aboutsummaryrefslogtreecommitdiff
path: root/keras-auc-optimizer.patch
blob: bbc6924d57e1c004c0fad867742e4da12c14e7f8 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
From 901159da45695da24a5206125910f02fc50169ce Mon Sep 17 00:00:00 2001
From: Efraim Flashner <efraim@flashner.co.il>
Date: Thu, 23 Apr 2020 15:50:37 +0300
Subject: [PATCH] add keras metrics

---
 keras/backend/tensorflow_backend.py |  12 +
 keras/metrics.py                    | 584 ++++++++++++++++++++++++++++
 keras/utils/__init__.py             |   2 +
 keras/utils/losses_utils.py         | 177 +++++++++
 keras/utils/metrics_utils.py        | 278 +++++++++++++
 5 files changed, 1053 insertions(+)
 create mode 100644 keras/utils/losses_utils.py
 create mode 100644 keras/utils/metrics_utils.py

diff --git a/keras/backend/tensorflow_backend.py b/keras/backend/tensorflow_backend.py
index bcb8be0..a2870f5 100644
--- a/keras/backend/tensorflow_backend.py
+++ b/keras/backend/tensorflow_backend.py
@@ -4453,3 +4453,15 @@ def local_conv2d(inputs, kernel, kernel_size, strides, output_shape, data_format
     else:
         output = permute_dimensions(output, (2, 0, 1, 3))
     return output
+
+#get_graph = tf_keras_backend.get_graph
+
+#def is_symbolic(x):
+#    return isinstance(x, tf.Tensor) and hasattr(x, 'op')
+
+def size(x, name=None):
+#    if is_symbolic(x):
+#        with get_graph().as_default():
+#            return tf.size(x)
+    return tf.size(x, name=name)
+
diff --git a/keras/metrics.py b/keras/metrics.py
index 8e3df1f..8f57910 100644
--- a/keras/metrics.py
+++ b/keras/metrics.py
@@ -4,8 +4,12 @@ from __future__ import absolute_import
 from __future__ import division
 from __future__ import print_function
 
+import abc
 import six
+import types
+
 from . import backend as K
+from .engine.base_layer import Layer
 from .losses import mean_squared_error
 from .losses import mean_absolute_error
 from .losses import mean_absolute_percentage_error
@@ -19,10 +23,201 @@ from .losses import binary_crossentropy
 from .losses import kullback_leibler_divergence
 from .losses import poisson
 from .losses import cosine_proximity
+from .utils import losses_utils
+from .utils import metrics_utils
 from .utils.generic_utils import deserialize_keras_object
 from .utils.generic_utils import serialize_keras_object
 
 
+@six.add_metaclass(abc.ABCMeta)
+class Metric(Layer):
+    """Encapsulates metric logic and state.
+
+    Standalone usage:
+    ```python
+    m = SomeMetric(...)
+    for input in ...:
+        m.update_state(input)
+    m.result()
+    ```
+
+    Usage with the `compile` API:
+    ```python
+    model.compile(optimizer='rmsprop',
+                  loss=keras.losses.categorical_crossentropy,
+                  metrics=[keras.metrics.CategoricalAccuracy()])
+    ```
+
+    To be implemented by subclasses:
+    * `__init__()`: All state variables should be created in this method by
+        calling `self.add_weight()` like: `self.var = self.add_weight(...)`
+    * `update_state()`: Has all updates to the state variables like:
+        self.var.assign_add(...).
+    * `result()`: Computes and returns a value for the metric
+        from the state variables.
+    """
+
+    def __init__(self, name=None, dtype=None, **kwargs):
+        super(Metric, self).__init__(name=name, dtype=dtype, **kwargs)
+        self.stateful = True  # All metric layers are stateful.
+        self.built = True
+        self.dtype = K.floatx() if dtype is None else dtype
+
+    def __new__(cls, *args, **kwargs):
+        obj = super(Metric, cls).__new__(cls)
+        update_state_fn = obj.update_state
+
+        obj.update_state = types.MethodType(
+            metrics_utils.update_state_wrapper(update_state_fn), obj)
+        return obj
+
+    def __call__(self, *args, **kwargs):
+        """Accumulates statistics and then computes metric result value."""
+        update_op = self.update_state(*args, **kwargs)
+        return self.result()
+
+    def get_config(self):
+        """Returns the serializable config of the metric."""
+        return {'name': self.name, 'dtype': self.dtype}
+
+    def reset_states(self):
+        """Resets all of the metric state variables.
