of authors. These databases cannot yet be reliably searched using general terms such as morphology or neuropharm* or year of publication. + +

      Multiple Phenotype databases can be searched in a single operation by selecting the All Species option in the pull-down selection menus ("Choose Species"). You can then enter a phrase such as "body weight" in the ALL field to generate a Search Results list of phenotypes in multiple groups (AXB, BXD, BXH, CXB, etc.). + +

      Genotype databases can usually be searched by the name, chromosome, or location of markers. To find all markers on Chr 7, type the number 7 into either entry field. To find all markers on Chr X between 50 and 80 Mb, type this string into either entry field: Mb=(ChrX 50 80). + +

      Set To Default: Please use the option labeled Set To Default. This allows you to change the initial database displayed when you begin a search. For this option to work, permission for cookies needs to be enabled on your browser. A cookie is a small text file stored on your computer used by our server to keep track of preferred settings. (If you are logged in for special projects, the cookie also keeps your user name and password.) To test that the Default option works properly, change the settings and reload the search page. If this does not work as expected, check the preference settings of your browser. + +

      In some cases you may need more data than is available from a standard GeneNetwork output page. Please review the FAQ page and get familiar with the Simple Query Interface (note that this complex page may load slowly in some browsers). + +

      + +

      +Advanced Search Methods +

      + +
      +More complex searches of some databases are possible using controlled syntax. Gene expression databases can be searched by the chromosomal locations of genes, by the average expression of their transcripts, by the range of values among cases or strains, by the peak linkage values (LRS scores), or by Gene Ontology membership. These search parameters can be combined. For example, to find all transcripts that are transcribed from genes located on chromosome 1 between 98 and 104 megabases use this search format: + +
        +
      • Position=(Chr1 98 104) [Note: No space between Chr and the number or letter of the chromosome. As usual, the search string is case insensitive. Commas may be added between elements for visual clarity.] +
      • Pos=(Chr1 98 104) +
      • Mb=(Chr1 98 104) +
      + +

      To find all transcripts with expression that average between 15.0 and 16.0 units, use this format: +

        +
      • Mean=(15.0 16.0) +
      + + +

      To find all transcripts that vary 10-fold to 100-fold among strains or cases, use this format: +

        +
      • Range=(10 100) +
      + +

      To search for a term or word that is in GeneWiki, please just enter either: +

        +
      • WIKI=xxx, for example, WIKI=GENSAT to access all genes and transcripts for which there is a GeneWiki entry that includes the text string "GENSAT." These searches are not case sensitive. + +
      • RIF=xxx, for example, RIF=autism to access all genes and transcripts for which there is a GeneRIF entry inthe GeneWiki for the term "autism". +
      + +
    • rif=XXX wiki=XXX, for example, rif=autism wiki=autism to access all genes and transcripts with either a RIF entry or WIKI entry that included "autism." + +

      In the examples above, the search terms are not case sensitive. + +

      Many of the GeneNetwork databases have been exhaustively analyzed using QTL Reaper, a high throughput mapping program designed to handle large array data sets. It is possible to search most array databases to find those transcripts that have QTLs with peak LRS or LOD scores within a particular range of values. Genome-wide P values are computed using a permutation test. + + +

        +To find traits by peak LRS value or by p value range, the search syntax needs to follow these rules: + +

        +
      • LRS=(Low_LRS_limit, High_LRS_limit): for example, LRS=(20 30) will find all traits that have a best QTL that has a peak genome-wide LRS value between 20 and 30 (LOD = LRS/4.61). It will not tell you where these QTLs are located, but it will instead provide you a list of the traits that meant this condition. + +
      • pvalue=(Low_limit, High_limit): for example, pvalue=(0.0001 0.001) where the P value is the genome-wide significance level established by permutation. This is very similar to the LRS search above but uses permutation P values rather than LRS or LOD scores. + +
      • CisLRS=(Low_LRS_limit, High_LRS_limit, Mb_buffer): This command will find all expression traits that have a single best QTL that is located close to the gene from which it is expressed. The inclusion buffer value (in megabases) is used to set the limits on how close the QTL peak must be to the gene location. The inclusion buffer should usually be set to a value of 10 Mb or less, depending on the mapping population. Commas are not required between parameter values. + +
      • TransLRS=(Low_LRS_limit, High_LRS_limit, Mb_buffer): This command will find all transcripts that have a single best QTL that is not located close to the gene from which the transcript is expressed located more than the exclusion buffer value (in megabases) from the gene from which the transcript is expressed. The exclusion buffer should usually be set at greater than 10 to 20 Mb. Commas are not required. + +
      • LRS=(Low_LRS_limit, High_LRS_limit, ChrNN, Mb_Low_Limit, Mb_High_Limit): for example, LRS=(20, 900, Chr12, 0, 130). This command will find all transcripts that have a single best QTL that is located on Chr 12 between 0 Mb and 130 Mb in the LRS range of 20 to 900. Commas are not required. + +
      • LRS=(Low_LRS_limit, High_LRS_limit, ChrNN, Mb_Low_Limit, Mb_High_Limit) and TransLRS=(Low_LRS_limit, High_LRS_limit, Mb_buffer): for example, LRS=(20, 900, Chr12, 0, 130) transLRS=(20, 900, 25). This combination of commands will find all transcripts that have a single best trans-QTL that is located on Chr 12 between 0 Mb and 130 Mb in the LRS range of 20 to 900 with a 25 Mb exclusion buffer. Commas are not required. + +

        You need to replace the text such as "Low_LRS_limit" with a real value such as "15". But do not use the quotes. +For example, you might type this string into the ALL field to find CisQTLs that map to Chr 1 between 170 and 180 Mb with LRS values between 100 and 500. + +
        CisLRS=(100, 500, 10) LRS=(100, 500 chr1 170 180) + + +

      + +

      The search strings above require a database of values that we precompute using QTL Reaper. If QTL Reaper has not yet been used, then these searches will not return records. + +

      These search strings can be combined to generate more complex queries. For example, enter these search phrases into the ALL (intersection of) field: + +

        + +
      • Mb=(Chr1 50 100) LRS=(20 200) to find all transcripts with genes on Chr 1 between 50 and 100 Mb that also have top LRS scores in the range from 20 to 200 anywhere in the genome. + +
      • MB=(ChrX 0 20) Mean=(10 25) to find all transcripts with genes on Chr X between 0 and 20 Mb that also have mean expression in the range from 10 to 25. + +
      • transLRS=(9.2 1000 20) LRS=(9.2 1000 Chr11 50 80) will find all transcripts with best trans QTLs (LRS > 9.2) that map to Chr 11 between 50 and 70 Mb (with a 20 Mb trans exclusion buffer). + +
      • Mb=(Chr2 100 200) GO:0007268 to find any transcripts on Chr 2 between 100 and 200 Mb that belong to the Gene Ontology category GO:0007268 "synaptic transmission." More below on GO searches. + +
      • Mb=(Chr1 0 210) Mean=(12 20) TransLRS=(15 300 25) in the ALL field to find all transcripts located on Chr 1 (the Mb values of 0 and 210 cover the entire chromosome) that have mean expression above a value of 12 (quite high) and that have a major trans-acting QTL located at least 25 Mb away for the location of the transcript's "parent" gene. If this search fails, then confirm that it works when used in combination with the Hippocampus Consortium Dec05 PDNN database. You should get 13 returns, including Psmc6, Offrl1, and Ptp4a1. Start with lenient criteria to ensure that the search works with the database that interests you, and if it does, then increase the selectivity. + + +
      + +

      +Searches for Categories of Genes +

      + +

      Gene Ontology term searches: This search feature allows you to find transcripts related to particular categories using appropriate GO identifers. For example, to extract all transcripts associated with "synapse" enter the string GO:0045202, or for more specificity, enter the string GO:0016079 for "synaptic vesicle exocytosis" in the ANY field. Similarly, to review all transcripts associated with transcriptional control AND that have high LRS scores, enter the string GO:0003700 in the ALL field along with a string such as "LRS=(30 300)". This combination will retrieve all transcription factor-associated genes with QTL scores between 30 and 300. + +

      To browse or find GO terms and classes browse AmiGo. + +

      Or use GoPubMed and a set of search terms such as "visual transduction photoreceptor" to extract the correct GO term and identifier "phototransduction" = GO:0007602. + +

      As of September 2005, the GO contains approximately 20,000 terms of which 6,300 terms are associated with genes/transcripts in one or more of the GeneNetwork databases. Approximately 700 high level GO terms will return well over 200 hits. It is therefore useful to select more specific GO terms that return 100 or fewer transcripts or genes. GO search ID numbers can be used together with other search parameters (OR and AND Booleans by using the ANY and ALL fields). + + + +

      +Multiple Database Searches, GET commands, and Scriptable Interface Queries +

      + +

      Multiple database searches: It is possible to retrieve expression estimates for a single gene from many databases simultaneously by pasting a Search command into the URL entry field of your browser. Use syntax below but replace **** with the gene symbol, and decide whether you want to search rat or mouse databases (default is mouse). You can also specify a tissue (default is all tissues). The final &alias=1 arguement will search for the official symbol AND all known aliases. + + +

        + +
      • http://www.genenetwork.org/webqtl/main.py?cmd=sch&species=(rat or mouse)&tissue=(cerebellum or striatum or brain or hsc or fat or kidney)&gene=****&alias=1 + +
      + + +

      Other GET commands +

      A GET command is a simple data request that takes the form of an odd looking URL address. For more details on the many allowed GET commands used by the GeneNetwork please see the Scriptable Interface overview. The Scriptable Interface is designed primarily to handle queries from other databases and web services, but you can also use this method as a quick way to generate more comprehensive output files. For example, if you need to review the complete list of correlations of Huntingtin (probe set 1425969_a_at_A) with all 45137 expression traits in the INIA Brain mRNA M430 (Apr05) PDNN database then you would paste this particular GET command in the URL box of your browser: + +

        +
      • http://www.genenetwork.org/cgi-bin/beta/main.py? +cmd=cor&probeset=1425969_a_at_A&db=Bra04-05PDNN&searchdb=Bra04-05PDNN&return=45137 +&sort=pvalue (Please note that this type of query may take several minutes and will not accompanied with a progress bar.) +
      + +

      To obtain a complete list of the database abbreviations, including databases listed on the BETA site links to http://www.genenetwork.org/cgi-bin/beta/main.py?cmd=help. + +

      To completely avoid learning the structure of GET commands, the GeneNetwork also has a Simple Query Interface mentioned already once above (look under the Search menu). This interface assembles the GET command for you. All you need to do is select parameters. + +

      The size of a GeneNetwork database can be determined by entering a single * in either search field. + +

      Administrators and Curators: The command Flag=N searches for records in which a review request flag value has been entered. 0 = unmodified due to data conflict or overwrite risk, 1 = excellent BLAT score of probe set and no known problem, 2 = poor BLAT score requiring verification, 3 = potentially serious probe set position or identification problem requiring further curation or caution. + +

