aboutsummaryrefslogtreecommitdiff
path: root/wqflask
diff options
context:
space:
mode:
authorBonfaceKilz2020-10-07 15:08:05 +0300
committerBonfaceKilz2020-10-09 00:01:35 +0300
commit4aa138360fd41f9d496e00aa744700cd4d8a53a6 (patch)
treea4468e558dbcc6f40289edbae92a93dc58c746ef /wqflask
parentf0dd46e668a55bd024f5dee4e99cf1215a107c26 (diff)
downloadgenenetwork2-4aa138360fd41f9d496e00aa744700cd4d8a53a6.tar.gz
Apply PEP-8 formatting
Diffstat (limited to 'wqflask')
-rw-r--r--wqflask/wqflask/correlation_matrix/show_corr_matrix.py29
-rw-r--r--wqflask/wqflask/network_graph/network_graph.py100
-rw-r--r--wqflask/wqflask/wgcna/wgcna_analysis.py169
3 files changed, 156 insertions, 142 deletions
diff --git a/wqflask/wqflask/correlation_matrix/show_corr_matrix.py b/wqflask/wqflask/correlation_matrix/show_corr_matrix.py
index 49ba9e5d..c0d84aa2 100644
--- a/wqflask/wqflask/correlation_matrix/show_corr_matrix.py
+++ b/wqflask/wqflask/correlation_matrix/show_corr_matrix.py
@@ -22,33 +22,24 @@ import datetime
import math
import numpy as np
import scipy
-
-from rpy2.robjects.packages import importr
import rpy2.robjects as robjects
+import utility.webqtlUtil # this is for parallel computing only.
+import utility.logger
-from pprint import pformat as pf
+from base import data_set
+from functools import reduce
+from rpy2.robjects.packages import importr
+from utility import webqtlUtil
+from utility import helper_functions
+from utility import corr_result_helpers
from utility.redis_tools import get_redis_conn
-from functools import reduce
+
+logger = utility.logger.getLogger(__name__)
Redis = get_redis_conn()
THIRTY_DAYS = 60 * 60 * 24 * 30
-from utility.THCell import THCell
-from utility.TDCell import TDCell
-from base.trait import GeneralTrait
-from base import data_set
-from utility import webqtlUtil, helper_functions, corr_result_helpers
-
-from db import webqtlDatabaseFunction
-import utility.webqtlUtil #this is for parallel computing only.
-from wqflask.correlation import correlation_functions
-from utility.benchmark import Bench
-
-from flask import Flask, g, url_for
-
-import utility.logger
-logger = utility.logger.getLogger(__name__ )
class CorrelationMatrix(object):
diff --git a/wqflask/wqflask/network_graph/network_graph.py b/wqflask/wqflask/network_graph/network_graph.py
index cfefe4ec..723a749f 100644
--- a/wqflask/wqflask/network_graph/network_graph.py
+++ b/wqflask/wqflask/network_graph/network_graph.py
@@ -1,4 +1,4 @@
-## Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
+# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU Affero General Public License
@@ -20,25 +20,19 @@
import scipy
import simplejson as json
-from pprint import pformat as pf
-
-from utility.TDCell import TDCell
from base.trait import create_trait
from base import data_set
-from utility import webqtlUtil, helper_functions, corr_result_helpers
+from utility import helper_functions
+from utility import corr_result_helpers
from utility.tools import GN2_BRANCH_URL
-from db import webqtlDatabaseFunction
-import utility.webqtlUtil #this is for parallel computing only.