+        This function is called between epochs/steps,
+        when a metric is evaluated during training.
+        """
+        K.batch_set_value([(v, 0) for v in self.weights])
+
+    @abc.abstractmethod
+    def update_state(self, *args, **kwargs):
+        """Accumulates statistics for the metric. """
+        raise NotImplementedError('Must be implemented in subclasses.')
+
+    @abc.abstractmethod
+    def result(self):
+        """Computes and returns the metric value tensor.
+        Result computation is an idempotent operation that simply calculates the
+        metric value using the state variables.
+        """
+        raise NotImplementedError('Must be implemented in subclasses.')
+
+    # For use by subclasses #
+    def add_weight(self,
+                   name,
+                   shape=(),
+                   initializer=None,
+                   dtype=None):
+        """Adds state variable. Only for use by subclasses."""
+        return super(Metric, self).add_weight(
+            name=name,
+            shape=shape,
+            dtype=self.dtype if dtype is None else dtype,
+            trainable=False,
+            initializer=initializer)
+
+    # End: For use by subclasses ###
+
+
+class Reduce(Metric):
+    """Encapsulates metrics that perform a reduce operation on the values."""
+
+    def __init__(self, reduction, name, dtype=None):
+        """Creates a `Reduce` instance.
+        # Arguments
+            reduction: a metrics `Reduction` enum value.
+            name: string name of the metric instance.
+            dtype: (Optional) data type of the metric result.
+        """
+        super(Reduce, self).__init__(name=name, dtype=dtype)
+        self.reduction = reduction
+        self.total = self.add_weight('total', initializer='zeros')
+        if reduction in [metrics_utils.Reduction.SUM_OVER_BATCH_SIZE,
+                         metrics_utils.Reduction.WEIGHTED_MEAN]:
+            self.count = self.add_weight('count', initializer='zeros')
+
+    def update_state(self, values, sample_weight=None):
+        """Accumulates statistics for computing the reduction metric.
+        For example, if `values` is [1, 3, 5, 7] and reduction=SUM_OVER_BATCH_SIZE,
+        then the value of `result()` is 4. If the `sample_weight` is specified as
+        [1, 1, 0, 0] then value of `result()` would be 2.
+        # Arguments
+            values: Per-example value.
+            sample_weight: Optional weighting of each example. Defaults to 1.
+        """
+        values = K.cast(values, self.dtype)
+        if sample_weight is not None:
+            sample_weight = K.cast(sample_weight, self.dtype)
+            # Update dimensions of weights to match with values if possible.
+            values, _, sample_weight = losses_utils.squeeze_or_expand_dimensions(
+                values, sample_weight=sample_weight)
+
+            # Broadcast weights if possible.
+            sample_weight = losses_utils.broadcast_weights(sample_weight, values)
+            values = values * sample_weight
+
+        value_sum = K.sum(values)
+        update_total_op = K.update_add(self.total, value_sum)
+
+        # Exit early if the reduction doesn't have a denominator.
+        if self.reduction == metrics_utils.Reduction.SUM:
+            return update_total_op
+
+        # Update `count` for reductions that require a denominator.
+        if self.reduction == metrics_utils.Reduction.SUM_OVER_BATCH_SIZE:
+            num_values = K.cast(K.size(values), self.dtype)
+        elif self.reduction == metrics_utils.Reduction.WEIGHTED_MEAN:
+            if sample_weight is None:
+                num_values = K.cast(K.size(values), self.dtype)
+            else:
+                num_values = K.sum(sample_weight)
+        else:
+            raise NotImplementedError(
+                'reduction [%s] not implemented' % self.reduction)
+
+        with K.control_dependencies([update_total_op]):
+            return K.update_add(self.count, num_values)
+
+    def result(self):
+        if self.reduction == metrics_utils.Reduction.SUM:
+            return self.total
+        elif self.reduction in [
+            metrics_utils.Reduction.WEIGHTED_MEAN,
+            metrics_utils.Reduction.SUM_OVER_BATCH_SIZE
+        ]:
+            return self.total / self.count
+        else:
+            raise NotImplementedError(
+                'reduction [%s] not implemented' % self.reduction)
+
+
+class Sum(Reduce):
+    """Computes the (weighted) sum of the given values.
+
+    For example, if values is [1, 3, 5, 7] then the sum is 16.
+    If the weights were specified as [1, 1, 0, 0] then the sum would be 4.
+
+    This metric creates one variable, `total`, that is used to compute the sum of
+    `values`. This is ultimately returned as `sum`.