    • + +
      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/snp/chr1 b/web/snp/chr1 new file mode 100755 index 00000000..b0d18e63 --- /dev/null +++ b/web/snp/chr1 @@ -0,0 +1,1002 @@ +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr1 SNP SNP 11 195876 0 . . R0d +chr1 SNP SNP 195877 391743 0 . . R1d +chr1 SNP SNP 391744 587610 0 . . R2d +chr1 SNP SNP 587611 783477 0 . . R3d +chr1 SNP SNP 783478 979344 0 . . R4d +chr1 SNP SNP 979345 1175211 0 . . R5d +chr1 SNP SNP 1175212 1371078 0 . . R6d +chr1 SNP SNP 1371079 1566944 0 . . R7d +chr1 SNP SNP 1566945 1762811 0 . . R8d +chr1 SNP SNP 1762812 1958678 0 . . R9d +chr1 SNP SNP 1958679 2154545 0 . . R10d +chr1 SNP SNP 2154546 2350412 0 . . R11d +chr1 SNP SNP 2350413 2546279 0 . . R12d +chr1 SNP SNP 2546280 2742146 0 . . R13d +chr1 SNP SNP 2742147 2938012 0 . . R14d +chr1 SNP SNP 2938013 3133879 633 . . R15d +chr1 SNP SNP 3133880 3329746 451 . . R16d +chr1 SNP SNP 3329747 3525613 717 . . R17d +chr1 SNP SNP 3525614 3721480 847 . . R18d +chr1 SNP SNP 3721481 3917347 736 . . R19d +chr1 SNP SNP 3917348 4113214 397 . . R20d +chr1 SNP SNP 4113215 4309081 539 . . R21d +chr1 SNP SNP 4309082 4504947 606 . . R22d +chr1 SNP SNP 4504948 4700814 500 . . R23d +chr1 SNP SNP 4700815 4896681 656 . . R24d +chr1 SNP SNP 4896682 5092548 382 . . R25d +chr1 SNP SNP 5092549 5288415 443 . . R26d +chr1 SNP SNP 5288416 5484282 242 . . R27d +chr1 SNP SNP 5484283 5680149 303 . . R28d +chr1 SNP SNP 5680150 5876015 460 . . R29d +chr1 SNP SNP 5876016 6071882 366 . . R30d +chr1 SNP SNP 6071883 6267749 508 . . R31d +chr1 SNP SNP 6267750 6463616 395 . . R32d +chr1 SNP SNP 6463617 6659483 439 . . R33d +chr1 SNP SNP 6659484 6855350 378 . . R34d +chr1 SNP SNP 6855351 7051217 387 . . R35d +chr1 SNP SNP 7051218 7247084 202 . . R36d +chr1 SNP SNP 7247085 7442950 48 . . R37d +chr1 SNP SNP 7442951 7638817 121 . . R38d +chr1 SNP SNP 7638818 7834684 303 . . R39d +chr1 SNP SNP 7834685 8030551 299 . . R40d +chr1 SNP SNP 8030552 8226418 351 . . R41d +chr1 SNP SNP 8226419 8422285 420 . . R42d +chr1 SNP SNP 8422286 8618152 552 . . R43d +chr1 SNP SNP 8618153 8814018 209 . . R44d +chr1 SNP SNP 8814019 9009885 449 . . R45d +chr1 SNP SNP 9009886 9205752 449 . . R46d +chr1 SNP SNP 9205753 9401619 261 . . R47d +chr1 SNP SNP 9401620 9597486 211 . . R48d +chr1 SNP SNP 9597487 9793353 255 . . R49d +chr1 SNP SNP 9793354 9989220 458 . . R50d +chr1 SNP SNP 9989221 10185087 156 . . R51d +chr1 SNP SNP 10185088 10380953 29 . . R52d +chr1 SNP SNP 10380954 10576820 39 . . R53d +chr1 SNP SNP 10576821 10772687 33 . . R54d +chr1 SNP SNP 10772688 10968554 48 . . R55d +chr1 SNP SNP 10968555 11164421 169 . . R56d +chr1 SNP SNP 11164422 11360288 370 . . R57d +chr1 SNP SNP 11360289 11556155 520 . . R58d +chr1 SNP SNP 11556156 11752021 60 . . R59d +chr1 SNP SNP 11752022 11947888 246 . . R60d +chr1 SNP SNP 11947889 12143755 140 . . R61d +chr1 SNP SNP 12143756 12339622 225 . . R62d +chr1 SNP SNP 12339623 12535489 62 . . R63d +chr1 SNP SNP 12535490 12731356 16 . . R64d +chr1 SNP SNP 12731357 12927223 175 . . R65d +chr1 SNP SNP 12927224 13123090 219 . . R66d +chr1 SNP SNP 13123091 13318956 476 . . R67d +chr1 SNP SNP 13318957 13514823 418 . . R68d +chr1 SNP SNP 13514824 13710690 382 . . R69d +chr1 SNP SNP 13710691 13906557 154 . . R70d +chr1 SNP SNP 13906558 14102424 380 . . R71d +chr1 SNP SNP 14102425 14298291 85 . . R72d +chr1 SNP SNP 14298292 14494158 343 . . R73d +chr1 SNP SNP 14494159 14690024 389 . . R74d +chr1 SNP SNP 14690025 14885891 263 . . R75d +chr1 SNP SNP 14885892 15081758 410 . . R76d +chr1 SNP SNP 15081759 15277625 131 . . R77d +chr1 SNP SNP 15277626 15473492 405 . . R78d +chr1 SNP SNP 15473493 15669359 514 . . R79d +chr1 SNP SNP 15669360 15865226 520 . . R80d +chr1 SNP SNP 15865227 16061093 230 . . R81d +chr1 SNP SNP 16061094 16256959 384 . . R82d +chr1 SNP SNP 16256960 16452826 215 . . R83d +chr1 SNP SNP 16452827 16648693 246 . . R84d +chr1 SNP SNP 16648694 16844560 169 . . R85d +chr1 SNP SNP 16844561 17040427 244 . . R86d +chr1 SNP SNP 17040428 17236294 71 . . R87d +chr1 SNP SNP 17236295 17432161 25 . . R88d +chr1 SNP SNP 17432162 17628027 190 . . R89d +chr1 SNP SNP 17628028 17823894 92 . . R90d +chr1 SNP SNP 17823895 18019761 43 . . R91d +chr1 SNP SNP 18019762 18215628 33 . . R92d +chr1 SNP SNP 18215629 18411495 73 . . R93d +chr1 SNP SNP 18411496 18607362 169 . . R94d +chr1 SNP SNP 18607363 18803229 66 . . R95d +chr1 SNP SNP 18803230 18999096 464 . . R96d +chr1 SNP SNP 18999097 19194962 610 . . R97d +chr1 SNP SNP 19194963 19390829 190 . . R98d +chr1 SNP SNP 19390830 19586696 110 . . R99d +chr1 SNP SNP 19586697 19782563 16 . . R100d +chr1 SNP SNP 19782564 19978430 20 . . R101d +chr1 SNP SNP 19978431 20174297 20 . . R102d +chr1 SNP SNP 20174298 20370164 6 . . R103d +chr1 SNP SNP 20370165 20566030 8 . . R104d +chr1 SNP SNP 20566031 20761897 18 . . R105d +chr1 SNP SNP 20761898 20957764 297 . . R106d +chr1 SNP SNP 20957765 21153631 255 . . R107d +chr1 SNP SNP 21153632 21349498 506 . . R108d +chr1 SNP SNP 21349499 21545365 138 . . R109d +chr1 SNP SNP 21545366 21741232 384 . . R110d +chr1 SNP SNP 21741233 21937098 380 . . R111d +chr1 SNP SNP 21937099 22132965 349 . . R112d +chr1 SNP SNP 22132966 22328832 215 . . R113d +chr1 SNP SNP 22328833 22524699 102 . . R114d +chr1 SNP SNP 22524700 22720566 98 . . R115d +chr1 SNP SNP 22720567 22916433 12 . . R116d +chr1 SNP SNP 22916434 23112300 430 . . R117d +chr1 SNP SNP 23112301 23308167 131 . . R118d +chr1 SNP SNP 23308168 23504033 175 . . R119d +chr1 SNP SNP 23504034 23699900 569 . . R120d +chr1 SNP SNP 23699901 23895767 257 . . R121d +chr1 SNP SNP 23895768 24091634 190 . . R122d +chr1 SNP SNP 24091635 24287501 347 . . R123d +chr1 SNP SNP 24287502 24483368 355 . . R124d +chr1 SNP SNP 24483369 24679235 87 . . R125d +chr1 SNP SNP 24679236 24875101 382 . . R126d +chr1 SNP SNP 24875102 25070968 27 . . R127d +chr1 SNP SNP 25070969 25266835 234 . . R128d +chr1 SNP SNP 25266836 25462702 41 . . R129d +chr1 SNP SNP 25462703 25658569 253 . . R130d +chr1 SNP SNP 25658570 25854436 355 . . R131d +chr1 SNP SNP 25854437 26050303 39 . . R132d +chr1 SNP SNP 26050304 26246170 324 . . R133d +chr1 SNP SNP 26246171 26442036 763 . . R134d +chr1 SNP SNP 26442037 26637903 282 . . R135d +chr1 SNP SNP 26637904 26833770 311 . . R136d +chr1 SNP SNP 26833771 27029637 96 . . R137d +chr1 SNP SNP 27029638 27225504 98 . . R138d +chr1 SNP SNP 27225505 27421371 177 . . R139d +chr1 SNP SNP 27421372 27617238 374 . . R140d +chr1 SNP SNP 27617239 27813104 491 . . R141d +chr1 SNP SNP 27813105 28008971 508 . . R142d +chr1 SNP SNP 28008972 28204838 527 . . R143d +chr1 SNP SNP 28204839 28400705 253 . . R144d +chr1 SNP SNP 28400706 28596572 48 . . R145d +chr1 SNP SNP 28596573 28792439 52 . . R146d +chr1 SNP SNP 28792440 28988306 50 . . R147d +chr1 SNP SNP 28988307 29184173 508 . . R148d +chr1 SNP SNP 29184174 29380039 518 . . R149d +chr1 SNP SNP 29380040 29575906 531 . . R150d +chr1 SNP SNP 29575907 29771773 502 . . R151d +chr1 SNP SNP 29771774 29967640 571 . . R152d +chr1 SNP SNP 29967641 30163507 596 . . R153d +chr1 SNP SNP 30163508 30359374 336 . . R154d +chr1 SNP SNP 30359375 30555241 244 . . R155d +chr1 SNP SNP 30555242 30751107 35 . . R156d +chr1 SNP SNP 30751108 30946974 31 . . R157d +chr1 SNP SNP 30946975 31142841 115 . . R158d +chr1 SNP SNP 31142842 31338708 384 . . R159d +chr1 SNP SNP 31338709 31534575 119 . . R160d +chr1 SNP SNP 31534576 31730442 29 . . R161d +chr1 SNP SNP 31730443 31926309 31 . . R162d +chr1 SNP SNP 31926310 32122176 54 . . R163d +chr1 SNP SNP 32122177 32318042 33 . . R164d +chr1 SNP SNP 32318043 32513909 39 . . R165d +chr1 SNP SNP 32513910 32709776 43 . . R166d +chr1 SNP SNP 32709777 32905643 211 . . R167d +chr1 SNP SNP 32905644 33101510 336 . . R168d +chr1 SNP SNP 33101511 33297377 202 . . R169d +chr1 SNP SNP 33297378 33493244 349 . . R170d +chr1 SNP SNP 33493245 33689110 481 . . R171d +chr1 SNP SNP 33689111 33884977 167 . . R172d +chr1 SNP SNP 33884978 34080844 23 . . R173d +chr1 SNP SNP 34080845 34276711 27 . . R174d +chr1 SNP SNP 34276712 34472578 144 . . R175d +chr1 SNP SNP 34472579 34668445 315 . . R176d +chr1 SNP SNP 34668446 34864312 20 . . R177d +chr1 SNP SNP 34864313 35060179 332 . . R178d +chr1 SNP SNP 35060180 35256045 294 . . R179d +chr1 SNP SNP 35256046 35451912 94 . . R180d +chr1 SNP SNP 35451913 35647779 92 . . R181d +chr1 SNP SNP 35647780 35843646 20 . . R182d +chr1 SNP SNP 35843647 36039513 152 . . R183d +chr1 SNP SNP 36039514 36235380 37 . . R184d +chr1 SNP SNP 36235381 36431247 115 . . R185d +chr1 SNP SNP 36431248 36627113 240 . . R186d +chr1 SNP SNP 36627114 36822980 301 . . R187d +chr1 SNP SNP 36822981 37018847 161 . . R188d +chr1 SNP SNP 37018848 37214714 188 . . R189d +chr1 SNP SNP 37214715 37410581 56 . . R190d +chr1 SNP SNP 37410582 37606448 234 . . R191d +chr1 SNP SNP 37606449 37802315 562 . . R192d +chr1 SNP SNP 37802316 37998182 232 . . R193d +chr1 SNP SNP 37998183 38194048 158 . . R194d +chr1 SNP SNP 38194049 38389915 198 . . R195d +chr1 SNP SNP 38389916 38585782 282 . . R196d +chr1 SNP SNP 38585783 38781649 330 . . R197d +chr1 SNP SNP 38781650 38977516 481 . . R198d +chr1 SNP SNP 38977517 39173383 167 . . R199d +chr1 SNP SNP 39173384 39369250 322 . . R200d +chr1 SNP SNP 39369251 39565116 202 . . R201d +chr1 SNP SNP 39565117 39760983 85 . . R202d +chr1 SNP SNP 39760984 39956850 39 . . R203d +chr1 SNP SNP 39956851 40152717 23 . . R204d +chr1 SNP SNP 40152718 40348584 12 . . R205d +chr1 SNP SNP 40348585 40544451 2 . . R206d +chr1 SNP SNP 40544452 40740318 20 . . R207d +chr1 SNP SNP 40740319 40936184 50 . . R208d +chr1 SNP SNP 40936185 41132051 16 . . R209d +chr1 SNP SNP 41132052 41327918 50 . . R210d +chr1 SNP SNP 41327919 41523785 140 . . R211d +chr1 SNP SNP 41523786 41719652 41 . . R212d +chr1 SNP SNP 41719653 41915519 29 . . R213d +chr1 SNP SNP 41915520 42111386 190 . . R214d +chr1 SNP SNP 42111387 42307253 35 . . R215d +chr1 SNP SNP 42307254 42503119 119 . . R216d +chr1 SNP SNP 42503120 42698986 261 . . R217d +chr1 SNP SNP 42698987 42894853 16 . . R218d +chr1 SNP SNP 42894854 43090720 6 . . R219d +chr1 SNP SNP 43090721 43286587 16 . . R220d +chr1 SNP SNP 43286588 43482454 20 . . R221d +chr1 SNP SNP 43482455 43678321 131 . . R222d +chr1 SNP SNP 43678322 43874187 518 . . R223d +chr1 SNP SNP 43874188 44070054 221 . . R224d +chr1 SNP SNP 44070055 44265921 330 . . R225d +chr1 SNP SNP 44265922 44461788 102 . . R226d +chr1 SNP SNP 44461789 44657655 374 . . R227d +chr1 SNP SNP 44657656 44853522 173 . . R228d +chr1 SNP SNP 44853523 45049389 449 . . R229d +chr1 SNP SNP 45049390 45245256 389 . . R230d +chr1 SNP SNP 45245257 45441122 14 . . R231d +chr1 SNP SNP 45441123 45636989 230 . . R232d +chr1 SNP SNP 45636990 45832856 581 . . R233d +chr1 SNP SNP 45832857 46028723 552 . . R234d +chr1 SNP SNP 46028724 46224590 585 . . R235d +chr1 SNP SNP 46224591 46420457 284 . . R236d +chr1 SNP SNP 46420458 46616324 213 . . R237d +chr1 SNP SNP 46616325 46812190 232 . . R238d +chr1 SNP SNP 46812191 47008057 384 . . R239d +chr1 SNP SNP 47008058 47203924 284 . . R240d +chr1 SNP SNP 47203925 47399791 228 . . R241d +chr1 SNP SNP 47399792 47595658 405 . . R242d +chr1 SNP SNP 47595659 47791525 420 . . R243d +chr1 SNP SNP 47791526 47987392 108 . . R244d +chr1 SNP SNP 47987393 48183259 77 . . R245d +chr1 SNP SNP 48183260 48379125 75 . . R246d +chr1 SNP SNP 48379126 48574992 299 . . R247d +chr1 SNP SNP 48574993 48770859 366 . . R248d +chr1 SNP SNP 48770860 48966726 278 . . R249d +chr1 SNP SNP 48966727 49162593 420 . . R250d +chr1 SNP SNP 49162594 49358460 215 . . R251d +chr1 SNP SNP 49358461 49554327 282 . . R252d +chr1 SNP SNP 49554328 49750193 152 . . R253d +chr1 SNP SNP 49750194 49946060 125 . . R254d +chr1 SNP SNP 49946061 50141927 121 . . R255d +chr1 SNP SNP 50141928 50337794 52 . . R256d +chr1 SNP SNP 50337795 50533661 41 . . R257d +chr1 SNP SNP 50533662 50729528 301 . . R258d +chr1 SNP SNP 50729529 50925395 236 . . R259d +chr1 SNP SNP 50925396 51121262 25 . . R260d +chr1 SNP SNP 51121263 51317128 20 . . R261d +chr1 SNP SNP 51317129 51512995 14 . . R262d +chr1 SNP SNP 51512996 51708862 41 . . R263d +chr1 SNP SNP 51708863 51904729 115 . . R264d +chr1 SNP SNP 51904730 52100596 125 . . R265d +chr1 SNP SNP 52100597 52296463 33 . . R266d +chr1 SNP SNP 52296464 52492330 146 . . R267d +chr1 SNP SNP 52492331 52688196 69 . . R268d +chr1 SNP SNP 52688197 52884063 18 . . R269d +chr1 SNP SNP 52884064 53079930 20 . . R270d +chr1 SNP SNP 53079931 53275797 12 . . R271d +chr1 SNP SNP 53275798 53471664 8 . . R272d +chr1 SNP SNP 53471665 53667531 10 . . R273d +chr1 SNP SNP 53667532 53863398 20 . . R274d +chr1 SNP SNP 53863399 54059265 20 . . R275d +chr1 SNP SNP 54059266 54255131 8 . . R276d +chr1 SNP SNP 54255132 54450998 14 . . R277d +chr1 SNP SNP 54450999 54646865 8 . . R278d +chr1 SNP SNP 54646866 54842732 512 . . R279d +chr1 SNP SNP 54842733 55038599 276 . . R280d +chr1 SNP SNP 55038600 55234466 79 . . R281d +chr1 SNP SNP 55234467 55430333 14 . . R282d +chr1 SNP SNP 55430334 55626199 8 . . R283d +chr1 SNP SNP 55626200 55822066 6 . . R284d +chr1 SNP SNP 55822067 56017933 12 . . R285d +chr1 SNP SNP 56017934 56213800 10 . . R286d +chr1 SNP SNP 56213801 56409667 10 . . R287d +chr1 SNP SNP 56409668 56605534 29 . . R288d +chr1 SNP SNP 56605535 56801401 27 . . R289d +chr1 SNP SNP 56801402 56997268 18 . . R290d +chr1 SNP SNP 56997269 57193134 23 . . R291d +chr1 SNP SNP 57193135 57389001 6 . . R292d +chr1 SNP SNP 57389002 57584868 12 . . R293d +chr1 SNP SNP 57584869 57780735 20 . . R294d +chr1 SNP SNP 57780736 57976602 8 . . R295d +chr1 SNP SNP 57976603 58172469 16 . . R296d +chr1 SNP SNP 58172470 58368336 10 . . R297d +chr1 SNP SNP 58368337 58564202 12 . . R298d +chr1 SNP SNP 58564203 58760069 190 . . R299d +chr1 SNP SNP 58760070 58955936 397 . . R300d +chr1 SNP SNP 58955937 59151803 500 . . R301d +chr1 SNP SNP 59151804 59347670 328 . . R302d +chr1 SNP SNP 59347671 59543537 31 . . R303d +chr1 SNP SNP 59543538 59739404 202 . . R304d +chr1 SNP SNP 59739405 59935270 54 . . R305d +chr1 SNP SNP 59935271 60131137 18 . . R306d +chr1 SNP SNP 60131138 60327004 20 . . R307d +chr1 SNP SNP 60327005 60522871 23 . . R308d +chr1 SNP SNP 60522872 60718738 14 . . R309d +chr1 SNP SNP 60718739 60914605 23 . . R310d +chr1 SNP SNP 60914606 61110472 14 . . R311d +chr1 SNP SNP 61110473 61306339 35 . . R312d +chr1 SNP SNP 61306340 61502205 16 . . R313d +chr1 SNP SNP 61502206 61698072 14 . . R314d +chr1 SNP SNP 61698073 61893939 25 . . R315d +chr1 SNP SNP 61893940 62089806 23 . . R316d +chr1 SNP SNP 62089807 62285673 10 . . R317d +chr1 SNP SNP 62285674 62481540 14 . . R318d +chr1 SNP SNP 62481541 62677407 16 . . R319d +chr1 SNP SNP 62677408 62873273 8 . . R320d +chr1 SNP SNP 62873274 63069140 6 . . R321d +chr1 SNP SNP 63069141 63265007 123 . . R322d +chr1 SNP SNP 63265008 63460874 456 . . R323d +chr1 SNP SNP 63460875 63656741 215 . . R324d +chr1 SNP SNP 63656742 63852608 39 . . R325d +chr1 SNP SNP 63852609 64048475 209 . . R326d +chr1 SNP SNP 64048476 64244342 412 . . R327d +chr1 SNP SNP 64244343 64440208 230 . . R328d +chr1 SNP SNP 64440209 64636075 294 . . R329d +chr1 SNP SNP 64636076 64831942 274 . . R330d +chr1 SNP SNP 64831943 65027809 230 . . R331d +chr1 SNP SNP 65027810 65223676 223 . . R332d +chr1 SNP SNP 65223677 65419543 198 . . R333d +chr1 SNP SNP 65419544 65615410 401 . . R334d +chr1 SNP SNP 65615411 65811276 412 . . R335d +chr1 SNP SNP 65811277 66007143 255 . . R336d +chr1 SNP SNP 66007144 66203010 269 . . R337d +chr1 SNP SNP 66203011 66398877 625 . . R338d +chr1 SNP SNP 66398878 66594744 485 . . R339d +chr1 SNP SNP 66594745 66790611 610 . . R340d +chr1 SNP SNP 66790612 66986478 757 . . R341d +chr1 SNP SNP 66986479 67182345 529 . . R342d +chr1 SNP SNP 67182346 67378211 755 . . R343d +chr1 SNP SNP 67378212 67574078 569 . . R344d +chr1 SNP SNP 67574079 67769945 556 . . R345d +chr1 SNP SNP 67769946 67965812 671 . . R346d +chr1 SNP SNP 67965813 68161679 654 . . R347d +chr1 SNP SNP 68161680 68357546 654 . . R348d +chr1 SNP SNP 68357547 68553413 600 . . R349d +chr1 SNP SNP 68553414 68749279 600 . . R350d +chr1 SNP SNP 68749280 68945146 769 . . R351d +chr1 SNP SNP 68945147 69141013 516 . . R352d +chr1 SNP SNP 69141014 69336880 606 . . R353d +chr1 SNP SNP 69336881 69532747 748 . . R354d +chr1 SNP SNP 69532748 69728614 882 . . R355d +chr1 SNP SNP 69728615 69924481 650 . . R356d +chr1 SNP SNP 69924482 70120348 232 . . R357d +chr1 SNP SNP 70120349 70316214 14 . . R358d +chr1 SNP SNP 70316215 70512081 35 . . R359d +chr1 SNP SNP 70512082 70707948 20 . . R360d +chr1 SNP SNP 70707949 70903815 18 . . R361d +chr1 SNP SNP 70903816 71099682 10 . . R362d +chr1 SNP SNP 71099683 71295549 4 . . R363d +chr1 SNP SNP 71295550 71491416 14 . . R364d +chr1 SNP SNP 71491417 71687282 20 . . R365d +chr1 SNP SNP 71687283 71883149 18 . . R366d +chr1 SNP SNP 71883150 72079016 10 . . R367d +chr1 SNP SNP 72079017 72274883 8 . . R368d +chr1 SNP SNP 72274884 72470750 20 . . R369d +chr1 SNP SNP 72470751 72666617 14 . . R370d +chr1 SNP SNP 72666618 72862484 27 . . R371d +chr1 SNP SNP 72862485 73058351 6 . . R372d +chr1 SNP SNP 73058352 73254217 175 . . R373d +chr1 SNP SNP 73254218 73450084 343 . . R374d +chr1 SNP SNP 73450085 73645951 223 . . R375d +chr1 SNP SNP 73645952 73841818 290 . . R376d +chr1 SNP SNP 73841819 74037685 125 . . R377d +chr1 SNP SNP 74037686 74233552 255 . . R378d +chr1 SNP SNP 74233553 74429419 261 . . R379d +chr1 SNP SNP 74429420 74625285 43 . . R380d +chr1 SNP SNP 74625286 74821152 171 . . R381d +chr1 SNP SNP 74821153 75017019 123 . . R382d +chr1 SNP SNP 75017020 75212886 158 . . R383d +chr1 SNP SNP 75212887 75408753 211 . . R384d +chr1 SNP SNP 75408754 75604620 92 . . R385d +chr1 SNP SNP 75604621 75800487 305 . . R386d +chr1 SNP SNP 75800488 75996354 6 . . R387d +chr1 SNP SNP 75996355 76192220 305 . . R388d +chr1 SNP SNP 76192221 76388087 407 . . R389d +chr1 SNP SNP 76388088 76583954 150 . . R390d +chr1 SNP SNP 76583955 76779821 54 . . R391d +chr1 SNP SNP 76779822 76975688 190 . . R392d +chr1 SNP SNP 76975689 77171555 156 . . R393d +chr1 SNP SNP 77171556 77367422 219 . . R394d +chr1 SNP SNP 77367423 77563288 37 . . R395d +chr1 SNP SNP 77563289 77759155 20 . . R396d +chr1 SNP SNP 77759156 77955022 10 . . R397d +chr1 SNP SNP 77955023 78150889 2 . . R398d +chr1 SNP SNP 78150890 78346756 10 . . R399d +chr1 SNP SNP 78346757 78542623 6 . . R400d +chr1 SNP SNP 78542624 78738490 6 . . R401d +chr1 SNP SNP 78738491 78934356 8 . . R402d +chr1 SNP SNP 78934357 79130223 2 . . R403d +chr1 SNP SNP 79130224 79326090 188 . . R404d +chr1 SNP SNP 79326091 79521957 148 . . R405d +chr1 SNP SNP 79521958 79717824 0 . . R406d +chr1 SNP SNP 79717825 79913691 2 . . R407d +chr1 SNP SNP 79913692 80109558 2 . . R408d +chr1 SNP SNP 80109559 80305425 0 . . R409d +chr1 SNP SNP 80305426 80501291 0 . . R410d +chr1 SNP SNP 80501292 80697158 309 . . R411d +chr1 SNP SNP 80697159 80893025 4 . . R412d +chr1 SNP SNP 80893026 81088892 156 . . R413d +chr1 SNP SNP 81088893 81284759 138 . . R414d +chr1 SNP SNP 81284760 81480626 399 . . R415d +chr1 SNP SNP 81480627 81676493 384 . . R416d +chr1 SNP SNP 81676494 81872359 10 . . R417d +chr1 SNP SNP 81872360 82068226 10 . . R418d +chr1 SNP SNP 82068227 82264093 4 . . R419d +chr1 SNP SNP 82264094 82459960 16 . . R420d +chr1 SNP SNP 82459961 82655827 16 . . R421d +chr1 SNP SNP 82655828 82851694 18 . . R422d +chr1 SNP SNP 82851695 83047561 25 . . R423d +chr1 SNP SNP 83047562 83243428 14 . . R424d +chr1 SNP SNP 83243429 83439294 25 . . R425d +chr1 SNP SNP 83439295 83635161 18 . . R426d +chr1 SNP SNP 83635162 83831028 16 . . R427d +chr1 SNP SNP 83831029 84026895 10 . . R428d +chr1 SNP SNP 84026896 84222762 10 . . R429d +chr1 SNP SNP 84222763 84418629 18 . . R430d +chr1 SNP SNP 84418630 84614496 10 . . R431d +chr1 SNP SNP 84614497 84810362 8 . . R432d +chr1 SNP SNP 84810363 85006229 8 . . R433d +chr1 SNP SNP 85006230 85202096 16 . . R434d +chr1 SNP SNP 85202097 85397963 10 . . R435d +chr1 SNP SNP 85397964 85593830 25 . . R436d +chr1 SNP SNP 85593831 85789697 8 . . R437d +chr1 SNP SNP 85789698 85985564 87 . . R438d +chr1 SNP SNP 85985565 86181431 330 . . R439d +chr1 SNP SNP 86181432 86377297 274 . . R440d +chr1 SNP SNP 86377298 86573164 286 . . R441d +chr1 SNP SNP 86573165 86769031 171 . . R442d +chr1 SNP SNP 86769032 86964898 58 . . R443d +chr1 SNP SNP 86964899 87160765 27 . . R444d +chr1 SNP SNP 87160766 87356632 41 . . R445d +chr1 SNP SNP 87356633 87552499 242 . . R446d +chr1 SNP SNP 87552500 87748365 140 . . R447d +chr1 SNP SNP 87748366 87944232 240 . . R448d +chr1 SNP SNP 87944233 88140099 349 . . R449d +chr1 SNP SNP 88140100 88335966 405 . . R450d +chr1 SNP SNP 88335967 88531833 184 . . R451d +chr1 SNP SNP 88531834 88727700 228 . . R452d +chr1 SNP SNP 88727701 88923567 554 . . R453d +chr1 SNP SNP 88923568 89119434 156 . . R454d +chr1 SNP SNP 89119435 89315300 41 . . R455d +chr1 SNP SNP 89315301 89511167 16 . . R456d +chr1 SNP SNP 89511168 89707034 16 . . R457d +chr1 SNP SNP 89707035 89902901 77 . . R458d +chr1 SNP SNP 89902902 90098768 148 . . R459d +chr1 SNP SNP 90098769 90294635 131 . . R460d +chr1 SNP SNP 90294636 90490502 35 . . R461d +chr1 SNP SNP 90490503 90686368 12 . . R462d +chr1 SNP SNP 90686369 90882235 8 . . R463d +chr1 SNP SNP 90882236 91078102 10 . . R464d +chr1 SNP SNP 91078103 91273969 4 . . R465d +chr1 SNP SNP 91273970 91469836 378 . . R466d +chr1 SNP SNP 91469837 91665703 198 . . R467d +chr1 SNP SNP 91665704 91861570 353 . . R468d +chr1 SNP SNP 91861571 92057437 257 . . R469d +chr1 SNP SNP 92057438 92253303 485 . . R470d +chr1 SNP SNP 92253304 92449170 121 . . R471d +chr1 SNP SNP 92449171 92645037 278 . . R472d +chr1 SNP SNP 92645038 92840904 232 . . R473d +chr1 SNP SNP 92840905 93036771 16 . . R474d +chr1 SNP SNP 93036772 93232638 33 . . R475d +chr1 SNP SNP 93232639 93428505 169 . . R476d +chr1 SNP SNP 93428506 93624371 324 . . R477d +chr1 SNP SNP 93624372 93820238 207 . . R478d +chr1 SNP SNP 93820239 94016105 276 . . R479d +chr1 SNP SNP 94016106 94211972 131 . . R480d +chr1 SNP SNP 94211973 94407839 182 . . R481d +chr1 SNP SNP 94407840 94603706 27 . . R482d +chr1 SNP SNP 94603707 94799573 20 . . R483d +chr1 SNP SNP 94799574 94995440 23 . . R484d +chr1 SNP SNP 94995441 95191306 48 . . R485d +chr1 SNP SNP 95191307 95387173 196 . . R486d +chr1 SNP SNP 95387174 95583040 62 . . R487d +chr1 SNP SNP 95583041 95778907 50 . . R488d +chr1 SNP SNP 95778908 95974774 282 . . R489d +chr1 SNP SNP 95974775 96170641 338 . . R490d +chr1 SNP SNP 96170642 96366508 225 . . R491d +chr1 SNP SNP 96366509 96562374 351 . . R492d +chr1 SNP SNP 96562375 96758241 581 . . R493d +chr1 SNP SNP 96758242 96954108 301 . . R494d +chr1 SNP SNP 96954109 97149975 474 . . R495d +chr1 SNP SNP 97149976 97345842 198 . . R496d +chr1 SNP SNP 97345843 97541709 29 . . R497d +chr1 SNP SNP 97541710 97737576 25 . . R498d +chr1 SNP SNP 97737577 97933443 20 . . R499d +chr1 SNP SNP 97933444 98129309 131 . . R500d +chr1 SNP SNP 98129310 98325176 16 . . R501d +chr1 SNP SNP 98325177 98521043 35 . . R502d +chr1 SNP SNP 98521044 98716910 43 . . R503d +chr1 SNP SNP 98716911 98912777 29 . . R504d +chr1 SNP SNP 98912778 99108644 71 . . R505d +chr1 SNP SNP 99108645 99304511 569 . . R506d +chr1 SNP SNP 99304512 99500377 445 . . R507d +chr1 SNP SNP 99500378 99696244 372 . . R508d +chr1 SNP SNP 99696245 99892111 382 . . R509d +chr1 SNP SNP 99892112 100087978 650 . . R510d +chr1 SNP SNP 100087979 100283845 186 . . R511d +chr1 SNP SNP 100283846 100479712 248 . . R512d +chr1 SNP SNP 100479713 100675579 506 . . R513d +chr1 SNP SNP 100675580 100871445 841 . . R514d +chr1 SNP SNP 100871446 101067312 500 . . R515d +chr1 SNP SNP 101067313 101263179 115 . . R516d +chr1 SNP SNP 101263180 101459046 430 . . R517d +chr1 SNP SNP 101459047 101654913 303 . . R518d +chr1 SNP SNP 101654914 101850780 650 . . R519d +chr1 SNP SNP 101850781 102046647 625 . . R520d +chr1 SNP SNP 102046648 102242514 610 . . R521d +chr1 SNP SNP 102242515 102438380 87 . . R522d +chr1 SNP SNP 102438381 102634247 43 . . R523d +chr1 SNP SNP 102634248 102830114 25 . . R524d +chr1 SNP SNP 102830115 103025981 58 . . R525d +chr1 SNP SNP 103025982 103221848 54 . . R526d +chr1 SNP SNP 103221849 103417715 60 . . R527d +chr1 SNP SNP 103417716 103613582 50 . . R528d +chr1 SNP SNP 103613583 103809448 39 . . R529d +chr1 SNP SNP 103809449 104005315 35 . . R530d +chr1 SNP SNP 104005316 104201182 31 . . R531d +chr1 SNP SNP 104201183 104397049 83 . . R532d +chr1 SNP SNP 104397050 104592916 512 . . R533d +chr1 SNP SNP 104592917 104788783 405 . . R534d +chr1 SNP SNP 104788784 104984650 389 . . R535d +chr1 SNP SNP 104984651 105180517 261 . . R536d +chr1 SNP SNP 105180518 105376383 322 . . R537d +chr1 SNP SNP 105376384 105572250 301 . . R538d +chr1 SNP SNP 105572251 105768117 200 . . R539d +chr1 SNP SNP 105768118 105963984 25 . . R540d +chr1 SNP SNP 105963985 106159851 14 . . R541d +chr1 SNP SNP 106159852 106355718 161 . . R542d +chr1 SNP SNP 106355719 106551585 35 . . R543d +chr1 SNP SNP 106551586 106747451 387 . . R544d +chr1 SNP SNP 106747452 106943318 382 . . R545d +chr1 SNP SNP 106943319 107139185 236 . . R546d +chr1 SNP SNP 107139186 107335052 52 . . R547d +chr1 SNP SNP 107335053 107530919 27 . . R548d +chr1 SNP SNP 107530920 107726786 18 . . R549d +chr1 SNP SNP 107726787 107922653 313 . . R550d +chr1 SNP SNP 107922654 108118520 604 . . R551d +chr1 SNP SNP 108118521 108314386 447 . . R552d +chr1 SNP SNP 108314387 108510253 426 . . R553d +chr1 SNP SNP 108510254 108706120 309 . . R554d +chr1 SNP SNP 108706121 108901987 602 . . R555d +chr1 SNP SNP 108901988 109097854 527 . . R556d +chr1 SNP SNP 109097855 109293721 583 . . R557d +chr1 SNP SNP 109293722 109489588 131 . . R558d +chr1 SNP SNP 109489589 109685454 135 . . R559d +chr1 SNP SNP 109685455 109881321 96 . . R560d +chr1 SNP SNP 109881322 110077188 378 . . R561d +chr1 SNP SNP 110077189 110273055 248 . . R562d +chr1 SNP SNP 110273056 110468922 543 . . R563d +chr1 SNP SNP 110468923 110664789 700 . . R564d +chr1 SNP SNP 110664790 110860656 688 . . R565d +chr1 SNP SNP 110860657 111056523 274 . . R566d +chr1 SNP SNP 111056524 111252389 236 . . R567d +chr1 SNP SNP 111252390 111448256 46 . . R568d +chr1 SNP SNP 111448257 111644123 112 . . R569d +chr1 SNP SNP 111644124 111839990 414 . . R570d +chr1 SNP SNP 111839991 112035857 464 . . R571d +chr1 SNP SNP 112035858 112231724 464 . . R572d +chr1 SNP SNP 112231725 112427591 525 . . R573d +chr1 SNP SNP 112427592 112623457 579 . . R574d +chr1 SNP SNP 112623458 112819324 543 . . R575d +chr1 SNP SNP 112819325 113015191 453 . . R576d +chr1 SNP SNP 113015192 113211058 575 . . R577d +chr1 SNP SNP 113211059 113406925 422 . . R578d +chr1 SNP SNP 113406926 113602792 502 . . R579d +chr1 SNP SNP 113602793 113798659 560 . . R580d +chr1 SNP SNP 113798660 113994526 81 . . R581d +chr1 SNP SNP 113994527 114190392 18 . . R582d +chr1 SNP SNP 114190393 114386259 33 . . R583d +chr1 SNP SNP 114386260 114582126 619 . . R584d +chr1 SNP SNP 114582127 114777993 361 . . R585d +chr1 SNP SNP 114777994 114973860 380 . . R586d +chr1 SNP SNP 114973861 115169727 336 . . R587d +chr1 SNP SNP 115169728 115365594 426 . . R588d +chr1 SNP SNP 115365595 115561460 472 . . R589d +chr1 SNP SNP 115561461 115757327 391 . . R590d +chr1 SNP SNP 115757328 115953194 236 . . R591d +chr1 SNP SNP 115953195 116149061 456 . . R592d +chr1 SNP SNP 116149062 116344928 242 . . R593d +chr1 SNP SNP 116344929 116540795 173 . . R594d +chr1 SNP SNP 116540796 116736662 309 . . R595d +chr1 SNP SNP 116736663 116932529 326 . . R596d +chr1 SNP SNP 116932530 117128395 299 . . R597d +chr1 SNP SNP 117128396 117324262 311 . . R598d +chr1 SNP SNP 117324263 117520129 286 . . R599d +chr1 SNP SNP 117520130 117715996 311 . . R600d +chr1 SNP SNP 117715997 117911863 294 . . R601d +chr1 SNP SNP 117911864 118107730 96 . . R602d +chr1 SNP SNP 118107731 118303597 58 . . R603d +chr1 SNP SNP 118303598 118499463 112 . . R604d +chr1 SNP SNP 118499464 118695330 173 . . R605d +chr1 SNP SNP 118695331 118891197 357 . . R606d +chr1 SNP SNP 118891198 119087064 232 . . R607d +chr1 SNP SNP 119087065 119282931 309 . . R608d +chr1 SNP SNP 119282932 119478798 407 . . R609d +chr1 SNP SNP 119478799 119674665 261 . . R610d +chr1 SNP SNP 119674666 119870531 58 . . R611d +chr1 SNP SNP 119870532 120066398 12 . . R612d +chr1 SNP SNP 120066399 120262265 161 . . R613d +chr1 SNP SNP 120262266 120458132 474 . . R614d +chr1 SNP SNP 120458133 120653999 324 . . R615d +chr1 SNP SNP 120654000 120849866 209 . . R616d +chr1 SNP SNP 120849867 121045733 361 . . R617d +chr1 SNP SNP 121045734 121241600 338 . . R618d +chr1 SNP SNP 121241601 121437466 405 . . R619d +chr1 SNP SNP 121437467 121633333 437 . . R620d +chr1 SNP SNP 121633334 121829200 292 . . R621d +chr1 SNP SNP 121829201 122025067 263 . . R622d +chr1 SNP SNP 122025068 122220934 525 . . R623d +chr1 SNP SNP 122220935 122416801 493 . . R624d +chr1 SNP SNP 122416802 122612668 343 . . R625d +chr1 SNP SNP 122612669 122808534 215 . . R626d +chr1 SNP SNP 122808535 123004401 89 . . R627d +chr1 SNP SNP 123004402 123200268 16 . . R628d +chr1 SNP SNP 123200269 123396135 18 . . R629d +chr1 SNP SNP 123396136 123592002 20 . . R630d +chr1 SNP SNP 123592003 123787869 27 . . R631d +chr1 SNP SNP 123787870 123983736 18 . . R632d +chr1 SNP SNP 123983737 124179603 8 . . R633d +chr1 SNP SNP 124179604 124375469 50 . . R634d +chr1 SNP SNP 124375470 124571336 37 . . R635d +chr1 SNP SNP 124571337 124767203 152 . . R636d +chr1 SNP SNP 124767204 124963070 556 . . R637d +chr1 SNP SNP 124963071 125158937 184 . . R638d +chr1 SNP SNP 125158938 125354804 520 . . R639d +chr1 SNP SNP 125354805 125550671 242 . . R640d +chr1 SNP SNP 125550672 125746537 533 . . R641d +chr1 SNP SNP 125746538 125942404 658 . . R642d +chr1 SNP SNP 125942405 126138271 905 . . R643d +chr1 SNP SNP 126138272 126334138 445 . . R644d +chr1 SNP SNP 126334139 126530005 351 . . R645d +chr1 SNP SNP 126530006 126725872 512 . . R646d +chr1 SNP SNP 126725873 126921739 428 . . R647d +chr1 SNP SNP 126921740 127117606 202 . . R648d +chr1 SNP SNP 127117607 127313472 347 . . R649d +chr1 SNP SNP 127313473 127509339 376 . . R650d +chr1 SNP SNP 127509340 127705206 167 . . R651d +chr1 SNP SNP 127705207 127901073 514 . . R652d +chr1 SNP SNP 127901074 128096940 196 . . R653d +chr1 SNP SNP 128096941 128292807 200 . . R654d +chr1 SNP SNP 128292808 128488674 292 . . R655d +chr1 SNP SNP 128488675 128684540 378 . . R656d +chr1 SNP SNP 128684541 128880407 500 . . R657d +chr1 SNP SNP 128880408 129076274 646 . . R658d +chr1 SNP SNP 129076275 129272141 16 . . R659d +chr1 SNP SNP 129272142 129468008 16 . . R660d +chr1 SNP SNP 129468009 129663875 18 . . R661d +chr1 SNP SNP 129663876 129859742 16 . . R662d +chr1 SNP SNP 129859743 130055609 35 . . R663d +chr1 SNP SNP 130055610 130251475 20 . . R664d +chr1 SNP SNP 130251476 130447342 10 . . R665d +chr1 SNP SNP 130447343 130643209 14 . . R666d +chr1 SNP SNP 130643210 130839076 25 . . R667d +chr1 SNP SNP 130839077 131034943 8 . . R668d +chr1 SNP SNP 131034944 131230810 50 . . R669d +chr1 SNP SNP 131230811 131426677 221 . . R670d +chr1 SNP SNP 131426678 131622543 263 . . R671d +chr1 SNP SNP 131622544 131818410 127 . . R672d +chr1 SNP SNP 131818411 132014277 341 . . R673d +chr1 SNP SNP 132014278 132210144 225 . . R674d +chr1 SNP SNP 132210145 132406011 167 . . R675d +chr1 SNP SNP 132406012 132601878 102 . . R676d +chr1 SNP SNP 132601879 132797745 338 . . R677d +chr1 SNP SNP 132797746 132993612 146 . . R678d +chr1 SNP SNP 132993613 133189478 29 . . R679d +chr1 SNP SNP 133189479 133385345 131 . . R680d +chr1 SNP SNP 133385346 133581212 234 . . R681d +chr1 SNP SNP 133581213 133777079 370 . . R682d +chr1 SNP SNP 133777080 133972946 416 . . R683d +chr1 SNP SNP 133972947 134168813 351 . . R684d +chr1 SNP SNP 134168814 134364680 94 . . R685d +chr1 SNP SNP 134364681 134560546 207 . . R686d +chr1 SNP SNP 134560547 134756413 35 . . R687d +chr1 SNP SNP 134756414 134952280 667 . . R688d +chr1 SNP SNP 134952281 135148147 575 . . R689d +chr1 SNP SNP 135148148 135344014 652 . . R690d +chr1 SNP SNP 135344015 135539881 640 . . R691d +chr1 SNP SNP 135539882 135735748 692 . . R692d +chr1 SNP SNP 135735749 135931615 579 . . R693d +chr1 SNP SNP 135931616 136127481 426 . . R694d +chr1 SNP SNP 136127482 136323348 508 . . R695d +chr1 SNP SNP 136323349 136519215 317 . . R696d +chr1 SNP SNP 136519216 136715082 374 . . R697d +chr1 SNP SNP 136715083 136910949 357 . . R698d +chr1 SNP SNP 136910950 137106816 359 . . R699d +chr1 SNP SNP 137106817 137302683 508 . . R700d +chr1 SNP SNP 137302684 137498549 364 . . R701d +chr1 SNP SNP 137498550 137694416 188 . . R702d +chr1 SNP SNP 137694417 137890283 372 . . R703d +chr1 SNP SNP 137890284 138086150 305 . . R704d +chr1 SNP SNP 138086151 138282017 460 . . R705d +chr1 SNP SNP 138282018 138477884 18 . . R706d +chr1 SNP SNP 138477885 138673751 18 . . R707d +chr1 SNP SNP 138673752 138869617 16 . . R708d +chr1 SNP SNP 138869618 139065484 445 . . R709d +chr1 SNP SNP 139065485 139261351 518 . . R710d +chr1 SNP SNP 139261352 139457218 694 . . R711d +chr1 SNP SNP 139457219 139653085 79 . . R712d +chr1 SNP SNP 139653086 139848952 37 . . R713d +chr1 SNP SNP 139848953 140044819 66 . . R714d +chr1 SNP SNP 140044820 140240686 328 . . R715d +chr1 SNP SNP 140240687 140436552 382 . . R716d +chr1 SNP SNP 140436553 140632419 163 . . R717d +chr1 SNP SNP 140632420 140828286 25 . . R718d +chr1 SNP SNP 140828287 141024153 12 . . R719d +chr1 SNP SNP 141024154 141220020 8 . . R720d +chr1 SNP SNP 141220021 141415887 27 . . R721d +chr1 SNP SNP 141415888 141611754 25 . . R722d +chr1 SNP SNP 141611755 141807620 16 . . R723d +chr1 SNP SNP 141807621 142003487 16 . . R724d +chr1 SNP SNP 142003488 142199354 12 . . R725d +chr1 SNP SNP 142199355 142395221 25 . . R726d +chr1 SNP SNP 142395222 142591088 10 . . R727d +chr1 SNP SNP 142591089 142786955 12 . . R728d +chr1 SNP SNP 142786956 142982822 4 . . R729d +chr1 SNP SNP 142982823 143178689 10 . . R730d +chr1 SNP SNP 143178690 143374555 12 . . R731d +chr1 SNP SNP 143374556 143570422 29 . . R732d +chr1 SNP SNP 143570423 143766289 8 . . R733d +chr1 SNP SNP 143766290 143962156 8 . . R734d +chr1 SNP SNP 143962157 144158023 2 . . R735d +chr1 SNP SNP 144158024 144353890 41 . . R736d +chr1 SNP SNP 144353891 144549757 14 . . R737d +chr1 SNP SNP 144549758 144745623 10 . . R738d +chr1 SNP SNP 144745624 144941490 10 . . R739d +chr1 SNP SNP 144941491 145137357 23 . . R740d +chr1 SNP SNP 145137358 145333224 12 . . R741d +chr1 SNP SNP 145333225 145529091 8 . . R742d +chr1 SNP SNP 145529092 145724958 52 . . R743d +chr1 SNP SNP 145724959 145920825 403 . . R744d +chr1 SNP SNP 145920826 146116692 439 . . R745d +chr1 SNP SNP 146116693 146312558 209 . . R746d +chr1 SNP SNP 146312559 146508425 301 . . R747d +chr1 SNP SNP 146508426 146704292 677 . . R748d +chr1 SNP SNP 146704293 146900159 456 . . R749d +chr1 SNP SNP 146900160 147096026 539 . . R750d +chr1 SNP SNP 147096027 147291893 583 . . R751d +chr1 SNP SNP 147291894 147487760 449 . . R752d +chr1 SNP SNP 147487761 147683626 102 . . R753d +chr1 SNP SNP 147683627 147879493 349 . . R754d +chr1 SNP SNP 147879494 148075360 307 . . R755d +chr1 SNP SNP 148075361 148271227 527 . . R756d +chr1 SNP SNP 148271228 148467094 711 . . R757d +chr1 SNP SNP 148467095 148662961 500 . . R758d +chr1 SNP SNP 148662962 148858828 581 . . R759d +chr1 SNP SNP 148858829 149054695 194 . . R760d +chr1 SNP SNP 149054696 149250561 485 . . R761d +chr1 SNP SNP 149250562 149446428 364 . . R762d +chr1 SNP SNP 149446429 149642295 472 . . R763d +chr1 SNP SNP 149642296 149838162 73 . . R764d +chr1 SNP SNP 149838163 150034029 35 . . R765d +chr1 SNP SNP 150034030 150229896 33 . . R766d +chr1 SNP SNP 150229897 150425763 274 . . R767d +chr1 SNP SNP 150425764 150621629 393 . . R768d +chr1 SNP SNP 150621630 150817496 307 . . R769d +chr1 SNP SNP 150817497 151013363 324 . . R770d +chr1 SNP SNP 151013364 151209230 238 . . R771d +chr1 SNP SNP 151209231 151405097 328 . . R772d +chr1 SNP SNP 151405098 151600964 165 . . R773d +chr1 SNP SNP 151600965 151796831 110 . . R774d +chr1 SNP SNP 151796832 151992698 334 . . R775d +chr1 SNP SNP 151992699 152188564 355 . . R776d +chr1 SNP SNP 152188565 152384431 466 . . R777d +chr1 SNP SNP 152384432 152580298 487 . . R778d +chr1 SNP SNP 152580299 152776165 43 . . R779d +chr1 SNP SNP 152776166 152972032 108 . . R780d +chr1 SNP SNP 152972033 153167899 255 . . R781d +chr1 SNP SNP 153167900 153363766 117 . . R782d +chr1 SNP SNP 153363767 153559632 64 . . R783d +chr1 SNP SNP 153559633 153755499 259 . . R784d +chr1 SNP SNP 153755500 153951366 537 . . R785d +chr1 SNP SNP 153951367 154147233 585 . . R786d +chr1 SNP SNP 154147234 154343100 790 . . R787d +chr1 SNP SNP 154343101 154538967 596 . . R788d +chr1 SNP SNP 154538968 154734834 709 . . R789d +chr1 SNP SNP 154734835 154930701 608 . . R790d +chr1 SNP SNP 154930702 155126567 832 . . R791d +chr1 SNP SNP 155126568 155322434 864 . . R792d +chr1 SNP SNP 155322435 155518301 606 . . R793d +chr1 SNP SNP 155518302 155714168 631 . . R794d +chr1 SNP SNP 155714169 155910035 437 . . R795d +chr1 SNP SNP 155910036 156105902 14 . . R796d +chr1 SNP SNP 156105903 156301769 108 . . R797d +chr1 SNP SNP 156301770 156497635 744 . . R798d +chr1 SNP SNP 156497636 156693502 619 . . R799d +chr1 SNP SNP 156693503 156889369 359 . . R800d +chr1 SNP SNP 156889370 157085236 608 . . R801d +chr1 SNP SNP 157085237 157281103 631 . . R802d +chr1 SNP SNP 157281104 157476970 732 . . R803d +chr1 SNP SNP 157476971 157672837 493 . . R804d +chr1 SNP SNP 157672838 157868703 817 . . R805d +chr1 SNP SNP 157868704 158064570 684 . . R806d +chr1 SNP SNP 158064571 158260437 422 . . R807d +chr1 SNP SNP 158260438 158456304 725 . . R808d +chr1 SNP SNP 158456305 158652171 765 . . R809d +chr1 SNP SNP 158652172 158848038 581 . . R810d +chr1 SNP SNP 158848039 159043905 721 . . R811d +chr1 SNP SNP 159043906 159239772 700 . . R812d +chr1 SNP SNP 159239773 159435638 644 . . R813d +chr1 SNP SNP 159435639 159631505 671 . . R814d +chr1 SNP SNP 159631506 159827372 780 . . R815d +chr1 SNP SNP 159827373 160023239 769 . . R816d +chr1 SNP SNP 160023240 160219106 535 . . R817d +chr1 SNP SNP 160219107 160414973 790 . . R818d +chr1 SNP SNP 160414974 160610840 723 . . R819d +chr1 SNP SNP 160610841 160806706 493 . . R820d +chr1 SNP SNP 160806707 161002573 769 . . R821d +chr1 SNP SNP 161002574 161198440 738 . . R822d +chr1 SNP SNP 161198441 161394307 709 . . R823d +chr1 SNP SNP 161394308 161590174 562 . . R824d +chr1 SNP SNP 161590175 161786041 625 . . R825d +chr1 SNP SNP 161786042 161981908 529 . . R826d +chr1 SNP SNP 161981909 162177775 719 . . R827d +chr1 SNP SNP 162177776 162373641 558 . . R828d +chr1 SNP SNP 162373642 162569508 805 . . R829d +chr1 SNP SNP 162569509 162765375 604 . . R830d +chr1 SNP SNP 162765376 162961242 780 . . R831d +chr1 SNP SNP 162961243 163157109 583 . . R832d +chr1 SNP SNP 163157110 163352976 635 . . R833d +chr1 SNP SNP 163352977 163548843 673 . . R834d +chr1 SNP SNP 163548844 163744709 585 . . R835d +chr1 SNP SNP 163744710 163940576 702 . . R836d +chr1 SNP SNP 163940577 164136443 594 . . R837d +chr1 SNP SNP 164136444 164332310 610 . . R838d +chr1 SNP SNP 164332311 164528177 652 . . R839d +chr1 SNP SNP 164528178 164724044 807 . . R840d +chr1 SNP SNP 164724045 164919911 502 . . R841d +chr1 SNP SNP 164919912 165115778 633 . . R842d +chr1 SNP SNP 165115779 165311644 619 . . R843d +chr1 SNP SNP 165311645 165507511 589 . . R844d +chr1 SNP SNP 165507512 165703378 479 . . R845d +chr1 SNP SNP 165703379 165899245 558 . . R846d +chr1 SNP SNP 165899246 166095112 587 . . R847d +chr1 SNP SNP 166095113 166290979 723 . . R848d +chr1 SNP SNP 166290980 166486846 717 . . R849d +chr1 SNP SNP 166486847 166682712 1000 . . R850d +chr1 SNP SNP 166682713 166878579 665 . . R851d +chr1 SNP SNP 166878580 167074446 824 . . R852d +chr1 SNP SNP 167074447 167270313 460 . . R853d +chr1 SNP SNP 167270314 167466180 728 . . R854d +chr1 SNP SNP 167466181 167662047 460 . . R855d +chr1 SNP SNP 167662048 167857914 640 . . R856d +chr1 SNP SNP 167857915 168053781 426 . . R857d +chr1 SNP SNP 168053782 168249647 627 . . R858d +chr1 SNP SNP 168249648 168445514 606 . . R859d +chr1 SNP SNP 168445515 168641381 493 . . R860d +chr1 SNP SNP 168641382 168837248 583 . . R861d +chr1 SNP SNP 168837249 169033115 8 . . R862d +chr1 SNP SNP 169033116 169228982 4 . . R863d +chr1 SNP SNP 169228983 169424849 4 . . R864d +chr1 SNP SNP 169424850 169620715 4 . . R865d +chr1 SNP SNP 169620716 169816582 14 . . R866d +chr1 SNP SNP 169816583 170012449 8 . . R867d +chr1 SNP SNP 170012450 170208316 4 . . R868d +chr1 SNP SNP 170208317 170404183 2 . . R869d +chr1 SNP SNP 170404184 170600050 4 . . R870d +chr1 SNP SNP 170600051 170795917 10 . . R871d +chr1 SNP SNP 170795918 170991784 14 . . R872d +chr1 SNP SNP 170991785 171187650 4 . . R873d +chr1 SNP SNP 171187651 171383517 20 . . R874d +chr1 SNP SNP 171383518 171579384 4 . . R875d +chr1 SNP SNP 171579385 171775251 16 . . R876d +chr1 SNP SNP 171775252 171971118 466 . . R877d +chr1 SNP SNP 171971119 172166985 543 . . R878d +chr1 SNP SNP 172166986 172362852 445 . . R879d +chr1 SNP SNP 172362853 172558718 728 . . R880d +chr1 SNP SNP 172558719 172754585 723 . . R881d +chr1 SNP SNP 172754586 172950452 715 . . R882d +chr1 SNP SNP 172950453 173146319 765 . . R883d +chr1 SNP SNP 173146320 173342186 696 . . R884d +chr1 SNP SNP 173342187 173538053 485 . . R885d +chr1 SNP SNP 173538054 173733920 638 . . R886d +chr1 SNP SNP 173733921 173929787 476 . . R887d +chr1 SNP SNP 173929788 174125653 627 . . R888d +chr1 SNP SNP 174125654 174321520 485 . . R889d +chr1 SNP SNP 174321521 174517387 537 . . R890d +chr1 SNP SNP 174517388 174713254 10 . . R891d +chr1 SNP SNP 174713255 174909121 46 . . R892d +chr1 SNP SNP 174909122 175104988 207 . . R893d +chr1 SNP SNP 175104989 175300855 209 . . R894d +chr1 SNP SNP 175300856 175496721 437 . . R895d +chr1 SNP SNP 175496722 175692588 640 . . R896d +chr1 SNP SNP 175692589 175888455 512 . . R897d +chr1 SNP SNP 175888456 176084322 378 . . R898d +chr1 SNP SNP 176084323 176280189 564 . . R899d +chr1 SNP SNP 176280190 176476056 60 . . R900d +chr1 SNP SNP 176476057 176671923 167 . . R901d +chr1 SNP SNP 176671924 176867789 64 . . R902d +chr1 SNP SNP 176867790 177063656 14 . . R903d +chr1 SNP SNP 177063657 177259523 14 . . R904d +chr1 SNP SNP 177259524 177455390 8 . . R905d +chr1 SNP SNP 177455391 177651257 8 . . R906d +chr1 SNP SNP 177651258 177847124 10 . . R907d +chr1 SNP SNP 177847125 178042991 10 . . R908d +chr1 SNP SNP 178042992 178238858 8 . . R909d +chr1 SNP SNP 178238859 178434724 6 . . R910d +chr1 SNP SNP 178434725 178630591 20 . . R911d +chr1 SNP SNP 178630592 178826458 18 . . R912d +chr1 SNP SNP 178826459 179022325 12 . . R913d +chr1 SNP SNP 179022326 179218192 12 . . R914d +chr1 SNP SNP 179218193 179414059 16 . . R915d +chr1 SNP SNP 179414060 179609926 18 . . R916d +chr1 SNP SNP 179609927 179805792 4 . . R917d +chr1 SNP SNP 179805793 180001659 8 . . R918d +chr1 SNP SNP 180001660 180197526 10 . . R919d +chr1 SNP SNP 180197527 180393393 10 . . R920d +chr1 SNP SNP 180393394 180589260 25 . . R921d +chr1 SNP SNP 180589261 180785127 269 . . R922d +chr1 SNP SNP 180785128 180980994 525 . . R923d +chr1 SNP SNP 180980995 181176861 276 . . R924d +chr1 SNP SNP 181176862 181372727 299 . . R925d +chr1 SNP SNP 181372728 181568594 200 . . R926d +chr1 SNP SNP 181568595 181764461 169 . . R927d +chr1 SNP SNP 181764462 181960328 297 . . R928d +chr1 SNP SNP 181960329 182156195 244 . . R929d +chr1 SNP SNP 182156196 182352062 336 . . R930d +chr1 SNP SNP 182352063 182547929 31 . . R931d +chr1 SNP SNP 182547930 182743795 20 . . R932d +chr1 SNP SNP 182743796 182939662 307 . . R933d +chr1 SNP SNP 182939663 183135529 89 . . R934d +chr1 SNP SNP 183135530 183331396 119 . . R935d +chr1 SNP SNP 183331397 183527263 39 . . R936d +chr1 SNP SNP 183527264 183723130 83 . . R937d +chr1 SNP SNP 183723131 183918997 215 . . R938d +chr1 SNP SNP 183918998 184114864 177 . . R939d +chr1 SNP SNP 184114865 184310730 516 . . R940d +chr1 SNP SNP 184310731 184506597 16 . . R941d +chr1 SNP SNP 184506598 184702464 94 . . R942d +chr1 SNP SNP 184702465 184898331 71 . . R943d +chr1 SNP SNP 184898332 185094198 31 . . R944d +chr1 SNP SNP 185094199 185290065 186 . . R945d +chr1 SNP SNP 185290066 185485932 135 . . R946d +chr1 SNP SNP 185485933 185681798 261 . . R947d +chr1 SNP SNP 185681799 185877665 223 . . R948d +chr1 SNP SNP 185877666 186073532 94 . . R949d +chr1 SNP SNP 186073533 186269399 236 . . R950d +chr1 SNP SNP 186269400 186465266 324 . . R951d +chr1 SNP SNP 186465267 186661133 407 . . R952d +chr1 SNP SNP 186661134 186857000 25 . . R953d +chr1 SNP SNP 186857001 187052867 27 . . R954d +chr1 SNP SNP 187052868 187248733 190 . . R955d +chr1 SNP SNP 187248734 187444600 257 . . R956d +chr1 SNP SNP 187444601 187640467 311 . . R957d +chr1 SNP SNP 187640468 187836334 294 . . R958d +chr1 SNP SNP 187836335 188032201 213 . . R959d +chr1 SNP SNP 188032202 188228068 41 . . R960d +chr1 SNP SNP 188228069 188423935 414 . . R961d +chr1 SNP SNP 188423936 188619801 171 . . R962d +chr1 SNP SNP 188619802 188815668 391 . . R963d +chr1 SNP SNP 188815669 189011535 242 . . R964d +chr1 SNP SNP 189011536 189207402 405 . . R965d +chr1 SNP SNP 189207403 189403269 146 . . R966d +chr1 SNP SNP 189403270 189599136 66 . . R967d +chr1 SNP SNP 189599137 189795003 52 . . R968d +chr1 SNP SNP 189795004 189990870 46 . . R969d +chr1 SNP SNP 189990871 190186736 138 . . R970d +chr1 SNP SNP 190186737 190382603 433 . . R971d +chr1 SNP SNP 190382604 190578470 200 . . R972d +chr1 SNP SNP 190578471 190774337 389 . . R973d +chr1 SNP SNP 190774338 190970204 248 . . R974d +chr1 SNP SNP 190970205 191166071 98 . . R975d +chr1 SNP SNP 191166072 191361938 92 . . R976d +chr1 SNP SNP 191361939 191557804 35 . . R977d +chr1 SNP SNP 191557805 191753671 223 . . R978d +chr1 SNP SNP 191753672 191949538 62 . . R979d +chr1 SNP SNP 191949539 192145405 261 . . R980d +chr1 SNP SNP 192145406 192341272 257 . . R981d +chr1 SNP SNP 192341273 192537139 520 . . R982d +chr1 SNP SNP 192537140 192733006 320 . . R983d +chr1 SNP SNP 192733007 192928873 441 . . R984d +chr1 SNP SNP 192928874 193124739 269 . . R985d +chr1 SNP SNP 193124740 193320606 182 . . R986d +chr1 SNP SNP 193320607 193516473 441 . . R987d +chr1 SNP SNP 193516474 193712340 255 . . R988d +chr1 SNP SNP 193712341 193908207 562 . . R989d +chr1 SNP SNP 193908208 194104074 451 . . R990d +chr1 SNP SNP 194104075 194299941 18 . . R991d +chr1 SNP SNP 194299942 194495807 8 . . R992d +chr1 SNP SNP 194495808 194691674 79 . . R993d +chr1 SNP SNP 194691675 194887541 236 . . R994d +chr1 SNP SNP 194887542 195083408 700 . . R995d +chr1 SNP SNP 195083409 195279275 209 . . R996d +chr1 SNP SNP 195279276 195475142 41 . . R997d +chr1 SNP SNP 195475143 195671009 14 . . R998d +chr1 SNP SNP 195671010 195866875 46 . . R999d +chr1 SNP SNP 195866876 196062742 0 . . R1000d diff --git a/web/snp/chr10 b/web/snp/chr10 new file mode 100755 index 00000000..688648f4 --- /dev/null +++ b/web/snp/chr10 @@ -0,0 +1,1004 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr10 SNP SNP 11 130738 0 . . R0d +chr10 SNP SNP 130739 261467 0 . . R1d +chr10 SNP SNP 261468 392195 0 . . R2d +chr10 SNP SNP 392196 522924 0 . . R3d +chr10 SNP SNP 522925 653652 0 . . R4d +chr10 SNP SNP 653653 784381 0 . . R5d +chr10 SNP SNP 784382 915110 0 . . R6d +chr10 SNP SNP 915111 1045838 0 . . R7d +chr10 SNP SNP 1045839 1176567 0 . . R8d +chr10 SNP SNP 1176568 1307295 0 . . R9d +chr10 SNP SNP 1307296 1438024 0 . . R10d +chr10 SNP SNP 1438025 1568752 0 . . R11d +chr10 SNP SNP 1568753 1699481 0 . . R12d +chr10 SNP SNP 1699482 1830210 0 . . R13d +chr10 SNP SNP 1830211 1960938 0 . . R14d +chr10 SNP SNP 1960939 2091667 0 . . R15d +chr10 SNP SNP 2091668 2222395 0 . . R16d +chr10 SNP SNP 2222396 2353124 0 . . R17d +chr10 SNP SNP 2353125 2483852 0 . . R18d +chr10 SNP SNP 2483853 2614581 0 . . R19d +chr10 SNP SNP 2614582 2745310 0 . . R20d +chr10 SNP SNP 2745311 2876038 0 . . R21d +chr10 SNP SNP 2876039 3006767 44 . . R22d +chr10 SNP SNP 3006768 3137495 355 . . R23d +chr10 SNP SNP 3137496 3268224 72 . . R24d +chr10 SNP SNP 3268225 3398953 368 . . R25d +chr10 SNP SNP 3398954 3529681 89 . . R26d +chr10 SNP SNP 3529682 3660410 31 . . R27d +chr10 SNP SNP 3660411 3791138 162 . . R28d +chr10 SNP SNP 3791139 3921867 131 . . R29d +chr10 SNP SNP 3921868 4052595 110 . . R30d +chr10 SNP SNP 4052596 4183324 27 . . R31d +chr10 SNP SNP 4183325 4314053 10 . . R32d +chr10 SNP SNP 4314054 4444781 27 . . R33d +chr10 SNP SNP 4444782 4575510 437 . . R34d +chr10 SNP SNP 4575511 4706238 55 . . R35d +chr10 SNP SNP 4706239 4836967 96 . . R36d +chr10 SNP SNP 4836968 4967695 51 . . R37d +chr10 SNP SNP 4967696 5098424 17 . . R38d +chr10 SNP SNP 5098425 5229153 455 . . R39d +chr10 SNP SNP 5229154 5359881 403 . . R40d +chr10 SNP SNP 5359882 5490610 513 . . R41d +chr10 SNP SNP 5490611 5621338 386 . . R42d +chr10 SNP SNP 5621339 5752067 393 . . R43d +chr10 SNP SNP 5752068 5882795 324 . . R44d +chr10 SNP SNP 5882796 6013524 600 . . R45d +chr10 SNP SNP 6013525 6144253 558 . . R46d +chr10 SNP SNP 6144254 6274981 465 . . R47d +chr10 SNP SNP 6274982 6405710 579 . . R48d +chr10 SNP SNP 6405711 6536438 479 . . R49d +chr10 SNP SNP 6536439 6667167 558 . . R50d +chr10 SNP SNP 6667168 6797896 472 . . R51d +chr10 SNP SNP 6797897 6928624 344 . . R52d +chr10 SNP SNP 6928625 7059353 506 . . R53d +chr10 SNP SNP 7059354 7190081 541 . . R54d +chr10 SNP SNP 7190082 7320810 203 . . R55d +chr10 SNP SNP 7320811 7451538 565 . . R56d +chr10 SNP SNP 7451539 7582267 465 . . R57d +chr10 SNP SNP 7582268 7712996 120 . . R58d +chr10 SNP SNP 7712997 7843724 468 . . R59d +chr10 SNP SNP 7843725 7974453 596 . . R60d +chr10 SNP SNP 7974454 8105181 400 . . R61d +chr10 SNP SNP 8105182 8235910 379 . . R62d +chr10 SNP SNP 8235911 8366638 496 . . R63d +chr10 SNP SNP 8366639 8497367 293 . . R64d +chr10 SNP SNP 8497368 8628096 200 . . R65d +chr10 SNP SNP 8628097 8758824 51 . . R66d +chr10 SNP SNP 8758825 8889553 675 . . R67d +chr10 SNP SNP 8889554 9020281 120 . . R68d +chr10 SNP SNP 9020282 9151010 131 . . R69d +chr10 SNP SNP 9151011 9281738 155 . . R70d +chr10 SNP SNP 9281739 9412467 165 . . R71d +chr10 SNP SNP 9412468 9543196 34 . . R72d +chr10 SNP SNP 9543197 9673924 17 . . R73d +chr10 SNP SNP 9673925 9804653 17 . . R74d +chr10 SNP SNP 9804654 9935381 324 . . R75d +chr10 SNP SNP 9935382 10066110 410 . . R76d +chr10 SNP SNP 10066111 10196839 568 . . R77d +chr10 SNP SNP 10196840 10327567 41 . . R78d +chr10 SNP SNP 10327568 10458296 24 . . R79d +chr10 SNP SNP 10458297 10589024 282 . . R80d +chr10 SNP SNP 10589025 10719753 113 . . R81d +chr10 SNP SNP 10719754 10850481 31 . . R82d +chr10 SNP SNP 10850482 10981210 27 . . R83d +chr10 SNP SNP 10981211 11111939 31 . . R84d +chr10 SNP SNP 11111940 11242667 31 . . R85d +chr10 SNP SNP 11242668 11373396 17 . . R86d +chr10 SNP SNP 11373397 11504124 65 . . R87d +chr10 SNP SNP 11504125 11634853 148 . . R88d +chr10 SNP SNP 11634854 11765581 182 . . R89d +chr10 SNP SNP 11765582 11896310 148 . . R90d +chr10 SNP SNP 11896311 12027039 520 . . R91d +chr10 SNP SNP 12027040 12157767 106 . . R92d +chr10 SNP SNP 12157768 12288496 586 . . R93d +chr10 SNP SNP 12288497 12419224 96 . . R94d +chr10 SNP SNP 12419225 12549953 117 . . R95d +chr10 SNP SNP 12549954 12680681 172 . . R96d +chr10 SNP SNP 12680682 12811410 503 . . R97d +chr10 SNP SNP 12811411 12942139 889 . . R98d +chr10 SNP SNP 12942140 13072867 672 . . R99d +chr10 SNP SNP 13072868 13203596 593 . . R100d +chr10 SNP SNP 13203597 13334324 868 . . R101d +chr10 SNP SNP 13334325 13465053 444 . . R102d +chr10 SNP SNP 13465054 13595782 534 . . R103d +chr10 SNP SNP 13595783 13726510 520 . . R104d +chr10 SNP SNP 13726511 13857239 772 . . R105d +chr10 SNP SNP 13857240 13987967 610 . . R106d +chr10 SNP SNP 13987968 14118696 379 . . R107d +chr10 SNP SNP 14118697 14249424 524 . . R108d +chr10 SNP SNP 14249425 14380153 648 . . R109d +chr10 SNP SNP 14380154 14510882 734 . . R110d +chr10 SNP SNP 14510883 14641610 786 . . R111d +chr10 SNP SNP 14641611 14772339 713 . . R112d +chr10 SNP SNP 14772340 14903067 282 . . R113d +chr10 SNP SNP 14903068 15033796 717 . . R114d +chr10 SNP SNP 15033797 15164524 755 . . R115d +chr10 SNP SNP 15164525 15295253 548 . . R116d +chr10 SNP SNP 15295254 15425982 372 . . R117d +chr10 SNP SNP 15425983 15556710 379 . . R118d +chr10 SNP SNP 15556711 15687439 65 . . R119d +chr10 SNP SNP 15687440 15818167 186 . . R120d +chr10 SNP SNP 15818168 15948896 575 . . R121d +chr10 SNP SNP 15948897 16079624 27 . . R122d +chr10 SNP SNP 16079625 16210353 31 . . R123d +chr10 SNP SNP 16210354 16341082 34 . . R124d +chr10 SNP SNP 16341083 16471810 41 . . R125d +chr10 SNP SNP 16471811 16602539 62 . . R126d +chr10 SNP SNP 16602540 16733267 231 . . R127d +chr10 SNP SNP 16733268 16863996 155 . . R128d +chr10 SNP SNP 16863997 16994725 424 . . R129d +chr10 SNP SNP 16994726 17125453 44 . . R130d +chr10 SNP SNP 17125454 17256182 65 . . R131d +chr10 SNP SNP 17256183 17386910 272 . . R132d +chr10 SNP SNP 17386911 17517639 282 . . R133d +chr10 SNP SNP 17517640 17648367 241 . . R134d +chr10 SNP SNP 17648368 17779096 313 . . R135d +chr10 SNP SNP 17779097 17909825 186 . . R136d +chr10 SNP SNP 17909826 18040553 634 . . R137d +chr10 SNP SNP 18040554 18171282 424 . . R138d +chr10 SNP SNP 18171283 18302010 224 . . R139d +chr10 SNP SNP 18302011 18432739 110 . . R140d +chr10 SNP SNP 18432740 18563467 234 . . R141d +chr10 SNP SNP 18563468 18694196 355 . . R142d +chr10 SNP SNP 18694197 18824925 744 . . R143d +chr10 SNP SNP 18824926 18955653 244 . . R144d +chr10 SNP SNP 18955654 19086382 379 . . R145d +chr10 SNP SNP 19086383 19217110 120 . . R146d +chr10 SNP SNP 19217111 19347839 303 . . R147d +chr10 SNP SNP 19347840 19478567 231 . . R148d +chr10 SNP SNP 19478568 19609296 41 . . R149d +chr10 SNP SNP 19609297 19740025 158 . . R150d +chr10 SNP SNP 19740026 19870753 368 . . R151d +chr10 SNP SNP 19870754 20001482 655 . . R152d +chr10 SNP SNP 20001483 20132210 286 . . R153d +chr10 SNP SNP 20132211 20262939 31 . . R154d +chr10 SNP SNP 20262940 20393668 37 . . R155d +chr10 SNP SNP 20393669 20524396 179 . . R156d +chr10 SNP SNP 20524397 20655125 31 . . R157d +chr10 SNP SNP 20655126 20785853 24 . . R158d +chr10 SNP SNP 20785854 20916582 3 . . R159d +chr10 SNP SNP 20916583 21047310 10 . . R160d +chr10 SNP SNP 21047311 21178039 6 . . R161d +chr10 SNP SNP 21178040 21308768 13 . . R162d +chr10 SNP SNP 21308769 21439496 17 . . R163d +chr10 SNP SNP 21439497 21570225 13 . . R164d +chr10 SNP SNP 21570226 21700953 17 . . R165d +chr10 SNP SNP 21700954 21831682 24 . . R166d +chr10 SNP SNP 21831683 21962410 6 . . R167d +chr10 SNP SNP 21962411 22093139 0 . . R168d +chr10 SNP SNP 22093140 22223868 31 . . R169d +chr10 SNP SNP 22223869 22354596 31 . . R170d +chr10 SNP SNP 22354597 22485325 17 . . R171d +chr10 SNP SNP 22485326 22616053 17 . . R172d +chr10 SNP SNP 22616054 22746782 0 . . R173d +chr10 SNP SNP 22746783 22877510 27 . . R174d +chr10 SNP SNP 22877511 23008239 10 . . R175d +chr10 SNP SNP 23008240 23138968 27 . . R176d +chr10 SNP SNP 23138969 23269696 6 . . R177d +chr10 SNP SNP 23269697 23400425 3 . . R178d +chr10 SNP SNP 23400426 23531153 6 . . R179d +chr10 SNP SNP 23531154 23661882 3 . . R180d +chr10 SNP SNP 23661883 23792611 20 . . R181d +chr10 SNP SNP 23792612 23923339 17 . . R182d +chr10 SNP SNP 23923340 24054068 10 . . R183d +chr10 SNP SNP 24054069 24184796 3 . . R184d +chr10 SNP SNP 24184797 24315525 13 . . R185d +chr10 SNP SNP 24315526 24446253 24 . . R186d +chr10 SNP SNP 24446254 24576982 17 . . R187d +chr10 SNP SNP 24576983 24707711 13 . . R188d +chr10 SNP SNP 24707712 24838439 3 . . R189d +chr10 SNP SNP 24838440 24969168 20 . . R190d +chr10 SNP SNP 24969169 25099896 31 . . R191d +chr10 SNP SNP 25099897 25230625 10 . . R192d +chr10 SNP SNP 25230626 25361353 6 . . R193d +chr10 SNP SNP 25361354 25492082 17 . . R194d +chr10 SNP SNP 25492083 25622811 13 . . R195d +chr10 SNP SNP 25622812 25753539 13 . . R196d +chr10 SNP SNP 25753540 25884268 24 . . R197d +chr10 SNP SNP 25884269 26014996 3 . . R198d +chr10 SNP SNP 26014997 26145725 24 . . R199d +chr10 SNP SNP 26145726 26276453 13 . . R200d +chr10 SNP SNP 26276454 26407182 27 . . R201d +chr10 SNP SNP 26407183 26537911 24 . . R202d +chr10 SNP SNP 26537912 26668639 31 . . R203d +chr10 SNP SNP 26668640 26799368 17 . . R204d +chr10 SNP SNP 26799369 26930096 10 . . R205d +chr10 SNP SNP 26930097 27060825 17 . . R206d +chr10 SNP SNP 27060826 27191554 3 . . R207d +chr10 SNP SNP 27191555 27322282 37 . . R208d +chr10 SNP SNP 27322283 27453011 324 . . R209d +chr10 SNP SNP 27453012 27583739 637 . . R210d +chr10 SNP SNP 27583740 27714468 348 . . R211d +chr10 SNP SNP 27714469 27845196 279 . . R212d +chr10 SNP SNP 27845197 27975925 172 . . R213d +chr10 SNP SNP 27975926 28106654 27 . . R214d +chr10 SNP SNP 28106655 28237382 586 . . R215d +chr10 SNP SNP 28237383 28368111 600 . . R216d +chr10 SNP SNP 28368112 28498839 493 . . R217d +chr10 SNP SNP 28498840 28629568 341 . . R218d +chr10 SNP SNP 28629569 28760296 334 . . R219d +chr10 SNP SNP 28760297 28891025 675 . . R220d +chr10 SNP SNP 28891026 29021754 400 . . R221d +chr10 SNP SNP 29021755 29152482 3 . . R222d +chr10 SNP SNP 29152483 29283211 24 . . R223d +chr10 SNP SNP 29283212 29413939 17 . . R224d +chr10 SNP SNP 29413940 29544668 10 . . R225d +chr10 SNP SNP 29544669 29675396 41 . . R226d +chr10 SNP SNP 29675397 29806125 10 . . R227d +chr10 SNP SNP 29806126 29936854 20 . . R228d +chr10 SNP SNP 29936855 30067582 10 . . R229d +chr10 SNP SNP 30067583 30198311 20 . . R230d +chr10 SNP SNP 30198312 30329039 6 . . R231d +chr10 SNP SNP 30329040 30459768 34 . . R232d +chr10 SNP SNP 30459769 30590497 193 . . R233d +chr10 SNP SNP 30590498 30721225 344 . . R234d +chr10 SNP SNP 30721226 30851954 44 . . R235d +chr10 SNP SNP 30851955 30982682 10 . . R236d +chr10 SNP SNP 30982683 31113411 27 . . R237d +chr10 SNP SNP 31113412 31244139 34 . . R238d +chr10 SNP SNP 31244140 31374868 10 . . R239d +chr10 SNP SNP 31374869 31505597 10 . . R240d +chr10 SNP SNP 31505598 31636325 31 . . R241d +chr10 SNP SNP 31636326 31767054 17 . . R242d +chr10 SNP SNP 31767055 31897782 17 . . R243d +chr10 SNP SNP 31897783 32028511 13 . . R244d +chr10 SNP SNP 32028512 32159239 20 . . R245d +chr10 SNP SNP 32159240 32289968 20 . . R246d +chr10 SNP SNP 32289969 32420697 10 . . R247d +chr10 SNP SNP 32420698 32551425 13 . . R248d +chr10 SNP SNP 32551426 32682154 6 . . R249d +chr10 SNP SNP 32682155 32812882 27 . . R250d +chr10 SNP SNP 32812883 32943611 24 . . R251d +chr10 SNP SNP 32943612 33074339 6 . . R252d +chr10 SNP SNP 33074340 33205068 10 . . R253d +chr10 SNP SNP 33205069 33335797 10 . . R254d +chr10 SNP SNP 33335798 33466525 31 . . R255d +chr10 SNP SNP 33466526 33597254 13 . . R256d +chr10 SNP SNP 33597255 33727982 34 . . R257d +chr10 SNP SNP 33727983 33858711 10 . . R258d +chr10 SNP SNP 33858712 33989440 27 . . R259d +chr10 SNP SNP 33989441 34120168 24 . . R260d +chr10 SNP SNP 34120169 34250897 13 . . R261d +chr10 SNP SNP 34250898 34381625 17 . . R262d +chr10 SNP SNP 34381626 34512354 17 . . R263d +chr10 SNP SNP 34512355 34643082 20 . . R264d +chr10 SNP SNP 34643083 34773811 20 . . R265d +chr10 SNP SNP 34773812 34904540 6 . . R266d +chr10 SNP SNP 34904541 35035268 13 . . R267d +chr10 SNP SNP 35035269 35165997 6 . . R268d +chr10 SNP SNP 35165998 35296725 13 . . R269d +chr10 SNP SNP 35296726 35427454 24 . . R270d +chr10 SNP SNP 35427455 35558182 13 . . R271d +chr10 SNP SNP 35558183 35688911 27 . . R272d +chr10 SNP SNP 35688912 35819640 13 . . R273d +chr10 SNP SNP 35819641 35950368 6 . . R274d +chr10 SNP SNP 35950369 36081097 34 . . R275d +chr10 SNP SNP 36081098 36211825 6 . . R276d +chr10 SNP SNP 36211826 36342554 27 . . R277d +chr10 SNP SNP 36342555 36473282 13 . . R278d +chr10 SNP SNP 36473283 36604011 10 . . R279d +chr10 SNP SNP 36604012 36734740 20 . . R280d +chr10 SNP SNP 36734741 36865468 17 . . R281d +chr10 SNP SNP 36865469 36996197 6 . . R282d +chr10 SNP SNP 36996198 37126925 13 . . R283d +chr10 SNP SNP 37126926 37257654 17 . . R284d +chr10 SNP SNP 37257655 37388383 20 . . R285d +chr10 SNP SNP 37388384 37519111 6 . . R286d +chr10 SNP SNP 37519112 37649840 10 . . R287d +chr10 SNP SNP 37649841 37780568 17 . . R288d +chr10 SNP SNP 37780569 37911297 37 . . R289d +chr10 SNP SNP 37911298 38042025 17 . . R290d +chr10 SNP SNP 38042026 38172754 27 . . R291d +chr10 SNP SNP 38172755 38303483 13 . . R292d +chr10 SNP SNP 38303484 38434211 10 . . R293d +chr10 SNP SNP 38434212 38564940 10 . . R294d +chr10 SNP SNP 38564941 38695668 20 . . R295d +chr10 SNP SNP 38695669 38826397 34 . . R296d +chr10 SNP SNP 38826398 38957125 13 . . R297d +chr10 SNP SNP 38957126 39087854 10 . . R298d +chr10 SNP SNP 39087855 39218583 3 . . R299d +chr10 SNP SNP 39218584 39349311 6 . . R300d +chr10 SNP SNP 39349312 39480040 10 . . R301d +chr10 SNP SNP 39480041 39610768 13 . . R302d +chr10 SNP SNP 39610769 39741497 6 . . R303d +chr10 SNP SNP 39741498 39872225 17 . . R304d +chr10 SNP SNP 39872226 40002954 20 . . R305d +chr10 SNP SNP 40002955 40133683 17 . . R306d +chr10 SNP SNP 40133684 40264411 10 . . R307d +chr10 SNP SNP 40264412 40395140 3 . . R308d +chr10 SNP SNP 40395141 40525868 17 . . R309d +chr10 SNP SNP 40525869 40656597 10 . . R310d +chr10 SNP SNP 40656598 40787326 13 . . R311d +chr10 SNP SNP 40787327 40918054 10 . . R312d +chr10 SNP SNP 40918055 41048783 0 . . R313d +chr10 SNP SNP 41048784 41179511 10 . . R314d +chr10 SNP SNP 41179512 41310240 13 . . R315d +chr10 SNP SNP 41310241 41440968 24 . . R316d +chr10 SNP SNP 41440969 41571697 6 . . R317d +chr10 SNP SNP 41571698 41702426 24 . . R318d +chr10 SNP SNP 41702427 41833154 20 . . R319d +chr10 SNP SNP 41833155 41963883 6 . . R320d +chr10 SNP SNP 41963884 42094611 24 . . R321d +chr10 SNP SNP 42094612 42225340 17 . . R322d +chr10 SNP SNP 42225341 42356068 17 . . R323d +chr10 SNP SNP 42356069 42486797 13 . . R324d +chr10 SNP SNP 42486798 42617526 6 . . R325d +chr10 SNP SNP 42617527 42748254 6 . . R326d +chr10 SNP SNP 42748255 42878983 10 . . R327d +chr10 SNP SNP 42878984 43009711 17 . . R328d +chr10 SNP SNP 43009712 43140440 58 . . R329d +chr10 SNP SNP 43140441 43271168 20 . . R330d +chr10 SNP SNP 43271169 43401897 13 . . R331d +chr10 SNP SNP 43401898 43532626 20 . . R332d +chr10 SNP SNP 43532627 43663354 48 . . R333d +chr10 SNP SNP 43663355 43794083 17 . . R334d +chr10 SNP SNP 43794084 43924811 13 . . R335d +chr10 SNP SNP 43924812 44055540 6 . . R336d +chr10 SNP SNP 44055541 44186269 10 . . R337d +chr10 SNP SNP 44186270 44316997 34 . . R338d +chr10 SNP SNP 44316998 44447726 17 . . R339d +chr10 SNP SNP 44447727 44578454 17 . . R340d +chr10 SNP SNP 44578455 44709183 3 . . R341d +chr10 SNP SNP 44709184 44839911 17 . . R342d +chr10 SNP SNP 44839912 44970640 10 . . R343d +chr10 SNP SNP 44970641 45101369 24 . . R344d +chr10 SNP SNP 45101370 45232097 6 . . R345d +chr10 SNP SNP 45232098 45362826 10 . . R346d +chr10 SNP SNP 45362827 45493554 0 . . R347d +chr10 SNP SNP 45493555 45624283 10 . . R348d +chr10 SNP SNP 45624284 45755011 20 . . R349d +chr10 SNP SNP 45755012 45885740 31 . . R350d +chr10 SNP SNP 45885741 46016469 10 . . R351d +chr10 SNP SNP 46016470 46147197 24 . . R352d +chr10 SNP SNP 46147198 46277926 17 . . R353d +chr10 SNP SNP 46277927 46408654 13 . . R354d +chr10 SNP SNP 46408655 46539383 20 . . R355d +chr10 SNP SNP 46539384 46670111 189 . . R356d +chr10 SNP SNP 46670112 46800840 755 . . R357d +chr10 SNP SNP 46800841 46931569 44 . . R358d +chr10 SNP SNP 46931570 47062297 17 . . R359d +chr10 SNP SNP 47062298 47193026 20 . . R360d +chr10 SNP SNP 47193027 47323754 37 . . R361d +chr10 SNP SNP 47323755 47454483 17 . . R362d +chr10 SNP SNP 47454484 47585212 13 . . R363d +chr10 SNP SNP 47585213 47715940 24 . . R364d +chr10 SNP SNP 47715941 47846669 10 . . R365d +chr10 SNP SNP 47846670 47977397 6 . . R366d +chr10 SNP SNP 47977398 48108126 24 . . R367d +chr10 SNP SNP 48108127 48238854 17 . . R368d +chr10 SNP SNP 48238855 48369583 31 . . R369d +chr10 SNP SNP 48369584 48500312 10 . . R370d +chr10 SNP SNP 48500313 48631040 20 . . R371d +chr10 SNP SNP 48631041 48761769 20 . . R372d +chr10 SNP SNP 48761770 48892497 34 . . R373d +chr10 SNP SNP 48892498 49023226 31 . . R374d +chr10 SNP SNP 49023227 49153954 20 . . R375d +chr10 SNP SNP 49153955 49284683 6 . . R376d +chr10 SNP SNP 49284684 49415412 17 . . R377d +chr10 SNP SNP 49415413 49546140 17 . . R378d +chr10 SNP SNP 49546141 49676869 31 . . R379d +chr10 SNP SNP 49676870 49807597 17 . . R380d +chr10 SNP SNP 49807598 49938326 13 . . R381d +chr10 SNP SNP 49938327 50069054 20 . . R382d +chr10 SNP SNP 50069055 50199783 27 . . R383d +chr10 SNP SNP 50199784 50330512 20 . . R384d +chr10 SNP SNP 50330513 50461240 20 . . R385d +chr10 SNP SNP 50461241 50591969 13 . . R386d +chr10 SNP SNP 50591970 50722697 34 . . R387d +chr10 SNP SNP 50722698 50853426 20 . . R388d +chr10 SNP SNP 50853427 50984155 34 . . R389d +chr10 SNP SNP 50984156 51114883 10 . . R390d +chr10 SNP SNP 51114884 51245612 17 . . R391d +chr10 SNP SNP 51245613 51376340 13 . . R392d +chr10 SNP SNP 51376341 51507069 13 . . R393d +chr10 SNP SNP 51507070 51637797 34 . . R394d +chr10 SNP SNP 51637798 51768526 17 . . R395d +chr10 SNP SNP 51768527 51899255 27 . . R396d +chr10 SNP SNP 51899256 52029983 10 . . R397d +chr10 SNP SNP 52029984 52160712 6 . . R398d +chr10 SNP SNP 52160713 52291440 27 . . R399d +chr10 SNP SNP 52291441 52422169 6 . . R400d +chr10 SNP SNP 52422170 52552897 10 . . R401d +chr10 SNP SNP 52552898 52683626 17 . . R402d +chr10 SNP SNP 52683627 52814355 13 . . R403d +chr10 SNP SNP 52814356 52945083 6 . . R404d +chr10 SNP SNP 52945084 53075812 20 . . R405d +chr10 SNP SNP 53075813 53206540 10 . . R406d +chr10 SNP SNP 53206541 53337269 17 . . R407d +chr10 SNP SNP 53337270 53467997 24 . . R408d +chr10 SNP SNP 53467998 53598726 13 . . R409d +chr10 SNP SNP 53598727 53729455 17 . . R410d +chr10 SNP SNP 53729456 53860183 20 . . R411d +chr10 SNP SNP 53860184 53990912 41 . . R412d +chr10 SNP SNP 53990913 54121640 20 . . R413d +chr10 SNP SNP 54121641 54252369 13 . . R414d +chr10 SNP SNP 54252370 54383098 3 . . R415d +chr10 SNP SNP 54383099 54513826 17 . . R416d +chr10 SNP SNP 54513827 54644555 20 . . R417d +chr10 SNP SNP 54644556 54775283 34 . . R418d +chr10 SNP SNP 54775284 54906012 27 . . R419d +chr10 SNP SNP 54906013 55036740 10 . . R420d +chr10 SNP SNP 55036741 55167469 17 . . R421d +chr10 SNP SNP 55167470 55298198 17 . . R422d +chr10 SNP SNP 55298199 55428926 17 . . R423d +chr10 SNP SNP 55428927 55559655 10 . . R424d +chr10 SNP SNP 55559656 55690383 13 . . R425d +chr10 SNP SNP 55690384 55821112 17 . . R426d +chr10 SNP SNP 55821113 55951840 10 . . R427d +chr10 SNP SNP 55951841 56082569 24 . . R428d +chr10 SNP SNP 56082570 56213298 31 . . R429d +chr10 SNP SNP 56213299 56344026 31 . . R430d +chr10 SNP SNP 56344027 56474755 3 . . R431d +chr10 SNP SNP 56474756 56605483 17 . . R432d +chr10 SNP SNP 56605484 56736212 6 . . R433d +chr10 SNP SNP 56736213 56866940 17 . . R434d +chr10 SNP SNP 56866941 56997669 3 . . R435d +chr10 SNP SNP 56997670 57128398 13 . . R436d +chr10 SNP SNP 57128399 57259126 24 . . R437d +chr10 SNP SNP 57259127 57389855 24 . . R438d +chr10 SNP SNP 57389856 57520583 17 . . R439d +chr10 SNP SNP 57520584 57651312 24 . . R440d +chr10 SNP SNP 57651313 57782041 13 . . R441d +chr10 SNP SNP 57782042 57912769 10 . . R442d +chr10 SNP SNP 57912770 58043498 27 . . R443d +chr10 SNP SNP 58043499 58174226 10 . . R444d +chr10 SNP SNP 58174227 58304955 6 . . R445d +chr10 SNP SNP 58304956 58435683 27 . . R446d +chr10 SNP SNP 58435684 58566412 10 . . R447d +chr10 SNP SNP 58566413 58697141 24 . . R448d +chr10 SNP SNP 58697142 58827869 3 . . R449d +chr10 SNP SNP 58827870 58958598 27 . . R450d +chr10 SNP SNP 58958599 59089326 27 . . R451d +chr10 SNP SNP 59089327 59220055 17 . . R452d +chr10 SNP SNP 59220056 59350783 20 . . R453d +chr10 SNP SNP 59350784 59481512 17 . . R454d +chr10 SNP SNP 59481513 59612241 10 . . R455d +chr10 SNP SNP 59612242 59742969 17 . . R456d +chr10 SNP SNP 59742970 59873698 6 . . R457d +chr10 SNP SNP 59873699 60004426 10 . . R458d +chr10 SNP SNP 60004427 60135155 10 . . R459d +chr10 SNP SNP 60135156 60265883 17 . . R460d +chr10 SNP SNP 60265884 60396612 10 . . R461d +chr10 SNP SNP 60396613 60527341 10 . . R462d +chr10 SNP SNP 60527342 60658069 10 . . R463d +chr10 SNP SNP 60658070 60788798 24 . . R464d +chr10 SNP SNP 60788799 60919526 17 . . R465d +chr10 SNP SNP 60919527 61050255 13 . . R466d +chr10 SNP SNP 61050256 61180984 10 . . R467d +chr10 SNP SNP 61180985 61311712 10 . . R468d +chr10 SNP SNP 61311713 61442441 13 . . R469d +chr10 SNP SNP 61442442 61573169 13 . . R470d +chr10 SNP SNP 61573170 61703898 0 . . R471d +chr10 SNP SNP 61703899 61834626 10 . . R472d +chr10 SNP SNP 61834627 61965355 0 . . R473d +chr10 SNP SNP 61965356 62096084 10 . . R474d +chr10 SNP SNP 62096085 62226812 37 . . R475d +chr10 SNP SNP 62226813 62357541 17 . . R476d +chr10 SNP SNP 62357542 62488269 27 . . R477d +chr10 SNP SNP 62488270 62618998 34 . . R478d +chr10 SNP SNP 62618999 62749726 41 . . R479d +chr10 SNP SNP 62749727 62880455 10 . . R480d +chr10 SNP SNP 62880456 63011184 6 . . R481d +chr10 SNP SNP 63011185 63141912 24 . . R482d +chr10 SNP SNP 63141913 63272641 31 . . R483d +chr10 SNP SNP 63272642 63403369 6 . . R484d +chr10 SNP SNP 63403370 63534098 13 . . R485d +chr10 SNP SNP 63534099 63664826 17 . . R486d +chr10 SNP SNP 63664827 63795555 13 . . R487d +chr10 SNP SNP 63795556 63926284 10 . . R488d +chr10 SNP SNP 63926285 64057012 13 . . R489d +chr10 SNP SNP 64057013 64187741 17 . . R490d +chr10 SNP SNP 64187742 64318469 6 . . R491d +chr10 SNP SNP 64318470 64449198 41 . . R492d +chr10 SNP SNP 64449199 64579927 3 . . R493d +chr10 SNP SNP 64579928 64710655 31 . . R494d +chr10 SNP SNP 64710656 64841384 31 . . R495d +chr10 SNP SNP 64841385 64972112 13 . . R496d +chr10 SNP SNP 64972113 65102841 31 . . R497d +chr10 SNP SNP 65102842 65233569 20 . . R498d +chr10 SNP SNP 65233570 65364298 10 . . R499d +chr10 SNP SNP 65364299 65495027 34 . . R500d +chr10 SNP SNP 65495028 65625755 13 . . R501d +chr10 SNP SNP 65625756 65756484 13 . . R502d +chr10 SNP SNP 65756485 65887212 27 . . R503d +chr10 SNP SNP 65887213 66017941 3 . . R504d +chr10 SNP SNP 66017942 66148669 13 . . R505d +chr10 SNP SNP 66148670 66279398 13 . . R506d +chr10 SNP SNP 66279399 66410127 6 . . R507d +chr10 SNP SNP 66410128 66540855 3 . . R508d +chr10 SNP SNP 66540856 66671584 44 . . R509d +chr10 SNP SNP 66671585 66802312 13 . . R510d +chr10 SNP SNP 66802313 66933041 27 . . R511d +chr10 SNP SNP 66933042 67063770 24 . . R512d +chr10 SNP SNP 67063771 67194498 20 . . R513d +chr10 SNP SNP 67194499 67325227 24 . . R514d +chr10 SNP SNP 67325228 67455955 20 . . R515d +chr10 SNP SNP 67455956 67586684 327 . . R516d +chr10 SNP SNP 67586685 67717412 579 . . R517d +chr10 SNP SNP 67717413 67848141 734 . . R518d +chr10 SNP SNP 67848142 67978870 748 . . R519d +chr10 SNP SNP 67978871 68109598 172 . . R520d +chr10 SNP SNP 68109599 68240327 75 . . R521d +chr10 SNP SNP 68240328 68371055 503 . . R522d +chr10 SNP SNP 68371056 68501784 320 . . R523d +chr10 SNP SNP 68501785 68632512 24 . . R524d +chr10 SNP SNP 68632513 68763241 117 . . R525d +chr10 SNP SNP 68763242 68893970 320 . . R526d +chr10 SNP SNP 68893971 69024698 189 . . R527d +chr10 SNP SNP 69024699 69155427 241 . . R528d +chr10 SNP SNP 69155428 69286155 362 . . R529d +chr10 SNP SNP 69286156 69416884 41 . . R530d +chr10 SNP SNP 69416885 69547612 13 . . R531d +chr10 SNP SNP 69547613 69678341 37 . . R532d +chr10 SNP SNP 69678342 69809070 27 . . R533d +chr10 SNP SNP 69809071 69939798 20 . . R534d +chr10 SNP SNP 69939799 70070527 10 . . R535d +chr10 SNP SNP 70070528 70201255 20 . . R536d +chr10 SNP SNP 70201256 70331984 13 . . R537d +chr10 SNP SNP 70331985 70462713 24 . . R538d +chr10 SNP SNP 70462714 70593441 10 . . R539d +chr10 SNP SNP 70593442 70724170 20 . . R540d +chr10 SNP SNP 70724171 70854898 20 . . R541d +chr10 SNP SNP 70854899 70985627 10 . . R542d +chr10 SNP SNP 70985628 71116355 24 . . R543d +chr10 SNP SNP 71116356 71247084 3 . . R544d +chr10 SNP SNP 71247085 71377813 24 . . R545d +chr10 SNP SNP 71377814 71508541 34 . . R546d +chr10 SNP SNP 71508542 71639270 10 . . R547d +chr10 SNP SNP 71639271 71769998 17 . . R548d +chr10 SNP SNP 71769999 71900727 10 . . R549d +chr10 SNP SNP 71900728 72031455 10 . . R550d +chr10 SNP SNP 72031456 72162184 13 . . R551d +chr10 SNP SNP 72162185 72292913 6 . . R552d +chr10 SNP SNP 72292914 72423641 10 . . R553d +chr10 SNP SNP 72423642 72554370 10 . . R554d +chr10 SNP SNP 72554371 72685098 17 . . R555d +chr10 SNP SNP 72685099 72815827 17 . . R556d +chr10 SNP SNP 72815828 72946555 10 . . R557d +chr10 SNP SNP 72946556 73077284 27 . . R558d +chr10 SNP SNP 73077285 73208013 6 . . R559d +chr10 SNP SNP 73208014 73338741 13 . . R560d +chr10 SNP SNP 73338742 73469470 10 . . R561d +chr10 SNP SNP 73469471 73600198 20 . . R562d +chr10 SNP SNP 73600199 73730927 13 . . R563d +chr10 SNP SNP 73730928 73861656 27 . . R564d +chr10 SNP SNP 73861657 73992384 34 . . R565d +chr10 SNP SNP 73992385 74123113 0 . . R566d +chr10 SNP SNP 74123114 74253841 3 . . R567d +chr10 SNP SNP 74253842 74384570 6 . . R568d +chr10 SNP SNP 74384571 74515298 24 . . R569d +chr10 SNP SNP 74515299 74646027 10 . . R570d +chr10 SNP SNP 74646028 74776756 6 . . R571d +chr10 SNP SNP 74776757 74907484 13 . . R572d +chr10 SNP SNP 74907485 75038213 6 . . R573d +chr10 SNP SNP 75038214 75168941 20 . . R574d +chr10 SNP SNP 75168942 75299670 10 . . R575d +chr10 SNP SNP 75299671 75430398 31 . . R576d +chr10 SNP SNP 75430399 75561127 48 . . R577d +chr10 SNP SNP 75561128 75691856 31 . . R578d +chr10 SNP SNP 75691857 75822584 13 . . R579d +chr10 SNP SNP 75822585 75953313 20 . . R580d +chr10 SNP SNP 75953314 76084041 13 . . R581d +chr10 SNP SNP 76084042 76214770 10 . . R582d +chr10 SNP SNP 76214771 76345498 24 . . R583d +chr10 SNP SNP 76345499 76476227 17 . . R584d +chr10 SNP SNP 76476228 76606956 10 . . R585d +chr10 SNP SNP 76606957 76737684 17 . . R586d +chr10 SNP SNP 76737685 76868413 17 . . R587d +chr10 SNP SNP 76868414 76999141 3 . . R588d +chr10 SNP SNP 76999142 77129870 10 . . R589d +chr10 SNP SNP 77129871 77260599 27 . . R590d +chr10 SNP SNP 77260600 77391327 10 . . R591d +chr10 SNP SNP 77391328 77522056 17 . . R592d +chr10 SNP SNP 77522057 77652784 17 . . R593d +chr10 SNP SNP 77652785 77783513 10 . . R594d +chr10 SNP SNP 77783514 77914241 13 . . R595d +chr10 SNP SNP 77914242 78044970 0 . . R596d +chr10 SNP SNP 78044971 78175699 13 . . R597d +chr10 SNP SNP 78175700 78306427 10 . . R598d +chr10 SNP SNP 78306428 78437156 17 . . R599d +chr10 SNP SNP 78437157 78567884 3 . . R600d +chr10 SNP SNP 78567885 78698613 13 . . R601d +chr10 SNP SNP 78698614 78829341 31 . . R602d +chr10 SNP SNP 78829342 78960070 27 . . R603d +chr10 SNP SNP 78960071 79090799 20 . . R604d +chr10 SNP SNP 79090800 79221527 6 . . R605d +chr10 SNP SNP 79221528 79352256 10 . . R606d +chr10 SNP SNP 79352257 79482984 13 . . R607d +chr10 SNP SNP 79482985 79613713 10 . . R608d +chr10 SNP SNP 79613714 79744441 41 . . R609d +chr10 SNP SNP 79744442 79875170 6 . . R610d +chr10 SNP SNP 79875171 80005899 17 . . R611d +chr10 SNP SNP 80005900 80136627 3 . . R612d +chr10 SNP SNP 80136628 80267356 6 . . R613d +chr10 SNP SNP 80267357 80398084 20 . . R614d +chr10 SNP SNP 80398085 80528813 17 . . R615d +chr10 SNP SNP 80528814 80659542 10 . . R616d +chr10 SNP SNP 80659543 80790270 20 . . R617d +chr10 SNP SNP 80790271 80920999 17 . . R618d +chr10 SNP SNP 80921000 81051727 20 . . R619d +chr10 SNP SNP 81051728 81182456 6 . . R620d +chr10 SNP SNP 81182457 81313184 10 . . R621d +chr10 SNP SNP 81313185 81443913 13 . . R622d +chr10 SNP SNP 81443914 81574642 20 . . R623d +chr10 SNP SNP 81574643 81705370 82 . . R624d +chr10 SNP SNP 81705371 81836099 117 . . R625d +chr10 SNP SNP 81836100 81966827 572 . . R626d +chr10 SNP SNP 81966828 82097556 520 . . R627d +chr10 SNP SNP 82097557 82228284 644 . . R628d +chr10 SNP SNP 82228285 82359013 400 . . R629d +chr10 SNP SNP 82359014 82489742 451 . . R630d +chr10 SNP SNP 82489743 82620470 489 . . R631d +chr10 SNP SNP 82620471 82751199 27 . . R632d +chr10 SNP SNP 82751200 82881927 13 . . R633d +chr10 SNP SNP 82881928 83012656 27 . . R634d +chr10 SNP SNP 83012657 83143384 17 . . R635d +chr10 SNP SNP 83143385 83274113 13 . . R636d +chr10 SNP SNP 83274114 83404842 13 . . R637d +chr10 SNP SNP 83404843 83535570 17 . . R638d +chr10 SNP SNP 83535571 83666299 24 . . R639d +chr10 SNP SNP 83666300 83797027 6 . . R640d +chr10 SNP SNP 83797028 83927756 10 . . R641d +chr10 SNP SNP 83927757 84058485 13 . . R642d +chr10 SNP SNP 84058486 84189213 117 . . R643d +chr10 SNP SNP 84189214 84319942 486 . . R644d +chr10 SNP SNP 84319943 84450670 258 . . R645d +chr10 SNP SNP 84450671 84581399 206 . . R646d +chr10 SNP SNP 84581400 84712127 13 . . R647d +chr10 SNP SNP 84712128 84842856 306 . . R648d +chr10 SNP SNP 84842857 84973585 417 . . R649d +chr10 SNP SNP 84973586 85104313 272 . . R650d +chr10 SNP SNP 85104314 85235042 389 . . R651d +chr10 SNP SNP 85235043 85365770 386 . . R652d +chr10 SNP SNP 85365771 85496499 27 . . R653d +chr10 SNP SNP 85496500 85627227 144 . . R654d +chr10 SNP SNP 85627228 85757956 268 . . R655d +chr10 SNP SNP 85757957 85888685 20 . . R656d +chr10 SNP SNP 85888686 86019413 93 . . R657d +chr10 SNP SNP 86019414 86150142 72 . . R658d +chr10 SNP SNP 86150143 86280870 231 . . R659d +chr10 SNP SNP 86280871 86411599 558 . . R660d +chr10 SNP SNP 86411600 86542327 413 . . R661d +chr10 SNP SNP 86542328 86673056 168 . . R662d +chr10 SNP SNP 86673057 86803785 82 . . R663d +chr10 SNP SNP 86803786 86934513 413 . . R664d +chr10 SNP SNP 86934514 87065242 200 . . R665d +chr10 SNP SNP 87065243 87195970 186 . . R666d +chr10 SNP SNP 87195971 87326699 320 . . R667d +chr10 SNP SNP 87326700 87457428 68 . . R668d +chr10 SNP SNP 87457429 87588156 351 . . R669d +chr10 SNP SNP 87588157 87718885 420 . . R670d +chr10 SNP SNP 87718886 87849613 37 . . R671d +chr10 SNP SNP 87849614 87980342 689 . . R672d +chr10 SNP SNP 87980343 88111070 489 . . R673d +chr10 SNP SNP 88111071 88241799 210 . . R674d +chr10 SNP SNP 88241800 88372528 582 . . R675d +chr10 SNP SNP 88372529 88503256 210 . . R676d +chr10 SNP SNP 88503257 88633985 372 . . R677d +chr10 SNP SNP 88633986 88764713 79 . . R678d +chr10 SNP SNP 88764714 88895442 17 . . R679d +chr10 SNP SNP 88895443 89026170 13 . . R680d +chr10 SNP SNP 89026171 89156899 365 . . R681d +chr10 SNP SNP 89156900 89287628 493 . . R682d +chr10 SNP SNP 89287629 89418356 524 . . R683d +chr10 SNP SNP 89418357 89549085 358 . . R684d +chr10 SNP SNP 89549086 89679813 503 . . R685d +chr10 SNP SNP 89679814 89810542 244 . . R686d +chr10 SNP SNP 89810543 89941270 110 . . R687d +chr10 SNP SNP 89941271 90071999 300 . . R688d +chr10 SNP SNP 90072000 90202728 644 . . R689d +chr10 SNP SNP 90202729 90333456 155 . . R690d +chr10 SNP SNP 90333457 90464185 420 . . R691d +chr10 SNP SNP 90464186 90594913 24 . . R692d +chr10 SNP SNP 90594914 90725642 379 . . R693d +chr10 SNP SNP 90725643 90856371 96 . . R694d +chr10 SNP SNP 90856372 90987099 179 . . R695d +chr10 SNP SNP 90987100 91117828 24 . . R696d +chr10 SNP SNP 91117829 91248556 13 . . R697d +chr10 SNP SNP 91248557 91379285 27 . . R698d +chr10 SNP SNP 91379286 91510013 768 . . R699d +chr10 SNP SNP 91510014 91640742 800 . . R700d +chr10 SNP SNP 91640743 91771471 972 . . R701d +chr10 SNP SNP 91771472 91902199 803 . . R702d +chr10 SNP SNP 91902200 92032928 1000 . . R703d +chr10 SNP SNP 92032929 92163656 806 . . R704d +chr10 SNP SNP 92163657 92294385 672 . . R705d +chr10 SNP SNP 92294386 92425113 634 . . R706d +chr10 SNP SNP 92425114 92555842 713 . . R707d +chr10 SNP SNP 92555843 92686571 655 . . R708d +chr10 SNP SNP 92686572 92817299 889 . . R709d +chr10 SNP SNP 92817300 92948028 475 . . R710d +chr10 SNP SNP 92948029 93078756 613 . . R711d +chr10 SNP SNP 93078757 93209485 620 . . R712d +chr10 SNP SNP 93209486 93340213 517 . . R713d +chr10 SNP SNP 93340214 93470942 641 . . R714d +chr10 SNP SNP 93470943 93601671 648 . . R715d +chr10 SNP SNP 93601672 93732399 896 . . R716d +chr10 SNP SNP 93732400 93863128 582 . . R717d +chr10 SNP SNP 93863129 93993856 31 . . R718d +chr10 SNP SNP 93993857 94124585 20 . . R719d +chr10 SNP SNP 94124586 94255314 13 . . R720d +chr10 SNP SNP 94255315 94386042 17 . . R721d +chr10 SNP SNP 94386043 94516771 10 . . R722d +chr10 SNP SNP 94516772 94647499 24 . . R723d +chr10 SNP SNP 94647500 94778228 13 . . R724d +chr10 SNP SNP 94778229 94908956 24 . . R725d +chr10 SNP SNP 94908957 95039685 17 . . R726d +chr10 SNP SNP 95039686 95170414 34 . . R727d +chr10 SNP SNP 95170415 95301142 6 . . R728d +chr10 SNP SNP 95301143 95431871 10 . . R729d +chr10 SNP SNP 95431872 95562599 6 . . R730d +chr10 SNP SNP 95562600 95693328 24 . . R731d +chr10 SNP SNP 95693329 95824056 3 . . R732d +chr10 SNP SNP 95824057 95954785 20 . . R733d +chr10 SNP SNP 95954786 96085514 24 . . R734d +chr10 SNP SNP 96085515 96216242 24 . . R735d +chr10 SNP SNP 96216243 96346971 13 . . R736d +chr10 SNP SNP 96346972 96477699 13 . . R737d +chr10 SNP SNP 96477700 96608428 20 . . R738d +chr10 SNP SNP 96608429 96739156 20 . . R739d +chr10 SNP SNP 96739157 96869885 13 . . R740d +chr10 SNP SNP 96869886 97000614 37 . . R741d +chr10 SNP SNP 97000615 97131342 41 . . R742d +chr10 SNP SNP 97131343 97262071 44 . . R743d +chr10 SNP SNP 97262072 97392799 13 . . R744d +chr10 SNP SNP 97392800 97523528 24 . . R745d +chr10 SNP SNP 97523529 97654257 6 . . R746d +chr10 SNP SNP 97654258 97784985 6 . . R747d +chr10 SNP SNP 97784986 97915714 27 . . R748d +chr10 SNP SNP 97915715 98046442 13 . . R749d +chr10 SNP SNP 98046443 98177171 6 . . R750d +chr10 SNP SNP 98177172 98307899 13 . . R751d +chr10 SNP SNP 98307900 98438628 31 . . R752d +chr10 SNP SNP 98438629 98569357 13 . . R753d +chr10 SNP SNP 98569358 98700085 20 . . R754d +chr10 SNP SNP 98700086 98830814 20 . . R755d +chr10 SNP SNP 98830815 98961542 6 . . R756d +chr10 SNP SNP 98961543 99092271 13 . . R757d +chr10 SNP SNP 99092272 99222999 6 . . R758d +chr10 SNP SNP 99223000 99353728 10 . . R759d +chr10 SNP SNP 99353729 99484457 6 . . R760d +chr10 SNP SNP 99484458 99615185 13 . . R761d +chr10 SNP SNP 99615186 99745914 13 . . R762d +chr10 SNP SNP 99745915 99876642 13 . . R763d +chr10 SNP SNP 99876643 100007371 24 . . R764d +chr10 SNP SNP 100007372 100138099 13 . . R765d +chr10 SNP SNP 100138100 100268828 10 . . R766d +chr10 SNP SNP 100268829 100399557 17 . . R767d +chr10 SNP SNP 100399558 100530285 13 . . R768d +chr10 SNP SNP 100530286 100661014 24 . . R769d +chr10 SNP SNP 100661015 100791742 13 . . R770d +chr10 SNP SNP 100791743 100922471 31 . . R771d +chr10 SNP SNP 100922472 101053200 13 . . R772d +chr10 SNP SNP 101053201 101183928 13 . . R773d +chr10 SNP SNP 101183929 101314657 17 . . R774d +chr10 SNP SNP 101314658 101445385 27 . . R775d +chr10 SNP SNP 101445386 101576114 51 . . R776d +chr10 SNP SNP 101576115 101706842 31 . . R777d +chr10 SNP SNP 101706843 101837571 31 . . R778d +chr10 SNP SNP 101837572 101968300 27 . . R779d +chr10 SNP SNP 101968301 102099028 34 . . R780d +chr10 SNP SNP 102099029 102229757 317 . . R781d +chr10 SNP SNP 102229758 102360485 472 . . R782d +chr10 SNP SNP 102360486 102491214 265 . . R783d +chr10 SNP SNP 102491215 102621942 558 . . R784d +chr10 SNP SNP 102621943 102752671 458 . . R785d +chr10 SNP SNP 102752672 102883400 593 . . R786d +chr10 SNP SNP 102883401 103014128 582 . . R787d +chr10 SNP SNP 103014129 103144857 437 . . R788d +chr10 SNP SNP 103144858 103275585 648 . . R789d +chr10 SNP SNP 103275586 103406314 400 . . R790d +chr10 SNP SNP 103406315 103537042 803 . . R791d +chr10 SNP SNP 103537043 103667771 651 . . R792d +chr10 SNP SNP 103667772 103798500 782 . . R793d +chr10 SNP SNP 103798501 103929228 544 . . R794d +chr10 SNP SNP 103929229 104059957 465 . . R795d +chr10 SNP SNP 104059958 104190685 386 . . R796d +chr10 SNP SNP 104190686 104321414 565 . . R797d +chr10 SNP SNP 104321415 104452143 655 . . R798d +chr10 SNP SNP 104452144 104582871 365 . . R799d +chr10 SNP SNP 104582872 104713600 724 . . R800d +chr10 SNP SNP 104713601 104844328 731 . . R801d +chr10 SNP SNP 104844329 104975057 424 . . R802d +chr10 SNP SNP 104975058 105105785 679 . . R803d +chr10 SNP SNP 105105786 105236514 82 . . R804d +chr10 SNP SNP 105236515 105367243 41 . . R805d +chr10 SNP SNP 105367244 105497971 117 . . R806d +chr10 SNP SNP 105497972 105628700 62 . . R807d +chr10 SNP SNP 105628701 105759428 24 . . R808d +chr10 SNP SNP 105759429 105890157 27 . . R809d +chr10 SNP SNP 105890158 106020885 24 . . R810d +chr10 SNP SNP 106020886 106151614 103 . . R811d +chr10 SNP SNP 106151615 106282343 41 . . R812d +chr10 SNP SNP 106282344 106413071 106 . . R813d +chr10 SNP SNP 106413072 106543800 400 . . R814d +chr10 SNP SNP 106543801 106674528 41 . . R815d +chr10 SNP SNP 106674529 106805257 37 . . R816d +chr10 SNP SNP 106805258 106935985 124 . . R817d +chr10 SNP SNP 106935986 107066714 51 . . R818d +chr10 SNP SNP 107066715 107197443 24 . . R819d +chr10 SNP SNP 107197444 107328171 441 . . R820d +chr10 SNP SNP 107328172 107458900 468 . . R821d +chr10 SNP SNP 107458901 107589628 72 . . R822d +chr10 SNP SNP 107589629 107720357 27 . . R823d +chr10 SNP SNP 107720358 107851086 189 . . R824d +chr10 SNP SNP 107851087 107981814 403 . . R825d +chr10 SNP SNP 107981815 108112543 155 . . R826d +chr10 SNP SNP 108112544 108243271 272 . . R827d +chr10 SNP SNP 108243272 108374000 20 . . R828d +chr10 SNP SNP 108374001 108504728 17 . . R829d +chr10 SNP SNP 108504729 108635457 10 . . R830d +chr10 SNP SNP 108635458 108766186 27 . . R831d +chr10 SNP SNP 108766187 108896914 24 . . R832d +chr10 SNP SNP 108896915 109027643 27 . . R833d +chr10 SNP SNP 109027644 109158371 0 . . R834d +chr10 SNP SNP 109158372 109289100 10 . . R835d +chr10 SNP SNP 109289101 109419828 37 . . R836d +chr10 SNP SNP 109419829 109550557 31 . . R837d +chr10 SNP SNP 109550558 109681286 17 . . R838d +chr10 SNP SNP 109681287 109812014 24 . . R839d +chr10 SNP SNP 109812015 109942743 351 . . R840d +chr10 SNP SNP 109942744 110073471 382 . . R841d +chr10 SNP SNP 110073472 110204200 213 . . R842d +chr10 SNP SNP 110204201 110334928 396 . . R843d +chr10 SNP SNP 110334929 110465657 120 . . R844d +chr10 SNP SNP 110465658 110596386 131 . . R845d +chr10 SNP SNP 110596387 110727114 679 . . R846d +chr10 SNP SNP 110727115 110857843 320 . . R847d +chr10 SNP SNP 110857844 110988571 348 . . R848d +chr10 SNP SNP 110988572 111119300 24 . . R849d +chr10 SNP SNP 111119301 111250029 451 . . R850d +chr10 SNP SNP 111250030 111380757 510 . . R851d +chr10 SNP SNP 111380758 111511486 158 . . R852d +chr10 SNP SNP 111511487 111642214 17 . . R853d +chr10 SNP SNP 111642215 111772943 141 . . R854d +chr10 SNP SNP 111772944 111903671 189 . . R855d +chr10 SNP SNP 111903672 112034400 172 . . R856d +chr10 SNP SNP 112034401 112165129 210 . . R857d +chr10 SNP SNP 112165130 112295857 41 . . R858d +chr10 SNP SNP 112295858 112426586 17 . . R859d +chr10 SNP SNP 112426587 112557314 3 . . R860d +chr10 SNP SNP 112557315 112688043 24 . . R861d +chr10 SNP SNP 112688044 112818771 13 . . R862d +chr10 SNP SNP 112818772 112949500 41 . . R863d +chr10 SNP SNP 112949501 113080229 6 . . R864d +chr10 SNP SNP 113080230 113210957 17 . . R865d +chr10 SNP SNP 113210958 113341686 13 . . R866d +chr10 SNP SNP 113341687 113472414 17 . . R867d +chr10 SNP SNP 113472415 113603143 6 . . R868d +chr10 SNP SNP 113603144 113733871 27 . . R869d +chr10 SNP SNP 113733872 113864600 34 . . R870d +chr10 SNP SNP 113864601 113995329 44 . . R871d +chr10 SNP SNP 113995330 114126057 568 . . R872d +chr10 SNP SNP 114126058 114256786 524 . . R873d +chr10 SNP SNP 114256787 114387514 48 . . R874d +chr10 SNP SNP 114387515 114518243 3 . . R875d +chr10 SNP SNP 114518244 114648972 6 . . R876d +chr10 SNP SNP 114648973 114779700 103 . . R877d +chr10 SNP SNP 114779701 114910429 400 . . R878d +chr10 SNP SNP 114910430 115041157 55 . . R879d +chr10 SNP SNP 115041158 115171886 51 . . R880d +chr10 SNP SNP 115171887 115302614 79 . . R881d +chr10 SNP SNP 115302615 115433343 96 . . R882d +chr10 SNP SNP 115433344 115564072 427 . . R883d +chr10 SNP SNP 115564073 115694800 62 . . R884d +chr10 SNP SNP 115694801 115825529 10 . . R885d +chr10 SNP SNP 115825530 115956257 20 . . R886d +chr10 SNP SNP 115956258 116086986 17 . . R887d +chr10 SNP SNP 116086987 116217714 10 . . R888d +chr10 SNP SNP 116217715 116348443 17 . . R889d +chr10 SNP SNP 116348444 116479172 3 . . R890d +chr10 SNP SNP 116479173 116609900 17 . . R891d +chr10 SNP SNP 116609901 116740629 6 . . R892d +chr10 SNP SNP 116740630 116871357 24 . . R893d +chr10 SNP SNP 116871358 117002086 58 . . R894d +chr10 SNP SNP 117002087 117132814 282 . . R895d +chr10 SNP SNP 117132815 117263543 300 . . R896d +chr10 SNP SNP 117263544 117394272 27 . . R897d +chr10 SNP SNP 117394273 117525000 93 . . R898d +chr10 SNP SNP 117525001 117655729 289 . . R899d +chr10 SNP SNP 117655730 117786457 351 . . R900d +chr10 SNP SNP 117786458 117917186 348 . . R901d +chr10 SNP SNP 117917187 118047915 258 . . R902d +chr10 SNP SNP 118047916 118178643 393 . . R903d +chr10 SNP SNP 118178644 118309372 213 . . R904d +chr10 SNP SNP 118309373 118440100 165 . . R905d +chr10 SNP SNP 118440101 118570829 437 . . R906d +chr10 SNP SNP 118570830 118701557 182 . . R907d +chr10 SNP SNP 118701558 118832286 93 . . R908d +chr10 SNP SNP 118832287 118963015 396 . . R909d +chr10 SNP SNP 118963016 119093743 537 . . R910d +chr10 SNP SNP 119093744 119224472 579 . . R911d +chr10 SNP SNP 119224473 119355200 472 . . R912d +chr10 SNP SNP 119355201 119485929 362 . . R913d +chr10 SNP SNP 119485930 119616657 148 . . R914d +chr10 SNP SNP 119616658 119747386 137 . . R915d +chr10 SNP SNP 119747387 119878115 58 . . R916d +chr10 SNP SNP 119878116 120008843 131 . . R917d +chr10 SNP SNP 120008844 120139572 100 . . R918d +chr10 SNP SNP 120139573 120270300 189 . . R919d +chr10 SNP SNP 120270301 120401029 134 . . R920d +chr10 SNP SNP 120401030 120531757 165 . . R921d +chr10 SNP SNP 120531758 120662486 65 . . R922d +chr10 SNP SNP 120662487 120793215 6 . . R923d +chr10 SNP SNP 120793216 120923943 527 . . R924d +chr10 SNP SNP 120923944 121054672 406 . . R925d +chr10 SNP SNP 121054673 121185400 386 . . R926d +chr10 SNP SNP 121185401 121316129 431 . . R927d +chr10 SNP SNP 121316130 121446858 475 . . R928d +chr10 SNP SNP 121446859 121577586 10 . . R929d +chr10 SNP SNP 121577587 121708315 34 . . R930d +chr10 SNP SNP 121708316 121839043 6 . . R931d +chr10 SNP SNP 121839044 121969772 13 . . R932d +chr10 SNP SNP 121969773 122100500 27 . . R933d +chr10 SNP SNP 122100501 122231229 17 . . R934d +chr10 SNP SNP 122231230 122361958 20 . . R935d +chr10 SNP SNP 122361959 122492686 17 . . R936d +chr10 SNP SNP 122492687 122623415 234 . . R937d +chr10 SNP SNP 122623416 122754143 427 . . R938d +chr10 SNP SNP 122754144 122884872 468 . . R939d +chr10 SNP SNP 122884873 123015600 44 . . R940d +chr10 SNP SNP 123015601 123146329 396 . . R941d +chr10 SNP SNP 123146330 123277058 420 . . R942d +chr10 SNP SNP 123277059 123407786 165 . . R943d +chr10 SNP SNP 123407787 123538515 41 . . R944d +chr10 SNP SNP 123538516 123669243 358 . . R945d +chr10 SNP SNP 123669244 123799972 234 . . R946d +chr10 SNP SNP 123799973 123930700 310 . . R947d +chr10 SNP SNP 123930701 124061429 13 . . R948d +chr10 SNP SNP 124061430 124192158 3 . . R949d +chr10 SNP SNP 124192159 124322886 13 . . R950d +chr10 SNP SNP 124322887 124453615 6 . . R951d +chr10 SNP SNP 124453616 124584343 324 . . R952d +chr10 SNP SNP 124584344 124715072 493 . . R953d +chr10 SNP SNP 124715073 124845801 127 . . R954d +chr10 SNP SNP 124845802 124976529 644 . . R955d +chr10 SNP SNP 124976530 125107258 210 . . R956d +chr10 SNP SNP 125107259 125237986 348 . . R957d +chr10 SNP SNP 125237987 125368715 334 . . R958d +chr10 SNP SNP 125368716 125499443 65 . . R959d +chr10 SNP SNP 125499444 125630172 155 . . R960d +chr10 SNP SNP 125630173 125760901 479 . . R961d +chr10 SNP SNP 125760902 125891629 441 . . R962d +chr10 SNP SNP 125891630 126022358 331 . . R963d +chr10 SNP SNP 126022359 126153086 317 . . R964d +chr10 SNP SNP 126153087 126283815 272 . . R965d +chr10 SNP SNP 126283816 126414543 303 . . R966d +chr10 SNP SNP 126414544 126545272 151 . . R967d +chr10 SNP SNP 126545273 126676001 68 . . R968d +chr10 SNP SNP 126676002 126806729 0 . . R969d +chr10 SNP SNP 126806730 126937458 0 . . R970d +chr10 SNP SNP 126937459 127068186 137 . . R971d +chr10 SNP SNP 127068187 127198915 279 . . R972d +chr10 SNP SNP 127198916 127329643 479 . . R973d +chr10 SNP SNP 127329644 127460372 103 . . R974d +chr10 SNP SNP 127460373 127591101 200 . . R975d +chr10 SNP SNP 127591102 127721829 510 . . R976d +chr10 SNP SNP 127721830 127852558 420 . . R977d +chr10 SNP SNP 127852559 127983286 3 . . R978d +chr10 SNP SNP 127983287 128114015 24 . . R979d +chr10 SNP SNP 128114016 128244744 3 . . R980d +chr10 SNP SNP 128244745 128375472 10 . . R981d +chr10 SNP SNP 128375473 128506201 10 . . R982d +chr10 SNP SNP 128506202 128636929 6 . . R983d +chr10 SNP SNP 128636930 128767658 44 . . R984d +chr10 SNP SNP 128767659 128898386 17 . . R985d +chr10 SNP SNP 128898387 129029115 20 . . R986d +chr10 SNP SNP 129029116 129159844 24 . . R987d +chr10 SNP SNP 129159845 129290572 10 . . R988d +chr10 SNP SNP 129290573 129421301 10 . . R989d +chr10 SNP SNP 129421302 129552029 10 . . R990d +chr10 SNP SNP 129552030 129682758 24 . . R991d +chr10 SNP SNP 129682759 129813486 41 . . R992d +chr10 SNP SNP 129813487 129944215 24 . . R993d +chr10 SNP SNP 129944216 130074944 6 . . R994d +chr10 SNP SNP 130074945 130205672 13 . . R995d +chr10 SNP SNP 130205673 130336401 20 . . R996d +chr10 SNP SNP 130336402 130467129 10 . . R997d +chr10 SNP SNP 130467130 130597858 10 . . R998d +chr10 SNP SNP 130597859 130728586 48 . . R999d +chr10 SNP SNP 130728587 130859315 0 . . R1000d diff --git a/web/snp/chr11 b/web/snp/chr11 new file mode 100755 index 00000000..5aa0d490 --- /dev/null +++ b/web/snp/chr11 @@ -0,0 +1,1003 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr11 SNP SNP 11 122866 0 . . R0d +chr11 SNP SNP 122867 245723 0 . . R1d +chr11 SNP SNP 245724 368580 0 . . R2d +chr11 SNP SNP 368581 491437 0 . . R3d +chr11 SNP SNP 491438 614294 0 . . R4d +chr11 SNP SNP 614295 737151 0 . . R5d +chr11 SNP SNP 737152 860008 0 . . R6d +chr11 SNP SNP 860009 982865 0 . . R7d +chr11 SNP SNP 982866 1105722 0 . . R8d +chr11 SNP SNP 1105723 1228579 0 . . R9d +chr11 SNP SNP 1228580 1351436 0 . . R10d +chr11 SNP SNP 1351437 1474293 0 . . R11d +chr11 SNP SNP 1474294 1597150 0 . . R12d +chr11 SNP SNP 1597151 1720007 0 . . R13d +chr11 SNP SNP 1720008 1842864 0 . . R14d +chr11 SNP SNP 1842865 1965721 0 . . R15d +chr11 SNP SNP 1965722 2088578 0 . . R16d +chr11 SNP SNP 2088579 2211435 0 . . R17d +chr11 SNP SNP 2211436 2334292 0 . . R18d +chr11 SNP SNP 2334293 2457149 0 . . R19d +chr11 SNP SNP 2457150 2580006 0 . . R20d +chr11 SNP SNP 2580007 2702863 0 . . R21d +chr11 SNP SNP 2702864 2825720 0 . . R22d +chr11 SNP SNP 2825721 2948577 0 . . R23d +chr11 SNP SNP 2948578 3071434 14 . . R24d +chr11 SNP SNP 3071435 3194291 5 . . R25d +chr11 SNP SNP 3194292 3317148 26 . . R26d +chr11 SNP SNP 3317149 3440005 17 . . R27d +chr11 SNP SNP 3440006 3562862 20 . . R28d +chr11 SNP SNP 3562863 3685719 14 . . R29d +chr11 SNP SNP 3685720 3808576 5 . . R30d +chr11 SNP SNP 3808577 3931433 26 . . R31d +chr11 SNP SNP 3931434 4054290 5 . . R32d +chr11 SNP SNP 4054291 4177147 20 . . R33d +chr11 SNP SNP 4177148 4300004 17 . . R34d +chr11 SNP SNP 4300005 4422861 11 . . R35d +chr11 SNP SNP 4422862 4545718 14 . . R36d +chr11 SNP SNP 4545719 4668575 76 . . R37d +chr11 SNP SNP 4668576 4791431 68 . . R38d +chr11 SNP SNP 4791432 4914288 71 . . R39d +chr11 SNP SNP 4914289 5037145 186 . . R40d +chr11 SNP SNP 5037146 5160002 17 . . R41d +chr11 SNP SNP 5160003 5282859 11 . . R42d +chr11 SNP SNP 5282860 5405716 17 . . R43d +chr11 SNP SNP 5405717 5528573 11 . . R44d +chr11 SNP SNP 5528574 5651430 23 . . R45d +chr11 SNP SNP 5651431 5774287 26 . . R46d +chr11 SNP SNP 5774288 5897144 5 . . R47d +chr11 SNP SNP 5897145 6020001 5 . . R48d +chr11 SNP SNP 6020002 6142858 0 . . R49d +chr11 SNP SNP 6142859 6265715 2 . . R50d +chr11 SNP SNP 6265716 6388572 5 . . R51d +chr11 SNP SNP 6388573 6511429 8 . . R52d +chr11 SNP SNP 6511430 6634286 11 . . R53d +chr11 SNP SNP 6634287 6757143 26 . . R54d +chr11 SNP SNP 6757144 6880000 5 . . R55d +chr11 SNP SNP 6880001 7002857 17 . . R56d +chr11 SNP SNP 7002858 7125714 23 . . R57d +chr11 SNP SNP 7125715 7248571 17 . . R58d +chr11 SNP SNP 7248572 7371428 17 . . R59d +chr11 SNP SNP 7371429 7494285 11 . . R60d +chr11 SNP SNP 7494286 7617142 14 . . R61d +chr11 SNP SNP 7617143 7739999 23 . . R62d +chr11 SNP SNP 7740000 7862856 11 . . R63d +chr11 SNP SNP 7862857 7985713 11 . . R64d +chr11 SNP SNP 7985714 8108570 20 . . R65d +chr11 SNP SNP 8108571 8231427 14 . . R66d +chr11 SNP SNP 8231428 8354284 8 . . R67d +chr11 SNP SNP 8354285 8477141 23 . . R68d +chr11 SNP SNP 8477142 8599998 38 . . R69d +chr11 SNP SNP 8599999 8722855 23 . . R70d +chr11 SNP SNP 8722856 8845712 41 . . R71d +chr11 SNP SNP 8845713 8968569 233 . . R72d +chr11 SNP SNP 8968570 9091426 455 . . R73d +chr11 SNP SNP 9091427 9214283 124 . . R74d +chr11 SNP SNP 9214284 9337140 180 . . R75d +chr11 SNP SNP 9337141 9459996 35 . . R76d +chr11 SNP SNP 9459997 9582853 20 . . R77d +chr11 SNP SNP 9582854 9705710 17 . . R78d +chr11 SNP SNP 9705711 9828567 201 . . R79d +chr11 SNP SNP 9828568 9951424 112 . . R80d +chr11 SNP SNP 9951425 10074281 103 . . R81d +chr11 SNP SNP 10074282 10197138 479 . . R82d +chr11 SNP SNP 10197139 10319995 127 . . R83d +chr11 SNP SNP 10319996 10442852 56 . . R84d +chr11 SNP SNP 10442853 10565709 41 . . R85d +chr11 SNP SNP 10565710 10688566 162 . . R86d +chr11 SNP SNP 10688567 10811423 65 . . R87d +chr11 SNP SNP 10811424 10934280 41 . . R88d +chr11 SNP SNP 10934281 11057137 68 . . R89d +chr11 SNP SNP 11057138 11179994 396 . . R90d +chr11 SNP SNP 11179995 11302851 473 . . R91d +chr11 SNP SNP 11302852 11425708 82 . . R92d +chr11 SNP SNP 11425709 11548565 35 . . R93d +chr11 SNP SNP 11548566 11671422 38 . . R94d +chr11 SNP SNP 11671423 11794279 109 . . R95d +chr11 SNP SNP 11794280 11917136 201 . . R96d +chr11 SNP SNP 11917137 12039993 215 . . R97d +chr11 SNP SNP 12039994 12162850 162 . . R98d +chr11 SNP SNP 12162851 12285707 310 . . R99d +chr11 SNP SNP 12285708 12408564 470 . . R100d +chr11 SNP SNP 12408565 12531421 195 . . R101d +chr11 SNP SNP 12531422 12654278 94 . . R102d +chr11 SNP SNP 12654279 12777135 65 . . R103d +chr11 SNP SNP 12777136 12899992 207 . . R104d +chr11 SNP SNP 12899993 13022849 378 . . R105d +chr11 SNP SNP 13022850 13145706 381 . . R106d +chr11 SNP SNP 13145707 13268563 384 . . R107d +chr11 SNP SNP 13268564 13391420 14 . . R108d +chr11 SNP SNP 13391421 13514277 41 . . R109d +chr11 SNP SNP 13514278 13637134 8 . . R110d +chr11 SNP SNP 13637135 13759991 26 . . R111d +chr11 SNP SNP 13759992 13882848 35 . . R112d +chr11 SNP SNP 13882849 14005705 41 . . R113d +chr11 SNP SNP 14005706 14128562 32 . . R114d +chr11 SNP SNP 14128563 14251418 29 . . R115d +chr11 SNP SNP 14251419 14374275 41 . . R116d +chr11 SNP SNP 14374276 14497132 313 . . R117d +chr11 SNP SNP 14497133 14619989 20 . . R118d +chr11 SNP SNP 14619990 14742846 183 . . R119d +chr11 SNP SNP 14742847 14865703 352 . . R120d +chr11 SNP SNP 14865704 14988560 399 . . R121d +chr11 SNP SNP 14988561 15111417 476 . . R122d +chr11 SNP SNP 15111418 15234274 147 . . R123d +chr11 SNP SNP 15234275 15357131 29 . . R124d +chr11 SNP SNP 15357132 15479988 26 . . R125d +chr11 SNP SNP 15479989 15602845 14 . . R126d +chr11 SNP SNP 15602846 15725702 23 . . R127d +chr11 SNP SNP 15725703 15848559 17 . . R128d +chr11 SNP SNP 15848560 15971416 26 . . R129d +chr11 SNP SNP 15971417 16094273 17 . . R130d +chr11 SNP SNP 16094274 16217130 2 . . R131d +chr11 SNP SNP 16217131 16339987 11 . . R132d +chr11 SNP SNP 16339988 16462844 11 . . R133d +chr11 SNP SNP 16462845 16585701 17 . . R134d +chr11 SNP SNP 16585702 16708558 14 . . R135d +chr11 SNP SNP 16708559 16831415 11 . . R136d +chr11 SNP SNP 16831416 16954272 5 . . R137d +chr11 SNP SNP 16954273 17077129 210 . . R138d +chr11 SNP SNP 17077130 17199986 295 . . R139d +chr11 SNP SNP 17199987 17322843 156 . . R140d +chr11 SNP SNP 17322844 17445700 127 . . R141d +chr11 SNP SNP 17445701 17568557 47 . . R142d +chr11 SNP SNP 17568558 17691414 59 . . R143d +chr11 SNP SNP 17691415 17814271 420 . . R144d +chr11 SNP SNP 17814272 17937128 85 . . R145d +chr11 SNP SNP 17937129 18059985 150 . . R146d +chr11 SNP SNP 18059986 18182842 387 . . R147d +chr11 SNP SNP 18182843 18305699 618 . . R148d +chr11 SNP SNP 18305700 18428556 431 . . R149d +chr11 SNP SNP 18428557 18551413 482 . . R150d +chr11 SNP SNP 18551414 18674270 470 . . R151d +chr11 SNP SNP 18674271 18797127 349 . . R152d +chr11 SNP SNP 18797128 18919983 470 . . R153d +chr11 SNP SNP 18919984 19042840 473 . . R154d +chr11 SNP SNP 19042841 19165697 242 . . R155d +chr11 SNP SNP 19165698 19288554 41 . . R156d +chr11 SNP SNP 19288555 19411411 68 . . R157d +chr11 SNP SNP 19411412 19534268 278 . . R158d +chr11 SNP SNP 19534269 19657125 375 . . R159d +chr11 SNP SNP 19657126 19779982 73 . . R160d +chr11 SNP SNP 19779983 19902839 23 . . R161d +chr11 SNP SNP 19902840 20025696 65 . . R162d +chr11 SNP SNP 20025697 20148553 177 . . R163d +chr11 SNP SNP 20148554 20271410 11 . . R164d +chr11 SNP SNP 20271411 20394267 2 . . R165d +chr11 SNP SNP 20394268 20517124 20 . . R166d +chr11 SNP SNP 20517125 20639981 20 . . R167d +chr11 SNP SNP 20639982 20762838 11 . . R168d +chr11 SNP SNP 20762839 20885695 68 . . R169d +chr11 SNP SNP 20885696 21008552 142 . . R170d +chr11 SNP SNP 21008553 21131409 100 . . R171d +chr11 SNP SNP 21131410 21254266 38 . . R172d +chr11 SNP SNP 21254267 21377123 14 . . R173d +chr11 SNP SNP 21377124 21499980 8 . . R174d +chr11 SNP SNP 21499981 21622837 5 . . R175d +chr11 SNP SNP 21622838 21745694 0 . . R176d +chr11 SNP SNP 21745695 21868551 153 . . R177d +chr11 SNP SNP 21868552 21991408 153 . . R178d +chr11 SNP SNP 21991409 22114265 230 . . R179d +chr11 SNP SNP 22114266 22237122 91 . . R180d +chr11 SNP SNP 22237123 22359979 20 . . R181d +chr11 SNP SNP 22359980 22482836 26 . . R182d +chr11 SNP SNP 22482837 22605693 14 . . R183d +chr11 SNP SNP 22605694 22728550 20 . . R184d +chr11 SNP SNP 22728551 22851407 378 . . R185d +chr11 SNP SNP 22851408 22974264 529 . . R186d +chr11 SNP SNP 22974265 23097121 174 . . R187d +chr11 SNP SNP 23097122 23219978 94 . . R188d +chr11 SNP SNP 23219979 23342835 195 . . R189d +chr11 SNP SNP 23342836 23465692 23 . . R190d +chr11 SNP SNP 23465693 23588549 23 . . R191d +chr11 SNP SNP 23588550 23711405 44 . . R192d +chr11 SNP SNP 23711406 23834262 35 . . R193d +chr11 SNP SNP 23834263 23957119 29 . . R194d +chr11 SNP SNP 23957120 24079976 14 . . R195d +chr11 SNP SNP 24079977 24202833 2 . . R196d +chr11 SNP SNP 24202834 24325690 5 . . R197d +chr11 SNP SNP 24325691 24448547 8 . . R198d +chr11 SNP SNP 24448548 24571404 319 . . R199d +chr11 SNP SNP 24571405 24694261 405 . . R200d +chr11 SNP SNP 24694262 24817118 520 . . R201d +chr11 SNP SNP 24817119 24939975 494 . . R202d +chr11 SNP SNP 24939976 25062832 461 . . R203d +chr11 SNP SNP 25062833 25185689 899 . . R204d +chr11 SNP SNP 25185690 25308546 822 . . R205d +chr11 SNP SNP 25308547 25431403 721 . . R206d +chr11 SNP SNP 25431404 25554260 713 . . R207d +chr11 SNP SNP 25554261 25677117 526 . . R208d +chr11 SNP SNP 25677118 25799974 846 . . R209d +chr11 SNP SNP 25799975 25922831 470 . . R210d +chr11 SNP SNP 25922832 26045688 573 . . R211d +chr11 SNP SNP 26045689 26168545 594 . . R212d +chr11 SNP SNP 26168546 26291402 627 . . R213d +chr11 SNP SNP 26291403 26414259 346 . . R214d +chr11 SNP SNP 26414260 26537116 0 . . R215d +chr11 SNP SNP 26537117 26659973 461 . . R216d +chr11 SNP SNP 26659974 26782830 405 . . R217d +chr11 SNP SNP 26782831 26905687 579 . . R218d +chr11 SNP SNP 26905688 27028544 1000 . . R219d +chr11 SNP SNP 27028545 27151401 597 . . R220d +chr11 SNP SNP 27151402 27274258 408 . . R221d +chr11 SNP SNP 27274259 27397115 568 . . R222d +chr11 SNP SNP 27397116 27519972 340 . . R223d +chr11 SNP SNP 27519973 27642829 627 . . R224d +chr11 SNP SNP 27642830 27765686 434 . . R225d +chr11 SNP SNP 27765687 27888543 325 . . R226d +chr11 SNP SNP 27888544 28011400 532 . . R227d +chr11 SNP SNP 28011401 28134257 393 . . R228d +chr11 SNP SNP 28134258 28257114 150 . . R229d +chr11 SNP SNP 28257115 28379970 221 . . R230d +chr11 SNP SNP 28379971 28502827 230 . . R231d +chr11 SNP SNP 28502828 28625684 437 . . R232d +chr11 SNP SNP 28625685 28748541 597 . . R233d +chr11 SNP SNP 28748542 28871398 349 . . R234d +chr11 SNP SNP 28871399 28994255 819 . . R235d +chr11 SNP SNP 28994256 29117112 642 . . R236d +chr11 SNP SNP 29117113 29239969 245 . . R237d +chr11 SNP SNP 29239970 29362826 464 . . R238d +chr11 SNP SNP 29362827 29485683 686 . . R239d +chr11 SNP SNP 29485684 29608540 600 . . R240d +chr11 SNP SNP 29608541 29731397 857 . . R241d +chr11 SNP SNP 29731398 29854254 579 . . R242d +chr11 SNP SNP 29854255 29977111 621 . . R243d +chr11 SNP SNP 29977112 30099968 2 . . R244d +chr11 SNP SNP 30099969 30222825 8 . . R245d +chr11 SNP SNP 30222826 30345682 130 . . R246d +chr11 SNP SNP 30345683 30468539 479 . . R247d +chr11 SNP SNP 30468540 30591396 497 . . R248d +chr11 SNP SNP 30591397 30714253 505 . . R249d +chr11 SNP SNP 30714254 30837110 275 . . R250d +chr11 SNP SNP 30837111 30959967 603 . . R251d +chr11 SNP SNP 30959968 31082824 807 . . R252d +chr11 SNP SNP 31082825 31205681 650 . . R253d +chr11 SNP SNP 31205682 31328538 363 . . R254d +chr11 SNP SNP 31328539 31451395 502 . . R255d +chr11 SNP SNP 31451396 31574252 458 . . R256d +chr11 SNP SNP 31574253 31697109 576 . . R257d +chr11 SNP SNP 31697110 31819966 289 . . R258d +chr11 SNP SNP 31819967 31942823 8 . . R259d +chr11 SNP SNP 31942824 32065680 11 . . R260d +chr11 SNP SNP 32065681 32188537 8 . . R261d +chr11 SNP SNP 32188538 32311394 17 . . R262d +chr11 SNP SNP 32311395 32434251 760 . . R263d +chr11 SNP SNP 32434252 32557108 479 . . R264d +chr11 SNP SNP 32557109 32679965 59 . . R265d +chr11 SNP SNP 32679966 32802822 29 . . R266d +chr11 SNP SNP 32802823 32925679 144 . . R267d +chr11 SNP SNP 32925680 33048536 286 . . R268d +chr11 SNP SNP 33048537 33171392 494 . . R269d +chr11 SNP SNP 33171393 33294249 420 . . R270d +chr11 SNP SNP 33294250 33417106 133 . . R271d +chr11 SNP SNP 33417107 33539963 106 . . R272d +chr11 SNP SNP 33539964 33662820 29 . . R273d +chr11 SNP SNP 33662821 33785677 106 . . R274d +chr11 SNP SNP 33785678 33908534 281 . . R275d +chr11 SNP SNP 33908535 34031391 153 . . R276d +chr11 SNP SNP 34031392 34154248 20 . . R277d +chr11 SNP SNP 34154249 34277105 20 . . R278d +chr11 SNP SNP 34277106 34399962 32 . . R279d +chr11 SNP SNP 34399963 34522819 20 . . R280d +chr11 SNP SNP 34522820 34645676 47 . . R281d +chr11 SNP SNP 34645677 34768533 94 . . R282d +chr11 SNP SNP 34768534 34891390 20 . . R283d +chr11 SNP SNP 34891391 35014247 14 . . R284d +chr11 SNP SNP 35014248 35137104 5 . . R285d +chr11 SNP SNP 35137105 35259961 26 . . R286d +chr11 SNP SNP 35259962 35382818 29 . . R287d +chr11 SNP SNP 35382819 35505675 218 . . R288d +chr11 SNP SNP 35505676 35628532 97 . . R289d +chr11 SNP SNP 35628533 35751389 168 . . R290d +chr11 SNP SNP 35751390 35874246 213 . . R291d +chr11 SNP SNP 35874247 35997103 213 . . R292d +chr11 SNP SNP 35997104 36119960 32 . . R293d +chr11 SNP SNP 36119961 36242817 278 . . R294d +chr11 SNP SNP 36242818 36365674 0 . . R295d +chr11 SNP SNP 36365675 36488531 20 . . R296d +chr11 SNP SNP 36488532 36611388 656 . . R297d +chr11 SNP SNP 36611389 36734245 674 . . R298d +chr11 SNP SNP 36734246 36857102 612 . . R299d +chr11 SNP SNP 36857103 36979959 715 . . R300d +chr11 SNP SNP 36979960 37102816 591 . . R301d +chr11 SNP SNP 37102817 37225673 683 . . R302d +chr11 SNP SNP 37225674 37348530 612 . . R303d +chr11 SNP SNP 37348531 37471387 718 . . R304d +chr11 SNP SNP 37471388 37594244 692 . . R305d +chr11 SNP SNP 37594245 37717101 644 . . R306d +chr11 SNP SNP 37717102 37839957 526 . . R307d +chr11 SNP SNP 37839958 37962814 701 . . R308d +chr11 SNP SNP 37962815 38085671 523 . . R309d +chr11 SNP SNP 38085672 38208528 556 . . R310d +chr11 SNP SNP 38208529 38331385 568 . . R311d +chr11 SNP SNP 38331386 38454242 538 . . R312d +chr11 SNP SNP 38454243 38577099 573 . . R313d +chr11 SNP SNP 38577100 38699956 751 . . R314d +chr11 SNP SNP 38699957 38822813 748 . . R315d +chr11 SNP SNP 38822814 38945670 653 . . R316d +chr11 SNP SNP 38945671 39068527 745 . . R317d +chr11 SNP SNP 39068528 39191384 627 . . R318d +chr11 SNP SNP 39191385 39314241 633 . . R319d +chr11 SNP SNP 39314242 39437098 573 . . R320d +chr11 SNP SNP 39437099 39559955 488 . . R321d +chr11 SNP SNP 39559956 39682812 254 . . R322d +chr11 SNP SNP 39682813 39805669 11 . . R323d +chr11 SNP SNP 39805670 39928526 44 . . R324d +chr11 SNP SNP 39928527 40051383 44 . . R325d +chr11 SNP SNP 40051384 40174240 26 . . R326d +chr11 SNP SNP 40174241 40297097 29 . . R327d +chr11 SNP SNP 40297098 40419954 11 . . R328d +chr11 SNP SNP 40419955 40542811 23 . . R329d +chr11 SNP SNP 40542812 40665668 11 . . R330d +chr11 SNP SNP 40665669 40788525 8 . . R331d +chr11 SNP SNP 40788526 40911382 23 . . R332d +chr11 SNP SNP 40911383 41034239 17 . . R333d +chr11 SNP SNP 41034240 41157096 11 . . R334d +chr11 SNP SNP 41157097 41279953 5 . . R335d +chr11 SNP SNP 41279954 41402810 11 . . R336d +chr11 SNP SNP 41402811 41525667 0 . . R337d +chr11 SNP SNP 41525668 41648524 8 . . R338d +chr11 SNP SNP 41648525 41771381 0 . . R339d +chr11 SNP SNP 41771382 41894238 11 . . R340d +chr11 SNP SNP 41894239 42017095 29 . . R341d +chr11 SNP SNP 42017096 42139952 20 . . R342d +chr11 SNP SNP 42139953 42262809 8 . . R343d +chr11 SNP SNP 42262810 42385666 0 . . R344d +chr11 SNP SNP 42385667 42508523 165 . . R345d +chr11 SNP SNP 42508524 42631379 609 . . R346d +chr11 SNP SNP 42631380 42754236 591 . . R347d +chr11 SNP SNP 42754237 42877093 491 . . R348d +chr11 SNP SNP 42877094 42999950 680 . . R349d +chr11 SNP SNP 42999951 43122807 529 . . R350d +chr11 SNP SNP 43122808 43245664 201 . . R351d +chr11 SNP SNP 43245665 43368521 399 . . R352d +chr11 SNP SNP 43368522 43491378 159 . . R353d +chr11 SNP SNP 43491379 43614235 387 . . R354d +chr11 SNP SNP 43614236 43737092 467 . . R355d +chr11 SNP SNP 43737093 43859949 165 . . R356d +chr11 SNP SNP 43859950 43982806 168 . . R357d +chr11 SNP SNP 43982807 44105663 118 . . R358d +chr11 SNP SNP 44105664 44228520 35 . . R359d +chr11 SNP SNP 44228521 44351377 94 . . R360d +chr11 SNP SNP 44351378 44474234 387 . . R361d +chr11 SNP SNP 44474235 44597091 414 . . R362d +chr11 SNP SNP 44597092 44719948 227 . . R363d +chr11 SNP SNP 44719949 44842805 334 . . R364d +chr11 SNP SNP 44842806 44965662 257 . . R365d +chr11 SNP SNP 44965663 45088519 352 . . R366d +chr11 SNP SNP 45088520 45211376 281 . . R367d +chr11 SNP SNP 45211377 45334233 263 . . R368d +chr11 SNP SNP 45334234 45457090 405 . . R369d +chr11 SNP SNP 45457091 45579947 124 . . R370d +chr11 SNP SNP 45579948 45702804 136 . . R371d +chr11 SNP SNP 45702805 45825661 396 . . R372d +chr11 SNP SNP 45825662 45948518 316 . . R373d +chr11 SNP SNP 45948519 46071375 304 . . R374d +chr11 SNP SNP 46071376 46194232 159 . . R375d +chr11 SNP SNP 46194233 46317089 35 . . R376d +chr11 SNP SNP 46317090 46439946 8 . . R377d +chr11 SNP SNP 46439947 46562803 174 . . R378d +chr11 SNP SNP 46562804 46685660 44 . . R379d +chr11 SNP SNP 46685661 46808517 281 . . R380d +chr11 SNP SNP 46808518 46931374 331 . . R381d +chr11 SNP SNP 46931375 47054231 91 . . R382d +chr11 SNP SNP 47054232 47177088 11 . . R383d +chr11 SNP SNP 47177089 47299944 2 . . R384d +chr11 SNP SNP 47299945 47422801 0 . . R385d +chr11 SNP SNP 47422802 47545658 11 . . R386d +chr11 SNP SNP 47545659 47668515 8 . . R387d +chr11 SNP SNP 47668516 47791372 11 . . R388d +chr11 SNP SNP 47791373 47914229 14 . . R389d +chr11 SNP SNP 47914230 48037086 20 . . R390d +chr11 SNP SNP 48037087 48159943 26 . . R391d +chr11 SNP SNP 48159944 48282800 20 . . R392d +chr11 SNP SNP 48282801 48405657 17 . . R393d +chr11 SNP SNP 48405658 48528514 26 . . R394d +chr11 SNP SNP 48528515 48651371 11 . . R395d +chr11 SNP SNP 48651372 48774228 14 . . R396d +chr11 SNP SNP 48774229 48897085 11 . . R397d +chr11 SNP SNP 48897086 49019942 20 . . R398d +chr11 SNP SNP 49019943 49142799 11 . . R399d +chr11 SNP SNP 49142800 49265656 0 . . R400d +chr11 SNP SNP 49265657 49388513 8 . . R401d +chr11 SNP SNP 49388514 49511370 0 . . R402d +chr11 SNP SNP 49511371 49634227 0 . . R403d +chr11 SNP SNP 49634228 49757084 23 . . R404d +chr11 SNP SNP 49757085 49879941 23 . . R405d +chr11 SNP SNP 49879942 50002798 8 . . R406d +chr11 SNP SNP 50002799 50125655 14 . . R407d +chr11 SNP SNP 50125656 50248512 11 . . R408d +chr11 SNP SNP 50248513 50371369 14 . . R409d +chr11 SNP SNP 50371370 50494226 11 . . R410d +chr11 SNP SNP 50494227 50617083 5 . . R411d +chr11 SNP SNP 50617084 50739940 14 . . R412d +chr11 SNP SNP 50739941 50862797 29 . . R413d +chr11 SNP SNP 50862798 50985654 38 . . R414d +chr11 SNP SNP 50985655 51108511 366 . . R415d +chr11 SNP SNP 51108512 51231368 304 . . R416d +chr11 SNP SNP 51231369 51354225 147 . . R417d +chr11 SNP SNP 51354226 51477082 275 . . R418d +chr11 SNP SNP 51477083 51599939 8 . . R419d +chr11 SNP SNP 51599940 51722796 446 . . R420d +chr11 SNP SNP 51722797 51845653 281 . . R421d +chr11 SNP SNP 51845654 51968510 372 . . R422d +chr11 SNP SNP 51968511 52091366 301 . . R423d +chr11 SNP SNP 52091367 52214223 423 . . R424d +chr11 SNP SNP 52214224 52337080 251 . . R425d +chr11 SNP SNP 52337081 52459937 47 . . R426d +chr11 SNP SNP 52459938 52582794 375 . . R427d +chr11 SNP SNP 52582795 52705651 340 . . R428d +chr11 SNP SNP 52705652 52828508 147 . . R429d +chr11 SNP SNP 52828509 52951365 319 . . R430d +chr11 SNP SNP 52951366 53074222 334 . . R431d +chr11 SNP SNP 53074223 53197079 411 . . R432d +chr11 SNP SNP 53197080 53319936 313 . . R433d +chr11 SNP SNP 53319937 53442793 207 . . R434d +chr11 SNP SNP 53442794 53565650 576 . . R435d +chr11 SNP SNP 53565651 53688507 156 . . R436d +chr11 SNP SNP 53688508 53811364 17 . . R437d +chr11 SNP SNP 53811365 53934221 38 . . R438d +chr11 SNP SNP 53934222 54057078 47 . . R439d +chr11 SNP SNP 54057079 54179935 29 . . R440d +chr11 SNP SNP 54179936 54302792 32 . . R441d +chr11 SNP SNP 54302793 54425649 23 . . R442d +chr11 SNP SNP 54425650 54548506 71 . . R443d +chr11 SNP SNP 54548507 54671363 467 . . R444d +chr11 SNP SNP 54671364 54794220 218 . . R445d +chr11 SNP SNP 54794221 54917077 248 . . R446d +chr11 SNP SNP 54917078 55039934 11 . . R447d +chr11 SNP SNP 55039935 55162791 23 . . R448d +chr11 SNP SNP 55162792 55285648 56 . . R449d +chr11 SNP SNP 55285649 55408505 150 . . R450d +chr11 SNP SNP 55408506 55531362 393 . . R451d +chr11 SNP SNP 55531363 55654219 230 . . R452d +chr11 SNP SNP 55654220 55777076 53 . . R453d +chr11 SNP SNP 55777077 55899933 325 . . R454d +chr11 SNP SNP 55899934 56022790 50 . . R455d +chr11 SNP SNP 56022791 56145647 59 . . R456d +chr11 SNP SNP 56145648 56268504 201 . . R457d +chr11 SNP SNP 56268505 56391361 384 . . R458d +chr11 SNP SNP 56391362 56514218 269 . . R459d +chr11 SNP SNP 56514219 56637075 230 . . R460d +chr11 SNP SNP 56637076 56759931 366 . . R461d +chr11 SNP SNP 56759932 56882788 278 . . R462d +chr11 SNP SNP 56882789 57005645 17 . . R463d +chr11 SNP SNP 57005646 57128502 207 . . R464d +chr11 SNP SNP 57128503 57251359 26 . . R465d +chr11 SNP SNP 57251360 57374216 44 . . R466d +chr11 SNP SNP 57374217 57497073 29 . . R467d +chr11 SNP SNP 57497074 57619930 44 . . R468d +chr11 SNP SNP 57619931 57742787 5 . . R469d +chr11 SNP SNP 57742788 57865644 11 . . R470d +chr11 SNP SNP 57865645 57988501 526 . . R471d +chr11 SNP SNP 57988502 58111358 671 . . R472d +chr11 SNP SNP 58111359 58234215 627 . . R473d +chr11 SNP SNP 58234216 58357072 718 . . R474d +chr11 SNP SNP 58357073 58479929 686 . . R475d +chr11 SNP SNP 58479930 58602786 627 . . R476d +chr11 SNP SNP 58602787 58725643 656 . . R477d +chr11 SNP SNP 58725644 58848500 899 . . R478d +chr11 SNP SNP 58848501 58971357 597 . . R479d +chr11 SNP SNP 58971358 59094214 612 . . R480d +chr11 SNP SNP 59094215 59217071 576 . . R481d +chr11 SNP SNP 59217072 59339928 331 . . R482d +chr11 SNP SNP 59339929 59462785 310 . . R483d +chr11 SNP SNP 59462786 59585642 269 . . R484d +chr11 SNP SNP 59585643 59708499 417 . . R485d +chr11 SNP SNP 59708500 59831356 488 . . R486d +chr11 SNP SNP 59831357 59954213 257 . . R487d +chr11 SNP SNP 59954214 60077070 8 . . R488d +chr11 SNP SNP 60077071 60199927 0 . . R489d +chr11 SNP SNP 60199928 60322784 0 . . R490d +chr11 SNP SNP 60322785 60445641 0 . . R491d +chr11 SNP SNP 60445642 60568498 0 . . R492d +chr11 SNP SNP 60568499 60691355 0 . . R493d +chr11 SNP SNP 60691356 60814212 0 . . R494d +chr11 SNP SNP 60814213 60937069 0 . . R495d +chr11 SNP SNP 60937070 61059926 0 . . R496d +chr11 SNP SNP 61059927 61182783 2 . . R497d +chr11 SNP SNP 61182784 61305640 2 . . R498d +chr11 SNP SNP 61305641 61428497 2 . . R499d +chr11 SNP SNP 61428498 61551353 20 . . R500d +chr11 SNP SNP 61551354 61674210 5 . . R501d +chr11 SNP SNP 61674211 61797067 0 . . R502d +chr11 SNP SNP 61797068 61919924 0 . . R503d +chr11 SNP SNP 61919925 62042781 0 . . R504d +chr11 SNP SNP 62042782 62165638 0 . . R505d +chr11 SNP SNP 62165639 62288495 0 . . R506d +chr11 SNP SNP 62288496 62411352 0 . . R507d +chr11 SNP SNP 62411353 62534209 0 . . R508d +chr11 SNP SNP 62534210 62657066 0 . . R509d +chr11 SNP SNP 62657067 62779923 147 . . R510d +chr11 SNP SNP 62779924 62902780 242 . . R511d +chr11 SNP SNP 62902781 63025637 198 . . R512d +chr11 SNP SNP 63025638 63148494 236 . . R513d +chr11 SNP SNP 63148495 63271351 79 . . R514d +chr11 SNP SNP 63271352 63394208 88 . . R515d +chr11 SNP SNP 63394209 63517065 162 . . R516d +chr11 SNP SNP 63517066 63639922 357 . . R517d +chr11 SNP SNP 63639923 63762779 97 . . R518d +chr11 SNP SNP 63762780 63885636 118 . . R519d +chr11 SNP SNP 63885637 64008493 313 . . R520d +chr11 SNP SNP 64008494 64131350 5 . . R521d +chr11 SNP SNP 64131351 64254207 5 . . R522d +chr11 SNP SNP 64254208 64377064 20 . . R523d +chr11 SNP SNP 64377065 64499921 20 . . R524d +chr11 SNP SNP 64499922 64622778 11 . . R525d +chr11 SNP SNP 64622779 64745635 14 . . R526d +chr11 SNP SNP 64745636 64868492 11 . . R527d +chr11 SNP SNP 64868493 64991349 8 . . R528d +chr11 SNP SNP 64991350 65114206 11 . . R529d +chr11 SNP SNP 65114207 65237063 14 . . R530d +chr11 SNP SNP 65237064 65359920 44 . . R531d +chr11 SNP SNP 65359921 65482777 201 . . R532d +chr11 SNP SNP 65482778 65605634 65 . . R533d +chr11 SNP SNP 65605635 65728491 85 . . R534d +chr11 SNP SNP 65728492 65851348 384 . . R535d +chr11 SNP SNP 65851349 65974205 195 . . R536d +chr11 SNP SNP 65974206 66097062 204 . . R537d +chr11 SNP SNP 66097063 66219918 464 . . R538d +chr11 SNP SNP 66219919 66342775 29 . . R539d +chr11 SNP SNP 66342776 66465632 313 . . R540d +chr11 SNP SNP 66465633 66588489 204 . . R541d +chr11 SNP SNP 66588490 66711346 455 . . R542d +chr11 SNP SNP 66711347 66834203 257 . . R543d +chr11 SNP SNP 66834204 66957060 281 . . R544d +chr11 SNP SNP 66957061 67079917 360 . . R545d +chr11 SNP SNP 67079918 67202774 500 . . R546d +chr11 SNP SNP 67202775 67325631 627 . . R547d +chr11 SNP SNP 67325632 67448488 357 . . R548d +chr11 SNP SNP 67448489 67571345 304 . . R549d +chr11 SNP SNP 67571346 67694202 76 . . R550d +chr11 SNP SNP 67694203 67817059 71 . . R551d +chr11 SNP SNP 67817060 67939916 360 . . R552d +chr11 SNP SNP 67939917 68062773 307 . . R553d +chr11 SNP SNP 68062774 68185630 396 . . R554d +chr11 SNP SNP 68185631 68308487 411 . . R555d +chr11 SNP SNP 68308488 68431344 461 . . R556d +chr11 SNP SNP 68431345 68554201 115 . . R557d +chr11 SNP SNP 68554202 68677058 150 . . R558d +chr11 SNP SNP 68677059 68799915 35 . . R559d +chr11 SNP SNP 68799916 68922772 346 . . R560d +chr11 SNP SNP 68922773 69045629 32 . . R561d +chr11 SNP SNP 69045630 69168486 35 . . R562d +chr11 SNP SNP 69168487 69291343 251 . . R563d +chr11 SNP SNP 69291344 69414200 707 . . R564d +chr11 SNP SNP 69414201 69537057 541 . . R565d +chr11 SNP SNP 69537058 69659914 535 . . R566d +chr11 SNP SNP 69659915 69782771 899 . . R567d +chr11 SNP SNP 69782772 69905628 508 . . R568d +chr11 SNP SNP 69905629 70028485 443 . . R569d +chr11 SNP SNP 70028486 70151342 639 . . R570d +chr11 SNP SNP 70151343 70274199 647 . . R571d +chr11 SNP SNP 70274200 70397056 0 . . R572d +chr11 SNP SNP 70397057 70519913 147 . . R573d +chr11 SNP SNP 70519914 70642770 597 . . R574d +chr11 SNP SNP 70642771 70765627 724 . . R575d +chr11 SNP SNP 70765628 70888483 686 . . R576d +chr11 SNP SNP 70888484 71011340 698 . . R577d +chr11 SNP SNP 71011341 71134197 476 . . R578d +chr11 SNP SNP 71134198 71257054 822 . . R579d +chr11 SNP SNP 71257055 71379911 860 . . R580d +chr11 SNP SNP 71379912 71502768 718 . . R581d +chr11 SNP SNP 71502769 71625625 724 . . R582d +chr11 SNP SNP 71625626 71748482 674 . . R583d +chr11 SNP SNP 71748483 71871339 588 . . R584d +chr11 SNP SNP 71871340 71994196 62 . . R585d +chr11 SNP SNP 71994197 72117053 751 . . R586d +chr11 SNP SNP 72117054 72239910 437 . . R587d +chr11 SNP SNP 72239911 72362767 476 . . R588d +chr11 SNP SNP 72362768 72485624 730 . . R589d +chr11 SNP SNP 72485625 72608481 355 . . R590d +chr11 SNP SNP 72608482 72731338 562 . . R591d +chr11 SNP SNP 72731339 72854195 508 . . R592d +chr11 SNP SNP 72854196 72977052 428 . . R593d +chr11 SNP SNP 72977053 73099909 689 . . R594d +chr11 SNP SNP 73099910 73222766 627 . . R595d +chr11 SNP SNP 73222767 73345623 491 . . R596d +chr11 SNP SNP 73345624 73468480 591 . . R597d +chr11 SNP SNP 73468481 73591337 766 . . R598d +chr11 SNP SNP 73591338 73714194 745 . . R599d +chr11 SNP SNP 73714195 73837051 497 . . R600d +chr11 SNP SNP 73837052 73959908 112 . . R601d +chr11 SNP SNP 73959909 74082765 47 . . R602d +chr11 SNP SNP 74082766 74205622 17 . . R603d +chr11 SNP SNP 74205623 74328479 5 . . R604d +chr11 SNP SNP 74328480 74451336 20 . . R605d +chr11 SNP SNP 74451337 74574193 26 . . R606d +chr11 SNP SNP 74574194 74697050 14 . . R607d +chr11 SNP SNP 74697051 74819907 26 . . R608d +chr11 SNP SNP 74819908 74942764 38 . . R609d +chr11 SNP SNP 74942765 75065621 38 . . R610d +chr11 SNP SNP 75065622 75188478 20 . . R611d +chr11 SNP SNP 75188479 75311335 11 . . R612d +chr11 SNP SNP 75311336 75434192 337 . . R613d +chr11 SNP SNP 75434193 75557049 500 . . R614d +chr11 SNP SNP 75557050 75679905 281 . . R615d +chr11 SNP SNP 75679906 75802762 26 . . R616d +chr11 SNP SNP 75802763 75925619 38 . . R617d +chr11 SNP SNP 75925620 76048476 260 . . R618d +chr11 SNP SNP 76048477 76171333 127 . . R619d +chr11 SNP SNP 76171334 76294190 35 . . R620d +chr11 SNP SNP 76294191 76417047 239 . . R621d +chr11 SNP SNP 76417048 76539904 233 . . R622d +chr11 SNP SNP 76539905 76662761 53 . . R623d +chr11 SNP SNP 76662762 76785618 8 . . R624d +chr11 SNP SNP 76785619 76908475 103 . . R625d +chr11 SNP SNP 76908476 77031332 349 . . R626d +chr11 SNP SNP 77031333 77154189 346 . . R627d +chr11 SNP SNP 77154190 77277046 497 . . R628d +chr11 SNP SNP 77277047 77399903 275 . . R629d +chr11 SNP SNP 77399904 77522760 68 . . R630d +chr11 SNP SNP 77522761 77645617 156 . . R631d +chr11 SNP SNP 77645618 77768474 192 . . R632d +chr11 SNP SNP 77768475 77891331 215 . . R633d +chr11 SNP SNP 77891332 78014188 17 . . R634d +chr11 SNP SNP 78014189 78137045 5 . . R635d +chr11 SNP SNP 78137046 78259902 8 . . R636d +chr11 SNP SNP 78259903 78382759 14 . . R637d +chr11 SNP SNP 78382760 78505616 32 . . R638d +chr11 SNP SNP 78505617 78628473 14 . . R639d +chr11 SNP SNP 78628474 78751330 29 . . R640d +chr11 SNP SNP 78751331 78874187 32 . . R641d +chr11 SNP SNP 78874188 78997044 5 . . R642d +chr11 SNP SNP 78997045 79119901 2 . . R643d +chr11 SNP SNP 79119902 79242758 8 . . R644d +chr11 SNP SNP 79242759 79365615 11 . . R645d +chr11 SNP SNP 79365616 79488472 14 . . R646d +chr11 SNP SNP 79488473 79611329 11 . . R647d +chr11 SNP SNP 79611330 79734186 8 . . R648d +chr11 SNP SNP 79734187 79857043 8 . . R649d +chr11 SNP SNP 79857044 79979900 23 . . R650d +chr11 SNP SNP 79979901 80102757 8 . . R651d +chr11 SNP SNP 80102758 80225614 17 . . R652d +chr11 SNP SNP 80225615 80348470 8 . . R653d +chr11 SNP SNP 80348471 80471327 11 . . R654d +chr11 SNP SNP 80471328 80594184 5 . . R655d +chr11 SNP SNP 80594185 80717041 8 . . R656d +chr11 SNP SNP 80717042 80839898 20 . . R657d +chr11 SNP SNP 80839899 80962755 17 . . R658d +chr11 SNP SNP 80962756 81085612 14 . . R659d +chr11 SNP SNP 81085613 81208469 26 . . R660d +chr11 SNP SNP 81208470 81331326 8 . . R661d +chr11 SNP SNP 81331327 81454183 5 . . R662d +chr11 SNP SNP 81454184 81577040 14 . . R663d +chr11 SNP SNP 81577041 81699897 11 . . R664d +chr11 SNP SNP 81699898 81822754 17 . . R665d +chr11 SNP SNP 81822755 81945611 14 . . R666d +chr11 SNP SNP 81945612 82068468 23 . . R667d +chr11 SNP SNP 82068469 82191325 2 . . R668d +chr11 SNP SNP 82191326 82314182 11 . . R669d +chr11 SNP SNP 82314183 82437039 11 . . R670d +chr11 SNP SNP 82437040 82559896 8 . . R671d +chr11 SNP SNP 82559897 82682753 11 . . R672d +chr11 SNP SNP 82682754 82805610 14 . . R673d +chr11 SNP SNP 82805611 82928467 17 . . R674d +chr11 SNP SNP 82928468 83051324 263 . . R675d +chr11 SNP SNP 83051325 83174181 414 . . R676d +chr11 SNP SNP 83174182 83297038 414 . . R677d +chr11 SNP SNP 83297039 83419895 585 . . R678d +chr11 SNP SNP 83419896 83542752 366 . . R679d +chr11 SNP SNP 83542753 83665609 50 . . R680d +chr11 SNP SNP 83665610 83788466 5 . . R681d +chr11 SNP SNP 83788467 83911323 239 . . R682d +chr11 SNP SNP 83911324 84034180 76 . . R683d +chr11 SNP SNP 84034181 84157037 50 . . R684d +chr11 SNP SNP 84157038 84279894 236 . . R685d +chr11 SNP SNP 84279895 84402751 272 . . R686d +chr11 SNP SNP 84402752 84525608 405 . . R687d +chr11 SNP SNP 84525609 84648465 372 . . R688d +chr11 SNP SNP 84648466 84771322 32 . . R689d +chr11 SNP SNP 84771323 84894179 23 . . R690d +chr11 SNP SNP 84894180 85017036 14 . . R691d +chr11 SNP SNP 85017037 85139892 393 . . R692d +chr11 SNP SNP 85139893 85262749 828 . . R693d +chr11 SNP SNP 85262750 85385606 627 . . R694d +chr11 SNP SNP 85385607 85508463 576 . . R695d +chr11 SNP SNP 85508464 85631320 621 . . R696d +chr11 SNP SNP 85631321 85754177 520 . . R697d +chr11 SNP SNP 85754178 85877034 600 . . R698d +chr11 SNP SNP 85877035 85999891 727 . . R699d +chr11 SNP SNP 85999892 86122748 618 . . R700d +chr11 SNP SNP 86122749 86245605 603 . . R701d +chr11 SNP SNP 86245606 86368462 754 . . R702d +chr11 SNP SNP 86368463 86491319 701 . . R703d +chr11 SNP SNP 86491320 86614176 757 . . R704d +chr11 SNP SNP 86614177 86737033 881 . . R705d +chr11 SNP SNP 86737034 86859890 73 . . R706d +chr11 SNP SNP 86859891 86982747 20 . . R707d +chr11 SNP SNP 86982748 87105604 53 . . R708d +chr11 SNP SNP 87105605 87228461 91 . . R709d +chr11 SNP SNP 87228462 87351318 343 . . R710d +chr11 SNP SNP 87351319 87474175 325 . . R711d +chr11 SNP SNP 87474176 87597032 624 . . R712d +chr11 SNP SNP 87597033 87719889 215 . . R713d +chr11 SNP SNP 87719890 87842746 328 . . R714d +chr11 SNP SNP 87842747 87965603 121 . . R715d +chr11 SNP SNP 87965604 88088460 32 . . R716d +chr11 SNP SNP 88088461 88211317 38 . . R717d +chr11 SNP SNP 88211318 88334174 8 . . R718d +chr11 SNP SNP 88334175 88457031 23 . . R719d +chr11 SNP SNP 88457032 88579888 399 . . R720d +chr11 SNP SNP 88579889 88702745 594 . . R721d +chr11 SNP SNP 88702746 88825602 443 . . R722d +chr11 SNP SNP 88825603 88948459 494 . . R723d +chr11 SNP SNP 88948460 89071316 597 . . R724d +chr11 SNP SNP 89071317 89194173 541 . . R725d +chr11 SNP SNP 89194174 89317030 618 . . R726d +chr11 SNP SNP 89317031 89439887 482 . . R727d +chr11 SNP SNP 89439888 89562744 650 . . R728d +chr11 SNP SNP 89562745 89685601 556 . . R729d +chr11 SNP SNP 89685602 89808457 443 . . R730d +chr11 SNP SNP 89808458 89931314 659 . . R731d +chr11 SNP SNP 89931315 90054171 443 . . R732d +chr11 SNP SNP 90054172 90177028 665 . . R733d +chr11 SNP SNP 90177029 90299885 659 . . R734d +chr11 SNP SNP 90299886 90422742 621 . . R735d +chr11 SNP SNP 90422743 90545599 467 . . R736d +chr11 SNP SNP 90545600 90668456 698 . . R737d +chr11 SNP SNP 90668457 90791313 644 . . R738d +chr11 SNP SNP 90791314 90914170 505 . . R739d +chr11 SNP SNP 90914171 91037027 529 . . R740d +chr11 SNP SNP 91037028 91159884 195 . . R741d +chr11 SNP SNP 91159885 91282741 304 . . R742d +chr11 SNP SNP 91282742 91405598 218 . . R743d +chr11 SNP SNP 91405599 91528455 334 . . R744d +chr11 SNP SNP 91528456 91651312 384 . . R745d +chr11 SNP SNP 91651313 91774169 14 . . R746d +chr11 SNP SNP 91774170 91897026 5 . . R747d +chr11 SNP SNP 91897027 92019883 29 . . R748d +chr11 SNP SNP 92019884 92142740 20 . . R749d +chr11 SNP SNP 92142741 92265597 11 . . R750d +chr11 SNP SNP 92265598 92388454 26 . . R751d +chr11 SNP SNP 92388455 92511311 14 . . R752d +chr11 SNP SNP 92511312 92634168 14 . . R753d +chr11 SNP SNP 92634169 92757025 23 . . R754d +chr11 SNP SNP 92757026 92879882 14 . . R755d +chr11 SNP SNP 92879883 93002739 5 . . R756d +chr11 SNP SNP 93002740 93125596 20 . . R757d +chr11 SNP SNP 93125597 93248453 38 . . R758d +chr11 SNP SNP 93248454 93371310 26 . . R759d +chr11 SNP SNP 93371311 93494167 32 . . R760d +chr11 SNP SNP 93494168 93617024 14 . . R761d +chr11 SNP SNP 93617025 93739881 5 . . R762d +chr11 SNP SNP 93739882 93862738 14 . . R763d +chr11 SNP SNP 93862739 93985595 8 . . R764d +chr11 SNP SNP 93985596 94108452 5 . . R765d +chr11 SNP SNP 94108453 94231309 5 . . R766d +chr11 SNP SNP 94231310 94354166 2 . . R767d +chr11 SNP SNP 94354167 94477023 2 . . R768d +chr11 SNP SNP 94477024 94599879 2 . . R769d +chr11 SNP SNP 94599880 94722736 2 . . R770d +chr11 SNP SNP 94722737 94845593 11 . . R771d +chr11 SNP SNP 94845594 94968450 20 . . R772d +chr11 SNP SNP 94968451 95091307 14 . . R773d +chr11 SNP SNP 95091308 95214164 14 . . R774d +chr11 SNP SNP 95214165 95337021 17 . . R775d +chr11 SNP SNP 95337022 95459878 23 . . R776d +chr11 SNP SNP 95459879 95582735 17 . . R777d +chr11 SNP SNP 95582736 95705592 5 . . R778d +chr11 SNP SNP 95705593 95828449 17 . . R779d +chr11 SNP SNP 95828450 95951306 0 . . R780d +chr11 SNP SNP 95951307 96074163 17 . . R781d +chr11 SNP SNP 96074164 96197020 11 . . R782d +chr11 SNP SNP 96197021 96319877 5 . . R783d +chr11 SNP SNP 96319878 96442734 5 . . R784d +chr11 SNP SNP 96442735 96565591 257 . . R785d +chr11 SNP SNP 96565592 96688448 251 . . R786d +chr11 SNP SNP 96688449 96811305 127 . . R787d +chr11 SNP SNP 96811306 96934162 68 . . R788d +chr11 SNP SNP 96934163 97057019 227 . . R789d +chr11 SNP SNP 97057020 97179876 29 . . R790d +chr11 SNP SNP 97179877 97302733 29 . . R791d +chr11 SNP SNP 97302734 97425590 201 . . R792d +chr11 SNP SNP 97425591 97548447 162 . . R793d +chr11 SNP SNP 97548448 97671304 17 . . R794d +chr11 SNP SNP 97671305 97794161 11 . . R795d +chr11 SNP SNP 97794162 97917018 153 . . R796d +chr11 SNP SNP 97917019 98039875 14 . . R797d +chr11 SNP SNP 98039876 98162732 26 . . R798d +chr11 SNP SNP 98162733 98285589 17 . . R799d +chr11 SNP SNP 98285590 98408446 5 . . R800d +chr11 SNP SNP 98408447 98531303 29 . . R801d +chr11 SNP SNP 98531304 98654160 35 . . R802d +chr11 SNP SNP 98654161 98777017 0 . . R803d +chr11 SNP SNP 98777018 98899874 375 . . R804d +chr11 SNP SNP 98899875 99022731 434 . . R805d +chr11 SNP SNP 99022732 99145588 411 . . R806d +chr11 SNP SNP 99145589 99268444 266 . . R807d +chr11 SNP SNP 99268445 99391301 195 . . R808d +chr11 SNP SNP 99391302 99514158 29 . . R809d +chr11 SNP SNP 99514159 99637015 201 . . R810d +chr11 SNP SNP 99637016 99759872 346 . . R811d +chr11 SNP SNP 99759873 99882729 115 . . R812d +chr11 SNP SNP 99882730 100005586 357 . . R813d +chr11 SNP SNP 100005587 100128443 227 . . R814d +chr11 SNP SNP 100128444 100251300 0 . . R815d +chr11 SNP SNP 100251301 100374157 44 . . R816d +chr11 SNP SNP 100374158 100497014 0 . . R817d +chr11 SNP SNP 100497015 100619871 20 . . R818d +chr11 SNP SNP 100619872 100742728 32 . . R819d +chr11 SNP SNP 100742729 100865585 14 . . R820d +chr11 SNP SNP 100865586 100988442 50 . . R821d +chr11 SNP SNP 100988443 101111299 8 . . R822d +chr11 SNP SNP 101111300 101234156 50 . . R823d +chr11 SNP SNP 101234157 101357013 26 . . R824d +chr11 SNP SNP 101357014 101479870 59 . . R825d +chr11 SNP SNP 101479871 101602727 50 . . R826d +chr11 SNP SNP 101602728 101725584 8 . . R827d +chr11 SNP SNP 101725585 101848441 2 . . R828d +chr11 SNP SNP 101848442 101971298 32 . . R829d +chr11 SNP SNP 101971299 102094155 136 . . R830d +chr11 SNP SNP 102094156 102217012 8 . . R831d +chr11 SNP SNP 102217013 102339869 38 . . R832d +chr11 SNP SNP 102339870 102462726 118 . . R833d +chr11 SNP SNP 102462727 102585583 470 . . R834d +chr11 SNP SNP 102585584 102708440 479 . . R835d +chr11 SNP SNP 102708441 102831297 340 . . R836d +chr11 SNP SNP 102831298 102954154 393 . . R837d +chr11 SNP SNP 102954155 103077011 230 . . R838d +chr11 SNP SNP 103077012 103199868 174 . . R839d +chr11 SNP SNP 103199869 103322725 73 . . R840d +chr11 SNP SNP 103322726 103445582 94 . . R841d +chr11 SNP SNP 103445583 103568439 177 . . R842d +chr11 SNP SNP 103568440 103691296 301 . . R843d +chr11 SNP SNP 103691297 103814153 213 . . R844d +chr11 SNP SNP 103814154 103937010 14 . . R845d +chr11 SNP SNP 103937011 104059866 26 . . R846d +chr11 SNP SNP 104059867 104182723 38 . . R847d +chr11 SNP SNP 104182724 104305580 284 . . R848d +chr11 SNP SNP 104305581 104428437 65 . . R849d +chr11 SNP SNP 104428438 104551294 381 . . R850d +chr11 SNP SNP 104551295 104674151 124 . . R851d +chr11 SNP SNP 104674152 104797008 76 . . R852d +chr11 SNP SNP 104797009 104919865 325 . . R853d +chr11 SNP SNP 104919866 105042722 26 . . R854d +chr11 SNP SNP 105042723 105165579 245 . . R855d +chr11 SNP SNP 105165580 105288436 414 . . R856d +chr11 SNP SNP 105288437 105411293 355 . . R857d +chr11 SNP SNP 105411294 105534150 139 . . R858d +chr11 SNP SNP 105534151 105657007 106 . . R859d +chr11 SNP SNP 105657008 105779864 278 . . R860d +chr11 SNP SNP 105779865 105902721 420 . . R861d +chr11 SNP SNP 105902722 106025578 97 . . R862d +chr11 SNP SNP 106025579 106148435 59 . . R863d +chr11 SNP SNP 106148436 106271292 85 . . R864d +chr11 SNP SNP 106271293 106394149 236 . . R865d +chr11 SNP SNP 106394150 106517006 59 . . R866d +chr11 SNP SNP 106517007 106639863 133 . . R867d +chr11 SNP SNP 106639864 106762720 171 . . R868d +chr11 SNP SNP 106762721 106885577 41 . . R869d +chr11 SNP SNP 106885578 107008434 50 . . R870d +chr11 SNP SNP 107008435 107131291 17 . . R871d +chr11 SNP SNP 107131292 107254148 20 . . R872d +chr11 SNP SNP 107254149 107377005 11 . . R873d +chr11 SNP SNP 107377006 107499862 35 . . R874d +chr11 SNP SNP 107499863 107622719 76 . . R875d +chr11 SNP SNP 107622720 107745576 14 . . R876d +chr11 SNP SNP 107745577 107868433 245 . . R877d +chr11 SNP SNP 107868434 107991290 23 . . R878d +chr11 SNP SNP 107991291 108114147 26 . . R879d +chr11 SNP SNP 108114148 108237004 17 . . R880d +chr11 SNP SNP 108237005 108359861 103 . . R881d +chr11 SNP SNP 108359862 108482718 198 . . R882d +chr11 SNP SNP 108482719 108605575 115 . . R883d +chr11 SNP SNP 108605576 108728431 343 . . R884d +chr11 SNP SNP 108728432 108851288 523 . . R885d +chr11 SNP SNP 108851289 108974145 68 . . R886d +chr11 SNP SNP 108974146 109097002 32 . . R887d +chr11 SNP SNP 109097003 109219859 133 . . R888d +chr11 SNP SNP 109219860 109342716 384 . . R889d +chr11 SNP SNP 109342717 109465573 343 . . R890d +chr11 SNP SNP 109465574 109588430 455 . . R891d +chr11 SNP SNP 109588431 109711287 192 . . R892d +chr11 SNP SNP 109711288 109834144 41 . . R893d +chr11 SNP SNP 109834145 109957001 23 . . R894d +chr11 SNP SNP 109957002 110079858 23 . . R895d +chr11 SNP SNP 110079859 110202715 298 . . R896d +chr11 SNP SNP 110202716 110325572 428 . . R897d +chr11 SNP SNP 110325573 110448429 14 . . R898d +chr11 SNP SNP 110448430 110571286 11 . . R899d +chr11 SNP SNP 110571287 110694143 20 . . R900d +chr11 SNP SNP 110694144 110817000 5 . . R901d +chr11 SNP SNP 110817001 110939857 0 . . R902d +chr11 SNP SNP 110939858 111062714 29 . . R903d +chr11 SNP SNP 111062715 111185571 8 . . R904d +chr11 SNP SNP 111185572 111308428 2 . . R905d +chr11 SNP SNP 111308429 111431285 11 . . R906d +chr11 SNP SNP 111431286 111554142 2 . . R907d +chr11 SNP SNP 111554143 111676999 14 . . R908d +chr11 SNP SNP 111677000 111799856 23 . . R909d +chr11 SNP SNP 111799857 111922713 11 . . R910d +chr11 SNP SNP 111922714 112045570 14 . . R911d +chr11 SNP SNP 112045571 112168427 11 . . R912d +chr11 SNP SNP 112168428 112291284 17 . . R913d +chr11 SNP SNP 112291285 112414141 20 . . R914d +chr11 SNP SNP 112414142 112536998 23 . . R915d +chr11 SNP SNP 112536999 112659855 14 . . R916d +chr11 SNP SNP 112659856 112782712 14 . . R917d +chr11 SNP SNP 112782713 112905569 8 . . R918d +chr11 SNP SNP 112905570 113028426 5 . . R919d +chr11 SNP SNP 113028427 113151283 14 . . R920d +chr11 SNP SNP 113151284 113274140 14 . . R921d +chr11 SNP SNP 113274141 113396997 20 . . R922d +chr11 SNP SNP 113396998 113519853 11 . . R923d +chr11 SNP SNP 113519854 113642710 5 . . R924d +chr11 SNP SNP 113642711 113765567 23 . . R925d +chr11 SNP SNP 113765568 113888424 11 . . R926d +chr11 SNP SNP 113888425 114011281 2 . . R927d +chr11 SNP SNP 114011282 114134138 0 . . R928d +chr11 SNP SNP 114134139 114256995 8 . . R929d +chr11 SNP SNP 114256996 114379852 5 . . R930d +chr11 SNP SNP 114379853 114502709 8 . . R931d +chr11 SNP SNP 114502710 114625566 11 . . R932d +chr11 SNP SNP 114625567 114748423 2 . . R933d +chr11 SNP SNP 114748424 114871280 2 . . R934d +chr11 SNP SNP 114871281 114994137 17 . . R935d +chr11 SNP SNP 114994138 115116994 8 . . R936d +chr11 SNP SNP 115116995 115239851 14 . . R937d +chr11 SNP SNP 115239852 115362708 14 . . R938d +chr11 SNP SNP 115362709 115485565 2 . . R939d +chr11 SNP SNP 115485566 115608422 242 . . R940d +chr11 SNP SNP 115608423 115731279 378 . . R941d +chr11 SNP SNP 115731280 115854136 11 . . R942d +chr11 SNP SNP 115854137 115976993 29 . . R943d +chr11 SNP SNP 115976994 116099850 5 . . R944d +chr11 SNP SNP 116099851 116222707 97 . . R945d +chr11 SNP SNP 116222708 116345564 316 . . R946d +chr11 SNP SNP 116345565 116468421 357 . . R947d +chr11 SNP SNP 116468422 116591278 147 . . R948d +chr11 SNP SNP 116591279 116714135 121 . . R949d +chr11 SNP SNP 116714136 116836992 198 . . R950d +chr11 SNP SNP 116836993 116959849 106 . . R951d +chr11 SNP SNP 116959850 117082706 227 . . R952d +chr11 SNP SNP 117082707 117205563 455 . . R953d +chr11 SNP SNP 117205564 117328420 263 . . R954d +chr11 SNP SNP 117328421 117451277 357 . . R955d +chr11 SNP SNP 117451278 117574134 156 . . R956d +chr11 SNP SNP 117574135 117696991 124 . . R957d +chr11 SNP SNP 117696992 117819848 405 . . R958d +chr11 SNP SNP 117819849 117942705 375 . . R959d +chr11 SNP SNP 117942706 118065562 233 . . R960d +chr11 SNP SNP 118065563 118188418 207 . . R961d +chr11 SNP SNP 118188419 118311275 53 . . R962d +chr11 SNP SNP 118311276 118434132 71 . . R963d +chr11 SNP SNP 118434133 118556989 310 . . R964d +chr11 SNP SNP 118556990 118679846 215 . . R965d +chr11 SNP SNP 118679847 118802703 142 . . R966d +chr11 SNP SNP 118802704 118925560 26 . . R967d +chr11 SNP SNP 118925561 119048417 100 . . R968d +chr11 SNP SNP 119048418 119171274 174 . . R969d +chr11 SNP SNP 119171275 119294131 266 . . R970d +chr11 SNP SNP 119294132 119416988 446 . . R971d +chr11 SNP SNP 119416989 119539845 8 . . R972d +chr11 SNP SNP 119539846 119662702 2 . . R973d +chr11 SNP SNP 119662703 119785559 5 . . R974d +chr11 SNP SNP 119785560 119908416 35 . . R975d +chr11 SNP SNP 119908417 120031273 23 . . R976d +chr11 SNP SNP 120031274 120154130 150 . . R977d +chr11 SNP SNP 120154131 120276987 449 . . R978d +chr11 SNP SNP 120276988 120399844 621 . . R979d +chr11 SNP SNP 120399845 120522701 254 . . R980d +chr11 SNP SNP 120522702 120645558 56 . . R981d +chr11 SNP SNP 120645559 120768415 38 . . R982d +chr11 SNP SNP 120768416 120891272 44 . . R983d +chr11 SNP SNP 120891273 121014129 307 . . R984d +chr11 SNP SNP 121014130 121136986 292 . . R985d +chr11 SNP SNP 121136987 121259843 44 . . R986d +chr11 SNP SNP 121259844 121382700 26 . . R987d +chr11 SNP SNP 121382701 121505557 88 . . R988d +chr11 SNP SNP 121505558 121628414 5 . . R989d +chr11 SNP SNP 121628415 121751271 17 . . R990d +chr11 SNP SNP 121751272 121874128 20 . . R991d +chr11 SNP SNP 121874129 121996985 11 . . R992d +chr11 SNP SNP 121996986 122119842 11 . . R993d +chr11 SNP SNP 122119843 122242699 23 . . R994d +chr11 SNP SNP 122242700 122365556 8 . . R995d +chr11 SNP SNP 122365557 122488413 20 . . R996d +chr11 SNP SNP 122488414 122611270 5 . . R997d +chr11 SNP SNP 122611271 122734127 11 . . R998d +chr11 SNP SNP 122734128 122856984 2 . . R999d diff --git a/web/snp/chr12 b/web/snp/chr12 new file mode 100755 index 00000000..4a844669 --- /dev/null +++ b/web/snp/chr12 @@ -0,0 +1,1003 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr12 SNP SNP 11 114311 0 . . R0d +chr12 SNP SNP 114312 228613 0 . . R1d +chr12 SNP SNP 228614 342915 0 . . R2d +chr12 SNP SNP 342916 457217 0 . . R3d +chr12 SNP SNP 457218 571519 0 . . R4d +chr12 SNP SNP 571520 685821 0 . . R5d +chr12 SNP SNP 685822 800122 0 . . R6d +chr12 SNP SNP 800123 914424 0 . . R7d +chr12 SNP SNP 914425 1028726 0 . . R8d +chr12 SNP SNP 1028727 1143028 0 . . R9d +chr12 SNP SNP 1143029 1257330 0 . . R10d +chr12 SNP SNP 1257331 1371632 0 . . R11d +chr12 SNP SNP 1371633 1485933 0 . . R12d +chr12 SNP SNP 1485934 1600235 0 . . R13d +chr12 SNP SNP 1600236 1714537 0 . . R14d +chr12 SNP SNP 1714538 1828839 0 . . R15d +chr12 SNP SNP 1828840 1943141 0 . . R16d +chr12 SNP SNP 1943142 2057443 0 . . R17d +chr12 SNP SNP 2057444 2171744 0 . . R18d +chr12 SNP SNP 2171745 2286046 0 . . R19d +chr12 SNP SNP 2286047 2400348 0 . . R20d +chr12 SNP SNP 2400349 2514650 0 . . R21d +chr12 SNP SNP 2514651 2628952 0 . . R22d +chr12 SNP SNP 2628953 2743254 0 . . R23d +chr12 SNP SNP 2743255 2857555 0 . . R24d +chr12 SNP SNP 2857556 2971857 0 . . R25d +chr12 SNP SNP 2971858 3086159 0 . . R26d +chr12 SNP SNP 3086160 3200461 33 . . R27d +chr12 SNP SNP 3200462 3314763 11 . . R28d +chr12 SNP SNP 3314764 3429065 11 . . R29d +chr12 SNP SNP 3429066 3543366 7 . . R30d +chr12 SNP SNP 3543367 3657668 11 . . R31d +chr12 SNP SNP 3657669 3771970 22 . . R32d +chr12 SNP SNP 3771971 3886272 33 . . R33d +chr12 SNP SNP 3886273 4000574 22 . . R34d +chr12 SNP SNP 4000575 4114876 7 . . R35d +chr12 SNP SNP 4114877 4229178 14 . . R36d +chr12 SNP SNP 4229179 4343479 14 . . R37d +chr12 SNP SNP 4343480 4457781 25 . . R38d +chr12 SNP SNP 4457782 4572083 29 . . R39d +chr12 SNP SNP 4572084 4686385 18 . . R40d +chr12 SNP SNP 4686386 4800687 11 . . R41d +chr12 SNP SNP 4800688 4914989 33 . . R42d +chr12 SNP SNP 4914990 5029290 3 . . R43d +chr12 SNP SNP 5029291 5143592 7 . . R44d +chr12 SNP SNP 5143593 5257894 36 . . R45d +chr12 SNP SNP 5257895 5372196 11 . . R46d +chr12 SNP SNP 5372197 5486498 55 . . R47d +chr12 SNP SNP 5486499 5600800 77 . . R48d +chr12 SNP SNP 5600801 5715101 14 . . R49d +chr12 SNP SNP 5715102 5829403 29 . . R50d +chr12 SNP SNP 5829404 5943705 11 . . R51d +chr12 SNP SNP 5943706 6058007 47 . . R52d +chr12 SNP SNP 6058008 6172309 11 . . R53d +chr12 SNP SNP 6172310 6286611 29 . . R54d +chr12 SNP SNP 6286612 6400912 25 . . R55d +chr12 SNP SNP 6400913 6515214 14 . . R56d +chr12 SNP SNP 6515215 6629516 25 . . R57d +chr12 SNP SNP 6629517 6743818 14 . . R58d +chr12 SNP SNP 6743819 6858120 18 . . R59d +chr12 SNP SNP 6858121 6972422 3 . . R60d +chr12 SNP SNP 6972423 7086723 22 . . R61d +chr12 SNP SNP 7086724 7201025 7 . . R62d +chr12 SNP SNP 7201026 7315327 11 . . R63d +chr12 SNP SNP 7315328 7429629 0 . . R64d +chr12 SNP SNP 7429630 7543931 18 . . R65d +chr12 SNP SNP 7543932 7658233 3 . . R66d +chr12 SNP SNP 7658234 7772534 7 . . R67d +chr12 SNP SNP 7772535 7886836 11 . . R68d +chr12 SNP SNP 7886837 8001138 25 . . R69d +chr12 SNP SNP 8001139 8115440 11 . . R70d +chr12 SNP SNP 8115441 8229742 33 . . R71d +chr12 SNP SNP 8229743 8344044 18 . . R72d +chr12 SNP SNP 8344045 8458346 0 . . R73d +chr12 SNP SNP 8458347 8572647 11 . . R74d +chr12 SNP SNP 8572648 8686949 14 . . R75d +chr12 SNP SNP 8686950 8801251 7 . . R76d +chr12 SNP SNP 8801252 8915553 14 . . R77d +chr12 SNP SNP 8915554 9029855 7 . . R78d +chr12 SNP SNP 9029856 9144157 25 . . R79d +chr12 SNP SNP 9144158 9258458 33 . . R80d +chr12 SNP SNP 9258459 9372760 22 . . R81d +chr12 SNP SNP 9372761 9487062 11 . . R82d +chr12 SNP SNP 9487063 9601364 36 . . R83d +chr12 SNP SNP 9601365 9715666 7 . . R84d +chr12 SNP SNP 9715667 9829968 70 . . R85d +chr12 SNP SNP 9829969 9944269 479 . . R86d +chr12 SNP SNP 9944270 10058571 62 . . R87d +chr12 SNP SNP 10058572 10172873 291 . . R88d +chr12 SNP SNP 10172874 10287175 642 . . R89d +chr12 SNP SNP 10287176 10401477 778 . . R90d +chr12 SNP SNP 10401478 10515779 634 . . R91d +chr12 SNP SNP 10515780 10630080 103 . . R92d +chr12 SNP SNP 10630081 10744382 317 . . R93d +chr12 SNP SNP 10744383 10858684 527 . . R94d +chr12 SNP SNP 10858685 10972986 357 . . R95d +chr12 SNP SNP 10972987 11087288 239 . . R96d +chr12 SNP SNP 11087289 11201590 306 . . R97d +chr12 SNP SNP 11201591 11315891 324 . . R98d +chr12 SNP SNP 11315892 11430193 44 . . R99d +chr12 SNP SNP 11430194 11544495 51 . . R100d +chr12 SNP SNP 11544496 11658797 107 . . R101d +chr12 SNP SNP 11658798 11773099 258 . . R102d +chr12 SNP SNP 11773100 11887401 376 . . R103d +chr12 SNP SNP 11887402 12001702 416 . . R104d +chr12 SNP SNP 12001703 12116004 332 . . R105d +chr12 SNP SNP 12116005 12230306 549 . . R106d +chr12 SNP SNP 12230307 12344608 490 . . R107d +chr12 SNP SNP 12344609 12458910 188 . . R108d +chr12 SNP SNP 12458911 12573212 405 . . R109d +chr12 SNP SNP 12573213 12687514 180 . . R110d +chr12 SNP SNP 12687515 12801815 306 . . R111d +chr12 SNP SNP 12801816 12916117 402 . . R112d +chr12 SNP SNP 12916118 13030419 328 . . R113d +chr12 SNP SNP 13030420 13144721 428 . . R114d +chr12 SNP SNP 13144722 13259023 287 . . R115d +chr12 SNP SNP 13259024 13373325 214 . . R116d +chr12 SNP SNP 13373326 13487626 36 . . R117d +chr12 SNP SNP 13487627 13601928 18 . . R118d +chr12 SNP SNP 13601929 13716230 25 . . R119d +chr12 SNP SNP 13716231 13830532 25 . . R120d +chr12 SNP SNP 13830533 13944834 22 . . R121d +chr12 SNP SNP 13944835 14059136 18 . . R122d +chr12 SNP SNP 14059137 14173437 33 . . R123d +chr12 SNP SNP 14173438 14287739 47 . . R124d +chr12 SNP SNP 14287740 14402041 40 . . R125d +chr12 SNP SNP 14402042 14516343 22 . . R126d +chr12 SNP SNP 14516344 14630645 18 . . R127d +chr12 SNP SNP 14630646 14744947 29 . . R128d +chr12 SNP SNP 14744948 14859248 33 . . R129d +chr12 SNP SNP 14859249 14973550 284 . . R130d +chr12 SNP SNP 14973551 15087852 369 . . R131d +chr12 SNP SNP 15087853 15202154 11 . . R132d +chr12 SNP SNP 15202155 15316456 33 . . R133d +chr12 SNP SNP 15316457 15430758 608 . . R134d +chr12 SNP SNP 15430759 15545059 442 . . R135d +chr12 SNP SNP 15545060 15659361 202 . . R136d +chr12 SNP SNP 15659362 15773663 328 . . R137d +chr12 SNP SNP 15773664 15887965 361 . . R138d +chr12 SNP SNP 15887966 16002267 332 . . R139d +chr12 SNP SNP 16002268 16116569 143 . . R140d +chr12 SNP SNP 16116570 16230870 501 . . R141d +chr12 SNP SNP 16230871 16345172 538 . . R142d +chr12 SNP SNP 16345173 16459474 380 . . R143d +chr12 SNP SNP 16459475 16573776 505 . . R144d +chr12 SNP SNP 16573777 16688078 523 . . R145d +chr12 SNP SNP 16688079 16802380 468 . . R146d +chr12 SNP SNP 16802381 16916682 479 . . R147d +chr12 SNP SNP 16916683 17030983 671 . . R148d +chr12 SNP SNP 17030984 17145285 690 . . R149d +chr12 SNP SNP 17145286 17259587 468 . . R150d +chr12 SNP SNP 17259588 17373889 516 . . R151d +chr12 SNP SNP 17373890 17488191 560 . . R152d +chr12 SNP SNP 17488192 17602493 734 . . R153d +chr12 SNP SNP 17602494 17716794 527 . . R154d +chr12 SNP SNP 17716795 17831096 391 . . R155d +chr12 SNP SNP 17831097 17945398 361 . . R156d +chr12 SNP SNP 17945399 18059700 309 . . R157d +chr12 SNP SNP 18059701 18174002 3 . . R158d +chr12 SNP SNP 18174003 18288304 14 . . R159d +chr12 SNP SNP 18288305 18402605 18 . . R160d +chr12 SNP SNP 18402606 18516907 81 . . R161d +chr12 SNP SNP 18516908 18631209 276 . . R162d +chr12 SNP SNP 18631210 18745511 837 . . R163d +chr12 SNP SNP 18745512 18859813 472 . . R164d +chr12 SNP SNP 18859814 18974115 435 . . R165d +chr12 SNP SNP 18974116 19088416 468 . . R166d +chr12 SNP SNP 19088417 19202718 756 . . R167d +chr12 SNP SNP 19202719 19317020 612 . . R168d +chr12 SNP SNP 19317021 19431322 512 . . R169d +chr12 SNP SNP 19431323 19545624 394 . . R170d +chr12 SNP SNP 19545625 19659926 553 . . R171d +chr12 SNP SNP 19659927 19774227 601 . . R172d +chr12 SNP SNP 19774228 19888529 487 . . R173d +chr12 SNP SNP 19888530 20002831 509 . . R174d +chr12 SNP SNP 20002832 20117133 442 . . R175d +chr12 SNP SNP 20117134 20231435 446 . . R176d +chr12 SNP SNP 20231436 20345737 671 . . R177d +chr12 SNP SNP 20345738 20460039 867 . . R178d +chr12 SNP SNP 20460040 20574340 686 . . R179d +chr12 SNP SNP 20574341 20688642 402 . . R180d +chr12 SNP SNP 20688643 20802944 583 . . R181d +chr12 SNP SNP 20802945 20917246 472 . . R182d +chr12 SNP SNP 20917247 21031548 619 . . R183d +chr12 SNP SNP 21031549 21145850 557 . . R184d +chr12 SNP SNP 21145851 21260151 627 . . R185d +chr12 SNP SNP 21260152 21374453 494 . . R186d +chr12 SNP SNP 21374454 21488755 634 . . R187d +chr12 SNP SNP 21488756 21603057 409 . . R188d +chr12 SNP SNP 21603058 21717359 527 . . R189d +chr12 SNP SNP 21717360 21831661 538 . . R190d +chr12 SNP SNP 21831662 21945962 516 . . R191d +chr12 SNP SNP 21945963 22060264 608 . . R192d +chr12 SNP SNP 22060265 22174566 734 . . R193d +chr12 SNP SNP 22174567 22288868 560 . . R194d +chr12 SNP SNP 22288869 22403170 749 . . R195d +chr12 SNP SNP 22403171 22517472 590 . . R196d +chr12 SNP SNP 22517473 22631773 394 . . R197d +chr12 SNP SNP 22631774 22746075 597 . . R198d +chr12 SNP SNP 22746076 22860377 605 . . R199d +chr12 SNP SNP 22860378 22974679 520 . . R200d +chr12 SNP SNP 22974680 23088981 284 . . R201d +chr12 SNP SNP 23088982 23203283 431 . . R202d +chr12 SNP SNP 23203284 23317584 453 . . R203d +chr12 SNP SNP 23317585 23431886 789 . . R204d +chr12 SNP SNP 23431887 23546188 715 . . R205d +chr12 SNP SNP 23546189 23660490 571 . . R206d +chr12 SNP SNP 23660491 23774792 863 . . R207d +chr12 SNP SNP 23774793 23889094 583 . . R208d +chr12 SNP SNP 23889095 24003395 1000 . . R209d +chr12 SNP SNP 24003396 24117697 645 . . R210d +chr12 SNP SNP 24117698 24231999 509 . . R211d +chr12 SNP SNP 24232000 24346301 571 . . R212d +chr12 SNP SNP 24346302 24460603 590 . . R213d +chr12 SNP SNP 24460604 24574905 708 . . R214d +chr12 SNP SNP 24574906 24689207 649 . . R215d +chr12 SNP SNP 24689208 24803508 693 . . R216d +chr12 SNP SNP 24803509 24917810 678 . . R217d +chr12 SNP SNP 24917811 25032112 715 . . R218d +chr12 SNP SNP 25032113 25146414 280 . . R219d +chr12 SNP SNP 25146415 25260716 173 . . R220d +chr12 SNP SNP 25260717 25375018 66 . . R221d +chr12 SNP SNP 25375019 25489319 29 . . R222d +chr12 SNP SNP 25489320 25603621 11 . . R223d +chr12 SNP SNP 25603622 25717923 7 . . R224d +chr12 SNP SNP 25717924 25832225 7 . . R225d +chr12 SNP SNP 25832226 25946527 18 . . R226d +chr12 SNP SNP 25946528 26060829 3 . . R227d +chr12 SNP SNP 26060830 26175130 7 . . R228d +chr12 SNP SNP 26175131 26289432 7 . . R229d +chr12 SNP SNP 26289433 26403734 0 . . R230d +chr12 SNP SNP 26403735 26518036 11 . . R231d +chr12 SNP SNP 26518037 26632338 33 . . R232d +chr12 SNP SNP 26632339 26746640 11 . . R233d +chr12 SNP SNP 26746641 26860941 18 . . R234d +chr12 SNP SNP 26860942 26975243 18 . . R235d +chr12 SNP SNP 26975244 27089545 7 . . R236d +chr12 SNP SNP 27089546 27203847 77 . . R237d +chr12 SNP SNP 27203848 27318149 7 . . R238d +chr12 SNP SNP 27318150 27432451 14 . . R239d +chr12 SNP SNP 27432452 27546752 14 . . R240d +chr12 SNP SNP 27546753 27661054 25 . . R241d +chr12 SNP SNP 27661055 27775356 3 . . R242d +chr12 SNP SNP 27775357 27889658 7 . . R243d +chr12 SNP SNP 27889659 28003960 25 . . R244d +chr12 SNP SNP 28003961 28118262 33 . . R245d +chr12 SNP SNP 28118263 28232563 14 . . R246d +chr12 SNP SNP 28232564 28346865 29 . . R247d +chr12 SNP SNP 28346866 28461167 376 . . R248d +chr12 SNP SNP 28461168 28575469 516 . . R249d +chr12 SNP SNP 28575470 28689771 228 . . R250d +chr12 SNP SNP 28689772 28804073 553 . . R251d +chr12 SNP SNP 28804074 28918375 774 . . R252d +chr12 SNP SNP 28918376 29032676 501 . . R253d +chr12 SNP SNP 29032677 29146978 383 . . R254d +chr12 SNP SNP 29146979 29261280 619 . . R255d +chr12 SNP SNP 29261281 29375582 442 . . R256d +chr12 SNP SNP 29375583 29489884 535 . . R257d +chr12 SNP SNP 29489885 29604186 627 . . R258d +chr12 SNP SNP 29604187 29718487 409 . . R259d +chr12 SNP SNP 29718488 29832789 442 . . R260d +chr12 SNP SNP 29832790 29947091 405 . . R261d +chr12 SNP SNP 29947092 30061393 302 . . R262d +chr12 SNP SNP 30061394 30175695 324 . . R263d +chr12 SNP SNP 30175696 30289997 125 . . R264d +chr12 SNP SNP 30289998 30404298 14 . . R265d +chr12 SNP SNP 30404299 30518600 7 . . R266d +chr12 SNP SNP 30518601 30632902 14 . . R267d +chr12 SNP SNP 30632903 30747204 11 . . R268d +chr12 SNP SNP 30747205 30861506 11 . . R269d +chr12 SNP SNP 30861507 30975808 509 . . R270d +chr12 SNP SNP 30975809 31090109 520 . . R271d +chr12 SNP SNP 31090110 31204411 479 . . R272d +chr12 SNP SNP 31204412 31318713 343 . . R273d +chr12 SNP SNP 31318714 31433015 520 . . R274d +chr12 SNP SNP 31433016 31547317 549 . . R275d +chr12 SNP SNP 31547318 31661619 372 . . R276d +chr12 SNP SNP 31661620 31775920 483 . . R277d +chr12 SNP SNP 31775921 31890222 254 . . R278d +chr12 SNP SNP 31890223 32004524 25 . . R279d +chr12 SNP SNP 32004525 32118826 29 . . R280d +chr12 SNP SNP 32118827 32233128 166 . . R281d +chr12 SNP SNP 32233129 32347430 302 . . R282d +chr12 SNP SNP 32347431 32461731 214 . . R283d +chr12 SNP SNP 32461732 32576033 40 . . R284d +chr12 SNP SNP 32576034 32690335 55 . . R285d +chr12 SNP SNP 32690336 32804637 29 . . R286d +chr12 SNP SNP 32804638 32918939 154 . . R287d +chr12 SNP SNP 32918940 33033241 166 . . R288d +chr12 SNP SNP 33033242 33147543 47 . . R289d +chr12 SNP SNP 33147544 33261844 273 . . R290d +chr12 SNP SNP 33261845 33376146 597 . . R291d +chr12 SNP SNP 33376147 33490448 346 . . R292d +chr12 SNP SNP 33490449 33604750 44 . . R293d +chr12 SNP SNP 33604751 33719052 25 . . R294d +chr12 SNP SNP 33719053 33833354 33 . . R295d +chr12 SNP SNP 33833355 33947655 103 . . R296d +chr12 SNP SNP 33947656 34061957 95 . . R297d +chr12 SNP SNP 34061958 34176259 36 . . R298d +chr12 SNP SNP 34176260 34290561 40 . . R299d +chr12 SNP SNP 34290562 34404863 44 . . R300d +chr12 SNP SNP 34404864 34519165 55 . . R301d +chr12 SNP SNP 34519166 34633466 295 . . R302d +chr12 SNP SNP 34633467 34747768 103 . . R303d +chr12 SNP SNP 34747769 34862070 177 . . R304d +chr12 SNP SNP 34862071 34976372 125 . . R305d +chr12 SNP SNP 34976373 35090674 158 . . R306d +chr12 SNP SNP 35090675 35204976 99 . . R307d +chr12 SNP SNP 35204977 35319277 487 . . R308d +chr12 SNP SNP 35319278 35433579 380 . . R309d +chr12 SNP SNP 35433580 35547881 612 . . R310d +chr12 SNP SNP 35547882 35662183 402 . . R311d +chr12 SNP SNP 35662184 35776485 140 . . R312d +chr12 SNP SNP 35776486 35890787 103 . . R313d +chr12 SNP SNP 35890788 36005088 210 . . R314d +chr12 SNP SNP 36005089 36119390 380 . . R315d +chr12 SNP SNP 36119391 36233692 586 . . R316d +chr12 SNP SNP 36233693 36347994 243 . . R317d +chr12 SNP SNP 36347995 36462296 774 . . R318d +chr12 SNP SNP 36462297 36576598 169 . . R319d +chr12 SNP SNP 36576599 36690899 18 . . R320d +chr12 SNP SNP 36690900 36805201 40 . . R321d +chr12 SNP SNP 36805202 36919503 317 . . R322d +chr12 SNP SNP 36919504 37033805 280 . . R323d +chr12 SNP SNP 37033806 37148107 103 . . R324d +chr12 SNP SNP 37148108 37262409 191 . . R325d +chr12 SNP SNP 37262410 37376711 250 . . R326d +chr12 SNP SNP 37376712 37491012 317 . . R327d +chr12 SNP SNP 37491013 37605314 597 . . R328d +chr12 SNP SNP 37605315 37719616 92 . . R329d +chr12 SNP SNP 37719617 37833918 59 . . R330d +chr12 SNP SNP 37833919 37948220 88 . . R331d +chr12 SNP SNP 37948221 38062522 254 . . R332d +chr12 SNP SNP 38062523 38176823 14 . . R333d +chr12 SNP SNP 38176824 38291125 25 . . R334d +chr12 SNP SNP 38291126 38405427 22 . . R335d +chr12 SNP SNP 38405428 38519729 217 . . R336d +chr12 SNP SNP 38519730 38634031 487 . . R337d +chr12 SNP SNP 38634032 38748333 391 . . R338d +chr12 SNP SNP 38748334 38862634 394 . . R339d +chr12 SNP SNP 38862635 38976936 380 . . R340d +chr12 SNP SNP 38976937 39091238 306 . . R341d +chr12 SNP SNP 39091239 39205540 247 . . R342d +chr12 SNP SNP 39205541 39319842 25 . . R343d +chr12 SNP SNP 39319843 39434144 276 . . R344d +chr12 SNP SNP 39434145 39548445 398 . . R345d +chr12 SNP SNP 39548446 39662747 195 . . R346d +chr12 SNP SNP 39662748 39777049 173 . . R347d +chr12 SNP SNP 39777050 39891351 295 . . R348d +chr12 SNP SNP 39891352 40005653 132 . . R349d +chr12 SNP SNP 40005654 40119955 47 . . R350d +chr12 SNP SNP 40119956 40234256 44 . . R351d +chr12 SNP SNP 40234257 40348558 269 . . R352d +chr12 SNP SNP 40348559 40462860 527 . . R353d +chr12 SNP SNP 40462861 40577162 313 . . R354d +chr12 SNP SNP 40577163 40691464 11 . . R355d +chr12 SNP SNP 40691465 40805766 309 . . R356d +chr12 SNP SNP 40805767 40920068 420 . . R357d +chr12 SNP SNP 40920069 41034369 380 . . R358d +chr12 SNP SNP 41034370 41148671 586 . . R359d +chr12 SNP SNP 41148672 41262973 287 . . R360d +chr12 SNP SNP 41262974 41377275 686 . . R361d +chr12 SNP SNP 41377276 41491577 490 . . R362d +chr12 SNP SNP 41491578 41605879 258 . . R363d +chr12 SNP SNP 41605880 41720180 18 . . R364d +chr12 SNP SNP 41720181 41834482 7 . . R365d +chr12 SNP SNP 41834483 41948784 22 . . R366d +chr12 SNP SNP 41948785 42063086 18 . . R367d +chr12 SNP SNP 42063087 42177388 11 . . R368d +chr12 SNP SNP 42177389 42291690 25 . . R369d +chr12 SNP SNP 42291691 42405991 22 . . R370d +chr12 SNP SNP 42405992 42520293 25 . . R371d +chr12 SNP SNP 42520294 42634595 29 . . R372d +chr12 SNP SNP 42634596 42748897 14 . . R373d +chr12 SNP SNP 42748898 42863199 11 . . R374d +chr12 SNP SNP 42863200 42977501 40 . . R375d +chr12 SNP SNP 42977502 43091802 22 . . R376d +chr12 SNP SNP 43091803 43206104 40 . . R377d +chr12 SNP SNP 43206105 43320406 11 . . R378d +chr12 SNP SNP 43320407 43434708 3 . . R379d +chr12 SNP SNP 43434709 43549010 3 . . R380d +chr12 SNP SNP 43549011 43663312 0 . . R381d +chr12 SNP SNP 43663313 43777613 18 . . R382d +chr12 SNP SNP 43777614 43891915 33 . . R383d +chr12 SNP SNP 43891916 44006217 14 . . R384d +chr12 SNP SNP 44006218 44120519 14 . . R385d +chr12 SNP SNP 44120520 44234821 11 . . R386d +chr12 SNP SNP 44234822 44349123 11 . . R387d +chr12 SNP SNP 44349124 44463424 7 . . R388d +chr12 SNP SNP 44463425 44577726 25 . . R389d +chr12 SNP SNP 44577727 44692028 44 . . R390d +chr12 SNP SNP 44692029 44806330 18 . . R391d +chr12 SNP SNP 44806331 44920632 18 . . R392d +chr12 SNP SNP 44920633 45034934 22 . . R393d +chr12 SNP SNP 45034935 45149236 3 . . R394d +chr12 SNP SNP 45149237 45263537 11 . . R395d +chr12 SNP SNP 45263538 45377839 3 . . R396d +chr12 SNP SNP 45377840 45492141 14 . . R397d +chr12 SNP SNP 45492142 45606443 3 . . R398d +chr12 SNP SNP 45606444 45720745 18 . . R399d +chr12 SNP SNP 45720746 45835047 18 . . R400d +chr12 SNP SNP 45835048 45949348 25 . . R401d +chr12 SNP SNP 45949349 46063650 22 . . R402d +chr12 SNP SNP 46063651 46177952 18 . . R403d +chr12 SNP SNP 46177953 46292254 3 . . R404d +chr12 SNP SNP 46292255 46406556 0 . . R405d +chr12 SNP SNP 46406557 46520858 3 . . R406d +chr12 SNP SNP 46520859 46635159 11 . . R407d +chr12 SNP SNP 46635160 46749461 3 . . R408d +chr12 SNP SNP 46749462 46863763 14 . . R409d +chr12 SNP SNP 46863764 46978065 11 . . R410d +chr12 SNP SNP 46978066 47092367 7 . . R411d +chr12 SNP SNP 47092368 47206669 7 . . R412d +chr12 SNP SNP 47206670 47320970 14 . . R413d +chr12 SNP SNP 47320971 47435272 11 . . R414d +chr12 SNP SNP 47435273 47549574 3 . . R415d +chr12 SNP SNP 47549575 47663876 11 . . R416d +chr12 SNP SNP 47663877 47778178 11 . . R417d +chr12 SNP SNP 47778179 47892480 11 . . R418d +chr12 SNP SNP 47892481 48006781 7 . . R419d +chr12 SNP SNP 48006782 48121083 3 . . R420d +chr12 SNP SNP 48121084 48235385 3 . . R421d +chr12 SNP SNP 48235386 48349687 7 . . R422d +chr12 SNP SNP 48349688 48463989 3 . . R423d +chr12 SNP SNP 48463990 48578291 11 . . R424d +chr12 SNP SNP 48578292 48692592 11 . . R425d +chr12 SNP SNP 48692593 48806894 25 . . R426d +chr12 SNP SNP 48806895 48921196 55 . . R427d +chr12 SNP SNP 48921197 49035498 369 . . R428d +chr12 SNP SNP 49035499 49149800 461 . . R429d +chr12 SNP SNP 49149801 49264102 405 . . R430d +chr12 SNP SNP 49264103 49378404 328 . . R431d +chr12 SNP SNP 49378405 49492705 22 . . R432d +chr12 SNP SNP 49492706 49607007 18 . . R433d +chr12 SNP SNP 49607008 49721309 11 . . R434d +chr12 SNP SNP 49721310 49835611 18 . . R435d +chr12 SNP SNP 49835612 49949913 29 . . R436d +chr12 SNP SNP 49949914 50064215 11 . . R437d +chr12 SNP SNP 50064216 50178516 0 . . R438d +chr12 SNP SNP 50178517 50292818 14 . . R439d +chr12 SNP SNP 50292819 50407120 18 . . R440d +chr12 SNP SNP 50407121 50521422 18 . . R441d +chr12 SNP SNP 50521423 50635724 14 . . R442d +chr12 SNP SNP 50635725 50750026 11 . . R443d +chr12 SNP SNP 50750027 50864327 206 . . R444d +chr12 SNP SNP 50864328 50978629 202 . . R445d +chr12 SNP SNP 50978630 51092931 40 . . R446d +chr12 SNP SNP 51092932 51207233 501 . . R447d +chr12 SNP SNP 51207234 51321535 258 . . R448d +chr12 SNP SNP 51321536 51435837 243 . . R449d +chr12 SNP SNP 51435838 51550138 295 . . R450d +chr12 SNP SNP 51550139 51664440 479 . . R451d +chr12 SNP SNP 51664441 51778742 464 . . R452d +chr12 SNP SNP 51778743 51893044 450 . . R453d +chr12 SNP SNP 51893045 52007346 369 . . R454d +chr12 SNP SNP 52007347 52121648 295 . . R455d +chr12 SNP SNP 52121649 52235949 405 . . R456d +chr12 SNP SNP 52235950 52350251 446 . . R457d +chr12 SNP SNP 52350252 52464553 457 . . R458d +chr12 SNP SNP 52464554 52578855 512 . . R459d +chr12 SNP SNP 52578856 52693157 531 . . R460d +chr12 SNP SNP 52693158 52807459 258 . . R461d +chr12 SNP SNP 52807460 52921760 210 . . R462d +chr12 SNP SNP 52921761 53036062 214 . . R463d +chr12 SNP SNP 53036063 53150364 29 . . R464d +chr12 SNP SNP 53150365 53264666 40 . . R465d +chr12 SNP SNP 53264667 53378968 44 . . R466d +chr12 SNP SNP 53378969 53493270 77 . . R467d +chr12 SNP SNP 53493271 53607572 22 . . R468d +chr12 SNP SNP 53607573 53721873 66 . . R469d +chr12 SNP SNP 53721874 53836175 276 . . R470d +chr12 SNP SNP 53836176 53950477 169 . . R471d +chr12 SNP SNP 53950478 54064779 335 . . R472d +chr12 SNP SNP 54064780 54179081 623 . . R473d +chr12 SNP SNP 54179082 54293383 99 . . R474d +chr12 SNP SNP 54293384 54407684 33 . . R475d +chr12 SNP SNP 54407685 54521986 335 . . R476d +chr12 SNP SNP 54521987 54636288 25 . . R477d +chr12 SNP SNP 54636289 54750590 59 . . R478d +chr12 SNP SNP 54750591 54864892 29 . . R479d +chr12 SNP SNP 54864893 54979194 51 . . R480d +chr12 SNP SNP 54979195 55093495 129 . . R481d +chr12 SNP SNP 55093496 55207797 457 . . R482d +chr12 SNP SNP 55207798 55322099 571 . . R483d +chr12 SNP SNP 55322100 55436401 516 . . R484d +chr12 SNP SNP 55436402 55550703 177 . . R485d +chr12 SNP SNP 55550704 55665005 33 . . R486d +chr12 SNP SNP 55665006 55779306 44 . . R487d +chr12 SNP SNP 55779307 55893608 36 . . R488d +chr12 SNP SNP 55893609 56007910 269 . . R489d +chr12 SNP SNP 56007911 56122212 33 . . R490d +chr12 SNP SNP 56122213 56236514 51 . . R491d +chr12 SNP SNP 56236515 56350816 22 . . R492d +chr12 SNP SNP 56350817 56465117 25 . . R493d +chr12 SNP SNP 56465118 56579419 36 . . R494d +chr12 SNP SNP 56579420 56693721 25 . . R495d +chr12 SNP SNP 56693722 56808023 306 . . R496d +chr12 SNP SNP 56808024 56922325 25 . . R497d +chr12 SNP SNP 56922326 57036627 40 . . R498d +chr12 SNP SNP 57036628 57150929 18 . . R499d +chr12 SNP SNP 57150930 57265230 88 . . R500d +chr12 SNP SNP 57265231 57379532 103 . . R501d +chr12 SNP SNP 57379533 57493834 184 . . R502d +chr12 SNP SNP 57493835 57608136 531 . . R503d +chr12 SNP SNP 57608137 57722438 442 . . R504d +chr12 SNP SNP 57722439 57836740 464 . . R505d +chr12 SNP SNP 57836741 57951041 40 . . R506d +chr12 SNP SNP 57951042 58065343 11 . . R507d +chr12 SNP SNP 58065344 58179645 36 . . R508d +chr12 SNP SNP 58179646 58293947 33 . . R509d +chr12 SNP SNP 58293948 58408249 317 . . R510d +chr12 SNP SNP 58408250 58522551 372 . . R511d +chr12 SNP SNP 58522552 58636852 280 . . R512d +chr12 SNP SNP 58636853 58751154 132 . . R513d +chr12 SNP SNP 58751155 58865456 107 . . R514d +chr12 SNP SNP 58865457 58979758 14 . . R515d +chr12 SNP SNP 58979759 59094060 7 . . R516d +chr12 SNP SNP 59094061 59208362 7 . . R517d +chr12 SNP SNP 59208363 59322663 7 . . R518d +chr12 SNP SNP 59322664 59436965 11 . . R519d +chr12 SNP SNP 59436966 59551267 29 . . R520d +chr12 SNP SNP 59551268 59665569 14 . . R521d +chr12 SNP SNP 59665570 59779871 18 . . R522d +chr12 SNP SNP 59779872 59894173 18 . . R523d +chr12 SNP SNP 59894174 60008474 29 . . R524d +chr12 SNP SNP 60008475 60122776 33 . . R525d +chr12 SNP SNP 60122777 60237078 14 . . R526d +chr12 SNP SNP 60237079 60351380 22 . . R527d +chr12 SNP SNP 60351381 60465682 18 . . R528d +chr12 SNP SNP 60465683 60579984 11 . . R529d +chr12 SNP SNP 60579985 60694285 7 . . R530d +chr12 SNP SNP 60694286 60808587 29 . . R531d +chr12 SNP SNP 60808588 60922889 18 . . R532d +chr12 SNP SNP 60922890 61037191 11 . . R533d +chr12 SNP SNP 61037192 61151493 59 . . R534d +chr12 SNP SNP 61151494 61265795 22 . . R535d +chr12 SNP SNP 61265796 61380097 25 . . R536d +chr12 SNP SNP 61380098 61494398 14 . . R537d +chr12 SNP SNP 61494399 61608700 11 . . R538d +chr12 SNP SNP 61608701 61723002 0 . . R539d +chr12 SNP SNP 61723003 61837304 398 . . R540d +chr12 SNP SNP 61837305 61951606 605 . . R541d +chr12 SNP SNP 61951607 62065908 416 . . R542d +chr12 SNP SNP 62065909 62180209 413 . . R543d +chr12 SNP SNP 62180210 62294511 387 . . R544d +chr12 SNP SNP 62294512 62408813 239 . . R545d +chr12 SNP SNP 62408814 62523115 44 . . R546d +chr12 SNP SNP 62523116 62637417 40 . . R547d +chr12 SNP SNP 62637418 62751719 254 . . R548d +chr12 SNP SNP 62751720 62866020 7 . . R549d +chr12 SNP SNP 62866021 62980322 114 . . R550d +chr12 SNP SNP 62980323 63094624 11 . . R551d +chr12 SNP SNP 63094625 63208926 11 . . R552d +chr12 SNP SNP 63208927 63323228 22 . . R553d +chr12 SNP SNP 63323229 63437530 11 . . R554d +chr12 SNP SNP 63437531 63551831 11 . . R555d +chr12 SNP SNP 63551832 63666133 11 . . R556d +chr12 SNP SNP 63666134 63780435 11 . . R557d +chr12 SNP SNP 63780436 63894737 0 . . R558d +chr12 SNP SNP 63894738 64009039 22 . . R559d +chr12 SNP SNP 64009040 64123341 11 . . R560d +chr12 SNP SNP 64123342 64237642 158 . . R561d +chr12 SNP SNP 64237643 64351944 191 . . R562d +chr12 SNP SNP 64351945 64466246 335 . . R563d +chr12 SNP SNP 64466247 64580548 428 . . R564d +chr12 SNP SNP 64580549 64694850 372 . . R565d +chr12 SNP SNP 64694851 64809152 343 . . R566d +chr12 SNP SNP 64809153 64923453 450 . . R567d +chr12 SNP SNP 64923454 65037755 498 . . R568d +chr12 SNP SNP 65037756 65152057 346 . . R569d +chr12 SNP SNP 65152058 65266359 29 . . R570d +chr12 SNP SNP 65266360 65380661 25 . . R571d +chr12 SNP SNP 65380662 65494963 36 . . R572d +chr12 SNP SNP 65494964 65609265 51 . . R573d +chr12 SNP SNP 65609266 65723566 81 . . R574d +chr12 SNP SNP 65723567 65837868 11 . . R575d +chr12 SNP SNP 65837869 65952170 62 . . R576d +chr12 SNP SNP 65952171 66066472 394 . . R577d +chr12 SNP SNP 66066473 66180774 527 . . R578d +chr12 SNP SNP 66180775 66295076 7 . . R579d +chr12 SNP SNP 66295077 66409377 18 . . R580d +chr12 SNP SNP 66409378 66523679 22 . . R581d +chr12 SNP SNP 66523680 66637981 18 . . R582d +chr12 SNP SNP 66637982 66752283 11 . . R583d +chr12 SNP SNP 66752284 66866585 11 . . R584d +chr12 SNP SNP 66866586 66980887 14 . . R585d +chr12 SNP SNP 66980888 67095188 11 . . R586d +chr12 SNP SNP 67095189 67209490 11 . . R587d +chr12 SNP SNP 67209491 67323792 25 . . R588d +chr12 SNP SNP 67323793 67438094 7 . . R589d +chr12 SNP SNP 67438095 67552396 14 . . R590d +chr12 SNP SNP 67552397 67666698 22 . . R591d +chr12 SNP SNP 67666699 67780999 25 . . R592d +chr12 SNP SNP 67781000 67895301 11 . . R593d +chr12 SNP SNP 67895302 68009603 14 . . R594d +chr12 SNP SNP 68009604 68123905 7 . . R595d +chr12 SNP SNP 68123906 68238207 7 . . R596d +chr12 SNP SNP 68238208 68352509 18 . . R597d +chr12 SNP SNP 68352510 68466810 14 . . R598d +chr12 SNP SNP 68466811 68581112 22 . . R599d +chr12 SNP SNP 68581113 68695414 36 . . R600d +chr12 SNP SNP 68695415 68809716 18 . . R601d +chr12 SNP SNP 68809717 68924018 7 . . R602d +chr12 SNP SNP 68924019 69038320 7 . . R603d +chr12 SNP SNP 69038321 69152621 3 . . R604d +chr12 SNP SNP 69152622 69266923 22 . . R605d +chr12 SNP SNP 69266924 69381225 7 . . R606d +chr12 SNP SNP 69381226 69495527 14 . . R607d +chr12 SNP SNP 69495528 69609829 18 . . R608d +chr12 SNP SNP 69609830 69724131 416 . . R609d +chr12 SNP SNP 69724132 69838433 136 . . R610d +chr12 SNP SNP 69838434 69952734 33 . . R611d +chr12 SNP SNP 69952735 70067036 324 . . R612d +chr12 SNP SNP 70067037 70181338 73 . . R613d +chr12 SNP SNP 70181339 70295640 40 . . R614d +chr12 SNP SNP 70295641 70409942 202 . . R615d +chr12 SNP SNP 70409943 70524244 103 . . R616d +chr12 SNP SNP 70524245 70638545 77 . . R617d +chr12 SNP SNP 70638546 70752847 239 . . R618d +chr12 SNP SNP 70752848 70867149 394 . . R619d +chr12 SNP SNP 70867150 70981451 261 . . R620d +chr12 SNP SNP 70981452 71095753 162 . . R621d +chr12 SNP SNP 71095754 71210055 18 . . R622d +chr12 SNP SNP 71210056 71324356 7 . . R623d +chr12 SNP SNP 71324357 71438658 3 . . R624d +chr12 SNP SNP 71438659 71552960 7 . . R625d +chr12 SNP SNP 71552961 71667262 7 . . R626d +chr12 SNP SNP 71667263 71781564 7 . . R627d +chr12 SNP SNP 71781565 71895866 18 . . R628d +chr12 SNP SNP 71895867 72010167 14 . . R629d +chr12 SNP SNP 72010168 72124469 3 . . R630d +chr12 SNP SNP 72124470 72238771 14 . . R631d +chr12 SNP SNP 72238772 72353073 3 . . R632d +chr12 SNP SNP 72353074 72467375 18 . . R633d +chr12 SNP SNP 72467376 72581677 14 . . R634d +chr12 SNP SNP 72581678 72695978 7 . . R635d +chr12 SNP SNP 72695979 72810280 0 . . R636d +chr12 SNP SNP 72810281 72924582 25 . . R637d +chr12 SNP SNP 72924583 73038884 36 . . R638d +chr12 SNP SNP 73038885 73153186 7 . . R639d +chr12 SNP SNP 73153187 73267488 18 . . R640d +chr12 SNP SNP 73267489 73381789 14 . . R641d +chr12 SNP SNP 73381790 73496091 11 . . R642d +chr12 SNP SNP 73496092 73610393 29 . . R643d +chr12 SNP SNP 73610394 73724695 3 . . R644d +chr12 SNP SNP 73724696 73838997 7 . . R645d +chr12 SNP SNP 73838998 73953299 18 . . R646d +chr12 SNP SNP 73953300 74067601 14 . . R647d +chr12 SNP SNP 74067602 74181902 11 . . R648d +chr12 SNP SNP 74181903 74296204 25 . . R649d +chr12 SNP SNP 74296205 74410506 3 . . R650d +chr12 SNP SNP 74410507 74524808 18 . . R651d +chr12 SNP SNP 74524809 74639110 40 . . R652d +chr12 SNP SNP 74639111 74753412 22 . . R653d +chr12 SNP SNP 74753413 74867713 132 . . R654d +chr12 SNP SNP 74867714 74982015 25 . . R655d +chr12 SNP SNP 74982016 75096317 22 . . R656d +chr12 SNP SNP 75096318 75210619 22 . . R657d +chr12 SNP SNP 75210620 75324921 118 . . R658d +chr12 SNP SNP 75324922 75439223 284 . . R659d +chr12 SNP SNP 75439224 75553524 40 . . R660d +chr12 SNP SNP 75553525 75667826 73 . . R661d +chr12 SNP SNP 75667827 75782128 47 . . R662d +chr12 SNP SNP 75782129 75896430 468 . . R663d +chr12 SNP SNP 75896431 76010732 18 . . R664d +chr12 SNP SNP 76010733 76125034 51 . . R665d +chr12 SNP SNP 76125035 76239335 62 . . R666d +chr12 SNP SNP 76239336 76353637 188 . . R667d +chr12 SNP SNP 76353638 76467939 221 . . R668d +chr12 SNP SNP 76467940 76582241 18 . . R669d +chr12 SNP SNP 76582242 76696543 22 . . R670d +chr12 SNP SNP 76696544 76810845 70 . . R671d +chr12 SNP SNP 76810846 76925146 446 . . R672d +chr12 SNP SNP 76925147 77039448 450 . . R673d +chr12 SNP SNP 77039449 77153750 88 . . R674d +chr12 SNP SNP 77153751 77268052 210 . . R675d +chr12 SNP SNP 77268053 77382354 476 . . R676d +chr12 SNP SNP 77382355 77496656 295 . . R677d +chr12 SNP SNP 77496657 77610958 40 . . R678d +chr12 SNP SNP 77610959 77725259 14 . . R679d +chr12 SNP SNP 77725260 77839561 7 . . R680d +chr12 SNP SNP 77839562 77953863 14 . . R681d +chr12 SNP SNP 77953864 78068165 7 . . R682d +chr12 SNP SNP 78068166 78182467 22 . . R683d +chr12 SNP SNP 78182468 78296769 14 . . R684d +chr12 SNP SNP 78296770 78411070 22 . . R685d +chr12 SNP SNP 78411071 78525372 25 . . R686d +chr12 SNP SNP 78525373 78639674 11 . . R687d +chr12 SNP SNP 78639675 78753976 3 . . R688d +chr12 SNP SNP 78753977 78868278 3 . . R689d +chr12 SNP SNP 78868279 78982580 11 . . R690d +chr12 SNP SNP 78982581 79096881 3 . . R691d +chr12 SNP SNP 79096882 79211183 11 . . R692d +chr12 SNP SNP 79211184 79325485 0 . . R693d +chr12 SNP SNP 79325486 79439787 3 . . R694d +chr12 SNP SNP 79439788 79554089 22 . . R695d +chr12 SNP SNP 79554090 79668391 14 . . R696d +chr12 SNP SNP 79668392 79782692 11 . . R697d +chr12 SNP SNP 79782693 79896994 3 . . R698d +chr12 SNP SNP 79896995 80011296 36 . . R699d +chr12 SNP SNP 80011297 80125598 11 . . R700d +chr12 SNP SNP 80125599 80239900 33 . . R701d +chr12 SNP SNP 80239901 80354202 7 . . R702d +chr12 SNP SNP 80354203 80468503 18 . . R703d +chr12 SNP SNP 80468504 80582805 14 . . R704d +chr12 SNP SNP 80582806 80697107 14 . . R705d +chr12 SNP SNP 80697108 80811409 18 . . R706d +chr12 SNP SNP 80811410 80925711 0 . . R707d +chr12 SNP SNP 80925712 81040013 18 . . R708d +chr12 SNP SNP 81040014 81154314 25 . . R709d +chr12 SNP SNP 81154315 81268616 3 . . R710d +chr12 SNP SNP 81268617 81382918 25 . . R711d +chr12 SNP SNP 81382919 81497220 25 . . R712d +chr12 SNP SNP 81497221 81611522 11 . . R713d +chr12 SNP SNP 81611523 81725824 11 . . R714d +chr12 SNP SNP 81725825 81840126 33 . . R715d +chr12 SNP SNP 81840127 81954427 236 . . R716d +chr12 SNP SNP 81954428 82068729 11 . . R717d +chr12 SNP SNP 82068730 82183031 62 . . R718d +chr12 SNP SNP 82183032 82297333 487 . . R719d +chr12 SNP SNP 82297334 82411635 420 . . R720d +chr12 SNP SNP 82411636 82525937 619 . . R721d +chr12 SNP SNP 82525938 82640238 287 . . R722d +chr12 SNP SNP 82640239 82754540 25 . . R723d +chr12 SNP SNP 82754541 82868842 29 . . R724d +chr12 SNP SNP 82868843 82983144 22 . . R725d +chr12 SNP SNP 82983145 83097446 3 . . R726d +chr12 SNP SNP 83097447 83211748 14 . . R727d +chr12 SNP SNP 83211749 83326049 3 . . R728d +chr12 SNP SNP 83326050 83440351 18 . . R729d +chr12 SNP SNP 83440352 83554653 11 . . R730d +chr12 SNP SNP 83554654 83668955 7 . . R731d +chr12 SNP SNP 83668956 83783257 18 . . R732d +chr12 SNP SNP 83783258 83897559 3 . . R733d +chr12 SNP SNP 83897560 84011860 36 . . R734d +chr12 SNP SNP 84011861 84126162 346 . . R735d +chr12 SNP SNP 84126163 84240464 107 . . R736d +chr12 SNP SNP 84240465 84354766 25 . . R737d +chr12 SNP SNP 84354767 84469068 298 . . R738d +chr12 SNP SNP 84469069 84583370 535 . . R739d +chr12 SNP SNP 84583371 84697671 435 . . R740d +chr12 SNP SNP 84697672 84811973 184 . . R741d +chr12 SNP SNP 84811974 84926275 36 . . R742d +chr12 SNP SNP 84926276 85040577 269 . . R743d +chr12 SNP SNP 85040578 85154879 225 . . R744d +chr12 SNP SNP 85154880 85269181 365 . . R745d +chr12 SNP SNP 85269182 85383482 92 . . R746d +chr12 SNP SNP 85383483 85497784 199 . . R747d +chr12 SNP SNP 85497785 85612086 29 . . R748d +chr12 SNP SNP 85612087 85726388 276 . . R749d +chr12 SNP SNP 85726389 85840690 424 . . R750d +chr12 SNP SNP 85840691 85954992 542 . . R751d +chr12 SNP SNP 85954993 86069294 413 . . R752d +chr12 SNP SNP 86069295 86183595 280 . . R753d +chr12 SNP SNP 86183596 86297897 391 . . R754d +chr12 SNP SNP 86297898 86412199 284 . . R755d +chr12 SNP SNP 86412200 86526501 247 . . R756d +chr12 SNP SNP 86526502 86640803 339 . . R757d +chr12 SNP SNP 86640804 86755105 114 . . R758d +chr12 SNP SNP 86755106 86869406 14 . . R759d +chr12 SNP SNP 86869407 86983708 18 . . R760d +chr12 SNP SNP 86983709 87098010 343 . . R761d +chr12 SNP SNP 87098011 87212312 512 . . R762d +chr12 SNP SNP 87212313 87326614 446 . . R763d +chr12 SNP SNP 87326615 87440916 232 . . R764d +chr12 SNP SNP 87440917 87555217 221 . . R765d +chr12 SNP SNP 87555218 87669519 55 . . R766d +chr12 SNP SNP 87669520 87783821 73 . . R767d +chr12 SNP SNP 87783822 87898123 18 . . R768d +chr12 SNP SNP 87898124 88012425 33 . . R769d +chr12 SNP SNP 88012426 88126727 413 . . R770d +chr12 SNP SNP 88126728 88241028 55 . . R771d +chr12 SNP SNP 88241029 88355330 11 . . R772d +chr12 SNP SNP 88355331 88469632 11 . . R773d +chr12 SNP SNP 88469633 88583934 7 . . R774d +chr12 SNP SNP 88583935 88698236 18 . . R775d +chr12 SNP SNP 88698237 88812538 33 . . R776d +chr12 SNP SNP 88812539 88926839 22 . . R777d +chr12 SNP SNP 88926840 89041141 22 . . R778d +chr12 SNP SNP 89041142 89155443 7 . . R779d +chr12 SNP SNP 89155444 89269745 22 . . R780d +chr12 SNP SNP 89269746 89384047 25 . . R781d +chr12 SNP SNP 89384048 89498349 3 . . R782d +chr12 SNP SNP 89498350 89612650 14 . . R783d +chr12 SNP SNP 89612651 89726952 7 . . R784d +chr12 SNP SNP 89726953 89841254 22 . . R785d +chr12 SNP SNP 89841255 89955556 11 . . R786d +chr12 SNP SNP 89955557 90069858 11 . . R787d +chr12 SNP SNP 90069859 90184160 22 . . R788d +chr12 SNP SNP 90184161 90298462 11 . . R789d +chr12 SNP SNP 90298463 90412763 11 . . R790d +chr12 SNP SNP 90412764 90527065 3 . . R791d +chr12 SNP SNP 90527066 90641367 11 . . R792d +chr12 SNP SNP 90641368 90755669 11 . . R793d +chr12 SNP SNP 90755670 90869971 3 . . R794d +chr12 SNP SNP 90869972 90984273 18 . . R795d +chr12 SNP SNP 90984274 91098574 18 . . R796d +chr12 SNP SNP 91098575 91212876 14 . . R797d +chr12 SNP SNP 91212877 91327178 22 . . R798d +chr12 SNP SNP 91327179 91441480 14 . . R799d +chr12 SNP SNP 91441481 91555782 33 . . R800d +chr12 SNP SNP 91555783 91670084 18 . . R801d +chr12 SNP SNP 91670085 91784385 22 . . R802d +chr12 SNP SNP 91784386 91898687 7 . . R803d +chr12 SNP SNP 91898688 92012989 14 . . R804d +chr12 SNP SNP 92012990 92127291 33 . . R805d +chr12 SNP SNP 92127292 92241593 14 . . R806d +chr12 SNP SNP 92241594 92355895 3 . . R807d +chr12 SNP SNP 92355896 92470196 29 . . R808d +chr12 SNP SNP 92470197 92584498 11 . . R809d +chr12 SNP SNP 92584499 92698800 18 . . R810d +chr12 SNP SNP 92698801 92813102 22 . . R811d +chr12 SNP SNP 92813103 92927404 7 . . R812d +chr12 SNP SNP 92927405 93041706 11 . . R813d +chr12 SNP SNP 93041707 93156007 18 . . R814d +chr12 SNP SNP 93156008 93270309 14 . . R815d +chr12 SNP SNP 93270310 93384611 0 . . R816d +chr12 SNP SNP 93384612 93498913 92 . . R817d +chr12 SNP SNP 93498914 93613215 269 . . R818d +chr12 SNP SNP 93613216 93727517 369 . . R819d +chr12 SNP SNP 93727518 93841818 605 . . R820d +chr12 SNP SNP 93841819 93956120 313 . . R821d +chr12 SNP SNP 93956121 94070422 55 . . R822d +chr12 SNP SNP 94070423 94184724 47 . . R823d +chr12 SNP SNP 94184725 94299026 36 . . R824d +chr12 SNP SNP 94299027 94413328 125 . . R825d +chr12 SNP SNP 94413329 94527630 191 . . R826d +chr12 SNP SNP 94527631 94641931 398 . . R827d +chr12 SNP SNP 94641932 94756233 36 . . R828d +chr12 SNP SNP 94756234 94870535 479 . . R829d +chr12 SNP SNP 94870536 94984837 416 . . R830d +chr12 SNP SNP 94984838 95099139 483 . . R831d +chr12 SNP SNP 95099140 95213441 483 . . R832d +chr12 SNP SNP 95213442 95327742 664 . . R833d +chr12 SNP SNP 95327743 95442044 439 . . R834d +chr12 SNP SNP 95442045 95556346 446 . . R835d +chr12 SNP SNP 95556347 95670648 446 . . R836d +chr12 SNP SNP 95670649 95784950 391 . . R837d +chr12 SNP SNP 95784951 95899252 295 . . R838d +chr12 SNP SNP 95899253 96013553 269 . . R839d +chr12 SNP SNP 96013554 96127855 291 . . R840d +chr12 SNP SNP 96127856 96242157 77 . . R841d +chr12 SNP SNP 96242158 96356459 464 . . R842d +chr12 SNP SNP 96356460 96470761 335 . . R843d +chr12 SNP SNP 96470762 96585063 464 . . R844d +chr12 SNP SNP 96585064 96699364 151 . . R845d +chr12 SNP SNP 96699365 96813666 302 . . R846d +chr12 SNP SNP 96813667 96927968 44 . . R847d +chr12 SNP SNP 96927969 97042270 258 . . R848d +chr12 SNP SNP 97042271 97156572 118 . . R849d +chr12 SNP SNP 97156573 97270874 25 . . R850d +chr12 SNP SNP 97270875 97385175 40 . . R851d +chr12 SNP SNP 97385176 97499477 51 . . R852d +chr12 SNP SNP 97499478 97613779 18 . . R853d +chr12 SNP SNP 97613780 97728081 435 . . R854d +chr12 SNP SNP 97728082 97842383 66 . . R855d +chr12 SNP SNP 97842384 97956685 33 . . R856d +chr12 SNP SNP 97956686 98070987 420 . . R857d +chr12 SNP SNP 98070988 98185288 542 . . R858d +chr12 SNP SNP 98185289 98299590 538 . . R859d +chr12 SNP SNP 98299591 98413892 675 . . R860d +chr12 SNP SNP 98413893 98528194 59 . . R861d +chr12 SNP SNP 98528195 98642496 99 . . R862d +chr12 SNP SNP 98642497 98756798 306 . . R863d +chr12 SNP SNP 98756799 98871099 416 . . R864d +chr12 SNP SNP 98871100 98985401 354 . . R865d +chr12 SNP SNP 98985402 99099703 95 . . R866d +chr12 SNP SNP 99099704 99214005 7 . . R867d +chr12 SNP SNP 99214006 99328307 14 . . R868d +chr12 SNP SNP 99328308 99442609 22 . . R869d +chr12 SNP SNP 99442610 99556910 250 . . R870d +chr12 SNP SNP 99556911 99671212 258 . . R871d +chr12 SNP SNP 99671213 99785514 14 . . R872d +chr12 SNP SNP 99785515 99899816 14 . . R873d +chr12 SNP SNP 99899817 100014118 3 . . R874d +chr12 SNP SNP 100014119 100128420 3 . . R875d +chr12 SNP SNP 100128421 100242721 11 . . R876d +chr12 SNP SNP 100242722 100357023 0 . . R877d +chr12 SNP SNP 100357024 100471325 22 . . R878d +chr12 SNP SNP 100471326 100585627 14 . . R879d +chr12 SNP SNP 100585628 100699929 7 . . R880d +chr12 SNP SNP 100699930 100814231 11 . . R881d +chr12 SNP SNP 100814232 100928532 7 . . R882d +chr12 SNP SNP 100928533 101042834 11 . . R883d +chr12 SNP SNP 101042835 101157136 22 . . R884d +chr12 SNP SNP 101157137 101271438 3 . . R885d +chr12 SNP SNP 101271439 101385740 11 . . R886d +chr12 SNP SNP 101385741 101500042 18 . . R887d +chr12 SNP SNP 101500043 101614343 73 . . R888d +chr12 SNP SNP 101614344 101728645 29 . . R889d +chr12 SNP SNP 101728646 101842947 11 . . R890d +chr12 SNP SNP 101842948 101957249 206 . . R891d +chr12 SNP SNP 101957250 102071551 409 . . R892d +chr12 SNP SNP 102071552 102185853 202 . . R893d +chr12 SNP SNP 102185854 102300155 726 . . R894d +chr12 SNP SNP 102300156 102414456 457 . . R895d +chr12 SNP SNP 102414457 102528758 103 . . R896d +chr12 SNP SNP 102528759 102643060 62 . . R897d +chr12 SNP SNP 102643061 102757362 280 . . R898d +chr12 SNP SNP 102757363 102871664 151 . . R899d +chr12 SNP SNP 102871665 102985966 376 . . R900d +chr12 SNP SNP 102985967 103100267 77 . . R901d +chr12 SNP SNP 103100268 103214569 84 . . R902d +chr12 SNP SNP 103214570 103328871 276 . . R903d +chr12 SNP SNP 103328872 103443173 239 . . R904d +chr12 SNP SNP 103443174 103557475 232 . . R905d +chr12 SNP SNP 103557476 103671777 143 . . R906d +chr12 SNP SNP 103671778 103786078 77 . . R907d +chr12 SNP SNP 103786079 103900380 350 . . R908d +chr12 SNP SNP 103900381 104014682 546 . . R909d +chr12 SNP SNP 104014683 104128984 409 . . R910d +chr12 SNP SNP 104128985 104243286 402 . . R911d +chr12 SNP SNP 104243287 104357588 571 . . R912d +chr12 SNP SNP 104357589 104471889 468 . . R913d +chr12 SNP SNP 104471890 104586191 195 . . R914d +chr12 SNP SNP 104586192 104700493 59 . . R915d +chr12 SNP SNP 104700494 104814795 151 . . R916d +chr12 SNP SNP 104814796 104929097 461 . . R917d +chr12 SNP SNP 104929098 105043399 29 . . R918d +chr12 SNP SNP 105043400 105157700 22 . . R919d +chr12 SNP SNP 105157701 105272002 217 . . R920d +chr12 SNP SNP 105272003 105386304 365 . . R921d +chr12 SNP SNP 105386305 105500606 258 . . R922d +chr12 SNP SNP 105500607 105614908 265 . . R923d +chr12 SNP SNP 105614909 105729210 575 . . R924d +chr12 SNP SNP 105729211 105843511 383 . . R925d +chr12 SNP SNP 105843512 105957813 509 . . R926d +chr12 SNP SNP 105957814 106072115 472 . . R927d +chr12 SNP SNP 106072116 106186417 365 . . R928d +chr12 SNP SNP 106186418 106300719 442 . . R929d +chr12 SNP SNP 106300720 106415021 656 . . R930d +chr12 SNP SNP 106415022 106529323 575 . . R931d +chr12 SNP SNP 106529324 106643624 317 . . R932d +chr12 SNP SNP 106643625 106757926 0 . . R933d +chr12 SNP SNP 106757927 106872228 3 . . R934d +chr12 SNP SNP 106872229 106986530 14 . . R935d +chr12 SNP SNP 106986531 107100832 11 . . R936d +chr12 SNP SNP 107100833 107215134 25 . . R937d +chr12 SNP SNP 107215135 107329435 125 . . R938d +chr12 SNP SNP 107329436 107443737 365 . . R939d +chr12 SNP SNP 107443738 107558039 184 . . R940d +chr12 SNP SNP 107558040 107672341 265 . . R941d +chr12 SNP SNP 107672342 107786643 0 . . R942d +chr12 SNP SNP 107786644 107900945 0 . . R943d +chr12 SNP SNP 107900946 108015246 33 . . R944d +chr12 SNP SNP 108015247 108129548 55 . . R945d +chr12 SNP SNP 108129549 108243850 0 . . R946d +chr12 SNP SNP 108243851 108358152 3 . . R947d +chr12 SNP SNP 108358153 108472454 0 . . R948d +chr12 SNP SNP 108472455 108586756 0 . . R949d +chr12 SNP SNP 108586757 108701057 0 . . R950d +chr12 SNP SNP 108701058 108815359 0 . . R951d +chr12 SNP SNP 108815360 108929661 0 . . R952d +chr12 SNP SNP 108929662 109043963 0 . . R953d +chr12 SNP SNP 109043964 109158265 0 . . R954d +chr12 SNP SNP 109158266 109272567 0 . . R955d +chr12 SNP SNP 109272568 109386868 0 . . R956d +chr12 SNP SNP 109386869 109501170 0 . . R957d +chr12 SNP SNP 109501171 109615472 0 . . R958d +chr12 SNP SNP 109615473 109729774 0 . . R959d +chr12 SNP SNP 109729775 109844076 0 . . R960d +chr12 SNP SNP 109844077 109958378 0 . . R961d +chr12 SNP SNP 109958379 110072679 0 . . R962d +chr12 SNP SNP 110072680 110186981 0 . . R963d +chr12 SNP SNP 110186982 110301283 0 . . R964d +chr12 SNP SNP 110301284 110415585 0 . . R965d +chr12 SNP SNP 110415586 110529887 0 . . R966d +chr12 SNP SNP 110529888 110644189 0 . . R967d +chr12 SNP SNP 110644190 110758491 0 . . R968d +chr12 SNP SNP 110758492 110872792 0 . . R969d +chr12 SNP SNP 110872793 110987094 0 . . R970d +chr12 SNP SNP 110987095 111101396 0 . . R971d +chr12 SNP SNP 111101397 111215698 0 . . R972d +chr12 SNP SNP 111215699 111330000 0 . . R973d +chr12 SNP SNP 111330001 111444302 3 . . R974d +chr12 SNP SNP 111444303 111558603 0 . . R975d +chr12 SNP SNP 111558604 111672905 0 . . R976d +chr12 SNP SNP 111672906 111787207 0 . . R977d +chr12 SNP SNP 111787208 111901509 0 . . R978d +chr12 SNP SNP 111901510 112015811 0 . . R979d +chr12 SNP SNP 112015812 112130113 0 . . R980d +chr12 SNP SNP 112130114 112244414 0 . . R981d +chr12 SNP SNP 112244415 112358716 0 . . R982d +chr12 SNP SNP 112358717 112473018 0 . . R983d +chr12 SNP SNP 112473019 112587320 0 . . R984d +chr12 SNP SNP 112587321 112701622 0 . . R985d +chr12 SNP SNP 112701623 112815924 0 . . R986d +chr12 SNP SNP 112815925 112930225 0 . . R987d +chr12 SNP SNP 112930226 113044527 0 . . R988d +chr12 SNP SNP 113044528 113158829 0 . . R989d +chr12 SNP SNP 113158830 113273131 0 . . R990d +chr12 SNP SNP 113273132 113387433 0 . . R991d +chr12 SNP SNP 113387434 113501735 0 . . R992d +chr12 SNP SNP 113501736 113616036 3 . . R993d +chr12 SNP SNP 113616037 113730338 0 . . R994d +chr12 SNP SNP 113730339 113844640 0 . . R995d +chr12 SNP SNP 113844641 113958942 0 . . R996d +chr12 SNP SNP 113958943 114073244 0 . . R997d +chr12 SNP SNP 114073245 114187546 0 . . R998d +chr12 SNP SNP 114187547 114301848 3 . . R999d diff --git a/web/snp/chr13 b/web/snp/chr13 new file mode 100755 index 00000000..8762d0be --- /dev/null +++ b/web/snp/chr13 @@ -0,0 +1,1003 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr13 SNP SNP 11 116251 0 . . R0d +chr13 SNP SNP 116252 232493 0 . . R1d +chr13 SNP SNP 232494 348735 0 . . R2d +chr13 SNP SNP 348736 464977 0 . . R3d +chr13 SNP SNP 464978 581219 0 . . R4d +chr13 SNP SNP 581220 697461 0 . . R5d +chr13 SNP SNP 697462 813703 0 . . R6d +chr13 SNP SNP 813704 929944 0 . . R7d +chr13 SNP SNP 929945 1046186 0 . . R8d +chr13 SNP SNP 1046187 1162428 0 . . R9d +chr13 SNP SNP 1162429 1278670 0 . . R10d +chr13 SNP SNP 1278671 1394912 0 . . R11d +chr13 SNP SNP 1394913 1511154 0 . . R12d +chr13 SNP SNP 1511155 1627396 0 . . R13d +chr13 SNP SNP 1627397 1743637 0 . . R14d +chr13 SNP SNP 1743638 1859879 0 . . R15d +chr13 SNP SNP 1859880 1976121 0 . . R16d +chr13 SNP SNP 1976122 2092363 0 . . R17d +chr13 SNP SNP 2092364 2208605 0 . . R18d +chr13 SNP SNP 2208606 2324847 0 . . R19d +chr13 SNP SNP 2324848 2441089 0 . . R20d +chr13 SNP SNP 2441090 2557331 0 . . R21d +chr13 SNP SNP 2557332 2673572 0 . . R22d +chr13 SNP SNP 2673573 2789814 0 . . R23d +chr13 SNP SNP 2789815 2906056 0 . . R24d +chr13 SNP SNP 2906057 3022298 0 . . R25d +chr13 SNP SNP 3022299 3138540 31 . . R26d +chr13 SNP SNP 3138541 3254782 27 . . R27d +chr13 SNP SNP 3254783 3371024 20 . . R28d +chr13 SNP SNP 3371025 3487265 17 . . R29d +chr13 SNP SNP 3487266 3603507 3 . . R30d +chr13 SNP SNP 3603508 3719749 17 . . R31d +chr13 SNP SNP 3719750 3835991 27 . . R32d +chr13 SNP SNP 3835992 3952233 27 . . R33d +chr13 SNP SNP 3952234 4068475 38 . . R34d +chr13 SNP SNP 4068476 4184717 6 . . R35d +chr13 SNP SNP 4184718 4300959 13 . . R36d +chr13 SNP SNP 4300960 4417200 31 . . R37d +chr13 SNP SNP 4417201 4533442 0 . . R38d +chr13 SNP SNP 4533443 4649684 27 . . R39d +chr13 SNP SNP 4649685 4765926 13 . . R40d +chr13 SNP SNP 4765927 4882168 38 . . R41d +chr13 SNP SNP 4882169 4998410 34 . . R42d +chr13 SNP SNP 4998411 5114652 13 . . R43d +chr13 SNP SNP 5114653 5230893 20 . . R44d +chr13 SNP SNP 5230894 5347135 3 . . R45d +chr13 SNP SNP 5347136 5463377 17 . . R46d +chr13 SNP SNP 5463378 5579619 31 . . R47d +chr13 SNP SNP 5579620 5695861 20 . . R48d +chr13 SNP SNP 5695862 5812103 17 . . R49d +chr13 SNP SNP 5812104 5928345 13 . . R50d +chr13 SNP SNP 5928346 6044586 17 . . R51d +chr13 SNP SNP 6044587 6160828 13 . . R52d +chr13 SNP SNP 6160829 6277070 6 . . R53d +chr13 SNP SNP 6277071 6393312 20 . . R54d +chr13 SNP SNP 6393313 6509554 6 . . R55d +chr13 SNP SNP 6509555 6625796 10 . . R56d +chr13 SNP SNP 6625797 6742038 6 . . R57d +chr13 SNP SNP 6742039 6858280 20 . . R58d +chr13 SNP SNP 6858281 6974521 13 . . R59d +chr13 SNP SNP 6974522 7090763 10 . . R60d +chr13 SNP SNP 7090764 7207005 20 . . R61d +chr13 SNP SNP 7207006 7323247 20 . . R62d +chr13 SNP SNP 7323248 7439489 34 . . R63d +chr13 SNP SNP 7439490 7555731 17 . . R64d +chr13 SNP SNP 7555732 7671973 17 . . R65d +chr13 SNP SNP 7671974 7788214 31 . . R66d +chr13 SNP SNP 7788215 7904456 10 . . R67d +chr13 SNP SNP 7904457 8020698 17 . . R68d +chr13 SNP SNP 8020699 8136940 34 . . R69d +chr13 SNP SNP 8136941 8253182 10 . . R70d +chr13 SNP SNP 8253183 8369424 3 . . R71d +chr13 SNP SNP 8369425 8485666 6 . . R72d +chr13 SNP SNP 8485667 8601908 3 . . R73d +chr13 SNP SNP 8601909 8718149 17 . . R74d +chr13 SNP SNP 8718150 8834391 6 . . R75d +chr13 SNP SNP 8834392 8950633 3 . . R76d +chr13 SNP SNP 8950634 9066875 6 . . R77d +chr13 SNP SNP 9066876 9183117 17 . . R78d +chr13 SNP SNP 9183118 9299359 17 . . R79d +chr13 SNP SNP 9299360 9415601 24 . . R80d +chr13 SNP SNP 9415602 9531842 24 . . R81d +chr13 SNP SNP 9531843 9648084 6 . . R82d +chr13 SNP SNP 9648085 9764326 17 . . R83d +chr13 SNP SNP 9764327 9880568 3 . . R84d +chr13 SNP SNP 9880569 9996810 20 . . R85d +chr13 SNP SNP 9996811 10113052 6 . . R86d +chr13 SNP SNP 10113053 10229294 24 . . R87d +chr13 SNP SNP 10229295 10345535 13 . . R88d +chr13 SNP SNP 10345536 10461777 13 . . R89d +chr13 SNP SNP 10461778 10578019 24 . . R90d +chr13 SNP SNP 10578020 10694261 13 . . R91d +chr13 SNP SNP 10694262 10810503 6 . . R92d +chr13 SNP SNP 10810504 10926745 27 . . R93d +chr13 SNP SNP 10926746 11042987 3 . . R94d +chr13 SNP SNP 11042988 11159229 10 . . R95d +chr13 SNP SNP 11159230 11275470 10 . . R96d +chr13 SNP SNP 11275471 11391712 13 . . R97d +chr13 SNP SNP 11391713 11507954 17 . . R98d +chr13 SNP SNP 11507955 11624196 27 . . R99d +chr13 SNP SNP 11624197 11740438 0 . . R100d +chr13 SNP SNP 11740439 11856680 13 . . R101d +chr13 SNP SNP 11856681 11972922 17 . . R102d +chr13 SNP SNP 11972923 12089163 10 . . R103d +chr13 SNP SNP 12089164 12205405 17 . . R104d +chr13 SNP SNP 12205406 12321647 24 . . R105d +chr13 SNP SNP 12321648 12437889 24 . . R106d +chr13 SNP SNP 12437890 12554131 27 . . R107d +chr13 SNP SNP 12554132 12670373 6 . . R108d +chr13 SNP SNP 12670374 12786615 0 . . R109d +chr13 SNP SNP 12786616 12902857 3 . . R110d +chr13 SNP SNP 12902858 13019098 3 . . R111d +chr13 SNP SNP 13019099 13135340 17 . . R112d +chr13 SNP SNP 13135341 13251582 10 . . R113d +chr13 SNP SNP 13251583 13367824 17 . . R114d +chr13 SNP SNP 13367825 13484066 31 . . R115d +chr13 SNP SNP 13484067 13600308 10 . . R116d +chr13 SNP SNP 13600309 13716550 17 . . R117d +chr13 SNP SNP 13716551 13832791 6 . . R118d +chr13 SNP SNP 13832792 13949033 13 . . R119d +chr13 SNP SNP 13949034 14065275 17 . . R120d +chr13 SNP SNP 14065276 14181517 17 . . R121d +chr13 SNP SNP 14181518 14297759 20 . . R122d +chr13 SNP SNP 14297760 14414001 17 . . R123d +chr13 SNP SNP 14414002 14530243 27 . . R124d +chr13 SNP SNP 14530244 14646484 34 . . R125d +chr13 SNP SNP 14646485 14762726 13 . . R126d +chr13 SNP SNP 14762727 14878968 31 . . R127d +chr13 SNP SNP 14878969 14995210 27 . . R128d +chr13 SNP SNP 14995211 15111452 17 . . R129d +chr13 SNP SNP 15111453 15227694 20 . . R130d +chr13 SNP SNP 15227695 15343936 13 . . R131d +chr13 SNP SNP 15343937 15460178 31 . . R132d +chr13 SNP SNP 15460179 15576419 20 . . R133d +chr13 SNP SNP 15576420 15692661 45 . . R134d +chr13 SNP SNP 15692662 15808903 101 . . R135d +chr13 SNP SNP 15808904 15925145 94 . . R136d +chr13 SNP SNP 15925146 16041387 27 . . R137d +chr13 SNP SNP 16041388 16157629 76 . . R138d +chr13 SNP SNP 16157630 16273871 264 . . R139d +chr13 SNP SNP 16273872 16390112 247 . . R140d +chr13 SNP SNP 16390113 16506354 456 . . R141d +chr13 SNP SNP 16506355 16622596 484 . . R142d +chr13 SNP SNP 16622597 16738838 578 . . R143d +chr13 SNP SNP 16738839 16855080 362 . . R144d +chr13 SNP SNP 16855081 16971322 299 . . R145d +chr13 SNP SNP 16971323 17087564 487 . . R146d +chr13 SNP SNP 17087565 17203806 386 . . R147d +chr13 SNP SNP 17203807 17320047 170 . . R148d +chr13 SNP SNP 17320048 17436289 20 . . R149d +chr13 SNP SNP 17436290 17552531 439 . . R150d +chr13 SNP SNP 17552532 17668773 317 . . R151d +chr13 SNP SNP 17668774 17785015 435 . . R152d +chr13 SNP SNP 17785016 17901257 442 . . R153d +chr13 SNP SNP 17901258 18017499 386 . . R154d +chr13 SNP SNP 18017500 18133740 463 . . R155d +chr13 SNP SNP 18133741 18249982 376 . . R156d +chr13 SNP SNP 18249983 18366224 174 . . R157d +chr13 SNP SNP 18366225 18482466 24 . . R158d +chr13 SNP SNP 18482467 18598708 139 . . R159d +chr13 SNP SNP 18598709 18714950 142 . . R160d +chr13 SNP SNP 18714951 18831192 449 . . R161d +chr13 SNP SNP 18831193 18947433 407 . . R162d +chr13 SNP SNP 18947434 19063675 27 . . R163d +chr13 SNP SNP 19063676 19179917 20 . . R164d +chr13 SNP SNP 19179918 19296159 226 . . R165d +chr13 SNP SNP 19296160 19412401 445 . . R166d +chr13 SNP SNP 19412402 19528643 574 . . R167d +chr13 SNP SNP 19528644 19644885 376 . . R168d +chr13 SNP SNP 19644886 19761127 369 . . R169d +chr13 SNP SNP 19761128 19877368 334 . . R170d +chr13 SNP SNP 19877369 19993610 494 . . R171d +chr13 SNP SNP 19993611 20109852 432 . . R172d +chr13 SNP SNP 20109853 20226094 397 . . R173d +chr13 SNP SNP 20226095 20342336 198 . . R174d +chr13 SNP SNP 20342337 20458578 473 . . R175d +chr13 SNP SNP 20458579 20574820 205 . . R176d +chr13 SNP SNP 20574821 20691061 355 . . R177d +chr13 SNP SNP 20691062 20807303 505 . . R178d +chr13 SNP SNP 20807304 20923545 508 . . R179d +chr13 SNP SNP 20923546 21039787 327 . . R180d +chr13 SNP SNP 21039788 21156029 108 . . R181d +chr13 SNP SNP 21156030 21272271 76 . . R182d +chr13 SNP SNP 21272272 21388513 76 . . R183d +chr13 SNP SNP 21388514 21504755 191 . . R184d +chr13 SNP SNP 21504756 21620996 229 . . R185d +chr13 SNP SNP 21620997 21737238 348 . . R186d +chr13 SNP SNP 21737239 21853480 69 . . R187d +chr13 SNP SNP 21853481 21969722 24 . . R188d +chr13 SNP SNP 21969723 22085964 27 . . R189d +chr13 SNP SNP 22085965 22202206 24 . . R190d +chr13 SNP SNP 22202207 22318448 62 . . R191d +chr13 SNP SNP 22318449 22434689 10 . . R192d +chr13 SNP SNP 22434690 22550931 52 . . R193d +chr13 SNP SNP 22550932 22667173 17 . . R194d +chr13 SNP SNP 22667174 22783415 31 . . R195d +chr13 SNP SNP 22783416 22899657 31 . . R196d +chr13 SNP SNP 22899658 23015899 38 . . R197d +chr13 SNP SNP 23015900 23132141 97 . . R198d +chr13 SNP SNP 23132142 23248382 606 . . R199d +chr13 SNP SNP 23248383 23364624 170 . . R200d +chr13 SNP SNP 23364625 23480866 17 . . R201d +chr13 SNP SNP 23480867 23597108 24 . . R202d +chr13 SNP SNP 23597109 23713350 10 . . R203d +chr13 SNP SNP 23713351 23829592 17 . . R204d +chr13 SNP SNP 23829593 23945834 31 . . R205d +chr13 SNP SNP 23945835 24062076 10 . . R206d +chr13 SNP SNP 24062077 24178317 13 . . R207d +chr13 SNP SNP 24178318 24294559 13 . . R208d +chr13 SNP SNP 24294560 24410801 13 . . R209d +chr13 SNP SNP 24410802 24527043 10 . . R210d +chr13 SNP SNP 24527044 24643285 13 . . R211d +chr13 SNP SNP 24643286 24759527 20 . . R212d +chr13 SNP SNP 24759528 24875769 20 . . R213d +chr13 SNP SNP 24875770 24992010 17 . . R214d +chr13 SNP SNP 24992011 25108252 13 . . R215d +chr13 SNP SNP 25108253 25224494 20 . . R216d +chr13 SNP SNP 25224495 25340736 13 . . R217d +chr13 SNP SNP 25340737 25456978 20 . . R218d +chr13 SNP SNP 25456979 25573220 27 . . R219d +chr13 SNP SNP 25573221 25689462 38 . . R220d +chr13 SNP SNP 25689463 25805704 38 . . R221d +chr13 SNP SNP 25805705 25921945 3 . . R222d +chr13 SNP SNP 25921946 26038187 17 . . R223d +chr13 SNP SNP 26038188 26154429 13 . . R224d +chr13 SNP SNP 26154430 26270671 13 . . R225d +chr13 SNP SNP 26270672 26386913 10 . . R226d +chr13 SNP SNP 26386914 26503155 55 . . R227d +chr13 SNP SNP 26503156 26619397 6 . . R228d +chr13 SNP SNP 26619398 26735638 24 . . R229d +chr13 SNP SNP 26735639 26851880 0 . . R230d +chr13 SNP SNP 26851881 26968122 31 . . R231d +chr13 SNP SNP 26968123 27084364 17 . . R232d +chr13 SNP SNP 27084365 27200606 20 . . R233d +chr13 SNP SNP 27200607 27316848 24 . . R234d +chr13 SNP SNP 27316849 27433090 24 . . R235d +chr13 SNP SNP 27433091 27549332 20 . . R236d +chr13 SNP SNP 27549333 27665573 13 . . R237d +chr13 SNP SNP 27665574 27781815 24 . . R238d +chr13 SNP SNP 27781816 27898057 10 . . R239d +chr13 SNP SNP 27898058 28014299 6 . . R240d +chr13 SNP SNP 28014300 28130541 13 . . R241d +chr13 SNP SNP 28130542 28246783 6 . . R242d +chr13 SNP SNP 28246784 28363025 24 . . R243d +chr13 SNP SNP 28363026 28479266 27 . . R244d +chr13 SNP SNP 28479267 28595508 6 . . R245d +chr13 SNP SNP 28595509 28711750 10 . . R246d +chr13 SNP SNP 28711751 28827992 24 . . R247d +chr13 SNP SNP 28827993 28944234 13 . . R248d +chr13 SNP SNP 28944235 29060476 10 . . R249d +chr13 SNP SNP 29060477 29176718 10 . . R250d +chr13 SNP SNP 29176719 29292959 24 . . R251d +chr13 SNP SNP 29292960 29409201 10 . . R252d +chr13 SNP SNP 29409202 29525443 10 . . R253d +chr13 SNP SNP 29525444 29641685 24 . . R254d +chr13 SNP SNP 29641686 29757927 6 . . R255d +chr13 SNP SNP 29757928 29874169 24 . . R256d +chr13 SNP SNP 29874170 29990411 17 . . R257d +chr13 SNP SNP 29990412 30106653 10 . . R258d +chr13 SNP SNP 30106654 30222894 83 . . R259d +chr13 SNP SNP 30222895 30339136 181 . . R260d +chr13 SNP SNP 30339137 30455378 76 . . R261d +chr13 SNP SNP 30455379 30571620 142 . . R262d +chr13 SNP SNP 30571621 30687862 411 . . R263d +chr13 SNP SNP 30687863 30804104 508 . . R264d +chr13 SNP SNP 30804105 30920346 358 . . R265d +chr13 SNP SNP 30920347 31036587 167 . . R266d +chr13 SNP SNP 31036588 31152829 132 . . R267d +chr13 SNP SNP 31152830 31269071 24 . . R268d +chr13 SNP SNP 31269072 31385313 195 . . R269d +chr13 SNP SNP 31385314 31501555 522 . . R270d +chr13 SNP SNP 31501556 31617797 655 . . R271d +chr13 SNP SNP 31617798 31734039 289 . . R272d +chr13 SNP SNP 31734040 31850281 369 . . R273d +chr13 SNP SNP 31850282 31966522 48 . . R274d +chr13 SNP SNP 31966523 32082764 97 . . R275d +chr13 SNP SNP 32082765 32199006 45 . . R276d +chr13 SNP SNP 32199007 32315248 62 . . R277d +chr13 SNP SNP 32315249 32431490 104 . . R278d +chr13 SNP SNP 32431491 32547732 487 . . R279d +chr13 SNP SNP 32547733 32663974 226 . . R280d +chr13 SNP SNP 32663975 32780215 17 . . R281d +chr13 SNP SNP 32780216 32896457 31 . . R282d +chr13 SNP SNP 32896458 33012699 34 . . R283d +chr13 SNP SNP 33012700 33128941 31 . . R284d +chr13 SNP SNP 33128942 33245183 31 . . R285d +chr13 SNP SNP 33245184 33361425 38 . . R286d +chr13 SNP SNP 33361426 33477667 156 . . R287d +chr13 SNP SNP 33477668 33593908 243 . . R288d +chr13 SNP SNP 33593909 33710150 170 . . R289d +chr13 SNP SNP 33710151 33826392 59 . . R290d +chr13 SNP SNP 33826393 33942634 27 . . R291d +chr13 SNP SNP 33942635 34058876 10 . . R292d +chr13 SNP SNP 34058877 34175118 17 . . R293d +chr13 SNP SNP 34175119 34291360 31 . . R294d +chr13 SNP SNP 34291361 34407602 236 . . R295d +chr13 SNP SNP 34407603 34523843 202 . . R296d +chr13 SNP SNP 34523844 34640085 393 . . R297d +chr13 SNP SNP 34640086 34756327 331 . . R298d +chr13 SNP SNP 34756328 34872569 407 . . R299d +chr13 SNP SNP 34872570 34988811 101 . . R300d +chr13 SNP SNP 34988812 35105053 48 . . R301d +chr13 SNP SNP 35105054 35221295 73 . . R302d +chr13 SNP SNP 35221296 35337536 470 . . R303d +chr13 SNP SNP 35337537 35453778 285 . . R304d +chr13 SNP SNP 35453779 35570020 317 . . R305d +chr13 SNP SNP 35570021 35686262 261 . . R306d +chr13 SNP SNP 35686263 35802504 327 . . R307d +chr13 SNP SNP 35802505 35918746 404 . . R308d +chr13 SNP SNP 35918747 36034988 379 . . R309d +chr13 SNP SNP 36034989 36151230 73 . . R310d +chr13 SNP SNP 36151231 36267471 17 . . R311d +chr13 SNP SNP 36267472 36383713 13 . . R312d +chr13 SNP SNP 36383714 36499955 24 . . R313d +chr13 SNP SNP 36499956 36616197 17 . . R314d +chr13 SNP SNP 36616198 36732439 31 . . R315d +chr13 SNP SNP 36732440 36848681 10 . . R316d +chr13 SNP SNP 36848682 36964923 6 . . R317d +chr13 SNP SNP 36964924 37081164 6 . . R318d +chr13 SNP SNP 37081165 37197406 6 . . R319d +chr13 SNP SNP 37197407 37313648 17 . . R320d +chr13 SNP SNP 37313649 37429890 6 . . R321d +chr13 SNP SNP 37429891 37546132 6 . . R322d +chr13 SNP SNP 37546133 37662374 27 . . R323d +chr13 SNP SNP 37662375 37778616 17 . . R324d +chr13 SNP SNP 37778617 37894857 13 . . R325d +chr13 SNP SNP 37894858 38011099 10 . . R326d +chr13 SNP SNP 38011100 38127341 34 . . R327d +chr13 SNP SNP 38127342 38243583 3 . . R328d +chr13 SNP SNP 38243584 38359825 0 . . R329d +chr13 SNP SNP 38359826 38476067 3 . . R330d +chr13 SNP SNP 38476068 38592309 10 . . R331d +chr13 SNP SNP 38592310 38708551 10 . . R332d +chr13 SNP SNP 38708552 38824792 236 . . R333d +chr13 SNP SNP 38824793 38941034 334 . . R334d +chr13 SNP SNP 38941035 39057276 285 . . R335d +chr13 SNP SNP 39057277 39173518 17 . . R336d +chr13 SNP SNP 39173519 39289760 167 . . R337d +chr13 SNP SNP 39289761 39406002 222 . . R338d +chr13 SNP SNP 39406003 39522244 132 . . R339d +chr13 SNP SNP 39522245 39638485 167 . . R340d +chr13 SNP SNP 39638486 39754727 588 . . R341d +chr13 SNP SNP 39754728 39870969 334 . . R342d +chr13 SNP SNP 39870970 39987211 480 . . R343d +chr13 SNP SNP 39987212 40103453 407 . . R344d +chr13 SNP SNP 40103454 40219695 219 . . R345d +chr13 SNP SNP 40219696 40335937 216 . . R346d +chr13 SNP SNP 40335938 40452179 87 . . R347d +chr13 SNP SNP 40452180 40568420 24 . . R348d +chr13 SNP SNP 40568421 40684662 202 . . R349d +chr13 SNP SNP 40684663 40800904 3 . . R350d +chr13 SNP SNP 40800905 40917146 20 . . R351d +chr13 SNP SNP 40917147 41033388 17 . . R352d +chr13 SNP SNP 41033389 41149630 13 . . R353d +chr13 SNP SNP 41149631 41265872 17 . . R354d +chr13 SNP SNP 41265873 41382113 20 . . R355d +chr13 SNP SNP 41382114 41498355 3 . . R356d +chr13 SNP SNP 41498356 41614597 3 . . R357d +chr13 SNP SNP 41614598 41730839 13 . . R358d +chr13 SNP SNP 41730840 41847081 6 . . R359d +chr13 SNP SNP 41847082 41963323 264 . . R360d +chr13 SNP SNP 41963324 42079565 167 . . R361d +chr13 SNP SNP 42079566 42195806 62 . . R362d +chr13 SNP SNP 42195807 42312048 62 . . R363d +chr13 SNP SNP 42312049 42428290 24 . . R364d +chr13 SNP SNP 42428291 42544532 6 . . R365d +chr13 SNP SNP 42544533 42660774 17 . . R366d +chr13 SNP SNP 42660775 42777016 20 . . R367d +chr13 SNP SNP 42777017 42893258 6 . . R368d +chr13 SNP SNP 42893259 43009500 13 . . R369d +chr13 SNP SNP 43009501 43125741 20 . . R370d +chr13 SNP SNP 43125742 43241983 6 . . R371d +chr13 SNP SNP 43241984 43358225 3 . . R372d +chr13 SNP SNP 43358226 43474467 17 . . R373d +chr13 SNP SNP 43474468 43590709 17 . . R374d +chr13 SNP SNP 43590710 43706951 6 . . R375d +chr13 SNP SNP 43706952 43823193 24 . . R376d +chr13 SNP SNP 43823194 43939434 13 . . R377d +chr13 SNP SNP 43939435 44055676 10 . . R378d +chr13 SNP SNP 44055677 44171918 27 . . R379d +chr13 SNP SNP 44171919 44288160 20 . . R380d +chr13 SNP SNP 44288161 44404402 20 . . R381d +chr13 SNP SNP 44404403 44520644 13 . . R382d +chr13 SNP SNP 44520645 44636886 13 . . R383d +chr13 SNP SNP 44636887 44753128 142 . . R384d +chr13 SNP SNP 44753129 44869369 459 . . R385d +chr13 SNP SNP 44869370 44985611 362 . . R386d +chr13 SNP SNP 44985612 45101853 327 . . R387d +chr13 SNP SNP 45101854 45218095 13 . . R388d +chr13 SNP SNP 45218096 45334337 13 . . R389d +chr13 SNP SNP 45334338 45450579 142 . . R390d +chr13 SNP SNP 45450580 45566821 66 . . R391d +chr13 SNP SNP 45566822 45683062 442 . . R392d +chr13 SNP SNP 45683063 45799304 31 . . R393d +chr13 SNP SNP 45799305 45915546 0 . . R394d +chr13 SNP SNP 45915547 46031788 174 . . R395d +chr13 SNP SNP 46031789 46148030 522 . . R396d +chr13 SNP SNP 46148031 46264272 219 . . R397d +chr13 SNP SNP 46264273 46380514 351 . . R398d +chr13 SNP SNP 46380515 46496755 278 . . R399d +chr13 SNP SNP 46496756 46612997 494 . . R400d +chr13 SNP SNP 46612998 46729239 337 . . R401d +chr13 SNP SNP 46729240 46845481 463 . . R402d +chr13 SNP SNP 46845482 46961723 337 . . R403d +chr13 SNP SNP 46961724 47077965 212 . . R404d +chr13 SNP SNP 47077966 47194207 222 . . R405d +chr13 SNP SNP 47194208 47310449 379 . . R406d +chr13 SNP SNP 47310450 47426690 6 . . R407d +chr13 SNP SNP 47426691 47542932 13 . . R408d +chr13 SNP SNP 47542933 47659174 13 . . R409d +chr13 SNP SNP 47659175 47775416 6 . . R410d +chr13 SNP SNP 47775417 47891658 27 . . R411d +chr13 SNP SNP 47891659 48007900 6 . . R412d +chr13 SNP SNP 48007901 48124142 13 . . R413d +chr13 SNP SNP 48124143 48240383 13 . . R414d +chr13 SNP SNP 48240384 48356625 20 . . R415d +chr13 SNP SNP 48356626 48472867 6 . . R416d +chr13 SNP SNP 48472868 48589109 3 . . R417d +chr13 SNP SNP 48589110 48705351 17 . . R418d +chr13 SNP SNP 48705352 48821593 6 . . R419d +chr13 SNP SNP 48821594 48937835 0 . . R420d +chr13 SNP SNP 48937836 49054077 45 . . R421d +chr13 SNP SNP 49054078 49170318 10 . . R422d +chr13 SNP SNP 49170319 49286560 24 . . R423d +chr13 SNP SNP 49286561 49402802 34 . . R424d +chr13 SNP SNP 49402803 49519044 55 . . R425d +chr13 SNP SNP 49519045 49635286 3 . . R426d +chr13 SNP SNP 49635287 49751528 0 . . R427d +chr13 SNP SNP 49751529 49867770 3 . . R428d +chr13 SNP SNP 49867771 49984011 17 . . R429d +chr13 SNP SNP 49984012 50100253 6 . . R430d +chr13 SNP SNP 50100254 50216495 6 . . R431d +chr13 SNP SNP 50216496 50332737 13 . . R432d +chr13 SNP SNP 50332738 50448979 3 . . R433d +chr13 SNP SNP 50448980 50565221 13 . . R434d +chr13 SNP SNP 50565222 50681463 3 . . R435d +chr13 SNP SNP 50681464 50797705 6 . . R436d +chr13 SNP SNP 50797706 50913946 3 . . R437d +chr13 SNP SNP 50913947 51030188 3 . . R438d +chr13 SNP SNP 51030189 51146430 0 . . R439d +chr13 SNP SNP 51146431 51262672 0 . . R440d +chr13 SNP SNP 51262673 51378914 0 . . R441d +chr13 SNP SNP 51378915 51495156 0 . . R442d +chr13 SNP SNP 51495157 51611398 0 . . R443d +chr13 SNP SNP 51611399 51727639 10 . . R444d +chr13 SNP SNP 51727640 51843881 111 . . R445d +chr13 SNP SNP 51843882 51960123 156 . . R446d +chr13 SNP SNP 51960124 52076365 334 . . R447d +chr13 SNP SNP 52076366 52192607 351 . . R448d +chr13 SNP SNP 52192608 52308849 508 . . R449d +chr13 SNP SNP 52308850 52425091 602 . . R450d +chr13 SNP SNP 52425092 52541332 658 . . R451d +chr13 SNP SNP 52541333 52657574 34 . . R452d +chr13 SNP SNP 52657575 52773816 20 . . R453d +chr13 SNP SNP 52773817 52890058 6 . . R454d +chr13 SNP SNP 52890059 53006300 13 . . R455d +chr13 SNP SNP 53006301 53122542 6 . . R456d +chr13 SNP SNP 53122543 53238784 17 . . R457d +chr13 SNP SNP 53238785 53355026 17 . . R458d +chr13 SNP SNP 53355027 53471267 6 . . R459d +chr13 SNP SNP 53471268 53587509 20 . . R460d +chr13 SNP SNP 53587510 53703751 17 . . R461d +chr13 SNP SNP 53703752 53819993 17 . . R462d +chr13 SNP SNP 53819994 53936235 6 . . R463d +chr13 SNP SNP 53936236 54052477 379 . . R464d +chr13 SNP SNP 54052478 54168719 306 . . R465d +chr13 SNP SNP 54168720 54284960 188 . . R466d +chr13 SNP SNP 54284961 54401202 125 . . R467d +chr13 SNP SNP 54401203 54517444 69 . . R468d +chr13 SNP SNP 54517445 54633686 212 . . R469d +chr13 SNP SNP 54633687 54749928 20 . . R470d +chr13 SNP SNP 54749929 54866170 20 . . R471d +chr13 SNP SNP 54866171 54982412 20 . . R472d +chr13 SNP SNP 54982413 55098654 121 . . R473d +chr13 SNP SNP 55098655 55214895 292 . . R474d +chr13 SNP SNP 55214896 55331137 139 . . R475d +chr13 SNP SNP 55331138 55447379 226 . . R476d +chr13 SNP SNP 55447380 55563621 466 . . R477d +chr13 SNP SNP 55563622 55679863 156 . . R478d +chr13 SNP SNP 55679864 55796105 114 . . R479d +chr13 SNP SNP 55796106 55912347 306 . . R480d +chr13 SNP SNP 55912348 56028588 303 . . R481d +chr13 SNP SNP 56028589 56144830 76 . . R482d +chr13 SNP SNP 56144831 56261072 80 . . R483d +chr13 SNP SNP 56261073 56377314 222 . . R484d +chr13 SNP SNP 56377315 56493556 233 . . R485d +chr13 SNP SNP 56493557 56609798 275 . . R486d +chr13 SNP SNP 56609799 56726040 59 . . R487d +chr13 SNP SNP 56726041 56842281 10 . . R488d +chr13 SNP SNP 56842282 56958523 216 . . R489d +chr13 SNP SNP 56958524 57074765 135 . . R490d +chr13 SNP SNP 57074766 57191007 181 . . R491d +chr13 SNP SNP 57191008 57307249 191 . . R492d +chr13 SNP SNP 57307250 57423491 38 . . R493d +chr13 SNP SNP 57423492 57539733 20 . . R494d +chr13 SNP SNP 57539734 57655975 27 . . R495d +chr13 SNP SNP 57655976 57772216 24 . . R496d +chr13 SNP SNP 57772217 57888458 80 . . R497d +chr13 SNP SNP 57888459 58004700 264 . . R498d +chr13 SNP SNP 58004701 58120942 177 . . R499d +chr13 SNP SNP 58120943 58237184 425 . . R500d +chr13 SNP SNP 58237185 58353426 188 . . R501d +chr13 SNP SNP 58353427 58469668 271 . . R502d +chr13 SNP SNP 58469669 58585909 118 . . R503d +chr13 SNP SNP 58585910 58702151 191 . . R504d +chr13 SNP SNP 58702152 58818393 508 . . R505d +chr13 SNP SNP 58818394 58934635 184 . . R506d +chr13 SNP SNP 58934636 59050877 10 . . R507d +chr13 SNP SNP 59050878 59167119 0 . . R508d +chr13 SNP SNP 59167120 59283361 6 . . R509d +chr13 SNP SNP 59283362 59399603 6 . . R510d +chr13 SNP SNP 59399604 59515844 10 . . R511d +chr13 SNP SNP 59515845 59632086 17 . . R512d +chr13 SNP SNP 59632087 59748328 13 . . R513d +chr13 SNP SNP 59748329 59864570 13 . . R514d +chr13 SNP SNP 59864571 59980812 17 . . R515d +chr13 SNP SNP 59980813 60097054 20 . . R516d +chr13 SNP SNP 60097055 60213296 13 . . R517d +chr13 SNP SNP 60213297 60329537 6 . . R518d +chr13 SNP SNP 60329538 60445779 10 . . R519d +chr13 SNP SNP 60445780 60562021 17 . . R520d +chr13 SNP SNP 60562022 60678263 10 . . R521d +chr13 SNP SNP 60678264 60794505 0 . . R522d +chr13 SNP SNP 60794506 60910747 27 . . R523d +chr13 SNP SNP 60910748 61026989 13 . . R524d +chr13 SNP SNP 61026990 61143230 13 . . R525d +chr13 SNP SNP 61143231 61259472 34 . . R526d +chr13 SNP SNP 61259473 61375714 393 . . R527d +chr13 SNP SNP 61375715 61491956 432 . . R528d +chr13 SNP SNP 61491957 61608198 303 . . R529d +chr13 SNP SNP 61608199 61724440 282 . . R530d +chr13 SNP SNP 61724441 61840682 233 . . R531d +chr13 SNP SNP 61840683 61956924 188 . . R532d +chr13 SNP SNP 61956925 62073165 365 . . R533d +chr13 SNP SNP 62073166 62189407 728 . . R534d +chr13 SNP SNP 62189408 62305649 487 . . R535d +chr13 SNP SNP 62305650 62421891 477 . . R536d +chr13 SNP SNP 62421892 62538133 487 . . R537d +chr13 SNP SNP 62538134 62654375 442 . . R538d +chr13 SNP SNP 62654376 62770617 526 . . R539d +chr13 SNP SNP 62770618 62886858 327 . . R540d +chr13 SNP SNP 62886859 63003100 463 . . R541d +chr13 SNP SNP 63003101 63119342 529 . . R542d +chr13 SNP SNP 63119343 63235584 648 . . R543d +chr13 SNP SNP 63235585 63351826 578 . . R544d +chr13 SNP SNP 63351827 63468068 864 . . R545d +chr13 SNP SNP 63468069 63584310 742 . . R546d +chr13 SNP SNP 63584311 63700552 254 . . R547d +chr13 SNP SNP 63700553 63816793 473 . . R548d +chr13 SNP SNP 63816794 63933035 554 . . R549d +chr13 SNP SNP 63933036 64049277 459 . . R550d +chr13 SNP SNP 64049278 64165519 480 . . R551d +chr13 SNP SNP 64165520 64281761 407 . . R552d +chr13 SNP SNP 64281762 64398003 606 . . R553d +chr13 SNP SNP 64398004 64514245 547 . . R554d +chr13 SNP SNP 64514246 64630486 560 . . R555d +chr13 SNP SNP 64630487 64746728 285 . . R556d +chr13 SNP SNP 64746729 64862970 480 . . R557d +chr13 SNP SNP 64862971 64979212 731 . . R558d +chr13 SNP SNP 64979213 65095454 581 . . R559d +chr13 SNP SNP 65095455 65211696 763 . . R560d +chr13 SNP SNP 65211697 65327938 362 . . R561d +chr13 SNP SNP 65327939 65444179 407 . . R562d +chr13 SNP SNP 65444180 65560421 428 . . R563d +chr13 SNP SNP 65560422 65676663 456 . . R564d +chr13 SNP SNP 65676664 65792905 710 . . R565d +chr13 SNP SNP 65792906 65909147 655 . . R566d +chr13 SNP SNP 65909148 66025389 512 . . R567d +chr13 SNP SNP 66025390 66141631 292 . . R568d +chr13 SNP SNP 66141632 66257873 540 . . R569d +chr13 SNP SNP 66257874 66374114 560 . . R570d +chr13 SNP SNP 66374115 66490356 52 . . R571d +chr13 SNP SNP 66490357 66606598 3 . . R572d +chr13 SNP SNP 66606599 66722840 20 . . R573d +chr13 SNP SNP 66722841 66839082 10 . . R574d +chr13 SNP SNP 66839083 66955324 27 . . R575d +chr13 SNP SNP 66955325 67071566 24 . . R576d +chr13 SNP SNP 67071567 67187807 0 . . R577d +chr13 SNP SNP 67187808 67304049 38 . . R578d +chr13 SNP SNP 67304050 67420291 108 . . R579d +chr13 SNP SNP 67420292 67536533 292 . . R580d +chr13 SNP SNP 67536534 67652775 188 . . R581d +chr13 SNP SNP 67652776 67769017 355 . . R582d +chr13 SNP SNP 67769018 67885259 10 . . R583d +chr13 SNP SNP 67885260 68001501 3 . . R584d +chr13 SNP SNP 68001502 68117742 24 . . R585d +chr13 SNP SNP 68117743 68233984 10 . . R586d +chr13 SNP SNP 68233985 68350226 17 . . R587d +chr13 SNP SNP 68350227 68466468 13 . . R588d +chr13 SNP SNP 68466469 68582710 13 . . R589d +chr13 SNP SNP 68582711 68698952 20 . . R590d +chr13 SNP SNP 68698953 68815194 13 . . R591d +chr13 SNP SNP 68815195 68931435 24 . . R592d +chr13 SNP SNP 68931436 69047677 3 . . R593d +chr13 SNP SNP 69047678 69163919 27 . . R594d +chr13 SNP SNP 69163920 69280161 38 . . R595d +chr13 SNP SNP 69280162 69396403 17 . . R596d +chr13 SNP SNP 69396404 69512645 13 . . R597d +chr13 SNP SNP 69512646 69628887 20 . . R598d +chr13 SNP SNP 69628888 69745128 24 . . R599d +chr13 SNP SNP 69745129 69861370 13 . . R600d +chr13 SNP SNP 69861371 69977612 3 . . R601d +chr13 SNP SNP 69977613 70093854 24 . . R602d +chr13 SNP SNP 70093855 70210096 13 . . R603d +chr13 SNP SNP 70210097 70326338 3 . . R604d +chr13 SNP SNP 70326339 70442580 13 . . R605d +chr13 SNP SNP 70442581 70558822 6 . . R606d +chr13 SNP SNP 70558823 70675063 13 . . R607d +chr13 SNP SNP 70675064 70791305 38 . . R608d +chr13 SNP SNP 70791306 70907547 24 . . R609d +chr13 SNP SNP 70907548 71023789 6 . . R610d +chr13 SNP SNP 71023790 71140031 27 . . R611d +chr13 SNP SNP 71140032 71256273 17 . . R612d +chr13 SNP SNP 71256274 71372515 13 . . R613d +chr13 SNP SNP 71372516 71488756 17 . . R614d +chr13 SNP SNP 71488757 71604998 17 . . R615d +chr13 SNP SNP 71604999 71721240 10 . . R616d +chr13 SNP SNP 71721241 71837482 20 . . R617d +chr13 SNP SNP 71837483 71953724 27 . . R618d +chr13 SNP SNP 71953725 72069966 428 . . R619d +chr13 SNP SNP 72069967 72186208 637 . . R620d +chr13 SNP SNP 72186209 72302450 487 . . R621d +chr13 SNP SNP 72302451 72418691 529 . . R622d +chr13 SNP SNP 72418692 72534933 411 . . R623d +chr13 SNP SNP 72534934 72651175 317 . . R624d +chr13 SNP SNP 72651176 72767417 571 . . R625d +chr13 SNP SNP 72767418 72883659 665 . . R626d +chr13 SNP SNP 72883660 72999901 700 . . R627d +chr13 SNP SNP 72999902 73116143 637 . . R628d +chr13 SNP SNP 73116144 73232384 581 . . R629d +chr13 SNP SNP 73232385 73348626 1000 . . R630d +chr13 SNP SNP 73348627 73464868 641 . . R631d +chr13 SNP SNP 73464869 73581110 637 . . R632d +chr13 SNP SNP 73581111 73697352 425 . . R633d +chr13 SNP SNP 73697353 73813594 243 . . R634d +chr13 SNP SNP 73813595 73929836 505 . . R635d +chr13 SNP SNP 73929837 74046078 289 . . R636d +chr13 SNP SNP 74046079 74162319 334 . . R637d +chr13 SNP SNP 74162320 74278561 372 . . R638d +chr13 SNP SNP 74278562 74394803 264 . . R639d +chr13 SNP SNP 74394804 74511045 397 . . R640d +chr13 SNP SNP 74511046 74627287 198 . . R641d +chr13 SNP SNP 74627288 74743529 114 . . R642d +chr13 SNP SNP 74743530 74859771 254 . . R643d +chr13 SNP SNP 74859772 74976012 142 . . R644d +chr13 SNP SNP 74976013 75092254 254 . . R645d +chr13 SNP SNP 75092255 75208496 627 . . R646d +chr13 SNP SNP 75208497 75324738 327 . . R647d +chr13 SNP SNP 75324739 75440980 170 . . R648d +chr13 SNP SNP 75440981 75557222 59 . . R649d +chr13 SNP SNP 75557223 75673464 320 . . R650d +chr13 SNP SNP 75673465 75789705 66 . . R651d +chr13 SNP SNP 75789706 75905947 59 . . R652d +chr13 SNP SNP 75905948 76022189 24 . . R653d +chr13 SNP SNP 76022190 76138431 45 . . R654d +chr13 SNP SNP 76138432 76254673 48 . . R655d +chr13 SNP SNP 76254674 76370915 24 . . R656d +chr13 SNP SNP 76370916 76487157 27 . . R657d +chr13 SNP SNP 76487158 76603399 13 . . R658d +chr13 SNP SNP 76603400 76719640 24 . . R659d +chr13 SNP SNP 76719641 76835882 13 . . R660d +chr13 SNP SNP 76835883 76952124 299 . . R661d +chr13 SNP SNP 76952125 77068366 512 . . R662d +chr13 SNP SNP 77068367 77184608 271 . . R663d +chr13 SNP SNP 77184609 77300850 111 . . R664d +chr13 SNP SNP 77300851 77417092 278 . . R665d +chr13 SNP SNP 77417093 77533333 76 . . R666d +chr13 SNP SNP 77533334 77649575 13 . . R667d +chr13 SNP SNP 77649576 77765817 10 . . R668d +chr13 SNP SNP 77765818 77882059 10 . . R669d +chr13 SNP SNP 77882060 77998301 20 . . R670d +chr13 SNP SNP 77998302 78114543 34 . . R671d +chr13 SNP SNP 78114544 78230785 501 . . R672d +chr13 SNP SNP 78230786 78347027 48 . . R673d +chr13 SNP SNP 78347028 78463268 45 . . R674d +chr13 SNP SNP 78463269 78579510 97 . . R675d +chr13 SNP SNP 78579511 78695752 240 . . R676d +chr13 SNP SNP 78695753 78811994 341 . . R677d +chr13 SNP SNP 78811995 78928236 407 . . R678d +chr13 SNP SNP 78928237 79044478 306 . . R679d +chr13 SNP SNP 79044479 79160720 665 . . R680d +chr13 SNP SNP 79160721 79276961 533 . . R681d +chr13 SNP SNP 79276962 79393203 585 . . R682d +chr13 SNP SNP 79393204 79509445 271 . . R683d +chr13 SNP SNP 79509446 79625687 94 . . R684d +chr13 SNP SNP 79625688 79741929 69 . . R685d +chr13 SNP SNP 79741930 79858171 480 . . R686d +chr13 SNP SNP 79858172 79974413 114 . . R687d +chr13 SNP SNP 79974414 80090654 160 . . R688d +chr13 SNP SNP 80090655 80206896 59 . . R689d +chr13 SNP SNP 80206897 80323138 48 . . R690d +chr13 SNP SNP 80323139 80439380 195 . . R691d +chr13 SNP SNP 80439381 80555622 362 . . R692d +chr13 SNP SNP 80555623 80671864 261 . . R693d +chr13 SNP SNP 80671865 80788106 581 . . R694d +chr13 SNP SNP 80788107 80904348 229 . . R695d +chr13 SNP SNP 80904349 81020589 567 . . R696d +chr13 SNP SNP 81020590 81136831 184 . . R697d +chr13 SNP SNP 81136832 81253073 397 . . R698d +chr13 SNP SNP 81253074 81369315 390 . . R699d +chr13 SNP SNP 81369316 81485557 456 . . R700d +chr13 SNP SNP 81485558 81601799 693 . . R701d +chr13 SNP SNP 81601800 81718041 289 . . R702d +chr13 SNP SNP 81718042 81834282 400 . . R703d +chr13 SNP SNP 81834283 81950524 369 . . R704d +chr13 SNP SNP 81950525 82066766 397 . . R705d +chr13 SNP SNP 82066767 82183008 174 . . R706d +chr13 SNP SNP 82183009 82299250 247 . . R707d +chr13 SNP SNP 82299251 82415492 337 . . R708d +chr13 SNP SNP 82415493 82531734 379 . . R709d +chr13 SNP SNP 82531735 82647976 125 . . R710d +chr13 SNP SNP 82647977 82764217 153 . . R711d +chr13 SNP SNP 82764218 82880459 376 . . R712d +chr13 SNP SNP 82880460 82996701 174 . . R713d +chr13 SNP SNP 82996702 83112943 24 . . R714d +chr13 SNP SNP 83112944 83229185 52 . . R715d +chr13 SNP SNP 83229186 83345427 296 . . R716d +chr13 SNP SNP 83345428 83461669 344 . . R717d +chr13 SNP SNP 83461670 83577910 365 . . R718d +chr13 SNP SNP 83577911 83694152 108 . . R719d +chr13 SNP SNP 83694153 83810394 275 . . R720d +chr13 SNP SNP 83810395 83926636 557 . . R721d +chr13 SNP SNP 83926637 84042878 365 . . R722d +chr13 SNP SNP 84042879 84159120 31 . . R723d +chr13 SNP SNP 84159121 84275362 52 . . R724d +chr13 SNP SNP 84275363 84391603 38 . . R725d +chr13 SNP SNP 84391604 84507845 38 . . R726d +chr13 SNP SNP 84507846 84624087 59 . . R727d +chr13 SNP SNP 84624088 84740329 31 . . R728d +chr13 SNP SNP 84740330 84856571 34 . . R729d +chr13 SNP SNP 84856572 84972813 38 . . R730d +chr13 SNP SNP 84972814 85089055 24 . . R731d +chr13 SNP SNP 85089056 85205297 254 . . R732d +chr13 SNP SNP 85205298 85321538 425 . . R733d +chr13 SNP SNP 85321539 85437780 334 . . R734d +chr13 SNP SNP 85437781 85554022 59 . . R735d +chr13 SNP SNP 85554023 85670264 411 . . R736d +chr13 SNP SNP 85670265 85786506 390 . . R737d +chr13 SNP SNP 85786507 85902748 292 . . R738d +chr13 SNP SNP 85902749 86018990 90 . . R739d +chr13 SNP SNP 86018991 86135231 48 . . R740d +chr13 SNP SNP 86135232 86251473 20 . . R741d +chr13 SNP SNP 86251474 86367715 435 . . R742d +chr13 SNP SNP 86367716 86483957 160 . . R743d +chr13 SNP SNP 86483958 86600199 445 . . R744d +chr13 SNP SNP 86600200 86716441 491 . . R745d +chr13 SNP SNP 86716442 86832683 599 . . R746d +chr13 SNP SNP 86832684 86948925 425 . . R747d +chr13 SNP SNP 86948926 87065166 501 . . R748d +chr13 SNP SNP 87065167 87181408 337 . . R749d +chr13 SNP SNP 87181409 87297650 463 . . R750d +chr13 SNP SNP 87297651 87413892 299 . . R751d +chr13 SNP SNP 87413893 87530134 250 . . R752d +chr13 SNP SNP 87530135 87646376 17 . . R753d +chr13 SNP SNP 87646377 87762618 125 . . R754d +chr13 SNP SNP 87762619 87878859 466 . . R755d +chr13 SNP SNP 87878860 87995101 473 . . R756d +chr13 SNP SNP 87995102 88111343 432 . . R757d +chr13 SNP SNP 88111344 88227585 55 . . R758d +chr13 SNP SNP 88227586 88343827 6 . . R759d +chr13 SNP SNP 88343828 88460069 31 . . R760d +chr13 SNP SNP 88460070 88576311 34 . . R761d +chr13 SNP SNP 88576312 88692552 73 . . R762d +chr13 SNP SNP 88692553 88808794 20 . . R763d +chr13 SNP SNP 88808795 88925036 27 . . R764d +chr13 SNP SNP 88925037 89041278 6 . . R765d +chr13 SNP SNP 89041279 89157520 209 . . R766d +chr13 SNP SNP 89157521 89273762 97 . . R767d +chr13 SNP SNP 89273763 89390004 470 . . R768d +chr13 SNP SNP 89390005 89506246 428 . . R769d +chr13 SNP SNP 89506247 89622487 428 . . R770d +chr13 SNP SNP 89622488 89738729 226 . . R771d +chr13 SNP SNP 89738730 89854971 34 . . R772d +chr13 SNP SNP 89854972 89971213 121 . . R773d +chr13 SNP SNP 89971214 90087455 114 . . R774d +chr13 SNP SNP 90087456 90203697 414 . . R775d +chr13 SNP SNP 90203698 90319939 202 . . R776d +chr13 SNP SNP 90319940 90436180 10 . . R777d +chr13 SNP SNP 90436181 90552422 17 . . R778d +chr13 SNP SNP 90552423 90668664 6 . . R779d +chr13 SNP SNP 90668665 90784906 10 . . R780d +chr13 SNP SNP 90784907 90901148 27 . . R781d +chr13 SNP SNP 90901149 91017390 3 . . R782d +chr13 SNP SNP 91017391 91133632 31 . . R783d +chr13 SNP SNP 91133633 91249874 10 . . R784d +chr13 SNP SNP 91249875 91366115 0 . . R785d +chr13 SNP SNP 91366116 91482357 20 . . R786d +chr13 SNP SNP 91482358 91598599 10 . . R787d +chr13 SNP SNP 91598600 91714841 20 . . R788d +chr13 SNP SNP 91714842 91831083 404 . . R789d +chr13 SNP SNP 91831084 91947325 344 . . R790d +chr13 SNP SNP 91947326 92063567 560 . . R791d +chr13 SNP SNP 92063568 92179808 550 . . R792d +chr13 SNP SNP 92179809 92296050 240 . . R793d +chr13 SNP SNP 92296051 92412292 285 . . R794d +chr13 SNP SNP 92412293 92528534 372 . . R795d +chr13 SNP SNP 92528535 92644776 411 . . R796d +chr13 SNP SNP 92644777 92761018 156 . . R797d +chr13 SNP SNP 92761019 92877260 303 . . R798d +chr13 SNP SNP 92877261 92993502 289 . . R799d +chr13 SNP SNP 92993503 93109743 372 . . R800d +chr13 SNP SNP 93109744 93225985 310 . . R801d +chr13 SNP SNP 93225986 93342227 226 . . R802d +chr13 SNP SNP 93342228 93458469 313 . . R803d +chr13 SNP SNP 93458470 93574711 90 . . R804d +chr13 SNP SNP 93574712 93690953 226 . . R805d +chr13 SNP SNP 93690954 93807195 282 . . R806d +chr13 SNP SNP 93807196 93923436 334 . . R807d +chr13 SNP SNP 93923437 94039678 348 . . R808d +chr13 SNP SNP 94039679 94155920 243 . . R809d +chr13 SNP SNP 94155921 94272162 167 . . R810d +chr13 SNP SNP 94272163 94388404 101 . . R811d +chr13 SNP SNP 94388405 94504646 236 . . R812d +chr13 SNP SNP 94504647 94620888 181 . . R813d +chr13 SNP SNP 94620889 94737129 170 . . R814d +chr13 SNP SNP 94737130 94853371 282 . . R815d +chr13 SNP SNP 94853372 94969613 390 . . R816d +chr13 SNP SNP 94969614 95085855 383 . . R817d +chr13 SNP SNP 95085856 95202097 90 . . R818d +chr13 SNP SNP 95202098 95318339 177 . . R819d +chr13 SNP SNP 95318340 95434581 278 . . R820d +chr13 SNP SNP 95434582 95550823 268 . . R821d +chr13 SNP SNP 95550824 95667064 97 . . R822d +chr13 SNP SNP 95667065 95783306 439 . . R823d +chr13 SNP SNP 95783307 95899548 233 . . R824d +chr13 SNP SNP 95899549 96015790 257 . . R825d +chr13 SNP SNP 96015791 96132032 515 . . R826d +chr13 SNP SNP 96132033 96248274 212 . . R827d +chr13 SNP SNP 96248275 96364516 177 . . R828d +chr13 SNP SNP 96364517 96480757 27 . . R829d +chr13 SNP SNP 96480758 96596999 31 . . R830d +chr13 SNP SNP 96597000 96713241 121 . . R831d +chr13 SNP SNP 96713242 96829483 317 . . R832d +chr13 SNP SNP 96829484 96945725 156 . . R833d +chr13 SNP SNP 96945726 97061967 13 . . R834d +chr13 SNP SNP 97061968 97178209 3 . . R835d +chr13 SNP SNP 97178210 97294451 6 . . R836d +chr13 SNP SNP 97294452 97410692 10 . . R837d +chr13 SNP SNP 97410693 97526934 3 . . R838d +chr13 SNP SNP 97526935 97643176 10 . . R839d +chr13 SNP SNP 97643177 97759418 13 . . R840d +chr13 SNP SNP 97759419 97875660 24 . . R841d +chr13 SNP SNP 97875661 97991902 177 . . R842d +chr13 SNP SNP 97991903 98108144 317 . . R843d +chr13 SNP SNP 98108145 98224385 66 . . R844d +chr13 SNP SNP 98224386 98340627 31 . . R845d +chr13 SNP SNP 98340628 98456869 13 . . R846d +chr13 SNP SNP 98456870 98573111 13 . . R847d +chr13 SNP SNP 98573112 98689353 250 . . R848d +chr13 SNP SNP 98689354 98805595 362 . . R849d +chr13 SNP SNP 98805596 98921837 400 . . R850d +chr13 SNP SNP 98921838 99038078 327 . . R851d +chr13 SNP SNP 99038079 99154320 313 . . R852d +chr13 SNP SNP 99154321 99270562 334 . . R853d +chr13 SNP SNP 99270563 99386804 306 . . R854d +chr13 SNP SNP 99386805 99503046 55 . . R855d +chr13 SNP SNP 99503047 99619288 13 . . R856d +chr13 SNP SNP 99619289 99735530 236 . . R857d +chr13 SNP SNP 99735531 99851772 17 . . R858d +chr13 SNP SNP 99851773 99968013 13 . . R859d +chr13 SNP SNP 99968014 100084255 3 . . R860d +chr13 SNP SNP 100084256 100200497 10 . . R861d +chr13 SNP SNP 100200498 100316739 0 . . R862d +chr13 SNP SNP 100316740 100432981 317 . . R863d +chr13 SNP SNP 100432982 100549223 324 . . R864d +chr13 SNP SNP 100549224 100665465 31 . . R865d +chr13 SNP SNP 100665466 100781706 17 . . R866d +chr13 SNP SNP 100781707 100897948 27 . . R867d +chr13 SNP SNP 100897949 101014190 20 . . R868d +chr13 SNP SNP 101014191 101130432 24 . . R869d +chr13 SNP SNP 101130433 101246674 10 . . R870d +chr13 SNP SNP 101246675 101362916 3 . . R871d +chr13 SNP SNP 101362917 101479158 3 . . R872d +chr13 SNP SNP 101479159 101595400 20 . . R873d +chr13 SNP SNP 101595401 101711641 27 . . R874d +chr13 SNP SNP 101711642 101827883 310 . . R875d +chr13 SNP SNP 101827884 101944125 27 . . R876d +chr13 SNP SNP 101944126 102060367 41 . . R877d +chr13 SNP SNP 102060368 102176609 38 . . R878d +chr13 SNP SNP 102176610 102292851 34 . . R879d +chr13 SNP SNP 102292852 102409093 13 . . R880d +chr13 SNP SNP 102409094 102525334 6 . . R881d +chr13 SNP SNP 102525335 102641576 17 . . R882d +chr13 SNP SNP 102641577 102757818 55 . . R883d +chr13 SNP SNP 102757819 102874060 24 . . R884d +chr13 SNP SNP 102874061 102990302 292 . . R885d +chr13 SNP SNP 102990303 103106544 45 . . R886d +chr13 SNP SNP 103106545 103222786 24 . . R887d +chr13 SNP SNP 103222787 103339027 188 . . R888d +chr13 SNP SNP 103339028 103455269 404 . . R889d +chr13 SNP SNP 103455270 103571511 247 . . R890d +chr13 SNP SNP 103571512 103687753 76 . . R891d +chr13 SNP SNP 103687754 103803995 108 . . R892d +chr13 SNP SNP 103803996 103920237 337 . . R893d +chr13 SNP SNP 103920238 104036479 233 . . R894d +chr13 SNP SNP 104036480 104152721 292 . . R895d +chr13 SNP SNP 104152722 104268962 303 . . R896d +chr13 SNP SNP 104268963 104385204 125 . . R897d +chr13 SNP SNP 104385205 104501446 421 . . R898d +chr13 SNP SNP 104501447 104617688 477 . . R899d +chr13 SNP SNP 104617689 104733930 351 . . R900d +chr13 SNP SNP 104733931 104850172 435 . . R901d +chr13 SNP SNP 104850173 104966414 560 . . R902d +chr13 SNP SNP 104966415 105082655 425 . . R903d +chr13 SNP SNP 105082656 105198897 439 . . R904d +chr13 SNP SNP 105198898 105315139 83 . . R905d +chr13 SNP SNP 105315140 105431381 156 . . R906d +chr13 SNP SNP 105431382 105547623 292 . . R907d +chr13 SNP SNP 105547624 105663865 278 . . R908d +chr13 SNP SNP 105663866 105780107 135 . . R909d +chr13 SNP SNP 105780108 105896349 135 . . R910d +chr13 SNP SNP 105896350 106012590 202 . . R911d +chr13 SNP SNP 106012591 106128832 181 . . R912d +chr13 SNP SNP 106128833 106245074 355 . . R913d +chr13 SNP SNP 106245075 106361316 156 . . R914d +chr13 SNP SNP 106361317 106477558 236 . . R915d +chr13 SNP SNP 106477559 106593800 219 . . R916d +chr13 SNP SNP 106593801 106710042 355 . . R917d +chr13 SNP SNP 106710043 106826283 80 . . R918d +chr13 SNP SNP 106826284 106942525 393 . . R919d +chr13 SNP SNP 106942526 107058767 400 . . R920d +chr13 SNP SNP 107058768 107175009 358 . . R921d +chr13 SNP SNP 107175010 107291251 337 . . R922d +chr13 SNP SNP 107291252 107407493 337 . . R923d +chr13 SNP SNP 107407494 107523735 83 . . R924d +chr13 SNP SNP 107523736 107639976 418 . . R925d +chr13 SNP SNP 107639977 107756218 31 . . R926d +chr13 SNP SNP 107756219 107872460 20 . . R927d +chr13 SNP SNP 107872461 107988702 0 . . R928d +chr13 SNP SNP 107988703 108104944 6 . . R929d +chr13 SNP SNP 108104945 108221186 38 . . R930d +chr13 SNP SNP 108221187 108337428 48 . . R931d +chr13 SNP SNP 108337429 108453670 146 . . R932d +chr13 SNP SNP 108453671 108569911 135 . . R933d +chr13 SNP SNP 108569912 108686153 34 . . R934d +chr13 SNP SNP 108686154 108802395 0 . . R935d +chr13 SNP SNP 108802396 108918637 6 . . R936d +chr13 SNP SNP 108918638 109034879 6 . . R937d +chr13 SNP SNP 109034880 109151121 17 . . R938d +chr13 SNP SNP 109151122 109267363 17 . . R939d +chr13 SNP SNP 109267364 109383604 87 . . R940d +chr13 SNP SNP 109383605 109499846 101 . . R941d +chr13 SNP SNP 109499847 109616088 216 . . R942d +chr13 SNP SNP 109616089 109732330 10 . . R943d +chr13 SNP SNP 109732331 109848572 17 . . R944d +chr13 SNP SNP 109848573 109964814 104 . . R945d +chr13 SNP SNP 109964815 110081056 104 . . R946d +chr13 SNP SNP 110081057 110197298 0 . . R947d +chr13 SNP SNP 110197299 110313539 6 . . R948d +chr13 SNP SNP 110313540 110429781 10 . . R949d +chr13 SNP SNP 110429782 110546023 6 . . R950d +chr13 SNP SNP 110546024 110662265 0 . . R951d +chr13 SNP SNP 110662266 110778507 20 . . R952d +chr13 SNP SNP 110778508 110894749 3 . . R953d +chr13 SNP SNP 110894750 111010991 0 . . R954d +chr13 SNP SNP 111010992 111127232 6 . . R955d +chr13 SNP SNP 111127233 111243474 3 . . R956d +chr13 SNP SNP 111243475 111359716 3 . . R957d +chr13 SNP SNP 111359717 111475958 6 . . R958d +chr13 SNP SNP 111475959 111592200 13 . . R959d +chr13 SNP SNP 111592201 111708442 0 . . R960d +chr13 SNP SNP 111708443 111824684 13 . . R961d +chr13 SNP SNP 111824685 111940925 3 . . R962d +chr13 SNP SNP 111940926 112057167 10 . . R963d +chr13 SNP SNP 112057168 112173409 20 . . R964d +chr13 SNP SNP 112173410 112289651 271 . . R965d +chr13 SNP SNP 112289652 112405893 285 . . R966d +chr13 SNP SNP 112405894 112522135 177 . . R967d +chr13 SNP SNP 112522136 112638377 83 . . R968d +chr13 SNP SNP 112638378 112754619 233 . . R969d +chr13 SNP SNP 112754620 112870860 55 . . R970d +chr13 SNP SNP 112870861 112987102 202 . . R971d +chr13 SNP SNP 112987103 113103344 271 . . R972d +chr13 SNP SNP 113103345 113219586 334 . . R973d +chr13 SNP SNP 113219587 113335828 212 . . R974d +chr13 SNP SNP 113335829 113452070 282 . . R975d +chr13 SNP SNP 113452071 113568312 425 . . R976d +chr13 SNP SNP 113568313 113684553 254 . . R977d +chr13 SNP SNP 113684554 113800795 240 . . R978d +chr13 SNP SNP 113800796 113917037 121 . . R979d +chr13 SNP SNP 113917038 114033279 34 . . R980d +chr13 SNP SNP 114033280 114149521 31 . . R981d +chr13 SNP SNP 114149522 114265763 13 . . R982d +chr13 SNP SNP 114265764 114382005 278 . . R983d +chr13 SNP SNP 114382006 114498247 560 . . R984d +chr13 SNP SNP 114498248 114614488 540 . . R985d +chr13 SNP SNP 114614489 114730730 372 . . R986d +chr13 SNP SNP 114730731 114846972 3 . . R987d +chr13 SNP SNP 114846973 114963214 13 . . R988d +chr13 SNP SNP 114963215 115079456 0 . . R989d +chr13 SNP SNP 115079457 115195698 20 . . R990d +chr13 SNP SNP 115195699 115311940 6 . . R991d +chr13 SNP SNP 115311941 115428181 24 . . R992d +chr13 SNP SNP 115428182 115544423 6 . . R993d +chr13 SNP SNP 115544424 115660665 0 . . R994d +chr13 SNP SNP 115660666 115776907 13 . . R995d +chr13 SNP SNP 115776908 115893149 10 . . R996d +chr13 SNP SNP 115893150 116009391 6 . . R997d +chr13 SNP SNP 116009392 116125633 574 . . R998d +chr13 SNP SNP 116125634 116241875 721 . . R999d diff --git a/web/snp/chr14 b/web/snp/chr14 new file mode 100755 index 00000000..a6522519 --- /dev/null +++ b/web/snp/chr14 @@ -0,0 +1,1004 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr14 SNP SNP 11 115833 0 . . R0d +chr14 SNP SNP 115834 231657 0 . . R1d +chr14 SNP SNP 231658 347480 0 . . R2d +chr14 SNP SNP 347481 463304 0 . . R3d +chr14 SNP SNP 463305 579128 0 . . R4d +chr14 SNP SNP 579129 694951 0 . . R5d +chr14 SNP SNP 694952 810775 0 . . R6d +chr14 SNP SNP 810776 926598 0 . . R7d +chr14 SNP SNP 926599 1042422 0 . . R8d +chr14 SNP SNP 1042423 1158246 0 . . R9d +chr14 SNP SNP 1158247 1274069 0 . . R10d +chr14 SNP SNP 1274070 1389893 0 . . R11d +chr14 SNP SNP 1389894 1505716 0 . . R12d +chr14 SNP SNP 1505717 1621540 0 . . R13d +chr14 SNP SNP 1621541 1737364 0 . . R14d +chr14 SNP SNP 1737365 1853187 0 . . R15d +chr14 SNP SNP 1853188 1969011 0 . . R16d +chr14 SNP SNP 1969012 2084834 0 . . R17d +chr14 SNP SNP 2084835 2200658 0 . . R18d +chr14 SNP SNP 2200659 2316482 0 . . R19d +chr14 SNP SNP 2316483 2432305 0 . . R20d +chr14 SNP SNP 2432306 2548129 0 . . R21d +chr14 SNP SNP 2548130 2663952 0 . . R22d +chr14 SNP SNP 2663953 2779776 0 . . R23d +chr14 SNP SNP 2779777 2895600 0 . . R24d +chr14 SNP SNP 2895601 3011423 0 . . R25d +chr14 SNP SNP 3011424 3127247 20 . . R26d +chr14 SNP SNP 3127248 3243070 16 . . R27d +chr14 SNP SNP 3243071 3358894 268 . . R28d +chr14 SNP SNP 3358895 3474718 489 . . R29d +chr14 SNP SNP 3474719 3590541 214 . . R30d +chr14 SNP SNP 3590542 3706365 258 . . R31d +chr14 SNP SNP 3706366 3822188 107 . . R32d +chr14 SNP SNP 3822189 3938012 140 . . R33d +chr14 SNP SNP 3938013 4053836 325 . . R34d +chr14 SNP SNP 4053837 4169659 526 . . R35d +chr14 SNP SNP 4169660 4285483 73 . . R36d +chr14 SNP SNP 4285484 4401306 83 . . R37d +chr14 SNP SNP 4401307 4517130 214 . . R38d +chr14 SNP SNP 4517131 4632954 379 . . R39d +chr14 SNP SNP 4632955 4748777 187 . . R40d +chr14 SNP SNP 4748778 4864601 298 . . R41d +chr14 SNP SNP 4864602 4980424 90 . . R42d +chr14 SNP SNP 4980425 5096248 315 . . R43d +chr14 SNP SNP 5096249 5212072 93 . . R44d +chr14 SNP SNP 5212073 5327895 20 . . R45d +chr14 SNP SNP 5327896 5443719 50 . . R46d +chr14 SNP SNP 5443720 5559542 43 . . R47d +chr14 SNP SNP 5559543 5675366 50 . . R48d +chr14 SNP SNP 5675367 5791190 60 . . R49d +chr14 SNP SNP 5791191 5907013 63 . . R50d +chr14 SNP SNP 5907014 6022837 486 . . R51d +chr14 SNP SNP 6022838 6138661 667 . . R52d +chr14 SNP SNP 6138662 6254484 513 . . R53d +chr14 SNP SNP 6254485 6370308 691 . . R54d +chr14 SNP SNP 6370309 6486131 828 . . R55d +chr14 SNP SNP 6486132 6601955 526 . . R56d +chr14 SNP SNP 6601956 6717779 567 . . R57d +chr14 SNP SNP 6717780 6833602 463 . . R58d +chr14 SNP SNP 6833603 6949426 671 . . R59d +chr14 SNP SNP 6949427 7065249 758 . . R60d +chr14 SNP SNP 7065250 7181073 627 . . R61d +chr14 SNP SNP 7181074 7296897 553 . . R62d +chr14 SNP SNP 7296898 7412720 768 . . R63d +chr14 SNP SNP 7412721 7528544 604 . . R64d +chr14 SNP SNP 7528545 7644367 500 . . R65d +chr14 SNP SNP 7644368 7760191 755 . . R66d +chr14 SNP SNP 7760192 7876015 671 . . R67d +chr14 SNP SNP 7876016 7991838 536 . . R68d +chr14 SNP SNP 7991839 8107662 510 . . R69d +chr14 SNP SNP 8107663 8223485 426 . . R70d +chr14 SNP SNP 8223486 8339309 587 . . R71d +chr14 SNP SNP 8339310 8455133 503 . . R72d +chr14 SNP SNP 8455134 8570956 379 . . R73d +chr14 SNP SNP 8570957 8686780 446 . . R74d +chr14 SNP SNP 8686781 8802603 456 . . R75d +chr14 SNP SNP 8802604 8918427 409 . . R76d +chr14 SNP SNP 8918428 9034251 647 . . R77d +chr14 SNP SNP 9034252 9150074 704 . . R78d +chr14 SNP SNP 9150075 9265898 560 . . R79d +chr14 SNP SNP 9265899 9381721 520 . . R80d +chr14 SNP SNP 9381722 9497545 667 . . R81d +chr14 SNP SNP 9497546 9613369 352 . . R82d +chr14 SNP SNP 9613370 9729192 466 . . R83d +chr14 SNP SNP 9729193 9845016 812 . . R84d +chr14 SNP SNP 9845017 9960839 469 . . R85d +chr14 SNP SNP 9960840 10076663 607 . . R86d +chr14 SNP SNP 10076664 10192487 526 . . R87d +chr14 SNP SNP 10192488 10308310 184 . . R88d +chr14 SNP SNP 10308311 10424134 416 . . R89d +chr14 SNP SNP 10424135 10539957 238 . . R90d +chr14 SNP SNP 10539958 10655781 687 . . R91d +chr14 SNP SNP 10655782 10771605 671 . . R92d +chr14 SNP SNP 10771606 10887428 436 . . R93d +chr14 SNP SNP 10887429 11003252 520 . . R94d +chr14 SNP SNP 11003253 11119075 657 . . R95d +chr14 SNP SNP 11119076 11234899 328 . . R96d +chr14 SNP SNP 11234900 11350723 597 . . R97d +chr14 SNP SNP 11350724 11466546 315 . . R98d +chr14 SNP SNP 11466547 11582370 697 . . R99d +chr14 SNP SNP 11582371 11698194 761 . . R100d +chr14 SNP SNP 11698195 11814017 738 . . R101d +chr14 SNP SNP 11814018 11929841 661 . . R102d +chr14 SNP SNP 11929842 12045664 550 . . R103d +chr14 SNP SNP 12045665 12161488 449 . . R104d +chr14 SNP SNP 12161489 12277312 587 . . R105d +chr14 SNP SNP 12277313 12393135 399 . . R106d +chr14 SNP SNP 12393136 12508959 654 . . R107d +chr14 SNP SNP 12508960 12624782 486 . . R108d +chr14 SNP SNP 12624783 12740606 557 . . R109d +chr14 SNP SNP 12740607 12856430 456 . . R110d +chr14 SNP SNP 12856431 12972253 573 . . R111d +chr14 SNP SNP 12972254 13088077 687 . . R112d +chr14 SNP SNP 13088078 13203900 983 . . R113d +chr14 SNP SNP 13203901 13319724 825 . . R114d +chr14 SNP SNP 13319725 13435548 600 . . R115d +chr14 SNP SNP 13435549 13551371 694 . . R116d +chr14 SNP SNP 13551372 13667195 647 . . R117d +chr14 SNP SNP 13667196 13783018 583 . . R118d +chr14 SNP SNP 13783019 13898842 684 . . R119d +chr14 SNP SNP 13898843 14014666 697 . . R120d +chr14 SNP SNP 14014667 14130489 882 . . R121d +chr14 SNP SNP 14130490 14246313 687 . . R122d +chr14 SNP SNP 14246314 14362136 765 . . R123d +chr14 SNP SNP 14362137 14477960 597 . . R124d +chr14 SNP SNP 14477961 14593784 476 . . R125d +chr14 SNP SNP 14593785 14709607 10 . . R126d +chr14 SNP SNP 14709608 14825431 382 . . R127d +chr14 SNP SNP 14825432 14941254 67 . . R128d +chr14 SNP SNP 14941255 15057078 13 . . R129d +chr14 SNP SNP 15057079 15172902 46 . . R130d +chr14 SNP SNP 15172903 15288725 171 . . R131d +chr14 SNP SNP 15288726 15404549 83 . . R132d +chr14 SNP SNP 15404550 15520372 332 . . R133d +chr14 SNP SNP 15520373 15636196 130 . . R134d +chr14 SNP SNP 15636197 15752020 93 . . R135d +chr14 SNP SNP 15752021 15867843 26 . . R136d +chr14 SNP SNP 15867844 15983667 238 . . R137d +chr14 SNP SNP 15983668 16099490 348 . . R138d +chr14 SNP SNP 16099491 16215314 516 . . R139d +chr14 SNP SNP 16215315 16331138 362 . . R140d +chr14 SNP SNP 16331139 16446961 187 . . R141d +chr14 SNP SNP 16446962 16562785 436 . . R142d +chr14 SNP SNP 16562786 16678608 137 . . R143d +chr14 SNP SNP 16678609 16794432 731 . . R144d +chr14 SNP SNP 16794433 16910256 389 . . R145d +chr14 SNP SNP 16910257 17026079 476 . . R146d +chr14 SNP SNP 17026080 17141903 238 . . R147d +chr14 SNP SNP 17141904 17257726 372 . . R148d +chr14 SNP SNP 17257727 17373550 194 . . R149d +chr14 SNP SNP 17373551 17489374 278 . . R150d +chr14 SNP SNP 17489375 17605197 151 . . R151d +chr14 SNP SNP 17605198 17721021 80 . . R152d +chr14 SNP SNP 17721022 17836845 13 . . R153d +chr14 SNP SNP 17836846 17952668 26 . . R154d +chr14 SNP SNP 17952669 18068492 10 . . R155d +chr14 SNP SNP 18068493 18184315 0 . . R156d +chr14 SNP SNP 18184316 18300139 20 . . R157d +chr14 SNP SNP 18300140 18415963 20 . . R158d +chr14 SNP SNP 18415964 18531786 10 . . R159d +chr14 SNP SNP 18531787 18647610 16 . . R160d +chr14 SNP SNP 18647611 18763433 13 . . R161d +chr14 SNP SNP 18763434 18879257 13 . . R162d +chr14 SNP SNP 18879258 18995081 13 . . R163d +chr14 SNP SNP 18995082 19110904 26 . . R164d +chr14 SNP SNP 19110905 19226728 10 . . R165d +chr14 SNP SNP 19226729 19342551 6 . . R166d +chr14 SNP SNP 19342552 19458375 23 . . R167d +chr14 SNP SNP 19458376 19574199 20 . . R168d +chr14 SNP SNP 19574200 19690022 6 . . R169d +chr14 SNP SNP 19690023 19805846 20 . . R170d +chr14 SNP SNP 19805847 19921669 10 . . R171d +chr14 SNP SNP 19921670 20037493 6 . . R172d +chr14 SNP SNP 20037494 20153317 13 . . R173d +chr14 SNP SNP 20153318 20269140 10 . . R174d +chr14 SNP SNP 20269141 20384964 10 . . R175d +chr14 SNP SNP 20384965 20500787 6 . . R176d +chr14 SNP SNP 20500788 20616611 10 . . R177d +chr14 SNP SNP 20616612 20732435 10 . . R178d +chr14 SNP SNP 20732436 20848258 6 . . R179d +chr14 SNP SNP 20848259 20964082 6 . . R180d +chr14 SNP SNP 20964083 21079905 6 . . R181d +chr14 SNP SNP 21079906 21195729 16 . . R182d +chr14 SNP SNP 21195730 21311553 13 . . R183d +chr14 SNP SNP 21311554 21427376 20 . . R184d +chr14 SNP SNP 21427377 21543200 10 . . R185d +chr14 SNP SNP 21543201 21659023 10 . . R186d +chr14 SNP SNP 21659024 21774847 6 . . R187d +chr14 SNP SNP 21774848 21890671 6 . . R188d +chr14 SNP SNP 21890672 22006494 13 . . R189d +chr14 SNP SNP 22006495 22122318 6 . . R190d +chr14 SNP SNP 22122319 22238141 10 . . R191d +chr14 SNP SNP 22238142 22353965 13 . . R192d +chr14 SNP SNP 22353966 22469789 20 . . R193d +chr14 SNP SNP 22469790 22585612 23 . . R194d +chr14 SNP SNP 22585613 22701436 13 . . R195d +chr14 SNP SNP 22701437 22817259 6 . . R196d +chr14 SNP SNP 22817260 22933083 23 . . R197d +chr14 SNP SNP 22933084 23048907 33 . . R198d +chr14 SNP SNP 23048908 23164730 26 . . R199d +chr14 SNP SNP 23164731 23280554 10 . . R200d +chr14 SNP SNP 23280555 23396378 20 . . R201d +chr14 SNP SNP 23396379 23512201 13 . . R202d +chr14 SNP SNP 23512202 23628025 13 . . R203d +chr14 SNP SNP 23628026 23743848 30 . . R204d +chr14 SNP SNP 23743849 23859672 10 . . R205d +chr14 SNP SNP 23859673 23975496 20 . . R206d +chr14 SNP SNP 23975497 24091319 10 . . R207d +chr14 SNP SNP 24091320 24207143 16 . . R208d +chr14 SNP SNP 24207144 24322966 10 . . R209d +chr14 SNP SNP 24322967 24438790 10 . . R210d +chr14 SNP SNP 24438791 24554614 10 . . R211d +chr14 SNP SNP 24554615 24670437 3 . . R212d +chr14 SNP SNP 24670438 24786261 36 . . R213d +chr14 SNP SNP 24786262 24902084 16 . . R214d +chr14 SNP SNP 24902085 25017908 6 . . R215d +chr14 SNP SNP 25017909 25133732 10 . . R216d +chr14 SNP SNP 25133733 25249555 30 . . R217d +chr14 SNP SNP 25249556 25365379 16 . . R218d +chr14 SNP SNP 25365380 25481202 20 . . R219d +chr14 SNP SNP 25481203 25597026 20 . . R220d +chr14 SNP SNP 25597027 25712850 23 . . R221d +chr14 SNP SNP 25712851 25828673 117 . . R222d +chr14 SNP SNP 25828674 25944497 234 . . R223d +chr14 SNP SNP 25944498 26060320 40 . . R224d +chr14 SNP SNP 26060321 26176144 10 . . R225d +chr14 SNP SNP 26176145 26291968 20 . . R226d +chr14 SNP SNP 26291969 26407791 6 . . R227d +chr14 SNP SNP 26407792 26523615 10 . . R228d +chr14 SNP SNP 26523616 26639438 6 . . R229d +chr14 SNP SNP 26639439 26755262 10 . . R230d +chr14 SNP SNP 26755263 26871086 16 . . R231d +chr14 SNP SNP 26871087 26986909 10 . . R232d +chr14 SNP SNP 26986910 27102733 23 . . R233d +chr14 SNP SNP 27102734 27218556 33 . . R234d +chr14 SNP SNP 27218557 27334380 16 . . R235d +chr14 SNP SNP 27334381 27450204 3 . . R236d +chr14 SNP SNP 27450205 27566027 137 . . R237d +chr14 SNP SNP 27566028 27681851 442 . . R238d +chr14 SNP SNP 27681852 27797674 278 . . R239d +chr14 SNP SNP 27797675 27913498 201 . . R240d +chr14 SNP SNP 27913499 28029322 144 . . R241d +chr14 SNP SNP 28029323 28145145 0 . . R242d +chr14 SNP SNP 28145146 28260969 13 . . R243d +chr14 SNP SNP 28260970 28376792 10 . . R244d +chr14 SNP SNP 28376793 28492616 80 . . R245d +chr14 SNP SNP 28492617 28608440 221 . . R246d +chr14 SNP SNP 28608441 28724263 67 . . R247d +chr14 SNP SNP 28724264 28840087 228 . . R248d +chr14 SNP SNP 28840088 28955910 164 . . R249d +chr14 SNP SNP 28955911 29071734 355 . . R250d +chr14 SNP SNP 29071735 29187558 194 . . R251d +chr14 SNP SNP 29187559 29303381 10 . . R252d +chr14 SNP SNP 29303382 29419205 67 . . R253d +chr14 SNP SNP 29419206 29535029 298 . . R254d +chr14 SNP SNP 29535030 29650852 214 . . R255d +chr14 SNP SNP 29650853 29766676 221 . . R256d +chr14 SNP SNP 29766677 29882499 117 . . R257d +chr14 SNP SNP 29882500 29998323 197 . . R258d +chr14 SNP SNP 29998324 30114147 305 . . R259d +chr14 SNP SNP 30114148 30229970 285 . . R260d +chr14 SNP SNP 30229971 30345794 10 . . R261d +chr14 SNP SNP 30345795 30461617 20 . . R262d +chr14 SNP SNP 30461618 30577441 70 . . R263d +chr14 SNP SNP 30577442 30693265 369 . . R264d +chr14 SNP SNP 30693266 30809088 187 . . R265d +chr14 SNP SNP 30809089 30924912 214 . . R266d +chr14 SNP SNP 30924913 31040735 416 . . R267d +chr14 SNP SNP 31040736 31156559 60 . . R268d +chr14 SNP SNP 31156560 31272383 140 . . R269d +chr14 SNP SNP 31272384 31388206 244 . . R270d +chr14 SNP SNP 31388207 31504030 13 . . R271d +chr14 SNP SNP 31504031 31619853 13 . . R272d +chr14 SNP SNP 31619854 31735677 6 . . R273d +chr14 SNP SNP 31735678 31851501 13 . . R274d +chr14 SNP SNP 31851502 31967324 13 . . R275d +chr14 SNP SNP 31967325 32083148 16 . . R276d +chr14 SNP SNP 32083149 32198971 26 . . R277d +chr14 SNP SNP 32198972 32314795 3 . . R278d +chr14 SNP SNP 32314796 32430619 3 . . R279d +chr14 SNP SNP 32430620 32546442 16 . . R280d +chr14 SNP SNP 32546443 32662266 23 . . R281d +chr14 SNP SNP 32662267 32778089 3 . . R282d +chr14 SNP SNP 32778090 32893913 6 . . R283d +chr14 SNP SNP 32893914 33009737 23 . . R284d +chr14 SNP SNP 33009738 33125560 26 . . R285d +chr14 SNP SNP 33125561 33241384 20 . . R286d +chr14 SNP SNP 33241385 33357207 10 . . R287d +chr14 SNP SNP 33357208 33473031 23 . . R288d +chr14 SNP SNP 33473032 33588855 20 . . R289d +chr14 SNP SNP 33588856 33704678 13 . . R290d +chr14 SNP SNP 33704679 33820502 13 . . R291d +chr14 SNP SNP 33820503 33936325 33 . . R292d +chr14 SNP SNP 33936326 34052149 67 . . R293d +chr14 SNP SNP 34052150 34167973 651 . . R294d +chr14 SNP SNP 34167974 34283796 385 . . R295d +chr14 SNP SNP 34283797 34399620 496 . . R296d +chr14 SNP SNP 34399621 34515443 493 . . R297d +chr14 SNP SNP 34515444 34631267 607 . . R298d +chr14 SNP SNP 34631268 34747091 436 . . R299d +chr14 SNP SNP 34747092 34862914 130 . . R300d +chr14 SNP SNP 34862915 34978738 60 . . R301d +chr14 SNP SNP 34978739 35094562 40 . . R302d +chr14 SNP SNP 35094563 35210385 402 . . R303d +chr14 SNP SNP 35210386 35326209 526 . . R304d +chr14 SNP SNP 35326210 35442032 466 . . R305d +chr14 SNP SNP 35442033 35557856 513 . . R306d +chr14 SNP SNP 35557857 35673680 382 . . R307d +chr14 SNP SNP 35673681 35789503 372 . . R308d +chr14 SNP SNP 35789504 35905327 53 . . R309d +chr14 SNP SNP 35905328 36021150 134 . . R310d +chr14 SNP SNP 36021151 36136974 110 . . R311d +chr14 SNP SNP 36136975 36252798 46 . . R312d +chr14 SNP SNP 36252799 36368621 422 . . R313d +chr14 SNP SNP 36368622 36484445 120 . . R314d +chr14 SNP SNP 36484446 36600268 177 . . R315d +chr14 SNP SNP 36600269 36716092 114 . . R316d +chr14 SNP SNP 36716093 36831916 171 . . R317d +chr14 SNP SNP 36831917 36947739 681 . . R318d +chr14 SNP SNP 36947740 37063563 640 . . R319d +chr14 SNP SNP 37063564 37179386 516 . . R320d +chr14 SNP SNP 37179387 37295210 550 . . R321d +chr14 SNP SNP 37295211 37411034 681 . . R322d +chr14 SNP SNP 37411035 37526857 684 . . R323d +chr14 SNP SNP 37526858 37642681 781 . . R324d +chr14 SNP SNP 37642682 37758504 872 . . R325d +chr14 SNP SNP 37758505 37874328 895 . . R326d +chr14 SNP SNP 37874329 37990152 795 . . R327d +chr14 SNP SNP 37990153 38105975 604 . . R328d +chr14 SNP SNP 38105976 38221799 828 . . R329d +chr14 SNP SNP 38221800 38337622 681 . . R330d +chr14 SNP SNP 38337623 38453446 661 . . R331d +chr14 SNP SNP 38453447 38569270 536 . . R332d +chr14 SNP SNP 38569271 38685093 687 . . R333d +chr14 SNP SNP 38685094 38800917 802 . . R334d +chr14 SNP SNP 38800918 38916740 875 . . R335d +chr14 SNP SNP 38916741 39032564 543 . . R336d +chr14 SNP SNP 39032565 39148388 771 . . R337d +chr14 SNP SNP 39148389 39264211 580 . . R338d +chr14 SNP SNP 39264212 39380035 553 . . R339d +chr14 SNP SNP 39380036 39495858 848 . . R340d +chr14 SNP SNP 39495859 39611682 815 . . R341d +chr14 SNP SNP 39611683 39727506 862 . . R342d +chr14 SNP SNP 39727507 39843329 607 . . R343d +chr14 SNP SNP 39843330 39959153 667 . . R344d +chr14 SNP SNP 39959154 40074976 634 . . R345d +chr14 SNP SNP 40074977 40190800 751 . . R346d +chr14 SNP SNP 40190801 40306624 916 . . R347d +chr14 SNP SNP 40306625 40422447 550 . . R348d +chr14 SNP SNP 40422448 40538271 671 . . R349d +chr14 SNP SNP 40538272 40654095 758 . . R350d +chr14 SNP SNP 40654096 40769918 966 . . R351d +chr14 SNP SNP 40769919 40885742 610 . . R352d +chr14 SNP SNP 40885743 41001565 815 . . R353d +chr14 SNP SNP 41001566 41117389 828 . . R354d +chr14 SNP SNP 41117390 41233213 845 . . R355d +chr14 SNP SNP 41233214 41349036 885 . . R356d +chr14 SNP SNP 41349037 41464860 755 . . R357d +chr14 SNP SNP 41464861 41580683 1000 . . R358d +chr14 SNP SNP 41580684 41696507 694 . . R359d +chr14 SNP SNP 41696508 41812331 902 . . R360d +chr14 SNP SNP 41812332 41928154 463 . . R361d +chr14 SNP SNP 41928155 42043978 184 . . R362d +chr14 SNP SNP 42043979 42159801 573 . . R363d +chr14 SNP SNP 42159802 42275625 694 . . R364d +chr14 SNP SNP 42275626 42391449 506 . . R365d +chr14 SNP SNP 42391450 42507272 577 . . R366d +chr14 SNP SNP 42507273 42623096 473 . . R367d +chr14 SNP SNP 42623097 42738919 553 . . R368d +chr14 SNP SNP 42738920 42854743 419 . . R369d +chr14 SNP SNP 42854744 42970567 90 . . R370d +chr14 SNP SNP 42970568 43086390 57 . . R371d +chr14 SNP SNP 43086391 43202214 154 . . R372d +chr14 SNP SNP 43202215 43318037 302 . . R373d +chr14 SNP SNP 43318038 43433861 580 . . R374d +chr14 SNP SNP 43433862 43549685 587 . . R375d +chr14 SNP SNP 43549686 43665508 580 . . R376d +chr14 SNP SNP 43665509 43781332 620 . . R377d +chr14 SNP SNP 43781333 43897155 466 . . R378d +chr14 SNP SNP 43897156 44012979 348 . . R379d +chr14 SNP SNP 44012980 44128803 305 . . R380d +chr14 SNP SNP 44128804 44244626 0 . . R381d +chr14 SNP SNP 44244627 44360450 73 . . R382d +chr14 SNP SNP 44360451 44476273 87 . . R383d +chr14 SNP SNP 44476274 44592097 708 . . R384d +chr14 SNP SNP 44592098 44707921 550 . . R385d +chr14 SNP SNP 44707922 44823744 718 . . R386d +chr14 SNP SNP 44823745 44939568 718 . . R387d +chr14 SNP SNP 44939569 45055391 593 . . R388d +chr14 SNP SNP 45055392 45171215 449 . . R389d +chr14 SNP SNP 45171216 45287039 614 . . R390d +chr14 SNP SNP 45287040 45402862 805 . . R391d +chr14 SNP SNP 45402863 45518686 657 . . R392d +chr14 SNP SNP 45518687 45634509 546 . . R393d +chr14 SNP SNP 45634510 45750333 489 . . R394d +chr14 SNP SNP 45750334 45866157 107 . . R395d +chr14 SNP SNP 45866158 45981980 258 . . R396d +chr14 SNP SNP 45981981 46097804 617 . . R397d +chr14 SNP SNP 46097805 46213627 201 . . R398d +chr14 SNP SNP 46213628 46329451 97 . . R399d +chr14 SNP SNP 46329452 46445275 80 . . R400d +chr14 SNP SNP 46445276 46561098 288 . . R401d +chr14 SNP SNP 46561099 46676922 439 . . R402d +chr14 SNP SNP 46676923 46792746 453 . . R403d +chr14 SNP SNP 46792747 46908569 617 . . R404d +chr14 SNP SNP 46908570 47024393 489 . . R405d +chr14 SNP SNP 47024394 47140216 328 . . R406d +chr14 SNP SNP 47140217 47256040 355 . . R407d +chr14 SNP SNP 47256041 47371864 285 . . R408d +chr14 SNP SNP 47371865 47487687 80 . . R409d +chr14 SNP SNP 47487688 47603511 275 . . R410d +chr14 SNP SNP 47603512 47719334 325 . . R411d +chr14 SNP SNP 47719335 47835158 473 . . R412d +chr14 SNP SNP 47835159 47950982 312 . . R413d +chr14 SNP SNP 47950983 48066805 23 . . R414d +chr14 SNP SNP 48066806 48182629 194 . . R415d +chr14 SNP SNP 48182630 48298452 442 . . R416d +chr14 SNP SNP 48298453 48414276 291 . . R417d +chr14 SNP SNP 48414277 48530100 137 . . R418d +chr14 SNP SNP 48530101 48645923 265 . . R419d +chr14 SNP SNP 48645924 48761747 312 . . R420d +chr14 SNP SNP 48761748 48877570 83 . . R421d +chr14 SNP SNP 48877571 48993394 218 . . R422d +chr14 SNP SNP 48993395 49109218 40 . . R423d +chr14 SNP SNP 49109219 49225041 298 . . R424d +chr14 SNP SNP 49225042 49340865 446 . . R425d +chr14 SNP SNP 49340866 49456688 20 . . R426d +chr14 SNP SNP 49456689 49572512 422 . . R427d +chr14 SNP SNP 49572513 49688336 268 . . R428d +chr14 SNP SNP 49688337 49804159 234 . . R429d +chr14 SNP SNP 49804160 49919983 36 . . R430d +chr14 SNP SNP 49919984 50035806 70 . . R431d +chr14 SNP SNP 50035807 50151630 50 . . R432d +chr14 SNP SNP 50151631 50267454 13 . . R433d +chr14 SNP SNP 50267455 50383277 191 . . R434d +chr14 SNP SNP 50383278 50499101 335 . . R435d +chr14 SNP SNP 50499102 50614924 110 . . R436d +chr14 SNP SNP 50614925 50730748 342 . . R437d +chr14 SNP SNP 50730749 50846572 258 . . R438d +chr14 SNP SNP 50846573 50962395 63 . . R439d +chr14 SNP SNP 50962396 51078219 23 . . R440d +chr14 SNP SNP 51078220 51194042 10 . . R441d +chr14 SNP SNP 51194043 51309866 67 . . R442d +chr14 SNP SNP 51309867 51425690 30 . . R443d +chr14 SNP SNP 51425691 51541513 181 . . R444d +chr14 SNP SNP 51541514 51657337 174 . . R445d +chr14 SNP SNP 51657338 51773160 140 . . R446d +chr14 SNP SNP 51773161 51888984 338 . . R447d +chr14 SNP SNP 51888985 52004808 251 . . R448d +chr14 SNP SNP 52004809 52120631 43 . . R449d +chr14 SNP SNP 52120632 52236455 322 . . R450d +chr14 SNP SNP 52236456 52352279 224 . . R451d +chr14 SNP SNP 52352280 52468102 570 . . R452d +chr14 SNP SNP 52468103 52583926 20 . . R453d +chr14 SNP SNP 52583927 52699749 23 . . R454d +chr14 SNP SNP 52699750 52815573 26 . . R455d +chr14 SNP SNP 52815574 52931397 13 . . R456d +chr14 SNP SNP 52931398 53047220 23 . . R457d +chr14 SNP SNP 53047221 53163044 312 . . R458d +chr14 SNP SNP 53163045 53278867 211 . . R459d +chr14 SNP SNP 53278868 53394691 271 . . R460d +chr14 SNP SNP 53394692 53510515 382 . . R461d +chr14 SNP SNP 53510516 53626338 218 . . R462d +chr14 SNP SNP 53626339 53742162 174 . . R463d +chr14 SNP SNP 53742163 53857985 20 . . R464d +chr14 SNP SNP 53857986 53973809 26 . . R465d +chr14 SNP SNP 53973810 54089633 20 . . R466d +chr14 SNP SNP 54089634 54205456 23 . . R467d +chr14 SNP SNP 54205457 54321280 224 . . R468d +chr14 SNP SNP 54321281 54437103 26 . . R469d +chr14 SNP SNP 54437104 54552927 13 . . R470d +chr14 SNP SNP 54552928 54668751 13 . . R471d +chr14 SNP SNP 54668752 54784574 295 . . R472d +chr14 SNP SNP 54784575 54900398 510 . . R473d +chr14 SNP SNP 54900399 55016221 208 . . R474d +chr14 SNP SNP 55016222 55132045 73 . . R475d +chr14 SNP SNP 55132046 55247869 409 . . R476d +chr14 SNP SNP 55247870 55363692 214 . . R477d +chr14 SNP SNP 55363693 55479516 244 . . R478d +chr14 SNP SNP 55479517 55595339 43 . . R479d +chr14 SNP SNP 55595340 55711163 16 . . R480d +chr14 SNP SNP 55711164 55826987 36 . . R481d +chr14 SNP SNP 55826988 55942810 16 . . R482d +chr14 SNP SNP 55942811 56058634 298 . . R483d +chr14 SNP SNP 56058635 56174457 144 . . R484d +chr14 SNP SNP 56174458 56290281 489 . . R485d +chr14 SNP SNP 56290282 56406105 429 . . R486d +chr14 SNP SNP 56406106 56521928 40 . . R487d +chr14 SNP SNP 56521929 56637752 43 . . R488d +chr14 SNP SNP 56637753 56753575 36 . . R489d +chr14 SNP SNP 56753576 56869399 157 . . R490d +chr14 SNP SNP 56869400 56985223 97 . . R491d +chr14 SNP SNP 56985224 57101046 365 . . R492d +chr14 SNP SNP 57101047 57216870 463 . . R493d +chr14 SNP SNP 57216871 57332693 332 . . R494d +chr14 SNP SNP 57332694 57448517 268 . . R495d +chr14 SNP SNP 57448518 57564341 124 . . R496d +chr14 SNP SNP 57564342 57680164 174 . . R497d +chr14 SNP SNP 57680165 57795988 181 . . R498d +chr14 SNP SNP 57795989 57911811 184 . . R499d +chr14 SNP SNP 57911812 58027635 412 . . R500d +chr14 SNP SNP 58027636 58143459 244 . . R501d +chr14 SNP SNP 58143460 58259282 305 . . R502d +chr14 SNP SNP 58259283 58375106 338 . . R503d +chr14 SNP SNP 58375107 58490930 325 . . R504d +chr14 SNP SNP 58490931 58606753 469 . . R505d +chr14 SNP SNP 58606754 58722577 10 . . R506d +chr14 SNP SNP 58722578 58838400 16 . . R507d +chr14 SNP SNP 58838401 58954224 3 . . R508d +chr14 SNP SNP 58954225 59070048 46 . . R509d +chr14 SNP SNP 59070049 59185871 587 . . R510d +chr14 SNP SNP 59185872 59301695 489 . . R511d +chr14 SNP SNP 59301696 59417518 590 . . R512d +chr14 SNP SNP 59417519 59533342 412 . . R513d +chr14 SNP SNP 59533343 59649166 6 . . R514d +chr14 SNP SNP 59649167 59764989 10 . . R515d +chr14 SNP SNP 59764990 59880813 13 . . R516d +chr14 SNP SNP 59880814 59996636 6 . . R517d +chr14 SNP SNP 59996637 60112460 6 . . R518d +chr14 SNP SNP 60112461 60228284 40 . . R519d +chr14 SNP SNP 60228285 60344107 70 . . R520d +chr14 SNP SNP 60344108 60459931 3 . . R521d +chr14 SNP SNP 60459932 60575754 20 . . R522d +chr14 SNP SNP 60575755 60691578 6 . . R523d +chr14 SNP SNP 60691579 60807402 3 . . R524d +chr14 SNP SNP 60807403 60923225 3 . . R525d +chr14 SNP SNP 60923226 61039049 16 . . R526d +chr14 SNP SNP 61039050 61154872 288 . . R527d +chr14 SNP SNP 61154873 61270696 338 . . R528d +chr14 SNP SNP 61270697 61386520 3 . . R529d +chr14 SNP SNP 61386521 61502343 10 . . R530d +chr14 SNP SNP 61502344 61618167 6 . . R531d +chr14 SNP SNP 61618168 61733990 40 . . R532d +chr14 SNP SNP 61733991 61849814 191 . . R533d +chr14 SNP SNP 61849815 61965638 241 . . R534d +chr14 SNP SNP 61965639 62081461 348 . . R535d +chr14 SNP SNP 62081462 62197285 100 . . R536d +chr14 SNP SNP 62197286 62313108 3 . . R537d +chr14 SNP SNP 62313109 62428932 6 . . R538d +chr14 SNP SNP 62428933 62544756 67 . . R539d +chr14 SNP SNP 62544757 62660579 114 . . R540d +chr14 SNP SNP 62660580 62776403 325 . . R541d +chr14 SNP SNP 62776404 62892226 26 . . R542d +chr14 SNP SNP 62892227 63008050 3 . . R543d +chr14 SNP SNP 63008051 63123874 40 . . R544d +chr14 SNP SNP 63123875 63239697 255 . . R545d +chr14 SNP SNP 63239698 63355521 322 . . R546d +chr14 SNP SNP 63355522 63471344 409 . . R547d +chr14 SNP SNP 63471345 63587168 449 . . R548d +chr14 SNP SNP 63587169 63702992 318 . . R549d +chr14 SNP SNP 63702993 63818815 332 . . R550d +chr14 SNP SNP 63818816 63934639 557 . . R551d +chr14 SNP SNP 63934640 64050463 536 . . R552d +chr14 SNP SNP 64050464 64166286 583 . . R553d +chr14 SNP SNP 64166287 64282110 187 . . R554d +chr14 SNP SNP 64282111 64397933 338 . . R555d +chr14 SNP SNP 64397934 64513757 325 . . R556d +chr14 SNP SNP 64513758 64629581 231 . . R557d +chr14 SNP SNP 64629582 64745404 90 . . R558d +chr14 SNP SNP 64745405 64861228 419 . . R559d +chr14 SNP SNP 64861229 64977051 392 . . R560d +chr14 SNP SNP 64977052 65092875 526 . . R561d +chr14 SNP SNP 65092876 65208699 348 . . R562d +chr14 SNP SNP 65208700 65324522 298 . . R563d +chr14 SNP SNP 65324523 65440346 385 . . R564d +chr14 SNP SNP 65440347 65556169 335 . . R565d +chr14 SNP SNP 65556170 65671993 308 . . R566d +chr14 SNP SNP 65671994 65787817 20 . . R567d +chr14 SNP SNP 65787818 65903640 10 . . R568d +chr14 SNP SNP 65903641 66019464 20 . . R569d +chr14 SNP SNP 66019465 66135287 30 . . R570d +chr14 SNP SNP 66135288 66251111 6 . . R571d +chr14 SNP SNP 66251112 66366935 23 . . R572d +chr14 SNP SNP 66366936 66482758 13 . . R573d +chr14 SNP SNP 66482759 66598582 20 . . R574d +chr14 SNP SNP 66598583 66714405 6 . . R575d +chr14 SNP SNP 66714406 66830229 6 . . R576d +chr14 SNP SNP 66830230 66946053 3 . . R577d +chr14 SNP SNP 66946054 67061876 13 . . R578d +chr14 SNP SNP 67061877 67177700 6 . . R579d +chr14 SNP SNP 67177701 67293523 3 . . R580d +chr14 SNP SNP 67293524 67409347 10 . . R581d +chr14 SNP SNP 67409348 67525171 6 . . R582d +chr14 SNP SNP 67525172 67640994 0 . . R583d +chr14 SNP SNP 67640995 67756818 6 . . R584d +chr14 SNP SNP 67756819 67872641 3 . . R585d +chr14 SNP SNP 67872642 67988465 23 . . R586d +chr14 SNP SNP 67988466 68104289 268 . . R587d +chr14 SNP SNP 68104290 68220112 228 . . R588d +chr14 SNP SNP 68220113 68335936 20 . . R589d +chr14 SNP SNP 68335937 68451759 107 . . R590d +chr14 SNP SNP 68451760 68567583 174 . . R591d +chr14 SNP SNP 68567584 68683407 0 . . R592d +chr14 SNP SNP 68683408 68799230 224 . . R593d +chr14 SNP SNP 68799231 68915054 473 . . R594d +chr14 SNP SNP 68915055 69030877 701 . . R595d +chr14 SNP SNP 69030878 69146701 593 . . R596d +chr14 SNP SNP 69146702 69262525 271 . . R597d +chr14 SNP SNP 69262526 69378348 459 . . R598d +chr14 SNP SNP 69378349 69494172 634 . . R599d +chr14 SNP SNP 69494173 69609996 486 . . R600d +chr14 SNP SNP 69609997 69725819 399 . . R601d +chr14 SNP SNP 69725820 69841643 416 . . R602d +chr14 SNP SNP 69841644 69957466 248 . . R603d +chr14 SNP SNP 69957467 70073290 40 . . R604d +chr14 SNP SNP 70073291 70189114 100 . . R605d +chr14 SNP SNP 70189115 70304937 191 . . R606d +chr14 SNP SNP 70304938 70420761 23 . . R607d +chr14 SNP SNP 70420762 70536584 60 . . R608d +chr14 SNP SNP 70536585 70652408 97 . . R609d +chr14 SNP SNP 70652409 70768232 278 . . R610d +chr14 SNP SNP 70768233 70884055 473 . . R611d +chr14 SNP SNP 70884056 70999879 486 . . R612d +chr14 SNP SNP 70999880 71115702 369 . . R613d +chr14 SNP SNP 71115703 71231526 557 . . R614d +chr14 SNP SNP 71231527 71347350 530 . . R615d +chr14 SNP SNP 71347351 71463173 352 . . R616d +chr14 SNP SNP 71463174 71578997 402 . . R617d +chr14 SNP SNP 71578998 71694820 392 . . R618d +chr14 SNP SNP 71694821 71810644 573 . . R619d +chr14 SNP SNP 71810645 71926468 607 . . R620d +chr14 SNP SNP 71926469 72042291 338 . . R621d +chr14 SNP SNP 72042292 72158115 640 . . R622d +chr14 SNP SNP 72158116 72273938 466 . . R623d +chr14 SNP SNP 72273939 72389762 23 . . R624d +chr14 SNP SNP 72389763 72505586 16 . . R625d +chr14 SNP SNP 72505587 72621409 20 . . R626d +chr14 SNP SNP 72621410 72737233 36 . . R627d +chr14 SNP SNP 72737234 72853056 36 . . R628d +chr14 SNP SNP 72853057 72968880 10 . . R629d +chr14 SNP SNP 72968881 73084704 593 . . R630d +chr14 SNP SNP 73084705 73200527 607 . . R631d +chr14 SNP SNP 73200528 73316351 577 . . R632d +chr14 SNP SNP 73316352 73432174 241 . . R633d +chr14 SNP SNP 73432175 73547998 33 . . R634d +chr14 SNP SNP 73547999 73663822 164 . . R635d +chr14 SNP SNP 73663823 73779645 322 . . R636d +chr14 SNP SNP 73779646 73895469 43 . . R637d +chr14 SNP SNP 73895470 74011292 369 . . R638d +chr14 SNP SNP 74011293 74127116 318 . . R639d +chr14 SNP SNP 74127117 74242940 322 . . R640d +chr14 SNP SNP 74242941 74358763 255 . . R641d +chr14 SNP SNP 74358764 74474587 328 . . R642d +chr14 SNP SNP 74474588 74590410 224 . . R643d +chr14 SNP SNP 74590411 74706234 30 . . R644d +chr14 SNP SNP 74706235 74822058 100 . . R645d +chr14 SNP SNP 74822059 74937881 305 . . R646d +chr14 SNP SNP 74937882 75053705 315 . . R647d +chr14 SNP SNP 75053706 75169528 325 . . R648d +chr14 SNP SNP 75169529 75285352 107 . . R649d +chr14 SNP SNP 75285353 75401176 500 . . R650d +chr14 SNP SNP 75401177 75516999 57 . . R651d +chr14 SNP SNP 75517000 75632823 23 . . R652d +chr14 SNP SNP 75632824 75748647 23 . . R653d +chr14 SNP SNP 75748648 75864470 3 . . R654d +chr14 SNP SNP 75864471 75980294 6 . . R655d +chr14 SNP SNP 75980295 76096117 16 . . R656d +chr14 SNP SNP 76096118 76211941 10 . . R657d +chr14 SNP SNP 76211942 76327765 40 . . R658d +chr14 SNP SNP 76327766 76443588 46 . . R659d +chr14 SNP SNP 76443589 76559412 20 . . R660d +chr14 SNP SNP 76559413 76675235 23 . . R661d +chr14 SNP SNP 76675236 76791059 308 . . R662d +chr14 SNP SNP 76791060 76906883 610 . . R663d +chr14 SNP SNP 76906884 77022706 614 . . R664d +chr14 SNP SNP 77022707 77138530 661 . . R665d +chr14 SNP SNP 77138531 77254353 661 . . R666d +chr14 SNP SNP 77254354 77370177 540 . . R667d +chr14 SNP SNP 77370178 77486001 755 . . R668d +chr14 SNP SNP 77486002 77601824 530 . . R669d +chr14 SNP SNP 77601825 77717648 731 . . R670d +chr14 SNP SNP 77717649 77833471 483 . . R671d +chr14 SNP SNP 77833472 77949295 469 . . R672d +chr14 SNP SNP 77949296 78065119 489 . . R673d +chr14 SNP SNP 78065120 78180942 409 . . R674d +chr14 SNP SNP 78180943 78296766 550 . . R675d +chr14 SNP SNP 78296767 78412589 506 . . R676d +chr14 SNP SNP 78412590 78528413 318 . . R677d +chr14 SNP SNP 78528414 78644237 523 . . R678d +chr14 SNP SNP 78644238 78760060 302 . . R679d +chr14 SNP SNP 78760061 78875884 167 . . R680d +chr14 SNP SNP 78875885 78991707 503 . . R681d +chr14 SNP SNP 78991708 79107531 563 . . R682d +chr14 SNP SNP 79107532 79223355 469 . . R683d +chr14 SNP SNP 79223356 79339178 234 . . R684d +chr14 SNP SNP 79339179 79455002 275 . . R685d +chr14 SNP SNP 79455003 79570825 322 . . R686d +chr14 SNP SNP 79570826 79686649 432 . . R687d +chr14 SNP SNP 79686650 79802473 459 . . R688d +chr14 SNP SNP 79802474 79918296 587 . . R689d +chr14 SNP SNP 79918297 80034120 634 . . R690d +chr14 SNP SNP 80034121 80149943 476 . . R691d +chr14 SNP SNP 80149944 80265767 446 . . R692d +chr14 SNP SNP 80265768 80381591 469 . . R693d +chr14 SNP SNP 80381592 80497414 466 . . R694d +chr14 SNP SNP 80497415 80613238 395 . . R695d +chr14 SNP SNP 80613239 80729061 570 . . R696d +chr14 SNP SNP 80729062 80844885 583 . . R697d +chr14 SNP SNP 80844886 80960709 463 . . R698d +chr14 SNP SNP 80960710 81076532 365 . . R699d +chr14 SNP SNP 81076533 81192356 523 . . R700d +chr14 SNP SNP 81192357 81308180 473 . . R701d +chr14 SNP SNP 81308181 81424003 557 . . R702d +chr14 SNP SNP 81424004 81539827 640 . . R703d +chr14 SNP SNP 81539828 81655650 412 . . R704d +chr14 SNP SNP 81655651 81771474 0 . . R705d +chr14 SNP SNP 81771475 81887298 6 . . R706d +chr14 SNP SNP 81887299 82003121 0 . . R707d +chr14 SNP SNP 82003122 82118945 6 . . R708d +chr14 SNP SNP 82118946 82234768 16 . . R709d +chr14 SNP SNP 82234769 82350592 0 . . R710d +chr14 SNP SNP 82350593 82466416 3 . . R711d +chr14 SNP SNP 82466417 82582239 30 . . R712d +chr14 SNP SNP 82582240 82698063 3 . . R713d +chr14 SNP SNP 82698064 82813886 26 . . R714d +chr14 SNP SNP 82813887 82929710 3 . . R715d +chr14 SNP SNP 82929711 83045534 6 . . R716d +chr14 SNP SNP 83045535 83161357 3 . . R717d +chr14 SNP SNP 83161358 83277181 10 . . R718d +chr14 SNP SNP 83277182 83393004 6 . . R719d +chr14 SNP SNP 83393005 83508828 10 . . R720d +chr14 SNP SNP 83508829 83624652 30 . . R721d +chr14 SNP SNP 83624653 83740475 3 . . R722d +chr14 SNP SNP 83740476 83856299 6 . . R723d +chr14 SNP SNP 83856300 83972122 6 . . R724d +chr14 SNP SNP 83972123 84087946 3 . . R725d +chr14 SNP SNP 84087947 84203770 6 . . R726d +chr14 SNP SNP 84203771 84319593 20 . . R727d +chr14 SNP SNP 84319594 84435417 3 . . R728d +chr14 SNP SNP 84435418 84551240 3 . . R729d +chr14 SNP SNP 84551241 84667064 395 . . R730d +chr14 SNP SNP 84667065 84782888 724 . . R731d +chr14 SNP SNP 84782889 84898711 664 . . R732d +chr14 SNP SNP 84898712 85014535 557 . . R733d +chr14 SNP SNP 85014536 85130358 463 . . R734d +chr14 SNP SNP 85130359 85246182 721 . . R735d +chr14 SNP SNP 85246183 85362006 661 . . R736d +chr14 SNP SNP 85362007 85477829 845 . . R737d +chr14 SNP SNP 85477830 85593653 577 . . R738d +chr14 SNP SNP 85593654 85709476 587 . . R739d +chr14 SNP SNP 85709477 85825300 573 . . R740d +chr14 SNP SNP 85825301 85941124 389 . . R741d +chr14 SNP SNP 85941125 86056947 520 . . R742d +chr14 SNP SNP 86056948 86172771 422 . . R743d +chr14 SNP SNP 86172772 86288594 533 . . R744d +chr14 SNP SNP 86288595 86404418 671 . . R745d +chr14 SNP SNP 86404419 86520242 600 . . R746d +chr14 SNP SNP 86520243 86636065 671 . . R747d +chr14 SNP SNP 86636066 86751889 520 . . R748d +chr14 SNP SNP 86751890 86867712 708 . . R749d +chr14 SNP SNP 86867713 86983536 654 . . R750d +chr14 SNP SNP 86983537 87099360 489 . . R751d +chr14 SNP SNP 87099361 87215183 335 . . R752d +chr14 SNP SNP 87215184 87331007 265 . . R753d +chr14 SNP SNP 87331008 87446831 473 . . R754d +chr14 SNP SNP 87446832 87562654 342 . . R755d +chr14 SNP SNP 87562655 87678478 644 . . R756d +chr14 SNP SNP 87678479 87794301 677 . . R757d +chr14 SNP SNP 87794302 87910125 375 . . R758d +chr14 SNP SNP 87910126 88025949 486 . . R759d +chr14 SNP SNP 88025950 88141772 389 . . R760d +chr14 SNP SNP 88141773 88257596 721 . . R761d +chr14 SNP SNP 88257597 88373419 674 . . R762d +chr14 SNP SNP 88373420 88489243 701 . . R763d +chr14 SNP SNP 88489244 88605067 825 . . R764d +chr14 SNP SNP 88605068 88720890 848 . . R765d +chr14 SNP SNP 88720891 88836714 640 . . R766d +chr14 SNP SNP 88836715 88952537 842 . . R767d +chr14 SNP SNP 88952538 89068361 825 . . R768d +chr14 SNP SNP 89068362 89184185 600 . . R769d +chr14 SNP SNP 89184186 89300008 453 . . R770d +chr14 SNP SNP 89300009 89415832 550 . . R771d +chr14 SNP SNP 89415833 89531655 647 . . R772d +chr14 SNP SNP 89531656 89647479 684 . . R773d +chr14 SNP SNP 89647480 89763303 724 . . R774d +chr14 SNP SNP 89763304 89879126 812 . . R775d +chr14 SNP SNP 89879127 89994950 845 . . R776d +chr14 SNP SNP 89994951 90110773 526 . . R777d +chr14 SNP SNP 90110774 90226597 741 . . R778d +chr14 SNP SNP 90226598 90342421 473 . . R779d +chr14 SNP SNP 90342422 90458244 567 . . R780d +chr14 SNP SNP 90458245 90574068 533 . . R781d +chr14 SNP SNP 90574069 90689891 543 . . R782d +chr14 SNP SNP 90689892 90805715 620 . . R783d +chr14 SNP SNP 90805716 90921539 120 . . R784d +chr14 SNP SNP 90921540 91037362 46 . . R785d +chr14 SNP SNP 91037363 91153186 87 . . R786d +chr14 SNP SNP 91153187 91269009 409 . . R787d +chr14 SNP SNP 91269010 91384833 295 . . R788d +chr14 SNP SNP 91384834 91500657 409 . . R789d +chr14 SNP SNP 91500658 91616480 120 . . R790d +chr14 SNP SNP 91616481 91732304 201 . . R791d +chr14 SNP SNP 91732305 91848127 127 . . R792d +chr14 SNP SNP 91848128 91963951 302 . . R793d +chr14 SNP SNP 91963952 92079775 268 . . R794d +chr14 SNP SNP 92079776 92195598 43 . . R795d +chr14 SNP SNP 92195599 92311422 597 . . R796d +chr14 SNP SNP 92311423 92427245 473 . . R797d +chr14 SNP SNP 92427246 92543069 130 . . R798d +chr14 SNP SNP 92543070 92658893 10 . . R799d +chr14 SNP SNP 92658894 92774716 13 . . R800d +chr14 SNP SNP 92774717 92890540 6 . . R801d +chr14 SNP SNP 92890541 93006364 6 . . R802d +chr14 SNP SNP 93006365 93122187 3 . . R803d +chr14 SNP SNP 93122188 93238011 6 . . R804d +chr14 SNP SNP 93238012 93353834 3 . . R805d +chr14 SNP SNP 93353835 93469658 10 . . R806d +chr14 SNP SNP 93469659 93585482 16 . . R807d +chr14 SNP SNP 93585483 93701305 10 . . R808d +chr14 SNP SNP 93701306 93817129 20 . . R809d +chr14 SNP SNP 93817130 93932952 6 . . R810d +chr14 SNP SNP 93932953 94048776 23 . . R811d +chr14 SNP SNP 94048777 94164600 23 . . R812d +chr14 SNP SNP 94164601 94280423 10 . . R813d +chr14 SNP SNP 94280424 94396247 13 . . R814d +chr14 SNP SNP 94396248 94512070 3 . . R815d +chr14 SNP SNP 94512071 94627894 26 . . R816d +chr14 SNP SNP 94627895 94743718 20 . . R817d +chr14 SNP SNP 94743719 94859541 40 . . R818d +chr14 SNP SNP 94859542 94975365 268 . . R819d +chr14 SNP SNP 94975366 95091188 463 . . R820d +chr14 SNP SNP 95091189 95207012 36 . . R821d +chr14 SNP SNP 95207013 95322836 231 . . R822d +chr14 SNP SNP 95322837 95438659 197 . . R823d +chr14 SNP SNP 95438660 95554483 16 . . R824d +chr14 SNP SNP 95554484 95670306 33 . . R825d +chr14 SNP SNP 95670307 95786130 114 . . R826d +chr14 SNP SNP 95786131 95901954 177 . . R827d +chr14 SNP SNP 95901955 96017777 97 . . R828d +chr14 SNP SNP 96017778 96133601 442 . . R829d +chr14 SNP SNP 96133602 96249424 338 . . R830d +chr14 SNP SNP 96249425 96365248 117 . . R831d +chr14 SNP SNP 96365249 96481072 218 . . R832d +chr14 SNP SNP 96481073 96596895 419 . . R833d +chr14 SNP SNP 96596896 96712719 50 . . R834d +chr14 SNP SNP 96712720 96828542 30 . . R835d +chr14 SNP SNP 96828543 96944366 285 . . R836d +chr14 SNP SNP 96944367 97060190 278 . . R837d +chr14 SNP SNP 97060191 97176013 533 . . R838d +chr14 SNP SNP 97176014 97291837 322 . . R839d +chr14 SNP SNP 97291838 97407660 402 . . R840d +chr14 SNP SNP 97407661 97523484 248 . . R841d +chr14 SNP SNP 97523485 97639308 436 . . R842d +chr14 SNP SNP 97639309 97755131 463 . . R843d +chr14 SNP SNP 97755132 97870955 533 . . R844d +chr14 SNP SNP 97870956 97986778 469 . . R845d +chr14 SNP SNP 97986779 98102602 315 . . R846d +chr14 SNP SNP 98102603 98218426 194 . . R847d +chr14 SNP SNP 98218427 98334249 483 . . R848d +chr14 SNP SNP 98334250 98450073 302 . . R849d +chr14 SNP SNP 98450074 98565897 352 . . R850d +chr14 SNP SNP 98565898 98681720 13 . . R851d +chr14 SNP SNP 98681721 98797544 20 . . R852d +chr14 SNP SNP 98797545 98913367 23 . . R853d +chr14 SNP SNP 98913368 99029191 439 . . R854d +chr14 SNP SNP 99029192 99145015 536 . . R855d +chr14 SNP SNP 99145016 99260838 117 . . R856d +chr14 SNP SNP 99260839 99376662 26 . . R857d +chr14 SNP SNP 99376663 99492485 30 . . R858d +chr14 SNP SNP 99492486 99608309 3 . . R859d +chr14 SNP SNP 99608310 99724133 36 . . R860d +chr14 SNP SNP 99724134 99839956 16 . . R861d +chr14 SNP SNP 99839957 99955780 16 . . R862d +chr14 SNP SNP 99955781 100071603 30 . . R863d +chr14 SNP SNP 100071604 100187427 10 . . R864d +chr14 SNP SNP 100187428 100303251 33 . . R865d +chr14 SNP SNP 100303252 100419074 20 . . R866d +chr14 SNP SNP 100419075 100534898 422 . . R867d +chr14 SNP SNP 100534899 100650721 466 . . R868d +chr14 SNP SNP 100650722 100766545 335 . . R869d +chr14 SNP SNP 100766546 100882369 550 . . R870d +chr14 SNP SNP 100882370 100998192 419 . . R871d +chr14 SNP SNP 100998193 101114016 268 . . R872d +chr14 SNP SNP 101114017 101229839 325 . . R873d +chr14 SNP SNP 101229840 101345663 466 . . R874d +chr14 SNP SNP 101345664 101461487 429 . . R875d +chr14 SNP SNP 101461488 101577310 493 . . R876d +chr14 SNP SNP 101577311 101693134 489 . . R877d +chr14 SNP SNP 101693135 101808957 708 . . R878d +chr14 SNP SNP 101808958 101924781 520 . . R879d +chr14 SNP SNP 101924782 102040605 560 . . R880d +chr14 SNP SNP 102040606 102156428 536 . . R881d +chr14 SNP SNP 102156429 102272252 533 . . R882d +chr14 SNP SNP 102272253 102388075 691 . . R883d +chr14 SNP SNP 102388076 102503899 352 . . R884d +chr14 SNP SNP 102503900 102619723 174 . . R885d +chr14 SNP SNP 102619724 102735546 13 . . R886d +chr14 SNP SNP 102735547 102851370 26 . . R887d +chr14 SNP SNP 102851371 102967193 30 . . R888d +chr14 SNP SNP 102967194 103083017 6 . . R889d +chr14 SNP SNP 103083018 103198841 16 . . R890d +chr14 SNP SNP 103198842 103314664 20 . . R891d +chr14 SNP SNP 103314665 103430488 16 . . R892d +chr14 SNP SNP 103430489 103546311 3 . . R893d +chr14 SNP SNP 103546312 103662135 26 . . R894d +chr14 SNP SNP 103662136 103777959 23 . . R895d +chr14 SNP SNP 103777960 103893782 10 . . R896d +chr14 SNP SNP 103893783 104009606 20 . . R897d +chr14 SNP SNP 104009607 104125429 23 . . R898d +chr14 SNP SNP 104125430 104241253 10 . . R899d +chr14 SNP SNP 104241254 104357077 6 . . R900d +chr14 SNP SNP 104357078 104472900 16 . . R901d +chr14 SNP SNP 104472901 104588724 20 . . R902d +chr14 SNP SNP 104588725 104704548 46 . . R903d +chr14 SNP SNP 104704549 104820371 13 . . R904d +chr14 SNP SNP 104820372 104936195 26 . . R905d +chr14 SNP SNP 104936196 105052018 10 . . R906d +chr14 SNP SNP 105052019 105167842 20 . . R907d +chr14 SNP SNP 105167843 105283666 3 . . R908d +chr14 SNP SNP 105283667 105399489 36 . . R909d +chr14 SNP SNP 105399490 105515313 13 . . R910d +chr14 SNP SNP 105515314 105631136 26 . . R911d +chr14 SNP SNP 105631137 105746960 10 . . R912d +chr14 SNP SNP 105746961 105862784 13 . . R913d +chr14 SNP SNP 105862785 105978607 16 . . R914d +chr14 SNP SNP 105978608 106094431 6 . . R915d +chr14 SNP SNP 106094432 106210254 26 . . R916d +chr14 SNP SNP 106210255 106326078 10 . . R917d +chr14 SNP SNP 106326079 106441902 23 . . R918d +chr14 SNP SNP 106441903 106557725 16 . . R919d +chr14 SNP SNP 106557726 106673549 13 . . R920d +chr14 SNP SNP 106673550 106789372 93 . . R921d +chr14 SNP SNP 106789373 106905196 181 . . R922d +chr14 SNP SNP 106905197 107021020 33 . . R923d +chr14 SNP SNP 107021021 107136843 50 . . R924d +chr14 SNP SNP 107136844 107252667 26 . . R925d +chr14 SNP SNP 107252668 107368490 57 . . R926d +chr14 SNP SNP 107368491 107484314 20 . . R927d +chr14 SNP SNP 107484315 107600138 26 . . R928d +chr14 SNP SNP 107600139 107715961 291 . . R929d +chr14 SNP SNP 107715962 107831785 409 . . R930d +chr14 SNP SNP 107831786 107947608 399 . . R931d +chr14 SNP SNP 107947609 108063432 536 . . R932d +chr14 SNP SNP 108063433 108179256 231 . . R933d +chr14 SNP SNP 108179257 108295079 597 . . R934d +chr14 SNP SNP 108295080 108410903 144 . . R935d +chr14 SNP SNP 108410904 108526726 3 . . R936d +chr14 SNP SNP 108526727 108642550 6 . . R937d +chr14 SNP SNP 108642551 108758374 197 . . R938d +chr14 SNP SNP 108758375 108874197 302 . . R939d +chr14 SNP SNP 108874198 108990021 73 . . R940d +chr14 SNP SNP 108990022 109105844 10 . . R941d +chr14 SNP SNP 109105845 109221668 16 . . R942d +chr14 SNP SNP 109221669 109337492 16 . . R943d +chr14 SNP SNP 109337493 109453315 13 . . R944d +chr14 SNP SNP 109453316 109569139 20 . . R945d +chr14 SNP SNP 109569140 109684962 204 . . R946d +chr14 SNP SNP 109684963 109800786 57 . . R947d +chr14 SNP SNP 109800787 109916610 93 . . R948d +chr14 SNP SNP 109916611 110032433 154 . . R949d +chr14 SNP SNP 110032434 110148257 241 . . R950d +chr14 SNP SNP 110148258 110264081 127 . . R951d +chr14 SNP SNP 110264082 110379904 57 . . R952d +chr14 SNP SNP 110379905 110495728 352 . . R953d +chr14 SNP SNP 110495729 110611551 399 . . R954d +chr14 SNP SNP 110611552 110727375 67 . . R955d +chr14 SNP SNP 110727376 110843199 214 . . R956d +chr14 SNP SNP 110843200 110959022 23 . . R957d +chr14 SNP SNP 110959023 111074846 124 . . R958d +chr14 SNP SNP 111074847 111190669 238 . . R959d +chr14 SNP SNP 111190670 111306493 40 . . R960d +chr14 SNP SNP 111306494 111422317 258 . . R961d +chr14 SNP SNP 111422318 111538140 124 . . R962d +chr14 SNP SNP 111538141 111653964 16 . . R963d +chr14 SNP SNP 111653965 111769787 26 . . R964d +chr14 SNP SNP 111769788 111885611 20 . . R965d +chr14 SNP SNP 111885612 112001435 10 . . R966d +chr14 SNP SNP 112001436 112117258 73 . . R967d +chr14 SNP SNP 112117259 112233082 288 . . R968d +chr14 SNP SNP 112233083 112348905 26 . . R969d +chr14 SNP SNP 112348906 112464729 16 . . R970d +chr14 SNP SNP 112464730 112580553 23 . . R971d +chr14 SNP SNP 112580554 112696376 20 . . R972d +chr14 SNP SNP 112696377 112812200 0 . . R973d +chr14 SNP SNP 112812201 112928023 6 . . R974d +chr14 SNP SNP 112928024 113043847 10 . . R975d +chr14 SNP SNP 113043848 113159671 16 . . R976d +chr14 SNP SNP 113159672 113275494 13 . . R977d +chr14 SNP SNP 113275495 113391318 16 . . R978d +chr14 SNP SNP 113391319 113507141 16 . . R979d +chr14 SNP SNP 113507142 113622965 16 . . R980d +chr14 SNP SNP 113622966 113738789 6 . . R981d +chr14 SNP SNP 113738790 113854612 3 . . R982d +chr14 SNP SNP 113854613 113970436 10 . . R983d +chr14 SNP SNP 113970437 114086259 16 . . R984d +chr14 SNP SNP 114086260 114202083 30 . . R985d +chr14 SNP SNP 114202084 114317907 13 . . R986d +chr14 SNP SNP 114317908 114433730 3 . . R987d +chr14 SNP SNP 114433731 114549554 10 . . R988d +chr14 SNP SNP 114549555 114665377 0 . . R989d +chr14 SNP SNP 114665378 114781201 10 . . R990d +chr14 SNP SNP 114781202 114897025 26 . . R991d +chr14 SNP SNP 114897026 115012848 16 . . R992d +chr14 SNP SNP 115012849 115128672 33 . . R993d +chr14 SNP SNP 115128673 115244495 20 . . R994d +chr14 SNP SNP 115244496 115360319 16 . . R995d +chr14 SNP SNP 115360320 115476143 3 . . R996d +chr14 SNP SNP 115476144 115591966 30 . . R997d +chr14 SNP SNP 115591967 115707790 30 . . R998d +chr14 SNP SNP 115707791 115823613 16 . . R999d +chr14 SNP SNP 115823614 115939437 3 . . R1000d diff --git a/web/snp/chr15 b/web/snp/chr15 new file mode 100755 index 00000000..45677390 --- /dev/null +++ b/web/snp/chr15 @@ -0,0 +1,1003 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr15 SNP SNP 11 104119 0 . . R0d +chr15 SNP SNP 104120 208229 0 . . R1d +chr15 SNP SNP 208230 312338 0 . . R2d +chr15 SNP SNP 312339 416448 0 . . R3d +chr15 SNP SNP 416449 520557 0 . . R4d +chr15 SNP SNP 520558 624667 0 . . R5d +chr15 SNP SNP 624668 728776 0 . . R6d +chr15 SNP SNP 728777 832886 0 . . R7d +chr15 SNP SNP 832887 936996 0 . . R8d +chr15 SNP SNP 936997 1041105 0 . . R9d +chr15 SNP SNP 1041106 1145215 0 . . R10d +chr15 SNP SNP 1145216 1249324 0 . . R11d +chr15 SNP SNP 1249325 1353434 0 . . R12d +chr15 SNP SNP 1353435 1457543 0 . . R13d +chr15 SNP SNP 1457544 1561653 0 . . R14d +chr15 SNP SNP 1561654 1665762 0 . . R15d +chr15 SNP SNP 1665763 1769872 0 . . R16d +chr15 SNP SNP 1769873 1873982 0 . . R17d +chr15 SNP SNP 1873983 1978091 0 . . R18d +chr15 SNP SNP 1978092 2082201 0 . . R19d +chr15 SNP SNP 2082202 2186310 0 . . R20d +chr15 SNP SNP 2186311 2290420 0 . . R21d +chr15 SNP SNP 2290421 2394529 0 . . R22d +chr15 SNP SNP 2394530 2498639 0 . . R23d +chr15 SNP SNP 2498640 2602749 0 . . R24d +chr15 SNP SNP 2602750 2706858 0 . . R25d +chr15 SNP SNP 2706859 2810968 0 . . R26d +chr15 SNP SNP 2810969 2915077 0 . . R27d +chr15 SNP SNP 2915078 3019187 3 . . R28d +chr15 SNP SNP 3019188 3123296 39 . . R29d +chr15 SNP SNP 3123297 3227406 43 . . R30d +chr15 SNP SNP 3227407 3331515 35 . . R31d +chr15 SNP SNP 3331516 3435625 177 . . R32d +chr15 SNP SNP 3435626 3539735 858 . . R33d +chr15 SNP SNP 3539736 3643844 409 . . R34d +chr15 SNP SNP 3643845 3747954 94 . . R35d +chr15 SNP SNP 3747955 3852063 500 . . R36d +chr15 SNP SNP 3852064 3956173 55 . . R37d +chr15 SNP SNP 3956174 4060282 397 . . R38d +chr15 SNP SNP 4060283 4164392 358 . . R39d +chr15 SNP SNP 4164393 4268502 330 . . R40d +chr15 SNP SNP 4268503 4372611 19 . . R41d +chr15 SNP SNP 4372612 4476721 15 . . R42d +chr15 SNP SNP 4476722 4580830 19 . . R43d +chr15 SNP SNP 4580831 4684940 31 . . R44d +chr15 SNP SNP 4684941 4789049 39 . . R45d +chr15 SNP SNP 4789050 4893159 35 . . R46d +chr15 SNP SNP 4893160 4997268 7 . . R47d +chr15 SNP SNP 4997269 5101378 11 . . R48d +chr15 SNP SNP 5101379 5205488 23 . . R49d +chr15 SNP SNP 5205489 5309597 27 . . R50d +chr15 SNP SNP 5309598 5413707 3 . . R51d +chr15 SNP SNP 5413708 5517816 19 . . R52d +chr15 SNP SNP 5517817 5621926 19 . . R53d +chr15 SNP SNP 5621927 5726035 11 . . R54d +chr15 SNP SNP 5726036 5830145 23 . . R55d +chr15 SNP SNP 5830146 5934254 35 . . R56d +chr15 SNP SNP 5934255 6038364 23 . . R57d +chr15 SNP SNP 6038365 6142474 15 . . R58d +chr15 SNP SNP 6142475 6246583 7 . . R59d +chr15 SNP SNP 6246584 6350693 39 . . R60d +chr15 SNP SNP 6350694 6454802 0 . . R61d +chr15 SNP SNP 6454803 6558912 11 . . R62d +chr15 SNP SNP 6558913 6663021 23 . . R63d +chr15 SNP SNP 6663022 6767131 7 . . R64d +chr15 SNP SNP 6767132 6871241 11 . . R65d +chr15 SNP SNP 6871242 6975350 19 . . R66d +chr15 SNP SNP 6975351 7079460 31 . . R67d +chr15 SNP SNP 7079461 7183569 19 . . R68d +chr15 SNP SNP 7183570 7287679 23 . . R69d +chr15 SNP SNP 7287680 7391788 7 . . R70d +chr15 SNP SNP 7391789 7495898 19 . . R71d +chr15 SNP SNP 7495899 7600007 3 . . R72d +chr15 SNP SNP 7600008 7704117 31 . . R73d +chr15 SNP SNP 7704118 7808227 43 . . R74d +chr15 SNP SNP 7808228 7912336 31 . . R75d +chr15 SNP SNP 7912337 8016446 19 . . R76d +chr15 SNP SNP 8016447 8120555 3 . . R77d +chr15 SNP SNP 8120556 8224665 11 . . R78d +chr15 SNP SNP 8224666 8328774 11 . . R79d +chr15 SNP SNP 8328775 8432884 23 . . R80d +chr15 SNP SNP 8432885 8536994 15 . . R81d +chr15 SNP SNP 8536995 8641103 11 . . R82d +chr15 SNP SNP 8641104 8745213 15 . . R83d +chr15 SNP SNP 8745214 8849322 7 . . R84d +chr15 SNP SNP 8849323 8953432 3 . . R85d +chr15 SNP SNP 8953433 9057541 7 . . R86d +chr15 SNP SNP 9057542 9161651 7 . . R87d +chr15 SNP SNP 9161652 9265760 19 . . R88d +chr15 SNP SNP 9265761 9369870 7 . . R89d +chr15 SNP SNP 9369871 9473980 35 . . R90d +chr15 SNP SNP 9473981 9578089 11 . . R91d +chr15 SNP SNP 9578090 9682199 19 . . R92d +chr15 SNP SNP 9682200 9786308 15 . . R93d +chr15 SNP SNP 9786309 9890418 7 . . R94d +chr15 SNP SNP 9890419 9994527 19 . . R95d +chr15 SNP SNP 9994528 10098637 23 . . R96d +chr15 SNP SNP 10098638 10202746 27 . . R97d +chr15 SNP SNP 10202747 10306856 23 . . R98d +chr15 SNP SNP 10306857 10410966 31 . . R99d +chr15 SNP SNP 10410967 10515075 19 . . R100d +chr15 SNP SNP 10515076 10619185 31 . . R101d +chr15 SNP SNP 10619186 10723294 11 . . R102d +chr15 SNP SNP 10723295 10827404 3 . . R103d +chr15 SNP SNP 10827405 10931513 7 . . R104d +chr15 SNP SNP 10931514 11035623 19 . . R105d +chr15 SNP SNP 11035624 11139733 11 . . R106d +chr15 SNP SNP 11139734 11243842 19 . . R107d +chr15 SNP SNP 11243843 11347952 19 . . R108d +chr15 SNP SNP 11347953 11452061 7 . . R109d +chr15 SNP SNP 11452062 11556171 11 . . R110d +chr15 SNP SNP 11556172 11660280 15 . . R111d +chr15 SNP SNP 11660281 11764390 15 . . R112d +chr15 SNP SNP 11764391 11868499 3 . . R113d +chr15 SNP SNP 11868500 11972609 11 . . R114d +chr15 SNP SNP 11972610 12076719 31 . . R115d +chr15 SNP SNP 12076720 12180828 31 . . R116d +chr15 SNP SNP 12180829 12284938 3 . . R117d +chr15 SNP SNP 12284939 12389047 31 . . R118d +chr15 SNP SNP 12389048 12493157 11 . . R119d +chr15 SNP SNP 12493158 12597266 299 . . R120d +chr15 SNP SNP 12597267 12701376 43 . . R121d +chr15 SNP SNP 12701377 12805486 362 . . R122d +chr15 SNP SNP 12805487 12909595 511 . . R123d +chr15 SNP SNP 12909596 13013705 192 . . R124d +chr15 SNP SNP 13013706 13117814 362 . . R125d +chr15 SNP SNP 13117815 13221924 177 . . R126d +chr15 SNP SNP 13221925 13326033 90 . . R127d +chr15 SNP SNP 13326034 13430143 39 . . R128d +chr15 SNP SNP 13430144 13534252 39 . . R129d +chr15 SNP SNP 13534253 13638362 43 . . R130d +chr15 SNP SNP 13638363 13742472 23 . . R131d +chr15 SNP SNP 13742473 13846581 267 . . R132d +chr15 SNP SNP 13846582 13950691 448 . . R133d +chr15 SNP SNP 13950692 14054800 480 . . R134d +chr15 SNP SNP 14054801 14158910 409 . . R135d +chr15 SNP SNP 14158911 14263019 275 . . R136d +chr15 SNP SNP 14263020 14367129 251 . . R137d +chr15 SNP SNP 14367130 14471238 503 . . R138d +chr15 SNP SNP 14471239 14575348 751 . . R139d +chr15 SNP SNP 14575349 14679458 393 . . R140d +chr15 SNP SNP 14679459 14783567 23 . . R141d +chr15 SNP SNP 14783568 14887677 11 . . R142d +chr15 SNP SNP 14887678 14991786 11 . . R143d +chr15 SNP SNP 14991787 15095896 51 . . R144d +chr15 SNP SNP 15095897 15200005 15 . . R145d +chr15 SNP SNP 15200006 15304115 11 . . R146d +chr15 SNP SNP 15304116 15408225 11 . . R147d +chr15 SNP SNP 15408226 15512334 35 . . R148d +chr15 SNP SNP 15512335 15616444 27 . . R149d +chr15 SNP SNP 15616445 15720553 27 . . R150d +chr15 SNP SNP 15720554 15824663 11 . . R151d +chr15 SNP SNP 15824664 15928772 15 . . R152d +chr15 SNP SNP 15928773 16032882 31 . . R153d +chr15 SNP SNP 16032883 16136991 7 . . R154d +chr15 SNP SNP 16136992 16241101 23 . . R155d +chr15 SNP SNP 16241102 16345211 7 . . R156d +chr15 SNP SNP 16345212 16449320 19 . . R157d +chr15 SNP SNP 16449321 16553430 11 . . R158d +chr15 SNP SNP 16553431 16657539 11 . . R159d +chr15 SNP SNP 16657540 16761649 11 . . R160d +chr15 SNP SNP 16761650 16865758 11 . . R161d +chr15 SNP SNP 16865759 16969868 3 . . R162d +chr15 SNP SNP 16969869 17073978 7 . . R163d +chr15 SNP SNP 17073979 17178087 7 . . R164d +chr15 SNP SNP 17178088 17282197 15 . . R165d +chr15 SNP SNP 17282198 17386306 27 . . R166d +chr15 SNP SNP 17386307 17490416 15 . . R167d +chr15 SNP SNP 17490417 17594525 19 . . R168d +chr15 SNP SNP 17594526 17698635 39 . . R169d +chr15 SNP SNP 17698636 17802744 15 . . R170d +chr15 SNP SNP 17802745 17906854 19 . . R171d +chr15 SNP SNP 17906855 18010964 0 . . R172d +chr15 SNP SNP 18010965 18115073 11 . . R173d +chr15 SNP SNP 18115074 18219183 15 . . R174d +chr15 SNP SNP 18219184 18323292 3 . . R175d +chr15 SNP SNP 18323293 18427402 35 . . R176d +chr15 SNP SNP 18427403 18531511 3 . . R177d +chr15 SNP SNP 18531512 18635621 15 . . R178d +chr15 SNP SNP 18635622 18739730 23 . . R179d +chr15 SNP SNP 18739731 18843840 0 . . R180d +chr15 SNP SNP 18843841 18947950 118 . . R181d +chr15 SNP SNP 18947951 19052059 255 . . R182d +chr15 SNP SNP 19052060 19156169 338 . . R183d +chr15 SNP SNP 19156170 19260278 370 . . R184d +chr15 SNP SNP 19260279 19364388 405 . . R185d +chr15 SNP SNP 19364389 19468497 110 . . R186d +chr15 SNP SNP 19468498 19572607 330 . . R187d +chr15 SNP SNP 19572608 19676717 153 . . R188d +chr15 SNP SNP 19676718 19780826 287 . . R189d +chr15 SNP SNP 19780827 19884936 255 . . R190d +chr15 SNP SNP 19884937 19989045 110 . . R191d +chr15 SNP SNP 19989046 20093155 314 . . R192d +chr15 SNP SNP 20093156 20197264 129 . . R193d +chr15 SNP SNP 20197265 20301374 188 . . R194d +chr15 SNP SNP 20301375 20405483 307 . . R195d +chr15 SNP SNP 20405484 20509593 267 . . R196d +chr15 SNP SNP 20509594 20613703 145 . . R197d +chr15 SNP SNP 20613704 20717812 23 . . R198d +chr15 SNP SNP 20717813 20821922 208 . . R199d +chr15 SNP SNP 20821923 20926031 248 . . R200d +chr15 SNP SNP 20926032 21030141 19 . . R201d +chr15 SNP SNP 21030142 21134250 27 . . R202d +chr15 SNP SNP 21134251 21238360 23 . . R203d +chr15 SNP SNP 21238361 21342470 23 . . R204d +chr15 SNP SNP 21342471 21446579 19 . . R205d +chr15 SNP SNP 21446580 21550689 283 . . R206d +chr15 SNP SNP 21550690 21654798 500 . . R207d +chr15 SNP SNP 21654799 21758908 531 . . R208d +chr15 SNP SNP 21758909 21863017 492 . . R209d +chr15 SNP SNP 21863018 21967127 145 . . R210d +chr15 SNP SNP 21967128 22071236 39 . . R211d +chr15 SNP SNP 22071237 22175346 460 . . R212d +chr15 SNP SNP 22175347 22279456 452 . . R213d +chr15 SNP SNP 22279457 22383565 456 . . R214d +chr15 SNP SNP 22383566 22487675 185 . . R215d +chr15 SNP SNP 22487676 22591784 401 . . R216d +chr15 SNP SNP 22591785 22695894 311 . . R217d +chr15 SNP SNP 22695895 22800003 456 . . R218d +chr15 SNP SNP 22800004 22904113 362 . . R219d +chr15 SNP SNP 22904114 23008222 311 . . R220d +chr15 SNP SNP 23008223 23112332 433 . . R221d +chr15 SNP SNP 23112333 23216442 389 . . R222d +chr15 SNP SNP 23216443 23320551 196 . . R223d +chr15 SNP SNP 23320552 23424661 362 . . R224d +chr15 SNP SNP 23424662 23528770 456 . . R225d +chr15 SNP SNP 23528771 23632880 338 . . R226d +chr15 SNP SNP 23632881 23736989 43 . . R227d +chr15 SNP SNP 23736990 23841099 27 . . R228d +chr15 SNP SNP 23841100 23945209 43 . . R229d +chr15 SNP SNP 23945210 24049318 858 . . R230d +chr15 SNP SNP 24049319 24153428 468 . . R231d +chr15 SNP SNP 24153429 24257537 90 . . R232d +chr15 SNP SNP 24257538 24361647 66 . . R233d +chr15 SNP SNP 24361648 24465756 55 . . R234d +chr15 SNP SNP 24465757 24569866 271 . . R235d +chr15 SNP SNP 24569867 24673975 377 . . R236d +chr15 SNP SNP 24673976 24778085 433 . . R237d +chr15 SNP SNP 24778086 24882195 307 . . R238d +chr15 SNP SNP 24882196 24986304 460 . . R239d +chr15 SNP SNP 24986305 25090414 437 . . R240d +chr15 SNP SNP 25090415 25194523 393 . . R241d +chr15 SNP SNP 25194524 25298633 566 . . R242d +chr15 SNP SNP 25298634 25402742 385 . . R243d +chr15 SNP SNP 25402743 25506852 346 . . R244d +chr15 SNP SNP 25506853 25610962 326 . . R245d +chr15 SNP SNP 25610963 25715071 279 . . R246d +chr15 SNP SNP 25715072 25819181 27 . . R247d +chr15 SNP SNP 25819182 25923290 51 . . R248d +chr15 SNP SNP 25923291 26027400 240 . . R249d +chr15 SNP SNP 26027401 26131509 322 . . R250d +chr15 SNP SNP 26131510 26235619 488 . . R251d +chr15 SNP SNP 26235620 26339728 555 . . R252d +chr15 SNP SNP 26339729 26443838 330 . . R253d +chr15 SNP SNP 26443839 26547948 78 . . R254d +chr15 SNP SNP 26547949 26652057 381 . . R255d +chr15 SNP SNP 26652058 26756167 476 . . R256d +chr15 SNP SNP 26756168 26860276 110 . . R257d +chr15 SNP SNP 26860277 26964386 31 . . R258d +chr15 SNP SNP 26964387 27068495 15 . . R259d +chr15 SNP SNP 27068496 27172605 7 . . R260d +chr15 SNP SNP 27172606 27276714 7 . . R261d +chr15 SNP SNP 27276715 27380824 15 . . R262d +chr15 SNP SNP 27380825 27484934 7 . . R263d +chr15 SNP SNP 27484935 27589043 11 . . R264d +chr15 SNP SNP 27589044 27693153 11 . . R265d +chr15 SNP SNP 27693154 27797262 11 . . R266d +chr15 SNP SNP 27797263 27901372 19 . . R267d +chr15 SNP SNP 27901373 28005481 31 . . R268d +chr15 SNP SNP 28005482 28109591 3 . . R269d +chr15 SNP SNP 28109592 28213701 3 . . R270d +chr15 SNP SNP 28213702 28317810 307 . . R271d +chr15 SNP SNP 28317811 28421920 55 . . R272d +chr15 SNP SNP 28421921 28526029 401 . . R273d +chr15 SNP SNP 28526030 28630139 562 . . R274d +chr15 SNP SNP 28630140 28734248 228 . . R275d +chr15 SNP SNP 28734249 28838358 350 . . R276d +chr15 SNP SNP 28838359 28942467 267 . . R277d +chr15 SNP SNP 28942468 29046577 444 . . R278d +chr15 SNP SNP 29046578 29150687 429 . . R279d +chr15 SNP SNP 29150688 29254796 464 . . R280d +chr15 SNP SNP 29254797 29358906 366 . . R281d +chr15 SNP SNP 29358907 29463015 307 . . R282d +chr15 SNP SNP 29463016 29567125 192 . . R283d +chr15 SNP SNP 29567126 29671234 15 . . R284d +chr15 SNP SNP 29671235 29775344 59 . . R285d +chr15 SNP SNP 29775345 29879454 31 . . R286d +chr15 SNP SNP 29879455 29983563 11 . . R287d +chr15 SNP SNP 29983564 30087673 125 . . R288d +chr15 SNP SNP 30087674 30191782 7 . . R289d +chr15 SNP SNP 30191783 30295892 15 . . R290d +chr15 SNP SNP 30295893 30400001 0 . . R291d +chr15 SNP SNP 30400002 30504111 15 . . R292d +chr15 SNP SNP 30504112 30608220 0 . . R293d +chr15 SNP SNP 30608221 30712330 19 . . R294d +chr15 SNP SNP 30712331 30816440 3 . . R295d +chr15 SNP SNP 30816441 30920549 15 . . R296d +chr15 SNP SNP 30920550 31024659 3 . . R297d +chr15 SNP SNP 31024660 31128768 11 . . R298d +chr15 SNP SNP 31128769 31232878 0 . . R299d +chr15 SNP SNP 31232879 31336987 66 . . R300d +chr15 SNP SNP 31336988 31441097 173 . . R301d +chr15 SNP SNP 31441098 31545206 106 . . R302d +chr15 SNP SNP 31545207 31649316 417 . . R303d +chr15 SNP SNP 31649317 31753426 66 . . R304d +chr15 SNP SNP 31753427 31857535 181 . . R305d +chr15 SNP SNP 31857536 31961645 102 . . R306d +chr15 SNP SNP 31961646 32065754 255 . . R307d +chr15 SNP SNP 32065755 32169864 291 . . R308d +chr15 SNP SNP 32169865 32273973 216 . . R309d +chr15 SNP SNP 32273974 32378083 55 . . R310d +chr15 SNP SNP 32378084 32482193 137 . . R311d +chr15 SNP SNP 32482194 32586302 39 . . R312d +chr15 SNP SNP 32586303 32690412 220 . . R313d +chr15 SNP SNP 32690413 32794521 267 . . R314d +chr15 SNP SNP 32794522 32898631 74 . . R315d +chr15 SNP SNP 32898632 33002740 452 . . R316d +chr15 SNP SNP 33002741 33106850 137 . . R317d +chr15 SNP SNP 33106851 33210959 295 . . R318d +chr15 SNP SNP 33210960 33315069 657 . . R319d +chr15 SNP SNP 33315070 33419179 358 . . R320d +chr15 SNP SNP 33419180 33523288 417 . . R321d +chr15 SNP SNP 33523289 33627398 118 . . R322d +chr15 SNP SNP 33627399 33731507 7 . . R323d +chr15 SNP SNP 33731508 33835617 3 . . R324d +chr15 SNP SNP 33835618 33939726 15 . . R325d +chr15 SNP SNP 33939727 34043836 23 . . R326d +chr15 SNP SNP 34043837 34147946 3 . . R327d +chr15 SNP SNP 34147947 34252055 47 . . R328d +chr15 SNP SNP 34252056 34356165 11 . . R329d +chr15 SNP SNP 34356166 34460274 15 . . R330d +chr15 SNP SNP 34460275 34564384 19 . . R331d +chr15 SNP SNP 34564385 34668493 3 . . R332d +chr15 SNP SNP 34668494 34772603 11 . . R333d +chr15 SNP SNP 34772604 34876712 19 . . R334d +chr15 SNP SNP 34876713 34980822 7 . . R335d +chr15 SNP SNP 34980823 35084932 15 . . R336d +chr15 SNP SNP 35084933 35189041 11 . . R337d +chr15 SNP SNP 35189042 35293151 7 . . R338d +chr15 SNP SNP 35293152 35397260 0 . . R339d +chr15 SNP SNP 35397261 35501370 11 . . R340d +chr15 SNP SNP 35501371 35605479 3 . . R341d +chr15 SNP SNP 35605480 35709589 15 . . R342d +chr15 SNP SNP 35709590 35813698 15 . . R343d +chr15 SNP SNP 35813699 35917808 15 . . R344d +chr15 SNP SNP 35917809 36021918 7 . . R345d +chr15 SNP SNP 36021919 36126027 11 . . R346d +chr15 SNP SNP 36126028 36230137 15 . . R347d +chr15 SNP SNP 36230138 36334246 78 . . R348d +chr15 SNP SNP 36334247 36438356 7 . . R349d +chr15 SNP SNP 36438357 36542465 3 . . R350d +chr15 SNP SNP 36542466 36646575 7 . . R351d +chr15 SNP SNP 36646576 36750685 7 . . R352d +chr15 SNP SNP 36750686 36854794 35 . . R353d +chr15 SNP SNP 36854795 36958904 3 . . R354d +chr15 SNP SNP 36958905 37063013 0 . . R355d +chr15 SNP SNP 37063014 37167123 7 . . R356d +chr15 SNP SNP 37167124 37271232 0 . . R357d +chr15 SNP SNP 37271233 37375342 3 . . R358d +chr15 SNP SNP 37375343 37479451 7 . . R359d +chr15 SNP SNP 37479452 37583561 7 . . R360d +chr15 SNP SNP 37583562 37687671 11 . . R361d +chr15 SNP SNP 37687672 37791780 11 . . R362d +chr15 SNP SNP 37791781 37895890 7 . . R363d +chr15 SNP SNP 37895891 37999999 35 . . R364d +chr15 SNP SNP 38000000 38104109 3 . . R365d +chr15 SNP SNP 38104110 38208218 19 . . R366d +chr15 SNP SNP 38208219 38312328 23 . . R367d +chr15 SNP SNP 38312329 38416438 39 . . R368d +chr15 SNP SNP 38416439 38520547 11 . . R369d +chr15 SNP SNP 38520548 38624657 23 . . R370d +chr15 SNP SNP 38624658 38728766 3 . . R371d +chr15 SNP SNP 38728767 38832876 82 . . R372d +chr15 SNP SNP 38832877 38936985 86 . . R373d +chr15 SNP SNP 38936986 39041095 98 . . R374d +chr15 SNP SNP 39041096 39145204 35 . . R375d +chr15 SNP SNP 39145205 39249314 0 . . R376d +chr15 SNP SNP 39249315 39353424 0 . . R377d +chr15 SNP SNP 39353425 39457533 31 . . R378d +chr15 SNP SNP 39457534 39561643 3 . . R379d +chr15 SNP SNP 39561644 39665752 15 . . R380d +chr15 SNP SNP 39665753 39769862 3 . . R381d +chr15 SNP SNP 39769863 39873971 0 . . R382d +chr15 SNP SNP 39873972 39978081 7 . . R383d +chr15 SNP SNP 39978082 40082190 7 . . R384d +chr15 SNP SNP 40082191 40186300 27 . . R385d +chr15 SNP SNP 40186301 40290410 7 . . R386d +chr15 SNP SNP 40290411 40394519 19 . . R387d +chr15 SNP SNP 40394520 40498629 11 . . R388d +chr15 SNP SNP 40498630 40602738 23 . . R389d +chr15 SNP SNP 40602739 40706848 7 . . R390d +chr15 SNP SNP 40706849 40810957 15 . . R391d +chr15 SNP SNP 40810958 40915067 3 . . R392d +chr15 SNP SNP 40915068 41019177 19 . . R393d +chr15 SNP SNP 41019178 41123286 23 . . R394d +chr15 SNP SNP 41123287 41227396 11 . . R395d +chr15 SNP SNP 41227397 41331505 11 . . R396d +chr15 SNP SNP 41331506 41435615 118 . . R397d +chr15 SNP SNP 41435616 41539724 149 . . R398d +chr15 SNP SNP 41539725 41643834 259 . . R399d +chr15 SNP SNP 41643835 41747943 543 . . R400d +chr15 SNP SNP 41747944 41852053 500 . . R401d +chr15 SNP SNP 41852054 41956163 374 . . R402d +chr15 SNP SNP 41956164 42060272 196 . . R403d +chr15 SNP SNP 42060273 42164382 370 . . R404d +chr15 SNP SNP 42164383 42268491 460 . . R405d +chr15 SNP SNP 42268492 42372601 354 . . R406d +chr15 SNP SNP 42372602 42476710 472 . . R407d +chr15 SNP SNP 42476711 42580820 334 . . R408d +chr15 SNP SNP 42580821 42684930 303 . . R409d +chr15 SNP SNP 42684931 42789039 157 . . R410d +chr15 SNP SNP 42789040 42893149 11 . . R411d +chr15 SNP SNP 42893150 42997258 11 . . R412d +chr15 SNP SNP 42997259 43101368 185 . . R413d +chr15 SNP SNP 43101369 43205477 342 . . R414d +chr15 SNP SNP 43205478 43309587 350 . . R415d +chr15 SNP SNP 43309588 43413696 330 . . R416d +chr15 SNP SNP 43413697 43517806 287 . . R417d +chr15 SNP SNP 43517807 43621916 240 . . R418d +chr15 SNP SNP 43621917 43726025 200 . . R419d +chr15 SNP SNP 43726026 43830135 354 . . R420d +chr15 SNP SNP 43830136 43934244 405 . . R421d +chr15 SNP SNP 43934245 44038354 500 . . R422d +chr15 SNP SNP 44038355 44142463 570 . . R423d +chr15 SNP SNP 44142464 44246573 555 . . R424d +chr15 SNP SNP 44246574 44350682 464 . . R425d +chr15 SNP SNP 44350683 44454792 342 . . R426d +chr15 SNP SNP 44454793 44558902 255 . . R427d +chr15 SNP SNP 44558903 44663011 307 . . R428d +chr15 SNP SNP 44663012 44767121 397 . . R429d +chr15 SNP SNP 44767122 44871230 291 . . R430d +chr15 SNP SNP 44871231 44975340 86 . . R431d +chr15 SNP SNP 44975341 45079449 216 . . R432d +chr15 SNP SNP 45079450 45183559 527 . . R433d +chr15 SNP SNP 45183560 45287669 405 . . R434d +chr15 SNP SNP 45287670 45391778 661 . . R435d +chr15 SNP SNP 45391779 45495888 1000 . . R436d +chr15 SNP SNP 45495889 45599997 440 . . R437d +chr15 SNP SNP 45599998 45704107 409 . . R438d +chr15 SNP SNP 45704108 45808216 440 . . R439d +chr15 SNP SNP 45808217 45912326 472 . . R440d +chr15 SNP SNP 45912327 46016435 559 . . R441d +chr15 SNP SNP 46016436 46120545 326 . . R442d +chr15 SNP SNP 46120546 46224655 157 . . R443d +chr15 SNP SNP 46224656 46328764 86 . . R444d +chr15 SNP SNP 46328765 46432874 15 . . R445d +chr15 SNP SNP 46432875 46536983 23 . . R446d +chr15 SNP SNP 46536984 46641093 0 . . R447d +chr15 SNP SNP 46641094 46745202 11 . . R448d +chr15 SNP SNP 46745203 46849312 15 . . R449d +chr15 SNP SNP 46849313 46953422 3 . . R450d +chr15 SNP SNP 46953423 47057531 19 . . R451d +chr15 SNP SNP 47057532 47161641 3 . . R452d +chr15 SNP SNP 47161642 47265750 15 . . R453d +chr15 SNP SNP 47265751 47369860 11 . . R454d +chr15 SNP SNP 47369861 47473969 11 . . R455d +chr15 SNP SNP 47473970 47578079 23 . . R456d +chr15 SNP SNP 47578080 47682188 19 . . R457d +chr15 SNP SNP 47682189 47786298 23 . . R458d +chr15 SNP SNP 47786299 47890408 27 . . R459d +chr15 SNP SNP 47890409 47994517 15 . . R460d +chr15 SNP SNP 47994518 48098627 7 . . R461d +chr15 SNP SNP 48098628 48202736 43 . . R462d +chr15 SNP SNP 48202737 48306846 3 . . R463d +chr15 SNP SNP 48306847 48410955 15 . . R464d +chr15 SNP SNP 48410956 48515065 19 . . R465d +chr15 SNP SNP 48515066 48619174 3 . . R466d +chr15 SNP SNP 48619175 48723284 35 . . R467d +chr15 SNP SNP 48723285 48827394 409 . . R468d +chr15 SNP SNP 48827395 48931503 110 . . R469d +chr15 SNP SNP 48931504 49035613 397 . . R470d +chr15 SNP SNP 49035614 49139722 425 . . R471d +chr15 SNP SNP 49139723 49243832 322 . . R472d +chr15 SNP SNP 49243833 49347941 421 . . R473d +chr15 SNP SNP 49347942 49452051 381 . . R474d +chr15 SNP SNP 49452052 49556161 287 . . R475d +chr15 SNP SNP 49556162 49660270 389 . . R476d +chr15 SNP SNP 49660271 49764380 220 . . R477d +chr15 SNP SNP 49764381 49868489 220 . . R478d +chr15 SNP SNP 49868490 49972599 303 . . R479d +chr15 SNP SNP 49972600 50076708 374 . . R480d +chr15 SNP SNP 50076709 50180818 216 . . R481d +chr15 SNP SNP 50180819 50284927 700 . . R482d +chr15 SNP SNP 50284928 50389037 405 . . R483d +chr15 SNP SNP 50389038 50493147 342 . . R484d +chr15 SNP SNP 50493148 50597256 425 . . R485d +chr15 SNP SNP 50597257 50701366 248 . . R486d +chr15 SNP SNP 50701367 50805475 405 . . R487d +chr15 SNP SNP 50805476 50909585 338 . . R488d +chr15 SNP SNP 50909586 51013694 326 . . R489d +chr15 SNP SNP 51013695 51117804 200 . . R490d +chr15 SNP SNP 51117805 51221914 86 . . R491d +chr15 SNP SNP 51221915 51326023 570 . . R492d +chr15 SNP SNP 51326024 51430133 405 . . R493d +chr15 SNP SNP 51430134 51534242 334 . . R494d +chr15 SNP SNP 51534243 51638352 224 . . R495d +chr15 SNP SNP 51638353 51742461 255 . . R496d +chr15 SNP SNP 51742462 51846571 413 . . R497d +chr15 SNP SNP 51846572 51950680 122 . . R498d +chr15 SNP SNP 51950681 52054790 397 . . R499d +chr15 SNP SNP 52054791 52158900 346 . . R500d +chr15 SNP SNP 52158901 52263009 35 . . R501d +chr15 SNP SNP 52263010 52367119 318 . . R502d +chr15 SNP SNP 52367120 52471228 637 . . R503d +chr15 SNP SNP 52471229 52575338 433 . . R504d +chr15 SNP SNP 52575339 52679447 299 . . R505d +chr15 SNP SNP 52679448 52783557 437 . . R506d +chr15 SNP SNP 52783558 52887666 279 . . R507d +chr15 SNP SNP 52887667 52991776 582 . . R508d +chr15 SNP SNP 52991777 53095886 448 . . R509d +chr15 SNP SNP 53095887 53199995 602 . . R510d +chr15 SNP SNP 53199996 53304105 358 . . R511d +chr15 SNP SNP 53304106 53408214 295 . . R512d +chr15 SNP SNP 53408215 53512324 480 . . R513d +chr15 SNP SNP 53512325 53616433 287 . . R514d +chr15 SNP SNP 53616434 53720543 346 . . R515d +chr15 SNP SNP 53720544 53824653 433 . . R516d +chr15 SNP SNP 53824654 53928762 468 . . R517d +chr15 SNP SNP 53928763 54032872 307 . . R518d +chr15 SNP SNP 54032873 54136981 322 . . R519d +chr15 SNP SNP 54136982 54241091 622 . . R520d +chr15 SNP SNP 54241092 54345200 665 . . R521d +chr15 SNP SNP 54345201 54449310 641 . . R522d +chr15 SNP SNP 54449311 54553419 153 . . R523d +chr15 SNP SNP 54553420 54657529 437 . . R524d +chr15 SNP SNP 54657530 54761639 90 . . R525d +chr15 SNP SNP 54761640 54865748 307 . . R526d +chr15 SNP SNP 54865749 54969858 433 . . R527d +chr15 SNP SNP 54969859 55073967 452 . . R528d +chr15 SNP SNP 55073968 55178077 303 . . R529d +chr15 SNP SNP 55178078 55282186 204 . . R530d +chr15 SNP SNP 55282187 55386296 547 . . R531d +chr15 SNP SNP 55386297 55490406 43 . . R532d +chr15 SNP SNP 55490407 55594515 11 . . R533d +chr15 SNP SNP 55594516 55698625 129 . . R534d +chr15 SNP SNP 55698626 55802734 7 . . R535d +chr15 SNP SNP 55802735 55906844 15 . . R536d +chr15 SNP SNP 55906845 56010953 7 . . R537d +chr15 SNP SNP 56010954 56115063 7 . . R538d +chr15 SNP SNP 56115064 56219172 11 . . R539d +chr15 SNP SNP 56219173 56323282 7 . . R540d +chr15 SNP SNP 56323283 56427392 7 . . R541d +chr15 SNP SNP 56427393 56531501 31 . . R542d +chr15 SNP SNP 56531502 56635611 3 . . R543d +chr15 SNP SNP 56635612 56739720 7 . . R544d +chr15 SNP SNP 56739721 56843830 27 . . R545d +chr15 SNP SNP 56843831 56947939 27 . . R546d +chr15 SNP SNP 56947940 57052049 3 . . R547d +chr15 SNP SNP 57052050 57156158 19 . . R548d +chr15 SNP SNP 57156159 57260268 0 . . R549d +chr15 SNP SNP 57260269 57364378 31 . . R550d +chr15 SNP SNP 57364379 57468487 19 . . R551d +chr15 SNP SNP 57468488 57572597 15 . . R552d +chr15 SNP SNP 57572598 57676706 7 . . R553d +chr15 SNP SNP 57676707 57780816 3 . . R554d +chr15 SNP SNP 57780817 57884925 27 . . R555d +chr15 SNP SNP 57884926 57989035 7 . . R556d +chr15 SNP SNP 57989036 58093145 27 . . R557d +chr15 SNP SNP 58093146 58197254 11 . . R558d +chr15 SNP SNP 58197255 58301364 19 . . R559d +chr15 SNP SNP 58301365 58405473 7 . . R560d +chr15 SNP SNP 58405474 58509583 0 . . R561d +chr15 SNP SNP 58509584 58613692 3 . . R562d +chr15 SNP SNP 58613693 58717802 15 . . R563d +chr15 SNP SNP 58717803 58821911 7 . . R564d +chr15 SNP SNP 58821912 58926021 23 . . R565d +chr15 SNP SNP 58926022 59030131 3 . . R566d +chr15 SNP SNP 59030132 59134240 15 . . R567d +chr15 SNP SNP 59134241 59238350 7 . . R568d +chr15 SNP SNP 59238351 59342459 19 . . R569d +chr15 SNP SNP 59342460 59446569 7 . . R570d +chr15 SNP SNP 59446570 59550678 15 . . R571d +chr15 SNP SNP 59550679 59654788 35 . . R572d +chr15 SNP SNP 59654789 59758898 19 . . R573d +chr15 SNP SNP 59758899 59863007 35 . . R574d +chr15 SNP SNP 59863008 59967117 19 . . R575d +chr15 SNP SNP 59967118 60071226 27 . . R576d +chr15 SNP SNP 60071227 60175336 19 . . R577d +chr15 SNP SNP 60175337 60279445 11 . . R578d +chr15 SNP SNP 60279446 60383555 11 . . R579d +chr15 SNP SNP 60383556 60487664 3 . . R580d +chr15 SNP SNP 60487665 60591774 7 . . R581d +chr15 SNP SNP 60591775 60695884 19 . . R582d +chr15 SNP SNP 60695885 60799993 19 . . R583d +chr15 SNP SNP 60799994 60904103 0 . . R584d +chr15 SNP SNP 60904104 61008212 27 . . R585d +chr15 SNP SNP 61008213 61112322 31 . . R586d +chr15 SNP SNP 61112323 61216431 15 . . R587d +chr15 SNP SNP 61216432 61320541 15 . . R588d +chr15 SNP SNP 61320542 61424650 15 . . R589d +chr15 SNP SNP 61424651 61528760 11 . . R590d +chr15 SNP SNP 61528761 61632870 23 . . R591d +chr15 SNP SNP 61632871 61736979 15 . . R592d +chr15 SNP SNP 61736980 61841089 11 . . R593d +chr15 SNP SNP 61841090 61945198 15 . . R594d +chr15 SNP SNP 61945199 62049308 7 . . R595d +chr15 SNP SNP 62049309 62153417 11 . . R596d +chr15 SNP SNP 62153418 62257527 19 . . R597d +chr15 SNP SNP 62257528 62361637 39 . . R598d +chr15 SNP SNP 62361638 62465746 51 . . R599d +chr15 SNP SNP 62465747 62569856 59 . . R600d +chr15 SNP SNP 62569857 62673965 307 . . R601d +chr15 SNP SNP 62673966 62778075 393 . . R602d +chr15 SNP SNP 62778076 62882184 318 . . R603d +chr15 SNP SNP 62882185 62986294 31 . . R604d +chr15 SNP SNP 62986295 63090403 86 . . R605d +chr15 SNP SNP 63090404 63194513 299 . . R606d +chr15 SNP SNP 63194514 63298623 153 . . R607d +chr15 SNP SNP 63298624 63402732 27 . . R608d +chr15 SNP SNP 63402733 63506842 31 . . R609d +chr15 SNP SNP 63506843 63610951 74 . . R610d +chr15 SNP SNP 63610952 63715061 362 . . R611d +chr15 SNP SNP 63715062 63819170 385 . . R612d +chr15 SNP SNP 63819171 63923280 7 . . R613d +chr15 SNP SNP 63923281 64027390 11 . . R614d +chr15 SNP SNP 64027391 64131499 0 . . R615d +chr15 SNP SNP 64131500 64235609 27 . . R616d +chr15 SNP SNP 64235610 64339718 7 . . R617d +chr15 SNP SNP 64339719 64443828 7 . . R618d +chr15 SNP SNP 64443829 64547937 19 . . R619d +chr15 SNP SNP 64547938 64652047 7 . . R620d +chr15 SNP SNP 64652048 64756156 3 . . R621d +chr15 SNP SNP 64756157 64860266 19 . . R622d +chr15 SNP SNP 64860267 64964376 7 . . R623d +chr15 SNP SNP 64964377 65068485 7 . . R624d +chr15 SNP SNP 65068486 65172595 7 . . R625d +chr15 SNP SNP 65172596 65276704 19 . . R626d +chr15 SNP SNP 65276705 65380814 23 . . R627d +chr15 SNP SNP 65380815 65484923 23 . . R628d +chr15 SNP SNP 65484924 65589033 23 . . R629d +chr15 SNP SNP 65589034 65693142 23 . . R630d +chr15 SNP SNP 65693143 65797252 19 . . R631d +chr15 SNP SNP 65797253 65901362 3 . . R632d +chr15 SNP SNP 65901363 66005471 0 . . R633d +chr15 SNP SNP 66005472 66109581 7 . . R634d +chr15 SNP SNP 66109582 66213690 15 . . R635d +chr15 SNP SNP 66213691 66317800 11 . . R636d +chr15 SNP SNP 66317801 66421909 7 . . R637d +chr15 SNP SNP 66421910 66526019 23 . . R638d +chr15 SNP SNP 66526020 66630129 0 . . R639d +chr15 SNP SNP 66630130 66734238 23 . . R640d +chr15 SNP SNP 66734239 66838348 27 . . R641d +chr15 SNP SNP 66838349 66942457 15 . . R642d +chr15 SNP SNP 66942458 67046567 19 . . R643d +chr15 SNP SNP 67046568 67150676 15 . . R644d +chr15 SNP SNP 67150677 67254786 3 . . R645d +chr15 SNP SNP 67254787 67358895 19 . . R646d +chr15 SNP SNP 67358896 67463005 31 . . R647d +chr15 SNP SNP 67463006 67567115 0 . . R648d +chr15 SNP SNP 67567116 67671224 19 . . R649d +chr15 SNP SNP 67671225 67775334 23 . . R650d +chr15 SNP SNP 67775335 67879443 15 . . R651d +chr15 SNP SNP 67879444 67983553 15 . . R652d +chr15 SNP SNP 67983554 68087662 11 . . R653d +chr15 SNP SNP 68087663 68191772 70 . . R654d +chr15 SNP SNP 68191773 68295882 610 . . R655d +chr15 SNP SNP 68295883 68399991 551 . . R656d +chr15 SNP SNP 68399992 68504101 224 . . R657d +chr15 SNP SNP 68504102 68608210 409 . . R658d +chr15 SNP SNP 68608211 68712320 594 . . R659d +chr15 SNP SNP 68712321 68816429 303 . . R660d +chr15 SNP SNP 68816430 68920539 15 . . R661d +chr15 SNP SNP 68920540 69024648 55 . . R662d +chr15 SNP SNP 69024649 69128758 417 . . R663d +chr15 SNP SNP 69128759 69232868 11 . . R664d +chr15 SNP SNP 69232869 69336977 173 . . R665d +chr15 SNP SNP 69336978 69441087 574 . . R666d +chr15 SNP SNP 69441088 69545196 397 . . R667d +chr15 SNP SNP 69545197 69649306 15 . . R668d +chr15 SNP SNP 69649307 69753415 23 . . R669d +chr15 SNP SNP 69753416 69857525 19 . . R670d +chr15 SNP SNP 69857526 69961634 35 . . R671d +chr15 SNP SNP 69961635 70065744 19 . . R672d +chr15 SNP SNP 70065745 70169854 3 . . R673d +chr15 SNP SNP 70169855 70273963 169 . . R674d +chr15 SNP SNP 70273964 70378073 330 . . R675d +chr15 SNP SNP 70378074 70482182 685 . . R676d +chr15 SNP SNP 70482183 70586292 507 . . R677d +chr15 SNP SNP 70586293 70690401 555 . . R678d +chr15 SNP SNP 70690402 70794511 677 . . R679d +chr15 SNP SNP 70794512 70898621 283 . . R680d +chr15 SNP SNP 70898622 71002730 330 . . R681d +chr15 SNP SNP 71002731 71106840 393 . . R682d +chr15 SNP SNP 71106841 71210949 696 . . R683d +chr15 SNP SNP 71210950 71315059 224 . . R684d +chr15 SNP SNP 71315060 71419168 389 . . R685d +chr15 SNP SNP 71419169 71523278 318 . . R686d +chr15 SNP SNP 71523279 71627387 271 . . R687d +chr15 SNP SNP 71627388 71731497 181 . . R688d +chr15 SNP SNP 71731498 71835607 157 . . R689d +chr15 SNP SNP 71835608 71939716 39 . . R690d +chr15 SNP SNP 71939717 72043826 15 . . R691d +chr15 SNP SNP 72043827 72147935 255 . . R692d +chr15 SNP SNP 72147936 72252045 389 . . R693d +chr15 SNP SNP 72252046 72356154 433 . . R694d +chr15 SNP SNP 72356155 72460264 456 . . R695d +chr15 SNP SNP 72460265 72564374 330 . . R696d +chr15 SNP SNP 72564375 72668483 326 . . R697d +chr15 SNP SNP 72668484 72772593 421 . . R698d +chr15 SNP SNP 72772594 72876702 370 . . R699d +chr15 SNP SNP 72876703 72980812 279 . . R700d +chr15 SNP SNP 72980813 73084921 421 . . R701d +chr15 SNP SNP 73084922 73189031 385 . . R702d +chr15 SNP SNP 73189032 73293140 346 . . R703d +chr15 SNP SNP 73293141 73397250 346 . . R704d +chr15 SNP SNP 73397251 73501360 224 . . R705d +chr15 SNP SNP 73501361 73605469 90 . . R706d +chr15 SNP SNP 73605470 73709579 208 . . R707d +chr15 SNP SNP 73709580 73813688 338 . . R708d +chr15 SNP SNP 73813689 73917798 311 . . R709d +chr15 SNP SNP 73917799 74021907 311 . . R710d +chr15 SNP SNP 74021908 74126017 326 . . R711d +chr15 SNP SNP 74126018 74230126 307 . . R712d +chr15 SNP SNP 74230127 74334236 169 . . R713d +chr15 SNP SNP 74334237 74438346 212 . . R714d +chr15 SNP SNP 74438347 74542455 23 . . R715d +chr15 SNP SNP 74542456 74646565 3 . . R716d +chr15 SNP SNP 74646566 74750674 15 . . R717d +chr15 SNP SNP 74750675 74854784 3 . . R718d +chr15 SNP SNP 74854785 74958893 23 . . R719d +chr15 SNP SNP 74958894 75063003 3 . . R720d +chr15 SNP SNP 75063004 75167113 15 . . R721d +chr15 SNP SNP 75167114 75271222 35 . . R722d +chr15 SNP SNP 75271223 75375332 3 . . R723d +chr15 SNP SNP 75375333 75479441 0 . . R724d +chr15 SNP SNP 75479442 75583551 11 . . R725d +chr15 SNP SNP 75583552 75687660 11 . . R726d +chr15 SNP SNP 75687661 75791770 15 . . R727d +chr15 SNP SNP 75791771 75895879 15 . . R728d +chr15 SNP SNP 75895880 75999989 11 . . R729d +chr15 SNP SNP 75999990 76104099 3 . . R730d +chr15 SNP SNP 76104100 76208208 55 . . R731d +chr15 SNP SNP 76208209 76312318 11 . . R732d +chr15 SNP SNP 76312319 76416427 11 . . R733d +chr15 SNP SNP 76416428 76520537 3 . . R734d +chr15 SNP SNP 76520538 76624646 11 . . R735d +chr15 SNP SNP 76624647 76728756 15 . . R736d +chr15 SNP SNP 76728757 76832866 19 . . R737d +chr15 SNP SNP 76832867 76936975 19 . . R738d +chr15 SNP SNP 76936976 77041085 27 . . R739d +chr15 SNP SNP 77041086 77145194 15 . . R740d +chr15 SNP SNP 77145195 77249304 11 . . R741d +chr15 SNP SNP 77249305 77353413 0 . . R742d +chr15 SNP SNP 77353414 77457523 11 . . R743d +chr15 SNP SNP 77457524 77561632 15 . . R744d +chr15 SNP SNP 77561633 77665742 15 . . R745d +chr15 SNP SNP 77665743 77769852 11 . . R746d +chr15 SNP SNP 77769853 77873961 3 . . R747d +chr15 SNP SNP 77873962 77978071 39 . . R748d +chr15 SNP SNP 77978072 78082180 59 . . R749d +chr15 SNP SNP 78082181 78186290 27 . . R750d +chr15 SNP SNP 78186291 78290399 47 . . R751d +chr15 SNP SNP 78290400 78394509 401 . . R752d +chr15 SNP SNP 78394510 78498618 488 . . R753d +chr15 SNP SNP 78498619 78602728 86 . . R754d +chr15 SNP SNP 78602729 78706838 51 . . R755d +chr15 SNP SNP 78706839 78810947 244 . . R756d +chr15 SNP SNP 78810948 78915057 311 . . R757d +chr15 SNP SNP 78915058 79019166 401 . . R758d +chr15 SNP SNP 79019167 79123276 0 . . R759d +chr15 SNP SNP 79123277 79227385 0 . . R760d +chr15 SNP SNP 79227386 79331495 90 . . R761d +chr15 SNP SNP 79331496 79435605 704 . . R762d +chr15 SNP SNP 79435606 79539714 421 . . R763d +chr15 SNP SNP 79539715 79643824 275 . . R764d +chr15 SNP SNP 79643825 79747933 295 . . R765d +chr15 SNP SNP 79747934 79852043 303 . . R766d +chr15 SNP SNP 79852044 79956152 259 . . R767d +chr15 SNP SNP 79956153 80060262 484 . . R768d +chr15 SNP SNP 80060263 80164371 338 . . R769d +chr15 SNP SNP 80164372 80268481 433 . . R770d +chr15 SNP SNP 80268482 80372591 444 . . R771d +chr15 SNP SNP 80372592 80476700 377 . . R772d +chr15 SNP SNP 80476701 80580810 456 . . R773d +chr15 SNP SNP 80580811 80684919 429 . . R774d +chr15 SNP SNP 80684920 80789029 413 . . R775d +chr15 SNP SNP 80789030 80893138 299 . . R776d +chr15 SNP SNP 80893139 80997248 177 . . R777d +chr15 SNP SNP 80997249 81101358 35 . . R778d +chr15 SNP SNP 81101359 81205467 74 . . R779d +chr15 SNP SNP 81205468 81309577 248 . . R780d +chr15 SNP SNP 81309578 81413686 429 . . R781d +chr15 SNP SNP 81413687 81517796 208 . . R782d +chr15 SNP SNP 81517797 81621905 149 . . R783d +chr15 SNP SNP 81621906 81726015 31 . . R784d +chr15 SNP SNP 81726016 81830124 145 . . R785d +chr15 SNP SNP 81830125 81934234 31 . . R786d +chr15 SNP SNP 81934235 82038344 354 . . R787d +chr15 SNP SNP 82038345 82142453 354 . . R788d +chr15 SNP SNP 82142454 82246563 484 . . R789d +chr15 SNP SNP 82246564 82350672 314 . . R790d +chr15 SNP SNP 82350673 82454782 259 . . R791d +chr15 SNP SNP 82454783 82558891 51 . . R792d +chr15 SNP SNP 82558892 82663001 118 . . R793d +chr15 SNP SNP 82663002 82767110 47 . . R794d +chr15 SNP SNP 82767111 82871220 59 . . R795d +chr15 SNP SNP 82871221 82975330 35 . . R796d +chr15 SNP SNP 82975331 83079439 35 . . R797d +chr15 SNP SNP 83079440 83183549 55 . . R798d +chr15 SNP SNP 83183550 83287658 299 . . R799d +chr15 SNP SNP 83287659 83391768 208 . . R800d +chr15 SNP SNP 83391769 83495877 444 . . R801d +chr15 SNP SNP 83495878 83599987 299 . . R802d +chr15 SNP SNP 83599988 83704097 173 . . R803d +chr15 SNP SNP 83704098 83808206 70 . . R804d +chr15 SNP SNP 83808207 83912316 413 . . R805d +chr15 SNP SNP 83912317 84016425 338 . . R806d +chr15 SNP SNP 84016426 84120535 141 . . R807d +chr15 SNP SNP 84120536 84224644 228 . . R808d +chr15 SNP SNP 84224645 84328754 637 . . R809d +chr15 SNP SNP 84328755 84432863 374 . . R810d +chr15 SNP SNP 84432864 84536973 236 . . R811d +chr15 SNP SNP 84536974 84641083 374 . . R812d +chr15 SNP SNP 84641084 84745192 118 . . R813d +chr15 SNP SNP 84745193 84849302 248 . . R814d +chr15 SNP SNP 84849303 84953411 149 . . R815d +chr15 SNP SNP 84953412 85057521 224 . . R816d +chr15 SNP SNP 85057522 85161630 405 . . R817d +chr15 SNP SNP 85161631 85265740 692 . . R818d +chr15 SNP SNP 85265741 85369850 519 . . R819d +chr15 SNP SNP 85369851 85473959 688 . . R820d +chr15 SNP SNP 85473960 85578069 688 . . R821d +chr15 SNP SNP 85578070 85682178 122 . . R822d +chr15 SNP SNP 85682179 85786288 744 . . R823d +chr15 SNP SNP 85786289 85890397 62 . . R824d +chr15 SNP SNP 85890398 85994507 775 . . R825d +chr15 SNP SNP 85994508 86098616 700 . . R826d +chr15 SNP SNP 86098617 86202726 188 . . R827d +chr15 SNP SNP 86202727 86306836 409 . . R828d +chr15 SNP SNP 86306837 86410945 346 . . R829d +chr15 SNP SNP 86410946 86515055 185 . . R830d +chr15 SNP SNP 86515056 86619164 531 . . R831d +chr15 SNP SNP 86619165 86723274 551 . . R832d +chr15 SNP SNP 86723275 86827383 366 . . R833d +chr15 SNP SNP 86827384 86931493 366 . . R834d +chr15 SNP SNP 86931494 87035602 185 . . R835d +chr15 SNP SNP 87035603 87139712 452 . . R836d +chr15 SNP SNP 87139713 87243822 259 . . R837d +chr15 SNP SNP 87243823 87347931 417 . . R838d +chr15 SNP SNP 87347932 87452041 385 . . R839d +chr15 SNP SNP 87452042 87556150 338 . . R840d +chr15 SNP SNP 87556151 87660260 149 . . R841d +chr15 SNP SNP 87660261 87764369 547 . . R842d +chr15 SNP SNP 87764370 87868479 366 . . R843d +chr15 SNP SNP 87868480 87972589 169 . . R844d +chr15 SNP SNP 87972590 88076698 161 . . R845d +chr15 SNP SNP 88076699 88180808 145 . . R846d +chr15 SNP SNP 88180809 88284917 291 . . R847d +chr15 SNP SNP 88284918 88389027 98 . . R848d +chr15 SNP SNP 88389028 88493136 492 . . R849d +chr15 SNP SNP 88493137 88597246 421 . . R850d +chr15 SNP SNP 88597247 88701355 23 . . R851d +chr15 SNP SNP 88701356 88805465 299 . . R852d +chr15 SNP SNP 88805466 88909575 11 . . R853d +chr15 SNP SNP 88909576 89013684 7 . . R854d +chr15 SNP SNP 89013685 89117794 19 . . R855d +chr15 SNP SNP 89117795 89221903 3 . . R856d +chr15 SNP SNP 89221904 89326013 31 . . R857d +chr15 SNP SNP 89326014 89430122 15 . . R858d +chr15 SNP SNP 89430123 89534232 7 . . R859d +chr15 SNP SNP 89534233 89638342 11 . . R860d +chr15 SNP SNP 89638343 89742451 43 . . R861d +chr15 SNP SNP 89742452 89846561 110 . . R862d +chr15 SNP SNP 89846562 89950670 94 . . R863d +chr15 SNP SNP 89950671 90054780 574 . . R864d +chr15 SNP SNP 90054781 90158889 208 . . R865d +chr15 SNP SNP 90158890 90262999 255 . . R866d +chr15 SNP SNP 90263000 90367108 157 . . R867d +chr15 SNP SNP 90367109 90471218 342 . . R868d +chr15 SNP SNP 90471219 90575328 11 . . R869d +chr15 SNP SNP 90575329 90679437 19 . . R870d +chr15 SNP SNP 90679438 90783547 39 . . R871d +chr15 SNP SNP 90783548 90887656 118 . . R872d +chr15 SNP SNP 90887657 90991766 141 . . R873d +chr15 SNP SNP 90991767 91095875 94 . . R874d +chr15 SNP SNP 91095876 91199985 200 . . R875d +chr15 SNP SNP 91199986 91304094 192 . . R876d +chr15 SNP SNP 91304095 91408204 374 . . R877d +chr15 SNP SNP 91408205 91512314 362 . . R878d +chr15 SNP SNP 91512315 91616423 208 . . R879d +chr15 SNP SNP 91616424 91720533 472 . . R880d +chr15 SNP SNP 91720534 91824642 161 . . R881d +chr15 SNP SNP 91824643 91928752 43 . . R882d +chr15 SNP SNP 91928753 92032861 70 . . R883d +chr15 SNP SNP 92032862 92136971 188 . . R884d +chr15 SNP SNP 92136972 92241081 551 . . R885d +chr15 SNP SNP 92241082 92345190 70 . . R886d +chr15 SNP SNP 92345191 92449300 472 . . R887d +chr15 SNP SNP 92449301 92553409 267 . . R888d +chr15 SNP SNP 92553410 92657519 342 . . R889d +chr15 SNP SNP 92657520 92761628 413 . . R890d +chr15 SNP SNP 92761629 92865738 307 . . R891d +chr15 SNP SNP 92865739 92969847 555 . . R892d +chr15 SNP SNP 92969848 93073957 98 . . R893d +chr15 SNP SNP 93073958 93178067 110 . . R894d +chr15 SNP SNP 93178068 93282176 114 . . R895d +chr15 SNP SNP 93282177 93386286 362 . . R896d +chr15 SNP SNP 93386287 93490395 338 . . R897d +chr15 SNP SNP 93490396 93594505 291 . . R898d +chr15 SNP SNP 93594506 93698614 279 . . R899d +chr15 SNP SNP 93698615 93802724 409 . . R900d +chr15 SNP SNP 93802725 93906834 397 . . R901d +chr15 SNP SNP 93906835 94010943 322 . . R902d +chr15 SNP SNP 94010944 94115053 413 . . R903d +chr15 SNP SNP 94115054 94219162 397 . . R904d +chr15 SNP SNP 94219163 94323272 440 . . R905d +chr15 SNP SNP 94323273 94427381 149 . . R906d +chr15 SNP SNP 94427382 94531491 267 . . R907d +chr15 SNP SNP 94531492 94635600 543 . . R908d +chr15 SNP SNP 94635601 94739710 110 . . R909d +chr15 SNP SNP 94739711 94843820 35 . . R910d +chr15 SNP SNP 94843821 94947929 370 . . R911d +chr15 SNP SNP 94947930 95052039 464 . . R912d +chr15 SNP SNP 95052040 95156148 374 . . R913d +chr15 SNP SNP 95156149 95260258 283 . . R914d +chr15 SNP SNP 95260259 95364367 19 . . R915d +chr15 SNP SNP 95364368 95468477 15 . . R916d +chr15 SNP SNP 95468478 95572586 370 . . R917d +chr15 SNP SNP 95572587 95676696 464 . . R918d +chr15 SNP SNP 95676697 95780806 531 . . R919d +chr15 SNP SNP 95780807 95884915 712 . . R920d +chr15 SNP SNP 95884916 95989025 551 . . R921d +chr15 SNP SNP 95989026 96093134 299 . . R922d +chr15 SNP SNP 96093135 96197244 287 . . R923d +chr15 SNP SNP 96197245 96301353 334 . . R924d +chr15 SNP SNP 96301354 96405463 192 . . R925d +chr15 SNP SNP 96405464 96509573 39 . . R926d +chr15 SNP SNP 96509574 96613682 362 . . R927d +chr15 SNP SNP 96613683 96717792 35 . . R928d +chr15 SNP SNP 96717793 96821901 94 . . R929d +chr15 SNP SNP 96821902 96926011 334 . . R930d +chr15 SNP SNP 96926012 97030120 299 . . R931d +chr15 SNP SNP 97030121 97134230 177 . . R932d +chr15 SNP SNP 97134231 97238339 405 . . R933d +chr15 SNP SNP 97238340 97342449 165 . . R934d +chr15 SNP SNP 97342450 97446559 200 . . R935d +chr15 SNP SNP 97446560 97550668 216 . . R936d +chr15 SNP SNP 97550669 97654778 43 . . R937d +chr15 SNP SNP 97654779 97758887 90 . . R938d +chr15 SNP SNP 97758888 97862997 326 . . R939d +chr15 SNP SNP 97862998 97967106 330 . . R940d +chr15 SNP SNP 97967107 98071216 303 . . R941d +chr15 SNP SNP 98071217 98175326 464 . . R942d +chr15 SNP SNP 98175327 98279435 496 . . R943d +chr15 SNP SNP 98279436 98383545 248 . . R944d +chr15 SNP SNP 98383546 98487654 374 . . R945d +chr15 SNP SNP 98487655 98591764 267 . . R946d +chr15 SNP SNP 98591765 98695873 464 . . R947d +chr15 SNP SNP 98695874 98799983 275 . . R948d +chr15 SNP SNP 98799984 98904092 55 . . R949d +chr15 SNP SNP 98904093 99008202 267 . . R950d +chr15 SNP SNP 99008203 99112312 220 . . R951d +chr15 SNP SNP 99112313 99216421 47 . . R952d +chr15 SNP SNP 99216422 99320531 62 . . R953d +chr15 SNP SNP 99320532 99424640 153 . . R954d +chr15 SNP SNP 99424641 99528750 66 . . R955d +chr15 SNP SNP 99528751 99632859 11 . . R956d +chr15 SNP SNP 99632860 99736969 3 . . R957d +chr15 SNP SNP 99736970 99841078 23 . . R958d +chr15 SNP SNP 99841079 99945188 11 . . R959d +chr15 SNP SNP 99945189 100049298 3 . . R960d +chr15 SNP SNP 100049299 100153407 15 . . R961d +chr15 SNP SNP 100153408 100257517 3 . . R962d +chr15 SNP SNP 100257518 100361626 3 . . R963d +chr15 SNP SNP 100361627 100465736 15 . . R964d +chr15 SNP SNP 100465737 100569845 15 . . R965d +chr15 SNP SNP 100569846 100673955 11 . . R966d +chr15 SNP SNP 100673956 100778065 7 . . R967d +chr15 SNP SNP 100778066 100882174 11 . . R968d +chr15 SNP SNP 100882175 100986284 23 . . R969d +chr15 SNP SNP 100986285 101090393 15 . . R970d +chr15 SNP SNP 101090394 101194503 11 . . R971d +chr15 SNP SNP 101194504 101298612 3 . . R972d +chr15 SNP SNP 101298613 101402722 3 . . R973d +chr15 SNP SNP 101402723 101506831 11 . . R974d +chr15 SNP SNP 101506832 101610941 15 . . R975d +chr15 SNP SNP 101610942 101715051 31 . . R976d +chr15 SNP SNP 101715052 101819160 3 . . R977d +chr15 SNP SNP 101819161 101923270 3 . . R978d +chr15 SNP SNP 101923271 102027379 11 . . R979d +chr15 SNP SNP 102027380 102131489 7 . . R980d +chr15 SNP SNP 102131490 102235598 7 . . R981d +chr15 SNP SNP 102235599 102339708 15 . . R982d +chr15 SNP SNP 102339709 102443818 3 . . R983d +chr15 SNP SNP 102443819 102547927 11 . . R984d +chr15 SNP SNP 102547928 102652037 19 . . R985d +chr15 SNP SNP 102652038 102756146 27 . . R986d +chr15 SNP SNP 102756147 102860256 303 . . R987d +chr15 SNP SNP 102860257 102964365 307 . . R988d +chr15 SNP SNP 102964366 103068475 62 . . R989d +chr15 SNP SNP 103068476 103172584 456 . . R990d +chr15 SNP SNP 103172585 103276694 480 . . R991d +chr15 SNP SNP 103276695 103380804 283 . . R992d +chr15 SNP SNP 103380805 103484913 240 . . R993d +chr15 SNP SNP 103484914 103589023 66 . . R994d +chr15 SNP SNP 103589024 103693132 106 . . R995d +chr15 SNP SNP 103693133 103797242 314 . . R996d +chr15 SNP SNP 103797243 103901351 330 . . R997d +chr15 SNP SNP 103901352 104005461 248 . . R998d +chr15 SNP SNP 104005462 104109571 259 . . R999d diff --git a/web/snp/chr16 b/web/snp/chr16 new file mode 100755 index 00000000..eb0a1b22 --- /dev/null +++ b/web/snp/chr16 @@ -0,0 +1,1004 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr16 SNP SNP 11 98995 0 . . R0d +chr16 SNP SNP 98996 197981 0 . . R1d +chr16 SNP SNP 197982 296967 0 . . R2d +chr16 SNP SNP 296968 395952 0 . . R3d +chr16 SNP SNP 395953 494938 0 . . R4d +chr16 SNP SNP 494939 593924 0 . . R5d +chr16 SNP SNP 593925 692909 0 . . R6d +chr16 SNP SNP 692910 791895 0 . . R7d +chr16 SNP SNP 791896 890881 0 . . R8d +chr16 SNP SNP 890882 989866 0 . . R9d +chr16 SNP SNP 989867 1088852 0 . . R10d +chr16 SNP SNP 1088853 1187838 0 . . R11d +chr16 SNP SNP 1187839 1286823 0 . . R12d +chr16 SNP SNP 1286824 1385809 0 . . R13d +chr16 SNP SNP 1385810 1484795 0 . . R14d +chr16 SNP SNP 1484796 1583781 0 . . R15d +chr16 SNP SNP 1583782 1682766 0 . . R16d +chr16 SNP SNP 1682767 1781752 0 . . R17d +chr16 SNP SNP 1781753 1880738 0 . . R18d +chr16 SNP SNP 1880739 1979723 0 . . R19d +chr16 SNP SNP 1979724 2078709 0 . . R20d +chr16 SNP SNP 2078710 2177695 0 . . R21d +chr16 SNP SNP 2177696 2276680 0 . . R22d +chr16 SNP SNP 2276681 2375666 0 . . R23d +chr16 SNP SNP 2375667 2474652 0 . . R24d +chr16 SNP SNP 2474653 2573637 0 . . R25d +chr16 SNP SNP 2573638 2672623 0 . . R26d +chr16 SNP SNP 2672624 2771609 0 . . R27d +chr16 SNP SNP 2771610 2870594 0 . . R28d +chr16 SNP SNP 2870595 2969580 0 . . R29d +chr16 SNP SNP 2969581 3068566 7 . . R30d +chr16 SNP SNP 3068567 3167552 7 . . R31d +chr16 SNP SNP 3167553 3266537 7 . . R32d +chr16 SNP SNP 3266538 3365523 15 . . R33d +chr16 SNP SNP 3365524 3464509 7 . . R34d +chr16 SNP SNP 3464510 3563494 34 . . R35d +chr16 SNP SNP 3563495 3662480 0 . . R36d +chr16 SNP SNP 3662481 3761466 27 . . R37d +chr16 SNP SNP 3761467 3860451 7 . . R38d +chr16 SNP SNP 3860452 3959437 7 . . R39d +chr16 SNP SNP 3959438 4058423 0 . . R40d +chr16 SNP SNP 4058424 4157408 3 . . R41d +chr16 SNP SNP 4157409 4256394 15 . . R42d +chr16 SNP SNP 4256395 4355380 15 . . R43d +chr16 SNP SNP 4355381 4454365 15 . . R44d +chr16 SNP SNP 4454366 4553351 11 . . R45d +chr16 SNP SNP 4553352 4652337 19 . . R46d +chr16 SNP SNP 4652338 4751323 11 . . R47d +chr16 SNP SNP 4751324 4850308 15 . . R48d +chr16 SNP SNP 4850309 4949294 15 . . R49d +chr16 SNP SNP 4949295 5048280 34 . . R50d +chr16 SNP SNP 5048281 5147265 418 . . R51d +chr16 SNP SNP 5147266 5246251 682 . . R52d +chr16 SNP SNP 5246252 5345237 515 . . R53d +chr16 SNP SNP 5345238 5444222 748 . . R54d +chr16 SNP SNP 5444223 5543208 612 . . R55d +chr16 SNP SNP 5543209 5642194 775 . . R56d +chr16 SNP SNP 5642195 5741179 1000 . . R57d +chr16 SNP SNP 5741180 5840165 631 . . R58d +chr16 SNP SNP 5840166 5939151 639 . . R59d +chr16 SNP SNP 5939152 6038136 531 . . R60d +chr16 SNP SNP 6038137 6137122 600 . . R61d +chr16 SNP SNP 6137123 6236108 550 . . R62d +chr16 SNP SNP 6236109 6335094 720 . . R63d +chr16 SNP SNP 6335095 6434079 616 . . R64d +chr16 SNP SNP 6434080 6533065 751 . . R65d +chr16 SNP SNP 6533066 6632051 868 . . R66d +chr16 SNP SNP 6632052 6731036 697 . . R67d +chr16 SNP SNP 6731037 6830022 546 . . R68d +chr16 SNP SNP 6830023 6929008 662 . . R69d +chr16 SNP SNP 6929009 7027993 472 . . R70d +chr16 SNP SNP 7027994 7126979 775 . . R71d +chr16 SNP SNP 7126980 7225965 608 . . R72d +chr16 SNP SNP 7225966 7324950 565 . . R73d +chr16 SNP SNP 7324951 7423936 701 . . R74d +chr16 SNP SNP 7423937 7522922 321 . . R75d +chr16 SNP SNP 7522923 7621907 23 . . R76d +chr16 SNP SNP 7621908 7720893 27 . . R77d +chr16 SNP SNP 7720894 7819879 38 . . R78d +chr16 SNP SNP 7819880 7918865 15 . . R79d +chr16 SNP SNP 7918866 8017850 15 . . R80d +chr16 SNP SNP 8017851 8116836 3 . . R81d +chr16 SNP SNP 8116837 8215822 23 . . R82d +chr16 SNP SNP 8215823 8314807 54 . . R83d +chr16 SNP SNP 8314808 8413793 15 . . R84d +chr16 SNP SNP 8413794 8512779 0 . . R85d +chr16 SNP SNP 8512780 8611764 15 . . R86d +chr16 SNP SNP 8611765 8710750 11 . . R87d +chr16 SNP SNP 8710751 8809736 23 . . R88d +chr16 SNP SNP 8809737 8908721 23 . . R89d +chr16 SNP SNP 8908722 9007707 15 . . R90d +chr16 SNP SNP 9007708 9106693 11 . . R91d +chr16 SNP SNP 9106694 9205678 19 . . R92d +chr16 SNP SNP 9205679 9304664 11 . . R93d +chr16 SNP SNP 9304665 9403650 7 . . R94d +chr16 SNP SNP 9403651 9502636 31 . . R95d +chr16 SNP SNP 9502637 9601621 3 . . R96d +chr16 SNP SNP 9601622 9700607 27 . . R97d +chr16 SNP SNP 9700608 9799593 19 . . R98d +chr16 SNP SNP 9799594 9898578 34 . . R99d +chr16 SNP SNP 9898579 9997564 120 . . R100d +chr16 SNP SNP 9997565 10096550 441 . . R101d +chr16 SNP SNP 10096551 10195535 337 . . R102d +chr16 SNP SNP 10195536 10294521 445 . . R103d +chr16 SNP SNP 10294522 10393507 465 . . R104d +chr16 SNP SNP 10393508 10492492 461 . . R105d +chr16 SNP SNP 10492493 10591478 275 . . R106d +chr16 SNP SNP 10591479 10690464 302 . . R107d +chr16 SNP SNP 10690465 10789449 306 . . R108d +chr16 SNP SNP 10789450 10888435 50 . . R109d +chr16 SNP SNP 10888436 10987421 58 . . R110d +chr16 SNP SNP 10987422 11086407 27 . . R111d +chr16 SNP SNP 11086408 11185392 23 . . R112d +chr16 SNP SNP 11185393 11284378 3 . . R113d +chr16 SNP SNP 11284379 11383364 344 . . R114d +chr16 SNP SNP 11383365 11482349 232 . . R115d +chr16 SNP SNP 11482350 11581335 511 . . R116d +chr16 SNP SNP 11581336 11680321 38 . . R117d +chr16 SNP SNP 11680322 11779306 34 . . R118d +chr16 SNP SNP 11779307 11878292 69 . . R119d +chr16 SNP SNP 11878293 11977278 488 . . R120d +chr16 SNP SNP 11977279 12076263 104 . . R121d +chr16 SNP SNP 12076264 12175249 54 . . R122d +chr16 SNP SNP 12175250 12274235 11 . . R123d +chr16 SNP SNP 12274236 12373221 27 . . R124d +chr16 SNP SNP 12373222 12472206 15 . . R125d +chr16 SNP SNP 12472207 12571192 42 . . R126d +chr16 SNP SNP 12571193 12670178 15 . . R127d +chr16 SNP SNP 12670179 12769163 93 . . R128d +chr16 SNP SNP 12769164 12868149 406 . . R129d +chr16 SNP SNP 12868150 12967135 228 . . R130d +chr16 SNP SNP 12967136 13066120 391 . . R131d +chr16 SNP SNP 13066121 13165106 352 . . R132d +chr16 SNP SNP 13165107 13264092 54 . . R133d +chr16 SNP SNP 13264093 13363077 294 . . R134d +chr16 SNP SNP 13363078 13462063 437 . . R135d +chr16 SNP SNP 13462064 13561049 302 . . R136d +chr16 SNP SNP 13561050 13660034 255 . . R137d +chr16 SNP SNP 13660035 13759020 422 . . R138d +chr16 SNP SNP 13759021 13858006 391 . . R139d +chr16 SNP SNP 13858007 13956992 581 . . R140d +chr16 SNP SNP 13956993 14055977 267 . . R141d +chr16 SNP SNP 14055978 14154963 290 . . R142d +chr16 SNP SNP 14154964 14253949 414 . . R143d +chr16 SNP SNP 14253950 14352934 705 . . R144d +chr16 SNP SNP 14352935 14451920 46 . . R145d +chr16 SNP SNP 14451921 14550906 34 . . R146d +chr16 SNP SNP 14550907 14649891 11 . . R147d +chr16 SNP SNP 14649892 14748877 38 . . R148d +chr16 SNP SNP 14748878 14847863 34 . . R149d +chr16 SNP SNP 14847864 14946848 34 . . R150d +chr16 SNP SNP 14946849 15045834 19 . . R151d +chr16 SNP SNP 15045835 15144820 11 . . R152d +chr16 SNP SNP 15144821 15243805 3 . . R153d +chr16 SNP SNP 15243806 15342791 15 . . R154d +chr16 SNP SNP 15342792 15441777 3 . . R155d +chr16 SNP SNP 15441778 15540763 7 . . R156d +chr16 SNP SNP 15540764 15639748 31 . . R157d +chr16 SNP SNP 15639749 15738734 23 . . R158d +chr16 SNP SNP 15738735 15837720 3 . . R159d +chr16 SNP SNP 15837721 15936705 27 . . R160d +chr16 SNP SNP 15936706 16035691 3 . . R161d +chr16 SNP SNP 16035692 16134677 11 . . R162d +chr16 SNP SNP 16134678 16233662 42 . . R163d +chr16 SNP SNP 16233663 16332648 31 . . R164d +chr16 SNP SNP 16332649 16431634 11 . . R165d +chr16 SNP SNP 16431635 16530619 11 . . R166d +chr16 SNP SNP 16530620 16629605 19 . . R167d +chr16 SNP SNP 16629606 16728591 15 . . R168d +chr16 SNP SNP 16728592 16827576 7 . . R169d +chr16 SNP SNP 16827577 16926562 23 . . R170d +chr16 SNP SNP 16926563 17025548 3 . . R171d +chr16 SNP SNP 17025549 17124534 11 . . R172d +chr16 SNP SNP 17124535 17223519 0 . . R173d +chr16 SNP SNP 17223520 17322505 0 . . R174d +chr16 SNP SNP 17322506 17421491 3 . . R175d +chr16 SNP SNP 17421492 17520476 7 . . R176d +chr16 SNP SNP 17520477 17619462 7 . . R177d +chr16 SNP SNP 17619463 17718448 11 . . R178d +chr16 SNP SNP 17718449 17817433 0 . . R179d +chr16 SNP SNP 17817434 17916419 0 . . R180d +chr16 SNP SNP 17916420 18015405 27 . . R181d +chr16 SNP SNP 18015406 18114390 0 . . R182d +chr16 SNP SNP 18114391 18213376 15 . . R183d +chr16 SNP SNP 18213377 18312362 3 . . R184d +chr16 SNP SNP 18312363 18411347 3 . . R185d +chr16 SNP SNP 18411348 18510333 19 . . R186d +chr16 SNP SNP 18510334 18609319 7 . . R187d +chr16 SNP SNP 18609320 18708305 0 . . R188d +chr16 SNP SNP 18708306 18807290 0 . . R189d +chr16 SNP SNP 18807291 18906276 15 . . R190d +chr16 SNP SNP 18906277 19005262 38 . . R191d +chr16 SNP SNP 19005263 19104247 15 . . R192d +chr16 SNP SNP 19104248 19203233 19 . . R193d +chr16 SNP SNP 19203234 19302219 19 . . R194d +chr16 SNP SNP 19302220 19401204 3 . . R195d +chr16 SNP SNP 19401205 19500190 27 . . R196d +chr16 SNP SNP 19500191 19599176 23 . . R197d +chr16 SNP SNP 19599177 19698161 11 . . R198d +chr16 SNP SNP 19698162 19797147 3 . . R199d +chr16 SNP SNP 19797148 19896133 34 . . R200d +chr16 SNP SNP 19896134 19995118 27 . . R201d +chr16 SNP SNP 19995119 20094104 23 . . R202d +chr16 SNP SNP 20094105 20193090 27 . . R203d +chr16 SNP SNP 20193091 20292076 7 . . R204d +chr16 SNP SNP 20292077 20391061 23 . . R205d +chr16 SNP SNP 20391062 20490047 7 . . R206d +chr16 SNP SNP 20490048 20589033 0 . . R207d +chr16 SNP SNP 20589034 20688018 3 . . R208d +chr16 SNP SNP 20688019 20787004 15 . . R209d +chr16 SNP SNP 20787005 20885990 27 . . R210d +chr16 SNP SNP 20885991 20984975 27 . . R211d +chr16 SNP SNP 20984976 21083961 7 . . R212d +chr16 SNP SNP 21083962 21182947 11 . . R213d +chr16 SNP SNP 21182948 21281932 0 . . R214d +chr16 SNP SNP 21281933 21380918 3 . . R215d +chr16 SNP SNP 21380919 21479904 7 . . R216d +chr16 SNP SNP 21479905 21578889 15 . . R217d +chr16 SNP SNP 21578890 21677875 11 . . R218d +chr16 SNP SNP 21677876 21776861 3 . . R219d +chr16 SNP SNP 21776862 21875847 34 . . R220d +chr16 SNP SNP 21875848 21974832 7 . . R221d +chr16 SNP SNP 21974833 22073818 7 . . R222d +chr16 SNP SNP 22073819 22172804 7 . . R223d +chr16 SNP SNP 22172805 22271789 15 . . R224d +chr16 SNP SNP 22271790 22370775 11 . . R225d +chr16 SNP SNP 22370776 22469761 11 . . R226d +chr16 SNP SNP 22469762 22568746 15 . . R227d +chr16 SNP SNP 22568747 22667732 11 . . R228d +chr16 SNP SNP 22667733 22766718 23 . . R229d +chr16 SNP SNP 22766719 22865703 11 . . R230d +chr16 SNP SNP 22865704 22964689 19 . . R231d +chr16 SNP SNP 22964690 23063675 42 . . R232d +chr16 SNP SNP 23063676 23162660 31 . . R233d +chr16 SNP SNP 23162661 23261646 11 . . R234d +chr16 SNP SNP 23261647 23360632 15 . . R235d +chr16 SNP SNP 23360633 23459618 73 . . R236d +chr16 SNP SNP 23459619 23558603 271 . . R237d +chr16 SNP SNP 23558604 23657589 34 . . R238d +chr16 SNP SNP 23657590 23756575 11 . . R239d +chr16 SNP SNP 23756576 23855560 3 . . R240d +chr16 SNP SNP 23855561 23954546 15 . . R241d +chr16 SNP SNP 23954547 24053532 7 . . R242d +chr16 SNP SNP 24053533 24152517 42 . . R243d +chr16 SNP SNP 24152518 24251503 27 . . R244d +chr16 SNP SNP 24251504 24350489 15 . . R245d +chr16 SNP SNP 24350490 24449474 15 . . R246d +chr16 SNP SNP 24449475 24548460 15 . . R247d +chr16 SNP SNP 24548461 24647446 7 . . R248d +chr16 SNP SNP 24647447 24746431 23 . . R249d +chr16 SNP SNP 24746432 24845417 11 . . R250d +chr16 SNP SNP 24845418 24944403 3 . . R251d +chr16 SNP SNP 24944404 25043389 0 . . R252d +chr16 SNP SNP 25043390 25142374 7 . . R253d +chr16 SNP SNP 25142375 25241360 3 . . R254d +chr16 SNP SNP 25241361 25340346 23 . . R255d +chr16 SNP SNP 25340347 25439331 19 . . R256d +chr16 SNP SNP 25439332 25538317 15 . . R257d +chr16 SNP SNP 25538318 25637303 11 . . R258d +chr16 SNP SNP 25637304 25736288 11 . . R259d +chr16 SNP SNP 25736289 25835274 15 . . R260d +chr16 SNP SNP 25835275 25934260 7 . . R261d +chr16 SNP SNP 25934261 26033245 3 . . R262d +chr16 SNP SNP 26033246 26132231 15 . . R263d +chr16 SNP SNP 26132232 26231217 11 . . R264d +chr16 SNP SNP 26231218 26330203 11 . . R265d +chr16 SNP SNP 26330204 26429188 23 . . R266d +chr16 SNP SNP 26429189 26528174 7 . . R267d +chr16 SNP SNP 26528175 26627160 27 . . R268d +chr16 SNP SNP 26627161 26726145 31 . . R269d +chr16 SNP SNP 26726146 26825131 15 . . R270d +chr16 SNP SNP 26825132 26924117 15 . . R271d +chr16 SNP SNP 26924118 27023102 15 . . R272d +chr16 SNP SNP 27023103 27122088 11 . . R273d +chr16 SNP SNP 27122089 27221074 437 . . R274d +chr16 SNP SNP 27221075 27320059 360 . . R275d +chr16 SNP SNP 27320060 27419045 360 . . R276d +chr16 SNP SNP 27419046 27518031 391 . . R277d +chr16 SNP SNP 27518032 27617016 399 . . R278d +chr16 SNP SNP 27617017 27716002 492 . . R279d +chr16 SNP SNP 27716003 27814988 193 . . R280d +chr16 SNP SNP 27814989 27913974 19 . . R281d +chr16 SNP SNP 27913975 28012959 27 . . R282d +chr16 SNP SNP 28012960 28111945 23 . . R283d +chr16 SNP SNP 28111946 28210931 15 . . R284d +chr16 SNP SNP 28210932 28309916 42 . . R285d +chr16 SNP SNP 28309917 28408902 7 . . R286d +chr16 SNP SNP 28408903 28507888 3 . . R287d +chr16 SNP SNP 28507889 28606873 7 . . R288d +chr16 SNP SNP 28606874 28705859 11 . . R289d +chr16 SNP SNP 28705860 28804845 271 . . R290d +chr16 SNP SNP 28804846 28903830 46 . . R291d +chr16 SNP SNP 28903831 29002816 186 . . R292d +chr16 SNP SNP 29002817 29101802 19 . . R293d +chr16 SNP SNP 29101803 29200787 23 . . R294d +chr16 SNP SNP 29200788 29299773 3 . . R295d +chr16 SNP SNP 29299774 29398759 3 . . R296d +chr16 SNP SNP 29398760 29497745 11 . . R297d +chr16 SNP SNP 29497746 29596730 3 . . R298d +chr16 SNP SNP 29596731 29695716 15 . . R299d +chr16 SNP SNP 29695717 29794702 7 . . R300d +chr16 SNP SNP 29794703 29893687 11 . . R301d +chr16 SNP SNP 29893688 29992673 11 . . R302d +chr16 SNP SNP 29992674 30091659 27 . . R303d +chr16 SNP SNP 30091660 30190644 42 . . R304d +chr16 SNP SNP 30190645 30289630 7 . . R305d +chr16 SNP SNP 30289631 30388616 3 . . R306d +chr16 SNP SNP 30388617 30487601 0 . . R307d +chr16 SNP SNP 30487602 30586587 3 . . R308d +chr16 SNP SNP 30586588 30685573 23 . . R309d +chr16 SNP SNP 30685574 30784558 11 . . R310d +chr16 SNP SNP 30784559 30883544 19 . . R311d +chr16 SNP SNP 30883545 30982530 38 . . R312d +chr16 SNP SNP 30982531 31081516 0 . . R313d +chr16 SNP SNP 31081517 31180501 0 . . R314d +chr16 SNP SNP 31180502 31279487 11 . . R315d +chr16 SNP SNP 31279488 31378473 3 . . R316d +chr16 SNP SNP 31378474 31477458 697 . . R317d +chr16 SNP SNP 31477459 31576444 290 . . R318d +chr16 SNP SNP 31576445 31675430 317 . . R319d +chr16 SNP SNP 31675431 31774415 445 . . R320d +chr16 SNP SNP 31774416 31873401 364 . . R321d +chr16 SNP SNP 31873402 31972387 403 . . R322d +chr16 SNP SNP 31972388 32071372 89 . . R323d +chr16 SNP SNP 32071373 32170358 27 . . R324d +chr16 SNP SNP 32170359 32269344 352 . . R325d +chr16 SNP SNP 32269345 32368329 104 . . R326d +chr16 SNP SNP 32368330 32467315 162 . . R327d +chr16 SNP SNP 32467316 32566301 263 . . R328d +chr16 SNP SNP 32566302 32665287 282 . . R329d +chr16 SNP SNP 32665288 32764272 286 . . R330d +chr16 SNP SNP 32764273 32863258 54 . . R331d +chr16 SNP SNP 32863259 32962244 410 . . R332d +chr16 SNP SNP 32962245 33061229 93 . . R333d +chr16 SNP SNP 33061230 33160215 54 . . R334d +chr16 SNP SNP 33160216 33259201 15 . . R335d +chr16 SNP SNP 33259202 33358186 7 . . R336d +chr16 SNP SNP 33358187 33457172 15 . . R337d +chr16 SNP SNP 33457173 33556158 186 . . R338d +chr16 SNP SNP 33556159 33655143 15 . . R339d +chr16 SNP SNP 33655144 33754129 131 . . R340d +chr16 SNP SNP 33754130 33853115 166 . . R341d +chr16 SNP SNP 33853116 33952100 108 . . R342d +chr16 SNP SNP 33952101 34051086 147 . . R343d +chr16 SNP SNP 34051087 34150072 468 . . R344d +chr16 SNP SNP 34150073 34249058 468 . . R345d +chr16 SNP SNP 34249059 34348043 313 . . R346d +chr16 SNP SNP 34348044 34447029 124 . . R347d +chr16 SNP SNP 34447030 34546015 189 . . R348d +chr16 SNP SNP 34546016 34645000 282 . . R349d +chr16 SNP SNP 34645001 34743986 220 . . R350d +chr16 SNP SNP 34743987 34842972 135 . . R351d +chr16 SNP SNP 34842973 34941957 406 . . R352d +chr16 SNP SNP 34941958 35040943 58 . . R353d +chr16 SNP SNP 35040944 35139929 19 . . R354d +chr16 SNP SNP 35139930 35238914 50 . . R355d +chr16 SNP SNP 35238915 35337900 147 . . R356d +chr16 SNP SNP 35337901 35436886 306 . . R357d +chr16 SNP SNP 35436887 35535871 228 . . R358d +chr16 SNP SNP 35535872 35634857 399 . . R359d +chr16 SNP SNP 35634858 35733843 65 . . R360d +chr16 SNP SNP 35733844 35832829 577 . . R361d +chr16 SNP SNP 35832830 35931814 341 . . R362d +chr16 SNP SNP 35931815 36030800 54 . . R363d +chr16 SNP SNP 36030801 36129786 62 . . R364d +chr16 SNP SNP 36129787 36228771 42 . . R365d +chr16 SNP SNP 36228772 36327757 298 . . R366d +chr16 SNP SNP 36327758 36426743 519 . . R367d +chr16 SNP SNP 36426744 36525728 7 . . R368d +chr16 SNP SNP 36525729 36624714 3 . . R369d +chr16 SNP SNP 36624715 36723700 19 . . R370d +chr16 SNP SNP 36723701 36822685 38 . . R371d +chr16 SNP SNP 36822686 36921671 19 . . R372d +chr16 SNP SNP 36921672 37020657 42 . . R373d +chr16 SNP SNP 37020658 37119642 15 . . R374d +chr16 SNP SNP 37119643 37218628 27 . . R375d +chr16 SNP SNP 37218629 37317614 422 . . R376d +chr16 SNP SNP 37317615 37416600 496 . . R377d +chr16 SNP SNP 37416601 37515585 11 . . R378d +chr16 SNP SNP 37515586 37614571 7 . . R379d +chr16 SNP SNP 37614572 37713557 7 . . R380d +chr16 SNP SNP 37713558 37812542 135 . . R381d +chr16 SNP SNP 37812543 37911528 27 . . R382d +chr16 SNP SNP 37911529 38010514 310 . . R383d +chr16 SNP SNP 38010515 38109499 89 . . R384d +chr16 SNP SNP 38109500 38208485 127 . . R385d +chr16 SNP SNP 38208486 38307471 174 . . R386d +chr16 SNP SNP 38307472 38406456 3 . . R387d +chr16 SNP SNP 38406457 38505442 38 . . R388d +chr16 SNP SNP 38505443 38604428 15 . . R389d +chr16 SNP SNP 38604429 38703414 500 . . R390d +chr16 SNP SNP 38703415 38802399 391 . . R391d +chr16 SNP SNP 38802400 38901385 581 . . R392d +chr16 SNP SNP 38901386 39000371 500 . . R393d +chr16 SNP SNP 39000372 39099356 767 . . R394d +chr16 SNP SNP 39099357 39198342 519 . . R395d +chr16 SNP SNP 39198343 39297328 732 . . R396d +chr16 SNP SNP 39297329 39396313 534 . . R397d +chr16 SNP SNP 39396314 39495299 344 . . R398d +chr16 SNP SNP 39495300 39594285 11 . . R399d +chr16 SNP SNP 39594286 39693270 23 . . R400d +chr16 SNP SNP 39693271 39792256 7 . . R401d +chr16 SNP SNP 39792257 39891242 62 . . R402d +chr16 SNP SNP 39891243 39990227 77 . . R403d +chr16 SNP SNP 39990228 40089213 27 . . R404d +chr16 SNP SNP 40089214 40188199 23 . . R405d +chr16 SNP SNP 40188200 40287185 34 . . R406d +chr16 SNP SNP 40287186 40386170 65 . . R407d +chr16 SNP SNP 40386171 40485156 85 . . R408d +chr16 SNP SNP 40485157 40584142 54 . . R409d +chr16 SNP SNP 40584143 40683127 69 . . R410d +chr16 SNP SNP 40683128 40782113 65 . . R411d +chr16 SNP SNP 40782114 40881099 62 . . R412d +chr16 SNP SNP 40881100 40980084 81 . . R413d +chr16 SNP SNP 40980085 41079070 31 . . R414d +chr16 SNP SNP 41079071 41178056 596 . . R415d +chr16 SNP SNP 41178057 41277041 406 . . R416d +chr16 SNP SNP 41277042 41376027 124 . . R417d +chr16 SNP SNP 41376028 41475013 538 . . R418d +chr16 SNP SNP 41475014 41573998 42 . . R419d +chr16 SNP SNP 41573999 41672984 228 . . R420d +chr16 SNP SNP 41672985 41771970 344 . . R421d +chr16 SNP SNP 41771971 41870956 457 . . R422d +chr16 SNP SNP 41870957 41969941 244 . . R423d +chr16 SNP SNP 41969942 42068927 422 . . R424d +chr16 SNP SNP 42068928 42167913 77 . . R425d +chr16 SNP SNP 42167914 42266898 62 . . R426d +chr16 SNP SNP 42266899 42365884 38 . . R427d +chr16 SNP SNP 42365885 42464870 19 . . R428d +chr16 SNP SNP 42464871 42563855 23 . . R429d +chr16 SNP SNP 42563856 42662841 50 . . R430d +chr16 SNP SNP 42662842 42761827 11 . . R431d +chr16 SNP SNP 42761828 42860812 19 . . R432d +chr16 SNP SNP 42860813 42959798 15 . . R433d +chr16 SNP SNP 42959799 43058784 27 . . R434d +chr16 SNP SNP 43058785 43157769 19 . . R435d +chr16 SNP SNP 43157770 43256755 19 . . R436d +chr16 SNP SNP 43256756 43355741 42 . . R437d +chr16 SNP SNP 43355742 43454727 124 . . R438d +chr16 SNP SNP 43454728 43553712 193 . . R439d +chr16 SNP SNP 43553713 43652698 15 . . R440d +chr16 SNP SNP 43652699 43751684 220 . . R441d +chr16 SNP SNP 43751685 43850669 65 . . R442d +chr16 SNP SNP 43850670 43949655 209 . . R443d +chr16 SNP SNP 43949656 44048641 34 . . R444d +chr16 SNP SNP 44048642 44147626 38 . . R445d +chr16 SNP SNP 44147627 44246612 492 . . R446d +chr16 SNP SNP 44246613 44345598 484 . . R447d +chr16 SNP SNP 44345599 44444583 375 . . R448d +chr16 SNP SNP 44444584 44543569 15 . . R449d +chr16 SNP SNP 44543570 44642555 186 . . R450d +chr16 SNP SNP 44642556 44741540 197 . . R451d +chr16 SNP SNP 44741541 44840526 0 . . R452d +chr16 SNP SNP 44840527 44939512 15 . . R453d +chr16 SNP SNP 44939513 45038498 11 . . R454d +chr16 SNP SNP 45038499 45137483 62 . . R455d +chr16 SNP SNP 45137484 45236469 624 . . R456d +chr16 SNP SNP 45236470 45335455 480 . . R457d +chr16 SNP SNP 45335456 45434440 647 . . R458d +chr16 SNP SNP 45434441 45533426 527 . . R459d +chr16 SNP SNP 45533427 45632412 480 . . R460d +chr16 SNP SNP 45632413 45731397 488 . . R461d +chr16 SNP SNP 45731398 45830383 666 . . R462d +chr16 SNP SNP 45830384 45929369 585 . . R463d +chr16 SNP SNP 45929370 46028354 15 . . R464d +chr16 SNP SNP 46028355 46127340 3 . . R465d +chr16 SNP SNP 46127341 46226326 19 . . R466d +chr16 SNP SNP 46226327 46325311 3 . . R467d +chr16 SNP SNP 46325312 46424297 15 . . R468d +chr16 SNP SNP 46424298 46523283 7 . . R469d +chr16 SNP SNP 46523284 46622269 7 . . R470d +chr16 SNP SNP 46622270 46721254 31 . . R471d +chr16 SNP SNP 46721255 46820240 15 . . R472d +chr16 SNP SNP 46820241 46919226 11 . . R473d +chr16 SNP SNP 46919227 47018211 23 . . R474d +chr16 SNP SNP 47018212 47117197 23 . . R475d +chr16 SNP SNP 47117198 47216183 19 . . R476d +chr16 SNP SNP 47216184 47315168 19 . . R477d +chr16 SNP SNP 47315169 47414154 7 . . R478d +chr16 SNP SNP 47414155 47513140 0 . . R479d +chr16 SNP SNP 47513141 47612125 15 . . R480d +chr16 SNP SNP 47612126 47711111 31 . . R481d +chr16 SNP SNP 47711112 47810097 23 . . R482d +chr16 SNP SNP 47810098 47909082 7 . . R483d +chr16 SNP SNP 47909083 48008068 15 . . R484d +chr16 SNP SNP 48008069 48107054 0 . . R485d +chr16 SNP SNP 48107055 48206040 11 . . R486d +chr16 SNP SNP 48206041 48305025 11 . . R487d +chr16 SNP SNP 48305026 48404011 27 . . R488d +chr16 SNP SNP 48404012 48502997 23 . . R489d +chr16 SNP SNP 48502998 48601982 23 . . R490d +chr16 SNP SNP 48601983 48700968 38 . . R491d +chr16 SNP SNP 48700969 48799954 11 . . R492d +chr16 SNP SNP 48799955 48898939 11 . . R493d +chr16 SNP SNP 48898940 48997925 27 . . R494d +chr16 SNP SNP 48997926 49096911 15 . . R495d +chr16 SNP SNP 49096912 49195896 23 . . R496d +chr16 SNP SNP 49195897 49294882 27 . . R497d +chr16 SNP SNP 49294883 49393868 11 . . R498d +chr16 SNP SNP 49393869 49492853 11 . . R499d +chr16 SNP SNP 49492854 49591839 23 . . R500d +chr16 SNP SNP 49591840 49690825 7 . . R501d +chr16 SNP SNP 49690826 49789811 15 . . R502d +chr16 SNP SNP 49789812 49888796 11 . . R503d +chr16 SNP SNP 49888797 49987782 3 . . R504d +chr16 SNP SNP 49987783 50086768 46 . . R505d +chr16 SNP SNP 50086769 50185753 15 . . R506d +chr16 SNP SNP 50185754 50284739 15 . . R507d +chr16 SNP SNP 50284740 50383725 3 . . R508d +chr16 SNP SNP 50383726 50482710 27 . . R509d +chr16 SNP SNP 50482711 50581696 7 . . R510d +chr16 SNP SNP 50581697 50680682 11 . . R511d +chr16 SNP SNP 50680683 50779667 27 . . R512d +chr16 SNP SNP 50779668 50878653 27 . . R513d +chr16 SNP SNP 50878654 50977639 7 . . R514d +chr16 SNP SNP 50977640 51076625 34 . . R515d +chr16 SNP SNP 51076626 51175610 189 . . R516d +chr16 SNP SNP 51175611 51274596 205 . . R517d +chr16 SNP SNP 51274597 51373582 162 . . R518d +chr16 SNP SNP 51373583 51472567 147 . . R519d +chr16 SNP SNP 51472568 51571553 360 . . R520d +chr16 SNP SNP 51571554 51670539 670 . . R521d +chr16 SNP SNP 51670540 51769524 251 . . R522d +chr16 SNP SNP 51769525 51868510 11 . . R523d +chr16 SNP SNP 51868511 51967496 11 . . R524d +chr16 SNP SNP 51967497 52066481 7 . . R525d +chr16 SNP SNP 52066482 52165467 11 . . R526d +chr16 SNP SNP 52165468 52264453 11 . . R527d +chr16 SNP SNP 52264454 52363438 15 . . R528d +chr16 SNP SNP 52363439 52462424 11 . . R529d +chr16 SNP SNP 52462425 52561410 11 . . R530d +chr16 SNP SNP 52561411 52660396 15 . . R531d +chr16 SNP SNP 52660397 52759381 15 . . R532d +chr16 SNP SNP 52759382 52858367 19 . . R533d +chr16 SNP SNP 52858368 52957353 7 . . R534d +chr16 SNP SNP 52957354 53056338 0 . . R535d +chr16 SNP SNP 53056339 53155324 15 . . R536d +chr16 SNP SNP 53155325 53254310 15 . . R537d +chr16 SNP SNP 53254311 53353295 15 . . R538d +chr16 SNP SNP 53353296 53452281 23 . . R539d +chr16 SNP SNP 53452282 53551267 7 . . R540d +chr16 SNP SNP 53551268 53650252 23 . . R541d +chr16 SNP SNP 53650253 53749238 15 . . R542d +chr16 SNP SNP 53749239 53848224 11 . . R543d +chr16 SNP SNP 53848225 53947209 7 . . R544d +chr16 SNP SNP 53947210 54046195 15 . . R545d +chr16 SNP SNP 54046196 54145181 11 . . R546d +chr16 SNP SNP 54145182 54244167 15 . . R547d +chr16 SNP SNP 54244168 54343152 31 . . R548d +chr16 SNP SNP 54343153 54442138 7 . . R549d +chr16 SNP SNP 54442139 54541124 0 . . R550d +chr16 SNP SNP 54541125 54640109 15 . . R551d +chr16 SNP SNP 54640110 54739095 3 . . R552d +chr16 SNP SNP 54739096 54838081 23 . . R553d +chr16 SNP SNP 54838082 54937066 31 . . R554d +chr16 SNP SNP 54937067 55036052 23 . . R555d +chr16 SNP SNP 55036053 55135038 15 . . R556d +chr16 SNP SNP 55135039 55234023 23 . . R557d +chr16 SNP SNP 55234024 55333009 11 . . R558d +chr16 SNP SNP 55333010 55431995 19 . . R559d +chr16 SNP SNP 55431996 55530980 15 . . R560d +chr16 SNP SNP 55530981 55629966 23 . . R561d +chr16 SNP SNP 55629967 55728952 15 . . R562d +chr16 SNP SNP 55728953 55827938 3 . . R563d +chr16 SNP SNP 55827939 55926923 7 . . R564d +chr16 SNP SNP 55926924 56025909 0 . . R565d +chr16 SNP SNP 56025910 56124895 7 . . R566d +chr16 SNP SNP 56124896 56223880 7 . . R567d +chr16 SNP SNP 56223881 56322866 11 . . R568d +chr16 SNP SNP 56322867 56421852 23 . . R569d +chr16 SNP SNP 56421853 56520837 143 . . R570d +chr16 SNP SNP 56520838 56619823 77 . . R571d +chr16 SNP SNP 56619824 56718809 337 . . R572d +chr16 SNP SNP 56718810 56817794 496 . . R573d +chr16 SNP SNP 56817795 56916780 325 . . R574d +chr16 SNP SNP 56916781 57015766 337 . . R575d +chr16 SNP SNP 57015767 57114751 197 . . R576d +chr16 SNP SNP 57114752 57213737 395 . . R577d +chr16 SNP SNP 57213738 57312723 85 . . R578d +chr16 SNP SNP 57312724 57411709 124 . . R579d +chr16 SNP SNP 57411710 57510694 205 . . R580d +chr16 SNP SNP 57510695 57609680 290 . . R581d +chr16 SNP SNP 57609681 57708666 182 . . R582d +chr16 SNP SNP 57708667 57807651 317 . . R583d +chr16 SNP SNP 57807652 57906637 112 . . R584d +chr16 SNP SNP 57906638 58005623 279 . . R585d +chr16 SNP SNP 58005624 58104608 170 . . R586d +chr16 SNP SNP 58104609 58203594 31 . . R587d +chr16 SNP SNP 58203595 58302580 197 . . R588d +chr16 SNP SNP 58302581 58401565 480 . . R589d +chr16 SNP SNP 58401566 58500551 108 . . R590d +chr16 SNP SNP 58500552 58599537 399 . . R591d +chr16 SNP SNP 58599538 58698522 329 . . R592d +chr16 SNP SNP 58698523 58797508 166 . . R593d +chr16 SNP SNP 58797509 58896494 89 . . R594d +chr16 SNP SNP 58896495 58995480 500 . . R595d +chr16 SNP SNP 58995481 59094465 286 . . R596d +chr16 SNP SNP 59094466 59193451 426 . . R597d +chr16 SNP SNP 59193452 59292437 538 . . R598d +chr16 SNP SNP 59292438 59391422 434 . . R599d +chr16 SNP SNP 59391423 59490408 635 . . R600d +chr16 SNP SNP 59490409 59589394 410 . . R601d +chr16 SNP SNP 59589395 59688379 244 . . R602d +chr16 SNP SNP 59688380 59787365 410 . . R603d +chr16 SNP SNP 59787366 59886351 519 . . R604d +chr16 SNP SNP 59886352 59985336 403 . . R605d +chr16 SNP SNP 59985337 60084322 445 . . R606d +chr16 SNP SNP 60084323 60183308 383 . . R607d +chr16 SNP SNP 60183309 60282293 406 . . R608d +chr16 SNP SNP 60282294 60381279 387 . . R609d +chr16 SNP SNP 60381280 60480265 139 . . R610d +chr16 SNP SNP 60480266 60579251 27 . . R611d +chr16 SNP SNP 60579252 60678236 372 . . R612d +chr16 SNP SNP 60678237 60777222 372 . . R613d +chr16 SNP SNP 60777223 60876208 298 . . R614d +chr16 SNP SNP 60876209 60975193 38 . . R615d +chr16 SNP SNP 60975194 61074179 31 . . R616d +chr16 SNP SNP 61074180 61173165 15 . . R617d +chr16 SNP SNP 61173166 61272150 15 . . R618d +chr16 SNP SNP 61272151 61371136 50 . . R619d +chr16 SNP SNP 61371137 61470122 38 . . R620d +chr16 SNP SNP 61470123 61569107 58 . . R621d +chr16 SNP SNP 61569108 61668093 38 . . R622d +chr16 SNP SNP 61668094 61767079 65 . . R623d +chr16 SNP SNP 61767080 61866064 251 . . R624d +chr16 SNP SNP 61866065 61965050 821 . . R625d +chr16 SNP SNP 61965051 62064036 771 . . R626d +chr16 SNP SNP 62064037 62163022 573 . . R627d +chr16 SNP SNP 62163023 62262007 344 . . R628d +chr16 SNP SNP 62262008 62360993 42 . . R629d +chr16 SNP SNP 62360994 62459979 360 . . R630d +chr16 SNP SNP 62459980 62558964 360 . . R631d +chr16 SNP SNP 62558965 62657950 170 . . R632d +chr16 SNP SNP 62657951 62756936 116 . . R633d +chr16 SNP SNP 62756937 62855921 54 . . R634d +chr16 SNP SNP 62855922 62954907 31 . . R635d +chr16 SNP SNP 62954908 63053893 54 . . R636d +chr16 SNP SNP 63053894 63152878 42 . . R637d +chr16 SNP SNP 63152879 63251864 42 . . R638d +chr16 SNP SNP 63251865 63350850 46 . . R639d +chr16 SNP SNP 63350851 63449836 356 . . R640d +chr16 SNP SNP 63449837 63548821 422 . . R641d +chr16 SNP SNP 63548822 63647807 201 . . R642d +chr16 SNP SNP 63647808 63746793 434 . . R643d +chr16 SNP SNP 63746794 63845778 271 . . R644d +chr16 SNP SNP 63845779 63944764 457 . . R645d +chr16 SNP SNP 63944765 64043750 488 . . R646d +chr16 SNP SNP 64043751 64142735 298 . . R647d +chr16 SNP SNP 64142736 64241721 437 . . R648d +chr16 SNP SNP 64241722 64340707 581 . . R649d +chr16 SNP SNP 64340708 64439692 430 . . R650d +chr16 SNP SNP 64439693 64538678 434 . . R651d +chr16 SNP SNP 64538679 64637664 19 . . R652d +chr16 SNP SNP 64637665 64736649 11 . . R653d +chr16 SNP SNP 64736650 64835635 31 . . R654d +chr16 SNP SNP 64835636 64934621 23 . . R655d +chr16 SNP SNP 64934622 65033607 220 . . R656d +chr16 SNP SNP 65033608 65132592 65 . . R657d +chr16 SNP SNP 65132593 65231578 19 . . R658d +chr16 SNP SNP 65231579 65330564 50 . . R659d +chr16 SNP SNP 65330565 65429549 62 . . R660d +chr16 SNP SNP 65429550 65528535 34 . . R661d +chr16 SNP SNP 65528536 65627521 236 . . R662d +chr16 SNP SNP 65627522 65726506 213 . . R663d +chr16 SNP SNP 65726507 65825492 341 . . R664d +chr16 SNP SNP 65825493 65924478 422 . . R665d +chr16 SNP SNP 65924479 66023463 205 . . R666d +chr16 SNP SNP 66023464 66122449 589 . . R667d +chr16 SNP SNP 66122450 66221435 449 . . R668d +chr16 SNP SNP 66221436 66320420 259 . . R669d +chr16 SNP SNP 66320421 66419406 31 . . R670d +chr16 SNP SNP 66419407 66518392 31 . . R671d +chr16 SNP SNP 66518393 66617378 93 . . R672d +chr16 SNP SNP 66617379 66716363 352 . . R673d +chr16 SNP SNP 66716364 66815349 786 . . R674d +chr16 SNP SNP 66815350 66914335 19 . . R675d +chr16 SNP SNP 66914336 67013320 42 . . R676d +chr16 SNP SNP 67013321 67112306 27 . . R677d +chr16 SNP SNP 67112307 67211292 441 . . R678d +chr16 SNP SNP 67211293 67310277 275 . . R679d +chr16 SNP SNP 67310278 67409263 23 . . R680d +chr16 SNP SNP 67409264 67508249 23 . . R681d +chr16 SNP SNP 67508250 67607234 50 . . R682d +chr16 SNP SNP 67607235 67706220 38 . . R683d +chr16 SNP SNP 67706221 67805206 15 . . R684d +chr16 SNP SNP 67805207 67904191 19 . . R685d +chr16 SNP SNP 67904192 68003177 46 . . R686d +chr16 SNP SNP 68003178 68102163 445 . . R687d +chr16 SNP SNP 68102164 68201149 550 . . R688d +chr16 SNP SNP 68201150 68300134 306 . . R689d +chr16 SNP SNP 68300135 68399120 93 . . R690d +chr16 SNP SNP 68399121 68498106 182 . . R691d +chr16 SNP SNP 68498107 68597091 360 . . R692d +chr16 SNP SNP 68597092 68696077 414 . . R693d +chr16 SNP SNP 68696078 68795063 34 . . R694d +chr16 SNP SNP 68795064 68894048 31 . . R695d +chr16 SNP SNP 68894049 68993034 23 . . R696d +chr16 SNP SNP 68993035 69092020 3 . . R697d +chr16 SNP SNP 69092021 69191005 38 . . R698d +chr16 SNP SNP 69191006 69289991 15 . . R699d +chr16 SNP SNP 69289992 69388977 151 . . R700d +chr16 SNP SNP 69388978 69487962 399 . . R701d +chr16 SNP SNP 69487963 69586948 352 . . R702d +chr16 SNP SNP 69586949 69685934 65 . . R703d +chr16 SNP SNP 69685935 69784920 348 . . R704d +chr16 SNP SNP 69784921 69883905 62 . . R705d +chr16 SNP SNP 69883906 69982891 46 . . R706d +chr16 SNP SNP 69982892 70081877 38 . . R707d +chr16 SNP SNP 70081878 70180862 85 . . R708d +chr16 SNP SNP 70180863 70279848 418 . . R709d +chr16 SNP SNP 70279849 70378834 81 . . R710d +chr16 SNP SNP 70378835 70477819 38 . . R711d +chr16 SNP SNP 70477820 70576805 31 . . R712d +chr16 SNP SNP 70576806 70675791 364 . . R713d +chr16 SNP SNP 70675792 70774776 341 . . R714d +chr16 SNP SNP 70774777 70873762 496 . . R715d +chr16 SNP SNP 70873763 70972748 496 . . R716d +chr16 SNP SNP 70972749 71071733 519 . . R717d +chr16 SNP SNP 71071734 71170719 286 . . R718d +chr16 SNP SNP 71170720 71269705 224 . . R719d +chr16 SNP SNP 71269706 71368691 341 . . R720d +chr16 SNP SNP 71368692 71467676 484 . . R721d +chr16 SNP SNP 71467677 71566662 631 . . R722d +chr16 SNP SNP 71566663 71665648 286 . . R723d +chr16 SNP SNP 71665649 71764633 282 . . R724d +chr16 SNP SNP 71764634 71863619 34 . . R725d +chr16 SNP SNP 71863620 71962605 15 . . R726d +chr16 SNP SNP 71962606 72061590 19 . . R727d +chr16 SNP SNP 72061591 72160576 11 . . R728d +chr16 SNP SNP 72160577 72259562 151 . . R729d +chr16 SNP SNP 72259563 72358547 93 . . R730d +chr16 SNP SNP 72358548 72457533 496 . . R731d +chr16 SNP SNP 72457534 72556519 391 . . R732d +chr16 SNP SNP 72556520 72655504 453 . . R733d +chr16 SNP SNP 72655505 72754490 441 . . R734d +chr16 SNP SNP 72754491 72853476 562 . . R735d +chr16 SNP SNP 72853477 72952462 422 . . R736d +chr16 SNP SNP 72952463 73051447 562 . . R737d +chr16 SNP SNP 73051448 73150433 352 . . R738d +chr16 SNP SNP 73150434 73249419 170 . . R739d +chr16 SNP SNP 73249420 73348404 58 . . R740d +chr16 SNP SNP 73348405 73447390 42 . . R741d +chr16 SNP SNP 73447391 73546376 410 . . R742d +chr16 SNP SNP 73546377 73645361 7 . . R743d +chr16 SNP SNP 73645362 73744347 3 . . R744d +chr16 SNP SNP 73744348 73843333 27 . . R745d +chr16 SNP SNP 73843334 73942318 31 . . R746d +chr16 SNP SNP 73942319 74041304 27 . . R747d +chr16 SNP SNP 74041305 74140290 27 . . R748d +chr16 SNP SNP 74140291 74239275 38 . . R749d +chr16 SNP SNP 74239276 74338261 7 . . R750d +chr16 SNP SNP 74338262 74437247 139 . . R751d +chr16 SNP SNP 74437248 74536233 542 . . R752d +chr16 SNP SNP 74536234 74635218 476 . . R753d +chr16 SNP SNP 74635219 74734204 275 . . R754d +chr16 SNP SNP 74734205 74833190 569 . . R755d +chr16 SNP SNP 74833191 74932175 174 . . R756d +chr16 SNP SNP 74932176 75031161 193 . . R757d +chr16 SNP SNP 75031162 75130147 569 . . R758d +chr16 SNP SNP 75130148 75229132 709 . . R759d +chr16 SNP SNP 75229133 75328118 372 . . R760d +chr16 SNP SNP 75328119 75427104 666 . . R761d +chr16 SNP SNP 75427105 75526089 329 . . R762d +chr16 SNP SNP 75526090 75625075 120 . . R763d +chr16 SNP SNP 75625076 75724061 27 . . R764d +chr16 SNP SNP 75724062 75823047 19 . . R765d +chr16 SNP SNP 75823048 75922032 27 . . R766d +chr16 SNP SNP 75922033 76021018 15 . . R767d +chr16 SNP SNP 76021019 76120004 244 . . R768d +chr16 SNP SNP 76120005 76218989 337 . . R769d +chr16 SNP SNP 76218990 76317975 534 . . R770d +chr16 SNP SNP 76317976 76416961 453 . . R771d +chr16 SNP SNP 76416962 76515946 58 . . R772d +chr16 SNP SNP 76515947 76614932 58 . . R773d +chr16 SNP SNP 76614933 76713918 42 . . R774d +chr16 SNP SNP 76713919 76812903 69 . . R775d +chr16 SNP SNP 76812904 76911889 282 . . R776d +chr16 SNP SNP 76911890 77010875 11 . . R777d +chr16 SNP SNP 77010876 77109860 31 . . R778d +chr16 SNP SNP 77109861 77208846 93 . . R779d +chr16 SNP SNP 77208847 77307832 279 . . R780d +chr16 SNP SNP 77307833 77406818 449 . . R781d +chr16 SNP SNP 77406819 77505803 213 . . R782d +chr16 SNP SNP 77505804 77604789 104 . . R783d +chr16 SNP SNP 77604790 77703775 27 . . R784d +chr16 SNP SNP 77703776 77802760 139 . . R785d +chr16 SNP SNP 77802761 77901746 581 . . R786d +chr16 SNP SNP 77901747 78000732 104 . . R787d +chr16 SNP SNP 78000733 78099717 124 . . R788d +chr16 SNP SNP 78099718 78198703 15 . . R789d +chr16 SNP SNP 78198704 78297689 7 . . R790d +chr16 SNP SNP 78297690 78396674 3 . . R791d +chr16 SNP SNP 78396675 78495660 0 . . R792d +chr16 SNP SNP 78495661 78594646 96 . . R793d +chr16 SNP SNP 78594647 78693631 224 . . R794d +chr16 SNP SNP 78693632 78792617 356 . . R795d +chr16 SNP SNP 78792618 78891603 445 . . R796d +chr16 SNP SNP 78891604 78990589 166 . . R797d +chr16 SNP SNP 78990590 79089574 573 . . R798d +chr16 SNP SNP 79089575 79188560 290 . . R799d +chr16 SNP SNP 79188561 79287546 162 . . R800d +chr16 SNP SNP 79287547 79386531 73 . . R801d +chr16 SNP SNP 79386532 79485517 155 . . R802d +chr16 SNP SNP 79485518 79584503 42 . . R803d +chr16 SNP SNP 79584504 79683488 182 . . R804d +chr16 SNP SNP 79683489 79782474 480 . . R805d +chr16 SNP SNP 79782475 79881460 604 . . R806d +chr16 SNP SNP 79881461 79980445 279 . . R807d +chr16 SNP SNP 79980446 80079431 356 . . R808d +chr16 SNP SNP 80079432 80178417 472 . . R809d +chr16 SNP SNP 80178418 80277402 46 . . R810d +chr16 SNP SNP 80277403 80376388 54 . . R811d +chr16 SNP SNP 80376389 80475374 34 . . R812d +chr16 SNP SNP 80475375 80574360 403 . . R813d +chr16 SNP SNP 80574361 80673345 519 . . R814d +chr16 SNP SNP 80673346 80772331 480 . . R815d +chr16 SNP SNP 80772332 80871317 313 . . R816d +chr16 SNP SNP 80871318 80970302 829 . . R817d +chr16 SNP SNP 80970303 81069288 542 . . R818d +chr16 SNP SNP 81069289 81168274 643 . . R819d +chr16 SNP SNP 81168275 81267259 484 . . R820d +chr16 SNP SNP 81267260 81366245 383 . . R821d +chr16 SNP SNP 81366246 81465231 294 . . R822d +chr16 SNP SNP 81465232 81564216 3 . . R823d +chr16 SNP SNP 81564217 81663202 7 . . R824d +chr16 SNP SNP 81663203 81762188 15 . . R825d +chr16 SNP SNP 81762189 81861173 7 . . R826d +chr16 SNP SNP 81861174 81960159 11 . . R827d +chr16 SNP SNP 81960160 82059145 7 . . R828d +chr16 SNP SNP 82059146 82158131 11 . . R829d +chr16 SNP SNP 82158132 82257116 15 . . R830d +chr16 SNP SNP 82257117 82356102 19 . . R831d +chr16 SNP SNP 82356103 82455088 0 . . R832d +chr16 SNP SNP 82455089 82554073 19 . . R833d +chr16 SNP SNP 82554074 82653059 11 . . R834d +chr16 SNP SNP 82653060 82752045 23 . . R835d +chr16 SNP SNP 82752046 82851030 11 . . R836d +chr16 SNP SNP 82851031 82950016 34 . . R837d +chr16 SNP SNP 82950017 83049002 46 . . R838d +chr16 SNP SNP 83049003 83147987 46 . . R839d +chr16 SNP SNP 83147988 83246973 337 . . R840d +chr16 SNP SNP 83246974 83345959 46 . . R841d +chr16 SNP SNP 83345960 83444944 73 . . R842d +chr16 SNP SNP 83444945 83543930 23 . . R843d +chr16 SNP SNP 83543931 83642916 34 . . R844d +chr16 SNP SNP 83642917 83741902 31 . . R845d +chr16 SNP SNP 83741903 83840887 50 . . R846d +chr16 SNP SNP 83840888 83939873 31 . . R847d +chr16 SNP SNP 83939874 84038859 58 . . R848d +chr16 SNP SNP 84038860 84137844 38 . . R849d +chr16 SNP SNP 84137845 84236830 38 . . R850d +chr16 SNP SNP 84236831 84335816 27 . . R851d +chr16 SNP SNP 84335817 84434801 38 . . R852d +chr16 SNP SNP 84434802 84533787 31 . . R853d +chr16 SNP SNP 84533788 84632773 27 . . R854d +chr16 SNP SNP 84632774 84731758 31 . . R855d +chr16 SNP SNP 84731759 84830744 197 . . R856d +chr16 SNP SNP 84830745 84929730 54 . . R857d +chr16 SNP SNP 84929731 85028715 27 . . R858d +chr16 SNP SNP 85028716 85127701 46 . . R859d +chr16 SNP SNP 85127702 85226687 27 . . R860d +chr16 SNP SNP 85226688 85325673 54 . . R861d +chr16 SNP SNP 85325674 85424658 27 . . R862d +chr16 SNP SNP 85424659 85523644 58 . . R863d +chr16 SNP SNP 85523645 85622630 244 . . R864d +chr16 SNP SNP 85622631 85721615 422 . . R865d +chr16 SNP SNP 85721616 85820601 282 . . R866d +chr16 SNP SNP 85820602 85919587 23 . . R867d +chr16 SNP SNP 85919588 86018572 186 . . R868d +chr16 SNP SNP 86018573 86117558 73 . . R869d +chr16 SNP SNP 86117559 86216544 317 . . R870d +chr16 SNP SNP 86216545 86315529 19 . . R871d +chr16 SNP SNP 86315530 86414515 120 . . R872d +chr16 SNP SNP 86414516 86513501 263 . . R873d +chr16 SNP SNP 86513502 86612486 108 . . R874d +chr16 SNP SNP 86612487 86711472 306 . . R875d +chr16 SNP SNP 86711473 86810458 468 . . R876d +chr16 SNP SNP 86810459 86909444 42 . . R877d +chr16 SNP SNP 86909445 87008429 209 . . R878d +chr16 SNP SNP 87008430 87107415 271 . . R879d +chr16 SNP SNP 87107416 87206401 15 . . R880d +chr16 SNP SNP 87206402 87305386 15 . . R881d +chr16 SNP SNP 87305387 87404372 11 . . R882d +chr16 SNP SNP 87404373 87503358 7 . . R883d +chr16 SNP SNP 87503359 87602343 15 . . R884d +chr16 SNP SNP 87602344 87701329 11 . . R885d +chr16 SNP SNP 87701330 87800315 7 . . R886d +chr16 SNP SNP 87800316 87899300 0 . . R887d +chr16 SNP SNP 87899301 87998286 3 . . R888d +chr16 SNP SNP 87998287 88097272 3 . . R889d +chr16 SNP SNP 88097273 88196258 3 . . R890d +chr16 SNP SNP 88196259 88295243 135 . . R891d +chr16 SNP SNP 88295244 88394229 50 . . R892d +chr16 SNP SNP 88394230 88493215 34 . . R893d +chr16 SNP SNP 88493216 88592200 31 . . R894d +chr16 SNP SNP 88592201 88691186 170 . . R895d +chr16 SNP SNP 88691187 88790172 379 . . R896d +chr16 SNP SNP 88790173 88889157 457 . . R897d +chr16 SNP SNP 88889158 88988143 461 . . R898d +chr16 SNP SNP 88988144 89087129 31 . . R899d +chr16 SNP SNP 89087130 89186114 89 . . R900d +chr16 SNP SNP 89186115 89285100 143 . . R901d +chr16 SNP SNP 89285101 89384086 197 . . R902d +chr16 SNP SNP 89384087 89483071 608 . . R903d +chr16 SNP SNP 89483072 89582057 457 . . R904d +chr16 SNP SNP 89582058 89681043 151 . . R905d +chr16 SNP SNP 89681044 89780029 135 . . R906d +chr16 SNP SNP 89780030 89879014 383 . . R907d +chr16 SNP SNP 89879015 89978000 209 . . R908d +chr16 SNP SNP 89978001 90076986 73 . . R909d +chr16 SNP SNP 90076987 90175971 267 . . R910d +chr16 SNP SNP 90175972 90274957 158 . . R911d +chr16 SNP SNP 90274958 90373943 240 . . R912d +chr16 SNP SNP 90373944 90472928 457 . . R913d +chr16 SNP SNP 90472929 90571914 294 . . R914d +chr16 SNP SNP 90571915 90670900 65 . . R915d +chr16 SNP SNP 90670901 90769885 54 . . R916d +chr16 SNP SNP 90769886 90868871 337 . . R917d +chr16 SNP SNP 90868872 90967857 298 . . R918d +chr16 SNP SNP 90967858 91066842 395 . . R919d +chr16 SNP SNP 91066843 91165828 337 . . R920d +chr16 SNP SNP 91165829 91264814 550 . . R921d +chr16 SNP SNP 91264815 91363800 453 . . R922d +chr16 SNP SNP 91363801 91462785 713 . . R923d +chr16 SNP SNP 91462786 91561771 488 . . R924d +chr16 SNP SNP 91561772 91660757 763 . . R925d +chr16 SNP SNP 91660758 91759742 476 . . R926d +chr16 SNP SNP 91759743 91858728 197 . . R927d +chr16 SNP SNP 91858729 91957714 46 . . R928d +chr16 SNP SNP 91957715 92056699 27 . . R929d +chr16 SNP SNP 92056700 92155685 108 . . R930d +chr16 SNP SNP 92155686 92254671 162 . . R931d +chr16 SNP SNP 92254672 92353656 108 . . R932d +chr16 SNP SNP 92353657 92452642 31 . . R933d +chr16 SNP SNP 92452643 92551628 151 . . R934d +chr16 SNP SNP 92551629 92650613 31 . . R935d +chr16 SNP SNP 92650614 92749599 7 . . R936d +chr16 SNP SNP 92749600 92848585 27 . . R937d +chr16 SNP SNP 92848586 92947571 11 . . R938d +chr16 SNP SNP 92947572 93046556 19 . . R939d +chr16 SNP SNP 93046557 93145542 38 . . R940d +chr16 SNP SNP 93145543 93244528 263 . . R941d +chr16 SNP SNP 93244529 93343513 449 . . R942d +chr16 SNP SNP 93343514 93442499 34 . . R943d +chr16 SNP SNP 93442500 93541485 7 . . R944d +chr16 SNP SNP 93541486 93640470 7 . . R945d +chr16 SNP SNP 93640471 93739456 189 . . R946d +chr16 SNP SNP 93739457 93838442 77 . . R947d +chr16 SNP SNP 93838443 93937427 93 . . R948d +chr16 SNP SNP 93937428 94036413 414 . . R949d +chr16 SNP SNP 94036414 94135399 217 . . R950d +chr16 SNP SNP 94135400 94234384 449 . . R951d +chr16 SNP SNP 94234385 94333370 158 . . R952d +chr16 SNP SNP 94333371 94432356 73 . . R953d +chr16 SNP SNP 94432357 94531342 158 . . R954d +chr16 SNP SNP 94531343 94630327 437 . . R955d +chr16 SNP SNP 94630328 94729313 240 . . R956d +chr16 SNP SNP 94729314 94828299 170 . . R957d +chr16 SNP SNP 94828300 94927284 0 . . R958d +chr16 SNP SNP 94927285 95026270 0 . . R959d +chr16 SNP SNP 95026271 95125256 11 . . R960d +chr16 SNP SNP 95125257 95224241 3 . . R961d +chr16 SNP SNP 95224242 95323227 15 . . R962d +chr16 SNP SNP 95323228 95422213 15 . . R963d +chr16 SNP SNP 95422214 95521198 11 . . R964d +chr16 SNP SNP 95521199 95620184 7 . . R965d +chr16 SNP SNP 95620185 95719170 11 . . R966d +chr16 SNP SNP 95719171 95818155 15 . . R967d +chr16 SNP SNP 95818156 95917141 3 . . R968d +chr16 SNP SNP 95917142 96016127 19 . . R969d +chr16 SNP SNP 96016128 96115113 7 . . R970d +chr16 SNP SNP 96115114 96214098 7 . . R971d +chr16 SNP SNP 96214099 96313084 15 . . R972d +chr16 SNP SNP 96313085 96412070 3 . . R973d +chr16 SNP SNP 96412071 96511055 19 . . R974d +chr16 SNP SNP 96511056 96610041 3 . . R975d +chr16 SNP SNP 96610042 96709027 7 . . R976d +chr16 SNP SNP 96709028 96808012 11 . . R977d +chr16 SNP SNP 96808013 96906998 7 . . R978d +chr16 SNP SNP 96906999 97005984 11 . . R979d +chr16 SNP SNP 97005985 97104969 3 . . R980d +chr16 SNP SNP 97104970 97203955 0 . . R981d +chr16 SNP SNP 97203956 97302941 120 . . R982d +chr16 SNP SNP 97302942 97401926 193 . . R983d +chr16 SNP SNP 97401927 97500912 372 . . R984d +chr16 SNP SNP 97500913 97599898 236 . . R985d +chr16 SNP SNP 97599899 97698884 42 . . R986d +chr16 SNP SNP 97698885 97797869 93 . . R987d +chr16 SNP SNP 97797870 97896855 15 . . R988d +chr16 SNP SNP 97896856 97995841 46 . . R989d +chr16 SNP SNP 97995842 98094826 31 . . R990d +chr16 SNP SNP 98094827 98193812 209 . . R991d +chr16 SNP SNP 98193813 98292798 430 . . R992d +chr16 SNP SNP 98292799 98391783 143 . . R993d +chr16 SNP SNP 98391784 98490769 50 . . R994d +chr16 SNP SNP 98490770 98589755 658 . . R995d +chr16 SNP SNP 98589756 98688740 317 . . R996d +chr16 SNP SNP 98688741 98787726 298 . . R997d +chr16 SNP SNP 98787727 98886712 426 . . R998d +chr16 SNP SNP 98886713 98985697 104 . . R999d +chr16 SNP SNP 98985698 99084683 0 . . R1000d diff --git a/web/snp/chr17 b/web/snp/chr17 new file mode 100755 index 00000000..61f6782b --- /dev/null +++ b/web/snp/chr17 @@ -0,0 +1,1004 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr17 SNP SNP 11 93535 0 . . R0d +chr17 SNP SNP 93536 187061 0 . . R1d +chr17 SNP SNP 187062 280587 0 . . R2d +chr17 SNP SNP 280588 374113 0 . . R3d +chr17 SNP SNP 374114 467638 0 . . R4d +chr17 SNP SNP 467639 561164 0 . . R5d +chr17 SNP SNP 561165 654690 0 . . R6d +chr17 SNP SNP 654691 748216 0 . . R7d +chr17 SNP SNP 748217 841741 0 . . R8d +chr17 SNP SNP 841742 935267 0 . . R9d +chr17 SNP SNP 935268 1028793 0 . . R10d +chr17 SNP SNP 1028794 1122319 0 . . R11d +chr17 SNP SNP 1122320 1215844 0 . . R12d +chr17 SNP SNP 1215845 1309370 0 . . R13d +chr17 SNP SNP 1309371 1402896 0 . . R14d +chr17 SNP SNP 1402897 1496422 0 . . R15d +chr17 SNP SNP 1496423 1589948 0 . . R16d +chr17 SNP SNP 1589949 1683473 0 . . R17d +chr17 SNP SNP 1683474 1776999 0 . . R18d +chr17 SNP SNP 1777000 1870525 0 . . R19d +chr17 SNP SNP 1870526 1964051 0 . . R20d +chr17 SNP SNP 1964052 2057576 0 . . R21d +chr17 SNP SNP 2057577 2151102 0 . . R22d +chr17 SNP SNP 2151103 2244628 0 . . R23d +chr17 SNP SNP 2244629 2338154 0 . . R24d +chr17 SNP SNP 2338155 2431679 0 . . R25d +chr17 SNP SNP 2431680 2525205 0 . . R26d +chr17 SNP SNP 2525206 2618731 0 . . R27d +chr17 SNP SNP 2618732 2712257 0 . . R28d +chr17 SNP SNP 2712258 2805782 0 . . R29d +chr17 SNP SNP 2805783 2899308 0 . . R30d +chr17 SNP SNP 2899309 2992834 0 . . R31d +chr17 SNP SNP 2992835 3086360 3 . . R32d +chr17 SNP SNP 3086361 3179886 386 . . R33d +chr17 SNP SNP 3179887 3273411 343 . . R34d +chr17 SNP SNP 3273412 3366937 7 . . R35d +chr17 SNP SNP 3366938 3460463 3 . . R36d +chr17 SNP SNP 3460464 3553989 25 . . R37d +chr17 SNP SNP 3553990 3647514 14 . . R38d +chr17 SNP SNP 3647515 3741040 21 . . R39d +chr17 SNP SNP 3741041 3834566 29 . . R40d +chr17 SNP SNP 3834567 3928092 7 . . R41d +chr17 SNP SNP 3928093 4021617 10 . . R42d +chr17 SNP SNP 4021618 4115143 3 . . R43d +chr17 SNP SNP 4115144 4208669 7 . . R44d +chr17 SNP SNP 4208670 4302195 18 . . R45d +chr17 SNP SNP 4302196 4395721 3 . . R46d +chr17 SNP SNP 4395722 4489246 3 . . R47d +chr17 SNP SNP 4489247 4582772 91 . . R48d +chr17 SNP SNP 4582773 4676298 273 . . R49d +chr17 SNP SNP 4676299 4769824 116 . . R50d +chr17 SNP SNP 4769825 4863349 266 . . R51d +chr17 SNP SNP 4863350 4956875 248 . . R52d +chr17 SNP SNP 4956876 5050401 36 . . R53d +chr17 SNP SNP 5050402 5143927 32 . . R54d +chr17 SNP SNP 5143928 5237452 21 . . R55d +chr17 SNP SNP 5237453 5330978 10 . . R56d +chr17 SNP SNP 5330979 5424504 87 . . R57d +chr17 SNP SNP 5424505 5518030 204 . . R58d +chr17 SNP SNP 5518031 5611555 156 . . R59d +chr17 SNP SNP 5611556 5705081 306 . . R60d +chr17 SNP SNP 5705082 5798607 368 . . R61d +chr17 SNP SNP 5798608 5892133 288 . . R62d +chr17 SNP SNP 5892134 5985659 273 . . R63d +chr17 SNP SNP 5985660 6079184 72 . . R64d +chr17 SNP SNP 6079185 6172710 3 . . R65d +chr17 SNP SNP 6172711 6266236 10 . . R66d +chr17 SNP SNP 6266237 6359762 405 . . R67d +chr17 SNP SNP 6359763 6453287 281 . . R68d +chr17 SNP SNP 6453288 6546813 430 . . R69d +chr17 SNP SNP 6546814 6640339 29 . . R70d +chr17 SNP SNP 6640340 6733865 10 . . R71d +chr17 SNP SNP 6733866 6827390 102 . . R72d +chr17 SNP SNP 6827391 6920916 32 . . R73d +chr17 SNP SNP 6920917 7014442 18 . . R74d +chr17 SNP SNP 7014443 7107968 7 . . R75d +chr17 SNP SNP 7107969 7201493 0 . . R76d +chr17 SNP SNP 7201494 7295019 58 . . R77d +chr17 SNP SNP 7295020 7388545 463 . . R78d +chr17 SNP SNP 7388546 7482071 405 . . R79d +chr17 SNP SNP 7482072 7575597 94 . . R80d +chr17 SNP SNP 7575598 7669122 80 . . R81d +chr17 SNP SNP 7669123 7762648 36 . . R82d +chr17 SNP SNP 7762649 7856174 10 . . R83d +chr17 SNP SNP 7856175 7949700 142 . . R84d +chr17 SNP SNP 7949701 8043225 149 . . R85d +chr17 SNP SNP 8043226 8136751 18 . . R86d +chr17 SNP SNP 8136752 8230277 7 . . R87d +chr17 SNP SNP 8230278 8323803 32 . . R88d +chr17 SNP SNP 8323804 8417328 69 . . R89d +chr17 SNP SNP 8417329 8510854 91 . . R90d +chr17 SNP SNP 8510855 8604380 237 . . R91d +chr17 SNP SNP 8604381 8697906 40 . . R92d +chr17 SNP SNP 8697907 8791432 21 . . R93d +chr17 SNP SNP 8791433 8884957 18 . . R94d +chr17 SNP SNP 8884958 8978483 547 . . R95d +chr17 SNP SNP 8978484 9072009 675 . . R96d +chr17 SNP SNP 9072010 9165535 492 . . R97d +chr17 SNP SNP 9165536 9259060 226 . . R98d +chr17 SNP SNP 9259061 9352586 29 . . R99d +chr17 SNP SNP 9352587 9446112 18 . . R100d +chr17 SNP SNP 9446113 9539638 18 . . R101d +chr17 SNP SNP 9539639 9633163 21 . . R102d +chr17 SNP SNP 9633164 9726689 18 . . R103d +chr17 SNP SNP 9726690 9820215 25 . . R104d +chr17 SNP SNP 9820216 9913741 474 . . R105d +chr17 SNP SNP 9913742 10007266 215 . . R106d +chr17 SNP SNP 10007267 10100792 40 . . R107d +chr17 SNP SNP 10100793 10194318 36 . . R108d +chr17 SNP SNP 10194319 10287844 21 . . R109d +chr17 SNP SNP 10287845 10381370 21 . . R110d +chr17 SNP SNP 10381371 10474895 394 . . R111d +chr17 SNP SNP 10474896 10568421 660 . . R112d +chr17 SNP SNP 10568422 10661947 708 . . R113d +chr17 SNP SNP 10661948 10755473 802 . . R114d +chr17 SNP SNP 10755474 10848998 715 . . R115d +chr17 SNP SNP 10848999 10942524 912 . . R116d +chr17 SNP SNP 10942525 11036050 613 . . R117d +chr17 SNP SNP 11036051 11129576 777 . . R118d +chr17 SNP SNP 11129577 11223101 467 . . R119d +chr17 SNP SNP 11223102 11316627 777 . . R120d +chr17 SNP SNP 11316628 11410153 839 . . R121d +chr17 SNP SNP 11410154 11503679 788 . . R122d +chr17 SNP SNP 11503680 11597204 529 . . R123d +chr17 SNP SNP 11597205 11690730 7 . . R124d +chr17 SNP SNP 11690731 11784256 10 . . R125d +chr17 SNP SNP 11784257 11877782 10 . . R126d +chr17 SNP SNP 11877783 11971308 29 . . R127d +chr17 SNP SNP 11971309 12064833 18 . . R128d +chr17 SNP SNP 12064834 12158359 36 . . R129d +chr17 SNP SNP 12158360 12251885 3 . . R130d +chr17 SNP SNP 12251886 12345411 357 . . R131d +chr17 SNP SNP 12345412 12438936 65 . . R132d +chr17 SNP SNP 12438937 12532462 14 . . R133d +chr17 SNP SNP 12532463 12625988 7 . . R134d +chr17 SNP SNP 12625989 12719514 7 . . R135d +chr17 SNP SNP 12719515 12813039 29 . . R136d +chr17 SNP SNP 12813040 12906565 21 . . R137d +chr17 SNP SNP 12906566 13000091 3 . . R138d +chr17 SNP SNP 13000092 13093617 29 . . R139d +chr17 SNP SNP 13093618 13187143 51 . . R140d +chr17 SNP SNP 13187144 13280668 36 . . R141d +chr17 SNP SNP 13280669 13374194 240 . . R142d +chr17 SNP SNP 13374195 13467720 40 . . R143d +chr17 SNP SNP 13467721 13561246 54 . . R144d +chr17 SNP SNP 13561247 13654771 69 . . R145d +chr17 SNP SNP 13654772 13748297 197 . . R146d +chr17 SNP SNP 13748298 13841823 120 . . R147d +chr17 SNP SNP 13841824 13935349 72 . . R148d +chr17 SNP SNP 13935350 14028874 32 . . R149d +chr17 SNP SNP 14028875 14122400 10 . . R150d +chr17 SNP SNP 14122401 14215926 21 . . R151d +chr17 SNP SNP 14215927 14309452 375 . . R152d +chr17 SNP SNP 14309453 14402977 178 . . R153d +chr17 SNP SNP 14402978 14496503 164 . . R154d +chr17 SNP SNP 14496504 14590029 120 . . R155d +chr17 SNP SNP 14590030 14683555 58 . . R156d +chr17 SNP SNP 14683556 14777081 215 . . R157d +chr17 SNP SNP 14777082 14870606 540 . . R158d +chr17 SNP SNP 14870607 14964132 394 . . R159d +chr17 SNP SNP 14964133 15057658 211 . . R160d +chr17 SNP SNP 15057659 15151184 135 . . R161d +chr17 SNP SNP 15151185 15244709 76 . . R162d +chr17 SNP SNP 15244710 15338235 65 . . R163d +chr17 SNP SNP 15338236 15431761 14 . . R164d +chr17 SNP SNP 15431762 15525287 18 . . R165d +chr17 SNP SNP 15525288 15618812 14 . . R166d +chr17 SNP SNP 15618813 15712338 116 . . R167d +chr17 SNP SNP 15712339 15805864 171 . . R168d +chr17 SNP SNP 15805865 15899390 69 . . R169d +chr17 SNP SNP 15899391 15992915 113 . . R170d +chr17 SNP SNP 15992916 16086441 463 . . R171d +chr17 SNP SNP 16086442 16179967 532 . . R172d +chr17 SNP SNP 16179968 16273493 277 . . R173d +chr17 SNP SNP 16273494 16367019 405 . . R174d +chr17 SNP SNP 16367020 16460544 437 . . R175d +chr17 SNP SNP 16460545 16554070 529 . . R176d +chr17 SNP SNP 16554071 16647596 36 . . R177d +chr17 SNP SNP 16647597 16741122 43 . . R178d +chr17 SNP SNP 16741123 16834647 54 . . R179d +chr17 SNP SNP 16834648 16928173 29 . . R180d +chr17 SNP SNP 16928174 17021699 215 . . R181d +chr17 SNP SNP 17021700 17115225 339 . . R182d +chr17 SNP SNP 17115226 17208750 850 . . R183d +chr17 SNP SNP 17208751 17302276 883 . . R184d +chr17 SNP SNP 17302277 17395802 704 . . R185d +chr17 SNP SNP 17395803 17489328 817 . . R186d +chr17 SNP SNP 17489329 17582854 956 . . R187d +chr17 SNP SNP 17582855 17676379 489 . . R188d +chr17 SNP SNP 17676380 17769905 145 . . R189d +chr17 SNP SNP 17769906 17863431 0 . . R190d +chr17 SNP SNP 17863432 17956957 332 . . R191d +chr17 SNP SNP 17956958 18050482 437 . . R192d +chr17 SNP SNP 18050483 18144008 514 . . R193d +chr17 SNP SNP 18144009 18237534 346 . . R194d +chr17 SNP SNP 18237535 18331060 868 . . R195d +chr17 SNP SNP 18331061 18424585 744 . . R196d +chr17 SNP SNP 18424586 18518111 770 . . R197d +chr17 SNP SNP 18518112 18611637 1000 . . R198d +chr17 SNP SNP 18611638 18705163 594 . . R199d +chr17 SNP SNP 18705164 18798688 536 . . R200d +chr17 SNP SNP 18798689 18892214 401 . . R201d +chr17 SNP SNP 18892215 18985740 208 . . R202d +chr17 SNP SNP 18985741 19079266 350 . . R203d +chr17 SNP SNP 19079267 19172792 405 . . R204d +chr17 SNP SNP 19172793 19266317 284 . . R205d +chr17 SNP SNP 19266318 19359843 262 . . R206d +chr17 SNP SNP 19359844 19453369 291 . . R207d +chr17 SNP SNP 19453370 19546895 208 . . R208d +chr17 SNP SNP 19546896 19640420 54 . . R209d +chr17 SNP SNP 19640421 19733946 109 . . R210d +chr17 SNP SNP 19733947 19827472 62 . . R211d +chr17 SNP SNP 19827473 19920998 0 . . R212d +chr17 SNP SNP 19920999 20014523 0 . . R213d +chr17 SNP SNP 20014524 20108049 0 . . R214d +chr17 SNP SNP 20108050 20201575 0 . . R215d +chr17 SNP SNP 20201576 20295101 0 . . R216d +chr17 SNP SNP 20295102 20388626 0 . . R217d +chr17 SNP SNP 20388627 20482152 3 . . R218d +chr17 SNP SNP 20482153 20575678 0 . . R219d +chr17 SNP SNP 20575679 20669204 0 . . R220d +chr17 SNP SNP 20669205 20762730 0 . . R221d +chr17 SNP SNP 20762731 20856255 0 . . R222d +chr17 SNP SNP 20856256 20949781 7 . . R223d +chr17 SNP SNP 20949782 21043307 0 . . R224d +chr17 SNP SNP 21043308 21136833 18 . . R225d +chr17 SNP SNP 21136834 21230358 0 . . R226d +chr17 SNP SNP 21230359 21323884 0 . . R227d +chr17 SNP SNP 21323885 21417410 0 . . R228d +chr17 SNP SNP 21417411 21510936 10 . . R229d +chr17 SNP SNP 21510937 21604461 0 . . R230d +chr17 SNP SNP 21604462 21697987 7 . . R231d +chr17 SNP SNP 21697988 21791513 0 . . R232d +chr17 SNP SNP 21791514 21885039 0 . . R233d +chr17 SNP SNP 21885040 21978565 51 . . R234d +chr17 SNP SNP 21978566 22072090 288 . . R235d +chr17 SNP SNP 22072091 22165616 105 . . R236d +chr17 SNP SNP 22165617 22259142 244 . . R237d +chr17 SNP SNP 22259143 22352668 361 . . R238d +chr17 SNP SNP 22352669 22446193 270 . . R239d +chr17 SNP SNP 22446194 22539719 434 . . R240d +chr17 SNP SNP 22539720 22633245 317 . . R241d +chr17 SNP SNP 22633246 22726771 620 . . R242d +chr17 SNP SNP 22726772 22820296 547 . . R243d +chr17 SNP SNP 22820297 22913822 558 . . R244d +chr17 SNP SNP 22913823 23007348 419 . . R245d +chr17 SNP SNP 23007349 23100874 602 . . R246d +chr17 SNP SNP 23100875 23194399 503 . . R247d +chr17 SNP SNP 23194400 23287925 667 . . R248d +chr17 SNP SNP 23287926 23381451 452 . . R249d +chr17 SNP SNP 23381452 23474977 492 . . R250d +chr17 SNP SNP 23474978 23568503 481 . . R251d +chr17 SNP SNP 23568504 23662028 839 . . R252d +chr17 SNP SNP 23662029 23755554 704 . . R253d +chr17 SNP SNP 23755555 23849080 686 . . R254d +chr17 SNP SNP 23849081 23942606 496 . . R255d +chr17 SNP SNP 23942607 24036131 631 . . R256d +chr17 SNP SNP 24036132 24129657 638 . . R257d +chr17 SNP SNP 24129658 24223183 828 . . R258d +chr17 SNP SNP 24223184 24316709 357 . . R259d +chr17 SNP SNP 24316710 24410234 153 . . R260d +chr17 SNP SNP 24410235 24503760 18 . . R261d +chr17 SNP SNP 24503761 24597286 7 . . R262d +chr17 SNP SNP 24597287 24690812 36 . . R263d +chr17 SNP SNP 24690813 24784337 87 . . R264d +chr17 SNP SNP 24784338 24877863 36 . . R265d +chr17 SNP SNP 24877864 24971389 237 . . R266d +chr17 SNP SNP 24971390 25064915 244 . . R267d +chr17 SNP SNP 25064916 25158441 459 . . R268d +chr17 SNP SNP 25158442 25251966 503 . . R269d +chr17 SNP SNP 25251967 25345492 346 . . R270d +chr17 SNP SNP 25345493 25439018 32 . . R271d +chr17 SNP SNP 25439019 25532544 7 . . R272d +chr17 SNP SNP 25532545 25626069 65 . . R273d +chr17 SNP SNP 25626070 25719595 156 . . R274d +chr17 SNP SNP 25719596 25813121 281 . . R275d +chr17 SNP SNP 25813122 25906647 339 . . R276d +chr17 SNP SNP 25906648 26000172 167 . . R277d +chr17 SNP SNP 26000173 26093698 218 . . R278d +chr17 SNP SNP 26093699 26187224 248 . . R279d +chr17 SNP SNP 26187225 26280750 306 . . R280d +chr17 SNP SNP 26280751 26374276 237 . . R281d +chr17 SNP SNP 26374277 26467801 302 . . R282d +chr17 SNP SNP 26467802 26561327 262 . . R283d +chr17 SNP SNP 26561328 26654853 547 . . R284d +chr17 SNP SNP 26654854 26748379 332 . . R285d +chr17 SNP SNP 26748380 26841904 94 . . R286d +chr17 SNP SNP 26841905 26935430 18 . . R287d +chr17 SNP SNP 26935431 27028956 29 . . R288d +chr17 SNP SNP 27028957 27122482 21 . . R289d +chr17 SNP SNP 27122483 27216007 40 . . R290d +chr17 SNP SNP 27216008 27309533 21 . . R291d +chr17 SNP SNP 27309534 27403059 32 . . R292d +chr17 SNP SNP 27403060 27496585 10 . . R293d +chr17 SNP SNP 27496586 27590110 3 . . R294d +chr17 SNP SNP 27590111 27683636 65 . . R295d +chr17 SNP SNP 27683637 27777162 91 . . R296d +chr17 SNP SNP 27777163 27870688 284 . . R297d +chr17 SNP SNP 27870689 27964214 251 . . R298d +chr17 SNP SNP 27964215 28057739 240 . . R299d +chr17 SNP SNP 28057740 28151265 321 . . R300d +chr17 SNP SNP 28151266 28244791 171 . . R301d +chr17 SNP SNP 28244792 28338317 346 . . R302d +chr17 SNP SNP 28338318 28431842 69 . . R303d +chr17 SNP SNP 28431843 28525368 65 . . R304d +chr17 SNP SNP 28525369 28618894 197 . . R305d +chr17 SNP SNP 28618895 28712420 321 . . R306d +chr17 SNP SNP 28712421 28805945 58 . . R307d +chr17 SNP SNP 28805946 28899471 21 . . R308d +chr17 SNP SNP 28899472 28992997 10 . . R309d +chr17 SNP SNP 28992998 29086523 14 . . R310d +chr17 SNP SNP 29086524 29180048 7 . . R311d +chr17 SNP SNP 29180049 29273574 0 . . R312d +chr17 SNP SNP 29273575 29367100 0 . . R313d +chr17 SNP SNP 29367101 29460626 0 . . R314d +chr17 SNP SNP 29460627 29554152 0 . . R315d +chr17 SNP SNP 29554153 29647677 72 . . R316d +chr17 SNP SNP 29647678 29741203 233 . . R317d +chr17 SNP SNP 29741204 29834729 288 . . R318d +chr17 SNP SNP 29834730 29928255 379 . . R319d +chr17 SNP SNP 29928256 30021780 94 . . R320d +chr17 SNP SNP 30021781 30115306 124 . . R321d +chr17 SNP SNP 30115307 30208832 182 . . R322d +chr17 SNP SNP 30208833 30302358 29 . . R323d +chr17 SNP SNP 30302359 30395883 222 . . R324d +chr17 SNP SNP 30395884 30489409 350 . . R325d +chr17 SNP SNP 30489410 30582935 521 . . R326d +chr17 SNP SNP 30582936 30676461 182 . . R327d +chr17 SNP SNP 30676462 30769987 0 . . R328d +chr17 SNP SNP 30769988 30863512 14 . . R329d +chr17 SNP SNP 30863513 30957038 14 . . R330d +chr17 SNP SNP 30957039 31050564 14 . . R331d +chr17 SNP SNP 31050565 31144090 7 . . R332d +chr17 SNP SNP 31144091 31237615 14 . . R333d +chr17 SNP SNP 31237616 31331141 14 . . R334d +chr17 SNP SNP 31331142 31424667 10 . . R335d +chr17 SNP SNP 31424668 31518193 25 . . R336d +chr17 SNP SNP 31518194 31611718 10 . . R337d +chr17 SNP SNP 31611719 31705244 3 . . R338d +chr17 SNP SNP 31705245 31798770 18 . . R339d +chr17 SNP SNP 31798771 31892296 291 . . R340d +chr17 SNP SNP 31892297 31985821 310 . . R341d +chr17 SNP SNP 31985822 32079347 317 . . R342d +chr17 SNP SNP 32079348 32172873 445 . . R343d +chr17 SNP SNP 32172874 32266399 251 . . R344d +chr17 SNP SNP 32266400 32359925 251 . . R345d +chr17 SNP SNP 32359926 32453450 762 . . R346d +chr17 SNP SNP 32453451 32546976 299 . . R347d +chr17 SNP SNP 32546977 32640502 109 . . R348d +chr17 SNP SNP 32640503 32734028 390 . . R349d +chr17 SNP SNP 32734029 32827553 390 . . R350d +chr17 SNP SNP 32827554 32921079 178 . . R351d +chr17 SNP SNP 32921080 33014605 405 . . R352d +chr17 SNP SNP 33014606 33108131 343 . . R353d +chr17 SNP SNP 33108132 33201656 255 . . R354d +chr17 SNP SNP 33201657 33295182 346 . . R355d +chr17 SNP SNP 33295183 33388708 248 . . R356d +chr17 SNP SNP 33388709 33482234 554 . . R357d +chr17 SNP SNP 33482235 33575759 18 . . R358d +chr17 SNP SNP 33575760 33669285 182 . . R359d +chr17 SNP SNP 33669286 33762811 481 . . R360d +chr17 SNP SNP 33762812 33856337 350 . . R361d +chr17 SNP SNP 33856338 33949863 69 . . R362d +chr17 SNP SNP 33949864 34043388 18 . . R363d +chr17 SNP SNP 34043389 34136914 109 . . R364d +chr17 SNP SNP 34136915 34230440 543 . . R365d +chr17 SNP SNP 34230441 34323966 295 . . R366d +chr17 SNP SNP 34323967 34417491 302 . . R367d +chr17 SNP SNP 34417492 34511017 233 . . R368d +chr17 SNP SNP 34511018 34604543 178 . . R369d +chr17 SNP SNP 34604544 34698069 7 . . R370d +chr17 SNP SNP 34698070 34791594 40 . . R371d +chr17 SNP SNP 34791595 34885120 94 . . R372d +chr17 SNP SNP 34885121 34978646 3 . . R373d +chr17 SNP SNP 34978647 35072172 18 . . R374d +chr17 SNP SNP 35072173 35165698 21 . . R375d +chr17 SNP SNP 35165699 35259223 10 . . R376d +chr17 SNP SNP 35259224 35352749 10 . . R377d +chr17 SNP SNP 35352750 35446275 237 . . R378d +chr17 SNP SNP 35446276 35539801 408 . . R379d +chr17 SNP SNP 35539802 35633326 138 . . R380d +chr17 SNP SNP 35633327 35726852 295 . . R381d +chr17 SNP SNP 35726853 35820378 500 . . R382d +chr17 SNP SNP 35820379 35913904 354 . . R383d +chr17 SNP SNP 35913905 36007429 167 . . R384d +chr17 SNP SNP 36007430 36100955 313 . . R385d +chr17 SNP SNP 36100956 36194481 386 . . R386d +chr17 SNP SNP 36194482 36288007 609 . . R387d +chr17 SNP SNP 36288008 36381532 459 . . R388d +chr17 SNP SNP 36381533 36475058 452 . . R389d +chr17 SNP SNP 36475059 36568584 218 . . R390d +chr17 SNP SNP 36568585 36662110 226 . . R391d +chr17 SNP SNP 36662111 36755636 80 . . R392d +chr17 SNP SNP 36755637 36849161 91 . . R393d +chr17 SNP SNP 36849162 36942687 62 . . R394d +chr17 SNP SNP 36942688 37036213 87 . . R395d +chr17 SNP SNP 37036214 37129739 91 . . R396d +chr17 SNP SNP 37129740 37223264 127 . . R397d +chr17 SNP SNP 37223265 37316790 302 . . R398d +chr17 SNP SNP 37316791 37410316 397 . . R399d +chr17 SNP SNP 37410317 37503842 540 . . R400d +chr17 SNP SNP 37503843 37597367 540 . . R401d +chr17 SNP SNP 37597368 37690893 459 . . R402d +chr17 SNP SNP 37690894 37784419 470 . . R403d +chr17 SNP SNP 37784420 37877945 368 . . R404d +chr17 SNP SNP 37877946 37971470 204 . . R405d +chr17 SNP SNP 37971471 38064996 171 . . R406d +chr17 SNP SNP 38064997 38158522 361 . . R407d +chr17 SNP SNP 38158523 38252048 105 . . R408d +chr17 SNP SNP 38252049 38345574 240 . . R409d +chr17 SNP SNP 38345575 38439099 215 . . R410d +chr17 SNP SNP 38439100 38532625 36 . . R411d +chr17 SNP SNP 38532626 38626151 43 . . R412d +chr17 SNP SNP 38626152 38719677 7 . . R413d +chr17 SNP SNP 38719678 38813202 21 . . R414d +chr17 SNP SNP 38813203 38906728 80 . . R415d +chr17 SNP SNP 38906729 39000254 135 . . R416d +chr17 SNP SNP 39000255 39093780 317 . . R417d +chr17 SNP SNP 39093781 39187305 193 . . R418d +chr17 SNP SNP 39187306 39280831 18 . . R419d +chr17 SNP SNP 39280832 39374357 204 . . R420d +chr17 SNP SNP 39374358 39467883 229 . . R421d +chr17 SNP SNP 39467884 39561409 405 . . R422d +chr17 SNP SNP 39561410 39654934 624 . . R423d +chr17 SNP SNP 39654935 39748460 372 . . R424d +chr17 SNP SNP 39748461 39841986 478 . . R425d +chr17 SNP SNP 39841987 39935512 251 . . R426d +chr17 SNP SNP 39935513 40029037 313 . . R427d +chr17 SNP SNP 40029038 40122563 401 . . R428d +chr17 SNP SNP 40122564 40216089 427 . . R429d +chr17 SNP SNP 40216090 40309615 321 . . R430d +chr17 SNP SNP 40309616 40403140 251 . . R431d +chr17 SNP SNP 40403141 40496666 302 . . R432d +chr17 SNP SNP 40496667 40590192 251 . . R433d +chr17 SNP SNP 40590193 40683718 390 . . R434d +chr17 SNP SNP 40683719 40777243 335 . . R435d +chr17 SNP SNP 40777244 40870769 361 . . R436d +chr17 SNP SNP 40870770 40964295 273 . . R437d +chr17 SNP SNP 40964296 41057821 335 . . R438d +chr17 SNP SNP 41057822 41151347 514 . . R439d +chr17 SNP SNP 41151348 41244872 135 . . R440d +chr17 SNP SNP 41244873 41338398 456 . . R441d +chr17 SNP SNP 41338399 41431924 324 . . R442d +chr17 SNP SNP 41431925 41525450 397 . . R443d +chr17 SNP SNP 41525451 41618975 244 . . R444d +chr17 SNP SNP 41618976 41712501 208 . . R445d +chr17 SNP SNP 41712502 41806027 58 . . R446d +chr17 SNP SNP 41806028 41899553 321 . . R447d +chr17 SNP SNP 41899554 41993078 288 . . R448d +chr17 SNP SNP 41993079 42086604 189 . . R449d +chr17 SNP SNP 42086605 42180130 328 . . R450d +chr17 SNP SNP 42180131 42273656 350 . . R451d +chr17 SNP SNP 42273657 42367181 361 . . R452d +chr17 SNP SNP 42367182 42460707 354 . . R453d +chr17 SNP SNP 42460708 42554233 171 . . R454d +chr17 SNP SNP 42554234 42647759 10 . . R455d +chr17 SNP SNP 42647760 42741285 10 . . R456d +chr17 SNP SNP 42741286 42834810 7 . . R457d +chr17 SNP SNP 42834811 42928336 10 . . R458d +chr17 SNP SNP 42928337 43021862 7 . . R459d +chr17 SNP SNP 43021863 43115388 18 . . R460d +chr17 SNP SNP 43115389 43208913 10 . . R461d +chr17 SNP SNP 43208914 43302439 7 . . R462d +chr17 SNP SNP 43302440 43395965 7 . . R463d +chr17 SNP SNP 43395966 43489491 124 . . R464d +chr17 SNP SNP 43489492 43583016 237 . . R465d +chr17 SNP SNP 43583017 43676542 40 . . R466d +chr17 SNP SNP 43676543 43770068 14 . . R467d +chr17 SNP SNP 43770069 43863594 109 . . R468d +chr17 SNP SNP 43863595 43957120 14 . . R469d +chr17 SNP SNP 43957121 44050645 302 . . R470d +chr17 SNP SNP 44050646 44144171 18 . . R471d +chr17 SNP SNP 44144172 44237697 7 . . R472d +chr17 SNP SNP 44237698 44331223 3 . . R473d +chr17 SNP SNP 44331224 44424748 29 . . R474d +chr17 SNP SNP 44424749 44518274 10 . . R475d +chr17 SNP SNP 44518275 44611800 7 . . R476d +chr17 SNP SNP 44611801 44705326 3 . . R477d +chr17 SNP SNP 44705327 44798851 7 . . R478d +chr17 SNP SNP 44798852 44892377 18 . . R479d +chr17 SNP SNP 44892378 44985903 54 . . R480d +chr17 SNP SNP 44985904 45079429 29 . . R481d +chr17 SNP SNP 45079430 45172954 7 . . R482d +chr17 SNP SNP 45172955 45266480 25 . . R483d +chr17 SNP SNP 45266481 45360006 3 . . R484d +chr17 SNP SNP 45360007 45453532 7 . . R485d +chr17 SNP SNP 45453533 45547058 10 . . R486d +chr17 SNP SNP 45547059 45640583 29 . . R487d +chr17 SNP SNP 45640584 45734109 36 . . R488d +chr17 SNP SNP 45734110 45827635 145 . . R489d +chr17 SNP SNP 45827636 45921161 76 . . R490d +chr17 SNP SNP 45921162 46014686 266 . . R491d +chr17 SNP SNP 46014687 46108212 266 . . R492d +chr17 SNP SNP 46108213 46201738 375 . . R493d +chr17 SNP SNP 46201739 46295264 339 . . R494d +chr17 SNP SNP 46295265 46388789 18 . . R495d +chr17 SNP SNP 46388790 46482315 21 . . R496d +chr17 SNP SNP 46482316 46575841 80 . . R497d +chr17 SNP SNP 46575842 46669367 291 . . R498d +chr17 SNP SNP 46669368 46762892 332 . . R499d +chr17 SNP SNP 46762893 46856418 51 . . R500d +chr17 SNP SNP 46856419 46949944 229 . . R501d +chr17 SNP SNP 46949945 47043470 481 . . R502d +chr17 SNP SNP 47043471 47136996 87 . . R503d +chr17 SNP SNP 47136997 47230521 226 . . R504d +chr17 SNP SNP 47230522 47324047 379 . . R505d +chr17 SNP SNP 47324048 47417573 423 . . R506d +chr17 SNP SNP 47417574 47511099 10 . . R507d +chr17 SNP SNP 47511100 47604624 145 . . R508d +chr17 SNP SNP 47604625 47698150 193 . . R509d +chr17 SNP SNP 47698151 47791676 178 . . R510d +chr17 SNP SNP 47791677 47885202 240 . . R511d +chr17 SNP SNP 47885203 47978727 266 . . R512d +chr17 SNP SNP 47978728 48072253 135 . . R513d +chr17 SNP SNP 48072254 48165779 324 . . R514d +chr17 SNP SNP 48165780 48259305 463 . . R515d +chr17 SNP SNP 48259306 48352831 354 . . R516d +chr17 SNP SNP 48352832 48446356 178 . . R517d +chr17 SNP SNP 48446357 48539882 145 . . R518d +chr17 SNP SNP 48539883 48633408 295 . . R519d +chr17 SNP SNP 48633409 48726934 262 . . R520d +chr17 SNP SNP 48726935 48820459 478 . . R521d +chr17 SNP SNP 48820460 48913985 343 . . R522d +chr17 SNP SNP 48913986 49007511 233 . . R523d +chr17 SNP SNP 49007512 49101037 335 . . R524d +chr17 SNP SNP 49101038 49194562 72 . . R525d +chr17 SNP SNP 49194563 49288088 21 . . R526d +chr17 SNP SNP 49288089 49381614 47 . . R527d +chr17 SNP SNP 49381615 49475140 18 . . R528d +chr17 SNP SNP 49475141 49568665 332 . . R529d +chr17 SNP SNP 49568666 49662191 98 . . R530d +chr17 SNP SNP 49662192 49755717 127 . . R531d +chr17 SNP SNP 49755718 49849243 43 . . R532d +chr17 SNP SNP 49849244 49942769 10 . . R533d +chr17 SNP SNP 49942770 50036294 142 . . R534d +chr17 SNP SNP 50036295 50129820 124 . . R535d +chr17 SNP SNP 50129821 50223346 437 . . R536d +chr17 SNP SNP 50223347 50316872 160 . . R537d +chr17 SNP SNP 50316873 50410397 452 . . R538d +chr17 SNP SNP 50410398 50503923 507 . . R539d +chr17 SNP SNP 50503924 50597449 273 . . R540d +chr17 SNP SNP 50597450 50690975 218 . . R541d +chr17 SNP SNP 50690976 50784500 302 . . R542d +chr17 SNP SNP 50784501 50878026 364 . . R543d +chr17 SNP SNP 50878027 50971552 470 . . R544d +chr17 SNP SNP 50971553 51065078 83 . . R545d +chr17 SNP SNP 51065079 51158604 51 . . R546d +chr17 SNP SNP 51158605 51252129 18 . . R547d +chr17 SNP SNP 51252130 51345655 25 . . R548d +chr17 SNP SNP 51345656 51439181 32 . . R549d +chr17 SNP SNP 51439182 51532707 25 . . R550d +chr17 SNP SNP 51532708 51626232 36 . . R551d +chr17 SNP SNP 51626233 51719758 32 . . R552d +chr17 SNP SNP 51719759 51813284 211 . . R553d +chr17 SNP SNP 51813285 51906810 94 . . R554d +chr17 SNP SNP 51906811 52000335 226 . . R555d +chr17 SNP SNP 52000336 52093861 244 . . R556d +chr17 SNP SNP 52093862 52187387 149 . . R557d +chr17 SNP SNP 52187388 52280913 0 . . R558d +chr17 SNP SNP 52280914 52374438 178 . . R559d +chr17 SNP SNP 52374439 52467964 244 . . R560d +chr17 SNP SNP 52467965 52561490 339 . . R561d +chr17 SNP SNP 52561491 52655016 244 . . R562d +chr17 SNP SNP 52655017 52748542 350 . . R563d +chr17 SNP SNP 52748543 52842067 448 . . R564d +chr17 SNP SNP 52842068 52935593 434 . . R565d +chr17 SNP SNP 52935594 53029119 175 . . R566d +chr17 SNP SNP 53029120 53122645 21 . . R567d +chr17 SNP SNP 53122646 53216170 43 . . R568d +chr17 SNP SNP 53216171 53309696 204 . . R569d +chr17 SNP SNP 53309697 53403222 76 . . R570d +chr17 SNP SNP 53403223 53496748 492 . . R571d +chr17 SNP SNP 53496749 53590273 332 . . R572d +chr17 SNP SNP 53590274 53683799 383 . . R573d +chr17 SNP SNP 53683800 53777325 350 . . R574d +chr17 SNP SNP 53777326 53870851 521 . . R575d +chr17 SNP SNP 53870852 53964376 616 . . R576d +chr17 SNP SNP 53964377 54057902 302 . . R577d +chr17 SNP SNP 54057903 54151428 18 . . R578d +chr17 SNP SNP 54151429 54244954 3 . . R579d +chr17 SNP SNP 54244955 54338480 18 . . R580d +chr17 SNP SNP 54338481 54432005 21 . . R581d +chr17 SNP SNP 54432006 54525531 0 . . R582d +chr17 SNP SNP 54525532 54619057 3 . . R583d +chr17 SNP SNP 54619058 54712583 7 . . R584d +chr17 SNP SNP 54712584 54806108 0 . . R585d +chr17 SNP SNP 54806109 54899634 7 . . R586d +chr17 SNP SNP 54899635 54993160 10 . . R587d +chr17 SNP SNP 54993161 55086686 10 . . R588d +chr17 SNP SNP 55086687 55180211 21 . . R589d +chr17 SNP SNP 55180212 55273737 25 . . R590d +chr17 SNP SNP 55273738 55367263 10 . . R591d +chr17 SNP SNP 55367264 55460789 18 . . R592d +chr17 SNP SNP 55460790 55554315 193 . . R593d +chr17 SNP SNP 55554316 55647840 43 . . R594d +chr17 SNP SNP 55647841 55741366 87 . . R595d +chr17 SNP SNP 55741367 55834892 0 . . R596d +chr17 SNP SNP 55834893 55928418 32 . . R597d +chr17 SNP SNP 55928419 56021943 3 . . R598d +chr17 SNP SNP 56021944 56115469 14 . . R599d +chr17 SNP SNP 56115470 56208995 7 . . R600d +chr17 SNP SNP 56208996 56302521 32 . . R601d +chr17 SNP SNP 56302522 56396046 7 . . R602d +chr17 SNP SNP 56396047 56489572 3 . . R603d +chr17 SNP SNP 56489573 56583098 14 . . R604d +chr17 SNP SNP 56583099 56676624 7 . . R605d +chr17 SNP SNP 56676625 56770149 14 . . R606d +chr17 SNP SNP 56770150 56863675 3 . . R607d +chr17 SNP SNP 56863676 56957201 7 . . R608d +chr17 SNP SNP 56957202 57050727 10 . . R609d +chr17 SNP SNP 57050728 57144253 3 . . R610d +chr17 SNP SNP 57144254 57237778 14 . . R611d +chr17 SNP SNP 57237779 57331304 25 . . R612d +chr17 SNP SNP 57331305 57424830 21 . . R613d +chr17 SNP SNP 57424831 57518356 7 . . R614d +chr17 SNP SNP 57518357 57611881 18 . . R615d +chr17 SNP SNP 57611882 57705407 7 . . R616d +chr17 SNP SNP 57705408 57798933 18 . . R617d +chr17 SNP SNP 57798934 57892459 14 . . R618d +chr17 SNP SNP 57892460 57985984 10 . . R619d +chr17 SNP SNP 57985985 58079510 25 . . R620d +chr17 SNP SNP 58079511 58173036 18 . . R621d +chr17 SNP SNP 58173037 58266562 7 . . R622d +chr17 SNP SNP 58266563 58360087 21 . . R623d +chr17 SNP SNP 58360088 58453613 0 . . R624d +chr17 SNP SNP 58453614 58547139 21 . . R625d +chr17 SNP SNP 58547140 58640665 10 . . R626d +chr17 SNP SNP 58640666 58734191 25 . . R627d +chr17 SNP SNP 58734192 58827716 18 . . R628d +chr17 SNP SNP 58827717 58921242 10 . . R629d +chr17 SNP SNP 58921243 59014768 7 . . R630d +chr17 SNP SNP 59014769 59108294 29 . . R631d +chr17 SNP SNP 59108295 59201819 14 . . R632d +chr17 SNP SNP 59201820 59295345 7 . . R633d +chr17 SNP SNP 59295346 59388871 7 . . R634d +chr17 SNP SNP 59388872 59482397 10 . . R635d +chr17 SNP SNP 59482398 59575922 3 . . R636d +chr17 SNP SNP 59575923 59669448 14 . . R637d +chr17 SNP SNP 59669449 59762974 10 . . R638d +chr17 SNP SNP 59762975 59856500 3 . . R639d +chr17 SNP SNP 59856501 59950026 18 . . R640d +chr17 SNP SNP 59950027 60043551 18 . . R641d +chr17 SNP SNP 60043552 60137077 32 . . R642d +chr17 SNP SNP 60137078 60230603 14 . . R643d +chr17 SNP SNP 60230604 60324129 18 . . R644d +chr17 SNP SNP 60324130 60417654 3 . . R645d +chr17 SNP SNP 60417655 60511180 14 . . R646d +chr17 SNP SNP 60511181 60604706 43 . . R647d +chr17 SNP SNP 60604707 60698232 10 . . R648d +chr17 SNP SNP 60698233 60791757 3 . . R649d +chr17 SNP SNP 60791758 60885283 10 . . R650d +chr17 SNP SNP 60885284 60978809 18 . . R651d +chr17 SNP SNP 60978810 61072335 14 . . R652d +chr17 SNP SNP 61072336 61165860 10 . . R653d +chr17 SNP SNP 61165861 61259386 18 . . R654d +chr17 SNP SNP 61259387 61352912 10 . . R655d +chr17 SNP SNP 61352913 61446438 7 . . R656d +chr17 SNP SNP 61446439 61539964 14 . . R657d +chr17 SNP SNP 61539965 61633489 21 . . R658d +chr17 SNP SNP 61633490 61727015 14 . . R659d +chr17 SNP SNP 61727016 61820541 14 . . R660d +chr17 SNP SNP 61820542 61914067 7 . . R661d +chr17 SNP SNP 61914068 62007592 131 . . R662d +chr17 SNP SNP 62007593 62101118 83 . . R663d +chr17 SNP SNP 62101119 62194644 142 . . R664d +chr17 SNP SNP 62194645 62288170 29 . . R665d +chr17 SNP SNP 62288171 62381695 3 . . R666d +chr17 SNP SNP 62381696 62475221 36 . . R667d +chr17 SNP SNP 62475222 62568747 10 . . R668d +chr17 SNP SNP 62568748 62662273 18 . . R669d +chr17 SNP SNP 62662274 62755798 29 . . R670d +chr17 SNP SNP 62755799 62849324 36 . . R671d +chr17 SNP SNP 62849325 62942850 160 . . R672d +chr17 SNP SNP 62942851 63036376 80 . . R673d +chr17 SNP SNP 63036377 63129902 18 . . R674d +chr17 SNP SNP 63129903 63223427 0 . . R675d +chr17 SNP SNP 63223428 63316953 10 . . R676d +chr17 SNP SNP 63316954 63410479 14 . . R677d +chr17 SNP SNP 63410480 63504005 29 . . R678d +chr17 SNP SNP 63504006 63597530 32 . . R679d +chr17 SNP SNP 63597531 63691056 29 . . R680d +chr17 SNP SNP 63691057 63784582 226 . . R681d +chr17 SNP SNP 63784583 63878108 372 . . R682d +chr17 SNP SNP 63878109 63971633 200 . . R683d +chr17 SNP SNP 63971634 64065159 62 . . R684d +chr17 SNP SNP 64065160 64158685 10 . . R685d +chr17 SNP SNP 64158686 64252211 248 . . R686d +chr17 SNP SNP 64252212 64345737 489 . . R687d +chr17 SNP SNP 64345738 64439262 69 . . R688d +chr17 SNP SNP 64439263 64532788 29 . . R689d +chr17 SNP SNP 64532789 64626314 262 . . R690d +chr17 SNP SNP 64626315 64719840 124 . . R691d +chr17 SNP SNP 64719841 64813365 193 . . R692d +chr17 SNP SNP 64813366 64906891 142 . . R693d +chr17 SNP SNP 64906892 65000417 7 . . R694d +chr17 SNP SNP 65000418 65093943 21 . . R695d +chr17 SNP SNP 65093944 65187468 153 . . R696d +chr17 SNP SNP 65187469 65280994 481 . . R697d +chr17 SNP SNP 65280995 65374520 463 . . R698d +chr17 SNP SNP 65374521 65468046 295 . . R699d +chr17 SNP SNP 65468047 65561571 29 . . R700d +chr17 SNP SNP 65561572 65655097 200 . . R701d +chr17 SNP SNP 65655098 65748623 386 . . R702d +chr17 SNP SNP 65748624 65842149 266 . . R703d +chr17 SNP SNP 65842150 65935675 113 . . R704d +chr17 SNP SNP 65935676 66029200 29 . . R705d +chr17 SNP SNP 66029201 66122726 25 . . R706d +chr17 SNP SNP 66122727 66216252 14 . . R707d +chr17 SNP SNP 66216253 66309778 80 . . R708d +chr17 SNP SNP 66309779 66403303 459 . . R709d +chr17 SNP SNP 66403304 66496829 94 . . R710d +chr17 SNP SNP 66496830 66590355 164 . . R711d +chr17 SNP SNP 66590356 66683881 375 . . R712d +chr17 SNP SNP 66683882 66777406 18 . . R713d +chr17 SNP SNP 66777407 66870932 18 . . R714d +chr17 SNP SNP 66870933 66964458 18 . . R715d +chr17 SNP SNP 66964459 67057984 10 . . R716d +chr17 SNP SNP 67057985 67151509 266 . . R717d +chr17 SNP SNP 67151510 67245035 167 . . R718d +chr17 SNP SNP 67245036 67338561 361 . . R719d +chr17 SNP SNP 67338562 67432087 80 . . R720d +chr17 SNP SNP 67432088 67525613 204 . . R721d +chr17 SNP SNP 67525614 67619138 43 . . R722d +chr17 SNP SNP 67619139 67712664 21 . . R723d +chr17 SNP SNP 67712665 67806190 18 . . R724d +chr17 SNP SNP 67806191 67899716 3 . . R725d +chr17 SNP SNP 67899717 67993241 14 . . R726d +chr17 SNP SNP 67993242 68086767 0 . . R727d +chr17 SNP SNP 68086768 68180293 7 . . R728d +chr17 SNP SNP 68180294 68273819 3 . . R729d +chr17 SNP SNP 68273820 68367344 7 . . R730d +chr17 SNP SNP 68367345 68460870 7 . . R731d +chr17 SNP SNP 68460871 68554396 3 . . R732d +chr17 SNP SNP 68554397 68647922 10 . . R733d +chr17 SNP SNP 68647923 68741448 94 . . R734d +chr17 SNP SNP 68741449 68834973 361 . . R735d +chr17 SNP SNP 68834974 68928499 357 . . R736d +chr17 SNP SNP 68928500 69022025 76 . . R737d +chr17 SNP SNP 69022026 69115551 102 . . R738d +chr17 SNP SNP 69115552 69209076 310 . . R739d +chr17 SNP SNP 69209077 69302602 226 . . R740d +chr17 SNP SNP 69302603 69396128 32 . . R741d +chr17 SNP SNP 69396129 69489654 138 . . R742d +chr17 SNP SNP 69489655 69583179 332 . . R743d +chr17 SNP SNP 69583180 69676705 222 . . R744d +chr17 SNP SNP 69676706 69770231 452 . . R745d +chr17 SNP SNP 69770232 69863757 448 . . R746d +chr17 SNP SNP 69863758 69957282 394 . . R747d +chr17 SNP SNP 69957283 70050808 335 . . R748d +chr17 SNP SNP 70050809 70144334 408 . . R749d +chr17 SNP SNP 70144335 70237860 160 . . R750d +chr17 SNP SNP 70237861 70331386 131 . . R751d +chr17 SNP SNP 70331387 70424911 193 . . R752d +chr17 SNP SNP 70424912 70518437 94 . . R753d +chr17 SNP SNP 70518438 70611963 222 . . R754d +chr17 SNP SNP 70611964 70705489 343 . . R755d +chr17 SNP SNP 70705490 70799014 226 . . R756d +chr17 SNP SNP 70799015 70892540 339 . . R757d +chr17 SNP SNP 70892541 70986066 379 . . R758d +chr17 SNP SNP 70986067 71079592 299 . . R759d +chr17 SNP SNP 71079593 71173117 332 . . R760d +chr17 SNP SNP 71173118 71266643 445 . . R761d +chr17 SNP SNP 71266644 71360169 244 . . R762d +chr17 SNP SNP 71360170 71453695 427 . . R763d +chr17 SNP SNP 71453696 71547220 109 . . R764d +chr17 SNP SNP 71547221 71640746 156 . . R765d +chr17 SNP SNP 71640747 71734272 25 . . R766d +chr17 SNP SNP 71734273 71827798 149 . . R767d +chr17 SNP SNP 71827799 71921324 229 . . R768d +chr17 SNP SNP 71921325 72014849 83 . . R769d +chr17 SNP SNP 72014850 72108375 32 . . R770d +chr17 SNP SNP 72108376 72201901 91 . . R771d +chr17 SNP SNP 72201902 72295427 357 . . R772d +chr17 SNP SNP 72295428 72388952 204 . . R773d +chr17 SNP SNP 72388953 72482478 98 . . R774d +chr17 SNP SNP 72482479 72576004 21 . . R775d +chr17 SNP SNP 72576005 72669530 29 . . R776d +chr17 SNP SNP 72669531 72763055 113 . . R777d +chr17 SNP SNP 72763056 72856581 204 . . R778d +chr17 SNP SNP 72856582 72950107 310 . . R779d +chr17 SNP SNP 72950108 73043633 14 . . R780d +chr17 SNP SNP 73043634 73137159 21 . . R781d +chr17 SNP SNP 73137160 73230684 10 . . R782d +chr17 SNP SNP 73230685 73324210 178 . . R783d +chr17 SNP SNP 73324211 73417736 226 . . R784d +chr17 SNP SNP 73417737 73511262 142 . . R785d +chr17 SNP SNP 73511263 73604787 135 . . R786d +chr17 SNP SNP 73604788 73698313 215 . . R787d +chr17 SNP SNP 73698314 73791839 266 . . R788d +chr17 SNP SNP 73791840 73885365 343 . . R789d +chr17 SNP SNP 73885366 73978890 156 . . R790d +chr17 SNP SNP 73978891 74072416 215 . . R791d +chr17 SNP SNP 74072417 74165942 65 . . R792d +chr17 SNP SNP 74165943 74259468 69 . . R793d +chr17 SNP SNP 74259469 74352993 350 . . R794d +chr17 SNP SNP 74352994 74446519 149 . . R795d +chr17 SNP SNP 74446520 74540045 259 . . R796d +chr17 SNP SNP 74540046 74633571 335 . . R797d +chr17 SNP SNP 74633572 74727097 270 . . R798d +chr17 SNP SNP 74727098 74820622 270 . . R799d +chr17 SNP SNP 74820623 74914148 277 . . R800d +chr17 SNP SNP 74914149 75007674 91 . . R801d +chr17 SNP SNP 75007675 75101200 470 . . R802d +chr17 SNP SNP 75101201 75194725 153 . . R803d +chr17 SNP SNP 75194726 75288251 153 . . R804d +chr17 SNP SNP 75288252 75381777 525 . . R805d +chr17 SNP SNP 75381778 75475303 437 . . R806d +chr17 SNP SNP 75475304 75568828 456 . . R807d +chr17 SNP SNP 75568829 75662354 383 . . R808d +chr17 SNP SNP 75662355 75755880 470 . . R809d +chr17 SNP SNP 75755881 75849406 419 . . R810d +chr17 SNP SNP 75849407 75942931 379 . . R811d +chr17 SNP SNP 75942932 76036457 602 . . R812d +chr17 SNP SNP 76036458 76129983 364 . . R813d +chr17 SNP SNP 76129984 76223509 364 . . R814d +chr17 SNP SNP 76223510 76317035 412 . . R815d +chr17 SNP SNP 76317036 76410560 532 . . R816d +chr17 SNP SNP 76410561 76504086 704 . . R817d +chr17 SNP SNP 76504087 76597612 540 . . R818d +chr17 SNP SNP 76597613 76691138 204 . . R819d +chr17 SNP SNP 76691139 76784663 419 . . R820d +chr17 SNP SNP 76784664 76878189 437 . . R821d +chr17 SNP SNP 76878190 76971715 638 . . R822d +chr17 SNP SNP 76971716 77065241 478 . . R823d +chr17 SNP SNP 77065242 77158766 368 . . R824d +chr17 SNP SNP 77158767 77252292 0 . . R825d +chr17 SNP SNP 77252293 77345818 7 . . R826d +chr17 SNP SNP 77345819 77439344 3 . . R827d +chr17 SNP SNP 77439345 77532870 10 . . R828d +chr17 SNP SNP 77532871 77626395 500 . . R829d +chr17 SNP SNP 77626396 77719921 547 . . R830d +chr17 SNP SNP 77719922 77813447 583 . . R831d +chr17 SNP SNP 77813448 77906973 229 . . R832d +chr17 SNP SNP 77906974 78000498 332 . . R833d +chr17 SNP SNP 78000499 78094024 328 . . R834d +chr17 SNP SNP 78094025 78187550 175 . . R835d +chr17 SNP SNP 78187551 78281076 7 . . R836d +chr17 SNP SNP 78281077 78374601 18 . . R837d +chr17 SNP SNP 78374602 78468127 10 . . R838d +chr17 SNP SNP 78468128 78561653 3 . . R839d +chr17 SNP SNP 78561654 78655179 7 . . R840d +chr17 SNP SNP 78655180 78748704 3 . . R841d +chr17 SNP SNP 78748705 78842230 7 . . R842d +chr17 SNP SNP 78842231 78935756 0 . . R843d +chr17 SNP SNP 78935757 79029282 3 . . R844d +chr17 SNP SNP 79029283 79122808 10 . . R845d +chr17 SNP SNP 79122809 79216333 7 . . R846d +chr17 SNP SNP 79216334 79309859 10 . . R847d +chr17 SNP SNP 79309860 79403385 3 . . R848d +chr17 SNP SNP 79403386 79496911 7 . . R849d +chr17 SNP SNP 79496912 79590436 18 . . R850d +chr17 SNP SNP 79590437 79683962 251 . . R851d +chr17 SNP SNP 79683963 79777488 171 . . R852d +chr17 SNP SNP 79777489 79871014 131 . . R853d +chr17 SNP SNP 79871015 79964539 474 . . R854d +chr17 SNP SNP 79964540 80058065 456 . . R855d +chr17 SNP SNP 80058066 80151591 29 . . R856d +chr17 SNP SNP 80151592 80245117 47 . . R857d +chr17 SNP SNP 80245118 80338642 306 . . R858d +chr17 SNP SNP 80338643 80432168 10 . . R859d +chr17 SNP SNP 80432169 80525694 7 . . R860d +chr17 SNP SNP 80525695 80619220 25 . . R861d +chr17 SNP SNP 80619221 80712746 10 . . R862d +chr17 SNP SNP 80712747 80806271 3 . . R863d +chr17 SNP SNP 80806272 80899797 7 . . R864d +chr17 SNP SNP 80899798 80993323 14 . . R865d +chr17 SNP SNP 80993324 81086849 10 . . R866d +chr17 SNP SNP 81086850 81180374 3 . . R867d +chr17 SNP SNP 81180375 81273900 251 . . R868d +chr17 SNP SNP 81273901 81367426 598 . . R869d +chr17 SNP SNP 81367427 81460952 408 . . R870d +chr17 SNP SNP 81460953 81554477 594 . . R871d +chr17 SNP SNP 81554478 81648003 189 . . R872d +chr17 SNP SNP 81648004 81741529 332 . . R873d +chr17 SNP SNP 81741530 81835055 328 . . R874d +chr17 SNP SNP 81835056 81928581 496 . . R875d +chr17 SNP SNP 81928582 82022106 328 . . R876d +chr17 SNP SNP 82022107 82115632 682 . . R877d +chr17 SNP SNP 82115633 82209158 445 . . R878d +chr17 SNP SNP 82209159 82302684 419 . . R879d +chr17 SNP SNP 82302685 82396209 310 . . R880d +chr17 SNP SNP 82396210 82489735 540 . . R881d +chr17 SNP SNP 82489736 82583261 616 . . R882d +chr17 SNP SNP 82583262 82676787 299 . . R883d +chr17 SNP SNP 82676788 82770312 791 . . R884d +chr17 SNP SNP 82770313 82863838 540 . . R885d +chr17 SNP SNP 82863839 82957364 587 . . R886d +chr17 SNP SNP 82957365 83050890 689 . . R887d +chr17 SNP SNP 83050891 83144415 540 . . R888d +chr17 SNP SNP 83144416 83237941 467 . . R889d +chr17 SNP SNP 83237942 83331467 492 . . R890d +chr17 SNP SNP 83331468 83424993 551 . . R891d +chr17 SNP SNP 83424994 83518519 372 . . R892d +chr17 SNP SNP 83518520 83612044 193 . . R893d +chr17 SNP SNP 83612045 83705570 7 . . R894d +chr17 SNP SNP 83705571 83799096 7 . . R895d +chr17 SNP SNP 83799097 83892622 21 . . R896d +chr17 SNP SNP 83892623 83986147 7 . . R897d +chr17 SNP SNP 83986148 84079673 7 . . R898d +chr17 SNP SNP 84079674 84173199 18 . . R899d +chr17 SNP SNP 84173200 84266725 0 . . R900d +chr17 SNP SNP 84266726 84360250 3 . . R901d +chr17 SNP SNP 84360251 84453776 14 . . R902d +chr17 SNP SNP 84453777 84547302 0 . . R903d +chr17 SNP SNP 84547303 84640828 240 . . R904d +chr17 SNP SNP 84640829 84734353 248 . . R905d +chr17 SNP SNP 84734354 84827879 291 . . R906d +chr17 SNP SNP 84827880 84921405 135 . . R907d +chr17 SNP SNP 84921406 85014931 25 . . R908d +chr17 SNP SNP 85014932 85108457 21 . . R909d +chr17 SNP SNP 85108458 85201982 25 . . R910d +chr17 SNP SNP 85201983 85295508 193 . . R911d +chr17 SNP SNP 85295509 85389034 346 . . R912d +chr17 SNP SNP 85389035 85482560 656 . . R913d +chr17 SNP SNP 85482561 85576085 167 . . R914d +chr17 SNP SNP 85576086 85669611 36 . . R915d +chr17 SNP SNP 85669612 85763137 189 . . R916d +chr17 SNP SNP 85763138 85856663 288 . . R917d +chr17 SNP SNP 85856664 85950188 193 . . R918d +chr17 SNP SNP 85950189 86043714 211 . . R919d +chr17 SNP SNP 86043715 86137240 149 . . R920d +chr17 SNP SNP 86137241 86230766 36 . . R921d +chr17 SNP SNP 86230767 86324292 72 . . R922d +chr17 SNP SNP 86324293 86417817 124 . . R923d +chr17 SNP SNP 86417818 86511343 204 . . R924d +chr17 SNP SNP 86511344 86604869 54 . . R925d +chr17 SNP SNP 86604870 86698395 7 . . R926d +chr17 SNP SNP 86698396 86791920 18 . . R927d +chr17 SNP SNP 86791921 86885446 0 . . R928d +chr17 SNP SNP 86885447 86978972 21 . . R929d +chr17 SNP SNP 86978973 87072498 7 . . R930d +chr17 SNP SNP 87072499 87166023 18 . . R931d +chr17 SNP SNP 87166024 87259549 10 . . R932d +chr17 SNP SNP 87259550 87353075 10 . . R933d +chr17 SNP SNP 87353076 87446601 3 . . R934d +chr17 SNP SNP 87446602 87540126 10 . . R935d +chr17 SNP SNP 87540127 87633652 21 . . R936d +chr17 SNP SNP 87633653 87727178 14 . . R937d +chr17 SNP SNP 87727179 87820704 18 . . R938d +chr17 SNP SNP 87820705 87914230 21 . . R939d +chr17 SNP SNP 87914231 88007755 14 . . R940d +chr17 SNP SNP 88007756 88101281 21 . . R941d +chr17 SNP SNP 88101282 88194807 98 . . R942d +chr17 SNP SNP 88194808 88288333 624 . . R943d +chr17 SNP SNP 88288334 88381858 302 . . R944d +chr17 SNP SNP 88381859 88475384 277 . . R945d +chr17 SNP SNP 88475385 88568910 481 . . R946d +chr17 SNP SNP 88568911 88662436 324 . . R947d +chr17 SNP SNP 88662437 88755961 427 . . R948d +chr17 SNP SNP 88755962 88849487 401 . . R949d +chr17 SNP SNP 88849488 88943013 291 . . R950d +chr17 SNP SNP 88943014 89036539 405 . . R951d +chr17 SNP SNP 89036540 89130064 649 . . R952d +chr17 SNP SNP 89130065 89223590 215 . . R953d +chr17 SNP SNP 89223591 89317116 419 . . R954d +chr17 SNP SNP 89317117 89410642 470 . . R955d +chr17 SNP SNP 89410643 89504168 419 . . R956d +chr17 SNP SNP 89504169 89597693 364 . . R957d +chr17 SNP SNP 89597694 89691219 14 . . R958d +chr17 SNP SNP 89691220 89784745 142 . . R959d +chr17 SNP SNP 89784746 89878271 189 . . R960d +chr17 SNP SNP 89878272 89971796 386 . . R961d +chr17 SNP SNP 89971797 90065322 489 . . R962d +chr17 SNP SNP 90065323 90158848 405 . . R963d +chr17 SNP SNP 90158849 90252374 434 . . R964d +chr17 SNP SNP 90252375 90345899 273 . . R965d +chr17 SNP SNP 90345900 90439425 354 . . R966d +chr17 SNP SNP 90439426 90532951 324 . . R967d +chr17 SNP SNP 90532952 90626477 58 . . R968d +chr17 SNP SNP 90626478 90720003 76 . . R969d +chr17 SNP SNP 90720004 90813528 127 . . R970d +chr17 SNP SNP 90813529 90907054 291 . . R971d +chr17 SNP SNP 90907055 91000580 69 . . R972d +chr17 SNP SNP 91000581 91094106 7 . . R973d +chr17 SNP SNP 91094107 91187631 36 . . R974d +chr17 SNP SNP 91187632 91281157 18 . . R975d +chr17 SNP SNP 91281158 91374683 25 . . R976d +chr17 SNP SNP 91374684 91468209 40 . . R977d +chr17 SNP SNP 91468210 91561734 43 . . R978d +chr17 SNP SNP 91561735 91655260 109 . . R979d +chr17 SNP SNP 91655261 91748786 91 . . R980d +chr17 SNP SNP 91748787 91842312 197 . . R981d +chr17 SNP SNP 91842313 91935837 375 . . R982d +chr17 SNP SNP 91935838 92029363 233 . . R983d +chr17 SNP SNP 92029364 92122889 208 . . R984d +chr17 SNP SNP 92122890 92216415 394 . . R985d +chr17 SNP SNP 92216416 92309941 583 . . R986d +chr17 SNP SNP 92309942 92403466 583 . . R987d +chr17 SNP SNP 92403467 92496992 186 . . R988d +chr17 SNP SNP 92496993 92590518 18 . . R989d +chr17 SNP SNP 92590519 92684044 10 . . R990d +chr17 SNP SNP 92684045 92777569 47 . . R991d +chr17 SNP SNP 92777570 92871095 25 . . R992d +chr17 SNP SNP 92871096 92964621 21 . . R993d +chr17 SNP SNP 92964622 93058147 32 . . R994d +chr17 SNP SNP 93058148 93151672 36 . . R995d +chr17 SNP SNP 93151673 93245198 51 . . R996d +chr17 SNP SNP 93245199 93338724 25 . . R997d +chr17 SNP SNP 93338725 93432250 18 . . R998d +chr17 SNP SNP 93432251 93525775 40 . . R999d +chr17 SNP SNP 93525776 93619301 0 . . R1000d diff --git a/web/snp/chr18 b/web/snp/chr18 new file mode 100755 index 00000000..075d9402 --- /dev/null +++ b/web/snp/chr18 @@ -0,0 +1,1004 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr18 SNP SNP 11 91044 0 . . R0d +chr18 SNP SNP 91045 182078 0 . . R1d +chr18 SNP SNP 182079 273113 0 . . R2d +chr18 SNP SNP 273114 364147 0 . . R3d +chr18 SNP SNP 364148 455181 0 . . R4d +chr18 SNP SNP 455182 546216 0 . . R5d +chr18 SNP SNP 546217 637250 0 . . R6d +chr18 SNP SNP 637251 728285 0 . . R7d +chr18 SNP SNP 728286 819319 0 . . R8d +chr18 SNP SNP 819320 910353 0 . . R9d +chr18 SNP SNP 910354 1001388 0 . . R10d +chr18 SNP SNP 1001389 1092422 0 . . R11d +chr18 SNP SNP 1092423 1183457 0 . . R12d +chr18 SNP SNP 1183458 1274491 0 . . R13d +chr18 SNP SNP 1274492 1365525 0 . . R14d +chr18 SNP SNP 1365526 1456560 0 . . R15d +chr18 SNP SNP 1456561 1547594 0 . . R16d +chr18 SNP SNP 1547595 1638628 0 . . R17d +chr18 SNP SNP 1638629 1729663 0 . . R18d +chr18 SNP SNP 1729664 1820697 0 . . R19d +chr18 SNP SNP 1820698 1911732 0 . . R20d +chr18 SNP SNP 1911733 2002766 0 . . R21d +chr18 SNP SNP 2002767 2093800 0 . . R22d +chr18 SNP SNP 2093801 2184835 0 . . R23d +chr18 SNP SNP 2184836 2275869 0 . . R24d +chr18 SNP SNP 2275870 2366904 0 . . R25d +chr18 SNP SNP 2366905 2457938 0 . . R26d +chr18 SNP SNP 2457939 2548972 0 . . R27d +chr18 SNP SNP 2548973 2640007 0 . . R28d +chr18 SNP SNP 2640008 2731041 0 . . R29d +chr18 SNP SNP 2731042 2822076 0 . . R30d +chr18 SNP SNP 2822077 2913110 0 . . R31d +chr18 SNP SNP 2913111 3004144 0 . . R32d +chr18 SNP SNP 3004145 3095179 0 . . R33d +chr18 SNP SNP 3095180 3186213 21 . . R34d +chr18 SNP SNP 3186214 3277247 27 . . R35d +chr18 SNP SNP 3277248 3368282 27 . . R36d +chr18 SNP SNP 3368283 3459316 54 . . R37d +chr18 SNP SNP 3459317 3550351 109 . . R38d +chr18 SNP SNP 3550352 3641385 21 . . R39d +chr18 SNP SNP 3641386 3732419 27 . . R40d +chr18 SNP SNP 3732420 3823454 49 . . R41d +chr18 SNP SNP 3823455 3914488 27 . . R42d +chr18 SNP SNP 3914489 4005523 49 . . R43d +chr18 SNP SNP 4005524 4096557 60 . . R44d +chr18 SNP SNP 4096558 4187591 54 . . R45d +chr18 SNP SNP 4187592 4278626 32 . . R46d +chr18 SNP SNP 4278627 4369660 32 . . R47d +chr18 SNP SNP 4369661 4460695 60 . . R48d +chr18 SNP SNP 4460696 4551729 49 . . R49d +chr18 SNP SNP 4551730 4642763 344 . . R50d +chr18 SNP SNP 4642764 4733798 21 . . R51d +chr18 SNP SNP 4733799 4824832 27 . . R52d +chr18 SNP SNP 4824833 4915866 49 . . R53d +chr18 SNP SNP 4915867 5006901 16 . . R54d +chr18 SNP SNP 5006902 5097935 10 . . R55d +chr18 SNP SNP 5097936 5188970 16 . . R56d +chr18 SNP SNP 5188971 5280004 10 . . R57d +chr18 SNP SNP 5280005 5371038 10 . . R58d +chr18 SNP SNP 5371039 5462073 10 . . R59d +chr18 SNP SNP 5462074 5553107 16 . . R60d +chr18 SNP SNP 5553108 5644142 27 . . R61d +chr18 SNP SNP 5644143 5735176 16 . . R62d +chr18 SNP SNP 5735177 5826210 21 . . R63d +chr18 SNP SNP 5826211 5917245 16 . . R64d +chr18 SNP SNP 5917246 6008279 10 . . R65d +chr18 SNP SNP 6008280 6099313 16 . . R66d +chr18 SNP SNP 6099314 6190348 32 . . R67d +chr18 SNP SNP 6190349 6281382 10 . . R68d +chr18 SNP SNP 6281383 6372417 5 . . R69d +chr18 SNP SNP 6372418 6463451 5 . . R70d +chr18 SNP SNP 6463452 6554485 16 . . R71d +chr18 SNP SNP 6554486 6645520 16 . . R72d +chr18 SNP SNP 6645521 6736554 5 . . R73d +chr18 SNP SNP 6736555 6827589 16 . . R74d +chr18 SNP SNP 6827590 6918623 21 . . R75d +chr18 SNP SNP 6918624 7009657 21 . . R76d +chr18 SNP SNP 7009658 7100692 16 . . R77d +chr18 SNP SNP 7100693 7191726 5 . . R78d +chr18 SNP SNP 7191727 7282761 21 . . R79d +chr18 SNP SNP 7282762 7373795 5 . . R80d +chr18 SNP SNP 7373796 7464829 27 . . R81d +chr18 SNP SNP 7464830 7555864 10 . . R82d +chr18 SNP SNP 7555865 7646898 16 . . R83d +chr18 SNP SNP 7646899 7737932 0 . . R84d +chr18 SNP SNP 7737933 7828967 16 . . R85d +chr18 SNP SNP 7828968 7920001 49 . . R86d +chr18 SNP SNP 7920002 8011036 21 . . R87d +chr18 SNP SNP 8011037 8102070 0 . . R88d +chr18 SNP SNP 8102071 8193104 5 . . R89d +chr18 SNP SNP 8193105 8284139 16 . . R90d +chr18 SNP SNP 8284140 8375173 32 . . R91d +chr18 SNP SNP 8375174 8466208 16 . . R92d +chr18 SNP SNP 8466209 8557242 21 . . R93d +chr18 SNP SNP 8557243 8648276 54 . . R94d +chr18 SNP SNP 8648277 8739311 43 . . R95d +chr18 SNP SNP 8739312 8830345 16 . . R96d +chr18 SNP SNP 8830346 8921380 10 . . R97d +chr18 SNP SNP 8921381 9012414 10 . . R98d +chr18 SNP SNP 9012415 9103448 32 . . R99d +chr18 SNP SNP 9103449 9194483 38 . . R100d +chr18 SNP SNP 9194484 9285517 21 . . R101d +chr18 SNP SNP 9285518 9376551 21 . . R102d +chr18 SNP SNP 9376552 9467586 5 . . R103d +chr18 SNP SNP 9467587 9558620 21 . . R104d +chr18 SNP SNP 9558621 9649655 43 . . R105d +chr18 SNP SNP 9649656 9740689 21 . . R106d +chr18 SNP SNP 9740690 9831723 0 . . R107d +chr18 SNP SNP 9831724 9922758 10 . . R108d +chr18 SNP SNP 9922759 10013792 10 . . R109d +chr18 SNP SNP 10013793 10104827 0 . . R110d +chr18 SNP SNP 10104828 10195861 43 . . R111d +chr18 SNP SNP 10195862 10286895 38 . . R112d +chr18 SNP SNP 10286896 10377930 0 . . R113d +chr18 SNP SNP 10377931 10468964 16 . . R114d +chr18 SNP SNP 10468965 10559999 16 . . R115d +chr18 SNP SNP 10560000 10651033 16 . . R116d +chr18 SNP SNP 10651034 10742067 27 . . R117d +chr18 SNP SNP 10742068 10833102 10 . . R118d +chr18 SNP SNP 10833103 10924136 16 . . R119d +chr18 SNP SNP 10924137 11015170 71 . . R120d +chr18 SNP SNP 11015171 11106205 218 . . R121d +chr18 SNP SNP 11106206 11197239 377 . . R122d +chr18 SNP SNP 11197240 11288274 497 . . R123d +chr18 SNP SNP 11288275 11379308 491 . . R124d +chr18 SNP SNP 11379309 11470342 459 . . R125d +chr18 SNP SNP 11470343 11561377 409 . . R126d +chr18 SNP SNP 11561378 11652411 306 . . R127d +chr18 SNP SNP 11652412 11743446 0 . . R128d +chr18 SNP SNP 11743447 11834480 0 . . R129d +chr18 SNP SNP 11834481 11925514 27 . . R130d +chr18 SNP SNP 11925515 12016549 10 . . R131d +chr18 SNP SNP 12016550 12107583 38 . . R132d +chr18 SNP SNP 12107584 12198617 16 . . R133d +chr18 SNP SNP 12198618 12289652 10 . . R134d +chr18 SNP SNP 12289653 12380686 5 . . R135d +chr18 SNP SNP 12380687 12471721 21 . . R136d +chr18 SNP SNP 12471722 12562755 16 . . R137d +chr18 SNP SNP 12562756 12653789 21 . . R138d +chr18 SNP SNP 12653790 12744824 16 . . R139d +chr18 SNP SNP 12744825 12835858 49 . . R140d +chr18 SNP SNP 12835859 12926893 27 . . R141d +chr18 SNP SNP 12926894 13017927 21 . . R142d +chr18 SNP SNP 13017928 13108961 27 . . R143d +chr18 SNP SNP 13108962 13199996 530 . . R144d +chr18 SNP SNP 13199997 13291030 224 . . R145d +chr18 SNP SNP 13291031 13382065 54 . . R146d +chr18 SNP SNP 13382066 13473099 21 . . R147d +chr18 SNP SNP 13473100 13564133 0 . . R148d +chr18 SNP SNP 13564134 13655168 10 . . R149d +chr18 SNP SNP 13655169 13746202 27 . . R150d +chr18 SNP SNP 13746203 13837236 43 . . R151d +chr18 SNP SNP 13837237 13928271 27 . . R152d +chr18 SNP SNP 13928272 14019305 27 . . R153d +chr18 SNP SNP 14019306 14110340 21 . . R154d +chr18 SNP SNP 14110341 14201374 27 . . R155d +chr18 SNP SNP 14201375 14292408 16 . . R156d +chr18 SNP SNP 14292409 14383443 10 . . R157d +chr18 SNP SNP 14383444 14474477 27 . . R158d +chr18 SNP SNP 14474478 14565512 5 . . R159d +chr18 SNP SNP 14565513 14656546 16 . . R160d +chr18 SNP SNP 14656547 14747580 16 . . R161d +chr18 SNP SNP 14747581 14838615 21 . . R162d +chr18 SNP SNP 14838616 14929649 10 . . R163d +chr18 SNP SNP 14929650 15020684 32 . . R164d +chr18 SNP SNP 15020685 15111718 27 . . R165d +chr18 SNP SNP 15111719 15202752 10 . . R166d +chr18 SNP SNP 15202753 15293787 16 . . R167d +chr18 SNP SNP 15293788 15384821 5 . . R168d +chr18 SNP SNP 15384822 15475855 21 . . R169d +chr18 SNP SNP 15475856 15566890 0 . . R170d +chr18 SNP SNP 15566891 15657924 27 . . R171d +chr18 SNP SNP 15657925 15748959 21 . . R172d +chr18 SNP SNP 15748960 15839993 10 . . R173d +chr18 SNP SNP 15839994 15931027 21 . . R174d +chr18 SNP SNP 15931028 16022062 16 . . R175d +chr18 SNP SNP 16022063 16113096 10 . . R176d +chr18 SNP SNP 16113097 16204131 10 . . R177d +chr18 SNP SNP 16204132 16295165 10 . . R178d +chr18 SNP SNP 16295166 16386199 10 . . R179d +chr18 SNP SNP 16386200 16477234 49 . . R180d +chr18 SNP SNP 16477235 16568268 617 . . R181d +chr18 SNP SNP 16568269 16659303 338 . . R182d +chr18 SNP SNP 16659304 16750337 300 . . R183d +chr18 SNP SNP 16750338 16841371 612 . . R184d +chr18 SNP SNP 16841372 16932406 387 . . R185d +chr18 SNP SNP 16932407 17023440 344 . . R186d +chr18 SNP SNP 17023441 17114474 142 . . R187d +chr18 SNP SNP 17114475 17205509 54 . . R188d +chr18 SNP SNP 17205510 17296543 54 . . R189d +chr18 SNP SNP 17296544 17387578 595 . . R190d +chr18 SNP SNP 17387579 17478612 497 . . R191d +chr18 SNP SNP 17478613 17569646 852 . . R192d +chr18 SNP SNP 17569647 17660681 344 . . R193d +chr18 SNP SNP 17660682 17751715 382 . . R194d +chr18 SNP SNP 17751716 17842750 284 . . R195d +chr18 SNP SNP 17842751 17933784 633 . . R196d +chr18 SNP SNP 17933785 18024818 715 . . R197d +chr18 SNP SNP 18024819 18115853 775 . . R198d +chr18 SNP SNP 18115854 18206887 486 . . R199d +chr18 SNP SNP 18206888 18297921 1000 . . R200d +chr18 SNP SNP 18297922 18388956 306 . . R201d +chr18 SNP SNP 18388957 18479990 355 . . R202d +chr18 SNP SNP 18479991 18571025 459 . . R203d +chr18 SNP SNP 18571026 18662059 377 . . R204d +chr18 SNP SNP 18662060 18753093 404 . . R205d +chr18 SNP SNP 18753094 18844128 606 . . R206d +chr18 SNP SNP 18844129 18935162 573 . . R207d +chr18 SNP SNP 18935163 19026197 459 . . R208d +chr18 SNP SNP 19026198 19117231 486 . . R209d +chr18 SNP SNP 19117232 19208265 393 . . R210d +chr18 SNP SNP 19208266 19299300 382 . . R211d +chr18 SNP SNP 19299301 19390334 32 . . R212d +chr18 SNP SNP 19390335 19481369 65 . . R213d +chr18 SNP SNP 19481370 19572403 32 . . R214d +chr18 SNP SNP 19572404 19663437 60 . . R215d +chr18 SNP SNP 19663438 19754472 92 . . R216d +chr18 SNP SNP 19754473 19845506 415 . . R217d +chr18 SNP SNP 19845507 19936540 535 . . R218d +chr18 SNP SNP 19936541 20027575 377 . . R219d +chr18 SNP SNP 20027576 20118609 497 . . R220d +chr18 SNP SNP 20118610 20209644 628 . . R221d +chr18 SNP SNP 20209645 20300678 174 . . R222d +chr18 SNP SNP 20300679 20391712 27 . . R223d +chr18 SNP SNP 20391713 20482747 38 . . R224d +chr18 SNP SNP 20482748 20573781 60 . . R225d +chr18 SNP SNP 20573782 20664816 218 . . R226d +chr18 SNP SNP 20664817 20755850 245 . . R227d +chr18 SNP SNP 20755851 20846884 551 . . R228d +chr18 SNP SNP 20846885 20937919 284 . . R229d +chr18 SNP SNP 20937920 21028953 43 . . R230d +chr18 SNP SNP 21028954 21119988 540 . . R231d +chr18 SNP SNP 21119989 21211022 409 . . R232d +chr18 SNP SNP 21211023 21302056 245 . . R233d +chr18 SNP SNP 21302057 21393091 469 . . R234d +chr18 SNP SNP 21393092 21484125 601 . . R235d +chr18 SNP SNP 21484126 21575159 338 . . R236d +chr18 SNP SNP 21575160 21666194 426 . . R237d +chr18 SNP SNP 21666195 21757228 251 . . R238d +chr18 SNP SNP 21757229 21848263 92 . . R239d +chr18 SNP SNP 21848264 21939297 196 . . R240d +chr18 SNP SNP 21939298 22030331 448 . . R241d +chr18 SNP SNP 22030332 22121366 524 . . R242d +chr18 SNP SNP 22121367 22212400 393 . . R243d +chr18 SNP SNP 22212401 22303435 54 . . R244d +chr18 SNP SNP 22303436 22394469 38 . . R245d +chr18 SNP SNP 22394470 22485503 27 . . R246d +chr18 SNP SNP 22485504 22576538 32 . . R247d +chr18 SNP SNP 22576539 22667572 38 . . R248d +chr18 SNP SNP 22667573 22758607 65 . . R249d +chr18 SNP SNP 22758608 22849641 464 . . R250d +chr18 SNP SNP 22849642 22940675 622 . . R251d +chr18 SNP SNP 22940676 23031710 469 . . R252d +chr18 SNP SNP 23031711 23122744 5 . . R253d +chr18 SNP SNP 23122745 23213778 54 . . R254d +chr18 SNP SNP 23213779 23304813 32 . . R255d +chr18 SNP SNP 23304814 23395847 10 . . R256d +chr18 SNP SNP 23395848 23486882 21 . . R257d +chr18 SNP SNP 23486883 23577916 21 . . R258d +chr18 SNP SNP 23577917 23668950 120 . . R259d +chr18 SNP SNP 23668951 23759985 300 . . R260d +chr18 SNP SNP 23759986 23851019 732 . . R261d +chr18 SNP SNP 23851020 23942054 32 . . R262d +chr18 SNP SNP 23942055 24033088 333 . . R263d +chr18 SNP SNP 24033089 24124122 54 . . R264d +chr18 SNP SNP 24124123 24215157 10 . . R265d +chr18 SNP SNP 24215158 24306191 10 . . R266d +chr18 SNP SNP 24306192 24397225 0 . . R267d +chr18 SNP SNP 24397226 24488260 530 . . R268d +chr18 SNP SNP 24488261 24579294 322 . . R269d +chr18 SNP SNP 24579295 24670329 32 . . R270d +chr18 SNP SNP 24670330 24761363 43 . . R271d +chr18 SNP SNP 24761364 24852397 21 . . R272d +chr18 SNP SNP 24852398 24943432 10 . . R273d +chr18 SNP SNP 24943433 25034466 535 . . R274d +chr18 SNP SNP 25034467 25125501 519 . . R275d +chr18 SNP SNP 25125502 25216535 153 . . R276d +chr18 SNP SNP 25216536 25307569 316 . . R277d +chr18 SNP SNP 25307570 25398604 355 . . R278d +chr18 SNP SNP 25398605 25489638 54 . . R279d +chr18 SNP SNP 25489639 25580673 71 . . R280d +chr18 SNP SNP 25580674 25671707 420 . . R281d +chr18 SNP SNP 25671708 25762741 185 . . R282d +chr18 SNP SNP 25762742 25853776 21 . . R283d +chr18 SNP SNP 25853777 25944810 10 . . R284d +chr18 SNP SNP 25944811 26035844 16 . . R285d +chr18 SNP SNP 26035845 26126879 0 . . R286d +chr18 SNP SNP 26126880 26217913 43 . . R287d +chr18 SNP SNP 26217914 26308948 54 . . R288d +chr18 SNP SNP 26308949 26399982 10 . . R289d +chr18 SNP SNP 26399983 26491016 32 . . R290d +chr18 SNP SNP 26491017 26582051 10 . . R291d +chr18 SNP SNP 26582052 26673085 16 . . R292d +chr18 SNP SNP 26673086 26764120 10 . . R293d +chr18 SNP SNP 26764121 26855154 0 . . R294d +chr18 SNP SNP 26855155 26946188 16 . . R295d +chr18 SNP SNP 26946189 27037223 16 . . R296d +chr18 SNP SNP 27037224 27128257 43 . . R297d +chr18 SNP SNP 27128258 27219292 16 . . R298d +chr18 SNP SNP 27219293 27310326 10 . . R299d +chr18 SNP SNP 27310327 27401360 21 . . R300d +chr18 SNP SNP 27401361 27492395 27 . . R301d +chr18 SNP SNP 27492396 27583429 10 . . R302d +chr18 SNP SNP 27583430 27674463 21 . . R303d +chr18 SNP SNP 27674464 27765498 10 . . R304d +chr18 SNP SNP 27765499 27856532 5 . . R305d +chr18 SNP SNP 27856533 27947567 16 . . R306d +chr18 SNP SNP 27947568 28038601 21 . . R307d +chr18 SNP SNP 28038602 28129635 16 . . R308d +chr18 SNP SNP 28129636 28220670 5 . . R309d +chr18 SNP SNP 28220671 28311704 32 . . R310d +chr18 SNP SNP 28311705 28402739 0 . . R311d +chr18 SNP SNP 28402740 28493773 54 . . R312d +chr18 SNP SNP 28493774 28584807 60 . . R313d +chr18 SNP SNP 28584808 28675842 27 . . R314d +chr18 SNP SNP 28675843 28766876 10 . . R315d +chr18 SNP SNP 28766877 28857910 21 . . R316d +chr18 SNP SNP 28857911 28948945 5 . . R317d +chr18 SNP SNP 28948946 29039979 21 . . R318d +chr18 SNP SNP 29039980 29131014 10 . . R319d +chr18 SNP SNP 29131015 29222048 5 . . R320d +chr18 SNP SNP 29222049 29313082 10 . . R321d +chr18 SNP SNP 29313083 29404117 32 . . R322d +chr18 SNP SNP 29404118 29495151 10 . . R323d +chr18 SNP SNP 29495152 29586186 16 . . R324d +chr18 SNP SNP 29586187 29677220 38 . . R325d +chr18 SNP SNP 29677221 29768254 27 . . R326d +chr18 SNP SNP 29768255 29859289 32 . . R327d +chr18 SNP SNP 29859290 29950323 10 . . R328d +chr18 SNP SNP 29950324 30041358 43 . . R329d +chr18 SNP SNP 30041359 30132392 0 . . R330d +chr18 SNP SNP 30132393 30223426 16 . . R331d +chr18 SNP SNP 30223427 30314461 43 . . R332d +chr18 SNP SNP 30314462 30405495 16 . . R333d +chr18 SNP SNP 30405496 30496529 54 . . R334d +chr18 SNP SNP 30496530 30587564 16 . . R335d +chr18 SNP SNP 30587565 30678598 16 . . R336d +chr18 SNP SNP 30678599 30769633 562 . . R337d +chr18 SNP SNP 30769634 30860667 387 . . R338d +chr18 SNP SNP 30860668 30951701 551 . . R339d +chr18 SNP SNP 30951702 31042736 721 . . R340d +chr18 SNP SNP 31042737 31133770 207 . . R341d +chr18 SNP SNP 31133771 31224805 60 . . R342d +chr18 SNP SNP 31224806 31315839 16 . . R343d +chr18 SNP SNP 31315840 31406873 10 . . R344d +chr18 SNP SNP 31406874 31497908 32 . . R345d +chr18 SNP SNP 31497909 31588942 224 . . R346d +chr18 SNP SNP 31588943 31679977 16 . . R347d +chr18 SNP SNP 31679978 31771011 49 . . R348d +chr18 SNP SNP 31771012 31862045 38 . . R349d +chr18 SNP SNP 31862046 31953080 158 . . R350d +chr18 SNP SNP 31953081 32044114 333 . . R351d +chr18 SNP SNP 32044115 32135148 234 . . R352d +chr18 SNP SNP 32135149 32226183 213 . . R353d +chr18 SNP SNP 32226184 32317217 207 . . R354d +chr18 SNP SNP 32317218 32408252 245 . . R355d +chr18 SNP SNP 32408253 32499286 32 . . R356d +chr18 SNP SNP 32499287 32590320 32 . . R357d +chr18 SNP SNP 32590321 32681355 207 . . R358d +chr18 SNP SNP 32681356 32772389 54 . . R359d +chr18 SNP SNP 32772390 32863424 163 . . R360d +chr18 SNP SNP 32863425 32954458 229 . . R361d +chr18 SNP SNP 32954459 33045492 163 . . R362d +chr18 SNP SNP 33045493 33136527 109 . . R363d +chr18 SNP SNP 33136528 33227561 185 . . R364d +chr18 SNP SNP 33227562 33318596 704 . . R365d +chr18 SNP SNP 33318597 33409630 371 . . R366d +chr18 SNP SNP 33409631 33500664 415 . . R367d +chr18 SNP SNP 33500665 33591699 639 . . R368d +chr18 SNP SNP 33591700 33682733 464 . . R369d +chr18 SNP SNP 33682734 33773767 218 . . R370d +chr18 SNP SNP 33773768 33864802 557 . . R371d +chr18 SNP SNP 33864803 33955836 327 . . R372d +chr18 SNP SNP 33955837 34046871 81 . . R373d +chr18 SNP SNP 34046872 34137905 234 . . R374d +chr18 SNP SNP 34137906 34228939 273 . . R375d +chr18 SNP SNP 34228940 34319974 316 . . R376d +chr18 SNP SNP 34319975 34411008 49 . . R377d +chr18 SNP SNP 34411009 34502043 404 . . R378d +chr18 SNP SNP 34502044 34593077 606 . . R379d +chr18 SNP SNP 34593078 34684111 256 . . R380d +chr18 SNP SNP 34684112 34775146 601 . . R381d +chr18 SNP SNP 34775147 34866180 371 . . R382d +chr18 SNP SNP 34866181 34957214 497 . . R383d +chr18 SNP SNP 34957215 35048249 49 . . R384d +chr18 SNP SNP 35048250 35139283 21 . . R385d +chr18 SNP SNP 35139284 35230318 65 . . R386d +chr18 SNP SNP 35230319 35321352 453 . . R387d +chr18 SNP SNP 35321353 35412386 147 . . R388d +chr18 SNP SNP 35412387 35503421 16 . . R389d +chr18 SNP SNP 35503422 35594455 16 . . R390d +chr18 SNP SNP 35594456 35685490 27 . . R391d +chr18 SNP SNP 35685491 35776524 27 . . R392d +chr18 SNP SNP 35776525 35867558 27 . . R393d +chr18 SNP SNP 35867559 35958593 5 . . R394d +chr18 SNP SNP 35958594 36049627 174 . . R395d +chr18 SNP SNP 36049628 36140662 469 . . R396d +chr18 SNP SNP 36140663 36231696 21 . . R397d +chr18 SNP SNP 36231697 36322730 382 . . R398d +chr18 SNP SNP 36322731 36413765 109 . . R399d +chr18 SNP SNP 36413766 36504799 49 . . R400d +chr18 SNP SNP 36504800 36595833 21 . . R401d +chr18 SNP SNP 36595834 36686868 27 . . R402d +chr18 SNP SNP 36686869 36777902 131 . . R403d +chr18 SNP SNP 36777903 36868937 371 . . R404d +chr18 SNP SNP 36868938 36959971 437 . . R405d +chr18 SNP SNP 36959972 37051005 366 . . R406d +chr18 SNP SNP 37051006 37142040 180 . . R407d +chr18 SNP SNP 37142041 37233074 180 . . R408d +chr18 SNP SNP 37233075 37324109 49 . . R409d +chr18 SNP SNP 37324110 37415143 49 . . R410d +chr18 SNP SNP 37415144 37506177 0 . . R411d +chr18 SNP SNP 37506178 37597212 142 . . R412d +chr18 SNP SNP 37597213 37688246 202 . . R413d +chr18 SNP SNP 37688247 37779281 76 . . R414d +chr18 SNP SNP 37779282 37870315 92 . . R415d +chr18 SNP SNP 37870316 37961349 185 . . R416d +chr18 SNP SNP 37961350 38052384 442 . . R417d +chr18 SNP SNP 38052385 38143418 163 . . R418d +chr18 SNP SNP 38143419 38234452 92 . . R419d +chr18 SNP SNP 38234453 38325487 142 . . R420d +chr18 SNP SNP 38325488 38416521 16 . . R421d +chr18 SNP SNP 38416522 38507556 360 . . R422d +chr18 SNP SNP 38507557 38598590 295 . . R423d +chr18 SNP SNP 38598591 38689624 21 . . R424d +chr18 SNP SNP 38689625 38780659 10 . . R425d +chr18 SNP SNP 38780660 38871693 27 . . R426d +chr18 SNP SNP 38871694 38962728 551 . . R427d +chr18 SNP SNP 38962729 39053762 666 . . R428d +chr18 SNP SNP 39053763 39144796 163 . . R429d +chr18 SNP SNP 39144797 39235831 683 . . R430d +chr18 SNP SNP 39235832 39326865 125 . . R431d +chr18 SNP SNP 39326866 39417900 366 . . R432d +chr18 SNP SNP 39417901 39508934 497 . . R433d +chr18 SNP SNP 39508935 39599968 387 . . R434d +chr18 SNP SNP 39599969 39691003 721 . . R435d +chr18 SNP SNP 39691004 39782037 245 . . R436d +chr18 SNP SNP 39782038 39873071 10 . . R437d +chr18 SNP SNP 39873072 39964106 114 . . R438d +chr18 SNP SNP 39964107 40055140 480 . . R439d +chr18 SNP SNP 40055141 40146175 114 . . R440d +chr18 SNP SNP 40146176 40237209 420 . . R441d +chr18 SNP SNP 40237210 40328243 355 . . R442d +chr18 SNP SNP 40328244 40419278 27 . . R443d +chr18 SNP SNP 40419279 40510312 32 . . R444d +chr18 SNP SNP 40510313 40601347 5 . . R445d +chr18 SNP SNP 40601348 40692381 508 . . R446d +chr18 SNP SNP 40692382 40783415 469 . . R447d +chr18 SNP SNP 40783416 40874450 49 . . R448d +chr18 SNP SNP 40874451 40965484 60 . . R449d +chr18 SNP SNP 40965485 41056518 38 . . R450d +chr18 SNP SNP 41056519 41147553 120 . . R451d +chr18 SNP SNP 41147554 41238587 693 . . R452d +chr18 SNP SNP 41238588 41329622 284 . . R453d +chr18 SNP SNP 41329623 41420656 655 . . R454d +chr18 SNP SNP 41420657 41511690 759 . . R455d +chr18 SNP SNP 41511691 41602725 546 . . R456d +chr18 SNP SNP 41602726 41693759 519 . . R457d +chr18 SNP SNP 41693760 41784794 540 . . R458d +chr18 SNP SNP 41784795 41875828 945 . . R459d +chr18 SNP SNP 41875829 41966862 846 . . R460d +chr18 SNP SNP 41966863 42057897 71 . . R461d +chr18 SNP SNP 42057898 42148931 27 . . R462d +chr18 SNP SNP 42148932 42239966 169 . . R463d +chr18 SNP SNP 42239967 42331000 300 . . R464d +chr18 SNP SNP 42331001 42422034 142 . . R465d +chr18 SNP SNP 42422035 42513069 136 . . R466d +chr18 SNP SNP 42513070 42604103 16 . . R467d +chr18 SNP SNP 42604104 42695137 415 . . R468d +chr18 SNP SNP 42695138 42786172 191 . . R469d +chr18 SNP SNP 42786173 42877206 316 . . R470d +chr18 SNP SNP 42877207 42968241 54 . . R471d +chr18 SNP SNP 42968242 43059275 71 . . R472d +chr18 SNP SNP 43059276 43150309 245 . . R473d +chr18 SNP SNP 43150310 43241344 590 . . R474d +chr18 SNP SNP 43241345 43332378 81 . . R475d +chr18 SNP SNP 43332379 43423413 448 . . R476d +chr18 SNP SNP 43423414 43514447 289 . . R477d +chr18 SNP SNP 43514448 43605481 245 . . R478d +chr18 SNP SNP 43605482 43696516 289 . . R479d +chr18 SNP SNP 43696517 43787550 10 . . R480d +chr18 SNP SNP 43787551 43878585 185 . . R481d +chr18 SNP SNP 43878586 43969619 475 . . R482d +chr18 SNP SNP 43969620 44060653 672 . . R483d +chr18 SNP SNP 44060654 44151688 153 . . R484d +chr18 SNP SNP 44151689 44242722 229 . . R485d +chr18 SNP SNP 44242723 44333756 136 . . R486d +chr18 SNP SNP 44333757 44424791 415 . . R487d +chr18 SNP SNP 44424792 44515825 32 . . R488d +chr18 SNP SNP 44515826 44606860 76 . . R489d +chr18 SNP SNP 44606861 44697894 371 . . R490d +chr18 SNP SNP 44697895 44788928 546 . . R491d +chr18 SNP SNP 44788929 44879963 540 . . R492d +chr18 SNP SNP 44879964 44970997 497 . . R493d +chr18 SNP SNP 44970998 45062032 333 . . R494d +chr18 SNP SNP 45062033 45153066 595 . . R495d +chr18 SNP SNP 45153067 45244100 333 . . R496d +chr18 SNP SNP 45244101 45335135 262 . . R497d +chr18 SNP SNP 45335136 45426169 464 . . R498d +chr18 SNP SNP 45426170 45517203 60 . . R499d +chr18 SNP SNP 45517204 45608238 693 . . R500d +chr18 SNP SNP 45608239 45699272 125 . . R501d +chr18 SNP SNP 45699273 45790307 32 . . R502d +chr18 SNP SNP 45790308 45881341 21 . . R503d +chr18 SNP SNP 45881342 45972375 32 . . R504d +chr18 SNP SNP 45972376 46063410 398 . . R505d +chr18 SNP SNP 46063411 46154444 601 . . R506d +chr18 SNP SNP 46154445 46245479 475 . . R507d +chr18 SNP SNP 46245480 46336513 371 . . R508d +chr18 SNP SNP 46336514 46427547 420 . . R509d +chr18 SNP SNP 46427548 46518582 464 . . R510d +chr18 SNP SNP 46518583 46609616 551 . . R511d +chr18 SNP SNP 46609617 46700651 125 . . R512d +chr18 SNP SNP 46700652 46791685 32 . . R513d +chr18 SNP SNP 46791686 46882719 54 . . R514d +chr18 SNP SNP 46882720 46973754 125 . . R515d +chr18 SNP SNP 46973755 47064788 65 . . R516d +chr18 SNP SNP 47064789 47155822 256 . . R517d +chr18 SNP SNP 47155823 47246857 284 . . R518d +chr18 SNP SNP 47246858 47337891 333 . . R519d +chr18 SNP SNP 47337892 47428926 459 . . R520d +chr18 SNP SNP 47428927 47519960 759 . . R521d +chr18 SNP SNP 47519961 47610994 169 . . R522d +chr18 SNP SNP 47610995 47702029 158 . . R523d +chr18 SNP SNP 47702030 47793063 377 . . R524d +chr18 SNP SNP 47793064 47884098 568 . . R525d +chr18 SNP SNP 47884099 47975132 584 . . R526d +chr18 SNP SNP 47975133 48066166 770 . . R527d +chr18 SNP SNP 48066167 48157201 601 . . R528d +chr18 SNP SNP 48157202 48248235 153 . . R529d +chr18 SNP SNP 48248236 48339270 32 . . R530d +chr18 SNP SNP 48339271 48430304 16 . . R531d +chr18 SNP SNP 48430305 48521338 10 . . R532d +chr18 SNP SNP 48521339 48612373 5 . . R533d +chr18 SNP SNP 48612374 48703407 54 . . R534d +chr18 SNP SNP 48703408 48794441 43 . . R535d +chr18 SNP SNP 48794442 48885476 65 . . R536d +chr18 SNP SNP 48885477 48976510 677 . . R537d +chr18 SNP SNP 48976511 49067545 612 . . R538d +chr18 SNP SNP 49067546 49158579 601 . . R539d +chr18 SNP SNP 49158580 49249613 797 . . R540d +chr18 SNP SNP 49249614 49340648 316 . . R541d +chr18 SNP SNP 49340649 49431682 158 . . R542d +chr18 SNP SNP 49431683 49522717 21 . . R543d +chr18 SNP SNP 49522718 49613751 513 . . R544d +chr18 SNP SNP 49613752 49704785 267 . . R545d +chr18 SNP SNP 49704786 49795820 27 . . R546d +chr18 SNP SNP 49795821 49886854 49 . . R547d +chr18 SNP SNP 49886855 49977889 43 . . R548d +chr18 SNP SNP 49977890 50068923 10 . . R549d +chr18 SNP SNP 50068924 50159957 21 . . R550d +chr18 SNP SNP 50159958 50250992 5 . . R551d +chr18 SNP SNP 50250993 50342026 650 . . R552d +chr18 SNP SNP 50342027 50433060 415 . . R553d +chr18 SNP SNP 50433061 50524095 327 . . R554d +chr18 SNP SNP 50524096 50615129 32 . . R555d +chr18 SNP SNP 50615130 50706164 38 . . R556d +chr18 SNP SNP 50706165 50797198 32 . . R557d +chr18 SNP SNP 50797199 50888232 27 . . R558d +chr18 SNP SNP 50888233 50979267 27 . . R559d +chr18 SNP SNP 50979268 51070301 27 . . R560d +chr18 SNP SNP 51070302 51161336 38 . . R561d +chr18 SNP SNP 51161337 51252370 27 . . R562d +chr18 SNP SNP 51252371 51343404 16 . . R563d +chr18 SNP SNP 51343405 51434439 21 . . R564d +chr18 SNP SNP 51434440 51525473 49 . . R565d +chr18 SNP SNP 51525474 51616507 49 . . R566d +chr18 SNP SNP 51616508 51707542 229 . . R567d +chr18 SNP SNP 51707543 51798576 10 . . R568d +chr18 SNP SNP 51798577 51889611 371 . . R569d +chr18 SNP SNP 51889612 51980645 262 . . R570d +chr18 SNP SNP 51980646 52071679 426 . . R571d +chr18 SNP SNP 52071680 52162714 819 . . R572d +chr18 SNP SNP 52162715 52253748 486 . . R573d +chr18 SNP SNP 52253749 52344783 240 . . R574d +chr18 SNP SNP 52344784 52435817 43 . . R575d +chr18 SNP SNP 52435818 52526851 267 . . R576d +chr18 SNP SNP 52526852 52617886 420 . . R577d +chr18 SNP SNP 52617887 52708920 825 . . R578d +chr18 SNP SNP 52708921 52799955 387 . . R579d +chr18 SNP SNP 52799956 52890989 366 . . R580d +chr18 SNP SNP 52890990 52982023 142 . . R581d +chr18 SNP SNP 52982024 53073058 710 . . R582d +chr18 SNP SNP 53073059 53164092 81 . . R583d +chr18 SNP SNP 53164093 53255126 453 . . R584d +chr18 SNP SNP 53255127 53346161 38 . . R585d +chr18 SNP SNP 53346162 53437195 32 . . R586d +chr18 SNP SNP 53437196 53528230 21 . . R587d +chr18 SNP SNP 53528231 53619264 54 . . R588d +chr18 SNP SNP 53619265 53710298 43 . . R589d +chr18 SNP SNP 53710299 53801333 245 . . R590d +chr18 SNP SNP 53801334 53892367 245 . . R591d +chr18 SNP SNP 53892368 53983402 21 . . R592d +chr18 SNP SNP 53983403 54074436 32 . . R593d +chr18 SNP SNP 54074437 54165470 27 . . R594d +chr18 SNP SNP 54165471 54256505 38 . . R595d +chr18 SNP SNP 54256506 54347539 16 . . R596d +chr18 SNP SNP 54347540 54438574 10 . . R597d +chr18 SNP SNP 54438575 54529608 5 . . R598d +chr18 SNP SNP 54529609 54620642 16 . . R599d +chr18 SNP SNP 54620643 54711677 0 . . R600d +chr18 SNP SNP 54711678 54802711 10 . . R601d +chr18 SNP SNP 54802712 54893745 16 . . R602d +chr18 SNP SNP 54893746 54984780 10 . . R603d +chr18 SNP SNP 54984781 55075814 16 . . R604d +chr18 SNP SNP 55075815 55166849 27 . . R605d +chr18 SNP SNP 55166850 55257883 16 . . R606d +chr18 SNP SNP 55257884 55348917 27 . . R607d +chr18 SNP SNP 55348918 55439952 27 . . R608d +chr18 SNP SNP 55439953 55530986 21 . . R609d +chr18 SNP SNP 55530987 55622021 32 . . R610d +chr18 SNP SNP 55622022 55713055 10 . . R611d +chr18 SNP SNP 55713056 55804089 27 . . R612d +chr18 SNP SNP 55804090 55895124 32 . . R613d +chr18 SNP SNP 55895125 55986158 5 . . R614d +chr18 SNP SNP 55986159 56077193 5 . . R615d +chr18 SNP SNP 56077194 56168227 32 . . R616d +chr18 SNP SNP 56168228 56259261 16 . . R617d +chr18 SNP SNP 56259262 56350296 256 . . R618d +chr18 SNP SNP 56350297 56441330 508 . . R619d +chr18 SNP SNP 56441331 56532364 612 . . R620d +chr18 SNP SNP 56532365 56623399 240 . . R621d +chr18 SNP SNP 56623400 56714433 21 . . R622d +chr18 SNP SNP 56714434 56805468 87 . . R623d +chr18 SNP SNP 56805469 56896502 218 . . R624d +chr18 SNP SNP 56896503 56987536 513 . . R625d +chr18 SNP SNP 56987537 57078571 65 . . R626d +chr18 SNP SNP 57078572 57169605 76 . . R627d +chr18 SNP SNP 57169606 57260640 21 . . R628d +chr18 SNP SNP 57260641 57351674 169 . . R629d +chr18 SNP SNP 57351675 57442708 393 . . R630d +chr18 SNP SNP 57442709 57533743 191 . . R631d +chr18 SNP SNP 57533744 57624777 344 . . R632d +chr18 SNP SNP 57624778 57715811 87 . . R633d +chr18 SNP SNP 57715812 57806846 284 . . R634d +chr18 SNP SNP 57806847 57897880 650 . . R635d +chr18 SNP SNP 57897881 57988915 404 . . R636d +chr18 SNP SNP 57988916 58079949 491 . . R637d +chr18 SNP SNP 58079950 58170983 568 . . R638d +chr18 SNP SNP 58170984 58262018 590 . . R639d +chr18 SNP SNP 58262019 58353052 306 . . R640d +chr18 SNP SNP 58353053 58444087 169 . . R641d +chr18 SNP SNP 58444088 58535121 344 . . R642d +chr18 SNP SNP 58535122 58626155 54 . . R643d +chr18 SNP SNP 58626156 58717190 491 . . R644d +chr18 SNP SNP 58717191 58808224 371 . . R645d +chr18 SNP SNP 58808225 58899259 16 . . R646d +chr18 SNP SNP 58899260 58990293 16 . . R647d +chr18 SNP SNP 58990294 59081327 16 . . R648d +chr18 SNP SNP 59081328 59172362 16 . . R649d +chr18 SNP SNP 59172363 59263396 27 . . R650d +chr18 SNP SNP 59263397 59354430 32 . . R651d +chr18 SNP SNP 59354431 59445465 21 . . R652d +chr18 SNP SNP 59445466 59536499 0 . . R653d +chr18 SNP SNP 59536500 59627534 5 . . R654d +chr18 SNP SNP 59627535 59718568 5 . . R655d +chr18 SNP SNP 59718569 59809602 10 . . R656d +chr18 SNP SNP 59809603 59900637 27 . . R657d +chr18 SNP SNP 59900638 59991671 5 . . R658d +chr18 SNP SNP 59991672 60082706 21 . . R659d +chr18 SNP SNP 60082707 60173740 38 . . R660d +chr18 SNP SNP 60173741 60264774 10 . . R661d +chr18 SNP SNP 60264775 60355809 10 . . R662d +chr18 SNP SNP 60355810 60446843 10 . . R663d +chr18 SNP SNP 60446844 60537878 5 . . R664d +chr18 SNP SNP 60537879 60628912 10 . . R665d +chr18 SNP SNP 60628913 60719946 5 . . R666d +chr18 SNP SNP 60719947 60810981 0 . . R667d +chr18 SNP SNP 60810982 60902015 16 . . R668d +chr18 SNP SNP 60902016 60993049 10 . . R669d +chr18 SNP SNP 60993050 61084084 5 . . R670d +chr18 SNP SNP 61084085 61175118 10 . . R671d +chr18 SNP SNP 61175119 61266153 43 . . R672d +chr18 SNP SNP 61266154 61357187 49 . . R673d +chr18 SNP SNP 61357188 61448221 60 . . R674d +chr18 SNP SNP 61448222 61539256 21 . . R675d +chr18 SNP SNP 61539257 61630290 27 . . R676d +chr18 SNP SNP 61630291 61721325 16 . . R677d +chr18 SNP SNP 61721326 61812359 10 . . R678d +chr18 SNP SNP 61812360 61903393 10 . . R679d +chr18 SNP SNP 61903394 61994428 16 . . R680d +chr18 SNP SNP 61994429 62085462 5 . . R681d +chr18 SNP SNP 62085463 62176497 16 . . R682d +chr18 SNP SNP 62176498 62267531 16 . . R683d +chr18 SNP SNP 62267532 62358565 10 . . R684d +chr18 SNP SNP 62358566 62449600 16 . . R685d +chr18 SNP SNP 62449601 62540634 0 . . R686d +chr18 SNP SNP 62540635 62631668 21 . . R687d +chr18 SNP SNP 62631669 62722703 5 . . R688d +chr18 SNP SNP 62722704 62813737 21 . . R689d +chr18 SNP SNP 62813738 62904772 10 . . R690d +chr18 SNP SNP 62904773 62995806 10 . . R691d +chr18 SNP SNP 62995807 63086840 27 . . R692d +chr18 SNP SNP 63086841 63177875 10 . . R693d +chr18 SNP SNP 63177876 63268909 5 . . R694d +chr18 SNP SNP 63268910 63359944 10 . . R695d +chr18 SNP SNP 63359945 63450978 32 . . R696d +chr18 SNP SNP 63450979 63542012 10 . . R697d +chr18 SNP SNP 63542013 63633047 16 . . R698d +chr18 SNP SNP 63633048 63724081 21 . . R699d +chr18 SNP SNP 63724082 63815115 16 . . R700d +chr18 SNP SNP 63815116 63906150 10 . . R701d +chr18 SNP SNP 63906151 63997184 5 . . R702d +chr18 SNP SNP 63997185 64088219 21 . . R703d +chr18 SNP SNP 64088220 64179253 5 . . R704d +chr18 SNP SNP 64179254 64270287 10 . . R705d +chr18 SNP SNP 64270288 64361322 16 . . R706d +chr18 SNP SNP 64361323 64452356 5 . . R707d +chr18 SNP SNP 64452357 64543391 5 . . R708d +chr18 SNP SNP 64543392 64634425 0 . . R709d +chr18 SNP SNP 64634426 64725459 10 . . R710d +chr18 SNP SNP 64725460 64816494 38 . . R711d +chr18 SNP SNP 64816495 64907528 16 . . R712d +chr18 SNP SNP 64907529 64998563 16 . . R713d +chr18 SNP SNP 64998564 65089597 10 . . R714d +chr18 SNP SNP 65089598 65180631 0 . . R715d +chr18 SNP SNP 65180632 65271666 10 . . R716d +chr18 SNP SNP 65271667 65362700 10 . . R717d +chr18 SNP SNP 65362701 65453734 5 . . R718d +chr18 SNP SNP 65453735 65544769 5 . . R719d +chr18 SNP SNP 65544770 65635803 10 . . R720d +chr18 SNP SNP 65635804 65726838 16 . . R721d +chr18 SNP SNP 65726839 65817872 5 . . R722d +chr18 SNP SNP 65817873 65908906 27 . . R723d +chr18 SNP SNP 65908907 65999941 147 . . R724d +chr18 SNP SNP 65999942 66090975 437 . . R725d +chr18 SNP SNP 66090976 66182010 114 . . R726d +chr18 SNP SNP 66182011 66273044 131 . . R727d +chr18 SNP SNP 66273045 66364078 366 . . R728d +chr18 SNP SNP 66364079 66455113 661 . . R729d +chr18 SNP SNP 66455114 66546147 480 . . R730d +chr18 SNP SNP 66546148 66637182 120 . . R731d +chr18 SNP SNP 66637183 66728216 639 . . R732d +chr18 SNP SNP 66728217 66819250 147 . . R733d +chr18 SNP SNP 66819251 66910285 508 . . R734d +chr18 SNP SNP 66910286 67001319 300 . . R735d +chr18 SNP SNP 67001320 67092353 300 . . R736d +chr18 SNP SNP 67092354 67183388 551 . . R737d +chr18 SNP SNP 67183389 67274422 382 . . R738d +chr18 SNP SNP 67274423 67365457 349 . . R739d +chr18 SNP SNP 67365458 67456491 114 . . R740d +chr18 SNP SNP 67456492 67547525 327 . . R741d +chr18 SNP SNP 67547526 67638560 174 . . R742d +chr18 SNP SNP 67638561 67729594 54 . . R743d +chr18 SNP SNP 67729595 67820629 218 . . R744d +chr18 SNP SNP 67820630 67911663 704 . . R745d +chr18 SNP SNP 67911664 68002697 568 . . R746d +chr18 SNP SNP 68002698 68093732 92 . . R747d +chr18 SNP SNP 68093733 68184766 71 . . R748d +chr18 SNP SNP 68184767 68275800 480 . . R749d +chr18 SNP SNP 68275801 68366835 448 . . R750d +chr18 SNP SNP 68366836 68457869 382 . . R751d +chr18 SNP SNP 68457870 68548904 114 . . R752d +chr18 SNP SNP 68548905 68639938 524 . . R753d +chr18 SNP SNP 68639939 68730972 131 . . R754d +chr18 SNP SNP 68730973 68822007 153 . . R755d +chr18 SNP SNP 68822008 68913041 87 . . R756d +chr18 SNP SNP 68913042 69004076 469 . . R757d +chr18 SNP SNP 69004077 69095110 437 . . R758d +chr18 SNP SNP 69095111 69186144 530 . . R759d +chr18 SNP SNP 69186145 69277179 568 . . R760d +chr18 SNP SNP 69277180 69368213 262 . . R761d +chr18 SNP SNP 69368214 69459248 316 . . R762d +chr18 SNP SNP 69459249 69550282 371 . . R763d +chr18 SNP SNP 69550283 69641316 327 . . R764d +chr18 SNP SNP 69641317 69732351 557 . . R765d +chr18 SNP SNP 69732352 69823385 486 . . R766d +chr18 SNP SNP 69823386 69914419 300 . . R767d +chr18 SNP SNP 69914420 70005454 475 . . R768d +chr18 SNP SNP 70005455 70096488 289 . . R769d +chr18 SNP SNP 70096489 70187523 595 . . R770d +chr18 SNP SNP 70187524 70278557 530 . . R771d +chr18 SNP SNP 70278558 70369591 415 . . R772d +chr18 SNP SNP 70369592 70460626 54 . . R773d +chr18 SNP SNP 70460627 70551660 54 . . R774d +chr18 SNP SNP 70551661 70642695 43 . . R775d +chr18 SNP SNP 70642696 70733729 32 . . R776d +chr18 SNP SNP 70733730 70824763 125 . . R777d +chr18 SNP SNP 70824764 70915798 469 . . R778d +chr18 SNP SNP 70915799 71006832 377 . . R779d +chr18 SNP SNP 71006833 71097867 213 . . R780d +chr18 SNP SNP 71097868 71188901 338 . . R781d +chr18 SNP SNP 71188902 71279935 387 . . R782d +chr18 SNP SNP 71279936 71370970 267 . . R783d +chr18 SNP SNP 71370971 71462004 366 . . R784d +chr18 SNP SNP 71462005 71553038 196 . . R785d +chr18 SNP SNP 71553039 71644073 661 . . R786d +chr18 SNP SNP 71644074 71735107 393 . . R787d +chr18 SNP SNP 71735108 71826142 540 . . R788d +chr18 SNP SNP 71826143 71917176 519 . . R789d +chr18 SNP SNP 71917177 72008210 38 . . R790d +chr18 SNP SNP 72008211 72099245 98 . . R791d +chr18 SNP SNP 72099246 72190279 76 . . R792d +chr18 SNP SNP 72190280 72281314 65 . . R793d +chr18 SNP SNP 72281315 72372348 404 . . R794d +chr18 SNP SNP 72372349 72463382 606 . . R795d +chr18 SNP SNP 72463383 72554417 617 . . R796d +chr18 SNP SNP 72554418 72645451 786 . . R797d +chr18 SNP SNP 72645452 72736486 349 . . R798d +chr18 SNP SNP 72736487 72827520 65 . . R799d +chr18 SNP SNP 72827521 72918554 38 . . R800d +chr18 SNP SNP 72918555 73009589 43 . . R801d +chr18 SNP SNP 73009590 73100623 38 . . R802d +chr18 SNP SNP 73100624 73191657 65 . . R803d +chr18 SNP SNP 73191658 73282692 27 . . R804d +chr18 SNP SNP 73282693 73373726 185 . . R805d +chr18 SNP SNP 73373727 73464761 76 . . R806d +chr18 SNP SNP 73464762 73555795 295 . . R807d +chr18 SNP SNP 73555796 73646829 49 . . R808d +chr18 SNP SNP 73646830 73737864 120 . . R809d +chr18 SNP SNP 73737865 73828898 21 . . R810d +chr18 SNP SNP 73828899 73919933 202 . . R811d +chr18 SNP SNP 73919934 74010967 513 . . R812d +chr18 SNP SNP 74010968 74102001 715 . . R813d +chr18 SNP SNP 74102002 74193036 693 . . R814d +chr18 SNP SNP 74193037 74284070 316 . . R815d +chr18 SNP SNP 74284071 74375104 213 . . R816d +chr18 SNP SNP 74375105 74466139 770 . . R817d +chr18 SNP SNP 74466140 74557173 639 . . R818d +chr18 SNP SNP 74557174 74648208 371 . . R819d +chr18 SNP SNP 74648209 74739242 551 . . R820d +chr18 SNP SNP 74739243 74830276 699 . . R821d +chr18 SNP SNP 74830277 74921311 666 . . R822d +chr18 SNP SNP 74921312 75012345 366 . . R823d +chr18 SNP SNP 75012346 75103380 131 . . R824d +chr18 SNP SNP 75103381 75194414 622 . . R825d +chr18 SNP SNP 75194415 75285448 256 . . R826d +chr18 SNP SNP 75285449 75376483 371 . . R827d +chr18 SNP SNP 75376484 75467517 191 . . R828d +chr18 SNP SNP 75467518 75558552 655 . . R829d +chr18 SNP SNP 75558553 75649586 792 . . R830d +chr18 SNP SNP 75649587 75740620 579 . . R831d +chr18 SNP SNP 75740621 75831655 191 . . R832d +chr18 SNP SNP 75831656 75922689 579 . . R833d +chr18 SNP SNP 75922690 76013723 240 . . R834d +chr18 SNP SNP 76013724 76104758 153 . . R835d +chr18 SNP SNP 76104759 76195792 191 . . R836d +chr18 SNP SNP 76195793 76286827 98 . . R837d +chr18 SNP SNP 76286828 76377861 103 . . R838d +chr18 SNP SNP 76377862 76468895 398 . . R839d +chr18 SNP SNP 76468896 76559930 114 . . R840d +chr18 SNP SNP 76559931 76650964 174 . . R841d +chr18 SNP SNP 76650965 76741999 136 . . R842d +chr18 SNP SNP 76742000 76833033 196 . . R843d +chr18 SNP SNP 76833034 76924067 65 . . R844d +chr18 SNP SNP 76924068 77015102 240 . . R845d +chr18 SNP SNP 77015103 77106136 147 . . R846d +chr18 SNP SNP 77106137 77197171 229 . . R847d +chr18 SNP SNP 77197172 77288205 338 . . R848d +chr18 SNP SNP 77288206 77379239 459 . . R849d +chr18 SNP SNP 77379240 77470274 426 . . R850d +chr18 SNP SNP 77470275 77561308 502 . . R851d +chr18 SNP SNP 77561309 77652342 251 . . R852d +chr18 SNP SNP 77652343 77743377 60 . . R853d +chr18 SNP SNP 77743378 77834411 191 . . R854d +chr18 SNP SNP 77834412 77925446 568 . . R855d +chr18 SNP SNP 77925447 78016480 344 . . R856d +chr18 SNP SNP 78016481 78107514 491 . . R857d +chr18 SNP SNP 78107515 78198549 49 . . R858d +chr18 SNP SNP 78198550 78289583 0 . . R859d +chr18 SNP SNP 78289584 78380618 16 . . R860d +chr18 SNP SNP 78380619 78471652 0 . . R861d +chr18 SNP SNP 78471653 78562686 27 . . R862d +chr18 SNP SNP 78562687 78653721 27 . . R863d +chr18 SNP SNP 78653722 78744755 0 . . R864d +chr18 SNP SNP 78744756 78835790 27 . . R865d +chr18 SNP SNP 78835791 78926824 10 . . R866d +chr18 SNP SNP 78926825 79017858 16 . . R867d +chr18 SNP SNP 79017859 79108893 21 . . R868d +chr18 SNP SNP 79108894 79199927 10 . . R869d +chr18 SNP SNP 79199928 79290961 16 . . R870d +chr18 SNP SNP 79290962 79381996 16 . . R871d +chr18 SNP SNP 79381997 79473030 5 . . R872d +chr18 SNP SNP 79473031 79564065 16 . . R873d +chr18 SNP SNP 79564066 79655099 21 . . R874d +chr18 SNP SNP 79655100 79746133 21 . . R875d +chr18 SNP SNP 79746134 79837168 5 . . R876d +chr18 SNP SNP 79837169 79928202 0 . . R877d +chr18 SNP SNP 79928203 80019237 5 . . R878d +chr18 SNP SNP 80019238 80110271 5 . . R879d +chr18 SNP SNP 80110272 80201305 16 . . R880d +chr18 SNP SNP 80201306 80292340 0 . . R881d +chr18 SNP SNP 80292341 80383374 0 . . R882d +chr18 SNP SNP 80383375 80474408 10 . . R883d +chr18 SNP SNP 80474409 80565443 5 . . R884d +chr18 SNP SNP 80565444 80656477 16 . . R885d +chr18 SNP SNP 80656478 80747512 0 . . R886d +chr18 SNP SNP 80747513 80838546 10 . . R887d +chr18 SNP SNP 80838547 80929580 16 . . R888d +chr18 SNP SNP 80929581 81020615 0 . . R889d +chr18 SNP SNP 81020616 81111649 16 . . R890d +chr18 SNP SNP 81111650 81202684 5 . . R891d +chr18 SNP SNP 81202685 81293718 32 . . R892d +chr18 SNP SNP 81293719 81384752 5 . . R893d +chr18 SNP SNP 81384753 81475787 16 . . R894d +chr18 SNP SNP 81475788 81566821 10 . . R895d +chr18 SNP SNP 81566822 81657856 5 . . R896d +chr18 SNP SNP 81657857 81748890 0 . . R897d +chr18 SNP SNP 81748891 81839924 5 . . R898d +chr18 SNP SNP 81839925 81930959 38 . . R899d +chr18 SNP SNP 81930960 82021993 0 . . R900d +chr18 SNP SNP 82021994 82113027 38 . . R901d +chr18 SNP SNP 82113028 82204062 0 . . R902d +chr18 SNP SNP 82204063 82295096 0 . . R903d +chr18 SNP SNP 82295097 82386131 0 . . R904d +chr18 SNP SNP 82386132 82477165 21 . . R905d +chr18 SNP SNP 82477166 82568199 371 . . R906d +chr18 SNP SNP 82568200 82659234 38 . . R907d +chr18 SNP SNP 82659235 82750268 267 . . R908d +chr18 SNP SNP 82750269 82841303 267 . . R909d +chr18 SNP SNP 82841304 82932337 16 . . R910d +chr18 SNP SNP 82932338 83023371 0 . . R911d +chr18 SNP SNP 83023372 83114406 5 . . R912d +chr18 SNP SNP 83114407 83205440 0 . . R913d +chr18 SNP SNP 83205441 83296475 0 . . R914d +chr18 SNP SNP 83296476 83387509 10 . . R915d +chr18 SNP SNP 83387510 83478543 5 . . R916d +chr18 SNP SNP 83478544 83569578 5 . . R917d +chr18 SNP SNP 83569579 83660612 0 . . R918d +chr18 SNP SNP 83660613 83751646 10 . . R919d +chr18 SNP SNP 83751647 83842681 0 . . R920d +chr18 SNP SNP 83842682 83933715 0 . . R921d +chr18 SNP SNP 83933716 84024750 0 . . R922d +chr18 SNP SNP 84024751 84115784 0 . . R923d +chr18 SNP SNP 84115785 84206818 0 . . R924d +chr18 SNP SNP 84206819 84297853 0 . . R925d +chr18 SNP SNP 84297854 84388887 0 . . R926d +chr18 SNP SNP 84388888 84479922 0 . . R927d +chr18 SNP SNP 84479923 84570956 0 . . R928d +chr18 SNP SNP 84570957 84661990 0 . . R929d +chr18 SNP SNP 84661991 84753025 0 . . R930d +chr18 SNP SNP 84753026 84844059 0 . . R931d +chr18 SNP SNP 84844060 84935094 0 . . R932d +chr18 SNP SNP 84935095 85026128 0 . . R933d +chr18 SNP SNP 85026129 85117162 0 . . R934d +chr18 SNP SNP 85117163 85208197 0 . . R935d +chr18 SNP SNP 85208198 85299231 0 . . R936d +chr18 SNP SNP 85299232 85390265 0 . . R937d +chr18 SNP SNP 85390266 85481300 0 . . R938d +chr18 SNP SNP 85481301 85572334 0 . . R939d +chr18 SNP SNP 85572335 85663369 0 . . R940d +chr18 SNP SNP 85663370 85754403 0 . . R941d +chr18 SNP SNP 85754404 85845437 0 . . R942d +chr18 SNP SNP 85845438 85936472 0 . . R943d +chr18 SNP SNP 85936473 86027506 0 . . R944d +chr18 SNP SNP 86027507 86118541 0 . . R945d +chr18 SNP SNP 86118542 86209575 0 . . R946d +chr18 SNP SNP 86209576 86300609 0 . . R947d +chr18 SNP SNP 86300610 86391644 0 . . R948d +chr18 SNP SNP 86391645 86482678 5 . . R949d +chr18 SNP SNP 86482679 86573712 387 . . R950d +chr18 SNP SNP 86573713 86664747 486 . . R951d +chr18 SNP SNP 86664748 86755781 43 . . R952d +chr18 SNP SNP 86755782 86846816 300 . . R953d +chr18 SNP SNP 86846817 86937850 633 . . R954d +chr18 SNP SNP 86937851 87028884 87 . . R955d +chr18 SNP SNP 87028885 87119919 98 . . R956d +chr18 SNP SNP 87119920 