aboutsummaryrefslogtreecommitdiff
path: root/src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h')
-rw-r--r--src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h214
1 files changed, 214 insertions, 0 deletions
diff --git a/src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h b/src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h
new file mode 100644
index 0000000..af598a4
--- /dev/null
+++ b/src/Eigen/src/Eigen2Support/Geometry/AngleAxis.h
@@ -0,0 +1,214 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
+
+namespace Eigen {
+
+/** \geometry_module \ingroup Geometry_Module
+ *
+ * \class AngleAxis
+ *
+ * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis
+ *
+ * \param _Scalar the scalar type, i.e., the type of the coefficients.
+ *
+ * The following two typedefs are provided for convenience:
+ * \li \c AngleAxisf for \c float
+ * \li \c AngleAxisd for \c double
+ *
+ * \addexample AngleAxisForEuler \label How to define a rotation from Euler-angles
+ *
+ * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily
+ * mimic Euler-angles. Here is an example:
+ * \include AngleAxis_mimic_euler.cpp
+ * Output: \verbinclude AngleAxis_mimic_euler.out
+ *
+ * \note This class is not aimed to be used to store a rotation transformation,
+ * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
+ * and transformation objects.
+ *
+ * \sa class Quaternion, class Transform, MatrixBase::UnitX()
+ */
+
+template<typename _Scalar> struct ei_traits<AngleAxis<_Scalar> >
+{
+ typedef _Scalar Scalar;
+};
+
+template<typename _Scalar>
+class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
+{
+ typedef RotationBase<AngleAxis<_Scalar>,3> Base;
+
+public:
+
+ using Base::operator*;
+
+ enum { Dim = 3 };
+ /** the scalar type of the coefficients */
+ typedef _Scalar Scalar;
+ typedef Matrix<Scalar,3,3> Matrix3;
+ typedef Matrix<Scalar,3,1> Vector3;
+ typedef Quaternion<Scalar> QuaternionType;
+
+protected:
+
+ Vector3 m_axis;
+ Scalar m_angle;
+
+public:
+
+ /** Default constructor without initialization. */
+ AngleAxis() {}
+ /** Constructs and initialize the angle-axis rotation from an \a angle in radian
+ * and an \a axis which must be normalized. */
+ template<typename Derived>
+ inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
+ /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
+ inline AngleAxis(const QuaternionType& q) { *this = q; }
+ /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
+ template<typename Derived>
+ inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
+
+ Scalar angle() const { return m_angle; }
+ Scalar& angle() { return m_angle; }
+
+ const Vector3& axis() const { return m_axis; }
+ Vector3& axis() { return m_axis; }
+
+ /** Concatenates two rotations */
+ inline QuaternionType operator* (const AngleAxis& other) const
+ { return QuaternionType(*this) * QuaternionType(other); }
+
+ /** Concatenates two rotations */
+ inline QuaternionType operator* (const QuaternionType& other) const
+ { return QuaternionType(*this) * other; }
+
+ /** Concatenates two rotations */
+ friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
+ { return a * QuaternionType(b); }
+
+ /** Concatenates two rotations */
+ inline Matrix3 operator* (const Matrix3& other) const
+ { return toRotationMatrix() * other; }
+
+ /** Concatenates two rotations */
+ inline friend Matrix3 operator* (const Matrix3& a, const AngleAxis& b)
+ { return a * b.toRotationMatrix(); }
+
+ /** Applies rotation to vector */
+ inline Vector3 operator* (const Vector3& other) const
+ { return toRotationMatrix() * other; }
+
+ /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
+ AngleAxis inverse() const
+ { return AngleAxis(-m_angle, m_axis); }
+
+ AngleAxis& operator=(const QuaternionType& q);
+ template<typename Derived>
+ AngleAxis& operator=(const MatrixBase<Derived>& m);
+
+ template<typename Derived>
+ AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
+ Matrix3 toRotationMatrix(void) const;
+
+ /** \returns \c *this with scalar type casted to \a NewScalarType
+ *
+ * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+ * then this function smartly returns a const reference to \c *this.
+ */
+ template<typename NewScalarType>
+ inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
+ { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
+
+ /** Copy constructor with scalar type conversion */
+ template<typename OtherScalarType>
+ inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
+ {
+ m_axis = other.axis().template cast<Scalar>();
+ m_angle = Scalar(other.angle());
+ }
+
+ /** \returns \c true if \c *this is approximately equal to \a other, within the precision
+ * determined by \a prec.
+ *
+ * \sa MatrixBase::isApprox() */
+ bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
+ { return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); }
+};
+
+/** \ingroup Geometry_Module
+ * single precision angle-axis type */
+typedef AngleAxis<float> AngleAxisf;
+/** \ingroup Geometry_Module
+ * double precision angle-axis type */
+typedef AngleAxis<double> AngleAxisd;
+
+/** Set \c *this from a quaternion.
+ * The axis is normalized.
+ */
+template<typename Scalar>
+AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionType& q)
+{
+ Scalar n2 = q.vec().squaredNorm();
+ if (n2 < precision<Scalar>()*precision<Scalar>())
+ {
+ m_angle = 0;
+ m_axis << 1, 0, 0;
+ }
+ else
+ {
+ m_angle = 2*std::acos(q.w());
+ m_axis = q.vec() / ei_sqrt(n2);
+ }
+ return *this;
+}
+
+/** Set \c *this from a 3x3 rotation matrix \a mat.
+ */
+template<typename Scalar>
+template<typename Derived>
+AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
+{
+ // Since a direct conversion would not be really faster,
+ // let's use the robust Quaternion implementation:
+ return *this = QuaternionType(mat);
+}
+
+/** Constructs and \returns an equivalent 3x3 rotation matrix.
+ */
+template<typename Scalar>
+typename AngleAxis<Scalar>::Matrix3
+AngleAxis<Scalar>::toRotationMatrix(void) const
+{
+ Matrix3 res;
+ Vector3 sin_axis = ei_sin(m_angle) * m_axis;
+ Scalar c = ei_cos(m_angle);
+ Vector3 cos1_axis = (Scalar(1)-c) * m_axis;
+
+ Scalar tmp;
+ tmp = cos1_axis.x() * m_axis.y();
+ res.coeffRef(0,1) = tmp - sin_axis.z();
+ res.coeffRef(1,0) = tmp + sin_axis.z();
+
+ tmp = cos1_axis.x() * m_axis.z();
+ res.coeffRef(0,2) = tmp + sin_axis.y();
+ res.coeffRef(2,0) = tmp - sin_axis.y();
+
+ tmp = cos1_axis.y() * m_axis.z();
+ res.coeffRef(1,2) = tmp - sin_axis.x();
+ res.coeffRef(2,1) = tmp + sin_axis.x();
+
+ res.diagonal() = (cos1_axis.cwise() * m_axis).cwise() + c;
+
+ return res;
+}
+
+} // end namespace Eigen