+    If `sample_weight` is `None`, weights default to 1.  Use `sample_weight` of 0
+    to mask values.
+
+    Standalone usage:
+    ```python
+    m = keras.metrics.Sum()
+    m.update_state([1, 3, 5, 7])
+    m.result()
+    ```
+    """
+
+    def __init__(self, name='sum', dtype=None):
+        """Creates a `Sum` instance.
+        # Arguments
+            name: (Optional) string name of the metric instance.
+            dtype: (Optional) data type of the metric result.
+        """
+        super(Sum, self).__init__(reduction=metrics_utils.Reduction.SUM,
+                                  name=name, dtype=dtype)
+
+
 def binary_accuracy(y_true, y_pred):
     return K.mean(K.equal(y_true, K.round(y_pred)), axis=-1)
 
@@ -49,6 +244,395 @@ def sparse_top_k_categorical_accuracy(y_true, y_pred, k=5):
     return K.mean(K.in_top_k(y_pred, K.cast(K.flatten(y_true), 'int32'), k),
                   axis=-1)
 
+class SensitivitySpecificityBase(Metric):
+    """Abstract base class for computing sensitivity and specificity.
+
+    For additional information about specificity and sensitivity, see the
+    following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity
+    """
+
+    def __init__(self, value, num_thresholds=200, name=None, dtype=None):
+        super(SensitivitySpecificityBase, self).__init__(name=name, dtype=dtype)
+        if num_thresholds <= 0:
+            raise ValueError('`num_thresholds` must be > 0.')
+        self.value = value
+        self.true_positives = self.add_weight(
+            'true_positives',
+            shape=(num_thresholds,),
+            initializer='zeros')
+        self.true_negatives = self.add_weight(
+            'true_negatives',
+            shape=(num_thresholds,),
+            initializer='zeros')
+        self.false_positives = self.add_weight(
+            'false_positives',
+            shape=(num_thresholds,),
+            initializer='zeros')
+        self.false_negatives = self.add_weight(
+            'false_negatives',
+            shape=(num_thresholds,),
+            initializer='zeros')
+
+        # Compute `num_thresholds` thresholds in [0, 1]
+        if num_thresholds == 1:
+            self.thresholds = [0.5]
+        else:
+            thresholds = [(i + 1) * 1.0 / (num_thresholds - 1)
+                          for i in range(num_thresholds - 2)]
+            self.thresholds = [0.0] + thresholds + [1.0]
+
+    def update_state(self, y_true, y_pred, sample_weight=None):
+        return metrics_utils.update_confusion_matrix_variables(
+            {
+                metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives,
+                metrics_utils.ConfusionMatrix.TRUE_NEGATIVES: self.true_negatives,
+                metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives,
+                metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives,
+            },
+            y_true,
+            y_pred,
+            thresholds=self.thresholds,
+            sample_weight=sample_weight)
+
+    def reset_states(self):
+        num_thresholds = len(self.thresholds)
+        K.batch_set_value(
+            [(v, np.zeros((num_thresholds,))) for v in self.variables])
+
+
+class SensitivityAtSpecificity(SensitivitySpecificityBase):
+    """Computes the sensitivity at a given specificity.
+
+    `Sensitivity` measures the proportion of actual positives that are correctly
+    identified as such (tp / (tp + fn)).
+    `Specificity` measures the proportion of actual negatives that are correctly
+    identified as such (tn / (tn + fp)).
+
+    This metric creates four local variables, `true_positives`, `true_negatives`,
+    `false_positives` and `false_negatives` that are used to compute the
+    sensitivity at the given specificity. The threshold for the given specificity
+    value is computed and used to evaluate the corresponding sensitivity.
+
+    If `sample_weight` is `None`, weights default to 1.
+    Use `sample_weight` of 0 to mask values.
+
+    For additional information about specificity and sensitivity, see the
+    following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity
+
+    Usage with the compile API:
+
+    ```python
+    model = keras.Model(inputs, outputs)
+    model.compile(
+        'sgd',
+        loss='mse',
+        metrics=[keras.metrics.SensitivityAtSpecificity()])
+    ```
+
+    # Arguments
+        specificity: A scalar value in range `[0, 1]`.
+        num_thresholds: (Optional) Defaults to 200. The number of thresholds to
+            use for matching the given specificity.
+        name: (Optional) string name of the metric instance.
+        dtype: (Optional) data type of the metric result.
