aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDannyArends2016-03-24 20:33:25 +0100
committerPjotr Prins2016-04-20 10:18:27 +0000
commitf7053ce4e687d5626acd42295b2ca90ebb4c7ade (patch)
tree755f5db3df817ea138c7295441e7b68e7c574856
parentfa45eb93c9cf83ea3080c862aeabe512b4cffa2f (diff)
downloadgenenetwork2-f7053ce4e687d5626acd42295b2ca90ebb4c7ade.tar.gz
Updates to the CTL code adding the significant results to the result object
-rw-r--r--wqflask/wqflask/ctl/ctl_analysis.py24
1 files changed, 19 insertions, 5 deletions
diff --git a/wqflask/wqflask/ctl/ctl_analysis.py b/wqflask/wqflask/ctl/ctl_analysis.py
index 71c41135..44bade5c 100644
--- a/wqflask/wqflask/ctl/ctl_analysis.py
+++ b/wqflask/wqflask/ctl/ctl_analysis.py
@@ -52,8 +52,10 @@ r_save_image = ro.r["save.image"] # Map the save.image function
r_class = ro.r["class"] # Map the class function
r_save = ro.r["save"] # Map the save function
r_write_table = ro.r["write.table"] # Map the write.table function
-r_as_data_frame = ro.r["as.data.frame"] # Map the write.table function
-r_data_frame = ro.r["data.frame"] # Map the write.table function
+r_read_table = ro.r["read.table"] # Map the read.table function
+r_as_data_frame = ro.r["as.data.frame"] # Map the write.table function
+r_data_frame = ro.r["data.frame"] # Map the write.table function
+r_as_numeric = ro.r["as.numeric"] # Map the write.table function
class CTL(object):
def __init__(self):
@@ -69,6 +71,7 @@ class CTL(object):
self.r_lineplot = ro.r["ctl.lineplot"] # Map the ctl.lineplot function
self.r_CTLnetwork = ro.r["CTLnetwork"] # Map the CTLnetwork function
self.r_CTLprofiles = ro.r["CTLprofiles"] # Map the CTLprofiles function
+ self.r_CTLsignificant = ro.r["CTLsignificant"] # Map the CTLsignificant function
print("Obtained pointers to CTL functions")
def run_analysis(self, requestform):
@@ -111,21 +114,32 @@ class CTL(object):
else:
traits.append("-999")
- rPheno = r_t(ro.r.matrix(r_unlist(traits), nrow=len(self.trait_db_list), ncol=len(individuals), dimnames = r_list(self.trait_db_list, individuals), byrow=True))
+ rPheno = r_t(ro.r.matrix(r_as_numeric(r_unlist(traits)), nrow=len(self.trait_db_list), ncol=len(individuals), dimnames = r_list(self.trait_db_list, individuals), byrow=True))
# Use a data frame to store the objects
rPheno = r_data_frame(rPheno)
rGeno = r_data_frame(rGeno)
+ r_write_table(rGeno, "~/outputGN/geno.csv")
+ r_write_table(rPheno, "~/outputGN/pheno.csv")
+
# Perform the CTL scan
- res = self.r_CTLscan(rGeno, rPheno)
+ res = self.r_CTLscan(rGeno, rPheno, ncores = 6)
+
+ # Get significant interactions
+ significant = self.r_CTLsignificant(res)
+
+ print(significant[0])
# Create an image for output
self.results = {}
self.results['imgurl'] = webqtlUtil.genRandStr("WGCNAoutput_") + ".png"
self.results['imgloc'] = GENERATED_IMAGE_DIR + self.results['imgurl']
+ self.results['ctlresult'] = significant
+
+ # Create the lineplot
r_png(self.results['imgloc'], width=1000, height=600)
- self.r_lineplot(res, significance = 1)
+ self.r_lineplot(res)
r_dev_off()
# Flush any output from R