87210953 16 . . R957d +chr18 SNP SNP 87210954 87301988 21 . . R958d +chr18 SNP SNP 87301989 87393022 32 . . R959d +chr18 SNP SNP 87393023 87484056 27 . . R960d +chr18 SNP SNP 87484057 87575091 27 . . R961d +chr18 SNP SNP 87575092 87666125 5 . . R962d +chr18 SNP SNP 87666126 87757160 5 . . R963d +chr18 SNP SNP 87757161 87848194 5 . . R964d +chr18 SNP SNP 87848195 87939228 27 . . R965d +chr18 SNP SNP 87939229 88030263 27 . . R966d +chr18 SNP SNP 88030264 88121297 5 . . R967d +chr18 SNP SNP 88121298 88212331 87 . . R968d +chr18 SNP SNP 88212332 88303366 32 . . R969d +chr18 SNP SNP 88303367 88394400 32 . . R970d +chr18 SNP SNP 88394401 88485435 60 . . R971d +chr18 SNP SNP 88485436 88576469 43 . . R972d +chr18 SNP SNP 88576470 88667503 38 . . R973d +chr18 SNP SNP 88667504 88758538 0 . . R974d +chr18 SNP SNP 88758539 88849572 10 . . R975d +chr18 SNP SNP 88849573 88940607 0 . . R976d +chr18 SNP SNP 88940608 89031641 21 . . R977d +chr18 SNP SNP 89031642 89122675 21 . . R978d +chr18 SNP SNP 89122676 89213710 10 . . R979d +chr18 SNP SNP 89213711 89304744 16 . . R980d +chr18 SNP SNP 89304745 89395779 10 . . R981d +chr18 SNP SNP 89395780 89486813 16 . . R982d +chr18 SNP SNP 89486814 89577847 10 . . R983d +chr18 SNP SNP 89577848 89668882 5 . . R984d +chr18 SNP SNP 89668883 89759916 16 . . R985d +chr18 SNP SNP 89759917 89850950 49 . . R986d +chr18 SNP SNP 89850951 89941985 5 . . R987d +chr18 SNP SNP 89941986 90033019 16 . . R988d +chr18 SNP SNP 90033020 90124054 49 . . R989d +chr18 SNP SNP 90124055 90215088 27 . . R990d +chr18 SNP SNP 90215089 90306122 32 . . R991d +chr18 SNP SNP 90306123 90397157 5 . . R992d +chr18 SNP SNP 90397158 90488191 5 . . R993d +chr18 SNP SNP 90488192 90579226 10 . . R994d +chr18 SNP SNP 90579227 90670260 21 . . R995d +chr18 SNP SNP 90670261 90761294 16 . . R996d +chr18 SNP SNP 90761295 90852329 5 . . R997d +chr18 SNP SNP 90852330 90943363 5 . . R998d +chr18 SNP SNP 90943364 91034397 27 . . R999d +chr18 SNP SNP 91034398 91125432 0 . . R1000d diff --git a/web/snp/chr19 b/web/snp/chr19 new file mode 100755 index 00000000..ae5c2fa6 --- /dev/null +++ b/web/snp/chr19 @@ -0,0 +1,1004 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr19 SNP SNP 11 61103 0 . . R0d +chr19 SNP SNP 61104 122196 0 . . R1d +chr19 SNP SNP 122197 183289 0 . . R2d +chr19 SNP SNP 183290 244382 0 . . R3d +chr19 SNP SNP 244383 305475 0 . . R4d +chr19 SNP SNP 305476 366568 0 . . R5d +chr19 SNP SNP 366569 427661 0 . . R6d +chr19 SNP SNP 427662 488754 0 . . R7d +chr19 SNP SNP 488755 549848 0 . . R8d +chr19 SNP SNP 549849 610941 0 . . R9d +chr19 SNP SNP 610942 672034 0 . . R10d +chr19 SNP SNP 672035 733127 0 . . R11d +chr19 SNP SNP 733128 794220 0 . . R12d +chr19 SNP SNP 794221 855313 0 . . R13d +chr19 SNP SNP 855314 916406 0 . . R14d +chr19 SNP SNP 916407 977499 0 . . R15d +chr19 SNP SNP 977500 1038593 0 . . R16d +chr19 SNP SNP 1038594 1099686 0 . . R17d +chr19 SNP SNP 1099687 1160779 0 . . R18d +chr19 SNP SNP 1160780 1221872 0 . . R19d +chr19 SNP SNP 1221873 1282965 0 . . R20d +chr19 SNP SNP 1282966 1344058 0 . . R21d +chr19 SNP SNP 1344059 1405151 0 . . R22d +chr19 SNP SNP 1405152 1466244 0 . . R23d +chr19 SNP SNP 1466245 1527337 0 . . R24d +chr19 SNP SNP 1527338 1588431 0 . . R25d +chr19 SNP SNP 1588432 1649524 0 . . R26d +chr19 SNP SNP 1649525 1710617 0 . . R27d +chr19 SNP SNP 1710618 1771710 0 . . R28d +chr19 SNP SNP 1771711 1832803 0 . . R29d +chr19 SNP SNP 1832804 1893896 0 . . R30d +chr19 SNP SNP 1893897 1954989 0 . . R31d +chr19 SNP SNP 1954990 2016082 0 . . R32d +chr19 SNP SNP 2016083 2077176 0 . . R33d +chr19 SNP SNP 2077177 2138269 0 . . R34d +chr19 SNP SNP 2138270 2199362 0 . . R35d +chr19 SNP SNP 2199363 2260455 0 . . R36d +chr19 SNP SNP 2260456 2321548 0 . . R37d +chr19 SNP SNP 2321549 2382641 0 . . R38d +chr19 SNP SNP 2382642 2443734 0 . . R39d +chr19 SNP SNP 2443735 2504827 0 . . R40d +chr19 SNP SNP 2504828 2565920 0 . . R41d +chr19 SNP SNP 2565921 2627014 0 . . R42d +chr19 SNP SNP 2627015 2688107 0 . . R43d +chr19 SNP SNP 2688108 2749200 0 . . R44d +chr19 SNP SNP 2749201 2810293 0 . . R45d +chr19 SNP SNP 2810294 2871386 0 . . R46d +chr19 SNP SNP 2871387 2932479 0 . . R47d +chr19 SNP SNP 2932480 2993572 0 . . R48d +chr19 SNP SNP 2993573 3054665 524 . . R49d +chr19 SNP SNP 3054666 3115759 256 . . R50d +chr19 SNP SNP 3115760 3176852 85 . . R51d +chr19 SNP SNP 3176853 3237945 37 . . R52d +chr19 SNP SNP 3237946 3299038 10 . . R53d +chr19 SNP SNP 3299039 3360131 10 . . R54d +chr19 SNP SNP 3360132 3421224 26 . . R55d +chr19 SNP SNP 3421225 3482317 112 . . R56d +chr19 SNP SNP 3482318 3543410 165 . . R57d +chr19 SNP SNP 3543411 3604504 139 . . R58d +chr19 SNP SNP 3604505 3665597 262 . . R59d +chr19 SNP SNP 3665598 3726690 272 . . R60d +chr19 SNP SNP 3726691 3787783 449 . . R61d +chr19 SNP SNP 3787784 3848876 21 . . R62d +chr19 SNP SNP 3848877 3909969 48 . . R63d +chr19 SNP SNP 3909970 3971062 5 . . R64d +chr19 SNP SNP 3971063 4032155 326 . . R65d +chr19 SNP SNP 4032156 4093248 128 . . R66d +chr19 SNP SNP 4093249 4154342 358 . . R67d +chr19 SNP SNP 4154343 4215435 240 . . R68d +chr19 SNP SNP 4215436 4276528 21 . . R69d +chr19 SNP SNP 4276529 4337621 368 . . R70d +chr19 SNP SNP 4337622 4398714 475 . . R71d +chr19 SNP SNP 4398715 4459807 593 . . R72d +chr19 SNP SNP 4459808 4520900 85 . . R73d +chr19 SNP SNP 4520901 4581993 26 . . R74d +chr19 SNP SNP 4581994 4643087 406 . . R75d +chr19 SNP SNP 4643088 4704180 160 . . R76d +chr19 SNP SNP 4704181 4765273 80 . . R77d +chr19 SNP SNP 4765274 4826366 26 . . R78d +chr19 SNP SNP 4826367 4887459 37 . . R79d +chr19 SNP SNP 4887460 4948552 90 . . R80d +chr19 SNP SNP 4948553 5009645 176 . . R81d +chr19 SNP SNP 5009646 5070738 149 . . R82d +chr19 SNP SNP 5070739 5131831 128 . . R83d +chr19 SNP SNP 5131832 5192925 122 . . R84d +chr19 SNP SNP 5192926 5254018 58 . . R85d +chr19 SNP SNP 5254019 5315111 42 . . R86d +chr19 SNP SNP 5315112 5376204 58 . . R87d +chr19 SNP SNP 5376205 5437297 64 . . R88d +chr19 SNP SNP 5437298 5498390 26 . . R89d +chr19 SNP SNP 5498391 5559483 26 . . R90d +chr19 SNP SNP 5559484 5620576 21 . . R91d +chr19 SNP SNP 5620577 5681670 117 . . R92d +chr19 SNP SNP 5681671 5742763 144 . . R93d +chr19 SNP SNP 5742764 5803856 454 . . R94d +chr19 SNP SNP 5803857 5864949 310 . . R95d +chr19 SNP SNP 5864950 5926042 85 . . R96d +chr19 SNP SNP 5926043 5987135 363 . . R97d +chr19 SNP SNP 5987136 6048228 374 . . R98d +chr19 SNP SNP 6048229 6109321 155 . . R99d +chr19 SNP SNP 6109322 6170415 224 . . R100d +chr19 SNP SNP 6170416 6231508 304 . . R101d +chr19 SNP SNP 6231509 6292601 240 . . R102d +chr19 SNP SNP 6292602 6353694 331 . . R103d +chr19 SNP SNP 6353695 6414787 315 . . R104d +chr19 SNP SNP 6414788 6475880 42 . . R105d +chr19 SNP SNP 6475881 6536973 58 . . R106d +chr19 SNP SNP 6536974 6598066 21 . . R107d +chr19 SNP SNP 6598067 6659159 26 . . R108d +chr19 SNP SNP 6659160 6720253 48 . . R109d +chr19 SNP SNP 6720254 6781346 26 . . R110d +chr19 SNP SNP 6781347 6842439 32 . . R111d +chr19 SNP SNP 6842440 6903532 21 . . R112d +chr19 SNP SNP 6903533 6964625 16 . . R113d +chr19 SNP SNP 6964626 7025718 16 . . R114d +chr19 SNP SNP 7025719 7086811 427 . . R115d +chr19 SNP SNP 7086812 7147904 256 . . R116d +chr19 SNP SNP 7147905 7208998 192 . . R117d +chr19 SNP SNP 7208999 7270091 176 . . R118d +chr19 SNP SNP 7270092 7331184 315 . . R119d +chr19 SNP SNP 7331185 7392277 176 . . R120d +chr19 SNP SNP 7392278 7453370 26 . . R121d +chr19 SNP SNP 7453371 7514463 10 . . R122d +chr19 SNP SNP 7514464 7575556 117 . . R123d +chr19 SNP SNP 7575557 7636649 278 . . R124d +chr19 SNP SNP 7636650 7697742 294 . . R125d +chr19 SNP SNP 7697743 7758836 21 . . R126d +chr19 SNP SNP 7758837 7819929 37 . . R127d +chr19 SNP SNP 7819930 7881022 374 . . R128d +chr19 SNP SNP 7881023 7942115 80 . . R129d +chr19 SNP SNP 7942116 8003208 90 . . R130d +chr19 SNP SNP 8003209 8064301 5 . . R131d +chr19 SNP SNP 8064302 8125394 42 . . R132d +chr19 SNP SNP 8125395 8186487 16 . . R133d +chr19 SNP SNP 8186488 8247581 21 . . R134d +chr19 SNP SNP 8247582 8308674 16 . . R135d +chr19 SNP SNP 8308675 8369767 16 . . R136d +chr19 SNP SNP 8369768 8430860 16 . . R137d +chr19 SNP SNP 8430861 8491953 101 . . R138d +chr19 SNP SNP 8491954 8553046 0 . . R139d +chr19 SNP SNP 8553047 8614139 5 . . R140d +chr19 SNP SNP 8614140 8675232 16 . . R141d +chr19 SNP SNP 8675233 8736326 5 . . R142d +chr19 SNP SNP 8736327 8797419 5 . . R143d +chr19 SNP SNP 8797420 8858512 16 . . R144d +chr19 SNP SNP 8858513 8919605 5 . . R145d +chr19 SNP SNP 8919606 8980698 10 . . R146d +chr19 SNP SNP 8980699 9041791 5 . . R147d +chr19 SNP SNP 9041792 9102884 165 . . R148d +chr19 SNP SNP 9102885 9163977 181 . . R149d +chr19 SNP SNP 9163978 9225070 363 . . R150d +chr19 SNP SNP 9225071 9286164 21 . . R151d +chr19 SNP SNP 9286165 9347257 181 . . R152d +chr19 SNP SNP 9347258 9408350 374 . . R153d +chr19 SNP SNP 9408351 9469443 401 . . R154d +chr19 SNP SNP 9469444 9530536 459 . . R155d +chr19 SNP SNP 9530537 9591629 42 . . R156d +chr19 SNP SNP 9591630 9652722 171 . . R157d +chr19 SNP SNP 9652723 9713815 235 . . R158d +chr19 SNP SNP 9713816 9774909 449 . . R159d +chr19 SNP SNP 9774910 9836002 128 . . R160d +chr19 SNP SNP 9836003 9897095 144 . . R161d +chr19 SNP SNP 9897096 9958188 245 . . R162d +chr19 SNP SNP 9958189 10019281 0 . . R163d +chr19 SNP SNP 10019282 10080374 16 . . R164d +chr19 SNP SNP 10080375 10141467 16 . . R165d +chr19 SNP SNP 10141468 10202560 16 . . R166d +chr19 SNP SNP 10202561 10263653 16 . . R167d +chr19 SNP SNP 10263654 10324747 5 . . R168d +chr19 SNP SNP 10324748 10385840 0 . . R169d +chr19 SNP SNP 10385841 10446933 10 . . R170d +chr19 SNP SNP 10446934 10508026 16 . . R171d +chr19 SNP SNP 10508027 10569119 16 . . R172d +chr19 SNP SNP 10569120 10630212 10 . . R173d +chr19 SNP SNP 10630213 10691305 5 . . R174d +chr19 SNP SNP 10691306 10752398 16 . . R175d +chr19 SNP SNP 10752399 10813492 10 . . R176d +chr19 SNP SNP 10813493 10874585 10 . . R177d +chr19 SNP SNP 10874586 10935678 10 . . R178d +chr19 SNP SNP 10935679 10996771 5 . . R179d +chr19 SNP SNP 10996772 11057864 26 . . R180d +chr19 SNP SNP 11057865 11118957 427 . . R181d +chr19 SNP SNP 11118958 11180050 187 . . R182d +chr19 SNP SNP 11180051 11241143 326 . . R183d +chr19 SNP SNP 11241144 11302237 299 . . R184d +chr19 SNP SNP 11302238 11363330 347 . . R185d +chr19 SNP SNP 11363331 11424423 80 . . R186d +chr19 SNP SNP 11424424 11485516 10 . . R187d +chr19 SNP SNP 11485517 11546609 0 . . R188d +chr19 SNP SNP 11546610 11607702 10 . . R189d +chr19 SNP SNP 11607703 11668795 21 . . R190d +chr19 SNP SNP 11668796 11729888 197 . . R191d +chr19 SNP SNP 11729889 11790981 251 . . R192d +chr19 SNP SNP 11790982 11852075 374 . . R193d +chr19 SNP SNP 11852076 11913168 604 . . R194d +chr19 SNP SNP 11913169 11974261 497 . . R195d +chr19 SNP SNP 11974262 12035354 443 . . R196d +chr19 SNP SNP 12035355 12096447 192 . . R197d +chr19 SNP SNP 12096448 12157540 160 . . R198d +chr19 SNP SNP 12157541 12218633 155 . . R199d +chr19 SNP SNP 12218634 12279726 53 . . R200d +chr19 SNP SNP 12279727 12340820 117 . . R201d +chr19 SNP SNP 12340821 12401913 240 . . R202d +chr19 SNP SNP 12401914 12463006 192 . . R203d +chr19 SNP SNP 12463007 12524099 481 . . R204d +chr19 SNP SNP 12524100 12585192 299 . . R205d +chr19 SNP SNP 12585193 12646285 604 . . R206d +chr19 SNP SNP 12646286 12707378 524 . . R207d +chr19 SNP SNP 12707379 12768471 203 . . R208d +chr19 SNP SNP 12768472 12829564 155 . . R209d +chr19 SNP SNP 12829565 12890658 288 . . R210d +chr19 SNP SNP 12890659 12951751 101 . . R211d +chr19 SNP SNP 12951752 13012844 368 . . R212d +chr19 SNP SNP 13012845 13073937 320 . . R213d +chr19 SNP SNP 13073938 13135030 304 . . R214d +chr19 SNP SNP 13135031 13196123 272 . . R215d +chr19 SNP SNP 13196124 13257216 251 . . R216d +chr19 SNP SNP 13257217 13318309 112 . . R217d +chr19 SNP SNP 13318310 13379403 304 . . R218d +chr19 SNP SNP 13379404 13440496 540 . . R219d +chr19 SNP SNP 13440497 13501589 245 . . R220d +chr19 SNP SNP 13501590 13562682 422 . . R221d +chr19 SNP SNP 13562683 13623775 336 . . R222d +chr19 SNP SNP 13623776 13684868 433 . . R223d +chr19 SNP SNP 13684869 13745961 176 . . R224d +chr19 SNP SNP 13745962 13807054 486 . . R225d +chr19 SNP SNP 13807055 13868148 406 . . R226d +chr19 SNP SNP 13868149 13929241 64 . . R227d +chr19 SNP SNP 13929242 13990334 106 . . R228d +chr19 SNP SNP 13990335 14051427 417 . . R229d +chr19 SNP SNP 14051428 14112520 117 . . R230d +chr19 SNP SNP 14112521 14173613 395 . . R231d +chr19 SNP SNP 14173614 14234706 379 . . R232d +chr19 SNP SNP 14234707 14295799 10 . . R233d +chr19 SNP SNP 14295800 14356892 42 . . R234d +chr19 SNP SNP 14356893 14417986 32 . . R235d +chr19 SNP SNP 14417987 14479079 32 . . R236d +chr19 SNP SNP 14479080 14540172 0 . . R237d +chr19 SNP SNP 14540173 14601265 256 . . R238d +chr19 SNP SNP 14601266 14662358 406 . . R239d +chr19 SNP SNP 14662359 14723451 208 . . R240d +chr19 SNP SNP 14723452 14784544 582 . . R241d +chr19 SNP SNP 14784545 14845637 331 . . R242d +chr19 SNP SNP 14845638 14906731 32 . . R243d +chr19 SNP SNP 14906732 14967824 16 . . R244d +chr19 SNP SNP 14967825 15028917 42 . . R245d +chr19 SNP SNP 15028918 15090010 176 . . R246d +chr19 SNP SNP 15090011 15151103 139 . . R247d +chr19 SNP SNP 15151104 15212196 251 . . R248d +chr19 SNP SNP 15212197 15273289 10 . . R249d +chr19 SNP SNP 15273290 15334382 26 . . R250d +chr19 SNP SNP 15334383 15395475 48 . . R251d +chr19 SNP SNP 15395476 15456569 26 . . R252d +chr19 SNP SNP 15456570 15517662 10 . . R253d +chr19 SNP SNP 15517663 15578755 21 . . R254d +chr19 SNP SNP 15578756 15639848 5 . . R255d +chr19 SNP SNP 15639849 15700941 181 . . R256d +chr19 SNP SNP 15700942 15762034 117 . . R257d +chr19 SNP SNP 15762035 15823127 106 . . R258d +chr19 SNP SNP 15823128 15884220 128 . . R259d +chr19 SNP SNP 15884221 15945314 10 . . R260d +chr19 SNP SNP 15945315 16006407 16 . . R261d +chr19 SNP SNP 16006408 16067500 21 . . R262d +chr19 SNP SNP 16067501 16128593 475 . . R263d +chr19 SNP SNP 16128594 16189686 326 . . R264d +chr19 SNP SNP 16189687 16250779 283 . . R265d +chr19 SNP SNP 16250780 16311872 529 . . R266d +chr19 SNP SNP 16311873 16372965 272 . . R267d +chr19 SNP SNP 16372966 16434059 336 . . R268d +chr19 SNP SNP 16434060 16495152 315 . . R269d +chr19 SNP SNP 16495153 16556245 74 . . R270d +chr19 SNP SNP 16556246 16617338 37 . . R271d +chr19 SNP SNP 16617339 16678431 304 . . R272d +chr19 SNP SNP 16678432 16739524 229 . . R273d +chr19 SNP SNP 16739525 16800617 513 . . R274d +chr19 SNP SNP 16800618 16861710 486 . . R275d +chr19 SNP SNP 16861711 16922803 508 . . R276d +chr19 SNP SNP 16922804 16983897 679 . . R277d +chr19 SNP SNP 16983898 17044990 256 . . R278d +chr19 SNP SNP 17044991 17106083 374 . . R279d +chr19 SNP SNP 17106084 17167176 475 . . R280d +chr19 SNP SNP 17167177 17228269 449 . . R281d +chr19 SNP SNP 17228270 17289362 518 . . R282d +chr19 SNP SNP 17289363 17350455 342 . . R283d +chr19 SNP SNP 17350456 17411548 310 . . R284d +chr19 SNP SNP 17411549 17472642 342 . . R285d +chr19 SNP SNP 17472643 17533735 299 . . R286d +chr19 SNP SNP 17533736 17594828 347 . . R287d +chr19 SNP SNP 17594829 17655921 171 . . R288d +chr19 SNP SNP 17655922 17717014 37 . . R289d +chr19 SNP SNP 17717015 17778107 32 . . R290d +chr19 SNP SNP 17778108 17839200 401 . . R291d +chr19 SNP SNP 17839201 17900293 411 . . R292d +chr19 SNP SNP 17900294 17961386 368 . . R293d +chr19 SNP SNP 17961387 18022480 336 . . R294d +chr19 SNP SNP 18022481 18083573 176 . . R295d +chr19 SNP SNP 18083574 18144666 58 . . R296d +chr19 SNP SNP 18144667 18205759 278 . . R297d +chr19 SNP SNP 18205760 18266852 16 . . R298d +chr19 SNP SNP 18266853 18327945 26 . . R299d +chr19 SNP SNP 18327946 18389038 224 . . R300d +chr19 SNP SNP 18389039 18450131 160 . . R301d +chr19 SNP SNP 18450132 18511225 32 . . R302d +chr19 SNP SNP 18511226 18572318 26 . . R303d +chr19 SNP SNP 18572319 18633411 42 . . R304d +chr19 SNP SNP 18633412 18694504 64 . . R305d +chr19 SNP SNP 18694505 18755597 21 . . R306d +chr19 SNP SNP 18755598 18816690 32 . . R307d +chr19 SNP SNP 18816691 18877783 32 . . R308d +chr19 SNP SNP 18877784 18938876 21 . . R309d +chr19 SNP SNP 18938877 18999970 26 . . R310d +chr19 SNP SNP 18999971 19061063 42 . . R311d +chr19 SNP SNP 19061064 19122156 165 . . R312d +chr19 SNP SNP 19122157 19183249 529 . . R313d +chr19 SNP SNP 19183250 19244342 433 . . R314d +chr19 SNP SNP 19244343 19305435 272 . . R315d +chr19 SNP SNP 19305436 19366528 192 . . R316d +chr19 SNP SNP 19366529 19427621 491 . . R317d +chr19 SNP SNP 19427622 19488714 540 . . R318d +chr19 SNP SNP 19488715 19549808 283 . . R319d +chr19 SNP SNP 19549809 19610901 187 . . R320d +chr19 SNP SNP 19610902 19671994 347 . . R321d +chr19 SNP SNP 19671995 19733087 240 . . R322d +chr19 SNP SNP 19733088 19794180 171 . . R323d +chr19 SNP SNP 19794181 19855273 21 . . R324d +chr19 SNP SNP 19855274 19916366 208 . . R325d +chr19 SNP SNP 19916367 19977459 267 . . R326d +chr19 SNP SNP 19977460 20038553 26 . . R327d +chr19 SNP SNP 20038554 20099646 48 . . R328d +chr19 SNP SNP 20099647 20160739 21 . . R329d +chr19 SNP SNP 20160740 20221832 37 . . R330d +chr19 SNP SNP 20221833 20282925 10 . . R331d +chr19 SNP SNP 20282926 20344018 16 . . R332d +chr19 SNP SNP 20344019 20405111 32 . . R333d +chr19 SNP SNP 20405112 20466204 26 . . R334d +chr19 SNP SNP 20466205 20527297 5 . . R335d +chr19 SNP SNP 20527298 20588391 16 . . R336d +chr19 SNP SNP 20588392 20649484 21 . . R337d +chr19 SNP SNP 20649485 20710577 171 . . R338d +chr19 SNP SNP 20710578 20771670 106 . . R339d +chr19 SNP SNP 20771671 20832763 112 . . R340d +chr19 SNP SNP 20832764 20893856 74 . . R341d +chr19 SNP SNP 20893857 20954949 80 . . R342d +chr19 SNP SNP 20954950 21016042 21 . . R343d +chr19 SNP SNP 21016043 21077136 208 . . R344d +chr19 SNP SNP 21077137 21138229 347 . . R345d +chr19 SNP SNP 21138230 21199322 475 . . R346d +chr19 SNP SNP 21199323 21260415 112 . . R347d +chr19 SNP SNP 21260416 21321508 304 . . R348d +chr19 SNP SNP 21321509 21382601 454 . . R349d +chr19 SNP SNP 21382602 21443694 278 . . R350d +chr19 SNP SNP 21443695 21504787 0 . . R351d +chr19 SNP SNP 21504788 21565881 310 . . R352d +chr19 SNP SNP 21565882 21626974 112 . . R353d +chr19 SNP SNP 21626975 21688067 331 . . R354d +chr19 SNP SNP 21688068 21749160 443 . . R355d +chr19 SNP SNP 21749161 21810253 320 . . R356d +chr19 SNP SNP 21810254 21871346 213 . . R357d +chr19 SNP SNP 21871347 21932439 411 . . R358d +chr19 SNP SNP 21932440 21993532 486 . . R359d +chr19 SNP SNP 21993533 22054625 288 . . R360d +chr19 SNP SNP 22054626 22115719 443 . . R361d +chr19 SNP SNP 22115720 22176812 475 . . R362d +chr19 SNP SNP 22176813 22237905 422 . . R363d +chr19 SNP SNP 22237906 22298998 561 . . R364d +chr19 SNP SNP 22298999 22360091 315 . . R365d +chr19 SNP SNP 22360092 22421184 363 . . R366d +chr19 SNP SNP 22421185 22482277 427 . . R367d +chr19 SNP SNP 22482278 22543370 609 . . R368d +chr19 SNP SNP 22543371 22604464 385 . . R369d +chr19 SNP SNP 22604465 22665557 588 . . R370d +chr19 SNP SNP 22665558 22726650 406 . . R371d +chr19 SNP SNP 22726651 22787743 358 . . R372d +chr19 SNP SNP 22787744 22848836 197 . . R373d +chr19 SNP SNP 22848837 22909929 208 . . R374d +chr19 SNP SNP 22909930 22971022 358 . . R375d +chr19 SNP SNP 22971023 23032115 486 . . R376d +chr19 SNP SNP 23032116 23093208 401 . . R377d +chr19 SNP SNP 23093209 23154302 454 . . R378d +chr19 SNP SNP 23154303 23215395 288 . . R379d +chr19 SNP SNP 23215396 23276488 208 . . R380d +chr19 SNP SNP 23276489 23337581 288 . . R381d +chr19 SNP SNP 23337582 23398674 518 . . R382d +chr19 SNP SNP 23398675 23459767 256 . . R383d +chr19 SNP SNP 23459768 23520860 331 . . R384d +chr19 SNP SNP 23520861 23581953 336 . . R385d +chr19 SNP SNP 23581954 23643047 192 . . R386d +chr19 SNP SNP 23643048 23704140 272 . . R387d +chr19 SNP SNP 23704141 23765233 278 . . R388d +chr19 SNP SNP 23765234 23826326 149 . . R389d +chr19 SNP SNP 23826327 23887419 352 . . R390d +chr19 SNP SNP 23887420 23948512 256 . . R391d +chr19 SNP SNP 23948513 24009605 427 . . R392d +chr19 SNP SNP 24009606 24070698 299 . . R393d +chr19 SNP SNP 24070699 24131792 401 . . R394d +chr19 SNP SNP 24131793 24192885 90 . . R395d +chr19 SNP SNP 24192886 24253978 336 . . R396d +chr19 SNP SNP 24253979 24315071 251 . . R397d +chr19 SNP SNP 24315072 24376164 122 . . R398d +chr19 SNP SNP 24376165 24437257 304 . . R399d +chr19 SNP SNP 24437258 24498350 122 . . R400d +chr19 SNP SNP 24498351 24559443 48 . . R401d +chr19 SNP SNP 24559444 24620536 160 . . R402d +chr19 SNP SNP 24620537 24681630 320 . . R403d +chr19 SNP SNP 24681631 24742723 486 . . R404d +chr19 SNP SNP 24742724 24803816 229 . . R405d +chr19 SNP SNP 24803817 24864909 16 . . R406d +chr19 SNP SNP 24864910 24926002 64 . . R407d +chr19 SNP SNP 24926003 24987095 171 . . R408d +chr19 SNP SNP 24987096 25048188 347 . . R409d +chr19 SNP SNP 25048189 25109281 181 . . R410d +chr19 SNP SNP 25109282 25170375 128 . . R411d +chr19 SNP SNP 25170376 25231468 10 . . R412d +chr19 SNP SNP 25231469 25292561 251 . . R413d +chr19 SNP SNP 25292562 25353654 294 . . R414d +chr19 SNP SNP 25353655 25414747 342 . . R415d +chr19 SNP SNP 25414748 25475840 213 . . R416d +chr19 SNP SNP 25475841 25536933 245 . . R417d +chr19 SNP SNP 25536934 25598026 32 . . R418d +chr19 SNP SNP 25598027 25659119 181 . . R419d +chr19 SNP SNP 25659120 25720213 192 . . R420d +chr19 SNP SNP 25720214 25781306 288 . . R421d +chr19 SNP SNP 25781307 25842399 299 . . R422d +chr19 SNP SNP 25842400 25903492 10 . . R423d +chr19 SNP SNP 25903493 25964585 16 . . R424d +chr19 SNP SNP 25964586 26025678 21 . . R425d +chr19 SNP SNP 26025679 26086771 21 . . R426d +chr19 SNP SNP 26086772 26147864 10 . . R427d +chr19 SNP SNP 26147865 26208958 0 . . R428d +chr19 SNP SNP 26208959 26270051 10 . . R429d +chr19 SNP SNP 26270052 26331144 5 . . R430d +chr19 SNP SNP 26331145 26392237 21 . . R431d +chr19 SNP SNP 26392238 26453330 0 . . R432d +chr19 SNP SNP 26453331 26514423 10 . . R433d +chr19 SNP SNP 26514424 26575516 21 . . R434d +chr19 SNP SNP 26575517 26636609 5 . . R435d +chr19 SNP SNP 26636610 26697703 16 . . R436d +chr19 SNP SNP 26697704 26758796 16 . . R437d +chr19 SNP SNP 26758797 26819889 16 . . R438d +chr19 SNP SNP 26819890 26880982 10 . . R439d +chr19 SNP SNP 26880983 26942075 10 . . R440d +chr19 SNP SNP 26942076 27003168 10 . . R441d +chr19 SNP SNP 27003169 27064261 5 . . R442d +chr19 SNP SNP 27064262 27125354 0 . . R443d +chr19 SNP SNP 27125355 27186447 10 . . R444d +chr19 SNP SNP 27186448 27247541 16 . . R445d +chr19 SNP SNP 27247542 27308634 10 . . R446d +chr19 SNP SNP 27308635 27369727 5 . . R447d +chr19 SNP SNP 27369728 27430820 10 . . R448d +chr19 SNP SNP 27430821 27491913 5 . . R449d +chr19 SNP SNP 27491914 27553006 0 . . R450d +chr19 SNP SNP 27553007 27614099 10 . . R451d +chr19 SNP SNP 27614100 27675192 0 . . R452d +chr19 SNP SNP 27675193 27736286 10 . . R453d +chr19 SNP SNP 27736287 27797379 5 . . R454d +chr19 SNP SNP 27797380 27858472 16 . . R455d +chr19 SNP SNP 27858473 27919565 5 . . R456d +chr19 SNP SNP 27919566 27980658 10 . . R457d +chr19 SNP SNP 27980659 28041751 16 . . R458d +chr19 SNP SNP 28041752 28102844 26 . . R459d +chr19 SNP SNP 28102845 28163937 10 . . R460d +chr19 SNP SNP 28163938 28225030 21 . . R461d +chr19 SNP SNP 28225031 28286124 5 . . R462d +chr19 SNP SNP 28286125 28347217 16 . . R463d +chr19 SNP SNP 28347218 28408310 0 . . R464d +chr19 SNP SNP 28408311 28469403 5 . . R465d +chr19 SNP SNP 28469404 28530496 10 . . R466d +chr19 SNP SNP 28530497 28591589 5 . . R467d +chr19 SNP SNP 28591590 28652682 5 . . R468d +chr19 SNP SNP 28652683 28713775 26 . . R469d +chr19 SNP SNP 28713776 28774869 5 . . R470d +chr19 SNP SNP 28774870 28835962 0 . . R471d +chr19 SNP SNP 28835963 28897055 0 . . R472d +chr19 SNP SNP 28897056 28958148 16 . . R473d +chr19 SNP SNP 28958149 29019241 0 . . R474d +chr19 SNP SNP 29019242 29080334 21 . . R475d +chr19 SNP SNP 29080335 29141427 0 . . R476d +chr19 SNP SNP 29141428 29202520 26 . . R477d +chr19 SNP SNP 29202521 29263614 21 . . R478d +chr19 SNP SNP 29263615 29324707 0 . . R479d +chr19 SNP SNP 29324708 29385800 64 . . R480d +chr19 SNP SNP 29385801 29446893 5 . . R481d +chr19 SNP SNP 29446894 29507986 26 . . R482d +chr19 SNP SNP 29507987 29569079 5 . . R483d +chr19 SNP SNP 29569080 29630172 310 . . R484d +chr19 SNP SNP 29630173 29691265 385 . . R485d +chr19 SNP SNP 29691266 29752358 181 . . R486d +chr19 SNP SNP 29752359 29813452 21 . . R487d +chr19 SNP SNP 29813453 29874545 197 . . R488d +chr19 SNP SNP 29874546 29935638 326 . . R489d +chr19 SNP SNP 29935639 29996731 122 . . R490d +chr19 SNP SNP 29996732 30057824 21 . . R491d +chr19 SNP SNP 30057825 30118917 58 . . R492d +chr19 SNP SNP 30118918 30180010 10 . . R493d +chr19 SNP SNP 30180011 30241103 122 . . R494d +chr19 SNP SNP 30241104 30302197 64 . . R495d +chr19 SNP SNP 30302198 30363290 5 . . R496d +chr19 SNP SNP 30363291 30424383 5 . . R497d +chr19 SNP SNP 30424384 30485476 10 . . R498d +chr19 SNP SNP 30485477 30546569 26 . . R499d +chr19 SNP SNP 30546570 30607662 10 . . R500d +chr19 SNP SNP 30607663 30668755 5 . . R501d +chr19 SNP SNP 30668756 30729848 10 . . R502d +chr19 SNP SNP 30729849 30790941 26 . . R503d +chr19 SNP SNP 30790942 30852035 16 . . R504d +chr19 SNP SNP 30852036 30913128 5 . . R505d +chr19 SNP SNP 30913129 30974221 0 . . R506d +chr19 SNP SNP 30974222 31035314 16 . . R507d +chr19 SNP SNP 31035315 31096407 10 . . R508d +chr19 SNP SNP 31096408 31157500 10 . . R509d +chr19 SNP SNP 31157501 31218593 10 . . R510d +chr19 SNP SNP 31218594 31279686 10 . . R511d +chr19 SNP SNP 31279687 31340780 37 . . R512d +chr19 SNP SNP 31340781 31401873 21 . . R513d +chr19 SNP SNP 31401874 31462966 106 . . R514d +chr19 SNP SNP 31462967 31524059 278 . . R515d +chr19 SNP SNP 31524060 31585152 10 . . R516d +chr19 SNP SNP 31585153 31646245 10 . . R517d +chr19 SNP SNP 31646246 31707338 32 . . R518d +chr19 SNP SNP 31707339 31768431 155 . . R519d +chr19 SNP SNP 31768432 31829524 417 . . R520d +chr19 SNP SNP 31829525 31890618 32 . . R521d +chr19 SNP SNP 31890619 31951711 42 . . R522d +chr19 SNP SNP 31951712 32012804 368 . . R523d +chr19 SNP SNP 32012805 32073897 379 . . R524d +chr19 SNP SNP 32073898 32134990 454 . . R525d +chr19 SNP SNP 32134991 32196083 85 . . R526d +chr19 SNP SNP 32196084 32257176 64 . . R527d +chr19 SNP SNP 32257177 32318269 283 . . R528d +chr19 SNP SNP 32318270 32379363 336 . . R529d +chr19 SNP SNP 32379364 32440456 90 . . R530d +chr19 SNP SNP 32440457 32501549 5 . . R531d +chr19 SNP SNP 32501550 32562642 0 . . R532d +chr19 SNP SNP 32562643 32623735 16 . . R533d +chr19 SNP SNP 32623736 32684828 21 . . R534d +chr19 SNP SNP 32684829 32745921 5 . . R535d +chr19 SNP SNP 32745922 32807014 10 . . R536d +chr19 SNP SNP 32807015 32868108 10 . . R537d +chr19 SNP SNP 32868109 32929201 21 . . R538d +chr19 SNP SNP 32929202 32990294 10 . . R539d +chr19 SNP SNP 32990295 33051387 0 . . R540d +chr19 SNP SNP 33051388 33112480 16 . . R541d +chr19 SNP SNP 33112481 33173573 58 . . R542d +chr19 SNP SNP 33173574 33234666 32 . . R543d +chr19 SNP SNP 33234667 33295759 10 . . R544d +chr19 SNP SNP 33295760 33356852 16 . . R545d +chr19 SNP SNP 33356853 33417946 48 . . R546d +chr19 SNP SNP 33417947 33479039 10 . . R547d +chr19 SNP SNP 33479040 33540132 16 . . R548d +chr19 SNP SNP 33540133 33601225 21 . . R549d +chr19 SNP SNP 33601226 33662318 5 . . R550d +chr19 SNP SNP 33662319 33723411 21 . . R551d +chr19 SNP SNP 33723412 33784504 0 . . R552d +chr19 SNP SNP 33784505 33845597 32 . . R553d +chr19 SNP SNP 33845598 33906691 0 . . R554d +chr19 SNP SNP 33906692 33967784 21 . . R555d +chr19 SNP SNP 33967785 34028877 10 . . R556d +chr19 SNP SNP 34028878 34089970 10 . . R557d +chr19 SNP SNP 34089971 34151063 0 . . R558d +chr19 SNP SNP 34151064 34212156 5 . . R559d +chr19 SNP SNP 34212157 34273249 32 . . R560d +chr19 SNP SNP 34273250 34334342 5 . . R561d +chr19 SNP SNP 34334343 34395435 10 . . R562d +chr19 SNP SNP 34395436 34456529 10 . . R563d +chr19 SNP SNP 34456530 34517622 10 . . R564d +chr19 SNP SNP 34517623 34578715 10 . . R565d +chr19 SNP SNP 34578716 34639808 16 . . R566d +chr19 SNP SNP 34639809 34700901 10 . . R567d +chr19 SNP SNP 34700902 34761994 10 . . R568d +chr19 SNP SNP 34761995 34823087 16 . . R569d +chr19 SNP SNP 34823088 34884180 21 . . R570d +chr19 SNP SNP 34884181 34945274 21 . . R571d +chr19 SNP SNP 34945275 35006367 26 . . R572d +chr19 SNP SNP 35006368 35067460 16 . . R573d +chr19 SNP SNP 35067461 35128553 10 . . R574d +chr19 SNP SNP 35128554 35189646 32 . . R575d +chr19 SNP SNP 35189647 35250739 16 . . R576d +chr19 SNP SNP 35250740 35311832 5 . . R577d +chr19 SNP SNP 35311833 35372925 21 . . R578d +chr19 SNP SNP 35372926 35434019 26 . . R579d +chr19 SNP SNP 35434020 35495112 21 . . R580d +chr19 SNP SNP 35495113 35556205 21 . . R581d +chr19 SNP SNP 35556206 35617298 32 . . R582d +chr19 SNP SNP 35617299 35678391 32 . . R583d +chr19 SNP SNP 35678392 35739484 80 . . R584d +chr19 SNP SNP 35739485 35800577 58 . . R585d +chr19 SNP SNP 35800578 35861670 26 . . R586d +chr19 SNP SNP 35861671 35922763 5 . . R587d +chr19 SNP SNP 35922764 35983857 10 . . R588d +chr19 SNP SNP 35983858 36044950 10 . . R589d +chr19 SNP SNP 36044951 36106043 122 . . R590d +chr19 SNP SNP 36106044 36167136 144 . . R591d +chr19 SNP SNP 36167137 36228229 101 . . R592d +chr19 SNP SNP 36228230 36289322 26 . . R593d +chr19 SNP SNP 36289323 36350415 256 . . R594d +chr19 SNP SNP 36350416 36411508 245 . . R595d +chr19 SNP SNP 36411509 36472602 37 . . R596d +chr19 SNP SNP 36472603 36533695 32 . . R597d +chr19 SNP SNP 36533696 36594788 10 . . R598d +chr19 SNP SNP 36594789 36655881 5 . . R599d +chr19 SNP SNP 36655882 36716974 5 . . R600d +chr19 SNP SNP 36716975 36778067 21 . . R601d +chr19 SNP SNP 36778068 36839160 192 . . R602d +chr19 SNP SNP 36839161 36900253 278 . . R603d +chr19 SNP SNP 36900254 36961346 149 . . R604d +chr19 SNP SNP 36961347 37022440 331 . . R605d +chr19 SNP SNP 37022441 37083533 219 . . R606d +chr19 SNP SNP 37083534 37144626 187 . . R607d +chr19 SNP SNP 37144627 37205719 352 . . R608d +chr19 SNP SNP 37205720 37266812 197 . . R609d +chr19 SNP SNP 37266813 37327905 149 . . R610d +chr19 SNP SNP 37327906 37388998 267 . . R611d +chr19 SNP SNP 37388999 37450091 352 . . R612d +chr19 SNP SNP 37450092 37511185 625 . . R613d +chr19 SNP SNP 37511186 37572278 315 . . R614d +chr19 SNP SNP 37572279 37633371 208 . . R615d +chr19 SNP SNP 37633372 37694464 160 . . R616d +chr19 SNP SNP 37694465 37755557 16 . . R617d +chr19 SNP SNP 37755558 37816650 26 . . R618d +chr19 SNP SNP 37816651 37877743 101 . . R619d +chr19 SNP SNP 37877744 37938836 224 . . R620d +chr19 SNP SNP 37938837 37999930 422 . . R621d +chr19 SNP SNP 37999931 38061023 368 . . R622d +chr19 SNP SNP 38061024 38122116 235 . . R623d +chr19 SNP SNP 38122117 38183209 320 . . R624d +chr19 SNP SNP 38183210 38244302 336 . . R625d +chr19 SNP SNP 38244303 38305395 90 . . R626d +chr19 SNP SNP 38305396 38366488 64 . . R627d +chr19 SNP SNP 38366489 38427581 16 . . R628d +chr19 SNP SNP 38427582 38488674 80 . . R629d +chr19 SNP SNP 38488675 38549768 176 . . R630d +chr19 SNP SNP 38549769 38610861 0 . . R631d +chr19 SNP SNP 38610862 38671954 37 . . R632d +chr19 SNP SNP 38671955 38733047 636 . . R633d +chr19 SNP SNP 38733048 38794140 187 . . R634d +chr19 SNP SNP 38794141 38855233 133 . . R635d +chr19 SNP SNP 38855234 38916326 791 . . R636d +chr19 SNP SNP 38916327 38977419 770 . . R637d +chr19 SNP SNP 38977420 39038513 203 . . R638d +chr19 SNP SNP 39038514 39099606 21 . . R639d +chr19 SNP SNP 39099607 39160699 572 . . R640d +chr19 SNP SNP 39160700 39221792 96 . . R641d +chr19 SNP SNP 39221793 39282885 64 . . R642d +chr19 SNP SNP 39282886 39343978 85 . . R643d +chr19 SNP SNP 39343979 39405071 165 . . R644d +chr19 SNP SNP 39405072 39466164 203 . . R645d +chr19 SNP SNP 39466165 39527257 219 . . R646d +chr19 SNP SNP 39527258 39588351 117 . . R647d +chr19 SNP SNP 39588352 39649444 427 . . R648d +chr19 SNP SNP 39649445 39710537 508 . . R649d +chr19 SNP SNP 39710538 39771630 342 . . R650d +chr19 SNP SNP 39771631 39832723 245 . . R651d +chr19 SNP SNP 39832724 39893816 229 . . R652d +chr19 SNP SNP 39893817 39954909 422 . . R653d +chr19 SNP SNP 39954910 40016002 272 . . R654d +chr19 SNP SNP 40016003 40077096 240 . . R655d +chr19 SNP SNP 40077097 40138189 363 . . R656d +chr19 SNP SNP 40138190 40199282 16 . . R657d +chr19 SNP SNP 40199283 40260375 203 . . R658d +chr19 SNP SNP 40260376 40321468 42 . . R659d +chr19 SNP SNP 40321469 40382561 10 . . R660d +chr19 SNP SNP 40382562 40443654 10 . . R661d +chr19 SNP SNP 40443655 40504747 10 . . R662d +chr19 SNP SNP 40504748 40565841 48 . . R663d +chr19 SNP SNP 40565842 40626934 342 . . R664d +chr19 SNP SNP 40626935 40688027 315 . . R665d +chr19 SNP SNP 40688028 40749120 21 . . R666d +chr19 SNP SNP 40749121 40810213 32 . . R667d +chr19 SNP SNP 40810214 40871306 176 . . R668d +chr19 SNP SNP 40871307 40932399 106 . . R669d +chr19 SNP SNP 40932400 40993492 192 . . R670d +chr19 SNP SNP 40993493 41054585 336 . . R671d +chr19 SNP SNP 41054586 41115679 443 . . R672d +chr19 SNP SNP 41115680 41176772 374 . . R673d +chr19 SNP SNP 41176773 41237865 80 . . R674d +chr19 SNP SNP 41237866 41298958 0 . . R675d +chr19 SNP SNP 41298959 41360051 90 . . R676d +chr19 SNP SNP 41360052 41421144 32 . . R677d +chr19 SNP SNP 41421145 41482237 256 . . R678d +chr19 SNP SNP 41482238 41543330 245 . . R679d +chr19 SNP SNP 41543331 41604424 347 . . R680d +chr19 SNP SNP 41604425 41665517 411 . . R681d +chr19 SNP SNP 41665518 41726610 272 . . R682d +chr19 SNP SNP 41726611 41787703 42 . . R683d +chr19 SNP SNP 41787704 41848796 320 . . R684d +chr19 SNP SNP 41848797 41909889 251 . . R685d +chr19 SNP SNP 41909890 41970982 283 . . R686d +chr19 SNP SNP 41970983 42032075 385 . . R687d +chr19 SNP SNP 42032076 42093168 385 . . R688d +chr19 SNP SNP 42093169 42154262 417 . . R689d +chr19 SNP SNP 42154263 42215355 454 . . R690d +chr19 SNP SNP 42215356 42276448 48 . . R691d +chr19 SNP SNP 42276449 42337541 26 . . R692d +chr19 SNP SNP 42337542 42398634 331 . . R693d +chr19 SNP SNP 42398635 42459727 213 . . R694d +chr19 SNP SNP 42459728 42520820 288 . . R695d +chr19 SNP SNP 42520821 42581913 406 . . R696d +chr19 SNP SNP 42581914 42643007 224 . . R697d +chr19 SNP SNP 42643008 42704100 743 . . R698d +chr19 SNP SNP 42704101 42765193 187 . . R699d +chr19 SNP SNP 42765194 42826286 288 . . R700d +chr19 SNP SNP 42826287 42887379 304 . . R701d +chr19 SNP SNP 42887380 42948472 224 . . R702d +chr19 SNP SNP 42948473 43009565 705 . . R703d +chr19 SNP SNP 43009566 43070658 294 . . R704d +chr19 SNP SNP 43070659 43131752 352 . . R705d +chr19 SNP SNP 43131753 43192845 219 . . R706d +chr19 SNP SNP 43192846 43253938 278 . . R707d +chr19 SNP SNP 43253939 43315031 374 . . R708d +chr19 SNP SNP 43315032 43376124 224 . . R709d +chr19 SNP SNP 43376125 43437217 262 . . R710d +chr19 SNP SNP 43437218 43498310 181 . . R711d +chr19 SNP SNP 43498311 43559403 240 . . R712d +chr19 SNP SNP 43559404 43620496 283 . . R713d +chr19 SNP SNP 43620497 43681590 101 . . R714d +chr19 SNP SNP 43681591 43742683 197 . . R715d +chr19 SNP SNP 43742684 43803776 176 . . R716d +chr19 SNP SNP 43803777 43864869 192 . . R717d +chr19 SNP SNP 43864870 43925962 326 . . R718d +chr19 SNP SNP 43925963 43987055 331 . . R719d +chr19 SNP SNP 43987056 44048148 235 . . R720d +chr19 SNP SNP 44048149 44109241 278 . . R721d +chr19 SNP SNP 44109242 44170335 433 . . R722d +chr19 SNP SNP 44170336 44231428 326 . . R723d +chr19 SNP SNP 44231429 44292521 197 . . R724d +chr19 SNP SNP 44292522 44353614 90 . . R725d +chr19 SNP SNP 44353615 44414707 197 . . R726d +chr19 SNP SNP 44414708 44475800 256 . . R727d +chr19 SNP SNP 44475801 44536893 251 . . R728d +chr19 SNP SNP 44536894 44597986 267 . . R729d +chr19 SNP SNP 44597987 44659079 160 . . R730d +chr19 SNP SNP 44659080 44720173 42 . . R731d +chr19 SNP SNP 44720174 44781266 16 . . R732d +chr19 SNP SNP 44781267 44842359 310 . . R733d +chr19 SNP SNP 44842360 44903452 69 . . R734d +chr19 SNP SNP 44903453 44964545 219 . . R735d +chr19 SNP SNP 44964546 45025638 240 . . R736d +chr19 SNP SNP 45025639 45086731 176 . . R737d +chr19 SNP SNP 45086732 45147824 262 . . R738d +chr19 SNP SNP 45147825 45208918 299 . . R739d +chr19 SNP SNP 45208919 45270011 101 . . R740d +chr19 SNP SNP 45270012 45331104 379 . . R741d +chr19 SNP SNP 45331105 45392197 171 . . R742d +chr19 SNP SNP 45392198 45453290 267 . . R743d +chr19 SNP SNP 45453291 45514383 85 . . R744d +chr19 SNP SNP 45514384 45575476 37 . . R745d +chr19 SNP SNP 45575477 45636569 26 . . R746d +chr19 SNP SNP 45636570 45697663 181 . . R747d +chr19 SNP SNP 45697664 45758756 342 . . R748d +chr19 SNP SNP 45758757 45819849 64 . . R749d +chr19 SNP SNP 45819850 45880942 288 . . R750d +chr19 SNP SNP 45880943 45942035 69 . . R751d +chr19 SNP SNP 45942036 46003128 176 . . R752d +chr19 SNP SNP 46003129 46064221 37 . . R753d +chr19 SNP SNP 46064222 46125314 21 . . R754d +chr19 SNP SNP 46125315 46186407 48 . . R755d +chr19 SNP SNP 46186408 46247501 358 . . R756d +chr19 SNP SNP 46247502 46308594 524 . . R757d +chr19 SNP SNP 46308595 46369687 251 . . R758d +chr19 SNP SNP 46369688 46430780 374 . . R759d +chr19 SNP SNP 46430781 46491873 352 . . R760d +chr19 SNP SNP 46491874 46552966 288 . . R761d +chr19 SNP SNP 46552967 46614059 310 . . R762d +chr19 SNP SNP 46614060 46675152 283 . . R763d +chr19 SNP SNP 46675153 46736246 203 . . R764d +chr19 SNP SNP 46736247 46797339 262 . . R765d +chr19 SNP SNP 46797340 46858432 235 . . R766d +chr19 SNP SNP 46858433 46919525 470 . . R767d +chr19 SNP SNP 46919526 46980618 443 . . R768d +chr19 SNP SNP 46980619 47041711 213 . . R769d +chr19 SNP SNP 47041712 47102804 294 . . R770d +chr19 SNP SNP 47102805 47163897 401 . . R771d +chr19 SNP SNP 47163898 47224990 368 . . R772d +chr19 SNP SNP 47224991 47286084 187 . . R773d +chr19 SNP SNP 47286085 47347177 187 . . R774d +chr19 SNP SNP 47347178 47408270 475 . . R775d +chr19 SNP SNP 47408271 47469363 224 . . R776d +chr19 SNP SNP 47469364 47530456 310 . . R777d +chr19 SNP SNP 47530457 47591549 486 . . R778d +chr19 SNP SNP 47591550 47652642 315 . . R779d +chr19 SNP SNP 47652643 47713735 395 . . R780d +chr19 SNP SNP 47713736 47774829 582 . . R781d +chr19 SNP SNP 47774830 47835922 347 . . R782d +chr19 SNP SNP 47835923 47897015 385 . . R783d +chr19 SNP SNP 47897016 47958108 69 . . R784d +chr19 SNP SNP 47958109 48019201 181 . . R785d +chr19 SNP SNP 48019202 48080294 358 . . R786d +chr19 SNP SNP 48080295 48141387 299 . . R787d +chr19 SNP SNP 48141388 48202480 165 . . R788d +chr19 SNP SNP 48202481 48263574 128 . . R789d +chr19 SNP SNP 48263575 48324667 48 . . R790d +chr19 SNP SNP 48324668 48385760 37 . . R791d +chr19 SNP SNP 48385761 48446853 32 . . R792d +chr19 SNP SNP 48446854 48507946 5 . . R793d +chr19 SNP SNP 48507947 48569039 21 . . R794d +chr19 SNP SNP 48569040 48630132 53 . . R795d +chr19 SNP SNP 48630133 48691225 5 . . R796d +chr19 SNP SNP 48691226 48752318 16 . . R797d +chr19 SNP SNP 48752319 48813412 5 . . R798d +chr19 SNP SNP 48813413 48874505 21 . . R799d +chr19 SNP SNP 48874506 48935598 0 . . R800d +chr19 SNP SNP 48935599 48996691 21 . . R801d +chr19 SNP SNP 48996692 49057784 16 . . R802d +chr19 SNP SNP 49057785 49118877 16 . . R803d +chr19 SNP SNP 49118878 49179970 21 . . R804d +chr19 SNP SNP 49179971 49241063 5 . . R805d +chr19 SNP SNP 49241064 49302157 10 . . R806d +chr19 SNP SNP 49302158 49363250 42 . . R807d +chr19 SNP SNP 49363251 49424343 0 . . R808d +chr19 SNP SNP 49424344 49485436 5 . . R809d +chr19 SNP SNP 49485437 49546529 0 . . R810d +chr19 SNP SNP 49546530 49607622 0 . . R811d +chr19 SNP SNP 49607623 49668715 32 . . R812d +chr19 SNP SNP 49668716 49729808 5 . . R813d +chr19 SNP SNP 49729809 49790901 10 . . R814d +chr19 SNP SNP 49790902 49851995 16 . . R815d +chr19 SNP SNP 49851996 49913088 10 . . R816d +chr19 SNP SNP 49913089 49974181 10 . . R817d +chr19 SNP SNP 49974182 50035274 21 . . R818d +chr19 SNP SNP 50035275 50096367 0 . . R819d +chr19 SNP SNP 50096368 50157460 0 . . R820d +chr19 SNP SNP 50157461 50218553 614 . . R821d +chr19 SNP SNP 50218554 50279646 443 . . R822d +chr19 SNP SNP 50279647 50340740 524 . . R823d +chr19 SNP SNP 50340741 50401833 438 . . R824d +chr19 SNP SNP 50401834 50462926 149 . . R825d +chr19 SNP SNP 50462927 50524019 0 . . R826d +chr19 SNP SNP 50524020 50585112 0 . . R827d +chr19 SNP SNP 50585113 50646205 0 . . R828d +chr19 SNP SNP 50646206 50707298 5 . . R829d +chr19 SNP SNP 50707299 50768391 16 . . R830d +chr19 SNP SNP 50768392 50829485 5 . . R831d +chr19 SNP SNP 50829486 50890578 187 . . R832d +chr19 SNP SNP 50890579 50951671 21 . . R833d +chr19 SNP SNP 50951672 51012764 21 . . R834d +chr19 SNP SNP 51012765 51073857 26 . . R835d +chr19 SNP SNP 51073858 51134950 42 . . R836d +chr19 SNP SNP 51134951 51196043 5 . . R837d +chr19 SNP SNP 51196044 51257136 149 . . R838d +chr19 SNP SNP 51257137 51318229 561 . . R839d +chr19 SNP SNP 51318230 51379323 48 . . R840d +chr19 SNP SNP 51379324 51440416 133 . . R841d +chr19 SNP SNP 51440417 51501509 326 . . R842d +chr19 SNP SNP 51501510 51562602 53 . . R843d +chr19 SNP SNP 51562603 51623695 37 . . R844d +chr19 SNP SNP 51623696 51684788 32 . . R845d +chr19 SNP SNP 51684789 51745881 48 . . R846d +chr19 SNP SNP 51745882 51806974 53 . . R847d +chr19 SNP SNP 51806975 51868068 32 . . R848d +chr19 SNP SNP 51868069 51929161 42 . . R849d +chr19 SNP SNP 51929162 51990254 181 . . R850d +chr19 SNP SNP 51990255 52051347 37 . . R851d +chr19 SNP SNP 52051348 52112440 58 . . R852d +chr19 SNP SNP 52112441 52173533 106 . . R853d +chr19 SNP SNP 52173534 52234626 48 . . R854d +chr19 SNP SNP 52234627 52295719 208 . . R855d +chr19 SNP SNP 52295720 52356812 10 . . R856d +chr19 SNP SNP 52356813 52417906 21 . . R857d +chr19 SNP SNP 52417907 52478999 101 . . R858d +chr19 SNP SNP 52479000 52540092 128 . . R859d +chr19 SNP SNP 52540093 52601185 224 . . R860d +chr19 SNP SNP 52601186 52662278 160 . . R861d +chr19 SNP SNP 52662279 52723371 181 . . R862d +chr19 SNP SNP 52723372 52784464 235 . . R863d +chr19 SNP SNP 52784465 52845557 21 . . R864d +chr19 SNP SNP 52845558 52906651 85 . . R865d +chr19 SNP SNP 52906652 52967744 26 . . R866d +chr19 SNP SNP 52967745 53028837 10 . . R867d +chr19 SNP SNP 53028838 53089930 48 . . R868d +chr19 SNP SNP 53089931 53151023 80 . . R869d +chr19 SNP SNP 53151024 53212116 342 . . R870d +chr19 SNP SNP 53212117 53273209 213 . . R871d +chr19 SNP SNP 53273210 53334302 37 . . R872d +chr19 SNP SNP 53334303 53395396 42 . . R873d +chr19 SNP SNP 53395397 53456489 26 . . R874d +chr19 SNP SNP 53456490 53517582 32 . . R875d +chr19 SNP SNP 53517583 53578675 58 . . R876d +chr19 SNP SNP 53578676 53639768 326 . . R877d +chr19 SNP SNP 53639769 53700861 197 . . R878d +chr19 SNP SNP 53700862 53761954 37 . . R879d +chr19 SNP SNP 53761955 53823047 37 . . R880d +chr19 SNP SNP 53823048 53884140 48 . . R881d +chr19 SNP SNP 53884141 53945234 10 . . R882d +chr19 SNP SNP 53945235 54006327 26 . . R883d +chr19 SNP SNP 54006328 54067420 26 . . R884d +chr19 SNP SNP 54067421 54128513 144 . . R885d +chr19 SNP SNP 54128514 54189606 310 . . R886d +chr19 SNP SNP 54189607 54250699 176 . . R887d +chr19 SNP SNP 54250700 54311792 32 . . R888d +chr19 SNP SNP 54311793 54372885 64 . . R889d +chr19 SNP SNP 54372886 54433979 26 . . R890d +chr19 SNP SNP 54433980 54495072 42 . . R891d +chr19 SNP SNP 54495073 54556165 74 . . R892d +chr19 SNP SNP 54556166 54617258 213 . . R893d +chr19 SNP SNP 54617259 54678351 85 . . R894d +chr19 SNP SNP 54678352 54739444 21 . . R895d +chr19 SNP SNP 54739445 54800537 379 . . R896d +chr19 SNP SNP 54800538 54861630 74 . . R897d +chr19 SNP SNP 54861631 54922723 21 . . R898d +chr19 SNP SNP 54922724 54983817 37 . . R899d +chr19 SNP SNP 54983818 55044910 155 . . R900d +chr19 SNP SNP 55044911 55106003 21 . . R901d +chr19 SNP SNP 55106004 55167096 96 . . R902d +chr19 SNP SNP 55167097 55228189 352 . . R903d +chr19 SNP SNP 55228190 55289282 320 . . R904d +chr19 SNP SNP 55289283 55350375 74 . . R905d +chr19 SNP SNP 55350376 55411468 304 . . R906d +chr19 SNP SNP 55411469 55472562 203 . . R907d +chr19 SNP SNP 55472563 55533655 267 . . R908d +chr19 SNP SNP 55533656 55594748 96 . . R909d +chr19 SNP SNP 55594749 55655841 42 . . R910d +chr19 SNP SNP 55655842 55716934 0 . . R911d +chr19 SNP SNP 55716935 55778027 32 . . R912d +chr19 SNP SNP 55778028 55839120 32 . . R913d +chr19 SNP SNP 55839121 55900213 32 . . R914d +chr19 SNP SNP 55900214 55961307 401 . . R915d +chr19 SNP SNP 55961308 56022400 454 . . R916d +chr19 SNP SNP 56022401 56083493 374 . . R917d +chr19 SNP SNP 56083494 56144586 165 . . R918d +chr19 SNP SNP 56144587 56205679 224 . . R919d +chr19 SNP SNP 56205680 56266772 401 . . R920d +chr19 SNP SNP 56266773 56327865 106 . . R921d +chr19 SNP SNP 56327866 56388958 144 . . R922d +chr19 SNP SNP 56388959 56450051 96 . . R923d +chr19 SNP SNP 56450052 56511145 64 . . R924d +chr19 SNP SNP 56511146 56572238 21 . . R925d +chr19 SNP SNP 56572239 56633331 48 . . R926d +chr19 SNP SNP 56633332 56694424 160 . . R927d +chr19 SNP SNP 56694425 56755517 85 . . R928d +chr19 SNP SNP 56755518 56816610 320 . . R929d +chr19 SNP SNP 56816611 56877703 411 . . R930d +chr19 SNP SNP 56877704 56938796 203 . . R931d +chr19 SNP SNP 56938797 56999890 181 . . R932d +chr19 SNP SNP 56999891 57060983 374 . . R933d +chr19 SNP SNP 57060984 57122076 10 . . R934d +chr19 SNP SNP 57122077 57183169 42 . . R935d +chr19 SNP SNP 57183170 57244262 155 . . R936d +chr19 SNP SNP 57244263 57305355 203 . . R937d +chr19 SNP SNP 57305356 57366448 470 . . R938d +chr19 SNP SNP 57366449 57427541 304 . . R939d +chr19 SNP SNP 57427542 57488634 197 . . R940d +chr19 SNP SNP 57488635 57549728 256 . . R941d +chr19 SNP SNP 57549729 57610821 379 . . R942d +chr19 SNP SNP 57610822 57671914 122 . . R943d +chr19 SNP SNP 57671915 57733007 374 . . R944d +chr19 SNP SNP 57733008 57794100 187 . . R945d +chr19 SNP SNP 57794101 57855193 149 . . R946d +chr19 SNP SNP 57855194 57916286 438 . . R947d +chr19 SNP SNP 57916287 57977379 368 . . R948d +chr19 SNP SNP 57977380 58038473 663 . . R949d +chr19 SNP SNP 58038474 58099566 331 . . R950d +chr19 SNP SNP 58099567 58160659 203 . . R951d +chr19 SNP SNP 58160660 58221752 299 . . R952d +chr19 SNP SNP 58221753 58282845 443 . . R953d +chr19 SNP SNP 58282846 58343938 96 . . R954d +chr19 SNP SNP 58343939 58405031 32 . . R955d +chr19 SNP SNP 58405032 58466124 10 . . R956d +chr19 SNP SNP 58466125 58527218 272 . . R957d +chr19 SNP SNP 58527219 58588311 171 . . R958d +chr19 SNP SNP 58588312 58649404 310 . . R959d +chr19 SNP SNP 58649405 58710497 42 . . R960d +chr19 SNP SNP 58710498 58771590 283 . . R961d +chr19 SNP SNP 58771591 58832683 165 . . R962d +chr19 SNP SNP 58832684 58893776 53 . . R963d +chr19 SNP SNP 58893777 58954869 21 . . R964d +chr19 SNP SNP 58954870 59015962 21 . . R965d +chr19 SNP SNP 59015963 59077056 229 . . R966d +chr19 SNP SNP 59077057 59138149 331 . . R967d +chr19 SNP SNP 59138150 59199242 181 . . R968d +chr19 SNP SNP 59199243 59260335 385 . . R969d +chr19 SNP SNP 59260336 59321428 561 . . R970d +chr19 SNP SNP 59321429 59382521 647 . . R971d +chr19 SNP SNP 59382522 59443614 711 . . R972d +chr19 SNP SNP 59443615 59504707 700 . . R973d +chr19 SNP SNP 59504708 59565801 689 . . R974d +chr19 SNP SNP 59565802 59626894 406 . . R975d +chr19 SNP SNP 59626895 59687987 395 . . R976d +chr19 SNP SNP 59687988 59749080 705 . . R977d +chr19 SNP SNP 59749081 59810173 411 . . R978d +chr19 SNP SNP 59810174 59871266 625 . . R979d +chr19 SNP SNP 59871267 59932359 497 . . R980d +chr19 SNP SNP 59932360 59993452 598 . . R981d +chr19 SNP SNP 59993453 60054545 524 . . R982d +chr19 SNP SNP 60054546 60115639 770 . . R983d +chr19 SNP SNP 60115640 60176732 802 . . R984d +chr19 SNP SNP 60176733 60237825 631 . . R985d +chr19 SNP SNP 60237826 60298918 550 . . R986d +chr19 SNP SNP 60298919 60360011 1000 . . R987d +chr19 SNP SNP 60360012 60421104 588 . . R988d +chr19 SNP SNP 60421105 60482197 288 . . R989d +chr19 SNP SNP 60482198 60543290 588 . . R990d +chr19 SNP SNP 60543291 60604384 566 . . R991d +chr19 SNP SNP 60604385 60665477 315 . . R992d +chr19 SNP SNP 60665478 60726570 208 . . R993d +chr19 SNP SNP 60726571 60787663 454 . . R994d +chr19 SNP SNP 60787664 60848756 556 . . R995d +chr19 SNP SNP 60848757 60909849 663 . . R996d +chr19 SNP SNP 60909850 60970942 331 . . R997d +chr19 SNP SNP 60970943 61032035 326 . . R998d +chr19 SNP SNP 61032036 61093128 235 . . R999d +chr19 SNP SNP 61093129 61154222 0 . . R1000d diff --git a/web/snp/chr2 b/web/snp/chr2 new file mode 100755 index 00000000..cae9c87e --- /dev/null +++ b/web/snp/chr2 @@ -0,0 +1,1004 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr2 SNP SNP 11 181433 0 . . R0d +chr2 SNP SNP 181434 362856 0 . . R1d +chr2 SNP SNP 362857 544279 0 . . R2d +chr2 SNP SNP 544280 725702 0 . . R3d +chr2 SNP SNP 725703 907125 0 . . R4d +chr2 SNP SNP 907126 1088548 0 . . R5d +chr2 SNP SNP 1088549 1269971 0 . . R6d +chr2 SNP SNP 1269972 1451394 0 . . R7d +chr2 SNP SNP 1451395 1632817 0 . . R8d +chr2 SNP SNP 1632818 1814240 0 . . R9d +chr2 SNP SNP 1814241 1995663 0 . . R10d +chr2 SNP SNP 1995664 2177086 0 . . R11d +chr2 SNP SNP 2177087 2358509 0 . . R12d +chr2 SNP SNP 2358510 2539932 0 . . R13d +chr2 SNP SNP 2539933 2721356 0 . . R14d +chr2 SNP SNP 2721357 2902779 0 . . R15d +chr2 SNP SNP 2902780 3084202 14 . . R16d +chr2 SNP SNP 3084203 3265625 9 . . R17d +chr2 SNP SNP 3265626 3447048 37 . . R18d +chr2 SNP SNP 3447049 3628471 18 . . R19d +chr2 SNP SNP 3628472 3809894 65 . . R20d +chr2 SNP SNP 3809895 3991317 21 . . R21d +chr2 SNP SNP 3991318 4172740 53 . . R22d +chr2 SNP SNP 4172741 4354163 32 . . R23d +chr2 SNP SNP 4354164 4535586 7 . . R24d +chr2 SNP SNP 4535587 4717009 7 . . R25d +chr2 SNP SNP 4717010 4898432 18 . . R26d +chr2 SNP SNP 4898433 5079855 18 . . R27d +chr2 SNP SNP 5079856 5261279 16 . . R28d +chr2 SNP SNP 5261280 5442702 14 . . R29d +chr2 SNP SNP 5442703 5624125 63 . . R30d +chr2 SNP SNP 5624126 5805548 149 . . R31d +chr2 SNP SNP 5805549 5986971 121 . . R32d +chr2 SNP SNP 5986972 6168394 163 . . R33d +chr2 SNP SNP 6168395 6349817 234 . . R34d +chr2 SNP SNP 6349818 6531240 21 . . R35d +chr2 SNP SNP 6531241 6712663 18 . . R36d +chr2 SNP SNP 6712664 6894086 21 . . R37d +chr2 SNP SNP 6894087 7075509 4 . . R38d +chr2 SNP SNP 7075510 7256932 32 . . R39d +chr2 SNP SNP 7256933 7438355 39 . . R40d +chr2 SNP SNP 7438356 7619778 37 . . R41d +chr2 SNP SNP 7619779 7801202 39 . . R42d +chr2 SNP SNP 7801203 7982625 18 . . R43d +chr2 SNP SNP 7982626 8164048 28 . . R44d +chr2 SNP SNP 8164049 8345471 21 . . R45d +chr2 SNP SNP 8345472 8526894 30 . . R46d +chr2 SNP SNP 8526895 8708317 25 . . R47d +chr2 SNP SNP 8708318 8889740 11 . . R48d +chr2 SNP SNP 8889741 9071163 30 . . R49d +chr2 SNP SNP 9071164 9252586 35 . . R50d +chr2 SNP SNP 9252587 9434009 4 . . R51d +chr2 SNP SNP 9434010 9615432 49 . . R52d +chr2 SNP SNP 9615433 9796855 11 . . R53d +chr2 SNP SNP 9796856 9978278 28 . . R54d +chr2 SNP SNP 9978279 10159701 7 . . R55d +chr2 SNP SNP 10159702 10341124 16 . . R56d +chr2 SNP SNP 10341125 10522548 28 . . R57d +chr2 SNP SNP 10522549 10703971 25 . . R58d +chr2 SNP SNP 10703972 10885394 16 . . R59d +chr2 SNP SNP 10885395 11066817 14 . . R60d +chr2 SNP SNP 11066818 11248240 14 . . R61d +chr2 SNP SNP 11248241 11429663 7 . . R62d +chr2 SNP SNP 11429664 11611086 14 . . R63d +chr2 SNP SNP 11611087 11792509 11 . . R64d +chr2 SNP SNP 11792510 11973932 23 . . R65d +chr2 SNP SNP 11973933 12155355 25 . . R66d +chr2 SNP SNP 12155356 12336778 9 . . R67d +chr2 SNP SNP 12336779 12518201 11 . . R68d +chr2 SNP SNP 12518202 12699624 32 . . R69d +chr2 SNP SNP 12699625 12881047 25 . . R70d +chr2 SNP SNP 12881048 13062471 18 . . R71d +chr2 SNP SNP 13062472 13243894 16 . . R72d +chr2 SNP SNP 13243895 13425317 11 . . R73d +chr2 SNP SNP 13425318 13606740 25 . . R74d +chr2 SNP SNP 13606741 13788163 21 . . R75d +chr2 SNP SNP 13788164 13969586 25 . . R76d +chr2 SNP SNP 13969587 14151009 14 . . R77d +chr2 SNP SNP 14151010 14332432 18 . . R78d +chr2 SNP SNP 14332433 14513855 23 . . R79d +chr2 SNP SNP 14513856 14695278 18 . . R80d +chr2 SNP SNP 14695279 14876701 25 . . R81d +chr2 SNP SNP 14876702 15058124 23 . . R82d +chr2 SNP SNP 15058125 15239547 11 . . R83d +chr2 SNP SNP 15239548 15420970 23 . . R84d +chr2 SNP SNP 15420971 15602394 25 . . R85d +chr2 SNP SNP 15602395 15783817 11 . . R86d +chr2 SNP SNP 15783818 15965240 35 . . R87d +chr2 SNP SNP 15965241 16146663 16 . . R88d +chr2 SNP SNP 16146664 16328086 11 . . R89d +chr2 SNP SNP 16328087 16509509 23 . . R90d +chr2 SNP SNP 16509510 16690932 16 . . R91d +chr2 SNP SNP 16690933 16872355 11 . . R92d +chr2 SNP SNP 16872356 17053778 16 . . R93d +chr2 SNP SNP 17053779 17235201 2 . . R94d +chr2 SNP SNP 17235202 17416624 14 . . R95d +chr2 SNP SNP 17416625 17598047 18 . . R96d +chr2 SNP SNP 17598048 17779470 18 . . R97d +chr2 SNP SNP 17779471 17960893 11 . . R98d +chr2 SNP SNP 17960894 18142316 168 . . R99d +chr2 SNP SNP 18142317 18323740 44 . . R100d +chr2 SNP SNP 18323741 18505163 149 . . R101d +chr2 SNP SNP 18505164 18686586 320 . . R102d +chr2 SNP SNP 18686587 18868009 330 . . R103d +chr2 SNP SNP 18868010 19049432 309 . . R104d +chr2 SNP SNP 19049433 19230855 281 . . R105d +chr2 SNP SNP 19230856 19412278 337 . . R106d +chr2 SNP SNP 19412279 19593701 105 . . R107d +chr2 SNP SNP 19593702 19775124 395 . . R108d +chr2 SNP SNP 19775125 19956547 519 . . R109d +chr2 SNP SNP 19956548 20137970 264 . . R110d +chr2 SNP SNP 20137971 20319393 180 . . R111d +chr2 SNP SNP 20319394 20500816 206 . . R112d +chr2 SNP SNP 20500817 20682239 416 . . R113d +chr2 SNP SNP 20682240 20863663 234 . . R114d +chr2 SNP SNP 20863664 21045086 206 . . R115d +chr2 SNP SNP 21045087 21226509 510 . . R116d +chr2 SNP SNP 21226510 21407932 491 . . R117d +chr2 SNP SNP 21407933 21589355 388 . . R118d +chr2 SNP SNP 21589356 21770778 372 . . R119d +chr2 SNP SNP 21770779 21952201 419 . . R120d +chr2 SNP SNP 21952202 22133624 508 . . R121d +chr2 SNP SNP 22133625 22315047 555 . . R122d +chr2 SNP SNP 22315048 22496470 262 . . R123d +chr2 SNP SNP 22496471 22677893 489 . . R124d +chr2 SNP SNP 22677894 22859316 163 . . R125d +chr2 SNP SNP 22859317 23040739 515 . . R126d +chr2 SNP SNP 23040740 23222162 35 . . R127d +chr2 SNP SNP 23222163 23403586 32 . . R128d +chr2 SNP SNP 23403587 23585009 28 . . R129d +chr2 SNP SNP 23585010 23766432 32 . . R130d +chr2 SNP SNP 23766433 23947855 18 . . R131d +chr2 SNP SNP 23947856 24129278 28 . . R132d +chr2 SNP SNP 24129279 24310701 28 . . R133d +chr2 SNP SNP 24310702 24492124 435 . . R134d +chr2 SNP SNP 24492125 24673547 37 . . R135d +chr2 SNP SNP 24673548 24854970 325 . . R136d +chr2 SNP SNP 24854971 25036393 491 . . R137d +chr2 SNP SNP 25036394 25217816 501 . . R138d +chr2 SNP SNP 25217817 25399239 252 . . R139d +chr2 SNP SNP 25399240 25580662 142 . . R140d +chr2 SNP SNP 25580663 25762085 416 . . R141d +chr2 SNP SNP 25762086 25943509 302 . . R142d +chr2 SNP SNP 25943510 26124932 77 . . R143d +chr2 SNP SNP 26124933 26306355 295 . . R144d +chr2 SNP SNP 26306356 26487778 351 . . R145d +chr2 SNP SNP 26487779 26669201 107 . . R146d +chr2 SNP SNP 26669202 26850624 168 . . R147d +chr2 SNP SNP 26850625 27032047 168 . . R148d +chr2 SNP SNP 27032048 27213470 35 . . R149d +chr2 SNP SNP 27213471 27394893 30 . . R150d +chr2 SNP SNP 27394894 27576316 23 . . R151d +chr2 SNP SNP 27576317 27757739 9 . . R152d +chr2 SNP SNP 27757740 27939162 9 . . R153d +chr2 SNP SNP 27939163 28120585 4 . . R154d +chr2 SNP SNP 28120586 28302008 30 . . R155d +chr2 SNP SNP 28302009 28483431 11 . . R156d +chr2 SNP SNP 28483432 28664855 7 . . R157d +chr2 SNP SNP 28664856 28846278 32 . . R158d +chr2 SNP SNP 28846279 29027701 16 . . R159d +chr2 SNP SNP 29027702 29209124 7 . . R160d +chr2 SNP SNP 29209125 29390547 21 . . R161d +chr2 SNP SNP 29390548 29571970 7 . . R162d +chr2 SNP SNP 29571971 29753393 9 . . R163d +chr2 SNP SNP 29753394 29934816 28 . . R164d +chr2 SNP SNP 29934817 30116239 23 . . R165d +chr2 SNP SNP 30116240 30297662 18 . . R166d +chr2 SNP SNP 30297663 30479085 32 . . R167d +chr2 SNP SNP 30479086 30660508 0 . . R168d +chr2 SNP SNP 30660509 30841931 170 . . R169d +chr2 SNP SNP 30841932 31023354 23 . . R170d +chr2 SNP SNP 31023355 31204778 58 . . R171d +chr2 SNP SNP 31204779 31386201 37 . . R172d +chr2 SNP SNP 31386202 31567624 302 . . R173d +chr2 SNP SNP 31567625 31749047 391 . . R174d +chr2 SNP SNP 31749048 31930470 35 . . R175d +chr2 SNP SNP 31930471 32111893 18 . . R176d +chr2 SNP SNP 32111894 32293316 42 . . R177d +chr2 SNP SNP 32293317 32474739 25 . . R178d +chr2 SNP SNP 32474740 32656162 51 . . R179d +chr2 SNP SNP 32656163 32837585 30 . . R180d +chr2 SNP SNP 32837586 33019008 117 . . R181d +chr2 SNP SNP 33019009 33200431 44 . . R182d +chr2 SNP SNP 33200432 33381854 25 . . R183d +chr2 SNP SNP 33381855 33563277 37 . . R184d +chr2 SNP SNP 33563278 33744701 72 . . R185d +chr2 SNP SNP 33744702 33926124 400 . . R186d +chr2 SNP SNP 33926125 34107547 299 . . R187d +chr2 SNP SNP 34107548 34288970 477 . . R188d +chr2 SNP SNP 34288971 34470393 295 . . R189d +chr2 SNP SNP 34470394 34651816 140 . . R190d +chr2 SNP SNP 34651817 34833239 25 . . R191d +chr2 SNP SNP 34833240 35014662 536 . . R192d +chr2 SNP SNP 35014663 35196085 112 . . R193d +chr2 SNP SNP 35196086 35377508 100 . . R194d +chr2 SNP SNP 35377509 35558931 114 . . R195d +chr2 SNP SNP 35558932 35740354 9 . . R196d +chr2 SNP SNP 35740355 35921777 16 . . R197d +chr2 SNP SNP 35921778 36103200 2 . . R198d +chr2 SNP SNP 36103201 36284624 9 . . R199d +chr2 SNP SNP 36284625 36466047 14 . . R200d +chr2 SNP SNP 36466048 36647470 96 . . R201d +chr2 SNP SNP 36647471 36828893 28 . . R202d +chr2 SNP SNP 36828894 37010316 60 . . R203d +chr2 SNP SNP 37010317 37191739 51 . . R204d +chr2 SNP SNP 37191740 37373162 39 . . R205d +chr2 SNP SNP 37373163 37554585 114 . . R206d +chr2 SNP SNP 37554586 37736008 42 . . R207d +chr2 SNP SNP 37736009 37917431 21 . . R208d +chr2 SNP SNP 37917432 38098854 37 . . R209d +chr2 SNP SNP 38098855 38280277 58 . . R210d +chr2 SNP SNP 38280278 38461700 271 . . R211d +chr2 SNP SNP 38461701 38643123 30 . . R212d +chr2 SNP SNP 38643124 38824546 56 . . R213d +chr2 SNP SNP 38824547 39005970 23 . . R214d +chr2 SNP SNP 39005971 39187393 2 . . R215d +chr2 SNP SNP 39187394 39368816 370 . . R216d +chr2 SNP SNP 39368817 39550239 30 . . R217d +chr2 SNP SNP 39550240 39731662 42 . . R218d +chr2 SNP SNP 39731663 39913085 32 . . R219d +chr2 SNP SNP 39913086 40094508 32 . . R220d +chr2 SNP SNP 40094509 40275931 245 . . R221d +chr2 SNP SNP 40275932 40457354 79 . . R222d +chr2 SNP SNP 40457355 40638777 56 . . R223d +chr2 SNP SNP 40638778 40820200 103 . . R224d +chr2 SNP SNP 40820201 41001623 63 . . R225d +chr2 SNP SNP 41001624 41183046 473 . . R226d +chr2 SNP SNP 41183047 41364469 163 . . R227d +chr2 SNP SNP 41364470 41545893 402 . . R228d +chr2 SNP SNP 41545894 41727316 538 . . R229d +chr2 SNP SNP 41727317 41908739 590 . . R230d +chr2 SNP SNP 41908740 42090162 466 . . R231d +chr2 SNP SNP 42090163 42271585 442 . . R232d +chr2 SNP SNP 42271586 42453008 297 . . R233d +chr2 SNP SNP 42453009 42634431 552 . . R234d +chr2 SNP SNP 42634432 42815854 498 . . R235d +chr2 SNP SNP 42815855 42997277 234 . . R236d +chr2 SNP SNP 42997278 43178700 681 . . R237d +chr2 SNP SNP 43178701 43360123 543 . . R238d +chr2 SNP SNP 43360124 43541546 391 . . R239d +chr2 SNP SNP 43541547 43722969 360 . . R240d +chr2 SNP SNP 43722970 43904392 489 . . R241d +chr2 SNP SNP 43904393 44085816 245 . . R242d +chr2 SNP SNP 44085817 44267239 49 . . R243d +chr2 SNP SNP 44267240 44448662 152 . . R244d +chr2 SNP SNP 44448663 44630085 243 . . R245d +chr2 SNP SNP 44630086 44811508 297 . . R246d +chr2 SNP SNP 44811509 44992931 229 . . R247d +chr2 SNP SNP 44992932 45174354 128 . . R248d +chr2 SNP SNP 45174355 45355777 250 . . R249d +chr2 SNP SNP 45355778 45537200 42 . . R250d +chr2 SNP SNP 45537201 45718623 30 . . R251d +chr2 SNP SNP 45718624 45900046 311 . . R252d +chr2 SNP SNP 45900047 46081469 519 . . R253d +chr2 SNP SNP 46081470 46262892 512 . . R254d +chr2 SNP SNP 46262893 46444315 412 . . R255d +chr2 SNP SNP 46444316 46625738 266 . . R256d +chr2 SNP SNP 46625739 46807162 421 . . R257d +chr2 SNP SNP 46807163 46988585 447 . . R258d +chr2 SNP SNP 46988586 47170008 234 . . R259d +chr2 SNP SNP 47170009 47351431 140 . . R260d +chr2 SNP SNP 47351432 47532854 409 . . R261d +chr2 SNP SNP 47532855 47714277 35 . . R262d +chr2 SNP SNP 47714278 47895700 173 . . R263d +chr2 SNP SNP 47895701 48077123 463 . . R264d +chr2 SNP SNP 48077124 48258546 302 . . R265d +chr2 SNP SNP 48258547 48439969 114 . . R266d +chr2 SNP SNP 48439970 48621392 77 . . R267d +chr2 SNP SNP 48621393 48802815 416 . . R268d +chr2 SNP SNP 48802816 48984238 372 . . R269d +chr2 SNP SNP 48984239 49165661 594 . . R270d +chr2 SNP SNP 49165662 49347085 98 . . R271d +chr2 SNP SNP 49347086 49528508 9 . . R272d +chr2 SNP SNP 49528509 49709931 42 . . R273d +chr2 SNP SNP 49709932 49891354 7 . . R274d +chr2 SNP SNP 49891355 50072777 14 . . R275d +chr2 SNP SNP 50072778 50254200 18 . . R276d +chr2 SNP SNP 50254201 50435623 16 . . R277d +chr2 SNP SNP 50435624 50617046 9 . . R278d +chr2 SNP SNP 50617047 50798469 9 . . R279d +chr2 SNP SNP 50798470 50979892 11 . . R280d +chr2 SNP SNP 50979893 51161315 9 . . R281d +chr2 SNP SNP 51161316 51342738 23 . . R282d +chr2 SNP SNP 51342739 51524161 367 . . R283d +chr2 SNP SNP 51524162 51705584 592 . . R284d +chr2 SNP SNP 51705585 51887008 550 . . R285d +chr2 SNP SNP 51887009 52068431 899 . . R286d +chr2 SNP SNP 52068432 52249854 711 . . R287d +chr2 SNP SNP 52249855 52431277 653 . . R288d +chr2 SNP SNP 52431278 52612700 683 . . R289d +chr2 SNP SNP 52612701 52794123 569 . . R290d +chr2 SNP SNP 52794124 52975546 838 . . R291d +chr2 SNP SNP 52975547 53156969 353 . . R292d +chr2 SNP SNP 53156970 53338392 398 . . R293d +chr2 SNP SNP 53338393 53519815 168 . . R294d +chr2 SNP SNP 53519816 53701238 58 . . R295d +chr2 SNP SNP 53701239 53882661 156 . . R296d +chr2 SNP SNP 53882662 54064084 482 . . R297d +chr2 SNP SNP 54064085 54245507 252 . . R298d +chr2 SNP SNP 54245508 54426931 309 . . R299d +chr2 SNP SNP 54426932 54608354 512 . . R300d +chr2 SNP SNP 54608355 54789777 409 . . R301d +chr2 SNP SNP 54789778 54971200 372 . . R302d +chr2 SNP SNP 54971201 55152623 131 . . R303d +chr2 SNP SNP 55152624 55334046 416 . . R304d +chr2 SNP SNP 55334047 55515469 487 . . R305d +chr2 SNP SNP 55515470 55696892 412 . . R306d +chr2 SNP SNP 55696893 55878315 220 . . R307d +chr2 SNP SNP 55878316 56059738 142 . . R308d +chr2 SNP SNP 56059739 56241161 241 . . R309d +chr2 SNP SNP 56241162 56422584 355 . . R310d +chr2 SNP SNP 56422585 56604007 501 . . R311d +chr2 SNP SNP 56604008 56785430 615 . . R312d +chr2 SNP SNP 56785431 56966853 540 . . R313d +chr2 SNP SNP 56966854 57148277 447 . . R314d +chr2 SNP SNP 57148278 57329700 405 . . R315d +chr2 SNP SNP 57329701 57511123 683 . . R316d +chr2 SNP SNP 57511124 57692546 442 . . R317d +chr2 SNP SNP 57692547 57873969 449 . . R318d +chr2 SNP SNP 57873970 58055392 299 . . R319d +chr2 SNP SNP 58055393 58236815 248 . . R320d +chr2 SNP SNP 58236816 58418238 9 . . R321d +chr2 SNP SNP 58418239 58599661 203 . . R322d +chr2 SNP SNP 58599662 58781084 203 . . R323d +chr2 SNP SNP 58781085 58962507 278 . . R324d +chr2 SNP SNP 58962508 59143930 325 . . R325d +chr2 SNP SNP 59143931 59325353 365 . . R326d +chr2 SNP SNP 59325354 59506776 37 . . R327d +chr2 SNP SNP 59506777 59688200 14 . . R328d +chr2 SNP SNP 59688201 59869623 11 . . R329d +chr2 SNP SNP 59869624 60051046 11 . . R330d +chr2 SNP SNP 60051047 60232469 14 . . R331d +chr2 SNP SNP 60232470 60413892 21 . . R332d +chr2 SNP SNP 60413893 60595315 9 . . R333d +chr2 SNP SNP 60595316 60776738 9 . . R334d +chr2 SNP SNP 60776739 60958161 9 . . R335d +chr2 SNP SNP 60958162 61139584 23 . . R336d +chr2 SNP SNP 61139585 61321007 28 . . R337d +chr2 SNP SNP 61321008 61502430 208 . . R338d +chr2 SNP SNP 61502431 61683853 63 . . R339d +chr2 SNP SNP 61683854 61865276 264 . . R340d +chr2 SNP SNP 61865277 62046699 163 . . R341d +chr2 SNP SNP 62046700 62228123 252 . . R342d +chr2 SNP SNP 62228124 62409546 353 . . R343d +chr2 SNP SNP 62409547 62590969 154 . . R344d +chr2 SNP SNP 62590970 62772392 168 . . R345d +chr2 SNP SNP 62772393 62953815 117 . . R346d +chr2 SNP SNP 62953816 63135238 290 . . R347d +chr2 SNP SNP 63135239 63316661 255 . . R348d +chr2 SNP SNP 63316662 63498084 140 . . R349d +chr2 SNP SNP 63498085 63679507 367 . . R350d +chr2 SNP SNP 63679508 63860930 557 . . R351d +chr2 SNP SNP 63860931 64042353 295 . . R352d +chr2 SNP SNP 64042354 64223776 423 . . R353d +chr2 SNP SNP 64223777 64405199 281 . . R354d +chr2 SNP SNP 64405200 64586622 25 . . R355d +chr2 SNP SNP 64586623 64768045 119 . . R356d +chr2 SNP SNP 64768046 64949469 182 . . R357d +chr2 SNP SNP 64949470 65130892 63 . . R358d +chr2 SNP SNP 65130893 65312315 135 . . R359d +chr2 SNP SNP 65312316 65493738 63 . . R360d +chr2 SNP SNP 65493739 65675161 334 . . R361d +chr2 SNP SNP 65675162 65856584 377 . . R362d +chr2 SNP SNP 65856585 66038007 585 . . R363d +chr2 SNP SNP 66038008 66219430 587 . . R364d +chr2 SNP SNP 66219431 66400853 477 . . R365d +chr2 SNP SNP 66400854 66582276 332 . . R366d +chr2 SNP SNP 66582277 66763699 274 . . R367d +chr2 SNP SNP 66763700 66945122 133 . . R368d +chr2 SNP SNP 66945123 67126545 39 . . R369d +chr2 SNP SNP 67126546 67307968 215 . . R370d +chr2 SNP SNP 67307969 67489392 740 . . R371d +chr2 SNP SNP 67489393 67670815 60 . . R372d +chr2 SNP SNP 67670816 67852238 341 . . R373d +chr2 SNP SNP 67852239 68033661 522 . . R374d +chr2 SNP SNP 68033662 68215084 145 . . R375d +chr2 SNP SNP 68215085 68396507 124 . . R376d +chr2 SNP SNP 68396508 68577930 578 . . R377d +chr2 SNP SNP 68577931 68759353 128 . . R378d +chr2 SNP SNP 68759354 68940776 53 . . R379d +chr2 SNP SNP 68940777 69122199 243 . . R380d +chr2 SNP SNP 69122200 69303622 498 . . R381d +chr2 SNP SNP 69303623 69485045 208 . . R382d +chr2 SNP SNP 69485046 69666468 306 . . R383d +chr2 SNP SNP 69666469 69847891 156 . . R384d +chr2 SNP SNP 69847892 70029315 11 . . R385d +chr2 SNP SNP 70029316 70210738 49 . . R386d +chr2 SNP SNP 70210739 70392161 70 . . R387d +chr2 SNP SNP 70392162 70573584 189 . . R388d +chr2 SNP SNP 70573585 70755007 306 . . R389d +chr2 SNP SNP 70755008 70936430 323 . . R390d +chr2 SNP SNP 70936431 71117853 206 . . R391d +chr2 SNP SNP 71117854 71299276 334 . . R392d +chr2 SNP SNP 71299277 71480699 262 . . R393d +chr2 SNP SNP 71480700 71662122 149 . . R394d +chr2 SNP SNP 71662123 71843545 30 . . R395d +chr2 SNP SNP 71843546 72024968 18 . . R396d +chr2 SNP SNP 72024969 72206391 11 . . R397d +chr2 SNP SNP 72206392 72387814 4 . . R398d +chr2 SNP SNP 72387815 72569237 7 . . R399d +chr2 SNP SNP 72569238 72750661 0 . . R400d +chr2 SNP SNP 72750662 72932084 7 . . R401d +chr2 SNP SNP 72932085 73113507 7 . . R402d +chr2 SNP SNP 73113508 73294930 2 . . R403d +chr2 SNP SNP 73294931 73476353 30 . . R404d +chr2 SNP SNP 73476354 73657776 30 . . R405d +chr2 SNP SNP 73657777 73839199 16 . . R406d +chr2 SNP SNP 73839200 74020622 7 . . R407d +chr2 SNP SNP 74020623 74202045 9 . . R408d +chr2 SNP SNP 74202046 74383468 16 . . R409d +chr2 SNP SNP 74383469 74564891 11 . . R410d +chr2 SNP SNP 74564892 74746314 2 . . R411d +chr2 SNP SNP 74746315 74927737 2 . . R412d +chr2 SNP SNP 74927738 75109160 23 . . R413d +chr2 SNP SNP 75109161 75290584 124 . . R414d +chr2 SNP SNP 75290585 75472007 128 . . R415d +chr2 SNP SNP 75472008 75653430 449 . . R416d +chr2 SNP SNP 75653431 75834853 110 . . R417d +chr2 SNP SNP 75834854 76016276 46 . . R418d +chr2 SNP SNP 76016277 76197699 44 . . R419d +chr2 SNP SNP 76197700 76379122 264 . . R420d +chr2 SNP SNP 76379123 76560545 348 . . R421d +chr2 SNP SNP 76560546 76741968 7 . . R422d +chr2 SNP SNP 76741969 76923391 346 . . R423d +chr2 SNP SNP 76923392 77104814 152 . . R424d +chr2 SNP SNP 77104815 77286237 187 . . R425d +chr2 SNP SNP 77286238 77467660 564 . . R426d +chr2 SNP SNP 77467661 77649083 557 . . R427d +chr2 SNP SNP 77649084 77830507 135 . . R428d +chr2 SNP SNP 77830508 78011930 11 . . R429d +chr2 SNP SNP 78011931 78193353 14 . . R430d +chr2 SNP SNP 78193354 78374776 4 . . R431d +chr2 SNP SNP 78374777 78556199 14 . . R432d +chr2 SNP SNP 78556200 78737622 11 . . R433d +chr2 SNP SNP 78737623 78919045 18 . . R434d +chr2 SNP SNP 78919046 79100468 25 . . R435d +chr2 SNP SNP 79100469 79281891 32 . . R436d +chr2 SNP SNP 79281892 79463314 30 . . R437d +chr2 SNP SNP 79463315 79644737 16 . . R438d +chr2 SNP SNP 79644738 79826160 21 . . R439d +chr2 SNP SNP 79826161 80007583 14 . . R440d +chr2 SNP SNP 80007584 80189006 28 . . R441d +chr2 SNP SNP 80189007 80370430 11 . . R442d +chr2 SNP SNP 80370431 80551853 98 . . R443d +chr2 SNP SNP 80551854 80733276 124 . . R444d +chr2 SNP SNP 80733277 80914699 423 . . R445d +chr2 SNP SNP 80914700 81096122 170 . . R446d +chr2 SNP SNP 81096123 81277545 173 . . R447d +chr2 SNP SNP 81277546 81458968 271 . . R448d +chr2 SNP SNP 81458969 81640391 494 . . R449d +chr2 SNP SNP 81640392 81821814 388 . . R450d +chr2 SNP SNP 81821815 82003237 362 . . R451d +chr2 SNP SNP 82003238 82184660 16 . . R452d +chr2 SNP SNP 82184661 82366083 510 . . R453d +chr2 SNP SNP 82366084 82547506 402 . . R454d +chr2 SNP SNP 82547507 82728929 569 . . R455d +chr2 SNP SNP 82728930 82910352 391 . . R456d +chr2 SNP SNP 82910353 83091776 522 . . R457d +chr2 SNP SNP 83091777 83273199 140 . . R458d +chr2 SNP SNP 83273200 83454622 325 . . R459d +chr2 SNP SNP 83454623 83636045 81 . . R460d +chr2 SNP SNP 83636046 83817468 37 . . R461d +chr2 SNP SNP 83817469 83998891 53 . . R462d +chr2 SNP SNP 83998892 84180314 44 . . R463d +chr2 SNP SNP 84180315 84361737 18 . . R464d +chr2 SNP SNP 84361738 84543160 9 . . R465d +chr2 SNP SNP 84543161 84724583 46 . . R466d +chr2 SNP SNP 84724584 84906006 107 . . R467d +chr2 SNP SNP 84906007 85087429 327 . . R468d +chr2 SNP SNP 85087430 85268852 238 . . R469d +chr2 SNP SNP 85268853 85450275 63 . . R470d +chr2 SNP SNP 85450276 85631699 213 . . R471d +chr2 SNP SNP 85631700 85813122 337 . . R472d +chr2 SNP SNP 85813123 85994545 332 . . R473d +chr2 SNP SNP 85994546 86175968 414 . . R474d +chr2 SNP SNP 86175969 86357391 56 . . R475d +chr2 SNP SNP 86357392 86538814 367 . . R476d +chr2 SNP SNP 86538815 86720237 51 . . R477d +chr2 SNP SNP 86720238 86901660 135 . . R478d +chr2 SNP SNP 86901661 87083083 433 . . R479d +chr2 SNP SNP 87083084 87264506 550 . . R480d +chr2 SNP SNP 87264507 87445929 529 . . R481d +chr2 SNP SNP 87445930 87627352 433 . . R482d +chr2 SNP SNP 87627353 87808775 487 . . R483d +chr2 SNP SNP 87808776 87990198 454 . . R484d +chr2 SNP SNP 87990199 88171622 761 . . R485d +chr2 SNP SNP 88171623 88353045 594 . . R486d +chr2 SNP SNP 88353046 88534468 718 . . R487d +chr2 SNP SNP 88534469 88715891 437 . . R488d +chr2 SNP SNP 88715892 88897314 503 . . R489d +chr2 SNP SNP 88897315 89078737 749 . . R490d +chr2 SNP SNP 89078738 89260160 402 . . R491d +chr2 SNP SNP 89260161 89441583 491 . . R492d +chr2 SNP SNP 89441584 89623006 192 . . R493d +chr2 SNP SNP 89623007 89804429 346 . . R494d +chr2 SNP SNP 89804430 89985852 405 . . R495d +chr2 SNP SNP 89985853 90167275 812 . . R496d +chr2 SNP SNP 90167276 90348698 793 . . R497d +chr2 SNP SNP 90348699 90530121 437 . . R498d +chr2 SNP SNP 90530122 90711544 145 . . R499d +chr2 SNP SNP 90711545 90892968 222 . . R500d +chr2 SNP SNP 90892969 91074391 571 . . R501d +chr2 SNP SNP 91074392 91255814 39 . . R502d +chr2 SNP SNP 91255815 91437237 39 . . R503d +chr2 SNP SNP 91437238 91618660 28 . . R504d +chr2 SNP SNP 91618661 91800083 74 . . R505d +chr2 SNP SNP 91800084 91981506 243 . . R506d +chr2 SNP SNP 91981507 92162929 39 . . R507d +chr2 SNP SNP 92162930 92344352 199 . . R508d +chr2 SNP SNP 92344353 92525775 351 . . R509d +chr2 SNP SNP 92525776 92707198 311 . . R510d +chr2 SNP SNP 92707199 92888621 374 . . R511d +chr2 SNP SNP 92888622 93070044 208 . . R512d +chr2 SNP SNP 93070045 93251467 257 . . R513d +chr2 SNP SNP 93251468 93432891 135 . . R514d +chr2 SNP SNP 93432892 93614314 14 . . R515d +chr2 SNP SNP 93614315 93795737 9 . . R516d +chr2 SNP SNP 93795738 93977160 11 . . R517d +chr2 SNP SNP 93977161 94158583 4 . . R518d +chr2 SNP SNP 94158584 94340006 14 . . R519d +chr2 SNP SNP 94340007 94521429 2 . . R520d +chr2 SNP SNP 94521430 94702852 238 . . R521d +chr2 SNP SNP 94702853 94884275 646 . . R522d +chr2 SNP SNP 94884276 95065698 416 . . R523d +chr2 SNP SNP 95065699 95247121 103 . . R524d +chr2 SNP SNP 95247122 95428544 67 . . R525d +chr2 SNP SNP 95428545 95609967 42 . . R526d +chr2 SNP SNP 95609968 95791390 288 . . R527d +chr2 SNP SNP 95791391 95972814 358 . . R528d +chr2 SNP SNP 95972815 96154237 512 . . R529d +chr2 SNP SNP 96154238 96335660 313 . . R530d +chr2 SNP SNP 96335661 96517083 440 . . R531d +chr2 SNP SNP 96517084 96698506 187 . . R532d +chr2 SNP SNP 96698507 96879929 220 . . R533d +chr2 SNP SNP 96879930 97061352 302 . . R534d +chr2 SNP SNP 97061353 97242775 154 . . R535d +chr2 SNP SNP 97242776 97424198 461 . . R536d +chr2 SNP SNP 97424199 97605621 585 . . R537d +chr2 SNP SNP 97605622 97787044 278 . . R538d +chr2 SNP SNP 97787045 97968467 548 . . R539d +chr2 SNP SNP 97968468 98149890 257 . . R540d +chr2 SNP SNP 98149891 98331313 224 . . R541d +chr2 SNP SNP 98331314 98512737 489 . . R542d +chr2 SNP SNP 98512738 98694160 447 . . R543d +chr2 SNP SNP 98694161 98875583 381 . . R544d +chr2 SNP SNP 98875584 99057006 35 . . R545d +chr2 SNP SNP 99057007 99238429 44 . . R546d +chr2 SNP SNP 99238430 99419852 393 . . R547d +chr2 SNP SNP 99419853 99601275 398 . . R548d +chr2 SNP SNP 99601276 99782698 583 . . R549d +chr2 SNP SNP 99782699 99964121 86 . . R550d +chr2 SNP SNP 99964122 100145544 245 . . R551d +chr2 SNP SNP 100145545 100326967 318 . . R552d +chr2 SNP SNP 100326968 100508390 325 . . R553d +chr2 SNP SNP 100508391 100689813 695 . . R554d +chr2 SNP SNP 100689814 100871236 313 . . R555d +chr2 SNP SNP 100871237 101052659 508 . . R556d +chr2 SNP SNP 101052660 101234083 344 . . R557d +chr2 SNP SNP 101234084 101415506 430 . . R558d +chr2 SNP SNP 101415507 101596929 149 . . R559d +chr2 SNP SNP 101596930 101778352 58 . . R560d +chr2 SNP SNP 101778353 101959775 18 . . R561d +chr2 SNP SNP 101959776 102141198 278 . . R562d +chr2 SNP SNP 102141199 102322621 234 . . R563d +chr2 SNP SNP 102322622 102504044 189 . . R564d +chr2 SNP SNP 102504045 102685467 309 . . R565d +chr2 SNP SNP 102685468 102866890 23 . . R566d +chr2 SNP SNP 102866891 103048313 107 . . R567d +chr2 SNP SNP 103048314 103229736 189 . . R568d +chr2 SNP SNP 103229737 103411159 318 . . R569d +chr2 SNP SNP 103411160 103592582 30 . . R570d +chr2 SNP SNP 103592583 103774006 96 . . R571d +chr2 SNP SNP 103774007 103955429 238 . . R572d +chr2 SNP SNP 103955430 104136852 103 . . R573d +chr2 SNP SNP 104136853 104318275 374 . . R574d +chr2 SNP SNP 104318276 104499698 613 . . R575d +chr2 SNP SNP 104499699 104681121 508 . . R576d +chr2 SNP SNP 104681122 104862544 419 . . R577d +chr2 SNP SNP 104862545 105043967 255 . . R578d +chr2 SNP SNP 105043968 105225390 405 . . R579d +chr2 SNP SNP 105225391 105406813 365 . . R580d +chr2 SNP SNP 105406814 105588236 259 . . R581d +chr2 SNP SNP 105588237 105769659 423 . . R582d +chr2 SNP SNP 105769660 105951082 407 . . R583d +chr2 SNP SNP 105951083 106132505 421 . . R584d +chr2 SNP SNP 106132506 106313929 238 . . R585d +chr2 SNP SNP 106313930 106495352 327 . . R586d +chr2 SNP SNP 106495353 106676775 690 . . R587d +chr2 SNP SNP 106676776 106858198 517 . . R588d +chr2 SNP SNP 106858199 107039621 318 . . R589d +chr2 SNP SNP 107039622 107221044 241 . . R590d +chr2 SNP SNP 107221045 107402467 320 . . R591d +chr2 SNP SNP 107402468 107583890 299 . . R592d +chr2 SNP SNP 107583891 107765313 456 . . R593d +chr2 SNP SNP 107765314 107946736 494 . . R594d +chr2 SNP SNP 107946737 108128159 271 . . R595d +chr2 SNP SNP 108128160 108309582 379 . . R596d +chr2 SNP SNP 108309583 108491005 353 . . R597d +chr2 SNP SNP 108491006 108672428 250 . . R598d +chr2 SNP SNP 108672429 108853851 341 . . R599d +chr2 SNP SNP 108853852 109035275 51 . . R600d +chr2 SNP SNP 109035276 109216698 468 . . R601d +chr2 SNP SNP 109216699 109398121 559 . . R602d +chr2 SNP SNP 109398122 109579544 569 . . R603d +chr2 SNP SNP 109579545 109760967 409 . . R604d +chr2 SNP SNP 109760968 109942390 545 . . R605d +chr2 SNP SNP 109942391 110123813 255 . . R606d +chr2 SNP SNP 110123814 110305236 32 . . R607d +chr2 SNP SNP 110305237 110486659 46 . . R608d +chr2 SNP SNP 110486660 110668082 14 . . R609d +chr2 SNP SNP 110668083 110849505 18 . . R610d +chr2 SNP SNP 110849506 111030928 39 . . R611d +chr2 SNP SNP 111030929 111212351 414 . . R612d +chr2 SNP SNP 111212352 111393774 447 . . R613d +chr2 SNP SNP 111393775 111575198 360 . . R614d +chr2 SNP SNP 111575199 111756621 159 . . R615d +chr2 SNP SNP 111756622 111938044 250 . . R616d +chr2 SNP SNP 111938045 112119467 332 . . R617d +chr2 SNP SNP 112119468 112300890 330 . . R618d +chr2 SNP SNP 112300891 112482313 475 . . R619d +chr2 SNP SNP 112482314 112663736 35 . . R620d +chr2 SNP SNP 112663737 112845159 72 . . R621d +chr2 SNP SNP 112845160 113026582 18 . . R622d +chr2 SNP SNP 113026583 113208005 28 . . R623d +chr2 SNP SNP 113208006 113389428 278 . . R624d +chr2 SNP SNP 113389429 113570851 459 . . R625d +chr2 SNP SNP 113570852 113752274 391 . . R626d +chr2 SNP SNP 113752275 113933697 84 . . R627d +chr2 SNP SNP 113933698 114115121 229 . . R628d +chr2 SNP SNP 114115122 114296544 30 . . R629d +chr2 SNP SNP 114296545 114477967 42 . . R630d +chr2 SNP SNP 114477968 114659390 70 . . R631d +chr2 SNP SNP 114659391 114840813 114 . . R632d +chr2 SNP SNP 114840814 115022236 386 . . R633d +chr2 SNP SNP 115022237 115203659 372 . . R634d +chr2 SNP SNP 115203660 115385082 538 . . R635d +chr2 SNP SNP 115385083 115566505 395 . . R636d +chr2 SNP SNP 115566506 115747928 281 . . R637d +chr2 SNP SNP 115747929 115929351 484 . . R638d +chr2 SNP SNP 115929352 116110774 292 . . R639d +chr2 SNP SNP 116110775 116292197 70 . . R640d +chr2 SNP SNP 116292198 116473620 152 . . R641d +chr2 SNP SNP 116473621 116655044 505 . . R642d +chr2 SNP SNP 116655045 116836467 428 . . R643d +chr2 SNP SNP 116836468 117017890 496 . . R644d +chr2 SNP SNP 117017891 117199313 297 . . R645d +chr2 SNP SNP 117199314 117380736 250 . . R646d +chr2 SNP SNP 117380737 117562159 402 . . R647d +chr2 SNP SNP 117562160 117743582 149 . . R648d +chr2 SNP SNP 117743583 117925005 187 . . R649d +chr2 SNP SNP 117925006 118106428 117 . . R650d +chr2 SNP SNP 118106429 118287851 25 . . R651d +chr2 SNP SNP 118287852 118469274 28 . . R652d +chr2 SNP SNP 118469275 118650697 37 . . R653d +chr2 SNP SNP 118650698 118832120 16 . . R654d +chr2 SNP SNP 118832121 119013543 138 . . R655d +chr2 SNP SNP 119013544 119194966 30 . . R656d +chr2 SNP SNP 119194967 119376390 348 . . R657d +chr2 SNP SNP 119376391 119557813 416 . . R658d +chr2 SNP SNP 119557814 119739236 524 . . R659d +chr2 SNP SNP 119739237 119920659 540 . . R660d +chr2 SNP SNP 119920660 120102082 707 . . R661d +chr2 SNP SNP 120102083 120283505 679 . . R662d +chr2 SNP SNP 120283506 120464928 962 . . R663d +chr2 SNP SNP 120464929 120646351 721 . . R664d +chr2 SNP SNP 120646352 120827774 601 . . R665d +chr2 SNP SNP 120827775 121009197 758 . . R666d +chr2 SNP SNP 121009198 121190620 861 . . R667d +chr2 SNP SNP 121190621 121372043 744 . . R668d +chr2 SNP SNP 121372044 121553466 597 . . R669d +chr2 SNP SNP 121553467 121734889 697 . . R670d +chr2 SNP SNP 121734890 121916313 161 . . R671d +chr2 SNP SNP 121916314 122097736 182 . . R672d +chr2 SNP SNP 122097737 122279159 208 . . R673d +chr2 SNP SNP 122279160 122460582 754 . . R674d +chr2 SNP SNP 122460583 122642005 941 . . R675d +chr2 SNP SNP 122642006 122823428 613 . . R676d +chr2 SNP SNP 122823429 123004851 908 . . R677d +chr2 SNP SNP 123004852 123186274 658 . . R678d +chr2 SNP SNP 123186275 123367697 857 . . R679d +chr2 SNP SNP 123367698 123549120 803 . . R680d +chr2 SNP SNP 123549121 123730543 770 . . R681d +chr2 SNP SNP 123730544 123911966 615 . . R682d +chr2 SNP SNP 123911967 124093389 742 . . R683d +chr2 SNP SNP 124093390 124274812 552 . . R684d +chr2 SNP SNP 124274813 124456236 690 . . R685d +chr2 SNP SNP 124456237 124637659 768 . . R686d +chr2 SNP SNP 124637660 124819082 887 . . R687d +chr2 SNP SNP 124819083 125000505 629 . . R688d +chr2 SNP SNP 125000506 125181928 915 . . R689d +chr2 SNP SNP 125181929 125363351 498 . . R690d +chr2 SNP SNP 125363352 125544774 56 . . R691d +chr2 SNP SNP 125544775 125726197 18 . . R692d +chr2 SNP SNP 125726198 125907620 11 . . R693d +chr2 SNP SNP 125907621 126089043 14 . . R694d +chr2 SNP SNP 126089044 126270466 14 . . R695d +chr2 SNP SNP 126270467 126451889 7 . . R696d +chr2 SNP SNP 126451890 126633312 18 . . R697d +chr2 SNP SNP 126633313 126814735 7 . . R698d +chr2 SNP SNP 126814736 126996158 124 . . R699d +chr2 SNP SNP 126996159 127177582 840 . . R700d +chr2 SNP SNP 127177583 127359005 644 . . R701d +chr2 SNP SNP 127359006 127540428 702 . . R702d +chr2 SNP SNP 127540429 127721851 641 . . R703d +chr2 SNP SNP 127721852 127903274 599 . . R704d +chr2 SNP SNP 127903275 128084697 653 . . R705d +chr2 SNP SNP 128084698 128266120 594 . . R706d +chr2 SNP SNP 128266121 128447543 782 . . R707d +chr2 SNP SNP 128447544 128628966 566 . . R708d +chr2 SNP SNP 128628967 128810389 608 . . R709d +chr2 SNP SNP 128810390 128991812 749 . . R710d +chr2 SNP SNP 128991813 129173235 543 . . R711d +chr2 SNP SNP 129173236 129354658 615 . . R712d +chr2 SNP SNP 129354659 129536081 653 . . R713d +chr2 SNP SNP 129536082 129717505 676 . . R714d +chr2 SNP SNP 129717506 129898928 845 . . R715d +chr2 SNP SNP 129898929 130080351 939 . . R716d +chr2 SNP SNP 130080352 130261774 583 . . R717d +chr2 SNP SNP 130261775 130443197 524 . . R718d +chr2 SNP SNP 130443198 130624620 740 . . R719d +chr2 SNP SNP 130624621 130806043 768 . . R720d +chr2 SNP SNP 130806044 130987466 372 . . R721d +chr2 SNP SNP 130987467 131168889 14 . . R722d +chr2 SNP SNP 131168890 131350312 9 . . R723d +chr2 SNP SNP 131350313 131531735 14 . . R724d +chr2 SNP SNP 131531736 131713158 9 . . R725d +chr2 SNP SNP 131713159 131894581 7 . . R726d +chr2 SNP SNP 131894582 132076004 14 . . R727d +chr2 SNP SNP 132076005 132257428 16 . . R728d +chr2 SNP SNP 132257429 132438851 14 . . R729d +chr2 SNP SNP 132438852 132620274 21 . . R730d +chr2 SNP SNP 132620275 132801697 459 . . R731d +chr2 SNP SNP 132801698 132983120 805 . . R732d +chr2 SNP SNP 132983121 133164543 683 . . R733d +chr2 SNP SNP 133164544 133345966 784 . . R734d +chr2 SNP SNP 133345967 133527389 540 . . R735d +chr2 SNP SNP 133527390 133708812 234 . . R736d +chr2 SNP SNP 133708813 133890235 39 . . R737d +chr2 SNP SNP 133890236 134071658 25 . . R738d +chr2 SNP SNP 134071659 134253081 16 . . R739d +chr2 SNP SNP 134253082 134434504 9 . . R740d +chr2 SNP SNP 134434505 134615927 16 . . R741d +chr2 SNP SNP 134615928 134797351 21 . . R742d +chr2 SNP SNP 134797352 134978774 21 . . R743d +chr2 SNP SNP 134978775 135160197 7 . . R744d +chr2 SNP SNP 135160198 135341620 14 . . R745d +chr2 SNP SNP 135341621 135523043 2 . . R746d +chr2 SNP SNP 135523044 135704466 14 . . R747d +chr2 SNP SNP 135704467 135885889 16 . . R748d +chr2 SNP SNP 135885890 136067312 11 . . R749d +chr2 SNP SNP 136067313 136248735 37 . . R750d +chr2 SNP SNP 136248736 136430158 32 . . R751d +chr2 SNP SNP 136430159 136611581 358 . . R752d +chr2 SNP SNP 136611582 136793004 451 . . R753d +chr2 SNP SNP 136793005 136974427 46 . . R754d +chr2 SNP SNP 136974428 137155850 655 . . R755d +chr2 SNP SNP 137155851 137337273 435 . . R756d +chr2 SNP SNP 137337274 137518697 227 . . R757d +chr2 SNP SNP 137518698 137700120 192 . . R758d +chr2 SNP SNP 137700121 137881543 128 . . R759d +chr2 SNP SNP 137881544 138062966 28 . . R760d +chr2 SNP SNP 138062967 138244389 133 . . R761d +chr2 SNP SNP 138244390 138425812 9 . . R762d +chr2 SNP SNP 138425813 138607235 11 . . R763d +chr2 SNP SNP 138607236 138788658 9 . . R764d +chr2 SNP SNP 138788659 138970081 23 . . R765d +chr2 SNP SNP 138970082 139151504 9 . . R766d +chr2 SNP SNP 139151505 139332927 2 . . R767d +chr2 SNP SNP 139332928 139514350 23 . . R768d +chr2 SNP SNP 139514351 139695773 9 . . R769d +chr2 SNP SNP 139695774 139877196 18 . . R770d +chr2 SNP SNP 139877197 140058620 23 . . R771d +chr2 SNP SNP 140058621 140240043 9 . . R772d +chr2 SNP SNP 140240044 140421466 4 . . R773d +chr2 SNP SNP 140421467 140602889 14 . . R774d +chr2 SNP SNP 140602890 140784312 35 . . R775d +chr2 SNP SNP 140784313 140965735 25 . . R776d +chr2 SNP SNP 140965736 141147158 28 . . R777d +chr2 SNP SNP 141147159 141328581 28 . . R778d +chr2 SNP SNP 141328582 141510004 611 . . R779d +chr2 SNP SNP 141510005 141691427 786 . . R780d +chr2 SNP SNP 141691428 141872850 744 . . R781d +chr2 SNP SNP 141872851 142054273 716 . . R782d +chr2 SNP SNP 142054274 142235696 592 . . R783d +chr2 SNP SNP 142235697 142417119 756 . . R784d +chr2 SNP SNP 142417120 142598543 826 . . R785d +chr2 SNP SNP 142598544 142779966 782 . . R786d +chr2 SNP SNP 142779967 142961389 718 . . R787d +chr2 SNP SNP 142961390 143142812 866 . . R788d +chr2 SNP SNP 143142813 143324235 779 . . R789d +chr2 SNP SNP 143324236 143505658 1000 . . R790d +chr2 SNP SNP 143505659 143687081 789 . . R791d +chr2 SNP SNP 143687082 143868504 798 . . R792d +chr2 SNP SNP 143868505 144049927 800 . . R793d +chr2 SNP SNP 144049928 144231350 540 . . R794d +chr2 SNP SNP 144231351 144412773 885 . . R795d +chr2 SNP SNP 144412774 144594196 906 . . R796d +chr2 SNP SNP 144594197 144775619 590 . . R797d +chr2 SNP SNP 144775620 144957042 421 . . R798d +chr2 SNP SNP 144957043 145138465 662 . . R799d +chr2 SNP SNP 145138466 145319889 622 . . R800d +chr2 SNP SNP 145319890 145501312 620 . . R801d +chr2 SNP SNP 145501313 145682735 714 . . R802d +chr2 SNP SNP 145682736 145864158 566 . . R803d +chr2 SNP SNP 145864159 146045581 679 . . R804d +chr2 SNP SNP 146045582 146227004 409 . . R805d +chr2 SNP SNP 146227005 146408427 480 . . R806d +chr2 SNP SNP 146408428 146589850 555 . . R807d +chr2 SNP SNP 146589851 146771273 613 . . R808d +chr2 SNP SNP 146771274 146952696 587 . . R809d +chr2 SNP SNP 146952697 147134119 749 . . R810d +chr2 SNP SNP 147134120 147315542 580 . . R811d +chr2 SNP SNP 147315543 147496965 332 . . R812d +chr2 SNP SNP 147496966 147678388 152 . . R813d +chr2 SNP SNP 147678389 147859812 7 . . R814d +chr2 SNP SNP 147859813 148041235 9 . . R815d +chr2 SNP SNP 148041236 148222658 9 . . R816d +chr2 SNP SNP 148222659 148404081 16 . . R817d +chr2 SNP SNP 148404082 148585504 21 . . R818d +chr2 SNP SNP 148585505 148766927 9 . . R819d +chr2 SNP SNP 148766928 148948350 9 . . R820d +chr2 SNP SNP 148948351 149129773 11 . . R821d +chr2 SNP SNP 149129774 149311196 156 . . R822d +chr2 SNP SNP 149311197 149492619 362 . . R823d +chr2 SNP SNP 149492620 149674042 466 . . R824d +chr2 SNP SNP 149674043 149855465 632 . . R825d +chr2 SNP SNP 149855466 150036888 489 . . R826d +chr2 SNP SNP 150036889 150218311 592 . . R827d +chr2 SNP SNP 150218312 150399735 173 . . R828d +chr2 SNP SNP 150399736 150581158 440 . . R829d +chr2 SNP SNP 150581159 150762581 306 . . R830d +chr2 SNP SNP 150762582 150944004 372 . . R831d +chr2 SNP SNP 150944005 151125427 365 . . R832d +chr2 SNP SNP 151125428 151306850 159 . . R833d +chr2 SNP SNP 151306851 151488273 175 . . R834d +chr2 SNP SNP 151488274 151669696 25 . . R835d +chr2 SNP SNP 151669697 151851119 30 . . R836d +chr2 SNP SNP 151851120 152032542 44 . . R837d +chr2 SNP SNP 152032543 152213965 14 . . R838d +chr2 SNP SNP 152213966 152395388 9 . . R839d +chr2 SNP SNP 152395389 152576811 16 . . R840d +chr2 SNP SNP 152576812 152758234 7 . . R841d +chr2 SNP SNP 152758235 152939658 14 . . R842d +chr2 SNP SNP 152939659 153121081 7 . . R843d +chr2 SNP SNP 153121082 153302504 9 . . R844d +chr2 SNP SNP 153302505 153483927 16 . . R845d +chr2 SNP SNP 153483928 153665350 7 . . R846d +chr2 SNP SNP 153665351 153846773 9 . . R847d +chr2 SNP SNP 153846774 154028196 16 . . R848d +chr2 SNP SNP 154028197 154209619 9 . . R849d +chr2 SNP SNP 154209620 154391042 491 . . R850d +chr2 SNP SNP 154391043 154572465 348 . . R851d +chr2 SNP SNP 154572466 154753888 149 . . R852d +chr2 SNP SNP 154753889 154935311 156 . . R853d +chr2 SNP SNP 154935312 155116734 634 . . R854d +chr2 SNP SNP 155116735 155298157 782 . . R855d +chr2 SNP SNP 155298158 155479580 695 . . R856d +chr2 SNP SNP 155479581 155661004 121 . . R857d +chr2 SNP SNP 155661005 155842427 124 . . R858d +chr2 SNP SNP 155842428 156023850 252 . . R859d +chr2 SNP SNP 156023851 156205273 393 . . R860d +chr2 SNP SNP 156205274 156386696 765 . . R861d +chr2 SNP SNP 156386697 156568119 857 . . R862d +chr2 SNP SNP 156568120 156749542 9 . . R863d +chr2 SNP SNP 156749543 156930965 21 . . R864d +chr2 SNP SNP 156930966 157112388 7 . . R865d +chr2 SNP SNP 157112389 157293811 9 . . R866d +chr2 SNP SNP 157293812 157475234 21 . . R867d +chr2 SNP SNP 157475235 157656657 14 . . R868d +chr2 SNP SNP 157656658 157838080 11 . . R869d +chr2 SNP SNP 157838081 158019503 9 . . R870d +chr2 SNP SNP 158019504 158200927 18 . . R871d +chr2 SNP SNP 158200928 158382350 16 . . R872d +chr2 SNP SNP 158382351 158563773 377 . . R873d +chr2 SNP SNP 158563774 158745196 686 . . R874d +chr2 SNP SNP 158745197 158926619 494 . . R875d +chr2 SNP SNP 158926620 159108042 803 . . R876d +chr2 SNP SNP 159108043 159289465 571 . . R877d +chr2 SNP SNP 159289466 159470888 276 . . R878d +chr2 SNP SNP 159470889 159652311 281 . . R879d +chr2 SNP SNP 159652312 159833734 23 . . R880d +chr2 SNP SNP 159833735 160015157 79 . . R881d +chr2 SNP SNP 160015158 160196580 274 . . R882d +chr2 SNP SNP 160196581 160378003 395 . . R883d +chr2 SNP SNP 160378004 160559426 522 . . R884d +chr2 SNP SNP 160559427 160740850 402 . . R885d +chr2 SNP SNP 160740851 160922273 393 . . R886d +chr2 SNP SNP 160922274 161103696 32 . . R887d +chr2 SNP SNP 161103697 161285119 32 . . R888d +chr2 SNP SNP 161285120 161466542 337 . . R889d +chr2 SNP SNP 161466543 161647965 461 . . R890d +chr2 SNP SNP 161647966 161829388 365 . . R891d +chr2 SNP SNP 161829389 162010811 257 . . R892d +chr2 SNP SNP 162010812 162192234 37 . . R893d +chr2 SNP SNP 162192235 162373657 37 . . R894d +chr2 SNP SNP 162373658 162555080 28 . . R895d +chr2 SNP SNP 162555081 162736503 32 . . R896d +chr2 SNP SNP 162736504 162917926 44 . . R897d +chr2 SNP SNP 162917927 163099349 255 . . R898d +chr2 SNP SNP 163099350 163280772 7 . . R899d +chr2 SNP SNP 163280773 163462196 21 . . R900d +chr2 SNP SNP 163462197 163643619 374 . . R901d +chr2 SNP SNP 163643620 163825042 459 . . R902d +chr2 SNP SNP 163825043 164006465 573 . . R903d +chr2 SNP SNP 164006466 164187888 402 . . R904d +chr2 SNP SNP 164187889 164369311 316 . . R905d +chr2 SNP SNP 164369312 164550734 491 . . R906d +chr2 SNP SNP 164550735 164732157 250 . . R907d +chr2 SNP SNP 164732158 164913580 46 . . R908d +chr2 SNP SNP 164913581 165095003 163 . . R909d +chr2 SNP SNP 165095004 165276426 21 . . R910d +chr2 SNP SNP 165276427 165457849 74 . . R911d +chr2 SNP SNP 165457850 165639272 60 . . R912d +chr2 SNP SNP 165639273 165820695 367 . . R913d +chr2 SNP SNP 165820696 166002119 203 . . R914d +chr2 SNP SNP 166002120 166183542 189 . . R915d +chr2 SNP SNP 166183543 166364965 498 . . R916d +chr2 SNP SNP 166364966 166546388 540 . . R917d +chr2 SNP SNP 166546389 166727811 248 . . R918d +chr2 SNP SNP 166727812 166909234 414 . . R919d +chr2 SNP SNP 166909235 167090657 110 . . R920d +chr2 SNP SNP 167090658 167272080 7 . . R921d +chr2 SNP SNP 167272081 167453503 9 . . R922d +chr2 SNP SNP 167453504 167634926 168 . . R923d +chr2 SNP SNP 167634927 167816349 395 . . R924d +chr2 SNP SNP 167816350 167997772 344 . . R925d +chr2 SNP SNP 167997773 168179195 7 . . R926d +chr2 SNP SNP 168179196 168360618 313 . . R927d +chr2 SNP SNP 168360619 168542042 707 . . R928d +chr2 SNP SNP 168542043 168723465 206 . . R929d +chr2 SNP SNP 168723466 168904888 53 . . R930d +chr2 SNP SNP 168904889 169086311 213 . . R931d +chr2 SNP SNP 169086312 169267734 93 . . R932d +chr2 SNP SNP 169267735 169449157 454 . . R933d +chr2 SNP SNP 169449158 169630580 14 . . R934d +chr2 SNP SNP 169630581 169812003 11 . . R935d +chr2 SNP SNP 169812004 169993426 0 . . R936d +chr2 SNP SNP 169993427 170174849 18 . . R937d +chr2 SNP SNP 170174850 170356272 100 . . R938d +chr2 SNP SNP 170356273 170537695 414 . . R939d +chr2 SNP SNP 170537696 170719118 309 . . R940d +chr2 SNP SNP 170719119 170900541 437 . . R941d +chr2 SNP SNP 170900542 171081965 238 . . R942d +chr2 SNP SNP 171081966 171263388 276 . . R943d +chr2 SNP SNP 171263389 171444811 571 . . R944d +chr2 SNP SNP 171444812 171626234 412 . . R945d +chr2 SNP SNP 171626235 171807657 414 . . R946d +chr2 SNP SNP 171807658 171989080 234 . . R947d +chr2 SNP SNP 171989081 172170503 74 . . R948d +chr2 SNP SNP 172170504 172351926 81 . . R949d +chr2 SNP SNP 172351927 172533349 14 . . R950d +chr2 SNP SNP 172533350 172714772 25 . . R951d +chr2 SNP SNP 172714773 172896195 63 . . R952d +chr2 SNP SNP 172896196 173077618 39 . . R953d +chr2 SNP SNP 173077619 173259041 182 . . R954d +chr2 SNP SNP 173259042 173440464 182 . . R955d +chr2 SNP SNP 173440465 173621887 522 . . R956d +chr2 SNP SNP 173621888 173803311 119 . . R957d +chr2 SNP SNP 173803312 173984734 166 . . R958d +chr2 SNP SNP 173984735 174166157 194 . . R959d +chr2 SNP SNP 174166158 174347580 65 . . R960d +chr2 SNP SNP 174347581 174529003 9 . . R961d +chr2 SNP SNP 174529004 174710426 168 . . R962d +chr2 SNP SNP 174710427 174891849 313 . . R963d +chr2 SNP SNP 174891850 175073272 297 . . R964d +chr2 SNP SNP 175073273 175254695 86 . . R965d +chr2 SNP SNP 175254696 175436118 189 . . R966d +chr2 SNP SNP 175436119 175617541 292 . . R967d +chr2 SNP SNP 175617542 175798964 28 . . R968d +chr2 SNP SNP 175798965 175980387 60 . . R969d +chr2 SNP SNP 175980388 176161810 7 . . R970d +chr2 SNP SNP 176161811 176343234 25 . . R971d +chr2 SNP SNP 176343235 176524657 18 . . R972d +chr2 SNP SNP 176524658 176706080 4 . . R973d +chr2 SNP SNP 176706081 176887503 7 . . R974d +chr2 SNP SNP 176887504 177068926 67 . . R975d +chr2 SNP SNP 177068927 177250349 16 . . R976d +chr2 SNP SNP 177250350 177431772 28 . . R977d +chr2 SNP SNP 177431773 177613195 37 . . R978d +chr2 SNP SNP 177613196 177794618 25 . . R979d +chr2 SNP SNP 177794619 177976041 421 . . R980d +chr2 SNP SNP 177976042 178157464 194 . . R981d +chr2 SNP SNP 178157465 178338887 297 . . R982d +chr2 SNP SNP 178338888 178520310 259 . . R983d +chr2 SNP SNP 178520311 178701733 337 . . R984d +chr2 SNP SNP 178701734 178883157 262 . . R985d +chr2 SNP SNP 178883158 179064580 180 . . R986d +chr2 SNP SNP 179064581 179246003 339 . . R987d +chr2 SNP SNP 179246004 179427426 105 . . R988d +chr2 SNP SNP 179427427 179608849 250 . . R989d +chr2 SNP SNP 179608850 179790272 173 . . R990d +chr2 SNP SNP 179790273 179971695 229 . . R991d +chr2 SNP SNP 179971696 180153118 74 . . R992d +chr2 SNP SNP 180153119 180334541 213 . . R993d +chr2 SNP SNP 180334542 180515964 355 . . R994d +chr2 SNP SNP 180515965 180697387 580 . . R995d +chr2 SNP SNP 180697388 180878810 332 . . R996d +chr2 SNP SNP 180878811 181060233 487 . . R997d +chr2 SNP SNP 181060234 181241656 449 . . R998d +chr2 SNP SNP 181241657 181423079 96 . . R999d +chr2 SNP SNP 181423080 181604503 0 . . R1000d diff --git a/web/snp/chr3 b/web/snp/chr3 new file mode 100755 index 00000000..a56fbe2d --- /dev/null +++ b/web/snp/chr3 @@ -0,0 +1,1004 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr3 SNP SNP 11 160678 0 . . R0d +chr3 SNP SNP 160679 321347 0 . . R1d +chr3 SNP SNP 321348 482016 0 . . R2d +chr3 SNP SNP 482017 642685 0 . . R3d +chr3 SNP SNP 642686 803354 0 . . R4d +chr3 SNP SNP 803355 964023 0 . . R5d +chr3 SNP SNP 964024 1124692 0 . . R6d +chr3 SNP SNP 1124693 1285361 0 . . R7d +chr3 SNP SNP 1285362 1446030 0 . . R8d +chr3 SNP SNP 1446031 1606699 0 . . R9d +chr3 SNP SNP 1606700 1767368 0 . . R10d +chr3 SNP SNP 1767369 1928037 0 . . R11d +chr3 SNP SNP 1928038 2088706 0 . . R12d +chr3 SNP SNP 2088707 2249375 0 . . R13d +chr3 SNP SNP 2249376 2410044 0 . . R14d +chr3 SNP SNP 2410045 2570712 0 . . R15d +chr3 SNP SNP 2570713 2731381 0 . . R16d +chr3 SNP SNP 2731382 2892050 0 . . R17d +chr3 SNP SNP 2892051 3052719 18 . . R18d +chr3 SNP SNP 3052720 3213388 42 . . R19d +chr3 SNP SNP 3213389 3374057 66 . . R20d +chr3 SNP SNP 3374058 3534726 33 . . R21d +chr3 SNP SNP 3534727 3695395 33 . . R22d +chr3 SNP SNP 3695396 3856064 42 . . R23d +chr3 SNP SNP 3856065 4016733 37 . . R24d +chr3 SNP SNP 4016734 4177402 61 . . R25d +chr3 SNP SNP 4177403 4338071 37 . . R26d +chr3 SNP SNP 4338072 4498740 44 . . R27d +chr3 SNP SNP 4498741 4659409 47 . . R28d +chr3 SNP SNP 4659410 4820078 28 . . R29d +chr3 SNP SNP 4820079 4980747 28 . . R30d +chr3 SNP SNP 4980748 5141415 33 . . R31d +chr3 SNP SNP 5141416 5302084 47 . . R32d +chr3 SNP SNP 5302085 5462753 16 . . R33d +chr3 SNP SNP 5462754 5623422 18 . . R34d +chr3 SNP SNP 5623423 5784091 42 . . R35d +chr3 SNP SNP 5784092 5944760 42 . . R36d +chr3 SNP SNP 5944761 6105429 30 . . R37d +chr3 SNP SNP 6105430 6266098 342 . . R38d +chr3 SNP SNP 6266099 6426767 420 . . R39d +chr3 SNP SNP 6426768 6587436 385 . . R40d +chr3 SNP SNP 6587437 6748105 257 . . R41d +chr3 SNP SNP 6748106 6908774 174 . . R42d +chr3 SNP SNP 6908775 7069443 326 . . R43d +chr3 SNP SNP 7069444 7230112 683 . . R44d +chr3 SNP SNP 7230113 7390781 505 . . R45d +chr3 SNP SNP 7390782 7551450 392 . . R46d +chr3 SNP SNP 7551451 7712118 406 . . R47d +chr3 SNP SNP 7712119 7872787 326 . . R48d +chr3 SNP SNP 7872788 8033456 356 . . R49d +chr3 SNP SNP 8033457 8194125 423 . . R50d +chr3 SNP SNP 8194126 8354794 288 . . R51d +chr3 SNP SNP 8354795 8515463 274 . . R52d +chr3 SNP SNP 8515464 8676132 177 . . R53d +chr3 SNP SNP 8676133 8836801 271 . . R54d +chr3 SNP SNP 8836802 8997470 52 . . R55d +chr3 SNP SNP 8997471 9158139 73 . . R56d +chr3 SNP SNP 9158140 9318808 304 . . R57d +chr3 SNP SNP 9318809 9479477 189 . . R58d +chr3 SNP SNP 9479478 9640146 505 . . R59d +chr3 SNP SNP 9640147 9800815 35 . . R60d +chr3 SNP SNP 9800816 9961484 44 . . R61d +chr3 SNP SNP 9961485 10122153 170 . . R62d +chr3 SNP SNP 10122154 10282821 141 . . R63d +chr3 SNP SNP 10282822 10443490 408 . . R64d +chr3 SNP SNP 10443491 10604159 160 . . R65d +chr3 SNP SNP 10604160 10764828 156 . . R66d +chr3 SNP SNP 10764829 10925497 352 . . R67d +chr3 SNP SNP 10925498 11086166 40 . . R68d +chr3 SNP SNP 11086167 11246835 33 . . R69d +chr3 SNP SNP 11246836 11407504 390 . . R70d +chr3 SNP SNP 11407505 11568173 137 . . R71d +chr3 SNP SNP 11568174 11728842 18 . . R72d +chr3 SNP SNP 11728843 11889511 49 . . R73d +chr3 SNP SNP 11889512 12050180 35 . . R74d +chr3 SNP SNP 12050181 12210849 44 . . R75d +chr3 SNP SNP 12210850 12371518 437 . . R76d +chr3 SNP SNP 12371519 12532187 432 . . R77d +chr3 SNP SNP 12532188 12692856 427 . . R78d +chr3 SNP SNP 12692857 12853524 411 . . R79d +chr3 SNP SNP 12853525 13014193 605 . . R80d +chr3 SNP SNP 13014194 13174862 534 . . R81d +chr3 SNP SNP 13174863 13335531 579 . . R82d +chr3 SNP SNP 13335532 13496200 404 . . R83d +chr3 SNP SNP 13496201 13656869 390 . . R84d +chr3 SNP SNP 13656870 13817538 505 . . R85d +chr3 SNP SNP 13817539 13978207 293 . . R86d +chr3 SNP SNP 13978208 14138876 193 . . R87d +chr3 SNP SNP 14138877 14299545 316 . . R88d +chr3 SNP SNP 14299546 14460214 33 . . R89d +chr3 SNP SNP 14460215 14620883 40 . . R90d +chr3 SNP SNP 14620884 14781552 333 . . R91d +chr3 SNP SNP 14781553 14942221 153 . . R92d +chr3 SNP SNP 14942222 15102890 316 . . R93d +chr3 SNP SNP 15102891 15263559 368 . . R94d +chr3 SNP SNP 15263560 15424227 309 . . R95d +chr3 SNP SNP 15424228 15584896 61 . . R96d +chr3 SNP SNP 15584897 15745565 245 . . R97d +chr3 SNP SNP 15745566 15906234 111 . . R98d +chr3 SNP SNP 15906235 16066903 423 . . R99d +chr3 SNP SNP 16066904 16227572 340 . . R100d +chr3 SNP SNP 16227573 16388241 515 . . R101d +chr3 SNP SNP 16388242 16548910 260 . . R102d +chr3 SNP SNP 16548911 16709579 18 . . R103d +chr3 SNP SNP 16709580 16870248 390 . . R104d +chr3 SNP SNP 16870249 17030917 425 . . R105d +chr3 SNP SNP 17030918 17191586 295 . . R106d +chr3 SNP SNP 17191587 17352255 364 . . R107d +chr3 SNP SNP 17352256 17512924 82 . . R108d +chr3 SNP SNP 17512925 17673593 281 . . R109d +chr3 SNP SNP 17673594 17834262 184 . . R110d +chr3 SNP SNP 17834263 17994930 314 . . R111d +chr3 SNP SNP 17994931 18155599 335 . . R112d +chr3 SNP SNP 18155600 18316268 333 . . R113d +chr3 SNP SNP 18316269 18476937 288 . . R114d +chr3 SNP SNP 18476938 18637606 541 . . R115d +chr3 SNP SNP 18637607 18798275 371 . . R116d +chr3 SNP SNP 18798276 18958944 134 . . R117d +chr3 SNP SNP 18958945 19119613 122 . . R118d +chr3 SNP SNP 19119614 19280282 475 . . R119d +chr3 SNP SNP 19280283 19440951 269 . . R120d +chr3 SNP SNP 19440952 19601620 16 . . R121d +chr3 SNP SNP 19601621 19762289 11 . . R122d +chr3 SNP SNP 19762290 19922958 18 . . R123d +chr3 SNP SNP 19922959 20083627 11 . . R124d +chr3 SNP SNP 20083628 20244296 14 . . R125d +chr3 SNP SNP 20244297 20404964 193 . . R126d +chr3 SNP SNP 20404965 20565633 321 . . R127d +chr3 SNP SNP 20565634 20726302 553 . . R128d +chr3 SNP SNP 20726303 20886971 42 . . R129d +chr3 SNP SNP 20886972 21047640 28 . . R130d +chr3 SNP SNP 21047641 21208309 352 . . R131d +chr3 SNP SNP 21208310 21368978 463 . . R132d +chr3 SNP SNP 21368979 21529647 293 . . R133d +chr3 SNP SNP 21529648 21690316 63 . . R134d +chr3 SNP SNP 21690317 21850985 295 . . R135d +chr3 SNP SNP 21850986 22011654 23 . . R136d +chr3 SNP SNP 22011655 22172323 40 . . R137d +chr3 SNP SNP 22172324 22332992 37 . . R138d +chr3 SNP SNP 22332993 22493661 30 . . R139d +chr3 SNP SNP 22493662 22654330 14 . . R140d +chr3 SNP SNP 22654331 22814999 21 . . R141d +chr3 SNP SNP 22815000 22975667 14 . . R142d +chr3 SNP SNP 22975668 23136336 21 . . R143d +chr3 SNP SNP 23136337 23297005 33 . . R144d +chr3 SNP SNP 23297006 23457674 14 . . R145d +chr3 SNP SNP 23457675 23618343 44 . . R146d +chr3 SNP SNP 23618344 23779012 21 . . R147d +chr3 SNP SNP 23779013 23939681 18 . . R148d +chr3 SNP SNP 23939682 24100350 23 . . R149d +chr3 SNP SNP 24100351 24261019 4 . . R150d +chr3 SNP SNP 24261020 24421688 14 . . R151d +chr3 SNP SNP 24421689 24582357 18 . . R152d +chr3 SNP SNP 24582358 24743026 11 . . R153d +chr3 SNP SNP 24743027 24903695 11 . . R154d +chr3 SNP SNP 24903696 25064364 23 . . R155d +chr3 SNP SNP 25064365 25225033 14 . . R156d +chr3 SNP SNP 25225034 25385702 4 . . R157d +chr3 SNP SNP 25385703 25546370 11 . . R158d +chr3 SNP SNP 25546371 25707039 7 . . R159d +chr3 SNP SNP 25707040 25867708 9 . . R160d +chr3 SNP SNP 25867709 26028377 130 . . R161d +chr3 SNP SNP 26028378 26189046 323 . . R162d +chr3 SNP SNP 26189047 26349715 156 . . R163d +chr3 SNP SNP 26349716 26510384 94 . . R164d +chr3 SNP SNP 26510385 26671053 189 . . R165d +chr3 SNP SNP 26671054 26831722 186 . . R166d +chr3 SNP SNP 26831723 26992391 63 . . R167d +chr3 SNP SNP 26992392 27153060 49 . . R168d +chr3 SNP SNP 27153061 27313729 21 . . R169d +chr3 SNP SNP 27313730 27474398 139 . . R170d +chr3 SNP SNP 27474399 27635067 262 . . R171d +chr3 SNP SNP 27635068 27795736 115 . . R172d +chr3 SNP SNP 27795737 27956405 108 . . R173d +chr3 SNP SNP 27956406 28117073 328 . . R174d +chr3 SNP SNP 28117074 28277742 198 . . R175d +chr3 SNP SNP 28277743 28438411 248 . . R176d +chr3 SNP SNP 28438412 28599080 262 . . R177d +chr3 SNP SNP 28599081 28759749 226 . . R178d +chr3 SNP SNP 28759750 28920418 250 . . R179d +chr3 SNP SNP 28920419 29081087 177 . . R180d +chr3 SNP SNP 29081088 29241756 99 . . R181d +chr3 SNP SNP 29241757 29402425 238 . . R182d +chr3 SNP SNP 29402426 29563094 118 . . R183d +chr3 SNP SNP 29563095 29723763 338 . . R184d +chr3 SNP SNP 29723764 29884432 40 . . R185d +chr3 SNP SNP 29884433 30045101 59 . . R186d +chr3 SNP SNP 30045102 30205770 222 . . R187d +chr3 SNP SNP 30205771 30366439 73 . . R188d +chr3 SNP SNP 30366440 30527108 172 . . R189d +chr3 SNP SNP 30527109 30687776 392 . . R190d +chr3 SNP SNP 30687777 30848445 33 . . R191d +chr3 SNP SNP 30848446 31009114 23 . . R192d +chr3 SNP SNP 31009115 31169783 18 . . R193d +chr3 SNP SNP 31169784 31330452 139 . . R194d +chr3 SNP SNP 31330453 31491121 156 . . R195d +chr3 SNP SNP 31491122 31651790 274 . . R196d +chr3 SNP SNP 31651791 31812459 557 . . R197d +chr3 SNP SNP 31812460 31973128 439 . . R198d +chr3 SNP SNP 31973129 32133797 229 . . R199d +chr3 SNP SNP 32133798 32294466 368 . . R200d +chr3 SNP SNP 32294467 32455135 321 . . R201d +chr3 SNP SNP 32455136 32615804 300 . . R202d +chr3 SNP SNP 32615805 32776473 92 . . R203d +chr3 SNP SNP 32776474 32937142 26 . . R204d +chr3 SNP SNP 32937143 33097811 165 . . R205d +chr3 SNP SNP 33097812 33258479 229 . . R206d +chr3 SNP SNP 33258480 33419148 122 . . R207d +chr3 SNP SNP 33419149 33579817 144 . . R208d +chr3 SNP SNP 33579818 33740486 99 . . R209d +chr3 SNP SNP 33740487 33901155 408 . . R210d +chr3 SNP SNP 33901156 34061824 231 . . R211d +chr3 SNP SNP 34061825 34222493 14 . . R212d +chr3 SNP SNP 34222494 34383162 4 . . R213d +chr3 SNP SNP 34383163 34543831 9 . . R214d +chr3 SNP SNP 34543832 34704500 2 . . R215d +chr3 SNP SNP 34704501 34865169 11 . . R216d +chr3 SNP SNP 34865170 35025838 18 . . R217d +chr3 SNP SNP 35025839 35186507 14 . . R218d +chr3 SNP SNP 35186508 35347176 210 . . R219d +chr3 SNP SNP 35347177 35507845 283 . . R220d +chr3 SNP SNP 35507846 35668514 49 . . R221d +chr3 SNP SNP 35668515 35829182 21 . . R222d +chr3 SNP SNP 35829183 35989851 11 . . R223d +chr3 SNP SNP 35989852 36150520 7 . . R224d +chr3 SNP SNP 36150521 36311189 14 . . R225d +chr3 SNP SNP 36311190 36471858 278 . . R226d +chr3 SNP SNP 36471859 36632527 458 . . R227d +chr3 SNP SNP 36632528 36793196 534 . . R228d +chr3 SNP SNP 36793197 36953865 678 . . R229d +chr3 SNP SNP 36953866 37114534 562 . . R230d +chr3 SNP SNP 37114535 37275203 482 . . R231d +chr3 SNP SNP 37275204 37435872 1000 . . R232d +chr3 SNP SNP 37435873 37596541 617 . . R233d +chr3 SNP SNP 37596542 37757210 534 . . R234d +chr3 SNP SNP 37757211 37917879 628 . . R235d +chr3 SNP SNP 37917880 38078548 382 . . R236d +chr3 SNP SNP 38078549 38239217 328 . . R237d +chr3 SNP SNP 38239218 38399885 588 . . R238d +chr3 SNP SNP 38399886 38560554 449 . . R239d +chr3 SNP SNP 38560555 38721223 373 . . R240d +chr3 SNP SNP 38721224 38881892 238 . . R241d +chr3 SNP SNP 38881893 39042561 18 . . R242d +chr3 SNP SNP 39042562 39203230 18 . . R243d +chr3 SNP SNP 39203231 39363899 9 . . R244d +chr3 SNP SNP 39363900 39524568 89 . . R245d +chr3 SNP SNP 39524569 39685237 458 . . R246d +chr3 SNP SNP 39685238 39845906 394 . . R247d +chr3 SNP SNP 39845907 40006575 295 . . R248d +chr3 SNP SNP 40006576 40167244 286 . . R249d +chr3 SNP SNP 40167245 40327913 85 . . R250d +chr3 SNP SNP 40327914 40488582 18 . . R251d +chr3 SNP SNP 40488583 40649251 30 . . R252d +chr3 SNP SNP 40649252 40809919 56 . . R253d +chr3 SNP SNP 40809920 40970588 28 . . R254d +chr3 SNP SNP 40970589 41131257 205 . . R255d +chr3 SNP SNP 41131258 41291926 148 . . R256d +chr3 SNP SNP 41291927 41452595 252 . . R257d +chr3 SNP SNP 41452596 41613264 278 . . R258d +chr3 SNP SNP 41613265 41773933 411 . . R259d +chr3 SNP SNP 41773934 41934602 470 . . R260d +chr3 SNP SNP 41934603 42095271 482 . . R261d +chr3 SNP SNP 42095272 42255940 385 . . R262d +chr3 SNP SNP 42255941 42416609 444 . . R263d +chr3 SNP SNP 42416610 42577278 127 . . R264d +chr3 SNP SNP 42577279 42737947 23 . . R265d +chr3 SNP SNP 42737948 42898616 4 . . R266d +chr3 SNP SNP 42898617 43059285 21 . . R267d +chr3 SNP SNP 43059286 43219954 11 . . R268d +chr3 SNP SNP 43219955 43380622 16 . . R269d +chr3 SNP SNP 43380623 43541291 18 . . R270d +chr3 SNP SNP 43541292 43701960 9 . . R271d +chr3 SNP SNP 43701961 43862629 0 . . R272d +chr3 SNP SNP 43862630 44023298 30 . . R273d +chr3 SNP SNP 44023299 44183967 18 . . R274d +chr3 SNP SNP 44183968 44344636 9 . . R275d +chr3 SNP SNP 44344637 44505305 40 . . R276d +chr3 SNP SNP 44505306 44665974 7 . . R277d +chr3 SNP SNP 44665975 44826643 11 . . R278d +chr3 SNP SNP 44826644 44987312 16 . . R279d +chr3 SNP SNP 44987313 45147981 9 . . R280d +chr3 SNP SNP 45147982 45308650 9 . . R281d +chr3 SNP SNP 45308651 45469319 9 . . R282d +chr3 SNP SNP 45469320 45629988 2 . . R283d +chr3 SNP SNP 45629989 45790657 2 . . R284d +chr3 SNP SNP 45790658 45951325 14 . . R285d +chr3 SNP SNP 45951326 46111994 21 . . R286d +chr3 SNP SNP 46111995 46272663 96 . . R287d +chr3 SNP SNP 46272664 46433332 307 . . R288d +chr3 SNP SNP 46433333 46594001 96 . . R289d +chr3 SNP SNP 46594002 46754670 37 . . R290d +chr3 SNP SNP 46754671 46915339 21 . . R291d +chr3 SNP SNP 46915340 47076008 16 . . R292d +chr3 SNP SNP 47076009 47236677 21 . . R293d +chr3 SNP SNP 47236678 47397346 26 . . R294d +chr3 SNP SNP 47397347 47558015 115 . . R295d +chr3 SNP SNP 47558016 47718684 328 . . R296d +chr3 SNP SNP 47718685 47879353 664 . . R297d +chr3 SNP SNP 47879354 48040022 609 . . R298d +chr3 SNP SNP 48040023 48200691 425 . . R299d +chr3 SNP SNP 48200692 48361360 515 . . R300d +chr3 SNP SNP 48361361 48522028 513 . . R301d +chr3 SNP SNP 48522029 48682697 666 . . R302d +chr3 SNP SNP 48682698 48843366 666 . . R303d +chr3 SNP SNP 48843367 49004035 749 . . R304d +chr3 SNP SNP 49004036 49164704 465 . . R305d +chr3 SNP SNP 49164705 49325373 555 . . R306d +chr3 SNP SNP 49325374 49486042 226 . . R307d +chr3 SNP SNP 49486043 49646711 456 . . R308d +chr3 SNP SNP 49646712 49807380 671 . . R309d +chr3 SNP SNP 49807381 49968049 413 . . R310d +chr3 SNP SNP 49968050 50128718 614 . . R311d +chr3 SNP SNP 50128719 50289387 583 . . R312d +chr3 SNP SNP 50289388 50450056 617 . . R313d +chr3 SNP SNP 50450057 50610725 562 . . R314d +chr3 SNP SNP 50610726 50771394 666 . . R315d +chr3 SNP SNP 50771395 50932063 460 . . R316d +chr3 SNP SNP 50932064 51092731 555 . . R317d +chr3 SNP SNP 51092732 51253400 250 . . R318d +chr3 SNP SNP 51253401 51414069 26 . . R319d +chr3 SNP SNP 51414070 51574738 7 . . R320d +chr3 SNP SNP 51574739 51735407 4 . . R321d +chr3 SNP SNP 51735408 51896076 18 . . R322d +chr3 SNP SNP 51896077 52056745 14 . . R323d +chr3 SNP SNP 52056746 52217414 14 . . R324d +chr3 SNP SNP 52217415 52378083 14 . . R325d +chr3 SNP SNP 52378084 52538752 9 . . R326d +chr3 SNP SNP 52538753 52699421 7 . . R327d +chr3 SNP SNP 52699422 52860090 26 . . R328d +chr3 SNP SNP 52860091 53020759 7 . . R329d +chr3 SNP SNP 53020760 53181428 7 . . R330d +chr3 SNP SNP 53181429 53342097 153 . . R331d +chr3 SNP SNP 53342098 53502766 174 . . R332d +chr3 SNP SNP 53502767 53663434 26 . . R333d +chr3 SNP SNP 53663435 53824103 442 . . R334d +chr3 SNP SNP 53824104 53984772 141 . . R335d +chr3 SNP SNP 53984773 54145441 35 . . R336d +chr3 SNP SNP 54145442 54306110 14 . . R337d +chr3 SNP SNP 54306111 54466779 139 . . R338d +chr3 SNP SNP 54466780 54627448 54 . . R339d +chr3 SNP SNP 54627449 54788117 26 . . R340d +chr3 SNP SNP 54788118 54948786 92 . . R341d +chr3 SNP SNP 54948787 55109455 234 . . R342d +chr3 SNP SNP 55109456 55270124 250 . . R343d +chr3 SNP SNP 55270125 55430793 49 . . R344d +chr3 SNP SNP 55430794 55591462 465 . . R345d +chr3 SNP SNP 55591463 55752131 319 . . R346d +chr3 SNP SNP 55752132 55912800 501 . . R347d +chr3 SNP SNP 55912801 56073469 420 . . R348d +chr3 SNP SNP 56073470 56234137 465 . . R349d +chr3 SNP SNP 56234138 56394806 349 . . R350d +chr3 SNP SNP 56394807 56555475 196 . . R351d +chr3 SNP SNP 56555476 56716144 338 . . R352d +chr3 SNP SNP 56716145 56876813 59 . . R353d +chr3 SNP SNP 56876814 57037482 174 . . R354d +chr3 SNP SNP 57037483 57198151 224 . . R355d +chr3 SNP SNP 57198152 57358820 269 . . R356d +chr3 SNP SNP 57358821 57519489 125 . . R357d +chr3 SNP SNP 57519490 57680158 425 . . R358d +chr3 SNP SNP 57680159 57840827 316 . . R359d +chr3 SNP SNP 57840828 58001496 234 . . R360d +chr3 SNP SNP 58001497 58162165 319 . . R361d +chr3 SNP SNP 58162166 58322834 153 . . R362d +chr3 SNP SNP 58322835 58483503 11 . . R363d +chr3 SNP SNP 58483504 58644172 16 . . R364d +chr3 SNP SNP 58644173 58804840 210 . . R365d +chr3 SNP SNP 58804841 58965509 177 . . R366d +chr3 SNP SNP 58965510 59126178 330 . . R367d +chr3 SNP SNP 59126179 59286847 356 . . R368d +chr3 SNP SNP 59286848 59447516 33 . . R369d +chr3 SNP SNP 59447517 59608185 18 . . R370d +chr3 SNP SNP 59608186 59768854 4 . . R371d +chr3 SNP SNP 59768855 59929523 16 . . R372d +chr3 SNP SNP 59929524 60090192 18 . . R373d +chr3 SNP SNP 60090193 60250861 18 . . R374d +chr3 SNP SNP 60250862 60411530 26 . . R375d +chr3 SNP SNP 60411531 60572199 18 . . R376d +chr3 SNP SNP 60572200 60732868 7 . . R377d +chr3 SNP SNP 60732869 60893537 42 . . R378d +chr3 SNP SNP 60893538 61054206 18 . . R379d +chr3 SNP SNP 61054207 61214874 14 . . R380d +chr3 SNP SNP 61214875 61375543 18 . . R381d +chr3 SNP SNP 61375544 61536212 21 . . R382d +chr3 SNP SNP 61536213 61696881 163 . . R383d +chr3 SNP SNP 61696882 61857550 394 . . R384d +chr3 SNP SNP 61857551 62018219 453 . . R385d +chr3 SNP SNP 62018220 62178888 16 . . R386d +chr3 SNP SNP 62178889 62339557 234 . . R387d +chr3 SNP SNP 62339558 62500226 342 . . R388d +chr3 SNP SNP 62500227 62660895 328 . . R389d +chr3 SNP SNP 62660896 62821564 434 . . R390d +chr3 SNP SNP 62821565 62982233 321 . . R391d +chr3 SNP SNP 62982234 63142902 420 . . R392d +chr3 SNP SNP 63142903 63303571 139 . . R393d +chr3 SNP SNP 63303572 63464240 323 . . R394d +chr3 SNP SNP 63464241 63624909 635 . . R395d +chr3 SNP SNP 63624910 63785577 543 . . R396d +chr3 SNP SNP 63785578 63946246 193 . . R397d +chr3 SNP SNP 63946247 64106915 21 . . R398d +chr3 SNP SNP 64106916 64267584 28 . . R399d +chr3 SNP SNP 64267585 64428253 40 . . R400d +chr3 SNP SNP 64428254 64588922 174 . . R401d +chr3 SNP SNP 64588923 64749591 44 . . R402d +chr3 SNP SNP 64749592 64910260 70 . . R403d +chr3 SNP SNP 64910261 65070929 21 . . R404d +chr3 SNP SNP 65070930 65231598 35 . . R405d +chr3 SNP SNP 65231599 65392267 361 . . R406d +chr3 SNP SNP 65392268 65552936 75 . . R407d +chr3 SNP SNP 65552937 65713605 335 . . R408d +chr3 SNP SNP 65713606 65874274 380 . . R409d +chr3 SNP SNP 65874275 66034943 326 . . R410d +chr3 SNP SNP 66034944 66195612 200 . . R411d +chr3 SNP SNP 66195613 66356280 23 . . R412d +chr3 SNP SNP 66356281 66516949 236 . . R413d +chr3 SNP SNP 66516950 66677618 158 . . R414d +chr3 SNP SNP 66677619 66838287 21 . . R415d +chr3 SNP SNP 66838288 66998956 49 . . R416d +chr3 SNP SNP 66998957 67159625 33 . . R417d +chr3 SNP SNP 67159626 67320294 11 . . R418d +chr3 SNP SNP 67320295 67480963 18 . . R419d +chr3 SNP SNP 67480964 67641632 40 . . R420d +chr3 SNP SNP 67641633 67802301 248 . . R421d +chr3 SNP SNP 67802302 67962970 122 . . R422d +chr3 SNP SNP 67962971 68123639 406 . . R423d +chr3 SNP SNP 68123640 68284308 4 . . R424d +chr3 SNP SNP 68284309 68444977 0 . . R425d +chr3 SNP SNP 68444978 68605646 23 . . R426d +chr3 SNP SNP 68605647 68766315 16 . . R427d +chr3 SNP SNP 68766316 68926983 44 . . R428d +chr3 SNP SNP 68926984 69087652 453 . . R429d +chr3 SNP SNP 69087653 69248321 468 . . R430d +chr3 SNP SNP 69248322 69408990 35 . . R431d +chr3 SNP SNP 69408991 69569659 28 . . R432d +chr3 SNP SNP 69569660 69730328 42 . . R433d +chr3 SNP SNP 69730329 69890997 82 . . R434d +chr3 SNP SNP 69890998 70051666 423 . . R435d +chr3 SNP SNP 70051667 70212335 364 . . R436d +chr3 SNP SNP 70212336 70373004 323 . . R437d +chr3 SNP SNP 70373005 70533673 465 . . R438d +chr3 SNP SNP 70533674 70694342 205 . . R439d +chr3 SNP SNP 70694343 70855011 141 . . R440d +chr3 SNP SNP 70855012 71015680 156 . . R441d +chr3 SNP SNP 71015681 71176349 196 . . R442d +chr3 SNP SNP 71176350 71337018 28 . . R443d +chr3 SNP SNP 71337019 71497686 66 . . R444d +chr3 SNP SNP 71497687 71658355 226 . . R445d +chr3 SNP SNP 71658356 71819024 482 . . R446d +chr3 SNP SNP 71819025 71979693 54 . . R447d +chr3 SNP SNP 71979694 72140362 397 . . R448d +chr3 SNP SNP 72140363 72301031 385 . . R449d +chr3 SNP SNP 72301032 72461700 40 . . R450d +chr3 SNP SNP 72461701 72622369 26 . . R451d +chr3 SNP SNP 72622370 72783038 18 . . R452d +chr3 SNP SNP 72783039 72943707 21 . . R453d +chr3 SNP SNP 72943708 73104376 49 . . R454d +chr3 SNP SNP 73104377 73265045 260 . . R455d +chr3 SNP SNP 73265046 73425714 271 . . R456d +chr3 SNP SNP 73425715 73586383 82 . . R457d +chr3 SNP SNP 73586384 73747052 553 . . R458d +chr3 SNP SNP 73747053 73907721 89 . . R459d +chr3 SNP SNP 73907722 74068389 9 . . R460d +chr3 SNP SNP 74068390 74229058 9 . . R461d +chr3 SNP SNP 74229059 74389727 4 . . R462d +chr3 SNP SNP 74389728 74550396 11 . . R463d +chr3 SNP SNP 74550397 74711065 21 . . R464d +chr3 SNP SNP 74711066 74871734 16 . . R465d +chr3 SNP SNP 74871735 75032403 30 . . R466d +chr3 SNP SNP 75032404 75193072 18 . . R467d +chr3 SNP SNP 75193073 75353741 14 . . R468d +chr3 SNP SNP 75353742 75514410 7 . . R469d +chr3 SNP SNP 75514411 75675079 439 . . R470d +chr3 SNP SNP 75675080 75835748 569 . . R471d +chr3 SNP SNP 75835749 75996417 598 . . R472d +chr3 SNP SNP 75996418 76157086 200 . . R473d +chr3 SNP SNP 76157087 76317755 364 . . R474d +chr3 SNP SNP 76317756 76478424 250 . . R475d +chr3 SNP SNP 76478425 76639092 130 . . R476d +chr3 SNP SNP 76639093 76799761 33 . . R477d +chr3 SNP SNP 76799762 76960430 158 . . R478d +chr3 SNP SNP 76960431 77121099 513 . . R479d +chr3 SNP SNP 77121100 77281768 699 . . R480d +chr3 SNP SNP 77281769 77442437 524 . . R481d +chr3 SNP SNP 77442438 77603106 333 . . R482d +chr3 SNP SNP 77603107 77763775 394 . . R483d +chr3 SNP SNP 77763776 77924444 255 . . R484d +chr3 SNP SNP 77924445 78085113 130 . . R485d +chr3 SNP SNP 78085114 78245782 167 . . R486d +chr3 SNP SNP 78245783 78406451 449 . . R487d +chr3 SNP SNP 78406452 78567120 314 . . R488d +chr3 SNP SNP 78567121 78727789 536 . . R489d +chr3 SNP SNP 78727790 78888458 434 . . R490d +chr3 SNP SNP 78888459 79049127 378 . . R491d +chr3 SNP SNP 79049128 79209795 54 . . R492d +chr3 SNP SNP 79209796 79370464 361 . . R493d +chr3 SNP SNP 79370465 79531133 380 . . R494d +chr3 SNP SNP 79531134 79691802 224 . . R495d +chr3 SNP SNP 79691803 79852471 243 . . R496d +chr3 SNP SNP 79852472 80013140 364 . . R497d +chr3 SNP SNP 80013141 80173809 408 . . R498d +chr3 SNP SNP 80173810 80334478 243 . . R499d +chr3 SNP SNP 80334479 80495147 85 . . R500d +chr3 SNP SNP 80495148 80655816 167 . . R501d +chr3 SNP SNP 80655817 80816485 418 . . R502d +chr3 SNP SNP 80816486 80977154 94 . . R503d +chr3 SNP SNP 80977155 81137823 37 . . R504d +chr3 SNP SNP 81137824 81298492 35 . . R505d +chr3 SNP SNP 81298493 81459161 23 . . R506d +chr3 SNP SNP 81459162 81619829 18 . . R507d +chr3 SNP SNP 81619830 81780498 210 . . R508d +chr3 SNP SNP 81780499 81941167 418 . . R509d +chr3 SNP SNP 81941168 82101836 463 . . R510d +chr3 SNP SNP 82101837 82262505 390 . . R511d +chr3 SNP SNP 82262506 82423174 371 . . R512d +chr3 SNP SNP 82423175 82583843 229 . . R513d +chr3 SNP SNP 82583844 82744512 498 . . R514d +chr3 SNP SNP 82744513 82905181 390 . . R515d +chr3 SNP SNP 82905182 83065850 321 . . R516d +chr3 SNP SNP 83065851 83226519 99 . . R517d +chr3 SNP SNP 83226520 83387188 345 . . R518d +chr3 SNP SNP 83387189 83547857 208 . . R519d +chr3 SNP SNP 83547858 83708526 302 . . R520d +chr3 SNP SNP 83708527 83869195 297 . . R521d +chr3 SNP SNP 83869196 84029864 371 . . R522d +chr3 SNP SNP 84029865 84190532 257 . . R523d +chr3 SNP SNP 84190533 84351201 106 . . R524d +chr3 SNP SNP 84351202 84511870 217 . . R525d +chr3 SNP SNP 84511871 84672539 14 . . R526d +chr3 SNP SNP 84672540 84833208 151 . . R527d +chr3 SNP SNP 84833209 84993877 30 . . R528d +chr3 SNP SNP 84993878 85154546 392 . . R529d +chr3 SNP SNP 85154547 85315215 231 . . R530d +chr3 SNP SNP 85315216 85475884 238 . . R531d +chr3 SNP SNP 85475885 85636553 215 . . R532d +chr3 SNP SNP 85636554 85797222 231 . . R533d +chr3 SNP SNP 85797223 85957891 283 . . R534d +chr3 SNP SNP 85957892 86118560 404 . . R535d +chr3 SNP SNP 86118561 86279229 309 . . R536d +chr3 SNP SNP 86279230 86439898 390 . . R537d +chr3 SNP SNP 86439899 86600567 257 . . R538d +chr3 SNP SNP 86600568 86761235 68 . . R539d +chr3 SNP SNP 86761236 86921904 44 . . R540d +chr3 SNP SNP 86921905 87082573 174 . . R541d +chr3 SNP SNP 87082574 87243242 196 . . R542d +chr3 SNP SNP 87243243 87403911 406 . . R543d +chr3 SNP SNP 87403912 87564580 28 . . R544d +chr3 SNP SNP 87564581 87725249 18 . . R545d +chr3 SNP SNP 87725250 87885918 80 . . R546d +chr3 SNP SNP 87885919 88046587 378 . . R547d +chr3 SNP SNP 88046588 88207256 368 . . R548d +chr3 SNP SNP 88207257 88367925 621 . . R549d +chr3 SNP SNP 88367926 88528594 633 . . R550d +chr3 SNP SNP 88528595 88689263 683 . . R551d +chr3 SNP SNP 88689264 88849932 432 . . R552d +chr3 SNP SNP 88849933 89010601 234 . . R553d +chr3 SNP SNP 89010602 89171270 75 . . R554d +chr3 SNP SNP 89171271 89331938 33 . . R555d +chr3 SNP SNP 89331939 89492607 30 . . R556d +chr3 SNP SNP 89492608 89653276 94 . . R557d +chr3 SNP SNP 89653277 89813945 219 . . R558d +chr3 SNP SNP 89813946 89974614 68 . . R559d +chr3 SNP SNP 89974615 90135283 165 . . R560d +chr3 SNP SNP 90135284 90295952 87 . . R561d +chr3 SNP SNP 90295953 90456621 26 . . R562d +chr3 SNP SNP 90456622 90617290 9 . . R563d +chr3 SNP SNP 90617291 90777959 243 . . R564d +chr3 SNP SNP 90777960 90938628 94 . . R565d +chr3 SNP SNP 90938629 91099297 184 . . R566d +chr3 SNP SNP 91099298 91259966 151 . . R567d +chr3 SNP SNP 91259967 91420635 295 . . R568d +chr3 SNP SNP 91420636 91581304 193 . . R569d +chr3 SNP SNP 91581305 91741973 385 . . R570d +chr3 SNP SNP 91741974 91902641 271 . . R571d +chr3 SNP SNP 91902642 92063310 30 . . R572d +chr3 SNP SNP 92063311 92223979 23 . . R573d +chr3 SNP SNP 92223980 92384648 35 . . R574d +chr3 SNP SNP 92384649 92545317 18 . . R575d +chr3 SNP SNP 92545318 92705986 11 . . R576d +chr3 SNP SNP 92705987 92866655 21 . . R577d +chr3 SNP SNP 92866656 93027324 23 . . R578d +chr3 SNP SNP 93027325 93187993 37 . . R579d +chr3 SNP SNP 93187994 93348662 11 . . R580d +chr3 SNP SNP 93348663 93509331 153 . . R581d +chr3 SNP SNP 93509332 93670000 35 . . R582d +chr3 SNP SNP 93670001 93830669 134 . . R583d +chr3 SNP SNP 93830670 93991338 30 . . R584d +chr3 SNP SNP 93991339 94152007 37 . . R585d +chr3 SNP SNP 94152008 94312676 73 . . R586d +chr3 SNP SNP 94312677 94473344 314 . . R587d +chr3 SNP SNP 94473345 94634013 160 . . R588d +chr3 SNP SNP 94634014 94794682 234 . . R589d +chr3 SNP SNP 94794683 94955351 323 . . R590d +chr3 SNP SNP 94955352 95116020 319 . . R591d +chr3 SNP SNP 95116021 95276689 520 . . R592d +chr3 SNP SNP 95276690 95437358 125 . . R593d +chr3 SNP SNP 95437359 95598027 68 . . R594d +chr3 SNP SNP 95598028 95758696 26 . . R595d +chr3 SNP SNP 95758697 95919365 42 . . R596d +chr3 SNP SNP 95919366 96080034 151 . . R597d +chr3 SNP SNP 96080035 96240703 9 . . R598d +chr3 SNP SNP 96240704 96401372 21 . . R599d +chr3 SNP SNP 96401373 96562041 21 . . R600d +chr3 SNP SNP 96562042 96722710 21 . . R601d +chr3 SNP SNP 96722711 96883379 11 . . R602d +chr3 SNP SNP 96883380 97044047 4 . . R603d +chr3 SNP SNP 97044048 97204716 40 . . R604d +chr3 SNP SNP 97204717 97365385 21 . . R605d +chr3 SNP SNP 97365386 97526054 28 . . R606d +chr3 SNP SNP 97526055 97686723 9 . . R607d +chr3 SNP SNP 97686724 97847392 11 . . R608d +chr3 SNP SNP 97847393 98008061 11 . . R609d +chr3 SNP SNP 98008062 98168730 14 . . R610d +chr3 SNP SNP 98168731 98329399 9 . . R611d +chr3 SNP SNP 98329400 98490068 7 . . R612d +chr3 SNP SNP 98490069 98650737 82 . . R613d +chr3 SNP SNP 98650738 98811406 212 . . R614d +chr3 SNP SNP 98811407 98972075 243 . . R615d +chr3 SNP SNP 98972076 99132744 349 . . R616d +chr3 SNP SNP 99132745 99293413 288 . . R617d +chr3 SNP SNP 99293414 99454082 18 . . R618d +chr3 SNP SNP 99454083 99614750 125 . . R619d +chr3 SNP SNP 99614751 99775419 229 . . R620d +chr3 SNP SNP 99775420 99936088 328 . . R621d +chr3 SNP SNP 99936089 100096757 174 . . R622d +chr3 SNP SNP 100096758 100257426 158 . . R623d +chr3 SNP SNP 100257427 100418095 323 . . R624d +chr3 SNP SNP 100418096 100578764 293 . . R625d +chr3 SNP SNP 100578765 100739433 354 . . R626d +chr3 SNP SNP 100739434 100900102 267 . . R627d +chr3 SNP SNP 100900103 101060771 170 . . R628d +chr3 SNP SNP 101060772 101221440 87 . . R629d +chr3 SNP SNP 101221441 101382109 356 . . R630d +chr3 SNP SNP 101382110 101542778 328 . . R631d +chr3 SNP SNP 101542779 101703447 127 . . R632d +chr3 SNP SNP 101703448 101864116 307 . . R633d +chr3 SNP SNP 101864117 102024784 390 . . R634d +chr3 SNP SNP 102024785 102185453 11 . . R635d +chr3 SNP SNP 102185454 102346122 2 . . R636d +chr3 SNP SNP 102346123 102506791 9 . . R637d +chr3 SNP SNP 102506792 102667460 7 . . R638d +chr3 SNP SNP 102667461 102828129 21 . . R639d +chr3 SNP SNP 102828130 102988798 9 . . R640d +chr3 SNP SNP 102988799 103149467 7 . . R641d +chr3 SNP SNP 103149468 103310136 7 . . R642d +chr3 SNP SNP 103310137 103470805 35 . . R643d +chr3 SNP SNP 103470806 103631474 18 . . R644d +chr3 SNP SNP 103631475 103792143 26 . . R645d +chr3 SNP SNP 103792144 103952812 0 . . R646d +chr3 SNP SNP 103952813 104113481 9 . . R647d +chr3 SNP SNP 104113482 104274150 9 . . R648d +chr3 SNP SNP 104274151 104434819 21 . . R649d +chr3 SNP SNP 104434820 104595487 4 . . R650d +chr3 SNP SNP 104595488 104756156 7 . . R651d +chr3 SNP SNP 104756157 104916825 7 . . R652d +chr3 SNP SNP 104916826 105077494 11 . . R653d +chr3 SNP SNP 105077495 105238163 14 . . R654d +chr3 SNP SNP 105238164 105398832 30 . . R655d +chr3 SNP SNP 105398833 105559501 281 . . R656d +chr3 SNP SNP 105559502 105720170 321 . . R657d +chr3 SNP SNP 105720171 105880839 222 . . R658d +chr3 SNP SNP 105880840 106041508 491 . . R659d +chr3 SNP SNP 106041509 106202177 252 . . R660d +chr3 SNP SNP 106202178 106362846 203 . . R661d +chr3 SNP SNP 106362847 106523515 148 . . R662d +chr3 SNP SNP 106523516 106684184 0 . . R663d +chr3 SNP SNP 106684185 106844853 21 . . R664d +chr3 SNP SNP 106844854 107005522 132 . . R665d +chr3 SNP SNP 107005523 107166190 130 . . R666d +chr3 SNP SNP 107166191 107326859 342 . . R667d +chr3 SNP SNP 107326860 107487528 307 . . R668d +chr3 SNP SNP 107487529 107648197 484 . . R669d +chr3 SNP SNP 107648198 107808866 23 . . R670d +chr3 SNP SNP 107808867 107969535 75 . . R671d +chr3 SNP SNP 107969536 108130204 26 . . R672d +chr3 SNP SNP 108130205 108290873 2 . . R673d +chr3 SNP SNP 108290874 108451542 9 . . R674d +chr3 SNP SNP 108451543 108612211 11 . . R675d +chr3 SNP SNP 108612212 108772880 18 . . R676d +chr3 SNP SNP 108772881 108933549 9 . . R677d +chr3 SNP SNP 108933550 109094218 23 . . R678d +chr3 SNP SNP 109094219 109254887 23 . . R679d +chr3 SNP SNP 109254888 109415556 35 . . R680d +chr3 SNP SNP 109415557 109576225 158 . . R681d +chr3 SNP SNP 109576226 109736893 40 . . R682d +chr3 SNP SNP 109736894 109897562 26 . . R683d +chr3 SNP SNP 109897563 110058231 52 . . R684d +chr3 SNP SNP 110058232 110218900 453 . . R685d +chr3 SNP SNP 110218901 110379569 30 . . R686d +chr3 SNP SNP 110379570 110540238 148 . . R687d +chr3 SNP SNP 110540239 110700907 151 . . R688d +chr3 SNP SNP 110700908 110861576 68 . . R689d +chr3 SNP SNP 110861577 111022245 61 . . R690d +chr3 SNP SNP 111022246 111182914 408 . . R691d +chr3 SNP SNP 111182915 111343583 56 . . R692d +chr3 SNP SNP 111343584 111504252 78 . . R693d +chr3 SNP SNP 111504253 111664921 196 . . R694d +chr3 SNP SNP 111664922 111825590 553 . . R695d +chr3 SNP SNP 111825591 111986259 342 . . R696d +chr3 SNP SNP 111986260 112146928 543 . . R697d +chr3 SNP SNP 112146929 112307596 250 . . R698d +chr3 SNP SNP 112307597 112468265 456 . . R699d +chr3 SNP SNP 112468266 112628934 80 . . R700d +chr3 SNP SNP 112628935 112789603 113 . . R701d +chr3 SNP SNP 112789604 112950272 444 . . R702d +chr3 SNP SNP 112950273 113110941 122 . . R703d +chr3 SNP SNP 113110942 113271610 182 . . R704d +chr3 SNP SNP 113271611 113432279 375 . . R705d +chr3 SNP SNP 113432280 113592948 761 . . R706d +chr3 SNP SNP 113592949 113753617 9 . . R707d +chr3 SNP SNP 113753618 113914286 9 . . R708d +chr3 SNP SNP 113914287 114074955 14 . . R709d +chr3 SNP SNP 114074956 114235624 170 . . R710d +chr3 SNP SNP 114235625 114396293 496 . . R711d +chr3 SNP SNP 114396294 114556962 702 . . R712d +chr3 SNP SNP 114556963 114717631 583 . . R713d +chr3 SNP SNP 114717632 114878299 420 . . R714d +chr3 SNP SNP 114878300 115038968 588 . . R715d +chr3 SNP SNP 115038969 115199637 385 . . R716d +chr3 SNP SNP 115199638 115360306 628 . . R717d +chr3 SNP SNP 115360307 115520975 626 . . R718d +chr3 SNP SNP 115520976 115681644 380 . . R719d +chr3 SNP SNP 115681645 115842313 496 . . R720d +chr3 SNP SNP 115842314 116002982 453 . . R721d +chr3 SNP SNP 116002983 116163651 219 . . R722d +chr3 SNP SNP 116163652 116324320 359 . . R723d +chr3 SNP SNP 116324321 116484989 328 . . R724d +chr3 SNP SNP 116484990 116645658 300 . . R725d +chr3 SNP SNP 116645659 116806327 35 . . R726d +chr3 SNP SNP 116806328 116966996 33 . . R727d +chr3 SNP SNP 116966997 117127665 96 . . R728d +chr3 SNP SNP 117127666 117288334 340 . . R729d +chr3 SNP SNP 117288335 117449002 356 . . R730d +chr3 SNP SNP 117449003 117609671 340 . . R731d +chr3 SNP SNP 117609672 117770340 321 . . R732d +chr3 SNP SNP 117770341 117931009 392 . . R733d +chr3 SNP SNP 117931010 118091678 210 . . R734d +chr3 SNP SNP 118091679 118252347 14 . . R735d +chr3 SNP SNP 118252348 118413016 14 . . R736d +chr3 SNP SNP 118413017 118573685 9 . . R737d +chr3 SNP SNP 118573686 118734354 4 . . R738d +chr3 SNP SNP 118734355 118895023 11 . . R739d +chr3 SNP SNP 118895024 119055692 14 . . R740d +chr3 SNP SNP 119055693 119216361 18 . . R741d +chr3 SNP SNP 119216362 119377030 23 . . R742d +chr3 SNP SNP 119377031 119537699 11 . . R743d +chr3 SNP SNP 119537700 119698368 21 . . R744d +chr3 SNP SNP 119698369 119859037 37 . . R745d +chr3 SNP SNP 119859038 120019705 23 . . R746d +chr3 SNP SNP 120019706 120180374 37 . . R747d +chr3 SNP SNP 120180375 120341043 52 . . R748d +chr3 SNP SNP 120341044 120501712 16 . . R749d +chr3 SNP SNP 120501713 120662381 21 . . R750d +chr3 SNP SNP 120662382 120823050 9 . . R751d +chr3 SNP SNP 120823051 120983719 23 . . R752d +chr3 SNP SNP 120983720 121144388 11 . . R753d +chr3 SNP SNP 121144389 121305057 11 . . R754d +chr3 SNP SNP 121305058 121465726 335 . . R755d +chr3 SNP SNP 121465727 121626395 423 . . R756d +chr3 SNP SNP 121626396 121787064 517 . . R757d +chr3 SNP SNP 121787065 121947733 375 . . R758d +chr3 SNP SNP 121947734 122108402 418 . . R759d +chr3 SNP SNP 122108403 122269071 382 . . R760d +chr3 SNP SNP 122269072 122429739 439 . . R761d +chr3 SNP SNP 122429740 122590408 647 . . R762d +chr3 SNP SNP 122590409 122751077 328 . . R763d +chr3 SNP SNP 122751078 122911746 347 . . R764d +chr3 SNP SNP 122911747 123072415 763 . . R765d +chr3 SNP SNP 123072416 123233084 300 . . R766d +chr3 SNP SNP 123233085 123393753 276 . . R767d +chr3 SNP SNP 123393754 123554422 515 . . R768d +chr3 SNP SNP 123554423 123715091 442 . . R769d +chr3 SNP SNP 123715092 123875760 359 . . R770d +chr3 SNP SNP 123875761 124036429 219 . . R771d +chr3 SNP SNP 124036430 124197098 0 . . R772d +chr3 SNP SNP 124197099 124357767 2 . . R773d +chr3 SNP SNP 124357768 124518436 7 . . R774d +chr3 SNP SNP 124518437 124679105 9 . . R775d +chr3 SNP SNP 124679106 124839774 7 . . R776d +chr3 SNP SNP 124839775 125000442 9 . . R777d +chr3 SNP SNP 125000443 125161111 11 . . R778d +chr3 SNP SNP 125161112 125321780 4 . . R779d +chr3 SNP SNP 125321781 125482449 4 . . R780d +chr3 SNP SNP 125482450 125643118 9 . . R781d +chr3 SNP SNP 125643119 125803787 4 . . R782d +chr3 SNP SNP 125803788 125964456 7 . . R783d +chr3 SNP SNP 125964457 126125125 4 . . R784d +chr3 SNP SNP 126125126 126285794 7 . . R785d +chr3 SNP SNP 126285795 126446463 4 . . R786d +chr3 SNP SNP 126446464 126607132 18 . . R787d +chr3 SNP SNP 126607133 126767801 11 . . R788d +chr3 SNP SNP 126767802 126928470 238 . . R789d +chr3 SNP SNP 126928471 127089139 212 . . R790d +chr3 SNP SNP 127089140 127249808 125 . . R791d +chr3 SNP SNP 127249809 127410477 4 . . R792d +chr3 SNP SNP 127410478 127571145 89 . . R793d +chr3 SNP SNP 127571146 127731814 118 . . R794d +chr3 SNP SNP 127731815 127892483 137 . . R795d +chr3 SNP SNP 127892484 128053152 44 . . R796d +chr3 SNP SNP 128053153 128213821 11 . . R797d +chr3 SNP SNP 128213822 128374490 23 . . R798d +chr3 SNP SNP 128374491 128535159 4 . . R799d +chr3 SNP SNP 128535160 128695828 16 . . R800d +chr3 SNP SNP 128695829 128856497 80 . . R801d +chr3 SNP SNP 128856498 129017166 529 . . R802d +chr3 SNP SNP 129017167 129177835 297 . . R803d +chr3 SNP SNP 129177836 129338504 288 . . R804d +chr3 SNP SNP 129338505 129499173 96 . . R805d +chr3 SNP SNP 129499174 129659842 28 . . R806d +chr3 SNP SNP 129659843 129820511 106 . . R807d +chr3 SNP SNP 129820512 129981180 146 . . R808d +chr3 SNP SNP 129981181 130141848 21 . . R809d +chr3 SNP SNP 130141849 130302517 156 . . R810d +chr3 SNP SNP 130302518 130463186 278 . . R811d +chr3 SNP SNP 130463187 130623855 139 . . R812d +chr3 SNP SNP 130623856 130784524 472 . . R813d +chr3 SNP SNP 130784525 130945193 404 . . R814d +chr3 SNP SNP 130945194 131105862 260 . . R815d +chr3 SNP SNP 131105863 131266531 468 . . R816d +chr3 SNP SNP 131266532 131427200 430 . . R817d +chr3 SNP SNP 131427201 131587869 439 . . R818d +chr3 SNP SNP 131587870 131748538 380 . . R819d +chr3 SNP SNP 131748539 131909207 44 . . R820d +chr3 SNP SNP 131909208 132069876 224 . . R821d +chr3 SNP SNP 132069877 132230545 146 . . R822d +chr3 SNP SNP 132230546 132391214 196 . . R823d +chr3 SNP SNP 132391215 132551883 304 . . R824d +chr3 SNP SNP 132551884 132712551 451 . . R825d +chr3 SNP SNP 132712552 132873220 420 . . R826d +chr3 SNP SNP 132873221 133033889 543 . . R827d +chr3 SNP SNP 133033890 133194558 397 . . R828d +chr3 SNP SNP 133194559 133355227 404 . . R829d +chr3 SNP SNP 133355228 133515896 283 . . R830d +chr3 SNP SNP 133515897 133676565 314 . . R831d +chr3 SNP SNP 133676566 133837234 387 . . R832d +chr3 SNP SNP 133837235 133997903 153 . . R833d +chr3 SNP SNP 133997904 134158572 139 . . R834d +chr3 SNP SNP 134158573 134319241 28 . . R835d +chr3 SNP SNP 134319242 134479910 4 . . R836d +chr3 SNP SNP 134479911 134640579 26 . . R837d +chr3 SNP SNP 134640580 134801248 26 . . R838d +chr3 SNP SNP 134801249 134961917 42 . . R839d +chr3 SNP SNP 134961918 135122586 35 . . R840d +chr3 SNP SNP 135122587 135283254 59 . . R841d +chr3 SNP SNP 135283255 135443923 118 . . R842d +chr3 SNP SNP 135443924 135604592 314 . . R843d +chr3 SNP SNP 135604593 135765261 423 . . R844d +chr3 SNP SNP 135765262 135925930 148 . . R845d +chr3 SNP SNP 135925931 136086599 89 . . R846d +chr3 SNP SNP 136086600 136247268 172 . . R847d +chr3 SNP SNP 136247269 136407937 184 . . R848d +chr3 SNP SNP 136407938 136568606 134 . . R849d +chr3 SNP SNP 136568607 136729275 217 . . R850d +chr3 SNP SNP 136729276 136889944 475 . . R851d +chr3 SNP SNP 136889945 137050613 382 . . R852d +chr3 SNP SNP 137050614 137211282 309 . . R853d +chr3 SNP SNP 137211283 137371951 340 . . R854d +chr3 SNP SNP 137371952 137532620 75 . . R855d +chr3 SNP SNP 137532621 137693289 54 . . R856d +chr3 SNP SNP 137693290 137853957 335 . . R857d +chr3 SNP SNP 137853958 138014626 177 . . R858d +chr3 SNP SNP 138014627 138175295 127 . . R859d +chr3 SNP SNP 138175296 138335964 356 . . R860d +chr3 SNP SNP 138335965 138496633 439 . . R861d +chr3 SNP SNP 138496634 138657302 302 . . R862d +chr3 SNP SNP 138657303 138817971 347 . . R863d +chr3 SNP SNP 138817972 138978640 486 . . R864d +chr3 SNP SNP 138978641 139139309 366 . . R865d +chr3 SNP SNP 139139310 139299978 373 . . R866d +chr3 SNP SNP 139299979 139460647 460 . . R867d +chr3 SNP SNP 139460648 139621316 203 . . R868d +chr3 SNP SNP 139621317 139781985 326 . . R869d +chr3 SNP SNP 139781986 139942654 281 . . R870d +chr3 SNP SNP 139942655 140103323 264 . . R871d +chr3 SNP SNP 140103324 140263992 444 . . R872d +chr3 SNP SNP 140263993 140424660 475 . . R873d +chr3 SNP SNP 140424661 140585329 458 . . R874d +chr3 SNP SNP 140585330 140745998 569 . . R875d +chr3 SNP SNP 140745999 140906667 371 . . R876d +chr3 SNP SNP 140906668 141067336 184 . . R877d +chr3 SNP SNP 141067337 141228005 390 . . R878d +chr3 SNP SNP 141228006 141388674 274 . . R879d +chr3 SNP SNP 141388675 141549343 35 . . R880d +chr3 SNP SNP 141549344 141710012 11 . . R881d +chr3 SNP SNP 141710013 141870681 26 . . R882d +chr3 SNP SNP 141870682 142031350 28 . . R883d +chr3 SNP SNP 142031351 142192019 80 . . R884d +chr3 SNP SNP 142192020 142352688 503 . . R885d +chr3 SNP SNP 142352689 142513357 302 . . R886d +chr3 SNP SNP 142513358 142674026 274 . . R887d +chr3 SNP SNP 142674027 142834694 361 . . R888d +chr3 SNP SNP 142834695 142995363 137 . . R889d +chr3 SNP SNP 142995364 143156032 340 . . R890d +chr3 SNP SNP 143156033 143316701 245 . . R891d +chr3 SNP SNP 143316702 143477370 397 . . R892d +chr3 SNP SNP 143477371 143638039 304 . . R893d +chr3 SNP SNP 143638040 143798708 0 . . R894d +chr3 SNP SNP 143798709 143959377 0 . . R895d +chr3 SNP SNP 143959378 144120046 0 . . R896d +chr3 SNP SNP 144120047 144280715 0 . . R897d +chr3 SNP SNP 144280716 144441384 0 . . R898d +chr3 SNP SNP 144441385 144602053 0 . . R899d +chr3 SNP SNP 144602054 144762722 2 . . R900d +chr3 SNP SNP 144762723 144923391 0 . . R901d +chr3 SNP SNP 144923392 145084060 0 . . R902d +chr3 SNP SNP 145084061 145244729 286 . . R903d +chr3 SNP SNP 145244730 145405397 203 . . R904d +chr3 SNP SNP 145405398 145566066 163 . . R905d +chr3 SNP SNP 145566067 145726735 222 . . R906d +chr3 SNP SNP 145726736 145887404 30 . . R907d +chr3 SNP SNP 145887405 146048073 286 . . R908d +chr3 SNP SNP 146048074 146208742 224 . . R909d +chr3 SNP SNP 146208743 146369411 44 . . R910d +chr3 SNP SNP 146369412 146530080 68 . . R911d +chr3 SNP SNP 146530081 146690749 328 . . R912d +chr3 SNP SNP 146690750 146851418 120 . . R913d +chr3 SNP SNP 146851419 147012087 66 . . R914d +chr3 SNP SNP 147012088 147172756 63 . . R915d +chr3 SNP SNP 147172757 147333425 217 . . R916d +chr3 SNP SNP 147333426 147494094 238 . . R917d +chr3 SNP SNP 147494095 147654763 252 . . R918d +chr3 SNP SNP 147654764 147815432 217 . . R919d +chr3 SNP SNP 147815433 147976100 245 . . R920d +chr3 SNP SNP 147976101 148136769 451 . . R921d +chr3 SNP SNP 148136770 148297438 243 . . R922d +chr3 SNP SNP 148297439 148458107 14 . . R923d +chr3 SNP SNP 148458108 148618776 252 . . R924d +chr3 SNP SNP 148618777 148779445 316 . . R925d +chr3 SNP SNP 148779446 148940114 40 . . R926d +chr3 SNP SNP 148940115 149100783 61 . . R927d +chr3 SNP SNP 149100784 149261452 477 . . R928d +chr3 SNP SNP 149261453 149422121 427 . . R929d +chr3 SNP SNP 149422122 149582790 338 . . R930d +chr3 SNP SNP 149582791 149743459 347 . . R931d +chr3 SNP SNP 149743460 149904128 198 . . R932d +chr3 SNP SNP 149904129 150064797 520 . . R933d +chr3 SNP SNP 150064798 150225466 87 . . R934d +chr3 SNP SNP 150225467 150386135 153 . . R935d +chr3 SNP SNP 150386136 150546803 484 . . R936d +chr3 SNP SNP 150546804 150707472 513 . . R937d +chr3 SNP SNP 150707473 150868141 505 . . R938d +chr3 SNP SNP 150868142 151028810 427 . . R939d +chr3 SNP SNP 151028811 151189479 437 . . R940d +chr3 SNP SNP 151189480 151350148 378 . . R941d +chr3 SNP SNP 151350149 151510817 503 . . R942d +chr3 SNP SNP 151510818 151671486 399 . . R943d +chr3 SNP SNP 151671487 151832155 203 . . R944d +chr3 SNP SNP 151832156 151992824 293 . . R945d +chr3 SNP SNP 151992825 152153493 453 . . R946d +chr3 SNP SNP 152153494 152314162 527 . . R947d +chr3 SNP SNP 152314163 152474831 7 . . R948d +chr3 SNP SNP 152474832 152635500 9 . . R949d +chr3 SNP SNP 152635501 152796169 14 . . R950d +chr3 SNP SNP 152796170 152956838 14 . . R951d +chr3 SNP SNP 152956839 153117506 18 . . R952d +chr3 SNP SNP 153117507 153278175 14 . . R953d +chr3 SNP SNP 153278176 153438844 4 . . R954d +chr3 SNP SNP 153438845 153599513 21 . . R955d +chr3 SNP SNP 153599514 153760182 2 . . R956d +chr3 SNP SNP 153760183 153920851 4 . . R957d +chr3 SNP SNP 153920852 154081520 9 . . R958d +chr3 SNP SNP 154081521 154242189 11 . . R959d +chr3 SNP SNP 154242190 154402858 2 . . R960d +chr3 SNP SNP 154402859 154563527 11 . . R961d +chr3 SNP SNP 154563528 154724196 9 . . R962d +chr3 SNP SNP 154724197 154884865 9 . . R963d +chr3 SNP SNP 154884866 155045534 87 . . R964d +chr3 SNP SNP 155045535 155206203 63 . . R965d +chr3 SNP SNP 155206204 155366872 191 . . R966d +chr3 SNP SNP 155366873 155527541 406 . . R967d +chr3 SNP SNP 155527542 155688209 356 . . R968d +chr3 SNP SNP 155688210 155848878 23 . . R969d +chr3 SNP SNP 155848879 156009547 47 . . R970d +chr3 SNP SNP 156009548 156170216 42 . . R971d +chr3 SNP SNP 156170217 156330885 16 . . R972d +chr3 SNP SNP 156330886 156491554 26 . . R973d +chr3 SNP SNP 156491555 156652223 54 . . R974d +chr3 SNP SNP 156652224 156812892 378 . . R975d +chr3 SNP SNP 156812893 156973561 94 . . R976d +chr3 SNP SNP 156973562 157134230 78 . . R977d +chr3 SNP SNP 157134231 157294899 515 . . R978d +chr3 SNP SNP 157294900 157455568 539 . . R979d +chr3 SNP SNP 157455569 157616237 56 . . R980d +chr3 SNP SNP 157616238 157776906 35 . . R981d +chr3 SNP SNP 157776907 157937575 33 . . R982d +chr3 SNP SNP 157937576 158098244 200 . . R983d +chr3 SNP SNP 158098245 158258912 42 . . R984d +chr3 SNP SNP 158258913 158419581 54 . . R985d +chr3 SNP SNP 158419582 158580250 394 . . R986d +chr3 SNP SNP 158580251 158740919 115 . . R987d +chr3 SNP SNP 158740920 158901588 28 . . R988d +chr3 SNP SNP 158901589 159062257 21 . . R989d +chr3 SNP SNP 159062258 159222926 226 . . R990d +chr3 SNP SNP 159222927 159383595 44 . . R991d +chr3 SNP SNP 159383596 159544264 30 . . R992d +chr3 SNP SNP 159544265 159704933 40 . . R993d +chr3 SNP SNP 159704934 159865602 44 . . R994d +chr3 SNP SNP 159865603 160026271 26 . . R995d +chr3 SNP SNP 160026272 160186940 44 . . R996d +chr3 SNP SNP 160186941 160347609 23 . . R997d +chr3 SNP SNP 160347610 160508278 33 . . R998d +chr3 SNP SNP 160508279 160668946 26 . . R999d +chr3 SNP SNP 160668947 160829615 0 . . R1000d diff --git a/web/snp/chr4 b/web/snp/chr4 new file mode 100755 index 00000000..6d0d3fba --- /dev/null +++ b/web/snp/chr4 @@ -0,0 +1,1004 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr4 SNP SNP 11 152926 0 . . R0d +chr4 SNP SNP 152927 305843 0 . . R1d +chr4 SNP SNP 305844 458759 0 . . R2d +chr4 SNP SNP 458760 611676 0 . . R3d +chr4 SNP SNP 611677 764592 0 . . R4d +chr4 SNP SNP 764593 917509 0 . . R5d +chr4 SNP SNP 917510 1070425 0 . . R6d +chr4 SNP SNP 1070426 1223342 0 . . R7d +chr4 SNP SNP 1223343 1376258 0 . . R8d +chr4 SNP SNP 1376259 1529175 0 . . R9d +chr4 SNP SNP 1529176 1682091 0 . . R10d +chr4 SNP SNP 1682092 1835008 0 . . R11d +chr4 SNP SNP 1835009 1987924 0 . . R12d +chr4 SNP SNP 1987925 2140841 0 . . R13d +chr4 SNP SNP 2140842 2293757 0 . . R14d +chr4 SNP SNP 2293758 2446674 0 . . R15d +chr4 SNP SNP 2446675 2599590 0 . . R16d +chr4 SNP SNP 2599591 2752507 0 . . R17d +chr4 SNP SNP 2752508 2905423 0 . . R18d +chr4 SNP SNP 2905424 3058340 107 . . R19d +chr4 SNP SNP 3058341 3211256 377 . . R20d +chr4 SNP SNP 3211257 3364173 266 . . R21d +chr4 SNP SNP 3364174 3517090 23 . . R22d +chr4 SNP SNP 3517091 3670006 20 . . R23d +chr4 SNP SNP 3670007 3822923 20 . . R24d +chr4 SNP SNP 3822924 3975839 35 . . R25d +chr4 SNP SNP 3975840 4128756 77 . . R26d +chr4 SNP SNP 4128757 4281672 53 . . R27d +chr4 SNP SNP 4281673 4434589 50 . . R28d +chr4 SNP SNP 4434590 4587505 74 . . R29d +chr4 SNP SNP 4587506 4740422 35 . . R30d +chr4 SNP SNP 4740423 4893338 29 . . R31d +chr4 SNP SNP 4893339 5046255 26 . . R32d +chr4 SNP SNP 5046256 5199171 29 . . R33d +chr4 SNP SNP 5199172 5352088 68 . . R34d +chr4 SNP SNP 5352089 5505004 38 . . R35d +chr4 SNP SNP 5505005 5657921 41 . . R36d +chr4 SNP SNP 5657922 5810837 17 . . R37d +chr4 SNP SNP 5810838 5963754 35 . . R38d +chr4 SNP SNP 5963755 6116670 41 . . R39d +chr4 SNP SNP 6116671 6269587 8 . . R40d +chr4 SNP SNP 6269588 6422503 155 . . R41d +chr4 SNP SNP 6422504 6575420 71 . . R42d +chr4 SNP SNP 6575421 6728337 200 . . R43d +chr4 SNP SNP 6728338 6881253 53 . . R44d +chr4 SNP SNP 6881254 7034170 35 . . R45d +chr4 SNP SNP 7034171 7187086 155 . . R46d +chr4 SNP SNP 7187087 7340003 422 . . R47d +chr4 SNP SNP 7340004 7492919 104 . . R48d +chr4 SNP SNP 7492920 7645836 161 . . R49d +chr4 SNP SNP 7645837 7798752 308 . . R50d +chr4 SNP SNP 7798753 7951669 263 . . R51d +chr4 SNP SNP 7951670 8104585 365 . . R52d +chr4 SNP SNP 8104586 8257502 59 . . R53d +chr4 SNP SNP 8257503 8410418 161 . . R54d +chr4 SNP SNP 8410419 8563335 215 . . R55d +chr4 SNP SNP 8563336 8716251 53 . . R56d +chr4 SNP SNP 8716252 8869168 173 . . R57d +chr4 SNP SNP 8869169 9022084 380 . . R58d +chr4 SNP SNP 9022085 9175001 580 . . R59d +chr4 SNP SNP 9175002 9327917 164 . . R60d +chr4 SNP SNP 9327918 9480834 74 . . R61d +chr4 SNP SNP 9480835 9633750 149 . . R62d +chr4 SNP SNP 9633751 9786667 182 . . R63d +chr4 SNP SNP 9786668 9939583 140 . . R64d +chr4 SNP SNP 9939584 10092500 517 . . R65d +chr4 SNP SNP 10092501 10245417 62 . . R66d +chr4 SNP SNP 10245418 10398333 320 . . R67d +chr4 SNP SNP 10398334 10551250 434 . . R68d +chr4 SNP SNP 10551251 10704166 305 . . R69d +chr4 SNP SNP 10704167 10857083 362 . . R70d +chr4 SNP SNP 10857084 11009999 419 . . R71d +chr4 SNP SNP 11010000 11162916 347 . . R72d +chr4 SNP SNP 11162917 11315832 17 . . R73d +chr4 SNP SNP 11315833 11468749 20 . . R74d +chr4 SNP SNP 11468750 11621665 8 . . R75d +chr4 SNP SNP 11621666 11774582 23 . . R76d +chr4 SNP SNP 11774583 11927498 5 . . R77d +chr4 SNP SNP 11927499 12080415 20 . . R78d +chr4 SNP SNP 12080416 12233331 47 . . R79d +chr4 SNP SNP 12233332 12386248 62 . . R80d +chr4 SNP SNP 12386249 12539164 41 . . R81d +chr4 SNP SNP 12539165 12692081 182 . . R82d +chr4 SNP SNP 12692082 12844997 53 . . R83d +chr4 SNP SNP 12844998 12997914 446 . . R84d +chr4 SNP SNP 12997915 13150830 50 . . R85d +chr4 SNP SNP 13150831 13303747 32 . . R86d +chr4 SNP SNP 13303748 13456664 284 . . R87d +chr4 SNP SNP 13456665 13609580 11 . . R88d +chr4 SNP SNP 13609581 13762497 23 . . R89d +chr4 SNP SNP 13762498 13915413 11 . . R90d +chr4 SNP SNP 13915414 14068330 8 . . R91d +chr4 SNP SNP 14068331 14221246 11 . . R92d +chr4 SNP SNP 14221247 14374163 20 . . R93d +chr4 SNP SNP 14374164 14527079 5 . . R94d +chr4 SNP SNP 14527080 14679996 8 . . R95d +chr4 SNP SNP 14679997 14832912 35 . . R96d +chr4 SNP SNP 14832913 14985829 8 . . R97d +chr4 SNP SNP 14985830 15138745 11 . . R98d +chr4 SNP SNP 15138746 15291662 2 . . R99d +chr4 SNP SNP 15291663 15444578 17 . . R100d +chr4 SNP SNP 15444579 15597495 2 . . R101d +chr4 SNP SNP 15597496 15750411 14 . . R102d +chr4 SNP SNP 15750412 15903328 17 . . R103d +chr4 SNP SNP 15903329 16056244 257 . . R104d +chr4 SNP SNP 16056245 16209161 700 . . R105d +chr4 SNP SNP 16209162 16362077 377 . . R106d +chr4 SNP SNP 16362078 16514994 47 . . R107d +chr4 SNP SNP 16514995 16667911 83 . . R108d +chr4 SNP SNP 16667912 16820827 365 . . R109d +chr4 SNP SNP 16820828 16973744 149 . . R110d +chr4 SNP SNP 16973745 17126660 260 . . R111d +chr4 SNP SNP 17126661 17279577 173 . . R112d +chr4 SNP SNP 17279578 17432493 32 . . R113d +chr4 SNP SNP 17432494 17585410 203 . . R114d +chr4 SNP SNP 17585411 17738326 386 . . R115d +chr4 SNP SNP 17738327 17891243 625 . . R116d +chr4 SNP SNP 17891244 18044159 520 . . R117d +chr4 SNP SNP 18044160 18197076 356 . . R118d +chr4 SNP SNP 18197077 18349992 520 . . R119d +chr4 SNP SNP 18349993 18502909 134 . . R120d +chr4 SNP SNP 18502910 18655825 23 . . R121d +chr4 SNP SNP 18655826 18808742 41 . . R122d +chr4 SNP SNP 18808743 18961658 113 . . R123d +chr4 SNP SNP 18961659 19114575 56 . . R124d +chr4 SNP SNP 19114576 19267491 323 . . R125d +chr4 SNP SNP 19267492 19420408 182 . . R126d +chr4 SNP SNP 19420409 19573324 140 . . R127d +chr4 SNP SNP 19573325 19726241 362 . . R128d +chr4 SNP SNP 19726242 19879157 296 . . R129d +chr4 SNP SNP 19879158 20032074 266 . . R130d +chr4 SNP SNP 20032075 20184991 272 . . R131d +chr4 SNP SNP 20184992 20337907 68 . . R132d +chr4 SNP SNP 20337908 20490824 143 . . R133d +chr4 SNP SNP 20490825 20643740 589 . . R134d +chr4 SNP SNP 20643741 20796657 437 . . R135d +chr4 SNP SNP 20796658 20949573 191 . . R136d +chr4 SNP SNP 20949574 21102490 173 . . R137d +chr4 SNP SNP 21102491 21255406 29 . . R138d +chr4 SNP SNP 21255407 21408323 209 . . R139d +chr4 SNP SNP 21408324 21561239 50 . . R140d +chr4 SNP SNP 21561240 21714156 38 . . R141d +chr4 SNP SNP 21714157 21867072 35 . . R142d +chr4 SNP SNP 21867073 22019989 74 . . R143d +chr4 SNP SNP 22019990 22172905 38 . . R144d +chr4 SNP SNP 22172906 22325822 32 . . R145d +chr4 SNP SNP 22325823 22478738 95 . . R146d +chr4 SNP SNP 22478739 22631655 359 . . R147d +chr4 SNP SNP 22631656 22784571 452 . . R148d +chr4 SNP SNP 22784572 22937488 23 . . R149d +chr4 SNP SNP 22937489 23090404 74 . . R150d +chr4 SNP SNP 23090405 23243321 17 . . R151d +chr4 SNP SNP 23243322 23396238 8 . . R152d +chr4 SNP SNP 23396239 23549154 23 . . R153d +chr4 SNP SNP 23549155 23702071 32 . . R154d +chr4 SNP SNP 23702072 23854987 8 . . R155d +chr4 SNP SNP 23854988 24007904 8 . . R156d +chr4 SNP SNP 24007905 24160820 17 . . R157d +chr4 SNP SNP 24160821 24313737 20 . . R158d +chr4 SNP SNP 24313738 24466653 17 . . R159d +chr4 SNP SNP 24466654 24619570 8 . . R160d +chr4 SNP SNP 24619571 24772486 8 . . R161d +chr4 SNP SNP 24772487 24925403 23 . . R162d +chr4 SNP SNP 24925404 25078319 5 . . R163d +chr4 SNP SNP 25078320 25231236 23 . . R164d +chr4 SNP SNP 25231237 25384152 35 . . R165d +chr4 SNP SNP 25384153 25537069 38 . . R166d +chr4 SNP SNP 25537070 25689985 5 . . R167d +chr4 SNP SNP 25689986 25842902 20 . . R168d +chr4 SNP SNP 25842903 25995818 14 . . R169d +chr4 SNP SNP 25995819 26148735 26 . . R170d +chr4 SNP SNP 26148736 26301651 14 . . R171d +chr4 SNP SNP 26301652 26454568 20 . . R172d +chr4 SNP SNP 26454569 26607485 17 . . R173d +chr4 SNP SNP 26607486 26760401 11 . . R174d +chr4 SNP SNP 26760402 26913318 26 . . R175d +chr4 SNP SNP 26913319 27066234 20 . . R176d +chr4 SNP SNP 27066235 27219151 29 . . R177d +chr4 SNP SNP 27219152 27372067 14 . . R178d +chr4 SNP SNP 27372068 27524984 20 . . R179d +chr4 SNP SNP 27524985 27677900 11 . . R180d +chr4 SNP SNP 27677901 27830817 2 . . R181d +chr4 SNP SNP 27830818 27983733 20 . . R182d +chr4 SNP SNP 27983734 28136650 23 . . R183d +chr4 SNP SNP 28136651 28289566 20 . . R184d +chr4 SNP SNP 28289567 28442483 8 . . R185d +chr4 SNP SNP 28442484 28595399 8 . . R186d +chr4 SNP SNP 28595400 28748316 14 . . R187d +chr4 SNP SNP 28748317 28901232 8 . . R188d +chr4 SNP SNP 28901233 29054149 11 . . R189d +chr4 SNP SNP 29054150 29207065 344 . . R190d +chr4 SNP SNP 29207066 29359982 29 . . R191d +chr4 SNP SNP 29359983 29512898 11 . . R192d +chr4 SNP SNP 29512899 29665815 38 . . R193d +chr4 SNP SNP 29665816 29818731 20 . . R194d +chr4 SNP SNP 29818732 29971648 29 . . R195d +chr4 SNP SNP 29971649 30124565 11 . . R196d +chr4 SNP SNP 30124566 30277481 11 . . R197d +chr4 SNP SNP 30277482 30430398 23 . . R198d +chr4 SNP SNP 30430399 30583314 26 . . R199d +chr4 SNP SNP 30583315 30736231 634 . . R200d +chr4 SNP SNP 30736232 30889147 278 . . R201d +chr4 SNP SNP 30889148 31042064 272 . . R202d +chr4 SNP SNP 31042065 31194980 32 . . R203d +chr4 SNP SNP 31194981 31347897 356 . . R204d +chr4 SNP SNP 31347898 31500813 71 . . R205d +chr4 SNP SNP 31500814 31653730 35 . . R206d +chr4 SNP SNP 31653731 31806646 607 . . R207d +chr4 SNP SNP 31806647 31959563 643 . . R208d +chr4 SNP SNP 31959564 32112479 413 . . R209d +chr4 SNP SNP 32112480 32265396 38 . . R210d +chr4 SNP SNP 32265397 32418312 59 . . R211d +chr4 SNP SNP 32418313 32571229 176 . . R212d +chr4 SNP SNP 32571230 32724145 83 . . R213d +chr4 SNP SNP 32724146 32877062 293 . . R214d +chr4 SNP SNP 32877063 33029978 266 . . R215d +chr4 SNP SNP 33029979 33182895 107 . . R216d +chr4 SNP SNP 33182896 33335812 23 . . R217d +chr4 SNP SNP 33335813 33488728 14 . . R218d +chr4 SNP SNP 33488729 33641645 23 . . R219d +chr4 SNP SNP 33641646 33794561 143 . . R220d +chr4 SNP SNP 33794562 33947478 284 . . R221d +chr4 SNP SNP 33947479 34100394 356 . . R222d +chr4 SNP SNP 34100395 34253311 488 . . R223d +chr4 SNP SNP 34253312 34406227 446 . . R224d +chr4 SNP SNP 34406228 34559144 520 . . R225d +chr4 SNP SNP 34559145 34712060 299 . . R226d +chr4 SNP SNP 34712061 34864977 284 . . R227d +chr4 SNP SNP 34864978 35017893 398 . . R228d +chr4 SNP SNP 35017894 35170810 362 . . R229d +chr4 SNP SNP 35170811 35323726 116 . . R230d +chr4 SNP SNP 35323727 35476643 5 . . R231d +chr4 SNP SNP 35476644 35629559 20 . . R232d +chr4 SNP SNP 35629560 35782476 32 . . R233d +chr4 SNP SNP 35782477 35935392 5 . . R234d +chr4 SNP SNP 35935393 36088309 20 . . R235d +chr4 SNP SNP 36088310 36241225 131 . . R236d +chr4 SNP SNP 36241226 36394142 20 . . R237d +chr4 SNP SNP 36394143 36547058 17 . . R238d +chr4 SNP SNP 36547059 36699975 8 . . R239d +chr4 SNP SNP 36699976 36852892 20 . . R240d +chr4 SNP SNP 36852893 37005808 17 . . R241d +chr4 SNP SNP 37005809 37158725 17 . . R242d +chr4 SNP SNP 37158726 37311641 14 . . R243d +chr4 SNP SNP 37311642 37464558 17 . . R244d +chr4 SNP SNP 37464559 37617474 8 . . R245d +chr4 SNP SNP 37617475 37770391 17 . . R246d +chr4 SNP SNP 37770392 37923307 23 . . R247d +chr4 SNP SNP 37923308 38076224 26 . . R248d +chr4 SNP SNP 38076225 38229140 14 . . R249d +chr4 SNP SNP 38229141 38382057 32 . . R250d +chr4 SNP SNP 38382058 38534973 5 . . R251d +chr4 SNP SNP 38534974 38687890 20 . . R252d +chr4 SNP SNP 38687891 38840806 17 . . R253d +chr4 SNP SNP 38840807 38993723 29 . . R254d +chr4 SNP SNP 38993724 39146639 11 . . R255d +chr4 SNP SNP 39146640 39299556 23 . . R256d +chr4 SNP SNP 39299557 39452472 11 . . R257d +chr4 SNP SNP 39452473 39605389 23 . . R258d +chr4 SNP SNP 39605390 39758305 8 . . R259d +chr4 SNP SNP 39758306 39911222 11 . . R260d +chr4 SNP SNP 39911223 40064139 2 . . R261d +chr4 SNP SNP 40064140 40217055 17 . . R262d +chr4 SNP SNP 40217056 40369972 14 . . R263d +chr4 SNP SNP 40369973 40522888 8 . . R264d +chr4 SNP SNP 40522889 40675805 17 . . R265d +chr4 SNP SNP 40675806 40828721 8 . . R266d +chr4 SNP SNP 40828722 40981638 14 . . R267d +chr4 SNP SNP 40981639 41134554 56 . . R268d +chr4 SNP SNP 41134555 41287471 95 . . R269d +chr4 SNP SNP 41287472 41440387 215 . . R270d +chr4 SNP SNP 41440388 41593304 479 . . R271d +chr4 SNP SNP 41593305 41746220 212 . . R272d +chr4 SNP SNP 41746221 41899137 221 . . R273d +chr4 SNP SNP 41899138 42052053 383 . . R274d +chr4 SNP SNP 42052054 42204970 416 . . R275d +chr4 SNP SNP 42204971 42357886 281 . . R276d +chr4 SNP SNP 42357887 42510803 251 . . R277d +chr4 SNP SNP 42510804 42663719 260 . . R278d +chr4 SNP SNP 42663720 42816636 329 . . R279d +chr4 SNP SNP 42816637 42969552 443 . . R280d +chr4 SNP SNP 42969553 43122469 383 . . R281d +chr4 SNP SNP 43122470 43275386 185 . . R282d +chr4 SNP SNP 43275387 43428302 20 . . R283d +chr4 SNP SNP 43428303 43581219 8 . . R284d +chr4 SNP SNP 43581220 43734135 11 . . R285d +chr4 SNP SNP 43734136 43887052 17 . . R286d +chr4 SNP SNP 43887053 44039968 32 . . R287d +chr4 SNP SNP 44039969 44192885 20 . . R288d +chr4 SNP SNP 44192886 44345801 53 . . R289d +chr4 SNP SNP 44345802 44498718 176 . . R290d +chr4 SNP SNP 44498719 44651634 371 . . R291d +chr4 SNP SNP 44651635 44804551 344 . . R292d +chr4 SNP SNP 44804552 44957467 571 . . R293d +chr4 SNP SNP 44957468 45110384 320 . . R294d +chr4 SNP SNP 45110385 45263300 218 . . R295d +chr4 SNP SNP 45263301 45416217 62 . . R296d +chr4 SNP SNP 45416218 45569133 5 . . R297d +chr4 SNP SNP 45569134 45722050 35 . . R298d +chr4 SNP SNP 45722051 45874966 179 . . R299d +chr4 SNP SNP 45874967 46027883 203 . . R300d +chr4 SNP SNP 46027884 46180799 17 . . R301d +chr4 SNP SNP 46180800 46333716 8 . . R302d +chr4 SNP SNP 46333717 46486632 8 . . R303d +chr4 SNP SNP 46486633 46639549 26 . . R304d +chr4 SNP SNP 46639550 46792466 14 . . R305d +chr4 SNP SNP 46792467 46945382 14 . . R306d +chr4 SNP SNP 46945383 47098299 5 . . R307d +chr4 SNP SNP 47098300 47251215 161 . . R308d +chr4 SNP SNP 47251216 47404132 101 . . R309d +chr4 SNP SNP 47404133 47557048 14 . . R310d +chr4 SNP SNP 47557049 47709965 8 . . R311d +chr4 SNP SNP 47709966 47862881 8 . . R312d +chr4 SNP SNP 47862882 48015798 14 . . R313d +chr4 SNP SNP 48015799 48168714 2 . . R314d +chr4 SNP SNP 48168715 48321631 38 . . R315d +chr4 SNP SNP 48321632 48474547 350 . . R316d +chr4 SNP SNP 48474548 48627464 425 . . R317d +chr4 SNP SNP 48627465 48780380 311 . . R318d +chr4 SNP SNP 48780381 48933297 59 . . R319d +chr4 SNP SNP 48933298 49086213 47 . . R320d +chr4 SNP SNP 49086214 49239130 476 . . R321d +chr4 SNP SNP 49239131 49392046 305 . . R322d +chr4 SNP SNP 49392047 49544963 173 . . R323d +chr4 SNP SNP 49544964 49697879 589 . . R324d +chr4 SNP SNP 49697880 49850796 661 . . R325d +chr4 SNP SNP 49850797 50003713 140 . . R326d +chr4 SNP SNP 50003714 50156629 359 . . R327d +chr4 SNP SNP 50156630 50309546 514 . . R328d +chr4 SNP SNP 50309547 50462462 508 . . R329d +chr4 SNP SNP 50462463 50615379 179 . . R330d +chr4 SNP SNP 50615380 50768295 29 . . R331d +chr4 SNP SNP 50768296 50921212 38 . . R332d +chr4 SNP SNP 50921213 51074128 35 . . R333d +chr4 SNP SNP 51074129 51227045 11 . . R334d +chr4 SNP SNP 51227046 51379961 41 . . R335d +chr4 SNP SNP 51379962 51532878 215 . . R336d +chr4 SNP SNP 51532879 51685794 458 . . R337d +chr4 SNP SNP 51685795 51838711 407 . . R338d +chr4 SNP SNP 51838712 51991627 89 . . R339d +chr4 SNP SNP 51991628 52144544 155 . . R340d +chr4 SNP SNP 52144545 52297460 188 . . R341d +chr4 SNP SNP 52297461 52450377 95 . . R342d +chr4 SNP SNP 52450378 52603293 245 . . R343d +chr4 SNP SNP 52603294 52756210 278 . . R344d +chr4 SNP SNP 52756211 52909126 125 . . R345d +chr4 SNP SNP 52909127 53062043 74 . . R346d +chr4 SNP SNP 53062044 53214960 176 . . R347d +chr4 SNP SNP 53214961 53367876 116 . . R348d +chr4 SNP SNP 53367877 53520793 760 . . R349d +chr4 SNP SNP 53520794 53673709 601 . . R350d +chr4 SNP SNP 53673710 53826626 673 . . R351d +chr4 SNP SNP 53826627 53979542 416 . . R352d +chr4 SNP SNP 53979543 54132459 697 . . R353d +chr4 SNP SNP 54132460 54285375 976 . . R354d +chr4 SNP SNP 54285376 54438292 766 . . R355d +chr4 SNP SNP 54438293 54591208 485 . . R356d +chr4 SNP SNP 54591209 54744125 500 . . R357d +chr4 SNP SNP 54744126 54897041 494 . . R358d +chr4 SNP SNP 54897042 55049958 20 . . R359d +chr4 SNP SNP 55049959 55202874 122 . . R360d +chr4 SNP SNP 55202875 55355791 446 . . R361d +chr4 SNP SNP 55355792 55508707 428 . . R362d +chr4 SNP SNP 55508708 55661624 562 . . R363d +chr4 SNP SNP 55661625 55814540 601 . . R364d +chr4 SNP SNP 55814541 55967457 494 . . R365d +chr4 SNP SNP 55967458 56120373 347 . . R366d +chr4 SNP SNP 56120374 56273290 664 . . R367d +chr4 SNP SNP 56273291 56426206 179 . . R368d +chr4 SNP SNP 56426207 56579123 131 . . R369d +chr4 SNP SNP 56579124 56732040 59 . . R370d +chr4 SNP SNP 56732041 56884956 35 . . R371d +chr4 SNP SNP 56884957 57037873 14 . . R372d +chr4 SNP SNP 57037874 57190789 5 . . R373d +chr4 SNP SNP 57190790 57343706 11 . . R374d +chr4 SNP SNP 57343707 57496622 11 . . R375d +chr4 SNP SNP 57496623 57649539 242 . . R376d +chr4 SNP SNP 57649540 57802455 431 . . R377d +chr4 SNP SNP 57802456 57955372 173 . . R378d +chr4 SNP SNP 57955373 58108288 700 . . R379d +chr4 SNP SNP 58108289 58261205 547 . . R380d +chr4 SNP SNP 58261206 58414121 386 . . R381d +chr4 SNP SNP 58414122 58567038 398 . . R382d +chr4 SNP SNP 58567039 58719954 266 . . R383d +chr4 SNP SNP 58719955 58872871 47 . . R384d +chr4 SNP SNP 58872872 59025787 47 . . R385d +chr4 SNP SNP 59025788 59178704 407 . . R386d +chr4 SNP SNP 59178705 59331620 107 . . R387d +chr4 SNP SNP 59331621 59484537 242 . . R388d +chr4 SNP SNP 59484538 59637453 260 . . R389d +chr4 SNP SNP 59637454 59790370 35 . . R390d +chr4 SNP SNP 59790371 59943287 32 . . R391d +chr4 SNP SNP 59943288 60096203 116 . . R392d +chr4 SNP SNP 60096204 60249120 209 . . R393d +chr4 SNP SNP 60249121 60402036 452 . . R394d +chr4 SNP SNP 60402037 60554953 23 . . R395d +chr4 SNP SNP 60554954 60707869 224 . . R396d +chr4 SNP SNP 60707870 60860786 338 . . R397d +chr4 SNP SNP 60860787 61013702 368 . . R398d +chr4 SNP SNP 61013703 61166619 500 . . R399d +chr4 SNP SNP 61166620 61319535 410 . . R400d +chr4 SNP SNP 61319536 61472452 173 . . R401d +chr4 SNP SNP 61472453 61625368 275 . . R402d +chr4 SNP SNP 61625369 61778285 341 . . R403d +chr4 SNP SNP 61778286 61931201 425 . . R404d +chr4 SNP SNP 61931202 62084118 455 . . R405d +chr4 SNP SNP 62084119 62237034 455 . . R406d +chr4 SNP SNP 62237035 62389951 209 . . R407d +chr4 SNP SNP 62389952 62542867 26 . . R408d +chr4 SNP SNP 62542868 62695784 77 . . R409d +chr4 SNP SNP 62695785 62848700 11 . . R410d +chr4 SNP SNP 62848701 63001617 11 . . R411d +chr4 SNP SNP 63001618 63154533 8 . . R412d +chr4 SNP SNP 63154534 63307450 26 . . R413d +chr4 SNP SNP 63307451 63460367 11 . . R414d +chr4 SNP SNP 63460368 63613283 17 . . R415d +chr4 SNP SNP 63613284 63766200 17 . . R416d +chr4 SNP SNP 63766201 63919116 14 . . R417d +chr4 SNP SNP 63919117 64072033 5 . . R418d +chr4 SNP SNP 64072034 64224949 2 . . R419d +chr4 SNP SNP 64224950 64377866 14 . . R420d +chr4 SNP SNP 64377867 64530782 266 . . R421d +chr4 SNP SNP 64530783 64683699 356 . . R422d +chr4 SNP SNP 64683700 64836615 269 . . R423d +chr4 SNP SNP 64836616 64989532 14 . . R424d +chr4 SNP SNP 64989533 65142448 239 . . R425d +chr4 SNP SNP 65142449 65295365 119 . . R426d +chr4 SNP SNP 65295366 65448281 8 . . R427d +chr4 SNP SNP 65448282 65601198 20 . . R428d +chr4 SNP SNP 65601199 65754114 29 . . R429d +chr4 SNP SNP 65754115 65907031 23 . . R430d +chr4 SNP SNP 65907032 66059947 32 . . R431d +chr4 SNP SNP 66059948 66212864 5 . . R432d +chr4 SNP SNP 66212865 66365780 17 . . R433d +chr4 SNP SNP 66365781 66518697 8 . . R434d +chr4 SNP SNP 66518698 66671614 20 . . R435d +chr4 SNP SNP 66671615 66824530 8 . . R436d +chr4 SNP SNP 66824531 66977447 14 . . R437d +chr4 SNP SNP 66977448 67130363 11 . . R438d +chr4 SNP SNP 67130364 67283280 17 . . R439d +chr4 SNP SNP 67283281 67436196 14 . . R440d +chr4 SNP SNP 67436197 67589113 350 . . R441d +chr4 SNP SNP 67589114 67742029 497 . . R442d +chr4 SNP SNP 67742030 67894946 365 . . R443d +chr4 SNP SNP 67894947 68047862 23 . . R444d +chr4 SNP SNP 68047863 68200779 26 . . R445d +chr4 SNP SNP 68200780 68353695 32 . . R446d +chr4 SNP SNP 68353696 68506612 65 . . R447d +chr4 SNP SNP 68506613 68659528 350 . . R448d +chr4 SNP SNP 68659529 68812445 344 . . R449d +chr4 SNP SNP 68812446 68965361 59 . . R450d +chr4 SNP SNP 68965362 69118278 511 . . R451d +chr4 SNP SNP 69118279 69271194 541 . . R452d +chr4 SNP SNP 69271195 69424111 437 . . R453d +chr4 SNP SNP 69424112 69577027 215 . . R454d +chr4 SNP SNP 69577028 69729944 275 . . R455d +chr4 SNP SNP 69729945 69882861 68 . . R456d +chr4 SNP SNP 69882862 70035777 185 . . R457d +chr4 SNP SNP 70035778 70188694 425 . . R458d +chr4 SNP SNP 70188695 70341610 311 . . R459d +chr4 SNP SNP 70341611 70494527 320 . . R460d +chr4 SNP SNP 70494528 70647443 98 . . R461d +chr4 SNP SNP 70647444 70800360 89 . . R462d +chr4 SNP SNP 70800361 70953276 128 . . R463d +chr4 SNP SNP 70953277 71106193 44 . . R464d +chr4 SNP SNP 71106194 71259109 98 . . R465d +chr4 SNP SNP 71259110 71412026 508 . . R466d +chr4 SNP SNP 71412027 71564942 365 . . R467d +chr4 SNP SNP 71564943 71717859 233 . . R468d +chr4 SNP SNP 71717860 71870775 95 . . R469d +chr4 SNP SNP 71870776 72023692 413 . . R470d +chr4 SNP SNP 72023693 72176608 485 . . R471d +chr4 SNP SNP 72176609 72329525 278 . . R472d +chr4 SNP SNP 72329526 72482441 485 . . R473d +chr4 SNP SNP 72482442 72635358 655 . . R474d +chr4 SNP SNP 72635359 72788274 248 . . R475d +chr4 SNP SNP 72788275 72941191 332 . . R476d +chr4 SNP SNP 72941192 73094107 224 . . R477d +chr4 SNP SNP 73094108 73247024 125 . . R478d +chr4 SNP SNP 73247025 73399941 523 . . R479d +chr4 SNP SNP 73399942 73552857 940 . . R480d +chr4 SNP SNP 73552858 73705774 772 . . R481d +chr4 SNP SNP 73705775 73858690 895 . . R482d +chr4 SNP SNP 73858691 74011607 802 . . R483d +chr4 SNP SNP 74011608 74164523 916 . . R484d +chr4 SNP SNP 74164524 74317440 254 . . R485d +chr4 SNP SNP 74317441 74470356 8 . . R486d +chr4 SNP SNP 74470357 74623273 17 . . R487d +chr4 SNP SNP 74623274 74776189 5 . . R488d +chr4 SNP SNP 74776190 74929106 20 . . R489d +chr4 SNP SNP 74929107 75082022 8 . . R490d +chr4 SNP SNP 75082023 75234939 20 . . R491d +chr4 SNP SNP 75234940 75387855 5 . . R492d +chr4 SNP SNP 75387856 75540772 29 . . R493d +chr4 SNP SNP 75540773 75693688 14 . . R494d +chr4 SNP SNP 75693689 75846605 5 . . R495d +chr4 SNP SNP 75846606 75999521 8 . . R496d +chr4 SNP SNP 75999522 76152438 14 . . R497d +chr4 SNP SNP 76152439 76305354 224 . . R498d +chr4 SNP SNP 76305355 76458271 146 . . R499d +chr4 SNP SNP 76458272 76611188 242 . . R500d +chr4 SNP SNP 76611189 76764104 293 . . R501d +chr4 SNP SNP 76764105 76917021 520 . . R502d +chr4 SNP SNP 76917022 77069937 110 . . R503d +chr4 SNP SNP 77069938 77222854 571 . . R504d +chr4 SNP SNP 77222855 77375770 715 . . R505d +chr4 SNP SNP 77375771 77528687 742 . . R506d +chr4 SNP SNP 77528688 77681603 320 . . R507d +chr4 SNP SNP 77681604 77834520 775 . . R508d +chr4 SNP SNP 77834521 77987436 769 . . R509d +chr4 SNP SNP 77987437 78140353 739 . . R510d +chr4 SNP SNP 78140354 78293269 446 . . R511d +chr4 SNP SNP 78293270 78446186 179 . . R512d +chr4 SNP SNP 78446187 78599102 107 . . R513d +chr4 SNP SNP 78599103 78752019 505 . . R514d +chr4 SNP SNP 78752020 78904935 161 . . R515d +chr4 SNP SNP 78904936 79057852 116 . . R516d +chr4 SNP SNP 79057853 79210768 119 . . R517d +chr4 SNP SNP 79210769 79363685 215 . . R518d +chr4 SNP SNP 79363686 79516601 413 . . R519d +chr4 SNP SNP 79516602 79669518 440 . . R520d +chr4 SNP SNP 79669519 79822435 152 . . R521d +chr4 SNP SNP 79822436 79975351 26 . . R522d +chr4 SNP SNP 79975352 80128268 203 . . R523d +chr4 SNP SNP 80128269 80281184 598 . . R524d +chr4 SNP SNP 80281185 80434101 500 . . R525d +chr4 SNP SNP 80434102 80587017 59 . . R526d +chr4 SNP SNP 80587018 80739934 242 . . R527d +chr4 SNP SNP 80739935 80892850 476 . . R528d +chr4 SNP SNP 80892851 81045767 284 . . R529d +chr4 SNP SNP 81045768 81198683 497 . . R530d +chr4 SNP SNP 81198684 81351600 248 . . R531d +chr4 SNP SNP 81351601 81504516 287 . . R532d +chr4 SNP SNP 81504517 81657433 341 . . R533d +chr4 SNP SNP 81657434 81810349 431 . . R534d +chr4 SNP SNP 81810350 81963266 419 . . R535d +chr4 SNP SNP 81963267 82116182 86 . . R536d +chr4 SNP SNP 82116183 82269099 107 . . R537d +chr4 SNP SNP 82269100 82422015 149 . . R538d +chr4 SNP SNP 82422016 82574932 227 . . R539d +chr4 SNP SNP 82574933 82727848 464 . . R540d +chr4 SNP SNP 82727849 82880765 547 . . R541d +chr4 SNP SNP 82880766 83033681 353 . . R542d +chr4 SNP SNP 83033682 83186598 32 . . R543d +chr4 SNP SNP 83186599 83339515 206 . . R544d +chr4 SNP SNP 83339516 83492431 209 . . R545d +chr4 SNP SNP 83492432 83645348 631 . . R546d +chr4 SNP SNP 83645349 83798264 595 . . R547d +chr4 SNP SNP 83798265 83951181 541 . . R548d +chr4 SNP SNP 83951182 84104097 467 . . R549d +chr4 SNP SNP 84104098 84257014 347 . . R550d +chr4 SNP SNP 84257015 84409930 491 . . R551d +chr4 SNP SNP 84409931 84562847 658 . . R552d +chr4 SNP SNP 84562848 84715763 170 . . R553d +chr4 SNP SNP 84715764 84868680 458 . . R554d +chr4 SNP SNP 84868681 85021596 356 . . R555d +chr4 SNP SNP 85021597 85174513 50 . . R556d +chr4 SNP SNP 85174514 85327429 56 . . R557d +chr4 SNP SNP 85327430 85480346 344 . . R558d +chr4 SNP SNP 85480347 85633262 143 . . R559d +chr4 SNP SNP 85633263 85786179 580 . . R560d +chr4 SNP SNP 85786180 85939095 410 . . R561d +chr4 SNP SNP 85939096 86092012 182 . . R562d +chr4 SNP SNP 86092013 86244928 83 . . R563d +chr4 SNP SNP 86244929 86397845 227 . . R564d +chr4 SNP SNP 86397846 86550762 158 . . R565d +chr4 SNP SNP 86550763 86703678 281 . . R566d +chr4 SNP SNP 86703679 86856595 128 . . R567d +chr4 SNP SNP 86856596 87009511 263 . . R568d +chr4 SNP SNP 87009512 87162428 194 . . R569d +chr4 SNP SNP 87162429 87315344 26 . . R570d +chr4 SNP SNP 87315345 87468261 8 . . R571d +chr4 SNP SNP 87468262 87621177 17 . . R572d +chr4 SNP SNP 87621178 87774094 11 . . R573d +chr4 SNP SNP 87774095 87927010 26 . . R574d +chr4 SNP SNP 87927011 88079927 11 . . R575d +chr4 SNP SNP 88079928 88232843 23 . . R576d +chr4 SNP SNP 88232844 88385760 29 . . R577d +chr4 SNP SNP 88385761 88538676 5 . . R578d +chr4 SNP SNP 88538677 88691593 35 . . R579d +chr4 SNP SNP 88691594 88844509 38 . . R580d +chr4 SNP SNP 88844510 88997426 176 . . R581d +chr4 SNP SNP 88997427 89150342 8 . . R582d +chr4 SNP SNP 89150343 89303259 5 . . R583d +chr4 SNP SNP 89303260 89456175 17 . . R584d +chr4 SNP SNP 89456176 89609092 11 . . R585d +chr4 SNP SNP 89609093 89762009 26 . . R586d +chr4 SNP SNP 89762010 89914925 11 . . R587d +chr4 SNP SNP 89914926 90067842 5 . . R588d +chr4 SNP SNP 90067843 90220758 2 . . R589d +chr4 SNP SNP 90220759 90373675 11 . . R590d +chr4 SNP SNP 90373676 90526591 17 . . R591d +chr4 SNP SNP 90526592 90679508 8 . . R592d +chr4 SNP SNP 90679509 90832424 8 . . R593d +chr4 SNP SNP 90832425 90985341 0 . . R594d +chr4 SNP SNP 90985342 91138257 5 . . R595d +chr4 SNP SNP 91138258 91291174 11 . . R596d +chr4 SNP SNP 91291175 91444090 8 . . R597d +chr4 SNP SNP 91444091 91597007 11 . . R598d +chr4 SNP SNP 91597008 91749923 14 . . R599d +chr4 SNP SNP 91749924 91902840 23 . . R600d +chr4 SNP SNP 91902841 92055756 23 . . R601d +chr4 SNP SNP 92055757 92208673 17 . . R602d +chr4 SNP SNP 92208674 92361589 29 . . R603d +chr4 SNP SNP 92361590 92514506 368 . . R604d +chr4 SNP SNP 92514507 92667422 467 . . R605d +chr4 SNP SNP 92667423 92820339 110 . . R606d +chr4 SNP SNP 92820340 92973255 308 . . R607d +chr4 SNP SNP 92973256 93126172 482 . . R608d +chr4 SNP SNP 93126173 93279089 185 . . R609d +chr4 SNP SNP 93279090 93432005 425 . . R610d +chr4 SNP SNP 93432006 93584922 434 . . R611d +chr4 SNP SNP 93584923 93737838 221 . . R612d +chr4 SNP SNP 93737839 93890755 41 . . R613d +chr4 SNP SNP 93890756 94043671 23 . . R614d +chr4 SNP SNP 94043672 94196588 14 . . R615d +chr4 SNP SNP 94196589 94349504 20 . . R616d +chr4 SNP SNP 94349505 94502421 26 . . R617d +chr4 SNP SNP 94502422 94655337 20 . . R618d +chr4 SNP SNP 94655338 94808254 14 . . R619d +chr4 SNP SNP 94808255 94961170 377 . . R620d +chr4 SNP SNP 94961171 95114087 380 . . R621d +chr4 SNP SNP 95114088 95267003 362 . . R622d +chr4 SNP SNP 95267004 95419920 341 . . R623d +chr4 SNP SNP 95419921 95572836 257 . . R624d +chr4 SNP SNP 95572837 95725753 586 . . R625d +chr4 SNP SNP 95725754 95878669 547 . . R626d +chr4 SNP SNP 95878670 96031586 532 . . R627d +chr4 SNP SNP 96031587 96184502 514 . . R628d +chr4 SNP SNP 96184503 96337419 260 . . R629d +chr4 SNP SNP 96337420 96490336 32 . . R630d +chr4 SNP SNP 96490337 96643252 32 . . R631d +chr4 SNP SNP 96643253 96796169 562 . . R632d +chr4 SNP SNP 96796170 96949085 74 . . R633d +chr4 SNP SNP 96949086 97102002 23 . . R634d +chr4 SNP SNP 97102003 97254918 323 . . R635d +chr4 SNP SNP 97254919 97407835 104 . . R636d +chr4 SNP SNP 97407836 97560751 8 . . R637d +chr4 SNP SNP 97560752 97713668 11 . . R638d +chr4 SNP SNP 97713669 97866584 5 . . R639d +chr4 SNP SNP 97866585 98019501 20 . . R640d +chr4 SNP SNP 98019502 98172417 8 . . R641d +chr4 SNP SNP 98172418 98325334 8 . . R642d +chr4 SNP SNP 98325335 98478250 5 . . R643d +chr4 SNP SNP 98478251 98631167 11 . . R644d +chr4 SNP SNP 98631168 98784083 11 . . R645d +chr4 SNP SNP 98784084 98937000 5 . . R646d +chr4 SNP SNP 98937001 99089916 20 . . R647d +chr4 SNP SNP 99089917 99242833 17 . . R648d +chr4 SNP SNP 99242834 99395749 32 . . R649d +chr4 SNP SNP 99395750 99548666 20 . . R650d +chr4 SNP SNP 99548667 99701582 8 . . R651d +chr4 SNP SNP 99701583 99854499 44 . . R652d +chr4 SNP SNP 99854500 100007416 29 . . R653d +chr4 SNP SNP 100007417 100160332 8 . . R654d +chr4 SNP SNP 100160333 100313249 14 . . R655d +chr4 SNP SNP 100313250 100466165 14 . . R656d +chr4 SNP SNP 100466166 100619082 11 . . R657d +chr4 SNP SNP 100619083 100771998 8 . . R658d +chr4 SNP SNP 100771999 100924915 17 . . R659d +chr4 SNP SNP 100924916 101077831 11 . . R660d +chr4 SNP SNP 101077832 101230748 11 . . R661d +chr4 SNP SNP 101230749 101383664 2 . . R662d +chr4 SNP SNP 101383665 101536581 8 . . R663d +chr4 SNP SNP 101536582 101689497 212 . . R664d +chr4 SNP SNP 101689498 101842414 502 . . R665d +chr4 SNP SNP 101842415 101995330 350 . . R666d +chr4 SNP SNP 101995331 102148247 455 . . R667d +chr4 SNP SNP 102148248 102301163 610 . . R668d +chr4 SNP SNP 102301164 102454080 113 . . R669d +chr4 SNP SNP 102454081 102606996 26 . . R670d +chr4 SNP SNP 102606997 102759913 5 . . R671d +chr4 SNP SNP 102759914 102912829 17 . . R672d +chr4 SNP SNP 102912830 103065746 32 . . R673d +chr4 SNP SNP 103065747 103218663 14 . . R674d +chr4 SNP SNP 103218664 103371579 362 . . R675d +chr4 SNP SNP 103371580 103524496 215 . . R676d +chr4 SNP SNP 103524497 103677412 29 . . R677d +chr4 SNP SNP 103677413 103830329 38 . . R678d +chr4 SNP SNP 103830330 103983245 26 . . R679d +chr4 SNP SNP 103983246 104136162 17 . . R680d +chr4 SNP SNP 104136163 104289078 14 . . R681d +chr4 SNP SNP 104289079 104441995 11 . . R682d +chr4 SNP SNP 104441996 104594911 29 . . R683d +chr4 SNP SNP 104594912 104747828 221 . . R684d +chr4 SNP SNP 104747829 104900744 416 . . R685d +chr4 SNP SNP 104900745 105053661 155 . . R686d +chr4 SNP SNP 105053662 105206577 197 . . R687d +chr4 SNP SNP 105206578 105359494 92 . . R688d +chr4 SNP SNP 105359495 105512410 383 . . R689d +chr4 SNP SNP 105512411 105665327 32 . . R690d +chr4 SNP SNP 105665328 105818243 35 . . R691d +chr4 SNP SNP 105818244 105971160 23 . . R692d +chr4 SNP SNP 105971161 106124076 398 . . R693d +chr4 SNP SNP 106124077 106276993 245 . . R694d +chr4 SNP SNP 106276994 106429910 86 . . R695d +chr4 SNP SNP 106429911 106582826 218 . . R696d +chr4 SNP SNP 106582827 106735743 353 . . R697d +chr4 SNP SNP 106735744 106888659 541 . . R698d +chr4 SNP SNP 106888660 107041576 14 . . R699d +chr4 SNP SNP 107041577 107194492 197 . . R700d +chr4 SNP SNP 107194493 107347409 428 . . R701d +chr4 SNP SNP 107347410 107500325 425 . . R702d +chr4 SNP SNP 107500326 107653242 38 . . R703d +chr4 SNP SNP 107653243 107806158 29 . . R704d +chr4 SNP SNP 107806159 107959075 62 . . R705d +chr4 SNP SNP 107959076 108111991 341 . . R706d +chr4 SNP SNP 108111992 108264908 38 . . R707d +chr4 SNP SNP 108264909 108417824 44 . . R708d +chr4 SNP SNP 108417825 108570741 53 . . R709d +chr4 SNP SNP 108570742 108723657 26 . . R710d +chr4 SNP SNP 108723658 108876574 35 . . R711d +chr4 SNP SNP 108876575 109029490 17 . . R712d +chr4 SNP SNP 109029491 109182407 56 . . R713d +chr4 SNP SNP 109182408 109335323 272 . . R714d +chr4 SNP SNP 109335324 109488240 574 . . R715d +chr4 SNP SNP 109488241 109641156 658 . . R716d +chr4 SNP SNP 109641157 109794073 365 . . R717d +chr4 SNP SNP 109794074 109946990 386 . . R718d +chr4 SNP SNP 109946991 110099906 449 . . R719d +chr4 SNP SNP 110099907 110252823 0 . . R720d +chr4 SNP SNP 110252824 110405739 0 . . R721d +chr4 SNP SNP 110405740 110558656 0 . . R722d +chr4 SNP SNP 110558657 110711572 203 . . R723d +chr4 SNP SNP 110711573 110864489 218 . . R724d +chr4 SNP SNP 110864490 111017405 0 . . R725d +chr4 SNP SNP 111017406 111170322 0 . . R726d +chr4 SNP SNP 111170323 111323238 0 . . R727d +chr4 SNP SNP 111323239 111476155 0 . . R728d +chr4 SNP SNP 111476156 111629071 2 . . R729d +chr4 SNP SNP 111629072 111781988 0 . . R730d +chr4 SNP SNP 111781989 111934904 0 . . R731d +chr4 SNP SNP 111934905 112087821 77 . . R732d +chr4 SNP SNP 112087822 112240737 29 . . R733d +chr4 SNP SNP 112240738 112393654 296 . . R734d +chr4 SNP SNP 112393655 112546570 592 . . R735d +chr4 SNP SNP 112546571 112699487 197 . . R736d +chr4 SNP SNP 112699488 112852403 143 . . R737d +chr4 SNP SNP 112852404 113005320 335 . . R738d +chr4 SNP SNP 113005321 113158237 221 . . R739d +chr4 SNP SNP 113158238 113311153 41 . . R740d +chr4 SNP SNP 113311154 113464070 44 . . R741d +chr4 SNP SNP 113464071 113616986 272 . . R742d +chr4 SNP SNP 113616987 113769903 200 . . R743d +chr4 SNP SNP 113769904 113922819 233 . . R744d +chr4 SNP SNP 113922820 114075736 227 . . R745d +chr4 SNP SNP 114075737 114228652 20 . . R746d +chr4 SNP SNP 114228653 114381569 146 . . R747d +chr4 SNP SNP 114381570 114534485 110 . . R748d +chr4 SNP SNP 114534486 114687402 347 . . R749d +chr4 SNP SNP 114687403 114840318 332 . . R750d +chr4 SNP SNP 114840319 114993235 236 . . R751d +chr4 SNP SNP 114993236 115146151 547 . . R752d +chr4 SNP SNP 115146152 115299068 317 . . R753d +chr4 SNP SNP 115299069 115451984 302 . . R754d +chr4 SNP SNP 115451985 115604901 425 . . R755d +chr4 SNP SNP 115604902 115757817 257 . . R756d +chr4 SNP SNP 115757818 115910734 377 . . R757d +chr4 SNP SNP 115910735 116063650 655 . . R758d +chr4 SNP SNP 116063651 116216567 350 . . R759d +chr4 SNP SNP 116216568 116369484 640 . . R760d +chr4 SNP SNP 116369485 116522400 529 . . R761d +chr4 SNP SNP 116522401 116675317 95 . . R762d +chr4 SNP SNP 116675318 116828233 392 . . R763d +chr4 SNP SNP 116828234 116981150 386 . . R764d +chr4 SNP SNP 116981151 117134066 434 . . R765d +chr4 SNP SNP 117134067 117286983 592 . . R766d +chr4 SNP SNP 117286984 117439899 461 . . R767d +chr4 SNP SNP 117439900 117592816 248 . . R768d +chr4 SNP SNP 117592817 117745732 628 . . R769d +chr4 SNP SNP 117745733 117898649 365 . . R770d +chr4 SNP SNP 117898650 118051565 353 . . R771d +chr4 SNP SNP 118051566 118204482 416 . . R772d +chr4 SNP SNP 118204483 118357398 32 . . R773d +chr4 SNP SNP 118357399 118510315 335 . . R774d +chr4 SNP SNP 118510316 118663231 383 . . R775d +chr4 SNP SNP 118663232 118816148 215 . . R776d +chr4 SNP SNP 118816149 118969064 326 . . R777d +chr4 SNP SNP 118969065 119121981 317 . . R778d +chr4 SNP SNP 119121982 119274897 272 . . R779d +chr4 SNP SNP 119274898 119427814 251 . . R780d +chr4 SNP SNP 119427815 119580730 347 . . R781d +chr4 SNP SNP 119580731 119733647 128 . . R782d +chr4 SNP SNP 119733648 119886564 74 . . R783d +chr4 SNP SNP 119886565 120039480 14 . . R784d +chr4 SNP SNP 120039481 120192397 2 . . R785d +chr4 SNP SNP 120192398 120345313 0 . . R786d +chr4 SNP SNP 120345314 120498230 0 . . R787d +chr4 SNP SNP 120498231 120651146 29 . . R788d +chr4 SNP SNP 120651147 120804063 20 . . R789d +chr4 SNP SNP 120804064 120956979 242 . . R790d +chr4 SNP SNP 120956980 121109896 56 . . R791d +chr4 SNP SNP 121109897 121262812 29 . . R792d +chr4 SNP SNP 121262813 121415729 47 . . R793d +chr4 SNP SNP 121415730 121568645 35 . . R794d +chr4 SNP SNP 121568646 121721562 41 . . R795d +chr4 SNP SNP 121721563 121874478 269 . . R796d +chr4 SNP SNP 121874479 122027395 356 . . R797d +chr4 SNP SNP 122027396 122180311 389 . . R798d +chr4 SNP SNP 122180312 122333228 670 . . R799d +chr4 SNP SNP 122333229 122486144 308 . . R800d +chr4 SNP SNP 122486145 122639061 209 . . R801d +chr4 SNP SNP 122639062 122791977 50 . . R802d +chr4 SNP SNP 122791978 122944894 350 . . R803d +chr4 SNP SNP 122944895 123097811 20 . . R804d +chr4 SNP SNP 123097812 123250727 242 . . R805d +chr4 SNP SNP 123250728 123403644 263 . . R806d +chr4 SNP SNP 123403645 123556560 209 . . R807d +chr4 SNP SNP 123556561 123709477 296 . . R808d +chr4 SNP SNP 123709478 123862393 230 . . R809d +chr4 SNP SNP 123862394 124015310 290 . . R810d +chr4 SNP SNP 124015311 124168226 296 . . R811d +chr4 SNP SNP 124168227 124321143 251 . . R812d +chr4 SNP SNP 124321144 124474059 47 . . R813d +chr4 SNP SNP 124474060 124626976 86 . . R814d +chr4 SNP SNP 124626977 124779892 134 . . R815d +chr4 SNP SNP 124779893 124932809 68 . . R816d +chr4 SNP SNP 124932810 125085725 29 . . R817d +chr4 SNP SNP 125085726 125238642 341 . . R818d +chr4 SNP SNP 125238643 125391558 38 . . R819d +chr4 SNP SNP 125391559 125544475 311 . . R820d +chr4 SNP SNP 125544476 125697391 35 . . R821d +chr4 SNP SNP 125697392 125850308 50 . . R822d +chr4 SNP SNP 125850309 126003224 41 . . R823d +chr4 SNP SNP 126003225 126156141 532 . . R824d +chr4 SNP SNP 126156142 126309057 161 . . R825d +chr4 SNP SNP 126309058 126461974 446 . . R826d +chr4 SNP SNP 126461975 126614891 428 . . R827d +chr4 SNP SNP 126614892 126767807 299 . . R828d +chr4 SNP SNP 126767808 126920724 221 . . R829d +chr4 SNP SNP 126920725 127073640 50 . . R830d +chr4 SNP SNP 127073641 127226557 11 . . R831d +chr4 SNP SNP 127226558 127379473 158 . . R832d +chr4 SNP SNP 127379474 127532390 23 . . R833d +chr4 SNP SNP 127532391 127685306 275 . . R834d +chr4 SNP SNP 127685307 127838223 796 . . R835d +chr4 SNP SNP 127838224 127991139 622 . . R836d +chr4 SNP SNP 127991140 128144056 763 . . R837d +chr4 SNP SNP 128144057 128296972 290 . . R838d +chr4 SNP SNP 128296973 128449889 2 . . R839d +chr4 SNP SNP 128449890 128602805 5 . . R840d +chr4 SNP SNP 128602806 128755722 47 . . R841d +chr4 SNP SNP 128755723 128908638 5 . . R842d +chr4 SNP SNP 128908639 129061555 11 . . R843d +chr4 SNP SNP 129061556 129214471 5 . . R844d +chr4 SNP SNP 129214472 129367388 20 . . R845d +chr4 SNP SNP 129367389 129520304 14 . . R846d +chr4 SNP SNP 129520305 129673221 0 . . R847d +chr4 SNP SNP 129673222 129826138 11 . . R848d +chr4 SNP SNP 129826139 129979054 8 . . R849d +chr4 SNP SNP 129979055 130131971 8 . . R850d +chr4 SNP SNP 130131972 130284887 32 . . R851d +chr4 SNP SNP 130284888 130437804 26 . . R852d +chr4 SNP SNP 130437805 130590720 20 . . R853d +chr4 SNP SNP 130590721 130743637 293 . . R854d +chr4 SNP SNP 130743638 130896553 197 . . R855d +chr4 SNP SNP 130896554 131049470 467 . . R856d +chr4 SNP SNP 131049471 131202386 541 . . R857d +chr4 SNP SNP 131202387 131355303 712 . . R858d +chr4 SNP SNP 131355304 131508219 404 . . R859d +chr4 SNP SNP 131508220 131661136 679 . . R860d +chr4 SNP SNP 131661137 131814052 718 . . R861d +chr4 SNP SNP 131814053 131966969 500 . . R862d +chr4 SNP SNP 131966970 132119885 559 . . R863d +chr4 SNP SNP 132119886 132272802 859 . . R864d +chr4 SNP SNP 132272803 132425718 691 . . R865d +chr4 SNP SNP 132425719 132578635 646 . . R866d +chr4 SNP SNP 132578636 132731551 230 . . R867d +chr4 SNP SNP 132731552 132884468 11 . . R868d +chr4 SNP SNP 132884469 133037385 14 . . R869d +chr4 SNP SNP 133037386 133190301 5 . . R870d +chr4 SNP SNP 133190302 133343218 17 . . R871d +chr4 SNP SNP 133343219 133496134 14 . . R872d +chr4 SNP SNP 133496135 133649051 17 . . R873d +chr4 SNP SNP 133649052 133801967 200 . . R874d +chr4 SNP SNP 133801968 133954884 20 . . R875d +chr4 SNP SNP 133954885 134107800 242 . . R876d +chr4 SNP SNP 134107801 134260717 287 . . R877d +chr4 SNP SNP 134260718 134413633 206 . . R878d +chr4 SNP SNP 134413634 134566550 449 . . R879d +chr4 SNP SNP 134566551 134719466 709 . . R880d +chr4 SNP SNP 134719467 134872383 712 . . R881d +chr4 SNP SNP 134872384 135025299 622 . . R882d +chr4 SNP SNP 135025300 135178216 485 . . R883d +chr4 SNP SNP 135178217 135331132 571 . . R884d +chr4 SNP SNP 135331133 135484049 586 . . R885d +chr4 SNP SNP 135484050 135636965 500 . . R886d +chr4 SNP SNP 135636966 135789882 520 . . R887d +chr4 SNP SNP 135789883 135942798 476 . . R888d +chr4 SNP SNP 135942799 136095715 485 . . R889d +chr4 SNP SNP 136095716 136248631 664 . . R890d +chr4 SNP SNP 136248632 136401548 712 . . R891d +chr4 SNP SNP 136401549 136554465 431 . . R892d +chr4 SNP SNP 136554466 136707381 763 . . R893d +chr4 SNP SNP 136707382 136860298 437 . . R894d +chr4 SNP SNP 136860299 137013214 625 . . R895d +chr4 SNP SNP 137013215 137166131 535 . . R896d +chr4 SNP SNP 137166132 137319047 931 . . R897d +chr4 SNP SNP 137319048 137471964 736 . . R898d +chr4 SNP SNP 137471965 137624880 673 . . R899d +chr4 SNP SNP 137624881 137777797 640 . . R900d +chr4 SNP SNP 137777798 137930713 748 . . R901d +chr4 SNP SNP 137930714 138083630 625 . . R902d +chr4 SNP SNP 138083631 138236546 511 . . R903d +chr4 SNP SNP 138236547 138389463 371 . . R904d +chr4 SNP SNP 138389464 138542379 655 . . R905d +chr4 SNP SNP 138542380 138695296 574 . . R906d +chr4 SNP SNP 138695297 138848212 425 . . R907d +chr4 SNP SNP 138848213 139001129 458 . . R908d +chr4 SNP SNP 139001130 139154045 455 . . R909d +chr4 SNP SNP 139154046 139306962 667 . . R910d +chr4 SNP SNP 139306963 139459878 655 . . R911d +chr4 SNP SNP 139459879 139612795 473 . . R912d +chr4 SNP SNP 139612796 139765712 47 . . R913d +chr4 SNP SNP 139765713 139918628 20 . . R914d +chr4 SNP SNP 139918629 140071545 344 . . R915d +chr4 SNP SNP 140071546 140224461 209 . . R916d +chr4 SNP SNP 140224462 140377378 586 . . R917d +chr4 SNP SNP 140377379 140530294 131 . . R918d +chr4 SNP SNP 140530295 140683211 497 . . R919d +chr4 SNP SNP 140683212 140836127 431 . . R920d +chr4 SNP SNP 140836128 140989044 338 . . R921d +chr4 SNP SNP 140989045 141141960 230 . . R922d +chr4 SNP SNP 141141961 141294877 347 . . R923d +chr4 SNP SNP 141294878 141447793 790 . . R924d +chr4 SNP SNP 141447794 141600710 473 . . R925d +chr4 SNP SNP 141600711 141753626 326 . . R926d +chr4 SNP SNP 141753627 141906543 350 . . R927d +chr4 SNP SNP 141906544 142059459 287 . . R928d +chr4 SNP SNP 142059460 142212376 311 . . R929d +chr4 SNP SNP 142212377 142365292 341 . . R930d +chr4 SNP SNP 142365293 142518209 970 . . R931d +chr4 SNP SNP 142518210 142671125 296 . . R932d +chr4 SNP SNP 142671126 142824042 263 . . R933d +chr4 SNP SNP 142824043 142976959 41 . . R934d +chr4 SNP SNP 142976960 143129875 155 . . R935d +chr4 SNP SNP 143129876 143282792 853 . . R936d +chr4 SNP SNP 143282793 143435708 736 . . R937d +chr4 SNP SNP 143435709 143588625 760 . . R938d +chr4 SNP SNP 143588626 143741541 308 . . R939d +chr4 SNP SNP 143741542 143894458 209 . . R940d +chr4 SNP SNP 143894459 144047374 2 . . R941d +chr4 SNP SNP 144047375 144200291 0 . . R942d +chr4 SNP SNP 144200292 144353207 0 . . R943d +chr4 SNP SNP 144353208 144506124 116 . . R944d +chr4 SNP SNP 144506125 144659040 778 . . R945d +chr4 SNP SNP 144659041 144811957 691 . . R946d +chr4 SNP SNP 144811958 144964873 592 . . R947d +chr4 SNP SNP 144964874 145117790 562 . . R948d +chr4 SNP SNP 145117791 145270706 1000 . . R949d +chr4 SNP SNP 145270707 145423623 583 . . R950d +chr4 SNP SNP 145423624 145576539 868 . . R951d +chr4 SNP SNP 145576540 145729456 676 . . R952d +chr4 SNP SNP 145729457 145882372 320 . . R953d +chr4 SNP SNP 145882373 146035289 485 . . R954d +chr4 SNP SNP 146035290 146188205 529 . . R955d +chr4 SNP SNP 146188206 146341122 2 . . R956d +chr4 SNP SNP 146341123 146494039 14 . . R957d +chr4 SNP SNP 146494040 146646955 269 . . R958d +chr4 SNP SNP 146646956 146799872 311 . . R959d +chr4 SNP SNP 146799873 146952788 491 . . R960d +chr4 SNP SNP 146952789 147105705 347 . . R961d +chr4 SNP SNP 147105706 147258621 218 . . R962d +chr4 SNP SNP 147258622 147411538 341 . . R963d +chr4 SNP SNP 147411539 147564454 254 . . R964d +chr4 SNP SNP 147564455 147717371 529 . . R965d +chr4 SNP SNP 147717372 147870287 353 . . R966d +chr4 SNP SNP 147870288 148023204 335 . . R967d +chr4 SNP SNP 148023205 148176120 275 . . R968d +chr4 SNP SNP 148176121 148329037 508 . . R969d +chr4 SNP SNP 148329038 148481953 35 . . R970d +chr4 SNP SNP 148481954 148634870 44 . . R971d +chr4 SNP SNP 148634871 148787786 71 . . R972d +chr4 SNP SNP 148787787 148940703 32 . . R973d +chr4 SNP SNP 148940704 149093619 14 . . R974d +chr4 SNP SNP 149093620 149246536 17 . . R975d +chr4 SNP SNP 149246537 149399452 0 . . R976d +chr4 SNP SNP 149399453 149552369 14 . . R977d +chr4 SNP SNP 149552370 149705286 8 . . R978d +chr4 SNP SNP 149705287 149858202 47 . . R979d +chr4 SNP SNP 149858203 150011119 332 . . R980d +chr4 SNP SNP 150011120 150164035 83 . . R981d +chr4 SNP SNP 150164036 150316952 8 . . R982d +chr4 SNP SNP 150316953 150469868 2 . . R983d +chr4 SNP SNP 150469869 150622785 71 . . R984d +chr4 SNP SNP 150622786 150775701 227 . . R985d +chr4 SNP SNP 150775702 150928618 353 . . R986d +chr4 SNP SNP 150928619 151081534 110 . . R987d +chr4 SNP SNP 151081535 151234451 329 . . R988d +chr4 SNP SNP 151234452 151387367 200 . . R989d +chr4 SNP SNP 151387368 151540284 431 . . R990d +chr4 SNP SNP 151540285 151693200 479 . . R991d +chr4 SNP SNP 151693201 151846117 101 . . R992d +chr4 SNP SNP 151846118 151999033 188 . . R993d +chr4 SNP SNP 151999034 152151950 86 . . R994d +chr4 SNP SNP 152151951 152304866 290 . . R995d +chr4 SNP SNP 152304867 152457783 311 . . R996d +chr4 SNP SNP 152457784 152610699 769 . . R997d +chr4 SNP SNP 152610700 152763616 532 . . R998d +chr4 SNP SNP 152763617 152916532 407 . . R999d +chr4 SNP SNP 152916533 153069449 2 . . R1000d diff --git a/web/snp/chr5 b/web/snp/chr5 new file mode 100755 index 00000000..65de4c16 --- /dev/null +++ b/web/snp/chr5 @@ -0,0 +1,1004 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr5 SNP SNP 11 149727 0 . . R0d +chr5 SNP SNP 149728 299445 0 . . R1d +chr5 SNP SNP 299446 449162 0 . . R2d +chr5 SNP SNP 449163 598880 0 . . R3d +chr5 SNP SNP 598881 748598 0 . . R4d +chr5 SNP SNP 748599 898315 0 . . R5d +chr5 SNP SNP 898316 1048033 0 . . R6d +chr5 SNP SNP 1048034 1197751 0 . . R7d +chr5 SNP SNP 1197752 1347468 0 . . R8d +chr5 SNP SNP 1347469 1497186 0 . . R9d +chr5 SNP SNP 1497187 1646904 0 . . R10d +chr5 SNP SNP 1646905 1796621 0 . . R11d +chr5 SNP SNP 1796622 1946339 0 . . R12d +chr5 SNP SNP 1946340 2096057 0 . . R13d +chr5 SNP SNP 2096058 2245774 0 . . R14d +chr5 SNP SNP 2245775 2395492 0 . . R15d +chr5 SNP SNP 2395493 2545210 0 . . R16d +chr5 SNP SNP 2545211 2694927 0 . . R17d +chr5 SNP SNP 2694928 2844645 0 . . R18d +chr5 SNP SNP 2844646 2994363 0 . . R19d +chr5 SNP SNP 2994364 3144080 16 . . R20d +chr5 SNP SNP 3144081 3293798 33 . . R21d +chr5 SNP SNP 3293799 3443516 46 . . R22d +chr5 SNP SNP 3443517 3593233 30 . . R23d +chr5 SNP SNP 3593234 3742951 16 . . R24d +chr5 SNP SNP 3742952 3892669 16 . . R25d +chr5 SNP SNP 3892670 4042386 33 . . R26d +chr5 SNP SNP 4042387 4192104 40 . . R27d +chr5 SNP SNP 4192105 4341822 23 . . R28d +chr5 SNP SNP 4341823 4491539 36 . . R29d +chr5 SNP SNP 4491540 4641257 10 . . R30d +chr5 SNP SNP 4641258 4790975 20 . . R31d +chr5 SNP SNP 4790976 4940692 26 . . R32d +chr5 SNP SNP 4940693 5090410 26 . . R33d +chr5 SNP SNP 5090411 5240128 43 . . R34d +chr5 SNP SNP 5240129 5389845 63 . . R35d +chr5 SNP SNP 5389846 5539563 33 . . R36d +chr5 SNP SNP 5539564 5689281 20 . . R37d +chr5 SNP SNP 5689282 5838998 13 . . R38d +chr5 SNP SNP 5838999 5988716 16 . . R39d +chr5 SNP SNP 5988717 6138434 20 . . R40d +chr5 SNP SNP 6138435 6288151 50 . . R41d +chr5 SNP SNP 6288152 6437869 20 . . R42d +chr5 SNP SNP 6437870 6587587 100 . . R43d +chr5 SNP SNP 6587588 6737304 614 . . R44d +chr5 SNP SNP 6737305 6887022 382 . . R45d +chr5 SNP SNP 6887023 7036740 70 . . R46d +chr5 SNP SNP 7036741 7186457 281 . . R47d +chr5 SNP SNP 7186458 7336175 523 . . R48d +chr5 SNP SNP 7336176 7485893 151 . . R49d +chr5 SNP SNP 7485894 7635610 70 . . R50d +chr5 SNP SNP 7635611 7785328 50 . . R51d +chr5 SNP SNP 7785329 7935046 20 . . R52d +chr5 SNP SNP 7935047 8084763 221 . . R53d +chr5 SNP SNP 8084764 8234481 53 . . R54d +chr5 SNP SNP 8234482 8384199 36 . . R55d +chr5 SNP SNP 8384200 8533916 255 . . R56d +chr5 SNP SNP 8533917 8683634 674 . . R57d +chr5 SNP SNP 8683635 8833352 563 . . R58d +chr5 SNP SNP 8833353 8983069 234 . . R59d +chr5 SNP SNP 8983070 9132787 241 . . R60d +chr5 SNP SNP 9132788 9282505 104 . . R61d +chr5 SNP SNP 9282506 9432222 164 . . R62d +chr5 SNP SNP 9432223 9581940 426 . . R63d +chr5 SNP SNP 9581941 9731658 597 . . R64d +chr5 SNP SNP 9731659 9881375 406 . . R65d +chr5 SNP SNP 9881376 10031093 483 . . R66d +chr5 SNP SNP 10031094 10180811 16 . . R67d +chr5 SNP SNP 10180812 10330528 23 . . R68d +chr5 SNP SNP 10330529 10480246 3 . . R69d +chr5 SNP SNP 10480247 10629964 20 . . R70d +chr5 SNP SNP 10629965 10779681 6 . . R71d +chr5 SNP SNP 10779682 10929399 6 . . R72d +chr5 SNP SNP 10929400 11079117 3 . . R73d +chr5 SNP SNP 11079118 11228834 3 . . R74d +chr5 SNP SNP 11228835 11378552 6 . . R75d +chr5 SNP SNP 11378553 11528270 0 . . R76d +chr5 SNP SNP 11528271 11677987 0 . . R77d +chr5 SNP SNP 11677988 11827705 0 . . R78d +chr5 SNP SNP 11827706 11977423 0 . . R79d +chr5 SNP SNP 11977424 12127140 0 . . R80d +chr5 SNP SNP 12127141 12276858 0 . . R81d +chr5 SNP SNP 12276859 12426576 6 . . R82d +chr5 SNP SNP 12426577 12576293 0 . . R83d +chr5 SNP SNP 12576294 12726011 16 . . R84d +chr5 SNP SNP 12726012 12875729 0 . . R85d +chr5 SNP SNP 12875730 13025446 3 . . R86d +chr5 SNP SNP 13025447 13175164 0 . . R87d +chr5 SNP SNP 13175165 13324882 3 . . R88d +chr5 SNP SNP 13324883 13474599 0 . . R89d +chr5 SNP SNP 13474600 13624317 0 . . R90d +chr5 SNP SNP 13624318 13774035 0 . . R91d +chr5 SNP SNP 13774036 13923752 67 . . R92d +chr5 SNP SNP 13923753 14073470 734 . . R93d +chr5 SNP SNP 14073471 14223188 161 . . R94d +chr5 SNP SNP 14223189 14372905 43 . . R95d +chr5 SNP SNP 14372906 14522623 523 . . R96d +chr5 SNP SNP 14522624 14672341 33 . . R97d +chr5 SNP SNP 14672342 14822058 305 . . R98d +chr5 SNP SNP 14822059 14971776 446 . . R99d +chr5 SNP SNP 14971777 15121494 53 . . R100d +chr5 SNP SNP 15121495 15271211 389 . . R101d +chr5 SNP SNP 15271212 15420929 63 . . R102d +chr5 SNP SNP 15420930 15570647 46 . . R103d +chr5 SNP SNP 15570648 15720364 77 . . R104d +chr5 SNP SNP 15720365 15870082 144 . . R105d +chr5 SNP SNP 15870083 16019800 184 . . R106d +chr5 SNP SNP 16019801 16169517 238 . . R107d +chr5 SNP SNP 16169518 16319235 46 . . R108d +chr5 SNP SNP 16319236 16468953 36 . . R109d +chr5 SNP SNP 16468954 16618670 362 . . R110d +chr5 SNP SNP 16618671 16768388 104 . . R111d +chr5 SNP SNP 16768389 16918106 70 . . R112d +chr5 SNP SNP 16918107 17067823 573 . . R113d +chr5 SNP SNP 17067824 17217541 20 . . R114d +chr5 SNP SNP 17217542 17367259 117 . . R115d +chr5 SNP SNP 17367260 17516976 23 . . R116d +chr5 SNP SNP 17516977 17666694 30 . . R117d +chr5 SNP SNP 17666695 17816412 23 . . R118d +chr5 SNP SNP 17816413 17966129 13 . . R119d +chr5 SNP SNP 17966130 18115847 26 . . R120d +chr5 SNP SNP 18115848 18265565 10 . . R121d +chr5 SNP SNP 18265566 18415282 3 . . R122d +chr5 SNP SNP 18415283 18565000 23 . . R123d +chr5 SNP SNP 18565001 18714718 23 . . R124d +chr5 SNP SNP 18714719 18864435 0 . . R125d +chr5 SNP SNP 18864436 19014153 13 . . R126d +chr5 SNP SNP 19014154 19163871 77 . . R127d +chr5 SNP SNP 19163872 19313588 238 . . R128d +chr5 SNP SNP 19313589 19463306 402 . . R129d +chr5 SNP SNP 19463307 19613024 302 . . R130d +chr5 SNP SNP 19613025 19762741 93 . . R131d +chr5 SNP SNP 19762742 19912459 637 . . R132d +chr5 SNP SNP 19912460 20062177 308 . . R133d +chr5 SNP SNP 20062178 20211894 520 . . R134d +chr5 SNP SNP 20211895 20361612 573 . . R135d +chr5 SNP SNP 20361613 20511330 419 . . R136d +chr5 SNP SNP 20511331 20661047 234 . . R137d +chr5 SNP SNP 20661048 20810765 395 . . R138d +chr5 SNP SNP 20810766 20960483 338 . . R139d +chr5 SNP SNP 20960484 21110200 496 . . R140d +chr5 SNP SNP 21110201 21259918 523 . . R141d +chr5 SNP SNP 21259919 21409636 536 . . R142d +chr5 SNP SNP 21409637 21559353 546 . . R143d +chr5 SNP SNP 21559354 21709071 966 . . R144d +chr5 SNP SNP 21709072 21858789 543 . . R145d +chr5 SNP SNP 21858790 22008506 392 . . R146d +chr5 SNP SNP 22008507 22158224 567 . . R147d +chr5 SNP SNP 22158225 22307942 597 . . R148d +chr5 SNP SNP 22307943 22457659 419 . . R149d +chr5 SNP SNP 22457660 22607377 674 . . R150d +chr5 SNP SNP 22607378 22757095 1000 . . R151d +chr5 SNP SNP 22757096 22906812 557 . . R152d +chr5 SNP SNP 22906813 23056530 590 . . R153d +chr5 SNP SNP 23056531 23206248 291 . . R154d +chr5 SNP SNP 23206249 23355965 312 . . R155d +chr5 SNP SNP 23355966 23505683 110 . . R156d +chr5 SNP SNP 23505684 23655401 53 . . R157d +chr5 SNP SNP 23655402 23805118 261 . . R158d +chr5 SNP SNP 23805119 23954836 627 . . R159d +chr5 SNP SNP 23954837 24104554 187 . . R160d +chr5 SNP SNP 24104555 24254271 20 . . R161d +chr5 SNP SNP 24254272 24403989 30 . . R162d +chr5 SNP SNP 24403990 24553707 3 . . R163d +chr5 SNP SNP 24553708 24703424 13 . . R164d +chr5 SNP SNP 24703425 24853142 16 . . R165d +chr5 SNP SNP 24853143 25002860 6 . . R166d +chr5 SNP SNP 25002861 25152577 13 . . R167d +chr5 SNP SNP 25152578 25302295 20 . . R168d +chr5 SNP SNP 25302296 25452013 40 . . R169d +chr5 SNP SNP 25452014 25601730 20 . . R170d +chr5 SNP SNP 25601731 25751448 6 . . R171d +chr5 SNP SNP 25751449 25901166 20 . . R172d +chr5 SNP SNP 25901167 26050883 3 . . R173d +chr5 SNP SNP 26050884 26200601 23 . . R174d +chr5 SNP SNP 26200602 26350319 30 . . R175d +chr5 SNP SNP 26350320 26500036 26 . . R176d +chr5 SNP SNP 26500037 26649754 6 . . R177d +chr5 SNP SNP 26649755 26799472 10 . . R178d +chr5 SNP SNP 26799473 26949189 13 . . R179d +chr5 SNP SNP 26949190 27098907 13 . . R180d +chr5 SNP SNP 27098908 27248625 13 . . R181d +chr5 SNP SNP 27248626 27398342 16 . . R182d +chr5 SNP SNP 27398343 27548060 16 . . R183d +chr5 SNP SNP 27548061 27697778 33 . . R184d +chr5 SNP SNP 27697779 27847495 23 . . R185d +chr5 SNP SNP 27847496 27997213 23 . . R186d +chr5 SNP SNP 27997214 28146931 20 . . R187d +chr5 SNP SNP 28146932 28296648 26 . . R188d +chr5 SNP SNP 28296649 28446366 13 . . R189d +chr5 SNP SNP 28446367 28596084 3 . . R190d +chr5 SNP SNP 28596085 28745801 10 . . R191d +chr5 SNP SNP 28745802 28895519 13 . . R192d +chr5 SNP SNP 28895520 29045237 10 . . R193d +chr5 SNP SNP 29045238 29194954 20 . . R194d +chr5 SNP SNP 29194955 29344672 3 . . R195d +chr5 SNP SNP 29344673 29494390 23 . . R196d +chr5 SNP SNP 29494391 29644107 30 . . R197d +chr5 SNP SNP 29644108 29793825 16 . . R198d +chr5 SNP SNP 29793826 29943543 30 . . R199d +chr5 SNP SNP 29943544 30093260 23 . . R200d +chr5 SNP SNP 30093261 30242978 13 . . R201d +chr5 SNP SNP 30242979 30392695 13 . . R202d +chr5 SNP SNP 30392696 30542413 10 . . R203d +chr5 SNP SNP 30542414 30692131 30 . . R204d +chr5 SNP SNP 30692132 30841848 20 . . R205d +chr5 SNP SNP 30841849 30991566 13 . . R206d +chr5 SNP SNP 30991567 31141284 23 . . R207d +chr5 SNP SNP 31141285 31291001 13 . . R208d +chr5 SNP SNP 31291002 31440719 16 . . R209d +chr5 SNP SNP 31440720 31590437 33 . . R210d +chr5 SNP SNP 31590438 31740154 6 . . R211d +chr5 SNP SNP 31740155 31889872 184 . . R212d +chr5 SNP SNP 31889873 32039590 221 . . R213d +chr5 SNP SNP 32039591 32189307 83 . . R214d +chr5 SNP SNP 32189308 32339025 221 . . R215d +chr5 SNP SNP 32339026 32488743 701 . . R216d +chr5 SNP SNP 32488744 32638460 140 . . R217d +chr5 SNP SNP 32638461 32788178 30 . . R218d +chr5 SNP SNP 32788179 32937896 40 . . R219d +chr5 SNP SNP 32937897 33087613 40 . . R220d +chr5 SNP SNP 33087614 33237331 208 . . R221d +chr5 SNP SNP 33237332 33387049 456 . . R222d +chr5 SNP SNP 33387050 33536766 530 . . R223d +chr5 SNP SNP 33536767 33686484 224 . . R224d +chr5 SNP SNP 33686485 33836202 271 . . R225d +chr5 SNP SNP 33836203 33985919 184 . . R226d +chr5 SNP SNP 33985920 34135637 500 . . R227d +chr5 SNP SNP 34135638 34285355 275 . . R228d +chr5 SNP SNP 34285356 34435072 510 . . R229d +chr5 SNP SNP 34435073 34584790 265 . . R230d +chr5 SNP SNP 34584791 34734508 506 . . R231d +chr5 SNP SNP 34734509 34884225 416 . . R232d +chr5 SNP SNP 34884226 35033943 248 . . R233d +chr5 SNP SNP 35033944 35183661 26 . . R234d +chr5 SNP SNP 35183662 35333378 16 . . R235d +chr5 SNP SNP 35333379 35483096 16 . . R236d +chr5 SNP SNP 35483097 35632814 13 . . R237d +chr5 SNP SNP 35632815 35782531 10 . . R238d +chr5 SNP SNP 35782532 35932249 16 . . R239d +chr5 SNP SNP 35932250 36081967 3 . . R240d +chr5 SNP SNP 36081968 36231684 6 . . R241d +chr5 SNP SNP 36231685 36381402 20 . . R242d +chr5 SNP SNP 36381403 36531120 0 . . R243d +chr5 SNP SNP 36531121 36680837 23 . . R244d +chr5 SNP SNP 36680838 36830555 0 . . R245d +chr5 SNP SNP 36830556 36980273 3 . . R246d +chr5 SNP SNP 36980274 37129990 23 . . R247d +chr5 SNP SNP 37129991 37279708 6 . . R248d +chr5 SNP SNP 37279709 37429426 6 . . R249d +chr5 SNP SNP 37429427 37579143 10 . . R250d +chr5 SNP SNP 37579144 37728861 10 . . R251d +chr5 SNP SNP 37728862 37878579 33 . . R252d +chr5 SNP SNP 37878580 38028296 201 . . R253d +chr5 SNP SNP 38028297 38178014 228 . . R254d +chr5 SNP SNP 38178015 38327732 546 . . R255d +chr5 SNP SNP 38327733 38477449 244 . . R256d +chr5 SNP SNP 38477450 38627167 312 . . R257d +chr5 SNP SNP 38627168 38776885 526 . . R258d +chr5 SNP SNP 38776886 38926602 553 . . R259d +chr5 SNP SNP 38926603 39076320 637 . . R260d +chr5 SNP SNP 39076321 39226038 50 . . R261d +chr5 SNP SNP 39226039 39375755 26 . . R262d +chr5 SNP SNP 39375756 39525473 10 . . R263d +chr5 SNP SNP 39525474 39675191 77 . . R264d +chr5 SNP SNP 39675192 39824908 43 . . R265d +chr5 SNP SNP 39824909 39974626 533 . . R266d +chr5 SNP SNP 39974627 40124344 694 . . R267d +chr5 SNP SNP 40124345 40274061 265 . . R268d +chr5 SNP SNP 40274062 40423779 446 . . R269d +chr5 SNP SNP 40423780 40573497 503 . . R270d +chr5 SNP SNP 40573498 40723214 224 . . R271d +chr5 SNP SNP 40723215 40872932 493 . . R272d +chr5 SNP SNP 40872933 41022650 432 . . R273d +chr5 SNP SNP 41022651 41172367 154 . . R274d +chr5 SNP SNP 41172368 41322085 201 . . R275d +chr5 SNP SNP 41322086 41471803 335 . . R276d +chr5 SNP SNP 41471804 41621520 275 . . R277d +chr5 SNP SNP 41621521 41771238 144 . . R278d +chr5 SNP SNP 41771239 41920956 432 . . R279d +chr5 SNP SNP 41920957 42070673 204 . . R280d +chr5 SNP SNP 42070674 42220391 107 . . R281d +chr5 SNP SNP 42220392 42370109 567 . . R282d +chr5 SNP SNP 42370110 42519826 681 . . R283d +chr5 SNP SNP 42519827 42669544 275 . . R284d +chr5 SNP SNP 42669545 42819262 446 . . R285d +chr5 SNP SNP 42819263 42968979 459 . . R286d +chr5 SNP SNP 42968980 43118697 187 . . R287d +chr5 SNP SNP 43118698 43268415 738 . . R288d +chr5 SNP SNP 43268416 43418132 496 . . R289d +chr5 SNP SNP 43418133 43567850 234 . . R290d +chr5 SNP SNP 43567851 43717568 681 . . R291d +chr5 SNP SNP 43717569 43867285 171 . . R292d +chr5 SNP SNP 43867286 44017003 369 . . R293d +chr5 SNP SNP 44017004 44166721 50 . . R294d +chr5 SNP SNP 44166722 44316438 570 . . R295d +chr5 SNP SNP 44316439 44466156 201 . . R296d +chr5 SNP SNP 44466157 44615874 426 . . R297d +chr5 SNP SNP 44615875 44765591 788 . . R298d +chr5 SNP SNP 44765592 44915309 587 . . R299d +chr5 SNP SNP 44915310 45065027 553 . . R300d +chr5 SNP SNP 45065028 45214744 500 . . R301d +chr5 SNP SNP 45214745 45364462 191 . . R302d +chr5 SNP SNP 45364463 45514180 456 . . R303d +chr5 SNP SNP 45514181 45663897 496 . . R304d +chr5 SNP SNP 45663898 45813615 486 . . R305d +chr5 SNP SNP 45813616 45963333 557 . . R306d +chr5 SNP SNP 45963334 46113050 711 . . R307d +chr5 SNP SNP 46113051 46262768 758 . . R308d +chr5 SNP SNP 46262769 46412486 647 . . R309d +chr5 SNP SNP 46412487 46562203 573 . . R310d +chr5 SNP SNP 46562204 46711921 795 . . R311d +chr5 SNP SNP 46711922 46861639 687 . . R312d +chr5 SNP SNP 46861640 47011356 500 . . R313d +chr5 SNP SNP 47011357 47161074 463 . . R314d +chr5 SNP SNP 47161075 47310792 251 . . R315d +chr5 SNP SNP 47310793 47460509 140 . . R316d +chr5 SNP SNP 47460510 47610227 348 . . R317d +chr5 SNP SNP 47610228 47759945 654 . . R318d +chr5 SNP SNP 47759946 47909662 154 . . R319d +chr5 SNP SNP 47909663 48059380 33 . . R320d +chr5 SNP SNP 48059381 48209098 40 . . R321d +chr5 SNP SNP 48209099 48358815 500 . . R322d +chr5 SNP SNP 48358816 48508533 664 . . R323d +chr5 SNP SNP 48508534 48658251 345 . . R324d +chr5 SNP SNP 48658252 48807968 453 . . R325d +chr5 SNP SNP 48807969 48957686 429 . . R326d +chr5 SNP SNP 48957687 49107404 426 . . R327d +chr5 SNP SNP 49107405 49257121 479 . . R328d +chr5 SNP SNP 49257122 49406839 560 . . R329d +chr5 SNP SNP 49406840 49556557 77 . . R330d +chr5 SNP SNP 49556558 49706274 16 . . R331d +chr5 SNP SNP 49706275 49855992 36 . . R332d +chr5 SNP SNP 49855993 50005710 20 . . R333d +chr5 SNP SNP 50005711 50155427 16 . . R334d +chr5 SNP SNP 50155428 50305145 10 . . R335d +chr5 SNP SNP 50305146 50454863 16 . . R336d +chr5 SNP SNP 50454864 50604580 20 . . R337d +chr5 SNP SNP 50604581 50754298 13 . . R338d +chr5 SNP SNP 50754299 50904016 43 . . R339d +chr5 SNP SNP 50904017 51053733 13 . . R340d +chr5 SNP SNP 51053734 51203451 20 . . R341d +chr5 SNP SNP 51203452 51353169 57 . . R342d +chr5 SNP SNP 51353170 51502886 486 . . R343d +chr5 SNP SNP 51502887 51652604 630 . . R344d +chr5 SNP SNP 51652605 51802322 332 . . R345d +chr5 SNP SNP 51802323 51952039 50 . . R346d +chr5 SNP SNP 51952040 52101757 33 . . R347d +chr5 SNP SNP 52101758 52251475 395 . . R348d +chr5 SNP SNP 52251476 52401192 154 . . R349d +chr5 SNP SNP 52401193 52550910 208 . . R350d +chr5 SNP SNP 52550911 52700628 422 . . R351d +chr5 SNP SNP 52700629 52850345 40 . . R352d +chr5 SNP SNP 52850346 53000063 23 . . R353d +chr5 SNP SNP 53000064 53149781 46 . . R354d +chr5 SNP SNP 53149782 53299498 288 . . R355d +chr5 SNP SNP 53299499 53449216 597 . . R356d +chr5 SNP SNP 53449217 53598934 523 . . R357d +chr5 SNP SNP 53598935 53748651 677 . . R358d +chr5 SNP SNP 53748652 53898369 865 . . R359d +chr5 SNP SNP 53898370 54048087 768 . . R360d +chr5 SNP SNP 54048088 54197804 526 . . R361d +chr5 SNP SNP 54197805 54347522 593 . . R362d +chr5 SNP SNP 54347523 54497240 573 . . R363d +chr5 SNP SNP 54497241 54646957 604 . . R364d +chr5 SNP SNP 54646958 54796675 392 . . R365d +chr5 SNP SNP 54796676 54946393 60 . . R366d +chr5 SNP SNP 54946394 55096110 50 . . R367d +chr5 SNP SNP 55096111 55245828 63 . . R368d +chr5 SNP SNP 55245829 55395546 463 . . R369d +chr5 SNP SNP 55395547 55545263 617 . . R370d +chr5 SNP SNP 55545264 55694981 543 . . R371d +chr5 SNP SNP 55694982 55844699 546 . . R372d +chr5 SNP SNP 55844700 55994416 46 . . R373d +chr5 SNP SNP 55994417 56144134 77 . . R374d +chr5 SNP SNP 56144135 56293852 104 . . R375d +chr5 SNP SNP 56293853 56443569 489 . . R376d +chr5 SNP SNP 56443570 56593287 177 . . R377d +chr5 SNP SNP 56593288 56743005 359 . . R378d +chr5 SNP SNP 56743006 56892722 30 . . R379d +chr5 SNP SNP 56892723 57042440 181 . . R380d +chr5 SNP SNP 57042441 57192158 456 . . R381d +chr5 SNP SNP 57192159 57341875 553 . . R382d +chr5 SNP SNP 57341876 57491593 577 . . R383d +chr5 SNP SNP 57491594 57641311 510 . . R384d +chr5 SNP SNP 57641312 57791028 479 . . R385d +chr5 SNP SNP 57791029 57940746 570 . . R386d +chr5 SNP SNP 57940747 58090464 604 . . R387d +chr5 SNP SNP 58090465 58240181 298 . . R388d +chr5 SNP SNP 58240182 58389899 483 . . R389d +chr5 SNP SNP 58389900 58539617 795 . . R390d +chr5 SNP SNP 58539618 58689334 395 . . R391d +chr5 SNP SNP 58689335 58839052 446 . . R392d +chr5 SNP SNP 58839053 58988770 728 . . R393d +chr5 SNP SNP 58988771 59138487 416 . . R394d +chr5 SNP SNP 59138488 59288205 57 . . R395d +chr5 SNP SNP 59288206 59437923 60 . . R396d +chr5 SNP SNP 59437924 59587640 751 . . R397d +chr5 SNP SNP 59587641 59737358 510 . . R398d +chr5 SNP SNP 59737359 59887075 234 . . R399d +chr5 SNP SNP 59887076 60036793 46 . . R400d +chr5 SNP SNP 60036794 60186511 43 . . R401d +chr5 SNP SNP 60186512 60336228 30 . . R402d +chr5 SNP SNP 60336229 60485946 124 . . R403d +chr5 SNP SNP 60485947 60635664 392 . . R404d +chr5 SNP SNP 60635665 60785381 513 . . R405d +chr5 SNP SNP 60785382 60935099 325 . . R406d +chr5 SNP SNP 60935100 61084817 171 . . R407d +chr5 SNP SNP 61084818 61234534 26 . . R408d +chr5 SNP SNP 61234535 61384252 30 . . R409d +chr5 SNP SNP 61384253 61533970 23 . . R410d +chr5 SNP SNP 61533971 61683687 154 . . R411d +chr5 SNP SNP 61683688 61833405 93 . . R412d +chr5 SNP SNP 61833406 61983123 459 . . R413d +chr5 SNP SNP 61983124 62132840 553 . . R414d +chr5 SNP SNP 62132841 62282558 429 . . R415d +chr5 SNP SNP 62282559 62432276 110 . . R416d +chr5 SNP SNP 62432277 62581993 33 . . R417d +chr5 SNP SNP 62581994 62731711 36 . . R418d +chr5 SNP SNP 62731712 62881429 238 . . R419d +chr5 SNP SNP 62881430 63031146 234 . . R420d +chr5 SNP SNP 63031147 63180864 399 . . R421d +chr5 SNP SNP 63180865 63330582 523 . . R422d +chr5 SNP SNP 63330583 63480299 560 . . R423d +chr5 SNP SNP 63480300 63630017 459 . . R424d +chr5 SNP SNP 63630018 63779735 758 . . R425d +chr5 SNP SNP 63779736 63929452 238 . . R426d +chr5 SNP SNP 63929453 64079170 362 . . R427d +chr5 SNP SNP 64079171 64228888 194 . . R428d +chr5 SNP SNP 64228889 64378605 93 . . R429d +chr5 SNP SNP 64378606 64528323 409 . . R430d +chr5 SNP SNP 64528324 64678041 46 . . R431d +chr5 SNP SNP 64678042 64827758 335 . . R432d +chr5 SNP SNP 64827759 64977476 154 . . R433d +chr5 SNP SNP 64977477 65127194 147 . . R434d +chr5 SNP SNP 65127195 65276911 486 . . R435d +chr5 SNP SNP 65276912 65426629 147 . . R436d +chr5 SNP SNP 65426630 65576347 154 . . R437d +chr5 SNP SNP 65576348 65726064 345 . . R438d +chr5 SNP SNP 65726065 65875782 298 . . R439d +chr5 SNP SNP 65875783 66025500 60 . . R440d +chr5 SNP SNP 66025501 66175217 325 . . R441d +chr5 SNP SNP 66175218 66324935 402 . . R442d +chr5 SNP SNP 66324936 66474653 546 . . R443d +chr5 SNP SNP 66474654 66624370 476 . . R444d +chr5 SNP SNP 66624371 66774088 281 . . R445d +chr5 SNP SNP 66774089 66923806 16 . . R446d +chr5 SNP SNP 66923807 67073523 10 . . R447d +chr5 SNP SNP 67073524 67223241 60 . . R448d +chr5 SNP SNP 67223242 67372959 20 . . R449d +chr5 SNP SNP 67372960 67522676 23 . . R450d +chr5 SNP SNP 67522677 67672394 13 . . R451d +chr5 SNP SNP 67672395 67822112 16 . . R452d +chr5 SNP SNP 67822113 67971829 6 . . R453d +chr5 SNP SNP 67971830 68121547 6 . . R454d +chr5 SNP SNP 68121548 68271265 16 . . R455d +chr5 SNP SNP 68271266 68420982 36 . . R456d +chr5 SNP SNP 68420983 68570700 26 . . R457d +chr5 SNP SNP 68570701 68720418 30 . . R458d +chr5 SNP SNP 68720419 68870135 16 . . R459d +chr5 SNP SNP 68870136 69019853 16 . . R460d +chr5 SNP SNP 69019854 69169571 20 . . R461d +chr5 SNP SNP 69169572 69319288 33 . . R462d +chr5 SNP SNP 69319289 69469006 16 . . R463d +chr5 SNP SNP 69469007 69618724 26 . . R464d +chr5 SNP SNP 69618725 69768441 23 . . R465d +chr5 SNP SNP 69768442 69918159 6 . . R466d +chr5 SNP SNP 69918160 70067877 23 . . R467d +chr5 SNP SNP 70067878 70217594 10 . . R468d +chr5 SNP SNP 70217595 70367312 30 . . R469d +chr5 SNP SNP 70367313 70517030 23 . . R470d +chr5 SNP SNP 70517031 70666747 23 . . R471d +chr5 SNP SNP 70666748 70816465 10 . . R472d +chr5 SNP SNP 70816466 70966183 30 . . R473d +chr5 SNP SNP 70966184 71115900 201 . . R474d +chr5 SNP SNP 71115901 71265618 120 . . R475d +chr5 SNP SNP 71265619 71415336 110 . . R476d +chr5 SNP SNP 71415337 71565053 271 . . R477d +chr5 SNP SNP 71565054 71714771 489 . . R478d +chr5 SNP SNP 71714772 71864489 838 . . R479d +chr5 SNP SNP 71864490 72014206 476 . . R480d +chr5 SNP SNP 72014207 72163924 285 . . R481d +chr5 SNP SNP 72163925 72313642 436 . . R482d +chr5 SNP SNP 72313643 72463359 577 . . R483d +chr5 SNP SNP 72463360 72613077 419 . . R484d +chr5 SNP SNP 72613078 72762795 577 . . R485d +chr5 SNP SNP 72762796 72912512 526 . . R486d +chr5 SNP SNP 72912513 73062230 768 . . R487d +chr5 SNP SNP 73062231 73211948 355 . . R488d +chr5 SNP SNP 73211949 73361665 734 . . R489d +chr5 SNP SNP 73361666 73511383 372 . . R490d +chr5 SNP SNP 73511384 73661101 520 . . R491d +chr5 SNP SNP 73661102 73810818 33 . . R492d +chr5 SNP SNP 73810819 73960536 432 . . R493d +chr5 SNP SNP 73960537 74110254 318 . . R494d +chr5 SNP SNP 74110255 74259971 533 . . R495d +chr5 SNP SNP 74259972 74409689 573 . . R496d +chr5 SNP SNP 74409690 74559407 36 . . R497d +chr5 SNP SNP 74559408 74709124 36 . . R498d +chr5 SNP SNP 74709125 74858842 26 . . R499d +chr5 SNP SNP 74858843 75008560 459 . . R500d +chr5 SNP SNP 75008561 75158277 30 . . R501d +chr5 SNP SNP 75158278 75307995 60 . . R502d +chr5 SNP SNP 75307996 75457713 261 . . R503d +chr5 SNP SNP 75457714 75607430 30 . . R504d +chr5 SNP SNP 75607431 75757148 26 . . R505d +chr5 SNP SNP 75757149 75906866 281 . . R506d +chr5 SNP SNP 75906867 76056583 248 . . R507d +chr5 SNP SNP 76056584 76206301 362 . . R508d +chr5 SNP SNP 76206302 76356019 275 . . R509d +chr5 SNP SNP 76356020 76505736 80 . . R510d +chr5 SNP SNP 76505737 76655454 20 . . R511d +chr5 SNP SNP 76655455 76805172 40 . . R512d +chr5 SNP SNP 76805173 76954889 30 . . R513d +chr5 SNP SNP 76954890 77104607 33 . . R514d +chr5 SNP SNP 77104608 77254325 43 . . R515d +chr5 SNP SNP 77254326 77404042 40 . . R516d +chr5 SNP SNP 77404043 77553760 345 . . R517d +chr5 SNP SNP 77553761 77703478 617 . . R518d +chr5 SNP SNP 77703479 77853195 687 . . R519d +chr5 SNP SNP 77853196 78002913 654 . . R520d +chr5 SNP SNP 78002914 78152631 788 . . R521d +chr5 SNP SNP 78152632 78302348 214 . . R522d +chr5 SNP SNP 78302349 78452066 694 . . R523d +chr5 SNP SNP 78452067 78601784 36 . . R524d +chr5 SNP SNP 78601785 78751501 114 . . R525d +chr5 SNP SNP 78751502 78901219 563 . . R526d +chr5 SNP SNP 78901220 79050937 365 . . R527d +chr5 SNP SNP 79050938 79200654 238 . . R528d +chr5 SNP SNP 79200655 79350372 13 . . R529d +chr5 SNP SNP 79350373 79500090 26 . . R530d +chr5 SNP SNP 79500091 79649807 10 . . R531d +chr5 SNP SNP 79649808 79799525 26 . . R532d +chr5 SNP SNP 79799526 79949243 3 . . R533d +chr5 SNP SNP 79949244 80098960 20 . . R534d +chr5 SNP SNP 80098961 80248678 13 . . R535d +chr5 SNP SNP 80248679 80398396 20 . . R536d +chr5 SNP SNP 80398397 80548113 23 . . R537d +chr5 SNP SNP 80548114 80697831 20 . . R538d +chr5 SNP SNP 80697832 80847549 26 . . R539d +chr5 SNP SNP 80847550 80997266 16 . . R540d +chr5 SNP SNP 80997267 81146984 6 . . R541d +chr5 SNP SNP 81146985 81296702 3 . . R542d +chr5 SNP SNP 81296703 81446419 16 . . R543d +chr5 SNP SNP 81446420 81596137 154 . . R544d +chr5 SNP SNP 81596138 81745855 530 . . R545d +chr5 SNP SNP 81745856 81895572 255 . . R546d +chr5 SNP SNP 81895573 82045290 298 . . R547d +chr5 SNP SNP 82045291 82195008 674 . . R548d +chr5 SNP SNP 82195009 82344725 322 . . R549d +chr5 SNP SNP 82344726 82494443 70 . . R550d +chr5 SNP SNP 82494444 82644161 26 . . R551d +chr5 SNP SNP 82644162 82793878 33 . . R552d +chr5 SNP SNP 82793879 82943596 40 . . R553d +chr5 SNP SNP 82943597 83093314 181 . . R554d +chr5 SNP SNP 83093315 83243031 114 . . R555d +chr5 SNP SNP 83243032 83392749 395 . . R556d +chr5 SNP SNP 83392750 83542467 315 . . R557d +chr5 SNP SNP 83542468 83692184 50 . . R558d +chr5 SNP SNP 83692185 83841902 385 . . R559d +chr5 SNP SNP 83841903 83991620 392 . . R560d +chr5 SNP SNP 83991621 84141337 87 . . R561d +chr5 SNP SNP 84141338 84291055 63 . . R562d +chr5 SNP SNP 84291056 84440773 70 . . R563d +chr5 SNP SNP 84440774 84590490 90 . . R564d +chr5 SNP SNP 84590491 84740208 40 . . R565d +chr5 SNP SNP 84740209 84889926 57 . . R566d +chr5 SNP SNP 84889927 85039643 147 . . R567d +chr5 SNP SNP 85039644 85189361 550 . . R568d +chr5 SNP SNP 85189362 85339079 442 . . R569d +chr5 SNP SNP 85339080 85488796 479 . . R570d +chr5 SNP SNP 85488797 85638514 439 . . R571d +chr5 SNP SNP 85638515 85788232 503 . . R572d +chr5 SNP SNP 85788233 85937949 557 . . R573d +chr5 SNP SNP 85937950 86087667 43 . . R574d +chr5 SNP SNP 86087668 86237385 53 . . R575d +chr5 SNP SNP 86237386 86387102 30 . . R576d +chr5 SNP SNP 86387103 86536820 40 . . R577d +chr5 SNP SNP 86536821 86686538 46 . . R578d +chr5 SNP SNP 86686539 86836255 26 . . R579d +chr5 SNP SNP 86836256 86985973 20 . . R580d +chr5 SNP SNP 86985974 87135691 3 . . R581d +chr5 SNP SNP 87135692 87285408 6 . . R582d +chr5 SNP SNP 87285409 87435126 201 . . R583d +chr5 SNP SNP 87435127 87584844 449 . . R584d +chr5 SNP SNP 87584845 87734561 224 . . R585d +chr5 SNP SNP 87734562 87884279 30 . . R586d +chr5 SNP SNP 87884280 88033997 10 . . R587d +chr5 SNP SNP 88033998 88183714 127 . . R588d +chr5 SNP SNP 88183715 88333432 379 . . R589d +chr5 SNP SNP 88333433 88483150 268 . . R590d +chr5 SNP SNP 88483151 88632867 419 . . R591d +chr5 SNP SNP 88632868 88782585 335 . . R592d +chr5 SNP SNP 88782586 88932303 500 . . R593d +chr5 SNP SNP 88932304 89082020 449 . . R594d +chr5 SNP SNP 89082021 89231738 583 . . R595d +chr5 SNP SNP 89231739 89381456 546 . . R596d +chr5 SNP SNP 89381457 89531173 406 . . R597d +chr5 SNP SNP 89531174 89680891 399 . . R598d +chr5 SNP SNP 89680892 89830608 255 . . R599d +chr5 SNP SNP 89830609 89980326 372 . . R600d +chr5 SNP SNP 89980327 90130044 342 . . R601d +chr5 SNP SNP 90130045 90279761 399 . . R602d +chr5 SNP SNP 90279762 90429479 432 . . R603d +chr5 SNP SNP 90429480 90579197 362 . . R604d +chr5 SNP SNP 90579198 90728914 43 . . R605d +chr5 SNP SNP 90728915 90878632 40 . . R606d +chr5 SNP SNP 90878633 91028350 325 . . R607d +chr5 SNP SNP 91028351 91178067 154 . . R608d +chr5 SNP SNP 91178068 91327785 607 . . R609d +chr5 SNP SNP 91327786 91477503 224 . . R610d +chr5 SNP SNP 91477504 91627220 244 . . R611d +chr5 SNP SNP 91627221 91776938 382 . . R612d +chr5 SNP SNP 91776939 91926656 10 . . R613d +chr5 SNP SNP 91926657 92076373 20 . . R614d +chr5 SNP SNP 92076374 92226091 449 . . R615d +chr5 SNP SNP 92226092 92375809 553 . . R616d +chr5 SNP SNP 92375810 92525526 379 . . R617d +chr5 SNP SNP 92525527 92675244 530 . . R618d +chr5 SNP SNP 92675245 92824962 402 . . R619d +chr5 SNP SNP 92824963 92974679 20 . . R620d +chr5 SNP SNP 92974680 93124397 30 . . R621d +chr5 SNP SNP 93124398 93274115 46 . . R622d +chr5 SNP SNP 93274116 93423832 137 . . R623d +chr5 SNP SNP 93423833 93573550 110 . . R624d +chr5 SNP SNP 93573551 93723268 335 . . R625d +chr5 SNP SNP 93723269 93872985 540 . . R626d +chr5 SNP SNP 93872986 94022703 496 . . R627d +chr5 SNP SNP 94022704 94172421 214 . . R628d +chr5 SNP SNP 94172422 94322138 694 . . R629d +chr5 SNP SNP 94322139 94471856 553 . . R630d +chr5 SNP SNP 94471857 94621574 637 . . R631d +chr5 SNP SNP 94621575 94771291 617 . . R632d +chr5 SNP SNP 94771292 94921009 741 . . R633d +chr5 SNP SNP 94921010 95070727 533 . . R634d +chr5 SNP SNP 95070728 95220444 318 . . R635d +chr5 SNP SNP 95220445 95370162 392 . . R636d +chr5 SNP SNP 95370163 95519880 355 . . R637d +chr5 SNP SNP 95519881 95669597 318 . . R638d +chr5 SNP SNP 95669598 95819315 36 . . R639d +chr5 SNP SNP 95819316 95969033 26 . . R640d +chr5 SNP SNP 95969034 96118750 50 . . R641d +chr5 SNP SNP 96118751 96268468 36 . . R642d +chr5 SNP SNP 96268469 96418186 372 . . R643d +chr5 SNP SNP 96418187 96567903 278 . . R644d +chr5 SNP SNP 96567904 96717621 137 . . R645d +chr5 SNP SNP 96717622 96867339 174 . . R646d +chr5 SNP SNP 96867340 97017056 70 . . R647d +chr5 SNP SNP 97017057 97166774 392 . . R648d +chr5 SNP SNP 97166775 97316492 503 . . R649d +chr5 SNP SNP 97316493 97466209 104 . . R650d +chr5 SNP SNP 97466210 97615927 120 . . R651d +chr5 SNP SNP 97615928 97765645 375 . . R652d +chr5 SNP SNP 97765646 97915362 224 . . R653d +chr5 SNP SNP 97915363 98065080 100 . . R654d +chr5 SNP SNP 98065081 98214798 26 . . R655d +chr5 SNP SNP 98214799 98364515 281 . . R656d +chr5 SNP SNP 98364516 98514233 469 . . R657d +chr5 SNP SNP 98514234 98663951 328 . . R658d +chr5 SNP SNP 98663952 98813668 23 . . R659d +chr5 SNP SNP 98813669 98963386 13 . . R660d +chr5 SNP SNP 98963387 99113104 20 . . R661d +chr5 SNP SNP 99113105 99262821 33 . . R662d +chr5 SNP SNP 99262822 99412539 13 . . R663d +chr5 SNP SNP 99412540 99562257 13 . . R664d +chr5 SNP SNP 99562258 99711974 53 . . R665d +chr5 SNP SNP 99711975 99861692 422 . . R666d +chr5 SNP SNP 99861693 100011410 63 . . R667d +chr5 SNP SNP 100011411 100161127 181 . . R668d +chr5 SNP SNP 100161128 100310845 36 . . R669d +chr5 SNP SNP 100310846 100460563 80 . . R670d +chr5 SNP SNP 100460564 100610280 382 . . R671d +chr5 SNP SNP 100610281 100759998 204 . . R672d +chr5 SNP SNP 100759999 100909716 389 . . R673d +chr5 SNP SNP 100909717 101059433 140 . . R674d +chr5 SNP SNP 101059434 101209151 211 . . R675d +chr5 SNP SNP 101209152 101358869 218 . . R676d +chr5 SNP SNP 101358870 101508586 147 . . R677d +chr5 SNP SNP 101508587 101658304 516 . . R678d +chr5 SNP SNP 101658305 101808022 50 . . R679d +chr5 SNP SNP 101808023 101957739 63 . . R680d +chr5 SNP SNP 101957740 102107457 395 . . R681d +chr5 SNP SNP 102107458 102257175 167 . . R682d +chr5 SNP SNP 102257176 102406892 83 . . R683d +chr5 SNP SNP 102406893 102556610 90 . . R684d +chr5 SNP SNP 102556611 102706328 536 . . R685d +chr5 SNP SNP 102706329 102856045 372 . . R686d +chr5 SNP SNP 102856046 103005763 77 . . R687d +chr5 SNP SNP 103005764 103155481 228 . . R688d +chr5 SNP SNP 103155482 103305198 80 . . R689d +chr5 SNP SNP 103305199 103454916 57 . . R690d +chr5 SNP SNP 103454917 103604634 352 . . R691d +chr5 SNP SNP 103604635 103754351 506 . . R692d +chr5 SNP SNP 103754352 103904069 409 . . R693d +chr5 SNP SNP 103904070 104053787 516 . . R694d +chr5 SNP SNP 104053788 104203504 510 . . R695d +chr5 SNP SNP 104203505 104353222 506 . . R696d +chr5 SNP SNP 104353223 104502940 104 . . R697d +chr5 SNP SNP 104502941 104652657 16 . . R698d +chr5 SNP SNP 104652658 104802375 201 . . R699d +chr5 SNP SNP 104802376 104952093 825 . . R700d +chr5 SNP SNP 104952094 105101810 422 . . R701d +chr5 SNP SNP 105101811 105251528 298 . . R702d +chr5 SNP SNP 105251529 105401246 315 . . R703d +chr5 SNP SNP 105401247 105550963 382 . . R704d +chr5 SNP SNP 105550964 105700681 53 . . R705d +chr5 SNP SNP 105700682 105850399 33 . . R706d +chr5 SNP SNP 105850400 106000116 496 . . R707d +chr5 SNP SNP 106000117 106149834 382 . . R708d +chr5 SNP SNP 106149835 106299552 392 . . R709d +chr5 SNP SNP 106299553 106449269 295 . . R710d +chr5 SNP SNP 106449270 106598987 355 . . R711d +chr5 SNP SNP 106598988 106748705 362 . . R712d +chr5 SNP SNP 106748706 106898422 46 . . R713d +chr5 SNP SNP 106898423 107048140 385 . . R714d +chr5 SNP SNP 107048141 107197858 214 . . R715d +chr5 SNP SNP 107197859 107347575 436 . . R716d +chr5 SNP SNP 107347576 107497293 399 . . R717d +chr5 SNP SNP 107497294 107647011 476 . . R718d +chr5 SNP SNP 107647012 107796728 533 . . R719d +chr5 SNP SNP 107796729 107946446 161 . . R720d +chr5 SNP SNP 107946447 108096164 459 . . R721d +chr5 SNP SNP 108096165 108245881 510 . . R722d +chr5 SNP SNP 108245882 108395599 553 . . R723d +chr5 SNP SNP 108395600 108545317 224 . . R724d +chr5 SNP SNP 108545318 108695034 281 . . R725d +chr5 SNP SNP 108695035 108844752 369 . . R726d +chr5 SNP SNP 108844753 108994470 73 . . R727d +chr5 SNP SNP 108994471 109144187 463 . . R728d +chr5 SNP SNP 109144188 109293905 493 . . R729d +chr5 SNP SNP 109293906 109443623 362 . . R730d +chr5 SNP SNP 109443624 109593340 422 . . R731d +chr5 SNP SNP 109593341 109743058 332 . . R732d +chr5 SNP SNP 109743059 109892776 446 . . R733d +chr5 SNP SNP 109892777 110042493 302 . . R734d +chr5 SNP SNP 110042494 110192211 416 . . R735d +chr5 SNP SNP 110192212 110341929 359 . . R736d +chr5 SNP SNP 110341930 110491646 124 . . R737d +chr5 SNP SNP 110491647 110641364 73 . . R738d +chr5 SNP SNP 110641365 110791082 23 . . R739d +chr5 SNP SNP 110791083 110940799 33 . . R740d +chr5 SNP SNP 110940800 111090517 426 . . R741d +chr5 SNP SNP 111090518 111240235 187 . . R742d +chr5 SNP SNP 111240236 111389952 315 . . R743d +chr5 SNP SNP 111389953 111539670 305 . . R744d +chr5 SNP SNP 111539671 111689388 362 . . R745d +chr5 SNP SNP 111689389 111839105 432 . . R746d +chr5 SNP SNP 111839106 111988823 563 . . R747d +chr5 SNP SNP 111988824 112138541 560 . . R748d +chr5 SNP SNP 112138542 112288258 305 . . R749d +chr5 SNP SNP 112288259 112437976 446 . . R750d +chr5 SNP SNP 112437977 112587694 318 . . R751d +chr5 SNP SNP 112587695 112737411 436 . . R752d +chr5 SNP SNP 112737412 112887129 496 . . R753d +chr5 SNP SNP 112887130 113036847 100 . . R754d +chr5 SNP SNP 113036848 113186564 244 . . R755d +chr5 SNP SNP 113186565 113336282 436 . . R756d +chr5 SNP SNP 113336283 113486000 97 . . R757d +chr5 SNP SNP 113486001 113635717 187 . . R758d +chr5 SNP SNP 113635718 113785435 322 . . R759d +chr5 SNP SNP 113785436 113935153 453 . . R760d +chr5 SNP SNP 113935154 114084870 426 . . R761d +chr5 SNP SNP 114084871 114234588 516 . . R762d +chr5 SNP SNP 114234589 114384306 328 . . R763d +chr5 SNP SNP 114384307 114534023 345 . . R764d +chr5 SNP SNP 114534024 114683741 469 . . R765d +chr5 SNP SNP 114683742 114833459 295 . . R766d +chr5 SNP SNP 114833460 114983176 469 . . R767d +chr5 SNP SNP 114983177 115132894 265 . . R768d +chr5 SNP SNP 115132895 115282612 265 . . R769d +chr5 SNP SNP 115282613 115432329 624 . . R770d +chr5 SNP SNP 115432330 115582047 278 . . R771d +chr5 SNP SNP 115582048 115731765 30 . . R772d +chr5 SNP SNP 115731766 115881482 167 . . R773d +chr5 SNP SNP 115881483 116031200 610 . . R774d +chr5 SNP SNP 116031201 116180918 187 . . R775d +chr5 SNP SNP 116180919 116330635 382 . . R776d +chr5 SNP SNP 116330636 116480353 204 . . R777d +chr5 SNP SNP 116480354 116630071 224 . . R778d +chr5 SNP SNP 116630072 116779788 466 . . R779d +chr5 SNP SNP 116779789 116929506 197 . . R780d +chr5 SNP SNP 116929507 117079224 610 . . R781d +chr5 SNP SNP 117079225 117228941 308 . . R782d +chr5 SNP SNP 117228942 117378659 352 . . R783d +chr5 SNP SNP 117378660 117528377 60 . . R784d +chr5 SNP SNP 117528378 117678094 130 . . R785d +chr5 SNP SNP 117678095 117827812 10 . . R786d +chr5 SNP SNP 117827813 117977530 0 . . R787d +chr5 SNP SNP 117977531 118127247 13 . . R788d +chr5 SNP SNP 118127248 118276965 20 . . R789d +chr5 SNP SNP 118276966 118426683 13 . . R790d +chr5 SNP SNP 118426684 118576400 36 . . R791d +chr5 SNP SNP 118576401 118726118 57 . . R792d +chr5 SNP SNP 118726119 118875836 33 . . R793d +chr5 SNP SNP 118875837 119025553 20 . . R794d +chr5 SNP SNP 119025554 119175271 26 . . R795d +chr5 SNP SNP 119175272 119324989 13 . . R796d +chr5 SNP SNP 119324990 119474706 13 . . R797d +chr5 SNP SNP 119474707 119624424 16 . . R798d +chr5 SNP SNP 119624425 119774141 10 . . R799d +chr5 SNP SNP 119774142 119923859 6 . . R800d +chr5 SNP SNP 119923860 120073577 3 . . R801d +chr5 SNP SNP 120073578 120223294 23 . . R802d +chr5 SNP SNP 120223295 120373012 20 . . R803d +chr5 SNP SNP 120373013 120522730 53 . . R804d +chr5 SNP SNP 120522731 120672447 224 . . R805d +chr5 SNP SNP 120672448 120822165 211 . . R806d +chr5 SNP SNP 120822166 120971883 486 . . R807d +chr5 SNP SNP 120971884 121121600 325 . . R808d +chr5 SNP SNP 121121601 121271318 83 . . R809d +chr5 SNP SNP 121271319 121421036 60 . . R810d +chr5 SNP SNP 121421037 121570753 50 . . R811d +chr5 SNP SNP 121570754 121720471 271 . . R812d +chr5 SNP SNP 121720472 121870189 147 . . R813d +chr5 SNP SNP 121870190 122019906 16 . . R814d +chr5 SNP SNP 122019907 122169624 224 . . R815d +chr5 SNP SNP 122169625 122319342 298 . . R816d +chr5 SNP SNP 122319343 122469059 557 . . R817d +chr5 SNP SNP 122469060 122618777 87 . . R818d +chr5 SNP SNP 122618778 122768495 255 . . R819d +chr5 SNP SNP 122768496 122918212 114 . . R820d +chr5 SNP SNP 122918213 123067930 389 . . R821d +chr5 SNP SNP 123067931 123217648 244 . . R822d +chr5 SNP SNP 123217649 123367365 40 . . R823d +chr5 SNP SNP 123367366 123517083 154 . . R824d +chr5 SNP SNP 123517084 123666801 184 . . R825d +chr5 SNP SNP 123666802 123816518 248 . . R826d +chr5 SNP SNP 123816519 123966236 453 . . R827d +chr5 SNP SNP 123966237 124115954 375 . . R828d +chr5 SNP SNP 124115955 124265671 359 . . R829d +chr5 SNP SNP 124265672 124415389 587 . . R830d +chr5 SNP SNP 124415390 124565107 540 . . R831d +chr5 SNP SNP 124565108 124714824 496 . . R832d +chr5 SNP SNP 124714825 124864542 281 . . R833d +chr5 SNP SNP 124864543 125014260 422 . . R834d +chr5 SNP SNP 125014261 125163977 134 . . R835d +chr5 SNP SNP 125163978 125313695 258 . . R836d +chr5 SNP SNP 125313696 125463413 570 . . R837d +chr5 SNP SNP 125463414 125613130 67 . . R838d +chr5 SNP SNP 125613131 125762848 181 . . R839d +chr5 SNP SNP 125762849 125912566 6 . . R840d +chr5 SNP SNP 125912567 126062283 23 . . R841d +chr5 SNP SNP 126062284 126212001 20 . . R842d +chr5 SNP SNP 126212002 126361719 10 . . R843d +chr5 SNP SNP 126361720 126511436 3 . . R844d +chr5 SNP SNP 126511437 126661154 16 . . R845d +chr5 SNP SNP 126661155 126810872 13 . . R846d +chr5 SNP SNP 126810873 126960589 20 . . R847d +chr5 SNP SNP 126960590 127110307 20 . . R848d +chr5 SNP SNP 127110308 127260025 53 . . R849d +chr5 SNP SNP 127260026 127409742 73 . . R850d +chr5 SNP SNP 127409743 127559460 10 . . R851d +chr5 SNP SNP 127559461 127709178 46 . . R852d +chr5 SNP SNP 127709179 127858895 288 . . R853d +chr5 SNP SNP 127858896 128008613 389 . . R854d +chr5 SNP SNP 128008614 128158331 40 . . R855d +chr5 SNP SNP 128158332 128308048 13 . . R856d +chr5 SNP SNP 128308049 128457766 20 . . R857d +chr5 SNP SNP 128457767 128607484 20 . . R858d +chr5 SNP SNP 128607485 128757201 16 . . R859d +chr5 SNP SNP 128757202 128906919 6 . . R860d +chr5 SNP SNP 128906920 129056637 33 . . R861d +chr5 SNP SNP 129056638 129206354 40 . . R862d +chr5 SNP SNP 129206355 129356072 30 . . R863d +chr5 SNP SNP 129356073 129505790 67 . . R864d +chr5 SNP SNP 129505791 129655507 382 . . R865d +chr5 SNP SNP 129655508 129805225 50 . . R866d +chr5 SNP SNP 129805226 129954943 654 . . R867d +chr5 SNP SNP 129954944 130104660 352 . . R868d +chr5 SNP SNP 130104661 130254378 13 . . R869d +chr5 SNP SNP 130254379 130404096 16 . . R870d +chr5 SNP SNP 130404097 130553813 13 . . R871d +chr5 SNP SNP 130553814 130703531 26 . . R872d +chr5 SNP SNP 130703532 130853249 10 . . R873d +chr5 SNP SNP 130853250 131002966 20 . . R874d +chr5 SNP SNP 131002967 131152684 16 . . R875d +chr5 SNP SNP 131152685 131302402 10 . . R876d +chr5 SNP SNP 131302403 131452119 20 . . R877d +chr5 SNP SNP 131452120 131601837 16 . . R878d +chr5 SNP SNP 131601838 131751555 3 . . R879d +chr5 SNP SNP 131751556 131901272 10 . . R880d +chr5 SNP SNP 131901273 132050990 40 . . R881d +chr5 SNP SNP 132050991 132200708 26 . . R882d +chr5 SNP SNP 132200709 132350425 20 . . R883d +chr5 SNP SNP 132350426 132500143 30 . . R884d +chr5 SNP SNP 132500144 132649861 16 . . R885d +chr5 SNP SNP 132649862 132799578 13 . . R886d +chr5 SNP SNP 132799579 132949296 23 . . R887d +chr5 SNP SNP 132949297 133099014 23 . . R888d +chr5 SNP SNP 133099015 133248731 36 . . R889d +chr5 SNP SNP 133248732 133398449 20 . . R890d +chr5 SNP SNP 133398450 133548167 83 . . R891d +chr5 SNP SNP 133548168 133697884 365 . . R892d +chr5 SNP SNP 133697885 133847602 33 . . R893d +chr5 SNP SNP 133847603 133997320 345 . . R894d +chr5 SNP SNP 133997321 134147037 708 . . R895d +chr5 SNP SNP 134147038 134296755 416 . . R896d +chr5 SNP SNP 134296756 134446473 372 . . R897d +chr5 SNP SNP 134446474 134596190 530 . . R898d +chr5 SNP SNP 134596191 134745908 503 . . R899d +chr5 SNP SNP 134745909 134895626 342 . . R900d +chr5 SNP SNP 134895627 135045343 563 . . R901d +chr5 SNP SNP 135045344 135195061 265 . . R902d +chr5 SNP SNP 135195062 135344779 20 . . R903d +chr5 SNP SNP 135344780 135494496 87 . . R904d +chr5 SNP SNP 135494497 135644214 359 . . R905d +chr5 SNP SNP 135644215 135793932 389 . . R906d +chr5 SNP SNP 135793933 135943649 117 . . R907d +chr5 SNP SNP 135943650 136093367 214 . . R908d +chr5 SNP SNP 136093368 136243085 228 . . R909d +chr5 SNP SNP 136243086 136392802 10 . . R910d +chr5 SNP SNP 136392803 136542520 13 . . R911d +chr5 SNP SNP 136542521 136692238 6 . . R912d +chr5 SNP SNP 136692239 136841955 6 . . R913d +chr5 SNP SNP 136841956 136991673 30 . . R914d +chr5 SNP SNP 136991674 137141391 181 . . R915d +chr5 SNP SNP 137141392 137291108 197 . . R916d +chr5 SNP SNP 137291109 137440826 248 . . R917d +chr5 SNP SNP 137440827 137590544 379 . . R918d +chr5 SNP SNP 137590545 137740261 30 . . R919d +chr5 SNP SNP 137740262 137889979 67 . . R920d +chr5 SNP SNP 137889980 138039697 114 . . R921d +chr5 SNP SNP 138039698 138189414 33 . . R922d +chr5 SNP SNP 138189415 138339132 26 . . R923d +chr5 SNP SNP 138339133 138488850 16 . . R924d +chr5 SNP SNP 138488851 138638567 33 . . R925d +chr5 SNP SNP 138638568 138788285 60 . . R926d +chr5 SNP SNP 138788286 138938003 53 . . R927d +chr5 SNP SNP 138938004 139087720 271 . . R928d +chr5 SNP SNP 139087721 139237438 214 . . R929d +chr5 SNP SNP 139237439 139387156 208 . . R930d +chr5 SNP SNP 139387157 139536873 10 . . R931d +chr5 SNP SNP 139536874 139686591 36 . . R932d +chr5 SNP SNP 139686592 139836309 322 . . R933d +chr5 SNP SNP 139836310 139986026 33 . . R934d +chr5 SNP SNP 139986027 140135744 53 . . R935d +chr5 SNP SNP 140135745 140285462 359 . . R936d +chr5 SNP SNP 140285463 140435179 10 . . R937d +chr5 SNP SNP 140435180 140584897 221 . . R938d +chr5 SNP SNP 140584898 140734615 426 . . R939d +chr5 SNP SNP 140734616 140884332 40 . . R940d +chr5 SNP SNP 140884333 141034050 13 . . R941d +chr5 SNP SNP 141034051 141183768 36 . . R942d +chr5 SNP SNP 141183769 141333485 93 . . R943d +chr5 SNP SNP 141333486 141483203 127 . . R944d +chr5 SNP SNP 141483204 141632921 234 . . R945d +chr5 SNP SNP 141632922 141782638 83 . . R946d +chr5 SNP SNP 141782639 141932356 46 . . R947d +chr5 SNP SNP 141932357 142082074 496 . . R948d +chr5 SNP SNP 142082075 142231791 500 . . R949d +chr5 SNP SNP 142231792 142381509 208 . . R950d +chr5 SNP SNP 142381510 142531227 87 . . R951d +chr5 SNP SNP 142531228 142680944 117 . . R952d +chr5 SNP SNP 142680945 142830662 130 . . R953d +chr5 SNP SNP 142830663 142980380 500 . . R954d +chr5 SNP SNP 142980381 143130097 134 . . R955d +chr5 SNP SNP 143130098 143279815 97 . . R956d +chr5 SNP SNP 143279816 143429533 33 . . R957d +chr5 SNP SNP 143429534 143579250 6 . . R958d +chr5 SNP SNP 143579251 143728968 100 . . R959d +chr5 SNP SNP 143728969 143878686 194 . . R960d +chr5 SNP SNP 143878687 144028403 486 . . R961d +chr5 SNP SNP 144028404 144178121 171 . . R962d +chr5 SNP SNP 144178122 144327839 57 . . R963d +chr5 SNP SNP 144327840 144477556 181 . . R964d +chr5 SNP SNP 144477557 144627274 228 . . R965d +chr5 SNP SNP 144627275 144776992 483 . . R966d +chr5 SNP SNP 144776993 144926709 671 . . R967d +chr5 SNP SNP 144926710 145076427 26 . . R968d +chr5 SNP SNP 145076428 145226145 151 . . R969d +chr5 SNP SNP 145226146 145375862 265 . . R970d +chr5 SNP SNP 145375863 145525580 278 . . R971d +chr5 SNP SNP 145525581 145675298 134 . . R972d +chr5 SNP SNP 145675299 145825015 3 . . R973d +chr5 SNP SNP 145825016 145974733 3 . . R974d +chr5 SNP SNP 145974734 146124451 6 . . R975d +chr5 SNP SNP 146124452 146274168 33 . . R976d +chr5 SNP SNP 146274169 146423886 16 . . R977d +chr5 SNP SNP 146423887 146573604 10 . . R978d +chr5 SNP SNP 146573605 146723321 16 . . R979d +chr5 SNP SNP 146723322 146873039 20 . . R980d +chr5 SNP SNP 146873040 147022757 36 . . R981d +chr5 SNP SNP 147022758 147172474 10 . . R982d +chr5 SNP SNP 147172475 147322192 10 . . R983d +chr5 SNP SNP 147322193 147471910 6 . . R984d +chr5 SNP SNP 147471911 147621627 6 . . R985d +chr5 SNP SNP 147621628 147771345 10 . . R986d +chr5 SNP SNP 147771346 147921063 10 . . R987d +chr5 SNP SNP 147921064 148070780 13 . . R988d +chr5 SNP SNP 148070781 148220498 13 . . R989d +chr5 SNP SNP 148220499 148370216 177 . . R990d +chr5 SNP SNP 148370217 148519933 93 . . R991d +chr5 SNP SNP 148519934 148669651 33 . . R992d +chr5 SNP SNP 148669652 148819369 30 . . R993d +chr5 SNP SNP 148819370 148969086 10 . . R994d +chr5 SNP SNP 148969087 149118804 479 . . R995d +chr5 SNP SNP 149118805 149268522 13 . . R996d +chr5 SNP SNP 149268523 149418239 20 . . R997d +chr5 SNP SNP 149418240 149567957 3 . . R998d +chr5 SNP SNP 149567958 149717674 10 . . R999d +chr5 SNP SNP 149717675 149867392 0 . . R1000d diff --git a/web/snp/chr6 b/web/snp/chr6 new file mode 100755 index 00000000..6fe16159 --- /dev/null +++ b/web/snp/chr6 @@ -0,0 +1,1004 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr6 SNP SNP 11 149956 0 . . R0d +chr6 SNP SNP 149957 299902 0 . . R1d +chr6 SNP SNP 299903 449848 0 . . R2d +chr6 SNP SNP 449849 599795 0 . . R3d +chr6 SNP SNP 599796 749741 0 . . R4d +chr6 SNP SNP 749742 899687 0 . . R5d +chr6 SNP SNP 899688 1049634 0 . . R6d +chr6 SNP SNP 1049635 1199580 0 . . R7d +chr6 SNP SNP 1199581 1349526 0 . . R8d +chr6 SNP SNP 1349527 1499473 0 . . R9d +chr6 SNP SNP 1499474 1649419 0 . . R10d +chr6 SNP SNP 1649420 1799365 0 . . R11d +chr6 SNP SNP 1799366 1949312 0 . . R12d +chr6 SNP SNP 1949313 2099258 0 . . R13d +chr6 SNP SNP 2099259 2249204 0 . . R14d +chr6 SNP SNP 2249205 2399151 0 . . R15d +chr6 SNP SNP 2399152 2549097 0 . . R16d +chr6 SNP SNP 2549098 2699043 0 . . R17d +chr6 SNP SNP 2699044 2848990 0 . . R18d +chr6 SNP SNP 2848991 2998936 0 . . R19d +chr6 SNP SNP 2998937 3148882 501 . . R20d +chr6 SNP SNP 3148883 3298829 179 . . R21d +chr6 SNP SNP 3298830 3448775 75 . . R22d +chr6 SNP SNP 3448776 3598721 72 . . R23d +chr6 SNP SNP 3598722 3748668 116 . . R24d +chr6 SNP SNP 3748669 3898614 425 . . R25d +chr6 SNP SNP 3898615 4048560 208 . . R26d +chr6 SNP SNP 4048561 4198506 381 . . R27d +chr6 SNP SNP 4198507 4348453 97 . . R28d +chr6 SNP SNP 4348454 4498399 119 . . R29d +chr6 SNP SNP 4498400 4648345 463 . . R30d +chr6 SNP SNP 4648346 4798292 47 . . R31d +chr6 SNP SNP 4798293 4948238 69 . . R32d +chr6 SNP SNP 4948239 5098184 410 . . R33d +chr6 SNP SNP 5098185 5248131 365 . . R34d +chr6 SNP SNP 5248132 5398077 744 . . R35d +chr6 SNP SNP 5398078 5548023 580 . . R36d +chr6 SNP SNP 5548024 5697970 217 . . R37d +chr6 SNP SNP 5697971 5847916 211 . . R38d +chr6 SNP SNP 5847917 5997862 28 . . R39d +chr6 SNP SNP 5997863 6147809 28 . . R40d +chr6 SNP SNP 6147810 6297755 9 . . R41d +chr6 SNP SNP 6297756 6447701 34 . . R42d +chr6 SNP SNP 6447702 6597648 25 . . R43d +chr6 SNP SNP 6597649 6747594 15 . . R44d +chr6 SNP SNP 6747595 6897540 44 . . R45d +chr6 SNP SNP 6897541 7047487 25 . . R46d +chr6 SNP SNP 7047488 7197433 37 . . R47d +chr6 SNP SNP 7197434 7347379 31 . . R48d +chr6 SNP SNP 7347380 7497326 31 . . R49d +chr6 SNP SNP 7497327 7647272 22 . . R50d +chr6 SNP SNP 7647273 7797218 214 . . R51d +chr6 SNP SNP 7797219 7947165 277 . . R52d +chr6 SNP SNP 7947166 8097111 296 . . R53d +chr6 SNP SNP 8097112 8247057 283 . . R54d +chr6 SNP SNP 8247058 8397003 447 . . R55d +chr6 SNP SNP 8397004 8546950 340 . . R56d +chr6 SNP SNP 8546951 8696896 444 . . R57d +chr6 SNP SNP 8696897 8846842 246 . . R58d +chr6 SNP SNP 8846843 8996789 305 . . R59d +chr6 SNP SNP 8996790 9146735 369 . . R60d +chr6 SNP SNP 9146736 9296681 425 . . R61d +chr6 SNP SNP 9296682 9446628 97 . . R62d +chr6 SNP SNP 9446629 9596574 394 . . R63d +chr6 SNP SNP 9596575 9746520 406 . . R64d +chr6 SNP SNP 9746521 9896467 895 . . R65d +chr6 SNP SNP 9896468 10046413 545 . . R66d +chr6 SNP SNP 10046414 10196359 719 . . R67d +chr6 SNP SNP 10196360 10346306 192 . . R68d +chr6 SNP SNP 10346307 10496252 154 . . R69d +chr6 SNP SNP 10496253 10646198 328 . . R70d +chr6 SNP SNP 10646199 10796145 66 . . R71d +chr6 SNP SNP 10796146 10946091 258 . . R72d +chr6 SNP SNP 10946092 11096037 31 . . R73d +chr6 SNP SNP 11096038 11245984 31 . . R74d +chr6 SNP SNP 11245985 11395930 56 . . R75d +chr6 SNP SNP 11395931 11545876 31 . . R76d +chr6 SNP SNP 11545877 11695823 31 . . R77d +chr6 SNP SNP 11695824 11845769 334 . . R78d +chr6 SNP SNP 11845770 11995715 697 . . R79d +chr6 SNP SNP 11995716 12145662 321 . . R80d +chr6 SNP SNP 12145663 12295608 630 . . R81d +chr6 SNP SNP 12295609 12445554 264 . . R82d +chr6 SNP SNP 12445555 12595500 397 . . R83d +chr6 SNP SNP 12595501 12745447 558 . . R84d +chr6 SNP SNP 12745448 12895393 110 . . R85d +chr6 SNP SNP 12895394 13045339 12 . . R86d +chr6 SNP SNP 13045340 13195286 9 . . R87d +chr6 SNP SNP 13195287 13345232 15 . . R88d +chr6 SNP SNP 13345233 13495178 34 . . R89d +chr6 SNP SNP 13495179 13645125 12 . . R90d +chr6 SNP SNP 13645126 13795071 28 . . R91d +chr6 SNP SNP 13795072 13945017 18 . . R92d +chr6 SNP SNP 13945018 14094964 37 . . R93d +chr6 SNP SNP 14094965 14244910 12 . . R94d +chr6 SNP SNP 14244911 14394856 12 . . R95d +chr6 SNP SNP 14394857 14544803 22 . . R96d +chr6 SNP SNP 14544804 14694749 18 . . R97d +chr6 SNP SNP 14694750 14844695 28 . . R98d +chr6 SNP SNP 14844696 14994642 25 . . R99d +chr6 SNP SNP 14994643 15144588 3 . . R100d +chr6 SNP SNP 15144589 15294534 28 . . R101d +chr6 SNP SNP 15294535 15444481 44 . . R102d +chr6 SNP SNP 15444482 15594427 31 . . R103d +chr6 SNP SNP 15594428 15744373 31 . . R104d +chr6 SNP SNP 15744374 15894320 198 . . R105d +chr6 SNP SNP 15894321 16044266 132 . . R106d +chr6 SNP SNP 16044267 16194212 22 . . R107d +chr6 SNP SNP 16194213 16344158 34 . . R108d +chr6 SNP SNP 16344159 16494105 31 . . R109d +chr6 SNP SNP 16494106 16644051 44 . . R110d +chr6 SNP SNP 16644052 16793997 56 . . R111d +chr6 SNP SNP 16793998 16943944 41 . . R112d +chr6 SNP SNP 16943945 17093890 466 . . R113d +chr6 SNP SNP 17093891 17243836 141 . . R114d +chr6 SNP SNP 17243837 17393783 312 . . R115d +chr6 SNP SNP 17393784 17543729 406 . . R116d +chr6 SNP SNP 17543730 17693675 145 . . R117d +chr6 SNP SNP 17693676 17843622 258 . . R118d +chr6 SNP SNP 17843623 17993568 296 . . R119d +chr6 SNP SNP 17993569 18143514 182 . . R120d +chr6 SNP SNP 18143515 18293461 195 . . R121d +chr6 SNP SNP 18293462 18443407 25 . . R122d +chr6 SNP SNP 18443408 18593353 18 . . R123d +chr6 SNP SNP 18593354 18743300 15 . . R124d +chr6 SNP SNP 18743301 18893246 15 . . R125d +chr6 SNP SNP 18893247 19043192 22 . . R126d +chr6 SNP SNP 19043193 19193139 12 . . R127d +chr6 SNP SNP 19193140 19343085 9 . . R128d +chr6 SNP SNP 19343086 19493031 6 . . R129d +chr6 SNP SNP 19493032 19642978 18 . . R130d +chr6 SNP SNP 19642979 19792924 0 . . R131d +chr6 SNP SNP 19792925 19942870 12 . . R132d +chr6 SNP SNP 19942871 20092817 28 . . R133d +chr6 SNP SNP 20092818 20242763 25 . . R134d +chr6 SNP SNP 20242764 20392709 9 . . R135d +chr6 SNP SNP 20392710 20542655 25 . . R136d +chr6 SNP SNP 20542656 20692602 22 . . R137d +chr6 SNP SNP 20692603 20842548 22 . . R138d +chr6 SNP SNP 20842549 20992494 15 . . R139d +chr6 SNP SNP 20992495 21142441 25 . . R140d +chr6 SNP SNP 21142442 21292387 31 . . R141d +chr6 SNP SNP 21292388 21442333 22 . . R142d +chr6 SNP SNP 21442334 21592280 22 . . R143d +chr6 SNP SNP 21592281 21742226 15 . . R144d +chr6 SNP SNP 21742227 21892172 15 . . R145d +chr6 SNP SNP 21892173 22042119 6 . . R146d +chr6 SNP SNP 22042120 22192065 28 . . R147d +chr6 SNP SNP 22192066 22342011 12 . . R148d +chr6 SNP SNP 22342012 22491958 12 . . R149d +chr6 SNP SNP 22491959 22641904 15 . . R150d +chr6 SNP SNP 22641905 22791850 18 . . R151d +chr6 SNP SNP 22791851 22941797 15 . . R152d +chr6 SNP SNP 22941798 23091743 12 . . R153d +chr6 SNP SNP 23091744 23241689 22 . . R154d +chr6 SNP SNP 23241690 23391636 41 . . R155d +chr6 SNP SNP 23391637 23541582 12 . . R156d +chr6 SNP SNP 23541583 23691528 12 . . R157d +chr6 SNP SNP 23691529 23841475 9 . . R158d +chr6 SNP SNP 23841476 23991421 15 . . R159d +chr6 SNP SNP 23991422 24141367 511 . . R160d +chr6 SNP SNP 24141368 24291314 239 . . R161d +chr6 SNP SNP 24291315 24441260 318 . . R162d +chr6 SNP SNP 24441261 24591206 25 . . R163d +chr6 SNP SNP 24591207 24741152 25 . . R164d +chr6 SNP SNP 24741153 24891099 41 . . R165d +chr6 SNP SNP 24891100 25041045 53 . . R166d +chr6 SNP SNP 25041046 25190991 438 . . R167d +chr6 SNP SNP 25190992 25340938 113 . . R168d +chr6 SNP SNP 25340939 25490884 41 . . R169d +chr6 SNP SNP 25490885 25640830 85 . . R170d +chr6 SNP SNP 25640831 25790777 34 . . R171d +chr6 SNP SNP 25790778 25940723 15 . . R172d +chr6 SNP SNP 25940724 26090669 6 . . R173d +chr6 SNP SNP 26090670 26240616 47 . . R174d +chr6 SNP SNP 26240617 26390562 22 . . R175d +chr6 SNP SNP 26390563 26540508 44 . . R176d +chr6 SNP SNP 26540509 26690455 18 . . R177d +chr6 SNP SNP 26690456 26840401 9 . . R178d +chr6 SNP SNP 26840402 26990347 50 . . R179d +chr6 SNP SNP 26990348 27140294 28 . . R180d +chr6 SNP SNP 27140295 27290240 3 . . R181d +chr6 SNP SNP 27290241 27440186 22 . . R182d +chr6 SNP SNP 27440187 27590133 18 . . R183d +chr6 SNP SNP 27590134 27740079 18 . . R184d +chr6 SNP SNP 27740080 27890025 6 . . R185d +chr6 SNP SNP 27890026 28039972 28 . . R186d +chr6 SNP SNP 28039973 28189918 28 . . R187d +chr6 SNP SNP 28189919 28339864 28 . . R188d +chr6 SNP SNP 28339865 28489810 15 . . R189d +chr6 SNP SNP 28489811 28639757 18 . . R190d +chr6 SNP SNP 28639758 28789703 22 . . R191d +chr6 SNP SNP 28789704 28939649 12 . . R192d +chr6 SNP SNP 28939650 29089596 372 . . R193d +chr6 SNP SNP 29089597 29239542 72 . . R194d +chr6 SNP SNP 29239543 29389488 37 . . R195d +chr6 SNP SNP 29389489 29539435 44 . . R196d +chr6 SNP SNP 29539436 29689381 173 . . R197d +chr6 SNP SNP 29689382 29839327 59 . . R198d +chr6 SNP SNP 29839328 29989274 318 . . R199d +chr6 SNP SNP 29989275 30139220 618 . . R200d +chr6 SNP SNP 30139221 30289166 126 . . R201d +chr6 SNP SNP 30289167 30439113 15 . . R202d +chr6 SNP SNP 30439114 30589059 25 . . R203d +chr6 SNP SNP 30589060 30739005 6 . . R204d +chr6 SNP SNP 30739006 30888952 15 . . R205d +chr6 SNP SNP 30888953 31038898 9 . . R206d +chr6 SNP SNP 31038899 31188844 18 . . R207d +chr6 SNP SNP 31188845 31338791 18 . . R208d +chr6 SNP SNP 31338792 31488737 34 . . R209d +chr6 SNP SNP 31488738 31638683 15 . . R210d +chr6 SNP SNP 31638684 31788630 15 . . R211d +chr6 SNP SNP 31788631 31938576 3 . . R212d +chr6 SNP SNP 31938577 32088522 47 . . R213d +chr6 SNP SNP 32088523 32238469 78 . . R214d +chr6 SNP SNP 32238470 32388415 611 . . R215d +chr6 SNP SNP 32388416 32538361 91 . . R216d +chr6 SNP SNP 32538362 32688307 391 . . R217d +chr6 SNP SNP 32688308 32838254 697 . . R218d +chr6 SNP SNP 32838255 32988200 283 . . R219d +chr6 SNP SNP 32988201 33138146 9 . . R220d +chr6 SNP SNP 33138147 33288093 9 . . R221d +chr6 SNP SNP 33288094 33438039 22 . . R222d +chr6 SNP SNP 33438040 33587985 6 . . R223d +chr6 SNP SNP 33587986 33737932 15 . . R224d +chr6 SNP SNP 33737933 33887878 15 . . R225d +chr6 SNP SNP 33887879 34037824 9 . . R226d +chr6 SNP SNP 34037825 34187771 15 . . R227d +chr6 SNP SNP 34187772 34337717 0 . . R228d +chr6 SNP SNP 34337718 34487663 129 . . R229d +chr6 SNP SNP 34487664 34637610 580 . . R230d +chr6 SNP SNP 34637611 34787556 28 . . R231d +chr6 SNP SNP 34787557 34937502 9 . . R232d +chr6 SNP SNP 34937503 35087449 25 . . R233d +chr6 SNP SNP 35087450 35237395 18 . . R234d +chr6 SNP SNP 35237396 35387341 15 . . R235d +chr6 SNP SNP 35387342 35537288 37 . . R236d +chr6 SNP SNP 35537289 35687234 28 . . R237d +chr6 SNP SNP 35687235 35837180 25 . . R238d +chr6 SNP SNP 35837181 35987127 25 . . R239d +chr6 SNP SNP 35987128 36137073 12 . . R240d +chr6 SNP SNP 36137074 36287019 15 . . R241d +chr6 SNP SNP 36287020 36436966 25 . . R242d +chr6 SNP SNP 36436967 36586912 403 . . R243d +chr6 SNP SNP 36586913 36736858 583 . . R244d +chr6 SNP SNP 36736859 36886804 12 . . R245d +chr6 SNP SNP 36886805 37036751 15 . . R246d +chr6 SNP SNP 37036752 37186697 9 . . R247d +chr6 SNP SNP 37186698 37336643 22 . . R248d +chr6 SNP SNP 37336644 37486590 6 . . R249d +chr6 SNP SNP 37486591 37636536 25 . . R250d +chr6 SNP SNP 37636537 37786482 593 . . R251d +chr6 SNP SNP 37786483 37936429 66 . . R252d +chr6 SNP SNP 37936430 38086375 561 . . R253d +chr6 SNP SNP 38086376 38236321 504 . . R254d +chr6 SNP SNP 38236322 38386268 53 . . R255d +chr6 SNP SNP 38386269 38536214 66 . . R256d +chr6 SNP SNP 38536215 38686160 182 . . R257d +chr6 SNP SNP 38686161 38836107 37 . . R258d +chr6 SNP SNP 38836108 38986053 25 . . R259d +chr6 SNP SNP 38986054 39135999 15 . . R260d +chr6 SNP SNP 39136000 39285946 34 . . R261d +chr6 SNP SNP 39285947 39435892 9 . . R262d +chr6 SNP SNP 39435893 39585838 15 . . R263d +chr6 SNP SNP 39585839 39735785 25 . . R264d +chr6 SNP SNP 39735786 39885731 31 . . R265d +chr6 SNP SNP 39885732 40035677 6 . . R266d +chr6 SNP SNP 40035678 40185624 22 . . R267d +chr6 SNP SNP 40185625 40335570 15 . . R268d +chr6 SNP SNP 40335571 40485516 22 . . R269d +chr6 SNP SNP 40485517 40635462 18 . . R270d +chr6 SNP SNP 40635463 40785409 9 . . R271d +chr6 SNP SNP 40785410 40935355 34 . . R272d +chr6 SNP SNP 40935356 41085301 6 . . R273d +chr6 SNP SNP 41085302 41235248 0 . . R274d +chr6 SNP SNP 41235249 41385194 6 . . R275d +chr6 SNP SNP 41385195 41535140 12 . . R276d +chr6 SNP SNP 41535141 41685087 6 . . R277d +chr6 SNP SNP 41685088 41835033 31 . . R278d +chr6 SNP SNP 41835034 41984979 18 . . R279d +chr6 SNP SNP 41984980 42134926 31 . . R280d +chr6 SNP SNP 42134927 42284872 3 . . R281d +chr6 SNP SNP 42284873 42434818 6 . . R282d +chr6 SNP SNP 42434819 42584765 37 . . R283d +chr6 SNP SNP 42584766 42734711 31 . . R284d +chr6 SNP SNP 42734712 42884657 15 . . R285d +chr6 SNP SNP 42884658 43034604 6 . . R286d +chr6 SNP SNP 43034605 43184550 6 . . R287d +chr6 SNP SNP 43184551 43334496 22 . . R288d +chr6 SNP SNP 43334497 43484443 15 . . R289d +chr6 SNP SNP 43484444 43634389 6 . . R290d +chr6 SNP SNP 43634390 43784335 3 . . R291d +chr6 SNP SNP 43784336 43934282 236 . . R292d +chr6 SNP SNP 43934283 44084228 514 . . R293d +chr6 SNP SNP 44084229 44234174 523 . . R294d +chr6 SNP SNP 44234175 44384121 574 . . R295d +chr6 SNP SNP 44384122 44534067 561 . . R296d +chr6 SNP SNP 44534068 44684013 451 . . R297d +chr6 SNP SNP 44684014 44833959 189 . . R298d +chr6 SNP SNP 44833960 44983906 198 . . R299d +chr6 SNP SNP 44983907 45133852 621 . . R300d +chr6 SNP SNP 45133853 45283798 97 . . R301d +chr6 SNP SNP 45283799 45433745 12 . . R302d +chr6 SNP SNP 45433746 45583691 25 . . R303d +chr6 SNP SNP 45583692 45733637 12 . . R304d +chr6 SNP SNP 45733638 45883584 6 . . R305d +chr6 SNP SNP 45883585 46033530 12 . . R306d +chr6 SNP SNP 46033531 46183476 25 . . R307d +chr6 SNP SNP 46183477 46333423 9 . . R308d +chr6 SNP SNP 46333424 46483369 9 . . R309d +chr6 SNP SNP 46483370 46633315 34 . . R310d +chr6 SNP SNP 46633316 46783262 15 . . R311d +chr6 SNP SNP 46783263 46933208 12 . . R312d +chr6 SNP SNP 46933209 47083154 31 . . R313d +chr6 SNP SNP 47083155 47233101 293 . . R314d +chr6 SNP SNP 47233102 47383047 425 . . R315d +chr6 SNP SNP 47383048 47532993 444 . . R316d +chr6 SNP SNP 47532994 47682940 318 . . R317d +chr6 SNP SNP 47682941 47832886 252 . . R318d +chr6 SNP SNP 47832887 47982832 340 . . R319d +chr6 SNP SNP 47982833 48132779 44 . . R320d +chr6 SNP SNP 48132780 48282725 447 . . R321d +chr6 SNP SNP 48282726 48432671 324 . . R322d +chr6 SNP SNP 48432672 48582618 529 . . R323d +chr6 SNP SNP 48582619 48732564 504 . . R324d +chr6 SNP SNP 48732565 48882510 157 . . R325d +chr6 SNP SNP 48882511 49032456 258 . . R326d +chr6 SNP SNP 49032457 49182403 347 . . R327d +chr6 SNP SNP 49182404 49332349 381 . . R328d +chr6 SNP SNP 49332350 49482295 517 . . R329d +chr6 SNP SNP 49482296 49632242 564 . . R330d +chr6 SNP SNP 49632243 49782188 422 . . R331d +chr6 SNP SNP 49782189 49932134 31 . . R332d +chr6 SNP SNP 49932135 50082081 264 . . R333d +chr6 SNP SNP 50082082 50232027 441 . . R334d +chr6 SNP SNP 50232028 50381973 214 . . R335d +chr6 SNP SNP 50381974 50531920 372 . . R336d +chr6 SNP SNP 50531921 50681866 167 . . R337d +chr6 SNP SNP 50681867 50831812 69 . . R338d +chr6 SNP SNP 50831813 50981759 186 . . R339d +chr6 SNP SNP 50981760 51131705 413 . . R340d +chr6 SNP SNP 51131706 51281651 252 . . R341d +chr6 SNP SNP 51281652 51431598 214 . . R342d +chr6 SNP SNP 51431599 51581544 34 . . R343d +chr6 SNP SNP 51581545 51731490 135 . . R344d +chr6 SNP SNP 51731491 51881437 18 . . R345d +chr6 SNP SNP 51881438 52031383 50 . . R346d +chr6 SNP SNP 52031384 52181329 113 . . R347d +chr6 SNP SNP 52181330 52331276 107 . . R348d +chr6 SNP SNP 52331277 52481222 50 . . R349d +chr6 SNP SNP 52481223 52631168 25 . . R350d +chr6 SNP SNP 52631169 52781114 34 . . R351d +chr6 SNP SNP 52781115 52931061 44 . . R352d +chr6 SNP SNP 52931062 53081007 44 . . R353d +chr6 SNP SNP 53081008 53230953 34 . . R354d +chr6 SNP SNP 53230954 53380900 277 . . R355d +chr6 SNP SNP 53380901 53530846 476 . . R356d +chr6 SNP SNP 53530847 53680792 299 . . R357d +chr6 SNP SNP 53680793 53830739 277 . . R358d +chr6 SNP SNP 53830740 53980685 94 . . R359d +chr6 SNP SNP 53980686 54130631 615 . . R360d +chr6 SNP SNP 54130632 54280578 798 . . R361d +chr6 SNP SNP 54280579 54430524 627 . . R362d +chr6 SNP SNP 54430525 54580470 107 . . R363d +chr6 SNP SNP 54580471 54730417 201 . . R364d +chr6 SNP SNP 54730418 54880363 359 . . R365d +chr6 SNP SNP 54880364 55030309 119 . . R366d +chr6 SNP SNP 55030310 55180256 425 . . R367d +chr6 SNP SNP 55180257 55330202 375 . . R368d +chr6 SNP SNP 55330203 55480148 466 . . R369d +chr6 SNP SNP 55480149 55630095 476 . . R370d +chr6 SNP SNP 55630096 55780041 211 . . R371d +chr6 SNP SNP 55780042 55929987 6 . . R372d +chr6 SNP SNP 55929988 56079934 12 . . R373d +chr6 SNP SNP 56079935 56229880 22 . . R374d +chr6 SNP SNP 56229881 56379826 12 . . R375d +chr6 SNP SNP 56379827 56529773 28 . . R376d +chr6 SNP SNP 56529774 56679719 15 . . R377d +chr6 SNP SNP 56679720 56829665 15 . . R378d +chr6 SNP SNP 56829666 56979611 18 . . R379d +chr6 SNP SNP 56979612 57129558 22 . . R380d +chr6 SNP SNP 57129559 57279504 12 . . R381d +chr6 SNP SNP 57279505 57429450 12 . . R382d +chr6 SNP SNP 57429451 57579397 18 . . R383d +chr6 SNP SNP 57579398 57729343 9 . . R384d +chr6 SNP SNP 57729344 57879289 34 . . R385d +chr6 SNP SNP 57879290 58029236 3 . . R386d +chr6 SNP SNP 58029237 58179182 28 . . R387d +chr6 SNP SNP 58179183 58329128 25 . . R388d +chr6 SNP SNP 58329129 58479075 15 . . R389d +chr6 SNP SNP 58479076 58629021 22 . . R390d +chr6 SNP SNP 58629022 58778967 31 . . R391d +chr6 SNP SNP 58778968 58928914 25 . . R392d +chr6 SNP SNP 58928915 59078860 9 . . R393d +chr6 SNP SNP 59078861 59228806 12 . . R394d +chr6 SNP SNP 59228807 59378753 15 . . R395d +chr6 SNP SNP 59378754 59528699 22 . . R396d +chr6 SNP SNP 59528700 59678645 6 . . R397d +chr6 SNP SNP 59678646 59828592 15 . . R398d +chr6 SNP SNP 59828593 59978538 9 . . R399d +chr6 SNP SNP 59978539 60128484 18 . . R400d +chr6 SNP SNP 60128485 60278431 25 . . R401d +chr6 SNP SNP 60278432 60428377 12 . . R402d +chr6 SNP SNP 60428378 60578323 28 . . R403d +chr6 SNP SNP 60578324 60728270 34 . . R404d +chr6 SNP SNP 60728271 60878216 37 . . R405d +chr6 SNP SNP 60878217 61028162 25 . . R406d +chr6 SNP SNP 61028163 61178108 12 . . R407d +chr6 SNP SNP 61178109 61328055 37 . . R408d +chr6 SNP SNP 61328056 61478001 18 . . R409d +chr6 SNP SNP 61478002 61627947 25 . . R410d +chr6 SNP SNP 61627948 61777894 12 . . R411d +chr6 SNP SNP 61777895 61927840 25 . . R412d +chr6 SNP SNP 61927841 62077786 18 . . R413d +chr6 SNP SNP 62077787 62227733 22 . . R414d +chr6 SNP SNP 62227734 62377679 18 . . R415d +chr6 SNP SNP 62377680 62527625 31 . . R416d +chr6 SNP SNP 62527626 62677572 9 . . R417d +chr6 SNP SNP 62677573 62827518 18 . . R418d +chr6 SNP SNP 62827519 62977464 9 . . R419d +chr6 SNP SNP 62977465 63127411 9 . . R420d +chr6 SNP SNP 63127412 63277357 9 . . R421d +chr6 SNP SNP 63277358 63427303 15 . . R422d +chr6 SNP SNP 63427304 63577250 41 . . R423d +chr6 SNP SNP 63577251 63727196 25 . . R424d +chr6 SNP SNP 63727197 63877142 18 . . R425d +chr6 SNP SNP 63877143 64027089 9 . . R426d +chr6 SNP SNP 64027090 64177035 602 . . R427d +chr6 SNP SNP 64177036 64326981 116 . . R428d +chr6 SNP SNP 64326982 64476928 750 . . R429d +chr6 SNP SNP 64476929 64626874 315 . . R430d +chr6 SNP SNP 64626875 64776820 264 . . R431d +chr6 SNP SNP 64776821 64926766 63 . . R432d +chr6 SNP SNP 64926767 65076713 324 . . R433d +chr6 SNP SNP 65076714 65226659 116 . . R434d +chr6 SNP SNP 65226660 65376605 312 . . R435d +chr6 SNP SNP 65376606 65526552 113 . . R436d +chr6 SNP SNP 65526553 65676498 22 . . R437d +chr6 SNP SNP 65676499 65826444 3 . . R438d +chr6 SNP SNP 65826445 65976391 18 . . R439d +chr6 SNP SNP 65976392 66126337 12 . . R440d +chr6 SNP SNP 66126338 66276283 12 . . R441d +chr6 SNP SNP 66276284 66426230 9 . . R442d +chr6 SNP SNP 66426231 66576176 28 . . R443d +chr6 SNP SNP 66576177 66726122 31 . . R444d +chr6 SNP SNP 66726123 66876069 37 . . R445d +chr6 SNP SNP 66876070 67026015 18 . . R446d +chr6 SNP SNP 67026016 67175961 18 . . R447d +chr6 SNP SNP 67175962 67325908 25 . . R448d +chr6 SNP SNP 67325909 67475854 0 . . R449d +chr6 SNP SNP 67475855 67625800 34 . . R450d +chr6 SNP SNP 67625801 67775747 25 . . R451d +chr6 SNP SNP 67775748 67925693 6 . . R452d +chr6 SNP SNP 67925694 68075639 25 . . R453d +chr6 SNP SNP 68075640 68225586 15 . . R454d +chr6 SNP SNP 68225587 68375532 22 . . R455d +chr6 SNP SNP 68375533 68525478 6 . . R456d +chr6 SNP SNP 68525479 68675425 15 . . R457d +chr6 SNP SNP 68675426 68825371 37 . . R458d +chr6 SNP SNP 68825372 68975317 12 . . R459d +chr6 SNP SNP 68975318 69125263 18 . . R460d +chr6 SNP SNP 69125264 69275210 25 . . R461d +chr6 SNP SNP 69275211 69425156 28 . . R462d +chr6 SNP SNP 69425157 69575102 9 . . R463d +chr6 SNP SNP 69575103 69725049 12 . . R464d +chr6 SNP SNP 69725050 69874995 6 . . R465d +chr6 SNP SNP 69874996 70024941 22 . . R466d +chr6 SNP SNP 70024942 70174888 18 . . R467d +chr6 SNP SNP 70174889 70324834 15 . . R468d +chr6 SNP SNP 70324835 70474780 18 . . R469d +chr6 SNP SNP 70474781 70624727 37 . . R470d +chr6 SNP SNP 70624728 70774673 0 . . R471d +chr6 SNP SNP 70774674 70924619 0 . . R472d +chr6 SNP SNP 70924620 71074566 0 . . R473d +chr6 SNP SNP 71074567 71224512 15 . . R474d +chr6 SNP SNP 71224513 71374458 15 . . R475d +chr6 SNP SNP 71374459 71524405 22 . . R476d +chr6 SNP SNP 71524406 71674351 473 . . R477d +chr6 SNP SNP 71674352 71824297 533 . . R478d +chr6 SNP SNP 71824298 71974244 652 . . R479d +chr6 SNP SNP 71974245 72124190 138 . . R480d +chr6 SNP SNP 72124191 72274136 394 . . R481d +chr6 SNP SNP 72274137 72424083 634 . . R482d +chr6 SNP SNP 72424084 72574029 504 . . R483d +chr6 SNP SNP 72574030 72723975 432 . . R484d +chr6 SNP SNP 72723976 72873922 488 . . R485d +chr6 SNP SNP 72873923 73023868 558 . . R486d +chr6 SNP SNP 73023869 73173814 425 . . R487d +chr6 SNP SNP 73173815 73323760 438 . . R488d +chr6 SNP SNP 73323761 73473707 132 . . R489d +chr6 SNP SNP 73473708 73623653 141 . . R490d +chr6 SNP SNP 73623654 73773599 577 . . R491d +chr6 SNP SNP 73773600 73923546 217 . . R492d +chr6 SNP SNP 73923547 74073492 447 . . R493d +chr6 SNP SNP 74073493 74223438 520 . . R494d +chr6 SNP SNP 74223439 74373385 151 . . R495d +chr6 SNP SNP 74373386 74523331 50 . . R496d +chr6 SNP SNP 74523332 74673277 132 . . R497d +chr6 SNP SNP 74673278 74823224 50 . . R498d +chr6 SNP SNP 74823225 74973170 173 . . R499d +chr6 SNP SNP 74973171 75123116 529 . . R500d +chr6 SNP SNP 75123117 75273063 372 . . R501d +chr6 SNP SNP 75273064 75423009 151 . . R502d +chr6 SNP SNP 75423010 75572955 28 . . R503d +chr6 SNP SNP 75572956 75722902 63 . . R504d +chr6 SNP SNP 75722903 75872848 312 . . R505d +chr6 SNP SNP 75872849 76022794 223 . . R506d +chr6 SNP SNP 76022795 76172741 28 . . R507d +chr6 SNP SNP 76172742 76322687 205 . . R508d +chr6 SNP SNP 76322688 76472633 425 . . R509d +chr6 SNP SNP 76472634 76622580 438 . . R510d +chr6 SNP SNP 76622581 76772526 312 . . R511d +chr6 SNP SNP 76772527 76922472 268 . . R512d +chr6 SNP SNP 76922473 77072418 44 . . R513d +chr6 SNP SNP 77072419 77222365 34 . . R514d +chr6 SNP SNP 77222366 77372311 44 . . R515d +chr6 SNP SNP 77372312 77522257 82 . . R516d +chr6 SNP SNP 77522258 77672204 72 . . R517d +chr6 SNP SNP 77672205 77822150 47 . . R518d +chr6 SNP SNP 77822151 77972096 56 . . R519d +chr6 SNP SNP 77972097 78122043 37 . . R520d +chr6 SNP SNP 78122044 78271989 12 . . R521d +chr6 SNP SNP 78271990 78421935 9 . . R522d +chr6 SNP SNP 78421936 78571882 9 . . R523d +chr6 SNP SNP 78571883 78721828 28 . . R524d +chr6 SNP SNP 78721829 78871774 12 . . R525d +chr6 SNP SNP 78871775 79021721 12 . . R526d +chr6 SNP SNP 79021722 79171667 12 . . R527d +chr6 SNP SNP 79171668 79321613 12 . . R528d +chr6 SNP SNP 79321614 79471560 6 . . R529d +chr6 SNP SNP 79471561 79621506 25 . . R530d +chr6 SNP SNP 79621507 79771452 12 . . R531d +chr6 SNP SNP 79771453 79921399 15 . . R532d +chr6 SNP SNP 79921400 80071345 9 . . R533d +chr6 SNP SNP 80071346 80221291 12 . . R534d +chr6 SNP SNP 80221292 80371238 22 . . R535d +chr6 SNP SNP 80371239 80521184 9 . . R536d +chr6 SNP SNP 80521185 80671130 18 . . R537d +chr6 SNP SNP 80671131 80821077 15 . . R538d +chr6 SNP SNP 80821078 80971023 22 . . R539d +chr6 SNP SNP 80971024 81120969 12 . . R540d +chr6 SNP SNP 81120970 81270915 6 . . R541d +chr6 SNP SNP 81270916 81420862 25 . . R542d +chr6 SNP SNP 81420863 81570808 25 . . R543d +chr6 SNP SNP 81570809 81720754 18 . . R544d +chr6 SNP SNP 81720755 81870701 15 . . R545d +chr6 SNP SNP 81870702 82020647 18 . . R546d +chr6 SNP SNP 82020648 82170593 28 . . R547d +chr6 SNP SNP 82170594 82320540 6 . . R548d +chr6 SNP SNP 82320541 82470486 12 . . R549d +chr6 SNP SNP 82470487 82620432 9 . . R550d +chr6 SNP SNP 82620433 82770379 3 . . R551d +chr6 SNP SNP 82770380 82920325 3 . . R552d +chr6 SNP SNP 82920326 83070271 15 . . R553d +chr6 SNP SNP 83070272 83220218 141 . . R554d +chr6 SNP SNP 83220219 83370164 63 . . R555d +chr6 SNP SNP 83370165 83520110 182 . . R556d +chr6 SNP SNP 83520111 83670057 75 . . R557d +chr6 SNP SNP 83670058 83820003 37 . . R558d +chr6 SNP SNP 83820004 83969949 9 . . R559d +chr6 SNP SNP 83969950 84119896 31 . . R560d +chr6 SNP SNP 84119897 84269842 9 . . R561d +chr6 SNP SNP 84269843 84419788 6 . . R562d +chr6 SNP SNP 84419789 84569735 22 . . R563d +chr6 SNP SNP 84569736 84719681 12 . . R564d +chr6 SNP SNP 84719682 84869627 15 . . R565d +chr6 SNP SNP 84869628 85019574 15 . . R566d +chr6 SNP SNP 85019575 85169520 9 . . R567d +chr6 SNP SNP 85169521 85319466 18 . . R568d +chr6 SNP SNP 85319467 85469412 12 . . R569d +chr6 SNP SNP 85469413 85619359 9 . . R570d +chr6 SNP SNP 85619360 85769305 9 . . R571d +chr6 SNP SNP 85769306 85919251 22 . . R572d +chr6 SNP SNP 85919252 86069198 223 . . R573d +chr6 SNP SNP 86069199 86219144 6 . . R574d +chr6 SNP SNP 86219145 86369090 160 . . R575d +chr6 SNP SNP 86369091 86519037 271 . . R576d +chr6 SNP SNP 86519038 86668983 384 . . R577d +chr6 SNP SNP 86668984 86818929 520 . . R578d +chr6 SNP SNP 86818930 86968876 485 . . R579d +chr6 SNP SNP 86968877 87118822 400 . . R580d +chr6 SNP SNP 87118823 87268768 558 . . R581d +chr6 SNP SNP 87268769 87418715 634 . . R582d +chr6 SNP SNP 87418716 87568661 697 . . R583d +chr6 SNP SNP 87568662 87718607 400 . . R584d +chr6 SNP SNP 87718608 87868554 15 . . R585d +chr6 SNP SNP 87868555 88018500 343 . . R586d +chr6 SNP SNP 88018501 88168446 258 . . R587d +chr6 SNP SNP 88168447 88318393 12 . . R588d +chr6 SNP SNP 88318394 88468339 9 . . R589d +chr6 SNP SNP 88468340 88618285 9 . . R590d +chr6 SNP SNP 88618286 88768232 0 . . R591d +chr6 SNP SNP 88768233 88918178 22 . . R592d +chr6 SNP SNP 88918179 89068124 18 . . R593d +chr6 SNP SNP 89068125 89218070 337 . . R594d +chr6 SNP SNP 89218071 89368017 337 . . R595d +chr6 SNP SNP 89368018 89517963 555 . . R596d +chr6 SNP SNP 89517964 89667909 615 . . R597d +chr6 SNP SNP 89667910 89817856 514 . . R598d +chr6 SNP SNP 89817857 89967802 429 . . R599d +chr6 SNP SNP 89967803 90117748 34 . . R600d +chr6 SNP SNP 90117749 90267695 15 . . R601d +chr6 SNP SNP 90267696 90417641 44 . . R602d +chr6 SNP SNP 90417642 90567587 25 . . R603d +chr6 SNP SNP 90567588 90717534 47 . . R604d +chr6 SNP SNP 90717535 90867480 78 . . R605d +chr6 SNP SNP 90867481 91017426 28 . . R606d +chr6 SNP SNP 91017427 91167373 315 . . R607d +chr6 SNP SNP 91167374 91317319 277 . . R608d +chr6 SNP SNP 91317320 91467265 343 . . R609d +chr6 SNP SNP 91467266 91617212 536 . . R610d +chr6 SNP SNP 91617213 91767158 470 . . R611d +chr6 SNP SNP 91767159 91917104 37 . . R612d +chr6 SNP SNP 91917105 92067051 44 . . R613d +chr6 SNP SNP 92067052 92216997 34 . . R614d +chr6 SNP SNP 92216998 92366943 50 . . R615d +chr6 SNP SNP 92366944 92516890 252 . . R616d +chr6 SNP SNP 92516891 92666836 18 . . R617d +chr6 SNP SNP 92666837 92816782 167 . . R618d +chr6 SNP SNP 92816783 92966729 15 . . R619d +chr6 SNP SNP 92966730 93116675 277 . . R620d +chr6 SNP SNP 93116676 93266621 176 . . R621d +chr6 SNP SNP 93266622 93416567 321 . . R622d +chr6 SNP SNP 93416568 93566514 324 . . R623d +chr6 SNP SNP 93566515 93716460 615 . . R624d +chr6 SNP SNP 93716461 93866406 85 . . R625d +chr6 SNP SNP 93866407 94016353 258 . . R626d +chr6 SNP SNP 94016354 94166299 268 . . R627d +chr6 SNP SNP 94166300 94316245 151 . . R628d +chr6 SNP SNP 94316246 94466192 9 . . R629d +chr6 SNP SNP 94466193 94616138 25 . . R630d +chr6 SNP SNP 94616139 94766084 12 . . R631d +chr6 SNP SNP 94766085 94916031 110 . . R632d +chr6 SNP SNP 94916032 95065977 470 . . R633d +chr6 SNP SNP 95065978 95215923 321 . . R634d +chr6 SNP SNP 95215924 95365870 539 . . R635d +chr6 SNP SNP 95365871 95515816 640 . . R636d +chr6 SNP SNP 95515817 95665762 47 . . R637d +chr6 SNP SNP 95665763 95815709 309 . . R638d +chr6 SNP SNP 95815710 95965655 340 . . R639d +chr6 SNP SNP 95965656 96115601 558 . . R640d +chr6 SNP SNP 96115602 96265548 252 . . R641d +chr6 SNP SNP 96265549 96415494 479 . . R642d +chr6 SNP SNP 96415495 96565440 293 . . R643d +chr6 SNP SNP 96565441 96715387 28 . . R644d +chr6 SNP SNP 96715388 96865333 28 . . R645d +chr6 SNP SNP 96865334 97015279 31 . . R646d +chr6 SNP SNP 97015280 97165226 25 . . R647d +chr6 SNP SNP 97165227 97315172 410 . . R648d +chr6 SNP SNP 97315173 97465118 413 . . R649d +chr6 SNP SNP 97465119 97615064 454 . . R650d +chr6 SNP SNP 97615065 97765011 403 . . R651d +chr6 SNP SNP 97765012 97914957 34 . . R652d +chr6 SNP SNP 97914958 98064903 37 . . R653d +chr6 SNP SNP 98064904 98214850 252 . . R654d +chr6 SNP SNP 98214851 98364796 347 . . R655d +chr6 SNP SNP 98364797 98514742 283 . . R656d +chr6 SNP SNP 98514743 98664689 309 . . R657d +chr6 SNP SNP 98664690 98814635 236 . . R658d +chr6 SNP SNP 98814636 98964581 69 . . R659d +chr6 SNP SNP 98964582 99114528 400 . . R660d +chr6 SNP SNP 99114529 99264474 365 . . R661d +chr6 SNP SNP 99264475 99414420 34 . . R662d +chr6 SNP SNP 99414421 99564367 22 . . R663d +chr6 SNP SNP 99564368 99714313 230 . . R664d +chr6 SNP SNP 99714314 99864259 41 . . R665d +chr6 SNP SNP 99864260 100014206 3 . . R666d +chr6 SNP SNP 100014207 100164152 6 . . R667d +chr6 SNP SNP 100164153 100314098 12 . . R668d +chr6 SNP SNP 100314099 100464045 18 . . R669d +chr6 SNP SNP 100464046 100613991 9 . . R670d +chr6 SNP SNP 100613992 100763937 22 . . R671d +chr6 SNP SNP 100763938 100913884 15 . . R672d +chr6 SNP SNP 100913885 101063830 18 . . R673d +chr6 SNP SNP 101063831 101213776 15 . . R674d +chr6 SNP SNP 101213777 101363722 41 . . R675d +chr6 SNP SNP 101363723 101513669 110 . . R676d +chr6 SNP SNP 101513670 101663615 258 . . R677d +chr6 SNP SNP 101663616 101813561 429 . . R678d +chr6 SNP SNP 101813562 101963508 113 . . R679d +chr6 SNP SNP 101963509 102113454 110 . . R680d +chr6 SNP SNP 102113455 102263400 293 . . R681d +chr6 SNP SNP 102263401 102413347 56 . . R682d +chr6 SNP SNP 102413348 102563293 31 . . R683d +chr6 SNP SNP 102563294 102713239 25 . . R684d +chr6 SNP SNP 102713240 102863186 25 . . R685d +chr6 SNP SNP 102863187 103013132 258 . . R686d +chr6 SNP SNP 103013133 103163078 141 . . R687d +chr6 SNP SNP 103163079 103313025 94 . . R688d +chr6 SNP SNP 103313026 103462971 37 . . R689d +chr6 SNP SNP 103462972 103612917 44 . . R690d +chr6 SNP SNP 103612918 103762864 37 . . R691d +chr6 SNP SNP 103762865 103912810 148 . . R692d +chr6 SNP SNP 103912811 104062756 47 . . R693d +chr6 SNP SNP 104062757 104212703 9 . . R694d +chr6 SNP SNP 104212704 104362649 18 . . R695d +chr6 SNP SNP 104362650 104512595 9 . . R696d +chr6 SNP SNP 104512596 104662542 18 . . R697d +chr6 SNP SNP 104662543 104812488 18 . . R698d +chr6 SNP SNP 104812489 104962434 25 . . R699d +chr6 SNP SNP 104962435 105112381 15 . . R700d +chr6 SNP SNP 105112382 105262327 12 . . R701d +chr6 SNP SNP 105262328 105412273 18 . . R702d +chr6 SNP SNP 105412274 105562219 34 . . R703d +chr6 SNP SNP 105562220 105712166 15 . . R704d +chr6 SNP SNP 105712167 105862112 41 . . R705d +chr6 SNP SNP 105862113 106012058 15 . . R706d +chr6 SNP SNP 106012059 106162005 15 . . R707d +chr6 SNP SNP 106162006 106311951 6 . . R708d +chr6 SNP SNP 106311952 106461897 113 . . R709d +chr6 SNP SNP 106461898 106611844 179 . . R710d +chr6 SNP SNP 106611845 106761790 378 . . R711d +chr6 SNP SNP 106761791 106911736 731 . . R712d +chr6 SNP SNP 106911737 107061683 643 . . R713d +chr6 SNP SNP 107061684 107211629 867 . . R714d +chr6 SNP SNP 107211630 107361575 794 . . R715d +chr6 SNP SNP 107361576 107511522 334 . . R716d +chr6 SNP SNP 107511523 107661468 6 . . R717d +chr6 SNP SNP 107661469 107811414 3 . . R718d +chr6 SNP SNP 107811415 107961361 9 . . R719d +chr6 SNP SNP 107961362 108111307 432 . . R720d +chr6 SNP SNP 108111308 108261253 1000 . . R721d +chr6 SNP SNP 108261254 108411200 728 . . R722d +chr6 SNP SNP 108411201 108561146 574 . . R723d +chr6 SNP SNP 108561147 108711092 454 . . R724d +chr6 SNP SNP 108711093 108861039 586 . . R725d +chr6 SNP SNP 108861040 109010985 839 . . R726d +chr6 SNP SNP 109010986 109160931 555 . . R727d +chr6 SNP SNP 109160932 109310878 634 . . R728d +chr6 SNP SNP 109310879 109460824 529 . . R729d +chr6 SNP SNP 109460825 109610770 492 . . R730d +chr6 SNP SNP 109610771 109760716 167 . . R731d +chr6 SNP SNP 109760717 109910663 504 . . R732d +chr6 SNP SNP 109910664 110060609 933 . . R733d +chr6 SNP SNP 110060610 110210555 675 . . R734d +chr6 SNP SNP 110210556 110360502 517 . . R735d +chr6 SNP SNP 110360503 110510448 738 . . R736d +chr6 SNP SNP 110510449 110660394 548 . . R737d +chr6 SNP SNP 110660395 110810341 839 . . R738d +chr6 SNP SNP 110810342 110960287 492 . . R739d +chr6 SNP SNP 110960288 111110233 779 . . R740d +chr6 SNP SNP 111110234 111260180 473 . . R741d +chr6 SNP SNP 111260181 111410126 0 . . R742d +chr6 SNP SNP 111410127 111560072 0 . . R743d +chr6 SNP SNP 111560073 111710019 0 . . R744d +chr6 SNP SNP 111710020 111859965 236 . . R745d +chr6 SNP SNP 111859966 112009911 160 . . R746d +chr6 SNP SNP 112009912 112159858 406 . . R747d +chr6 SNP SNP 112159859 112309804 492 . . R748d +chr6 SNP SNP 112309805 112459750 277 . . R749d +chr6 SNP SNP 112459751 112609697 164 . . R750d +chr6 SNP SNP 112609698 112759643 299 . . R751d +chr6 SNP SNP 112759644 112909589 580 . . R752d +chr6 SNP SNP 112909590 113059536 498 . . R753d +chr6 SNP SNP 113059537 113209482 236 . . R754d +chr6 SNP SNP 113209483 113359428 268 . . R755d +chr6 SNP SNP 113359429 113509374 217 . . R756d +chr6 SNP SNP 113509375 113659321 305 . . R757d +chr6 SNP SNP 113659322 113809267 299 . . R758d +chr6 SNP SNP 113809268 113959213 331 . . R759d +chr6 SNP SNP 113959214 114109160 517 . . R760d +chr6 SNP SNP 114109161 114259106 343 . . R761d +chr6 SNP SNP 114259107 114409052 69 . . R762d +chr6 SNP SNP 114409053 114558999 113 . . R763d +chr6 SNP SNP 114559000 114708945 479 . . R764d +chr6 SNP SNP 114708946 114858891 504 . . R765d +chr6 SNP SNP 114858892 115008838 72 . . R766d +chr6 SNP SNP 115008839 115158784 290 . . R767d +chr6 SNP SNP 115158785 115308730 435 . . R768d +chr6 SNP SNP 115308731 115458677 410 . . R769d +chr6 SNP SNP 115458678 115608623 69 . . R770d +chr6 SNP SNP 115608624 115758569 78 . . R771d +chr6 SNP SNP 115758570 115908516 18 . . R772d +chr6 SNP SNP 115908517 116058462 47 . . R773d +chr6 SNP SNP 116058463 116208408 94 . . R774d +chr6 SNP SNP 116208409 116358355 154 . . R775d +chr6 SNP SNP 116358356 116508301 154 . . R776d +chr6 SNP SNP 116508302 116658247 394 . . R777d +chr6 SNP SNP 116658248 116808194 432 . . R778d +chr6 SNP SNP 116808195 116958140 422 . . R779d +chr6 SNP SNP 116958141 117108086 577 . . R780d +chr6 SNP SNP 117108087 117258033 135 . . R781d +chr6 SNP SNP 117258034 117407979 305 . . R782d +chr6 SNP SNP 117407980 117557925 334 . . R783d +chr6 SNP SNP 117557926 117707871 28 . . R784d +chr6 SNP SNP 117707872 117857818 34 . . R785d +chr6 SNP SNP 117857819 118007764 12 . . R786d +chr6 SNP SNP 118007765 118157710 18 . . R787d +chr6 SNP SNP 118157711 118307657 25 . . R788d +chr6 SNP SNP 118307658 118457603 6 . . R789d +chr6 SNP SNP 118457604 118607549 37 . . R790d +chr6 SNP SNP 118607550 118757496 88 . . R791d +chr6 SNP SNP 118757497 118907442 69 . . R792d +chr6 SNP SNP 118907443 119057388 400 . . R793d +chr6 SNP SNP 119057389 119207335 261 . . R794d +chr6 SNP SNP 119207336 119357281 388 . . R795d +chr6 SNP SNP 119357282 119507227 173 . . R796d +chr6 SNP SNP 119507228 119657174 69 . . R797d +chr6 SNP SNP 119657175 119807120 350 . . R798d +chr6 SNP SNP 119807121 119957066 138 . . R799d +chr6 SNP SNP 119957067 120107013 400 . . R800d +chr6 SNP SNP 120107014 120256959 542 . . R801d +chr6 SNP SNP 120256960 120406905 621 . . R802d +chr6 SNP SNP 120406906 120556852 466 . . R803d +chr6 SNP SNP 120556853 120706798 302 . . R804d +chr6 SNP SNP 120706799 120856744 138 . . R805d +chr6 SNP SNP 120856745 121006691 3 . . R806d +chr6 SNP SNP 121006692 121156637 18 . . R807d +chr6 SNP SNP 121156638 121306583 444 . . R808d +chr6 SNP SNP 121306584 121456530 501 . . R809d +chr6 SNP SNP 121456531 121606476 627 . . R810d +chr6 SNP SNP 121606477 121756422 271 . . R811d +chr6 SNP SNP 121756423 121906368 6 . . R812d +chr6 SNP SNP 121906369 122056315 154 . . R813d +chr6 SNP SNP 122056316 122206261 154 . . R814d +chr6 SNP SNP 122206262 122356207 656 . . R815d +chr6 SNP SNP 122356208 122506154 283 . . R816d +chr6 SNP SNP 122506155 122656100 135 . . R817d +chr6 SNP SNP 122656101 122806046 88 . . R818d +chr6 SNP SNP 122806047 122955993 126 . . R819d +chr6 SNP SNP 122955994 123105939 0 . . R820d +chr6 SNP SNP 123105940 123255885 173 . . R821d +chr6 SNP SNP 123255886 123405832 91 . . R822d +chr6 SNP SNP 123405833 123555778 22 . . R823d +chr6 SNP SNP 123555779 123705724 12 . . R824d +chr6 SNP SNP 123705725 123855671 6 . . R825d +chr6 SNP SNP 123855672 124005617 6 . . R826d +chr6 SNP SNP 124005618 124155563 15 . . R827d +chr6 SNP SNP 124155564 124305510 28 . . R828d +chr6 SNP SNP 124305511 124455456 6 . . R829d +chr6 SNP SNP 124455457 124605402 15 . . R830d +chr6 SNP SNP 124605403 124755349 18 . . R831d +chr6 SNP SNP 124755350 124905295 12 . . R832d +chr6 SNP SNP 124905296 125055241 25 . . R833d +chr6 SNP SNP 125055242 125205188 22 . . R834d +chr6 SNP SNP 125205189 125355134 22 . . R835d +chr6 SNP SNP 125355135 125505080 31 . . R836d +chr6 SNP SNP 125505081 125655026 31 . . R837d +chr6 SNP SNP 125655027 125804973 173 . . R838d +chr6 SNP SNP 125804974 125954919 454 . . R839d +chr6 SNP SNP 125954920 126104865 422 . . R840d +chr6 SNP SNP 126104866 126254812 425 . . R841d +chr6 SNP SNP 126254813 126404758 328 . . R842d +chr6 SNP SNP 126404759 126554704 0 . . R843d +chr6 SNP SNP 126554705 126704651 0 . . R844d +chr6 SNP SNP 126704652 126854597 9 . . R845d +chr6 SNP SNP 126854598 127004543 6 . . R846d +chr6 SNP SNP 127004544 127154490 22 . . R847d +chr6 SNP SNP 127154491 127304436 9 . . R848d +chr6 SNP SNP 127304437 127454382 22 . . R849d +chr6 SNP SNP 127454383 127604329 12 . . R850d +chr6 SNP SNP 127604330 127754275 526 . . R851d +chr6 SNP SNP 127754276 127904221 441 . . R852d +chr6 SNP SNP 127904222 128054168 223 . . R853d +chr6 SNP SNP 128054169 128204114 97 . . R854d +chr6 SNP SNP 128204115 128354060 164 . . R855d +chr6 SNP SNP 128354061 128504007 110 . . R856d +chr6 SNP SNP 128504008 128653953 593 . . R857d +chr6 SNP SNP 128653954 128803899 397 . . R858d +chr6 SNP SNP 128803900 128953846 643 . . R859d +chr6 SNP SNP 128953847 129103792 444 . . R860d +chr6 SNP SNP 129103793 129253738 328 . . R861d +chr6 SNP SNP 129253739 129403685 287 . . R862d +chr6 SNP SNP 129403686 129553631 419 . . R863d +chr6 SNP SNP 129553632 129703577 419 . . R864d +chr6 SNP SNP 129703578 129853523 403 . . R865d +chr6 SNP SNP 129853524 130003470 151 . . R866d +chr6 SNP SNP 130003471 130153416 195 . . R867d +chr6 SNP SNP 130153417 130303362 151 . . R868d +chr6 SNP SNP 130303363 130453309 536 . . R869d +chr6 SNP SNP 130453310 130603255 451 . . R870d +chr6 SNP SNP 130603256 130753201 220 . . R871d +chr6 SNP SNP 130753202 130903148 211 . . R872d +chr6 SNP SNP 130903149 131053094 28 . . R873d +chr6 SNP SNP 131053095 131203040 271 . . R874d +chr6 SNP SNP 131203041 131352987 962 . . R875d +chr6 SNP SNP 131352988 131502933 637 . . R876d +chr6 SNP SNP 131502934 131652879 681 . . R877d +chr6 SNP SNP 131652880 131802826 744 . . R878d +chr6 SNP SNP 131802827 131952772 425 . . R879d +chr6 SNP SNP 131952773 132102718 170 . . R880d +chr6 SNP SNP 132102719 132252665 350 . . R881d +chr6 SNP SNP 132252666 132402611 3 . . R882d +chr6 SNP SNP 132402612 132552557 179 . . R883d +chr6 SNP SNP 132552558 132702504 823 . . R884d +chr6 SNP SNP 132702505 132852450 356 . . R885d +chr6 SNP SNP 132852451 133002396 637 . . R886d +chr6 SNP SNP 133002397 133152343 312 . . R887d +chr6 SNP SNP 133152344 133302289 561 . . R888d +chr6 SNP SNP 133302290 133452235 274 . . R889d +chr6 SNP SNP 133452236 133602182 148 . . R890d +chr6 SNP SNP 133602183 133752128 0 . . R891d +chr6 SNP SNP 133752129 133902074 3 . . R892d +chr6 SNP SNP 133902075 134052020 0 . . R893d +chr6 SNP SNP 134052021 134201967 290 . . R894d +chr6 SNP SNP 134201968 134351913 690 . . R895d +chr6 SNP SNP 134351914 134501859 403 . . R896d +chr6 SNP SNP 134501860 134651806 347 . . R897d +chr6 SNP SNP 134651807 134801752 526 . . R898d +chr6 SNP SNP 134801753 134951698 589 . . R899d +chr6 SNP SNP 134951699 135101645 914 . . R900d +chr6 SNP SNP 135101646 135251591 794 . . R901d +chr6 SNP SNP 135251592 135401537 611 . . R902d +chr6 SNP SNP 135401538 135551484 552 . . R903d +chr6 SNP SNP 135551485 135701430 668 . . R904d +chr6 SNP SNP 135701431 135851376 611 . . R905d +chr6 SNP SNP 135851377 136001323 810 . . R906d +chr6 SNP SNP 136001324 136151269 911 . . R907d +chr6 SNP SNP 136151270 136301215 757 . . R908d +chr6 SNP SNP 136301216 136451162 624 . . R909d +chr6 SNP SNP 136451163 136601108 801 . . R910d +chr6 SNP SNP 136601109 136751054 438 . . R911d +chr6 SNP SNP 136751055 136901001 851 . . R912d +chr6 SNP SNP 136901002 137050947 678 . . R913d +chr6 SNP SNP 137050948 137200893 504 . . R914d +chr6 SNP SNP 137200894 137350840 378 . . R915d +chr6 SNP SNP 137350841 137500786 671 . . R916d +chr6 SNP SNP 137500787 137650732 391 . . R917d +chr6 SNP SNP 137650733 137800678 517 . . R918d +chr6 SNP SNP 137800679 137950625 611 . . R919d +chr6 SNP SNP 137950626 138100571 208 . . R920d +chr6 SNP SNP 138100572 138250517 3 . . R921d +chr6 SNP SNP 138250518 138400464 6 . . R922d +chr6 SNP SNP 138400465 138550410 0 . . R923d +chr6 SNP SNP 138550411 138700356 6 . . R924d +chr6 SNP SNP 138700357 138850303 570 . . R925d +chr6 SNP SNP 138850304 139000249 526 . . R926d +chr6 SNP SNP 139000250 139150195 624 . . R927d +chr6 SNP SNP 139150196 139300142 649 . . R928d +chr6 SNP SNP 139300143 139450088 539 . . R929d +chr6 SNP SNP 139450089 139600034 583 . . R930d +chr6 SNP SNP 139600035 139749981 599 . . R931d +chr6 SNP SNP 139749982 139899927 697 . . R932d +chr6 SNP SNP 139899928 140049873 365 . . R933d +chr6 SNP SNP 140049874 140199820 305 . . R934d +chr6 SNP SNP 140199821 140349766 362 . . R935d +chr6 SNP SNP 140349767 140499712 577 . . R936d +chr6 SNP SNP 140499713 140649659 160 . . R937d +chr6 SNP SNP 140649660 140799605 12 . . R938d +chr6 SNP SNP 140799606 140949551 6 . . R939d +chr6 SNP SNP 140949552 141099498 37 . . R940d +chr6 SNP SNP 141099499 141249444 12 . . R941d +chr6 SNP SNP 141249445 141399390 9 . . R942d +chr6 SNP SNP 141399391 141549337 25 . . R943d +chr6 SNP SNP 141549338 141699283 9 . . R944d +chr6 SNP SNP 141699284 141849229 18 . . R945d +chr6 SNP SNP 141849230 141999175 6 . . R946d +chr6 SNP SNP 141999176 142149122 12 . . R947d +chr6 SNP SNP 142149123 142299068 18 . . R948d +chr6 SNP SNP 142299069 142449014 3 . . R949d +chr6 SNP SNP 142449015 142598961 41 . . R950d +chr6 SNP SNP 142598962 142748907 12 . . R951d +chr6 SNP SNP 142748908 142898853 9 . . R952d +chr6 SNP SNP 142898854 143048800 6 . . R953d +chr6 SNP SNP 143048801 143198746 9 . . R954d +chr6 SNP SNP 143198747 143348692 18 . . R955d +chr6 SNP SNP 143348693 143498639 15 . . R956d +chr6 SNP SNP 143498640 143648585 22 . . R957d +chr6 SNP SNP 143648586 143798531 12 . . R958d +chr6 SNP SNP 143798532 143948478 28 . . R959d +chr6 SNP SNP 143948479 144098424 18 . . R960d +chr6 SNP SNP 144098425 144248370 6 . . R961d +chr6 SNP SNP 144248371 144398317 22 . . R962d +chr6 SNP SNP 144398318 144548263 706 . . R963d +chr6 SNP SNP 144548264 144698209 835 . . R964d +chr6 SNP SNP 144698210 144848156 630 . . R965d +chr6 SNP SNP 144848157 144998102 564 . . R966d +chr6 SNP SNP 144998103 145148048 753 . . R967d +chr6 SNP SNP 145148049 145297995 599 . . R968d +chr6 SNP SNP 145297996 145447941 141 . . R969d +chr6 SNP SNP 145447942 145597887 6 . . R970d +chr6 SNP SNP 145597888 145747834 12 . . R971d +chr6 SNP SNP 145747835 145897780 85 . . R972d +chr6 SNP SNP 145897781 146047726 271 . . R973d +chr6 SNP SNP 146047727 146197672 662 . . R974d +chr6 SNP SNP 146197673 146347619 599 . . R975d +chr6 SNP SNP 146347620 146497565 432 . . R976d +chr6 SNP SNP 146497566 146647511 293 . . R977d +chr6 SNP SNP 146647512 146797458 37 . . R978d +chr6 SNP SNP 146797459 146947404 905 . . R979d +chr6 SNP SNP 146947405 147097350 501 . . R980d +chr6 SNP SNP 147097351 147247297 403 . . R981d +chr6 SNP SNP 147247298 147397243 3 . . R982d +chr6 SNP SNP 147397244 147547189 3 . . R983d +chr6 SNP SNP 147547190 147697136 9 . . R984d +chr6 SNP SNP 147697137 147847082 9 . . R985d +chr6 SNP SNP 147847083 147997028 15 . . R986d +chr6 SNP SNP 147997029 148146975 482 . . R987d +chr6 SNP SNP 148146976 148296921 176 . . R988d +chr6 SNP SNP 148296922 148446867 473 . . R989d +chr6 SNP SNP 148446868 148596814 167 . . R990d +chr6 SNP SNP 148596815 148746760 277 . . R991d +chr6 SNP SNP 148746761 148896706 290 . . R992d +chr6 SNP SNP 148896707 149046653 179 . . R993d +chr6 SNP SNP 149046654 149196599 643 . . R994d +chr6 SNP SNP 149196600 149346545 44 . . R995d +chr6 SNP SNP 149346546 149496492 220 . . R996d +chr6 SNP SNP 149496493 149646438 88 . . R997d +chr6 SNP SNP 149646439 149796384 50 . . R998d +chr6 SNP SNP 149796385 149946330 25 . . R999d +chr6 SNP SNP 149946331 150096277 0 . . R1000d diff --git a/web/snp/chr7 b/web/snp/chr7 new file mode 100755 index 00000000..329d3668 --- /dev/null +++ b/web/snp/chr7 @@ -0,0 +1,1003 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr7 SNP SNP 11 134411 0 . . R0d +chr7 SNP SNP 134412 268812 0 . . R1d +chr7 SNP SNP 268813 403214 0 . . R2d +chr7 SNP SNP 403215 537615 0 . . R3d +chr7 SNP SNP 537616 672016 0 . . R4d +chr7 SNP SNP 672017 806418 0 . . R5d +chr7 SNP SNP 806419 940819 0 . . R6d +chr7 SNP SNP 940820 1075220 0 . . R7d +chr7 SNP SNP 1075221 1209622 0 . . R8d +chr7 SNP SNP 1209623 1344023 0 . . R9d +chr7 SNP SNP 1344024 1478424 0 . . R10d +chr7 SNP SNP 1478425 1612826 0 . . R11d +chr7 SNP SNP 1612827 1747227 0 . . R12d +chr7 SNP SNP 1747228 1881628 0 . . R13d +chr7 SNP SNP 1881629 2016030 0 . . R14d +chr7 SNP SNP 2016031 2150431 0 . . R15d +chr7 SNP SNP 2150432 2284832 0 . . R16d +chr7 SNP SNP 2284833 2419234 0 . . R17d +chr7 SNP SNP 2419235 2553635 0 . . R18d +chr7 SNP SNP 2553636 2688036 0 . . R19d +chr7 SNP SNP 2688037 2822438 0 . . R20d +chr7 SNP SNP 2822439 2956839 0 . . R21d +chr7 SNP SNP 2956840 3091241 151 . . R22d +chr7 SNP SNP 3091242 3225642 225 . . R23d +chr7 SNP SNP 3225643 3360043 42 . . R24d +chr7 SNP SNP 3360044 3494445 92 . . R25d +chr7 SNP SNP 3494446 3628846 63 . . R26d +chr7 SNP SNP 3628847 3763247 376 . . R27d +chr7 SNP SNP 3763248 3897649 116 . . R28d +chr7 SNP SNP 3897650 4032050 76 . . R29d +chr7 SNP SNP 4032051 4166451 90 . . R30d +chr7 SNP SNP 4166452 4300853 400 . . R31d +chr7 SNP SNP 4300854 4435254 246 . . R32d +chr7 SNP SNP 4435255 4569655 251 . . R33d +chr7 SNP SNP 4569656 4704057 68 . . R34d +chr7 SNP SNP 4704058 4838458 21 . . R35d +chr7 SNP SNP 4838459 4972859 7 . . R36d +chr7 SNP SNP 4972860 5107261 31 . . R37d +chr7 SNP SNP 5107262 5241662 76 . . R38d +chr7 SNP SNP 5241663 5376063 291 . . R39d +chr7 SNP SNP 5376064 5510465 10 . . R40d +chr7 SNP SNP 5510466 5644866 15 . . R41d +chr7 SNP SNP 5644867 5779268 2 . . R42d +chr7 SNP SNP 5779269 5913669 23 . . R43d +chr7 SNP SNP 5913670 6048070 137 . . R44d +chr7 SNP SNP 6048071 6182472 108 . . R45d +chr7 SNP SNP 6182473 6316873 145 . . R46d +chr7 SNP SNP 6316874 6451274 66 . . R47d +chr7 SNP SNP 6451275 6585676 103 . . R48d +chr7 SNP SNP 6585677 6720077 7 . . R49d +chr7 SNP SNP 6720078 6854478 29 . . R50d +chr7 SNP SNP 6854479 6988880 18 . . R51d +chr7 SNP SNP 6988881 7123281 2 . . R52d +chr7 SNP SNP 7123282 7257682 10 . . R53d +chr7 SNP SNP 7257683 7392084 13 . . R54d +chr7 SNP SNP 7392085 7526485 18 . . R55d +chr7 SNP SNP 7526486 7660886 45 . . R56d +chr7 SNP SNP 7660887 7795288 26 . . R57d +chr7 SNP SNP 7795289 7929689 47 . . R58d +chr7 SNP SNP 7929690 8064090 119 . . R59d +chr7 SNP SNP 8064091 8198492 63 . . R60d +chr7 SNP SNP 8198493 8332893 50 . . R61d +chr7 SNP SNP 8332894 8467294 53 . . R62d +chr7 SNP SNP 8467295 8601696 183 . . R63d +chr7 SNP SNP 8601697 8736097 326 . . R64d +chr7 SNP SNP 8736098 8870499 180 . . R65d +chr7 SNP SNP 8870500 9004900 55 . . R66d +chr7 SNP SNP 9004901 9139301 278 . . R67d +chr7 SNP SNP 9139302 9273703 45 . . R68d +chr7 SNP SNP 9273704 9408104 42 . . R69d +chr7 SNP SNP 9408105 9542505 47 . . R70d +chr7 SNP SNP 9542506 9676907 18 . . R71d +chr7 SNP SNP 9676908 9811308 42 . . R72d +chr7 SNP SNP 9811309 9945709 50 . . R73d +chr7 SNP SNP 9945710 10080111 39 . . R74d +chr7 SNP SNP 10080112 10214512 114 . . R75d +chr7 SNP SNP 10214513 10348913 169 . . R76d +chr7 SNP SNP 10348914 10483315 26 . . R77d +chr7 SNP SNP 10483316 10617716 71 . . R78d +chr7 SNP SNP 10617717 10752117 244 . . R79d +chr7 SNP SNP 10752118 10886519 379 . . R80d +chr7 SNP SNP 10886520 11020920 511 . . R81d +chr7 SNP SNP 11020921 11155321 663 . . R82d +chr7 SNP SNP 11155322 11289723 737 . . R83d +chr7 SNP SNP 11289724 11424124 92 . . R84d +chr7 SNP SNP 11424125 11558526 26 . . R85d +chr7 SNP SNP 11558527 11692927 79 . . R86d +chr7 SNP SNP 11692928 11827328 71 . . R87d +chr7 SNP SNP 11827329 11961730 169 . . R88d +chr7 SNP SNP 11961731 12096131 0 . . R89d +chr7 SNP SNP 12096132 12230532 225 . . R90d +chr7 SNP SNP 12230533 12364934 267 . . R91d +chr7 SNP SNP 12364935 12499335 249 . . R92d +chr7 SNP SNP 12499336 12633736 106 . . R93d +chr7 SNP SNP 12633737 12768138 116 . . R94d +chr7 SNP SNP 12768139 12902539 209 . . R95d +chr7 SNP SNP 12902540 13036940 137 . . R96d +chr7 SNP SNP 13036941 13171342 108 . . R97d +chr7 SNP SNP 13171343 13305743 129 . . R98d +chr7 SNP SNP 13305744 13440144 137 . . R99d +chr7 SNP SNP 13440145 13574546 251 . . R100d +chr7 SNP SNP 13574547 13708947 204 . . R101d +chr7 SNP SNP 13708948 13843348 257 . . R102d +chr7 SNP SNP 13843349 13977750 230 . . R103d +chr7 SNP SNP 13977751 14112151 145 . . R104d +chr7 SNP SNP 14112152 14246552 222 . . R105d +chr7 SNP SNP 14246553 14380954 129 . . R106d +chr7 SNP SNP 14380955 14515355 114 . . R107d +chr7 SNP SNP 14515356 14649757 0 . . R108d +chr7 SNP SNP 14649758 14784158 0 . . R109d +chr7 SNP SNP 14784159 14918559 63 . . R110d +chr7 SNP SNP 14918560 15052961 47 . . R111d +chr7 SNP SNP 15052962 15187362 7 . . R112d +chr7 SNP SNP 15187363 15321763 10 . . R113d +chr7 SNP SNP 15321764 15456165 198 . . R114d +chr7 SNP SNP 15456166 15590566 111 . . R115d +chr7 SNP SNP 15590567 15724967 196 . . R116d +chr7 SNP SNP 15724968 15859369 183 . . R117d +chr7 SNP SNP 15859370 15993770 37 . . R118d +chr7 SNP SNP 15993771 16128171 21 . . R119d +chr7 SNP SNP 16128172 16262573 10 . . R120d +chr7 SNP SNP 16262574 16396974 21 . . R121d +chr7 SNP SNP 16396975 16531375 7 . . R122d +chr7 SNP SNP 16531376 16665777 7 . . R123d +chr7 SNP SNP 16665778 16800178 10 . . R124d +chr7 SNP SNP 16800179 16934579 39 . . R125d +chr7 SNP SNP 16934580 17068981 71 . . R126d +chr7 SNP SNP 17068982 17203382 29 . . R127d +chr7 SNP SNP 17203383 17337784 31 . . R128d +chr7 SNP SNP 17337785 17472185 15 . . R129d +chr7 SNP SNP 17472186 17606586 5 . . R130d +chr7 SNP SNP 17606587 17740988 10 . . R131d +chr7 SNP SNP 17740989 17875389 55 . . R132d +chr7 SNP SNP 17875390 18009790 39 . . R133d +chr7 SNP SNP 18009791 18144192 42 . . R134d +chr7 SNP SNP 18144193 18278593 246 . . R135d +chr7 SNP SNP 18278594 18412994 265 . . R136d +chr7 SNP SNP 18412995 18547396 103 . . R137d +chr7 SNP SNP 18547397 18681797 87 . . R138d +chr7 SNP SNP 18681798 18816198 18 . . R139d +chr7 SNP SNP 18816199 18950600 37 . . R140d +chr7 SNP SNP 18950601 19085001 42 . . R141d +chr7 SNP SNP 19085002 19219402 61 . . R142d +chr7 SNP SNP 19219403 19353804 26 . . R143d +chr7 SNP SNP 19353805 19488205 66 . . R144d +chr7 SNP SNP 19488206 19622606 23 . . R145d +chr7 SNP SNP 19622607 19757008 10 . . R146d +chr7 SNP SNP 19757009 19891409 18 . . R147d +chr7 SNP SNP 19891410 20025811 23 . . R148d +chr7 SNP SNP 20025812 20160212 13 . . R149d +chr7 SNP SNP 20160213 20294613 15 . . R150d +chr7 SNP SNP 20294614 20429015 2 . . R151d +chr7 SNP SNP 20429016 20563416 13 . . R152d +chr7 SNP SNP 20563417 20697817 10 . . R153d +chr7 SNP SNP 20697818 20832219 21 . . R154d +chr7 SNP SNP 20832220 20966620 79 . . R155d +chr7 SNP SNP 20966621 21101021 74 . . R156d +chr7 SNP SNP 21101022 21235423 87 . . R157d +chr7 SNP SNP 21235424 21369824 143 . . R158d +chr7 SNP SNP 21369825 21504225 310 . . R159d +chr7 SNP SNP 21504226 21638627 368 . . R160d +chr7 SNP SNP 21638628 21773028 352 . . R161d +chr7 SNP SNP 21773029 21907429 278 . . R162d +chr7 SNP SNP 21907430 22041831 716 . . R163d +chr7 SNP SNP 22041832 22176232 488 . . R164d +chr7 SNP SNP 22176233 22310633 549 . . R165d +chr7 SNP SNP 22310634 22445035 551 . . R166d +chr7 SNP SNP 22445036 22579436 350 . . R167d +chr7 SNP SNP 22579437 22713837 482 . . R168d +chr7 SNP SNP 22713838 22848239 342 . . R169d +chr7 SNP SNP 22848240 22982640 389 . . R170d +chr7 SNP SNP 22982641 23117042 259 . . R171d +chr7 SNP SNP 23117043 23251443 159 . . R172d +chr7 SNP SNP 23251444 23385844 140 . . R173d +chr7 SNP SNP 23385845 23520246 297 . . R174d +chr7 SNP SNP 23520247 23654647 689 . . R175d +chr7 SNP SNP 23654648 23789048 352 . . R176d +chr7 SNP SNP 23789049 23923450 363 . . R177d +chr7 SNP SNP 23923451 24057851 588 . . R178d +chr7 SNP SNP 24057852 24192252 474 . . R179d +chr7 SNP SNP 24192253 24326654 530 . . R180d +chr7 SNP SNP 24326655 24461055 360 . . R181d +chr7 SNP SNP 24461056 24595456 328 . . R182d +chr7 SNP SNP 24595457 24729858 376 . . R183d +chr7 SNP SNP 24729859 24864259 137 . . R184d +chr7 SNP SNP 24864260 24998660 119 . . R185d +chr7 SNP SNP 24998661 25133062 302 . . R186d +chr7 SNP SNP 25133063 25267463 273 . . R187d +chr7 SNP SNP 25267464 25401864 480 . . R188d +chr7 SNP SNP 25401865 25536266 254 . . R189d +chr7 SNP SNP 25536267 25670667 315 . . R190d +chr7 SNP SNP 25670668 25805069 159 . . R191d +chr7 SNP SNP 25805070 25939470 236 . . R192d +chr7 SNP SNP 25939471 26073871 363 . . R193d +chr7 SNP SNP 26073872 26208273 408 . . R194d +chr7 SNP SNP 26208274 26342674 98 . . R195d +chr7 SNP SNP 26342675 26477075 148 . . R196d +chr7 SNP SNP 26477076 26611477 225 . . R197d +chr7 SNP SNP 26611478 26745878 145 . . R198d +chr7 SNP SNP 26745879 26880279 82 . . R199d +chr7 SNP SNP 26880280 27014681 7 . . R200d +chr7 SNP SNP 27014682 27149082 7 . . R201d +chr7 SNP SNP 27149083 27283483 2 . . R202d +chr7 SNP SNP 27283484 27417885 13 . . R203d +chr7 SNP SNP 27417886 27552286 5 . . R204d +chr7 SNP SNP 27552287 27686687 13 . . R205d +chr7 SNP SNP 27686688 27821089 13 . . R206d +chr7 SNP SNP 27821090 27955490 10 . . R207d +chr7 SNP SNP 27955491 28089891 10 . . R208d +chr7 SNP SNP 28089892 28224293 23 . . R209d +chr7 SNP SNP 28224294 28358694 2 . . R210d +chr7 SNP SNP 28358695 28493095 21 . . R211d +chr7 SNP SNP 28493096 28627497 76 . . R212d +chr7 SNP SNP 28627498 28761898 18 . . R213d +chr7 SNP SNP 28761899 28896300 68 . . R214d +chr7 SNP SNP 28896301 29030701 58 . . R215d +chr7 SNP SNP 29030702 29165102 175 . . R216d +chr7 SNP SNP 29165103 29299504 291 . . R217d +chr7 SNP SNP 29299505 29433905 538 . . R218d +chr7 SNP SNP 29433906 29568306 429 . . R219d +chr7 SNP SNP 29568307 29702708 427 . . R220d +chr7 SNP SNP 29702709 29837109 469 . . R221d +chr7 SNP SNP 29837110 29971510 448 . . R222d +chr7 SNP SNP 29971511 30105912 151 . . R223d +chr7 SNP SNP 30105913 30240313 493 . . R224d +chr7 SNP SNP 30240314 30374714 305 . . R225d +chr7 SNP SNP 30374715 30509116 503 . . R226d +chr7 SNP SNP 30509117 30643517 135 . . R227d +chr7 SNP SNP 30643518 30777918 344 . . R228d +chr7 SNP SNP 30777919 30912320 753 . . R229d +chr7 SNP SNP 30912321 31046721 503 . . R230d +chr7 SNP SNP 31046722 31181122 564 . . R231d +chr7 SNP SNP 31181123 31315524 514 . . R232d +chr7 SNP SNP 31315525 31449925 419 . . R233d +chr7 SNP SNP 31449926 31584327 490 . . R234d +chr7 SNP SNP 31584328 31718728 541 . . R235d +chr7 SNP SNP 31718729 31853129 297 . . R236d +chr7 SNP SNP 31853130 31987531 641 . . R237d +chr7 SNP SNP 31987532 32121932 623 . . R238d +chr7 SNP SNP 32121933 32256333 586 . . R239d +chr7 SNP SNP 32256334 32390735 517 . . R240d +chr7 SNP SNP 32390736 32525136 405 . . R241d +chr7 SNP SNP 32525137 32659537 270 . . R242d +chr7 SNP SNP 32659538 32793939 257 . . R243d +chr7 SNP SNP 32793940 32928340 594 . . R244d +chr7 SNP SNP 32928341 33062741 641 . . R245d +chr7 SNP SNP 33062742 33197143 477 . . R246d +chr7 SNP SNP 33197144 33331544 387 . . R247d +chr7 SNP SNP 33331545 33465945 50 . . R248d +chr7 SNP SNP 33465946 33600347 175 . . R249d +chr7 SNP SNP 33600348 33734748 198 . . R250d +chr7 SNP SNP 33734749 33869149 140 . . R251d +chr7 SNP SNP 33869150 34003551 29 . . R252d +chr7 SNP SNP 34003552 34137952 55 . . R253d +chr7 SNP SNP 34137953 34272353 403 . . R254d +chr7 SNP SNP 34272354 34406755 660 . . R255d +chr7 SNP SNP 34406756 34541156 397 . . R256d +chr7 SNP SNP 34541157 34675558 374 . . R257d +chr7 SNP SNP 34675559 34809959 119 . . R258d +chr7 SNP SNP 34809960 34944360 188 . . R259d +chr7 SNP SNP 34944361 35078762 190 . . R260d +chr7 SNP SNP 35078763 35213163 47 . . R261d +chr7 SNP SNP 35213164 35347564 0 . . R262d +chr7 SNP SNP 35347565 35481966 47 . . R263d +chr7 SNP SNP 35481967 35616367 334 . . R264d +chr7 SNP SNP 35616368 35750768 193 . . R265d +chr7 SNP SNP 35750769 35885170 15 . . R266d +chr7 SNP SNP 35885171 36019571 18 . . R267d +chr7 SNP SNP 36019572 36153972 5 . . R268d +chr7 SNP SNP 36153973 36288374 0 . . R269d +chr7 SNP SNP 36288375 36422775 5 . . R270d +chr7 SNP SNP 36422776 36557176 18 . . R271d +chr7 SNP SNP 36557177 36691578 13 . . R272d +chr7 SNP SNP 36691579 36825979 7 . . R273d +chr7 SNP SNP 36825980 36960380 10 . . R274d +chr7 SNP SNP 36960381 37094782 2 . . R275d +chr7 SNP SNP 37094783 37229183 18 . . R276d +chr7 SNP SNP 37229184 37363585 2 . . R277d +chr7 SNP SNP 37363586 37497986 10 . . R278d +chr7 SNP SNP 37497987 37632387 21 . . R279d +chr7 SNP SNP 37632388 37766789 71 . . R280d +chr7 SNP SNP 37766790 37901190 26 . . R281d +chr7 SNP SNP 37901191 38035591 145 . . R282d +chr7 SNP SNP 38035592 38169993 376 . . R283d +chr7 SNP SNP 38169994 38304394 172 . . R284d +chr7 SNP SNP 38304395 38438795 225 . . R285d +chr7 SNP SNP 38438796 38573197 302 . . R286d +chr7 SNP SNP 38573198 38707598 74 . . R287d +chr7 SNP SNP 38707599 38841999 29 . . R288d +chr7 SNP SNP 38842000 38976401 169 . . R289d +chr7 SNP SNP 38976402 39110802 143 . . R290d +chr7 SNP SNP 39110803 39245203 161 . . R291d +chr7 SNP SNP 39245204 39379605 318 . . R292d +chr7 SNP SNP 39379606 39514006 82 . . R293d +chr7 SNP SNP 39514007 39648407 0 . . R294d +chr7 SNP SNP 39648408 39782809 79 . . R295d +chr7 SNP SNP 39782810 39917210 294 . . R296d +chr7 SNP SNP 39917211 40051612 58 . . R297d +chr7 SNP SNP 40051613 40186013 190 . . R298d +chr7 SNP SNP 40186014 40320414 180 . . R299d +chr7 SNP SNP 40320415 40454816 137 . . R300d +chr7 SNP SNP 40454817 40589217 63 . . R301d +chr7 SNP SNP 40589218 40723618 34 . . R302d +chr7 SNP SNP 40723619 40858020 7 . . R303d +chr7 SNP SNP 40858021 40992421 34 . . R304d +chr7 SNP SNP 40992422 41126822 278 . . R305d +chr7 SNP SNP 41126823 41261224 61 . . R306d +chr7 SNP SNP 41261225 41395625 15 . . R307d +chr7 SNP SNP 41395626 41530026 193 . . R308d +chr7 SNP SNP 41530027 41664428 262 . . R309d +chr7 SNP SNP 41664429 41798829 180 . . R310d +chr7 SNP SNP 41798830 41933230 90 . . R311d +chr7 SNP SNP 41933231 42067632 82 . . R312d +chr7 SNP SNP 42067633 42202033 297 . . R313d +chr7 SNP SNP 42202034 42336434 228 . . R314d +chr7 SNP SNP 42336435 42470836 193 . . R315d +chr7 SNP SNP 42470837 42605237 172 . . R316d +chr7 SNP SNP 42605238 42739638 71 . . R317d +chr7 SNP SNP 42739639 42874040 21 . . R318d +chr7 SNP SNP 42874041 43008441 7 . . R319d +chr7 SNP SNP 43008442 43142843 18 . . R320d +chr7 SNP SNP 43142844 43277244 23 . . R321d +chr7 SNP SNP 43277245 43411645 172 . . R322d +chr7 SNP SNP 43411646 43546047 76 . . R323d +chr7 SNP SNP 43546048 43680448 246 . . R324d +chr7 SNP SNP 43680449 43814849 397 . . R325d +chr7 SNP SNP 43814850 43949251 432 . . R326d +chr7 SNP SNP 43949252 44083652 435 . . R327d +chr7 SNP SNP 44083653 44218053 305 . . R328d +chr7 SNP SNP 44218054 44352455 114 . . R329d +chr7 SNP SNP 44352456 44486856 175 . . R330d +chr7 SNP SNP 44486857 44621257 196 . . R331d +chr7 SNP SNP 44621258 44755659 267 . . R332d +chr7 SNP SNP 44755660 44890060 92 . . R333d +chr7 SNP SNP 44890061 45024461 135 . . R334d +chr7 SNP SNP 45024462 45158863 241 . . R335d +chr7 SNP SNP 45158864 45293264 188 . . R336d +chr7 SNP SNP 45293265 45427665 204 . . R337d +chr7 SNP SNP 45427666 45562067 379 . . R338d +chr7 SNP SNP 45562068 45696468 305 . . R339d +chr7 SNP SNP 45696469 45830870 172 . . R340d +chr7 SNP SNP 45830871 45965271 164 . . R341d +chr7 SNP SNP 45965272 46099672 352 . . R342d +chr7 SNP SNP 46099673 46234074 100 . . R343d +chr7 SNP SNP 46234075 46368475 212 . . R344d +chr7 SNP SNP 46368476 46502876 251 . . R345d +chr7 SNP SNP 46502877 46637278 204 . . R346d +chr7 SNP SNP 46637279 46771679 212 . . R347d +chr7 SNP SNP 46771680 46906080 108 . . R348d +chr7 SNP SNP 46906081 47040482 31 . . R349d +chr7 SNP SNP 47040483 47174883 347 . . R350d +chr7 SNP SNP 47174884 47309284 299 . . R351d +chr7 SNP SNP 47309285 47443686 100 . . R352d +chr7 SNP SNP 47443687 47578087 129 . . R353d +chr7 SNP SNP 47578088 47712488 114 . . R354d +chr7 SNP SNP 47712489 47846890 251 . . R355d +chr7 SNP SNP 47846891 47981291 135 . . R356d +chr7 SNP SNP 47981292 48115692 0 . . R357d +chr7 SNP SNP 48115693 48250094 0 . . R358d +chr7 SNP SNP 48250095 48384495 2 . . R359d +chr7 SNP SNP 48384496 48518896 5 . . R360d +chr7 SNP SNP 48518897 48653298 61 . . R361d +chr7 SNP SNP 48653299 48787699 7 . . R362d +chr7 SNP SNP 48787700 48922101 275 . . R363d +chr7 SNP SNP 48922102 49056502 509 . . R364d +chr7 SNP SNP 49056503 49190903 1000 . . R365d +chr7 SNP SNP 49190904 49325305 816 . . R366d +chr7 SNP SNP 49325306 49459706 697 . . R367d +chr7 SNP SNP 49459707 49594107 771 . . R368d +chr7 SNP SNP 49594108 49728509 846 . . R369d +chr7 SNP SNP 49728510 49862910 559 . . R370d +chr7 SNP SNP 49862911 49997311 39 . . R371d +chr7 SNP SNP 49997312 50131713 599 . . R372d +chr7 SNP SNP 50131714 50266114 599 . . R373d +chr7 SNP SNP 50266115 50400515 0 . . R374d +chr7 SNP SNP 50400516 50534917 0 . . R375d +chr7 SNP SNP 50534918 50669318 323 . . R376d +chr7 SNP SNP 50669319 50803719 604 . . R377d +chr7 SNP SNP 50803720 50938121 801 . . R378d +chr7 SNP SNP 50938122 51072522 424 . . R379d +chr7 SNP SNP 51072523 51206923 596 . . R380d +chr7 SNP SNP 51206924 51341325 641 . . R381d +chr7 SNP SNP 51341326 51475726 437 . . R382d +chr7 SNP SNP 51475727 51610128 851 . . R383d +chr7 SNP SNP 51610129 51744529 588 . . R384d +chr7 SNP SNP 51744530 51878930 514 . . R385d +chr7 SNP SNP 51878931 52013332 644 . . R386d +chr7 SNP SNP 52013333 52147733 546 . . R387d +chr7 SNP SNP 52147734 52282134 342 . . R388d +chr7 SNP SNP 52282135 52416536 461 . . R389d +chr7 SNP SNP 52416537 52550937 490 . . R390d +chr7 SNP SNP 52550938 52685338 122 . . R391d +chr7 SNP SNP 52685339 52819740 275 . . R392d +chr7 SNP SNP 52819741 52954141 411 . . R393d +chr7 SNP SNP 52954142 53088542 527 . . R394d +chr7 SNP SNP 53088543 53222944 400 . . R395d +chr7 SNP SNP 53222945 53357345 379 . . R396d +chr7 SNP SNP 53357346 53491746 668 . . R397d +chr7 SNP SNP 53491747 53626148 440 . . R398d +chr7 SNP SNP 53626149 53760549 376 . . R399d +chr7 SNP SNP 53760550 53894950 307 . . R400d +chr7 SNP SNP 53894951 54029352 538 . . R401d +chr7 SNP SNP 54029353 54163753 458 . . R402d +chr7 SNP SNP 54163754 54298154 586 . . R403d +chr7 SNP SNP 54298155 54432556 323 . . R404d +chr7 SNP SNP 54432557 54566957 376 . . R405d +chr7 SNP SNP 54566958 54701359 530 . . R406d +chr7 SNP SNP 54701360 54835760 610 . . R407d +chr7 SNP SNP 54835761 54970161 618 . . R408d +chr7 SNP SNP 54970162 55104563 657 . . R409d +chr7 SNP SNP 55104564 55238964 535 . . R410d +chr7 SNP SNP 55238965 55373365 153 . . R411d +chr7 SNP SNP 55373366 55507767 18 . . R412d +chr7 SNP SNP 55507768 55642168 18 . . R413d +chr7 SNP SNP 55642169 55776569 129 . . R414d +chr7 SNP SNP 55776570 55910971 45 . . R415d +chr7 SNP SNP 55910972 56045372 50 . . R416d +chr7 SNP SNP 56045373 56179773 23 . . R417d +chr7 SNP SNP 56179774 56314175 47 . . R418d +chr7 SNP SNP 56314176 56448576 23 . . R419d +chr7 SNP SNP 56448577 56582977 68 . . R420d +chr7 SNP SNP 56582978 56717379 265 . . R421d +chr7 SNP SNP 56717380 56851780 440 . . R422d +chr7 SNP SNP 56851781 56986181 23 . . R423d +chr7 SNP SNP 56986182 57120583 249 . . R424d +chr7 SNP SNP 57120584 57254984 339 . . R425d +chr7 SNP SNP 57254985 57389386 84 . . R426d +chr7 SNP SNP 57389387 57523787 39 . . R427d +chr7 SNP SNP 57523788 57658188 129 . . R428d +chr7 SNP SNP 57658189 57792590 58 . . R429d +chr7 SNP SNP 57792591 57926991 15 . . R430d +chr7 SNP SNP 57926992 58061392 31 . . R431d +chr7 SNP SNP 58061393 58195794 283 . . R432d +chr7 SNP SNP 58195795 58330195 53 . . R433d +chr7 SNP SNP 58330196 58464596 18 . . R434d +chr7 SNP SNP 58464597 58598998 37 . . R435d +chr7 SNP SNP 58598999 58733399 291 . . R436d +chr7 SNP SNP 58733400 58867800 535 . . R437d +chr7 SNP SNP 58867801 59002202 416 . . R438d +chr7 SNP SNP 59002203 59136603 251 . . R439d +chr7 SNP SNP 59136604 59271004 76 . . R440d +chr7 SNP SNP 59271005 59405406 100 . . R441d +chr7 SNP SNP 59405407 59539807 55 . . R442d +chr7 SNP SNP 59539808 59674208 175 . . R443d +chr7 SNP SNP 59674209 59808610 297 . . R444d +chr7 SNP SNP 59808611 59943011 254 . . R445d +chr7 SNP SNP 59943012 60077413 23 . . R446d +chr7 SNP SNP 60077414 60211814 153 . . R447d +chr7 SNP SNP 60211815 60346215 312 . . R448d +chr7 SNP SNP 60346216 60480617 37 . . R449d +chr7 SNP SNP 60480618 60615018 50 . . R450d +chr7 SNP SNP 60615019 60749419 167 . . R451d +chr7 SNP SNP 60749420 60883821 334 . . R452d +chr7 SNP SNP 60883822 61018222 395 . . R453d +chr7 SNP SNP 61018223 61152623 286 . . R454d +chr7 SNP SNP 61152624 61287025 45 . . R455d +chr7 SNP SNP 61287026 61421426 106 . . R456d +chr7 SNP SNP 61421427 61555827 228 . . R457d +chr7 SNP SNP 61555828 61690229 31 . . R458d +chr7 SNP SNP 61690230 61824630 7 . . R459d +chr7 SNP SNP 61824631 61959031 92 . . R460d +chr7 SNP SNP 61959032 62093433 222 . . R461d +chr7 SNP SNP 62093434 62227834 294 . . R462d +chr7 SNP SNP 62227835 62362235 249 . . R463d +chr7 SNP SNP 62362236 62496637 363 . . R464d +chr7 SNP SNP 62496638 62631038 262 . . R465d +chr7 SNP SNP 62631039 62765439 411 . . R466d +chr7 SNP SNP 62765440 62899841 119 . . R467d +chr7 SNP SNP 62899842 63034242 204 . . R468d +chr7 SNP SNP 63034243 63168644 161 . . R469d +chr7 SNP SNP 63168645 63303045 435 . . R470d +chr7 SNP SNP 63303046 63437446 212 . . R471d +chr7 SNP SNP 63437447 63571848 84 . . R472d +chr7 SNP SNP 63571849 63706249 61 . . R473d +chr7 SNP SNP 63706250 63840650 328 . . R474d +chr7 SNP SNP 63840651 63975052 334 . . R475d +chr7 SNP SNP 63975053 64109453 145 . . R476d +chr7 SNP SNP 64109454 64243854 259 . . R477d +chr7 SNP SNP 64243855 64378256 416 . . R478d +chr7 SNP SNP 64378257 64512657 108 . . R479d +chr7 SNP SNP 64512658 64647058 244 . . R480d +chr7 SNP SNP 64647059 64781460 71 . . R481d +chr7 SNP SNP 64781461 64915861 45 . . R482d +chr7 SNP SNP 64915862 65050262 355 . . R483d +chr7 SNP SNP 65050263 65184664 562 . . R484d +chr7 SNP SNP 65184665 65319065 435 . . R485d +chr7 SNP SNP 65319066 65453466 453 . . R486d +chr7 SNP SNP 65453467 65587868 543 . . R487d +chr7 SNP SNP 65587869 65722269 236 . . R488d +chr7 SNP SNP 65722270 65856671 47 . . R489d +chr7 SNP SNP 65856672 65991072 10 . . R490d +chr7 SNP SNP 65991073 66125473 34 . . R491d +chr7 SNP SNP 66125474 66259875 21 . . R492d +chr7 SNP SNP 66259876 66394276 305 . . R493d +chr7 SNP SNP 66394277 66528677 228 . . R494d +chr7 SNP SNP 66528678 66663079 275 . . R495d +chr7 SNP SNP 66663080 66797480 18 . . R496d +chr7 SNP SNP 66797481 66931881 31 . . R497d +chr7 SNP SNP 66931882 67066283 23 . . R498d +chr7 SNP SNP 67066284 67200684 201 . . R499d +chr7 SNP SNP 67200685 67335085 175 . . R500d +chr7 SNP SNP 67335086 67469487 275 . . R501d +chr7 SNP SNP 67469488 67603888 347 . . R502d +chr7 SNP SNP 67603889 67738289 379 . . R503d +chr7 SNP SNP 67738290 67872691 432 . . R504d +chr7 SNP SNP 67872692 68007092 196 . . R505d +chr7 SNP SNP 68007093 68141493 108 . . R506d +chr7 SNP SNP 68141494 68275895 21 . . R507d +chr7 SNP SNP 68275896 68410296 257 . . R508d +chr7 SNP SNP 68410297 68544697 270 . . R509d +chr7 SNP SNP 68544698 68679099 445 . . R510d +chr7 SNP SNP 68679100 68813500 336 . . R511d +chr7 SNP SNP 68813501 68947902 265 . . R512d +chr7 SNP SNP 68947903 69082303 275 . . R513d +chr7 SNP SNP 69082304 69216704 71 . . R514d +chr7 SNP SNP 69216705 69351106 66 . . R515d +chr7 SNP SNP 69351107 69485507 458 . . R516d +chr7 SNP SNP 69485508 69619908 129 . . R517d +chr7 SNP SNP 69619909 69754310 26 . . R518d +chr7 SNP SNP 69754311 69888711 143 . . R519d +chr7 SNP SNP 69888712 70023112 275 . . R520d +chr7 SNP SNP 70023113 70157514 220 . . R521d +chr7 SNP SNP 70157515 70291915 291 . . R522d +chr7 SNP SNP 70291916 70426316 562 . . R523d +chr7 SNP SNP 70426317 70560718 371 . . R524d +chr7 SNP SNP 70560719 70695119 206 . . R525d +chr7 SNP SNP 70695120 70829520 180 . . R526d +chr7 SNP SNP 70829521 70963922 413 . . R527d +chr7 SNP SNP 70963923 71098323 244 . . R528d +chr7 SNP SNP 71098324 71232724 254 . . R529d +chr7 SNP SNP 71232725 71367126 445 . . R530d +chr7 SNP SNP 71367127 71501527 424 . . R531d +chr7 SNP SNP 71501528 71635929 129 . . R532d +chr7 SNP SNP 71635930 71770330 180 . . R533d +chr7 SNP SNP 71770331 71904731 159 . . R534d +chr7 SNP SNP 71904732 72039133 228 . . R535d +chr7 SNP SNP 72039134 72173534 233 . . R536d +chr7 SNP SNP 72173535 72307935 129 . . R537d +chr7 SNP SNP 72307936 72442337 61 . . R538d +chr7 SNP SNP 72442338 72576738 29 . . R539d +chr7 SNP SNP 72576739 72711139 342 . . R540d +chr7 SNP SNP 72711140 72845541 482 . . R541d +chr7 SNP SNP 72845542 72979942 172 . . R542d +chr7 SNP SNP 72979943 73114343 395 . . R543d +chr7 SNP SNP 73114344 73248745 376 . . R544d +chr7 SNP SNP 73248746 73383146 437 . . R545d +chr7 SNP SNP 73383147 73517547 175 . . R546d +chr7 SNP SNP 73517548 73651949 180 . . R547d +chr7 SNP SNP 73651950 73786350 249 . . R548d +chr7 SNP SNP 73786351 73920751 469 . . R549d +chr7 SNP SNP 73920752 74055153 692 . . R550d +chr7 SNP SNP 74055154 74189554 838 . . R551d +chr7 SNP SNP 74189555 74323955 639 . . R552d +chr7 SNP SNP 74323956 74458357 315 . . R553d +chr7 SNP SNP 74458358 74592758 273 . . R554d +chr7 SNP SNP 74592759 74727160 323 . . R555d +chr7 SNP SNP 74727161 74861561 472 . . R556d +chr7 SNP SNP 74861562 74995962 297 . . R557d +chr7 SNP SNP 74995963 75130364 514 . . R558d +chr7 SNP SNP 75130365 75264765 167 . . R559d +chr7 SNP SNP 75264766 75399166 315 . . R560d +chr7 SNP SNP 75399167 75533568 233 . . R561d +chr7 SNP SNP 75533569 75667969 368 . . R562d +chr7 SNP SNP 75667970 75802370 371 . . R563d +chr7 SNP SNP 75802371 75936772 151 . . R564d +chr7 SNP SNP 75936773 76071173 18 . . R565d +chr7 SNP SNP 76071174 76205574 196 . . R566d +chr7 SNP SNP 76205575 76339976 241 . . R567d +chr7 SNP SNP 76339977 76474377 42 . . R568d +chr7 SNP SNP 76474378 76608778 53 . . R569d +chr7 SNP SNP 76608779 76743180 106 . . R570d +chr7 SNP SNP 76743181 76877581 140 . . R571d +chr7 SNP SNP 76877582 77011982 23 . . R572d +chr7 SNP SNP 77011983 77146384 26 . . R573d +chr7 SNP SNP 77146385 77280785 31 . . R574d +chr7 SNP SNP 77280786 77415187 53 . . R575d +chr7 SNP SNP 77415188 77549588 31 . . R576d +chr7 SNP SNP 77549589 77683989 437 . . R577d +chr7 SNP SNP 77683990 77818391 241 . . R578d +chr7 SNP SNP 77818392 77952792 10 . . R579d +chr7 SNP SNP 77952793 78087193 159 . . R580d +chr7 SNP SNP 78087194 78221595 251 . . R581d +chr7 SNP SNP 78221596 78355996 360 . . R582d +chr7 SNP SNP 78355997 78490397 323 . . R583d +chr7 SNP SNP 78490398 78624799 363 . . R584d +chr7 SNP SNP 78624800 78759200 297 . . R585d +chr7 SNP SNP 78759201 78893601 307 . . R586d +chr7 SNP SNP 78893602 79028003 137 . . R587d +chr7 SNP SNP 79028004 79162404 129 . . R588d +chr7 SNP SNP 79162405 79296805 29 . . R589d +chr7 SNP SNP 79296806 79431207 34 . . R590d +chr7 SNP SNP 79431208 79565608 167 . . R591d +chr7 SNP SNP 79565609 79700009 241 . . R592d +chr7 SNP SNP 79700010 79834411 122 . . R593d +chr7 SNP SNP 79834412 79968812 411 . . R594d +chr7 SNP SNP 79968813 80103214 575 . . R595d +chr7 SNP SNP 80103215 80237615 453 . . R596d +chr7 SNP SNP 80237616 80372016 217 . . R597d +chr7 SNP SNP 80372017 80506418 137 . . R598d +chr7 SNP SNP 80506419 80640819 336 . . R599d +chr7 SNP SNP 80640820 80775220 291 . . R600d +chr7 SNP SNP 80775221 80909622 267 . . R601d +chr7 SNP SNP 80909623 81044023 220 . . R602d +chr7 SNP SNP 81044024 81178424 291 . . R603d +chr7 SNP SNP 81178425 81312826 464 . . R604d +chr7 SNP SNP 81312827 81447227 262 . . R605d +chr7 SNP SNP 81447228 81581628 366 . . R606d +chr7 SNP SNP 81581629 81716030 193 . . R607d +chr7 SNP SNP 81716031 81850431 63 . . R608d +chr7 SNP SNP 81850432 81984832 132 . . R609d +chr7 SNP SNP 81984833 82119234 554 . . R610d +chr7 SNP SNP 82119235 82253635 289 . . R611d +chr7 SNP SNP 82253636 82388036 339 . . R612d +chr7 SNP SNP 82388037 82522438 342 . . R613d +chr7 SNP SNP 82522439 82656839 376 . . R614d +chr7 SNP SNP 82656840 82791240 469 . . R615d +chr7 SNP SNP 82791241 82925642 201 . . R616d +chr7 SNP SNP 82925643 83060043 183 . . R617d +chr7 SNP SNP 83060044 83194445 527 . . R618d +chr7 SNP SNP 83194446 83328846 175 . . R619d +chr7 SNP SNP 83328847 83463247 461 . . R620d +chr7 SNP SNP 83463248 83597649 172 . . R621d +chr7 SNP SNP 83597650 83732050 466 . . R622d +chr7 SNP SNP 83732051 83866451 310 . . R623d +chr7 SNP SNP 83866452 84000853 281 . . R624d +chr7 SNP SNP 84000854 84135254 326 . . R625d +chr7 SNP SNP 84135255 84269655 525 . . R626d +chr7 SNP SNP 84269656 84404057 445 . . R627d +chr7 SNP SNP 84404058 84538458 610 . . R628d +chr7 SNP SNP 84538459 84672859 477 . . R629d +chr7 SNP SNP 84672860 84807261 0 . . R630d +chr7 SNP SNP 84807262 84941662 0 . . R631d +chr7 SNP SNP 84941663 85076063 214 . . R632d +chr7 SNP SNP 85076064 85210465 657 . . R633d +chr7 SNP SNP 85210466 85344866 527 . . R634d +chr7 SNP SNP 85344867 85479267 0 . . R635d +chr7 SNP SNP 85479268 85613669 2 . . R636d +chr7 SNP SNP 85613670 85748070 0 . . R637d +chr7 SNP SNP 85748071 85882472 262 . . R638d +chr7 SNP SNP 85882473 86016873 437 . . R639d +chr7 SNP SNP 86016874 86151274 692 . . R640d +chr7 SNP SNP 86151275 86285676 652 . . R641d +chr7 SNP SNP 86285677 86420077 517 . . R642d +chr7 SNP SNP 86420078 86554478 445 . . R643d +chr7 SNP SNP 86554479 86688880 660 . . R644d +chr7 SNP SNP 86688881 86823281 697 . . R645d +chr7 SNP SNP 86823282 86957682 636 . . R646d +chr7 SNP SNP 86957683 87092084 318 . . R647d +chr7 SNP SNP 87092085 87226485 668 . . R648d +chr7 SNP SNP 87226486 87360886 530 . . R649d +chr7 SNP SNP 87360887 87495288 549 . . R650d +chr7 SNP SNP 87495289 87629689 625 . . R651d +chr7 SNP SNP 87629690 87764090 376 . . R652d +chr7 SNP SNP 87764091 87898492 639 . . R653d +chr7 SNP SNP 87898493 88032893 522 . . R654d +chr7 SNP SNP 88032894 88167294 570 . . R655d +chr7 SNP SNP 88167295 88301696 477 . . R656d +chr7 SNP SNP 88301697 88436097 649 . . R657d +chr7 SNP SNP 88436098 88570498 408 . . R658d +chr7 SNP SNP 88570499 88704900 641 . . R659d +chr7 SNP SNP 88704901 88839301 535 . . R660d +chr7 SNP SNP 88839302 88973703 702 . . R661d +chr7 SNP SNP 88973704 89108104 503 . . R662d +chr7 SNP SNP 89108105 89242505 445 . . R663d +chr7 SNP SNP 89242506 89376907 509 . . R664d +chr7 SNP SNP 89376908 89511308 456 . . R665d +chr7 SNP SNP 89511309 89645709 697 . . R666d +chr7 SNP SNP 89645710 89780111 673 . . R667d +chr7 SNP SNP 89780112 89914512 599 . . R668d +chr7 SNP SNP 89914513 90048913 543 . . R669d +chr7 SNP SNP 90048914 90183315 488 . . R670d +chr7 SNP SNP 90183316 90317716 713 . . R671d +chr7 SNP SNP 90317717 90452117 663 . . R672d +chr7 SNP SNP 90452118 90586519 750 . . R673d +chr7 SNP SNP 90586520 90720920 381 . . R674d +chr7 SNP SNP 90720921 90855321 326 . . R675d +chr7 SNP SNP 90855322 90989723 336 . . R676d +chr7 SNP SNP 90989724 91124124 503 . . R677d +chr7 SNP SNP 91124125 91258525 230 . . R678d +chr7 SNP SNP 91258526 91392927 185 . . R679d +chr7 SNP SNP 91392928 91527328 583 . . R680d +chr7 SNP SNP 91527329 91661730 42 . . R681d +chr7 SNP SNP 91661731 91796131 66 . . R682d +chr7 SNP SNP 91796132 91930532 572 . . R683d +chr7 SNP SNP 91930533 92064934 283 . . R684d +chr7 SNP SNP 92064935 92199335 347 . . R685d +chr7 SNP SNP 92199336 92333736 114 . . R686d +chr7 SNP SNP 92333737 92468138 90 . . R687d +chr7 SNP SNP 92468139 92602539 23 . . R688d +chr7 SNP SNP 92602540 92736940 151 . . R689d +chr7 SNP SNP 92736941 92871342 334 . . R690d +chr7 SNP SNP 92871343 93005743 209 . . R691d +chr7 SNP SNP 93005744 93140144 124 . . R692d +chr7 SNP SNP 93140145 93274546 23 . . R693d +chr7 SNP SNP 93274547 93408947 18 . . R694d +chr7 SNP SNP 93408948 93543348 10 . . R695d +chr7 SNP SNP 93543349 93677750 18 . . R696d +chr7 SNP SNP 93677751 93812151 31 . . R697d +chr7 SNP SNP 93812152 93946552 5 . . R698d +chr7 SNP SNP 93946553 94080954 143 . . R699d +chr7 SNP SNP 94080955 94215355 50 . . R700d +chr7 SNP SNP 94215356 94349756 47 . . R701d +chr7 SNP SNP 94349757 94484158 29 . . R702d +chr7 SNP SNP 94484159 94618559 74 . . R703d +chr7 SNP SNP 94618560 94752961 180 . . R704d +chr7 SNP SNP 94752962 94887362 689 . . R705d +chr7 SNP SNP 94887363 95021763 106 . . R706d +chr7 SNP SNP 95021764 95156165 480 . . R707d +chr7 SNP SNP 95156166 95290566 480 . . R708d +chr7 SNP SNP 95290567 95424967 458 . . R709d +chr7 SNP SNP 95424968 95559369 541 . . R710d +chr7 SNP SNP 95559370 95693770 244 . . R711d +chr7 SNP SNP 95693771 95828171 159 . . R712d +chr7 SNP SNP 95828172 95962573 379 . . R713d +chr7 SNP SNP 95962574 96096974 13 . . R714d +chr7 SNP SNP 96096975 96231375 13 . . R715d +chr7 SNP SNP 96231376 96365777 10 . . R716d +chr7 SNP SNP 96365778 96500178 18 . . R717d +chr7 SNP SNP 96500179 96634579 18 . . R718d +chr7 SNP SNP 96634580 96768981 10 . . R719d +chr7 SNP SNP 96768982 96903382 18 . . R720d +chr7 SNP SNP 96903383 97037783 39 . . R721d +chr7 SNP SNP 97037784 97172185 23 . . R722d +chr7 SNP SNP 97172186 97306586 18 . . R723d +chr7 SNP SNP 97306587 97440988 15 . . R724d +chr7 SNP SNP 97440989 97575389 5 . . R725d +chr7 SNP SNP 97575390 97709790 15 . . R726d +chr7 SNP SNP 97709791 97844192 10 . . R727d +chr7 SNP SNP 97844193 97978593 7 . . R728d +chr7 SNP SNP 97978594 98112994 13 . . R729d +chr7 SNP SNP 98112995 98247396 7 . . R730d +chr7 SNP SNP 98247397 98381797 23 . . R731d +chr7 SNP SNP 98381798 98516198 23 . . R732d +chr7 SNP SNP 98516199 98650600 13 . . R733d +chr7 SNP SNP 98650601 98785001 7 . . R734d +chr7 SNP SNP 98785002 98919402 13 . . R735d +chr7 SNP SNP 98919403 99053804 7 . . R736d +chr7 SNP SNP 99053805 99188205 15 . . R737d +chr7 SNP SNP 99188206 99322606 13 . . R738d +chr7 SNP SNP 99322607 99457008 21 . . R739d +chr7 SNP SNP 99457009 99591409 15 . . R740d +chr7 SNP SNP 99591410 99725810 13 . . R741d +chr7 SNP SNP 99725811 99860212 7 . . R742d +chr7 SNP SNP 99860213 99994613 201 . . R743d +chr7 SNP SNP 99994614 100129015 241 . . R744d +chr7 SNP SNP 100129016 100263416 374 . . R745d +chr7 SNP SNP 100263417 100397817 18 . . R746d +chr7 SNP SNP 100397818 100532219 344 . . R747d +chr7 SNP SNP 100532220 100666620 331 . . R748d +chr7 SNP SNP 100666621 100801021 440 . . R749d +chr7 SNP SNP 100801022 100935423 241 . . R750d +chr7 SNP SNP 100935424 101069824 246 . . R751d +chr7 SNP SNP 101069825 101204225 273 . . R752d +chr7 SNP SNP 101204226 101338627 328 . . R753d +chr7 SNP SNP 101338628 101473028 551 . . R754d +chr7 SNP SNP 101473029 101607429 562 . . R755d +chr7 SNP SNP 101607430 101741831 557 . . R756d +chr7 SNP SNP 101741832 101876232 774 . . R757d +chr7 SNP SNP 101876233 102010633 596 . . R758d +chr7 SNP SNP 102010634 102145035 694 . . R759d +chr7 SNP SNP 102145036 102279436 533 . . R760d +chr7 SNP SNP 102279437 102413837 485 . . R761d +chr7 SNP SNP 102413838 102548239 427 . . R762d +chr7 SNP SNP 102548240 102682640 435 . . R763d +chr7 SNP SNP 102682641 102817041 315 . . R764d +chr7 SNP SNP 102817042 102951443 259 . . R765d +chr7 SNP SNP 102951444 103085844 111 . . R766d +chr7 SNP SNP 103085845 103220246 238 . . R767d +chr7 SNP SNP 103220247 103354647 440 . . R768d +chr7 SNP SNP 103354648 103489048 360 . . R769d +chr7 SNP SNP 103489049 103623450 652 . . R770d +chr7 SNP SNP 103623451 103757851 636 . . R771d +chr7 SNP SNP 103757852 103892252 782 . . R772d +chr7 SNP SNP 103892253 104026654 740 . . R773d +chr7 SNP SNP 104026655 104161055 795 . . R774d +chr7 SNP SNP 104161056 104295456 954 . . R775d +chr7 SNP SNP 104295457 104429858 472 . . R776d +chr7 SNP SNP 104429859 104564259 127 . . R777d +chr7 SNP SNP 104564260 104698660 18 . . R778d +chr7 SNP SNP 104698661 104833062 26 . . R779d +chr7 SNP SNP 104833063 104967463 363 . . R780d +chr7 SNP SNP 104967464 105101864 251 . . R781d +chr7 SNP SNP 105101865 105236266 92 . . R782d +chr7 SNP SNP 105236267 105370667 5 . . R783d +chr7 SNP SNP 105370668 105505068 66 . . R784d +chr7 SNP SNP 105505069 105639470 122 . . R785d +chr7 SNP SNP 105639471 105773871 23 . . R786d +chr7 SNP SNP 105773872 105908273 15 . . R787d +chr7 SNP SNP 105908274 106042674 42 . . R788d +chr7 SNP SNP 106042675 106177075 411 . . R789d +chr7 SNP SNP 106177076 106311477 549 . . R790d +chr7 SNP SNP 106311478 106445878 371 . . R791d +chr7 SNP SNP 106445879 106580279 466 . . R792d +chr7 SNP SNP 106580280 106714681 331 . . R793d +chr7 SNP SNP 106714682 106849082 328 . . R794d +chr7 SNP SNP 106849083 106983483 315 . . R795d +chr7 SNP SNP 106983484 107117885 334 . . R796d +chr7 SNP SNP 107117886 107252286 342 . . R797d +chr7 SNP SNP 107252287 107386687 411 . . R798d +chr7 SNP SNP 107386688 107521089 403 . . R799d +chr7 SNP SNP 107521090 107655490 299 . . R800d +chr7 SNP SNP 107655491 107789891 519 . . R801d +chr7 SNP SNP 107789892 107924293 108 . . R802d +chr7 SNP SNP 107924294 108058694 392 . . R803d +chr7 SNP SNP 108058695 108193095 175 . . R804d +chr7 SNP SNP 108193096 108327497 111 . . R805d +chr7 SNP SNP 108327498 108461898 429 . . R806d +chr7 SNP SNP 108461899 108596299 389 . . R807d +chr7 SNP SNP 108596300 108730701 18 . . R808d +chr7 SNP SNP 108730702 108865102 7 . . R809d +chr7 SNP SNP 108865103 108999504 7 . . R810d +chr7 SNP SNP 108999505 109133905 18 . . R811d +chr7 SNP SNP 109133906 109268306 15 . . R812d +chr7 SNP SNP 109268307 109402708 15 . . R813d +chr7 SNP SNP 109402709 109537109 13 . . R814d +chr7 SNP SNP 109537110 109671510 18 . . R815d +chr7 SNP SNP 109671511 109805912 0 . . R816d +chr7 SNP SNP 109805913 109940313 5 . . R817d +chr7 SNP SNP 109940314 110074714 13 . . R818d +chr7 SNP SNP 110074715 110209116 18 . . R819d +chr7 SNP SNP 110209117 110343517 2 . . R820d +chr7 SNP SNP 110343518 110477918 10 . . R821d +chr7 SNP SNP 110477919 110612320 23 . . R822d +chr7 SNP SNP 110612321 110746721 10 . . R823d +chr7 SNP SNP 110746722 110881122 0 . . R824d +chr7 SNP SNP 110881123 111015524 2 . . R825d +chr7 SNP SNP 111015525 111149925 10 . . R826d +chr7 SNP SNP 111149926 111284326 21 . . R827d +chr7 SNP SNP 111284327 111418728 5 . . R828d +chr7 SNP SNP 111418729 111553129 13 . . R829d +chr7 SNP SNP 111553130 111687531 7 . . R830d +chr7 SNP SNP 111687532 111821932 0 . . R831d +chr7 SNP SNP 111821933 111956333 13 . . R832d +chr7 SNP SNP 111956334 112090735 7 . . R833d +chr7 SNP SNP 112090736 112225136 26 . . R834d +chr7 SNP SNP 112225137 112359537 7 . . R835d +chr7 SNP SNP 112359538 112493939 21 . . R836d +chr7 SNP SNP 112493940 112628340 10 . . R837d +chr7 SNP SNP 112628341 112762741 7 . . R838d +chr7 SNP SNP 112762742 112897143 23 . . R839d +chr7 SNP SNP 112897144 113031544 7 . . R840d +chr7 SNP SNP 113031545 113165945 13 . . R841d +chr7 SNP SNP 113165946 113300347 26 . . R842d +chr7 SNP SNP 113300348 113434748 15 . . R843d +chr7 SNP SNP 113434749 113569149 5 . . R844d +chr7 SNP SNP 113569150 113703551 13 . . R845d +chr7 SNP SNP 113703552 113837952 7 . . R846d +chr7 SNP SNP 113837953 113972353 5 . . R847d +chr7 SNP SNP 113972354 114106755 5 . . R848d +chr7 SNP SNP 114106756 114241156 10 . . R849d +chr7 SNP SNP 114241157 114375557 15 . . R850d +chr7 SNP SNP 114375558 114509959 18 . . R851d +chr7 SNP SNP 114509960 114644360 18 . . R852d +chr7 SNP SNP 114644361 114778762 7 . . R853d +chr7 SNP SNP 114778763 114913163 21 . . R854d +chr7 SNP SNP 114913164 115047564 10 . . R855d +chr7 SNP SNP 115047565 115181966 2 . . R856d +chr7 SNP SNP 115181967 115316367 5 . . R857d +chr7 SNP SNP 115316368 115450768 10 . . R858d +chr7 SNP SNP 115450769 115585170 21 . . R859d +chr7 SNP SNP 115585171 115719571 15 . . R860d +chr7 SNP SNP 115719572 115853972 15 . . R861d +chr7 SNP SNP 115853973 115988374 15 . . R862d +chr7 SNP SNP 115988375 116122775 10 . . R863d +chr7 SNP SNP 116122776 116257176 15 . . R864d +chr7 SNP SNP 116257177 116391578 10 . . R865d +chr7 SNP SNP 116391579 116525979 2 . . R866d +chr7 SNP SNP 116525980 116660380 7 . . R867d +chr7 SNP SNP 116660381 116794782 26 . . R868d +chr7 SNP SNP 116794783 116929183 15 . . R869d +chr7 SNP SNP 116929184 117063584 29 . . R870d +chr7 SNP SNP 117063585 117197986 7 . . R871d +chr7 SNP SNP 117197987 117332387 5 . . R872d +chr7 SNP SNP 117332388 117466789 10 . . R873d +chr7 SNP SNP 117466790 117601190 18 . . R874d +chr7 SNP SNP 117601191 117735591 2 . . R875d +chr7 SNP SNP 117735592 117869993 2 . . R876d +chr7 SNP SNP 117869994 118004394 0 . . R877d +chr7 SNP SNP 118004395 118138795 10 . . R878d +chr7 SNP SNP 118138796 118273197 5 . . R879d +chr7 SNP SNP 118273198 118407598 15 . . R880d +chr7 SNP SNP 118407599 118541999 2 . . R881d +chr7 SNP SNP 118542000 118676401 2 . . R882d +chr7 SNP SNP 118676402 118810802 10 . . R883d +chr7 SNP SNP 118810803 118945203 10 . . R884d +chr7 SNP SNP 118945204 119079605 15 . . R885d +chr7 SNP SNP 119079606 119214006 2 . . R886d +chr7 SNP SNP 119214007 119348407 7 . . R887d +chr7 SNP SNP 119348408 119482809 21 . . R888d +chr7 SNP SNP 119482810 119617210 2 . . R889d +chr7 SNP SNP 119617211 119751611 2 . . R890d +chr7 SNP SNP 119751612 119886013 10 . . R891d +chr7 SNP SNP 119886014 120020414 7 . . R892d +chr7 SNP SNP 120020415 120154816 10 . . R893d +chr7 SNP SNP 120154817 120289217 7 . . R894d +chr7 SNP SNP 120289218 120423618 2 . . R895d +chr7 SNP SNP 120423619 120558020 2 . . R896d +chr7 SNP SNP 120558021 120692421 7 . . R897d +chr7 SNP SNP 120692422 120826822 7 . . R898d +chr7 SNP SNP 120826823 120961224 10 . . R899d +chr7 SNP SNP 120961225 121095625 18 . . R900d +chr7 SNP SNP 121095626 121230026 7 . . R901d +chr7 SNP SNP 121230027 121364428 5 . . R902d +chr7 SNP SNP 121364429 121498829 5 . . R903d +chr7 SNP SNP 121498830 121633230 13 . . R904d +chr7 SNP SNP 121633231 121767632 26 . . R905d +chr7 SNP SNP 121767633 121902033 307 . . R906d +chr7 SNP SNP 121902034 122036434 116 . . R907d +chr7 SNP SNP 122036435 122170836 95 . . R908d +chr7 SNP SNP 122170837 122305237 2 . . R909d +chr7 SNP SNP 122305238 122439638 7 . . R910d +chr7 SNP SNP 122439639 122574040 15 . . R911d +chr7 SNP SNP 122574041 122708441 13 . . R912d +chr7 SNP SNP 122708442 122842842 5 . . R913d +chr7 SNP SNP 122842843 122977244 10 . . R914d +chr7 SNP SNP 122977245 123111645 196 . . R915d +chr7 SNP SNP 123111646 123246047 18 . . R916d +chr7 SNP SNP 123246048 123380448 10 . . R917d +chr7 SNP SNP 123380449 123514849 5 . . R918d +chr7 SNP SNP 123514850 123649251 10 . . R919d +chr7 SNP SNP 123649252 123783652 106 . . R920d +chr7 SNP SNP 123783653 123918053 281 . . R921d +chr7 SNP SNP 123918054 124052455 342 . . R922d +chr7 SNP SNP 124052456 124186856 244 . . R923d +chr7 SNP SNP 124186857 124321257 196 . . R924d +chr7 SNP SNP 124321258 124455659 26 . . R925d +chr7 SNP SNP 124455660 124590060 18 . . R926d +chr7 SNP SNP 124590061 124724461 7 . . R927d +chr7 SNP SNP 124724462 124858863 10 . . R928d +chr7 SNP SNP 124858864 124993264 10 . . R929d +chr7 SNP SNP 124993265 125127665 26 . . R930d +chr7 SNP SNP 125127666 125262067 5 . . R931d +chr7 SNP SNP 125262068 125396468 164 . . R932d +chr7 SNP SNP 125396469 125530869 474 . . R933d +chr7 SNP SNP 125530870 125665271 413 . . R934d +chr7 SNP SNP 125665272 125799672 236 . . R935d +chr7 SNP SNP 125799673 125934074 137 . . R936d +chr7 SNP SNP 125934075 126068475 241 . . R937d +chr7 SNP SNP 126068476 126202876 352 . . R938d +chr7 SNP SNP 126202877 126337278 344 . . R939d +chr7 SNP SNP 126337279 126471679 259 . . R940d +chr7 SNP SNP 126471680 126606080 66 . . R941d +chr7 SNP SNP 126606081 126740482 82 . . R942d +chr7 SNP SNP 126740483 126874883 145 . . R943d +chr7 SNP SNP 126874884 127009284 159 . . R944d +chr7 SNP SNP 127009285 127143686 180 . . R945d +chr7 SNP SNP 127143687 127278087 26 . . R946d +chr7 SNP SNP 127278088 127412488 509 . . R947d +chr7 SNP SNP 127412489 127546890 18 . . R948d +chr7 SNP SNP 127546891 127681291 193 . . R949d +chr7 SNP SNP 127681292 127815692 175 . . R950d +chr7 SNP SNP 127815693 127950094 124 . . R951d +chr7 SNP SNP 127950095 128084495 10 . . R952d +chr7 SNP SNP 128084496 128218896 562 . . R953d +chr7 SNP SNP 128218897 128353298 151 . . R954d +chr7 SNP SNP 128353299 128487699 76 . . R955d +chr7 SNP SNP 128487700 128622100 527 . . R956d +chr7 SNP SNP 128622101 128756502 220 . . R957d +chr7 SNP SNP 128756503 128890903 13 . . R958d +chr7 SNP SNP 128890904 129025305 5 . . R959d +chr7 SNP SNP 129025306 129159706 0 . . R960d +chr7 SNP SNP 129159707 129294107 7 . . R961d +chr7 SNP SNP 129294108 129428509 5 . . R962d +chr7 SNP SNP 129428510 129562910 13 . . R963d +chr7 SNP SNP 129562911 129697311 2 . . R964d +chr7 SNP SNP 129697312 129831713 7 . . R965d +chr7 SNP SNP 129831714 129966114 13 . . R966d +chr7 SNP SNP 129966115 130100515 21 . . R967d +chr7 SNP SNP 130100516 130234917 7 . . R968d +chr7 SNP SNP 130234918 130369318 5 . . R969d +chr7 SNP SNP 130369319 130503719 7 . . R970d +chr7 SNP SNP 130503720 130638121 10 . . R971d +chr7 SNP SNP 130638122 130772522 2 . . R972d +chr7 SNP SNP 130772523 130906923 10 . . R973d +chr7 SNP SNP 130906924 131041325 10 . . R974d +chr7 SNP SNP 131041326 131175726 29 . . R975d +chr7 SNP SNP 131175727 131310127 10 . . R976d +chr7 SNP SNP 131310128 131444529 10 . . R977d +chr7 SNP SNP 131444530 131578930 7 . . R978d +chr7 SNP SNP 131578931 131713332 7 . . R979d +chr7 SNP SNP 131713333 131847733 13 . . R980d +chr7 SNP SNP 131847734 131982134 7 . . R981d +chr7 SNP SNP 131982135 132116536 0 . . R982d +chr7 SNP SNP 132116537 132250937 7 . . R983d +chr7 SNP SNP 132250938 132385338 15 . . R984d +chr7 SNP SNP 132385339 132519740 0 . . R985d +chr7 SNP SNP 132519741 132654141 0 . . R986d +chr7 SNP SNP 132654142 132788542 26 . . R987d +chr7 SNP SNP 132788543 132922944 5 . . R988d +chr7 SNP SNP 132922945 133057345 2 . . R989d +chr7 SNP SNP 133057346 133191746 7 . . R990d +chr7 SNP SNP 133191747 133326148 13 . . R991d +chr7 SNP SNP 133326149 133460549 5 . . R992d +chr7 SNP SNP 133460550 133594950 254 . . R993d +chr7 SNP SNP 133594951 133729352 37 . . R994d +chr7 SNP SNP 133729353 133863753 360 . . R995d +chr7 SNP SNP 133863754 133998154 480 . . R996d +chr7 SNP SNP 133998155 134132556 928 . . R997d +chr7 SNP SNP 134132557 134266957 503 . . R998d +chr7 SNP SNP 134266958 134401359 689 . . R999d diff --git a/web/snp/chr8 b/web/snp/chr8 new file mode 100755 index 00000000..f4112dfe --- /dev/null +++ b/web/snp/chr8 @@ -0,0 +1,1003 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr8 SNP SNP 11 128931 0 . . R0d +chr8 SNP SNP 128932 257853 0 . . R1d +chr8 SNP SNP 257854 386774 0 . . R2d +chr8 SNP SNP 386775 515696 0 . . R3d +chr8 SNP SNP 515697 644618 0 . . R4d +chr8 SNP SNP 644619 773539 0 . . R5d +chr8 SNP SNP 773540 902461 0 . . R6d +chr8 SNP SNP 902462 1031383 0 . . R7d +chr8 SNP SNP 1031384 1160304 0 . . R8d +chr8 SNP SNP 1160305 1289226 0 . . R9d +chr8 SNP SNP 1289227 1418147 0 . . R10d +chr8 SNP SNP 1418148 1547069 0 . . R11d +chr8 SNP SNP 1547070 1675991 0 . . R12d +chr8 SNP SNP 1675992 1804912 0 . . R13d +chr8 SNP SNP 1804913 1933834 0 . . R14d +chr8 SNP SNP 1933835 2062756 0 . . R15d +chr8 SNP SNP 2062757 2191677 0 . . R16d +chr8 SNP SNP 2191678 2320599 0 . . R17d +chr8 SNP SNP 2320600 2449521 0 . . R18d +chr8 SNP SNP 2449522 2578442 0 . . R19d +chr8 SNP SNP 2578443 2707364 0 . . R20d +chr8 SNP SNP 2707365 2836285 0 . . R21d +chr8 SNP SNP 2836286 2965207 0 . . R22d +chr8 SNP SNP 2965208 3094129 3 . . R23d +chr8 SNP SNP 3094130 3223050 13 . . R24d +chr8 SNP SNP 3223051 3351972 23 . . R25d +chr8 SNP SNP 3351973 3480894 9 . . R26d +chr8 SNP SNP 3480895 3609815 56 . . R27d +chr8 SNP SNP 3609816 3738737 13 . . R28d +chr8 SNP SNP 3738738 3867658 23 . . R29d +chr8 SNP SNP 3867659 3996580 13 . . R30d +chr8 SNP SNP 3996581 4125502 6 . . R31d +chr8 SNP SNP 4125503 4254423 6 . . R32d +chr8 SNP SNP 4254424 4383345 19 . . R33d +chr8 SNP SNP 4383346 4512267 9 . . R34d +chr8 SNP SNP 4512268 4641188 6 . . R35d +chr8 SNP SNP 4641189 4770110 9 . . R36d +chr8 SNP SNP 4770111 4899032 46 . . R37d +chr8 SNP SNP 4899033 5027953 23 . . R38d +chr8 SNP SNP 5027954 5156875 19 . . R39d +chr8 SNP SNP 5156876 5285796 36 . . R40d +chr8 SNP SNP 5285797 5414718 9 . . R41d +chr8 SNP SNP 5414719 5543640 16 . . R42d +chr8 SNP SNP 5543641 5672561 26 . . R43d +chr8 SNP SNP 5672562 5801483 6 . . R44d +chr8 SNP SNP 5801484 5930405 26 . . R45d +chr8 SNP SNP 5930406 6059326 33 . . R46d +chr8 SNP SNP 6059327 6188248 33 . . R47d +chr8 SNP SNP 6188249 6317169 16 . . R48d +chr8 SNP SNP 6317170 6446091 19 . . R49d +chr8 SNP SNP 6446092 6575013 16 . . R50d +chr8 SNP SNP 6575014 6703934 23 . . R51d +chr8 SNP SNP 6703935 6832856 6 . . R52d +chr8 SNP SNP 6832857 6961778 26 . . R53d +chr8 SNP SNP 6961779 7090699 6 . . R54d +chr8 SNP SNP 7090700 7219621 19 . . R55d +chr8 SNP SNP 7219622 7348543 33 . . R56d +chr8 SNP SNP 7348544 7477464 13 . . R57d +chr8 SNP SNP 7477465 7606386 23 . . R58d +chr8 SNP SNP 7606387 7735307 9 . . R59d +chr8 SNP SNP 7735308 7864229 33 . . R60d +chr8 SNP SNP 7864230 7993151 19 . . R61d +chr8 SNP SNP 7993152 8122072 19 . . R62d +chr8 SNP SNP 8122073 8250994 0 . . R63d +chr8 SNP SNP 8250995 8379916 6 . . R64d +chr8 SNP SNP 8379917 8508837 3 . . R65d +chr8 SNP SNP 8508838 8637759 33 . . R66d +chr8 SNP SNP 8637760 8766680 19 . . R67d +chr8 SNP SNP 8766681 8895602 9 . . R68d +chr8 SNP SNP 8895603 9024524 26 . . R69d +chr8 SNP SNP 9024525 9153445 9 . . R70d +chr8 SNP SNP 9153446 9282367 19 . . R71d +chr8 SNP SNP 9282368 9411289 19 . . R72d +chr8 SNP SNP 9411290 9540210 23 . . R73d +chr8 SNP SNP 9540211 9669132 39 . . R74d +chr8 SNP SNP 9669133 9798054 16 . . R75d +chr8 SNP SNP 9798055 9926975 6 . . R76d +chr8 SNP SNP 9926976 10055897 9 . . R77d +chr8 SNP SNP 10055898 10184818 29 . . R78d +chr8 SNP SNP 10184819 10313740 13 . . R79d +chr8 SNP SNP 10313741 10442662 3 . . R80d +chr8 SNP SNP 10442663 10571583 23 . . R81d +chr8 SNP SNP 10571584 10700505 0 . . R82d +chr8 SNP SNP 10700506 10829427 9 . . R83d +chr8 SNP SNP 10829428 10958348 13 . . R84d +chr8 SNP SNP 10958349 11087270 3 . . R85d +chr8 SNP SNP 11087271 11216191 13 . . R86d +chr8 SNP SNP 11216192 11345113 33 . . R87d +chr8 SNP SNP 11345114 11474035 6 . . R88d +chr8 SNP SNP 11474036 11602956 9 . . R89d +chr8 SNP SNP 11602957 11731878 16 . . R90d +chr8 SNP SNP 11731879 11860800 13 . . R91d +chr8 SNP SNP 11860801 11989721 13 . . R92d +chr8 SNP SNP 11989722 12118643 0 . . R93d +chr8 SNP SNP 12118644 12247565 6 . . R94d +chr8 SNP SNP 12247566 12376486 9 . . R95d +chr8 SNP SNP 12376487 12505408 26 . . R96d +chr8 SNP SNP 12505409 12634329 29 . . R97d +chr8 SNP SNP 12634330 12763251 3 . . R98d +chr8 SNP SNP 12763252 12892173 13 . . R99d +chr8 SNP SNP 12892174 13021094 26 . . R100d +chr8 SNP SNP 13021095 13150016 96 . . R101d +chr8 SNP SNP 13150017 13278938 36 . . R102d +chr8 SNP SNP 13278939 13407859 9 . . R103d +chr8 SNP SNP 13407860 13536781 16 . . R104d +chr8 SNP SNP 13536782 13665702 13 . . R105d +chr8 SNP SNP 13665703 13794624 0 . . R106d +chr8 SNP SNP 13794625 13923546 13 . . R107d +chr8 SNP SNP 13923547 14052467 16 . . R108d +chr8 SNP SNP 14052468 14181389 13 . . R109d +chr8 SNP SNP 14181390 14310311 9 . . R110d +chr8 SNP SNP 14310312 14439232 19 . . R111d +chr8 SNP SNP 14439233 14568154 158 . . R112d +chr8 SNP SNP 14568155 14697076 463 . . R113d +chr8 SNP SNP 14697077 14825997 324 . . R114d +chr8 SNP SNP 14825998 14954919 241 . . R115d +chr8 SNP SNP 14954920 15083840 317 . . R116d +chr8 SNP SNP 15083841 15212762 96 . . R117d +chr8 SNP SNP 15212763 15341684 72 . . R118d +chr8 SNP SNP 15341685 15470605 112 . . R119d +chr8 SNP SNP 15470606 15599527 248 . . R120d +chr8 SNP SNP 15599528 15728449 49 . . R121d +chr8 SNP SNP 15728450 15857370 26 . . R122d +chr8 SNP SNP 15857371 15986292 155 . . R123d +chr8 SNP SNP 15986293 16115214 261 . . R124d +chr8 SNP SNP 16115215 16244135 119 . . R125d +chr8 SNP SNP 16244136 16373057 215 . . R126d +chr8 SNP SNP 16373058 16501978 142 . . R127d +chr8 SNP SNP 16501979 16630900 317 . . R128d +chr8 SNP SNP 16630901 16759822 125 . . R129d +chr8 SNP SNP 16759823 16888743 26 . . R130d +chr8 SNP SNP 16888744 17017665 0 . . R131d +chr8 SNP SNP 17017666 17146587 0 . . R132d +chr8 SNP SNP 17146588 17275508 0 . . R133d +chr8 SNP SNP 17275509 17404430 0 . . R134d +chr8 SNP SNP 17404431 17533351 26 . . R135d +chr8 SNP SNP 17533352 17662273 357 . . R136d +chr8 SNP SNP 17662274 17791195 109 . . R137d +chr8 SNP SNP 17791196 17920116 142 . . R138d +chr8 SNP SNP 17920117 18049038 476 . . R139d +chr8 SNP SNP 18049039 18177960 155 . . R140d +chr8 SNP SNP 18177961 18306881 168 . . R141d +chr8 SNP SNP 18306882 18435803 33 . . R142d +chr8 SNP SNP 18435804 18564725 96 . . R143d +chr8 SNP SNP 18564726 18693646 29 . . R144d +chr8 SNP SNP 18693647 18822568 36 . . R145d +chr8 SNP SNP 18822569 18951489 33 . . R146d +chr8 SNP SNP 18951490 19080411 122 . . R147d +chr8 SNP SNP 19080412 19209333 288 . . R148d +chr8 SNP SNP 19209334 19338254 503 . . R149d +chr8 SNP SNP 19338255 19467176 19 . . R150d +chr8 SNP SNP 19467177 19596098 301 . . R151d +chr8 SNP SNP 19596099 19725019 460 . . R152d +chr8 SNP SNP 19725020 19853941 496 . . R153d +chr8 SNP SNP 19853942 19982862 463 . . R154d +chr8 SNP SNP 19982863 20111784 211 . . R155d +chr8 SNP SNP 20111785 20240706 271 . . R156d +chr8 SNP SNP 20240707 20369627 46 . . R157d +chr8 SNP SNP 20369628 20498549 327 . . R158d +chr8 SNP SNP 20498550 20627471 529 . . R159d +chr8 SNP SNP 20627472 20756392 397 . . R160d +chr8 SNP SNP 20756393 20885314 125 . . R161d +chr8 SNP SNP 20885315 21014236 149 . . R162d +chr8 SNP SNP 21014237 21143157 208 . . R163d +chr8 SNP SNP 21143158 21272079 496 . . R164d +chr8 SNP SNP 21272080 21401000 188 . . R165d +chr8 SNP SNP 21401001 21529922 314 . . R166d +chr8 SNP SNP 21529923 21658844 225 . . R167d +chr8 SNP SNP 21658845 21787765 433 . . R168d +chr8 SNP SNP 21787766 21916687 357 . . R169d +chr8 SNP SNP 21916688 22045609 334 . . R170d +chr8 SNP SNP 22045610 22174530 357 . . R171d +chr8 SNP SNP 22174531 22303452 427 . . R172d +chr8 SNP SNP 22303453 22432373 46 . . R173d +chr8 SNP SNP 22432374 22561295 19 . . R174d +chr8 SNP SNP 22561296 22690217 162 . . R175d +chr8 SNP SNP 22690218 22819138 9 . . R176d +chr8 SNP SNP 22819139 22948060 26 . . R177d +chr8 SNP SNP 22948061 23076982 112 . . R178d +chr8 SNP SNP 23076983 23205903 59 . . R179d +chr8 SNP SNP 23205904 23334825 370 . . R180d +chr8 SNP SNP 23334826 23463747 225 . . R181d +chr8 SNP SNP 23463748 23592668 105 . . R182d +chr8 SNP SNP 23592669 23721590 397 . . R183d +chr8 SNP SNP 23721591 23850511 317 . . R184d +chr8 SNP SNP 23850512 23979433 46 . . R185d +chr8 SNP SNP 23979434 24108355 39 . . R186d +chr8 SNP SNP 24108356 24237276 59 . . R187d +chr8 SNP SNP 24237277 24366198 105 . . R188d +chr8 SNP SNP 24366199 24495120 36 . . R189d +chr8 SNP SNP 24495121 24624041 33 . . R190d +chr8 SNP SNP 24624042 24752963 304 . . R191d +chr8 SNP SNP 24752964 24881884 738 . . R192d +chr8 SNP SNP 24881885 25010806 62 . . R193d +chr8 SNP SNP 25010807 25139728 536 . . R194d +chr8 SNP SNP 25139729 25268649 413 . . R195d +chr8 SNP SNP 25268650 25397571 543 . . R196d +chr8 SNP SNP 25397572 25526493 324 . . R197d +chr8 SNP SNP 25526494 25655414 129 . . R198d +chr8 SNP SNP 25655415 25784336 536 . . R199d +chr8 SNP SNP 25784337 25913258 509 . . R200d +chr8 SNP SNP 25913259 26042179 513 . . R201d +chr8 SNP SNP 26042180 26171101 341 . . R202d +chr8 SNP SNP 26171102 26300022 370 . . R203d +chr8 SNP SNP 26300023 26428944 115 . . R204d +chr8 SNP SNP 26428945 26557866 394 . . R205d +chr8 SNP SNP 26557867 26686787 23 . . R206d +chr8 SNP SNP 26686788 26815709 142 . . R207d +chr8 SNP SNP 26815710 26944631 526 . . R208d +chr8 SNP SNP 26944632 27073552 556 . . R209d +chr8 SNP SNP 27073553 27202474 172 . . R210d +chr8 SNP SNP 27202475 27331395 43 . . R211d +chr8 SNP SNP 27331396 27460317 46 . . R212d +chr8 SNP SNP 27460318 27589239 172 . . R213d +chr8 SNP SNP 27589240 27718160 29 . . R214d +chr8 SNP SNP 27718161 27847082 36 . . R215d +chr8 SNP SNP 27847083 27976004 13 . . R216d +chr8 SNP SNP 27976005 28104925 46 . . R217d +chr8 SNP SNP 28104926 28233847 185 . . R218d +chr8 SNP SNP 28233848 28362769 238 . . R219d +chr8 SNP SNP 28362770 28491690 337 . . R220d +chr8 SNP SNP 28491691 28620612 586 . . R221d +chr8 SNP SNP 28620613 28749533 596 . . R222d +chr8 SNP SNP 28749534 28878455 791 . . R223d +chr8 SNP SNP 28878456 29007377 264 . . R224d +chr8 SNP SNP 29007378 29136298 423 . . R225d +chr8 SNP SNP 29136299 29265220 572 . . R226d +chr8 SNP SNP 29265221 29394142 811 . . R227d +chr8 SNP SNP 29394143 29523063 655 . . R228d +chr8 SNP SNP 29523064 29651985 745 . . R229d +chr8 SNP SNP 29651986 29780906 655 . . R230d +chr8 SNP SNP 29780907 29909828 480 . . R231d +chr8 SNP SNP 29909829 30038750 576 . . R232d +chr8 SNP SNP 30038751 30167671 400 . . R233d +chr8 SNP SNP 30167672 30296593 589 . . R234d +chr8 SNP SNP 30296594 30425515 509 . . R235d +chr8 SNP SNP 30425516 30554436 519 . . R236d +chr8 SNP SNP 30554437 30683358 284 . . R237d +chr8 SNP SNP 30683359 30812280 662 . . R238d +chr8 SNP SNP 30812281 30941201 596 . . R239d +chr8 SNP SNP 30941202 31070123 506 . . R240d +chr8 SNP SNP 31070124 31199044 516 . . R241d +chr8 SNP SNP 31199045 31327966 562 . . R242d +chr8 SNP SNP 31327967 31456888 549 . . R243d +chr8 SNP SNP 31456889 31585809 692 . . R244d +chr8 SNP SNP 31585810 31714731 688 . . R245d +chr8 SNP SNP 31714732 31843653 188 . . R246d +chr8 SNP SNP 31843654 31972574 16 . . R247d +chr8 SNP SNP 31972575 32101496 46 . . R248d +chr8 SNP SNP 32101497 32230418 500 . . R249d +chr8 SNP SNP 32230419 32359339 586 . . R250d +chr8 SNP SNP 32359340 32488261 708 . . R251d +chr8 SNP SNP 32488262 32617182 523 . . R252d +chr8 SNP SNP 32617183 32746104 582 . . R253d +chr8 SNP SNP 32746105 32875026 443 . . R254d +chr8 SNP SNP 32875027 33003947 278 . . R255d +chr8 SNP SNP 33003948 33132869 556 . . R256d +chr8 SNP SNP 33132870 33261791 374 . . R257d +chr8 SNP SNP 33261792 33390712 490 . . R258d +chr8 SNP SNP 33390713 33519634 384 . . R259d +chr8 SNP SNP 33519635 33648555 480 . . R260d +chr8 SNP SNP 33648556 33777477 615 . . R261d +chr8 SNP SNP 33777478 33906399 741 . . R262d +chr8 SNP SNP 33906400 34035320 562 . . R263d +chr8 SNP SNP 34035321 34164242 576 . . R264d +chr8 SNP SNP 34164243 34293164 619 . . R265d +chr8 SNP SNP 34293165 34422085 596 . . R266d +chr8 SNP SNP 34422086 34551007 748 . . R267d +chr8 SNP SNP 34551008 34679929 572 . . R268d +chr8 SNP SNP 34679930 34808850 403 . . R269d +chr8 SNP SNP 34808851 34937772 572 . . R270d +chr8 SNP SNP 34937773 35066693 576 . . R271d +chr8 SNP SNP 35066694 35195615 682 . . R272d +chr8 SNP SNP 35195616 35324537 483 . . R273d +chr8 SNP SNP 35324538 35453458 609 . . R274d +chr8 SNP SNP 35453459 35582380 609 . . R275d +chr8 SNP SNP 35582381 35711302 569 . . R276d +chr8 SNP SNP 35711303 35840223 692 . . R277d +chr8 SNP SNP 35840224 35969145 658 . . R278d +chr8 SNP SNP 35969146 36098066 463 . . R279d +chr8 SNP SNP 36098067 36226988 874 . . R280d +chr8 SNP SNP 36226989 36355910 804 . . R281d +chr8 SNP SNP 36355911 36484831 834 . . R282d +chr8 SNP SNP 36484832 36613753 566 . . R283d +chr8 SNP SNP 36613754 36742675 688 . . R284d +chr8 SNP SNP 36742676 36871596 370 . . R285d +chr8 SNP SNP 36871597 37000518 284 . . R286d +chr8 SNP SNP 37000519 37129440 754 . . R287d +chr8 SNP SNP 37129441 37258361 675 . . R288d +chr8 SNP SNP 37258362 37387283 751 . . R289d +chr8 SNP SNP 37387284 37516204 811 . . R290d +chr8 SNP SNP 37516205 37645126 933 . . R291d +chr8 SNP SNP 37645127 37774048 592 . . R292d +chr8 SNP SNP 37774049 37902969 566 . . R293d +chr8 SNP SNP 37902970 38031891 738 . . R294d +chr8 SNP SNP 38031892 38160813 460 . . R295d +chr8 SNP SNP 38160814 38289734 582 . . R296d +chr8 SNP SNP 38289735 38418656 509 . . R297d +chr8 SNP SNP 38418657 38547577 543 . . R298d +chr8 SNP SNP 38547578 38676499 698 . . R299d +chr8 SNP SNP 38676500 38805421 794 . . R300d +chr8 SNP SNP 38805422 38934342 552 . . R301d +chr8 SNP SNP 38934343 39063264 304 . . R302d +chr8 SNP SNP 39063265 39192186 596 . . R303d +chr8 SNP SNP 39192187 39321107 526 . . R304d +chr8 SNP SNP 39321108 39450029 725 . . R305d +chr8 SNP SNP 39450030 39578951 821 . . R306d +chr8 SNP SNP 39578952 39707872 539 . . R307d +chr8 SNP SNP 39707873 39836794 453 . . R308d +chr8 SNP SNP 39836795 39965715 764 . . R309d +chr8 SNP SNP 39965716 40094637 692 . . R310d +chr8 SNP SNP 40094638 40223559 566 . . R311d +chr8 SNP SNP 40223560 40352480 711 . . R312d +chr8 SNP SNP 40352481 40481402 466 . . R313d +chr8 SNP SNP 40481403 40610324 39 . . R314d +chr8 SNP SNP 40610325 40739245 13 . . R315d +chr8 SNP SNP 40739246 40868167 26 . . R316d +chr8 SNP SNP 40868168 40997088 6 . . R317d +chr8 SNP SNP 40997089 41126010 16 . . R318d +chr8 SNP SNP 41126011 41254932 3 . . R319d +chr8 SNP SNP 41254933 41383853 3 . . R320d +chr8 SNP SNP 41383854 41512775 19 . . R321d +chr8 SNP SNP 41512776 41641697 6 . . R322d +chr8 SNP SNP 41641698 41770618 26 . . R323d +chr8 SNP SNP 41770619 41899540 9 . . R324d +chr8 SNP SNP 41899541 42028462 9 . . R325d +chr8 SNP SNP 42028463 42157383 9 . . R326d +chr8 SNP SNP 42157384 42286305 6 . . R327d +chr8 SNP SNP 42286306 42415226 96 . . R328d +chr8 SNP SNP 42415227 42544148 168 . . R329d +chr8 SNP SNP 42544149 42673070 9 . . R330d +chr8 SNP SNP 42673071 42801991 3 . . R331d +chr8 SNP SNP 42801992 42930913 23 . . R332d +chr8 SNP SNP 42930914 43059835 19 . . R333d +chr8 SNP SNP 43059836 43188756 3 . . R334d +chr8 SNP SNP 43188757 43317678 33 . . R335d +chr8 SNP SNP 43317679 43446599 0 . . R336d +chr8 SNP SNP 43446600 43575521 29 . . R337d +chr8 SNP SNP 43575522 43704443 16 . . R338d +chr8 SNP SNP 43704444 43833364 9 . . R339d +chr8 SNP SNP 43833365 43962286 16 . . R340d +chr8 SNP SNP 43962287 44091208 13 . . R341d +chr8 SNP SNP 44091209 44220129 6 . . R342d +chr8 SNP SNP 44220130 44349051 29 . . R343d +chr8 SNP SNP 44349052 44477973 16 . . R344d +chr8 SNP SNP 44477974 44606894 26 . . R345d +chr8 SNP SNP 44606895 44735816 16 . . R346d +chr8 SNP SNP 44735817 44864737 23 . . R347d +chr8 SNP SNP 44864738 44993659 6 . . R348d +chr8 SNP SNP 44993660 45122581 23 . . R349d +chr8 SNP SNP 45122582 45251502 13 . . R350d +chr8 SNP SNP 45251503 45380424 9 . . R351d +chr8 SNP SNP 45380425 45509346 9 . . R352d +chr8 SNP SNP 45509347 45638267 19 . . R353d +chr8 SNP SNP 45638268 45767189 3 . . R354d +chr8 SNP SNP 45767190 45896110 13 . . R355d +chr8 SNP SNP 45896111 46025032 16 . . R356d +chr8 SNP SNP 46025033 46153954 3 . . R357d +chr8 SNP SNP 46153955 46282875 29 . . R358d +chr8 SNP SNP 46282876 46411797 16 . . R359d +chr8 SNP SNP 46411798 46540719 36 . . R360d +chr8 SNP SNP 46540720 46669640 13 . . R361d +chr8 SNP SNP 46669641 46798562 6 . . R362d +chr8 SNP SNP 46798563 46927484 16 . . R363d +chr8 SNP SNP 46927485 47056405 16 . . R364d +chr8 SNP SNP 47056406 47185327 9 . . R365d +chr8 SNP SNP 47185328 47314248 16 . . R366d +chr8 SNP SNP 47314249 47443170 23 . . R367d +chr8 SNP SNP 47443171 47572092 16 . . R368d +chr8 SNP SNP 47572093 47701013 16 . . R369d +chr8 SNP SNP 47701014 47829935 26 . . R370d +chr8 SNP SNP 47829936 47958857 16 . . R371d +chr8 SNP SNP 47958858 48087778 9 . . R372d +chr8 SNP SNP 48087779 48216700 9 . . R373d +chr8 SNP SNP 48216701 48345622 23 . . R374d +chr8 SNP SNP 48345623 48474543 23 . . R375d +chr8 SNP SNP 48474544 48603465 9 . . R376d +chr8 SNP SNP 48603466 48732386 6 . . R377d +chr8 SNP SNP 48732387 48861308 16 . . R378d +chr8 SNP SNP 48861309 48990230 29 . . R379d +chr8 SNP SNP 48990231 49119151 26 . . R380d +chr8 SNP SNP 49119152 49248073 23 . . R381d +chr8 SNP SNP 49248074 49376995 23 . . R382d +chr8 SNP SNP 49376996 49505916 33 . . R383d +chr8 SNP SNP 49505917 49634838 23 . . R384d +chr8 SNP SNP 49634839 49763759 36 . . R385d +chr8 SNP SNP 49763760 49892681 23 . . R386d +chr8 SNP SNP 49892682 50021603 6 . . R387d +chr8 SNP SNP 50021604 50150524 23 . . R388d +chr8 SNP SNP 50150525 50279446 23 . . R389d +chr8 SNP SNP 50279447 50408368 16 . . R390d +chr8 SNP SNP 50408369 50537289 26 . . R391d +chr8 SNP SNP 50537290 50666211 6 . . R392d +chr8 SNP SNP 50666212 50795133 26 . . R393d +chr8 SNP SNP 50795134 50924054 16 . . R394d +chr8 SNP SNP 50924055 51052976 9 . . R395d +chr8 SNP SNP 51052977 51181897 19 . . R396d +chr8 SNP SNP 51181898 51310819 23 . . R397d +chr8 SNP SNP 51310820 51439741 13 . . R398d +chr8 SNP SNP 51439742 51568662 13 . . R399d +chr8 SNP SNP 51568663 51697584 13 . . R400d +chr8 SNP SNP 51697585 51826506 6 . . R401d +chr8 SNP SNP 51826507 51955427 6 . . R402d +chr8 SNP SNP 51955428 52084349 16 . . R403d +chr8 SNP SNP 52084350 52213270 13 . . R404d +chr8 SNP SNP 52213271 52342192 19 . . R405d +chr8 SNP SNP 52342193 52471114 13 . . R406d +chr8 SNP SNP 52471115 52600035 3 . . R407d +chr8 SNP SNP 52600036 52728957 13 . . R408d +chr8 SNP SNP 52728958 52857879 23 . . R409d +chr8 SNP SNP 52857880 52986800 16 . . R410d +chr8 SNP SNP 52986801 53115722 6 . . R411d +chr8 SNP SNP 53115723 53244644 9 . . R412d +chr8 SNP SNP 53244645 53373565 16 . . R413d +chr8 SNP SNP 53373566 53502487 13 . . R414d +chr8 SNP SNP 53502488 53631408 9 . . R415d +chr8 SNP SNP 53631409 53760330 23 . . R416d +chr8 SNP SNP 53760331 53889252 23 . . R417d +chr8 SNP SNP 53889253 54018173 16 . . R418d +chr8 SNP SNP 54018174 54147095 13 . . R419d +chr8 SNP SNP 54147096 54276017 13 . . R420d +chr8 SNP SNP 54276018 54404938 9 . . R421d +chr8 SNP SNP 54404939 54533860 165 . . R422d +chr8 SNP SNP 54533861 54662781 274 . . R423d +chr8 SNP SNP 54662782 54791703 380 . . R424d +chr8 SNP SNP 54791704 54920625 245 . . R425d +chr8 SNP SNP 54920626 55049546 410 . . R426d +chr8 SNP SNP 55049547 55178468 360 . . R427d +chr8 SNP SNP 55178469 55307390 403 . . R428d +chr8 SNP SNP 55307391 55436311 354 . . R429d +chr8 SNP SNP 55436312 55565233 96 . . R430d +chr8 SNP SNP 55565234 55694155 3 . . R431d +chr8 SNP SNP 55694156 55823076 23 . . R432d +chr8 SNP SNP 55823077 55951998 261 . . R433d +chr8 SNP SNP 55951999 56080919 380 . . R434d +chr8 SNP SNP 56080920 56209841 480 . . R435d +chr8 SNP SNP 56209842 56338763 261 . . R436d +chr8 SNP SNP 56338764 56467684 19 . . R437d +chr8 SNP SNP 56467685 56596606 321 . . R438d +chr8 SNP SNP 56596607 56725528 453 . . R439d +chr8 SNP SNP 56725529 56854449 327 . . R440d +chr8 SNP SNP 56854450 56983371 380 . . R441d +chr8 SNP SNP 56983372 57112292 430 . . R442d +chr8 SNP SNP 57112293 57241214 480 . . R443d +chr8 SNP SNP 57241215 57370136 466 . . R444d +chr8 SNP SNP 57370137 57499057 556 . . R445d +chr8 SNP SNP 57499058 57627979 645 . . R446d +chr8 SNP SNP 57627980 57756901 745 . . R447d +chr8 SNP SNP 57756902 57885822 430 . . R448d +chr8 SNP SNP 57885823 58014744 519 . . R449d +chr8 SNP SNP 58014745 58143666 821 . . R450d +chr8 SNP SNP 58143667 58272587 447 . . R451d +chr8 SNP SNP 58272588 58401509 251 . . R452d +chr8 SNP SNP 58401510 58530430 105 . . R453d +chr8 SNP SNP 58530431 58659352 86 . . R454d +chr8 SNP SNP 58659353 58788274 231 . . R455d +chr8 SNP SNP 58788275 58917195 261 . . R456d +chr8 SNP SNP 58917196 59046117 380 . . R457d +chr8 SNP SNP 59046118 59175039 423 . . R458d +chr8 SNP SNP 59175040 59303960 490 . . R459d +chr8 SNP SNP 59303961 59432882 407 . . R460d +chr8 SNP SNP 59432883 59561803 245 . . R461d +chr8 SNP SNP 59561804 59690725 109 . . R462d +chr8 SNP SNP 59690726 59819647 92 . . R463d +chr8 SNP SNP 59819648 59948568 66 . . R464d +chr8 SNP SNP 59948569 60077490 82 . . R465d +chr8 SNP SNP 60077491 60206412 466 . . R466d +chr8 SNP SNP 60206413 60335333 307 . . R467d +chr8 SNP SNP 60335334 60464255 89 . . R468d +chr8 SNP SNP 60464256 60593177 480 . . R469d +chr8 SNP SNP 60593178 60722098 397 . . R470d +chr8 SNP SNP 60722099 60851020 155 . . R471d +chr8 SNP SNP 60851021 60979941 298 . . R472d +chr8 SNP SNP 60979942 61108863 46 . . R473d +chr8 SNP SNP 61108864 61237785 59 . . R474d +chr8 SNP SNP 61237786 61366706 36 . . R475d +chr8 SNP SNP 61366707 61495628 29 . . R476d +chr8 SNP SNP 61495629 61624550 198 . . R477d +chr8 SNP SNP 61624551 61753471 274 . . R478d +chr8 SNP SNP 61753472 61882393 135 . . R479d +chr8 SNP SNP 61882394 62011314 149 . . R480d +chr8 SNP SNP 62011315 62140236 433 . . R481d +chr8 SNP SNP 62140237 62269158 427 . . R482d +chr8 SNP SNP 62269159 62398079 201 . . R483d +chr8 SNP SNP 62398080 62527001 79 . . R484d +chr8 SNP SNP 62527002 62655923 43 . . R485d +chr8 SNP SNP 62655924 62784844 26 . . R486d +chr8 SNP SNP 62784845 62913766 185 . . R487d +chr8 SNP SNP 62913767 63042688 423 . . R488d +chr8 SNP SNP 63042689 63171609 291 . . R489d +chr8 SNP SNP 63171610 63300531 456 . . R490d +chr8 SNP SNP 63300532 63429452 145 . . R491d +chr8 SNP SNP 63429453 63558374 413 . . R492d +chr8 SNP SNP 63558375 63687296 298 . . R493d +chr8 SNP SNP 63687297 63816217 9 . . R494d +chr8 SNP SNP 63816218 63945139 105 . . R495d +chr8 SNP SNP 63945140 64074061 357 . . R496d +chr8 SNP SNP 64074062 64202982 380 . . R497d +chr8 SNP SNP 64202983 64331904 450 . . R498d +chr8 SNP SNP 64331905 64460826 307 . . R499d +chr8 SNP SNP 64460827 64589747 417 . . R500d +chr8 SNP SNP 64589748 64718669 407 . . R501d +chr8 SNP SNP 64718670 64847590 536 . . R502d +chr8 SNP SNP 64847591 64976512 370 . . R503d +chr8 SNP SNP 64976513 65105434 443 . . R504d +chr8 SNP SNP 65105435 65234355 403 . . R505d +chr8 SNP SNP 65234356 65363277 278 . . R506d +chr8 SNP SNP 65363278 65492199 334 . . R507d +chr8 SNP SNP 65492200 65621120 175 . . R508d +chr8 SNP SNP 65621121 65750042 52 . . R509d +chr8 SNP SNP 65750043 65878963 327 . . R510d +chr8 SNP SNP 65878964 66007885 225 . . R511d +chr8 SNP SNP 66007886 66136807 82 . . R512d +chr8 SNP SNP 66136808 66265728 39 . . R513d +chr8 SNP SNP 66265729 66394650 46 . . R514d +chr8 SNP SNP 66394651 66523572 49 . . R515d +chr8 SNP SNP 66523573 66652493 23 . . R516d +chr8 SNP SNP 66652494 66781415 46 . . R517d +chr8 SNP SNP 66781416 66910337 9 . . R518d +chr8 SNP SNP 66910338 67039258 298 . . R519d +chr8 SNP SNP 67039259 67168180 523 . . R520d +chr8 SNP SNP 67168181 67297101 370 . . R521d +chr8 SNP SNP 67297102 67426023 228 . . R522d +chr8 SNP SNP 67426024 67554945 221 . . R523d +chr8 SNP SNP 67554946 67683866 599 . . R524d +chr8 SNP SNP 67683867 67812788 506 . . R525d +chr8 SNP SNP 67812789 67941710 794 . . R526d +chr8 SNP SNP 67941711 68070631 725 . . R527d +chr8 SNP SNP 68070632 68199553 831 . . R528d +chr8 SNP SNP 68199554 68328474 625 . . R529d +chr8 SNP SNP 68328475 68457396 605 . . R530d +chr8 SNP SNP 68457397 68586318 0 . . R531d +chr8 SNP SNP 68586319 68715239 529 . . R532d +chr8 SNP SNP 68715240 68844161 811 . . R533d +chr8 SNP SNP 68844162 68973083 884 . . R534d +chr8 SNP SNP 68973084 69102004 973 . . R535d +chr8 SNP SNP 69102005 69230926 903 . . R536d +chr8 SNP SNP 69230927 69359848 880 . . R537d +chr8 SNP SNP 69359849 69488769 947 . . R538d +chr8 SNP SNP 69488770 69617691 639 . . R539d +chr8 SNP SNP 69617692 69746612 930 . . R540d +chr8 SNP SNP 69746613 69875534 937 . . R541d +chr8 SNP SNP 69875535 70004456 834 . . R542d +chr8 SNP SNP 70004457 70133377 347 . . R543d +chr8 SNP SNP 70133378 70262299 52 . . R544d +chr8 SNP SNP 70262300 70391221 642 . . R545d +chr8 SNP SNP 70391222 70520142 738 . . R546d +chr8 SNP SNP 70520143 70649064 745 . . R547d +chr8 SNP SNP 70649065 70777985 1000 . . R548d +chr8 SNP SNP 70777986 70906907 225 . . R549d +chr8 SNP SNP 70906908 71035829 311 . . R550d +chr8 SNP SNP 71035830 71164750 675 . . R551d +chr8 SNP SNP 71164751 71293672 741 . . R552d +chr8 SNP SNP 71293673 71422594 682 . . R553d +chr8 SNP SNP 71422595 71551515 933 . . R554d +chr8 SNP SNP 71551516 71680437 678 . . R555d +chr8 SNP SNP 71680438 71809359 129 . . R556d +chr8 SNP SNP 71809360 71938280 49 . . R557d +chr8 SNP SNP 71938281 72067202 43 . . R558d +chr8 SNP SNP 72067203 72196123 470 . . R559d +chr8 SNP SNP 72196124 72325045 364 . . R560d +chr8 SNP SNP 72325046 72453967 92 . . R561d +chr8 SNP SNP 72453968 72582888 33 . . R562d +chr8 SNP SNP 72582889 72711810 26 . . R563d +chr8 SNP SNP 72711811 72840732 360 . . R564d +chr8 SNP SNP 72840733 72969653 387 . . R565d +chr8 SNP SNP 72969654 73098575 490 . . R566d +chr8 SNP SNP 73098576 73227496 231 . . R567d +chr8 SNP SNP 73227497 73356418 195 . . R568d +chr8 SNP SNP 73356419 73485340 649 . . R569d +chr8 SNP SNP 73485341 73614261 569 . . R570d +chr8 SNP SNP 73614262 73743183 433 . . R571d +chr8 SNP SNP 73743184 73872105 344 . . R572d +chr8 SNP SNP 73872106 74001026 357 . . R573d +chr8 SNP SNP 74001027 74129948 447 . . R574d +chr8 SNP SNP 74129949 74258870 261 . . R575d +chr8 SNP SNP 74258871 74387791 397 . . R576d +chr8 SNP SNP 74387792 74516713 506 . . R577d +chr8 SNP SNP 74516714 74645634 218 . . R578d +chr8 SNP SNP 74645635 74774556 9 . . R579d +chr8 SNP SNP 74774557 74903478 384 . . R580d +chr8 SNP SNP 74903479 75032399 26 . . R581d +chr8 SNP SNP 75032400 75161321 36 . . R582d +chr8 SNP SNP 75161322 75290243 56 . . R583d +chr8 SNP SNP 75290244 75419164 49 . . R584d +chr8 SNP SNP 75419165 75548086 195 . . R585d +chr8 SNP SNP 75548087 75677007 122 . . R586d +chr8 SNP SNP 75677008 75805929 26 . . R587d +chr8 SNP SNP 75805930 75934851 19 . . R588d +chr8 SNP SNP 75934852 76063772 13 . . R589d +chr8 SNP SNP 76063773 76192694 135 . . R590d +chr8 SNP SNP 76192695 76321616 6 . . R591d +chr8 SNP SNP 76321617 76450537 261 . . R592d +chr8 SNP SNP 76450538 76579459 377 . . R593d +chr8 SNP SNP 76579460 76708381 105 . . R594d +chr8 SNP SNP 76708382 76837302 13 . . R595d +chr8 SNP SNP 76837303 76966224 23 . . R596d +chr8 SNP SNP 76966225 77095145 13 . . R597d +chr8 SNP SNP 77095146 77224067 6 . . R598d +chr8 SNP SNP 77224068 77352989 9 . . R599d +chr8 SNP SNP 77352990 77481910 6 . . R600d +chr8 SNP SNP 77481911 77610832 3 . . R601d +chr8 SNP SNP 77610833 77739754 13 . . R602d +chr8 SNP SNP 77739755 77868675 6 . . R603d +chr8 SNP SNP 77868676 77997597 3 . . R604d +chr8 SNP SNP 77997598 78126518 9 . . R605d +chr8 SNP SNP 78126519 78255440 16 . . R606d +chr8 SNP SNP 78255441 78384362 19 . . R607d +chr8 SNP SNP 78384363 78513283 23 . . R608d +chr8 SNP SNP 78513284 78642205 13 . . R609d +chr8 SNP SNP 78642206 78771127 19 . . R610d +chr8 SNP SNP 78771128 78900048 16 . . R611d +chr8 SNP SNP 78900049 79028970 26 . . R612d +chr8 SNP SNP 79028971 79157892 16 . . R613d +chr8 SNP SNP 79157893 79286813 9 . . R614d +chr8 SNP SNP 79286814 79415735 23 . . R615d +chr8 SNP SNP 79415736 79544656 19 . . R616d +chr8 SNP SNP 79544657 79673578 26 . . R617d +chr8 SNP SNP 79673579 79802500 23 . . R618d +chr8 SNP SNP 79802501 79931421 3 . . R619d +chr8 SNP SNP 79931422 80060343 13 . . R620d +chr8 SNP SNP 80060344 80189265 705 . . R621d +chr8 SNP SNP 80189266 80318186 711 . . R622d +chr8 SNP SNP 80318187 80447108 271 . . R623d +chr8 SNP SNP 80447109 80576030 735 . . R624d +chr8 SNP SNP 80576031 80704951 652 . . R625d +chr8 SNP SNP 80704952 80833873 642 . . R626d +chr8 SNP SNP 80833874 80962794 586 . . R627d +chr8 SNP SNP 80962795 81091716 678 . . R628d +chr8 SNP SNP 81091717 81220638 523 . . R629d +chr8 SNP SNP 81220639 81349559 685 . . R630d +chr8 SNP SNP 81349560 81478481 649 . . R631d +chr8 SNP SNP 81478482 81607403 725 . . R632d +chr8 SNP SNP 81607404 81736324 923 . . R633d +chr8 SNP SNP 81736325 81865246 768 . . R634d +chr8 SNP SNP 81865247 81994167 453 . . R635d +chr8 SNP SNP 81994168 82123089 483 . . R636d +chr8 SNP SNP 82123090 82252011 417 . . R637d +chr8 SNP SNP 82252012 82380932 536 . . R638d +chr8 SNP SNP 82380933 82509854 450 . . R639d +chr8 SNP SNP 82509855 82638776 592 . . R640d +chr8 SNP SNP 82638777 82767697 529 . . R641d +chr8 SNP SNP 82767698 82896619 480 . . R642d +chr8 SNP SNP 82896620 83025541 778 . . R643d +chr8 SNP SNP 83025542 83154462 761 . . R644d +chr8 SNP SNP 83154463 83283384 655 . . R645d +chr8 SNP SNP 83283385 83412305 619 . . R646d +chr8 SNP SNP 83412306 83541227 735 . . R647d +chr8 SNP SNP 83541228 83670149 764 . . R648d +chr8 SNP SNP 83670150 83799070 754 . . R649d +chr8 SNP SNP 83799071 83927992 678 . . R650d +chr8 SNP SNP 83927993 84056914 877 . . R651d +chr8 SNP SNP 84056915 84185835 751 . . R652d +chr8 SNP SNP 84185836 84314757 678 . . R653d +chr8 SNP SNP 84314758 84443678 652 . . R654d +chr8 SNP SNP 84443679 84572600 400 . . R655d +chr8 SNP SNP 84572601 84701522 635 . . R656d +chr8 SNP SNP 84701523 84830443 546 . . R657d +chr8 SNP SNP 84830444 84959365 456 . . R658d +chr8 SNP SNP 84959366 85088287 397 . . R659d +chr8 SNP SNP 85088288 85217208 486 . . R660d +chr8 SNP SNP 85217209 85346130 443 . . R661d +chr8 SNP SNP 85346131 85475052 486 . . R662d +chr8 SNP SNP 85475053 85603973 185 . . R663d +chr8 SNP SNP 85603974 85732895 274 . . R664d +chr8 SNP SNP 85732896 85861816 33 . . R665d +chr8 SNP SNP 85861817 85990738 13 . . R666d +chr8 SNP SNP 85990739 86119660 43 . . R667d +chr8 SNP SNP 86119661 86248581 49 . . R668d +chr8 SNP SNP 86248582 86377503 281 . . R669d +chr8 SNP SNP 86377504 86506425 304 . . R670d +chr8 SNP SNP 86506426 86635346 59 . . R671d +chr8 SNP SNP 86635347 86764268 39 . . R672d +chr8 SNP SNP 86764269 86893189 49 . . R673d +chr8 SNP SNP 86893190 87022111 112 . . R674d +chr8 SNP SNP 87022112 87151033 125 . . R675d +chr8 SNP SNP 87151034 87279954 182 . . R676d +chr8 SNP SNP 87279955 87408876 26 . . R677d +chr8 SNP SNP 87408877 87537798 19 . . R678d +chr8 SNP SNP 87537799 87666719 298 . . R679d +chr8 SNP SNP 87666720 87795641 599 . . R680d +chr8 SNP SNP 87795642 87924563 698 . . R681d +chr8 SNP SNP 87924564 88053484 556 . . R682d +chr8 SNP SNP 88053485 88182406 566 . . R683d +chr8 SNP SNP 88182407 88311327 678 . . R684d +chr8 SNP SNP 88311328 88440249 413 . . R685d +chr8 SNP SNP 88440250 88569171 579 . . R686d +chr8 SNP SNP 88569172 88698092 582 . . R687d +chr8 SNP SNP 88698093 88827014 645 . . R688d +chr8 SNP SNP 88827015 88955936 347 . . R689d +chr8 SNP SNP 88955937 89084857 701 . . R690d +chr8 SNP SNP 89084858 89213779 701 . . R691d +chr8 SNP SNP 89213780 89342700 453 . . R692d +chr8 SNP SNP 89342701 89471622 596 . . R693d +chr8 SNP SNP 89471623 89600544 529 . . R694d +chr8 SNP SNP 89600545 89729465 632 . . R695d +chr8 SNP SNP 89729466 89858387 586 . . R696d +chr8 SNP SNP 89858388 89987309 764 . . R697d +chr8 SNP SNP 89987310 90116230 331 . . R698d +chr8 SNP SNP 90116231 90245152 447 . . R699d +chr8 SNP SNP 90245153 90374074 715 . . R700d +chr8 SNP SNP 90374075 90502995 533 . . R701d +chr8 SNP SNP 90502996 90631917 668 . . R702d +chr8 SNP SNP 90631918 90760838 447 . . R703d +chr8 SNP SNP 90760839 90889760 701 . . R704d +chr8 SNP SNP 90889761 91018682 721 . . R705d +chr8 SNP SNP 91018683 91147603 735 . . R706d +chr8 SNP SNP 91147604 91276525 609 . . R707d +chr8 SNP SNP 91276526 91405447 602 . . R708d +chr8 SNP SNP 91405448 91534368 592 . . R709d +chr8 SNP SNP 91534369 91663290 844 . . R710d +chr8 SNP SNP 91663291 91792211 705 . . R711d +chr8 SNP SNP 91792212 91921133 347 . . R712d +chr8 SNP SNP 91921134 92050055 576 . . R713d +chr8 SNP SNP 92050056 92178976 708 . . R714d +chr8 SNP SNP 92178977 92307898 612 . . R715d +chr8 SNP SNP 92307899 92436820 552 . . R716d +chr8 SNP SNP 92436821 92565741 198 . . R717d +chr8 SNP SNP 92565742 92694663 19 . . R718d +chr8 SNP SNP 92694664 92823585 9 . . R719d +chr8 SNP SNP 92823586 92952506 9 . . R720d +chr8 SNP SNP 92952507 93081428 13 . . R721d +chr8 SNP SNP 93081429 93210349 19 . . R722d +chr8 SNP SNP 93210350 93339271 0 . . R723d +chr8 SNP SNP 93339272 93468193 59 . . R724d +chr8 SNP SNP 93468194 93597114 23 . . R725d +chr8 SNP SNP 93597115 93726036 9 . . R726d +chr8 SNP SNP 93726037 93854958 231 . . R727d +chr8 SNP SNP 93854959 93983879 238 . . R728d +chr8 SNP SNP 93983880 94112801 36 . . R729d +chr8 SNP SNP 94112802 94241722 390 . . R730d +chr8 SNP SNP 94241723 94370644 539 . . R731d +chr8 SNP SNP 94370645 94499566 129 . . R732d +chr8 SNP SNP 94499567 94628487 258 . . R733d +chr8 SNP SNP 94628488 94757409 569 . . R734d +chr8 SNP SNP 94757410 94886331 294 . . R735d +chr8 SNP SNP 94886332 95015252 407 . . R736d +chr8 SNP SNP 95015253 95144174 182 . . R737d +chr8 SNP SNP 95144175 95273096 39 . . R738d +chr8 SNP SNP 95273097 95402017 49 . . R739d +chr8 SNP SNP 95402018 95530939 125 . . R740d +chr8 SNP SNP 95530940 95659860 334 . . R741d +chr8 SNP SNP 95659861 95788782 89 . . R742d +chr8 SNP SNP 95788783 95917704 49 . . R743d +chr8 SNP SNP 95917705 96046625 437 . . R744d +chr8 SNP SNP 96046626 96175547 642 . . R745d +chr8 SNP SNP 96175548 96304469 592 . . R746d +chr8 SNP SNP 96304470 96433390 403 . . R747d +chr8 SNP SNP 96433391 96562312 500 . . R748d +chr8 SNP SNP 96562313 96691234 466 . . R749d +chr8 SNP SNP 96691235 96820155 337 . . R750d +chr8 SNP SNP 96820156 96949077 231 . . R751d +chr8 SNP SNP 96949078 97077998 364 . . R752d +chr8 SNP SNP 97077999 97206920 413 . . R753d +chr8 SNP SNP 97206921 97335842 566 . . R754d +chr8 SNP SNP 97335843 97464763 39 . . R755d +chr8 SNP SNP 97464764 97593685 23 . . R756d +chr8 SNP SNP 97593686 97722607 341 . . R757d +chr8 SNP SNP 97722608 97851528 278 . . R758d +chr8 SNP SNP 97851529 97980450 195 . . R759d +chr8 SNP SNP 97980451 98109371 307 . . R760d +chr8 SNP SNP 98109372 98238293 79 . . R761d +chr8 SNP SNP 98238294 98367215 443 . . R762d +chr8 SNP SNP 98367216 98496136 460 . . R763d +chr8 SNP SNP 98496137 98625058 33 . . R764d +chr8 SNP SNP 98625059 98753980 23 . . R765d +chr8 SNP SNP 98753981 98882901 33 . . R766d +chr8 SNP SNP 98882902 99011823 3 . . R767d +chr8 SNP SNP 99011824 99140745 16 . . R768d +chr8 SNP SNP 99140746 99269666 9 . . R769d +chr8 SNP SNP 99269667 99398588 9 . . R770d +chr8 SNP SNP 99398589 99527509 26 . . R771d +chr8 SNP SNP 99527510 99656431 198 . . R772d +chr8 SNP SNP 99656432 99785353 264 . . R773d +chr8 SNP SNP 99785354 99914274 377 . . R774d +chr8 SNP SNP 99914275 100043196 384 . . R775d +chr8 SNP SNP 100043197 100172118 337 . . R776d +chr8 SNP SNP 100172119 100301039 139 . . R777d +chr8 SNP SNP 100301040 100429961 122 . . R778d +chr8 SNP SNP 100429962 100558882 291 . . R779d +chr8 SNP SNP 100558883 100687804 778 . . R780d +chr8 SNP SNP 100687805 100816726 241 . . R781d +chr8 SNP SNP 100816727 100945647 549 . . R782d +chr8 SNP SNP 100945648 101074569 334 . . R783d +chr8 SNP SNP 101074570 101203491 450 . . R784d +chr8 SNP SNP 101203492 101332412 658 . . R785d +chr8 SNP SNP 101332413 101461334 182 . . R786d +chr8 SNP SNP 101461335 101590256 357 . . R787d +chr8 SNP SNP 101590257 101719177 82 . . R788d +chr8 SNP SNP 101719178 101848099 92 . . R789d +chr8 SNP SNP 101848100 101977020 496 . . R790d +chr8 SNP SNP 101977021 102105942 609 . . R791d +chr8 SNP SNP 102105943 102234864 400 . . R792d +chr8 SNP SNP 102234865 102363785 72 . . R793d +chr8 SNP SNP 102363786 102492707 36 . . R794d +chr8 SNP SNP 102492708 102621629 69 . . R795d +chr8 SNP SNP 102621630 102750550 59 . . R796d +chr8 SNP SNP 102750551 102879472 413 . . R797d +chr8 SNP SNP 102879473 103008393 447 . . R798d +chr8 SNP SNP 103008394 103137315 132 . . R799d +chr8 SNP SNP 103137316 103266237 16 . . R800d +chr8 SNP SNP 103266238 103395158 3 . . R801d +chr8 SNP SNP 103395159 103524080 9 . . R802d +chr8 SNP SNP 103524081 103653002 29 . . R803d +chr8 SNP SNP 103653003 103781923 13 . . R804d +chr8 SNP SNP 103781924 103910845 23 . . R805d +chr8 SNP SNP 103910846 104039767 9 . . R806d +chr8 SNP SNP 104039768 104168688 16 . . R807d +chr8 SNP SNP 104168689 104297610 6 . . R808d +chr8 SNP SNP 104297611 104426531 23 . . R809d +chr8 SNP SNP 104426532 104555453 13 . . R810d +chr8 SNP SNP 104555454 104684375 19 . . R811d +chr8 SNP SNP 104684376 104813296 16 . . R812d +chr8 SNP SNP 104813297 104942218 19 . . R813d +chr8 SNP SNP 104942219 105071140 19 . . R814d +chr8 SNP SNP 105071141 105200061 16 . . R815d +chr8 SNP SNP 105200062 105328983 3 . . R816d +chr8 SNP SNP 105328984 105457904 9 . . R817d +chr8 SNP SNP 105457905 105586826 13 . . R818d +chr8 SNP SNP 105586827 105715748 16 . . R819d +chr8 SNP SNP 105715749 105844669 3 . . R820d +chr8 SNP SNP 105844670 105973591 3 . . R821d +chr8 SNP SNP 105973592 106102513 62 . . R822d +chr8 SNP SNP 106102514 106231434 417 . . R823d +chr8 SNP SNP 106231435 106360356 298 . . R824d +chr8 SNP SNP 106360357 106489278 66 . . R825d +chr8 SNP SNP 106489279 106618199 294 . . R826d +chr8 SNP SNP 106618200 106747121 278 . . R827d +chr8 SNP SNP 106747122 106876042 23 . . R828d +chr8 SNP SNP 106876043 107004964 16 . . R829d +chr8 SNP SNP 107004965 107133886 162 . . R830d +chr8 SNP SNP 107133887 107262807 331 . . R831d +chr8 SNP SNP 107262808 107391729 523 . . R832d +chr8 SNP SNP 107391730 107520651 307 . . R833d +chr8 SNP SNP 107520652 107649572 354 . . R834d +chr8 SNP SNP 107649573 107778494 19 . . R835d +chr8 SNP SNP 107778495 107907415 89 . . R836d +chr8 SNP SNP 107907416 108036337 225 . . R837d +chr8 SNP SNP 108036338 108165259 132 . . R838d +chr8 SNP SNP 108165260 108294180 254 . . R839d +chr8 SNP SNP 108294181 108423102 327 . . R840d +chr8 SNP SNP 108423103 108552024 175 . . R841d +chr8 SNP SNP 108552025 108680945 132 . . R842d +chr8 SNP SNP 108680946 108809867 596 . . R843d +chr8 SNP SNP 108809868 108938789 321 . . R844d +chr8 SNP SNP 108938790 109067710 99 . . R845d +chr8 SNP SNP 109067711 109196632 49 . . R846d +chr8 SNP SNP 109196633 109325553 62 . . R847d +chr8 SNP SNP 109325554 109454475 36 . . R848d +chr8 SNP SNP 109454476 109583397 215 . . R849d +chr8 SNP SNP 109583398 109712318 92 . . R850d +chr8 SNP SNP 109712319 109841240 33 . . R851d +chr8 SNP SNP 109841241 109970162 13 . . R852d +chr8 SNP SNP 109970163 110099083 19 . . R853d +chr8 SNP SNP 110099084 110228005 16 . . R854d +chr8 SNP SNP 110228006 110356926 19 . . R855d +chr8 SNP SNP 110356927 110485848 23 . . R856d +chr8 SNP SNP 110485849 110614770 16 . . R857d +chr8 SNP SNP 110614771 110743691 13 . . R858d +chr8 SNP SNP 110743692 110872613 13 . . R859d +chr8 SNP SNP 110872614 111001535 9 . . R860d +chr8 SNP SNP 111001536 111130456 16 . . R861d +chr8 SNP SNP 111130457 111259378 13 . . R862d +chr8 SNP SNP 111259379 111388300 6 . . R863d +chr8 SNP SNP 111388301 111517221 0 . . R864d +chr8 SNP SNP 111517222 111646143 0 . . R865d +chr8 SNP SNP 111646144 111775064 13 . . R866d +chr8 SNP SNP 111775065 111903986 16 . . R867d +chr8 SNP SNP 111903987 112032908 13 . . R868d +chr8 SNP SNP 112032909 112161829 23 . . R869d +chr8 SNP SNP 112161830 112290751 9 . . R870d +chr8 SNP SNP 112290752 112419673 16 . . R871d +chr8 SNP SNP 112419674 112548594 16 . . R872d +chr8 SNP SNP 112548595 112677516 6 . . R873d +chr8 SNP SNP 112677517 112806438 0 . . R874d +chr8 SNP SNP 112806439 112935359 26 . . R875d +chr8 SNP SNP 112935360 113064281 6 . . R876d +chr8 SNP SNP 113064282 113193202 29 . . R877d +chr8 SNP SNP 113193203 113322124 66 . . R878d +chr8 SNP SNP 113322125 113451046 341 . . R879d +chr8 SNP SNP 113451047 113579967 205 . . R880d +chr8 SNP SNP 113579968 113708889 251 . . R881d +chr8 SNP SNP 113708890 113837811 221 . . R882d +chr8 SNP SNP 113837812 113966732 26 . . R883d +chr8 SNP SNP 113966733 114095654 23 . . R884d +chr8 SNP SNP 114095655 114224575 413 . . R885d +chr8 SNP SNP 114224576 114353497 367 . . R886d +chr8 SNP SNP 114353498 114482419 268 . . R887d +chr8 SNP SNP 114482420 114611340 26 . . R888d +chr8 SNP SNP 114611341 114740262 23 . . R889d +chr8 SNP SNP 114740263 114869184 59 . . R890d +chr8 SNP SNP 114869185 114998105 102 . . R891d +chr8 SNP SNP 114998106 115127027 33 . . R892d +chr8 SNP SNP 115127028 115255949 16 . . R893d +chr8 SNP SNP 115255950 115384870 337 . . R894d +chr8 SNP SNP 115384871 115513792 334 . . R895d +chr8 SNP SNP 115513793 115642713 463 . . R896d +chr8 SNP SNP 115642714 115771635 466 . . R897d +chr8 SNP SNP 115771636 115900557 433 . . R898d +chr8 SNP SNP 115900558 116029478 245 . . R899d +chr8 SNP SNP 116029479 116158400 208 . . R900d +chr8 SNP SNP 116158401 116287322 139 . . R901d +chr8 SNP SNP 116287323 116416243 248 . . R902d +chr8 SNP SNP 116416244 116545165 228 . . R903d +chr8 SNP SNP 116545166 116674086 39 . . R904d +chr8 SNP SNP 116674087 116803008 26 . . R905d +chr8 SNP SNP 116803009 116931930 16 . . R906d +chr8 SNP SNP 116931931 117060851 16 . . R907d +chr8 SNP SNP 117060852 117189773 13 . . R908d +chr8 SNP SNP 117189774 117318695 19 . . R909d +chr8 SNP SNP 117318696 117447616 13 . . R910d +chr8 SNP SNP 117447617 117576538 6 . . R911d +chr8 SNP SNP 117576539 117705460 19 . . R912d +chr8 SNP SNP 117705461 117834381 3 . . R913d +chr8 SNP SNP 117834382 117963303 0 . . R914d +chr8 SNP SNP 117963304 118092224 3 . . R915d +chr8 SNP SNP 118092225 118221146 0 . . R916d +chr8 SNP SNP 118221147 118350068 9 . . R917d +chr8 SNP SNP 118350069 118478989 9 . . R918d +chr8 SNP SNP 118478990 118607911 19 . . R919d +chr8 SNP SNP 118607912 118736833 13 . . R920d +chr8 SNP SNP 118736834 118865754 9 . . R921d +chr8 SNP SNP 118865755 118994676 13 . . R922d +chr8 SNP SNP 118994677 119123597 6 . . R923d +chr8 SNP SNP 119123598 119252519 6 . . R924d +chr8 SNP SNP 119252520 119381441 9 . . R925d +chr8 SNP SNP 119381442 119510362 13 . . R926d +chr8 SNP SNP 119510363 119639284 16 . . R927d +chr8 SNP SNP 119639285 119768206 16 . . R928d +chr8 SNP SNP 119768207 119897127 3 . . R929d +chr8 SNP SNP 119897128 120026049 6 . . R930d +chr8 SNP SNP 120026050 120154971 9 . . R931d +chr8 SNP SNP 120154972 120283892 13 . . R932d +chr8 SNP SNP 120283893 120412814 33 . . R933d +chr8 SNP SNP 120412815 120541735 6 . . R934d +chr8 SNP SNP 120541736 120670657 6 . . R935d +chr8 SNP SNP 120670658 120799579 3 . . R936d +chr8 SNP SNP 120799580 120928500 13 . . R937d +chr8 SNP SNP 120928501 121057422 6 . . R938d +chr8 SNP SNP 121057423 121186344 0 . . R939d +chr8 SNP SNP 121186345 121315265 23 . . R940d +chr8 SNP SNP 121315266 121444187 13 . . R941d +chr8 SNP SNP 121444188 121573108 0 . . R942d +chr8 SNP SNP 121573109 121702030 6 . . R943d +chr8 SNP SNP 121702031 121830952 9 . . R944d +chr8 SNP SNP 121830953 121959873 9 . . R945d +chr8 SNP SNP 121959874 122088795 9 . . R946d +chr8 SNP SNP 122088796 122217717 19 . . R947d +chr8 SNP SNP 122217718 122346638 13 . . R948d +chr8 SNP SNP 122346639 122475560 16 . . R949d +chr8 SNP SNP 122475561 122604482 9 . . R950d +chr8 SNP SNP 122604483 122733403 13 . . R951d +chr8 SNP SNP 122733404 122862325 13 . . R952d +chr8 SNP SNP 122862326 122991246 33 . . R953d +chr8 SNP SNP 122991247 123120168 493 . . R954d +chr8 SNP SNP 123120169 123249090 89 . . R955d +chr8 SNP SNP 123249091 123378011 162 . . R956d +chr8 SNP SNP 123378012 123506933 3 . . R957d +chr8 SNP SNP 123506934 123635855 6 . . R958d +chr8 SNP SNP 123635856 123764776 16 . . R959d +chr8 SNP SNP 123764777 123893698 3 . . R960d +chr8 SNP SNP 123893699 124022619 0 . . R961d +chr8 SNP SNP 124022620 124151541 9 . . R962d +chr8 SNP SNP 124151542 124280463 3 . . R963d +chr8 SNP SNP 124280464 124409384 9 . . R964d +chr8 SNP SNP 124409385 124538306 6 . . R965d +chr8 SNP SNP 124538307 124667228 6 . . R966d +chr8 SNP SNP 124667229 124796149 23 . . R967d +chr8 SNP SNP 124796150 124925071 6 . . R968d +chr8 SNP SNP 124925072 125053993 9 . . R969d +chr8 SNP SNP 125053994 125182914 6 . . R970d +chr8 SNP SNP 125182915 125311836 13 . . R971d +chr8 SNP SNP 125311837 125440757 13 . . R972d +chr8 SNP SNP 125440758 125569679 13 . . R973d +chr8 SNP SNP 125569680 125698601 3 . . R974d +chr8 SNP SNP 125698602 125827522 9 . . R975d +chr8 SNP SNP 125827523 125956444 9 . . R976d +chr8 SNP SNP 125956445 126085366 13 . . R977d +chr8 SNP SNP 126085367 126214287 66 . . R978d +chr8 SNP SNP 126214288 126343209 29 . . R979d +chr8 SNP SNP 126343210 126472130 19 . . R980d +chr8 SNP SNP 126472131 126601052 49 . . R981d +chr8 SNP SNP 126601053 126729974 19 . . R982d +chr8 SNP SNP 126729975 126858895 16 . . R983d +chr8 SNP SNP 126858896 126987817 13 . . R984d +chr8 SNP SNP 126987818 127116739 307 . . R985d +chr8 SNP SNP 127116740 127245660 271 . . R986d +chr8 SNP SNP 127245661 127374582 198 . . R987d +chr8 SNP SNP 127374583 127503504 509 . . R988d +chr8 SNP SNP 127503505 127632425 192 . . R989d +chr8 SNP SNP 127632426 127761347 447 . . R990d +chr8 SNP SNP 127761348 127890268 132 . . R991d +chr8 SNP SNP 127890269 128019190 238 . . R992d +chr8 SNP SNP 128019191 128148112 39 . . R993d +chr8 SNP SNP 128148113 128277033 59 . . R994d +chr8 SNP SNP 128277034 128405955 384 . . R995d +chr8 SNP SNP 128405956 128534877 301 . . R996d +chr8 SNP SNP 128534878 128663798 337 . . R997d +chr8 SNP SNP 128663799 128792720 284 . . R998d +chr8 SNP SNP 128792721 128921642 228 . . R999d diff --git a/web/snp/chr9 b/web/snp/chr9 new file mode 100755 index 00000000..71426ec1 --- /dev/null +++ b/web/snp/chr9 @@ -0,0 +1,1003 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chr9 SNP SNP 11 124477 0 . . R0d +chr9 SNP SNP 124478 248944 0 . . R1d +chr9 SNP SNP 248945 373411 0 . . R2d +chr9 SNP SNP 373412 497878 0 . . R3d +chr9 SNP SNP 497879 622345 0 . . R4d +chr9 SNP SNP 622346 746812 0 . . R5d +chr9 SNP SNP 746813 871279 0 . . R6d +chr9 SNP SNP 871280 995746 0 . . R7d +chr9 SNP SNP 995747 1120213 0 . . R8d +chr9 SNP SNP 1120214 1244680 0 . . R9d +chr9 SNP SNP 1244681 1369148 0 . . R10d +chr9 SNP SNP 1369149 1493615 0 . . R11d +chr9 SNP SNP 1493616 1618082 0 . . R12d +chr9 SNP SNP 1618083 1742549 0 . . R13d +chr9 SNP SNP 1742550 1867016 0 . . R14d +chr9 SNP SNP 1867017 1991483 0 . . R15d +chr9 SNP SNP 1991484 2115950 0 . . R16d +chr9 SNP SNP 2115951 2240417 0 . . R17d +chr9 SNP SNP 2240418 2364884 0 . . R18d +chr9 SNP SNP 2364885 2489351 0 . . R19d +chr9 SNP SNP 2489352 2613819 0 . . R20d +chr9 SNP SNP 2613820 2738286 0 . . R21d +chr9 SNP SNP 2738287 2862753 0 . . R22d +chr9 SNP SNP 2862754 2987220 0 . . R23d +chr9 SNP SNP 2987221 3111687 6 . . R24d +chr9 SNP SNP 3111688 3236154 3 . . R25d +chr9 SNP SNP 3236155 3360621 0 . . R26d +chr9 SNP SNP 3360622 3485088 3 . . R27d +chr9 SNP SNP 3485089 3609555 9 . . R28d +chr9 SNP SNP 3609556 3734022 9 . . R29d +chr9 SNP SNP 3734023 3858490 6 . . R30d +chr9 SNP SNP 3858491 3982957 9 . . R31d +chr9 SNP SNP 3982958 4107424 13 . . R32d +chr9 SNP SNP 4107425 4231891 0 . . R33d +chr9 SNP SNP 4231892 4356358 0 . . R34d +chr9 SNP SNP 4356359 4480825 0 . . R35d +chr9 SNP SNP 4480826 4605292 0 . . R36d +chr9 SNP SNP 4605293 4729759 6 . . R37d +chr9 SNP SNP 4729760 4854226 0 . . R38d +chr9 SNP SNP 4854227 4978694 0 . . R39d +chr9 SNP SNP 4978695 5103161 0 . . R40d +chr9 SNP SNP 5103162 5227628 0 . . R41d +chr9 SNP SNP 5227629 5352095 13 . . R42d +chr9 SNP SNP 5352096 5476562 0 . . R43d +chr9 SNP SNP 5476563 5601029 0 . . R44d +chr9 SNP SNP 5601030 5725496 6 . . R45d +chr9 SNP SNP 5725497 5849963 3 . . R46d +chr9 SNP SNP 5849964 5974430 0 . . R47d +chr9 SNP SNP 5974431 6098897 3 . . R48d +chr9 SNP SNP 6098898 6223365 36 . . R49d +chr9 SNP SNP 6223366 6347832 36 . . R50d +chr9 SNP SNP 6347833 6472299 19 . . R51d +chr9 SNP SNP 6472300 6596766 13 . . R52d +chr9 SNP SNP 6596767 6721233 13 . . R53d +chr9 SNP SNP 6721234 6845700 9 . . R54d +chr9 SNP SNP 6845701 6970167 16 . . R55d +chr9 SNP SNP 6970168 7094634 0 . . R56d +chr9 SNP SNP 7094635 7219101 22 . . R57d +chr9 SNP SNP 7219102 7343568 19 . . R58d +chr9 SNP SNP 7343569 7468036 9 . . R59d +chr9 SNP SNP 7468037 7592503 19 . . R60d +chr9 SNP SNP 7592504 7716970 13 . . R61d +chr9 SNP SNP 7716971 7841437 13 . . R62d +chr9 SNP SNP 7841438 7965904 19 . . R63d +chr9 SNP SNP 7965905 8090371 9 . . R64d +chr9 SNP SNP 8090372 8214838 13 . . R65d +chr9 SNP SNP 8214839 8339305 29 . . R66d +chr9 SNP SNP 8339306 8463772 16 . . R67d +chr9 SNP SNP 8463773 8588239 16 . . R68d +chr9 SNP SNP 8588240 8712707 39 . . R69d +chr9 SNP SNP 8712708 8837174 22 . . R70d +chr9 SNP SNP 8837175 8961641 26 . . R71d +chr9 SNP SNP 8961642 9086108 22 . . R72d +chr9 SNP SNP 9086109 9210575 26 . . R73d +chr9 SNP SNP 9210576 9335042 3 . . R74d +chr9 SNP SNP 9335043 9459509 42 . . R75d +chr9 SNP SNP 9459510 9583976 29 . . R76d +chr9 SNP SNP 9583977 9708443 22 . . R77d +chr9 SNP SNP 9708444 9832910 16 . . R78d +chr9 SNP SNP 9832911 9957378 22 . . R79d +chr9 SNP SNP 9957379 10081845 26 . . R80d +chr9 SNP SNP 10081846 10206312 9 . . R81d +chr9 SNP SNP 10206313 10330779 19 . . R82d +chr9 SNP SNP 10330780 10455246 13 . . R83d +chr9 SNP SNP 10455247 10579713 26 . . R84d +chr9 SNP SNP 10579714 10704180 26 . . R85d +chr9 SNP SNP 10704181 10828647 29 . . R86d +chr9 SNP SNP 10828648 10953114 36 . . R87d +chr9 SNP SNP 10953115 11077581 26 . . R88d +chr9 SNP SNP 11077582 11202049 22 . . R89d +chr9 SNP SNP 11202050 11326516 16 . . R90d +chr9 SNP SNP 11326517 11450983 9 . . R91d +chr9 SNP SNP 11450984 11575450 13 . . R92d +chr9 SNP SNP 11575451 11699917 9 . . R93d +chr9 SNP SNP 11699918 11824384 32 . . R94d +chr9 SNP SNP 11824385 11948851 16 . . R95d +chr9 SNP SNP 11948852 12073318 26 . . R96d +chr9 SNP SNP 12073319 12197785 32 . . R97d +chr9 SNP SNP 12197786 12322252 6 . . R98d +chr9 SNP SNP 12322253 12446720 26 . . R99d +chr9 SNP SNP 12446721 12571187 9 . . R100d +chr9 SNP SNP 12571188 12695654 16 . . R101d +chr9 SNP SNP 12695655 12820121 6 . . R102d +chr9 SNP SNP 12820122 12944588 16 . . R103d +chr9 SNP SNP 12944589 13069055 22 . . R104d +chr9 SNP SNP 13069056 13193522 9 . . R105d +chr9 SNP SNP 13193523 13317989 311 . . R106d +chr9 SNP SNP 13317990 13442456 452 . . R107d +chr9 SNP SNP 13442457 13566923 9 . . R108d +chr9 SNP SNP 13566924 13691391 13 . . R109d +chr9 SNP SNP 13691392 13815858 22 . . R110d +chr9 SNP SNP 13815859 13940325 22 . . R111d +chr9 SNP SNP 13940326 14064792 13 . . R112d +chr9 SNP SNP 14064793 14189259 13 . . R113d +chr9 SNP SNP 14189260 14313726 16 . . R114d +chr9 SNP SNP 14313727 14438193 13 . . R115d +chr9 SNP SNP 14438194 14562660 3 . . R116d +chr9 SNP SNP 14562661 14687127 16 . . R117d +chr9 SNP SNP 14687128 14811594 3 . . R118d +chr9 SNP SNP 14811595 14936062 16 . . R119d +chr9 SNP SNP 14936063 15060529 19 . . R120d +chr9 SNP SNP 15060530 15184996 16 . . R121d +chr9 SNP SNP 15184997 15309463 22 . . R122d +chr9 SNP SNP 15309464 15433930 13 . . R123d +chr9 SNP SNP 15433931 15558397 13 . . R124d +chr9 SNP SNP 15558398 15682864 3 . . R125d +chr9 SNP SNP 15682865 15807331 16 . . R126d +chr9 SNP SNP 15807332 15931798 22 . . R127d +chr9 SNP SNP 15931799 16056265 16 . . R128d +chr9 SNP SNP 16056266 16180733 19 . . R129d +chr9 SNP SNP 16180734 16305200 6 . . R130d +chr9 SNP SNP 16305201 16429667 0 . . R131d +chr9 SNP SNP 16429668 16554134 9 . . R132d +chr9 SNP SNP 16554135 16678601 13 . . R133d +chr9 SNP SNP 16678602 16803068 19 . . R134d +chr9 SNP SNP 16803069 16927535 6 . . R135d +chr9 SNP SNP 16927536 17052002 13 . . R136d +chr9 SNP SNP 17052003 17176469 3 . . R137d +chr9 SNP SNP 17176470 17300936 6 . . R138d +chr9 SNP SNP 17300937 17425404 13 . . R139d +chr9 SNP SNP 17425405 17549871 19 . . R140d +chr9 SNP SNP 17549872 17674338 19 . . R141d +chr9 SNP SNP 17674339 17798805 19 . . R142d +chr9 SNP SNP 17798806 17923272 0 . . R143d +chr9 SNP SNP 17923273 18047739 0 . . R144d +chr9 SNP SNP 18047740 18172206 19 . . R145d +chr9 SNP SNP 18172207 18296673 13 . . R146d +chr9 SNP SNP 18296674 18421140 19 . . R147d +chr9 SNP SNP 18421141 18545607 13 . . R148d +chr9 SNP SNP 18545608 18670075 22 . . R149d +chr9 SNP SNP 18670076 18794542 9 . . R150d +chr9 SNP SNP 18794543 18919009 9 . . R151d +chr9 SNP SNP 18919010 19043476 88 . . R152d +chr9 SNP SNP 19043477 19167943 45 . . R153d +chr9 SNP SNP 19167944 19292410 3 . . R154d +chr9 SNP SNP 19292411 19416877 3 . . R155d +chr9 SNP SNP 19416878 19541344 9 . . R156d +chr9 SNP SNP 19541345 19665811 0 . . R157d +chr9 SNP SNP 19665812 19790278 9 . . R158d +chr9 SNP SNP 19790279 19914746 6 . . R159d +chr9 SNP SNP 19914747 20039213 19 . . R160d +chr9 SNP SNP 20039214 20163680 39 . . R161d +chr9 SNP SNP 20163681 20288147 6 . . R162d +chr9 SNP SNP 20288148 20412614 36 . . R163d +chr9 SNP SNP 20412615 20537081 59 . . R164d +chr9 SNP SNP 20537082 20661548 3 . . R165d +chr9 SNP SNP 20661549 20786015 9 . . R166d +chr9 SNP SNP 20786016 20910482 29 . . R167d +chr9 SNP SNP 20910483 21034949 22 . . R168d +chr9 SNP SNP 21034950 21159417 6 . . R169d +chr9 SNP SNP 21159418 21283884 6 . . R170d +chr9 SNP SNP 21283885 21408351 13 . . R171d +chr9 SNP SNP 21408352 21532818 13 . . R172d +chr9 SNP SNP 21532819 21657285 9 . . R173d +chr9 SNP SNP 21657286 21781752 26 . . R174d +chr9 SNP SNP 21781753 21906219 6 . . R175d +chr9 SNP SNP 21906220 22030686 6 . . R176d +chr9 SNP SNP 22030687 22155153 3 . . R177d +chr9 SNP SNP 22155154 22279620 0 . . R178d +chr9 SNP SNP 22279621 22404088 13 . . R179d +chr9 SNP SNP 22404089 22528555 13 . . R180d +chr9 SNP SNP 22528556 22653022 16 . . R181d +chr9 SNP SNP 22653023 22777489 29 . . R182d +chr9 SNP SNP 22777490 22901956 6 . . R183d +chr9 SNP SNP 22901957 23026423 3 . . R184d +chr9 SNP SNP 23026424 23150890 6 . . R185d +chr9 SNP SNP 23150891 23275357 6 . . R186d +chr9 SNP SNP 23275358 23399824 13 . . R187d +chr9 SNP SNP 23399825 23524291 13 . . R188d +chr9 SNP SNP 23524292 23648759 19 . . R189d +chr9 SNP SNP 23648760 23773226 19 . . R190d +chr9 SNP SNP 23773227 23897693 9 . . R191d +chr9 SNP SNP 23897694 24022160 16 . . R192d +chr9 SNP SNP 24022161 24146627 16 . . R193d +chr9 SNP SNP 24146628 24271094 19 . . R194d +chr9 SNP SNP 24271095 24395561 26 . . R195d +chr9 SNP SNP 24395562 24520028 32 . . R196d +chr9 SNP SNP 24520029 24644495 36 . . R197d +chr9 SNP SNP 24644496 24768962 19 . . R198d +chr9 SNP SNP 24768963 24893430 6 . . R199d +chr9 SNP SNP 24893431 25017897 16 . . R200d +chr9 SNP SNP 25017898 25142364 13 . . R201d +chr9 SNP SNP 25142365 25266831 39 . . R202d +chr9 SNP SNP 25266832 25391298 19 . . R203d +chr9 SNP SNP 25391299 25515765 16 . . R204d +chr9 SNP SNP 25515766 25640232 6 . . R205d +chr9 SNP SNP 25640233 25764699 13 . . R206d +chr9 SNP SNP 25764700 25889166 19 . . R207d +chr9 SNP SNP 25889167 26013633 42 . . R208d +chr9 SNP SNP 26013634 26138101 16 . . R209d +chr9 SNP SNP 26138102 26262568 13 . . R210d +chr9 SNP SNP 26262569 26387035 13 . . R211d +chr9 SNP SNP 26387036 26511502 13 . . R212d +chr9 SNP SNP 26511503 26635969 29 . . R213d +chr9 SNP SNP 26635970 26760436 13 . . R214d +chr9 SNP SNP 26760437 26884903 16 . . R215d +chr9 SNP SNP 26884904 27009370 13 . . R216d +chr9 SNP SNP 27009371 27133837 32 . . R217d +chr9 SNP SNP 27133838 27258304 22 . . R218d +chr9 SNP SNP 27258305 27382772 9 . . R219d +chr9 SNP SNP 27382773 27507239 6 . . R220d +chr9 SNP SNP 27507240 27631706 22 . . R221d +chr9 SNP SNP 27631707 27756173 3 . . R222d +chr9 SNP SNP 27756174 27880640 6 . . R223d +chr9 SNP SNP 27880641 28005107 13 . . R224d +chr9 SNP SNP 28005108 28129574 13 . . R225d +chr9 SNP SNP 28129575 28254041 16 . . R226d +chr9 SNP SNP 28254042 28378508 22 . . R227d +chr9 SNP SNP 28378509 28502975 22 . . R228d +chr9 SNP SNP 28502976 28627443 9 . . R229d +chr9 SNP SNP 28627444 28751910 19 . . R230d +chr9 SNP SNP 28751911 28876377 19 . . R231d +chr9 SNP SNP 28876378 29000844 13 . . R232d +chr9 SNP SNP 29000845 29125311 26 . . R233d +chr9 SNP SNP 29125312 29249778 19 . . R234d +chr9 SNP SNP 29249779 29374245 16 . . R235d +chr9 SNP SNP 29374246 29498712 9 . . R236d +chr9 SNP SNP 29498713 29623179 9 . . R237d +chr9 SNP SNP 29623180 29747646 9 . . R238d +chr9 SNP SNP 29747647 29872114 55 . . R239d +chr9 SNP SNP 29872115 29996581 9 . . R240d +chr9 SNP SNP 29996582 30121048 22 . . R241d +chr9 SNP SNP 30121049 30245515 16 . . R242d +chr9 SNP SNP 30245516 30369982 13 . . R243d +chr9 SNP SNP 30369983 30494449 13 . . R244d +chr9 SNP SNP 30494450 30618916 6 . . R245d +chr9 SNP SNP 30618917 30743383 42 . . R246d +chr9 SNP SNP 30743384 30867850 6 . . R247d +chr9 SNP SNP 30867851 30992317 22 . . R248d +chr9 SNP SNP 30992318 31116785 26 . . R249d +chr9 SNP SNP 31116786 31241252 16 . . R250d +chr9 SNP SNP 31241253 31365719 268 . . R251d +chr9 SNP SNP 31365720 31490186 108 . . R252d +chr9 SNP SNP 31490187 31614653 396 . . R253d +chr9 SNP SNP 31614654 31739120 272 . . R254d +chr9 SNP SNP 31739121 31863587 49 . . R255d +chr9 SNP SNP 31863588 31988054 22 . . R256d +chr9 SNP SNP 31988055 32112521 16 . . R257d +chr9 SNP SNP 32112522 32236988 85 . . R258d +chr9 SNP SNP 32236989 32361456 540 . . R259d +chr9 SNP SNP 32361457 32485923 868 . . R260d +chr9 SNP SNP 32485924 32610390 698 . . R261d +chr9 SNP SNP 32610391 32734857 570 . . R262d +chr9 SNP SNP 32734858 32859324 416 . . R263d +chr9 SNP SNP 32859325 32983791 298 . . R264d +chr9 SNP SNP 32983792 33108258 262 . . R265d +chr9 SNP SNP 33108259 33232725 475 . . R266d +chr9 SNP SNP 33232726 33357192 691 . . R267d +chr9 SNP SNP 33357193 33481659 714 . . R268d +chr9 SNP SNP 33481660 33606127 662 . . R269d +chr9 SNP SNP 33606128 33730594 593 . . R270d +chr9 SNP SNP 33730595 33855061 501 . . R271d +chr9 SNP SNP 33855062 33979528 508 . . R272d +chr9 SNP SNP 33979529 34103995 688 . . R273d +chr9 SNP SNP 34103996 34228462 570 . . R274d +chr9 SNP SNP 34228463 34352929 42 . . R275d +chr9 SNP SNP 34352930 34477396 45 . . R276d +chr9 SNP SNP 34477397 34601863 432 . . R277d +chr9 SNP SNP 34601864 34726330 570 . . R278d +chr9 SNP SNP 34726331 34850798 347 . . R279d +chr9 SNP SNP 34850799 34975265 301 . . R280d +chr9 SNP SNP 34975266 35099732 370 . . R281d +chr9 SNP SNP 35099733 35224199 422 . . R282d +chr9 SNP SNP 35224200 35348666 314 . . R283d +chr9 SNP SNP 35348667 35473133 321 . . R284d +chr9 SNP SNP 35473134 35597600 308 . . R285d +chr9 SNP SNP 35597601 35722067 432 . . R286d +chr9 SNP SNP 35722068 35846534 386 . . R287d +chr9 SNP SNP 35846535 35971001 383 . . R288d +chr9 SNP SNP 35971002 36095468 249 . . R289d +chr9 SNP SNP 36095469 36219936 275 . . R290d +chr9 SNP SNP 36219937 36344403 573 . . R291d +chr9 SNP SNP 36344404 36468870 809 . . R292d +chr9 SNP SNP 36468871 36593337 409 . . R293d +chr9 SNP SNP 36593338 36717804 245 . . R294d +chr9 SNP SNP 36717805 36842271 186 . . R295d +chr9 SNP SNP 36842272 36966738 173 . . R296d +chr9 SNP SNP 36966739 37091205 511 . . R297d +chr9 SNP SNP 37091206 37215672 511 . . R298d +chr9 SNP SNP 37215673 37340139 68 . . R299d +chr9 SNP SNP 37340140 37464607 157 . . R300d +chr9 SNP SNP 37464608 37589074 190 . . R301d +chr9 SNP SNP 37589075 37713541 200 . . R302d +chr9 SNP SNP 37713542 37838008 236 . . R303d +chr9 SNP SNP 37838009 37962475 344 . . R304d +chr9 SNP SNP 37962476 38086942 314 . . R305d +chr9 SNP SNP 38086943 38211409 429 . . R306d +chr9 SNP SNP 38211410 38335876 563 . . R307d +chr9 SNP SNP 38335877 38460343 488 . . R308d +chr9 SNP SNP 38460344 38584810 655 . . R309d +chr9 SNP SNP 38584811 38709278 314 . . R310d +chr9 SNP SNP 38709279 38833745 183 . . R311d +chr9 SNP SNP 38833746 38958212 121 . . R312d +chr9 SNP SNP 38958213 39082679 150 . . R313d +chr9 SNP SNP 39082680 39207146 308 . . R314d +chr9 SNP SNP 39207147 39331613 127 . . R315d +chr9 SNP SNP 39331614 39456080 285 . . R316d +chr9 SNP SNP 39456081 39580547 85 . . R317d +chr9 SNP SNP 39580548 39705014 32 . . R318d +chr9 SNP SNP 39705015 39829481 26 . . R319d +chr9 SNP SNP 39829482 39953949 19 . . R320d +chr9 SNP SNP 39953950 40078416 49 . . R321d +chr9 SNP SNP 40078417 40202883 265 . . R322d +chr9 SNP SNP 40202884 40327350 6 . . R323d +chr9 SNP SNP 40327351 40451817 436 . . R324d +chr9 SNP SNP 40451818 40576284 455 . . R325d +chr9 SNP SNP 40576285 40700751 570 . . R326d +chr9 SNP SNP 40700752 40825218 554 . . R327d +chr9 SNP SNP 40825219 40949685 619 . . R328d +chr9 SNP SNP 40949686 41074152 767 . . R329d +chr9 SNP SNP 41074153 41198620 396 . . R330d +chr9 SNP SNP 41198621 41323087 645 . . R331d +chr9 SNP SNP 41323088 41447554 613 . . R332d +chr9 SNP SNP 41447555 41572021 754 . . R333d +chr9 SNP SNP 41572022 41696488 596 . . R334d +chr9 SNP SNP 41696489 41820955 619 . . R335d +chr9 SNP SNP 41820956 41945422 288 . . R336d +chr9 SNP SNP 41945423 42069889 314 . . R337d +chr9 SNP SNP 42069890 42194356 498 . . R338d +chr9 SNP SNP 42194357 42318823 672 . . R339d +chr9 SNP SNP 42318824 42443291 760 . . R340d +chr9 SNP SNP 42443292 42567758 304 . . R341d +chr9 SNP SNP 42567759 42692225 19 . . R342d +chr9 SNP SNP 42692226 42816692 390 . . R343d +chr9 SNP SNP 42816693 42941159 400 . . R344d +chr9 SNP SNP 42941160 43065626 314 . . R345d +chr9 SNP SNP 43065627 43190093 272 . . R346d +chr9 SNP SNP 43190094 43314560 524 . . R347d +chr9 SNP SNP 43314561 43439027 370 . . R348d +chr9 SNP SNP 43439028 43563494 26 . . R349d +chr9 SNP SNP 43563495 43687962 52 . . R350d +chr9 SNP SNP 43687963 43812429 42 . . R351d +chr9 SNP SNP 43812430 43936896 26 . . R352d +chr9 SNP SNP 43936897 44061363 68 . . R353d +chr9 SNP SNP 44061364 44185830 167 . . R354d +chr9 SNP SNP 44185831 44310297 114 . . R355d +chr9 SNP SNP 44310298 44434764 137 . . R356d +chr9 SNP SNP 44434765 44559231 265 . . R357d +chr9 SNP SNP 44559232 44683698 304 . . R358d +chr9 SNP SNP 44683699 44808165 52 . . R359d +chr9 SNP SNP 44808166 44932633 229 . . R360d +chr9 SNP SNP 44932634 45057100 308 . . R361d +chr9 SNP SNP 45057101 45181567 144 . . R362d +chr9 SNP SNP 45181568 45306034 200 . . R363d +chr9 SNP SNP 45306035 45430501 203 . . R364d +chr9 SNP SNP 45430502 45554968 360 . . R365d +chr9 SNP SNP 45554969 45679435 255 . . R366d +chr9 SNP SNP 45679436 45803902 131 . . R367d +chr9 SNP SNP 45803903 45928369 42 . . R368d +chr9 SNP SNP 45928370 46052836 59 . . R369d +chr9 SNP SNP 46052837 46177304 39 . . R370d +chr9 SNP SNP 46177305 46301771 134 . . R371d +chr9 SNP SNP 46301772 46426238 39 . . R372d +chr9 SNP SNP 46426239 46550705 275 . . R373d +chr9 SNP SNP 46550706 46675172 373 . . R374d +chr9 SNP SNP 46675173 46799639 452 . . R375d +chr9 SNP SNP 46799640 46924106 331 . . R376d +chr9 SNP SNP 46924107 47048573 222 . . R377d +chr9 SNP SNP 47048574 47173040 321 . . R378d +chr9 SNP SNP 47173041 47297507 524 . . R379d +chr9 SNP SNP 47297508 47421975 340 . . R380d +chr9 SNP SNP 47421976 47546442 413 . . R381d +chr9 SNP SNP 47546443 47670909 596 . . R382d +chr9 SNP SNP 47670910 47795376 790 . . R383d +chr9 SNP SNP 47795377 47919843 1000 . . R384d +chr9 SNP SNP 47919844 48044310 813 . . R385d +chr9 SNP SNP 48044311 48168777 642 . . R386d +chr9 SNP SNP 48168778 48293244 665 . . R387d +chr9 SNP SNP 48293245 48417711 586 . . R388d +chr9 SNP SNP 48417712 48542178 524 . . R389d +chr9 SNP SNP 48542179 48666646 642 . . R390d +chr9 SNP SNP 48666647 48791113 619 . . R391d +chr9 SNP SNP 48791114 48915580 672 . . R392d +chr9 SNP SNP 48915581 49040047 547 . . R393d +chr9 SNP SNP 49040048 49164514 295 . . R394d +chr9 SNP SNP 49164515 49288981 245 . . R395d +chr9 SNP SNP 49288982 49413448 265 . . R396d +chr9 SNP SNP 49413449 49537915 422 . . R397d +chr9 SNP SNP 49537916 49662382 426 . . R398d +chr9 SNP SNP 49662383 49786849 177 . . R399d +chr9 SNP SNP 49786850 49911317 81 . . R400d +chr9 SNP SNP 49911318 50035784 26 . . R401d +chr9 SNP SNP 50035785 50160251 445 . . R402d +chr9 SNP SNP 50160252 50284718 272 . . R403d +chr9 SNP SNP 50284719 50409185 272 . . R404d +chr9 SNP SNP 50409186 50533652 242 . . R405d +chr9 SNP SNP 50533653 50658119 49 . . R406d +chr9 SNP SNP 50658120 50782586 45 . . R407d +chr9 SNP SNP 50782587 50907053 386 . . R408d +chr9 SNP SNP 50907054 51031520 321 . . R409d +chr9 SNP SNP 51031521 51155988 45 . . R410d +chr9 SNP SNP 51155989 51280455 127 . . R411d +chr9 SNP SNP 51280456 51404922 226 . . R412d +chr9 SNP SNP 51404923 51529389 42 . . R413d +chr9 SNP SNP 51529390 51653856 301 . . R414d +chr9 SNP SNP 51653857 51778323 249 . . R415d +chr9 SNP SNP 51778324 51902790 301 . . R416d +chr9 SNP SNP 51902791 52027257 88 . . R417d +chr9 SNP SNP 52027258 52151724 534 . . R418d +chr9 SNP SNP 52151725 52276191 606 . . R419d +chr9 SNP SNP 52276192 52400659 186 . . R420d +chr9 SNP SNP 52400660 52525126 13 . . R421d +chr9 SNP SNP 52525127 52649593 26 . . R422d +chr9 SNP SNP 52649594 52774060 22 . . R423d +chr9 SNP SNP 52774061 52898527 9 . . R424d +chr9 SNP SNP 52898528 53022994 42 . . R425d +chr9 SNP SNP 53022995 53147461 16 . . R426d +chr9 SNP SNP 53147462 53271928 26 . . R427d +chr9 SNP SNP 53271929 53396395 22 . . R428d +chr9 SNP SNP 53396396 53520862 16 . . R429d +chr9 SNP SNP 53520863 53645330 22 . . R430d +chr9 SNP SNP 53645331 53769797 59 . . R431d +chr9 SNP SNP 53769798 53894264 16 . . R432d +chr9 SNP SNP 53894265 54018731 26 . . R433d +chr9 SNP SNP 54018732 54143198 475 . . R434d +chr9 SNP SNP 54143199 54267665 193 . . R435d +chr9 SNP SNP 54267666 54392132 32 . . R436d +chr9 SNP SNP 54392133 54516599 32 . . R437d +chr9 SNP SNP 54516600 54641066 32 . . R438d +chr9 SNP SNP 54641067 54765533 39 . . R439d +chr9 SNP SNP 54765534 54890001 386 . . R440d +chr9 SNP SNP 54890002 55014468 65 . . R441d +chr9 SNP SNP 55014469 55138935 288 . . R442d +chr9 SNP SNP 55138936 55263402 324 . . R443d +chr9 SNP SNP 55263403 55387869 59 . . R444d +chr9 SNP SNP 55387870 55512336 200 . . R445d +chr9 SNP SNP 55512337 55636803 36 . . R446d +chr9 SNP SNP 55636804 55761270 13 . . R447d +chr9 SNP SNP 55761271 55885737 32 . . R448d +chr9 SNP SNP 55885738 56010204 167 . . R449d +chr9 SNP SNP 56010205 56134672 645 . . R450d +chr9 SNP SNP 56134673 56259139 760 . . R451d +chr9 SNP SNP 56259140 56383606 252 . . R452d +chr9 SNP SNP 56383607 56508073 81 . . R453d +chr9 SNP SNP 56508074 56632540 55 . . R454d +chr9 SNP SNP 56632541 56757007 200 . . R455d +chr9 SNP SNP 56757008 56881474 78 . . R456d +chr9 SNP SNP 56881475 57005941 281 . . R457d +chr9 SNP SNP 57005942 57130408 68 . . R458d +chr9 SNP SNP 57130409 57254875 52 . . R459d +chr9 SNP SNP 57254876 57379343 262 . . R460d +chr9 SNP SNP 57379344 57503810 573 . . R461d +chr9 SNP SNP 57503811 57628277 163 . . R462d +chr9 SNP SNP 57628278 57752744 137 . . R463d +chr9 SNP SNP 57752745 57877211 13 . . R464d +chr9 SNP SNP 57877212 58001678 72 . . R465d +chr9 SNP SNP 58001679 58126145 160 . . R466d +chr9 SNP SNP 58126146 58250612 68 . . R467d +chr9 SNP SNP 58250613 58375079 62 . . R468d +chr9 SNP SNP 58375080 58499546 104 . . R469d +chr9 SNP SNP 58499547 58624014 134 . . R470d +chr9 SNP SNP 58624015 58748481 439 . . R471d +chr9 SNP SNP 58748482 58872948 216 . . R472d +chr9 SNP SNP 58872949 58997415 508 . . R473d +chr9 SNP SNP 58997416 59121882 344 . . R474d +chr9 SNP SNP 59121883 59246349 354 . . R475d +chr9 SNP SNP 59246350 59370816 557 . . R476d +chr9 SNP SNP 59370817 59495283 459 . . R477d +chr9 SNP SNP 59495284 59619750 357 . . R478d +chr9 SNP SNP 59619751 59744217 173 . . R479d +chr9 SNP SNP 59744218 59868685 26 . . R480d +chr9 SNP SNP 59868686 59993152 26 . . R481d +chr9 SNP SNP 59993153 60117619 19 . . R482d +chr9 SNP SNP 60117620 60242086 52 . . R483d +chr9 SNP SNP 60242087 60366553 242 . . R484d +chr9 SNP SNP 60366554 60491020 0 . . R485d +chr9 SNP SNP 60491021 60615487 3 . . R486d +chr9 SNP SNP 60615488 60739954 16 . . R487d +chr9 SNP SNP 60739955 60864421 13 . . R488d +chr9 SNP SNP 60864422 60988888 9 . . R489d +chr9 SNP SNP 60988889 61113356 9 . . R490d +chr9 SNP SNP 61113357 61237823 9 . . R491d +chr9 SNP SNP 61237824 61362290 29 . . R492d +chr9 SNP SNP 61362291 61486757 3 . . R493d +chr9 SNP SNP 61486758 61611224 6 . . R494d +chr9 SNP SNP 61611225 61735691 13 . . R495d +chr9 SNP SNP 61735692 61860158 6 . . R496d +chr9 SNP SNP 61860159 61984625 3 . . R497d +chr9 SNP SNP 61984626 62109092 9 . . R498d +chr9 SNP SNP 62109093 62233559 3 . . R499d +chr9 SNP SNP 62233560 62358027 13 . . R500d +chr9 SNP SNP 62358028 62482494 154 . . R501d +chr9 SNP SNP 62482495 62606961 645 . . R502d +chr9 SNP SNP 62606962 62731428 154 . . R503d +chr9 SNP SNP 62731429 62855895 259 . . R504d +chr9 SNP SNP 62855896 62980362 9 . . R505d +chr9 SNP SNP 62980363 63104829 19 . . R506d +chr9 SNP SNP 63104830 63229296 29 . . R507d +chr9 SNP SNP 63229297 63353763 49 . . R508d +chr9 SNP SNP 63353764 63478230 36 . . R509d +chr9 SNP SNP 63478231 63602698 19 . . R510d +chr9 SNP SNP 63602699 63727165 32 . . R511d +chr9 SNP SNP 63727166 63851632 39 . . R512d +chr9 SNP SNP 63851633 63976099 180 . . R513d +chr9 SNP SNP 63976100 64100566 49 . . R514d +chr9 SNP SNP 64100567 64225033 459 . . R515d +chr9 SNP SNP 64225034 64349500 308 . . R516d +chr9 SNP SNP 64349501 64473967 400 . . R517d +chr9 SNP SNP 64473968 64598434 540 . . R518d +chr9 SNP SNP 64598435 64722901 180 . . R519d +chr9 SNP SNP 64722902 64847369 386 . . R520d +chr9 SNP SNP 64847370 64971836 249 . . R521d +chr9 SNP SNP 64971837 65096303 9 . . R522d +chr9 SNP SNP 65096304 65220770 36 . . R523d +chr9 SNP SNP 65220771 65345237 49 . . R524d +chr9 SNP SNP 65345238 65469704 206 . . R525d +chr9 SNP SNP 65469705 65594171 311 . . R526d +chr9 SNP SNP 65594172 65718638 318 . . R527d +chr9 SNP SNP 65718639 65843105 236 . . R528d +chr9 SNP SNP 65843106 65967572 321 . . R529d +chr9 SNP SNP 65967573 66092040 222 . . R530d +chr9 SNP SNP 66092041 66216507 19 . . R531d +chr9 SNP SNP 66216508 66340974 249 . . R532d +chr9 SNP SNP 66340975 66465441 268 . . R533d +chr9 SNP SNP 66465442 66589908 144 . . R534d +chr9 SNP SNP 66589909 66714375 22 . . R535d +chr9 SNP SNP 66714376 66838842 52 . . R536d +chr9 SNP SNP 66838843 66963309 278 . . R537d +chr9 SNP SNP 66963310 67087776 72 . . R538d +chr9 SNP SNP 67087777 67212243 140 . . R539d +chr9 SNP SNP 67212244 67336711 229 . . R540d +chr9 SNP SNP 67336712 67461178 449 . . R541d +chr9 SNP SNP 67461179 67585645 213 . . R542d +chr9 SNP SNP 67585646 67710112 193 . . R543d +chr9 SNP SNP 67710113 67834579 242 . . R544d +chr9 SNP SNP 67834580 67959046 72 . . R545d +chr9 SNP SNP 67959047 68083513 219 . . R546d +chr9 SNP SNP 68083514 68207980 324 . . R547d +chr9 SNP SNP 68207981 68332447 422 . . R548d +chr9 SNP SNP 68332448 68456914 29 . . R549d +chr9 SNP SNP 68456915 68581382 170 . . R550d +chr9 SNP SNP 68581383 68705849 222 . . R551d +chr9 SNP SNP 68705850 68830316 275 . . R552d +chr9 SNP SNP 68830317 68954783 285 . . R553d +chr9 SNP SNP 68954784 69079250 462 . . R554d +chr9 SNP SNP 69079251 69203717 357 . . R555d +chr9 SNP SNP 69203718 69328184 334 . . R556d +chr9 SNP SNP 69328185 69452651 163 . . R557d +chr9 SNP SNP 69452652 69577118 252 . . R558d +chr9 SNP SNP 69577119 69701585 311 . . R559d +chr9 SNP SNP 69701586 69826053 52 . . R560d +chr9 SNP SNP 69826054 69950520 85 . . R561d +chr9 SNP SNP 69950521 70074987 26 . . R562d +chr9 SNP SNP 70074988 70199454 445 . . R563d +chr9 SNP SNP 70199455 70323921 180 . . R564d +chr9 SNP SNP 70323922 70448388 209 . . R565d +chr9 SNP SNP 70448389 70572855 298 . . R566d +chr9 SNP SNP 70572856 70697322 272 . . R567d +chr9 SNP SNP 70697323 70821789 118 . . R568d +chr9 SNP SNP 70821790 70946256 42 . . R569d +chr9 SNP SNP 70946257 71070724 26 . . R570d +chr9 SNP SNP 71070725 71195191 16 . . R571d +chr9 SNP SNP 71195192 71319658 137 . . R572d +chr9 SNP SNP 71319659 71444125 252 . . R573d +chr9 SNP SNP 71444126 71568592 36 . . R574d +chr9 SNP SNP 71568593 71693059 259 . . R575d +chr9 SNP SNP 71693060 71817526 521 . . R576d +chr9 SNP SNP 71817527 71941993 436 . . R577d +chr9 SNP SNP 71941994 72066460 350 . . R578d +chr9 SNP SNP 72066461 72190927 363 . . R579d +chr9 SNP SNP 72190928 72315395 311 . . R580d +chr9 SNP SNP 72315396 72439862 236 . . R581d +chr9 SNP SNP 72439863 72564329 314 . . R582d +chr9 SNP SNP 72564330 72688796 298 . . R583d +chr9 SNP SNP 72688797 72813263 406 . . R584d +chr9 SNP SNP 72813264 72937730 249 . . R585d +chr9 SNP SNP 72937731 73062197 291 . . R586d +chr9 SNP SNP 73062198 73186664 337 . . R587d +chr9 SNP SNP 73186665 73311131 68 . . R588d +chr9 SNP SNP 73311132 73435598 170 . . R589d +chr9 SNP SNP 73435599 73560066 29 . . R590d +chr9 SNP SNP 73560067 73684533 16 . . R591d +chr9 SNP SNP 73684534 73809000 216 . . R592d +chr9 SNP SNP 73809001 73933467 160 . . R593d +chr9 SNP SNP 73933468 74057934 334 . . R594d +chr9 SNP SNP 74057935 74182401 419 . . R595d +chr9 SNP SNP 74182402 74306868 39 . . R596d +chr9 SNP SNP 74306869 74431335 324 . . R597d +chr9 SNP SNP 74431336 74555802 416 . . R598d +chr9 SNP SNP 74555803 74680269 177 . . R599d +chr9 SNP SNP 74680270 74804737 219 . . R600d +chr9 SNP SNP 74804738 74929204 409 . . R601d +chr9 SNP SNP 74929205 75053671 196 . . R602d +chr9 SNP SNP 75053672 75178138 298 . . R603d +chr9 SNP SNP 75178139 75302605 521 . . R604d +chr9 SNP SNP 75302606 75427072 98 . . R605d +chr9 SNP SNP 75427073 75551539 62 . . R606d +chr9 SNP SNP 75551540 75676006 160 . . R607d +chr9 SNP SNP 75676007 75800473 481 . . R608d +chr9 SNP SNP 75800474 75924940 304 . . R609d +chr9 SNP SNP 75924941 76049408 321 . . R610d +chr9 SNP SNP 76049409 76173875 222 . . R611d +chr9 SNP SNP 76173876 76298342 468 . . R612d +chr9 SNP SNP 76298343 76422809 88 . . R613d +chr9 SNP SNP 76422810 76547276 272 . . R614d +chr9 SNP SNP 76547277 76671743 324 . . R615d +chr9 SNP SNP 76671744 76796210 337 . . R616d +chr9 SNP SNP 76796211 76920677 32 . . R617d +chr9 SNP SNP 76920678 77045144 19 . . R618d +chr9 SNP SNP 77045145 77169611 39 . . R619d +chr9 SNP SNP 77169612 77294079 45 . . R620d +chr9 SNP SNP 77294080 77418546 222 . . R621d +chr9 SNP SNP 77418547 77543013 449 . . R622d +chr9 SNP SNP 77543014 77667480 465 . . R623d +chr9 SNP SNP 77667481 77791947 550 . . R624d +chr9 SNP SNP 77791948 77916414 173 . . R625d +chr9 SNP SNP 77916415 78040881 304 . . R626d +chr9 SNP SNP 78040882 78165348 357 . . R627d +chr9 SNP SNP 78165349 78289815 209 . . R628d +chr9 SNP SNP 78289816 78414282 193 . . R629d +chr9 SNP SNP 78414283 78538750 249 . . R630d +chr9 SNP SNP 78538751 78663217 85 . . R631d +chr9 SNP SNP 78663218 78787684 439 . . R632d +chr9 SNP SNP 78787685 78912151 29 . . R633d +chr9 SNP SNP 78912152 79036618 157 . . R634d +chr9 SNP SNP 79036619 79161085 29 . . R635d +chr9 SNP SNP 79161086 79285552 209 . . R636d +chr9 SNP SNP 79285553 79410019 242 . . R637d +chr9 SNP SNP 79410020 79534486 22 . . R638d +chr9 SNP SNP 79534487 79658953 9 . . R639d +chr9 SNP SNP 79658954 79783421 459 . . R640d +chr9 SNP SNP 79783422 79907888 426 . . R641d +chr9 SNP SNP 79907889 80032355 419 . . R642d +chr9 SNP SNP 80032356 80156822 265 . . R643d +chr9 SNP SNP 80156823 80281289 32 . . R644d +chr9 SNP SNP 80281290 80405756 108 . . R645d +chr9 SNP SNP 80405757 80530223 344 . . R646d +chr9 SNP SNP 80530224 80654690 472 . . R647d +chr9 SNP SNP 80654691 80779157 308 . . R648d +chr9 SNP SNP 80779158 80903624 419 . . R649d +chr9 SNP SNP 80903625 81028092 301 . . R650d +chr9 SNP SNP 81028093 81152559 383 . . R651d +chr9 SNP SNP 81152560 81277026 222 . . R652d +chr9 SNP SNP 81277027 81401493 531 . . R653d +chr9 SNP SNP 81401494 81525960 468 . . R654d +chr9 SNP SNP 81525961 81650427 370 . . R655d +chr9 SNP SNP 81650428 81774894 78 . . R656d +chr9 SNP SNP 81774895 81899361 26 . . R657d +chr9 SNP SNP 81899362 82023828 36 . . R658d +chr9 SNP SNP 82023829 82148295 36 . . R659d +chr9 SNP SNP 82148296 82272763 36 . . R660d +chr9 SNP SNP 82272764 82397230 26 . . R661d +chr9 SNP SNP 82397231 82521697 13 . . R662d +chr9 SNP SNP 82521698 82646164 29 . . R663d +chr9 SNP SNP 82646165 82770631 45 . . R664d +chr9 SNP SNP 82770632 82895098 16 . . R665d +chr9 SNP SNP 82895099 83019565 55 . . R666d +chr9 SNP SNP 83019566 83144032 32 . . R667d +chr9 SNP SNP 83144033 83268499 45 . . R668d +chr9 SNP SNP 83268500 83392966 101 . . R669d +chr9 SNP SNP 83392967 83517434 718 . . R670d +chr9 SNP SNP 83517435 83641901 357 . . R671d +chr9 SNP SNP 83641902 83766368 350 . . R672d +chr9 SNP SNP 83766369 83890835 32 . . R673d +chr9 SNP SNP 83890836 84015302 504 . . R674d +chr9 SNP SNP 84015303 84139769 531 . . R675d +chr9 SNP SNP 84139770 84264236 590 . . R676d +chr9 SNP SNP 84264237 84388703 491 . . R677d +chr9 SNP SNP 84388704 84513170 665 . . R678d +chr9 SNP SNP 84513171 84637637 462 . . R679d +chr9 SNP SNP 84637638 84762105 567 . . R680d +chr9 SNP SNP 84762106 84886572 498 . . R681d +chr9 SNP SNP 84886573 85011039 881 . . R682d +chr9 SNP SNP 85011040 85135506 711 . . R683d +chr9 SNP SNP 85135507 85259973 940 . . R684d +chr9 SNP SNP 85259974 85384440 721 . . R685d +chr9 SNP SNP 85384441 85508907 783 . . R686d +chr9 SNP SNP 85508908 85633374 554 . . R687d +chr9 SNP SNP 85633375 85757841 626 . . R688d +chr9 SNP SNP 85757842 85882308 563 . . R689d +chr9 SNP SNP 85882309 86006776 236 . . R690d +chr9 SNP SNP 86006777 86131243 16 . . R691d +chr9 SNP SNP 86131244 86255710 357 . . R692d +chr9 SNP SNP 86255711 86380177 354 . . R693d +chr9 SNP SNP 86380178 86504644 242 . . R694d +chr9 SNP SNP 86504645 86629111 285 . . R695d +chr9 SNP SNP 86629112 86753578 383 . . R696d +chr9 SNP SNP 86753579 86878045 429 . . R697d +chr9 SNP SNP 86878046 87002512 580 . . R698d +chr9 SNP SNP 87002513 87126980 347 . . R699d +chr9 SNP SNP 87126981 87251447 111 . . R700d +chr9 SNP SNP 87251448 87375914 344 . . R701d +chr9 SNP SNP 87375915 87500381 318 . . R702d +chr9 SNP SNP 87500382 87624848 321 . . R703d +chr9 SNP SNP 87624849 87749315 396 . . R704d +chr9 SNP SNP 87749316 87873782 150 . . R705d +chr9 SNP SNP 87873783 87998249 314 . . R706d +chr9 SNP SNP 87998250 88122716 416 . . R707d +chr9 SNP SNP 88122717 88247183 262 . . R708d +chr9 SNP SNP 88247184 88371651 114 . . R709d +chr9 SNP SNP 88371652 88496118 295 . . R710d +chr9 SNP SNP 88496119 88620585 485 . . R711d +chr9 SNP SNP 88620586 88745052 642 . . R712d +chr9 SNP SNP 88745053 88869519 232 . . R713d +chr9 SNP SNP 88869520 88993986 268 . . R714d +chr9 SNP SNP 88993987 89118453 26 . . R715d +chr9 SNP SNP 89118454 89242920 16 . . R716d +chr9 SNP SNP 89242921 89367387 124 . . R717d +chr9 SNP SNP 89367388 89491854 216 . . R718d +chr9 SNP SNP 89491855 89616322 114 . . R719d +chr9 SNP SNP 89616323 89740789 127 . . R720d +chr9 SNP SNP 89740790 89865256 308 . . R721d +chr9 SNP SNP 89865257 89989723 98 . . R722d +chr9 SNP SNP 89989724 90114190 154 . . R723d +chr9 SNP SNP 90114191 90238657 249 . . R724d +chr9 SNP SNP 90238658 90363124 455 . . R725d +chr9 SNP SNP 90363125 90487591 108 . . R726d +chr9 SNP SNP 90487592 90612058 13 . . R727d +chr9 SNP SNP 90612059 90736525 13 . . R728d +chr9 SNP SNP 90736526 90860993 13 . . R729d +chr9 SNP SNP 90860994 90985460 121 . . R730d +chr9 SNP SNP 90985461 91109927 419 . . R731d +chr9 SNP SNP 91109928 91234394 3 . . R732d +chr9 SNP SNP 91234395 91358861 52 . . R733d +chr9 SNP SNP 91358862 91483328 409 . . R734d +chr9 SNP SNP 91483329 91607795 288 . . R735d +chr9 SNP SNP 91607796 91732262 131 . . R736d +chr9 SNP SNP 91732263 91856729 127 . . R737d +chr9 SNP SNP 91856730 91981196 442 . . R738d +chr9 SNP SNP 91981197 92105664 275 . . R739d +chr9 SNP SNP 92105665 92230131 386 . . R740d +chr9 SNP SNP 92230132 92354598 190 . . R741d +chr9 SNP SNP 92354599 92479065 393 . . R742d +chr9 SNP SNP 92479066 92603532 177 . . R743d +chr9 SNP SNP 92603533 92727999 331 . . R744d +chr9 SNP SNP 92728000 92852466 495 . . R745d +chr9 SNP SNP 92852467 92976933 678 . . R746d +chr9 SNP SNP 92976934 93101400 154 . . R747d +chr9 SNP SNP 93101401 93225867 347 . . R748d +chr9 SNP SNP 93225868 93350335 196 . . R749d +chr9 SNP SNP 93350336 93474802 101 . . R750d +chr9 SNP SNP 93474803 93599269 36 . . R751d +chr9 SNP SNP 93599270 93723736 42 . . R752d +chr9 SNP SNP 93723737 93848203 68 . . R753d +chr9 SNP SNP 93848204 93972670 22 . . R754d +chr9 SNP SNP 93972671 94097137 95 . . R755d +chr9 SNP SNP 94097138 94221604 462 . . R756d +chr9 SNP SNP 94221605 94346071 386 . . R757d +chr9 SNP SNP 94346072 94470538 311 . . R758d +chr9 SNP SNP 94470539 94595006 350 . . R759d +chr9 SNP SNP 94595007 94719473 324 . . R760d +chr9 SNP SNP 94719474 94843940 239 . . R761d +chr9 SNP SNP 94843941 94968407 531 . . R762d +chr9 SNP SNP 94968408 95092874 521 . . R763d +chr9 SNP SNP 95092875 95217341 334 . . R764d +chr9 SNP SNP 95217342 95341808 255 . . R765d +chr9 SNP SNP 95341809 95466275 429 . . R766d +chr9 SNP SNP 95466276 95590742 180 . . R767d +chr9 SNP SNP 95590743 95715209 29 . . R768d +chr9 SNP SNP 95715210 95839677 127 . . R769d +chr9 SNP SNP 95839678 95964144 32 . . R770d +chr9 SNP SNP 95964145 96088611 32 . . R771d +chr9 SNP SNP 96088612 96213078 42 . . R772d +chr9 SNP SNP 96213079 96337545 491 . . R773d +chr9 SNP SNP 96337546 96462012 324 . . R774d +chr9 SNP SNP 96462013 96586479 59 . . R775d +chr9 SNP SNP 96586480 96710946 229 . . R776d +chr9 SNP SNP 96710947 96835413 147 . . R777d +chr9 SNP SNP 96835414 96959880 209 . . R778d +chr9 SNP SNP 96959881 97084348 9 . . R779d +chr9 SNP SNP 97084349 97208815 19 . . R780d +chr9 SNP SNP 97208816 97333282 26 . . R781d +chr9 SNP SNP 97333283 97457749 321 . . R782d +chr9 SNP SNP 97457750 97582216 127 . . R783d +chr9 SNP SNP 97582217 97706683 59 . . R784d +chr9 SNP SNP 97706684 97831150 39 . . R785d +chr9 SNP SNP 97831151 97955617 75 . . R786d +chr9 SNP SNP 97955618 98080084 68 . . R787d +chr9 SNP SNP 98080085 98204551 49 . . R788d +chr9 SNP SNP 98204552 98329019 203 . . R789d +chr9 SNP SNP 98329020 98453486 363 . . R790d +chr9 SNP SNP 98453487 98577953 186 . . R791d +chr9 SNP SNP 98577954 98702420 334 . . R792d +chr9 SNP SNP 98702421 98826887 413 . . R793d +chr9 SNP SNP 98826888 98951354 81 . . R794d +chr9 SNP SNP 98951355 99075821 278 . . R795d +chr9 SNP SNP 99075822 99200288 596 . . R796d +chr9 SNP SNP 99200289 99324755 42 . . R797d +chr9 SNP SNP 99324756 99449222 213 . . R798d +chr9 SNP SNP 99449223 99573690 563 . . R799d +chr9 SNP SNP 99573691 99698157 340 . . R800d +chr9 SNP SNP 99698158 99822624 429 . . R801d +chr9 SNP SNP 99822625 99947091 413 . . R802d +chr9 SNP SNP 99947092 100071558 26 . . R803d +chr9 SNP SNP 100071559 100196025 321 . . R804d +chr9 SNP SNP 100196026 100320492 603 . . R805d +chr9 SNP SNP 100320493 100444959 481 . . R806d +chr9 SNP SNP 100444960 100569426 321 . . R807d +chr9 SNP SNP 100569427 100693893 255 . . R808d +chr9 SNP SNP 100693894 100818361 488 . . R809d +chr9 SNP SNP 100818362 100942828 383 . . R810d +chr9 SNP SNP 100942829 101067295 308 . . R811d +chr9 SNP SNP 101067296 101191762 19 . . R812d +chr9 SNP SNP 101191763 101316229 62 . . R813d +chr9 SNP SNP 101316230 101440696 62 . . R814d +chr9 SNP SNP 101440697 101565163 301 . . R815d +chr9 SNP SNP 101565164 101689630 268 . . R816d +chr9 SNP SNP 101689631 101814097 140 . . R817d +chr9 SNP SNP 101814098 101938564 288 . . R818d +chr9 SNP SNP 101938565 102063032 636 . . R819d +chr9 SNP SNP 102063033 102187499 190 . . R820d +chr9 SNP SNP 102187500 102311966 29 . . R821d +chr9 SNP SNP 102311967 102436433 36 . . R822d +chr9 SNP SNP 102436434 102560900 144 . . R823d +chr9 SNP SNP 102560901 102685367 481 . . R824d +chr9 SNP SNP 102685368 102809834 232 . . R825d +chr9 SNP SNP 102809835 102934301 301 . . R826d +chr9 SNP SNP 102934302 103058768 298 . . R827d +chr9 SNP SNP 103058769 103183235 9 . . R828d +chr9 SNP SNP 103183236 103307703 13 . . R829d +chr9 SNP SNP 103307704 103432170 19 . . R830d +chr9 SNP SNP 103432171 103556637 3 . . R831d +chr9 SNP SNP 103556638 103681104 16 . . R832d +chr9 SNP SNP 103681105 103805571 318 . . R833d +chr9 SNP SNP 103805572 103930038 196 . . R834d +chr9 SNP SNP 103930039 104054505 108 . . R835d +chr9 SNP SNP 104054506 104178972 340 . . R836d +chr9 SNP SNP 104178973 104303439 95 . . R837d +chr9 SNP SNP 104303440 104427906 190 . . R838d +chr9 SNP SNP 104427907 104552374 475 . . R839d +chr9 SNP SNP 104552375 104676841 629 . . R840d +chr9 SNP SNP 104676842 104801308 580 . . R841d +chr9 SNP SNP 104801309 104925775 681 . . R842d +chr9 SNP SNP 104925776 105050242 537 . . R843d +chr9 SNP SNP 105050243 105174709 718 . . R844d +chr9 SNP SNP 105174710 105299176 577 . . R845d +chr9 SNP SNP 105299177 105423643 675 . . R846d +chr9 SNP SNP 105423644 105548110 580 . . R847d +chr9 SNP SNP 105548111 105672577 718 . . R848d +chr9 SNP SNP 105672578 105797045 504 . . R849d +chr9 SNP SNP 105797046 105921512 675 . . R850d +chr9 SNP SNP 105921513 106045979 455 . . R851d +chr9 SNP SNP 106045980 106170446 737 . . R852d +chr9 SNP SNP 106170447 106294913 780 . . R853d +chr9 SNP SNP 106294914 106419380 708 . . R854d +chr9 SNP SNP 106419381 106543847 727 . . R855d +chr9 SNP SNP 106543848 106668314 327 . . R856d +chr9 SNP SNP 106668315 106792781 393 . . R857d +chr9 SNP SNP 106792782 106917248 13 . . R858d +chr9 SNP SNP 106917249 107041716 26 . . R859d +chr9 SNP SNP 107041717 107166183 3 . . R860d +chr9 SNP SNP 107166184 107290650 0 . . R861d +chr9 SNP SNP 107290651 107415117 19 . . R862d +chr9 SNP SNP 107415118 107539584 6 . . R863d +chr9 SNP SNP 107539585 107664051 16 . . R864d +chr9 SNP SNP 107664052 107788518 213 . . R865d +chr9 SNP SNP 107788519 107912985 393 . . R866d +chr9 SNP SNP 107912986 108037452 200 . . R867d +chr9 SNP SNP 108037453 108161919 318 . . R868d +chr9 SNP SNP 108161920 108286387 239 . . R869d +chr9 SNP SNP 108286388 108410854 59 . . R870d +chr9 SNP SNP 108410855 108535321 52 . . R871d +chr9 SNP SNP 108535322 108659788 26 . . R872d +chr9 SNP SNP 108659789 108784255 68 . . R873d +chr9 SNP SNP 108784256 108908722 160 . . R874d +chr9 SNP SNP 108908723 109033189 301 . . R875d +chr9 SNP SNP 109033190 109157656 101 . . R876d +chr9 SNP SNP 109157657 109282123 163 . . R877d +chr9 SNP SNP 109282124 109406590 19 . . R878d +chr9 SNP SNP 109406591 109531058 72 . . R879d +chr9 SNP SNP 109531059 109655525 91 . . R880d +chr9 SNP SNP 109655526 109779992 347 . . R881d +chr9 SNP SNP 109779993 109904459 196 . . R882d +chr9 SNP SNP 109904460 110028926 52 . . R883d +chr9 SNP SNP 110028927 110153393 36 . . R884d +chr9 SNP SNP 110153394 110277860 29 . . R885d +chr9 SNP SNP 110277861 110402327 16 . . R886d +chr9 SNP SNP 110402328 110526794 49 . . R887d +chr9 SNP SNP 110526795 110651261 32 . . R888d +chr9 SNP SNP 110651262 110775729 104 . . R889d +chr9 SNP SNP 110775730 110900196 249 . . R890d +chr9 SNP SNP 110900197 111024663 242 . . R891d +chr9 SNP SNP 111024664 111149130 262 . . R892d +chr9 SNP SNP 111149131 111273597 98 . . R893d +chr9 SNP SNP 111273598 111398064 16 . . R894d +chr9 SNP SNP 111398065 111522531 196 . . R895d +chr9 SNP SNP 111522532 111646998 344 . . R896d +chr9 SNP SNP 111646999 111771465 226 . . R897d +chr9 SNP SNP 111771466 111895932 295 . . R898d +chr9 SNP SNP 111895933 112020400 337 . . R899d +chr9 SNP SNP 112020401 112144867 137 . . R900d +chr9 SNP SNP 112144868 112269334 68 . . R901d +chr9 SNP SNP 112269335 112393801 111 . . R902d +chr9 SNP SNP 112393802 112518268 59 . . R903d +chr9 SNP SNP 112518269 112642735 45 . . R904d +chr9 SNP SNP 112642736 112767202 160 . . R905d +chr9 SNP SNP 112767203 112891669 32 . . R906d +chr9 SNP SNP 112891670 113016136 45 . . R907d +chr9 SNP SNP 113016137 113140603 29 . . R908d +chr9 SNP SNP 113140604 113265071 167 . . R909d +chr9 SNP SNP 113265072 113389538 229 . . R910d +chr9 SNP SNP 113389539 113514005 239 . . R911d +chr9 SNP SNP 113514006 113638472 636 . . R912d +chr9 SNP SNP 113638473 113762939 49 . . R913d +chr9 SNP SNP 113762940 113887406 229 . . R914d +chr9 SNP SNP 113887407 114011873 232 . . R915d +chr9 SNP SNP 114011874 114136340 200 . . R916d +chr9 SNP SNP 114136341 114260807 108 . . R917d +chr9 SNP SNP 114260808 114385274 9 . . R918d +chr9 SNP SNP 114385275 114509742 380 . . R919d +chr9 SNP SNP 114509743 114634209 32 . . R920d +chr9 SNP SNP 114634210 114758676 13 . . R921d +chr9 SNP SNP 114758677 114883143 3 . . R922d +chr9 SNP SNP 114883144 115007610 13 . . R923d +chr9 SNP SNP 115007611 115132077 22 . . R924d +chr9 SNP SNP 115132078 115256544 0 . . R925d +chr9 SNP SNP 115256545 115381011 9 . . R926d +chr9 SNP SNP 115381012 115505478 0 . . R927d +chr9 SNP SNP 115505479 115629945 6 . . R928d +chr9 SNP SNP 115629946 115754413 9 . . R929d +chr9 SNP SNP 115754414 115878880 6 . . R930d +chr9 SNP SNP 115878881 116003347 19 . . R931d +chr9 SNP SNP 116003348 116127814 3 . . R932d +chr9 SNP SNP 116127815 116252281 19 . . R933d +chr9 SNP SNP 116252282 116376748 6 . . R934d +chr9 SNP SNP 116376749 116501215 13 . . R935d +chr9 SNP SNP 116501216 116625682 16 . . R936d +chr9 SNP SNP 116625683 116750149 252 . . R937d +chr9 SNP SNP 116750150 116874616 193 . . R938d +chr9 SNP SNP 116874617 116999084 6 . . R939d +chr9 SNP SNP 116999085 117123551 6 . . R940d +chr9 SNP SNP 117123552 117248018 3 . . R941d +chr9 SNP SNP 117248019 117372485 19 . . R942d +chr9 SNP SNP 117372486 117496952 13 . . R943d +chr9 SNP SNP 117496953 117621419 9 . . R944d +chr9 SNP SNP 117621420 117745886 9 . . R945d +chr9 SNP SNP 117745887 117870353 16 . . R946d +chr9 SNP SNP 117870354 117994820 26 . . R947d +chr9 SNP SNP 117994821 118119287 6 . . R948d +chr9 SNP SNP 118119288 118243755 16 . . R949d +chr9 SNP SNP 118243756 118368222 6 . . R950d +chr9 SNP SNP 118368223 118492689 9 . . R951d +chr9 SNP SNP 118492690 118617156 3 . . R952d +chr9 SNP SNP 118617157 118741623 22 . . R953d +chr9 SNP SNP 118741624 118866090 6 . . R954d +chr9 SNP SNP 118866091 118990557 6 . . R955d +chr9 SNP SNP 118990558 119115024 6 . . R956d +chr9 SNP SNP 119115025 119239491 16 . . R957d +chr9 SNP SNP 119239492 119363958 19 . . R958d +chr9 SNP SNP 119363959 119488426 485 . . R959d +chr9 SNP SNP 119488427 119612893 111 . . R960d +chr9 SNP SNP 119612894 119737360 127 . . R961d +chr9 SNP SNP 119737361 119861827 81 . . R962d +chr9 SNP SNP 119861828 119986294 170 . . R963d +chr9 SNP SNP 119986295 120110761 78 . . R964d +chr9 SNP SNP 120110762 120235228 308 . . R965d +chr9 SNP SNP 120235229 120359695 426 . . R966d +chr9 SNP SNP 120359696 120484162 242 . . R967d +chr9 SNP SNP 120484163 120608629 337 . . R968d +chr9 SNP SNP 120608630 120733097 337 . . R969d +chr9 SNP SNP 120733098 120857564 88 . . R970d +chr9 SNP SNP 120857565 120982031 108 . . R971d +chr9 SNP SNP 120982032 121106498 239 . . R972d +chr9 SNP SNP 121106499 121230965 272 . . R973d +chr9 SNP SNP 121230966 121355432 236 . . R974d +chr9 SNP SNP 121355433 121479899 222 . . R975d +chr9 SNP SNP 121479900 121604366 278 . . R976d +chr9 SNP SNP 121604367 121728833 183 . . R977d +chr9 SNP SNP 121728834 121853300 281 . . R978d +chr9 SNP SNP 121853301 121977768 314 . . R979d +chr9 SNP SNP 121977769 122102235 390 . . R980d +chr9 SNP SNP 122102236 122226702 459 . . R981d +chr9 SNP SNP 122226703 122351169 98 . . R982d +chr9 SNP SNP 122351170 122475636 85 . . R983d +chr9 SNP SNP 122475637 122600103 36 . . R984d +chr9 SNP SNP 122600104 122724570 62 . . R985d +chr9 SNP SNP 122724571 122849037 36 . . R986d +chr9 SNP SNP 122849038 122973504 157 . . R987d +chr9 SNP SNP 122973505 123097971 642 . . R988d +chr9 SNP SNP 123097972 123222439 314 . . R989d +chr9 SNP SNP 123222440 123346906 16 . . R990d +chr9 SNP SNP 123346907 123471373 29 . . R991d +chr9 SNP SNP 123471374 123595840 16 . . R992d +chr9 SNP SNP 123595841 123720307 6 . . R993d +chr9 SNP SNP 123720308 123844774 13 . . R994d +chr9 SNP SNP 123844775 123969241 16 . . R995d +chr9 SNP SNP 123969242 124093708 16 . . R996d +chr9 SNP SNP 124093709 124218175 0 . . R997d +chr9 SNP SNP 124218176 124342642 468 . . R998d +chr9 SNP SNP 124342643 124467110 593 . . R999d diff --git a/web/snp/chrX b/web/snp/chrX new file mode 100755 index 00000000..433c16f2 --- /dev/null +++ b/web/snp/chrX @@ -0,0 +1,1004 @@ + + +track name=WebQTL_SNP useScore=1 description="WebQTL SNP Track" +chrX SNP SNP 11 149913 0 . . R0d +chrX SNP SNP 149914 299817 0 . . R1d +chrX SNP SNP 299818 449720 0 . . R2d +chrX SNP SNP 449721 599624 0 . . R3d +chrX SNP SNP 599625 749528 0 . . R4d +chrX SNP SNP 749529 899431 0 . . R5d +chrX SNP SNP 899432 1049335 0 . . R6d +chrX SNP SNP 1049336 1199239 0 . . R7d +chrX SNP SNP 1199240 1349142 0 . . R8d +chrX SNP SNP 1349143 1499046 0 . . R9d +chrX SNP SNP 1499047 1648950 0 . . R10d +chrX SNP SNP 1648951 1798853 0 . . R11d +chrX SNP SNP 1798854 1948757 0 . . R12d +chrX SNP SNP 1948758 2098661 0 . . R13d +chrX SNP SNP 2098662 2248564 0 . . R14d +chrX SNP SNP 2248565 2398468 0 . . R15d +chrX SNP SNP 2398469 2548372 0 . . R16d +chrX SNP SNP 2548373 2698275 0 . . R17d +chrX SNP SNP 2698276 2848179 0 . . R18d +chrX SNP SNP 2848180 2998083 0 . . R19d +chrX SNP SNP 2998084 3147986 12 . . R20d +chrX SNP SNP 3147987 3297890 31 . . R21d +chrX SNP SNP 3297891 3447793 25 . . R22d +chrX SNP SNP 3447794 3597697 6 . . R23d +chrX SNP SNP 3597698 3747601 37 . . R24d +chrX SNP SNP 3747602 3897504 12 . . R25d +chrX SNP SNP 3897505 4047408 25 . . R26d +chrX SNP SNP 4047409 4197312 31 . . R27d +chrX SNP SNP 4197313 4347215 18 . . R28d +chrX SNP SNP 4347216 4497119 6 . . R29d +chrX SNP SNP 4497120 4647023 137 . . R30d +chrX SNP SNP 4647024 4796926 137 . . R31d +chrX SNP SNP 4796927 4946830 68 . . R32d +chrX SNP SNP 4946831 5096734 0 . . R33d +chrX SNP SNP 5096735 5246637 12 . . R34d +chrX SNP SNP 5246638 5396541 25 . . R35d +chrX SNP SNP 5396542 5546445 31 . . R36d +chrX SNP SNP 5546446 5696348 37 . . R37d +chrX SNP SNP 5696349 5846252 18 . . R38d +chrX SNP SNP 5846253 5996156 50 . . R39d +chrX SNP SNP 5996157 6146059 37 . . R40d +chrX SNP SNP 6146060 6295963 37 . . R41d +chrX SNP SNP 6295964 6445866 43 . . R42d +chrX SNP SNP 6445867 6595770 150 . . R43d +chrX SNP SNP 6595771 6745674 37 . . R44d +chrX SNP SNP 6745675 6895577 125 . . R45d +chrX SNP SNP 6895578 7045481 106 . . R46d +chrX SNP SNP 7045482 7195385 500 . . R47d +chrX SNP SNP 7195386 7345288 56 . . R48d +chrX SNP SNP 7345289 7495192 50 . . R49d +chrX SNP SNP 7495193 7645096 412 . . R50d +chrX SNP SNP 7645097 7794999 575 . . R51d +chrX SNP SNP 7795000 7944903 668 . . R52d +chrX SNP SNP 7944904 8094807 237 . . R53d +chrX SNP SNP 8094808 8244710 262 . . R54d +chrX SNP SNP 8244711 8394614 37 . . R55d +chrX SNP SNP 8394615 8544518 93 . . R56d +chrX SNP SNP 8544519 8694421 43 . . R57d +chrX SNP SNP 8694422 8844325 25 . . R58d +chrX SNP SNP 8844326 8994229 25 . . R59d +chrX SNP SNP 8994230 9144132 18 . . R60d +chrX SNP SNP 9144133 9294036 6 . . R61d +chrX SNP SNP 9294037 9443940 12 . . R62d +chrX SNP SNP 9443941 9593843 12 . . R63d +chrX SNP SNP 9593844 9743747 18 . . R64d +chrX SNP SNP 9743748 9893650 18 . . R65d +chrX SNP SNP 9893651 10043554 18 . . R66d +chrX SNP SNP 10043555 10193458 25 . . R67d +chrX SNP SNP 10193459 10343361 43 . . R68d +chrX SNP SNP 10343362 10493265 12 . . R69d +chrX SNP SNP 10493266 10643169 18 . . R70d +chrX SNP SNP 10643170 10793072 12 . . R71d +chrX SNP SNP 10793073 10942976 18 . . R72d +chrX SNP SNP 10942977 11092880 43 . . R73d +chrX SNP SNP 11092881 11242783 25 . . R74d +chrX SNP SNP 11242784 11392687 12 . . R75d +chrX SNP SNP 11392688 11542591 0 . . R76d +chrX SNP SNP 11542592 11692494 37 . . R77d +chrX SNP SNP 11692495 11842398 25 . . R78d +chrX SNP SNP 11842399 11992302 31 . . R79d +chrX SNP SNP 11992303 12142205 31 . . R80d +chrX SNP SNP 12142206 12292109 31 . . R81d +chrX SNP SNP 12292110 12442013 31 . . R82d +chrX SNP SNP 12442014 12591916 87 . . R83d +chrX SNP SNP 12591917 12741820 25 . . R84d +chrX SNP SNP 12741821 12891723 37 . . R85d +chrX SNP SNP 12891724 13041627 12 . . R86d +chrX SNP SNP 13041628 13191531 37 . . R87d +chrX SNP SNP 13191532 13341434 25 . . R88d +chrX SNP SNP 13341435 13491338 31 . . R89d +chrX SNP SNP 13491339 13641242 12 . . R90d +chrX SNP SNP 13641243 13791145 18 . . R91d +chrX SNP SNP 13791146 13941049 43 . . R92d +chrX SNP SNP 13941050 14090953 25 . . R93d +chrX SNP SNP 14090954 14240856 12 . . R94d +chrX SNP SNP 14240857 14390760 50 . . R95d +chrX SNP SNP 14390761 14540664 12 . . R96d +chrX SNP SNP 14540665 14690567 37 . . R97d +chrX SNP SNP 14690568 14840471 18 . . R98d +chrX SNP SNP 14840472 14990375 31 . . R99d +chrX SNP SNP 14990376 15140278 25 . . R100d +chrX SNP SNP 15140279 15290182 31 . . R101d +chrX SNP SNP 15290183 15440086 31 . . R102d +chrX SNP SNP 15440087 15589989 31 . . R103d +chrX SNP SNP 15589990 15739893 125 . . R104d +chrX SNP SNP 15739894 15889797 31 . . R105d +chrX SNP SNP 15889798 16039700 6 . . R106d +chrX SNP SNP 16039701 16189604 25 . . R107d +chrX SNP SNP 16189605 16339507 56 . . R108d +chrX SNP SNP 16339508 16489411 75 . . R109d +chrX SNP SNP 16489412 16639315 43 . . R110d +chrX SNP SNP 16639316 16789218 18 . . R111d +chrX SNP SNP 16789219 16939122 25 . . R112d +chrX SNP SNP 16939123 17089026 25 . . R113d +chrX SNP SNP 17089027 17238929 62 . . R114d +chrX SNP SNP 17238930 17388833 37 . . R115d +chrX SNP SNP 17388834 17538737 6 . . R116d +chrX SNP SNP 17538738 17688640 12 . . R117d +chrX SNP SNP 17688641 17838544 31 . . R118d +chrX SNP SNP 17838545 17988448 12 . . R119d +chrX SNP SNP 17988449 18138351 18 . . R120d +chrX SNP SNP 18138352 18288255 50 . . R121d +chrX SNP SNP 18288256 18438159 43 . . R122d +chrX SNP SNP 18438160 18588062 18 . . R123d +chrX SNP SNP 18588063 18737966 18 . . R124d +chrX SNP SNP 18737967 18887870 25 . . R125d +chrX SNP SNP 18887871 19037773 18 . . R126d +chrX SNP SNP 19037774 19187677 43 . . R127d +chrX SNP SNP 19187678 19337580 6 . . R128d +chrX SNP SNP 19337581 19487484 12 . . R129d +chrX SNP SNP 19487485 19637388 25 . . R130d +chrX SNP SNP 19637389 19787291 31 . . R131d +chrX SNP SNP 19787292 19937195 6 . . R132d +chrX SNP SNP 19937196 20087099 56 . . R133d +chrX SNP SNP 20087100 20237002 31 . . R134d +chrX SNP SNP 20237003 20386906 6 . . R135d +chrX SNP SNP 20386907 20536810 18 . . R136d +chrX SNP SNP 20536811 20686713 62 . . R137d +chrX SNP SNP 20686714 20836617 68 . . R138d +chrX SNP SNP 20836618 20986521 25 . . R139d +chrX SNP SNP 20986522 21136424 25 . . R140d +chrX SNP SNP 21136425 21286328 12 . . R141d +chrX SNP SNP 21286329 21436232 50 . . R142d +chrX SNP SNP 21436233 21586135 31 . . R143d +chrX SNP SNP 21586136 21736039 56 . . R144d +chrX SNP SNP 21736040 21885943 25 . . R145d +chrX SNP SNP 21885944 22035846 0 . . R146d +chrX SNP SNP 22035847 22185750 68 . . R147d +chrX SNP SNP 22185751 22335653 68 . . R148d +chrX SNP SNP 22335654 22485557 6 . . R149d +chrX SNP SNP 22485558 22635461 25 . . R150d +chrX SNP SNP 22635462 22785364 62 . . R151d +chrX SNP SNP 22785365 22935268 25 . . R152d +chrX SNP SNP 22935269 23085172 25 . . R153d +chrX SNP SNP 23085173 23235075 18 . . R154d +chrX SNP SNP 23235076 23384979 31 . . R155d +chrX SNP SNP 23384980 23534883 25 . . R156d +chrX SNP SNP 23534884 23684786 0 . . R157d +chrX SNP SNP 23684787 23834690 43 . . R158d +chrX SNP SNP 23834691 23984594 50 . . R159d +chrX SNP SNP 23984595 24134497 6 . . R160d +chrX SNP SNP 24134498 24284401 25 . . R161d +chrX SNP SNP 24284402 24434305 18 . . R162d +chrX SNP SNP 24434306 24584208 31 . . R163d +chrX SNP SNP 24584209 24734112 6 . . R164d +chrX SNP SNP 24734113 24884016 18 . . R165d +chrX SNP SNP 24884017 25033919 18 . . R166d +chrX SNP SNP 25033920 25183823 25 . . R167d +chrX SNP SNP 25183824 25333727 12 . . R168d +chrX SNP SNP 25333728 25483630 18 . . R169d +chrX SNP SNP 25483631 25633534 25 . . R170d +chrX SNP SNP 25633535 25783437 18 . . R171d +chrX SNP SNP 25783438 25933341 6 . . R172d +chrX SNP SNP 25933342 26083245 43 . . R173d +chrX SNP SNP 26083246 26233148 43 . . R174d +chrX SNP SNP 26233149 26383052 25 . . R175d +chrX SNP SNP 26383053 26532956 25 . . R176d +chrX SNP SNP 26532957 26682859 12 . . R177d +chrX SNP SNP 26682860 26832763 50 . . R178d +chrX SNP SNP 26832764 26982667 43 . . R179d +chrX SNP SNP 26982668 27132570 12 . . R180d +chrX SNP SNP 27132571 27282474 18 . . R181d +chrX SNP SNP 27282475 27432378 31 . . R182d +chrX SNP SNP 27432379 27582281 12 . . R183d +chrX SNP SNP 27582282 27732185 12 . . R184d +chrX SNP SNP 27732186 27882089 56 . . R185d +chrX SNP SNP 27882090 28031992 25 . . R186d +chrX SNP SNP 28031993 28181896 18 . . R187d +chrX SNP SNP 28181897 28331800 50 . . R188d +chrX SNP SNP 28331801 28481703 18 . . R189d +chrX SNP SNP 28481704 28631607 31 . . R190d +chrX SNP SNP 28631608 28781510 43 . . R191d +chrX SNP SNP 28781511 28931414 43 . . R192d +chrX SNP SNP 28931415 29081318 25 . . R193d +chrX SNP SNP 29081319 29231221 50 . . R194d +chrX SNP SNP 29231222 29381125 31 . . R195d +chrX SNP SNP 29381126 29531029 6 . . R196d +chrX SNP SNP 29531030 29680932 18 . . R197d +chrX SNP SNP 29680933 29830836 31 . . R198d +chrX SNP SNP 29830837 29980740 50 . . R199d +chrX SNP SNP 29980741 30130643 31 . . R200d +chrX SNP SNP 30130644 30280547 37 . . R201d +chrX SNP SNP 30280548 30430451 25 . . R202d +chrX SNP SNP 30430452 30580354 50 . . R203d +chrX SNP SNP 30580355 30730258 25 . . R204d +chrX SNP SNP 30730259 30880162 50 . . R205d +chrX SNP SNP 30880163 31030065 25 . . R206d +chrX SNP SNP 31030066 31179969 31 . . R207d +chrX SNP SNP 31179970 31329873 25 . . R208d +chrX SNP SNP 31329874 31479776 12 . . R209d +chrX SNP SNP 31479777 31629680 56 . . R210d +chrX SNP SNP 31629681 31779584 18 . . R211d +chrX SNP SNP 31779585 31929487 12 . . R212d +chrX SNP SNP 31929488 32079391 18 . . R213d +chrX SNP SNP 32079392 32229294 62 . . R214d +chrX SNP SNP 32229295 32379198 50 . . R215d +chrX SNP SNP 32379199 32529102 25 . . R216d +chrX SNP SNP 32529103 32679005 50 . . R217d +chrX SNP SNP 32679006 32828909 25 . . R218d +chrX SNP SNP 32828910 32978813 43 . . R219d +chrX SNP SNP 32978814 33128716 68 . . R220d +chrX SNP SNP 33128717 33278620 56 . . R221d +chrX SNP SNP 33278621 33428524 62 . . R222d +chrX SNP SNP 33428525 33578427 6 . . R223d +chrX SNP SNP 33578428 33728331 31 . . R224d +chrX SNP SNP 33728332 33878235 62 . . R225d +chrX SNP SNP 33878236 34028138 43 . . R226d +chrX SNP SNP 34028139 34178042 37 . . R227d +chrX SNP SNP 34178043 34327946 156 . . R228d +chrX SNP SNP 34327947 34477849 143 . . R229d +chrX SNP SNP 34477850 34627753 56 . . R230d +chrX SNP SNP 34627754 34777657 87 . . R231d +chrX SNP SNP 34777658 34927560 212 . . R232d +chrX SNP SNP 34927561 35077464 31 . . R233d +chrX SNP SNP 35077465 35227367 175 . . R234d +chrX SNP SNP 35227368 35377271 150 . . R235d +chrX SNP SNP 35377272 35527175 175 . . R236d +chrX SNP SNP 35527176 35677078 450 . . R237d +chrX SNP SNP 35677079 35826982 500 . . R238d +chrX SNP SNP 35826983 35976886 443 . . R239d +chrX SNP SNP 35976887 36126789 468 . . R240d +chrX SNP SNP 36126790 36276693 50 . . R241d +chrX SNP SNP 36276694 36426597 75 . . R242d +chrX SNP SNP 36426598 36576500 31 . . R243d +chrX SNP SNP 36576501 36726404 18 . . R244d +chrX SNP SNP 36726405 36876308 25 . . R245d +chrX SNP SNP 36876309 37026211 87 . . R246d +chrX SNP SNP 37026212 37176115 0 . . R247d +chrX SNP SNP 37176116 37326019 443 . . R248d +chrX SNP SNP 37326020 37475922 31 . . R249d +chrX SNP SNP 37475923 37625826 56 . . R250d +chrX SNP SNP 37625827 37775730 118 . . R251d +chrX SNP SNP 37775731 37925633 56 . . R252d +chrX SNP SNP 37925634 38075537 50 . . R253d +chrX SNP SNP 38075538 38225441 87 . . R254d +chrX SNP SNP 38225442 38375344 56 . . R255d +chrX SNP SNP 38375345 38525248 581 . . R256d +chrX SNP SNP 38525249 38675151 387 . . R257d +chrX SNP SNP 38675152 38825055 75 . . R258d +chrX SNP SNP 38825056 38974959 50 . . R259d +chrX SNP SNP 38974960 39124862 31 . . R260d +chrX SNP SNP 39124863 39274766 62 . . R261d +chrX SNP SNP 39274767 39424670 181 . . R262d +chrX SNP SNP 39424671 39574573 93 . . R263d +chrX SNP SNP 39574574 39724477 256 . . R264d +chrX SNP SNP 39724478 39874381 225 . . R265d +chrX SNP SNP 39874382 40024284 131 . . R266d +chrX SNP SNP 40024285 40174188 31 . . R267d +chrX SNP SNP 40174189 40324092 25 . . R268d +chrX SNP SNP 40324093 40473995 25 . . R269d +chrX SNP SNP 40473996 40623899 50 . . R270d +chrX SNP SNP 40623900 40773803 25 . . R271d +chrX SNP SNP 40773804 40923706 43 . . R272d +chrX SNP SNP 40923707 41073610 37 . . R273d +chrX SNP SNP 41073611 41223514 31 . . R274d +chrX SNP SNP 41223515 41373417 31 . . R275d +chrX SNP SNP 41373418 41523321 81 . . R276d +chrX SNP SNP 41523322 41673224 112 . . R277d +chrX SNP SNP 41673225 41823128 225 . . R278d +chrX SNP SNP 41823129 41973032 456 . . R279d +chrX SNP SNP 41973033 42122935 275 . . R280d +chrX SNP SNP 42122936 42272839 443 . . R281d +chrX SNP SNP 42272840 42422743 43 . . R282d +chrX SNP SNP 42422744 42572646 31 . . R283d +chrX SNP SNP 42572647 42722550 18 . . R284d +chrX SNP SNP 42722551 42872454 43 . . R285d +chrX SNP SNP 42872455 43022357 362 . . R286d +chrX SNP SNP 43022358 43172261 268 . . R287d +chrX SNP SNP 43172262 43322165 37 . . R288d +chrX SNP SNP 43322166 43472068 0 . . R289d +chrX SNP SNP 43472069 43621972 6 . . R290d +chrX SNP SNP 43621973 43771876 12 . . R291d +chrX SNP SNP 43771877 43921779 25 . . R292d +chrX SNP SNP 43921780 44071683 12 . . R293d +chrX SNP SNP 44071684 44221587 31 . . R294d +chrX SNP SNP 44221588 44371490 25 . . R295d +chrX SNP SNP 44371491 44521394 37 . . R296d +chrX SNP SNP 44521395 44671297 18 . . R297d +chrX SNP SNP 44671298 44821201 43 . . R298d +chrX SNP SNP 44821202 44971105 25 . . R299d +chrX SNP SNP 44971106 45121008 37 . . R300d +chrX SNP SNP 45121009 45270912 12 . . R301d +chrX SNP SNP 45270913 45420816 0 . . R302d +chrX SNP SNP 45420817 45570719 12 . . R303d +chrX SNP SNP 45570720 45720623 6 . . R304d +chrX SNP SNP 45720624 45870527 25 . . R305d +chrX SNP SNP 45870528 46020430 12 . . R306d +chrX SNP SNP 46020431 46170334 31 . . R307d +chrX SNP SNP 46170335 46320238 56 . . R308d +chrX SNP SNP 46320239 46470141 6 . . R309d +chrX SNP SNP 46470142 46620045 31 . . R310d +chrX SNP SNP 46620046 46769949 31 . . R311d +chrX SNP SNP 46769950 46919852 25 . . R312d +chrX SNP SNP 46919853 47069756 6 . . R313d +chrX SNP SNP 47069757 47219660 0 . . R314d +chrX SNP SNP 47219661 47369563 31 . . R315d +chrX SNP SNP 47369564 47519467 37 . . R316d +chrX SNP SNP 47519468 47669371 43 . . R317d +chrX SNP SNP 47669372 47819274 18 . . R318d +chrX SNP SNP 47819275 47969178 43 . . R319d +chrX SNP SNP 47969179 48119081 37 . . R320d +chrX SNP SNP 48119082 48268985 18 . . R321d +chrX SNP SNP 48268986 48418889 37 . . R322d +chrX SNP SNP 48418890 48568792 18 . . R323d +chrX SNP SNP 48568793 48718696 43 . . R324d +chrX SNP SNP 48718697 48868600 56 . . R325d +chrX SNP SNP 48868601 49018503 50 . . R326d +chrX SNP SNP 49018504 49168407 37 . . R327d +chrX SNP SNP 49168408 49318311 43 . . R328d +chrX SNP SNP 49318312 49468214 12 . . R329d +chrX SNP SNP 49468215 49618118 12 . . R330d +chrX SNP SNP 49618119 49768022 31 . . R331d +chrX SNP SNP 49768023 49917925 56 . . R332d +chrX SNP SNP 49917926 50067829 43 . . R333d +chrX SNP SNP 50067830 50217733 12 . . R334d +chrX SNP SNP 50217734 50367636 37 . . R335d +chrX SNP SNP 50367637 50517540 25 . . R336d +chrX SNP SNP 50517541 50667444 12 . . R337d +chrX SNP SNP 50667445 50817347 6 . . R338d +chrX SNP SNP 50817348 50967251 25 . . R339d +chrX SNP SNP 50967252 51117154 25 . . R340d +chrX SNP SNP 51117155 51267058 12 . . R341d +chrX SNP SNP 51267059 51416962 37 . . R342d +chrX SNP SNP 51416963 51566865 12 . . R343d +chrX SNP SNP 51566866 51716769 18 . . R344d +chrX SNP SNP 51716770 51866673 25 . . R345d +chrX SNP SNP 51866674 52016576 12 . . R346d +chrX SNP SNP 52016577 52166480 37 . . R347d +chrX SNP SNP 52166481 52316384 6 . . R348d +chrX SNP SNP 52316385 52466287 37 . . R349d +chrX SNP SNP 52466288 52616191 12 . . R350d +chrX SNP SNP 52616192 52766095 18 . . R351d +chrX SNP SNP 52766096 52915998 25 . . R352d +chrX SNP SNP 52915999 53065902 0 . . R353d +chrX SNP SNP 53065903 53215806 50 . . R354d +chrX SNP SNP 53215807 53365709 43 . . R355d +chrX SNP SNP 53365710 53515613 331 . . R356d +chrX SNP SNP 53515614 53665517 281 . . R357d +chrX SNP SNP 53665518 53815420 581 . . R358d +chrX SNP SNP 53815421 53965324 568 . . R359d +chrX SNP SNP 53965325 54115228 518 . . R360d +chrX SNP SNP 54115229 54265131 87 . . R361d +chrX SNP SNP 54265132 54415035 25 . . R362d +chrX SNP SNP 54415036 54564938 50 . . R363d +chrX SNP SNP 54564939 54714842 6 . . R364d +chrX SNP SNP 54714843 54864746 175 . . R365d +chrX SNP SNP 54864747 55014649 125 . . R366d +chrX SNP SNP 55014650 55164553 337 . . R367d +chrX SNP SNP 55164554 55314457 450 . . R368d +chrX SNP SNP 55314458 55464360 187 . . R369d +chrX SNP SNP 55464361 55614264 156 . . R370d +chrX SNP SNP 55614265 55764168 287 . . R371d +chrX SNP SNP 55764169 55914071 43 . . R372d +chrX SNP SNP 55914072 56063975 50 . . R373d +chrX SNP SNP 56063976 56213879 250 . . R374d +chrX SNP SNP 56213880 56363782 118 . . R375d +chrX SNP SNP 56363783 56513686 262 . . R376d +chrX SNP SNP 56513687 56663590 75 . . R377d +chrX SNP SNP 56663591 56813493 25 . . R378d +chrX SNP SNP 56813494 56963397 56 . . R379d +chrX SNP SNP 56963398 57113301 175 . . R380d +chrX SNP SNP 57113302 57263204 406 . . R381d +chrX SNP SNP 57263205 57413108 100 . . R382d +chrX SNP SNP 57413109 57563011 68 . . R383d +chrX SNP SNP 57563012 57712915 62 . . R384d +chrX SNP SNP 57712916 57862819 81 . . R385d +chrX SNP SNP 57862820 58012722 75 . . R386d +chrX SNP SNP 58012723 58162626 100 . . R387d +chrX SNP SNP 58162627 58312530 393 . . R388d +chrX SNP SNP 58312531 58462433 393 . . R389d +chrX SNP SNP 58462434 58612337 112 . . R390d +chrX SNP SNP 58612338 58762241 118 . . R391d +chrX SNP SNP 58762242 58912144 56 . . R392d +chrX SNP SNP 58912145 59062048 0 . . R393d +chrX SNP SNP 59062049 59211952 75 . . R394d +chrX SNP SNP 59211953 59361855 68 . . R395d +chrX SNP SNP 59361856 59511759 25 . . R396d +chrX SNP SNP 59511760 59661663 68 . . R397d +chrX SNP SNP 59661664 59811566 31 . . R398d +chrX SNP SNP 59811567 59961470 56 . . R399d +chrX SNP SNP 59961471 60111374 400 . . R400d +chrX SNP SNP 60111375 60261277 425 . . R401d +chrX SNP SNP 60261278 60411181 262 . . R402d +chrX SNP SNP 60411182 60561085 168 . . R403d +chrX SNP SNP 60561086 60710988 287 . . R404d +chrX SNP SNP 60710989 60860892 450 . . R405d +chrX SNP SNP 60860893 61010795 143 . . R406d +chrX SNP SNP 61010796 61160699 650 . . R407d +chrX SNP SNP 61160700 61310603 843 . . R408d +chrX SNP SNP 61310604 61460506 831 . . R409d +chrX SNP SNP 61460507 61610410 350 . . R410d +chrX SNP SNP 61610411 61760314 568 . . R411d +chrX SNP SNP 61760315 61910217 37 . . R412d +chrX SNP SNP 61910218 62060121 143 . . R413d +chrX SNP SNP 62060122 62210025 131 . . R414d +chrX SNP SNP 62210026 62359928 56 . . R415d +chrX SNP SNP 62359929 62509832 12 . . R416d +chrX SNP SNP 62509833 62659736 68 . . R417d +chrX SNP SNP 62659737 62809639 50 . . R418d +chrX SNP SNP 62809640 62959543 62 . . R419d +chrX SNP SNP 62959544 63109447 43 . . R420d +chrX SNP SNP 63109448 63259350 43 . . R421d +chrX SNP SNP 63259351 63409254 68 . . R422d +chrX SNP SNP 63409255 63559158 50 . . R423d +chrX SNP SNP 63559159 63709061 93 . . R424d +chrX SNP SNP 63709062 63858965 68 . . R425d +chrX SNP SNP 63858966 64008868 50 . . R426d +chrX SNP SNP 64008869 64158772 68 . . R427d +chrX SNP SNP 64158773 64308676 31 . . R428d +chrX SNP SNP 64308677 64458579 268 . . R429d +chrX SNP SNP 64458580 64608483 787 . . R430d +chrX SNP SNP 64608484 64758387 587 . . R431d +chrX SNP SNP 64758388 64908290 1000 . . R432d +chrX SNP SNP 64908291 65058194 787 . . R433d +chrX SNP SNP 65058195 65208098 431 . . R434d +chrX SNP SNP 65208099 65358001 200 . . R435d +chrX SNP SNP 65358002 65507905 50 . . R436d +chrX SNP SNP 65507906 65657809 506 . . R437d +chrX SNP SNP 65657810 65807712 543 . . R438d +chrX SNP SNP 65807713 65957616 393 . . R439d +chrX SNP SNP 65957617 66107520 262 . . R440d +chrX SNP SNP 66107521 66257423 43 . . R441d +chrX SNP SNP 66257424 66407327 56 . . R442d +chrX SNP SNP 66407328 66557231 68 . . R443d +chrX SNP SNP 66557232 66707134 162 . . R444d +chrX SNP SNP 66707135 66857038 375 . . R445d +chrX SNP SNP 66857039 67006941 237 . . R446d +chrX SNP SNP 67006942 67156845 150 . . R447d +chrX SNP SNP 67156846 67306749 281 . . R448d +chrX SNP SNP 67306750 67456652 362 . . R449d +chrX SNP SNP 67456653 67606556 362 . . R450d +chrX SNP SNP 67606557 67756460 243 . . R451d +chrX SNP SNP 67756461 67906363 118 . . R452d +chrX SNP SNP 67906364 68056267 50 . . R453d +chrX SNP SNP 68056268 68206171 156 . . R454d +chrX SNP SNP 68206172 68356074 93 . . R455d +chrX SNP SNP 68356075 68505978 75 . . R456d +chrX SNP SNP 68505979 68655882 43 . . R457d +chrX SNP SNP 68655883 68805785 43 . . R458d +chrX SNP SNP 68805786 68955689 43 . . R459d +chrX SNP SNP 68955690 69105593 31 . . R460d +chrX SNP SNP 69105594 69255496 68 . . R461d +chrX SNP SNP 69255497 69405400 81 . . R462d +chrX SNP SNP 69405401 69555304 100 . . R463d +chrX SNP SNP 69555305 69705207 456 . . R464d +chrX SNP SNP 69705208 69855111 456 . . R465d +chrX SNP SNP 69855112 70005015 300 . . R466d +chrX SNP SNP 70005016 70154918 356 . . R467d +chrX SNP SNP 70154919 70304822 487 . . R468d +chrX SNP SNP 70304823 70454725 18 . . R469d +chrX SNP SNP 70454726 70604629 656 . . R470d +chrX SNP SNP 70604630 70754533 125 . . R471d +chrX SNP SNP 70754534 70904436 225 . . R472d +chrX SNP SNP 70904437 71054340 712 . . R473d +chrX SNP SNP 71054341 71204244 837 . . R474d +chrX SNP SNP 71204245 71354147 643 . . R475d +chrX SNP SNP 71354148 71504051 231 . . R476d +chrX SNP SNP 71504052 71653955 268 . . R477d +chrX SNP SNP 71653956 71803858 6 . . R478d +chrX SNP SNP 71803859 71953762 50 . . R479d +chrX SNP SNP 71953763 72103666 18 . . R480d +chrX SNP SNP 72103667 72253569 18 . . R481d +chrX SNP SNP 72253570 72403473 56 . . R482d +chrX SNP SNP 72403474 72553377 6 . . R483d +chrX SNP SNP 72553378 72703280 50 . . R484d +chrX SNP SNP 72703281 72853184 25 . . R485d +chrX SNP SNP 72853185 73003088 12 . . R486d +chrX SNP SNP 73003089 73152991 56 . . R487d +chrX SNP SNP 73152992 73302895 18 . . R488d +chrX SNP SNP 73302896 73452798 6 . . R489d +chrX SNP SNP 73452799 73602702 50 . . R490d +chrX SNP SNP 73602703 73752606 37 . . R491d +chrX SNP SNP 73752607 73902509 43 . . R492d +chrX SNP SNP 73902510 74052413 18 . . R493d +chrX SNP SNP 74052414 74202317 31 . . R494d +chrX SNP SNP 74202318 74352220 87 . . R495d +chrX SNP SNP 74352221 74502124 87 . . R496d +chrX SNP SNP 74502125 74652028 68 . . R497d +chrX SNP SNP 74652029 74801931 43 . . R498d +chrX SNP SNP 74801932 74951835 43 . . R499d +chrX SNP SNP 74951836 75101739 12 . . R500d +chrX SNP SNP 75101740 75251642 0 . . R501d +chrX SNP SNP 75251643 75401546 18 . . R502d +chrX SNP SNP 75401547 75551450 62 . . R503d +chrX SNP SNP 75551451 75701353 31 . . R504d +chrX SNP SNP 75701354 75851257 62 . . R505d +chrX SNP SNP 75851258 76001161 56 . . R506d +chrX SNP SNP 76001162 76151064 18 . . R507d +chrX SNP SNP 76151065 76300968 93 . . R508d +chrX SNP SNP 76300969 76450872 206 . . R509d +chrX SNP SNP 76450873 76600775 31 . . R510d +chrX SNP SNP 76600776 76750679 137 . . R511d +chrX SNP SNP 76750680 76900582 100 . . R512d +chrX SNP SNP 76900583 77050486 18 . . R513d +chrX SNP SNP 77050487 77200390 31 . . R514d +chrX SNP SNP 77200391 77350293 37 . . R515d +chrX SNP SNP 77350294 77500197 75 . . R516d +chrX SNP SNP 77500198 77650101 568 . . R517d +chrX SNP SNP 77650102 77800004 143 . . R518d +chrX SNP SNP 77800005 77949908 87 . . R519d +chrX SNP SNP 77949909 78099812 37 . . R520d +chrX SNP SNP 78099813 78249715 18 . . R521d +chrX SNP SNP 78249716 78399619 43 . . R522d +chrX SNP SNP 78399620 78549523 62 . . R523d +chrX SNP SNP 78549524 78699426 31 . . R524d +chrX SNP SNP 78699427 78849330 37 . . R525d +chrX SNP SNP 78849331 78999234 18 . . R526d +chrX SNP SNP 78999235 79149137 37 . . R527d +chrX SNP SNP 79149138 79299041 43 . . R528d +chrX SNP SNP 79299042 79448945 6 . . R529d +chrX SNP SNP 79448946 79598848 143 . . R530d +chrX SNP SNP 79598849 79748752 68 . . R531d +chrX SNP SNP 79748753 79898655 6 . . R532d +chrX SNP SNP 79898656 80048559 12 . . R533d +chrX SNP SNP 80048560 80198463 12 . . R534d +chrX SNP SNP 80198464 80348366 25 . . R535d +chrX SNP SNP 80348367 80498270 12 . . R536d +chrX SNP SNP 80498271 80648174 18 . . R537d +chrX SNP SNP 80648175 80798077 31 . . R538d +chrX SNP SNP 80798078 80947981 56 . . R539d +chrX SNP SNP 80947982 81097885 25 . . R540d +chrX SNP SNP 81097886 81247788 18 . . R541d +chrX SNP SNP 81247789 81397692 56 . . R542d +chrX SNP SNP 81397693 81547596 6 . . R543d +chrX SNP SNP 81547597 81697499 0 . . R544d +chrX SNP SNP 81697500 81847403 6 . . R545d +chrX SNP SNP 81847404 81997307 31 . . R546d +chrX SNP SNP 81997308 82147210 12 . . R547d +chrX SNP SNP 82147211 82297114 37 . . R548d +chrX SNP SNP 82297115 82447018 25 . . R549d +chrX SNP SNP 82447019 82596921 6 . . R550d +chrX SNP SNP 82596922 82746825 118 . . R551d +chrX SNP SNP 82746826 82896729 6 . . R552d +chrX SNP SNP 82896730 83046632 25 . . R553d +chrX SNP SNP 83046633 83196536 37 . . R554d +chrX SNP SNP 83196537 83346439 25 . . R555d +chrX SNP SNP 83346440 83496343 68 . . R556d +chrX SNP SNP 83496344 83646247 31 . . R557d +chrX SNP SNP 83646248 83796150 43 . . R558d +chrX SNP SNP 83796151 83946054 18 . . R559d +chrX SNP SNP 83946055 84095958 6 . . R560d +chrX SNP SNP 84095959 84245861 31 . . R561d +chrX SNP SNP 84245862 84395765 18 . . R562d +chrX SNP SNP 84395766 84545669 25 . . R563d +chrX SNP SNP 84545670 84695572 18 . . R564d +chrX SNP SNP 84695573 84845476 12 . . R565d +chrX SNP SNP 84845477 84995380 25 . . R566d +chrX SNP SNP 84995381 85145283 31 . . R567d +chrX SNP SNP 85145284 85295187 31 . . R568d +chrX SNP SNP 85295188 85445091 0 . . R569d +chrX SNP SNP 85445092 85594994 12 . . R570d +chrX SNP SNP 85594995 85744898 18 . . R571d +chrX SNP SNP 85744899 85894802 31 . . R572d +chrX SNP SNP 85894803 86044705 12 . . R573d +chrX SNP SNP 86044706 86194609 43 . . R574d +chrX SNP SNP 86194610 86344512 18 . . R575d +chrX SNP SNP 86344513 86494416 31 . . R576d +chrX SNP SNP 86494417 86644320 56 . . R577d +chrX SNP SNP 86644321 86794223 25 . . R578d +chrX SNP SNP 86794224 86944127 31 . . R579d +chrX SNP SNP 86944128 87094031 43 . . R580d +chrX SNP SNP 87094032 87243934 31 . . R581d +chrX SNP SNP 87243935 87393838 50 . . R582d +chrX SNP SNP 87393839 87543742 81 . . R583d +chrX SNP SNP 87543743 87693645 43 . . R584d +chrX SNP SNP 87693646 87843549 137 . . R585d +chrX SNP SNP 87843550 87993453 12 . . R586d +chrX SNP SNP 87993454 88143356 181 . . R587d +chrX SNP SNP 88143357 88293260 193 . . R588d +chrX SNP SNP 88293261 88443164 106 . . R589d +chrX SNP SNP 88443165 88593067 131 . . R590d +chrX SNP SNP 88593068 88742971 106 . . R591d +chrX SNP SNP 88742972 88892875 68 . . R592d +chrX SNP SNP 88892876 89042778 50 . . R593d +chrX SNP SNP 89042779 89192682 25 . . R594d +chrX SNP SNP 89192683 89342585 50 . . R595d +chrX SNP SNP 89342586 89492489 31 . . R596d +chrX SNP SNP 89492490 89642393 37 . . R597d +chrX SNP SNP 89642394 89792296 6 . . R598d +chrX SNP SNP 89792297 89942200 75 . . R599d +chrX SNP SNP 89942201 90092104 37 . . R600d +chrX SNP SNP 90092105 90242007 56 . . R601d +chrX SNP SNP 90242008 90391911 18 . . R602d +chrX SNP SNP 90391912 90541815 43 . . R603d +chrX SNP SNP 90541816 90691718 43 . . R604d +chrX SNP SNP 90691719 90841622 81 . . R605d +chrX SNP SNP 90841623 90991526 62 . . R606d +chrX SNP SNP 90991527 91141429 31 . . R607d +chrX SNP SNP 91141430 91291333 6 . . R608d +chrX SNP SNP 91291334 91441237 93 . . R609d +chrX SNP SNP 91441238 91591140 118 . . R610d +chrX SNP SNP 91591141 91741044 100 . . R611d +chrX SNP SNP 91741045 91890948 331 . . R612d +chrX SNP SNP 91890949 92040851 631 . . R613d +chrX SNP SNP 92040852 92190755 156 . . R614d +chrX SNP SNP 92190756 92340659 43 . . R615d +chrX SNP SNP 92340660 92490562 50 . . R616d +chrX SNP SNP 92490563 92640466 75 . . R617d +chrX SNP SNP 92640467 92790369 18 . . R618d +chrX SNP SNP 92790370 92940273 37 . . R619d +chrX SNP SNP 92940274 93090177 68 . . R620d +chrX SNP SNP 93090178 93240080 50 . . R621d +chrX SNP SNP 93240081 93389984 37 . . R622d +chrX SNP SNP 93389985 93539888 56 . . R623d +chrX SNP SNP 93539889 93689791 75 . . R624d +chrX SNP SNP 93689792 93839695 25 . . R625d +chrX SNP SNP 93839696 93989599 18 . . R626d +chrX SNP SNP 93989600 94139502 25 . . R627d +chrX SNP SNP 94139503 94289406 68 . . R628d +chrX SNP SNP 94289407 94439310 0 . . R629d +chrX SNP SNP 94439311 94589213 12 . . R630d +chrX SNP SNP 94589214 94739117 31 . . R631d +chrX SNP SNP 94739118 94889021 31 . . R632d +chrX SNP SNP 94889022 95038924 18 . . R633d +chrX SNP SNP 95038925 95188828 31 . . R634d +chrX SNP SNP 95188829 95338732 12 . . R635d +chrX SNP SNP 95338733 95488635 6 . . R636d +chrX SNP SNP 95488636 95638539 6 . . R637d +chrX SNP SNP 95638540 95788442 18 . . R638d +chrX SNP SNP 95788443 95938346 18 . . R639d +chrX SNP SNP 95938347 96088250 18 . . R640d +chrX SNP SNP 96088251 96238153 12 . . R641d +chrX SNP SNP 96238154 96388057 31 . . R642d +chrX SNP SNP 96388058 96537961 0 . . R643d +chrX SNP SNP 96537962 96687864 18 . . R644d +chrX SNP SNP 96687865 96837768 12 . . R645d +chrX SNP SNP 96837769 96987672 6 . . R646d +chrX SNP SNP 96987673 97137575 18 . . R647d +chrX SNP SNP 97137576 97287479 12 . . R648d +chrX SNP SNP 97287480 97437383 12 . . R649d +chrX SNP SNP 97437384 97587286 6 . . R650d +chrX SNP SNP 97587287 97737190 12 . . R651d +chrX SNP SNP 97737191 97887094 6 . . R652d +chrX SNP SNP 97887095 98036997 0 . . R653d +chrX SNP SNP 98036998 98186901 12 . . R654d +chrX SNP SNP 98186902 98336805 18 . . R655d +chrX SNP SNP 98336806 98486708 43 . . R656d +chrX SNP SNP 98486709 98636612 12 . . R657d +chrX SNP SNP 98636613 98786516 62 . . R658d +chrX SNP SNP 98786517 98936419 6 . . R659d +chrX SNP SNP 98936420 99086323 37 . . R660d +chrX SNP SNP 99086324 99236226 18 . . R661d +chrX SNP SNP 99236227 99386130 50 . . R662d +chrX SNP SNP 99386131 99536034 6 . . R663d +chrX SNP SNP 99536035 99685937 12 . . R664d +chrX SNP SNP 99685938 99835841 25 . . R665d +chrX SNP SNP 99835842 99985745 6 . . R666d +chrX SNP SNP 99985746 100135648 37 . . R667d +chrX SNP SNP 100135649 100285552 6 . . R668d +chrX SNP SNP 100285553 100435456 25 . . R669d +chrX SNP SNP 100435457 100585359 6 . . R670d +chrX SNP SNP 100585360 100735263 18 . . R671d +chrX SNP SNP 100735264 100885167 31 . . R672d +chrX SNP SNP 100885168 101035070 12 . . R673d +chrX SNP SNP 101035071 101184974 6 . . R674d +chrX SNP SNP 101184975 101334878 62 . . R675d +chrX SNP SNP 101334879 101484781 31 . . R676d +chrX SNP SNP 101484782 101634685 0 . . R677d +chrX SNP SNP 101634686 101784589 25 . . R678d +chrX SNP SNP 101784590 101934492 37 . . R679d +chrX SNP SNP 101934493 102084396 37 . . R680d +chrX SNP SNP 102084397 102234299 6 . . R681d +chrX SNP SNP 102234300 102384203 87 . . R682d +chrX SNP SNP 102384204 102534107 0 . . R683d +chrX SNP SNP 102534108 102684010 268 . . R684d +chrX SNP SNP 102684011 102833914 287 . . R685d +chrX SNP SNP 102833915 102983818 131 . . R686d +chrX SNP SNP 102983819 103133721 87 . . R687d +chrX SNP SNP 103133722 103283625 81 . . R688d +chrX SNP SNP 103283626 103433529 87 . . R689d +chrX SNP SNP 103433530 103583432 81 . . R690d +chrX SNP SNP 103583433 103733336 62 . . R691d +chrX SNP SNP 103733337 103883240 87 . . R692d +chrX SNP SNP 103883241 104033143 81 . . R693d +chrX SNP SNP 104033144 104183047 137 . . R694d +chrX SNP SNP 104183048 104332951 168 . . R695d +chrX SNP SNP 104332952 104482854 118 . . R696d +chrX SNP SNP 104482855 104632758 237 . . R697d +chrX SNP SNP 104632759 104782662 100 . . R698d +chrX SNP SNP 104782663 104932565 62 . . R699d +chrX SNP SNP 104932566 105082469 43 . . R700d +chrX SNP SNP 105082470 105232373 106 . . R701d +chrX SNP SNP 105232374 105382276 68 . . R702d +chrX SNP SNP 105382277 105532180 87 . . R703d +chrX SNP SNP 105532181 105682083 62 . . R704d +chrX SNP SNP 105682084 105831987 37 . . R705d +chrX SNP SNP 105831988 105981891 31 . . R706d +chrX SNP SNP 105981892 106131794 306 . . R707d +chrX SNP SNP 106131795 106281698 62 . . R708d +chrX SNP SNP 106281699 106431602 75 . . R709d +chrX SNP SNP 106431603 106581505 37 . . R710d +chrX SNP SNP 106581506 106731409 6 . . R711d +chrX SNP SNP 106731410 106881313 12 . . R712d +chrX SNP SNP 106881314 107031216 12 . . R713d +chrX SNP SNP 107031217 107181120 12 . . R714d +chrX SNP SNP 107181121 107331024 31 . . R715d +chrX SNP SNP 107331025 107480927 18 . . R716d +chrX SNP SNP 107480928 107630831 43 . . R717d +chrX SNP SNP 107630832 107780735 12 . . R718d +chrX SNP SNP 107780736 107930638 25 . . R719d +chrX SNP SNP 107930639 108080542 12 . . R720d +chrX SNP SNP 108080543 108230446 6 . . R721d +chrX SNP SNP 108230447 108380349 12 . . R722d +chrX SNP SNP 108380350 108530253 37 . . R723d +chrX SNP SNP 108530254 108680156 25 . . R724d +chrX SNP SNP 108680157 108830060 37 . . R725d +chrX SNP SNP 108830061 108979964 0 . . R726d +chrX SNP SNP 108979965 109129867 6 . . R727d +chrX SNP SNP 109129868 109279771 6 . . R728d +chrX SNP SNP 109279772 109429675 0 . . R729d +chrX SNP SNP 109429676 109579578 18 . . R730d +chrX SNP SNP 109579579 109729482 25 . . R731d +chrX SNP SNP 109729483 109879386 12 . . R732d +chrX SNP SNP 109879387 110029289 43 . . R733d +chrX SNP SNP 110029290 110179193 31 . . R734d +chrX SNP SNP 110179194 110329097 25 . . R735d +chrX SNP SNP 110329098 110479000 0 . . R736d +chrX SNP SNP 110479001 110628904 6 . . R737d +chrX SNP SNP 110628905 110778808 43 . . R738d +chrX SNP SNP 110778809 110928711 18 . . R739d +chrX SNP SNP 110928712 111078615 12 . . R740d +chrX SNP SNP 111078616 111228519 12 . . R741d +chrX SNP SNP 111228520 111378422 37 . . R742d +chrX SNP SNP 111378423 111528326 25 . . R743d +chrX SNP SNP 111528327 111678229 37 . . R744d +chrX SNP SNP 111678230 111828133 6 . . R745d +chrX SNP SNP 111828134 111978037 25 . . R746d +chrX SNP SNP 111978038 112127940 118 . . R747d +chrX SNP SNP 112127941 112277844 412 . . R748d +chrX SNP SNP 112277845 112427748 118 . . R749d +chrX SNP SNP 112427749 112577651 356 . . R750d +chrX SNP SNP 112577652 112727555 87 . . R751d +chrX SNP SNP 112727556 112877459 50 . . R752d +chrX SNP SNP 112877460 113027362 262 . . R753d +chrX SNP SNP 113027363 113177266 362 . . R754d +chrX SNP SNP 113177267 113327170 162 . . R755d +chrX SNP SNP 113327171 113477073 168 . . R756d +chrX SNP SNP 113477074 113626977 200 . . R757d +chrX SNP SNP 113626978 113776881 37 . . R758d +chrX SNP SNP 113776882 113926784 31 . . R759d +chrX SNP SNP 113926785 114076688 43 . . R760d +chrX SNP SNP 114076689 114226592 43 . . R761d +chrX SNP SNP 114226593 114376495 50 . . R762d +chrX SNP SNP 114376496 114526399 12 . . R763d +chrX SNP SNP 114526400 114676303 31 . . R764d +chrX SNP SNP 114676304 114826206 0 . . R765d +chrX SNP SNP 114826207 114976110 12 . . R766d +chrX SNP SNP 114976111 115126013 43 . . R767d +chrX SNP SNP 115126014 115275917 12 . . R768d +chrX SNP SNP 115275918 115425821 50 . . R769d +chrX SNP SNP 115425822 115575724 168 . . R770d +chrX SNP SNP 115575725 115725628 293 . . R771d +chrX SNP SNP 115725629 115875532 100 . . R772d +chrX SNP SNP 115875533 116025435 250 . . R773d +chrX SNP SNP 116025436 116175339 312 . . R774d +chrX SNP SNP 116175340 116325243 237 . . R775d +chrX SNP SNP 116325244 116475146 475 . . R776d +chrX SNP SNP 116475147 116625050 487 . . R777d +chrX SNP SNP 116625051 116774954 325 . . R778d +chrX SNP SNP 116774955 116924857 31 . . R779d +chrX SNP SNP 116924858 117074761 43 . . R780d +chrX SNP SNP 117074762 117224665 37 . . R781d +chrX SNP SNP 117224666 117374568 187 . . R782d +chrX SNP SNP 117374569 117524472 81 . . R783d +chrX SNP SNP 117524473 117674376 50 . . R784d +chrX SNP SNP 117674377 117824279 43 . . R785d +chrX SNP SNP 117824280 117974183 225 . . R786d +chrX SNP SNP 117974184 118124086 525 . . R787d +chrX SNP SNP 118124087 118273990 62 . . R788d +chrX SNP SNP 118273991 118423894 381 . . R789d +chrX SNP SNP 118423895 118573797 256 . . R790d +chrX SNP SNP 118573798 118723701 156 . . R791d +chrX SNP SNP 118723702 118873605 750 . . R792d +chrX SNP SNP 118873606 119023508 343 . . R793d +chrX SNP SNP 119023509 119173412 12 . . R794d +chrX SNP SNP 119173413 119323316 18 . . R795d +chrX SNP SNP 119323317 119473219 93 . . R796d +chrX SNP SNP 119473220 119623123 56 . . R797d +chrX SNP SNP 119623124 119773027 50 . . R798d +chrX SNP SNP 119773028 119922930 187 . . R799d +chrX SNP SNP 119922931 120072834 50 . . R800d +chrX SNP SNP 120072835 120222738 37 . . R801d +chrX SNP SNP 120222739 120372641 62 . . R802d +chrX SNP SNP 120372642 120522545 31 . . R803d +chrX SNP SNP 120522546 120672449 31 . . R804d +chrX SNP SNP 120672450 120822352 31 . . R805d +chrX SNP SNP 120822353 120972256 43 . . R806d +chrX SNP SNP 120972257 121122160 75 . . R807d +chrX SNP SNP 121122161 121272063 206 . . R808d +chrX SNP SNP 121272064 121421967 200 . . R809d +chrX SNP SNP 121421968 121571870 162 . . R810d +chrX SNP SNP 121571871 121721774 100 . . R811d +chrX SNP SNP 121721775 121871678 12 . . R812d +chrX SNP SNP 121871679 122021581 18 . . R813d +chrX SNP SNP 122021582 122171485 37 . . R814d +chrX SNP SNP 122171486 122321389 25 . . R815d +chrX SNP SNP 122321390 122471292 12 . . R816d +chrX SNP SNP 122471293 122621196 12 . . R817d +chrX SNP SNP 122621197 122771100 6 . . R818d +chrX SNP SNP 122771101 122921003 6 . . R819d +chrX SNP SNP 122921004 123070907 18 . . R820d +chrX SNP SNP 123070908 123220811 31 . . R821d +chrX SNP SNP 123220812 123370714 18 . . R822d +chrX SNP SNP 123370715 123520618 31 . . R823d +chrX SNP SNP 123520619 123670522 18 . . R824d +chrX SNP SNP 123670523 123820425 31 . . R825d +chrX SNP SNP 123820426 123970329 37 . . R826d +chrX SNP SNP 123970330 124120233 50 . . R827d +chrX SNP SNP 124120234 124270136 18 . . R828d +chrX SNP SNP 124270137 124420040 0 . . R829d +chrX SNP SNP 124420041 124569943 25 . . R830d +chrX SNP SNP 124569944 124719847 25 . . R831d +chrX SNP SNP 124719848 124869751 12 . . R832d +chrX SNP SNP 124869752 125019654 25 . . R833d +chrX SNP SNP 125019655 125169558 43 . . R834d +chrX SNP SNP 125169559 125319462 25 . . R835d +chrX SNP SNP 125319463 125469365 25 . . R836d +chrX SNP SNP 125469366 125619269 31 . . R837d +chrX SNP SNP 125619270 125769173 31 . . R838d +chrX SNP SNP 125769174 125919076 37 . . R839d +chrX SNP SNP 125919077 126068980 18 . . R840d +chrX SNP SNP 126068981 126218884 31 . . R841d +chrX SNP SNP 126218885 126368787 43 . . R842d +chrX SNP SNP 126368788 126518691 56 . . R843d +chrX SNP SNP 126518692 126668595 0 . . R844d +chrX SNP SNP 126668596 126818498 12 . . R845d +chrX SNP SNP 126818499 126968402 37 . . R846d +chrX SNP SNP 126968403 127118306 25 . . R847d +chrX SNP SNP 127118307 127268209 6 . . R848d +chrX SNP SNP 127268210 127418113 37 . . R849d +chrX SNP SNP 127418114 127568017 18 . . R850d +chrX SNP SNP 127568018 127717920 12 . . R851d +chrX SNP SNP 127717921 127867824 25 . . R852d +chrX SNP SNP 127867825 128017727 18 . . R853d +chrX SNP SNP 128017728 128167631 31 . . R854d +chrX SNP SNP 128167632 128317535 31 . . R855d +chrX SNP SNP 128317536 128467438 18 . . R856d +chrX SNP SNP 128467439 128617342 50 . . R857d +chrX SNP SNP 128617343 128767246 81 . . R858d +chrX SNP SNP 128767247 128917149 25 . . R859d +chrX SNP SNP 128917150 129067053 0 . . R860d +chrX SNP SNP 129067054 129216957 18 . . R861d +chrX SNP SNP 129216958 129366860 12 . . R862d +chrX SNP SNP 129366861 129516764 31 . . R863d +chrX SNP SNP 129516765 129666668 6 . . R864d +chrX SNP SNP 129666669 129816571 18 . . R865d +chrX SNP SNP 129816572 129966475 0 . . R866d +chrX SNP SNP 129966476 130116379 25 . . R867d +chrX SNP SNP 130116380 130266282 31 . . R868d +chrX SNP SNP 130266283 130416186 56 . . R869d +chrX SNP SNP 130416187 130566090 43 . . R870d +chrX SNP SNP 130566091 130715993 6 . . R871d +chrX SNP SNP 130715994 130865897 31 . . R872d +chrX SNP SNP 130865898 131015800 18 . . R873d +chrX SNP SNP 131015801 131165704 25 . . R874d +chrX SNP SNP 131165705 131315608 18 . . R875d +chrX SNP SNP 131315609 131465511 18 . . R876d +chrX SNP SNP 131465512 131615415 18 . . R877d +chrX SNP SNP 131615416 131765319 43 . . R878d +chrX SNP SNP 131765320 131915222 31 . . R879d +chrX SNP SNP 131915223 132065126 12 . . R880d +chrX SNP SNP 132065127 132215030 0 . . R881d +chrX SNP SNP 132215031 132364933 0 . . R882d +chrX SNP SNP 132364934 132514837 6 . . R883d +chrX SNP SNP 132514838 132664741 25 . . R884d +chrX SNP SNP 132664742 132814644 0 . . R885d +chrX SNP SNP 132814645 132964548 18 . . R886d +chrX SNP SNP 132964549 133114452 18 . . R887d +chrX SNP SNP 133114453 133264355 25 . . R888d +chrX SNP SNP 133264356 133414259 112 . . R889d +chrX SNP SNP 133414260 133564163 606 . . R890d +chrX SNP SNP 133564164 133714066 106 . . R891d +chrX SNP SNP 133714067 133863970 18 . . R892d +chrX SNP SNP 133863971 134013873 12 . . R893d +chrX SNP SNP 134013874 134163777 31 . . R894d +chrX SNP SNP 134163778 134313681 12 . . R895d +chrX SNP SNP 134313682 134463584 43 . . R896d +chrX SNP SNP 134463585 134613488 6 . . R897d +chrX SNP SNP 134613489 134763392 31 . . R898d +chrX SNP SNP 134763393 134913295 18 . . R899d +chrX SNP SNP 134913296 135063199 25 . . R900d +chrX SNP SNP 135063200 135213103 18 . . R901d +chrX SNP SNP 135213104 135363006 12 . . R902d +chrX SNP SNP 135363007 135512910 25 . . R903d +chrX SNP SNP 135512911 135662814 6 . . R904d +chrX SNP SNP 135662815 135812717 62 . . R905d +chrX SNP SNP 135812718 135962621 43 . . R906d +chrX SNP SNP 135962622 136112525 12 . . R907d +chrX SNP SNP 136112526 136262428 25 . . R908d +chrX SNP SNP 136262429 136412332 37 . . R909d +chrX SNP SNP 136412333 136562236 25 . . R910d +chrX SNP SNP 136562237 136712139 12 . . R911d +chrX SNP SNP 136712140 136862043 6 . . R912d +chrX SNP SNP 136862044 137011947 12 . . R913d +chrX SNP SNP 137011948 137161850 6 . . R914d +chrX SNP SNP 137161851 137311754 12 . . R915d +chrX SNP SNP 137311755 137461657 43 . . R916d +chrX SNP SNP 137461658 137611561 6 . . R917d +chrX SNP SNP 137611562 137761465 0 . . R918d +chrX SNP SNP 137761466 137911368 31 . . R919d +chrX SNP SNP 137911369 138061272 25 . . R920d +chrX SNP SNP 138061273 138211176 25 . . R921d +chrX SNP SNP 138211177 138361079 43 . . R922d +chrX SNP SNP 138361080 138510983 25 . . R923d +chrX SNP SNP 138510984 138660887 18 . . R924d +chrX SNP SNP 138660888 138810790 18 . . R925d +chrX SNP SNP 138810791 138960694 18 . . R926d +chrX SNP SNP 138960695 139110598 12 . . R927d +chrX SNP SNP 139110599 139260501 18 . . R928d +chrX SNP SNP 139260502 139410405 6 . . R929d +chrX SNP SNP 139410406 139560309 12 . . R930d +chrX SNP SNP 139560310 139710212 18 . . R931d +chrX SNP SNP 139710213 139860116 6 . . R932d +chrX SNP SNP 139860117 140010020 12 . . R933d +chrX SNP SNP 140010021 140159923 12 . . R934d +chrX SNP SNP 140159924 140309827 12 . . R935d +chrX SNP SNP 140309828 140459730 12 . . R936d +chrX SNP SNP 140459731 140609634 18 . . R937d +chrX SNP SNP 140609635 140759538 18 . . R938d +chrX SNP SNP 140759539 140909441 62 . . R939d +chrX SNP SNP 140909442 141059345 25 . . R940d +chrX SNP SNP 141059346 141209249 50 . . R941d +chrX SNP SNP 141209250 141359152 31 . . R942d +chrX SNP SNP 141359153 141509056 37 . . R943d +chrX SNP SNP 141509057 141658960 31 . . R944d +chrX SNP SNP 141658961 141808863 12 . . R945d +chrX SNP SNP 141808864 141958767 43 . . R946d +chrX SNP SNP 141958768 142108671 43 . . R947d +chrX SNP SNP 142108672 142258574 6 . . R948d +chrX SNP SNP 142258575 142408478 18 . . R949d +chrX SNP SNP 142408479 142558382 25 . . R950d +chrX SNP SNP 142558383 142708285 37 . . R951d +chrX SNP SNP 142708286 142858189 31 . . R952d +chrX SNP SNP 142858190 143008093 12 . . R953d +chrX SNP SNP 143008094 143157996 12 . . R954d +chrX SNP SNP 143157997 143307900 50 . . R955d +chrX SNP SNP 143307901 143457804 37 . . R956d +chrX SNP SNP 143457805 143607707 12 . . R957d +chrX SNP SNP 143607708 143757611 6 . . R958d +chrX SNP SNP 143757612 143907514 37 . . R959d +chrX SNP SNP 143907515 144057418 175 . . R960d +chrX SNP SNP 144057419 144207322 81 . . R961d +chrX SNP SNP 144207323 144357225 118 . . R962d +chrX SNP SNP 144357226 144507129 493 . . R963d +chrX SNP SNP 144507130 144657033 237 . . R964d +chrX SNP SNP 144657034 144806936 818 . . R965d +chrX SNP SNP 144806937 144956840 100 . . R966d +chrX SNP SNP 144956841 145106744 562 . . R967d +chrX SNP SNP 145106745 145256647 637 . . R968d +chrX SNP SNP 145256648 145406551 643 . . R969d +chrX SNP SNP 145406552 145556455 331 . . R970d +chrX SNP SNP 145556456 145706358 275 . . R971d +chrX SNP SNP 145706359 145856262 162 . . R972d +chrX SNP SNP 145856263 146006166 231 . . R973d +chrX SNP SNP 146006167 146156069 262 . . R974d +chrX SNP SNP 146156070 146305973 131 . . R975d +chrX SNP SNP 146305974 146455877 168 . . R976d +chrX SNP SNP 146455878 146605780 50 . . R977d +chrX SNP SNP 146605781 146755684 56 . . R978d +chrX SNP SNP 146755685 146905587 6 . . R979d +chrX SNP SNP 146905588 147055491 43 . . R980d +chrX SNP SNP 147055492 147205395 81 . . R981d +chrX SNP SNP 147205396 147355298 25 . . R982d +chrX SNP SNP 147355299 147505202 68 . . R983d +chrX SNP SNP 147505203 147655106 18 . . R984d +chrX SNP SNP 147655107 147805009 31 . . R985d +chrX SNP SNP 147805010 147954913 12 . . R986d +chrX SNP SNP 147954914 148104817 18 . . R987d +chrX SNP SNP 148104818 148254720 25 . . R988d +chrX SNP SNP 148254721 148404624 12 . . R989d +chrX SNP SNP 148404625 148554528 6 . . R990d +chrX SNP SNP 148554529 148704431 25 . . R991d +chrX SNP SNP 148704432 148854335 25 . . R992d +chrX SNP SNP 148854336 149004239 25 . . R993d +chrX SNP SNP 149004240 149154142 37 . . R994d +chrX SNP SNP 149154143 149304046 31 . . R995d +chrX SNP SNP 149304047 149453950 12 . . R996d +chrX SNP SNP 149453951 149603853 0 . . R997d +chrX SNP SNP 149603854 149753757 37 . . R998d +chrX SNP SNP 149753758 149903660 37 . . R999d +chrX SNP SNP 149903661 150053564 0 . . R1000d diff --git a/web/snpbrowser.html b/web/snpbrowser.html new file mode 100755 index 00000000..62aa2bda --- /dev/null +++ b/web/snpbrowser.html @@ -0,0 +1,116 @@ + +SNP Browser INFO + + + + + + + + + + + + + + + + + + + + +
      + + + +
      +