+    """
+
+    def __init__(self, specificity, num_thresholds=200, name=None, dtype=None):
+        if specificity < 0 or specificity > 1:
+            raise ValueError('`specificity` must be in the range [0, 1].')
+        self.specificity = specificity
+        self.num_thresholds = num_thresholds
+        super(SensitivityAtSpecificity, self).__init__(
+            specificity, num_thresholds=num_thresholds, name=name, dtype=dtype)
+
+    def result(self):
+        # Calculate specificities at all the thresholds.
+        specificities = K.switch(
+            K.greater(self.true_negatives + self.false_positives, 0),
+            (self.true_negatives / (self.true_negatives + self.false_positives)),
+            K.zeros_like(self.thresholds))
+
+        # Find the index of the threshold where the specificity is closest to the
+        # given specificity.
+        min_index = K.argmin(
+            K.abs(specificities - self.value), axis=0)
+        min_index = K.cast(min_index, 'int32')
+
+        # Compute sensitivity at that index.
+        return K.switch(
+            K.greater((self.true_positives[min_index] +
+                       self.false_negatives[min_index]), 0),
+            (self.true_positives[min_index] /
+                (self.true_positives[min_index] + self.false_negatives[min_index])),
+            K.zeros_like(self.true_positives[min_index]))
+
+    def get_config(self):
+        config = {
+            'num_thresholds': self.num_thresholds,
+            'specificity': self.specificity
+        }
+        base_config = super(SensitivityAtSpecificity, self).get_config()
+        return dict(list(base_config.items()) + list(config.items()))
+
+
+class AUC(Metric):
+    """Computes the approximate AUC (Area under the curve) via a Riemann sum.
+
+    This metric creates four local variables, `true_positives`, `true_negatives`,
+    `false_positives` and `false_negatives` that are used to compute the AUC.
+    To discretize the AUC curve, a linearly spaced set of thresholds is used to
+    compute pairs of recall and precision values. The area under the ROC-curve is
+    therefore computed using the height of the recall values by the false positive
+    rate, while the area under the PR-curve is the computed using the height of
+    the precision values by the recall.
+
+    This value is ultimately returned as `auc`, an idempotent operation that
+    computes the area under a discretized curve of precision versus recall values
+    (computed using the aforementioned variables). The `num_thresholds` variable
+    controls the degree of discretization with larger numbers of thresholds more
+    closely approximating the true AUC. The quality of the approximation may vary
+    dramatically depending on `num_thresholds`. The `thresholds` parameter can be
+    used to manually specify thresholds which split the predictions more evenly.
+
+    For best results, `predictions` should be distributed approximately uniformly
+    in the range [0, 1] and not peaked around 0 or 1. The quality of the AUC
+    approximation may be poor if this is not the case. Setting `summation_method`
+    to 'minoring' or 'majoring' can help quantify the error in the approximation
+    by providing lower or upper bound estimate of the AUC.
+
+    If `sample_weight` is `None`, weights default to 1.
+    Use `sample_weight` of 0 to mask values.
+
+    Usage with the compile API:
+
+    ```python
+    model = keras.Model(inputs, outputs)
+    model.compile('sgd', loss='mse', metrics=[keras.metrics.AUC()])
+    ```
+
+    # Arguments
+        num_thresholds: (Optional) Defaults to 200. The number of thresholds to
+            use when discretizing the roc curve. Values must be > 1.
+            curve: (Optional) Specifies the name of the curve to be computed, 'ROC'
+            [default] or 'PR' for the Precision-Recall-curve.
+        summation_method: (Optional) Specifies the Riemann summation method used
+            (https://en.wikipedia.org/wiki/Riemann_sum): 'interpolation' [default],
+              applies mid-point summation scheme for `ROC`. For PR-AUC, interpolates
+              (true/false) positives but not the ratio that is precision (see Davis
+              & Goadrich 2006 for details); 'minoring' that applies left summation
+              for increasing intervals and right summation for decreasing intervals;
+              'majoring' that does the opposite.
+        name: (Optional) string name of the metric instance.
+        dtype: (Optional) data type of the metric result.
+        thresholds: (Optional) A list of floating point values to use as the
+            thresholds for discretizing the curve. If set, the `num_thresholds`
+            parameter is ignored. Values should be in [0, 1]. Endpoint thresholds
+            equal to {-epsilon, 1+epsilon} for a small positive epsilon value will
+            be automatically included with these to correctly handle predictions
+            equal to exactly 0 or 1.