-from wqflask.correlation import correlation_functions
-
-from flask import Flask, g
class NetworkGraph(object):
def __init__(self, start_vars):
- trait_db_list = [trait.strip() for trait in start_vars['trait_list'].split(',')]
+ trait_db_list = [trait.strip()
+ for trait in start_vars['trait_list'].split(',')]
helper_functions.get_trait_db_obs(self, trait_db_list)
@@ -66,7 +60,8 @@ class NetworkGraph(object):
this_trait_vals.append('')
self.sample_data.append(this_trait_vals)
- self.lowest_overlap = 8 #ZS: Variable set to the lowest overlapping samples in order to notify user, or 8, whichever is lower (since 8 is when we want to display warning)
+ # ZS: Variable set to the lowest overlapping samples in order to notify user, or 8, whichever is lower (since 8 is when we want to display warning)
+ self.lowest_overlap = 8
self.nodes_list = []
self.edges_list = []
@@ -78,9 +73,9 @@ class NetworkGraph(object):
this_sample_data = this_trait.data
corr_result_row = []
- is_spearman = False #ZS: To determine if it's above or below the diagonal
+ is_spearman = False # ZS: To determine if it's above or below the diagonal
- max_corr = 0 #ZS: Used to determine whether node should be hidden when correlation coefficient slider is used
+ max_corr = 0 # ZS: Used to determine whether node should be hidden when correlation coefficient slider is used
for target in self.trait_list:
target_trait = target[0]
@@ -99,20 +94,23 @@ class NetworkGraph(object):
this_trait_vals.append(sample_value)
target_vals.append(target_sample_value)
- this_trait_vals, target_vals, num_overlap = corr_result_helpers.normalize_values(this_trait_vals, target_vals)
+ this_trait_vals, target_vals, num_overlap = corr_result_helpers.normalize_values(
+ this_trait_vals, target_vals)
if num_overlap < self.lowest_overlap:
self.lowest_overlap = num_overlap
if num_overlap == 0:
continue
else:
- pearson_r, pearson_p = scipy.stats.pearsonr(this_trait_vals, target_vals)
+ pearson_r, pearson_p = scipy.stats.pearsonr(
+ this_trait_vals, target_vals)
if is_spearman == False:
sample_r, sample_p = pearson_r, pearson_p
if sample_r == 1:
continue
else:
- sample_r, sample_p = scipy.stats.spearmanr(this_trait_vals, target_vals)
+ sample_r, sample_p = scipy.stats.spearmanr(
+ this_trait_vals, target_vals)
if -1 <= sample_r < -0.7:
color = "#0000ff"
@@ -130,44 +128,44 @@ class NetworkGraph(object):
color = "#ffa500"
width = 2
elif 0.7 <= sample_r <= 1:
- color = "#ff0000"
- width = 3
+ color = "#ff0000"
+ width = 3
else:
color = "#000000"
- width = 0
+ width = 0
if abs(sample_r) > max_corr:
max_corr = abs(sample_r)
- edge_data = {'id' : str(this_trait.name) + '_to_' + str(target_trait.name),
- 'source' : str(this_trait.name) + ":" + str(this_trait.dataset.name),
- 'target' : str(target_trait.name) + ":" + str(target_trait.dataset.name),
- 'correlation' : round(sample_r, 3),
- 'abs_corr' : abs(round(sample_r, 3)),
- 'p_value' : round(sample_p, 3),
- 'overlap' : num_overlap,
- 'color' : color,
- 'width' : width }
+ edge_data = {'id': str(this_trait.name) + '_to_' + str(target_trait.name),
+ 'source': str(this_trait.name) + ":" + str(this_trait.dataset.name),
+ 'target': str(target_trait.name) + ":" + str(target_trait.dataset.name),
+ 'correlation': round(sample_r, 3),
+ 'abs_corr': abs(round(sample_r, 3)),
+ 'p_value': round(sample_p, 3),
+ 'overlap': num_overlap,
+ 'color': color,
+ 'width': width}
- edge_dict = { 'data' : edge_data }
+ edge_dict = {'data': edge_data}
self.edges_list.append(edge_dict)
if trait_db[1].type == "ProbeSet":
- node_dict = { 'data' : {'id' : str(this_trait.name) + ":" + str(this_trait.dataset.name),
- 'label' : this_trait.symbol,
- 'symbol' : this_trait.symbol,
- 'geneid' : this_trait.geneid,
- 'omim' : this_trait.omim,
- 'max_corr' : max_corr } }
+ node_dict = {'data': {'id': str(this_trait.name) + ":" + str(this_trait.dataset.name),
+ 'label': this_trait.symbol,
+ 'symbol': this_trait.symbol,
+ 'geneid': this_trait.geneid,
+ 'omim': this_trait.omim,
+ 'max_corr': max_corr}}
elif trait_db[1].type == "Publish":
- node_dict = { 'data' : {'id' : str(this_trait.name) + ":" + str(this_trait.dataset.name),
- 'label' : this_trait.name,
- 'max_corr' : max_corr } }
+ node_dict = {'data': {'id': str(this_trait.name) + ":" + str(this_trait.dataset.name),
