aboutsummaryrefslogtreecommitdiff
path: root/src/logistic.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/logistic.h')
-rw-r--r--src/logistic.h150
1 files changed, 75 insertions, 75 deletions
diff --git a/src/logistic.h b/src/logistic.h
index 7f9e133..b61ab14 100644
--- a/src/logistic.h
+++ b/src/logistic.h
@@ -1,75 +1,75 @@
-#ifndef LOGISTIC_H_
-#define LOGISTIC_H_
-
-// Mixed interface.
-void logistic_mixed_pred(gsl_vector *beta, // Vector of parameters
- // length = 1+Sum_k(C_k-1)+Kc.
- gsl_matrix_int *X, // Matrix Nobs x K.
- gsl_vector_int *nlev, // Vector with num. categories.
- gsl_matrix *Xc, // Continuous covariates matrix
- // Nobs x Kc
- gsl_vector *yhat); // Vector of prob. predicted by
- // the logistic.
-
-int logistic_mixed_fit(gsl_vector *beta, // Vector of parameters
- // length = 1+Sum_k(C_k-1)+Kc
- gsl_matrix_int *X, // Matrix Nobs x K.
- gsl_vector_int *nlev, // Vector with number categories.
- gsl_matrix *Xc, // Continuous covariates
- // matrix Nobs x Kc
- gsl_vector *y, // Vector of prob. to predict.
- double lambdaL1, // Reg. L1 0.0 if not used.
- double lambdaL2); // Reg. L2 0.0 if not used.
-
-double fLogit_mixed(gsl_vector *beta,
- gsl_matrix_int *X,
- gsl_vector_int *nlev,
- gsl_matrix *Xc, // continuous covariates matrix Nobs x Kc
- gsl_vector *y,
- double lambdaL1,
- double lambdaL2);
-
-// Categorical-only interface.
-void logistic_cat_pred(gsl_vector *beta, // Vector of parameters
- // length = 1+Sum_k(C_k-1)+Kc.
- gsl_matrix_int *X, // Matrix Nobs x K.
- gsl_vector_int *nlev, // Vector with number categories.
- gsl_vector *yhat); // Vector of prob. predicted by
- // the logistic.
-
-int logistic_cat_fit(gsl_vector *beta, // Vector of parameters
- // length = 1+Sum_k(C_k-1)+Kc.
- gsl_matrix_int *X, // Matrix Nobs x K .
- gsl_vector_int *nlev, // Vector with number categories.
- gsl_vector *y, // Vector of prob. to predict.
- double lambdaL1, // Regularization L1, 0 if not used
- double lambdaL2); // Regularization L2, 0 if not used
-
-double fLogit_cat(gsl_vector *beta,
- gsl_matrix_int *X,
- gsl_vector_int *nlev,
- gsl_vector *y,
- double lambdaL1,
- double lambdaL2);
-
-// Continuous-only interface.
-void logistic_cont_pred(gsl_vector *beta, // Vector of parameters
- // length = 1 + Sum_k(C_k-1) + Kc.
- gsl_matrix *Xc, // Continuous cov's matrix Nobs x Kc.
- gsl_vector *yhat);// Vector of prob. predicted
- // by the logistic.
-
-int logistic_cont_fit(gsl_vector *beta, // Vector of parameters
- // length = 1+Sum_k(C_k-1)+Kc.
- gsl_matrix *Xc, // Continuous cov's matrix Nobs x Kc.
- gsl_vector *y, // Vector of prob. to predict.
- double lambdaL1, // Regularization L1, 0 if not used.
- double lambdaL2); // Regularization L2, 0 if not used.
-
-double fLogit_cont(gsl_vector *beta,
- gsl_matrix *Xc, // Continuous covariates matrix Nobs x Kc.
- gsl_vector *y,
- double lambdaL1,
- double lambdaL2);
-
-#endif
+#ifndef LOGISTIC_H_
+#define LOGISTIC_H_
+
+// Mixed interface.
+void logistic_mixed_pred(gsl_vector *beta, // Vector of parameters
+ // length = 1+Sum_k(C_k-1)+Kc.
+ gsl_matrix_int *X, // Matrix Nobs x K.
+ gsl_vector_int *nlev, // Vector with num. categories.
+ gsl_matrix *Xc, // Continuous covariates matrix
+ // Nobs x Kc
+ gsl_vector *yhat); // Vector of prob. predicted by
+ // the logistic.
+
+int logistic_mixed_fit(gsl_vector *beta, // Vector of parameters
+ // length = 1+Sum_k(C_k-1)+Kc
+ gsl_matrix_int *X, // Matrix Nobs x K.
+ gsl_vector_int *nlev, // Vector with number categories.
+ gsl_matrix *Xc, // Continuous covariates
+ // matrix Nobs x Kc
+ gsl_vector *y, // Vector of prob. to predict.
+ double lambdaL1, // Reg. L1 0.0 if not used.
+ double lambdaL2); // Reg. L2 0.0 if not used.
+
+double fLogit_mixed(gsl_vector *beta,
+ gsl_matrix_int *X,
+ gsl_vector_int *nlev,
+ gsl_matrix *Xc, // continuous covariates matrix Nobs x Kc
+ gsl_vector *y,
+ double lambdaL1,
+ double lambdaL2);
+
+// Categorical-only interface.
+void logistic_cat_pred(gsl_vector *beta, // Vector of parameters
+ // length = 1+Sum_k(C_k-1)+Kc.
+ gsl_matrix_int *X, // Matrix Nobs x K.
+ gsl_vector_int *nlev, // Vector with number categories.
+ gsl_vector *yhat); // Vector of prob. predicted by
+ // the logistic.
+
+int logistic_cat_fit(gsl_vector *beta, // Vector of parameters
+ // length = 1+Sum_k(C_k-1)+Kc.
+ gsl_matrix_int *X, // Matrix Nobs x K .
+ gsl_vector_int *nlev, // Vector with number categories.
+ gsl_vector *y, // Vector of prob. to predict.
+ double lambdaL1, // Regularization L1, 0 if not used
+ double lambdaL2); // Regularization L2, 0 if not used
+
+double fLogit_cat(gsl_vector *beta,
+ gsl_matrix_int *X,
+ gsl_vector_int *nlev,
+ gsl_vector *y,
+ double lambdaL1,
+ double lambdaL2);
+
+// Continuous-only interface.
+void logistic_cont_pred(gsl_vector *beta, // Vector of parameters
+ // length = 1 + Sum_k(C_k-1) + Kc.
+ gsl_matrix *Xc, // Continuous cov's matrix Nobs x Kc.
+ gsl_vector *yhat);// Vector of prob. predicted
+ // by the logistic.
+
+int logistic_cont_fit(gsl_vector *beta, // Vector of parameters
+ // length = 1+Sum_k(C_k-1)+Kc.
+ gsl_matrix *Xc, // Continuous cov's matrix Nobs x Kc.
+ gsl_vector *y, // Vector of prob. to predict.
+ double lambdaL1, // Regularization L1, 0 if not used.
+ double lambdaL2); // Regularization L2, 0 if not used.
+
+double fLogit_cont(gsl_vector *beta,
+ gsl_matrix *Xc, // Continuous covariates matrix Nobs x Kc.
+ gsl_vector *y,
+ double lambdaL1,
+ double lambdaL2);
+
+#endif