      Information on the Variant Browser modify this page

      + +

      There will eventually be four different variant types in the variant browser: SNPs, insertions and deletions (indels), copy number variants (CNVs), and inversions. At present it is only possible to search for SNPs and indels (EGW, August 2009). + +

      SNPs + +

      Known problems +

        +
      1. Searching for SNPs of the Function type "Mis/non-sense" does not work (try Tpmt) +
      2. It is not yet possible to only show that SNPs that differ among the selected subset of strains +
      3. Information on the strand used to call the SNP is ambiguous +
      4. Function text reads either "synonymous" or "Silent". All should read synonymous +
      5. Selecting InDel should reset Function settings +
      + + +
      You can browse SNPs either by submitting a gene symbol or SNP Id (with higher priority) or by defining a viewing range (currently a maximum of 5000 SNPs or 50Mb). + +

      Genotypes are from Celera Genomics, the Perlegen/NIEHS resequencing project, the Wellcome-CTC SNP Project, dbSNP, the Center for INtegratie and Translational Genomics (CITG) at the University of Tennessee Health Science Center, and the MPD. +

      +In brief, the column headers are as follows: +
      +[Blank]: Incremental, temporary ID of the SNPs found in the search. +
      +ID: Either the official NCBI reference SNP (rs) number or the identifier given by the institution where the SNP was found. A large number of SNPs have multiple local IDs (and thus duplicate records). mCV records are from Celera, NES numbers are from Perlegen, and MRS numbers are from UTHSC (Memphis reference SNP). The MRS SNPS are a high quality subset of about 2.8 million SNPs generated by sequencing DBA/2J using SOLiD short sequence reads (about 25 x shotgun) performed by Williams and colleagues. These MRS SNPs were generated by Dr. Xusheng Wang and entered into the Variant Browser by Evan Williams (August 2009). The IDs are linked to small tables that will bring up additional information. +
      +
      +Chr: The chromosome on which the SNP is located. +
      +Mb: The location of the SNP in megabases. Position data are currently set to the NCBI Mouse Genome Build 37.1 (UCSC mm9, July 2007). The link uses the sequence flanking the SNP (if available) to verify the location using the UCSC BLAT alignment to the UCSC Genome Browser. +
      +Domain: If applicable, the region on a gene where the SNP is found. +
      +Gap: The distance from one SNP to the next; SNPs with gaps of zero are duplicates and (should) contain the same data. Checking "non-redundant" will ensure that all SNPs are unique, but some allele data may be hidden. +
      +Gene: The gene on which the SNP is found, if applicable. The link goes to the gene's information on NCBI. +
      +Conservation: How conserved the SNP is across species (note: mammals only: Rat, Rabbit, Human, Chimp, Rhesus Monkey, Dog, Cow, Armadillo, Elephant, Tenrec, Opossum). A high conservation score means the SNP is highly conserved across species; nearly every one will have the same allele. A low score means that the allele is evenly distributed between both. Thsi score is downloaded from the Vertebrate Multiz Alignment Conservation scores from UCSC + + + + +in mid 2009, using the following configuration parameters and species: +
      +Alleles: The Major/Minor alleles of the SNP. This is based on frequency, and currently counts imputed SNPs and known SNPs separately, so you may see t/T, if imputed t is the most common allele, and known T the least common allele. This is unusual, however; in most cases, it should be the same. +
      +Source: The source for the SNP. The vast majority (99%) are from either Celera, Perlegen, or UTHSC. Many of the Perlegen SNPs are labeled "Perl Impute," which contain imputed SNP data from Jackson Laboratories, but are otherwise the same as the Perl/NIEHS SNPs. +
      +129S1/SvImJ: The first mouse alphabetically in the list of 74 strains and their corresponding SNPs. +

      + +For a more detailed explanation of the symbols used, see the field descriptions for a similarly structured SNP browser from Jackson Labs.

      + +

      InDels +
      The InDel data currently consists of data from the comparison of the genome of the C57BL/6J strain of mouse relative to the DBA/2J strain of mouse. C57BL/6J is considered the reference, and plus and minus symbols in the Size field indicate a loss or gain of sequence in other strains (currently DBA/2J). This data is from UTHSC SOLiD sequencing and was analyzed by Dr. Xusheng Wang. As this feature is further implemented, InDel data from the Sanger Institute and other sources will be included. + +

      CNVs +
      +Copy Number Variant data are currently not available in the Variant Browser, but the data should be available within the next few months (EGW: August 2009). + +

      Transposons +
      +Tranposon data are currently not available in the Variant Browser, but the data should be available within the next few months (EGW: August 2009). + +

      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/statusandContact.html b/web/statusandContact.html new file mode 100755 index 00000000..543472c6 --- /dev/null +++ b/web/statusandContact.html @@ -0,0 +1,261 @@ + +Status and investigators to contact + + + + + + + + + + + + + + + + + + +
      + + + +
      +

      Status and Investigators to Contact on Data Use and Publication modify this page

      + + +MOUSE BXD: The University of Western Australia data sets (Thymus, Spleen, Peripheral Blood Leucocytes) + +Status: Currently these are unpublished and private data source with usage restrictions. + +Please contact Dr. Grant Morahan regarding access and use of these data. + +
      +Data that are accessible via GeneNetwork belong to several research groups listed below. Some of the data sets are still actively being generated and analyzed. The scientists who are generating these data have often agreed to remove password protection and let the research community view, share, and analyze data. Although they are willing and enthusiastic about sharing these data, they have not relinquished interest or ownership. If you are planning to use results and data extracted from GeneNetwork in publication, we request that you contact the data owners prior to submission. +

      + +
      +MOUSE BXD: Thymus, Spleen, Peripheral Blood Leucocytes data sets: +

      Status: These are unpublished and private data source with usage restrictions. Error-checking and refinement of this data set is still in progress. Data were first entered November 2008. + +

      References and Contact: For access to data prior to publication, please contact Grant Morahan (gem at waimr. uwa. edu. au) regarding use of these data sets on a collaborative basis. + +

      These expression data sets are being generated by investigators at The Western Australian Institute for Medical Research and The University of Western Australia (Grant Morahan, Munish Mehta, Quang Nguyen, James Jooste, and Violet Peeva). Samples are generated by Quang Nguyen and James Jooste. Arrays are all processed by Quang Nguyen. +

      + + +
      +MOUSE BXD: UTHSC Brain U74Av2 data sets: +

      Status: DEPRECATED, PUBLISHED, and OPEN data source, NO usage restrictions as of March 1, 2005. Even the most recent release of these data is now obsolete. We recommend using more recent Brain data sets from the University of Colorado Denver (Tabakoff and colleagues) or from INIA. + +

      References: Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin N, Langston MA, Threadgill DW, Manly KF, Williams RW (2005) Genetic dissection of gene expression reveals polygenic networks modulating brain structure and function. Nature Genetics 37:233-242 + +

      The forebrain and midbrain expression data were generated using The William and Dorothy Dunavant Endowment to RWW and published in early 2005 (Chesler et al., 2005). Arrays were processed at Genome Explorations (Divyen Patel) or by Dr. Tom Sutter and colleagues at the University of Memphis. Data are now available on the GeneNetwork simply by clicking on the Information Page associated with the many different versions (transforms). Please contact Rob Williams if you have any questions on the use of these open data. We now consider these data to be somewhat archaic and of relatively poor quality compared to recent data sets such as the INIA BXD brain data and the UCHSC BXD brain data. +

      + +
      +MOUSE BXD: GNF-Groningen Stem Cell U74Av2 data sets: +

      Status: PUBLISHED and OPEN data source, NO usage restrictions as of March 1, 2005. Error-checked and complete as of March 1, 2005. There are no plans to modify or expand this data set. + +

      References: Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E, Wang J, Manly KF, Lu L, Chesler EJ, Alberts R, Jansen RC, Williams RW, Cooke M, de Haan G (2005) Uncovering regulatory pathways affecting hematopoietic stem cell function using “genetical genomics†Nature Genetics 37:225-232 + +

      These hematopoietic stem cell expression data were generated by collaborators at The University of Groningen (Gerald de Haan) and The Genomics Institute of the Novartis Research Foundation (Mike Cooke). Flow-sorted cells were generated in Holland. RNA samples and arrays were processed at GNF in La Jolla, CA. This team incorporated all of their data into the GeneNetwork before publication. The GNF-Groningen stem cell data are now available on the NCBI GEO site using the accession identifier GSE2031. If you have questions on the use of these data, please contact Gerald de Haan and Michael Cooke . +

      + + +
      +MOUSE BXD: SJUT M430 Cerebellum data sets: +

      Status: Unpublished and open data source with usage restrictions only on large-scale and global analysis. This data set is now complete as of 2005. + +

      These cerebellar expression data are being generated by a consortium of investigators at St. Jude Children's Research Hospital (Clayton Naeve, Tom Curran, Peter McKinnon, Jim Morgan, Rich Smeyne) and at UTHSC (Dan Goldowitz, Lu Lu, Kristin Hamre, and Rob Williams). Samples are generated at UTHSC by Lu Lu and colleagues. Arrays are all processed at SJCRH by Clayton Naeve and colleagues. Please contact Rob Williams, or Dan Goldowitz regarding use of these data sets in publications or projects. +

      + + +
      +MOUSE BXD: Helmholtz Centre for Infection Research data sets: +

      Status: Currently these are unpublished and private data source with usage restrictions. +

      Please contact Dr. Klaus Schughart regarding access and use of these data. +

      November 17, 2006. +

      + + +
      +4. MOUSE BXD: INIA Brain mRNA M430 data sets: + +

      Status: PUBLISHED and OPEN data source, with no usage restrictions. Error-checked and complete as of March 1, 2005. There are no plans to modify or expand this data set. Error-checked and nearly complete as of Sept 1, 2005. + +

          INIA data access:

      +
      + +

      Normalized data are available for this INIA data set at

      +
      + + +
    • Jan 2006, PDNN normalization (17 Mb file with strain means): ftp://atlas.utmem.edu/Public/Mouse_bxd/INIA_M_0106_PDNN.txt + +
    • Jan 2006, RMA normalization (17 Mb file with strain means): ftp://atlas.utmem.edu/Public/Mouse_bxd/INIA_M_0106_RMA.txt + +
    • June 2006, QTL results from RMA normalized data (5.7 Mb, no strain means): ftp://atlas.utmem.edu/Public/Mouse_bxd/INIA_M_0606_RMA.txt + +
    • All data in ZIP format: ftp://atlas.utmem.edu/Public/Mouse_bxd/INIA_mRNA_data_sets.zip + + +
    • +
      + + + +

      References: Peirce JL, Lu L, Li H, Wang J, Manly KF, Hitzemann RJ, Belknap JK, Rosen GD, Goodwin S, Sutter TR, Williams RW (2006) How replicable are mRNA expression QTLs. Mammalian Genome 17:643-642 + +

      These forebrain and midbrain expression sets were generated with continued support from NIAAA-INIA. Arrays were processed at the University of Memphis by Thomas Sutter and Shirlean Goodwin. These data are openly avaiable at all levels (CEL files, etc). Please contact Robert W. Williams for access to orginal data. +

      + + +
      +5. MOUSE BXD: HBP/Rosen Striatum data sets: + +

      Status: Unpublished and open data source with usage restrictions only on large-scale and global analysis. Error-checked but still incomplete. We plan to significantly expand the size of this data set in 2005-2006. + +

      The striatal expresssion data sets are being generated by Glenn D. Rosen, Robert W. Williams, and colleagues with continued support from an NIH Human Brain Project award. Tissue and arrays are processed at Beth Israel Deaconess Medical Center by Glenn Rosen and colleagues. Please contact Glenn Rosen regarding extensive use of this data set in publications or projects. +

      + + +
      +MOUSE LXS Illumina Hippocampus data sets: + +

      Status: Unpublished and open data source with usage restrictions only on large-scale and global analysis. Error-checked and complete. + +

      References: Lu Lu et al. RSA July and CTC May 2007 + +

      This data set was initially entered in GeneNetwork, October 2006. Please contact Dr. Lu Lu if you have any questions on the use of these open data.

      + + +
      +MOUSE AKXD: NCI Mammary tumor mRNA M43 data sets: + +

      Status: Unpublished and open data source with usage restrictions only on large-scale and global analysis. Error-checked and complete. + +

      The mammary tumor expresssion data sets have been generated by Kent Hunter and colleagues with support from NCI Laboratory of Population Genetics. Tissue and arrays were processed at NCI. Please contact Kent Hunter regarding extensive use of this data set in publications or projects. +

      + + +
      +B6D2F2 database: + +

      Status: Unpublished but submitted; an open data source with usage restrictions only on large-scale and global analysis. Error-checked and complete as of Sept 1, 2005. + +

      References: 105. Peirce JL, Lu L, Li H, Wang J, Manly KF, Hitzemann RJ, Belknap JK, Rosen GD, Goodwin S, Sutter TR, Williams RW (2006) How replicable are mRNA expression QTLs. Mammalian Genome 17:643-642 + +

      All of the OHSU/VA B6D2F2 Brain mRNA M430AB data sets have been generated by Robert Hitzemann and John Belknap at The Oregon Health Sciences University in Portland. For contact and citations and other information on these data sets please review the INFO pages and contact Drs. Belknap or Hitzemann regarding use of this data set in publications or projects. + +

      + + + +
      +B6BTBRF2-ob Mouse Liver and Metabolic Trait data sets: + +

      Status: Published open data source with no usage restrictions. Error-checked and complete. +The F2 data set used in the manuscript is available at GEO under the accession number "GSE3330". + + +

      References: Lan H, Chen M, Byers JE, Yandell BS, Stapleton DS, Mata CM, Mui TK, Flowers MT, Schueler KL, Manly KF, Williams RW, Kendziorski, CM, Attie AD (2006) Combined expression trait correlations and expression quantitative trait locus mapping. PLoS Genetics 2:51-61 + +

      The liver expression data were generated by Dr. Alan Attie and colleagues at the University of Wisconsin. All original Affymetrix data files were generated by Attie and colleagues. Data sets in The GeneNetwork were processed as described in the Information pages. Data sets were opened to the public by Dr. Alan Attie and colleagues, August 15, 2005. Please contact Alan Attie for help in the use of these data. +

      + + + +
      +UNC Agilent Liver data sets: + +

      Status: PUBLISHED and OPEN data source, NO usage restrictions as of February 1, 2007. Error-checked and complete as of March 1, 2005. There are no plans to modify or expand this data set. + +

      References: Gatti D, Maki A, Chesler EJ, Kosyk O, Kirova R, Lu L, Manly KF, Qu Y, Williams RW, Perkins A, Langston ME, Threadgill DW, Rusyn I (2007) Genome-level analysis of genetic regulation of liver gene expression networks. Hepatology in press + +

      The BXD liver expression data sets were generated by Ivan Rusyn, David Threadgill, and colleagues with support from an NIEHS Toxicogenomics award. Arrays and the final data sets in The GeneNetwork were generated at the UNC Array Core. Please contact Ivan Rusyn to obtain original data files or for help in the use of these data. +

      + + +
      +10. Hippocampus Consortium BXD and CXB data sets: + +

      Status: Unpublished and open data source for BXD, CXB, and diverse inbred strains of mice with a usage restrictions on large-scale and global analysis. Error-checked and essentially complete. + +

      The hippocampus expresssion data sets were generated by a consortium of investigator with support from a large number of funding agencies. Tissue and arrays are processed at the University of Memphis by Thomas Sutter and Shirlean Goodwin. Please contact Robert W. Williams regarding extensive use of this data set in publications or projects. +

      + + + +
      +Hamilton Eye Institute Mouse Eye data sets: + +

      Status: Unpublished and open data source with usage restrictions only on large-scale and global analysis. Error-checked and essentially complete by September 2006. + +

      This eye expresssion data set were generated by Robert W. Williams, E. E. Geisert, L. Lu, and W. Gu with support solely from Barrett G. Haik. Tissue and arrays were processed at the VA Medical Center, Memphis, by Weikuan Gu and Yan Jiao. Please contact Robert W. Williams regarding extensive use of this data set in publications or projects. + + + +

      Barley seedling leaf and embryo 22K GeneChip data sets from SCRI:
      + Status: unpublished. The data sets will become OPEN with no usage restrictions as soon as publication is accepted (expected by mid 2007). The data sets will also be available from the ArrayExpress: accessions E-TABM-111 and E-TABM-112. Please contact Arnis Druka if you are interested in using these data sets before they are released. +

      The barley expression data sets were funded by the BBSRC grant SCR/910/04 to Michael Kearsey (University of Birmingham, UK) and Robbie Waugh (SCRI, UK). Tissue and RNA isolation was performed by Arnis Druka at SCRI. Arrays were processed by Roger Wise (Iowa State University). Genetic linkage map was assembled by Arnis Druka by integrating updated RFLP-based mapping data provided by Andris Kleinhofs (Washington State University, Pullman) with SNP genotyping data (based on pilot barley OPA1) provided by Timothy Close (University of California, Riverside). + + + +

      Genotypes Files: +

      +
      +

      All microsatellite and SNP marker genotype data files for mouse genetic reference populations (AXB/BXA, BXD, LXS, CXB, BXH) are public. Genotype files for the B6D2F2 and B6BTBRF2 are public. The rat HXB/BXH genotypes are public. BayxSha Arabidopsis genotype files are also public. Any of the genotype files is available upon request to R. W. Williams or original data providers. + +

      The majority of mouse genotypes in use after May 2005 are SNPs that were genotyped by the Jonathan Flint, Richard Mott (Wellcome Trust, Oxford), and Robert Williams. DNA samples from more than ~480 strains of mice were genotyped at 15,360 SNPs at Illumina in early 2005. The entire set is referred to as the Wellcome-CTC SNP data set. The appropriate URL citation for these data is currently www.well.ox.ac.uk/mouse/INBREDS/. + +

      The specific mouse genotype files used by WebQTL incorporated both SNPs and microsatellite have been substantially modified and error-checked and will not correspond precisely to the original Wellcome-CTC SNP data set files. All of these new markers are public and can be used. Please contact Rob Williams if you would like the specific files used in any of the mouse genetic reference populations. +

      + +
      +Phenotypes databases: + +

      Mouse phenotype databases were generated primarily by extracting trait values from the literature. All of the phenotype databases (BXD, AXB, CXB, BXH, LXS, LGXSM, HXB/BXH, and BayxSha) are curated by Elissa Chesler and Robert W. Williams. In several cases, these databases include extensive and still unpublished traits. Please contact Elissa Chesler or Rob Williams regarding new phenotypes you would like entered into any of the databases or regarding appropriate use of the entire database. +

      + + +
      +Genomic and Array Annotation databases: + +

      The GeneNetwork relies on custom and public databases for Affymetrix, Illumina, and Agilent array platforms. In the case of the mouse Affymetrix U74Av2 and M430 arrays, and the rat RAE230A array, we have extensively annotated probes and probe set data. Our files are manually curated and will NOT correspond 1-to-1 with any other publically available annotation of these particular Affymetrix platforms. In the case of mouse, we have data on the positions of a large number of SNPs. These data were contributed by a number of colleagues and integrated by Rob Williams, Rob Crowell, and colleagues. Please contact Rob Williams if you would like access to parts of this data set. Detailed SNP data have now been placed on WebQTL maps and we thank Celera for providing early access to these data in 2003. +

      + +

          Information about this text file:

      +
      +

      This text file originally generated by RWW, March 2004. Updated by RWW, Nov 12, 2004; Dec 4, 2004; EJC, Aug 29, 2005; RWW, Sept 4, 2005; Nov 5, 2005; Jan 26, 2007; AD, Jan 28, 2007. +

      +

      + +

      +
      +
      + + + +
      + +
      + + + + + + + + + diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/filelist.xml b/web/tutorial/WebQTLTour/WebQTLTour_files/filelist.xml new file mode 100755 index 00000000..d341bcf8 --- /dev/null +++ b/web/tutorial/WebQTLTour/WebQTLTour_files/filelist.xml @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image001.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image001.png new file mode 100755 index 00000000..98f28bc9 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image001.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image002.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image002.jpg new file mode 100755 index 00000000..48f60db1 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image002.jpg differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image003.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image003.png new file mode 100755 index 00000000..2e28dd7a Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image003.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image004.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image004.jpg new file mode 100755 index 00000000..d3c61d1e Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image004.jpg differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image005.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image005.png new file mode 100755 index 00000000..0e1b02d9 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image005.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image006.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image006.jpg new file mode 100755 index 00000000..6a39541e Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image006.jpg differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image007.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image007.png new file mode 100755 index 00000000..0da61311 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image007.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image008.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image008.jpg new file mode 100755 index 00000000..8618ae7a Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image008.jpg differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image009.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image009.png new file mode 100755 index 00000000..c8c21927 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image009.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image010.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image010.jpg new file mode 100755 index 00000000..3c276263 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image010.jpg differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image011.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image011.png new file mode 100755 index 00000000..d7c62419 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image011.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image012.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image012.jpg new file mode 100755 index 00000000..53f5312f Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image012.jpg differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image013.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image013.png new file mode 100755 index 00000000..3eec5b71 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image013.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image014.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image014.jpg new file mode 100755 index 00000000..fd2e7abc Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image014.jpg differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image015.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image015.png new file mode 100755 index 00000000..f3f80513 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image015.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image016.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image016.jpg new file mode 100755 index 00000000..0b1c050f Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image016.jpg differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image017.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image017.png new file mode 100755 index 00000000..d19ae290 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image017.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image018.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image018.jpg new file mode 100755 index 00000000..0a4be205 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image018.jpg differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image019.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image019.png new file mode 100755 index 00000000..731623c1 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image019.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image020.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image020.jpg new file mode 100755 index 00000000..c68a8e26 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image020.jpg differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image021.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image021.png new file mode 100755 index 00000000..4eea6181 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image021.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image022.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image022.jpg new file mode 100755 index 00000000..087debf8 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image022.jpg differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image023.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image023.png new file mode 100755 index 00000000..389ed153 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image023.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image024.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image024.jpg new file mode 100755 index 00000000..30f6d8c0 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image024.jpg differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image025.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image025.png new file mode 100755 index 00000000..f32c7d4c Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image025.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image026.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image026.jpg new file mode 100755 index 00000000..7d5ac476 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image026.jpg differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image027.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image027.png new file mode 100755 index 00000000..4083c9d6 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image027.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image028.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image028.jpg new file mode 100755 index 00000000..1343cd26 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image028.jpg differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image029.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image029.png new file mode 100755 index 00000000..b0c956b7 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image029.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image030.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image030.jpg new file mode 100755 index 00000000..240654b6 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image030.jpg differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image031.png b/web/tutorial/WebQTLTour/WebQTLTour_files/image031.png new file mode 100755 index 00000000..007e5836 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image031.png differ diff --git a/web/tutorial/WebQTLTour/WebQTLTour_files/image032.jpg b/web/tutorial/WebQTLTour/WebQTLTour_files/image032.jpg new file mode 100755 index 00000000..dfd32d21 Binary files /dev/null and b/web/tutorial/WebQTLTour/WebQTLTour_files/image032.jpg differ diff --git a/web/tutorial/WebQTLTour/index.html b/web/tutorial/WebQTLTour/index.html new file mode 100755 index 00000000..627da9c6 --- /dev/null +++ b/web/tutorial/WebQTLTour/index.html @@ -0,0 +1,294 @@ + +An HTML Guide to GeneNetwork and WebQTL + + + + + + + + + + + + + + + + + + + + + + +
      + + + + + +
      +

        GeneNetwork: A tour and tutorial modify this page

      +

      + + + +This text is taken from the GeneNetwork Tour available at http://www.genenetwork.org/tutorial/WebQTLTour/ . See GeneNetwork Help menu for find the latest version of the Tour.] + +

      Aim of this tutorial. +The goal is to illustrate how to use GeneNetwork (GN) to study gene function and relations between genes and traits such as differences in disease severity, differences in anatomy, and differences in physiology and behavior. You can also use GN to study relations among phenotypes, for example: to what degree does an injection with cocaine or alcohol lead to an increase in movements? Most of the experimental data sets in GN are from small populations of mice (e.g., the BXD family of strains) and rats (HXB family). There are also some human, monkey, drosophila, and plant data sets to explore, although you may find that mapping functions have not yet been implemented for these other species. + +

      The focus in this tutorial is how to use some of the most important functions. You should be able to complete this tutorial in about an hour. For this demonstration we will study expression of a key gene known as NR2B or Grin2b. This gene/mRNA/protein is crucial in learning and memory. Once you have worked through this example, you should be able to use GN to explore single genes or set of genes, mRNAs, and other standard traits that interest you.

      + +

      What you will learn. If you spend an hour working through this tutorial you will learn how to extract dozen of molecules that potentially interact with NR2B. It will be easy for you to generalize what you learn to any other gene or transcript of interest. You should be able to confirm known relations (information from the literature) and you should be able to uncover intriguing new relations among sets of molecules and other traits. You will learn how to exploit a gene ontology (a gene ontology is a simple and systematic way of categorizing the functions of genes) and you will also learn about gene or QTL mapping and complex trait analysis.

      + +

      By the way: if a term is new to you (What is a QTL?), and you would like to read an explanation then have a look at the GeneNetwork Glossary. + +

      Much of the data in GN were gotten from gene array experiments. As you have undoubtedly heard or experienced yourself, the analysis of array data sets is difficult and sometimes messy. You may encounter poor quality data in some of these enormous data sets. An important part of learning how to use GN involves tools to evaluate data quality. Treat the results you generate with GN with caution. There are solutions to some problems you run into, but for other problems, including comparison across multiple data sets. + +

      After you have worked through with this tour, please look quickly at the Frequently Asked Questions and the Glossary. Let me know if you have other questions or if you see mistakes that I should fix. Email should go to Rob Williams (rwilliams@uthsc.edu). + +

      Step 1: Getting the terminology right. + + +The use of gene symbols and names in research papers is not consistent. When you search databases it helps to use the preferred or official gene name and symbol. In most papers, the NMDA 2B receptor is abbreviated NR2B and a Google search for "NR2B" will generate about 100,000 hits, many of which deal with the genetics and molecular biology of learning and memory. But it turns out that NR2B is not the official name of either the gene or protein. A great way to verify nomenclature is to go to NCBI Entrez Gene and enter the gene name or symbol. Entrez gene should be able to resolve your query and give you the correct symbol.

      + + +
      +

      +

      + + +

      Figure 1: Getting the terminology right + +

      When we enter NR2B or nr2b we find that the official gene symbol in Entrez Gene is Grin2b for mice. The corresponding human gene is the same, but written entirely in capital letters GRIN2B. In both species the official gene name is glutamate receptor, ionotropic, N-methyl D-aspartate 2B.

      + +

      Step 2. Linking to the GeneNetwork search page + +Link to GN at www.genenetwork.org/. Ideally, keep this tutorial page open at the same time so that you can look back and forth between the two windows. You have a few choices to make: Choose species = Mouse, Group = BXD, Type = Hippocampus mRNA. We have a great deal of data for the BXDs, so when in doubt, please select the BXD group of mice. Having made these choices, you still need to pick a particular database; in this case an array data set for a particular brain region called the hippocampus that, like NR2B, is critical in learning and memory. For the purpose of this tutorial, choose the database file called: + +

      Hippocampus Consortium M430v2 BXD (Jun06) PDNN + +

      You can set your particular choice of species, group, type, and database as your personal default setting. Simply click on the Set to Default button (lower right). If you want to know what this long database term is all about, click on the INFO button immediately to the right of the database name. + +

      Now enter your search terms in either of the search term fields labeled Get Any or Combined. Get Any is usually best and will search for all of the entries you put in this field (logical OR). Combined will only get records that match all of the terms that you enter (logical AND). You could enter both NR2B and Grin2b in the ANY field. You can also use wildcard characters ? and * for single or multiple characters. It is often a good idea to enter an asterisk after a search term, such as Grin*. This will get all subunits of a molecule or complex. + +

      +

      Figure 2: The Search Screen. This is the page to bookmark. + + +

      Step 3. Retrieving the data. When you click on the Search button, your computer sends this string of search terms to GN (GN is an Apache-Python-MySQL web database system), which then looks through thousands of records for matching terms. The database that we just searched has 45,101 entries that represent close to 20,000 known genes and expressed sequence tags (ESTs). (To determine the size of any database enter a single asterisk (*) in the ANY field.) +

      + +

      +

      Figure 3: Search results for the search string Grin2b + + +

      In this particular case, if you entered just "Grin2b", your will get at a list of six data sets. The last three are measurements of Grin2b expression. These thee measure different parts of the mRNA: the distal 3 prime UnTranslated Region (3' UTR), the 3' region of the last coding exons (coding exon 12), and an alternative 3' UTR of a short mRNA splice variant (an mRNA isoform). Which of the three should you pick? The best choice is usually the that which corresponds to coding sequence. In this case, you should study the 5th entry highlighted in red. You an come back to the other two data sets later to see how they compare. And you can ignore the top three Kif17 data sets that were found only because the gene description includes the text "NR2B/GRIN2B NMDA receptor transporter." + +

      + +

      This is a good point to review several of the features most GN pages. Feature 1 is the banner of terms toward the top labeled Home, Search, Help, News, etc. etc. Most of these menu headings have pop-down lists from which you can select additional resources and tools. For example, the Search menu heading lists the Search Databases page (our starting point), the SNP Browser tool, the GeneWiki resource, Interval Analyst, and GenomeGraph displays. These features are worth trying out later. The Policy menu explains how to contact the data providers and how to use and cite data.

      + +

      Another useful feature of the Search Results window is the Sort By selector. You can sort longer lists of "hits" by their location, their expression levels, or by their maximum LRS or LOD scores. There are also small check boxes to the left of each entry. These are used to select data you would like to move into a Collection. The Add button will move any checked items into your collection. Collections can include any gene, trait, or SNP marker that has measured in the BXD family. You can even add your own BXD data using Enter Trait Data in the MAIN menu (top left). The ability to add diverse data types into a Collection provides a great deal of power. The use of the Collections is a topic for a more advanced tour. Let's get through this quick tour and then feel free to build up your own collections of phenotypes for "collective" analysis. + +

      Step 4. Reviewing the NR2B expression data. +Roll you cursor over the term ProbeSet/1422223_at in the Search Results window. This is the probe set that targets the last exon of the Grin2b transcript. The text will turn red. Click on the term. This will generate a new page called the Trait Data and Analysis Form. + +This Trait Data and Analysis Form page is the most important page for the analysis of genes and traits. We will return here several times. The top of this page contains useful background information, including the database that we used, the trait identifier, gene symbol and aliases, the chromosomal location and megabase position (Mb) of Grin2b in the mouse genome. GN also includes links to NCBI, OMIM, GenBank, BioGPS, STRING, PANTHER, Gemma, and the Allen Brain Atlas (ABA). To find out more about these resource, just click on the links. There are also many additional useful links under the Links menu heading.

      + +

      +

      Figure 4: Trait Data and Analysis Form for Grin2b, probe set 1422223_at + +

      Eight buttons shown in Figure 4 and you need to know what most of them do. +

        + +
      1. SNP Variant Browser: This link provides you with a list of all known SNPs in Grin2b that are in the GN database. You can, of course, also search for SNPs in other genes or regions. The SNP Variant database is pretty well populated (about 8 million SNPs) and includes all of the Celera SNPs and many SNPs from Perlegen, NIEHS, and our own in-house sequencing projects. As of Jan 2011, there are nearly 7000 SNPs in Grin2b, but only about 20 of these are in exons. Click on the SNP Browser button to have a quick look 9you may need to restrict the SNP search to just Domain = Exon. + +
      2. GeneWiki: This link lets you annotated our databases. You can leave yourself notes and comments about particular genes or probe sets. You can easily find your own notes using a special search string described in the Advanced Search page. But in short your search would be written out "wiki=myName". Leave out the quotes and make sure that "myName" is in your Wiki entry. It is that simple. + +
      3. Verify Location and Verify RNA Seq: These buttons are used to confirm that the data set correctly targets the last exon of Grin2b. Click on either link. The probe sequences used on the array are sent to the Genome Browser and the best match is found in real time using the BLAT algorithm. The Search Results page allows you to drill down to a view of the genome. Click on the "browser" link to the far left (top row). Look for the horizontal track that is made up of a series of black rectangles labeled "Blat Sequence" or "Probe XXXYYY". You will also see several "tracks" labeled Grin2b and GRIN2B. If you use the Zoom Out 10X button you will see that the probes and probe set are aligned with the 3' end of the last exon--a bit more detail than we had before. You may also notice that Grin2b is encoded on the minus strand of chromosome 6 and that the tiny arrow heads visible on the last intron point to the left (the transcription direction is from right to left). The Verify RNA seq button has the same function, but takes you to a GN mirror of the UCSC Browser that has added RNA sequencing data for brain, hippocampus, and eye (Jan 2011) of many BXD strains of mice. + +
      4. Basic Statistics: This button will generate summaries such as the average expression, the range, bar charts of expression ordered by strain and by rank. Try it quickly. + +
      5. Similar Traits: This button will provide you a link to Grin2b expression data in other data sets that may interest you. + +
      6. Probe Tool: A link to the sequence data for the individual probes that make up a probe set. This table can be used for a very fine-grained analysis of particular probe sets. + +
      7. Add to Collection: If you would like to add a trait to your collection of traits, transcripts, or markers, use this button. This is the same function we mentioned earlier. + +
      8. Reset: GN allows you to modify values for traits and this button is used to reset to the original values. +
      + +

      In general, text that uses a blue font is also a link. For example, the text at the top of Figure 4 Hippocampus Consortium M430v2 BXD (Jun06) PDNN will link you to a Materials and Methods "metadata" or Info page. There is lots of information on the Info page, but the short summary is that the NR2B expression data in the Hippocampus mRNA database we are exploring was generated from approximately 1200 hippocampii and 600 mice belonging to 99 strains (typically three animals per array and approximately 200 arrays). This is one of the largest data sets in GN. Each array includes samples from a single age, sex, and litter. The BXD strain family were all made by crossing two parental strains, C57BL/6J and DBA/2J. Both of these parental strains have been fully sequenced. The Hippocampus data set includes expression estimates for both parental strain, and also data for 15 other common inbred strains, for example, 129S1/SvImJ, C3H/HeJ, CAST/EiJ, and others. There is also a complementary, but smaller Hippocampus Consortium data set for the CXB strains of mice.

      + + +

      Farther down the page we encounter sections labeled Trait Correlations and Interval Mapping and Trait Data. We will come back to these tools in a moment, but keep scrolling down to the actual numerical data on gene expression for Grin2b. + +The larger numbers in the boxes (6.631, 6.612, etc.) are estimates of the abundance of Grin2b mRNA in the hippocampii of different samples of mice. The smaller numbers (0.184, 0.205, etc.) are the standard errors of expression, usually based on two arrays (hence SEM also equals SD). Numbers are all expressed using a log base 2 scale. A value of 8 therefore corresponds to 2^8 or 256. A difference of one unit is roughly equivalent to a two-fold difference in expression in Grin2b expression. DBA/2J has an expression of 6.506 +/- 0.008 whereas BXD14 has an expression of 7.604 +/- 0.232. That amounts to approximately a 2-fold difference in the amount of transcript. + +

      These kinds of preliminary results often generate intriguing and testable hypothesis: do strains of mice have the anticipated differences in learning and memory performance given the known effects of Grin2b overexpression in transgenic mice? If you scroll down farther in this lists of Grin2b expression estimates you will see that the strain of mouse called BXD80 only expresses 6.098 units of NR2B whereas BXD42 expresses 8.400 units. That amouts to a putative 5-fold difference in mRNA level. We need to take this with a grain of salt, because these expression estimates are lower than we expect. The average expression for all transcripts (including those NOT expressed) is 8 units. The fact that the average expression of the Grin2b probe set is less than average should make us worry. Are these data too noisy to use? Is there an unsuspected problem with the data handling or the probes? These are hard questions to answer but the Probe Tool is useful because you can look at the expression of the individual probes values used to generate the probe set summary value. We will skip this process for now, but remember that this "deeper" level is always just one click away. For the time being, let's evaluate the data using the Basic Statistics function. +

      + +

      +

      Figure 5: Basic statistics for Grin2b + +

      Step 5. Basic Statistics.  To get a better understanding of these values and how expression estimates are distributed click on the Basic Statistics button. A new window will open with a statistical summary table and a box plot toward the top (Figure 5), two bar charts in the middle, and a normal probability plot toward the bottom. You may not be familiar with these types of plots yet, but they are simple to read. The box plot is a simply summary of the spread of the 86 values. The blue plus sign represents the mean expression. The box defines the 25% and 75% quantiles (if we had studied exactly 100 strains these would be those strains at the 25 and 75 rank. If you want more information, just click on the link beneath the plot. + +The bar charts are easy to read. They provide a graphic output of the data that you saw in the Trait Data and Analysis Form. The Y axis of the graph is truncated and does not extend down to a value of zero. This tend to highlight the variation within strains. The error bars are quite large, and are only based on two samples (in this case the SEM is usually the same as the SD). Also note that the size of these error bars tend to increase as the expression increases (non-uniform error). High noise and non-uniform variance are all characteristics that should reduce your enthusiasm. But let's persevere, because these data have not yet cost you a penny and because this is a great lesson. + +

      +

      Figure 6: Normal Probability plot for Grin2b + +

      Toward the bottom of the Basic Statistics page you will find a Normal Probability plot (Figure 6). There is another link associated with this plot that will provide more background, but here is a brief explanation of how to read these plots. On the X axis is the expected Z score for every strain based on its ranking out of 86 strains. Values range from about -2.5 to +2.5. If you randomly drew 86 values from a normal distribution you would expect the lowest value to be about -2.5 standard deviations below the mean (or -2.5 Z) from the mean. The Y axis provides a read-out of the actual expression level. If the expression of NR2B were normally distributed then the strain averages would form a straight line. If expression of Grin2b were obviously controlled by a single Mendelian factor, then this plot would have an S shape with many high strains and many low strains and few strains with intermediate values. Instead this plot highlights skew toward low values (also seen in the box plot). A few strains have comparatively high expression, but the main feature is the excess of strains with values from 6.0 to 6.5 units. It does not look like a Mendelian trait. But looks can deceive. + +

      What this plot also highlights is the wide range of expression of NR2B gene transcript in normal strains (the BXD strains are not mutant or knockout mice). But the high error raises the possibility that much of this variation is simply sampling error. If we performed an analysis of variance with Strain as our main effect, this data set would be associated with a modest and statistically insignificant F values. But we have other methods to evaluate this putative strain difference. We can map it and see if any interesting patterns emerge from the mapping that might cheer us up and demonstrate that the variation of strain means is actually true signal. In this case, the answer is (fortunately) a strong Yes (LOD = 16). But when you see data of this type, the usual answer will be No. + +

      Variation in NR2B gene expression is a signal that we can now cautiously use to search for transcripts that co-vary. Does NR2B message covary with other subunits of the NMDA receptor complex (over 1000 transcripts are part of the postsynpatic density of which NR2B is a key member). Does the the expression of other genes compensate for the apparent 5-fold range in NR2B message level?

      + +

      Step 6. Covariation of expression. To answer these types of questions return to the Trait Data and Analysis Form that has all of the values for Grin2b in 86 different strains of mice. This time select the Trait Correlation button. There are five pop-down menus that allow you to modify search parameters. + +Let's modify one of the default settings. Change Return to read top 500. The other seetings are fine for the time being.

      Now click on the Trait Correlations button. + +

      +

      Figure 7: How to set up the search for covariates of Grin2b + +

      Within a few seconds of clicking this button, GN will return a new page of data, a Correlation Table of the top 499 transcripts that covary with variation in Grin2b expression. At the top of this list (sorted by p value) is Grin2b itself. The third best covariate of our Grin2b probe set is another Grin2b probe set. That is reassuring. + +

      Let's review the columns: + +

        + +
      1. The first column is just an index with check boxes. You can easily add items into your BXD Collection using these checkboxes. +
      2. Record ID: The ID of the trait; in this case just the probe set identifier given by Affymetrix +
      3. Symbol: The official gene symbol. Clicking on these symbols will link you to NCBI. +
      4. Description: The name of the trait or the name of the gene from which the mRNA is transcribed +
      5. Chr: The chromosome of the gene from which the transcript is transcribed +
      6. Megabase: The chromosomal nucleotide position of the most proximal end of the probe set (mm6 alignment) +
      7. Mean Expression: The average expression of the probe set (mean of strain averages) +
      8. Correlation: The correlation of with the reference trait, in this case with Grin2b probe set 1422223_at. +
      9. N Cases: The number of strains involved in the correlation analysis +
      10. p Value: The p value associated with the correlation and number of cases without correction for multiple tests. +
      11. Lit Corr: The Literature Correlation. This is a very cool column of data generated by Ramin Homayouni, Michael Berry and colleagues that summarizes the correlation of Grin2b with many other genes based upon an analysis of the PubMed Literature. +
      + +

        + +

      +Figure 8: Correlation Table + +

      Clicking on any correlation value will generate a scattergram ofGrin2b on the X axis and the other transcript on the Y axis. For example, the scattergram of Grin2B (X axis) versus Grin2b is shown in Figure 9. The p value associated with this correlation is highly signficant and is listed in the upper right corner for both the parametric Pearson's r value and for Spearman's rank order r value. GN generates the Correlation Table  after performing 45,100 statistical tests; so we should correct for multiple tests. In this case, the p value is significant even if we apply a stringent Bonferroni correction. You may regard this Grin2b-to-Grin2b correlation as somewhat of a disappointment, but the more you appreciate the great complexity of mRNA metabolism, the less suprised you will be. If you were planning follow-up functional or behavioral studies of strains with high and low Grin2b expression you would obviously want to resolve some of the discrepancies at the protein level or you could (with some risk) just select strains with high or low expression for all forms of Grin2b (BXD15, BXD24, BXD60 vs BXD14, BXD42, BXD96).

      + +

      Correlation Tables can be resorted. Click on the the small arrowheads in the header column to resort by the Literature Correlation. You will find that Grin2b actually does covary reasonably well with Grin1 (r = 0.501). Generate the scatter plot for Grin1 and Grin2b. + +

      +

      Figure 9: Scatter plot of two probe sets that measure expression of different parts of Grin2b. + +

      Step 7. Gene ontology analysis. At the top of the Correlation Table is a button labeled Gene Ontology. When you click on this button GN sends a list of gene IDs to the WebGestalt server for analysis. Before you click on this button you need to decide which list of transcripts to send to WebGestalt. The easy answer is to send all 500 transcripts. To do this click on the Select ALL button. This action will highlight all 500 transcripts. Now click on the Gene Ontology button. The output will be a large graph consisting of three major categories and a "bush" of subcategories.

      + + +

      +

      Figure 10: Gene ontology analysis with WebGestalt + + +

      A gene ontology is a hierarchical categorization of genes by their functions. A large subset of the roughly 20000 genes measured using microarrays have been assigned to one or more functional categories. The three independent trunks of this ontology are "biological process", "molecular function", and "cellular component". Within each of the the GO category we see the number of genes included in this category and the p value. For example, for the category "Nervous System Development, the numbers are 21 genes with a p value of 0.005. You can click on the category and generate the list of all 21 genes--from Acsl6 (the only covariate with a negative correlation) to Ulk1. The single category that has the highest "enrichment" is the molecular function "binding" with a p value of about 0.0000001. This category includes 261 of 500 transcripts on our Grin2b list. + +Step 8: Mapping Grin2b. At this point we have gained some confidence in the Grin2b expression data. While the expression values are low, they seem to be correctly associated with moleculates enriched in the postsynaptic complex. What causes the variation in Grin2b expression among strains of mice? The simple but unsatisfying answer is that differences are caused by genetic variation between the parental strains that are inherited by the BXD progeny. The WebQTL module of GN can give us much better answers. WebQTL can tell us where in the genome this genetic variation is located and which parental strain (C57BL/6J or DBA/2J) is associated with higher expression. These chromosomal regions are the ultimate, but most distal causes of variation in Grin2b mRNA abundance. These sources of variance can be mapped like any other genetically determined trait. The method we use to do this is called complex trait analysis or quantitative trait locus (QTL) mapping (hence the term WebQTL). The method is covered at an accessible level in a previous SfN Short Course article. + +

      But now we will skip the details and proceed directly to the results. Go back to the Trait Data and Analysis Form and click on the Interval Mapping button.

      + +

      +

      Figure 11: QTL map for Grin2b + +

      An Interval Mapping Result window will automatically open after a short pause during which WebQTL calculates and assembles results based on 4 million linear regression equations. The window should have to a single major spike on the right side of chromosome (Chr) 6. The X-axis is a linear representation of all mouse chromosomes, as if they were tied end to end (Chr 1 to the left, and Chr X to the far right). The Y-axis and the bold lines (blue) provide estimates of the likelihood that differences in NR2B expression are modulated by polymorphic loci (allelic variants). Likelihoods are presented using a chi square statistic called the likelihood ratio statistic (LRS). Big numbers are good in the sense that they signify that we have successfully identified a chromosomal interval that controls Grin2b expression. In this case, the number is extraordinarily high, with a peak LRS of 72.9 (LOD of 15.8) on Chr 6. The horizontal gray line and the and pink line are the statistical thresholds. If the spikes exceed the upper rose-colored line, then the linkage between the chromosomal interval and variation in Grin2b expression is significant. In this case, only the Chr 6 linkage is significant, whereas that on Chr 4 at about 70 Mb is suggestive.

      + +

      Step 9. Evaluation of candidate genes. Note that on the X-axis just under the largest spike there is a small purple triangle. This triangle indicates that genetic location of the Grin2b gene itself. The correspondence of the QTL and the location of the Grin2b gene suggest that polymorphisms in Grin2b modulate expression (for example, a variant in the Grin2b promoter). The finer jagged line (red or green) provides a gauge of whether DBA/2J (green) alleles or C57BL/6J (red) alleles contribute to higher expression of Grin2. See the far right axis to see how to read this "additive effect" scale. In this case, the allele or haplotype inherited from C57BL/J (red line) contributes to higher expression of Grin2b. Just to make sure, let's zoom in on the map of Chr 6 and confirm that the QTL does align with Grin2b. To zoom the map, click on the chromosome number (Chr 6) in the whole-genome interval map. This will generate a chromosome 6-specific map of Grin2b expression. Once you have this Chr 6 map on your screen, you can zoom again by clicking on the rose-colored horizontal bar at the top of the map. You will end up with a map that looks somewhat like Figure 11, in which the strongest position candidate is obviously Grin2b itself. We have informally "cloned" a QTL for Grin2b expresssion.

      + +


      +

      Figure 12: Zoomed QTL map for Grin2b on Chr 6 + + +

      Having mapped the major controller of Grin2b expression, we can ask if any of the "left-over" variance can be explained by secondary QTLs. We can use either Composite Interval Mapping or the Pair Scan mapping function (to gain access to Composite Interval mapping you first need to click on the Marker Regression button). Both of these mapping methods are somewhat more advanced than simple interval mapping. Without going into the details (the data are weak), there is a hint that a region near the centromere of Chr 2 may also affect Grin2b expression by interacting non-additively with the Chr 6 variant of Grin2b. + + +

      Conclusion. The tour you have just taken has led your through typical steps in analyzing and evaluating gene expression data. This tour may also have generated a number of intriguingand hypotheses about the relations of NR2B to itself and with molecules in the hippocampus. You can repeat this type of analysis with any of about 20000 other genes in this data set. You can do the same analysis for complex sets of transcript and traits. you can also repeat this type of analysis in other tissues. It takes time, but the cost-benefit ratio is high.

      + + +

      Step 10. A simple self-test

      +

      Question1. Can you verify any of these NR2B results using a different data set such as the SJUT Cerebellum M430 data set? What does a success or failure indicate?

      + + +

      Q2. Are there any functionally interesting correlations between Grin2b expression and behavioral traits in these same strains of mice? (Hint: generate a Correlation Table of Grin2b with traits in the Published Phenotypes database.) What is the importance of a correlation and what mechanisms can generated these correlations? Can very high correlations still be entirely spurious?

      + +

      Q3. Do NR1 (Grin1) and NR2B (Grin2b) share common modulators on Chr 8?

      + + +

      Caveat emptor: Always be skeptical regarding results. There are pitfalls of this type of analysis highlighted in some of the questions above. These are more than counterbalanced by tremendous opportunities. Consider GN as a great tool to generate interesting new hypotheses, and be prepared to validate or refute these hypotheses using independent data and direct experimental tests.

      + +

      --------

      + +

      ANSWERS: Q1. No, verification is not possible using the Cerebellum data set. Different tissues have  different expression patterns and control. + +Q2. Yes, you should get a high correlation with rearing movements after a cocaine injection (a paper by B. Jones et al., 1999). Yes, very high correlations can be "functionally" spurious and can arise from linkage disequilibrium, sampling error, or (we hope rarely) poor experimental design.  + +Q3. No. + + +

      This work was supported by a Human Brain Project funded jointly by the National Institute on Drug Abuse, National Institute of Mental Health, the National Institute on Alcohol Abuse and Alcoholism, and the National Science Foundation (award P20-MH 62009 and P20-DA 21131 to KFM and RW) and by a separate grant from The National Institute on Alcohol Abuse and Alcoholism (INIA grants U01AA13499, U24AA13513 to RW).

      + +

      (Text version of March 28, 2011 by RW

      + + + + + + +
      +
      +
      + + + +
      + +
      + + + + + + + + + + + diff --git a/web/tutorial/movies/index.html b/web/tutorial/movies/index.html new file mode 100755 index 00000000..6af90770 --- /dev/null +++ b/web/tutorial/movies/index.html @@ -0,0 +1,105 @@ + +GeneNetwork Demos + + + + + + + + + + + + + + + + + + + + + + + + +
      + + +
      +

      GeneNetwork Tutorials modify this page

      + + +

      Movies:

      +
      +

      +

      + + + +
      + + + + + + + + +
      Introduction to GeneNetwork
      + +
      + +
      +

      +

      + + + + + +
      +
      + + + + + + +
      +
        + +
      +
      + +
      + + + + + + + + + + diff --git a/web/tutorial/pdf/GN_Barley_Tutorial.pdf b/web/tutorial/pdf/GN_Barley_Tutorial.pdf new file mode 100755 index 00000000..a9091739 Binary files /dev/null and b/web/tutorial/pdf/GN_Barley_Tutorial.pdf differ diff --git a/web/tutorial/pdf/Peirce_and_Lu_2004.pdf b/web/tutorial/pdf/Peirce_and_Lu_2004.pdf new file mode 100755 index 00000000..61f42576 Binary files /dev/null and b/web/tutorial/pdf/Peirce_and_Lu_2004.pdf differ diff --git a/web/tutorial/pdf/nn0504-485.pdf b/web/tutorial/pdf/nn0504-485.pdf new file mode 100755 index 00000000..059c3498 Binary files /dev/null and b/web/tutorial/pdf/nn0504-485.pdf differ diff --git a/web/tutorial/pdf/webqtl.pdf b/web/tutorial/pdf/webqtl.pdf new file mode 100755 index 00000000..97769c86 Binary files /dev/null and b/web/tutorial/pdf/webqtl.pdf differ diff --git a/web/tutorial/ppt/WebQTLDemo.htm b/web/tutorial/ppt/WebQTLDemo.htm new file mode 100755 index 00000000..5a051690 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo.htm @@ -0,0 +1,4 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics <body> <p>This page uses frames, but your browser doesn't support them.</p> </body> \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0001.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0001.gif new file mode 100755 index 00000000..f49994ae Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0001.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0002.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0002.gif new file mode 100755 index 00000000..465b850a Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0002.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0003.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0003.gif new file mode 100755 index 00000000..2969e2d0 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0003.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0004.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0004.gif new file mode 100755 index 00000000..8540ad6e Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0004.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0005.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0005.gif new file mode 100755 index 00000000..d4f645d5 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0005.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0006.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0006.gif new file mode 100755 index 00000000..3fd598cf Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0006.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0007.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0007.gif new file mode 100755 index 00000000..902fa4e5 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0007.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0008.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0008.gif new file mode 100755 index 00000000..764c9443 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0008.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0009.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0009.gif new file mode 100755 index 00000000..830d79f9 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0009.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0010.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0010.gif new file mode 100755 index 00000000..b4fb0c35 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0010.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0011.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0011.gif new file mode 100755 index 00000000..b8649d2d Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0011.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0012.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0012.gif new file mode 100755 index 00000000..cbd840e5 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0012.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0013.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0013.gif new file mode 100755 index 00000000..5c1a67e6 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0013.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0014.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0014.gif new file mode 100755 index 00000000..59195304 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0014.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0015.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0015.gif new file mode 100755 index 00000000..e8a34ab6 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0015.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0016.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0016.gif new file mode 100755 index 00000000..2aaf9257 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0016.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0017.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0017.gif new file mode 100755 index 00000000..6088d820 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0017.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0018.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0018.gif new file mode 100755 index 00000000..41461ffa Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0018.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0019.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0019.gif new file mode 100755 index 00000000..b7cbcf23 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0019.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0020.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0020.gif new file mode 100755 index 00000000..62fc5b89 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0020.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0021.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0021.gif new file mode 100755 index 00000000..31ad83dc Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0021.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0022.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0022.gif new file mode 100755 index 00000000..11d20f06 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0022.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0023.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0023.gif new file mode 100755 index 00000000..8e943fd9 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0023.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0024.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0024.gif new file mode 100755 index 00000000..0e11714e Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0024.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0025.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0025.gif new file mode 100755 index 00000000..1e2a8211 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0025.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0026.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0026.gif new file mode 100755 index 00000000..49efcb1c Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0026.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0027.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0027.gif new file mode 100755 index 00000000..e7e82345 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0027.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0028.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0028.gif new file mode 100755 index 00000000..03fd8a8b Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0028.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0029.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0029.gif new file mode 100755 index 00000000..868ee2f6 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0029.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0030.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0030.gif new file mode 100755 index 00000000..fb7e212c Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0030.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0031.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0031.gif new file mode 100755 index 00000000..45444e82 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0031.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/Slide0032.gif b/web/tutorial/ppt/WebQTLDemo_files/Slide0032.gif new file mode 100755 index 00000000..8b0bd5a9 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/Slide0032.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/WebQTLDemo.ppt b/web/tutorial/ppt/WebQTLDemo_files/WebQTLDemo.ppt new file mode 100755 index 00000000..33fbac82 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/WebQTLDemo.ppt differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/blank_notes.htm b/web/tutorial/ppt/WebQTLDemo_files/blank_notes.htm new file mode 100755 index 00000000..316e6a9e --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/blank_notes.htm @@ -0,0 +1,5 @@ + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/endshow.htm b/web/tutorial/ppt/WebQTLDemo_files/endshow.htm new file mode 100755 index 00000000..b7b94eb3 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/endshow.htm @@ -0,0 +1 @@ +


      Open the default .htm file to view this Web presentation.

      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/error.htm b/web/tutorial/ppt/WebQTLDemo_files/error.htm new file mode 100755 index 00000000..a8ed4372 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/error.htm @@ -0,0 +1 @@ +


      This presentation contains content that your browser is unable to display. This presentation was optimized for the recent version of Microsoft Internet Explorer and the recent version of Netscape Navigator.

      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/filelist.xml b/web/tutorial/ppt/WebQTLDemo_files/filelist.xml new file mode 100755 index 00000000..1558f6f7 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/filelist.xml @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/frame.htm b/web/tutorial/ppt/WebQTLDemo_files/frame.htm new file mode 100755 index 00000000..ae0e8573 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/frame.htm @@ -0,0 +1,43 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/fs_navigation_bar.htm b/web/tutorial/ppt/WebQTLDemo_files/fs_navigation_bar.htm new file mode 100755 index 00000000..d643df26 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/fs_navigation_bar.htm @@ -0,0 +1,84 @@ + Navigation Bar + +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/fullscr.gif b/web/tutorial/ppt/WebQTLDemo_files/fullscr.gif new file mode 100755 index 00000000..85842700 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/fullscr.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/fullscrClose.gif b/web/tutorial/ppt/WebQTLDemo_files/fullscrClose.gif new file mode 100755 index 00000000..ccd0de13 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/fullscrClose.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/fullscreen.htm b/web/tutorial/ppt/WebQTLDemo_files/fullscreen.htm new file mode 100755 index 00000000..17916572 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/fullscreen.htm @@ -0,0 +1,48 @@ + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/master02.htm b/web/tutorial/ppt/WebQTLDemo_files/master02.htm new file mode 100755 index 00000000..0de623de --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/master02.htm @@ -0,0 +1,11 @@ + + +
      Memphis Microarray 2003
      June 11, 2003, Rob Williams
      Ü#Ý
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/master03.htm b/web/tutorial/ppt/WebQTLDemo_files/master03.htm new file mode 100755 index 00000000..03d92548 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/master03.htm @@ -0,0 +1,11 @@ + + +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/master03_background.gif b/web/tutorial/ppt/WebQTLDemo_files/master03_background.gif new file mode 100755 index 00000000..271a75e9 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/master03_background.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/master03_stylesheet.css b/web/tutorial/ppt/WebQTLDemo_files/master03_stylesheet.css new file mode 100755 index 00000000..97cb9745 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/master03_stylesheet.css @@ -0,0 +1 @@ +body {width:755px; height:566px;} .TB {mso-special-format:nobullet¥;} .T {text-align:left; font-family:"Gill Sans"; color:#E9EB5D; font-size:293%; mso-line-spacing:" 0 0"; mso-margin-left-alt:249; mso-text-indent-alt:16;} .BB {mso-special-format:bullet\F06C; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .B {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; font-size:213%; mso-line-spacing:" 0 %"; mso-margin-left-alt:297; mso-text-indent-alt:57;} .B1B {mso-special-format:bullet\F075; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .B1 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:" 0 "; mso-margin-left-alt:569; mso-text-indent-alt:345;} .B2B {mso-special-format:bullet\F046; color:#E2EBF0; font-family:"Monotype Sorts"; font-size:64%;} .B2 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:" 0 "; mso-margin-left-alt:854; mso-text-indent-alt:633;} .B3B {mso-special-format:bullet¥; color:white; font-family:Palatino; font-size:100%;} .B3 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"% 0 "; mso-margin-left-alt:1144; mso-text-indent-alt:921;} .B4B {mso-special-format:bulletÐ; color:white; font-family:Palatino; font-size:100%;} .B4 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"% 0 0"; mso-margin-left-alt:1449; mso-text-indent-alt:1209;} .NB {mso-special-format:nobullet¥;} .N {font-family:Verdana; mso-line-spacing:"100 0 0";} .N1B {mso-special-format:nobullet¥;} .N1 {font-family:Verdana; mso-line-spacing:"100 0 0";} .N2B {mso-special-format:nobullet¥;} .N2 {font-family:Verdana; mso-line-spacing:"100 0 0";} .N3B {mso-special-format:nobullet¥;} .N3 {font-family:Verdana; mso-line-spacing:"100 0 0";} .N4N {mso-special-format:nobullet¥;} .N4 {font-family:Verdana; mso-line-spacing:"100 0 0";} .OB {mso-special-format:nobullet¥;} .O {text-align:left; font-family:Verdana; color:black; mso-color-index:1; font-size:80%;} .O1B {mso-special-format:nobullet¥;} .O1 {font-family:Verdana; font-size:80%;} .O2B {mso-special-format:nobullet¥;} .O2 {font-family:Verdana; font-size:80%;} .O3B {mso-special-format:nobullet¥;} .O3 {font-family:Verdana; font-size:80%;} .O4B {mso-special-format:nobullet¥;} .O4 {font-family:Verdana; font-size:80%;} .CBB {mso-special-format:bullet\F06C; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .CB {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:" 0 %"; mso-margin-left-alt:297; mso-text-indent-alt:57;} .CB1B {mso-special-format:bullet\F075; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .CB1 {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:" 0 "; mso-margin-left-alt:569; mso-text-indent-alt:345;} .CB2B {mso-special-format:bullet\F046; color:#E2EBF0; font-family:"Monotype Sorts"; font-size:64%;} .CB2 {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:" 0 "; mso-margin-left-alt:854; mso-text-indent-alt:633;} .CB3B {mso-special-format:bullet¥; color:white; font-family:Palatino; font-size:100%;} .CB3 {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"% 0 "; mso-margin-left-alt:1144; mso-text-indent-alt:921;} .CB4B {mso-special-format:bulletÐ; color:white; font-family:Palatino; font-size:100%;} .CB4 {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"% 0 0"; mso-margin-left-alt:1449; mso-text-indent-alt:1209;} .CTB {mso-special-format:nobullet¥;} .CT {text-align:left; font-family:"Gill Sans"; color:#E9EB5D; mso-line-spacing:" 0 0"; mso-margin-left-alt:16; mso-text-indent-alt:16;} .HBB {mso-special-format:bullet\F06C; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .HB {font-family:"Gill Sans"; color:#FBFDB8; font-size:213%; mso-line-spacing:" 0 %"; mso-margin-left-alt:297; mso-text-indent-alt:57;} .HB1B {mso-special-format:bullet\F075; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .HB1 {font-family:"Gill Sans"; color:#FBFDB8; font-size:186%; mso-line-spacing:" 0 "; mso-margin-left-alt:569; mso-text-indent-alt:345;} .HB2B {mso-special-format:bullet\F046; color:#E2EBF0; font-family:"Monotype Sorts"; font-size:64%;} .HB2 {font-family:"Gill Sans"; color:#FBFDB8; font-size:160%; mso-line-spacing:" 0 "; mso-margin-left-alt:854; mso-text-indent-alt:633;} .HB3B {mso-special-format:bullet¥; color:white; font-family:Palatino; font-size:100%;} .HB3 {font-family:"Gill Sans"; color:#FBFDB8; font-size:133%; mso-line-spacing:"% 0 "; mso-margin-left-alt:1144; mso-text-indent-alt:921;} .HB4B {mso-special-format:bulletÐ; color:white; font-family:Palatino; font-size:100%;} .HB4 {font-family:"Gill Sans"; color:#FBFDB8; font-size:133%; mso-line-spacing:"% 0 0"; mso-margin-left-alt:1449; mso-text-indent-alt:1209;} .QBB {mso-special-format:bullet\F06C; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .QB {font-family:"Gill Sans"; color:#FBFDB8; font-size:213%; mso-line-spacing:" 0 %"; mso-margin-left-alt:297; mso-text-indent-alt:57;} .QB1B {mso-special-format:bullet\F075; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .QB1 {font-family:"Gill Sans"; color:#FBFDB8; font-size:186%; mso-line-spacing:" 0 "; mso-margin-left-alt:569; mso-text-indent-alt:345;} .QB2B {mso-special-format:bullet\F046; color:#E2EBF0; font-family:"Monotype Sorts"; font-size:64%;} .QB2 {font-family:"Gill Sans"; color:#FBFDB8; font-size:160%; mso-line-spacing:" 0 "; mso-margin-left-alt:854; mso-text-indent-alt:633;} .QB3B {mso-special-format:bullet¥; color:white; font-family:Palatino; font-size:100%;} .QB3 {font-family:"Gill Sans"; color:#FBFDB8; font-size:133%; mso-line-spacing:"% 0 "; mso-margin-left-alt:1144; mso-text-indent-alt:921;} .QB4B {mso-special-format:bulletÐ; color:white; font-family:Palatino; font-size:100%;} .QB4 {font-family:"Gill Sans"; color:#FBFDB8; font-size:133%; mso-line-spacing:"% 0 0"; mso-margin-left-alt:1449; mso-text-indent-alt:1209;} .TblB {mso-special-format:nobullet\F06C; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .Tbl {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:" 0 %"; mso-margin-left-alt:297; mso-text-indent-alt:57;} .Tbl1B {mso-special-format:nobullet\F075; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .Tbl1 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:" 0 "; mso-margin-left-alt:569; mso-text-indent-alt:345;} .Tbl2B {mso-special-format:nobullet\F046; color:#E2EBF0; font-family:"Monotype Sorts"; font-size:64%;} .Tbl2 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:" 0 "; mso-margin-left-alt:854; mso-text-indent-alt:633;} .Tbl3B {mso-special-format:nobullet¥; color:white; font-family:Palatino; font-size:100%;} .Tbl3 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"% 0 "; mso-margin-left-alt:1144; mso-text-indent-alt:921;} .Tbl4B {mso-special-format:nobulletÐ; color:white; font-family:Palatino; font-size:100%;} .Tbl4 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"% 0 0"; mso-margin-left-alt:1449; mso-text-indent-alt:1209;} .defaultB {mso-special-format:nobullet¥;} .default {text-align:left; font-family:Verdana; font-weight:bold; font-style:normal; text-decoration:none; text-shadow:none; text-effect:none; mso-fareast-hint:no; layout-flow:horizontal; color:black; font-size:120%; mso-text-raise:0%; mso-line-spacing:"100 0 0"; mso-margin-left-alt:0; mso-text-indent-alt:0; mso-char-wrap:0; mso-kinsoku-overflow:0; direction:ltr; mso-word-wrap:1; mso-ansi-language:1033;} a:link {color:#009999 !important;} a:active {color:#333399 !important;} a:visited {color:#99CC00 !important;} \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/master05.htm b/web/tutorial/ppt/WebQTLDemo_files/master05.htm new file mode 100755 index 00000000..f8de16f5 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/master05.htm @@ -0,0 +1,11 @@ + + +




      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/master05_background.gif b/web/tutorial/ppt/WebQTLDemo_files/master05_background.gif new file mode 100755 index 00000000..271a75e9 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/master05_background.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/master05_stylesheet.css b/web/tutorial/ppt/WebQTLDemo_files/master05_stylesheet.css new file mode 100755 index 00000000..74903bcf --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/master05_stylesheet.css @@ -0,0 +1 @@ +body {width:755px; height:566px;} .TB {mso-special-format:nobullet¥;} .T {text-align:center; font-family:Times; color:#E2EBF0; font-size:293%; mso-line-spacing:" 0 0"; mso-margin-left-alt:250; mso-text-indent-alt:16;} .BB {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .B {text-align:left; font-family:Times; color:white; font-size:213%; mso-line-spacing:" 0 %"; mso-margin-left-alt:360; mso-text-indent-alt:58;} .B1B {mso-special-format:bulletÐ; color:white; font-family:Times; font-size:100%;} .B1 {color:white; mso-line-spacing:" 0 "; mso-margin-left-alt:620; mso-text-indent-alt:376;} .B2B {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .B2 {color:white; mso-line-spacing:" 0 "; mso-margin-left-alt:889; mso-text-indent-alt:636;} .B3B {mso-special-format:bulletÐ; color:white; font-family:Times; font-size:100%;} .B3 {color:white; mso-line-spacing:"100 0 "; mso-margin-left-alt:1162; mso-text-indent-alt:922;} .B4B {mso-special-format:bulletÈ; color:white; font-family:Times; font-size:100%;} .B4 {color:white; mso-line-spacing:"100 0 0"; mso-margin-left-alt:1450; mso-text-indent-alt:1210;} .NB {mso-special-format:nobullet¥;} .N {font-family:Verdana; mso-line-spacing:"100 0 0";} .N1B {mso-special-format:nobullet¥;} .N1 {font-family:Verdana; mso-line-spacing:"100 0 0";} .N2B {mso-special-format:nobullet¥;} .N2 {font-family:Verdana; mso-line-spacing:"100 0 0";} .N3B {mso-special-format:nobullet¥;} .N3 {font-family:Verdana; mso-line-spacing:"100 0 0";} .N4N {mso-special-format:nobullet¥;} .N4 {font-family:Verdana; mso-line-spacing:"100 0 0";} .OB {mso-special-format:nobullet¥;} .O {text-align:left; font-family:Verdana; color:black; mso-color-index:1; font-size:80%;} .O1B {mso-special-format:nobullet¥;} .O1 {font-family:Verdana; font-size:80%;} .O2B {mso-special-format:nobullet¥;} .O2 {font-family:Verdana; font-size:80%;} .O3B {mso-special-format:nobullet¥;} .O3 {font-family:Verdana; font-size:80%;} .O4B {mso-special-format:nobullet¥;} .O4 {font-family:Verdana; font-size:80%;} .CBB {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .CB {text-align:left; color:white; mso-line-spacing:" 0 %"; mso-margin-left-alt:360; mso-text-indent-alt:58;} .CB1B {mso-special-format:bulletÐ; color:white; font-family:Times; font-size:100%;} .CB1 {text-align:left; color:white; mso-line-spacing:" 0 "; mso-margin-left-alt:620; mso-text-indent-alt:376;} .CB2B {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .CB2 {text-align:left; color:white; mso-line-spacing:" 0 "; mso-margin-left-alt:889; mso-text-indent-alt:636;} .CB3B {mso-special-format:bulletÐ; color:white; font-family:Times; font-size:100%;} .CB3 {text-align:left; color:white; mso-line-spacing:"100 0 "; mso-margin-left-alt:1162; mso-text-indent-alt:922;} .CB4B {mso-special-format:bulletÈ; color:white; font-family:Times; font-size:100%;} .CB4 {text-align:left; color:white; mso-line-spacing:"100 0 0"; mso-margin-left-alt:1450; mso-text-indent-alt:1210;} .CTB {mso-special-format:nobullet¥;} .CT {color:#E2EBF0; mso-line-spacing:" 0 0"; mso-margin-left-alt:16; mso-text-indent-alt:16;} .HBB {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .HB {color:white; font-size:213%; mso-line-spacing:" 0 %"; mso-margin-left-alt:360; mso-text-indent-alt:58;} .HB1B {mso-special-format:bulletÐ; color:white; font-family:Times; font-size:100%;} .HB1 {color:white; font-size:186%; mso-line-spacing:" 0 "; mso-margin-left-alt:620; mso-text-indent-alt:376;} .HB2B {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .HB2 {color:white; font-size:160%; mso-line-spacing:" 0 "; mso-margin-left-alt:889; mso-text-indent-alt:636;} .HB3B {mso-special-format:bulletÐ; color:white; font-family:Times; font-size:100%;} .HB3 {color:white; font-size:133%; mso-line-spacing:"100 0 "; mso-margin-left-alt:1162; mso-text-indent-alt:922;} .HB4B {mso-special-format:bulletÈ; color:white; font-family:Times; font-size:100%;} .HB4 {color:white; font-size:133%; mso-line-spacing:"100 0 0"; mso-margin-left-alt:1450; mso-text-indent-alt:1210;} .QBB {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .QB {color:white; font-size:213%; mso-line-spacing:" 0 %"; mso-margin-left-alt:360; mso-text-indent-alt:58;} .QB1B {mso-special-format:bulletÐ; color:white; font-family:Times; font-size:100%;} .QB1 {color:white; font-size:186%; mso-line-spacing:" 0 "; mso-margin-left-alt:620; mso-text-indent-alt:376;} .QB2B {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .QB2 {color:white; font-size:160%; mso-line-spacing:" 0 "; mso-margin-left-alt:889; mso-text-indent-alt:636;} .QB3B {mso-special-format:bulletÐ; color:white; font-family:Times; font-size:100%;} .QB3 {color:white; font-size:133%; mso-line-spacing:"100 0 "; mso-margin-left-alt:1162; mso-text-indent-alt:922;} .QB4B {mso-special-format:bulletÈ; color:white; font-family:Times; font-size:100%;} .QB4 {color:white; font-size:133%; mso-line-spacing:"100 0 0"; mso-margin-left-alt:1450; mso-text-indent-alt:1210;} .TblB {mso-special-format:nobullet¥; color:white; font-family:Times; font-size:100%;} .Tbl {color:white; mso-line-spacing:" 0 %"; mso-margin-left-alt:360; mso-text-indent-alt:58;} .Tbl1B {mso-special-format:nobulletÐ; color:white; font-family:Times; font-size:100%;} .Tbl1 {color:white; mso-line-spacing:" 0 "; mso-margin-left-alt:620; mso-text-indent-alt:376;} .Tbl2B {mso-special-format:nobullet¥; color:white; font-family:Times; font-size:100%;} .Tbl2 {color:white; mso-line-spacing:" 0 "; mso-margin-left-alt:889; mso-text-indent-alt:636;} .Tbl3B {mso-special-format:nobulletÐ; color:white; font-family:Times; font-size:100%;} .Tbl3 {color:white; mso-line-spacing:"100 0 "; mso-margin-left-alt:1162; mso-text-indent-alt:922;} .Tbl4B {mso-special-format:nobulletÈ; color:white; font-family:Times; font-size:100%;} .Tbl4 {color:white; mso-line-spacing:"100 0 0"; mso-margin-left-alt:1450; mso-text-indent-alt:1210;} .defaultB {mso-special-format:nobullet¥;} .default {text-align:left; font-family:Verdana; font-weight:bold; font-style:normal; text-decoration:none; text-shadow:none; text-effect:none; mso-fareast-hint:no; layout-flow:horizontal; color:black; font-size:120%; mso-text-raise:0%; mso-line-spacing:"100 0 0"; mso-margin-left-alt:0; mso-text-indent-alt:0; mso-char-wrap:0; mso-kinsoku-overflow:0; direction:ltr; mso-word-wrap:1; mso-ansi-language:1033;} a:link {color:#009999 !important;} a:active {color:#333399 !important;} a:visited {color:#99CC00 !important;} \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/narration.gif b/web/tutorial/ppt/WebQTLDemo_files/narration.gif new file mode 100755 index 00000000..86530132 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/narration.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/navbg.gif b/web/tutorial/ppt/WebQTLDemo_files/navbg.gif new file mode 100755 index 00000000..de74971c Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/navbg.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/navigation_bar.htm b/web/tutorial/ppt/WebQTLDemo_files/navigation_bar.htm new file mode 100755 index 00000000..d3e83474 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/navigation_bar.htm @@ -0,0 +1,91 @@ + + +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/next_active.gif b/web/tutorial/ppt/WebQTLDemo_files/next_active.gif new file mode 100755 index 00000000..f1677f91 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/next_active.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/next_disabled.gif b/web/tutorial/ppt/WebQTLDemo_files/next_disabled.gif new file mode 100755 index 00000000..261df048 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/next_disabled.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/notes_flag.gif b/web/tutorial/ppt/WebQTLDemo_files/notes_flag.gif new file mode 100755 index 00000000..cf618351 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/notes_flag.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/outline.gif b/web/tutorial/ppt/WebQTLDemo_files/outline.gif new file mode 100755 index 00000000..2d4aa484 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/outline.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/outline_collapse.gif b/web/tutorial/ppt/WebQTLDemo_files/outline_collapse.gif new file mode 100755 index 00000000..4c804d69 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/outline_collapse.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/outline_collapsed.htm b/web/tutorial/ppt/WebQTLDemo_files/outline_collapsed.htm new file mode 100755 index 00000000..d680812c --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/outline_collapsed.htm @@ -0,0 +1,5 @@ +
      WebQTL Demonstration One
      please link to
      www.webqtl.org/search.html
      "or webqtl.org/search.html..."
      Search results
      "First page of data:"
      "Data sources:"
      "Return to Trait Data page"
      "Discovering shared expression patterns"
      "The App transcript neighborhood"
      "Handdrawn sketch of the neighborhood"
      "What a network is likely..."
      Are there experimental results to corroborate a link between App with Hsp84-1?
      "2.45 billion scatter plots"
      "Cross-tissue type correlations"
      "Cross-modal correlations:"
      WebQTL   
      link to
      www.webqtl.org/search.html
      Slide 16
      Slide 17
      WebQTL to exploring upstream control
      WebQTL to exploring upstream control.
      The whole neighborhood is modulated!
      Which gene is the QTL?
      Slide 22
      Slide 23
      Tissue differences in probe performance
      Is there known biology to link Hars2 with App?
      WebQTL   
      link to
      www.webqtl.org/search.html
      Requirement: The gene must be polymorphic to be genetically ÒupstreamÓ
      Direct correlations between genotypes and traits
      WhatÕs downstream of Chr 2 near Hars2?
      WhatÕs downstream of Chr 2 near Hars2?
      Does Hars2 correlate with Actn2 strongly?
      Contact for comments and improvements:
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/outline_expand.gif b/web/tutorial/ppt/WebQTLDemo_files/outline_expand.gif new file mode 100755 index 00000000..c8c72b13 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/outline_expand.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/outline_expanded.htm b/web/tutorial/ppt/WebQTLDemo_files/outline_expanded.htm new file mode 100755 index 00000000..3e6bdf31 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/outline_expanded.htm @@ -0,0 +1,5 @@ +
      WebQTL Demonstration One
      please link to
      www.webqtl.org/search.html
      Part 1: How to discover shared expression patterns (slides 2Ð14)
      Part 2. Discovering upstream modulators (15Ð25)
      Discovering downstream targets

      "or webqtl.org/search.html..."
      or webqtl.org/search.html (mirror)

      Search results
      "First page of data:"
      First page of data: The ÒTrait Data FormÓ

      "Data sources:"
      Data sources: Phenotpyes and genotypes

      "Return to Trait Data page"
      Return to Trait Data page

      "Discovering shared expression patterns"
      Discovering shared expression patterns

      "The App transcript neighborhood"
      The App transcript neighborhood

      "Handdrawn sketch of the neighborhood"
      Handdrawn sketch of the neighborhood

      "What a network is likely..."
      What a network is likely to look like (but App will not be center of universe).

      Are there experimental results to corroborate a link between App with Hsp84-1?
      "2.45 billion scatter plots"
      2.45 billion scatter plots: here is one of the best

      "Cross-tissue type correlations"
      Cross-tissue type correlations

      "Cross-modal correlations:"
      Cross-modal correlations: From mRNA to to anatomy and to behavior and pharmacology

      WebQTL   
      link to
      www.webqtl.org/search.html
      Discovering shared expression patterns
      Discovering upstream modulators (QTLs)
      Discovering downstream targets

      Slide 16
      Slide 17
      WebQTL to exploring upstream control
      WebQTL to exploring upstream control.
      The whole neighborhood is modulated!
      Which gene is the QTL?
      Slide 22
      Slide 23
      Tissue differences in probe performance
      Is there known biology to link Hars2 with App?
      WebQTL   
      link to
      www.webqtl.org/search.html
      Discovering shared expression patterns
      Discovering upstream modulators (QTLs)
      Discovering downstream targets

      Requirement: The gene must be polymorphic to be genetically ÒupstreamÓ
      Direct correlations between genotypes and traits
      WhatÕs downstream of Chr 2 near Hars2?
      WhatÕs downstream of Chr 2 near Hars2?
      Does Hars2 correlate with Actn2 strongly?
      Contact for comments and improvements:
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/outline_navigation_bar.htm b/web/tutorial/ppt/WebQTLDemo_files/outline_navigation_bar.htm new file mode 100755 index 00000000..06c789c8 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/outline_navigation_bar.htm @@ -0,0 +1,37 @@ + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/prev_active.gif b/web/tutorial/ppt/WebQTLDemo_files/prev_active.gif new file mode 100755 index 00000000..004a872f Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/prev_active.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/prev_disabled.gif b/web/tutorial/ppt/WebQTLDemo_files/prev_disabled.gif new file mode 100755 index 00000000..8a467185 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/prev_disabled.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/script.js b/web/tutorial/ppt/WebQTLDemo_files/script.js new file mode 100755 index 00000000..86d4c16c --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/script.js @@ -0,0 +1,1379 @@ +var CtxAlwaysOn = false; +function LoadSld( slideId ) +{ + if( !g_supportsPPTHTML ) return + if( slideId ) + parent.base.SldUpdated(slideId) + g_origSz=parseInt(SlideObj.style.fontSize) + g_origH=SlideObj.style.posHeight + g_origW=SlideObj.style.posWidth + g_scaleHyperlinks=(document.all.tags("AREA").length>0) + if ( IsWin("PPTSld") && !parent.IsFullScrMode() ) + parent.base.highlite(); + if( g_scaleHyperlinks ) + InitHLinkArray() + if( g_scaleInFrame||(IsWin("PPTSld") && parent.IsFullScrMode() ) ) + document.body.scroll="no" + _RSW() + if( IsWin("PPTSld") && (parent.IsFullScrMode() || CtxAlwaysOn ) ) { + document.oncontextmenu=parent._CM; + self.focus(); + + } +} +function MakeSldVis( fTrans ) +{ + fTrans=fTrans && g_showAnimation + if( fTrans ) + { + if( g_bgSound ) { + idx=g_bgSound.indexOf(","); + pptSound.src=g_bgSound.substr( 0, idx ); + pptSound.loop= -(parseInt(g_bgSound.substr(idx+1))); + } + SlideObj.filters.revealtrans.Apply() + } + SlideObj.style.visibility="visible" + if( fTrans ) + SlideObj.filters.revealtrans.Play() +} +function MakeNotesVis() +{ + if( !IsNts() ) return false + SlideObj.style.display="none" + nObj = document.all.item("NotesObj") + parent.SetHasNts(0) + if( nObj ) { + nObj.style.display="" + parent.SetHasNts(1) + } + return 1 +} +function Redirect( frmId,sId ) +{ + var str=document.location.hash,idx=str.indexOf('#') + if(idx>=0) str=str.substr(1); + if( window.name != frmId && ( sId != str) ) { + obj = document.all.item("Main-File") + window.location.href=obj.href+"#"+sId + return 1 + } + return 0 +} +function HideMenu() { if( frames["PPTSld"] && PPTSld.document.all.item("ctxtmenu") && PPTSld.ctxtmenu.style.display!="none" ) { PPTSld.ctxtmenu.style.display='none'; return true } return false } +function IsWin( name ) { return window.name == name } +function IsNts() { return IsWin("PPTNts") } +function IsSldOrNts() { return( IsWin("PPTSld")||IsWin("PPTNts") ) } +function SupportsPPTAnimation() { return( navigator.platform == "Win32" && navigator.appVersion.indexOf("Windows")>0 ) } +function SupportsPPTHTML() +{ + var appVer=navigator.appVersion, msie=appVer.indexOf( "MSIE " ), inex = appVer.indexOf( "Internet Explorer " ), ver=0 + if( msie >= 0 ) + ver=parseFloat( appVer.substring( msie+5, appVer.indexOf(";",msie) ) ) + else if( inex >= 0 ) + ver=parseFloat( appVer.substring( inex+18, appVer.indexOf(";",inex) ) ) + else + ver=parseInt(appVer) + + return( ver >= 4 ) +} +var MHTMLPrefix = CalculateMHTMLPrefix(); +function CalculateMHTMLPrefix() +{ + if ( document.location.protocol == 'mhtml:') { + href=new String(document.location.href) + Start=href.indexOf('!')+1 + End=href.lastIndexOf('/')+1 + if (End < Start) + return href.substring(0, Start) + else + return href.substring(0, End) + } + return ''; +} + +function LoadNavSld(slideId) { +playList(); +parent.createCM(); + if( !g_supportsPPTHTML ) return + if( IsWin("PPTSld") && slideId ) + parent.base.SldUpdated(slideId) + self.focus(); + +} +var hasNarration = false; +function _RSW() +{ + if( !g_supportsPPTHTML || IsNts() || + ( !g_scaleInFrame && (( window.name != "PPTSld" ) ) ) ) + return + + cltWidth=document.body.clientWidth + cltHeight=document.body.clientHeight + factor=(1.0*cltWidth)/g_origW + if( cltHeight < g_origH*factor ) + factor=(1.0*cltHeight)/g_origH + + newSize = g_origSz * factor + if( newSize < 1 ) newSize=1 + + s=SlideObj.style + s.fontSize=newSize+"px" + s.posWidth=g_origW*factor + s.posHeight=g_origH*factor + s.posLeft=(cltWidth-s.posWidth)/2 + s.posTop=(cltHeight-s.posHeight)/2 + + if ( hasNarration ) { + obj = document.all.NSPlay.style; + mySld = document.all.SlideObj.style; + obj.position = 'absolute'; + obj.posTop = mySld.posTop + mySld.posHeight - 20; + obj.posLeft = mySld.posLeft + mySld.posWidth - 20; + } + if( g_scaleHyperlinks ) + ScaleHyperlinks( factor ); +} +function IsMac() { + return (window.navigator.platform.indexOf("Mac") >= 0 ); +} + +function HitOK( evt ) { + //Nav Only function + return (evt.which == 1 || (IsMac() && evt.which == 3) ); +} +function _KPH(event) +{ + + if ( parent.base.msie < 0 ) { + + if ( ( (event.target.name && event.target.name == "hasMap" ) || (event.target.href && event.target.href != "") ) && parent.g_docTable[0].type != "jpeg" && HitOK( event ) ) { + return; /* to make hyperlinks in fullscreen mode traversable */ + } + if( IsContextMenu() ) + return parent.KPH(event); + if ( parent.IsFullScrMode() && event.which == 27 ) + parent.base.CloseFullScreen(); + else if ( parent.base.IsFullScrMode() && ( (!IsMac() && event.which == 3) || ( IsMac() && (event.modifiers & Event.CONTROL_MASK) && event.which == 1 ) ) ) + return parent.KPH(event); + else if( (event.which == 32) || (event.which == 13) || HitOK( event ) ) { + if( window.name == "PPTSld" ) + parent.PPTSld.DocumentOnClick(); + else + parent.M_GoNextSld(); + } + else if ( parent.IsFullScrMode() && ((event.which == 78) || (event.which == 110) || (event.which == 29) || (event.which == 31) || (event.which == 12)) ) + parent.M_GoNextSld(); + else if ( parent.IsFullScrMode() && ( (event.which == 80) || (event.which == 112) || (event.which == 30) || (event.which == 28) || (event.which == 11) || (event.which == 8)) ) + parent.M_GoPrevSld(); + + return; + } + + if( IsNts() ) return; + + if(parent.IsFullScrMode() && event.keyCode == 27 && !parent.HideMenu() ) + parent.base.CloseFullScreen(); + else if( (event.keyCode == 32) || (event.keyCode == 13) ) + { + if( window.name == "PPTSld" ) + parent.PPTSld.DocumentOnClick(); + else + parent.M_GoNextSld(); + } + else if ( parent.IsFullScrMode() && ((event.keyCode == 78) || (event.keyCode == 110)) ) + parent.M_GoNextSld(); + else if ( parent.IsFullScrMode() && ((event.keyCode == 80) || (event.keyCode == 112)) ) + parent.M_GoPrevSld(); +} + +function DocumentOnClick(event) +{ + if ( g_doAdvOnClick && !parent.IsFullScrMode() ) { + parent.base.TP_GoToNextSld(); + return; + } + + if ( parent.base.msie < 0 ) + { + if( ( g_allowAdvOnClick && parent.IsFullScrMode() ) || g_doAdvOnClick || + (event && ( (event.which == 32) || (event.which == 13) ) ) ) + parent.M_GoNextSld(); + return; + } + if( IsNts() || (parent.IsFullScrMode() && parent.HideMenu() ) ) return; + if( ( g_allowAdvOnClick && parent.IsFullScrMode() ) || g_doAdvOnClick || + (event && ( (event.keyCode==32) || (event.keyCode == 13) ) ) ) + parent.M_GoNextSld(); +} + + +var g_supportsPPTHTML = SupportsPPTHTML(), g_scaleInFrame = true, gId="", g_bgSound="", + g_scaleHyperlinks = false, g_allowAdvOnClick = true, g_showInBrowser = false, g_doAdvOnClick = false; + + var g_showAnimation = 0; +var g_hasTrans = false, g_autoTrans = false, g_transSecs = 0; +var g_animManager = null; + +var ENDSHOW_MESG="End of slide show, click to exit.", SCREEN_MODE="Frames", gIsEndShow=0, NUM_VIS_SLDS=32, SCRIPT_HREF="script.js", FULLSCR_HREF="fullscreen.htm"; +var gCurSld = gPrevSld = 1, g_offset = 0, gNtsOpen = gHasNts = gOtlTxtExp = gNarrationPaused = false, gOtlOpen = true +window.gPPTHTML=SupportsPPTHTML() +var g_hideNav = 0; +function UpdNtsPane(){ PPTNts.location.replace( MHTMLPrefix+GetHrefObj( gCurSld ).mNtsHref ) } +function UpdNavPane( sldIndex ){ if(gNavLoaded) PPTNav.UpdNav() } +function UpdOtNavPane(){ if(gOtlNavLoaded) PPTOtlNav.UpdOtlNav() } +function UpdOtlPane(){ if(gOtlLoaded) PPTOtl.UpdOtl() } +function SetHasNts( fVal ) +{ + if( gHasNts != fVal ) { + gHasNts=fVal + UpdNavPane() + } +} + +function ToggleVNarration() +{ + if ( base.msie < 0 ) { + PPTSld.ToggleSound( false, PPTSld.document.NSPlay ); + return; + } + + rObj=PPTSld.document.all("NSPlay") + if( rObj ) { + if( gNarrationPaused ) + rObj.Play() + else + rObj.Pause() + + gNarrationPaused=!gNarrationPaused + } +} + +function PrevSldViewed(){ GoToSld( GetHrefObj(gPrevSld).mSldHref ) } +function HasPrevSld() { return ( gIsEndShow || ( g_currentSlide != 1 && GetHrefObj( g_currentSlide-1 ).mVis == 1 )||( GetCurrentSlideNum() > 1 ) ) } +function HasNextSld() { return (GetCurrentSlideNum() != GetNumSlides()) } +function StartEndShow() +{ +// g_hideNav = 1; +// PPTNav.location.reload(); + if( PPTSld.event ) PPTSld.event.cancelBubble=true + + doc=PPTSld.document + doc.open() + doc.writeln('


      ' + ENDSHOW_MESG + '

      ') + doc.close() +} +function SetSldVisited(){ gDocTable[gCurSld-1].mVisited=true } +function IsSldVisited(){ return gDocTable[gCurSld-1].mVisited } +function hrefList( sldHref, visible, sldIdx ) +{ + this.mSldHref= this.mNtsHref = sldHref + this.mSldIdx = sldIdx + this.mOrigVis= this.mVis = visible + this.mVisited= false +} +var gDocTable = new Array( + new hrefList("slide0001.htm", 1, 1), + new hrefList("slide0002.htm", 1, 2), + new hrefList("slide0003.htm", 1, 3), + new hrefList("slide0004.htm", 1, 4), + new hrefList("slide0005.htm", 1, 5), + new hrefList("slide0006.htm", 1, 6), + new hrefList("slide0007.htm", 1, 7), + new hrefList("slide0008.htm", 1, 8), + new hrefList("slide0009.htm", 1, 9), + new hrefList("slide0010.htm", 1, 10), + new hrefList("slide0011.htm", 1, 11), + new hrefList("slide0012.htm", 1, 12), + new hrefList("slide0013.htm", 1, 13), + new hrefList("slide0014.htm", 1, 14), + new hrefList("slide0015.htm", 1, 15), + new hrefList("slide0016.htm", 1, 16), + new hrefList("slide0017.htm", 1, 17), + new hrefList("slide0018.htm", 1, 18), + new hrefList("slide0019.htm", 1, 19), + new hrefList("slide0020.htm", 1, 20), + new hrefList("slide0021.htm", 1, 21), + new hrefList("slide0022.htm", 1, 22), + new hrefList("slide0023.htm", 1, 23), + new hrefList("slide0024.htm", 1, 24), + new hrefList("slide0025.htm", 1, 25), + new hrefList("slide0026.htm", 1, 26), + new hrefList("slide0027.htm", 1, 27), + new hrefList("slide0028.htm", 1, 28), + new hrefList("slide0029.htm", 1, 29), + new hrefList("slide0030.htm", 1, 30), + new hrefList("slide0031.htm", 1, 31), + new hrefList("slide0032.htm", 1, 32) +); + +function ImgBtn( oId,bId,w,action ) +{ + var t=this + t.Perform = _IBP + t.SetActive = _IBSetA + t.SetInactive= _IBSetI + t.SetPressed = _IBSetP + t.SetDisabled= _IBSetD + t.Enabled = _IBSetE + t.ChangeIcon = null + t.UserAction = action + t.ChgState = _IBUI + t.mObjId = oId + t.mBorderId= bId + t.mWidth = w + t.mIsOn = t.mCurState = 0 +} +function _IBSetA() +{ + if( this.mIsOn ) { + obj=this.ChgState( gHiliteClr,gShadowClr,2 ) + obj.style.posTop=0 + } +} +function _IBSetI() +{ + if( this.mIsOn ) { + obj=this.ChgState( gFaceClr,gFaceClr,1 ) + obj.style.posTop=0 + } +} +function _IBSetP() +{ + if( this.mIsOn ) { + obj=this.ChgState( gShadowClr,gHiliteClr,2 ) + obj.style.posLeft+=1; obj.style.posTop+=1 + } +} +function _IBSetD() +{ + obj=this.ChgState( gFaceClr,gFaceClr,0 ) + obj.style.posTop=0 +} +function _IBSetE( state ) +{ + var t=this + GetObj( t.mBorderId ).style.visibility="visible" + if( state != t.mIsOn ) { + t.mIsOn=state + if( state ) + t.SetInactive() + else + t.SetDisabled() + } +} +function _IBP() +{ + var t=this + if( t.mIsOn ) { + if( t.UserAction != null ) + t.UserAction() + if( t.ChangeIcon ) { + obj=GetObj(t.mObjId) + if( t.ChangeIcon() ) + obj.style.posLeft=obj.style.posLeft+(t.mCurState-4)*t.mWidth + else + obj.style.posLeft=obj.style.posLeft+(t.mCurState-0)*t.mWidth + } + t.SetActive() + } +} +function _IBUI( clr1,clr2,nextState ) +{ + var t=this + SetBorder( GetObj( t.mBorderId ),clr1,clr2 ) + obj=GetObj( t.mObjId ) + obj.style.posLeft=obj.style.posLeft+(t.mCurState-nextState)*t.mWidth-obj.style.posTop + t.mCurState=nextState + return obj +} +function TxtBtn( oId,oeId,action,chkState ) +{ + var t=this + t.Perform = _TBP + t.SetActive = _TBSetA + t.SetInactive= _TBSetI + t.SetPressed = _TBSetP + t.SetDisabled= _TBSetD + t.SetEnabled = _TBSetE + t.GetState = chkState + t.UserAction = action + t.ChgState = _TBUI + t.mObjId = oId + t.m_elementsId= oeId + t.mIsOn = 1 +} +function _TBSetA() +{ + var t=this + if( t.mIsOn && !t.GetState() ) + t.ChgState( gHiliteClr,gShadowClr,0,0 ) +} +function _TBSetI() +{ + var t=this + if( t.mIsOn && !t.GetState() ) + t.ChgState( gFaceClr,gFaceClr,0,0 ) +} +function _TBSetP() +{ + if( this.mIsOn ) + this.ChgState( gShadowClr,gHiliteClr,1,1 ) +} +function _TBSetD() +{ + this.ChgState( gFaceClr,gFaceClr,0,0 ) + this.mIsOn = 0 +} +function _TBSetE() +{ + var t=this + if( !t.GetState() ) + t.ChgState( gFaceClr,gFaceClr,0,0 ) + else + t.ChgState( gShadowClr,gHiliteClr,1,1 ) + t.mIsOn = 1 +} +function _TBP() +{ + var t=this + if( t.mIsOn ) { + if( t.UserAction != null ) + t.UserAction() + if( t.GetState() ) + t.SetPressed() + else + t.SetActive() + } +} +function _TBUI( clr1,clr2,lOffset,tOffset ) +{ + SetBorder( GetObj( this.mObjId ),clr1,clr2 ) + Offset( GetObj( this.m_elementsId ),lOffset,tOffset ) +} +function GetObj( objId ){ return document.all.item( objId ) } +function Offset( obj, top, left ){ obj.style.top=top; obj.style.left=left } +function SetBorder( obj, upperLeft, lowerRight ) +{ + s=obj.style; + s.borderStyle = "solid" + s.borderWidth = 1 + s.borderLeftColor = s.borderTopColor = upperLeft + s.borderBottomColor= s.borderRightColor = lowerRight +} +function GetBtnObj(){ return gBtnArr[window.event.srcElement.id] } +function BtnOnOver(){ b=GetBtnObj(); if( b != null ) b.SetActive() } +function BtnOnDown(){ b=GetBtnObj(); if( b != null ) b.SetPressed() } +function BtnOnOut(){ b=GetBtnObj(); if( b != null ) b.SetInactive() } +function BtnOnUp() +{ + b=GetBtnObj() + if( b != null ) + b.Perform() + else + Upd() +} +function GetNtsState(){ return parent.gNtsOpen } +function GetOtlState(){ return parent.gOtlOpen } +function GetOtlTxtState(){ return parent.gOtlTxtExp } +function NtsBtnSetFlag( fVal ) +{ + s=document.all.item( this.m_flagId ).style + s.display="none" + if( fVal ) + s.display="" + else + s.display="none" +} + +var gHiliteClr="THREEDHIGHLIGHT",gShadowClr="THREEDSHADOW",gFaceClr="THREEDFACE" +var gBtnArr = new Array() +gBtnArr["nb_otl"] = new TxtBtn( "nb_otl","nb_otlElem",parent.ToggleOtlPane,GetOtlState ) +gBtnArr["nb_nts"] = new TxtBtn( "nb_nts","nb_ntsElem",parent.ToggleNtsPane,GetNtsState ) +gBtnArr["nb_prev"]= new ImgBtn( "nb_prev","nb_prevBorder",30,parent.GoToPrevSld ) +gBtnArr["nb_next"]= new ImgBtn( "nb_next","nb_nextBorder",30,parent.GoToNextSld ) +gBtnArr["nb_sldshw"]= new ImgBtn( "nb_sldshw","nb_sldshwBorder",18,parent.FullScreen ) +gBtnArr["nb_voice"] = new ImgBtn( "nb_voice","nb_voiceBorder",18,parent.ToggleVNarration ) +gBtnArr["nb_otlTxt"]= new ImgBtn( "nb_otlTxt","nb_otlTxtBorder",23,parent.ToggleOtlText ) +gBtnArr["nb_nts"].m_flagId= "notes_flag" +gBtnArr["nb_nts"].SetFlag = NtsBtnSetFlag +gBtnArr["nb_otlTxt"].ChangeIcon= GetOtlTxtState +var sNext="Next",sPrev="Previous",sEnd="End Show",sFont="Arial", alwaysOn = false +function ShowMenu() +{ + BuildMenu(); + var doc=PPTSld.document.body,x=PPTSld.event.clientX+doc.scrollLeft,y=PPTSld.event.clientY+doc.scrollTop + + m = PPTSld.document.all.item("ctxtmenu") + m.style.pixelLeft=x + if( (x+m.scrollWidth > doc.clientWidth)&&(x-m.scrollWidth > 0) ) + m.style.pixelLeft=x-m.scrollWidth + + m.style.pixelTop=y + if( (y+m.scrollHeight > doc.clientHeight)&&(y-m.scrollHeight > 0) ) + m.style.pixelTop=y-m.scrollHeight + + m.style.display="" +} +function _CM() +{ + if( !parent.IsFullScrMode() && !alwaysOn) return; + + if(!PPTSld.event.ctrlKey) { + ShowMenu() + return false + } else + HideMenu() +} + +function processNavKPH(event) { + if ( PPTSld && (event.keyCode != 13 || !event.srcElement.href || event.srcElement.href == "" ) ) + return PPTSld._KPH(event); +} +function processNavClick() { + HideMenu(); + return true; +} +function BuildMenu() +{ + if( PPTSld.document.all.item("ctxtmenu") ) return + + var mObj=CreateItem( PPTSld.document.body ) +mObj.id="ctxtmenu" + var s=mObj.style + s.position="absolute" + s.cursor="default" + s.width="100px" + SetCMBorder(mObj,"menu","black") + + var iObj=CreateItem( mObj ) + SetCMBorder( iObj, "threedhighlight","threedshadow" ) + iObj.style.padding=2 + if ( self.IsFullScrMode() ) { + CreateMenuItem( iObj,sNext,M_GoNextSld,M_True ) + CreateMenuItem( iObj,sPrev,M_GoPrevSld,M_HasPrevSld ) + } + else { + CreateMenuItem( iObj,sNext, base.TP_GoToNextSld, base.HasNextSld ) + CreateMenuItem( iObj,sPrev,base.GoToPrevSld, base.HasPrevSld ) + } + var sObj=CreateItem( iObj ) + SetCMBorder(sObj,"menu","menu") + var s=sObj.style + s.borderTopColor="threedshadow" + s.borderBottomColor="threedhighlight" + s.height=1 + s.fontSize="0px" + if ( self.IsFullScrMode() ) + CreateMenuItem( iObj,sEnd,M_End,M_True ) + else + CreateMenuItem( iObj,sEnd,M_End,M_False ) +} +function Highlight() { ChangeClr("activecaption","threedhighlight") } +function Deselect() { ChangeClr("threedface","menutext") } +function Perform() +{ + e=PPTSld.event.srcElement + if( e.type=="menuitem" && e.IsActive() ) + e.Action() + else + PPTSld.event.cancelBubble=true +} +function ChangeClr( bg,clr ) +{ + e=PPTSld.event.srcElement + if( e.type=="menuitem" && e.IsActive() ) { + e.style.backgroundColor=bg + e.style.color=clr + } +} + +function M_HasPrevSld() { return( base.HasPrevSld() ) } +function M_GoNextSld() { + base.SetFSMode(1); + if( gIsEndShow ) + M_End(); + else { + if ( base.HasNextSld() ) + base.GoToNextSld(); + else if ( base.EndSlideShow ) { + StartEndShow(); + gIsEndShow = 1; + + PPTNav.location.reload(); + } + else + base.CloseFullScreen(); + } +} +function M_GoPrevSld() { + base.SetFSMode(1); + g_hideNav = 0; + if( gIsEndShow ) { + gIsEndShow = 0; + if ( base.msie > 0 && IsMac() ) + ChangeFrame( SLIDE_FRAME, GetHrefObj( g_currentSlide ).m_slideHref ); + else + PPTSld.history.back(); + + PPTNav.location.reload(); + if( PPTSld.event ) + PPTSld.event.cancelBubble=true; + } + else + base.GoToPrevSld(); +} +function M_True() { return true } +function M_False() { return false } + +function M_End() { + base.CloseFullScreen(); + /*PPTSld.event.cancelBubble=true; + window.close( self )*/ +} + +function CreateMenuItem( node,text,action,eval ) +{ + var e=CreateItem( node ) + e.type="menuitem" + e.Action=action + e.IsActive=eval + e.innerHTML=text + + if( !e.IsActive() ) + e.style.color="threedshadow" + e.onclick=Perform + e.onmouseover=Highlight + e.onmouseout=Deselect + s=e.style; + s.fontFamily=sFont + s.fontSize="8pt" + s.paddingLeft=2 +} +function CreateItem( node ) +{ + var elem=PPTSld.document.createElement("DIV") + node.insertBefore( elem ) + return elem +} +function SetCMBorder( o,ltClr,rbClr ) +{ + var s=o.style + s.backgroundColor="menu" + s.borderStyle="solid" + s.borderWidth=1 + s.borderColor=ltClr+" "+rbClr+" "+rbClr+" "+ltClr +} + +/* netscape context menu */ +g_ctxmenu = 0; +function setRect( obj, X, Y, W, H ) { + obj.top = Y; + obj.left = X; + obj.clip.top = 0; + obj.clip.left = 0; + obj.clip.bottom = H; + obj.clip.right = W; +} + +function KPH(event) { + if ( ! base.IsFullScrMode() && !alwaysOn ) + return true; + + if ( (!IsMac() &&event.which == 3) || ( IsMac() && (event.modifiers & Event.CONTROL_MASK) && event.which == 1 ) ) { + PPTSld.g_ctxmenu = 1; + PPTSld.stripUobj.visibility = "show"; + PPTSld.stripDobj.visibility = "show"; + PPTSld.shadeUobj.visibility = "show"; + PPTSld.shadeDobj.visibility = "show"; + PPTSld.panelobj.visibility = "show"; + PPTSld.Fobj.visibility = "show"; + PPTSld.Bobj.visibility = "show"; + PPTSld.Eobj.visibility = "show"; + + setRect(PPTSld.shadeUobj, event.pageX-2, event.pageY-2, 82, 67 ); + setRect(PPTSld.shadeDobj, event.pageX, event.pageY, 82, 67 ); + setRect(PPTSld.panelobj, event.pageX, event.pageY, 80, 65 ); + setRect(PPTSld.Fobj, event.pageX, event.pageY, 80, 20 ); + setRect(PPTSld.Bobj, event.pageX, event.pageY+20, 80, 20 ); + setRect(PPTSld.stripUobj, event.pageX, event.pageY+41, 80, 1 ); + setRect(PPTSld.stripDobj, event.pageX, event.pageY+43, 80, 1 ); + setRect(PPTSld.Eobj, event.pageX, event.pageY+45, 80, 20 ); + return false; + } + if ( HitOK( event ) ) { + PPTSld.g_ctxmenu = 0; + PPTSld.stripUobj.visibility = "hide"; + PPTSld.stripDobj.visibility = "hide"; + PPTSld.shadeUobj.visibility = "hide"; + PPTSld.shadeDobj.visibility = "hide"; + PPTSld.panelobj.visibility = "hide"; + PPTSld.Fobj.visibility = "hide"; + PPTSld.Bobj.visibility = "hide"; + PPTSld.Eobj.visibility = "hide"; + } + return true; +} + +function overMe() { + this.bgColor = "blue"; +} + +function outMe() { + this.bgColor = "#AAAAAA"; +} + +function makeElement( whichEl, whichContainer ) { + if ( arguments.length == 1 ) { + whichContainer = PPTSld; + } + tmp = new Layer(100,whichContainer); + eval( whichEl + " = tmp" ); + return eval(whichEl); +} + +function initMe( obj, clr, text ) { + obj.bgColor = clr; +// obj.document.write("" + text + ""); + obj.document.write( "   " + text +" "); + obj.document.close(); + obj.captureEvents(Event.CLICK); + obj.color = "black"; +} + +function createCM() { + if ( base.IsFullScrMode() ) { + var clr = "#AAAAAA"; + PPTSld.shadeUobj = makeElement("SHADEU"); + PPTSld.shadeDobj = makeElement("SHADED"); + PPTSld.panelobj = makeElement("PANEL"); + PPTSld.stripUobj = makeElement("STRIPU"); + PPTSld.stripDobj = makeElement("STRIPD"); + PPTSld.shadeUobj.bgColor = "#BBBBBB"; + PPTSld.shadeDobj.bgColor = "#888888"; + PPTSld.stripUobj.bgColor = "#777777"; + PPTSld.stripDobj.bgColor = "#CCCCCC"; + PPTSld.panelobj.bgColor = clr; + PPTSld.Fobj = makeElement("Next"); + PPTSld.Bobj = makeElement("Previous"); + PPTSld.Eobj = makeElement("EndShow"); + initMe( PPTSld.Fobj, clr, "Next" ); + PPTSld.Fobj.onclick = M_GoNextSld; + + initMe( PPTSld.Bobj, clr, "Previous" ); + PPTSld.Bobj.onclick = M_GoPrevSld; + + initMe( PPTSld.Eobj, clr, "End Show"); + PPTSld.Eobj.onclick = base.CloseFullScreen; + } +} + +function IsContextMenu() { + return (g_ctxmenu == 1) +} +var g_notesTable = new Array() +var g_hiddenSlide = new Array() +makeSlide( 0,1,1); +makeSlide( 1,1,1); +makeSlide( 2,1,1); +makeSlide( 3,1,1); +makeSlide( 4,1,1); +makeSlide( 5,1,1); +makeSlide( 6,1,1); +makeSlide( 7,1,1); +makeSlide( 8,1,1); +makeSlide( 9,1,1); +makeSlide( 10,1,1); +makeSlide( 11,1,1); +makeSlide( 12,1,1); +makeSlide( 13,1,1); +makeSlide( 14,1,1); +makeSlide( 15,1,1); +makeSlide( 16,1,1); +makeSlide( 17,1,1); +makeSlide( 18,1,1); +makeSlide( 19,1,1); +makeSlide( 20,1,1); +makeSlide( 21,1,1); +makeSlide( 22,1,1); +makeSlide( 23,1,1); +makeSlide( 24,1,1); +makeSlide( 25,1,1); +makeSlide( 26,1,1); +makeSlide( 27,1,1); +makeSlide( 28,1,1); +makeSlide( 29,1,1); +makeSlide( 30,1,1); +makeSlide( 31,1,1); + +var END_SHOW_HREF = "endshow.htm", + OUTLINE_EXPAND_HREF = "outline_expanded.htm", + OUTLINE_COLLAPSE_HREF = "outline_collapsed.htm", + OUTLINE_NAVBAR_HREF = "outline_navigation_bar.htm", + NAVBAR_HREF = "navigation_bar.htm", + BLANK_NOTES_HREF = "blank_notes.htm", + NUM_VISIBLE_SLIDES = 32, + SIMPLE_FRAMESET = 0, + SLIDE_FRAME = "PPTSld", + NOTES_FRAME = "PPTNts", + OUTLINE_FRAME = "PPTOtl", + OUTLINE_NAVBAR_FRAME = "PPTOtlNav", + NAVBAR_FRAME = "PPTNav", + MAIN_FRAME = "MainFrame", + FS_NAVBAR_HREF = "fs_navigation_bar.htm", + isIEFiles = 2, + isNAVFiles = 8, + isFLATFiles = 16, + includeNotes = 1, + PPTPRESENTATION = 1; +var INITSLIDENUM = 1; + +var EndSlideShow = 0; +var g_outline_href = OUTLINE_COLLAPSE_HREF; +var g_fullscrMode = 0; +var FSWin = null; +var gtmpstr = document.location.href; +var g_baseURL = gtmpstr.substr(0, gtmpstr.lastIndexOf("/") ) + "/" + "WebQTLDemo_files"; +var g_showoutline = 1; +var g_shownotes = includeNotes; +var g_currentSlide = INITSLIDENUM, g_prevSlide = INITSLIDENUM; +var saveFSSlideNum = saveTPSlideNum = g_currentSlide; +var saveFSprevSlide = saveTPprevSlide = g_prevSlide; +var g_slideType="ie"; +var appVer = navigator.appVersion; +var msie = appVer.indexOf( "MSIE " ) + appVer.indexOf( "Internet Explorer " ); +var isnav = ( navigator.appName.indexOf( "Netscape" ) >= 0 ); +var msieWin31 = (appVer.indexOf( "Windows 3.1" ) > 0); +var ver = 0; +var g_done = 0; +var g_prevotlobjidx = 0; +var g_ShowFSDefault = 0; +var g_lastVisibleSld = 1; +var g_allHidden = false; +function IsIE() { + return (msie >= 0 ); +} + +function IsNav() { + return (isnav); +} +var msiePos = appVer.indexOf( "MSIE " ); +var inexPos = appVer.indexOf( "Internet Explorer " ); +if ( msiePos >= 0 ) + ver = parseFloat( appVer.substring( msiePos+5, appVer.indexOf ( ";", msiePos ) ) ); +else if( inexPos >= 0 ) + ver=parseFloat( appVer.substring( inexPos+18, appVer.indexOf(";",inexPos) ) ) +else + ver = parseInt( appVer ); + +//var g_supportsPPTHTML = 0; //!msieWin31 && ( ( msie >= 0 && ver >= 3.02 ) || ( msie < 0 && ver >= 3 ) ); + +function GetCurrentSlideNum() +{ + obj = GetHrefObj( g_currentSlide ); + if ( GetHrefObj( g_currentSlide ).m_origVisibility == 1 ) + return obj.m_slideIdx; + else + return g_currentSlide; +} + +function GetNumSlides() +{ + if ( GetHrefObj( g_currentSlide ).m_origVisibility == 1 ) + return NUM_VISIBLE_SLIDES; + else + return g_docTable.length; +} + +function GetHrefObj( slideIdx ) +{ return g_docTable[slideIdx - 1]; +} + +function GetSlideNum( slideHref ) +{ + for (ii=0; ii 0 ) { + obj = GetHrefObj( targetIdx ); + while ( ( obj.m_visibility == 0 ) && ( targetIdx>0 ) ) + obj = GetHrefObj( targetIdx-- ); + GoToSld( obj.m_slideHref ); + } +} + +function GoToLast() +{ + targetIdx = g_docTable.length; + if ( targetIdx != g_currentSlide ) + GoToSld( GetHrefObj( targetIdx ).m_slideHref ); +} + +function GoToFirst() +{ GoToSld( GetHrefObj(1).m_slideHref ); +} + +function highlite() { + if ( IsFullScrMode() ) + return; + index = GetCurrentSlideNum(); + if ( !frames[MAIN_FRAME].frames[OUTLINE_FRAME] ) + return; + if ( msie < 0 ) { + if ( g_prevotlobjidx != 0 ) { + eval( "otlobj = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.LAYERID" + g_prevotlobjidx ); + otlobj.hidden = true; + } + else + index = GetCurrentSlideNum(); + eval( "otlobj = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.LAYERID" + index ); + otlobj.hidden = false; + + g_prevotlobjidx = index; + + return; + } + if ( !g_showoutline ) + return; + + backclr = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.body.bgColor; + textclr = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.body.text; + if ( g_prevotlobjidx != 0 ) { + eval( "otlobj = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.all.p" + g_prevotlobjidx ); + otlobj.style.backgroundColor = backclr; + otlobj.style.color = textclr; + otlobj.all.AREF.style.color = textclr; + } + else + index = GetCurrentSlideNum(); + eval( "otlobj = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.all.p" + index ); + otlobj.style.backgroundColor = textclr; + otlobj.style.color = backclr; + otlobj.all.AREF.style.color = backclr; + g_prevotlobjidx = index; +} + +function ChangeFrame( frame, href ) +{ +if ( IsFramesMode() ) { + if ( NAVBAR_FRAME == frame || OUTLINE_NAVBAR_FRAME == frame ) { + frames[frame].location.replace(href); + } + else if( ! ( ( OUTLINE_FRAME == frame && !g_showoutline) || (NOTES_FRAME == frame && !g_shownotes ) ) ){ + frames[MAIN_FRAME].frames[frame].location.href = href; + } + } + else { + if ( frame == NAVBAR_FRAME || frame == SLIDE_FRAME ) { + if( frame == NAVBAR_FRAME ) { + href = FS_NAVBAR_HREF; + + } + if( frame == NAVBAR_FRAME ) + window.frames[frame].location.replace(href); + else + window.frames[frame].location.href = href; + } + } + +} + +function shutEventPropagation() { + if ( IsNav() ) + return; + + var slideFrame; + if ( IsFramesMode() ) + slideFrame = frames[MAIN_FRAME].frames[SLIDE_FRAME]; + else + slideFrame = window.frames[SLIDE_FRAME]; + if ( slideFrame.event ) + slideFrame.event.cancelBubble=true; +} + +function GoToSld( slideHref ) +{ + shutEventPropagation(); + if ( slideHref != GetHrefObj( g_currentSlide ).m_slideHref || g_slideType != GetHrefObj( g_currentSlide ).type) { + g_prevSlide = g_currentSlide; + g_currentSlide = GetSlideNum( slideHref ); + g_slideType = GetHrefObj( g_currentSlide ).type; + obj = GetHrefObj( g_currentSlide ); + obj.m_visibility = 1; + ChangeFrame( SLIDE_FRAME, slideHref ); + if( !SIMPLE_FRAMESET ) + ChangeFrame( NOTES_FRAME, obj.m_notesHref ); + ChangeFrame( NAVBAR_FRAME, NAVBAR_HREF ); + + } +} + +function PrevSldViewed() +{ GoToSld( GetHrefObj( g_prevSlide ).m_slideHref ); +} + +function NoHref() {} + +function ExpandOutline( ) +{ + g_outline_href = OUTLINE_EXPAND_HREF; + ChangeFrame( OUTLINE_FRAME, OUTLINE_EXPAND_HREF ); + frames[OUTLINE_NAVBAR_FRAME].location.replace( OUTLINE_NAVBAR_HREF); +} + +function CollapseOutline() +{ + g_outline_href = OUTLINE_COLLAPSE_HREF; + ChangeFrame( OUTLINE_FRAME, OUTLINE_COLLAPSE_HREF ); + frames[OUTLINE_NAVBAR_FRAME].location.replace( OUTLINE_NAVBAR_HREF); + } + +function SlideUpdated( id ) +{ + if ( id != GetHrefObj( g_currentSlide ).m_slideHref ) { + g_prevSlide = g_currentSlide; + g_currentSlide = GetSlideNum( id ); + obj = GetHrefObj( g_currentSlide ); + if( !SIMPLE_FRAMESET ) + ChangeFrame( NOTES_FRAME, obj.m_notesHref ); + ChangeFrame( NAVBAR_FRAME, NAVBAR_HREF ); + } +} + +function hrefList( slideHref, notesHref, visible, slideIdx, type ) +{ + this.m_slideHref = slideHref; + this.m_notesHref = notesHref; + this.m_navbarHref = NAVBAR_HREF; + this.m_origVisibility = visible; + this.m_visibility = visible; + this.m_slideIdx = slideIdx; + this.type = type; +} + +function IsFullScrMode() { + return g_fullscrMode; +} + + +function IsFramesMode() { + return (1 - g_fullscrMode); +} + +function SldUpdated( id ) +{ + if ( ( id != GetHrefObj( g_currentSlide ).m_slideHref ) || ( g_currentSlide == g_lastVisibleSld ) ){ + g_prevSlide = g_currentSlide; + g_currentSlide = GetSlideNum( id ); + obj = GetHrefObj( g_currentSlide ); + if( !SIMPLE_FRAMESET ) + ChangeFrame( NOTES_FRAME, obj.m_notesHref ); + ChangeFrame( NAVBAR_FRAME, NAVBAR_HREF ); + } +} + +function ToggleOutline() { + g_showoutline = 1 - g_showoutline; + writeMyFrame(); +} + +function ShowHideNotes() { + g_shownotes = 1 - g_shownotes; + writeMyFrame(); +} + +function writeMyFrame() { + SetFSMode(0); + obj = frames[MAIN_FRAME]; + + var curslide = g_baseURL + "/" + GetHrefObj( g_currentSlide ).m_slideHref; + var curnotes = g_baseURL + "/" + GetHrefObj( g_currentSlide ).m_notesHref; + var otlhref = g_baseURL + "/" + g_outline_href; + if ( msie < 0 ) { + if ( ! g_showoutline && g_shownotes ) { + obj.document.write( ' \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0001_image001.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0001_image001.gif new file mode 100755 index 00000000..5bcd338f Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0001_image001.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0001_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0001_notes_pane.htm new file mode 100755 index 00000000..0df634c1 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0001_notes_pane.htm @@ -0,0 +1,5 @@ +
      Welcome to a short demonstation of WebQTL. Please adjust the wize of windows on your monitor so that you can see part of this page as well as WebQTL windows. WebQTL will produce a potentially large number of new windows (pop-ups), so you may need to modify your browser preferences to permit pop-ups.   In this demonstration, we explore one important transcript expressed in the brain: the amyloid beta precursor protein messenger RNA. The product of this mRNA, the APP protein, is associated with Alzheimer disease.

      (Initial version of June 2003 by Rob Williams, Last edits June 16, 2003 by RW.)
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0002.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0002.htm new file mode 100755 index 00000000..2efd97f9 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0002.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0002_image002.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0002_image002.gif new file mode 100755 index 00000000..304daa18 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0002_image002.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0002_image003.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0002_image003.gif new file mode 100755 index 00000000..74f73adc Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0002_image003.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0002_image004.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0002_image004.gif new file mode 100755 index 00000000..1da7043d Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0002_image004.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0002_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0002_notes_pane.htm new file mode 100755 index 00000000..266bf3fb --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0002_notes_pane.htm @@ -0,0 +1,5 @@ +
      WebQTL can be used to enter your own trait data or to work with data that we have entered for you.
      Linking to http://www.webqtl.org/search.html will get you a version of the window above. It may not be identical in layout but it will have the key features. Please follow the intructions on the slide. Of course, we encourage you to enter your own terms of interest.

      Two points: If you make a search term too complex you may get no hits. if you make it too simple (for example, APP) then you may get too much. Experiment.

      If you just link to
      http://www.webqtl.org you will NOT see the window above but will see text that will help you to enter your own data.  To get to a version of the window shown above you will need to click on the phrase  RNA expression and Phenotype Databases in the upper banner.

      If you do not get a new page within 30 seconds then there is  a problem: try the mirror site http://webqtl.org/search.html.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0003.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0003.htm new file mode 100755 index 00000000..7e0f4be9 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0003.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0003_image005.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0003_image005.gif new file mode 100755 index 00000000..5c7d29e8 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0003_image005.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0003_image006.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0003_image006.gif new file mode 100755 index 00000000..f75379b9 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0003_image006.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0003_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0003_notes_pane.htm new file mode 100755 index 00000000..5dbbbd2e --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0003_notes_pane.htm @@ -0,0 +1,5 @@ +
      If all goes well, you will see a version of this window. WebQTL will display up to about 100 hits. If a search generates larger numbers of hits then you will need to refine your search terms.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0004.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0004.htm new file mode 100755 index 00000000..9980cf8b --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0004.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0004_image007.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0004_image007.gif new file mode 100755 index 00000000..db14d732 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0004_image007.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0004_image008.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0004_image008.gif new file mode 100755 index 00000000..8ac35a66 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0004_image008.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0004_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0004_notes_pane.htm new file mode 100755 index 00000000..22def119 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0004_notes_pane.htm @@ -0,0 +1,5 @@ +
      The Trait Data and Editing Form is the single more important page from the point of view of working with WebQTL data. Please read the text carefully. Explore the links, but do not close this page. We will need it many more times in this demonstration.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0005.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0005.htm new file mode 100755 index 00000000..ab904a72 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0005.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0005_image009.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0005_image009.gif new file mode 100755 index 00000000..a6596e12 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0005_image009.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0005_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0005_notes_pane.htm new file mode 100755 index 00000000..916084ec --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0005_notes_pane.htm @@ -0,0 +1,5 @@ +
      There are already five databases in WebQTL. Each will eventually have a page like this describing the data source and appropriate citations to these databases. The great majority of data in WebQTL were generated in our own labs and those of our collaborators.  We welcome you to use these data, but caution you that there are inevitably lots of little problems and issues that may compromise some results. Be cautious and skeptical. Ask us questions before you leap to publication. And please, if you find the data useful or can verify or refute data, LET US KNOW. We would like to add you to our reference section and add links to improvements.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0006.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0006.htm new file mode 100755 index 00000000..f3d4d1d5 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0006.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0006_image010.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0006_image010.gif new file mode 100755 index 00000000..967e59ca Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0006_image010.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0006_image011.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0006_image011.gif new file mode 100755 index 00000000..1e1432cf Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0006_image011.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0006_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0006_notes_pane.htm new file mode 100755 index 00000000..be43575c --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0006_notes_pane.htm @@ -0,0 +1,5 @@ +
      This  slide shows you the  lower parts of the Trait Data Page. We expect to make many small modification of this page, so do not be surprised if some elements have been moved around.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0007.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0007.htm new file mode 100755 index 00000000..052d2dcf --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0007.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0007_image012.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0007_image012.gif new file mode 100755 index 00000000..9cde2f15 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0007_image012.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0007_image013.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0007_image013.gif new file mode 100755 index 00000000..df9c9efb Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0007_image013.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0007_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0007_notes_pane.htm new file mode 100755 index 00000000..7d2536da --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0007_notes_pane.htm @@ -0,0 +1,5 @@ +
      Finally, we can now start an analysis.
      We ask a simple question:
      Do differences in App transcript expression correlate with those of any other transcripts in the forebrain?
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0008.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0008.htm new file mode 100755 index 00000000..7b1d488d --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0008.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0008_image014.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0008_image014.gif new file mode 100755 index 00000000..d555e779 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0008_image014.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0008_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0008_notes_pane.htm new file mode 100755 index 00000000..5003f4a6 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0008_notes_pane.htm @@ -0,0 +1,5 @@ +
      The answer is a strong Yes. A very large number of transcripts have correlations above 0.7 (absolute value) with App mRNA. The precise number today is 208. But this will change as we add more strains and arrays. In any case, this is a fairly large number and all of these correlations are significant at alpha .05 even when correcting for the enormous numbers  of tests (12422 tests).

      What does this imply?

      That there can be massive codependence of expression variance among transcripts. App is NOT an isolated instance. This is improtant biologically and statistically. From a statistical perspective, we would like to know how many ÒindependentÓ test we effectively are performing when we use array data in this way. Are we testing 12000 independent transcripts or just 1200 transcriptional ÒmodulesÓ each with blurred boarders but each with about 10 effective members. There is no answer yet, but we probaby have a large enough data set to begin to answer this question.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0009.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0009.htm new file mode 100755 index 00000000..82b93d4f --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0009.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0009_image015.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0009_image015.gif new file mode 100755 index 00000000..4e9f96be Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0009_image015.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0009_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0009_notes_pane.htm new file mode 100755 index 00000000..bdcc6cd9 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0009_notes_pane.htm @@ -0,0 +1,5 @@ +
      Many of the data types in the previous slide are hot-linked and it is easy to generate a small web of correlations between any transcript of interest and many other transcripts. In this case, we have used green lines between transcripts that have positive correlations, and red lines between transcripts that have negative correlations. Correlations have been multiplied by 100. The correlation of 0.96 between App and Hsp84-1 reads 96.  These are Pearson product moment correlations and they are sensitive to outliers. If you prefer, you can recompute Spearman rank order correlations.

      Where did Ndr4 (lower left) come from? It is not in the list in the previous slide. Actually it is. Nomenclature changes rapidly. If you click on R74996 in the previous slide (the active webqtl version) you will see that it now has a new symbol and name.

      What are all of the  conventions in this correlation network sketch.
      1.The official gene symbol = App
      2. OUr estimate of the location of these gene in the Mouse Genome Sequencing Consoritum version 3 build (MGSCv3). Chromosome followed by the megabase position relative to the centromere. (Mice only have one chromosome arm so this is an unambiguous coordinate. )
      3. The pair of numbers: top is the highest expression among the strain set. The lower number is the lowest expression of that transcript among the strain set.
      4. Vertical number on the right side of each box: this is the probe set ID given by Affymetrix. We have truncated these probe set IDs so you will not see the usual  ÒatÓ. A single gene may be represented by more than 10 probe sets. Thus this ID number is essential to identify the actual data source.
      5. Lower right corner: a two digit number followed by plus and minus signs. These numbers are the correlation value (absolute value) of the 100th best correlated transcript. The plus and minus signs indicate the mean polarity of the correlations.
      6. The set of numbers that read 2@140* etc. These are the approximate locations of additive effect QTLs detected by WebQTL that we will describe in other slides. Read this as: App has a suggestive QTL on Chr 2 at about 140 Mb and the D allele inherited from DBA/2J confirms a higher expression level at this marker.  If there is no star symbol, then it is not even formally ÒsuggestiveÓ but does make an interesting looking blip on the QTL radar screen.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0010.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0010.htm new file mode 100755 index 00000000..07768218 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0010.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0010_image016.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0010_image016.gif new file mode 100755 index 00000000..6bec6eee Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0010_image016.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0010_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0010_notes_pane.htm new file mode 100755 index 00000000..2b497618 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0010_notes_pane.htm @@ -0,0 +1,5 @@ +
      What networks are likely to really look like. This slide is taken from Lumeta Inc.  (www.lumeta.com). It actually illustrates the structure of connections across the  Internet. The large green area is a major Internet provider (WorldCom before the fall?).  Check  out Lumeta to see some more lovely graphs of this sort. Most biologists are familiar with simple sketches, but this is what we will have to be prepared to contend with soon.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0011.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0011.htm new file mode 100755 index 00000000..0da85156 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0011.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0011_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0011_notes_pane.htm new file mode 100755 index 00000000..214c9e08 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0011_notes_pane.htm @@ -0,0 +1,5 @@ +
      Having worked with WebQTL now for 30 minutes, do we know anything new? The hypothesis that we have generated (but not validated) is that three transcripts: Atp6l, Gnas, and Ndr4 are part of a family of genes that are coregulated in normal mouse forebrain with App and Hsp84-1. We need to add functional and mechanistic significance to this hypothesis to make it biologically vibrant. But from a statiistical standpoint it is a strong inference.

      Please donÕt say: But these are mere correlations. A high correlation in this context has a biological basis. The real question is are we smart enough to understand the web (not chain) of causality that produced the correlation. Once we understand the web of causality, does it have utility? Very often the answer will be NO. This will often be the case when a high correlation is generated by linkage disequilibrium of sets of polymorphisms that modulate a set of mechanistically separated traits. Chromosomal linkage can produce correlations that are not mechanistic in the conventional sense used by molecular biologists. For example, clusters  of hox transcription factor genes tend to be close physically to keratin gene clusters, and one might expect shared patterns of variance produced by this linkage in a mapping panel, no matter how large.

      If Affymetrix designed probe sets with reasonable care, if we did the experiments correctly, if we sampled animals appropriately, then a correlation of 0.70 or higher between transcripts in the brain tells you that these two transcripts are effectively coupled in this set of animals under this set of conditions. More than 50% the variance in the expression of one transcript can be predicted from the other. That is a major piece of information that could be of significant clinical, economic, and predictive value, whatever its causes. Yes, correlation coefficients are noisy and have large error terms, but we have larger n of strains coming to the rescue. Expect more than 50 BXD lines soon.

      This is a thin veneer of functional genomics. It is enough to generate some marvelous hypotheses in a semi-automated way.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0012.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0012.htm new file mode 100755 index 00000000..3dae7024 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0012.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0012_image017.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0012_image017.gif new file mode 100755 index 00000000..e72a2bed Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0012_image017.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0012_image018.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0012_image018.gif new file mode 100755 index 00000000..7f4ca288 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0012_image018.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0012_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0012_notes_pane.htm new file mode 100755 index 00000000..0380a033 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0012_notes_pane.htm @@ -0,0 +1,5 @@ +
      The correlation between App and heat shock protein 84-1 transcript is most impressive.  Since WebQTL now contains total of about 70,000 traits in the BXD strains, we could produce as many as to 70k x 35k scatter plots of this type. Since all of the  correlations come for a common reference population, none  of the correlations are blantantly silly. However the great majority may be uninterpretable and a very large number may be meaningless given the signal-to-noise ratios of some measurements. With about 30 strains, correlations above 0.7 have a reasonably low false positive rate.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0013.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0013.htm new file mode 100755 index 00000000..223f93fb --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0013.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0013_image019.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0013_image019.gif new file mode 100755 index 00000000..06da89a2 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0013_image019.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0013_image020.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0013_image020.gif new file mode 100755 index 00000000..0f0c6e98 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0013_image020.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0013_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0013_notes_pane.htm new file mode 100755 index 00000000..642ca80b --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0013_notes_pane.htm @@ -0,0 +1,5 @@ +
      We can compare App expression inthe forebrain against transcript expression in hematopoietic stem cells. Some of these correlations are significant, but it may be difficult to discovery of shared genetic (linkage disequilibrium) or molecular processes that give rise to these correlation.

      The GNF Hematopoietic stem cell data belong to Gerald de Haan (University of Groningen) and Michael Cooke (Genomics Institute of the Novartis Research Foundation).
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0014.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0014.htm new file mode 100755 index 00000000..c0c82256 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0014.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0014_image021.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0014_image021.gif new file mode 100755 index 00000000..554d9257 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0014_image021.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0014_image022.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0014_image022.gif new file mode 100755 index 00000000..6e967236 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0014_image022.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0014_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0014_notes_pane.htm new file mode 100755 index 00000000..4750bc2e --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0014_notes_pane.htm @@ -0,0 +1,5 @@ +
      Another example, but in this case we are generating correlations between variation in transcript levels with a database of approximately 430 published (and unpublished) phenotypes from BXD strains. Notice that the N of strains is variable (from 21 to 28 above). Rank order statistics is more appropriate when N is under 30.

      The Published Phenotypes database was prepared by Elissa Chesler and Robert Williams from data extracted from the literature or sent to us for inclusion by our colleagues. We especially thank John Crabbe (Oregon HSU) and Byron Jones (Pennsylvania SU) for providing us with large pre-compiled data tables.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0015.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0015.htm new file mode 100755 index 00000000..5e01bacc --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0015.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0015_image023.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0015_image023.gif new file mode 100755 index 00000000..5bcd338f Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0015_image023.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0015_image024.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0015_image024.gif new file mode 100755 index 00000000..550aeeb6 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0015_image024.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0015_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0015_notes_pane.htm new file mode 100755 index 00000000..e17d3a52 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0015_notes_pane.htm @@ -0,0 +1,5 @@ +
      Part 2: Mapping upstream modulators or QTLs. A quantitative trait locus is a chromosomal region that harbors one or a few polymorphic gene loci that influence a trait. We are going to be looking for QTLs that modulate the steady state expression level of App in the adult mouse forebrain.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0016.htm new file mode 100755 index 00000000..22b9419b --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0016.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image025.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image025.gif new file mode 100755 index 00000000..8d9c9c1c Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image025.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image026.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image026.gif new file mode 100755 index 00000000..dbd66f42 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image026.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image027.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image027.gif new file mode 100755 index 00000000..dbd66f42 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image027.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image028.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image028.gif new file mode 100755 index 00000000..154d7365 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image028.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image029.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image029.gif new file mode 100755 index 00000000..1abab915 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image029.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image030.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image030.gif new file mode 100755 index 00000000..69ef631f Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image030.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image031.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image031.gif new file mode 100755 index 00000000..5667a634 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image031.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image032.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image032.gif new file mode 100755 index 00000000..5667a634 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image032.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image033.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image033.gif new file mode 100755 index 00000000..0242d92d Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image033.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image034.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image034.gif new file mode 100755 index 00000000..727cf43d Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image034.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image035.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image035.gif new file mode 100755 index 00000000..0e054c6a Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image035.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image036.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image036.gif new file mode 100755 index 00000000..ce6267c4 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image036.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image037.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image037.gif new file mode 100755 index 00000000..ce6267c4 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image037.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image038.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image038.gif new file mode 100755 index 00000000..0cb22f12 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image038.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image039.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image039.gif new file mode 100755 index 00000000..e1e73ea8 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image039.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image040.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image040.gif new file mode 100755 index 00000000..80aa23a2 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image040.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image041.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image041.gif new file mode 100755 index 00000000..579948d1 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image041.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image042.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image042.gif new file mode 100755 index 00000000..c3c1b86a Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image042.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image043.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image043.gif new file mode 100755 index 00000000..9c71a728 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image043.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image044.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image044.gif new file mode 100755 index 00000000..ece5bd04 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image044.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image045.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image045.gif new file mode 100755 index 00000000..eefabc07 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image045.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image046.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image046.gif new file mode 100755 index 00000000..c44101f3 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image046.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image047.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image047.gif new file mode 100755 index 00000000..82bf8400 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image047.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image048.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image048.gif new file mode 100755 index 00000000..82bf8400 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image048.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image049.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image049.gif new file mode 100755 index 00000000..82bf8400 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image049.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image050.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image050.gif new file mode 100755 index 00000000..eba3527e Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image050.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image051.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image051.gif new file mode 100755 index 00000000..03773263 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image051.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image052.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image052.gif new file mode 100755 index 00000000..c6935ae7 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image052.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image053.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image053.gif new file mode 100755 index 00000000..cd1d539a Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image053.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image054.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image054.gif new file mode 100755 index 00000000..c8ef7066 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image054.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image055.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image055.gif new file mode 100755 index 00000000..07bc4f47 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image055.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image056.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image056.gif new file mode 100755 index 00000000..2265b87e Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image056.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image057.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image057.gif new file mode 100755 index 00000000..9edbea2f Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image057.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image058.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image058.gif new file mode 100755 index 00000000..d9a062bd Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image058.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image059.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image059.gif new file mode 100755 index 00000000..4cc4734c Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image059.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image060.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image060.gif new file mode 100755 index 00000000..9fed61f5 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image060.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image061.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image061.gif new file mode 100755 index 00000000..07e65c79 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image061.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image062.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image062.gif new file mode 100755 index 00000000..c2d2becd Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image062.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image063.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image063.gif new file mode 100755 index 00000000..502483b8 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image063.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image064.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image064.gif new file mode 100755 index 00000000..c908a01e Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image064.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image065.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image065.gif new file mode 100755 index 00000000..9227fc62 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image065.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image066.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image066.gif new file mode 100755 index 00000000..71f687a1 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image066.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image067.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image067.gif new file mode 100755 index 00000000..e4688802 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image067.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image068.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image068.gif new file mode 100755 index 00000000..306836e4 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image068.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image069.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image069.gif new file mode 100755 index 00000000..46df1298 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image069.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image070.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image070.gif new file mode 100755 index 00000000..4710f71e Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image070.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image071.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image071.gif new file mode 100755 index 00000000..b54c0019 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image071.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image072.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image072.gif new file mode 100755 index 00000000..1ee0cc1b Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image072.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_image073.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image073.gif new file mode 100755 index 00000000..af14bc62 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0016_image073.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0016_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0016_notes_pane.htm new file mode 100755 index 00000000..2ab19f7b --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0016_notes_pane.htm @@ -0,0 +1,5 @@ +
      The next set of slides provide a very short interlude on QTL mapping. You will need to do some independent reading on this topic if this is your first exposure to QTL mapping. The recombinant inbred strains that we are using in WebQTL and in this particular demo were generated about 25 years ago by Dr. Ben Taylor at The Jackson Laboratory. He crossed a female C57BL/6J mouse with a male DBA/2J mice. At the bottom of this slide we have schematized one chromosome pair from three out of 80 BXD RI strains.  The dashed vertical lines that lead to the final BXD RI lines involve 20 full sib matings (about 6 years of breeding). Some lines die  out during inbreeding. For example, there is no extant BXD3 or BXD4 strain.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0017.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0017.htm new file mode 100755 index 00000000..1b5ac952 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0017.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0017_image074.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image074.gif new file mode 100755 index 00000000..105788e5 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image074.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0017_image075.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image075.gif new file mode 100755 index 00000000..105788e5 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image075.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0017_image076.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image076.gif new file mode 100755 index 00000000..09cae4e5 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image076.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0017_image077.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image077.gif new file mode 100755 index 00000000..a22eaad4 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image077.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0017_image078.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image078.gif new file mode 100755 index 00000000..f2ccb116 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image078.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0017_image079.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image079.gif new file mode 100755 index 00000000..85ea98da Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image079.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0017_image080.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image080.gif new file mode 100755 index 00000000..ec80f547 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image080.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0017_image081.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image081.gif new file mode 100755 index 00000000..9ac1cef5 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image081.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0017_image082.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image082.gif new file mode 100755 index 00000000..bcf8004c Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0017_image082.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0017_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0017_notes_pane.htm new file mode 100755 index 00000000..a11a8b2a --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0017_notes_pane.htm @@ -0,0 +1,5 @@ +
      This slide is illustrates two categories of QTLs that modulate variability in transcript abundance.

      1. cis QTLs are defined as QTLs that are closely linked to the gene whose transcript is the measured trait. For example, a polymorphism in the promoter that affects the binding of a transcription factor. However, cis QTLs can be far upstream or downstream polymorphisms in enhancers. They may also be polymorphisms in neigghboring genes.

      2. trans QTLs map far enough away from the location of the gene that gives rise to the transcript that is being measured so that we can be quite certain that the QTL is not IN the gene itself. The most blatant type of trans-QTL would be a polymorphism in a transcription factor. BUT in the majority of cases, the trans QTLs can be far removed in a mechanistic sense from the actual events modulating transcript abundance. That is why there are three overlappoing arrows above.  The way in which an upstream polymorphism influences a downstream difference in mRNA abundance can be very indirect. Effects can :
         a.  cross tissue types (a polymorphic liver enzyme may affect CNS gene expression)
         b.  cross time (the modulator is only expressed for one day during development but has permanent effects in adults),
         c.  may be contingent on environmental factors (heat shock may trigger the expression of a polymorphic factor that affects mRNA abundance).
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0018.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0018.htm new file mode 100755 index 00000000..552d31b1 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0018.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0018_image083.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0018_image083.gif new file mode 100755 index 00000000..eb07999f Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0018_image083.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0018_image084.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0018_image084.gif new file mode 100755 index 00000000..32b75679 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0018_image084.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0018_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0018_notes_pane.htm new file mode 100755 index 00000000..50a3e6c2 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0018_notes_pane.htm @@ -0,0 +1,5 @@ +
      Back to the demo. Please bring the Traiit Data and Editing window to the front and look for the Interval Mapping button. Please confirm that you are back to the trait amyloid beta precursor protein.  If so, then just click the button.

      Notice that the default for:
      Select Chrs (chromosomes) is ALL
      Select Probes is Probe Set
      Options: Permuation test YES  (1000 is the default number)
      Options: Bootstrap test YES (1000 is the default number)
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0019.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0019.htm new file mode 100755 index 00000000..9040b37a --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0019.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0019_image085.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0019_image085.gif new file mode 100755 index 00000000..03a2878d Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0019_image085.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0019_image086.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0019_image086.gif new file mode 100755 index 00000000..3327e4da Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0019_image086.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0019_image087.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0019_image087.gif new file mode 100755 index 00000000..227fce55 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0019_image087.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0019_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0019_notes_pane.htm new file mode 100755 index 00000000..cbe88cf0 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0019_notes_pane.htm @@ -0,0 +1,5 @@ +
      This is the main output type: a so-called full genome interval map.

      The X-axis represents all 19 autosomes and the X chromosome as if they were laid end to end with short gaps between the telomere of one chromosome and the centromere of the next chromosome (mouse chromsomes only have a single long arm and the centromere represents the origin of each chromosome for numerical purpose: 0 centimorgans and almost 0 megabases). The blue labels along the bottom of the figure list a subset of markers that were used in mapping. We used 753 markers to perform the mapping but here we just list five markers per chromosome.

      The thick blue wavy line running across chromsomes summarizes the strength of association between variation in the phenotype (App expression differences) and the two genotypes of 753 markers and the intervals between markers (hence, interval mapping).  The height of the wave (blue Y-axis to the left) provides the likelihood ratio statistic (LRS). Divide by 4.61 to convert these values to LOD scores.  Or you can read them as a chi-square-like statistic.

      The red line and the red axis to the far right provides an estimate of the effect  that a QTL has on expression of App (this estimate of the addtive effect tends to be an overestimate). If the red line is below the X-axis then this means that the allele inherited from C57BL/6J (B6 or B) at a particular marker is associated with higher values. If the red line is above the X-axis then the DBA/2J allele (D2 or D) is associated with higher traits. Multiply the additive effect size by 2 to estimate the difference between the set of strains that have the B/B genotype and the D/D genotype at a specific marker. For example, on Chr 2 the red line  peaks at a value  of about 0.25. That means that this region of chromosome 2 is responsible for a 0.5 unit expression difference between B/B strains and the D/D strains. Since the units are log base 2, this is 2^0.5, or about a 41% difference in expression with the D/D group being high.

      The yellow histogram bars: These summarize the results of a whole-genome bootstrap of the trait that is performed 1000 times. What is a bootstrap? A bootstrap provides you a metho of evaluating whether results are robust. If we drop out one strain, do we still get the same results? When mapping quantitative traits, each strain normally gets one equally weighted vote. But inthe bootstrap procedure, we give each strain a random weighting factor of between 0 and 1.  We then remap the trait and find THE SINGLE BEST LRS VALUE per bootstrap. We do this 1000 times. In this example, most bootstrap results cluster on Chr 2 under the LRS peak. That is somewhat reassuring. But notice that a substantial number of bootstrap results prefer Chr 7 or Chr 18.

      The horizontal dashed lines at 9.6 and 15.9. These lines are the LRS values associated with the suggestive and significant false positive rates for genome-wide scans established by permuations of phenotypes across genotypes. We shuffle randomly 1000 times and obtain a distribution of peak LRS scores to generate a null distribution. Five percent of the time, one of these permuted data sets will have a peak LRS higher than 15.9. We call that level the 0.05 significance threshold for a whole genome scan. The p = 0.67 point is the the suggestive level, and corresponds to the green dashed line.  These thresholds are conservative for transcripts that have expression variation that is highly heritable. The putative or suggestive QTL on Chr 2 is probably more than just suggestive.

      One other point: the mapping procedure we use is computationally very fast, but it is relatively simple. We are not looking for gene-gene interactions and we are not fitting multiple QTLs in combinations.  Consider this QTL analysis a first pass that will highlight hot spots and warm spots that are worth following up on using more sophisticated models.

      CLICKABLE REGIONS:
      1. If you click on the Chromosome number then you will generate a new map just for that chromosome.
      2. If you click on the body of the map, say on the blue line, then you will generate a view  on a 10 Mb window of that part of the genome from the UCSC Genome Browser web site.
      3. If you click on a marker symbol, then you will generate a new Trait data and editing window with the genotypes loaded into the window just like any other trait. More on this later.

      NOTE: you can drag these maps off of the browser window and onto your desktop. The will be saved as PNG or PDF files. You can import them into Photoshop or other programs.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0020.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0020.htm new file mode 100755 index 00000000..d21bef3e --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0020.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0020_image088.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0020_image088.gif new file mode 100755 index 00000000..4e9f96be Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0020_image088.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0020_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0020_notes_pane.htm new file mode 100755 index 00000000..78ea1866 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0020_notes_pane.htm @@ -0,0 +1,5 @@ +
      App has a suggestive QTL on Chr 2. What about the neighbors that we defined as having shared expression patterns. This figure shows that members of the immediate App neigborhood share a weak Chr 2 QTL.  That is what the blue oval in the background is meant to represent. But some transcripts, such as Ndr4 and Psen2 do not share this Chr 2 interval.

      QUESTION: What kind of headway can we make in detemining what polymorphism or polymorphisms on Chr 2 near 130 Mb might contribute to the variance in the expression of all of these important transcripts?
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0021.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0021.htm new file mode 100755 index 00000000..3d02bcf8 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0021.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0021_image089.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0021_image089.gif new file mode 100755 index 00000000..c76d7e43 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0021_image089.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0021_image090.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0021_image090.gif new file mode 100755 index 00000000..76eb790d Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0021_image090.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0021_image091.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0021_image091.gif new file mode 100755 index 00000000..2c10afe7 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0021_image091.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0021_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0021_notes_pane.htm new file mode 100755 index 00000000..e25a8134 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0021_notes_pane.htm @@ -0,0 +1,5 @@ +
      Candidate Genes:  The best we can do at this point is to make an educated guess about the candidacy status of all genes in the QTL support interval. For sake of argument, lets say that we are confident that the polymorphism is located between 130 and 150 Mb (20 Mb, equivalent to roughly 10 cM). There will typically be 12 to 15 genes per Mb, so we now would like to evaluate 240 to 300 positional candidates. We would like to highlight the biologically relevant subset of candidates. We could look through gene ontologies and expression levels to help us winnow the list. An alternate way avaiable using WebQTL is to generate a list of those genes in this 20 Mb interval that have transcripts that co-vary in expression with App expression.

      To do this, go back to the Trait Data and Editing window. Sort the correlations by position. Select Return = 500. Then scroll down the list to see positional candidates that share expression with App.

      There are several candidates that have high correlation with App even in this short 20 Mb interval. We can rank them by correlation, but they are all close.  There is one other imporant approach to ranking these candidates. Are they likely to contain polymorphisms? We can assess the likelihood that they contain polymorphisms by mapping each transcript to see if any have strong cis QTLs. The logic of this search is that a transcript that has a strong cis-QTL is likely to contain functional polymorphisms that effect its own expression. This make is more like that the transcript is a ÒcausativeÓ factor since it is likely to be polymorphic.

      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0022.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0022.htm new file mode 100755 index 00000000..014925b5 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0022.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0022_image092.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0022_image092.gif new file mode 100755 index 00000000..ce345af6 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0022_image092.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0022_image093.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0022_image093.gif new file mode 100755 index 00000000..fcb4d455 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0022_image093.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0022_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0022_notes_pane.htm new file mode 100755 index 00000000..5ab1a7fe --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0022_notes_pane.htm @@ -0,0 +1,5 @@ +
      When you do this you will find that only the transcript 0610006H08Rik has a strong cis QTL. See the slide above. The LRS peaks above 35  (LOD of greater than 7.5). It turns out that this transcript is really Hars2, also known as histydl tRNA synthase 2.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0023.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0023.htm new file mode 100755 index 00000000..dac0fddc --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0023.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0023_image094.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0023_image094.gif new file mode 100755 index 00000000..00e1c02c Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0023_image094.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0023_image095.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0023_image095.gif new file mode 100755 index 00000000..cd8bd524 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0023_image095.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0023_image096.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0023_image096.gif new file mode 100755 index 00000000..1191b566 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0023_image096.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0023_image097.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0023_image097.gif new file mode 100755 index 00000000..de56d1e8 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0023_image097.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0023_image098.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0023_image098.gif new file mode 100755 index 00000000..f84992a8 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0023_image098.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0023_image099.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0023_image099.gif new file mode 100755 index 00000000..719eb8e2 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0023_image099.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0023_image100.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0023_image100.gif new file mode 100755 index 00000000..2b932b21 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0023_image100.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0023_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0023_notes_pane.htm new file mode 100755 index 00000000..418d3b45 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0023_notes_pane.htm @@ -0,0 +1,5 @@ +
      LetÕs look at Hars2 in more detail by mapping all of the perfect match probes (16 of them) that target this transcript.
      Go back to the Trait Data and Editing window and select Chr 2 (rather than ALL as shown above) and also select PM Probes. Then click on Interval Mapping button.

      You will get the illustration above, but without the sequence data that we have added.  The 16 perfect match probes are arranged in sequence (red is 5 prime, blue is the 3 prime end). For example, the 5 prime-most primer 307387 has the sequence CACTG..... It also has a polymorphism at the 17 nucleotide of this 25 nt probe sequence.

      How do we know that the 5 prime probe is polymorphic? By looking up the sequence in the Celera Genomics databases which often contqains sequence data for C57BL/6J (B6 above) and for DBA/2J.  But two blue probes (14 and 15) do NOT contain SNPs but still have very large LRS scores. The other probes do not perform so wel. Highly variable probe performance is probably a result of the very different stacking energies of DNA-RNA duplexes.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0024.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0024.htm new file mode 100755 index 00000000..4c701e50 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0024.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0024_image101.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0024_image101.gif new file mode 100755 index 00000000..0827d03e Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0024_image101.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0024_image102.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0024_image102.gif new file mode 100755 index 00000000..4da47c13 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0024_image102.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0024_image103.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0024_image103.gif new file mode 100755 index 00000000..05ef6183 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0024_image103.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0024_image104.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0024_image104.gif new file mode 100755 index 00000000..36c6885a Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0024_image104.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0024_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0024_notes_pane.htm new file mode 100755 index 00000000..3a7bdfa1 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0024_notes_pane.htm @@ -0,0 +1,5 @@ +
      The vertical text says it all: Even when using identical probes, mapping performance (and signal) depends on tissue type and mRNA complexity. This is another gene in the Hars2 interval. Forebrain and tem cell mRNAs were run on the same U74Av2 array, whereas the cerebellum mRNA was run on the 430A and 430B array set.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0025.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0025.htm new file mode 100755 index 00000000..238b554b --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0025.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0025_image105.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0025_image105.gif new file mode 100755 index 00000000..242e4087 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0025_image105.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0025_image106.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0025_image106.gif new file mode 100755 index 00000000..c1453aee Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0025_image106.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0025_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0025_notes_pane.htm new file mode 100755 index 00000000..ef04157c --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0025_notes_pane.htm @@ -0,0 +1,5 @@ +
      Hars2 is not a well characterized gene and their is no biology yet to support the hypothesis that Hars2 modulates gene expression, let alone App expression in specific. There are also serious database/assembly discrepancies between Celera and MGSCv3 regarding the genomic organization of this gene. But there appear to be approximately 69 SNPs in Hars2, one of which results in a substitution.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0026.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0026.htm new file mode 100755 index 00000000..4225db8a --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0026.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0026_image107.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0026_image107.gif new file mode 100755 index 00000000..e26b7a56 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0026_image107.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0026_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0026_notes_pane.htm new file mode 100755 index 00000000..138a5dca --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0026_notes_pane.htm @@ -0,0 +1,5 @@ +
      Part 3.  Many investigators would like to discover the set of downstream targets of a gene of interest.

      In a genetic and functional sense, that question can only be addressed effectively if there is genetic variation in the particular gene.  We know that Fos is an important transcription factor, but unless it is polymorphic between C57BL/6J and DBA/2J, then it cannot generate a genetic variance signal with which we can work. We can still study covariance of Fos and hundreds of other transcripts (an interesting exercise), but there are no genetic causes-and-effects.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0027.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0027.htm new file mode 100755 index 00000000..7701ce1a --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0027.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0027_image108.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0027_image108.gif new file mode 100755 index 00000000..c4a27e18 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0027_image108.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0027_image109.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0027_image109.gif new file mode 100755 index 00000000..c03ea994 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0027_image109.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0027_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0027_notes_pane.htm new file mode 100755 index 00000000..9614c538 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0027_notes_pane.htm @@ -0,0 +1,5 @@ +
      Genes must be polymorphic to generate downstream genetic effects (as opposed to downstream molecular effects). Hars2 meets this condition because we have already mapped a functional polymorphism in the gene. We can therefore posit that Hars2 is a QT gene. What transcripts are downstream? App is one obvious candidate, but there are many more.

      The are several ways to look for downstream targets. The best and most obvious is to look up all transcripts that have high correlations with Hars2 itself. You should know how to do this. An alternative method is shown here for teaching purpose and to show you what to do if your gene of interest is not in our database. You need to know:

      1. Where your gene is located. You need this information to find a surrogate marker; a marker that is located very close to your gene of interest.
      2. That your gene is polymorphic between C57BL/6J and DBA/2J.

      LetÕs look at the correlation of Hars2 with BXD genotypes as shown in the slide above to illustrate how to use markers as surrogate traits.
      Go to the Trait Date and Editing window one more time. We want the data for Hars2 this time, not App. You should be able to show that Hars2 has a high  correlation with D2Mit423 as shown in the slide above.

      By clicking on the symbol D2Mit423 in the Correlation window, you will generate a new Trait Data window shown on the next slide.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0028.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0028.htm new file mode 100755 index 00000000..28930694 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0028.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0028_image110.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0028_image110.gif new file mode 100755 index 00000000..f70a8f8b Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0028_image110.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0028_image111.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0028_image111.gif new file mode 100755 index 00000000..426065e3 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0028_image111.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0028_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0028_notes_pane.htm new file mode 100755 index 00000000..89b67431 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0028_notes_pane.htm @@ -0,0 +1,5 @@ +
      We can review the set of correlations between the marker D2Mit423 and all transcripts in forebrain.  This is in essence a backwards way of mapping QTLs. We are considering one marker and asking what traits correlate to the marker and how well.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0029.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0029.htm new file mode 100755 index 00000000..0bb9da8b --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0029.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0029_image112.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0029_image112.gif new file mode 100755 index 00000000..c1fcf2db Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0029_image112.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0029_image113.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0029_image113.gif new file mode 100755 index 00000000..a5bebbe9 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0029_image113.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0029_image114.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0029_image114.gif new file mode 100755 index 00000000..9a070a5b Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0029_image114.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0029_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0029_notes_pane.htm new file mode 100755 index 00000000..62c56ca6 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0029_notes_pane.htm @@ -0,0 +1,5 @@ +
      The marker D2Mit423 correlates moderately well with a number of Chr 2 transcripts. This is due to linkage disequilibrium. These correlations are not due to a molecular interactions other than being close together on a chromosome.  But we have circled one transcript, actinin alpha 2, that has a moderately good correlation (0.59) with D2Mit423. If we map this gene we expect to find a suggestive QTL that peaks near D2Mit423
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0030.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0030.htm new file mode 100755 index 00000000..e3dec4be --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0030.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0030_image115.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0030_image115.gif new file mode 100755 index 00000000..48462fa6 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0030_image115.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0030_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0030_notes_pane.htm new file mode 100755 index 00000000..88bd6165 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0030_notes_pane.htm @@ -0,0 +1,5 @@ +
      There is some support for the hypothesis that Actn2 is downstream of a polymorphism in the Hars2 region. But again, due to the 10 to 20 Mb precision of the mapping data, this relation could be generated by a large number of other polymorphisms close to Hars2. In the absence of a biological connection between Actn2 and Hars2 we have a weak hypothesis. If there were a plausible functional connection between the two genes, then this hypothesis could be quickly upgraded.
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0031.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0031.htm new file mode 100755 index 00000000..b07ce4c2 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0031.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0031_image116.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0031_image116.gif new file mode 100755 index 00000000..7e1dd508 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0031_image116.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0031_image117.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0031_image117.gif new file mode 100755 index 00000000..bbc776f5 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0031_image117.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0031_image118.gif b/web/tutorial/ppt/WebQTLDemo_files/slide0031_image118.gif new file mode 100755 index 00000000..31efe2e2 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/slide0031_image118.gif differ diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0031_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0031_notes_pane.htm new file mode 100755 index 00000000..435ca8e2 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0031_notes_pane.htm @@ -0,0 +1,5 @@ +
      We can test the Hars2 to Actn2 connection directly. This process weakens the putative association. We are ready to move on and examine other candidates in the Hars2 region near D2Mit423.  Or in your case, please start from the beginning using other genes and transcripts and tissues that interest you more than this App-Hsp84-Hars2 example.

      This concludes the first demonstation of how to use some of the WebQTL features. Please explore. Please also send feedback for improvements or additions to rwilliam@nb.utmem.edu
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0032.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0032.htm new file mode 100755 index 00000000..60a1bee2 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0032.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0032_notes_pane.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0032_notes_pane.htm new file mode 100755 index 00000000..2af93a35 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0032_notes_pane.htm @@ -0,0 +1,5 @@ +
      END
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0033.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0033.htm new file mode 100755 index 00000000..62f15daa --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0033.htm @@ -0,0 +1,153 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      WebQTL Demonstration One
      please link to
      www.webqtl.org/search.html
      lPart 1: How to discover shared expression patterns (slides 2Ð14)
      lPart 2. Discovering upstream modulators (15Ð25)
      3.Discovering downstream targets
      RNA

      PowerPoint ÒNormal viewÓ has notes that may be useful companions to these slides.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0034.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0034.htm new file mode 100755 index 00000000..343c0d37 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0034.htm @@ -0,0 +1,151 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lor webqtl.org/search.html (mirror)
      choose a
      database
      enter
      amyloid beta
      select
      search
      llink to www.webqtl.org/search.html
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0035.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0035.htm new file mode 100755 index 00000000..c53c9bbc --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0035.htm @@ -0,0 +1,116 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      highlight
      amyloid beta
      then click
      Search results
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0036.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0036.htm new file mode 100755 index 00000000..ae7843aa --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0036.htm @@ -0,0 +1,122 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lFirst page of data: The ÒTrait Data FormÓ
      Click here
      to learn
      about
      data
      source
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0037.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0037.htm new file mode 100755 index 00000000..bb776db5 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0037.htm @@ -0,0 +1,93 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lData sources: Phenotpyes and genotypes
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0038.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0038.htm new file mode 100755 index 00000000..b3e613ca --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0038.htm @@ -0,0 +1,119 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lReturn to Trait Data page
      lbottom of this page
      Trait data for each strain with SE when known. For array data the scale is ~ log base 2.   F1=13.752 = 2^13.752 = 13796
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0039.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0039.htm new file mode 100755 index 00000000..0b96295c --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0039.htm @@ -0,0 +1,104 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lDiscovering shared expression patterns
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0040.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0040.htm new file mode 100755 index 00000000..a71d67b3 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0040.htm @@ -0,0 +1,111 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lThe App transcript neighborhood
      Question: How many transcripts have correlations >0.7? What does this imply.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0041.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0041.htm new file mode 100755 index 00000000..df4bc799 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0041.htm @@ -0,0 +1,93 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lHanddrawn sketch of the neighborhood
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0042.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0042.htm new file mode 100755 index 00000000..9cc37896 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0042.htm @@ -0,0 +1,102 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lWhat a network is likely to look like (but App will not be center of universe).
      App
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0043.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0043.htm new file mode 100755 index 00000000..e0be795e --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0043.htm @@ -0,0 +1,112 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Are there experimental results to corroborate a link between App with Hsp84-1?
      Yes: Heat shock 84-1 induces the expression of App, ubiquitin, and pyruvate kinase
      Having ÒconfirmedÓ these known relations, we can now add new members to this family: Atp6l, Gnas, Ndr4. A thin veneer of functional genomics.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0044.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0044.htm new file mode 100755 index 00000000..06443316 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0044.htm @@ -0,0 +1,107 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      l2.45 billion scatter plots: here is one of the best
      App
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0045.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0045.htm new file mode 100755 index 00000000..d3c4b2af --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0045.htm @@ -0,0 +1,104 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lCross-tissue type correlations
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0046.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0046.htm new file mode 100755 index 00000000..77bd0a8b --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0046.htm @@ -0,0 +1,110 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lCross-modal correlations: From mRNA to to anatomy and to behavior and pharmacology
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0047.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0047.htm new file mode 100755 index 00000000..9f73a171 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0047.htm @@ -0,0 +1,155 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      WebQTL   
      link to
      www.webqtl.org/search.html
      1.Discovering shared expression patterns
      2.Discovering upstream modulators (QTLs)
      3.Discovering downstream targets
      RNA

      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0048.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0048.htm new file mode 100755 index 00000000..53a7011d --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0048.htm @@ -0,0 +1,897 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +




      How to make recombinant inbred strains (RI)

      C57BL/6J (B)

      DBA/2J (D)

      F1

      20 generations brother-sister matings

      BXD1

      BXD2

      BXD80
      + É +

      F2

      BXD RI
      Strain set

      fully
      inbred

      isogenic

      hetero-
      geneous

      Recombined chromosomes are needed for mapping

      female

      male

      chromosome pair

      Inbred
      Isogenic
      siblings

      BXD
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0049.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0049.htm new file mode 100755 index 00000000..54040ab2 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0049.htm @@ -0,0 +1,427 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      aa

      aaaa

      D2 strain

      B6 strain

      amount of transcript

      4 units

      2 units

      D

      B

      D and B may be SNP-like variants in the promoter itself (cis QTL) or in upstream genes (trans QTLs)

      UPSTREAM
      modulators

      High

      D

      B

      cis QTL

      Low

      >>>>PROMOTER--ATG-Exon1-Intron1-Exon2-Intron2 - etc-3'UTR >>>>>
      

      

      

      



      trans QTL

      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0050.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0050.htm new file mode 100755 index 00000000..3c2f20c7 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0050.htm @@ -0,0 +1,107 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      WebQTL to exploring upstream control
      Just click
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0051.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0051.htm new file mode 100755 index 00000000..39d20b2b --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0051.htm @@ -0,0 +1,127 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      WebQTL to exploring upstream control.
      App maps on Chr 16 here
      Is App modulated by Chr 2?
      Probably, but donÕt bet the farm.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0052.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0052.htm new file mode 100755 index 00000000..54843d1c --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0052.htm @@ -0,0 +1,93 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      The whole neighborhood is modulated!
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0053.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0053.htm new file mode 100755 index 00000000..baaa7eee --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0053.htm @@ -0,0 +1,139 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Which gene is the QTL?
      Right
      position
      &
      high r
      good
      candidates
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0054.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0054.htm new file mode 100755 index 00000000..1e0d7468 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0054.htm @@ -0,0 +1,125 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Only one of these candidates is a functional polymorphism
      Hars2 = 0610006H08Rik
      is a cis-QTL with a very high likelihood ratio statistic (LRS) score
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0055.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0055.htm new file mode 100755 index 00000000..36b2d736 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0055.htm @@ -0,0 +1,168 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Hars2 probe level analysis: 16 PMs mapped
      SNP
      C in B6, T in D2
      no SNPs
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0056.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0056.htm new file mode 100755 index 00000000..43ebf6d5 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0056.htm @@ -0,0 +1,129 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Forebrain
      Stem cells
      Cerebellum
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0057.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0057.htm new file mode 100755 index 00000000..9a7adf61 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0057.htm @@ -0,0 +1,122 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Is there known biology to link Hars2 with App?
      69 SNPs, 1 cSNP:
      6 exons in NCBI,
      2 exons in Celera
       Not obvious
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0058.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0058.htm new file mode 100755 index 00000000..9feed242 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0058.htm @@ -0,0 +1,135 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      WebQTL   
      link to
      www.webqtl.org/search.html
      1.Discovering shared expression patterns
      2.Discovering upstream modulators (QTLs)
      3.Discovering downstream targets
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0059.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0059.htm new file mode 100755 index 00000000..a479ea68 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0059.htm @@ -0,0 +1,128 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Requirement: The gene must be polymorphic to be genetically ÒupstreamÓ
      What are targets of the Hars2 polymorphisms?
      App and many other
      correlated transcripts and other traits.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0060.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0060.htm new file mode 100755 index 00000000..aa804b9a --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0060.htm @@ -0,0 +1,134 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Direct correlations between genotypes and traits
      App and
      correlated traits would be obvious candidates to correlate with D2Mit423
      B = -1
      D = 1
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0061.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0061.htm new file mode 100755 index 00000000..cce3b81c --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0061.htm @@ -0,0 +1,124 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      WhatÕs downstream of Chr 2 near Hars2?
      Notice many Chr 2 hits: Linkage disequilibrium limits specificity
      Click here
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0062.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0062.htm new file mode 100755 index 00000000..c8c24f70 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0062.htm @@ -0,0 +1,96 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      WhatÕs downstream of Chr 2 near Hars2?
      modest support that Actn2 is modulated by the Hars2 region
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0063.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0063.htm new file mode 100755 index 00000000..53358da8 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0063.htm @@ -0,0 +1,139 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Does Hars2 correlate with Actn2 strongly?
      Plenty of high correlations, including 2 actins, but not to Actn2 specifically.
      Sort by gene
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0064.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0064.htm new file mode 100755 index 00000000..f75dd8f4 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0064.htm @@ -0,0 +1,100 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Contact for comments and improvements:
      rwilliam@ nb.utmem.edu
      kenneth.manly@roswellpark.org
      lulu@ nb.utmem.edu
      echesler@ nb.utmem.edu
      + \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0065.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0065.htm new file mode 100755 index 00000000..df6b13dd --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0065.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0066.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0066.htm new file mode 100755 index 00000000..d0a85cac --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0066.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0067.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0067.htm new file mode 100755 index 00000000..47285a63 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0067.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0068.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0068.htm new file mode 100755 index 00000000..325af969 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0068.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0069.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0069.htm new file mode 100755 index 00000000..4b91f9fb --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0069.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0070.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0070.htm new file mode 100755 index 00000000..90fd0b45 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0070.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0071.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0071.htm new file mode 100755 index 00000000..e660d5c0 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0071.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0072.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0072.htm new file mode 100755 index 00000000..090417b0 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0072.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0073.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0073.htm new file mode 100755 index 00000000..eba637bd --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0073.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0074.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0074.htm new file mode 100755 index 00000000..31f6274a --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0074.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0075.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0075.htm new file mode 100755 index 00000000..cdfe20c4 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0075.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0076.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0076.htm new file mode 100755 index 00000000..10c1d5c7 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0076.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0077.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0077.htm new file mode 100755 index 00000000..cccc3f29 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0077.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0078.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0078.htm new file mode 100755 index 00000000..5febea55 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0078.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0079.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0079.htm new file mode 100755 index 00000000..71db3e46 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0079.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0080.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0080.htm new file mode 100755 index 00000000..72cdc36e --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0080.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0081.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0081.htm new file mode 100755 index 00000000..4c56cf5b --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0081.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0082.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0082.htm new file mode 100755 index 00000000..73b7f63e --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0082.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0083.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0083.htm new file mode 100755 index 00000000..a0b63281 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0083.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0084.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0084.htm new file mode 100755 index 00000000..ca267eaf --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0084.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0085.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0085.htm new file mode 100755 index 00000000..8ee31e43 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0085.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0086.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0086.htm new file mode 100755 index 00000000..8cafb70c --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0086.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0087.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0087.htm new file mode 100755 index 00000000..7dfab2ca --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0087.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0088.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0088.htm new file mode 100755 index 00000000..31d7604c --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0088.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0089.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0089.htm new file mode 100755 index 00000000..32ba60cf --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0089.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0090.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0090.htm new file mode 100755 index 00000000..71ee6868 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0090.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0091.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0091.htm new file mode 100755 index 00000000..a77d0dc4 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0091.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0092.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0092.htm new file mode 100755 index 00000000..6e973a04 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0092.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0093.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0093.htm new file mode 100755 index 00000000..d338321e --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0093.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0094.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0094.htm new file mode 100755 index 00000000..2e862b33 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0094.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0095.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0095.htm new file mode 100755 index 00000000..7eeac88d --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0095.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/slide0096.htm b/web/tutorial/ppt/WebQTLDemo_files/slide0096.htm new file mode 100755 index 00000000..08fd3742 --- /dev/null +++ b/web/tutorial/ppt/WebQTLDemo_files/slide0096.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/WebQTLDemo_files/space.gif b/web/tutorial/ppt/WebQTLDemo_files/space.gif new file mode 100755 index 00000000..e6cd7808 Binary files /dev/null and b/web/tutorial/ppt/WebQTLDemo_files/space.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt.htm new file mode 100755 index 00000000..82773875 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt.htm @@ -0,0 +1,4 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics <body> <p>This page uses frames, but your browser doesn't support them.</p> </body> \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0001.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0001.gif new file mode 100755 index 00000000..b95f327d Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0001.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0002.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0002.gif new file mode 100755 index 00000000..49c8027e Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0002.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0003.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0003.gif new file mode 100755 index 00000000..29d1f3ac Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0003.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0004.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0004.gif new file mode 100755 index 00000000..f2fa78e6 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0004.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0005.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0005.gif new file mode 100755 index 00000000..4772ff83 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0005.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0006.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0006.gif new file mode 100755 index 00000000..d39b99b1 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0006.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0007.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0007.gif new file mode 100755 index 00000000..c1ea23b7 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0007.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0008.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0008.gif new file mode 100755 index 00000000..b061328a Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0008.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0009.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0009.gif new file mode 100755 index 00000000..f3f81956 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0009.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0010.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0010.gif new file mode 100755 index 00000000..bc50be39 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0010.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0011.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0011.gif new file mode 100755 index 00000000..58fd2736 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0011.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0012.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0012.gif new file mode 100755 index 00000000..32080b92 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0012.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0013.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0013.gif new file mode 100755 index 00000000..c590b984 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0013.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0014.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0014.gif new file mode 100755 index 00000000..014d8569 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0014.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0015.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0015.gif new file mode 100755 index 00000000..a43a4e09 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0015.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0016.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0016.gif new file mode 100755 index 00000000..c7c9c4d2 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0016.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0017.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0017.gif new file mode 100755 index 00000000..a05bcf40 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0017.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0018.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0018.gif new file mode 100755 index 00000000..b95f327d Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0018.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0019.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0019.gif new file mode 100755 index 00000000..49c8027e Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0019.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0020.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0020.gif new file mode 100755 index 00000000..29d1f3ac Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0020.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0021.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0021.gif new file mode 100755 index 00000000..f2fa78e6 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0021.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0022.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0022.gif new file mode 100755 index 00000000..4772ff83 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0022.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0023.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0023.gif new file mode 100755 index 00000000..d39b99b1 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0023.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0024.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0024.gif new file mode 100755 index 00000000..c1ea23b7 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0024.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0025.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0025.gif new file mode 100755 index 00000000..b061328a Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0025.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0026.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0026.gif new file mode 100755 index 00000000..f3f81956 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0026.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0027.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0027.gif new file mode 100755 index 00000000..bc50be39 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0027.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0028.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0028.gif new file mode 100755 index 00000000..58fd2736 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0028.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0029.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0029.gif new file mode 100755 index 00000000..42d09c86 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0029.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0030.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0030.gif new file mode 100755 index 00000000..8e5775c1 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0030.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0031.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0031.gif new file mode 100755 index 00000000..782076fa Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/Slide0031.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/blank_notes.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/blank_notes.htm new file mode 100755 index 00000000..4be5a447 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/blank_notes.htm @@ -0,0 +1,5 @@ + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/endshow.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/endshow.htm new file mode 100755 index 00000000..1ada008c --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/endshow.htm @@ -0,0 +1 @@ +


      Open the default .htm file to view this Web presentation.

      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/error.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/error.htm new file mode 100755 index 00000000..7444866d --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/error.htm @@ -0,0 +1 @@ +


      This presentation contains content that your browser is unable to display. This presentation was optimized for the recent version of Microsoft Internet Explorer and Netscape Navigator 4.