+ 'label': this_trait.name,
+ 'max_corr': max_corr}}
else:
- node_dict = { 'data' : {'id' : str(this_trait.name) + ":" + str(this_trait.dataset.name),
- 'label' : this_trait.name,
- 'max_corr' : max_corr } }
+ node_dict = {'data': {'id': str(this_trait.name) + ":" + str(this_trait.dataset.name),
+ 'label': this_trait.name,
+ 'max_corr': max_corr}}
self.nodes_list.append(node_dict)
self.elements = json.dumps(self.nodes_list + self.edges_list)
@@ -177,13 +175,13 @@ class NetworkGraph(object):
for sample in self.all_sample_list:
groups.append(1)
- self.js_data = dict(traits = [trait.name for trait in self.traits],
- groups = groups,
- cols = list(range(len(self.traits))),
- rows = list(range(len(self.traits))),
- samples = self.all_sample_list,
- sample_data = self.sample_data,
- elements = self.elements,)
+ self.js_data = dict(traits=[trait.name for trait in self.traits],
+ groups=groups,
+ cols=list(range(len(self.traits))),
+ rows=list(range(len(self.traits))),
+ samples=self.all_sample_list,
+ sample_data=self.sample_data,
+ elements=self.elements,)
def get_trait_db_obs(self, trait_db_list):
self.trait_list = []
@@ -193,6 +191,6 @@ class NetworkGraph(object):
trait_name, dataset_name = trait_db.split(":")
dataset_ob = data_set.create_dataset(dataset_name)
trait_ob = create_trait(dataset=dataset_ob,
- name=trait_name,
- cellid=None)
+ name=trait_name,
+ cellid=None)
self.trait_list.append((trait_ob, dataset_ob))
diff --git a/wqflask/wqflask/wgcna/wgcna_analysis.py b/wqflask/wqflask/wgcna/wgcna_analysis.py
index d79ad6df..0afe7e82 100644
--- a/wqflask/wqflask/wgcna/wgcna_analysis.py
+++ b/wqflask/wqflask/wgcna/wgcna_analysis.py
@@ -1,122 +1,146 @@
# WGCNA analysis for GN2
# Author / Maintainer: Danny Arends <Danny.Arends@gmail.com>
import sys
-from numpy import *
-import scipy as sp # SciPy
import rpy2.robjects as ro # R Objects
import rpy2.rinterface as ri
+import array
+from numpy import *
from base.webqtlConfig import GENERATED_IMAGE_DIR
-from utility import webqtlUtil # Random number for the image
-
-import base64
-import array
+from rpy2.robjects.packages import importr
+from utility import webqtlUtil # Random number for the image
from utility import helper_functions
-from rpy2.robjects.packages import importr
utils = importr("utils")
-## Get pointers to some common R functions
-r_library = ro.r["library"] # Map the library function
-r_options = ro.r["options"] # Map the options function
-r_read_csv = ro.r["read.csv"] # Map the read.csv function
-r_dim = ro.r["dim"] # Map the dim function
-r_c = ro.r["c"] # Map the c function
-r_cat = ro.r["cat"] # Map the cat function
-r_paste = ro.r["paste"] # Map the paste function
-r_unlist = ro.r["unlist"] # Map the unlist function
-r_unique = ro.r["unique"] # Map the unique function
-r_length = ro.r["length"] # Map the length function
-r_unlist = ro.r["unlist"] # Map the unlist function
-r_list = ro.r.list # Map the list function
-r_matrix = ro.r.matrix # Map the matrix function
-r_seq = ro.r["seq"] # Map the seq function
-r_table = ro.r["table"] # Map the table function
-r_names = ro.r["names"] # Map the names function
-r_sink = ro.r["sink"] # Map the sink function
-r_is_NA = ro.r["is.na"] # Map the is.na function
-r_file = ro.r["file"] # Map the file function
-r_png = ro.r["png"] # Map the png function for plotting
-r_dev_off = ro.r["dev.off"] # Map the dev.off function
+# Get pointers to some common R functions
+r_library = ro.r["library"] # Map the library function
+r_options = ro.r["options"] # Map the options function
+r_read_csv = ro.r["read.csv"] # Map the read.csv function
+r_dim = ro.r["dim"] # Map the dim function
+r_c = ro.r["c"] # Map the c function
+r_cat = ro.r["cat"] # Map the cat function
+r_paste = ro.r["paste"] # Map the paste function
+r_unlist = ro.r["unlist"] # Map the unlist function
+r_unique = ro.r["unique"] # Map the unique function
+r_length = ro.r["length"] # Map the length function
+r_unlist = ro.r["unlist"] # Map the unlist function
+r_list = ro.r.list # Map the list function
+r_matrix = ro.r.matrix # Map the matrix function
+r_seq = ro.r["seq"] # Map the seq function
+r_table = ro.r["table"] # Map the table function
+r_names = ro.r["names"] # Map the names function
+r_sink = ro.r["sink"] # Map the sink function
+r_is_NA = ro.r["is.na"] # Map the is.na function
+r_file = ro.r["file"] # Map the file function
+r_png = ro.r["png"] # Map the png function for plotting
+r_dev_off = ro.r["dev.off"] # Map the dev.off function
+
class WGCNA(object):
def __init__(self):
print("Initialization of WGCNA")
#log = r_file("/tmp/genenetwork_wcgna.log", open = "wt")
- #r_sink(log) # Uncomment the r_sink() commands to log output from stdout/stderr to a file
+ # r_sink(log) # Uncomment the r_sink() commands to log output from stdout/stderr to a file
#r_sink(log, type = "message")
- r_library("WGCNA") # Load WGCNA - Should only be done once, since it is quite expensive
- r_options(stringsAsFactors = False)
+ # Load WGCNA - Should only be done once, since it is quite expensive
+ r_library("WGCNA")
+ r_options(stringsAsFactors=False)
print("Initialization of WGCNA done, package loaded in R session")
- self.r_enableWGCNAThreads = ro.r["enableWGCNAThreads"] # Map the enableWGCNAThreads function
- self.r_pickSoftThreshold = ro.r["pickSoftThreshold"] # Map the pickSoftThreshold function
- self.r_blockwiseModules = ro.r["blockwiseModules"] # Map the blockwiseModules function
- self.r_labels2colors = ro.r["labels2colors"] # Map the labels2colors function
- self.r_plotDendroAndColors = ro.r["plotDendroAndColors"] # Map the plotDendroAndColors function
+ # Map the enableWGCNAThreads function
+ self.r_enableWGCNAThreads = ro.r["enableWGCNAThreads"]
+ # Map the pickSoftThreshold function
+ self.r_pickSoftThreshold = ro.r["pickSoftThreshold"]
+ # Map the blockwiseModules function
+ self.r_blockwiseModules = ro.r["blockwiseModules"]
+ # Map the labels2colors function
+ self.r_labels2colors = ro.r["labels2colors"]
+ # Map the plotDendroAndColors function
+ self.r_plotDendroAndColors = ro.r["plotDendroAndColors"]
print("Obtained pointers to WGCNA functions")
def run_analysis(self, requestform):
print("Starting WGCNA analysis on dataset")
- self.r_enableWGCNAThreads() # Enable multi threading
- self.trait_db_list = [trait.strip() for trait in requestform['trait_list'].split(',')]
- print(("Retrieved phenotype data from database", requestform['trait_list']))
+ # Enable multi threading
+ self.r_enableWGCNAThreads()
+ self.trait_db_list = [trait.strip()
+ for trait in requestform['trait_list'].split(',')]
+ print(("Retrieved phenotype data from database",
+ requestform['trait_list']))
helper_functions.get_trait_db_obs(self, self.trait_db_list)
self.input = {} # self.input contains the phenotype values we need to send to R
- strains = [] # All the strains we have data for (contains duplicates)
- traits = [] # All the traits we have data for (should not contain duplicates)
+ # All the strains we have data for (contains duplicates)
+ strains = []
+ # All the traits we have data for (should not contain duplicates)
+ traits = []
for trait in self.trait_list:
traits.append(trait[0].name)
self.input[trait[0].name] = {}
for strain in trait[0].data:
strains.append(strain)
- self.input[trait[0].name][strain] = trait[0].data[strain].value
+ self.input[trait[0].name][strain] = trait[0].data[strain].value
# Transfer the load data from python to R
- uStrainsR = r_unique(ro.Vector(strains)) # Unique strains in R vector
+ # Unique strains in R vector
+ uStrainsR = r_unique(ro.Vector(strains))
uTraitsR = r_unique(ro.Vector(traits)) # Unique traits in R vector
r_cat("The number of unique strains:", r_length(uStrainsR), "\n")
r_cat("The number of unique traits:", r_length(uTraitsR), "\n")
# rM is the datamatrix holding all the data in R /rows = strains columns = traits
- rM = ro.r.matrix(ri.NA_Real, nrow=r_length(uStrainsR), ncol=r_length(uTraitsR), dimnames = r_list(uStrainsR, uTraitsR))
+ rM = ro.r.matrix(ri.NA_Real, nrow=r_length(uStrainsR), ncol=r_length(
+ uTraitsR), dimnames=r_list(uStrainsR, uTraitsR))
for t in uTraitsR:
- trait = t[0] # R uses vectors every single element is a vector
+ # R uses vectors every single element is a vector
+ trait = t[0]
for s in uStrainsR:
- strain = s[0] # R uses vectors every single element is a vector
+ # R uses vectors every single element is a vector
+ strain = s[0]
#DEBUG: print(trait, strain, " in python: ", self.input[trait].get(strain), "in R:", rM.rx(strain,trait)[0])