      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/filelist.xml b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/filelist.xml new file mode 100755 index 00000000..403bf8d7 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/filelist.xml @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/frame.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/frame.htm new file mode 100755 index 00000000..5aa0f55d --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/frame.htm @@ -0,0 +1,43 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/fs_navigation_bar.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/fs_navigation_bar.htm new file mode 100755 index 00000000..8f728017 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/fs_navigation_bar.htm @@ -0,0 +1,84 @@ + Navigation Bar + +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/fullscr.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/fullscr.gif new file mode 100755 index 00000000..85842700 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/fullscr.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/fullscrClose.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/fullscrClose.gif new file mode 100755 index 00000000..ccd0de13 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/fullscrClose.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/fullscreen.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/fullscreen.htm new file mode 100755 index 00000000..8cfab86e --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/fullscreen.htm @@ -0,0 +1,48 @@ + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master02.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master02.htm new file mode 100755 index 00000000..b696e328 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master02.htm @@ -0,0 +1,11 @@ + + +
      Memphis Microarray 2003
      June 11, 2003, Rob Williams
      Ü#Ý
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master03.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master03.htm new file mode 100755 index 00000000..a31d27f9 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master03.htm @@ -0,0 +1,11 @@ + + +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master03_background.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master03_background.png new file mode 100755 index 00000000..abdc767d Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master03_background.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master03_stylesheet.css b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master03_stylesheet.css new file mode 100755 index 00000000..6c3dc4e2 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master03_stylesheet.css @@ -0,0 +1 @@ +body {width:755px; height:566px;} .TB {mso-special-format:nobullet¥;} .T {text-align:left; font-family:"Gill Sans"; color:#E9EB5D; font-size:293%; mso-line-spacing:"-358 0 0"; mso-margin-left-alt:249; mso-text-indent-alt:16;} .BB {mso-special-format:bullet\F06C; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .B {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; font-size:213%; mso-line-spacing:"-259 0 -61"; mso-margin-left-alt:297; mso-text-indent-alt:57;} .B1B {mso-special-format:bullet\F075; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .B1 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-229 0 -53"; mso-margin-left-alt:569; mso-text-indent-alt:345;} .B2B {mso-special-format:bullet\F046; color:#E2EBF0; font-family:"Monotype Sorts"; font-size:64%;} .B2 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-198 0 -46"; mso-margin-left-alt:854; mso-text-indent-alt:633;} .B3B {mso-special-format:bullet¥; color:white; font-family:Palatino; font-size:100%;} .B3 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-168 0 -38"; mso-margin-left-alt:1144; mso-text-indent-alt:921;} .B4B {mso-special-format:bullet\2013; color:white; font-family:Palatino; font-size:100%;} .B4 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-168 0 0"; mso-margin-left-alt:1449; mso-text-indent-alt:1209;} .NB {mso-special-format:nobullet¥;} .N {font-family:Verdana; mso-line-spacing:"100 0 0";} .N1B {mso-special-format:nobullet¥;} .N1 {font-family:Verdana; mso-line-spacing:"100 0 0";} .N2B {mso-special-format:nobullet¥;} .N2 {font-family:Verdana; mso-line-spacing:"100 0 0";} .N3B {mso-special-format:nobullet¥;} .N3 {font-family:Verdana; mso-line-spacing:"100 0 0";} .N4N {mso-special-format:nobullet¥;} .N4 {font-family:Verdana; mso-line-spacing:"100 0 0";} .OB {mso-special-format:nobullet¥;} .O {text-align:left; font-family:Verdana; color:black; mso-color-index:1; font-size:80%;} .O1B {mso-special-format:nobullet¥;} .O1 {font-family:Verdana; font-size:80%;} .O2B {mso-special-format:nobullet¥;} .O2 {font-family:Verdana; font-size:80%;} .O3B {mso-special-format:nobullet¥;} .O3 {font-family:Verdana; font-size:80%;} .O4B {mso-special-format:nobullet¥;} .O4 {font-family:Verdana; font-size:80%;} .CBB {mso-special-format:bullet\F06C; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .CB {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-259 0 -61"; mso-margin-left-alt:297; mso-text-indent-alt:57;} .CB1B {mso-special-format:bullet\F075; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .CB1 {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-229 0 -53"; mso-margin-left-alt:569; mso-text-indent-alt:345;} .CB2B {mso-special-format:bullet\F046; color:#E2EBF0; font-family:"Monotype Sorts"; font-size:64%;} .CB2 {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-198 0 -46"; mso-margin-left-alt:854; mso-text-indent-alt:633;} .CB3B {mso-special-format:bullet¥; color:white; font-family:Palatino; font-size:100%;} .CB3 {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-168 0 -38"; mso-margin-left-alt:1144; mso-text-indent-alt:921;} .CB4B {mso-special-format:bullet\2013; color:white; font-family:Palatino; font-size:100%;} .CB4 {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-168 0 0"; mso-margin-left-alt:1449; mso-text-indent-alt:1209;} .CTB {mso-special-format:nobullet¥;} .CT {text-align:left; font-family:"Gill Sans"; color:#E9EB5D; mso-line-spacing:"-358 0 0"; mso-margin-left-alt:16; mso-text-indent-alt:16;} .HBB {mso-special-format:bullet\F06C; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .HB {font-family:"Gill Sans"; color:#FBFDB8; font-size:213%; mso-line-spacing:"-259 0 -61"; mso-margin-left-alt:297; mso-text-indent-alt:57;} .HB1B {mso-special-format:bullet\F075; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .HB1 {font-family:"Gill Sans"; color:#FBFDB8; font-size:186%; mso-line-spacing:"-229 0 -53"; mso-margin-left-alt:569; mso-text-indent-alt:345;} .HB2B {mso-special-format:bullet\F046; color:#E2EBF0; font-family:"Monotype Sorts"; font-size:64%;} .HB2 {font-family:"Gill Sans"; color:#FBFDB8; font-size:160%; mso-line-spacing:"-198 0 -46"; mso-margin-left-alt:854; mso-text-indent-alt:633;} .HB3B {mso-special-format:bullet¥; color:white; font-family:Palatino; font-size:100%;} .HB3 {font-family:"Gill Sans"; color:#FBFDB8; font-size:133%; mso-line-spacing:"-168 0 -38"; mso-margin-left-alt:1144; mso-text-indent-alt:921;} .HB4B {mso-special-format:bullet\2013; color:white; font-family:Palatino; font-size:100%;} .HB4 {font-family:"Gill Sans"; color:#FBFDB8; font-size:133%; mso-line-spacing:"-168 0 0"; mso-margin-left-alt:1449; mso-text-indent-alt:1209;} .QBB {mso-special-format:bullet\F06C; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .QB {font-family:"Gill Sans"; color:#FBFDB8; font-size:213%; mso-line-spacing:"-259 0 -61"; mso-margin-left-alt:297; mso-text-indent-alt:57;} .QB1B {mso-special-format:bullet\F075; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .QB1 {font-family:"Gill Sans"; color:#FBFDB8; font-size:186%; mso-line-spacing:"-229 0 -53"; mso-margin-left-alt:569; mso-text-indent-alt:345;} .QB2B {mso-special-format:bullet\F046; color:#E2EBF0; font-family:"Monotype Sorts"; font-size:64%;} .QB2 {font-family:"Gill Sans"; color:#FBFDB8; font-size:160%; mso-line-spacing:"-198 0 -46"; mso-margin-left-alt:854; mso-text-indent-alt:633;} .QB3B {mso-special-format:bullet¥; color:white; font-family:Palatino; font-size:100%;} .QB3 {font-family:"Gill Sans"; color:#FBFDB8; font-size:133%; mso-line-spacing:"-168 0 -38"; mso-margin-left-alt:1144; mso-text-indent-alt:921;} .QB4B {mso-special-format:bullet\2013; color:white; font-family:Palatino; font-size:100%;} .QB4 {font-family:"Gill Sans"; color:#FBFDB8; font-size:133%; mso-line-spacing:"-168 0 0"; mso-margin-left-alt:1449; mso-text-indent-alt:1209;} .TblB {mso-special-format:nobullet\F06C; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .Tbl {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-259 0 -61"; mso-margin-left-alt:297; mso-text-indent-alt:57;} .Tbl1B {mso-special-format:nobullet\F075; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .Tbl1 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-229 0 -53"; mso-margin-left-alt:569; mso-text-indent-alt:345;} .Tbl2B {mso-special-format:nobullet\F046; color:#E2EBF0; font-family:"Monotype Sorts"; font-size:64%;} .Tbl2 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-198 0 -46"; mso-margin-left-alt:854; mso-text-indent-alt:633;} .Tbl3B {mso-special-format:nobullet¥; color:white; font-family:Palatino; font-size:100%;} .Tbl3 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-168 0 -38"; mso-margin-left-alt:1144; mso-text-indent-alt:921;} .Tbl4B {mso-special-format:nobullet\2013; color:white; font-family:Palatino; font-size:100%;} .Tbl4 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-168 0 0"; mso-margin-left-alt:1449; mso-text-indent-alt:1209;} .defaultB {mso-special-format:nobullet¥;} .default {text-align:left; font-family:Verdana; font-weight:normal; font-style:normal; text-decoration:none; text-shadow:none; text-effect:none; mso-fareast-hint:no; layout-flow:horizontal; color:black; font-size:120%; mso-text-raise:0%; mso-line-spacing:"100 0 0"; mso-margin-left-alt:0; mso-text-indent-alt:0; mso-char-wrap:0; mso-kinsoku-overflow:0; direction:ltr; mso-word-wrap:1; mso-ansi-language:1033;} a:link {color:#009999 !important;} a:active {color:#333399 !important;} a:visited {color:#99CC00 !important;} \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master05.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master05.htm new file mode 100755 index 00000000..1dc23a6e --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master05.htm @@ -0,0 +1,11 @@ + + +




      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master05_background.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master05_background.png new file mode 100755 index 00000000..abdc767d Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master05_background.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master05_stylesheet.css b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master05_stylesheet.css new file mode 100755 index 00000000..eeb1dba1 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/master05_stylesheet.css @@ -0,0 +1 @@ +body {width:755px; height:566px;} .TB {mso-special-format:nobullet¥;} .T {text-align:center; font-family:Times; color:#E2EBF0; font-size:293%; mso-line-spacing:"-422 0 0"; mso-margin-left-alt:250; mso-text-indent-alt:16;} .BB {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .B {text-align:left; font-family:Times; color:white; font-size:213%; mso-line-spacing:"-307 0 -61"; mso-margin-left-alt:360; mso-text-indent-alt:58;} .B1B {mso-special-format:bullet\2013; color:white; font-family:Times; font-size:100%;} .B1 {font-family:Times; color:white; mso-line-spacing:"-269 0 -53"; mso-margin-left-alt:620; mso-text-indent-alt:376;} .B2B {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .B2 {font-family:Times; color:white; mso-line-spacing:"-230 0 -46"; mso-margin-left-alt:889; mso-text-indent-alt:636;} .B3B {mso-special-format:bullet\2013; color:white; font-family:Times; font-size:100%;} .B3 {font-family:Times; color:white; mso-line-spacing:"100 0 -38"; mso-margin-left-alt:1162; mso-text-indent-alt:922;} .B4B {mso-special-format:bulletÈ; color:white; font-family:Times; font-size:100%;} .B4 {font-family:Times; color:white; mso-line-spacing:"100 0 0"; mso-margin-left-alt:1450; mso-text-indent-alt:1210;} .NB {mso-special-format:nobullet¥;} .N {font-family:Verdana; mso-line-spacing:"100 0 0";} .N1B {mso-special-format:nobullet¥;} .N1 {font-family:Verdana; mso-line-spacing:"100 0 0";} .N2B {mso-special-format:nobullet¥;} .N2 {font-family:Verdana; mso-line-spacing:"100 0 0";} .N3B {mso-special-format:nobullet¥;} .N3 {font-family:Verdana; mso-line-spacing:"100 0 0";} .N4N {mso-special-format:nobullet¥;} .N4 {font-family:Verdana; mso-line-spacing:"100 0 0";} .OB {mso-special-format:nobullet¥;} .O {text-align:left; font-family:Verdana; color:black; mso-color-index:1; font-size:80%;} .O1B {mso-special-format:nobullet¥;} .O1 {font-family:Verdana; font-size:80%;} .O2B {mso-special-format:nobullet¥;} .O2 {font-family:Verdana; font-size:80%;} .O3B {mso-special-format:nobullet¥;} .O3 {font-family:Verdana; font-size:80%;} .O4B {mso-special-format:nobullet¥;} .O4 {font-family:Verdana; font-size:80%;} .CBB {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .CB {text-align:left; font-family:Times; color:white; mso-line-spacing:"-307 0 -61"; mso-margin-left-alt:360; mso-text-indent-alt:58;} .CB1B {mso-special-format:bullet\2013; color:white; font-family:Times; font-size:100%;} .CB1 {text-align:left; font-family:Times; color:white; mso-line-spacing:"-269 0 -53"; mso-margin-left-alt:620; mso-text-indent-alt:376;} .CB2B {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .CB2 {text-align:left; font-family:Times; color:white; mso-line-spacing:"-230 0 -46"; mso-margin-left-alt:889; mso-text-indent-alt:636;} .CB3B {mso-special-format:bullet\2013; color:white; font-family:Times; font-size:100%;} .CB3 {text-align:left; font-family:Times; color:white; mso-line-spacing:"100 0 -38"; mso-margin-left-alt:1162; mso-text-indent-alt:922;} .CB4B {mso-special-format:bulletÈ; color:white; font-family:Times; font-size:100%;} .CB4 {text-align:left; font-family:Times; color:white; mso-line-spacing:"100 0 0"; mso-margin-left-alt:1450; mso-text-indent-alt:1210;} .CTB {mso-special-format:nobullet¥;} .CT {font-family:Times; color:#E2EBF0; mso-line-spacing:"-422 0 0"; mso-margin-left-alt:16; mso-text-indent-alt:16;} .HBB {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .HB {font-family:Times; color:white; font-size:213%; mso-line-spacing:"-307 0 -61"; mso-margin-left-alt:360; mso-text-indent-alt:58;} .HB1B {mso-special-format:bullet\2013; color:white; font-family:Times; font-size:100%;} .HB1 {font-family:Times; color:white; font-size:186%; mso-line-spacing:"-269 0 -53"; mso-margin-left-alt:620; mso-text-indent-alt:376;} .HB2B {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .HB2 {font-family:Times; color:white; font-size:160%; mso-line-spacing:"-230 0 -46"; mso-margin-left-alt:889; mso-text-indent-alt:636;} .HB3B {mso-special-format:bullet\2013; color:white; font-family:Times; font-size:100%;} .HB3 {font-family:Times; color:white; font-size:133%; mso-line-spacing:"100 0 -38"; mso-margin-left-alt:1162; mso-text-indent-alt:922;} .HB4B {mso-special-format:bulletÈ; color:white; font-family:Times; font-size:100%;} .HB4 {font-family:Times; color:white; font-size:133%; mso-line-spacing:"100 0 0"; mso-margin-left-alt:1450; mso-text-indent-alt:1210;} .QBB {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .QB {font-family:Times; color:white; font-size:213%; mso-line-spacing:"-307 0 -61"; mso-margin-left-alt:360; mso-text-indent-alt:58;} .QB1B {mso-special-format:bullet\2013; color:white; font-family:Times; font-size:100%;} .QB1 {font-family:Times; color:white; font-size:186%; mso-line-spacing:"-269 0 -53"; mso-margin-left-alt:620; mso-text-indent-alt:376;} .QB2B {mso-special-format:bullet¥; color:white; font-family:Times; font-size:100%;} .QB2 {font-family:Times; color:white; font-size:160%; mso-line-spacing:"-230 0 -46"; mso-margin-left-alt:889; mso-text-indent-alt:636;} .QB3B {mso-special-format:bullet\2013; color:white; font-family:Times; font-size:100%;} .QB3 {font-family:Times; color:white; font-size:133%; mso-line-spacing:"100 0 -38"; mso-margin-left-alt:1162; mso-text-indent-alt:922;} .QB4B {mso-special-format:bulletÈ; color:white; font-family:Times; font-size:100%;} .QB4 {font-family:Times; color:white; font-size:133%; mso-line-spacing:"100 0 0"; mso-margin-left-alt:1450; mso-text-indent-alt:1210;} .TblB {mso-special-format:nobullet¥; color:white; font-family:Times; font-size:100%;} .Tbl {font-family:Times; color:white; mso-line-spacing:"-307 0 -61"; mso-margin-left-alt:360; mso-text-indent-alt:58;} .Tbl1B {mso-special-format:nobullet\2013; color:white; font-family:Times; font-size:100%;} .Tbl1 {font-family:Times; color:white; mso-line-spacing:"-269 0 -53"; mso-margin-left-alt:620; mso-text-indent-alt:376;} .Tbl2B {mso-special-format:nobullet¥; color:white; font-family:Times; font-size:100%;} .Tbl2 {font-family:Times; color:white; mso-line-spacing:"-230 0 -46"; mso-margin-left-alt:889; mso-text-indent-alt:636;} .Tbl3B {mso-special-format:nobullet\2013; color:white; font-family:Times; font-size:100%;} .Tbl3 {font-family:Times; color:white; mso-line-spacing:"100 0 -38"; mso-margin-left-alt:1162; mso-text-indent-alt:922;} .Tbl4B {mso-special-format:nobulletÈ; color:white; font-family:Times; font-size:100%;} .Tbl4 {font-family:Times; color:white; mso-line-spacing:"100 0 0"; mso-margin-left-alt:1450; mso-text-indent-alt:1210;} .defaultB {mso-special-format:nobullet¥;} .default {text-align:left; font-family:Verdana; font-weight:normal; font-style:normal; text-decoration:none; text-shadow:none; text-effect:none; mso-fareast-hint:no; layout-flow:horizontal; color:black; font-size:120%; mso-text-raise:0%; mso-line-spacing:"100 0 0"; mso-margin-left-alt:0; mso-text-indent-alt:0; mso-char-wrap:0; mso-kinsoku-overflow:0; direction:ltr; mso-word-wrap:1; mso-ansi-language:1033;} a:link {color:#009999 !important;} a:active {color:#333399 !important;} a:visited {color:#99CC00 !important;} \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/narration.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/narration.gif new file mode 100755 index 00000000..86530132 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/narration.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/navbg.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/navbg.gif new file mode 100755 index 00000000..de74971c Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/navbg.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/navigation_bar.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/navigation_bar.htm new file mode 100755 index 00000000..90ad1a36 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/navigation_bar.htm @@ -0,0 +1,91 @@ + + +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/next_active.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/next_active.gif new file mode 100755 index 00000000..f1677f91 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/next_active.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/next_disabled.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/next_disabled.gif new file mode 100755 index 00000000..261df048 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/next_disabled.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/notes_flag.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/notes_flag.gif new file mode 100755 index 00000000..cf618351 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/notes_flag.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline.gif new file mode 100755 index 00000000..2d4aa484 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_collapse.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_collapse.gif new file mode 100755 index 00000000..4c804d69 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_collapse.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_collapsed.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_collapsed.htm new file mode 100755 index 00000000..9e7d7d90 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_collapsed.htm @@ -0,0 +1,5 @@ +
      The GeneNetwork and WebQTL : PART 2  
      link to www.genenetwork.org
      Slide 2
      Slide 3
      Discovering upstream modulatory loci
      WebQTL searches for upstream controllers
      Genetic versus Physical maps for App expression
      Physical map for distal chromosome 7
      Evaluating candidate genes
      Physical maps are zoomable
      Evaluating Ctbp2 as a candidate QTL for App
      Evaluating Ctbp2 using other resources
      "Summary of Part 2"
      Test Questions
      Contact for comments and improvements:
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_expand.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_expand.gif new file mode 100755 index 00000000..c8c72b13 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_expand.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_expanded.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_expanded.htm new file mode 100755 index 00000000..c33cf334 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_expanded.htm @@ -0,0 +1,5 @@ +
      The GeneNetwork and WebQTL : PART 2  
      link to www.genenetwork.org
      Part 1. How to study expression variation and genetic correlation (slides 2–17)
      Part 2. Discovering upstream modulators (slides 18–29)

      Slide 2
      Slide 3
      Discovering upstream modulatory loci
      WebQTL searches for upstream controllers
      Genetic versus Physical maps for App expression
      Physical map for distal chromosome 7
      Evaluating candidate genes
      Physical maps are zoomable
      Evaluating Ctbp2 as a candidate QTL for App
      Evaluating Ctbp2 using other resources
      "Summary of Part 2"
      Summary of Part 2

      Test Questions
      Contact for comments and improvements:
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_navigation_bar.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_navigation_bar.htm new file mode 100755 index 00000000..85b11c52 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/outline_navigation_bar.htm @@ -0,0 +1,37 @@ + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/prev_active.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/prev_active.gif new file mode 100755 index 00000000..004a872f Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/prev_active.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/prev_disabled.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/prev_disabled.gif new file mode 100755 index 00000000..8a467185 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/prev_disabled.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/script.js b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/script.js new file mode 100755 index 00000000..8110ab9a --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/script.js @@ -0,0 +1,1343 @@ +var CtxAlwaysOn = false; +function LoadSld( slideId ) +{ + if( !g_supportsPPTHTML ) return + if( slideId ) + parent.base.SldUpdated(slideId) + g_origSz=parseInt(SlideObj.style.fontSize) + g_origH=SlideObj.style.posHeight + g_origW=SlideObj.style.posWidth + g_scaleHyperlinks=(document.all.tags("AREA").length>0) + if ( IsWin("PPTSld") && !parent.IsFullScrMode() ) + parent.base.highlite(); + if( g_scaleHyperlinks ) + InitHLinkArray() + if( g_scaleInFrame||(IsWin("PPTSld") && parent.IsFullScrMode() ) ) + document.body.scroll="no" + _RSW() + if( IsWin("PPTSld") && (parent.IsFullScrMode() || CtxAlwaysOn ) ) { + document.oncontextmenu=parent._CM; + self.focus(); + + } +} +function MakeSldVis( fTrans ) +{ + fTrans=fTrans && g_showAnimation + if( fTrans ) + { + if( g_bgSound ) { + idx=g_bgSound.indexOf(","); + pptSound.src=g_bgSound.substr( 0, idx ); + pptSound.loop= -(parseInt(g_bgSound.substr(idx+1))); + } + SlideObj.filters.revealtrans.Apply() + } + SlideObj.style.visibility="visible" + if( fTrans ) + SlideObj.filters.revealtrans.Play() +} +function MakeNotesVis() +{ + if( !IsNts() ) return false + SlideObj.style.display="none" + nObj = document.all.item("NotesObj") + parent.SetHasNts(0) + if( nObj ) { + nObj.style.display="" + parent.SetHasNts(1) + } + return 1 +} +function Redirect( frmId,sId ) +{ + var str=document.location.hash,idx=str.indexOf('#') + if(idx>=0) str=str.substr(1); + if( window.name != frmId && ( sId != str) ) { + obj = document.all.item("Main-File") + window.location.href=obj.href+"#"+sId + return 1 + } + return 0 +} +function HideMenu() { if( frames["PPTSld"] && PPTSld.document.all.item("ctxtmenu") && PPTSld.ctxtmenu.style.display!="none" ) { PPTSld.ctxtmenu.style.display='none'; return true } return false } +function IsWin( name ) { return window.name == name } +function IsNts() { return IsWin("PPTNts") } +function IsSldOrNts() { return( IsWin("PPTSld")||IsWin("PPTNts") ) } +function SupportsPPTAnimation() { return( navigator.platform == "Win32" && navigator.appVersion.indexOf("Windows")>0 ) } +function SupportsPPTHTML() +{ + var appVer=navigator.appVersion, msie=appVer.indexOf( "MSIE " ), inex = appVer.indexOf( "Internet Explorer " ), ver=0 + if( msie >= 0 ) + ver=parseFloat( appVer.substring( msie+5, appVer.indexOf(";",msie) ) ) + else if( inex >= 0 ) + ver=parseFloat( appVer.substring( inex+18, appVer.indexOf(";",inex) ) ) + else + ver=parseInt(appVer) + + return( ver >= 4 ) +} +var MHTMLPrefix = CalculateMHTMLPrefix(); +function CalculateMHTMLPrefix() +{ + if ( document.location.protocol == 'mhtml:') { + href=new String(document.location.href) + Start=href.indexOf('!')+1 + End=href.lastIndexOf('/')+1 + if (End < Start) + return href.substring(0, Start) + else + return href.substring(0, End) + } + return ''; +} + +function LoadNavSld(slideId) { +playList(); +parent.createCM(); + if( !g_supportsPPTHTML ) return + if( IsWin("PPTSld") && slideId ) + parent.base.SldUpdated(slideId) + self.focus(); + +} +var hasNarration = false; +function _RSW() +{ + if( !g_supportsPPTHTML || IsNts() || + ( !g_scaleInFrame && (( window.name != "PPTSld" ) ) ) ) + return + + cltWidth=document.body.clientWidth + cltHeight=document.body.clientHeight + factor=(1.0*cltWidth)/g_origW + if( cltHeight < g_origH*factor ) + factor=(1.0*cltHeight)/g_origH + + newSize = g_origSz * factor + if( newSize < 1 ) newSize=1 + + s=SlideObj.style + s.fontSize=newSize+"px" + s.posWidth=g_origW*factor + s.posHeight=g_origH*factor + s.posLeft=(cltWidth-s.posWidth)/2 + s.posTop=(cltHeight-s.posHeight)/2 + + if ( hasNarration ) { + obj = document.all.NSPlay.style; + mySld = document.all.SlideObj.style; + obj.position = 'absolute'; + obj.posTop = mySld.posTop + mySld.posHeight - 20; + obj.posLeft = mySld.posLeft + mySld.posWidth - 20; + } + if( g_scaleHyperlinks ) + ScaleHyperlinks( factor ); +} +function IsMac() { + return (window.navigator.platform.indexOf("Mac") >= 0 ); +} + +function HitOK( evt ) { + //Nav Only function + return (evt.which == 1 || (IsMac() && evt.which == 3) ); +} +function _KPH(event) +{ + + if ( parent.base.msie < 0 ) { + + if ( ( (event.target.name && event.target.name == "hasMap" ) || (event.target.href && event.target.href != "") ) && parent.g_docTable[0].type != "jpeg" && HitOK( event ) ) { + return; /* to make hyperlinks in fullscreen mode traversable */ + } + if( IsContextMenu() ) + return parent.KPH(event); + if ( parent.IsFullScrMode() && event.which == 27 ) + parent.base.CloseFullScreen(); + else if ( parent.base.IsFullScrMode() && ( (!IsMac() && event.which == 3) || ( IsMac() && (event.modifiers & Event.CONTROL_MASK) && event.which == 1 ) ) ) + return parent.KPH(event); + else if( (event.which == 32) || (event.which == 13) || HitOK( event ) ) { + if( window.name == "PPTSld" ) + parent.PPTSld.DocumentOnClick(); + else + parent.M_GoNextSld(); + } + else if ( parent.IsFullScrMode() && ((event.which == 78) || (event.which == 110) || (event.which == 29) || (event.which == 31) || (event.which == 12)) ) + parent.M_GoNextSld(); + else if ( parent.IsFullScrMode() && ( (event.which == 80) || (event.which == 112) || (event.which == 30) || (event.which == 28) || (event.which == 11) || (event.which == 8)) ) + parent.M_GoPrevSld(); + + return; + } + + if( IsNts() ) return; + + if(parent.IsFullScrMode() && event.keyCode == 27 && !parent.HideMenu() ) + parent.base.CloseFullScreen(); + else if( (event.keyCode == 32) || (event.keyCode == 13) ) + { + if( window.name == "PPTSld" ) + parent.PPTSld.DocumentOnClick(); + else + parent.M_GoNextSld(); + } + else if ( parent.IsFullScrMode() && ((event.keyCode == 78) || (event.keyCode == 110)) ) + parent.M_GoNextSld(); + else if ( parent.IsFullScrMode() && ((event.keyCode == 80) || (event.keyCode == 112)) ) + parent.M_GoPrevSld(); +} + +function DocumentOnClick(event) +{ + if ( g_doAdvOnClick && !parent.IsFullScrMode() ) { + parent.base.TP_GoToNextSld(); + return; + } + + if ( parent.base.msie < 0 ) + { + if( ( g_allowAdvOnClick && parent.IsFullScrMode() ) || g_doAdvOnClick || + (event && ( (event.which == 32) || (event.which == 13) ) ) ) + parent.M_GoNextSld(); + return; + } + if( IsNts() || (parent.IsFullScrMode() && parent.HideMenu() ) ) return; + if( ( g_allowAdvOnClick && parent.IsFullScrMode() ) || g_doAdvOnClick || + (event && ( (event.keyCode==32) || (event.keyCode == 13) ) ) ) + parent.M_GoNextSld(); +} + + +var g_supportsPPTHTML = SupportsPPTHTML(), g_scaleInFrame = true, gId="", g_bgSound="", + g_scaleHyperlinks = false, g_allowAdvOnClick = true, g_showInBrowser = false, g_doAdvOnClick = false; + + var g_showAnimation = 0; +var g_hasTrans = false, g_autoTrans = false, g_transSecs = 0; +var g_animManager = null; + +var ENDSHOW_MESG="End of slide show, click to exit.", SCREEN_MODE="Frames", gIsEndShow=0, NUM_VIS_SLDS=14, SCRIPT_HREF="script.js", FULLSCR_HREF="fullscreen.htm"; +var gCurSld = gPrevSld = 1, g_offset = 0, gNtsOpen = gHasNts = gOtlTxtExp = gNarrationPaused = false, gOtlOpen = true +window.gPPTHTML=SupportsPPTHTML() +var g_hideNav = 0; +function UpdNtsPane(){ PPTNts.location.replace( MHTMLPrefix+GetHrefObj( gCurSld ).mNtsHref ) } +function UpdNavPane( sldIndex ){ if(gNavLoaded) PPTNav.UpdNav() } +function UpdOtNavPane(){ if(gOtlNavLoaded) PPTOtlNav.UpdOtlNav() } +function UpdOtlPane(){ if(gOtlLoaded) PPTOtl.UpdOtl() } +function SetHasNts( fVal ) +{ + if( gHasNts != fVal ) { + gHasNts=fVal + UpdNavPane() + } +} + +function ToggleVNarration() +{ + if ( base.msie < 0 ) { + PPTSld.ToggleSound( false, PPTSld.document.NSPlay ); + return; + } + + rObj=PPTSld.document.all("NSPlay") + if( rObj ) { + if( gNarrationPaused ) + rObj.Play() + else + rObj.Pause() + + gNarrationPaused=!gNarrationPaused + } +} + +function PrevSldViewed(){ GoToSld( GetHrefObj(gPrevSld).mSldHref ) } +function HasPrevSld() { return ( gIsEndShow || ( g_currentSlide != 1 && GetHrefObj( g_currentSlide-1 ).mVis == 1 )||( GetCurrentSlideNum() > 1 ) ) } +function HasNextSld() { return (GetCurrentSlideNum() != GetNumSlides()) } +function StartEndShow() +{ +// g_hideNav = 1; +// PPTNav.location.reload(); + if( PPTSld.event ) PPTSld.event.cancelBubble=true + + doc=PPTSld.document + doc.open() + doc.writeln('


      ' + ENDSHOW_MESG + '

      ') + doc.close() +} +function SetSldVisited(){ gDocTable[gCurSld-1].mVisited=true } +function IsSldVisited(){ return gDocTable[gCurSld-1].mVisited } +function hrefList( sldHref, visible, sldIdx ) +{ + this.mSldHref= this.mNtsHref = sldHref + this.mSldIdx = sldIdx + this.mOrigVis= this.mVis = visible + this.mVisited= false +} +var gDocTable = new Array( + new hrefList("slide0001.htm", 1, 1), + new hrefList("slide0002.htm", 1, 2), + new hrefList("slide0003.htm", 1, 3), + new hrefList("slide0004.htm", 1, 4), + new hrefList("slide0005.htm", 1, 5), + new hrefList("slide0006.htm", 1, 6), + new hrefList("slide0007.htm", 1, 7), + new hrefList("slide0008.htm", 1, 8), + new hrefList("slide0009.htm", 1, 9), + new hrefList("slide0010.htm", 1, 10), + new hrefList("slide0011.htm", 1, 11), + new hrefList("slide0012.htm", 1, 12), + new hrefList("slide0013.htm", 1, 13), + new hrefList("slide0014.htm", 1, 14) +); + +function ImgBtn( oId,bId,w,action ) +{ + var t=this + t.Perform = _IBP + t.SetActive = _IBSetA + t.SetInactive= _IBSetI + t.SetPressed = _IBSetP + t.SetDisabled= _IBSetD + t.Enabled = _IBSetE + t.ChangeIcon = null + t.UserAction = action + t.ChgState = _IBUI + t.mObjId = oId + t.mBorderId= bId + t.mWidth = w + t.mIsOn = t.mCurState = 0 +} +function _IBSetA() +{ + if( this.mIsOn ) { + obj=this.ChgState( gHiliteClr,gShadowClr,2 ) + obj.style.posTop=0 + } +} +function _IBSetI() +{ + if( this.mIsOn ) { + obj=this.ChgState( gFaceClr,gFaceClr,1 ) + obj.style.posTop=0 + } +} +function _IBSetP() +{ + if( this.mIsOn ) { + obj=this.ChgState( gShadowClr,gHiliteClr,2 ) + obj.style.posLeft+=1; obj.style.posTop+=1 + } +} +function _IBSetD() +{ + obj=this.ChgState( gFaceClr,gFaceClr,0 ) + obj.style.posTop=0 +} +function _IBSetE( state ) +{ + var t=this + GetObj( t.mBorderId ).style.visibility="visible" + if( state != t.mIsOn ) { + t.mIsOn=state + if( state ) + t.SetInactive() + else + t.SetDisabled() + } +} +function _IBP() +{ + var t=this + if( t.mIsOn ) { + if( t.UserAction != null ) + t.UserAction() + if( t.ChangeIcon ) { + obj=GetObj(t.mObjId) + if( t.ChangeIcon() ) + obj.style.posLeft=obj.style.posLeft+(t.mCurState-4)*t.mWidth + else + obj.style.posLeft=obj.style.posLeft+(t.mCurState-0)*t.mWidth + } + t.SetActive() + } +} +function _IBUI( clr1,clr2,nextState ) +{ + var t=this + SetBorder( GetObj( t.mBorderId ),clr1,clr2 ) + obj=GetObj( t.mObjId ) + obj.style.posLeft=obj.style.posLeft+(t.mCurState-nextState)*t.mWidth-obj.style.posTop + t.mCurState=nextState + return obj +} +function TxtBtn( oId,oeId,action,chkState ) +{ + var t=this + t.Perform = _TBP + t.SetActive = _TBSetA + t.SetInactive= _TBSetI + t.SetPressed = _TBSetP + t.SetDisabled= _TBSetD + t.SetEnabled = _TBSetE + t.GetState = chkState + t.UserAction = action + t.ChgState = _TBUI + t.mObjId = oId + t.m_elementsId= oeId + t.mIsOn = 1 +} +function _TBSetA() +{ + var t=this + if( t.mIsOn && !t.GetState() ) + t.ChgState( gHiliteClr,gShadowClr,0,0 ) +} +function _TBSetI() +{ + var t=this + if( t.mIsOn && !t.GetState() ) + t.ChgState( gFaceClr,gFaceClr,0,0 ) +} +function _TBSetP() +{ + if( this.mIsOn ) + this.ChgState( gShadowClr,gHiliteClr,1,1 ) +} +function _TBSetD() +{ + this.ChgState( gFaceClr,gFaceClr,0,0 ) + this.mIsOn = 0 +} +function _TBSetE() +{ + var t=this + if( !t.GetState() ) + t.ChgState( gFaceClr,gFaceClr,0,0 ) + else + t.ChgState( gShadowClr,gHiliteClr,1,1 ) + t.mIsOn = 1 +} +function _TBP() +{ + var t=this + if( t.mIsOn ) { + if( t.UserAction != null ) + t.UserAction() + if( t.GetState() ) + t.SetPressed() + else + t.SetActive() + } +} +function _TBUI( clr1,clr2,lOffset,tOffset ) +{ + SetBorder( GetObj( this.mObjId ),clr1,clr2 ) + Offset( GetObj( this.m_elementsId ),lOffset,tOffset ) +} +function GetObj( objId ){ return document.all.item( objId ) } +function Offset( obj, top, left ){ obj.style.top=top; obj.style.left=left } +function SetBorder( obj, upperLeft, lowerRight ) +{ + s=obj.style; + s.borderStyle = "solid" + s.borderWidth = 1 + s.borderLeftColor = s.borderTopColor = upperLeft + s.borderBottomColor= s.borderRightColor = lowerRight +} +function GetBtnObj(){ return gBtnArr[window.event.srcElement.id] } +function BtnOnOver(){ b=GetBtnObj(); if( b != null ) b.SetActive() } +function BtnOnDown(){ b=GetBtnObj(); if( b != null ) b.SetPressed() } +function BtnOnOut(){ b=GetBtnObj(); if( b != null ) b.SetInactive() } +function BtnOnUp() +{ + b=GetBtnObj() + if( b != null ) + b.Perform() + else + Upd() +} +function GetNtsState(){ return parent.gNtsOpen } +function GetOtlState(){ return parent.gOtlOpen } +function GetOtlTxtState(){ return parent.gOtlTxtExp } +function NtsBtnSetFlag( fVal ) +{ + s=document.all.item( this.m_flagId ).style + s.display="none" + if( fVal ) + s.display="" + else + s.display="none" +} + +var gHiliteClr="THREEDHIGHLIGHT",gShadowClr="THREEDSHADOW",gFaceClr="THREEDFACE" +var gBtnArr = new Array() +gBtnArr["nb_otl"] = new TxtBtn( "nb_otl","nb_otlElem",parent.ToggleOtlPane,GetOtlState ) +gBtnArr["nb_nts"] = new TxtBtn( "nb_nts","nb_ntsElem",parent.ToggleNtsPane,GetNtsState ) +gBtnArr["nb_prev"]= new ImgBtn( "nb_prev","nb_prevBorder",30,parent.GoToPrevSld ) +gBtnArr["nb_next"]= new ImgBtn( "nb_next","nb_nextBorder",30,parent.GoToNextSld ) +gBtnArr["nb_sldshw"]= new ImgBtn( "nb_sldshw","nb_sldshwBorder",18,parent.FullScreen ) +gBtnArr["nb_voice"] = new ImgBtn( "nb_voice","nb_voiceBorder",18,parent.ToggleVNarration ) +gBtnArr["nb_otlTxt"]= new ImgBtn( "nb_otlTxt","nb_otlTxtBorder",23,parent.ToggleOtlText ) +gBtnArr["nb_nts"].m_flagId= "notes_flag" +gBtnArr["nb_nts"].SetFlag = NtsBtnSetFlag +gBtnArr["nb_otlTxt"].ChangeIcon= GetOtlTxtState +var sNext="Next",sPrev="Previous",sEnd="End Show",sFont="Arial", alwaysOn = false +function ShowMenu() +{ + BuildMenu(); + var doc=PPTSld.document.body,x=PPTSld.event.clientX+doc.scrollLeft,y=PPTSld.event.clientY+doc.scrollTop + + m = PPTSld.document.all.item("ctxtmenu") + m.style.pixelLeft=x + if( (x+m.scrollWidth > doc.clientWidth)&&(x-m.scrollWidth > 0) ) + m.style.pixelLeft=x-m.scrollWidth + + m.style.pixelTop=y + if( (y+m.scrollHeight > doc.clientHeight)&&(y-m.scrollHeight > 0) ) + m.style.pixelTop=y-m.scrollHeight + + m.style.display="" +} +function _CM() +{ + if( !parent.IsFullScrMode() && !alwaysOn) return; + + if(!PPTSld.event.ctrlKey) { + ShowMenu() + return false + } else + HideMenu() +} + +function processNavKPH(event) { + if ( PPTSld && (event.keyCode != 13 || !event.srcElement.href || event.srcElement.href == "" ) ) + return PPTSld._KPH(event); +} +function processNavClick() { + HideMenu(); + return true; +} +function BuildMenu() +{ + if( PPTSld.document.all.item("ctxtmenu") ) return + + var mObj=CreateItem( PPTSld.document.body ) +mObj.id="ctxtmenu" + var s=mObj.style + s.position="absolute" + s.cursor="default" + s.width="100px" + SetCMBorder(mObj,"menu","black") + + var iObj=CreateItem( mObj ) + SetCMBorder( iObj, "threedhighlight","threedshadow" ) + iObj.style.padding=2 + if ( self.IsFullScrMode() ) { + CreateMenuItem( iObj,sNext,M_GoNextSld,M_True ) + CreateMenuItem( iObj,sPrev,M_GoPrevSld,M_HasPrevSld ) + } + else { + CreateMenuItem( iObj,sNext, base.TP_GoToNextSld, base.HasNextSld ) + CreateMenuItem( iObj,sPrev,base.GoToPrevSld, base.HasPrevSld ) + } + var sObj=CreateItem( iObj ) + SetCMBorder(sObj,"menu","menu") + var s=sObj.style + s.borderTopColor="threedshadow" + s.borderBottomColor="threedhighlight" + s.height=1 + s.fontSize="0px" + if ( self.IsFullScrMode() ) + CreateMenuItem( iObj,sEnd,M_End,M_True ) + else + CreateMenuItem( iObj,sEnd,M_End,M_False ) +} +function Highlight() { ChangeClr("activecaption","threedhighlight") } +function Deselect() { ChangeClr("threedface","menutext") } +function Perform() +{ + e=PPTSld.event.srcElement + if( e.type=="menuitem" && e.IsActive() ) + e.Action() + else + PPTSld.event.cancelBubble=true +} +function ChangeClr( bg,clr ) +{ + e=PPTSld.event.srcElement + if( e.type=="menuitem" && e.IsActive() ) { + e.style.backgroundColor=bg + e.style.color=clr + } +} + +function M_HasPrevSld() { return( base.HasPrevSld() ) } +function M_GoNextSld() { + base.SetFSMode(1); + if( gIsEndShow ) + M_End(); + else { + if ( base.HasNextSld() ) + base.GoToNextSld(); + else if ( base.EndSlideShow ) { + StartEndShow(); + gIsEndShow = 1; + + PPTNav.location.reload(); + } + else + base.CloseFullScreen(); + } +} +function M_GoPrevSld() { + base.SetFSMode(1); + g_hideNav = 0; + if( gIsEndShow ) { + gIsEndShow = 0; + if ( base.msie > 0 && IsMac() ) + ChangeFrame( SLIDE_FRAME, GetHrefObj( g_currentSlide ).m_slideHref ); + else + PPTSld.history.back(); + + PPTNav.location.reload(); + if( PPTSld.event ) + PPTSld.event.cancelBubble=true; + } + else + base.GoToPrevSld(); +} +function M_True() { return true } +function M_False() { return false } + +function M_End() { + base.CloseFullScreen(); + /*PPTSld.event.cancelBubble=true; + window.close( self )*/ +} + +function CreateMenuItem( node,text,action,eval ) +{ + var e=CreateItem( node ) + e.type="menuitem" + e.Action=action + e.IsActive=eval + e.innerHTML=text + + if( !e.IsActive() ) + e.style.color="threedshadow" + e.onclick=Perform + e.onmouseover=Highlight + e.onmouseout=Deselect + s=e.style; + s.fontFamily=sFont + s.fontSize="8pt" + s.paddingLeft=2 +} +function CreateItem( node ) +{ + var elem=PPTSld.document.createElement("DIV") + node.insertBefore( elem ) + return elem +} +function SetCMBorder( o,ltClr,rbClr ) +{ + var s=o.style + s.backgroundColor="menu" + s.borderStyle="solid" + s.borderWidth=1 + s.borderColor=ltClr+" "+rbClr+" "+rbClr+" "+ltClr +} + +/* netscape context menu */ +g_ctxmenu = 0; +function setRect( obj, X, Y, W, H ) { + obj.top = Y; + obj.left = X; + obj.clip.top = 0; + obj.clip.left = 0; + obj.clip.bottom = H; + obj.clip.right = W; +} + +function KPH(event) { + if ( ! base.IsFullScrMode() && !alwaysOn ) + return true; + + if ( (!IsMac() &&event.which == 3) || ( IsMac() && (event.modifiers & Event.CONTROL_MASK) && event.which == 1 ) ) { + PPTSld.g_ctxmenu = 1; + PPTSld.stripUobj.visibility = "show"; + PPTSld.stripDobj.visibility = "show"; + PPTSld.shadeUobj.visibility = "show"; + PPTSld.shadeDobj.visibility = "show"; + PPTSld.panelobj.visibility = "show"; + PPTSld.Fobj.visibility = "show"; + PPTSld.Bobj.visibility = "show"; + PPTSld.Eobj.visibility = "show"; + + setRect(PPTSld.shadeUobj, event.pageX-2, event.pageY-2, 82, 67 ); + setRect(PPTSld.shadeDobj, event.pageX, event.pageY, 82, 67 ); + setRect(PPTSld.panelobj, event.pageX, event.pageY, 80, 65 ); + setRect(PPTSld.Fobj, event.pageX, event.pageY, 80, 20 ); + setRect(PPTSld.Bobj, event.pageX, event.pageY+20, 80, 20 ); + setRect(PPTSld.stripUobj, event.pageX, event.pageY+41, 80, 1 ); + setRect(PPTSld.stripDobj, event.pageX, event.pageY+43, 80, 1 ); + setRect(PPTSld.Eobj, event.pageX, event.pageY+45, 80, 20 ); + return false; + } + if ( HitOK( event ) ) { + PPTSld.g_ctxmenu = 0; + PPTSld.stripUobj.visibility = "hide"; + PPTSld.stripDobj.visibility = "hide"; + PPTSld.shadeUobj.visibility = "hide"; + PPTSld.shadeDobj.visibility = "hide"; + PPTSld.panelobj.visibility = "hide"; + PPTSld.Fobj.visibility = "hide"; + PPTSld.Bobj.visibility = "hide"; + PPTSld.Eobj.visibility = "hide"; + } + return true; +} + +function overMe() { + this.bgColor = "blue"; +} + +function outMe() { + this.bgColor = "#AAAAAA"; +} + +function makeElement( whichEl, whichContainer ) { + if ( arguments.length == 1 ) { + whichContainer = PPTSld; + } + tmp = new Layer(100,whichContainer); + eval( whichEl + " = tmp" ); + return eval(whichEl); +} + +function initMe( obj, clr, text ) { + obj.bgColor = clr; +// obj.document.write("" + text + ""); + obj.document.write( "   " + text +" "); + obj.document.close(); + obj.captureEvents(Event.CLICK); + obj.color = "black"; +} + +function createCM() { + if ( base.IsFullScrMode() ) { + var clr = "#AAAAAA"; + PPTSld.shadeUobj = makeElement("SHADEU"); + PPTSld.shadeDobj = makeElement("SHADED"); + PPTSld.panelobj = makeElement("PANEL"); + PPTSld.stripUobj = makeElement("STRIPU"); + PPTSld.stripDobj = makeElement("STRIPD"); + PPTSld.shadeUobj.bgColor = "#BBBBBB"; + PPTSld.shadeDobj.bgColor = "#888888"; + PPTSld.stripUobj.bgColor = "#777777"; + PPTSld.stripDobj.bgColor = "#CCCCCC"; + PPTSld.panelobj.bgColor = clr; + PPTSld.Fobj = makeElement("Next"); + PPTSld.Bobj = makeElement("Previous"); + PPTSld.Eobj = makeElement("EndShow"); + initMe( PPTSld.Fobj, clr, "Next" ); + PPTSld.Fobj.onclick = M_GoNextSld; + + initMe( PPTSld.Bobj, clr, "Previous" ); + PPTSld.Bobj.onclick = M_GoPrevSld; + + initMe( PPTSld.Eobj, clr, "End Show"); + PPTSld.Eobj.onclick = base.CloseFullScreen; + } +} + +function IsContextMenu() { + return (g_ctxmenu == 1) +} +var g_notesTable = new Array() +var g_hiddenSlide = new Array() +makeSlide( 0,1,1); +makeSlide( 1,1,1); +makeSlide( 2,1,1); +makeSlide( 3,1,1); +makeSlide( 4,1,1); +makeSlide( 5,1,1); +makeSlide( 6,1,1); +makeSlide( 7,1,1); +makeSlide( 8,1,1); +makeSlide( 9,1,1); +makeSlide( 10,1,1); +makeSlide( 11,0,1); +makeSlide( 12,0,1); +makeSlide( 13,1,1); + +var END_SHOW_HREF = "endshow.htm", + OUTLINE_EXPAND_HREF = "outline_expanded.htm", + OUTLINE_COLLAPSE_HREF = "outline_collapsed.htm", + OUTLINE_NAVBAR_HREF = "outline_navigation_bar.htm", + NAVBAR_HREF = "navigation_bar.htm", + BLANK_NOTES_HREF = "blank_notes.htm", + NUM_VISIBLE_SLIDES = 14, + SIMPLE_FRAMESET = 0, + SLIDE_FRAME = "PPTSld", + NOTES_FRAME = "PPTNts", + OUTLINE_FRAME = "PPTOtl", + OUTLINE_NAVBAR_FRAME = "PPTOtlNav", + NAVBAR_FRAME = "PPTNav", + MAIN_FRAME = "MainFrame", + FS_NAVBAR_HREF = "fs_navigation_bar.htm", + isIEFiles = 2, + isNAVFiles = 8, + isFLATFiles = 16, + includeNotes = 1, + PPTPRESENTATION = 1; +var INITSLIDENUM = 1; + +var EndSlideShow = 0; +var g_outline_href = OUTLINE_COLLAPSE_HREF; +var g_fullscrMode = 0; +var FSWin = null; +var gtmpstr = document.location.href; +var g_baseURL = gtmpstr.substr(0, gtmpstr.lastIndexOf("/") ) + "/" + "webqtl_demo2.ppt_files"; +var g_showoutline = 1; +var g_shownotes = includeNotes; +var g_currentSlide = INITSLIDENUM, g_prevSlide = INITSLIDENUM; +var saveFSSlideNum = saveTPSlideNum = g_currentSlide; +var saveFSprevSlide = saveTPprevSlide = g_prevSlide; +var g_slideType="ie"; +var appVer = navigator.appVersion; +var msie = appVer.indexOf( "MSIE " ) + appVer.indexOf( "Internet Explorer " ); +var isnav = ( navigator.appName.indexOf( "Netscape" ) >= 0 ); +var msieWin31 = (appVer.indexOf( "Windows 3.1" ) > 0); +var ver = 0; +var g_done = 0; +var g_prevotlobjidx = 0; +var g_ShowFSDefault = 0; +var g_lastVisibleSld = 1; +var g_allHidden = false; +function IsIE() { + return (msie >= 0 ); +} + +function IsNav() { + return (isnav); +} +var msiePos = appVer.indexOf( "MSIE " ); +var inexPos = appVer.indexOf( "Internet Explorer " ); +if ( msiePos >= 0 ) + ver = parseFloat( appVer.substring( msiePos+5, appVer.indexOf ( ";", msiePos ) ) ); +else if( inexPos >= 0 ) + ver=parseFloat( appVer.substring( inexPos+18, appVer.indexOf(";",inexPos) ) ) +else + ver = parseInt( appVer ); + +//var g_supportsPPTHTML = 0; //!msieWin31 && ( ( msie >= 0 && ver >= 3.02 ) || ( msie < 0 && ver >= 3 ) ); + +function GetCurrentSlideNum() +{ + obj = GetHrefObj( g_currentSlide ); + if ( GetHrefObj( g_currentSlide ).m_origVisibility == 1 ) + return obj.m_slideIdx; + else + return g_currentSlide; +} + +function GetNumSlides() +{ + if ( GetHrefObj( g_currentSlide ).m_origVisibility == 1 ) + return NUM_VISIBLE_SLIDES; + else + return g_docTable.length; +} + +function GetHrefObj( slideIdx ) +{ return g_docTable[slideIdx - 1]; +} + +function GetSlideNum( slideHref ) +{ + for (ii=0; ii 0 ) { + obj = GetHrefObj( targetIdx ); + while ( ( obj.m_visibility == 0 ) && ( targetIdx>0 ) ) + obj = GetHrefObj( targetIdx-- ); + GoToSld( obj.m_slideHref ); + } +} + +function GoToLast() +{ + targetIdx = g_docTable.length; + if ( targetIdx != g_currentSlide ) + GoToSld( GetHrefObj( targetIdx ).m_slideHref ); +} + +function GoToFirst() +{ GoToSld( GetHrefObj(1).m_slideHref ); +} + +function highlite() { + if ( IsFullScrMode() ) + return; + index = GetCurrentSlideNum(); + if ( !frames[MAIN_FRAME].frames[OUTLINE_FRAME] ) + return; + if ( msie < 0 ) { + if ( g_prevotlobjidx != 0 ) { + eval( "otlobj = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.LAYERID" + g_prevotlobjidx ); + otlobj.hidden = true; + } + else + index = GetCurrentSlideNum(); + eval( "otlobj = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.LAYERID" + index ); + otlobj.hidden = false; + + g_prevotlobjidx = index; + + return; + } + if ( !g_showoutline ) + return; + + backclr = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.body.bgColor; + textclr = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.body.text; + if ( g_prevotlobjidx != 0 ) { + eval( "otlobj = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.all.p" + g_prevotlobjidx ); + otlobj.style.backgroundColor = backclr; + otlobj.style.color = textclr; + otlobj.all.AREF.style.color = textclr; + } + else + index = GetCurrentSlideNum(); + eval( "otlobj = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.all.p" + index ); + otlobj.style.backgroundColor = textclr; + otlobj.style.color = backclr; + otlobj.all.AREF.style.color = backclr; + g_prevotlobjidx = index; +} + +function ChangeFrame( frame, href ) +{ +if ( IsFramesMode() ) { + if ( NAVBAR_FRAME == frame || OUTLINE_NAVBAR_FRAME == frame ) { + frames[frame].location.replace(href); + } + else if( ! ( ( OUTLINE_FRAME == frame && !g_showoutline) || (NOTES_FRAME == frame && !g_shownotes ) ) ){ + frames[MAIN_FRAME].frames[frame].location.href = href; + } + } + else { + if ( frame == NAVBAR_FRAME || frame == SLIDE_FRAME ) { + if( frame == NAVBAR_FRAME ) { + href = FS_NAVBAR_HREF; + + } + if( frame == NAVBAR_FRAME ) + window.frames[frame].location.replace(href); + else + window.frames[frame].location.href = href; + } + } + +} + +function shutEventPropagation() { + if ( IsNav() ) + return; + + var slideFrame; + if ( IsFramesMode() ) + slideFrame = frames[MAIN_FRAME].frames[SLIDE_FRAME]; + else + slideFrame = window.frames[SLIDE_FRAME]; + if ( slideFrame.event ) + slideFrame.event.cancelBubble=true; +} + +function GoToSld( slideHref ) +{ + shutEventPropagation(); + if ( slideHref != GetHrefObj( g_currentSlide ).m_slideHref || g_slideType != GetHrefObj( g_currentSlide ).type) { + g_prevSlide = g_currentSlide; + g_currentSlide = GetSlideNum( slideHref ); + g_slideType = GetHrefObj( g_currentSlide ).type; + obj = GetHrefObj( g_currentSlide ); + obj.m_visibility = 1; + ChangeFrame( SLIDE_FRAME, slideHref ); + if( !SIMPLE_FRAMESET ) + ChangeFrame( NOTES_FRAME, obj.m_notesHref ); + ChangeFrame( NAVBAR_FRAME, NAVBAR_HREF ); + + } +} + +function PrevSldViewed() +{ GoToSld( GetHrefObj( g_prevSlide ).m_slideHref ); +} + +function NoHref() {} + +function ExpandOutline( ) +{ + g_outline_href = OUTLINE_EXPAND_HREF; + ChangeFrame( OUTLINE_FRAME, OUTLINE_EXPAND_HREF ); + frames[OUTLINE_NAVBAR_FRAME].location.replace( OUTLINE_NAVBAR_HREF); +} + +function CollapseOutline() +{ + g_outline_href = OUTLINE_COLLAPSE_HREF; + ChangeFrame( OUTLINE_FRAME, OUTLINE_COLLAPSE_HREF ); + frames[OUTLINE_NAVBAR_FRAME].location.replace( OUTLINE_NAVBAR_HREF); + } + +function SlideUpdated( id ) +{ + if ( id != GetHrefObj( g_currentSlide ).m_slideHref ) { + g_prevSlide = g_currentSlide; + g_currentSlide = GetSlideNum( id ); + obj = GetHrefObj( g_currentSlide ); + if( !SIMPLE_FRAMESET ) + ChangeFrame( NOTES_FRAME, obj.m_notesHref ); + ChangeFrame( NAVBAR_FRAME, NAVBAR_HREF ); + } +} + +function hrefList( slideHref, notesHref, visible, slideIdx, type ) +{ + this.m_slideHref = slideHref; + this.m_notesHref = notesHref; + this.m_navbarHref = NAVBAR_HREF; + this.m_origVisibility = visible; + this.m_visibility = visible; + this.m_slideIdx = slideIdx; + this.type = type; +} + +function IsFullScrMode() { + return g_fullscrMode; +} + + +function IsFramesMode() { + return (1 - g_fullscrMode); +} + +function SldUpdated( id ) +{ + if ( ( id != GetHrefObj( g_currentSlide ).m_slideHref ) || ( g_currentSlide == g_lastVisibleSld ) ){ + g_prevSlide = g_currentSlide; + g_currentSlide = GetSlideNum( id ); + obj = GetHrefObj( g_currentSlide ); + if( !SIMPLE_FRAMESET ) + ChangeFrame( NOTES_FRAME, obj.m_notesHref ); + ChangeFrame( NAVBAR_FRAME, NAVBAR_HREF ); + } +} + +function ToggleOutline() { + g_showoutline = 1 - g_showoutline; + writeMyFrame(); +} + +function ShowHideNotes() { + g_shownotes = 1 - g_shownotes; + writeMyFrame(); +} + +function writeMyFrame() { + SetFSMode(0); + obj = frames[MAIN_FRAME]; + + var curslide = g_baseURL + "/" + GetHrefObj( g_currentSlide ).m_slideHref; + var curnotes = g_baseURL + "/" + GetHrefObj( g_currentSlide ).m_notesHref; + var otlhref = g_baseURL + "/" + g_outline_href; + if ( msie < 0 ) { + if ( ! g_showoutline && g_shownotes ) { + obj.document.write( ' \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0001_image001.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0001_image001.png new file mode 100755 index 00000000..a1cb20e4 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0001_image001.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0001_image002.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0001_image002.png new file mode 100755 index 00000000..e06bd0db Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0001_image002.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0001_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0001_notes_pane.htm new file mode 100755 index 00000000..9e0445f3 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0001_notes_pane.htm @@ -0,0 +1,5 @@ +
      Part 2: Discovering upstream modulators and quantitative trait loci (QTLs). A quantitative trait locus is a chromosomal region that harbors one or a few polymorphic gene loci that influence a trait. We are going to be looking for QTLs that modulate the steady state expression level of App in the adult mouse forebrain.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002.htm new file mode 100755 index 00000000..b40dd6e1 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image002.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image002.png new file mode 100755 index 00000000..2eb797be Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image002.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image003.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image003.png new file mode 100755 index 00000000..6cb8411f Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image003.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image004.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image004.png new file mode 100755 index 00000000..64ff0127 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image004.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image005.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image005.png new file mode 100755 index 00000000..64ff0127 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image005.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image006.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image006.png new file mode 100755 index 00000000..597fc88b Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image006.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image007.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image007.png new file mode 100755 index 00000000..df462a6f Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image007.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image008.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image008.png new file mode 100755 index 00000000..30d72bae Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image008.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image009.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image009.png new file mode 100755 index 00000000..008bf4ba Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image009.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image010.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image010.png new file mode 100755 index 00000000..008bf4ba Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image010.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image011.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image011.png new file mode 100755 index 00000000..4a2aa914 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image011.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image012.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image012.png new file mode 100755 index 00000000..da18a216 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image012.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image013.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image013.png new file mode 100755 index 00000000..800dc115 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image013.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image014.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image014.png new file mode 100755 index 00000000..7c163a78 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image014.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image015.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image015.png new file mode 100755 index 00000000..7c163a78 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image015.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image016.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image016.png new file mode 100755 index 00000000..7316133f Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image016.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image017.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image017.png new file mode 100755 index 00000000..68118241 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image017.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image018.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image018.png new file mode 100755 index 00000000..b1975b9e Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image018.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image019.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image019.png new file mode 100755 index 00000000..a87d571e Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image019.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image020.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image020.png new file mode 100755 index 00000000..33b804c7 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image020.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image021.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image021.png new file mode 100755 index 00000000..b5bb3863 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image021.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image022.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image022.png new file mode 100755 index 00000000..ddfa46a5 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image022.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image023.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image023.png new file mode 100755 index 00000000..8e62e5ae Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image023.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image024.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image024.png new file mode 100755 index 00000000..162d2fdc Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image024.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image025.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image025.png new file mode 100755 index 00000000..be993dfe Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image025.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image026.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image026.png new file mode 100755 index 00000000..be993dfe Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image026.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image027.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image027.png new file mode 100755 index 00000000..be993dfe Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image027.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image028.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image028.png new file mode 100755 index 00000000..a2bcc0fc Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image028.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image029.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image029.png new file mode 100755 index 00000000..d1eca4c7 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image029.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image030.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image030.png new file mode 100755 index 00000000..5b80e247 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image030.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image031.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image031.png new file mode 100755 index 00000000..67b9de02 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image031.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image032.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image032.png new file mode 100755 index 00000000..dde1f7a3 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image032.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image033.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image033.png new file mode 100755 index 00000000..6ba4f958 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image033.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image034.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image034.png new file mode 100755 index 00000000..41bb02b1 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image034.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image035.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image035.png new file mode 100755 index 00000000..8c688bcb Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image035.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image036.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image036.png new file mode 100755 index 00000000..d7f472b1 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image036.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image037.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image037.png new file mode 100755 index 00000000..f42a3441 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image037.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image038.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image038.png new file mode 100755 index 00000000..6846020c Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image038.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image039.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image039.png new file mode 100755 index 00000000..69ca45aa Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image039.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image040.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image040.png new file mode 100755 index 00000000..f935eb0b Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image040.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image041.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image041.png new file mode 100755 index 00000000..15bbc835 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image041.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image042.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image042.png new file mode 100755 index 00000000..83dcfcd1 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image042.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image043.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image043.png new file mode 100755 index 00000000..6846020c Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image043.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image044.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image044.png new file mode 100755 index 00000000..e518d79b Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image044.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image045.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image045.png new file mode 100755 index 00000000..4175a083 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image045.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image046.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image046.png new file mode 100755 index 00000000..8508d5aa Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image046.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image047.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image047.png new file mode 100755 index 00000000..6a033c0d Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image047.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image048.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image048.png new file mode 100755 index 00000000..c35999b3 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image048.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image049.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image049.png new file mode 100755 index 00000000..b2d7a24c Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image049.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image050.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image050.png new file mode 100755 index 00000000..846259e8 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image050.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image051.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image051.png new file mode 100755 index 00000000..2ee87758 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image051.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image052.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image052.png new file mode 100755 index 00000000..a5cad6d9 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image052.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image053.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image053.png new file mode 100755 index 00000000..7660dcec Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_image053.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_notes_pane.htm new file mode 100755 index 00000000..67653ac4 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0002_notes_pane.htm @@ -0,0 +1,5 @@ +
      The next few slides provide a short introduction to mapping the loci that are responsible for variation in a trait such as App expression level. These modulatory regions of the genome are sometimes called quantitative trait loci or QTLs. You may want to do some independent reading on this topic if this is your first exposure to QTL analysis.
      The genetic reference population (GRP) of BXD recombinant inbred strains were originally generated about 25 years ago by Benjamin Taylor at The Jackson Laboratory. He crossed female C57BL/6J mice with male DBA/2J mice to generate the F1 and F2 progeny. At the bottom of this slide we have schematized one chromosome pair from three of the BXD RI strains.  The dashed vertical lines that lead to the final BXD RI lines involve 21 full sib matings (about 7 years of breeding). Some lines die out during inbreeding. For example, there is no longer any BXD3 strain.
      Notes:
      1. Over the last decade, our group (Lu Lu and Rob Williams) and Jeremy Peirce and Lee Silver at Princeton have enlarged Ben TaylorÕs set. There are now just over 80 BXD strains. They have all been genotyped using about 13,700 markers (SNPs and microsatellites). These markers are used to define the ÒblueÓ and ÒredÓ regions of the chromosomes as shown in the figure above.
      2. Chromosomes of RI GRPs usually have about 4 times as many recombinations as those of F2 animals. However, unlike an F2, both chromosomes of an RI are identical. Therefore, 50 RI strains contain as many recombinations as 100 F2 animals.
      3. BXD43 through BXD100 were generated using a special method that resulted in a further doubling of the average recombination density per chromosome. The entire set of 80 BXDs therefore contains as many recombinations as about 260 F2 animals.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003.htm new file mode 100755 index 00000000..2c4a0620 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image005.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image005.png new file mode 100755 index 00000000..d1370484 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image005.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image006.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image006.png new file mode 100755 index 00000000..c9843a48 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image006.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image008.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image008.png new file mode 100755 index 00000000..504177df Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image008.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image009.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image009.png new file mode 100755 index 00000000..901c77a0 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image009.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image054.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image054.png new file mode 100755 index 00000000..3f7c7606 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image054.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image055.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image055.png new file mode 100755 index 00000000..3f7c7606 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image055.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image056.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image056.png new file mode 100755 index 00000000..272f8318 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image056.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image057.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image057.png new file mode 100755 index 00000000..a526d207 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image057.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image058.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image058.png new file mode 100755 index 00000000..7a08eae6 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image058.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image059.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image059.png new file mode 100755 index 00000000..f2e33d2d Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image059.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image060.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image060.png new file mode 100755 index 00000000..2c8ab141 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image060.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image061.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image061.png new file mode 100755 index 00000000..9665dc0f Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image061.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image062.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image062.png new file mode 100755 index 00000000..4c8023d2 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_image062.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_notes_pane.htm new file mode 100755 index 00000000..68c0fb55 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0003_notes_pane.htm @@ -0,0 +1,5 @@ +
      This slide is illustrates two major types of QTLs that modulate variability in transcript-relative steady state abundance.

      1. cis QTLs are defined as QTLs that are closely linked to the gene whose transcript is the measured trait. For example, a polymorphism in the promoter that affects binding of a transcription factor. However, cis QTLs can be far upstream or downstream polymorphisms in enhancers or may be in 3Õ UTR binding sites that affect message stability.

      2. trans QTLs map far enough away from the location of the gene that gives rise to the transcript that is being measured so that we can be fairly certain that the QTL is not in the gene itself. The most blatant type of trans QTL would be a polymorphism in a transcription factor. But in the majority of cases, the trans QTLs can be far removed in a mechanistic sense from the actual events modulating transcript abundance. That is why there are three overlapping arrows in the figure.  The way in which an upstream polymorphism influences a downstream difference in mRNA abundance can be indirect. Effects can:
         a.  cross tissue types (a polymorphic liver enzyme may affect CNS gene expression)
         b.  cross time (the modulator is only expressed for one day during development but has permanent effects in adults)
         c.  may be contingent on environmental factors (heat shock may trigger the expression of a polymorphic factor that affects mRNA abundance).
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004.htm new file mode 100755 index 00000000..8f72f910 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image010.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image010.png new file mode 100755 index 00000000..08c136e3 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image010.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image012.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image012.png new file mode 100755 index 00000000..b8e67f4d Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image012.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image063.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image063.png new file mode 100755 index 00000000..891bc06c Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image063.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image064.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image064.png new file mode 100755 index 00000000..8905caa6 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image064.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image065.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image065.png new file mode 100755 index 00000000..7f5a5295 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_image065.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_notes_pane.htm new file mode 100755 index 00000000..b1988954 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0004_notes_pane.htm @@ -0,0 +1,5 @@ +
      Please bring the Trait Data and Analysis window to the front and look for the Interval Mapping button. Confirm that you are back to the trait amyloid beta precursor protein.  If so, then just click the button.

      Notice that the default for:
      Select Chrs (chromosomes) is ALL
      Select Mapping Scale is set to GENETIC
      Options: Permutation test YES  (2000 is the default number)
      Options: Bootstrap test YES (2000 is the default number)
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005.htm new file mode 100755 index 00000000..b2dc8582 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image013.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image013.png new file mode 100755 index 00000000..55769e36 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image013.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image014.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image014.png new file mode 100755 index 00000000..e49ba16e Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image014.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image066.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image066.png new file mode 100755 index 00000000..5ab7794c Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image066.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image067.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image067.png new file mode 100755 index 00000000..c26d4792 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image067.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image068.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image068.png new file mode 100755 index 00000000..af0745a5 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image068.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image069.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image069.png new file mode 100755 index 00000000..6ec88720 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image069.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image070.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image070.png new file mode 100755 index 00000000..9c156ddc Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_image070.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_notes_pane.htm new file mode 100755 index 00000000..279e38cf --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0005_notes_pane.htm @@ -0,0 +1,5 @@ +
      This is a major output type: a so-called full-genome interval map.

      The X-axis represents all 19 autosomes and the X chromosome as if they were laid end to end with short gaps between the telomere of one chromosome and the centromere of the next chromosome (mouse chromosomes only have a single long arm and the centromere represents the origin of each chromosome for numerical purpose: 0 centimorgans at almost 0 megabases). The blue labels along the bottom of the figure list a subset of the 3795 markers that were used in mapping.
      The thick blue wavy line running across chromosomes summarizes the strength of association between variation in the phenotype (App expression differences) and the two genotypes of all markers and the intervals between markers (hence, interval mapping).  The height of the wave (blue Y-axis to the left) provides the likelihood ratio statistic (LRS). Divide by 4.61 to convert these values to LOD scores.  Or you can read them as a chi-square-like statistic.
      The red line and the red axis to the far right provide an estimate of the effect that a QTL has on expression of App (this estimate of the so-called additive effect tends to be too high). If the red line is below the X-axis then this means that the allele inherited from C57BL/6J (B6 or B) at a particular marker is associated with higher values. If the red line is above the X-axis then the DBA/2J allele (D2 or D) is associated with higher trait values. Multiply the additive effect size by 2 to estimate the difference between the set of strains that have the B/B genotype and those that have the D/D genotype at a specific marker. For example, on distal Chr 7 the red line peaks at a value of about 0.2. That means that this region of chromosome 2 is responsible for a 0.4 unit expression difference between B/B strains and the D/D strains.
      The yellow histogram bars: These summarize the results of a whole-genome bootstrap of the trait that is performed 1000 times. What is a bootstrap? A bootstrap provides a method to evaluate whether results are robust. If we drop out one strain, do we still get the same results? When mapping quantitative traits, each strain normally gets one equally weighted vote. But using the bootstrap procedure, we give each strain a random weighting factor of between 0 and 1.  We then remap the trait and find THE SINGLE BEST LRS VALUE per bootstrap. We do this 1000 times. In this example, most bootstrap results cluster on Chr 3 and Chr 7 under the LRS peaks. That is somewhat reassuring. But notice that a substantial number of bootstrap are scattered around on other chromosomes. About 30% of the bootstrap resamples have a peak on Chr 7. That is pretty good, but does makes us realize that the sample we are working with is still quite small and fragile.
      The horizontal dashed lines at 10.5 and 17.3 are the likelihood ratio statistic (LRS) values associated with the suggestive and significant genome-wide probabilities that were established by permutations of phenotypes across genotypes. We shuffle randomly 2000 times and obtain a distribution of peak LRS scores to generate a null distribution. Five percent of the time, one of these permuted data sets will have a peak LRS higher than 17.3. We call that level the 0.05 significance threshold for a whole genome scan. The p = 0.67 point is the suggestive level, and corresponds to the green dashed line.  These thresholds are conservative for transcripts that have expression variation that is highly heritable. The putative or suggestive QTL on Chr 3 is probably more than just suggestive.
      One other point: the mapping procedure we use is computationally very fast, but it is relatively simple. We are not looking for gene-gene interactions and we are not fitting multiple QTLs in combinations. Consider this QTL analysis a first pass that will highlight hot spots and warm spots that are worth following up on using more sophisticated models.

      CLICKABLE REGIONS:
      1. If you click on the Chromosome number then you will generate a new map just for that chromosome.
      2. If you click on the body of the map, say on the blue line, then you will generate a view on a 10 Mb window of that part of the genome from the UCSC Genome Browser web site.
      3. If you click on a marker symbol, then you will generate a new Trait data and Analysis window with the genotypes loaded into the window just like any other trait. More on this in Section 3.
      4. You can drag these maps off of the browser window and onto your desktop. They will be saved as PNG or PDF files. You can import them into Photoshop or other programs.
      5. There is also an option at the bottom of the page to download a 2X higher resolution image of this plot for papers and presentations.
      6. You can also download the results of the analysis in a text format
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006.htm new file mode 100755 index 00000000..f647c55a --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_image015.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_image015.png new file mode 100755 index 00000000..ff7d776a Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_image015.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_image071.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_image071.png new file mode 100755 index 00000000..0e63f836 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_image071.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_image072.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_image072.png new file mode 100755 index 00000000..3c44c2ab Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_image072.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_notes_pane.htm new file mode 100755 index 00000000..c1f7d244 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0006_notes_pane.htm @@ -0,0 +1,5 @@ +
      The map on the top has an X-axis scale based on frequency of recombinations events between markers (B to D transitions, see slide 19 for a color-coded example). These so-called genetic maps are scaled in centimorgan (recombinations per 100 gametes). In contrast, the physical map shown below the genetic map has an X-axis scale based on DNA length measured in nucleotides or base-pairs. Notice the large difference between the two maps in the size of Chr 19 (large on the genetic scale but small on the physical scale).
      Also notice the large difference in the width of the chromosome 7 QTL peak. In mice, recombinations occur with higher frequency toward the telomeric side (right side) of each chromosome. As a result, genetic maps are stretched out more toward the telomere relative to a physical map. The QTL on distal Chr 7 is therefore actually more precisely mapped than might appear looking at the genetic map.
      The physical scale is becoming more useful than the genetic scale primarily because many other data types can be easily superimposed on a physical map. You will see more examples in the next several slides.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007.htm new file mode 100755 index 00000000..01fb76a9 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image016.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image016.png new file mode 100755 index 00000000..53a17c76 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image016.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image017.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image017.png new file mode 100755 index 00000000..308c4df0 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image017.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image073.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image073.png new file mode 100755 index 00000000..c0174c3f Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image073.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image075.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image075.png new file mode 100755 index 00000000..9a3e3264 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_image075.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_notes_pane.htm new file mode 100755 index 00000000..24c42724 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0007_notes_pane.htm @@ -0,0 +1,5 @@ +
      Physical map of variation in App expression in brain on distal Chr 7 (a blow up of the whole-genome map on the previous slide).

      Notes:
      1. You can now see that the X-axis is on a physical scale of megabases (Mb). The QTL peak is roughly between 120 and 132 Mb.
      2. The small irregular colored blocks and marks toward the top of the map mark the locations of genes superimposed on the physical map. Neighboring genes are offset slightly in the vertical axis for display purpose. Note one region of very high gene density from about 120 to 123 Mb.
      3. The orange hash marks along the X-axis represent the number of single nucleotide polymorphisms that distinguish the two parental strains (C57BL/6J and DBA/2J) from each other. We call this the SNP seismograph track (see Glossary for more details). Regions with low numbers of SNPs have closely matched sequences and are less likely to contain QTLs.
      4. As before, the thin red line shows the additive effect size. By convention the positive values signify the D alleles are associated with higher expression of App in this region of Chr 7 than the B alleles. The maximum effect size is about +0.20 log2 expression units per D allele. The differences been the BB and DD genotypes (BB and DD because each strain has two alleles; one per chromosome) is therefore about 2^0.4 = 1.32 or a 32% increment in DD relative to BB at this locus.
      5. If you scroll just under the Physical Map you will see text that reads ÒDISPLAY from XXX Mb TO YYY MbÉ..Ó  These physical maps are zoomable, a feature we will exploit to evaluate candidate genes in this QTL interval.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008.htm new file mode 100755 index 00000000..8a9290b6 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image018.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image018.png new file mode 100755 index 00000000..9535e6bb Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image018.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image019.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image019.png new file mode 100755 index 00000000..7e86d735 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image019.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image021.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image021.png new file mode 100755 index 00000000..2f8dfb0a Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image021.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image076.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image076.png new file mode 100755 index 00000000..14e3fbe5 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image076.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image077.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image077.png new file mode 100755 index 00000000..ec9fff87 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_image077.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_notes_pane.htm new file mode 100755 index 00000000..9f5e373a --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0008_notes_pane.htm @@ -0,0 +1,5 @@ +
      Evaluating candidate genes (CHECKED BOXES) responsible for variability in APP expression:
      A large number of genes are usually in the QTL interval and are therefore POSITIONAL CANDIDATES, but they will differ greatly in their biological and bioinformatic plausibility. Assume that the QTL has been located between 119 and 131 Mb (12 Mb). There will typically be 12 to 15 genes per Mb, so we might need to evaluate several hundred positional candidates. In this particular case there are about 100 known genes in this interval. Eight of these are highlighted in the table above with check marks in the boxes to the left.  We need to highlight and objectively score the biologically relevant subset of all 100 positional candidate genes. We could look through gene ontologies and expression levels to help us shorten the list. An alternate way available using WebQTL is to generate a list of those genes in this interval that have transcripts that co-vary in expression with App expression. That is what the table shows.

      Notes:
      1. To replicate this table go back to the Trait Data and Analysis Form. Choose to sort correlations by POSITION and select RETURN = 500. Then scroll down the list to Chr 7 and review the subset of positional candidates that share expression with App. You should see a list similar to that shown above. Gtf3c1 is a good biological candidate and has a high covariation in expression with App.
      2. Caveat:   Of course, the gene or genes that control App expression may not be in this list. A protein coding difference might be the ultimate cause of variation in App transcript level and the expression covariation might be close to zero. Our list may also simply be missing the right transcript since the microarray is not truly comprehensive. Furthermore, even if the list contains the QTL gene, an expression difference may only have been expressed early in development or even in another tissue such as liver. While it is important to recognize these caveats, it is equally important to devise a rational way to rank candidates given existing data. Coexpression is one of several criteria used to evaluate positional candidates. We will see others in the next slide.
      3. We can also assess the likelihood that candidates contain functional polymorphism in promoters and enhancers that affect their expression simply by mapping the transcripts of all candidate genes to see if they Òmap backÓ to the location of gene itself. A transcript that maps to its own location is referred to as a cis QTL. We essentially ask: Which of the transcripts listed in the Correlation Table above (from Gtf3c1 to Zranb1) has variation in expression that maps to Chr 7 at about 120 Mb?  The logic of this search is that if a gene controls the level of its own expression it is also much more likely to generate other downstream effects. The Gtf3c1 transcript is a weak cis QTL with a local LRS maximum of about 7.0 (D alleles are high). That is just about sufficient to declare it to be a cis QTL. [No whole genome correction is required and a point-wise p-value of 0.05 is the appropriate test. A p-value of 0.05 is roughly equivalent to an LRS of 6.0 (LOD = 1.3).]

      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009.htm new file mode 100755 index 00000000..16351b5b --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image022.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image022.png new file mode 100755 index 00000000..e03c35ed Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image022.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image078.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image078.png new file mode 100755 index 00000000..93d21c90 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image078.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image079.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image079.png new file mode 100755 index 00000000..fdc27d23 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image079.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image080.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image080.png new file mode 100755 index 00000000..d2cb5ee3 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_image080.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_notes_pane.htm new file mode 100755 index 00000000..39c42e72 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0009_notes_pane.htm @@ -0,0 +1,5 @@ +
      An even higher blow-up of part of the Chr 7 physical map of variation in App expression in brain.  The QTL region actually extends from about 119 to 129.

      Notes:
      1. As mentioned in the previous slide another important approach to ranking candidates is based on the number of sequence variants that distinguish the parental strains. If we were sure that the sequences of the gene, its promoter, and its enhancers were identical between the strains then we could discount--but not eliminate--that gene as a candidate. The Gtf3c1 candidate almost falls into this category: of 663 known SNPs in and around this gene, only four differ between C57BL/6J and DBA/2J. Gtf3c1 is essentially identical-by-descent in these strains and is a less likely candidate. In contrast, if the two alleles of the gene have dozens of functional variants in exons, promoters, enhancers, and splice sites, then it becomes a higher priority candidate.
      Of course it only takes a single critical sequence variant to generate downstream effects. The argument above is really about the prior probabilities. Where would you place your bets given the information at hand?
      2.  If you scroll down the INTERVAL ANALYST you will find that Ctbp2 is a particularly interesting candidate that contains lots of SNPs (n = 75 and a SNP density of 0.55 SNP/Kb). Ctbp2 is also closer to our QTL peak than was Gtf3c1. Not only does Ctbp2 contain lots of SNPs but it is also is associated with a powerful cis QTL with an LRS of 24.2 (divide by 4.61 to get the equivalent LOD score of 5.25).
      3.  At this high magnification, individual genes are distinct. They are color coded by their density of SNPs. Bright orange represents those genes that have a high SNP density (C57BL/6J versus DBA/2J), black represents genes with low SNP density. Roll the cursor over a gene block and its name will pop up, along with information on exon number.
      4.  Beneath the physical map you will find an INTERVAL ANALYST table that lists information on known genes in the region on which you have zoomed the Physical Map.
      5.  As always: error-checking is important. Some genes may be missing from the Interval Analyst (recent additions or errors of omission). In this case the Zranb1 gene that is located just proximal to Ctbp2 is not listed in the INTERVAL ANALYST. Double-check the interval using the Genome Browser links (blue and beige horizontal bars) at the top of the PHYSICAL MAP.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010.htm new file mode 100755 index 00000000..91cf9f00 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image023.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image023.png new file mode 100755 index 00000000..1d32d035 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image023.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image024.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image024.png new file mode 100755 index 00000000..152e5045 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image024.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image082.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image082.png new file mode 100755 index 00000000..cf5f70f7 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image082.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image083.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image083.png new file mode 100755 index 00000000..a5886d21 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image083.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image084.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image084.png new file mode 100755 index 00000000..7eb77319 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image084.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image085.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image085.png new file mode 100755 index 00000000..99f4d04d Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image085.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image086.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image086.png new file mode 100755 index 00000000..ac87ce02 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_image086.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_notes_pane.htm new file mode 100755 index 00000000..bdb257fb --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0010_notes_pane.htm @@ -0,0 +1,5 @@ +
      This slide illustrates one reason why Ctbp2 should be considered a high priority positional candidate gene that may modulate the expression level of App.  Ctbp2 is a strong cis QTL in some brain regions (here the data are taken from the striatum).  If Ctbp2 contains variants that modulate its own expression then these expression differences may produce many downstream effects. Of course, we now want to know much more about the known biology of Ctbp2. What kind of gene is it? To begin to answer that question we can use a number of resources listed in the LINKS page.

      Notes:
      1. The App QTL is bimodal. Perhaps there are actually two causal factors in this region--one close to 123 Mb and the other close to 127 Mb.
      2. The precision of QTL mapping depends on several factors, including the effect size and interactions among QTLs modulating a trait, the number of genetic individuals that are studied, and the distribution of recombinations in the study population.  In the case above, the QTL(s) are likely to be confined to the interval from 120 to 132 Mb. The bootstrap test (yellow bars shown in some of the previous slides) can be usual for estimating the consistency of QTL peaks.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011.htm new file mode 100755 index 00000000..dd8304f8 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_image025.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_image025.png new file mode 100755 index 00000000..d29a333f Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_image025.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_image087.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_image087.png new file mode 100755 index 00000000..a6ca39ae Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_image087.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_image088.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_image088.png new file mode 100755 index 00000000..c17a41bc Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_image088.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_notes_pane.htm new file mode 100755 index 00000000..c287e06e --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0011_notes_pane.htm @@ -0,0 +1,5 @@ +
      Ctbp2 should also be considered a high priority biological candidate gene responsible for modulating App expression levels. The C-terminal binding protein 2 is a transcriptional co-repressor also known as Ribeye. The gene produces two transcripts encoding distinct proteins. The short form is a transcriptional repressor that binds a Pro-X-Asp-Leu-Ser peptide motif and interacts with several transcription factors including EVI1, ZFPM1, and ZFHX1A (aka TCF8, deltaEF1). The longer isoform is a major component of specialized synapses in photoreceptors. Both proteins contain a NAD+ binding domain similar to NAD+-dependent 2-hydroxyacid dehydrogenases.

      Notes:
      1. To find out more about CTBP2 protein and the Ctbp2 gene, link to iHOP at http://www.pdg.cnb.uam.es/UniPub/iHOP/ and type in CTBP2
      Try Arrowsmith at http://arrowsmith.psych.uic.edu/cgi-test/arrowsmith_uic/pubsmith.cgi
      2. Both APP and CTBP2 are involved in oxidoreducatase activity or Notch signaling. To establish this common gene ontology visit NCBI  http://www.ncbi.nih.gov/entrez/query.fcgi?db=gene and enter each gene symbol.
      3. You can get interesting hints regarding Ctbp2 expression partners by examining the genetic correlations between Ctbp2 probe set 1422887_a_at and all other transcripts on the M430 Affymetrix array. Use the Striatum data set because we already know from previous work (the previous slide) that this gene is a cis QTL.  You should be able to show that Ctbp2 and Notch3 have antagonistic expression patterns in striatum. The negative genetic correlation with E2f4 is even stronger. The transcript also has a high positive genetic correlation with Rdh14. Of particular interest with respect to APP protein processing, Ctbp2 covaries positively with Bace2 (the transcript of the beta site APP-cleaving enzyme 2).


      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0012.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0012.htm new file mode 100755 index 00000000..852e722e --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0012.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0012_image026.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0012_image026.png new file mode 100755 index 00000000..a0675ffc Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0012_image026.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0012_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0012_notes_pane.htm new file mode 100755 index 00000000..895ab29b --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0012_notes_pane.htm @@ -0,0 +1,5 @@ +
      By clicking on the CORRELATION of the Atcay transcript to the App transcript, you can generate a Correlation plot between these two transcripts. In this App and Atcay scatterplot, each point is a strain mean value. For example, BXD33 and BXD8 have low App and Atcay expressions. The two parental strains and the F1 are also included in this plot.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0013.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0013.htm new file mode 100755 index 00000000..f8993810 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0013.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0013_image027.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0013_image027.png new file mode 100755 index 00000000..ba473846 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0013_image027.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0013_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0013_notes_pane.htm new file mode 100755 index 00000000..190b8653 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0013_notes_pane.htm @@ -0,0 +1,5 @@ +
      A group of traits from many different databases can be selected and brought together for joint analysis. In this case all of the content of the BXD SELECTIONS is from a single BRAIN database, the top 20 neighbors of the App transcript from the Correlation Results table. Eight of these neighbors plus App is shown in the slide.
      Notes:
      1.All of items in the BXD SELECTIONS were selected using the SELECT ALL button
      2. The buttons at the top (and bottom) of this page can do some cool stuff. We will work with NETWORK GRAPH first.
      3. Think of the SELECTIONS as your shopping cart. You go to different aisles in the supermarket to acquire different types of items of interest. These could include transcripts, classical phenotypes (longevity, brain weight, prepulse inhibition, iron levels in midbrain). ÒChecking outÓ in this case involves doing some analysis with the items in the cart.
      4. Different tools handle different numbers of items. Most will handle up to 100 traits.

      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014.htm new file mode 100755 index 00000000..e5de4030 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_image029.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_image029.png new file mode 100755 index 00000000..8f560834 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_image029.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_image031.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_image031.png new file mode 100755 index 00000000..8d72b4c1 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_image031.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_image033.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_image033.png new file mode 100755 index 00000000..c1cd1c01 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_image033.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_notes_pane.htm new file mode 100755 index 00000000..4a9d3b57 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0014_notes_pane.htm @@ -0,0 +1,5 @@ +
      END
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015.htm new file mode 100755 index 00000000..89e5d8e5 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015.htm @@ -0,0 +1,155 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      The GeneNetwork and WebQTL : PART 2  
      link to www.genenetwork.org
      lPart 1. How to study expression variation and genetic correlation (slides 2–17)
      lPart 2. Discovering upstream modulators (slides 18–29)
      RNA

      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015_image034.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015_image034.png new file mode 100755 index 00000000..dafa2898 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015_image034.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015_image035.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015_image035.png new file mode 100755 index 00000000..35566d47 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015_image035.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015_notes_pane.htm new file mode 100755 index 00000000..c4c4ec6d --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0015_notes_pane.htm @@ -0,0 +1,5 @@ +
      Going back to the Trait Data and Analysis Form window, we have computed the correlations between strain variation in App expression level and other classical phenotypes that have already been measured in many of the same BXD strains.
      Notes:
      1.The number of common strains varies widely--in this case from 14 to 23 strains.
      2. We can add these traits (four are selected) to our BXD SELECTIONS window.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0016.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0016.htm new file mode 100755 index 00000000..ea69ff33 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0016.htm @@ -0,0 +1,919 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +




      How to make recombinant inbred strains (RI)

      C57BL/6J (B)

      DBA/2J (D)

      F1

      20 generations brother-sister matings

      BXD1

      BXD2

      BXD80
      + É +

      F2

      BXD RI
      Strain set

      fully
      inbred

      isogenic

      hetero-
      geneous

      Recombined chromosomes are needed for mapping

      female

      male

      chromosome pair

      Inbred
      Isogenic
      siblings

      BXD
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0016_image036.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0016_image036.png new file mode 100755 index 00000000..baa1d807 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0016_image036.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0016_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0016_notes_pane.htm new file mode 100755 index 00000000..f5776dad --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0016_notes_pane.htm @@ -0,0 +1,5 @@ +
      We have computed the Network Graph, now using other types of traits.
      Saline Hot Plate Latency is the green node labeled 10020.
      Freezing (fear) is the green node labeled 10447.
      Notes:
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0017.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0017.htm new file mode 100755 index 00000000..cc8ff93a --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0017.htm @@ -0,0 +1,421 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      aa

      aaaa

      D2 strain

      B6 strain

      amount of transcript

      4 units

      2 units

      D

      B

      D and B may be SNP-like variants in the promoter itself (cis QTL) or in upstream genes (trans QTLs).
      UPSTREAM
      modulators

      High

      D

      B

      cis QTL

      Low

      >>>>PROMOTER--ATG-Exon1-Intron1-Exon2-Intron2 - etc-3'UTR >>>>>
      

      

      

      



      trans QTL

      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018.htm new file mode 100755 index 00000000..a2c8a7db --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018.htm @@ -0,0 +1,115 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Discovering upstream modulatory loci
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018_image037.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018_image037.png new file mode 100755 index 00000000..a1cb20e4 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018_image037.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018_image038.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018_image038.png new file mode 100755 index 00000000..e06bd0db Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018_image038.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018_notes_pane.htm new file mode 100755 index 00000000..9e0445f3 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0018_notes_pane.htm @@ -0,0 +1,5 @@ +
      Part 2: Discovering upstream modulators and quantitative trait loci (QTLs). A quantitative trait locus is a chromosomal region that harbors one or a few polymorphic gene loci that influence a trait. We are going to be looking for QTLs that modulate the steady state expression level of App in the adult mouse forebrain.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019.htm new file mode 100755 index 00000000..43fc12fd --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019.htm @@ -0,0 +1,155 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      WebQTL searches for upstream controllers
      App maps on Chr 16 (blue arrow points to the orange triangle) but the best locus is on Chr 7.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image039.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image039.png new file mode 100755 index 00000000..6cb8411f Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image039.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image040.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image040.png new file mode 100755 index 00000000..64ff0127 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image040.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image041.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image041.png new file mode 100755 index 00000000..64ff0127 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image041.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image042.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image042.png new file mode 100755 index 00000000..597fc88b Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image042.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image043.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image043.png new file mode 100755 index 00000000..df462a6f Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image043.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image044.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image044.png new file mode 100755 index 00000000..30d72bae Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image044.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image045.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image045.png new file mode 100755 index 00000000..008bf4ba Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image045.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image046.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image046.png new file mode 100755 index 00000000..008bf4ba Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image046.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image047.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image047.png new file mode 100755 index 00000000..4a2aa914 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image047.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image048.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image048.png new file mode 100755 index 00000000..da18a216 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image048.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image049.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image049.png new file mode 100755 index 00000000..800dc115 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image049.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image050.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image050.png new file mode 100755 index 00000000..7c163a78 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image050.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image051.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image051.png new file mode 100755 index 00000000..7c163a78 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image051.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image052.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image052.png new file mode 100755 index 00000000..7316133f Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image052.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image053.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image053.png new file mode 100755 index 00000000..68118241 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image053.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image054.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image054.png new file mode 100755 index 00000000..b1975b9e Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image054.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image055.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image055.png new file mode 100755 index 00000000..a87d571e Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image055.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image056.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image056.png new file mode 100755 index 00000000..33b804c7 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image056.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image057.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image057.png new file mode 100755 index 00000000..b5bb3863 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image057.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image058.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image058.png new file mode 100755 index 00000000..ddfa46a5 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image058.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image059.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image059.png new file mode 100755 index 00000000..8e62e5ae Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image059.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image060.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image060.png new file mode 100755 index 00000000..162d2fdc Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image060.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image061.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image061.png new file mode 100755 index 00000000..be993dfe Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image061.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image062.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image062.png new file mode 100755 index 00000000..be993dfe Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image062.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image063.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image063.png new file mode 100755 index 00000000..be993dfe Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image063.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image064.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image064.png new file mode 100755 index 00000000..a2bcc0fc Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image064.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image065.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image065.png new file mode 100755 index 00000000..d1eca4c7 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image065.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image066.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image066.png new file mode 100755 index 00000000..5b80e247 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image066.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image067.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image067.png new file mode 100755 index 00000000..67b9de02 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image067.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image068.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image068.png new file mode 100755 index 00000000..dde1f7a3 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image068.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image069.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image069.png new file mode 100755 index 00000000..6ba4f958 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image069.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image070.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image070.png new file mode 100755 index 00000000..41bb02b1 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image070.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image071.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image071.png new file mode 100755 index 00000000..8c688bcb Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image071.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image072.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image072.png new file mode 100755 index 00000000..d7f472b1 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image072.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image073.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image073.png new file mode 100755 index 00000000..f42a3441 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image073.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image074.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image074.png new file mode 100755 index 00000000..6846020c Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image074.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image075.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image075.png new file mode 100755 index 00000000..69ca45aa Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image075.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image076.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image076.png new file mode 100755 index 00000000..f935eb0b Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image076.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image077.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image077.png new file mode 100755 index 00000000..15bbc835 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image077.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image078.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image078.png new file mode 100755 index 00000000..83dcfcd1 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image078.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image079.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image079.png new file mode 100755 index 00000000..6846020c Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image079.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image080.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image080.png new file mode 100755 index 00000000..e518d79b Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image080.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image081.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image081.png new file mode 100755 index 00000000..4175a083 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image081.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image082.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image082.png new file mode 100755 index 00000000..8508d5aa Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image082.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image083.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image083.png new file mode 100755 index 00000000..6a033c0d Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image083.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image084.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image084.png new file mode 100755 index 00000000..c35999b3 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image084.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image085.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image085.png new file mode 100755 index 00000000..b2d7a24c Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image085.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image086.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image086.png new file mode 100755 index 00000000..846259e8 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image086.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image087.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image087.png new file mode 100755 index 00000000..2ee87758 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image087.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image088.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image088.png new file mode 100755 index 00000000..a5cad6d9 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image088.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image089.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image089.png new file mode 100755 index 00000000..7660dcec Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_image089.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_notes_pane.htm new file mode 100755 index 00000000..67653ac4 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0019_notes_pane.htm @@ -0,0 +1,5 @@ +
      The next few slides provide a short introduction to mapping the loci that are responsible for variation in a trait such as App expression level. These modulatory regions of the genome are sometimes called quantitative trait loci or QTLs. You may want to do some independent reading on this topic if this is your first exposure to QTL analysis.
      The genetic reference population (GRP) of BXD recombinant inbred strains were originally generated about 25 years ago by Benjamin Taylor at The Jackson Laboratory. He crossed female C57BL/6J mice with male DBA/2J mice to generate the F1 and F2 progeny. At the bottom of this slide we have schematized one chromosome pair from three of the BXD RI strains.  The dashed vertical lines that lead to the final BXD RI lines involve 21 full sib matings (about 7 years of breeding). Some lines die out during inbreeding. For example, there is no longer any BXD3 strain.
      Notes:
      1. Over the last decade, our group (Lu Lu and Rob Williams) and Jeremy Peirce and Lee Silver at Princeton have enlarged Ben TaylorÕs set. There are now just over 80 BXD strains. They have all been genotyped using about 13,700 markers (SNPs and microsatellites). These markers are used to define the ÒblueÓ and ÒredÓ regions of the chromosomes as shown in the figure above.
      2. Chromosomes of RI GRPs usually have about 4 times as many recombinations as those of F2 animals. However, unlike an F2, both chromosomes of an RI are identical. Therefore, 50 RI strains contain as many recombinations as 100 F2 animals.
      3. BXD43 through BXD100 were generated using a special method that resulted in a further doubling of the average recombination density per chromosome. The entire set of 80 BXDs therefore contains as many recombinations as about 260 F2 animals.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020.htm new file mode 100755 index 00000000..d148b0c8 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020.htm @@ -0,0 +1,113 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Genetic versus Physical maps for App expression
      The difference between genetic and physical scale is analogous to measuring the separation between New York and Boston in either travel hours or kilometers.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image090.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image090.png new file mode 100755 index 00000000..3f7c7606 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image090.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image091.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image091.png new file mode 100755 index 00000000..3f7c7606 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image091.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image092.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image092.png new file mode 100755 index 00000000..272f8318 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image092.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image093.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image093.png new file mode 100755 index 00000000..a526d207 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image093.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image094.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image094.png new file mode 100755 index 00000000..7a08eae6 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image094.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image095.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image095.png new file mode 100755 index 00000000..f2e33d2d Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image095.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image096.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image096.png new file mode 100755 index 00000000..2c8ab141 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image096.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image097.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image097.png new file mode 100755 index 00000000..9665dc0f Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image097.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image098.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image098.png new file mode 100755 index 00000000..4c8023d2 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_image098.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_notes_pane.htm new file mode 100755 index 00000000..68c0fb55 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0020_notes_pane.htm @@ -0,0 +1,5 @@ +
      This slide is illustrates two major types of QTLs that modulate variability in transcript-relative steady state abundance.

      1. cis QTLs are defined as QTLs that are closely linked to the gene whose transcript is the measured trait. For example, a polymorphism in the promoter that affects binding of a transcription factor. However, cis QTLs can be far upstream or downstream polymorphisms in enhancers or may be in 3Õ UTR binding sites that affect message stability.

      2. trans QTLs map far enough away from the location of the gene that gives rise to the transcript that is being measured so that we can be fairly certain that the QTL is not in the gene itself. The most blatant type of trans QTL would be a polymorphism in a transcription factor. But in the majority of cases, the trans QTLs can be far removed in a mechanistic sense from the actual events modulating transcript abundance. That is why there are three overlapping arrows in the figure.  The way in which an upstream polymorphism influences a downstream difference in mRNA abundance can be indirect. Effects can:
         a.  cross tissue types (a polymorphic liver enzyme may affect CNS gene expression)
         b.  cross time (the modulator is only expressed for one day during development but has permanent effects in adults)
         c.  may be contingent on environmental factors (heat shock may trigger the expression of a polymorphic factor that affects mRNA abundance).
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021.htm new file mode 100755 index 00000000..c7854145 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021.htm @@ -0,0 +1,110 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Physical map for distal chromosome 7
      Distal Chr 7 from ~120 and 132 Mb may modulate App
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_image099.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_image099.png new file mode 100755 index 00000000..891bc06c Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_image099.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_image100.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_image100.png new file mode 100755 index 00000000..8905caa6 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_image100.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_image101.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_image101.png new file mode 100755 index 00000000..7f5a5295 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_image101.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_notes_pane.htm new file mode 100755 index 00000000..b1988954 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0021_notes_pane.htm @@ -0,0 +1,5 @@ +
      Please bring the Trait Data and Analysis window to the front and look for the Interval Mapping button. Confirm that you are back to the trait amyloid beta precursor protein.  If so, then just click the button.

      Notice that the default for:
      Select Chrs (chromosomes) is ALL
      Select Mapping Scale is set to GENETIC
      Options: Permutation test YES  (2000 is the default number)
      Options: Bootstrap test YES (2000 is the default number)
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022.htm new file mode 100755 index 00000000..25d9a02e --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022.htm @@ -0,0 +1,134 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Evaluating candidate genes
      Right position
      and high correlation
       = better
      candidates
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image102.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image102.png new file mode 100755 index 00000000..5ab7794c Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image102.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image103.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image103.png new file mode 100755 index 00000000..c26d4792 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image103.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image104.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image104.png new file mode 100755 index 00000000..af0745a5 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image104.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image105.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image105.png new file mode 100755 index 00000000..6ec88720 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image105.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image106.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image106.png new file mode 100755 index 00000000..9c156ddc Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_image106.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_notes_pane.htm new file mode 100755 index 00000000..4d30f6e3 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0022_notes_pane.htm @@ -0,0 +1,5 @@ +
      This is a major output type: a so-called full-genome interval map.

      The X-axis represents all 19 autosomes and the X chromosome as if they were laid end to end with short gaps between the telomere of one chromosome and the centromere of the next chromosome (mouse chromosomes only have a single long arm and the centromere represents the origin of each chromosome for numerical purpose: 0 centimorgans at almost 0 megabases). The blue labels along the bottom of the figure list a subset of the 3795 markers that were used in mapping.
      The thick blue wavy line running across chromosomes summarizes the strength of association between variation in the phenotype (App expression differences) and the two genotypes of all markers and the intervals between markers (hence, interval mapping).  The height of the wave (blue Y-axis to the left) provides the likelihood ratio statistic (LRS). Divide by 4.61 to convert these values to LOD scores.  Or you can read them as a chi-square-like statistic.
      The red line and the red axis to the far right provides an estimate of the effect that a QTL has on expression of App (this estimate of the so-called additive effect tends to be too high). If the red line is below the X-axis then this means that the allele inherited from C57BL/6J (B6 or B) at a particular marker is associated with higher values. If the red line is above the X-axis then the DBA/2J allele (D2 or D) is associated with higher trait values. Multiply the additive effect size by 2 to estimate the difference between the set of strains that have the B/B genotype and those that have the D/D genotype at a specific marker. For example, on distal Chr 7 the red line peaks at a value of about 0.2. That means that this region of chromosome 2 is responsible for a 0.4 unit expression difference between B/B strains and the D/D strains.
      The yellow histogram bars: These summarize the results of a whole-genome bootstrap of the trait that is performed 1000 times. What is a bootstrap? A bootstrap provides a method to evaluate whether results are robust. If we drop out one strain, do we still get the same results? When mapping quantitative traits, each strain normally gets one equally weighted vote. But using the bootstrap procedure, we give each strain a random weighting factor of between 0 and 1.  We then remap the trait and find THE SINGLE BEST LRS VALUE per bootstrap. We do this 1000 times. In this example, most bootstrap results cluster on Chr 3 and Chr 7 under the LRS peaks. That is somewhat reassuring. But notice that a substantial number of bootstrap are scattered around on other chromosomes. About 30% of the bootstrap resamples have a peak on Chr 7. That is pretty good, but does makes us realize that the sample we are working with is still quite small and fragile.
      The horizontal dashed lines at 10.5 and 17.3 are the likelihood ratio statistic (LRS) values associated with the suggestive and significant genome-wide probabilities that were established by permutations of phenotypes across genotypes. We shuffle randomly 2000 times and obtain a distribution of peak LRS scores to generate a null distribution. Five percent of the time, one of these permuted data sets will have a peak LRS higher than 17.3. We call that level the 0.05 significance threshold for a whole genome scan. The p = 0.67 point is the the suggestive level, and corresponds to the green dashed line.  These thresholds are conservative for transcripts that have expression variation that is highly heritable. The putative or suggestive QTL on Chr 3 is probably more than just suggestive.
      One other point: the mapping procedure we use is computationally very fast, but it is relatively simple. We are not looking for gene-gene interactions and we are not fitting multiple QTLs in combinations. Consider this QTL analysis a first pass that will highlight hot spots and warm spots that are worth following up on using more sophisticated models.

      CLICKABLE REGIONS:
      1. If you click on the Chromosome number then you will generate a new map just for that chromosome.
      2. If you click on the body of the map, say on the blue line, then you will generate a view on a 10 Mb window of that part of the genome from the UCSC Genome Browser web site.
      3. If you click on a marker symbol, then you will generate a new Trait data and Analysis window with the genotypes loaded into the window just like any other trait. More on this in Section 3.
      4. You can drag these maps off of the browser window and onto your desktop. They will be saved as PNG or PDF files. You can import them into Photoshop or other programs.
      5. There is also an option at the bottom of the page to download a 2X higher resolution image of this plot for papers and presentations.
      6. You can also download the results of the analysis in a text format
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023.htm new file mode 100755 index 00000000..fabf25c5 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023.htm @@ -0,0 +1,115 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Physical maps are zoomable
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023_image107.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023_image107.png new file mode 100755 index 00000000..0e63f836 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023_image107.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023_image108.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023_image108.png new file mode 100755 index 00000000..3c44c2ab Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023_image108.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023_notes_pane.htm new file mode 100755 index 00000000..010f3332 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0023_notes_pane.htm @@ -0,0 +1,5 @@ +
      The map on the top has an X-axis scale based on frequency of recombinations events between markers (B to D transitions, see slide 19 for a color-coded example). These so-called genetic maps are scaled in centimorgan (recombinations per 100 gametes). In contrast, the physical map shown below the genetic map has an X-axis scale based on DNA length measured in nucleotides or base-pairs. Notice the large difference between the two maps in the size of Chr 19 (large on the genetic scale but small on the physical scale).
      Also notice the large difference in the width of the chromosome 7 QTL peak. In mice, recombinations occur with higher frequency toward the telomeric side (righ sidet) of each chromosome. As a result, genetic maps are stretched out more toward the telomere relative to a physical map. The QTL on distal Chr 7 is therefore actually more precisely mapped than might appear looking at the genetic map.
      The physical scale is becoming more useful than the genetic scale primarily because many other data types can be easily superimposed on a physical map. You will see more examples in the next several slides.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024.htm new file mode 100755 index 00000000..bf2b9b3c --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024.htm @@ -0,0 +1,167 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Evaluating Ctbp2 as a candidate QTL for App
      This is the Ctbp2 cis QTL, but is detected only in the Rosen striatum data set.
      This is the App QTL in the INIA data set.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024_image109.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024_image109.png new file mode 100755 index 00000000..c0174c3f Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024_image109.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024_image111.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024_image111.png new file mode 100755 index 00000000..9a3e3264 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024_image111.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024_notes_pane.htm new file mode 100755 index 00000000..e6f07dec --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0024_notes_pane.htm @@ -0,0 +1,5 @@ +
      Physical map of variation in App expression in brain on distal Chr 7 (a blow up of the whole-genome map on the previous slide).

      Notes:
      1. You can now see that the X-axis is on a physical scale of megabases (Mb). The QTL peak is roughly between 120 and 132 Mb.
      2. The small irregular colored blocks and marks toward the top of the map mark the locations of genes superimposed on the physical map. Neighboring genes are offset slightly in the vertical axis for display purpose. Note one region of very high gene density from about 120 to 123 Mb.
      3. The orange hash marks along the X-axis represent the number of single nucleotide polymorphisms that distinguish the two parental strains (C57BL/6J and DBA/2J) from each other. We call this the SNP seismograph track (see Glossary for more details). Regions with low numbers of SNP have closely matched sequences and are less likely to contain QTLs.
      4. As before, the thin red line shows the additive effect size. By convention the positive values signify the D alleles are associated with higher expression of App in this region of Chr 7 than the B alleles. The maximum effect size is about +0.20 log2 expression units per D allele. The differences been the BB and DD genotypes (BB and DD because each strain has two alleles; one per chromosome) is therefore about 2^0.4 = 1.32; or a 32% increment in DD relative to BB at this locus.
      5. If you scroll just under the Physical Map you will see text that reads ÒDISPLAY from XXX Mb TO YYY MbÉ..Ó  These physical maps are zoomable, a feature we will exploit to evaluate candidate genes in this QTL interval.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025.htm new file mode 100755 index 00000000..e9ce598f --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025.htm @@ -0,0 +1,104 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Evaluating Ctbp2 using other resources
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025_image112.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025_image112.png new file mode 100755 index 00000000..14e3fbe5 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025_image112.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025_image113.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025_image113.png new file mode 100755 index 00000000..ec9fff87 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025_image113.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025_notes_pane.htm new file mode 100755 index 00000000..19825b0d --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0025_notes_pane.htm @@ -0,0 +1,5 @@ +
      Evaluating candidate genes (CHECKED BOXES) responsible for variability in APP expression:
      A large number of genes are usually in the QTL interval and are therefore POSITIONAL CANDIDATES, but they will differ greatly in their biological and bioinformatic plausibility. Assume that the QTL has been located between 119 and 131 Mb (12 Mb). There will typically be 12 to 15 genes per Mb, so we might need to evaluate several hundred positional candidates. In this particular case there are about 100 known genes in this interval. Eight of these are highlighted in the table above with check marks in the boxes to the left.  We need to highlight and objectively score the biologically relevant subset of all 100 positional candidate genes. We could look through gene ontologies and expression levels to help us shorten the list. An alternate way available using WebQTL is to generate a list of those genes in this interval that have transcripts that co-vary in expression with App expression. That is what the table shows.

      Notes:
      1. To replicate this table go back to the Trait Data and Analysis Form. Choose to sort correlations by POSITION and select RETURN = 500. Then scroll down the list to Chr 7 and review the subset of positional candidates that share expression with App. You should see a list similar to that shown above. Gtf3c1 is a good biological candidate and has a high covariation in expression with App.
      2. Caveat:   Of course, the gene or genes that control App expression may not be in this list. A protein coding difference might be the ultimate cause of variation in App transcript level and the expression covariation might be close to zero. Our list may also simply be missing the right transcript since the microarray is not truly comprehensive. Furthermore, even if the list contains the QT gene, an expression difference may only have been expressed early in development or even in another tissue such as liver. While it is important to recognize these caveats, it is equally important to devise a rational way to rank candidates given existing data. Coexpression is one of several criteria used to evaluate positional candidates. We will see others in the next slide.
      3. We can also assess the likelihood that candidates contain functional polymorphism in promoters and enhancers that affect their expression simply by mapping the transcripts of all candidate genes to see if they Òmap backÓ to the location of gene itself. A transcript that maps to its own location is referred to as a cis QTL. We essentially ask: Which of the the transcripts listed in the Correlation Table above (from Gtf3c1 to Zranb1) has variation in expression that maps to Chr 7 at about 120 Mb?  The logic of this search is that if a gene controls the level of its own expression it is also much more likely to generate other downstream effects. The Gtf3c1 transcript is a weak cis QTL with a local LRS maximum of about 7.0 (D alleles are high). That is just about sufficient to declare it to be a cis QTL. [No whole genome correction is required and a point-wise p-value of 0.05 is the appropriate test. A p-value of 0.05 is roughly equivalent to an LRS of 6.0 (LOD = 1.3).]

      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026.htm new file mode 100755 index 00000000..2ef9b9ff --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026.htm @@ -0,0 +1,139 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lSummary of Part 2
      1. Covered the basics of QTL analysis and mapping.
      2. Reviewed difference between genetic and physical maps.
      3. Discussed interpreting features of QTL maps including the LRS function, the additive effect function, the bootstrap bars, and the permutation thresholds.
      4. Illustrated techniques to generate a list of positional candidates.
      5. Discussed some factors used to evaluate candidate genes.
      What does a QTL signify? A good QTL is a claim that a particular chromosomal region contains a causal source of variation in the phenotype. The importance of this hypothesis depends on the quality and relevance of the phenotype and the statistical strength of the QTL. As usual, test and be skeptical.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_image114.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_image114.png new file mode 100755 index 00000000..93d21c90 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_image114.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_image115.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_image115.png new file mode 100755 index 00000000..fdc27d23 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_image115.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_image116.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_image116.png new file mode 100755 index 00000000..d2cb5ee3 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_image116.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_notes_pane.htm new file mode 100755 index 00000000..d335b732 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0026_notes_pane.htm @@ -0,0 +1,5 @@ +
      Even higher blow-up of part of the Chr 7 physical map of variation in App expression in brain.  The QTL region actually extends from about 119 to 129.

      Notes:
      1. As mentioned in the previous slide another important approach to ranking candidates is based on the number of sequence variants that distinguish the parental strains. If we were sure that the sequences of the gene, its promoter, and its enhancers were identical between the strains then we could discount--but not eliminate--that gene as a candidate. The Gtf3c1 candidate almost falls into this category: of 663 known SNPs in and around this gene, only four differ between C57BL/6J and DBA/2J. Gtf3c1 is essentially identical-by-descent in these strains and is a less likely candidate. In contrast, if the two alleles of the gene have dozens of functional variants in exons, promoters, enhancers, and splice sites, then it becomes a higher priority candidate.
      Of course it only takes a single critical sequence variant to generate downstream effects. The argument above is really about the prior probabilities. Where would you place your bets given the information at hand?
      2.  If you scroll down the INTERVAL ANALYST you will find that Ctbp2 is a particularly interesting candidate that contains lots of SNPs (n = 75 and a SNP density of 0.55 SNP/Kb). Ctbp2 is also closer to our QTL peak than was Gtf3c1. Not only does Ctbp2 contain lots of SNPs but it is also is associated with a powerful cis QTL with an LRS of 24.2 (divide by 4.61 to get the equivalent LOD score of 5.25).
      3.  At this high magnification, individual genes are distinct. They are color coded by their density of SNPs. Bright orange represents those genes that have a high SNP density (C57BL/6J versus DBA/2J), black represents genes with low SNP density. Roll the cursor over a gene block and its name will pop up, along with information on exon number.
      4.  Beneath the physical map you will find an INTERVAL ANALYST table that lists information on known genes in the region on which you have zoomed the Physical Map.
      5.  As always: error-checking is important. Some genes may be missing from the Interval Analyst (recent additions or errors of omission). In this case the Zranb1 gene that is located just proximal to Ctbp2 is not listed in the INTERVAL ANALYST. Double-check the interval using the Genome Browser links (blue and beige horizontal bars) at the top of the PHYSICAL MAP.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027.htm new file mode 100755 index 00000000..c553bae9 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027.htm @@ -0,0 +1,115 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Test Questions
      1. Evaluate candidates for the Chr 3 App QTL.
      2. Do App and Ctbp2 expression share any other QTLs beside that on Chr 7?
      3. Can you exploit literature mining tools to find a strong relationship between App and Ctbp2?
      4. Why might the cis QTL for Ctbp2 expression only be detected in the striatum data set?
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image118.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image118.png new file mode 100755 index 00000000..cf5f70f7 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image118.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image119.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image119.png new file mode 100755 index 00000000..a5886d21 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image119.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image120.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image120.png new file mode 100755 index 00000000..7eb77319 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image120.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image121.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image121.png new file mode 100755 index 00000000..99f4d04d Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image121.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image122.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image122.png new file mode 100755 index 00000000..ac87ce02 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_image122.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_notes_pane.htm new file mode 100755 index 00000000..26d15c0e --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0027_notes_pane.htm @@ -0,0 +1,5 @@ +
      This slide illustrates one reason why Ctbp2 should be considered a high priority positional candidate gene that may modulate the expression level of App.  Ctbp2 is a strong cis QTL in some brain regions (here the data are taken from the striatum).  If Ctbp2 contains variants that modulate its own expression then these expression differencess may produce many downstream effects. Of course, we now want to know much more about the known biology of Ctbp2. What kind of gene is it? To begin to answer that question we can use a number of resources listed in the LINKS page.

      Notes:
      1. The App QTL is bimodal. Perhaps there are actually two causal factors in this region--one close to 123 Mb and the other close to 127 Mb.
      2. The precision of QTL mapping depends on several factors, including the effect size and interactions among QTLs modulating a trait, the number of genetic individuals that are studied, and the distribution of recombinations in the study population.  In the case above, the QTL(s) are likely to be confined to the interval from 120 to 132 Mb. The bootstrap test (yellow bars shown in some of the previous slides) can be usual for estimating the consiistency of QTL peaks.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028.htm new file mode 100755 index 00000000..67711e7c --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028.htm @@ -0,0 +1,112 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Contact for comments and improvements:
      rwilliam@nb.utmem.edu


      kmanly@utmem.edu
      The App findings reviewed in this presentation are part of an ongoing study by R. Williams. R. Homayouni, and R. Clark (July 15, 2005)
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028_image123.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028_image123.png new file mode 100755 index 00000000..a6ca39ae Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028_image123.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028_image124.png b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028_image124.png new file mode 100755 index 00000000..c17a41bc Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028_image124.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028_notes_pane.htm new file mode 100755 index 00000000..3693ce68 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0028_notes_pane.htm @@ -0,0 +1,5 @@ +
      Ctbp2 should also be considered a high priority biological candidate gene responsible for modulating App expression levels. The  C-terminal binding protein 2 is a transcriptional co-repressor also known as Ribeye. The gene produces two transcripts encoding distinct proteins. The short form is a transcriptional repressor that binds a Pro-X-Asp-Leu-Ser peptide motif common to adenoviral oncoprotein E1a and a related motif in BKLF. This short form also interacts  with several transcription factors including EVI1, ZFPM1, and   ZFHX1A (aka TCF8, deltaEF1). The longer isoform is a major component of specialized synapses in photoreceptors. Both proteins contain a NAD+ binding domain similar to NAD+-dependent 2-hydroxyacid dehydrogenases.

      Notes:
      1. To find out more about CTBP2 protein and the Ctbp2 gene, link to iHOP at http://www.pdg.cnb.uam.es/UniPub/iHOP/ and type in CTBP2
      Try Arrowsmith at http://arrowsmith.psych.uic.edu/cgi-test/arrowsmith_uic/pubsmith.cgi
      2. Both APP and CTBP2 are involved in oxidoreducatase activity or Notch signalling. To estabilish this common gene ontology visit NCBI  http://www.ncbi.nih.gov/entrez/query.fcgi?db=gene  and enter each gene symbol.
      3. You can get intersting hints regarding Ctbp2 expression partners by examining the genetic correlations between Ctbp2 probe set 1422887_a_at and all other transcripts on the M430 Affymetrix array. Use the Striatum data set because we already know from previous work (the previous slide) that this gene is a cis QTL.  You should be able to show that Ctbp2 and Notch3 have antagonistic expression patterns in striatum. The negative genetic correlation with E2f4 is even stronger. The transcript also has a high positive genetic correlation with Rdh14. Of particualr interest with respect to APP protein processing, Ctbp2 covaries positiviely with Bace2 (the transcript of the beta site APP-cleaving enzyme 2).


      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0029.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0029.htm new file mode 100755 index 00000000..74ec8342 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0029.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0030.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0030.htm new file mode 100755 index 00000000..5562bbe5 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0030.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0031.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0031.htm new file mode 100755 index 00000000..63a89597 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0031.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0031_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0031_notes_pane.htm new file mode 100755 index 00000000..4a9d3b57 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0031_notes_pane.htm @@ -0,0 +1,5 @@ +
      END
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0032.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0032.htm new file mode 100755 index 00000000..9be3d514 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0032.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0033.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0033.htm new file mode 100755 index 00000000..cbc5cab2 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0033.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0034.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0034.htm new file mode 100755 index 00000000..70eb4eb1 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0034.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0035.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0035.htm new file mode 100755 index 00000000..9b947b02 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0035.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0036.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0036.htm new file mode 100755 index 00000000..51d0d914 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0036.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0037.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0037.htm new file mode 100755 index 00000000..10b36afa --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0037.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0038.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0038.htm new file mode 100755 index 00000000..d63e58132 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0038.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0039.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0039.htm new file mode 100755 index 00000000..151e2673 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0039.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0040.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0040.htm new file mode 100755 index 00000000..73fd572f --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0040.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0041.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0041.htm new file mode 100755 index 00000000..e56c2750 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0041.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0042.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0042.htm new file mode 100755 index 00000000..7a092137 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0042.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0043.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0043.htm new file mode 100755 index 00000000..e27e4083 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0043.htm @@ -0,0 +1,93 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lApp and Atcay transcript scatterplot
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0044.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0044.htm new file mode 100755 index 00000000..ec5c2e3c --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0044.htm @@ -0,0 +1,93 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lApp transcript and eight of its neighbors
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0045.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0045.htm new file mode 100755 index 00000000..4e705866 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0045.htm @@ -0,0 +1,118 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      App transcript coexpression neighborhood
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0046.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0046.htm new file mode 100755 index 00000000..93429543 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0046.htm @@ -0,0 +1,104 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lCorrelations of App with classical traits
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0047.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0047.htm new file mode 100755 index 00000000..e7568e44 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0047.htm @@ -0,0 +1,93 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lNetwork Graph of App with classical traits
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0048.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0048.htm new file mode 100755 index 00000000..f36b1e25 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0048.htm @@ -0,0 +1,151 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lSummary of Part 1:
      1. You have learned the basics about searching for traits
      2. You know some methods to check data quality
      3. You know how to edit bad or suspicious data
      4. You know how to review the basic statistics of a trait
      5. You know how to generate a scattergram between two traits using the Traits Correlation tool
      6. You know how to add items to your SELECTIONS window
      7. You know how to generate a Network Graph of traits that co-vary.
      What does genetic covariance mean? The genetic covariance can be functional and mechanistic, but it can also be due to linkage disequilibrium. Finally, it can be due to sampling error or poor experimental design. Evaluate the biological plausibility of correlations. Test and be skeptical.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0049.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0049.htm new file mode 100755 index 00000000..9d36600a --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0049.htm @@ -0,0 +1,155 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      The GeneNetwork and WebQTL : PART 2  
      link to www.genenetwork.org
      lPart 1. How to study expression variation and genetic correlation (slides 2–17)
      lPart 2. Discovering upstream modulators (slides 18–29)
      RNA

      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0050.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0050.htm new file mode 100755 index 00000000..48469040 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0050.htm @@ -0,0 +1,919 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +




      How to make recombinant inbred strains (RI)

      C57BL/6J (B)

      DBA/2J (D)

      F1

      20 generations brother-sister matings

      BXD1

      BXD2

      BXD80
      + É +

      F2

      BXD RI
      Strain set

      fully
      inbred

      isogenic

      hetero-
      geneous

      Recombined chromosomes are needed for mapping

      female

      male

      chromosome pair

      Inbred
      Isogenic
      siblings

      BXD
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0051.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0051.htm new file mode 100755 index 00000000..29b1f60e --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0051.htm @@ -0,0 +1,421 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      aa

      aaaa

      D2 strain

      B6 strain

      amount of transcript

      4 units

      2 units

      D

      B

      D and B may be SNP-like variants in the promoter itself (cis QTL) or in upstream genes (trans QTLs).
      UPSTREAM
      modulators

      High

      D

      B

      cis QTL

      Low

      >>>>PROMOTER--ATG-Exon1-Intron1-Exon2-Intron2 - etc-3'UTR >>>>>
      

      

      

      



      trans QTL

      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0052.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0052.htm new file mode 100755 index 00000000..7a2e03db --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0052.htm @@ -0,0 +1,115 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Discovering upstream modulatory loci
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0053.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0053.htm new file mode 100755 index 00000000..d729b467 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0053.htm @@ -0,0 +1,155 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      WebQTL searches for upstream controllers
      App maps on Chr 16 (blue arrow points to the orange triangle) but the best locus is on Chr 7.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0054.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0054.htm new file mode 100755 index 00000000..64dbe68f --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0054.htm @@ -0,0 +1,113 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Genetic versus Physical maps for App expression
      The difference between genetic and physical scale is analogous to measuring the separation between New York and Boston in either travel hours or kilometers.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0055.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0055.htm new file mode 100755 index 00000000..cae5b4b9 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0055.htm @@ -0,0 +1,110 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Physical map for distal chromosome 7
      Distal Chr 7 from ~120 and 132 Mb may modulate App
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0056.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0056.htm new file mode 100755 index 00000000..eba3fc05 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0056.htm @@ -0,0 +1,134 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Evaluating candidate genes
      Right position
      and high correlation
       = better
      candidates
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0057.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0057.htm new file mode 100755 index 00000000..dcc5ede7 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0057.htm @@ -0,0 +1,115 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Physical maps are zoomable
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0058.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0058.htm new file mode 100755 index 00000000..47e08c87 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0058.htm @@ -0,0 +1,167 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Evaluating Ctbp2 as a candidate QTL for App
      This is the Ctbp2 cis QTL, but is detected only in the Rosen striatum data set.
      This is the App QTL in the INIA data set.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0059.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0059.htm new file mode 100755 index 00000000..5ba9ff5c --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0059.htm @@ -0,0 +1,104 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Evaluating Ctbp2 using other resources
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0060.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0060.htm new file mode 100755 index 00000000..2f1c5b7b --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0060.htm @@ -0,0 +1,139 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lSummary of Part 2:
      1. Covered the basics of QTL analysis and mapping.
      2. Reviewed difference between genetic and physical maps.
      3. Discussed interpreting features of QTL maps including the LRS function, the additive effect function, the bootstrap bars, and the permutation thresholds.
      4. Illustrated technics to generate a list of positional candidates.
      5. Discussed some factors used to evaluate candidate genes.
      What does a QTL signify? A good QTL is a claim that a particular chromosomal region contains a causal source of variation in the phenotype. The importance of this hypothesis depends on the quality and relevance of the phenotype and the statistical strength of the QTL. As usual, test and be skeptical.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0061.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0061.htm new file mode 100755 index 00000000..a2816092 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0061.htm @@ -0,0 +1,112 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Test Questions
      1. Evaluate candidates for the Chr 3 App QTL.
      2. Do App and Ctbp2 expression share any other QTLs beside that on Chr 7?
      3. Can you exploit literature mining tools to find strong relation between App and Ctbp2?
      4. Why might the cis QTL for Ctbp2 expression only be detected in the striatum data set?
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0062.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0062.htm new file mode 100755 index 00000000..6b671799 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0062.htm @@ -0,0 +1,109 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Contact for comments and improvements:
      rwilliam@nb.utmem.edu


      kmanly@utmem.edu
      The App findings reviewed in this presentation are part of an ongoing study of R. Wiliams and R. Homayouni (July 15, 2005)
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0063.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0063.htm new file mode 100755 index 00000000..0c358615 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0063.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0064.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0064.htm new file mode 100755 index 00000000..49a071a3 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0064.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0065.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0065.htm new file mode 100755 index 00000000..8f16a79a --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0065.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0066.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0066.htm new file mode 100755 index 00000000..7c9125de --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0066.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0067.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0067.htm new file mode 100755 index 00000000..9342ad5d --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0067.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0068.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0068.htm new file mode 100755 index 00000000..85d23818 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0068.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0069.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0069.htm new file mode 100755 index 00000000..09868e5e --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0069.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0070.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0070.htm new file mode 100755 index 00000000..6c97c9d7 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0070.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0071.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0071.htm new file mode 100755 index 00000000..1563ee2c --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0071.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0072.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0072.htm new file mode 100755 index 00000000..8b44413f --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0072.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0073.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0073.htm new file mode 100755 index 00000000..ce76ba66 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0073.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0074.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0074.htm new file mode 100755 index 00000000..8d81e3fd --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0074.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0075.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0075.htm new file mode 100755 index 00000000..f6eacb12 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0075.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0076.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0076.htm new file mode 100755 index 00000000..8e6900a6 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0076.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0077.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0077.htm new file mode 100755 index 00000000..d2df3b73 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0077.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0078.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0078.htm new file mode 100755 index 00000000..00df93e9 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0078.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0079.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0079.htm new file mode 100755 index 00000000..48117030 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0079.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0080.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0080.htm new file mode 100755 index 00000000..c2aff2fe --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0080.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0081.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0081.htm new file mode 100755 index 00000000..4e79571a --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0081.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0082.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0082.htm new file mode 100755 index 00000000..45f9af66 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0082.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0083.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0083.htm new file mode 100755 index 00000000..cad33410 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0083.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0084.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0084.htm new file mode 100755 index 00000000..f178f488 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0084.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0085.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0085.htm new file mode 100755 index 00000000..eb37bc86 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0085.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0086.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0086.htm new file mode 100755 index 00000000..ae1d221d --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0086.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0087.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0087.htm new file mode 100755 index 00000000..a675aeec --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0087.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0088.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0088.htm new file mode 100755 index 00000000..1a2c2a72 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0088.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0089.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0089.htm new file mode 100755 index 00000000..d345a5e6 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0089.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0090.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0090.htm new file mode 100755 index 00000000..a362597e --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0090.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0091.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0091.htm new file mode 100755 index 00000000..a9fc00dc --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0091.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0092.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0092.htm new file mode 100755 index 00000000..3a3b79ac --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0092.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0093.htm b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0093.htm new file mode 100755 index 00000000..643805d3 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/slide0093.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/space.gif b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/space.gif new file mode 100755 index 00000000..e6cd7808 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/space.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2.ppt_files/webqtl_demo2.ppt.ppt b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/webqtl_demo2.ppt.ppt new file mode 100755 index 00000000..2970803a Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2.ppt_files/webqtl_demo2.ppt.ppt differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt.htm new file mode 100755 index 00000000..7ac6b72f --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt.htm @@ -0,0 +1,4 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics <body> <p>This page uses frames, but your browser doesn't support them.</p> </body> \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0001.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0001.gif new file mode 100755 index 00000000..eb17de1a Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0001.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0002.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0002.gif new file mode 100755 index 00000000..bc3f4359 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0002.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0003.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0003.gif new file mode 100755 index 00000000..d3368503 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0003.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0004.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0004.gif new file mode 100755 index 00000000..c3eb466b Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0004.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0005.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0005.gif new file mode 100755 index 00000000..d005d2ff Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0005.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0006.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0006.gif new file mode 100755 index 00000000..1e8fafce Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0006.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0007.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0007.gif new file mode 100755 index 00000000..406e9eb3 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0007.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0008.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0008.gif new file mode 100755 index 00000000..847bb7ab Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0008.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0009.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0009.gif new file mode 100755 index 00000000..4af9b372 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0009.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0010.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0010.gif new file mode 100755 index 00000000..2b0ee2aa Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0010.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0011.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0011.gif new file mode 100755 index 00000000..b537698d Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0011.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0012.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0012.gif new file mode 100755 index 00000000..f362d236 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0012.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0013.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0013.gif new file mode 100755 index 00000000..611b1a50 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0013.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0014.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0014.gif new file mode 100755 index 00000000..4a222157 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0014.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0015.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0015.gif new file mode 100755 index 00000000..a43a4e09 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0015.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0016.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0016.gif new file mode 100755 index 00000000..c7c9c4d2 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0016.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0017.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0017.gif new file mode 100755 index 00000000..a05bcf40 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0017.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0018.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0018.gif new file mode 100755 index 00000000..014d8569 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0018.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0019.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0019.gif new file mode 100755 index 00000000..782076fa Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/Slide0019.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/blank_notes.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/blank_notes.htm new file mode 100755 index 00000000..e833eefd --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/blank_notes.htm @@ -0,0 +1,5 @@ + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/endshow.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/endshow.htm new file mode 100755 index 00000000..a2ed520a --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/endshow.htm @@ -0,0 +1 @@ +


      Open the default .htm file to view this Web presentation.

      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/error.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/error.htm new file mode 100755 index 00000000..f2002169 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/error.htm @@ -0,0 +1 @@ +


      This presentation contains content that your browser is unable to display. This presentation was optimized for the recent version of Microsoft Internet Explorer and Netscape Navigator 4.

      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/filelist.xml b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/filelist.xml new file mode 100755 index 00000000..4a47f1fe --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/filelist.xml @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/frame.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/frame.htm new file mode 100755 index 00000000..2981fa86 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/frame.htm @@ -0,0 +1,43 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fs_navigation_bar.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fs_navigation_bar.htm new file mode 100755 index 00000000..2b5174d1 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fs_navigation_bar.htm @@ -0,0 +1,84 @@ + Navigation Bar + +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fullscr.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fullscr.gif new file mode 100755 index 00000000..85842700 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fullscr.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fullscrClose.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fullscrClose.gif new file mode 100755 index 00000000..ccd0de13 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fullscrClose.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fullscreen.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fullscreen.htm new file mode 100755 index 00000000..d562e618 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/fullscreen.htm @@ -0,0 +1,48 @@ + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master02.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master02.htm new file mode 100755 index 00000000..2eebab33 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master02.htm @@ -0,0 +1,11 @@ + + +
      Memphis Microarray 2003
      June 11, 2003, Rob Williams
      Ü#Ý
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master03.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master03.htm new file mode 100755 index 00000000..89745289 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master03.htm @@ -0,0 +1,11 @@ + + +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master03_background.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master03_background.png new file mode 100755 index 00000000..abdc767d Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master03_background.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master03_stylesheet.css b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master03_stylesheet.css new file mode 100755 index 00000000..6c3dc4e2 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/master03_stylesheet.css @@ -0,0 +1 @@ +body {width:755px; height:566px;} .TB {mso-special-format:nobullet¥;} .T {text-align:left; font-family:"Gill Sans"; color:#E9EB5D; font-size:293%; mso-line-spacing:"-358 0 0"; mso-margin-left-alt:249; mso-text-indent-alt:16;} .BB {mso-special-format:bullet\F06C; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .B {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; font-size:213%; mso-line-spacing:"-259 0 -61"; mso-margin-left-alt:297; mso-text-indent-alt:57;} .B1B {mso-special-format:bullet\F075; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .B1 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-229 0 -53"; mso-margin-left-alt:569; mso-text-indent-alt:345;} .B2B {mso-special-format:bullet\F046; color:#E2EBF0; font-family:"Monotype Sorts"; font-size:64%;} .B2 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-198 0 -46"; mso-margin-left-alt:854; mso-text-indent-alt:633;} .B3B {mso-special-format:bullet¥; color:white; font-family:Palatino; font-size:100%;} .B3 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-168 0 -38"; mso-margin-left-alt:1144; mso-text-indent-alt:921;} .B4B {mso-special-format:bullet\2013; color:white; font-family:Palatino; font-size:100%;} .B4 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-168 0 0"; mso-margin-left-alt:1449; mso-text-indent-alt:1209;} .NB {mso-special-format:nobullet¥;} .N {font-family:Verdana; mso-line-spacing:"100 0 0";} .N1B {mso-special-format:nobullet¥;} .N1 {font-family:Verdana; mso-line-spacing:"100 0 0";} .N2B {mso-special-format:nobullet¥;} .N2 {font-family:Verdana; mso-line-spacing:"100 0 0";} .N3B {mso-special-format:nobullet¥;} .N3 {font-family:Verdana; mso-line-spacing:"100 0 0";} .N4N {mso-special-format:nobullet¥;} .N4 {font-family:Verdana; mso-line-spacing:"100 0 0";} .OB {mso-special-format:nobullet¥;} .O {text-align:left; font-family:Verdana; color:black; mso-color-index:1; font-size:80%;} .O1B {mso-special-format:nobullet¥;} .O1 {font-family:Verdana; font-size:80%;} .O2B {mso-special-format:nobullet¥;} .O2 {font-family:Verdana; font-size:80%;} .O3B {mso-special-format:nobullet¥;} .O3 {font-family:Verdana; font-size:80%;} .O4B {mso-special-format:nobullet¥;} .O4 {font-family:Verdana; font-size:80%;} .CBB {mso-special-format:bullet\F06C; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .CB {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-259 0 -61"; mso-margin-left-alt:297; mso-text-indent-alt:57;} .CB1B {mso-special-format:bullet\F075; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .CB1 {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-229 0 -53"; mso-margin-left-alt:569; mso-text-indent-alt:345;} .CB2B {mso-special-format:bullet\F046; color:#E2EBF0; font-family:"Monotype Sorts"; font-size:64%;} .CB2 {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-198 0 -46"; mso-margin-left-alt:854; mso-text-indent-alt:633;} .CB3B {mso-special-format:bullet¥; color:white; font-family:Palatino; font-size:100%;} .CB3 {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-168 0 -38"; mso-margin-left-alt:1144; mso-text-indent-alt:921;} .CB4B {mso-special-format:bullet\2013; color:white; font-family:Palatino; font-size:100%;} .CB4 {text-align:left; font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-168 0 0"; mso-margin-left-alt:1449; mso-text-indent-alt:1209;} .CTB {mso-special-format:nobullet¥;} .CT {text-align:left; font-family:"Gill Sans"; color:#E9EB5D; mso-line-spacing:"-358 0 0"; mso-margin-left-alt:16; mso-text-indent-alt:16;} .HBB {mso-special-format:bullet\F06C; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .HB {font-family:"Gill Sans"; color:#FBFDB8; font-size:213%; mso-line-spacing:"-259 0 -61"; mso-margin-left-alt:297; mso-text-indent-alt:57;} .HB1B {mso-special-format:bullet\F075; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .HB1 {font-family:"Gill Sans"; color:#FBFDB8; font-size:186%; mso-line-spacing:"-229 0 -53"; mso-margin-left-alt:569; mso-text-indent-alt:345;} .HB2B {mso-special-format:bullet\F046; color:#E2EBF0; font-family:"Monotype Sorts"; font-size:64%;} .HB2 {font-family:"Gill Sans"; color:#FBFDB8; font-size:160%; mso-line-spacing:"-198 0 -46"; mso-margin-left-alt:854; mso-text-indent-alt:633;} .HB3B {mso-special-format:bullet¥; color:white; font-family:Palatino; font-size:100%;} .HB3 {font-family:"Gill Sans"; color:#FBFDB8; font-size:133%; mso-line-spacing:"-168 0 -38"; mso-margin-left-alt:1144; mso-text-indent-alt:921;} .HB4B {mso-special-format:bullet\2013; color:white; font-family:Palatino; font-size:100%;} .HB4 {font-family:"Gill Sans"; color:#FBFDB8; font-size:133%; mso-line-spacing:"-168 0 0"; mso-margin-left-alt:1449; mso-text-indent-alt:1209;} .QBB {mso-special-format:bullet\F06C; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .QB {font-family:"Gill Sans"; color:#FBFDB8; font-size:213%; mso-line-spacing:"-259 0 -61"; mso-margin-left-alt:297; mso-text-indent-alt:57;} .QB1B {mso-special-format:bullet\F075; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .QB1 {font-family:"Gill Sans"; color:#FBFDB8; font-size:186%; mso-line-spacing:"-229 0 -53"; mso-margin-left-alt:569; mso-text-indent-alt:345;} .QB2B {mso-special-format:bullet\F046; color:#E2EBF0; font-family:"Monotype Sorts"; font-size:64%;} .QB2 {font-family:"Gill Sans"; color:#FBFDB8; font-size:160%; mso-line-spacing:"-198 0 -46"; mso-margin-left-alt:854; mso-text-indent-alt:633;} .QB3B {mso-special-format:bullet¥; color:white; font-family:Palatino; font-size:100%;} .QB3 {font-family:"Gill Sans"; color:#FBFDB8; font-size:133%; mso-line-spacing:"-168 0 -38"; mso-margin-left-alt:1144; mso-text-indent-alt:921;} .QB4B {mso-special-format:bullet\2013; color:white; font-family:Palatino; font-size:100%;} .QB4 {font-family:"Gill Sans"; color:#FBFDB8; font-size:133%; mso-line-spacing:"-168 0 0"; mso-margin-left-alt:1449; mso-text-indent-alt:1209;} .TblB {mso-special-format:nobullet\F06C; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .Tbl {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-259 0 -61"; mso-margin-left-alt:297; mso-text-indent-alt:57;} .Tbl1B {mso-special-format:nobullet\F075; color:#FBFDB8; font-family:"Monotype Sorts"; font-size:75%;} .Tbl1 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-229 0 -53"; mso-margin-left-alt:569; mso-text-indent-alt:345;} .Tbl2B {mso-special-format:nobullet\F046; color:#E2EBF0; font-family:"Monotype Sorts"; font-size:64%;} .Tbl2 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-198 0 -46"; mso-margin-left-alt:854; mso-text-indent-alt:633;} .Tbl3B {mso-special-format:nobullet¥; color:white; font-family:Palatino; font-size:100%;} .Tbl3 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-168 0 -38"; mso-margin-left-alt:1144; mso-text-indent-alt:921;} .Tbl4B {mso-special-format:nobullet\2013; color:white; font-family:Palatino; font-size:100%;} .Tbl4 {font-family:"Gill Sans"; color:#FBFDB8; mso-line-spacing:"-168 0 0"; mso-margin-left-alt:1449; mso-text-indent-alt:1209;} .defaultB {mso-special-format:nobullet¥;} .default {text-align:left; font-family:Verdana; font-weight:normal; font-style:normal; text-decoration:none; text-shadow:none; text-effect:none; mso-fareast-hint:no; layout-flow:horizontal; color:black; font-size:120%; mso-text-raise:0%; mso-line-spacing:"100 0 0"; mso-margin-left-alt:0; mso-text-indent-alt:0; mso-char-wrap:0; mso-kinsoku-overflow:0; direction:ltr; mso-word-wrap:1; mso-ansi-language:1033;} a:link {color:#009999 !important;} a:active {color:#333399 !important;} a:visited {color:#99CC00 !important;} \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/narration.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/narration.gif new file mode 100755 index 00000000..86530132 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/narration.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/navbg.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/navbg.gif new file mode 100755 index 00000000..de74971c Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/navbg.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/navigation_bar.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/navigation_bar.htm new file mode 100755 index 00000000..1ea0858b --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/navigation_bar.htm @@ -0,0 +1,91 @@ + + +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/next_active.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/next_active.gif new file mode 100755 index 00000000..f1677f91 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/next_active.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/next_disabled.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/next_disabled.gif new file mode 100755 index 00000000..261df048 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/next_disabled.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/notes_flag.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/notes_flag.gif new file mode 100755 index 00000000..cf618351 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/notes_flag.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline.gif new file mode 100755 index 00000000..2d4aa484 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_collapse.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_collapse.gif new file mode 100755 index 00000000..4c804d69 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_collapse.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_collapsed.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_collapsed.htm new file mode 100755 index 00000000..5da9503b --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_collapsed.htm @@ -0,0 +1,5 @@ +
      GeneNetwork and WebQTL:
      Slide 2
      Slide 3
      Search results
      "First page of data:"
      "Data sources:"
      "Expression estimates for App on..."
      "Critiquing the App data the..."
      "App expression after windsorizing"
      "Discovering shared expression patterns"
      "Transcript neighborhoods"
      "App and Atcay transcript scatterplot"
      "App transcript and eight of..."
      App transcript coexpression neighborhood
      "Correlations of App with classical..."
      "Network Graph of App with..."
      "Summary of Part 1:"
      Contact for comments and improvements:
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_expand.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_expand.gif new file mode 100755 index 00000000..c8c72b13 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_expand.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_expanded.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_expanded.htm new file mode 100755 index 00000000..a45e9c0c --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_expanded.htm @@ -0,0 +1,5 @@ +
      GeneNetwork and WebQTL:
      Part 1: How to study expression variation and covariation (slides 2–16)
      Part 2. Discovering upstream modulators (slides 17–30)

      Slide 2
      Slide 3
      Search results
      "First page of data:"
      First page of data: The Trait Data and Analysis Form

      "Data sources:"
      Data sources: Metadata for each resource

      "Expression estimates for App on..."
      Expression estimates for App on the Trait Data form

      "Critiquing the App data the..."
      Critiquing the App data the Trait Data

      "App expression after windsorizing"
      App expression after windsorizing

      "Discovering shared expression patterns"
      Discovering shared expression patterns

      "Transcript neighborhoods"
      Transcript neighborhoods

      "App and Atcay transcript scatterplot"
      App and Atcay transcript scatterplot

      "App transcript and eight of..."
      App transcript and eight of its neighbors

      App transcript coexpression neighborhood
      "Correlations of App with classical..."
      Correlations of App with classical traits

      "Network Graph of App with..."
      Network Graph of App with classical traits

      "Summary of Part 1:"
      Summary of Part 1:

      Contact for comments and improvements:
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_navigation_bar.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_navigation_bar.htm new file mode 100755 index 00000000..f47a3707 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/outline_navigation_bar.htm @@ -0,0 +1,37 @@ + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/prev_active.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/prev_active.gif new file mode 100755 index 00000000..004a872f Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/prev_active.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/prev_disabled.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/prev_disabled.gif new file mode 100755 index 00000000..8a467185 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/prev_disabled.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/script.js b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/script.js new file mode 100755 index 00000000..7c9fb703 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/script.js @@ -0,0 +1,1351 @@ +var CtxAlwaysOn = false; +function LoadSld( slideId ) +{ + if( !g_supportsPPTHTML ) return + if( slideId ) + parent.base.SldUpdated(slideId) + g_origSz=parseInt(SlideObj.style.fontSize) + g_origH=SlideObj.style.posHeight + g_origW=SlideObj.style.posWidth + g_scaleHyperlinks=(document.all.tags("AREA").length>0) + if ( IsWin("PPTSld") && !parent.IsFullScrMode() ) + parent.base.highlite(); + if( g_scaleHyperlinks ) + InitHLinkArray() + if( g_scaleInFrame||(IsWin("PPTSld") && parent.IsFullScrMode() ) ) + document.body.scroll="no" + _RSW() + if( IsWin("PPTSld") && (parent.IsFullScrMode() || CtxAlwaysOn ) ) { + document.oncontextmenu=parent._CM; + self.focus(); + + } +} +function MakeSldVis( fTrans ) +{ + fTrans=fTrans && g_showAnimation + if( fTrans ) + { + if( g_bgSound ) { + idx=g_bgSound.indexOf(","); + pptSound.src=g_bgSound.substr( 0, idx ); + pptSound.loop= -(parseInt(g_bgSound.substr(idx+1))); + } + SlideObj.filters.revealtrans.Apply() + } + SlideObj.style.visibility="visible" + if( fTrans ) + SlideObj.filters.revealtrans.Play() +} +function MakeNotesVis() +{ + if( !IsNts() ) return false + SlideObj.style.display="none" + nObj = document.all.item("NotesObj") + parent.SetHasNts(0) + if( nObj ) { + nObj.style.display="" + parent.SetHasNts(1) + } + return 1 +} +function Redirect( frmId,sId ) +{ + var str=document.location.hash,idx=str.indexOf('#') + if(idx>=0) str=str.substr(1); + if( window.name != frmId && ( sId != str) ) { + obj = document.all.item("Main-File") + window.location.href=obj.href+"#"+sId + return 1 + } + return 0 +} +function HideMenu() { if( frames["PPTSld"] && PPTSld.document.all.item("ctxtmenu") && PPTSld.ctxtmenu.style.display!="none" ) { PPTSld.ctxtmenu.style.display='none'; return true } return false } +function IsWin( name ) { return window.name == name } +function IsNts() { return IsWin("PPTNts") } +function IsSldOrNts() { return( IsWin("PPTSld")||IsWin("PPTNts") ) } +function SupportsPPTAnimation() { return( navigator.platform == "Win32" && navigator.appVersion.indexOf("Windows")>0 ) } +function SupportsPPTHTML() +{ + var appVer=navigator.appVersion, msie=appVer.indexOf( "MSIE " ), inex = appVer.indexOf( "Internet Explorer " ), ver=0 + if( msie >= 0 ) + ver=parseFloat( appVer.substring( msie+5, appVer.indexOf(";",msie) ) ) + else if( inex >= 0 ) + ver=parseFloat( appVer.substring( inex+18, appVer.indexOf(";",inex) ) ) + else + ver=parseInt(appVer) + + return( ver >= 4 ) +} +var MHTMLPrefix = CalculateMHTMLPrefix(); +function CalculateMHTMLPrefix() +{ + if ( document.location.protocol == 'mhtml:') { + href=new String(document.location.href) + Start=href.indexOf('!')+1 + End=href.lastIndexOf('/')+1 + if (End < Start) + return href.substring(0, Start) + else + return href.substring(0, End) + } + return ''; +} + +function LoadNavSld(slideId) { +playList(); +parent.createCM(); + if( !g_supportsPPTHTML ) return + if( IsWin("PPTSld") && slideId ) + parent.base.SldUpdated(slideId) + self.focus(); + +} +var hasNarration = false; +function _RSW() +{ + if( !g_supportsPPTHTML || IsNts() || + ( !g_scaleInFrame && (( window.name != "PPTSld" ) ) ) ) + return + + cltWidth=document.body.clientWidth + cltHeight=document.body.clientHeight + factor=(1.0*cltWidth)/g_origW + if( cltHeight < g_origH*factor ) + factor=(1.0*cltHeight)/g_origH + + newSize = g_origSz * factor + if( newSize < 1 ) newSize=1 + + s=SlideObj.style + s.fontSize=newSize+"px" + s.posWidth=g_origW*factor + s.posHeight=g_origH*factor + s.posLeft=(cltWidth-s.posWidth)/2 + s.posTop=(cltHeight-s.posHeight)/2 + + if ( hasNarration ) { + obj = document.all.NSPlay.style; + mySld = document.all.SlideObj.style; + obj.position = 'absolute'; + obj.posTop = mySld.posTop + mySld.posHeight - 20; + obj.posLeft = mySld.posLeft + mySld.posWidth - 20; + } + if( g_scaleHyperlinks ) + ScaleHyperlinks( factor ); +} +function IsMac() { + return (window.navigator.platform.indexOf("Mac") >= 0 ); +} + +function HitOK( evt ) { + //Nav Only function + return (evt.which == 1 || (IsMac() && evt.which == 3) ); +} +function _KPH(event) +{ + + if ( parent.base.msie < 0 ) { + + if ( ( (event.target.name && event.target.name == "hasMap" ) || (event.target.href && event.target.href != "") ) && parent.g_docTable[0].type != "jpeg" && HitOK( event ) ) { + return; /* to make hyperlinks in fullscreen mode traversable */ + } + if( IsContextMenu() ) + return parent.KPH(event); + if ( parent.IsFullScrMode() && event.which == 27 ) + parent.base.CloseFullScreen(); + else if ( parent.base.IsFullScrMode() && ( (!IsMac() && event.which == 3) || ( IsMac() && (event.modifiers & Event.CONTROL_MASK) && event.which == 1 ) ) ) + return parent.KPH(event); + else if( (event.which == 32) || (event.which == 13) || HitOK( event ) ) { + if( window.name == "PPTSld" ) + parent.PPTSld.DocumentOnClick(); + else + parent.M_GoNextSld(); + } + else if ( parent.IsFullScrMode() && ((event.which == 78) || (event.which == 110) || (event.which == 29) || (event.which == 31) || (event.which == 12)) ) + parent.M_GoNextSld(); + else if ( parent.IsFullScrMode() && ( (event.which == 80) || (event.which == 112) || (event.which == 30) || (event.which == 28) || (event.which == 11) || (event.which == 8)) ) + parent.M_GoPrevSld(); + + return; + } + + if( IsNts() ) return; + + if(parent.IsFullScrMode() && event.keyCode == 27 && !parent.HideMenu() ) + parent.base.CloseFullScreen(); + else if( (event.keyCode == 32) || (event.keyCode == 13) ) + { + if( window.name == "PPTSld" ) + parent.PPTSld.DocumentOnClick(); + else + parent.M_GoNextSld(); + } + else if ( parent.IsFullScrMode() && ((event.keyCode == 78) || (event.keyCode == 110)) ) + parent.M_GoNextSld(); + else if ( parent.IsFullScrMode() && ((event.keyCode == 80) || (event.keyCode == 112)) ) + parent.M_GoPrevSld(); +} + +function DocumentOnClick(event) +{ + if ( g_doAdvOnClick && !parent.IsFullScrMode() ) { + parent.base.TP_GoToNextSld(); + return; + } + + if ( parent.base.msie < 0 ) + { + if( ( g_allowAdvOnClick && parent.IsFullScrMode() ) || g_doAdvOnClick || + (event && ( (event.which == 32) || (event.which == 13) ) ) ) + parent.M_GoNextSld(); + return; + } + if( IsNts() || (parent.IsFullScrMode() && parent.HideMenu() ) ) return; + if( ( g_allowAdvOnClick && parent.IsFullScrMode() ) || g_doAdvOnClick || + (event && ( (event.keyCode==32) || (event.keyCode == 13) ) ) ) + parent.M_GoNextSld(); +} + + +var g_supportsPPTHTML = SupportsPPTHTML(), g_scaleInFrame = true, gId="", g_bgSound="", + g_scaleHyperlinks = false, g_allowAdvOnClick = true, g_showInBrowser = false, g_doAdvOnClick = false; + + var g_showAnimation = 0; +var g_hasTrans = false, g_autoTrans = false, g_transSecs = 0; +var g_animManager = null; + +var ENDSHOW_MESG="End of slide show, click to exit.", SCREEN_MODE="Frames", gIsEndShow=0, NUM_VIS_SLDS=18, SCRIPT_HREF="script.js", FULLSCR_HREF="fullscreen.htm"; +var gCurSld = gPrevSld = 1, g_offset = 0, gNtsOpen = gHasNts = gOtlTxtExp = gNarrationPaused = false, gOtlOpen = true +window.gPPTHTML=SupportsPPTHTML() +var g_hideNav = 0; +function UpdNtsPane(){ PPTNts.location.replace( MHTMLPrefix+GetHrefObj( gCurSld ).mNtsHref ) } +function UpdNavPane( sldIndex ){ if(gNavLoaded) PPTNav.UpdNav() } +function UpdOtNavPane(){ if(gOtlNavLoaded) PPTOtlNav.UpdOtlNav() } +function UpdOtlPane(){ if(gOtlLoaded) PPTOtl.UpdOtl() } +function SetHasNts( fVal ) +{ + if( gHasNts != fVal ) { + gHasNts=fVal + UpdNavPane() + } +} + +function ToggleVNarration() +{ + if ( base.msie < 0 ) { + PPTSld.ToggleSound( false, PPTSld.document.NSPlay ); + return; + } + + rObj=PPTSld.document.all("NSPlay") + if( rObj ) { + if( gNarrationPaused ) + rObj.Play() + else + rObj.Pause() + + gNarrationPaused=!gNarrationPaused + } +} + +function PrevSldViewed(){ GoToSld( GetHrefObj(gPrevSld).mSldHref ) } +function HasPrevSld() { return ( gIsEndShow || ( g_currentSlide != 1 && GetHrefObj( g_currentSlide-1 ).mVis == 1 )||( GetCurrentSlideNum() > 1 ) ) } +function HasNextSld() { return (GetCurrentSlideNum() != GetNumSlides()) } +function StartEndShow() +{ +// g_hideNav = 1; +// PPTNav.location.reload(); + if( PPTSld.event ) PPTSld.event.cancelBubble=true + + doc=PPTSld.document + doc.open() + doc.writeln('


      ' + ENDSHOW_MESG + '

      ') + doc.close() +} +function SetSldVisited(){ gDocTable[gCurSld-1].mVisited=true } +function IsSldVisited(){ return gDocTable[gCurSld-1].mVisited } +function hrefList( sldHref, visible, sldIdx ) +{ + this.mSldHref= this.mNtsHref = sldHref + this.mSldIdx = sldIdx + this.mOrigVis= this.mVis = visible + this.mVisited= false +} +var gDocTable = new Array( + new hrefList("slide0001.htm", 1, 1), + new hrefList("slide0002.htm", 1, 2), + new hrefList("slide0003.htm", 1, 3), + new hrefList("slide0004.htm", 1, 4), + new hrefList("slide0005.htm", 1, 5), + new hrefList("slide0006.htm", 1, 6), + new hrefList("slide0007.htm", 1, 7), + new hrefList("slide0008.htm", 1, 8), + new hrefList("slide0009.htm", 1, 9), + new hrefList("slide0010.htm", 1, 10), + new hrefList("slide0011.htm", 1, 11), + new hrefList("slide0012.htm", 1, 12), + new hrefList("slide0013.htm", 1, 13), + new hrefList("slide0014.htm", 1, 14), + new hrefList("slide0015.htm", 1, 15), + new hrefList("slide0016.htm", 1, 16), + new hrefList("slide0017.htm", 1, 17), + new hrefList("slide0018.htm", 1, 18) +); + +function ImgBtn( oId,bId,w,action ) +{ + var t=this + t.Perform = _IBP + t.SetActive = _IBSetA + t.SetInactive= _IBSetI + t.SetPressed = _IBSetP + t.SetDisabled= _IBSetD + t.Enabled = _IBSetE + t.ChangeIcon = null + t.UserAction = action + t.ChgState = _IBUI + t.mObjId = oId + t.mBorderId= bId + t.mWidth = w + t.mIsOn = t.mCurState = 0 +} +function _IBSetA() +{ + if( this.mIsOn ) { + obj=this.ChgState( gHiliteClr,gShadowClr,2 ) + obj.style.posTop=0 + } +} +function _IBSetI() +{ + if( this.mIsOn ) { + obj=this.ChgState( gFaceClr,gFaceClr,1 ) + obj.style.posTop=0 + } +} +function _IBSetP() +{ + if( this.mIsOn ) { + obj=this.ChgState( gShadowClr,gHiliteClr,2 ) + obj.style.posLeft+=1; obj.style.posTop+=1 + } +} +function _IBSetD() +{ + obj=this.ChgState( gFaceClr,gFaceClr,0 ) + obj.style.posTop=0 +} +function _IBSetE( state ) +{ + var t=this + GetObj( t.mBorderId ).style.visibility="visible" + if( state != t.mIsOn ) { + t.mIsOn=state + if( state ) + t.SetInactive() + else + t.SetDisabled() + } +} +function _IBP() +{ + var t=this + if( t.mIsOn ) { + if( t.UserAction != null ) + t.UserAction() + if( t.ChangeIcon ) { + obj=GetObj(t.mObjId) + if( t.ChangeIcon() ) + obj.style.posLeft=obj.style.posLeft+(t.mCurState-4)*t.mWidth + else + obj.style.posLeft=obj.style.posLeft+(t.mCurState-0)*t.mWidth + } + t.SetActive() + } +} +function _IBUI( clr1,clr2,nextState ) +{ + var t=this + SetBorder( GetObj( t.mBorderId ),clr1,clr2 ) + obj=GetObj( t.mObjId ) + obj.style.posLeft=obj.style.posLeft+(t.mCurState-nextState)*t.mWidth-obj.style.posTop + t.mCurState=nextState + return obj +} +function TxtBtn( oId,oeId,action,chkState ) +{ + var t=this + t.Perform = _TBP + t.SetActive = _TBSetA + t.SetInactive= _TBSetI + t.SetPressed = _TBSetP + t.SetDisabled= _TBSetD + t.SetEnabled = _TBSetE + t.GetState = chkState + t.UserAction = action + t.ChgState = _TBUI + t.mObjId = oId + t.m_elementsId= oeId + t.mIsOn = 1 +} +function _TBSetA() +{ + var t=this + if( t.mIsOn && !t.GetState() ) + t.ChgState( gHiliteClr,gShadowClr,0,0 ) +} +function _TBSetI() +{ + var t=this + if( t.mIsOn && !t.GetState() ) + t.ChgState( gFaceClr,gFaceClr,0,0 ) +} +function _TBSetP() +{ + if( this.mIsOn ) + this.ChgState( gShadowClr,gHiliteClr,1,1 ) +} +function _TBSetD() +{ + this.ChgState( gFaceClr,gFaceClr,0,0 ) + this.mIsOn = 0 +} +function _TBSetE() +{ + var t=this + if( !t.GetState() ) + t.ChgState( gFaceClr,gFaceClr,0,0 ) + else + t.ChgState( gShadowClr,gHiliteClr,1,1 ) + t.mIsOn = 1 +} +function _TBP() +{ + var t=this + if( t.mIsOn ) { + if( t.UserAction != null ) + t.UserAction() + if( t.GetState() ) + t.SetPressed() + else + t.SetActive() + } +} +function _TBUI( clr1,clr2,lOffset,tOffset ) +{ + SetBorder( GetObj( this.mObjId ),clr1,clr2 ) + Offset( GetObj( this.m_elementsId ),lOffset,tOffset ) +} +function GetObj( objId ){ return document.all.item( objId ) } +function Offset( obj, top, left ){ obj.style.top=top; obj.style.left=left } +function SetBorder( obj, upperLeft, lowerRight ) +{ + s=obj.style; + s.borderStyle = "solid" + s.borderWidth = 1 + s.borderLeftColor = s.borderTopColor = upperLeft + s.borderBottomColor= s.borderRightColor = lowerRight +} +function GetBtnObj(){ return gBtnArr[window.event.srcElement.id] } +function BtnOnOver(){ b=GetBtnObj(); if( b != null ) b.SetActive() } +function BtnOnDown(){ b=GetBtnObj(); if( b != null ) b.SetPressed() } +function BtnOnOut(){ b=GetBtnObj(); if( b != null ) b.SetInactive() } +function BtnOnUp() +{ + b=GetBtnObj() + if( b != null ) + b.Perform() + else + Upd() +} +function GetNtsState(){ return parent.gNtsOpen } +function GetOtlState(){ return parent.gOtlOpen } +function GetOtlTxtState(){ return parent.gOtlTxtExp } +function NtsBtnSetFlag( fVal ) +{ + s=document.all.item( this.m_flagId ).style + s.display="none" + if( fVal ) + s.display="" + else + s.display="none" +} + +var gHiliteClr="THREEDHIGHLIGHT",gShadowClr="THREEDSHADOW",gFaceClr="THREEDFACE" +var gBtnArr = new Array() +gBtnArr["nb_otl"] = new TxtBtn( "nb_otl","nb_otlElem",parent.ToggleOtlPane,GetOtlState ) +gBtnArr["nb_nts"] = new TxtBtn( "nb_nts","nb_ntsElem",parent.ToggleNtsPane,GetNtsState ) +gBtnArr["nb_prev"]= new ImgBtn( "nb_prev","nb_prevBorder",30,parent.GoToPrevSld ) +gBtnArr["nb_next"]= new ImgBtn( "nb_next","nb_nextBorder",30,parent.GoToNextSld ) +gBtnArr["nb_sldshw"]= new ImgBtn( "nb_sldshw","nb_sldshwBorder",18,parent.FullScreen ) +gBtnArr["nb_voice"] = new ImgBtn( "nb_voice","nb_voiceBorder",18,parent.ToggleVNarration ) +gBtnArr["nb_otlTxt"]= new ImgBtn( "nb_otlTxt","nb_otlTxtBorder",23,parent.ToggleOtlText ) +gBtnArr["nb_nts"].m_flagId= "notes_flag" +gBtnArr["nb_nts"].SetFlag = NtsBtnSetFlag +gBtnArr["nb_otlTxt"].ChangeIcon= GetOtlTxtState +var sNext="Next",sPrev="Previous",sEnd="End Show",sFont="Arial", alwaysOn = false +function ShowMenu() +{ + BuildMenu(); + var doc=PPTSld.document.body,x=PPTSld.event.clientX+doc.scrollLeft,y=PPTSld.event.clientY+doc.scrollTop + + m = PPTSld.document.all.item("ctxtmenu") + m.style.pixelLeft=x + if( (x+m.scrollWidth > doc.clientWidth)&&(x-m.scrollWidth > 0) ) + m.style.pixelLeft=x-m.scrollWidth + + m.style.pixelTop=y + if( (y+m.scrollHeight > doc.clientHeight)&&(y-m.scrollHeight > 0) ) + m.style.pixelTop=y-m.scrollHeight + + m.style.display="" +} +function _CM() +{ + if( !parent.IsFullScrMode() && !alwaysOn) return; + + if(!PPTSld.event.ctrlKey) { + ShowMenu() + return false + } else + HideMenu() +} + +function processNavKPH(event) { + if ( PPTSld && (event.keyCode != 13 || !event.srcElement.href || event.srcElement.href == "" ) ) + return PPTSld._KPH(event); +} +function processNavClick() { + HideMenu(); + return true; +} +function BuildMenu() +{ + if( PPTSld.document.all.item("ctxtmenu") ) return + + var mObj=CreateItem( PPTSld.document.body ) +mObj.id="ctxtmenu" + var s=mObj.style + s.position="absolute" + s.cursor="default" + s.width="100px" + SetCMBorder(mObj,"menu","black") + + var iObj=CreateItem( mObj ) + SetCMBorder( iObj, "threedhighlight","threedshadow" ) + iObj.style.padding=2 + if ( self.IsFullScrMode() ) { + CreateMenuItem( iObj,sNext,M_GoNextSld,M_True ) + CreateMenuItem( iObj,sPrev,M_GoPrevSld,M_HasPrevSld ) + } + else { + CreateMenuItem( iObj,sNext, base.TP_GoToNextSld, base.HasNextSld ) + CreateMenuItem( iObj,sPrev,base.GoToPrevSld, base.HasPrevSld ) + } + var sObj=CreateItem( iObj ) + SetCMBorder(sObj,"menu","menu") + var s=sObj.style + s.borderTopColor="threedshadow" + s.borderBottomColor="threedhighlight" + s.height=1 + s.fontSize="0px" + if ( self.IsFullScrMode() ) + CreateMenuItem( iObj,sEnd,M_End,M_True ) + else + CreateMenuItem( iObj,sEnd,M_End,M_False ) +} +function Highlight() { ChangeClr("activecaption","threedhighlight") } +function Deselect() { ChangeClr("threedface","menutext") } +function Perform() +{ + e=PPTSld.event.srcElement + if( e.type=="menuitem" && e.IsActive() ) + e.Action() + else + PPTSld.event.cancelBubble=true +} +function ChangeClr( bg,clr ) +{ + e=PPTSld.event.srcElement + if( e.type=="menuitem" && e.IsActive() ) { + e.style.backgroundColor=bg + e.style.color=clr + } +} + +function M_HasPrevSld() { return( base.HasPrevSld() ) } +function M_GoNextSld() { + base.SetFSMode(1); + if( gIsEndShow ) + M_End(); + else { + if ( base.HasNextSld() ) + base.GoToNextSld(); + else if ( base.EndSlideShow ) { + StartEndShow(); + gIsEndShow = 1; + + PPTNav.location.reload(); + } + else + base.CloseFullScreen(); + } +} +function M_GoPrevSld() { + base.SetFSMode(1); + g_hideNav = 0; + if( gIsEndShow ) { + gIsEndShow = 0; + if ( base.msie > 0 && IsMac() ) + ChangeFrame( SLIDE_FRAME, GetHrefObj( g_currentSlide ).m_slideHref ); + else + PPTSld.history.back(); + + PPTNav.location.reload(); + if( PPTSld.event ) + PPTSld.event.cancelBubble=true; + } + else + base.GoToPrevSld(); +} +function M_True() { return true } +function M_False() { return false } + +function M_End() { + base.CloseFullScreen(); + /*PPTSld.event.cancelBubble=true; + window.close( self )*/ +} + +function CreateMenuItem( node,text,action,eval ) +{ + var e=CreateItem( node ) + e.type="menuitem" + e.Action=action + e.IsActive=eval + e.innerHTML=text + + if( !e.IsActive() ) + e.style.color="threedshadow" + e.onclick=Perform + e.onmouseover=Highlight + e.onmouseout=Deselect + s=e.style; + s.fontFamily=sFont + s.fontSize="8pt" + s.paddingLeft=2 +} +function CreateItem( node ) +{ + var elem=PPTSld.document.createElement("DIV") + node.insertBefore( elem ) + return elem +} +function SetCMBorder( o,ltClr,rbClr ) +{ + var s=o.style + s.backgroundColor="menu" + s.borderStyle="solid" + s.borderWidth=1 + s.borderColor=ltClr+" "+rbClr+" "+rbClr+" "+ltClr +} + +/* netscape context menu */ +g_ctxmenu = 0; +function setRect( obj, X, Y, W, H ) { + obj.top = Y; + obj.left = X; + obj.clip.top = 0; + obj.clip.left = 0; + obj.clip.bottom = H; + obj.clip.right = W; +} + +function KPH(event) { + if ( ! base.IsFullScrMode() && !alwaysOn ) + return true; + + if ( (!IsMac() &&event.which == 3) || ( IsMac() && (event.modifiers & Event.CONTROL_MASK) && event.which == 1 ) ) { + PPTSld.g_ctxmenu = 1; + PPTSld.stripUobj.visibility = "show"; + PPTSld.stripDobj.visibility = "show"; + PPTSld.shadeUobj.visibility = "show"; + PPTSld.shadeDobj.visibility = "show"; + PPTSld.panelobj.visibility = "show"; + PPTSld.Fobj.visibility = "show"; + PPTSld.Bobj.visibility = "show"; + PPTSld.Eobj.visibility = "show"; + + setRect(PPTSld.shadeUobj, event.pageX-2, event.pageY-2, 82, 67 ); + setRect(PPTSld.shadeDobj, event.pageX, event.pageY, 82, 67 ); + setRect(PPTSld.panelobj, event.pageX, event.pageY, 80, 65 ); + setRect(PPTSld.Fobj, event.pageX, event.pageY, 80, 20 ); + setRect(PPTSld.Bobj, event.pageX, event.pageY+20, 80, 20 ); + setRect(PPTSld.stripUobj, event.pageX, event.pageY+41, 80, 1 ); + setRect(PPTSld.stripDobj, event.pageX, event.pageY+43, 80, 1 ); + setRect(PPTSld.Eobj, event.pageX, event.pageY+45, 80, 20 ); + return false; + } + if ( HitOK( event ) ) { + PPTSld.g_ctxmenu = 0; + PPTSld.stripUobj.visibility = "hide"; + PPTSld.stripDobj.visibility = "hide"; + PPTSld.shadeUobj.visibility = "hide"; + PPTSld.shadeDobj.visibility = "hide"; + PPTSld.panelobj.visibility = "hide"; + PPTSld.Fobj.visibility = "hide"; + PPTSld.Bobj.visibility = "hide"; + PPTSld.Eobj.visibility = "hide"; + } + return true; +} + +function overMe() { + this.bgColor = "blue"; +} + +function outMe() { + this.bgColor = "#AAAAAA"; +} + +function makeElement( whichEl, whichContainer ) { + if ( arguments.length == 1 ) { + whichContainer = PPTSld; + } + tmp = new Layer(100,whichContainer); + eval( whichEl + " = tmp" ); + return eval(whichEl); +} + +function initMe( obj, clr, text ) { + obj.bgColor = clr; +// obj.document.write("" + text + ""); + obj.document.write( "   " + text +" "); + obj.document.close(); + obj.captureEvents(Event.CLICK); + obj.color = "black"; +} + +function createCM() { + if ( base.IsFullScrMode() ) { + var clr = "#AAAAAA"; + PPTSld.shadeUobj = makeElement("SHADEU"); + PPTSld.shadeDobj = makeElement("SHADED"); + PPTSld.panelobj = makeElement("PANEL"); + PPTSld.stripUobj = makeElement("STRIPU"); + PPTSld.stripDobj = makeElement("STRIPD"); + PPTSld.shadeUobj.bgColor = "#BBBBBB"; + PPTSld.shadeDobj.bgColor = "#888888"; + PPTSld.stripUobj.bgColor = "#777777"; + PPTSld.stripDobj.bgColor = "#CCCCCC"; + PPTSld.panelobj.bgColor = clr; + PPTSld.Fobj = makeElement("Next"); + PPTSld.Bobj = makeElement("Previous"); + PPTSld.Eobj = makeElement("EndShow"); + initMe( PPTSld.Fobj, clr, "Next" ); + PPTSld.Fobj.onclick = M_GoNextSld; + + initMe( PPTSld.Bobj, clr, "Previous" ); + PPTSld.Bobj.onclick = M_GoPrevSld; + + initMe( PPTSld.Eobj, clr, "End Show"); + PPTSld.Eobj.onclick = base.CloseFullScreen; + } +} + +function IsContextMenu() { + return (g_ctxmenu == 1) +} +var g_notesTable = new Array() +var g_hiddenSlide = new Array() +makeSlide( 0,1,1); +makeSlide( 1,1,1); +makeSlide( 2,1,1); +makeSlide( 3,1,1); +makeSlide( 4,1,1); +makeSlide( 5,1,1); +makeSlide( 6,1,1); +makeSlide( 7,1,1); +makeSlide( 8,1,1); +makeSlide( 9,1,1); +makeSlide( 10,1,1); +makeSlide( 11,1,1); +makeSlide( 12,1,1); +makeSlide( 13,1,1); +makeSlide( 14,1,1); +makeSlide( 15,1,1); +makeSlide( 16,0,1); +makeSlide( 17,1,1); + +var END_SHOW_HREF = "endshow.htm", + OUTLINE_EXPAND_HREF = "outline_expanded.htm", + OUTLINE_COLLAPSE_HREF = "outline_collapsed.htm", + OUTLINE_NAVBAR_HREF = "outline_navigation_bar.htm", + NAVBAR_HREF = "navigation_bar.htm", + BLANK_NOTES_HREF = "blank_notes.htm", + NUM_VISIBLE_SLIDES = 18, + SIMPLE_FRAMESET = 0, + SLIDE_FRAME = "PPTSld", + NOTES_FRAME = "PPTNts", + OUTLINE_FRAME = "PPTOtl", + OUTLINE_NAVBAR_FRAME = "PPTOtlNav", + NAVBAR_FRAME = "PPTNav", + MAIN_FRAME = "MainFrame", + FS_NAVBAR_HREF = "fs_navigation_bar.htm", + isIEFiles = 2, + isNAVFiles = 8, + isFLATFiles = 16, + includeNotes = 1, + PPTPRESENTATION = 1; +var INITSLIDENUM = 1; + +var EndSlideShow = 0; +var g_outline_href = OUTLINE_COLLAPSE_HREF; +var g_fullscrMode = 0; +var FSWin = null; +var gtmpstr = document.location.href; +var g_baseURL = gtmpstr.substr(0, gtmpstr.lastIndexOf("/") ) + "/" + "webqtl_demo2_part1.ppt_files"; +var g_showoutline = 1; +var g_shownotes = includeNotes; +var g_currentSlide = INITSLIDENUM, g_prevSlide = INITSLIDENUM; +var saveFSSlideNum = saveTPSlideNum = g_currentSlide; +var saveFSprevSlide = saveTPprevSlide = g_prevSlide; +var g_slideType="ie"; +var appVer = navigator.appVersion; +var msie = appVer.indexOf( "MSIE " ) + appVer.indexOf( "Internet Explorer " ); +var isnav = ( navigator.appName.indexOf( "Netscape" ) >= 0 ); +var msieWin31 = (appVer.indexOf( "Windows 3.1" ) > 0); +var ver = 0; +var g_done = 0; +var g_prevotlobjidx = 0; +var g_ShowFSDefault = 0; +var g_lastVisibleSld = 1; +var g_allHidden = false; +function IsIE() { + return (msie >= 0 ); +} + +function IsNav() { + return (isnav); +} +var msiePos = appVer.indexOf( "MSIE " ); +var inexPos = appVer.indexOf( "Internet Explorer " ); +if ( msiePos >= 0 ) + ver = parseFloat( appVer.substring( msiePos+5, appVer.indexOf ( ";", msiePos ) ) ); +else if( inexPos >= 0 ) + ver=parseFloat( appVer.substring( inexPos+18, appVer.indexOf(";",inexPos) ) ) +else + ver = parseInt( appVer ); + +//var g_supportsPPTHTML = 0; //!msieWin31 && ( ( msie >= 0 && ver >= 3.02 ) || ( msie < 0 && ver >= 3 ) ); + +function GetCurrentSlideNum() +{ + obj = GetHrefObj( g_currentSlide ); + if ( GetHrefObj( g_currentSlide ).m_origVisibility == 1 ) + return obj.m_slideIdx; + else + return g_currentSlide; +} + +function GetNumSlides() +{ + if ( GetHrefObj( g_currentSlide ).m_origVisibility == 1 ) + return NUM_VISIBLE_SLIDES; + else + return g_docTable.length; +} + +function GetHrefObj( slideIdx ) +{ return g_docTable[slideIdx - 1]; +} + +function GetSlideNum( slideHref ) +{ + for (ii=0; ii 0 ) { + obj = GetHrefObj( targetIdx ); + while ( ( obj.m_visibility == 0 ) && ( targetIdx>0 ) ) + obj = GetHrefObj( targetIdx-- ); + GoToSld( obj.m_slideHref ); + } +} + +function GoToLast() +{ + targetIdx = g_docTable.length; + if ( targetIdx != g_currentSlide ) + GoToSld( GetHrefObj( targetIdx ).m_slideHref ); +} + +function GoToFirst() +{ GoToSld( GetHrefObj(1).m_slideHref ); +} + +function highlite() { + if ( IsFullScrMode() ) + return; + index = GetCurrentSlideNum(); + if ( !frames[MAIN_FRAME].frames[OUTLINE_FRAME] ) + return; + if ( msie < 0 ) { + if ( g_prevotlobjidx != 0 ) { + eval( "otlobj = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.LAYERID" + g_prevotlobjidx ); + otlobj.hidden = true; + } + else + index = GetCurrentSlideNum(); + eval( "otlobj = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.LAYERID" + index ); + otlobj.hidden = false; + + g_prevotlobjidx = index; + + return; + } + if ( !g_showoutline ) + return; + + backclr = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.body.bgColor; + textclr = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.body.text; + if ( g_prevotlobjidx != 0 ) { + eval( "otlobj = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.all.p" + g_prevotlobjidx ); + otlobj.style.backgroundColor = backclr; + otlobj.style.color = textclr; + otlobj.all.AREF.style.color = textclr; + } + else + index = GetCurrentSlideNum(); + eval( "otlobj = frames[MAIN_FRAME].frames[OUTLINE_FRAME].document.all.p" + index ); + otlobj.style.backgroundColor = textclr; + otlobj.style.color = backclr; + otlobj.all.AREF.style.color = backclr; + g_prevotlobjidx = index; +} + +function ChangeFrame( frame, href ) +{ +if ( IsFramesMode() ) { + if ( NAVBAR_FRAME == frame || OUTLINE_NAVBAR_FRAME == frame ) { + frames[frame].location.replace(href); + } + else if( ! ( ( OUTLINE_FRAME == frame && !g_showoutline) || (NOTES_FRAME == frame && !g_shownotes ) ) ){ + frames[MAIN_FRAME].frames[frame].location.href = href; + } + } + else { + if ( frame == NAVBAR_FRAME || frame == SLIDE_FRAME ) { + if( frame == NAVBAR_FRAME ) { + href = FS_NAVBAR_HREF; + + } + if( frame == NAVBAR_FRAME ) + window.frames[frame].location.replace(href); + else + window.frames[frame].location.href = href; + } + } + +} + +function shutEventPropagation() { + if ( IsNav() ) + return; + + var slideFrame; + if ( IsFramesMode() ) + slideFrame = frames[MAIN_FRAME].frames[SLIDE_FRAME]; + else + slideFrame = window.frames[SLIDE_FRAME]; + if ( slideFrame.event ) + slideFrame.event.cancelBubble=true; +} + +function GoToSld( slideHref ) +{ + shutEventPropagation(); + if ( slideHref != GetHrefObj( g_currentSlide ).m_slideHref || g_slideType != GetHrefObj( g_currentSlide ).type) { + g_prevSlide = g_currentSlide; + g_currentSlide = GetSlideNum( slideHref ); + g_slideType = GetHrefObj( g_currentSlide ).type; + obj = GetHrefObj( g_currentSlide ); + obj.m_visibility = 1; + ChangeFrame( SLIDE_FRAME, slideHref ); + if( !SIMPLE_FRAMESET ) + ChangeFrame( NOTES_FRAME, obj.m_notesHref ); + ChangeFrame( NAVBAR_FRAME, NAVBAR_HREF ); + + } +} + +function PrevSldViewed() +{ GoToSld( GetHrefObj( g_prevSlide ).m_slideHref ); +} + +function NoHref() {} + +function ExpandOutline( ) +{ + g_outline_href = OUTLINE_EXPAND_HREF; + ChangeFrame( OUTLINE_FRAME, OUTLINE_EXPAND_HREF ); + frames[OUTLINE_NAVBAR_FRAME].location.replace( OUTLINE_NAVBAR_HREF); +} + +function CollapseOutline() +{ + g_outline_href = OUTLINE_COLLAPSE_HREF; + ChangeFrame( OUTLINE_FRAME, OUTLINE_COLLAPSE_HREF ); + frames[OUTLINE_NAVBAR_FRAME].location.replace( OUTLINE_NAVBAR_HREF); + } + +function SlideUpdated( id ) +{ + if ( id != GetHrefObj( g_currentSlide ).m_slideHref ) { + g_prevSlide = g_currentSlide; + g_currentSlide = GetSlideNum( id ); + obj = GetHrefObj( g_currentSlide ); + if( !SIMPLE_FRAMESET ) + ChangeFrame( NOTES_FRAME, obj.m_notesHref ); + ChangeFrame( NAVBAR_FRAME, NAVBAR_HREF ); + } +} + +function hrefList( slideHref, notesHref, visible, slideIdx, type ) +{ + this.m_slideHref = slideHref; + this.m_notesHref = notesHref; + this.m_navbarHref = NAVBAR_HREF; + this.m_origVisibility = visible; + this.m_visibility = visible; + this.m_slideIdx = slideIdx; + this.type = type; +} + +function IsFullScrMode() { + return g_fullscrMode; +} + + +function IsFramesMode() { + return (1 - g_fullscrMode); +} + +function SldUpdated( id ) +{ + if ( ( id != GetHrefObj( g_currentSlide ).m_slideHref ) || ( g_currentSlide == g_lastVisibleSld ) ){ + g_prevSlide = g_currentSlide; + g_currentSlide = GetSlideNum( id ); + obj = GetHrefObj( g_currentSlide ); + if( !SIMPLE_FRAMESET ) + ChangeFrame( NOTES_FRAME, obj.m_notesHref ); + ChangeFrame( NAVBAR_FRAME, NAVBAR_HREF ); + } +} + +function ToggleOutline() { + g_showoutline = 1 - g_showoutline; + writeMyFrame(); +} + +function ShowHideNotes() { + g_shownotes = 1 - g_shownotes; + writeMyFrame(); +} + +function writeMyFrame() { + SetFSMode(0); + obj = frames[MAIN_FRAME]; + + var curslide = g_baseURL + "/" + GetHrefObj( g_currentSlide ).m_slideHref; + var curnotes = g_baseURL + "/" + GetHrefObj( g_currentSlide ).m_notesHref; + var otlhref = g_baseURL + "/" + g_outline_href; + if ( msie < 0 ) { + if ( ! g_showoutline && g_shownotes ) { + obj.document.write( ' \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0001_image001.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0001_image001.png new file mode 100755 index 00000000..a1cb20e4 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0001_image001.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0001_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0001_notes_pane.htm new file mode 100755 index 00000000..7c670210 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0001_notes_pane.htm @@ -0,0 +1,5 @@ +
      Welcome to a short demonstration of the GeneNetwork and its WebQTL module. Please adjust the size of the windows on your monitor so that you can see part of this page, as well as GeneNetwork windows. WebQTL produces a large number of new windows, so you may need to modify your browser preferences to permit pop-ups. In this demonstration, we explore one important transcript expressed in the brain: the amyloid beta precursor protein messenger RNA. A protein product of this mRNA, the APP protein, is associated with AlzheimerÕs disease.

      My thanks to Dr. Robert F. Clark and Wenli Cai for testing this PowerPoint demonstration and making many improvements.

      (Initial version of June 2003 by Rob Williams. Edits July 13, 2005 by RW and RFC. Edit July 14, 2005 by WC. Final edits by RF Clark, July 22, 2005.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002.htm new file mode 100755 index 00000000..8627e129 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_image002.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_image002.png new file mode 100755 index 00000000..2eb797be Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_image002.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_image003.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_image003.png new file mode 100755 index 00000000..d1370484 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_image003.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_image004.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_image004.png new file mode 100755 index 00000000..a4f088b8 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_image004.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_notes_pane.htm new file mode 100755 index 00000000..5f7740c5 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0002_notes_pane.htm @@ -0,0 +1,5 @@ +
      Please link to the web site:  http://www.genenetwork.org
      To begin a search you make choices about what species, group, and database to explore.

      For this demonstration enter APP as above and click on the SEARCH button. Make sure that the DEFAULT SETTINGS are species = Mouse, Group = BXD, Type = Whole Brain, and Database = INIA BRAIN mRNA M430 (Apr05) PDNN.

      Notes:
      1. The GeneNetwork and WebQTL are often used to work with public data sets. However, it is possible to enter and analyze your own data for specific genetic reference populations such as the BXD genetic reference population of mice or the HXB strains of rat. Entering your own data is a more advanced topic, but if you click on the HOME pop-down menu (upper left), you will see ÒEnter Trait DataÓ that will explain the process.
      2. For help on advanced searching methods read the left side of the page (INTRODUCTION).  If you make a search term too complex, you may get no hits (try entering Òamyloid betaÓ for example). If you make it too simple, you may also get too many.
      3. Use the asterisk * as a wildcard. For example, to find all Hoxb transcripts, search for Hoxb*.
      4. In some cases you can also research for transcripts and genes using special search strings such as ÒMb = (Chr1, 100 102)Ó to find all genes on Chromosome 1 between 98 and 104 megabases (donÕt actually use the quotes). Details are described at http://www.genenetwork.org/searchHelp.html.
      5.   These INFO buttons provide links to data about the different data types. Try them.
      6.  The SET TO DEFAULT button is used to change the database default setting to match your typical search categories.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003.htm new file mode 100755 index 00000000..5507bd68 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image005.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image005.png new file mode 100755 index 00000000..d1370484 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image005.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image006.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image006.png new file mode 100755 index 00000000..c9843a48 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image006.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image008.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image008.png new file mode 100755 index 00000000..504177df Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image008.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image009.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image009.png new file mode 100755 index 00000000..901c77a0 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_image009.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_notes_pane.htm new file mode 100755 index 00000000..b8742fdc --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0003_notes_pane.htm @@ -0,0 +1,5 @@ +
      SHORT DETOUR to the HELP menu. If you are new to the GeneNetwork, you may find it helpful to review the The Glossary and FAQ pages shown above. We are in the process of making ÒliveÓ demos for some of the key modules in the GeneNetwork. Check the NEWS every month or two to find out about new features.

      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004.htm new file mode 100755 index 00000000..ab2d96f6 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004_image010.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004_image010.png new file mode 100755 index 00000000..08c136e3 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004_image010.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004_image012.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004_image012.png new file mode 100755 index 00000000..b8e67f4d Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004_image012.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004_notes_pane.htm new file mode 100755 index 00000000..f7336dcc --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0004_notes_pane.htm @@ -0,0 +1,5 @@ +
      RESULTS OF THE APP SEARCH.  A search of the INIA Brain database generates 18 matches, 10 of which are shown above. The GeneNetwork will display several hundred matches in pages of 40 each. If a search generates a larger numbers of hits, then you will need to refine search terms.

      Notes:
      1. APP is a great transcript to introduce you to the complexity and power of new array platforms that often provide ÒalternativeÓ expression estimates for single genes. There are seven probe sets that target different parts of the APP transcript. Which of the alternative measurements is most appropriate and informative? Have a look at the FAQ page for more on this topic, but general advice: 1. be skeptical and try to validate that the correct transcript and gene is being measured; 2. check what part of the transcript is complementary to the probes; 3. evaluate the performance of individual probes based on expression level, signal-to-noise and other error terms such as the standard deviation and error.
      2. In this particular case we have highlighted and selected # 5 on this SEARCH RESULTS page. The annotation for this probe set mentions that it targets the last three exons and the 3Õ untranslated region (UTR) of the amyloid precursor protein (APP).  That is just what we want.
      3. Most probe sets have not been annotated in as much detail as App. Refer tot the FAQ to learn how to annotate probe sets yourself.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005.htm new file mode 100755 index 00000000..53f61532 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005_image013.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005_image013.png new file mode 100755 index 00000000..55769e36 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005_image013.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005_image014.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005_image014.png new file mode 100755 index 00000000..e49ba16e Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005_image014.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005_notes_pane.htm new file mode 100755 index 00000000..fbe8c631 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0005_notes_pane.htm @@ -0,0 +1,5 @@ +
      The Trait Data and Analysis Form is the single most important page from the point of view of working with GeneNetwork data. Please read the text carefully. Explore the links, but do not close this page. We will need it many more times in this demonstration.
      Notes:
      1. What is this database? It is called INIA Brain mRNA M430 (Apr05) PDNN, but what does that actually mean. How much of the brain was used? How were the animals processed? Most of these types of questions can be answered by clicking on the DATABASE link.
      2. Transcript/gene LOCATION data is usually from the most recent assembly. You can VERIFY the location of the probes and probe set using the two VERIFY buttons. VERIFY UCSC performs a sequence alignment (BLAT analysis) of the probes to the most recent assembly.
      3. The PROBE TOOL button provides you with highly detailed information on the probe sequences used to assemble the probe set. For example, in this case you can find out which probes correspond to which of the three exons. You can also review the performance of the individual probes. Please check the GLOSSARY for additional details on probes.
      4. The identifiers (IDs) provide links to other key resources.

      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0006.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0006.htm new file mode 100755 index 00000000..fa44d20c --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0006.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0006_image015.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0006_image015.png new file mode 100755 index 00000000..ff7d776a Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0006_image015.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0006_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0006_notes_pane.htm new file mode 100755 index 00000000..f29819ad --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0006_notes_pane.htm @@ -0,0 +1,5 @@ +
      Most of the database components and resources in The GeneNetwork are linked to metadata pages that provide a human-readable summary of how, why, where, when, and with whom the data were generated. Before you get too involved with a data set, it is naturally important to read this information. While the data in The GeneNetwork may be accessible and useful, that does not always mean that the data is public domain and available for you to use in publication or for profit purposes. If you want to know more about the data ownership and usage, please read through the POLICIES pop-down menu items.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007.htm new file mode 100755 index 00000000..a30b21f1 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007_image016.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007_image016.png new file mode 100755 index 00000000..53a17c76 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007_image016.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007_image017.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007_image017.png new file mode 100755 index 00000000..308c4df0 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007_image017.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007_notes_pane.htm new file mode 100755 index 00000000..f5bc813e --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0007_notes_pane.htm @@ -0,0 +1,5 @@ +
      This slide shows you the lower parts of the Trait Data and Analysis Form with the data for the first set of BXD strains
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008.htm new file mode 100755 index 00000000..c0fa9166 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_image018.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_image018.png new file mode 100755 index 00000000..9535e6bb Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_image018.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_image019.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_image019.png new file mode 100755 index 00000000..7e86d735 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_image019.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_image021.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_image021.png new file mode 100755 index 00000000..2f8dfb0a Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_image021.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_notes_pane.htm new file mode 100755 index 00000000..455928c7 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0008_notes_pane.htm @@ -0,0 +1,5 @@ +
      The Basic Statistics page allows you to evaluate some aspects of the data quality. In this case, BXD8 is a potential problem. An outlier of this type may be generated by a technical artifact (bad sample?). However, it is also possible that BXD8 just has genuine low endogenous expression of App and may therefore be a particularly valuable model for research. There are different ways to treat problematic data of these types. One way is simply to discard this datum. The other way is to prevent outliers from have too much influence quantitatively, while leaving them in their low (or high positions). This is called windsorizing the data (after King Henry the VIII who had a habit of chopping heads). In this case, we have windsorized the BXD8 to a value of 16.0 and the BXD33 to a value of 16.02. Rank is retained. We are making a bet that the two lowest strains are really low, but we are hedging our bet and just making them a little lower than BXD90. This removes their ÒundueÓ influence.
      Notes:
      1. It turns out that BXD8 is a strain with many odd phenotypes. The whole strain is essentially an outlier for many traits. Therefore, the low App expression data may be quite accurate. Still, it would be comforting to have at least two more replicates.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0009.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0009.htm new file mode 100755 index 00000000..2daff7ac --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0009.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0009_image022.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0009_image022.png new file mode 100755 index 00000000..e03c35ed Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0009_image022.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0009_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0009_notes_pane.htm new file mode 100755 index 00000000..b2f9f9f2 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0009_notes_pane.htm @@ -0,0 +1,5 @@ +
      Now we get a much better feel for the variation in the error among the cases. Those without error bars are of course the ÒnoisiestÓ of all. This data set is not complete yet (the aim is to acquire at least one male-female sample for each BXD strain).
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010.htm new file mode 100755 index 00000000..4d02c34e --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010_image023.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010_image023.png new file mode 100755 index 00000000..1d32d035 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010_image023.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010_image024.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010_image024.png new file mode 100755 index 00000000..152e5045 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010_image024.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010_notes_pane.htm new file mode 100755 index 00000000..3d3f0e48 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0010_notes_pane.htm @@ -0,0 +1,5 @@ +
      Finally, we can now start an analysis.
      We ask a simple question:
      Do differences in this particular App transcript steady-state abundance level correlate with those of any other transcripts in the same INIA Brain mRNA M430 data set?
      Notes:
      1.You can CHOOSE many other DATABASES at this point if you want, but for now letÕs stick with the default.
      2. There are different ways to sort the correlations. The most obvious is by p-value (most significant values at the top of the list), but it is also interesting to sort the top 100 or top 500 by their gene symbol (gene ID) or by their chromosomal location (position).
      3. If you donÕt want your analysis to be sensitive to outliers, then you may want to choose to use the Spearman Rank Order method of calculating correlations.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0011.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0011.htm new file mode 100755 index 00000000..362057fc --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0011.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0011_image025.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0011_image025.png new file mode 100755 index 00000000..d29a333f Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0011_image025.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0011_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0011_notes_pane.htm new file mode 100755 index 00000000..1f0dd0d1 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0011_notes_pane.htm @@ -0,0 +1,5 @@ +
      The Traits Correlation output window (Correlation Results) compares App expression data with all other traits in this INIA Brain data set. The most significant 100 or 500 transcripts are sorted by their p-values. The top correlation is that of the probe set to itself (often a value of 1.0, but in this case we modified the App values manually by windsorizing the data). The next best correlation is to another App probe set. The fourth correlation is interesting and suggests that there may be a link between App and a particular type of ataxia (Atcay).
      Notes:
      1.Use the checkboxes to the far left to select traits that you want to study together. Once you have selected interesting traits, click on the ADD SELECTION button. This puts all of the selected traits into a SELECTIONS WINDOW for other types of analysis.
      2. The p-value is not corrected for multiple tests. A conservative approach for array data would be to assume 10,000 nominally independent tests. Subtract 4 from the exponent and if the value is still smaller than 0.05 you may have a real correlation.
      3. The LITERATURE CORRELATION is a data type generated by Drs. Ramin Homayouni and Michael Berry. Click on the header column by the asterisk for more information on this highly useful data type.
      4. We are using Pearson product moment correlations rather that the Spearman rank order correlation. But you can select either in the previous step.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0012.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0012.htm new file mode 100755 index 00000000..4f1cf425 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0012.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0012_image026.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0012_image026.png new file mode 100755 index 00000000..a0675ffc Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0012_image026.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0012_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0012_notes_pane.htm new file mode 100755 index 00000000..c13d07ec --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0012_notes_pane.htm @@ -0,0 +1,5 @@ +
      By clicking on the CORRELATION of the Atcay transcript to the App transcript, you can generate a Correlation plot between these two transcripts. In this App and Atcay scatterplot, each point is a strain mean value. For example, BXD33 and BXD8 have low App and Atcay expressions. The two parental strains and the F1 are also included in this plot.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0013.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0013.htm new file mode 100755 index 00000000..5aa623bf --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0013.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0013_image027.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0013_image027.png new file mode 100755 index 00000000..ba473846 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0013_image027.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0013_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0013_notes_pane.htm new file mode 100755 index 00000000..4d56b194 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0013_notes_pane.htm @@ -0,0 +1,5 @@ +
      A group of traits from many different databases can be selected and brought together for joint analysis. In this case all of the content of the BXD SELECTIONS is from a single BRAIN database, the top 20 neighbors of the App transcript from the Correlation Results table. Eight of these neighbors plus App is shown in the slide.
      Notes:
      1.All of items in the BXD SELECTIONS were selected using the SELECT ALL button
      2. The buttons at the top (and bottom) of this page can do some cool stuff. We will work with NETWORK GRAPH first.
      3. Think of the SELECTIONS as your shopping cart. You go to different aisles in the supermarket to acquire different types of items of interest. These could include transcripts, classical phenotypes (longevity, brain weight, prepulse inhibition, iron levels in midbrain). ÒChecking outÓ in this case involves doing some analysis with the items in the cart.
      4. Different tools handle different numbers of items. Most will handle up to 100 traits.

      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014.htm new file mode 100755 index 00000000..156a5132 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_image029.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_image029.png new file mode 100755 index 00000000..8f560834 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_image029.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_image031.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_image031.png new file mode 100755 index 00000000..8d72b4c1 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_image031.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_image033.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_image033.png new file mode 100755 index 00000000..c1cd1c01 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_image033.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_notes_pane.htm new file mode 100755 index 00000000..728a1a82 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0014_notes_pane.htm @@ -0,0 +1,5 @@ +
      Output of the Network Graph. Warm colors (orange and red) are positive correlations above 0.5 whereas cool colors (green and blue) are negative correlations. Notes:
      1. All of the nodes (gene/transcripts) on this graph are clickable.
      2. For this graph the App expression values have ÒrevertedÓ to their pre-Windsorized values.
      3. To generate this graph, we used the default setting:  Size of 16 by 16 inches; Gene Symbols; Don't Show Correlations; Use curved lines (aka ÒedgesÓ).
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015.htm new file mode 100755 index 00000000..c2a26be3 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015_image034.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015_image034.png new file mode 100755 index 00000000..dafa2898 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015_image034.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015_image035.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015_image035.png new file mode 100755 index 00000000..35566d47 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015_image035.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015_notes_pane.htm new file mode 100755 index 00000000..373646fe --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0015_notes_pane.htm @@ -0,0 +1,5 @@ +
      Going back to the Trait Data and Analysis Form window, we have computed the correlations between strain variation in App expression level and other classical phenotypes that have already been measured in many of the same BXD strains.
      Notes:
      1.The number of common strains varies widely--in this case from 14 to 23 strains.
      2. We can add these traits (four are selected) to our BXD SELECTIONS window.
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0016.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0016.htm new file mode 100755 index 00000000..9432ca4c --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0016.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0016_image036.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0016_image036.png new file mode 100755 index 00000000..baa1d807 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0016_image036.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0016_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0016_notes_pane.htm new file mode 100755 index 00000000..c2a078c5 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0016_notes_pane.htm @@ -0,0 +1,5 @@ +
      We have computed the Network Graph, now using other types of traits.
      Saline Hot Plate Latency is the green node labeled 10020.
      Freezing (fear) is the green node labeled 10447.
      Notes:
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0017.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0017.htm new file mode 100755 index 00000000..afb498b8 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0017.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018.htm new file mode 100755 index 00000000..e1ee283b --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018.htm @@ -0,0 +1,25 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018_image037.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018_image037.png new file mode 100755 index 00000000..a1cb20e4 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018_image037.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018_image038.png b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018_image038.png new file mode 100755 index 00000000..e06bd0db Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018_image038.png differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018_notes_pane.htm new file mode 100755 index 00000000..e2cb435a --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0018_notes_pane.htm @@ -0,0 +1,5 @@ +
      END
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0019.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0019.htm new file mode 100755 index 00000000..e6b8658d --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0019.htm @@ -0,0 +1,153 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      GeneNetwork and WebQTL:
      lPart 1: How to study expression variation and covariation (slides 2–16)
      lPart 2. Discovering upstream modulators (slides 17–30)
      RNA

      PowerPoint ÒNormal viewÓ has notes that may be useful companions to these slides.
      a PowerPoint Presentation
      RWW 07.23.2005
      You can also download this PowerPoint at
      ftp://atlas.utmem.edu/public/webqtl_demo2.ppt
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0019_notes_pane.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0019_notes_pane.htm new file mode 100755 index 00000000..e2cb435a --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0019_notes_pane.htm @@ -0,0 +1,5 @@ +
      END
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0020.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0020.htm new file mode 100755 index 00000000..da8b9759 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0020.htm @@ -0,0 +1,172 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Choose
      database
      Enter
      APP
      Select
      search
      lPART 1: How to study variation and covariation
      Choose  species, group, and type
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0021.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0021.htm new file mode 100755 index 00000000..0e0eb529 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0021.htm @@ -0,0 +1,129 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lPlease also use the Glossary, FAQ, and News
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0022.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0022.htm new file mode 100755 index 00000000..663a5f0f --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0022.htm @@ -0,0 +1,140 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Highlight this probe set in red and
      click. You do NOT have to select the checkbox
      Search results
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0023.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0023.htm new file mode 100755 index 00000000..10a6218a --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0023.htm @@ -0,0 +1,128 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lFirst page of data: The Trait Data and Analysis Form
      Click here
      to learn
      about
      data
      source
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0024.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0024.htm new file mode 100755 index 00000000..97f09734 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0024.htm @@ -0,0 +1,93 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lData sources: Metadata for each resource
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0025.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0025.htm new file mode 100755 index 00000000..32820d64 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0025.htm @@ -0,0 +1,134 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lExpression estimates for App on the Trait Data form
      Trait data for each strain with SE when known. For array data the scale is ~ log base 2.   F1 data = 16.723 = 2^16.723 = 108,174
      These values can all be changed by the user. (Yes, there is a RESET)
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0026.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0026.htm new file mode 100755 index 00000000..7dac49e1 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0026.htm @@ -0,0 +1,130 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lCritiquing the App data the Trait Data
      Use the BASIC STATISTICS button to evaluate the App data. You will find that App data from the different strains are not equally trustworthy. BXD8 is an obvious outlier without replication (no error bar). BXD33 is also suspiciously low. BXD5 is noisy.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0027.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0027.htm new file mode 100755 index 00000000..0a23d59d --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0027.htm @@ -0,0 +1,93 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lApp expression after windsorizing
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0028.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0028.htm new file mode 100755 index 00000000..cde4a136 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0028.htm @@ -0,0 +1,104 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lDiscovering shared expression patterns
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0029.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0029.htm new file mode 100755 index 00000000..c296b9e9 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0029.htm @@ -0,0 +1,93 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lTranscript neighborhoods
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0030.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0030.htm new file mode 100755 index 00000000..b84e4aad --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0030.htm @@ -0,0 +1,93 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lApp and Atcay transcript scatterplot
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0031.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0031.htm new file mode 100755 index 00000000..9a54b689 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0031.htm @@ -0,0 +1,93 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lApp transcript and eight of its neighbors
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0032.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0032.htm new file mode 100755 index 00000000..85ee47fe --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0032.htm @@ -0,0 +1,118 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      App transcript coexpression neighborhood
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0033.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0033.htm new file mode 100755 index 00000000..042ca4ad --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0033.htm @@ -0,0 +1,104 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lCorrelations of App with classical traits
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0034.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0034.htm new file mode 100755 index 00000000..3cf1ac70 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0034.htm @@ -0,0 +1,93 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lNetwork Graph of App with classical traits
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0035.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0035.htm new file mode 100755 index 00000000..ca5ac8bb --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0035.htm @@ -0,0 +1,151 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      lSummary of Part 1:
      1. You have learned the basics about searching for traits
      2. You know some methods to check data quality
      3. You know how to edit bad or suspicious data
      4. You know how to review the basic statistics of a trait
      5. You know how to generate a scattergram between two traits using the Traits Correlation tool
      6. You know how to add items to your SELECTIONS window
      7. You know how to generate a Network Graph of traits that co-vary.
      What does genetic covariance mean? The genetic covariance can be functional and mechanistic, but it can also be due to linkage disequilibrium. Finally, it can be due to sampling error or poor experimental design. Evaluate the biological plausibility of correlations. Test and be skeptical.
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0036.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0036.htm new file mode 100755 index 00000000..ccec2e7d --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0036.htm @@ -0,0 +1,112 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      Contact for comments and improvements:
      rwilliam@nb.utmem.edu


      kmanly@utmem.edu
      The App findings reviewed in this presentation are part of an ongoing study by R. Williams. R. Homayouni, and R. Clark (July 15, 2005)
      + \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0037.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0037.htm new file mode 100755 index 00000000..36ca5f6f --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0037.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0038.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0038.htm new file mode 100755 index 00000000..cfca50e2 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0038.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0039.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0039.htm new file mode 100755 index 00000000..933dd079 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0039.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0040.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0040.htm new file mode 100755 index 00000000..d259ab62 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0040.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0041.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0041.htm new file mode 100755 index 00000000..de37f35e --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0041.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0042.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0042.htm new file mode 100755 index 00000000..f0673f6c --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0042.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0043.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0043.htm new file mode 100755 index 00000000..67760c34 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0043.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0044.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0044.htm new file mode 100755 index 00000000..6c7be85e --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0044.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0045.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0045.htm new file mode 100755 index 00000000..19a153ed --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0045.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0046.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0046.htm new file mode 100755 index 00000000..e210d3d5 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0046.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0047.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0047.htm new file mode 100755 index 00000000..c2de15b1 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0047.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0048.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0048.htm new file mode 100755 index 00000000..808d5c5c --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0048.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0049.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0049.htm new file mode 100755 index 00000000..aa852a41 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0049.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0050.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0050.htm new file mode 100755 index 00000000..05c91170 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0050.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0051.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0051.htm new file mode 100755 index 00000000..ba521148 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0051.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0052.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0052.htm new file mode 100755 index 00000000..7bdae49c --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0052.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0053.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0053.htm new file mode 100755 index 00000000..b5d747b0 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0053.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0054.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0054.htm new file mode 100755 index 00000000..11ffe740 --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0054.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0055.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0055.htm new file mode 100755 index 00000000..d686e41f --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0055.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0056.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0056.htm new file mode 100755 index 00000000..ee67068a --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0056.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0057.htm b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0057.htm new file mode 100755 index 00000000..6ae842ef --- /dev/null +++ b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/slide0057.htm @@ -0,0 +1,34 @@ + PowerPoint Presentation - Complex trait analysis, develop-ment, and genomics +
      \ No newline at end of file diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/space.gif b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/space.gif new file mode 100755 index 00000000..e6cd7808 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/space.gif differ diff --git a/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/webqtl_demo2_part1.ppt.ppt b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/webqtl_demo2_part1.ppt.ppt new file mode 100755 index 00000000..84182823 Binary files /dev/null and b/web/tutorial/ppt/html/webqtl_demo2_part1.ppt_files/webqtl_demo2_part1.ppt.ppt differ diff --git a/web/tutorial/ppt/index.html b/web/tutorial/ppt/index.html new file mode 100755 index 00000000..3ec43ba2 --- /dev/null +++ b/web/tutorial/ppt/index.html @@ -0,0 +1,90 @@ + +Powerpoint / GeneNetwork + + + + + + + + + + + + + + + + + + +
      + + + +
      +

      GeneNetwork PowerPoint Demonstrations modify this page

      +
      +

      GeneNetwork Demonstration Part I

      + +

      Part I: A short introduction on how to exploit GeneNetwork to explore variation and covariation among traits. This 18-slide PowerPoint side show uses the beta amyloid precursor as an example. + +

      + +
      +

      WebQTL Demonstration Part II

      + +

      Part II: A continutation that explains how to map chromosomal locations (QTLs) that modulate variation in quantitative traits using the WebQTL mapping module of the GeneNetwork. + + + +

      + + +
      + + +

      +

      Files last updated by RWW, July 23, 2005. + + + + +

      +
      +
      + + +
      +
      + + + + + + + + + + diff --git a/web/tutorial/ppt/ppt/webqtl_demo2.ppt b/web/tutorial/ppt/ppt/webqtl_demo2.ppt new file mode 100755 index 00000000..ef4ee89f Binary files /dev/null and b/web/tutorial/ppt/ppt/webqtl_demo2.ppt differ diff --git a/web/tutorial/ppt/ppt/webqtl_demo2_part1.ppt b/web/tutorial/ppt/ppt/webqtl_demo2_part1.ppt new file mode 100755 index 00000000..19dc7551 Binary files /dev/null and b/web/tutorial/ppt/ppt/webqtl_demo2_part1.ppt differ diff --git a/web/upload.html b/web/upload.html new file mode 100755 index 00000000..16f5de28 --- /dev/null +++ b/web/upload.html @@ -0,0 +1,61 @@ + +Upload Image + + + + + + + + + +
      + + + + + + + + + + + + + + + + + + + + + + +
      +

      Upload Files

      +
      + +
      + +
      + +
      + +
      + +
      + + +
      + +
      + + + + + diff --git a/web/webqtl/.htaccess b/web/webqtl/.htaccess new file mode 100755 index 00000000..d5e1aa95 --- /dev/null +++ b/web/webqtl/.htaccess @@ -0,0 +1,5 @@ +AddHandler python-program .py +PythonHandler main +PythonInterpreter GeneNetwork +PythonOption session FileSession +PythonDebug On diff --git a/web/webqtl/__init__.py b/web/webqtl/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/annotation/AnnotationPage.py b/web/webqtl/annotation/AnnotationPage.py new file mode 100755 index 00000000..ab3f7095 --- /dev/null +++ b/web/webqtl/annotation/AnnotationPage.py @@ -0,0 +1,39 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from base.templatePage import templatePage +import HTMLBody + +######################################### +# AnnotationPage +######################################### + +class AnnotationPage(templatePage): + + def __init__(self, fd): + templatePage.__init__(self, fd) + self.dict['title'] = 'GeneNetwork Data Sharing Zone' + self.dict['body'] = HTMLBody.body_string diff --git a/web/webqtl/annotation/HTMLBody.py b/web/webqtl/annotation/HTMLBody.py new file mode 100755 index 00000000..39e012a8 --- /dev/null +++ b/web/webqtl/annotation/HTMLBody.py @@ -0,0 +1,32 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +body_string = """ +
      +

      Annotation Database for Microarray

      + +
      +

      Select and Search +

      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + Species: + + + +
      + Group: + + + +
      + Type: + + + +
      + Database: + + + + +
      + + +

          Databases marked with ** suffix are not public yet. +
          Access requires user login.

      +
      + Get Any: + + + + +
      + + + +

          Enter terms, genes, ID numbers in the Get Any field. +
          Use * or ? wildcards (Cyp*a?, synap*). +
          Use Combined for terms such as tyrosine kinase.

      + +
      + Combined: + + + + +
      + + +      +      + + +
      + + + +
      + + + + + + + + +

       ______________________________________________________ + +

        + +Quick HELP Examples and + + User's Guide

      + + +  You can also use advanced commands. Copy these simple examples +
        into the Get Any or Combined search fields: +
        + +
      • POSITION=(chr1 25 30) finds genes, markers, or transcripts on chromosome 1 between 25 and 30 Mb. + +
      • MEAN=(15 16) LRS=(23 46) in the Combined field finds highly expressed genes (15 to 16 log2 units) AND with peak LRS linkage between 23 and 46. + + +
      • RIF=mitochondrial searches RNA databases for GeneRIF links. + +
      • WIKI=nicotine searches GeneWiki for genes that you or other users have annotated with the word nicotine. + +
      • GO:0045202 searches for synapse-associated genes listed in the Gene Ontology. + + +
      • GO:0045202 LRS=(9 99 Chr4 122 155) cisLRS=(9 999 10)
        in Combined finds synapse-associated genes with cis eQTL on Chr 4 from 122 and 155 Mb with LRS scores between 9 and 999. + +
      • RIF=diabetes LRS=(9 999 Chr2 100 105) transLRS=(9 999 10)
        in Combined finds diabetes-associated transcripts with peak trans eQTLs on Chr 2 between 100 and 105 Mb with LRS scores between 9 and 999. + + +
      + +
      +

      Websites Affiliated with GeneNetwork

      +

      +

      +

      +

      ____________________________ + +

      Getting Started   

      +
        +
      1. Select Species (or select All) +
      2. Select Group (a specific sample) +
      3. Select Type of data: +
          +
        • Phenotype (traits) +
        • Genotype (markers) +
        • Expression (mRNAs) +
        +
      4. Select a Database +
      5. Enter search terms in the Get Any or Combined field: words, genes, ID numbers, probes, advanced search commands +
      6. Click on the Search button +
      7. Optional: Use the Make Default button to save your preferences +
      + +

      ____________________________ + +

      How to Use GeneNetwork + +

      +

      Take a 20-40 minute GeneNetwork Tour that includes screen shots and typical steps in the analysis.

      +
      +
      +

      For information about resources and methods, select the INFO buttons.

      + + + +

      Try the Workstation site to explore data and features that are being implemented.

      + + +

      Review the Conditions and Contacts pages for information on the status of data sets and advice on their use and citation.

      + + +
      + + + +

      Mirror and Development Sites

      + + + + +

      History and Archive + +

      +

      GeneNetwork's Time Machine links to earlier versions that correspond to specific publication dates.

      + +
      + + +

      +
      + + + + %s + + + + + + + + + + + + + + +
      + + + %s + +
      +
      + %s
      +
      + + + + + + + + + + +""" diff --git a/web/webqtl/base/templatePage.py b/web/webqtl/base/templatePage.py new file mode 100644 index 00000000..4dece24a --- /dev/null +++ b/web/webqtl/base/templatePage.py @@ -0,0 +1,222 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#templatePage.py +# +#--Genenetwork generates a lot of pages; this file is the generic version of them, defining routines they all use. +# +#Classes: +#templatePage +# +#Functions (of templatePage): +#__init__(...) -- class constructor, allows a more specific template to be used in addition to templatePage +#__str__(self) -- returns the object's elements as a tuple +#__del__(self) -- closes the current connection to MySQL, if there is one +#write -- explained below +#writefile -- explained below +#openMysql(self) -- opens a MySQL connection and stores the resulting cursor in the object's cursor variable +#updMysql(self) -- same as openMysql +#error -- explained below +#session -- explained below + + +import socket +import time +import shutil +import MySQLdb +import os + +from htmlgen import HTMLgen2 as HT + +import template +import webqtlConfig +import header +import footer +from utility import webqtlUtil + + + +class templatePage: + + contents = ['title','basehref','js1','js2', 'layer', 'header', 'body', 'footer'] + + # you can pass in another template here if you want + def __init__(self, fd=None, template=template.template): + + # initiate dictionary + self.starttime = time.time() + self.dict = {} + self.template = template + + for item in self.contents: + self.dict[item] = "" + + self.dict['basehref'] = "" #webqtlConfig.BASEHREF + self.cursor = None + + self.cookie = [] #XZ: list to hold cookies (myCookie object) being changed + self.content_type = 'text/html' + self.content_disposition = '' + self.redirection = '' + self.debug = '' + self.attachment = '' + + #XZ: Holding data (new data or existing data being changed) that should be saved to session. The data must be picklable!!! + self.session_data_changed = {} + + self.userName = 'Guest' + self.privilege = 'guest' + if fd.input_session_data.has_key('user'): + self.userName = fd.input_session_data['user'] + if fd.input_session_data.has_key('privilege'): + self.privilege = fd.input_session_data['privilege'] + + def __str__(self): + + #XZ: default setting + thisUserName = self.userName + thisPrivilege = self.privilege + #XZ: user may just go through login or logoff page + if self.session_data_changed.has_key('user'): + thisUserName = self.session_data_changed['user'] + if self.session_data_changed.has_key('privilege'): + thisPrivilege = self.session_data_changed['privilege'] + + if thisUserName == 'Guest': + userInfo = 'Welcome! Login' + else: + userInfo = 'Hi, %s! Logout' % thisUserName + + reload(header) + self.dict['header'] = header.header_string % userInfo + + serverInfo = "It took %2.3f second(s) for %s to generate this page" % (time.time()-self.starttime, socket.getfqdn()) + reload(footer) + self.dict['footer'] = footer.footer_string % serverInfo + + slist = [] + for item in self.contents: + slist.append(self.dict[item]) + return self.template % tuple(slist) + + + def __del__(self): + if self.cursor: + self.cursor.close() + + def write(self): + 'return string representation of this object' + + if self.cursor: + self.cursor.close() + + return str(self) + + def writeFile(self, filename): + 'save string representation of this object into a file' + if self.cursor: + self.cursor.close() + + try: + 'it could take a long time to generate the file, save to .tmp first' + fp = open(os.path.join(webqtlConfig.TMPDIR, filename+'.tmp'), 'wb') + fp.write(str(self)) + fp.close() + path_tmp = os.path.join(webqtlConfig.TMPDIR, filename+'.tmp') + path_html = os.path.join(webqtlConfig.TMPDIR, filename) + shutil.move(path_tmp,path_html) + except: + pass + + def openMysql(self): + try: + self.con = MySQLdb.Connect(db=webqtlConfig.DB_NAME,host=webqtlConfig.MYSQL_SERVER, \ + user=webqtlConfig.DB_USER,passwd=webqtlConfig.DB_PASSWD) + self.cursor = self.con.cursor() + return 1 + except: + heading = "Connect MySQL Server" + detail = ["Can't connect to MySQL server on '"+ webqtlConfig.MYSQL_SERVER+"':100061. \ + The server may be down at this time"] + self.error(heading=heading,detail=detail,error="Error 2003") + return 0 + + def updMysql(self): + try: + self.con = MySQLdb.Connect(db=webqtlConfig.DB_UPDNAME,host=webqtlConfig.MYSQL_UPDSERVER, \ + user=webqtlConfig.DB_UPDUSER,passwd=webqtlConfig.DB_UPDPASSWD) + self.cursor = self.con.cursor() + return 1 + except: + heading = "Connect MySQL Server" + detail = ["update: Can't connect to MySQL server on '"+ webqtlConfig.MYSQL_UPDSERVER+"':100061. \ + The server may be down at this time "] + self.error(heading=heading,detail=detail,error="Error 2003") + return 0 + + def error(self,heading="",intro=[],detail=[],title="Error",error="Error"): + 'generating a WebQTL style error page' + Heading = HT.Paragraph(heading) + Heading.__setattr__("class","title") + + Intro = HT.Blockquote() + if intro: + for item in intro: + Intro.append(item) + else: + Intro.append(HT.Strong('Sorry!'),' Error occurred while processing\ + your request.', HT.P(),'The nature of the error generated is as\ + follows:') + + Detail = HT.Blockquote() + Detail.append(HT.Span("%s : " % error,Class="fwb cr")) + if detail: + Detail2 = HT.Blockquote() + for item in detail: + Detail2.append(item) + Detail.append(HT.Italic(Detail2)) + + #Detail.__setattr__("class","subtitle") + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee',valign="top") + TD_LR.append(Heading,Intro,Detail) + self.dict['body'] = str(TD_LR) + self.dict['title'] = title + + def session(self,mytitle="",myHeading=""): + 'generate a auto-refreshing temporary html file(waiting page)' + self.filename = webqtlUtil.generate_session() + self.dict['title'] = mytitle + self.dict['basehref'] = webqtlConfig.REFRESHSTR % (webqtlConfig.CGIDIR, self.filename) + "" #webqtlConfig.BASEHREF + + TD_LR = HT.TD(align="center", valign="middle", height=200,width="100%", bgColor='#eeeeee') + Heading = HT.Paragraph(myHeading, Class="fwb fs16 cr") + # NL, 07/27/2010. variable 'PROGRESSBAR' has been moved from templatePage.py to webqtlUtil.py; + TD_LR.append(Heading, HT.BR(), webqtlUtil.PROGRESSBAR) + self.dict['body'] = TD_LR + self.writeFile(self.filename + '.html') + return self.filename + + diff --git a/web/webqtl/base/webqtlCaseData.py b/web/webqtl/base/webqtlCaseData.py new file mode 100755 index 00000000..4df32ca4 --- /dev/null +++ b/web/webqtl/base/webqtlCaseData.py @@ -0,0 +1,54 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +class webqtlCaseData: + """ + one case data in one trait + """ + + val = None #Trait Value + var = None #Trait Variance + N = None #Number of individuals + + def __init__(self, val=val, var=var, N=N): + self.val = val + self.var = var + self.N = N + + def __str__(self): + str = "" + if self.val != None: + str += "value=%2.3f" % self.val + if self.var != None: + str += " variance=%2.3f" % self.var + if self.N != None: + str += " ndata=%d" % self.N + return str + + __repr__ = __str__ + + + diff --git a/web/webqtl/base/webqtlConfig.py b/web/webqtl/base/webqtlConfig.py new file mode 100755 index 00000000..87e2f3d0 --- /dev/null +++ b/web/webqtl/base/webqtlConfig.py @@ -0,0 +1,73 @@ +from webqtlConfigLocal import * +#########################################' +# Environment Variables - public +######################################### + +#Debug Level +#1 for debug, mod python will reload import each time +DEBUG = 1 + +#USER privilege +USERDICT = {'guest':1,'user':2, 'admin':3, 'root':4} + +#minimum number of informative strains +KMININFORMATIVE = 5 + +#maximum number of traits for interval mapping +MULTIPLEMAPPINGLIMIT = 11 + +#maximum number of traits for correlation +MAXCORR = 100 + +#Daily download limit from one IP +DAILYMAXIMUM = 1000 + +#maximum LRS value +MAXLRS = 460.0 + +#temporary data life span +MAXLIFE = 86400 + +#MINIMUM Database public value +PUBLICTHRESH = 0 + +#NBCI address +NCBI_LOCUSID = "http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" +UCSC_REFSEQ = "http://genome.cse.ucsc.edu/cgi-bin/hgGene?db=%s&hgg_gene=%s&hgg_chrom=chr%s&hgg_start=%s&hgg_end=%s" +GENBANK_ID = "http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&doptcmdl=DocSum&term=%s" +OMIM_ID = "http://www.ncbi.nlm.nih.gov/omim/%s" +UNIGEN_ID = "http://www.ncbi.nlm.nih.gov/UniGene/clust.cgi?ORG=%s&CID=%s" +HOMOLOGENE_ID = "http://www.ncbi.nlm.nih.gov/sites/entrez?Db=homologene&Cmd=DetailsSearch&Term=%s" +PUBMEDLINK_URL = "http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=%s&dopt=Abstract" +UCSC_POS = "http://genome.ucsc.edu/cgi-bin/hgTracks?clade=mammal&org=%s&db=%s&position=chr%s:%s-%s&pix=800&Submit=submit" +UCSC_BLAT = 'http://genome.ucsc.edu/cgi-bin/hgBlat?org=%s&db=%s&type=0&sort=0&output=0&userSeq=%s' +UTHSC_BLAT = 'http://ucscbrowser.genenetwork.org/cgi-bin/hgBlat?org=%s&db=%s&type=0&sort=0&output=0&userSeq=%s' +UCSC_GENOME = "http://genome.ucsc.edu/cgi-bin/hgTracks?db=%s&position=chr%s:%d-%d&hgt.customText=http://web2qtl.utmem.edu:88/snp/chr%s" +ENSEMBLE_BLAT = 'http://www.ensembl.org/Mus_musculus/featureview?type=AffyProbe&id=%s' +DBSNP = 'http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?type=rs&rs=%s' +UCSC_RUDI_TRACK_URL = " http://genome.cse.ucsc.edu/cgi-bin/hgTracks?org=%s&db=%s&hgt.customText=http://gbic.biol.rug.nl/~ralberts/tracks/%s/%s" +GENOMEBROWSER_URL="http://ucscbrowser.genenetwork.org/cgi-bin/hgTracks?clade=mammal&org=Mouse&db=mm9&position=%s&hgt.suggest=&pix=800&Submit=submit" +ENSEMBLETRANSCRIPT_URL="http://useast.ensembl.org/Mus_musculus/Lucene/Details?species=Mus_musculus;idx=Transcript;end=1;q=%s" + +SECUREDIR = GNROOT + 'secure/' +COMMON_LIB = GNROOT + 'support/admin' +HTMLPATH = GNROOT + 'web/' +IMGDIR = HTMLPATH +'image/' +IMAGESPATH = HTMLPATH + 'images/' +UPLOADPATH = IMAGESPATH + 'upload/' +TMPDIR = HTMLPATH +'tmp/' +GENODIR = HTMLPATH + 'genotypes/' +GENO_ARCHIVE_DIR = GENODIR + 'archive/' +TEXTDIR = HTMLPATH + 'ProbeSetFreeze_DataMatrix/' +CMDLINEDIR = HTMLPATH + 'webqtl/cmdLine/' +ChangableHtmlPath = GNROOT + 'web/' + +SITENAME = 'GN' +PORTADDR = "http://132.192.47.32" +BASEHREF = '' +INFOPAGEHREF = '/dbdoc/%s.html' +GLOSSARYFILE = "/glossary.html" +CGIDIR = '/webqtl/' #XZ: The variable name 'CGIDIR' should be changed to 'PYTHONDIR' +SCRIPTFILE = 'main.py' +REFRESHSTR = '' +REFRESHDIR = '%s' + SCRIPTFILE +'?sid=%s' diff --git a/web/webqtl/base/webqtlConfigLocal.py b/web/webqtl/base/webqtlConfigLocal.py new file mode 100755 index 00000000..0c95fe7b --- /dev/null +++ b/web/webqtl/base/webqtlConfigLocal.py @@ -0,0 +1,19 @@ +#########################################' +# Environment Variables - private +######################################### + +MYSQL_SERVER = 'localhost' +DB_NAME = 'db_webqtl' +DB_USER = 'webqtlupd' +DB_PASSWD = 'webqtl' + +MYSQL_UPDSERVER = 'localhost' +DB_UPDNAME = 'db_webqtl' +DB_UPDUSER = 'webqtlupd' +DB_UPDPASSWD = 'webqtl' + +GNROOT = '/gnshare/gn/' +PythonPath = '/usr/bin/python' +PIDDLE_FONT_PATH = '/usr/lib/python2.4/site-packages/piddle/truetypefonts/' + +TEXTUI=0 # This is to protect GN production server. If set to 0, no text UI is allowed. diff --git a/web/webqtl/base/webqtlDataset.py b/web/webqtl/base/webqtlDataset.py new file mode 100755 index 00000000..da1b8601 --- /dev/null +++ b/web/webqtl/base/webqtlDataset.py @@ -0,0 +1,160 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from htmlgen import HTMLgen2 as HT + +import webqtlConfig + + + +class webqtlDataset: + """ + Database class defines a database in webqtl, can be either Microarray, + Published phenotype, genotype, or user input database(temp) + """ + + def __init__(self, dbName, cursor=None): + + assert dbName + self.id = 0 + self.name = '' + self.type = '' + self.riset = '' + self.cursor = cursor + + #temporary storage + if dbName.find('Temp') >= 0: + self.searchfield = ['name','description'] + self.disfield = ['name','description'] + self.type = 'Temp' + self.id = 1 + self.fullname = 'Temporary Storage' + self.shortname = 'Temp' + elif dbName.find('Publish') >= 0: + self.searchfield = ['name','post_publication_description','abstract','title','authors'] + self.disfield = ['name','pubmed_id', + 'pre_publication_description', 'post_publication_description', 'original_description', + 'pre_publication_abbreviation', 'post_publication_abbreviation', + 'lab_code', 'submitter', 'owner', 'authorized_users', + 'authors','title','abstract', 'journal','volume','pages','month', + 'year','sequence', 'units', 'comments'] + self.type = 'Publish' + elif dbName.find('Geno') >= 0: + self.searchfield = ['name','chr'] + self.disfield = ['name','chr','mb', 'source2', 'sequence'] + self.type = 'Geno' + else: #ProbeSet + self.searchfield = ['name','description','probe_target_description', + 'symbol','alias','genbankid','unigeneid','omim', + 'refseq_transcriptid','probe_set_specificity', 'probe_set_blat_score'] + self.disfield = ['name','symbol','description','probe_target_description', + 'chr','mb','alias','geneid','genbankid', 'unigeneid', 'omim', + 'refseq_transcriptid','blatseq','targetseq','chipid', 'comments', + 'strand_probe','strand_gene','probe_set_target_region', + 'probe_set_specificity', 'probe_set_blat_score','probe_set_blat_mb_start', + 'probe_set_blat_mb_end', 'probe_set_strand', + 'probe_set_note_by_rw', 'flag'] + self.type = 'ProbeSet' + self.name = dbName + if self.cursor and self.id == 0: + self.retrieveName() + + def __str__(self): + return self.name + + __repr__ = __str__ + + + def getRISet(self): + assert self.cursor + if self.type == 'Publish': + query = ''' + SELECT + InbredSet.Name, InbredSet.Id + FROM + InbredSet, PublishFreeze + WHERE + PublishFreeze.InbredSetId = InbredSet.Id AND + PublishFreeze.Name = "%s" + ''' % self.name + elif self.type == 'Geno': + query = ''' + SELECT + InbredSet.Name, InbredSet.Id + FROM + InbredSet, GenoFreeze + WHERE + GenoFreeze.InbredSetId = InbredSet.Id AND + GenoFreeze.Name = "%s" + ''' % self.name + elif self.type == 'ProbeSet': + query = ''' + SELECT + InbredSet.Name, InbredSet.Id + FROM + InbredSet, ProbeSetFreeze, ProbeFreeze + WHERE + ProbeFreeze.InbredSetId = InbredSet.Id AND + ProbeFreeze.Id = ProbeSetFreeze.ProbeFreezeId AND + ProbeSetFreeze.Name = "%s" + ''' % self.name + else: + return "" + self.cursor.execute(query) + RISet, RIID = self.cursor.fetchone() + if RISet == 'BXD300': + RISet = "BXD" + self.riset = RISet + self.risetid = RIID + return RISet + + + def retrieveName(self): + assert self.id == 0 and self.cursor + query = ''' + SELECT + Id, Name, FullName, ShortName + FROM + %sFreeze + WHERE + public > %d AND + (Name = "%s" OR FullName = "%s" OR ShortName = "%s") + '''% (self.type, webqtlConfig.PUBLICTHRESH, self.name, self.name, self.name) + try: + self.cursor.execute(query) + self.id,self.name,self.fullname,self.shortname=self.cursor.fetchone() + except: + raise KeyError, `self.name`+' doesn\'t exist.' + + + def genHTML(self, Class='c0dd'): + return HT.Href(text = HT.Span('%s Database' % self.fullname, Class= "fwb " + Class), + url= webqtlConfig.INFOPAGEHREF % self.name,target="_blank") + + + + + diff --git a/web/webqtl/base/webqtlFormData.py b/web/webqtl/base/webqtlFormData.py new file mode 100755 index 00000000..84e41cae --- /dev/null +++ b/web/webqtl/base/webqtlFormData.py @@ -0,0 +1,289 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from mod_python import Cookie +import string +import os + +import reaper + +import webqtlConfig +import cookieData +import sessionData +from cgiData import cgiData +from webqtlCaseData import webqtlCaseData +from utility import webqtlUtil + + + +class webqtlFormData: + 'Represents data from a WebQTL form page, needed to generate the next page' + attrs = ('formID','RISet','genotype','strainlist','allstrainlist', + 'suggestive','significance','submitID','identification', 'enablevariance', + 'nperm','nboot','email','incparentsf1','genotype_1','genotype_2','traitInfo') + + #XZ: Attention! All attribute values must be picklable! + + def __init__(self, req = None, mod_python_session=None, FieldStorage_formdata=None): + + for item in self.attrs: + setattr(self,item, None) + + try: + self.remote_ip = req.connection.remote_ip + except: + self.remote_ip = '1.2.3.4' + + if req and req.headers_in.has_key('referer'): + self.refURL = req.headers_in['referer'] + else: + self.refURL = None + + + self.cookies = cookieData.cookieData(Cookie.get_cookies(req)) #XZ: dictionary type. To hold values transfered from mod_python Cookie. + + #XZ: dictionary type. To hold values transfered from mod_python Session object. We assume that it is always picklable. + self.input_session_data = sessionData.sessionData( mod_python_session ) + + #XZ: FieldStorage_formdata may contain item that can't be pickled. Must convert to picklable data. + self.formdata = cgiData( FieldStorage_formdata ) + + #get Form ID + self.formID = self.formdata.getfirst('FormID') + + #get rest of the attributes + if self.formID: + for item in self.attrs: + value = self.formdata.getfirst(item) + if value != None: + setattr(self,item,string.strip(value)) + + self.ppolar = "" + self.mpolar = "" + if self.RISet: + try: + # NL, 07/27/2010. ParInfo has been moved from webqtlForm.py to webqtlUtil.py; + f1, f12, self.mpolar, self.ppolar = webqtlUtil.ParInfo[self.RISet] + except: + f1 = f12 = self.mpolar = self.ppolar = None + + try: + self.nperm = int(self.nperm) + self.nboot = int(self.nboot) + except: + self.nperm = 2000 #XZ: Rob asked to change the default value to 2000 + self.nboot = 2000 #XZ: Rob asked to change the default value to 2000 + + if self.allstrainlist: + self.allstrainlist = map(string.strip, string.split(self.allstrainlist)) + #self.readGenotype() + #self.readData() + + if self.RISet == 'BXD300': + self.RISet = 'BXD' + else: + pass + + def __str__(self): + rstr = '' + for item in self.attrs: + if item != 'genotype': + rstr += '%s:%s\n' % (item,str(getattr(self,item))) + return rstr + + + def readGenotype(self): + 'read genotype from .geno file' + if self.RISet == 'BXD300': + self.RISet = 'BXD' + else: + pass + assert self.RISet + #genotype_1 is Dataset Object without parents and f1 + #genotype_2 is Dataset Object with parents and f1 (not for intercross) + self.genotype_1 = reaper.Dataset() + self.genotype_1.read(os.path.join(webqtlConfig.GENODIR, self.RISet + '.geno')) + try: + # NL, 07/27/2010. ParInfo has been moved from webqtlForm.py to webqtlUtil.py; + _f1, _f12, _mat, _pat = webqtlUtil.ParInfo[self.RISet] + except: + _f1 = _f12 = _mat = _pat = None + + self.genotype_2 =self.genotype_1 + if self.genotype_1.type == "riset" and _mat and _pat: + self.genotype_2 = self.genotype_1.add(Mat=_mat, Pat=_pat) #, F1=_f1) + + #determine default genotype object + if self.incparentsf1 and self.genotype_1.type != "intercross": + self.genotype = self.genotype_2 + else: + self.incparentsf1 = 0 + self.genotype = self.genotype_1 + self.strainlist = list(self.genotype.prgy) + self.f1list = self.parlist = [] + if _f1 and _f12: + self.f1list = [_f1, _f12] + if _mat and _pat: + self.parlist = [_mat, _pat] + + def readData(self, strainlst=[], incf1=[]): + 'read user input data or from trait data and analysis form' + + if not self.genotype: + self.readGenotype() + if not strainlst: + if incf1: + strainlst = self.f1list + self.strainlist + else: + strainlst = self.strainlist + + + traitfiledata = self.formdata.getfirst('traitfile') + traitpastedata = self.formdata.getfirst('traitpaste') + variancefiledata = self.formdata.getfirst('variancefile') + variancepastedata = self.formdata.getfirst('variancepaste') + Nfiledata = self.formdata.getfirst('Nfile') + + + if traitfiledata: + tt = string.split(traitfiledata) + vals = map(webqtlUtil.StringAsFloat, tt) + elif traitpastedata: + tt = string.split(traitpastedata) + vals = map(webqtlUtil.StringAsFloat, tt) + else: + vals = map(self.FormDataAsFloat, strainlst) + + if len(vals) < len(strainlst): + vals += [None]*(len(strainlst) - len(vals)) + elif len(vals) > len(strainlst): + vals = vals[:len(strainlst)] + else: + pass + + + if variancefiledata: + tt = string.split(variancefiledata) + vars = map(webqtlUtil.StringAsFloat, tt) + elif variancepastedata: + tt = string.split(variancepastedata) + vars = map(webqtlUtil.StringAsFloat, tt) + else: + vars = map(self.FormVarianceAsFloat, strainlst) + + if len(vars) < len(strainlst): + vars += [None]*(len(strainlst) - len(vars)) + elif len(vars) > len(strainlst): + vars = vars[:len(strainlst)] + else: + pass + + if Nfiledata: + tt = string.split(Nfiledata) + nstrains = map(webqtlUtil.IntAsFloat, tt) + if len(nstrains) < len(strainlst): + nstrains += [None]*(len(strainlst) - len(nstrains)) + else: + nstrains = map(self.FormNAsFloat, strainlst) + + ##vals, vars, nstrains is obsolete + self.allTraitData = {} + for i, _strain in enumerate(strainlst): + if vals[i] != None: + self.allTraitData[_strain] = webqtlCaseData(vals[i], vars[i], nstrains[i]) + + + + def informativeStrains(self, strainlst=[], incVars = 0): + '''if readData was called, use this to output the informative strains + (strain with values)''' + if not strainlst: + strainlst = self.strainlist + strains = [] + vals = [] + vars = [] + for _strain in strainlst: + if self.allTraitData.has_key(_strain): + _val, _var = self.allTraitData[_strain].val, self.allTraitData[_strain].var + if _val != None: + if incVars: + if _var != None: + strains.append(_strain) + vals.append(_val) + vars.append(_var) + else: + strains.append(_strain) + vals.append(_val) + vars.append(None) + return strains, vals, vars, len(strains) + + + + def FormDataAsFloat(self, key): + try: + return float(self.formdata.getfirst(key)) + except: + return None + + + def FormVarianceAsFloat(self, key): + try: + return float(self.formdata.getfirst('V' + key)) + except: + return None + + def FormNAsFloat(self, key): + try: + return int(self.formdata.getfirst('N' + key)) + except: + return None + + def Sample(self): + 'Create some dummy data for testing' + self.RISet = 'BXD' + self.incparentsf1 = 'on' + #self.display = 9.2 + #self.significance = 16.1 + self.readGenotype() + self.identification = 'BXD : Coat color example by Lu Lu, et al' + #self.readGenotype() + #self.genotype.ReadMM('AXBXAforQTL') + #self.strainlist = map((lambda x, y='': '%s%s' % (y,x)), self.genotype.prgy) + #self.strainlist.sort() + self.allTraitData = {'BXD29': webqtlCaseData(3), 'BXD28': webqtlCaseData(2), + 'BXD25': webqtlCaseData(2), 'BXD24': webqtlCaseData(2), 'BXD27': webqtlCaseData(2), + 'BXD21': webqtlCaseData(1), 'BXD20': webqtlCaseData(4), 'BXD23': webqtlCaseData(4), + 'BXD22': webqtlCaseData(3), 'BXD14': webqtlCaseData(4), 'BXD15': webqtlCaseData(2), + 'BXD16': webqtlCaseData(3), 'BXD11': webqtlCaseData(4), 'BXD12': webqtlCaseData(3), + 'BXD13': webqtlCaseData(2), 'BXD18': webqtlCaseData(3), 'BXD19': webqtlCaseData(3), + 'BXD38': webqtlCaseData(3), 'BXD39': webqtlCaseData(3), 'BXD36': webqtlCaseData(2), + 'BXD34': webqtlCaseData(4), 'BXD35': webqtlCaseData(4), 'BXD32': webqtlCaseData(4), + 'BXD33': webqtlCaseData(3), 'BXD30': webqtlCaseData(1), 'BXD31': webqtlCaseData(4), + 'DBA/2J': webqtlCaseData(1), 'BXD8': webqtlCaseData(3), 'BXD9': webqtlCaseData(1), + 'BXD6': webqtlCaseData(3), 'BXD5': webqtlCaseData(3), 'BXD2': webqtlCaseData(4), + 'BXD1': webqtlCaseData(1), 'C57BL/6J': webqtlCaseData(4), 'B6D2F1': webqtlCaseData(4), + 'BXD42': webqtlCaseData(4), 'BXD40': webqtlCaseData(3)} + diff --git a/web/webqtl/base/webqtlTrait.py b/web/webqtl/base/webqtlTrait.py new file mode 100644 index 00000000..f5051e45 --- /dev/null +++ b/web/webqtl/base/webqtlTrait.py @@ -0,0 +1,581 @@ +import string + +from htmlgen import HTMLgen2 as HT + +import webqtlConfig +from webqtlCaseData import webqtlCaseData +from webqtlDataset import webqtlDataset +from dbFunction import webqtlDatabaseFunction +from utility import webqtlUtil + + +class webqtlTrait: + """ + Trait class defines a trait in webqtl, can be either Microarray, + Published phenotype, genotype, or user input trait + """ + + def __init__(self, cursor = None, **kw): + self.cursor = cursor + self.db = None # database object + self.name = '' # Trait ID, ProbeSet ID, Published ID, etc. + self.cellid = '' + self.identification = 'un-named trait' + self.riset = '' + self.haveinfo = 0 + self.sequence = '' # Blat sequence, available for ProbeSet + self.data = {} + for name, value in kw.items(): + if self.__dict__.has_key(name): + setattr(self, name, value) + elif name == 'fullname': + name2 = value.split("::") + if len(name2) == 2: + self.db, self.name = name2 + elif len(name2) == 3: + self.db, self.name, self.cellid = name2 + else: + raise KeyError, `value` + ' parameter format error.' + else: + raise KeyError, `name`+' not a valid parameter for this class.' + + if self.db and type(self.db) == type("1"): + assert self.cursor + self.db = webqtlDataset(self.db, self.cursor) + + #if self.db == None, not from a database + if self.db: + if self.db.type == "Temp": + self.cursor.execute(''' + SELECT + InbredSet.Name + FROM + InbredSet, Temp + WHERE + Temp.InbredSetId = InbredSet.Id AND + Temp.Name = "%s" + ''' % self.name) + self.riset = self.cursor.fetchone()[0] + else: + self.riset = self.db.getRISet() + + # + # In ProbeSet, there are maybe several annotations match one sequence + # so we need use sequence(BlatSeq) as the identification, when we update + # one annotation, we update the others who match the sequence also. + # + # Hongqiang Li, 3/3/2008 + # + + #XZ, 05/08/2009: This block is not neccessary. We can add 'BlatSeq' into disfield. + # The variable self.sequence should be changed to self.BlatSeq + # It also should be changed in other places where it are used. + + if self.db: + if self.db.type == 'ProbeSet': + query = ''' + SELECT + ProbeSet.BlatSeq + FROM + ProbeSet, ProbeSetFreeze, ProbeSetXRef + WHERE + ProbeSet.Id=ProbeSetXRef.ProbeSetId and + ProbeSetFreeze.Id = ProbeSetXRef.ProbeSetFreezeId and + ProbeSet.Name = "%s" and + ProbeSetFreeze.Name = "%s" + ''' % (self.name, self.db.name) + self.cursor.execute(query) + self.sequence = self.cursor.fetchone()[0] + + + def getName(self): + str = "" + if self.db and self.name: + str = "%s::%s" % (self.db, self.name) + if self.cellid: + str += "::" + self.cellid + else: + str = self.description + return str + + # + # when user enter a trait or GN generate a trait, user want show the name + # not the name that generated by GN randomly, the two follow function are + # used to give the real name and the database. displayName() will show the + # database also, getGivenName() just show the name. + # For other trait, displayName() as same as getName(), getGivenName() as + # same as self.name + # + # Hongqiang 11/29/07 + # + def getGivenName(self): + str = self.name + if self.db and self.name: + if self.db.type=='Temp': + self.cursor.execute('SELECT description FROM Temp WHERE Name=%s',self.name) + desc = self.cursor.fetchone()[0] + if desc.__contains__('PCA'): + desc = desc[desc.rindex(':')+1:].strip() + else: + desc = desc[:desc.index('entered')].strip() + str = desc + return str + + def displayName(self): + str = "" + if self.db and self.name: + if self.db.type=='Temp': + desc = self.description + if desc.__contains__('PCA'): + desc = desc[desc.rindex(':')+1:].strip() + else: + desc = desc[:desc.index('entered')].strip() + str = "%s::%s" % (self.db, desc) + else: + str = "%s::%s" % (self.db, self.name) + if self.cellid: + str += "::" + self.cellid + else: + str = self.description + + return str + + + #def __str__(self): + # #return "%s %s" % (self.getName(), self.riset) + # return self.getName() + __str__ = getName + __repr__ = __str__ + + def exportData(self, strainlist, type="val"): + """ + export data according to strainlist + mostly used in calculating correlation + """ + result = [] + for strain in strainlist: + if self.data.has_key(strain): + if type=='val': + result.append(self.data[strain].val) + elif type=='var': + result.append(self.data[strain].var) + elif type=='N': + result.append(self.data[strain].N) + else: + raise KeyError, `type`+' type is incorrect.' + else: + result.append(None) + return result + + def exportInformative(self, incVar=0): + """ + export informative strain + mostly used in qtl regression + """ + strains = [] + vals = [] + vars = [] + for strain, value in self.data.items(): + if value.val != None: + if not incVar or value.var != None: + strains.append(strain) + vals.append(value.val) + vars.append(value.var) + return strains, vals, vars + + + # + # In ProbeSet, there are maybe several annotations match one sequence + # so we need use sequence(BlatSeq) as the identification, when we update + # one annotation, we update the others who match the sequence also. + # + # Hongqiang Li, 3/3/2008 + # + def getSequence(self): + assert self.cursor + if self.db.type == 'ProbeSet': + query = ''' + SELECT + ProbeSet.BlatSeq + FROM + ProbeSet, ProbeSetFreeze, ProbeSetXRef + WHERE + ProbeSet.Id=ProbeSetXRef.ProbeSetId and + ProbeSetFreeze.Id = ProbeSetXRef.ProbSetFreezeId and + ProbeSet.Name = %s + ProbeSetFreeze.Name = %s + ''' , (self.name, self.db.name) + self.cursor.execute(query) + results = self.fetchone() + + return results[0] + + + + def retrieveData(self, strainlist=[]): + assert self.db and self.cursor + + if self.db.type == 'Temp': + query = ''' + SELECT + Strain.Name, TempData.value, TempData.SE, TempData.NStrain, TempData.Id + FROM + TempData, Temp, Strain + WHERE + TempData.StrainId = Strain.Id AND + TempData.Id = Temp.DataId AND + Temp.name = '%s' + Order BY + Strain.Name + ''' % self.name + #XZ, 03/02/2009: Xiaodong changed Data to PublishData, SE to PublishSE + elif self.db.type == 'Publish': + query = ''' + SELECT + Strain.Name, PublishData.value, PublishSE.error, NStrain.count, PublishData.Id + FROM + (PublishData, Strain, PublishXRef, PublishFreeze) + left join PublishSE on + (PublishSE.DataId = PublishData.Id AND PublishSE.StrainId = PublishData.StrainId) + left join NStrain on + (NStrain.DataId = PublishData.Id AND + NStrain.StrainId = PublishData.StrainId) + WHERE + PublishXRef.InbredSetId = PublishFreeze.InbredSetId AND + PublishData.Id = PublishXRef.DataId AND PublishXRef.Id = %s AND + PublishFreeze.Id = %d AND PublishData.StrainId = Strain.Id + Order BY + Strain.Name + ''' % (self.name, self.db.id) + + #XZ, 03/02/2009: Xiaodong changed Data to ProbeData, SE to ProbeSE + elif self.cellid: + #Probe Data + query = ''' + SELECT + Strain.Name, ProbeData.value, ProbeSE.error, ProbeData.Id + FROM + (ProbeData, ProbeFreeze, ProbeSetFreeze, ProbeXRef, + Strain, Probe, ProbeSet) + left join ProbeSE on + (ProbeSE.DataId = ProbeData.Id AND ProbeSE.StrainId = ProbeData.StrainId) + WHERE + Probe.Name = '%s' AND ProbeSet.Name = '%s' AND + Probe.ProbeSetId = ProbeSet.Id AND + ProbeXRef.ProbeId = Probe.Id AND + ProbeXRef.ProbeFreezeId = ProbeFreeze.Id AND + ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id AND + ProbeSetFreeze.Name = '%s' AND + ProbeXRef.DataId = ProbeData.Id AND + ProbeData.StrainId = Strain.Id + Order BY + Strain.Name + ''' % (self.cellid, self.name, self.db.name) + #XZ, 03/02/2009: Xiaodong added this block for ProbeSetData and ProbeSetSE + elif self.db.type == 'ProbeSet': + #ProbeSet Data + query = ''' + SELECT + Strain.Name, ProbeSetData.value, ProbeSetSE.error, ProbeSetData.Id + FROM + (ProbeSetData, ProbeSetFreeze, Strain, ProbeSet, ProbeSetXRef) + left join ProbeSetSE on + (ProbeSetSE.DataId = ProbeSetData.Id AND ProbeSetSE.StrainId = ProbeSetData.StrainId) + WHERE + ProbeSet.Name = '%s' AND ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id AND + ProbeSetFreeze.Name = '%s' AND + ProbeSetXRef.DataId = ProbeSetData.Id AND + ProbeSetData.StrainId = Strain.Id + Order BY + Strain.Name + ''' % (self.name, self.db.name) + #XZ, 03/02/2009: Xiaodong changeded Data to GenoData, SE to GenoSE + else: + #Geno Data + #XZ: The SpeciesId is not necessary, but it's nice to keep it to speed up database search. + query = ''' + SELECT + Strain.Name, GenoData.value, GenoSE.error, GenoData.Id + FROM + (GenoData, GenoFreeze, Strain, Geno, GenoXRef) + left join GenoSE on + (GenoSE.DataId = GenoData.Id AND GenoSE.StrainId = GenoData.StrainId) + WHERE + Geno.SpeciesId = %s AND Geno.Name = '%s' AND GenoXRef.GenoId = Geno.Id AND + GenoXRef.GenoFreezeId = GenoFreeze.Id AND + GenoFreeze.Name = '%s' AND + GenoXRef.DataId = GenoData.Id AND + GenoData.StrainId = Strain.Id + Order BY + Strain.Name + ''' % (webqtlDatabaseFunction.retrieveSpeciesId(self.cursor, self.db.riset), self.name, self.db.name) + + + self.cursor.execute(query) + results = self.cursor.fetchall() + self.data.clear() + if results: + self.mysqlid = results[0][-1] + if strainlist: + for item in results: + if item[0] in strainlist: + val = item[1] + if val != None: + var = item[2] + ndata = None + if self.db.type in ('Publish', 'Temp'): + ndata = item[3] + self.data[item[0]] = webqtlCaseData(val, var, ndata) + #end for + else: + for item in results: + val = item[1] + if val != None: + var = item[2] + ndata = None + if self.db.type in ('Publish', 'Temp'): + ndata = item[3] + self.data[item[0]] = webqtlCaseData(val, var, ndata) + #end for + #end if + else: + pass + + def keys(self): + return self.__dict__.keys() + + def has_key(self, key): + return self.__dict__.has_key(key) + + def items(self): + return self.__dict__.items() + + def retrieveInfo(self, QTL = None): + assert self.db and self.cursor + if self.db.type == 'Publish': + #self.db.DisField = ['Name','PubMed_ID','Phenotype','Abbreviation','Authors','Title',\ + # 'Abstract', 'Journal','Volume','Pages','Month','Year','Sequence',\ + # 'Units', 'comments'] + query = ''' + SELECT + PublishXRef.Id, Publication.PubMed_ID, + Phenotype.Pre_publication_description, Phenotype.Post_publication_description, Phenotype.Original_description, + Phenotype.Pre_publication_abbreviation, Phenotype.Post_publication_abbreviation, + Phenotype.Lab_code, Phenotype.Submitter, Phenotype.Owner, Phenotype.Authorized_Users, + Publication.Authors, Publication.Title, Publication.Abstract, + Publication.Journal, Publication.Volume, Publication.Pages, + Publication.Month, Publication.Year, PublishXRef.Sequence, + Phenotype.Units, PublishXRef.comments + FROM + PublishXRef, Publication, Phenotype, PublishFreeze + WHERE + PublishXRef.Id = %s AND + Phenotype.Id = PublishXRef.PhenotypeId AND + Publication.Id = PublishXRef.PublicationId AND + PublishXRef.InbredSetId = PublishFreeze.InbredSetId AND + PublishFreeze.Id =%s + ''' % (self.name, self.db.id) + #XZ, 05/08/2009: Xiaodong add this block to use ProbeSet.Id to find the probeset instead of just using ProbeSet.Name + #XZ, 05/08/2009: to avoid the problem of same probeset name from different platforms. + elif self.db.type == 'ProbeSet': + disfieldString = string.join(self.db.disfield,',ProbeSet.') + disfieldString = 'ProbeSet.' + disfieldString + query = """ + SELECT %s + FROM ProbeSet, ProbeSetFreeze, ProbeSetXRef + WHERE + ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id AND + ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + ProbeSetFreeze.Name = '%s' AND + ProbeSet.Name = '%s' + """ % (disfieldString, self.db.name, self.name) + #XZ, 05/08/2009: We also should use Geno.Id to find marker instead of just using Geno.Name + # to avoid the problem of same marker name from different species. + elif self.db.type == 'Geno': + disfieldString = string.join(self.db.disfield,',Geno.') + disfieldString = 'Geno.' + disfieldString + query = """ + SELECT %s + FROM Geno, GenoFreeze, GenoXRef + WHERE + GenoXRef.GenoFreezeId = GenoFreeze.Id AND + GenoXRef.GenoId = Geno.Id AND + GenoFreeze.Name = '%s' AND + Geno.Name = '%s' + """ % (disfieldString, self.db.name, self.name) + else: #Temp type + query = 'SELECT %s FROM %s WHERE Name = "%s"' % \ + (string.join(self.db.disfield,','), self.db.type, self.name) + + + self.cursor.execute(query) + traitInfo = self.cursor.fetchone() + if traitInfo: + self.haveinfo = 1 + + #XZ: assign SQL query result to trait attributes. + for i, field in enumerate(self.db.disfield): + setattr(self, field, traitInfo[i]) + + if self.db.type == 'Publish': + self.confidential = 0 + if self.pre_publication_description and not self.pubmed_id: + self.confidential = 1 + + self.homologeneid = None + if self.db.type == 'ProbeSet' and self.riset and self.geneid: + #XZ, 05/26/2010: From time to time, this query get error message because some geneid values in database are not number. + #XZ: So I have to test if geneid is number before execute the query. + #XZ: The geneid values in database should be cleaned up. + try: + junk = float(self.geneid) + geneidIsNumber = 1 + except: + geneidIsNumber = 0 + + if geneidIsNumber: + query = """ + SELECT + HomologeneId + FROM + Homologene, Species, InbredSet + WHERE + Homologene.GeneId =%s AND + InbredSet.Name = '%s' AND + InbredSet.SpeciesId = Species.Id AND + Species.TaxonomyId = Homologene.TaxonomyId + """ % (self.geneid, self.riset) + self.cursor.execute(query) + result = self.cursor.fetchone() + else: + result = None + + if result: + self.homologeneid = result[0] + + if QTL: + if self.db.type == 'ProbeSet' and not self.cellid: + query = ''' + SELECT + ProbeSetXRef.Locus, ProbeSetXRef.LRS, ProbeSetXRef.pValue, ProbeSetXRef.mean + FROM + ProbeSetXRef, ProbeSet + WHERE + ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + ProbeSet.Name = "%s" AND + ProbeSetXRef.ProbeSetFreezeId =%s + ''' % (self.name, self.db.id) + self.cursor.execute(query) + traitQTL = self.cursor.fetchone() + if traitQTL: + self.locus, self.lrs, self.pvalue, self.mean = traitQTL + else: + self.locus = self.lrs = self.pvalue = self.mean = "" + if self.db.type == 'Publish': + query = ''' + SELECT + PublishXRef.Locus, PublishXRef.LRS + FROM + PublishXRef, PublishFreeze + WHERE + PublishXRef.Id = %s AND + PublishXRef.InbredSetId = PublishFreeze.InbredSetId AND + PublishFreeze.Id =%s + ''' % (self.name, self.db.id) + self.cursor.execute(query) + traitQTL = self.cursor.fetchone() + if traitQTL: + self.locus, self.lrs = traitQTL + else: + self.locus = self.lrs = "" + else: + raise KeyError, `self.name`+' information is not found in the database.' + + def genHTML(self, formName = "", dispFromDatabase=0, privilege="guest", userName="Guest", authorized_users=""): + if not self.haveinfo: + self.retrieveInfo() + + if self.db.type == 'Publish': + PubMedLink = "" + if self.pubmed_id: + PubMedLink = HT.Href(text="PubMed %d : " % self.pubmed_id, + target = "_blank", url = webqtlConfig.PUBMEDLINK_URL % self.pubmed_id) + else: + PubMedLink = HT.Span("Unpublished : ", Class="fs15") + + if formName: + setDescription2 = HT.Href(url="javascript:showDatabase3('%s','%s','%s','')" % + (formName, self.db.name, self.name), Class = "fs14") + else: + setDescription2 = HT.Href(url="javascript:showDatabase2('%s','%s','')" % + (self.db.name,self.name), Class = "fs14") + + if self.confidential and not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=privilege, userName=userName, authorized_users=authorized_users): + setDescription2.append('RecordID/%s - %s' % (self.name, self.pre_publication_description)) + else: + setDescription2.append('RecordID/%s - %s' % (self.name, self.post_publication_description)) + + #XZ 03/26/2011: Xiaodong comment out the following two lins as Rob asked. Need to check with Rob why in PublishXRef table, there are few row whose Sequence > 1. + #if self.sequence > 1: + # setDescription2.append(' btach %d' % self.sequence) + if self.authors: + a1 = string.split(self.authors,',')[0] + while a1[0] == '"' or a1[0] == "'" : + a1 = a1[1:] + setDescription2.append(' by ') + setDescription2.append(HT.Italic('%s, and colleagues' % a1)) + setDescription = HT.Span(PubMedLink, setDescription2) + + elif self.db.type == 'Temp': + setDescription = HT.Href(text="%s" % (self.description),url="javascript:showDatabase2\ + ('%s','%s','')" % (self.db.name,self.name), Class = "fs14") + setDescription = HT.Span(setDescription) + + elif self.db.type == 'Geno': # Genome DB only available for single search + if formName: + setDescription = HT.Href(text="Locus %s [Chr %s @ %s Mb]" % (self.name,self.chr,\ + '%2.3f' % self.mb),url="javascript:showDatabase3('%s','%s','%s','')" % \ + (formName, self.db.name, self.name), Class = "fs14") + else: + setDescription = HT.Href(text="Locus %s [Chr %s @ %s Mb]" % (self.name,self.chr,\ + '%2.3f' % self.mb),url="javascript:showDatabase2('%s','%s','')" % \ + (self.db.name,self.name), Class = "fs14") + + setDescription = HT.Span(setDescription) + + else: + if self.cellid: + if formName: + setDescription = HT.Href(text="ProbeSet/%s/%s" % (self.name, self.cellid),url=\ + "javascript:showDatabase3('%s','%s','%s','%s')" % (formName, self.db.name,self.name,self.cellid), \ + Class = "fs14") + else: + setDescription = HT.Href(text="ProbeSet/%s/%s" % (self.name,self.cellid),url=\ + "javascript:showDatabase2('%s','%s','%s')" % (self.db.name,self.name,self.cellid), \ + Class = "fs14") + else: + if formName: + setDescription = HT.Href(text="ProbeSet/%s" % self.name, url=\ + "javascript:showDatabase3('%s','%s','%s','')" % (formName, self.db.name,self.name), \ + Class = "fs14") + else: + setDescription = HT.Href(text="ProbeSet/%s" % self.name, url=\ + "javascript:showDatabase2('%s','%s','')" % (self.db.name,self.name), \ + Class = "fs14") + if self.symbol and self.chr and self.mb: + setDescription.append(' [') + setDescription.append(HT.Italic('%s' % self.symbol,Class="cdg fwb")) + setDescription.append(' on Chr %s @ %s Mb]' % (self.chr,self.mb)) + if self.description: + setDescription.append(': %s' % self.description) + if self.probe_target_description: + setDescription.append('; %s' % self.probe_target_description) + setDescription = HT.Span(setDescription) + + if self.db.type != 'Temp' and dispFromDatabase: + setDescription.append( ' --- FROM : ') + setDescription.append(self.db.genHTML(Class='cori')) + return setDescription + + diff --git a/web/webqtl/basicStatistics/BasicStatisticsFunctions.py b/web/webqtl/basicStatistics/BasicStatisticsFunctions.py new file mode 100755 index 00000000..a22b50a2 --- /dev/null +++ b/web/webqtl/basicStatistics/BasicStatisticsFunctions.py @@ -0,0 +1,174 @@ +#import string +from math import * +import piddle as pid +#import os + +import reaper +from htmlgen import HTMLgen2 as HT + +from utility import Plot +from utility import webqtlUtil +from base import webqtlConfig +from dbFunction import webqtlDatabaseFunction + +def basicStatsTable(vals, trait_type=None, cellid=None, heritability=None): + + valsOnly = [] + dataXZ = vals[:] + for i in range(len(dataXZ)): + valsOnly.append(dataXZ[i][1]) + + traitmean, traitmedian, traitvar, traitstdev, traitsem, N = reaper.anova(valsOnly) #ZS: Should convert this from reaper to R in the future + + tbl = HT.TableLite(cellpadding=20, cellspacing=0) + dataXZ = vals[:] + dataXZ.sort(webqtlUtil.cmpOrder) + tbl.append(HT.TR(HT.TD("Statistic",align="left", Class="fs14 fwb ffl b1 cw cbrb", width = 180), + HT.TD("Value", align="right", Class="fs14 fwb ffl b1 cw cbrb", width = 60))) + tbl.append(HT.TR(HT.TD("N of Samples",align="left", Class="fs13 b1 cbw c222"), + HT.TD(N,nowrap="yes", Class="fs13 b1 cbw c222"), align="right")) + tbl.append(HT.TR(HT.TD("Mean",align="left", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%2.3f" % traitmean,nowrap="yes", Class="fs13 b1 cbw c222"), align="right")) + tbl.append(HT.TR(HT.TD("Median",align="left", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%2.3f" % traitmedian,nowrap="yes", Class="fs13 b1 cbw c222"), align="right")) + #tbl.append(HT.TR(HT.TD("Variance",align="left", Class="fs13 b1 cbw c222",nowrap="yes"), + # HT.TD("%2.3f" % traitvar,nowrap="yes",align="left", Class="fs13 b1 cbw c222"))) + tbl.append(HT.TR(HT.TD("Standard Error (SE)",align="left", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%2.3f" % traitsem,nowrap="yes", Class="fs13 b1 cbw c222"), align="right")) + tbl.append(HT.TR(HT.TD("Standard Deviation (SD)", align="left", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%2.3f" % traitstdev,nowrap="yes", Class="fs13 b1 cbw c222"), align="right")) + tbl.append(HT.TR(HT.TD("Minimum", align="left", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%s" % dataXZ[0][1],nowrap="yes", Class="fs13 b1 cbw c222"), align="right")) + tbl.append(HT.TR(HT.TD("Maximum", align="left", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%s" % dataXZ[-1][1],nowrap="yes", Class="fs13 b1 cbw c222"), align="right")) + if (trait_type != None and trait_type == 'ProbeSet'): + #IRQuest = HT.Href(text="Interquartile Range", url=webqtlConfig.glossaryfile +"#Interquartile",target="_blank", Class="fs14") + #IRQuest.append(HT.BR()) + #IRQuest.append(" (fold difference)") + tbl.append(HT.TR(HT.TD("Range (log2)",align="left", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%2.3f" % (dataXZ[-1][1]-dataXZ[0][1]),nowrap="yes", Class="fs13 b1 cbw c222"), align="right")) + tbl.append(HT.TR(HT.TD(HT.Span("Range (fold)"),align="left", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%2.2f" % pow(2.0,(dataXZ[-1][1]-dataXZ[0][1])), nowrap="yes", Class="fs13 b1 cbw c222"), align="right")) + tbl.append(HT.TR(HT.TD(HT.Span(HT.Href(url="/glossary.html#Interquartile", target="_blank", text="Interquartile Range", Class="non_bold")), align="left", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%2.2f" % pow(2.0,(dataXZ[int((N-1)*3.0/4.0)][1]-dataXZ[int((N-1)/4.0)][1])), nowrap="yes", Class="fs13 b1 cbw c222"), align="right")) + + #XZ, 04/01/2009: don't try to get H2 value for probe. + if cellid: + pass + else: + if heritability: + tbl.append(HT.TR(HT.TD(HT.Span("Heritability"),align="center", Class="fs13 b1 cbw c222",nowrap="yes"),HT.TD("%s" % heritability, nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) + else: + pass + # Lei Yan + # 2008/12/19 + + return tbl + +def plotNormalProbability(vals=None, RISet='', title=None, showstrains=0, specialStrains=[None], size=(750,500)): + + dataXZ = vals[:] + dataXZ.sort(webqtlUtil.cmpOrder) + dataLabel = [] + dataX = map(lambda X: X[1], dataXZ) + + showLabel = showstrains + if len(dataXZ) > 50: + showLabel = 0 + for item in dataXZ: + strainName = webqtlUtil.genShortStrainName(RISet=RISet, input_strainName=item[0]) + dataLabel.append(strainName) + + dataY=Plot.U(len(dataX)) + dataZ=map(Plot.inverseCumul,dataY) + c = pid.PILCanvas(size=(750,500)) + Plot.plotXY(c, dataZ, dataX, dataLabel = dataLabel, XLabel='Expected Z score', connectdot=0, YLabel='Trait value', title=title, specialCases=specialStrains, showLabel = showLabel) + + filename= webqtlUtil.genRandStr("nP_") + c.save(webqtlConfig.IMGDIR+filename, format='gif') + + img=HT.Image('/image/'+filename+'.gif',border=0) + + return img + +def plotBoxPlot(vals): + + valsOnly = [] + dataXZ = vals[:] + for i in range(len(dataXZ)): + valsOnly.append(dataXZ[i][1]) + + plotHeight = 320 + plotWidth = 220 + xLeftOffset = 60 + xRightOffset = 40 + yTopOffset = 40 + yBottomOffset = 60 + + canvasHeight = plotHeight + yTopOffset + yBottomOffset + canvasWidth = plotWidth + xLeftOffset + xRightOffset + canvas = pid.PILCanvas(size=(canvasWidth,canvasHeight)) + XXX = [('', valsOnly[:])] + + Plot.plotBoxPlot(canvas, XXX, offset=(xLeftOffset, xRightOffset, yTopOffset, yBottomOffset), XLabel= "Trait") + filename= webqtlUtil.genRandStr("Box_") + canvas.save(webqtlConfig.IMGDIR+filename, format='gif') + img=HT.Image('/image/'+filename+'.gif',border=0) + + plotLink = HT.Span("More about ", HT.Href(text="Box Plots", url="http://davidmlane.com/hyperstat/A37797.html", target="_blank", Class="fs13")) + + return img, plotLink + +def plotBarGraph(identification='', RISet='', vals=None, type="name"): + + this_identification = "unnamed trait" + if identification: + this_identification = identification + + if type=="rank": + dataXZ = vals[:] + dataXZ.sort(webqtlUtil.cmpOrder) + title='%s' % this_identification + else: + dataXZ = vals[:] + title='%s' % this_identification + + tvals = [] + tnames = [] + tvars = [] + for i in range(len(dataXZ)): + tvals.append(dataXZ[i][1]) + tnames.append(webqtlUtil.genShortStrainName(RISet=RISet, input_strainName=dataXZ[i][0])) + tvars.append(dataXZ[i][2]) + nnStrain = len(tnames) + + sLabel = 1 + + ###determine bar width and space width + if nnStrain < 20: + sw = 4 + elif nnStrain < 40: + sw = 3 + else: + sw = 2 + + ### 700 is the default plot width minus Xoffsets for 40 strains + defaultWidth = 650 + if nnStrain > 40: + defaultWidth += (nnStrain-40)*10 + defaultOffset = 100 + bw = int(0.5+(defaultWidth - (nnStrain-1.0)*sw)/nnStrain) + if bw < 10: + bw = 10 + + plotWidth = (nnStrain-1)*sw + nnStrain*bw + defaultOffset + plotHeight = 500 + #print [plotWidth, plotHeight, bw, sw, nnStrain] + c = pid.PILCanvas(size=(plotWidth,plotHeight)) + Plot.plotBarText(c, tvals, tnames, variance=tvars, YLabel='Value', title=title, sLabel = sLabel, barSpace = sw) + + filename= webqtlUtil.genRandStr("Bar_") + c.save(webqtlConfig.IMGDIR+filename, format='gif') + img=HT.Image('/image/'+filename+'.gif',border=0) + + return img diff --git a/web/webqtl/basicStatistics/BasicStatisticsPage_alpha.py b/web/webqtl/basicStatistics/BasicStatisticsPage_alpha.py new file mode 100755 index 00000000..4ba9d54a --- /dev/null +++ b/web/webqtl/basicStatistics/BasicStatisticsPage_alpha.py @@ -0,0 +1,348 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string +from math import * +import piddle as pid +import os + +from htmlgen import HTMLgen2 as HT +import reaper + +from utility import Plot +from base.webqtlTrait import webqtlTrait +from base.templatePage import templatePage +from utility import webqtlUtil +from base import webqtlConfig +from dbFunction import webqtlDatabaseFunction + + + +class BasicStatisticsPage_alpha(templatePage): + + plotMinInformative = 4 + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not fd.genotype: + fd.readGenotype() + strainlist2 = fd.strainlist + + if fd.allstrainlist: + strainlist2 = fd.allstrainlist + + fd.readData(strainlist2) + + specialStrains = [] + setStrains = [] + for item in strainlist2: + if item not in fd.strainlist and item.find('F1') < 0: + specialStrains.append(item) + else: + setStrains.append(item) + specialStrains.sort() + #So called MDP Panel + if specialStrains: + specialStrains = fd.f1list+fd.parlist+specialStrains + + self.plotType = fd.formdata.getvalue('ptype', '0') + plotStrains = strainlist2 + if specialStrains: + if self.plotType == '1': + plotStrains = setStrains + if self.plotType == '2': + plotStrains = specialStrains + + self.dict['title'] = 'Basic Statistics' + if not self.openMysql(): + return + + self.showstrains = 1 + self.identification = "unnamed trait" + + self.fullname = fd.formdata.getvalue('fullname', '') + if self.fullname: + self.Trait = webqtlTrait(fullname=self.fullname, cursor=self.cursor) + self.Trait.retrieveInfo() + else: + self.Trait = None + + if fd.identification: + self.identification = fd.identification + self.dict['title'] = self.identification + ' / '+self.dict['title'] + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') + + ##should not display Variance, but cannot convert Variance to SE + #print plotStrains, fd.allTraitData.keys() + if len(fd.allTraitData) > 0: + vals=[] + InformData = [] + for _strain in plotStrains: + if fd.allTraitData.has_key(_strain): + _val, _var = fd.allTraitData[_strain].val, fd.allTraitData[_strain].var + if _val != None: + vals.append([_strain, _val, _var]) + InformData.append(_val) + + if len(vals) >= self.plotMinInformative: + supertable2 = HT.TableLite(border=0, cellspacing=0, cellpadding=5,width="800") + + staIntro1 = HT.Paragraph("The table and plots below list the basic statistical analysis result of trait",HT.Strong(" %s" % self.identification)) + + ##### + #anova + ##### + traitmean, traitmedian, traitvar, traitstdev, traitsem, N = reaper.anova(InformData) + TDStatis = HT.TD(width="360", valign="top") + tbl2 = HT.TableLite(cellpadding=5, cellspacing=0, Class="collap") + dataXZ = vals[:] + dataXZ.sort(self.cmpValue) + tbl2.append(HT.TR(HT.TD("Statistic",align="center", Class="fs14 fwb ffl b1 cw cbrb", width = 200), + HT.TD("Value", align="center", Class="fs14 fwb ffl b1 cw cbrb", width = 140))) + tbl2.append(HT.TR(HT.TD("N of Cases",align="center", Class="fs13 b1 cbw c222"), + HT.TD(N,nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) + tbl2.append(HT.TR(HT.TD("Mean",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%2.3f" % traitmean,nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) + tbl2.append(HT.TR(HT.TD("Median",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%2.3f" % traitmedian,nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) + #tbl2.append(HT.TR(HT.TD("Variance",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), + # HT.TD("%2.3f" % traitvar,nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) + tbl2.append(HT.TR(HT.TD("SEM",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%2.3f" % traitsem,nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) + tbl2.append(HT.TR(HT.TD("SD",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%2.3f" % traitstdev,nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) + tbl2.append(HT.TR(HT.TD("Minimum",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%s" % dataXZ[0][1],nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) + tbl2.append(HT.TR(HT.TD("Maximum",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%s" % dataXZ[-1][1],nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) + if self.Trait and self.Trait.db.type == 'ProbeSet': + #IRQuest = HT.Href(text="Interquartile Range", url=webqtlConfig.glossaryfile +"#Interquartile",target="_blank", Class="fs14") + #IRQuest.append(HT.BR()) + #IRQuest.append(" (fold difference)") + tbl2.append(HT.TR(HT.TD("Range (log2)",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%2.3f" % (dataXZ[-1][1]-dataXZ[0][1]),nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) + tbl2.append(HT.TR(HT.TD(HT.Span("Range (fold)"),align="center", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%2.2f" % pow(2.0,(dataXZ[-1][1]-dataXZ[0][1])), nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) + tbl2.append(HT.TR(HT.TD(HT.Span("Quartile Range",HT.BR()," (fold difference)"),align="center", Class="fs13 b1 cbw c222",nowrap="yes"), + HT.TD("%2.2f" % pow(2.0,(dataXZ[int((N-1)*3.0/4.0)][1]-dataXZ[int((N-1)/4.0)][1])), nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) + + # (Lei Yan) + # 2008/12/19 + self.Trait.retrieveData() + #XZ, 04/01/2009: don't try to get H2 value for probe. + if self.Trait.cellid: + pass + else: + self.cursor.execute("SELECT DataId, h2 from ProbeSetXRef WHERE DataId = %d" % self.Trait.mysqlid) + dataid, heritability = self.cursor.fetchone() + if heritability: + tbl2.append(HT.TR(HT.TD(HT.Span("Heritability"),align="center", Class="fs13 b1 cbw c222",nowrap="yes"),HT.TD("%s" % heritability, nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) + else: + tbl2.append(HT.TR(HT.TD(HT.Span("Heritability"),align="center", Class="fs13 b1 cbw c222",nowrap="yes"),HT.TD("NaN", nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) + + # Lei Yan + # 2008/12/19 + + TDStatis.append(tbl2) + + plotHeight = 220 + plotWidth = 120 + xLeftOffset = 60 + xRightOffset = 25 + yTopOffset = 20 + yBottomOffset = 53 + + canvasHeight = plotHeight + yTopOffset + yBottomOffset + canvasWidth = plotWidth + xLeftOffset + xRightOffset + canvas = pid.PILCanvas(size=(canvasWidth,canvasHeight)) + XXX = [('', InformData[:])] + + Plot.plotBoxPlot(canvas, XXX, offset=(xLeftOffset, xRightOffset, yTopOffset, yBottomOffset), XLabel= "Trait") + filename= webqtlUtil.genRandStr("Box_") + canvas.save(webqtlConfig.IMGDIR+filename, format='gif') + img=HT.Image('/image/'+filename+'.gif',border=0) + + #supertable2.append(HT.TR(HT.TD(staIntro1, colspan=3 ))) + tb = HT.TableLite(border=0, cellspacing=0, cellpadding=0) + tb.append(HT.TR(HT.TD(img, align="left", style="border: 1px solid #999999; padding:0px;"))) + supertable2.append(HT.TR(TDStatis, HT.TD(tb))) + + dataXZ = vals[:] + tvals = [] + tnames = [] + tvars = [] + for i in range(len(dataXZ)): + tvals.append(dataXZ[i][1]) + tnames.append(webqtlUtil.genShortStrainName(fd, dataXZ[i][0])) + tvars.append(dataXZ[i][2]) + nnStrain = len(tnames) + + sLabel = 1 + + ###determine bar width and space width + if nnStrain < 20: + sw = 4 + elif nnStrain < 40: + sw = 3 + else: + sw = 2 + + ### 700 is the default plot width minus Xoffsets for 40 strains + defaultWidth = 650 + if nnStrain > 40: + defaultWidth += (nnStrain-40)*10 + defaultOffset = 100 + bw = int(0.5+(defaultWidth - (nnStrain-1.0)*sw)/nnStrain) + if bw < 10: + bw = 10 + + plotWidth = (nnStrain-1)*sw + nnStrain*bw + defaultOffset + plotHeight = 500 + #print [plotWidth, plotHeight, bw, sw, nnStrain] + c = pid.PILCanvas(size=(plotWidth,plotHeight)) + Plot.plotBarText(c, tvals, tnames, variance=tvars, YLabel='Value', title='%s by Case (sorted by name)' % self.identification, sLabel = sLabel, barSpace = sw) + + filename= webqtlUtil.genRandStr("Bar_") + c.save(webqtlConfig.IMGDIR+filename, format='gif') + img0=HT.Image('/image/'+filename+'.gif',border=0) + + dataXZ = vals[:] + dataXZ.sort(self.cmpValue) + tvals = [] + tnames = [] + tvars = [] + for i in range(len(dataXZ)): + tvals.append(dataXZ[i][1]) + tnames.append(webqtlUtil.genShortStrainName(fd, dataXZ[i][0])) + tvars.append(dataXZ[i][2]) + + c = pid.PILCanvas(size=(plotWidth,plotHeight)) + Plot.plotBarText(c, tvals, tnames, variance=tvars, YLabel='Value', title='%s by Case (ranked)' % self.identification, sLabel = sLabel, barSpace = sw) + + filename= webqtlUtil.genRandStr("Bar_") + c.save(webqtlConfig.IMGDIR+filename, format='gif') + img1=HT.Image('/image/'+filename+'.gif',border=0) + + # Lei Yan + # 05/18/2009 + # report + + title = HT.Paragraph('REPORT on the variation of Shh (or PCA Composite Trait XXXX) (sonic hedgehog) in the (insert Data set name) of (insert Species informal name, e.g., Mouse, Rat, Human, Barley, Arabidopsis)', Class="title") + header = HT.Paragraph('''This report was generated by GeneNetwork on May 11, 2009, at 11.20 AM using the Basic Statistics module (v 1.0) and data from the Hippocampus Consortium M430v2 (Jun06) PDNN data set. For more details and updates on this data set please link to URL:get Basic Statistics''') + hr = HT.HR() + p1 = HT.Paragraph('''Trait values for Shh were taken from the (insert Database name, Hippocampus Consortium M430v2 (Jun06) PDNN). GeneNetwork contains data for NN (e.g., 99) cases. In general, data are averages for each case. A summary of mean, median, and the range of these data are provided in Table 1 and in the box plot (Figure 1). Data for individual cases are provided in Figure 2A and 2B, often with error bars (SEM). ''') + p2 = HT.Paragraph('''Trait values for Shh range 5.1-fold: from a low of 8.2 (please round value) in 129S1/SvImJ to a high of 10.6 (please round value) in BXD9. The interquartile range (the difference between values closest to the 25% and 75% levels) is a more modest 1.8-fold. The mean value is XX. ''') + t1 = HT.Paragraph('''Table 1. Summary of Shh data from the Hippocampus Consortium M430v2 (june06) PDNN data set''') + f1 = HT.Paragraph('''Figure 1. ''') + f1.append(HT.Href(text="Box plot", url="http://davidmlane.com/hyperstat/A37797.html", target="_blank", Class="fs14")) + f1.append(HT.Text(''' of Shh data from the Hippocampus Consortium M430v2 (june06) PDNN data set''')) + f2A = HT.Paragraph('''Figure 2A: Bar chart of Shh data ordered by case from the Hippocampus Consortium M430v2 (june06) PDNN data set''') + f2B = HT.Paragraph('''Figure 2B: Bar chart of Shh values ordered by from the Hippocampus Consortium M430v2 (june06) PDNN data set''') + TD_LR.append(HT.Blockquote(title, HT.P(), header, hr, p1, HT.P(), p2, HT.P(), supertable2, t1, f1, HT.P(), img0, f2A, HT.P(), img1, f2B)) + self.dict['body'] = str(TD_LR) + else: + heading = "Basic Statistics" + detail = ['Fewer than %d case data were entered for %s data set. No statitical analysis has been attempted.' % (self.plotMinInformative, fd.RISet)] + self.error(heading=heading,detail=detail) + return + else: + heading = "Basic Statistics" + detail = ['Empty data set, please check your data.'] + self.error(heading=heading,detail=detail) + return + + def traitInfo(self, fd, specialStrains = None): + species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=fd.RISet) + heading2 = HT.Paragraph(HT.Strong('Population: '), "%s %s" % (species.title(), fd.RISet) , HT.BR()) + if self.Trait: + trait_url = HT.Href(text=self.Trait.name, url = os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE) + \ + "?FormID=showDatabase&incparentsf1=1&database=%s&ProbeSetID=%s" % (self.Trait.db.name, self.Trait.name), \ + target='_blank', Class="fs13 fwn") + heading2.append(HT.Strong("Database: "), + HT.Href(text=self.Trait.db.fullname, url = webqtlConfig.INFOPAGEHREF % self.Trait.db.name , + target='_blank',Class="fs13 fwn"),HT.BR()) + if self.Trait.db.type == 'ProbeSet': + heading2.append(HT.Strong('Trait ID: '), trait_url, HT.BR(), + HT.Strong("Gene Symbol: "), HT.Italic('%s' % self.Trait.symbol,id="green"),HT.BR()) + if self.Trait.chr and self.Trait.mb: + heading2.append(HT.Strong("Location: "), 'Chr %s @ %s Mb' % (self.Trait.chr, self.Trait.mb)) + elif self.Trait.db.type == 'Geno': + heading2.append(HT.Strong('Locus : '), trait_url, HT.BR()) + #heading2.append(HT.Strong("Gene Symbol: "), HT.Italic('%s' % self.Trait.Symbol,id="green"),HT.BR()) + if self.Trait.chr and self.Trait.mb: + heading2.append(HT.Strong("Location: "), 'Chr %s @ %s Mb' % (self.Trait.chr, self.Trait.mb)) + elif self.Trait.db.type == 'Publish': + heading2.append(HT.Strong('Record ID: '), trait_url, HT.BR()) + heading2.append(HT.Strong('Phenotype: '), self.Trait.phenotype, HT.BR()) + heading2.append(HT.Strong('Author: '), self.Trait.authors, HT.BR()) + elif self.Trait.db.type == 'Temp': + heading2.append(HT.Strong('Description: '), self.Trait.description, HT.BR()) + #heading2.append(HT.Strong('Author: '), self.Trait.authors, HT.BR()) + else: + pass + else: + heading2.append(HT.Strong("Trait Name: "), fd.identification) + + if specialStrains: + mdpform = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='MDP_Form',submit=HT.Input(type='hidden')) + mdphddn = {'FormID':'dataEditing', 'submitID':'basicStatistics','RISet':fd.RISet, "allstrainlist":string.join(fd.allstrainlist, " "), "ptype":self.plotType, 'identification':fd.identification, "incparentsf1":1} + if self.fullname: mdphddn['fullname'] = self.fullname + webqtlUtil.exportData(mdphddn, fd.allTraitData) + for key in mdphddn.keys(): + mdpform.append(HT.Input(name=key, value=mdphddn[key], type='hidden')) + btn0 = HT.Input(type='button' ,name='',value='All Cases',onClick="this.form.ptype.value=0;submit();", Class="button") + btn1 = HT.Input(type='button' ,name='',value='%s Only' % fd.RISet,onClick="this.form.ptype.value=1;submit();", Class="button") + btn2 = HT.Input(type='button' ,name='',value='MDP Only', onClick="this.form.ptype.value=2;submit();", Class="button") + mdpform.append(btn0) + mdpform.append(btn1) + mdpform.append(btn2) + heading2.append(HT.P(), mdpform) + + return HT.Span(heading2) + + def calSD(self,var): + try: + return sqrt(abs(var)) + except: + return None + + + def cmpValue(self,A,B): + try: + if A[1] < B[1]: + return -1 + elif A[1] == B[1]: + return 0 + else: + return 1 + except: + return 0 + + + + diff --git a/web/webqtl/basicStatistics/__init__.py b/web/webqtl/basicStatistics/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/basicStatistics/updatedBasicStatisticsPage.py b/web/webqtl/basicStatistics/updatedBasicStatisticsPage.py new file mode 100755 index 00000000..156dafe7 --- /dev/null +++ b/web/webqtl/basicStatistics/updatedBasicStatisticsPage.py @@ -0,0 +1,150 @@ +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from dbFunction import webqtlDatabaseFunction +import BasicStatisticsFunctions + +#Window generated from the Trait Data and Analysis page (DataEditingPage.py) with updated stats figures; takes the page's values that can bed edited by the user +class updatedBasicStatisticsPage(templatePage): + + plotMinInformative = 4 + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not fd.genotype: + fd.readGenotype() + this_strainlist = fd.strainlist + + if fd.allstrainlist: + this_strainlist = fd.allstrainlist + + fd.readData(this_strainlist) + + specialStrains = [] #This appears to be the "other/non-RISet strainlist" without parents/f1 strains; not sure what to name it + setStrains = [] + for item in this_strainlist: + if item not in fd.strainlist and item.find('F1') < 0: + specialStrains.append(item) + else: + continue + + specialStrains.sort() + if specialStrains: + specialStrains = fd.f1list+fd.parlist+specialStrains + + self.dict['title'] = 'Basic Statistics' + TD_LR = HT.TD(valign="top",width="100%",bgcolor="#fafafa") + + stats_row = HT.TR() + stats_cell = HT.TD() + stats_script = HT.Script(language="Javascript") + + #Get strain names, values, and variances + strain_names = fd.formdata.getvalue('strainNames').split(',') + strain_vals = fd.formdata.getvalue('strainVals').split(',') + strain_vars = fd.formdata.getvalue('strainVars').split(',') + + vals = [] + if (len(strain_names) > 0): + if (len(strain_names) > 3): + #Need to create "vals" object + for i in range(len(strain_names)): + try: + this_strain_val = float(strain_vals[i]) + except: + continue + try: + this_strain_var = float(strain_vars[i]) + except: + this_strain_var = None + + thisValFull = [strain_names[i], this_strain_val, this_strain_var] + vals.append(thisValFull) + + stats_tab_list = [HT.Href(text="Basic Table", url="#statstabs-1", Class="stats_tab"),HT.Href(text="Probability Plot", url="#statstabs-5", Class="stats_tab"), + HT.Href(text="Bar Graph (by name)", url="#statstabs-3", Class="stats_tab"), HT.Href(text="Bar Graph (by rank)", url="#statstabs-4", Class="stats_tab"), + HT.Href(text="Box Plot", url="#statstabs-2", Class="stats_tab")] + stats_tabs = HT.List(stats_tab_list) + + stats_container = HT.Div(id="stats_tabs", Class="ui-tabs") + stats_container.append(stats_tabs) + + stats_script_text = """$(function() { $("#stats_tabs").tabs();});""" #Javascript enabling tabs + + table_div = HT.Div(id="statstabs-1") + table_container = HT.Paragraph() + + statsTable = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + this_trait_type = fd.formdata.getvalue('trait_type', None) + this_cellid = fd.formdata.getvalue('cellid', None) + statsTableCell = BasicStatisticsFunctions.basicStatsTable(vals=vals, trait_type=this_trait_type, cellid=this_cellid) + statsTable.append(HT.TR(HT.TD(statsTableCell))) + + table_container.append(statsTable) + table_div.append(table_container) + stats_container.append(table_div) + + boxplot_div = HT.Div(id="statstabs-2") + boxplot_container = HT.Paragraph() + boxplot = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + boxplot_img, boxplot_link = BasicStatisticsFunctions.plotBoxPlot(vals) + boxplot.append(HT.TR(HT.TD(boxplot_img, HT.P(), boxplot_link, align="left"))) + boxplot_container.append(boxplot) + boxplot_div.append(boxplot_container) + stats_container.append(boxplot_div) + + barName_div = HT.Div(id="statstabs-3") + barName_container = HT.Paragraph() + barName = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + barName_img = BasicStatisticsFunctions.plotBarGraph(identification=fd.identification, RISet=fd.RISet, vals=vals, type="name") + barName.append(HT.TR(HT.TD(barName_img))) + barName_container.append(barName) + barName_div.append(barName_container) + stats_container.append(barName_div) + + barRank_div = HT.Div(id="statstabs-4") + barRank_container = HT.Paragraph() + barRank = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + barRank_img = BasicStatisticsFunctions.plotBarGraph(identification=fd.identification, RISet=fd.RISet, vals=vals, type="rank") + barRank.append(HT.TR(HT.TD(barRank_img))) + barRank_container.append(barRank) + barRank_div.append(barRank_container) + stats_container.append(barRank_div) + + normalplot_div = HT.Div(id="statstabs-5") + normalplot_container = HT.Paragraph() + normalplot = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + plotTitle = fd.formdata.getvalue("normalPlotTitle","") + normalplot_img = BasicStatisticsFunctions.plotNormalProbability(vals=vals, RISet=fd.RISet, title=plotTitle, specialStrains=specialStrains) + normalplot.append(HT.TR(HT.TD(normalplot_img))) + normalplot.append(HT.TR(HT.TD(HT.BR(),HT.BR(),"This plot evaluates whether data are \ + normally distributed. Different symbols represent different groups.",HT.BR(),HT.BR(), + "More about ", HT.Href(url="http://en.wikipedia.org/wiki/Normal_probability_plot", + target="_blank", text="Normal Probability Plots"), " and more about interpreting these plots from the ", HT.Href(url="/glossary.html#normal_probability", target="_blank", text="glossary")))) + normalplot_container.append(normalplot) + normalplot_div.append(normalplot_container) + stats_container.append(normalplot_div) + + stats_cell.append(stats_container) + stats_script.append(stats_script_text) + + submitTable = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + stats_row.append(stats_cell) + + submitTable.append(stats_row) + submitTable.append(stats_script) + + TD_LR.append(submitTable) + self.dict['body'] = str(TD_LR) + else: + heading = "Basic Statistics" + detail = ['Fewer than %d case data were entered for %s data set. No statitical analysis has been attempted.' % (self.plotMinInformative, fd.RISet)] + self.error(heading=heading,detail=detail) + return + else: + heading = "Basic Statistics" + detail = ['Empty data set, please check your data.'] + self.error(heading=heading,detail=detail) + return \ No newline at end of file diff --git a/web/webqtl/cmdLine/__init__.py b/web/webqtl/cmdLine/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/cmdLine/cmdCompCorrPage.py b/web/webqtl/cmdLine/cmdCompCorrPage.py new file mode 100755 index 00000000..f53e1bce --- /dev/null +++ b/web/webqtl/cmdLine/cmdCompCorrPage.py @@ -0,0 +1,49 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil + + + +class cmdCompCorrPage(templatePage): + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + filename = self.session("Correlation Comparison", "Correlation Comparison in progress") + + webqtlUtil.dump_session(fd, os.path.join(webqtlConfig.TMPDIR, filename +'.session')) + + url = webqtlConfig.REFRESHDIR % (webqtlConfig.CGIDIR, self.filename) + + os.system("%s %swebqtlCmdLine.py correlationComparison %s >/dev/null 2>&1 &" % (webqtlConfig.PythonPath, webqtlConfig.CMDLINEDIR, filename)) + + self.redirection = url diff --git a/web/webqtl/cmdLine/cmdCorrelationPage.py b/web/webqtl/cmdLine/cmdCorrelationPage.py new file mode 100755 index 00000000..4c76dc0b --- /dev/null +++ b/web/webqtl/cmdLine/cmdCorrelationPage.py @@ -0,0 +1,53 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os + + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil + + +######################################### +# Correlation Page +######################################### +class cmdCorrelationPage(templatePage): + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + filename = self.session("Correlation", "Correlation Computation in Progress") + + webqtlUtil.dump_session(fd, os.path.join(webqtlConfig.TMPDIR, filename +'.session')) + + url = webqtlConfig.REFRESHDIR % (webqtlConfig.CGIDIR, self.filename) + + os.system("%s %swebqtlCmdLine.py correlation %s >/dev/null 2>&1 &" % (webqtlConfig.PythonPath, webqtlConfig.CMDLINEDIR, filename)) + + self.redirection = url + diff --git a/web/webqtl/cmdLine/cmdDirectPlotPage.py b/web/webqtl/cmdLine/cmdDirectPlotPage.py new file mode 100755 index 00000000..21e936dc --- /dev/null +++ b/web/webqtl/cmdLine/cmdDirectPlotPage.py @@ -0,0 +1,49 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil + + + +class cmdDirectPlotPage(templatePage): + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + filename = self.session("Pair Scan", "Pair Scan Computation in Progress") + + webqtlUtil.dump_session(fd, os.path.join(webqtlConfig.TMPDIR, filename +'.session')) + + url = webqtlConfig.REFRESHDIR % (webqtlConfig.CGIDIR, self.filename) + + os.system("%s %swebqtlCmdLine.py directplot %s >/dev/null 2>&1 &" % (webqtlConfig.PythonPath, webqtlConfig.CMDLINEDIR, filename)) + + self.redirection = url diff --git a/web/webqtl/cmdLine/cmdHeatmapPage.py b/web/webqtl/cmdLine/cmdHeatmapPage.py new file mode 100755 index 00000000..e96f3449 --- /dev/null +++ b/web/webqtl/cmdLine/cmdHeatmapPage.py @@ -0,0 +1,52 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil + + +######################################### +# QTL Heatmap Page +######################################### + +class cmdHeatmapPage(templatePage): + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + filename = self.session("QTL Heatmap", "Computing QTL Heatmap") + + webqtlUtil.dump_session(fd, os.path.join(webqtlConfig.TMPDIR, filename +'.session')) + + url = webqtlConfig.REFRESHDIR % (webqtlConfig.CGIDIR, self.filename) + + os.system("%s %swebqtlCmdLine.py heatmap %s >/dev/null 2>&1 &" % (webqtlConfig.PythonPath, webqtlConfig.CMDLINEDIR, filename)) + + self.redirection = url diff --git a/web/webqtl/cmdLine/cmdIntervalMappingPage.py b/web/webqtl/cmdLine/cmdIntervalMappingPage.py new file mode 100755 index 00000000..8e0a3d92 --- /dev/null +++ b/web/webqtl/cmdLine/cmdIntervalMappingPage.py @@ -0,0 +1,75 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil + +######################################### +# Interval Mapping Page +######################################### + +class cmdIntervalMappingPage(templatePage): + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + wtext = "Mapping " + try: + selectedChr = int(fd.formdata.getvalue('chromosomes')) + 1 + if selectedChr < 1: + raise "ValueError" + if selectedChr == 21 or (selectedChr == 20 and fd.RISet != 'HXBBXH'): + selectedChr = 'X' + wtext += 'chromosome %s ' % selectedChr + except: + wtext += 'whole genome ' + + perm = 0 + if fd.formdata.getvalue('permCheck'): + perm = 1 + wtext += 'with %d permutation tests ' % fd.nperm + + boot = 0 + if fd.formdata.getvalue('bootCheck'): + boot = 1 + if perm: + wtext += 'and %d bootstrap tests ' % fd.nboot + else: + wtext += 'with %d bootstrap tests ' % fd.nboot + + if boot == 0 and perm == 0: + wtext += "without permutation or bootstrap tests" + + filename = self.session("Interval Mapping", wtext) + webqtlUtil.dump_session(fd, os.path.join(webqtlConfig.TMPDIR, filename +'.session')) + url = webqtlConfig.REFRESHDIR % (webqtlConfig.CGIDIR, self.filename) + os.system("%s %swebqtlCmdLine.py interval %s >/dev/null 2>&1 &" % (webqtlConfig.PythonPath, webqtlConfig.CMDLINEDIR, filename)) + self.redirection = url + diff --git a/web/webqtl/cmdLine/cmdMarkerRegressionPage.py b/web/webqtl/cmdLine/cmdMarkerRegressionPage.py new file mode 100755 index 00000000..fb974e33 --- /dev/null +++ b/web/webqtl/cmdLine/cmdMarkerRegressionPage.py @@ -0,0 +1,47 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by NL 2011/03/15 +# +# Last updated by NL 2011/03/15 + +import os + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil + + +######################################### +# Marker RegressionPage Page +######################################### + +class cmdMarkerRegressionPage(templatePage): + + def __init__(self,fd): + templatePage.__init__(self, fd) + + filename = self.session("Genome Association Result", "Computing Genome Association Results") + webqtlUtil.dump_session(fd, os.path.join(webqtlConfig.TMPDIR, filename +'.session')) + url = webqtlConfig.REFRESHDIR % (webqtlConfig.CGIDIR, self.filename) + os.system("%s %swebqtlCmdLine.py markerRegression %s >/dev/null 2>&1 &" % (webqtlConfig.PythonPath, webqtlConfig.CMDLINEDIR, filename)) + self.redirection = url diff --git a/web/webqtl/cmdLine/cmdNetworkGraphPage.py b/web/webqtl/cmdLine/cmdNetworkGraphPage.py new file mode 100755 index 00000000..a16fcbaf --- /dev/null +++ b/web/webqtl/cmdLine/cmdNetworkGraphPage.py @@ -0,0 +1,49 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil + + + +class cmdNetworkGraphPage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + filename = self.session("Network Graph", "Computing Network Graph") + + webqtlUtil.dump_session(fd, os.path.join(webqtlConfig.TMPDIR, filename + '.session')) + + url = webqtlConfig.REFRESHDIR % (webqtlConfig.CGIDIR, self.filename) + + os.system("%s %swebqtlCmdLine.py networkGraph %s >/dev/null 2>&1 &" % (webqtlConfig.PythonPath, webqtlConfig.CMDLINEDIR, filename)) + + self.redirection = url diff --git a/web/webqtl/cmdLine/cmdPartialCorrelationPage.py b/web/webqtl/cmdLine/cmdPartialCorrelationPage.py new file mode 100755 index 00000000..fb5324c6 --- /dev/null +++ b/web/webqtl/cmdLine/cmdPartialCorrelationPage.py @@ -0,0 +1,50 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil + +######################################## +# Partial Correlation Page +######################################## +class cmdPartialCorrelationPage(templatePage): + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + filename = self.session("Partial Correlation", "Partial Correlation in Progress") + + webqtlUtil.dump_session(fd, os.path.join(webqtlConfig.TMPDIR, filename +'.session')) + + url = webqtlConfig.REFRESHDIR % (webqtlConfig.CGIDIR, self.filename) + + os.system("%s %swebqtlCmdLine.py partialCorrelation %s >/dev/null 2>&1 &" % (webqtlConfig.PythonPath, webqtlConfig.CMDLINEDIR, filename)) + + self.redirection = url diff --git a/web/webqtl/cmdLine/cmdQTLminerPage.py b/web/webqtl/cmdLine/cmdQTLminerPage.py new file mode 100755 index 00000000..2197d3ce --- /dev/null +++ b/web/webqtl/cmdLine/cmdQTLminerPage.py @@ -0,0 +1,47 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by NL 2011/03/15 +# +# Last updated by NL 2011/03/15 + +import os + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil + + +######################################### +# QTLminer Page +######################################### + +class cmdQTLminerPage(templatePage): + + def __init__(self,fd): + templatePage.__init__(self, fd) + + filename = self.session("QTLminer Result", "Computing QTLminer Results") + webqtlUtil.dump_session(fd, os.path.join(webqtlConfig.TMPDIR, filename +'.session')) + url = webqtlConfig.REFRESHDIR % (webqtlConfig.CGIDIR, self.filename) + os.system("%s %swebqtlCmdLine.py QTLminer %s >/dev/null 2>&1 &" % (webqtlConfig.PythonPath, webqtlConfig.CMDLINEDIR, filename)) + self.redirection = url diff --git a/web/webqtl/cmdLine/cmdShowAllPage.py b/web/webqtl/cmdLine/cmdShowAllPage.py new file mode 100755 index 00000000..37e159e9 --- /dev/null +++ b/web/webqtl/cmdLine/cmdShowAllPage.py @@ -0,0 +1,50 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil + + + +class cmdShowAllPage(templatePage): + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + filename = self.session("Generate Report", "Generating Report. Please be Patient") + + webqtlUtil.dump_session(fd, os.path.join(webqtlConfig.TMPDIR, filename +'.session')) + + url = webqtlConfig.REFRESHDIR % (webqtlConfig.CGIDIR, self.filename) + + os.system("%s %swebqtlCmdLine.py genreport %s >/dev/null 2>&1 &" % (webqtlConfig.PythonPath, webqtlConfig.CMDLINEDIR, filename)) + + self.redirection = url + diff --git a/web/webqtl/cmdLine/cmdShowAllPage2.py b/web/webqtl/cmdLine/cmdShowAllPage2.py new file mode 100755 index 00000000..a1ac172f --- /dev/null +++ b/web/webqtl/cmdLine/cmdShowAllPage2.py @@ -0,0 +1,55 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil + + + +######################################### +# Generate Report Page +######################################### + +class cmdShowAllPage2(templatePage): + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + filename = self.session("Generate Report v2", "Generating Report v2. Please be Patient") + + webqtlUtil.dump_session(fd, os.path.join(webqtlConfig.TMPDIR, filename +'.session')) + + url = webqtlConfig.REFRESHDIR % (webqtlConfig.CGIDIR, self.filename) + + os.system("%s %swebqtlCmdLine.py genreport2 %s >/dev/null 2>&1 &" % (webqtlConfig.PythonPath, webqtlConfig.CMDLINEDIR, filename)) + + self.redirection = url + + diff --git a/web/webqtl/cmdLine/cmdSnpBrowserResultPage.py b/web/webqtl/cmdLine/cmdSnpBrowserResultPage.py new file mode 100755 index 00000000..54cb1181 --- /dev/null +++ b/web/webqtl/cmdLine/cmdSnpBrowserResultPage.py @@ -0,0 +1,47 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by NL 2011/03/15 +# +# Last updated by NL 2011/03/15 + +import os + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil + + +######################################### +# SnpBrowser Page +######################################### + +class cmdSnpBrowserResultPage(templatePage): + + def __init__(self,fd): + templatePage.__init__(self, fd) + + filename = self.session("Variant Browser Result", "Computing Variant Browser Results") + webqtlUtil.dump_session(fd, os.path.join(webqtlConfig.TMPDIR, filename +'.session')) + url = webqtlConfig.REFRESHDIR % (webqtlConfig.CGIDIR, self.filename) + os.system("%s %swebqtlCmdLine.py snpbrowser %s >/dev/null 2>&1 &" % (webqtlConfig.PythonPath, webqtlConfig.CMDLINEDIR, filename)) + self.redirection = url diff --git a/web/webqtl/cmdLine/cmdTissueCorrelationResultPage.py b/web/webqtl/cmdLine/cmdTissueCorrelationResultPage.py new file mode 100755 index 00000000..1f28953c --- /dev/null +++ b/web/webqtl/cmdLine/cmdTissueCorrelationResultPage.py @@ -0,0 +1,47 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by NL 2011/03/15 +# +# Last updated by NL 2011/03/15 + +import os + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil + + +######################################### +# SnpBrowser Page +######################################### + +class cmdTissueCorrelationResultPage(templatePage): + + def __init__(self,fd): + templatePage.__init__(self, fd) + + filename = self.session("Tissue Correlation Result Page", "Computing Tissue Correlation Result") + webqtlUtil.dump_session(fd, os.path.join(webqtlConfig.TMPDIR, filename +'.session')) + url = webqtlConfig.REFRESHDIR % (webqtlConfig.CGIDIR, self.filename) + os.system("%s %swebqtlCmdLine.py tissueCorrelation %s >/dev/null 2>&1 &" % (webqtlConfig.PythonPath, webqtlConfig.CMDLINEDIR, filename)) + self.redirection = url diff --git a/web/webqtl/cmdLine/procPage.py b/web/webqtl/cmdLine/procPage.py new file mode 100755 index 00000000..03ce242c --- /dev/null +++ b/web/webqtl/cmdLine/procPage.py @@ -0,0 +1,46 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#--Only imported by WebQTL.py -KA + +#Xiaodong changed the dependancy structure + +import os + +from base import webqtlConfig + + +class procPage: + def __init__(self, myID, req): + try: + fp = open(os.path.join(webqtlConfig.TMPDIR, myID + '.html'), 'rb') + except: + fp = open(os.path.join(webqtlConfig.ChangableHtmlPath, 'missing.html'), 'rb') + + content = fp.read() + fp.close() + req.write(content) + diff --git a/web/webqtl/cmdLine/webqtlCmdLine.py b/web/webqtl/cmdLine/webqtlCmdLine.py new file mode 100755 index 00000000..ebc10e1c --- /dev/null +++ b/web/webqtl/cmdLine/webqtlCmdLine.py @@ -0,0 +1,176 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + + + +######################################################## +#XZ, Aug 10, 2010 +#This part is the temporary solution to make python be able to find other subpackages. +#We can't set global environment because there are many branches on the development machine. + +import sys, os + +current_file_name = __file__ +pathname = os.path.dirname( current_file_name ) +abs_path = os.path.abspath(pathname) +sys.path.insert(0, abs_path + '/..') + +######################################################## + + + +import traceback +import string +import cPickle + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil + + +if __name__ == "__main__": + try: + if len(sys.argv) > 2: + getID = string.lower(sys.argv[1]) + else: + raise ValueError + + cmdtype = sys.argv[1] + sessionfile = sys.argv[2] + + fd = None + + fp = open(os.path.join(webqtlConfig.TMPDIR, sessionfile + '.session'), 'rb') + fd = cPickle.load(fp) + fp.close() + + if cmdtype == "heatmap": + from heatmap import heatmapPage + reload(heatmapPage) + page = heatmapPage.heatmapPage(fd) + page.writeFile(sessionfile+'.html') + elif cmdtype == "directplot": + from pairScan import DirectPlotPage + reload(DirectPlotPage) + page = DirectPlotPage.DirectPlotPage(fd) + page.writeFile(sessionfile+'.html') + elif cmdtype == "networkGraph": + from networkGraph import networkGraphPage + reload(networkGraphPage) + page = networkGraphPage.networkGraphPage(fd) + page.writeFile(sessionfile+'.html') + elif cmdtype == "interval": + from intervalMapping import IntervalMappingPage + reload(IntervalMappingPage) + page = IntervalMappingPage.IntervalMappingPage(fd) + page.writeFile(sessionfile+'.html') + elif cmdtype == "correlation": + from correlation import CorrelationPage + reload (CorrelationPage) + page = CorrelationPage.CorrelationPage(fd) + page.writeFile(sessionfile+'.html') + elif cmdtype == "partialCorrelation": + from correlation import PartialCorrDBPage + reload(PartialCorrDBPage) + page = PartialCorrDBPage.PartialCorrDBPage(fd) + page.writeFile(sessionfile+'.html') + elif cmdtype == "correlationComparison": + from compareCorrelates import multitrait + reload(multitrait) + page = multitrait.compCorrPage(fd) + page.writeFile(sessionfile+'.html') + elif cmdtype == "genreport": # Generate Report Page + spacer = '
      ' + + from basicStatistics import BasicStatisticsPage + reload(BasicStatisticsPage) + page1 = BasicStatisticsPage.BasicStatisticsPage(fd) + + if not fd.formdata.getvalue('bsCheck'): + page1.dict['body'] = "" + + if fd.formdata.getvalue('tcCheck'): + from correlation import CorrelationPage + reload(CorrelationPage) + page2 = CorrelationPage.CorrelationPage(fd) + page1.dict['body'] += spacer + str(page2.dict['body']) + page1.dict['js1'] += page2.dict['js1'] + + if fd.formdata.getvalue('imCheck'): + from intervalMapping import IntervalMappingPage + reload(IntervalMappingPage) + page3 = IntervalMappingPage.IntervalMappingPage(fd) + page1.dict['body'] += spacer + str(page3.dict['body']) + + if fd.formdata.getvalue('mrCheck'): + from markerRegression import MarkerRegressionPage + reload(MarkerRegressionPage) + page4 = MarkerRegressionPage.MarkerRegressionPage(fd) + page1.dict['body'] += spacer + str(page4.dict['body']) + + if fd.formdata.getvalue('psCheck'): + from pairScan import DirectPlotPage + reload(DirectPlotPage) + page5 = DirectPlotPage.DirectPlotPage(fd) + page1.dict['body'] += spacer + str(page5.dict['body']) + + page1.writeFile(sessionfile+'.html') + + elif cmdtype == "genreport2": # Generate Report Page v2 + spacer = '
      ' + + from basicStatistics import BasicStatisticsPage_alpha + reload(BasicStatisticsPage_alpha) + page1 = BasicStatisticsPage_alpha.BasicStatisticsPage_alpha(fd) + page1.writeFile(sessionfile+'.html') + elif cmdtype == "snpbrowser": + from snpBrowser import snpBrowserPage + reload(snpBrowserPage) + page = snpBrowserPage.snpBrowserPage(fd) + page.writeFile(sessionfile+'.html') + elif cmdtype == "QTLminer": + from qtlminer import QTLminer + reload(QTLminer) + page = QTLminer.QTLminer(fd) + page.writeFile(sessionfile+'.html') + elif cmdtype == "tissueCorrelation": + from correlationMatrix import TissueCorrelationPage + reload(TissueCorrelationPage) + page = TissueCorrelationPage.TissueCorrelationPage(fd) + page.writeFile(sessionfile+'.html') + elif cmdtype == "markerRegression": + from markerRegression import MarkerRegressionPage + reload(MarkerRegressionPage) + page = MarkerRegressionPage.MarkerRegressionPage(fd) + page.writeFile(sessionfile+'.html') + else: + raise ValueError + except: + fp = open(os.path.join(webqtlConfig.TMPDIR, sessionfile +'.html'), 'wb') + fp.write('\n\n
      ')
      +		traceback.print_exc(file=fp)							
      +		fp.write('\n
      ') + fp.close() diff --git a/web/webqtl/collection/AddToSelectionPage.py b/web/webqtl/collection/AddToSelectionPage.py new file mode 100644 index 00000000..2a99e8c1 --- /dev/null +++ b/web/webqtl/collection/AddToSelectionPage.py @@ -0,0 +1,695 @@ +#AddToSelectionPage.py + +import string +from htmlgen import HTMLgen2 as HT +import os +import cPickle +import reaper + +from base import webqtlConfig +from base.templatePage import templatePage +from utility.THCell import THCell +from utility.TDCell import TDCell +from utility import webqtlUtil +from showTrait import ShowProbeInfoPage +# NL, 07/27/2010: add 'import webqtlDatabaseFunction' for retrieveSpecies function +from dbFunction import webqtlDatabaseFunction +from base.webqtlTrait import webqtlTrait + + +######################################### +# Add to Selection Page +######################################### +class AddToSelectionPage(templatePage): + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + if not fd.genotype: + fd.readGenotype() + + self.searchResult = fd.formdata.getvalue('searchResult', []) + if type("1") == type(self.searchResult): + self.searchResult = [self.searchResult] + if fd.formdata.getvalue('fromDataEditingPage'): + searchResult2 = fd.formdata.getvalue('fullname') + if searchResult2: + self.searchResult.append(searchResult2) + + if self.searchResult: + pass + else: + templatePage.__init__(self, fd) + heading = 'Add Collections' + detail = ['You need to select at least one trait to add to your selection.'] + self.error(heading=heading,detail=detail) + return + + if self.genSelection(fd=fd): + self.writeHTML(fd) + + + + def genSelection(self, fd=None, checkPreSelection = 1): + collectionName = '%s_Select' % fd.RISet + + if checkPreSelection: + try: + preSelection = fd.input_session_data[collectionName] + preSelection = list(string.split(preSelection,',')) + except: + preSelection = [] + else: + preSelection = [] + + if preSelection: + for item in preSelection: + if item not in self.searchResult: + self.searchResult.append(item) + + self.searchResult = map(self.transfer2NewName, self.searchResult) + + for item in self.searchResult: + if not item: + self.searchResult.remove(item) + + if len(self.searchResult) > 3000: + heading = 'Add Collections' + detail = ['You are adding over 3000 traits to selections, please reduce your number of traits.'] + self.error(heading=heading,detail=detail) + return 0 + + searchResult2 = [] + self.theseTraits = [] + for item in self.searchResult: + try: + thisTrait = webqtlTrait(fullname=item, cursor=self.cursor) + thisTrait.retrieveInfo(QTL=1) + self.theseTraits.append(thisTrait) + searchResult2.append(item) + except: + pass + + allTraitStr = string.join(searchResult2,',') + + self.session_data_changed[collectionName] = allTraitStr + + return 1 + + + + def writeHTML(self,fd): + TD_LR = HT.TD(height=100,width="100%",bgColor='#eeeeee',valign="top") + pageTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="100%",border=0, align="Left") + tbl = HT.TableLite(cellSpacing=2,cellPadding=0,width="90%",border=0, align="Left") + seq = 1 + SelectionHeading = HT.Paragraph('%s Trait Collection' % fd.RISet, Class="title") + + mintmap = HT.Href(url="#redirect", onClick="if(validateTraitNumber()){databaseFunc(document.getElementsByName('showDatabase')[0], 'showIntMap');}") + mintmap_img = HT.Image("/images/multiple_interval_mapping1_final.jpg", name='mintmap', alt="Multiple Interval Mapping", title="Multiple Interval Mapping", style="border:none;") + mintmap.append(mintmap_img) + mcorr = HT.Href(url="#redirect", onClick="if(validateTraitNumber()){databaseFunc(document.getElementsByName('showDatabase')[0], 'compCorr');}") + mcorr_img = HT.Image("/images/compare_correlates2_final.jpg", name='comparecorr', alt="Compare Correlates", title="Compare Correlates", style="border:none;") + mcorr.append(mcorr_img) + cormatrix = HT.Href(url="#redirect", onClick="if(validateTraitNumber()){databaseFunc(document.getElementsByName('showDatabase')[0], 'corMatrix');}") + cormatrix_img = HT.Image("/images/correlation_matrix1_final.jpg", name='corrmatrix', alt="Correlation Matrix and PCA", title="Correlation Matrix and PCA", style="border:none;") + cormatrix.append(cormatrix_img) + networkGraph = HT.Href(url="#redirect", onClick="if(validateTraitNumber()){databaseFunc(document.getElementsByName('showDatabase')[0], 'networkGraph');}") + networkGraph_img = HT.Image("/images/network_graph1_final.jpg", name='networkgraph', alt="Network Graphs", title="Network Graphs", style="border:none;") + networkGraph.append(networkGraph_img) + heatmap = HT.Href(url="#redirect", onClick="if(validateTraitNumber()){databaseFunc(document.getElementsByName('showDatabase')[0], 'heatmap');}") + heatmap_img = HT.Image("/images/heatmap2_final.jpg", name='heatmap', alt="QTL Heat Map and Clustering", title="QTL Heatmap and Clustering", style="border:none;") + heatmap.append(heatmap_img) + partialCorr = HT.Href(url="#redirect", onClick="if(validateTraitNumber()){databaseFunc(document.getElementsByName('showDatabase')[0], 'partialCorrInput');}") + partialCorr_img = HT.Image("/images/partial_correlation_final.jpg", name='partialCorr', alt="Partial Correlation", title="Partial Correlation", style="border:none;") + partialCorr.append(partialCorr_img) + + BN = HT.Href(url="#redirect", onClick="if(validateTraitNumber()){databaseFunc(document.getElementsByName('showDatabase')[0], 'BNInput');}") + networkGraph_img = HT.Image("/images/network_graph1_final.jpg", name='BayesianNetwork', alt="Bayesian Network", title="Bayesian Network", style="border:none;") + BN.append(networkGraph_img) + + removeselect = HT.Href(url="#redirect", onClick="addRmvSelection('%s', document.getElementsByName('showDatabase')[0], 'removeSelection');" % fd.RISet) + removeselect_img = HT.Image("/images/remove_selection1_final.jpg", name="removeselect", alt="Remove Selection", title="Remove Selection", style="border:none;") + removeselect.append(removeselect_img) + selectall = HT.Href(url="#redirect", onClick="$('.checkallbox').attr('checked', true);") + selectall_img = HT.Image("/images/select_all2_final.jpg", name="selectall", alt="Select All", title="Select All", style="border:none;") + selectall.append(selectall_img) + reset = HT.Href(url="#redirect", onClick="$('.checkallbox').attr('checked', false);") + reset_img = HT.Image("/images/select_none2_final.jpg", alt="Select None", title="Select None", style="border:none;") + reset.append(reset_img) + exportSelect = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('showDatabase')[0], 'exportSelectionDetailInfo');") + exportSelect_img = HT.Image("/images/export2_final.jpg", name="exportSelection", alt="Export Selection", title="Export Selection", style="border:none;") + exportSelect.append(exportSelect_img) + selectinvert = HT.Href(url="#redirect", onClick = "checkInvert(document.getElementsByName('showDatabase')[0]);") + selectinvert_img = HT.Image("/images/invert_selection2_final.jpg", name="selectinvert", alt="Invert Selection", title="Invert Selection", style="border:none;") + selectinvert.append(selectinvert_img) + + chrMenu = HT.Input(type='hidden',name='chromosomes',value='all') + + importFile = HT.Input(type='file', name='importfile', size=15) + importButton = HT.Input(type='button',name='importSelection',value='Load Collection', onClick="addRmvSelection('%s', this.form, 'importSelect');" % fd.RISet,Class="button") + exportButton = HT.Input(type='button' ,name='exportSelection',value='Save Collection', onClick="databaseFunc(this.form,'exportSelect');", Class="button") + importMenu = HT.Select(name='importmethod') + importMenu.append(('append','append')) + importMenu.append(('replace','replace')) + + ODE = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('showDatabase')[0], 'ODE');") + ODE_img = HT.Image("/images/ODE_logo_final.jpg", name="ode", alt="ODE", title="ODE", style="border:none") + ODE.append(ODE_img) + + GCATButton = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('showDatabase')[0], 'GCAT');") + GCATButton_img = HT.Image("/images/GCAT_logo_final.jpg", name="GCAT", alt="GCAT", title="GCAT", style="border:none") + GCATButton.append(GCATButton_img) + + GeneSet = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('showDatabase')[0],'GOTree');") + GeneSet_img = HT.Image("/images/webgestalt_icon_final.jpg", name="webgestalt", alt="Gene Set Analysis Toolkit", title="Gene Set Analysis Toolkit", style="border:none") + GeneSet.append(GeneSet_img) + + #need to be refined + if fd.genotype.Mbmap: + scale = HT.Input(name="scale", value="physic", type="hidden") + else: + scale = "" + + formMain = HT.Form(cgi=os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden')) + + #XZ, July 22, 2011: I add parameters for interval mapping + hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':'_','CellID':'_','RISet':fd.RISet,'incparentsf1':'ON','showHideOptions':'more','scale':'physic','additiveCheck':'ON', 'showSNP':'ON', 'showGenes':'ON', 'intervalAnalystCheck':'ON','bootCheck':None, 'permCheck':None, 'applyVarianceSE':None} + for key in hddn.keys(): + formMain.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + if not self.searchResult: + SelectionHeading = HT.Paragraph('%s Trait Collection' % fd.RISet, Class="title") + formMain.append(HT.HR(width="70%", color = "blue"),importFile, ' ', importMenu, ' ', importButton) + TD_LR.append(SelectionHeading,HT.Blockquote('No trait has been added to this selection.'), HT.Center(HT.BR(), HT.BR(), HT.BR(), HT.BR(), formMain)) + self.dict['body'] = str(TD_LR) + self.dict['title'] = "%s Trait Collection" % fd.RISet + return + + ######################################### + # Creating table object for AJAX table # + ######################################### + tblobj = {} + mainfmName = 'showDatabase' + # NL, 07/27/2010. retrieveSpecies function has been moved from webqtlTrait.py to webqtlDatabaseFunction.py; + species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=fd.RISet) + if species == 'human': + chrMenu = scale = mintmap = heatmap = "" + + tblobj['header'] = self.getCollectionTableHeader() + + sortby = self.getSortByValue() + + thisRISet = fd.RISet + tblobj['body'] = self.getCollectionTableBody(RISet=thisRISet, traitList=self.theseTraits, formName=mainfmName, species=species) + + filename= webqtlUtil.genRandStr("Search_") + + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + + + div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), Id="sortable") + + + containerTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="90%",border=0,align="Left") + postContainerTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="90%",border=0,align="Left") + + optionsTable = HT.TableLite(cellSpacing=2, cellPadding=0,width="400", border=0, align="Left") + optionsTable.append(HT.TR(HT.TD(selectall), HT.TD(reset), HT.TD(selectinvert), HT.TD(removeselect), HT.TD(exportSelect))) + optionsTable.append(HT.TR(HT.TD(" "*1,"Select"), HT.TD("Deselect"), HT.TD(" "*1,"Invert"), HT.TD(" "*1,"Remove"), HT.TD(" "*1,"Export"))) + postContainerTable.append(HT.TR(HT.TD(optionsTable))) + containerTable.append(HT.TR(HT.TD(optionsTable))) + + functionTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="480",border=0, align="Left") + functionRow = HT.TR(HT.TD(networkGraph, width="16.7%"), HT.TD(cormatrix, width="16.7%"), HT.TD(partialCorr, width="16.7%"), HT.TD(mcorr, width="16.7%"), HT.TD(mintmap, width="16.7%"), HT.TD(heatmap)) + if species == "human": + labelRow = HT.TR(HT.TD(" "*2,HT.Text("Graph")), HT.TD(" "*2,HT.Text("Matrix")), HT.TD(" "*2, HT.Text("Partial")), HT.TD(HT.Text("Compare"))) + else: + labelRow = HT.TR(HT.TD(" "*2,HT.Text("Graph")), HT.TD(" "*2,HT.Text("Matrix")), HT.TD(" "*2, HT.Text("Partial")), HT.TD(HT.Text("Compare")), HT.TD(HT.Text("QTL Map")), HT.TD(HT.Text(text="Heat Map"))) + functionTable.append(functionRow, labelRow) + postContainerTable.append(HT.TR(HT.TD(functionTable))) + containerTable.append(HT.TR(HT.TD(functionTable))) + + moreOptions = HT.Input(type='button',name='options',value='More Options', onClick="",Class="toggle") + fewerOptions = HT.Input(type='button',name='options',value='Fewer Options', onClick="",Class="toggle") + + + + if (fd.formdata.getvalue('showHideOptions') == 'less'): + postContainerTable.append(HT.TR(HT.TD(" "), height="10"), HT.TR(HT.TD(HT.Div(fewerOptions, Class="toggleShowHide")))) + containerTable.append(HT.TR(HT.TD(" "), height="10"), HT.TR(HT.TD(HT.Div(fewerOptions, Class="toggleShowHide")))) + else: + postContainerTable.append(HT.TR(HT.TD(" "), height="10"), HT.TR(HT.TD(HT.Div(moreOptions, Class="toggleShowHide")))) + containerTable.append(HT.TR(HT.TD(" "), height="10"), HT.TR(HT.TD(HT.Div(moreOptions, Class="toggleShowHide")))) + + + LinkOutTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="320",border=0, align="Left") + LinkOutRow = HT.TR(HT.TD(GeneSet, width="33%"), HT.TD(GCATButton, width="33%"), HT.TD(ODE, width="33%"), style="display:none;", Class="extra_options") + LinkOutLabels = HT.TR(HT.TD(HT.Text("Gene Set")), HT.TD(" "*2, HT.Text("GCAT")), HT.TD(" "*3, HT.Text("ODE")), style="display:none;", Class="extra_options") + LinkOutTable.append(LinkOutRow,LinkOutLabels) + postContainerTable.append(HT.TR(HT.TD(" "), height=10), HT.TR(HT.TD(LinkOutTable))) + containerTable.append(HT.TR(HT.TD(" "), height=10), HT.TR(HT.TD(LinkOutTable))) + + pageTable.append(HT.TR(HT.TD(containerTable))) + chrMenu = scale = "" + + pageTable.append(HT.TR(HT.TD(div))) + pageTable.append(HT.TR(HT.TD(" "))) + if len(self.theseTraits) > 20: + pageTable.append(HT.TR(HT.TD(postContainerTable))) + pageTable.append(HT.TR(HT.TD(importFile, ' ', importMenu, ' ', importButton, ' '*10, exportButton))) + #Took out scaleMenu since it will be replaced with a jquery popup in the future - Zach 5/10/2010 + formMain.append(chrMenu,scale,pageTable) + + #Updated by NL, deleted showHideJS, moved jquery to jqueryFunction.js + self.dict['js1'] = '' + TD_LR.append(SelectionHeading,formMain) + + self.dict['body'] = str(TD_LR) + self.dict['js2'] = 'onLoad="pageOffset()"' + self.dict['layer'] = self.generateWarningLayer() + self.dict['title'] = "%s Trait Collection" % thisRISet + + def transfer2NewName(self, str): + "this is temporary" + if str.find("::") < 0: + return str.replace(":", "::") + else: + return str + + def generateWarningLayer(self): + + layerString = """ + +
      + + + +
      + + + + + + + +
      + Sort Table +
      + + Resorting this table
      + +
      +
      + + + + """ + + return layerString + + def getCollectionTableHeader(self): + + tblobj_header = [] + + className = "fs13 fwb ffl b1 cw cbrb" + + tblobj_header = [[THCell(HT.TD(' ', Class=className, nowrap="on"), sort=0), + THCell(HT.TD('Dataset', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="dataset", idx=1), + THCell(HT.TD('Trait', HT.BR(), 'ID', HT.BR(), valign="top", Class=className, nowrap="on"), text="name", idx=2), + THCell(HT.TD('Symbol', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="symbol", idx=3), + THCell(HT.TD('Description', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="desc", idx=4), + THCell(HT.TD('Location', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="location", idx=5), + THCell(HT.TD('Mean', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="mean", idx=6), + THCell(HT.TD('N', HT.BR(), 'Cases', HT.BR(), valign="top", Class=className, nowrap="on"), text="samples", idx=7), + THCell(HT.TD('Max LRS', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="lrs", idx=8), + THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb', HT.BR(), valign="top", Class=className, nowrap="on"), text="lrs_location", idx=9)]] + + return tblobj_header + + def getCollectionTableBody(self, RISet=None, traitList=None, formName=None, species=''): + + tblobj_body = [] + + className = "fs12 fwn b1 c222" + + for thisTrait in traitList: + tr = [] + + if not thisTrait.haveinfo: + thisTrait.retrieveInfo(QTL=1) + + if thisTrait.riset != RISet: + continue + + trId = str(thisTrait) + + #XZ: check box column + tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkallbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class=className))) + + #XZ: Dataset column + tr.append(TDCell(HT.TD(thisTrait.db.name, Class="fs12 fwn b1 c222"), thisTrait.db.name, thisTrait.db.name.upper())) + + #XZ: Trait ID column + if thisTrait.cellid: + tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.cellid,url="javascript:showDatabase3('%s','%s','%s','%s')" % (formName, thisTrait.db.name, thisTrait.name, thisTrait.cellid), Class="fs12 fwn"), nowrap="yes",align="left", Class=className),str(thisTrait.cellid), thisTrait.cellid)) + else: + tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.getGivenName(),url="javascript:showDatabase3('%s','%s','%s','')" % (formName, thisTrait.db.name, thisTrait.name), Class="fs12 fwn"), nowrap="yes",align="left", Class=className),str(thisTrait.name), thisTrait.name)) + + #XZ: Symbol column and Description column + if (thisTrait.db.type == "Publish"): + AbbreviationString = "--" + if (thisTrait.post_publication_abbreviation != None): + AbbreviationString = thisTrait.post_publication_abbreviation + PhenotypeString = thisTrait.post_publication_description + if thisTrait.confidential: + if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users): + if thisTrait.pre_publication_abbreviation: + AbbreviationString = thisTrait.pre_publication_abbreviation + else: + AbbreviationString = "--" + PhenotypeString = thisTrait.pre_publication_description + + if AbbreviationString == "--": + tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", "Zz")) + else: + tr.append(TDCell(HT.TD(AbbreviationString, Class=className), AbbreviationString, AbbreviationString.upper())) + + tr.append(TDCell(HT.TD(PhenotypeString, Class=className), PhenotypeString, PhenotypeString.upper())) + + + elif (thisTrait.db.type == "ProbeSet" or thisTrait.db.type == "Temp"): + description_string = str(thisTrait.description).strip() + if (thisTrait.db.type == "ProbeSet"): + if (thisTrait.symbol != None): + if thisTrait.geneid: + symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" % thisTrait.geneid, Class="font_black fs12 fwn") + else: + symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene&term=%s" % thisTrait.symbol, Class="font_black fs12 fwn") + tr.append(TDCell(HT.TD(symbolurl, align="left", Class="fs12 fwn b1 c222 fsI"), thisTrait.symbol, thisTrait.symbol)) + else: + tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", "Zz")) + target_string = str(thisTrait.probe_target_description).strip() + + description_display = '' + + if len(description_string) > 1 and description_string != 'None': + description_display = description_string + else: + description_display = thisTrait.symbol + + if len(description_display) > 1 and description_display != 'N/A' and len(target_string) > 1 and target_string != 'None': + description_display = description_display + '; ' + target_string.strip() + + description_string = description_display + else: + tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", "Zz")) + tr.append(TDCell(HT.TD(description_string, Class=className), description_string, description_string)) + else: + if (thisTrait.name != None): + tr.append(TDCell(HT.TD(thisTrait.name, Class="fs12 fwn b1 c222"), thisTrait.name, thisTrait.name)) + else: + tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", "Zz")) + tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", "Zz")) + + #XZ: Location column + if (thisTrait.db.type == "Publish"): + tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", "Zz")) + else: + if thisTrait.db.type == "ProbeSet" and thisTrait.cellid: + EnsemblProbeSetID = thisTrait.name + if '_at' in thisTrait.name: + EnsemblProbeSetID = thisTrait.name[0:thisTrait.name.index('_at')+3] + + #These tables (Ensembl) were created by Xusheng Wang in 2010 and are mm9 (so they'll need to be changed at some point to be mm10. + self.cursor.execute(''' + SELECT EnsemblProbeLocation.* + FROM EnsemblProbeLocation, EnsemblProbe, EnsemblChip, GeneChipEnsemblXRef, ProbeFreeze, ProbeSetFreeze + WHERE EnsemblProbeLocation.ProbeId=EnsemblProbe.Id and EnsemblProbe.ChipId=GeneChipEnsemblXRef.EnsemblChipId and + GeneChipEnsemblXRef.GeneChipId=ProbeFreeze.ChipId and EnsemblProbe.Name=%s and EnsemblProbe.ProbeSet=%s and + ProbeSetFreeze.Id=%s and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id group by Chr, Start, End''' + ,(thisTrait.cellid, EnsemblProbeSetID, thisTrait.db.id)) + LocationFields = self.cursor.fetchall() + + Chr='' + Mb='' + Start='' + End='' + if (len(LocationFields)>=1): + Chr,Start,End,Strand,MisMatch,ProbeId = map(self.nullRecord,LocationFields[0]) + Start /= 1000000.0 + End /= 1000000.0 + Mb = Start + if (len(LocationFields)>1): + self.cursor.execute(''' + SELECT ProbeSet.Chr, ProbeSet.Mb FROM ProbeSet, ProbeFreeze, ProbeSetFreeze + WHERE ProbeSet.ChipId=ProbeFreeze.ChipId and ProbeSet.Name=%s and ProbeSetFreeze.Id=%s and + ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id''' + ,(thisTrait.name, thisTrait.db.id)) + ProbeSetChr, ProbeSetMb = map(self.nullRecord,self.cursor.fetchall()[0]) + + self.cursor.execute(''' + SELECT EnsemblProbeLocation.*, ABS(EnsemblProbeLocation.Start/1000000-%s) as Mb + FROM EnsemblProbeLocation, EnsemblProbe, EnsemblChip, GeneChipEnsemblXRef, ProbeFreeze + WHERE EnsemblProbeLocation.ProbeId=EnsemblProbe.Id and EnsemblProbe.ChipId=GeneChipEnsemblXRef.EnsemblChipId and + GeneChipEnsemblXRef.GeneChipId=ProbeFreeze.ChipId and EnsemblProbe.Name=%s and EnsemblProbe.ProbeSet=%s and + EnsemblProbeLocation.Chr=%s and ProbeSetFreezeId=%s and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id order by Mb limit 1''' + ,(ProbeSetMb, thisTrait.cellid, EnsemblProbeSetID, ProbeSetChr, thisTrait.db.id)) + NewLocationFields = self.cursor.fetchall() + if (len(NewLocationFields)>0): + Chr,Start,End,Strand,MisMatch,ProbeId,Mb = map(self.nullRecord,NewLocationFields[0]) + Start /= 1000000.0 + End /= 1000000.0 + Mb = Start + + #ZS: trait_location_value is used for sorting + trait_location_repr = "--" + trait_location_value = 1000000 + + if Chr and Mb: + try: + trait_location_value = int(Chr)*1000 + Mb + except: + if Chr.upper() == "X": + trait_location_value = 20*1000 + Mb + else: + trait_location_value = ord(str(Chr).upper()[0])*1000 + Mb + + trait_location_repr = "Chr%s: %.6f" % (Chr, float(Mb) ) + + tr.append(TDCell(HT.TD(trait_location_repr, nowrap='ON', Class=className), trait_location_repr, trait_location_value)) + + else: + + #ZS: trait_location_value is used for sorting + trait_location_repr = "--" + trait_location_value = 1000000 + + if hasattr(thisTrait, 'chr') and hasattr(thisTrait, 'mb') and thisTrait.chr and thisTrait.mb: + try: + trait_location_value = int(thisTrait.chr)*1000 + thisTrait.mb + except: + if thisTrait.chr.upper() == "X": + trait_location_value = 20*1000 + thisTrait.mb + else: + trait_location_value = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb + + trait_location_repr = "Chr%s: %.6f" % (thisTrait.chr, float(thisTrait.mb) ) + + tr.append(TDCell(HT.TD(trait_location_repr, nowrap='ON', Class=className), trait_location_repr, trait_location_value)) + + #XZ: Mean column + if (thisTrait.db.type == "ProbeSet"): + if thisTrait.cellid: + mean = -10000.0 + try: + thisTrait.retrieveData() + mean, median, var, stdev, sem, N = reaper.anova(thisTrait.exportInformative()[1]) + except: + pass + repr = '%2.3f' % mean + mean = '%2.2f' % mean + tr.append(TDCell(HT.TD(repr, Class=className, align='right', nowrap='ON'),repr, mean)) + else: + self.cursor.execute(""" + select ProbeSetXRef.mean from ProbeSetXRef, ProbeSet + where ProbeSetXRef.ProbeSetFreezeId = %d and + ProbeSet.Id = ProbeSetXRef.ProbeSetId and + ProbeSet.Name = '%s' + """ % (thisTrait.db.id, thisTrait.name)) + result = self.cursor.fetchone() + if result: + if result[0]: + mean = result[0] + else: + mean=0 + else: + mean = 0 + + #XZ, 06/05/2009: It is neccessary to turn on nowrap + repr = "%2.3f" % mean + tr.append(TDCell(HT.TD(repr, Class=className, align='right', nowrap='ON'),repr, mean)) + + elif (thisTrait.db.type == "Publish"): + self.cursor.execute(""" + select count(PublishData.value), sum(PublishData.value) from PublishData, PublishXRef, PublishFreeze + where PublishData.Id = PublishXRef.DataId and + PublishXRef.Id = %s and + PublishXRef.InbredSetId = PublishFreeze.InbredSetId and + PublishFreeze.Id = %d + """ % (thisTrait.name, thisTrait.db.id)) + result = self.cursor.fetchone() + + if result: + if result[0] and result[1]: + mean = result[1]/result[0] + else: + mean = 0 + else: + mean = 0 + + repr = "%2.3f" % mean + tr.append(TDCell(HT.TD(repr, Class=className, align='right', nowrap='ON'),repr, mean)) + else: + tr.append(TDCell(HT.TD("--", Class=className, align='left', nowrap='ON'),"--", 0)) + + #Number of cases + n_cases_value = 0 + n_cases_repr = "--" + if (thisTrait.db.type == "Publish"): + self.cursor.execute(""" + select count(PublishData.value) from PublishData, PublishXRef, PublishFreeze + where PublishData.Id = PublishXRef.DataId and + PublishXRef.Id = %s and + PublishXRef.InbredSetId = PublishFreeze.InbredSetId and + PublishFreeze.Id = %d + """ % (thisTrait.name, thisTrait.db.id)) + result = self.cursor.fetchone() + + if result: + if result[0]: + n_cases_value = result[0] + n_cases_repr = result[0] + + if (n_cases_value == "--"): + tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value)) + else: + tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='right', nowrap="on"), n_cases_repr, n_cases_value)) + + elif (thisTrait.db.type == "ProbeSet"): + self.cursor.execute(""" + select count(ProbeSetData.value) from ProbeSet, ProbeSetXRef, ProbeSetData, ProbeSetFreeze + where ProbeSet.Name='%s' and + ProbeSetXRef.ProbeSetId = ProbeSet.Id and + ProbeSetXRef.DataId = ProbeSetData.Id and + ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id and + ProbeSetFreeze.Name = '%s' + """ % (thisTrait.name, thisTrait.db.name)) + result = self.cursor.fetchone() + + if result: + if result[0]: + n_cases_value = result[0] + n_cases_repr = result[0] + if (n_cases_value == "--"): + tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value)) + else: + tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='right', nowrap="on"), n_cases_repr, n_cases_value)) + + elif (thisTrait.db.type == "Geno"): + self.cursor.execute(""" + select count(GenoData.value) from GenoData, GenoXRef, GenoFreeze, Geno, Strain + where Geno.SpeciesId = %s and Geno.Name='%s' and + GenoXRef.GenoId = Geno.Id and + GenoXRef.DataId = GenoData.Id and + GenoXRef.GenoFreezeId = GenoFreeze.Id and + GenoData.StrainId = Strain.Id and + GenoFreeze.Name = '%s' + """ % (webqtlDatabaseFunction.retrieveSpeciesId(self.cursor, thisTrait.db.riset), thisTrait.name, thisTrait.db.name)) + result = self.cursor.fetchone() + + if result: + if result[0]: + n_cases_value = result[0] + n_cases_repr = result[0] + if (n_cases_value == "--"): + tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value)) + else: + tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='right', nowrap="on"), n_cases_repr, n_cases_value)) + + else: + tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value)) + + #XZ: Max LRS column and Max LRS Location column + if (thisTrait.db.type != "Geno"): + #LRS and its location + LRS_score_repr = '--' + LRS_score_value = 0 + LRS_location_repr = '--' + LRS_location_value = 1000000 + LRS_flag = 1 + + #Max LRS and its Locus location + if hasattr(thisTrait, 'lrs') and hasattr(thisTrait, 'locus') and thisTrait.lrs and thisTrait.locus: + self.cursor.execute(""" + select Geno.Chr, Geno.Mb from Geno, Species + where Species.Name = '%s' and + Geno.Name = '%s' and + Geno.SpeciesId = Species.Id + """ % (species, thisTrait.locus)) + result = self.cursor.fetchone() + + if result: + if result[0] and result[1]: + LRS_Chr = result[0] + LRS_Mb = result[1] + + #XZ: LRS_location_value is used for sorting + try: + LRS_location_value = int(LRS_Chr)*1000 + float(LRS_Mb) + except: + if LRS_Chr.upper() == 'X': + LRS_location_value = 20*1000 + float(LRS_Mb) + else: + LRS_location_value = ord(str(LRS_chr).upper()[0])*1000 + float(LRS_Mb) + + + LRS_score_repr = '%3.1f' % thisTrait.lrs + LRS_score_value = thisTrait.lrs + LRS_location_repr = 'Chr%s: %.6f' % (LRS_Chr, float(LRS_Mb) ) + LRS_flag = 0 + + tr.append(TDCell(HT.TD(LRS_score_repr, Class=className, align='right', nowrap="on"), LRS_score_repr, LRS_score_value)) + tr.append(TDCell(HT.TD(LRS_location_repr, Class=className), LRS_location_repr, LRS_location_value)) + + if LRS_flag: + tr.append(TDCell(HT.TD(LRS_score_repr, Class=className), LRS_score_repr, LRS_score_value)) + tr.append(TDCell(HT.TD(LRS_location_repr, Class=className), LRS_location_repr, LRS_location_value)) + else: + tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", 0)) + tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", 1000000)) + + tblobj_body.append(tr) + + return tblobj_body + + def getSortByValue(self): + + sortby = ("pv", "up") + + return sortby + + def nullRecord(self,x): + if x or x == 0: + return x + else: + return "" + diff --git a/web/webqtl/collection/AddUserInputToSelectionPage.py b/web/webqtl/collection/AddUserInputToSelectionPage.py new file mode 100755 index 00000000..2c69a047 --- /dev/null +++ b/web/webqtl/collection/AddUserInputToSelectionPage.py @@ -0,0 +1,97 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#AddUserInputToSelectionPage.py + +import time + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil +from AddToSelectionPage import AddToSelectionPage + +######################################### +# Add UserInput to Selection Page +######################################### +class AddUserInputToSelectionPage(AddToSelectionPage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + if not fd.genotype: + fd.readData(incf1 = 1) + + self.strainlist = [] + self.vals = [] + for i, strain in enumerate(fd.f1list + fd.strainlist): + if fd.allTraitData.has_key(strain) and fd.allTraitData[strain].val != None: + self.strainlist.append(strain) + self.vals.append([fd.allTraitData[strain].val, fd.allTraitData[strain].var]) + + if len(self.strainlist) > webqtlConfig.KMININFORMATIVE: + pass + else: + templatePage.__init__(self, fd) + heading = 'Add to Collection' + detail = ['The number of informative strains in your trait is less than %d, this trait can not be added to the selection' % webqtlConfig.KMININFORMATIVE] + self.error(heading=heading,detail=detail) + return + + self.cursor.execute('delete Temp, TempData from Temp, TempData where Temp.DataId = TempData.Id and UNIX_TIMESTAMP()-UNIX_TIMESTAMP(CreateTime)>%d;' % webqtlConfig.MAXLIFE) + ct0 = time.localtime(time.time()) + ct = time.strftime("%B/%d %H:%M:%S",ct0) + if not fd.identification: + fd.identification = "Unnamed Trait" + user_ip = fd.remote_ip + newDescription = '%s entered at %s from IP %s' % (fd.identification,ct,user_ip) + newProbeSetID = webqtlUtil.genRandStr("USER_Tmp_") + self.cursor.execute('SelecT max(id) from TempData') + try: + DataId = self.cursor.fetchall()[0][0] + 1 + except: + DataId = 1 + self.cursor.execute('SelecT Id from InbredSet where Name = "%s"' % fd.RISet) + InbredSetId = self.cursor.fetchall()[0][0] + + self.cursor.execute('insert into Temp(Name,description, createtime,DataId,InbredSetId,IP) values(%s,%s,Now(),%s,%s,%s)' ,(newProbeSetID, newDescription, DataId,InbredSetId,user_ip)) + + k = 0 + for Strain in self.strainlist: + self.cursor.execute('SelecT Strain.Id from Strain,StrainXRef where Strain.Name = "%s" and Strain.Id = StrainXRef.StrainId and StrainXRef.InbredSetId=%d' % (Strain, InbredSetId)) + StrainId = self.cursor.fetchall()[0][0] + self.cursor.execute('insert into TempData(Id, StrainId, value, SE) values(%s,%s,%s,%s)' , (DataId, StrainId, self.vals[k][0], self.vals[k][1])) + k += 1 + + self.searchResult = ['Temp::%s' % newProbeSetID] + + if self.genSelection(fd=fd): + self.writeHTML(fd) + + diff --git a/web/webqtl/collection/BatchSubmitSelectionPage.py b/web/webqtl/collection/BatchSubmitSelectionPage.py new file mode 100755 index 00000000..743606b2 --- /dev/null +++ b/web/webqtl/collection/BatchSubmitSelectionPage.py @@ -0,0 +1,225 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#BatchSubmitSelectionPage.py + +import string +import time + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil +from AddToSelectionPage import AddToSelectionPage + + +######################################### +# batch submission result Page +######################################### +class BatchSubmitSelectionPage(AddToSelectionPage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + if not fd.genotype: + fd.readGenotype() + + heading = 'Batch Submission' + + self.batchDataFile = fd.formdata.getvalue('batchdatafile') + if not self.batchDataFile: + templatePage.__init__(self, fd) + detail = ['The file you choose to import from doesn\'t exist.'] + self.error(heading=heading,detail=detail) + return + self.batchDataFile = string.replace(self.batchDataFile, '\r', '\n') + self.batchDataFile = string.replace(self.batchDataFile, '\n\n', '\n') + self.batchDataFile = string.split(self.batchDataFile, '\n') + self.batchDataFile = map(string.strip, self.batchDataFile) + + traitNames, strainNames, traitValues, SE, NStrain = self.parseDataFile() + strainIds = [] + + #print 'Content-type: text/html\n' + #print len(traitNames), len(strainNames) , len(strainIds), len(traitValues) , len(SE), "

      ", len(NStrain) + #return + + try: + + if not traitNames or not strainNames or not traitValues or len(traitNames) != len(traitValues) or len(traitNames) != len(SE) or len(traitNames) != len(NStrain): + raise 'ValueError' + for item in traitValues: + if len(strainNames) != len(item): + raise 'ValueError' + for item in SE: + if len(strainNames) != len(item): + raise 'ValueError' + for item in NStrain: + if len(strainNames) != len(item): + raise 'ValueError' + for item in strainNames: + self.cursor.execute('''Select + Strain.Id + from Strain, StrainXRef,InbredSet + where + Strain.Name = "%s" AND + StrainXRef.StrainId = Strain.Id AND + StrainXRef.InbredSetId = InbredSet.Id AND + InbredSet.Name = "%s" + ''' % (item, fd.RISet)) + strainId = self.cursor.fetchone()[0] + strainIds.append(strainId) + except: + templatePage.__init__(self, fd) + detail = ['The format of the file is incorrect, or it contains unknown strains.'] + self.error(heading=heading,detail=detail) + return + + self.searchResult = [] + self.addToTable(traitNames, strainNames,strainIds, traitValues,SE, NStrain, fd) + + if self.genSelection(fd=fd): + self.writeHTML(fd) + + def parseDataFile(self): + rchSartPos = 0 + header = [] + traits = [] + data = [] + se = [] + nstrain = [] + strains = [] + + if 1: + for line in self.batchDataFile: + line = line.strip() + if line == '' or line[0] == '#': + continue + + columns = string.split(line, '\t') + columns = map(string.strip, columns) + + if rchSartPos == 'column': + strains.append(columns[0]) + tdata = map(webqtlUtil.StringAsFloat,columns[1:]) + for j, item in enumerate(tdata): + if posIdx[j][0] == 'data': + data[posIdx[j][1]].append(item) + elif posIdx[j][0] == 'n': + if item != None: + nstrain[posIdx[j][1]].append(int(item)) + else: + nstrain[posIdx[j][1]].append(item) + else: + se[posIdx[j][1]].append(item) + + elif rchSartPos == 'row': + if columns[0].lower() == 'se': + se.append(map(webqtlUtil.StringAsFloat,columns[1:])) + elif columns[0].lower() == 'n': + nstrain.append(map(webqtlUtil.IntAsFloat,columns[1:])) + else: + while (len(data) > len(se)): + se.append([None] * len(data[-1])) + while (len(data) > len(nstrain)): + nstrain.append([None] * len(data[-1])) + header.append(columns[0]) + data.append(map(webqtlUtil.StringAsFloat,columns[1:])) + elif columns[0] == '@format=column': + rchSartPos = 'column' + posIdx = [] + j = 0 + for item in columns[1:]: + #assign column type + if string.lower(item) == 'se': + posIdx.append(('se',j-1)) + elif string.lower(item) == 'n': + posIdx.append(('n',j-1)) + else: + header.append(item) + posIdx.append(('data',j)) + j += 1 + + for i in range(len(header)): + data.append([]) + se.append([]) + nstrain.append([]) + elif columns[0] == '@format=row': + rchSartPos = 'row' + strains = columns[1:] + else: + pass + #modify + for i in range(len(se)): + if se[i] == []: + se[i] = [None] * len(data[-1]) + for i in range(len(nstrain)): + if nstrain[i] == []: + nstrain[i] = [None] * len(data[-1]) + if len(data) > len(se): + se.append([None] * len(data[-1])) + if len(data) > len(nstrain): + nstrain.append([None] * len(data[-1])) + + return header,strains,data,se, nstrain + else: + return [],[],[],[], [] + + + #XZ, add items to self.searchResult + def addToTable(self, traitNames, strainNames,strainIds, traitValues, SE, NStrain, fd): + self.cursor.execute('delete Temp, TempData from Temp, TempData where Temp.DataId = TempData.Id and UNIX_TIMESTAMP()-UNIX_TIMESTAMP(CreateTime)>%d;' % webqtlConfig.MAXLIFE) + + i = 0 + for trait in traitNames: + ct0 = time.localtime(time.time()) + ct = time.strftime("%B/%d %H:%M:%S",ct0) + if trait == '': + trait = "Unnamed Trait" + user_ip = fd.remote_ip + newDescription = '%s entered at %s from IP %s' % (trait,ct,user_ip) + newProbeSetID = webqtlUtil.genRandStr('Usr_TMP_') + + self.cursor.execute('SelecT max(id) from TempData') + try: + DataId = self.cursor.fetchall()[0][0] + 1 + except: + DataId = 1 + + self.cursor.execute('Select Id from InbredSet where Name = "%s"' % fd.RISet) + InbredSetId = self.cursor.fetchall()[0][0] + + self.cursor.execute('insert into Temp(Name,description, createtime,DataId,InbredSetId,IP) values(%s,%s,Now(),%s,%s,%s)' ,(newProbeSetID, newDescription, DataId,InbredSetId,user_ip)) + + for k in range(len(traitValues[i])): + if traitValues[i][k] != None: + self.cursor.execute('insert into TempData(Id, StrainId, value, SE, NStrain) values(%s, %s, %s, %s, %s)' , (DataId, strainIds[k], traitValues[i][k],SE[i][k],NStrain[i][k])) + + self.searchResult.append('Temp::%s' % newProbeSetID) + i += 1 + diff --git a/web/webqtl/collection/DisplaySelectionPage.py b/web/webqtl/collection/DisplaySelectionPage.py new file mode 100755 index 00000000..02d4d4b8 --- /dev/null +++ b/web/webqtl/collection/DisplaySelectionPage.py @@ -0,0 +1,51 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#DisplaySelectionPage.py + +from base.templatePage import templatePage +from AddToSelectionPage import AddToSelectionPage + +######################################### +# Display Selection Page +######################################### +class DisplaySelectionPage(AddToSelectionPage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + if not fd.genotype: + fd.readGenotype() + + self.searchResult = [] + + self.genSelection(fd=fd) + + self.writeHTML(fd) diff --git a/web/webqtl/collection/ExportSelectionDetailInfoPage.py b/web/webqtl/collection/ExportSelectionDetailInfoPage.py new file mode 100755 index 00000000..69f293b2 --- /dev/null +++ b/web/webqtl/collection/ExportSelectionDetailInfoPage.py @@ -0,0 +1,197 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#ExportSelectionDetailInfoPage.py + +import string +from htmlgen import HTMLgen2 as HT +import os +import time +import pyXLWriter as xl + +import reaper + +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil +from base.webqtlTrait import webqtlTrait + + +######################################### +# Export Selection DetailInfo Page +######################################### +class ExportSelectionDetailInfoPage(templatePage): + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + fd.incparentsf1 = 1 + if not fd.genotype: + fd.readGenotype() + + locusChr = {} + locusMb = {} + for chr in fd.genotype: + for locus in chr: + locusChr[locus.name] = locus.chr + locusMb[locus.name] = locus.Mb + + self.searchResult = fd.formdata.getvalue('searchResult') + + if not self.searchResult: + templatePage.__init__(self, fd) + heading = 'Export Collection' + detail = ['You need to select at least one trait to export.'] + self.error(heading=heading,detail=detail) + return + + self.RISet = fd.formdata.getvalue("RISet") + self.cursor.execute("Select Species.Name from Species, InbredSet where InbredSet.SpeciesId = Species.Id and InbredSet.Name = '%s'" % self.RISet) + self.Species = self.cursor.fetchone()[0] + + if type("1") == type(self.searchResult): + self.searchResult = string.split(self.searchResult,'\t') + strainlist = fd.f1list + fd.strainlist + fields = ["ID", "Species", "Cross", "Database", "ProbeSetID / RecordID", "Symbol", "Description", "ProbeTarget", "PubMed_ID", "Phenotype", "Chr", "Mb", "Alias", "Gene_ID", "HomoloGene_ID", "UniGene_ID", "Strand_Probe ", "Strand_Gene ", "Probe_set_specificity", "Probe_set_BLAT_score", "Probe_set_BLAT_Mb_start", "Probe_set_BLAT_Mb_end ", "QTL_Chr", "QTL_Mb", "Locus_at_Peak", "Max_LRS", "P_value_of_MAX", "Mean_Expression"] + strainlist + + if self.searchResult: + traitList = [] + for item in self.searchResult: + thisTrait = webqtlTrait(fullname=item, cursor=self.cursor) + thisTrait.retrieveInfo(QTL=1) + thisTrait.retrieveData(strainlist=strainlist) + traitList.append(thisTrait) + + text = [fields] + for i, thisTrait in enumerate(traitList): + if thisTrait.db.type == 'ProbeSet': + if not thisTrait.cellid: #ProbeSet + #12/22/2009, XZ: We calculated LRS for each marker(locus) in geno file and record the max LRS and its corresponding marker in MySQL database. But after the calculation, Rob deleted several markers. If one of the deleted markers happen to be the one recorded in database, error will occur. So we have to deal with this situation. + if locusChr.has_key(thisTrait.locus) and locusMb.has_key(thisTrait.locus): + text.append([str(i+1), self.Species, self.RISet, thisTrait.db.fullname, thisTrait.name, thisTrait.symbol, thisTrait.description, thisTrait.probe_target_description,"", "", thisTrait.chr, thisTrait.mb, thisTrait.alias, thisTrait.geneid, thisTrait.homologeneid, thisTrait.unigeneid, thisTrait.strand_probe, thisTrait.strand_gene, thisTrait.probe_set_specificity, thisTrait.probe_set_blat_score, thisTrait.probe_set_blat_mb_start, thisTrait.probe_set_blat_mb_end, locusChr[thisTrait.locus], locusMb[thisTrait.locus], thisTrait.locus, thisTrait.lrs, thisTrait.pvalue]) + else: + text.append([str(i+1), self.Species, self.RISet, thisTrait.db.fullname, thisTrait.name, thisTrait.symbol, thisTrait.description, thisTrait.probe_target_description,"", "", thisTrait.chr, thisTrait.mb, thisTrait.alias, thisTrait.geneid, thisTrait.homologeneid, thisTrait.unigeneid, thisTrait.strand_probe, thisTrait.strand_gene, thisTrait.probe_set_specificity, thisTrait.probe_set_blat_score, thisTrait.probe_set_blat_mb_start, thisTrait.probe_set_blat_mb_end, "", "", "", "", ""]) + else: #Probe + text.append([str(i+1), self.Species, self.RISet, thisTrait.db.fullname, thisTrait.name + " : " + thisTrait.cellid, thisTrait.symbol, thisTrait.description, thisTrait.probe_target_description,"", "", thisTrait.chr, thisTrait.mb, thisTrait.alias, thisTrait.geneid, thisTrait.homologeneid, thisTrait.unigeneid, "", "", "", "", "", "", "", "", "", "", ""]) + + elif thisTrait.db.type == 'Publish': + #XZ: need to consider confidential phenotype + PhenotypeString = thisTrait.post_publication_description + if thisTrait.confidential: + if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users): + PhenotypeString = thisTrait.pre_publication_description + text.append([str(i+1), self.Species, self.RISet, thisTrait.db.fullname, thisTrait.name, "", "", "", thisTrait.pubmed_id, PhenotypeString, "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""]) + elif thisTrait.db.type == 'Temp': + text.append([str(i+1), self.Species, self.RISet, thisTrait.db.fullname, thisTrait.name, "", thisTrait.description, "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "","", ""]) + elif thisTrait.db.type == 'Geno': + text.append([str(i+1), self.Species, self.RISet, thisTrait.db.fullname, thisTrait.name, "", thisTrait.name,"", "", "", thisTrait.chr, thisTrait.mb, "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""]) + else: + continue + + testval = thisTrait.exportData(strainlist) + try: + mean = reaper.anova(testval)[0] + except: + count = 0 + sum = 0 + for oneValue in testval: + try: + oneValue = float(oneValue) + sum = sum + oneValue + count = count + 1 + except: + pass + mean = sum/count + text[-1].append(mean) + text[-1] += testval + if len(text[0]) < 255 or len(text) < 255: + transpose = 0 + if len(text[0]) >= 255: + text = webqtlUtil.transpose(text) + transpose = 1 + filename = os.path.join(webqtlConfig.TMPDIR, webqtlUtil.generate_session() +'.xls') + + # Create a new Excel workbook + workbook = xl.Writer(filename) + worksheet = workbook.add_worksheet() + headingStyle = workbook.add_format(align = 'center', bold = 1, size=13, color = 'green') + titleStyle = workbook.add_format(align = 'left', bold = 0, size=13, border = 1, border_color="gray") + + ##Write title Info + # Modified by Hongqiang Li + # worksheet.write([0, 0], "Data source: The GeneNetwork at web2qtl.utmem.edu:88", titleStyle) + # worksheet.write([1, 0], "Citations: Please see web2qtl.utmem.edu:88/reference.html", titleStyle) + worksheet.write([0, 0], "Data source: The GeneNetwork at %s" % webqtlConfig.PORTADDR, titleStyle) + worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle) + # + worksheet.write([2, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime()), titleStyle) + worksheet.write([3, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime()), titleStyle) + + # Modified by Hongqiang Li + # worksheet.write([4, 0], "Status of data ownership: Possibly unpublished data; please see web2qtl.utmem.edu:88/statusandContact.html for details on sources, ownership, and usage of these data.", titleStyle) + worksheet.write([4, 0], "Status of data ownership: Possibly unpublished data; please see %s/statusandContact.html for details on sources, ownership, and usage of these data." % webqtlConfig.PORTADDR, titleStyle) + # + worksheet.write([6, 0], "This output file contains data from %d GeneNetwork databases listed below" % len(traitList), titleStyle) + + # Row and column are zero indexed + nrow = startRow = 8 + for row in text: + for ncol, cell in enumerate(row): + if nrow == startRow: + worksheet.write([nrow, ncol], cell.strip(), headingStyle) + worksheet.set_column([ncol, ncol], 2*len(cell)) + else: + worksheet.write([nrow, ncol], cell) + nrow += 1 + + worksheet.write([nrow+1, 0], "Funding for The GeneNetwork: NIAAA (U01AA13499, U24AA13513), NIDA, NIMH, and NIAAA (P20-DA 21131), NCI MMHCC (U01CA105417), and NCRR (U24 RR021760)", titleStyle) + worksheet.write([nrow+2, 0], "PLEASE RETAIN DATA SOURCE INFORMATION WHENEVER POSSIBLE", titleStyle) + workbook.close() + + fp = open(filename, 'rb') + text = fp.read() + fp.close() + + self.content_type = 'application/xls' + self.content_disposition = 'attachment; filename=%s' % ('export-%s.xls' % time.strftime("%y-%m-%d-%H-%M")) + self.attachment = text + else: + self.content_type = 'application/xls' + self.content_disposition = 'attachment; filename=%s' % ('export-%s.txt' % time.strftime("%y-%m-%d-%H-%M")) + for item in text: + self.attachment += string.join(map(str, item), '\t')+ "\n" + self.cursor.close() + else: + fd.req.content_type = 'text/html' + heading = 'Export Collection' + detail = [HT.Font('Error : ',color='red'),HT.Font('Error occurs while retrieving data from database.',color='black')] + self.error(heading=heading,detail=detail) + + diff --git a/web/webqtl/collection/ExportSelectionPage.py b/web/webqtl/collection/ExportSelectionPage.py new file mode 100755 index 00000000..df401e9e --- /dev/null +++ b/web/webqtl/collection/ExportSelectionPage.py @@ -0,0 +1,67 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#ExportSelectionPage.py + +import string +import time + +from base.templatePage import templatePage + + +######################################### +# Export Selection Page +######################################### +class ExportSelectionPage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + collectionName = '%s_Select' % fd.RISet + + try: + preSelection = fd.input_session_data[collectionName] + preSelection = list(string.split(preSelection,',')) + except: + preSelection = [] + + for item in preSelection: + if not item: + preSelection.remove(item) + + if preSelection: + self.content_type = 'application/txt' + self.content_disposition = 'attachment; filename=%s' % (fd.RISet+'_export-%s.txt' % time.strftime("%y-%m-%d-%H-%M")) + self.attachment += fd.RISet+"\n" + for item in preSelection: + self.attachment += item+"\n" + else: + heading = 'Export Collection' + detail = ['This collection is empty. No trait could be exported.'] + self.error(heading=heading,detail=detail) + + diff --git a/web/webqtl/collection/ImportSelectionPage.py b/web/webqtl/collection/ImportSelectionPage.py new file mode 100755 index 00000000..0702509b --- /dev/null +++ b/web/webqtl/collection/ImportSelectionPage.py @@ -0,0 +1,92 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#ImportSelectionPage.py + +import string + +from base.templatePage import templatePage +from AddToSelectionPage import AddToSelectionPage + + +######################################### +# Import Selection Page +######################################### +class ImportSelectionPage(AddToSelectionPage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + if not fd.genotype: + fd.readGenotype() + + self.importFile = fd.formdata.getvalue('importfile') + if not self.importFile: + templatePage.__init__(self, fd) + heading = 'Import Collection' + detail = ['The file you choose to import from doesn\'t exist.'] + self.error(heading=heading,detail=detail) + return + self.importFile = string.split(self.importFile, '\n') + + RISetLocate = 0 + self.searchResult = [] + for line in self.importFile: + if line and line[0] != '#': + if not RISetLocate: + RISetLocate = line + if RISetLocate != fd.RISet: + templatePage.__init__(self, fd) + heading = 'Import Collection' + detail = ['The file you choose to import from doesn\'t contain %s selection.' % fd.RISet] + self.error(heading=heading,detail=detail) + return + else: + self.searchResult.append(line) + + if not self.searchResult: + templatePage.__init__(self, fd) + heading = 'Import Collection' + detail = ['The file you choose to import from is empty.'] + self.error(heading=heading,detail=detail) + return + + self.importMethod = fd.formdata.getvalue('importmethod') + + if self.importMethod == 'replace': + checkPreSelection = 0 + else: + checkPreSelection = 1 + + if self.genSelection(fd=fd, checkPreSelection = checkPreSelection): + self.writeHTML(fd) + + + diff --git a/web/webqtl/collection/RemoveSelectionPage.py b/web/webqtl/collection/RemoveSelectionPage.py new file mode 100755 index 00000000..b9560c6b --- /dev/null +++ b/web/webqtl/collection/RemoveSelectionPage.py @@ -0,0 +1,108 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + + + +import string + +from base.templatePage import templatePage +from base.webqtlTrait import webqtlTrait +from AddToSelectionPage import AddToSelectionPage + +######################################### +# Remove Selection Page +######################################### +class RemoveSelectionPage(AddToSelectionPage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + if not fd.genotype: + fd.readGenotype() + + self.searchResult = fd.formdata.getvalue('searchResult') + if self.searchResult: + pass + else: + templatePage.__init__(self, fd) + heading = 'Remove Selections' + detail = ['You need to select at least one trait to remove from your selection.'] + self.error(heading=heading,detail=detail) + return + + self.genSelection(fd=fd) + self.writeHTML(fd) + + + + def genSelection(self, fd=None): + collectionName = '%s_Select' % fd.RISet + + try: + preSelection = fd.input_session_data[collectionName] + preSelection = list(string.split(preSelection,',')) + except: + preSelection = [] + + if type("1") == type(self.searchResult): + self.searchResult = [self.searchResult] + + if preSelection: + for item in self.searchResult: + try: + preSelection.remove(item) + except: + pass + self.searchResult = preSelection[:] + + if not self.searchResult: + self.session_data_changed[collectionName] = "" + return + + #self.searchResult.sort() + for item in self.searchResult: + if not item: + self.searchResult.remove(item) + + searchResult2 = [] + self.theseTraits = [] + for item in self.searchResult: + try: + thisTrait = webqtlTrait(fullname=item, cursor=self.cursor) + thisTrait.retrieveInfo(QTL=1) + self.theseTraits.append(thisTrait) + searchResult2.append(item) + except: + pass + + allTraitStr = string.join(searchResult2,',') + + self.session_data_changed[collectionName] = allTraitStr + diff --git a/web/webqtl/collection/__init__.py b/web/webqtl/collection/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/compareCorrelates/MultipleCorrelationPage.py b/web/webqtl/compareCorrelates/MultipleCorrelationPage.py new file mode 100755 index 00000000..6a464ab6 --- /dev/null +++ b/web/webqtl/compareCorrelates/MultipleCorrelationPage.py @@ -0,0 +1,108 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from base.templatePage import templatePage +from utility import webqtlUtil +from base.webqtlTrait import webqtlTrait +from base import webqtlConfig +import multitrait + +# XZ, 09/09/2008: After adding several traits to collection, click "Compare Correlates" button, +# XZ, 09/09/2008: This class will generate what you see. +# XZ, 09/09/2008: This class just collect the input, then pass them to multitrait.py +######################################### +# Multiple Correlation Page +######################################### +class MultipleCorrelationPage(templatePage): + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + if not fd.genotype: + fd.readData() + + self.searchResult = fd.formdata.getvalue('searchResult') + if not self.searchResult: + heading = 'Compare Correlates' + detail = ['You need to select at least two traits in order to generate correlation matrix.'] + self.error(heading=heading,detail=detail) + print 'Content-type: text/html\n' + self.write() + return + if type("1") == type(self.searchResult): + self.searchResult = [self.searchResult] + + if self.searchResult: + if len(self.searchResult) > 100: + heading = 'Compare Correlates' + detail = ['In order to display Compare Correlates properly, Do not select more than %d traits for Compare Correlates.' % 100] + self.error(heading=heading,detail=detail) + print 'Content-type: text/html\n' + self.write() + return + else: + pass + + traitList = [] + for item in self.searchResult: + thisTrait = webqtlTrait(fullname=item, cursor=self.cursor) + thisTrait.retrieveInfo() + traitList.append(thisTrait) + else: + heading = 'Compare Correlates' + detail = [HT.Font('Error : ',color='red'),HT.Font('Error occurs while retrieving data from database.',color='black')] + self.error(heading=heading,detail=detail) + print 'Content-type: text/html\n' + self.write() + return + + + ########## + filename= webqtlUtil.genRandStr("mult_") + fp = open(webqtlConfig.IMGDIR+filename, 'wb') + fp.write('%s\n' % fd.RISet) + for thisTrait in traitList: + fp.write("%s,%s,%s\n" % (thisTrait.db.type,thisTrait.db.id,thisTrait.name)) + fp.close() + fd.formdata["filename"] = filename + + params = {"filename":filename, "targetDatabase":"", + "threshold":0.5, "subsetSize":10, + "correlation":"pearson", "subsetCount":10, + "firstRun":"1"} + results = [] + txtOutputFileName = "" + + self.dict['body'] = multitrait.TraitCorrelationPage(fd, params, self.cursor, traitList, results, + fd.RISet,txtOutputFileName).dict['body'] + self.dict['title'] = 'Compare Correlates' + + + + diff --git a/web/webqtl/compareCorrelates/__init__.py b/web/webqtl/compareCorrelates/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/compareCorrelates/correlation.py b/web/webqtl/compareCorrelates/correlation.py new file mode 100755 index 00000000..f2ea55b3 --- /dev/null +++ b/web/webqtl/compareCorrelates/correlation.py @@ -0,0 +1,359 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +# correlation.py +# functions for computing correlations for traits +# +# Originally, this code was designed to compute Pearson product-moment +# coefficents. The basic function calcPearson scans the strain data +# for the two traits and drops data for a strain unless both traits have it. +# If there are less than six strains left, we conclude that there's +# insufficent data and drop the correlation. +# +# In addition, this code can compute Spearman rank-order coefficents using +# the calcSpearman function. + +#Xiaodong changed the dependancy structure +import numarray +import numarray.ma as MA +import time + +import trait + +# strainDataUnion : StrainData -> StrainData -> array, array +def strainDataUnion(s1, s2): + # build lists of values that both have + # and make sure that both sets of values are in the same order + s1p = [] + s2p = [] + sortedKeys = s1.keys() + sortedKeys.sort() + for s in sortedKeys: + if s2.has_key(s): + s1p.append(s1[s]) + s2p.append(s2[s]) + + return (numarray.array(s1p, numarray.Float64), + numarray.array(s2p, numarray.Float64)) + +# calcCorrelationHelper : array -> array -> float +def calcCorrelationHelper(s1p, s2p): + # if the traits share less than six strains, then we don't + # bother with the correlations + if len(s1p) < 6: + return 0.0 + + # subtract by x-bar and y-bar elementwise + #oldS1P = s1p.copy() + #oldS2P = s2p.copy() + + s1p = (s1p - numarray.average(s1p)).astype(numarray.Float64) + s2p = (s2p - numarray.average(s2p)).astype(numarray.Float64) + + # square for the variances + s1p_2 = numarray.sum(s1p**2) + s2p_2 = numarray.sum(s2p**2) + + try: + corr = (numarray.sum(s1p*s2p)/ + numarray.sqrt(s1p_2 * s2p_2)) + except ZeroDivisionError: + corr = 0.0 + + return corr + +# calcSpearman : Trait -> Trait -> float +def calcSpearman(trait1, trait2): + s1p, s2p = strainDataUnion(trait1.strainData, + trait2.strainData) + s1p = rankArray(s1p) + s2p = rankArray(s2p) + return calcCorrelationHelper(s1p, s2p) + +# calcPearson : Trait -> Trait -> float +def calcPearson(trait1, trait2): + # build lists of values that both have + # and make sure that both sets of values are in the same order + s1p, s2p = strainDataUnion(trait1.strainData, + trait2.strainData) + + return calcCorrelationHelper(s1p, s2p) + +# buildPearsonCorrelationMatrix: (listof n traits) -> int s -> n x s matrix, n x s matrix +#def buildPearsonCorrelationMatrix(traits, sc): +# dim = (len(traits), sc) +# matrix = numarray.zeros(dim, MA.Float64) +# testMatrix = numarray.zeros(dim, MA.Float64) + +# for i in range(len(traits)): +# sd = traits[i].strainData +# for key in sd.keys(): +# matrix[i,int(key) - 1] = sd[key] +# testMatrix[i,int(key) - 1] = 1 + +def buildPearsonCorrelationMatrix(traits, commonStrains): + dim = (len(traits), len(commonStrains)) + matrix = numarray.zeros(dim, MA.Float64) + testMatrix = numarray.zeros(dim, MA.Float64) + + for i in range(len(traits)): + sd = traits[i].strainData + keys = sd.keys() + for j in range(0, len(commonStrains)): + if keys.__contains__(commonStrains[j]): + matrix[i,j] = sd[commonStrains[j]] + testMatrix[i,j] = 1 + + return matrix, testMatrix + +# buildSpearmanCorrelationMatrix: (listof n traits) -> int s -> n x s matrix, n x s matrix +def buildSpearmanCorrelationMatrix(traits, sc): + dim = (len(traits), sc) + matrix = numarray.zeros(dim, MA.Float64) + testMatrix = numarray.zeros(dim, MA.Float64) + + def customCmp(a, b): + return cmp(a[1], b[1]) + + for i in range(len(traits)): + # copy strain data to a temporary list and turn it into + # (strain, expression) pairs + sd = traits[i].strainData + tempList = [] + for key in sd.keys(): + tempList.append((key, sd[key])) + + # sort the temporary list by expression + tempList.sort(customCmp) + + for j in range(len(tempList)): + # k is the strain id minus 1 + # 1-based strain id -> 0-based column index + k = int(tempList[j][0]) - 1 + + # j is the rank of the particular strain + matrix[i,k] = j + + testMatrix[i,k] = 1 + + return matrix, testMatrix + +def findLargestStrain(traits, sc): + strainMaxes = [] + for i in range(len(traits)): + keys = traits[i].strainData.keys() + strainMaxes.append(max(keys)) + + return max(strainMaxes) + +def findCommonStrains(traits1, traits2): + commonStrains = [] + strains1 = [] + strains2 = [] + + for trait in traits1: + keys = trait.strainData.keys() + for key in keys: + if not strains1.__contains__(key): + strains1.append(key) + + for trait in traits2: + keys = trait.strainData.keys() + for key in keys: + if not strains2.__contains__(key): + strains2.append(key) + + for strain in strains1: + if strains2.__contains__(strain): + commonStrains.append(strain) + + return commonStrains + +def calcPearsonMatrix(traits1, traits2, sc, strainThreshold=6, + verbose = 0): + return calcMatrixHelper(buildPearsonCorrelationMatrix, + traits1, traits2, sc, strainThreshold, + verbose) + +def calcProbeSetPearsonMatrix(cursor, freezeId, traits2, strainThreshold=6, + verbose = 0): + + cursor.execute('select ProbeSetId from ProbeSetXRef where ProbeSetFreezeId = %s order by ProbeSetId' % freezeId) + ProbeSetIds = cursor.fetchall() + + results = [] + i=0 + while i listof float +# to generate a companion list to alof with +# the actual value of each element replaced by the +# value's rank +def rankArray(floatArray): + # first we save the original index of each element + tmpAlof = [] + returnArray = numarray.zeros(len(floatArray), numarray.Float64) + i = 0 + for i in range(len(floatArray)): + tmpAlof.append((i,floatArray[i])) + + # now we sort by the data value + def customCmp(a,b): return cmp(a[1],b[1]) + tmpAlof.sort(customCmp) + + # finally we use the new rank data to populate the + # return array + for i in range(len(floatArray)): + returnArray[tmpAlof[i][0]] = i+1 + + return returnArray diff --git a/web/webqtl/compareCorrelates/htmlModule.py b/web/webqtl/compareCorrelates/htmlModule.py new file mode 100755 index 00000000..ebba3b86 --- /dev/null +++ b/web/webqtl/compareCorrelates/htmlModule.py @@ -0,0 +1,279 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import sys +import string +import os +import MySQLdb +import cgi + +from htmlgen import HTMLgen2 as HT + +from base import webqtlConfig + + +# XZ 08/14/2008: When I tried to replace 'from webqtlConfig import *' with 'import webqtlConfig' +# XZ 08/14/2008: I found some problems. I discussed with Hongqiang and the below is conclusion. +# XZ 08/14/2008: The program uses webqtlConfig.DB_NAME, webqtlConfig.MYSQL_SERVER and so on +# XZ 08/14/2008: without 'import webqtlConfig'. This program will not work. +# XZ 08/14/2008: CONFIG_htmlpath doesn't exist in webqtlConfig.py +# XZ 08/14/2008: Hongqian said this was done by Fan Zhang, and this program was not tested. +# XZ 08/14/2008: So nobody realize these bugs. + +# XZ, 09/09/2008: This function is not called any where. +# XZ, 09/09/2008: Actually, I don't think this function works. +def genHeaderFooter(i=1,title='',basehref='',js1='',js2='',layer='',body=''): + """ + generate footer and header HTML code + default is header + i = 0 is footer+header + i = 1 is header + i = 2 is footer + """ + try: + temp_file = CONFIG_htmlpath + 'beta-template.html' + fp = open(temp_file, 'rb') + template = fp.read() + fp.close() + template = template % (title,basehref,js1,js2,layer,body, "") + header,footer = string.split(template,'') + if i == 0: + return header + footer + elif i == 1: + return header + elif i == 2: + return footer + else: + return "" + except: + if i == 0: + return "header + footer" + elif i == 1: + return "header" + elif i == 2: + return "footer" + else: + return "" + +# XZ, 09/09/2008: This function is only used in multitrait.py where it is called with value assigned to db. +# XZ, 09/09/2008: So the try-except block is not executed. +# XZ, 09/09/2008: This explains why no error was generated even without 'import webqtlConfig' +def genDatabaseMenu(db = None, public =1, RISetgp = 'BXD', selectname = 'database', selected = ""): + """ + generate database Menu + public = 0 : search3.html databases Menu + public = 1 : search.html databases Menu + """ + if not db: + try: + # import MySQLdb + # con = MySQLdb.Connect(db='db_webqtl') + # Modified by Fan Zhang + con = MySQLdb.Connect(db=webqtlConfig.DB_NAME,host=webqtlConfig.MYSQL_SERVER, user=webqtlConfig.DB_USER,passwd=webqtlConfig.DB_PASSWD) + db = con.cursor() + except: + return "Connect MySQL Server Error" + else: + pass + + databaseMenu = HT.Select(name=selectname) + nmenu = 0 + + # here's a hack: bxd and bxd300 can be correlated against each other + # if either of those are the group, we put in special SQL that pulls both + if RISetgp in ("BXD", "BXD300"): + ibsNameQry = '(InbredSet.Name = "BXD" OR InbredSet.Name = "BXD300")' + else: + ibsNameQry = 'InbredSet.Name = "%s"' % RISetgp + + #Publish Database + db.execute(''' + SelecT + PublishFreeze.FullName, + PublishFreeze.Name + from + PublishFreeze, + InbredSet + where + PublishFreeze.InbredSetId = InbredSet.Id and + %s + ''' % ibsNameQry) + for item in db.fetchall(): + databaseMenu.append(item) + nmenu += 1 + + #Genome Database + db.execute(''' + SelecT + GenoFreeze.FullName, + GenoFreeze.Name + from + GenoFreeze,InbredSet + where + GenoFreeze.InbredSetId = InbredSet.Id and + %s + ''' % ibsNameQry) + for item in db.fetchall(): + databaseMenu.append(item) + nmenu += 1 + + #Microarray Database + db.execute('SelecT Id, Name from Tissue') + for item in db.fetchall(): + TId, TName = item + databaseMenuSub = HT.Optgroup(label = '%s ------' % TName) + db.execute(''' + SelecT + ProbeSetFreeze.FullName, + ProbeSetFreeze.Name + from + ProbeSetFreeze, + ProbeFreeze, + InbredSet + where + ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and + ProbeFreeze.TissueId = %d and + ProbeSetFreeze.public > %d and + ProbeFreeze.InbredSetId = InbredSet.Id and + %s + order by + ProbeSetFreeze.CreateTime desc, + ProbeSetFreeze.AvgId + ''' % (TId,public,ibsNameQry)) + for item2 in db.fetchall(): + databaseMenuSub.append(item2) + nmenu += 1 + databaseMenu.append(databaseMenuSub) + + if nmenu: + if selected: + databaseMenu.selected.append(selected) + return str(databaseMenu) + else: + return '' + + +# XZ, 09/09/2008: This function is not called any where. +# XZ, 09/09/2008: Actually, I don't think this function works. +# XZ, 09/09/2008: There is no 'DataForm' file now. It should be webqtlForm.py +def genRISample(): + import glob + import reaper + import random + import math + import webqtlUtil + risets = filter(lambda X:X.find('F2')<0, map(os.path.basename, glob.glob(os.path.join(CONFIG_genodir, "*.geno")))) + risets = map(lambda X:X.split('.')[0], risets) + risets.remove("BayXSha") + risets.sort() + body = HT.Blockquote() + NPerRow = 6 + for item in risets: + values = [] + if item == 'AXBXA': item2='AXB/BXA' + elif item == 'HXBBXH': item2='HXB/BXH' + else: item2=item + body.append(HT.Paragraph(item2, Class='subtitle')) + tbl = HT.TableLite(Class="collap") + dataset = reaper.Dataset() + dataset.read(os.path.join(CONFIG_genodir, "%s.geno"%item)) + prgy = webqtlUtil.ParInfo[item] + list(dataset.prgy) + + mean = random.random()*100 + variance = random.random()*500 + variables = [] + while len(variables) < len(prgy): + S = 2 + while (S>=1): + U1= random.random() + U2= random.random() + V1= 2*U1-1.0 + V2= 2*U2-1.0 + S=V1*V1+V2*V2 + X= math.sqrt(-2 * math.log(S) / S) * V1 + Y= math.sqrt(-2 * math.log(S) / S) * V2 + variables.append(mean + math.sqrt(variance) * X) + variables.append(mean + math.sqrt(variance) * Y) + + tempTR = HT.TR() + for i, strain in enumerate(prgy): + if i and i%NPerRow==0: + tbl.append(tempTR) + tempTR = HT.TR() + if random.random() < 0.2: + variable = 'X' + else: + variable = "%2.3f" % variables[i] + + tempTR.append(HT.TD(strain, Class="strains", width=80)) + tempTR.append(HT.TD(variable, Class="values", width=60)) + values.append(variable) + + for j in range(NPerRow-i%NPerRow-1): + tempTR.append(HT.TD()) + tbl.append(tempTR) + body.append(tbl) + body.append(HT.Paragraph("Copy the following line to paste into the GeneNetwork entry box:")) + body.append(HT.Code(string.join(values, " "))) + body.append(HT.HR(width="90%")) + return body + +if __name__ == "__main__": + if os.environ.has_key('SCRIPT_FILENAME'): + script_filename = os.environ['SCRIPT_FILENAME'] + else: + script_filename = '' + #Used as cgi script + if script_filename and script_filename[-2:] == 'py': + print 'Content-type: text/html\n' + formdata = cgi.FieldStorage() + sys.stderr = sys.stdout + try: + getID = string.lower(formdata.getvalue('get')) + except: + getID = '' + #Used as command + else: + if len(sys.argv) >= 2: + getID = string.lower(sys.argv[1]) + else: + getID = '' + + if getID == 'headerfooter': + print genHeaderFooter(0) + elif getID == 'header': + print genHeaderFooter(1) + elif getID == 'footer': + print genHeaderFooter(2) + elif getID == 'databasemenu': + print genDatabaseMenu(public=0) + elif getID == 'datasample': + print genRISample() + else: + print genHeaderFooter(0) +else: + pass + diff --git a/web/webqtl/compareCorrelates/multitrait.py b/web/webqtl/compareCorrelates/multitrait.py new file mode 100755 index 00000000..047620af --- /dev/null +++ b/web/webqtl/compareCorrelates/multitrait.py @@ -0,0 +1,1121 @@ +# multitrait.py +# a tool to analyze the correlations between several different traits and the traits +# in a given dataset +# +# Parameters: +# correlation -- either "pearson" or "spearman" depending on which ones we want to use +# +# filename -- an input file containing the traits to analyze +# +# progress -- if set, this parameter outputs a static progress page +# and uses a META redirect to trigger the real computation +# +# targetDatabaseType: +# one of "ProbeSet", "Publish", "Genotype" depending on the type of database +# we will use for the analysis +# +# targetDatabaseId: +# the id (*Freeze.Id in the database) of the particular database we will analyze +# +# threshold -- a float between 0 and 1 to determine which coefficents we wil l consider +# +# firstRun -- either 0 or 1 +# whether to automatically pick reasonable defaults for the other three parameters +# +# outputType -- either "html" or "text" +# +# Author: Stephen Pitts +# June 15, 2004 + +#Xiaodong changed the dependancy structure + +import copy +import sys +import cgi +import os +import os.path +import math +import time +import numarray +import tempfile +import string +import cgitb #all tracebacks come out as HTMLified CGI,useful when we have a random crash in the middle + +from base import templatePage +from base.webqtlTrait import webqtlTrait +from utility import webqtlUtil +from base import webqtlConfig +import trait +import correlation +import htmlModule + +cgitb.enable() + + +# where this program's data files are +RootDir = webqtlConfig.IMGDIR # XZ, 09/10/2008: add module name 'webqtlConfig.' +RootDirURL = "/image/" # XZ, 09/10/2008: This parameter is not used in this module + +tempfile.tempdir = RootDir +tempfile.template = "multitrait" + +# MultitraitException: used if something goes wrong +# maybe in the future we should make exceptions more granular +class MultitraitException(Exception): + def __init__(self, message): + self.message = message + + def __repr__(self): + return "MultitraitException: %s" % self.message + +# buildParamDict: Cursor -> ParamDict +# to process and validate CGI arguments +# see the comment at the top of this file for valid cgi +# parameters +def buildParamDict(cursor, fd): + params = {} + fs = fd.formdata #cgi.FieldStorage() + params["progress"] = fs.getfirst("progress", "0") + params["filename"] = fs.getfirst("filename", "") + if params["filename"] == "": + raise MultitraitException("Required parameter filename missing.") + + params["targetDatabase"] = fs.getfirst("targetDatabase", "U74Av2RMA_Raw_ProbeSet_March04") + params["firstRun"] = webqtlUtil.safeInt(fs.getfirst("firstRun", "0"),0) + params["threshold"] = webqtlUtil.safeFloat(fs.getfirst("threshold", "0.5"), 0.5) + params["subsetSize"] = webqtlUtil.safeInt(fs.getfirst("subsetSize", "10"), 10) + + if params["subsetSize"] < -1: + params["subsetSize"] = -1 + + params["correlation"] = fs.getfirst("correlation", "pearson") + params["subsetCount"] = webqtlUtil.safeInt(fs.getfirst("subsetCount", 10), 10) + + if params["subsetCount"] < -1: + params["subsetCount"] = -1 + + #params["outputType"] = fs.getfirst("outputType", "html") + + #if params["outputType"] not in ("html", "text"): + # params["outputType"] = "html" + + if params["correlation"] not in ("pearson", "spearman"): + params["correlation"] = "pearson" + + params["correlationName"] = params["correlation"].capitalize() + + # one of two cases: + # 1) We have just come from a submit, so there are a bunch of display* + # but no displaySets. Thus, the code down there converts the display* + # to displaySets so the GET request doesn't get too long + # 2) We have just been redirected from a progress page which already has + # a converted displaySets for us. + + displaySets = webqtlUtil.safeInt(fs.getfirst("displaySets","0"), 0) + + if displaySets == 0: + for key in fs.keys(): + if key[:7] == "display": + #print "Hit display key %s
      " % key + try: + whichSet = int(key[7:]) + + # prevent malicious attacks + whichSet = min(whichSet, 512) + displaySets += pow(2, whichSet) + + except ValueError: pass + + params["displaySets"] = displaySets + #print "In the beginning, display sets was %s: %s
      " % (displaySets, + # str(binaryDecompose(displaySets))) + + # if we are just gonna display a progress page, then there's no + # reason to look up detailed database information + #if params["progress"] == "1": + # return params + + a,b = trait.dbNameToTypeId(cursor, params["targetDatabase"]) # XZ, 09/10/2008: add module name + params["targetDatabaseType"] = a + params["targetDatabaseId"] = b + params["targetDatabaseName"] = params["targetDatabase"] + + return params + +# readInputFile: DB cursor -> string -> string, (arrayof Trait) +def readInputFile(cursor, filename): + """ + To read an input file with n lines in the following format + ,, + and retrieve and populate traits with appropriate data + from the database + + Also, for our purposes. we store the database type and + database id in fields attached to the trait instances. We use + this information to generate Javascript popups with trait + information. + + In addition, we read the strain of mice that the traits are + from so we can only show those databases to correlate against. + """ + handle = open(filename) + line = handle.readline() + inbredSetName = line.strip() + line = handle.readline() + traits = [] + +# XZ, 09/10/2008: In this while loop block, I changed the original variable name 'trait' to 'oneTrait' + while line != "": + line = line.strip() + dbType, dbId, tName = line.split(",") + + if dbType == "ProbeSet": + oneTrait = trait.queryProbeSetTraitByName(cursor, tName) # XZ, 09/10/2008: add module name + oneTrait.populateDataId(cursor, dbId) + oneTrait.dbName = trait.dbTypeIdToName(cursor, dbType, dbId) # XZ, 09/10/2008: add module name + elif dbType == "Geno": + speciesId = trait.getSpeciesIdByDbTypeId(cursor, dbType, dbId) + oneTrait = trait.queryGenotypeTraitByName(cursor, speciesId, tName) # XZ, 09/10/2008: add module name + oneTrait.populateDataId(cursor, dbId) + oneTrait.dbName = trait.dbTypeIdToName(cursor, dbType, dbId) # XZ, 09/10/2008: add module name + elif dbType == "Publish": + oneTrait = trait.queryPublishTraitByName(cursor, dbId, tName) # XZ, 09/10/2008: add module name + oneTrait.populateDataId(cursor, dbId) + oneTrait.dbName = trait.dbTypeIdToName(cursor, dbType, dbId) # XZ, 09/10/2008: add module name + elif dbType == "Temp": + oneTrait = trait.queryTempTraitByName(cursor, tName) # XZ, 09/10/2008: add module name + oneTrait.populateDataId(cursor, dbId) + oneTrait.dbName = "Temp" + + oneTrait.populateStrainData(cursor) + traits.append(oneTrait) + + line = handle.readline() + + return inbredSetName, traits + +# loadDatabase: Cursor -> ParamDict -> arrayof Trait +def loadDatabase(cursor, p): + """ + To load a set of traits as specified by the + targetDatabaseId + and targetDatabaseType parameters + + Cursor should be a fastCursor from the webqtl library (i.e. + a MySQLdb SSCursor). + + Calling populateStrainData 20,000 or so times on a ProbeSet + is really inefficent, so I wrote an optimized queryPopulatedProbeSetTraits + in the trait module that uses a join to get all of the rows in + bulk, store the resultset on the server, and do all sorts of nice buffering. + It's about two or three times faster. + """ + if p["targetDatabaseType"] == "ProbeSet": # XZ, 09/10/2008: add module name + dbTraits = trait.queryPopulatedProbeSetTraits(cursor, + p["targetDatabaseId"]) + elif p["targetDatabaseType"] == "Publish": # XZ, 09/10/2008: add module name + dbTraits = trait.queryPublishTraits(cursor, + p["targetDatabaseId"]) + psd = trait.PublishTrait.populateStrainData + elif p["targetDatabaseType"] == "Geno": # XZ, 09/10/2008: add module name + dbTraits = trait.queryGenotypeTraits(cursor, + p["targetDatabaseId"]) + psd = trait.GenotypeTrait.populateStrainData + else: + print "Unknown target database type %s" % p["targetDatabaseType"] + + if p["targetDatabaseType"] != "ProbeSet": + map(psd, dbTraits, [cursor]*len(dbTraits)) + + return dbTraits + +def runProbeSetCorrelations(cursor, p, traits): + """ + To run the correlations between the traits and the database. + This function computes a correlation coefficent between each + trait and every entry in the database, and partitions the database + into a disjoint array of arrays which it returns. + + The length of the return array is 2^n, where n is the length of + the trait array. Which constitutent element a of the return array + a given trait ends up in is determined by the following formula + i = i_02^0 + ... + i_(n-1)2^(n-1) + where i_0 is 1 if corr(a,trait 0) >= threshold and 0 otherwise + + Since most of the several thousand database traits will end up + with i=0, we don't return them, so the first element of the + return array will be empty. + + A particular element of subarray j of the return array contains + a 2-tuple (trait,kvalues). The variable trait is obviously the + particular database trait that matches the user traits l_1, ..., l_m + to which subarray j corresponds. kvalues is a list of the correlation + values linking trait to l_1, ..., l_m, so the length of kvalues is + the number of 1s in the binary representation of j (there must be + a better way to describe this length). + + The return array is an array of 2-tuples. The first element of + each tuple is the index of the particular subarray, and the second + element is the subarray itself. The array is sorted in descending + order by the number of 1's in the binary representation of the + index so the first few subarrays are the ones that correspond to + the largest sets. Each subarray is then sorted by the average of + the magnitude of the individual correlation values. + """ + + kMin = p["threshold"] + traitArrays = {} + + # TODO: Add Spearman support + freezeId = p["targetDatabaseId"] + if p["correlation"] == "pearson": + correlations = correlation.calcProbeSetPearsonMatrix(cursor, freezeId, traits) #XZ, 09/10/2008: add module name + else: + correlations = correlation.calcProbeSetSpearmanMatrix(freezeId, traits) #XZ, 09/10/2008: add module name + + # now we test all of the correlations in bulk + test = numarray.absolute(correlations) + test = numarray.greater_equal(test, kMin) + test = test.astype(numarray.Int8) + #print test + + db = trait.queryProbeSetTraits(cursor, freezeId) #XZ, 09/10/2008: add module name + for i in range(len(db)): + cIndex = 0 + prods = [] + for j in range(len(traits)): + if test[i,j] == 1: + cIndex += pow(2, j) + prods.append(correlations[i,j]) + if cIndex != 0: + if not traitArrays.has_key(cIndex): + traitArrays[cIndex] = [] + + traitArrays[cIndex].append((db[i], prods)) + + + # sort each inner list of traitArrays + # so the matched traits appear in descending order by the + # average magnitude of the correlation + def customCmp(traitPair, traitPair2): + magAvg1 = numarray.average(map(abs, traitPair[1])) + magAvg2 = numarray.average(map(abs, traitPair2[1])) + + # invert the sign to get descending order + return -cmp(magAvg1, magAvg2) + + for traitArray in traitArrays.values(): + traitArray.sort(customCmp) + + # sort the outer list of traitArrays + traitArrays2 = [] + i = 0 + for key in traitArrays.keys(): + a = traitArrays[key] + if len(a) > 0: + traitArrays2.append((key,a,len(binaryDecompose(key)), + len(a))) + + # we sort by the number of 1's in the binary output + # and then by the size of the list, both in descending order + def customCmp2(aL,bL): + a = -cmp(aL[2], bL[2]) + if a == 0: + return -cmp(aL[3], bL[3]) + else: + return a + + traitArrays2.sort(customCmp2) + + return traitArrays2 + +def runCorrelations(p, strainCount, traits, db): + """ + To run the correlations between the traits and the database. + This function computes a correlation coefficent between each + trait and every entry in the database, and partitions the database + into a disjoint array of arrays which it returns. + + The length of the return array is 2^n, where n is the length of + the trait array. Which constitutent element a of the return array + a given trait ends up in is determined by the following formula + i = i_02^0 + ... + i_(n-1)2^(n-1) + where i_0 is 1 if corr(a,trait 0) >= threshold and 0 otherwise + + Since most of the several thousand database traits will end up + with i=0, we don't return them, so the first element of the + return array will be empty. + + A particular element of subarray j of the return array contains + a 2-tuple (trait,kvalues). The variable trait is obviously the + particular database trait that matches the user traits l_1, ..., l_m + to which subarray j corresponds. kvalues is a list of the correlation + values linking trait to l_1, ..., l_m, so the length of kvalues is + the number of 1s in the binary representation of j (there must be + a better way to describe this length). + + The return array is an array of 2-tuples. The first element of + each tuple is the index of the particular subarray, and the second + element is the subarray itself. The array is sorted in descending + order by the number of 1's in the binary representation of the + index so the first few subarrays are the ones that correspond to + the largest sets. Each subarray is then sorted by the average of + the magnitude of the individual correlation values. + """ + kMin = p["threshold"] + traitArrays = {} + + # TODO: Add Spearman support + if p["correlation"] == "pearson": + correlations = correlation.calcPearsonMatrix(db, traits, strainCount) #XZ, 09/10/2008: add module name + else: + correlations = correlation.calcSpearmanMatrix(db, traits, strainCount) #XZ, 09/10/2008: add module name + + # now we test all of the correlations in bulk + test = numarray.absolute(correlations) + test = numarray.greater_equal(test, kMin) + test = test.astype(numarray.Int8) + #print test + + + for i in range(len(db)): + cIndex = 0 + prods = [] + for j in range(len(traits)): + if test[i,j] == 1: + cIndex += pow(2, j) + prods.append(correlations[i,j]) + if cIndex != 0: + if not traitArrays.has_key(cIndex): + traitArrays[cIndex] = [] + + traitArrays[cIndex].append((db[i], prods)) + + # sort each inner list of traitArrays + # so the matched traits appear in descending order by the + # average magnitude of the correlation + def customCmp(traitPair, traitPair2): + magAvg1 = numarray.average(map(abs, traitPair[1])) + magAvg2 = numarray.average(map(abs, traitPair2[1])) + + # invert the sign to get descending order + return -cmp(magAvg1, magAvg2) + + for traitArray in traitArrays.values(): + traitArray.sort(customCmp) + + # sort the outer list of traitArrays + traitArrays2 = [] + i = 0 + for key in traitArrays.keys(): + a = traitArrays[key] + if len(a) > 0: + traitArrays2.append((key,a,len(binaryDecompose(key)), + len(a))) + + # we sort by the number of 1's in the binary output + # and then by the size of the list, both in descending order + def customCmp2(aL,bL): + a = -cmp(aL[2], bL[2]) + if a == 0: + return -cmp(aL[3], bL[3]) + else: + return a + + traitArrays2.sort(customCmp2) + + return traitArrays2 + + +# XZ, 09/09/2008: In multiple trait correlation result page, +# XZ, 09/09/2008: click "Download a text version of the above results in CSV format" + +# TraitCorrelationText: a class to display trait correlations +# as textual output +class TraitCorrelationText: + # build a text shell to describe the given trait correlations + # this method sets self.output; use str(self) to actually + # get the text page + # + # traits is a list of traits and traitArray is a + # list of 3-tuples: index, traits', garbage + # where index is a binary-encoded description of which subset of + # traits the list traits' matches + # + # traits' is a list of 3-tuples as well: trait, correlations, garbage + # where trait is a particular trait and correlations is a list of float + # correlations (matching traits above) + def __init__(self, p, traits, traitArray): + output = "Correlation Comparison\n" + output += "from WebQTL and the University of Tennessee Health Science Center\n" + output += "initiated at " + time.asctime(time.gmtime()) + " UTC\n\n" + + output += self.showOptionPanel(p) + output += self.showSelectedTraits(traits) + output += self.showSummaryCorrelationResults(p, traits, traitArray) + output += self.showDetailedCorrelationResults(p, traits, traitArray) + + self.output = output + + # showOptionPanel: ParamDict -> string + # to display the options used to run this correlation + def showOptionPanel(self, params): + output = "Correlation Comparison Options:\n" + output += "Target database,%s\n" % params["targetDatabase"] + output += "Correlation type,%s\n" % params["correlationName"] + output += "Threshold,%f\n" % params["threshold"] + #output += "Subsets to Show,%d\n" % params["subsetCount"] + #output += "Traits to Show Per Subset,%d\n\n" % params["subsetSize"] + return output + + # showSelectedTraits: (listof Trait) -> string + # to display the traits compared with the database + # note: we can't use tabular output because the traits could be of + # different types and produce different fields + def showSelectedTraits(self, traits): + output = "Selected Traits:\n" + for trait in traits: + output += '"' + trait.longName() + '"' + "\n" + output += "\n" + return output + + # showSummaryCorrelationResults: ParamDict -> (listof Trait) -> + # TraitArray -> string + # see comment for __init__ for a description of TraitArray + # + # to show a summary (sets and sizes) of the correlation results + # as well as an X to indicate whether they will be included + # in the detailed output + def showSummaryCorrelationResults(self, p, traits, traitArray): + output = "Correlation Comparison Summary:\n" + + #if p["subsetCount"] != -1: + # ourSubsetCount = min(p["subsetCount"], len(traitArray)) + #else: + + ourSubsetCount = len(traitArray) + + displayDecomposition = binaryDecompose(p["displaySets"]) + for j in range(ourSubsetCount): + i = traitArray[j][0] + traitSubarray = traitArray[j][1] + if len(traitSubarray) == 0: + continue + + targetTraits = decomposeIndex(traits, i) + traitDesc = string.join(map(trait.Trait.shortName, targetTraits), # XZ, 09/10/2008: add module name + ", ") + if j in displayDecomposition: + checked = "X" + else: + checked = "" + + output += '"%s","%s","%d"\n' % (checked, traitDesc, len(traitSubarray)) + + output += "\n" + return output + + # showDetailedCorrelationResults: ParamDict -> (listof Trait) -> + # TraitArray -> string + # + # to show a detailed list of the correlation results; that is, + # to completely enumerate each subset of traitArray using the + # filtering parameters in p + def showDetailedCorrelationResults(self, p, traits, traitArray): + output = "Correlation Comparison Details:\n" + displayDecomposition = binaryDecompose(p["displaySets"]) + displayDecomposition.sort() + + def formatCorr(c): + return "%.4f" % c + + for j in displayDecomposition: + i = traitArray[j][0] + traitSubarray = traitArray[j][1] + + if len(traitSubarray) == 0: + continue + + targetTraits = decomposeIndex(traits, i) + extraColumnHeaders = map(trait.Trait.shortName, targetTraits) # XZ, 09/10/2008: add module name + traitDesc = string.join(extraColumnHeaders, ", ") + + #if(p["subsetSize"] != -1 and len(traitSubarray) > p["subsetSize"]): + # traitDesc += ",(showing top %s of %s)" % (p["subsetSize"], + # len(traitSubarray)) + # traitSubarray = traitSubarray[0:p["subsetSize"]] + + output += "%s\n" % traitDesc + output += traitSubarray[0][0].csvHeader([], extraColumnHeaders) + output += "\n" + for oneTrait, corr in traitSubarray:#XZ, 09/10/2008: change original variable name 'trait' to 'oneTrait' + corr = map(formatCorr, corr) + output += oneTrait.csvRow([], corr) + "\n" + + output += "\n" + + return output + + # __str__ : string + # to return self.output as the string representation of this page + # self.output is built in __init__ + def __str__(self): + return self.output + +# TraitCorrelationPage: a class to display trait correlations +# for now this is just one HTML file, so we don't even write it +# to a temporary file somewhere +class TraitCorrelationPage(templatePage.templatePage): + """ + Using the templatePage class, we build an HTML shell for + the core data here: the trait correlation lists. + + The way templatePage works, we build the page in pieces in + the __init__ method and later on use the inherited write + method to render the page. + """ + def __init__(self, fd, p, cursor, traits, traitArray, inbredSetName, txtFilename): + + templatePage.templatePage.__init__(self, fd) + + self.dict["title"] = "Correlation Comparison" + self.dict["basehref"] = "" + # NL: deleted js1 content part, since it has not been used in this project + self.dict["js1"] = "" + self.dict["js2"] = "" + + body = "

      Correlation Comparison

      " + body += "

      Run at %s UTC

      " % time.asctime(time.gmtime()) + body += """ +

      The correlation comparison tool identifies intersecting sets of traits that are +correlated with your selections at a specified threshold. A correlation comparison +involves the following steps:

      +
        +
      1. +Correlate: +Choose a Target Database, a Correlation Type, and a Correlation +Threshold. For your initial correlation, leave Number of Subsets to Show and +Traits to Show per Subset at their default values of 10. Using the Correlation +Options panel, you can adjust the Correlation Threshold, Number of Subsets to +Show, and Traits to Show per Subset. +

      2. + +
      3. +Add to Collection: +You can use the check boxes in the Correlation +Comparison Details panel and the buttons at the bottom of the page to add these +results to your selections page for further analysis in WebQTL. +

      4. + +
      5. +Filter: +Using the Correlation Comparison Summary panel, choose which +subsets you would like to display for export. Note that if you change the +parameters in the Correlation Options panel, you will need to re-apply your filter. +

      6. + +
      7. +Export: +Once you are satisfied with your report, use the export link at +the bottom of the page to save the report as a comma-separated (CSV) text file +which you can then import into Excel or another tool. Note: the exported report +will list all subsets in the summary view and only those traits in the subsets +you have selected in the Filter step. +

      8. +
      +""" + +# body += """ +#

      The correlation +# comparison tool identifies the intersecting sets of traits that are +# correlated with your selections. A correlation comparison involves +# the following steps:

      +#
        +#
      1. Correlate: Choose a Target Database, a Correlation Type, and a Correlation Threshold. +# For the initial correlation, leave Subsets to Show and Traits to Show per Subset +# at their default values of 10.

      2. +#
      3. Refine Correlation: Using the Correlation Options panel, +# adjust the Correlation Threshold, Subsets to Show, and Traits to +# Show per Subset until you have a reasonable number of traits.

      4. +#
      5. Filter: Using the Correlation Comparison Summary panel, choose which subsets you would +# like to see. Note that if you change the parameters in the Correlation Options panel, you will +# loose the filter you have selected.

      6. +#
      7. Export: Once you are satisfied with your report, use the export +# link at the bottom of the page to save the report as a comma-separated (CSV) text file which +# you can then import into Excel or another tool. Note: the exported report +# will show all subsets in the summary view and all traits in each subset you have +# selected in the Filter step. +#

      8. Shopping Cart: In addition, you can use the +# check boxes in the Correlation Comparison Details panel and the +# buttons at the bottom of the page to add the traits you have found to the shopping cart.

        +#
      9. +#
      +# """ + + body += self.showOptionPanel(p, cursor, inbredSetName) + body += self.showSelectedTraits(traits, p, inbredSetName) + + if p["firstRun"] == 0: + body += self.showCorrelationResults(p, inbredSetName, traits, traitArray) + + exportParams = copy.copy(p) + exportParams["outputType"] = "text" + + body += (''' +

      Export these results

      +

      + Download a text version of the above results in CSV format. This text version differs from + the version you see on this page in two ways. First, the summary view shows all subsets. Second, the details + view shows all traits in the subsets that you have selected. +

      + ''' + % txtFilename) + + + + body += "
      + + " + + corrSelected = ["",""] + + if params["correlation"] == "pearson": + corrSelected[0] = "SELECTED" + else: + corrSelected[1] = "SELECTED" + + output += (''' + + + + ''' % (corrSelected[0], corrSelected[1])) + output += ('' + % params["threshold"]) + output += ('' + % params["subsetCount"]) + output += ('' + % params["subsetSize"]) + + # a cosmetic change to hopefully make this form a bit easier to use +# if params["firstRun"] == 1: +# applyName = "Correlate" +# else: +# applyName = "Refine Correlation" + + output += ''' + + + +
      Target Database: + ''' % (webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE, params["filename"]) + + output += htmlModule.genDatabaseMenu(db = cursor, + public=0, + RISetgp = inbredSetName, + selectname="targetDatabase", + selected=params["targetDatabase"]) + output += "
      Correlation Method:
      Correlation Threshold:
      Subsets to Show (-1 to show all subsets):
      Traits to Show per Subset (-1 to show all traits):
      + + ''' + + return output + + # showSelectedTraits: listof Trait -> string + # to show a list of the selected traits + def showSelectedTraits(self, traits, p, inbredSetName): + output = ''' +
      + + + + + + + + + + + + + + ''' % (webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE, inbredSetName) + + output += "

      Selected Traits

      " + output += '' + flip = 1 + colors = ["FFFFFF", "cccccc"] + + for trait in traits: + # we take advantage of the secret dbName attribute that + # loadDatabase fills in + descriptionString = trait.genHTML() + if trait.db.type == 'Publish' and trait.confidential: + descriptionString = trait.genHTML(privilege=self.privilege, userName=self.userName, authorized_users=trait.authorized_users) + output += ''' + + + + ''' % (colors[flip], trait.db.name, trait.db.name, trait.db.name, trait.name, descriptionString) + flip = not flip + + output += "
      DatabaseTrait
      %s%s
      " + return output + + + # showSummaryCorrelationResults + # show just the number of traits in each subarray + def showSummaryCorrelationResults(self, p, traits, traitArray): + output = ''' +
      + + + + + + + + + + + ''' % (webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE, p["filename"], p["correlation"], p["threshold"], + p["subsetCount"], p["subsetSize"], p["targetDatabase"]) + + output += ''' + + + + + + ''' + # figure out a scale for the summary graph + # for now we set max = 300 pixels wide + if p["subsetCount"] != -1: + ourSubsetCount = min(p["subsetCount"], len(traitArray)) + else: + ourSubsetCount = len(traitArray) + + screenWidth = 600 + lengths = [] + for j in range(ourSubsetCount): + lengths.append(len(traitArray[j][1])) + maxLength = max(lengths) + + displayDecomposition = binaryDecompose(p["displaySets"]) + flip = 0 + colors = ["FFFFFF", "cccccc"] + + for j in range(ourSubsetCount): + i = traitArray[j][0] + traitSubarray = traitArray[j][1] + + if len(traitSubarray) == 0: + continue + + targetTraits = decomposeIndex(traits, i) + traitDesc = string.join(map(webqtlTrait.displayName, targetTraits), + ", ") + + if j in displayDecomposition: + checked = "CHECKED" + else: + checked = "" + + barWidth = (len(traitSubarray) * screenWidth) / maxLength + output += (''' + + + ''' + % (colors[flip], j, checked, traitDesc, len(traitSubarray), barWidth)) + flip = not flip + + output += ''' + + + +
      Trait SubsetsIntersecting Set Size
      %s%s
      +
      + ''' + return output + + # showDetailedCorrelationResults + # actually show the traits in each subarray + def showDetailedCorrelationResults(self, p, inbredSetName, traits, + traitArray): + output = "

      Correlation Comparison Details

      " + + # the hidden form below powers all of the JavaScript links, + # the shopping cart links, and the correlation plot links + + output += ''' +
      + + + + + + + + + + + + + + ''' % (webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE, p["targetDatabase"], inbredSetName) + + + displayDecomposition = binaryDecompose(p["displaySets"]) + + # necessary to ensure that subset order is the same in the + # summary and the detailed view + displayDecomposition.sort() + + # here's a trick: the first trait we show must have the widest row because it correlates + # with the largest set of input traits + firstSubset = traitArray[displayDecomposition[0]] + firstTrait = firstSubset[1][0][0] + extraColumnCount = firstSubset[2] + totalColumnCount = 1 + len(firstTrait.row()) + extraColumnCount + + output += "\n" + for j in displayDecomposition: + i = traitArray[j][0] + traitSubarray = traitArray[j][1] + + # we don't display trait combinations for which there are + # no correlations + if len(traitSubarray) == 0: + continue + + # generate a description of the traits that this particular array + # matches highly + targetTraits = decomposeIndex(traits, i) + extraColumnHeaders = map(webqtlTrait.displayName, targetTraits) + traitDesc = string.join(extraColumnHeaders, ", ") + + # massage extraColumnHeaders so that they can be wrapped + for i in range(len(extraColumnHeaders)): + ech = extraColumnHeaders[i] + ech = ech.replace("-", " ") + ech = ech.replace("_", " ") + extraColumnHeaders[i] = ech + + # pad extraColumnHeaders if we have less columns than the max + paddingNeeded = extraColumnCount - len(extraColumnHeaders) + if paddingNeeded > 0: + extraColumnHeaders.extend(paddingNeeded * [" "]) + + # we limit the output to the top ones + if(p["subsetSize"] != -1 and len(traitSubarray) > p["subsetSize"]): + traitDesc += " (showing top %s of %s)" % (p["subsetSize"], len(traitSubarray)) + traitSubarray = traitSubarray[0:p["subsetSize"]] + + # combine that description with actual database traits themselves + # and the correlation values + output += '' % (totalColumnCount, traitDesc) + #output += '

      %s

      \n

      %s

      \n'% traitDesc + + # we assume that every trait in traitSubarray is the same type + # of trait + flip = 0 + colors = ["FFFFFF", "cccccc"] + + output += traitSubarray[0][0].tableRowHeader([" "], extraColumnHeaders, colors[0]) + + for traitPair in traitSubarray: + corr = [] + traitPair[0].dbName = p['targetDatabase'] + trait = traitPair[0] + + for i in range(len(traitPair[1])): + corrValue = traitPair[1][i] + corrPlotLink = (''' + %.2f + ''' % (p["targetDatabaseName"], trait.name, targetTraits[i].db.name, targetTraits[i].name, "0", corrValue)) + corr.append(corrPlotLink) + + corr.extend(paddingNeeded * [" "]) + + checkbox = ('' + % (p["targetDatabaseName"], trait.name)) + flip = not flip + output += traitPair[0].tableRow([checkbox], corr, colors[flip]) + + #output += "
      " + i += 1 + output += '
       
      " + + # print form buttons if there were checkboxes above + output += ''' +
      + + + +
      + + ''' % inbredSetName + + return output + + # showCorrelationResults: ParamDict -> listof Trait -> tupleof (int,arrayof trait) -> String + # to build an output display for the multitrait correlation results + def showCorrelationResults(self, p, inbredSetName, traits, traitArray): + output = ''' +

      Correlation Comparison Summary

      +

      + %s correlations were computed for each of the selected traits with each trait in + the %s database. + Subsets of database traits for which correlations were higher than %s + or lower than -%s are shown below based on which traits + they correlated highly with. The top %s subsets, ranked by the number of input traits that + they correspond with, are shown, and at most %s traits in each subset are shown.

      + ''' % (p["correlationName"], + p["targetDatabase"], p["targetDatabaseName"], + p["threshold"], p["threshold"], p["subsetCount"], + p["subsetSize"]) + + + totalTraits = 0 + for j in range(len(traitArray)): + totalTraits += len(traitArray[j][1]) + + if totalTraits == 0: + output += """ +

      + No shared corrrelates were found with your given traits at this + threshold. You may wish to lower the correlation threshold or choose different traits. +

      + """ + else: + output += self.showSummaryCorrelationResults(p, traits, traitArray) + output += self.showDetailedCorrelationResults(p, inbredSetName, + traits, traitArray) + + return output + +# decomposeIndex: (listof Trait) -> Int -> +# (listof Trait) +# to use i to partition T into a sublist +# each bit in i controls the inclusion or exclusion of a trait +def decomposeIndex(traits, i): + targetTraits = [] + + for j in range(len(traits)): + # look, mom, a bitwise and! + # expression below tests whether the jth bit is + # set in i + # see runCorrelation for how we decompose the + # array index + if (i & pow(2,j)) == pow(2,j): + targetTraits.append(traits[j]) + + return targetTraits + +# binaryDecompose: int -> (listof int) +# to decompose a number into its constituent powers of 2 +# returns a list of the exponents a_1...a_n such that the input m +# is m = 2^a_1 + ... + 2^a_n +def binaryDecompose(n): + if n == 0: + return [] + + # we start with the highest power of 2 <= this number + # and work our way down, subtracting powers of 2 + start = long(math.floor(math.log(n)/math.log(2))) + + exponents = [] + while start >= 0: + if n >= long(math.pow(2, start)): + n -= math.pow(2,start) + exponents.append(start) + start -= 1 + return exponents + +# powerOf : int -> int -> boolean +# to determine whether m is a power of n; +# more precisely, whether there exists z in Z s.t. +# n^z = m +def powerOf(m, n): + trialZ = math.floor(math.log(m)/math.log(n)) + return pow(n,trialZ) == m + + +class compCorrPage(templatePage.templatePage): + def __init__(self,fd): + templatePage.templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + cursor = self.cursor + params = buildParamDict(cursor, fd) + + # get the input data + inbredSetName, traits = readInputFile(cursor, RootDir + params["filename"]) + + # and what we are comparing the data to + dbTraits = [] + if params["targetDatabaseType"] != "ProbeSet": + dbTraits = loadDatabase(cursor, params) + + + # run the comparison itself + strainCount = trait.queryStrainCount(cursor) # XZ, 09/10/2008: add module name + if params["targetDatabaseType"] == "ProbeSet": + results = runProbeSetCorrelations(cursor, params, traits) + else: + results = runCorrelations(params, strainCount, traits, dbTraits) + + # try to be smart about what to output: + # we want to limit the number of traits shown, at least initially + # and since traitArray is already sorted with most interesting + # subsets first, we simply pick up the first 500 or so traits + # that we find + if params["displaySets"] == 0: + selectedTraits = 0 + for j in range(len(results)): + #print "Scanning subarray %d" % j + if selectedTraits <= 200: + params["displaySets"] += pow(2, j) + selectedTraits += len(results[j][1]) + + traitList = [] + for oneTrait in traits: # XZ, 09/10/2008: change the original variable name 'trait' to 'oneTrait' + traitName = oneTrait.dbName+'::'+oneTrait.name # XZ, 09/10/2008: change the original variable name 'trait' to 'oneTrait' + aTrait = webqtlTrait(cursor=self.cursor, fullname=traitName) + traitList.append(aTrait) + + # and generate some output + txtOutputFilename = tempfile.mktemp() + txtOutputHandle = open(txtOutputFilename, "w") + txtOutput = TraitCorrelationText(params, traits, results) + txtOutputHandle.write(str(txtOutput)) + txtOutputHandle.close() + txtOutputFilename = os.path.split(txtOutputFilename)[1] + + self.dict['body'] = TraitCorrelationPage(fd, params, cursor, traitList, + results, inbredSetName, + txtOutputFilename).dict['body'] diff --git a/web/webqtl/compareCorrelates/trait.py b/web/webqtl/compareCorrelates/trait.py new file mode 100755 index 00000000..ff1f8119 --- /dev/null +++ b/web/webqtl/compareCorrelates/trait.py @@ -0,0 +1,1074 @@ +#Trait.py +# +#--Individual functions are already annotated, more or less. +# +#Classes: +#RawPoint +#Trait +#ProbeSetTrait +#GenotypeTrait +#PublishTrait +#TempTrait +#-KA + +# trait.py: a data structure to represent a trait +import time +import string + +CONFIG_pubMedLinkURL = "http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=%s&dopt=Abstract" + +# RawPoint: to store information about the relationship between two particular +# traits +# RawPoint represents directly the input file +class RawPoint: + def __init__(self, i, j): + self.i = i + self.j = j + + def __eq__(self, other): + return (self.i == other.i and + self.j == other.j and + self.spearman == other.spearman and + self.pearson == other.pearson) + + def __str__(self): + return "(%s,%s,%s,%s)" % (self.i, self.j, self.spearman, self.pearson) + +def tdEscapeList(cols, align="left"): + """ + A helper function used by tableRow + in Trait that will convert a list of strings into a set of + table cells enclosed by
      %s%s%s%s
      + + + +
      + + + + + + + +
      + Sort Table +
      + +Resorting this table
      + +
      +
      + + + + """ + + return layerString + + + #XZ, 01/07/2009: In HTML code, the variable 'database' corresponds to the column 'Name' in database table. + def getFileName(self, target_db_name): ### dcrowell August 2008 + """Returns the name of the reference database file with which correlations are calculated. + Takes argument cursor which is a cursor object of any instance of a subclass of templatePage + Used by correlationPage""" + + query = 'SELECT Id, FullName FROM ProbeSetFreeze WHERE Name = "%s"' % target_db_name + self.cursor.execute(query) + result = self.cursor.fetchone() + Id = result[0] + FullName = result[1] + FullName = FullName.replace(' ','_') + FullName = FullName.replace('/','_') + + FileName = 'ProbeSetFreezeId_' + str(Id) + '_FullName_' + FullName + '.txt' + + return FileName + + + #XZ, 01/29/2009: I modified this function. + #XZ: Note that the type of StrainIds must be number, not string. + def getStrainIds(self, species=None, strains=[]): + StrainIds = [] + for item in strains: + self.cursor.execute('''SELECT Strain.Id FROM Strain, Species WHERE + Strain.Name="%s" and Strain.SpeciesId=Species.Id and Species.name = "%s" ''' % (item, species)) + Id = self.cursor.fetchone()[0] + StrainIds.append(Id) + + return StrainIds + + + #XZ, 12/12/2008: if the species is rat or human, translate the geneid to mouse geneid + #XZ, 12/12/2008: if the input geneid is 'None', return 0 + #XZ, 12/12/2008: if the input geneid has no corresponding mouse geneid, return 0 + def translateToMouseGeneID (self, species, geneid): + mouse_geneid = 0; + + #if input geneid is None, return 0. + if not geneid: + return mouse_geneid + + if species == 'mouse': + mouse_geneid = geneid + elif species == 'rat': + self.cursor.execute( "SELECT mouse FROM GeneIDXRef WHERE rat=%d" % int(geneid) ) + record = self.cursor.fetchone() + if record: + mouse_geneid = record[0] + elif species == 'human': + self.cursor.execute( "SELECT mouse FROM GeneIDXRef WHERE human=%d" % int(geneid) ) + record = self.cursor.fetchone() + if record: + mouse_geneid = record[0] + + return mouse_geneid + + + #XZ, 12/16/2008: the input geneid is of mouse type + def checkForLitInfo(self,geneId): + q = 'SELECT 1 FROM LCorrRamin3 WHERE GeneId1=%s LIMIT 1' % geneId + self.cursor.execute(q) + try: + x = self.cursor.fetchone() + if x: return True + else: raise + except: return False + + + #XZ, 12/16/2008: the input geneid is of mouse type + def checkSymbolForTissueCorr(self, tissueProbeSetFreezeId=0, symbol=""): + q = "SELECT 1 FROM TissueProbeSetXRef WHERE TissueProbeSetFreezeId=%s and Symbol='%s' LIMIT 1" % (tissueProbeSetFreezeId,symbol) + self.cursor.execute(q) + try: + x = self.cursor.fetchone() + if x: return True + else: raise + except: return False + + + + def fetchAllDatabaseData(self, species, GeneId, GeneSymbol, strains, db, method, returnNumber, tissueProbeSetFreezeId): + + StrainIds = [] + for item in strains: + self.cursor.execute('''SELECT Strain.Id FROM Strain, Species WHERE Strain.Name="%s" and Strain.SpeciesId=Species.Id and Species.name = "%s" ''' % (item, species)) + Id = self.cursor.fetchone()[0] + StrainIds.append('%d' % Id) + + # break it into smaller chunks so we don't overload the MySql server + nnn = len(StrainIds) / 25 + if len(StrainIds) % 25: + nnn += 1 + oridata = [] + + #XZ, 09/24/2008: build one temporary table that only contains the records associated with the input GeneId + tempTable = None + if GeneId and db.type == "ProbeSet": + if method == "3": + tempTable = self.getTempLiteratureTable(species=species, input_species_geneid=GeneId, returnNumber=returnNumber) + + if method == "4" or method == "5": + tempTable = self.getTempTissueCorrTable(primaryTraitSymbol=GeneSymbol, TissueProbeSetFreezeId=tissueProbeSetFreezeId, method=method, returnNumber=returnNumber) + + for step in range(nnn): + temp = [] + StrainIdstep = StrainIds[step*25:min(len(StrainIds), (step+1)*25)] + for item in StrainIdstep: temp.append('T%s.value' % item) + + if db.type == "Publish": + query = "SELECT PublishXRef.Id, " + dataStartPos = 1 + query += string.join(temp,', ') + query += ' FROM (PublishXRef, PublishFreeze)' + #XZ, 03/04/2009: Xiaodong changed Data to PublishData + for item in StrainIdstep: + query += 'left join PublishData as T%s on T%s.Id = PublishXRef.DataId and T%s.StrainId=%s\n' %(item,item,item,item) + query += "WHERE PublishXRef.InbredSetId = PublishFreeze.InbredSetId and PublishFreeze.Name = '%s'" % (db.name, ) + #XZ, 09/20/2008: extract literature correlation value together with gene expression values. + #XZ, 09/20/2008: notice the difference between the code in next block. + elif tempTable: + # we can get a little performance out of selecting our LitCorr here + # but also we need to do this because we are unconcerned with probes that have no geneId associated with them + # as we would not have litCorr data. + + if method == "3": + query = "SELECT %s.Name, %s.value," % (db.type,tempTable) + dataStartPos = 2 + if method == "4" or method == "5": + query = "SELECT %s.Name, %s.Correlation, %s.PValue," % (db.type,tempTable, tempTable) + dataStartPos = 3 + + query += string.join(temp,', ') + query += ' FROM (%s, %sXRef, %sFreeze)' % (db.type, db.type, db.type) + if method == "3": + query += ' LEFT JOIN %s ON %s.GeneId2=ProbeSet.GeneId ' % (tempTable,tempTable) + if method == "4" or method == "5": + query += ' LEFT JOIN %s ON %s.Symbol=ProbeSet.Symbol ' % (tempTable,tempTable) + #XZ, 03/04/2009: Xiaodong changed Data to %sData and changed parameters from %(item,item, db.type,item,item) to %(db.type, item,item, db.type,item,item) + for item in StrainIdstep: + query += 'left join %sData as T%s on T%s.Id = %sXRef.DataId and T%s.StrainId=%s\n' %(db.type, item,item, db.type,item,item) + + if method == "3": + query += "WHERE ProbeSet.GeneId IS NOT NULL AND %s.value IS NOT NULL AND %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (tempTable,db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type) + if method == "4" or method == "5": + query += "WHERE ProbeSet.Symbol IS NOT NULL AND %s.Correlation IS NOT NULL AND %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (tempTable,db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type) + else: + query = "SELECT %s.Name," % db.type + dataStartPos = 1 + query += string.join(temp,', ') + query += ' FROM (%s, %sXRef, %sFreeze)' % (db.type, db.type, db.type) + #XZ, 03/04/2009: Xiaodong changed Data to %sData and changed parameters from %(item,item, db.type,item,item) to %(db.type, item,item, db.type,item,item) + for item in StrainIdstep: + query += 'left join %sData as T%s on T%s.Id = %sXRef.DataId and T%s.StrainId=%s\n' %(db.type, item,item, db.type,item,item) + query += "WHERE %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type) + + self.cursor.execute(query) + results = self.cursor.fetchall() + oridata.append(results) + + datasize = len(oridata[0]) + traitdatabase = [] + # put all of the seperate data together into a huge list of lists + for j in range(datasize): + traitdata = list(oridata[0][j]) + for i in range(1,nnn): + traitdata += list(oridata[i][j][dataStartPos:]) + traitdatabase.append(traitdata) + + if tempTable: + self.cursor.execute( 'DROP TEMPORARY TABLE %s' % tempTable ) + + return traitdatabase, dataStartPos + + + # XZ, 09/20/2008: This function creates TEMPORARY TABLE tmpTableName_2 and return its name. + # XZ, 09/20/2008: It stores top literature correlation values associated with the input geneId. + # XZ, 09/20/2008: Attention: In each row, the input geneId is always in column GeneId1. + #XZ, 12/16/2008: the input geneid can be of mouse, rat or human type + def getTempLiteratureTable(self, species, input_species_geneid, returnNumber): + # according to mysql the TEMPORARY TABLE name should not have to be unique because + # it is only available to the current connection. This program will be invoked via command line, but if it + # were to be invoked over mod_python this could cuase problems. mod_python will keep the connection alive + # in its executing threads ( i think) so there is a potential for the table not being dropped between users. + #XZ, 01/29/2009: To prevent the potential risk, I generate random table names and drop the tables after use them. + + + # the 'input_species_geneid' could be rat or human geneid, need to translate it to mouse geneid + translated_mouse_geneid = self.translateToMouseGeneID (species, input_species_geneid) + + tmpTableName_1 = webqtlUtil.genRandStr(prefix="LITERATURE") + + q1 = 'CREATE TEMPORARY TABLE %s (GeneId1 int(12) unsigned, GeneId2 int(12) unsigned PRIMARY KEY, value double)' % tmpTableName_1 + q2 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId1,GeneId2,value FROM LCorrRamin3 WHERE GeneId1=%s' % (tmpTableName_1, translated_mouse_geneid) + q3 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId2,GeneId1,value FROM LCorrRamin3 WHERE GeneId2=%s AND GeneId1!=%s' % (tmpTableName_1, translated_mouse_geneid,translated_mouse_geneid) + for x in [q1,q2,q3]: self.cursor.execute(x) + + #XZ, 09/23/2008: Just use the top records insteard of using all records + tmpTableName_2 = webqtlUtil.genRandStr(prefix="TOPLITERATURE") + + q1 = 'CREATE TEMPORARY TABLE %s (GeneId1 int(12) unsigned, GeneId2 int(12) unsigned PRIMARY KEY, value double)' % tmpTableName_2 + self.cursor.execute(q1) + q2 = 'SELECT GeneId1, GeneId2, value FROM %s ORDER BY value DESC' % tmpTableName_1 + self.cursor.execute(q2) + result = self.cursor.fetchall() + + counter = 0 #this is to count how many records being inserted into table + for one_row in result: + mouse_geneid1, mouse_geneid2, lit_corr_alue = one_row + + #mouse_geneid1 has been tested before, now should test if mouse_geneid2 has corresponding geneid in other species + translated_species_geneid = 0 + if species == 'mouse': + translated_species_geneid = mouse_geneid2 + elif species == 'rat': + self.cursor.execute( "SELECT rat FROM GeneIDXRef WHERE mouse=%d" % int(mouse_geneid2) ) + record = self.cursor.fetchone() + if record: + translated_species_geneid = record[0] + elif species == 'human': + self.cursor.execute( "SELECT human FROM GeneIDXRef WHERE mouse=%d" % int(mouse_geneid2) ) + record = self.cursor.fetchone() + if record: + translated_species_geneid = record[0] + + if translated_species_geneid: + self.cursor.execute( 'INSERT INTO %s (GeneId1, GeneId2, value) VALUES (%d,%d,%f)' % (tmpTableName_2, int(input_species_geneid),int(translated_species_geneid), float(lit_corr_alue)) ) + counter = counter + 1 + + #pay attention to the number + if (counter > 2*returnNumber): + break + + self.cursor.execute('DROP TEMPORARY TABLE %s' % tmpTableName_1) + + return tmpTableName_2 + + + + #XZ, 09/23/2008: In tissue correlation tables, there is no record of GeneId1 == GeneId2 + #XZ, 09/24/2008: Note that the correlation value can be negative. + def getTempTissueCorrTable(self, primaryTraitSymbol="", TissueProbeSetFreezeId=0, method="", returnNumber=0): + + def cmpTissCorrAbsoluteValue(A, B): + try: + if abs(A[1]) < abs(B[1]): return 1 + elif abs(A[1]) == abs(B[1]): + return 0 + else: return -1 + except: + return 0 + + symbolCorrDict, symbolPvalueDict = self.calculateCorrOfAllTissueTrait(primaryTraitSymbol=primaryTraitSymbol, TissueProbeSetFreezeId=TissueProbeSetFreezeId, method=method) + + symbolCorrList = symbolCorrDict.items() + + symbolCorrList.sort(cmpTissCorrAbsoluteValue) + symbolCorrList = symbolCorrList[0 : 2*returnNumber] + + tmpTableName = webqtlUtil.genRandStr(prefix="TOPTISSUE") + + q1 = 'CREATE TEMPORARY TABLE %s (Symbol varchar(100) PRIMARY KEY, Correlation float, PValue float)' % tmpTableName + self.cursor.execute(q1) + + for one_pair in symbolCorrList: + one_symbol = one_pair[0] + one_corr = one_pair[1] + one_p_value = symbolPvalueDict[one_symbol] + + self.cursor.execute( "INSERT INTO %s (Symbol, Correlation, PValue) VALUES ('%s',%f,%f)" % (tmpTableName, one_symbol, float(one_corr), float(one_p_value)) ) + + return tmpTableName + + + #XZ, 01/09/2009: This function was created by David Crowell. Xiaodong cleaned up and modified it. + def fetchLitCorrelations(self, species, GeneId, db, returnNumber): ### Used to generate Lit Correlations when calculations are done from text file. dcrowell August 2008 + """Uses getTempLiteratureTable to generate table of literatire correlations. This function then gathers that data and + pairs it with the TraitID string. Takes as its arguments a formdata instance, and a database instance. + Returns a dictionary of 'TraitID':'LitCorr' for the requested correlation""" + + tempTable = self.getTempLiteratureTable(species=species, input_species_geneid=GeneId, returnNumber=returnNumber) + + query = "SELECT %s.Name, %s.value" % (db.type,tempTable) + query += ' FROM (%s, %sXRef, %sFreeze)' % (db.type, db.type, db.type) + query += ' LEFT JOIN %s ON %s.GeneId2=ProbeSet.GeneId ' % (tempTable,tempTable) + query += "WHERE ProbeSet.GeneId IS NOT NULL AND %s.value IS NOT NULL AND %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Name = '%s' and %s.Id = %sXRef.%sId order by %s.Id" % (tempTable, db.type, db.type, db.type, db.type, db.name, db.type, db.type, db.type, db.type) + + self.cursor.execute(query) + results = self.cursor.fetchall() + + litCorrDict = {} + + for entry in results: + traitName,litcorr = entry + litCorrDict[traitName] = litcorr + + self.cursor.execute('DROP TEMPORARY TABLE %s' % tempTable) + + return litCorrDict + + + + #XZ, 01/09/2009: Xiaodong created this function. + def fetchTissueCorrelations(self, db, primaryTraitSymbol="", TissueProbeSetFreezeId=0, method="", returnNumber = 0): + """Uses getTempTissueCorrTable to generate table of tissue correlations. This function then gathers that data and + pairs it with the TraitID string. Takes as its arguments a formdata instance, and a database instance. + Returns a dictionary of 'TraitID':(tissueCorr, tissuePValue) for the requested correlation""" + + + tempTable = self.getTempTissueCorrTable(primaryTraitSymbol=primaryTraitSymbol, TissueProbeSetFreezeId=TissueProbeSetFreezeId, method=method, returnNumber=returnNumber) + + query = "SELECT ProbeSet.Name, %s.Correlation, %s.PValue" % (tempTable, tempTable) + query += ' FROM (ProbeSet, ProbeSetXRef, ProbeSetFreeze)' + query += ' LEFT JOIN %s ON %s.Symbol=ProbeSet.Symbol ' % (tempTable,tempTable) + query += "WHERE ProbeSetFreeze.Name = '%s' and ProbeSetFreeze.Id=ProbeSetXRef.ProbeSetFreezeId and ProbeSet.Id = ProbeSetXRef.ProbeSetId and ProbeSet.Symbol IS NOT NULL AND %s.Correlation IS NOT NULL" % (db.name, tempTable) + + self.cursor.execute(query) + results = self.cursor.fetchall() + + tissueCorrDict = {} + + for entry in results: + traitName, tissueCorr, tissuePValue = entry + tissueCorrDict[traitName] = (tissueCorr, tissuePValue) + + self.cursor.execute('DROP TEMPORARY TABLE %s' % tempTable) + + return tissueCorrDict + + + + #XZ, 01/13/2008 + def getLiteratureCorrelationByList(self, input_trait_mouse_geneid=None, species=None, traitList=None): + + tmpTableName = webqtlUtil.genRandStr(prefix="LITERATURE") + + q1 = 'CREATE TEMPORARY TABLE %s (GeneId1 int(12) unsigned, GeneId2 int(12) unsigned PRIMARY KEY, value double)' % tmpTableName + q2 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId1,GeneId2,value FROM LCorrRamin3 WHERE GeneId1=%s' % (tmpTableName, input_trait_mouse_geneid) + q3 = 'INSERT INTO %s (GeneId1, GeneId2, value) SELECT GeneId2,GeneId1,value FROM LCorrRamin3 WHERE GeneId2=%s AND GeneId1!=%s' % (tmpTableName, input_trait_mouse_geneid, input_trait_mouse_geneid) + + for x in [q1,q2,q3]: + self.cursor.execute(x) + + for thisTrait in traitList: + try: + if thisTrait.geneid: + thisTrait.mouse_geneid = self.translateToMouseGeneID(species, thisTrait.geneid) + else: + thisTrait.mouse_geneid = 0 + except: + thisTrait.mouse_geneid = 0 + + if thisTrait.mouse_geneid and str(thisTrait.mouse_geneid).find(";") == -1: + try: + self.cursor.execute("SELECT value FROM %s WHERE GeneId2 = %s" % (tmpTableName, thisTrait.mouse_geneid)) + result = self.cursor.fetchone() + if result: + thisTrait.LCorr = result[0] + else: + thisTrait.LCorr = None + except: + thisTrait.LCorr = None + else: + thisTrait.LCorr = None + + self.cursor.execute("DROP TEMPORARY TABLE %s" % tmpTableName) + + return traitList + + + + def calculateCorrOfAllTissueTrait(self, primaryTraitSymbol=None, TissueProbeSetFreezeId=None, method=None): + + symbolCorrDict = {} + symbolPvalueDict = {} + + primaryTraitSymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=[primaryTraitSymbol], TissueProbeSetFreezeId=TissueProbeSetFreezeId) + primaryTraitValue = primaryTraitSymbolValueDict.values()[0] + + SymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=[], TissueProbeSetFreezeId=TissueProbeSetFreezeId) + + if method in ["2","5"]: + symbolCorrDict, symbolPvalueDict = correlationFunction.batchCalTissueCorr(primaryTraitValue,SymbolValueDict,method='spearman') + else: + symbolCorrDict, symbolPvalueDict = correlationFunction.batchCalTissueCorr(primaryTraitValue,SymbolValueDict) + + + return (symbolCorrDict, symbolPvalueDict) + + + + #XZ, 10/13/2010 + def getTissueCorrelationByList(self, primaryTraitSymbol=None, traitList=None, TissueProbeSetFreezeId=None, method=None): + + primaryTraitSymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=[primaryTraitSymbol], TissueProbeSetFreezeId=TissueProbeSetFreezeId) + + if primaryTraitSymbol.lower() in primaryTraitSymbolValueDict: + primaryTraitValue = primaryTraitSymbolValueDict[primaryTraitSymbol.lower()] + + geneSymbolList = [] + + for thisTrait in traitList: + if hasattr(thisTrait, 'symbol'): + geneSymbolList.append(thisTrait.symbol) + + SymbolValueDict = correlationFunction.getGeneSymbolTissueValueDictForTrait(cursor=self.cursor, GeneNameLst=geneSymbolList, TissueProbeSetFreezeId=TissueProbeSetFreezeId) + + for thisTrait in traitList: + if hasattr(thisTrait, 'symbol') and thisTrait.symbol and thisTrait.symbol.lower() in SymbolValueDict: + oneTraitValue = SymbolValueDict[thisTrait.symbol.lower()] + if method in ["2","5"]: + result = correlationFunction.calZeroOrderCorrForTiss( primaryTraitValue, oneTraitValue, method='spearman' ) + else: + result = correlationFunction.calZeroOrderCorrForTiss( primaryTraitValue, oneTraitValue) + thisTrait.tissueCorr = result[0] + thisTrait.tissuePValue = result[2] + else: + thisTrait.tissueCorr = None + thisTrait.tissuePValue = None + else: + for thisTrait in traitList: + thisTrait.tissueCorr = None + thisTrait.tissuePValue = None + + return traitList + + + def getTopInfo(self, myTrait=None, method=None, db=None, target_db_name=None, returnNumber=None, methodDict=None, totalTraits=None, identification=None ): + + if myTrait: + if method in ["1","2"]: #genetic correlation + info = HT.Paragraph("Values of Record %s in the " % myTrait.getGivenName(), HT.Href(text=myTrait.db.fullname,url=webqtlConfig.INFOPAGEHREF % myTrait.db.name,target="_blank", Class="fwn"), + " database were compared to all %d records in the " % totalTraits, HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank", Class="fwn"), + ' database. The top %d correlations ranked by the %s are displayed.' % (returnNumber,methodDict[method]), + ' You can resort this list using the small arrowheads in the top row.') + else: + #myTrait.retrieveInfo()#need to know geneid and symbol + if method == "3":#literature correlation + searchDBName = "Literature Correlation" + searchDBLink = "/correlationAnnotation.html#literatureCorr" + else: #tissue correlation + searchDBName = "Tissue Correlation" + searchDBLink = "/correlationAnnotation.html#tissueCorr" + info = HT.Paragraph("Your input record %s in the " % myTrait.getGivenName(), HT.Href(text=myTrait.db.fullname,url=webqtlConfig.INFOPAGEHREF % myTrait.db.name,target="_blank", Class="fwn"), + " database corresponds to ", + HT.Href(text='gene Id %s, and gene symbol %s' % (myTrait.geneid, myTrait.symbol), target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" % myTrait.geneid, Class="fs12 fwn"), + '. GN ranked all genes in the ', HT.Href(text=searchDBName,url=searchDBLink,target="_blank", Class="fwn"),' database by the %s.' % methodDict[method], + ' The top %d probes or probesets in the ' % returnNumber, HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank", Class="fwn"), + ' database corresponding to the top genes ranked by the %s are displayed.' %( methodDict[method]), + ' You can resort this list using the small arrowheads in the top row.' ) + + elif identification: + info = HT.Paragraph('Values of %s were compared to all %d traits in ' % (identification, totalTraits), + HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank",Class="fwn"), + ' database. The TOP %d correlations ranked by the %s are displayed.' % (returnNumber,methodDict[method]), + ' You can resort this list using the small arrowheads in the top row.') + + else: + info = HT.Paragraph('Trait values were compared to all values in ', + HT.Href(text=db.fullname,url=webqtlConfig.INFOPAGEHREF % target_db_name,target="_blank",Class="fwn"), + ' database. The TOP %d correlations ranked by the %s are displayed.' % (returnNumber,methodDict[method]), + ' You can resort this list using the small arrowheads in the top row.') + + if db.type=="Geno": + info.append(HT.BR(),HT.BR(),'Clicking on the Locus will open the genotypes data for that locus. Click on the correlation to see a scatter plot of the trait data.') + elif db.type=="Publish": + info.append(HT.BR(),HT.BR(),'Clicking on the record ID will open the published phenotype data for that publication. Click on the correlation to see a scatter plot of the trait data. ') + elif db.type=="ProbeSet": + info.append(HT.BR(),'Click the correlation values to generate scatter plots. Select the Record ID to open the Trait Data and Analysis form. Select the symbol to open NCBI Entrez.') + else: + pass + + + return info + + + def createExcelFileWithTitleAndFooter(self, workbook=None, identification=None, db=None, returnNumber=None): + + worksheet = workbook.add_worksheet() + + titleStyle = workbook.add_format(align = 'left', bold = 0, size=14, border = 1, border_color="gray") + + ##Write title Info + # Modified by Hongqiang Li + worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle) + worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle) + worksheet.write([2, 0], "Trait : %s" % identification, titleStyle) + worksheet.write([3, 0], "Database : %s" % db.fullname, titleStyle) + worksheet.write([4, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime()), titleStyle) + worksheet.write([5, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime()), titleStyle) + worksheet.write([6, 0], "Status of data ownership: Possibly unpublished data; please see %s/statusandContact.html for details on sources, ownership, and usage of these data." % webqtlConfig.PORTADDR, titleStyle) + #Write footer info + worksheet.write([9 + returnNumber, 0], "Funding for The GeneNetwork: NIAAA (U01AA13499, U24AA13513), NIDA, NIMH, and NIAAA (P20-DA21131), NCI MMHCC (U01CA105417), and NCRR (U01NR 105417)", titleStyle) + worksheet.write([10 + returnNumber, 0], "PLEASE RETAIN DATA SOURCE INFORMATION WHENEVER POSSIBLE", titleStyle) + + return worksheet + + + def getTableHeaderForGeno(self, method=None, worksheet=None, newrow=None, headingStyle=None): + + tblobj_header = [] + + if method in ["1","3","4"]: + tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb"), sort=0), + THCell(HT.TD('Record', HT.BR(), 'ID', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Record ID', idx=1), + THCell(HT.TD('Location', HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Location (Chr and Mb)', idx=2), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample r", idx=3), + THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=4), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_p_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(r)", idx=5)]] + + for ncol, item in enumerate(['Record ID', 'Location (Chr, Mb)', 'Sample r', 'N Cases', 'Sample p(r)']): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + else: + tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb"), sort=0), + THCell(HT.TD('Record', HT.BR(), 'ID', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Record ID', idx=1), + THCell(HT.TD('Location', HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text='Location (Chr and Mb)', idx=2), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_rho"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample rho", idx=3), + THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=4), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_p_rho"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(rho)", idx=5)]] + + for ncol, item in enumerate(['Record ID', 'Location (Chr, Mb)', 'Sample rho', 'N Cases', 'Sample p(rho)']): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + + + return tblobj_header, worksheet + + + def getTableBodyForGeno(self, traitList, formName=None, worksheet=None, newrow=None, corrScript=None): + + tblobj_body = [] + + for thisTrait in traitList: + tr = [] + + trId = str(thisTrait) + + corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.corr)) + + tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId)) + + tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn ffl"),align="left", Class="fs12 fwn ffl b1 c222"), text=thisTrait.name, val=thisTrait.name.upper())) + + #XZ: trait_location_value is used for sorting + trait_location_repr = '--' + trait_location_value = 1000000 + + if thisTrait.chr and thisTrait.mb: + try: + trait_location_value = int(thisTrait.chr)*1000 + thisTrait.mb + except: + if thisTrait.chr.upper() == 'X': + trait_location_value = 20*1000 + thisTrait.mb + else: + trait_location_value = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb + + trait_location_repr = 'Chr%s: %.6f' % (thisTrait.chr, float(thisTrait.mb) ) + + tr.append(TDCell(HT.TD(trait_location_repr, Class="fs12 fwn b1 c222", nowrap="on"), trait_location_repr, trait_location_value)) + + + repr='%3.3f' % thisTrait.corr + tr.append(TDCell(HT.TD(HT.Href(text=repr, url="javascript:showCorrPlot('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn ffl"), Class="fs12 fwn ffl b1 c222", nowrap='ON', align='right'),repr,abs(thisTrait.corr))) + + repr = '%d' % thisTrait.nOverlap + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222",align='right'),repr,thisTrait.nOverlap)) + + repr = webqtlUtil.SciFloat(thisTrait.corrPValue) + tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue)) + + tblobj_body.append(tr) + + for ncol, item in enumerate([thisTrait.name, trait_location_repr, thisTrait.corr, thisTrait.nOverlap, thisTrait.corrPValue]): + worksheet.write([newrow, ncol], item) + newrow += 1 + + return tblobj_body, worksheet, corrScript + + + def getTableHeaderForPublish(self, method=None, worksheet=None, newrow=None, headingStyle=None): + + tblobj_header = [] + + if method in ["1","3","4"]: + tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), sort=0), + THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Record ID", idx=1), + THCell(HT.TD('Phenotype', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Phenotype", idx=2), + THCell(HT.TD('Authors', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Authors", idx=3), + THCell(HT.TD('Year', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Year", idx=4), + THCell(HT.TD('Max',HT.BR(), 'LRS', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS", idx=5), + THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS Location", idx=6), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample r", idx=7), + THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=8), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_p_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(r)", idx=9)]] + + for ncol, item in enumerate(["Record", "Phenotype", "Authors", "Year", "Pubmed Id", "Max LRS", "Max LRS Location (Chr: Mb)", "Sample r", "N Cases", "Sample p(r)"]): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + else: + tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), sort=0), + THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Record ID", idx=1), + THCell(HT.TD('Phenotype', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Phenotype", idx=2), + THCell(HT.TD('Authors', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Authors", idx=3), + THCell(HT.TD('Year', HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Year", idx=4), + THCell(HT.TD('Max',HT.BR(), 'LRS', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS", idx=5), + THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="Max LRS Location", idx=6), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_rho"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample rho", idx=7), + THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=8), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_p_rho"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(rho)", idx=9)]] + + for ncol, item in enumerate(["Record", "Phenotype", "Authors", "Year", "Pubmed Id", "Max LRS", "Max LRS Location (Chr: Mb)", "Sample rho", "N Cases", "Sample p(rho)"]): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + + + return tblobj_header, worksheet + + + def getTableBodyForPublish(self, traitList, formName=None, worksheet=None, newrow=None, corrScript=None, species=''): + + tblobj_body = [] + + for thisTrait in traitList: + tr = [] + + trId = str(thisTrait) + + corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.corr)) + + tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId)) + + tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn"), nowrap="yes",align="center", Class="fs12 fwn b1 c222"),str(thisTrait.name), thisTrait.name)) + + PhenotypeString = thisTrait.post_publication_description + if thisTrait.confidential: + if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users): + PhenotypeString = thisTrait.pre_publication_description + + tr.append(TDCell(HT.TD(PhenotypeString, Class="fs12 fwn b1 c222"), PhenotypeString, PhenotypeString.upper())) + + tr.append(TDCell(HT.TD(thisTrait.authors, Class="fs12 fwn b1 c222 fsI"),thisTrait.authors, thisTrait.authors.strip().upper())) + + try: + PubMedLinkText = myear = repr = int(thisTrait.year) + except: + PubMedLinkText = repr = "--" + myear = 0 + if thisTrait.pubmed_id: + PubMedLink = HT.Href(text= repr,url= webqtlConfig.PUBMEDLINK_URL % thisTrait.pubmed_id,target='_blank', Class="fs12 fwn") + else: + PubMedLink = repr + + tr.append(TDCell(HT.TD(PubMedLink, Class="fs12 fwn b1 c222", align='center'), repr, myear)) + + #LRS and its location + LRS_score_repr = '--' + LRS_score_value = 0 + LRS_location_repr = '--' + LRS_location_value = 1000000 + LRS_flag = 1 + + #Max LRS and its Locus location + if thisTrait.lrs and thisTrait.locus: + self.cursor.execute(""" + select Geno.Chr, Geno.Mb from Geno, Species + where Species.Name = '%s' and + Geno.Name = '%s' and + Geno.SpeciesId = Species.Id + """ % (species, thisTrait.locus)) + result = self.cursor.fetchone() + + if result: + if result[0] and result[1]: + LRS_Chr = result[0] + LRS_Mb = result[1] + + #XZ: LRS_location_value is used for sorting + try: + LRS_location_value = int(LRS_Chr)*1000 + float(LRS_Mb) + except: + if LRS_Chr.upper() == 'X': + LRS_location_value = 20*1000 + float(LRS_Mb) + else: + LRS_location_value = ord(str(LRS_chr).upper()[0])*1000 + float(LRS_Mb) + + + LRS_score_repr = '%3.1f' % thisTrait.lrs + LRS_score_value = thisTrait.lrs + LRS_location_repr = 'Chr%s: %.6f' % (LRS_Chr, float(LRS_Mb) ) + LRS_flag = 0 + + #tr.append(TDCell(HT.TD(HT.Href(text=LRS_score_repr,url="javascript:showIntervalMapping('%s', '%s : %s')" % (formName, thisTrait.db.shortname, thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn ffl b1 c222", align='right', nowrap="on"),LRS_score_repr, LRS_score_value)) + tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222", align='right', nowrap="on"), LRS_score_repr, LRS_score_value)) + tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222"), LRS_location_repr, LRS_location_value)) + + if LRS_flag: + tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222"), LRS_score_repr, LRS_score_value)) + tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222"), LRS_location_repr, LRS_location_value)) + + repr = '%3.4f' % thisTrait.corr + tr.append(TDCell(HT.TD(HT.Href(text=repr,url="javascript:showCorrPlot('%s', '%s')" % (formName,thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn b1 c222", align='right',nowrap="on"), repr, abs(thisTrait.corr))) + + repr = '%d' % thisTrait.nOverlap + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.nOverlap)) + + repr = webqtlUtil.SciFloat(thisTrait.corrPValue) + tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue)) + + tblobj_body.append(tr) + + for ncol, item in enumerate([thisTrait.name, PhenotypeString, thisTrait.authors, thisTrait.year, thisTrait.pubmed_id, LRS_score_repr, LRS_location_repr, thisTrait.corr, thisTrait.nOverlap, thisTrait.corrPValue]): + worksheet.write([newrow, ncol], item) + newrow += 1 + + return tblobj_body, worksheet, corrScript + + + def getTableHeaderForProbeSet(self, method=None, worksheet=None, newrow=None, headingStyle=None): + + tblobj_header = [] + + if method in ["1","3","4"]: + tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0), + THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Record ID", idx=1), + THCell(HT.TD('Gene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Gene ID", idx=2), + THCell(HT.TD('Homologene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Homologene ID", idx=3), + THCell(HT.TD('Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Symbol", idx=4), + THCell(HT.TD('Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Description", idx=5), + THCell(HT.TD('Location',HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Location (Chr: Mb)", idx=6), + THCell(HT.TD('Mean',HT.BR(),'Expr',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Mean Expr", idx=7), + THCell(HT.TD('Max',HT.BR(),'LRS',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS", idx=8), + THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS Location (Chr: Mb)", idx=9), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample r", idx=10), + THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=11), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_p_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(r)", idx=12), + THCell(HT.TD(HT.Href( + text = HT.Span('Lit',HT.BR(), 'Corr', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#literatureCorr"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Lit Corr", idx=13), + #XZ, 09/22/2008: tissue correlation + THCell(HT.TD(HT.Href( + text = HT.Span('Tissue',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#tissue_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue r", idx=14), + THCell(HT.TD(HT.Href( + text = HT.Span('Tissue',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#tissue_p_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue p(r)", idx=15)]] + + for ncol, item in enumerate(['Record', 'Gene ID', 'Homologene ID', 'Symbol', 'Description', 'Location (Chr: Mb)', 'Mean Expr', 'Max LRS', 'Max LRS Location (Chr: Mb)', 'Sample r', 'N Cases', 'Sample p(r)', 'Lit Corr', 'Tissue r', 'Tissue p(r)']): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + else: + tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0), + THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Record ID", idx=1), + THCell(HT.TD('Gene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Gene ID", idx=2), + THCell(HT.TD('Homologene',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Homologene ID", idx=3), + THCell(HT.TD('Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Symbol", idx=4), + THCell(HT.TD('Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Description", idx=5), + THCell(HT.TD('Location',HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Location (Chr: Mb)", idx=6), + THCell(HT.TD('Mean',HT.BR(),'Expr',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Mean Expr", idx=7), + THCell(HT.TD('Max',HT.BR(),'LRS',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS", idx=8), + THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Max LRS Location (Chr: Mb)", idx=9), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_rho"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample rho", idx=10), + THCell(HT.TD('N',HT.BR(),'Cases',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="N Cases", idx=11), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_p_rho"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Sample p(rho)", idx=12), + THCell(HT.TD(HT.Href( + text = HT.Span('Lit',HT.BR(), 'Corr', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#literatureCorr"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Lit Corr", idx=13), + #XZ, 09/22/2008: tissue correlation + THCell(HT.TD(HT.Href( + text = HT.Span('Tissue',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#tissue_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue rho", idx=14), + THCell(HT.TD(HT.Href( + text = HT.Span('Tissue',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#tissue_p_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="Tissue p(rho)", idx=15)]] + + for ncol, item in enumerate(['Record ID', 'Gene ID', 'Homologene ID', 'Symbol', 'Description', 'Location (Chr: Mb)', 'Mean Expr', 'Max LRS', 'Max LRS Location (Chr: Mb)', 'Sample rho', 'N Cases', 'Sample p(rho)', 'Lit Corr', 'Tissue rho', 'Tissue p(rho)']): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + + return tblobj_header, worksheet + + + def getTableBodyForProbeSet(self, traitList=[], primaryTrait=None, formName=None, worksheet=None, newrow=None, corrScript=None, species=''): + + tblobj_body = [] + + for thisTrait in traitList: + + if thisTrait.symbol: + pass + else: + thisTrait.symbol = "--" + + if thisTrait.geneid: + symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" % thisTrait.geneid, Class="fs12 fwn") + else: + symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene&term=%s" % thisTrait.symbol, Class="fs12 fwn") + + tr = [] + + trId = str(thisTrait) + + corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.corr)) + + #XZ, 12/08/2008: checkbox + tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId)) + + #XZ, 12/08/2008: probeset name + tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName,thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn b1 c222"), thisTrait.name, thisTrait.name.upper())) + + #XZ, 12/08/2008: gene id + if thisTrait.geneid: + tr.append(TDCell(None, thisTrait.geneid, val=999)) + else: + tr.append(TDCell(None, thisTrait.geneid, val=999)) + + #XZ, 12/08/2008: homologene id + if thisTrait.homologeneid: + tr.append(TDCell("", thisTrait.homologeneid, val=999)) + else: + tr.append(TDCell("", thisTrait.homologeneid, val=999)) + + #XZ, 12/08/2008: gene symbol + tr.append(TDCell(HT.TD(symbolurl, Class="fs12 fwn b1 c222 fsI"),thisTrait.symbol, thisTrait.symbol.upper())) + + #XZ, 12/08/2008: description + #XZ, 06/05/2009: Rob asked to add probe target description + description_string = str(thisTrait.description).strip() + target_string = str(thisTrait.probe_target_description).strip() + + description_display = '' + + if len(description_string) > 1 and description_string != 'None': + description_display = description_string + else: + description_display = thisTrait.symbol + + if len(description_display) > 1 and description_display != 'N/A' and len(target_string) > 1 and target_string != 'None': + description_display = description_display + '; ' + target_string.strip() + + tr.append(TDCell(HT.TD(description_display, Class="fs12 fwn b1 c222"), description_display, description_display)) + + #XZ: trait_location_value is used for sorting + trait_location_repr = '--' + trait_location_value = 1000000 + + if thisTrait.chr and thisTrait.mb: + try: + trait_location_value = int(thisTrait.chr)*1000 + thisTrait.mb + except: + if thisTrait.chr.upper() == 'X': + trait_location_value = 20*1000 + thisTrait.mb + else: + trait_location_value = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb + + trait_location_repr = 'Chr%s: %.6f' % (thisTrait.chr, float(thisTrait.mb) ) + + tr.append(TDCell(HT.TD(trait_location_repr, Class="fs12 fwn b1 c222", nowrap="on"), trait_location_repr, trait_location_value)) + + """ + #XZ, 12/08/2008: chromosome number + #XZ, 12/10/2008: use Mbvalue to sort chromosome + tr.append(TDCell( HT.TD(thisTrait.chr, Class="fs12 fwn b1 c222", align='right'), thisTrait.chr, Mbvalue) ) + + #XZ, 12/08/2008: Rob wants 6 digit precision, and we have to deal with that the mb could be None + if not thisTrait.mb: + tr.append(TDCell(HT.TD(thisTrait.mb, Class="fs12 fwn b1 c222",align='right'), thisTrait.mb, Mbvalue)) + else: + tr.append(TDCell(HT.TD('%.6f' % thisTrait.mb, Class="fs12 fwn b1 c222", align='right'), thisTrait.mb, Mbvalue)) + """ + + + + #XZ, 01/12/08: This SQL query is much faster. + self.cursor.execute(""" + select ProbeSetXRef.mean from ProbeSetXRef, ProbeSet + where ProbeSetXRef.ProbeSetFreezeId = %d and + ProbeSet.Id = ProbeSetXRef.ProbeSetId and + ProbeSet.Name = '%s' + """ % (thisTrait.db.id, thisTrait.name)) + result = self.cursor.fetchone() + if result: + if result[0]: + mean = result[0] + else: + mean=0 + else: + mean = 0 + + #XZ, 06/05/2009: It is neccessary to turn on nowrap + repr = "%2.3f" % mean + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'),repr, mean)) + + #LRS and its location + LRS_score_repr = '--' + LRS_score_value = 0 + LRS_location_repr = '--' + LRS_location_value = 1000000 + LRS_flag = 1 + + #Max LRS and its Locus location + if thisTrait.lrs and thisTrait.locus: + self.cursor.execute(""" + select Geno.Chr, Geno.Mb from Geno, Species + where Species.Name = '%s' and + Geno.Name = '%s' and + Geno.SpeciesId = Species.Id + """ % (species, thisTrait.locus)) + result = self.cursor.fetchone() + + if result: + if result[0] and result[1]: + LRS_Chr = result[0] + LRS_Mb = result[1] + + #XZ: LRS_location_value is used for sorting + try: + LRS_location_value = int(LRS_Chr)*1000 + float(LRS_Mb) + except: + if LRS_Chr.upper() == 'X': + LRS_location_value = 20*1000 + float(LRS_Mb) + else: + LRS_location_value = ord(str(LRS_chr).upper()[0])*1000 + float(LRS_Mb) + + + LRS_score_repr = '%3.1f' % thisTrait.lrs + LRS_score_value = thisTrait.lrs + LRS_location_repr = 'Chr%s: %.6f' % (LRS_Chr, float(LRS_Mb) ) + LRS_flag = 0 + + #tr.append(TDCell(HT.TD(HT.Href(text=LRS_score_repr,url="javascript:showIntervalMapping('%s', '%s : %s')" % (formName, thisTrait.db.shortname, thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn ffl b1 c222", align='right', nowrap="on"),LRS_score_repr, LRS_score_value)) + tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222", align='right', nowrap="on"), LRS_score_repr, LRS_score_value)) + tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222", nowrap="on"), LRS_location_repr, LRS_location_value)) + + if LRS_flag: + tr.append(TDCell(HT.TD(LRS_score_repr, Class="fs12 fwn b1 c222"), LRS_score_repr, LRS_score_value)) + tr.append(TDCell(HT.TD(LRS_location_repr, Class="fs12 fwn b1 c222"), LRS_location_repr, LRS_location_value)) + + + #XZ, 12/08/2008: generic correlation + repr='%3.3f' % thisTrait.corr + tr.append(TDCell(HT.TD(HT.Href(text=repr, url="javascript:showCorrPlot('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn ffl"), Class="fs12 fwn ffl b1 c222", align='right'),repr,abs(thisTrait.corr))) + + #XZ, 12/08/2008: number of overlaped cases + repr = '%d' % thisTrait.nOverlap + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.nOverlap)) + + #XZ, 12/08/2008: p value of genetic correlation + repr = webqtlUtil.SciFloat(thisTrait.corrPValue) + tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue)) + + #XZ, 12/08/2008: literature correlation + LCorr = 0.0 + LCorrStr = "--" + if hasattr(thisTrait, 'LCorr') and thisTrait.LCorr: + LCorr = thisTrait.LCorr + LCorrStr = "%2.3f" % thisTrait.LCorr + tr.append(TDCell(HT.TD(LCorrStr, Class="fs12 fwn b1 c222", align='right'), LCorrStr, abs(LCorr))) + + #XZ, 09/22/2008: tissue correlation. + TCorr = 0.0 + TCorrStr = "--" + #XZ, 11/20/2008: need to pass two geneids: input_trait_mouse_geneid and thisTrait.mouse_geneid + if hasattr(thisTrait, 'tissueCorr') and thisTrait.tissueCorr: + TCorr = thisTrait.tissueCorr + TCorrStr = "%2.3f" % thisTrait.tissueCorr + # NL, 07/19/2010: add a new parameter rankOrder for js function 'showTissueCorrPlot' + rankOrder = thisTrait.rankOrder + TCorrPlotURL = "javascript:showTissueCorrPlot('%s','%s','%s',%d)" %(formName, primaryTrait.symbol, thisTrait.symbol,rankOrder) + tr.append(TDCell(HT.TD(HT.Href(text=TCorrStr, url=TCorrPlotURL, Class="fs12 fwn ff1"), Class="fs12 fwn ff1 b1 c222", align='right'), TCorrStr, abs(TCorr))) + else: + tr.append(TDCell(HT.TD(TCorrStr, Class="fs12 fwn b1 c222", align='right'), TCorrStr, abs(TCorr))) + + #XZ, 12/08/2008: p value of tissue correlation + TPValue = 1.0 + TPValueStr = "--" + if hasattr(thisTrait, 'tissueCorr') and thisTrait.tissuePValue: #XZ, 09/22/2008: thisTrait.tissuePValue can't be used here because it could be 0 + TPValue = thisTrait.tissuePValue + TPValueStr = "%2.3f" % thisTrait.tissuePValue + tr.append(TDCell(HT.TD(TPValueStr, Class="fs12 fwn b1 c222", align='right'), TPValueStr, TPValue)) + + tblobj_body.append(tr) + + for ncol, item in enumerate([thisTrait.name, thisTrait.geneid, thisTrait.homologeneid, thisTrait.symbol, thisTrait.description, trait_location_repr, mean, LRS_score_repr, LRS_location_repr, thisTrait.corr, thisTrait.nOverlap, thisTrait.corrPValue, LCorr, TCorr, TPValue]): + worksheet.write([newrow, ncol], item) + + newrow += 1 + + return tblobj_body, worksheet, corrScript diff --git a/web/webqtl/correlation/PartialCorrDBPage.py b/web/webqtl/correlation/PartialCorrDBPage.py new file mode 100755 index 00000000..ecd1e623 --- /dev/null +++ b/web/webqtl/correlation/PartialCorrDBPage.py @@ -0,0 +1,1359 @@ +import string +import cPickle +import os +import pyXLWriter as xl + +from htmlgen import HTMLgen2 as HT + +from base import webqtlConfig +#import webqtlData +from utility.THCell import THCell +from utility.TDCell import TDCell +from base.webqtlTrait import webqtlTrait +from base.webqtlDataset import webqtlDataset +from base.templatePage import templatePage +from utility import webqtlUtil +from CorrelationPage import CorrelationPage +import correlationFunction +from dbFunction import webqtlDatabaseFunction + + +######################################### +# Partial Correlation Dataset Page +######################################### + + +class PartialCorrDBPage(CorrelationPage): + + corrMinInformative = 4 + + def __init__(self, fd): + + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + + primaryTraitString = fd.formdata.getvalue('primaryTrait') + primaryTrait = (webqtlTrait(fullname=primaryTraitString, cursor=self.cursor)) + + controlTraitsString = fd.formdata.getvalue('controlTraits') + controlTraitsList = list(string.split(controlTraitsString,',')) + controlTraits = [] + for item in controlTraitsList: + controlTraits.append(webqtlTrait(fullname=item, cursor=self.cursor)) + + #XZ, 3/16/2010: variable RISet must be pass by the form + RISet = fd.RISet + #XZ, 12/12/2008: get species infomation + species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=RISet) + + #XZ, 09/18/2008: get all information about the user selected database. + self.target_db_name = fd.formdata.getvalue('database2') + + try: + self.db = webqtlDataset(self.target_db_name, self.cursor) + except: + heading = "Partial Correlation Table" + detail = ["The database you just requested has not been established yet."] + self.error(heading=heading,detail=detail) + return + + #XZ, 09/18/2008: check if user has the authority to get access to the database. + if self.db.type == 'ProbeSet': + self.cursor.execute('SELECT Id, Name, FullName, confidentiality, AuthorisedUsers FROM ProbeSetFreeze WHERE Name = "%s"' % self.target_db_name) + indId, indName, indFullName, confidential, AuthorisedUsers = self.cursor.fetchall()[0] + + if confidential == 1: + access_to_confidential_dataset = 0 + + #for the dataset that confidentiality is 1 + #1. 'admin' and 'root' can see all of the dataset + #2. 'user' can see the dataset that AuthorisedUsers contains his id(stored in the Id field of User table) + if webqtlConfig.USERDICT[self.privilege] > webqtlConfig.USERDICT['user']: + access_to_confidential_dataset = 1 + else: + AuthorisedUsersList=AuthorisedUsers.split(',') + if AuthorisedUsersList.__contains__(self.userName): + access_to_confidential_dataset = 1 + + if not access_to_confidential_dataset: + #Error, Confidential Database + heading = "Partial Correlation Table" + detail = ["The %s database you selected is not open to the public at this time, please go back and select another database." % indFullName] + self.error(heading=heading,detail=detail,error="Confidential Database") + return + + + primaryTrait.retrieveData() + _primarystrains, _primaryvals, _primaryvars = primaryTrait.exportInformative() + + controlTraitNames = fd.formdata.getvalue('controlTraits') + _controlstrains,_controlvals,_controlvars,_controlNs = correlationFunction.controlStrains(controlTraitNames,_primarystrains) + + ## If the strains for which each of the control traits and the primary trait have values are not identical, + ## we must remove from the calculation all vlaues for strains that are not present in each. Without doing this, + ## undesirable biases would be introduced. + + common_primary_control_strains = _primarystrains #keep _primarystrains + fixed_primary_vals = _primaryvals #keep _primaryvals + fixed_control_vals = _controlvals + + allsame = True + ##allsame is boolean for whether or not primary and control trait have values for the same strains + for i in _controlstrains: + if _primarystrains != i: + allsame=False + break + + if not allsame: + common_primary_control_strains, fixed_primary_vals, fixed_control_vals, _vars, _controlvars = correlationFunction.fixStrains(_primarystrains,_controlstrains,_primaryvals,_controlvals,_primaryvars,_controlvars) + + N = len(common_primary_control_strains) + if N < self.corrMinInformative: + heading = "Partial Correlation Table" + detail = ['Fewer than %d strain data were entered for %s data set. No calculation of correlation has been attempted.' % (self.corrMinInformative, RISet)] + self.error(heading=heading,detail=detail) + return + + #XZ: We should check the value of control trait and primary trait here. + nameOfIdenticalTraits = correlationFunction.findIdenticalTraits ( fixed_primary_vals, primaryTraitString, fixed_control_vals, controlTraitsList ) + if nameOfIdenticalTraits: + heading = "Partial Correlation Table" + detail = ['%s and %s have same values for the %s strains that will be used to calculate partial correlation (common for all primary and control traits). In such case, partial correlation can NOT be calculated. Please re-select your traits.' % (nameOfIdenticalTraits[0], nameOfIdenticalTraits[1], len(fixed_primary_vals))] + self.error(heading=heading,detail=detail) + return + + + #XZ, 09/28/2008: if user select "1", then display 1, 3 and 4. + #XZ, 09/28/2008: if user select "2", then display 2, 3 and 5. + #XZ, 09/28/2008: if user select "3", then display 1, 3 and 4. + #XZ, 09/28/2008: if user select "4", then display 1, 3 and 4. + #XZ, 09/28/2008: if user select "5", then display 2, 3 and 5. + methodDict = {"1":"Genetic Correlation (Pearson's r)","2":"Genetic Correlation (Spearman's rho)","3":"SGO Literature Correlation","4":"Tissue Correlation (Pearson's r)", "5":"Tissue Correlation (Spearman's rho)"} + self.method = fd.formdata.getvalue('method') + if self.method not in ("1","2","3","4","5"): + self.method = "1" + + self.returnNumber = int(fd.formdata.getvalue('criteria')) + + myTrait = primaryTrait + myTrait.retrieveInfo() + + # We will not get Literature Correlations if there is no GeneId because there is nothing to look against + try: + input_trait_GeneId = myTrait.geneid + except: + input_trait_GeneId = None + + # We will not get Tissue Correlations if there is no gene symbol because there is nothing to look against + try: + input_trait_symbol = myTrait.symbol + except: + input_trait_symbol = None + + + #XZ, 12/12/2008: if the species is rat or human, translate the geneid to mouse geneid + input_trait_mouse_geneid = self.translateToMouseGeneID(species, input_trait_GeneId) + + #XZ: As of Nov/13/2010, this dataset is 'UTHSC Illumina V6.2 RankInv B6 D2 average CNS GI average (May 08)' + TissueProbeSetFreezeId = 1 + + + #XZ, 09/22/2008: If we need search by GeneId, + #XZ, 09/22/2008: we have to check if this GeneId is in the literature or tissue correlation table. + #XZ, 10/15/2008: We also to check if the selected database is probeset type. + if self.method == "3" or self.method == "4" or self.method == "5": + if self.db.type != "ProbeSet": + self.error(heading="Wrong correlation type",detail="It is not possible to compute the %s between your trait and data in this %s database. Please try again after selecting another type of correlation." % (methodDict[self.method],self.db.name),error="Correlation Type Error") + return + + """ + if not input_trait_GeneId: + self.error(heading="No Associated GeneId",detail="This trait has no associated GeneId, so we are not able to show any literature or tissue related information.",error="No GeneId Error") + return + """ + + #XZ: We have checked geneid did exist + + if self.method == "3": + if not input_trait_GeneId or not self.checkForLitInfo(input_trait_mouse_geneid): + self.error(heading="No Literature Info",detail="This gene does not have any associated Literature Information.",error="Literature Correlation Error") + return + + if self.method == "4" or self.method == "5": + if not input_trait_symbol: + self.error(heading="No Tissue Correlation Information",detail="This gene does not have any associated Tissue Correlation Information.",error="Tissue Correlation Error") + return + + if not self.checkSymbolForTissueCorr(TissueProbeSetFreezeId, myTrait.symbol): + self.error(heading="No Tissue Correlation Information",detail="This gene does not have any associated Tissue Correlation Information.",error="Tissue Correlation Error") + return + +####################################################################################################################################### + + nnCorr = len(fixed_primary_vals) + + #XZ: Use the fast method only for probeset dataset, and this dataset must have been created. + #XZ: Otherwise, use original method + + useFastMethod = False + + if self.db.type == "ProbeSet": + DatabaseFileName = self.getFileName( target_db_name=self.target_db_name ) + DirectoryList = os.listdir(webqtlConfig.TEXTDIR) # List of existing text files. Used to check if a text file already exists + if DatabaseFileName in DirectoryList: + useFastMethod = True + + if useFastMethod: + totalTraits, allcorrelations = self.getPartialCorrelationsFast(common_primary_control_strains , fixed_primary_vals, fixed_control_vals, nnCorr, DatabaseFileName, species, input_trait_GeneId, input_trait_symbol, TissueProbeSetFreezeId) + + if totalTraits == 0: + useFastMethod = False + + #XZ, 01/08/2009: use the original method to retrieve from database and compute. + if not useFastMethod: + totalTraits, allcorrelations = self.getPartialCorrelationsNormal(common_primary_control_strains, fixed_primary_vals, fixed_control_vals, nnCorr, species, input_trait_GeneId, input_trait_symbol,TissueProbeSetFreezeId) + +############################################################# + + if self.method == "3" and input_trait_GeneId: + allcorrelations.sort(self.cmpLitCorr) + elif self.method in ["4","5"] and input_trait_GeneId: + allcorrelations.sort(self.cmpLitCorr) + else: + allcorrelations.sort(self.cmpPartialCorrPValue) + + #XZ, 09/20/2008: we only need the top ones. + self.returnNumber = min(self.returnNumber,len(allcorrelations)) + allcorrelations = allcorrelations[:self.returnNumber] + + addLiteratureCorr = False + addTissueCorr = False + + traitList = [] + for item in allcorrelations: + thisTrait = webqtlTrait(db=self.db, name=item[0], cursor=self.cursor) + thisTrait.retrieveInfo() + + thisTrait.Name = item[0] + thisTrait.NOverlap = item[1] + + thisTrait.partial_corr = item[2] + thisTrait.partial_corrPValue = item[3] + + thisTrait.corr = item[4] + thisTrait.corrPValue = item[5] + # NL, 07/19/2010 + # js function changed, add a new parameter rankOrder for js function 'showTissueCorrPlot' + rankOrder = 0; + if self.method in ["2","5"]: + rankOrder = 1; + thisTrait.rankOrder = rankOrder + + #XZ, 26/09/2008: Method is 4 or 5. Have fetched tissue corr, but no literature correlation yet. + if len(item) == 8: + thisTrait.tissueCorr = item[6] + thisTrait.tissuePValue = item[7] + addLiteratureCorr = True + + #XZ, 26/09/2008: Method is 3, Have fetched literature corr, but no tissue corr yet. + elif len(item) == 7: + thisTrait.LCorr = item[6] + thisTrait.mouse_geneid = self.translateToMouseGeneID(species, thisTrait.geneid) + addTissueCorr = True + + #XZ, 26/09/2008: Method is 1 or 2. Have NOT fetched literature corr and tissue corr yet. + # Phenotype data will not have geneid, and neither will some probes + # we need to handle this because we will get an attribute error + else: + if input_trait_mouse_geneid and self.db.type=="ProbeSet": + addLiteratureCorr = True + if input_trait_symbol and self.db.type=="ProbeSet": + addTissueCorr = True + + traitList.append(thisTrait) + + if addLiteratureCorr: + traitList = self.getLiteratureCorrelationByList(input_trait_mouse_geneid, species, traitList) + if addTissueCorr: + traitList = self.getTissueCorrelationByList(primaryTraitSymbol=input_trait_symbol, traitList=traitList,TissueProbeSetFreezeId=TissueProbeSetFreezeId, method=self.method) + +######################################################## + + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') + + mainfmName = webqtlUtil.genRandStr("fm_") + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name= mainfmName, submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase', 'ProbeSetID':'_','database':self.target_db_name, 'CellID':'_', 'RISet':RISet, 'identification':fd.identification} + + if myTrait: + hddn['fullname']=str(myTrait) + + + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + #XZ, 11/21/2008: add two parameters to form + form.append(HT.Input(name="X_geneSymbol", value="", type='hidden')) + form.append(HT.Input(name="Y_geneSymbol", value="", type='hidden')) + + #XZ, 3/11/2010: add one parameter to record if the method is rank order. + + form.append(HT.Input(name="rankOrder", value="%s" % rankOrder, type='hidden')) + + form.append(HT.Input(name="TissueProbeSetFreezeId", value="%s" % TissueProbeSetFreezeId, type='hidden')) + + + #################################### + # generate the info on top of page # + #################################### + + info_form = self.getFormForPrimaryAndControlTraits (primaryTrait, controlTraits) + info = self.getTopInfo(myTrait=myTrait, method=self.method, db=self.db, target_db_name=self.target_db_name, returnNumber=self.returnNumber, methodDict=methodDict, totalTraits=totalTraits, identification=fd.identification ) + + ############## + # Excel file # + ############## + filename= webqtlUtil.genRandStr("Corr_") + xlsUrl = HT.Input(type='button', value = 'Download Table', onClick= "location.href='/tmp/%s.xls'" % filename, Class='button') + # Create a new Excel workbook + workbook = xl.Writer('%s.xls' % (webqtlConfig.TMPDIR+filename)) + headingStyle = workbook.add_format(align = 'center', bold = 1, border = 1, size=13, fg_color = 0x1E, color="white") + + #XZ, 3/18/2010: pay attention to the line number of header in this file. As of today, there are 7 lines. + worksheet = self.createExcelFileWithTitleAndFooter(workbook=workbook, identification=fd.identification, db=self.db, returnNumber=self.returnNumber) + + newrow = 7 + + + +##################################################################### + + mintmap = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'showIntMap');" % mainfmName) + mintmap_img = HT.Image("/images/multiple_interval_mapping1_final.jpg", name='mintmap', alt="Multiple Interval Mapping", title="Multiple Interval Mapping", style="border:none;") + mintmap.append(mintmap_img) + mcorr = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'compCorr');" % mainfmName) + mcorr_img = HT.Image("/images/compare_correlates2_final.jpg", alt="Compare Correlates", title="Compare Correlates", style="border:none;") + mcorr.append(mcorr_img) + cormatrix = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'corMatrix');" % mainfmName) + cormatrix_img = HT.Image("/images/correlation_matrix1_final.jpg", alt="Correlation Matrix and PCA", title="Correlation Matrix and PCA", style="border:none;") + cormatrix.append(cormatrix_img) + networkGraph = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'networkGraph');" % mainfmName) + networkGraph_img = HT.Image("/images/network_graph1_final.jpg", name='mintmap', alt="Network Graphs", title="Network Graphs", style="border:none;") + networkGraph.append(networkGraph_img) + heatmap = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'heatmap');" % mainfmName) + heatmap_img = HT.Image("/images/heatmap2_final.jpg", name='mintmap', alt="QTL Heat Map and Clustering", title="QTL Heatmap and Clustering", style="border:none;") + heatmap.append(heatmap_img) + partialCorr = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'partialCorrInput');" % mainfmName) + partialCorr_img = HT.Image("/images/partial_correlation_final.jpg", name='partialCorr', alt="Partial Correlation", title="Partial Correlation", style="border:none;") + partialCorr.append(partialCorr_img) + addselect = HT.Href(url="#redirect", onClick="addRmvSelection('%s', document.getElementsByName('%s')[0], 'addToSelection');" % (RISet, mainfmName)) + addselect_img = HT.Image("/images/add_collection1_final.jpg", name="addselect", alt="Add To Collection", title="Add To Collection", style="border:none;") + addselect.append(addselect_img) + selectall = HT.Href(url="#redirect", onClick="checkAll(document.getElementsByName('%s')[0]);" % mainfmName) + selectall_img = HT.Image("/images/select_all2_final.jpg", name="selectall", alt="Select All", title="Select All", style="border:none;") + selectall.append(selectall_img) + selectinvert = HT.Href(url="#redirect", onClick = "checkInvert(document.getElementsByName('%s')[0]);" % mainfmName) + selectinvert_img = HT.Image("/images/invert_selection2_final.jpg", name="selectinvert", alt="Invert Selection", title="Invert Selection", style="border:none;") + selectinvert.append(selectinvert_img) + reset = HT.Href(url="#redirect", onClick="checkNone(document.getElementsByName('%s')[0]); return false;" % mainfmName) + reset_img = HT.Image("/images/select_none2_final.jpg", alt="Select None", title="Select None", style="border:none;") + reset.append(reset_img) + selecttraits = HT.Input(type='button' ,name='selecttraits',value='Select Traits', onClick="checkTraits(this.form);",Class="button") + selectgt = HT.Input(type='text' ,name='selectgt',value='-1.0', size=6,maxlength=10,onChange="checkNumeric(this,1.0,'-1.0','gthan','greater than filed')") + selectlt = HT.Input(type='text' ,name='selectlt',value='1.0', size=6,maxlength=10,onChange="checkNumeric(this,-1.0,'1.0','lthan','less than field')") + selectandor = HT.Select(name='selectandor') + selectandor.append(('AND','and')) + selectandor.append(('OR','or')) + selectandor.selected.append('AND') + + chrMenu = HT.Input(type='hidden',name='chromosomes',value='all') + + corrHeading = HT.Paragraph('Partial Correlation Table', Class="title") + + + pageTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="100%", border=0, align="Left") + containerTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="90%",border=0, align="Left") + + optionsTable = HT.TableLite(cellSpacing=2, cellPadding=0,width="320", height="80", border=0, align="Left") + optionsTable.append(HT.TR(HT.TD(selectall), HT.TD(reset), HT.TD(selectinvert), HT.TD(addselect), align="left")) + optionsTable.append(HT.TR(HT.TD(" "*1,"Select"), HT.TD("Deselect"), HT.TD(" "*1,"Invert"), HT.TD(" "*3,"Add"))) + containerTable.append(HT.TR(HT.TD(optionsTable))) + + functionTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="480",height="80", border=0, align="Left") + functionRow = HT.TR(HT.TD(networkGraph, width="16.7%"), HT.TD(cormatrix, width="16.7%"), HT.TD(partialCorr, width="16.7%"), HT.TD(mcorr, width="16.7%"), HT.TD(mintmap, width="16.7%"), HT.TD(heatmap), align="left") + labelRow = HT.TR(HT.TD(" "*1,HT.Text("Graph")), HT.TD(" "*1,HT.Text("Matrix")), HT.TD(" "*1,HT.Text("Partial")), HT.TD(HT.Text("Compare")), HT.TD(HT.Text("QTL Map")), HT.TD(HT.Text(text="Heat Map"))) + functionTable.append(functionRow, labelRow) + containerTable.append(HT.TR(HT.TD(functionTable), HT.BR())) + + moreOptions = HT.Input(type='button',name='options',value='More Options', onClick="",Class="toggle") + fewerOptions = HT.Input(type='button',name='options',value='Fewer Options', onClick="",Class="toggle") + + if (fd.formdata.getvalue('showHideOptions') == 'less'): + containerTable.append(HT.TR(HT.TD(" "), height="10"), HT.TR(HT.TD(HT.Div(fewerOptions, Class="toggleShowHide")))) + containerTable.append(HT.TR(HT.TD(" "))) + else: + containerTable.append(HT.TR(HT.TD(" "), height="10"), HT.TR(HT.TD(HT.Div(moreOptions, Class="toggleShowHide")))) + containerTable.append(HT.TR(HT.TD(" "))) + + containerTable.append(HT.TR(HT.TD(HT.Span(selecttraits,' with partial r > ',selectgt, ' ',selectandor, ' r < ',selectlt,Class="bd1 cbddf fs11")), style="display:none;", Class="extra_options")) + + + tblobj = {} + + + if self.db.type=="Geno": + + containerTable.append(HT.TR(HT.TD(xlsUrl, height=40))) + pageTable.append(HT.TR(HT.TD(containerTable))) + + tblobj['header'], worksheet = self.getTableHeaderForGeno( method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle) + newrow += 1 + + corrScript = HT.Script(language="Javascript") + corrScript.append("var corrArray = new Array();") + + sortby = self.getSortByValue( calculationMethod = self.method ) + + tblobj['body'], worksheet, corrScript = self.getTableBodyForGeno(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript) + + workbook.close() + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py; + div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable") + pageTable.append(HT.TR(HT.TD(div))) + form.append(HT.Input(name='ShowStrains',type='hidden', value =1), + HT.Input(name='ShowLine',type='hidden', value =1), + HT.P(),pageTable) + + TD_LR.append(corrHeading, info_form, HT.P(), info, form, HT.P()) + + self.dict['body'] = str(TD_LR) + # updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js + self.dict['js1'] = '' + self.dict['title'] = 'Partial Correlation Result' + + elif self.db.type=="Publish": + + containerTable.append(HT.TR(HT.TD(xlsUrl, height=40))) + pageTable.append(HT.TR(HT.TD(containerTable))) + + tblobj['header'], worksheet = self.getTableHeaderForPublish(method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle) + newrow += 1 + + sortby = self.getSortByValue( calculationMethod = self.method ) + + corrScript = HT.Script(language="Javascript") + corrScript.append("var corrArray = new Array();") + + tblobj['body'], worksheet, corrScript = self.getTableBodyForPublish(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript) + + workbook.close() + + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py; + div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable") + pageTable.append(HT.TR(HT.TD(div))) + + form.append( + HT.Input(name='ShowStrains',type='hidden', value =1), + HT.Input(name='ShowLine',type='hidden', value =1), + HT.P(),pageTable) + + TD_LR.append(corrHeading, info_form, HT.P(), info, form, HT.P()) + + self.dict['body'] = str(TD_LR) + #updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js + self.dict['js1'] = '' + self.dict['title'] = 'Partial Correlation Result' + + elif self.db.type=="ProbeSet": + + tblobj['header'], worksheet = self.getTableHeaderForProbeSet(method=self.method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle) + newrow += 1 + + sortby = self.getSortByValue( calculationMethod = self.method ) + + corrScript = HT.Script(language="Javascript") + corrScript.append("var corrArray = new Array();") + + tblobj['body'], worksheet, corrScript = self.getTableBodyForProbeSet(traitList=traitList, primaryTrait=myTrait, formName=mainfmName, worksheet=worksheet, newrow=newrow, corrScript=corrScript) + + workbook.close() + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + + ''' + #XZ, 07/07/2010: I comment out this block of code. + WebGestaltScript = HT.Script(language="Javascript") + WebGestaltScript.append(""" +setTimeout('openWebGestalt()', 2000); +function openWebGestalt(){ + var thisForm = document['WebGestalt']; + makeWebGestaltTree(thisForm, '%s', %d, 'edag_only.php'); +} + """ % (mainfmName, len(traitList))) + ''' + + #XZ: here is the table of traits + # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py; + div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), corrScript, Id="sortable") + + self.cursor.execute('SELECT GeneChip.GO_tree_value FROM GeneChip, ProbeFreeze, ProbeSetFreeze WHERE GeneChip.Id = ProbeFreeze.ChipId and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.Name = "%s"' % self.db.name) + result = self.cursor.fetchone() + + if result: + GO_tree_value = result[0] + + if GO_tree_value: + + hddnWebGestalt = { + 'id_list':'', + 'correlation':'', + 'id_value':'', + 'llid_list':'', + 'id_type':GO_tree_value, + 'idtype':'', + 'species':'', + 'list':'', + 'client':''} + + hddnWebGestalt['ref_type'] = hddnWebGestalt['id_type'] + hddnWebGestalt['cat_type'] = 'GO' + hddnWebGestalt['significancelevel'] = 'Top10' + + if species == 'rat': + hddnWebGestalt['org'] = 'Rattus norvegicus' + elif species == 'human': + hddnWebGestalt['org'] = 'Homo sapiens' + elif species == 'mouse': + hddnWebGestalt['org'] = 'Mus musculus' + else: + hddnWebGestalt['org'] = '' + + for key in hddnWebGestalt.keys(): + form.append(HT.Input(name=key, value=hddnWebGestalt[key], type='hidden')) + + #XZ, 01/12/2009: create database menu for 'Add Correlation' + self.cursor.execute(""" + select + ProbeSetFreeze.FullName, ProbeSetFreeze.Id, Tissue.name + from + ProbeSetFreeze, ProbeFreeze, ProbeSetFreeze as ps2, ProbeFreeze as p2, Tissue + where + ps2.Id = %d + and ps2.ProbeFreezeId = p2.Id + and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id + and (ProbeFreeze.InbredSetId = p2.InbredSetId or (ProbeFreeze.InbredSetId in (1, 3) and p2.InbredSetId in (1, 3))) + and p2.ChipId = ProbeFreeze.ChipId + and ps2.Id != ProbeSetFreeze.Id + and ProbeFreeze.TissueId = Tissue.Id + and ProbeSetFreeze.public > %d + order by + ProbeFreeze.TissueId, ProbeSetFreeze.CreateTime desc + """ % (self.db.id, webqtlConfig.PUBLICTHRESH)) + + results = self.cursor.fetchall() + dbCustomizer = HT.Select(results, name = "customizer") + databaseMenuSub = preTissue = "" + for item in results: + TName, TId, TTissue = item + if TTissue != preTissue: + if databaseMenuSub: + dbCustomizer.append(databaseMenuSub) + databaseMenuSub = HT.Optgroup(label = '%s mRNA ------' % TTissue) + preTissue = TTissue + + databaseMenuSub.append(item[:2]) + if databaseMenuSub: + dbCustomizer.append(databaseMenuSub) + #updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js + #variables: filename, strainIds and vals are required by getquerystring function + strainIds=self.getStrainIds(species=species, strains=_primarystrains) + var1 = HT.Input(name="filename", value=filename, type='hidden') + var2 = HT.Input(name="strainIds", value=strainIds, type='hidden') + var3 = HT.Input(name="vals", value=_primaryvals, type='hidden') + customizerButton = HT.Input(type="button", Class="button", value="Add Correlation", onClick = "xmlhttpPost('%smain.py?FormID=AJAX_table', 'sortable', (getquerystring(this.form)))" % webqtlConfig.CGIDIR) + + containerTable.append(HT.TR(HT.TD(HT.Span(var1,var2,var3,customizerButton, "with", dbCustomizer, Class="bd1 cbddf fs11"), HT.BR(), HT.BR()), style="display:none;", Class="extra_options")) + + #outside analysis part + GCATButton = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'GCAT');" % mainfmName) + GCATButton_img = HT.Image("/images/GCAT_logo_final.jpg", name="GCAT", alt="GCAT", title="GCAT", style="border:none") + GCATButton.append(GCATButton_img) + + ODE = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'ODE');" % mainfmName) + ODE_img = HT.Image("/images/ODE_logo_final.jpg", name="ode", alt="ODE", title="ODE", style="border:none") + ODE.append(ODE_img) + + WebGestalt = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('%s')[0], 'GOTree');" % mainfmName) + WebGestalt_img = HT.Image("/images/webgestalt_icon_final.jpg", name="webgestalt", alt="Gene Set Analysis Toolkit", title="Gene Set Analysis Toolkit", style="border:none") + WebGestalt.append(WebGestalt_img) + + LinkOutTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="320",height="80", border=0, align="Left") + if not GO_tree_value: + LinkOutRow = HT.TR(HT.TD(GCATButton, width="50%"), HT.TD(ODE, width="50%"), align="left") + LinkOutLabels = HT.TR(HT.TD(" ", HT.Text("GCAT"), width="50%"), HT.TD(" ",HT.Text("ODE"), width="50%"), align="left") + else: + LinkOutRow = HT.TR(HT.TD(WebGestalt, width="25%"), HT.TD(GCATButton, width="25%"), HT.TD(ODE, width="25%"), align="left") + LinkOutLabels = HT.TR(HT.TD(HT.Text("Gene Set")), HT.TD(" "*2, HT.Text("GCAT")), HT.TD(" "*3, HT.Text("ODE")), style="display:none;", Class="extra_options") + LinkOutTable.append(LinkOutRow,LinkOutLabels) + + containerTable.append(HT.TR(HT.TD(LinkOutTable), Class="extra_options", style="display:none;")) + + containerTable.append(HT.TR(HT.TD(xlsUrl, HT.BR(), HT.BR(), height=40))) + + pageTable.append(HT.TR(HT.TD(containerTable))) + + pageTable.append(HT.TR(HT.TD(div))) + + if species == 'human': + heatmap = "" + + form.append(HT.Input(name='ShowStrains',type='hidden', value =1), + HT.Input(name='ShowLine',type='hidden', value =1), + info, HT.BR(), pageTable, HT.BR()) + + TD_LR.append(corrHeading, info_form, HT.P(), form, HT.P()) + + + self.dict['body'] = str(TD_LR) + self.dict['title'] = 'Partial Correlation Result' + # updated by NL. Delete function generateJavaScript, move js files to dhtml.js, webqtl.js and jqueryFunction.js + self.dict['js1'] = '' + self.dict['js2'] = 'onLoad="pageOffset()"' + self.dict['layer'] = self.generateWarningLayer() + + else: + self.dict['body'] = "" + + + +#################################### +# # +#Partial CorrelationPage Functions # +# # +#################################### + + + def getSortByValue(self, calculationMethod): + + sortby = ("partial_pv", "up") + + if calculationMethod == "3": #XZ: literature correlation + sortby = ("lcorr","down") + elif calculationMethod == "4" or calculationMethod == "5": #XZ: tissue correlation + sortby = ("tissuecorr", "down") + + return sortby + + + #XZ, 3/31/2010: + #A[0] holds trait name. + #A[1] holds partial correlation coefficient number. + #A[2] holds N. + #A[3] holds p value of partial correlation. + def cmpPartialCorrPValue (self, A, B): + try: + if A[3] < B[3]: + return -1 + elif A[3] == B[3]: + return 0 + else: + return 1 + except: + return 0 + + + #XZ, 4/1/2010: + #A[0] holds trait name. + #A[1] holds N. + #A[2] holds partial correlation coefficient number. + #A[3] holds p value of partial correlation. + #A[6] holds literature corr or tissue corr value. + #Sort by literature corr or tissue corr first, then by partial corr p value. + def cmpLitCorr(self, A, B): + try: + if abs(A[6]) < abs(B[6]): + return 1 + elif abs(A[6]) == abs(B[6]): + if A[3] < B[3]: + return -1 + elif A[3] == B[3]: + return 0 + else: + return 1 + else: + return -1 + except: + return 0 + + + def getPartialCorrelationsFast(self, _strains, _vals, _controlvals, nnCorr, DatabaseFileName, species, input_trait_GeneId,gene_symbol,TissueProbeSetFreezeId ): + """Calculates and returns correlation coefficients using data from a csv text file.""" + + try: + allcorrelations = [] + + useLit = False + if self.method == "3": + litCorrs = self.fetchLitCorrelations(species=species, GeneId=input_trait_GeneId, db=self.db, returnNumber=self.returnNumber) + useLit = True + + useTissueCorr = False + if self.method == "4" or self.method == "5": + tissueCorrs = self.fetchTissueCorrelations(db=self.db,primaryTraitSymbol=gene_symbol, TissueProbeSetFreezeId=TissueProbeSetFreezeId, method=self.method, returnNumber=self.returnNumber) + useTissueCorr = True + + datasetFile = open(webqtlConfig.TEXTDIR+DatabaseFileName,'r') + + #XZ, 01/08/2009: read the first line + line = datasetFile.readline() + dataset_strains = webqtlUtil.readLineCSV(line)[1:] + + #XZ, 3/30/2010: This step is critical. + good_dataset_strains_index = [] + + for i in range(len(_strains)): + found_in_dataset_strains = 0 + for j, one_dataset_strain in enumerate(dataset_strains): + if one_dataset_strain == _strains[i]: + found_in_dataset_strains = 1 + good_dataset_strains_index.append(j) + break + + if not found_in_dataset_strains: + good_dataset_strains_index.append(-99999) + + allTargetTraitNames = [] + allTargetTraitValues = [] + + #XZ, 04/01/2009: If literature corr or tissue corr is selected, + #XZ: there is no need to compute partial correlation for all traits. + #XZ: If genetic corr is selected, compute partial correlation for all traits. + for line in datasetFile: + trait_line = webqtlUtil.readLineCSV(line) + trait_name = trait_line[0] + trait_data = trait_line[1:] + + if useLit: + if not litCorrs.has_key( trait_name ): + continue + + if useTissueCorr: + if not tissueCorrs.has_key( trait_name ): + continue + + #XZ, 04/01/2010: If useLit or useTissueCorr, and this trait should not be added, + #it will not go to the next step. + + good_dataset_vals = [] + for i in good_dataset_strains_index: + if i == -99999: + good_dataset_vals.append(None) + else: + good_dataset_vals.append( float(trait_data[i]) ) + + allTargetTraitNames.append(trait_name) + allTargetTraitValues.append(good_dataset_vals) + + datasetFile.close() + + if self.method in ["2", "5"]: #Spearman + allcorrelations = correlationFunction.determinePartialsByR(primaryVal=_vals, controlVals=_controlvals, targetVals=allTargetTraitValues, targetNames=allTargetTraitNames, method='s') + else: + allcorrelations = correlationFunction.determinePartialsByR(primaryVal=_vals, controlVals=_controlvals, targetVals=allTargetTraitValues, targetNames=allTargetTraitNames) + + totalTraits = len(allcorrelations) + + if useLit or useTissueCorr: + for i, item in enumerate(allcorrelations): + if useLit: + allcorrelations[i].append(litCorrs[ item[0] ]) + if useTissueCorr: + tempCorr, tempPValue = tissueCorrs[ item[0] ] + allcorrelations[i].append(tempCorr) + allcorrelations[i].append(tempPValue) + + return totalTraits, allcorrelations + except: + return 0, 0 + + + def getPartialCorrelationsNormal(self, _strains, _vals, _controlvals, nnCorr, species, input_trait_GeneId, input_trait_symbol,TissueProbeSetFreezeId): + """Calculates and returns correlation coefficients""" + + traitdatabase, dataStartPos = self.fetchAllDatabaseData(species=species, GeneId=input_trait_GeneId, GeneSymbol=input_trait_symbol, strains=_strains, db=self.db, method=self.method, returnNumber=self.returnNumber, tissueProbeSetFreezeId=TissueProbeSetFreezeId) + totalTraits = len(traitdatabase) #XZ, 09/18/2008: total trait number + + allcorrelations = [] + + allTargetTraitNames = [] + allTargetTraitValues = [] + + for traitdata in traitdatabase: + traitdataName = traitdata[0] + traitvals = traitdata[dataStartPos:] + allTargetTraitNames.append (traitdataName) + allTargetTraitValues.append (traitvals) + + if self.method in ["2", "5"]: #Spearman + allcorrelations = correlationFunction.determinePartialsByR(primaryVal=_vals, controlVals=_controlvals, targetVals=allTargetTraitValues, targetNames=allTargetTraitNames, method='s') + else: + allcorrelations = correlationFunction.determinePartialsByR(primaryVal=_vals, controlVals=_controlvals, targetVals=allTargetTraitValues, targetNames=allTargetTraitNames) + + #XZ, 09/28/2008: if user select '3', then fetchAllDatabaseData would give us LitCorr in the [1] position + #XZ, 09/28/2008: if user select '4' or '5', then fetchAllDatabaseData would give us Tissue Corr in the [1] position + #XZ, 09/28/2008: and Tissue Corr P Value in the [2] position + if input_trait_GeneId and self.db.type == "ProbeSet" and self.method in ["3", "4", "5"]: + for i, item in enumerate(allcorrelations): + if self.method == "3": + item.append( traitdatabase[1] ) + if self.method == "4" or self.method == "5": + item.append( traitdatabase[1] ) + item.append( traitdatabase[2] ) + + + return totalTraits, allcorrelations + + + def getTableHeaderForPublish(self, method=None, worksheet=None, newrow=None, headingStyle=None): + + tblobj_header = [] + + if method in ["1", "3", "4"]: + tblobj_header = [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), sort=0), + THCell(HT.TD('Record', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="id", idx=1), + THCell(HT.TD('Phenotype', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="pheno", idx=2), + THCell(HT.TD('Authors', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="auth", idx=3), + THCell(HT.TD('Year', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="year", idx=4), + THCell(HT.TD('N', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="nstr", idx=5), + THCell(HT.TD('Partial r ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="partial_corr", idx=6), + THCell(HT.TD('p(partial r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="partial_pv", idx=7), + THCell(HT.TD('r ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="corr", idx=8), + THCell(HT.TD('p(r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="pv", idx=9), + THCell(HT.TD('delta r', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="delta_corr", idx=10)]] + + for ncol, item in enumerate(["Record", "Phenotype", "Authors", "Year", "PubMedID", "N", "Partial r", "p(partial r)", "r ", "p(r)", "delta r"]): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + else: + tblobj_header = [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), sort=0), + THCell(HT.TD('Record', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="id", idx=1), + THCell(HT.TD('Phenotype', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="pheno", idx=2), + THCell(HT.TD('Authors', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="auth", idx=3), + THCell(HT.TD('Year', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="year", idx=4), + THCell(HT.TD('N', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="nstr", idx=5), + THCell(HT.TD('Partial rho ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="partial_corr", idx=6), + THCell(HT.TD('p(partial rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="partial_pv", idx=7), + THCell(HT.TD('rho ', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="corr", idx=8), + THCell(HT.TD('p(rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="pv", idx=9), + THCell(HT.TD('delta rho', Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="delta_corr", idx=10)]] + + for ncol, item in enumerate(["Record", "Phenotype", "Authors", "Year", "PubMedID", "N", "Partial rho", "p(partial rho)", "rho ", "p(rho)", "delta rho"]): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + + return tblobj_header, worksheet + + + def getTableBodyForPublish(self, traitList, formName=None, worksheet=None, newrow=None, corrScript=None): + + tblobj_body = [] + + for thisTrait in traitList: + tr = [] + + trId = str(thisTrait) + + #partial corr value could be string 'NA' + try: + corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.partial_corr)) + except: + corrScript.append('corrArray["%s"] = {corr:"NA"};' % (trId)) + + tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId)) + + tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn"), nowrap="yes",align="center", Class="fs12 fwn b1 c222"),str(thisTrait.name), thisTrait.name)) + + PhenotypeString = thisTrait.post_publication_description + if thisTrait.confidential: + if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users): + PhenotypeString = thisTrait.pre_publication_description + tr.append(TDCell(HT.TD(PhenotypeString, Class="fs12 fwn b1 c222"), PhenotypeString, PhenotypeString.upper())) + + tr.append(TDCell(HT.TD(thisTrait.authors, Class="fs12 fwn b1 c222 fsI"),thisTrait.authors, thisTrait.authors.strip().upper())) + + try: + PubMedLinkText = myear = repr = int(thisTrait.year) + except: + PubMedLinkText = repr = "N/A" + myear = 0 + if thisTrait.pubmed_id: + PubMedLink = HT.Href(text= repr,url= webqtlConfig.PUBMEDLINK_URL % thisTrait.pubmed_id,target='_blank', Class="fs12 fwn") + else: + PubMedLink = repr + + tr.append(TDCell(HT.TD(PubMedLink, Class="fs12 fwn b1 c222", align='center'), repr, myear)) + + repr = '%d' % thisTrait.NOverlap + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.NOverlap)) + + try: + repr = '%3.3f' % thisTrait.partial_corr + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn b1 c222", align='right', nowrap="on"), repr, abs(thisTrait.partial_corr))) + except: + repr = 'NA' + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='left'), text=repr, val=0 )) + + repr = webqtlUtil.SciFloat(thisTrait.partial_corrPValue) + tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.partial_corrPValue)) + + repr = '%3.3f' % thisTrait.corr + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn b1 c222", align='right', nowrap="on"), repr, abs(thisTrait.corr))) + + repr = webqtlUtil.SciFloat(thisTrait.corrPValue) + tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue)) + + #delta + try: + delta = '%3.3f' % ( float(thisTrait.partial_corr) - float(thisTrait.corr) ) + tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='right', nowrap="on"), text=delta, val=abs(float(delta)) )) + except: + delta = 'NA' + tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='left'), text=delta, val=0 )) + + tblobj_body.append(tr) + + for ncol, item in enumerate([thisTrait.name, PhenotypeString, thisTrait.authors, thisTrait.year, thisTrait.pubmed_id, thisTrait.NOverlap, thisTrait.partial_corr, thisTrait.partial_corrPValue, thisTrait.corr, thisTrait.corrPValue, delta]): + worksheet.write([newrow, ncol], str(item) ) + newrow += 1 + + return tblobj_body, worksheet, corrScript + + + def getTableHeaderForGeno(self, method=None, worksheet=None, newrow=None, headingStyle=None): + tblobj_header = [] + + if method in ["1", "3", "4"]: + tblobj_header = [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb"), sort=0), + THCell(HT.TD('Locus', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='locus', idx=1), + THCell(HT.TD('Chr', Class="fs13 fwb ffl b1 cw cbrb"), text='chr', idx=2), + THCell(HT.TD('Megabase', Class="fs13 fwb ffl b1 cw cbrb"), text='Mb', idx=3), + THCell(HT.TD('N', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='nstr', idx=4), + THCell(HT.TD('Partial r ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_corr', idx=5), + THCell(HT.TD('p(partial r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_pv', idx=6), + THCell(HT.TD('r ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='corr', idx=7), + THCell(HT.TD('p(r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='pv', idx=8), + THCell(HT.TD('delta r', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='delta_corr', idx=9)]] + + for ncol, item in enumerate(['Locus', 'Chr', ' Mb ', ' N ', 'Partial r', 'p(partial r)', 'r ', 'p(r)', 'delta r' ]): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + else: + tblobj_header = [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb"), sort=0), + THCell(HT.TD('Locus', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='locus', idx=1), + THCell(HT.TD('Chr', Class="fs13 fwb ffl b1 cw cbrb"), text='chr', idx=2), + THCell(HT.TD('Megabase', Class="fs13 fwb ffl b1 cw cbrb"), text='Mb', idx=3), + THCell(HT.TD('N', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='nstr', idx=4), + THCell(HT.TD('Partial rho', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_corr', idx=5), + THCell(HT.TD('p(partial rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_pv', idx=6), + THCell(HT.TD('rho ', Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text='corr', idx=7), + THCell(HT.TD('p(rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='pv', idx=8), + THCell(HT.TD('delta rho', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='delta_corr', idx=9)]] + + for ncol, item in enumerate(['Locus', 'Chr', ' Mb ', ' N ', 'Partial rho', 'p(partial rho)', 'rho ', 'p(rho)', 'delta rho' ]): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + + return tblobj_header, worksheet + + + + def getTableBodyForGeno(self, traitList, formName=None, worksheet=None, newrow=None, corrScript=None): + + tblobj_body = [] + + for thisTrait in traitList: + tr = [] + + trId = str(thisTrait) + + #partial corr value could be string 'NA' + try: + corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.partial_corr)) + except: + corrScript.append('corrArray["%s"] = {corr:"NA"};' % (trId)) + + tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId)) + + tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName, thisTrait.name), Class="fs12 fwn ffl"),align="center", Class="fs12 fwn ffl b1 c222"), text=thisTrait.name, val=thisTrait.name.upper())) + + #tr.append(TDCell(HT.TD(thisTrait.chr, Class="fs12 fwn ffl b1 c222", align='right'), text=str(thisTrait.chr))) + + try: + Mbvalue = int(thisTrait.chr)*1000 + thisTrait.mb + except: + if not thisTrait.chr or not thisTrait.mb: + Mbvalue = 1000000 + elif thisTrait.chr.upper() == 'X': + Mbvalue = 20*1000 + thisTrait.mb + else: + Mbvalue = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb + + tr.append(TDCell( HT.TD(thisTrait.chr, Class="fs12 fwn b1 c222", align='right'), thisTrait.chr, Mbvalue) ) + tr.append(TDCell(HT.TD(thisTrait.mb, Class="fs12 fwn ffl b1 c222", align='right'), text=str(thisTrait.mb), val=Mbvalue)) + + repr = '%d' % thisTrait.NOverlap + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.NOverlap)) + + try: + repr='%3.3f' % thisTrait.partial_corr + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right',nowrap='ON'),repr,abs(thisTrait.partial_corr))) + except: + repr = 'NA' + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='left'), text=repr, val=0 )) + + repr = webqtlUtil.SciFloat(thisTrait.partial_corrPValue) + tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.partial_corrPValue)) + + repr = '%3.3f' % thisTrait.corr + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn b1 c222", align='right',nowrap='ON'), repr, abs(thisTrait.corr))) + + repr = webqtlUtil.SciFloat(thisTrait.corrPValue) + tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue)) + + #delta + try: + delta = '%3.3f' % ( float(thisTrait.partial_corr) - float(thisTrait.corr) ) + tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'), text=delta, val=abs(float(delta)) )) + except: + delta = 'NA' + tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='left'), text=delta, val=0 )) + + tblobj_body.append(tr) + + for ncol, item in enumerate([thisTrait.name, thisTrait.chr, thisTrait.mb, thisTrait.NOverlap, thisTrait.partial_corr, thisTrait.partial_corrPValue, thisTrait.corr, thisTrait.corrPValue, delta]): + worksheet.write([newrow, ncol], item) + newrow += 1 + + return tblobj_body, worksheet, corrScript + + + def getTableHeaderForProbeSet(self, method=None, worksheet=None, newrow=None, headingStyle=None): + + tblobj_header = [] + + if method in ["1","3","4"]: + tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0), + THCell(HT.TD('Record',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="id", idx=1), + THCell(HT.TD('','Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="symbol", idx=2), + THCell(HT.TD('','Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="desc", idx=3), + #XZ, 12/09/2008: sort chr + THCell(HT.TD('','Chr',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="chr", idx=4), + THCell(HT.TD('','Mb',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Mb", idx=5), + THCell(HT.TD('Mean',HT.BR(),'Expr',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="mean", idx=6), + THCell(HT.TD('N',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="nstr", idx=7), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'Partial r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="partial_corr", idx=8), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'p(partial r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_p_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="partial_pv", idx=9), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="corr", idx=10), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_p_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="pv", idx=11), + THCell(HT.TD('delta',HT.BR(), 'r', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="delta_corr", idx=12), + THCell(HT.TD(HT.Href( + text = HT.Span('Pubmed',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#literatureCorr"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="lcorr", idx=13), + #XZ, 09/22/2008: tissue correlation + THCell(HT.TD(HT.Href( + text = HT.Span('Tissue',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#tissue_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuecorr", idx=14), + THCell(HT.TD(HT.Href( + text = HT.Span('Tissue',HT.BR(), 'p(r)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#tissue_p_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuepvalue", idx=15)]] + + for ncol, item in enumerate(['Record', 'Gene ID', 'Symbol', 'Description', 'Chr', 'Megabase', 'Mean Expr', 'N ', 'Sample Partial r', 'Sample p(partial r)', 'Sample r', 'Sample p(r)', 'delta r', 'Lit Corr', 'Tissue r', 'Tissue p(r)']): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + else: + tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0), + THCell(HT.TD('Record',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="id", idx=1), + THCell(HT.TD('','Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="symbol", idx=2), + THCell(HT.TD('','Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="desc", idx=3), + THCell(HT.TD('','Chr',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="chr", idx=4), + THCell(HT.TD('','Mb',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="Mb", idx=5), + THCell(HT.TD('Mean',HT.BR(),'Expr',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="mean", idx=6), + THCell(HT.TD('N',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="nstr", idx=7), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'Partial rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_rho"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="partial_corr", idx=8), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'p(partial rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_p_rho"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="partial_pv", idx=9), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="corr", idx=10), + THCell(HT.TD(HT.Href( + text = HT.Span('Sample',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#genetic_p_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="pv", idx=11), + THCell(HT.TD('delta',HT.BR(),'rho', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="delta_corr", idx=12), + THCell(HT.TD(HT.Href( + text = HT.Span('Pubmed',HT.BR(), 'r', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#literatureCorr"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="lcorr", idx=13), + #XZ, 09/22/2008: tissue correlation + THCell(HT.TD(HT.Href( + text = HT.Span('Tissue',HT.BR(), 'rho', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#tissue_rho"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuecorr", idx=14), + THCell(HT.TD(HT.Href( + text = HT.Span('Tissue',HT.BR(), 'p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#tissue_p_rho"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuepvalue", idx=15)]] + + for ncol, item in enumerate(['Record', 'Gene ID', 'Symbol', 'Description', 'Chr', 'Megabase', 'Mean Expr', 'N ', 'Sample Partial rho', 'Sample p(partial rho)', 'Sample rho', 'Sample p(rho)', 'delta rho', 'Pubmed r', 'Tissue rho', 'Tissue p(rho)']): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + + return tblobj_header, worksheet + + + def getTableBodyForProbeSet(self, traitList=[], primaryTrait=None, formName=None, worksheet=None, newrow=None, corrScript=None): + + tblobj_body = [] + + for thisTrait in traitList: + + if thisTrait.symbol: + pass + else: + thisTrait.symbol = "N/A" + + if thisTrait.geneid: + symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" % thisTrait.geneid, Class="fs12 fwn") + else: + symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene&term=%s" % thisTrait.symbol, Class="fs12 fwn") + + tr = [] + + trId = str(thisTrait) + + #partial corr value could be string 'NA' + try: + corrScript.append('corrArray["%s"] = {corr:%1.4f};' % (trId, thisTrait.partial_corr)) + except: + corrScript.append('corrArray["%s"] = {corr:"NA"};' % (trId)) + + #XZ, 12/08/2008: checkbox + tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId)) + + #XZ, 12/08/2008: probeset name + tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showTrait('%s', '%s')" % (formName,thisTrait.name), Class="fs12 fwn"), Class="fs12 fwn b1 c222"), thisTrait.name, thisTrait.name.upper())) + + #XZ, 12/08/2008: gene symbol + tr.append(TDCell(HT.TD(symbolurl, Class="fs12 fwn b1 c222 fsI"),thisTrait.symbol, thisTrait.symbol.upper())) + + #XZ, 12/08/2008: description + #XZ, 06/05/2009: Rob asked to add probe target description + description_string = str(thisTrait.description).strip() + target_string = str(thisTrait.probe_target_description).strip() + + description_display = '' + + if len(description_string) > 1 and description_string != 'None': + description_display = description_string + else: + description_display = thisTrait.symbol + + if len(description_display) > 1 and description_display != 'N/A' and len(target_string) > 1 and target_string != 'None': + description_display = description_display + '; ' + target_string.strip() + + tr.append(TDCell(HT.TD(description_display, Class="fs12 fwn b1 c222"), description_display, description_display)) + + #XZ, 12/08/2008: Mbvalue is used for sorting + try: + Mbvalue = int(thisTrait.chr)*1000 + thisTrait.mb + except: + if not thisTrait.chr or not thisTrait.mb: + Mbvalue = 1000000 + elif thisTrait.chr.upper() == 'X': + Mbvalue = 20*1000 + thisTrait.mb + else: + Mbvalue = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb + + #XZ, 12/08/2008: chromosome number + #XZ, 12/10/2008: use Mbvalue to sort chromosome + tr.append(TDCell( HT.TD(thisTrait.chr, Class="fs12 fwn b1 c222", align='right'), thisTrait.chr, Mbvalue) ) + + #XZ, 12/08/2008: Rob wants 6 digit precision, and we have to deal with that the mb could be None + if not thisTrait.mb: + tr.append(TDCell(HT.TD(thisTrait.mb, Class="fs12 fwn b1 c222",align='right'), thisTrait.mb, Mbvalue)) + else: + tr.append(TDCell(HT.TD('%.6f' % thisTrait.mb, Class="fs12 fwn b1 c222", align='right'), thisTrait.mb, Mbvalue)) + + #XZ, 01/12/08: This SQL query is much faster. + self.cursor.execute(""" + select ProbeSetXRef.mean from ProbeSetXRef, ProbeSet + where ProbeSetXRef.ProbeSetFreezeId = %d and + ProbeSet.Id = ProbeSetXRef.ProbeSetId and + ProbeSet.Name = '%s' + """ % (thisTrait.db.id, thisTrait.name)) + result = self.cursor.fetchone() + if result: + if result[0]: + mean = result[0] + else: + mean=0 + else: + mean = 0 + + #XZ, 06/05/2009: It is neccessary to turn on nowrap + repr = "%2.3f" % mean + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'),repr, mean)) + + #XZ: number of overlaped cases for partial corr + repr = '%d' % thisTrait.NOverlap + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.NOverlap)) + + #XZ: sample partial correlation + try: + repr='%3.3f' % thisTrait.partial_corr + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'),repr,abs(thisTrait.partial_corr))) + except: + repr = 'NA' + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='left'), text=repr, val=0 )) + + #XZ: p value of genetic partial correlation + repr = webqtlUtil.SciFloat(thisTrait.partial_corrPValue) + tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.partial_corrPValue)) + + repr = '%3.3f' % thisTrait.corr + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn b1 c222", align='right',nowrap='ON'), repr, abs(thisTrait.corr))) + + repr = webqtlUtil.SciFloat(thisTrait.corrPValue) + tr.append(TDCell(HT.TD(repr,nowrap='ON', Class="fs12 fwn ffl b1 c222", align='right'),repr,thisTrait.corrPValue)) + + #delta + try: + delta = '%3.3f' % ( float(thisTrait.partial_corr) - float(thisTrait.corr) ) + tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='right', nowrap='ON'), text=delta, val=abs(float(delta)) )) + except: + delta = 'NA' + tr.append(TDCell(HT.TD(delta, Class="fs12 fwn ffl b1 c222", align='left'), text=delta, val=0 )) + + #XZ, 12/08/2008: literature correlation + LCorr = 0.0 + LCorrStr = "N/A" + if hasattr(thisTrait, 'LCorr') and thisTrait.LCorr: + LCorr = thisTrait.LCorr + LCorrStr = "%2.3f" % thisTrait.LCorr + tr.append(TDCell(HT.TD(LCorrStr, Class="fs12 fwn b1 c222", align='right'), LCorrStr, abs(LCorr))) + + #XZ, 09/22/2008: tissue correlation. + TCorr = 0.0 + TCorrStr = "N/A" + #XZ, 11/18/2010: need to pass two gene symbols + if hasattr(thisTrait, 'tissueCorr') and thisTrait.tissueCorr: + TCorr = thisTrait.tissueCorr + TCorrStr = "%2.3f" % thisTrait.tissueCorr + #NL, 07/19/2010: add a new parameter rankOrder for js function 'showTissueCorrPlot' + rankOrder =thisTrait.rankOrder + TCorrPlotURL = "javascript:showTissueCorrPlot('%s','%s','%s',%d)" %(formName, primaryTrait.symbol, thisTrait.symbol,rankOrder) + tr.append(TDCell(HT.TD(HT.Href(text=TCorrStr, url=TCorrPlotURL, Class="fs12 fwn ff1"), Class="fs12 fwn ff1 b1 c222", align='right'), TCorrStr, abs(TCorr) )) + else: + tr.append(TDCell(HT.TD(TCorrStr, Class="fs12 fwn b1 c222", align='right'), TCorrStr, abs(TCorr))) + + #XZ, 12/08/2008: p value of tissue correlation + TPValue = 1.0 + TPValueStr = "N/A" + if hasattr(thisTrait, 'tissueCorr') and thisTrait.tissueCorr: #XZ, 09/22/2008: thisTrait.tissuePValue can't be used here because it could be 0 + TPValue = thisTrait.tissuePValue + TPValueStr = "%2.3f" % thisTrait.tissuePValue + tr.append(TDCell(HT.TD(TPValueStr, Class="fs12 fwn b1 c222", align='right'), TPValueStr, abs(TPValue) )) + + tblobj_body.append(tr) + + for ncol, item in enumerate([thisTrait.name, thisTrait.geneid, thisTrait.symbol, thisTrait.description, thisTrait.chr, thisTrait.mb, mean, thisTrait.NOverlap, thisTrait.partial_corr, thisTrait.partial_corrPValue, thisTrait.corr, thisTrait.corrPValue, delta, LCorrStr, TCorrStr, TPValueStr]): + worksheet.write([newrow, ncol], item) + + newrow += 1 + + return tblobj_body, worksheet, corrScript + + + def getFormForPrimaryAndControlTraits (self, primaryTrait, controlTraits): + + info_form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden')) + + hddn = {'FormID':'showDatabase', 'database':'_', 'ProbeSetID':'_', 'CellID':'_' }#XZ: These four parameters are required by javascript function showDatabase2. + + for key in hddn.keys(): + info_form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + info_form.append(HT.Paragraph("Primary Trait", Class="subtitle"), '\n') + + primaryTraitTable = HT.TableLite(cellSpacing=4,cellPadding=0,width="90%",border=0) + descriptionString = primaryTrait.genHTML(dispFromDatabase=1) + if primaryTrait.db.type == 'Publish' and primaryTrait.confidential: + descriptionString = primaryTrait.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=primaryTrait.authorized_users) + primaryTraitTable.append(HT.TR(HT.TD(HT.Href(text='%s' % descriptionString, url="javascript:showDatabase2('%s','%s','%s')" % (primaryTrait.db.name,primaryTrait.name,primaryTrait.cellid), Class="fs12 fwn") ))) + + info_form.append(primaryTraitTable) + + info_form.append(HT.Paragraph("Control Traits", Class="subtitle"), '\n') + + controlTraitsTable = HT.TableLite(cellSpacing=4,cellPadding=0,width="90%",border=0) + + seq = 1 + + ## Generate the listing table for control traits + for thisTrait in controlTraits: + descriptionString = thisTrait.genHTML(dispFromDatabase=1) + if thisTrait.db.type == 'Publish' and thisTrait.confidential: + descriptionString = thisTrait.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users) + controlTraitsTable.append(HT.TR(HT.TD("%d."%seq,align="right",width=10), + HT.TD(HT.Href(text='%s' % descriptionString,url="javascript:showDatabase2('%s','%s','%s')" % (thisTrait.db.name,thisTrait.name,thisTrait.cellid), Class="fs12 fwn") ))) + seq += 1 + + info_form.append(controlTraitsTable) + + return info_form diff --git a/web/webqtl/correlation/PartialCorrInputPage.py b/web/webqtl/correlation/PartialCorrInputPage.py new file mode 100755 index 00000000..7d32da6d --- /dev/null +++ b/web/webqtl/correlation/PartialCorrInputPage.py @@ -0,0 +1,484 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os +import string +import cPickle + +from htmlgen import HTMLgen2 as HT + +from base import webqtlConfig +from utility.THCell import THCell +from utility.TDCell import TDCell +from base.webqtlTrait import webqtlTrait +from base.templatePage import templatePage +from dbFunction import webqtlDatabaseFunction +from utility import webqtlUtil + + + +class PartialCorrInputPage(templatePage): + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + searchResult = fd.formdata.getvalue('searchResult') + + if not searchResult: + heading = 'Partial Correlation' + detail = ['You need to select at least three traits in order to calculate partial correlation.'] + self.error(heading=heading,detail=detail) + return + + + ## Adds the Trait instance for each trait name from the collection + traits = [] + + for item in searchResult: + traits.append(webqtlTrait(fullname=item, cursor=self.cursor)) + + RISet = fd.formdata.getvalue('RISet') + species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=RISet) + + #XZ: HTML part + TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee') + TD_LR.append("Please select one primary trait, one to three control traits, and at least one target trait.", HT.P() ) + + mainFormName = 'showDatabase' + mainForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name=mainFormName,submit=HT.Input(type='hidden')) + + #XZ: Add hidden form values + hddn = {'FormID':'calPartialCorrTrait', 'database':'', 'ProbeSetID':'', 'CellID':'', #XZ: These four parameters are required by javascript function showDatabase2. + 'controlTraits':'', + 'primaryTrait':'', + 'targetTraits':'', + 'pcMethod':'', + 'RISet':RISet + } + + + for key in hddn.keys(): + mainForm.append(HT.Input(type='hidden', name=key, value=hddn[key])) + + radioNames = [] + + for thisTrait in traits: + oneRadioName = thisTrait.getName() + radioNames.append(oneRadioName) + + radioNamesString = ','.join(radioNames) + + # Creates the image href that runs the javascript setting all traits as target or ignored + setAllTarget = HT.Href(url="#redirect", onClick="setAllAsTarget(document.getElementsByName('showDatabase')[0], '%s');" % radioNamesString) + setAllTargetImg = HT.Image("/images/select_all.gif", alt="Select All", title="Select All", style="border:none;") + setAllTarget.append(setAllTargetImg) + setAllIgnore = HT.Href(url="#redirect", onClick="setAllAsIgnore(document.getElementsByName('showDatabase')[0], '%s');" % radioNamesString) + setAllIgnoreImg = HT.Image("/images/select_all.gif", alt="Select All", title="Select All", style="border:none;") + setAllIgnore.append(setAllIgnoreImg) + + + tblobj = {} + tblobj['header'] = self.getCollectionTableHeader() + + sortby = self.getSortByValue() + + tblobj['body'] = self.getCollectionTableBody(traitList=traits, formName=mainFormName, species=species) + + filename= webqtlUtil.genRandStr("Search_") + + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + + div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), Id="sortable") + + mainForm.append(div) + + #XZ: Add button + radioNamesString = ','.join(radioNames) + jsCommand_1 = "validateTrait(this.form, \'" + radioNamesString + "\', 0, 1);" + jsCommand_2 = "validateTrait(this.form, \'" + radioNamesString + "\', 0, 2);" + partialCorrTraitButton_1 = HT.Input(type='button', name='submitPartialCorrTrait_1', value='Pearson\'s r', onClick='%s' % jsCommand_1, Class="button") + partialCorrTraitButton_2 = HT.Input(type='button', name='submitPartialCorrTrait_2', value='Spearman\'s rho', onClick='%s' % jsCommand_2, Class="button") + mainForm.append(HT.BR(), "Compute partial correlation for target selected above:", HT.BR(), partialCorrTraitButton_1, partialCorrTraitButton_2, HT.BR(), HT.BR(), HT.HR(color="gray",size=3) ) + + jsCommand = "validateTrait(this.form, \'" + radioNamesString + "\', 1);" + partialCorrDBButton = HT.Input(type='button', name='submitPartialCorrDB', value='Calculate', onClick='%s' % jsCommand,Class="button") + + methodText = HT.Span("Calculate:", Class="ffl fwb fs12") + + methodMenu = HT.Select(name='method') + methodMenu.append(('Genetic Correlation, Pearson\'s r','1')) + methodMenu.append(('Genetic Correlation, Spearman\'s rho','2')) + methodMenu.append(('SGO Literature Correlation','3')) + methodMenu.append(('Tissue Correlation, Pearson\'s r','4')) + methodMenu.append(('Tissue Correlation, Spearman\'s rho','5')) + + databaseText = HT.Span("Choose Database:", Class="ffl fwb fs12") + databaseMenu = HT.Select(name='database2') + + nmenu = 0 + + self.cursor.execute('SELECT PublishFreeze.FullName,PublishFreeze.Name FROM \ + PublishFreeze,InbredSet WHERE PublishFreeze.InbredSetId = InbredSet.Id \ + and InbredSet.Name = "%s" and PublishFreeze.public > %d' % \ + (RISet,webqtlConfig.PUBLICTHRESH)) + for item in self.cursor.fetchall(): + databaseMenu.append(item) + nmenu += 1 + + self.cursor.execute('SELECT GenoFreeze.FullName,GenoFreeze.Name FROM GenoFreeze,\ + InbredSet WHERE GenoFreeze.InbredSetId = InbredSet.Id and InbredSet.Name = \ + "%s" and GenoFreeze.public > %d' % (RISet,webqtlConfig.PUBLICTHRESH)) + for item in self.cursor.fetchall(): + databaseMenu.append(item) + nmenu += 1 + + #03/09/2009: Xiaodong changed the SQL query to order by Name as requested by Rob. + self.cursor.execute('SELECT Id, Name FROM Tissue order by Name') + for item in self.cursor.fetchall(): + TId, TName = item + databaseMenuSub = HT.Optgroup(label = '%s ------' % TName) + self.cursor.execute('SELECT ProbeSetFreeze.FullName,ProbeSetFreeze.Name FROM ProbeSetFreeze, ProbeFreeze, \ + InbredSet WHERE ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeFreeze.TissueId = %d and \ + ProbeSetFreeze.public > %d and ProbeFreeze.InbredSetId = InbredSet.Id and InbredSet.Name like "%s%%" \ + order by ProbeSetFreeze.CreateTime desc, ProbeSetFreeze.AvgId ' % (TId,webqtlConfig.PUBLICTHRESH, RISet)) + for item2 in self.cursor.fetchall(): + databaseMenuSub.append(item2) + nmenu += 1 + databaseMenu.append(databaseMenuSub) + + if nmenu: + criteriaText = HT.Span("Return:", Class="ffl fwb fs12") + criteriaMenu = HT.Select(name='criteria', selected='500') + criteriaMenu.append(('top 100','100')) + criteriaMenu.append(('top 200','200')) + criteriaMenu.append(('top 500','500')) + criteriaMenu.append(('top 1000','1000')) + criteriaMenu.append(('top 2000','2000')) + criteriaMenu.append(('top 5000','5000')) + criteriaMenu.append(('top 10000','10000')) + criteriaMenu.append(('top 15000','15000')) + criteriaMenu.append(('top 20000','20000')) + + self.MPDCell = HT.TD() + correlationMenus = HT.TableLite( + HT.TR( + HT.TD(databaseText,HT.BR(),databaseMenu, colspan=4) + ), + HT.TR( + HT.TD(methodText,HT.BR(),methodMenu), + self.MPDCell, + HT.TD(criteriaText,HT.BR(),criteriaMenu)), + border=0, cellspacing=4, cellpadding=0) + else: + correlationMenus = "" + + mainForm.append(HT.Font('or',color='red', size=4), HT.BR(), HT.BR(), "Compute partial correlation for each trait in the database selected below:", HT.BR() ) + mainForm.append( partialCorrDBButton, HT.BR(), HT.BR(), correlationMenus) + + TD_LR.append(mainForm) + + self.dict['body'] = str(TD_LR) + self.dict['js1'] ='' + self.dict['title'] = 'Partial Correlation Input' + + + def getCollectionTableHeader(self): + + tblobj_header = [] + + className = "fs13 fwb ffl b1 cw cbrb" + + tblobj_header = [[THCell(HT.TD('Index', Class=className, nowrap="on"), sort=0), + THCell(HT.TD("Primary (X)",align="center", Class="fs13 fwb ffl b1 cw cbrb", nowrap="ON"), text="primary", sort=0), + THCell(HT.TD("Control (Z)",align="center", Class="fs13 fwb ffl b1 cw cbrb", nowrap="ON"), text="control", sort=0), + THCell(HT.TD("Target (Y)",align="center", Class="fs13 fwb ffl b1 cw cbrb", nowrap="ON"), text="target", sort=0), + THCell(HT.TD("Ignored",align="center", Class="fs13 fwb ffl b1 cw cbrb", nowrap="ON"), text="target", sort=0), + THCell(HT.TD('Dataset', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="dataset", idx=1), + THCell(HT.TD('Trait', HT.BR(), 'ID', HT.BR(), valign="top", Class=className, nowrap="on"), text="name", idx=2), + THCell(HT.TD('Description', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="desc", idx=3), + THCell(HT.TD('Location', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="location", idx=4), + THCell(HT.TD('Mean', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="mean", idx=5), + THCell(HT.TD('N', HT.BR(), 'Cases', HT.BR(), valign="top", Class=className, nowrap="on"), text="samples", idx=6), + THCell(HT.TD('Max LRS', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="lrs", idx=7), + THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb', HT.BR(), valign="top", Class=className, nowrap="on"), text="lrs_location", idx=8)]] + + return tblobj_header + + + + def getCollectionTableBody(self, traitList=None, formName=None, species=''): + + tblobj_body = [] + + className = "fs12 fwn b1 c222" + + for thisTrait in traitList: + tr = [] + + if not thisTrait.haveinfo: + thisTrait.retrieveInfo(QTL=1) + + trId = str(thisTrait) + + oneRadioName = thisTrait.getName() + + tr.append(TDCell( HT.TD(' ',align="center",valign="center",Class=className) )) + tr.append(TDCell( HT.TD(HT.Input(type="radio", name=oneRadioName, value="primary"),align="center",valign="center",Class=className) )) + tr.append(TDCell( HT.TD(HT.Input(type="radio", name=oneRadioName, value="control"),align="center",valign="center",Class=className) )) + tr.append(TDCell( HT.TD(HT.Input(type="radio", name=oneRadioName, value="target", checked="true"),align="center",valign="center",Class=className) )) + tr.append(TDCell( HT.TD(HT.Input(type="radio", name=oneRadioName, value="ignored"),align="center",valign="center",Class=className) )) + + tr.append(TDCell(HT.TD(thisTrait.db.name, Class="fs12 fwn b1 c222"), thisTrait.db.name, thisTrait.db.name.upper())) + + tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showDatabase3('%s','%s','%s','')" % (formName, thisTrait.db.name, thisTrait.name), Class="fs12 fwn"), nowrap="yes",align="left", Class=className +),str(thisTrait.name), thisTrait.name)) + + #description column + if (thisTrait.db.type == "Publish"): + PhenotypeString = thisTrait.post_publication_description + if thisTrait.confidential: + if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users): + PhenotypeString = thisTrait.pre_publication_description + tr.append(TDCell(HT.TD(PhenotypeString, Class=className), PhenotypeString, PhenotypeString.upper())) + elif (thisTrait.db.type == "ProbeSet" or thisTrait.db.type == "Temp"): + description_string = str(thisTrait.description).strip() + if (thisTrait.db.type == "ProbeSet"): + target_string = str(thisTrait.probe_target_description).strip() + + description_display = '' + + if len(description_string) > 1 and description_string != 'None': + description_display = description_string + else: + description_display = thisTrait.symbol + + if len(description_display) > 1 and description_display != 'N/A' and len(target_string) > 1 and target_string != 'None': + description_display = description_display + '; ' + target_string.strip() + + description_string = description_display + + tr.append(TDCell(HT.TD(description_string, Class=className), description_string, description_string)) + else: + tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", "Zz")) + + #location column + if (thisTrait.db.type == "Publish"): + tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", "Zz")) + else: + #ZS: trait_location_value is used for sorting + trait_location_repr = "N/A" + trait_location_value = 1000000 + + if hasattr(thisTrait, 'chr') and hasattr(thisTrait, 'mb') and thisTrait.chr and thisTrait.mb: + try: + trait_location_value = int(thisTrait.chr)*1000 + thisTrait.mb + except: + if thisTrait.chr.upper() == "X": + trait_location_value = 20*1000 + thisTrait.mb + else: + trait_location_value = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb + + trait_location_repr = "Chr%s: %.6f" % (thisTrait.chr, float(thisTrait.mb) ) + + tr.append( TDCell(HT.TD(trait_location_repr, nowrap="yes", Class=className), trait_location_repr, trait_location_value) ) + + if (thisTrait.db.type == "ProbeSet"): + self.cursor.execute(""" + select ProbeSetXRef.mean from ProbeSetXRef, ProbeSet + where ProbeSetXRef.ProbeSetFreezeId = %d and + ProbeSet.Id = ProbeSetXRef.ProbeSetId and + ProbeSet.Name = '%s' + """ % (thisTrait.db.id, thisTrait.name)) + result = self.cursor.fetchone() + if result: + if result[0]: + mean = result[0] + else: + mean=0 + else: + mean = 0 + + #XZ, 06/05/2009: It is neccessary to turn on nowrap + repr = "%2.3f" % mean + tr.append(TDCell(HT.TD(repr, Class=className, align='right', nowrap='ON'),repr, mean)) + + elif (thisTrait.db.type == "Publish"): + self.cursor.execute(""" + select count(PublishData.value), sum(PublishData.value) from PublishData, PublishXRef, PublishFreeze + where PublishData.Id = PublishXRef.DataId and + PublishXRef.Id = %s and + PublishXRef.InbredSetId = PublishFreeze.InbredSetId and + PublishFreeze.Id = %d + """ % (thisTrait.name, thisTrait.db.id)) + result = self.cursor.fetchone() + + if result: + if result[0] and result[1]: + mean = result[1]/result[0] + else: + mean = 0 + else: + mean = 0 + + repr = "%2.3f" % mean + tr.append(TDCell(HT.TD(repr, Class=className, align='right', nowrap='ON'),repr, mean)) + else: + tr.append(TDCell(HT.TD("--", Class=className, align='left', nowrap='ON'),"--", 0)) + + #Number of cases + n_cases_value = 0 + n_cases_repr = "--" + if (thisTrait.db.type == "Publish"): + self.cursor.execute(""" + select count(PublishData.value) from PublishData, PublishXRef, PublishFreeze + where PublishData.Id = PublishXRef.DataId and + PublishXRef.Id = %s and + PublishXRef.InbredSetId = PublishFreeze.InbredSetId and + PublishFreeze.Id = %d + """ % (thisTrait.name, thisTrait.db.id)) + result = self.cursor.fetchone() + + if result: + if result[0]: + n_cases_value = result[0] + n_cases_repr = result[0] + + if (n_cases_value == "--"): + tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value)) + else: + tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='right', nowrap="on"), n_cases_repr, n_cases_value)) + + elif (thisTrait.db.type == "ProbeSet"): + self.cursor.execute(""" + select count(ProbeSetData.value) from ProbeSet, ProbeSetXRef, ProbeSetData, ProbeSetFreeze + where ProbeSet.Name='%s' and + ProbeSetXRef.ProbeSetId = ProbeSet.Id and + ProbeSetXRef.DataId = ProbeSetData.Id and + ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id and + ProbeSetFreeze.Name = '%s' + """ % (thisTrait.name, thisTrait.db.name)) + result = self.cursor.fetchone() + + if result: + if result[0]: + n_cases_value = result[0] + n_cases_repr = result[0] + if (n_cases_value == "--"): + tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value)) + else: + tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='right', nowrap="on"), n_cases_repr, n_cases_value)) + + elif (thisTrait.db.type == "Geno"): + self.cursor.execute(""" + select count(GenoData.value) from GenoData, GenoXRef, GenoFreeze, Geno, Strain + where Geno.SpeciesId = %s and Geno.Name='%s' and + GenoXRef.GenoId = Geno.Id and + GenoXRef.DataId = GenoData.Id and + GenoXRef.GenoFreezeId = GenoFreeze.Id and + GenoData.StrainId = Strain.Id and + GenoFreeze.Name = '%s' + """ % (webqtlDatabaseFunction.retrieveSpeciesId(self.cursor, thisTrait.db.riset), thisTrait.name, thisTrait.db.name)) + result = self.cursor.fetchone() + + if result: + if result[0]: + n_cases_value = result[0] + n_cases_repr = result[0] + if (n_cases_value == "--"): + tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value)) + else: + tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='right', nowrap="on"), n_cases_repr, n_cases_value)) + + else: + tr.append(TDCell(HT.TD(n_cases_repr, Class=className, align='left', nowrap="on"), n_cases_repr, n_cases_value)) + + + if (thisTrait.db.type != "Geno"): + #LRS and its location + LRS_score_repr = '--' + LRS_score_value = 0 + LRS_location_repr = '--' + LRS_location_value = 1000000 + LRS_flag = 1 + + #Max LRS and its Locus location + if hasattr(thisTrait, 'lrs') and hasattr(thisTrait, 'locus') and thisTrait.lrs and thisTrait.locus: + self.cursor.execute(""" + select Geno.Chr, Geno.Mb from Geno, Species + where Species.Name = '%s' and + Geno.Name = '%s' and + Geno.SpeciesId = Species.Id + """ % (species, thisTrait.locus)) + result = self.cursor.fetchone() + + if result: + if result[0] and result[1]: + LRS_Chr = result[0] + LRS_Mb = result[1] + + #XZ: LRS_location_value is used for sorting + try: + LRS_location_value = int(LRS_Chr)*1000 + float(LRS_Mb) + except: + if LRS_Chr.upper() == 'X': + LRS_location_value = 20*1000 + float(LRS_Mb) + else: + LRS_location_value = ord(str(LRS_chr).upper()[0])*1000 + float(LRS_Mb) + + + LRS_score_repr = '%3.1f' % thisTrait.lrs + LRS_score_value = thisTrait.lrs + LRS_location_repr = 'Chr%s: %.6f' % (LRS_Chr, float(LRS_Mb) ) + LRS_flag = 0 + + tr.append(TDCell(HT.TD(LRS_score_repr, Class=className, align='right', nowrap="on"), LRS_score_repr, LRS_score_value)) + tr.append(TDCell(HT.TD(LRS_location_repr, Class=className), LRS_location_repr, LRS_location_value)) + + if LRS_flag: + tr.append(TDCell(HT.TD(LRS_score_repr, Class=className), LRS_score_repr, LRS_score_value)) + tr.append(TDCell(HT.TD(LRS_location_repr, Class=className), LRS_location_repr, LRS_location_value)) + else: + tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", 0)) + tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", 1000000)) + + tblobj_body.append(tr) + + return tblobj_body + + + + def getSortByValue(self): + + sortby = ("pv", "up") + + return sortby + diff --git a/web/webqtl/correlation/PartialCorrTraitPage.py b/web/webqtl/correlation/PartialCorrTraitPage.py new file mode 100755 index 00000000..1c79e250 --- /dev/null +++ b/web/webqtl/correlation/PartialCorrTraitPage.py @@ -0,0 +1,310 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string +import cPickle +import os + +from htmlgen import HTMLgen2 as HT + +from base import webqtlConfig +from utility.THCell import THCell +from utility.TDCell import TDCell +from base.webqtlTrait import webqtlTrait +from base.templatePage import templatePage +from utility import webqtlUtil +from CorrelationPage import CorrelationPage +import correlationFunction + + + +class PartialCorrTraitPage(CorrelationPage): + + corrMinInformative = 4 + + + def __init__(self,fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee') + + TD_LR.append(HT.Paragraph("Partial Correlation Table", Class="title"), '\n') + + pc_method = fd.formdata.getvalue('pcMethod') + + primaryTraitString = fd.formdata.getvalue('primaryTrait') + primaryTrait = (webqtlTrait(fullname=primaryTraitString, cursor=self.cursor)) + + controlTraitsString = fd.formdata.getvalue('controlTraits') + controlTraitsList = list(string.split(controlTraitsString,',')) + controlTraits = [] + for item in controlTraitsList: + controlTraits.append(webqtlTrait(fullname=item, cursor=self.cursor)) + + targetTraitsString = fd.formdata.getvalue('targetTraits') + targetTraitsList = list(string.split(targetTraitsString,',')) + targetTraits = [] + _targetnames = [] + for item in targetTraitsList: + oneTargetTrait = webqtlTrait(fullname=item, cursor=self.cursor) + oneTargetTrait.retrieveInfo() + targetTraits.append( oneTargetTrait ) + _targetnames.append( oneTargetTrait.name ) + + #XZ: filter out the strains that have no value. + primaryTrait.retrieveData() + _strains, _vals, _vars = primaryTrait.exportInformative() + + #XZ: _controlstrains, _controlvals and _controlvars are list of list [ [], [], ...]. _controlNs is number + _controlstrains,_controlvals,_controlvars,_controlNs = correlationFunction.controlStrains(controlTraitsString,_strains) + + N = len(_strains) + + allsame = True + ##allsame is boolean for whether or not primary and control trait have values for the same strains + for i in _controlstrains: + if _strains != i: + allsame=False + break + + ## If the strains for which each of the control traits and the primary trait have values are not identical, + ## we must remove from the calculation all vlaues for strains that are not present in each. Without doing this, + ## undesirable biases would be introduced. + # XZ, 01/11/2010: After execution of function fixStrains, variables _vals,_controlvals,_vars,_controlvars have the same number and same order of strains as strains in variable _strains. The _controlstrains remains intact. + if not allsame: + _strains,_vals,_controlvals,_vars,_controlvars = correlationFunction.fixStrains(_strains,_controlstrains,_vals,_controlvals,_vars,_controlvars) + N = len(_strains) + + #XZ: We should check the value of control trait and primary trait here. + nameOfIdenticalTraits = correlationFunction.findIdenticalTraits ( _vals, primaryTraitString, _controlvals, controlTraitsList ) + if nameOfIdenticalTraits: + heading = "Partial Correlation Table" + detail = ['%s and %s have same values for the %s strains that will be used to calculate partial correlation (common for all primary and control traits). In such case, partial correlation can NOT be calculated. Please re-select your traits.' % (nameOfIdenticalTraits[0], nameOfIdenticalTraits[1], len(_vals))] + self.error(heading=heading,detail=detail) + return + + + if N < self.corrMinInformative: + heading = "Partial Correlation Table" + detail = ['Fewer than %d strain data were entered for %s data set. No calculation of correlation has been attempted.' % (self.corrMinInformative, fd.RISet)] + self.error(heading=heading,detail=detail) + return + + #XZ, 01/11/2010: Pay attention to the target trait strain number and order! + #XZ 03/29/2010: need to input target trait values to this function. + + _targetvals = [] + for oneTargetTrait in targetTraits: + oneTargetTrait.retrieveData() + oneTraitVals = oneTargetTrait.exportData( _strains ) + _targetvals.append(oneTraitVals) + + + if pc_method == 'spearman': + allcorrelations = correlationFunction.determinePartialsByR(primaryVal = _vals, controlVals = _controlvals, targetVals = _targetvals, targetNames = _targetnames, method='s') + else: + allcorrelations = correlationFunction.determinePartialsByR(primaryVal = _vals, controlVals = _controlvals, targetVals = _targetvals, targetNames = _targetnames) + + totalTraits = len(allcorrelations) + + + info_form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden')) + + hddn = {'FormID':'showDatabase', 'database':'_', 'ProbeSetID':'_', 'CellID':'_' }#XZ: These four parameters are required by javascript function showDatabase2. + + for key in hddn.keys(): + info_form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + info_form.append(HT.Paragraph("Primary Trait", Class="subtitle"), '\n') + + primaryTraitTable = HT.TableLite(cellSpacing=4,cellPadding=0,width="90%",border=0) + + descriptionString = primaryTrait.genHTML(dispFromDatabase=1) + if primaryTrait.db.type == 'Publish' and primaryTrait.confidential: + descriptionString = primaryTrait.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=primaryTrait.authorized_users) + primaryTraitTable.append(HT.TR(HT.TD(HT.Href(text='%s' % descriptionString, url="javascript:showDatabase2('%s','%s','%s')" % (primaryTrait.db.name,primaryTrait.name,primaryTrait.cellid), Class="fs12 fwn") ))) + + info_form.append(primaryTraitTable) + + info_form.append(HT.Paragraph("Control Traits", Class="subtitle"), '\n') + + controlTraitsTable = HT.TableLite(cellSpacing=4,cellPadding=0,width="90%",border=0) + + seq = 1 + + ## Generate the listing table for control traits + for thisTrait in controlTraits: + descriptionString = thisTrait.genHTML(dispFromDatabase=1) + if thisTrait.db.type == 'Publish' and thisTrait.confidential: + descriptionString = thisTrait.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users) + controlTraitsTable.append(HT.TR(HT.TD("%d."%seq,align="left", width=10), + HT.TD(HT.Href(text='%s' % descriptionString,url="javascript:showDatabase2('%s','%s','%s')" % (thisTrait.db.name,thisTrait.name,thisTrait.cellid), Class="fs12 fwn") ))) + seq += 1 + + info_form.append(controlTraitsTable) + + + TD_LR.append(info_form) + + + mainfmName = webqtlUtil.genRandStr("fm_") + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name= mainfmName, submit=HT.Input(type='hidden')) + + hddn = {'FormID':'showDatabase', 'database':'_', 'ProbeSetID':'_', 'CellID':'_' }#XZ: These four parameters are required by javascript function showDatabase2. + + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + + filename= webqtlUtil.genRandStr("Corr_") + + tblobj = {} + + if pc_method == 'spearman': + tblobj['header'] = \ + [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb"), sort=0), + THCell(HT.TD('Database', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='db', idx=1), + THCell(HT.TD('Record', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='id', idx=2), + THCell(HT.TD('Symbol', Class="fs13 fwb ffl b1 cw cbrb"), text='symbol', idx=3), + THCell(HT.TD('Description', Class="fs13 fwb ffl b1 cw cbrb", align='center'), text='desc', idx=4), + THCell(HT.TD('N ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='nstr', idx=5), + THCell(HT.TD('Partial rho ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='partial_corr', idx=6), + THCell(HT.TD('p(partial rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_pv', idx=7), + THCell(HT.TD('rho ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='corr', idx=8), + THCell(HT.TD('p(rho)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='pv', idx=9), + THCell(HT.TD('delta rho', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='delta_rho', idx=10)]] + else: + tblobj['header'] = \ + [[THCell(HT.TD('', Class="fs13 fwb ffl b1 cw cbrb"), sort=0), + THCell(HT.TD('Database', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='db', idx=1), + THCell(HT.TD('Record', Class="fs13 fwb ffl b1 cw cbrb",align='center'), text='id', idx=2), + THCell(HT.TD('Symbol', Class="fs13 fwb ffl b1 cw cbrb"), text='symbol', idx=3), + THCell(HT.TD('Description', Class="fs13 fwb ffl b1 cw cbrb", align='center'), text='desc', idx=4), + THCell(HT.TD('N ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='nstr', idx=5), + THCell(HT.TD('Partial r ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='partial_corr', idx=6), + THCell(HT.TD('p(partial r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='partial_pv', idx=7), + THCell(HT.TD('r ', nowrap="on", Class="fs13 fwb ffl b1 cw cbrb"), text='corr', idx=8), + THCell(HT.TD('p(r)', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='pv', idx=9), + THCell(HT.TD('delta r', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text='delta_r', idx=10)]] + + sortby = ("partial_pv", "up") + + tblobj['body'] = [] + for i, thisTrait in enumerate(targetTraits): + tr = [] + + trId = str(thisTrait) + tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId)) + tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.db.fullname,url=webqtlConfig.INFOPAGEHREF % thisTrait.db.name,target="_blank", Class="fs12 fwn"), Class="fs12 fwn ffl b1 c222"), text=thisTrait.db.name, val=thisTrait +.db.name.upper())) + tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showDatabase3('%s', '%s', '%s', '%s')" % (mainfmName,thisTrait.db.name,thisTrait.name,thisTrait.cellid), Class="fs12 fwn"), Class="fs12 fwn b1 c222"), text=thisTrait.name, val=thisTrait.name)) + + #XZ: Symbol column + if thisTrait.db.type =="ProbeSet": + if thisTrait.symbol: + tr.append(TDCell(HT.TD(thisTrait.symbol, Class="fs12 fwn ffl b1 c222"), text=thisTrait.symbol, val=thisTrait.symbol.upper())) + else: + tr.append(TDCell(HT.TD('NA', Class="fs12 fwn ffl b1 c222"), text='NA', val='NA')) + elif thisTrait.db.type =="Publish": + AbbreviationString = "--" + if (thisTrait.post_publication_abbreviation != None): + AbbreviationString = thisTrait.post_publication_abbreviation + + if thisTrait.confidential: + if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users): + if thisTrait.pre_publication_abbreviation: + AbbreviationString = thisTrait.pre_publication_abbreviation + else: + AbbreviationString = "--" + + if AbbreviationString == "--": + tr.append(TDCell(HT.TD('NA', Class="fs12 fwn ffl b1 c222"), text='NA', val='NA')) + else: + tr.append(TDCell(HT.TD(AbbreviationString, Class="fs12 fwn ffl b1 c222"), text=AbbreviationString, val=AbbreviationString.upper())) + else: + tr.append(TDCell(HT.TD(thisTrait.name, Class="fs12 fwn ffl b1 c222"), text=thisTrait.name, val=thisTrait.name)) + + #XZ: Description column + if thisTrait.db.type =="ProbeSet" or thisTrait.db.type == "Temp": + tr.append(TDCell(HT.TD(thisTrait.description, Class="fs12 fwn ffl b1 c222"), text=thisTrait.description, val=thisTrait.description.upper())) + elif thisTrait.db.type =="Publish": + PhenotypeString = thisTrait.post_publication_description + if thisTrait.confidential: + if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users): + PhenotypeString = thisTrait.pre_publication_description + tr.append(TDCell(HT.TD(PhenotypeString, Class="fs12 fwn ffl b1 c222"), text=PhenotypeString, val=PhenotypeString.upper())) + else: + tr.append(TDCell(HT.TD(thisTrait.name, Class="fs12 fwn ffl b1 c222"), text=thisTrait.name, val=thisTrait.name)) + + tr.append(TDCell(HT.TD(allcorrelations[i][1], Class="fs12 fwn ffl b1 c222", align='right'), text=allcorrelations[i][1], val=allcorrelations[i][1])) + + #partial correlation result + try: + repr = '%3.3f' % float(allcorrelations[i][2]) + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'), text=repr, val=abs(allcorrelations[i][2]))) + except: + repr = 'NA' + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='left'), text=repr, val=0 )) + + repr = webqtlUtil.SciFloat(allcorrelations[i][3]) + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", nowrap='ON', align='right'), text=repr, val=allcorrelations[i][3])) + + #zero order correlation result + repr = '%3.3f' % float(allcorrelations[i][4]) + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'), text=repr, val=abs(allcorrelations[i][4]))) + + repr = webqtlUtil.SciFloat(allcorrelations[i][5]) + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", nowrap='ON', align='right'), text=repr, val=allcorrelations[i][5])) + + #delta + try: + repr = '%3.3f' % ( float(allcorrelations[i][2]) - float(allcorrelations[i][4]) ) + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='right'), text=repr, val=repr )) + except: + repr = 'NA' + tr.append(TDCell(HT.TD(repr, Class="fs12 fwn ffl b1 c222", align='left'), text=repr, val=0 )) + + tblobj['body'].append(tr) + + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py; + div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), Id="sortable") + form.append(div) + + + TD_LR.append(HT.Center(form),HT.P()) + + self.dict['body'] = str(TD_LR) + # updated by NL, moved js function xmlhttpPost() and updatepage() to dhtml.js + self.dict['js1'] = '' + self.dict['title'] = 'Partial Correlation Result' + diff --git a/web/webqtl/correlation/PlotCorrelationPage.py b/web/webqtl/correlation/PlotCorrelationPage.py new file mode 100755 index 00000000..23d2ccde --- /dev/null +++ b/web/webqtl/correlation/PlotCorrelationPage.py @@ -0,0 +1,683 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by Ning Liu 2011/01/11 + +import string +import piddle as pid +import os + +from htmlgen import HTMLgen2 as HT + +from utility import svg #Code using this module currently commented out +from utility import Plot +from base.webqtlTrait import webqtlTrait +from base.templatePage import templatePage +from utility import webqtlUtil +from base import webqtlConfig +from dbFunction import webqtlDatabaseFunction +from correlation import correlationFunction + +######################################### +# PlotCorrelationPage +######################################### +class PlotCorrelationPage(templatePage): + corrMinInformative = 4 + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + self.initializeDisplayParameters(fd) + + if not fd.genotype: + fd.readGenotype() + + if fd.allstrainlist: + mdpchoice = fd.formdata.getvalue('MDPChoice') + if mdpchoice == "1": + strainlist = fd.f1list + fd.strainlist + elif mdpchoice == "2": + strainlist = [] + strainlist2 = fd.f1list + fd.strainlist + for strain in fd.allstrainlist: + if strain not in strainlist2: + strainlist.append(strain) + #So called MDP Panel + if strainlist: + strainlist = fd.f1list+fd.parlist+strainlist + else: + strainlist = fd.allstrainlist + fd.readData(fd.allstrainlist) + else: + mdpchoice = None + strainlist = fd.strainlist + fd.readData() + + #if fd.allstrainlist: + # fd.readData(fd.allstrainlist) + # strainlist = fd.allstrainlist + #else: + # fd.readData() + # strainlist = fd.strainlist + + + if not self.openMysql(): + return + + isSampleCorr = 0 #XZ: initial value is false + isTissueCorr = 0 #XZ: initial value is false + + #Javascript functions (showCorrelationPlot2, showTissueCorrPlot) have made sure the correlation type is either sample correlation or tissue correlation. + if (self.database and (self.ProbeSetID != 'none')): + isSampleCorr = 1 + elif (self.X_geneSymbol and self.Y_geneSymbol): + isTissueCorr = 1 + else: + heading = "Correlation Type Error" + detail = ["For the input parameters, GN can not recognize the correlation type is sample correlation or tissue correlation."] + self.error(heading=heading,detail=detail) + return + + + TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee', align="left", wrap="off") + + + dataX=[] + dataY=[] + dataZ=[] # shortname + fullTissueName=[] + xlabel = '' + ylabel = '' + + if isTissueCorr: + dataX, dataY, xlabel, ylabel, dataZ, fullTissueName = self.getTissueLabelsValues(X_geneSymbol=self.X_geneSymbol, Y_geneSymbol=self.Y_geneSymbol, TissueProbeSetFreezeId=self.TissueProbeSetFreezeId) + plotHeading = HT.Paragraph('Tissue Correlation Scatterplot') + plotHeading.__setattr__("class","title") + + if isSampleCorr: + plotHeading = HT.Paragraph('Sample Correlation Scatterplot') + plotHeading.__setattr__("class","title") + + #XZ: retrieve trait 1 info, Y axis + trait1_data = [] #trait 1 data + trait1Url = '' + + try: + Trait1 = webqtlTrait(db=self.database, name=self.ProbeSetID, cellid=self.CellID, cursor=self.cursor) + Trait1.retrieveInfo() + Trait1.retrieveData() + except: + heading = "Retrieve Data" + detail = ["The database you just requested has not been established yet."] + self.error(heading=heading,detail=detail) + return + + trait1_data = Trait1.exportData(strainlist) + if Trait1.db.type == 'Publish' and Trait1.confidential: + trait1Url = Trait1.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=Trait1.authorized_users) + else: + trait1Url = Trait1.genHTML(dispFromDatabase=1) + ylabel = '%s : %s' % (Trait1.db.shortname, Trait1.name) + if Trait1.cellid: + ylabel += ' : ' + Trait1.cellid + + + #XZ, retrieve trait 2 info, X axis + traitdata2 = [] #trait 2 data + _vals = [] #trait 2 data + trait2Url = '' + + if ( self.database2 and (self.ProbeSetID2 != 'none') ): + try: + Trait2 = webqtlTrait(db=self.database2, name=self.ProbeSetID2, cellid=self.CellID2, cursor=self.cursor) + Trait2.retrieveInfo() + Trait2.retrieveData() + except: + heading = "Retrieve Data" + detail = ["The database you just requested has not been established yet."] + self.error(heading=heading,detail=detail) + return + + if Trait2.db.type == 'Publish' and Trait2.confidential: + trait2Url = Trait2.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=Trait2.authorized_users) + else: + trait2Url = Trait2.genHTML(dispFromDatabase=1) + traitdata2 = Trait2.exportData(strainlist) + _vals = traitdata2[:] + xlabel = '%s : %s' % (Trait2.db.shortname, Trait2.name) + if Trait2.cellid: + xlabel += ' : ' + Trait2.cellid + else: + for item in strainlist: + if fd.allTraitData.has_key(item): + _vals.append(fd.allTraitData[item].val) + else: + _vals.append(None) + + if fd.identification: + xlabel = fd.identification + else: + xlabel = "User Input Data" + + try: + Trait2 = webqtlTrait(fullname=fd.formdata.getvalue('fullname'), cursor=self.cursor) + trait2Url = Trait2.genHTML(dispFromDatabase=1) + except: + trait2Url = xlabel + + if (_vals and trait1_data): + if len(_vals) != len(trait1_data): + errors = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('The number of traits are inconsistent, Program quit',color='black')) + errors.__setattr__("class","subtitle") + TD_LR.append(errors) + self.dict['body'] = str(TD_LR) + return + + for i in range(len(_vals)): + if _vals[i]!= None and trait1_data[i]!= None: + dataX.append(_vals[i]) + dataY.append(trait1_data[i]) + strainName = strainlist[i] + if self.showstrains: + dataZ.append(webqtlUtil.genShortStrainName(RISet=fd.RISet, input_strainName=strainName)) + else: + heading = "Correlation Plot" + detail = ['Empty Dataset for sample correlation, please check your data.'] + self.error(heading=heading,detail=detail) + return + + + #XZ: We have gotten all data for both traits. + if len(dataX) >= self.corrMinInformative: + + if self.rankOrder == 0: + rankPrimary = 0 + rankSecondary = 1 + else: + rankPrimary = 1 + rankSecondary = 0 + + lineColor = self.setLineColor(); + symbolColor = self.setSymbolColor(); + idColor = self.setIdColor(); + + c = pid.PILCanvas(size=(self.plotSize, self.plotSize*0.90)) + data_coordinate = Plot.plotXY(canvas=c, dataX=dataX, dataY=dataY, rank=rankPrimary, dataLabel = dataZ, labelColor=pid.black, lineSize=self.lineSize, lineColor=lineColor, idColor=idColor, idFont=self.idFont, idSize=self.idSize, symbolColor=symbolColor, symbolType=self.symbol, filled=self.filled, symbolSize=self.symbolSize, XLabel=xlabel, connectdot=0, YLabel=ylabel, title='', fitcurve=self.showline, displayR =1, offset= (90, self.plotSize/20, self.plotSize/10, 90), showLabel = self.showIdentifiers) + + if rankPrimary == 1: + dataXlabel, dataYlabel = webqtlUtil.calRank(xVals=dataX, yVals=dataY, N=len(dataX)) + else: + dataXlabel, dataYlabel = dataX, dataY + + gifmap1 = HT.Map(name='CorrelationPlotImageMap1') + + for i, item in enumerate(data_coordinate): + one_rect_coordinate = "%d, %d, %d, %d" % (item[0] - 5, item[1] - 5, item[0] + 5, item[1] + 5) + if isTissueCorr: + one_rect_title = "%s (%s, %s)" % (fullTissueName[i], dataXlabel[i], dataYlabel[i]) + else: + one_rect_title = "%s (%s, %s)" % (dataZ[i], dataXlabel[i], dataYlabel[i]) + gifmap1.areas.append(HT.Area(shape='rect',coords=one_rect_coordinate, title=one_rect_title) ) + + filename= webqtlUtil.genRandStr("XY_") + c.save(webqtlConfig.IMGDIR+filename, format='gif') + img1=HT.Image('/image/'+filename+'.gif',border=0, usemap='#CorrelationPlotImageMap1') + + mainForm_1 = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':'_','CellID':'_','RISet':fd.RISet, 'ProbeSetID2':'_', 'database2':'_', 'CellID2':'_', 'allstrainlist':string.join(fd.strainlist, " "), 'traitList': fd.formdata.getvalue("traitList")} + if fd.incparentsf1: + hddn['incparentsf1'] = 'ON' + for key in hddn.keys(): + mainForm_1.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + if isSampleCorr: + mainForm_1.append(HT.P(), HT.Blockquote(HT.Strong('X axis:'),HT.Blockquote(trait2Url),HT.Strong('Y axis:'),HT.Blockquote(trait1Url), style='width: %spx;' % self.plotSize, wrap="hard")) + + graphForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='MDP_Form',submit=HT.Input(type='hidden')) + graph_hddn = self.setHiddenParameters(fd, rankPrimary) + webqtlUtil.exportData(graph_hddn, fd.allTraitData) #XZ: This is necessary to replot with different groups of strains + + for key in graph_hddn.keys(): + graphForm.append(HT.Input(name=key, value=graph_hddn[key], type='hidden')) + + options = self.createOptionsMenu(fd, mdpchoice) + + if (self.showOptions == '0'): + showOptionsButton = HT.Input(type='button' ,name='optionsButton',value='Hide Options', onClick="showHideOptions();", Class="button") + else: + showOptionsButton = HT.Input(type='button' ,name='optionsButton',value='Show Options', onClick="showHideOptions();", Class="button") + + # updated by NL: 12-07-2011 add variables for tissue abbreviation page + if isTissueCorr: + graphForm.append(HT.Input(name='shortTissueName', value='', type='hidden')) + graphForm.append(HT.Input(name='fullTissueName', value='', type='hidden')) + shortTissueNameStr=string.join(dataZ, ",") + fullTissueNameStr=string.join(fullTissueName, ",") + + tissueAbbrButton=HT.Input(type='button' ,name='tissueAbbrButton',value='Show Abbreviations', onClick="showTissueAbbr('MDP_Form','%s','%s')" % (shortTissueNameStr,fullTissueNameStr), Class="button") + graphForm.append(showOptionsButton,'    ',tissueAbbrButton, HT.BR(), HT.BR()) + else: + graphForm.append(showOptionsButton, HT.BR(), HT.BR()) + + graphForm.append(options, HT.BR()) + graphForm.append(HT.HR(), HT.BR(), HT.P()) + + TD_LR.append(plotHeading, HT.BR(),graphForm, HT.BR(), gifmap1, HT.P(), img1, HT.P(), mainForm_1) + TD_LR.append(HT.BR(), HT.HR(color="grey", size=5, width="100%")) + + + + c = pid.PILCanvas(size=(self.plotSize, self.plotSize*0.90)) + data_coordinate = Plot.plotXY(canvas=c, dataX=dataX, dataY=dataY, rank=rankSecondary, dataLabel = dataZ, labelColor=pid.black,lineColor=lineColor, lineSize=self.lineSize, idColor=idColor, idFont=self.idFont, idSize=self.idSize, symbolColor=symbolColor, symbolType=self.symbol, filled=self.filled, symbolSize=self.symbolSize, XLabel=xlabel, connectdot=0, YLabel=ylabel,title='', fitcurve=self.showline, displayR =1, offset= (90, self.plotSize/20, self.plotSize/10, 90), showLabel = self.showIdentifiers) + + if rankSecondary == 1: + dataXlabel, dataYlabel = webqtlUtil.calRank(xVals=dataX, yVals=dataY, N=len(dataX)) + else: + dataXlabel, dataYlabel = dataX, dataY + + gifmap2 = HT.Map(name='CorrelationPlotImageMap2') + + for i, item in enumerate(data_coordinate): + one_rect_coordinate = "%d, %d, %d, %d" % (item[0] - 6, item[1] - 6, item[0] + 6, item[1] + 6) + if isTissueCorr: + one_rect_title = "%s (%s, %s)" % (fullTissueName[i], dataXlabel[i], dataYlabel[i]) + else: + one_rect_title = "%s (%s, %s)" % (dataZ[i], dataXlabel[i], dataYlabel[i]) + + gifmap2.areas.append(HT.Area(shape='rect',coords=one_rect_coordinate, title=one_rect_title) ) + + filename= webqtlUtil.genRandStr("XY_") + c.save(webqtlConfig.IMGDIR+filename, format='gif') + img2=HT.Image('/image/'+filename+'.gif',border=0, usemap='#CorrelationPlotImageMap2') + + mainForm_2 = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase2', submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase2','ProbeSetID':'_','database':'_','CellID':'_','RISet':fd.RISet, 'ProbeSetID2':'_', 'database2':'_', 'CellID2':'_', 'allstrainlist':string.join(fd.strainlist, " "), 'traitList': fd.formdata.getvalue("traitList")} + if fd.incparentsf1: + hddn['incparentsf1'] = 'ON' + for key in hddn.keys(): + mainForm_2.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + if isSampleCorr: + mainForm_2.append(HT.P(), HT.Blockquote(HT.Strong('X axis:'),HT.Blockquote(trait2Url),HT.Strong('Y axis:'),HT.Blockquote(trait1Url), style='width:%spx;' % self.plotSize)) + + + TD_LR.append(HT.BR(), HT.P()) + TD_LR.append('\n', gifmap2, HT.P(), HT.P(), img2, HT.P(), mainForm_2) + + self.dict['body'] = str(TD_LR) + else: + heading = "Correlation Plot" + detail = ['Fewer than %d strain data were entered for %s data set. No statitical analysis has been attempted.' % (self.corrMinInformative, fd.RISet)] + self.error(heading=heading,detail=detail) + return + + + + def initializeDisplayParameters(self, fd): + """ + Initializes all of the PlotCorrelationPage class parameters, + acquiring most values from the formdata (fd) + """ + + rankOrderString = fd.formdata.getvalue('rankOrder') + if rankOrderString == "1": + self.rankOrder = 1 + else: + self.rankOrder = 0 + + self.dict['title'] = 'Correlation X-Y Scatterplot' + focusScript = "onLoad=\"document.getElementsByName('plotSize')[0].focus();\";" + self.dict['js2'] = focusScript + + self.showstrains = fd.formdata.getvalue('ShowStrains') + self.showline = fd.formdata.getvalue('ShowLine') + self.X_geneSymbol = fd.formdata.getvalue('X_geneSymbol','') + self.Y_geneSymbol = fd.formdata.getvalue('Y_geneSymbol','') + self.TissueProbeSetFreezeId = fd.formdata.getvalue('TissueProbeSetFreezeId', '1') + + self.symbolColor = fd.formdata.getvalue('symbolColor', 'black') + self.symbol = fd.formdata.getvalue('symbol', 'circle') + self.filled = fd.formdata.getvalue('filled', 'yes') + self.symbolSize = fd.formdata.getvalue('symbolSize', 'tiny') + self.idColor = fd.formdata.getvalue('idColor', 'blue') + self.idFont = fd.formdata.getvalue('idFont', 'arial') + self.idSize = fd.formdata.getvalue('idSize', '14') + self.lineColor = fd.formdata.getvalue('lineColor', 'grey') + self.lineSize = fd.formdata.getvalue('lineSize', 'medium') + self.showOptions = fd.formdata.getvalue('showOptions', '0') + + try: + self.plotSize = int(fd.formdata.getvalue('plotSize', 900)) + except: + self.plotSize = 900 + try: + self.showIdentifiers = int(fd.formdata.getvalue('showIdentifiers', 1)) + except: + self.showIdentifiers = 1 + + self.database = fd.formdata.getvalue('database') + self.ProbeSetID = fd.formdata.getvalue('ProbeSetID', 'none') + self.CellID = fd.formdata.getvalue('CellID') + + self.database2 = fd.formdata.getvalue('database2') + self.ProbeSetID2 = fd.formdata.getvalue('ProbeSetID2', 'none') + self.CellID2 = fd.formdata.getvalue('CellID2') + + def createOptionsMenu(self, fd, mdpchoice): + """ + Create all the HTML for the options menu; the first if/else statements + determine whether the Div container holding all the other html is visible + or not. + """ + + if (self.showOptions == '0'): + options = HT.Div(name="options", id="options", style="display: none") + self.showOptions = '1' + else: + options = HT.Div(name="options", id="options", style="display: ''") + self.showOptions = '0' + + if self.showIdentifiers: + containerTable = HT.TableLite(cellspacing=1, width=730, height=150, border=1) + else: + containerTable = HT.TableLite(cellspacing=1, width=730, height=130, border=1) + + if self.showIdentifiers: + containerTable = HT.TableLite(cellspacing=1, width=730, height=150, border=1) + else: + containerTable = HT.TableLite(cellspacing=1, width=730, height=130, border=1) + + containerRow = HT.TR() + containerCell = HT.TD(valign="middle", align="center") + + optionsTable = HT.TableLite(Class="collap", cellspacing=2, width=700) + + sizeOptions = HT.TR(align="right") + tagOptions = HT.TR(align="right") + markerOptions = HT.TR(align="right") + lineOptions = HT.TR(align="right") + replot_mdpOptions = HT.TR(align="right") + + sizeOptions.append(HT.TD(HT.Bold("Size: "), " "*1, HT.Input(type='text' ,name='plotSize', value=self.plotSize, style="background-color: #FFFFFF; width: 50px;", onChange="checkWidth();"), align="left")) + + idColorSel = HT.Select(name="idColorSel", onChange="changeIdColor(); submit();", selected=self.idColor) + idColorSel.append(("blue", "blue")) + idColorSel.append(("green", "green")) + idColorSel.append(("red", "red")) + idColorSel.append(("yellow", "yellow")) + idColorSel.append(("white", "white")) + idColorSel.append(("purple", "purple")) + idColorSel.append(("brown", "brown")) + idColorSel.append(("grey", "grey")) + idColorSel.append(("black","black")) + + idFontSel = HT.Select(name="idFontSel", onChange="changeIdFont(); submit();", selected=self.idFont) + idFontSel.append(("Arial", "arial")) + idFontSel.append(("Trebuchet", "trebuc")) + idFontSel.append(("Verdana", "verdana")) + idFontSel.append(("Georgia", "Georgia")) + idFontSel.append(("Courier", "cour")) + + idSizeSel = HT.Select(name="idSizeSel", onChange="changeIdSize(); submit();", selected=self.idSize) + idSizeSel.append(("10", "10")) + idSizeSel.append(("12", "12")) + idSizeSel.append(("14", "14")) + idSizeSel.append(("16", "16")) + idSizeSel.append(("18", "18")) + + if self.showIdentifiers: + tagButton = HT.TD(HT.Input(type='button' ,name='',value=' Hide Tags ',onClick="this.form.showIdentifiers.value=0;submit();", Class="button"), align="right") + else: + tagButton = HT.TD(HT.Input(type='button' ,name='',value=' Show Tags ',onClick="this.form.showIdentifiers.value=1;submit();", Class="button"), align="right") + + tagOptions.append(HT.TD(HT.Text(HT.Bold("Tag Settings: ")), align="left")) + tagOptions.append(HT.TD(HT.Text(text="Font: "), idFontSel)) + tagOptions.append(HT.TD(HT.Text(text="Color: "), idColorSel)) + tagOptions.append(HT.TD(HT.Text(text="Point: "), idSizeSel)) + tagOptions.append(tagButton) + optionsTable.append(sizeOptions, tagOptions) + + if fd.allstrainlist and mdpchoice: + allStrainList = HT.Input(name='allstrainlist', value=string.join(fd.allstrainlist, " "), type='hidden') + mdpChoice = HT.Input(name='MDPChoice', value=mdpchoice, type='hidden') + btn0 = HT.Input(type='button' ,name='',value='All Cases',onClick="this.form.MDPChoice.value=0;submit();", Class="button") + btn1 = HT.Input(type='button' ,name='',value='%s Only' % fd.RISet,onClick="this.form.MDPChoice.value=1;submit();", Class="button") + btn2 = HT.Input(type='button' ,name='',value='MDP Only', onClick="this.form.MDPChoice.value=2;submit();", Class="button") + + + colorSel = HT.Select(name="colorSel", onChange="changeSymbolColor(); submit();", selected=self.symbolColor) + colorSel.append(("red", "red")) + colorSel.append(("green", "green")) + colorSel.append(("blue", "blue")) + colorSel.append(("yellow", "yellow")) + colorSel.append(("purple", "purple")) + colorSel.append(("brown", "brown")) + colorSel.append(("grey", "grey")) + colorSel.append(("black","black")) + + symbolSel = HT.Select(name="symbolSel", onChange="changeSymbol(); submit();", selected=self.symbol) + symbolSel.append(("4-star","4-star")) + symbolSel.append(("3-star","3-star")) + symbolSel.append(("cross", "cross")) + symbolSel.append(("circle","circle")) + symbolSel.append(("diamond", "diamond")) + symbolSel.append(("square", "square")) + symbolSel.append(("vert rect", "vertRect")) + symbolSel.append(("hori rect", "horiRect")) + + sizeSel = HT.Select(name="sizeSel", onChange="changeSize(); submit();", selected=self.symbolSize) + sizeSel.append(("tiny","tiny")) + sizeSel.append(("small","small")) + sizeSel.append(("medium","medium")) + sizeSel.append(("large","large")) + + fillSel = HT.Select(name="fillSel", onChange="changeFilled(); submit();", selected=self.filled) + fillSel.append(("no","no")) + fillSel.append(("yes","yes")) + + lineColorSel = HT.Select(name="lineColorSel", onChange="changeLineColor(); submit();", selected=self.lineColor) + lineColorSel.append(("red", "red")) + lineColorSel.append(("green", "green")) + lineColorSel.append(("blue", "blue")) + lineColorSel.append(("yellow", "yellow")) + lineColorSel.append(("purple", "purple")) + lineColorSel.append(("brown", "brown")) + lineColorSel.append(("grey", "grey")) + lineColorSel.append(("black","black")) + + lineSizeSel = HT.Select(name="lineSizeSel", onChange="changeLineSize(); submit();", selected=self.lineSize) + lineSizeSel.append(("thin", "thin")) + lineSizeSel.append(("medium", "medium")) + lineSizeSel.append(("thick", "thick")) + + + markerOptions.append(HT.TD(HT.Text(HT.Bold("Marker Settings: ")), align="left")) + markerOptions.append(HT.TD(HT.Text(text="Marker: "), symbolSel)) + markerOptions.append(HT.TD(HT.Text(text="Color: "), colorSel)) + markerOptions.append(HT.TD(HT.Text(text="Fill: "), fillSel)) + markerOptions.append(HT.TD(HT.Text(text="Size: "), sizeSel)) + + lineOptions.append(HT.TD(HT.Text(HT.Bold("Line Settings: ")), align="left")) + lineOptions.append(HT.TD(HT.Text(text="Width: "), lineSizeSel)) + lineOptions.append(HT.TD(HT.Text(text="Color: "), lineColorSel)) + + replotButton = HT.Input(type='button', name='', value=' Replot ',onClick="checkWidth(); submit();", Class="button") + + if fd.allstrainlist and mdpchoice: + replot_mdpOptions.append(HT.TD(replotButton, align="left"), HT.TD(allStrainList, mdpChoice, btn0, btn1, btn2, align="center", colspan=3)) + optionsTable.append(markerOptions, lineOptions, HT.TR(HT.TD(HT.BR())), replot_mdpOptions ) + else: + replot_mdpOptions.append(HT.TD(replotButton, align="left")) + optionsTable.append(markerOptions, lineOptions, HT.TR(HT.TD(HT.BR())), replot_mdpOptions) + + containerCell.append(optionsTable) + containerRow.append(containerCell) + containerTable.append(containerRow) + + options.append(containerTable) + + return options + + def setHiddenParameters(self, fd, rankPrimary): + """ + Create the dictionary of hidden form parameters from PlotCorrelationPage's class parameters + """ + + graph_hddn = {'FormID':'showCorrelationPlot','RISet':fd.RISet, 'identification':fd.identification, "incparentsf1":1, "showIdentifiers":self.showIdentifiers} + + if self.database: graph_hddn['database']=self.database + if self.ProbeSetID: graph_hddn['ProbeSetID']=self.ProbeSetID + if self.CellID: graph_hddn['CellID']=self.CellID + if self.database2: graph_hddn['database2']=self.database2 + if self.ProbeSetID2: graph_hddn['ProbeSetID2']=self.ProbeSetID2 + if self.CellID2: graph_hddn['CellID2']=self.CellID2 + if self.showstrains: graph_hddn['ShowStrains']=self.showstrains + if self.showline: graph_hddn['ShowLine']=self.showline + if self.X_geneSymbol: graph_hddn['X_geneSymbol']=self.X_geneSymbol + if self.Y_geneSymbol: graph_hddn['Y_geneSymbol']=self.Y_geneSymbol + if self.TissueProbeSetFreezeId: graph_hddn['TissueProbeSetFreezeId']=self.TissueProbeSetFreezeId + if self.rankOrder: graph_hddn['rankOrder'] = rankPrimary + if fd.formdata.getvalue('fullname'): graph_hddn['fullname']=fd.formdata.getvalue('fullname') + if self.lineColor: graph_hddn['lineColor'] = self.lineColor + if self.lineSize: graph_hddn['lineSize'] = self.lineSize + if self.idColor: graph_hddn['idColor'] = self.idColor + if self.idFont: graph_hddn['idFont'] = self.idFont + if self.idSize: graph_hddn['idSize'] = self.idSize + if self.symbolColor: graph_hddn['symbolColor'] = self.symbolColor + if self.symbol: graph_hddn['symbol'] = self.symbol + if self.filled: graph_hddn['filled'] = self.filled + if self.symbolSize: graph_hddn['symbolSize'] = self.symbolSize + if self.showOptions: graph_hddn['showOptions'] = self.showOptions + + return graph_hddn + + def setIdColor(self): + """ + Set the plot tag/ID color based upon the value of the idColor class parameter + """ + + if self.idColor == 'black': + idColor = pid.black + elif self.idColor == 'white': + idColor = pid.white + elif self.idColor == 'yellow': + idColor = pid.yellow + elif self.idColor == 'grey': + idColor = pid.grey + elif self.idColor == 'blue': + idColor = pid.blue + elif self.idColor == 'purple': + idColor = pid.purple + elif self.idColor == 'brown': + idColor = pid.brown + elif self.idColor == 'green': + idColor = pid.green + else: + idColor = pid.red + + return idColor + + def setSymbolColor(self): + """ + Set the plot symbol color based upon the value of the symbolColor class parameter + """ + + if self.symbolColor == 'black': + symbolColor = pid.black + elif self.symbolColor == 'grey': + symbolColor = pid.grey + elif self.symbolColor == 'yellow': + symbolColor = pid.yellow + elif self.symbolColor == 'blue': + symbolColor = pid.blue + elif self.symbolColor == 'purple': + symbolColor = pid.purple + elif self.symbolColor == 'brown': + symbolColor = pid.brown + elif self.symbolColor== 'green': + symbolColor = pid.green + else: + symbolColor = pid.red + + return symbolColor + + def setLineColor(self): + """ + Set the plot line color based upon the lineColor class parameter + """ + + if self.lineColor == 'black': + lineColor = pid.black + elif self.lineColor == 'grey': + lineColor = pid.grey + elif self.lineColor == 'yellow': + lineColor = pid.yellow + elif self.lineColor == 'blue': + lineColor = pid.blue + elif self.lineColor == 'purple': + lineColor = pid.purple + elif self.lineColor == 'brown': + lineColor = pid.brown + elif self.lineColor== 'green': + lineColor = pid.green + else: + lineColor = pid.red + + return lineColor + + + def getTissueLabelsValues(self, X_geneSymbol=None, Y_geneSymbol=None, TissueProbeSetFreezeId=None ): + + dataX = [] + dataY = [] + data_fullLabel = [] + data_shortLabel = [] + # updated by NL, 2011-01-11 using new function getTissueProbeSetXRefInfo to get dataId value + X_symbolList,X_geneIdDict,X_dataIdDict,X_ChrDict,X_MbDict,X_descDict,X_pTargetDescDict = correlationFunction.getTissueProbeSetXRefInfo(cursor=self.cursor,GeneNameLst=[X_geneSymbol],TissueProbeSetFreezeId=TissueProbeSetFreezeId) + Y_symbolList,Y_geneIdDict,Y_dataIdDict,Y_ChrDict,Y_MbDict,Y_descDict,Y_pTargetDescDict = correlationFunction.getTissueProbeSetXRefInfo(cursor=self.cursor,GeneNameLst=[Y_geneSymbol],TissueProbeSetFreezeId=TissueProbeSetFreezeId) + # in dataIdDict, key is the lower cased geneSymbol + X_DataId = X_dataIdDict[X_geneSymbol.lower()] + Y_DataId = Y_dataIdDict[Y_geneSymbol.lower()] + + self.cursor.execute("SELECT TissueID,value FROM TissueProbeSetData WHERE Id = %d ORDER BY TissueID" % int(X_DataId) ) + results = self.cursor.fetchall() + for item in results: + TissueID, Value = item + dataX.append(Value) + self.cursor.execute("SELECT Tissue.Name, Tissue.Short_Name FROM Tissue WHERE Id = %d" % int(TissueID) ) + temp = self.cursor.fetchone() + data_fullLabel.append( temp[0] ) + data_shortLabel.append( temp[1] ) + + self.cursor.execute("SELECT TissueID,value FROM TissueProbeSetData WHERE Id = %d ORDER BY TissueID" % int(Y_DataId) ) + results = self.cursor.fetchall() + for item in results: + TissueID, Value = item + dataY.append(Value) + + X_label = "%s" % X_geneSymbol + Y_label = "%s" % Y_geneSymbol + + return dataX, dataY, X_label, Y_label, data_shortLabel, data_fullLabel diff --git a/web/webqtl/correlation/__init__.py b/web/webqtl/correlation/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/correlation/correlationFunction.py b/web/webqtl/correlation/correlationFunction.py new file mode 100755 index 00000000..cc19f54e --- /dev/null +++ b/web/webqtl/correlation/correlationFunction.py @@ -0,0 +1,923 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by NL 2011/03/23 + + +import math +import rpy2.robjects +import pp +import string + +from utility import webqtlUtil +from base.webqtlTrait import webqtlTrait +from dbFunction import webqtlDatabaseFunction + + + +#XZ: The input 'controls' is String. It contains the full name of control traits. +#XZ: The input variable 'strainlst' is List. It contains the strain names of primary trait. +#XZ: The returned tcstrains is the list of list [[],[]...]. So are tcvals and tcvars. The last returned parameter is list of numbers. +#XZ, 03/29/2010: For each returned control trait, there is no None value in it. +def controlStrains(controls, strainlst): + + controls = controls.split(',') + + cvals = {} + for oneTraitName in controls: + oneTrait = webqtlTrait(fullname=oneTraitName, cursor=webqtlDatabaseFunction.getCursor() ) + oneTrait.retrieveData() + cvals[oneTraitName] = oneTrait.data + + tcstrains = [] + tcvals = [] + tcvars = [] + + for oneTraitName in controls: + strains = [] + vals = [] + vars = [] + + for _strain in strainlst: + if cvals[oneTraitName].has_key(_strain): + _val = cvals[oneTraitName][_strain].val + if _val != None: + strains.append(_strain) + vals.append(_val) + vars.append(None) + + tcstrains.append(strains) + tcvals.append(vals) + tcvars.append(vars) + + return tcstrains, tcvals, tcvars, [len(x) for x in tcstrains] + + + +#XZ, 03/29/2010: After execution of functon "controlStrains" and "fixStrains", primary trait and control traits have the same strains and in the same order. There is no 'None' value in them. +def fixStrains(_strains,_controlstrains,_vals,_controlvals,_vars,_controlvars): + """Corrects strains, vals, and vars so that all contrain only those strains common + to the reference trait and all control traits.""" + + def dictify(strains,vals,vars): + subdict = {} + for i in xrange(len(strains)): + subdict[strains[i]] = (vals[i],vars[i]) + return subdict + + #XZ: The 'dicts' is a list of dictionary. The first element is the dictionary of reference trait. The rest elements are for control traits. + dicts = [] + dicts.append(dictify(_strains,_vals,_vars)) + + nCstrains = len(_controlstrains) + for i in xrange(nCstrains): + dicts.append(dictify(_controlstrains[i],_controlvals[i],_controlvars[i])) + + _newstrains = [] + _vals = [] + _vars = [] + _controlvals = [[] for x in xrange(nCstrains)] + _controlvars = [[] for x in xrange(nCstrains)] + + for strain in _strains: + inall = True + for d in dicts: + if strain not in d: + inall = False + break + if inall: + _newstrains.append(strain) + _vals.append(dicts[0][strain][0]) + _vars.append(dicts[0][strain][1]) + for i in xrange(nCstrains): + _controlvals[i].append(dicts[i+1][strain][0]) + _controlvars[i].append(dicts[i+1][strain][1]) + + return _newstrains, _vals, _controlvals, _vars, _controlvars + + +#XZ, 6/15/2010: If there is no identical control traits, the returned list is empty. +#else, the returned list has two elements of control trait name. +def findIdenticalControlTraits ( controlVals, controlNames ): + nameOfIdenticalTraits = [] + + controlTraitNumber = len(controlVals) + + if controlTraitNumber > 1: + + #XZ: reset the precision of values and convert to string type + for oneTraitVal in controlVals: + for oneStrainVal in oneTraitVal: + oneStrainVal = '%.3f' % oneStrainVal + + for i, oneTraitVal in enumerate( controlVals ): + for j in range(i+1, controlTraitNumber): + if oneTraitVal == controlVals[j]: + nameOfIdenticalTraits.append(controlNames[i]) + nameOfIdenticalTraits.append(controlNames[j]) + + return nameOfIdenticalTraits + +#XZ, 6/15/2010: If there is no identical control traits, the returned list is empty. +#else, the returned list has two elements of control trait name. +#primaryVal is of list type. It contains value of primary trait. +#primaryName is of string type. +#controlVals is of list type. Each element is list too. Each element contain value of one control trait. +#controlNames is of list type. +def findIdenticalTraits (primaryVal, primaryName, controlVals, controlNames ): + nameOfIdenticalTraits = [] + + #XZ: reset the precision of values and convert to string type + for oneStrainVal in primaryVal: + oneStrainVal = '%.3f' % oneStrainVal + + for oneTraitVal in controlVals: + for oneStrainVal in oneTraitVal: + oneStrainVal = '%.3f' % oneStrainVal + + controlTraitNumber = len(controlVals) + + if controlTraitNumber > 1: + for i, oneTraitVal in enumerate( controlVals ): + for j in range(i+1, controlTraitNumber): + if oneTraitVal == controlVals[j]: + nameOfIdenticalTraits.append(controlNames[i]) + nameOfIdenticalTraits.append(controlNames[j]) + break + + if len(nameOfIdenticalTraits) == 0: + for i, oneTraitVal in enumerate( controlVals ): + if primaryVal == oneTraitVal: + nameOfIdenticalTraits.append(primaryName) + nameOfIdenticalTraits.append(controlNames[i]) + break + + return nameOfIdenticalTraits + + + +#XZ, 03/29/2010: The strains in primaryVal, controlVals, targetVals must be of the same number and in same order. +#XZ: No value in primaryVal and controlVals could be None. + +def determinePartialsByR (primaryVal, controlVals, targetVals, targetNames, method='p'): + + def compute_partial ( primaryVal, controlVals, targetVals, targetNames, method ): + + rpy2.robjects.r(""" +pcor.test <- function(x,y,z,use="mat",method="p",na.rm=T){ + # The partial correlation coefficient between x and y given z + # + # pcor.test is free and comes with ABSOLUTELY NO WARRANTY. + # + # x and y should be vectors + # + # z can be either a vector or a matrix + # + # use: There are two methods to calculate the partial correlation coefficient. + # One is by using variance-covariance matrix ("mat") and the other is by using recursive formula ("rec"). + # Default is "mat". + # + # method: There are three ways to calculate the correlation coefficient, + # which are Pearson's ("p"), Spearman's ("s"), and Kendall's ("k") methods. + # The last two methods which are Spearman's and Kendall's coefficient are based on the non-parametric analysis. + # Default is "p". + # + # na.rm: If na.rm is T, then all the missing samples are deleted from the whole dataset, which is (x,y,z). + # If not, the missing samples will be removed just when the correlation coefficient is calculated. + # However, the number of samples for the p-value is the number of samples after removing + # all the missing samples from the whole dataset. + # Default is "T". + + x <- c(x) + y <- c(y) + z <- as.data.frame(z) + + if(use == "mat"){ + p.use <- "Var-Cov matrix" + pcor = pcor.mat(x,y,z,method=method,na.rm=na.rm) + }else if(use == "rec"){ + p.use <- "Recursive formula" + pcor = pcor.rec(x,y,z,method=method,na.rm=na.rm) + }else{ + stop("use should be either rec or mat!\n") + } + + # print the method + if(gregexpr("p",method)[[1]][1] == 1){ + p.method <- "Pearson" + }else if(gregexpr("s",method)[[1]][1] == 1){ + p.method <- "Spearman" + }else if(gregexpr("k",method)[[1]][1] == 1){ + p.method <- "Kendall" + }else{ + stop("method should be pearson or spearman or kendall!\n") + } + + # sample number + n <- dim(na.omit(data.frame(x,y,z)))[1] + + # given variables' number + gn <- dim(z)[2] + + # p-value + if(p.method == "Kendall"){ + statistic <- pcor/sqrt(2*(2*(n-gn)+5)/(9*(n-gn)*(n-1-gn))) + p.value <- 2*pnorm(-abs(statistic)) + + }else{ + statistic <- pcor*sqrt((n-2-gn)/(1-pcor^2)) + p.value <- 2*pnorm(-abs(statistic)) + } + + data.frame(estimate=pcor,p.value=p.value,statistic=statistic,n=n,gn=gn,Method=p.method,Use=p.use) +} + +# By using var-cov matrix +pcor.mat <- function(x,y,z,method="p",na.rm=T){ + + x <- c(x) + y <- c(y) + z <- as.data.frame(z) + + if(dim(z)[2] == 0){ + stop("There should be given data\n") + } + + data <- data.frame(x,y,z) + + if(na.rm == T){ + data = na.omit(data) + } + + xdata <- na.omit(data.frame(data[,c(1,2)])) + Sxx <- cov(xdata,xdata,m=method) + + xzdata <- na.omit(data) + xdata <- data.frame(xzdata[,c(1,2)]) + zdata <- data.frame(xzdata[,-c(1,2)]) + Sxz <- cov(xdata,zdata,m=method) + + zdata <- na.omit(data.frame(data[,-c(1,2)])) + Szz <- cov(zdata,zdata,m=method) + + # is Szz positive definite? + zz.ev <- eigen(Szz)$values + if(min(zz.ev)[1]<0){ + stop("\'Szz\' is not positive definite!\n") + } + + # partial correlation + Sxx.z <- Sxx - Sxz %*% solve(Szz) %*% t(Sxz) + + rxx.z <- cov2cor(Sxx.z)[1,2] + + rxx.z +} + +# By using recursive formula +pcor.rec <- function(x,y,z,method="p",na.rm=T){ + # + + x <- c(x) + y <- c(y) + z <- as.data.frame(z) + + if(dim(z)[2] == 0){ + stop("There should be given data\n") + } + + data <- data.frame(x,y,z) + + if(na.rm == T){ + data = na.omit(data) + } + + # recursive formula + if(dim(z)[2] == 1){ + tdata <- na.omit(data.frame(data[,1],data[,2])) + rxy <- cor(tdata[,1],tdata[,2],m=method) + + tdata <- na.omit(data.frame(data[,1],data[,-c(1,2)])) + rxz <- cor(tdata[,1],tdata[,2],m=method) + + tdata <- na.omit(data.frame(data[,2],data[,-c(1,2)])) + ryz <- cor(tdata[,1],tdata[,2],m=method) + + rxy.z <- (rxy - rxz*ryz)/( sqrt(1-rxz^2)*sqrt(1-ryz^2) ) + + return(rxy.z) + }else{ + x <- c(data[,1]) + y <- c(data[,2]) + z0 <- c(data[,3]) + zc <- as.data.frame(data[,-c(1,2,3)]) + + rxy.zc <- pcor.rec(x,y,zc,method=method,na.rm=na.rm) + rxz0.zc <- pcor.rec(x,z0,zc,method=method,na.rm=na.rm) + ryz0.zc <- pcor.rec(y,z0,zc,method=method,na.rm=na.rm) + + rxy.z <- (rxy.zc - rxz0.zc*ryz0.zc)/( sqrt(1-rxz0.zc^2)*sqrt(1-ryz0.zc^2) ) + return(rxy.z) + } +} +""") + + R_pcorr_function = rpy2.robjects.r['pcor.test'] + R_corr_test = rpy2.robjects.r['cor.test'] + + primary = rpy2.robjects.FloatVector(range(len(primaryVal))) + for i in range(len(primaryVal)): + primary[i] = primaryVal[i] + + control = rpy2.robjects.r.matrix(rpy2.robjects.FloatVector( range(len(controlVals)*len(controlVals[0])) ), ncol=len(controlVals)) + for i in range(len(controlVals)): + for j in range(len(controlVals[0])): + control[i*len(controlVals[0]) + j] = controlVals[i][j] + + allcorrelations = [] + + for targetIndex, oneTargetVals in enumerate(targetVals): + + this_primary = None + this_control = None + this_target = None + + if None in oneTargetVals: + + goodIndex = [] + for i in range(len(oneTargetVals)): + if oneTargetVals[i] != None: + goodIndex.append(i) + + this_primary = rpy2.robjects.FloatVector(range(len(goodIndex))) + for i in range(len(goodIndex)): + this_primary[i] = primaryVal[goodIndex[i]] + + this_control = rpy2.robjects.r.matrix(rpy2.robjects.FloatVector( range(len(controlVals)*len(goodIndex)) ), ncol=len(controlVals)) + for i in range(len(controlVals)): + for j in range(len(goodIndex)): + this_control[i*len(goodIndex) + j] = controlVals[i][goodIndex[j]] + + this_target = rpy2.robjects.FloatVector(range(len(goodIndex))) + for i in range(len(goodIndex)): + this_target[i] = oneTargetVals[goodIndex[i]] + + else: + this_primary = primary + this_control = control + this_target = rpy2.robjects.FloatVector(range(len(oneTargetVals))) + for i in range(len(oneTargetVals)): + this_target[i] = oneTargetVals[i] + + one_name = targetNames[targetIndex] + one_N = len(this_primary) + + #calculate partial correlation + one_pc_coefficient = 'NA' + one_pc_p = 1 + + try: + if method == 's': + result = R_pcorr_function(this_primary, this_target, this_control, method='s') + else: + result = R_pcorr_function(this_primary, this_target, this_control) + + #XZ: In very few cases, the returned coefficient is nan. + #XZ: One way to detect nan is to compare the number to itself. NaN is always != NaN + if result[0][0] == result[0][0]: + one_pc_coefficient = result[0][0] + #XZ: when the coefficient value is 1 (primary trait and target trait are the same), + #XZ: occationally, the returned p value is nan instead of 0. + if result[1][0] == result[1][0]: + one_pc_p = result[1][0] + elif abs(one_pc_coefficient - 1) < 0.0000001: + one_pc_p = 0 + except: + pass + + #calculate zero order correlation + one_corr_coefficient = 0 + one_corr_p = 1 + + try: + if method == 's': + R_result = R_corr_test(this_primary, this_target, method='spearman') + else: + R_result = R_corr_test(this_primary, this_target) + + one_corr_coefficient = R_result[3][0] + one_corr_p = R_result[2][0] + except: + pass + + traitinfo = [ one_name, one_N, one_pc_coefficient, one_pc_p, one_corr_coefficient, one_corr_p ] + + allcorrelations.append(traitinfo) + + return allcorrelations + #End of function compute_partial + + + allcorrelations = [] + + target_trait_number = len(targetVals) + + if target_trait_number < 1000: + allcorrelations = compute_partial ( primaryVal, controlVals, targetVals, targetNames, method ) + else: + step = 1000 + job_number = math.ceil( float(target_trait_number)/step ) + + job_targetVals_lists = [] + job_targetNames_lists = [] + + for job_index in range( int(job_number) ): + starti = job_index*step + endi = min((job_index+1)*step, target_trait_number) + + one_job_targetVals_list = [] + one_job_targetNames_list = [] + + for i in range( starti, endi ): + one_job_targetVals_list.append( targetVals[i] ) + one_job_targetNames_list.append( targetNames[i] ) + + job_targetVals_lists.append( one_job_targetVals_list ) + job_targetNames_lists.append( one_job_targetNames_list ) + + ppservers = () + # Creates jobserver with automatically detected number of workers + job_server = pp.Server(ppservers=ppservers) + + jobs = [] + results = [] + + for i, one_job_targetVals_list in enumerate( job_targetVals_lists ): + one_job_targetNames_list = job_targetNames_lists[i] + #pay attention to modules from outside + jobs.append( job_server.submit(func=compute_partial, args=( primaryVal, controlVals, one_job_targetVals_list, one_job_targetNames_list, method), depfuncs=(), modules=("rpy2.robjects",)) ) + + for one_job in jobs: + one_result = one_job() + results.append( one_result ) + + for one_result in results: + for one_traitinfo in one_result: + allcorrelations.append( one_traitinfo ) + + return allcorrelations + + + +#XZ, April 30, 2010: The input primaryTrait and targetTrait are instance of webqtlTrait +#XZ: The primaryTrait and targetTrait should have executed retrieveData function +def calZeroOrderCorr (primaryTrait, targetTrait, method='pearson'): + + #primaryTrait.retrieveData() + + #there is no None value in primary_val + primary_strain, primary_val, primary_var = primaryTrait.exportInformative() + + #targetTrait.retrieveData() + + #there might be None value in target_val + target_val = targetTrait.exportData(primary_strain, type="val") + + R_primary = rpy2.robjects.FloatVector(range(len(primary_val))) + for i in range(len(primary_val)): + R_primary[i] = primary_val[i] + + N = len(target_val) + + if None in target_val: + goodIndex = [] + for i in range(len(target_val)): + if target_val[i] != None: + goodIndex.append(i) + + N = len(goodIndex) + + R_primary = rpy2.robjects.FloatVector(range(len(goodIndex))) + for i in range(len(goodIndex)): + R_primary[i] = primary_val[goodIndex[i]] + + R_target = rpy2.robjects.FloatVector(range(len(goodIndex))) + for i in range(len(goodIndex)): + R_target[i] = target_val[goodIndex[i]] + + else: + R_target = rpy2.robjects.FloatVector(range(len(target_val))) + for i in range(len(target_val)): + R_target[i] = target_val[i] + + R_corr_test = rpy2.robjects.r['cor.test'] + + if method == 'spearman': + R_result = R_corr_test(R_primary, R_target, method='spearman') + else: + R_result = R_corr_test(R_primary, R_target) + + corr_result = [] + corr_result.append( R_result[3][0] ) + corr_result.append( N ) + corr_result.append( R_result[2][0] ) + + return corr_result + +##################################################################################### +#Input: primaryValue(list): one list of expression values of one probeSet, +# targetValue(list): one list of expression values of one probeSet, +# method(string): indicate correlation method ('pearson' or 'spearman') +#Output: corr_result(list): first item is Correlation Value, second item is tissue number, +# third item is PValue +#Function: get correlation value,Tissue quantity ,p value result by using R; +#Note : This function is special case since both primaryValue and targetValue are from +#the same dataset. So the length of these two parameters is the same. They are pairs. +#Also, in the datatable TissueProbeSetData, all Tissue values are loaded based on +#the same tissue order +##################################################################################### + +def calZeroOrderCorrForTiss (primaryValue=[], targetValue=[], method='pearson'): + + R_primary = rpy2.robjects.FloatVector(range(len(primaryValue))) + N = len(primaryValue) + for i in range(len(primaryValue)): + R_primary[i] = primaryValue[i] + + R_target = rpy2.robjects.FloatVector(range(len(targetValue))) + for i in range(len(targetValue)): + R_target[i]=targetValue[i] + + R_corr_test = rpy2.robjects.r['cor.test'] + if method =='spearman': + R_result = R_corr_test(R_primary, R_target, method='spearman') + else: + R_result = R_corr_test(R_primary, R_target) + + corr_result =[] + corr_result.append( R_result[3][0]) + corr_result.append( N ) + corr_result.append( R_result[2][0]) + + return corr_result + + + + +def batchCalTissueCorr(primaryTraitValue=[], SymbolValueDict={}, method='pearson'): + + def cal_tissue_corr(primaryTraitValue, oneSymbolValueDict, method ): + + oneSymbolCorrDict = {} + oneSymbolPvalueDict = {} + + R_corr_test = rpy2.robjects.r['cor.test'] + + R_primary = rpy2.robjects.FloatVector(range(len(primaryTraitValue))) + + for i in range(len(primaryTraitValue)): + R_primary[i] = primaryTraitValue[i] + + for (oneTraitSymbol, oneTraitValue) in oneSymbolValueDict.iteritems(): + R_target = rpy2.robjects.FloatVector(range(len(oneTraitValue))) + for i in range(len(oneTraitValue)): + R_target[i] = oneTraitValue[i] + + if method =='spearman': + R_result = R_corr_test(R_primary, R_target, method='spearman') + else: + R_result = R_corr_test(R_primary, R_target) + + oneSymbolCorrDict[oneTraitSymbol] = R_result[3][0] + oneSymbolPvalueDict[oneTraitSymbol] = R_result[2][0] + + return(oneSymbolCorrDict, oneSymbolPvalueDict) + + + + symbolCorrDict = {} + symbolPvalueDict = {} + + items_number = len(SymbolValueDict) + + if items_number <= 1000: + symbolCorrDict, symbolPvalueDict = cal_tissue_corr(primaryTraitValue, SymbolValueDict, method) + else: + items_list = SymbolValueDict.items() + + step = 1000 + job_number = math.ceil( float(items_number)/step ) + + job_oneSymbolValueDict_list = [] + + for job_index in range( int(job_number) ): + starti = job_index*step + endi = min((job_index+1)*step, items_number) + + oneSymbolValueDict = {} + + for i in range( starti, endi ): + one_item = items_list[i] + one_symbol = one_item[0] + one_value = one_item[1] + oneSymbolValueDict[one_symbol] = one_value + + job_oneSymbolValueDict_list.append( oneSymbolValueDict ) + + + ppservers = () + # Creates jobserver with automatically detected number of workers + job_server = pp.Server(ppservers=ppservers) + + jobs = [] + results = [] + + for i, oneSymbolValueDict in enumerate( job_oneSymbolValueDict_list ): + + #pay attention to modules from outside + jobs.append( job_server.submit(func=cal_tissue_corr, args=(primaryTraitValue, oneSymbolValueDict, method), depfuncs=(), modules=("rpy2.robjects",)) ) + + for one_job in jobs: + one_result = one_job() + results.append( one_result ) + + for one_result in results: + oneSymbolCorrDict, oneSymbolPvalueDict = one_result + symbolCorrDict.update( oneSymbolCorrDict ) + symbolPvalueDict.update( oneSymbolPvalueDict ) + + return (symbolCorrDict, symbolPvalueDict) + +########################################################################### +#Input: cursor, GeneNameLst (list), TissueProbeSetFreezeId +#output: geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict (Dict) +#function: get multi dicts for short and long label functions, and for getSymbolValuePairDict and +# getGeneSymbolTissueValueDict to build dict to get CorrPvArray +#Note: If there are multiple probesets for one gene, select the one with highest mean. +########################################################################### +def getTissueProbeSetXRefInfo(cursor=None,GeneNameLst=[],TissueProbeSetFreezeId=0): + Symbols ="" + symbolList =[] + geneIdDict ={} + dataIdDict = {} + ChrDict = {} + MbDict = {} + descDict = {} + pTargetDescDict = {} + + count = len(GeneNameLst) + + # Added by NL 01/06/2011 + # Note that:inner join is necessary in this query to get distinct record in one symbol group with highest mean value + # Duo to the limit size of TissueProbeSetFreezeId table in DB, performance of inner join is acceptable. + if count==0: + query=''' + select t.Symbol,t.GeneId, t.DataId,t.Chr, t.Mb,t.description,t.Probe_Target_Description + from ( + select Symbol, max(Mean) as maxmean + from TissueProbeSetXRef + where TissueProbeSetFreezeId=%s and Symbol!='' and Symbol Is Not Null group by Symbol) + as x inner join TissueProbeSetXRef as t on t.Symbol = x.Symbol and t.Mean = x.maxmean; + '''%TissueProbeSetFreezeId + + else: + for i, item in enumerate(GeneNameLst): + + if i == count-1: + Symbols += "'%s'" %item + else: + Symbols += "'%s'," %item + + Symbols = "("+ Symbols+")" + query=''' + select t.Symbol,t.GeneId, t.DataId,t.Chr, t.Mb,t.description,t.Probe_Target_Description + from ( + select Symbol, max(Mean) as maxmean + from TissueProbeSetXRef + where TissueProbeSetFreezeId=%s and Symbol in %s group by Symbol) + as x inner join TissueProbeSetXRef as t on t.Symbol = x.Symbol and t.Mean = x.maxmean; + '''% (TissueProbeSetFreezeId,Symbols) + + try: + + cursor.execute(query) + results =cursor.fetchall() + resultCount = len(results) + # Key in all dicts is the lower-cased symbol + for i, item in enumerate(results): + symbol = item[0] + symbolList.append(symbol) + + key =symbol.lower() + geneIdDict[key]=item[1] + dataIdDict[key]=item[2] + ChrDict[key]=item[3] + MbDict[key]=item[4] + descDict[key]=item[5] + pTargetDescDict[key]=item[6] + + except: + symbolList = None + geneIdDict=None + dataIdDict=None + ChrDict=None + MbDict=None + descDict=None + pTargetDescDict=None + + return symbolList,geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict + +########################################################################### +#Input: cursor, symbolList (list), dataIdDict(Dict) +#output: symbolValuepairDict (dictionary):one dictionary of Symbol and Value Pair, +# key is symbol, value is one list of expression values of one probeSet; +#function: get one dictionary whose key is gene symbol and value is tissue expression data (list type). +#Attention! All keys are lower case! +########################################################################### +def getSymbolValuePairDict(cursor=None,symbolList=None,dataIdDict={}): + symbolList = map(string.lower, symbolList) + symbolValuepairDict={} + valueList=[] + + for key in symbolList: + if dataIdDict.has_key(key): + DataId = dataIdDict[key] + + valueQuery = "select value from TissueProbeSetData where Id=%s" % DataId + try : + cursor.execute(valueQuery) + valueResults = cursor.fetchall() + for item in valueResults: + item =item[0] + valueList.append(item) + symbolValuepairDict[key] = valueList + valueList=[] + except: + symbolValuepairDict[key] = None + + return symbolValuepairDict + + +######################################################################################################## +#input: cursor, symbolList (list), dataIdDict(Dict): key is symbol +#output: SymbolValuePairDict(dictionary):one dictionary of Symbol and Value Pair. +# key is symbol, value is one list of expression values of one probeSet. +#function: wrapper function for getSymbolValuePairDict function +# build gene symbol list if necessary, cut it into small lists if necessary, +# then call getSymbolValuePairDict function and merge the results. +######################################################################################################## + +def getGeneSymbolTissueValueDict(cursor=None,symbolList=None,dataIdDict={}): + limitNum=1000 + count = len(symbolList) + + SymbolValuePairDict = {} + + if count !=0 and count <=limitNum: + SymbolValuePairDict = getSymbolValuePairDict(cursor=cursor,symbolList=symbolList,dataIdDict=dataIdDict) + + elif count >limitNum: + SymbolValuePairDict={} + n = count/limitNum + start =0 + stop =0 + + for i in range(n): + stop =limitNum*(i+1) + gList1 = symbolList[start:stop] + PairDict1 = getSymbolValuePairDict(cursor=cursor,symbolList=gList1,dataIdDict=dataIdDict) + start =limitNum*(i+1) + + SymbolValuePairDict.update(PairDict1) + + if stop < count: + stop = count + gList2 = symbolList[start:stop] + PairDict2 = getSymbolValuePairDict(cursor=cursor,symbolList=gList2,dataIdDict=dataIdDict) + SymbolValuePairDict.update(PairDict2) + + return SymbolValuePairDict + +######################################################################################################## +#input: cursor, GeneNameLst (list), TissueProbeSetFreezeId(int) +#output: SymbolValuePairDict(dictionary):one dictionary of Symbol and Value Pair. +# key is symbol, value is one list of expression values of one probeSet. +#function: wrapper function of getGeneSymbolTissueValueDict function +# for CorrelationPage.py +######################################################################################################## + +def getGeneSymbolTissueValueDictForTrait(cursor=None,GeneNameLst=[],TissueProbeSetFreezeId=0): + SymbolValuePairDict={} + symbolList,geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict = getTissueProbeSetXRefInfo(cursor=cursor,GeneNameLst=GeneNameLst,TissueProbeSetFreezeId=TissueProbeSetFreezeId) + if symbolList: + SymbolValuePairDict = getGeneSymbolTissueValueDict(cursor=cursor,symbolList=symbolList,dataIdDict=dataIdDict) + return SymbolValuePairDict + +######################################################################################################## +#Input: cursor(cursor): MySQL connnection cursor; +# priGeneSymbolList(list): one list of gene symbol; +# symbolValuepairDict(dictionary): one dictionary of Symbol and Value Pair, +# key is symbol, value is one list of expression values of one probeSet; +#Output: corrArray(array): array of Correlation Value, +# pvArray(array): array of PValue; +#Function: build corrArray, pvArray for display by calling calculation function:calZeroOrderCorrForTiss +######################################################################################################## + +def getCorrPvArray(cursor=None,priGeneSymbolList=[],symbolValuepairDict={}): + # setting initial value for corrArray, pvArray equal to 0 + Num = len(priGeneSymbolList) + + corrArray = [([0] * (Num))[:] for i in range(Num)] + pvArray = [([0] * (Num))[:] for i in range(Num)] + i = 0 + for pkey in priGeneSymbolList: + j = 0 + pkey = pkey.strip().lower()# key in symbolValuepairDict is low case + if symbolValuepairDict.has_key(pkey): + priValue = symbolValuepairDict[pkey] + for tkey in priGeneSymbolList: + tkey = tkey.strip().lower()# key in symbolValuepairDict is low case + if priValue and symbolValuepairDict.has_key(tkey): + tarValue = symbolValuepairDict[tkey] + + if tarValue: + if i>j: + # corrArray stores Pearson Correlation values + # pvArray stores Pearson P-Values + pcorr_result =calZeroOrderCorrForTiss(primaryValue=priValue,targetValue=tarValue) + corrArray[i][j] =pcorr_result[0] + pvArray[i][j] =pcorr_result[2] + elif i webqtlConfig.MAXCORR: + heading = 'Correlation Matrix' + detail = ['In order to display Correlation Matrix properly, Do not select more than %d traits for Correlation Matrix.' % webqtlConfig.MAXCORR] + self.error(heading=heading,detail=detail) + return + + #XZ, 7/22/2009: this block is not necessary + #elif len(self.searchResult) > 40: + # noPCA = 1 + #else: + # noPCA = 0 + + traitList = [] + traitDataList = [] + for item in self.searchResult: + thisTrait = webqtlTrait(fullname=item, cursor=self.cursor) + thisTrait.retrieveInfo() + thisTrait.retrieveData(fd.strainlist) + traitList.append(thisTrait) + traitDataList.append(thisTrait.exportData(fd.strainlist)) + + else: + heading = 'Correlation Matrix' + detail = [HT.Font('Error : ',color='red'),HT.Font('Error occurs while retrieving data FROM database.',color='black')] + self.error(heading=heading,detail=detail) + return + + NNN = len(traitList) + + if NNN == 0: + heading = "Correlation Matrix" + detail = ['No trait was selected for %s data set. No matrix generated.' % self.data.RISet] + self.error(heading=heading,detail=detail) + return + elif NNN < 2: + heading = 'Correlation Matrix' + detail = ['You need to select at least two traits in order to generate correlation matrix.'] + self.error(heading=heading,detail=detail) + return + else: + + + + corArray = [([0] * (NNN+1))[:] for i in range(NNN+1)] + pearsonArray = [([0] * (NNN))[:] for i in range(NNN)] + spearmanArray = [([0] * (NNN))[:] for i in range(NNN)] + corArray[0][0] = 'Correlation' + TD_LR = HT.TD(colspan=2,width="100%",bgColor='#eeeeee') + form = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase', 'ProbeSetID':'_','database':'_', + 'CellID':'_','ProbeSetID2':'_','database2':'_','CellID2':'_', + 'newNames':fd.formdata.getvalue("newNames", "_"), + 'RISet':fd.RISet,'ShowStrains':'ON','ShowLine':'ON', 'rankOrder':'_', + "allstrainlist":string.join(fd.strainlist, " "), 'traitList':string.join(self.searchResult, "\t")} + if fd.incparentsf1: + hddn['incparentsf1']='ON' + + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + for item in self.searchResult: + form.append(HT.Input(name='oldSearchResult', value=str(item), type='hidden')) + + traiturls = [] + traiturls2 = [] + shortNames = [] + verboseNames = [] + verboseNames2 = [] + verboseNames3 = [] + abbreviation = '' + + #dbInfo.ProbeSetID = ProbeSetID + #dbInfo.CellID = CellID + for i, thisTrait in enumerate(traitList): + _url = "javascript:showDatabase2('%s','%s','%s');" % (thisTrait.db.name, thisTrait.name, thisTrait.cellid) + #_text = 'Trait%d: ' % (i+1)+str(thisTrait) + _text = 'Trait %d: ' % (i+1)+thisTrait.displayName() + + if thisTrait.db.type == 'Geno': + _shortName = 'Genotype' + abbreviation = 'Genotype' + _verboseName = 'Locus %s' % (thisTrait.name) + _verboseName2 = 'Chr %s @ %s Mb' % (thisTrait.chr, '%2.3f' % thisTrait.mb) + _verboseName3 = '' + elif thisTrait.db.type == 'Publish': + if thisTrait.post_publication_abbreviation: + AbbreviationString = thisTrait.post_publication_abbreviation + else: + AbbreviationString = '' + if thisTrait.confidential: + if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users): + if thisTrait.pre_publication_abbreviation: + AbbreviationString = thisTrait.pre_publication_abbreviation + else: + AbbreviationString = '' + _shortName = 'Phenotype: %s' % (AbbreviationString) + _verboseName2 = '' + _verboseName3 = '' + if thisTrait.pubmed_id: + _verboseName = 'PubMed %d: ' % thisTrait.pubmed_id + else: + _verboseName = 'Unpublished ' + _verboseName += 'RecordID/%s' % (thisTrait.name) + PhenotypeString = thisTrait.post_publication_description + if thisTrait.confidential: + if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users): + PhenotypeString = thisTrait.pre_publication_description + _verboseName2 = 'Phenotype: %s' % (PhenotypeString) + if thisTrait.authors: + a1 = string.split(thisTrait.authors,',')[0] + while a1[0] == '"' or a1[0] == "'" : + a1 = a1[1:] + _verboseName += ' by ' + _verboseName += HT.Italic('%s, and colleagues' % (a1)) + elif thisTrait.db.type == 'Temp': + abbreviation = '' + _shortName = thisTrait.name + if thisTrait.description: + _verboseName = thisTrait.description + else: + _verboseName = 'Temp' + _verboseName2 = '' + _verboseName3 = '' + else: + abbreviation = thisTrait.symbol + _shortName = 'Symbol: %s ' % thisTrait.symbol + _verboseName = thisTrait.symbol + _verboseName2 = '' + _verboseName3 = '' + if thisTrait.chr and thisTrait.mb: + _verboseName += ' on Chr %s @ %s Mb' % (thisTrait.chr,thisTrait.mb) + if thisTrait.description: + _verboseName2 = '%s' % (thisTrait.description) + if thisTrait.probe_target_description: + _verboseName3 = '%s' % (thisTrait.probe_target_description) + + cururl = HT.Href(text=_text, url=_url,Class='fs12') + cururl2 = HT.Href(text='Trait%d' % (i+1),url=_url,Class='fs12') + traiturls.append(cururl) + traiturls2.append(cururl2) + shortName = HT.Div(id="shortName_" + str(i), style="display:none") + shortName.append(_shortName) + shortNames.append(shortName) + verboseName = HT.Div(id="verboseName_" + str(i), style="display:none") + verboseName.append(_verboseName) + verboseNames.append(verboseName) + verboseName2 = HT.Div(id="verboseName2_" + str(i), style="display:none") + verboseName2.append(_verboseName2) + verboseNames2.append(verboseName2) + verboseName3 = HT.Div(id="verboseName3_" + str(i), style="display:none") + verboseName3.append(_verboseName3) + verboseNames3.append(verboseName3) + + + + corArray[i+1][0] = 'Trait%d: ' % (i+1)+str(thisTrait) + '/' + str(thisTrait) + ': ' + abbreviation + '/' + str(thisTrait) + ': ' + str(_verboseName) + ' : ' + str(_verboseName2) + ' : ' + str(_verboseName3) + corArray[0][i+1] = 'Trait%d: ' % (i+1)+str(thisTrait) + + corMatrixHeading = HT.Paragraph('Correlation Matrix', Class="title") + + tbl = HT.TableLite(Class="collap", border=0, cellspacing=1, + cellpadding=5, width='100%') + row1 = HT.TR(HT.TD(Class="fs14 fwb ffl b1 cw cbrb"), + HT.TD('Spearman Rank Correlation (rho)', Class="fs14 fwb ffl b1 cw cbrb", colspan= NNN+1,align="center") + ) + row2 = HT.TR( + HT.TD("P e a r s o n     r", rowspan= NNN+1,Class="fs14 fwb ffl b1 cw cbrb", width=10,align="center"), + HT.TD(Class="b1", width=300)) + for i in range(NNN): + row2.append(HT.TD(traiturls2[i], Class="b1", align="center")) + tbl.append(row1,row2) + + nOverlapTrait =9999 + nnCorr = len(fd.strainlist) + for i, thisTrait in enumerate(traitList): + newrow = HT.TR() + newrow.append(HT.TD(traiturls[i], shortNames[i], verboseNames[i], verboseNames2[i], + verboseNames3[i], Class="b1")) + names1 = [thisTrait.db.name, thisTrait.name, thisTrait.cellid] + for j, thisTrait2 in enumerate(traitList): + names2 = [thisTrait2.db.name, thisTrait2.name, thisTrait2.cellid] + if j < i: + corr,nOverlap = webqtlUtil.calCorrelation(traitDataList[i],traitDataList[j],nnCorr) + + rank = fd.formdata.getvalue("rankOrder", "0") + + if nOverlap < nOverlapTrait: + nOverlapTrait = nOverlap + if corr > 0.7: + fontcolor="red" + elif corr > 0.5: + fontcolor="#FF6600" + elif corr < -0.7: + fontcolor="blue" + elif corr < -0.5: + fontcolor="#009900" + else: + fontcolor ="#000000" + + pearsonArray[i][j] = corr + pearsonArray[j][i] = corr + if corr!= 0.0: + corArray[i+1][j+1] = '%2.3f/%d' % (corr,nOverlap) + thisurl = HT.Href(text=HT.Font('%2.3f'% corr,HT.BR(),'%d' % nOverlap ,color=fontcolor, Class="fs11 fwn"),url = "javascript:showCorrelationPlot2(db='%s',ProbeSetID='%s',CellID='%s',db2='%s',ProbeSetID2='%s',CellID2='%s',rank='%s')" % (names1[0], names1[1], names1[2], names2[0], names2[1], names2[2], rank)) + else: + corArray[i+1][j+1] = '---/%d' % nOverlap + thisurl = HT.Font('---',HT.BR(), '%d' % nOverlap) + + newrow.append(HT.TD(thisurl,Class="b1",NOWRAP="ON",align="middle")) + elif j == i: + corr,nOverlap = webqtlUtil.calCorrelation(traitDataList[i],traitDataList[j],nnCorr) + pearsonArray[i][j] = 1.0 + spearmanArray[i][j] = 1.0 + corArray[i+1][j+1] = '%2.3f/%d' % (corr,nOverlap) + nOverlap = webqtlUtil.calCorrelation(traitDataList[i],traitDataList[j],nnCorr)[1] + newrow.append(HT.TD(HT.Href(text=HT.Font(HT.Italic("n"),HT.BR(),str(nOverlap),Class="fs11 fwn b1",align="center", color="000000"), url="javascript:showDatabase2('%s','%s','%s')" % (thisTrait.db.name, thisTrait.name, thisTrait.cellid)), bgColor='#cccccc', align="center", Class="b1", NOWRAP="ON")) + else: + corr,nOverlap = webqtlUtil.calCorrelationRank(traitDataList[i],traitDataList[j],nnCorr) + + rank = fd.formdata.getvalue("rankOrder", "1") + + if corr > 0.7: + fontcolor="red" + elif corr > 0.5: + fontcolor="#FF6600" + elif corr < -0.7: + fontcolor="blue" + elif corr < -0.5: + fontcolor="#009900" + else: + fontcolor ="#000000" + spearmanArray[i][j] = corr + spearmanArray[j][i] = corr + if corr!= 0.0: + corArray[i+1][j+1] = '%2.3f/%d' % (corr,nOverlap) + thisurl = HT.Href(text=HT.Font('%2.3f'% corr,HT.BR(),'%d' % nOverlap ,color=fontcolor, Class="fs11 fwn"),url = "javascript:showCorrelationPlot2(db='%s',ProbeSetID='%s',CellID='%s',db2='%s',ProbeSetID2='%s',CellID2='%s',rank='%s')" % (names1[0], names1[1], names1[2], names2[0], names2[1], names2[2], rank)) + else: + corArray[i+1][j+1] = '---/%d' % nOverlap + thisurl = HT.Span('---',HT.BR(), '%d' % nOverlap, Class="fs11 fwn") + newrow.append(HT.TD(thisurl,Class="b1", NOWRAP="ON",align="middle")) + tbl.append(newrow) + + info = HT.Blockquote('Lower left cells list Pearson product-moment correlations; upper right cells list Spearman rank order correlations. Each cell also contains the n of cases. Values higher than 0.7 are displayed in ',HT.Font('red', color='red'),'; those between 0.5 and 0.7 in ',HT.Font('orange', color='#FF6600'),'; Values lower than -0.7 are in ',HT.Font('blue', color='blue'),'; between -0.5 and -0.7 in ',HT.Font('green', color='#009900'),'. Select any cell to generate a scatter plot. Select trait labels for more information.', Class="fs13 fwn") + + exportbutton = HT.Input(type='button', name='export', value='Export', onClick="exportText(allCorrelations);",Class="button") + shortButton = HT.Input(type='button' ,name='dispShort',value=' Short Labels ', onClick="displayShortName();",Class="button") + verboseButton = HT.Input(type='button' ,name='dispVerbose',value=' Long Labels ', onClick="displayVerboseName();", Class="button") + form.append(HT.Blockquote(tbl,HT.P(),shortButton,verboseButton,exportbutton)) + TD_LR.append(corMatrixHeading,info,form,HT.P()) + + #if noPCA: + # TD_LR.append(HT.Blockquote('No PCA is computed if more than 32 traits are selected.')) + + #print corArray + exportScript = """ + + + """ + exportScript = exportScript % str(corArray) + self.dict['js1'] = exportScript+'
      ' + self.dict['body'] = str(TD_LR) + + #don't calculate PCA while number exceed 32 + #if noPCA: + # return + + #XZ, 7/22/2009: deal with PCA stuff + #Only for Array Data + + if NNN > 2: + + traitname = map(lambda X:str(X.name), traitList) + + #generate eigenvalues + + # import sys + sys.argv=[" "] + # import numarray + # import numarray.linear_algebra as la + #spearmanEigen = eigenvectors(array(spearmanArray)) + pearsonEigen = la.eigenvectors(numarray.array(pearsonArray)) + #spearmanEigenValue,spearmanEigenVectors = self.sortEigenVectors(spearmanEigen) + pearsonEigenValue,pearsonEigenVectors = self.sortEigenVectors(pearsonEigen) + + + """ + for i in range(len(pearsonEigenValue)): + if type(pearsonEigenValue[i]).__name__ == 'complex': + pearsonEigenValue[i] = pearsonEigenValue[i].real + for i in range(len(pearsonEigenVectors)): + for j in range(len(pearsonEigenVectors[i])): + if type(pearsonEigenVectors[i][j]).__name__ == 'complex': + pearsonEigenVectors[i][j] = pearsonEigenVectors[i][j].real + if type(pearsonEigenVectors[i][j]).__name__ == 'complex': + pearsonEigenVectors[i][j] = pearsonEigenVectors[i][j].real + """ + + if type(pearsonEigenValue[0]).__name__ == 'complex': + pass + else: + traitHeading = HT.Paragraph('PCA Traits',align='left', Class="title") + + tbl2 = self.calcPCATraits(traitDataList=traitDataList, nnCorr=nnCorr, NNN=NNN, pearsonEigenValue=pearsonEigenValue, + pearsonEigenVectors=pearsonEigenVectors, form=form, fd=fd) + #Buttons on search page + #mintmap = HT.Input(type='button' ,name='mintmap',value='Multiple Mapping', onClick="databaseFunc(this.form,'showIntMap');",Class="button") + addselect = HT.Input(type='button' ,name='addselect',value='Add to Collection', onClick="addRmvSelection('%s', this.form, 'addToSelection');" % fd.RISet,Class="button") + selectall = HT.Input(type='button' ,name='selectall',value='Select All', onClick="checkAll(this.form);",Class="button") + reset = HT.Input(type='reset',name='',value='Select None',Class="button") + updateNames = HT.Input(type='button', name='updateNames',value='Update Trait Names', onClick="editPCAName(this.form);", Class="button") + chrMenu = HT.Input(type='hidden',name='chromosomes',value='all') + + """ + #need to be refined + if fd.genotype.Mbmap: + scaleMenu = HT.Select(name='scale') + scaleMenu.append(tuple(["Genetic Map",'morgan'])) + scaleMenu.append(tuple(["Physical Map",'physic'])) + else: + scaleMenu = "" + """ + + tbl2.append(HT.TR(HT.TD(HT.P(),chrMenu,updateNames,selectall,reset,addselect,colspan=3))) + form.append(HT.P(),traitHeading,HT.Blockquote(tbl2)) + + plotHeading1 = HT.Paragraph('Scree Plot', Class="title") + TD_LR.append(plotHeading1) + img1 = self.screePlot(NNN=NNN, pearsonEigenValue=pearsonEigenValue) + + TD_LR.append(HT.Blockquote(img1)) + + plotHeading2 = HT.Paragraph('Factor Loadings Plot', Class="title") + TD_LR.append(plotHeading2) + img2 = self.factorLoadingsPlot(pearsonEigenVectors=pearsonEigenVectors, traitList=traitList) + + TD_LR.append(HT.Blockquote(img2)) + + self.dict['body'] = str(TD_LR) + + def screePlot(self, NNN=0, pearsonEigenValue=None): + + c1 = pid.PILCanvas(size=(700,500)) + Plot.plotXY(canvas=c1, dataX=range(1,NNN+1), dataY=pearsonEigenValue, rank=0, labelColor=pid.blue,plotColor=pid.red, symbolColor=pid.blue, XLabel='Factor Number', connectdot=1,YLabel='Percent of Total Variance %', title='Pearson\'s R Scree Plot') + filename= webqtlUtil.genRandStr("Scree_") + c1.save(webqtlConfig.IMGDIR+filename, format='gif') + img=HT.Image('/image/'+filename+'.gif',border=0) + + return img + + def factorLoadingsPlot(self, pearsonEigenVectors=None, traitList=None): + + traitname = map(lambda X:str(X.name), traitList) + c2 = pid.PILCanvas(size=(700,500)) + Plot.plotXY(c2, pearsonEigenVectors[0],pearsonEigenVectors[1], 0, dataLabel = traitname, labelColor=pid.blue, plotColor=pid.red, symbolColor=pid.blue,XLabel='Factor (1)', connectdot=1, YLabel='Factor (2)', title='Factor Loadings Plot (Pearson)', loadingPlot=1) + filename= webqtlUtil.genRandStr("FacL_") + c2.save(webqtlConfig.IMGDIR+filename, format='gif') + img = HT.Image('/image/'+filename+'.gif',border=0) + + return img + + def calcPCATraits(self, traitDataList=None, nnCorr=0, NNN=0, pearsonEigenValue=None, pearsonEigenVectors=None, form=None, fd=None): + """ + This function currently returns the html to be displayed instead of the traits themselves. Need to fix later. + """ + + detailInfo = string.split(self.searchResult[0],':') + + self.sameProbeSet = 'yes' + for item in self.searchResult[1:]: + detailInfo2 = string.split(item,':') + if detailInfo[0] != detailInfo2[0] or detailInfo[1] != detailInfo2[1]: + self.sameProbeSet = None + break + + for item in traitDataList: + if len(item) != nnCorr: + return + infoStrains = [] + infoStrainsPos = [] + dataArray = [[] for i in range(NNN)] + + for i in range(len(traitDataList[0])): + currentStrain = 1 + for j in range(NNN): + if not traitDataList[j][i]: + currentStrain = 0 + break + if currentStrain == 1: + infoStrains.append(fd.strainlist[i]) + infoStrainsPos.append(i) + for j in range(NNN): + dataArray[j].append(traitDataList[j][i]) + + + self.cursor.execute('delete Temp, TempData FROM Temp, TempData WHERE Temp.DataId = TempData.Id and UNIX_TIMESTAMP()-UNIX_TIMESTAMP(CreateTime)>%d;' % webqtlConfig.MAXLIFE) + + StrainIds = [] + for item in infoStrains: + self.cursor.execute('SELECT Strain.Id FROM Strain,StrainXRef, InbredSet WHERE Strain.Name="%s" and Strain.Id = StrainXRef.StrainId and StrainXRef.InbredSetId = InbredSet.Id and InbredSet.Name = "%s"' % (item, fd.RISet)) + StrainIds.append('%d' % self.cursor.fetchone()[0]) + + """ + #minimal 12 overlapping strains + if len(dataArray[0]) < 12: + form.append(HT.P(),traitHeading,HT.Blockquote(HT.Paragraph('The number of overlapping strains is less than 12, no PCA scores computed.',align='left'))) + self.dict['body'] = str(TD_LR) + return + """ + dataArray = self.zScore(dataArray) + dataArray = numarray.array(dataArray) + dataArray2 = numarray.dot(pearsonEigenVectors,dataArray) + + tbl2 = HT.TableLite(cellSpacing=2,cellPadding=0,border=0, width="100%") + + ct0 = time.localtime(time.time()) + ct = time.strftime("%B/%d %H:%M:%S",ct0) + if self.sameProbeSet: + newDescription = 'PCA Traits generated at %s from %s' % (ct,detailInfo[1]) + else: + newDescription = 'PCA Traits generated at %s from traits selected' % ct + + + j = 1 + self.cursor.execute('SELECT Id FROM InbredSet WHERE Name = "%s"' % fd.RISet) + InbredSetId = self.cursor.fetchall()[0][0] + user_ip = fd.remote_ip + if fd.formdata.getvalue("newNames"): + newNames = fd.formdata.getvalue("newNames").split(",") + else: + newNames = 0 + + for item in dataArray2: + if pearsonEigenValue[j-1] < 100.0/NNN: + break + + if (newNames == 0): + description = '%s : PC%02d' % (newDescription, j) + else: + description = '%s : %s' % (newDescription, newNames[j-1]) + + self.cursor.execute('SELECT max(id) FROM TempData') + try: + DataId = self.cursor.fetchall()[0][0] + 1 + except: + DataId = 1 + newProbeSetID = webqtlUtil.genRandStr("PCA_Tmp_") + self.cursor.execute('insert into Temp(Name,description, createtime,DataId,InbredSetId,IP) values(%s,%s,Now(),%s,%s,%s)' ,(newProbeSetID, description, DataId,InbredSetId,user_ip)) + + k = 0 + for StrainId in StrainIds: + self.cursor.execute('insert into TempData(Id, StrainId, value) values(%s,%s,%s)' % (DataId, StrainId, item[k]*(-1.0))) + k += 1 + setDescription = HT.Div(id="pcaTrait%s" % j) + descriptionLink = HT.Href(text=description, url="javascript:showDatabase2('Temp','%s','')" % newProbeSetID, Class="fwn") + descriptionEdit = HT.Input(type='text', value='', name='editName%s' % j) + + #onBlur='editPDAName(this.form, %s);' % j + + setDescription.append(descriptionLink) + setDescription.append(descriptionEdit) + + traitName = "%s:%s" % ('Temp',newProbeSetID) + tbl2.append(HT.TR(HT.TD("%d."%j,align="right",valign="top"),HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=traitName),valign="top",width=50),HT.TD(setDescription))) + j += 1 + + return tbl2 + + def zScore(self,dataArray): + NN = len(dataArray[0]) + if NN < 10: + return dataArray + else: + i = 0 + for data in dataArray: + N = len(data) + S = reduce(lambda x,y: x+y, data, 0.) + SS = reduce(lambda x,y: x+y*y, data, 0.) + mean = S/N + var = SS - S*S/N + stdev = math.sqrt(var/(N-1)) + data2 = map(lambda x:(x-mean)/stdev,data) + dataArray[i] = data2 + i += 1 + return dataArray + + def sortEigenVectors(self,vector): + try: + eigenValues = vector[0].tolist() + eigenVectors = vector[1].tolist() + combines = [] + i = 0 + for item in eigenValues: + combines.append([eigenValues[i],eigenVectors[i]]) + i += 1 + combines.sort(webqtlUtil.cmpEigenValue) + A = [] + B = [] + for item in combines: + A.append(item[0]) + B.append(item[1]) + sum = reduce(lambda x,y: x+y, A, 0.0) + A = map(lambda x:x*100.0/sum, A) + return [A,B] + except: + return [] + diff --git a/web/webqtl/correlationMatrix/TissueAbbreviationPage.py b/web/webqtl/correlationMatrix/TissueAbbreviationPage.py new file mode 100755 index 00000000..ad8f0ac7 --- /dev/null +++ b/web/webqtl/correlationMatrix/TissueAbbreviationPage.py @@ -0,0 +1,79 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2011/12/7 +# +# Last updated by GeneNetwork Core Team 2011/12/7 + + +from base.templatePage import templatePage +from htmlgen import HTMLgen2 as HT + +import string +import os + + +class TissueAbbreviationPage (templatePage): + + def __init__(self,fd): + templatePage.__init__(self, fd) + + shortName=fd.formdata.getfirst("shortTissueName", ',') + fullName=fd.formdata.getfirst("fullTissueName", ',') + shortNameList=[] + fullNameList=[] + + if shortName: + shortNameList=shortName.split(',') + + if fullName: + fullNameList=fullName.split(',') + + tissueAbbrDict={} + for i, item in enumerate(shortNameList): + tissueAbbrDict[item]=fullNameList[i] + + if tissueAbbrDict: + + # Creates the table for the fullname and shortname of Tissue + tissueAbbrTable = HT.TableLite(border=1, cellspacing=5, cellpadding=3, Class="collap") + shortNameList = tissueAbbrDict.keys() + shortNameList.sort() + abbrHeaderStyle="fs14 fwb ffl" + abbrStyle="fs14 fwn ffl" + + tissueAbbrTable.append(HT.TR(HT.TD('Abbr  ', Class=abbrHeaderStyle, NOWRAP = 1),HT.TD('Full Name  ', Class=abbrHeaderStyle, NOWRAP = 1))) + for item in shortNameList: + thisTR = HT.TR(HT.TD(item, Class=abbrStyle, NOWRAP = 1)) + thisTR.append(HT.TD(tissueAbbrDict[item], Class=abbrStyle, NOWRAP = 1)) + + tissueAbbrTable.append(thisTR) + + self.dict['body'] = HT.TD(HT.Paragraph("Tissue Abbreviation", Class="title"), HT.Blockquote(tissueAbbrTable)) + self.dict['title'] = "Tissue Abbreviation" + else: + heading = "Tissue abbreviation" + detail = ["Cannot found Tissue Abbreviation. Please try again later."] + self.error(heading=heading,detail=detail) + return + + diff --git a/web/webqtl/correlationMatrix/TissueCorrelationPage.py b/web/webqtl/correlationMatrix/TissueCorrelationPage.py new file mode 100755 index 00000000..7cb86d8c --- /dev/null +++ b/web/webqtl/correlationMatrix/TissueCorrelationPage.py @@ -0,0 +1,673 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# user can search correlation value and P-Value by inputting one pair gene symbols or multiple gene symbols. + +# Created by GeneNetwork Core Team 2010/07/07 +# Last updated by NL, 2011/03/25 + +from htmlgen import HTMLgen2 as HT +import os +import sys +import time +import string +import pyXLWriter as xl +import cPickle + +from base.templatePage import templatePage +from base import webqtlConfig +from base.webqtlTrait import webqtlTrait +from correlationMatrix.tissueCorrelationMatrix import tissueCorrelationMatrix +from utility import webqtlUtil +from utility.THCell import THCell +from utility.TDCell import TDCell + + +######################################### +# Tissue Correlation Page +######################################### + +class TissueCorrelationPage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + #read input fields + self.action = fd.formdata.getvalue("action", "").strip() + self.geneSymbols = fd.formdata.getvalue("geneSymbols","").strip() + self.tissueProbeSetFeezeId = fd.formdata.getvalue("tissueProbeSetFeezeId", "").strip() + self.recordReturnNum = fd.formdata.getvalue("recordReturnNum", "0").strip() + self.calculateMethod = fd.formdata.getvalue("calculateMethod", "0").strip() + + TissueCorrMatrixObject = tissueCorrelationMatrix(tissueProbeSetFreezeId=self.tissueProbeSetFeezeId) + + if not self.geneSymbols: + # default page + + Heading = HT.Paragraph("Tissue Correlation", Class="title") + Intro = HT.Blockquote("This function computes correlations between transcript expression across different organs and tissues.") + Intro.append(HT.BR(),"Select a data set from the pull-down menu and then compute correlations.") + + formName='searchTissueCorrelation' + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), target='_blank',enctype='multipart/form-data', name= formName, submit=HT.Input(type='hidden')) + form.append(HT.Input(type="hidden", name="FormID", value="")) + form.append(HT.Input(type="hidden", name="action", value="disp")) + + # added by NL 10/12/2010, retreive dataSet info from TissueProbeSetFreeze to get all TissueProbeSetFreezeId, datasetName and FullName + tissProbeSetFreezeIds,dataSetNames,dataSetfullNames = TissueCorrMatrixObject.getTissueDataSet() + + dataSetList=[] + for i in range(len(tissProbeSetFreezeIds)): + dataSetList.append((dataSetfullNames[i], tissProbeSetFreezeIds[i])) + dataSetMenu = HT.Select(dataSetList,name="tissueProbeSetFeezeId") + + InfoFile =HT.Input(type="button", Class="button", value=" Info ", onClick="tissueDatasetInfo(this.form.tissueProbeSetFeezeId,%s);"%(dataSetNames)) + form.append(HT.Strong("     "),dataSetMenu,InfoFile,HT.BR()); + + form.append(HT.BR(),HT.Strong("     Please enter only one gene symbol/ENTREZ gene Id per line."),HT.BR(),HT.Strong("     "),HT.Textarea(name="geneSymbols", rows=10, cols=50, text=""),HT.BR(),HT.BR()) + # calculate method radio button + calculateMethodMenu =HT.Input(type="radio", name="calculateMethod", value="0", checked="checked") + calculateMethodMenu1 =HT.Input(type="radio", name="calculateMethod", value="1") + # record Return method dropdown menu + recordReturnMenu = HT.Select(name="recordReturnNum") + recordReturnMenu.append(('Top 100','0')) + recordReturnMenu.append(('Top 200','1')) + recordReturnMenu.append(('Top 500','2')) + recordReturnMenu.append(('Top 1000','3')) + recordReturnMenu.append(('Top 2000','4')) + recordReturnMenu.append(('All','5')) + + # working for input symbol has only one; + form.append(HT.Strong("     "),HT.Span("Return:", Class="ffl fwb fs12"),HT.Strong("     "),recordReturnMenu,HT.BR()); + form.append(HT.BR(),HT.Strong("     "),'Pearson',calculateMethodMenu," "*3,'Spearman Rank',calculateMethodMenu1,HT.BR(),HT.BR()); + form.append(HT.Strong("   "),HT.Input(type="button", value=" Compute ", Class="button",onClick="selectFormIdForTissueCorr('%s');"%formName)) + form.append(HT.Strong("    "),HT.Input(type="button", Class="button", value=" Make Default ", onClick = "makeTissueCorrDefault(this.form);")) + + TD_LR = HT.TD(height=200,width="100%",bgcolor='#eeeeee',align="left") + TD_LR.append(Heading,Intro,form) + self.content_type = 'text/html' + self.dict['js1'] = '
      ' + # get tissueProbesetFreezeId from cookie + self.dict['js2'] = 'onload ="getTissueCorrDefault(\'searchTissueCorrelation\');"' + self.dict['body'] = str(TD_LR) + self.dict['title'] = "Tissue Correlation" + elif self.action == 'disp': + TissueCount =TissueCorrMatrixObject.getTissueCountofCurrentDataset() + + # add by NL for first Note part in the tissue correlation page. 2010-12-23 + note ="" + dataSetName="" + datasetFullName="" + dataSetName, datasetFullName= TissueCorrMatrixObject.getFullnameofCurrentDataset() + + noteURL = "../dbdoc/"+ dataSetName+".html" + noteText = " was used to compute expression correlation across %s samples of tissues and organs. ["%TissueCount + # dataset download + datasetURL = "../dbdoc/"+ dataSetName+".xls" + datasetDownload =HT.Href(text="Download experiment data",url=datasetURL,Class='fs13',target="_blank") + note = HT.Blockquote(HT.Href(text=datasetFullName,url=noteURL,Class='fs13',target="_blank"),noteText, datasetDownload,"]",HT.BR()) + + geneSymbolLst = [] # gene Symbol list + geneSymbolLst = TissueCorrMatrixObject.getGeneSymbolLst(self.geneSymbols) + + symbolCount = len(geneSymbolLst) + # The input symbol limit is 100. + heading = "Tissue Correlation" + if symbolCount > 100: + detail = ['The Gene symbols you have input are more than 100. Please limit them to 100.'] + self.error(heading=heading,detail=detail) + return + elif symbolCount==0: + detail = ['No Gene Symbol was input. No Tissue Correlation matrix generated.' ] + self.error(heading=heading,detail=detail) + return + else: + # search result page + # The input symbols should be no less than 1. + self.content_type = 'text/html' + if symbolCount == 1: + self.displaySingleSymbolResultPage(primaryGeneSymbol=geneSymbolLst[0],datasetFullName=datasetFullName,tProbeSetFreezeId=self.tissueProbeSetFeezeId, TissueCorrMatrixObject =TissueCorrMatrixObject,recordReturnNum=self.recordReturnNum,method=self.calculateMethod, note=note,TissueCount =TissueCount) + else: + self.displayMultiSymbolsResultPage(geneSymbolLst=geneSymbolLst, symbolCount=symbolCount, tProbeSetFreezeId=self.tissueProbeSetFeezeId,TissueCorrMatrixObject =TissueCorrMatrixObject,note=note,TissueCount =TissueCount) + + else: + heading = "Tissue Correlation" + detail = ['There\'s something wrong with input gene symbol(s), or the value of parameter [action] is not right.' ] + self.error(heading=heading,detail=detail) + return +############################# +# functions +############################# + + # result page when input symbol has only one + def displaySingleSymbolResultPage(self,primaryGeneSymbol=None, datasetFullName=None,tProbeSetFreezeId=None, TissueCorrMatrixObject =None,recordReturnNum=None,method=None,note=None,TissueCount =None): + formName = webqtlUtil.genRandStr("fm_") + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data',name= formName, submit=HT.Input(type='hidden')) + # the following hidden elements are required parameter in Class(PlotCorrelationPage). So we need to define them here. + form.append(HT.Input(type="hidden", name="action", value="disp")) + form.append(HT.Input(type="hidden", name="FormID", value="dispSingleTissueCorrelation")) + form.append(HT.Input(type="hidden", name="X_geneSymbol", value="")) + form.append(HT.Input(type="hidden", name="Y_geneSymbol", value="")) + form.append(HT.Input(type="hidden", name="ProbeSetID", value="")) + # RISet is not using in Tissue correlation, but is a required parameter in Class(PlotCorrelationPage). So we set dummy value(BXD). + form.append(HT.Input(type="hidden", name="RISet", value="BXD")) + form.append(HT.Input(type="hidden", name="ShowLine", value="1")) + form.append(HT.Input(type="hidden", name="TissueProbeSetFreezeId", value=tProbeSetFreezeId)) + form.append(HT.Input(type="hidden", name="rankOrder", value=0)) + + traitList =[] + try: + symbolCorrDict, symbolPvalueDict = TissueCorrMatrixObject.calculateCorrOfAllTissueTrait(primaryTraitSymbol=primaryGeneSymbol,method=method) + except: + heading = "Tissue Correlation" + detail = ['Please use the official NCBI gene symbol.' ] + self.error(heading=heading,detail=detail) + return + + symbolList0,geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict=TissueCorrMatrixObject.getTissueProbeSetXRefInfo(GeneNameLst=[]) + # In case, upper case and lower case issue of symbol, mappedByTargetList function will update input geneSymbolLst based on database search result + tempPrimaryGeneSymbol =self.mappedByTargetList(primaryList=symbolList0,targetList=[primaryGeneSymbol]) + primaryGeneSymbol =tempPrimaryGeneSymbol[0] + + returnNum = self.getReturnNum(recordReturnNum) + symbolListSorted=[] + symbolList=[] + # get key(list) of symbolCorrDict(dict) based on sorting symbolCorrDict(dict) by its' value in desc order + symbolListSorted=sorted(symbolCorrDict, key=symbolCorrDict.get, reverse=True) + symbolList = self.mappedByTargetList(primaryList=symbolList0,targetList=symbolListSorted) + + if returnNum==None: + returnNum =len(symbolList0) + IntroReturnNum ="All %d "%returnNum + else: + IntroReturnNum ="The Top %d" %returnNum + + symbolList = symbolList[:returnNum] + + pageTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="100%", border=0, align="Left") + + ############## + # Excel file # + ############## + filename= webqtlUtil.genRandStr("Corr_") + xlsUrl = HT.Input(type='button', value = 'Download Table', onClick= "location.href='/tmp/%s.xls'" % filename, Class='button') + # Create a new Excel workbook + workbook = xl.Writer('%s.xls' % (webqtlConfig.TMPDIR+filename)) + headingStyle = workbook.add_format(align = 'center', bold = 1, border = 1, size=13, fg_color = 0x1E, color="white") + #There are 6 lines of header in this file. + worksheet = self.createExcelFileWithTitleAndFooter(workbook=workbook, datasetName=datasetFullName, returnNumber=returnNum) + newrow = 6 + pageTable.append(HT.TR(HT.TD(xlsUrl,height=40))) + + # get header part of result table and export excel file + tblobj = {} + tblobj['header'], worksheet = self.getTableHeader( method=method, worksheet=worksheet, newrow=newrow, headingStyle=headingStyle) + newrow += 1 + + # get body part of result table and export excel file + tblobj['body'], worksheet = self.getTableBody(symbolCorrDict=symbolCorrDict, symbolPvalueDict=symbolPvalueDict,symbolList=symbolList,geneIdDict=geneIdDict,ChrDict=ChrDict,MbDict=MbDict,descDict=descDict,pTargetDescDict=pTargetDescDict,primarySymbol=primaryGeneSymbol,TissueCount=TissueCount, formName=formName, worksheet=worksheet, newrow=newrow,method=method) + workbook.close() + # creat object for result table for sort function + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + + sortby = ("tissuecorr", "down") + div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), Id="sortable") + + if method =="0": + IntroMethod="Pearson\'s r " + else: + IntroMethod="Spearman\'s rho " + Intro = HT.Blockquote('%s correlations ranked by the %s are displayed.' % (IntroReturnNum,IntroMethod), + ' You can resort this list using the small arrowheads in the top row.') + Intro.append(HT.BR(),' Click the correlation values to generate scatter plots. Select the symbol to open NCBI Entrez.') + + pageTable.append(HT.TR(HT.TD(div))) + form.append(HT.P(), HT.P(),pageTable) + corrHeading = HT.Paragraph('Tissue Correlation Table', Class="title") + TD_LR = HT.TD(height=200,width="100%",bgcolor='#eeeeee',align="left") + TD_LR.append(corrHeading,note,Intro, form, HT.P()) + + self.dict['body'] = str(TD_LR) + self.dict['js1'] = '
      ' + self.dict['title'] = 'Tissue Correlation Result' + + return + + # result page when input symbols are more than 1 + def displayMultiSymbolsResultPage(self, geneSymbolLst=None, symbolCount=None, tProbeSetFreezeId=None,TissueCorrMatrixObject=None,note=None,TissueCount =None): + + formName = webqtlUtil.genRandStr("fm_") + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data',name= formName, submit=HT.Input(type='hidden')) + # the following hidden elements are required parameter in Class(PlotCorrelationPage). So we need to define them here. + form.append(HT.Input(type="hidden", name="action", value="disp")) + form.append(HT.Input(type="hidden", name="FormID", value="dispMultiTissueCorrelation")) + form.append(HT.Input(type="hidden", name="X_geneSymbol", value="")) + form.append(HT.Input(type="hidden", name="Y_geneSymbol", value="")) + form.append(HT.Input(type="hidden", name="ProbeSetID", value="")) + # RISet is not using in Tissue correlation, but is a required parameter in Class(PlotCorrelationPage). So we set dummy value(BXD). + form.append(HT.Input(type="hidden", name="RISet", value="BXD")) + form.append(HT.Input(type="hidden", name="ShowLine", value="1")) + form.append(HT.Input(type="hidden", name="TissueProbeSetFreezeId", value=tProbeSetFreezeId)) + form.append(HT.Input(type="hidden", name="rankOrder", value=0)) + + # updated by NL, 2011-01-06, build multi list for later use to descrease access to db again + symbolList,geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict = TissueCorrMatrixObject.getTissueProbeSetXRefInfo(GeneNameLst=geneSymbolLst) + # In case, upper case and lower case issue of symbol, mappedByTargetList function will update input geneSymbolLst based on database search result + geneSymbolLst =self.mappedByTargetList(primaryList=symbolList,targetList=geneSymbolLst) + + # Added by NL, 2011-01-06, get all shortNames, verboseNames, verboseNames2, verboseNames3, exportArray + # for Short Label, Long Label, Export functions + geneIdLst,shortNames, verboseNames, verboseNames2, verboseNames3, exportArray = self.getAllLabelsInfo(geneSymbolList =geneSymbolLst, geneIdDict=geneIdDict,ChrDict=ChrDict, MbDict=MbDict, descDict=descDict, pTargetDescDict=pTargetDescDict) + + heading = "Tissue Correlation Matrix" + + #get correlation value and p value based on Gene Symbols list, and return the values in corrArray and pvArray seperately + corrArray,pvArray = TissueCorrMatrixObject.getTissueCorrPvArray(geneNameLst=geneSymbolLst,dataIdDict=dataIdDict) + + # in the matrix table, top right corner displays Spearman Rank Correlation's Values and P-Values for each pair of geneSymbols; + # left bottom displays Pearson Correlation values and P-Vlues for each pair of geneSymbols. + tissueCorrMatrixHeading = HT.Paragraph(heading,Class="title") + tcmTable = HT.TableLite(Class="collap", border=0, cellspacing=1, cellpadding=5, width='100%') + row1 = HT.TR(HT.TD(Class="fs14 fwb ffl b1 cw cbrb"),HT.TD('Spearman Rank Correlation (rho)' , Class="fs14 fwb ffl b1 cw cbrb", colspan= symbolCount+2,align="center")) + col1 = HT.TR(HT.TD("P e a r s o n     r", rowspan= symbolCount+1,Class="fs14 fwb ffl b1 cw cbrb", width=10,align="center"),HT.TD("Gene Symbol",Class="fs13 fwb cb b1", width=300)) + for i in range(symbolCount): + GeneSymbol=geneSymbolLst[i].strip() + geneId = geneIdLst[i] + + if geneId!=0: + _url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" % geneId + curURL = HT.Href(text=GeneSymbol,url=_url,Class='fs13',target="_blank") + else: + curURL = GeneSymbol + col1.append(HT.TD(curURL,Class="b1", align="center")) + + tcmTable.append(row1,col1) + # to decide to whether to show note for "*" or not + flag = 0 + for i in range(symbolCount): + GeneSymbol=geneSymbolLst[i].strip() + geneId = geneIdLst[i] + + newrow = HT.TR() + newrow.append(HT.Input(name="Symbol", value=GeneSymbol, type='hidden')) + + if geneId!=0: + _url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" %geneId + geneIdURL = HT.Href(text="%s "%GeneSymbol,url=_url,Class="b1",target="_blank") + else: + # flag =1 will show note for "*" + flag = 1 + geneIdURL =HT.Italic("%s"%GeneSymbol,HT.Font('*', color='red')) + newrow.append(HT.TD(geneIdURL,shortNames[i],verboseNames[i],verboseNames2[i],verboseNames3[i], Class="b1", align="left",NOWRAP="ON")) + + for j in range(symbolCount): + GeneSymbol2=geneSymbolLst[j].strip() + corr = corrArray[i][j] + pValue = pvArray[i][j] + Color='' + + if j==i: + newrow.append(HT.TD(HT.Font(HT.Italic("n"),HT.BR(),str(TissueCount),Class="fs11 fwn b1",align="center", color="000000"), bgColor='#cccccc', align="center", Class="b1", NOWRAP="ON")) + exportArray[i+1][j+1] = '%d/%d' % (TissueCount,TissueCount) + else: + if corr: + corr = float(corr) + tCorr = "%2.3f" % corr + pValue = float(pValue) + tPV = "%2.3f" % pValue + + # updated by NL, based on Rob's requirement: delete p value, 2010-02-14 + # set color for cells by correlationValue + if corr > 0.7: + fontcolor="red" + elif corr > 0.5: + fontcolor="#FF6600" + elif corr < -0.7: + fontcolor="blue" + elif corr < -0.5: + fontcolor="#009900" + else: + fontcolor ="#000000" + + # set label for cells + # if rank is equal to 0, pearson correlation plot will be the first one; + # if rank is equal to 1, spearman ran correlation plot will be the first one. + if j>i: + exportArray[i+1][j+1] =tCorr+"/"+tPV + rank =1 + elif j + var allCorrelations = %s; + + """ + exportScript = exportScript % str(exportArray) + self.dict['js1'] = exportScript+'
      ' + + TD_LR = HT.TD(colspan=2,width="100%",bgcolor="#eeeeee") + TD_LR.append(tissueCorrMatrixHeading,note,Intro,form,HT.P()) + self.dict['body'] = str(TD_LR) + self.dict['title'] = 'Tissue Correlation Result' + return + + # Added by NL, 2011-01-06, get all shortNames, verboseNames, verboseNames2, verboseNames3, exportArray + # for Short Label, Long Label, Export functions + def getAllLabelsInfo(self, geneSymbolList=None,geneIdDict=None,ChrDict=None,MbDict=None,descDict=None,pTargetDescDict=None): + + symbolCount= len(geneSymbolList) + geneIdLst =[] + exportArray = [([0] * (symbolCount+1))[:] for i in range(symbolCount+1)] + exportArray[0][0] = 'Tissue Correlation' + shortNames = [] + verboseNames = [] + verboseNames2 = [] + verboseNames3 = [] + + # added by NL, 2010-12-21, build DIV and array for short label, long label and export functions + for i, geneSymbolItem in enumerate(geneSymbolList): + geneSymbol =geneSymbolItem.lower() + _shortName =HT.Italic("%s" %geneSymbolItem) + _verboseName ='' + _verboseName2 = '' + _verboseName3 = '' + if geneIdDict.has_key(geneSymbol): + geneIdLst.append(geneIdDict[geneSymbol]) + else: + geneIdLst.append(0) + if ChrDict.has_key(geneSymbol) and MbDict.has_key(geneSymbol): + _verboseName = ' on Chr %s @ %s Mb' % (ChrDict[geneSymbol],MbDict[geneSymbol]) + if descDict.has_key(geneSymbol): + _verboseName2 = '%s' % (descDict[geneSymbol]) + if pTargetDescDict.has_key(geneSymbol): + _verboseName3 = '%s' % (pTargetDescDict[geneSymbol]) + + shortName = HT.Div(id="shortName_" + str(i), style="display:none") + shortName.append('Symbol: ') + shortName.append(_shortName) + shortNames.append(shortName) + + verboseName = HT.Div(id="verboseName_" + str(i), style="display:none") + verboseName.append(_shortName) + verboseName.append(_verboseName) + verboseNames.append(verboseName) + verboseName2 = HT.Div(id="verboseName2_" + str(i), style="display:none") + verboseName2.append(_verboseName2) + verboseNames2.append(verboseName2) + verboseName3 = HT.Div(id="verboseName3_" + str(i), style="display:none") + verboseName3.append(_verboseName3) + verboseNames3.append(verboseName3) + + # exportTissueText in webqtl.js is using '/' as delimilator; add '/', otherwise the last letter in geneSymbol will missing + exportArray[i+1][0] =geneSymbolItem+ '/' + geneSymbolItem + '/' +geneSymbolItem + ':' + str(_verboseName) + ' : ' + str(_verboseName2) + ' : ' + str(_verboseName3) + exportArray[0][i+1] =geneSymbolItem+ '/' + + return geneIdLst,shortNames, verboseNames, verboseNames2, verboseNames3, exportArray + + +######################################################################## +# functions for display and download when input symbol has only one # +######################################################################## + + # build header and footer parts for export excel file + def createExcelFileWithTitleAndFooter(self, workbook=None, datasetName=None,returnNumber=None): + + worksheet = workbook.add_worksheet() + titleStyle = workbook.add_format(align = 'left', bold = 0, size=14, border = 1, border_color="gray") + + ##Write title Info + worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle) + worksheet.write([2, 0], "Dataset : %s" % datasetName, titleStyle) + worksheet.write([3, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime()), titleStyle) + worksheet.write([4, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime()), titleStyle) + worksheet.write([5, 0], "Status of data ownership: Possibly unpublished data; please see %s/statusandContact.html for details on sources, ownership, and usage of these data." % webqtlConfig.PORTADDR, titleStyle) + #Write footer info + worksheet.write([8 + returnNumber, 0], "Funding for The GeneNetwork: NIAAA (U01AA13499, U24AA13513), NIDA, NIMH, and NIAAA (P20-DA21131), NCI MMHCC (U01CA105417), and NCRR (U01NR 105417)", titleStyle) + worksheet.write([9 + returnNumber, 0], "PLEASE RETAIN DATA SOURCE INFORMATION WHENEVER POSSIBLE", titleStyle) + + return worksheet + + # build header of table when input symbol has only one + def getTableHeader(self, method='0', worksheet=None, newrow=None, headingStyle=None): + + tblobj_header = [] + exportList=[] + header=[] + header = [THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0), + THCell(HT.TD('Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="symbol", idx=1), + THCell(HT.TD('Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="desc", idx=2), + THCell(HT.TD('Location',HT.BR(),'Chr and Mb ', Class="fs13 fwb ffl b1 cw cbrb"), text="location", idx=3), + THCell(HT.TD('N Cases',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), text="nstr", idx=4)] + if method =="0":# Pearson Correlation + header.append( THCell(HT.TD(HT.Href( + text = HT.Span(' r ', HT.Sup(' ?', style="color:#f00"),HT.BR(),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#tissue_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuecorr", idx=5)) + header.append( THCell(HT.TD(HT.Href( + text = HT.Span(' p(r) ', HT.Sup(' ?', style="color:#f00"),HT.BR(),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#tissue_p_r"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuepvalue", idx=6)) + + exportList =[ 'Gene ID', 'Symbol', 'Description', 'Location', 'N Cases', ' r ', ' p(r) '] + + else:# Spearman Correlation + header.append( THCell(HT.TD(HT.Href( + text = HT.Span(' rho ', HT.Sup(' ?', style="color:#f00"),HT.BR(),HT.BR(), Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#tissue_rho"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuecorr", idx=5)) + header.append( THCell(HT.TD(HT.Href( + text = HT.Span('p(rho)', HT.Sup(' ?', style="color:#f00"),HT.BR(), HT.BR(),Class="fs13 fwb ffl cw"), + target = '_blank', + url = "/correlationAnnotation.html#tissue_p_rho"), + Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="tissuepvalue", idx=6)) + exportList = ['Gene ID', 'Symbol', 'Description', 'Location', 'N Cases','rho', ' p(rho) '] + + # build header of excel for download function + for ncol, item in enumerate(exportList): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + + tblobj_header.append(header) + + return tblobj_header, worksheet + + # build body of table when input symbol has only one + def getTableBody(self, symbolCorrDict={}, symbolPvalueDict={},symbolList=[],geneIdDict={},ChrDict={},MbDict={},descDict={},pTargetDescDict={},primarySymbol=None, TissueCount=None,formName=None, worksheet=None, newrow=None,method="0"): + + tblobj_body = [] + + for symbolItem in symbolList: + symbol =symbolItem.lower() + if symbol: + pass + else: + symbol ="N/A" + + if geneIdDict.has_key(symbol) and geneIdDict[symbol]: + geneId = geneIdDict[symbol] + ncbiUrl = HT.Href(text="NCBI",target='_blank',url=webqtlConfig.NCBI_LOCUSID % geneIdDict[symbol], Class="fs10 fwn") + else: + geneId ="N/A" + symbolItem =symbolItem.replace('"','') # some symbol is saved in ["symbol"]format + ncbiUrl = HT.Href(text="NCBI",target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene&term=%s" % symbol, Class="fs10 fwn") + + _Species="mouse" + similarTraitUrl = "%s?cmd=sch&gene=%s&alias=1&species=%s" % (os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), symbolItem, _Species) + gnUrl = HT.Href(text="GN",target='_blank',url=similarTraitUrl, Class="fs10 fwn") + + tr = [] + # updated by NL, 04/25/2011: add checkbox and highlight function + # first column of table + # updated by NL. 12-7-2011 + tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="tissueResult",value=symbol, onClick="highlight(this)"), align='right',Class="fs12 fwn b1 c222 fsI",nowrap='ON'),symbol,symbol)) + # updated by NL, 04/26/2011: add GN and NCBI links + #gene symbol (symbol column) + tr.append(TDCell(HT.TD(HT.Italic(symbolItem), HT.BR(),gnUrl,"  |  ", ncbiUrl, Class="fs12 fwn b1 c222"),symbolItem, symbolItem)) + + #description and probe target description(description column) + description_string='' + if descDict.has_key(symbol): + description_string = str(descDict[symbol]).strip() + if pTargetDescDict.has_key(symbol): + target_string = str(pTargetDescDict[symbol]).strip() + + description_display = '' + if len(description_string) > 1 and description_string != 'None': + description_display = description_string + else: + description_display = symbolItem + + if len(description_display) > 1 and description_display != 'N/A' and len(target_string) > 1 and target_string != 'None': + description_display = description_display + '; ' + target_string.strip() + + tr.append(TDCell(HT.TD(description_display, Class="fs12 fwn b1 c222"), description_display, description_display)) + + #trait_location_value is used for sorting (location column) + trait_location_repr = 'N/A' + trait_location_value = 1000000 + + if ChrDict.has_key(symbol) and MbDict.has_key(symbol): + + if ChrDict[symbol] and MbDict[symbol]: + mb = float(MbDict[symbol]) + try: + trait_location_value = int(ChrDict[symbol])*1000 + mb + except: + if ChrDict[symbol].upper() == 'X': + trait_location_value = 20*1000 + mb + else: + trait_location_value = ord(str(ChrDict[symbol]).upper()[0])*1000 + mb + + trait_location_repr = 'Chr%s: %.6f' % (ChrDict[symbol], mb ) + else: + trait_location_repr="N/A" + trait_location_value ="N/A" + + tr.append(TDCell(HT.TD(trait_location_repr, Class="fs12 fwn b1 c222", nowrap="on"), trait_location_repr, trait_location_value)) + + # number of overlaped cases (N Case column) + tr.append(TDCell(HT.TD(TissueCount, Class="fs12 fwn ffl b1 c222", align='right'),TissueCount,TissueCount)) + + #tissue correlation (Tissue r column) + TCorr = 0.0 + TCorrStr = "N/A" + if symbolCorrDict.has_key(symbol): + TCorr = symbolCorrDict[symbol] + TCorrStr = "%2.3f" % TCorr + symbol2 =symbolItem.replace('"','') # some symbol is saved in "symbol" format + # add a new parameter rankOrder for js function 'showTissueCorrPlot' + rankOrder = int(method) + TCorrPlotURL = "javascript:showTissueCorrPlot('%s','%s','%s',%d)" %(formName, primarySymbol, symbol2,rankOrder) + tr.append(TDCell(HT.TD(HT.Href(text=TCorrStr, url=TCorrPlotURL, Class="fs12 fwn ff1"), Class="fs12 fwn ff1 b1 c222", align='right'), TCorrStr, abs(TCorr))) + else: + tr.append(TDCell(HT.TD(TCorrStr, Class="fs12 fwn b1 c222", align='right'), TCorrStr, abs(TCorr))) + + #p value of tissue correlation (Tissue p(r) column) + TPValue = 1.0 + TPValueStr = "N/A" + if symbolPvalueDict.has_key(symbol): + TPValue = symbolPvalueDict[symbol] + #TPValueStr = "%2.3f" % TPValue + TPValueStr=webqtlUtil.SciFloat(TPValue) + tr.append(TDCell(HT.TD(TPValueStr, Class="fs12 fwn b1 c222", align='right'), TPValueStr, TPValue)) + + tblobj_body.append(tr) + # build body(records) of excel for download function + for ncol, item in enumerate([geneId, symbolItem, description_display, trait_location_repr,TissueCount, TCorr, TPValue]): + worksheet.write([newrow, ncol], item) + + newrow += 1 + + return tblobj_body, worksheet + + + # get return number of records when input symbol has only one + def getReturnNum(self,recordReturnNum="0"): + if recordReturnNum=="0": + returnNum=100 + elif recordReturnNum=="1": + returnNum=200 + elif recordReturnNum=="2": + returnNum=500 + elif recordReturnNum=="3": + returnNum=1000 + elif recordReturnNum=="4": + returnNum=2000 + elif recordReturnNum=="5": + returnNum= None + + return returnNum + + # map list based on the order of target List + # if item.lower() exist in both lists, then compare the difference of item's original value of two lists + # if not equal, then replace the item in targetList by using the item in primaryList(list from database) + + def mappedByTargetList(self,primaryList=[],targetList=[]): + + tempPrimaryList =[x.lower() for x in primaryList] + testTargetList =[y.lower() for y in targetList] + + for i, item in enumerate(tempPrimaryList): + if item in testTargetList: + index = testTargetList.index(item) + if primaryList[i]!=targetList[index]: + targetList[index]= primaryList[i] + + return targetList diff --git a/web/webqtl/correlationMatrix/__init__.py b/web/webqtl/correlationMatrix/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/correlationMatrix/tissueCorrelationMatrix.py b/web/webqtl/correlationMatrix/tissueCorrelationMatrix.py new file mode 100755 index 00000000..23dc14eb --- /dev/null +++ b/web/webqtl/correlationMatrix/tissueCorrelationMatrix.py @@ -0,0 +1,132 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/11/10 +# +# Last updated by Ning Liu, 2011/01/26 + + +#tissueCorrelationMatrix: funciton part for TissueCorrelationPage.py +from htmlgen import HTMLgen2 as HT +from correlation import correlationFunction +from dbFunction import webqtlDatabaseFunction +import sys + +######################################### +# Tissue Correlation Page +######################################### + +class tissueCorrelationMatrix: + def __init__(self,tissueProbeSetFreezeId=None): + + #initialize parameters + self.tProbeSetFreezeId = tissueProbeSetFreezeId + self.cursor = webqtlDatabaseFunction.getCursor() + + + + #retreive dataSet info from database table TissueProbeSetFreeze to get all TissueProbeSetFreezeId(List), Name(List) and FullName(List) + def getTissueDataSet(self): + tissProbeSetFreezeIds,Names,fullNames = webqtlDatabaseFunction.getTissueDataSet(cursor=self.cursor) + return tissProbeSetFreezeIds,Names,fullNames + + + #retrieve DatasetName, DatasetFullName based on TissueProbeSetFreezeId, return DatasetName(string), DatasetFullName(string) + def getFullnameofCurrentDataset(self): + + DatasetName, DatasetFullName =webqtlDatabaseFunction.getDatasetNamesByTissueProbeSetFreezeId(cursor=self.cursor, TissueProbeSetFreezeId=self.tProbeSetFreezeId) + return DatasetName, DatasetFullName + + + #retrieve how many tissue used in the specific dataset based on TissueProbeSetFreezeId, return TissueCount(int) + def getTissueCountofCurrentDataset(self): + + TissueCount =webqtlDatabaseFunction.getTissueCountByTissueProbeSetFreezeId(cursor=self.cursor,TissueProbeSetFreezeId=self.tProbeSetFreezeId) + return TissueCount + + + + #retrieve corrArray(array), pvArray(array) for display by calling calculation function:calZeroOrderCorrForTiss + def getTissueCorrPvArray(self,geneNameLst=None,dataIdDict=None): + #retrieve SymbolValuePairDict(Dict), dictionary of Symbol and Value Pair.key is symbol, value is one list of expression values of one probeSet + symbolValuepairDict =correlationFunction.getGeneSymbolTissueValueDict(cursor=self.cursor,symbolList=geneNameLst,dataIdDict=dataIdDict) + corrArray,pvArray = correlationFunction.getCorrPvArray(cursor=self.cursor,priGeneSymbolList=geneNameLst,symbolValuepairDict=symbolValuepairDict) + return corrArray,pvArray + + + + #retrieve symbolList,geneIdList,dataIdList,ChrList,MbList,descList,pTargetDescList (all are list type) to + #get multi lists for short and long label functions, and for getSymbolValuePairDict and + #getGeneSymbolTissueValueDict to build dict to get CorrPvArray + def getTissueProbeSetXRefInfo(self,GeneNameLst=[]): + symbolList,geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict =correlationFunction.getTissueProbeSetXRefInfo(cursor=self.cursor,GeneNameLst=GeneNameLst,TissueProbeSetFreezeId=self.tProbeSetFreezeId) + return symbolList,geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict + + + + #retrieve corrArray(array), pvArray(array) for gene symbol pair + def getCorrPvArrayForGeneSymbolPair(self,geneNameLst=None): + corrArray = None + pvArray = None + + if len(geneNameLst) == 2: + #retrieve SymbolValuePairDict(Dict), dictionary of Symbol and Value Pair.key is symbol, value is one list of expression values of one probeSet + symbolList,geneIdDict,dataIdDict,ChrDict,MbDict,descDict,pTargetDescDict =correlationFunction.getTissueProbeSetXRefInfo(cursor=self.cursor,GeneNameLst=geneNameLst,TissueProbeSetFreezeId=self.tProbeSetFreezeId) + symbolValuepairDict =correlationFunction.getGeneSymbolTissueValueDict(cursor=self.cursor,symbolList=geneNameLst,dataIdDict=dataIdDict) + corrArray,pvArray = correlationFunction.getCorrPvArray(cursor=self.cursor,priGeneSymbolList=geneNameLst,symbolValuepairDict=symbolValuepairDict) + + return corrArray,pvArray + + + #retrieve symbolCorrDict(dict), symbolPvalueDict(dict) to get all tissues' correlation value and P value; key is symbol + def calculateCorrOfAllTissueTrait(self, primaryTraitSymbol=None, method='0'): + symbolCorrDict, symbolPvalueDict = correlationFunction.calculateCorrOfAllTissueTrait(cursor=self.cursor, primaryTraitSymbol=primaryTraitSymbol, TissueProbeSetFreezeId=self.tProbeSetFreezeId,method=method) + + return symbolCorrDict, symbolPvalueDict + + #Translate GeneId to gene symbol and keep the original order. + def getGeneSymbolLst(self, geneSymbols=None): + geneSymbolLst=[] + geneIdLst=[] + #split the input string at every occurrence of the delimiter '\r', and return the substrings in an array. + tokens=geneSymbols.strip().split('\r') + + #Ning: To keep the original order of input symbols and GeneIds + for i in tokens: + i=i.strip() + if (len(i) >0) and (i not in geneSymbolLst): + geneSymbolLst.append(i) + # if input includes geneId(s), then put it/them into geneIdLst + if i.isdigit(): + geneIdLst.append(i) + + #Ning: Replace GeneId with symbol if applicable + if len(geneIdLst)>0: + # if input includes geneId(s), replace geneId by geneSymbol; + geneIdSymbolPair =webqtlDatabaseFunction.getGeneIdSymbolPairByGeneId(cursor=self.cursor, geneIdLst =geneIdLst) + for geneId in geneIdLst: + if geneIdSymbolPair[geneId]: + index = geneSymbolLst.index(geneId) + geneSymbolLst[index] =geneIdSymbolPair[geneId] + + return geneSymbolLst + + + diff --git a/web/webqtl/dataSharing/SharingBody.py b/web/webqtl/dataSharing/SharingBody.py new file mode 100755 index 00000000..4445e0d1 --- /dev/null +++ b/web/webqtl/dataSharing/SharingBody.py @@ -0,0 +1,290 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +sharing_body_string = """ +
      + +

      Data Set Download

      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      + Species: + + + +
      + Group: + + + +
      + Type: + + + +
      + Database: + + + +
      +     +
      + + +
      + +

      GeneNetwork Accession Number

      +
      + + + + + + + + + + + + +
      GN:  E.g. 112
      +     +
      +
      + +
      +List of DataSets
      +

      %s +modify this page +%s +

      + + + + + +
      + + + + + + + + + + + +
      GN Accession: GN%s
      GEO Series: %s
      Title: %s
      Organism: %s
      Group: %s
      Tissue: %s
      Dataset Status: %s
      Platforms: %s
      Normalization: %s
      + See Contact Information
      +
      +
      + + + + + + + +
      Download datasets and supplementary data files
      %s
      +
      +
      +

      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      Summary:
      %s

      About the cases used to generate this set of data:
      %s

      About the tissue used to generate this set of data:
      %s

      About downloading this data set:
      %s

      About the array platform:
      %s

      About data values and data processing:
      %s

      Data source acknowledgment:
      %s

      Experiment Type:
      %s

      Overall Design:
      %s

      Contributor:
      %s

      Citation:
      %s

      Submission Date:
      %s

      Laboratory:
      %s

      Samples:
      %s

      +

      +
      +

      %s

      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

      Principal Investigator

      Contact Name:
      Emails:
      Phone:
      URL:
      Organization Name:
      Department:
      Laboratory:
      Address:
      City:
      State:
      ZIP:
      Country:

      Summary

      Summary:

      Biology

      Experiment Design:
      About the cases used to
      generate this set of data:
      About the tissue used to
      generate this set of data:

      Technique

      About downloading this data set:
      About the array platform:

      Bioinformatics

      About data values and
      data processing:
      Overall Design:

      Misc

      Contributor:
      Citation:
      Data source acknowledgment:

      Administrator ONLY

      GN Accesion Id:
      DB Title in GN:
      GEO Series:
      Status:
      Title:
      Organism_Id (Taxonomy ID):
      Organism:
      Submission Date:
      Platforms:
      Species:
      Tissue:
      Normalization:
      Inbred Set:
      Info Page Name:
      Samples:
      Authorized Users:
      Progress:
      +
      + + + %s + + + + + + + +
      + + + + +











      +
      Header Footer Test
      +











      +
      +
      + + + %s +
      + +
      + + + + + + + + + + +""" %(tempH, tempF) + self.debug = tempHtml + elif path: + #edit result + fileName = self.htmlPath + path + + fp1 = open(fileName, 'w') + fp1.write(newHtmlCode) + fp1.close() + + fp1 = open(fileName, 'r') + lines = fp1.readlines() + fp1.close + + if 'h'==hf: + fp2 = open(self.htmlPath + '/javascript/header.js', 'w') + else: + fp2 = open(self.htmlPath + '/javascript/footer.js', 'w') + fp2.write("ctext = ''\r\n") + fp2.flush() + for line in lines: + fp2.write("ctext += '%s'\r\n" %(line.rstrip())) + fp2.flush() + fp2.write('document.write(ctext)') + fp2.flush() + fp2.close() + + TD_LR = HT.TD(valign="top",colspan=2,bgcolor="#eeeeee", height=200) + mainTitle = HT.Paragraph("Edit HTML", Class="title") + url = HT.Href(text = "page", url =path, Class = "normal") + intro = HT.Blockquote("This ",url, " has been succesfully modified. ") + TD_LR.append(mainTitle, intro) + self.dict['body'] = TD_LR + elif fd.refURL: + #retrieve file to be edited + #refURL = os.environ['HTTP_REFERER'] + addressing_scheme, network_location, path, parameters, query, fragment_identifier = urlparse.urlparse(fd.refURL) + if 'h'==hf: + path = "/header.html" + else: + path = "/footer.html" + fileName = self.htmlPath + path + fp = open(fileName,'r') + htmlCode = fp.read() + htmlCode = string.replace(htmlCode, "&","&") + fp.close() + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='editHtml',submit=HT.Input(type='hidden')) + inputBox = HT.Textarea(name='htmlSrc', cols="100", rows=30,text=htmlCode) + hddn = {'FormID':'editHeaderFooter', 'path':path, 'preview':'', 'hf':hf} + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + previewButton = HT.Input(type='button',name='previewhtml', value='Preview',Class="button", onClick= "editHTML(this.form, 'preview');") + submitButton = HT.Input(type='button',name='submitchange', value='Submit Change',Class="button", onClick= "editHTML(this.form, 'submit');") + resetButton = HT.Input(type='reset',Class="button") + form.append(HT.Center(inputBox, HT.P(), previewButton, submitButton, resetButton)) + TD_LR = HT.TD(valign="top",colspan=2,bgcolor="#eeeeee") + mainTitle = HT.Paragraph("Edit HTML", Class="title") + intro = HT.Blockquote("You may edit the HTML source code in the editbox below, or you can copy the content of the editbox to your favorite HTML editor. ") + imgUpload = HT.Href(url="javascript:openNewWin('/upload.html', 'menubar=0,toolbar=0,location=0,resizable=0,status=1,scrollbars=1,height=400, width=600');", text="here", Class="normalsize") + intro2 = HT.Blockquote("Click ", imgUpload, " to upload Images. ") + TD_LR.append(mainTitle, intro, intro2, HT.Center(form)) + self.dict['body'] = TD_LR + else: + heading = "Editing HTML" + detail = ["Error occured while trying to edit the html file."] + self.error(heading=heading,detail=detail,error="Error") + return diff --git a/web/webqtl/management/exportPhenotypeDatasetPage.py b/web/webqtl/management/exportPhenotypeDatasetPage.py new file mode 100755 index 00000000..bbd86385 --- /dev/null +++ b/web/webqtl/management/exportPhenotypeDatasetPage.py @@ -0,0 +1,228 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os +import string +import pyXLWriter as xl +import time + +import reaper +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from utility import webqtlUtil +from base import webqtlConfig +from base.webqtlTrait import webqtlTrait + + + +#XZ, 11/06/2009: Xiaodong created this class +class exportPhenotypeDatasetPage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + ifVerified = fd.formdata.getvalue('ifVerified') + status = fd.formdata.getvalue('status') + + if ifVerified != 'GN@UTHSC': + heading = "Error page" + detail = ["You are NoT verified as administrator."] + self.error(heading=heading,detail=detail) + return + else: + if status == 'input': + self.dict['body'] = self.genInputPage() + self.dict['title'] = 'Export Phenotype Dataset Input Page' + if status == 'output': + PublishFreeze_Name = fd.formdata.getvalue('PublishFreeze_Name') + self.dict['body'] = self.exportDatasetPage( fd, PublishFreeze_Name ) + self.dict['title'] = 'Export Phenotype Dataset Page' + + + def genInputPage(self): + + crossMenu = HT.Select(name='PublishFreeze_Name', onChange='xchange()') + + self.cursor.execute('select PublishFreeze.Name from PublishFreeze, InbredSet where InbredSetId=InbredSet.Id') + result = self.cursor.fetchall() + + for one_row in result: + Name = one_row + crossMenu.append(tuple([Name,Name])) + + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') + + exportPhenotypeDatasetForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='exportPhenotypeDatasetForm', submit=HT.Input(type='hidden')) + exportPhenotypeDatasetForm.append( + HT.Blockquote( + HT.Font('Publish Freeze Name '), + crossMenu, + HT.Input(type='Submit', value='Submit', Class="button")), + HT.Input(type='hidden',name='FormID',value='exportPhenotypeDataset'), + HT.Input(type='hidden',name='status',value='output'), + HT.Input(type='hidden',name='ifVerified',value='GN@UTHSC') + ) + + TD_LR.append( exportPhenotypeDatasetForm ) + + return str(TD_LR) + + + def exportDatasetPage(self, fd, PublishFreeze_Name): + + #return PublishFreeze_Name + + if not self.openMysql(): + return + + self.cursor.execute( "select InbredSet.Name from PublishFreeze, InbredSet where PublishFreeze.InbredSetId=InbredSet.Id and PublishFreeze.Name='%s'" % PublishFreeze_Name ) + self.RISet = self.cursor.fetchone()[0] + + fd.RISet = self.RISet + fd.incparentsf1 = 1 + fd.readGenotype() + strainlist = fd.f1list + fd.strainlist + + #return str(strainlist) + + self.cursor.execute("Select Species.Name from Species, InbredSet where InbredSet.SpeciesId = Species.Id and InbredSet.Name = '%s'" % fd.RISet) + self.Species = self.cursor.fetchone()[0] + + #return Species + + self.searchResult = [] + + self.cursor.execute("Select PublishXRef.Id from PublishXRef, InbredSet where PublishXRef.InbredSetId = InbredSet.Id and InbredSet.Name = '%s'" % self.RISet) + result = self.cursor.fetchall() + + for one_result in result: + self.searchResult.append( "%s::%s" % (PublishFreeze_Name, one_result[0]) ) + + #return self.searchResult + + + fields = ["ID", "Species", "Cross", "Database", "ProbeSetID / RecordID", "Symbol", "Description", "ProbeTarget", "PubMed_ID", "Phenotype", "Chr", "Mb", "Alias", "Gene_ID", "UniGene_ID", "Strand_Probe ", "Strand_Gene ", +"Probe_set_specificity", "Probe_set_BLAT_score", "Probe_set_BLAT_Mb_start", "Probe_set_BLAT_Mb_end ", "QTL_Chr", "Locus_at_Peak", "Max_LRS", "P_value_of_MAX", "Mean_Expression"] + strainlist + + + if self.searchResult: + traitList = [] + for item in self.searchResult: + thisTrait = webqtlTrait(fullname=item, cursor=self.cursor) + thisTrait.retrieveInfo(QTL=1) + thisTrait.retrieveData(strainlist=strainlist) + traitList.append(thisTrait) + + text = [fields] + for i, thisTrait in enumerate(traitList): + if thisTrait.db.type == 'ProbeSet': + if not thisTrait.cellid: #ProbeSet + text.append([str(i+1), self.Species, self.RISet, thisTrait.db.fullname, thisTrait.name, thisTrait.symbol, thisTrait.description, thisTrait.probe_target_description,"", "", thisTrait.chr, thisTrait.mb, thisTrait.alias, thisTrait.geneid, thisTrait.unigeneid, thisTrait.strand_probe, thisTrait.strand_gene, thisTrait.probe_set_specificity, thisTrait.probe_set_blat_score, thisTrait.probe_set_blat_mb_start, thisTrait.probe_set_blat_mb_end, locusChr[thisTrait.locus], thisTrait.locus, thisTrait.lrs, thisTrait.pvalue]) + else: #Probe + text.append([str(i+1), self.Species, self.RISet, thisTrait.db.fullname, thisTrait.name + " : " + thisTrait.cellid, thisTrait.symbol, thisTrait.description, thisTrait.probe_target_description,"", "", thisTrait.chr, thisTrait.mb, thisTrait.alias, thisTrait.geneid, thisTrait.unigeneid, "", "", "", "", "", "", "", "", "", ""]) + elif thisTrait.db.type == 'Publish': + if thisTrait.pre_publication_description: + if thisTrait.pubmed_id: + text.append([str(i+1), self.Species, self.RISet, thisTrait.db.fullname, thisTrait.name, "", "", "", thisTrait.pubmed_id, thisTrait.post_publication_description, "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""]) + else: + text.append([str(i+1), self.Species, self.RISet, thisTrait.db.fullname, thisTrait.name, "", "", "", "", thisTrait.pre_publication_description, "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""]) + else: + text.append([str(i+1), self.Species, self.RISet, thisTrait.db.fullname, thisTrait.name, "", "", "", thisTrait.pubmed_id, thisTrait.post_publication_description, "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""]) + + elif thisTrait.db.type == 'Temp': + text.append([str(i+1), self.Species, self.RISet, thisTrait.db.fullname, thisTrait.name, "", thisTrait.description, "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""]) + elif thisTrait.db.type == 'Geno': + text.append([str(i+1), self.Species, self.RISet, thisTrait.db.fullname, thisTrait.name, "", thisTrait.name,"", "", "", thisTrait.chr, thisTrait.mb, "", "", "", "", "", "", "", "", "", "", "", "", ""]) + else: + continue + + testval = thisTrait.exportData(strainlist) + try: + mean = reaper.anova(testval)[0] + except: + mean = 'N/A' + text[-1].append(mean) + text[-1] += testval + if len(text[0]) < 255 or len(text) < 255: + transpose = 0 + if len(text[0]) >= 255: + text = webqtlUtil.transpose(text) + transpose = 1 + filename = os.path.join(webqtlConfig.TMPDIR, webqtlUtil.generate_session() +'.xls') + + # Create a new Excel workbook + workbook = xl.Writer(filename) + worksheet = workbook.add_worksheet() + headingStyle = workbook.add_format(align = 'center', bold = 1, size=13, color = 'green') + titleStyle = workbook.add_format(align = 'left', bold = 0, size=13, border = 1, border_color="gray") + + ##Write title Info + worksheet.write([0, 0], "Data source: The GeneNetwork at %s" % webqtlConfig.PORTADDR, titleStyle) + worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle) + worksheet.write([2, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime()), titleStyle) + worksheet.write([3, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime()), titleStyle) + worksheet.write([4, 0], "Status of data ownership: Possibly unpublished data; please see %s/statusandContact.html for details on sources, ownership, and usage of these data." % webqtlConfig.PORTADDR, titleStyle) + worksheet.write([6, 0], "This output file contains data from %d GeneNetwork databases listed below" % len(traitList), titleStyle) + + # Row and column are zero indexed + nrow = startRow = 8 + for row in text: + for ncol, cell in enumerate(row): + if nrow == startRow: + worksheet.write([nrow, ncol], cell.strip(), headingStyle) + worksheet.set_column([ncol, ncol], 2*len(cell)) + else: + worksheet.write([nrow, ncol], cell) + nrow += 1 + + worksheet.write([nrow+1, 0], "Funding for The GeneNetwork: NIAAA (U01AA13499, U24AA13513), NIDA, NIMH, and NIAAA (P20-DA 21131), NCI MMHCC (U01CA105417), and NCRR (U24 RR021760)", titleStyle) + worksheet.write([nrow+2, 0], "PLEASE RETAIN DATA SOURCE INFORMATION WHENEVER POSSIBLE", titleStyle) + workbook.close() + + fp = open(filename, 'rb') + text = fp.read() + fp.close() + + self.content_type = 'application/xls' + self.content_disposition = 'attachment; filename=%s' % ('export-%s.xls' % time.strftime("%y-%m-%d-%H-%M")) + self.attachment = text + else: + self.content_type = 'application/xls' + self.content_disposition = 'attachment; filename=%s' % ('export-%s.txt' % time.strftime("%y-%m-%d-%H-%M")) + for item in text: + self.attachment += string.join(map(str, item), '\t')+ "\n" + self.cursor.close() + else: + fd.req.content_type = 'text/html' + heading = 'Export Collection' + detail = [HT.Font('Error : ',color='red'),HT.Font('Error occurs while retrieving data from database.',color='black')] + self.error(heading=heading,detail=detail) + diff --git a/web/webqtl/management/managerMainPage.py b/web/webqtl/management/managerMainPage.py new file mode 100755 index 00000000..36f744ad --- /dev/null +++ b/web/webqtl/management/managerMainPage.py @@ -0,0 +1,130 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os + +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from utility import webqtlUtil +from base import webqtlConfig + +#XZ, 02/06/2009: Xiaodong created this class +class managerMainPage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + ifVerified = None + + ifVerified = fd.formdata.getvalue('ifVerified') + + if ifVerified != 'GN@UTHSC': + user = fd.formdata.getvalue('user') + password = fd.formdata.getvalue('password') + privilege, user_id, userExist = webqtlUtil.authUser(user,password,self.cursor,encrypt = None)[:3] + + if userExist and webqtlConfig.USERDICT[privilege] >= webqtlConfig.USERDICT['admin']: + ifVerified = True + + + if not ifVerified: + heading = "Error page" + detail = ["You do not have privilege to change system configuration."] + self.error(heading=heading,detail=detail) + return + else: + TD_LR = HT.TD(height=200,width="100%", bgColor='#eeeeee') + + heading = "Please click button to make your selection" + + createUserAccountForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='createUserAccountForm', submit=HT.Input(type='hidden')) + createUserAccountForm.append( + HT.Input(type='button', name='', value='Manage User Accounts', Class="button", onClick="submitToNewWindow(this.form);"), + HT.Input(type='hidden',name='FormID',value='createUserAccount'), + HT.Input(type='hidden',name='ifVerified',value='GN@UTHSC') + ) + + assignUserToDatasetForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='assignUserToDatasetForm', submit=HT.Input(type='hidden')) + assignUserToDatasetForm.append( + HT.Input(type='button', name='', value='Manage Confidential Datasets', Class="button", onClick="submitToNewWindow(this.form);"), + HT.Input(type='hidden',name='FormID',value='assignUserToDataset'), + HT.Input(type='hidden',name='ifVerified',value='GN@UTHSC') + ) + + deletePhenotypeTraitForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='deletePhenotypeTraitForm', submit=HT.Input(type='hidden')) + deletePhenotypeTraitForm.append( + HT.Input(type='button', name='', value='Delete Phenotype Trait', Class="button", onClick="submitToNewWindow(this.form);"), + HT.Input(type='hidden',name='FormID',value='deletePhenotypeTrait'), + HT.Input(type='hidden',name='ifVerified',value='GN@UTHSC'), + HT.Input(type='hidden',name='status',value='input') + ) + + exportPhenotypeDatasetForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='exportPhenotypeDatasetForm', submit=HT.Input(type='hidden')) + exportPhenotypeDatasetForm.append( + HT.Input(type='button', name='', value='Export Phenotype Dataset', Class="button", onClick="submitToNewWindow(this.form);"), + HT.Input(type='hidden',name='FormID',value='exportPhenotypeDataset'), + HT.Input(type='hidden',name='ifVerified',value='GN@UTHSC'), + HT.Input(type='hidden',name='status',value='input') + ) + + updateGenotypeForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='updateGenotypeForm', submit=HT.Input(type='hidden')) + updateGenotypeForm.append( + HT.Input(type='button', name='', value='Update Genotype', Class="button", onClick="submitToNewWindow(this.form);"), + HT.Input(type='hidden',name='FormID',value='updGeno'), + HT.Input(type='hidden',name='ifVerified',value='GN@UTHSC') + ) + + editHeaderForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='editHeaderForm', submit=HT.Input(type='hidden')) + editHeaderForm.append( + HT.Input(type='button', name='', value='Edit Header', Class="button", onClick="submitToNewWindow(this.form);"), + HT.Input(type='hidden', name='FormID', value='editHeaderFooter'), + HT.Input(type='hidden', name='hf', value='h'), + ) + + editFooterForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='editFooterForm', submit=HT.Input(type='hidden')) + editFooterForm.append( + HT.Input(type='button', name='', value='Edit Footer', Class="button", onClick="submitToNewWindow(this.form);"), + HT.Input(type='hidden', name='FormID', value='editHeaderFooter'), + HT.Input(type='hidden', name='hf', value='f'), + ) + + TD_LR.append(heading, HT.P(),HT.P(), + createUserAccountForm, HT.P(),HT.P(), + assignUserToDatasetForm, HT.P(),HT.P(), + deletePhenotypeTraitForm, HT.P(),HT.P(), + exportPhenotypeDatasetForm, HT.P(),HT.P(), + updateGenotypeForm, HT.P(),HT.P(), + editHeaderForm, HT.P(),HT.P(), + editFooterForm) + + self.dict['body'] = str(TD_LR) + self.dict['title'] = 'Manager Main Page' + diff --git a/web/webqtl/markerRegression/CompositeMarkerRegressionPage.py b/web/webqtl/markerRegression/CompositeMarkerRegressionPage.py new file mode 100755 index 00000000..6cd8c53a --- /dev/null +++ b/web/webqtl/markerRegression/CompositeMarkerRegressionPage.py @@ -0,0 +1,211 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string +import piddle as pid +import os + +from htmlgen import HTMLgen2 as HT +import reaper + +from utility import Plot +from base.templatePage import templatePage +from base import webqtlConfig +from utility import webqtlUtil + + + +class CompositeMarkerRegressionPage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not fd.genotype: + fd.readData() + + fd.parentsf14regression = fd.formdata.getvalue('parentsf14regression') + + weightedRegression = fd.formdata.getvalue('applyVarianceSE') + + if fd.parentsf14regression and fd.genotype_2: + _genotype = fd.genotype_2 + else: + _genotype = fd.genotype_1 + + _strains, _vals, _vars, N = fd.informativeStrains(_genotype.prgy, weightedRegression) + + self.data = fd + if self.data.identification: + heading2 = HT.Paragraph('Trait ID: %s' % self.data.identification) + heading2.__setattr__("class","subtitle") + self.dict['title'] = '%s: Composite Regression' % self.data.identification + else: + heading2 = "" + self.dict['title'] = 'Composite Regression' + + if self.data.traitInfo: + symbol,chromosome,MB = string.split(fd.traitInfo,'\t') + heading3 = HT.Paragraph('[ ',HT.Strong(HT.Italic('%s' % symbol,id="green")),' on Chr %s @ %s Mb ]' % (chromosome,MB)) + else: + heading3 = "" + if N < webqtlConfig.KMININFORMATIVE: + heading = "Composite Regression" + detail = ['Fewer than %d strain data were entered for %s data set. No mapping attempted.' % (webqtlConfig.KMININFORMATIVE, self.data.RISet)] + self.error(heading=heading,detail=detail) + return + else: + heading = HT.Paragraph('Trait Data Entered for %s Set' % self.data.RISet) + heading.__setattr__("class","title") + tt = HT.TableLite() + for ii in range(N/2): + tt.append(HT.TR(HT.TD(_strains[2*ii],nowrap="yes"),HT.TD(width=10), HT.TD(_vals[2*ii], nowrap="yes"), \ + HT.TD(width=20), HT.TD(_strains[2*ii+1],nowrap="yes"),HT.TD(width=10), HT.TD(_vals[2*ii+1],nowrap="yes"))) + if N % 2: + tt.append(HT.TR(HT.TD(_strains[N-1],nowrap="yes"),HT.TD(width=10), HT.TD(_vals[N-1],nowrap="yes"), \ + HT.TD(width=20), HT.TD("",nowrap="yes"),HT.TD(width=10), HT.TD("",nowrap="yes"))) + indata = tt + + mean, median, var, stdev, sem, N = reaper.anova(_vals) + + stats = HT.Paragraph('Number of entered values = %d ' % N,HT.BR(),\ + 'Mean value = %8.3f ' % mean, HT.BR(), \ + 'Median value = %8.3f ' % median, HT.BR(), \ + 'Variance = %8.3f ' % var, HT.BR(), \ + 'Standard Deviation = %8.3f ' % stdev, HT.BR(), \ + 'Standard Error = %8.3f ' % sem) + + self.controlLocus = fd.formdata.getvalue('controlLocus') + heading4 = HT.Blockquote('Control Background Selected for %s Data Set:' % self.data.RISet) + heading4.__setattr__("class","subtitle") + + datadiv = HT.TD(heading, HT.Center(heading2,heading3,indata, stats, heading4,HT.Center(self.controlLocus)), width='45%',valign='top', bgColor='#eeeeee') + + resultstable = self.GenReport(fd, _genotype, _strains, _vals, _vars) + self.dict['body'] = str(datadiv)+str(resultstable) + + def GenReport(self, fd, _genotype, _strains, _vals, _vars= []): + 'Create an HTML division which reports any loci which are significantly associated with the submitted trait data.' + if webqtlUtil.ListNotNull(_vars): + qtlresults = _genotype.regression(strains = _strains, trait = _vals, variance = _vars, control = self.controlLocus) + LRSArray = _genotype.permutation(strains = _strains, trait = _vals, variance = _vars, nperm=fd.nperm) + else: + qtlresults = _genotype.regression(strains = _strains, trait = _vals, control = self.controlLocus) + LRSArray = _genotype.permutation(strains = _strains, trait = _vals,nperm=fd.nperm) + + myCanvas = pid.PILCanvas(size=(400,300)) + #plotBar(myCanvas,10,10,390,290,LRSArray,XLabel='LRS',YLabel='Frequency',title=' Histogram of Permutation Test',identification=fd.identification) + Plot.plotBar(myCanvas, LRSArray,XLabel='LRS',YLabel='Frequency',title=' Histogram of Permutation Test') + filename= webqtlUtil.genRandStr("Reg_") + myCanvas.save(webqtlConfig.IMGDIR+filename, format='gif') + img=HT.Image('/image/'+filename+'.gif',border=0,alt='Histogram of Permutation Test') + + if fd.suggestive == None: + fd.suggestive = LRSArray[int(fd.nperm*0.37-1)] + else: + fd.suggestive = float(fd.suggestive) + if fd.significance == None: + fd.significance = LRSArray[int(fd.nperm*0.95-1)] + else: + fd.significance = float(fd.significance) + + ######################################### + # Permutation Graph + ######################################### + permutationHeading = HT.Paragraph('Histogram of Permutation Test') + permutationHeading.__setattr__("class","title") + lrs = HT.Blockquote('Total of %d permutations' % fd.nperm,HT.P(),'Suggestive LRS = %2.2f' % LRSArray[int(fd.nperm*0.37-1)],\ + HT.BR(),'Significant LRS = %2.2f' % LRSArray[int(fd.nperm*0.95-1)],HT.BR(),'Highly Significant LRS =%2.2f' % LRSArray[int(fd.nperm*0.99-1)]) + + permutation = HT.TableLite() + permutation.append(HT.TR(HT.TD(img)),HT.TR(HT.TD(lrs))) + + _dispAllLRS = 0 + if fd.formdata.getvalue('displayAllLRS'): + _dispAllLRS = 1 + qtlresults2 = [] + if _dispAllLRS: + filtered = qtlresults[:] + else: + filtered = filter(lambda x, y=fd.suggestive: x.lrs > y, qtlresults) + if len(filtered) == 0: + qtlresults2 = qtlresults[:] + qtlresults2.sort() + filtered = qtlresults2[-10:] + + ######################################### + # Marker regression report + ######################################### + locusFormName = webqtlUtil.genRandStr("fm_") + locusForm = HT.Form(cgi = os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), \ + enctype='multipart/form-data', name=locusFormName, submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':fd.RISet+"Geno",'CellID':'_', \ + 'RISet':fd.RISet, 'incparentsf1':'on'} + for key in hddn.keys(): + locusForm.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + regressionHeading = HT.Paragraph('Marker Regression Report') + regressionHeading.__setattr__("class","title") + if qtlresults2 != []: + report = HT.Blockquote(HT.Font('No association ',color="#FF0000"),HT.Font('with a likelihood ratio statistic greater than %3.1f was found. Here are the top 10 LRSs.' % fd.suggestive,color="#000000")) + else: + report = HT.Blockquote('The following loci in the %s data set have associations with the above trait data.\n' % fd.RISet, HT.P()) + report.__setattr__("class","normalsize") + + fpText = open('%s.txt' % (webqtlConfig.TMPDIR+filename), 'wb') + textUrl = HT.Href(text = 'Download', url= '/tmp/'+filename+'.txt', target = "_blank", Class='fs12 fwn') + + bottomInfo = HT.Paragraph(textUrl, ' result in tab-delimited text format.', HT.BR(), HT.BR(),'LRS values marked with',HT.Font(' * ',color="red"), 'are greater than the significance threshold (specified by you or by permutation test). ' , HT.BR(), HT.BR(), HT.Strong('Additive Effect'), ' is half the difference in the mean phenotype of all cases that are homozygous for one parental allel at this marker minus the mean of all cases that are homozygous for the other parental allele at this marker. ','In the case of %s strains, for example,' % fd.RISet,' A positive additive effect indicates that %s alleles increase trait values. Negative additive effect indicates that %s alleles increase trait values.'% (fd.ppolar,fd.mpolar),Class="fs12 fwn") + + c1 = HT.TD('LRS',Class="fs14 fwb ffl b1 cw cbrb") + c2 = HT.TD('Chr',Class="fs14 fwb ffl b1 cw cbrb") + c3 = HT.TD('Mb',Class="fs14 fwb ffl b1 cw cbrb") + c4 = HT.TD('Locus',Class="fs14 fwb ffl b1 cw cbrb") + c5 = HT.TD('Additive Effect',Class="fs14 fwb ffl b1 cw cbrb") + + fpText.write('LRS\tChr\tMb\tLocus\tAdditive Effect\n') + hr = HT.TR(c1, c2, c3, c4, c5) + tbl = HT.TableLite(border=0, width="90%", cellpadding=0, cellspacing=0, Class="collap") + tbl.append(hr) + for ii in filtered: + #add by NL 06-22-2011: set LRS to 460 when LRS is infinite, + if ii.lrs==float('inf') or ii.lrs>webqtlConfig.MAXLRS: + LRS=webqtlConfig.MAXLRS #maximum LRS value + else: + LRS=ii.lrs + fpText.write('%2.3f\t%s\t%s\t%s\t%2.3f\n' % (LRS, ii.locus.chr, ii.locus.Mb, ii.locus.name, ii.additive)) + if LRS > fd.significance: + c1 = HT.TD('%3.3f*' % LRS, Class="fs13 b1 cbw cr") + else: + c1 = HT.TD('%3.3f' % LRS,Class="fs13 b1 cbw c222") + tbl.append(HT.TR(c1, HT.TD(ii.locus.chr,Class="fs13 b1 cbw c222"), HT.TD(ii.locus.Mb,Class="fs13 b1 cbw c222"), HT.TD(HT.Href(text=ii.locus.name, url = "javascript:showTrait('%s','%s');" % (locusFormName, ii.locus.name), Class='normalsize'), Class="fs13 b1 cbw c222"), HT.TD('%3.3f' % ii.additive,Class="fs13 b1 cbw c222"),bgColor='#eeeeee')) + + locusForm.append(tbl) + tbl2 = HT.TableLite(border=0, cellspacing=0, cellpadding=0,width="90%") + tbl2.append(HT.TR(HT.TD(bottomInfo))) + rv=HT.TD(permutationHeading,HT.Center(permutation),regressionHeading,report, HT.Center(locusForm,HT.P(),tbl2,HT.P()),width='55%',valign='top', bgColor='#eeeeee') + return rv + diff --git a/web/webqtl/markerRegression/MarkerRegressionPage.py b/web/webqtl/markerRegression/MarkerRegressionPage.py new file mode 100755 index 00000000..7f830b4b --- /dev/null +++ b/web/webqtl/markerRegression/MarkerRegressionPage.py @@ -0,0 +1,1626 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import time +import string +import math +from math import * +import piddle as pid +import sys,os +import httplib, urllib + +from htmlgen import HTMLgen2 as HT +from utility import Plot +from intervalAnalyst import GeneUtil +from base.webqtlTrait import webqtlTrait +from base.templatePage import templatePage +from utility import webqtlUtil +from base import webqtlConfig +from dbFunction import webqtlDatabaseFunction +from base.GeneralObject import GeneralObject + +import reaper +import cPickle +from utility.THCell import THCell +from utility.TDCell import TDCell + +class MarkerRegressionPage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + self.initializeParameters(fd) + + filename= webqtlUtil.genRandStr("Itvl_") + ChrList,ChrNameOrderIdDict,ChrOrderIdNameDict,ChrLengthMbList= self.getChrNameOrderIdLength(RISet=fd.RISet) + + if self.mappingMethodId == '4': # For PLINK + + traitInfoList = string.split(string.strip(fd.identification),':') + probesetName = string.strip(traitInfoList[-1]) + plinkOutputFileName= webqtlUtil.genRandStr("%s_%s_"%(fd.RISet,probesetName)) + + # get related values from fd.allTraitData; the format of 'allTraitValueDict'is {strainName1: value=-0.2...} + fd.readData() + allTraitValueDict = fd.allTraitData + + #automatically generate pheno txt file for PLINK + self.genPhenoTxtFileForPlink(phenoFileName=plinkOutputFileName,RISetName=fd.RISet,probesetName=probesetName, valueDict=allTraitValueDict) + # os.system full path is required for input and output files; specify missing value is -9999 + plink_command = '%splink/plink --noweb --ped %splink/%s.ped --no-fid --no-parents --no-sex --no-pheno --map %splink/%s.map --pheno %s/%s.txt --pheno-name %s --missing-phenotype -9999 --out %s%s --assoc ' % (webqtlConfig.HTMLPATH, webqtlConfig.HTMLPATH, fd.RISet, webqtlConfig.HTMLPATH, fd.RISet, webqtlConfig.TMPDIR, plinkOutputFileName, probesetName, webqtlConfig.TMPDIR, plinkOutputFileName) + + os.system(plink_command) + + if fd.identification: + heading2 = HT.Paragraph('Trait ID: %s' % fd.identification) + heading2.__setattr__("class","subtitle") + self.dict['title'] = '%s: Genome Association' % fd.identification + else: + heading2 = "" + self.dict['title'] = 'Genome Association' + + if fd.traitInfo: + symbol,chromosome,MB = string.split(fd.traitInfo,'\t') + heading3 = HT.Paragraph('[ ',HT.Strong(HT.Italic('%s' % symbol,id="green")),' on Chr %s @ %s Mb ]' % (chromosome,MB)) + else: + heading3 = "" + + heading = HT.Paragraph('Trait Data Entered for %s Set' % fd.RISet) + heading.__setattr__("class","title") + + # header info part:Trait Data Entered for HLC Set & Trait ID: + headerdiv = HT.TR(HT.TD(heading, heading2,heading3, width='45%',valign='top', align='left', bgColor='#eeeeee')) + + self.ChrList=ChrList # get chr name from '1' to 'X' + self.ChrLengthMbList = ChrLengthMbList + + # build plink result dict based on chr, key is chr name, value is in list type including Snpname, bp and pvalue info + plinkResultDict={} + count,minPvalue,plinkResultDict =self.getPlinkResultDict(outputFileName=plinkOutputFileName,thresholdPvalue=self.pValue,ChrOrderIdNameDict=ChrOrderIdNameDict) + + # if can not find results which are matched with assigned p-value, system info will show up + if count >0: + + #for genome association report table + reportTable="" + # sortable table object + resultstable,tblobj,bottomInfo = self.GenReportForPLINK(ChrNameOrderIdDict=ChrNameOrderIdDict, RISet=fd.RISet,plinkResultDict=plinkResultDict,thresholdPvalue=self.pValue,chrList=self.ChrList) + + # creat object for result table for sort function + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + + sortby = ("Index", "up") + reportTable =HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "0"), Id="sortable") + + descriptionTable = HT.TableLite(border=0, cellpadding=0, cellspacing=0) + descriptionTable.append(HT.TR(HT.TD(reportTable, colspan=3))) + descriptionTable.append(HT.TR(HT.TD(HT.BR(),HT.BR()))) + descriptionTable.append(bottomInfo) + + # get each chr's length + self.ChrLengthMbList = map(lambda x: x/1000000.0, self.ChrLengthMbList) # change unit from bp to mb + self.ChrLengthMbSum = reduce(lambda x, y:x+y, self.ChrLengthMbList, 0.0)# get total length of all chrs + if self.ChrLengthMbList: + self.GraphInterval = self.ChrLengthMbSum/(len(self.ChrLengthMbList)*12) #Empirical Mb interval + else: + self.GraphInterval = 1 + + # for human data, there's no CM value + self.ChrLengthCMList = [] + self.ChrLengthCMSum = 0 + + # begin: common part with human data + intCanvas = pid.PILCanvas(size=(self.graphWidth,self.graphHeight)) + gifmap = self.plotIntMappingForPLINK(fd, intCanvas, startMb = self.startMb, endMb = self.endMb, plinkResultDict=plinkResultDict) + + intCanvas.save(os.path.join(webqtlConfig.IMGDIR, filename), format='png') + intImg=HT.Image('/image/'+filename+'.png', border=0, usemap='#WebQTLImageMap') + + TD_LR = HT.TR(HT.TD(HT.Blockquote(gifmap,intImg, HT.P()), bgColor='#eeeeee', height = 200)) + self.dict['body'] = str(headerdiv)+str(TD_LR)+str(resultstable)+str(HT.TR(HT.TD(descriptionTable))) + + else: + heading = "Genome Association" + detail = ['There is no association with marker that meets this criteria. Please provide a less stringend threshold. The minimun p-value is %s.'%minPvalue] + self.error(heading=heading,detail=detail) + return + + elif self.mappingMethodId == '1': # QTLreaper result + if not fd.genotype: + fd.readData() + + fd.parentsf14regression = fd.formdata.getvalue('parentsf14regression') + weightedRegression = fd.formdata.getvalue('applyVarianceSE') + + if fd.parentsf14regression and fd.genotype_2: + _genotype = fd.genotype_2 + else: + _genotype = fd.genotype_1 + + _strains, _vals, _vars, N = fd.informativeStrains(_genotype.prgy, weightedRegression) + + if fd.identification: + heading2 = HT.Paragraph('Trait ID: %s' % fd.identification) + heading2.__setattr__("class","subtitle") + self.dict['title'] = '%s: Genome Association' % fd.identification + else: + heading2 = "" + self.dict['title'] = 'Genome Association' + + if fd.traitInfo: + symbol,chromosome,MB = string.split(fd.traitInfo,'\t') + heading3 = HT.Paragraph('[ ',HT.Strong(HT.Italic('%s' % symbol,id="green")),' on Chr %s @ %s Mb ]' % (chromosome,MB)) + else: + heading3 = "" + + if N < webqtlConfig.KMININFORMATIVE: + heading = "Genome Association" + detail = ['Fewer than %d strain data were entered for %s data set. No mapping attempted.' % (webqtlConfig.KMININFORMATIVE, fd.RISet)] + self.error(heading=heading,detail=detail) + return + else: + heading = HT.Paragraph('Trait Data Entered for %s Set' % fd.RISet) + heading.__setattr__("class","title") + + datadiv = HT.TD(heading, heading2,heading3, width='45%',valign='top', align='left', bgColor='#eeeeee') + resultstable,tblobj,bottomInfo = self.GenReport(ChrNameOrderIdDict,fd, _genotype, _strains, _vals, _vars) + #resultstable = self.GenReport(fd, _genotype, _strains, _vals, _vars) + + # creat object for result table for sort function + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + + sortby = ("Index", "up") + reportTable =HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "0"), Id="sortable") + + descriptionTable = HT.TableLite(border=0, cellpadding=0, cellspacing=0) + descriptionTable.append(HT.TR(HT.TD(reportTable, colspan=3))) + descriptionTable.append(HT.TR(HT.TD(HT.BR(),HT.BR()))) + descriptionTable.append(bottomInfo) + + self.traitList=_vals + + ##########################plot####################### + + ################################################################ + # Generate Chr list and Retrieve Length Information + ################################################################ + self.genotype= _genotype + self.ChrList = [("All", -1)] + + for i, indChr in enumerate(self.genotype): + self.ChrList.append((indChr.name, i)) + + self.cursor.execute(""" + Select + Length from Chr_Length, InbredSet + where + Chr_Length.SpeciesId = InbredSet.SpeciesId AND + InbredSet.Name = '%s' AND + Chr_Length.Name in (%s) + Order by + OrderId + """ % (fd.RISet, string.join(map(lambda X: "'%s'" % X[0], self.ChrList[1:]), ", "))) + + self.ChrLengthMbList = self.cursor.fetchall() + self.ChrLengthMbList = map(lambda x: x[0]/1000000.0, self.ChrLengthMbList) + self.ChrLengthMbSum = reduce(lambda x, y:x+y, self.ChrLengthMbList, 0.0) + if self.ChrLengthMbList: + self.MbGraphInterval = self.ChrLengthMbSum/(len(self.ChrLengthMbList)*12) #Empirical Mb interval + else: + self.MbGraphInterval = 1 + + self.ChrLengthCMList = [] + for i, _chr in enumerate(self.genotype): + self.ChrLengthCMList.append(_chr[-1].cM - _chr[0].cM) + self.ChrLengthCMSum = reduce(lambda x, y:x+y, self.ChrLengthCMList, 0.0)# used for calculate plot scale + + self.GraphInterval = self.MbGraphInterval #Mb + + # begin: common part with human data + intCanvas = pid.PILCanvas(size=(self.graphWidth,self.graphHeight)) + gifmap = self.plotIntMapping(fd, intCanvas, startMb = self.startMb, endMb = self.endMb, showLocusForm= "") + filename= webqtlUtil.genRandStr("Itvl_") + intCanvas.save(os.path.join(webqtlConfig.IMGDIR, filename), format='png') + intImg=HT.Image('/image/'+filename+'.png', border=0, usemap='#WebQTLImageMap') + + ################################################################ + # footnote goes here + ################################################################ + btminfo = HT.Paragraph(Id="smallsize") #Small('More information about this graph is available here.') + + if (self.additiveChecked): + btminfo.append(HT.BR(), 'A positive additive coefficient (', HT.Font('green', color='green'), ' line) indicates that %s alleles increase trait values. In contrast, a negative additive coefficient (' % fd.ppolar, HT.Font('red', color='red'), ' line) indicates that %s alleles increase trait values.' % fd.mpolar) + + + TD_LR = HT.TR(HT.TD(HT.Blockquote(gifmap,intImg, HT.P()), bgColor='#eeeeee', height = 200)) + + self.dict['body'] = str(datadiv)+str(TD_LR)+str(resultstable)+str(HT.TR(HT.TD(descriptionTable))) + + # end: common part with human data + + else: + pass + + + # add by NL 10-2-2011 + def initializeParameters(self, fd): + """ + Initializes all of the MarkerRegressionPage class parameters, + acquiring most values from the formdata (fd) + """ + ################################### + # manhattam plot parameters + ################################### + + self.graphHeight = 600 + self.graphWidth = 1280 + self.plotScale = 'physic' + self.selectedChr = -1 + self.GRAPH_BACK_DARK_COLOR = pid.HexColor(0xF1F1F9) + self.GRAPH_BACK_LIGHT_COLOR = pid.HexColor(0xFBFBFF) + self.LRS_COLOR = pid.HexColor(0x0000FF) + self.LRS_LOD ='LRS' + self.lrsMax = float(fd.formdata.getvalue('lrsMax', 0)) + self.startMb = fd.formdata.getvalue('startMb', "-1") + self.endMb = fd.formdata.getvalue('endMb', "-1") + self.mappingMethodId = fd.formdata.getvalue('mappingMethodId', "0") + self.permChecked=True + self.multipleInterval=False + self.SIGNIFICANT_WIDTH = 5 + self.SUGGESTIVE_WIDTH = 5 + self.SIGNIFICANT_COLOR = pid.HexColor(0xEBC7C7) + self.SUGGESTIVE_COLOR = pid.gainsboro + self.colorCollection = [self.LRS_COLOR] + self.additiveChecked= True + self.ADDITIVE_COLOR_POSITIVE = pid.green + self.legendChecked =False + self.pValue=float(fd.formdata.getvalue('pValue',-1)) + + # allow user to input p-value greater than 1, + # in this case, the value will be treated as -lgP value. so the input value needs to be transferred to power of 10 format + if self.pValue >1: + self.pValue =10**-(self.pValue) + + try: + self.startMb = float(self.startMb) + self.endMb = float(self.endMb) + if self.startMb > self.endMb: + temp = self.startMb + self.startMb = self.endMb + self.endMb = temp + #minimal distance 10bp + if self.endMb - self.startMb < 0.00001: + self.endMb = self.startMb + 0.00001 + except: + self.startMb = self.endMb = -1 + + def GenReportForPLINK(self, ChrNameOrderIdDict={},RISet='',plinkResultDict= {},thresholdPvalue=-1,chrList=[]): + + 'Create an HTML division which reports any loci which are significantly associated with the submitted trait data.' + ######################################### + # Genome Association report + ######################################### + locusFormName = webqtlUtil.genRandStr("fm_") + locusForm = HT.Form(cgi = os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), \ + enctype='multipart/form-data', name=locusFormName, submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':RISet+"Geno",'CellID':'_', \ + 'RISet':RISet, 'incparentsf1':'on'} + for key in hddn.keys(): + locusForm.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + regressionHeading = HT.Paragraph('Genome Association Report') + regressionHeading.__setattr__("class","title") + + filename= webqtlUtil.genRandStr("GenomeAsscociation_") + fpText = open('%s.txt' % (webqtlConfig.TMPDIR+filename), 'wb') + fpText.write('The loci meet the criteria of P-Value <= %3.6f.\n'%thresholdPvalue) + pValueInfo =HT.Paragraph('The loci meet the criteria of P-Value <= %3.6f.\n'%thresholdPvalue) + + textUrl = HT.Href(text = 'Download', url= '/tmp/'+filename+'.txt', target = "_blank", Class='fs12 fwn') + bottomInfo = HT.TR(HT.TD(HT.Paragraph(textUrl, ' result in tab-delimited text format.', HT.BR(), HT.BR(),Class="fs12 fwn"), colspan=3)) + + tblobj={} # build dict for genTableObj function; keys include header and body + tblobj_header = [] # value of key 'header' + tblobj_body=[] # value of key 'body' + reportHeaderRow=[] # header row list for tblobj_header (html part) + headerList=['Index','SNP Name','Chr','Mb','-log(P)'] + headerStyle="fs14 fwb ffl b1 cw cbrb" # style of the header + cellColorStyle = "fs13 b1 fwn c222" # style of the cells + + if headerList: + for ncol, item in enumerate(headerList): + reportHeaderRow.append(THCell(HT.TD(item, Class=headerStyle, valign='bottom',nowrap='ON'),text=item, idx=ncol)) + #download file for table headers' names + fpText.write('SNP_Name\tChromosome\tMb\t-log(P)\n') + + tblobj_header.append(reportHeaderRow) + tblobj['header']=tblobj_header + + index=1 + for chr in chrList: + + if plinkResultDict.has_key(chr): + if chr in ChrNameOrderIdDict.keys(): + chrOrderId =ChrNameOrderIdDict[chr] + else: + chrOrderId=chr + + valueList=plinkResultDict[chr] + + for value in valueList: + reportBodyRow=[] # row list for tblobj_body (html part) + snpName=value[0] + bp=value[1] + mb=int(bp)/1000000.0 + + try: + pValue =float(value[2]) + except: + pValue =1 + formattedPvalue = -math.log10(pValue) + + formattedPvalue = webqtlUtil.SciFloat(formattedPvalue) + dbSnprs=snpName.replace('rs','') + SnpHref = HT.Href(text=snpName, url="http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=%s"%dbSnprs, target="_blank") + + selectCheck=HT.Input(type="checkbox", Class="checkbox", name="index",value=index, onClick="highlight(this)") + reportBodyRow.append(TDCell(HT.TD(str(index),selectCheck, align='right',Class=cellColorStyle,nowrap='ON'),str(index),index)) + reportBodyRow.append(TDCell(HT.TD(SnpHref, Class=cellColorStyle,nowrap='ON'),snpName, snpName)) + reportBodyRow.append(TDCell(HT.TD(chr, Class=cellColorStyle, align="center",nowrap='ON'),chr, chrOrderId)) + reportBodyRow.append(TDCell(HT.TD('%3.6f'%mb, Class=cellColorStyle, align="center",nowrap='ON'),mb, mb)) + reportBodyRow.append(TDCell(HT.TD(formattedPvalue, Class=cellColorStyle, align="center",nowrap='ON'),formattedPvalue, float(formattedPvalue))) + + fpText.write('%s\t%s\t%3.6f\t%s\n' % (snpName, str(chr), mb, formattedPvalue)) + index+=1 + + tblobj_body.append(reportBodyRow) + + tblobj['body']=tblobj_body + rv=HT.TR(HT.TD(regressionHeading,pValueInfo, locusForm, HT.P(), width='55%',valign='top', align='left',bgColor='#eeeeee')) + + return rv, tblobj,bottomInfo + + + def GenReport(self, ChrNameOrderIdDict,fd, _genotype, _strains, _vals, _vars= []): + 'Create an HTML division which reports any loci which are significantly associated with the submitted trait data.' + #calculate QTL for each trait + self.qtlresults = [] + if webqtlUtil.ListNotNull(_vars): + qtlresults = _genotype.regression(strains = _strains, trait = _vals, variance = _vars) + LRSArray = _genotype.permutation(strains = _strains, trait = _vals, variance = _vars, nperm=fd.nperm) + else: + qtlresults = _genotype.regression(strains = _strains, trait = _vals) + LRSArray = _genotype.permutation(strains = _strains, trait = _vals,nperm=fd.nperm) + + self.qtlresults.append(qtlresults) + + filename= webqtlUtil.genRandStr("GenomeAsscociation_") + + # set suggestive, significant and highly significant LRS + if fd.suggestive == None: + fd.suggestive = LRSArray[int(fd.nperm*0.37-1)] + else: + fd.suggestive = float(fd.suggestive) + if fd.significance == None: + fd.significance = LRSArray[int(fd.nperm*0.95-1)] + else: + fd.significance = float(fd.significance) + + self.significance =fd.significance + self.suggestive = fd.suggestive + self.highlysignificant = LRSArray[int(fd.nperm*0.99-1)] + _dispAllLRS = 0 + if fd.formdata.getvalue('displayAllLRS'): + _dispAllLRS = 1 + qtlresults2 = [] + if _dispAllLRS: + filtered = qtlresults[:] + else: + filtered = filter(lambda x, y=fd.suggestive: x.lrs > y, qtlresults) + if len(filtered) == 0: + qtlresults2 = qtlresults[:] + qtlresults2.sort() + filtered = qtlresults2[-10:] + + + + ######################################### + # Genome Association report + ######################################### + locusFormName = webqtlUtil.genRandStr("fm_") + locusForm = HT.Form(cgi = os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), \ + enctype='multipart/form-data', name=locusFormName, submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':fd.RISet+"Geno",'CellID':'_', \ + 'RISet':fd.RISet, 'incparentsf1':'on'} + for key in hddn.keys(): + locusForm.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + regressionHeading = HT.Paragraph('Genome Association Report') + regressionHeading.__setattr__("class","title") + # report is the info part above report table + if qtlresults2 != []: + report = HT.Blockquote(HT.Font('No association ',color="#FF0000"),HT.Font('with a likelihood ratio statistic greater than %3.1f was found. Here are the top 10 LRSs.' % fd.suggestive,color="#000000")) + else: + report = HT.Blockquote('The following loci in the %s data set have associations with the above trait data.\n' % fd.RISet, HT.P()) + report.__setattr__("class","normalsize") + + fpText = open('%s.txt' % (webqtlConfig.TMPDIR+filename), 'wb') + fpText.write('Suggestive LRS =%3.2f\n'%self.suggestive) + fpText.write('Significant LRS =%3.2f\n'%self.significance) + fpText.write('Highly Significant LRS =%3.2f\n'%self.highlysignificant) + LRSInfo =HT.Paragraph('    Suggestive LRS =%3.2f\n'%fd.suggestive, HT.BR(), '    Significant LRS =%3.2f\n'%fd.significance,HT.BR(),'    Highly Significant LRS =%3.2f\n' % self.highlysignificant) + + textUrl = HT.Href(text = 'Download', url= '/tmp/'+filename+'.txt', target = "_blank", Class='fs12 fwn') + + bottomInfo = HT.TR(HT.TD(HT.Paragraph(textUrl, ' result in tab-delimited text format.', HT.BR(), HT.BR(),'LRS values marked with',HT.Font(' * ',color="red"), 'are greater than the significance threshold (specified by you or by permutation test). ' , HT.BR(), HT.BR(), HT.Strong('Additive Effect'), ' is half the difference in the mean phenotype of all cases that are homozygous for one parental allel at this marker minus the mean of all cases that are homozygous for the other parental allele at this marker. ','In the case of %s strains, for example,' % fd.RISet,' A positive additive effect indicates that %s alleles increase trait values. Negative additive effect indicates that %s alleles increase trait values.'% (fd.ppolar,fd.mpolar),Class="fs12 fwn"))) + + tblobj={} # build dict for genTableObj function; keys include header and body + tblobj_header = [] # value of key 'header' + tblobj_body=[] # value of key 'body' + reportHeaderRow=[] # header row list for tblobj_header (html part) + headerStyle="fs14 fwb ffl b1 cw cbrb" # style of the header + cellColorStyle = "fs13 b1 fwn c222" # style of the cells + + headerList=['Index','LRS','Chr','Mb','Locus','Additive Effect'] + for ncol, item in enumerate(headerList): + reportHeaderRow.append(THCell(HT.TD(item, Class=headerStyle, valign='bottom',nowrap='ON'),text=item, idx=ncol)) + + if fd.genotype.type == 'intercross': + ncol =len(headerList) + reportHeaderRow.append(THCell(HT.TD('Dominance Effect', Class=headerStyle, valign='bottom',nowrap='ON'),text='Dominance Effect', idx=ncol)) + + #download file for table headers' names + fpText.write('LRS\tChromosome\tMb\tLocus\tAdditive Effect\tDominance Effect\n') + + index=1 + for ii in filtered: + #add by NL 06-20-2011: set LRS to 460 when LRS is infinite, + if ii.lrs==float('inf') or ii.lrs>webqtlConfig.MAXLRS: + LRS=webqtlConfig.MAXLRS #maximum LRS value + else: + LRS=ii.lrs + + if LRS > fd.significance: + lrs = HT.TD(HT.Font('%3.3f*' % LRS, color='#FF0000'),Class=cellColorStyle) + else: + lrs = HT.TD('%3.3f' % LRS,Class=cellColorStyle) + + if ii.locus.chr in ChrNameOrderIdDict.keys(): + chrOrderId =ChrNameOrderIdDict[ii.locus.chr] + else: + chrOrderId=ii.locus.chr + + reportBodyRow=[] # row list for tblobj_body (html part) + selectCheck=HT.Input(type="checkbox", Class="checkbox", name="index",value=index, onClick="highlight(this)") + reportBodyRow.append(TDCell(HT.TD(str(index),selectCheck, align='right',Class=cellColorStyle,nowrap='ON'),str(index),index)) + reportBodyRow.append(TDCell(lrs,LRS, LRS)) + reportBodyRow.append(TDCell(HT.TD(ii.locus.chr, Class=cellColorStyle, align="center",nowrap='ON'),ii.locus.chr, chrOrderId)) + reportBodyRow.append(TDCell(HT.TD('%3.6f'%ii.locus.Mb, Class=cellColorStyle, align="center",nowrap='ON'),ii.locus.Mb, ii.locus.Mb)) + reportBodyRow.append(TDCell(HT.TD(HT.Href(text=ii.locus.name, url = "javascript:showTrait('%s','%s');" % (locusFormName, ii.locus.name), Class='normalsize'), Class=cellColorStyle, align="center",nowrap='ON'),ii.locus.name, ii.locus.name)) + reportBodyRow.append(TDCell(HT.TD('%3.3f' % ii.additive, Class=cellColorStyle, align="center",nowrap='ON'),ii.additive, ii.additive)) + reportBodyRow.append(TDCell(HT.TD('%3.3f' % ii.dominance, Class=cellColorStyle, align="center",nowrap='ON'),ii.dominance, ii.dominance)) + + fpText.write('%2.3f\t%s\t%3.6f\t%s\t%2.3f\t%2.3f\n' % (LRS, ii.locus.chr, ii.locus.Mb, ii.locus.name, ii.additive, ii.dominance)) + index+=1 + tblobj_body.append(reportBodyRow) + else: + #download file for table headers' names + fpText.write('LRS\tChromosome\tMb\tLocus\tAdditive Effect\n') + + index=1 + for ii in filtered: + #add by NL 06-20-2011: set LRS to 460 when LRS is infinite, + if ii.lrs==float('inf') or ii.lrs>webqtlConfig.MAXLRS: + LRS=webqtlConfig.MAXLRS #maximum LRS value + else: + LRS=ii.lrs + + if LRS > fd.significance: + lrs = HT.TD(HT.Font('%3.3f*' % LRS, color='#FF0000'),Class=cellColorStyle) + else: + lrs = HT.TD('%3.3f' % LRS,Class=cellColorStyle) + + if ii.locus.chr in ChrNameOrderIdDict.keys(): + chrOrderId =ChrNameOrderIdDict[ii.locus.chr] + else: + chrOrderId=ii.locus.chr + + reportBodyRow=[] # row list for tblobj_body (html part) + selectCheck=HT.Input(type="checkbox", Class="checkbox", name="index",value=index, onClick="highlight(this)") + reportBodyRow.append(TDCell(HT.TD(str(index),selectCheck, align='right',Class=cellColorStyle,nowrap='ON'),str(index),index)) + reportBodyRow.append(TDCell(lrs,LRS, LRS)) + reportBodyRow.append(TDCell(HT.TD(ii.locus.chr, Class=cellColorStyle, align="center",nowrap='ON'),ii.locus.chr, chrOrderId)) + reportBodyRow.append(TDCell(HT.TD('%3.6f'%ii.locus.Mb, Class=cellColorStyle, align="center",nowrap='ON'),ii.locus.Mb, ii.locus.Mb)) + reportBodyRow.append(TDCell(HT.TD(HT.Href(text=ii.locus.name, url = "javascript:showTrait('%s','%s');" % (locusFormName, ii.locus.name), Class='normalsize'), Class=cellColorStyle, align="center",nowrap='ON'),ii.locus.name, ii.locus.name)) + reportBodyRow.append(TDCell(HT.TD('%3.3f' % ii.additive, Class=cellColorStyle, align="center",nowrap='ON'),ii.additive, ii.additive)) + + fpText.write('%2.3f\t%s\t%3.6f\t%s\t%2.3f\n' % (LRS, ii.locus.chr, ii.locus.Mb, ii.locus.name, ii.additive)) + index+=1 + tblobj_body.append(reportBodyRow) + + tblobj_header.append(reportHeaderRow) + tblobj['header']=tblobj_header + tblobj['body']=tblobj_body + + rv=HT.TD(regressionHeading,LRSInfo,report, locusForm, HT.P(),width='55%',valign='top', align='left', bgColor='#eeeeee') + if fd.genotype.type == 'intercross': + bottomInfo.append(HT.BR(), HT.BR(), HT.Strong('Dominance Effect'),' is the difference between the mean trait value of cases heterozygous at a marker and the average mean for the two groups homozygous at this marker: e.g., BD - (BB+DD)/2]. A positive dominance effect indicates that the average phenotype of BD heterozygotes exceeds the mean of BB and DD homozygotes. No dominance deviation can be computed for a set of recombinant inbred strains or for a backcross.') + return rv,tblobj,bottomInfo + + return rv,tblobj,bottomInfo + + def plotIntMappingForPLINK(self, fd, canvas, offset= (80, 120, 20, 80), zoom = 1, startMb = None, endMb = None, showLocusForm = "",plinkResultDict={}): + #calculating margins + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + xLeftOffset = int(xLeftOffset*fontZoom) + xRightOffset = int(xRightOffset*fontZoom) + yBottomOffset = int(yBottomOffset*fontZoom) + + cWidth = canvas.size[0] + cHeight = canvas.size[1] + plotWidth = cWidth - xLeftOffset - xRightOffset + plotHeight = cHeight - yTopOffset - yBottomOffset + startPixelX = xLeftOffset + endPixelX = (xLeftOffset + plotWidth) + + #Drawing Area Height + drawAreaHeight = plotHeight + if self.plotScale == 'physic' and self.selectedChr > -1: # for single chr + drawAreaHeight -= self.ENSEMBL_BAND_HEIGHT + self.UCSC_BAND_HEIGHT+ self.WEBQTL_BAND_HEIGHT + 3*self.BAND_SPACING+ 10*zoom + if self.geneChecked: + drawAreaHeight -= self.NUM_GENE_ROWS*self.EACH_GENE_HEIGHT + 3*self.BAND_SPACING + 10*zoom + else: + if self.selectedChr > -1: + drawAreaHeight -= 20 + else:# for all chrs + drawAreaHeight -= 30 + + #Image map + gifmap = HT.Map(name='WebQTLImageMap') + + newoffset = (xLeftOffset, xRightOffset, yTopOffset, yBottomOffset) + # Draw the alternating-color background first and get plotXScale + plotXScale = self.drawGraphBackgroundForPLINK(canvas, gifmap, offset=newoffset, zoom= zoom, startMb=startMb, endMb = endMb,plinkResultDict=plinkResultDict) + + # Draw X axis + self.drawXAxisForPLINK(fd, canvas, drawAreaHeight, gifmap, plotXScale, showLocusForm, offset=newoffset, zoom= zoom, startMb=startMb, endMb = endMb) + # Draw manhattam plot + self.drawManhattanPlotForPLINK(canvas, drawAreaHeight, gifmap, plotXScale, offset=newoffset, zoom= zoom, startMb=startMb, endMb = endMb,plinkResultDict=plinkResultDict,thresholdPvalue=self.pValue) + + return gifmap + + + def plotIntMapping(self, fd, canvas, offset= (80, 120, 20, 80), zoom = 1, startMb = None, endMb = None, showLocusForm = ""): + #calculating margins + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + xLeftOffset = int(xLeftOffset*fontZoom) + xRightOffset = int(xRightOffset*fontZoom) + yBottomOffset = int(yBottomOffset*fontZoom) + + cWidth = canvas.size[0] + cHeight = canvas.size[1] + plotWidth = cWidth - xLeftOffset - xRightOffset + plotHeight = cHeight - yTopOffset - yBottomOffset + startPixelX = xLeftOffset + endPixelX = (xLeftOffset + plotWidth) + + #Drawing Area Height + drawAreaHeight = plotHeight + if self.plotScale == 'physic' and self.selectedChr > -1: # for single chr + drawAreaHeight -= self.ENSEMBL_BAND_HEIGHT + self.UCSC_BAND_HEIGHT+ self.WEBQTL_BAND_HEIGHT + 3*self.BAND_SPACING+ 10*zoom + if self.geneChecked: + drawAreaHeight -= self.NUM_GENE_ROWS*self.EACH_GENE_HEIGHT + 3*self.BAND_SPACING + 10*zoom + else:# for all chrs + if self.selectedChr > -1: + drawAreaHeight -= 20 + else: + drawAreaHeight -= 30 + + #Image map + gifmap = HT.Map(name='WebQTLImageMap') + + newoffset = (xLeftOffset, xRightOffset, yTopOffset, yBottomOffset) + # Draw the alternating-color background first and get plotXScale + plotXScale = self.drawGraphBackground(canvas, gifmap, offset=newoffset, zoom= zoom, startMb=startMb, endMb = endMb) + + # Draw X axis + self.drawXAxis(fd, canvas, drawAreaHeight, gifmap, plotXScale, showLocusForm, offset=newoffset, zoom= zoom, startMb=startMb, endMb = endMb) + # Draw QTL curve + self.drawQTL(canvas, drawAreaHeight, gifmap, plotXScale, offset=newoffset, zoom= zoom, startMb=startMb, endMb = endMb) + + #draw legend + if self.multipleInterval: + self.drawMultiTraitName(fd, canvas, gifmap, showLocusForm, offset=newoffset) + elif self.legendChecked: + self.drawLegendPanel(fd, canvas, offset=newoffset) + else: + pass + + #draw position, no need to use a separate function + if fd.genotype.Mbmap: + self.drawProbeSetPosition(canvas, plotXScale, offset=newoffset) + + return gifmap + + + # functions for manhattam plot of markers + def drawManhattanPlotForPLINK(self, canvas, drawAreaHeight, gifmap, plotXScale, offset= (40, 120, 80, 10), zoom = 1, startMb = None, endMb = None,plinkResultDict={},thresholdPvalue=-1): + + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + # INTERCROSS = (self.genotype.type=="intercross") + INTERCROSS ='' #?????? + + ChrLengthDistList = self.ChrLengthMbList + drawRegionDistance = self.ChrLengthMbSum + GraphInterval=self.GraphInterval + pvalueHeightThresh = drawAreaHeight - 80 #ZS: Otherwise the plot gets very close to the chromosome labels + + #draw the pvalue scale + #We first determine whether or not we are using a sliding scale. + #If so, we need to compute the maximum pvalue value to determine where the max y-value should be, and call this pvalueMax. + #pvalueTop is then defined to be above the pvalueMax by enough to add one additional pvalueScale increment. + #if we are using a set-scale, then we set pvalueTop to be the user's value, and pvalueMax doesn't matter. + + # for human data we use p value instead of lrs + pValueList=[] + for key in plinkResultDict: + valueList = plinkResultDict[key] + for item in valueList: + pValue = item[-1] + pValueList.append(pValue) + + formattedPValueList=[] + for pValue in pValueList: + try: + pValue=float(pValue) + except: + pValue =1 + formattedpValue = -math.log10(pValue) + formattedPValueList.append(formattedpValue) + + #sliding scale + pvalueMax = max(formattedPValueList) + #pvalueMax =pvalueMax +1 + # no permutation result for plink func: GenReport() + pvalueMin = int(-math.log10(thresholdPvalue)) + + if pvalueMax> 100: + pvalueScale = 20.0 + elif pvalueMax > 20: + pvalueScale = 5.0 + elif pvalueMax > 7.5: + pvalueScale = 2.5 + else: + pvalueScale = 1.0 + + # the base line for x-axis is -log(thresholdPvalue) + pvalueAxisList = Plot.frange(pvalueMin, pvalueMax, pvalueScale) + #make sure the user's value appears on the y-axis + #ZS: There is no way to do this without making the position of the points not directly proportional to a given distance on the y-axis + #tempPvalueMax=round(pvalueMax) + tempPvalueMax = pvalueAxisList[len(pvalueAxisList)-1] + pvalueScale + pvalueAxisList.append(tempPvalueMax) + + #ZS: I don't understand this; the if statement will be true for any number that isn't exactly X.5. + #if abs(tempPvalueMax-pvalueMax) <0.5: + # tempPvalueMax=tempPvalueMax+1 + # pvalueAxisList.append(tempPvalueMax) + + #draw the "pvalue" string to the left of the axis + pvalueScaleFont=pid.Font(ttf="verdana", size=14*fontZoom, bold=0) + pvalueLODFont=pid.Font(ttf="verdana", size=14*zoom*1.5, bold=0) + yZero = yTopOffset + plotHeight + + #yAxis label display area + yAxis_label ='-log(P)' + canvas.drawString(yAxis_label, xLeftOffset - canvas.stringWidth("999.99", font=pvalueScaleFont) - 10*zoom, \ + yZero - 150, font=pvalueLODFont, color=pid.black, angle=90) + + for i,item in enumerate(pvalueAxisList): + ypvalue = yZero - (float(i)/float(len(pvalueAxisList) - 1)) * pvalueHeightThresh + canvas.drawLine(xLeftOffset, ypvalue, xLeftOffset - 4, ypvalue, color=self.LRS_COLOR, width=1*zoom) + scaleStr = "%2.1f" % item + #added by NL 6-24-2011:Y-axis scale display + canvas.drawString(scaleStr, xLeftOffset-4-canvas.stringWidth(scaleStr, font=pvalueScaleFont)-5, ypvalue+3, font=pvalueScaleFont, color=self.LRS_COLOR) + + ChrList=self.ChrList + startPosX = xLeftOffset + + for i, chr in enumerate(ChrList): + + if plinkResultDict.has_key(chr): + plinkresultList = plinkResultDict[chr] + + m = 0 + #add by NL 06-24-2011: for mahanttam plot + symbolFont = pid.Font(ttf="fnt_bs", size=5,bold=0) + # color for point in each chr + chrCount=len(ChrList) + chrColorDict =self.getColorForMarker(chrCount=chrCount,flag=1) + for j, item in enumerate(plinkresultList): + try : + mb=float(item[1])/1000000.0 + except: + mb=0 + + try : + pvalue =float(item[-1]) + except: + pvalue =1 + + try: + snpName = item[0] + except: + snpName='' + + formattedPvalue = -math.log10(pvalue) + + Xc = startPosX + (mb-startMb)*plotXScale + Yc = yZero - (formattedPvalue-pvalueMin)*pvalueHeightThresh/(tempPvalueMax - pvalueMin) + canvas.drawString("5", Xc-canvas.stringWidth("5",font=symbolFont)/2+1,Yc+2,color=chrColorDict[i], font=symbolFont) + m += 1 + + startPosX += (ChrLengthDistList[i]+GraphInterval)*plotXScale + + canvas.drawLine(xLeftOffset, yZero, xLeftOffset, yTopOffset, color=self.LRS_COLOR, width=1*zoom) #the blue line running up the y axis + + def drawQTL(self, canvas, drawAreaHeight, gifmap, plotXScale, offset= (40, 120, 80, 10), zoom = 1, startMb = None, endMb = None): + + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + INTERCROSS = (self.genotype.type=="intercross") + + ChrLengthDistList = self.ChrLengthMbList + GraphInterval=self.GraphInterval + LRSHeightThresh = drawAreaHeight + AdditiveHeightThresh = drawAreaHeight/2 + DominanceHeightThresh = drawAreaHeight/2 + + #draw the LRS scale + #We first determine whether or not we are using a sliding scale. + #If so, we need to compute the maximum LRS value to determine where the max y-value should be, and call this LRSMax. + #LRSTop is then defined to be above the LRSMax by enough to add one additional LRSScale increment. + #if we are using a set-scale, then we set LRSTop to be the user's value, and LRSMax doesn't matter. + + if self.LRS_LOD == 'LOD': + lodm = self.LODFACTOR + else: + lodm = 1.0 + + if self.lrsMax <= 0: #sliding scale + LRSMax = max(map(max, self.qtlresults)).lrs + #genotype trait will give infinite LRS + LRSMax = min(LRSMax, webqtlConfig.MAXLRS) + LRSMax = max(self.significance, LRSMax) + else: + LRSMax = self.lrsMax*lodm + + if LRSMax/lodm > 100: + LRSScale = 20.0 + elif LRSMax/lodm > 20: + LRSScale = 5.0 + elif LRSMax/lodm > 7.5: + LRSScale = 2.5 + else: + LRSScale = 1.0 + + LRSAxisList = Plot.frange(LRSScale, LRSMax/lodm, LRSScale) + #make sure the user's value appears on the y-axis + #update by NL 6-21-2011: round the LOD value to 100 when LRSMax is equal to 460 + LRSAxisList.append(round(LRSMax/lodm)) + + #draw the "LRS" or "LOD" string to the left of the axis + LRSScaleFont=pid.Font(ttf="verdana", size=14*fontZoom, bold=0) + LRSLODFont=pid.Font(ttf="verdana", size=14*zoom*1.5, bold=0) + yZero = yTopOffset + plotHeight + + #yAxis label display area + canvas.drawString(self.LRS_LOD, xLeftOffset - canvas.stringWidth("999.99", font=LRSScaleFont) - 10*zoom, \ + yZero - 150, font=LRSLODFont, color=pid.black, angle=90) + + for item in LRSAxisList: + yLRS = yZero - (item*lodm/LRSMax) * LRSHeightThresh + canvas.drawLine(xLeftOffset, yLRS, xLeftOffset - 4, yLRS, color=self.LRS_COLOR, width=1*zoom) + scaleStr = "%2.1f" % item + #added by NL 6-24-2011:Y-axis scale display + canvas.drawString(scaleStr, xLeftOffset-4-canvas.stringWidth(scaleStr, font=LRSScaleFont)-5, yLRS+3, font=LRSScaleFont, color=self.LRS_COLOR) + + + #"Significant" and "Suggestive" Drawing Routine + # ======= Draw the thick lines for "Significant" and "Suggestive" ===== (crowell: I tried to make the SNPs draw over these lines, but piddle wouldn't have it...) + if self.permChecked and not self.multipleInterval: + significantY = yZero - self.significance*LRSHeightThresh/LRSMax + suggestiveY = yZero - self.suggestive*LRSHeightThresh/LRSMax + + + startPosX = xLeftOffset + for i, _chr in enumerate(self.genotype): + rightEdge = int(startPosX + self.ChrLengthDistList[i]*plotXScale - self.SUGGESTIVE_WIDTH/1.5) + #added by NL 6-24-2011:draw suggestive line (grey one) + canvas.drawLine(startPosX+self.SUGGESTIVE_WIDTH/1.5, suggestiveY, rightEdge, suggestiveY, color=self.SUGGESTIVE_COLOR, + width=self.SUGGESTIVE_WIDTH*zoom, clipX=(xLeftOffset, xLeftOffset + plotWidth-2)) + #added by NL 6-24-2011:draw significant line (pink one) + canvas.drawLine(startPosX+self.SUGGESTIVE_WIDTH/1.5, significantY, rightEdge, significantY, color=self.SIGNIFICANT_COLOR, + width=self.SIGNIFICANT_WIDTH*zoom, clipX=(xLeftOffset, xLeftOffset + plotWidth-2)) + sugg_coords = "%d, %d, %d, %d" % (startPosX, suggestiveY-2, rightEdge + 2*zoom, suggestiveY+2) + sig_coords = "%d, %d, %d, %d" % (startPosX, significantY-2, rightEdge + 2*zoom, significantY+2) + if self.LRS_LOD == 'LRS': + sugg_title = "Suggestive LRS = %0.2f" % self.suggestive + sig_title = "Significant LRS = %0.2f" % self.significance + else: + sugg_title = "Suggestive LOD = %0.2f" % (self.suggestive/4.61) + sig_title = "Significant LOD = %0.2f" % (self.significance/4.61) + Areas1 = HT.Area(shape='rect',coords=sugg_coords,title=sugg_title) + Areas2 = HT.Area(shape='rect',coords=sig_coords,title=sig_title) + gifmap.areas.append(Areas1) + gifmap.areas.append(Areas2) + + startPosX += (self.ChrLengthDistList[i]+self.GraphInterval)*plotXScale + + + if self.multipleInterval: + lrsEdgeWidth = 1 + else: + additiveMax = max(map(lambda X : abs(X.additive), self.qtlresults[0])) + if INTERCROSS: + dominanceMax = max(map(lambda X : abs(X.dominance), self.qtlresults[0])) + else: + dominanceMax = -1 + lrsEdgeWidth = 2 + for i, qtlresult in enumerate(self.qtlresults): + m = 0 + startPosX = xLeftOffset + thisLRSColor = self.colorCollection[i] + + #add by NL 06-24-2011: for mahanttam plot + symbolFont = pid.Font(ttf="fnt_bs", size=5,bold=0) + + for j, _chr in enumerate(self.genotype): + chrCount=len(self.genotype) + chrColorDict =self.getColorForMarker(chrCount=chrCount,flag=1) + LRSCoordXY = [] + AdditiveCoordXY = [] + DominanceCoordXY = [] + for k, _locus in enumerate(_chr): + if self.plotScale == 'physic': + Xc = startPosX + (_locus.Mb-startMb)*plotXScale + else: + Xc = startPosX + (_locus.cM-_chr[0].cM)*plotXScale + # updated by NL 06-18-2011: + # fix the over limit LRS graph issue since genotype trait may give infinite LRS; + # for any lrs is over than 460(LRS max in this system), it will be reset to 460 + if qtlresult[m].lrs> 460 or qtlresult[m].lrs=='inf': + Yc = yZero - webqtlConfig.MAXLRS*LRSHeightThresh/LRSMax + else: + Yc = yZero - qtlresult[m].lrs*LRSHeightThresh/LRSMax + + LRSCoordXY.append((Xc, Yc)) + #add by NL 06-24-2011: for mahanttam plot + #self.significance/4.61 consider chr and LOD + # significantY = yZero - self.significance*LRSHeightThresh/LRSMax + # if Yc >significantY: + # canvas.drawString(":", Xc-canvas.stringWidth(":",font=symbolFont)/2+1,Yc+2,color=pid.black, font=symbolFont) + # else: + # canvas.drawString(":", Xc-canvas.stringWidth(":",font=symbolFont)/2+1,Yc+2,color=pid.black, font=symbolFont) + + # add by NL 06-27-2011: eliminate imputed value when locus name is equal to '-' + if (qtlresult[m].locus.name) and (qtlresult[m].locus.name!=' - '): + canvas.drawString("5", Xc-canvas.stringWidth("5",font=symbolFont)/2+1,Yc+2,color=chrColorDict[j], font=symbolFont) + + if not self.multipleInterval and self.additiveChecked: + Yc = yZero - qtlresult[m].additive*AdditiveHeightThresh/additiveMax + AdditiveCoordXY.append((Xc, Yc)) + if not self.multipleInterval and INTERCROSS and self.additiveChecked: + Yc = yZero - qtlresult[m].dominance*DominanceHeightThresh/dominanceMax + DominanceCoordXY.append((Xc, Yc)) + m += 1 + + startPosX += (ChrLengthDistList[j]+GraphInterval)*plotXScale + + + ###draw additive scale + if not self.multipleInterval and self.additiveChecked: + additiveScaleFont=pid.Font(ttf="verdana",size=12*fontZoom,bold=0) + additiveScale = Plot.detScaleOld(0,additiveMax) + additiveStep = (additiveScale[1]-additiveScale[0])/additiveScale[2] + additiveAxisList = Plot.frange(0, additiveScale[1], additiveStep) + maxAdd = additiveScale[1] + addPlotScale = AdditiveHeightThresh/additiveMax + + additiveAxisList.append(additiveScale[1]) + for item in additiveAxisList: + additiveY = yZero - item*addPlotScale + canvas.drawLine(xLeftOffset + plotWidth,additiveY,xLeftOffset+4+ plotWidth,additiveY,color=self.ADDITIVE_COLOR_POSITIVE, width=1*zoom) + scaleStr = "%2.3f" % item + canvas.drawString(scaleStr,xLeftOffset + plotWidth +6,additiveY+5,font=additiveScaleFont,color=self.ADDITIVE_COLOR_POSITIVE) + + canvas.drawLine(xLeftOffset+plotWidth,additiveY,xLeftOffset+plotWidth,yZero,color=self.ADDITIVE_COLOR_POSITIVE, width=1*zoom) + + canvas.drawLine(xLeftOffset, yZero, xLeftOffset, yTopOffset, color=self.LRS_COLOR, width=1*zoom) #the blue line running up the y axis + + def drawGraphBackgroundForPLINK(self, canvas, gifmap, offset= (80, 120, 80, 50), zoom = 1, startMb = None, endMb = None,plinkResultDict={} ): + + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + #calculate plot scale + #XZ: all of these global variables should be passed from function signiture + ChrLengthDistList = self.ChrLengthMbList + drawRegionDistance = self.ChrLengthMbSum + GraphInterval=self.GraphInterval + ChrList =self.ChrList + + #multiple chromosome view + plotXScale = plotWidth / ((len(ChrList)-1)*GraphInterval + drawRegionDistance) + + startPosX = xLeftOffset + chrLabelFont=pid.Font(ttf="verdana",size=24*fontZoom,bold=0) + + for i, _chr in enumerate(ChrList): + + if (i % 2 == 0): + theBackColor = self.GRAPH_BACK_DARK_COLOR + else: + theBackColor = self.GRAPH_BACK_LIGHT_COLOR + # NL:resize chr width for drawing + if float(ChrLengthDistList[i])<90: + ChrLengthDistList[i]=90 + #draw the shaded boxes and the sig/sug thick lines + canvas.drawRect(startPosX, yTopOffset, startPosX + ChrLengthDistList[i]*plotXScale, \ + yTopOffset+plotHeight, edgeColor=pid.gainsboro,fillColor=theBackColor) + + chrNameWidth = canvas.stringWidth(_chr, font=chrLabelFont) + chrStartPix = startPosX + (ChrLengthDistList[i]*plotXScale -chrNameWidth)/2 + chrEndPix = startPosX + (ChrLengthDistList[i]*plotXScale +chrNameWidth)/2 + + canvas.drawString(_chr, chrStartPix, yTopOffset +20,font = chrLabelFont,color=pid.dimgray) + COORDS = "%d,%d,%d,%d" %(chrStartPix, yTopOffset, chrEndPix,yTopOffset +20) + + #add by NL 09-03-2010 + HREF = "javascript:changeView(%d,%s);" % (i,ChrLengthDistList) + Areas = HT.Area(shape='rect',coords=COORDS,href=HREF) + gifmap.areas.append(Areas) + startPosX += (ChrLengthDistList[i]+GraphInterval)*plotXScale + + return plotXScale + + + def drawGraphBackground(self, canvas, gifmap, offset= (80, 120, 80, 50), zoom = 1, startMb = None, endMb = None): + ##conditions + ##multiple Chromosome view + ##single Chromosome Physical + ##single Chromosome Genetic + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + #calculate plot scale + if self.plotScale != 'physic': + self.ChrLengthDistList = self.ChrLengthCMList + drawRegionDistance = self.ChrLengthCMSum + else: + self.ChrLengthDistList = self.ChrLengthMbList + drawRegionDistance = self.ChrLengthMbSum + + if self.selectedChr > -1: #single chromosome view + spacingAmt = plotWidth/13.5 + i = 0 + for startPix in Plot.frange(xLeftOffset, xLeftOffset+plotWidth, spacingAmt): + if (i % 2 == 0): + theBackColor = self.GRAPH_BACK_DARK_COLOR + else: + theBackColor = self.GRAPH_BACK_LIGHT_COLOR + i += 1 + canvas.drawRect(startPix, yTopOffset, min(startPix+spacingAmt, xLeftOffset+plotWidth), \ + yTopOffset+plotHeight, edgeColor=theBackColor, fillColor=theBackColor) + + drawRegionDistance = self.ChrLengthDistList[self.selectedChr] + self.ChrLengthDistList = [drawRegionDistance] + if self.plotScale == 'physic': + plotXScale = plotWidth / (endMb-startMb) + else: + plotXScale = plotWidth / drawRegionDistance + + else: #multiple chromosome view + plotXScale = plotWidth / ((len(self.genotype)-1)*self.GraphInterval + drawRegionDistance) + + startPosX = xLeftOffset + chrLabelFont=pid.Font(ttf="verdana",size=24*fontZoom,bold=0) + + for i, _chr in enumerate(self.genotype): + + if (i % 2 == 0): + theBackColor = self.GRAPH_BACK_DARK_COLOR + else: + theBackColor = self.GRAPH_BACK_LIGHT_COLOR + + #draw the shaded boxes and the sig/sug thick lines + canvas.drawRect(startPosX, yTopOffset, startPosX + self.ChrLengthDistList[i]*plotXScale, \ + yTopOffset+plotHeight, edgeColor=pid.gainsboro,fillColor=theBackColor) + + chrNameWidth = canvas.stringWidth(_chr.name, font=chrLabelFont) + chrStartPix = startPosX + (self.ChrLengthDistList[i]*plotXScale -chrNameWidth)/2 + chrEndPix = startPosX + (self.ChrLengthDistList[i]*plotXScale +chrNameWidth)/2 + + canvas.drawString(_chr.name, chrStartPix, yTopOffset +20,font = chrLabelFont,color=pid.dimgray) + COORDS = "%d,%d,%d,%d" %(chrStartPix, yTopOffset, chrEndPix,yTopOffset +20) + + #add by NL 09-03-2010 + HREF = "javascript:changeView(%d,%s);" % (i,self.ChrLengthMbList) + Areas = HT.Area(shape='rect',coords=COORDS,href=HREF) + gifmap.areas.append(Areas) + startPosX += (self.ChrLengthDistList[i]+self.GraphInterval)*plotXScale + + return plotXScale + + # XZ: The only difference of function drawXAxisForPLINK and function drawXAxis are the function name and the self.plotScale condition. + def drawXAxisForPLINK(self, fd, canvas, drawAreaHeight, gifmap, plotXScale, showLocusForm, offset= (40, 120, 80, 10), zoom = 1, startMb = None, endMb = None): + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + yZero = canvas.size[1] - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + #Parameters + ChrLengthDistList = self.ChrLengthMbList + GraphInterval=self.GraphInterval + + NUM_MINOR_TICKS = 5 # Number of minor ticks between major ticks + X_MAJOR_TICK_THICKNESS = 2 + X_MINOR_TICK_THICKNESS = 1 + X_AXIS_THICKNESS = 1*zoom + + # ======= Alex: Draw the X-axis labels (megabase location) + MBLabelFont = pid.Font(ttf="verdana", size=12*fontZoom, bold=0) + xMajorTickHeight = 15 # How high the tick extends below the axis + xMinorTickHeight = 5*zoom + xAxisTickMarkColor = pid.black + xAxisLabelColor = pid.black + fontHeight = 12*fontZoom # How tall the font that we're using is + spacingFromLabelToAxis = 20 + spacingFromLineToLabel = 3 + + if self.plotScale == 'physic': + strYLoc = yZero + spacingFromLabelToAxis + canvas.fontHeight(MBLabelFont) + ###Physical single chromosome view + if self.selectedChr > -1: + graphMbWidth = endMb - startMb + XScale = Plot.detScale(startMb, endMb) + XStart, XEnd, XStep = XScale + if XStep < 8: + XStep *= 2 + spacingAmtX = spacingAmt = (XEnd-XStart)/XStep + + j = 0 + while abs(spacingAmtX -int(spacingAmtX)) >= spacingAmtX/100.0 and j < 6: + j += 1 + spacingAmtX *= 10 + + formatStr = '%%2.%df' % j + + for counter, _Mb in enumerate(Plot.frange(XStart, XEnd, spacingAmt / NUM_MINOR_TICKS)): + if _Mb < startMb or _Mb > endMb: + continue + Xc = xLeftOffset + plotXScale*(_Mb - startMb) + if counter % NUM_MINOR_TICKS == 0: # Draw a MAJOR mark, not just a minor tick mark + canvas.drawLine(Xc, yZero, Xc, yZero+xMajorTickHeight, color=xAxisTickMarkColor, width=X_MAJOR_TICK_THICKNESS) # Draw the MAJOR tick mark + labelStr = str(formatStr % _Mb) # What Mbase location to put on the label + strWidth = canvas.stringWidth(labelStr, font=MBLabelFont) + drawStringXc = (Xc - (strWidth / 2.0)) + canvas.drawString(labelStr, drawStringXc, strYLoc, font=MBLabelFont, color=xAxisLabelColor, angle=0) + else: + canvas.drawLine(Xc, yZero, Xc, yZero+xMinorTickHeight, color=xAxisTickMarkColor, width=X_MINOR_TICK_THICKNESS) # Draw the MINOR tick mark + # end else + + ###Physical genome wide view + else: + distScale = 0 + startPosX = xLeftOffset + for i, distLen in enumerate(ChrLengthDistList): + if distScale == 0: #universal scale in whole genome mapping + if distLen > 75: + distScale = 25 + elif distLen > 30: + distScale = 10 + else: + distScale = 5 + for tickdists in range(distScale, ceil(distLen), distScale): + canvas.drawLine(startPosX + tickdists*plotXScale, yZero, startPosX + tickdists*plotXScale, yZero + 7, color=pid.black, width=1*zoom) + canvas.drawString(str(tickdists), startPosX+tickdists*plotXScale, yZero + 10*zoom, color=pid.black, font=MBLabelFont, angle=270) + startPosX += (ChrLengthDistList[i]+GraphInterval)*plotXScale + + megabaseLabelFont = pid.Font(ttf="verdana", size=14*zoom*1.5, bold=0) + canvas.drawString("Megabases", xLeftOffset + (plotWidth -canvas.stringWidth("Megabases", font=megabaseLabelFont))/2, + strYLoc + canvas.fontHeight(MBLabelFont) + 5*zoom, font=megabaseLabelFont, color=pid.black) + pass + + canvas.drawLine(xLeftOffset, yZero, xLeftOffset+plotWidth, yZero, color=pid.black, width=X_AXIS_THICKNESS) # Draw the X axis itself + + def drawXAxis(self, fd, canvas, drawAreaHeight, gifmap, plotXScale, showLocusForm, offset= (40, 120, 80, 10), zoom = 1, startMb = None, endMb = None): + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + yZero = canvas.size[1] - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + #Parameters + NUM_MINOR_TICKS = 5 # Number of minor ticks between major ticks + X_MAJOR_TICK_THICKNESS = 2 + X_MINOR_TICK_THICKNESS = 1 + X_AXIS_THICKNESS = 1*zoom + + # ======= Alex: Draw the X-axis labels (megabase location) + MBLabelFont = pid.Font(ttf="verdana", size=12*fontZoom, bold=0) + xMajorTickHeight = 15 # How high the tick extends below the axis + xMinorTickHeight = 5*zoom + xAxisTickMarkColor = pid.black + xAxisLabelColor = pid.black + fontHeight = 12*fontZoom # How tall the font that we're using is + spacingFromLabelToAxis = 20 + spacingFromLineToLabel = 3 + + if self.plotScale == 'physic': + strYLoc = yZero + spacingFromLabelToAxis + canvas.fontHeight(MBLabelFont) + ###Physical single chromosome view + if self.selectedChr > -1: + graphMbWidth = endMb - startMb + XScale = Plot.detScale(startMb, endMb) + XStart, XEnd, XStep = XScale + if XStep < 8: + XStep *= 2 + spacingAmtX = spacingAmt = (XEnd-XStart)/XStep + + j = 0 + while abs(spacingAmtX -int(spacingAmtX)) >= spacingAmtX/100.0 and j < 6: + j += 1 + spacingAmtX *= 10 + + formatStr = '%%2.%df' % j + + for counter, _Mb in enumerate(Plot.frange(XStart, XEnd, spacingAmt / NUM_MINOR_TICKS)): + if _Mb < startMb or _Mb > endMb: + continue + Xc = xLeftOffset + plotXScale*(_Mb - startMb) + if counter % NUM_MINOR_TICKS == 0: # Draw a MAJOR mark, not just a minor tick mark + canvas.drawLine(Xc, yZero, Xc, yZero+xMajorTickHeight, color=xAxisTickMarkColor, width=X_MAJOR_TICK_THICKNESS) # Draw the MAJOR tick mark + labelStr = str(formatStr % _Mb) # What Mbase location to put on the label + strWidth = canvas.stringWidth(labelStr, font=MBLabelFont) + drawStringXc = (Xc - (strWidth / 2.0)) + canvas.drawString(labelStr, drawStringXc, strYLoc, font=MBLabelFont, color=xAxisLabelColor, angle=0) + else: + canvas.drawLine(Xc, yZero, Xc, yZero+xMinorTickHeight, color=xAxisTickMarkColor, width=X_MINOR_TICK_THICKNESS) # Draw the MINOR tick mark + # end else + + ###Physical genome wide view + else: + distScale = 0 + startPosX = xLeftOffset + for i, distLen in enumerate(self.ChrLengthDistList): + if distScale == 0: #universal scale in whole genome mapping + if distLen > 75: + distScale = 25 + elif distLen > 30: + distScale = 10 + else: + distScale = 5 + for tickdists in range(distScale, ceil(distLen), distScale): + canvas.drawLine(startPosX + tickdists*plotXScale, yZero, startPosX + tickdists*plotXScale, yZero + 7, color=pid.black, width=1*zoom) + canvas.drawString(str(tickdists), startPosX+tickdists*plotXScale, yZero + 10*zoom, color=pid.black, font=MBLabelFont, angle=270) + startPosX += (self.ChrLengthDistList[i]+self.GraphInterval)*plotXScale + + megabaseLabelFont = pid.Font(ttf="verdana", size=14*zoom*1.5, bold=0) + canvas.drawString("Megabases", xLeftOffset + (plotWidth -canvas.stringWidth("Megabases", font=megabaseLabelFont))/2, + strYLoc + canvas.fontHeight(MBLabelFont) + 5*zoom, font=megabaseLabelFont, color=pid.black) + pass + else: + ChrAInfo = [] + preLpos = -1 + distinctCount = 0.0 + if len(self.genotype) > 1: + for i, _chr in enumerate(self.genotype): + thisChr = [] + Locus0CM = _chr[0].cM + nLoci = len(_chr) + if nLoci <= 8: + for _locus in _chr: + if _locus.name != ' - ': + if _locus.cM != preLpos: + distinctCount += 1 + preLpos = _locus.cM + thisChr.append([_locus.name, _locus.cM-Locus0CM]) + else: + for j in (0, nLoci/4, nLoci/2, nLoci*3/4, -1): + while _chr[j].name == ' - ': + j += 1 + if _chr[j].cM != preLpos: + distinctCount += 1 + preLpos = _chr[j].cM + thisChr.append([_chr[j].name, _chr[j].cM-Locus0CM]) + ChrAInfo.append(thisChr) + else: + for i, _chr in enumerate(self.genotype): + thisChr = [] + Locus0CM = _chr[0].cM + for _locus in _chr: + if _locus.name != ' - ': + if _locus.cM != preLpos: + distinctCount += 1 + preLpos = _locus.cM + thisChr.append([_locus.name, _locus.cM-Locus0CM]) + ChrAInfo.append(thisChr) + + stepA = (plotWidth+0.0)/distinctCount + + LRectWidth = 10 + LRectHeight = 3 + offsetA = -stepA + lineColor = pid.lightblue + startPosX = xLeftOffset + for j, ChrInfo in enumerate(ChrAInfo): + preLpos = -1 + for i, item in enumerate(ChrInfo): + Lname,Lpos = item + if Lpos != preLpos: + offsetA += stepA + differ = 1 + else: + differ = 0 + preLpos = Lpos + Lpos *= plotXScale + if self.selectedChr > -1: + Zorder = i % 5 + else: + Zorder = 0 + if differ: + canvas.drawLine(startPosX+Lpos,yZero,xLeftOffset+offsetA,\ + yZero+25, color=lineColor) + canvas.drawLine(xLeftOffset+offsetA,yZero+25,xLeftOffset+offsetA,\ + yZero+40+Zorder*(LRectWidth+3),color=lineColor) + rectColor = pid.orange + else: + canvas.drawLine(xLeftOffset+offsetA, yZero+40+Zorder*(LRectWidth+3)-3,\ + xLeftOffset+offsetA, yZero+40+Zorder*(LRectWidth+3),color=lineColor) + rectColor = pid.deeppink + canvas.drawRect(xLeftOffset+offsetA, yZero+40+Zorder*(LRectWidth+3),\ + xLeftOffset+offsetA-LRectHeight,yZero+40+Zorder*(LRectWidth+3)+LRectWidth,\ + edgeColor=rectColor,fillColor=rectColor,edgeWidth = 0) + COORDS="%d,%d,%d,%d"%(xLeftOffset+offsetA-LRectHeight, yZero+40+Zorder*(LRectWidth+3),\ + xLeftOffset+offsetA,yZero+40+Zorder*(LRectWidth+3)+LRectWidth) + HREF="javascript:showDatabase3('%s','%s','%s','');" % (showLocusForm,fd.RISet+"Geno", Lname) + Areas=HT.Area(shape='rect',coords=COORDS,href=HREF, title="Locus : " + Lname) + gifmap.areas.append(Areas) + ##piddle bug + if j == 0: + canvas.drawLine(startPosX,yZero,startPosX,yZero+40, color=lineColor) + startPosX += (self.ChrLengthDistList[j]+self.GraphInterval)*plotXScale + + canvas.drawLine(xLeftOffset, yZero, xLeftOffset+plotWidth, yZero, color=pid.black, width=X_AXIS_THICKNESS) # Draw the X axis itself + + def getColorForMarker(self, chrCount,flag):# no change is needed + chrColorDict={} + for i in range(chrCount): + if flag==1: # display blue and lightblue intercross + chrColorDict[i]=pid.black + elif flag==0: + if (i%2==0): + chrColorDict[i]=pid.blue + else: + chrColorDict[i]=pid.lightblue + else:#display different color for different chr + if i in [0,8,16]: + chrColorDict[i]=pid.black + elif i in [1,9,17]: + chrColorDict[i]=pid.red + elif i in [2,10,18]: + chrColorDict[i]=pid.lightgreen + elif i in [3,11,19]: + chrColorDict[i]=pid.blue + elif i in [4,12]: + chrColorDict[i]=pid.lightblue + elif i in [5,13]: + chrColorDict[i]=pid.hotpink + elif i in [6,14]: + chrColorDict[i]=pid.gold + elif i in [7,15]: + chrColorDict[i]=pid.grey + + return chrColorDict + + + def drawProbeSetPosition(self, canvas, plotXScale, offset= (40, 120, 80, 10), zoom = 1, startMb = None, endMb = None): + if len(self.traitList) != 1: + return + + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + yZero = canvas.size[1] - yBottomOffset + fontZoom = zoom + if zoom == 2: + fontZoom = 1.5 + + try: + Chr = self.traitList[0].chr # self.traitListChr =self.traitList[0].chr=_vals need to change to chrList and mbList + Mb = self.traitList[0].mb # self.traitListMb =self.traitList[0].mb=_vals + except: + return + + if self.plotScale == 'physic': + if self.selectedChr > -1: + if self.genotype[0].name != Chr or Mb < self.startMb or Mb > self.endMb: + return + else: + locPixel = xLeftOffset + (Mb-self.startMb)*plotXScale + else: + locPixel = xLeftOffset + for i, _chr in enumerate(self.genotype): + if _chr.name != Chr: + locPixel += (self.ChrLengthDistList[i] + self.GraphInterval)*plotXScale + else: + locPixel += Mb*plotXScale + break + else: + if self.selectedChr > -1: + if self.genotype[0].name != Chr: + return + else: + for i, _locus in enumerate(self.genotype[0]): + #the trait's position is on the left of the first genotype + if i==0 and _locus.Mb >= Mb: + locPixel=-1 + break + + #the trait's position is between two traits + if i > 0 and self.genotype[0][i-1].Mb < Mb and _locus.Mb >= Mb: + locPixel = xLeftOffset + plotXScale*(self.genotype[0][i-1].cM+(_locus.cM-self.genotype[0][i-1].cM)*(Mb -self.genotype[0][i-1].Mb)/(_locus.Mb-self.genotype[0][i-1].Mb)) + break + + #the trait's position is on the right of the last genotype + if i==len(self.genotype[0]) and Mb>=_locus.Mb: + locPixel = -1 + else: + locPixel = xLeftOffset + for i, _chr in enumerate(self.genotype): + if _chr.name != Chr: + locPixel += (self.ChrLengthDistList[i] + self.GraphInterval)*plotXScale + else: + locPixel += (Mb*(_chr[-1].cM-_chr[0].cM)/self.ChrLengthCMList[i])*plotXScale + break + if locPixel >= 0: + traitPixel = ((locPixel, yZero), (locPixel-6, yZero+12), (locPixel+6, yZero+12)) + canvas.drawPolygon(traitPixel, edgeColor=pid.black, fillColor=self.TRANSCRIPT_LOCATION_COLOR, closed=1) + + if self.legendChecked: + startPosY = 15 + nCol = 2 + smallLabelFont = pid.Font(ttf="trebuc", size=12, bold=1) + leftOffset = xLeftOffset+(nCol-1)*200 + canvas.drawPolygon(((leftOffset+6, startPosY-6), (leftOffset, startPosY+6), (leftOffset+12, startPosY+6)), edgeColor=pid.black, fillColor=self.TRANSCRIPT_LOCATION_COLOR, closed=1) + canvas.drawString("Sequence Site", (leftOffset+15), (startPosY+5), smallLabelFont, self.TOP_RIGHT_INFO_COLOR) + + # build dict based on plink result, key is chr, value is list of [snp,BP,pValue] + def getPlinkResultDict(self,outputFileName='',thresholdPvalue=-1,ChrOrderIdNameDict={}): + + ChrList =self.ChrList + plinkResultDict={} + + plinkResultfp = open("%s%s.qassoc"% (webqtlConfig.TMPDIR, outputFileName), "rb") + + headerLine=plinkResultfp.readline()# read header line + line = plinkResultfp.readline() + + valueList=[] # initialize value list, this list will include snp, bp and pvalue info + pValueList=[] + count=0 + + while line: + #convert line from str to list + lineList=self.buildLineList(line=line) + + # only keep the records whose chromosome name is in db + if ChrOrderIdNameDict.has_key(int(lineList[0])) and lineList[-1] and lineList[-1].strip()!='NA': + + chrName=ChrOrderIdNameDict[int(lineList[0])] + snp = lineList[1] + BP = lineList[2] + pValue = float(lineList[-1]) + pValueList.append(pValue) + + if plinkResultDict.has_key(chrName): + valueList=plinkResultDict[chrName] + + # pvalue range is [0,1] + if thresholdPvalue >=0 and thresholdPvalue<=1: + if pValue < thresholdPvalue: + valueList.append((snp,BP,pValue)) + count+=1 + + plinkResultDict[chrName]=valueList + valueList=[] + else: + if thresholdPvalue>=0 and thresholdPvalue<=1: + if pValue < thresholdPvalue: + valueList.append((snp,BP,pValue)) + count+=1 + + if valueList: + plinkResultDict[chrName]=valueList + + valueList=[] + + + line =plinkResultfp.readline() + else: + line=plinkResultfp.readline() + + if pValueList: + minPvalue= min(pValueList) + else: + minPvalue=0 + + return count,minPvalue,plinkResultDict + + + ###################################################### + # input: line: str,one line read from file + # function: convert line from str to list; + # output: lineList list + ####################################################### + def buildLineList(self,line=None): + + lineList = string.split(string.strip(line),' ')# irregular number of whitespaces between columns + lineList =[ item for item in lineList if item <>''] + lineList = map(string.strip, lineList) + + return lineList + + #added by NL: automatically generate pheno txt file for PLINK based on strainList passed from dataEditing page + def genPhenoTxtFileForPlink(self,phenoFileName='', RISetName='', probesetName='', valueDict={}): + pedFileStrainList=self.getStrainNameFromPedFile(RISetName=RISetName) + outputFile = open("%s%s.txt"%(webqtlConfig.TMPDIR,phenoFileName),"wb") + headerLine = 'FID\tIID\t%s\n'%probesetName + outputFile.write(headerLine) + + newValueList=[] + + #if valueDict does not include some strain, value will be set to -9999 as missing value + for item in pedFileStrainList: + try: + value=valueDict[item] + value=str(value).replace('value=','') + value=value.strip() + except: + value=-9999 + + newValueList.append(value) + + + newLine='' + for i, strain in enumerate(pedFileStrainList): + j=i+1 + value=newValueList[i] + newLine+='%s\t%s\t%s\n'%(strain, strain, value) + + if j%1000==0: + outputFile.write(newLine) + newLine='' + + if newLine: + outputFile.write(newLine) + + outputFile.close() + + # get strain name from ped file in order + def getStrainNameFromPedFile(self, RISetName=''): + pedFileopen= open("%splink/%s.ped"%(webqtlConfig.HTMLPATH, RISetName),"r") + line =pedFileopen.readline() + strainNameList=[] + + while line: + lineList=string.split(string.strip(line),'\t') + lineList=map(string.strip,lineList) + + strainName=lineList[0] + strainNameList.append(strainName) + + line =pedFileopen.readline() + + return strainNameList + + ################################################################ + # Generate Chr list, Chr OrderId and Retrieve Length Information + ################################################################ + def getChrNameOrderIdLength(self,RISet=''): + + try: + query = """ + Select + Chr_Length.Name,Chr_Length.OrderId,Length from Chr_Length, InbredSet + where + Chr_Length.SpeciesId = InbredSet.SpeciesId AND + InbredSet.Name = '%s' + Order by OrderId + """ % (RISet) + self.cursor.execute(query) + + results =self.cursor.fetchall() + ChrList=[] + ChrLengthMbList=[] + ChrNameOrderIdDict={} + ChrOrderIdNameDict={} + + for item in results: + ChrList.append(item[0]) + ChrNameOrderIdDict[item[0]]=item[1] # key is chr name, value is orderId + ChrOrderIdNameDict[item[1]]=item[0] # key is orderId, value is chr name + ChrLengthMbList.append(item[2]) + + except: + ChrList=[] + ChrNameOrderIdDict={} + ChrLengthMbList=[] + + return ChrList,ChrNameOrderIdDict,ChrOrderIdNameDict,ChrLengthMbList + + diff --git a/web/webqtl/markerRegression/__init__.py b/web/webqtl/markerRegression/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/misc/__init__.py b/web/webqtl/misc/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/misc/editHtmlPage.py b/web/webqtl/misc/editHtmlPage.py new file mode 100755 index 00000000..68595b83 --- /dev/null +++ b/web/webqtl/misc/editHtmlPage.py @@ -0,0 +1,129 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string +import os +import urlparse + +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from base import webqtlConfig +from utility import webqtlUtil + + +######################################### +# Edit HTML Page +######################################### + +class editHtmlPage(templatePage): + htmlPath = webqtlConfig.ChangableHtmlPath + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + self.templateInclude = 1 + self.dict['title'] = "Editing HTML" + + if not self.updMysql(): + return + + if webqtlConfig.USERDICT[self.privilege] >= webqtlConfig.USERDICT['user']: + pass + else: + heading = "Editing HTML" + detail = ["You don't have the permission to modify this file"] + self.error(heading=heading,detail=detail,error="Error") + return + + path = fd.formdata.getvalue('path') + preview = fd.formdata.getvalue('preview') + newHtmlCode = fd.formdata.getvalue('htmlSrc') + if newHtmlCode: + #newHtmlCode = string.replace(newHtmlCode, "&image", "&image") + newHtmlCode = string.replace(newHtmlCode,"&", "&") + if path and preview: + #preview + self.templateInclude = 0 + #print newHtmlCode + self.debug = newHtmlCode + elif path: + #edit result + fileName = self.htmlPath + path + newfileName = fileName +'.old' + os.system("/bin/cp -f %s %s" % (fileName, newfileName)) + fp = open(fileName, 'wb') + fp.write(newHtmlCode) + fp.close() + #print "chown qyh %s" % fileName + TD_LR = HT.TD(valign="top",colspan=2,bgcolor="#eeeeee", height=200) + mainTitle = HT.Paragraph("Edit HTML", Class="title") + url = HT.Href(text = "page", url =path, Class = "normal") + intro = HT.Blockquote("This ",url, " has been succesfully modified. ") + TD_LR.append(mainTitle, intro) + self.dict['body'] = TD_LR + #elif os.environ.has_key('HTTP_REFERER'): + elif fd.refURL: + #retrieve file to be edited + #refURL = os.environ['HTTP_REFERER'] + addressing_scheme, network_location, path, parameters, query, fragment_identifier = urlparse.urlparse(fd.refURL) + if path[-1] == "/": + path += 'index.html' + + fileName = self.htmlPath + path + try: + fp = open(fileName,'rb') + except: + fp = open(os.path.join(self.htmlPath, 'temp.html'),'rb') + htmlCode = fp.read() + #htmlCode = string.replace(htmlCode, " ","&nbsp") + htmlCode = string.replace(htmlCode, "&","&") + fp.close() + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='editHtml',submit=HT.Input(type='hidden')) + inputBox = HT.Textarea(name='htmlSrc', cols="100", rows=30,text=htmlCode) + + hddn = {'FormID':'editHtml', 'path':path, 'preview':''} + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + previewButton = HT.Input(type='button',name='previewhtml', value='Preview',Class="button", onClick= "editHTML(this.form, 'preview');") + submitButton = HT.Input(type='button',name='submitchange', value='Submit Change',Class="button", onClick= "editHTML(this.form, 'submit');") + resetButton = HT.Input(type='reset',Class="button") + form.append(HT.Center(inputBox, HT.P(), previewButton, submitButton, resetButton)) + + TD_LR = HT.TD(valign="top",colspan=2,bgcolor="#eeeeee") + mainTitle = HT.Paragraph("Edit HTML", Class="title") + intro = HT.Blockquote("You may edit the HTML source code in the editbox below, or you can copy the content of the editbox to your favorite HTML editor. ") + imgUpload = HT.Href(url="javascript:openNewWin('/upload.html', 'menubar=0,toolbar=0,location=0,resizable=0,status=1,scrollbars=1,height=400, width=600');", text="here", Class="fs14") + intro2 = HT.Blockquote("Click ", imgUpload, " to upload Images. ") + TD_LR.append(mainTitle, intro, intro2, HT.Center(form)) + self.dict['body'] = TD_LR + else: + heading = "Editing HTML" + detail = ["Error occured while trying to edit the html file."] + self.error(heading=heading,detail=detail,error="Error") + return + diff --git a/web/webqtl/misc/uploadFilePage.py b/web/webqtl/misc/uploadFilePage.py new file mode 100755 index 00000000..da679910 --- /dev/null +++ b/web/webqtl/misc/uploadFilePage.py @@ -0,0 +1,137 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os +import string + +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from base import webqtlConfig +from utility import webqtlUtil + +######################################### +# Upload File Page +######################################### + +class uploadFilePage(templatePage): + + uploadPath = webqtlConfig.UPLOADPATH + + def __init__(self, fd, formdata, cookies): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + if webqtlConfig.USERDICT[self.privilege] >= webqtlConfig.USERDICT['user']: + pass + else: + heading = "Upload File" + detail = ["You don't have the permission to upload file to the server."] + self.error(heading=heading,detail=detail) + return + + self.cursor.close() + + file1 = self.save_uploaded_file (formdata, 'imgName1') + file2 = self.save_uploaded_file (formdata, 'imgName2') + file3 = self.save_uploaded_file (formdata, 'imgName3') + file4 = self.save_uploaded_file (formdata, 'imgName4') + file5 = self.save_uploaded_file (formdata, 'imgName5') + + i = 0 + uploaded = [] + + for filename in (file1, file2, file3, file4, file5): + if filename: + i += 1 + uploaded.append(filename) + + if i == 0: + heading = "Upload File" + detail = ["No file was selected, no file uploaded."] + self.error(heading=heading,detail=detail) + return + else: + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') + + imgTbl = HT.TableLite(border=0, width = "90%",cellspacing=2, cellpadding=2, align="Center") + imgTbl.append(HT.TR(HT.TD("Thumbnail", width="%30", align='center',Class="colorBlue"), + HT.TD("URL", width="%60",Class="colorBlue", align='center'))) + for item in uploaded: + img = HT.Image("/images/upload/" + item, border = 0, width=80) + + #url = "%s/images/upload/" % webqtlConfig.PORTADDR + item + #url = HT.Href(text=url, url = url, Class='normalsize', target="_blank") + url2 = "/images/upload/" + item + url2 = HT.Href(text=url2, url = url2, Class='normalsize', target="_blank") + imgTbl.append(HT.TR(HT.TD(img, width="%30", align='center',Class="colorWhite"), + #HT.TD(url, HT.BR(), 'OR', HT.BR(), url2, width="%60",Class="colorWhite", align='center'))) + HT.TD(url2, width="%60",Class="colorWhite", align='center'))) + + intro = HT.Paragraph('A total of %d files are uploaded' % i) + TD_LR.append( HT.Center(intro) ) + + TD_LR.append( imgTbl ) + + self.dict['body'] = str(TD_LR) + + def save_uploaded_file(self, form, form_field, upload_dir=""): + if not upload_dir: + upload_dir = self.uploadPath + if not form.has_key(form_field): + return None + fileitem = form[form_field] + + if not fileitem.filename or not fileitem.file: + return None + + seqs = [""] + range(200) + try: + newfileName = string.split(fileitem.filename, ".") + for seq in seqs: + newfileName2 = newfileName[:] + if seq != "": + newfileName2[-2] = "%s-%s" % (newfileName2[-2], seq) + fileExist = glob.glob(os.path.join(upload_dir, string.join(newfileName2, "."))) + if not fileExist: + break + except: + pass + + newfileName = string.join(newfileName2, ".") + #print [newfileName, os.path.join(upload_dir, newfileName)] + #return + + fout = file (os.path.join(upload_dir, newfileName), 'wb') + while 1: + chunk = fileitem.file.read(100000) + if not chunk: break + fout.write (chunk) + fout.close() + return newfileName diff --git a/web/webqtl/networkGraph/GraphPage.py b/web/webqtl/networkGraph/GraphPage.py new file mode 100755 index 00000000..b0d4063d --- /dev/null +++ b/web/webqtl/networkGraph/GraphPage.py @@ -0,0 +1,46 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +class GraphPage: + + def __init__(self, imagefile, mapfile): + # open and read the image map file + try: + mapData = open(mapfile).read() + except: + mapData = "

      Unable to load image map with trait links

      " + + self.content = '''%s + the graph + ''' % (mapData, imagefile) + + def writeToFile(self, filename): + """ + Output the contents of this HTML page to a file + """ + handle = open(filename, "w") + handle.write(self.content) + handle.close() diff --git a/web/webqtl/networkGraph/ProcessedPoint.py b/web/webqtl/networkGraph/ProcessedPoint.py new file mode 100755 index 00000000..6eb855e3 --- /dev/null +++ b/web/webqtl/networkGraph/ProcessedPoint.py @@ -0,0 +1,49 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +# ProcessedPoint: to store information about the relationship between +# two particular traits +# ProcessedPoint represents the calculations made by the program + +class ProcessedPoint: + + def __init__(self, i, j): + self.i = i + self.j = j + + def __eq__(self, other): + # print "ProcessedPoint: comparing %s and %s" % (self, other) + return (self.i == other.i and + self.j == other.j and + self.value == other.value and + self.color == other.color) + + def __str__(self): + return "(%s,%s,%s,%s,%s)" % (self.i, + self.j, + self.value, + self.length, + self.color) diff --git a/web/webqtl/networkGraph/__init__.py b/web/webqtl/networkGraph/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/networkGraph/nGraphException.py b/web/webqtl/networkGraph/nGraphException.py new file mode 100755 index 00000000..d492fca9 --- /dev/null +++ b/web/webqtl/networkGraph/nGraphException.py @@ -0,0 +1,33 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +class nGraphException(Exception): + def __init__(self, message): + self.message = message + + def __str__(self): + return "Network Graph Exception: %s" % self.message + diff --git a/web/webqtl/networkGraph/networkGraphPage.py b/web/webqtl/networkGraph/networkGraphPage.py new file mode 100755 index 00000000..fb4021f0 --- /dev/null +++ b/web/webqtl/networkGraph/networkGraphPage.py @@ -0,0 +1,335 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by NL 2010/02/11 + +#!/usr/bin/python +# networkGraph.py +# Author: Stephen Pitts +# 6/2/2004 +# +# a script to take a matrix of data from a WebQTL job and generate a +# graph using the neato package from GraphViz +# +# See graphviz for documentation of the parameters +# + + +#from mod_python import apache, util, Cookie +#import cgi +import tempfile +import os +import time +import sys +import cgitb +import string + +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +import networkGraphUtils +from base import webqtlConfig +from utility import webqtlUtil +from base.webqtlTrait import webqtlTrait +import compareCorrelates.trait as smpTrait +from GraphPage import GraphPage +from networkGraphPageBody import networkGraphPageBody +from correlationMatrix.tissueCorrelationMatrix import tissueCorrelationMatrix + +cgitb.enable() + + +class networkGraphPage(templatePage): + + def __init__(self,fd,InputData=None): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + if not fd.genotype: + fd.readGenotype() + + self.searchResult = fd.formdata.getvalue('searchResult') + + self.tissueProbeSetFeezeId = "1" #XZ, Jan 03, 2010: currently, this dataset is "UTHSC Illumina V6.2 RankInv B6 D2 average CNS GI average (May 08)" + TissueCorrMatrixObject = tissueCorrelationMatrix(tissueProbeSetFreezeId=self.tissueProbeSetFeezeId) + + if type("1") == type(self.searchResult): + self.searchResult = string.split(self.searchResult, '\t') + + if (not self.searchResult or (len(self.searchResult) < 2)): + heading = 'Network Graph' + detail = ['You need to select at least two traits in order to generate Network Graph.'] + self.error(heading=heading,detail=detail) + print 'Content-type: text/html\n' + self.write() + return + + if self.searchResult: + if len(self.searchResult) > webqtlConfig.MAXCORR: + heading = 'Network Graph' + detail = ['In order to display Network Graph properly, Do not select more than %d traits for Network Graph.' % webqtlConfig.MAXCORR] + self.error(heading=heading,detail=detail) + print 'Content-type: text/html\n' + self.write() + return + else: + pass + + traitList = [] + traitDataList = [] + + for item in self.searchResult: + thisTrait = webqtlTrait(fullname=item, cursor=self.cursor) + thisTrait.retrieveInfo() + thisTrait.retrieveData(fd.strainlist) + traitList.append(thisTrait) + traitDataList.append(thisTrait.exportData(fd.strainlist)) + + else: + heading = 'Network Graph' + detail = [HT.Font('Error : ',color='red'),HT.Font('Error occurs while retrieving data from database.',color='black')] + self.error(heading=heading,detail=detail) + print 'Content-type: text/html\n' + self.write() + return + + NNN = len(traitList) + + if NNN < 2: + templatePage.__init__(self, fd) + heading = 'Network Graph' + detail = ['You need to select at least two traits in order to generate a Network Graph'] + print 'Content-type: text/html\n' + self.write() + return + else: + pearsonArray = [([0] * (NNN))[:] for i in range(NNN)] + spearmanArray = [([0] * (NNN))[:] for i in range(NNN)] + GeneIdArray = [] + GeneSymbolList = [] #XZ, Jan 03, 2011: holds gene symbols for calculating tissue correlation + traitInfoArray = [] + + i = 0 + nnCorr = len(fd.strainlist) + for i, thisTrait in enumerate(traitList): + names1 = [thisTrait.db.name, thisTrait.name, thisTrait.cellid] + for j, thisTrait2 in enumerate(traitList): + names2 = [thisTrait2.db.name, thisTrait2.name, thisTrait2.cellid] + if j < i: + corr,nOverlap = webqtlUtil.calCorrelation(traitDataList[i],traitDataList[j],nnCorr) + pearsonArray[i][j] = corr + pearsonArray[j][i] = corr + elif j == i: + pearsonArray[i][j] = 1.0 + spearmanArray[i][j] = 1.0 + else: + corr,nOverlap = webqtlUtil.calCorrelationRank(traitDataList[i],traitDataList[j],nnCorr) + spearmanArray[i][j] = corr + spearmanArray[j][i] = corr + + GeneId1 = None + tmpSymbol = None + if thisTrait.db.type == 'ProbeSet': + try: + GeneId1 = int(thisTrait.geneid) + except: + GeneId1 = 0 + if thisTrait.symbol: + tmpSymbol = thisTrait.symbol.lower() + GeneIdArray.append(GeneId1) + GeneSymbolList.append(tmpSymbol) + + _traits = [] + _matrix = [] + + for i in range(NNN): + turl = webqtlConfig.CGIDIR + webqtlConfig.SCRIPTFILE + '?FormID=showDatabase&database=%s&ProbeSetID=%s' % (traitList[i].db.name, traitList[i].name) + if traitList[i].cellid: + turl += "&CellID=%s" % traitList[i].cellid + + if traitList[i].db.type == 'ProbeSet': + if traitList[i].symbol: + _symbol = traitList[i].symbol + else: + _symbol = 'unknown' + elif traitList[i].db.type == 'Publish': + _symbol = traitList[i].name + if traitList[i].confidential: + if webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=traitList[i].authorized_users): + if traitList[i].post_publication_abbreviation: + _symbol = traitList[i].post_publication_abbreviation + else: + if traitList[i].pre_publication_abbreviation: + _symbol = traitList[i].pre_publication_abbreviation + else: + if traitList[i].post_publication_abbreviation: + _symbol = traitList[i].post_publication_abbreviation + + #XZ, 05/26/2009: Xiaodong add code for Geno data + elif traitList[i].db.type == 'Geno': + _symbol = traitList[i].name + else: + _symbol = traitList[i].description + #####if this trait entered by user + if _symbol.__contains__('entered'): + _symbol = _symbol[:_symbol.index('entered')] + #####if this trait generaged by genenetwork + elif _symbol.__contains__('generated'): + _symbol = _symbol[_symbol.rindex(':')+1:] + + newTrait = smpTrait.Trait(name=str(traitList[i]), href=turl, symbol=_symbol) + newTrait.color = "black" + _traits.append(newTrait) + + for j in range(i+1, NNN): + dataPoint = smpTrait.RawPoint(i, j) + dataPoint.spearman = spearmanArray[i][j] + dataPoint.pearson = pearsonArray[i][j] + + #XZ: get literature correlation info. + if GeneIdArray[i] and GeneIdArray[j]: + if GeneIdArray[i] == GeneIdArray[j]: + dataPoint.literature = 1 + else: + self.cursor.execute("SELECT Value from LCorrRamin3 WHERE (GeneId1 = %d and GeneId2 = %d) or (GeneId1 = %d and GeneId2 = %d)" % (GeneIdArray[i], GeneIdArray[j], GeneIdArray[j], GeneIdArray[i])) + try: + dataPoint.literature = self.cursor.fetchone()[0] + except: + dataPoint.literature = 0 + else: + dataPoint.literature = 0 + + #XZ: get tissue correlation info + if GeneSymbolList[i] and GeneSymbolList[j]: + dataPoint.tissue = 0 + geneSymbolPair = [] + geneSymbolPair.append(GeneSymbolList[i]) + geneSymbolPair.append(GeneSymbolList[j]) + corrArray,pvArray = TissueCorrMatrixObject.getCorrPvArrayForGeneSymbolPair(geneNameLst=geneSymbolPair) + if corrArray[1][0]: + dataPoint.tissue = corrArray[1][0] + else: + dataPoint.tissue = 0 + + _matrix.append(dataPoint) + + OrigDir = os.getcwd() + + sessionfile = fd.formdata.getvalue('session') + + inputFilename = fd.formdata.getvalue('inputFile') + + #If there is no sessionfile generate one and dump all matrix/trait values + if not sessionfile: + filename = webqtlUtil.generate_session() + webqtlUtil.dump_session([_matrix, _traits], os.path.join(webqtlConfig.TMPDIR, filename + '.session')) + sessionfile = filename + + startTime = time.time() + + #Build parameter dictionary used by networkGraphPage class using buildParamDict function + params = networkGraphUtils.buildParamDict(fd, sessionfile) + + nodes = len(_traits) + rawEdges = len(_matrix) + + if params["tune"] == "yes": + params = networkGraphUtils.tuneParamDict(params, nodes, rawEdges) + + matrix = networkGraphUtils.filterDataMatrix(_matrix, params) + + optimalNode = networkGraphUtils.optimalRadialNode(matrix) + + if not inputFilename: + inputFilename = tempfile.mktemp() + + inputFilename = webqtlConfig.IMGDIR + inputFilename.split("/")[2] + + #writes out 4 graph files for exporting + graphFile = "/image/" + networkGraphUtils.writeGraphFile(matrix, _traits, inputFilename, params) + + networkGraphUtils.processDataMatrix(matrix, params) + + edges = 0 + + for edge in matrix: + if edge.value != 0: + edges +=1 + + for trait in _traits: + trait.name = networkGraphUtils.fixLabel(trait.name) + + RootDir = webqtlConfig.IMGDIR + RootDirURL = "/image/" + + + + #This code writes the datafile that the graphviz function runNeato uses to generate the + #"digraph" file that defines the graphs parameters + datafile = networkGraphUtils.writeNeatoFile(matrix=matrix, traits=_traits, filename=inputFilename, GeneIdArray=GeneIdArray, p=params) + + #Generate graph in various file types + layoutfile = networkGraphUtils.runNeato(datafile, "dot", "dot", params["gType"]) # XZ, 09/11/2008: add module name + # ZS 03/04/2010 This second output file (layoutfile_pdf) is rotated by 90 degrees to prevent an issue with pdf output being cut off at the edges + layoutfile_pdf = networkGraphUtils.runNeato(datafile + "_pdf", "dot", "dot", params["gType"]) # ZS 03/04/2010 + pngfile = networkGraphUtils.runNeato(layoutfile, "png", "png", params["gType"]) + mapfile = networkGraphUtils.runNeato(layoutfile, "cmapx", "cmapx", params["gType"])# XZ, 09/11/2008: add module name + giffile = networkGraphUtils.runNeato(layoutfile, "gif", "gif", params["gType"])# XZ, 09/11/2008:add module name + psfile = networkGraphUtils.runNeato(layoutfile_pdf, "ps", "ps", params["gType"])# XZ, 09/11/2008: add module name + pdffile = networkGraphUtils.runPsToPdf(psfile, params["width"], params["height"])# XZ, 09/11/2008: add module name + + #This generates text files in XGGML (standardized graphing language) and plain text + #so the user can create his/her own graphs in a program like Cytoscape + + htmlfile1 = datafile + ".html" + htmlfile2 = datafile + ".graph.html" + + os.chdir(OrigDir) + + #This generates the graph in various image formats + giffile = RootDirURL + giffile + pngfile = RootDirURL + pngfile + pdffile = RootDirURL + pdffile + endTime = time.time() + totalTime = endTime - startTime + + os.chdir(RootDir) + + page2 = GraphPage(giffile, mapfile) + page2.writeToFile(htmlfile2) + + #This generates the HTML for the body of the Network Graph page + page1 = networkGraphPageBody(fd, matrix, _traits, htmlfile2, giffile, pdffile, nodes, edges, rawEdges, totalTime, params, page2.content, graphFile, optimalNode) + + #Adds the javascript colorSel to the body to allow line color selection + self.dict["js1"] = '
      ' + #self.dict["js1"] += '' + + #Set body of current templatePage to body of the templatePage networkGraphPage + self.dict['body'] = page1.dict['body'] + + diff --git a/web/webqtl/networkGraph/networkGraphPageBody.py b/web/webqtl/networkGraph/networkGraphPageBody.py new file mode 100644 index 00000000..22b49ccd --- /dev/null +++ b/web/webqtl/networkGraph/networkGraphPageBody.py @@ -0,0 +1,697 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from base.templatePage import templatePage +import networkGraphUtils +from base import webqtlConfig + + +# our output representation is fairly complicated +# because we use an iframe to represent the image and the image has +# an associated image map, our output is actually three files +# 1) a networkGraphPage instance -- the URL we pass to the user +# 2) a GraphPage with the image map and the graph -- this page has to be +# there to pass the imagemap data to the browser +# 3) a PNG graph file itself + +class networkGraphPageBody(templatePage): + """ + Using the templatePage class, we build an HTML shell for the graph + that displays the parameters used to generate it and allows the + user to redraw the graph with different parameters. + + The way templatePage works, we build the page in pieces in the __init__ + method and later on use the inherited write method to render the page. + """ + + def __init__(self, fd, matrix, traits, imageHtmlName, imageName, pdfName, nodes, + edges, rawEdges, totalTime, p, graphcode, graphName, optimalNode): + + templatePage.__init__(self, fd) + + if p["printIslands"] == 0: + island = "Only nodes with edges" + else: + island = "All nodes" + + body = """

      Network Graph

      +

      The %s nodes in the + graph below show the selected traits. %s are displayed. The + %s edges between the nodes, filtered from the %s total edges and + drawn as %s, show %s correlation + coefficients greater than %s or less than -%s. The graph\'s + canvas is %s by %s cm, and the node + labels are drawn with a %s point font, and the edge + labels are drawn with a %s point font. Right-click or control-click + on the graph to save it to disk for further manipulation. See + below for the trait key, and graph options.