- rM.rx[strain, trait] = self.input[trait].get(strain) # Update the matrix location
+ rM.rx[strain, trait] = self.input[trait].get(
+ strain) # Update the matrix location
sys.stdout.flush()
self.results = {}
- self.results['nphe'] = r_length(uTraitsR)[0] # Number of phenotypes/traits
- self.results['nstr'] = r_length(uStrainsR)[0] # Number of strains
+ # Number of phenotypes/traits
+ self.results['nphe'] = r_length(uTraitsR)[0]
+ self.results['nstr'] = r_length(
+ uStrainsR)[0] # Number of strains
self.results['phenotypes'] = uTraitsR # Traits used
- self.results['strains'] = uStrainsR # Strains used in the analysis
- self.results['requestform'] = requestform # Store the user specified parameters for the output page
+ # Strains used in the analysis
+ self.results['strains'] = uStrainsR
+ # Store the user specified parameters for the output page
+ self.results['requestform'] = requestform
# Calculate soft threshold if the user specified the SoftThreshold variable
if requestform.get('SoftThresholds') is not None:
- powers = [int(threshold.strip()) for threshold in requestform['SoftThresholds'].rstrip().split(",")]
- rpow = r_unlist(r_c(powers))
- print(("SoftThresholds: {} == {}".format(powers, rpow)))
- self.sft = self.r_pickSoftThreshold(rM, powerVector = rpow, verbose = 5)
-
- print(("PowerEstimate: {}".format(self.sft[0])))
- self.results['PowerEstimate'] = self.sft[0]
- if self.sft[0][0] is ri.NA_Integer:
- print("No power is suitable for the analysis, just use 1")
- self.results['Power'] = 1 # No power could be estimated
- else:
- self.results['Power'] = self.sft[0][0] # Use the estimated power
+ powers = [int(threshold.strip())
+ for threshold in requestform['SoftThresholds'].rstrip().split(",")]
+ rpow = r_unlist(r_c(powers))
+ print(("SoftThresholds: {} == {}".format(powers, rpow)))
+ self.sft = self.r_pickSoftThreshold(
+ rM, powerVector=rpow, verbose=5)
+
+ print(("PowerEstimate: {}".format(self.sft[0])))
+ self.results['PowerEstimate'] = self.sft[0]
+ if self.sft[0][0] is ri.NA_Integer:
+ print("No power is suitable for the analysis, just use 1")
+ # No power could be estimated
+ self.results['Power'] = 1
+ else:
+ # Use the estimated power
+ self.results['Power'] = self.sft[0][0]
else:
- # The user clicked a button, so no soft threshold selection
- self.results['Power'] = requestform.get('Power') # Use the power value the user gives
+ # The user clicked a button, so no soft threshold selection
+ # Use the power value the user gives
+ self.results['Power'] = requestform.get('Power')
# Create the block wise modules using WGCNA
- network = self.r_blockwiseModules(rM, power = self.results['Power'], TOMType = requestform['TOMtype'], minModuleSize = requestform['MinModuleSize'], verbose = 3)
+ network = self.r_blockwiseModules(
+ rM, power=self.results['Power'], TOMType=requestform['TOMtype'], minModuleSize=requestform['MinModuleSize'], verbose=3)
# Save the network for the GUI
self.results['network'] = network
@@ -130,7 +154,8 @@ class WGCNA(object):
self.results['imgloc'] = GENERATED_IMAGE_DIR + self.results['imgurl']
r_png(self.results['imgloc'], width=1000, height=600, type='cairo-png')
mergedColors = self.r_labels2colors(network[1])
- self.r_plotDendroAndColors(network[5][0], mergedColors, "Module colors", dendroLabels = False, hang = 0.03, addGuide = True, guideHang = 0.05)
+ self.r_plotDendroAndColors(network[5][0], mergedColors, "Module colors",
+ dendroLabels=False, hang=0.03, addGuide=True, guideHang=0.05)
r_dev_off()
sys.stdout.flush()
@@ -146,11 +171,11 @@ class WGCNA(object):
print("Processing WGCNA output")
template_vars = {}
template_vars["input"] = self.input
- template_vars["powers"] = self.sft[1:] # Results from the soft threshold analysis
+ # Results from the soft threshold analysis
+ template_vars["powers"] = self.sft[1:]
template_vars["results"] = self.results
self.render_image(results)
sys.stdout.flush()
- #r_sink(type = "message") # This restores R output to the stdout/stderr
- #r_sink() # We should end the Rpy session more or less
+ # r_sink(type = "message") # This restores R output to the stdout/stderr
+ # r_sink() # We should end the Rpy session more or less
return(dict(template_vars))
-