      + """ % (nodes, island, edges, rawEdges, + p["splineName"], p["correlationName"], + p["kValue"], + p["kValue"], + p["width"], + p["height"], + p["nfontsize"], + p["cfontsize"]) + + #Generate a list of symbols for the central node selection drop-down menu + + symbolList = networkGraphUtils.generateSymbolList(traits) + + #Some of these hidden variables (CellID, CellID2, ProbesetID2, etc) exist + #to be used by the javascript functions called when a user clicks on an edge or node + + formParams = ''' + +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + ''' % (webqtlConfig.CGIDIR, + webqtlConfig.SCRIPTFILE, + p["filename"], + graphName, + p["riset"], + p["session"], + p["searchResult"], + symbolList, + optimalNode) + + body += formParams + + #Adds the html generated by graphviz that displays the graph itself + body += graphcode + + #Initializes all form values + + selected = ["","","",""] + selected[p["whichValue"]] = "CHECKED" + + selected3 = ["",""] + if p["splines"] == "yes": + selected3[0] = "CHECKED" + else: + selected3[1] = "CHECKED" + + selected5 = ["",""] + if p["nodeshape"] == "yes": + selected5[0] = "CHECKED" + else: + selected5[1] = "CHECKED" + + selected7 = ["",""] + if p["nodelabel"] == "yes": + selected7[0] = "CHECKED" + else: + selected7[1] = "CHECKED" + + selected6 = ["",""] + if p["dispcorr"] == "yes": + selected6[0] = "CHECKED" + else: + selected6[1] = "CHECKED" + + selected4 = ["", ""] + selected4[p["printIslands"]] = "CHECKED" + + selectedExportFormat = ["",""] + if p["exportFormat"] == "xgmml": + selectedExportFormat[0] = "selected='selected'" + elif p["exportFormat"] == "plain": + selectedExportFormat[1] = "selected='selected'" + + selectedTraitType = ["",""] + if p["traitType"] == "symbol": + selectedTraitType[0] = "selected='selected'" + elif p["traitType"] == "name": + selectedTraitType[1] = "selected='selected'" + + selectedgType = ["","","","",""] + if p["gType"] == "none": + selectedgType[0] = "selected='selected'" + elif p["gType"] == "neato": + selectedgType[1] = "selected='selected'" + elif p["gType"] == "fdp": + selectedgType[2] = "selected='selected'" + elif p["gType"] == "circular": + selectedgType[3] = "selected='selected'" + elif p["gType"] == "radial": + selectedgType[4] = "selected='selected'" + + + selectedLock = ["",""] + if p["lock"] == "no": + selectedLock[0] = "selected='selected'" + elif p["lock"] == "yes": + selectedLock[1] = "selected='selected'" + + # line 1~6 + + selectedL1style = ["","","","",""] + if p["L1style"] == "": + selectedL1style[0] = "selected='selected'" + elif p["L1style"] == "bold": + selectedL1style[1] = "selected='selected'" + elif p["L1style"] == "dotted": + selectedL1style[2] = "selected='selected'" + elif p["L1style"] == "dashed": + selectedL1style[3] = "selected='selected'" + else: + selectedL1style[4] = "selected='selected'" + + selectedL2style = ["","","","",""] + if p["L2style"] == "": + selectedL2style[0] = "selected='selected'" + elif p["L2style"] == "bold": + selectedL2style[1] = "selected='selected'" + elif p["L2style"] == "dotted": + selectedL2style[2] = "selected='selected'" + elif p["L2style"] == "dashed": + selectedL2style[3] = "selected='selected'" + else: + selectedL2style[4] = "selected='selected'" + + selectedL3style = ["","","","",""] + if p["L3style"] == "": + selectedL3style[0] = "selected='selected'" + elif p["L3style"] == "bold": + selectedL3style[1] = "selected='selected'" + elif p["L3style"] == "dotted": + selectedL3style[2] = "selected='selected'" + elif p["L3style"] == "dashed": + selectedL3style[3] = "selected='selected'" + else: + selectedL3style[4] = "selected='selected'" + + selectedL4style = ["","","","",""] + if p["L4style"] == "": + selectedL4style[0] = "selected='selected'" + elif p["L4style"] == "bold": + selectedL4style[1] = "selected='selected'" + elif p["L4style"] == "dotted": + selectedL4style[2] = "selected='selected'" + elif p["L4style"] == "dashed": + selectedL4style[3] = "selected='selected'" + else: + selectedL4style[4] = "selected='selected'" + + selectedL5style = ["","","","",""] + if p["L5style"] == "": + selectedL5style[0] = "selected='selected'" + elif p["L5style"] == "bold": + selectedL5style[1] = "selected='selected'" + elif p["L5style"] == "dotted": + selectedL5style[2] = "selected='selected'" + elif p["L5style"] == "dashed": + selectedL5style[3] = "selected='selected'" + else: + selectedL5style[4] = "selected='selected'" + + selectedL6style = ["","","","",""] + if p["L6style"] == "": + selectedL6style[0] = "selected='selected'" + elif p["L6style"] == "bold": + selectedL6style[1] = "selected='selected'" + elif p["L6style"] == "dotted": + selectedL6style[2] = "selected='selected'" + elif p["L6style"] == "dashed": + selectedL6style[3] = "selected='selected'" + else: + selectedL6style[4] = "selected='selected'" + + nfontSelected = ["", "", ""] + if p["nfont"] == "arial": + nfontSelected[0] = "selected='selected'" + elif p["nfont"] == "verdana": + nfontSelected[1] = "selected='selected'" + elif p["nfont"] == "times": + nfontSelected[2] = "selected='selected'" + + cfontSelected = ["", "", ""] + if p["cfont"] == "arial": + cfontSelected[0] = "selected='selected'" + elif p["cfont"] == "verdana": + cfontSelected[1] = "selected='selected'" + elif p["cfont"] == "times": + cfontSelected[2] = "selected='selected'" + + #Writes the form part of the body + + body += '''

      + + + + """ + TD_RIGHT = HT.TD(valign="top",width="60%",bgcolor="#eeeeee") + main_title = HT.Paragraph("Batch Trait Submission Utility") + main_title.__setattr__("class","title") + + ############################# + + title1 = HT.Paragraph("1. Choose cross or RI set:") + title1.__setattr__("class","subtitle") + + STEP1 = HT.TableLite(cellSpacing=2,cellPadding=0,width="90%",border=0) + crossMenu = HT.Select(name='RISet', onChange='xchange()') + allRISets = map(lambda x: x[:-5], glob.glob1(webqtlConfig.GENODIR, '*.geno')) + allRISets.sort() + allRISets.remove("BayXSha") + allRISets.remove("ColXBur") + allRISets.remove("ColXCvi") + specMenuSub1 = HT.Optgroup(label = 'MOUSE') + specMenuSub2 = HT.Optgroup(label = 'RAT') + for item in allRISets: + if item != 'HXBBXH': + specMenuSub1.append(tuple([item,item])) + else: + specMenuSub2.append(tuple(['HXB/BXH', 'HXBBXH'])) + crossMenu.append(specMenuSub1) + crossMenu.append(specMenuSub2) + crossMenu.selected.append('BXD') + crossMenuText = HT.Paragraph('Select the cross or recombinant inbred \ + set from the menu below. ') + infoButton = HT.Input(type="button",Class="button",value="Info",\ + onClick="crossinfo2();") + # NL, 07/27/2010. variable 'IMGSTEP1' has been moved from templatePage.py to webqtlUtil.py; + TD1 = HT.TD(webqtlUtil.IMGSTEP1,width=58) + TD2 = HT.TD() + TD2.append(crossMenuText,crossMenu, infoButton) + STEP1.append(HT.TR(TD1,TD2),HT.TR(HT.TD(colspan=2,height=20))) + + ############################# + title2 = HT.Paragraph("  2. Enter Trait Data:") + title2.__setattr__("class","subtitle") + + STEP2 = HT.TableLite(cellSpacing=2,cellPadding=0,width="90%",border=0) + Para1 = HT.Paragraph() + Para1.append('You can submit traits by entering a file name here. The \ + file should contain a number of no more than 100 traits. The file \ + should follow the file format described in this ', HT.Href(url=\ + "/sample.txt",Class="normalsize", target="_blank", \ + text= 'Sample'), ' text.') + + filebox = HT.Paragraph(HT.Input(type='file', name='batchdatafile', size=20)) + + # NL, 07/27/2010. variable 'IMGSTEP2' has been moved from templatePage.py to webqtlUtil.py; + TD1 = HT.TD(webqtlUtil.IMGSTEP2,width=58) + TD2 = HT.TD() + TD2.append(Para1,filebox) + STEP2.append(HT.TR(TD1,TD2),HT.TR(HT.TD(colspan=2,height=20))) + + ######################################### + hddn = {'FormID':'batSubmitResult'} + + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), \ + enctype='multipart/form-data', name='crossChoice', submit=HT.Input(type='hidden')) + + submit = HT.Input(type='button' ,name='next', value='Next',onClick=\ + 'batchSelection(this.form);',Class="button") + reset = HT.Input(type='reset' ,name='reset' ,value='Reset',Class="button") + # NL, 07/27/2010. variable 'IMGNEXT' has been moved from templatePage.py to webqtlUtil.py; + form.append(HT.Blockquote(title1,HT.Center(STEP1,webqtlUtil.IMGNEXT),title2,\ + HT.Center(STEP2,webqtlUtil.IMGNEXT)),HT.Center(HT.P(),submit,reset)) + + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + TD_RIGHT.append(main_title,form) + + self.dict['body'] = TD_LEFT + str(TD_RIGHT) + diff --git a/web/webqtl/submitTrait/CrossChoicePage.py b/web/webqtl/submitTrait/CrossChoicePage.py new file mode 100755 index 00000000..fd919e5b --- /dev/null +++ b/web/webqtl/submitTrait/CrossChoicePage.py @@ -0,0 +1,233 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import glob +from htmlgen import HTMLgen2 as HT +import os + +from base.templatePage import templatePage +from utility import webqtlUtil +from base import webqtlConfig + +# XZ, 08/28/2008: From home, click "Enter Trait Data". +# XZ, 08/28/2008: This class generate what you see +######################################### +# CrossChoicePage +######################################### + +class CrossChoicePage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + self.dict['title'] = 'Trait Submission' + + if not self.openMysql(): + return + + authorized = 0 + if webqtlConfig.USERDICT[self.privilege] >= webqtlConfig.USERDICT['user']: + authorized = 1 + + TD_LEFT = """ + + """ + TD_RIGHT = HT.TD(valign="top",width="55%",bgcolor="#eeeeee") + main_title = HT.Paragraph(" Trait Submission Form") + main_title.__setattr__("class","title") + + ############################# + + title1 = HT.Paragraph("  1. Choose cross or RI set:") + title1.__setattr__("class","subtitle") + + STEP1 = HT.TableLite(cellSpacing=2,cellPadding=0,width="90%",border=0) + crossMenu = HT.Select(name='RISet', onChange='xchange()') + allRISets = map(lambda x: x[:-5], glob.glob1(webqtlConfig.GENODIR, '*.geno')) + allRISets.sort() + if authorized: + self.cursor.execute("select Name from InbredSet") + else: + self.cursor.execute("select Name from InbredSet where public > %d" % webqtlConfig.PUBLICTHRESH) + results = map(lambda X:X[0], self.cursor.fetchall()) + allRISets = filter(lambda X:X in results, allRISets) + + specMenuSub1 = HT.Optgroup(label = 'MOUSE') + specMenuSub2 = HT.Optgroup(label = 'RAT') + specMenuSub3 = HT.Optgroup(label = 'ARABIDOPSIS') + specMenuSub4 = HT.Optgroup(label = 'BARLEY') + for item in allRISets: + if item == 'HXBBXH': + specMenuSub2.append(('HXB/BXH', 'HXBBXH')) + elif item in ('BayXSha', 'ColXCvi', 'ColXBur'): + specMenuSub3.append((item, item)) + elif item in ('SXM'): + specMenuSub4.append((item, item)) + elif item == 'AXBXA': + specMenuSub1.append(('AXB/BXA', 'AXBXA')) + else: + specMenuSub1.append(tuple([item,item])) + crossMenu.append(specMenuSub1) + crossMenu.append(specMenuSub2) + crossMenu.append(specMenuSub3) + crossMenu.append(specMenuSub4) + crossMenu.selected.append('BXD') + crossMenuText = HT.Paragraph('Select the cross or recombinant inbred \ + set from the menu below. If you wish, paste data or select a data \ + file in the next sections') + infoButton = HT.Input(type="button",Class="button",value="Info",\ + onClick="crossinfo2();") + # NL, 07/27/2010. variable 'IMGSTEP1' has been moved from templatePage.py to webqtlUtil.py; + TD1 = HT.TD(webqtlUtil.IMGSTEP1,width=58) + TD2 = HT.TD() + TD2.append(crossMenuText,crossMenu, infoButton) + STEP1.append(HT.TR(TD1,TD2),HT.TR(HT.TD(colspan=2,height=20))) + + ############################# + title2 = HT.Paragraph("  2. Enter Trait Data:") + title2.__setattr__("class","subtitle") + + STEP2 = HT.TableLite(cellSpacing=2,cellPadding=0,width="90%",border=0) + Para1 = HT.Paragraph() + Para1.append(HT.Strong("From a File: ")) + Para1.append('You can enter data by entering a file name here. The file\ + should contain a series of numbers representing trait values. The \ + values can be on one line separated by spaces or tabs, or they can \ + be on separate lines. Include one value for each progeny individual\ + or recombinant inbred line. Represent missing values with a \ + non-numeric character such as "x". If you have chosen a recombinant\ + inbred set, when you submit your data will be displayed in a form \ + where you can confirm and/or edit them. If you enter a file name \ + here, any data that you paste into the next section will be ignored.') + + filebox = HT.Paragraph(HT.Input(type='file', name='traitfile', size=20)) + + OR = HT.Paragraph(HT.Center(HT.Font(HT.Strong('OR'),color="red"))) + + Para2 = HT.Paragraph() + Para2.append(HT.Strong("By Pasting or Typing Multiple Values:")) + Para2.append('You can enter data by pasting a series of numbers \ + representing trait values into this area. The values can be on one\ + line separated by spaces or tabs, or they can be on separate lines.\ + Include one value for each progeny individual or recombinant inbred\ + line. Represent missing values with a non-numeric character such \ + as "x". If you have chosen a recombinant inbred set, when you submit\ + your data will be displayed in a form where you can confirm and/or\ + edit them. If you enter a file name in the previous section, any \ + data that you paste here will be ignored. Check ', + HT.Href(url="/RIsample.html", text="sample data", target="_blank", Class="normalsize"), + ' for the correct format.') + + pastebox = HT.Paragraph(HT.Textarea(name='traitpaste', cols=45, rows=6)) + # NL, 07/27/2010. variable 'IMGSTEP2' has been moved from templatePage.py to webqtlUtil.py; + TD1 = HT.TD(webqtlUtil.IMGSTEP2,width=58) + TD2 = HT.TD() + TD2.append(Para1,filebox,OR,Para2,pastebox) + STEP2.append(HT.TR(TD1,TD2),HT.TR(HT.TD(colspan=2,height=20))) + + ############################# + title3 = HT.Paragraph("  3. Options:") + title3.__setattr__("class","subtitle") + + STEP3 = HT.TableLite(cellSpacing=2,cellPadding=0,width="90%",border=0) + + ######## + opt1 = HT.Paragraph(HT.Strong('Enable Use of Trait Variance: ')) + opt1.append(HT.Input(type='checkbox', Class='checkbox', name=\ + 'enablevariance', value='ON', onClick='xchange()')) + opt1.append(HT.BR(),'You may use your trait variance data in WebQTL,\ + if you check this box, you will be asked to submit your trait \ + variance data later') + + ######## + opt2 = HT.Paragraph(HT.Strong('Enable Use of Parents/F1: ')) + opt2.append(HT.Input(type='checkbox', name='parentsf1', value='ON')) + opt2.append(HT.BR(),'Check this box if you wish to use Parents and F1 \ + data in WebQTL') + + ######## + opt3 = HT.Paragraph(HT.Strong("Name Your Trait ",HT.Font("(optional) ",\ + color="red"))) + opt3.append(HT.Input(name='identification', size=12, maxlength=30)) + # NL, 07/27/2010. variable 'IMGSTEP3' has been moved from templatePage.py to webqtlUtil.py; + TD1 = HT.TD(webqtlUtil.IMGSTEP3,width=58) + TD2 = HT.TD() + TD2.append(opt1,opt3) + STEP3.append(HT.TR(TD1,TD2),HT.TR(HT.TD(colspan=2,height=20))) + + ######################################### + hddn = {'FormID':'crossChoice','submitID':'next', 'incparentsf1':'yes'} + + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), \ + enctype= 'multipart/form-data', name='crossChoice', submit=\ + HT.Input(type='hidden')) + + submit = HT.Input(type='button' ,name='next', value='Next',onClick=\ + 'showNext(this.form);', Class="button") + reset = HT.Input(type='reset' ,name='reset' ,value='Reset',Class="button") + + sample = HT.Input(type='button' ,name='sample' ,value='Sample Data', \ + onClick='showSample(this.form);',Class="button") + # NL, 07/27/2010. variable 'IMGNEXT' has been moved from templatePage.py to webqtlUtil.py; + form.append(title1,HT.Center(STEP1,webqtlUtil.IMGNEXT),title2,HT.Center(STEP2,\ + webqtlUtil.IMGNEXT),title3,HT.Center(STEP3,webqtlUtil.IMGNEXT,HT.P(),submit,reset,sample)) + + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + TD_RIGHT.append(main_title,form) + self.dict['body'] = TD_LEFT + str(TD_RIGHT) + + diff --git a/web/webqtl/submitTrait/VarianceChoicePage.py b/web/webqtl/submitTrait/VarianceChoicePage.py new file mode 100755 index 00000000..bdbc47f9 --- /dev/null +++ b/web/webqtl/submitTrait/VarianceChoicePage.py @@ -0,0 +1,174 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from htmlgen import HTMLgen2 as HT +import os + +from base.templatePage import templatePage +from utility import webqtlUtil +from base import webqtlConfig + + +# XZ, 09/09/2008: From home, click "Enter Trait Data". +# XZ, 09/09/2008: If user check "Enable Use of Trait Variance", +# XZ, 09/09/2008: this class generate what you see +######################################### +# VarianceChoicePage +######################################### + +class VarianceChoicePage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + self.dict['title'] = 'Variance Submission' + + if not fd.genotype: + fd.readData(incf1=1) + + TD_LEFT = """ + + """ + TD_RIGHT = HT.TD(valign="top",width="55%",bgcolor="#eeeeee") + main_title = HT.Paragraph(" Variance Submission Form") + main_title.__setattr__("class","title") + + ############################# + title2 = HT.Paragraph("  1. Enter variance Data:") + title2.__setattr__("class","subtitle") + + STEP2 = HT.TableLite(cellSpacing=2,cellPadding=0,width="90%",border=0) + Para1 = HT.Paragraph() + Para1.append(HT.Strong("From a File: ")) + Para1.append('You can enter data by entering a file name here. The file\ + should contain a series of numbers representing variance values. The \ + values can be on one line separated by spaces or tabs, or they can be \ + on separate lines. Include one value for each progeny individual or \ + recombinant inbred line. Represent missing values with a non-numeric \ + character such as "x". If you have chosen a recombinant inbred set, \ + when you submit your data will be displayed in a form where you can \ + confirm and/or edit them. If you enter a file name here, any data \ + that you paste into the next section will be ignored.') + + filebox = HT.Paragraph(HT.Input(type='file', name='variancefile', size=20)) + + OR = HT.Paragraph(HT.Center(HT.Font(HT.Strong('OR'),color="red"))) + + Para2 = HT.Paragraph() + Para2.append(HT.Strong("By Pasting or Typing Multiple Values:")) + Para2.append('You can enter data by pasting a series of numbers \ + representing variance values into this area. The values can be on one \ + line separated by spaces or tabs, or they can be on separate lines. \ + Include one value for each progeny individual or recombinant inbred \ + line. Represent missing values with a non-numeric character such as \ + "x". If you have chosen a recombinant inbred set, when you submit \ + your data will be displayed in a form where you can confirm and/or \ + edit them. If you enter a file name in the previous section, any data\ + that you paste here will be ignored.') + + pastebox = HT.Paragraph(HT.Textarea(name='variancepaste', cols=45, rows=6)) + # NL, 07/27/2010. variable 'IMGSTEP1' has been moved from templatePage.py to webqtlUtil.py; + TD1 = HT.TD(webqtlUtil.IMGSTEP1,width=58) + TD2 = HT.TD() + TD2.append(Para1,filebox,OR,Para2,pastebox) + STEP2.append(HT.TR(TD1,TD2),HT.TR(HT.TD(colspan=2,height=20))) + ######################################### + + hddn = {'FormID':'varianceChoice','submitID':'next','RISet':fd.RISet} + if fd.identification: + hddn['identification'] = fd.identification + if fd.enablevariance: + hddn['enablevariance']='ON' + + if fd.incparentsf1: + hddn['incparentsf1']='ON' + + for item, value in fd.allTraitData.items(): + if value.val: + hddn[item] = value.val + + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), \ + enctype='multipart/form-data', name='crossChoice', submit=HT.Input(type=\ + 'hidden')) + + submit = HT.Input(type='button' ,name='next', value='Next',onClick=\ + 'showNext(this.form);',Class="button") + reset = HT.Input(type='reset' ,name='reset' ,value='Reset',Class="button") + + ######################################### + title3 = HT.Paragraph("  2. Submit:") + title3.__setattr__("class","subtitle") + + STEP3 = HT.TableLite(cellSpacing=2,cellPadding=0,width="90%",border=0) + + # NL, 07/27/2010. variable 'IMGSTEP2' has been moved from templatePage.py to webqtlUtil.py; + TD1 = HT.TD(webqtlUtil.IMGSTEP2,width=58) + TD2 = HT.TD() + TD2.append(HT.Blockquote("Click the next button to submit your variance\ + data for editing and mapping."),HT.Center(submit,reset)) + STEP3.append(HT.TR(TD1,TD2),HT.TR(HT.TD(colspan=2,height=20))) + + ######################################### + + # NL, 07/27/2010. variable 'IMGNEXT' has been moved from templatePage.py to webqtlUtil.py; + form.append(title2,HT.Center(STEP2,webqtlUtil.IMGNEXT),title3,HT.Center(STEP3)) + + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + TD_RIGHT.append(main_title,form) + + self.dict['body'] = TD_LEFT + str(TD_RIGHT) diff --git a/web/webqtl/submitTrait/__init__.py b/web/webqtl/submitTrait/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/textUI/__init__.py b/web/webqtl/textUI/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/textUI/cmdClass.py b/web/webqtl/textUI/cmdClass.py new file mode 100755 index 00000000..e394218e --- /dev/null +++ b/web/webqtl/textUI/cmdClass.py @@ -0,0 +1,224 @@ +import string +import os +import MySQLdb + +from base import webqtlConfig + +######################################### +# Basic Class +######################################### +class cmdClass: + def __init__(self,fd): + self.contents = [] + self.accessError = 0 + self.error = 0 + self.accessCode = '###Database Code : %s%s?cmd=help' % (webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE, webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE) + self.data = fd.formdata + self.cmdID = self.data.getvalue('cmd') + self.showurl = self.data.getvalue('url') + self.cursor = None + self.user_ip = fd.remote_ip + + try: + if not self.openMysql(): + self.accessError = 1 + self.contents = ['###Error: Database is not ready'] + return + + if not self.accessCount(): + self.accessError = 1 + self.contents = ['###Error: You have reached maximum access today '] + return + self.accessRecord() + except: + self.accessError = 1 + self.contents = ['###Error: Database is not ready'] + return + + + self.probeset = self.data.getvalue('probeset') + self.database = self.data.getvalue('db') + self.probe = self.data.getvalue('probe') + + self.sourcedata = [] + + + try: + self.format = self.data.getvalue('format')[:3] + except: + self.format = 'row' + if not self.probeset or not self.database: + self.error = 1 + return + + def openMysql(self): + try: + # con = MySQLdb.Connect(db='db_webqtl', host = webqtlConfig.MYSQL_SERVER) + # Modified by Fan Zhang + con = MySQLdb.Connect(db=webqtlConfig.DB_NAME,host=webqtlConfig.MYSQL_SERVER, user=webqtlConfig.DB_USER,passwd=webqtlConfig.DB_PASSWD) + self.cursor = con.cursor() + return 1 + except: + return 0 + + #XZ, 03/23/2009: The function name is confusing. This function is to get the database type(ProbeSet, Publish, Geno) id. + def getDBId(self,code): + self.cursor.execute('SELECT DBType.Name, DBList.FreezeId from DBType, DBList WHERE DBType.Id = DBList.DBTypeId and DBList.code= "%s"' % code) + result = self.cursor.fetchall() + if not result: + return (None, None) + else: + return result[0] + + #XZ, 03/23/2009: This is to get the inbredset name. + def getRISet(self,prefix, DbId): + if prefix == 'ProbeSet': + self.cursor.execute('SELECT InbredSet.Name from InbredSet, ProbeSetFreeze, ProbeFreeze WHERE ProbeFreeze.InbredSetId = InbredSet.Id and ProbeFreeze.Id = ProbeSetFreeze.ProbeFreezeId and ProbeSetFreeze.Id = %d' % DbId) + else: + self.cursor.execute('SELECT InbredSet.Name from %sFreeze, InbredSet WHERE %sFreeze.InbredSetId = InbredSet.Id and %sFreeze.Id = %d' % (prefix, prefix, prefix, DbId)) + result = self.cursor.fetchall() + if result: + if result[0][0] == "BXD300": + return "BXD" + else: + return result[0][0] + else: + return None + + def accessCount(self): + try: + user_ip = self.user_ip + query = """SELECT count(id) FROM AccessLog WHERE ip_address = %s AND UNIX_TIMESTAMP()-UNIX_TIMESTAMP(accesstime)<86400""" + self.cursor.execute(query,user_ip) + daycount = self.cursor.fetchall() + if daycount: + daycount = daycount[0][0] + if daycount > webqtlConfig.DAILYMAXIMUM: + return 0 + else: + return 1 + else: + return 1 + except: + return 0 + + def accessRecord(self): + try: + user_ip = self.user_ip + self.updMysql() + query = """INSERT INTO AccessLog(accesstime,ip_address) values(Now(),%s)""" + self.cursor.execute(query,user_ip) + self.openMysql() + except: + pass + + def __str__(self): + text = map(str,self.contents) + if self.showurl: + text.append('http://%s%s?%s' % (os.environ['HTTP_HOST'],os.environ['SCRIPT_NAME'],os.environ['QUERY_STRING'][:-8])) + text += self.sourcedata + return string.join(text,'\n') + + def write(self): + if self.cursor: + self.cursor.close() + try: + browser = os.environ['HTTP_USER_AGENT'] + return '
      %s
      ' % str(self) + except: + return str(self) + + def write2(self): + print str(self) + + def getTraitData(self, prefix, dbId, probeset, probe = None): + headerDict = {'ProbeSet':'ProbeSetID', 'Publish':'RecordID', 'Geno':'Locus'} + if prefix == None or dbId == None: + return None, None + if probe and prefix=='ProbeSet': + #XZ, 03/05/2009: test http://www.genenetwork.org/webqtl/WebQTL.py?cmd=get&probeset=98332_at&db=bra08-03MAS5&probe=pm&format=col + if string.lower(probe) in ("all","mm","pm"): + query = "SELECT Probe.Name from Probe, ProbeSet WHERE Probe.ProbeSetId = ProbeSet.Id and ProbeSet.Name = '%s' order by Probe.Name" % probeset + self.cursor.execute(query) + allprobes = self.cursor.fetchall() + if not allprobes: + return None, None + + fetchprobes = [] + for item in allprobes: + if probe == 'all': + fetchprobes.append(item[0]) + else: + try: + taildigit = int(item[0][-1]) % 2 + if probe == "pm" and taildigit == 1: + fetchprobes.append(item[0]) + if probe == "mm" and taildigit == 0: + fetchprobes.append(item[0]) + except: + pass + if not fetchprobes: + return None, None + #XZ, 03/05/2009: Xiaodong changed Data to ProbeData + query = "SELECT Strain.Name, ProbeData.value, Probe.Name from ProbeData, ProbeFreeze, ProbeSetFreeze, ProbeXRef, Strain, Probe, ProbeSet WHERE ProbeSet.Name = '%s' and Probe.ProbeSetId = ProbeSet.Id and ProbeXRef.ProbeId = Probe.Id and ProbeXRef.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.Id = %d and ProbeXRef.DataId = ProbeData.Id and ProbeData.StrainId = Strain.Id and Probe.Name in (%s) order by Strain.Id, Probe.Name " % (probeset,dbId, "'" + string.join(fetchprobes, "', '") +"'") + self.cursor.execute(query) + traitdata = self.cursor.fetchall() + if not traitdata: + pass + else: + nfield = len(fetchprobes) + heads = [['ProbeSet'] + [probeset]*nfield] + heads.append(['probe'] + fetchprobes) + posdict = {} + i = 0 + for item in fetchprobes: + posdict[item] = i + i += 1 + prevStrain = '' + traitdata2 = [] + i = -1 + for item in traitdata: + if item[0] != prevStrain: + prevStrain = item[0] + i += 1 + traitdata2.append([item[0]] + [None] * nfield) + else: + pass + traitdata2[i][posdict[item[-1]]+1] = item[1] + + traitdata = traitdata2 + #XZ, 03/05/2009: test http://www.genenetwork.org/webqtl/WebQTL.py?cmd=get&probeset=98332_at&db=bra08-03MAS5&probe=119637&format=col + else: + heads = [('ProbeSetId', probeset), ('ProbeId',probe)] + #XZ, 03/05/2009: Xiaodong changed Data to ProbeData + query = "SELECT Strain.Name, ProbeData.value from ProbeData, ProbeFreeze, ProbeSetFreeze, ProbeXRef, Strain, Probe, ProbeSet WHERE Probe.Name = '%s' and ProbeSet.Name = '%s' and Probe.ProbeSetId = ProbeSet.Id and ProbeXRef.ProbeId = Probe.Id and ProbeXRef.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeSetFreeze.Id = %d and ProbeXRef.DataId = ProbeData.Id and ProbeData.StrainId = Strain.Id" % (probe,probeset,dbId) + #print 'Content-type: text/html\n' + self.cursor.execute(query) + traitdata = self.cursor.fetchall() + #XZ, 03/05/2009: test http://www.genenetwork.org/webqtl/WebQTL.py?cmd=get&probeset=98332_at&db=bra08-03MAS5&format=col + elif prefix=='ProbeSet': #XZ: probeset data + heads = [(headerDict[prefix], probeset)] + query = "SELECT Strain.Name, %sData.value from %sData, Strain, %s, %sXRef WHERE %s.Name = '%s' and %sXRef.%sId = %s.Id and %sXRef.%sFreezeId = %d and %sXRef.DataId = %sData.Id and %sData.StrainId = Strain.Id order by Strain.Id" % (prefix, prefix, prefix, prefix, prefix, probeset,prefix, prefix, prefix, prefix, prefix, dbId, prefix, prefix, prefix) + self.cursor.execute(query) + traitdata = self.cursor.fetchall() + #XZ, 03/05/2009: test http://www.genenetwork.org/webqtl/WebQTL.py?cmd=get&probeset=10834&db=BXDPublish&format=col + elif prefix=='Publish': + heads = [(headerDict[prefix], probeset)] + #XZ, 03/05/2009: Xiaodong changed Data to PublishData + query = "SELECT Strain.Name, PublishData.value from PublishData, Strain, PublishXRef, PublishFreeze WHERE PublishXRef.InbredSetId = PublishFreeze.InbredSetId and PublishData.Id = PublishXRef.DataId and PublishXRef.Id = %s and PublishFreeze.Id = %d and PublishData.StrainId = Strain.Id" % (probeset, dbId) + self.cursor.execute(query) + traitdata = self.cursor.fetchall() + #XZ, 03/05/2009: test http://www.genenetwork.org/webqtl/WebQTL.py?cmd=get&probeset=rs13475701&db=BXDGeno&format=col + else: #XZ: genotype data + heads = [(headerDict[prefix], probeset)] + RISet = self.getRISet(prefix, dbId) + self.cursor.execute("select SpeciesId from InbredSet where Name = '%s'" % RISet) + speciesId = self.cursor.fetchone()[0] + #XZ, 03/05/2009: Xiaodong changed Data to %sData + query = "SELECT Strain.Name, %sData.value from %sData, Strain, %s, %sXRef WHERE %s.SpeciesId=%s and %s.Name = '%s' and %sXRef.%sId = %s.Id and %sXRef.%sFreezeId = %d and %sXRef.DataId = %sData.Id and %sData.StrainId = Strain.Id order by Strain.Id" % (prefix, prefix, prefix, prefix, prefix, speciesId, prefix, probeset,prefix, prefix, prefix, prefix, prefix, dbId, prefix, prefix, prefix) + self.cursor.execute(query) + traitdata = self.cursor.fetchall() + if traitdata: + return traitdata, heads + else: + return None, None diff --git a/web/webqtl/textUI/cmdCorrelation.py b/web/webqtl/textUI/cmdCorrelation.py new file mode 100755 index 00000000..04595fc5 --- /dev/null +++ b/web/webqtl/textUI/cmdCorrelation.py @@ -0,0 +1,325 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import os +import string +from math import * +import time + +import reaper + +from base import webqtlConfig +from utility import webqtlUtil +from cmdClass import cmdClass + + +######################################### +# Correlation Class +######################################### +class cmdCorrelation(cmdClass): + + calFunction = 'webqtlUtil.calCorrelation' + + def __init__(self,fd=None): + + cmdClass.__init__(self,fd) + + if not webqtlConfig.TEXTUI: + self.contents.append("Please send your request to http://robot.genenetwork.org") + return + + + self.example = '###Example : %s%s?cmd=%s&probeset=100001_at&probe=136415&db=bra03-03Mas5&searchdb=BXDPublish&return=500&sort=pvalue' % (webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE, self.cmdID, webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE, self.cmdID) + + if self.accessError: + return + + self.searchDB = self.data.getvalue('searchdb') + if not self.searchDB or self.error: + self.contents.append("###Error: source trait doesn't exist or no target database was given") + self.contents.append(self.example) + self.contents.append(self.accessCode) + return + + try: + self.returnNumber = int(self.data.getvalue('return')) + except: + self.returnNumber = None + + self.sort = self.data.getvalue('sort') + + prefix, dbId = self.getDBId(self.database) + if not prefix or not dbId or (self.probe and string.lower(self.probe) in ("all","mm","pm")): + self.contents.append("###Error: source trait doesn't exist or SELECT more than one trait.") + self.contents.append(self.example) + self.contents.append(self.accessCode) + return + RISet = self.getRISet(prefix, dbId) + prefix2, dbId2 = self.getDBId(self.searchDB) + if not prefix2 or not dbId2: + self.contents.append("###Error: target database doesn't exist.") + self.contents.append(self.example) + self.contents.append(self.accessCode) + return + RISet2 = self.getRISet(prefix2, dbId2) + if RISet2 != RISet: + self.contents.append("###Error: target database has different Mouse InbredSet.") + self.contents.append(self.example) + self.contents.append(self.accessCode) + return + + traitdata, heads = self.getTraitData(prefix, dbId, self.probeset, self.probe) + if not traitdata: + self.contents.append("###Error: source trait doesn't exist.") + self.contents.append(self.example) + self.contents.append(self.accessCode) + return + + StrainNames = [] + sourceTrait = [] + StrainIds = [] + + #XZ, Jan 27, 2011: Only the strains that are of the same inbredset are used to calculate correlation. + for item in traitdata: + one_strain_name = item[0] + one_strain_value = item[1] + + self.cursor.execute('SELECT Strain.Id from Strain,StrainXRef, InbredSet WHERE Strain.Name="%s" and Strain.Id = StrainXRef.StrainId and StrainXRef.InbredSetId = InbredSet.Id and InbredSet.Name = "%s"' % (one_strain_name, RISet2)) + Results = self.cursor.fetchall() + if Results: + StrainIds.append('%d' % Results[0][0]) + StrainNames.append( one_strain_name ) + sourceTrait.append( one_strain_value ) + + correlationArray = [] + + useFastMethod = False + if prefix2 == "ProbeSet": + DatabaseFileName = self.getFileName( target_db_id=dbId2 ) + DirectoryList = os.listdir(webqtlConfig.TEXTDIR) ### List of existing text files. Used to check if a text file already exists + if DatabaseFileName in DirectoryList: + useFastMethod = True + + if useFastMethod: + datasetFile = open(webqtlConfig.TEXTDIR+DatabaseFileName,'r') + + #XZ, 01/08/2009: read the first line + line = datasetFile.readline() + dataset_strains = webqtlUtil.readLineCSV(line)[1:] + + #XZ, 01/08/2009: This step is critical. It is necessary for this new method. + _newvals = [] + for item in dataset_strains: + if item in StrainNames: + _newvals.append(sourceTrait[StrainNames.index(item)]) + else: + _newvals.append('None') + + nnCorr = len(_newvals) + + + for line in datasetFile: + traitdata=webqtlUtil.readLineCSV(line) + traitdataName = traitdata[0] + traitvals = traitdata[1:] + + corr,nOverlap = webqtlUtil.calCorrelationText(traitvals,_newvals,nnCorr) + traitinfo = [traitdataName,corr,nOverlap] + correlationArray.append( traitinfo ) + + #calculate correlation with slow method + else: + correlationArray = self.calCorrelation(sourceTrait, self.readDB(StrainIds, prefix2, dbId2) ) + + correlationArray.sort(self.cmpCorr) #XZ: Do not forget the sort step + + if not self.returnNumber: + correlationArray = correlationArray[:100] + else: + if self.returnNumber < len(correlationArray): + correlationArray = correlationArray[:self.returnNumber] + NN = len(correlationArray) + for i in range(NN): + nOverlap = correlationArray[i][-1] + corr = correlationArray[i][-2] + if nOverlap < 3: + corrPValue = 1.0 + else: + if abs(corr) >= 1.0: + corrPValue = 0.0 + else: + ZValue = 0.5*log((1.0+corr)/(1.0-corr)) + ZValue = ZValue*sqrt(nOverlap-3) + corrPValue = 2.0*(1.0 - reaper.normp(abs(ZValue))) + correlationArray[i].append(corrPValue) + if self.sort == 'pvalue': + correlationArray.sort(self.cmpPValue) + + if prefix2 == 'Publish': + self.contents.append("RecordID\tCorrelation\t#Strains\tp-value") + elif prefix2 == 'Geno': + self.contents.append("Locus\tCorrelation\t#Strains\tp-value") + else: + pass + + if prefix2 == 'Publish' or prefix2 == 'Geno': + for item in correlationArray: + self.contents.append("%s\t%2.6f\t%d\t%2.6f" % tuple(item)) + else: + id = self.data.getvalue('id') + if id == 'yes': + self.contents.append("ProbesetID\tCorrelation\t#Strains\tp-value\tGeneID") + for item in correlationArray: + query = """SELECT GeneID from %s WHERE Name = '%s'""" % (prefix2,item[0]) + self.cursor.execute(query) + results = self.cursor.fetchall() + if not results: + item = item + [None] + else: + item = item + list(results[0]) + self.contents.append("%s\t%2.6f\t%d\t%2.6f\t%s" % tuple(item)) + elif id == 'only': + self.contents.append("GenID") + for item in correlationArray: + query = """SELECT GeneID from %s WHERE Name = '%s'""" % (prefix2,item[0]) + self.cursor.execute(query) + results = self.cursor.fetchall() + if not results: + self.contents.append('None') + else: + self.contents.append(results[0][0]) + else: + self.contents.append("ProbesetID\tCorrelation\t#Strains\tp-value") + for item in correlationArray: + self.contents.append("%s\t%2.6f\t%d\t%2.6f" % tuple(item)) + + + + + def getFileName(self, target_db_id): + + query = 'SELECT Id, FullName FROM ProbeSetFreeze WHERE Id = %s' % target_db_id + self.cursor.execute(query) + result = self.cursor.fetchone() + Id = result[0] + FullName = result[1] + FullName = FullName.replace(' ','_') + FullName = FullName.replace('/','_') + + FileName = 'ProbeSetFreezeId_' + str(Id) + '_FullName_' + FullName + '.txt' + + return FileName + + + + def calCorrelation(self,source,target): + allcorrelations = [] + NN = len(source) + + if len(source) != len(target[0]) - 1: + return allcorrelations + else: + for traitData in target: + corr,nOverlap = eval("%s(traitData[1:],source,NN)" % self.calFunction) + traitinfo = [traitData[0],corr,nOverlap] + allcorrelations.append(traitinfo) + + return allcorrelations + + def cmpCorr(self,A,B): + try: + if abs(A[1]) < abs(B[1]): + return 1 + elif abs(A[1]) == abs(B[1]): + return 0 + else: + return -1 + except: + return 0 + + def cmpPValue(self,A,B): + try: + if A[-1] > B[-1]: + return 1 + elif A[-1] == B[-1]: + return 0 + else: + return -1 + except: + return 0 + + + def readDB(self, StrainIds=[], prefix2='', dbId2=''): + + #retrieve data from target database + nnn = len(StrainIds) / 25 + if len(StrainIds) % 25: + nnn += 1 + oridata = [] + for step in range(nnn): + temp = [] + StrainIdstep = StrainIds[step*25:min(len(StrainIds), (step+1)*25)] + for item in StrainIdstep: + temp.append('T%s.value' % item) + #XZ, 03/05/2009: test http://www.genenetwork.org/webqtl/WebQTL.py?cmd=cor&probeset=100001_at&probe=136415&db=bra08-03MAS5&searchdb=BXDPublish&return=500&sort=pvalue + if prefix2 == "Publish": + query = "SELECT PublishXRef.Id, " + dataStartPos = 1 + query += string.join(temp,', ') + query += ' from (PublishXRef, PublishFreeze)\n' + #XZ, 03/05/2009: Xiaodong changed Data to PublishData + for item in StrainIdstep: + query += 'left join PublishData as T%s on T%s.Id = PublishXRef.DataId and T%s.StrainId=%s\n' %(item,item,item,item) + query += "WHERE PublishXRef.InbredSetId = PublishFreeze.InbredSetId and PublishFreeze.Id = %d" % (dbId2, ) + #XZ, 03/05/2009: test http://www.genenetwork.org/webqtl/WebQTL.py?cmd=cor&probeset=100001_at&probe=136415&db=bra08-03MAS5&searchdb=HC_M2_1005_M&return=500&sort=pvalue + #XZ, 03/05/2009: test http://www.genenetwork.org/webqtl/WebQTL.py?cmd=cor&probeset=100001_at&probe=136415&db=bra08-03MAS5&searchdb=BXDGeno&return=500&sort=pvalue + else: + query = "SELECT %s.Name," % prefix2 + query += string.join(temp,', ') + query += ' from (%s, %sXRef, %sFreeze) \n' % (prefix2,prefix2,prefix2) + #XZ, 03/05/2009: Xiaodong changed Data to %sData + for item in StrainIdstep: + query += 'left join %sData as T%s on T%s.Id = %sXRef.DataId and T%s.StrainId=%s\n' %(prefix2,item,item,prefix2,item,item) + query += "WHERE %sXRef.%sFreezeId = %sFreeze.Id and %sFreeze.Id = %d and %s.Id = %sXRef.%sId" % (prefix2, prefix2, prefix2, prefix2, dbId2, prefix2, prefix2, prefix2) + self.cursor.execute(query) + results = self.cursor.fetchall() + if not results: + self.contents.append("###Error: target database doesn't exist.") + self.contents.append(self.example) + self.contents.append(self.accessCode) + return + oridata.append(results) + + datasize = len(oridata[0]) + targetTrait = [] + for j in range(datasize): + traitdata = list(oridata[0][j]) + for i in range(1,nnn): + traitdata += list(oridata[i][j][1:]) + targetTrait.append(traitdata) + + return targetTrait + diff --git a/web/webqtl/textUI/cmdGeno.py b/web/webqtl/textUI/cmdGeno.py new file mode 100755 index 00000000..8dd0f924 --- /dev/null +++ b/web/webqtl/textUI/cmdGeno.py @@ -0,0 +1,118 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string +import os + +import reaper + +from base import webqtlConfig +from cmdClass import cmdClass + +######################################### +# Geno Class +######################################### +class cmdGeno(cmdClass): + + def __init__(self,fd=None): + + cmdClass.__init__(self,fd) + + if not webqtlConfig.TEXTUI: + self.contents.append("Please send your request to http://robot.genenetwork.org") + return + + if self.accessError: + return + self.error = 0 + self.RISet = None + self.chr = None + self.dataset = None + self.strainList = [] + try: + self.RISet = self.data.getvalue('riset') + if not self.RISet: + raise ValueError + except: + self.error = 1 + self.contents.append('###Example : http://www.genenetwork.org%s%s?cmd=%s&riset=BXD&chr=1' % (webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE, self.cmdID)) + return + try: + self.format = self.data.getvalue('format')[:3] + except: + self.format = 'row' + + try: + self.dataset = reaper.Dataset() + try: + self.dataset.read(os.path.join(webqtlConfig.GENODIR, self.RISet + '.geno')) + except: + self.dataset.read(os.path.join(webqtlConfig.GENODIR, self.RISet.upper() + '.geno')) + self.strainList = list(self.dataset.prgy) + except: + self.error = 1 + #traceback.print_exc() + self.contents.append('###The name of RISet is incorrect') + return + + try: + self.chr = self.data.getvalue('chr') + if self.chr: + if self.chr == 'X' or self.chr == 'x': + self.chr = '20' + self.chr = int(self.chr) + except: + pass + + self.readGeno() + + def readGeno(self): + try: + table = [['Chr'] + ['Locus'] + self.strainList] + if self.chr: + chr = self.dataset[self.chr-1] + for locus in chr: + items = string.split(string.join(locus.genotext, " ")) + items = [chr.name] + [locus.name] + items + table += [items] + else: + for chr in self.dataset: + for locus in chr: + items = string.split(string.join(locus.genotext, " ")) + items = [chr.name] + [locus.name] + items + table += [items] + if self.format == 'col': + table = [[r[col] for r in table] for col in range(1, len(table[0]))] + table[0][0] = 'Line' + lines = string.join(map(lambda x: string.join(x, '\t'), table), '\n') + self.contents.append(lines) + except: + self.contents =['###Error: Read file error or name of chromosome is incorrect'] + #traceback.print_exc() + return + + + diff --git a/web/webqtl/textUI/cmdGet.py b/web/webqtl/textUI/cmdGet.py new file mode 100755 index 00000000..a11c97a3 --- /dev/null +++ b/web/webqtl/textUI/cmdGet.py @@ -0,0 +1,86 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string + +from base import webqtlConfig +from cmdClass import cmdClass + +######################################### +# Get trait value Class +######################################### +class cmdGet(cmdClass): + def __init__(self,fd=None): + + cmdClass.__init__(self,fd) + + if not webqtlConfig.TEXTUI: + self.contents.append("Please send your request to http://robot.genenetwork.org") + return + + self.example = '###Example : %s%s?cmd=%s&probeset=100001_at&db=bra03-03Mas5&probe=all' % (webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE, self.cmdID, webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE, self.cmdID) + if self.accessError: + return + if not self.error: + self.readDB() + else: + self.contents.append(self.example) + self.contents.append(self.accessCode) + + def readDB(self): + prefix, dbId = self.getDBId(self.database) + + traitdata, heads = self.getTraitData(prefix, dbId, self.probeset, self.probe) + try: + if not traitdata: + raise ValueError + traitdata = heads + list(traitdata) + if self.format == 'col': + self.formatCols(traitdata) + else: + self.formatRows(traitdata) + except: + self.contents.append('Error: no record was found') + self.contents.append(self.accessCode) + return + + def formatCols(self, traitdata): + for item in traitdata: + lines = [] + for item2 in item: + lines.append(item2) + lines = string.join(map(str,lines), '\t') + self.contents.append(lines) + + def formatRows(self, traitdata): + for i in range(len(traitdata[0])): + lines = [] + for j in range(len(traitdata)): + lines.append(traitdata[j][i]) + lines = string.join(map(str,lines), '\t') + self.contents.append(lines) + + diff --git a/web/webqtl/textUI/cmdHelp.py b/web/webqtl/textUI/cmdHelp.py new file mode 100755 index 00000000..754ff5b5 --- /dev/null +++ b/web/webqtl/textUI/cmdHelp.py @@ -0,0 +1,105 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string + +from base import webqtlConfig +from base.admin import ADMIN_tissue_alias +from cmdClass import cmdClass + +######################################### +# Help Class +######################################### + +#XZ, 03/23/2009: There are several issues need attention. +#1. Some probeset datasets are not added into DBList. +#2. Do NOT show confidential datasets. +#3. Get rid of ADMIN_tissue_alias. We should use info from database instead. + +class cmdHelp(cmdClass): + def __init__(self,fd=None): + + cmdClass.__init__(self,fd) + + if not webqtlConfig.TEXTUI: + self.contents.append("Please send your request to http://robot.genenetwork.org") + return + + + machineParse = self.data.getvalue('parse') + topic = self.data.getvalue('topic') + if topic: + topic = topic.lower() + if topic == 'tissue': + self.contents.append("%s%s| %s" %("Tissue", ' '*(50-len("Tissue")), "Tissue Abbreviations")) + self.contents.append("%s%s| %s" %("", ' '*50, "(Separated by space, case insensitive)")) + self.contents.append("%s|%s" %('_'*50, '_'*40)) + + keys = ADMIN_tissue_alias.keys() + keys.sort() + for key in keys: + self.contents.append("%s%s| %s" % (key , ' '*(50-len(key)), string.join(ADMIN_tissue_alias[key], " "))) + self.contents.append("%s|%s" %('_'*50, '_'*40)) + else: + pass + else: + self.contents = ["#Use database code table below to access data", "#For machine parse friendly output please use", + "#http://www.genenetwork.org%s%s?cmd=help&parse=machine" % (webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE)] + self.cursor.execute("""(SELECT DBType.Name, DBList.FreezeId, DBList.Code, ProbeSetFreeze.CreateTime as Time + from ProbeSetFreeze, DBType, DBList WHERE DBType.Id = DBList.DBTypeId and + DBType.Name = 'ProbeSet' and DBList.FreezeId = ProbeSetFreeze.Id and + ProbeSetFreeze.public > %d order by ProbeSetFreeze.CreateTime ,DBList.Name, DBList.Id) + UNION + (SELECT DBType.Name, DBList.FreezeId, DBList.Code, PublishFreeze.CreateTime as Time + from PublishFreeze, DBType, DBList WHERE DBType.Id = DBList.DBTypeId and + DBType.Name = 'Publish' and DBList.FreezeId = PublishFreeze.Id order by + PublishFreeze.CreateTime ,DBList.Name, DBList.Id) + UNION + (SELECT DBType.Name, DBList.FreezeId, DBList.Code, GenoFreeze.CreateTime + from GenoFreeze, DBType, DBList WHERE DBType.Id = DBList.DBTypeId and + DBType.Name = 'Geno' and DBList.FreezeId = GenoFreeze.Id order by + GenoFreeze.CreateTime ,DBList.Name, DBList.Id)""" % webqtlConfig.PUBLICTHRESH) + dbs = self.cursor.fetchall() + if machineParse =="machine": + pass + else: + self.contents.append("\n") + self.contents.append("%s%s| %s" %("Database_Name", ' '*(50-len("Database_Name")), "Database_Access_Code_Name")) + self.contents.append("%s|%s" %('_'*50, '_'*40)) + for dbInfo in dbs: + self.cursor.execute('SELECT FullName from %sFreeze WHERE Id = %d and public > %d' % (dbInfo[0], dbInfo[1],webqtlConfig.PUBLICTHRESH)) + results = self.cursor.fetchall() + if not results: + pass + else: + if machineParse =="machine": + self.contents.append(results[0][0]+ ',' +dbInfo[2]) + else: + self.contents.append("%s%s| %s" %(results[0][0], ' '*(50-len(results[0][0])), dbInfo[2])) + self.contents.append("%s|%s" %('_'*50, '_'*40)) + + + diff --git a/web/webqtl/textUI/cmdInterval.py b/web/webqtl/textUI/cmdInterval.py new file mode 100755 index 00000000..0b97c7c3 --- /dev/null +++ b/web/webqtl/textUI/cmdInterval.py @@ -0,0 +1,174 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string +import os + +import reaper + +from base import webqtlConfig +from cmdClass import cmdClass + +######################################### +# Interval Mapping Class +######################################### +class cmdInterval(cmdClass): + + def __init__(self,fd=None): + + cmdClass.__init__(self,fd) + + if not webqtlConfig.TEXTUI: + self.contents.append("Please send your request to http://robot.genenetwork.org") + return + + + self.example = '###Example : %s%s?cmd=%s&probeset=100001_at&probe=136415&db=bra03-03Mas5&sort=pos&return=100&chr=12' % (webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE, self.cmdID, webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE, self.cmdID) + if self.accessError: + return + self.sort = None + self.step = 0.01 + self.peak = 1 + self.chr = None + self.sort = None + self.returnnumber = 20 + if self.error: + self.error = 1 + self.contents.append(self.example) + return + else: + try: + self.sort = self.data.getvalue('sort') + if string.lower(self.sort) == 'pos': + self.sort = 'pos' + else: + self.sort = 'lrs' + except: + self.sort = None + + try: + self.returnnumber = int(self.data.getvalue('return')) + except: + self.returnnumber = 20 + try: + self.chr = self.data.getvalue('chr') + except: + self.chr = None + + self.readDB() + + def readDB(self): + prefix, dbId = self.getDBId(self.database) + if not prefix or not dbId or (self.probe and string.lower(self.probe) in ("all","mm","pm")): + self.contents.append("###Error: source trait doesn't exist or SELECT more than one trait.") + self.contents.append(self.example) + self.contents.append(self.accessCode) + return + RISet = self.getRISet(prefix, dbId) + traitdata, heads = self.getTraitData(prefix, dbId, self.probeset, self.probe) + if not traitdata: + self.contents.append("###Error: source trait doesn't exist or SELECT more than one trait.") + self.contents.append(self.example) + self.contents.append(self.accessCode) + return + + dataset0 = reaper.Dataset() + dataset0.read(os.path.join(webqtlConfig.GENODIR, RISet + '.geno')) + strainList = list(dataset0.prgy) + dataset = dataset0.addinterval() + if self.chr != None: + for _chr in dataset: + if string.lower(_chr.name) == string.lower(self.chr): + dataset.chromosome = [_chr] + break + + strains = [] + trait = [] + _prgy = dataset.prgy + for item in traitdata: + if item[0] in _prgy: + strains.append(item[0]) + trait.append(item[1]) + + qtlscan = dataset.regression(strains, trait) + LRS = dataset.permutation(strains, trait) + nperm = len(LRS) + + #print inter1[0] + returnPeak = [] + nqtl = len(qtlscan) + if self.peak: + for i in range(nqtl): + if i == 0 or qtlscan[i].locus.chr != qtlscan[i-1].locus.chr: + if qtlscan[i].lrs < qtlscan[i+1].lrs: + continue + elif i == nqtl-1 or qtlscan[i].locus.chr != qtlscan[i+1].locus.chr: + if qtlscan[i].lrs < qtlscan[i-1].lrs: + continue + else: + if qtlscan[i].lrs < qtlscan[i+1].lrs or qtlscan[i].lrs < qtlscan[i-1].lrs: + continue + returnPeak.append(qtlscan[i]) + else: + returnPeak = qtlscan[:] + + if returnPeak: + self.contents.append("Locus\tLRS\tChr\tAdditive\tp-value\tcM") + qtlresult = [] + for item in returnPeak: + p_value = reaper.pvalue(item.lrs,LRS) + qtlresult.append((item.locus.name,item.lrs,item.locus.chr,item.additive,p_value, item.locus.cM)) + if self.sort == 'lrs': + qtlresult.sort(self.cmpLRS2) + for item in qtlresult: + self.contents.append("%s\t%2.4f\t%s\t%2.4f\t%1.4f\t%s" % item) + else: + self.contents.append("###Error: Error occurs while regression.") + return + + def cmpPValue(self,A,B): + try: + if A[-1] > B[-1]: + return 1 + elif A[-1] == B[-1]: + return 0 + else: + return -1 + except: + return 0 + + def cmpLRS2(self,A,B): + try: + if A[1] < B[1]: + return 1 + elif A[1] == B[1]: + return 0 + else: + return -1 + except: + return 0 + + diff --git a/web/webqtl/textUI/cmdMap.py b/web/webqtl/textUI/cmdMap.py new file mode 100755 index 00000000..1fbff5a5 --- /dev/null +++ b/web/webqtl/textUI/cmdMap.py @@ -0,0 +1,144 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string +import os + +import reaper + +from base import webqtlConfig +from cmdClass import cmdClass + + +######################################### +# Mapping Class +######################################### +class cmdMap(cmdClass): + + def __init__(self,fd=None): + + cmdClass.__init__(self,fd) + + if not webqtlConfig.TEXTUI: + self.contents.append("Please send your request to http://robot.genenetwork.org") + return + + self.example = '###Example : %s%s?cmd=%s&probeset=100001_at&probe=136415&db=bra03-03Mas5&sort=lrs&return=20' % (webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE, self.cmdID, webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE, self.cmdID) + if self.accessError: + return + try: + self.returnnumber = int(self.data.getvalue('return')) + except: + self.returnnumber = None + + if self.error: + self.contents.append(self.example) + self.contents.append(self.accessCode) + else: + self.sort = self.data.getvalue('sort') + self.readDB() + + def readDB(self): + prefix, dbId = self.getDBId(self.database) + if not prefix or not dbId or (self.probe and string.lower(self.probe) in ("all","mm","pm")): + self.contents.append("###Error: source trait doesn't exist or SELECT more than one trait.") + self.contents.append(self.example) + self.contents.append(self.accessCode) + return + RISet = self.getRISet(prefix, dbId) + traitdata, heads = self.getTraitData(prefix, dbId, self.probeset, self.probe) + if not traitdata: + self.contents.append("###Error: source trait doesn't exist or SELECT more than one trait.") + self.contents.append(self.example) + self.contents.append(self.accessCode) + return + + dataset = reaper.Dataset() + dataset.read(os.path.join(webqtlConfig.GENODIR, RISet + '.geno')) + strainList = list(dataset.prgy) + + strains = [] + trait = [] + _prgy = dataset.prgy + for item in traitdata: + if item[0] in _prgy: + strains.append(item[0]) + trait.append(item[1]) + + qtlscan = dataset.regression(strains, trait) + LRS = dataset.permutation(strains, trait) + nperm = len(LRS) + if qtlscan: + self.contents.append("Locus\tLRS\tChr\tAdditive\tp-value") + qtlresult = [] + if self.returnnumber: + self.returnnumber = min(self.returnnumber,len(qtlscan)) + if self.sort == 'lrs': + qtlscan.sort(self.cmpLRS) + for item in qtlscan[:self.returnnumber]: + p_value = reaper.pvalue(item.lrs,LRS) + qtlresult.append((item.locus.name,item.lrs,item.locus.chr,item.additive,p_value)) + else:#sort by position + qtlscan2 = qtlscan[:] + qtlscan2.sort(self.cmpLRS) + LRSthresh = qtlscan2[self.returnnumber].lrs + for item in qtlscan: + if item.lrs >= LRSthresh: + p_value = reaper.pvalue(item.lrs,LRS) + qtlresult.append((item.locus.name,item.lrs,item.locus.chr,item.additive,p_value)) + else: + for item in qtlscan: + p_value = reaper.pvalue(item.lrs,LRS) + qtlresult.append((item.locus.name,item.lrs,item.locus.chr,item.additive,p_value)) + if self.sort == 'lrs': + qtlresult.sort(self.cmpLRS2) + for item in qtlresult: + self.contents.append("%s\t%2.5f\t%s\t%2.5f\t%1.5f" % item) + else: + self.contents.append("###Error: Error occurs while regression.") + return + + def cmpLRS(self,A,B): + try: + if A.lrs < B.lrs: + return 1 + elif A.lrs == B.lrs: + return 0 + else: + return -1 + except: + return 0 + + def cmpLRS2(self,A,B): + try: + if A[1] < B[1]: + return 1 + elif A[1] == B[1]: + return 0 + else: + return -1 + except: + return 0 diff --git a/web/webqtl/textUI/cmdSearchGene.py b/web/webqtl/textUI/cmdSearchGene.py new file mode 100755 index 00000000..c2c71815 --- /dev/null +++ b/web/webqtl/textUI/cmdSearchGene.py @@ -0,0 +1,70 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string + +from cmdClass import cmdClass +from search.TextSearchPage import TextSearchPage + +######################################### +# Search Gene Symbol PAGE +######################################### +class cmdSearchGene(cmdClass): + def __init__(self,fd): + #example + cmdClass.__init__(self,fd) + self.page = None + self.text = "" + fd.geneName = fd.formdata.getvalue('gene') + fd.returnFmt = fd.formdata.getvalue('format', 'html') + if fd.geneName: + fd.geneName = string.strip(fd.geneName) + fd.refseq = fd.formdata.getvalue('refseq') + if fd.refseq: + fd.refseq = string.strip(fd.refseq) + fd.genbankid = fd.formdata.getvalue('genbankid') + if fd.genbankid: + fd.genbankid = string.strip(fd.genbankid) + fd.geneid = fd.formdata.getvalue('geneid') + if fd.geneid: + fd.geneid = string.strip(fd.geneid) + if 1: + if not (fd.geneName or fd.refseq or fd.genbankid or fd.geneid): + raise "ValueError" + fd.searchAlias = fd.formdata.getvalue('alias') + if fd.searchAlias != '1': + fd.searchAlias = None + self.page = TextSearchPage(fd) + if fd.returnFmt != 'text': + pass + else: + self.text = self.page.output + self.page = None + elif "ValueError": + self.text = "You need to submit a Gene name, a Refseq ID, or a GenBank ID" + else: + self.text = "Error occurs while searching the database" + diff --git a/web/webqtl/textUI/cmdShowEditing.py b/web/webqtl/textUI/cmdShowEditing.py new file mode 100755 index 00000000..918e83a7 --- /dev/null +++ b/web/webqtl/textUI/cmdShowEditing.py @@ -0,0 +1,50 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from cmdClass import cmdClass +from showTrait.ShowTraitPage import ShowTraitPage + + +######################################### +# SHOW DATA-EDITING PAGE +######################################### +class cmdShowEditing(cmdClass): + def __init__(self,fd): + ###example = http://www.webqtl.org/cgi-bin/beta/WebQTL?cmd=snp&chr=1&start=0&end=21345677 + cmdClass.__init__(self,fd) + self.page = None + prefix, dbId = self.getDBId(self.database) + try: + if not prefix or not dbId: + raise ValueError + self.cursor.execute('SELECT Name from %sFreeze WHERE Id=%d' % (prefix, dbId)) + database = self.cursor.fetchall()[0][0] + traitInfos = (database,self.probeset,self.probe) + self.page = ShowTraitPage(fd,traitInfos) + #self = page + except: + print "Database Name Incorrect" + diff --git a/web/webqtl/updateTrait/DataUpdatePage.py b/web/webqtl/updateTrait/DataUpdatePage.py new file mode 100755 index 00000000..a43f8367 --- /dev/null +++ b/web/webqtl/updateTrait/DataUpdatePage.py @@ -0,0 +1,738 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2011/04/20 + + + +#DataUpdatePage.py +# +#Classes: +#DataUpagePage +#-KA + + +import string +from htmlgen import HTMLgen2 as HT +import os +import time + +from base.webqtlTrait import webqtlTrait +from base.templatePage import templatePage +from base import webqtlConfig +from utility import webqtlUtil +from dbFunction import webqtlDatabaseFunction + +######################################### +# Update Trait +######################################### + +class DataUpdatePage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.updMysql(): + return + + if not fd.genotype: + fd.readGenotype() + fd.strainlist = fd.f1list + fd.strainlist + + fd.readData() + + self.formdata = fd.formdata + self.dict['title'] = 'Data Updating' + + try: + thisTrait = webqtlTrait(fullname=self.formdata.getvalue('fullname'), cursor=self.cursor) + thisTrait.retrieveInfo() + except: + heading = "Updating Database" + detail = ["The trait doesn't exist."] + self.error(heading=heading,detail=detail,error="Error") + return + + if webqtlConfig.USERDICT[self.privilege] >= webqtlConfig.USERDICT['user']: + pass + else: + heading = "Updating Database" + detail = ["You don't have the permission to modify this trait"] + self.error(heading=heading,detail=detail,error="Error") + return + + + status = self.formdata.getvalue('curStatus') + if status == 'updateCheck': #XZhou: Check the change + self.updateCheckPage(fd, thisTrait) + elif status == 'updateResult': #XZhou: make the changes to database + self.updateResultPage(fd, thisTrait) + else: #XZhou: show info retrieved from database + self.dispTraitPage(fd, thisTrait) + + + def dispTraitPage(self, fd, thisTrait): + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='dataInput',submit=HT.Input(type='hidden')) + + #XZhou: This is to show trait info. + recordInfoTable = HT.TableLite(border=0, cellspacing=1, cellpadding=5,align="left") + + for field in thisTrait.db.disfield: + fieldValue = getattr(thisTrait, field) + if not fieldValue: + fieldValue = "" + #fields to be ignored + if field in ("chipid", "genbankid"): + continue + elif field == "comments": + if fieldValue: + comments = string.split(fieldValue, '\n') + title0 = HT.Paragraph("Update History: ", Class="subtitle") + form.append(title0) + history = HT.Blockquote() + for item in comments: + if item: + history.append(item, HT.BR()) + form.append(history) + continue + else: + pass + + if field == 'name' or field == 'units': + form.append(HT.Input(type="hidden",name=field,value=fieldValue)) + if field == 'name': + inputBox = HT.Strong(fieldValue) + else: + continue + elif field == 'pubmed_id': + inputBox = HT.Span(HT.Input(type="text",name=field,size=60, maxlength=255,value=fieldValue)) + warning = HT.Paragraph(Class="fs11 cr") + warning.append('1. Please enter only the PubMed ID integer value into the field above.', HT.BR(), '    Don\'t enter', + ' other characters.', HT.BR()) + warning.append('2. If you modify an existing PubMed ID, changes will affect other records with', HT.BR(), \ + '    the same ID but will NOT affect the phenotype description or trait data.', HT.BR()) + warning.append('3. If your delete an existing PubMed ID, this will not affect any other traits,', HT.BR(), \ + '    including those with the same PubMed ID.', HT.BR()) + warning.append('4. If you enter publication data for a PubMed ID that is already in the database,', HT.BR(), \ + '    then all fields except Phenotype and Trait Data will be ignored.') + inputBox.append(warning) + elif field == 'pre_publication_description' or field == 'post_publication_description' or field == 'original_description' or field == 'owner' or field == 'abstract' or field == 'blatseq' or field == 'targetseq' or field == 'description' or field == 'authors' or field == 'sequence' or field == 'alias' or field == 'probe_target_description': + inputBox = HT.Textarea(name=field, cols=60, rows=4,text=fieldValue) + elif field == 'post_publication_abbreviation' or field == 'pre_publication_abbreviation': + inputBox = HT.Input(type="text",name=field,size=60, maxlength=30,value=fieldValue) + elif field == 'geneid': + inputBox = HT.Input(type="text",name=field,size=60, maxlength=255,value=fieldValue) + recordInfoTable.append(HT.TR( + HT.TD("%s :" % webqtlUtil.formatField(field), Class="fs12 fwb ff1", align="right"), + HT.TD(width=20),HT.TD(inputBox))) + #XZ: homologene is not in thisTrait.db.disfield, so have to do in this way + field = 'homologeneid' + inputBox = HT.Input(type="text",name=field,size=60, maxlength=255,value=thisTrait.homologeneid) + else: + inputBox = HT.Input(type="text",name=field,size=60, maxlength=255,value=fieldValue) + + #XZ: For existing non-confidential phenotype trait, pre_publication_description and pre_publication_abbreviation are not shown to anybody except submitter or admistrator to prevent the trait being set to confidential one. + if thisTrait.db.type == 'Publish' and field == 'pre_publication_description' or field == 'pre_publication_abbreviation': + if not thisTrait.confidential and webqtlConfig.USERDICT[self.privilege] < webqtlConfig.USERDICT['admin'] and self.userName != thisTrait.submitter: + continue + + #XZ and Rob, April 20, 2011: This is to add field and inputBox to table. Note that the change of format to each field(Capitalize) by webqtlUtil.formatField function. + recordInfoTable.append(HT.TR( + HT.TD("%s :" % webqtlUtil.formatField(field), Class="fs12 fwb ff1", align="right", valign="top"), + HT.TD(width=5),HT.TD(inputBox))) + + #XZhou: This is to show trait data. + recordDataTable = HT.Text('Trait data updating is disabled') + + if thisTrait.db.type == 'Publish': + thisTrait.retrieveData() + recordDataTable = HT.TableLite(border=0, width = "90%",cellspacing=2, cellpadding=2) + recordDataTable.append(HT.TR(HT.TD('Strain Name',Class="fs12 ffl fwb",align="Center"), + HT.TD('TraitData',Class="fs12 ffl fwb",align="Center"), + HT.TD('SE',Class="fs12 ffl fwb",align="Center"), + HT.TD('N Per Strain',Class="fs12 ffl fwb",align="Center"), + HT.TD('Strain Name',Class="fs12 ffl fwb",align="Center"), + HT.TD('TraitData',Class="fs12 ffl fwb",align="Center"), + HT.TD('SE',Class="fs12 ffl fwb",align="Center"), + HT.TD('N Per Strain',Class="fs12 ffl fwb",align="Center"))) + tempTR = HT.TR(align="Center") + for i, strainName in enumerate(fd.strainlist): + if thisTrait.data.has_key(strainName): + tdata = thisTrait.data[strainName] + traitVal, traitVar, traitNP = tdata.val, tdata.var, tdata.N + else: + traitVal, traitVar, traitNP = None, None, None + + if traitVal != None: + traitVal = "%2.3f" % traitVal + else: + traitVal = 'x' + if traitVar != None: + traitVar = "%2.3f" % traitVar + else: + traitVar = 'x' + if traitNP != None: + traitNP = "%d" % traitNP + else: + traitNP = 'x' + + tempTR.append(HT.TD(HT.Paragraph(strainName),align='CENTER'), + HT.TD(HT.Input(name=strainName, size=8, maxlength=8, value=traitVal),align='CENTER'), + HT.TD(HT.Input(name='V'+strainName, size=8, maxlength=8, value=traitVar),align='CENTER'), + HT.TD(HT.Input(name='N'+strainName, size=8, maxlength=8, value=traitNP),align='CENTER')) + if i % 2: + recordDataTable.append(tempTR) + tempTR = HT.TR(align="Center") + + if (i+1) % 2: + tempTR.append(HT.TD('')) + tempTR.append(HT.TD('')) + tempTR.append(HT.TD('')) + recordDataTable.append(tempTR) + + updateButton = HT.Input(type='submit',name='submit', value='Submit Change',Class="button") + resetButton = HT.Input(type='reset',Class="button") + + hddn = {'fullname':str(thisTrait), 'FormID':'updateRecord', 'curStatus':'updateCheck', 'RISet':fd.RISet, "incparentsf1":1} + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + + ############################# + TD_LR = HT.TD(valign="top",colspan=2,bgcolor="#eeeeee") + + containerTable = HT.TableLite(border=0, width = "90%",cellspacing=0, cellpadding=0) + + mainTitle = HT.Paragraph("Update Info and Data", Class="title") + + title1 = HT.Paragraph("Trait Information: ", Class="subtitle") + + title2 = HT.Paragraph("Trait Data:", Class="subtitle") + + containerTable.append(HT.TR(HT.TD(title1)), HT.TR(HT.TD(HT.BR(),updateButton,resetButton,HT.BR(),HT.BR())), + HT.TR(HT.TD(recordInfoTable)), HT.TR(HT.TD(title2)), HT.TR(HT.TD(HT.BR(),recordDataTable, HT.BR(), HT.BR())), + HT.TR(HT.TD(updateButton,resetButton))) + + form.append(containerTable) + + TD_LR.append(mainTitle, form) + + self.dict['body'] = TD_LR + + def updateCheckPage(self, fd, thisTrait): + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='updateCheck',submit=HT.Input(type='hidden')) + hddn = {'fullname':str(thisTrait), 'FormID':'updateRecord', 'curStatus':'updateResult', 'RISet':fd.RISet, "incparentsf1":1} + + recordInfoTable = HT.TableLite(border=0, cellspacing=1, cellpadding=5,align="left",width="90%") + infoChanges = [] + for field in thisTrait.db.disfield: + #fields to be ignored + #XZ: The stupid htmlgen can not set readonly for input and textarea. This is the only way I can prevent displayed items such as 'original_description', 'submitter' being changed. + if field in ("chipid", "genbankid", "comments", "original_description", "submitter"): + continue + oldValue = getattr(thisTrait, field) + if not oldValue: + oldValue = '' + oldValue = str(oldValue) + modifiedValue = self.formdata.getvalue(field) + if not modifiedValue: + modifiedValue = "" + modifiedValue.strip() + oldValue.strip() + if oldValue == modifiedValue: + form.append(HT.Input(type="hidden",name=field,value=oldValue)) + continue + + oldValue = HT.Paragraph(oldValue, Class="cr") + warning = '' + if field == 'PubMed_ID': + if modifiedValue != "": + try: + modifiedValue = int(modifiedValue) + except: + continue + + #whether new PMID already exists + newPMIDExist = None + if modifiedValue: + self.cursor.execute("SelecT Id from Publication where PubMed_ID = %d" % modifiedValue) + results = self.cursor.fetchall() + if results: + newPMIDExist = results[0][0] + if newPMIDExist: + warning = HT.Paragraph(Class="fs11 cr") + warning.append('This new PubMed_ID already exists in our database. If you still want to change to this very PubMed_ID, the publication information (title, author, journal, etc.) will be replaced by those linked to this new PubMed_ID. That means, all the fields below (if any, except phenotype info and trait value) will be ignored.') + + infoChanges.append(field) + inputBox = HT.Textarea(name=field, cols=50, rows=3,text=modifiedValue, onChange = "Javascript:this.form.curStatus.value='updateCheck';") + recordInfoTable.append( + HT.TR(HT.TD("%s :" % webqtlUtil.formatField(field), Class="fs12 fwb ff1", colspan = 3, valign="top")), + HT.TR(HT.TD(oldValue, valign="top"),HT.TD(width=20),HT.TD( inputBox, warning))) + + #XZ: homologeneid is not in thisTrait.db.disfield + if thisTrait.db.type == "ProbeSet": + field = 'homologeneid' + oldValue = getattr(thisTrait, field) + if not oldValue: + oldValue = '' + oldValue = str(oldValue) + modifiedValue = self.formdata.getvalue(field) + if not modifiedValue: + modifiedValue = "" + modifiedValue.strip() + oldValue.strip() + + if oldValue == modifiedValue: + form.append(HT.Input(type="hidden",name=field,value=oldValue)) + else: + oldValue = HT.Paragraph(oldValue, Class="cr") + warning = '' + infoChanges.append(field) + inputBox = HT.Textarea(name=field, cols=50, rows=3,text=modifiedValue, onChange = "Javascript:this.form.curStatus.value='updateCheck';") + recordInfoTable.append( + HT.TR(HT.TD("%s :" % webqtlUtil.formatField(field), Class="fs12 fwb ff1", colspan = 3, valign="top")), + HT.TR(HT.TD(oldValue, valign="top"),HT.TD(width=20),HT.TD( inputBox, warning))) + + + if infoChanges == []: + recordInfoTable = "" + recordInfoChange = HT.Blockquote('No change has been made.') + else: + hddn['modifiedField'] = string.join(infoChanges, '::') + recordInfoChange = '' + + recordDataChange = HT.Blockquote('Trait data updating is disabled') + recordDataTable = "" + + modifiedVals = [] + modifiedVars = [] + modifiedNps = [] + numDataChanges = 0 + if thisTrait.db.type == 'Publish': + thisTrait.retrieveData() + recordDataTable = HT.TableLite(border=0, width = "90%",cellspacing=2, cellpadding=2) + for i, strainName in enumerate(fd.strainlist): + if thisTrait.data.has_key(strainName): + tdata = thisTrait.data[strainName] + traitVal, traitVar, traitNP = tdata.val, tdata.var, tdata.N + else: + traitVal, traitVar, traitNP = None, None, None + + if traitVal != None: + traitVal = "%2.3f" % traitVal + else: + traitVal = 'x' + if traitVar != None: + traitVar = "%2.3f" % traitVar + else: + traitVar = 'x' + if traitNP != None: + traitNP = "%d" % traitNP + else: + traitNP = 'x' + + try: + modifiedVal = "%2.3f" % fd.allTraitData[strainName].val + except: + modifiedVal = 'x' + try: + modifiedVar = "%2.3f" % fd.allTraitData[strainName].var + except: + modifiedVar = 'x' + try: + modifiedNp = "%d" % fd.allTraitData[strainName].N + except: + modifiedNp = 'x' + + if modifiedVal != traitVal: + recordDataTable.append(HT.TR(HT.TD(HT.Paragraph(strainName + " Value")), + HT.TD(HT.Paragraph(traitVal, Class="cr")), + HT.TD(HT.Input(name=strainName, size=8, maxlength=8, value=modifiedVal, onChange = "Javascript:this.form.curStatus.value='updateCheck';")))) + numDataChanges += 1 + modifiedVals.append(modifiedVal) + else: + form.append(HT.Input(type="hidden",name=strainName,value=traitVal)) + modifiedVals.append(traitVal) + + if modifiedVar != traitVar: + recordDataTable.append(HT.TR(HT.TD(HT.Paragraph(strainName + " SE")), + HT.TD(HT.Paragraph(traitVar, Class="cr")), + HT.TD(HT.Input(name='V'+strainName, size=8, maxlength=8, value=modifiedVar, onChange = "Javascript:this.form.curStatus.value='updateCheck';")))) + numDataChanges += 1 + modifiedVars.append(modifiedVar) + else: + form.append(HT.Input(type="hidden",name='V'+strainName,value=traitVar)) + modifiedVars.append(traitVar) + + if modifiedNp != traitNP: + recordDataTable.append(HT.TR(HT.TD(HT.Paragraph(strainName + " N Per Strain")), + HT.TD(HT.Paragraph(traitNP, Class="cr")), + HT.TD(HT.Input(name='N'+strainName, size=8, maxlength=8, value=modifiedNp, onChange = "Javascript:this.form.curStatus.value='updateCheck';")))) + numDataChanges += 1 + modifiedNps.append(modifiedNp) + else: + form.append(HT.Input(type="hidden",name='N'+strainName,value=traitNP)) + modifiedNps.append(traitNP) + + + if numDataChanges == 0: + recordDataChange = HT.Blockquote('No change has been made.') + recordDataTable = "" + else: + hddn['modifiedDataField'] = 1 + recordDataChange = "" + + #if numDataChanges: + # hddn['val'] = string.join(modifiedVals, ',') + # hddn['var'] = string.join(modifiedVars, ',') + # hddn['np'] = string.join(modifiedNps, ',') + + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + ############################# + TD_LR = HT.TD(valign="top",colspan=2,bgcolor="#eeeeee", height=200) + + mainTitle = HT.Paragraph("Update Info and Data", Class="title") + + title1 = HT.Paragraph("Trait Information:", Class="subtitle") + + title2 = HT.Paragraph("Trait Data:", Class="subtitle") + + if numDataChanges or infoChanges: + recordChange = HT.Blockquote('The table below lists all the changes made. The texts in red are the original information stored on the server, the texts to the right are the modified version. ') + updateButton = HT.Input(type='submit',name='submit', value='Update Data',Class="button") + resetButton = HT.Input(type='reset',Class="button") + form.append(title1, HT.Center(updateButton,resetButton), recordInfoChange, recordInfoTable,title2, recordDataChange, HT.Center(recordDataTable,HT.P(),updateButton,resetButton),HT.P()) + TD_LR.append(mainTitle, recordChange, HT.Blockquote(form)) + else: + recordInfoChange = HT.Blockquote("No change has been made") + TD_LR.append(mainTitle, recordInfoChange) + + self.dict['body'] = TD_LR + #self.dict['js1'] = webqtlConfig.resetFieldScript + return + + def updateResultPage(self, fd, thisTrait): + + comments = [] + ctime = time.ctime() + ##Start Updating + dataID = -1 + if thisTrait.db.type == 'Publish': + self.cursor.execute("SelecT PublishXRef.InbredSetId, PublishXRef.DataId, PublishXRef.PublicationId, PublishXRef.PhenotypeId, PublishXRef.Sequence from PublishXRef, PublishFreeze where PublishXRef.InbredSetId= PublishFreeze.InbredSetId and PublishFreeze.Name = '%s' and PublishXRef.Id = %s" % (thisTrait.db.name, thisTrait.name)) + PInbredSetId, dataID, PublicationId, PhenotypeId, Sequence = self.cursor.fetchall()[0] + + modifyField = self.formdata.getvalue('modifiedField') + ###Modify Trait Informations + if modifyField: + modifyField = string.split(modifyField, '::') + comments += modifyField + updateHomologeneid = False + + if thisTrait.db.type == 'Publish': + PhenotypeItemUpdate = [] + PhenotypeItemValues = [] + PublicationItemUpdate = [] + PublicationItemValues = [] + + for item in modifyField: + itemvalue = self.formdata.getvalue(item) + + #XZ: identify Phenotype items + if item in ['pre_publication_description', 'post_publication_description', 'original_description', 'pre_publication_abbreviation', 'post_publication_abbreviation', 'lab_code', 'submitter', 'owner', 'authorized_users', 'units']: + if itemvalue != None: #XZ: the problem is that the item value can not be deleted + PhenotypeItemUpdate.append('%s=%%s' % item) + PhenotypeItemValues.append(itemvalue) + + continue #XZ: this is important to distinguish Phenotype item and Publication item + + elif item == "pubmed_id": + #Only integer allowed in this field + try: + itemvalue = int(itemvalue) + except: + itemvalue = None + + #whether old PMID exists + self.cursor.execute("SelecT PubMed_ID from Publication where Id = %d" % PublicationId) + oldPMID = self.cursor.fetchone() + if oldPMID: + oldPMID = oldPMID[0] + + #whether new PMID already exists + newPMID = None + self.cursor.execute("SelecT Id from Publication where PubMed_ID = %d" % itemvalue) + newPMID = self.cursor.fetchone() + if newPMID: + newPMID = newPMID[0] + + ##the logic is still not very clear here + if newPMID: + #new PMID in record + self.cursor.execute("Update PublishXRef set PublicationId = %d where InbredSetId=%d and PhenotypeId=%d and PublicationId=%d and Sequence=%d" % (newPMID, PInbredSetId, PhenotypeId, PublicationId, Sequence)) + #no need to update other fields + PublicationItemUpdate = [] + break + elif itemvalue: + #have new PMID, but not in record or need to change + self.cursor.execute("Update Publication set pubmed_id=%d where Id = %s" % (itemvalue,PublicationId)) + else: + #no new PMID + if oldPMID: + #remove a pubmed_id, don't know if this ever gonna happen + self.cursor.execute("SelecT max(Id) from Publication") + maxId = self.cursor.fetchone()[0] + 1 + self.cursor.execute("SelecT * from Publication where Id = %d" % PublicationId) + oldRecs = list(self.cursor.fetchone()) + oldRecs[0] = maxId + oldRecs[1] = None + NFields = ['%s'] * len(oldRecs) + query = "insert into Publication Values (%s)" % string.join(NFields, ',') + self.cursor.execute(query, tuple(oldRecs)) + self.cursor.execute("Update PublishXRef set PublicationId = %d where InbredSetId=%d and PhenotypeId=%d and PublicationId=%d and Sequence=%d" % (maxId, PInbredSetId, PhenotypeId, PublicationId, Sequence)) + PublicationId = maxId + pass + else: + pass + continue + else: + pass + + if itemvalue: + PublicationItemUpdate.append('%s=%%s' % item) + PublicationItemValues.append(itemvalue) + + if PhenotypeItemUpdate: + updateStr= string.join(PhenotypeItemUpdate,',') + query = "Update Phenotype set %s where Id = %s" % (updateStr, PhenotypeId) + self.cursor.execute(query,tuple(PhenotypeItemValues)) + + if PublicationItemUpdate: + updateStr= string.join(PublicationItemUpdate,',') + query = "Update Publication set %s where Id = %s" % (updateStr, PublicationId) + self.cursor.execute(query,tuple(PublicationItemValues)) + + else: #ProbeSet or Genotype Data + itemValues = [] + itemUpdate = [] + + for item in modifyField: + itemvalue = self.formdata.getvalue(item) + if itemvalue != None: + itemvalue = string.strip(itemvalue) + else: + pass + if item == 'homologeneid': + updateHomologeneid = True + new_homologeneid = 0 + + if itemvalue and len(itemvalue) > 0: + try: + new_homologeneid = int(itemvalue) + except: + heading = "Record Updating Result" + detail = ["Can't update database. Homologeneid must be integer!"] + self.error(heading=heading,detail=detail,error="Error") + return + else: + itemUpdate.append('%s=%%s' % item) #XZ: Use %% to put a % in the output string + itemValues.append(itemvalue) + + if itemUpdate: + updateStr= string.join(itemUpdate,', ') + comments = "%s modified %s at %s\n" % (self.userName, string.join(comments, ', '), ctime) + if thisTrait.db.type == "ProbeSet":#XZ, June 29, 2010: The algorithm is not good. Need to fix it later. + if thisTrait.chipid in (2,4): + if thisTrait.name[-2:] == '_A': + thisTrait.name = string.replace(thisTrait.name, '_A', '') + elif thisTrait.name[-2:] == '_B': + thisTrait.name = string.replace(thisTrait.name, '_B', '') + else: + pass + query = "Update %s set %s where Name like '%s%%%%'" % (thisTrait.db.type,updateStr,thisTrait.name) + self.cursor.execute(query,tuple(itemValues)) + self.cursor.execute("Update %s set comments = CONCAT(comments,'%s') where Name like '%s%%%%'" % (thisTrait.db.type, comments, thisTrait.name)) + elif thisTrait.sequence: + query = "Update %s set %s where BlatSeq='%s'" % (thisTrait.db.type,updateStr,thisTrait.sequence) + self.cursor.execute(query,tuple(itemValues)) + self.cursor.execute("Update %s set comments = CONCAT(comments,'%s') where BlatSeq='%s'" % (thisTrait.db.type, comments, thisTrait.sequence)) + else: + query = "Update %s set %s where Name='%s'" % (thisTrait.db.type,updateStr,thisTrait.name) + self.cursor.execute(query,tuple(itemValues)) + self.cursor.execute("Update %s set comments = CONCAT(comments,'%s') where Name='%s'" % (thisTrait.db.type, comments, thisTrait.name)) + else: #XZ: Genotype + query = "Update %s set %s where SpeciesId=%s and Name='%s'" % (thisTrait.db.type,updateStr, webqtlDatabaseFunction.retrieveSpeciesId(self.cursor, thisTrait.db.riset), thisTrait.name) + self.cursor.execute(query,tuple(itemValues)) + + if updateHomologeneid: #XZ: to update homologene id must be after updating geneid. + #XZ: In one species, one homologeneid can have multiple geneid. One geneid only can have one homologeneid. + #XZ: In Homologene table, GeneId is unique. + #XZ: Geneid might just being updated. + thisTrait = webqtlTrait(fullname=self.formdata.getvalue('fullname'), cursor=self.cursor) + thisTrait.retrieveInfo() + + if not thisTrait.geneid: + heading = "Record Updating Result" + detail = ["There is no geneid associated with this trait. Can't update homologeneid info"] + self.error(heading=heading,detail=detail,error="Error") + return + else: + query = """ + SELECT Species.TaxonomyId + FROM Species, InbredSet + WHERE InbredSet.Name = '%s' and InbredSet.SpeciesId = Species.Id + """ % thisTrait.db.riset + self.cursor.execute(query) + taxonomyId = self.cursor.fetchone()[0] + + if not new_homologeneid: + query = """DELETE FROM Homologene WHERE GeneId=%s""" % thisTrait.geneid + self.cursor.execute(query) + else: + query = """SELECT GeneId FROM Homologene WHERE GeneId=%s""" % thisTrait.geneid + self.cursor.execute(query) + result = self.cursor.fetchone() + + if not result: + query = """INSERT into Homologene (HomologeneId, GeneId, TaxonomyId) VALUES (%s, %s, %s)""" % (new_homologeneid, thisTrait.geneid, taxonomyId) + self.cursor.execute(query) + else: + query = """UPDATE Homologene SET HomologeneId=%s WHERE GeneId=%s""" % (new_homologeneid, thisTrait.geneid) + self.cursor.execute(query) + + + #XZ: It's critical to get lasted info first, then update gene level info across traits by geneid. + #XZ: Need to build index on GeneId. Otherwise, it's too slow. + if thisTrait.db.type == 'ProbeSet': + thisTrait = webqtlTrait(fullname=self.formdata.getvalue('fullname'), cursor=self.cursor) + thisTrait.retrieveInfo() + + if thisTrait.geneid: + if 'symbol' in modifyField: + if thisTrait.symbol: + query = """UPDATE ProbeSet SET Symbol='%s' WHERE GeneId=%s""" % (thisTrait.symbol, thisTrait.geneid) + else: + query = """UPDATE ProbeSet SET Symbol=NULL WHERE GeneId=%s""" % (thisTrait.geneid) + self.cursor.execute(query) + + if 'alias' in modifyField: + if thisTrait.alias: + query = """UPDATE ProbeSet SET alias='%s' WHERE GeneId=%s""" % (thisTrait.alias, thisTrait.geneid) + else: + query = """UPDATE ProbeSet SET alias=NULL WHERE GeneId=%s""" % (thisTrait.geneid) + self.cursor.execute(query) + + if 'description' in modifyField: + if thisTrait.description: #XZ: Attention, we must use "%s" instead of '%s'. Otherwise, to insert 3'UTR will generate error. + query = """UPDATE ProbeSet SET description="%s" WHERE GeneId=%s""" % (thisTrait.description, thisTrait.geneid) + else: + query = """UPDATE ProbeSet SET description=NULL WHERE GeneId=%s""" % (thisTrait.geneid) + self.cursor.execute(query) + + if 'strand_gene' in modifyField: + if thisTrait.strand_gene: + query = """UPDATE ProbeSet SET Strand_Gene='%s' WHERE GeneId=%s""" % (thisTrait.strand_gene, thisTrait.geneid) + else: + query = """UPDATE ProbeSet SET Strand_Gene=NULL WHERE GeneId=%s""" % (thisTrait.geneid) + self.cursor.execute(query) + + if 'unigeneid' in modifyField: + if thisTrait.unigeneid: + query = """UPDATE ProbeSet SET UniGeneId='%s' WHERE GeneId=%s""" % (thisTrait.unigeneid, thisTrait.geneid) + else: + query = """UPDATE ProbeSet SET UniGeneId=NULL WHERE GeneId=%s""" % (thisTrait.geneid) + self.cursor.execute(query) + + if 'refseq_transcriptid' in modifyField: + if thisTrait.refseq_transcriptid: + query = """UPDATE ProbeSet SET RefSeq_TranscriptId='%s' WHERE GeneId=%s""" % (thisTrait.refseq_transcriptid, thisTrait.geneid) + else: + query = """UPDATE ProbeSet SET RefSeq_TranscriptId=NULL WHERE GeneId=%s""" % (thisTrait.geneid) + self.cursor.execute(query) + + if 'genbankid' in modifyField: + if thisTrait.genbankid: + query = """UPDATE ProbeSet SET GenbankId='%s' WHERE GeneId=%s""" % (thisTrait.genbankid, thisTrait.geneid) + else: + query = """UPDATE ProbeSet SET GenbankId=NULL WHERE GeneId=%s""" % (thisTrait.geneid) + self.cursor.execute(query) + + if 'omim' in modifyField: + if thisTrait.omim: + query = """UPDATE ProbeSet SET OMIM='%s' WHERE GeneId=%s""" % (thisTrait.omim, thisTrait.geneid) + else: + query = """UPDATE ProbeSet SET OMIM=NULL WHERE GeneId=%s""" % (thisTrait.geneid) + self.cursor.execute(query) + + + ###Modify Trait Data + if thisTrait.db.type == 'Publish' and dataID > 0 and fd.formdata.getvalue("modifiedDataField"): + StrainIds = [] + for item in fd.strainlist: + self.cursor.execute('SelecT Id from Strain where Name = "%s"' % item) + StrainId = self.cursor.fetchone() + if not StrainId: + raise ValueError + else: + StrainIds.append(StrainId[0]) + comments.append('Trait Value') + #XZ, 03/05/2009: Xiaodong changed Data to PublishData, SE to PublishSE + self.cursor.execute('delete from PublishData where Id = %d' % dataID) + self.cursor.execute('delete from PublishSE where DataId = %d' % dataID) + self.cursor.execute('delete from NStrain where DataId = %d' % dataID) + + for i, strain in enumerate(fd.strainlist): + sId = StrainIds[i] + if fd.allTraitData.has_key(strain): + tdata = fd.allTraitData[strain] + _val, _var, _N = tdata.val, tdata.var, tdata.N + if _val != None: + #XZ, 03/05/2009: Xiaodong changed Data to PublishData, SE to PublishSE + self.cursor.execute('insert into PublishData values(%d, %d, %s)' % (dataID, sId, _val)) + if _var != None: + self.cursor.execute('insert into PublishSE values(%d, %d, %s)' % (dataID, sId, _var)) + if _N != None: + self.cursor.execute('insert into NStrain values(%d, %d, %s)' % (dataID, sId, _N)) + else: + pass + #end for + else: + pass + TD_LR = HT.TD(valign="top", bgcolor="#eeeeee",height=200,width="100%") + main_title = HT.Paragraph(" Record Updating Result", Class="title") + + TD_LR.append(main_title,HT.Blockquote('Successfully updated record %s in database ' % thisTrait.name, thisTrait.db.genHTML(), '.')) + if thisTrait.db.type == 'Publish': + comments = "%s modified %s at %s\n" % (self.userName, string.join(comments, ', '), ctime) + self.cursor.execute("Update PublishXRef set comments = CONCAT(comments,'%s') where InbredSetId=%d and PhenotypeId=%d and PublicationId=%d and Sequence=%d" % (comments, PInbredSetId, PhenotypeId, PublicationId, Sequence)) + + if 0: + heading = "Record Updating Result" + detail = ["Can't update database. The server may be down at this time or you don't have the permission"] + self.error(heading=heading,detail=detail,error="Error") + return + self.dict['body'] = str(TD_LR) + diff --git a/web/webqtl/updateTrait/__init__.py b/web/webqtl/updateTrait/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/user/__init__.py b/web/webqtl/user/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/user/userLogin.py b/web/webqtl/user/userLogin.py new file mode 100755 index 00000000..145af03e --- /dev/null +++ b/web/webqtl/user/userLogin.py @@ -0,0 +1,84 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#Xiaodong changed the independancy structure + +from htmlgen import HTMLgen2 as HT +import os + +from base.templatePage import templatePage +from base import webqtlConfig +from utility import webqtlUtil +from search import IndexPage +from base.myCookie import myCookie + +class userLogin(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.updMysql(): + return + + try: + user = fd.formdata.getvalue('user').strip() + password = fd.formdata.getvalue('password').strip() + except: + user = password = '' + + if user and password: + try: + if user == password: + raise 'identError' + privilege, id, account_name, encrypt_password, grpName = webqtlUtil.authUser(user, password, self.cursor) + + if encrypt_password: + self.session_data_changed['user'] = user + self.session_data_changed['privilege'] = privilege + + self.cursor.execute("""update User set user_ip=%s,lastlogin=Now() where name=%s""",(fd.remote_ip,user)) + + myPage = IndexPage.IndexPage(fd) + self.dict['title'] = myPage.dict['title'] + self.dict['body'] = myPage.dict['body'] + self.dict['js1'] = myPage.dict['js1'] + self.dict['js2'] = myPage.dict['js2'] + return + else: + result = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('You entered wrong user name or password. Please try it again.',color='black')) + except 'identError': + result = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('User name and password are the same, modify you password before login.',color='black')) + except: + result = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('User database is not ready yet. Try again later.',color='black')) + else: + result = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('No user name or password was entered, Please try it again.',color='black')) + + result.__setattr__("class","subtitle") + self.dict['title'] = 'User Login Result' + self.dict['body'] = HT.TD(result,colspan=2,height=200,width="100%",bgColor='#eeeeee') + LOGOUT = HT.Href(text = "Logout",Class="small", target="_blank",url=os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE) + "?FormID=userLogoff") + self.dict['login'] = LOGOUT diff --git a/web/webqtl/user/userLogoff.py b/web/webqtl/user/userLogoff.py new file mode 100755 index 00000000..203ac69c --- /dev/null +++ b/web/webqtl/user/userLogoff.py @@ -0,0 +1,54 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#Xiaodong changed the independancy structure + +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from base.myCookie import myCookie + +######################################### +# User Logoff Page +######################################### + +class userLogoff(templatePage): + def __init__(self, fd): + + templatePage.__init__(self, fd) + + self.session_data_changed['user'] = 'Guest' + self.session_data_changed['privilege'] = 'guest' + + #self.cookie.append(myCookie('user',' ',0)) + #self.cookie.append(myCookie('password',' ',0)) + result = HT.Blockquote(HT.Font('Logout Result: ',color='green'),HT.Font('You have been succesfully logged out. ',color='black')) + result.__setattr__("class","subtitle") + self.dict['title'] = 'User Logoff Result' + self.dict['body'] = HT.TD(result,colspan=2,height=200,width="100%",bgColor='#eeeeee') + LOGIN = HT.Href(text = "Login",Class="small", target="_blank",url="account.html") + self.dict['login'] = LOGIN + diff --git a/web/webqtl/user/userPasswd.py b/web/webqtl/user/userPasswd.py new file mode 100755 index 00000000..58c9bbc9 --- /dev/null +++ b/web/webqtl/user/userPasswd.py @@ -0,0 +1,73 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#Xiaodong changed the independancy structure + +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from utility import webqtlUtil + + +######################################### +# User Password Page +######################################### + +class userPasswd(templatePage): + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.updMysql(): + return + + try: + user = fd.formdata.getvalue('user') + password = fd.formdata.getvalue('password') + newpassword = fd.formdata.getvalue('newpassword') + retypepassword = fd.formdata.getvalue('retypepassword') + except: + user = '' + + if newpassword != retypepassword: + result = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('The new passwords you just entered are inconsistent. Please try it again',color='black')) + elif user and password and newpassword: + try: + encrypt_password = webqtlUtil.authUser(user,password,self.cursor)[3] + if encrypt_password: + self.cursor.execute("""update User set password=SHA(%s) where name=%s""",(newpassword,user)) + result = HT.Blockquote(HT.Font('Change Result: ',color='green'),HT.Font('You have succesfully changed your password. You may continue to use WebQTL.',color='black')) + else: + result = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('You entered wrong user name or password. Please try it again.',color='black')) + except: + result = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('User database is not ready yet. Try again later.',color='black')) + else: + result = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('No user name or password or new password was entered, Please try it again.',color='black')) + + result.__setattr__("class","subtitle") + self.dict['title'] = 'Change Password Result' + self.dict['body'] = HT.TD(result,colspan=2,height=200,width="100%",bgColor='#eeeeee') + diff --git a/web/webqtl/user/userPasswdPage.py b/web/webqtl/user/userPasswdPage.py new file mode 100755 index 00000000..2c9135f1 --- /dev/null +++ b/web/webqtl/user/userPasswdPage.py @@ -0,0 +1,70 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#Xiaodong changed the independancy structure + +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from utility import webqtlUtil + + +######################################### +# User Password Page +######################################### + +class userPasswdPage(templatePage): + def __init__(self, fd): + templatePage.__init__(self) + if not self.updMysql(): + return + try: + user = fd.formdata.getvalue('user') + password = fd.formdata.getvalue('password') + newpassword = fd.formdata.getvalue('newpassword') + retypepassword = fd.formdata.getvalue('retypepassword') + except: + user = '' + + if newpassword != retypepassword: + result = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('The new passwords you just entered are inconsistent. Please try it again',color='black')) + elif user and password and newpassword: + try: + encrypt_password = webqtlUtil.authUser(user,password,self.cursor)[3] + if encrypt_password: + self.cursor.execute("""update User set password=SHA(%s) where name=%s""",(newpassword,user)) + result = HT.Blockquote(HT.Font('Change Result: ',color='green'),HT.Font('You have succesfully changed your password. You may continue to use WebQTL.',color='black')) + else: + result = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('You entered wrong user name or password. Please try it again.',color='black')) + except: + result = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('User database is not ready yet. Try again later.',color='black')) + else: + result = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('No user name or password or new password was entered, Please try it again.',color='black')) + + result.__setattr__("class","subtitle") + self.dict['title'] = 'Change Password Result' + self.dict['body'] = HT.TD(result,colspan=2,height=200,width="100%",bgColor='#eeeeee') + diff --git a/web/webqtl/utility/AJAX_table.py b/web/webqtl/utility/AJAX_table.py new file mode 100755 index 00000000..963a530e --- /dev/null +++ b/web/webqtl/utility/AJAX_table.py @@ -0,0 +1,153 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import cPickle +import os +import MySQLdb +import time +import pyXLWriter as xl + +from htmlgen import HTMLgen2 as HT + +from base import webqtlConfig +from THCell import THCell +from TDCell import TDCell +import webqtlUtil + + +class AJAX_table: + def __init__(self, fd): + file = fd.formdata.getfirst("file", "") + sort = fd.formdata.getfirst("sort", "") + order = fd.formdata.getfirst("order", "up") + cmd = fd.formdata.getfirst("cmd", "") + tableID = fd.formdata.getfirst("tableID", "") + addIndex = fd.formdata.getfirst("addIndex", "1") + hiddenColumnsString = fd.formdata.getfirst("hiddenColumns", "") + hiddenColumns = hiddenColumnsString.split(',') + + try: + fp = open(os.path.join(webqtlConfig.TMPDIR, file + '.obj'), 'rb') + tblobj = cPickle.load(fp) + fp.close() + + if cmd == 'addCorr': + dbId = int(fd.formdata.getfirst("db")) + dbFullName = fd.formdata.getfirst("dbname") + trait = fd.formdata.getfirst("trait") + form = fd.formdata.getfirst("form") + ids = fd.formdata.getfirst("ids") + vals = fd.formdata.getfirst("vals") + ids = eval(ids) + nnCorr = len(ids) + vals = eval(vals) + + workbook = xl.Writer('%s.xls' % (webqtlConfig.TMPDIR+file)) + worksheet = workbook.add_worksheet() + + con = MySQLdb.Connect(db=webqtlConfig.DB_NAME,host=webqtlConfig.MYSQL_SERVER, user=webqtlConfig.DB_USER,passwd=webqtlConfig.DB_PASSWD) + cursor = con.cursor() + + cursor.execute("Select name, ShortName from ProbeSetFreeze where Id = %s", dbId) + dbName, dbShortName = cursor.fetchone() + + tblobj['header'][0].append( + THCell(HT.TD(dbShortName, Class="fs11 ffl b1 cw cbrb"), + text="%s" % dbShortName, idx=tblobj['header'][0][-1].idx + 1), + ) + + headingStyle = workbook.add_format(align = 'center', bold = 1, border = 1, size=13, fg_color = 0x1E, color="white") + for i, item in enumerate(tblobj['header'][0]): + if (i > 0): + worksheet.write([8, i-1], item.text, headingStyle) + worksheet.set_column([i-1, i-1], 2*len(item.text)) + + for i, row in enumerate(tblobj['body']): + ProbeSetId = row[1].text + #XZ, 03/02/2009: Xiaodong changed Data to ProbeSetData + cursor.execute(""" + Select ProbeSetData.StrainId, ProbeSetData.Value + From ProbeSetData, ProbeSetXRef, ProbeSet + where ProbeSetXRef.ProbeSetFreezeId = %d AND + ProbeSetXRef.DataId = ProbeSetData.Id AND + ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + ProbeSet.Name = '%s' + """ % (dbId, ProbeSetId)) + results = cursor.fetchall() + vdict = {} + for item in results: + vdict[item[0]] = item[1] + newvals = [] + for id in ids: + if vdict.has_key(id): + newvals.append(vdict[id]) + else: + newvals.append(None) + corr,nOverlap= webqtlUtil.calCorrelation(newvals,vals,nnCorr) + repr = '%0.4f' % corr + row.append( + TDCell(HT.TD(HT.Href(text=repr, url="javascript:showCorrPlotThird('%s', '%s', '%s')" % (form, dbName, ProbeSetId), Class="fs11 fwn ffl"), " / ", nOverlap, Class="fs11 fwn ffl b1 c222", align="middle"),repr,abs(corr)) + ) + + last_row=0 + for j, item in enumerate(tblobj['body'][i]): + if (j > 0): + worksheet.write([9+i, j-1], item.text) + last_row = 9+i + last_row += 1 + + titleStyle = workbook.add_format(align = 'left', bold = 0, size=14, border = 1, border_color="gray") + ##Write title Info + # Modified by Hongqiang Li + worksheet.write([0, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle) + worksheet.write([1, 0], "Trait : %s" % trait, titleStyle) + worksheet.write([2, 0], "Database : %s" % dbFullName, titleStyle) + worksheet.write([3, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime()), titleStyle) + worksheet.write([4, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime()), titleStyle) + worksheet.write([5, 0], "Status of data ownership: Possibly unpublished data; please see %s/statusandContact.html for details on sources, ownership, and usage of these data." % webqtlConfig.PORTADDR, titleStyle) + #Write footer info + worksheet.write([1 + last_row, 0], "Funding for The GeneNetwork: NIAAA (U01AA13499, U24AA13513), NIDA, NIMH, and NIAAA (P20-DA21131), NCI MMHCC (U01CA105417), and NCRR (U01NR 105417)", titleStyle) + worksheet.write([2 + last_row, 0], "PLEASE RETAIN DATA SOURCE INFORMATION WHENEVER POSSIBLE", titleStyle) + + cursor.close() + workbook.close() + + objfile = open(os.path.join(webqtlConfig.TMPDIR, file + '.obj'), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + else: + pass + + self.value = str(webqtlUtil.genTableObj(tblobj=tblobj, file=file, sortby=(sort, order), tableID = tableID, addIndex = addIndex, hiddenColumns = hiddenColumns)) + + except: + self.value = "The table is no longer available on this server" + + def __str__(self): + return self.value + + def write(self): + return str(self) diff --git a/web/webqtl/utility/Plot.py b/web/webqtl/utility/Plot.py new file mode 100755 index 00000000..2401c85c --- /dev/null +++ b/web/webqtl/utility/Plot.py @@ -0,0 +1,1283 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import piddle as pid +from math import * +import random +import sys, os +from numarray import linear_algebra as la +from numarray import ones, array, dot, swapaxes + +import reaper + +import svg +import webqtlUtil +from base import webqtlConfig + + +def cformat(d, rank=0): + 'custom string format' + strD = "%2.6f" % d + + if rank == 0: + while strD[-1] in ('0','.'): + if strD[-1] == '0' and strD[-2] == '.' and len(strD) <= 4: + break + elif strD[-1] == '.': + strD = strD[:-1] + break + else: + strD = strD[:-1] + + else: + strD = strD.split(".")[0] + + if strD == '-0.0': + strD = '0.0' + return strD + +def frange(start, end=None, inc=1.0): + "A faster range-like function that does accept float increments..." + if end == None: + end = start + 0.0 + start = 0.0 + else: + start += 0.0 # force it to be a float + count = int((end - start) / inc) + if start + count * inc != end: + # Need to adjust the count. AFAICT, it always comes up one short. + count += 1 + L = [start] * count + for i in xrange(1, count): + L[i] = start + i * inc + return L + + +def gammln(xx): + cof=[76.18009173,-86.50532033,24.01409822,-1.231739516,0.120858003e-2,-0.536382e-5] + x=xx-1.0 + tmp=x+5.5 + tmp -=(x+0.5)*log(tmp) + ser=1.0 + for item in cof: + x+=1.0 + ser+=item/x + + return -tmp+log(2.50662827465*ser) + + +def gser(a,x): + gln=gammln(a) + ITMAX=100 + EPS=3.0e-7 + + if x<=0.0: + gamser=0.0 + return [gamser,gln] + else: + ap=a + sum=1.0/a + dele=sum + for i in range(1,ITMAX+1): + ap+=1.0 + dele*=x/ap + sum+=dele + if abs(dele)=0.0: + return ans + else: + return 2.0-ans + +def calMeanVar(data): + n=len(data) + if n<2: + return None + else: + sum=reduce(lambda x,y:x+y,data,0.0) + mean=sum/n + z=data[:] + for i in range(n): + z[i]=z[i]-mean + variance=reduce(lambda x,y:x+y*y,z,0.0) + variance /= n-1 + variance =sqrt(variance) + for i in range(n): + z[i]=z[i]/variance + return z + +def inverseCumul(p): + #Coefficients in rational approximations. + a = [-3.969683028665376e+01,2.209460984245205e+02,-2.759285104469687e+02,1.383577518672690e+02,-3.066479806614716e+01,2.506628277459239e+00] + + b = [-5.447609879822406e+01,1.615858368580409e+02,-1.556989798598866e+02,6.680131188771972e+01,-1.328068155288572e+01] + + c = [-7.784894002430293e-03,-3.223964580411365e-01,-2.400758277161838e+00,-2.549732539343734e+00,4.374664141464968e+00,2.938163982698783e+00] + + d = [7.784695709041462e-03,3.224671290700398e-01,2.445134137142996e+00,3.754408661907416e+00] + + #Define break-points. + + p_low = 0.02425 + p_high = 1 - p_low + + #Rational approximation for lower region. + + if p > 0 and p < p_low: + q = sqrt(-2*log(p)) + x = (((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) / ((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1) + + + #Rational approximation for central region. + + elif p>= p_low and p <= p_high: + q = p - 0.5 + r = q*q + x = (((((a[0]*r+a[1])*r+a[2])*r+a[3])*r+a[4])*r+a[5])*q /(((((b[0]*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1) + + #Rational approximation for upper region. + + elif p>p_high and p < 1: + q = sqrt(-2*log(1-p)) + x = -(((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1) + + else: + return None + + if p>0 and p < 1: + e = 0.5 * erfcc(-x/sqrt(2)) - p + u = e * sqrt(2*pi) * exp(x*x/2) + x = x - u/(1 + x*u/2) + return x + else: + return None + +def gmean(lst): + N = len(lst) + if N == 0: + return 0 + else: + return (reduce(lambda x,y: x+y, lst, 0.0))/N + +def gmedian(lst2): + lst = lst2[:] + N = len(lst) + if N == 0: + return 0 + else: + lst.sort() + if N % 2 == 0: + return (lst[N/2]+lst[(N-2)/2])/2.0 + else: + return lst[(N-1)/2] + +def gpercentile(lst2, np): + lst = lst2[:] + N = len(lst) + if N == 0 or np > 100 or np < 0: + return None + else: + lst.sort() + pNadd1 = (np/100.0)*N + k = int(pNadd1) + d = pNadd1 - k + if k == 0: + return lst[0] + elif k >= N-1: + return lst[N-1] + else: + return lst[k-1] + d*(lst[k] - lst[k-1]) + +def findOutliers(vals): + + valsOnly = [] + dataXZ = vals[:] + for i in range(len(dataXZ)): + valsOnly.append(dataXZ[i][1]) + + data = [('', valsOnly[:])] + + for item in data: + itemvalue = item[1] + nValue = len(itemvalue) + catValue = [] + + for item2 in itemvalue: + try: + tstrain, tvalue = item2 + except: + tvalue = item2 + if nValue <= 4: + continue + else: + catValue.append(tvalue) + + if catValue != []: + lowHinge = gpercentile(catValue, 25) + upHinge = gpercentile(catValue, 75) + Hstep = 1.5*(upHinge - lowHinge) + + outlier = [] + extreme = [] + + upperBound = upHinge + Hstep + lowerBound = lowHinge - Hstep + + for item in catValue: + if item >= upHinge + 2*Hstep: + extreme.append(item) + elif item >= upHinge + Hstep: + outlier.append(item) + else: + pass + + for item in catValue: + if item <= lowHinge - 2*Hstep: + extreme.append(item) + elif item <= lowHinge - Hstep: + outlier.append(item) + else: + pass + else: + upperBound = 1000 + lowerBound = -1000 + + return upperBound, lowerBound + + +def plotBoxPlot(canvas, data, offset= (40, 40, 40, 40), XLabel="Category", YLabel="Value"): + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + iValues = [] + for item in data: + for item2 in item[1]: + try: + iValues.append(item2[1]) + except: + iValues.append(item2) + + #draw frame + max_Y = max(iValues) + min_Y = min(iValues) + scaleY = detScale(min_Y, max_Y) + Yll = scaleY[0] + Yur = scaleY[1] + nStep = scaleY[2] + stepY = (Yur - Yll)/nStep + stepYPixel = plotHeight/(nStep) + canvas.drawRect(plotWidth+xLeftOffset, plotHeight + yTopOffset, xLeftOffset, yTopOffset) + + ##draw Y Scale + YYY = Yll + YCoord = plotHeight + yTopOffset + scaleFont=pid.Font(ttf="cour",size=11,bold=1) + for i in range(nStep+1): + strY = cformat(d=YYY, rank=0) + YCoord = max(YCoord, yTopOffset) + canvas.drawLine(xLeftOffset,YCoord,xLeftOffset-5,YCoord) + canvas.drawString(strY, xLeftOffset -30,YCoord +5,font=scaleFont) + YYY += stepY + YCoord -= stepYPixel + + ##draw X Scale + stepX = plotWidth/len(data) + XCoord = xLeftOffset + 0.5*stepX + YCoord = plotHeight + yTopOffset + scaleFont = pid.Font(ttf="tahoma",size=12,bold=0) + labelFont = pid.Font(ttf="tahoma",size=13,bold=0) + for item in data: + itemname, itemvalue = item + canvas.drawLine(XCoord, YCoord,XCoord, YCoord+5, color=pid.black) + canvas.drawString(itemname, XCoord - canvas.stringWidth(itemname,font=labelFont)/2.0,\ + YCoord +20,font=labelFont) + + nValue = len(itemvalue) + catValue = [] + for item2 in itemvalue: + try: + tstrain, tvalue = item2 + except: + tvalue = item2 + if nValue <= 4: + canvas.drawCross(XCoord, plotHeight + yTopOffset - (tvalue-Yll)*plotHeight/(Yur - Yll), color=pid.red,size=5) + else: + catValue.append(tvalue) + if catValue != []: + catMean = gmean(catValue) + catMedian = gmedian(catValue) + lowHinge = gpercentile(catValue, 25) + upHinge = gpercentile(catValue, 75) + Hstep = 1.5*(upHinge - lowHinge) + + outlier = [] + extrem = [] + + upperAdj = None + for item in catValue: + if item >= upHinge + 2*Hstep: + extrem.append(item) + elif item >= upHinge + Hstep: + outlier.append(item) + elif item > upHinge and item < upHinge + Hstep: + if upperAdj == None or item > upperAdj: + upperAdj = item + else: + pass + lowerAdj = None + for item in catValue: + if item <= lowHinge - 2*Hstep: + extrem.append(item) + elif item <= lowHinge - Hstep: + outlier.append(item) + if item < lowHinge and item > lowHinge - Hstep: + if lowerAdj == None or item < lowerAdj: + lowerAdj = item + else: + pass + canvas.drawRect(XCoord-20, plotHeight + yTopOffset - (lowHinge-Yll)*plotHeight/(Yur - Yll), \ + XCoord+20, plotHeight + yTopOffset - (upHinge-Yll)*plotHeight/(Yur - Yll)) + canvas.drawLine(XCoord-20, plotHeight + yTopOffset - (catMedian-Yll)*plotHeight/(Yur - Yll), \ + XCoord+20, plotHeight + yTopOffset - (catMedian-Yll)*plotHeight/(Yur - Yll)) + if upperAdj != None: + canvas.drawLine(XCoord, plotHeight + yTopOffset - (upHinge-Yll)*plotHeight/(Yur - Yll), \ + XCoord, plotHeight + yTopOffset - (upperAdj-Yll)*plotHeight/(Yur - Yll)) + canvas.drawLine(XCoord-20, plotHeight + yTopOffset - (upperAdj-Yll)*plotHeight/(Yur - Yll), \ + XCoord+20, plotHeight + yTopOffset - (upperAdj-Yll)*plotHeight/(Yur - Yll)) + if lowerAdj != None: + canvas.drawLine(XCoord, plotHeight + yTopOffset - (lowHinge-Yll)*plotHeight/(Yur - Yll), \ + XCoord, plotHeight + yTopOffset - (lowerAdj-Yll)*plotHeight/(Yur - Yll)) + canvas.drawLine(XCoord-20, plotHeight + yTopOffset - (lowerAdj-Yll)*plotHeight/(Yur - Yll), \ + XCoord+20, plotHeight + yTopOffset - (lowerAdj-Yll)*plotHeight/(Yur - Yll)) + + outlierFont = pid.Font(ttf="cour",size=12,bold=0) + if outlier != []: + for item in outlier: + yc = plotHeight + yTopOffset - (item-Yll)*plotHeight/(Yur - Yll) + #canvas.drawEllipse(XCoord-3, yc-3, XCoord+3, yc+3) + canvas.drawString('o', XCoord-3, yc+5, font=outlierFont, color=pid.orange) + if extrem != []: + for item in extrem: + yc = plotHeight + yTopOffset - (item-Yll)*plotHeight/(Yur - Yll) + #canvas.drawEllipse(XCoord-3, yc-3, XCoord+3, yc+3) + canvas.drawString('*', XCoord-3, yc+6, font=outlierFont, color=pid.red) + + canvas.drawCross(XCoord, plotHeight + yTopOffset - (catMean-Yll)*plotHeight/(Yur - Yll), \ + color=pid.blue,size=3) + #print (catMean, catMedian, cat25per, cat75per) + pass + + XCoord += stepX + + labelFont=pid.Font(ttf="verdana",size=18,bold=0) + canvas.drawString(XLabel, xLeftOffset + (plotWidth -canvas.stringWidth(XLabel,font=labelFont))/2.0, \ + YCoord +40, font=labelFont) + canvas.drawString(YLabel,xLeftOffset-40, YCoord-(plotHeight -canvas.stringWidth(YLabel,font=labelFont))/2.0,\ + font=labelFont, angle =90) + +def plotSecurity(canvas, text="12345"): + if not text: + return + + plotWidth = canvas.size[0] + plotHeight = canvas.size[1] + if plotHeight<=0 or plotWidth<=0: + return + + bgColor = pid.Color(0.6+0.4*random.random(), 0.6+0.4*random.random(), 0.6+0.4*random.random()) + canvas.drawRect(0,0,plotWidth,plotHeight, edgeColor=bgColor, fillColor=bgColor) + + for i in range(30): + randomColor = pid.Color(0.6+0.4*random.random(), 0.6+0.4*random.random(), 0.6+0.4*random.random()) + scaleFont=pid.Font(ttf="cour",size=random.choice(range(20, 50))) + canvas.drawString(random.choice('abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'), + int(random.random()*plotWidth), int(random.random()*plotHeight), font=scaleFont, + color=randomColor, angle=random.choice(range(-45, 50))) + + step = (plotWidth-20)/len(text) + startX = 20 + for item in text: + randomColor = pid.Color(0.6*random.random(),0.6*random.random(), 0.6*random.random()) + scaleFont=pid.Font(ttf="verdana",size=random.choice(range(50, 60)),bold=1) + canvas.drawString(item, startX, plotHeight/2-10, font=scaleFont, + color=randomColor, angle=random.choice(range(-45, 50))) + startX += step + +# parameter: data is either object returned by reaper permutation function (called by MarkerRegressionPage.py) +# or the first object returned by direct (pair-scan) permu function (called by DirectPlotPage.py) +def plotBar(canvas, data, barColor=pid.blue, axesColor=pid.black, labelColor=pid.black, XLabel=None, YLabel=None, title=None, offset= (60, 20, 40, 40), zoom = 1): + + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + if plotHeight<=0 or plotWidth<=0: + return + + if len(data) < 2: + return + + max_D = max(data) + min_D = min(data) + #add by NL 06-20-2011: fix the error: when max_D is infinite, log function in detScale will go wrong + if max_D == float('inf') or max_D>webqtlConfig.MAXLRS: + max_D=webqtlConfig.MAXLRS #maximum LRS value + + xLow, xTop, stepX = detScale(min_D, max_D) + + #reduce data + step = ceil((xTop-xLow)/50.0) + j = xLow + dataXY = [] + Count = [] + while j <= xTop: + dataXY.append(j) + Count.append(0) + j += step + + for i, item in enumerate(data): + if item == float('inf') or item>webqtlConfig.MAXLRS: + item = webqtlConfig.MAXLRS #maximum LRS value + j = int((item-xLow)/step) + Count[j] += 1 + + yLow, yTop, stepY=detScale(0,max(Count)) + + #draw data + xScale = plotWidth/(xTop-xLow) + yScale = plotHeight/(yTop-yLow) + barWidth = xScale*step + + for i, count in enumerate(Count): + if count: + xc = (dataXY[i]-xLow)*xScale+xLeftOffset + yc =-(count-yLow)*yScale+yTopOffset+plotHeight + canvas.drawRect(xc+2,yc,xc+barWidth-2,yTopOffset+plotHeight,edgeColor=barColor,fillColor=barColor) + + #draw drawing region + canvas.drawRect(xLeftOffset, yTopOffset, xLeftOffset+plotWidth, yTopOffset+plotHeight) + + #draw scale + scaleFont=pid.Font(ttf="cour",size=11,bold=1) + x=xLow + for i in range(stepX+1): + xc=xLeftOffset+(x-xLow)*xScale + canvas.drawLine(xc,yTopOffset+plotHeight,xc,yTopOffset+plotHeight+5, color=axesColor) + strX = cformat(d=x, rank=0) + canvas.drawString(strX,xc-canvas.stringWidth(strX,font=scaleFont)/2,yTopOffset+plotHeight+14,font=scaleFont) + x+= (xTop - xLow)/stepX + + y=yLow + for i in range(stepY+1): + yc=yTopOffset+plotHeight-(y-yLow)*yScale + canvas.drawLine(xLeftOffset,yc,xLeftOffset-5,yc, color=axesColor) + strY = "%d" %y + canvas.drawString(strY,xLeftOffset-canvas.stringWidth(strY,font=scaleFont)-6,yc+5,font=scaleFont) + y+= (yTop - yLow)/stepY + + #draw label + labelFont=pid.Font(ttf="tahoma",size=17,bold=0) + if XLabel: + canvas.drawString(XLabel,xLeftOffset+(plotWidth-canvas.stringWidth(XLabel,font=labelFont))/2.0, + yTopOffset+plotHeight+yBottomOffset-10,font=labelFont,color=labelColor) + + if YLabel: + canvas.drawString(YLabel, 19, yTopOffset+plotHeight-(plotHeight-canvas.stringWidth(YLabel,font=labelFont))/2.0, + font=labelFont,color=labelColor,angle=90) + + labelFont=pid.Font(ttf="verdana",size=16,bold=0) + if title: + canvas.drawString(title,xLeftOffset+(plotWidth-canvas.stringWidth(title,font=labelFont))/2.0, + 20,font=labelFont,color=labelColor) + +def plotBarText(canvas, data, label, variance=None, barColor=pid.blue, axesColor=pid.black, labelColor=pid.black, XLabel=None, YLabel=None, title=None, sLabel = None, offset= (80, 20, 40, 100), barSpace = 2, zoom = 1): + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + if plotHeight<=0 or plotWidth<=0: + return + + NNN = len(data) + if NNN < 2 or NNN != len(label): + return + if variance and len(variance)!=NNN: + variance = [] + + Y2 = data[:] + if variance: + for i in range(NNN): + if variance[i]: + Y2 += [data[i]-variance[i]] + + #Y axis + YLow, YTop, stepY = detScale(min(Y2), max(Y2)) + YScale = plotHeight/(YTop - YLow) + + if YLow < 0 and YTop > 0: + drawZero = 1 + else: + drawZero = 0 + + #X axis + X = range(NNN) + Xll= 0 + Xur= NNN-1 + + + if drawZero: + YZero = yTopOffset+plotHeight-YScale*(0-YLow) + canvas.drawLine(xLeftOffset, YZero, xLeftOffset+plotWidth, YZero) + else: + YZero = yTopOffset+plotHeight + #draw data + spaceWidth = barSpace + if spaceWidth < 1: + spaceWidth = 1 + barWidth = int((plotWidth - (NNN-1.0)*spaceWidth)/NNN) + + xc= xLeftOffset + scaleFont=pid.Font(ttf="verdana",size=11,bold=0) + for i in range(NNN): + yc = yTopOffset+plotHeight-(data[i]-YLow)*YScale + canvas.drawRect(xc,YZero,xc+barWidth-1, yc, edgeColor=barColor,fillColor=barColor) + if variance and variance[i]: + varlen = variance[i]*YScale + if yc-varlen < yTopOffset: + topYd = yTopOffset + else: + topYd = yc-varlen + canvas.drawLine(xc+barWidth/2-2,yc-varlen,xc+barWidth/2+2,yc-varlen,color=pid.red) + canvas.drawLine(xc+barWidth/2,yc+varlen,xc+barWidth/2,topYd,color=pid.red) + canvas.drawLine(xc+barWidth/2-2,yc+varlen,xc+barWidth/2+2,yc+varlen,color=pid.red) + strX = label[i] + canvas.drawString(strX,xc+barWidth/2.0+2,yTopOffset+plotHeight+2+canvas.stringWidth(strX,font=scaleFont),font=scaleFont,angle=90) + xc += barWidth + spaceWidth + + #draw drawing region + canvas.drawRect(xLeftOffset, yTopOffset, xLeftOffset+plotWidth, yTopOffset+plotHeight) + + #draw Y scale + scaleFont=pid.Font(ttf="cour",size=16,bold=1) + y=YLow + for i in range(stepY+1): + yc=yTopOffset+plotHeight-(y-YLow)*YScale + canvas.drawLine(xLeftOffset,yc,xLeftOffset-5,yc, color=axesColor) + strY = cformat(d=y, rank=0) + canvas.drawString(strY,xLeftOffset-canvas.stringWidth(strY,font=scaleFont)-6,yc+5,font=scaleFont) + y+= (YTop - YLow)/stepY + + #draw label + labelFont=pid.Font(ttf="verdana",size=17,bold=0) + if XLabel: + canvas.drawString(XLabel,xLeftOffset+(plotWidth-canvas.stringWidth(XLabel,font=labelFont))/2.0,yTopOffset+plotHeight+65,font=labelFont,color=labelColor) + + if YLabel: + canvas.drawString(YLabel,xLeftOffset-50, yTopOffset+plotHeight-(plotHeight-canvas.stringWidth(YLabel,font=labelFont))/2.0,font=labelFont,color=labelColor,angle=90) + + labelFont=pid.Font(ttf="verdana",size=18,bold=0) + if title: + canvas.drawString(title,xLeftOffset,yTopOffset-15,font=labelFont,color=labelColor) + + return + +def plotXY(canvas, dataX, dataY, rank=0, dataLabel=[], plotColor = pid.black, axesColor=pid.black, labelColor=pid.black, lineSize="thin", lineColor=pid.grey, idFont="arial", idColor=pid.blue, idSize="14", symbolColor=pid.black, symbolType="circle", filled="yes", symbolSize="tiny", XLabel=None, YLabel=None, title=None, fitcurve=None, connectdot=1, displayR=None, loadingPlot = 0, offset= (80, 20, 40, 60), zoom = 1, specialCases=[], showLabel = 1, bufferSpace = 15): + 'displayR : correlation scatter plot, loadings : loading plot' + + dataXRanked, dataYRanked = webqtlUtil.calRank(dataX, dataY, len(dataX)) + + #get ID font size + idFontSize = int(idSize) + + #If filled is yes, set fill color + if filled == "yes": + fillColor = symbolColor + else: + fillColor = None + + if symbolSize == "large": + sizeModifier = 7 + fontModifier = 12 + elif symbolSize == "medium": + sizeModifier = 5 + fontModifier = 8 + elif symbolSize == "small": + sizeModifier = 3 + fontModifier = 3 + else: + sizeModifier = 1 + fontModifier = -1 + + if rank == 0: # Pearson correlation + bufferSpace = 0 + dataXPrimary = dataX + dataYPrimary = dataY + dataXAlt = dataXRanked #Values used just for printing the other corr type to the graph image + dataYAlt = dataYRanked #Values used just for printing the other corr type to the graph image + else: # Spearman correlation: Switching Ranked and Unranked X and Y values + dataXPrimary = dataXRanked + dataYPrimary = dataYRanked + dataXAlt = dataX #Values used just for printing the other corr type to the graph image + dataYAlt = dataY #Values used just for printing the other corr type to the graph image + + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = canvas.size[0] - xLeftOffset - xRightOffset + plotHeight = canvas.size[1] - yTopOffset - yBottomOffset + if plotHeight<=0 or plotWidth<=0: + return + if len(dataXPrimary) < 1 or len(dataXPrimary) != len(dataYPrimary) or (dataLabel and len(dataXPrimary) != len(dataLabel)): + return + + max_X=max(dataXPrimary) + min_X=min(dataXPrimary) + max_Y=max(dataYPrimary) + min_Y=min(dataYPrimary) + + #for some reason I forgot why I need to do this + if loadingPlot: + min_X = min(-0.1,min_X) + max_X = max(0.1,max_X) + min_Y = min(-0.1,min_Y) + max_Y = max(0.1,max_Y) + + xLow, xTop, stepX=detScale(min_X,max_X) + yLow, yTop, stepY=detScale(min_Y,max_Y) + xScale = plotWidth/(xTop-xLow) + yScale = plotHeight/(yTop-yLow) + + #draw drawing region + canvas.drawRect(xLeftOffset-bufferSpace, yTopOffset, xLeftOffset+plotWidth, yTopOffset+plotHeight+bufferSpace) + canvas.drawRect(xLeftOffset-bufferSpace+1, yTopOffset, xLeftOffset+plotWidth, yTopOffset+plotHeight+bufferSpace-1) + + #calculate data points + data = map(lambda X, Y: (X, Y), dataXPrimary, dataYPrimary) + xCoord = map(lambda X, Y: ((X-xLow)*xScale + xLeftOffset, yTopOffset+plotHeight-(Y-yLow)*yScale), dataXPrimary, dataYPrimary) + + labelFont=pid.Font(ttf=idFont,size=idFontSize,bold=0) + + if loadingPlot: + xZero = -xLow*xScale+xLeftOffset + yZero = yTopOffset+plotHeight+yLow*yScale + for point in xCoord: + canvas.drawLine(xZero,yZero,point[0],point[1],color=pid.red) + else: + if connectdot: + canvas.drawPolygon(xCoord,edgeColor=plotColor,closed=0) + else: + pass + + symbolFont = pid.Font(ttf="fnt_bs", size=12+fontModifier,bold=0) + + for i, item in enumerate(xCoord): + if dataLabel and dataLabel[i] in specialCases: + canvas.drawRect(item[0]-3, item[1]-3, item[0]+3, item[1]+3, edgeColor=pid.green) + #canvas.drawCross(item[0],item[1],color=pid.blue,size=5) + else: + if symbolType == "vertRect": + canvas.drawRect(x1=item[0]-sizeModifier+2,y1=item[1]-sizeModifier-2, x2=item[0]+sizeModifier-1,y2=item[1]+sizeModifier+2, edgeColor=symbolColor, edgeWidth=1, fillColor=fillColor) + elif (symbolType == "circle" and filled != "yes"): + canvas.drawString(":", item[0]-canvas.stringWidth(":",font=symbolFont)/2+1,item[1]+2,color=symbolColor, font=symbolFont) + elif (symbolType == "circle" and filled == "yes"): + canvas.drawString("5", item[0]-canvas.stringWidth("5",font=symbolFont)/2+1,item[1]+2,color=symbolColor, font=symbolFont) + elif symbolType == "horiRect": + canvas.drawRect(x1=item[0]-sizeModifier-1,y1=item[1]-sizeModifier+3, x2=item[0]+sizeModifier+3,y2=item[1]+sizeModifier-2, edgeColor=symbolColor, edgeWidth=1, fillColor=fillColor) + elif (symbolType == "square"): + canvas.drawRect(x1=item[0]-sizeModifier+1,y1=item[1]-sizeModifier-4, x2=item[0]+sizeModifier+2,y2=item[1]+sizeModifier-3, edgeColor=symbolColor, edgeWidth=1, fillColor=fillColor) + elif (symbolType == "diamond" and filled != "yes"): + canvas.drawString(",", item[0]-canvas.stringWidth(",",font=symbolFont)/2+2, item[1]+6, font=symbolFont, color=symbolColor) + elif (symbolType == "diamond" and filled == "yes"): + canvas.drawString("D", item[0]-canvas.stringWidth("D",font=symbolFont)/2+2, item[1]+6, font=symbolFont, color=symbolColor) + elif symbolType == "4-star": + canvas.drawString("l", item[0]-canvas.stringWidth("l",font=symbolFont)/2+1, item[1]+3, font=symbolFont, color=symbolColor) + elif symbolType == "3-star": + canvas.drawString("k", item[0]-canvas.stringWidth("k",font=symbolFont)/2+1, item[1]+3, font=symbolFont, color=symbolColor) + else: + canvas.drawCross(item[0],item[1]-2,color=symbolColor, size=sizeModifier+2) + + if showLabel and dataLabel: + if (symbolType == "vertRect" or symbolType == "diamond"): + labelGap = 15 + elif (symbolType == "4-star" or symbolType == "3-star"): + labelGap = 12 + else: + labelGap = 11 + canvas.drawString(dataLabel[i], item[0]- canvas.stringWidth(dataLabel[i], + font=labelFont)/2 + 1, item[1]+(labelGap+sizeModifier+(idFontSize-12)), font=labelFont, color=idColor) + + #draw scale + scaleFont=pid.Font(ttf="cour",size=16,bold=1) + + + x=xLow + for i in range(stepX+1): + xc=xLeftOffset+(x-xLow)*xScale + if ((x == 0) & (rank == 1)): + pass + else: + canvas.drawLine(xc,yTopOffset+plotHeight + bufferSpace,xc,yTopOffset+plotHeight+5 + bufferSpace, color=axesColor) + strX = cformat(d=x, rank=rank) + if ((strX == "0") & (rank == 1)): + pass + else: + canvas.drawString(strX,xc-canvas.stringWidth(strX,font=scaleFont)/2,yTopOffset+plotHeight+20 + bufferSpace,font=scaleFont) + x+= (xTop - xLow)/stepX + + y=yLow + for i in range(stepY+1): + yc=yTopOffset+plotHeight-(y-yLow)*yScale + if ((y == 0) & (rank == 1)): + pass + else: + canvas.drawLine(xLeftOffset - bufferSpace,yc,xLeftOffset-5 - bufferSpace,yc, color=axesColor) + strY = cformat(d=y, rank=rank) + if ((strY == "0") & (rank == 1)): + pass + else: + canvas.drawString(strY,xLeftOffset-canvas.stringWidth(strY,font=scaleFont)- 10 - bufferSpace,yc+4,font=scaleFont) + y+= (yTop - yLow)/stepY + + #draw label + + labelFont=pid.Font(ttf="verdana",size=canvas.size[0]/45,bold=0) + titleFont=pid.Font(ttf="verdana",size=canvas.size[0]/40,bold=0) + + if (rank == 1 and not title): + canvas.drawString("Spearman Rank Correlation", xLeftOffset-canvas.size[0]*.025+(plotWidth-canvas.stringWidth("Spearman Rank Correlation",font=titleFont))/2.0, + 25,font=titleFont,color=labelColor) + elif (rank == 0 and not title): + canvas.drawString("Pearson Correlation", xLeftOffset-canvas.size[0]*.025+(plotWidth-canvas.stringWidth("Pearson Correlation",font=titleFont))/2.0, + 25,font=titleFont,color=labelColor) + + if XLabel: + canvas.drawString(XLabel,xLeftOffset+(plotWidth-canvas.stringWidth(XLabel,font=labelFont))/2.0, + yTopOffset+plotHeight+yBottomOffset-25,font=labelFont,color=labelColor) + + if YLabel: + canvas.drawString(YLabel, xLeftOffset-65, yTopOffset+plotHeight- (plotHeight-canvas.stringWidth(YLabel,font=labelFont))/2.0, + font=labelFont,color=labelColor,angle=90) + + labelFont=pid.Font(ttf="verdana",size=20,bold=0) + if title: + canvas.drawString(title,xLeftOffset+(plotWidth-canvas.stringWidth(title,font=labelFont))/2.0, + 20,font=labelFont,color=labelColor) + + if fitcurve: + import sys + sys.argv = [ "mod_python" ] + #from numarray import linear_algebra as la + #from numarray import ones, array, dot, swapaxes + fitYY = array(dataYPrimary) + fitXX = array([ones(len(dataXPrimary)),dataXPrimary]) + AA = dot(fitXX,swapaxes(fitXX,0,1)) + BB = dot(fitXX,fitYY) + bb = la.linear_least_squares(AA,BB)[0] + + xc1 = xLeftOffset + yc1 = yTopOffset+plotHeight-(bb[0]+bb[1]*xLow-yLow)*yScale + if yc1 > yTopOffset+plotHeight: + yc1 = yTopOffset+plotHeight + xc1 = (yLow-bb[0])/bb[1] + xc1=(xc1-xLow)*xScale+xLeftOffset + elif yc1 < yTopOffset: + yc1 = yTopOffset + xc1 = (yTop-bb[0])/bb[1] + xc1=(xc1-xLow)*xScale+xLeftOffset + else: + pass + + xc2 = xLeftOffset + plotWidth + yc2 = yTopOffset+plotHeight-(bb[0]+bb[1]*xTop-yLow)*yScale + if yc2 > yTopOffset+plotHeight: + yc2 = yTopOffset+plotHeight + xc2 = (yLow-bb[0])/bb[1] + xc2=(xc2-xLow)*xScale+xLeftOffset + elif yc2 < yTopOffset: + yc2 = yTopOffset + xc2 = (yTop-bb[0])/bb[1] + xc2=(xc2-xLow)*xScale+xLeftOffset + else: + pass + + canvas.drawLine(xc1 - bufferSpace,yc1 + bufferSpace,xc2,yc2,color=lineColor) + if lineSize == "medium": + canvas.drawLine(xc1 - bufferSpace,yc1 + bufferSpace+1,xc2,yc2+1,color=lineColor) + if lineSize == "thick": + canvas.drawLine(xc1 - bufferSpace,yc1 + bufferSpace+1,xc2,yc2+1,color=lineColor) + canvas.drawLine(xc1 - bufferSpace,yc1 + bufferSpace-1,xc2,yc2-1,color=lineColor) + + + if displayR: + labelFont=pid.Font(ttf="trebuc",size=canvas.size[0]/60,bold=0) + NNN = len(dataX) + corr = webqtlUtil.calCorrelation(dataXPrimary,dataYPrimary,NNN)[0] + + if NNN < 3: + corrPValue = 1.0 + else: + if abs(corr) >= 1.0: + corrPValue = 0.0 + else: + ZValue = 0.5*log((1.0+corr)/(1.0-corr)) + ZValue = ZValue*sqrt(NNN-3) + corrPValue = 2.0*(1.0 - reaper.normp(abs(ZValue))) + + NStr = "N = %d" % NNN + strLenN = canvas.stringWidth(NStr,font=labelFont) + + if rank == 1: + if corrPValue < 0.0000000000000001: + corrStr = "Rho = %1.3f P < 1.00 E-16" % (corr) + else: + corrStr = "Rho = %1.3f P = %3.2E" % (corr, corrPValue) + else: + if corrPValue < 0.0000000000000001: + corrStr = "r = %1.3f P < 1.00 E-16" % (corr) + else: + corrStr = "r = %1.3f P = %3.2E" % (corr, corrPValue) + strLen = canvas.stringWidth(corrStr,font=labelFont) + + canvas.drawString(NStr,xLeftOffset,yTopOffset-10,font=labelFont,color=labelColor) + canvas.drawString(corrStr,xLeftOffset+plotWidth-strLen,yTopOffset-10,font=labelFont,color=labelColor) + + return xCoord + +def plotXYSVG(drawSpace, dataX, dataY, rank=0, dataLabel=[], plotColor = "black", axesColor="black", labelColor="black", symbolColor="red", XLabel=None, YLabel=None, title=None, fitcurve=None, connectdot=1, displayR=None, loadingPlot = 0, offset= (80, 20, 40, 60), zoom = 1, specialCases=[], showLabel = 1): + 'displayR : correlation scatter plot, loadings : loading plot' + + dataXRanked, dataYRanked = webqtlUtil.calRank(dataX, dataY, len(dataX)) + + # Switching Ranked and Unranked X and Y values if a Spearman Rank Correlation + if rank == 0: + dataXPrimary = dataX + dataYPrimary = dataY + dataXAlt = dataXRanked + dataYAlt = dataYRanked + + else: + dataXPrimary = dataXRanked + dataYPrimary = dataYRanked + dataXAlt = dataX + dataYAlt = dataY + + + + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset + plotWidth = drawSpace.attributes['width'] - xLeftOffset - xRightOffset + plotHeight = drawSpace.attributes['height'] - yTopOffset - yBottomOffset + if plotHeight<=0 or plotWidth<=0: + return + if len(dataXPrimary) < 1 or len(dataXPrimary) != len(dataYPrimary) or (dataLabel and len(dataXPrimary) != len(dataLabel)): + return + + max_X=max(dataXPrimary) + min_X=min(dataXPrimary) + max_Y=max(dataYPrimary) + min_Y=min(dataYPrimary) + + #for some reason I forgot why I need to do this + if loadingPlot: + min_X = min(-0.1,min_X) + max_X = max(0.1,max_X) + min_Y = min(-0.1,min_Y) + max_Y = max(0.1,max_Y) + + xLow, xTop, stepX=detScale(min_X,max_X) + yLow, yTop, stepY=detScale(min_Y,max_Y) + xScale = plotWidth/(xTop-xLow) + yScale = plotHeight/(yTop-yLow) + + #draw drawing region + r = svg.rect(xLeftOffset, yTopOffset, plotWidth, plotHeight, 'none', axesColor, 1) + drawSpace.addElement(r) + + #calculate data points + data = map(lambda X, Y: (X, Y), dataXPrimary, dataYPrimary) + xCoord = map(lambda X, Y: ((X-xLow)*xScale + xLeftOffset, yTopOffset+plotHeight-(Y-yLow)*yScale), dataXPrimary, dataYPrimary) + labelFontF = "verdana" + labelFontS = 11 + + if loadingPlot: + xZero = -xLow*xScale+xLeftOffset + yZero = yTopOffset+plotHeight+yLow*yScale + for point in xCoord: + drawSpace.addElement(svg.line(xZero,yZero,point[0],point[1], "red", 1)) + else: + if connectdot: + pass + #drawSpace.drawPolygon(xCoord,edgeColor=plotColor,closed=0) + else: + pass + + for i, item in enumerate(xCoord): + if dataLabel and dataLabel[i] in specialCases: + drawSpace.addElement(svg.rect(item[0]-3, item[1]-3, 6, 6, "none", "green", 0.5)) + #drawSpace.drawCross(item[0],item[1],color=pid.blue,size=5) + else: + drawSpace.addElement(svg.line(item[0],item[1]+5,item[0],item[1]-5,symbolColor,1)) + drawSpace.addElement(svg.line(item[0]+5,item[1],item[0]-5,item[1],symbolColor,1)) + if showLabel and dataLabel: + pass + drawSpace.addElement(svg.text(item[0], item[1]+14, dataLabel[i], labelFontS, + labelFontF, text_anchor="middle", style="stroke:blue;stroke-width:0.5;")) + #canvas.drawString(, item[0]- canvas.stringWidth(dataLabel[i], + # font=labelFont)/2, item[1]+14, font=labelFont, color=pid.blue) + + #draw scale + #scaleFont=pid.Font(ttf="cour",size=14,bold=1) + x=xLow + for i in range(stepX+1): + xc=xLeftOffset+(x-xLow)*xScale + drawSpace.addElement(svg.line(xc,yTopOffset+plotHeight,xc,yTopOffset+plotHeight+5, axesColor, 1)) + strX = cformat(d=x, rank=rank) + drawSpace.addElement(svg.text(xc,yTopOffset+plotHeight+20,strX,13, "courier", text_anchor="middle")) + x+= (xTop - xLow)/stepX + + y=yLow + for i in range(stepY+1): + yc=yTopOffset+plotHeight-(y-yLow)*yScale + drawSpace.addElement(svg.line(xLeftOffset,yc,xLeftOffset-5,yc, axesColor, 1)) + strY = cformat(d=y, rank=rank) + drawSpace.addElement(svg.text(xLeftOffset-10,yc+5,strY,13, "courier", text_anchor="end")) + y+= (yTop - yLow)/stepY + + #draw label + labelFontF = "verdana" + labelFontS = 17 + if XLabel: + drawSpace.addElement(svg.text(xLeftOffset+plotWidth/2.0, + yTopOffset+plotHeight+yBottomOffset-10,XLabel, + labelFontS, labelFontF, text_anchor="middle")) + + if YLabel: + drawSpace.addElement(svg.text(xLeftOffset-50, + yTopOffset+plotHeight/2,YLabel, + labelFontS, labelFontF, text_anchor="middle", style="writing-mode:tb-rl", transform="rotate(270 %d %d)" % (xLeftOffset-50, yTopOffset+plotHeight/2))) + #drawSpace.drawString(YLabel, xLeftOffset-50, yTopOffset+plotHeight- (plotHeight-drawSpace.stringWidth(YLabel,font=labelFont))/2.0, + # font=labelFont,color=labelColor,angle=90) + + + if fitcurve: + sys.argv = [ "mod_python" ] + #from numarray import linear_algebra as la + #from numarray import ones, array, dot, swapaxes + fitYY = array(dataYPrimary) + fitXX = array([ones(len(dataXPrimary)),dataXPrimary]) + AA = dot(fitXX,swapaxes(fitXX,0,1)) + BB = dot(fitXX,fitYY) + bb = la.linear_least_squares(AA,BB)[0] + + xc1 = xLeftOffset + yc1 = yTopOffset+plotHeight-(bb[0]+bb[1]*xLow-yLow)*yScale + if yc1 > yTopOffset+plotHeight: + yc1 = yTopOffset+plotHeight + xc1 = (yLow-bb[0])/bb[1] + xc1=(xc1-xLow)*xScale+xLeftOffset + elif yc1 < yTopOffset: + yc1 = yTopOffset + xc1 = (yTop-bb[0])/bb[1] + xc1=(xc1-xLow)*xScale+xLeftOffset + else: + pass + + xc2 = xLeftOffset + plotWidth + yc2 = yTopOffset+plotHeight-(bb[0]+bb[1]*xTop-yLow)*yScale + if yc2 > yTopOffset+plotHeight: + yc2 = yTopOffset+plotHeight + xc2 = (yLow-bb[0])/bb[1] + xc2=(xc2-xLow)*xScale+xLeftOffset + elif yc2 < yTopOffset: + yc2 = yTopOffset + xc2 = (yTop-bb[0])/bb[1] + xc2=(xc2-xLow)*xScale+xLeftOffset + else: + pass + + drawSpace.addElement(svg.line(xc1,yc1,xc2,yc2,"green", 1)) + + if displayR: + labelFontF = "trebuc" + labelFontS = 14 + NNN = len(dataX) + + corr = webqtlUtil.calCorrelation(dataXPrimary,dataYPrimary,NNN)[0] + + if NNN < 3: + corrPValue = 1.0 + else: + if abs(corr) >= 1.0: + corrPValue = 0.0 + else: + ZValue = 0.5*log((1.0+corr)/(1.0-corr)) + ZValue = ZValue*sqrt(NNN-3) + corrPValue = 2.0*(1.0 - reaper.normp(abs(ZValue))) + + NStr = "N of Cases=%d" % NNN + + if rank == 1: + corrStr = "Spearman's r=%1.3f P=%3.2E" % (corr, corrPValue) + else: + corrStr = "Pearson's r=%1.3f P=%3.2E" % (corr, corrPValue) + + drawSpace.addElement(svg.text(xLeftOffset,yTopOffset-10,NStr, + labelFontS, labelFontF, text_anchor="start")) + drawSpace.addElement(svg.text(xLeftOffset+plotWidth,yTopOffset-25,corrStr, + labelFontS, labelFontF, text_anchor="end")) + """ + """ + return + + +# This function determines the scale of the plot +def detScaleOld(min,max): + if min>=max: + return None + elif min == -1.0 and max == 1.0: + return [-1.2,1.2,12] + else: + a=max-min + b=floor(log10(a)) + c=pow(10.0,b) + if a < c*5.0: + c/=2.0 + #print a,b,c + low=c*floor(min/c) + high=c*ceil(max/c) + return [low,high,round((high-low)/c)] + +def detScale(min=0,max=0,bufferSpace=3): + + if min>=max: + return None + elif min == -1.0 and max == 1.0: + return [-1.2,1.2,12] + else: + a=max-min + if max != 0: + max += 0.1*a + if min != 0: + if min > 0 and min < 0.1*a: + min = 0.0 + else: + min -= 0.1*a + a=max-min + b=floor(log10(a)) + c=pow(10.0,b) + low=c*floor(min/c) + high=c*ceil(max/c) + n = round((high-low)/c) + div = 2.0 + while n < 5 or n > 15: + if n < 5: + c /= div + else: + c *= div + if div == 2.0: + div =5.0 + else: + div =2.0 + low=c*floor(min/c) + high=c*ceil(max/c) + n = round((high-low)/c) + + return [low,high,n] + + + +def colorSpectrumOld(n): + if n == 1: + return [pid.Color(1,0,0)] + elif n == 2: + return [pid.Color(1,0,0),pid.Color(0,0,1)] + elif n == 3: + return [pid.Color(1,0,0),pid.Color(0,1,0),pid.Color(0,0,1)] + else: + step = 2.0/(n-1) + red = 1.0 + green = 0.0 + blue = 0.0 + colors = [pid.Color(red,green,blue)] + i = 1 + greenpeak = 0 + while i < n: + if red >= step: + red -= step + green += step + if green >= 1.0: + greenpeak = 1 + blue += green -1.0 + green = 1.0 + else: + red = 0.0 + if greenpeak: + green -= step + blue += step + else: + green += step + if green >= 1.0: + greenpeak = 1 + blue += green -1.0 + green = 2.0 -green + elif green < 0.0: + green = 0.0 + else: + pass + colors.append(pid.Color(red,green,blue)) + i += 1 + return colors + + + + +def bluefunc(x): + return 1.0 / (1.0 + exp(-10*(x-0.6))) + + +def redfunc(x): + return 1.0 / (1.0 + exp(10*(x-0.5))) + +def greenfunc(x): + return 1 - pow(redfunc(x+0.2),2) - bluefunc(x-0.3) + +def colorSpectrum(n=100): + multiple = 10 + if n == 1: + return [pid.Color(1,0,0)] + elif n == 2: + return [pid.Color(1,0,0),pid.Color(0,0,1)] + elif n == 3: + return [pid.Color(1,0,0),pid.Color(0,1,0),pid.Color(0,0,1)] + N = n*multiple + out = [None]*N; + for i in range(N): + x = float(i)/N + out[i] = pid.Color(redfunc(x), greenfunc(x), bluefunc(x)); + out2 = [out[0]] + step = N/float(n-1) + j = 0 + for i in range(n-2): + j += step + out2.append(out[int(j)]) + out2.append(out[-1]) + return out2 + + +def colorSpectrumSVG(n=100): + multiple = 10 + if n == 1: + return ["rgb(255,0,0)"] + elif n == 2: + return ["rgb(255,0,0)","rgb(0,0,255)"] + elif n == 3: + return ["rgb(255,0,0)","rgb(0,255,0)","rgb(0,0,255)"] + N = n*multiple + out = [None]*N; + for i in range(N): + x = float(i)/N + out[i] = "rgb(%d, %d, %d)" % (redfunc(x)*255, greenfunc(x)*255, bluefunc(x)*255); + out2 = [out[0]] + step = N/float(n-1) + j = 0 + for i in range(n-2): + j += step + out2.append(out[int(j)]) + out2.append(out[-1]) + return out2 + + +def BWSpectrum(n=100): + multiple = 10 + if n == 1: + return [pid.Color(0,0,0)] + elif n == 2: + return [pid.Color(0,0,0),pid.Color(1,1,1)] + elif n == 3: + return [pid.Color(0,0,0),pid.Color(0.5,0.5,0.5),pid.Color(1,1,1)] + + step = 1.0/n + x = 0.0 + out = [] + for i in range(n): + out.append(pid.Color(x,x,x)); + x += step + return out diff --git a/web/webqtl/utility/TDCell.py b/web/webqtl/utility/TDCell.py new file mode 100755 index 00000000..76b9c5db --- /dev/null +++ b/web/webqtl/utility/TDCell.py @@ -0,0 +1,42 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +########################################################## +# +# Table Cell Class +# +########################################################## + + +class TDCell: + def __init__(self, html="", text="", val=0.0): + self.html = html #html, for web page + self.text = text #text value, for output to a text file + self.val = val #sort by value + + def __str__(self): + return self.text + diff --git a/web/webqtl/utility/THCell.py b/web/webqtl/utility/THCell.py new file mode 100755 index 00000000..a96b9e49 --- /dev/null +++ b/web/webqtl/utility/THCell.py @@ -0,0 +1,44 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +########################################################## +# +# Table Header Class +# +########################################################## + + +class THCell: + def __init__(self, html="", text="", sort=1, idx=-1): + self.html = html #html, for web page + self.text = text #Column text value + self.sort = sort #0: not sortable, 1: yes + self.idx = idx #sort by value + + def __str__(self): + return self.text + + diff --git a/web/webqtl/utility/__init__.py b/web/webqtl/utility/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/utility/svg.py b/web/webqtl/utility/svg.py new file mode 100755 index 00000000..e49a6c3c --- /dev/null +++ b/web/webqtl/utility/svg.py @@ -0,0 +1,1069 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#!/usr/bin/env python +##Copyright (c) 2002, Fedor Baart & Hans de Wit (Stichting Farmaceutische Kengetallen) +##All rights reserved. +## +##Redistribution and use in source and binary forms, with or without modification, +##are permitted provided that the following conditions are met: +## +##Redistributions of source code must retain the above copyright notice, this +##list of conditions and the following disclaimer. +## +##Redistributions in binary form must reproduce the above copyright notice, +##this list of conditions and the following disclaimer in the documentation and/or +##other materials provided with the distribution. +## +##Neither the name of the Stichting Farmaceutische Kengetallen nor the names of +##its contributors may be used to endorse or promote products derived from this +##software without specific prior written permission. +## +##THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +##AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +##IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +##DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +##FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +##DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +##SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +##CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +##OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +##OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +##Thanks to Gerald Rosennfellner for his help and useful comments. + +__doc__="""Use SVGdraw to generate your SVGdrawings. + +SVGdraw uses an object model drawing and a method toXML to create SVG graphics +by using easy to use classes and methods usualy you start by creating a drawing eg + + d=drawing() + #then you create a SVG root element + s=svg() + #then you add some elements eg a circle and add it to the svg root element + c=circle() + #you can supply attributes by using named arguments. + c=circle(fill='red',stroke='blue') + #or by updating the attributes attribute: + c.attributes['stroke-width']=1 + s.addElement(c) + #then you add the svg root element to the drawing + d.setSVG(s) + #and finaly you xmlify the drawing + d.toXml() + + +this results in the svg source of the drawing, which consists of a circle +on a white background. Its as easy as that;) +This module was created using the SVG specification of www.w3c.org and the +O'Reilly (www.oreilly.com) python books as information sources. A svg viewer +is available from www.adobe.com""" + +__version__="1.0" + +# there are two possibilities to generate svg: +# via a dom implementation and directly using text strings +# the latter is way faster (and shorter in coding) +# the former is only used in debugging svg programs +# maybe it will be removed alltogether after a while +# with the following variable you indicate whether to use the dom implementation +# Note that PyXML is required for using the dom implementation. +# It is also possible to use the standard minidom. But I didn't try that one. +# Anyway the text based approach is about 60 times faster than using the full dom implementation. +use_dom_implementation=0 + + +import exceptions +if use_dom_implementation<>0: + try: + from xml.dom import implementation + from xml.dom.ext import PrettyPrint + except: + raise exceptions.ImportError, "PyXML is required for using the dom implementation" +#The implementation is used for the creating the XML document. +#The prettyprint module is used for converting the xml document object to a xml file + +import sys +assert sys.version_info[0]>=2 +if sys.version_info[1]<2: + True=1 + False=0 + file=open + +sys.setrecursionlimit=50 +#The recursion limit is set conservative so mistakes like s=svg() s.addElement(s) +#won't eat up too much processor time. + +#the following code is pasted form xml.sax.saxutils +#it makes it possible to run the code without the xml sax package installed +#To make it possible to have in your text elements, it is necessary to escape the texts +def _escape(data, entities={}): + """Escape &, <, and > in a string of data. + + You can escape other strings of data by passing a dictionary as + the optional entities parameter. The keys and values must all be + strings; each key will be replaced with its corresponding value. + """ + #data = data.replace("&", "&") + data = data.replace("<", "<") + data = data.replace(">", ">") + for chars, entity in entities.items(): + data = data.replace(chars, entity) + return data + +def _quoteattr(data, entities={}): + """Escape and quote an attribute value. + + Escape &, <, and > in a string of data, then quote it for use as + an attribute value. The \" character will be escaped as well, if + necessary. + + You can escape other strings of data by passing a dictionary as + the optional entities parameter. The keys and values must all be + strings; each key will be replaced with its corresponding value. + """ + data = _escape(data, entities) + if '"' in data: + if "'" in data: + data = '"%s"' % data.replace('"', """) + else: + data = "'%s'" % data + else: + data = '"%s"' % data + return data + + + +def _xypointlist(a): + """formats a list of xy pairs""" + s='' + for e in a: #this could be done more elegant + s+=str(e)[1:-1] +' ' + return s + +def _viewboxlist(a): + """formats a tuple""" + s='' + for e in a: + s+=str(e)+' ' + return s + +def _pointlist(a): + """formats a list of numbers""" + return str(a)[1:-1] + +class pathdata: + """class used to create a pathdata object which can be used for a path. + although most methods are pretty straightforward it might be useful to look at the SVG specification.""" + #I didn't test the methods below. + def __init__(self,x=None,y=None): + self.path=[] + if x is not None and y is not None: + self.path.append('M '+str(x)+' '+str(y)) + def closepath(self): + """ends the path""" + self.path.append('z') + def move(self,x,y): + """move to absolute""" + self.path.append('M '+str(x)+' '+str(y)) + def relmove(self,x,y): + """move to relative""" + self.path.append('m '+str(x)+' '+str(y)) + def line(self,x,y): + """line to absolute""" + self.path.append('L '+str(x)+' '+str(y)) + def relline(self,x,y): + """line to relative""" + self.path.append('l '+str(x)+' '+str(y)) + def hline(self,x): + """horizontal line to absolute""" + self.path.append('H'+str(x)) + def relhline(self,x): + """horizontal line to relative""" + self.path.append('h'+str(x)) + def vline(self,y): + """verical line to absolute""" + self.path.append('V'+str(y)) + def relvline(self,y): + """vertical line to relative""" + self.path.append('v'+str(y)) + def bezier(self,x1,y1,x2,y2,x,y): + """bezier with xy1 and xy2 to xy absolut""" + self.path.append('C'+str(x1)+','+str(y1)+' '+str(x2)+','+str(y2)+' '+str(x)+','+str(y)) + def relbezier(self,x1,y1,x2,y2,x,y): + """bezier with xy1 and xy2 to xy relative""" + self.path.append('c'+str(x1)+','+str(y1)+' '+str(x2)+','+str(y2)+' '+str(x)+','+str(y)) + def smbezier(self,x2,y2,x,y): + """smooth bezier with xy2 to xy absolut""" + self.path.append('S'+str(x2)+','+str(y2)+' '+str(x)+','+str(y)) + def relsmbezier(self,x2,y2,x,y): + """smooth bezier with xy2 to xy relative""" + self.path.append('s'+str(x2)+','+str(y2)+' '+str(x)+','+str(y)) + def qbezier(self,x1,y1,x,y): + """quadratic bezier with xy1 to xy absolut""" + self.path.append('Q'+str(x1)+','+str(y1)+' '+str(x)+','+str(y)) + def relqbezier(self,x1,y1,x,y): + """quadratic bezier with xy1 to xy relative""" + self.path.append('q'+str(x1)+','+str(y1)+' '+str(x)+','+str(y)) + def smqbezier(self,x,y): + """smooth quadratic bezier to xy absolut""" + self.path.append('T'+str(x)+','+str(y)) + def relsmqbezier(self,x,y): + """smooth quadratic bezier to xy relative""" + self.path.append('t'+str(x)+','+str(y)) + def ellarc(self,rx,ry,xrot,laf,sf,x,y): + """elliptival arc with rx and ry rotating with xrot using large-arc-flag and sweep-flag to xy absolut""" + self.path.append('A'+str(rx)+','+str(ry)+' '+str(xrot)+' '+str(laf)+' '+str(sf)+' '+str(x)+' '+str(y)) + def relellarc(self,rx,ry,xrot,laf,sf,x,y): + """elliptival arc with rx and ry rotating with xrot using large-arc-flag and sweep-flag to xy relative""" + self.path.append('a'+str(rx)+','+str(ry)+' '+str(xrot)+' '+str(laf)+' '+str(sf)+' '+str(x)+' '+str(y)) + def __repr__(self): + return ' '.join(self.path) + + + + +class SVGelement: + """SVGelement(type,attributes,elements,text,namespace,**args) + Creates a arbitrary svg element and is intended to be subclassed not used on its own. + This element is the base of every svg element it defines a class which resembles + a xml-element. The main advantage of this kind of implementation is that you don't + have to create a toXML method for every different graph object. Every element + consists of a type, attribute, optional subelements, optional text and an optional + namespace. Note the elements==None, if elements = None:self.elements=[] construction. + This is done because if you default to elements=[] every object has a reference + to the same empty list.""" + def __init__(self,type='',attributes=None,elements=None,text='',namespace='',cdata=None, **args): + self.type=type + if attributes==None: + self.attributes={} + else: + self.attributes=attributes + if elements==None: + self.elements=[] + else: + self.elements=elements + self.text=text + self.namespace=namespace + self.cdata=cdata + for arg in args.keys(): + arg2 = arg.replace("__", ":") + arg2 = arg2.replace("_", "-") + self.attributes[arg2]=args[arg] + def addElement(self,SVGelement): + """adds an element to a SVGelement + + SVGelement.addElement(SVGelement) + """ + self.elements.append(SVGelement) + + def toXml(self,level,f): + f.write('\t'*level) + f.write('<'+self.type) + for attkey in self.attributes.keys(): + f.write(' '+_escape(str(attkey))+'='+_quoteattr(str(self.attributes[attkey]))) + if self.namespace: + f.write(' xmlns="'+ _escape(str(self.namespace))+'" xmlns:xlink="http://www.w3.org/1999/xlink"') + if self.elements or self.text or self.cdata: + f.write('>') + if self.elements: + f.write('\n') + for element in self.elements: + element.toXml(level+1,f) + if self.cdata: + f.write('\n'+'\t'*(level+1)+'\n') + if self.text: + if type(self.text)==type(''): #If the text is only text + f.write(_escape(str(self.text))) + else: #If the text is a spannedtext class + f.write(str(self.text)) + if self.elements: + f.write('\t'*level+'\n') + elif self.text: + f.write('\n') + elif self.cdata: + f.write('\t'*level+'\n') + else: + f.write('/>\n') + +class tspan(SVGelement): + """ts=tspan(text='',**args) + + a tspan element can be used for applying formatting to a textsection + usage: + ts=tspan('this text is bold') + ts.attributes['font-weight']='bold' + st=spannedtext() + st.addtspan(ts) + t=text(3,5,st) + """ + def __init__(self,text=None,**args): + SVGelement.__init__(self,'tspan',**args) + if self.text<>None: + self.text=text + def __repr__(self): + s="None: + raise ValueError, 'height is required' + if height<>None: + raise ValueError, 'width is required' + else: + raise ValueError, 'both height and width are required' + SVGelement.__init__(self,'rect',{'width':width,'height':height},**args) + if x<>None: + self.attributes['x']=x + if y<>None: + self.attributes['y']=y + if fill<>None: + self.attributes['fill']=fill + if stroke<>None: + self.attributes['stroke']=stroke + if stroke_width<>None: + self.attributes['stroke-width']=stroke_width + +class ellipse(SVGelement): + """e=ellipse(rx,ry,x,y,fill,stroke,stroke_width,**args) + + an ellipse is defined as a center and a x and y radius. + """ + def __init__(self,cx=None,cy=None,rx=None,ry=None,fill=None,stroke=None,stroke_width=None,**args): + if rx==None or ry== None: + if rx<>None: + raise ValueError, 'rx is required' + if ry<>None: + raise ValueError, 'ry is required' + else: + raise ValueError, 'both rx and ry are required' + SVGelement.__init__(self,'ellipse',{'rx':rx,'ry':ry},**args) + if cx<>None: + self.attributes['cx']=cx + if cy<>None: + self.attributes['cy']=cy + if fill<>None: + self.attributes['fill']=fill + if stroke<>None: + self.attributes['stroke']=stroke + if stroke_width<>None: + self.attributes['stroke-width']=stroke_width + + +class circle(SVGelement): + """c=circle(x,y,radius,fill,stroke,stroke_width,**args) + + The circle creates an element using a x, y and radius values eg + """ + def __init__(self,cx=None,cy=None,r=None,fill=None,stroke=None,stroke_width=None,**args): + if r==None: + raise ValueError, 'r is required' + SVGelement.__init__(self,'circle',{'r':r},**args) + if cx<>None: + self.attributes['cx']=cx + if cy<>None: + self.attributes['cy']=cy + if fill<>None: + self.attributes['fill']=fill + if stroke<>None: + self.attributes['stroke']=stroke + if stroke_width<>None: + self.attributes['stroke-width']=stroke_width + +class point(circle): + """p=point(x,y,color) + + A point is defined as a circle with a size 1 radius. It may be more efficient to use a + very small rectangle if you use many points because a circle is difficult to render. + """ + def __init__(self,x,y,fill='black',**args): + circle.__init__(self,x,y,1,fill,**args) + +class line(SVGelement): + """l=line(x1,y1,x2,y2,stroke,stroke_width,**args) + + A line is defined by a begin x,y pair and an end x,y pair + """ + def __init__(self,x1=None,y1=None,x2=None,y2=None,stroke=None,stroke_width=None,**args): + SVGelement.__init__(self,'line',**args) + if x1<>None: + self.attributes['x1']=x1 + if y1<>None: + self.attributes['y1']=y1 + if x2<>None: + self.attributes['x2']=x2 + if y2<>None: + self.attributes['y2']=y2 + if stroke_width<>None: + self.attributes['stroke-width']=stroke_width + if stroke<>None: + self.attributes['stroke']=stroke + +class polyline(SVGelement): + """pl=polyline([[x1,y1],[x2,y2],...],fill,stroke,stroke_width,**args) + + a polyline is defined by a list of xy pairs + """ + def __init__(self,points,fill=None,stroke=None,stroke_width=None,**args): + SVGelement.__init__(self,'polyline',{'points':_xypointlist(points)},**args) + if fill<>None: + self.attributes['fill']=fill + if stroke_width<>None: + self.attributes['stroke-width']=stroke_width + if stroke<>None: + self.attributes['stroke']=stroke + +class polygon(SVGelement): + """pl=polyline([[x1,y1],[x2,y2],...],fill,stroke,stroke_width,**args) + + a polygon is defined by a list of xy pairs + """ + def __init__(self,points,fill=None,stroke=None,stroke_width=None,**args): + SVGelement.__init__(self,'polygon',{'points':_xypointlist(points)},**args) + if fill<>None: + self.attributes['fill']=fill + if stroke_width<>None: + self.attributes['stroke-width']=stroke_width + if stroke<>None: + self.attributes['stroke']=stroke + +class path(SVGelement): + """p=path(path,fill,stroke,stroke_width,**args) + + a path is defined by a path object and optional width, stroke and fillcolor + """ + def __init__(self,pathdata,fill=None,stroke=None,stroke_width=None,id=None,**args): + SVGelement.__init__(self,'path',{'d':str(pathdata)},**args) + if stroke<>None: + self.attributes['stroke']=stroke + if fill<>None: + self.attributes['fill']=fill + if stroke_width<>None: + self.attributes['stroke-width']=stroke_width + if id<>None: + self.attributes['id']=id + + +class text(SVGelement): + """t=text(x,y,text,font_size,font_family,**args) + + a text element can bge used for displaying text on the screen + """ + def __init__(self,x=None,y=None,text=None,font_size=None,font_family=None,text_anchor=None,**args): + SVGelement.__init__(self,'text',**args) + if x<>None: + self.attributes['x']=x + if y<>None: + self.attributes['y']=y + if font_size<>None: + self.attributes['font-size']=font_size + if font_family<>None: + self.attributes['font-family']=font_family + if text<>None: + self.text=text + if text_anchor<>None: + self.attributes['text-anchor']=text_anchor + + +class textpath(SVGelement): + """tp=textpath(text,link,**args) + + a textpath places a text on a path which is referenced by a link. + """ + def __init__(self,link,text=None,**args): + SVGelement.__init__(self,'textPath',{'xlink:href':link},**args) + if text<>None: + self.text=text + +class pattern(SVGelement): + """p=pattern(x,y,width,height,patternUnits,**args) + + A pattern is used to fill or stroke an object using a pre-defined + graphic object which can be replicated ("tiled") at fixed intervals + in x and y to cover the areas to be painted. + """ + def __init__(self,x=None,y=None,width=None,height=None,patternUnits=None,**args): + SVGelement.__init__(self,'pattern',**args) + if x<>None: + self.attributes['x']=x + if y<>None: + self.attributes['y']=y + if width<>None: + self.attributes['width']=width + if height<>None: + self.attributes['height']=height + if patternUnits<>None: + self.attributes['patternUnits']=patternUnits + +class title(SVGelement): + """t=title(text,**args) + + a title is a text element. The text is displayed in the title bar + add at least one to the root svg element + """ + def __init__(self,text=None,**args): + SVGelement.__init__(self,'title',**args) + if text<>None: + self.text=text + +class description(SVGelement): + """d=description(text,**args) + + a description can be added to any element and is used for a tooltip + Add this element before adding other elements. + """ + def __init__(self,text=None,**args): + SVGelement.__init__(self,'desc',**args) + if text<>None: + self.text=text + +class lineargradient(SVGelement): + """lg=lineargradient(x1,y1,x2,y2,id,**args) + + defines a lineargradient using two xy pairs. + stop elements van be added to define the gradient colors. + """ + def __init__(self,x1=None,y1=None,x2=None,y2=None,id=None,**args): + SVGelement.__init__(self,'linearGradient',**args) + if x1<>None: + self.attributes['x1']=x1 + if y1<>None: + self.attributes['y1']=y1 + if x2<>None: + self.attributes['x2']=x2 + if y2<>None: + self.attributes['y2']=y2 + if id<>None: + self.attributes['id']=id + +class radialgradient(SVGelement): + """rg=radialgradient(cx,cy,r,fx,fy,id,**args) + + defines a radial gradient using a outer circle which are defined by a cx,cy and r and by using a focalpoint. + stop elements van be added to define the gradient colors. + """ + def __init__(self,cx=None,cy=None,r=None,fx=None,fy=None,id=None,**args): + SVGelement.__init__(self,'radialGradient',**args) + if cx<>None: + self.attributes['cx']=cx + if cy<>None: + self.attributes['cy']=cy + if r<>None: + self.attributes['r']=r + if fx<>None: + self.attributes['fx']=fx + if fy<>None: + self.attributes['fy']=fy + if id<>None: + self.attributes['id']=id + +class stop(SVGelement): + """st=stop(offset,stop_color,**args) + + Puts a stop color at the specified radius + """ + def __init__(self,offset,stop_color=None,**args): + SVGelement.__init__(self,'stop',{'offset':offset},**args) + if stop_color<>None: + self.attributes['stop-color']=stop_color + +class style(SVGelement): + """st=style(type,cdata=None,**args) + + Add a CDATA element to this element for defing in line stylesheets etc.. + """ + def __init__(self,type,cdata=None,**args): + SVGelement.__init__(self,'style',{'type':type},cdata=cdata, **args) + + +class image(SVGelement): + """im=image(url,width,height,x,y,**args) + + adds an image to the drawing. Supported formats are .png, .jpg and .svg. + """ + def __init__(self,url,x=None,y=None,width=None,height=None,**args): + if width==None or height==None: + if width<>None: + raise ValueError, 'height is required' + if height<>None: + raise ValueError, 'width is required' + else: + raise ValueError, 'both height and width are required' + SVGelement.__init__(self,'image',{'xlink:href':url,'width':width,'height':height},**args) + if x<>None: + self.attributes['x']=x + if y<>None: + self.attributes['y']=y + +class cursor(SVGelement): + """c=cursor(url,**args) + + defines a custom cursor for a element or a drawing + """ + def __init__(self,url,**args): + SVGelement.__init__(self,'cursor',{'xlink:href':url},**args) + + +class marker(SVGelement): + """m=marker(id,viewbox,refX,refY,markerWidth,markerHeight,**args) + + defines a marker which can be used as an endpoint for a line or other pathtypes + add an element to it which should be used as a marker. + """ + def __init__(self,id=None,viewBox=None,refx=None,refy=None,markerWidth=None,markerHeight=None,**args): + SVGelement.__init__(self,'marker',**args) + if id<>None: + self.attributes['id']=id + if viewBox<>None: + self.attributes['viewBox']=_viewboxlist(viewBox) + if refx<>None: + self.attributes['refX']=refx + if refy<>None: + self.attributes['refY']=refy + if markerWidth<>None: + self.attributes['markerWidth']=markerWidth + if markerHeight<>None: + self.attributes['markerHeight']=markerHeight + +class group(SVGelement): + """g=group(id,**args) + + a group is defined by an id and is used to contain elements + g.addElement(SVGelement) + """ + def __init__(self,id=None,**args): + SVGelement.__init__(self,'g',**args) + if id<>None: + self.attributes['id']=id + +class symbol(SVGelement): + """sy=symbol(id,viewbox,**args) + + defines a symbol which can be used on different places in your graph using + the use element. A symbol is not rendered but you can use 'use' elements to + display it by referencing its id. + sy.addElement(SVGelement) + """ + + def __init__(self,id=None,viewBox=None,**args): + SVGelement.__init__(self,'symbol',**args) + if id<>None: + self.attributes['id']=id + if viewBox<>None: + self.attributes['viewBox']=_viewboxlist(viewBox) + +class defs(SVGelement): + """d=defs(**args) + + container for defining elements + """ + def __init__(self,**args): + SVGelement.__init__(self,'defs',**args) + +class switch(SVGelement): + """sw=switch(**args) + + Elements added to a switch element which are "switched" by the attributes + requiredFeatures, requiredExtensions and systemLanguage. + Refer to the SVG specification for details. + """ + def __init__(self,**args): + SVGelement.__init__(self,'switch',**args) + + +class use(SVGelement): + """u=use(link,x,y,width,height,**args) + + references a symbol by linking to its id and its position, height and width + """ + def __init__(self,link,x=None,y=None,width=None,height=None,**args): + SVGelement.__init__(self,'use',{'xlink:href':link},**args) + if x<>None: + self.attributes['x']=x + if y<>None: + self.attributes['y']=y + + if width<>None: + self.attributes['width']=width + if height<>None: + self.attributes['height']=height + + +class link(SVGelement): + """a=link(url,**args) + + a link is defined by a hyperlink. add elements which have to be linked + a.addElement(SVGelement) + """ + def __init__(self,link='',**args): + SVGelement.__init__(self,'a',{'xlink:href':link},**args) + +class view(SVGelement): + """v=view(id,**args) + + a view can be used to create a view with different attributes""" + def __init__(self,id=None,**args): + SVGelement.__init__(self,'view',**args) + if id<>None: + self.attributes['id']=id + +class script(SVGelement): + """sc=script(type,type,cdata,**args) + + adds a script element which contains CDATA to the SVG drawing + + """ + def __init__(self,type,cdata=None,**args): + SVGelement.__init__(self,'script',{'type':type},cdata=cdata,**args) + +class animate(SVGelement): + """an=animate(attribute,from,to,during,**args) + + animates an attribute. + """ + def __init__(self,attribute,fr=None,to=None,dur=None,**args): + SVGelement.__init__(self,'animate',{'attributeName':attribute},**args) + if fr<>None: + self.attributes['from']=fr + if to<>None: + self.attributes['to']=to + if dur<>None: + self.attributes['dur']=dur + +class animateMotion(SVGelement): + """an=animateMotion(pathdata,dur,**args) + + animates a SVGelement over the given path in dur seconds + """ + def __init__(self,pathdata,dur,**args): + SVGelement.__init__(self,'animateMotion',**args) + if pathdata<>None: + self.attributes['path']=str(pathdata) + if dur<>None: + self.attributes['dur']=dur + +class animateTransform(SVGelement): + """antr=animateTransform(type,from,to,dur,**args) + + transform an element from and to a value. + """ + def __init__(self,type=None,fr=None,to=None,dur=None,**args): + SVGelement.__init__(self,'animateTransform',{'attributeName':'transform'},**args) + #As far as I know the attributeName is always transform + if type<>None: + self.attributes['type']=type + if fr<>None: + self.attributes['from']=fr + if to<>None: + self.attributes['to']=to + if dur<>None: + self.attributes['dur']=dur +class animateColor(SVGelement): + """ac=animateColor(attribute,type,from,to,dur,**args) + + Animates the color of a element + """ + def __init__(self,attribute,type=None,fr=None,to=None,dur=None,**args): + SVGelement.__init__(self,'animateColor',{'attributeName':attribute},**args) + if type<>None: + self.attributes['type']=type + if fr<>None: + self.attributes['from']=fr + if to<>None: + self.attributes['to']=to + if dur<>None: + self.attributes['dur']=dur +class set(SVGelement): + """st=set(attribute,to,during,**args) + + sets an attribute to a value for a + """ + def __init__(self,attribute,to=None,dur=None,**args): + SVGelement.__init__(self,'set',{'attributeName':attribute},**args) + if to<>None: + self.attributes['to']=to + if dur<>None: + self.attributes['dur']=dur + + + +class svg(SVGelement): + """s=svg(viewbox,width,height,**args) + + a svg or element is the root of a drawing add all elements to a svg element. + You can have different svg elements in one svg file + s.addElement(SVGelement) + + eg + d=drawing() + s=svg((0,0,100,100),'100%','100%') + c=circle(50,50,20) + s.addElement(c) + d.setSVG(s) + d.toXml() + """ + def __init__(self,viewBox=None, width=None, height=None,**args): + SVGelement.__init__(self,'svg',**args) + if viewBox<>None: + self.attributes['viewBox']=_viewboxlist(viewBox) + if width<>None: + self.attributes['width']=width + if height<>None: + self.attributes['height']=height + self.namespace="http://www.w3.org/2000/svg" + +class drawing: + """d=drawing() + + this is the actual SVG document. It needs a svg element as a root. + Use the addSVG method to set the svg to the root. Use the toXml method to write the SVG + source to the screen or to a file + d=drawing() + d.addSVG(svg) + d.toXml(optionalfilename) + """ + + def __init__(self, entity={}): + self.svg=None + self.entity = entity + def setSVG(self,svg): + self.svg=svg + #Voeg een element toe aan de grafiek toe. + if use_dom_implementation==0: + def toXml(self, filename='',compress=False): + import cStringIO + xml=cStringIO.StringIO() + xml.write("\n") + xml.write("\n" % (item, self.entity[item])) + xml.write("]") + xml.write(">\n") + self.svg.toXml(0,xml) + if not filename: + if compress: + import gzip + f=cStringIO.StringIO() + zf=gzip.GzipFile(fileobj=f,mode='wb') + zf.write(xml.getvalue()) + zf.close() + f.seek(0) + return f.read() + else: + return xml.getvalue() + else: + if filename[-4:]=='svgz': + import gzip + f=gzip.GzipFile(filename=filename,mode="wb", compresslevel=9) + f.write(xml.getvalue()) + f.close() + else: + f=file(filename,'w') + f.write(xml.getvalue()) + f.close() + + else: + def toXml(self,filename='',compress=False): + """drawing.toXml() ---->to the screen + drawing.toXml(filename)---->to the file + writes a svg drawing to the screen or to a file + compresses if filename ends with svgz or if compress is true + """ + doctype = implementation.createDocumentType('svg',"-//W3C//DTD SVG 1.0//EN""",'http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd ') + + global root + #root is defined global so it can be used by the appender. Its also possible to use it as an arugument but + #that is a bit messy. + root=implementation.createDocument(None,None,doctype) + #Create the xml document. + global appender + def appender(element,elementroot): + """This recursive function appends elements to an element and sets the attributes + and type. It stops when alle elements have been appended""" + if element.namespace: + e=root.createElementNS(element.namespace,element.type) + else: + e=root.createElement(element.type) + if element.text: + textnode=root.createTextNode(element.text) + e.appendChild(textnode) + for attribute in element.attributes.keys(): #in element.attributes is supported from python 2.2 + e.setAttribute(attribute,str(element.attributes[attribute])) + if element.elements: + for el in element.elements: + e=appender(el,e) + elementroot.appendChild(e) + return elementroot + root=appender(self.svg,root) + if not filename: + import cStringIO + xml=cStringIO.StringIO() + PrettyPrint(root,xml) + if compress: + import gzip + f=cStringIO.StringIO() + zf=gzip.GzipFile(fileobj=f,mode='wb') + zf.write(xml.getvalue()) + zf.close() + f.seek(0) + return f.read() + else: + return xml.getvalue() + else: + try: + if filename[-4:]=='svgz': + import gzip + import cStringIO + xml=cStringIO.StringIO() + PrettyPrint(root,xml) + f=gzip.GzipFile(filename=filename,mode='wb',compresslevel=9) + f.write(xml.getvalue()) + f.close() + else: + f=open(filename,'w') + PrettyPrint(root,f) + f.close() + except: + print "Cannot write SVG file: " + filename + def validate(self): + try: + import xml.parsers.xmlproc.xmlval + except: + raise exceptions.ImportError,'PyXml is required for validating SVG' + svg=self.toXml() + xv=xml.parsers.xmlproc.xmlval.XMLValidator() + try: + xv.feed(svg) + except: + raise "SVG is not well formed, see messages above" + else: + print "SVG well formed" +if __name__=='__main__': + + + d=drawing() + s=svg((0,0,100,100)) + r=rect(-100,-100,300,300,'cyan') + s.addElement(r) + + t=title('SVGdraw Demo') + s.addElement(t) + g=group('animations') + e=ellipse(0,0,5,2) + g.addElement(e) + c=circle(0,0,1,'red') + g.addElement(c) + pd=pathdata(0,-10) + for i in range(6): + pd.relsmbezier(10,5,0,10) + pd.relsmbezier(-10,5,0,10) + an=animateMotion(pd,10) + an.attributes['rotate']='auto-reverse' + an.attributes['repeatCount']="indefinite" + g.addElement(an) + s.addElement(g) + for i in range(20,120,20): + u=use('#animations',i,0) + s.addElement(u) + for i in range(0,120,20): + for j in range(5,105,10): + c=circle(i,j,1,'red','black',.5) + s.addElement(c) + d.setSVG(s) + + print d.toXml() + diff --git a/web/webqtl/utility/webqtlUtil.py b/web/webqtl/utility/webqtlUtil.py new file mode 100755 index 00000000..6af7f846 --- /dev/null +++ b/web/webqtl/utility/webqtlUtil.py @@ -0,0 +1,977 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string +import time +import re +import math +from math import * + +from htmlgen import HTMLgen2 as HT + +from base import webqtlConfig + + + + +# NL, 07/27/2010. moved from webqtlForm.py +#Dict of Parents and F1 information, In the order of [F1, Mat, Pat] +ParInfo ={ +'BXH':['BHF1', 'HBF1', 'C57BL/6J', 'C3H/HeJ'], +'AKXD':['AKF1', 'KAF1', 'AKR/J', 'DBA/2J'], +'BXD':['B6D2F1', 'D2B6F1', 'C57BL/6J', 'DBA/2J'], +'BXD300':['B6D2F1', 'D2B6F1', 'C57BL/6J', 'DBA/2J'], +'B6BTBRF2':['B6BTBRF1', 'BTBRB6F1', 'C57BL/6J', 'BTBRT<+>tf/J'], +'BHHBF2':['B6HF2','HB6F2','C57BL/6J','C3H/HeJ'], +'BHF2':['B6HF2','HB6F2','C57BL/6J','C3H/HeJ'], +'B6D2F2':['B6D2F1', 'D2B6F1', 'C57BL/6J', 'DBA/2J'], +'BDF2-1999':['B6D2F2', 'D2B6F2', 'C57BL/6J', 'DBA/2J'], +'BDF2-2005':['B6D2F1', 'D2B6F1', 'C57BL/6J', 'DBA/2J'], +'CTB6F2':['CTB6F2','B6CTF2','C57BL/6J','Castaneous'], +'CXB':['CBF1', 'BCF1', 'C57BL/6ByJ', 'BALB/cByJ'], +'AXBXA':['ABF1', 'BAF1', 'C57BL/6J', 'A/J'], +'AXB':['ABF1', 'BAF1', 'C57BL/6J', 'A/J'], +'BXA':['BAF1', 'ABF1', 'C57BL/6J', 'A/J'], +'LXS':['LSF1', 'SLF1', 'ISS', 'ILS'], +'HXBBXH':['HSRBNF1', 'BNHSRF1', 'BN', 'HSR'], +'BayXSha':['BayXShaF1', 'ShaXBayF1', 'Bay-0','Shahdara'], +'ColXBur':['ColXBurF1', 'BurXColF1', 'Col-0','Bur-0'], +'ColXCvi':['ColXCviF1', 'CviXColF1', 'Col-0','Cvi'], +'SXM':['SMF1', 'MSF1', 'Steptoe','Morex'] +} + + +# NL, 07/27/2010. moved from template.py +IMGSTEP1 = HT.Image('/images/step1.gif', alt='STEP 1',border=0) #XZ, Only be used in inputPage.py +IMGSTEP2 = HT.Image('/images/step2.gif', alt='STEP 2',border=0) #XZ, Only be used in inputPage.py +IMGSTEP3 = HT.Image('/images/step3.gif', alt='STEP 3',border=0) #XZ, Only be used in inputPage.py +IMGNEXT = HT.Image('/images/arrowdown.gif', alt='NEXT',border=0) #XZ, Only be used in inputPage.py + +IMGASC = HT.Image("/images/sortup.gif", border=0) +IMGASCON = HT.Image("/images/sortupon.gif", border=0) +IMGDESC = HT.Image("/images/sortdown.gif", border=0) +IMGDESCON = HT.Image("/images/sortdownon.gif", border=0) + +""" +IMGASC = HT.Image("/images/sortup_icon.gif", border=0) +IMGASCON = HT.Image("/images/sortupon.gif", border=0) +IMGDESC = HT.Image("/images/sortdown_icon.gif", border=0) +IMGDESCON = HT.Image("/images/sortdownon.gif", border=0) +IMG_UNSORTED = HT.Image("/images/unsorted_icon.gif", border=0) +""" + +PROGRESSBAR = HT.Image('/images/waitAnima2.gif', alt='checkblue',align="middle",border=0) + +######################################### +# Accessory Functions +######################################### + +def decodeEscape(str): + a = str + pattern = re.compile('(%[0-9A-Fa-f][0-9A-Fa-f])') + match = pattern.findall(a) + matched = [] + for item in match: + if item not in matched: + a = a.replace(item, '%c' % eval("0x"+item[-2:])) + matched.append(item) + return a + +def exportData(hddn, tdata, NP = None): + for key in tdata.keys(): + _val, _var, _N = tdata[key].val, tdata[key].var, tdata[key].N + if _val != None: + hddn[key] = _val + if _var != None: + hddn['V'+key] = _var + if NP and _N != None: + hddn['N'+key] = _N + +def genShortStrainName(RISet='', input_strainName=''): + #aliasStrainDict = {'C57BL/6J':'B6','DBA/2J':'D2'} + strainName = input_strainName + if RISet != 'AXBXA': + if RISet == 'BXD300': + this_RISet = 'BXD' + elif RISet == 'BDF2-2005': + this_RISet = 'CASE05_' + else: + this_RISet = RISet + strainName = string.replace(strainName,this_RISet,'') + strainName = string.replace(strainName,'CASE','') + try: + strainName = "%02d" % int(strainName) + except: + pass + else: + strainName = string.replace(strainName,'AXB','A') + strainName = string.replace(strainName,'BXA','B') + try: + strainName = strainName[0] + "%02d" % int(strainName[1:]) + except: + pass + return strainName + +def toInt(in_str): + "Converts an arbitrary string to an unsigned integer" + start = -1 + end = -1 + for i, char in enumerate(in_str): + if char >= '0' and char <= '9': + if start < 0: + start = i + end = i+1 + else: + if start >= 0: + break + if start < end: + return int(in_str[start:end]) + else: + return -1 + +def transpose(m): + 'transpose a matrix' + n = len(m) + return [[m[j][i] for i in range(len(m[0])) for j in range(n)][k*n:k*n+n] for k in range(len(m[0]))] + +def asymTranspose(m): + 'transpose a matrix' + t = max(map(len, m)) + n = len(m) + m2 = [["-"]]*n + for i in range(n): + m2[i] = m[i] + [""]*(t- len(m[i])) + return [[m2[j][i] for i in range(len(m2[0])) for j in range(n)][k*n:k*n+n] for k in range(len(m2[0]))] + +def genRandStr(prefix = "", length=8, chars=string.letters+string.digits): + from random import choice + _str = prefix[:] + for i in range(length): + _str += choice(chars) + return _str + +def generate_session(): + import sha + return sha.new(str(time.time())).hexdigest() + +def cvt2Dict(x): + tmp = {} + for key in x.keys(): + tmp[key] = x[key] + return tmp + +def dump_session(session_obj, filename): + "It seems mod python can only cPickle most basic data type" + import cPickle + session_file = open(filename, 'wb') + #try: + # pass + #except: + # pass + cPickle.dump(session_obj, session_file) + session_file.close() + +def StringAsFloat(str): + 'Converts string to float but catches any exception and returns None' + try: + return float(str) + except: + return None + +def IntAsFloat(str): + 'Converts string to Int but catches any exception and returns None' + try: + return int(str) + except: + return None + +def FloatAsFloat(flt): + 'Converts float to string but catches any exception and returns None' + try: + return float("%2.3f" % flt) + except: + return None + +def RemoveZero(flt): + 'Converts string to float but catches any exception and returns None' + try: + if abs(flt) < 1e-6: + return None + else: + return flt + except: + return None + + +def SciFloat(d): + 'Converts string to float but catches any exception and returns None' + + try: + if abs(d) <= 1.0e-4: + return "%1.2e" % d + else: + return "%1.5f" % d + except: + return None + +###To be removed +def FloatList2String(lst): + 'Converts float list to string but catches any exception and returns None' + tt='' + try: + for item in lst: + if item == None: + tt += 'X ' + else: + tt += '%f ' % item + return tt + except: + return "" + +def ListNotNull(lst): + 'Determine if the elements in a list are all null' + for item in lst: + if item is not None: + return 1 + return None + +###To be removed +def FileDataProcess(str): + 'Remove the description text from the input file if theres any' + i=0 + while i'\x20': + break + else: + i+=1 + str=str[i:] + str=string.join(string.split(str,'\000'),'') + i=string.find(str,"*****") + if i>-1: + return str[i+5:] + else: + return str + +def rank(a,lst,offset=0): + """Calculate the integer rank of a number in an array, can be used to calculate p-value""" + n = len(lst) + if n == 2: + if a lst[1]: + return offset + 2 + else: + return offset +1 + elif n == 1: + if a B.LRS: + return 1 + elif A.LRS == B.LRS: + return 0 + else: + return -1 + except: + return 0 + + +def cmpScanResult2(A,B): + try: + if A.LRS < B.LRS: + return 1 + elif A.LRS == B.LRS: + return 0 + else: + return -1 + except: + return 0 + +def cmpOrder(A,B): + try: + if A[1] < B[1]: + return -1 + elif A[1] == B[1]: + return 0 + else: + return 1 + except: + return 0 + +def cmpOrder2(A,B): + try: + if A[-1] < B[-1]: + return -1 + elif A[-1] == B[-1]: + return 0 + else: + return 1 + except: + return 0 + + + + +def calRank(xVals, yVals, N): ### Zach Sloan, February 4 2010 + """ + Returns a ranked set of X and Y values. These are used when generating + a Spearman scatterplot. Bear in mind that this sets values equal to each + other as the same rank. + """ + XX = [] + YY = [] + X = [0]*len(xVals) + Y = [0]*len(yVals) + j = 0 + + for i in range(len(xVals)): + + if xVals[i] != None and yVals[i] != None: + XX.append((j, xVals[i])) + YY.append((j, yVals[i])) + j = j + 1 + + NN = len(XX) + + XX.sort(cmpOrder2) + YY.sort(cmpOrder2) + + j = 1 + rank = 0.0 + + while j < NN: + + if XX[j][1] != XX[j-1][1]: + X[XX[j-1][0]] = j + j = j+1 + + else: + jt = j+1 + ji = j + for jt in range(j+1, NN): + if (XX[jt][1] != XX[j-1][1]): + break + rank = 0.5*(j+jt) + for ji in range(j-1, jt): + X[XX[ji][0]] = rank + if (jt == NN-1): + if (XX[jt][1] == XX[j-1][1]): + X[XX[NN-1][0]] = rank + j = jt+1 + + if j == NN: + if X[XX[NN-1][0]] == 0: + X[XX[NN-1][0]] = NN + + j = 1 + rank = 0.0 + + while j < NN: + + if YY[j][1] != YY[j-1][1]: + Y[YY[j-1][0]] = j + j = j+1 + else: + jt = j+1 + ji = j + for jt in range(j+1, NN): + if (YY[jt][1] != YY[j-1][1]): + break + rank = 0.5*(j+jt) + for ji in range(j-1, jt): + Y[YY[ji][0]] = rank + if (jt == NN-1): + if (YY[jt][1] == YY[j-1][1]): + Y[YY[NN-1][0]] = rank + j = jt+1 + + if j == NN: + if Y[YY[NN-1][0]] == 0: + Y[YY[NN-1][0]] = NN + + return (X,Y) + +def calCorrelationRank(xVals,yVals,N): + """ + Calculated Spearman Ranked Correlation. The algorithm works + by setting all tied ranks to the average of those ranks (for + example, if ranks 5-10 all have the same value, each will be set + to rank 7.5). + """ + + XX = [] + YY = [] + j = 0 + + for i in range(len(xVals)): + if xVals[i]!= None and yVals[i]!= None: + XX.append((j,xVals[i])) + YY.append((j,yVals[i])) + j = j+1 + + NN = len(XX) + if NN <6: + return (0.0,NN) + XX.sort(cmpOrder2) + YY.sort(cmpOrder2) + X = [0]*NN + Y = [0]*NN + + j = 1 + rank = 0.0 + t = 0.0 + sx = 0.0 + + while j < NN: + + if XX[j][1] != XX[j-1][1]: + X[XX[j-1][0]] = j + j = j+1 + + else: + jt = j+1 + ji = j + for jt in range(j+1, NN): + if (XX[jt][1] != XX[j-1][1]): + break + rank = 0.5*(j+jt) + for ji in range(j-1, jt): + X[XX[ji][0]] = rank + t = jt-j + sx = sx + (t*t*t-t) + if (jt == NN-1): + if (XX[jt][1] == XX[j-1][1]): + X[XX[NN-1][0]] = rank + j = jt+1 + + if j == NN: + if X[XX[NN-1][0]] == 0: + X[XX[NN-1][0]] = NN + + j = 1 + rank = 0.0 + t = 0.0 + sy = 0.0 + + while j < NN: + + if YY[j][1] != YY[j-1][1]: + Y[YY[j-1][0]] = j + j = j+1 + else: + jt = j+1 + ji = j + for jt in range(j+1, NN): + if (YY[jt][1] != YY[j-1][1]): + break + rank = 0.5*(j+jt) + for ji in range(j-1, jt): + Y[YY[ji][0]] = rank + t = jt - j + sy = sy + (t*t*t-t) + if (jt == NN-1): + if (YY[jt][1] == YY[j-1][1]): + Y[YY[NN-1][0]] = rank + j = jt+1 + + if j == NN: + if Y[YY[NN-1][0]] == 0: + Y[YY[NN-1][0]] = NN + + D = 0.0 + + for i in range(NN): + D += (X[i]-Y[i])*(X[i]-Y[i]) + + fac = (1.0 -sx/(NN*NN*NN-NN))*(1.0-sy/(NN*NN*NN-NN)) + + return ((1-(6.0/(NN*NN*NN-NN))*(D+(sx+sy)/12.0))/math.sqrt(fac),NN) + + +def calCorrelationRankText(dbdata,userdata,N): ### dcrowell = David Crowell, July 2008 + """Calculates correlation ranks with data formatted from the text file. + dbdata, userdata are lists of strings. N is an int. Returns a float. + Used by correlationPage""" + XX = [] + YY = [] + j = 0 + for i in range(N): + if (dbdata[i]!= None and userdata[i]!=None) and (dbdata[i]!= 'None' and userdata[i]!='None'): + XX.append((j,float(dbdata[i]))) + YY.append((j,float(userdata[i]))) + j += 1 + NN = len(XX) + if NN <6: + return (0.0,NN) + XX.sort(cmpOrder2) + YY.sort(cmpOrder2) + X = [0]*NN + Y = [0]*NN + + j = 1 + rank = 0.0 + t = 0.0 + sx = 0.0 + + while j < NN: + + if XX[j][1] != XX[j-1][1]: + X[XX[j-1][0]] = j + j = j+1 + + else: + jt = j+1 + ji = j + for jt in range(j+1, NN): + if (XX[jt][1] != XX[j-1][1]): + break + rank = 0.5*(j+jt) + for ji in range(j-1, jt): + X[XX[ji][0]] = rank + t = jt-j + sx = sx + (t*t*t-t) + if (jt == NN-1): + if (XX[jt][1] == XX[j-1][1]): + X[XX[NN-1][0]] = rank + j = jt+1 + + if j == NN: + if X[XX[NN-1][0]] == 0: + X[XX[NN-1][0]] = NN + + j = 1 + rank = 0.0 + t = 0.0 + sy = 0.0 + + while j < NN: + + if YY[j][1] != YY[j-1][1]: + Y[YY[j-1][0]] = j + j = j+1 + else: + jt = j+1 + ji = j + for jt in range(j+1, NN): + if (YY[jt][1] != YY[j-1][1]): + break + rank = 0.5*(j+jt) + for ji in range(j-1, jt): + Y[YY[ji][0]] = rank + t = jt - j + sy = sy + (t*t*t-t) + if (jt == NN-1): + if (YY[jt][1] == YY[j-1][1]): + Y[YY[NN-1][0]] = rank + j = jt+1 + + if j == NN: + if Y[YY[NN-1][0]] == 0: + Y[YY[NN-1][0]] = NN + + D = 0.0 + + for i in range(NN): + D += (X[i]-Y[i])*(X[i]-Y[i]) + + fac = (1.0 -sx/(NN*NN*NN-NN))*(1.0-sy/(NN*NN*NN-NN)) + + return ((1-(6.0/(NN*NN*NN-NN))*(D+(sx+sy)/12.0))/math.sqrt(fac),NN) + + + +def calCorrelation(dbdata,userdata,N): + X = [] + Y = [] + for i in range(N): + if dbdata[i]!= None and userdata[i]!= None: + X.append(dbdata[i]) + Y.append(userdata[i]) + NN = len(X) + if NN <6: + return (0.0,NN) + sx = reduce(lambda x,y:x+y,X,0.0) + sy = reduce(lambda x,y:x+y,Y,0.0) + meanx = sx/NN + meany = sy/NN + xyd = 0.0 + sxd = 0.0 + syd = 0.0 + for i in range(NN): + xyd += (X[i] - meanx)*(Y[i]-meany) + sxd += (X[i] - meanx)*(X[i] - meanx) + syd += (Y[i] - meany)*(Y[i] - meany) + try: + corr = xyd/(sqrt(sxd)*sqrt(syd)) + except: + corr = 0 + return (corr,NN) + +def calCorrelationText(dbdata,userdata,N): ### dcrowell July 2008 + """Calculates correlation coefficients with values formatted from text files. dbdata, userdata are lists of strings. N is an int. Returns a float + Used by correlationPage""" + X = [] + Y = [] + for i in range(N): + #if (dbdata[i]!= None and userdata[i]!= None) and (dbdata[i]!= 'None' and userdata[i]!= 'None'): + # X.append(float(dbdata[i])) + # Y.append(float(userdata[i])) + if dbdata[i] == None or dbdata[i] == 'None' or userdata[i] == None or userdata[i] == 'None': + continue + else: + X.append(float(dbdata[i])) + Y.append(float(userdata[i])) + NN = len(X) + if NN <6: + return (0.0,NN) + sx = sum(X) + sy = sum(Y) + meanx = sx/float(NN) + meany = sy/float(NN) + xyd = 0.0 + sxd = 0.0 + syd = 0.0 + for i in range(NN): + x1 = X[i]-meanx + y1 = Y[i]-meany + xyd += x1*y1 + sxd += x1**2 + syd += y1**2 + try: + corr = xyd/(sqrt(sxd)*sqrt(syd)) + except: + corr = 0 + return (corr,NN) + + +def readLineCSV(line): ### dcrowell July 2008 + """Parses a CSV string of text and returns a list containing each element as a string. + Used by correlationPage""" + returnList = line.split('","') + returnList[-1]=returnList[-1][:-2] + returnList[0]=returnList[0][1:] + return returnList + + +def cmpCorr(A,B): + try: + if abs(A[1]) < abs(B[1]): + return 1 + elif abs(A[1]) == abs(B[1]): + return 0 + else: + return -1 + except: + return 0 + +def cmpLitCorr(A,B): + try: + if abs(A[3]) < abs(B[3]): return 1 + elif abs(A[3]) == abs(B[3]): + if abs(A[1]) < abs(B[1]): return 1 + elif abs(A[1]) == abs(B[1]): return 0 + else: return -1 + else: return -1 + except: + return 0 + +def cmpPValue(A,B): + try: + if A.corrPValue < B.corrPValue: + return -1 + elif A.corrPValue == B.corrPValue: + if abs(A.corr) > abs(B.corr): + return -1 + elif abs(A.corr) < abs(B.corr): + return 1 + else: + return 0 + else: + return 1 + except: + return 0 + +def cmpEigenValue(A,B): + try: + if A[0] > B[0]: + return -1 + elif A[0] == B[0]: + return 0 + else: + return 1 + except: + return 0 + + +def cmpLRSFull(A,B): + try: + if A[0] < B[0]: + return -1 + elif A[0] == B[0]: + return 0 + else: + return 1 + except: + return 0 + +def cmpLRSInteract(A,B): + try: + if A[1] < B[1]: + return -1 + elif A[1] == B[1]: + return 0 + else: + return 1 + except: + return 0 + + +def cmpPos(A,B): + try: + try: + AChr = int(A.chr) + except: + AChr = 20 + try: + BChr = int(B.chr) + except: + BChr = 20 + if AChr > BChr: + return 1 + elif AChr == BChr: + if A.mb > B.mb: + return 1 + if A.mb == B.mb: + return 0 + else: + return -1 + else: + return -1 + except: + return 0 + +def cmpGenoPos(A,B): + try: + A1 = A.chr + B1 = B.chr + try: + A1 = int(A1) + except: + A1 = 25 + try: + B1 = int(B1) + except: + B1 = 25 + if A1 > B1: + return 1 + elif A1 == B1: + if A.mb > B.mb: + return 1 + if A.mb == B.mb: + return 0 + else: + return -1 + else: + return -1 + except: + return 0 + +#XZhou: Must use "BINARY" to enable case sensitive comparison. +def authUser(name,password,db, encrypt=None): + try: + if encrypt: + query = 'SELECT privilege, id,name,password, grpName FROM User WHERE name= BINARY \'%s\' and password= BINARY \'%s\'' % (name,password) + else: + query = 'SELECT privilege, id,name,password, grpName FROM User WHERE name= BINARY \'%s\' and password= BINARY SHA(\'%s\')' % (name,password) + db.execute(query) + records = db.fetchone() + if not records: + raise ValueError + return records#(privilege,id,name,password,grpName) + except: + return (None, None, None, None, None) + + +def hasAccessToConfidentialPhenotypeTrait(privilege, userName, authorized_users): + access_to_confidential_phenotype_trait = 0 + if webqtlConfig.USERDICT[privilege] > webqtlConfig.USERDICT['user']: + access_to_confidential_phenotype_trait = 1 + else: + AuthorizedUsersList=map(string.strip, string.split(authorized_users, ',')) + if AuthorizedUsersList.__contains__(userName): + access_to_confidential_phenotype_trait = 1 + return access_to_confidential_phenotype_trait + + +class VisualizeException(Exception): + def __init__(self, message): + self.message = message + def __str__(self): + return self.message + +# safeConvert : (string -> A) -> A -> A +# to convert a string to type A, using the supplied default value +# if the given conversion function doesn't work +def safeConvert(f, value, default): + try: + return f(value) + except: + return default + +# safeFloat : string -> float -> float +# to convert a string to a float safely +def safeFloat(value, default): + return safeConvert(float, value, default) + +# safeInt: string -> int -> int +# to convert a string to an int safely +def safeInt(value, default): + return safeConvert(int, value, default) + +# safeString : string -> (arrayof string) -> string -> string +# if a string is not in a list of strings to pick a default value +# for that string +def safeString(value, validChoices, default): + if value in validChoices: + return value + else: + return default + +# yesNoToInt: string -> int +# map "yes" -> 1 and "no" -> 0 +def yesNoToInt(value): + if value == "yes": + return 1 + elif value == "no": + return 0 + else: + return None + +# IntToYesNo: int -> string +# map 1 -> "yes" and 0 -> "no" +def intToYesNo(value): + if value == 1: + return "yes" + elif value == 0: + return "no" + else: + return None + +def formatField(name): + name = name.replace("_", " ") + name = name.title() + #name = name.replace("Mb Mm6", "Mb"); + return name.replace("Id", "ID") + +#XZ, 03/27/2009: This function is very specific. +#It is used by AJAX_table.py, correlationPage.py and dataPage.py + + +def genTableObj(tblobj=None, file="", sortby = ("", ""), tableID = "sortable", addIndex = "1", hiddenColumns=[]): + header = tblobj['header'] + body = tblobj['body'] + field, order = sortby + + #ZAS 9/12/2011 - The hiddenColumns array needs to be converted into a string so they can be placed into the javascript of each up/down button + hiddenColumnsString = ",".join(hiddenColumns) + + tbl = HT.TableLite(Class="collap b2", cellspacing=1, cellpadding=5) + + hiddenColumnIdx = [] #indices of columns to hide + idx = -1 + last_idx = 0 #ZS: This is the index of the last item in the regular table header (without any extra parameters). It is used to determine the index of each extra parameter. + for row in header: + hr = HT.TR() + for i, item in enumerate(row): + if (item.text == '') or (item.text not in hiddenColumns): + if item.sort and item.text: + down = HT.Href("javascript:xmlhttpPost('%smain.py?FormID=AJAX_table', '%s', 'sort=%s&order=down&file=%s&tableID=%s&addIndex=%s&hiddenColumns=%s')" % (webqtlConfig.CGIDIR, tableID, item.text, file, tableID, addIndex, hiddenColumnsString),IMGDESC) + up = HT.Href("javascript:xmlhttpPost('%smain.py?FormID=AJAX_table', '%s', 'sort=%s&order=up&file=%s&tableID=%s&addIndex=%s&hiddenColumns=%s')" % (webqtlConfig.CGIDIR, tableID, item.text, file, tableID, addIndex, hiddenColumnsString),IMGASC) + if item.text == field: + idx = item.idx + last_idx = idx + if order == 'up': + up = IMGASCON + elif order == 'down': + down = IMGDESCON + item.html.append(HT.Div(up, down, style="float: bottom;")) + hr.append(item.html) + else: + hiddenColumnIdx.append(i) + tbl.append(hr) + + for i, row in enumerate(body): + for j, item in enumerate(row): + if order == 'down': + if (item.val == '' or item.val == 'x' or item.val == 'None'): + item.val = 0 + if order == 'up': + if (item.val == '' or item.val == 'x' or item.val == 'None'): + item.val = 'zzzzz' + + if idx >= 0: + if order == 'down': + body.sort(lambda A, B: cmp(B[idx].val, A[idx].val), key=natsort_key) + elif order == 'up': + body.sort(lambda A, B: cmp(A[idx].val, B[idx].val), key=natsort_key) + else: + pass + + for i, row in enumerate(body): + hr = HT.TR(Id = row[0].text) + for j, item in enumerate(row): + if (j not in hiddenColumnIdx): + if j == 0: + if addIndex == "1": + item.html.contents = [i+1] + item.html.contents + hr.append(item.html) + tbl.append(hr) + + return tbl + +def natsort_key(string): + r = [] + for c in string: + try: + c = int(c) + try: r[-1] = r[-1] * 10 + c + except: r.append(c) + except: + r.append(c) + return r + diff --git a/web/whats_new.html b/web/whats_new.html new file mode 100644 index 00000000..3e09816a --- /dev/null +++ b/web/whats_new.html @@ -0,0 +1,1369 @@ + +GeneNetwork News + + + + + + + +
      + + + + + + + + + + + + + + + + + ''' % (selectedgType[0], selectedgType[1], selectedgType[2], selectedgType[3], selectedgType[4], + selectedLock[0], selectedLock[1], + p["cL1Color"], + selectedL1style[0], selectedL1style[1], selectedL1style[2], selectedL1style[3], selectedL1style[4], + p["cL2Color"], + selectedL2style[0], selectedL2style[1], selectedL2style[2], selectedL2style[3], selectedL2style[4], + p["cL3Color"], + selectedL3style[0], selectedL3style[1], selectedL3style[2], selectedL3style[3], selectedL3style[4], + p["cL4Color"], + selectedL4style[0], selectedL4style[1], selectedL4style[2], selectedL4style[3], selectedL4style[4], + p["cL5Color"], + selectedL5style[0], selectedL5style[1], selectedL5style[2], selectedL5style[3], selectedL5style[4], + p["cL6Color"], + selectedL6style[0], selectedL6style[1], selectedL6style[2], selectedL6style[3], selectedL6style[4], + selected[0], selected[1], selected[2], selected[3], + p["kValue"], + selected4[1], selected4[0], + selected5[0], selected5[1], + selected7[0], selected7[1], + nfontSelected[0], nfontSelected[1], nfontSelected[2], + p["nfontsize"], + selected3[0], selected3[1], + selected6[1], selected6[0], + cfontSelected[0], cfontSelected[1], cfontSelected[2], + p["cfontsize"], + p["cPubName"], p["cMicName"], p["cGenName"], + p["cPubColor"], p["cMicColor"], p["cGenColor"], + p["cL1Name"], p["cL2Name"], p["cL3Name"], p["cL4Name"], p["cL5Name"], p["cL6Name"], + p["cL1Color"], p["cL2Color"], p["cL3Color"], p["cL4Color"], p["cL5Color"], p["cL6Color"], + p["cPubColor"], p["cMicColor"], p["cGenColor"]) + + #updated by NL 09-03-2010 function changeFormat() has been moved to webqtl.js and be changed to changeFormat(graphName) + #Javascript that selects the correct graph export file given what the user selects + #from the two drop-down menus + + body += ''' + +
      +
      +       +       +       + +       +       + +
      +

      +   +
      +

      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      Lock Graph Structure
      + Locking the graph structure allows the user to hold the position of
      + all nodes and the length of all edges constant, letting him/her easily
      + compare between different correlation types. Changing the value to "yes"
      + requires the line threshold to be set to 0 in order to lock the structure.
      +

      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      Line Type 1:-1to-0.7
      Line Type 2:-0.7to-0.5
      Line Type 3:-0.5to0
      Line Type 4:0to0.5
      Line Type 5:0.5to0.7
      Line Type 6:0.7to1
      +
      To change colors, select Line Type then select Color below.

      Correlation Type: + + + + + + + + + + +
      PearsonSpearman
      LiteratureTissue
      +
      Line Threshold:Absolute values greater than

      Draw Nodes : + all + connected only +
      Node Shape: + rectangle + ellipse +
      Node Label: + trait name
      + gene symbol / marker name +
      Node Font: + +
      Node Font Size: point

      Draw Lines: + curved + straight +
      Display Correlations: + no + yes +
      Line Font: + +
      Line Font Size: point

      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      Publish Microarray Genotype
      + +

      + colorPanel +

      +
       

      Right-click or control-click on the following + links to download this graph as a GIF file or + a PDF file.

      ''' % (imageName, pdfName) + + body += '''

      Initial edge lengths were computed by applying an r-to-Z transform to the correlation coefficents + and then inverting the results. The graph drawing algorithm + found a configuration that minimizes the total stretching of the edges.

      ''' + + body += '''

      This graph took %s seconds to generate with the + GraphViz visualization toolkit from AT&T Research.

      ''' % (round(totalTime, 2)) + + #Form to export graph file as either XGMML (standardized graphing format) or a + #plain text file with trait names/symbols and correlations + + body += ''' +
      +

      Export Graph File:

      +

      +       +

      + +

      + +

      +
      + ''' % (graphName, selectedExportFormat[0], selectedExportFormat[1], + graphName, selectedTraitType[0], selectedTraitType[1]) + + body += '''
      +
      + + + The Web + GeneNetwork
      +
      + ''' + + + self.dict["body"] = body + + def writeToFile(self, filename): + """ + Output the contents of this HTML page to a file. + """ + handle = open(filename, "w") + handle.write(str(self)) + handle.close() diff --git a/web/webqtl/networkGraph/networkGraphUtils.py b/web/webqtl/networkGraph/networkGraphUtils.py new file mode 100644 index 00000000..fd0e7484 --- /dev/null +++ b/web/webqtl/networkGraph/networkGraphUtils.py @@ -0,0 +1,750 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +# graphviz: +# a library for sending trait data to the graphviz utilities to get +# graphed + +# ParamDict: a dictionary of strings that map to strings where the keys are +# valid parameters and the values are validated versions of those parameters +# +# The list below also works for visualize.py; different parameters apply to different +# functions in the pipeline. See visualize.py for more details. +# +# parameters: +# filename: an input file with comma-delimited data to visualize +# kValue: +# how to filter the edges; edges with correlation coefficents in +# [-k, k] are not drawn +# whichValue: which of the two correlation coefficents are used; +# 0 means the top half (pearson) and +# 1 means the bottom half (spearman) +# width: the width of the graph in inches +# height: the height of the graph in inches +# --scale: an amount to multiply the length factors by to space out the nodes +# spline: whether to use splines instead of straight lines to draw graphs +# tune: whether to automatically pick intelligent default values for +# kValue and spline based on the number of edges in the input data +# whichVersion: whether to display the graph zoomed or fullscreen +# 0 means zoom +# 1 means fullscreen +# printIslands: whether to display nodes with no visible edges +# + +# DataMatrix: a one-dimensional array of DataPoints in sorted order by i first + + + +import copy +import os +#import os.path +import math +import string + +from base import webqtlConfig +from utility import webqtlUtil +#import trait +from nGraphException import nGraphException +from ProcessedPoint import ProcessedPoint + + +# processDataMatrix: DataMatrix -> ParamDict -> void +# this is the second part after filterDataMatrix +# To process the set of points in a DataMatrix as follows +# 1) choose an appropriate color for the data point +# 2) filter those between k values +# 3) to use an r-to-Z transform to spread out the correlation +# values from [-1,1] to (-inf, inf) +# 4) to invert the values so that higher correlations result in +# shorter edges +# +# Note: this function modifies the matrix in-place. My functional +# programming instincts tell me that this is a bad idea. +def processDataMatrix(matrix, p): + for pt2 in matrix: + # filter using k + if (-p["kValue"] <= pt2.value) and (pt2.value <= p["kValue"]): + pt2.value = 0.00 + + # Lei Yan + # 05/28/2009 + # fix color + + # pick a color + if pt2.value >= 0.7: + pt2.color = p["cL6Name"] + pt2.style = p["L6style"] + elif pt2.value >= 0.5: + pt2.color = p["cL5Name"] + pt2.style = p["L5style"] + elif pt2.value >= 0.0: + pt2.color = p["cL4Name"] + pt2.style = p["L4style"] + elif pt2.value >= -0.5: + pt2.color = p["cL3Name"] + pt2.style = p["L3style"] + elif pt2.value >= -0.7: + pt2.color = p["cL2Name"] + pt2.style = p["L2style"] + else: + pt2.color = p["cL1Name"] + pt2.style = p["L1style"] + + # r to Z transform to generate the length + # 0 gets transformed to infinity, which we can't + # represent here, and 1 gets transformed to 0 + if p["lock"] == "no": + if -0.01 < pt2.value and pt2.value < 0.01: + pt2.length = 1000 + elif pt2.value > 0.99 or pt2.value < -0.99: + pt2.length = 0 + else: + pt2.length = pt2.value + pt2.length = 0.5 * math.log((1 + pt2.length)/(1 - pt2.length)) + + # invert so higher correlations mean closer edges + #pt2.length = abs(p["scale"] * 1/pt2.length) + pt2.length = abs(1/pt2.length) + else: + pt2.length = 2 + + +# tuneParamDict: ParamDict -> Int -> Int -> ParamDict +# to adjust the parameter dictionary for a first-time run +# so that the graphing doesn't take so long, especially since +# small parameter changes can make a big performance difference +# note: you can pass this function an empty dictionary and +# get back a good set of default parameters for your +# particular graph +def tuneParamDict(p, nodes, edges): + newp = copy.deepcopy(p) + + if nodes > 50: + newp["splines"] = "no" + else: + newp["splines"] = "yes" + + if edges > 1000: + newp["printIslands"] = 0 + else: + newp["printIslands"] = 1 + + if edges > 1000: + newp["kValue"] = 0.8 + elif edges > 500: + newp["kValue"] = 0.7 + elif edges > 250: + newp["kValue"] = 0.6 + + if nodes > 50: + # there's no magic here; this formula + # just seems to work + dim = 3*math.sqrt(nodes) + newp["width"] = round(dim,2) + newp["height"] = round(dim,2) + + # the two values below shouldn't change + # newp["scale"] = round(dim/10.0,2) + # newp["fontsize"] = round(14*newp["scale"],0) + + else: + newp["width"] = 40.0 + newp["height"] = 40.0 + + return newp + +# fixLabel : string -> string +def fixLabel(lbl): + """ + To split a label with newlines so it looks a bit better + Note: we send the graphing program literal '\n' strings and + it converts these into newlines + """ + lblparts = lbl.split(" ") + newlbl = "" + i = 0 + for part in lblparts: + if 10*(i+1) < len(newlbl): + i += 1 + newlbl = newlbl + r"\n" + part + else: + newlbl = newlbl + " " + part + return newlbl + #return "\N" + +def writeGraphFile(matrix, traits, filename, p): + """ + Expresses the same information as the neato file, only in + eXtensible Graph Markup and Modeling Language (XGMML) so the user can develop his/her + own graph in a program such as Cytoscape + """ + inputFile1 = open(filename + "_xgmml_symbol.txt", "w") + inputFile2 = open(filename + "_xgmml_name.txt", "w") + inputFile3 = open(filename + "_plain_symbol.txt", "w") + inputFile4 = open(filename + "_plain_name.txt", "w") + + inputFile1.write("\n") + inputFile2.write("\n") + + #Write out nodes + traitEdges = [] + for i in range(0, len(traits)): + traitEdges.append(0) + + for i in range(0, len(traits)): + + labelName = traits[i].symbol + inputFile1.write("\t\n" % (i, labelName)) + + for i in range(0, len(traits)): + + labelName = traits[i].name + inputFile2.write("\t\n" % (i, labelName)) + + #Write out edges + for point in matrix: + + traitEdges[point.i] = 1 + traitEdges[point.j] = 1 + if p["edges"] == "complex": + _traitValue = "%.3f" % point.value + inputFile1.write("\t\n" + % (point.i, + point.j, + _traitValue)) + inputFile2.write("\t\n" + % (point.i, + point.j, + _traitValue)) + + inputFile1.write("") + inputFile2.write("") + + for edge in matrix: + inputFile3.write("%s\t%s\t%s\n" % (traits[edge.i].symbol, edge.value, traits[edge.j].symbol)) + + + for edge in matrix: + inputFile4.write("%s\t%s\t%s\n" % (traits[edge.i].name, edge.value, traits[edge.j].name)) + + inputFile1.close() + inputFile2.close() + inputFile3.close() + inputFile4.close() + + return (os.path.split(filename))[1] + +# writeNeatoFile : DataMatrix -> arrayof Traits -> String -> ParamDict -> String +def writeNeatoFile(matrix, traits, filename, GeneIdArray, p): + """ + Given input data, to write a valid input file for neato, optionally + writing entries for nodes that have no edges. + + NOTE: There is a big difference between removing an edge and zeroing + its value. Because writeNeatoFile is edge-driven, zeroing an edge's value + will still result in its node being written. + """ + inputFile = open(filename, "w") + + """ + This file (inputFile_pdf) is rotated 90 degrees. This is because of a bug in graphviz + that causes pdf output onto a non-landscape layout to often be cut off at the edge + of the page. This second filename (which is just the first + "_pdf" is then read + in the "visualizePage" class in networkGraph.py and used to generate the postscript + file that is converted to pdf. + """ + inputFile_pdf = open(filename + "_pdf", "w") + + + if p["splines"] == "yes": + splines = "true" + else: + splines = "false" + + # header + inputFile.write('''graph webqtlGraph { + overlap="false"; + start="regular"; + splines="%s"; + ratio="auto"; + fontpath = "%s"; + node [fontname="%s", fontsize=%s, shape="%s"]; + edge [fontname="%s", fontsize=%s]; + ''' % (splines, webqtlConfig.PIDDLE_FONT_PATH, + p["nfont"], p["nfontsize"], p["nodeshapeType"], + p["cfont"], p["cfontsize"])) + + inputFile_pdf.write('''graph webqtlGraph { + overlap="false"; + start="regular"; + splines="%s"; + rotate="90"; + center="true"; + size="11,8.5"; + margin="0"; + ratio="fill"; + fontpath = "%s"; + node [fontname="%s", fontsize=%s, shape="%s"]; + edge [fontname="%s", fontsize=%s]; + ''' % (splines, webqtlConfig.PIDDLE_FONT_PATH, + p["nfont"], p["nfontsize"], p["nodeshapeType"], + p["cfont"], p["cfontsize"])) + + # traitEdges stores whether a particular trait has edges + traitEdges = [] + for i in range(0, len(traits)): + traitEdges.append(0) + + if p["dispcorr"] == "yes": + _dispCorr = 1 + else: + _dispCorr = 0 + # print edges first while keeping track of nodes + for point in matrix: + if point.value != 0: + traitEdges[point.i] = 1 + traitEdges[point.j] = 1 + if p["edges"] == "complex": + if _dispCorr: + _traitValue = "%.3f" % point.value + else: + _traitValue = "" + if p["correlationName"] == "Pearson": + inputFile.write('%s -- %s [len=%s, weight=%s, label=\"%s\", color=\"%s\", style=\"%s\", edgeURL=\"javascript:showCorrelationPlot2(db=\'%s\',ProbeSetID=\'%s\',CellID=\'\',db2=\'%s\',ProbeSetID2=\'%s\',CellID2=\'\',rank=\'%s\');\", edgetooltip="%s"];\n' + % (point.i, + point.j, + point.length, + point.length, + _traitValue, + point.color, + point.style, + str(traits[point.i].datasetName()), + str(traits[point.i].nameNoDB()), + str(traits[point.j].datasetName()), + str(traits[point.j].nameNoDB()), + "0", + "Pearson Correlation Plot between " + str(traits[point.i].symbol) + " and " + str(traits[point.j].symbol))) + elif p["correlationName"] == "Spearman": + inputFile.write('%s -- %s [len=%s, weight=%s, label=\"%s\", color=\"%s\", style=\"%s\", edgeURL=\"javascript:showCorrelationPlot2(db=\'%s\',ProbeSetID=\'%s\',CellID=\'\',db2=\'%s\',ProbeSetID2=\'%s\',CellID2=\'\',rank=\'%s\');\", edgetooltip="%s"];\n' + % (point.i, + point.j, + point.length, + point.length, + _traitValue, + point.color, + point.style, + str(traits[point.j].datasetName()), + str(traits[point.j].nameNoDB()), + str(traits[point.i].datasetName()), + str(traits[point.i].nameNoDB()), + "1", + "Spearman Correlation Plot between " + str(traits[point.i].symbol) + " and " + str(traits[point.j].symbol))) + elif p["correlationName"] == "Tissue": + inputFile.write('%s -- %s [len=%s, weight=%s, label=\"%s\", color=\"%s\", style=\"%s\", edgeURL=\"javascript:showTissueCorrPlot(fmName=\'showDatabase\', X_geneSymbol=\'%s\', Y_geneSymbol=\'%s\', rank=\'0\');\", edgetooltip="%s"];\n' + % (point.i, + point.j, + point.length, + point.length, + _traitValue, + point.color, + point.style, + str(traits[point.i].symbol), + str(traits[point.j].symbol), + "Tissue Correlation Plot between " + str(traits[point.i].symbol) + " and " + str(traits[point.j].symbol))) + else: + inputFile.write('%s -- %s [len=%s, weight=%s, label=\"%s\", color=\"%s\", style=\"%s\", edgeURL=\"javascript:showCorrelationPlot2(db=\'%s\',ProbeSetID=\'%s\',CellID=\'\',db2=\'%s\',ProbeSetID2=\'%s\',CellID2=\'\',rank=\'%s\');\", edgetooltip="%s"];\n' + % (point.i, + point.j, + point.length, + point.length, + _traitValue, + point.color, + point.style, + str(traits[point.i].datasetName()), + str(traits[point.i].nameNoDB()), + str(traits[point.j].datasetName()), + str(traits[point.j].nameNoDB()), + "0", + "Correlation Plot between " + str(traits[point.i].symbol) + " and " + str(traits[point.j].symbol))) + inputFile_pdf.write('%s -- %s [len=%s, weight=%s, label=\"%s\", color=\"%s\", style=\"%s\", edgetooltip="%s"];\n' + % (point.i, + point.j, + point.length, + point.length, + _traitValue, + point.color, + point.style, + "Correlation Plot between " + str(traits[point.i].symbol) + " and " + str(traits[point.j].symbol))) + + else: + inputFile.write('%s -- %s [color="%s", style="%s"];\n' + % (point.i, + point.j, + point.color, + point.style)) + inputFile_pdf.write('%s -- %s [color="%s", style="%s"];\n' + % (point.i, + point.j, + point.color, + point.style)) + + # now print nodes + # the target attribute below is undocumented; I found it by looking + # in the neato code + for i in range(0, len(traits)): + if traitEdges[i] == 1 or p["printIslands"] == 1: + _tname = str(traits[i]) + if _tname.find("Publish") > 0: + plotColor = p["cPubName"] + elif _tname.find("Geno") > 0: + plotColor = p["cGenName"] + else: + plotColor = p["cMicName"] + if p['nodelabel'] == 'yes': + labelName = _tname + else: + labelName = traits[i].symbol + + inputFile.write('%s [label="%s", href="javascript:showDatabase2(\'%s\',\'%s\',\'\');", color="%s", style = "filled"];\n' + % (i, labelName, traits[i].datasetName(), traits[i].nameNoDB(), plotColor))# traits[i].color + inputFile_pdf.write('%s [label="%s", href="javascript:showDatabase2(\'%s\',\'%s\',\'\');", color="%s", style = "filled"];\n' + % (i, labelName, traits[i].datasetName(), traits[i].nameNoDB(), plotColor))# traits[i].color + + # footer + inputFile.write("}\n") + inputFile_pdf.write("]\n") + inputFile.close() + inputFile_pdf.close() + + # return only the filename portion, omitting the directory + return (os.path.split(filename))[1] + +# runNeato : string -> string -> string +def runNeato(filename, extension, format, gType): + """ + to run neato on the dataset in the given filename and produce an image file + in the given format whose name we will return. Right now we assume + that format is a valid neato output (see graphviz docs) and a valid extension + for the source datafile. For example, + runNeato('input1', 'png') will produce a file called 'input1.png' + by invoking 'neato input1 -Tpng -o input1.png' + """ + # trim extension off of filename before adding output extension + if filename.find(".") > 0: + filenameBase = filename[:filename.find(".")] + else: + filenameBase = filename + + imageFilename = filenameBase + "." + extension + + #choose which algorithm to run depended upon parameter gType + #neato: energy based algorithm + #circular: nodes given circular structure determined by which nodes are most closely correlated + #radial: first node listed (when you search) is center of the graph, all other nodes are in a circular structure around it + #fdp: force based algorithm + + if gType == "none": + # to keep the output of neato from going to stdout, we open a pipe + # and then wait for it to terminate + + if format in ('gif', 'cmapx', 'ps'): + neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/neato", "/usr/local/bin/neato", "-s", "-T", format, webqtlConfig.IMGDIR + filename, "-o", webqtlConfig.IMGDIR + imageFilename) + + else: + neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/neato", "/usr/local/bin/neato", webqtlConfig.IMGDIR + filename, "-T", format, "-o", webqtlConfig.IMGDIR + imageFilename) + + if neatoExit == 0: + return imageFilename + + return imageFilename + + + elif gType == "neato": + # to keep the output of neato from going to stdout, we open a pipe + # and then wait for it to terminate + if format in ('gif', 'cmapx', 'ps'): + neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/neato", "/usr/local/bin/neato", "-s", "-T", format, webqtlConfig.IMGDIR + filename, "-o", webqtlConfig.IMGDIR + imageFilename) + + else: + neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/neato", "/usr/local/bin/neato", webqtlConfig.IMGDIR + filename, "-T", format, "-o", webqtlConfig.IMGDIR + imageFilename) + + if neatoExit == 0: + return imageFilename + + return imageFilename + + elif gType == "circular": + + if format in ('gif', 'cmapx', 'ps'): + neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/circo", "/usr/local/bin/circo", "-s", "-T", format, webqtlConfig.IMGDIR + filename, "-o", webqtlConfig.IMGDIR + imageFilename) + + else: + neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/circo", "/usr/local/bin/circo", webqtlConfig.IMGDIR + filename, "-T", format, "-o", webqtlConfig.IMGDIR + imageFilename) + + if neatoExit == 0: + return imageFilename + + return imageFilename + + elif gType == "radial": + + if format in ('gif', 'cmapx', 'ps'): + neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/twopi", "/usr/local/bin/twopi", "-s", "-T", format, webqtlConfig.IMGDIR + filename, "-o", webqtlConfig.IMGDIR + imageFilename) + + else: + neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/twopi", "/usr/local/bin/twopi", webqtlConfig.IMGDIR + filename, "-T", format, "-o", webqtlConfig.IMGDIR + imageFilename) + + if neatoExit == 0: + return imageFilename + + return imageFilename + + elif gType == "fdp": + + if format in ('gif', 'cmapx', 'ps'): + neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/fdp", "/usr/local/bin/fdp", "-s", "-T", format, webqtlConfig.IMGDIR + filename, "-o", webqtlConfig.IMGDIR + imageFilename) + + else: + neatoExit = os.spawnlp(os.P_WAIT, "/usr/local/bin/fdp", "/usr/local/bin/fdp", webqtlConfig.IMGDIR + filename, "-T", format, "-o", webqtlConfig.IMGDIR + imageFilename) + + if neatoExit == 0: + return imageFilename + + return imageFilename + + + return imageFilename +# runPsToPdf: string -> int -> intstring +# to run Ps2Pdf to convert the given input postscript file to an 8.5 by 11 +# pdf file The width and height should be specified in inches. We assume +# that the PS files output by GraphViz are 72 dpi. +def runPsToPdf(psfile, width, height): + # we add 1 for padding b/c sometimes a small part of the graph gets + # cut off + newwidth = int((width + 1) * 720) + newheight = int((height + 1) * 720) + + # replace the ps extension with a pdf one + pdffile = psfile[:-2] + "pdf" + + os.spawnlp(os.P_WAIT, "ps2pdf", + "-g%sx%s" % (newwidth, newheight), + webqtlConfig.IMGDIR + psfile, webqtlConfig.IMGDIR + pdffile) + + return pdffile + +# buildParamDict: void -> ParamDict +# to process and validate CGI arguments, +# looking up human-readable names where necessary +# see the comment at the top of the file for valid cgi parameters +def buildParamDict(fs, sessionfile): + params = {} + + params["inputFile"] = fs.formdata.getvalue("inputFile", "") + params["progress"] = fs.formdata.getvalue("progress", "1") + params["filename"] = fs.formdata.getvalue("filename", "") + params["session"] = sessionfile + + if type("1") != type(fs.formdata.getvalue("searchResult")): + params["searchResult"] = string.join(fs.formdata.getvalue("searchResult"),'\t') + else: + params["searchResult"] = fs.formdata.getvalue("searchResult") + + params["riset"] = fs.formdata.getvalue("RISet", "") + #if params["filename"] == "": + # raise nGraphException("Required parameter filename missing") + + #parameter determining whether export button returns an xgmml graph file or plain text file + params["exportFormat"] = fs.formdata.getvalue("exportFormat", "xgmml") + + #parameter determining whether or not traits in the graph file are listed by their symbol or name + params["traitType"] = fs.formdata.getvalue("traitType", "symbol") + + #parameter saying whether or not graph structure should be locked when you redraw the graph + params["lock"] = fs.formdata.getvalue("lock", "no") + + #parameter saying what algorithm should be used to draw the graph + params["gType"] = fs.formdata.getvalue("gType", "none") + + params["kValue"] = webqtlUtil.safeFloat(fs.formdata.getvalue("kValue", "0.5"), 0.5) + params["whichValue"] = webqtlUtil.safeInt(fs.formdata.getvalue("whichValue","0"),0) + + # 1 inch = 2.54 cm + # 1 cm = 0.3937 inch + + params["width"] = webqtlUtil.safeFloat(fs.formdata.getvalue("width", "40.0"), 40.0) + params["height"] = webqtlUtil.safeFloat(fs.formdata.getvalue("height", "40.0"), 40.0) + + yesno = ["yes", "no"] + + params["tune"] = webqtlUtil.safeString(fs.formdata.getvalue("tune", "yes"), yesno, "yes") + + params["printIslands"] = webqtlUtil.safeInt(fs.formdata.getvalue("printIslands", "1"),1) + params["nodeshape"] = webqtlUtil.safeString(fs.formdata.getvalue("nodeshape","yes"), yesno, "yes") + params["nodelabel"] = webqtlUtil.safeString(fs.formdata.getvalue("nodelabel","no"), yesno, "no") + params["nfont"] = fs.formdata.getvalue("nfont","Arial") + params["nfontsize"] = webqtlUtil.safeFloat(fs.formdata.getvalue("nfontsize", "10.0"), 10.0) + + params["splines"] = webqtlUtil.safeString(fs.formdata.getvalue("splines","yes"), yesno, "yes") + params["dispcorr"] = webqtlUtil.safeString(fs.formdata.getvalue("dispcorr","no"), yesno, "no") + params["cfont"] = fs.formdata.getvalue("cfont","Arial") + params["cfontsize"] = webqtlUtil.safeFloat(fs.formdata.getvalue("cfontsize", "10.0"), 10.0) + + params["cPubName"] = fs.formdata.getvalue("cPubName","palegreen") + params["cMicName"] = fs.formdata.getvalue("cMicName","lightblue") + params["cGenName"] = fs.formdata.getvalue("cGenName","lightcoral") + + params["cPubColor"] = fs.formdata.getvalue("cPubColor","98fb98") + params["cMicColor"] = fs.formdata.getvalue("cMicColor","add8e6") + params["cGenColor"] = fs.formdata.getvalue("cGenColor","f08080") + + params["cL1Name"] = fs.formdata.getvalue("cL1Name","blue") + params["cL2Name"] = fs.formdata.getvalue("cL2Name","green") + params["cL3Name"] = fs.formdata.getvalue("cL3Name","black") + params["cL4Name"] = fs.formdata.getvalue("cL4Name","pink") + params["cL5Name"] = fs.formdata.getvalue("cL5Name","orange") + params["cL6Name"] = fs.formdata.getvalue("cL6Name","red") + + params["cL1Color"] = fs.formdata.getvalue("cL1Color","0000ff") + params["cL2Color"] = fs.formdata.getvalue("cL2Color","00ff00") + params["cL3Color"] = fs.formdata.getvalue("cL3Color","000000") + params["cL4Color"] = fs.formdata.getvalue("cL4Color","ffc0cb") + params["cL5Color"] = fs.formdata.getvalue("cL5Color","ffa500") + params["cL6Color"] = fs.formdata.getvalue("cL6Color","ff0000") + + params["L1style"] = fs.formdata.getvalue("L1style","bold") + params["L2style"] = fs.formdata.getvalue("L2style","") + params["L3style"] = fs.formdata.getvalue("L3style","dashed") + params["L4style"] = fs.formdata.getvalue("L4style","dashed") + params["L5style"] = fs.formdata.getvalue("L5style","") + params["L6style"] = fs.formdata.getvalue("L6style","bold") + + if params["splines"] == "yes": + params["splineName"] = "curves" + else: + params["splineName"] = "lines" + + if params["nodeshape"] == "yes": + params["nodeshapeType"] = "box" + else: + params["nodeshapeType"] = "ellipse" + + if params["whichValue"] == 0: + params["correlationName"] = "Pearson" + elif params["whichValue"] == 1: + params["correlationName"] = "Spearman" + elif params["whichValue"] == 2: + params["correlationName"] = "Literature" + else: + params["correlationName"] = "Tissue" + + # see graphviz::writeNeatoFile to find out what this done + params["edges"] = "complex" + + return params + +def optimalRadialNode(matrix): + """ + Automatically determines the node with the most/strongest correlations with + other nodes. If the user selects "radial" for Graph Type and then "Auto" for the + central node then this node is used as the central node. The algorithm is simply a sum of + each node's correlations that fall above the threshold set by the user. + """ + + optMatrix = [0]*(len(matrix)+1) + + for pt in matrix: + if abs(pt.value) > 0.5: + optMatrix[pt.i] += abs(pt.value) + optMatrix[pt.j] += abs(pt.value) + + optPoint = 0 + optCorrTotal = 0 + + j = 0 + + for point in optMatrix: + if (float(point) > float(optCorrTotal)): + optPoint = j + optCorrTotal = point + j += 1 + + + return optPoint + +# filterDataMatrix : DataMatrix -> ParamDict -> DataMatrix +def filterDataMatrix(matrix, p): + """ + To convert a set of input RawPoints to a set of + ProcessedPoints and to choose the appropriate + correlation coefficent. + """ + newmatrix = [] + for pt in matrix: + pt2 = ProcessedPoint(pt.i, pt.j) # XZ, 09/11/2008: add module name + + # pick right value + if p["whichValue"] == 0: + pt2.value = pt.pearson + elif p["whichValue"] == 1: + pt2.value = pt.spearman + elif p["whichValue"] == 2: + pt2.value = pt.literature + elif p["whichValue"] == 3: + pt2.value = pt.tissue + else: + raise nGraphException("whichValue should be either 0, 1, 2 or 3") + + try: + pt2.value = float(pt2.value) + except: + pt2.value = 0.00 + + newmatrix.append(pt2) + + + + return newmatrix + +def generateSymbolList(traits): + """ + Generates a list of trait symbols to be displayed in the central node + selection drop-down menu when plotting a radial graph + """ + + traitList = traits + + symbolList = [None]*len(traitList) + + i=0 + for trait in traitList: + symbolList[i] = str(trait.symbol) + i = i+1 + + symbolListString = "\t".join(symbolList) + + return symbolListString + diff --git a/web/webqtl/pairScan/CategoryGraphPage.py b/web/webqtl/pairScan/CategoryGraphPage.py new file mode 100755 index 00000000..696c05ce --- /dev/null +++ b/web/webqtl/pairScan/CategoryGraphPage.py @@ -0,0 +1,199 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string +import piddle as pid +from htmlgen import HTMLgen2 as HT + +from utility import Plot +from base.templatePage import templatePage +from utility import webqtlUtil +from base import webqtlConfig + +######################################### +# Category Graph Page +######################################### +class CategoryGraphPage(templatePage): + def __init__(self, fd): + + LRSFullThresh = 30 + LRSInteractThresh = 25 + maxPlotSize = 800 + mainfmName = webqtlUtil.genRandStr("fm_") + + templatePage.__init__(self, fd) + + if not fd.genotype: + fd.readData() + + ##Remove F1 and Parents + fd.genotype = fd.genotype_1 + + plotType = fd.formdata.getvalue('plotType') + self.dict['title'] = '%s Plot' % plotType + main_title = HT.Paragraph("%s Plot" % plotType) + main_title.__setattr__("class","title") + + interval1 = fd.formdata.getvalue('interval1') + interval2 = fd.formdata.getvalue('interval2') + + flanka1, flanka2, chram = string.split(interval1) + flankb1, flankb2, chrbm = string.split(interval2) + + traitValues = string.split(fd.formdata.getvalue('traitValues'), ',') + traitValues = map(webqtlUtil.StringAsFloat, traitValues) + traitStrains = string.split(fd.formdata.getvalue('traitStrains'), ',') + + flankaGeno = [] + flankbGeno = [] + + for chr in fd.genotype: + for locus in chr: + if locus.name in (flanka1, flankb1): + if locus.name == flanka1: + flankaGeno = locus.genotype[:] + else: + flankbGeno = locus.genotype[:] + if flankaGeno and flankbGeno: + break + + flankaDict = {} + flankbDict = {} + for i in range(len(fd.genotype.prgy)): + flankaDict[fd.genotype.prgy[i]] = flankaGeno[i] + flankbDict[fd.genotype.prgy[i]] = flankbGeno[i] + + BB = [] + BD = [] + DB = [] + DD = [] + + iValues = [] + for i in range(len(traitValues)): + if traitValues[i] != None: + iValues.append(traitValues[i]) + thisstrain = traitStrains[i] + try: + a1 = flankaDict[thisstrain] + b1 = flankbDict[thisstrain] + except: + continue + if a1 == -1.0: + if b1 == -1.0: + BB.append((thisstrain, traitValues[i])) + elif b1 == 1.0: + BD.append((thisstrain, traitValues[i])) + elif a1 == 1.0: + if b1 == -1.0: + DB.append((thisstrain, traitValues[i])) + elif b1 == 1.0: + DD.append((thisstrain, traitValues[i])) + else: + pass + + #print BB, BD, DB, DD, max(iValues), min(iValues) + + plotHeight = 400 + plotWidth = 600 + xLeftOffset = 60 + xRightOffset = 40 + yTopOffset = 40 + yBottomOffset = 60 + + canvasHeight = plotHeight + yTopOffset + yBottomOffset + canvasWidth = plotWidth + xLeftOffset + xRightOffset + canvas = pid.PILCanvas(size=(canvasWidth,canvasHeight)) + XXX = [('Mat/Mat', BB), ('Mat/Pat', BD), ('Pat/Mat', DB), ('Pat/Pat', DD)] + XLabel = "Interval 1 / Interval 2" + + if plotType == "Box": + Plot.plotBoxPlot(canvas, XXX, offset=(xLeftOffset, xRightOffset, yTopOffset, yBottomOffset), XLabel = XLabel) + else: + #Could be a separate function, but seems no other uses + max_Y = max(iValues) + min_Y = min(iValues) + scaleY = Plot.detScale(min_Y, max_Y) + Yll = scaleY[0] + Yur = scaleY[1] + nStep = scaleY[2] + stepY = (Yur - Yll)/nStep + stepYPixel = plotHeight/(nStep) + canvas.drawRect(plotWidth+xLeftOffset, plotHeight + yTopOffset, xLeftOffset, yTopOffset) + + ##draw Y Scale + YYY = Yll + YCoord = plotHeight + yTopOffset + scaleFont=pid.Font(ttf="cour",size=11,bold=1) + for i in range(nStep+1): + strY = Plot.cformat(d=YYY, rank=0) + YCoord = max(YCoord, yTopOffset) + canvas.drawLine(xLeftOffset,YCoord,xLeftOffset-5,YCoord) + canvas.drawString(strY, xLeftOffset -30,YCoord +5,font=scaleFont) + YYY += stepY + YCoord -= stepYPixel + + + ##draw X Scale + stepX = plotWidth/len(XXX) + XCoord = xLeftOffset + 0.5*stepX + YCoord = plotHeight + yTopOffset + scaleFont = pid.Font(ttf="tahoma",size=12,bold=0) + labelFont = pid.Font(ttf="tahoma",size=13,bold=0) + for item in XXX: + itemname, itemvalue = item + canvas.drawLine(XCoord, YCoord,XCoord, YCoord+5, color=pid.black) + canvas.drawString(itemname, XCoord - canvas.stringWidth(itemname,font=labelFont)/2.0,YCoord +20,font=labelFont) + itemvalue.sort(webqtlUtil.cmpOrder2) + j = 0 + for item2 in itemvalue: + tstrain, tvalue = item2 + canvas.drawCross(XCoord, plotHeight + yTopOffset - (tvalue-Yll)*plotHeight/(Yur - Yll), color=pid.red,size=5) + if j % 2 == 0: + canvas.drawString(tstrain, XCoord+5, plotHeight + yTopOffset - \ + (tvalue-Yll)*plotHeight/(Yur - Yll) +5, font=scaleFont, color=pid.blue) + else: + canvas.drawString(tstrain, XCoord-canvas.stringWidth(tstrain,font=scaleFont)-5, \ + plotHeight + yTopOffset - (tvalue-Yll)*plotHeight/(Yur - Yll) +5, font=scaleFont, color=pid.blue) + j += 1 + XCoord += stepX + + + labelFont=pid.Font(ttf="verdana",size=18,bold=0) + canvas.drawString(XLabel, xLeftOffset + (plotWidth -canvas.stringWidth(XLabel,font=labelFont))/2.0, YCoord +40, font=labelFont) + canvas.drawString("Value",xLeftOffset-40, YCoord-(plotHeight -canvas.stringWidth("Value",font=labelFont))/2.0, font=labelFont, angle =90) + + + filename= webqtlUtil.genRandStr("Cate_") + canvas.save(webqtlConfig.IMGDIR+filename, format='gif') + img=HT.Image('/image/'+filename+'.gif',border=0) + + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee',valign='top') + TD_LR.append(main_title, HT.Center(img))#, traitValues , len(traitValues), traitStrains, len(traitStrains), len(fd.genotype.prgy)) + #TD_LR.append(main_title, HT.BR(), flanka1, flanka2, chram, HT.BR(), flankb1, flankb2, chrbm) + self.dict['body'] = str(TD_LR) + + + diff --git a/web/webqtl/pairScan/DirectPlotPage.py b/web/webqtl/pairScan/DirectPlotPage.py new file mode 100755 index 00000000..4c3b9075 --- /dev/null +++ b/web/webqtl/pairScan/DirectPlotPage.py @@ -0,0 +1,430 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string +import piddle as pid +from math import * +import os + +import direct +from htmlgen import HTMLgen2 as HT + +from utility import Plot +from base.webqtlTrait import webqtlTrait +from base.templatePage import templatePage +from utility import webqtlUtil +from base import webqtlConfig + + + +class DirectPlotPage(templatePage): + def __init__(self, fd): + + LRSFullThresh = 30 + LRSInteractThresh = 25 + + templatePage.__init__(self, fd) + + if not fd.genotype: + fd.readData() + + incVars = 0 + _genotype = fd.genotype_1 + _strains, _vals, _vars, N = fd.informativeStrains(_genotype.prgy, incVars) + + self.dict['title'] = 'Pair-Scan Plot' + if not self.openMysql(): + return + + iPermuCheck = fd.formdata.getvalue('directPermuCheckbox') + + try: + graphtype = int(fd.formdata.getvalue('graphtype')) + except: + graphtype = 1 + try: + graphsort = int(fd.formdata.getvalue('graphSort')) + except: + graphsort = 1 + try: + returnIntervalPairNum = int(fd.formdata.getvalue('pairScanReturn')) + except: + returnIntervalPairNum = 50 + + pairIntro = HT.Blockquote("The graph below displays pair-scan results for the trait ",HT.Strong(" %s" % fd.identification)) + if not graphsort: + tblIntro = HT.Blockquote('This table lists LRS scores for the top %d pairs of intervals (Interval 1 on the left and Interval 2 on the right). Pairs are sorted by the "LRS Full" column. Both intervals are defined by proximal and distal markers that flank the single best position.' % returnIntervalPairNum) + else: + tblIntro = HT.Blockquote('This table lists LRS scores for the top %d pairs of intervals (Interval 1 on the left and Interval 2 on the right). Pairs are sorted by the "LRS Interaction" column. Both intervals are defined by proximal and distal markers that flank the single best position.' % returnIntervalPairNum) + + try: + thisTrait = webqtlTrait(fullname=fd.formdata.getvalue("fullname"), cursor=self.cursor) + pairIntro.append(' from the database ' , thisTrait.db.genHTML()) + except: + pass + + pairIntro.append('. The upper left half of the plot highlights any epistatic interactions (corresponding to the column labeled "LRS Interact"). In contrast, the lower right half provides a summary of LRS of the full model, representing cumulative effects of linear and non-linear terms (column labeled "LRS Full"). The WebQTL implementation of the scan for 2-locus epistatic interactions is based on the DIRECT global optimization algorithm developed by ',HT.Href(text ="Ljungberg",url='http://user.it.uu.se/~kl/qtl_software.html',target="_blank", Class = "fs14 fwn"),', Holmgren, and Carlborg (',HT.Href(text = "2004",url='http://bioinformatics.oupjournals.org/cgi/content/abstract/bth175?ijkey=21Pp0pgOuBL6Q&keytype=ref', Class = "fs14 fwn"),').') + + main_title = HT.Paragraph("Pair-Scan Results: An Analysis of Epistatic Interactions") + main_title.__setattr__("class","title") + + subtitle1 = HT.Paragraph("Pair-Scan Graph") + subtitle3 = HT.Paragraph("Pair-Scan Top LRS") + subtitle1.__setattr__("class","subtitle") + subtitle3.__setattr__("class","subtitle") + + self.identification = "unnamed trait" + if fd.identification: + self.identification = fd.identification + self.dict['title'] = self.identification + ' / '+self.dict['title'] + + ##################################### + # + # Remove the Parents & F1 data + # + ##################################### + + if _vals: + if len(_vals) > webqtlConfig.KMININFORMATIVE: + ResultFull = [] + ResultInteract = [] + ResultAdd = [] + + #permutation test + subtitle2 = '' + permuTbl = '' + permuIntro = '' + if iPermuCheck: + subtitle2 = HT.Paragraph("Pair-Scan Permutation Results") + subtitle2.__setattr__("class","subtitle") + permuIntro = HT.Blockquote("Phenotypes were randomly permuted 500 times among strains or individuals and reanalyzed using the pair-scan algorithm. We extracted the single highest LRS for the full model for each of these permuted data sets. The histograms of these highest LRS values provide an empirical way to estimate the probability of obtaining an LRS above suggestive or significant thresholds.") + + prtmuTblIntro1 = HT.Paragraph("The following table gives threshold values for Suggestive (P=0.63) and Significant associations (P=0.05) defined by Lander & Kruglyak and for the slightly more stringent P=0.01 level. (The Highly Significant level of Lander & Kruglyak corresponds to P=0.001 and cannot be estimated with 500 permutations.)") + prtmuTblIntro2 = HT.Paragraph("If the full model exceeds the permutation-based Significant threshold, then different models for those locations can be tested by conventional chi-square tests at P<0.01. Interaction is significant if LRS Interact exceeds 6.64 for RI strains or 13.28 for an F2. If interaction is not significant, the two-QTL model is better than a one-QTL model if LRS Additive exceeds LRS 1 or LRS 2 by 6.64 for RI strains or 9.21 for an F2.") + ResultFull, ResultInteract, ResultAdd = direct.permu(webqtlConfig.GENODIR, _vals, _strains, fd.RISet, 500) #XZ, 08/14/2008: add module name webqtlConfig + ResultFull.sort() + ResultInteract.sort() + ResultAdd.sort() + nPermuResult = len(ResultFull) + # draw Histogram + cFull = pid.PILCanvas(size=(400,300)) + Plot.plotBar(cFull, ResultFull,XLabel='LRS',YLabel='Frequency',title=' Histogram of LRS Full') + #plotBar(cFull,10,10,390,290,ResultFull,XLabel='LRS',YLabel='Frequency',title=' Histogram of LRS Full') + filename= webqtlUtil.genRandStr("Pair_") + cFull.save(webqtlConfig.IMGDIR+filename, format='gif') + imgFull=HT.Image('/image/'+filename+'.gif',border=0,alt='Histogram of LRS Full') + + + superPermuTbl = HT.TableLite(border=0, cellspacing=0, cellpadding=0,bgcolor ='#999999') + permuTbl2 = HT.TableLite(border=0, cellspacing= 1, cellpadding=5) + permuTbl2.append(HT.TR(HT.TD(HT.Font('LRS', color = '#FFFFFF')), HT.TD(HT.Font('p = 0.63', color = '#FFFFFF'), width = 150, align='Center'), HT.TD(HT.Font('p = 0.05', color = '#FFFFFF'), width = 150, align='Center'), HT.TD(HT.Font('p = 0.01', color = '#FFFFFF'), width = 150, align='Center'),bgColor='royalblue')) + permuTbl2.append(HT.TR(HT.TD('Full'), HT.TD('%2.1f' % ResultFull[int(nPermuResult*0.37 -1)], align="Center"), HT.TD('%2.1f' % ResultFull[int(nPermuResult*0.95 -1)], align="Center"), HT.TD('%2.1f' % ResultFull[int(nPermuResult*0.99 -1)], align="Center"),bgColor="#eeeeee")) + superPermuTbl.append(HT.TD(HT.TD(permuTbl2))) + + permuTbl1 = HT.TableLite(border=0, cellspacing= 0, cellpadding=5,width='100%') + permuTbl1.append(HT.TR(HT.TD(imgFull, align="Center", width = 410), HT.TD(prtmuTblIntro1, superPermuTbl, prtmuTblIntro2, width = 490))) + + permuTbl = HT.Center(permuTbl1, HT.P()) + + #permuTbl.append(HT.TR(HT.TD(HT.BR(), 'LRS Full = %2.1f, ' % ResultFull[int(nPermuResult*0.37 -1)], 'LRS Full = %2.1f, ' % ResultFull[int(nPermuResult*0.95 -1)], 'LRS Full highly significant (p=0.001) = %2.1f, ' % ResultFull[int(nPermuResult*0.999 -1)] , HT.BR(), 'LRS Interact suggestive (p=0.63) = %2.1f, ' % ResultInteract[int(nPermuResult*0.37 -1)], 'LRS Interact significant (p=0.05) = %2.1f, ' % ResultInteract[int(nPermuResult*0.95 -1)], 'LRS Interact = %2.1f, ' % ResultInteract[int(nPermuResult*0.999 -1)] , HT.BR(),'LRS Additive suggestive (p=0.63) = %2.1f, ' % ResultAdd[int(nPermuResult*0.37 -1)], 'LRS Additive significant (p=0.05) = %2.1f, ' % ResultAdd[int(nPermuResult*0.95 -1)], 'LRS Additive highly significant (p=0.001) = %2.1f, ' % ResultAdd[int(nPermuResult*0.999 -1)], HT.BR(), 'Total number of permutation is %d' % nPermuResult, HT.BR(), HT.BR(),colspan=2))) + #tblIntro.append(HT.P(), HT.Center(permuTbl)) + + #print vals, strains, fd.RISet + d = direct.direct(webqtlConfig.GENODIR, _vals, _strains, fd.RISet, 8000)#XZ, 08/14/2008: add module name webqtlConfig + chrsInfo = d[2] + sum = 0 + offsets = [0] + i = 0 + for item in chrsInfo: + if i > 0: + offsets.append(sum) + sum += item[0] + i += 1 + offsets.append(sum) + #print sum,offset,d[2] + canvasWidth = 880 + canvasHeight = 880 + if graphtype: + colorAreaWidth = 230 + else: + colorAreaWidth = 0 + c = pid.PILCanvas(size=(canvasWidth + colorAreaWidth ,canvasHeight)) + xoffset = 40 + yoffset = 40 + width = canvasWidth - xoffset*2 + height = canvasHeight - yoffset*2 + + xscale = width/sum + yscale = height/sum + + rectInfo = d[1] + rectInfo.sort(webqtlUtil.cmpLRSFull) + + finecolors = Plot.colorSpectrum(250) + finecolors.reverse() + regLRS = [0]*height + #draw LRS Full + + for item in rectInfo: + LRSFull,LRSInteract,LRSa,LRSb,chras,chram,chrae,chrbs,chrbm,chrbe,chra,chrb,flanka,flankb = item + if LRSFull > 30: + dcolor = pid.red + elif LRSFull > 20: + dcolor = pid.orange + elif LRSFull > 10: + dcolor = pid.olivedrab + elif LRSFull > 0: + dcolor = pid.grey + else: + LRSFull = 0 + dcolor = pid.grey + + chras += offsets[chra] + chram += offsets[chra] + chrae += offsets[chra] + chrbs += offsets[chrb] + chrbm += offsets[chrb] + chrbe += offsets[chrb] + + regLRSD = int(chram*yscale) + if regLRS[regLRSD] < LRSa: + regLRS[regLRSD] = LRSa + regLRSD = int(chrbm*yscale) + if regLRS[regLRSD] < LRSb: + regLRS[regLRSD] = LRSb + + if graphtype: + colorIndex = int(LRSFull *250 /LRSFullThresh) + if colorIndex >= 250: + colorIndex = 249 + dcolor = finecolors[colorIndex] + if chra != chrb or ((chrbe - chrae) > 10 and (chrbs - chras) > 10): + c.drawRect(xoffset+chrbs*xscale,yoffset+height-chras*yscale,xoffset+chrbe*xscale,yoffset+height-chrae*yscale,edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0) + else: + c.drawPolygon([(xoffset+chrbs*xscale,yoffset+height-chras*yscale),(xoffset+chrbe*xscale,yoffset+height-chras*yscale),(xoffset+chrbe*xscale,yoffset+height-chrae*yscale)],edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0,closed =1) + else: + c.drawCross(xoffset+chrbm*xscale,yoffset+height-chram*yscale,color=dcolor,size=2) + #draw Marker Regression LRS + if graphtype: + """ + maxLRS = max(regLRS) + pts = [] + i = 0 + for item in regLRS: + pts.append((xoffset+width+35+item*50/maxLRS, yoffset+height-i)) + i += 1 + c.drawPolygon(pts,edgeColor=pid.blue,edgeWidth=1,closed=0) + """ + LRS1Thresh = 16.2 + i = 0 + for item in regLRS: + colorIndex = int(item *250 /LRS1Thresh) + if colorIndex >= 250: + colorIndex = 249 + dcolor = finecolors[colorIndex] + c.drawLine(xoffset+width+35,yoffset+height-i,xoffset+width+55,yoffset+height-i,color=dcolor) + i += 1 + labelFont=pid.Font(ttf="arial",size=20,bold=0) + c.drawString('Single Locus Regression',xoffset+width+90,yoffset+height, font = labelFont,color=pid.dimgray,angle=90) + #draw LRS Interact + rectInfo.sort(webqtlUtil.cmpLRSInteract) + for item in rectInfo: + LRSFull,LRSInteract,LRSa,LRSb,chras,chram,chrae,chrbs,chrbm,chrbe,chra,chrb,flanka,flankb = item + if LRSInteract > 30: + dcolor = pid.red + elif LRSInteract > 20: + dcolor = pid.orange + elif LRSInteract > 10: + dcolor = pid.olivedrab + elif LRSInteract > 0: + dcolor = pid.grey + else: + LRSInteract = 0 + dcolor = pid.grey + chras += offsets[chra] + chram += offsets[chra] + chrae += offsets[chra] + chrbs += offsets[chrb] + chrbm += offsets[chrb] + chrbe += offsets[chrb] + if graphtype: + colorIndex = int(LRSInteract *250 / LRSInteractThresh ) + if colorIndex >= 250: + colorIndex = 249 + dcolor = finecolors[colorIndex] + if chra != chrb or ((chrbe - chrae) > 10 and (chrbs - chras) > 10): + c.drawRect(xoffset+chras*xscale,yoffset+height-chrbs*yscale,xoffset+chrae*xscale,yoffset+height-chrbe*yscale,edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0) + else: + c.drawPolygon([(xoffset+chras*xscale,yoffset+height-chrbs*yscale),(xoffset+chras*xscale,yoffset+height-chrbe*yscale),(xoffset+chrae*xscale,yoffset+height-chrbe*yscale)],edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0,closed =1) + else: + c.drawCross(xoffset+chram*xscale,yoffset+height-chrbm*yscale,color=dcolor,size=2) + #draw chromosomes label + labelFont=pid.Font(ttf="tahoma",size=24,bold=0) + i = 0 + for item in chrsInfo: + strWidth = c.stringWidth(item[1],font=labelFont) + c.drawString(item[1],xoffset+offsets[i]*xscale +(item[0]*xscale-strWidth)/2,canvasHeight -15,font = labelFont,color=pid.dimgray) + c.drawString(item[1],xoffset+offsets[i]*xscale +(item[0]*xscale-strWidth)/2,yoffset-10,font = labelFont,color=pid.dimgray) + c.drawString(item[1],xoffset-strWidth-5,yoffset+height - offsets[i]*yscale -(item[0]*yscale-22)/2,font = labelFont,color=pid.dimgray) + c.drawString(item[1],canvasWidth-xoffset+5,yoffset+height - offsets[i]*yscale -(item[0]*yscale-22)/2,font = labelFont,color=pid.dimgray) + i += 1 + + + c.drawRect(xoffset,yoffset,xoffset+width,yoffset+height) + for item in offsets: + c.drawLine(xoffset,yoffset+height-item*yscale,xoffset+width,yoffset+height-item*yscale) + c.drawLine(xoffset+item*xscale,yoffset,xoffset+item*xscale,yoffset+height) + + #draw pngMap + pngMap = HT.Map(name='pairPlotMap') + #print offsets, len(offsets) + for i in range(len(offsets)-1): + for j in range(len(offsets)-1): + COORDS = "%d,%d,%d,%d" %(xoffset+offsets[i]*xscale, yoffset+height-offsets[j+1]*yscale, xoffset+offsets[i+1]*xscale, yoffset+height-offsets[j]*yscale) + HREF = "javascript:showPairPlot(%d,%d);" % (i,j) + Areas = HT.Area(shape='rect',coords=COORDS,href=HREF) + pngMap.areas.append(Areas) + + #draw spectrum + if graphtype: + i = 0 + labelFont=pid.Font(ttf="tahoma",size=14,bold=0) + middleoffsetX = 180 + for dcolor in finecolors: + if i % 50 == 0: + c.drawLine(xoffset+ width +middleoffsetX-15 , height + yoffset -i, xoffset+ width +middleoffsetX-20,height + yoffset -i, color=pid.black) + c.drawString('%d' % int(LRSInteractThresh*i/250.0),xoffset+ width+ middleoffsetX-40,height + yoffset -i +5, font = labelFont,color=pid.black) + c.drawLine(xoffset+ width +middleoffsetX+15 , height + yoffset -i, xoffset+ width +middleoffsetX+20 ,height + yoffset -i, color=pid.black) + c.drawString('%d' % int(LRSFullThresh*i/250.0),xoffset+ width + middleoffsetX+25,height + yoffset -i +5, font = labelFont,color=pid.black) + c.drawLine(xoffset+ width +middleoffsetX-15 , height + yoffset -i, xoffset+ width +middleoffsetX+15 ,height + yoffset -i, color=dcolor) + i += 1 + + if i % 50 == 0: + i -= 1 + c.drawLine(xoffset+ width +middleoffsetX-15 , height + yoffset -i, xoffset+ width +middleoffsetX-20,height + yoffset -i, color=pid.black) + c.drawString('%d' % ceil(LRSInteractThresh*i/250.0),xoffset+ width + middleoffsetX-40,height + yoffset -i +5, font = labelFont,color=pid.black) + c.drawLine(xoffset+ width +middleoffsetX+15 , height + yoffset -i, xoffset+ width +middleoffsetX+20 ,height + yoffset -i, color=pid.black) + c.drawString('%d' % ceil(LRSFullThresh*i/250.0),xoffset+ width + middleoffsetX+25,height + yoffset -i +5, font = labelFont,color=pid.black) + + labelFont=pid.Font(ttf="verdana",size=20,bold=0) + c.drawString('LRS Interaction',xoffset+ width + middleoffsetX-50,height + yoffset, font = labelFont,color=pid.dimgray,angle=90) + c.drawString('LRS Full',xoffset+ width + middleoffsetX+50,height + yoffset, font = labelFont,color=pid.dimgray,angle=90) + + filename= webqtlUtil.genRandStr("Pair_") + c.save(webqtlConfig.IMGDIR+filename, format='png') + img2=HT.Image('/image/'+filename+'.png',border=0,usemap='#pairPlotMap') + + + form0 = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showPairPlot', submit=HT.Input(type='hidden')) + hddn0 = {'FormID':'pairPlot','Chr_A':'_','Chr_B':'','idata':string.join(map(str, _vals), ','),'istrain':string.join(_strains, ','),'RISet':fd.RISet} + for key in hddn0.keys(): + form0.append(HT.Input(name=key, value=hddn0[key], type='hidden')) + + form0.append(img2, pngMap) + + mainfmName = webqtlUtil.genRandStr("fm_") + txtform = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name=mainfmName, submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':fd.RISet+"Geno",'CellID':'_','RISet':fd.RISet} + #XZ, Aug 11, 2010: The variable traitStrains is not assigned right values before (should not be assigned fd.strainlist). + #hddn['traitStrains'] = string.join(fd.strainlist, ',') + hddn['traitStrains'] = string.join(_strains, ',') + hddn['traitValues'] = string.join(map(str, _vals), ',') + hddn['interval1'] = '' + hddn['interval2'] = '' + if fd.incparentsf1: + hddn['incparentsf1']='ON' + for key in hddn.keys(): + txtform.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + tbl = HT.TableLite(Class="collap", cellspacing=1, cellpadding=5,width=canvasWidth + colorAreaWidth) + + c1 = HT.TD('Interval 1',colspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb") + c2 = HT.TD('Interval 2',colspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb") + c11 = HT.TD('Position',rowspan=2,align="Center", Class="fs13 fwb ffl b1 cw cbrb") + c12 = HT.TD('Flanking Markers',colspan=2,align="Center", Class="fs13 fwb ffl b1 cw cbrb") + c111 = HT.TD('Proximal',align="Center", Class="fs13 fwb ffl b1 cw cbrb") + c112 = HT.TD('Distal',align="Center", Class="fs13 fwb ffl b1 cw cbrb") + + + c3 = HT.TD('LRS Full',rowspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb") + c4 = HT.TD('LRS Additive',rowspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb") + c5 = HT.TD('LRS Interact',rowspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb") + c6 = HT.TD('LRS 1',rowspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb") + c7 = HT.TD('LRS 2',rowspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb") + + + tbl.append(HT.TR(c1,c3,c4,c5,c6,c7,c2)) + + tbl.append(HT.TR(c11,c12,c11,c12)) + tbl.append(HT.TR(c111,c112,c111,c112)) + if not graphsort: #Sort by LRS Full + rectInfo.sort(webqtlUtil.cmpLRSFull) + rectInfoReturned = rectInfo[len(rectInfo) - returnIntervalPairNum:] + rectInfoReturned.reverse() + + for item in rectInfoReturned: + LRSFull,LRSInteract,LRSa,LRSb,chras,chram,chrae,chrbs,chrbm,chrbe,chra,chrb,flanka,flankb = item + LRSAdditive = LRSFull - LRSInteract + flanka1,flanka2 = string.split(flanka) + flankb1,flankb2 = string.split(flankb) + urla1 = HT.Href(text = flanka1, url = "javascript:showTrait('%s','%s');" % (mainfmName, flanka1),Class= "fs12 fwn") + urla2 = HT.Href(text = flanka2, url = "javascript:showTrait('%s','%s');" % (mainfmName, flanka2),Class= "fs12 fwn") + urlb1 = HT.Href(text = flankb1, url = "javascript:showTrait('%s','%s');" % (mainfmName, flankb1),Class= "fs12 fwn") + urlb2 = HT.Href(text = flankb2, url = "javascript:showTrait('%s','%s');" % (mainfmName, flankb2),Class= "fs12 fwn") + urlGenGraph = HT.Href(text = "Plot", url = "javascript:showCateGraph('%s', '%s %s %2.3f', '%s %s %2.3f');" % (mainfmName, flanka1, flanka2, chram, flankb1, flankb2, chrbm),Class= "fs12 fwn") + tr1 = HT.TR( + HT.TD('Chr %s @ %2.1f cM ' % (chrsInfo[chra][1],chram),Class= "fs12 b1 fwn"), + HT.TD(urla1,Class= "fs12 b1 fwn"), + HT.TD(urla2,Class= "fs12 b1 fwn"), + HT.TD('%2.3f ' % LRSFull, urlGenGraph,Class= "fs12 b1 fwn"), + HT.TD('%2.3f' % LRSAdditive,Class= "fs12 b1 fwn"), + HT.TD('%2.3f' % LRSInteract,Class= "fs12 b1 fwn"), + HT.TD('%2.3f' % LRSa,Class= "fs12 b1 fwn"), + HT.TD('%2.3f' % LRSb,Class= "fs12 b1 fwn"), + HT.TD('Chr %s @ %2.1f cM' % (chrsInfo[chrb][1],chrbm),Class= "fs12 b1 fwn"), + HT.TD(urlb1,Class= "fs12 b1 fwn"), + HT.TD(urlb2,Class= "fs12 b1 fwn")) + tbl.append(tr1) + + plotType1 = HT.Input(type="radio", name="plotType", value ="Dot", checked=1) + plotType2 = HT.Input(type="radio", name="plotType", value ="Box") + plotText = HT.Paragraph("Plot Type : ", plotType1, " Dot ", plotType2, " Box", ) + + txtform.append(plotText, tbl) + TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee') + TD_LR.append(main_title,HT.Blockquote(subtitle1, pairIntro, HT.P(), HT.Center(form0,HT.P())),HT.Blockquote(subtitle2, permuIntro,HT.P(), HT.Center(permuTbl)), HT.Blockquote(subtitle3, tblIntro, HT.P(),HT.Center(txtform), HT.P())) + self.dict['body'] = str(TD_LR) + else: + heading = "Direct Plot" + detail = ['Fewer than %d strain data were entered for %s data set. No statitical analysis has been attempted.' % (webqtlConfig.KMININFORMATIVE, fd.RISet)] + self.error(heading=heading,detail=detail) + return + else: + heading = "Direct Plot" + detail = ['Empty data set, please check your data.'] + self.error(heading=heading,detail=detail) + return + diff --git a/web/webqtl/pairScan/PairPlotPage.py b/web/webqtl/pairScan/PairPlotPage.py new file mode 100755 index 00000000..3f72bd74 --- /dev/null +++ b/web/webqtl/pairScan/PairPlotPage.py @@ -0,0 +1,314 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string +import piddle as pid +import os + +from htmlgen import HTMLgen2 as HT +import direct + +from utility import Plot +from base.templatePage import templatePage +from utility import webqtlUtil +from base import webqtlConfig + +######################################### +# PairPlotPage +######################################### +class PairPlotPage(templatePage): + def __init__(self, fd): + + LRSFullThresh = 30 + LRSInteractThresh = 25 + maxPlotSize = 1000 + mainfmName = webqtlUtil.genRandStr("fm_") + + templatePage.__init__(self, fd) + + self.dict['title'] = 'Pair-Scan Plot' + + if not self.openMysql(): + return + + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') + vals = fd.formdata.getvalue('idata') + vals = map(float,string.split(vals,',')) + strains = fd.formdata.getvalue('istrain') + strains = string.split(strains,',') + Chr_A = int(fd.formdata.getvalue('Chr_A')) + Chr_B = int(fd.formdata.getvalue('Chr_B')) + if len(vals) > webqtlConfig.KMININFORMATIVE: + d = direct.exhaust(webqtlConfig.GENODIR, vals, strains, fd.RISet, Chr_A, Chr_B)#XZ, 08/14/2008: add module name webqtlConfig + chrsInfo = d[2] + longerChrLen = max(chrsInfo[Chr_A][0], chrsInfo[Chr_B][0]) + shorterChrlen = min(chrsInfo[Chr_A][0], chrsInfo[Chr_B][0]) + + plotHeight = int(chrsInfo[Chr_B][0]*maxPlotSize/longerChrLen) + plotWidth = int(chrsInfo[Chr_A][0]*maxPlotSize/longerChrLen) + + + xLeftOffset = 200 + xRightOffset = 40 + yTopOffset = 40 + yBottomOffset = 200 + colorAreaWidth = 120 + + canvasHeight = plotHeight + yTopOffset + yBottomOffset + canvasWidth = plotWidth + xLeftOffset + xRightOffset + colorAreaWidth + + + canvas = pid.PILCanvas(size=(canvasWidth,canvasHeight)) + plotScale = plotHeight/chrsInfo[Chr_B][0] + + rectInfo = d[1] + finecolors = Plot.colorSpectrum(250) + finecolors.reverse() + #draw LRS Full + for item in rectInfo: + LRSFull,LRSInteract,LRSa,LRSb,chras,chram,chrae,chrbs,chrbm,chrbe,chra,chrb,flanka,flankb = item + if Chr_A > Chr_B: + colorIndex = int(LRSFull *250 /LRSFullThresh) + else: + colorIndex = int(LRSInteract *250 /LRSInteractThresh) + if colorIndex >= 250: + colorIndex = 249 + elif colorIndex < 0: + colorIndex = 0 + dcolor = finecolors[colorIndex] + if chra != chrb or (abs(chrbe - chrae) > 10 and abs(chrbs - chras) > 10): + canvas.drawRect(xLeftOffset+chras*plotScale,yTopOffset+plotHeight- \ + chrbs*plotScale,xLeftOffset+chrae*plotScale,yTopOffset+plotHeight- \ + chrbe*plotScale,edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0) + elif chrbs >= chras: + canvas.drawPolygon([(xLeftOffset+chras*plotScale,yTopOffset+plotHeight-chrbs*plotScale),\ + (xLeftOffset+chras*plotScale,yTopOffset+plotHeight-chrbe*plotScale),\ + (xLeftOffset+chrae*plotScale,yTopOffset+plotHeight-chrbe*plotScale)],\ + edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0,closed =1) + else: + canvas.drawPolygon([(xLeftOffset+chras*plotScale,yTopOffset+plotHeight-chrbs*plotScale),\ + (xLeftOffset+chrae*plotScale,yTopOffset+plotHeight-chrbs*plotScale), \ + (xLeftOffset+chrae*plotScale,yTopOffset+plotHeight-chrbe*plotScale)], \ + edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0,closed =1) + + labelFont=pid.Font(ttf="verdana",size=24,bold=0) + chrName = "chromosome %s" % chrsInfo[Chr_A][1] + canvas.drawString(chrName,xLeftOffset + (plotWidth - canvas.stringWidth(chrName,font=labelFont))/2,\ + yTopOffset+plotHeight+ 170,font=labelFont) + chrName = "chromosome %s" % chrsInfo[Chr_B][1] + canvas.drawString(chrName, 30, yTopOffset +(canvas.stringWidth(chrName,font=labelFont) + plotHeight)/2,\ + font=labelFont, angle = 90) + if Chr_A == Chr_B: + infoStr = "minimum distance = 10 cM" + infoStrWidth = canvas.stringWidth(infoStr,font=labelFont) + canvas.drawString(infoStr, xLeftOffset + (plotWidth-infoStrWidth*0.707)/2, yTopOffset + \ + (plotHeight+infoStrWidth*0.707)/2,font=labelFont, angle = 45, color=pid.red) + + labelFont=pid.Font(ttf="verdana",size=12,bold=0) + gifmap = HT.Map(name='markerMap') + + lineColor = pid.lightblue + #draw ChrA Loci + ChrAInfo = d[3] + preLpos = -1 + i = 0 + for item in ChrAInfo: + Lname,Lpos = item + if Lpos != preLpos: + i += 1 + preLpos = Lpos + stepA = float(plotWidth)/i + + offsetA = -stepA + LRectWidth = 10 + LRectHeight = 3 + i = 0 + preLpos = -1 + for item in ChrAInfo: + Lname,Lpos = item + if Lpos != preLpos: + offsetA += stepA + differ = 1 + else: + differ = 0 + preLpos = Lpos + Lpos *= plotScale + Zorder = i % 5 + """ + LStrWidth = canvas.stringWidth(Lname,font=labelFont) + canvas.drawString(Lname,xLeftOffset+offsetA+4,yTopOffset+plotHeight+140,\ + font=labelFont,color=pid.blue,angle=90) + canvas.drawLine(xLeftOffset+Lpos,yTopOffset+plotHeight,xLeftOffset+offsetA,\ + yTopOffset+plotHeight+25,color=lineColor) + canvas.drawLine(xLeftOffset+offsetA,yTopOffset+plotHeight+25,xLeftOffset+offsetA,\ + yTopOffset+plotHeight+140-LStrWidth,color=lineColor) + COORDS="%d,%d,%d,%d"%(xLeftOffset+offsetA+4,yTopOffset+plotHeight+140,\ + xLeftOffset+offsetA-6,yTopOffset+plotHeight+140-LStrWidth) + """ + if differ: + canvas.drawLine(xLeftOffset+Lpos,yTopOffset+plotHeight,xLeftOffset+offsetA,\ + yTopOffset+plotHeight+25,color=lineColor) + canvas.drawLine(xLeftOffset+offsetA,yTopOffset+plotHeight+25,xLeftOffset+offsetA,\ + yTopOffset+plotHeight+80+Zorder*(LRectWidth+3),color=lineColor) + rectColor = pid.orange + else: + canvas.drawLine(xLeftOffset+offsetA, yTopOffset+plotHeight+80+Zorder*(LRectWidth+3)-3,\ + xLeftOffset+offsetA, yTopOffset+plotHeight+80+Zorder*(LRectWidth+3),color=lineColor) + rectColor = pid.deeppink + canvas.drawRect(xLeftOffset+offsetA, yTopOffset+plotHeight+80+Zorder*(LRectWidth+3),\ + xLeftOffset+offsetA-LRectHeight,yTopOffset+plotHeight+80+Zorder*(LRectWidth+3)+LRectWidth,\ + edgeColor=rectColor,fillColor=rectColor,edgeWidth = 0) + COORDS="%d,%d,%d,%d"%(xLeftOffset+offsetA, yTopOffset+plotHeight+80+Zorder*(LRectWidth+3),\ + xLeftOffset+offsetA-LRectHeight,yTopOffset+plotHeight+80+Zorder*(LRectWidth+3)+LRectWidth) + HREF="javascript:showTrait('%s','%s');" % (mainfmName, Lname) + Areas=HT.Area(shape='rect',coords=COORDS,href=HREF, title="Locus : " + Lname) + gifmap.areas.append(Areas) + i += 1 + #print (i , offsetA, Lname, Lpos, preLpos) + #print "
      " + + #draw ChrB Loci + ChrBInfo = d[4] + preLpos = -1 + i = 0 + for item in ChrBInfo: + Lname,Lpos = item + if Lpos != preLpos: + i += 1 + preLpos = Lpos + stepB = float(plotHeight)/i + + offsetB = -stepB + LRectWidth = 10 + LRectHeight = 3 + i = 0 + preLpos = -1 + for item in ChrBInfo: + Lname,Lpos = item + if Lpos != preLpos: + offsetB += stepB + differ = 1 + else: + differ = 0 + preLpos = Lpos + Lpos *= plotScale + Zorder = i % 5 + Lname,Lpos = item + Lpos *= plotScale + """ + LStrWidth = canvas.stringWidth(Lname,font=labelFont) + canvas.drawString(Lname, 45,yTopOffset+plotHeight-offsetB+4,font=labelFont,color=pid.blue) + canvas.drawLine(45+LStrWidth,yTopOffset+plotHeight-offsetB,xLeftOffset-25,\ + yTopOffset+plotHeight-offsetB,color=lineColor) + canvas.drawLine(xLeftOffset-25,yTopOffset+plotHeight-offsetB,xLeftOffset,\ + yTopOffset+plotHeight-Lpos,color=lineColor) + COORDS = "%d,%d,%d,%d" %(45,yTopOffset+plotHeight-offsetB+4,45+LStrWidth,\ + yTopOffset+plotHeight-offsetB-6) + """ + if differ: + canvas.drawLine(xLeftOffset,yTopOffset+plotHeight-Lpos, xLeftOffset-25,\ + yTopOffset+plotHeight-offsetB,color=lineColor) + canvas.drawLine(xLeftOffset -25, yTopOffset+plotHeight-offsetB, \ + xLeftOffset-80 -Zorder*(LRectWidth+3),yTopOffset+plotHeight-offsetB, color=lineColor) + rectColor = pid.orange + else: + canvas.drawLine(xLeftOffset -80 -Zorder*(LRectWidth+3)+3, yTopOffset+plotHeight-offsetB, \ + xLeftOffset-80 -Zorder*(LRectWidth+3),yTopOffset+plotHeight-offsetB, color=lineColor) + rectColor = pid.deeppink + HREF = "javascript:showTrait('%s','%s');" % (mainfmName, Lname) + canvas.drawRect(xLeftOffset-80 -Zorder*(LRectWidth+3),yTopOffset+plotHeight-offsetB,\ + xLeftOffset-80 -Zorder*(LRectWidth+3)-LRectWidth,yTopOffset+plotHeight-offsetB +LRectHeight,\ + edgeColor=rectColor,fillColor=rectColor,edgeWidth = 0) + COORDS="%d,%d,%d,%d"%(xLeftOffset-80 -Zorder*(LRectWidth+3),yTopOffset+plotHeight-offsetB,\ + xLeftOffset-80 -Zorder*(LRectWidth+3)-LRectWidth,yTopOffset+plotHeight-offsetB +LRectHeight) + Areas=HT.Area(shape='rect',coords=COORDS,href=HREF, title="Locus : " + Lname) + gifmap.areas.append(Areas) + i += 1 + + canvas.drawRect(xLeftOffset, yTopOffset, xLeftOffset+plotWidth, yTopOffset+plotHeight,edgeColor=pid.black) + + #draw spectrum + i = 0 + labelFont=pid.Font(ttf="tahoma",size=14,bold=0) + middleoffsetX = 80 + for dcolor in finecolors: + canvas.drawLine(xLeftOffset+ plotWidth +middleoffsetX-15 , plotHeight + yTopOffset - i, \ + xLeftOffset+ plotWidth +middleoffsetX+15 , plotHeight + yTopOffset - i, color=dcolor) + if i % 50 == 0: + if Chr_A >= Chr_B: + canvas.drawLine(xLeftOffset+ plotWidth +middleoffsetX+15 ,plotHeight + yTopOffset - i, \ + xLeftOffset+ plotWidth +middleoffsetX+20,plotHeight + yTopOffset - i, color=pid.black) + canvas.drawString('%d' % int(LRSFullThresh*i/250.0),xLeftOffset+ plotWidth +middleoffsetX+22,\ + plotHeight + yTopOffset - i +5, font = labelFont,color=pid.black) + if Chr_A <= Chr_B: + canvas.drawLine(xLeftOffset+ plotWidth +middleoffsetX-15 ,plotHeight + yTopOffset - i, \ + xLeftOffset+ plotWidth +middleoffsetX-20,plotHeight + yTopOffset - i, color=pid.black) + canvas.drawString('%d' % int(LRSInteractThresh*i/250.0),xLeftOffset+plotWidth+middleoffsetX-40,\ + plotHeight + yTopOffset - i +5, font = labelFont,color=pid.black) + i += 1 + #draw spectrum label + labelFont2=pid.Font(ttf="verdana",size=20,bold=0) + if i % 50 == 0: + i -= 1 + if Chr_A >= Chr_B: + canvas.drawLine(xLeftOffset+ plotWidth +middleoffsetX+15 ,plotHeight + yTopOffset - i, \ + xLeftOffset+ plotWidth +middleoffsetX+20,plotHeight + yTopOffset - i, color=pid.black) + canvas.drawString('%d' % int(LRSFullThresh*(i+1)/250.0),xLeftOffset+ plotWidth +middleoffsetX+22,\ + plotHeight + yTopOffset - i +5, font = labelFont,color=pid.black) + canvas.drawString('LRS Full',xLeftOffset+ plotWidth +middleoffsetX+50,plotHeight + yTopOffset, \ + font = labelFont2,color=pid.dimgray,angle=90) + if Chr_A <= Chr_B: + canvas.drawLine(xLeftOffset+ plotWidth +middleoffsetX-15 ,plotHeight + yTopOffset - i, \ + xLeftOffset+ plotWidth +middleoffsetX-20,plotHeight + yTopOffset - i, color=pid.black) + canvas.drawString('%d' % int(LRSInteractThresh*(i+1)/250.0),xLeftOffset+ plotWidth+middleoffsetX-40,\ + plotHeight + yTopOffset - i +5, font = labelFont,color=pid.black) + canvas.drawString('LRS Interaction',xLeftOffset+ plotWidth +middleoffsetX-50,\ + plotHeight + yTopOffset, font = labelFont2,color=pid.dimgray,angle=90) + + filename= webqtlUtil.genRandStr("Pair_") + canvas.save(webqtlConfig.IMGDIR+filename, format='png') + img2=HT.Image('/image/'+filename+'.png',border=0,usemap='#markerMap') + + main_title = HT.Paragraph("Pair-Scan Results: Chromosome Pair") + main_title.__setattr__("class","title") + form = HT.Form(cgi = os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', \ + name=mainfmName, submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':fd.RISet+"Geno",'CellID':'_','RISet':fd.RISet, 'incparentsf1':'on'} + if fd.incparentsf1: + hddn['incparentsf1']='ON' + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + form.append(img2,gifmap) + TD_LR.append(main_title, HT.Center(form), HT.P()) + else: + heading = "Direct Plot" + detail = ['Fewer than %d strain data were entered for %s data set. No statitical analysis has been attempted.'\ + % (webqtlConfig.KMININFORMATIVE, fd.RISet)] + self.error(heading=heading,detail=detail) + return + self.dict['body'] = str(TD_LR) + + diff --git a/web/webqtl/pairScan/__init__.py b/web/webqtl/pairScan/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/pubmedsearch/PubmedSearch.py b/web/webqtl/pubmedsearch/PubmedSearch.py new file mode 100755 index 00000000..8e7b0725 --- /dev/null +++ b/web/webqtl/pubmedsearch/PubmedSearch.py @@ -0,0 +1,58 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#geneWikiPage.py +# +#This one's pretty self-evident from the title. If you use the GeneWiki module, this is what's behind it. -KA + +# Xiaodong changed the dependancy structure + +from htmlgen import HTMLgen2 as HT +import os +import string + +from base.templatePage import templatePage +from base import webqtlConfig +from utility import webqtlUtil + +######################################### +######################################### + +class PubmedSearch(templatePage): + + def __init__(self, fd): + templatePage.__init__(self, fd) + self.content_type = 'text/html' + Heading = HT.Paragraph("pubmed search", Class="title") + Intro = HT.Blockquote("This is a description.") + form = HT.Form(cgi=os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='pubmedsearch', submit=HT.Input(type='hidden')) + form.append(HT.Input(type="text", size = 45, maxlength=100, name="symbol")) + form.append(HT.Input(type="hidden", name="FormID", value="pubmedsearchre")) + form.append(HT.Input(type="submit", name="submit", value="submit", Class="button")) + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee',valign="top") + TD_LR.append(Heading, Intro, HT.Center(form)) + self.dict['body'] = str(TD_LR) + self.dict['title'] = "Pubmed Search" \ No newline at end of file diff --git a/web/webqtl/pubmedsearch/PubmedSearchRe.py b/web/webqtl/pubmedsearch/PubmedSearchRe.py new file mode 100755 index 00000000..fcbfd941 --- /dev/null +++ b/web/webqtl/pubmedsearch/PubmedSearchRe.py @@ -0,0 +1,57 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#geneWikiPage.py +# +#This one's pretty self-evident from the title. If you use the GeneWiki module, this is what's behind it. -KA + +# Xiaodong changed the dependancy structure + +from htmlgen import HTMLgen2 as HT +import os +import string + +from base.templatePage import templatePage +from base import webqtlConfig +from utility import webqtlUtil + +######################################### +######################################### + +class PubmedSearchRe(templatePage): + + def __init__(self, fd): + templatePage.__init__(self, fd) + self.content_type = 'text/html' + Heading = HT.Paragraph("pubmed search", Class="title") + Intro = HT.Blockquote("This is a description.") + + table = HT.TableLite(border=0, cellpadding=0, cellspacing=0) + + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee',valign="top") + TD_LR.append(Heading, Intro, HT.Center(form)) + self.dict['body'] = str(TD_LR) + self.dict['title'] = "Pubmed Search" \ No newline at end of file diff --git a/web/webqtl/pubmedsearch/__init__.py b/web/webqtl/pubmedsearch/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/qtlminer/GeneUtil.py b/web/webqtl/qtlminer/GeneUtil.py new file mode 100755 index 00000000..3ae7f3c0 --- /dev/null +++ b/web/webqtl/qtlminer/GeneUtil.py @@ -0,0 +1,658 @@ +import string +import os + + +from base import webqtlConfig + + +#Just return a list of dictionaries +#each dictionary contains sub-dictionary +def loadGenes(cursor, chrName, diffCol, startMb, endMb, webqtlDb =None, species='mouse'): + #cursor.execute("desc GeneList") + #results = cursor.fetchall() + #fetchFields = map(lambda X:X[0], results) + fetchFields = ['SpeciesId', 'Id', 'GeneSymbol', 'GeneDescription', 'Chromosome', 'TxStart', 'TxEnd', + 'Strand', 'GeneID', 'NM_ID', 'kgID', 'GenBankID', 'UnigenID', 'ProteinID', 'AlignID', + 'exonCount', 'exonStarts', 'exonEnds', 'cdsStart', 'cdsEnd'] + + ##List All Species in the Gene Table + speciesDict = {} + cursor.execute("select Species.Name, GeneList.SpeciesId from Species, GeneList where \ + GeneList.SpeciesId = Species.Id group by GeneList.SpeciesId") + results = cursor.fetchall() + for item in results: + speciesDict[item[0]] = item[1] + + ##List current Species and other Species + speciesId = speciesDict[species] + otherSpecies = map(lambda X: [X, speciesDict[X]], speciesDict.keys()) + otherSpecies.remove([species, speciesId]) + + cursor.execute("""SELECT %s from GeneList + where + SpeciesId = %d AND Chromosome = '%s' AND + ((TxStart > %f and TxStart <= %f) OR (TxEnd > %f and TxEnd <= %f)) + order by txStart + """ + % (string.join(fetchFields, ", "), speciesId, chrName, startMb, endMb, startMb, endMb)) + results = cursor.fetchall() + GeneList = [] + + if results: + for result in results: + newdict = {} + for j, item in enumerate(fetchFields): + newdict[item] = result[j] + #count SNPs if possible + if diffCol and species=='mouse': + cursor.execute(""" + select + count(*) from BXDSnpPosition + where + Chr = '%s' AND Mb >= %2.6f AND Mb < %2.6f AND + StrainId1 = %d AND StrainId2 = %d + """ % (chrName, newdict["TxStart"], newdict["TxEnd"], diffCol[0], diffCol[1])) + newdict["snpCount"] = cursor.fetchone()[0] + newdict["snpDensity"] = newdict["snpCount"]/(newdict["TxEnd"]-newdict["TxStart"])/1000.0 + else: + newdict["snpDensity"] = newdict["snpCount"] = 0 + + try: + newdict['GeneLength'] = 1000.0*(newdict['TxEnd'] - newdict['TxStart']) + except: + pass + + #load gene from other Species by the same name + for item in otherSpecies: + othSpec, othSpecId = item + newdict2 = {} + + cursor.execute("SELECT %s from GeneList where SpeciesId = %d and geneSymbol= '%s' limit 1" % + (string.join(fetchFields, ", "), othSpecId, newdict["GeneSymbol"])) + resultsOther = cursor.fetchone() + if resultsOther: + for j, item in enumerate(fetchFields): + newdict2[item] = resultsOther[j] + + #count SNPs if possible, could be a separate function + if diffCol and othSpec == 'mouse': + cursor.execute(""" + select + count(*) from BXDSnpPosition + where + Chr = '%s' AND Mb >= %2.6f AND Mb < %2.6f AND + StrainId1 = %d AND StrainId2 = %d + """ % (chrName, newdict["TxStart"], newdict["TxEnd"], diffCol[0], diffCol[1])) + + + + newdict2["snpCount"] = cursor.fetchone()[0] + newdict2["snpDensity"] = newdict2["snpCount"]/(newdict2["TxEnd"]-newdict2["TxStart"])/1000.0 + else: + newdict2["snpDensity"] = newdict2["snpCount"] = 0 + + try: + newdict2['GeneLength'] = 1000.0*(newdict2['TxEnd'] - newdict2['TxStart']) + except: + pass + + newdict['%sGene' % othSpec] = newdict2 + + GeneList.append(newdict) + + return GeneList + + + + + + +def loadGenesForQTLminer(cursor, chrName, diffCol, startMb, endMb, webqtlDb =None, species='mouse', databaseA='HC_M2_0606_P', databaseB='HC_M2CB_1205_R', databaseC='Illum_LXS_Hipp_loess0807', str1='C57BL/6J', str2='DBA/2J'): + #cursor.execute("desc GeneList") + #results = cursor.fetchall() + #fetchFields = map(lambda X:X[0], results) + fetchFields = ['SpeciesId', 'Id', 'GeneSymbol', 'GeneDescription', 'Chromosome', 'TxStart', 'TxEnd', + 'Strand', 'GeneID', 'NM_ID', 'kgID', 'GenBankID', 'UnigenID', 'ProteinID', 'AlignID', + 'exonCount', 'exonStarts', 'exonEnds', 'cdsStart', 'cdsEnd'] + + ##List All Species in the Gene Table + speciesDict = {} + cursor.execute("select Species.Name, GeneList.SpeciesId from Species, GeneList where \ + GeneList.SpeciesId = Species.Id group by GeneList.SpeciesId") + results = cursor.fetchall() + for item in results: + speciesDict[item[0]] = item[1] + + +# fpText = open(os.path.join(webqtlConfig.TMPDIR, "strains") + str(j) + '.txt','wb') +# fpText.write("strain: '%d' \n" % thisone ) +# fpText.close() +# strainids.append(thisone) + + + + + ##List current Species and other Species + speciesId = speciesDict[species] + otherSpecies = map(lambda X: [X, speciesDict[X]], speciesDict.keys()) + otherSpecies.remove([species, speciesId]) + + cursor.execute("""SELECT %s from GeneList + where + SpeciesId = %d AND Chromosome = '%s' AND + ((TxStart > %f and TxStart <= %f) OR (TxEnd > %f and TxEnd <= %f)) + order by txStart + """ + % (string.join(fetchFields, ", "), speciesId, chrName, startMb, endMb, startMb, endMb)) + results = cursor.fetchall() + GeneList = [] + + if results: + for result in results: + newdict = {} + for j, item in enumerate(fetchFields): + newdict[item] = result[j] + +## get pathways + + cursor.execute(""" + select + pathway + FROM + kegg.mmuflat + where + gene = '%s' + """ % (newdict["GeneID"]) ) + + resAAA = cursor.fetchall() + if resAAA: + myFields = ['pathways'] + for j, item in enumerate(myFields): + temp = [] + for k in resAAA: + temp.append(k[j]) + newdict["pathways"] = temp + + cursor.execute(""" + select + name + FROM + kegg.mmuflat + where + gene = '%s' + """ % (newdict["GeneID"]) ) + + resAAA = cursor.fetchall() + if resAAA: + myFields = ['pathwaynames'] + for j, item in enumerate(myFields): + temp = [] + for k in resAAA: + temp.append(k[j]) + newdict["pathwaynames"] = temp + +## get GO terms + + cursor.execute(""" + SELECT + distinct go.term.name + FROM go.gene_product + INNER JOIN go.dbxref ON (go.gene_product.dbxref_id=go.dbxref.id) + INNER JOIN go.association ON (go.gene_product.id=go.association.gene_product_id) + INNER JOIN go.term ON (go.association.term_id=go.term.id) + WHERE + go.dbxref.xref_key = (select mgi from go.genemgi where gene='%s' limit 1) + AND + go.dbxref.xref_dbname = 'MGI' + AND + go.term.term_type='biological_process' + """ % (newdict["GeneID"]) ) + + resAAA = cursor.fetchall() + if resAAA: + myFields = ['goterms'] + for j, item in enumerate(myFields): + temp = [] + for k in resAAA: + temp.append(k[j]) + newdict["goterms"] = temp + + + + + + + newdict["snpDensity"] = newdict["snpCount"] = newdict["snpCountall"] = newdict["snpCountmis"] = newdict["snpCountBXD"] = newdict["snpCountmissel"] = 0 + + #count SNPs if possible + if diffCol and species=='mouse': + cursor.execute(""" + select + count(*) from BXDSnpPosition + where + Chr = '%s' AND Mb >= %2.6f AND Mb < %2.6f AND + StrainId1 = %d AND StrainId2 = %d + """ % (chrName, newdict["TxStart"], newdict["TxEnd"], diffCol[0], diffCol[1])) + newdict["snpCount"] = cursor.fetchone()[0] + newdict["snpDensity"] = newdict["snpCount"]/(newdict["TxEnd"]-newdict["TxStart"])/1000.0 + else: + newdict["snpDensity"] = newdict["snpCount"] = 0 + + try: + newdict['GeneLength'] = 1000.0*(newdict['TxEnd'] - newdict['TxStart']) + except: + pass + + + +#self.cursor.execute("SELECT geneSymbol, chromosome, txStart, txEnd from GeneList where SpeciesId= 1 and geneSymbol = %s", opt.geneName) + + + + + ## search with gene name... doesnt matter. it changed to start and end position anyway + ##self.cursor.execute("SELECT geneSymbol, chromosome, txStart, txEnd from GeneList where SpeciesId= 1 and geneSymbol = %s", newdict["GeneSymbol"]) + + + #count SNPs for all strains + cursor.execute(""" + SELECT + distinct SnpAll.Id + from + SnpAll + where + SpeciesId = '1' and SnpAll.Chromosome = '%s' AND + SnpAll.Position >= %2.6f and SnpAll.Position < %2.6f AND + SnpAll.Exon='Y' + """ % (newdict["Chromosome"], newdict["TxStart"], newdict["TxEnd"])) + snpfetch = cursor.fetchall() + newdict["snpCountmis"] = len(snpfetch) + +## # count SNPs for selected strains + + sql = """SELECT + distinct SnpAll.Id, `%s`, `%s` + from + SnpAll, SnpPattern + where + SpeciesId = '1' and SnpAll.Chromosome = '%s' AND + SnpAll.Position >= %2.6f and SnpAll.Position < %2.6f and SnpAll.Id = SnpPattern.SnpId AND + SnpPattern.`%s` != SnpPattern.`%s` AND + SnpAll.Exon='Y' + """ % (str1, str2, newdict["Chromosome"], newdict["TxStart"], newdict["TxEnd"], str1, str2) + cursor.execute(sql) + ressnp = cursor.fetchall() + newdict["snpCountmissel"] = len(ressnp) + newdict["hassnp"] = 'n' + if len(ressnp)>0 : + newdict["hassnp"]= 'y' +## ####################################### NEW NEW NEW + + + + + + + + # count Indels for BXD mice + cursor.execute(""" + SELECT + distinct IndelAll.Name, IndelAll.Chromosome, IndelAll.SourceId, IndelAll.Mb_start, + IndelAll.Mb_end, IndelAll.Strand, IndelAll.Type, IndelAll.Size, IndelAll.InDelSequence, + SnpSource.Name + from + SnpSource, IndelAll + where + IndelAll.SpeciesId = '1' and IndelAll.Chromosome = '%s' AND + IndelAll.Mb_start >= %2.6f and IndelAll.Mb_start < (%2.6f+.0010) AND + SnpSource.Id = IndelAll.SourceId + order by IndelAll.Mb_start + """ % (newdict["Chromosome"], newdict["TxStart"], newdict["TxEnd"])) + + ressnp = cursor.fetchall() + newdict["indelCountBXD"] = len(ressnp) + newdict["hasindel"] = 'n' + newdict["hasexpr"] = 'n' + newdict["hascis"] = 'n' + newdict["score"] = 0 + if len(ressnp)>0 : + newdict["hasindel"]= 'y' + +## # cursor.execute(""" +## # select +## # Name from ProbeSet +## # where +## # GeneId = '%s' AND ChipId=4 limit 1 +## # """ % (newdict["GeneID"])) +## # if species=='mouse': +## # cursor.execute(""" +## # select +## # Name from ProbeSet +## # where +## # GeneId = '%s' AND ChipId=4 +## # """ % (newdict["GeneID"])) +## # results = cursor.fetchall() +## # psets = [] +## # for item in results: +## # psets.append(item) +## # newdict["probeset"] = psets +## # +## # else: +## # newdict["probeset"] = "empty" + + + + + if species=='mouse': + cursor.execute(""" + select + distinct 0, + ProbeSet.Name as TNAME, + round(ProbeSetXRef.Mean,1) as TMEAN, + round(ProbeSetXRef.LRS,1) as TLRS, + ProbeSet.Chr_num as TCHR_NUM, + ProbeSet.Mb as TMB, + ProbeSet.Symbol as TSYMBOL, + ProbeSet.name_num as TNAME_NUM + FROM ProbeSetXRef, ProbeSetFreeze, ProbeSet + where + ( MATCH (ProbeSet.Name,ProbeSet.description,ProbeSet.symbol, + alias,GenbankId,UniGeneId, Probe_Target_Description) + AGAINST ('%s' IN BOOLEAN MODE) ) + and ProbeSet.symbol = '%s' + and ProbeSet.Id = ProbeSetXRef.ProbeSetId + and ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id + and ProbeSetFreeze.Id = (select Id from ProbeSetFreeze where Name='%s' limit 1) + """ % (newdict["GeneSymbol"],newdict["GeneSymbol"],databaseA)) + resA = cursor.fetchall() + + if resA: + myFields = ['dummyA','probesetA','meanA','newlrsA','probesetchrA','probesetmbA','probesetsymbolA','probesetnamenumA'] + +# fpText = open(os.path.join(webqtlConfig.TMPDIR, "res") + '.txt','wb') + #fpText.write("newdictgeneid '%s' \n" % newdict["GeneId"]) + for j, item in enumerate(myFields): + temp = [] + for k in resA: + # fpText.write("j: result: '%s' \n" % k[j]) + temp.append(k[j]) + newdict[item] = temp + # fpText.close() + + + # put probesetcisA here + + cursor.execute(""" + select + distinct 0, + if( (ProbeSet.Chr = Geno.Chr AND ProbeSetXRef.LRS > 10.0000000 and ABS(ProbeSet.Mb-Geno.Mb) < 10.0000000 ) , concat('yes(',round(ProbeSetXRef.LRS,1),')') , 'no') as cis + FROM Geno, ProbeSetXRef, ProbeSetFreeze, ProbeSet + where + ( MATCH (ProbeSet.Name,ProbeSet.description,ProbeSet.symbol, + alias,GenbankId,UniGeneId, Probe_Target_Description) + AGAINST ('%s' IN BOOLEAN MODE) ) + and ProbeSet.symbol = '%s' + and ProbeSet.Id = ProbeSetXRef.ProbeSetId + and Geno.SpeciesId=1 #XZ: I add this line to speed up query + and ProbeSetXRef.Locus = Geno.name + and ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id + and ProbeSetFreeze.Id = (select Id from ProbeSetFreeze where Name='%s' limit 1) + """ % (newdict["GeneSymbol"],newdict["GeneSymbol"],databaseA)) + + resA2 = cursor.fetchall() + if resA2: + myFields = ['dummyA2','probesetcisA'] + for j, item in enumerate(myFields): + temp = [] + for k in resA2: + # fpText.write("j: result: '%s' \n" % k[j]) + temp.append(k[j]) + newdict[item] = temp + else: + newdict['probesetcisA'] = '' + + + + # specially for this dataset only + newdict["hasexpr"] = 'n' + if len(newdict["meanA"])>0: + for mym in newdict["meanA"]: + if mym>8: + newdict["hasexpr"] = 'y' + + # specially for this dataset only + newdict["hascis"] = 'n' + if len(newdict["probesetcisA"])>0: + for mym in newdict["probesetcisA"]: + if mym != 'no': + newdict["hascis"] = 'y' + + else: + myFields = ['dummyA','probesetA,''meanA','newlrsA','probesetchrA','probesetmbA','probesetsymbolA','probesetnamenumA', 'probesetcisA'] + for j, item in enumerate(myFields): + newdict[item] = "--" + + # specially for this dataset only + newdict["hasexpr"] = 'n' + newdict["hascis"] = 'n' + newdict["score"] = 0 + +########################## FOR B + + newdict["score"] = 0 + if newdict["hassnp"] == 'y': + newdict["score"] = newdict["score"] + 1 + if newdict["hasexpr"] == 'y': + newdict["score"] = newdict["score"] + 1 + if newdict["hasindel"] == 'y': + newdict["score"] = newdict["score"] + 1 + if newdict["hascis"] == 'y': + newdict["score"] = newdict["score"] + 1 + + + + if species=='mouse': + cursor.execute(""" + select + distinct 0, + ProbeSet.Name as TNAME, + round(ProbeSetXRef.Mean,1) as TMEAN, + round(ProbeSetXRef.LRS,1) as TLRS, + ProbeSet.Chr_num as TCHR_NUM, + ProbeSet.Mb as TMB, + ProbeSet.Symbol as TSYMBOL, + ProbeSet.name_num as TNAME_NUM + FROM ProbeSetXRef, ProbeSetFreeze, ProbeSet + where + ( MATCH (ProbeSet.Name,ProbeSet.description,ProbeSet.symbol, + alias,GenbankId,UniGeneId, Probe_Target_Description) + AGAINST ('%s' IN BOOLEAN MODE) ) + and ProbeSet.symbol = '%s' + and ProbeSet.Id = ProbeSetXRef.ProbeSetId + and ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id + and ProbeSetFreeze.Id = (select Id from ProbeSetFreeze where Name='%s' limit 1) + """ % (newdict["GeneSymbol"],newdict["GeneSymbol"],databaseB)) + + resB = cursor.fetchall() + if resB: + myFields = ['dummyB','probesetB','meanB','newlrsB','probesetchrB','probesetmbB','probesetsymbolB','probesetnamenumB'] + +# fpText = open(os.path.join(webqtlConfig.TMPDIR, "res") + '.txt','wb') + #fpText.write("newdictgeneid '%s' \n" % newdict["GeneId"]) + for j, item in enumerate(myFields): + temp = [] + for k in resB: + # fpText.write("j: result: '%s' \n" % k[j]) + temp.append(k[j]) + newdict[item] = temp + # fpText.close() + + + # put probesetcisB here + cursor.execute(""" + select + distinct 0, + if( (ProbeSet.Chr = Geno.Chr AND ProbeSetXRef.LRS > 10.0000000 and ABS(ProbeSet.Mb-Geno.Mb) < 10.0000000 ) , concat('yes(',round(ProbeSetXRef.LRS,1),')') , 'no') as cis + FROM Geno, ProbeSetXRef, ProbeSetFreeze, ProbeSet + where + ( MATCH (ProbeSet.Name,ProbeSet.description,ProbeSet.symbol, + alias,GenbankId,UniGeneId, Probe_Target_Description) + AGAINST ('%s' IN BOOLEAN MODE) ) + and ProbeSet.symbol = '%s' + and ProbeSet.Id = ProbeSetXRef.ProbeSetId + and Geno.SpeciesId=1 #XZ: I add this line to speed up query + and ProbeSetXRef.Locus = Geno.name + and ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id + and ProbeSetFreeze.Id = (select Id from ProbeSetFreeze where Name='%s' limit 1) + """ % (newdict["GeneSymbol"],newdict["GeneSymbol"],databaseB)) + + resB2 = cursor.fetchall() + if resB2: + myFields = ['dummyB2','probesetcisB'] + for j, item in enumerate(myFields): + temp = [] + for k in resB2: + # fpText.write("j: result: '%s' \n" % k[j]) + temp.append(k[j]) + newdict[item] = temp + else: + newdict['probesetcisB'] = '' + + + else: + myFields = ['dummyB','probesetB,''meanB','newlrsB','probesetchrB','probesetmbB','probesetsymbolB','probesetnamenumB', 'probesetcisB'] + for j, item in enumerate(myFields): + newdict[item] = "--" + + + +########################## + + +########################## FOR C + + + if species=='mouse': + cursor.execute(""" + select + distinct 0, + ProbeSet.Name as TNAME, + round(ProbeSetXRef.Mean,1) as TMEAN, + round(ProbeSetXRef.LRS,1) as TLRS, + ProbeSet.Chr_num as TCHR_NUM, + ProbeSet.Mb as TMB, + ProbeSet.Symbol as TSYMBOL, + ProbeSet.name_num as TNAME_NUM + FROM ProbeSetXRef, ProbeSetFreeze, ProbeSet + where + ( MATCH (ProbeSet.Name,ProbeSet.description,ProbeSet.symbol, + alias,GenbankId,UniGeneId, Probe_Target_Description) + AGAINST ('%s' IN BOOLEAN MODE) ) + and ProbeSet.symbol = '%s' + and ProbeSet.Id = ProbeSetXRef.ProbeSetId + and ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id + and ProbeSetFreeze.Id = (select Id from ProbeSetFreeze where Name='%s' limit 1) + """ % (newdict["GeneSymbol"],newdict["GeneSymbol"],databaseC)) + + resC = cursor.fetchall() + if resC: + myFields = ['dummyC','probesetC','meanC','newlrsC','probesetchrC','probesetmbC','probesetsymbolC','probesetnamenumC'] + +# fpText = open(os.path.join(webqtlConfig.TMPDIR, "res") + '.txt','wb') + #fpText.write("newdictgeneid '%s' \n" % newdict["GeneId"]) + for j, item in enumerate(myFields): + temp = [] + for k in resC: + # fpText.write("j: result: '%s' \n" % k[j]) + temp.append(k[j]) + newdict[item] = temp + # fpText.close() + + + # put probesetcisC here + cursor.execute(""" + select + distinct 0, + if( (ProbeSet.Chr = Geno.Chr AND ProbeSetXRef.LRS > 10.0000000 and ABS(ProbeSet.Mb-Geno.Mb) < 10.0000000 ) , concat('yes(',round(ProbeSetXRef.LRS,1),')') , 'no') as cis + FROM Geno, ProbeSetXRef, ProbeSetFreeze, ProbeSet + where + ( MATCH (ProbeSet.Name,ProbeSet.description,ProbeSet.symbol, + alias,GenbankId,UniGeneId, Probe_Target_Description) + AGAINST ('%s' IN BOOLEAN MODE) ) + and ProbeSet.symbol = '%s' + and ProbeSet.Id = ProbeSetXRef.ProbeSetId + and Geno.SpeciesId=1 #XZ: I add this line to speed up query + and ProbeSetXRef.Locus = Geno.name + and ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id + and ProbeSetFreeze.Id = (select Id from ProbeSetFreeze where Name='%s' limit 1) + """ % (newdict["GeneSymbol"],newdict["GeneSymbol"],databaseC)) + + resC2 = cursor.fetchall() + if resC2: + myFields = ['dummyC2','probesetcisC'] + for j, item in enumerate(myFields): + temp = [] + for k in resC2: + # fpText.write("j: result: '%s' \n" % k[j]) + temp.append(k[j]) + newdict[item] = temp + else: + newdict['probesetcisC'] = '' + + else: + myFields = ['dummyC','probesetC,''meanC','newlrsC','probesetchrC','probesetmbC','probesetsymbolC','probesetnamenumC', 'probesetcisC'] + for j, item in enumerate(myFields): + newdict[item] = "--" + + + + + + + + + #load gene from other Species by the same name + + + for item in otherSpecies: + othSpec, othSpecId = item + newdict2 = {} + + cursor.execute("SELECT %s from GeneList where SpeciesId = %d and geneSymbol= '%s' limit 1" % + (string.join(fetchFields, ", "), othSpecId, newdict["GeneSymbol"])) + resultsOther = cursor.fetchone() + if resultsOther: + for j, item in enumerate(fetchFields): + newdict2[item] = resultsOther[j] + + #count SNPs if possible, could be a separate function + if diffCol and othSpec == 'mouse': + cursor.execute(""" + select + count(*) from BXDSnpPosition + where + Chr = '%s' AND Mb >= %2.6f AND Mb < %2.6f AND + StrainId1 = %d AND StrainId2 = %d + """ % (chrName, newdict["TxStart"], newdict["TxEnd"], diffCol[0], diffCol[1])) + + + newdict2["snpCount"] = cursor.fetchone()[0] + newdict2["snpDensity"] = newdict2["snpCount"]/(newdict2["TxEnd"]-newdict2["TxStart"])/1000.0 + else: + newdict2["snpDensity"] = newdict2["snpCount"] = 0 + + try: + newdict2['GeneLength'] = 1000.0*(newdict2['TxEnd'] - newdict2['TxStart']) + except: + pass + + newdict['%sGene' % othSpec] = newdict2 + + #newdict['RUDI']='hallo allemaal' + + GeneList.append(newdict) + + + return GeneList + + diff --git a/web/webqtl/qtlminer/QTLminer.py b/web/webqtl/qtlminer/QTLminer.py new file mode 100755 index 00000000..e565cdd7 --- /dev/null +++ b/web/webqtl/qtlminer/QTLminer.py @@ -0,0 +1,1237 @@ +#Note that although this module gets imported a bit, the dict columnNames is never used outside this code. +#Also note that snpBrowser also defines a columnNames dict; it's different. -KA + +from htmlgen import HTMLgen2 as HT +import os +import time +import pyXLWriter as xl + +import GeneUtil +from base.templatePage import templatePage +from utility import webqtlUtil +from base import webqtlConfig + + +_scriptfile = "main.py?FormID=qtlminerresult" + +#A dictionary that lets us map the html form names "txStart_mm6" -> "Mb Start (mm8)" +#the first item is the short name (column headers) and the second item is the long name (dropdown list) +# [short name, long name, category] +columnNames = {"GeneSymbol" : ["Gene", "Gene Name", 'gene'], + "GeneDescription" : ["Description", "Gene Description", 'species'], +# "probeset" : ["ProbeSet", "ProbeSet", 'gene'], +# "probesetsymbolA" : ["ProbeSet Symbol A", "ProbeSetsymbolA", 'gene'], +# "probesetchrA" : ["probesetchrA", "probesetchrA", 'gene'], + "hassnp" : ["Has nsSNP", "Has nsSNP", 'gene'], + "hasindel" : ["Has indel", "Has indel", 'gene'], + "hasexpr" : ["Has expr", "Has expression", 'gene'], + "hascis" : ["Has cis", "Has cis regulation", 'gene'], + "score" : ["Score", "Score", 'gene'], + "meanA" : ["Expression A", "Expression in dataset 1", 'gene'], + "meanB" : ["Expression B", "Expression in dataset 2", 'gene'], + "meanC" : ["Expression C", "Expression in dataset 3", 'gene'], + "probesetcisA" : ["Cis A", "Cis regulation in dataset 1", 'gene'], + "probesetcisB" : ["Cis B", "Cis regulation in dataset 2", 'gene'], + "probesetcisC" : ["Cis C", "Cis regulation in dataset 3", 'gene'], + "probesetA" : ["ProbeSet A", "ProbeSet in dataset 1", 'gene'], + "probesetB" : ["ProbeSet B", "ProbeSet in dataset 2", 'gene'], + "probesetC" : ["ProbeSet C", "ProbeSet in dataset 3", 'gene'], + "goterms" : ["GO biological process", "GO biological process", 'gene'], + "pathways" : ["KEGG PathwayIDs", "KEGG PathwayIDs", 'gene'], + "pathwaynames" : ["KEGG Pathways", "KEGG Pathways", 'gene'], +# "newlrsA" : ["Lrs A", "lrs A", 'gene'], +# "probesetchrB" : ["probesetchrB", "probesetchrB", 'gene'], +# "newlrsB" : ["lrs B", "lrs B", 'gene'], +# "probesetchrC" : ["probesetchrC", "probesetchrC", 'gene'], +# "newlrsC" : ["lrs C", "lrs C", 'gene'], + 'GeneNeighborsCount' : ["Neighbors", "Gene Neighbors", 'gene'], + 'GeneNeighborsRange' : ["Neighborhood", "Gene Neighborhood (Mb)", 'gene'], + 'GeneNeighborsDensity' : ["Gene Density", "Gene Density (Neighbors/Mb)", 'gene'], + "ProteinID" : ["Prot ID", "Protein ID", 'protein'], + "Chromosome" : ["Chr", "Chromosome", 'species'], + "TxStart" : ["Start", "Mb Start", 'species'], + "TxEnd" : ["End", "Mb End", 'species'], + "GeneLength" : ["Length", "Kb Length", 'species'], + "cdsStart" : ["CDS Start", "Mb CDS Start", 'species'], + "cdsEnd" : ["CDS End", "Mb CDS End", 'species'], + "exonCount" : ["Num Exons", "Exon Count", 'species'], + "exonStarts" : ["Exon Starts", "Exon Starts", 'species'], + "exonEnds" : ["Exon Ends", "Exon Ends", 'species'], + "Strand" : ["Strand", "Strand", 'species'], + "GeneID" : ["Gene ID", "Gene ID", 'species'], + "GenBankID" : ["GenBank", "GenBank ID", 'species'], + "UnigenID" : ["Unigen", "Unigen ID", 'species'], + "NM_ID" : ["NM ID", "NM ID", 'species'], + "kgID" : ["kg ID", "kg ID", 'species'], + "snpCountall" : ["SNPs", "SNP Count", 'species'], + "snpCountmis": ["nsSNPs all", "nsSNP Count all strains", 'species'], + "snpCountmissel": ["nsSNPs selected", "nsSNP Count selected strains", 'species'], + "snpDensity" : ["SNP Density", "SNP Density", 'species'], + "indelCountBXD" : ["Indels in BXD mice", "Indel Count in BXD mice", 'species'], + "lrs" : ["LRS", "Likelihood Ratio Statistic", 'misc'], + "lod" : ["LOD", "Likelihood Odds Ratio", 'misc'], + "pearson" : ["Pearson", "Pearson Product Moment", 'misc'], + "literature" : ["Lit Corr", "Literature Correlation", 'misc'], + } + +###Species Freeze +speciesFreeze = {'mouse':'mm9', 'rat':'rn3', 'human':'hg19'} +for key in speciesFreeze.keys(): + speciesFreeze[speciesFreeze[key]] = key + +class QTLminer (templatePage): ### + filename = webqtlUtil.genRandStr("Itan_") + + javascript_content = """ + +""" + def __init__(self, fd): + templatePage.__init__(self, fd) + if not self.openMysql(): + return + + self.species = fd.formdata.getvalue("species", "mouse") + try: + self.startMb = float(fd.formdata.getvalue("startMb")) + except: + self.startMb = 173 + try: + self.endMb = float(fd.formdata.getvalue("endMb")) + except: + self.endMb = self.startMb + 1 + + self.Chr = fd.formdata.getvalue("chromosome", "1") + + + +######################################################### FOR A + ###### species + + self.cursor.execute(""" + Select + Name, Id from Species + Order by + Id + """ ) + res = self.cursor.fetchall() + self.spA = res + self.spAsel = fd.formdata.getvalue("myspeciesA", "mouse") + + if not hasattr(self,"spA"): + self.spA = res2 + self.spAsel = 'mouse' + + ###### group + + self.cursor.execute(""" + select + distinct InbredSet.Name, InbredSet.FullName + from InbredSet, Species, ProbeFreeze, GenoFreeze, PublishFreeze + where + InbredSet.SpeciesId= Species.Id and + Species.Name='%s' and InbredSet.Name != 'BXD300' and + (PublishFreeze.InbredSetId = InbredSet.Id or GenoFreeze.InbredSetId = InbredSet.Id or ProbeFreeze.InbredSetId = InbredSet.Id) + order by + InbredSet.Name + """ % self.spAsel) + + res = self.cursor.fetchall() + + if not hasattr(self,"grA"): + self.grA = res + self.grAsel = 'BXD' + + if fd.formdata.getvalue('submitter') == 'a1': + self.grA = res + self.grAsel = self.grA[0][0] + else: + self.grAsel = fd.formdata.getvalue("groupA","BXD") + + ###### type + + self.cursor.execute(""" + select + distinct Tissue.Name, concat(Tissue.Name, ' mRNA') + from ProbeFreeze, ProbeSetFreeze, InbredSet, Tissue + where + ProbeFreeze.TissueId = Tissue.Id and + ProbeFreeze.InbredSetId = InbredSet.Id and + InbredSet.Name in ('%s') and + ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and + ProbeSetFreeze.public > %d + order by Tissue.Name + """ % (self.grAsel,webqtlConfig.PUBLICTHRESH)) + + res = self.cursor.fetchall() + + if not hasattr(self,"tyA"): + self.tyA = res + self.tyAsel = 'Hippocampus' + + if fd.formdata.getvalue('submitter') in ['a1','a2'] : + self.tyA = res + self.tyAsel = self.tyA[0][0] + else: + self.tyAsel = fd.formdata.getvalue("typeA","Hippocampus") + + ###### database + + self.cursor.execute(""" + select + ProbeSetFreeze.Name, ProbeSetFreeze.FullName + from ProbeSetFreeze, ProbeFreeze, InbredSet, Tissue + where ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and + ProbeFreeze.TissueId = Tissue.Id and + ProbeFreeze.InbredSetId = InbredSet.Id and + InbredSet.Name in ('%s') and Tissue.name = '%s' and + ProbeSetFreeze.public > %d + order by ProbeSetFreeze.CreateTime desc + """ % (self.grAsel,self.tyAsel,webqtlConfig.PUBLICTHRESH)) + + res = self.cursor.fetchall() + + if not hasattr(self,"daA"): + self.daA = res + self.daAsel = 'HC_M2_0606_P' + + if fd.formdata.getvalue('submitter') in ['a1','a2','a3'] : + self.daA = res + self.daAsel = self.daA[0][0] + else: + self.daAsel = fd.formdata.getvalue("databaseA","HC_M2_0606_P") + + +######################################################### FOR B + ###### species + + self.cursor.execute(""" + Select + Name, Id from Species + Order by + Id + """ ) + res = self.cursor.fetchall() + self.spB = res + self.spBsel = fd.formdata.getvalue("myspeciesB", "mouse") + + if not hasattr(self,"spB"): + self.spB = res + self.spBsel = 'mouse' + + ###### group + + self.cursor.execute(""" + select + distinct InbredSet.Name, InbredSet.FullName + from InbredSet, Species, ProbeFreeze, GenoFreeze, PublishFreeze + where + InbredSet.SpeciesId= Species.Id and + Species.Name='%s' and InbredSet.Name != 'BXD300' and + (PublishFreeze.InbredSetId = InbredSet.Id or GenoFreeze.InbredSetId = InbredSet.Id or ProbeFreeze.InbredSetId = InbredSet.Id) + order by + InbredSet.Name + """ % self.spBsel) + + res = self.cursor.fetchall() + + if not hasattr(self,"grB"): + self.grB = res + self.grBsel = 'CXB' + + if fd.formdata.getvalue('submitter') == 'b1': + self.grB = res + self.grBsel = self.grB[0][0] + else: + self.grBsel = fd.formdata.getvalue("groupB","CXB") + + ###### type + + self.cursor.execute(""" + select + distinct Tissue.Name, concat(Tissue.Name, ' mRNA') + from ProbeFreeze, ProbeSetFreeze, InbredSet, Tissue + where + ProbeFreeze.TissueId = Tissue.Id and + ProbeFreeze.InbredSetId = InbredSet.Id and + InbredSet.Name in ('%s') and + ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and + ProbeSetFreeze.public > %d + order by Tissue.Name + """ % (self.grBsel,webqtlConfig.PUBLICTHRESH)) + + res = self.cursor.fetchall() + + if not hasattr(self,"tyB"): + self.tyB = res + self.tyBsel = 'Hippocampus' + + if fd.formdata.getvalue('submitter') in ['b1','b2'] : + self.tyB = res + self.tyBsel = self.tyB[0][0] + else: + self.tyBsel = fd.formdata.getvalue("typeB","Hippocampus") + + ###### database + + self.cursor.execute(""" + select + ProbeSetFreeze.Name, ProbeSetFreeze.FullName + from ProbeSetFreeze, ProbeFreeze, InbredSet, Tissue + where ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and + ProbeFreeze.TissueId = Tissue.Id and + ProbeFreeze.InbredSetId = InbredSet.Id and + InbredSet.Name in ('%s') and Tissue.name = '%s' and + ProbeSetFreeze.public > %d + order by ProbeSetFreeze.CreateTime desc + """ % (self.grBsel,self.tyBsel,webqtlConfig.PUBLICTHRESH)) + + res = self.cursor.fetchall() + + if not hasattr(self,"daB"): + self.daB = res + self.daBsel = 'HC_M2CB_1205_R' + + if fd.formdata.getvalue('submitter') in ['b1','b2','b3'] : + self.daB = res + self.daBsel = self.daB[0][0] + else: + self.daBsel = fd.formdata.getvalue("databaseB","HC_M2CB_1205_R") + + + +######################################################### FOR C + ###### species + + self.cursor.execute(""" + Select + Name, Id from Species + Order by + Id + """ ) + res = self.cursor.fetchall() + self.spC = res + self.spCsel = fd.formdata.getvalue("myspeciesC", "mouse") + + if not hasattr(self,"spC"): + self.spC = res + self.spCsel = 'mouse' + + ###### group + + self.cursor.execute(""" + select + distinct InbredSet.Name, InbredSet.FullName + from InbredSet, Species, ProbeFreeze, GenoFreeze, PublishFreeze + where + InbredSet.SpeciesId= Species.Id and + Species.Name='%s' and InbredSet.Name != 'BXD300' and + (PublishFreeze.InbredSetId = InbredSet.Id or GenoFreeze.InbredSetId = InbredSet.Id or ProbeFreeze.InbredSetId = InbredSet.Id) + order by + InbredSet.Name + """ % self.spCsel) + + res = self.cursor.fetchall() + + if not hasattr(self,"grC"): + self.grC = res + self.grCsel = 'LXS' + + if fd.formdata.getvalue('submitter') == 'c1': + self.grC = res + self.grCsel = self.grC[0][0] + else: + self.grCsel = fd.formdata.getvalue("groupC","LXS") + + ###### type + + self.cursor.execute(""" + select + distinct Tissue.Name, concat(Tissue.Name, ' mRNA') + from ProbeFreeze, ProbeSetFreeze, InbredSet, Tissue + where + ProbeFreeze.TissueId = Tissue.Id and + ProbeFreeze.InbredSetId = InbredSet.Id and + InbredSet.Name in ('%s') and + ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and + ProbeSetFreeze.public > %d + order by Tissue.Name + """ % (self.grCsel,webqtlConfig.PUBLICTHRESH)) + + res = self.cursor.fetchall() + + if not hasattr(self,"tyC"): + self.tyC = res + self.tyCsel = 'Hippocampus' + + if fd.formdata.getvalue('submitter') in ['c1','c2'] : + self.tyC = res + self.tyCsel = self.tyC[0][0] + else: + self.tyCsel = fd.formdata.getvalue("typeC","Hippocampus") + + ###### database + + + self.cursor.execute(""" + select + ProbeSetFreeze.Name, ProbeSetFreeze.FullName + from ProbeSetFreeze, ProbeFreeze, InbredSet, Tissue + where ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and + ProbeFreeze.TissueId = Tissue.Id and + ProbeFreeze.InbredSetId = InbredSet.Id and + InbredSet.Name in ('%s') and Tissue.name = '%s' and + ProbeSetFreeze.public > %d + order by ProbeSetFreeze.CreateTime desc + """ % (self.grCsel,self.tyCsel,webqtlConfig.PUBLICTHRESH)) + + res = self.cursor.fetchall() + + if not hasattr(self,"daC"): + self.daC = res + self.daCsel = 'Illum_LXS_Hipp_loess0807' + + if fd.formdata.getvalue('submitter') in ['c1','c2','c3'] : + self.daC = res + self.daCsel = self.daC[0][0] + else: + self.daCsel = fd.formdata.getvalue("databaseC","Illum_LXS_Hipp_loess0807") + + + + + + + + + + + + + + + +# self.myspeciesA = fd.formdata.getvalue("myspeciesA", "mouse") +# self.groupA = fd.formdata.getvalue("groupA", "BXD") +# self.typeA = fd.formdata.getvalue("typeA", "Spleen") +# self.databaseA = fd.formdata.getvalue("databaseA", "IoP_SPL_RMA_0509")# + +# self.myspeciesB = fd.formdata.getvalue("myspeciesB", "mouse") +# self.groupB = fd.formdata.getvalue("groupB", "BXD") +# self.typeB = fd.formdata.getvalue("typeB", "Spleen") +# self.databaseB = fd.formdata.getvalue("databaseB", "IoP_SPL_RMA_0509") + + self.xls = fd.formdata.getvalue("xls", "1") + try: + s1 = int(fd.formdata.getvalue("s1")) + s2 = int(fd.formdata.getvalue("s2")) + self.diffColDefault = self.diffCol = [s1, s2] + except: + self.diffColDefault = self.diffCol = [] + if self.species != 'mouse': + self.diffColDefault = [2, 3]#default is B6 and D2 for other species + + + + self.str1 = fd.formdata.getvalue("str1", "C57BL/6J") + self.str2 = fd.formdata.getvalue("str2", "DBA/2J") + self.sorton = fd.formdata.getvalue("sorton", "Position") + + controlFrm, dispFields, dispFields2 = self.genControlForm(fd) + ## if not fd.formdata.getvalue('submitter') in ['a1','a2','a3''a4'] : + + self.cursor.execute("""select Id from Strain where Name='%s' + """ % self.str1 ) + strain1 = self.cursor.fetchone()[0] + self.cursor.execute("""select Id from Strain where Name='%s' + """ % self.str2 ) + strain2 = self.cursor.fetchone()[0] + + filename='' + if fd.formdata.getvalue('submitter') in ['refresh'] or not hasattr(self,"daA"): + geneTable, filename = self.genGeneTable(fd, dispFields, strain1, strain2) + + infoTD = HT.TD(width=400, valign= "top") + infoTD.append(HT.Paragraph("QTLminer : Chr %s" % self.Chr, Class="title"), +# HT.Strong("Species : "), self.species.title(), HT.BR(), + +# HT.Strong("myspeciesA : "), self.myspeciesA, HT.BR(), +# HT.Strong("groupA : "), self.groupA, HT.BR(), +# HT.Strong("typeA : "), self.typeA, HT.BR(), +# HT.Strong("databaseA : "), self.databaseA, HT.BR(), + +# HT.Strong("myspeciesB : "), self.myspeciesB, HT.BR(), +# HT.Strong("groupB : "), self.groupB, HT.BR(), +# HT.Strong("typeB : "), self.typeB, HT.BR(), +# HT.Strong("databaseB : "), self.databaseB, HT.BR(), + +# HT.Strong("spAsel : "), self.spAsel, HT.BR(), +# HT.Strong("grAsel : "), self.grAsel, HT.BR(), +# HT.Strong("tyAsel : "), self.tyAsel, HT.BR(), +# HT.Strong("daAsel : "), self.daAsel, HT.BR(), + +# HT.Strong("spBsel : "), self.spBsel, HT.BR(), +# HT.Strong("grBsel : "), self.grBsel, HT.BR(), +# HT.Strong("tyBsel : "), self.tyBsel, HT.BR(), +# HT.Strong("daBsel : "), self.daBsel, HT.BR(), + +# HT.Strong("chr : "), self.Chr, HT.BR(), +# HT.Strong("formdata.submitter :"), fd.formdata.getvalue("submitter"), HT.BR(), +# HT.Strong("formdata.myspeciesA : "), fd.formdata.getvalue("myspeciesA"), HT.BR(), +# HT.Strong("formdata.groupA: "), fd.formdata.getvalue("groupA") , HT.BR(), +# HT.Strong("formdata.myspeciesB : "), fd.formdata.getvalue("myspeciesB"), HT.BR(), +# HT.Strong("formdata.groupB: "), fd.formdata.getvalue("groupB") , HT.BR(), +# HT.Strong("formdata.type: "), fd.formdata.getvalue("type") , HT.BR(), +# HT.Strong("formdata.database: "), fd.formdata.getvalue("database") , HT.BR(), +# HT.Strong("Database : "), "UCSC %s" % speciesFreeze[self.species], HT.BR(), + HT.Strong("Range : "), "%2.6f Mb - %2.6f Mb" % (self.startMb, self.endMb), HT.BR(), + ) + + if filename: + infoTD.append(HT.BR(), HT.BR(), HT.Href(text="Download", url = "/tmp/" + filename, Class="normalsize") + , " output in MS excel format.") + + mainTable = HT.TableLite(HT.TR(infoTD, HT.TD(controlFrm, Class="doubleBorder", width=400), HT.TD(" ", width="")), cellpadding=10) + + if fd.formdata.getvalue('submitter') in ['refresh'] or not hasattr(self,"daA"): + mainTable.append(HT.TR(HT.TD(geneTable, colspan=3))) + + self.dict['body'] = HT.TD(mainTable) + self.dict['title'] = "QTLminer" + + self.cursor.close(); + + def genGeneTable(self, fd, dispFields, strain1, strain2): + + filename = "" + if self.xls: + #import pyXLWriter as xl + filename = "IntAn_Chr%s_%2.6f-%2.6f" % (self.Chr, self.startMb, self.endMb) + filename += ".xls" + + # Create a new Excel workbook + workbook = xl.Writer(os.path.join(webqtlConfig.TMPDIR, filename)) + worksheet = workbook.add_worksheet() + titleStyle = workbook.add_format(align = 'left', bold = 0, size=18, border = 1, border_color="gray") + headingStyle = workbook.add_format(align = 'center', bold = 1, size=13, fg_color = 0x1E, color="white", border = 1, border_color="gray") + + ##Write title Info + worksheet.write([0, 0], "GeneNetwork Interval Analyst Table", titleStyle) + worksheet.write([1, 0], "%s%s" % (webqtlConfig.PORTADDR, os.path.join(webqtlConfig.CGIDIR, _scriptfile))) + # + worksheet.write([2, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime())) + worksheet.write([3, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime())) + worksheet.write([4, 0], "Search by : %s" % fd.remote_ip) + worksheet.write([5, 0], "view region : Chr %s %2.6f - %2.6f Mb" % (self.Chr, self.startMb, self.endMb)) + nTitleRow = 7 + + geneTable = HT.TableLite(Class="collap", cellpadding=5) + headerRow = HT.TR(HT.TD(" ", Class="fs13 fwb ffl b1 cw cbrb", width="1")) + if self.xls: + worksheet.write([nTitleRow, 0], "Index", headingStyle) + + for ncol, column in enumerate(dispFields): + if column[0]=='meanA': + headerRow.append(HT.TD("Expression in" , HT.BR(), self.grAsel, HT.BR(), self.tyAsel, Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1,align="Center")) + if self.xls: + colTitle = columnNames[column[0]][0] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + elif column[0]=='meanB': + headerRow.append(HT.TD("Expression in" , HT.BR(), self.grBsel, HT.BR(), self.tyBsel, Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1,align="Center")) + if self.xls: + colTitle = columnNames[column[0]][0] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + elif column[0]=='meanC': + headerRow.append(HT.TD("Expression in" , HT.BR(), self.grCsel, HT.BR(), self.tyCsel, Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1,align="Center")) + if self.xls: + colTitle = columnNames[column[0]][0] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + elif column[0]=='probesetcisA': + headerRow.append(HT.TD("Cis regulated in" , HT.BR(), self.grAsel, HT.BR(), self.tyAsel, Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1,align="Center")) + if self.xls: + colTitle = columnNames[column[0]][0] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + elif column[0]=='probesetcisB': + headerRow.append(HT.TD("Cis regulated in" , HT.BR(), self.grBsel, HT.BR(), self.tyBsel, Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1,align="Center")) + if self.xls: + colTitle = columnNames[column[0]][0] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + elif column[0]=='probesetcisC': + headerRow.append(HT.TD("Cis regulated in" , HT.BR(), self.grCsel, HT.BR(), self.tyCsel, Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1,align="Center")) + if self.xls: + colTitle = columnNames[column[0]][0] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + elif column[0]=='probesetA': + headerRow.append(HT.TD("Probeset in" , HT.BR(), self.grAsel, HT.BR(), self.tyAsel, Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1,align="Center")) + if self.xls: + colTitle = columnNames[column[0]][0] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + elif column[0]=='probesetB': + headerRow.append(HT.TD("Probeset in" , HT.BR(), self.grBsel, HT.BR(), self.tyBsel, Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1,align="Center")) + if self.xls: + colTitle = columnNames[column[0]][0] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + elif column[0]=='probesetC': + headerRow.append(HT.TD("Probeset in" , HT.BR(), self.grCsel, HT.BR(), self.tyCsel, Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1,align="Center")) + if self.xls: + colTitle = columnNames[column[0]][0] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + elif column[0]=='hasexpr': + headerRow.append(HT.TD("Has expression in" , HT.BR(), self.grAsel, HT.BR(), self.tyAsel, Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1,align="Center")) + if self.xls: + colTitle = columnNames[column[0]][0] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + elif column[0]=='hascis': + headerRow.append(HT.TD("Cis regulated in" , HT.BR(), self.grAsel, HT.BR(), self.tyAsel, Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1,align="Center")) + if self.xls: + colTitle = columnNames[column[0]][0] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + elif column[0]=='snpCountmis': + headerRow.append(HT.TD("nsSNPs" , HT.BR(), "all strains", HT.BR(), " ", Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1,align="Center")) + if self.xls: + colTitle = columnNames[column[0]][0] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + elif column[0]=='snpCountmissel': + headerRow.append(HT.TD("nsSNPs" , HT.BR(), self.str1, " vs", HT.BR(), self.str2, Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1,align="Center")) + if self.xls: + colTitle = columnNames[column[0]][0] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + + + + + elif len(column) == 1: + # header + headerRow.append(HT.TD(columnNames[column[0]][0], Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1,align="Center")) + if self.xls: + colTitle = columnNames[column[0]][0] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + else: + # header + headerRow.append(HT.TD(columnNames[column[0]][0], HT.BR(), " (%s)" % speciesFreeze[column[1]], + Class="fs13 fwb ffl b1 cw cbrb", NOWRAP=1, align="Center")) + if self.xls: + colTitle = columnNames[column[0]][0] + " (%s)" % speciesFreeze[column[1]] + worksheet.write([nTitleRow, ncol+1], colTitle, headingStyle) + worksheet.set_column([ncol+1, ncol+1], 2*len(colTitle)) + #headerRow.append(HT.TD(columnNames[column[0]][0], HT.BR(), + # "(%s %s)" % (column[1].title(), speciesFreeze[column[1]]), + # Class="colorBlue", NOWRAP=1, align="Center")) + geneTable.append(headerRow) + + geneColnul = GeneUtil.loadGenesForQTLminer(self.cursor, self.Chr, self.diffColDefault, self.startMb, self.endMb, species=self.species, databaseA=self.daAsel, databaseB=self.daBsel, databaseC=self.daCsel, str1=self.str1, str2=self.str2) + + # scores = [] + # for gIndex, theGO in enumerate(geneCol): + # keyValue = "" + # fieldName = 'score' + # if theGO.has_key(fieldName): + # keyValue = theGO[fieldName] + # scores.append(keyValue) + + sort_on = "TxStart" + myrev = False + if self.sorton == "Score": + sort_on = "score" + myrev = True + geneColeen = [(dict_[sort_on], dict_) for dict_ in geneColnul] + geneColeen.sort(reverse=myrev) + geneCol = [dict_ for (key, dict_) in geneColeen] + + + + for gIndex, theGO in enumerate(geneCol): + geneRow = HT.TR(HT.TD(gIndex+1, Class="fs12 fwn b1", align="right")) + if self.xls: + nTitleRow += 1 + worksheet.write([nTitleRow, 0], gIndex + 1) + + for ncol, column in enumerate(dispFields): + if len(column) == 1 or column[1]== self.species: + keyValue = "" + fieldName = column[0] + curSpecies = self.species + curGO = theGO + if theGO.has_key(fieldName): + keyValue = theGO[fieldName] + else: + fieldName , othSpec = column + curSpecies = othSpec + subGO = '%sGene' % othSpec + keyValue = "" + curGO = theGO[subGO] + if theGO[subGO].has_key(fieldName): + keyValue = theGO[subGO][fieldName] + + if self.xls: + worksheet.write([nTitleRow, ncol+1], keyValue) + geneRow.append(self.formatTD(keyValue, fieldName, curSpecies, curGO, strain1, strain2)) + + geneTable.append(geneRow) + + if self.xls: + workbook.close() + return geneTable, filename + + def formatTD(self, keyValue, fieldName, Species, theGO, strain1, strain2): + if keyValue is None: + keyValue = "" + if keyValue != "": + if fieldName in ("exonStarts", "exonEnds"): + keyValue = string.replace(keyValue, ',', ' ') + return HT.TD(HT.Span(keyValue, Class="code", Id="green"), width=350, Class="fs12 fwn b1") + elif fieldName in ("GeneDescription"): + if keyValue == "---": + keyValue = "" + return HT.TD(keyValue, Class="fs12 fwn b1", width=300) + elif fieldName in ("GeneSymbol"): + webqtlLink = HT.Href("./%s/%s?cmd=sch&gene=%s&alias=1&species=%s" % (webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE, keyValue, Species), + HT.Image("/images/webqtl_search.gif", border=0, valign="top"), target="_blank") + if theGO['GeneID']: + geneSymbolLink = HT.Href(webqtlConfig.NCBI_LOCUSID % theGO['GeneID'], keyValue, Class="normalsize", target="_blank") + else: + geneSymbolLink = keyValue + return HT.TD(webqtlLink, geneSymbolLink, Class="fs12 fwn b1",NOWRAP=1) + elif fieldName == 'UnigenID': + try: + gurl = HT.Href(webqtlConfig.UNIGEN_ID % tuple(string.split(keyValue,'.')[:2]), keyValue, Class="normalsize", target="_blank") + except: + gurl = keyValue + return HT.TD(gurl, Class="fs12 fwn b1",NOWRAP=1) + elif fieldName in ("exonCount", "Chromosome"): + return HT.TD(keyValue, Class="fs12 fwn b1",align="right") + elif fieldName in ("snpCount"): + return HT.TD(keyValue, Class="fs12 fwn b1",NOWRAP=1) + elif fieldName in ("snpCountmis"): + snpString = HT.Href(url="%s?FormID=SnpBrowserResultPage&submitStatus=1&chr=%s&start=%s&end=%s&domain=Exon&variant=SNP" % (os.path.join(webqtlConfig.CGIDIR, 'main.py'),theGO["Chromosome"], theGO["TxStart"], theGO["TxEnd"] ), text=theGO["snpCountmis"], target="_blank", Class="normalsize") + return HT.TD(snpString, Class="fs12 fwn b1",NOWRAP=1) + elif fieldName in ("snpCountmissel"): + snpString = HT.Href(url="%s?FormID=SnpBrowserResultPage&submitStatus=1&chr=%s&start=%s&end=%s&domain=Exon&variant=SNP&customStrain=1&diffAlleles=1&chosenStrains=%s,%s" % (os.path.join(webqtlConfig.CGIDIR, 'main.py'),theGO["Chromosome"], theGO["TxStart"], theGO["TxEnd"], self.str1, self.str2 ), text=theGO["snpCountmissel"], target="_blank", Class="normalsize") + return HT.TD(snpString, Class="fs12 fwn b1",NOWRAP=1) + + +# if keyValue: +# snpString = HT.Href(url="%s?chr=%s&start=%s&end=%s&geneName=%s&s1=%d&s2=%d" % (os.path.join(webqtlConfig.CGIDIR, 'snpBrowser.py'), theGO["Chromosome"], theGO["TxStart"], theGO["TxEnd"], theGO["GeneSymbol"], self.diffColDefault[0], self.diffColDefault[1]), text=theGO["snpCount"], target="_blank", Class="normalsize") +# else: +# snpString = keyValue +# return HT.TD(snpString, Class="fs12 fwn b1",align="right") + elif fieldName in ("snpDensity", "GeneLength"): + if keyValue: keyValue = "%2.3f" % keyValue + else: keyValue = "" + return HT.TD(keyValue, Class="fs12 fwn b1",align="right") + elif fieldName in ("TxStart", "TxEnd"): + return HT.TD("%2.6f" % keyValue, Class="fs12 fwn b1",align="right") + elif fieldName in ("score"): + return HT.TD("%1d" % keyValue, Class="fs12 fwn b1",align="right") + elif fieldName in ("pathways", "pathwaynames", "goterms"): + html = HT.Paragraph(Class="fs12 fwn b1") + for kk in keyValue: + html.append(kk,HT.BR()) + return HT.TD(html, Class="fs12 fwn b1",align="right",NOWRAP=1) + elif fieldName in ("probesetA", "probesetB", "probesetC"): + html = HT.Paragraph(Class="fs12 fwn b1") + for kk in keyValue: + html.append(kk,HT.BR()) + return HT.TD(html, Class="fs12 fwn b1",align="right") + elif fieldName in ("probesetsymbolA"): + html = HT.Paragraph(Class="fs12 fwn b1") + for kk in keyValue: + html.append(kk,HT.BR()) + return HT.TD(html, Class="fs12 fwn b1",align="right") + elif fieldName in ("meanA", "meanB", "meanC"): + html = HT.Paragraph(Class="fs12 fwn b1") + for kk in keyValue: + html.append(str(round(kk,1)),HT.BR()) + return HT.TD(html, Class="fs12 fwn b1",align="right") + elif fieldName in ("hassnp", "hasindel", "hasexpr","hascis"): + html = HT.Paragraph(Class="fs12 fwn b1") + for kk in keyValue: + html.append(kk,HT.BR()) + return HT.TD(html, Class="fs12 fwn b1",align="right") + elif fieldName in ("newlrsA", "newlrsB", "newlrsC"): + html = HT.Paragraph(Class="fs12 fwn b1") + for kk in keyValue: + html.append(str(round(kk,1)),HT.BR()) + return HT.TD(html, Class="fs12 fwn b1",align="right") + elif fieldName in ("probesetcisA", "probesetcisB", "probesetcisC"): + html = HT.Paragraph(Class="fs12 fwn b1") + for kk in keyValue: + html.append(kk,HT.BR()) +# if kk==0: +# html.append('no',HT.BR()) +# if kk==1: +# html.append('yes',HT.BR()) + return HT.TD(html, Class="fs12 fwn b1",align="right") + else: + return HT.TD(keyValue, Class="fs12 fwn b1",NOWRAP=1) + else: + return HT.TD(keyValue, Class="fs12 fwn b1",NOWRAP=1,align="right") + +# def getStrainNameList(self, strain_data): +# return strain_data[1:] + def getStrainNamePair(self): + strainNamePair=[] + query ='SELECT * FROM SnpPattern limit 1' + self.cursor.execute(query) + num_fields = len(self.cursor.description) + field_names = [i[0] for i in self.cursor.description] + strainsNameList=field_names[1:] + for index, name in enumerate(strainsNameList): + strainNamePair.append((name,name)) + return strainNamePair + + def genControlForm(self, fd): + ##desc GeneList + self.cursor.execute("Desc GeneList") + GeneListFields = self.cursor.fetchall() + GeneListFields = map(lambda X: X[0], GeneListFields) + + #group columns by category--used for creating the dropdown list of possible columns + categories = {} + for item in columnNames.keys(): + category = columnNames[item] + if category[-1] not in categories.keys(): + categories[category[-1]] = [item ] + else: + categories[category[-1]] = categories[category[-1]]+[item] + + ##List All Species in the Gene Table + speciesDict = {} + self.cursor.execute("select Species.Name, GeneList.SpeciesId from Species, GeneList where \ + GeneList.SpeciesId = Species.Id group by GeneList.SpeciesId order by Species.Id") + results = self.cursor.fetchall() + speciesField = categories.pop('species', []) + categoriesOrder = ['gene', 'protein'] + for item in results: + specName, specId = item + categoriesOrder.append(specName) + speciesDict[specName] = specId + AppliedField = [] + for item2 in speciesField: + if item2 in GeneListFields: + self.cursor.execute("select %s from GeneList where SpeciesId = %d and %s is not NULL limit 1 " % (item2, specId, item2)) + columnApply = self.cursor.fetchone() + if not columnApply: + continue + elif specName != 'mouse' and item2 in ('snpCount', 'snpDensity'): + continue + else: + pass + AppliedField.append(item2) + categories[specName] = AppliedField + + categoriesOrder += ['misc'] + + s1_data = self.getStrainNamePair() + self.allStrainNames = s1_data[1:] + + + + ############################################################ + ## Create the list of possible columns for the dropdown list + ############################################################ + allColumnsList = HT.Select(name="allColumns", Class="snpBrowserDropBox")#onChange="addToList(this.form.allColumns.options[this.form.allColumns.selectedIndex].text, this.form.allColumns.options[this.form.allColumns.selectedIndex].value, this.form.columns)") + + for category in categoriesOrder: + allFields = categories[category] + if allFields: + geneOpt = HT.Optgroup(label=category.title()) + for item in allFields: + if category in speciesFreeze.keys(): + geneOpt.append(("%s (%s %s)" % (columnNames[item][1], category.title(), speciesFreeze[category]), + "%s__%s" % (item, speciesFreeze[category]))) + else: + geneOpt.append((columnNames[item][1], item)) + geneOpt.sort() + allColumnsList.append(geneOpt) + + allColumnsList2 = HT.Select(name="allColumns2", Class="snpBrowserDropBox") + for item in self.allStrainNames: + allColumnsList2.append(item) + + ###################################### + ## Create the list of selected columns + ###################################### + + #cols contains the value of all the selected columns + submitCols = cols = fd.formdata.getvalue("columns", "default") + + if cols == "default": + if self.species=="mouse": #these are the same columns that are shown on intervalPage.py + cols = ['GeneSymbol', 'GeneDescription', 'goterms', 'pathwaynames', 'Chromosome', 'TxStart', 'snpCountmis', 'snpCountmissel', 'meanA', 'meanB', 'meanC', 'probesetcisA','probesetcisB','probesetcisC', 'probesetA','probesetB','probesetC', 'indelCountBXD','hassnp','hasindel','hasexpr','hascis','score'] + elif self.species=="rat": + cols = ['GeneSymbol', 'GeneDescription', 'Chromosome', 'TxStart', 'GeneLength', 'Strand', 'GeneID', 'UnigenID'] + else: + #should not happen + cols = [] + else: + if type(cols)==type(""): + cols = [cols] + + colsLst = [] + dispFields = [] + for column in cols: + if submitCols == "default" and column not in ('GeneSymbol') and (column in GeneListFields or column in speciesField): + colsLst.append(("%s (%s %s)" % (columnNames[column][1], self.species.title(), speciesFreeze[self.species]), + "%s__%s" % (column, speciesFreeze[self.species]))) + dispFields.append([column, self.species]) + else: + column2 = column.split("__") + if len(column2) == 1: + colsLst.append((columnNames[column2[0]][1], column)) + dispFields.append([column]) + else: + thisSpecies = speciesFreeze[column2[1]] + colsLst.append(("%s (%s %s)" % (columnNames[column2[0]][1], thisSpecies.title(), column2[1]), + column)) + dispFields.append((column2[0], thisSpecies)) + selectedColumnsList = HT.Select(name="columns", Class="snpBrowserSelectBox", multiple="true", data=colsLst, size=6) + + + + ######### now for the strains!!!!!! + + #cols contains the value of all the selected columns + submitCols2 = cols2 = fd.formdata.getvalue("columns2", "default") + + if cols2 == "default": + if self.species=="mouse": #these are the same columns that are shown on intervalPage.py + cols2 = ['C57BL/6J', 'DBA/2J',] + else: + #should not happen + cols2 = [] + else: + if type(cols2)==type(""): + cols2 = [cols2] + + colsLst2 = [] + dispFields2 = [] + for column2 in cols2: +# if submitCols2 == "default" and (column in GeneListFields or column in speciesField): +# colsLst2.append(("%s (%s %s)" % (columnNames[column][1], self.species.title(), speciesFreeze[self.species]), +# "%s__%s" % (column, speciesFreeze[self.species]))) +# dispFields.append([column, self.species]) +# else: +# column2 = column.split("__") +# if len(column2) == 1: + colsLst2.append((column2, column2)) + dispFields2.append([column2]) + selectedColumnsList2 = HT.Select(name="columns2", Class="snpBrowserSelectBox", multiple="true", data=colsLst2, size=6) + + ######### now for the sorton + + #cols contains the value of all the selected columns + submitCols3 = cols3 = fd.formdata.getvalue("columns3", "default") + + if cols3 == "default": + if self.species=="mouse": #these are the same columns that are shown on intervalPage.py + cols3 = ['Position', 'Score',] + else: + #should not happen + cols3 = [] + else: + if type(cols3)==type(""): + cols3 = [cols3] + + colsLst3 = [] + dispFields3 = [] + for column3 in cols3: + colsLst3.append((column3, column3)) + dispFields3.append([column3]) + selectedColumnsList3 = HT.Select(name="columns3", Class="snpBrowserSelectBox", multiple="true", data=colsLst3, size=6) + + + + + + ########################## + ## Create the columns form + ########################## + columnsForm = HT.Form(name="columnsForm", submit=HT.Input(type='hidden'), cgi=os.path.join(webqtlConfig.CGIDIR, _scriptfile), enctype="multipart/form-data") + columnsForm.append(HT.Input(type="hidden", name="fromdatabase", value= fd.formdata.getvalue("fromdatabase", "unknown"))) + columnsForm.append(HT.Input(type="hidden", name="species", value=self.species)) + columnsForm.append(HT.Input(type="hidden", name="submitter", value="empty")) + if self.diffCol: + columnsForm.append(HT.Input(type="hidden", name="s1", value=self.diffCol[0])) + columnsForm.append(HT.Input(type="hidden", name="s2", value=self.diffCol[1])) + startBox = HT.Input(type="text", name="startMb", value=self.startMb, size=10) + endBox = HT.Input(type="text", name="endMb", value=self.endMb, size=10) + addButton = HT.Input(type="button", name="add", value="Add", Class="button", onClick="addToList(this.form.allColumns.options[this.form.allColumns.selectedIndex].text, this.form.allColumns.options[this.form.allColumns.selectedIndex].value, this.form.columns)") +# addButton2 = HT.Input(type="button", name="add", value="Add", Class="button", onClick="addToList(this.form.allColumns2.options[this.form.allColumns2.selectedIndex].text, this.form.allColumns2.options[this.form.allColumns2.selectedIndex].value, this.form.columns2)") + removeButton = HT.Input(type="button", name="remove", value="Remove", Class="button", onClick="removeFromList(this.form.columns.selectedIndex, this.form.columns)") +# removeButton2 = HT.Input(type="button", name="remove", value="Remove", Class="button", onClick="removeFromList(this.form.columns2.selectedIndex, this.form.columns2)") + upButton = HT.Input(type="button", name="up", value="Up", Class="button", onClick="swapOptions(this.form.columns.selectedIndex, this.form.columns.selectedIndex-1, this.form.columns)") + downButton = HT.Input(type="button", name="down", value="Down", Class="button", onClick="swapOptions(this.form.columns.selectedIndex, this.form.columns.selectedIndex+1, this.form.columns)") + clearButton = HT.Input(type="button", name="clear", value="Clear", Class="button", onClick="deleteAllElements(this.form.columns)") + submitButton = HT.Input(type="submit", value="Analyze QTL interval", Class="button", onClick="Javascript:this.form.submitter.value='refresh';selectAllElements(this.form.columns)") + + + selectChrBox = HT.Select(name="chromosome") + self.cursor.execute(""" + Select + Chr_Length.Name, Length from Chr_Length, Species + where + Chr_Length.SpeciesId = Species.Id AND + Species.Name = '%s' + Order by + Chr_Length.OrderId + """ % self.species) + + results = self.cursor.fetchall() + for chrInfo in results: + selectChrBox.append((chrInfo[0], chrInfo[0])) + selectChrBox.selected.append(self.Chr) + +############################################ 2 strain boxes + + selectstr1 = HT.Select(name="str1") + for item in self.allStrainNames: + selectstr1.append(item[0]) + selectstr1.selected.append(self.str1) + + selectstr2 = HT.Select(name="str2") + for item in self.allStrainNames: + selectstr2.append(item[0]) + selectstr2.selected.append(self.str2) + +############################################ select sort on + + selectsorton = HT.Select(name="sorton") + selectsorton.append('Position') + selectsorton.append('Score') + selectsorton.selected.append('Position') + + +############################################ + selectSpeciesBoxA = HT.Select(name="myspeciesA",onChange="Javascript:this.form.submitter.value='s2';submit();") + for speciesInfo in self.spA: + name = '' + if speciesInfo[0]=='mouse': + name='Mouse' + elif speciesInfo[0]=='rat': + name='Rat' + elif speciesInfo[0]=='arabidopsis': + name='Arabidopsis thaliana' + elif speciesInfo[0]=='human': + name='Human' + elif speciesInfo[0]=='barley': + name='Barley' + elif speciesInfo[0]=='drosophila': + name='Drosophila' + elif speciesInfo[0]=='macaque monkey': + name='Macaque Monkey' + + selectSpeciesBoxA.append((name, speciesInfo[0])) + selectSpeciesBoxA.selected.append(self.spAsel) + + selectGroupBoxA = HT.Select(name="groupA",onChange="Javascript:this.form.submitter.value='a2';submit();") + for groupInfo in self.grA: + selectGroupBoxA.append((groupInfo[1], groupInfo[0])) + selectGroupBoxA.selected.append(self.grAsel) + + selectTypeBoxA = HT.Select(name="typeA",onChange="Javascript:this.form.submitter.value='a3';submit();") + for typeInfo in self.tyA: + selectTypeBoxA.append((typeInfo[0] + ' mRNA', typeInfo[0])) + selectTypeBoxA.selected.append(self.tyAsel) + + selectDatabaseBoxA = HT.Select(name="databaseA",onChange="Javascript:this.form.submitter.value='a4';submit();") + for databaseInfo in self.daA: + selectDatabaseBoxA.append((databaseInfo[1], databaseInfo[0])) + selectDatabaseBoxA.selected.append(self.daAsel) + +############################# +############################################ + selectSpeciesBoxB = HT.Select(name="myspeciesB",onChange="Javascript:this.form.submitter.value='b1';submit();") + for speciesInfo in self.spB: + name = '' + if speciesInfo[0]=='mouse': + name='Mouse' + elif speciesInfo[0]=='rat': + name='Rat' + elif speciesInfo[0]=='arabidopsis': + name='Arabidopsis thaliana' + elif speciesInfo[0]=='human': + name='Human' + elif speciesInfo[0]=='barley': + name='Barley' + elif speciesInfo[0]=='drosophila': + name='Drosophila' + elif speciesInfo[0]=='macaque monkey': + name='Macaque Monkey' + + selectSpeciesBoxB.append((name, speciesInfo[0])) + selectSpeciesBoxB.selected.append(self.spBsel) + + selectGroupBoxB = HT.Select(name="groupB",onChange="Javascript:this.form.submitter.value='b2';submit();") + for groupInfo in self.grB: + selectGroupBoxB.append((groupInfo[1], groupInfo[0])) + selectGroupBoxB.selected.append(self.grBsel) + + selectTypeBoxB = HT.Select(name="typeB",onChange="Javascript:this.form.submitter.value='b3';submit();") + for typeInfo in self.tyB: + selectTypeBoxB.append((typeInfo[0] + ' mRNA', typeInfo[0])) + selectTypeBoxB.selected.append(self.tyBsel) + + selectDatabaseBoxB = HT.Select(name="databaseB",onChange="Javascript:this.form.submitter.value='b4';submit();") + for databaseInfo in self.daB: + selectDatabaseBoxB.append((databaseInfo[1], databaseInfo[0])) + selectDatabaseBoxB.selected.append(self.daBsel) + +############################################ +############################# +############################################ + selectSpeciesBoxC = HT.Select(name="myspeciesC",onChange="Javascript:this.form.submitter.value='c1';submit();") + for speciesInfo in self.spC: + name = '' + if speciesInfo[0]=='mouse': + name='Mouse' + elif speciesInfo[0]=='rat': + name='Rat' + elif speciesInfo[0]=='arabidopsis': + name='Arabidopsis thaliana' + elif speciesInfo[0]=='human': + name='Human' + elif speciesInfo[0]=='barley': + name='Barley' + elif speciesInfo[0]=='drosophila': + name='Drosophila' + elif speciesInfo[0]=='macaque monkey': + name='Macaque Monkey' + + selectSpeciesBoxC.append((name, speciesInfo[0])) + selectSpeciesBoxC.selected.append(self.spCsel) + + selectGroupBoxC = HT.Select(name="groupC",onChange="Javascript:this.form.submitter.value='c2';submit();") + for groupInfo in self.grC: + selectGroupBoxC.append((groupInfo[1], groupInfo[0])) + selectGroupBoxC.selected.append(self.grCsel) + + selectTypeBoxC = HT.Select(name="typeC",onChange="Javascript:this.form.submitter.value='c3';submit();") + for typeInfo in self.tyC: + selectTypeBoxC.append((typeInfo[0] + ' mRNA', typeInfo[0])) + selectTypeBoxC.selected.append(self.tyCsel) + + selectDatabaseBoxC = HT.Select(name="databaseC",onChange="Javascript:this.form.submitter.value='c4';submit();") + for databaseInfo in self.daC: + selectDatabaseBoxC.append((databaseInfo[1], databaseInfo[0])) + selectDatabaseBoxC.selected.append(self.daCsel) + +############################################ + + + + +############################# + + + + + innerColumnsTable = HT.TableLite(border=0, Class="collap", cellpadding = 2) + innerColumnsTable.append(HT.TR(HT.TD(selectedColumnsList)), + HT.TR(HT.TD(clearButton, removeButton, upButton, downButton))) +# innerColumnsTable2 = HT.TableLite(border=0, Class="collap", cellpadding = 2) +# innerColumnsTable2.append(HT.TR(HT.TD(selectedColumnsList2)), +# HT.TR(HT.TD(removeButton2))) + columnsTable = HT.TableLite(border=0, cellpadding=2, cellspacing=0) + columnsTable.append( + HT.TR(HT.TD(HT.Font(" ")), + HT.TD(HT.Strong("Select the QTL interval"))), + HT.TR(HT.TD(HT.Font("Chr: ", size=-1)), + HT.TD(selectChrBox)), + HT.TR(HT.TD(HT.Font("View: ", size=-1)), + HT.TD(startBox, HT.Font("Mb to ", size=-1), endBox, HT.Font("Mb", size=-1))), + HT.TR(HT.TD(HT.Font(" ", size=-1)), + HT.TD(" ")), + HT.TR(HT.TD(HT.Font(" ")), + HT.TD(HT.Strong("Select two mouse strains for inclusion of nsSNP count"))), + HT.TR(HT.TD(HT.Font("Strains: ", size=-1)), + HT.TD(selectstr1,selectstr2)), + HT.TR(HT.TD(HT.Font(" ", size=-1)), + HT.TD(" ")), + HT.TR(HT.TD(HT.Font(" ")), + HT.TD(HT.Strong("Select 3 datasets for inclusion of expression and cis-activity data"))), + HT.TR(HT.TD(HT.Font(" ", size=-1)), + HT.TD(" ")), + HT.TR(HT.TD(" "), + HT.TD(HT.Font("Dataset 1", size=-1))), + HT.TR(HT.TD(HT.Font("Species: ", size=-1)), + HT.TD(selectSpeciesBoxA)), + HT.TR(HT.TD(HT.Font("Group: ", size=-1)), + HT.TD(selectGroupBoxA)), + HT.TR(HT.TD(HT.Font("Type: ", size=-1)), + HT.TD(selectTypeBoxA)), + HT.TR(HT.TD(HT.Font("Database: ", size=-1)), + HT.TD(selectDatabaseBoxA)), + HT.TR(HT.TD(HT.Font(" ", size=-1)), + HT.TD(" ")), + HT.TR(HT.TD(" "), + HT.TD(HT.Font("Dataset 2", size=-1))), + HT.TR(HT.TD(HT.Font("Species: ", size=-1)), + HT.TD(selectSpeciesBoxB)), + HT.TR(HT.TD(HT.Font("Group: ", size=-1)), + HT.TD(selectGroupBoxB)), + HT.TR(HT.TD(HT.Font("Type: ", size=-1)), + HT.TD(selectTypeBoxB)), + HT.TR(HT.TD(HT.Font("Database: ", size=-1)), + HT.TD(selectDatabaseBoxB)), + HT.TR(HT.TD(HT.Font(" ", size=-1)), + HT.TD(" ")), + HT.TR(HT.TD(" "), + HT.TD(HT.Font("Dataset 3", size=-1))), + HT.TR(HT.TD(HT.Font("Species: ", size=-1)), + HT.TD(selectSpeciesBoxC)), + HT.TR(HT.TD(HT.Font("Group: ", size=-1)), + HT.TD(selectGroupBoxC)), + HT.TR(HT.TD(HT.Font("Type: ", size=-1)), + HT.TD(selectTypeBoxC)), + HT.TR(HT.TD(HT.Font("Database: ", size=-1)), + HT.TD(selectDatabaseBoxC)), +# HT.TR(HT.TD(""), +# HT.TD(innerColumnsTable2)), + HT.TR(HT.TD(HT.Font(" ", size=-1)), + HT.TD(" ")), + HT.TR(HT.TD(HT.Font(" ")), + HT.TD(HT.Strong("Optionally, choose additional data to display"))), + HT.TR(HT.TD(HT.Font("Show: ", size=-1)), + HT.TD(allColumnsList, addButton)), + HT.TR(HT.TD(HT.Font("Selected:",size=-1)), + HT.TD(innerColumnsTable)), + HT.TR(HT.TD(HT.Font(" ", size=-1)), + HT.TD(" ")), + HT.TR(HT.TD(HT.Font("Sort by: ", size=-1)), + HT.TD(selectsorton)), + HT.TR(HT.TD(HT.Font(" ", size=-1)), + HT.TD(" ")), + HT.TR(HT.TD(HT.Font(" ", size=-1)), + HT.TD(submitButton)), + + ) + columnsForm.append(columnsTable) + #columnsForm.append(HT.Input(type="hidden", name="sort", value=diffCol), + # HT.Input(type="hidden", name="identification", value=identification), + # HT.Input(type="hidden", name="traitInfo", value=traitInfo)) + + return columnsForm, dispFields, dispFields2 diff --git a/web/webqtl/qtlminer/__init__.py b/web/webqtl/qtlminer/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/schema/ShowCommentPage.py b/web/webqtl/schema/ShowCommentPage.py new file mode 100755 index 00000000..449fd56a --- /dev/null +++ b/web/webqtl/schema/ShowCommentPage.py @@ -0,0 +1,123 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import sys + +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from base import webqtlConfig + + + +class ShowCommentPage(templatePage): + def __init__(self,fd): + sys.stderr = sys.stdout + + templatePage.__init__(self, fd) + + if not self.openMysql(): + #{ + print 'Content-type: text/html\n' + print 'Can not update the comment of %s' %(TableName) + return + #} + + Cursor_Comment = self.cursor + TableName = fd.formdata.getfirst('TableName') + + SqlCmd = 'select Comment from TableComments where TableName=\'%s\'' %(TableName) + Cursor_Comment.execute(SqlCmd) + Comment = Cursor_Comment.fetchall() + if Comment: + Comment = Comment[0][0] + if str(Comment)=='None': + Comment='' + else: + Comment = '' + + ##########setup HtmlForm Comment########## + HtmlInputHidden_TableName = HT.Input(type='hidden', name='TableName', value=TableName) + HtmlInputHidden_ActionID = HT.Input(type='hidden', name='ActionID', value='UpdateComment') + HtmlTextarea_Comment = HT.Textarea(name='Comment', text=Comment, rows=8, cols=100) + + HtmlForm_Comment = HT.Form(cgi=webqtlConfig.CGIDIR+'main.py?FormID=schemaUpdateComment') + HtmlForm_Comment.append('%s

      ' %(TableName)) #show table's name + HtmlForm_Comment.append('Comment:
      ') #show table's comment + HtmlForm_Comment.append(HtmlTextarea_Comment) + HtmlForm_Comment.append('
      ') + HtmlForm_Comment.append(HtmlInputHidden_TableName) + HtmlForm_Comment.append(HtmlInputHidden_ActionID) + + ########################### + #update fields' annotation# + ########################### + HtmlForm_Comment.append('

      ') + + try: + #{ + HtmlTR_Annotation = [] + Cursor_Comment.execute('desc %s' %(TableName)) + TableDesc = Cursor_Comment.fetchall() + for i in range(0, len(TableDesc)): + #{ + TableField = TableName+'.'+str(TableDesc[i][0]) + TableFieldForeignKey = TableField+'ForeignKey' + TableFieldAnnotation = TableField+'Annotation' + HtmlText_ForeignKey = HT.Input(type='text', name=TableFieldForeignKey, size=20) + HtmlText_Annotation = HT.Input(type='text', name=TableFieldAnnotation, size=80) + + + Cursor_Comment.execute('select Annotation, Foreign_Key from TableFieldAnnotation where TableField=%s', (TableField)) + Annotation = Cursor_Comment.fetchone() + if Annotation: + #{ + if str(Annotation[1]) != 'None': + HtmlText_ForeignKey.value=Annotation[1] + if str(Annotation[0]) != 'None': + HtmlText_Annotation.value=Annotation[0].replace('"', '"') + #} + HtmlTD_Annotation = [] + HtmlTD_Annotation.append(TableField) + HtmlTD_Annotation.append(HtmlText_ForeignKey) + HtmlTD_Annotation.append(HtmlText_Annotation) + + HtmlTR_Annotation.append(HtmlTD_Annotation) + #} + + HtmlTable_Annotation= HT.Table(border=0, width='0%', heading=['Field', 'Foreign_Key', 'Annotation'], body = HtmlTR_Annotation) + HtmlForm_Comment.append(HtmlTable_Annotation) + #} + except: + pass + + HtmlForm_Comment.submit.value='submit' + HtmlForm_Comment.reset = HT.Input(type='reset', name='reset', value='reset') + ##########end of HtmlForm########## + + self.dict['body'] = HtmlForm_Comment + + diff --git a/web/webqtl/schema/ShowSchemaPage.py b/web/webqtl/schema/ShowSchemaPage.py new file mode 100755 index 00000000..e9ced5a1 --- /dev/null +++ b/web/webqtl/schema/ShowSchemaPage.py @@ -0,0 +1,194 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import sys + +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from base import webqtlConfig +from utility import webqtlUtil + + + +################################################### +#Description: show the schema of webqtl's database# +#Author: Hongqiang Li # +#Version: 1.0 # +################################################### + +class ShowSchemaPage(templatePage): + def __init__(self,fd): + cookies = fd.cookies + sys.stderr = sys.stdout + templatePage.__init__(self, fd) + body = HT.SimpleDocument() + + ############################################################################### + #get user's privilege from cookie, if the user doesn't have enough privilege, # + #he won't see the update comment icon # + ############################################################################### + ShowUpdateIcon = False + + if not self.openMysql(): + return + + Cursor_WebQtl = Cursor_Comment = self.cursor + + if webqtlConfig.USERDICT[self.privilege] >= webqtlConfig.USERDICT['user']: + ShowUpdateIcon = True + + ################## + #show description# + ################## + body.append('
      ') + body.append('

      ') + body.append('Description of Schema') + if ShowUpdateIcon: + #{ + # Modified by Hongqiang Li + # Image_Update = HT.Image('http://web2qtl.utmem.edu/images/modify.gif') + Image_Update = HT.Image('/images/modify.gif') + # + Href_Update = HT.Href(webqtlConfig.CGIDIR+'main.py?FormID=schemaShowComment&TableName=Description_of_Schema', Image_Update) + body.append(Href_Update) + #} + body.append('

      ') + + Cursor_WebQtl.execute('select Comment from TableComments where TableName=\'Description_of_Schema\'') + Comment = Cursor_WebQtl.fetchone(); + if Comment: + if str(Comment[0])!='None': + body.append(Comment[0]) + + body.append('
      ') + body.append('

      Tables

      ') + + ################## + #show table names# + ################## + Cursor_WebQtl.execute('show tables') + Tables=Cursor_WebQtl.fetchall() + BlockedTables = ['User', 'TableComments', 'TableFieldAnnotation', 'ProbeSetXRef_TEMP', 'DBList', 'DBType', 'HumanGene', 'LCorr', 'Temp', 'TempData'] + for i in range(0, len(Tables)): + #{ + TableName = Tables[i][0] + if TableName in BlockedTables: #skip the table who is blocked + continue + + HrefTable_Schema = HT.Href(webqtlConfig.CGIDIR+'main.py?FormID=schemaShowPage#'+TableName, TableName) + body.append(str(HrefTable_Schema)+'
      ') + #} + body.append('
      ') + + for i in range(0, len(Tables)): + #{ + TableName = Tables[i][0] + if TableName in BlockedTables: #skip the table who is blocked + continue + + ##################### + #get table's comment# + ##################### + SqlCmd = 'select Comment from TableComments where TableName=\'%s\'' %(TableName) + Cursor_WebQtl.execute(SqlCmd) + Comment = Cursor_WebQtl.fetchall() + + #################################### + #get the content of a table's schma# + #################################### + Cursor_WebQtl.execute('desc %s' %(TableName)) + TableDesc = Cursor_WebQtl.fetchall(); + + HtmlTR_Schema = [] + for row in range(0, len(TableDesc)): + #{ + HtmlTD_Schema = [] + for col in range(0, len(TableDesc[row])): + if str(TableDesc[row][col])=='None' or str(TableDesc[row][col])=='': #just means I don't want show 'None' *_^ + HtmlTD_Schema.append(' ') + else: + HtmlTD_Schema.append(TableDesc[row][col]) + + ############################## + #get table fileds' annotation# + ############################## + TableField = TableName+'.'+TableDesc[row][0] + Cursor_WebQtl.execute('select Annotation, Foreign_Key from TableFieldAnnotation where TableField=%s', (TableField)) + Annotation = Cursor_WebQtl.fetchone(); + if Annotation: + #{ + if str(Annotation[1])=='None' or str(Annotation[1])=='': + HtmlTD_Schema.append(' ') + else: + HtmlTD_Schema.append(Annotation[1]) + if str(Annotation[0])=='None' or str(Annotation[0])=='': + HtmlTD_Schema.append(' ') + else: + HtmlTD_Schema.append(Annotation[0]) + #} + else: + #{ + HtmlTD_Schema.append(' ') + HtmlTD_Schema.append(' ') + #} + + HtmlTR_Schema.append(HtmlTD_Schema) + #} + + ############################### + #Html code of a table's schema# + ############################### + body.append(HT.NAME(TableName, TableName)) + if ShowUpdateIcon: + #{ + # Modified by Hongqiang Li + #Image_Update = HT.Image('http://web2qtl.utmem.edu/images/modify.gif') + Image_Update = HT.Image('/images/modify.gif') + # + Href_Update = HT.Href(webqtlConfig.CGIDIR+'main.py?FormID=schemaShowComment&TableName=%s' %(TableName), Image_Update) + body.append(Href_Update) + #} + body.append('

      ') + + body.append('Comment:
      ') + #body.append("") + if Comment: + if str(Comment[0][0])!='None': + for content in Comment[0][0].split('\n'): + body.append(content) + body.append('
      ') + #body.append("
      ") + + HtmlTable_Schema = HT.Table(width='0%', heading=['Field', 'Type', 'Null', 'Key', 'Default', 'Extra', 'Foreign_Key', 'Annotation'], body = HtmlTR_Schema) + body.append(HtmlTable_Schema) + body.append('
      ') + #} + + self.dict['body'] = body + + + diff --git a/web/webqtl/schema/UpdateCommentPage.py b/web/webqtl/schema/UpdateCommentPage.py new file mode 100755 index 00000000..eb1dbb67 --- /dev/null +++ b/web/webqtl/schema/UpdateCommentPage.py @@ -0,0 +1,101 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import sys + +from htmlgen import HTMLgen2 as HT + +from base.templatePage import templatePage +from base import webqtlConfig + + +class UpdateCommentPage(templatePage): + def __init__(self,fd): + sys.stderr = sys.stdout + templatePage.__init__(self, fd) + body = HT.SimpleDocument() + + if not self.updMysql(): + #{ + print 'Content-type: text/html\n' + print 'Can not update the comment of %s' %(TableName) + return + #} + + + Cursor_Comment=self.cursor + TableName = fd.formdata.getfirst('TableName') + Comment = fd.formdata.getfirst('Comment') + + ######################## + #update table's comment# + ######################## + Cursor_Comment.execute('select * from TableComments where TableName=%s', (TableName)) + if Cursor_Comment.fetchall(): + Cursor_Comment.execute('update TableComments set Comment=%s where TableName=%s', (Comment, TableName)) + else: + Cursor_Comment.execute('insert into TableComments values(%s,%s)', (TableName, Comment)) + + + ################################# + #update table fields' annotation# + ################################# + try: + #{ + Cursor_Comment.execute('desc %s' %(TableName)) + TableDesc = Cursor_Comment.fetchall() + for i in range(0, len(TableDesc)): + #{ + TableField = TableName+'.'+str(TableDesc[i][0]) + TableFieldForeignKey = TableField+'ForeignKey' + TableFieldAnnotation = TableField+'Annotation' + + ForeignKey = fd.formdata.getfirst(TableFieldForeignKey) + if ForeignKey == 'None': + ForeignKey='' + Annotation = fd.formdata.getfirst(TableFieldAnnotation) + if Annotation == 'None': + Annotation=' ' + + Cursor_Comment.execute('select * from TableFieldAnnotation where TableField=%s', (TableField)) + if Cursor_Comment.fetchall(): + Cursor_Comment.execute('update TableFieldAnnotation set Foreign_Key=%s, Annotation=%s where TableField=%s', (ForeignKey, Annotation, TableField)) + else: + Cursor_Comment.execute('insert into TableFieldAnnotation values(%s,%s,%s)', (TableField, ForeignKey, Annotation)) + #} + #} + except: + pass + + HtmlHref = HT.Href(webqtlConfig.CGIDIR+'main.py?FormID=schemaShowPage#%s' %(TableName), 'table') + HtmlBlock = HT.Blockquote(); + HtmlBlock.append('This ') + HtmlBlock.append(HtmlHref) + HtmlBlock.append('\'s comment has been succesfully updated') + + body.append(HtmlBlock) + self.dict['body'] = body + diff --git a/web/webqtl/schema/__init__.py b/web/webqtl/schema/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/search/IndexPage.py b/web/webqtl/search/IndexPage.py new file mode 100755 index 00000000..ddea19f4 --- /dev/null +++ b/web/webqtl/search/IndexPage.py @@ -0,0 +1,41 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from base.templatePage import templatePage +from base import indexBody + +######################################### +# IndexPage +######################################### + +class IndexPage(templatePage): + + def __init__(self, fd): + templatePage.__init__(self, fd) + self.dict['title'] = 'GeneNetwork' + self.dict['body'] = indexBody.index_body_string + self.dict['js1'] = '' + self.dict['js2'] = 'onload="javascript:initialDatasetSelection();"' diff --git a/web/webqtl/search/SearchResultPage.py b/web/webqtl/search/SearchResultPage.py new file mode 100644 index 00000000..14d10731 --- /dev/null +++ b/web/webqtl/search/SearchResultPage.py @@ -0,0 +1,1237 @@ +import string +import os +import cPickle +import re +from math import * +import time +import pyXLWriter as xl +import pp +import math +import datetime + +from htmlgen import HTMLgen2 as HT + +from base import webqtlConfig +from utility.THCell import THCell +from utility.TDCell import TDCell +from base.webqtlDataset import webqtlDataset +from base.webqtlTrait import webqtlTrait +from base.templatePage import templatePage +from utility import webqtlUtil +from dbFunction import webqtlDatabaseFunction + +import logging +logging.basicConfig(filename="/tmp/gn_log", level=logging.INFO) +_log = logging.getLogger("search") + +class SearchResultPage(templatePage): + + maxReturn = 3000 +# NPerPage = 100 + nkeywords = 0 + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + self.dict['title'] = 'Search Results' + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee',valign="top") + self.database = fd.formdata.getfirst('database', '') + if not self.database or self.database == 'spacer': + #Error, No database selected + heading = "Search Result" + detail = ['''No database was selected for this search, please + go back and SELECT at least one database.'''] + self.error(heading=heading,detail=detail,error="No Database Selected") + return + elif type(self.database) == type(""): + #convert database into a database list + #was used for multiple databases search, this + #feature has been abandoned, + self.database = string.split(self.database,',') + else: + pass + + ########################################### + # Names and IDs of RISet / F2 set + ########################################### + if self.database == ['_allPublish']: + self.cursor.execute("""select PublishFreeze.Name, InbredSet.Name, InbredSet.Id from PublishFreeze, + InbredSet where PublishFreeze.Name not like 'BXD300%' and InbredSet.Id = + PublishFreeze.InbredSetId""") + results = self.cursor.fetchall() + self.database = map(lambda x: webqtlDataset(x[0], self.cursor), results) + self.databaseCrosses = map(lambda x: x[1], results) + self.databaseCrossIds = map(lambda x: x[2], results) + self.singleCross = False + else: + self.database = map(lambda x: webqtlDataset(x, self.cursor), self.database) + #currently, webqtl wouldn't allow multiple crosses + #for other than multiple publish db search + #so we can use the first database as example + if self.database[0].type=="Publish": + pass + elif self.database[0].type in ("Geno", "ProbeSet"): + + #userExist = None + + for individualDB in self.database: + self.cursor.execute('SELECT Id, Name, FullName, confidentiality, AuthorisedUsers FROM %sFreeze WHERE Name = "%s"' % (self.database[0].type, individualDB)) + indId, indName, indFullName, confidential, AuthorisedUsers = self.cursor.fetchall()[0] + + if confidential == 1: + access_to_confidential_dataset = 0 + + #for the dataset that confidentiality is 1 + #1. 'admin' and 'root' can see all of the dataset + #2. 'user' can see the dataset that AuthorisedUsers contains his id(stored in the Id field of User table) + if webqtlConfig.USERDICT[self.privilege] > webqtlConfig.USERDICT['user']: + access_to_confidential_dataset = 1 + else: + AuthorisedUsersList=AuthorisedUsers.split(',') + if AuthorisedUsersList.__contains__(self.userName): + access_to_confidential_dataset = 1 + + if not access_to_confidential_dataset: + #Error, No database selected + heading = "Search Result" + detail = ["The %s database you selected is not open to the public at this time, please go back and SELECT other database." % indFullName] + self.error(heading=heading,detail=detail,error="Confidential Database") + return + else: + heading = "Search Result" + detail = ['''The database has not been established yet, please + go back and SELECT at least one database.'''] + self.error(heading=heading,detail=detail,error="No Database Selected") + return + + self.database[0].getRISet() + self.databaseCrosses = [self.database[0].riset] + self.databaseCrossIds = [self.database[0].risetid] + self.singleCross = True + #XZ, August 24,2010: Since self.singleCross = True, it's safe to assign one species Id. + self.speciesId = webqtlDatabaseFunction.retrieveSpeciesId(self.cursor, self.database[0].riset) + + ########################################### + # make sure search from same type of databases + ########################################### + dbTypes = map(lambda X: X.type, self.database) + self.dbType = dbTypes[0] + for item in dbTypes: + if item != self.dbType: + heading = "Search Result" + detail = ["Search can only be performed among the same type of databases"] + self.error(heading=heading,detail=detail,error="Error") + return + if self.dbType == "Publish": + self.searchField = ['Phenotype.Post_publication_description', 'Phenotype.Pre_publication_description', 'Phenotype.Pre_publication_abbreviation', 'Phenotype.Post_publication_abbreviation', 'Phenotype.Lab_code', 'Publication.PubMed_ID', 'Publication.Abstract', 'Publication.Title', 'Publication.Authors', 'PublishXRef.Id'] + + elif self.dbType == "ProbeSet": + self.searchField = ['Name','Description','Probe_Target_Description','Symbol','Alias','GenbankId', 'UniGeneId','RefSeq_TranscriptId'] + elif self.dbType == "Geno": + self.searchField = ['Name','Chr'] + + ########################################### + # Search Options + ########################################### + self.matchwhole = fd.formdata.getfirst('matchwhole') + #split result into pages + self.pageNumber = fd.formdata.getfirst('pageno', '0') + try: + self.pageNumber = int(self.pageNumber) + except: + self.pageNumber = 0 + + + ########################################### + # Generate Mysql Query + ########################################### + geneIdListQuery = fd.formdata.getfirst('geneId', '') + if geneIdListQuery: + geneIdListQuery = string.replace(geneIdListQuery, ",", " ") + geneIdListQuery = " geneId=%s" % string.join(string.split(geneIdListQuery), "-") + + self.ANDkeyword = fd.formdata.getfirst('ANDkeyword', "") + self.ORkeyword = fd.formdata.getfirst('ORkeyword', "") + + self.ORkeyword += geneIdListQuery + + self.ANDkeyword = self.ANDkeyword.replace("\\", "").strip() + self.ORkeyword = self.ORkeyword.replace("\\", "").strip() + #user defined sort option + self.orderByUserInput = fd.formdata.getfirst('orderByUserInput', "").strip() + #default sort option if user have not defined + self.orderByDefalut = "" + + #XZ, Dec/16/2010: I add examples to help understand this block of code. See details in function pattersearch. + + #XZ: self._1mPattern examples: WIKI=xxx, RIF=xxx, GO:0045202 + self._1mPattern = re.compile('\s*(\S+)\s*[:=]\s*([a-zA-Z-\+\d\.]+)\s*') + + #XZ: self._2mPattern examples: Mean=(15.0 16.0), Range=(10 100), LRS=(Low_LRS_limit, High_LRS_limit), pvalue=(Low_limit, High_limit), Range=(10 100) + self._2mPattern = re.compile('\s*(\S+)\s*[=in]{1,2}\s*\(\s*([-\d\.]+)[, \t]+([-\d\.]+)[, \t]*([-\d\.]*)\s*\)') + + #XZ: self._3mPattern examples: Position=(Chr1 98 104), Pos=(Chr1 98 104), Mb=(Chr1 98 104), CisLRS=(Low_LRS_limit, High_LRS_limit, Mb_buffer), TransLRS=(Low_LRS_limit, High_LRS_limit, Mb_buffer) + self._3mPattern = re.compile('\s*(\S+)\s*[=in]{1,2}\s*\(\s*[Cc][Hh][Rr]([^, \t]+)[, \t]+([-\d\.]+)[, \t]+([-\d\.]+)\s*\)') + + #XZ: self._5mPattern examples: LRS=(Low_LRS_limit, High_LRS_limit, ChrNN, Mb_Low_Limit, Mb_High_Limit) + self._5mPattern = re.compile('\s*(\S+)\s*[=in]{1,2}\s*\(\s*([-\d\.]+)[, \t]+([-\d\.]+)[, \t]+[Cc][Hh][Rr]([^, \t]+)[, \t]+([-\d\.]+)[, \t]+([-\d\.]+)\s*\)') + + #Error, No keyword input + if not (self.ORkeyword or self.ANDkeyword): + heading = "Search Result" + detail = ["Please make sure to enter either your search terms (genes, traits, markers), or advanced search commands."] + self.error(heading=heading,detail=detail,error="No search terms were entered") + return + + #query clauses + self.ANDQuery = [] + self.ORQuery = [] + #descriptions, one for OR search, one for AND search + self.ANDDescriptionText = [] + self.ORDescriptionText = [] + + if not self.normalSearch(): + return + if not self.patternSearch(): + return + if not self.assembleQuery(): + return + self.nresults = self.executeQuery() + + if len(self.database) > 1: + dbUrl = "Multiple phenotype databases" + dbUrlLink = " were" + else: + dbUrl = self.database[0].genHTML() + dbUrlLink = " was" + + SearchText = HT.Blockquote('GeneNetwork searched the ', dbUrl, ' for all records ') + if self.ORkeyword2: + NNN = len(self.ORkeyword2) + if NNN > 1: + SearchText.append(' that match the terms ') + else: + SearchText.append(' that match the term ') + for j, term in enumerate(self.ORkeyword2): + SearchText.append(HT.U(term)) + if NNN > 1 and j < NNN-2: + SearchText.append(", ") + elif j == NNN-2: + SearchText.append(", or ") + else: + pass + if self.ORDescriptionText: + if self.ORkeyword2: + SearchText.append("; ") + else: + SearchText.append(" ") + for j, item in enumerate(self.ORDescriptionText): + SearchText.append(item) + if j < len(self.ORDescriptionText) -1: + SearchText.append(";") + + if (self.ORkeyword2 or self.ORDescriptionText) and (self.ANDkeyword2 or self.ANDDescriptionText): + SearchText.append("; ") + if self.ANDkeyword2: + if (self.ORkeyword2 or self.ORDescriptionText): + SearchText.append(' records') + NNN = len(self.ANDkeyword2) + if NNN > 1: + SearchText.append(' that match the terms ') + else: + SearchText.append(' that match the term ') + for j, term in enumerate(self.ANDkeyword2): + SearchText.append(HT.U(term)) + if NNN > 1 and j < NNN-2: + SearchText.append(", ") + elif j == NNN-2: + SearchText.append(", and ") + else: + pass + if self.ANDDescriptionText: + if self.ANDkeyword2: + SearchText.append(" and ") + else: + SearchText.append(" ") + for j, item in enumerate(self.ANDDescriptionText): + SearchText.append(item) + if j < len(self.ANDDescriptionText) -1: + SearchText.append(" and ") + + SearchText.append(". ") + if self.nresults == 0: + heading = "Search Result" + detail = ["Sorry, GeneNetwork did not find any records matching your request. Please check the syntax or try the ANY rather than the ALL field."] + self.error(heading=heading,intro = SearchText.contents,detail=detail,error="Not Found") + return + elif self.nresults == 1: + SearchText.append(HT.P(), 'GeneNetwork found one record that matches your request. To study this record, click on its text below. To add this record to your Selection window, use the checkbox and then click the ', HT.Strong('Add to Collection'),' button. ') + elif self.nresults >= 1 and self.nresults <= self.maxReturn: + SearchText.append(HT.P(), 'GeneNetwork found a total of ', HT.Span(self.nresults, Class='fwb cr'), ' records. To study any one of these records, click on its ID below. To add one or more records to your Selection window, use the checkbox and then click the ' , HT.Strong('Add to Collection'),' button. ') + else: + SearchText.append(' A total of ',HT.Span(self.nresults, Class='fwb cr'), ' records were found.') + heading = "Search Result" + # Modified by Hongqiang Li + # detail = ["The terms you entered match %d records. Please modify your search to generate %d or fewer matches, or review " % (self.nresults, self.maxReturn), HT.Href(text='Search Help', target='_blank', url='http://web2qtl.utmem.edu/searchHelp.html', Class='fs14'), " to learn more about syntax and the use of wildcard characters."] + detail = ["The terms you entered match %d records. Please modify your search to generate %d or fewer matches, or review " % (self.nresults, self.maxReturn), HT.Href(text='Search Help', target='_blank', url='%s/searchHelp.html' % webqtlConfig.PORTADDR, Class='fs14'), " to learn more about syntax and the use of wildcard characters."] + # + self.error(heading=heading,intro = SearchText.contents,detail=detail,error="Over %d" % self.maxReturn) + return + + + TD_LR.append(HT.Paragraph('Search Results', Class="title"), SearchText) + self.genSearchResultTable(TD_LR) + self.dict['body'] = str(TD_LR) + self.dict['js1'] = '' + self.dict['js2'] = 'onLoad="pageOffset()"' + self.dict['layer'] = self.generateWarningLayer() + + def genSearchResultTable(self, TD_LR): + + pageTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="100%",border=0) + + lastone = False + for i, item in enumerate(self.results): + if not item: + continue + lastone = False + + traitList = [] + for k, item2 in enumerate(item): + j, ProbeSetID = item2[:2] + thisTrait = webqtlTrait(db=self.database[j], name=ProbeSetID, cursor=self.cursor) + traitList.append(thisTrait) + + ############## + # Excel file # + ############## + filename= webqtlUtil.genRandStr("Search_") + xlsUrl = HT.Input(type='button', value = 'Download Table', onClick= "location.href='/tmp/%s.xls'" % filename, Class='button') + # Create a new Excel workbook + workbook = xl.Writer('%s.xls' % (webqtlConfig.TMPDIR+filename)) + headingStyle = workbook.add_format(align = 'center', bold = 1, border = 1, size=13, fg_color = 0x1E, color="white") + + #XZ, 3/18/2010: pay attention to the line number of header in this file. As of today, there are 7 lines. + worksheet = self.createExcelFileWithTitleAndFooter(workbook=workbook, db=thisTrait.db, returnNumber=len(traitList)) + newrow = 7 + + tbl = HT.TableLite(cellSpacing=2,cellPadding=0,width="90%",border=0) + #seq = self.pageNumber*self.NPerPage+1 //Edited out because we show all results in one page now - Zach 2/22/11 + seq = 1 + RISet = self.databaseCrosses[i] + thisFormName = 'showDatabase'+RISet + selectall = HT.Href(url="#", onClick="checkAll(document.getElementsByName('%s')[0]);" % thisFormName) + selectall_img = HT.Image("/images/select_all2_final.jpg", name="selectall", alt="Select All", title="Select All", style="border:none;") + selectall.append(selectall_img) + reset = HT.Href(url="#", onClick="checkNone(document.getElementsByName('%s')[0]);" % thisFormName) + reset_img = HT.Image("/images/select_none2_final.jpg", alt="Select None", title="Select None", style="border:none;") + reset.append(reset_img) + selectinvert = HT.Href(url="#", onClick="checkInvert(document.getElementsByName('%s')[0]);" % thisFormName) + selectinvert_img = HT.Image("/images/invert_selection2_final.jpg", name="selectinvert", alt="Invert Selection", title="Invert Selection", style="border:none;") + selectinvert.append(selectinvert_img) + addselect = HT.Href(url="#") + addselect_img = HT.Image("/images/add_collection1_final.jpg", name="addselect", alt="Add To Collection", title="Add To Collection", style="border:none;") + addselect.append(addselect_img) + + optionsTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="20%",border=0) + optionsRow = HT.TR(HT.TD(selectall, width="25%"), HT.TD(reset, width="25%"), HT.TD(selectinvert, width="25%"), HT.TD(addselect, width="25%")) + labelsRow = HT.TR(HT.TD(" "*2,"Select", width="25%"), HT.TD(" ","Deselect", width="255"), HT.TD(" "*3,"Invert", width="25%"), HT.TD(" "*4,"Add", width="25%")) + optionsTable.append(optionsRow, labelsRow) + + pageTable.append(HT.TR(HT.TD(optionsTable)), HT.TR(HT.TD(xlsUrl, height=40))) + + tblobj = {} + mainfmName = thisFormName + species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=RISet) + + if thisTrait.db.type=="Geno": + tblobj['header'] = self.getTableHeaderForGeno(worksheet=worksheet, newrow=newrow, headingStyle=headingStyle) + + newrow += 1 + + sortby = self.getSortByValue(datasetType="Geno") + + tblobj['body'] = self.getTableBodyForGeno(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow) + + workbook.close() + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + + div = HT.Div(webqtlUtil.genTableObj(tblobj, filename, sortby), Id="sortable") + + pageTable.append(HT.TR(HT.TD(div))) + + elif thisTrait.db.type=="Publish": + tblobj['header'] = self.getTableHeaderForPublish(worksheet=worksheet, newrow=newrow, headingStyle=headingStyle) + + newrow += 1 + + sortby = self.getSortByValue(datasetType="Publish") + + tblobj['body'] = self.getTableBodyForPublish(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, species=species) + + workbook.close() + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + + div = HT.Div(webqtlUtil.genTableObj(tblobj, filename, sortby), Id="sortable") + + pageTable.append(HT.TR(HT.TD(div))) + + elif thisTrait.db.type=="ProbeSet": + tblobj['header'] = self.getTableHeaderForProbeSet(worksheet=worksheet, newrow=newrow, headingStyle=headingStyle) + + newrow += 1 + + sortby = self.getSortByValue(datasetType="ProbeSet") + + tblobj['body'] = self.getTableBodyForProbeSet(traitList=traitList, formName=mainfmName, worksheet=worksheet, newrow=newrow, species=species) + + workbook.close() + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + + div = HT.Div(webqtlUtil.genTableObj(tblobj, filename, sortby), Id="sortable") + + pageTable.append(HT.TR(HT.TD(div))) + + + traitForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name=thisFormName, submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':'_','CellID':'_','RISet':RISet} + hddn['incparentsf1']='ON' + for key in hddn.keys(): + traitForm.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + traitForm.append(HT.P(),pageTable) + + TD_LR.append(traitForm) + if len(self.results) > 1 and i < len(self.results) - 1: + lastone = True + if lastone: + TD_LR.contents.pop() + + def executeQuery(self): + + ##construct sorting + if self.dbType == "Publish": + sortQuery = " order by Publication_PubMed_ID desc, Phenotype_Name, thistable" + elif self.dbType == "Geno": + if not self.orderByUserInput: + if self.orderByDefalut: + self.orderByUserInput = self.orderByDefalut + else: + self.orderByUserInput = "POSITION" + if self.orderByUserInput.upper() in ["POS", "POSITION", "MB"]: + self.orderByUserInput = "POSITION" + else: + pass + self.orderByUserInput = self.orderByUserInput.upper() + self.orderByUserInputOrig = self.orderByUserInput[:] + if self.orderByUserInput == "NAME": + sortQuery = " order by Geno_Name, Geno_chr_num, Geno_Mb" + elif self.orderByUserInput == "SOURCE": + sortQuery = " order by Geno_Source2, Geno_chr_num, Geno_Mb" + else: + sortQuery = " order by Geno_chr_num, Geno_Mb" + #ProbeSet + else: + if not self.orderByUserInput: + if self.orderByDefalut: + self.orderByUserInput = self.orderByDefalut + else: + self.orderByUserInput = "POSITION" + + self.orderByUserInput = self.orderByUserInput.upper() + self.orderByUserInputOrig = self.orderByUserInput[:] + #XZ: 8/18/2009: "POSITION-" + if self.orderByUserInput[-1] == '-': + self.orderByUserInput = self.orderByUserInput[:-1] + sortDesc = 'desc' + else: + sortDesc = '' + + if self.orderByUserInput in ["MEAN", "LRS", "PVALUE"]: + #sortQuery = " order by T%s %s, TNAME, thistable desc" % (self.orderByUserInput, sortDesc) + sortQuery = " order by T%s desc, TNAME, thistable desc" % self.orderByUserInput + elif self.orderByUserInput in ["POS", "POSITION", "MB"]: + sortQuery = " order by TCHR_NUM %s, TMB %s, TNAME, thistable desc" % (sortDesc, sortDesc) + elif self.orderByUserInput == 'SYMBOL': + sortQuery = " order by TSYMBOL, thistable desc" + else: + sortQuery = " order by TNAME_NUM, thistable desc" + + if self.singleCross: + if len(self.query) > 1: + searchQuery = map(lambda X:'(%s)' % X, self.query) + searchQuery = string.join(searchQuery, ' UNION ALL ') + else: + searchQuery = self.query[0] + searchQuery += sortQuery + #searchCountQuery retrieve all the results + searchCountQuery = [searchQuery] + #searchQuery = searchQuery + " limit %d,%d" % (self.pageNumber*self.NPerPage, self.NPerPage) // We removed the page limit - Zach 2/22/11 + searchQuery = [searchQuery] + else: + searchCountQuery = searchQuery = map(lambda X: X+sortQuery, self.query) + + allResults = [] + self.results = [] + for item in searchCountQuery: + start_time = datetime.datetime.now() + _log.info("Executing query: %s"%(item)) + self.cursor.execute(item) + allResults.append(self.cursor.fetchall()) + end_time = datetime.datetime.now() + _log.info("Total time: %s"%(end_time-start_time)) + + _log.info("Done executing queries") + + + #searchCountQuery retrieve all the results, for counting use only + if searchCountQuery != searchQuery: + for item in searchQuery: + self.cursor.execute(item) + self.results.append(self.cursor.fetchall()) + else: + self.results = allResults + + nresults = reduce(lambda Y,X:len(X)+Y, allResults, 0) + return nresults + + + + def assembleQuery(self): + self.query = [] + if self.ANDQuery or self.ORQuery: + clause = self.ORQuery[:] + + for j, database in enumerate(self.database): + if self.ANDQuery: + clause.append(" (%s) " % string.join(self.ANDQuery, " AND ")) + + newclause = [] + + for item in clause: + ##need to retrieve additional field which won't be used + ##in the future, for sorting purpose only + if self.dbType == "Publish": + if item.find("Geno.name") < 0: + incGenoTbl = "" + else: + incGenoTbl = " Geno, " + newclause.append("SELECT %d, PublishXRef.Id, PublishFreeze.createtime as thistable, Publication.PubMed_ID as Publication_PubMed_ID, Phenotype.Post_publication_description as Phenotype_Name FROM %s PublishFreeze, Publication, PublishXRef, Phenotype WHERE PublishXRef.InbredSetId = %d and %s and PublishXRef.PhenotypeId = Phenotype.Id and PublishXRef.PublicationId = Publication.Id and PublishFreeze.Id = %d" % (j, incGenoTbl, self.databaseCrossIds[j], item, database.id)) + elif self.dbType == "ProbeSet": + if item.find("GOgene") < 0: + incGoTbl = "" + else: + incGoTbl = " ,db_GeneOntology.term as GOterm, db_GeneOntology.association as GOassociation, db_GeneOntology.gene_product as GOgene_product " + if item.find("Geno.name") < 0: + incGenoTbl = "" + else: + incGenoTbl = " Geno, " + if item.find("GeneRIF_BASIC.") < 0: + incGeneRIFTbl = "" + else: + incGeneRIFTbl = " GeneRIF_BASIC, " + if item.find("GeneRIF.") < 0: + incGeneRIFTbl += "" + else: + incGeneRIFTbl += " GeneRIF, " + newclause.append("""SELECT distinct %d, ProbeSet.Name as TNAME, 0 as thistable, + ProbeSetXRef.Mean as TMEAN, ProbeSetXRef.LRS as TLRS, ProbeSetXRef.PVALUE as TPVALUE, + ProbeSet.Chr_num as TCHR_NUM, ProbeSet.Mb as TMB, ProbeSet.Symbol as TSYMBOL, + ProbeSet.name_num as TNAME_NUM FROM %s%s ProbeSetXRef, ProbeSet %s + WHERE %s and ProbeSet.Id = ProbeSetXRef.ProbeSetId and ProbeSetXRef.ProbeSetFreezeId = %d + """ % (j, incGeneRIFTbl, incGenoTbl, incGoTbl, item, database.id)) + elif self.dbType == "Geno": + newclause.append("SELECT %d, Geno.Name, GenoFreeze.createtime as thistable, Geno.Name as Geno_Name, Geno.Source2 as Geno_Source2, Geno.chr_num as Geno_chr_num, Geno.Mb as Geno_Mb FROM GenoXRef, GenoFreeze, Geno WHERE %s and Geno.Id = GenoXRef.GenoId and GenoXRef.GenoFreezeId = GenoFreeze.Id and GenoFreeze.Id = %d"% (j, item, database.id)) + else: + pass + + searchQuery = map(lambda X:'(%s)' % X, newclause) + searchQuery = string.join(searchQuery, ' UNION ') + self.query.append(searchQuery) + return 1 + else: + heading = "Search Result" + detail = ["No keyword was entered for this search, please go back and enter your keyword."] + self.error(heading=heading,detail=detail,error="No Keyword") + return 0 + + + + def normalSearch(self): + self.ANDkeyword2 = re.sub(self._1mPattern, '', self.ANDkeyword) + self.ANDkeyword2 = re.sub(self._2mPattern, '', self.ANDkeyword2) + self.ANDkeyword2 = re.sub(self._3mPattern, '', self.ANDkeyword2) + self.ANDkeyword2 = re.sub(self._5mPattern, '', self.ANDkeyword2) + ##remove remain parethesis, could be input with syntax error + self.ANDkeyword2 = re.sub(re.compile('\s*\([\s\S]*\)'), '', self.ANDkeyword2) + self.ANDkeyword2 = self.encregexp(self.ANDkeyword2) + + self.ORkeyword2 = re.sub(self._1mPattern, '', self.ORkeyword) + self.ORkeyword2 = re.sub(self._2mPattern, '', self.ORkeyword2) + self.ORkeyword2 = re.sub(self._3mPattern, '', self.ORkeyword2) + self.ORkeyword2 = re.sub(self._5mPattern, '', self.ORkeyword2) + ##remove remain parethesis, could be input with syntax error + self.ORkeyword2 = re.sub(re.compile('\s*\([\s\S]*\)'), '', self.ORkeyword2) + self.ORkeyword2 = self.encregexp(self.ORkeyword2) + + if self.ORkeyword2 or self.ANDkeyword2: + ANDFulltext = [] + ORFulltext = [] + for k, item in enumerate(self.ORkeyword2 + self.ANDkeyword2): + self.nkeywords += 1 + if k >=len(self.ORkeyword2): + query = self.ANDQuery + DescriptionText = self.ANDDescriptionText + clausejoin = ' OR ' + fulltext = ANDFulltext + else: + query = self.ORQuery + DescriptionText = self.ORDescriptionText + clausejoin = ' OR ' + fulltext = ORFulltext + + if self.dbType == "ProbeSet" and item.find('.') < 0 and item.find('\'') < 0: + fulltext.append(item) + else: + if self.matchwhole and item.find("'") < 0: + item = "[[:<:]]"+ item+"[[:>:]]" + clause2 = [] + for field in self.searchField: + if self.dbType == "Publish": + clause2.append("%s REGEXP \"%s\"" % (field,item)) + else: + clause2.append("%s REGEXP \"%s\"" % ("%s.%s" % (self.dbType,field),item)) + clauseItem = "(%s)" % string.join(clause2, clausejoin) + query.append(" (%s) " % clauseItem) + if ANDFulltext: + clauseItem = " MATCH (ProbeSet.Name,ProbeSet.description,ProbeSet.symbol,alias,GenbankId, UniGeneId, Probe_Target_Description) AGAINST ('+%s' IN BOOLEAN MODE) " % string.join(ANDFulltext, " +") + self.ANDQuery.append(" (%s) " % clauseItem) + if ORFulltext: + clauseItem = " MATCH (ProbeSet.Name,ProbeSet.description,ProbeSet.symbol,alias,GenbankId, UniGeneId, Probe_Target_Description) AGAINST ('%s' IN BOOLEAN MODE) " % string.join(ORFulltext, " ") + self.ORQuery.append(" (%s) " % clauseItem) + else: + pass + return 1 + + + + def encregexp(self,str): + if not str: + return [] + else: + wildcardkeyword = str.strip() + wildcardkeyword = string.replace(wildcardkeyword,',',' ') + wildcardkeyword = string.replace(wildcardkeyword,';',' ') + wildcardkeyword = wildcardkeyword.split() + NNN = len(wildcardkeyword) + for i in range(NNN): + keyword = wildcardkeyword[i] + keyword = string.replace(keyword,"*",".*") + keyword = string.replace(keyword,"?",".") + wildcardkeyword[i] = keyword#'[[:<:]]'+ keyword+'[[:>:]]' + return wildcardkeyword + + + + def patternSearch(self): + # Lei Yan + ##Process Inputs + m1_AND = self._1mPattern.findall(self.ANDkeyword) + m2_AND = self._2mPattern.findall(self.ANDkeyword) + m3_AND = self._3mPattern.findall(self.ANDkeyword) + m5_AND = self._5mPattern.findall(self.ANDkeyword) + m1_OR = self._1mPattern.findall(self.ORkeyword) + m2_OR = self._2mPattern.findall(self.ORkeyword) + m3_OR = self._3mPattern.findall(self.ORkeyword) + m5_OR = self._5mPattern.findall(self.ORkeyword) + + #pattern search + if m1_AND or m1_OR or m2_AND or m2_OR or m3_AND or m3_OR or m5_AND or m5_OR: + + self.orderByDefalut = 'PROBESETID' + + _1Cmds = map(string.upper, map(lambda x:x[0], m1_AND + m1_OR)) + _2Cmds = map(string.upper, map(lambda x:x[0], m2_AND + m2_OR)) + _3Cmds = map(string.upper, map(lambda x:x[0], m3_AND + m3_OR)) + _5Cmds = map(string.upper, map(lambda x:x[0], m5_AND + m5_OR)) + + self.nkeywords += len(_1Cmds) + len(_2Cmds) + len(_3Cmds) + + if self.dbType == "Publish" and \ + ( (_2Cmds and reduce(lambda x, y: (y not in ["LRS"]) or x, _2Cmds, False))\ + or (_5Cmds and reduce(lambda x, y: (y not in ["LRS"]) or x, _5Cmds, False)) ): + heading = "Search Result" + detail = ["Pattern search is not available for phenotype databases at this time."] + self.error(heading=heading,detail=detail,error="Error") + return 0 + elif self.dbType == "ProbeSet" and \ + ((_2Cmds and reduce(lambda x, y: (y not in ["MEAN", "LRS", "PVALUE", "TRANSLRS", "CISLRS", "RANGE", "H2"]) or x, _2Cmds, False))\ + or (_3Cmds and reduce(lambda x, y: (y not in ["POS", "POSITION", "MB"]) or x, _3Cmds, False))\ + or (_5Cmds and reduce(lambda x, y: (y not in ["LRS"]) or x, _5Cmds, False))\ + or (_1Cmds and reduce(lambda x, y: (y not in ["FLAG", "STRAND_PROBE", "STRAND_GENE", "GO", "WIKI", "RIF", "GENEID"]) or x, _1Cmds, False))): + heading = "Search Result" + detail = ["You entered at least one incorrect search command."] + self.error(heading=heading,detail=detail,error="Error") + return 0 + elif self.dbType == "Geno" and (_1Cmds or _2Cmds or _5Cmds or (_3Cmds and reduce(lambda x, y: (y not in ["POS", "POSITION", "MB"]) or x, _3Cmds, False)) ): + heading = "Search Result" + detail = ["You entered at least one incorrect search command."] + self.error(heading=heading,detail=detail,error="Error") + return 0 + else: + for k, item in enumerate(m1_OR+m1_AND): + if k >=len(m1_OR): + query = self.ANDQuery + DescriptionText = self.ANDDescriptionText + else: + query = self.ORQuery + DescriptionText = self.ORDescriptionText + + if item[1] == '-': + strandName = 'minus' + elif item[1] == '+': + strandName = 'plus' + else: + strandName = item[1] + + if item[0].upper() in ("FLAG"): + clauseItem = " %s.%s = %s " % (self.dbType, item[0], item[1]) + DescriptionText.append(HT.Span(' with ', HT.U('FLAG'), ' equal to ', item[1])) + elif item[0].upper() in ("WIKI"): + clauseItem = " %s.symbol = GeneRIF.symbol and GeneRIF.versionId=0 and GeneRIF.display>0 and (GeneRIF.comment REGEXP \"%s\" or GeneRIF.initial = \"%s\") " % (self.dbType, "[[:<:]]"+ item[1]+"[[:>:]]", item[1]) + DescriptionText.append(HT.Span(' with GeneWiki contains ', HT.U(item[1]))) + elif item[0].upper() in ("RIF"): + clauseItem = " %s.symbol = GeneRIF_BASIC.symbol and MATCH (GeneRIF_BASIC.comment) AGAINST ('+%s' IN BOOLEAN MODE) " % (self.dbType, item[1]) + DescriptionText.append(HT.Span(' with GeneRIF contains ', HT.U(item[1]))) + elif item[0].upper() in ("GENEID"): + clauseItem = " %s.GeneId in ( %s ) " % (self.dbType, string.replace(item[1], '-', ', ')) + DescriptionText.append(HT.Span(' with Entrez Gene ID in ', HT.U(string.replace(item[1], '-', ', ')))) + elif item[0].upper() in ("GO"): + Field = 'GOterm.acc' + Id = 'GO:'+('0000000'+item[1])[-7:] + Statements = '%s.symbol=GOgene_product.symbol and GOassociation.gene_product_id=GOgene_product.id and GOterm.id=GOassociation.term_id' % (self.dbType); + clauseItem = " %s = '%s' and %s " % (Field, Id, Statements) + #self.incGoTbl = " ,db_GeneOntology.term as GOterm, db_GeneOntology.association as GOassociation, db_GeneOntology.gene_product as GOgene_product " + DescriptionText.append(HT.Span(' with ', HT.U('GO'), ' ID equal to ', Id)) + else: + clauseItem = " %s.%s = '%s' " % (self.dbType, item[0], item[1]) + if item[0].upper() in ["STRAND_PROBE"]: + DescriptionText.append(' with probe on the %s strand' % strandName) + elif item[0].upper() in ["STRAND_GENE"]: + DescriptionText.append(' with gene on the %s strand' % strandName) + else: + pass + query.append(" (%s) " % clauseItem) + + for k, item in enumerate(m2_OR+m2_AND): + if k >=len(m2_OR): + query = self.ANDQuery + DescriptionText = self.ANDDescriptionText + else: + query = self.ORQuery + DescriptionText = self.ORDescriptionText + + itemCmd = item[0] + lowerLimit = float(item[1]) + upperLimit = float(item[2]) + + if itemCmd.upper() in ("TRANSLRS", "CISLRS"): + if item[3]: + mthresh = float(item[3]) + clauseItem = " %sXRef.LRS > %2.7f and %sXRef.LRS < %2.7f " % \ + (self.dbType, min(lowerLimit, upperLimit), self.dbType, max(lowerLimit, upperLimit)) + if itemCmd.upper() == "CISLRS": + clauseItem += """ and %sXRef.Locus = Geno.name and Geno.SpeciesId = %s and %s.Chr = Geno.Chr and ABS(%s.Mb-Geno.Mb) < %2.7f """ % (self.dbType, self.speciesId, self.dbType, self.dbType, mthresh) + DescriptionText.append(HT.Span(' with a ', HT.U('cis-QTL'), ' having an LRS between %g and %g using a %g Mb exclusion buffer' % (min(lowerLimit, upperLimit), max(lowerLimit, upperLimit), mthresh))) + else: + clauseItem += """ and %sXRef.Locus = Geno.name and Geno.SpeciesId = %s and (%s.Chr != Geno.Chr or (%s.Chr != Geno.Chr and ABS(%s.Mb-Geno.Mb) > %2.7f)) """ % (self.dbType, self.speciesId, self.dbType, self.dbType, self.dbType, mthresh) + DescriptionText.append(HT.Span(' with a ', HT.U('trans-QTL'), ' having an LRS between %g and %g using a %g Mb exclusion buffer' % (min(lowerLimit, upperLimit), max(lowerLimit, upperLimit), mthresh))) + query.append(" (%s) " % clauseItem) + self.orderByDefalut = "LRS" + else: + pass + elif itemCmd.upper() in ("RANGE"): + #XZ, 03/05/2009: Xiaodong changed Data to ProbeSetData + clauseItem = " (select Pow(2, max(value) -min(value)) from ProbeSetData where Id = ProbeSetXRef.dataId) > %2.7f and (select Pow(2, max(value) -min(value)) from ProbeSetData where Id = ProbeSetXRef.dataId) < %2.7f " % (min(lowerLimit, upperLimit), max(lowerLimit, upperLimit)) + query.append(" (%s) " % clauseItem) + DescriptionText.append(HT.Span(' with a range of expression that varied between %g and %g' % (min(lowerLimit, upperLimit), max(lowerLimit, upperLimit)), " (fold difference)")) + else: + clauseItem = " %sXRef.%s > %2.7f and %sXRef.%s < %2.7f " % \ + (self.dbType, itemCmd, min(lowerLimit, upperLimit), self.dbType, itemCmd, max(lowerLimit, upperLimit)) + query.append(" (%s) " % clauseItem) + self.orderByDefalut = itemCmd + DescriptionText.append(HT.Span(' with ', HT.U(itemCmd), ' between %g and %g' % (min(lowerLimit, upperLimit), max(lowerLimit, upperLimit)))) + + for k, item in enumerate(m3_OR+m3_AND): + if k >=len(m3_OR): + query = self.ANDQuery + DescriptionText = self.ANDDescriptionText + else: + query = self.ORQuery + DescriptionText = self.ORDescriptionText + itemCmd = item[0] + chrsch = item[1] + lowerLimit = float(item[2]) + upperLimit = float(item[3]) + fname = 'target genes' + if self.dbType == "ProbeSet": + clauseItem = " %s.Chr = '%s' and %s.Mb > %2.7f and %s.Mb < %2.7f " % \ + (self.dbType, chrsch, self.dbType, min(lowerLimit, upperLimit), self.dbType, max(lowerLimit, upperLimit)) + elif self.dbType == "Geno": + fname = 'loci' + clauseItem = " %s.Chr = '%s' and %s.Mb > %2.7f and %s.Mb < %2.7f " % \ + (self.dbType, chrsch, self.dbType, min(lowerLimit, upperLimit), self.dbType, max(lowerLimit, upperLimit)) + else: + continue + query.append(" (%s) " % clauseItem) + self.orderByDefalut = itemCmd + DescriptionText.append(HT.Span(' with ', HT.U('target genes'), ' on chromosome %s between %g and %g Mb' % \ + (chrsch, min(lowerLimit, upperLimit), max(lowerLimit, upperLimit)))) + + for k, item in enumerate(m5_OR+m5_AND): + if k >=len(m5_OR): + query = self.ANDQuery + DescriptionText = self.ANDDescriptionText + else: + query = self.ORQuery + DescriptionText = self.ORDescriptionText + itemCmd = item[0] + lowerLimit = float(item[1]) + upperLimit = float(item[2]) + chrsch = item[3] + MblowerLimit = float(item[4]) + MbupperLimit = float(item[5]) + if self.dbType == "ProbeSet" or self.dbType == "Publish": + clauseItem = " %sXRef.LRS > %2.7f and %sXRef.LRS < %2.7f " % \ + (self.dbType, min(lowerLimit, upperLimit), self.dbType, max(lowerLimit, upperLimit)) + clauseItem += " and %sXRef.Locus = Geno.name and Geno.SpeciesId = %s and Geno.Chr = '%s' and Geno.Mb > %2.7f and Geno.Mb < %2.7f" \ + % (self.dbType, self.speciesId, chrsch, min(MblowerLimit, MbupperLimit), max(MblowerLimit, MbupperLimit)) + query.append(" (%s) " % clauseItem) + self.orderByDefalut = "MB" + DescriptionText.append(HT.Span(' with ', HT.U('LRS'), ' between %g and %g' % \ + (min(lowerLimit, upperLimit), max(lowerLimit, upperLimit)), \ + ' on chromosome %s between %g and %g Mb' % \ + (chrsch, min(MblowerLimit, MbupperLimit), max(MblowerLimit, MbupperLimit)))) + pass + + return 1 + + def generateWarningLayer(self): + + layerString = """ + + + + + """ + + return layerString + + def getTableHeaderForGeno(self, worksheet=None, newrow=None, headingStyle=None): + + tblobj_header = [] + + className = "fs13 fwb ffl b1 cw cbrb" + + tblobj_header = [[THCell(HT.TD(' ', Class=className), sort=0), + THCell(HT.TD('Record', HT.BR(), 'ID', HT.BR(), Class=className), text='record_id', idx=1), + THCell(HT.TD('Location', HT.BR(), 'Chr and Mb', HT.BR(), Class=className), text='location', idx=2)]] + + for ncol, item in enumerate(['Record ID', 'Location (Chr, Mb)']): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + + return tblobj_header + + + def getTableBodyForGeno(self, traitList, formName=None, worksheet=None, newrow=None): + + tblobj_body = [] + + className = "fs12 fwn ffl b1 c222" + + for thisTrait in traitList: + tr = [] + + if not thisTrait.haveinfo: + thisTrait.retrieveInfo() + + trId = str(thisTrait) + + tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class=className), text=trId)) + + tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showDatabase3('%s','%s','%s','')" % (formName, thisTrait.db.name, thisTrait.name), Class="fs12 fwn ffl"),align="left", Class=className), text=thisTrait.name, val=thisTrait.name.upper())) + + #XZ: trait_location_value is used for sorting + trait_location_repr = 'N/A' + trait_location_value = 1000000 + + if thisTrait.chr and thisTrait.mb: + try: + trait_location_value = int(thisTrait.chr)*1000 + thisTrait.mb + except: + if thisTrait.chr.upper() == 'X': + trait_location_value = 20*1000 + thisTrait.mb + else: + trait_location_value = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb + + trait_location_repr = 'Chr%s: %.6f' % (thisTrait.chr, float(thisTrait.mb) ) + + tr.append(TDCell(HT.TD(trait_location_repr, Class="fs12 fwn b1 c222", nowrap="on"), trait_location_repr, trait_location_value)) + + tblobj_body.append(tr) + + for ncol, item in enumerate([thisTrait.name, trait_location_repr]): + worksheet.write([newrow, ncol], item) + + newrow += 1 + + return tblobj_body + + def getTableHeaderForPublish(self, worksheet=None, newrow=None, headingStyle=None): + + tblobj_header = [] + + className = "fs13 fwb ffl b1 cw cbrb" + + tblobj_header = [[THCell(HT.TD(' ', Class=className, nowrap="on"), sort=0), + THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class=className, nowrap="on"), text="recond_id", idx=1), + THCell(HT.TD('Phenotype',HT.BR(),HT.BR(), Class=className, nowrap="on"), text="pheno", idx=2), + THCell(HT.TD('Authors',HT.BR(),HT.BR(), Class=className, nowrap="on"), text="auth", idx=3), + THCell(HT.TD('Year',HT.BR(),HT.BR(), Class=className, nowrap="on"), text="year", idx=4), + THCell(HT.TD('Max',HT.BR(), 'LRS', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="lrs", idx=5), + THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap="on"), text="lrs_location", idx=6)]] + + for ncol, item in enumerate(["Record", "Phenotype", "Authors", "Year", "Pubmed Id", "Max LRS", "Max LRS Location (Chr: Mb)"]): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + + return tblobj_header + + def getTableBodyForPublish(self, traitList, formName=None, worksheet=None, newrow=None, species=''): + + tblobj_body = [] + + className = "fs12 fwn b1 c222" + + for thisTrait in traitList: + tr = [] + + if not thisTrait.haveinfo: + thisTrait.retrieveInfo(QTL=1) + + trId = str(thisTrait) + + tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class=className), text=trId)) + + tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name,url="javascript:showDatabase3('%s','%s','%s','')" % (formName, thisTrait.db.name, thisTrait.name), Class="fs12 fwn"), nowrap="yes",align="center", Class=className),str(thisTrait.name), thisTrait.name)) + + PhenotypeString = thisTrait.post_publication_description + if thisTrait.confidential: + if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users): + PhenotypeString = thisTrait.pre_publication_description + tr.append(TDCell(HT.TD(PhenotypeString, Class=className), PhenotypeString, PhenotypeString.upper())) + + tr.append(TDCell(HT.TD(thisTrait.authors, Class="fs12 fwn b1 c222 fsI"),thisTrait.authors, thisTrait.authors.strip().upper())) + + try: + PubMedLinkText = myear = repr = int(thisTrait.year) + except: + PubMedLinkText = repr = "N/A" + myear = 0 + + if thisTrait.pubmed_id: + PubMedLink = HT.Href(text= repr,url= webqtlConfig.PUBMEDLINK_URL % thisTrait.pubmed_id,target='_blank', Class="fs12 fwn") + else: + PubMedLink = repr + + tr.append(TDCell(HT.TD(PubMedLink, Class=className, align='center'), repr, myear)) + + #LRS and its location + LRS_score_repr = 'N/A' + LRS_score_value = 0 + LRS_location_repr = 'N/A' + LRS_location_value = 1000000 + LRS_flag = 1 + + + if thisTrait.lrs: + LRS_score_repr = '%3.1f' % thisTrait.lrs + LRS_score_value = thisTrait.lrs + tr.append(TDCell(HT.TD(LRS_score_repr, Class=className), LRS_score_repr, LRS_score_value)) + + self.cursor.execute(""" + select Geno.Chr, Geno.Mb from Geno, Species + where Species.Name = '%s' and + Geno.Name = '%s' and + Geno.SpeciesId = Species.Id + """ % (species, thisTrait.locus)) + result = self.cursor.fetchone() + + if result: + if result[0] and result[1]: + LRS_Chr = result[0] + LRS_Mb = result[1] + + #XZ: LRS_location_value is used for sorting + try: + LRS_location_value = int(LRS_Chr)*1000 + float(LRS_Mb) + except: + if LRS_Chr.upper() == 'X': + LRS_location_value = 20*1000 + float(LRS_Mb) + else: + LRS_location_value = ord(str(LRS_chr).upper()[0])*1000 + float(LRS_Mb) + + LRS_location_repr = 'Chr%s: %.6f' % (LRS_Chr, float(LRS_Mb) ) + LRS_flag = 0 + + tr.append(TDCell(HT.TD(LRS_location_repr, Class=className, nowrap="on"), LRS_location_repr, LRS_location_value)) + + else: + tr.append(TDCell(HT.TD("N/A", Class=className), "N/A", "N/A")) + tr.append(TDCell(HT.TD("N/A", Class=className), "N/A", "N/A")) + + tblobj_body.append(tr) + + for ncol, item in enumerate([thisTrait.name, PhenotypeString, thisTrait.authors, thisTrait.year, thisTrait.pubmed_id, LRS_score_repr, LRS_location_repr]): + worksheet.write([newrow, ncol], item) + + newrow += 1 + + return tblobj_body + + def getTableHeaderForProbeSet(self, worksheet=None, newrow=None, headingStyle=None): + + tblobj_header = [] + + className = "fs13 fwb ffl b1 cw cbrb" + + tblobj_header = [[THCell(HT.TD(' ', Class="fs13 fwb ffl b1 cw cbrb",nowrap='ON'), sort=0), + THCell(HT.TD('Record',HT.BR(), 'ID',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="record_id", idx=1), + THCell(HT.TD('Symbol',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="symbol", idx=2), + THCell(HT.TD('Description',HT.BR(),HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="desc", idx=3), + THCell(HT.TD('Location',HT.BR(), 'Chr and Mb', HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="location", idx=4), + THCell(HT.TD('Mean',HT.BR(),'Expr',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb"), text="mean", idx=5), + THCell(HT.TD('Max',HT.BR(),'LRS',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="lrs", idx=6), + THCell(HT.TD('Max LRS Location',HT.BR(),'Chr and Mb',HT.BR(), Class="fs13 fwb ffl b1 cw cbrb", nowrap='ON'), text="lrs_location", idx=7)]] + + for ncol, item in enumerate(['Record', 'Gene ID', 'Homologene ID', 'Symbol', 'Description', 'Location (Chr, Mb)', 'Mean Expr', 'Max LRS', 'Max LRS Location (Chr: Mb)']): + worksheet.write([newrow, ncol], item, headingStyle) + worksheet.set_column([ncol, ncol], 2*len(item)) + + return tblobj_header + + def getTableBodyForProbeSet(self, traitList=[], primaryTrait=None, formName=None, worksheet=None, newrow=None, species=''): + + tblobj_body = [] + + className = "fs12 fwn b1 c222" + + for thisTrait in traitList: + + if not thisTrait.haveinfo: + thisTrait.retrieveInfo(QTL=1) + + if thisTrait.symbol: + pass + else: + thisTrait.symbol = "N/A" + + tr = [] + + trId = str(thisTrait) + + #XZ, 12/08/2008: checkbox + tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", Class="fs12 fwn ffl b1 c222"), text=trId)) + + #XZ, 12/08/2008: probeset name + if thisTrait.cellid: + tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name, url="javascript:showDatabase3('%s','%s','%s','%s')" % (formName, thisTrait.db.name,thisTrait.name,thisTrait.cellid), Class="fs12 fwn"), Class=className), thisTrait.name, thisTrait.name.upper())) + else: + tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.name, url="javascript:showDatabase3('%s','%s','%s','')" % (formName, thisTrait.db.name,thisTrait.name), Class="fs12 fwn"), Class=className), thisTrait.name, thisTrait.name.upper())) + + if thisTrait.geneid: + symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=%s" % thisTrait.geneid, Class="font_black fs12 fwn") + else: + symbolurl = HT.Href(text=thisTrait.symbol,target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene&term=%s" % thisTrait.symbol, Class="font_black fs12 fwn") + + #XZ, 12/08/2008: gene symbol + tr.append(TDCell(HT.TD(symbolurl, Class="fs12 fwn b1 c222 fsI"),thisTrait.symbol, thisTrait.symbol.upper())) + + #XZ, 12/08/2008: description + #XZ, 06/05/2009: Rob asked to add probe target description + description_string = str(thisTrait.description).strip() + target_string = str(thisTrait.probe_target_description).strip() + + description_display = '' + + if len(description_string) > 1 and description_string != 'None': + description_display = description_string + else: + description_display = thisTrait.symbol + + if len(description_display) > 1 and description_display != 'N/A' and len(target_string) > 1 and target_string != 'None': + description_display = description_display + '; ' + target_string.strip() + + tr.append(TDCell(HT.TD(description_display, Class=className), description_display, description_display)) + + #XZ: trait_location_value is used for sorting + trait_location_repr = 'N/A' + trait_location_value = 1000000 + + if thisTrait.chr and thisTrait.mb: + try: + trait_location_value = int(thisTrait.chr)*1000 + thisTrait.mb + except: + if thisTrait.chr.upper() == 'X': + trait_location_value = 20*1000 + thisTrait.mb + else: + trait_location_value = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb + + trait_location_repr = 'Chr%s: %.6f' % (thisTrait.chr, float(thisTrait.mb) ) + + tr.append(TDCell(HT.TD(trait_location_repr, Class=className, nowrap="on"), trait_location_repr, trait_location_value)) + + #XZ, 01/12/08: This SQL query is much faster. + self.cursor.execute(""" + select ProbeSetXRef.mean from ProbeSetXRef, ProbeSet + where ProbeSetXRef.ProbeSetFreezeId = %d and + ProbeSet.Id = ProbeSetXRef.ProbeSetId and + ProbeSet.Name = '%s' + """ % (thisTrait.db.id, thisTrait.name)) + result = self.cursor.fetchone() + if result: + if result[0]: + mean = result[0] + else: + mean=0 + else: + mean = 0 + + #XZ, 06/05/2009: It is neccessary to turn on nowrap + repr = "%2.3f" % mean + tr.append(TDCell(HT.TD(repr, Class=className, align='right', nowrap='ON'),repr, mean)) + + #LRS and its location + LRS_score_repr = 'N/A' + LRS_score_value = 0 + LRS_location_repr = 'N/A' + LRS_location_value = 1000000 + LRS_flag = 1 + + #Max LRS and its Locus location + if thisTrait.lrs and thisTrait.locus: + self.cursor.execute(""" + select Geno.Chr, Geno.Mb from Geno, Species + where Species.Name = '%s' and + Geno.Name = '%s' and + Geno.SpeciesId = Species.Id + """ % (species, thisTrait.locus)) + result = self.cursor.fetchone() + + if result: + if result[0] and result[1]: + LRS_Chr = result[0] + LRS_Mb = result[1] + + #XZ: LRS_location_value is used for sorting + try: + LRS_location_value = int(LRS_Chr)*1000 + float(LRS_Mb) + except: + if LRS_Chr.upper() == 'X': + LRS_location_value = 20*1000 + float(LRS_Mb) + else: + LRS_location_value = ord(str(LRS_chr).upper()[0])*1000 + float(LRS_Mb) + + LRS_score_repr = '%3.1f' % thisTrait.lrs + LRS_score_value = thisTrait.lrs + LRS_location_repr = 'Chr%s: %.6f' % (LRS_Chr, float(LRS_Mb) ) + LRS_flag = 0 + + #tr.append(TDCell(HT.TD(HT.Href(text=LRS_score_repr,url="javascript:showIntervalMapping('%s', '%s : %s')" % (formName, thisTrait.db.shortname, thisTrait.name), Class="fs12 fwn"), Class=className, align='right', nowrap="on"),LRS_score_repr, LRS_score_value)) + tr.append(TDCell(HT.TD(LRS_score_repr, Class=className, align='right', nowrap="on"), LRS_score_repr, LRS_score_value)) + tr.append(TDCell(HT.TD(LRS_location_repr, Class=className, nowrap="on"), LRS_location_repr, LRS_location_value)) + + if LRS_flag: + tr.append(TDCell(HT.TD(LRS_score_repr, Class=className), LRS_score_repr, LRS_score_value)) + tr.append(TDCell(HT.TD(LRS_location_repr, Class=className), LRS_location_repr, LRS_location_value)) + + else: + tr.append(TDCell(HT.TD("N/A", Class=className), "N/A", "N/A")) + tr.append(TDCell(HT.TD("N/A", Class=className), "N/A", "N/A")) + + tblobj_body.append(tr) + + for ncol, item in enumerate([thisTrait.name, thisTrait.geneid, thisTrait.homologeneid, thisTrait.symbol, description_display, trait_location_repr, mean, LRS_score_repr, LRS_location_repr]): + worksheet.write([newrow, ncol], item) + + + newrow += 1 + + return tblobj_body + + def createExcelFileWithTitleAndFooter(self, workbook=None, identification=None, db=None, returnNumber=None): + + worksheet = workbook.add_worksheet() + + titleStyle = workbook.add_format(align = 'left', bold = 0, size=14, border = 1, border_color="gray") + + ##Write title Info + # Modified by Hongqiang Li + worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle) + worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle) + worksheet.write([2, 0], "Trait : %s" % identification, titleStyle) + worksheet.write([3, 0], "Database : %s" % db.fullname, titleStyle) + worksheet.write([4, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime()), titleStyle) + worksheet.write([5, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime()), titleStyle) + worksheet.write([6, 0], "Status of data ownership: Possibly unpublished data; please see %s/statusandContact.html for details on sources, ownership, and usage of these data." % webqtlConfig.PORTADDR, titleStyle) + #Write footer info + worksheet.write([9 + returnNumber, 0], "Funding for The GeneNetwork: NIAAA (U01AA13499, U24AA13513), NIDA, NIMH, and NIAAA (P20-DA21131), NCI MMHCC (U01CA105417), and NCRR (U01NR 105417)", titleStyle) + worksheet.write([10 + returnNumber, 0], "PLEASE RETAIN DATA SOURCE INFORMATION WHENEVER POSSIBLE", titleStyle) + + return worksheet + + def getSortByValue(self, datasetType=''): + + if datasetType == 'Geno': + sortby = ("location", "up") + elif datasetType == 'ProbeSet': + sortby = ("symbol", "up") + else: #Phenotype + sortby = ("record_id", "down") + + return sortby + + diff --git a/web/webqtl/search/TextSearchPage.py b/web/webqtl/search/TextSearchPage.py new file mode 100755 index 00000000..42ff72c4 --- /dev/null +++ b/web/webqtl/search/TextSearchPage.py @@ -0,0 +1,536 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string +import os +import cPickle +from math import * + +import reaper +from htmlgen import HTMLgen2 as HT + +from base import admin +from base import webqtlConfig +from base.templatePage import templatePage +from utility import webqtlUtil +from base.webqtlDataset import webqtlDataset +from base.webqtlTrait import webqtlTrait +from utility.THCell import THCell +from utility.TDCell import TDCell +from utility import webqtlUtil + + + +class TextSearchPage(templatePage): + maxReturn = 200 + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + # updated by NL, deleted jquery here, move it to dhtml.js + self.dict['js1'] = '' + + species_list = [] #List of species (mouse, rat, human), with the selected species listed first + + input_species = string.strip(string.lower(fd.formdata.getfirst('species', "mouse"))) #XZ, Oct 28, 2009: I changed the default species to mouse. + species_list.append(input_species) + #Create list of species (mouse, rat, human) with the species the user selected first + for species in ["mouse","rat","human"]: + if species not in species_list: + species_list.append(species) + + ADMIN_tissue_alias = admin.ADMIN_tissue_alias + + tissue = string.strip(string.lower(fd.formdata.getfirst('tissue', ""))) + if tissue: + try: + rev_ADMIN_tissue_alias = {} + for key in ADMIN_tissue_alias.keys(): + rev_ADMIN_tissue_alias[key] = key + for alias in ADMIN_tissue_alias[key]: + rev_ADMIN_tissue_alias[alias.upper()] = key + tissue = rev_ADMIN_tissue_alias[tissue.upper()] + except: + tissue = "UNKNOWN" + + #possibly text output + txtOutput = [] #ZS: if format=text + all_species_dataset_count = 0 #XZ: count of datasets across all species; used in the opening text of the page + all_species_trait_count = 0 #XZ: count of records across all species; used in opening text of the page and text file (if format = text) + + #div containing the tabs (species_container), the tabs themselves (species_tab_list, which is inserted into species_tabs), and the table (species_table) containing both the tissue and results tables for each tab + species_container = HT.Div(id="species_tabs", Class="tab_container") #Div that will contain tabs for mouse/rat/human species; each tab contains a table with the result count for each tissue group + species_tab_list = [HT.Href(text="%s" % species_list[0].capitalize(), url="#species1"), HT.Href(text="%s" % species_list[1].capitalize(), url="#species2"), HT.Href(text="%s" % species_list[2].capitalize(), url="#species3")] + species_tabs = HT.List(species_tab_list, Class="tabs") + species_table = HT.TableLite(cellSpacing=0,cellPadding=0,width="100%",border=0, align="Left") + + for i in range(len(species_list)): + species_container_table = HT.TableLite(cellSpacing=0,cellPadding=0,width="100%",border=0, align="Left") #ZS: Table containing both the tissue record count and trait record tables as cells; this fixes a display issue in some browsers that places the tables side by side instead of top/bottom + + species = species_list[i] + ADMIN_search_dbs = admin.ADMIN_search_dbs[species] + this_species_dataset_count = 0 #XZ: count of the datasets containing results for this species + this_species_trait_count = 0 #XZ: count of the trait records for this species + + div = HT.Div(id="species%s" % (i+1), Class="tab_content") + tab_container = HT.Span() #ZS: Contains species_container_table within the species' tab + + tissuePageTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="100%",border=0, align="Left") + tissue_tblobj = {} # object used to create the table listing the results for each tissue + tissue_tblobj['header'] = self.getTissueTableHeader() # creates header for table listing results for selected tissue + + traitPageTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="100%",border=0, align="Left") + trait_tblobj = {} # object used to create the table listing the trait results for each tissue + trait_tblobj['header'] = self.getTraitTableHeader() # creates header for table listing trait results for selected tissue + + tissue_tblobj['body'], trait_tblobj['body'], this_species_dataset_count, this_species_trait_count, this_species_txtOutput = self.createTableBodies(fd, species, tissue, ADMIN_search_dbs) + + if species == input_species: + txtOutput = this_species_txtOutput + + filename1 = webqtlUtil.genRandStr("Search_") #filename for tissue table object + tissue_objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename1), 'wb') + cPickle.dump(tissue_tblobj, tissue_objfile) + tissue_objfile.close() + + tissue_sortby = self.getTissueSortByValue() # sets how the tissue table should be sorted by default + tissue_div = HT.Div(webqtlUtil.genTableObj(tblobj=tissue_tblobj, file=filename1, sortby=tissue_sortby, tableID = "tissue_sort%s" % (i+1), addIndex = "1"), Id="tissue_sort%s" % (i+1)) + + tissuePageTable.append(HT.TR(HT.TD(" "))) + tissuePageTable.append(HT.TR(HT.TD(tissue_div))) + tissuePageTable.append(HT.TR(HT.TD(" "))) + species_container_table.append(HT.TR(HT.TD(tissuePageTable)), HT.TR(HT.TD(" "))) + + + filename2 = webqtlUtil.genRandStr("Search_") #filename for trait table object + trait_objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename2), 'wb') + cPickle.dump(trait_tblobj, trait_objfile) + trait_objfile.close() + + trait_sortby = self.getTraitSortByValue() # sets how the trait table should be sorted by default + trait_div = HT.Div(webqtlUtil.genTableObj(tblobj=trait_tblobj, file=filename2, sortby=trait_sortby, tableID = "results_sort%s" % (i+1), addIndex = "0"), Id="results_sort%s" % (i+1)) + + traitPageTable.append(HT.TR(HT.TD(" "))) + traitPageTable.append(HT.TR(HT.TD(trait_div))) + traitPageTable.append(HT.TR(HT.TD(" "))) + species_container_table.append(HT.TR(HT.TD(traitPageTable)), HT.TR(HT.TD(" "))) + + if this_species_trait_count == 0: + tab_container.append(HT.Div("No records retrieved for this species.", align="left", valign="top", style="font-size:42")) + else: + tab_container.append(species_container_table) + + all_species_dataset_count += this_species_dataset_count + all_species_trait_count += this_species_trait_count + + div.append(tab_container) + species_table.append(HT.TR(HT.TD(div))) + + species_container.append(species_table) + + + + + if fd.returnFmt != 'text': #if the format is not 'text' + self.dict['title'] = 'Search Results' + TD_LR = HT.TD(height=100,width="100%",bgColor='#fafafa',valign="top") + pageTable = HT.TableLite(cellSpacing=0,cellPadding=0,width="100%",border=0, align="Left") # Table containing all of the page's elements (opening text, form); in some browers the elements arrange themselves horizontally if you don't put them into a table, so this fixes that problem + + formTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="100%",border=0) # Table containing all of the form's elements (tabs, option buttons); used to correct the same issue mentioned in pageTable's comment + + mainForm = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':'_','CellID':'_','RISet':fd.RISet} + hddn['incparentsf1']='ON' + for key in hddn.keys(): + mainForm.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + #Add to collection, select all, invert selection, and deselect all ("reset") buttons + addselect = HT.Href(url="#redirect", Class="add_traits") + addselect_img = HT.Image("/images/add_collection1_final.jpg", name="addselect", alt="Add To Collection", title="Add To Collection", style="border:none;") + addselect.append(addselect_img) + selectall = HT.Href(url="#redirect", onClick="checkAll(document.getElementsByName('showDatabase')[0]);") + selectall_img = HT.Image("/images/select_all2_final.jpg", name="selectall", alt="Select All", title="Select All", style="border:none;") + selectall.append(selectall_img) + selectinvert = HT.Href(url="#redirect", onClick="checkInvert(document.getElementsByName('showDatabase')[0];") + selectinvert_img = HT.Image("/images/invert_selection2_final.jpg", name="selectinvert", alt="Invert Selection", title="Invert Selection", style="border:none;") + selectinvert.append(selectinvert_img) + reset = HT.Href(url="#redirect", onClick="checkNone(document.getElementsByName('showDatabase')[0]); return false;") + reset_img = HT.Image("/images/select_none2_final.jpg", alt="Select None", title="Select None", style="border:none;") + reset.append(reset_img) + + #Table with select, deselect, invert, etc. It is used for the results table. + optionsTable = HT.TableLite(cellSpacing=2,cellPadding=0,width="20%",border=0) + optionsRow = HT.TR(HT.TD(selectall, width="25%"), HT.TD(reset, width="25%"), HT.TD(selectinvert, width="25%"), HT.TD(addselect, width="25%")) + labelsRow = HT.TR(HT.TD(" "*2,"Select", width="25%"), HT.TD(" ","Deselect", width="25%"), HT.TD(" "*3,"Invert", width="25%"), HT.TD(" "*4,"Add", width="25%")) + optionsTable.append(HT.TR(HT.TD(" ")), optionsRow, labelsRow) + + if fd.geneName: + searchType = "gene name " + fd.geneName + elif fd.refseq: + searchType = "RefSeq accession number " + fd.refseq + elif fd.genbankid: + searchType = "Genbank ID " + fd.genbankid + elif fd.geneid: + searchType = "Gene ID " + fd.geneid + else: + searchType = "" + + SearchText = HT.Span("You searched for the %s in GeneNetwork." % searchType, HT.BR(), + "We queried %s expression datasets across %s species and listed the results" % (all_species_dataset_count, len(species_list)), HT.BR(), + "below. A total of %s records that may be of interest to you were found. The" % all_species_trait_count, HT.BR(), + "top table lists the number of results found for each relevant tissue, and the", HT.BR(), + "bottom gives a basic summary of each result. To study one of the results, click", HT.BR(), + "its Record ID. More detailed information is also available for each result's group", HT.BR() , + "and dataset. To switch between species, click the tab with the corresponding", HT.BR(), + "label.", HT.BR(), HT.BR(), + "Please visit the links to the right to learn more about the variety of features", HT.BR(), + "available within GeneNetwork.") + + LinkText = HT.Span() + + mainLink = HT.Href(url="/webqtl/main.py", text = "Main Search Page", target="_blank") + homeLink = HT.Href(url="/home.html", text = "What is GeneNetwork?", target="_blank") + tourLink = HT.Href(url="/tutorial/WebQTLTour/", text = "Tour of GeneNetwork (20-40 min)", target="_blank") + faqLink = HT.Href(url="/faq.html", text = "Frequently Asked Questions", target="_blank") + glossaryLink = HT.Href(url="/glossary.html", text = "Glossary of terms used throughout GeneNetwork", target="_blank") + + LinkText.append(mainLink, HT.BR(), homeLink, HT.BR(), tourLink, HT.BR(), faqLink, HT.BR(), glossaryLink) + + formTable.append(HT.TR(HT.TD(species_tabs, species_container)), HT.TR(HT.TD(optionsTable))) + mainForm.append(formTable) + + + if fd.geneName: + SearchHeading = HT.Paragraph('Search Results for gene name ', fd.geneName) + elif fd.refseq: + SearchHeading = HT.Paragraph('Search Results for RefSeq accession number ', fd.refseq) + elif fd.genbankid: + SearchHeading = HT.Paragraph('Search Results for Genbank ID ', fd.genbankid) + elif fd.geneid: + SearchHeading = HT.Paragraph('Search Results for Gene ID ', fd.geneid) + else: + SearchHeading = HT.Paragraph('') + + SearchHeading.__setattr__("class","title") + + pageTable.append(HT.TR(HT.TD(SearchText, width=600), HT.TD(LinkText, align="left", valign="top")), HT.TR(HT.TD(" ", colspan=2)), HT.TR(HT.TD(mainForm, colspan=2))) + TD_LR.append(SearchHeading, pageTable) + self.dict['body'] = TD_LR + else: + if len(txtOutput) == 0: + self.output = "##No records were found for this species. \n" + else: + self.output = "##A total of %d records were returned. \n" % all_species_trait_count + newOutput = [] + strainLists = {} + for item in txtOutput: + tissueGrp, thisTrait = item + RISet = thisTrait.riset + if strainLists.has_key(RISet): + thisStrainlist = strainLists[RISet] + else: + thisGenotype = reaper.Dataset() + thisGenotype.read(os.path.join(webqtlConfig.GENODIR, RISet + '.geno')) + if thisGenotype.type == "riset": + _f1, _f12, _mat, _pat = webqtlUtil.ParInfo[RISet] + thisGenotype = thisGenotype.add(Mat=_mat, Pat=_pat, F1=_f1) + thisStrainlist = list(thisGenotype.prgy) + strainLists[RISet] = thisStrainlist + thisTrait.retrieveData(strainlist=thisStrainlist) + thisData = [] + for item in thisStrainlist: + if thisTrait.data.has_key(item): thisData.append(thisTrait.data[item].val) + else: thisData.append(None) + newOutput.append(["Structure", "Database", "ProbeSetID", "Cross"] + thisStrainlist) + newOutput.append([tissueGrp, '"%s"' % thisTrait.db.fullname, thisTrait.name, RISet]+map(str,thisData)) + newOutput = webqtlUtil.asymTranspose(newOutput) + for item in newOutput: + self.output += string.join(item, "\t") + "\n" + + + def createTableBodies(self, fd, species, tissue, ADMIN_search_dbs): + + this_species_txtOutput = [] + + #priority GeneName > refseq > genbankid + this_species_trait_count = 0 #count of all traits in this species + this_species_dataset_count = 0 #Number of datasets in this species + row_count = 0 #Index number used in the first row of the trait table + trait_tblobj_body = [] #body of table with the results themselves; + tissue_tblobj_body = [] #body of table with the number of results for each tissue group + className = "fs12 fwn b1 c222" + + for i, tissueGrp in enumerate(ADMIN_search_dbs.keys()): + if tissue and tissue.upper() != tissueGrp.upper(): + continue + dbNames = ADMIN_search_dbs[tissueGrp] + + tissue_tr = [] #Table row for tissue group + tissue_tr.append(TDCell(HT.TD('', Class=className))) + tissue_tr.append(TDCell(HT.TD(tissueGrp.capitalize(), Class=className), tissueGrp, tissueGrp)) #Append cell with tissue name to row + + this_tissue_record_count = 0 #Count of the results for each tissue + for dbName in dbNames: + this_species_dataset_count += 1 + thisDB = webqtlDataset(dbName, self.cursor) + + if fd.geneName: + if fd.searchAlias: + self.cursor.execute("""SELECT ProbeSet.Name + FROM + ProbeSet, ProbeSetFreeze, ProbeSetXRef + WHERE + ProbeSetFreeze.Name = "%s" AND + ProbeSetFreeze.Id = ProbeSetXRef.ProbeSetFreezeId AND + MATCH (ProbeSet.symbol, alias) AGAINST ("+%s" IN BOOLEAN MODE) AND + ProbeSet.Id = ProbeSetXRef.ProbeSetId""" % (dbName, fd.geneName)) + else: + self.cursor.execute("""SELECT ProbeSet.Name + FROM + ProbeSet, ProbeSetFreeze, ProbeSetXRef + WHERE + ProbeSetFreeze.Name = "%s" AND + ProbeSetFreeze.Id = ProbeSetXRef.ProbeSetFreezeId AND + ProbeSet.symbol = "%s" AND + ProbeSet.Id = ProbeSetXRef.ProbeSetId""" % (dbName, fd.geneName)) + elif fd.refseq: + + # XZ, Oct/08/2009: Search for RefSeq ID is kind of tricky. One probeset can have multiple RefseqIDs that are delimited by ' /// ' (currently). + # So I have to use 'like' instead of '=' in SQL query. But user search with one short string, for example 'NM_1', it will return thousands of results. + # To prevent this, I set the restriction that the length of input Refseq ID must be at least 9 characters. Otherwise, do NOT start searching. + # Even with the restriction of input RefSeqID, I'm still worried about the 'like' in SQL query. My concern is in future, there might be RefSeqIDs with + # 10 characters whose first 9 characters are the same as the existing ones. So I decide to further check the result. We should also consider that the + # RefSeqID in database may have version number such as "NM_177938.2". If the input RefSeqID is 'NM_177938', it should be matched. I think we should get rid of the version number in database. + + if len(fd.refseq) < 9: + if fd.returnFmt != 'text': + heading = "Search Result" + detail = ["The RefSeq ID that you inputed is less than 9 characters. GeneNetwork thinks it is not a legitimate RefSeq ID and did not do the search. Please try to use a RefSeq ID with at least 9 characters."] + self.error(heading=heading,detail=detail,error="Not Found") + else: + self.output = "#The gene name or IDs you submitted did not match any record in the databases available. You may try different gene names or tissue type." + return + else: + sqlString = """SELECT ProbeSet.Id, ProbeSet.RefSeq_TranscriptId + FROM + ProbeSet, ProbeSetFreeze, ProbeSetXRef + WHERE + ProbeSetFreeze.Name = "%s" AND + ProbeSetFreeze.Id = ProbeSetXRef.ProbeSetFreezeId AND + MATCH(ProbeSet.RefSeq_TranscriptId) AGAINST ("+%s" IN BOOLEAN MODE) AND + ProbeSet.Id = ProbeSetXRef.ProbeSetId""" % (dbName, fd.refseq) + + self.cursor.execute(sqlString) + + results = self.cursor.fetchall() + if results: + Id_of_really_matched_probeset = [] + + for one_result in results: + ProbeSet_Id, ProbeSet_RefSeq_TranscriptId = one_result + multiple_RefSeqId = string.split(string.strip(ProbeSet_RefSeq_TranscriptId), '///') + for one_RefSeqId in multiple_RefSeqId: + tokens = string.split( one_RefSeqId, '.' ) + one_RefSeqId_without_versionNum = string.strip(tokens[0]) + if one_RefSeqId_without_versionNum == fd.refseq: + Id_of_really_matched_probeset.append( ProbeSet_Id ) + break + + if Id_of_really_matched_probeset: + condition_string = " or ".join(["Id = %s" % one_ID for one_ID in Id_of_really_matched_probeset]) + sqlString = """SELECT ProbeSet.Name from ProbeSet where (%s)""" % condition_string + + self.cursor.execute(sqlString) + else: + pass + + elif fd.genbankid: + self.cursor.execute("""SELECT ProbeSet.Name + FROM + ProbeSet, ProbeSetFreeze, ProbeSetXRef + WHERE + ProbeSetFreeze.Name = "%s" AND + ProbeSetFreeze.Id = ProbeSetXRef.ProbeSetFreezeId AND + ProbeSet.GenbankId = "%s" AND + ProbeSet.Id = ProbeSetXRef.ProbeSetId""" % (dbName, fd.genbankid)) + elif fd.geneid: + self.cursor.execute("""SELECT ProbeSet.Name + FROM + ProbeSet, ProbeSetFreeze, ProbeSetXRef + WHERE + ProbeSetFreeze.Name = "%s" AND + ProbeSetFreeze.Id = ProbeSetXRef.ProbeSetFreezeId AND + ProbeSet.GeneId = "%s" AND + ProbeSet.Id = ProbeSetXRef.ProbeSetId""" % (dbName, fd.geneid)) + else: + continue + + results = self.cursor.fetchall() + if len(results) > 0: + this_tissue_record_count += len(results) + this_species_trait_count += this_tissue_record_count + + for result in results: + _ProbeSetID = result[0] + thisTrait = webqtlTrait(db=thisDB, name=_ProbeSetID, cursor=self.cursor) + results_tr = [] + trId = str(thisTrait) + _traitUrl = thisTrait.genHTML(dispFromDatabase=1) + _traitName = str(thisTrait) + + #ZS: check box column + results_tr.append(TDCell(HT.TD(str(row_count+1), HT.Input(type="checkbox", Class="checkallbox", name="searchResult",value=trId, onClick="highlight(this)"), nowrap="on", align="right", Class=className), str(row_count+1), row_count+1)) + row_count += 1 + + #ZS: Tissue column + results_tr.append(TDCell(HT.TD(tissueGrp.capitalize(), Class=className), tissueGrp, tissueGrp)) + + #ZS: Group column + risetUrl = HT.Href(text=thisTrait.riset, url="http://www.genenetwork.org/%sCross.html#%s" % (species, thisTrait.riset), target="_blank", Class=className) + results_tr.append(TDCell(HT.TD(risetUrl, Class=className), thisTrait.riset, thisTrait.riset)) + + #ZS: Dataset column + results_tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.db.fullname, url = webqtlConfig.INFOPAGEHREF % thisTrait.db.name, + target='_blank', Class="fs13 fwn non_bold"), Class=className), thisTrait.db.name.upper(), thisTrait.db.name.upper())) + + #ZS: Trait ID column + results_tr.append(TDCell(HT.TD(HT.Href(text=thisTrait.getGivenName(),url="javascript:showDatabase3('%s','%s','%s','')" % ('showDatabase', thisTrait.db.name, thisTrait.name), Class="fs12 fwn"), nowrap="yes",align="left", Class=className),str(thisTrait.name), thisTrait.name)) + + #ZS: Symbol column and Description column + description_string = str(thisTrait.description).strip() + if (thisTrait.db.type == "ProbeSet"): + target_string = str(thisTrait.probe_target_description).strip() + + description_display = '' + + if len(description_string) > 1 and description_string != 'None': + description_display = description_string + else: + description_display = thisTrait.symbol + + if len(description_display) > 1 and description_display != 'N/A' and len(target_string) > 1 and target_string != 'None': + description_display = description_display + '; ' + target_string.strip() + + description_string = description_display + else: + results_tr.append(TDCell(HT.TD("--", align="left", Class=className), "--", "Zz")) + + results_tr.append(TDCell(HT.TD(description_string, Class=className), description_string, description_string)) + + #XZ: trait_location_value is used for sorting + trait_location_repr = "--" + trait_location_value = 1000000 + + if hasattr(thisTrait, 'chr') and hasattr(thisTrait, 'mb') and thisTrait.chr and thisTrait.mb: + try: + trait_location_value = int(thisTrait.chr)*1000 + thisTrait.mb + except: + if thisTrait.chr.upper() == "X": + trait_location_value = 20*1000 + thisTrait.mb + else: + trait_location_value = ord(str(thisTrait.chr).upper()[0])*1000 + thisTrait.mb + + trait_location_repr = "Chr%s: %.6f" % (thisTrait.chr, float(thisTrait.mb) ) + + results_tr.append(TDCell(HT.TD(trait_location_repr, nowrap='ON', Class=className), trait_location_repr, trait_location_value)) + + #ZS: Mean column + self.cursor.execute(""" + select ProbeSetXRef.mean from ProbeSetXRef, ProbeSet + where ProbeSetXRef.ProbeSetFreezeId = %d and + ProbeSet.Id = ProbeSetXRef.ProbeSetId and + ProbeSet.Name = '%s' + """ % (thisTrait.db.id, thisTrait.name)) + result = self.cursor.fetchone() + if result: + if result[0]: + mean = result[0] + else: + mean=0 + else: + mean = 0 + + repr = "%2.3f" % mean + results_tr.append(TDCell(HT.TD(repr, Class=className, align='right', nowrap='ON'),repr, mean)) + trait_tblobj_body.append(results_tr) + + this_species_txtOutput.append([tissueGrp, thisTrait]) + + + tissue_tr.append(TDCell(HT.TD(str(this_tissue_record_count), Class=className), str(this_tissue_record_count), this_tissue_record_count)) + tissue_tblobj_body.append(tissue_tr) + + self.output = "self.output" + + return tissue_tblobj_body, trait_tblobj_body, this_species_dataset_count, this_species_trait_count, this_species_txtOutput + + + def getTissueSortByValue(self): + + sortby = ("tissue_group", "up") + + return sortby + + + def getTraitSortByValue(self): + + sortby = ("tissue", "up") + + return sortby + + + def getTissueTableHeader(self): + + tblobj_header = [] + + className = "fs13 fwb ffl b1 cw cbrb" + + tblobj_header = [[THCell(HT.TD(' ', Class=className, nowrap="on"), sort=0), + THCell(HT.TD('Tissue',HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="tissue_group", idx=1), + THCell(HT.TD('Results', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="results", idx=2)]] + + return tblobj_header + + def getTraitTableHeader(self): + + tblobj_header = [] + + className = "fs13 fwb ffl b1 cw cbrb" + + tblobj_header = [[THCell(HT.TD('Index',HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="index", idx=0), + THCell(HT.TD('Tissue',HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="tissue", idx=1), + THCell(HT.TD('Group',HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="group", idx=2), + THCell(HT.TD('Dataset', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="dataset", idx=3), + THCell(HT.TD('Record ID', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="name", idx=4), + THCell(HT.TD('Description', HT.BR(), HT.BR(), valign="top", Class=className, nowrap="on"), text="desc", idx=5), + THCell(HT.TD('Location', HT.BR(), 'Chr and Mb', HT.BR(), valign="top", Class=className, nowrap="on"), text="location", idx=6), + THCell(HT.TD('Mean', HT.BR(), 'Expr', HT.BR(), valign="top", Class=className, nowrap="on"), text="mean", idx=7)]] + + return tblobj_header diff --git a/web/webqtl/search/__init__.py b/web/webqtl/search/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/search/pubmedsearch.py b/web/webqtl/search/pubmedsearch.py new file mode 100755 index 00000000..d0d18ff5 --- /dev/null +++ b/web/webqtl/search/pubmedsearch.py @@ -0,0 +1,12 @@ +import sys +import os +import MySQLdb +import time + +db='db_webqtl_leiyan' +author="megan memphis" + +con = MySQLdb.Connect(db=db,user='webqtlupd',passwd='webqtl', host="localhost") +cursor = con.cursor() +cursor.execute('select PhenotypeId, Locus, DataId, Phenotype.Post_publication_description from PublishXRef, Phenotype where PublishXRef.PhenotypeId = Phenotype.Id and InbredSetId=%s'%InbredSetId) +PublishXRefInfos = cursor.fetchall() diff --git a/web/webqtl/showTrait/DataEditingPage.py b/web/webqtl/showTrait/DataEditingPage.py new file mode 100644 index 00000000..f38b9880 --- /dev/null +++ b/web/webqtl/showTrait/DataEditingPage.py @@ -0,0 +1,1883 @@ +import string +import os +import cPickle +import pyXLWriter as xl + +from htmlgen import HTMLgen2 as HT + +from base import webqtlConfig +from utility import webqtlUtil, Plot +from base.webqtlTrait import webqtlTrait +from dbFunction import webqtlDatabaseFunction +from base.templatePage import templatePage +from basicStatistics import BasicStatisticsFunctions + + +######################################### +# DataEditingPage +######################################### +class DataEditingPage(templatePage): + + def __init__(self, fd, thisTrait=None): + + templatePage.__init__(self, fd) + + self.dict['title'] = 'Data Editing' + TD_LR = HT.TD(valign="top",width="100%",bgcolor="#fafafa") + + if not self.openMysql(): + return + if not fd.genotype: + fd.readData(incf1=1) + + ############################# + # determine data editing page format + ############################# + varianceDataPage = 0 + if fd.formID == 'varianceChoice': + varianceDataPage = 1 + + if varianceDataPage: + fmID='dataEditing' + nCols = 6 + else: + if fd.enablevariance: + fmID='pre_dataEditing' + nCols = 4 + else: + fmID='dataEditing' + nCols = 4 + + ############################# + ## titles, etc. + ############################# + + titleTop = HT.Div() + + title1 = HT.Paragraph("  Details and Links", style="border-radius: 5px;", Id="title1", Class="sectionheader") + title1Body = HT.Paragraph(Id="sectionbody1") + + if fd.enablevariance and not varianceDataPage: + title2 = HT.Paragraph("  Submit Variance", style="border-radius: 5px;", Id="title2", Class="sectionheader") + else: + title2 = HT.Paragraph("  Basic Statistics", style="border-radius: 5px;", Id="title2", Class="sectionheader") + title2Body = HT.Paragraph(Id="sectionbody2") + + title3 = HT.Paragraph("  Calculate Correlations", style="border-radius: 5px;", Id="title3", Class="sectionheader") + title3Body = HT.Paragraph(Id="sectionbody3") + + title4 = HT.Paragraph("  Mapping Tools", style="border-radius: 5px;", Id="title4", Class="sectionheader") + title4Body = HT.Paragraph(Id="sectionbody4") + + title5 = HT.Paragraph("  Review and Edit Data", style="border-radius: 5px;", Id="title5", Class="sectionheader") + title5Body = HT.Paragraph(Id="sectionbody5") + + ############################# + ## Hidden field + ############################# + + # Some fields, like method, are defaulted to None; otherwise in IE the field can't be changed using jquery + hddn = {'FormID':fmID, 'RISet':fd.RISet, 'submitID':'', 'scale':'physic', 'additiveCheck':'ON', 'showSNP':'ON', 'showGenes':'ON', 'method':None,\ + 'parentsf14regression':'OFF', 'stats_method':'1', 'chromosomes':'-1', 'topten':'', 'viewLegend':'ON', 'intervalAnalystCheck':'ON', 'valsHidden':'OFF',\ + 'database':'', 'criteria':None, 'MDPChoice':None, 'bootCheck':None, 'permCheck':None, 'applyVarianceSE':None, 'strainNames':'_', 'strainVals':'_',\ + 'strainVars':'_', 'otherStrainNames':'_', 'otherStrainVals':'_', 'otherStrainVars':'_', 'extra_attributes':'_', 'other_extra_attributes':'_'} + + if fd.enablevariance: + hddn['enablevariance']='ON' + if fd.incparentsf1: + hddn['incparentsf1']='ON' + + if thisTrait: + hddn['fullname'] = str(thisTrait) + try: + hddn['normalPlotTitle'] = thisTrait.symbol + hddn['normalPlotTitle'] += ": " + hddn['normalPlotTitle'] += thisTrait.name + except: + hddn['normalPlotTitle'] = str(thisTrait.name) + hddn['fromDataEditingPage'] = 1 + if thisTrait.db and thisTrait.db.type and thisTrait.db.type == 'ProbeSet': + hddn['trait_type'] = thisTrait.db.type + if thisTrait.cellid: + hddn['cellid'] = thisTrait.cellid + else: + self.cursor.execute("SELECT h2 from ProbeSetXRef WHERE DataId = %d" % thisTrait.mysqlid) + heritability = self.cursor.fetchone() + hddn['heritability'] = heritability + + hddn['attribute_names'] = "" + + hddn['mappingMethodId'] = webqtlDatabaseFunction.getMappingMethod (cursor=self.cursor, groupName=fd.RISet) + + ############################# + ## Display Trait Information + ############################# + + headSpan = self.dispHeader(fd,thisTrait) #Draw header + + titleTop.append(headSpan) + + if fd.identification: + hddn['identification'] = fd.identification + + else: + hddn['identification'] = "Un-named trait" #If no identification, set identification to un-named + + self.dispTraitInformation(fd, title1Body, hddn, thisTrait) #Display trait information + function buttons + + ############################# + ## Generate form and buttons + ############################# + + mainForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), + name='dataInput', submit=HT.Input(type='hidden')) + + next=HT.Input(type='submit', name='submit',value='Next',Class="button") + reset=HT.Input(type='Reset',name='',value=' Reset ',Class="button") + correlationMenus = [] + + if thisTrait == None: + thisTrait = webqtlTrait(data=fd.allTraitData, db=None) + + # Variance submit page only + if fd.enablevariance and not varianceDataPage: + title2Body.append("Click the next button to go to the variance submission form.", + HT.Center(next,reset)) + else: + self.dispBasicStatistics(fd, title2Body, thisTrait) + self.dispCorrelationTools(fd, title3Body, thisTrait) + self.dispMappingTools(fd, title4Body, thisTrait) + + ############################# + ## Trait Value Table + ############################# + + self.dispTraitValues(fd, title5Body, varianceDataPage, nCols, mainForm, thisTrait) + + if fd.allstrainlist: + hddn['allstrainlist'] = string.join(fd.allstrainlist, ' ') + for key in hddn.keys(): + mainForm.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + if fd.enablevariance and not varianceDataPage: + #pre dataediting page, need to submit variance + mainForm.append(titleTop, title1,title1Body,title2,title2Body,title3,title3Body,title4,title4Body,title5,title5Body) + else: + mainForm.append(titleTop, title1,title1Body,title2,title2Body,title3,title3Body,title4,title4Body,title5,title5Body) + TD_LR.append(HT.Paragraph(mainForm)) + self.dict['body'] = str(TD_LR) + + ########################################## + ## Function to display header + ########################################## + def dispHeader(self, fd, thisTrait): + headSpan = HT.Div(style="font-size:14px;") + + #If trait, use trait name; otherwise, use identification value + if thisTrait: + if thisTrait.cellid: + headSpan.append(HT.Strong('Trait Data and Analysis ', style='font-size:16px;'),' for Probe ID ', thisTrait.cellid) + else: + headSpan.append(HT.Strong('Trait Data and Analysis ', style='font-size:16px;'),' for Record ID ', thisTrait.name) + else: + if fd.identification: + headSpan.append(HT.Strong('Trait ID ', style='font-size:16px;'),fd.identification) + else: + headSpan.append(HT.Strong('Un-named Trait', style='font-size:16px;')) + + return headSpan + + ########################################## + ## Function to display trait infos + ########################################## + def dispTraitInformation(self, fd, title1Body, hddn, thisTrait): + + _Species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=fd.RISet) + + tbl = HT.TableLite(cellpadding=2, Class="collap", style="margin-left:20px;", width="840", valign="top", id="target1") + + reset=HT.Input(type='Reset',name='',value=' Reset ',Class="button") + + #XZ, August 02, 2011: The display of icons is decided by the trait type (if trait exists), along with user log-in status. Note that the new submitted trait might not be trait object. + addSelectionButton = "" + verifyButton = "" + rnaseqButton = "" + geneWikiButton = "" + probeButton = "" + similarButton = "" + snpBrowserButton = "" + updateButton = "" + + addSelectionText = "" + verifyText = "" + rnaseqText = "" + geneWikiText = "" + probeText = "" + similarText = "" + snpBrowserText = "" + updateText = "" + + if webqtlConfig.USERDICT[self.privilege] >= webqtlConfig.USERDICT['user']: + + if thisTrait==None or thisTrait.db.type=='Temp': + updateButton = HT.Href(url="#redirect", onClick="dataEditingFunc(document.getElementsByName('dataInput')[0],'addPublish');") + updateButton_img = HT.Image("/images/edit_icon.jpg", name="addnew", alt="Add To Publish", title="Add To Publish", style="border:none;") + updateButton.append(updateButton_img) + updateText = "Edit" + elif thisTrait.db.type != 'Temp': + if thisTrait.db.type == 'Publish' and thisTrait.confidential: #XZ: confidential phenotype trait + if webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users): + updateButton = HT.Href(url="#redirect", onClick="dataEditingFunc(document.getElementsByName('dataInput')[0],'updateRecord');") + updateButton_img = HT.Image("/images/edit_icon.jpg", name="update", alt="Edit", title="Edit", style="border:none;") + updateButton.append(updateButton_img) + updateText = "Edit" + else: + updateButton = HT.Href(url="#redirect", onClick="dataEditingFunc(document.getElementsByName('dataInput')[0],'updateRecord');") + updateButton_img = HT.Image("/images/edit_icon.jpg", name="update", alt="Edit", title="Edit", style="border:none;") + updateButton.append(updateButton_img) + updateText = "Edit" + else: + pass + + self.cursor.execute('SELECT Name FROM InbredSet WHERE Name="%s"' % fd.RISet) + if thisTrait: + addSelectionButton = HT.Href(url="#redirect", onClick="addRmvSelection('%s', document.getElementsByName('%s')[0], 'addToSelection');" % (fd.RISet, 'dataInput')) + addSelectionButton_img = HT.Image("/images/add_icon.jpg", name="addselect", alt="Add To Collection", title="Add To Collection", style="border:none;") + addSelectionButton.append(addSelectionButton_img) + addSelectionText = "Add" + elif self.cursor.fetchall(): + addSelectionButton = HT.Href(url="#redirect", onClick="dataEditingFunc(document.getElementsByName('%s')[0], 'addRecord');" % ('dataInput')) + addSelectionButton_img = HT.Image("/images/add_icon.jpg", name="", alt="Add To Collection", title="Add To Collection", style="border:none;") + addSelectionButton.append(addSelectionButton_img) + addSelectionText = "Add" + else: + pass + + + # Microarray database information to display + if thisTrait and thisTrait.db and thisTrait.db.type == 'ProbeSet': #before, this line was only reached if thisTrait != 0, but now we need to check + try: + hddn['GeneId'] = int(string.strip(thisTrait.geneid)) + except: + pass + + Info2Disp = HT.Paragraph() + + #XZ: Gene Symbol + if thisTrait.symbol: + #XZ: Show SNP Browser only for mouse + if _Species == 'mouse': + self.cursor.execute("select geneSymbol from GeneList where geneSymbol = %s", thisTrait.symbol) + geneName = self.cursor.fetchone() + if geneName: + snpurl = os.path.join(webqtlConfig.CGIDIR, "main.py?FormID=SnpBrowserResultPage&submitStatus=1&diffAlleles=True&customStrain=True") + "&geneName=%s" % geneName[0] + else: + if thisTrait.chr and thisTrait.mb: + snpurl = os.path.join(webqtlConfig.CGIDIR, "main.py?FormID=SnpBrowserResultPage&submitStatus=1&diffAlleles=True&customStrain=True") + \ + "&chr=%s&start=%2.6f&end=%2.6f" % (thisTrait.chr, thisTrait.mb-0.002, thisTrait.mb+0.002) + else: + snpurl = "" + + if snpurl: + snpBrowserButton = HT.Href(url="#redirect", onClick="openNewWin('%s')" % snpurl) + snpBrowserButton_img = HT.Image("/images/snp_icon.jpg", name="addselect", alt=" View SNPs and Indels ", title=" View SNPs and Indels ", style="border:none;") + snpBrowserButton.append(snpBrowserButton_img) + snpBrowserText = "SNPs" + + #XZ: Show GeneWiki for all species + geneWikiButton = HT.Href(url="#redirect", onClick="openNewWin('%s')" % (os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE) + "?FormID=geneWiki&symbol=%s" % thisTrait.symbol)) + geneWikiButton_img = HT.Image("/images/genewiki_icon.jpg", name="addselect", alt=" Write or review comments about this gene ", title=" Write or review comments about this gene ", style="border:none;") + geneWikiButton.append(geneWikiButton_img) + geneWikiText = 'GeneWiki' + + #XZ: display similar traits in other selected datasets + if thisTrait and thisTrait.db and thisTrait.db.type=="ProbeSet" and thisTrait.symbol: + if _Species in ("mouse", "rat", "human"): + similarUrl = "%s?cmd=sch&gene=%s&alias=1&species=%s" % (os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), thisTrait.symbol, _Species) + similarButton = HT.Href(url="#redirect", onClick="openNewWin('%s')" % similarUrl) + similarButton_img = HT.Image("/images/find_icon.jpg", name="addselect", alt=" Find similar expression data ", title=" Find similar expression data ", style="border:none;") + similarButton.append(similarButton_img) + similarText = "Find" + else: + pass + tbl.append(HT.TR( + HT.TD('Gene Symbol: ', Class="fwb fs13", valign="top", nowrap="on", width=90), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span('%s' % thisTrait.symbol, valign="top", Class="fs13 fsI"), valign="top", width=740) + )) + else: + tbl.append(HT.TR( + HT.TD('Gene Symbol: ', Class="fwb fs13", valign="top", nowrap="on"), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span('Not available', Class="fs13 fsI"), valign="top") + )) + + #XZ: Gene Alias + if thisTrait.alias: + alias = string.replace(thisTrait.alias, ";", " ") + alias = string.join(string.split(alias), ", ") + tbl.append(HT.TR( + HT.TD('Aliases: ', Class="fwb fs13", valign="top", nowrap="on"), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span(alias, Class="fs13 fsI"), valign="top") + )) + + #XZ: Description + if thisTrait.description: + tSpan = HT.Span(thisTrait.description, Class="fs13") + if thisTrait.probe_target_description: + tSpan.append('; ', thisTrait.probe_target_description) + else: + tSpan = HT.Span('Not available', Class="fs13") + tbl.append(HT.TR( + HT.TD('Description: ', Class="fwb fs13", valign="top", nowrap="on"), + HT.TD(width=10, valign="top"), + HT.TD(tSpan, valign="top") + )) + + #XZ: Location + + #XZ: deal with Chr and Mb + if thisTrait.chr and thisTrait.mb: + tSpan = HT.Span('Chr %s @ %s Mb' % (thisTrait.chr,thisTrait.mb),Class="fs13") + elif (thisTrait.chr): + tSpan = HT.Span('Chr %s @ Unknown position' % (thisTrait.chr), Class="fs13") + else: + tSpan = HT.Span('Not available', Class="fs13") + + #XZ: deal with direction + if thisTrait.strand_probe == '+': + tSpan.append(' on the plus strand ') + elif thisTrait.strand_probe == '-': + tSpan.append(' on the minus strand ') + else: + pass + + tbl.append(HT.TR( + HT.TD('Location: ', Class="fwb fs13", valign="top", nowrap="on"), + HT.TD(width=10, valign="top"), + HT.TD(tSpan, valign="top") + )) + + ##display Verify Location button + try: + blatsequence = thisTrait.blatseq + if not blatsequence: + #XZ, 06/03/2009: ProbeSet name is not unique among platforms. We should use ProbeSet Id instead. + self.cursor.execute("""SELECT Probe.Sequence, Probe.Name + FROM Probe, ProbeSet, ProbeSetFreeze, ProbeSetXRef + WHERE ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id AND + ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + ProbeSetFreeze.Name = '%s' AND + ProbeSet.Name = '%s' AND + Probe.ProbeSetId = ProbeSet.Id order by Probe.SerialOrder""" % (thisTrait.db.name, thisTrait.name) ) + seqs = self.cursor.fetchall() + if not seqs: + raise ValueError + else: + blatsequence = '' + for seqt in seqs: + if int(seqt[1][-1]) % 2 == 1: + blatsequence += string.strip(seqt[0]) + + #--------Hongqiang add this part in order to not only blat ProbeSet, but also blat Probe + blatsequence = '%3E'+thisTrait.name+'%0A'+blatsequence+'%0A' + #XZ, 06/03/2009: ProbeSet name is not unique among platforms. We should use ProbeSet Id instead. + self.cursor.execute("""SELECT Probe.Sequence, Probe.Name + FROM Probe, ProbeSet, ProbeSetFreeze, ProbeSetXRef + WHERE ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id AND + ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + ProbeSetFreeze.Name = '%s' AND + ProbeSet.Name = '%s' AND + Probe.ProbeSetId = ProbeSet.Id order by Probe.SerialOrder""" % (thisTrait.db.name, thisTrait.name) ) + + seqs = self.cursor.fetchall() + for seqt in seqs: + if int(seqt[1][-1]) %2 == 1: + blatsequence += '%3EProbe_'+string.strip(seqt[1])+'%0A'+string.strip(seqt[0])+'%0A' + #-------- + #XZ, 07/16/2009: targetsequence is not used, so I comment out this block + #targetsequence = thisTrait.targetseq + #if targetsequence==None: + # targetsequence = "" + + #XZ: Pay attention to the parameter of version (rn, mm, hg). They need to be changed if necessary. + if _Species == "rat": + UCSC_BLAT_URL = webqtlConfig.UCSC_BLAT % ('rat', 'rn3', blatsequence) + UTHSC_BLAT_URL = "" + elif _Species == "mouse": + UCSC_BLAT_URL = webqtlConfig.UCSC_BLAT % ('mouse', 'mm9', blatsequence) + UTHSC_BLAT_URL = webqtlConfig.UTHSC_BLAT % ('mouse', 'mm9', blatsequence) + elif _Species == "human": + UCSC_BLAT_URL = webqtlConfig.UCSC_BLAT % ('human', 'hg19', blatsequence) + UTHSC_BLAT_URL = "" + else: + UCSC_BLAT_URL = "" + UTHSC_BLAT_URL = "" + + if UCSC_BLAT_URL: + verifyButton = HT.Href(url="#redirect", onClick="openNewWin('%s')" % UCSC_BLAT_URL) + verifyButtonImg = HT.Image("/images/verify_icon.jpg", name="addselect", alt=" Check probe locations at UCSC ", title=" Check probe locations at UCSC ", style="border:none;") + verifyButton.append(verifyButtonImg) + verifyText = 'Verify' + if UTHSC_BLAT_URL: + rnaseqButton = HT.Href(url="#redirect", onClick="openNewWin('%s')" % UTHSC_BLAT_URL) + rnaseqButtonImg = HT.Image("/images/rnaseq_icon.jpg", name="addselect", alt=" View probes, SNPs, and RNA-seq at UTHSC ", title=" View probes, SNPs, and RNA-seq at UTHSC ", style="border:none;") + rnaseqButton.append(rnaseqButtonImg) + rnaseqText = 'RNA-seq' + tSpan.append(HT.BR()) + except: + pass + + #Display probe information (if any) + if thisTrait.db.name.find('Liver') >= 0 and thisTrait.db.name.find('F2') < 0: + pass + else: + #query database for number of probes associated with trait; if count > 0, set probe tool button and text + self.cursor.execute("""SELECT count(*) + FROM Probe, ProbeSet + WHERE ProbeSet.Name = '%s' AND Probe.ProbeSetId = ProbeSet.Id""" % (thisTrait.name)) + + probeResult = self.cursor.fetchone() + if probeResult[0] > 0: + probeurl = "%s?FormID=showProbeInfo&database=%s&ProbeSetID=%s&CellID=%s&RISet=%s&incparentsf1=ON" \ + % (os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), thisTrait.db, thisTrait.name, thisTrait.cellid, fd.RISet) + probeButton = HT.Href(url="#redirect", onClick="openNewWin('%s')" % probeurl) + probeButton_img = HT.Image("/images/probe_icon.jpg", name="addselect", alt=" Check sequence of probes ", title=" Check sequence of probes ", style="border:none;") + probeButton.append(probeButton_img) + probeText = "Probes" + + tSpan = HT.Span(Class="fs13") + + #XZ: deal with blat score and blat specificity. + if thisTrait.probe_set_specificity or thisTrait.probe_set_blat_score: + if thisTrait.probe_set_specificity: + tSpan.append(HT.Href(url="/blatInfo.html", target="_blank", title="Values higher than 2 for the specificity are good", text="BLAT specificity", Class="non_bold"),": %.1f" % float(thisTrait.probe_set_specificity), " "*3) + if thisTrait.probe_set_blat_score: + tSpan.append("Score: %s" % int(thisTrait.probe_set_blat_score), " "*2) + + onClick="openNewWin('/blatInfo.html')" + + tbl.append(HT.TR( + HT.TD('Target Score: ', Class="fwb fs13", valign="top", nowrap="on"), + HT.TD(width=10, valign="top"), + HT.TD(tSpan, valign="top") + )) + + tSpan = HT.Span(Class="fs13") + tSpan.append(str(_Species).capitalize(), ", ", fd.RISet) + + tbl.append(HT.TR( + HT.TD('Species and Group: ', Class="fwb fs13", valign="top", nowrap="on"), + HT.TD(width=10, valign="top"), + HT.TD(tSpan, valign="top") + )) + + if thisTrait.cellid: + self.cursor.execute(""" + select ProbeFreeze.Name from ProbeFreeze, ProbeSetFreeze + where + ProbeFreeze.Id = ProbeSetFreeze.ProbeFreezeId AND + ProbeSetFreeze.Id = %d""" % thisTrait.db.id) + probeDBName = self.cursor.fetchone()[0] + tbl.append(HT.TR( + HT.TD('Database: ', Class="fs13 fwb", valign="top", nowrap="on"), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span('%s' % probeDBName, Class="non_bold"), valign="top") + )) + else: + tbl.append(HT.TR( + HT.TD('Database: ', Class="fs13 fwb", valign="top", nowrap="on"), + HT.TD(width=10, valign="top"), + HT.TD(HT.Href(text=thisTrait.db.fullname, url = webqtlConfig.INFOPAGEHREF % thisTrait.db.name, + target='_blank', Class="fs13 fwn non_bold"), valign="top") + )) + + #XZ: ID links + if thisTrait.genbankid or thisTrait.geneid or thisTrait.unigeneid or thisTrait.omim or thisTrait.homologeneid: + idStyle = "background:#dddddd;padding:2" + tSpan = HT.Span(Class="fs13") + if thisTrait.geneid: + gurl = HT.Href(text= 'Gene', target='_blank',\ + url=webqtlConfig.NCBI_LOCUSID % thisTrait.geneid, Class="fs14 fwn", title="Info from NCBI Entrez Gene") + tSpan.append(HT.Span(gurl, style=idStyle), " "*2) + if thisTrait.omim: + gurl = HT.Href(text= 'OMIM', target='_blank', \ + url= webqtlConfig.OMIM_ID % thisTrait.omim,Class="fs14 fwn", title="Summary from On Mendelian Inheritance in Man") + tSpan.append(HT.Span(gurl, style=idStyle), " "*2) + if thisTrait.unigeneid: + try: + gurl = HT.Href(text= 'UniGene',target='_blank',\ + url= webqtlConfig.UNIGEN_ID % tuple(string.split(thisTrait.unigeneid,'.')[:2]),Class="fs14 fwn", title="UniGene ID") + tSpan.append(HT.Span(gurl, style=idStyle), " "*2) + except: + pass + if thisTrait.genbankid: + thisTrait.genbankid = '|'.join(thisTrait.genbankid.split('|')[0:10]) + if thisTrait.genbankid[-1]=='|': + thisTrait.genbankid=thisTrait.genbankid[0:-1] + gurl = HT.Href(text= 'GenBank', target='_blank', \ + url= webqtlConfig.GENBANK_ID % thisTrait.genbankid,Class="fs14 fwn", title="Find the original GenBank sequence used to design the probes") + tSpan.append(HT.Span(gurl, style=idStyle), " "*2) + if thisTrait.homologeneid: + hurl = HT.Href(text= 'HomoloGene', target='_blank',\ + url=webqtlConfig.HOMOLOGENE_ID % thisTrait.homologeneid, Class="fs14 fwn", title="Find similar genes in other species") + tSpan.append(HT.Span(hurl, style=idStyle), " "*2) + + tbl.append( + HT.TR(HT.TD(colspan=3,height=6)), + HT.TR( + HT.TD('Resource Links: ', Class="fwb fs13", valign="top", nowrap="on"), + HT.TD(width=10, valign="top"), + HT.TD(tSpan, valign="top") + )) + + #XZ: Resource Links: + if thisTrait.symbol: + linkStyle = "background:#dddddd;padding:2" + tSpan = HT.Span(style="font-family:verdana,serif;font-size:13px") + + #XZ,12/26/2008: Gene symbol may contain single quotation mark. + #For example, Affymetrix, mouse430v2, 1440338_at, the symbol is 2'-Pde (geneid 211948) + #I debug this by using double quotation marks. + if _Species == "rat": + + #XZ, 7/16/2009: The url for SymAtlas (renamed as BioGPS) has changed. We don't need this any more + #symatlas_species = "Rattus norvegicus" + + #self.cursor.execute("SELECT kgID, chromosome,txStart,txEnd FROM GeneList_rn33 WHERE geneSymbol = '%s'" % thisTrait.symbol) + self.cursor.execute('SELECT kgID, chromosome,txStart,txEnd FROM GeneList_rn33 WHERE geneSymbol = "%s"' % thisTrait.symbol) + try: + kgId, chr, txst, txen = self.cursor.fetchall()[0] + if chr and txst and txen and kgId: + txst = int(txst*1000000) + txen = int(txen*1000000) + tSpan.append(HT.Span(HT.Href(text= 'UCSC',target="mainFrame",\ + title= 'Info from UCSC Genome Browser', url = webqtlConfig.UCSC_REFSEQ % ('rn3',kgId,chr,txst,txen),Class="fs14 fwn"), style=linkStyle) + , " "*2) + except: + pass + if _Species == "mouse": + + #XZ, 7/16/2009: The url for SymAtlas (renamed as BioGPS) has changed. We don't need this any more + #symatlas_species = "Mus musculus" + + #self.cursor.execute("SELECT chromosome,txStart,txEnd FROM GeneList WHERE geneSymbol = '%s'" % thisTrait.symbol) + self.cursor.execute('SELECT chromosome,txStart,txEnd FROM GeneList WHERE geneSymbol = "%s"' % thisTrait.symbol) + try: + chr, txst, txen = self.cursor.fetchall()[0] + if chr and txst and txen and thisTrait.refseq_transcriptid : + txst = int(txst*1000000) + txen = int(txen*1000000) + tSpan.append(HT.Span(HT.Href(text= 'UCSC',target="mainFrame",\ + title= 'Info from UCSC Genome Browser', url = webqtlConfig.UCSC_REFSEQ % ('mm9',thisTrait.refseq_transcriptid,chr,txst,txen), + Class="fs14 fwn"), style=linkStyle) + , " "*2) + except: + pass + + #XZ, 7/16/2009: The url for SymAtlas (renamed as BioGPS) has changed. We don't need this any more + #tSpan.append(HT.Span(HT.Href(text= 'SymAtlas',target="mainFrame",\ + # url="http://symatlas.gnf.org/SymAtlas/bioentry?querytext=%s&query=14&species=%s&type=Expression" \ + # % (thisTrait.symbol,symatlas_species),Class="fs14 fwn", \ + # title="Expression across many tissues and cell types"), style=linkStyle), " "*2) + if thisTrait.geneid and (_Species == "mouse" or _Species == "rat" or _Species == "human"): + tSpan.append(HT.Span(HT.Href(text= 'BioGPS',target="mainFrame",\ + url="http://biogps.gnf.org/?org=%s#goto=genereport&id=%s" \ + % (_Species, thisTrait.geneid),Class="fs14 fwn", \ + title="Expression across many tissues and cell types"), style=linkStyle), " "*2) + tSpan.append(HT.Span(HT.Href(text= 'STRING',target="mainFrame",\ + url="http://string.embl.de/newstring_cgi/show_link_summary.pl?identifier=%s" \ + % thisTrait.symbol,Class="fs14 fwn", \ + title="Protein interactions: known and inferred"), style=linkStyle), " "*2) + if thisTrait.geneid: + tSpan.append(HT.Span(HT.Href(text= 'PANTHER',target="mainFrame", \ + url="http://www.pantherdb.org/genes/gene.do?acc=%s" \ + % thisTrait.geneid,Class="fs14 fwn", \ + title="Gene and protein data resources from Celera-ABI"), style=linkStyle), " "*2) + else: + pass + #tSpan.append(HT.Span(HT.Href(text= 'BIND',target="mainFrame",\ + # url="http://bind.ca/?textquery=%s" \ + # % thisTrait.symbol,Class="fs14 fwn", \ + # title="Protein interactions"), style=linkStyle), " "*2) + if thisTrait.geneid and (_Species == "mouse" or _Species == "rat" or _Species == "human"): + tSpan.append(HT.Span(HT.Href(text= 'Gemma',target="mainFrame",\ + url="http://www.chibi.ubc.ca/Gemma/gene/showGene.html?ncbiid=%s" \ + % thisTrait.geneid, Class="fs14 fwn", \ + title="Meta-analysis of gene expression data"), style=linkStyle), " "*2) + tSpan.append(HT.Span(HT.Href(text= 'SynDB',target="mainFrame",\ + url="http://lily.uthsc.edu:8080/20091027_GNInterfaces/20091027_redirectSynDB.jsp?query=%s" \ + % thisTrait.symbol, Class="fs14 fwn", \ + title="Brain synapse database"), style=linkStyle), " "*2) + if _Species == "mouse": + tSpan.append(HT.Span(HT.Href(text= 'ABA',target="mainFrame",\ + url="http://mouse.brain-map.org/brain/%s.html" \ + % thisTrait.symbol, Class="fs14 fwn", \ + title="Allen Brain Atlas"), style=linkStyle), " "*2) + + if thisTrait.geneid: + #if _Species == "mouse": + # tSpan.append(HT.Span(HT.Href(text= 'ABA',target="mainFrame",\ + # url="http://www.brain-map.org/search.do?queryText=egeneid=%s" \ + # % thisTrait.geneid, Class="fs14 fwn", \ + # title="Allen Brain Atlas"), style=linkStyle), " "*2) + if _Species == "human": + tSpan.append(HT.Span(HT.Href(text= 'ABA',target="mainFrame",\ + url="http://humancortex.alleninstitute.org/has/human/imageseries/search/1.html?searchSym=t&searchAlt=t&searchName=t&gene_term=&entrez_term=%s" \ + % thisTrait.geneid, Class="fs14 fwn", \ + title="Allen Brain Atlas"), style=linkStyle), " "*2) + tbl.append( + HT.TR(HT.TD(colspan=3,height=6)), + HT.TR( + HT.TD(' '), + HT.TD(width=10, valign="top"), + HT.TD(tSpan, valign="top"))) + + menuTable = HT.TableLite(cellpadding=2, Class="collap", width="620", id="target1") + menuTable.append(HT.TR(HT.TD(addSelectionButton, align="center"),HT.TD(similarButton, align="center"),HT.TD(verifyButton, align="center"),HT.TD(geneWikiButton, align="center"),HT.TD(snpBrowserButton, align="center"),HT.TD(rnaseqButton, align="center"),HT.TD(probeButton, align="center"),HT.TD(updateButton, align="center"), colspan=3, height=50, style="vertical-align:bottom;")) + menuTable.append(HT.TR(HT.TD(addSelectionText, align="center"),HT.TD(similarText, align="center"),HT.TD(verifyText, align="center"),HT.TD(geneWikiText, align="center"),HT.TD(snpBrowserText, align="center"),HT.TD(rnaseqText, align="center"),HT.TD(probeText, align="center"),HT.TD(updateText, align="center"), colspan=3, height=50, style="vertical-align:bottom;")) + + + #for zhou mi's cliques, need to be removed + #if self.database[:6] == 'BXDMic' and self.ProbeSetID in cliqueID: + # Info2Disp.append(HT.Strong('Clique Search: '),HT.Href(text='Search',\ + # url ="http://compbio1.utmem.edu/clique_go/results.php?pid=%s&pval_1=0&pval_2=0.001" \ + # % self.ProbeSetID,target='_blank',Class="normalsize"),HT.BR()) + + #linkTable.append(HT.TR(linkTD)) + #Info2Disp.append(linkTable) + title1Body.append(tbl, HT.BR(), menuTable) + + elif thisTrait and thisTrait.db and thisTrait.db.type =='Publish': #Check if trait is phenotype + + if thisTrait.confidential: + tbl.append(HT.TR( + HT.TD('Pre-publication Phenotype: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span(thisTrait.pre_publication_description, Class="fs13"), valign="top", width=740) + )) + if webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users): + tbl.append(HT.TR( + HT.TD('Post-publication Phenotype: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span(thisTrait.post_publication_description, Class="fs13"), valign="top", width=740) + )) + tbl.append(HT.TR( + HT.TD('Pre-publication Abbreviation: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span(thisTrait.pre_publication_abbreviation, Class="fs13"), valign="top", width=740) + )) + tbl.append(HT.TR( + HT.TD('Post-publication Abbreviation: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span(thisTrait.post_publication_abbreviation, Class="fs13"), valign="top", width=740) + )) + tbl.append(HT.TR( + HT.TD('Lab code: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span(thisTrait.lab_code, Class="fs13"), valign="top", width=740) + )) + tbl.append(HT.TR( + HT.TD('Owner: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span(thisTrait.owner, Class="fs13"), valign="top", width=740) + )) + else: + tbl.append(HT.TR( + HT.TD('Phenotype: ', Class="fs13 fwb", valign="top", nowrap="on", width=90), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span(thisTrait.post_publication_description, Class="fs13"), valign="top", width=740) + )) + tbl.append(HT.TR( + HT.TD('Authors: ', Class="fs13 fwb", + valign="top", nowrap="on", width=90), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span(thisTrait.authors, Class="fs13"), + valign="top", width=740) + )) + tbl.append(HT.TR( + HT.TD('Title: ', Class="fs13 fwb", + valign="top", nowrap="on", width=90), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span(thisTrait.title, Class="fs13"), + valign="top", width=740) + )) + if thisTrait.journal: + journal = thisTrait.journal + if thisTrait.year: + journal = thisTrait.journal + " (%s)" % thisTrait.year + + tbl.append(HT.TR( + HT.TD('Journal: ', Class="fs13 fwb", + valign="top", nowrap="on", width=90), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span(journal, Class="fs13"), + valign="top", width=740) + )) + PubMedLink = "" + if thisTrait.pubmed_id: + PubMedLink = webqtlConfig.PUBMEDLINK_URL % thisTrait.pubmed_id + if PubMedLink: + tbl.append(HT.TR( + HT.TD('Link: ', Class="fs13 fwb", + valign="top", nowrap="on", width=90), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span(HT.Href(url=PubMedLink, text="PubMed",target='_blank',Class="fs14 fwn"), + style = "background:#cddcff;padding:2"), valign="top", width=740) + )) + + menuTable = HT.TableLite(cellpadding=2, Class="collap", width="150", id="target1") + menuTable.append(HT.TR(HT.TD(addSelectionButton, align="center"),HT.TD(updateButton, align="center"), colspan=3, height=50, style="vertical-align:bottom;")) + menuTable.append(HT.TR(HT.TD(addSelectionText, align="center"),HT.TD(updateText, align="center"), colspan=3, height=50, style="vertical-align:bottom;")) + + title1Body.append(tbl, HT.BR(), menuTable) + + elif thisTrait and thisTrait.db and thisTrait.db.type == 'Geno': #Check if trait is genotype + + GenoInfo = HT.Paragraph() + if thisTrait.chr and thisTrait.mb: + location = ' Chr %s @ %s Mb' % (thisTrait.chr,thisTrait.mb) + else: + location = "not available" + + if thisTrait.sequence and len(thisTrait.sequence) > 100: + if _Species == "rat": + UCSC_BLAT_URL = webqtlConfig.UCSC_BLAT % ('rat', 'rn3', thisTrait.sequence) + UTHSC_BLAT_URL = webqtlConfig.UTHSC_BLAT % ('rat', 'rn3', thisTrait.sequence) + elif _Species == "mouse": + UCSC_BLAT_URL = webqtlConfig.UCSC_BLAT % ('mouse', 'mm9', thisTrait.sequence) + UTHSC_BLAT_URL = webqtlConfig.UTHSC_BLAT % ('mouse', 'mm9', thisTrait.sequence) + elif _Species == "human": + UCSC_BLAT_URL = webqtlConfig.UCSC_BLAT % ('human', 'hg19', blatsequence) + UTHSC_BLAT_URL = webqtlConfig.UTHSC_BLAT % ('human', 'hg19', thisTrait.sequence) + else: + UCSC_BLAT_URL = "" + UTHSC_BLAT_URL = "" + if UCSC_BLAT_URL: + verifyButton = HT.Href(url="#redirect", onClick="openNewWin('%s')" % UCSC_BLAT_URL) + verifyButtonImg = HT.Image("/images/verify_icon.jpg", name="addselect", alt=" Check probe locations at UCSC ", title=" Check probe locations at UCSC ", style="border:none;") + verifyButton.append(verifyButtonImg) + verifyText = "Verify" + rnaseqButton = HT.Href(url="#redirect", onClick="openNewWin('%s')" % UTHSC_BLAT_URL) + rnaseqButtonImg = HT.Image("/images/rnaseq_icon.jpg", name="addselect", alt=" View probes, SNPs, and RNA-seq at UTHSC ", title=" View probes, SNPs, and RNA-seq at UTHSC ", style="border:none;") + rnaseqButton.append(rnaseqButtonImg) + rnaseqText = "RNA-seq" + + tbl.append(HT.TR( + HT.TD('Location: ', Class="fs13 fwb", + valign="top", nowrap="on", width=90), + HT.TD(width=10, valign="top"), + HT.TD(HT.Span(location, Class="fs13"), valign="top", width=740) + ), + HT.TR( + HT.TD('SNP Search: ', Class="fs13 fwb", + valign="top", nowrap="on", width=90), + HT.TD(width=10, valign="top"), + HT.TD(HT.Href("http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=snp&cmd=search&term=%s" % thisTrait.name, 'NCBI',Class="fs13"), + valign="top", width=740) + )) + + menuTable = HT.TableLite(cellpadding=2, Class="collap", width="275", id="target1") + menuTable.append(HT.TR(HT.TD(addSelectionButton, align="center"),HT.TD(verifyButton, align="center"),HT.TD(rnaseqButton, align="center"), HT.TD(updateButton, align="center"), colspan=3, height=50, style="vertical-align:bottom;")) + menuTable.append(HT.TR(HT.TD(addSelectionText, align="center"),HT.TD(verifyText, align="center"),HT.TD(rnaseqText, align="center"), HT.TD(updateText, align="center"), colspan=3, height=50, style="vertical-align:bottom;")) + + title1Body.append(tbl, HT.BR(), menuTable) + + elif (thisTrait == None or thisTrait.db.type == 'Temp'): #if temporary trait (user-submitted trait or PCA trait) + + TempInfo = HT.Paragraph() + if thisTrait != None: + if thisTrait.description: + tbl.append(HT.TR(HT.TD(HT.Strong('Description: '),' %s ' % thisTrait.description,HT.BR()), colspan=3, height=15)) + else: + tbl.append(HT.TR(HT.TD(HT.Strong('Description: '),'not available',HT.BR(),HT.BR()), colspan=3, height=15)) + + if (updateText == "Edit"): + menuTable = HT.TableLite(cellpadding=2, Class="collap", width="150", id="target1") + else: + menuTable = HT.TableLite(cellpadding=2, Class="collap", width="80", id="target1") + + menuTable.append(HT.TR(HT.TD(addSelectionButton, align="right"),HT.TD(updateButton, align="right"), colspan=3, height=50, style="vertical-align:bottom;") ) + menuTable.append(HT.TR(HT.TD(addSelectionText, align="center"),HT.TD(updateText, align="center"), colspan=3, height=50, style="vertical-align:bottom;")) + + title1Body.append(tbl, HT.BR(), menuTable) + + else: + pass + + + ########################################## + ## Function to display analysis tools + ########################################## + def dispBasicStatistics(self, fd, title2Body, thisTrait): + + #XZ, June 22, 2011: The definition and usage of primary_strains, other_strains, specialStrains, all_strains are not clear and hard to understand. But since they are only used in this function for draw graph purpose, they will not hurt the business logic outside. As of June 21, 2011, this function seems work fine, so no hurry to clean up. These parameters and code in this function should be cleaned along with fd.f1list, fd.parlist, fd.strainlist later. + stats_row = HT.TR() + stats_cell = HT.TD() + + if fd.genotype.type == "riset": + strainlist = fd.f1list + fd.strainlist + else: + strainlist = fd.f1list + fd.parlist + fd.strainlist + + other_strains = [] #XZ: strain that is not of primary group + specialStrains = [] #XZ: This might be replaced by other_strains / ZS: It is just other strains without parent/f1 strains. + all_strains = [] + primary_strains = [] #XZ: strain of primary group, e.g., BXD, LXS + + MDP_menu = HT.Select(name='stats_mdp', Class='stats_mdp') + + for strain in thisTrait.data.keys(): + strainName = strain.replace("_2nd_", "") + if strain not in strainlist: + if (thisTrait.data[strainName].val != None): + if strain.find('F1') < 0: + specialStrains.append(strain) + if (thisTrait.data[strainName].val != None) and (strain not in (fd.f1list + fd.parlist)): + other_strains.append(strain) #XZ: at current stage, other_strains doesn't include parent strains and F1 strains of primary group + else: + if (thisTrait.data[strainName].val != None) and (strain not in (fd.f1list + fd.parlist)): + primary_strains.append(strain) #XZ: at current stage, the primary_strains is the same as fd.strainlist / ZS: I tried defining primary_strains as fd.strainlist instead, but in some cases it ended up including the parent strains (1436869_at BXD) + + if len(other_strains) > 3: + other_strains.sort(key=webqtlUtil.natsort_key) + primary_strains.sort(key=webqtlUtil.natsort_key) + primary_strains = map(lambda X:"_2nd_"+X, fd.f1list + fd.parlist) + primary_strains #XZ: note that fd.f1list and fd.parlist are added. + all_strains = primary_strains + other_strains + other_strains = map(lambda X:"_2nd_"+X, fd.f1list + fd.parlist) + other_strains #XZ: note that fd.f1list and fd.parlist are added. + MDP_menu.append(('All Cases','0')) + MDP_menu.append(('%s Only' % fd.RISet,'1')) + MDP_menu.append(('Non-%s Only' % fd.RISet,'2')) + stats_row.append("Include: ", MDP_menu, HT.BR(), HT.BR()) + else: + if (len(other_strains) > 0) and (len(primary_strains) + len(other_strains) > 3): + MDP_menu.append(('All Cases','0')) + MDP_menu.append(('%s Only' % fd.RISet,'1')) + MDP_menu.append(('Non-%s Only' % fd.RISet,'2')) + stats_row.append("Include: ", MDP_menu, " "*3) + all_strains = primary_strains + all_strains.sort(key=webqtlUtil.natsort_key) + all_strains = map(lambda X:"_2nd_"+X, fd.f1list + fd.parlist) + all_strains + primary_strains = map(lambda X:"_2nd_"+X, fd.f1list + fd.parlist) + primary_strains + else: + all_strains = strainlist + + other_strains.sort(key=webqtlUtil.natsort_key) + all_strains = all_strains + other_strains + pass + + update_button = HT.Input(type='button',value=' Update Figures ', Class="button update") #This is used to reload the page and update the Basic Statistics figures with user-edited data + stats_row.append(update_button, HT.BR(), HT.BR()) + + if (len(other_strains)) > 0 and (len(primary_strains) + len(other_strains) > 4): + #One set of vals for all, selected strain only, and non-selected only + vals1 = [] + vals2 = [] + vals3 = [] + + #Using all strains/cases for values + for i, strainNameOrig in enumerate(all_strains): + strainName = strainNameOrig.replace("_2nd_", "") + + try: + thisval = thisTrait.data[strainName].val + thisvar = thisTrait.data[strainName].var + thisValFull = [strainName,thisval,thisvar] + except: + continue + + vals1.append(thisValFull) + + #Using just the RISet strain + for i, strainNameOrig in enumerate(primary_strains): + strainName = strainNameOrig.replace("_2nd_", "") + + try: + thisval = thisTrait.data[strainName].val + thisvar = thisTrait.data[strainName].var + thisValFull = [strainName,thisval,thisvar] + except: + continue + + vals2.append(thisValFull) + + #Using all non-RISet strains only + for i, strainNameOrig in enumerate(other_strains): + strainName = strainNameOrig.replace("_2nd_", "") + + try: + thisval = thisTrait.data[strainName].val + thisvar = thisTrait.data[strainName].var + thisValFull = [strainName,thisval,thisvar] + except: + continue + + vals3.append(thisValFull) + + vals_set = [vals1,vals2,vals3] + + else: + vals = [] + + #Using all strains/cases for values + for i, strainNameOrig in enumerate(all_strains): + strainName = strainNameOrig.replace("_2nd_", "") + + try: + thisval = thisTrait.data[strainName].val + thisvar = thisTrait.data[strainName].var + thisValFull = [strainName,thisval,thisvar] + except: + continue + + vals.append(thisValFull) + + vals_set = [vals] + + stats_script = HT.Script(language="Javascript") #script needed for tabs + + for i, vals in enumerate(vals_set): + if i == 0 and len(vals) < 4: + stats_container = HT.Div(id="stats_tabs", style="padding:10px;", Class="ui-tabs") #Needed for tabs; notice the "stats_script_text" below referring to this element + stats_container.append(HT.Div(HT.Italic("Fewer than 4 case data were entered. No statistical analysis has been attempted."))) + stats_script_text = """$(function() { $("#stats_tabs").tabs();});""" + stats_cell.append(stats_container) + break + elif (i == 1 and len(primary_strains) < 4): + stats_container = HT.Div(id="stats_tabs%s" % i, Class="ui-tabs") + stats_container.append(HT.Div(HT.Italic("Fewer than 4 " + fd.RISet + " case data were entered. No statistical analysis has been attempted."))) + elif (i == 2 and len(other_strains) < 4): + stats_container = HT.Div(id="stats_tabs%s" % i, Class="ui-tabs") + stats_container.append(HT.Div(HT.Italic("Fewer than 4 non-" + fd.RISet + " case data were entered. No statistical analysis has been attempted."))) + stats_script_text = """$(function() { $("#stats_tabs0").tabs(); $("#stats_tabs1").tabs(); $("#stats_tabs2").tabs();});""" + else: + stats_container = HT.Div(id="stats_tabs%s" % i, Class="ui-tabs") + stats_script_text = """$(function() { $("#stats_tabs0").tabs(); $("#stats_tabs1").tabs(); $("#stats_tabs2").tabs();});""" + if len(vals) > 4: + stats_tab_list = [HT.Href(text="Basic Table", url="#statstabs-1", Class="stats_tab"),HT.Href(text="Probability Plot", url="#statstabs-5", Class="stats_tab"), + HT.Href(text="Bar Graph (by name)", url="#statstabs-3", Class="stats_tab"), HT.Href(text="Bar Graph (by rank)", url="#statstabs-4", Class="stats_tab"), + HT.Href(text="Box Plot", url="#statstabs-2", Class="stats_tab")] + stats_tabs = HT.List(stats_tab_list) + stats_container.append(stats_tabs) + + table_div = HT.Div(id="statstabs-1") + table_container = HT.Paragraph() + + statsTable = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + + if thisTrait.db: + if thisTrait.cellid: + statsTableCell = BasicStatisticsFunctions.basicStatsTable(vals=vals, trait_type=thisTrait.db.type, cellid=thisTrait.cellid) + else: + statsTableCell = BasicStatisticsFunctions.basicStatsTable(vals=vals, trait_type=thisTrait.db.type) + else: + statsTableCell = BasicStatisticsFunctions.basicStatsTable(vals=vals) + + statsTable.append(HT.TR(HT.TD(statsTableCell))) + + table_container.append(statsTable) + table_div.append(table_container) + stats_container.append(table_div) + + normalplot_div = HT.Div(id="statstabs-5") + normalplot_container = HT.Paragraph() + normalplot = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + + try: + plotTitle = thisTrait.symbol + plotTitle += ": " + plotTitle += thisTrait.name + except: + plotTitle = str(thisTrait.name) + + normalplot_img = BasicStatisticsFunctions.plotNormalProbability(vals=vals, RISet=fd.RISet, title=plotTitle, specialStrains=specialStrains) + normalplot.append(HT.TR(HT.TD(normalplot_img))) + normalplot.append(HT.TR(HT.TD(HT.BR(),HT.BR(),"This plot evaluates whether data are \ + normally distributed. Different symbols represent different groups.",HT.BR(),HT.BR(), + "More about ", HT.Href(url="http://en.wikipedia.org/wiki/Normal_probability_plot", + target="_blank", text="Normal Probability Plots"), " and more about interpreting these plots from the ", HT.Href(url="/glossary.html#normal_probability", target="_blank", text="glossary")))) + normalplot_container.append(normalplot) + normalplot_div.append(normalplot_container) + stats_container.append(normalplot_div) + + boxplot_div = HT.Div(id="statstabs-2") + boxplot_container = HT.Paragraph() + boxplot = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + boxplot_img, boxplot_link = BasicStatisticsFunctions.plotBoxPlot(vals) + boxplot.append(HT.TR(HT.TD(boxplot_img, HT.P(), boxplot_link, align="left"))) + boxplot_container.append(boxplot) + boxplot_div.append(boxplot_container) + stats_container.append(boxplot_div) + + + barName_div = HT.Div(id="statstabs-3") + barName_container = HT.Paragraph() + barName = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + barName_img = BasicStatisticsFunctions.plotBarGraph(identification=fd.identification, RISet=fd.RISet, vals=vals, type="name") + barName.append(HT.TR(HT.TD(barName_img))) + barName_container.append(barName) + barName_div.append(barName_container) + stats_container.append(barName_div) + + barRank_div = HT.Div(id="statstabs-4") + barRank_container = HT.Paragraph() + barRank = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + barRank_img = BasicStatisticsFunctions.plotBarGraph(identification=fd.identification, RISet=fd.RISet, vals=vals, type="rank") + barRank.append(HT.TR(HT.TD(barRank_img))) + barRank_container.append(barRank) + barRank_div.append(barRank_container) + stats_container.append(barRank_div) + + stats_cell.append(stats_container) + + stats_script.append(stats_script_text) + + submitTable = HT.TableLite(cellspacing=0, cellpadding=0, width="100%", Class="target2") + stats_row.append(stats_cell) + + submitTable.append(stats_row) + submitTable.append(stats_script) + + title2Body.append(submitTable) + + + def dispCorrelationTools(self, fd, title3Body, thisTrait): + + _Species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=fd.RISet) + + RISetgp = fd.RISet + if RISetgp[:3] == 'BXD': + RISetgp = 'BXD' + + if RISetgp: + sample_correlation = HT.Input(type='button',name='sample_corr', value=' Compute ', Class="button sample_corr") + lit_correlation = HT.Input(type='button',name='lit_corr', value=' Compute ', Class="button lit_corr") + tissue_correlation = HT.Input(type='button',name='tiss_corr', value=' Compute ', Class="button tiss_corr") + methodText = HT.Span("Calculate:", Class="ffl fwb fs12") + + databaseText = HT.Span("Database:", Class="ffl fwb fs12") + databaseMenu1 = HT.Select(name='database1') + databaseMenu2 = HT.Select(name='database2') + databaseMenu3 = HT.Select(name='database3') + + nmenu = 0 + self.cursor.execute('SELECT PublishFreeze.FullName,PublishFreeze.Name FROM \ + PublishFreeze,InbredSet WHERE PublishFreeze.InbredSetId = InbredSet.Id \ + and InbredSet.Name = "%s" and PublishFreeze.public > %d' % \ + (RISetgp,webqtlConfig.PUBLICTHRESH)) + for item in self.cursor.fetchall(): + databaseMenu1.append(item) + databaseMenu2.append(item) + databaseMenu3.append(item) + nmenu += 1 + self.cursor.execute('SELECT GenoFreeze.FullName,GenoFreeze.Name FROM GenoFreeze,\ + InbredSet WHERE GenoFreeze.InbredSetId = InbredSet.Id and InbredSet.Name = \ + "%s" and GenoFreeze.public > %d' % (RISetgp,webqtlConfig.PUBLICTHRESH)) + for item in self.cursor.fetchall(): + databaseMenu1.append(item) + databaseMenu2.append(item) + databaseMenu3.append(item) + nmenu += 1 + #03/09/2009: Xiaodong changed the SQL query to order by Name as requested by Rob. + self.cursor.execute('SELECT Id, Name FROM Tissue order by Name') + for item in self.cursor.fetchall(): + TId, TName = item + databaseMenuSub = HT.Optgroup(label = '%s ------' % TName) + self.cursor.execute('SELECT ProbeSetFreeze.FullName,ProbeSetFreeze.Name FROM ProbeSetFreeze, ProbeFreeze, \ + InbredSet WHERE ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id and ProbeFreeze.TissueId = %d and \ + ProbeSetFreeze.public > %d and ProbeFreeze.InbredSetId = InbredSet.Id and InbredSet.Name like "%s%%" \ + order by ProbeSetFreeze.CreateTime desc, ProbeSetFreeze.AvgId ' % (TId,webqtlConfig.PUBLICTHRESH, RISetgp)) + for item2 in self.cursor.fetchall(): + databaseMenuSub.append(item2) + nmenu += 1 + databaseMenu1.append(databaseMenuSub) + databaseMenu2.append(databaseMenuSub) + databaseMenu3.append(databaseMenuSub) + if nmenu: + if thisTrait and thisTrait.db != None: + databaseMenu1.selected.append(thisTrait.db.fullname) + databaseMenu2.selected.append(thisTrait.db.fullname) + databaseMenu3.selected.append(thisTrait.db.fullname) + + criteriaText = HT.Span("Return:", Class="ffl fwb fs12") + + criteriaMenu1 = HT.Select(name='criteria1', selected='500', onMouseOver="if (NS4 || IE4) activateEl('criterias', event);") + criteriaMenu1.append(('top 100','100')) + criteriaMenu1.append(('top 200','200')) + criteriaMenu1.append(('top 500','500')) + criteriaMenu1.append(('top 1000','1000')) + criteriaMenu1.append(('top 2000','2000')) + criteriaMenu1.append(('top 5000','5000')) + criteriaMenu1.append(('top 10000','10000')) + criteriaMenu1.append(('top 15000','15000')) + criteriaMenu1.append(('top 20000','20000')) + + criteriaMenu2 = HT.Select(name='criteria2', selected='500', onMouseOver="if (NS4 || IE4) activateEl('criterias', event);") + criteriaMenu2.append(('top 100','100')) + criteriaMenu2.append(('top 200','200')) + criteriaMenu2.append(('top 500','500')) + criteriaMenu2.append(('top 1000','1000')) + criteriaMenu2.append(('top 2000','2000')) + criteriaMenu2.append(('top 5000','5000')) + criteriaMenu2.append(('top 10000','10000')) + criteriaMenu2.append(('top 15000','15000')) + criteriaMenu2.append(('top 20000','20000')) + + criteriaMenu3 = HT.Select(name='criteria3', selected='500', onMouseOver="if (NS4 || IE4) activateEl('criterias', event);") + criteriaMenu3.append(('top 100','100')) + criteriaMenu3.append(('top 200','200')) + criteriaMenu3.append(('top 500','500')) + criteriaMenu3.append(('top 1000','1000')) + criteriaMenu3.append(('top 2000','2000')) + criteriaMenu3.append(('top 5000','5000')) + criteriaMenu3.append(('top 10000','10000')) + criteriaMenu3.append(('top 15000','15000')) + criteriaMenu3.append(('top 20000','20000')) + + + self.MDPRow1 = HT.TR(Class='mdp1') + self.MDPRow2 = HT.TR(Class='mdp2') + self.MDPRow3 = HT.TR(Class='mdp3') + + correlationMenus1 = HT.TableLite( + HT.TR(HT.TD(databaseText), HT.TD(databaseMenu1, colspan="3")), + HT.TR(HT.TD(criteriaText), HT.TD(criteriaMenu1)), + self.MDPRow1, cellspacing=0, width="619px", cellpadding=2) + correlationMenus1.append(HT.Input(name='orderBy', value='2', type='hidden')) # to replace the orderBy menu + correlationMenus2 = HT.TableLite( + HT.TR(HT.TD(databaseText), HT.TD(databaseMenu2, colspan="3")), + HT.TR(HT.TD(criteriaText), HT.TD(criteriaMenu2)), + self.MDPRow2, cellspacing=0, width="619px", cellpadding=2) + correlationMenus2.append(HT.Input(name='orderBy', value='2', type='hidden')) + correlationMenus3 = HT.TableLite( + HT.TR(HT.TD(databaseText), HT.TD(databaseMenu3, colspan="3")), + HT.TR(HT.TD(criteriaText), HT.TD(criteriaMenu3)), + self.MDPRow3, cellspacing=0, width="619px", cellpadding=2) + correlationMenus3.append(HT.Input(name='orderBy', value='2', type='hidden')) + + else: + correlationMenus = "" + + + corr_row = HT.TR() + corr_container = HT.Div(id="corr_tabs", Class="ui-tabs") + + if (thisTrait.db != None and thisTrait.db.type =='ProbeSet'): + corr_tab_list = [HT.Href(text='Sample r', url="#corrtabs-1"), HT.Href(text='Literature r', url="#corrtabs-2"), HT.Href(text='Tissue r', url="#corrtabs-3")] + else: + corr_tab_list = [HT.Href(text='Sample r', url="#corrtabs-1")] + + corr_tabs = HT.List(corr_tab_list) + corr_container.append(corr_tabs) + + if correlationMenus1 or correlationMenus2 or correlationMenus3: + sample_div = HT.Div(id="corrtabs-1") + sample_container = HT.Span() + + sample_type = HT.Input(type="radio", name="sample_method", value="1", checked="checked") + sample_type2 = HT.Input(type="radio", name="sample_method", value="2") + + sampleTable = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + sampleTD = HT.TD(correlationMenus1, HT.BR(), + "Pearson", sample_type, " "*3, "Spearman Rank", sample_type2, HT.BR(), HT.BR(), + sample_correlation, HT.BR(), HT.BR()) + + sampleTD.append(HT.Span("The ",HT.Href(url="/correlationAnnotation.html#sample_r", target="_blank", text="Sample Correlation")," is computed between trait data and", + " any ",HT.BR()," other traits in the sample database selected above. Use ", + HT.Href(url="/glossary.html#Correlations", target="_blank", text="Spearman Rank"), + HT.BR(),"when the sample size is small (<20) or when there are influential \ + outliers.", HT.BR(),Class="fs12")) + + sampleTable.append(sampleTD) + + sample_container.append(sampleTable) + sample_div.append(sample_container) + corr_container.append(sample_div) + + literature_div = HT.Div(id="corrtabs-2") + literature_container = HT.Span() + + literatureTable = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + literatureTD = HT.TD(correlationMenus2,HT.BR(),lit_correlation, HT.BR(), HT.BR()) + literatureTD.append(HT.Span("The ", HT.Href(url="/correlationAnnotation.html", target="_blank",text="Literature Correlation"), " (Lit r) between this gene and all other genes is computed",HT.BR(), + "using the ", HT.Href(url="https://grits.eecs.utk.edu/sgo/sgo.html", target="_blank", text="Semantic Gene Organizer"), + " and human, rat, and mouse data from PubMed. ", HT.BR(),"Values are ranked by Lit r, \ + but Sample r and Tissue r are also displayed.", HT.BR(), HT.BR(), + HT.Href(url="/glossary.html#Literature", target="_blank", text="More on using Lit r"), Class="fs12")) + literatureTable.append(literatureTD) + + literature_container.append(literatureTable) + literature_div.append(literature_container) + + if thisTrait.db != None: + if (thisTrait.db.type =='ProbeSet'): + corr_container.append(literature_div) + + tissue_div = HT.Div(id="corrtabs-3") + tissue_container = HT.Span() + + tissue_type = HT.Input(type="radio", name="tissue_method", value="4", checked="checked") + tissue_type2 = HT.Input(type="radio", name="tissue_method", value="5") + + tissueTable = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + tissueTD = HT.TD(correlationMenus3,HT.BR(), + "Pearson", tissue_type, " "*3, "Spearman Rank", tissue_type2, HT.BR(), HT.BR(), + tissue_correlation, HT.BR(), HT.BR()) + tissueTD.append(HT.Span("The ", HT.Href(url="/webqtl/main.py?FormID=tissueCorrelation", target="_blank", text="Tissue Correlation"), + " (Tissue r) estimates the similarity of expression of two genes",HT.BR()," or \ + transcripts across different cells, tissues, or organs (",HT.Href(url="/correlationAnnotation.html#tissue_r", target="_blank", text="glossary"),"). \ + Tissue correlations",HT.BR()," are generated by analyzing expression in multiple samples usually taken from \ + single cases.",HT.BR(),HT.Bold("Pearson")," and ",HT.Bold("Spearman Rank")," correlations have been computed for all pairs \ + of genes",HT.BR()," using data from mouse samples.", + HT.BR(), Class="fs12")) + tissueTable.append(tissueTD) + + tissue_container.append(tissueTable) + tissue_div.append(tissue_container) + if thisTrait.db != None: + if (thisTrait.db.type =='ProbeSet'): + corr_container.append(tissue_div) + + corr_row.append(HT.TD(corr_container)) + + corr_script = HT.Script(language="Javascript") + corr_script_text = """$(function() { $("#corr_tabs").tabs(); });""" + corr_script.append(corr_script_text) + + submitTable = HT.TableLite(cellspacing=0, cellpadding=0, width="100%", Class="target4") + submitTable.append(corr_row) + submitTable.append(corr_script) + + title3Body.append(submitTable) + + + def dispMappingTools(self, fd, title4Body, thisTrait): + + _Species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=fd.RISet) + + RISetgp = fd.RISet + if RISetgp[:3] == 'BXD': + RISetgp = 'BXD' + + #check boxes - one for regular interval mapping, the other for composite + permCheck1= HT.Input(type='checkbox', Class='checkbox', name='permCheck1',checked="on") + bootCheck1= HT.Input(type='checkbox', Class='checkbox', name='bootCheck1',checked=0) + permCheck2= HT.Input(type='checkbox', Class='checkbox', name='permCheck2',checked="on") + bootCheck2= HT.Input(type='checkbox', Class='checkbox', name='bootCheck2',checked=0) + optionbox1 = HT.Input(type='checkbox', Class='checkbox', name='parentsf14regression1',checked=0) + optionbox2 = HT.Input(type='checkbox', Class='checkbox', name='parentsf14regression2',checked=0) + optionbox3 = HT.Input(type='checkbox', Class='checkbox', name='parentsf14regression3',checked=0) + applyVariance1 = HT.Input(name='applyVarianceSE1',type='checkbox', Class='checkbox') + applyVariance2 = HT.Input(name='applyVarianceSE2',type='checkbox', Class='checkbox') + + IntervalMappingButton=HT.Input(type='button' ,name='interval',value=' Compute ', Class="button") + CompositeMappingButton=HT.Input(type='button' ,name='composite',value=' Compute ', Class="button") + MarkerRegressionButton=HT.Input(type='button',name='marker', value=' Compute ', Class="button") + + chrText = HT.Span("Chromosome:", Class="ffl fwb fs12") + + # updated by NL 5-28-2010 + # Interval Mapping + chrMenu = HT.Select(name='chromosomes1') + chrMenu.append(tuple(["All",-1])) + for i in range(len(fd.genotype)): + if len(fd.genotype[i]) > 1: + chrMenu.append(tuple([fd.genotype[i].name,i])) + + #Menu for Composite Interval Mapping + chrMenu2 = HT.Select(name='chromosomes2') + chrMenu2.append(tuple(["All",-1])) + for i in range(len(fd.genotype)): + if len(fd.genotype[i]) > 1: + chrMenu2.append(tuple([fd.genotype[i].name,i])) + + if fd.genotype.Mbmap: + scaleText = HT.Span("Mapping Scale:", Class="ffl fwb fs12") + scaleMenu1 = HT.Select(name='scale1', onChange="checkUncheck(window.document.dataInput.scale1.value, window.document.dataInput.permCheck1, window.document.dataInput.bootCheck1)") + scaleMenu1.append(("Megabase",'physic')) + scaleMenu1.append(("Centimorgan",'morgan')) + scaleMenu2 = HT.Select(name='scale2', onChange="checkUncheck(window.document.dataInput.scale2.value, window.document.dataInput.permCheck2, window.document.dataInput.bootCheck2)") + scaleMenu2.append(("Megabase",'physic')) + scaleMenu2.append(("Centimorgan",'morgan')) + + controlText = HT.Span("Control Locus:", Class="ffl fwb fs12") + controlMenu = HT.Input(type="text", name="controlLocus", Class="controlLocus") + + if fd.genotype.Mbmap: + intMappingMenu = HT.TableLite( + HT.TR(HT.TD(chrText), HT.TD(chrMenu, colspan="3")), + HT.TR(HT.TD(scaleText), HT.TD(scaleMenu1)), + cellspacing=0, width="263px", cellpadding=2) + compMappingMenu = HT.TableLite( + HT.TR(HT.TD(chrText), HT.TD(chrMenu2, colspan="3")), + HT.TR(HT.TD(scaleText), HT.TD(scaleMenu2)), + HT.TR(HT.TD(controlText), HT.TD(controlMenu)), + cellspacing=0, width="325px", cellpadding=2) + else: + intMappingMenu = HT.TableLite( + HT.TR(HT.TD(chrText), HT.TD(chrMenu, colspan="3")), + cellspacing=0, width="263px", cellpadding=2) + compMappingMenu = HT.TableLite( + HT.TR(HT.TD(chrText), HT.TD(chrMenu2, colspan="3")), + HT.TR(HT.TD(controlText), HT.TD(controlMenu)), + cellspacing=0, width="325px", cellpadding=2) + + directPlotButton = "" + directPlotButton = HT.Input(type='button',name='', value=' Compute ',\ + onClick="dataEditingFunc(this.form,'directPlot');",Class="button") + directPlotSortText = HT.Span(HT.Bold("Sort by: "), Class="ffl fwb fs12") + directPlotSortMenu = HT.Select(name='graphSort') + directPlotSortMenu.append(('LRS Full',0)) + directPlotSortMenu.append(('LRS Interact',1)) + directPlotPermuText = HT.Span("Permutation Test (n=500)", Class="ffl fs12") + directPlotPermu = HT.Input(type='checkbox', Class='checkbox',name='directPermuCheckbox', checked="on") + pairScanReturnText = HT.Span(HT.Bold("Return: "), Class="ffl fwb fs12") + pairScanReturnMenu = HT.Select(name='pairScanReturn') + pairScanReturnMenu.append(('top 50','50')) + pairScanReturnMenu.append(('top 100','100')) + pairScanReturnMenu.append(('top 200','200')) + pairScanReturnMenu.append(('top 500','500')) + + pairScanMenus = HT.TableLite( + HT.TR(HT.TD(directPlotSortText), HT.TD(directPlotSortMenu)), + HT.TR(HT.TD(pairScanReturnText), HT.TD(pairScanReturnMenu)), + cellspacing=0, width="232px", cellpadding=2) + + markerSuggestiveText = HT.Span(HT.Bold("Display LRS greater than:"), Class="ffl fwb fs12") + markerSuggestive = HT.Input(name='suggestive', size=5, maxlength=8) + displayAllText = HT.Span(" Display all LRS ", Class="ffl fs12") + displayAll = HT.Input(name='displayAllLRS', type="checkbox", Class='checkbox') + useParentsText = HT.Span(" Use Parents ", Class="ffl fs12") + useParents = optionbox2 + applyVarianceText = HT.Span(" Use Weighted ", Class="ffl fs12") + + markerMenu = HT.TableLite( + HT.TR(HT.TD(markerSuggestiveText), HT.TD(markerSuggestive)), + HT.TR(HT.TD(displayAll,displayAllText)), + HT.TR(HT.TD(useParents,useParentsText)), + HT.TR(HT.TD(applyVariance2,applyVarianceText)), + cellspacing=0, width="263px", cellpadding=2) + + + mapping_row = HT.TR() + mapping_container = HT.Div(id="mapping_tabs", Class="ui-tabs") + + mapping_tab_list = [HT.Href(text="Interval", url="#mappingtabs-1"), HT.Href(text="Marker Regression", url="#mappingtabs-2"), HT.Href(text="Composite", url="#mappingtabs-3"), HT.Href(text="Pair-Scan", url="#mappingtabs-4")] + mapping_tabs = HT.List(mapping_tab_list) + mapping_container.append(mapping_tabs) + + interval_div = HT.Div(id="mappingtabs-1") + interval_container = HT.Span() + + intervalTable = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + intTD = HT.TD(valign="top",NOWRAP='ON', Class="fs12 fwn") + intTD.append(intMappingMenu,HT.BR()) + + intTD.append(permCheck1,'Permutation Test (n=2000)',HT.BR(), + bootCheck1,'Bootstrap Test (n=2000)', HT.BR(), optionbox1, 'Use Parents', HT.BR(), + applyVariance1,'Use Weighted', HT.BR(), HT.BR(),IntervalMappingButton, HT.BR(), HT.BR()) + intervalTable.append(HT.TR(intTD), HT.TR(HT.TD(HT.Span(HT.Href(url='/glossary.html#intmap', target='_blank', text='Interval Mapping'), + ' computes linkage maps for the entire genome or single',HT.BR(),' chromosomes.', + ' The ',HT.Href(url='/glossary.html#permutation', target='_blank', text='Permutation Test'),' estimates suggestive and significant ',HT.BR(),' linkage scores. \ + The ',HT.Href(url='/glossary.html#bootstrap', target='_blank', text='Bootstrap Test'), ' estimates the precision of the QTL location.' + ,Class="fs12"), HT.BR(), valign="top"))) + + interval_container.append(intervalTable) + interval_div.append(interval_container) + mapping_container.append(interval_div) + + # Marker Regression + + marker_div = HT.Div(id="mappingtabs-2") + marker_container = HT.Span() + + markerTable = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + markerTD = HT.TD(valign="top",NOWRAP='ON', Class="fs12 fwn") + markerTD.append(markerMenu,HT.BR()) + + markerTD.append(MarkerRegressionButton,HT.BR(),HT.BR()) + + markerTable.append(HT.TR(markerTD),HT.TR(HT.TD(HT.Span(HT.Href(url='/glossary.html#',target='_blank',text='Marker regression'), + ' computes and displays LRS values for individual markers.',HT.BR(), + 'This function also lists additive effects (phenotype units per allele) and', HT.BR(), + 'dominance deviations for some datasets.', HT.BR(),Class="fs12"), HT.BR(), valign="top"))) + + marker_container.append(markerTable) + marker_div.append(marker_container) + mapping_container.append(marker_div) + + # Composite interval mapping + composite_div = HT.Div(id="mappingtabs-3") + composite_container = HT.Span() + + compositeTable = HT.TableLite(cellspacing=0, cellpadding=3, width="100%") + compTD = HT.TD(valign="top",NOWRAP='ON', Class="fs12 fwn") + compTD.append(compMappingMenu,HT.BR()) + + compTD.append(permCheck2, 'Permutation Test (n=2000)',HT.BR(), + bootCheck2,'Bootstrap Test (n=2000)', HT.BR(), + optionbox3, 'Use Parents', HT.BR(), HT.BR(), CompositeMappingButton, HT.BR(), HT.BR()) + compositeTable.append(HT.TR(compTD), HT.TR(HT.TD(HT.Span(HT.Href(url='/glossary.html#Composite',target='_blank',text='Composite Interval Mapping'), + " allows you to control for a single marker as",HT.BR()," a cofactor. ", + "To find a control marker, run the ",HT.Bold("Marker Regression")," function."), + HT.BR(), valign="top"))) + + composite_container.append(compositeTable) + composite_div.append(composite_container) + mapping_container.append(composite_div) + + # Pair Scan + + pairscan_div = HT.Div(id="mappingtabs-4") + pairscan_container = HT.Span() + + pairScanTable = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + pairScanTD = HT.TD(NOWRAP='ON', Class="fs12 fwn") + pairScanTD.append(pairScanMenus,HT.BR()) + pairScanTD.append(directPlotPermu, directPlotPermuText, HT.BR(), HT.BR(), + directPlotButton,HT.BR(),HT.BR()) + pairScanTable.append(HT.TR(pairScanTD), HT.TR(HT.TD(HT.Span(HT.Href(url='/glossary.html#Pair_Scan', target="_blank", text='Pair-Scan'), + ' searches for pairs of chromosomal regions that are',HT.BR(), + 'involved in two-locus epistatic interactions.'), HT.BR(), valign="top"))) + + pairscan_container.append(pairScanTable) + pairscan_div.append(pairscan_container) + mapping_container.append(pairscan_div) + + mapping_row.append(HT.TD(mapping_container)) + + # Treat Interval Mapping and Marker Regression and Pair Scan as a group for displaying + #disable Interval Mapping and Marker Regression and Pair Scan for human and the dataset doesn't have genotype file + mappingMethodId = webqtlDatabaseFunction.getMappingMethod(cursor=self.cursor, groupName=RISetgp) + + mapping_script = HT.Script(language="Javascript") + mapping_script_text = """$(function() { $("#mapping_tabs").tabs(); });""" + mapping_script.append(mapping_script_text) + + submitTable = HT.TableLite(cellspacing=0, cellpadding=0, width="100%", Class="target2") + + if mappingMethodId != None: + if int(mappingMethodId) == 1: + submitTable.append(mapping_row) + submitTable.append(mapping_script) + elif int(mappingMethodId) == 4: + # NL; 09-26-2011 testing for Human Genome Association function + mapping_row=HT.TR() + mapping_container = HT.Div(id="mapping_tabs", Class="ui-tabs") + + mapping_tab_list = [HT.Href(text="Genome Association", url="#mappingtabs-1")] + mapping_tabs = HT.List(mapping_tab_list) + mapping_container.append(mapping_tabs) + + # Genome Association + markerSuggestiveText = HT.Span(HT.Bold("P Value:"), Class="ffl fwb fs12") + + markerSuggestive = HT.Input(name='pValue', value='0.001', size=10, maxlength=20,onClick="this.value='';",onBlur="if(this.value==''){this.value='0.001'};") + markerMenu = HT.TableLite(HT.TR(HT.TD(markerSuggestiveText), HT.TD(markerSuggestive),HT.TD(HT.Italic('   (e.g. 0.001 or 1e-3 or 1E-3 or 3)'))),cellspacing=0, width="400px", cellpadding=2) + MarkerRegressionButton=HT.Input(type='button',name='computePlink', value='  Compute Using PLINK  ', onClick= "validatePvalue(this.form);", Class="button") + + marker_div = HT.Div(id="mappingtabs-1") + marker_container = HT.Span() + markerTable = HT.TableLite(cellspacing=0, cellpadding=0, width="100%") + markerTD = HT.TD(valign="top",NOWRAP='ON', Class="fs12 fwn") + markerTD.append(markerMenu,HT.BR()) + markerTD.append(MarkerRegressionButton,HT.BR(),HT.BR()) + markerTable.append(HT.TR(markerTD)) + + marker_container.append(markerTable) + marker_div.append(marker_container) + + mapping_container.append(marker_div) + mapping_row.append(HT.TD(mapping_container)) + submitTable.append(mapping_row) + submitTable.append(mapping_script) + else: + submitTable.append(HT.TR(HT.TD(HT.Div(HT.Italic("mappingMethodId %s has not been implemented for this dataset yet." % mappingMethodId), id="mapping_tabs", Class="ui-tabs")))) + submitTable.append(mapping_script) + + else: + submitTable.append(HT.TR(HT.TD(HT.Div(HT.Italic("Mapping options are disabled for data not matched with genotypes."), id="mapping_tabs", Class="ui-tabs")))) + submitTable.append(mapping_script) + + title4Body.append(submitTable) + + + def natural_sort(strain_list): + + sorted = [] + for strain in strain_list: + try: + strain = int(strain) + try: sorted[-1] = sorted[-1] * 10 + strain + except: sorted.append(strain) + except: + sorted.append(strain) + return sorted + + ########################################## + ## Function to display trait tables + ########################################## + def dispTraitValues(self, fd , title5Body, varianceDataPage, nCols, mainForm, thisTrait): + traitTableOptions = HT.Div(style="border: 3px solid #EEEEEE; -moz-border-radius: 10px; -webkit-border-radius: 10px; width: 625px; padding: 5px 5px 10px 8px; font-size: 12px; background: #DDDDDD;") + resetButton = HT.Input(type='button',name='resetButton',value=' Reset ',Class="button") + blockSamplesField = HT.Input(type="text",style="background-color:white;border: 1px solid black;font-size: 14px;", name="removeField") + blockSamplesButton = HT.Input(type='button',value=' Block ', name='blockSamples', Class="button") + showHideNoValue = HT.Input(type='button', name='showHideNoValue', value=' Hide No Value ',Class='button') + blockMenuSpan = HT.Span(Id="blockMenuSpan") + blockMenu = HT.Select(name='block_method') + + if fd.genotype.type == "riset": + allstrainlist_neworder = fd.f1list + fd.strainlist + else: + allstrainlist_neworder = fd.f1list + fd.parlist + fd.strainlist + + attribute_ids = [] + attribute_names = [] + try: + #ZS: Id values for this trait's extra attributes; used to create "Exclude" dropdown and query for attribute values and create + self.cursor.execute("""SELECT CaseAttribute.Id, CaseAttribute.Name + FROM CaseAttribute, CaseAttributeXRef + WHERE CaseAttributeXRef.ProbeSetFreezeId = '%s' AND + CaseAttribute.Id = CaseAttributeXRef.CaseAttributeId + group by CaseAttributeXRef.CaseAttributeId""" % (str(thisTrait.db.id))) + + exclude_menu = HT.Select(name="exclude_menu") + dropdown_menus = [] #ZS: list of dropdown menus with the distinct values of each attribute (contained in DIVs so the style parameter can be edited and they can be hidden) + + for attribute in self.cursor.fetchall(): + attribute_ids.append(attribute[0]) + attribute_names.append(attribute[1]) + for this_attr_name in attribute_names: + exclude_menu.append((this_attr_name.capitalize(), this_attr_name)) + self.cursor.execute("""SELECT DISTINCT CaseAttributeXRef.Value + FROM CaseAttribute, CaseAttributeXRef + WHERE CaseAttribute.Name = '%s' AND + CaseAttributeXRef.CaseAttributeId = CaseAttribute.Id""" % (this_attr_name)) + try: + distinct_values = self.cursor.fetchall() + attr_value_menu_div = HT.Div(style="display:none;", Class="attribute_values") #container used to show/hide dropdown menus + attr_value_menu = HT.Select(name=this_attr_name) + attr_value_menu.append(("None", "show_all")) + for value in distinct_values: + attr_value_menu.append((str(value[0]), value[0])) + attr_value_menu_div.append(attr_value_menu) + dropdown_menus.append(attr_value_menu_div) + except: + pass + except: + pass + + other_strains = [] + for strain in thisTrait.data.keys(): + if strain not in allstrainlist_neworder: + other_strains.append(strain) + + if other_strains: + blockMenu.append(('%s Only' % fd.RISet,'1')) + blockMenu.append(('Non-%s Only' % fd.RISet,'0')) + blockMenuSpan.append(blockMenu) + else: + pass + + showHideOutliers = HT.Input(type='button', name='showHideOutliers', value=' Hide Outliers ', Class='button') + showHideMenuOptions = HT.Span(Id="showHideOptions", style="line-height:225%;") + if other_strains: + showHideMenuOptions.append(HT.Bold("  Block samples by index:    "), blockSamplesField, "   ", blockMenuSpan, "   ", blockSamplesButton, HT.BR()) + else: + showHideMenuOptions.append(HT.Bold("  Block samples by index:    "), blockSamplesField, "   ", blockSamplesButton, HT.BR()) + + exportButton = HT.Input(type='button', name='export', value=' Export ', Class='button') + if len(attribute_names) > 0: + excludeButton = HT.Input(type='button', name='excludeGroup', value=' Block ', Class='button') + showHideMenuOptions.append(HT.Bold("  Block samples by group:"), " "*5, exclude_menu, " "*5) + for menu in dropdown_menus: + showHideMenuOptions.append(menu) + showHideMenuOptions.append(" "*5, excludeButton, HT.BR()) + showHideMenuOptions.append(HT.Bold("  Options:"), " "*5, showHideNoValue, " "*5, showHideOutliers, " "*5, resetButton, " "*5, exportButton) + + traitTableOptions.append(showHideMenuOptions,HT.BR(),HT.BR()) + traitTableOptions.append(HT.Span("  Outliers highlighted in ", HT.Bold(" yellow ", style="background-color:yellow;"), " can be hidden using the ", + HT.Strong(" Hide Outliers "), " button,",HT.BR(),"  and samples with no value (x) can be hidden by clicking ", + HT.Strong(" Hide No Value "), "."), HT.BR()) + + + dispintro = HT.Paragraph("Edit or delete values in the Trait Data boxes, and use the ", HT.Strong("Reset"), " option as needed.",Class="fs12", style="margin-left:20px;") + + table = HT.TableLite(cellspacing=0, cellpadding=0, width="100%", Class="target5") #Everything needs to be inside this table object in order for the toggle to work + container = HT.Div() #This will contain everything and be put into a cell of the table defined above + + container.append(dispintro, traitTableOptions, HT.BR()) + + primary_table = HT.TableLite(cellspacing=0, cellpadding=0, Id="sortable1", Class="tablesorter") + primary_header = self.getTableHeader(fd=fd, thisTrait=thisTrait, nCols=nCols, attribute_names=attribute_names) #Generate header for primary table object + + other_strainsExist = False + for strain in thisTrait.data.keys(): + if strain not in allstrainlist_neworder: + other_strainsExist = True + break + + primary_body = self.addTrait2Table(fd=fd, varianceDataPage=varianceDataPage, strainlist=allstrainlist_neworder, mainForm=mainForm, thisTrait=thisTrait, other_strainsExist=other_strainsExist, attribute_ids=attribute_ids, attribute_names=attribute_names, strains='primary') + + primary_table.append(primary_header) + for i in range(len(primary_body)): + primary_table.append(primary_body[i]) + + other_strains = [] + for strain in thisTrait.data.keys(): + if strain not in allstrainlist_neworder: + allstrainlist_neworder.append(strain) + other_strains.append(strain) + + if other_strains: + other_table = HT.TableLite(cellspacing=0, cellpadding=0, Id="sortable2", Class="tablesorter") #Table object with other (for example, non-BXD / MDP) traits + other_header = self.getTableHeader(fd=fd, thisTrait=thisTrait, nCols=nCols, attribute_names=attribute_names) #Generate header for other table object; same function is used as the one used for the primary table, since the header is the same + other_strains.sort() #Sort other strains + other_strains = map(lambda X:"_2nd_"+X, fd.f1list + fd.parlist) + other_strains #Append F1 and parent strains to the beginning of the sorted list of other strains + + MDPText = HT.Span("Samples:", Class="ffl fwb fs12") + MDPMenu1 = HT.Select(name='MDPChoice1') + MDPMenu2 = HT.Select(name='MDPChoice2') + MDPMenu3 = HT.Select(name='MDPChoice3') + MDPMenu1.append(('%s Only' % fd.RISet,'1')) + MDPMenu2.append(('%s Only' % fd.RISet,'1')) + MDPMenu3.append(('%s Only' % fd.RISet,'1')) + MDPMenu1.append(('Non-%s Only' % fd.RISet,'2')) + MDPMenu2.append(('Non-%s Only' % fd.RISet,'2')) + MDPMenu3.append(('Non-%s Only' % fd.RISet,'2')) + MDPMenu1.append(('All Cases','0')) + MDPMenu2.append(('All Cases','0')) + MDPMenu3.append(('All Cases','0')) + self.MDPRow1.append(HT.TD(MDPText),HT.TD(MDPMenu1)) + self.MDPRow2.append(HT.TD(MDPText),HT.TD(MDPMenu2)) + self.MDPRow3.append(HT.TD(MDPText),HT.TD(MDPMenu3)) + + other_body = self.addTrait2Table(fd=fd, varianceDataPage=varianceDataPage, strainlist=other_strains, mainForm=mainForm, thisTrait=thisTrait, attribute_ids=attribute_ids, attribute_names=attribute_names, strains='other') + + other_table.append(other_header) + for i in range(len(other_body)): + other_table.append(other_body[i]) + else: + pass + + if other_strains or (fd.f1list and thisTrait.data.has_key(fd.f1list[0])) \ + or (fd.f1list and thisTrait.data.has_key(fd.f1list[1])): + fd.allstrainlist = allstrainlist_neworder + + if nCols == 6 and fd.varianceDispName != 'Variance': + mainForm.append(HT.Input(name='isSE', value="yes", type='hidden')) + + primary_div = HT.Div(primary_table, Id="primary") #Container for table with primary (for example, BXD) strain values + container.append(primary_div) + + if other_strains: + other_div = HT.Div(other_table, Id="other") #Container for table with other (for example, Non-BXD/MDP) strain values + container.append(HT.Div(' ', height=30)) + container.append(other_div) + + table.append(HT.TR(HT.TD(container))) + title5Body.append(table) + + def addTrait2Table(self, fd, varianceDataPage, strainlist, mainForm, thisTrait, other_strainsExist=None, attribute_ids=[], attribute_names=[], strains='primary'): + #XZ, Aug 23, 2010: I commented the code related to the display of animal case + #strainInfo = thisTrait.has_key('strainInfo') and thisTrait.strainInfo + + table_body = [] + vals = [] + + for i, strainNameOrig in enumerate(strainlist): + strainName = strainNameOrig.replace("_2nd_", "") + + try: + thisval = thisTrait.data[strainName].val + thisvar = thisTrait.data[strainName].var + thisValFull = [strainName,thisval,thisvar] + except: + continue + + vals.append(thisValFull) + + upperBound, lowerBound = Plot.findOutliers(vals) # ZS: Values greater than upperBound or less than lowerBound are considered outliers. + + for i, strainNameOrig in enumerate(strainlist): + + trId = strainNameOrig + selectCheck = HT.Input(type="checkbox", name="selectCheck", value=trId, Class="checkbox", onClick="highlight(this)") + + strainName = strainNameOrig.replace("_2nd_", "") + strainNameAdd = '' + if fd.RISet == 'AXBXA' and strainName in ('AXB18/19/20','AXB13/14','BXA8/17'): + strainNameAdd = HT.Href(url='/mouseCross.html#AXB/BXA', text=HT.Sup('#'), Class='fs12', target="_blank") + + try: + thisval, thisvar, thisNP = thisTrait.data[strainName].val, thisTrait.data[strainName].var, thisTrait.data[strainName].N + if thisNP: + mainForm.append(HT.Input(name='N'+strainName, value=thisNP, type='hidden')) + else: + pass + except: + thisval = thisvar = 'x' + + try: + traitVal = thisval + dispVal = "%2.3f" % thisval + except: + traitVal = '' + dispVal = 'x' + + strainNameDisp = HT.Span(strainName, Class='fs14 fwn ffl') + + if varianceDataPage: + try: + traitVar = thisvar + dispVar = "%2.3f" % thisvar + except: + traitVar = '' + dispVar = 'x' + + if thisval == 'x': + traitVar = '' #ZS: Used to be 0, but it doesn't seem like a good idea for values of 0 to *always* be at the bottom when you sort; it makes more sense to put "nothing" + + className = 'fs13 b1 c222 ' + valueClassName = 'fs13 b1 c222 valueField ' + rowClassName = 'novalue ' + else: + if (thisval >= upperBound) or (thisval <= lowerBound): + className = 'fs13 b1 c222 outlier ' + valueClassName = 'fs13 b1 c222 valueField ' + rowClassName = 'outlier' + else: + className = 'fs13 b1 c222 ' + valueClassName = 'fs13 b1 c222 valueField ' + rowClassName = ' ' + + if varianceDataPage: + varClassName = valueClassName + str(traitVar) + valueClassName += str(traitVal) + + if strainNameOrig == strainName: + if other_strainsExist and strainNameOrig in (fd.parlist + fd.f1list): + ######################################################################################################################################################## + # ZS: Append value and variance to the value and variance input fields' list of classes; this is so the javascript can update the value when the user + # changes it. The updated value is then used when the table is sorted (tablesorter.js). This needs to be done because the "value" attribute is immutable. + ######################################################################################################################################################### + + valueField = HT.Input(name=strainNameOrig, size=8, maxlength=8, style="text-align:right; background-color:#FFFFFF;", value=dispVal, + onChange= "javascript:this.form['_2nd_%s'].value=this.form['%s'].value;" % (strainNameOrig.replace("/", ""), strainNameOrig.replace("/", "")), Class=valueClassName) + if varianceDataPage: + seField = HT.Input(name='V'+strainNameOrig, size=8, maxlength=8, style="text-align:right", value=dispVar, + onChange= "javascript:this.form['V_2nd_%s'].value=this.form['V%s'].value;" % (strainNameOrig.replace("/", ""), strainNameOrig.replace("/", "")), Class=varClassName) + else: + valueField = HT.Input(name=strainNameOrig, size=8, maxlength=8, style="text-align:right; background-color:#FFFFFF;", value=dispVal, Class=valueClassName) + if varianceDataPage: + seField = HT.Input(name='V'+strainNameOrig, size=8, maxlength=8, style="text-align:right", value=dispVar, Class=varClassName) + else: + valueField = HT.Input(name=strainNameOrig, size=8, maxlength=8, style="text-align:right", value=dispVal, + onChange= "javascript:this.form['%s'].value=this.form['%s'].value;" % (strainNameOrig.replace("/", ""), strainNameOrig.replace("/", "")), Class=valueClassName) + if varianceDataPage: + seField = HT.Input(name='V'+strainNameOrig, size=8, maxlength=8, style="text-align:right", value=dispVar, + onChange= "javascript:this.form['V%s'].value=this.form['V%s'].value;" % (strainNameOrig.replace("/", ""), strainNameOrig.replace("/", "")), Class=varClassName) + + if (strains == 'primary'): + table_row = HT.TR(Id="Primary_"+str(i+1), Class=rowClassName) + else: + table_row = HT.TR(Id="Other_"+str(i+1), Class=rowClassName) + + if varianceDataPage: + table_row.append(HT.TD(str(i+1), selectCheck, width=45, align='right', Class=className)) + table_row.append(HT.TD(strainNameDisp, strainNameAdd, align='right', width=100, Class=className)) + table_row.append(HT.TD(valueField, width=70, align='right', Id="value_"+str(i)+"_"+strains, Class=className)) + table_row.append(HT.TD("±", width=20, align='center', Class=className)) + table_row.append(HT.TD(seField, width=80, align='right', Id="SE_"+str(i)+"_"+strains, Class=className)) + else: + table_row.append(HT.TD(str(i+1), selectCheck, width=45, align='right', Class=className)) + table_row.append(HT.TD(strainNameDisp, strainNameAdd, align='right', width=100, Class=className)) + table_row.append(HT.TD(valueField, width=70, align='right', Id="value_"+str(i)+"_"+strains, Class=className)) + + if thisTrait and thisTrait.db and thisTrait.db.type =='ProbeSet': + if len(attribute_ids) > 0: + + #ZS: Get StrainId value for the next query + self.cursor.execute("""SELECT Strain.Id + FROM Strain, StrainXRef, InbredSet + WHERE Strain.Name = '%s' and + StrainXRef.StrainId = Strain.Id and + InbredSet.Id = StrainXRef.InbredSetId and + InbredSet.Name = '%s'""" % (strainName, fd.RISet)) + + strain_id = self.cursor.fetchone()[0] + + attr_counter = 1 # This is needed so the javascript can know which attribute type to associate this value with for the exported excel sheet (each attribute type being a column). + for attribute_id in attribute_ids: + + #ZS: Add extra case attribute values (if any) + self.cursor.execute("""SELECT Value + FROM CaseAttributeXRef + WHERE ProbeSetFreezeId = '%s' AND + StrainId = '%s' AND + CaseAttributeId = '%s' + group by CaseAttributeXRef.CaseAttributeId""" % (thisTrait.db.id, strain_id, str(attribute_id))) + + attributeValue = self.cursor.fetchone()[0] #Trait-specific attributes, if any + + #ZS: If it's an int, turn it into one for sorting (for example, 101 would be lower than 80 if they're strings instead of ints) + try: + attributeValue = int(attributeValue) + except: + pass + + span_Id = strains+"_attribute"+str(attr_counter)+"_sample"+str(i+1) + attr_container = HT.Span(attributeValue, Id=span_Id) + attr_className = str(attributeValue) + " " + className + table_row.append(HT.TD(attr_container, align='right', Class=attr_className)) + attr_counter += 1 + + table_body.append(table_row) + return table_body + + def getTableHeader(self, fd, thisTrait, nCols, attribute_names): + + table_header = HT.TR() + + col_class = "fs13 fwb ff1 b1 cw cbrb" + + if nCols == 6: + try: + if fd.varianceDispName: + pass + except: + fd.varianceDispName = 'Variance' + + table_header.append(HT.TH('Index', align='right', width=60, Class=col_class), + HT.TH('Sample', align='right', width=100, Class=col_class), + HT.TH('Value', align='right', width=70, Class=col_class), + HT.TH(' ', width=20, Class=col_class), + HT.TH(fd.varianceDispName, align='right', width=80, Class=col_class)) + + elif nCols == 4: + table_header.append(HT.TH('Index', align='right', width=60, Class=col_class), + HT.TH('Sample', align='right', width=100, Class=col_class), + HT.TH('Value', align='right', width=70, Class=col_class)) + + else: + pass + + if len(attribute_names) > 0: + i=0 + for attribute in attribute_names: + char_count = len(attribute) + cell_width = char_count * 14 + table_header.append(HT.TH(attribute, align='right', width=cell_width, Class="attribute_name " + col_class)) + i+=1 + + return table_header + + + def getSortByValue(self): + + sortby = ("", "") + + return sortby + + diff --git a/web/webqtl/showTrait/ShowBestTrait.py b/web/webqtl/showTrait/ShowBestTrait.py new file mode 100755 index 00000000..9eb42923 --- /dev/null +++ b/web/webqtl/showTrait/ShowBestTrait.py @@ -0,0 +1,195 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string + +#from base.templatePage import templatePage +#from basicStatistics.BasicStatisticsPage import BasicStatisticsPage +from htmlgen import HTMLgen2 as HT + +from base import webqtlConfig +from utility import webqtlUtil +from base.webqtlTrait import webqtlTrait +from base.templatePage import templatePage +from DataEditingPage import DataEditingPage + + +#class ShowBestTrait(BasicStatisticsPage, templatePage): + +class ShowBestTrait(DataEditingPage): + def __init__(self,fd): + + ########## geneName means symbol ########## + geneName = fd.formdata.getvalue('gene') + if geneName: + geneName = string.strip(geneName) + + refseq = fd.formdata.getvalue('refseq') + if refseq: + refseq = string.strip(refseq) + + genbankid = fd.formdata.getvalue('genbankid') + if genbankid: + genbankid = string.strip(genbankid) + + geneid = fd.formdata.getvalue('geneid') + if geneid: + geneid = string.strip(geneid) + + species = fd.formdata.getvalue('species') + tissue = fd.formdata.getvalue('tissue') + database = fd.formdata.getvalue('database') + + ########## searchAlias is just a singal, so it doesn't need be stripped ########## + searchAlias = fd.formdata.getvalue('searchAlias') + + if not self.openMysql(): + return + + if database: + if geneName: + if searchAlias: + self.cursor.execute(""" SELECT ProbeSetXRef.* + FROM + ProbeSet, ProbeSetXRef, DBList + WHERE + ProbeSetXRef.ProbeSetFreezeId = DBList.FreezeId AND + ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + (DBList.Name=%s or DBList.Code=%s) AND + MATCH (ProbeSet.symbol, alias) AGAINST ("+%s" IN BOOLEAN MODE) + ORDER BY ProbeSetXRef.mean DESC + """ , (database, database, geneName)) + else: + self.cursor.execute(""" SELECT ProbeSetXRef.* + FROM + ProbeSet, ProbeSetXRef, DBList + WHERE + ProbeSetXRef.ProbeSetFreezeId = DBList.FreezeId AND + ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + (DBList.Name=%s or DBList.Code=%s) AND + ProbeSet.symbol = %s + ORDER BY ProbeSetXRef.mean DESC + """ , (database, database, geneName)) + elif refseq: + self.cursor.execute(""" SELECT ProbeSetXRef.* + FROM + ProbeSet, ProbeSetXRef, DBList + WHERE + ProbeSetXRef.ProbeSetFreezeId = DBList.FreezeId AND + ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + (DBList.Name=%s or DBList.Code=%s) AND + ProbeSet.RefSeq_TranscriptId = %s + ORDER BY ProbeSetXRef.mean DESC + """ , (database, database, refseq)) + elif genbankid: + self.cursor.execute(""" SELECT ProbeSetXRef.* + FROM + ProbeSet, ProbeSetXRef, DBList + WHERE + ProbeSetXRef.ProbeSetFreezeId = DBList.FreezeId AND + ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + (DBList.Name=%s or DBList.Code=%s) AND + ProbeSet.GenbankId = %s + ORDER BY ProbeSetXRef.mean DESC + """ , (database, database, genbankid)) + elif geneid: + self.cursor.execute(""" SELECT ProbeSetXRef.* + FROM + ProbeSet, ProbeSetXRef, DBList + WHERE + ProbeSetXRef.ProbeSetFreezeId = DBList.FreezeId AND + ProbeSetXRef.ProbeSetId = ProbeSet.Id AND + (DBList.Name=%s or DBList.Code=%s) AND + ProbeSet.GeneId = %s + ORDER BY ProbeSetXRef.mean DESC + """ , (database, database, geneid)) + + Results = self.cursor.fetchone() + + + + ########## select the Data that match the selection(currently, only max mean available) ########## + if Results: + ProbeSetFreezeId = Results[0] + ProbeSetId = Results[1] + DataId = Results[2] + + self.cursor.execute(""" + select + InbredSet.Name + from + InbredSet, ProbeFreeze, ProbeSetFreeze + where + InbredSet.Id=ProbeFreeze.InbredSetId and + ProbeFreeze.Id=ProbeSetFreeze.ProbeFreezeId and + ProbeSetFreeze.Id=%s + """, ProbeSetFreezeId) + fd.RISet = self.cursor.fetchone()[0] + #fd.RISet = Results[0] + + self.cursor.execute("select Name, FullName from ProbeSetFreeze where Id=%s", ProbeSetFreezeId) + fd.database, fd.identification = self.cursor.fetchone() + + self.cursor.execute("select Name, symbol, description from ProbeSet where Id=%s", ProbeSetId) + fd.ProbeSetID, fd.symbol, fd.description = self.cursor.fetchone() + + fd.identification += ' : '+fd.ProbeSetID + fd.formdata['fullname'] = fd.database+'::'+fd.ProbeSetID + + #XZ, 03/03/2009: Xiaodong changed Data to ProbeSetData + self.cursor.execute("select Strain.Name, ProbeSetData.Value from Strain, ProbeSetData where Strain.Id=ProbeSetData.StrainId and ProbeSetData.Id=%s", DataId) + Results = self.cursor.fetchall() + + fd.allstrainlist = [] + for item in Results: + fd.formdata[item[0]] = item[1] + fd.allstrainlist.append(item[0]) + + #XZ, 03/12/2009: Xiaodong changed SE to ProbeSetSE + self.cursor.execute("select Strain.Name, ProbeSetSE.error from Strain, ProbeSetSE where Strain.Id = ProbeSetSE.StrainId and ProbeSetSE.DataId=%s", DataId) + Results = self.cursor.fetchall() + for item in Results: + fd.formdata['V'+item[0]] = item[1] + else: + fd.RISet = 'BXD' + fd.database = 'KI_2A_0405_Rz' + fd.ProbeSetID = '1367452_at' + else: + fd.RISet = 'BXD' + fd.database = 'KI_2A_0405_Rz' + fd.ProbeSetID = '1367452_at' + + + #BasicStatisticsPage.__init__(self, fd) + + + thisTrait = webqtlTrait(db=fd.database, name=fd.ProbeSetID, cursor=self.cursor) + thisTrait.retrieveInfo() + thisTrait.retrieveData() + DataEditingPage.__init__(self, fd, thisTrait) + self.dict['title'] = '%s: Display Trait' % fd.identification + + diff --git a/web/webqtl/showTrait/ShowProbeInfoPage.py b/web/webqtl/showTrait/ShowProbeInfoPage.py new file mode 100755 index 00000000..989238b4 --- /dev/null +++ b/web/webqtl/showTrait/ShowProbeInfoPage.py @@ -0,0 +1,486 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import string +import sys,os + +import cPickle + +import reaper +from htmlgen import HTMLgen2 as HT + +from base import webqtlConfig +from utility import webqtlUtil +from dbFunction import webqtlDatabaseFunction +from base.templatePage import templatePage +from base.webqtlDataset import webqtlDataset +from base.webqtlTrait import webqtlTrait +from utility.THCell import THCell +from utility.TDCell import TDCell + +######################################### +# Probe Infomation Page +######################################### + +class ShowProbeInfoPage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + fd.readGenotype() + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') + self.database = fd.formdata.getfirst('database') + self.ProbeSetID = fd.formdata.getfirst('ProbeSetID') + self.CellID = fd.formdata.getfirst('CellID') + + self.db = webqtlDataset(self.database, self.cursor) + thisTrait = webqtlTrait(db= self.db, cursor=self.cursor, name=self.ProbeSetID) #, cellid=CellID) + thisTrait.retrieveInfo() + + try: + self.cursor.execute('SELECT ProbeFreeze.Name FROM ProbeFreeze,ProbeSetFreeze WHERE ProbeFreeze.Id = ProbeSetFreeze.ProbeFreezeId and ProbeSetFreeze.Name = "%s"' % self.db.name) + self.probeDatabase = self.cursor.fetchall()[0][0] + self.probeInfoDatabase = 'Probe' + except: + heading = 'Probe Information' + intro = ['Trying to retrieve the probe information for ProbeSet ',HT.Span('%s' % self.ProbeSetID, Class="fwb cdg"),' in Database ',HT.Href(text='%s' % self.db.fullname,url=webqtlConfig.infopagehref % self.database)] + detail = ['The information you just requested is not available at this time.'] + self.error(heading=heading,intro=intro,detail=detail) + return + + + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':'_','CellID':'_','RISet':fd.RISet, 'incparentsf1':'on'} + if fd.RISet == 'BXD': + hddn['parentsf1']='ON' + + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + + #Buttons on search page + linkinfo ="%s/probeInfo.html" % webqtlConfig.PORTADDR + mintmap = "" + probeinfo = HT.Input(type='button' ,name='mintmap',value='Info', onClick="openNewWin('%s');" % linkinfo, Class="button") + cormatrix = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('showDatabase')[0], 'corMatrix');") + cormatrix_img = HT.Image("/images/correlation_matrix1_final.jpg", alt="Correlation Matrix and PCA", title="Correlation Matrix and PCA", style="border:none;") + cormatrix.append(cormatrix_img) + heatmap = HT.Href(url="#redirect", onClick="databaseFunc(document.getElementsByName('showDatabase')[0], 'heatmap');") + heatmap_img = HT.Image("/images/heatmap2_final.jpg", name='mintmap', alt="QTL Heat Map and Clustering", title="QTL Heatmap and Clustering", style="border:none;") + heatmap.append(heatmap_img) + if self.ProbeSetID[-2:] in ('_A', '_B'): + thisProbeSetID = self.ProbeSetID[:-2] + else: + thisProbeSetID = self.ProbeSetID + thisurl = 'http://www.ensembl.org/Mus_musculus/featureview?type=AffyProbe&id=%s' % thisProbeSetID + verifyButton = HT.Input(type="button",value="Verify Ensembl",onClick= "openNewWin('%s')" % thisurl, Class="button") + + addselect = HT.Input(type='button' ,name='addselect',value='Add to Collection', onClick="addRmvSelection('%s', this.form, 'addToSelection');" % fd.RISet,Class="button") + selectall = HT.Input(type='button' ,name='selectall',value='Select All', onClick="checkAll(this.form);",Class="button") + selectpm = HT.Input(type='button' ,name='selectall',value='Select PM', onClick="checkPM(this.form);",Class="button") + selectmm = HT.Input(type='button' ,name='selectall',value='Select MM', onClick="checkMM(this.form);",Class="button") + selectinvert = HT.Input(type='button' ,name='selectinvert',value='Select Invert', onClick="checkInvert(this.form);",Class="button") + reset = HT.Input(type='reset',name='',value='Select None',Class="button") + chrMenu = HT.Input(type='hidden',name='chromosomes',value='all') + probedata = HT.Input(type='hidden',name='probedata',value='all') + + url_rudi_track = self.getProbeTrackURL(self.probeDatabase, self.ProbeSetID) + if url_rudi_track: + rudi_track = HT.Input(type='button', name='ruditrack', value='Probe Track', onClick="openNewWin('%s')"%url_rudi_track, Class="button") + else: rudi_track = None + + pinfopage = "/probeInfo.html" + + #updated by NL: 07-22-2011 get chosenStrains + _f1, _f12, _mat, _pat = webqtlUtil.ParInfo[fd.RISet] + chosenStrains="%s,%s"%(_mat,_pat) + tblobj = {} + tblobj['header']=[] + + tblobj['header'].append([ + THCell(HT.TD("", Class="cbrb cw fwb fs13 b1", rowspan=2,nowrap='ON'), sort=0), + THCell(HT.TD(HT.Href(target="_PROBEINFO", url=pinfopage+"#probe", text=HT.Span('Probe', Class="cw fwb fs13")), HT.Sup(HT.Italic('1')), Class="cbrb cw fwb fs13 b1",align='center',rowspan=2,nowrap='ON'), text="probe", idx=1), + THCell(HT.TD(HT.Href(text=HT.Span('Sequence', Class="cw fwb fs13"), target="_PROBEINFO", url=pinfopage+"#Sequence"),HT.Sup(HT.Italic('2')), Class="cbrb cw fwb fs13 b1", align='center',rowspan=2,nowrap='ON'), text="seq", idx=2), + THCell(HT.TD(HT.Href(text=HT.Span('bl2seq', Class="cw fwb fs13"), target="_PROBEINFO", url=pinfopage+"#bl2seq"),HT.Sup(HT.Italic('3')), Class="cbrb cw fwb fs13 b1", align='center',rowspan=2,nowrap='ON'), sort=0), + THCell(HT.TD(HT.Href(text=HT.Span('Exons', Class="cw fwb fs13"), target="_PROBEINFO", url=pinfopage+"#Exon"),HT.Sup(HT.Italic('4')), Class="cbrb cw fwb fs13 b1",align='center',rowspan=2,nowrap='ON'), sort=0), + THCell(HT.TD(HT.Href(text=HT.Span('Tm °C', Class="cw fwb fs13"), target="_PROBEINFO", url=pinfopage+"#Tm"),HT.Sup(HT.Italic('5')), Class="cbrb cw fwb fs13 b1",align='center',rowspan=2,nowrap='ON'), text="tm", idx=5), + THCell(HT.TD(HT.Href(text=HT.Span('Stacking Energy K', HT.Sub('B'),'T', Class="cw fwb fs13"), target="_PROBEINFO", url=pinfopage+"#KBT"),HT.Sup(HT.Italic('6')), Class="cbrb cw fwb fs13 b1",align='center',colspan=2,NOWRAP="yes",nowrap='ON'), sort=0), + THCell(HT.TD(HT.Href(text=HT.Span('Mean', Class="cw fwb fs13"), target="_PROBEINFO", url=pinfopage+"#Mean"),HT.Sup(HT.Italic('7')), Class="cbrb cw fwb fs13 b1",align='center',rowspan=2,nowrap='ON'), text="mean", idx=8), + THCell(HT.TD(HT.Href(text=HT.Span('Stdev', Class="cw fwb fs13"), target="_PROBEINFO", url=pinfopage+"#Stdev"),HT.Sup(HT.Italic('8')), Class="cbrb cw fwb fs13 b1",align='center',rowspan=2,nowrap='ON'), text="std", idx=9), + THCell(HT.TD(HT.Href(text=HT.Span('Probe h2', Class="cw fwb fs13"), target="_PROBEINFO", url=pinfopage+"#h2"),HT.Sup(HT.Italic('9')), Class="cbrb cw fwb fs13 b1",align='center',rowspan=2,NOWRAP="yes"), text="h2", idx=10), + THCell(HT.TD(HT.Href(text=HT.Span('Probe Location', Class="cw fwb fs13"), target="_PROBEINFO", url=pinfopage+"#location"), HT.Sup(HT.Italic('10')),Class="cbrb cw fwb fs13 b1",align='center',colspan=3)), + THCell(HT.TD(HT.Href(text=HT.Span('SNPs', HT.BR(), '(Across all strains)', Class="cw fwb fs13"), target="_PROBEINFO", url=pinfopage+"#snps"), HT.Sup(HT.Italic('11')),Class="cbrb cw fwb fs13 b1",align='center',rowspan=2,NOWRAP="yes")), + THCell(HT.TD(HT.Href(text=HT.Span('SNPs', HT.BR(),'(Different alleles only between %s and %s)'%(_mat,_pat), Class="cw fwb fs13"), target="_PROBEINFO", url=pinfopage+"#snps"), HT.Sup(HT.Italic('11')),Class="cbrb cw fwb fs13 b1",align='center',rowspan=2,NOWRAP="yes")) + + ]) + + tblobj['header'].append([ + THCell(HT.TD(HT.Span('GSB', Class="cw fwb fs13"),align='center', Class="cbrb ffl fwb fs13 b1",), text="gsb", idx=6), + THCell(HT.TD(HT.Span('NSB', Class="cw fwb fs13"),align='center', Class="cbrb ffl fwb fs13 b1",), text="nsb", idx=7), + THCell(HT.TD(HT.Span('Chr', Class="cw fwb fs13"), align='center', Class="cbrb ffl2 fwb fs13 b1",)), + THCell(HT.TD(HT.Span('Start', Class="cw fwb fs13"),align='center', Class="cbrb ffl fwb fs13 b1",)), + THCell(HT.TD(HT.Span('End', Class="cw fwb fs13"),align='center', Class="cbrb ffl fwb fs13 b1",)), + ]) + + tblobj['body'] = [] + + blatbutton = '' + + fetchField = ['Probe.Name','Probe.Sequence','Probe.ExonNo','Probe.Tm', 'Probe.E_GSB','Probe.E_NSB', 'ProbeH2.h2', 'ProbeH2.weight'] + + query = "SELECT %s FROM (Probe, ProbeSet, ProbeFreeze) left join ProbeH2 on ProbeH2.ProbeId = Probe.Id and ProbeH2.ProbeFreezeId = ProbeFreeze.Id WHERE ProbeSet.Name = '%s' and Probe.ProbeSetId = ProbeSet.Id and ProbeFreeze.Name = '%s' order by Probe.SerialOrder" % (string.join(fetchField,','), self.ProbeSetID, self.probeDatabase) + self.cursor.execute(query) + results = self.cursor.fetchall() + + blatsequence = "" + + # add by NL: get strains' name in SnpPattern database table + strainsInSnpPatternDBtable=self.getStrainNameIndexPair() # after snpBrowserPage.py change to MVC, this function can be removed in this class and called from other class; + allStrainNameList=[v[0] for v in strainsInSnpPatternDBtable] + + speciesid = webqtlDatabaseFunction.retrieveSpeciesId(cursor=self.cursor,RISet=fd.RISet) + for result in results: + """ + ProbeId, CellID,Sequence,ExonNo,Tm, E_GSB,E_NSB = map(self.nullRecord,result) + h2 = '' + query = "SELECT h2 FROM ProbeH2 WHERE ProbeFreezeId = '%s' and ProbeId=%s" % (self.probeDatabase, ProbeId) + self.cursor.execute(query) + results = self.cursor.fetchall() + """ + + CellID,Sequence,ExonNo,Tm, E_GSB,E_NSB,h2, weight = map(self.nullRecord,result) + + + Average = '' + STDEV = '' + mean = -10000.0 + stdev = -10000.0 + try: + thisTrait.cellid = CellID + thisTrait.retrieveData() + + mean, median, var, stdev, sem, N = reaper.anova(thisTrait.exportInformative()[1]) + + if mean: + Average = '%2.2f' % mean + if stdev: + STDEV = '%2.2f' % stdev + except: + pass + + if CellID == self.CellID: + bkColor = "cbrdull fs11 b1" + else: + bkColor = "fs11 b1" + seqcolor= '' + + if thisTrait.blatseq: + blatsequence = thisTrait.blatseq + if int(CellID[-1]) % 2 == 1: + seqcolor= 'cdg' + else: + if int(CellID[-1]) % 2 == 1: + seqcolor= 'cdg' + blatsequence += string.strip(Sequence) + + if thisTrait.genbankid and (int(CellID[-1]) % 2 == 1): + probeurl = 'http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi?one=%s&sseq=%s' % (thisTrait.genbankid, Sequence) + probefy1 = HT.Input(type="button",value="Blast",onClick= "openNewWin('%s')" % probeurl, Class="buttonsmaller") + else: + probefy1 = '' + + traitName = str(thisTrait) + + #XZ, Aug 08, 2011: Note that probesets on some affy chips are not name as "xxx_at" (i.e., Affy Mouse Gene 1.0 ST (GPL6246)). + #EnsemblProbeSetID = self.ProbeSetID[0:self.ProbeSetID.index('_at')+3] + EnsemblProbeSetID = self.ProbeSetID + if '_at' in self.ProbeSetID: + EnsemblProbeSetID = self.ProbeSetID[0:self.ProbeSetID.index('_at')+3] + + self.cursor.execute(''' + SELECT EnsemblProbeLocation.* + FROM EnsemblProbeLocation, EnsemblProbe, EnsemblChip, GeneChipEnsemblXRef, ProbeFreeze + WHERE EnsemblProbeLocation.ProbeId=EnsemblProbe.Id and EnsemblProbe.ChipId=GeneChipEnsemblXRef.EnsemblChipId and + GeneChipEnsemblXRef.GeneChipId=ProbeFreeze.ChipId and EnsemblProbe.Name=%s and EnsemblProbe.ProbeSet=%s and + ProbeFreeze.Name=%s group by Chr, Start, End''' + ,(CellID, EnsemblProbeSetID, self.probeDatabase)) + LocationFields = self.cursor.fetchall() + + Chr='' + Start='' + End='' + if (len(LocationFields)>=1): + Chr,Start,End,Strand,MisMatch,ProbeId = map(self.nullRecord,LocationFields[0]) + Start /= 1000000.0 + End /= 1000000.0 + if (len(LocationFields)>1): + self.cursor.execute(''' + SELECT ProbeSet.Chr, ProbeSet.Mb FROM ProbeSet, ProbeFreeze + WHERE ProbeSet.ChipId=ProbeFreeze.ChipId and ProbeSet.Name=%s and ProbeFreeze.Name=%s''' + ,(self.ProbeSetID, self.probeDatabase)) + ProbeSetChr, ProbeSetMb = map(self.nullRecord,self.cursor.fetchall()[0]) + + self.cursor.execute(''' + SELECT EnsemblProbeLocation.*, ABS(EnsemblProbeLocation.Start/1000000-%s) as Mb + FROM EnsemblProbeLocation, EnsemblProbe, EnsemblChip, GeneChipEnsemblXRef, ProbeFreeze + WHERE EnsemblProbeLocation.ProbeId=EnsemblProbe.Id and EnsemblProbe.ChipId=GeneChipEnsemblXRef.EnsemblChipId and + GeneChipEnsemblXRef.GeneChipId=ProbeFreeze.ChipId and EnsemblProbe.Name=%s and EnsemblProbe.ProbeSet=%s and + EnsemblProbeLocation.Chr=%s and ProbeFreeze.Name=%s order by Mb limit 1''' + ,(ProbeSetMb, CellID, EnsemblProbeSetID, ProbeSetChr, self.probeDatabase)) + NewLocationFields = self.cursor.fetchall() + if (len(NewLocationFields)>0): + Chr,Start,End,Strand,MisMatch,ProbeId,Mb = map(self.nullRecord,NewLocationFields[0]) + Start /= 1000000.0 + End /= 1000000.0 + + snp_collection = [] + snpDiff_collection=[] + + startIndex=3 + if Chr != '' and Start != '' and End != '' and speciesid != None: + + self.cursor.execute(''' + SELECT a.SnpName, a.Id, b.* FROM SnpAll a, SnpPattern b + WHERE a.Chromosome=%s and a.Position>=%s and a.Position<=%s + and a.SpeciesId=%s and a.Id=b.SnpId''' + ,(Chr, Start, End, speciesid)) #chr,Start, End, 1)) + snpresults = self.cursor.fetchall() + + index1=allStrainNameList.index(_mat) #_mat index in results + index2=allStrainNameList.index(_pat) #_pat index in results + + for v in snpresults: + #updated by NL: 07-22-2011 check 'limit to' to get snpBrowser snpresults + snp_collection.append(HT.Href(text=v[0], url=os.path.join(webqtlConfig.CGIDIR, + "main.py?FormID=SnpBrowserResultPage&submitStatus=1&customStrain=1")+ "&geneName=%s" % v[0], Class="fs12 fwn", target="_blank")) + snp_collection.append(HT.BR()) + #updated by NL: 07-27-2011 link snp info for different allele only + strain1_allele=v[startIndex+index1] + strain2_allele=v[startIndex+index2] + + if strain1_allele!=strain2_allele: + snpDiff_collection.append(HT.Href(text=v[0], url=os.path.join(webqtlConfig.CGIDIR, + "main.py?FormID=SnpBrowserResultPage&submitStatus=1&customStrain=1&diffAlleles=1&chosenStrains=%s"%chosenStrains)+ "&geneName=%s" % v[0], Class="fs12 fwn", target="_blank")) + snpDiff_collection.append(HT.BR()) + + + tr = [] + tr.append(TDCell(HT.TD(HT.Input(type="checkbox", Class='checkbox', name="searchResult",value=traitName, onClick="highlight(this)"), align="right", Class=bkColor, nowrap="on"), text=traitName)) + + tr.append(TDCell(HT.TD(HT.Href(text=CellID, url = "javascript:showDatabase2('%s','%s','%s');" % (self.database,self.ProbeSetID,CellID),Class="fs12 fwn"),Class=bkColor), traitName, traitName.upper())) + + tr.append(TDCell(HT.TD(Sequence, Class=bkColor + " %s ffmono fs14" % seqcolor),Sequence,Sequence.upper())) + tr.append(TDCell(HT.TD(probefy1,align='center',Class=bkColor))) + tr.append(TDCell(HT.TD(ExonNo,align='center',Class=bkColor))) + + try: + TmValue = float(Tm) + except: + TmValue = 0.0 + tr.append(TDCell(HT.TD(Tm,align='center',Class=bkColor), Tm, TmValue)) + + try: + E_GSBValue = float(E_GSB) + except: + E_GSBValue = -10000.0 + tr.append(TDCell(HT.TD(E_GSB,align='center',Class=bkColor), E_GSB, E_GSBValue)) + + try: + E_NSBValue = float(E_NSB) + except: + E_NSBValue = -10000.0 + tr.append(TDCell(HT.TD(E_NSB,align='center',Class=bkColor), E_NSB, E_NSBValue)) + + tr.append(TDCell(HT.TD(Average,align='center',Class=bkColor), Average, mean)) + tr.append(TDCell(HT.TD(STDEV,align='center',Class=bkColor), STDEV, stdev)) + + try: + h2Value = float(h2) + except: + h2Value = -10000.0 + tr.append(TDCell(HT.TD(h2,align='center',Class=bkColor), h2, h2Value)) + + tr.append(TDCell(HT.TD(Chr,align='left',Class=bkColor))) + tr.append(TDCell(HT.TD(Start,align='left',Class=bkColor))) + tr.append(TDCell(HT.TD(End,align='left',Class=bkColor))) + + snp_td = HT.TD(align='left',Class=bkColor) + for one_snp_href in snp_collection: + snp_td.append(one_snp_href) + + tr.append(TDCell(snp_td)) + + #07-27-2011:add by NL: show SNP results for different allele only + snpDiff_td= HT.TD(align='left', valign='top', Class=bkColor) + for one_snpDiff_href in snpDiff_collection: + snpDiff_td.append(one_snpDiff_href) + tr.append(TDCell(snpDiff_td)) + + tblobj['body'].append(tr) + + # import cPickle + filename = webqtlUtil.genRandStr("Probe_") + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + # NL, 07/27/2010. genTableObj function has been moved from templatePage.py to webqtlUtil.py; + div = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=("", ""), tableID = "sortable", addIndex = "1"), Id="sortable") + + #UCSC + _Species = webqtlDatabaseFunction.retrieveSpecies(cursor=self.cursor, RISet=fd.RISet) + if _Species == "rat": + thisurl = webqtlConfig.UCSC_BLAT % ('rat', 'rn3', blatsequence) + elif _Species == "mouse": + thisurl = webqtlConfig.UCSC_BLAT % ('mouse', 'mm9', blatsequence) + else: + thisurl = "" + if thisurl: + blatbutton = HT.Input(type='button' ,name='blatPM',value='Verify UCSC', onClick="window.open('%s','_blank')" % thisurl,Class="button") + else: + blatbutton = "" + + #GenBank + genbankSeq = "" + if thisTrait.genbankid: + self.cursor.execute("SELECT Sequence FROM Genbank WHERE Id = '%s'" % thisTrait.genbankid ) + genbankSeq = self.cursor.fetchone() + if genbankSeq: + genbankSeq = genbankSeq[0] + + if genbankSeq: + if _Species == "rat": + thisurl2 = webqtlConfig.UCSC_BLAT % ('rat', 'rn3', genbankSeq) + if _Species == "mouse": + thisurl2 = webqtlConfig.UCSC_BLAT % ('mouse', 'mm9', genbankSeq) + else: + thisurl2 = '' + if thisurl2: + blatbutton2 = HT.Input(type='button' ,name='blatPM',value='Verify GenBank', onClick="window.open('%s','_blank')" % thisurl2,Class="button") + else: + blatbutton2 = "" + + #Snp + snpBrowser = "" + if thisTrait.symbol and _Species == 'mouse': + self.cursor.execute("select geneSymbol from GeneList where geneSymbol = %s", thisTrait.symbol) + geneName = self.cursor.fetchone() + if geneName: + snpurl = os.path.join(webqtlConfig.CGIDIR, "main.py?FormID=snpBrowser") + "&geneName=%s" % geneName[0] + else: + if thisTrait.chr and thisTrait.mb: + snpurl = os.path.join(webqtlConfig.CGIDIR, "main.py?FormID=snpBrowser") + \ + "&chr=%s&start=%2.6f&end=%2.6f" % (thisTrait.chr, thisTrait.mb-0.002, thisTrait.mb+0.002) + else: + snpurl = "" + + if snpurl: + snpBrowser = HT.Input(type="button",value="SNP Browser",onClick= \ + "openNewWin('%s')" % snpurl, Class="button") + + else: + snpBrowser = "" + #end if + + heading = HT.Paragraph('Probe Information', Class="title") + intro = HT.Paragraph('The table below lists information of all probes of probe set ',HT.Span(self.ProbeSetID, Class="fwb fs13"),' from database ', HT.Span(self.probeDatabase, Class="fwb fs13"), ".") + buttons = HT.Paragraph(probedata,probeinfo,heatmap,cormatrix,blatbutton,blatbutton2,verifyButton,snpBrowser, HT.P(),selectall,selectpm,selectmm,selectinvert,reset,addselect) + if rudi_track: + buttons.append(rudi_track) + form.append(buttons,div,HT.P()) + + TD_LR.append(heading,intro,form, HT.P()) + self.dict['basehref'] = '' + self.dict['body'] = str(TD_LR) + self.dict['title'] = self.db.shortname + ' : ' + self.ProbeSetID +' / Probe Information' + # updated by NL, javascript function xmlhttpPost(strURL, div, querystring) and function updatepage(Id, str) + # have been moved to dhtml.js + self.dict['js1'] = '' + + def nullRecord(self,x): + if x or x == 0: + return x + else: + return "" + +########################## +# UCSC Probe track by Ridi Albert +########################## + def convertChipName2Rudi(self, officialName): + rudiName = None + if officialName == 'Hu6800': + rudiName = "ANHuGeneFL" + else: + rudiName = officialName.replace('_','') + rudiName = rudiName.replace('-','') + rudiName = "AN%s"%rudiName + return rudiName + + def getProbeTrackURL(self, probesetfreeze_id, probeset_id): + try: + self.cursor.execute('SELECT GeneChip.Name, GeneChip.SpeciesId FROM ProbeFreeze,GeneChip WHERE ProbeFreeze.ChipId = GeneChip.Id and ProbeFreeze.Name = "%s"' % probesetfreeze_id) + chipname, species = self.cursor.fetchall()[0] + except: + return None + + if not species: + return None + + chipname_in_url = self.convertChipName2Rudi(chipname) + orgs = {1:"mouse", 2:"rat"} + dbs = {1:"mm8", 2:"mm6"} + + try: + url = webqtlConfig.UCSC_RUDI_TRACK_URL%(orgs[species], dbs[species],chipname_in_url, probeset_id) + except: + url = '' + + return url + + + #NL 05-13-2011: get field_names in query + def getStrainNameIndexPair(self): + + strainNameIndexPair=[] + query ='SELECT * FROM SnpPattern limit 1' + self.cursor.execute(query) + + num_fields = len(self.cursor.description) + field_names = [i[0] for i in self.cursor.description] + strainsNameList=field_names[1:] + + # index for strain name starts from 1 + for index, name in enumerate(strainsNameList): + index=index+1 + strainNameIndexPair.append((name,index)) + + return strainNameIndexPair + + + diff --git a/web/webqtl/showTrait/ShowTraitPage.py b/web/webqtl/showTrait/ShowTraitPage.py new file mode 100755 index 00000000..82511228 --- /dev/null +++ b/web/webqtl/showTrait/ShowTraitPage.py @@ -0,0 +1,170 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from htmlgen import HTMLgen2 as HT + +from base import webqtlConfig +from utility import webqtlUtil +from base.webqtlTrait import webqtlTrait +from base.templatePage import templatePage +from DataEditingPage import DataEditingPage + + + +class ShowTraitPage(DataEditingPage): + + def __init__(self, fd, traitInfos = []): + + templatePage.__init__(self, fd) + + if not self.openMysql(): + return + + TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') + + if traitInfos: + database,ProbeSetID,CellID = traitInfos + else: + database = fd.formdata.getfirst('database') + ProbeSetID = fd.formdata.getfirst('ProbeSetID') + CellID = fd.formdata.getfirst('CellID') + try: + thisTrait = webqtlTrait(db=database, name=ProbeSetID, cellid= CellID, cursor=self.cursor) + except: + heading = "Trait Data and Analysis Form" + detail = ["The trait isn't available currently."] + self.error(heading=heading,detail=detail,error="Error") + return + + if thisTrait.db.type == "ProbeSet": + + self.cursor.execute('''SELECT Id, Name, FullName, confidentiality, AuthorisedUsers + FROM ProbeSetFreeze WHERE Name = "%s"''' % database) + + indId, indName, indFullName, confidential, AuthorisedUsers = self.cursor.fetchall()[0] + + if confidential == 1: + access_to_confidential_dataset = 0 + + #for the dataset that confidentiality is 1 + #1. 'admin' and 'root' can see all of the dataset + #2. 'user' can see the dataset that AuthorisedUsers contains his id(stored in the Id field of User table) + if webqtlConfig.USERDICT[self.privilege] > webqtlConfig.USERDICT['user']: + access_to_confidential_dataset = 1 + else: + AuthorisedUsersList=AuthorisedUsers.split(',') + if AuthorisedUsersList.__contains__(self.userName): + access_to_confidential_dataset = 1 + + if not access_to_confidential_dataset: + #Error, Confidential Database + heading = "Show Database" + detail = ["The %s database you selected is not open to the public \ + at this time, please go back and select other database." % indFullName] + self.error(heading=heading,detail=detail,error="Confidential Database") + return + + user_ip = fd.remote_ip + query = "SELECT count(id) FROM AccessLog WHERE ip_address = %s and \ + UNIX_TIMESTAMP()-UNIX_TIMESTAMP(accesstime)<86400" + self.cursor.execute(query,user_ip) + daycount = self.cursor.fetchall() + if daycount: + daycount = daycount[0][0] + if daycount > webqtlConfig.DAILYMAXIMUM: + heading = "Retrieve Data" + detail = ['For security reasons, the maximum access to a database is \ + %d times per day per ip address. You have reached the limit, please \ + try it again tomorrow.' % webqtlConfig.DAILYMAXIMUM] + self.error(heading=heading,detail=detail) + return + else: + pass + else: + pass + + if thisTrait.db.type != 'ProbeSet' and thisTrait.cellid: + heading = "Retrieve Data" + detail = ['The Record you requested doesn\'t exist!'] + self.error(heading=heading,detail=detail) + return + + #XZ: Aug 23, 2010: I commented out this block because this feature is not used anymore + # check if animal information are available + """ + self.cursor.execute(''' + SELECT + SampleXRef.ProbeFreezeId + FROM + SampleXRef, ProbeSetFreeze + WHERE + SampleXRef.ProbeFreezeId = ProbeSetFreeze.ProbeFreezeId AND + ProbeSetFreeze.Name = "%s" + ''' % thisTrait.db.name) + + sampleId = self.cursor.fetchall() + if sampleId: + thisTrait.strainInfo = 1 + else: + thisTrait.strainInfo = None + """ + + ##identification, etc. + fd.identification = '%s : %s'%(thisTrait.db.shortname,ProbeSetID) + thisTrait.returnURL = webqtlConfig.CGIDIR + webqtlConfig.SCRIPTFILE + '?FormID=showDatabase&database=%s\ + &ProbeSetID=%s&RISet=%s&parentsf1=on' %(database,ProbeSetID,fd.RISet) + + if CellID: + fd.identification = '%s/%s'%(fd.identification, CellID) + thisTrait.returnURL = '%s&CellID=%s' % (thisTrait.returnURL, CellID) + + #retrieve trait information + try: + thisTrait.retrieveInfo() + thisTrait.retrieveData() + self.updMysql() + self.cursor.execute("insert into AccessLog(accesstime,ip_address) values(Now(),%s)" ,user_ip) + self.openMysql() + except: + heading = "Retrieve Data" + detail = ["The information you requested is not avaiable at this time."] + self.error(heading=heading,detail=detail) + return + + ##read genotype file + fd.RISet = thisTrait.riset + fd.readGenotype() + + if webqtlUtil.ListNotNull(map(lambda x:x.var, thisTrait.data.values())): + fd.displayVariance = 1 + fd.varianceDispName = 'SE' + fd.formID = 'varianceChoice' + + self.dict['body']= thisTrait + DataEditingPage.__init__(self, fd, thisTrait) + self.dict['title'] = '%s: Display Trait' % fd.identification + + diff --git a/web/webqtl/showTrait/__init__.py b/web/webqtl/showTrait/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/showTrait/exportPage.py b/web/webqtl/showTrait/exportPage.py new file mode 100755 index 00000000..ff3f12a1 --- /dev/null +++ b/web/webqtl/showTrait/exportPage.py @@ -0,0 +1,141 @@ +import string +import os +import re +import cPickle +import pyXLWriter as xl + +from base import webqtlConfig +from utility import webqtlUtil +from base.templatePage import templatePage + +class ExportPage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + filename = webqtlUtil.genRandStr("Export_") + workbook = xl.Writer('%s.xls' % (webqtlConfig.TMPDIR+filename)) + style_formats = [] #Array with Excel style formats - Zach 9/2/2011 + heading = workbook.add_format(align = 'center', bold = 1, border = 1, size=13, fg_color = 0x1E, color="white") #Style for the header cells + right = workbook.add_format(align = 'right') #Style to align cell contents to the right + style_formats.append(heading) + style_formats.append(right) + worksheet = workbook.add_worksheet() + + primaryStrainNames = fd.formdata.getvalue('strainNames', '').split(',') + primaryVals = fd.formdata.getvalue('strainVals', '').split(',') + primaryVars = fd.formdata.getvalue('strainVars', '').split(',') + otherStrainNames = fd.formdata.getvalue('otherStrainNames', '').split(',') + otherVals = fd.formdata.getvalue('otherStrainVals', '').split(',') + otherVars = fd.formdata.getvalue('otherStrainVars', '').split(',') + attributeData = fd.formdata.getvalue('extra_attributes', '') + otherAttributeData = fd.formdata.getvalue('other_extra_attributes', '') + + #ZS: This section is to parse the attribute formdata string + attributeTypes = attributeData.split('/') + otherAttributeTypes = otherAttributeData.split('/') + + attributeNames = [] + attributeVals = [] + for i in range(len(attributeTypes)): + if i < len(attributeTypes) - 1: + attributeNames.append(attributeTypes[i].split(':')[0]) + attributeVals.append(attributeTypes[i].split(':')[1].split(',')) + else: + break + + otherAttributeNames = [] + otherAttributeVals = [] + for i in range(len(otherAttributeTypes)): + if i < len(otherAttributeTypes) - 1: + otherAttributeNames.append(otherAttributeTypes[i].split(':')[0]) + otherAttributeVals.append(otherAttributeTypes[i].split(':')[1].split(',')) + else: + break + + varsExist = 0 #ZS: Even if there are no variances "primaryVars" would still be populated with empty values, so we need to check if there really are any + for i in range(len(primaryVars)): + if primaryVars[i] != '': + varsExist = 1 + break + + otherStrainsExist = 0 #ZS: Same as above; checking to see if there's a set of "other" (non-primary) strains + for i in range(len(otherStrainNames)): + if otherStrainNames[i] != '': + otherStrainsExist = 1 + break + + if varsExist == 1: + column_headers = ["Sample", "Value", " SE "] #ZS: Names of the header for each column in the excel worksheet + else: + column_headers = ["Sample", "Value"] + + + for attr_name in attributeNames: + column_headers.append(attr_name) + + start_line = 0 #Gets last line of "primary" strain values to define a start-point for "other" strain values + for ncol, item in enumerate(column_headers): + worksheet.write([start_line, ncol], item, style_formats[0]) + worksheet.set_column([ncol, ncol], 2*len(item)) + + start_line += 1 + last_line = start_line + + for i in range(len(primaryStrainNames)): + ncol = 0 + if varsExist == 1: + for ncol, item in enumerate([primaryStrainNames[i], primaryVals[i], primaryVars[i]]): + worksheet.write([start_line + i, ncol], item, style_formats[1]) + ncol += 1 + else: + for ncol, item in enumerate([primaryStrainNames[i], primaryVals[i]]): + worksheet.write([start_line + i, ncol], item, style_formats[1]) + ncol += 1 + + for attribute_type in attributeVals: + worksheet.write([start_line + i, ncol], attribute_type[i], style_formats[1]) + ncol += 1 + + last_line += 1 + + if otherStrainsExist == 1: + start_line = last_line + 2 + + for ncol, item in enumerate(column_headers): + worksheet.write([start_line, ncol], item, style_formats[0]) + worksheet.set_column([ncol, ncol], 2*len(item)) + start_line += 1 + + for i in range(len(otherStrainNames)): + ncol = 0 + if varsExist == 1: + for ncol, item in enumerate([otherStrainNames[i], otherVals[i], otherVars[i]]): + worksheet.write([start_line + i, ncol], item, style_formats[1]) + ncol += 1 + else: + for ncol, item in enumerate([otherStrainNames[i], otherVals[i]]): + worksheet.write([start_line + i, ncol], item, style_formats[1]) + + for attribute_type in otherAttributeVals: + worksheet.write([start_line + i, ncol], attribute_type[i], style_formats[1]) + ncol += 1 + + workbook.close() + + full_filename = os.path.join(webqtlConfig.TMPDIR, '%s.xls' % filename) + fp = open(full_filename, 'rb') + text = fp.read() + fp.close() + + self.content_type = 'application/xls' + self.content_disposition = 'attachment; filename=%s' % ('%s.xls' % filename) + self.attachment = text + + + + + + + diff --git a/web/webqtl/showTrait/testTraitPage.py b/web/webqtl/showTrait/testTraitPage.py new file mode 100755 index 00000000..322bf3dc --- /dev/null +++ b/web/webqtl/showTrait/testTraitPage.py @@ -0,0 +1,36 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +from base.webqtlFormData import webqtlFormData +from DataEditingPage import DataEditingPage + +def testTraitPage(): + fd = webqtlFormData() + fd.Sample() + page = DataEditingPage(fd) + return page + + diff --git a/web/webqtl/snpBrowser/GeneAnnot.py b/web/webqtl/snpBrowser/GeneAnnot.py new file mode 100755 index 00000000..5a889253 --- /dev/null +++ b/web/webqtl/snpBrowser/GeneAnnot.py @@ -0,0 +1,124 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +######################################### +# A class for the information of a gene +# An instance of this will be a gene +# it is used by GeneListAnnot class +######################################### + + +class GeneAnnot: + geneSymbol = None # Initialize variables + txStart = -1 + txEnd = -1 + Strand = '' + exon_start = [] + exon_end = [] + cdsStart = -1 + cdsEnd = -1 + def __init__(self, query_result): + self.geneSymbol, self.txStart, self.txEnd, self.Strand, exonStart, exonEnd, self.cdsStart, self.cdsEnd = query_result + if exonStart and exonEnd: + exon_s= exonStart.split(',') + exon_e = exonEnd.split(',') + self.exon_start = [int(s) for s in exon_s[:-1]] + self.exon_end = [int(s) for s in exon_e[:-1]] + #debug.appendoutFile("%d %d"%(self.exon_start[0], self.exon_end[0])) + + def matchTranscript(self, pos): + ''' 1: cds; 2: 2k upstream; 3: 2k downstream; -1: outside; -2: no data''' + locus_type = -1 + distance = 0 + + if (not self.txStart) or (not self.txEnd): # no data + locus_type = -2 + elif (pos >= self.txStart) and (pos <=self.txEnd): + locus_type = 1 + elif (pos self.txStart - 0.002): + locus_type = 2 + distance = self.txStart - pos + elif (pos > self.txEnd) and (pos < self.txEnd + 0.002): + locus_type = 3 + distance = pos - self.txEnd + + return [locus_type, distance] + + def matchDomain(self, pos): + domain_type = None + function = None + + num = len(self.exon_start) + if not domain_type: #not UTR + bp = pos * 1000000 + for i in range(0, num): + if (bp >= self.exon_start[i]) and (bp <= self.exon_end[i]): + num_index = i +1 + if self.Strand == '-': + num_index = num - i + domain_type = "Exon %d"% (num_index) + if self.cdsStart and self.cdsEnd: # then this site in exon can be UTR or stop codon, given cds + if self.Strand == '+': + if pos < self.cdsStart: + domain_type = "5' UTR" + elif pos > self.cdsEnd: + domain_type = "3' UTR" + elif (pos <= self.cdsEnd) and (pos > self.cdsEnd-0.000003): + function = "Stop Codon" + elif self.Strand == '-': + if pos < self.cdsStart: + domain_type = "3' UTR" + elif pos > self.cdsEnd: + domain_type = "5' UTR" + elif (pos >= self.cdsStart) and (pos < self.cdsStart+0.000003): + function = "Stop Codon" + + if not domain_type: + for j in range (0, len(self.exon_start) -1) : # not the last exon + num_index = j +1 + if self.Strand == '-': + num_index = num - j-1 + if (bp <= self.exon_end[j] + 2) and (bp > self.exon_end[j]) : + domain_type = "Intron %d; Splice"% (num_index) #start splice + + if not domain_type: + for k in range (1, len(self.exon_start)): # not the first exon + num_index = k +1 + if self.Strand == '-': + num_index = num - k -1 + if (bp >= self.exon_start[k] -2) and (bp < self.exon_start[k]): + domain_type = "Intron %d; Splice"% (num_index) # end splice + + if not domain_type: + for i in range (1, len(self.exon_start)): + num_index = i + if self.Strand == '-': + num_index = num - i + if (bp > self.exon_end[i-1]) and (bp < self.exon_start[i]): + domain_type = "Intron %d"%num_index + + return [domain_type, function] + diff --git a/web/webqtl/snpBrowser/GeneListAnnot.py b/web/webqtl/snpBrowser/GeneListAnnot.py new file mode 100755 index 00000000..59941a6a --- /dev/null +++ b/web/webqtl/snpBrowser/GeneListAnnot.py @@ -0,0 +1,90 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#################################################################### +## Extracting Annotation using GeneList table +## using transcript start and end, cds start and end +## and exon starts and ednds +#################################################################### + +from base.templatePage import templatePage +from GeneAnnot import GeneAnnot + + +class GeneListAnnot (templatePage): + geneAnnot_list = [] + def __init__(self, species, chr, start, end, strand): + end = "%f"%(float(end)+0.002) # extend a little bit + start = "%f"%(float(start)-0.002) + query_genelist = ''' + SELECT GeneSymbol, TxStart, TxEnd, Strand, exonStarts, exonEnds, cdsStart, cdsEnd + From GeneList + Where SpeciesId=%d and Chromosome="%s" + and not (TxStart<%s and TxEnd<%s) and not (TxStart>%s and TxEnd>%s) + ''' % (species, chr, start, start, end, end) + #debug.printoutFile(query_genelist) # old condition: TxStart<=%s and TxEnd>=%s + self.openMysql() + self.cursor.execute(query_genelist) + gene_results = self.cursor.fetchall(); + for oneresult in gene_results: + oneGeneAnnot = GeneAnnot(oneresult) + self.geneAnnot_list.append(oneGeneAnnot) + + def getAnnot4Pos(self, pos): + #if not self.geneAnnot_list: + # return [None, None, None] + annot_gene = None + annot_domain = None + annot_func = None + min_dist = 99999 + for oneAnnot in self.geneAnnot_list: + in_transcript, dist = oneAnnot.matchTranscript(pos) + #debug.printoutFile(in_transcript) + if in_transcript == 1: + annot_gene = oneAnnot.geneSymbol + annot_domain, annot_func = oneAnnot.matchDomain(pos) + #annot_domain, annot_func = annots + min_dist = 0 + elif in_transcript == 2: + # putative promoter + if dist < min_dist: + annot_gene = oneAnnot.geneSymbol + if oneAnnot.Strand == '+': + annot_domain = "Intergenic;possible promoter" + elif oneAnnot.Strand == '-': + annot_domain = "Intergenic;possible terminator" + min_dist = dist + elif in_transcript == 3: + # putative terminator: + if dist < min_dist: + annot_gene = oneAnnot.geneSymbol + if oneAnnot.Strand == '+': + annot_domain = "Intergenic;possible terminator" + if oneAnnot.Strand == '-': + annot_domain = "Intergenic;possible promoter" + min_dist = dist + + return [annot_gene, annot_domain, annot_func] diff --git a/web/webqtl/snpBrowser/__init__.py b/web/webqtl/snpBrowser/__init__.py new file mode 100755 index 00000000..e69de29b diff --git a/web/webqtl/snpBrowser/snpBrowserPage.py b/web/webqtl/snpBrowser/snpBrowserPage.py new file mode 100755 index 00000000..51132e0d --- /dev/null +++ b/web/webqtl/snpBrowser/snpBrowserPage.py @@ -0,0 +1,1259 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +# FUTURE PLANS: +# 1. Make the search species independent. Right now, it is fairly hard-coded to work with mouse only. Although it would not be too much trouble to add another species, at the time of writing, we have no +# variant data for anything except mice, so spending time fixing the code with respect to species independence is unnecessary. However, if you expand on the code, you should keep this in mind. +# 2. There needs to be some way to display mutliple strains in the InDel browser. +# 3. We need CNV and Transposon data. This should mostly come from Xusheng, at least for B vs. D, and it should be included in the Variants browser, which may have to either be restructured, or +# maybe just have columns added to it (if we're lucky). + +#Code for the Variant Browser module. It's somewhat commented. + +from mod_python import Cookie +from htmlgen import HTMLgen2 as HT + +import string +import os +import piddle as pid +import time +import pyXLWriter as xl +from types import ListType +import re +import cPickle + +#import snpBrowserUtils +from base import webqtlConfig +from base.GeneralObject import GeneralObject +from utility import Plot +from base.templatePage import templatePage +#from GeneListAnnot import GeneListAnnot +from utility import webqtlUtil +from utility.THCell import THCell +from utility.TDCell import TDCell +#################################################################### +## SNP Browser +## Prints information about every SNP that lies in a specified range +#################################################################### + +#get current file path +current_file_name = __file__ +pathname = os.path.dirname( current_file_name ) +abs_path = os.path.abspath(pathname) +class snpBrowserPage(templatePage): + + MAXSNPRETURN = 5000 # This can take an awful long time to load. If there are more than 5000 SNPs, then it loads the SNP density graph instead (which is much faster, but doesn't show the exact data). + MAXMB = 50 # Clips the graph to (Start Mb through Start+50 Mb) if someone searches for a larger region than that + _scriptfile = "main.py?FormID=SnpBrowserResultPage" + + def __init__(self, fd): + + templatePage.__init__(self,fd) + if not self.openMysql(): + return + + self.remote_ip = fd.remote_ip + self.formdata = fd.formdata # This is for passing the VARIANT TYPE to the table creation process + self.snp_list = None + submitStatus = self.formdata.getfirst("submitStatus", "") + opt = GeneralObject() + self.initializeDisplayParameters(fd,opt) + info_line="" + snpTable="" + + if submitStatus: # For SnpBrowser result page + opt.xls = 1 + try: + # for sortable columns, need to build dict for genTableObj function + tblobj = {} + filename= webqtlUtil.genRandStr("snpBrowser_") + snpMatches, tblobj = self.genSnpTable(opt) + + if snpMatches >0 and snpMatches <=self.MAXSNPRETURN: + # creat object for result table for sort function + objfile = open('%s.obj' % (webqtlConfig.TMPDIR+filename), 'wb') + cPickle.dump(tblobj, objfile) + objfile.close() + + sortby = ("Index", "down") + snpTable = HT.Div(webqtlUtil.genTableObj(tblobj=tblobj, file=filename, sortby=sortby, tableID = "sortable", addIndex = "1"), Id="sortable") + else: + #updated by NL 07-11-2011: density map can not be cPickled + snpTable=tblobj + + # This writes the info at top above the search criteria. + strainText = " - among all available strains in the group" + info_line = HT.Paragraph("%d %s(s) on Chr %s: %0.6f - %0.6f (Mb, mm9" % (snpMatches, opt.variant,opt.chromosome, opt.startMb, opt.endMb), + Class="fs14 fwb ffl black") + if self.snp_list: + info_line.contents[0]+= ", SNP: %s)" % opt.geneName + elif opt.geneName: + info_line.contents[0]+= ", Gene: %s)" % opt.geneName + else: + info_line.contents[0]+= ")" + except: + heading = "Variant Browser" + detail = ["No gene or %s record was found that matches %s." % (opt.variant,opt.geneName)] + self.error(heading=heading,detail=detail) + return + else: + opt.use_custom = True + opt.diffAlleles=True + + # SnpBrowser default display part + info_link = HT.Input(type="button", value="Info", Class="button", onClick="javascript:openNewWin('/snpbrowser.html');") + if opt.xslFilename: + xlsDownloadButton= HT.Input(type="button", name="submitStatus",value=" Download Table ",onClick= "location.href='/tmp/%s'" % opt.xslFilename, Class='button') + title = HT.Paragraph("Variant Browser ", info_link, "  ",xlsDownloadButton, Class="title") + else: + title = HT.Paragraph("Variant Browser ", info_link, Class="title") + newPaddingForm = self.genBrowserForm(opt) + descriptionTable = HT.TableLite(border=0, cellpadding=0, cellspacing=0) + + descriptionTable.append(HT.TR(HT.TD(info_line, colspan=3)), + HT.TR(HT.TD("", height="20", colspan=3)), + HT.TR(HT.TD(newPaddingForm,Class="doubleBorder", valign="top", colspan=3)), + HT.TR(HT.TD("", height="20", colspan=3)), + HT.TR(HT.TD(snpTable, colspan=3))) + + self.dict['body'] = HT.TD(title, HT.Blockquote(descriptionTable, HT.P()),valign="top",height="200", width="100%") + self.dict['title'] = "Variant Browser" + pass + + ################################################################ + # Initializes all of the snpBrowserPage class parameters, + # acquiring most values from the formdata (fd) + ################################################################ + def initializeDisplayParameters(self, fd,opt): + + # COLUMN 1: items in paddingTab1 + opt.variant = self.formdata.getfirst("variant","SNP") + opt.geneName = string.strip(self.formdata.getfirst("geneName", "")) + opt.chromosome = self.formdata.getfirst("chr", "19") + startMb, endMb =self.initialMb() + opt.startMb = startMb + opt.endMb = endMb + # COLUMN 2: items in paddingTab2 + opt.allStrainNamesPair = self.getStrainNamePair() + opt.allStrainNameList=[v[0] for v in opt.allStrainNamesPair] + opt.customStrain = self.formdata.getfirst("customStrain",None) + if opt.customStrain: + opt.use_custom = True + else: + opt.use_custom = False + + chosenStrains = self.formdata.getfirst("chosenStrains") + strainList=[] + # chosen strain selectbox incudes all strains that will be displayed in the search results if the "Limit to" checkbox is checked. + # by default, chosen strain selectbox includes 9 strains. + # All strains in chosen strain selectbox will be saved into cookie after clicking 'Search' button. + # chosen strain selectbox is set as single choice. + # The original chosenStrains parameter is string type (chosenStrains = self.formdata.getfirst("chosenStrains")), + # then we split it into list if it is not empty ( chosenStrains = list(string.split(chosenStrains,',')) ) + # Case 1, no item is in selected status in chosen strain selectbox. chosenStrains is None. No converting to list. + # Case 2, user might have added one strain into chosen strain selectbox or clicked one item in chosen strain selectbox. + # After converting to list type, the chosenStrains list has one item. + # Case 3, other classes might have called snpBrowserPage, such as from ProbeInfoPage,the strains will be passed via 'chosenStrains' parameter. + # After converting to list type, the chosenStrains list has two items. + + # In case 1 and 2, we will get the chosen strains from cookie or by using default value of 'chosenStrains'. + opt.chosenStrains = self.retrieveCustomStrains(fd) + + # in case 3, get strain names from 'chosenStrains' parameter + if chosenStrains: + if (not (type(chosenStrains) is ListType)): + chosenStrains = list(string.split(chosenStrains,',')) + if len(chosenStrains)>1 : + for item in chosenStrains: + strainList.append((item,item)) + opt.chosenStrains=strainList + + opt.diffAlleles =self.formdata.getfirst("diffAlleles", None) + if opt.diffAlleles: + opt.diffAlleles = True + else: + opt.diffAlleles = False + + # COLUMN 3: items in paddingTab3 + opt.domain = self.formdata.getfirst("domain") + if opt.domain == None or len(opt.domain) == 0: + opt.domain = [""] + elif not type(opt.domain) is ListType: + opt.domain = [opt.domain] + opt.function = self.formdata.getfirst("exonfunction") + if opt.function == None or len(opt.function) == 0: + opt.function = [""] + elif not type(opt.function) is ListType: + opt.function = [opt.function] + + opt.chosenSource=self.getSource() + opt.source = self.formdata.getfirst("source") + if opt.source == None or len(opt.source) == 0: + opt.source = [""] + elif not type(opt.source) is ListType: + opt.source = [opt.source] + + opt.conservationCriteria = self.formdata.getfirst("criteria",">=") + opt.score = self.formdata.getfirst("score","0.0") + opt.redundant = self.formdata.getfirst("redundant", None) + if opt.redundant: + opt.redundant_checked = True + else: + opt.redundant_checked = False + + # initial xsl file name + opt.xslFilename="" + opt.alleleValueList=[] + + # SnpBrowser page top part + def genBrowserForm(self, opt): + # COLUMN 1: items in paddingTab1 + variantSelect = HT.Select(name="variant", Class="typeDropdownWidth",data=[("SNP", "SNP"), ("InDel", "InDel")], selected=[opt.variant]) + geneBox = HT.Input(type="text", Class="typeDropdownWidth",name="geneName", value=opt.geneName, size="12") + selectChrBox = HT.Select(name="chr",Class="typeDropdownWidth", data=[(1,'1'), (2,'2'), (3,'3'), (4,'4'), (5,'5'), (6,'6'), (7,'7'), (8,'8'), (9,'9'), (10,'10'), (11,'11'), (12,'12'), (13,'13'), (14,'14'), (15,'15'), (16,'16'), (17,'17'), (18,'18'), (19,'19'), ('X', 'X')], selected=[opt.chromosome], onChange = "Javascript:this.form.geneName.value=''") + mbStartBox = HT.Input(type="text", Class="typeDropdownWidth",name="start", size="10", value=opt.startMb, onChange = "Javascript:this.form.geneName.value=''") + mbEndBox = HT.Input(type="text", Class="typeDropdownWidth",name="end", value=opt.endMb, size="10", onChange = "Javascript:this.form.geneName.value=''") + submitButton = HT.Input(type="submit", name="submitStatus",value=" Search ", Class="button") + + # COLUMN 2: items in paddingTab2 + div4 = HT.Div(Id='menu_s3') + strainBox3 = HT.Select(name="s3", data=opt.allStrainNamesPair, Class="customBoxWidth") + div4.append(strainBox3) + addStrainButton = HT.Input(type="button", value="Add", Class="button", onClick="addToList(this.form.s3.options[this.form.s3.selectedIndex].text, this.form.s3.options[this.form.s3.selectedIndex].value, this.form.chosenStrains); this.form.chosenStrains.selectedIndex++") + customStrainBox = HT.Input(type="checkbox", name="customStrain", checked=opt.use_custom, size="100") + customStrainSelect = HT.Select(name="chosenStrains",data=opt.chosenStrains, multiple=False, Class="customBoxWidth", size=11) + removeStrainButton = HT.Input(type="button", value=" Cut ", Class="button", onClick="removeFromList(this.form.chosenStrains.selectedIndex, this.form.chosenStrains)") + diffAlleles = HT.Input(type="checkbox", name="diffAlleles", checked=opt.diffAlleles) + + + # COLUMN 3: items in paddingTab3 + domainBox = HT.Select(name="domain", Class="domainDropdownWidth",data=[("All", ""),("Exon","Exon"),("     5' UTR","5' UTR"), + ("     Coding Region","Coding"),("     3' UTR","3' UTR"), + ("Intron", "Intron"), ("     Splice Site", "Splice Site"),("     Nonsplice Site", "Nonsplice Site"), + ("Upstream","Upstream"),("Downstream","Downstream"), ("Intergenic","Intergenic")], selected=opt.domain, + multiple=True,size=4,onChange = "Javascript:snpbrowser_function_refresh()") + functionBox = HT.Select(name="exonfunction", data=[("All", ""),("Nonsynonymous","Nonsynonymous"),("Synonymous","Synonymous"),("Start Gained", "Start Gained"),("Start Lost", "Start Lost"),("Stop Gained", "Stop Gained"),("Stop Lost", "Stop Lost")], + selected=opt.function,multiple=True, size=3, Class="domainDropdownWidth", + onChange="Javascript:snpbrowser_domain_refresh()") + filterBox = HT.Select(name="criteria", data=[(">=", ">="), ("=", "=="), ("<=","<=")], selected=[opt.conservationCriteria]) + sourceBox = HT.Select(name="source", data=opt.chosenSource, selected=opt.source,Class="domainDropdownWidth") + scoreBox = HT.Input(type="text", name="score", value=opt.score, size="5") + redundantBox = HT.Input(type="checkbox", name="redundant", checked=opt.redundant_checked) + + # This is where the actual table is structured, and it displays the variables initialized above + paddingTable = HT.TableLite(border=0) + paddingTab1 = HT.TableLite(border=0) + paddingTab2 = HT.TableLite(border=0) + paddingTab3 = HT.TableLite(border=0) + + # COLUMN 1 + paddingTab1.append( + HT.TR(HT.TD("Type :", Class="fwb", align="right", NOWRAP=1), HT.TD(variantSelect, NOWRAP=1)), + HT.TR(HT.TD("Gene or ID :", Class="fwb", align="right", NOWRAP=1),HT.TD(geneBox, NOWRAP=1)), + HT.TR(HT.TD("                      Or select", Class="fwb cr", colspan=3, align="LEFT")), + HT.TR(HT.TD("Chr :", Class="fwb", align="right", NOWRAP=1), HT.TD(selectChrBox, NOWRAP=1)),HT.TR(HT.TD("Mb :", Class="fwb", align="right", NOWRAP=1), HT.TD(mbStartBox)), + HT.TR(HT.TD(HT.Font("                    to", size=-1,),HT.TD(mbEndBox, NOWRAP=1))), + HT.TR(HT.TD(HT.HR(width="99%"), colspan=3, height=10)), + HT.TR(HT.TD(HT.TD(submitButton, NOWRAP=1))) + ) + # COLUMN 2 + paddingTab2.append( + HT.TR(HT.TD("Strains:", Class="fwb", align="right", NOWRAP=1), HT.TD(width=10),HT.TD(div4),HT.TD(addStrainButton)), + HT.TR(HT.TD("Limit to:", customStrainBox, Class="fwb cr", align="right", NOWRAP=1),HT.TD(width=0),HT.TD(customStrainSelect),HT.TD(removeStrainButton)) + ) + # COLUMN 3 + paddingTab3.append( + HT.TR(HT.TD("Domain:", Class="fwb", align="right", NOWRAP=1), + HT.TD(width=10), HT.TD(domainBox, NOWRAP=1)), + HT.TR(HT.TD("Function:", Class="fwb", align="right", NOWRAP=1), + HT.TD(width=10), HT.TD(functionBox, NOWRAP=1)), + HT.TR(HT.TD("Source:", Class="fwb", align="right", NOWRAP=1), + HT.TD(width=4), HT.TD(sourceBox, NOWRAP=1)), + HT.TR(HT.TD("ConScore:", Class="fwb", align="right", NOWRAP=1), + HT.TD(width=4), HT.TD(filterBox, scoreBox, NOWRAP=1)), + HT.TR(HT.TD(redundantBox, align="right", NOWRAP=1), HT.TD(width=10), HT.TD("Non-redundant SNP Only", NOWRAP=1)), + HT.TR(HT.TD(diffAlleles, align="right", NOWRAP=1),HT.TD(width=10), HT.TD("Different Alleles Only", NOWRAP=1)) + ) + + paddingTable.append( + HT.TR(HT.TD(paddingTab1), HT.TD("", width="0"), HT.TD(paddingTab2),HT.TD(width=0), HT.TD(paddingTab3), valign="top") + ) + newPaddingForm = HT.Form(cgi=os.path.join(webqtlConfig.CGIDIR, self._scriptfile), enctype="multipart/form-data", name="newSNPPadding", submit=HT.Input(type="hidden"), onSubmit="Javascript:set_customStrains_cookie();") + newPaddingForm.append(paddingTable) + + return newPaddingForm + + # This grabs the data from MySQL for display in the table, allowing different sorting options based on the options chosen by the user. + # The base option is what kind of variant the user is looking for; the other options are nested within that base option here. + def genSnpTable(self, opt): + # Grabs the Gene info, regardless of the variant type searched. This means you can display it for InDels, Snps, Etc. + # initialize variables + tblobj={} # build dict for genTableObj function; keys include header and body + tblobj_header = [] # value of key 'header' + tblobj_body=[] # value of key 'body' + snpHeaderRow=[] # header row list for tblobj_header (html part) + headerList=[] # includes all headers' name except for strain's value + strainNameRow=[] # header row list for strain names + strainList=[] # includes all strains' value + strainNameList0=[] + strainNameList=[] + geneNameList=[] # for SNP's Gene column + geneIdNameDict={} + domain2='' + + headerStyle="fs13 fwb ffl b1 cw cbrb"# style of the header + cellColorStyle = "fs13 b1 fwn c222" # style of the cells + + if opt.geneName: + self.cursor.execute("SELECT geneSymbol, chromosome, txStart, txEnd from GeneList where SpeciesId= 1 and geneSymbol = %s", opt.geneName) + result = self.cursor.fetchone() + if result: + opt.geneName, opt.chromosome, opt.startMb, opt.endMb = result + else: + # If GeneName doesn't turn up results, then we'll start looking through SnpAll or Variants to check for other search types (e.g. Rs#, SnpName, or InDel Name) + if opt.variant == "SNP": + if opt.geneName[:2] == 'rs': + self.cursor.execute("SELECT Id, Chromosome, Position, Position+0.000001 from SnpAll where Rs = %s", opt.geneName) + else: + self.cursor.execute("SELECT Id, Chromosome, Position, Position+0.000001 from SnpAll where SpeciesId= 1 and SnpName=%s",opt.geneName) + result_snp = self.cursor.fetchall() + if result_snp: + self.snp_list = [v[0] for v in result_snp] + opt.chromosome = result_snp[0][1]; + opt.startMb = result_snp[0][2] + opt.endMb = result_snp[0][3] + else: + return + + # Searches through indels by the InDel name. + elif opt.variant == "InDel": + if opt.geneName[0] == 'I': + self.cursor.execute("SELECT Id, Chromosome, Mb_start, Mb_end FROM IndelAll WHERE SpeciesId=1 AND Name=%s", opt.geneName) + result_snp = self.cursor.fetchall() + if result_snp: + self.snp_list = [v[0] for v in result_snp] + opt.chromosome = result_snp[0][1]; + opt.startMb = result_snp[0][2] + opt.endMb = result_snp[0][3] + else: + return + + if (opt.variant == "SNP"): + #NL 05/13/2010: update query based on new db structure in SnpAll and SnpPattern + query1 = """ + SELECT + a.*,b.* + from + SnpAll a, SnpPattern b + where + a.SpeciesId = 1 and a.Chromosome = '%s' AND + a.Position >= %.6f and a.Position < %.6f AND + a.Id = b.SnpId + order by a.Position + """ + + elif (opt.variant == "InDel"): + query1 = """ + SELECT + distinct a.Name, a.Chromosome, a.SourceId, a.Mb_start, a.Mb_end, a.Strand, a.Type, a.Size, a.InDelSequence, b.Name + from + IndelAll a, SnpSource b + where + a.SpeciesId = '1' and a.Chromosome = '%s' AND + a.Mb_start >= %2.6f and a.Mb_start < (%2.6f+.0010) AND + b.Id = a.SourceId + order by a.Mb_start + """ + + self.cursor.execute(query1 % (opt.chromosome, opt.startMb, opt.endMb)) + results_all = self.cursor.fetchall() + + # This executes the query if CHR, MB_START, MB_END are chosen as the search terms and Gene/SNP is not used + results = self.filterResults(results_all, opt) + # output xls file's name + opt.xslFilename = "SNP_Chr%s_%2.6f-%2.6f" % (opt.chromosome, opt.startMb, opt.endMb) + + nnn = len(results) + if nnn == 0: + return nnn, "" + elif nnn > self.MAXSNPRETURN: + gifmap=self.snpDensityMap(opt,query1,results_all) + #07-28-2011 updated by NL: added info part for snp density map + Info="Because the number of results exceeds the limit of 5000, the selected region could not be displayed. " + Info2="Please select a smaller region by clicking the rectangle corresponding with its location in the map below." + densityMap =HT.Span(Info,HT.BR(),Info2,HT.BR(),HT.BR(),gifmap, HT.Image('/image/'+opt.xslFilename+'.png', border=0, usemap='#SNPImageMap'),Class='fwb fs14') + + return nnn, densityMap + else: + pass + + + ############## + # Excel file # + ############## + # This code is for making the excel output file + if opt.xls: + + opt.xslFilename += ".xls" + # Create a new Excel workbook + workbook = xl.Writer(os.path.join(webqtlConfig.TMPDIR, opt.xslFilename)) + worksheet = workbook.add_worksheet() + titleStyle = workbook.add_format(align = 'left', bold = 0, size=18, border = 1, border_color="gray") + headingStyle = workbook.add_format(align = 'center', bold = 1, size=13, fg_color = 0x1E, color="white", border = 1, border_color="gray") + headingStyle2 = workbook.add_format(align = 'center', bold = 1, size=13, fg_color = 0x1E, color="white", rotation = 2, border = 1, border_color="gray") + XLSBASECOLORS0 = {"A": "red", "C": 0x18, + "T": 0x22, "G": "green", + "-": 0x21, "":0x2F} + XLSBASECOLORS = {} + for key in XLSBASECOLORS0.keys(): + XLSBASECOLORS[key] = workbook.add_format(align = 'center', size=12, fg_color = XLSBASECOLORS0[key], border = 1, border_color="gray") + + ##Write xls's title Info + worksheet.write([0, 0], "GeneNetwork Variant Browser", titleStyle) + worksheet.write([1, 0], "%s%s" % (webqtlConfig.PORTADDR, os.path.join(webqtlConfig.CGIDIR, self._scriptfile))) + worksheet.write([2, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime())) + worksheet.write([3, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime())) + worksheet.write([4, 0], "Search by : %s" % self.remote_ip) + if opt.geneName: + worksheet.write([5, 0], "Search term : %s" % opt.geneName) + else: + worksheet.write([5, 0], "view region : Chr %s %2.6f - %2.6f Mb" % (opt.chromosome, opt.startMb, opt.endMb)) + nTitleRow = 7 + + #NL: new way to get header info for each variant + # The next line determines which columns HEADERS show up in the table, depending on which Variant is selected to search the table for. This is for the column HEADERS ONLY; not the data displayed (that comes later). + if (opt.variant == "SNP"): + headerList=['Index','SNP ID','Chr','Mb','Alleles','Source','ConScore','Gene','Transcript','Exon','Domain 1','Domain 2','Function','Details'] + elif (opt.variant == "InDel"): + headerList=['Index','ID','Type','InDel Chr','Mb Start','Mb End','Strand','Size','Sequence','Source'] + + if headerList: + for ncol, item in enumerate(headerList): + if ncol==0: + snpHeaderRow.append(THCell(HT.TD(item, Class=headerStyle, valign='bottom',nowrap='ON'),sort=0)) + elif item=="Details" or item=="Function" : + snpHeaderRow.append(THCell(HT.TD(HT.Href(text = HT.Span(item, HT.Sup(' ?', style="color:#f00"),Class=headerStyle), + target = '_blank',url = "/snpbrowser.html#%s"%item), + Class=headerStyle, valign='bottom',nowrap='ON'), text=item, idx=ncol)) + else: + snpHeaderRow.append(THCell(HT.TD(item, Class=headerStyle, valign='bottom',nowrap='ON'),text=item, idx=ncol)) + #excel file for table headers' names + worksheet.write([nTitleRow, ncol], item, headingStyle) + + # This writes the strain column names for the SNPs. The other variants only have data for C57BL6 and DBA2J, so they don't need this information. + if (opt.variant == "SNP"): + if opt.customStrain: + strainNameList = [v for v in opt.chosenStrains] + strainNameList = filter((lambda x: x[0]>=0),strainNameList) + else: + strainNameList=opt.allStrainNamesPair + + for j, item in enumerate(strainNameList): + _contents = [] + for char in item[0]: + _contents += [char, HT.BR()] + + if j % 5 == 0: + strainNameRow.append(THCell(HT.TD(contents =_contents, Class="fs12 fwn ffl b1 cw cbrb", width=2, align="Center", valign="bottom", style="border-left:2px solid black"),sort=0)) + else: + strainNameRow.append(THCell(HT.TD(contents =_contents, Class="fs12 fwn ffl b1 cw cbrb", width=2, align="Center", valign="bottom"),sort=0)) + + #excel file + ncol += 1 + worksheet.write([nTitleRow, ncol], item[0], headingStyle2) + worksheet.set_column([ncol, ncol], 3) + + snpHeaderRow.extend(strainNameRow) + + tblobj_header.append(snpHeaderRow) + tblobj['header']=tblobj_header + + #Changes text color of SNP label background. The colors here (e.g. cbgdull) are defined in ../css/general.css + BASECOLORS = {"A": "cbrdull", "C": "cbbdull", "T": "cbydull", "G": "cbgdull", "-": "cbpdull", "":"cbccc","t": "cbg22t", "c": "cbg22c", "a": "cbg22a", "g": "cbg22g"} + + # # Code for determining if SNPs are identical (if the location of one SNP is the same as the SNP after it) + try: + self.cursor.execute(query1 % (opt.chromosome, 0, opt.startMb) + " desc limit 1") + firstMb = self.cursor.fetchone() + except: + firstMb =0 + + if firstMb: + lastMb = firstMb[5] + else: + lastMb = 0 + + # get geneId Name pair for SNP result + if opt.variant == "SNP": + for item in results: + if item[5]: + geneName=item[5][1] + # eliminate the duplicate geneName + if geneName and (geneName not in geneNameList): + geneNameList.append(geneName) + if len(geneNameList)>0: + geneIdNameDict=self.getGeneIdNameDict(geneNameList) + + # This pulls out the 'results' variable and splits it into the sequence of results. + for seq, result in enumerate(results): + result = list(result) + + if opt.variant == "SNP": + SnpName, Rs, Chromosome, Mb, Alleles, gene, transcript, exon, domainList, function, functionDetails,SnpSource,ConScore,SnpId = result[:14] + strainNameList=result[14:] + #if domain is intergenic, there's no gene, transcript,exon,function,functionDetails info + if Rs: + SnpHref = HT.Href(text=Rs, url=webqtlConfig.DBSNP % (Rs), target="_blank") + SnpName = Rs + else: + startBp=int(Mb*1000000 -100) + endBp=int(Mb*1000000 +100) + positionInfo="chr%s:%d-%d"%(Chromosome,startBp,endBp) + SnpHref = HT.Href(text=SnpName,url=webqtlConfig.GENOMEBROWSER_URL % (positionInfo), Class="fs12 fwn",target="_blank") + + Mb=float(Mb) + MbFormatted = "%2.6f" % Mb + + if SnpSource=='Sanger/UCLA': + sourceURL1="http://www.sanger.ac.uk/resources/mouse/genomes/" + sourceURL2="http://mouse.cs.ucla.edu/mousehapmap/beta/wellcome.html" + SnpSourceLink=HT.Href(text="Sanger", url=sourceURL1, Class="fs12 fwn",target="_blank") + SnpSourceLink1= HT.Href(text="UCLA", url=sourceURL2, Class="fs12 fwn",target="_blank") + else: + SnpSourceLink="" + + if not ConScore: + ConScore='' + + if gene: + geneName=gene[1] + # if geneName has related geneId, then use geneId for NCBI search + if geneIdNameDict.has_key(geneName) and geneIdNameDict[geneName]: + geneId=geneIdNameDict[gene[1]] + ncbiUrl = HT.Href(text="NCBI",target='_blank',url=webqtlConfig.NCBI_LOCUSID % geneId, Class="fs10 fwn") + else:# if geneName can not find related geneId, then use geneName for NCBI search + ncbiUrl = HT.Href(text="NCBI",target='_blank',url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene&term=%s" % geneName, Class="fs10 fwn") + + #GN similar trait link + _Species="mouse" + similarTraitUrl = "%s?cmd=sch&gene=%s&alias=1&species=%s" % (os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), geneName, _Species) + gnUrl = HT.Href(text="GN",target='_blank',url=similarTraitUrl, Class="fs10 fwn") + else: + geneName='' + ncbiUrl='' + gnUrl='' + + if geneName: + geneNameCol=HT.TD(HT.Italic(geneName), HT.BR(),gnUrl," | ", ncbiUrl, Class=cellColorStyle,nowrap='ON') + else: + geneNameCol=HT.TD(Class=cellColorStyle,nowrap='ON') + + if transcript: + transcriptHref=HT.Href(text=transcript, url=webqtlConfig.ENSEMBLETRANSCRIPT_URL % (transcript), Class="fs12 fwn",target="_blank") + else: + transcriptHref=transcript + + if exon: + exon=exon[1]#exon[0] is exonId;exon[1] is exonRank + else: + exon='' + + if domainList: + domain=domainList[0] + domain2=domainList[1] + if domain=='Exon': + domain=domain+" "+exon + + + funcList=[] + if functionDetails: + funcList=string.split(string.strip(functionDetails),',') + funcList=map(string.strip,funcList) + funcList[0]=funcList[0].title() + functionDetails=', '.join(item for item in funcList) + functionDetails=functionDetails.replace("_", " "); + functionDetails=functionDetails.replace("/", " -> "); + if functionDetails=="Biotype: Protein Coding": + functionDetails =functionDetails+", Coding Region Unknown" + + # build SnpRow for SNP basic information\ + SnpRow=[] + # first column of table + SnpRow.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="index",value=seq+1, onClick="highlight(this)"), align='right',Class=cellColorStyle,nowrap='ON'),text=seq+1)) + SnpRow.append(TDCell(HT.TD(SnpHref, Class=cellColorStyle,nowrap='ON'),SnpName, SnpName)) + SnpRow.append(TDCell(HT.TD(Chromosome, Class=cellColorStyle, align="center",nowrap='ON'),Chromosome, Chromosome)) + SnpRow.append(TDCell(HT.TD(MbFormatted, Class=cellColorStyle, align="center",nowrap='ON'),MbFormatted, MbFormatted)) + SnpRow.append(TDCell(HT.TD(Alleles, Class=cellColorStyle, align="center",nowrap='ON'),Alleles, Alleles)) + if SnpSource=='Sanger/UCLA': + SnpRow.append(TDCell(HT.TD(SnpSourceLink,'/',SnpSourceLink1, Class=cellColorStyle,nowrap='ON'),SnpSource, SnpSource)) + else: + SnpRow.append(TDCell(HT.TD(SnpSource, Class=cellColorStyle,nowrap='ON'),SnpSource, SnpSource)) + + + SnpRow.append(TDCell(HT.TD(ConScore, Class=cellColorStyle,align="center",nowrap='ON'),ConScore, ConScore)) + SnpRow.append(TDCell(geneNameCol,geneName, geneName)) + SnpRow.append(TDCell(HT.TD(transcriptHref, Class=cellColorStyle,nowrap='ON'),transcript, transcript)) + SnpRow.append(TDCell(HT.TD(exon, Class=cellColorStyle,align="center",nowrap='ON'),exon, exon)) + SnpRow.append(TDCell(HT.TD(domain, Class=cellColorStyle, align="center",nowrap='ON'),domain, domain)) + SnpRow.append(TDCell(HT.TD(domain2, Class=cellColorStyle, align="center",nowrap='ON'),domain2, domain2)) + SnpRow.append(TDCell(HT.TD(function, Class=cellColorStyle,nowrap='ON'),function, function)) + SnpRow.append(TDCell(HT.TD(functionDetails, Class=cellColorStyle,nowrap='ON'),functionDetails, functionDetails)) + + # excel file + worksheet.write([nTitleRow+seq+1, 0], seq+1) + worksheet.write([nTitleRow+seq+1, 1], SnpName) + worksheet.write([nTitleRow+seq+1, 2], Chromosome) + worksheet.write([nTitleRow+seq+1, 3], MbFormatted) + worksheet.write([nTitleRow+seq+1, 4], Alleles) + worksheet.write([nTitleRow+seq+1, 5], SnpSource) + worksheet.write([nTitleRow+seq+1, 6], ConScore) + worksheet.write([nTitleRow+seq+1, 7], geneName) + worksheet.write([nTitleRow+seq+1, 8], transcript) + worksheet.write([nTitleRow+seq+1, 9], exon) + worksheet.write([nTitleRow+seq+1, 10], domain) + worksheet.write([nTitleRow+seq+1, 11], domain2) + worksheet.write([nTitleRow+seq+1, 12], function) + worksheet.write([nTitleRow+seq+1, 13], functionDetails) + #ncol here should be the last ncol + 1 + ncol = 14 + + # This puts the Allele data into the table if SNP is selected + BASE="" + bcolor = 'fs13 b1 cbw c222' + for j , item in enumerate(strainNameList): + if item: + BASE =item + bcolor = BASECOLORS[BASE] + " b1" + else: + BASE = "" + bcolor = 'fs13 b1 cbeee c222' #This changes text color of SNPs + + if j % 5 == 0: + SnpRow.append(TDCell(HT.TD(BASE, Class=bcolor, align="center", style="border-left:2px solid black"),BASE,BASE)) + else: + SnpRow.append(TDCell(HT.TD(BASE, Class=bcolor, align="center"),BASE,BASE)) + + # #excel for strains' value + if BASE in XLSBASECOLORS.keys(): + xbcolor = XLSBASECOLORS[BASE] + else: + xbcolor = XLSBASECOLORS[""] + worksheet.write([nTitleRow+seq+1, ncol], BASE, xbcolor) + ncol += 1 + + tblobj_body.append(SnpRow) + lastMb = Mb + + elif opt.variant == "InDel": + indelName, indelChr, indelMb_s, indelMb_e, indelStrand, indelType, indelSize, indelSequence, sourceName = result + + # build SnpRow for Indel basic information\ + SnpRow=[] + # first column of table + SnpRow.append(TDCell(HT.TD(HT.Input(type="checkbox", Class="checkbox", name="index",value=seq+1, onClick="highlight(this)"), align='right',Class=cellColorStyle,nowrap='ON'),text=seq+1)) + SnpRow.append(TDCell(HT.TD(indelName, Class=cellColorStyle,nowrap='ON'),indelName, indelName))# Name of the InDel (e.g. Indel_1350) + SnpRow.append(TDCell(HT.TD(indelType, Class=cellColorStyle, align="center",nowrap='ON'),indelType, indelType))# E.g. Insertion or Deletion + SnpRow.append(TDCell(HT.TD(indelChr, Class=cellColorStyle, align="center",nowrap='ON'),indelChr, indelChr))# Indel Chromosome (e.g. 1) + SnpRow.append(TDCell(HT.TD(indelMb_s, Class=cellColorStyle, align="center",nowrap='ON'),indelMb_s, indelMb_s)) + SnpRow.append(TDCell(HT.TD(indelMb_e, Class=cellColorStyle, align="center",nowrap='ON'),indelMb_e, indelMb_e)) + SnpRow.append(TDCell(HT.TD(indelStrand, Class=cellColorStyle, align="center",nowrap='ON'),indelStrand, indelStrand)) + SnpRow.append(TDCell(HT.TD(indelSize, Class=cellColorStyle,align="center",nowrap='ON'),indelSize, indelSize)) + SnpRow.append(TDCell(HT.TD(indelSequence, Class=cellColorStyle,align="center",nowrap='ON'),indelSequence, indelSequence)) + SnpRow.append(TDCell(HT.TD(sourceName, Class=cellColorStyle,nowrap='ON'),sourceName, sourceName)) + + if opt.xls: + worksheet.write([nTitleRow+seq+1,0], seq+1) + worksheet.write([nTitleRow+seq+1,1], indelName) + worksheet.write([nTitleRow+seq+1,2], indelType) + worksheet.write([nTitleRow+seq+1,3], indelChr) + worksheet.write([nTitleRow+seq+1,4], indelMb_s) + worksheet.write([nTitleRow+seq+1,5], indelMb_e) + worksheet.write([nTitleRow+seq+1,6], indelStrand) + worksheet.write([nTitleRow+seq+1,7], indelSize) + worksheet.write([nTitleRow+seq+1,8], indelSequence) + worksheet.write([nTitleRow+seq+1,9], sourceName) + + tblobj_body.append(SnpRow) + else: + pass + + + tblobj['body']=tblobj_body + workbook.close() # close here is important, otherwise xls file will not be generated + + return len(results), tblobj + + # initialize the value of start Mb and end Mb + def initialMb(self): + try: + startMb = abs(float(self.formdata.getfirst("start", "30.1"))) + endMb = abs(float(self.formdata.getfirst("end", "30.12"))) + except: + startMb = endMb = 30.0 + + if startMb > endMb: + temp = endMb + endMb = startMb + startMb = temp + if startMb == endMb: + endMb = startMb + 2 # DO NOT MAKE THIS LESS THAN 2 MB. YOU WILL BREAK EVERYTHING BECAUSE NO DEFAULT VARIANT IS SELECTED + + if endMb - startMb > self.MAXMB: + endMb = self.MAXMB + startMb + + return startMb,endMb + + # get customStrains from cookie + def retrieveCustomStrains(self,fd): + cookie = fd.cookies + + custom_strains = [] + if cookie.has_key('customstrains1') and cookie['customstrains1']: + strain_cookie = cookie['customstrains1'] + alloptions = string.split(strain_cookie,',') + for one in alloptions: + sname_value = string.split(one,':') + if len(sname_value) == 2: + custom_strains.append( (sname_value[0],sname_value[0])) + else: + custom_strains=[('C57BL/6J', 'C57BL/6J'),('DBA/2J','DBA/2J'),('A/J','A/J'),('129S1/SvImJ','129S1/SvImJ'),('NOD/ShiLtJ','NOD/ShiLtJ'),('NZO/HlLtJ','NZO/HlLtJ'),('WSB/EiJ','WSB/EiJ'),('PWK/PhJ','PWK/PhJ'),('CAST/EiJ','CAST/EiJ')] + + return custom_strains + + # get geneId Name pair, key is geneName, value is geneId + def getGeneIdNameDict(self, geneNameList): + geneIdNameDict={} + if len(geneNameList)==0: + return "" + geneNameStrList =["'"+geneName+"'" for geneName in geneNameList] + geneNameStr=string.join(geneNameStrList,',') + + query = """ + SELECT geneId, geneSymbol from GeneList + where SpeciesId=1 and geneSymbol in (%s) + """ % geneNameStr + self.cursor.execute(query) + results = self.cursor.fetchall() + + if len(results)>0: + for item in results: + geneIdNameDict[item[1]]=item[0] + else: + pass + + return geneIdNameDict + + # This grabs the mySQL query results and filters them for use when SNP Variants are searched for. + def filterResults(self, results, opt): + + filtered = [] + strainIdexList=[] + last_mb = -1 + + if opt.customStrain and opt.chosenStrains: + for item in opt.chosenStrains: + index =opt.allStrainNameList.index(item[0]) + strainIdexList.append(index) + + for seq, result in enumerate(results): + result = list(result) + + if opt.variant == "SNP": + displayStains=[] + # The order of variables here is the order they are selected from in genSnpTable + SnpId,SpeciesId,SnpName, Rs, Chromosome, Mb, Alleles, SnpSource,ConservationScore = result[:9] + + effct =result[9:25] + #result[25] is SnpId; + opt.alleleValueList =result[26:] + + if opt.customStrain and opt.chosenStrains: + for index in strainIdexList: + displayStains.append(result[26+index]) + opt.alleleValueList =displayStains + + effectInfoDict=self.getEffectInfo(effct) + codingDomainList=['Start Gained','Start Lost','Stop Gained','Stop Lost','Nonsynonymous','Synonymous'] + intronDomainList=['Splice Site','Nonsplice Site'] + + + for key in effectInfoDict: + if key in codingDomainList: + domain=['Exon','Coding'] + elif key in ['3\' UTR','5\' UTR']: + domain=['Exon',key] + elif key in ['Unknown Effect In Exon']: + domain=['Exon',''] + elif key in intronDomainList: + domain=['Intron',key] + else: + domain =[key,''] + + if 'Intergenic' in domain: + gene='' + transcript='' + exon='' + function='' + functionDetails='' + + if not opt.redundant or last_mb != Mb: # filter redundant or not + if self.filterIn(domain, function,SnpSource, ConservationScore,opt): + generalInfoList =[SnpName, Rs, Chromosome, Mb, Alleles, gene,transcript,exon,domain,function,functionDetails,SnpSource,ConservationScore,SnpId] + generalInfoList.extend(opt.alleleValueList) + filtered.append(generalInfoList) + last_mb = Mb + else: + geneList,transcriptList,exonList,functionList,functionDetailsList=effectInfoDict[key] + for index, item in enumerate(geneList): + gene=item + transcript=transcriptList[index] + if exonList: + exon=exonList[index] + else: + exon="" + + if functionList: + function=functionList[index] + if function=='Unknown Effect In Exon': + function="Unknown" + else: + function="" + + if functionDetailsList: + functionDetails='Biotype: '+functionDetailsList[index] + else: + functionDetails="" + + if not opt.redundant or last_mb != Mb: # filter redundant or not + if self.filterIn(domain, function,SnpSource, ConservationScore,opt): + generalInfoList =[SnpName, Rs, Chromosome, Mb, Alleles, gene,transcript,exon,domain,function,functionDetails,SnpSource,ConservationScore,SnpId] + generalInfoList.extend(opt.alleleValueList) + filtered.append(generalInfoList) + last_mb = Mb + + + elif opt.variant =="InDel": + # The ORDER of variables here IS IMPORTANT. + # THIS IS FOR ANYTHING YOU BRING OUT OF THE VARIANT TABLE USING InDel + indelName, indelChr, sourceId, indelMb_s, indelMb_e, indelStrand, indelType, indelSize, indelSequence, sourceName = result + + indelType=indelType.title() + if not opt.redundant or last_mb != indelMb_s: # filter redundant or not + gene = "No Gene" + domain = ConservationScore = SnpId = SnpName = Rs = flank3 =flank5 = ncbi =function = '' + if self.filterIn(domain, function,sourceName , ConservationScore, opt): + filtered.append([indelName, indelChr, indelMb_s, indelMb_e, indelStrand, indelType, indelSize, indelSequence, sourceName]) + last_mb = indelMb_s + else: + filtered.append(result) + + return filtered + + # decide whether need to add this record or not + def filterIn(self, domain, function, SnpSource,ConservationScore,opt): + domainSatisfied = True + functionSatisfied = True + differentAllelesSatisfied = True + sourceSatisfied= True + + if domain: + if len(domain) == 0: + if opt.domain[0] != "": # unknown and not searching for "All" + domainSatisfied = False #True + else: + domainSatisfied = False + for onechoice in opt.domain: + if domain[0].startswith(onechoice) or domain[1].startswith(onechoice): + domainSatisfied = True + else: + if opt.domain[0] != "": # when the info is unknown but the users is not searching for "All" + domainSatisfied = False + + if SnpSource: + if len(SnpSource) ==0: # not available + if len(opt.source[0]) > 0: # and not searching for "All" + sourceSatisfied = False #True + else: + sourceSatisfied = False + for choice in opt.source: + if SnpSource.startswith(choice): + sourceSatisfied = True + else: + if len(opt.source[0]) > 0: # when the source is unknown but the users is not searching for "All" + sourceSatisfied = False + + if function: + if len(function) ==0: # not available + if len(opt.function[0]) > 0: # and not searching for "All" + functionSatisfied = False #True + else: + functionSatisfied = False + for choice in opt.function: + if function.startswith(choice): + functionSatisfied = True + else: + if len(opt.function[0]) > 0: # when the function is unknown but the users is not searching for "All" + functionSatisfied = False + + + if ConservationScore: + con_score = float(ConservationScore) + if len(opt.score) > 0: + opt_score_float = float(opt.score) + else: + opt_score_float = 0.0 + if opt.conservationCriteria == '>=': + if con_score >= opt_score_float: + scoreSatisfied = True + else: + scoreSatisfied = False + elif opt.conservationCriteria == '==': + if con_score == opt_score_float: + scoreSatisfied = True + else: + scoreSatisfied = False + elif opt.conservationCriteria == '<=': + if con_score <= opt_score_float: + scoreSatisfied = True + else: + scoreSatisfied = False + else: + if float(opt.score)>0: + scoreSatisfied = False + else: + scoreSatisfied = True # allow null value + + # when diffAlleles function has been chose; + # decide whether need to show this record based on strains' allele value + if opt.variant == "SNP" and opt.diffAlleles: + totalCount =0 + aList=[] + + for x in opt.alleleValueList: + if x and (x.lower() not in aList) and ( x != "-"): + aList.append(x.lower()) + + totalCount= len(aList) + if totalCount <= 1: + differentAllelesSatisfied= False + else: + differentAllelesSatisfied= True + else: + differentAllelesSatisfied = True + + return domainSatisfied and functionSatisfied and sourceSatisfied and scoreSatisfied and differentAllelesSatisfied + + #snpDensityMap will display when the max return is greater than default value + # pay attention to the order of drawing canvas, the latter one will overlap the former one + def snpDensityMap(self,opt,query,results): + + snpCanvas = pid.PILCanvas(size=(900,200)) + xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = (30, 30, 40, 50) + cWidth = snpCanvas.size[0] + cHeight = snpCanvas.size[1] + plotWidth = cWidth - xLeftOffset - xRightOffset + plotHeight = cHeight - yTopOffset - yBottomOffset + yZero = yTopOffset + plotHeight/2 + + plotXScale = plotWidth/(opt.endMb - opt.startMb) + + #draw clickable map + #Image map + gifmap = HT.Map(name='SNPImageMap') + NCLICK = 80.0 + clickStep = plotWidth/NCLICK + clickMbStep = (opt.endMb - opt.startMb)/NCLICK + + for i in range(NCLICK): + #updated by NL 07-11-2011: change the parameters to make clickable function work properly. + HREF = os.path.join(webqtlConfig.CGIDIR, "%s&submitStatus=1&diffAlleles=True&customStrain=True"%self._scriptfile) + \ + "&chr=%s&start=%2.6f&end=%2.6f" % (opt.chromosome, opt.startMb+i*clickMbStep, opt.startMb+(i+1)*clickMbStep) + + COORDS0 = (xLeftOffset+i*clickStep, yTopOffset-18, xLeftOffset+(i+1)*clickStep-2, yTopOffset+plotHeight) + snpCanvas.drawRect(COORDS0[0],COORDS0[1],COORDS0[2],COORDS0[3], edgeColor=pid.white) + COORDS0 = "%d,%d,%d,%d" % COORDS0 + Areas1 = HT.Area(shape='rect',coords=COORDS0,href=HREF) + gifmap.areas.append(Areas1) + + COORDS = (xLeftOffset+i*clickStep, yTopOffset-18, xLeftOffset+(i+1)*clickStep-2, yTopOffset-10) + snpCanvas.drawRect(COORDS[0],COORDS[1],COORDS[2],COORDS[3]+5, edgeColor=pid.wheat, fillColor=pid.wheat) + COORDS = "%d,%d,%d,%d" % COORDS + + Areas = HT.Area(shape='rect',coords=COORDS) + + gifmap.areas.append(Areas) + + snpCanvas.drawString("Click to view the corresponding section of the SNP map", + xLeftOffset, yTopOffset-25, font=pid.Font(ttf="verdana", size=14, bold=0), color=pid.black) + + + ###draw SNPs + snpCounts = [] + stepMb = 1.0/plotXScale + startMb = opt.startMb + + for i in range(plotWidth): + + self.cursor.execute(query % (opt.chromosome, startMb, startMb + stepMb)) + snpCounts.append(len(self.cursor.fetchall())) + startMb += stepMb + + maxCounts = max(snpCounts) + sfactor = plotHeight/(2.0*maxCounts) + for i in range(plotWidth): + sheight = sfactor*snpCounts[i] + snpCanvas.drawLine(i+xLeftOffset, yZero-sheight, i+xLeftOffset, yZero+sheight, color = pid.orange) + + ###draw X axis + snpCanvas.drawLine(xLeftOffset, yZero, xLeftOffset+plotWidth, yZero, color=pid.black) + + XScale = Plot.detScale(opt.startMb, opt.endMb) + XStart, XEnd, XStep = XScale + if XStep < 8: + XStep *= 2 + spacingAmtX = spacingAmt = (XEnd-XStart)/XStep + j = 0 + while abs(spacingAmtX -int(spacingAmtX)) >= spacingAmtX/100.0 and j < 6: + j += 1 + spacingAmtX *= 10 + formatStr = '%%2.%df' % j + + MBLabelFont = pid.Font(ttf="verdana", size=12, bold=0) + NUM_MINOR_TICKS = 5 + xMinorTickHeight = 4 + xMajorTickHeight = 5 + for counter, _Mb in enumerate(Plot.frange(XStart, XEnd, spacingAmt / NUM_MINOR_TICKS)): + if _Mb < opt.startMb or _Mb > opt.endMb: + continue + Xc = xLeftOffset + plotXScale*(_Mb - opt.startMb) + if counter % NUM_MINOR_TICKS == 0: # Draw a MAJOR mark, not just a minor tick mark + snpCanvas.drawLine(Xc, yZero, Xc, yZero+xMajorTickHeight, width=2, color=pid.black) # Draw the MAJOR tick mark + labelStr = str(formatStr % _Mb) # What Mbase location to put on the label + strWidth = snpCanvas.stringWidth(labelStr, font=MBLabelFont) + drawStringXc = (Xc - (strWidth / 2.0)) + snpCanvas.drawString(labelStr, drawStringXc, yZero +20, font=MBLabelFont, angle=0, color=pid.black) + else: + snpCanvas.drawLine(Xc, yZero, Xc, yZero+xMinorTickHeight, color=pid.black) # Draw the MINOR tick mark + # end else + + xLabelFont = pid.Font(ttf="verdana", size=20, bold=0) + xLabel = "SNP Density Map : Chr%s %2.6f-%2.6f Mb" % (opt.chromosome, opt.startMb, opt.endMb) + snpCanvas.drawString(xLabel, xLeftOffset + (plotWidth -snpCanvas.stringWidth(xLabel, font=xLabelFont))/2, + yTopOffset +plotHeight +30, font=xLabelFont, color=pid.black) + + snpCanvas.save(os.path.join(webqtlConfig.IMGDIR, opt.xslFilename), format='png') + return gifmap + + + #NL 05-13-2011: rewrite to get field_names in query + def getStrainNamePair(self): + # add by NL ^-^ 05-13/2011 + # get field_names in query + strainNamePair=[] + query ='SELECT * FROM SnpPattern limit 1' + self.cursor.execute(query) + + num_fields = len(self.cursor.description) + field_names = [i[0] for i in self.cursor.description] + strainsNameList=field_names[1:] + + # index for strain name starts from 1 + for index, name in enumerate(strainsNameList): + strainNamePair.append((name,name)) + + return strainNamePair + + def getEffectDetailsByCategory(self, effectName=None, effectValue=None): + geneList=[] + transcriptList=[] + exonList=[] + funcList=[] + funcDetailList=[] + tmpList=[] + + geneGroupList =['Upstream','Downstream','Splice Site','Nonsplice Site','3\' UTR'] + biotypeGroupList=['Unknown Effect In Exon','Start Gained','Start Lost','Stop Gained','Stop Lost','Nonsynonymous','Synonymous'] + newCodonGroupList=['Start Gained'] + codonEffectGroupList=['Start Lost','Stop Gained','Stop Lost','Nonsynonymous','Synonymous'] + + # split data in effect by using '|' into groups + effectDetailList = string.split(string.strip(effectValue),'|') + effectDetailList = map(string.strip, effectDetailList) + + # if there are more than one group of data, then traversing each group and retrieve each item in the group + for index, item in enumerate(effectDetailList): + itemList =string.split(string.strip(item),',') + itemList = map(string.strip, itemList) + + geneId=itemList[0] + geneName=itemList[1] + geneList.append([geneId,geneName]) + transcriptList.append(itemList[2]) + + if effectName not in geneGroupList: + exonId=itemList[3] + exonRank=itemList[4] + exonList.append([exonId,exonRank]) + + if effectName in biotypeGroupList: + biotype=itemList[5] + funcList.append(effectName) + + if effectName in newCodonGroupList: + newCodon=itemList[6] + tmpList=[biotype,newCodon] + funcDetailList.append(string.join(tmpList, ", ")) + + elif effectName in codonEffectGroupList: + old_new_AA=itemList[6] + old_new_Codon=itemList[7] + codon_num=itemList[8] + tmpList=[biotype,old_new_AA,old_new_Codon,codon_num] + funcDetailList.append(string.join(tmpList, ", ")) + else: + funcDetailList.append(biotype) + + return [geneList,transcriptList,exonList,funcList,funcDetailList] + + def getEffectInfo(self, effectList): + Domain='' + effectDetailList=[] + effectInfoDict={} + + Prime3_UTR,Prime5_UTR,Upstream,Downstream,Intron,Nonsplice_Site,Splice_Site,Intergenic=effectList[:8] + Exon,Non_Synonymous_Coding,Synonymous_Coding,Start_Gained,Start_Lost,Stop_Gained,Stop_Lost,Unknown_Effect_In_Exon=effectList[8:] + + if Intergenic: + Domain='Intergenic' + effectInfoDict[Domain]='' + else: + # if not Exon: + # get geneList, transcriptList info. + if Upstream: + Domain='Upstream' + effectDetailList=self.getEffectDetailsByCategory(effectName='Upstream', effectValue=Upstream) + effectInfoDict[Domain]=effectDetailList + if Downstream: + Domain='Downstream' + effectDetailList=self.getEffectDetailsByCategory(effectName='Downstream', effectValue=Downstream) + effectInfoDict[Domain]=effectDetailList + if Intron: + if Splice_Site: + Domain='Splice Site' + effectDetailList=self.getEffectDetailsByCategory(effectName='Splice Site', effectValue=Splice_Site) + effectInfoDict[Domain]=effectDetailList + if Nonsplice_Site: + Domain='Nonsplice Site' + effectDetailList=self.getEffectDetailsByCategory(effectName='Nonsplice Site', effectValue=Nonsplice_Site) + effectInfoDict[Domain]=effectDetailList + # get gene, transcriptList and exon info. + if Prime3_UTR: + Domain='3\' UTR' + effectDetailList=self.getEffectDetailsByCategory(effectName='3\' UTR', effectValue=Prime3_UTR) + effectInfoDict[Domain]=effectDetailList + if Prime5_UTR: + Domain='5\' UTR' + effectDetailList=self.getEffectDetailsByCategory(effectName='5\' UTR', effectValue=Prime5_UTR) + effectInfoDict[Domain]=effectDetailList + + if Start_Gained: + Domain='5\' UTR' + effectDetailList=self.getEffectDetailsByCategory(effectName='Start Gained', effectValue=Start_Gained) + effectInfoDict[Domain]=effectDetailList + + if Unknown_Effect_In_Exon: + Domain='Unknown Effect In Exon' + effectDetailList=self.getEffectDetailsByCategory(effectName='Unknown Effect In Exon', effectValue=Unknown_Effect_In_Exon) + effectInfoDict[Domain]=effectDetailList + if Start_Lost: + Domain='Start Lost' + effectDetailList=self.getEffectDetailsByCategory(effectName='Start Lost', effectValue=Start_Lost) + effectInfoDict[Domain]=effectDetailList + if Stop_Gained: + Domain='Stop Gained' + effectDetailList=self.getEffectDetailsByCategory(effectName='Stop Gained', effectValue=Stop_Gained) + effectInfoDict[Domain]=effectDetailList + if Stop_Lost: + Domain='Stop Lost' + effectDetailList=self.getEffectDetailsByCategory(effectName='Stop Lost', effectValue=Stop_Lost) + effectInfoDict[Domain]=effectDetailList + + if Non_Synonymous_Coding: + Domain='Nonsynonymous' + effectDetailList=self.getEffectDetailsByCategory(effectName='Nonsynonymous', effectValue=Non_Synonymous_Coding) + effectInfoDict[Domain]=effectDetailList + if Synonymous_Coding: + Domain='Synonymous' + effectDetailList=self.getEffectDetailsByCategory(effectName='Synonymous', effectValue=Synonymous_Coding) + effectInfoDict[Domain]=effectDetailList + + return effectInfoDict + + + def getSortedStrainList(self, strainList): + sortedStrainList=[] + removeList=['C57BL/6J','DBA/2J'] + for item in removeList: + strainList.remove(item) + + sortedStrainList=removeList+strainList + return sortedStrainList + + # build header and footer parts for export excel file + def createExcelFileWithTitleAndFooter(self, workbook=None, datasetName=None,returnNumber=None): + + worksheet = workbook.add_worksheet() + titleStyle = workbook.add_format(align = 'left', bold = 0, size=14, border = 1, border_color="gray") + + ##Write title Info + worksheet.write([1, 0], "Citations: Please see %s/reference.html" % webqtlConfig.PORTADDR, titleStyle) + worksheet.write([2, 0], "Dataset : %s" % datasetName, titleStyle) + worksheet.write([3, 0], "Date : %s" % time.strftime("%B %d, %Y", time.gmtime()), titleStyle) + worksheet.write([4, 0], "Time : %s GMT" % time.strftime("%H:%M ", time.gmtime()), titleStyle) + worksheet.write([5, 0], "Status of data ownership: Possibly unpublished data; please see %s/statusandContact.html for details on sources, ownership, and usage of these data." % webqtlConfig.PORTADDR, titleStyle) + #Write footer info + worksheet.write([8 + returnNumber, 0], "Funding for The GeneNetwork: NIAAA (U01AA13499, U24AA13513), NIDA, NIMH, and NIAAA (P20-DA21131), NCI MMHCC (U01CA105417), and NCRR (U01NR 105417)", titleStyle) + worksheet.write([9 + returnNumber, 0], "PLEASE RETAIN DATA SOURCE INFORMATION WHENEVER POSSIBLE", titleStyle) + + return worksheet + + def getSource(self): + sourceQuery ="select distinct Source from SnpAll" + self.cursor.execute(sourceQuery) + result =self.cursor.fetchall() + sourceList=[("All", "")] + + try: + for item in result: + item=item[0] + sourceList.append((item,item)) + + except: + sourceList=[] + + return sourceList + + diff --git a/web/webqtl/snpBrowser/snpBrowserUtils.py b/web/webqtl/snpBrowser/snpBrowserUtils.py new file mode 100755 index 00000000..4da5c9cb --- /dev/null +++ b/web/webqtl/snpBrowser/snpBrowserUtils.py @@ -0,0 +1,71 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + + # The columns that are to be displayed are chosen at the line about 1000, with categories["info"]; this initializes the columns and assigns a 'variable_name' :and: "Display Name" +columnNames = { + # The following are for ALL VARIANTS + 'variant':"Variant Type", + 'snpname':"SNP ID", # SnpAll.Id + 'chromosome':"Chromosome", + 'mb':"Mb", + 'sourceName':"Source", + 'sourceCreated':"Source Created", + 'sourceAdded':"Source Added", + 'sourceId':"Source", + 'gene':'Gene', + # The following are for SNP VARIANTS + 'source':'Source', + 'chr':'Chr', + 'snpId':"Submitter ID", #SnpAll.SnpName + 'mbCelera':"Mb (CDS)", + 'rs':"ID", + 'function':"Function", + 'type':"Type", + 'majorCount':"Major Count", + 'minorCount':"Minor Count", + 'missingCount':"Missing Count", + 'class':"Class", + 'flanking5':"Flanking 5'", + 'flanking3':"Flanking 3'", + 'blatScore':"BLAT Score", + 'majorAllele':"Major Allele", + 'minorAllele':"Minor Allele", + 'shortAlleles':'Reference', + "Proximal_Gap_bp":"Gap", + 'domain':'Domain', + 'ncbi':'NCBI Annotation', + 'conservation':'ConScore', + # The following are for INDEL VARIANTS + 'indelId':"ID", # Indel.Id Indel + 'indelName':"ID", # Indel.Name + 'indelType':"Type", # Indel.Type + 'indelChr':"InDel Chr", # Indel.Chromosome + 'indelMb_s':"Mb Start", # Indel.Mb_start + 'indelMb_e':"Mb End", # IndelAll.Mb_end + 'indelStrand':"Strand", # IndelAll.Strand + 'indelSize':"Size", # IndelAll.Size + 'indelSeq':"Sequence", # IndelAll.Sequence +} \ No newline at end of file diff --git a/web/webqtl/snpBrowser/snpDetails.py b/web/webqtl/snpBrowser/snpDetails.py new file mode 100755 index 00000000..43100ba9 --- /dev/null +++ b/web/webqtl/snpBrowser/snpDetails.py @@ -0,0 +1,101 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +######################################### +# A class for the information of SNPs ONLY. This is for the 'extra' page when you click on a SNP that doesn't have an RS# +# This is where the information populating +# The table is gathered. This is where you determine what variables you will display in the table +######################################### + +import string +from htmlgen import HTMLgen2 as HT + +import snpBrowserUtils +from base.templatePage import templatePage +from snpBrowserPage import snpBrowserPage + +class snpDetails(templatePage): + + def __init__(self, fd, snpId): + + templatePage.__init__(self, fd) + + snpCols = "snpname, chromosome, mb, domain, rs, function, type, majorAllele, majorCount, minorAllele, minorCount, class, flanking5, flanking3, blatScore, sourceId, gene, ncbi".split(", ") + #get the details from the database if search the SNP variants by the "gene/snp" field + if snpId: + self.openMysql() + + mysqlField = ['snpname','rs', 'chromosome', 'mb', 'function', 'type', 'class', 'flanking5', 'flanking3', 'blatscore', 'domain', 'gene', 'ncbi'] + query = """ + SELECT + %s, c.Name,b.* + from + SnpAll a, SnpPattern b, SnpSource c + where + a.Id =%s AND a.Id = b.SnpId AND a.SourceId =c.Id + """ % (string.join(mysqlField, ", "), snpId) + + self.cursor.execute(query) + results = self.cursor.fetchone() + result =results[:14] + mysqlField.append('sourceName') + snpDict = {} + + for i, item in enumerate(result): + snpDict[mysqlField[i]] = item + alleleList =results[15:] + objSnpBrowserPage =snpBrowserPage(fd) + flag =0 + majAllele,minAllele,majAlleleCount,minAlleleCount= objSnpBrowserPage.getMajMinAlleles(alleleList,flag) + snpDict['majorAllele'] = majAllele + snpDict['minorAllele'] = minAllele + snpDict['majorCount'] = majAlleleCount + snpDict['minorCount'] = minAlleleCount + else: + return + + # Creates the table for the SNP data + snpTable = HT.TableLite(border=0, cellspacing=5, cellpadding=3, Class="collap") + for item in snpCols: + thisTR = HT.TR(HT.TD(snpBrowserUtils.columnNames[item], Class="fs14 fwb ffl b1 cw cbrb", NOWRAP = 1)) + if item in ('flanking5', 'flanking3'): + seq0 = snpDict[item] + seq = "" + i = 0 + if seq0: + while i < len(seq0): + seq += seq0[i:i+5] + " " + i += 5 + thisTR.append(HT.TD(HT.Span(seq, Class="code", Id="green"), Class='fs13 b1 cbw c222')) + elif item in snpDict.keys() and snpDict[item]: + thisTR.append(HT.TD(snpDict[item], Class='fs13 b1 cbw c222')) + else: + thisTR.append(HT.TD("", Class='fs13 b1 cbw c222')) + + snpTable.append(thisTR) + + self.dict['body'] = HT.TD(HT.Paragraph("Details for %s" % snpDict['snpname'], Class="title"), HT.Blockquote(snpTable)) + self.dict['title'] = "Details for %s" % snpDict['snpname'] \ No newline at end of file diff --git a/web/webqtl/submitTrait/AddUserInputToPublishPage.py b/web/webqtl/submitTrait/AddUserInputToPublishPage.py new file mode 100755 index 00000000..f8154266 --- /dev/null +++ b/web/webqtl/submitTrait/AddUserInputToPublishPage.py @@ -0,0 +1,523 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +#AddUserInputToPublishPage.py +# +#Classes: +#AddUserInputToPublishPage +#-KA + +import string +from htmlgen import HTMLgen2 as HT +import os +import time + +from base.webqtlTrait import webqtlTrait +from base.webqtlDataset import webqtlDataset +from base.templatePage import templatePage +from base import webqtlConfig +from utility import webqtlUtil + + +######################################### +# AddUserInputToPublishPage +######################################### + +class AddUserInputToPublishPage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + if not self.updMysql(): + return + fd.incparentsf1 = 1 + if not fd.genotype: + fd.readGenotype() + fd.strainlist = fd.f1list + fd.strainlist + fd.readData() + + if webqtlConfig.USERDICT[self.privilege] >= webqtlConfig.USERDICT['user']: + pass + else: + heading = "Add to Published Database" + detail = ["You don't have the permission to modify this database"] + self.error(heading=heading,detail=detail,error="Error") + return + + self.cursor.execute(""" + SelecT + PublishFreeze.Name + from + PublishFreeze, InbredSet + where + PublishFreeze.InbredSetId = InbredSet.Id AND + InbredSet.Name = '%s'""" % fd.RISet) + + try: + self.db = webqtlDataset(self.cursor.fetchone()[0], self.cursor) + except: + heading = "Add to Published Database" + detail = ["The published database you requested has not been established"] + self.error(heading=heading,detail=detail,error="Error") + return + + status = fd.formdata.getvalue('curStatus') + if status == 'insertResult': + newRecord = self.readForm(fd) + if not newRecord: + return + else: + self.insertResultPage(fd, newRecord) + elif status == 'insertCheck': + newRecord = self.readForm(fd) + if not newRecord: + return + else: + self.insertCheckPage(fd, newRecord) + else: + self.dispFormPage(fd) + + def readForm(self, fd): + newRecord = {} + for field in self.db.disfield: + fieldValue = fd.formdata.getvalue(field) + if field == 'name' or field == 'sequence': + fieldValue = None + elif (not fieldValue) and (field == 'post_publication_description' or field == 'authors' or field == 'title' or field=='year'): + heading = "Add to Published Database" + detail = ["You did not enter information for %s." % webqtlUtil.formatField(field)] + self.error(heading=heading,detail=detail,error="Error") + return {} + elif fieldValue and field == 'pubmed_id': + try: + fieldValue = int(fieldValue) + except: + fieldValue = None + else: + pass + newRecord[field] = fieldValue + return newRecord + + def insertResultPage(self, fd, newRecord): + #generate html + if 1: + + #XZ: Create new publication record if necessary + PublicationId = None + if newRecord['pubmed_id']: + self.cursor.execute('SelecT Id from Publication where PubMed_ID = %d' % newRecord['pubmed_id']) + results = self.cursor.fetchall() + if not results: + pass + else: + PublicationId = results[0][0] + + if not PublicationId: + insertFields = ['Id'] + self.cursor.execute('SelecT max(Id) from Publication') + maxId = self.cursor.fetchall()[0][0] + 1 + insertValues = [maxId] + for field in self.db.disfield: + if field in ('authors', 'title', 'abstract', 'journal','volume','pages','month','year') and newRecord[field]: + insertFields.append(field) + insertValues.append(newRecord[field]) + NFields = ['%s'] * len(insertFields) + query = "insert into Publication (%s) Values (%s)" % (string.join(insertFields, ','), string.join(NFields, ',')) + + self.cursor.execute(query, tuple(insertValues)) + PublicationId = maxId + + + #XZ: Create new phenotype + self.cursor.execute('SelecT max(Id) from Phenotype') + maxId = self.cursor.fetchall()[0][0] + 1 + PhenotypeId = maxId + if not newRecord['units']: + newRecord['units'] = "Unknown" + + insertFields = ['Id'] + insertValues = [PhenotypeId] + insertFields.append( 'Post_publication_description' ) + insertValues.append( newRecord['post_publication_description'] ) + insertFields.append( 'Units' ) + insertValues.append( newRecord['units'] ) + insertFields.append( 'Post_publication_abbreviation' ) + insertValues.append( newRecord['post_publication_abbreviation'] ) + + insertFields.append( 'Submitter' ) + insertValues.append( self.userName ) + insertFields.append( 'Authorized_Users' ) + insertValues.append( self.userName ) + + if newRecord['pre_publication_description']: + insertFields.append( 'Pre_publication_description' ) + insertValues.append( newRecord['pre_publication_description'] ) + + insertFields.append( 'Original_description' ) + original_desc_string = 'Original post publication description: ' + newRecord['post_publication_description'] + if newRecord['pre_publication_description']: + original_desc_string = original_desc_string + '\n\nOriginal pre publication description: ' + newRecord['pre_publication_description'] + insertValues.append( original_desc_string ) + + if newRecord['pre_publication_abbreviation']: + insertFields.append( 'Pre_publication_abbreviation' ) + insertValues.append( newRecord['pre_publication_abbreviation'] ) + + if newRecord['lab_code']: + insertFields.append( 'Lab_code' ) + insertValues.append( newRecord['lab_code'] ) + + if newRecord['owner']: + insertFields.append( 'Owner' ) + insertValues.append( newRecord['owner'] ) + + + NFields = ['%s'] * len(insertFields) + query = "insert into Phenotype (%s) Values (%s)" % (string.join(insertFields, ','), string.join(NFields, ',')) + self.cursor.execute(query, tuple(insertValues)) + + + + + #XZ: Insert data into PublishData, PublishSE and NStrain tables. + self.cursor.execute('SelecT max(Id) from PublishData') + DataId = self.cursor.fetchall()[0][0] + 1 + + self.db.getRISet() + InbredSetId = self.db.risetid + + self.cursor.execute('Select SpeciesId from InbredSet where Id=%s' % InbredSetId) + SpeciesId = self.cursor.fetchone()[0] + + StrainIds = [] + for item in fd.strainlist: + self.cursor.execute('Select Id from Strain where SpeciesId=%s and Name = "%s"' % (SpeciesId, item) ) + StrainId = self.cursor.fetchall() + if not StrainId: + raise ValueError + else: + StrainIds.append(StrainId[0][0]) + + for i, strainName in enumerate(fd.strainlist): + if fd.allTraitData.has_key(strainName): + tdata = fd.allTraitData[strainName] + traitVal, traitVar, traitNP = tdata.val, tdata.var, tdata.N + else: + continue + + if traitVal != None: + #print 'insert into Data values(%d, %d, %s)' % (DataId, StrainIds[i], traitVal), "
      " + #XZ, 03/05/2009: Xiaodong changed Data to PublishData + self.cursor.execute('insert into PublishData values(%d, %d, %s)' % (DataId, StrainIds[i], traitVal)) + if traitVar != None: + #print 'insert into SE values(%d, %d, %s)' % (DataId, StrainIds[i], traitVar), "
      " + #XZ, 03/13/2009: Xiaodong changed SE to PublishSE + self.cursor.execute('insert into PublishSE values(%d, %d, %s)' % (DataId, StrainIds[i], traitVar)) + if traitNP != None: + #print 'insert into NStrain values(%d, %d, %s)' % (DataId, StrainIds[i], traitNP), "
      " + self.cursor.execute('insert into NStrain values(%d, %d, %d)' % (DataId, StrainIds[i], traitNP)) + + + self.cursor.execute('SelecT max(Sequence) from PublishXRef where InbredSetId = %d and PhenotypeId = %d and PublicationId = %d' % (InbredSetId,PhenotypeId,PublicationId)) + Sequence = self.cursor.fetchall() + if not Sequence or not Sequence[0][0]: + Sequence = 1 + else: + Sequence = Sequence[0][0] + 1 + + self.cursor.execute('SelecT max(Id) from PublishXRef where InbredSetId = %d' % InbredSetId) + try: + InsertId = self.cursor.fetchall()[0][0] + 1 + except: + InsertId = 10001 + + ctime = time.ctime() + comments = "Inserted by %s at %s\n" % (self.userName, ctime) + #print 'insert into PublishXRef(Id, PublicationId, InbredSetId, PhenotypeId, DataId, Sequence, comments) values(%s, %s, %s, %s, %s, %s, %s)' % (InsertId , PublicationId, InbredSetId, PhenotypeId, DataId, Sequence, comments) + self.cursor.execute('insert into PublishXRef(Id, PublicationId, InbredSetId, PhenotypeId, DataId, Sequence, comments) values(%s, %s, %s, %s, %s, %s, %s)', (InsertId , PublicationId, InbredSetId, PhenotypeId, DataId, Sequence, comments)) + + TD_LR = HT.TD(valign="top",colspan=2,bgcolor="#ffffff", height=200) + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden')) + hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':'_','CellID':'_','RISet':fd.RISet, 'incparentsf1':'on'} + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + mainTitle = HT.Paragraph("Add Trait to Published Database", Class="title") + + info = HT.Paragraph("Your Trait has been succesfully added to ", self.db.genHTML(), ".") + + thisTrait = webqtlTrait(db=self.db, cursor=self.cursor, name=InsertId) + thisTrait.retrieveInfo() + + tbl = HT.TableLite(cellSpacing=2,cellPadding=0,width="90%",border=0) + + checkBox = HT.Input(type="checkbox",name="searchResult",value="%s" % thisTrait) + tbl.append(HT.TR(HT.TD(width=30), HT.TD(thisTrait.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=thisTrait.authorized_users)))) + form.append(info, HT.P(), tbl) + TD_LR.append(mainTitle, HT.Blockquote(form)) + + self.dict['body'] = TD_LR + else: + heading = "Add to Published Database" + detail = ["Error occured while adding the data."] + self.error(heading=heading,detail=detail,error="Error") + return + + def insertCheckPage(self, fd, newRecord): + #generate html + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='dataInput',submit=HT.Input(type='hidden')) + hddn = {'database':self.db.name, 'curStatus':'insertResult', 'FormID':'dataEditing', 'submitID':'addPublish', 'RISet':fd.RISet} + + recordTable = HT.TableLite(border=0, align="left") + title1 = HT.Paragraph("Trait Information:", Class="subtitle") + title2 = HT.Paragraph("Trait Data:", Class="subtitle") + recordInfoContainer = HT.Div(align="left") + recordDataContainer = HT.Div(align="left") + addButton = HT.Input(type='submit',name='submit', value='Add to Publish',Class="button") + resetButton = HT.Input(type='reset',Class="button") + + recordInfoTable = HT.TableLite(border=0, cellspacing=1, cellpadding=5, align="left") + for field in self.db.disfield: + if newRecord[field]: + recordInfoTable.append(HT.TR( + HT.TD("%s :" % webqtlUtil.formatField(field), Class="fs12 fwb ff1", valign="top",align="right"), + HT.TD(width=20),HT.TD(newRecord[field]))) + hddn[field] = newRecord[field] + + recordInfoContainer.append(addButton, resetButton, HT.P(), title1, HT.BR(), recordInfoTable) + + recordDataTable = HT.TableLite(border=0, width = "80%",cellspacing=3, cellpadding=2) + recordDataTable.append(HT.TR(HT.TD('Strain Name',Class="fs12 ffl fwb",align="left"), + HT.TD('TraitData',Class="fs12 ffl fwb",align="right"), + HT.TD('SE',Class="fs12 ffl fwb",align="right"), + HT.TD('N Per Strain',Class="fs12 ffl fwb",align="right"), + HT.TD(' '*8,Class="fs12 ffl fwb",align="center"), + HT.TD('Strain Name',Class="fs12 ffl fwb",align="left"), + HT.TD('TraitData',Class="fs12 ffl fwb",align="right"), + HT.TD('SE',Class="fs12 ffl fwb",align="right"), + HT.TD('N Per Strain',Class="fs12 ffl fwb",align="right"))) + + tempTR = HT.TR(align="Center") + for i, strainName in enumerate(fd.strainlist): + if fd.allTraitData.has_key(strainName): + tdata = fd.allTraitData[strainName] + traitVal, traitVar, traitNP = tdata.val, tdata.var, tdata.N + else: + traitVal, traitVar, traitNP = None, None, None + + if traitVal != None: + traitVal = "%2.3f" % traitVal + else: + traitVal = 'x' + if traitVar != None: + traitVar = "%2.3f" % traitVar + else: + traitVar = 'x' + if traitNP != None: + traitNP = "%d" % traitNP + else: + traitNP = 'x' + + tempTR.append(HT.TD(HT.Paragraph(strainName),align='left'), + HT.TD(traitVal,align='right'), + HT.TD(traitVar,align='right'), + HT.TD(traitNP,align='right'), + HT.TD('',align='center')) + if i % 2: + recordDataTable.append(tempTR) + tempTR = HT.TR(align="Center") + + if (i+1) % 2: + tempTR.append(HT.TD('')) + tempTR.append(HT.TD('')) + recordDataTable.append(tempTR) + + info = HT.Paragraph("Please review the trait information and data in the text below. Check the values for errors. If no error is found, please click the \"Add to Publish\" button to submit it.") + recordDataContainer.append(title2, HT.BR(), info, HT.P(), recordDataTable, HT.P(), addButton, resetButton, HT.P()) + + recordTable.append(HT.TR(HT.TD(recordInfoContainer)), HT.TR(HT.TD(recordDataContainer))) + + webqtlUtil.exportData(hddn, fd.allTraitData, 1) + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + + ############################# + TD_LR = HT.TD(valign="top",colspan=2,bgcolor="#ffffff") + + mainTitle = HT.Paragraph("Add Trait to Published Database", Class="title") + + form.append(recordTable) + + TD_LR.append(mainTitle, HT.Blockquote(form)) + + self.dict['body'] = TD_LR + + def dispFormPage(self, fd): + ###specical care, temporary trait data + fullname = fd.formdata.getvalue('fullname') + if fullname: + thisTrait = webqtlTrait(fullname=fullname, data= fd.allTraitData, cursor=self.cursor) + thisTrait.retrieveInfo() + PhenotypeValue = thisTrait.description + else: + thisTrait = webqtlTrait(data= fd.allTraitData) + PhenotypeValue = thisTrait.identification + + self.dict['title'] = 'Add to Published Database' + + form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='dataInput',submit=HT.Input(type='hidden')) + + recordTable = HT.TableLite(border=0, align="left") + recordInfoContainer = HT.Div(align="left") + recordDataContainer = HT.Div(align="left") + title1 = HT.Paragraph(" Trait Information:", align="left", Class="subtitle") + title2 = HT.Paragraph(" Trait Data:", align="left", Class="subtitle") + addButton = HT.Input(type='submit',name='submit', value='Submit Trait',Class="button") + resetButton = HT.Input(type='reset',Class="button") + + recordInfoTable = HT.TableLite(border=0, cellspacing=1, cellpadding=5,align="left") + for field in self.db.disfield: + fieldValue = "" + + if field == 'comments': + continue + elif field == 'name' or field == 'sequence' or field == 'original_description' or field == 'submitter' or field == 'authorized_users': + form.append(HT.Input(type="hidden",name=field,value=fieldValue)) + continue + elif field == 'post_publication_description': + inputBox = HT.Textarea(name=field, cols=60, rows=6,text=PhenotypeValue) + elif field == 'abstract' or field == 'pre_publication_description' or field == 'owner': + inputBox = HT.Textarea(name=field, cols=60, rows=6,text=fieldValue) + elif field == 'post_publication_abbreviation' or field == 'pre_publication_abbreviation': + inputBox = HT.Input(type="text",name=field,size=60, maxlength=30,value=fieldValue) + else: + inputBox = HT.Input(type="text",name=field,size=60, maxlength=255,value=fieldValue) + if field in ('post_publication_description', 'authors', 'title', 'year'): + requiredSign = HT.Span('*', Class="cr") + else: + requiredSign = '' + + recordInfoTable.append(HT.TR( + HT.TD(requiredSign, "%s :" % webqtlUtil.formatField(field), Class="fs12 fwb ff1", valign="top",align="right"), + HT.TD(width=20),HT.TD(inputBox))) + + if field == 'pubmed_id': + recordInfoTable.append(HT.TR( + HT.TD(), HT.TD(width=20), + HT.TD("Do not enter PubMed_ID if this trait has not been Published.", + HT.BR(), "If the PubMed_ID you entered is alreday stored in our database, ", + HT.BR(), "all the following fields except Post Publication Description will be ignored.", + HT.BR(), "Do not enter any non-digit character in this field.", Class="fs11 cr") + )) + if field == 'pre_publication_description': + recordInfoTable.append(HT.TR( + HT.TD(), HT.TD(width=20), + HT.TD("If the PubMed ID is entered, the Post Publication Description will be shown to all", + HT.BR(), " users. If there is no PubMed ID, and the Pre Publication Description is entered,", + HT.BR(), "only you and authorized users can see the Post Publication Description.", Class="fs11 cr") + )) + if field == 'owner': + recordInfoTable.append(HT.TR( + HT.TD(), HT.TD(width=20), + HT.TD("Please provide detailed owner contact information including full name, title,", + HT.BR(), " institution, address, email etc", Class="fs11 cr") + )) + + recordInfoTable.append(HT.TR(HT.TD(HT.Span('*', Class="cr"), " Required field", align="center", colspan=3))) + recordInfoContainer.append(addButton, resetButton, HT.P(), title1, HT.BR(), recordInfoTable) + + recordDataTable = HT.TableLite(border=0, width = "90%",cellspacing=2, cellpadding=2) + recordDataTable.append(HT.TR(HT.TD('Strain Name',Class="fs12 ffl fwb",align="left"), + HT.TD('Trait Data',Class="fs12 ffl fwb",align="right"), + HT.TD('SE',Class="fs12 ffl fwb",align="right"), + HT.TD('N Per Strain',Class="fs12 ffl fwb",align="right"), + HT.TD(' '*8,Class="fs12 ffl fwb",align="center"), + HT.TD('Strain Name',Class="fs12 ffl fwb",align="left"), + HT.TD('Trait Data',Class="fs12 ffl fwb",align="right"), + HT.TD('SE',Class="fs12 ffl fwb",align="right"), + HT.TD('N Per Strain',Class="fs12 ffl fwb",align="right"))) + + tempTR = HT.TR(align="right") + for i, strainName in enumerate(fd.strainlist): + if thisTrait.data.has_key(strainName): + tdata = thisTrait.data[strainName] + traitVal, traitVar, traitNP = tdata.val, tdata.var, tdata.N + else: + traitVal, traitVar, traitNP = None, None, None + + if traitVal != None: + traitVal = "%2.3f" % traitVal + else: + traitVal = 'x' + if traitVar != None: + traitVar = "%2.3f" % traitVar + else: + traitVar = 'x' + if traitNP != None: + traitNP = "%d" % traitNP + else: + traitNP = 'x' + + tempTR.append(HT.TD(HT.Paragraph(strainName), width="120px", align='left'), \ + HT.TD(HT.Input(name=fd.strainlist[i], size=8, maxlength=8, value=traitVal, align="right"), width="100px", align='right'), + HT.TD(HT.Input(name='V'+fd.strainlist[i], size=8, maxlength=8, value=traitVar, align="right"), width="100px", align='right'), + HT.TD(HT.Input(name='N'+fd.strainlist[i], size=8, maxlength=8, value=traitNP, align="right"), width="120px", align='right'), + HT.TD('', align='center')) + if i % 2: + recordDataTable.append(tempTR) + tempTR = HT.TR(align="Center") + + if (i+1) % 2: + tempTR.append(HT.TD('')) + tempTR.append(HT.TD('')) + tempTR.append(HT.TD('')) + recordDataTable.append(tempTR) + + recordDataContainer.append(title2, HT.BR(), recordDataTable, HT.P(), addButton, resetButton, HT.P()) + + recordTable.append(HT.TR(HT.TD(recordInfoContainer)), HT.TR(HT.TD(recordDataContainer))) + + """ + """ + + hddn = {'database':self.db.name, 'curStatus':'insertCheck', 'FormID':'dataEditing', 'submitID':'addPublish', 'RISet':fd.RISet} + for key in hddn.keys(): + form.append(HT.Input(name=key, value=hddn[key], type='hidden')) + + + ############################# + TD_LR = HT.TD(valign="top",colspan=2,bgcolor="#ffffff") + + mainTitle = HT.Paragraph("Add Trait to Published Database", Class="title") + + form.append(recordTable) + + TD_LR.append(mainTitle, form) + + self.dict['body'] = TD_LR + diff --git a/web/webqtl/submitTrait/BatchSubmitPage.py b/web/webqtl/submitTrait/BatchSubmitPage.py new file mode 100755 index 00000000..1c0be1ed --- /dev/null +++ b/web/webqtl/submitTrait/BatchSubmitPage.py @@ -0,0 +1,142 @@ +# Copyright (C) University of Tennessee Health Science Center, Memphis, TN. +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU Affero General Public License +# as published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. +# See the GNU Affero General Public License for more details. +# +# This program is available from Source Forge: at GeneNetwork Project +# (sourceforge.net/projects/genenetwork/). +# +# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010) +# at rwilliams@uthsc.edu and xzhou15@uthsc.edu +# +# +# +# This module is used by GeneNetwork project (www.genenetwork.org) +# +# Created by GeneNetwork Core Team 2010/08/10 +# +# Last updated by GeneNetwork Core Team 2010/10/20 + +import glob +from htmlgen import HTMLgen2 as HT +import os + +from base.templatePage import templatePage +from utility import webqtlUtil +from base import webqtlConfig + + +# XZ, 09/09/2008: From home, click "Batch Submission". +# XZ, 09/09/2008: This class generate what you see +######################################### +# BatchSubmitPage +######################################### + +class BatchSubmitPage(templatePage): + + def __init__(self, fd): + + templatePage.__init__(self, fd) + + self.dict['title'] = 'Batch Submission' + + TD_LEFT = """ +
      +

      Introduction

      +
      +

      The batch submission utility enables users to submit multiple + traits at the same time for analysis by the GeneNetwork and + WebQTL. The data will be stored on our server for no more than + 24 hours. None of the submitted data are stored or copied + elsewhere.

      +

      The file to be uploaded should follow correct format shown + in the + Sample, Sample2 text file.

      +

      Please follow the guide for naming your traits.

      +
      +
      +

      Introduction

      +
      +

      The trait values that you enter are statistically compared + with verified genotypes collected at a set of microsatellite + markers in each RI set. The markers are drawn from a set of + over 750, but for each set redundant markers have been removed, + preferentially retaining those that are most informative.

      + +

      These error-checked RI mapping data match theoretical + expectations for RI strain sets. The cumulative adjusted length + of the RI maps are approximately 1400 cM, a value that matches + those of both MIT maps and Chromosome Committee Report maps. + See our full description of the genetic data + collected as part of the WebQTL project.

      + +
      +

      About Your Data

      +
      +

      You can open a separate window giving the number of strains + for each data set and sample data.

      +

      None of your submitted data is copied or stored by this + system except during the actual processing of your submission. + By the time the reply page displays in your browser, your + submission has been cleared from this system.

      +
      +
      +

      Introduction

      +
      +

      The variance values that you enter are statistically compared\ + with verified genotypes collected at a set of microsatellite \ + markers in each RI set. The markers are drawn from a set of \ + over 750, but for each set redundant markers have been removed,\ + preferentially retaining those that are most informative.

      + +

      These error-checked RI mapping data match theoretical \ + expectations for RI strain sets. The cumulative adjusted length\ + of the RI maps are approximately 1400 cM, a value that matches\ + those of both MIT maps and Chromosome Committee Report maps. \ + See our full description of the genetic data \ + collected as part of the WebQTL project.

      + +
      +

      About Your Data

      +
      +

      You can open a separate window giving the number\ + of strains for each data set and sample data.

      + +

      None of your submitted data is copied or stored by this \ + system except during the actual processing of your submission. \ + By the time the reply page displays in your browser, your \ + submission has been cleared from this system.

      +
      +
      + + + + + + + + + + +
      + + + +
      + +

      Latest Updates and News from Genenetwork modify this page

      +
      +2012-5-4: Second Developmental Studies of the Genetics of Gene Expression in Brain have been entered into GeneNetwork (BIDMC/UTHSC Dev Neocortex P3 and P14 ILMv6.2 (Nov11) RankInv). Dr. Glenn Rosen and colleagues have contributed data on gene expression across sets of 32 BXD strains for the neocortex and striatum at two stages of development (postnatal days 3 and 14). They used the Illumina Mouse Genome 6 version 2 array. These data are matched by previous data sets for the adult neocortex and striatum. These data are now publicly available but users are requested to contact Glenn D. Rosen regarding the status of these new data. (Implemented by G Rosen, RW Williams and A Centeno). +
      + +
      + +2012-1-20: Mouse SNPs from dbSNP have been added to GeneNetwork. 10 million mouse SNPs from dbSNP (build 128) have been added to Variant Browser. They could be searched by name (e.g. rs31192936) (Implemented by Xiaodong Zhou and Ning Liu). +
      + +
      +2012-1-20: Literature correlation has been update to 2011 version. Dr. Ramin Homayouni and Dr. Lijing Xu kindly provide the 2011 version of mouse gene-gene literature correlation matrix to GeneNetwork. (Implemented by Xiaodong Zhou). +
      + +
      +2011-12-16: Expression data set for EPFL/LISP BXD Muscle Affy Mouse Gene 1.0 ST (Dec11) RMA ** has been entered in GeneNetwork. Laboratory of Integrative and Systems Physiology (LISP). This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please contact Johan Auwerx or Evan Williams at evan.williams@epfl.ch regarding use of these data. (Implemented by J Auwerx, E Williams, LA Rose, RW Williams and A Centeno). +
      + +
      +2011-9-29: We have added liver gene expression data for many strains of mice from GEO series GSE16780. These data were generated by Dr. Jake Lusis and colleagues at UCLA and are currently listed as a BXD data set, although the study actually includes many other strains (see "GSE16780 UCLA Hybrid MDP Liver Affy HT M430A (Sep11) RMA". Since adding the data we have discovered errors in strain assignment that affect a majority of the conventional inbred strains and several RI strains. For this reason, these data should still be considered provisional. For complete information please refer to A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res 2010 Feb;20(2):281-90. PMID: 20054062 (Implemented by Bennett BJ, Ghazalpour A. Data entered on 9-29-11 by A. Centeno under Accession number:GN373). +
      + +
      +2011-9-17: The QTLminer feature was put into GeneNetwork production server. (Implemented by Rudi Alberts, Lei Yan, Ning Liu, Xiaodong Zhou) +
      + +
      +2011-7-20: GeneNetwork was moved to Amazon Cloud (EC2). (Implemented by Lei Yan) +
      + +
      +2011-7-12: A SourceForge site for GeneNetwork was built: https://sourceforge.net/projects/genenetwork/. (Implemented by Lei Yan, Robert Williams) +
      + +
      +2011-7-11: A new account on our SVN server for GeneNetwork sharing was created. Anybody can get the latest version of GN source codes by checking out (this account cannot commit).
      +URL: http://tyche.uthsc.edu/repos/gn/
      +Username: gndownload
      +Password: gndownload
      +(Implemented by Lei Yan) +
      + +
      +2011-7-5: Harvard Brain Tissue Resource Center/ Merck Research Laboratories. This study aims at identifying functional variation in the human genome (especially as it pertains to brain expressed RNAs) and elucidate its relationship to disease and drug response. The ~800 individuals in this dataset are composed of approximately 400 Alzheimers disease (AD) cases, 230 Huntington's Disease and 170 controls matched for age, gender, and post mortem interval (PMI). The tissue specimens for this study were provided by Harvard Brain Tissue Resource Center (HBTRC).

      +Three brain regions (cerebellum, visual cortex, and dorsolateral prefrontal cortex) from the same individuals were profiled on a custom-made Agilent 44K microarray of 39,280 DNA probes uniquely targeting 37,585 known and predicted genes, including splice variants, miRNAs and high-confidence non-coding RNA sequences. The individuals were genotyped on two different platforms, the Illumina HumanHap650Y array and a custom Perlegen 300K array (a focused panel for detection of singleton SNPs). Clinical outcomes available include age at onset, age at death, Braak scores (AD), Vonsattel scores (HD), Regional brain enlargement/atrophy.

      +Acknowledgements. The Harvard Brain dataset was contributed by Merck Pharmaceutical through the Sage Bionetworks Repository. The tissues were provided by Harvard Brain Tissue Resource Center which is supported in part by PHS grant R24 MH068855 (http://www.brainbank.mclean.org/). Investigators: Francine Benes/ Eric Schadt. (Implemented by Megan Mulligan, Rob Williams and Arthur Centeno).

      +
      + +
      +2011-6-16: CANDLE Study expression data entered in GN. The primary goal of the CANDLE study is to study factors that affect brain development in young children. To this end, the current study will test specific hypotheses regarding factors that may negatively influence cognitive development in children. +For information on genomic and genetic studies related to CANDLE, please contact: Drs. Ronald M. Adkins (radkins1 at uthsc.edu) and Julia Krushkal (jkrushka at uthsc.edu). This data set is currently confidential. (Implemented by Khyobeni Mozhui, Rob Williams and Arthur Centeno). +
      + +
      +2011-6-6: Confidential Phenotype Trait Feature: We added one new feature of confidential phenotype trait to GeneNetwork. (Implemented by Xiaodong Zhou). +
      + +
      +2011-6-6: SNP INDEL Variant Browser updated: We have greatly expanded and improved the SNP INDEL variant browser that is built into GeneNetwork. This resource enables users to rapidly review both known and confidently imputed sequence variants in the mouse genome. The data set includes over 65 million SNPs that are largely taken from sequencing efforts of David Adams and colleagues at the Sanger Institute and our own team at UT. The imputation of SNPs to other strains was carried out by Eleazar Eskin, Nick Furlotte, and colleagues at UCLA. (Implemented by Ning Liu and Xiaodong Zhou). +
      + +
      +2011-6-6: Major Overhaul of Trait Data pages: The Trait Data and Analysis page has been redesigned to reduce complexity and visual clutter. Functions have not been changed, but may have been moved (Implemented by Zachary Sloan, Xiaodong Zhou, and Rob Williams). +
      + + +
      +2011-6-6: Upgraded GeneNetwork Hardware: We are converting GeneNetwork to MySQL master-slave replication with faster solid-state hard drives to improve performance. (Implemented by Lei Yan). +
      + + +
      +2011-3-21: Sample blocking: The user can now block individual samples/strains in the Trait Data and Analysis page by typing either an individual index number or a range (ex: 1,2,3,10-20). This feature was created to eliminate the need for a user to manually replace each sample's value with 'x'. (Implemented by Zachary Sloan). +
      + +
      +2011-3-18: User login status: The user login status is shown in all dynamically generated pages by making use of session mechanism through entire GN system. (Implemented by Xiaodong Zhou). +
      + +
      +2011-2-23: More space for your Trait Collections: We have greatly expanded the number of traits, transcripts, genes, and markers be added to your collections. The current limit is now 3,000; up from 100 in the previous version. This improvement was achieved by storing collection information using a different and more secure method (session control rather than cookies) (Implemented by Xiaodong Zhou). +
      + +
      +2011-2-9: INIA Amygdala BLA Affy MoGene 1.0 ST (Nov10):

      This is a final error-checked release of an amygdala gene expression data set generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from the NIH NIAAA. The basolateral complex of the amygdala of untreated young adult mice was profiled using the Affymetrix GeneChip Mouse Gene 1.0 ST array that contains approximately 34,728 probe sets that target approximately 29,000 well defined transcripts (RefSeq mRNA isoforms) and essentially all known protein coding genes in mouse. This array is an "exon style" array with multiple probes in all known exons of each gene (an average of about 27 per gene) and is an abridged version of the Affymetrix Exon 1.0 ST array. However, it also does contain some probes that target non-coding RNAs and even miRNA precursors (search "ncrna").
      +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data. +

      + +
      +2011-2-9: INIA Hypothalamus Affy MoGene 1.0 ST (Nov10):

      These hypothalamic gene expression data were generated by Khyobeni Mozhui, Lu Lu, and Robert W. Williams and colleagues with funding support from NIAAA. The data set includes samples from 50 strains, including 46 BXDs, both parental strains, and reciprocal F1 hybrids. Expression data were generated using the Affymetrix Mouse Gene 1.0 ST exon-style microarray (multiple probes in all known exons) by Lorne Rose in the UTHSC Molecular Resources Center (MRC), Memphis TN. The table below provides a summary of cases, sex, and age. Hypothalamic tissue was dissected by K. Mozhui (description to follow) with special attention to time of day (every sample has time stamp). RNA was extracted by K. Mozhui. All other processing steps by the UTHSC MRC by L. Rose. Data were processed by Arthur Centeno.
      +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data. +

      + +
      +2011-2-7: GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA **: Data set generated with support of NIAAA by Drs. Robert Rooney (Genome Explorations Inc.), Divyen Patel (Genome Explorations Inc.), and Kristin Hamre (UTHSC). All animals were on standard chow and water ad lib. Both the saline control group and the ethanol=treated group were given solutions via intragastric gavage with controls getting saline and the alcohol-treated group getting 6g/kg of ethanol. Ethanol-treated mice were generally comatose for 4-6 hrs but were responsive and moving by the next morning. Tissue was collected at 24 hours after the initial infusion.
      +This data set is not yet freely available for global analysis. This data set has not yet been used or described in any publication. Please contact Robert W. Williams at rwilliams@uthsc.edu regarding use of these data. +
      + +
      +2011-2-3: OHSU HS-CC Striatum ILM6v1 (Feb11) RankInv: The current study focused on the extent genetic diversity within a species (Mus musculus) affects gene +co-expression network structure. To examine this issue, we have created a new mouse resource, a heterogeneous +stock (HS) formed from the same eight inbred strains that have been used to create the collaborative cross (CC). The +eight inbred strains capture > 90% of the genetic diversity available within the species. For contrast with the HS-CC, a +C57BL/6J (B6) × DBA/2J (D2) F2 intercross and the HS4, derived from crossing the B6, D2, BALB/cJ and LP/J strains, +were used. Brain (striatum) gene expression data were obtained using the Illumina Mouse WG 6.1 array, and the data +sets were interrogated using a weighted gene co-expression network analysis (WGCNA).
      +Read full article: Genetic diversity and striatal gene networks: focus on the heterogeneous stock-collaborative cross (HS-CC) mouse. +
      + +
      +2011-1-26: Auwerx Lab BXD Phenotype Data: We have entered the first large-scale metabolic, cardiovascular, and clinical chemistry data sets (n = 143 phenotypes) for the BXD strains of mice. Data are averages for males and females separately, for as many as 43 strains. Data were generated using animals born at UTHSC (Memphis) and phenotyped in Strasbourg, France in 2008 using EMPReSS Slim EUMORPHIA standard operating protocols. Blood pressure phenotypes were included in a PLoS Genetics paper in 2009, but we now provide the complete phenotypes from this cohort of animals. (Phenotyping by Hana Koutinkova, Johan Auwerx and colleagues; data processing by H Koutnikova, RW Williams, EG Williams, and Xiaodong Zhou). + +
      + +
      +2011-1-26: Expression data for the prefrontal cortex of the BXD strains have added into GN, mice from each genotype received 4 weekly cycles of chronic intermittent ethanol (CIE) vapor exposure (EtOH group) or air exposure (CTL group) in inhalation chambers. The general study design was generated by Dr. Michael Miles and colleagues. All data sets are currently being tested. Contact Dr. Miles at VCU Medical Center for access (Implemented by M Miles, RW Williams and A Centeno). + +
        +
      1. VCU BXD PFC CIE Air M430 2.0 (Jan11) RMA ** +
      2. VCU BXD PFC CIE EtOH M430 2.0 (Jan11) RMA ** +
      3. VCU BXD PFC EtOH vs CIE Air M430 2.0 (Jan11) Sscore ** +
      +
      +
      + +
      +2011-1-14: NCSU Expression data set for Drosophila melanogaster have been added to GeneNetwork. For more information about The Drosophila Genetic Reference Panel click here. (Julien F. Ayroles, Trudy F. C. Mackay). + +
        +
      1. NCSU Drosophila Whole Body (Jan11) RMA +
      +
      +
      + +
      +2011-1-11: Genome Explorations Expression data sets for Liver have been added to GeneNetwork. (Implemented by B Rooney, K Hamre, RW Williams and A Centeno). + +
        +
      1. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Females ** +
      2. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Males ** +
      3. GenEx BXD Sal Liver Affy M430 2.0 (Jan11) RMA Both Sexes ** +
      4. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Females ** +
      5. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Males ** +
      6. GenEx BXD EtOH Liver Affy M430 2.0 (Jan11) RMA Both Sexes ** +
      +
      +
      + +
      +2010-12-22: Phenotype traits can be searched by LRS. For instance, search by LRS=(23 46) or LRS=(9 99 Chr4 122 155). (Implemented by Xiaodong Zhou). +
      + +
      +2010-12-20: The final quality controlled release of a spleen gene expression data set generated by a DOD-funded consortium (Byrne, Kotb, Williams, and Lu) has been entered in GeneNetwork. + +
        +
      1. UTHSC Affy MoGene 1.0 ST Spleen (Dec10) RMA +
      +
      +
      + +
      +2010-12-10: +We built a new Cluster system. Four nodes were deployed. Every node is Dell PowerEdge R815, has 48 cores, 64G RAM, 1.3G RAM/core. CPU is AMD 1.86G Hz. The headmaster connects one Dell PowerVault MD1000 (15*2TB hard drives, RAID5). +And Galaxy system was installed on the Cluster system. +(Implemented by Lei Yan). +
      + + +
      +2010-10-29: First Developmental Studies of the Genetics of Gene Expression in Brain have been entered into GeneNetwork. Dr. Glenn Rosen and colleagues have contributed data on gene expression across sets of 32 BXD strains for the neocortex and striatum at two stages of development (postnatal days 3 and 14). They used the Illumina Mouse Genome 6 version 2 array. These data are matched by previous data sets for the adult neocortex and striatum. These data are open but users are requested to contact Glenn D. Rosen regarding the status of these new data. (Implemented by G Rosen, RW Williams and A Centeno). +
      + +
      +2010-10-29: Large RNA-seq data for BXD Whole Brain is being added to our GeneNetwork version of the UCSC Genome Browser. We are still loading these data and eventually will display RNA-seq data for over 30 strains of mice. Gene level summary of these data will be entered into GeneNetwork for quantitative analysis later this year. Please contact RW Williams regarding the status of these new data. (Implemented by David Li, Lu Lu, Xusheng Wang, Lei Yan, and RW Williams). +
      + +
      +2010-9-23: Genotype data for mouse strains BXD101, BXD102, and BXD103 have been added to GeneNetwork. These data were extracted from a large scale regenotyping of the BXD strains done using the Mouse Diversity array from Affymetrix that was designed by Pardo and Churchill. (Implemented by Ning Liu and Xiaodong Zhou). +
      + +
      +2010-9-20: Five groups of gene expression data for the hippocampus of BXD strains of mice have been entered in GeneNetwork. NON = No stress and no saline control injection; NOS = No restraint stress and given only saline injections prior to sacrifice; NOE = No restraint stress and given an ethanol injection prior to sacrifice; RSS = short restraint stress (1 episode) followed by a saline injection; and finally, RSE = Restraint stress followed by an ethanol injection. (Implemented by Lu Lu, RW Williams and A Centeno). +
      + +
      +2010-9-13: There is now a good Wikipedia entry for GeneNetwork. Please check, correct, and improve. (Implemented by RW Williams). +
      + +
      +2010-9-13: GeneNetwork source code is now licenses using the Affero General Public License version 3. A SourceForge site will be set in the next few months. In the interim, please contact us directly for code. (Implemented by Xiaodong Zhou and RW Williams). +
      + +
      +2010-08-02: We have installed a GeneNetwork UCSC Genome Browser mirror site that displays a set of 4.58 million SNPs that distinguish strain DBA/2J from the reference strain, C57BL/6J. Other DNA sequence and RNA-seq data sets will be added over the next several months. (Implemented by Lei Yan and Xusheng Wang). +
      + + +
      +2010-08-02: Tissue Correlation and Expression Level Services: We have added a new web interface that allows you to directly evaluate differences in gene expression across 30 different tissue types. + +

      The current version is mainly meant for testing. The interface still needs work.We have a long list of improvements in the works, but please send us your ideas. To test drive the tissue correlation feature you currently need to enter a set of mouse GeneID numbers. For example App is NCBI Enbrez Gene ID 11820. Bace is Gene ID 23821. If you enter these two numbers in the interface and then click your heels twice. You should get back a simple matrix of values that lists both Pearson and Spearman correlations based on a comparison of expression in 25 tissue types. Click on the correlation values and this will pop up two scatterplots (Pearson and Spearman types). + +

      At the same time, this tool provides expression estimates for both genes, where a value of 8 in the Pearson plot represents the mean across all tissues and each unit represents a two-fold difference (log2 expression; Spearman rank values are just that--rank out of 25). To access this new feature select Search -> Tissue Correlation. All of the expression data are taken from on C57BL/6J litter mates studied using the Illumina Mouse 6 2.0 array (Implemented by Ning Liu, data from Lu Lu, RW Williams, and Xusheng Wang). + +

      + +
      +2010-08-02: The javascript that controls the sort menu on top of collection page has been improved. The old version doesn't work properly in IE browser. The new one works well in IE, Firefox, Safari. (Implemented by Ning Liu). +
      + + + +
      +2010-07-02: Microarray annotations have been improved and will soon be more consistent across platforms. We now synchronize the gene level annotation of probes and probe sets. When gene level attributes such as gene symbols, alias, name, and other identifiers, are changed, the change is applied to all other probes and probe sets with the same Gene Id. (Implemented by Xiaodong Zhou). +
      +
      +2010-07-02: We have added Homologene identifiers to help in comparative analysis. (Implemented by Xiaodong Zhou) +
      + + +
      +2010-07-02: Improved Search Page that loads much more rapidly from even slow connections. We replaced the AJAX version of the Search Page with a javascript version. (Implemented by Ning Liu). +
      + + +
      +2010-07-02: Improved icons and GUI for selecting and analyzing GeneNetwork data sets. The use of icons enable fast recognition of functions and is also more compatible with touch screen interfaces. There are three types of icons: + +
        +
      1. Selection tools with a grey background +
      2. GeneNetwork analysis tools with blue background +
      3. External resources analysis tools with a clear background +
      + +This GUI was implemented by Zach Sloan. + +
      + + +
      +2010-07-02: We have improved interface for the partial correlations, Now both the zero order and higher order correlations use identical sample sizes for more direct comparisons. We have also added several checking procedures to help you avoid undesirable results. (Implemented by Xiaodong Zhou). +
      + + +
      +See More News
      + +

      + +
      +
      + + + +
      + +
      + + + + + + + + + -- cgit v1.2.3