+    """
+
+    def __init__(self,
+                 num_thresholds=200,
+                 curve='ROC',
+                 summation_method='interpolation',
+                 name=None,
+                 dtype=None,
+                 thresholds=None):
+        # Validate configurations.
+        if (isinstance(curve, metrics_utils.AUCCurve) and
+                curve not in list(metrics_utils.AUCCurve)):
+            raise ValueError('Invalid curve: "{}". Valid options are: "{}"'.format(
+                curve, list(metrics_utils.AUCCurve)))
+        if isinstance(
+            summation_method,
+            metrics_utils.AUCSummationMethod) and summation_method not in list(
+                metrics_utils.AUCSummationMethod):
+            raise ValueError(
+                'Invalid summation method: "{}". Valid options are: "{}"'.format(
+                    summation_method, list(metrics_utils.AUCSummationMethod)))
+
+        # Update properties.
+        if thresholds is not None:
+            # If specified, use the supplied thresholds.
+            self.num_thresholds = len(thresholds) + 2
+            thresholds = sorted(thresholds)
+        else:
+            if num_thresholds <= 1:
+                raise ValueError('`num_thresholds` must be > 1.')
+
+            # Otherwise, linearly interpolate (num_thresholds - 2) thresholds in
+            # (0, 1).
+            self.num_thresholds = num_thresholds
+            thresholds = [(i + 1) * 1.0 / (num_thresholds - 1)
+                          for i in range(num_thresholds - 2)]
+
+        # Add an endpoint "threshold" below zero and above one for either
+        # threshold method to account for floating point imprecisions.
+        self.thresholds = [0.0 - K.epsilon()] + thresholds + [1.0 + K.epsilon()]
+
+        if isinstance(curve, metrics_utils.AUCCurve):
+            self.curve = curve
+        else:
+            self.curve = metrics_utils.AUCCurve.from_str(curve)
+        if isinstance(summation_method, metrics_utils.AUCSummationMethod):
+            self.summation_method = summation_method
+        else:
+            self.summation_method = metrics_utils.AUCSummationMethod.from_str(
+                summation_method)
+        super(AUC, self).__init__(name=name, dtype=dtype)
+
+        # Create metric variables
+        self.true_positives = self.add_weight(
+            'true_positives',
+            shape=(self.num_thresholds,),
+            initializer='zeros')
+        self.true_negatives = self.add_weight(
+            'true_negatives',
+            shape=(self.num_thresholds,),
+            initializer='zeros')
+        self.false_positives = self.add_weight(
+            'false_positives',
+            shape=(self.num_thresholds,),
+            initializer='zeros')
+        self.false_negatives = self.add_weight(
+            'false_negatives',
+            shape=(self.num_thresholds,),
+            initializer='zeros')
+
+    def update_state(self, y_true, y_pred, sample_weight=None):
+        return metrics_utils.update_confusion_matrix_variables({
+            metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives,
+            metrics_utils.ConfusionMatrix.TRUE_NEGATIVES: self.true_negatives,
+            metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives,
+            metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives,
+        }, y_true, y_pred, self.thresholds, sample_weight=sample_weight)
+
+    def interpolate_pr_auc(self):
+        """Interpolation formula inspired by section 4 of Davis & Goadrich 2006.
+
+        https://www.biostat.wisc.edu/~page/rocpr.pdf
+
+        Note here we derive & use a closed formula not present in the paper
+        as follows:
+
+          Precision = TP / (TP + FP) = TP / P
+
+        Modeling all of TP (true positive), FP (false positive) and their sum
+        P = TP + FP (predicted positive) as varying linearly within each interval
+        [A, B] between successive thresholds, we get
+
+          Precision slope = dTP / dP
+                          = (TP_B - TP_A) / (P_B - P_A)
+                          = (TP - TP_A) / (P - P_A)
+          Precision = (TP_A + slope * (P - P_A)) / P
+
+        The area within the interval is (slope / total_pos_weight) times
+
+          int_A^B{Precision.dP} = int_A^B{(TP_A + slope * (P - P_A)) * dP / P}
+          int_A^B{Precision.dP} = int_A^B{slope * dP + intercept * dP / P}
+
+        where intercept = TP_A - slope * P_A = TP_B - slope * P_B, resulting in
+
+          int_A^B{Precision.dP} = TP_B - TP_A + intercept * log(P_B / P_A)
+
+        Bringing back the factor (slope / total_pos_weight) we'd put aside, we get
+
+          slope * [dTP + intercept *  log(P_B / P_A)] / total_pos_weight
+
+        where dTP == TP_B - TP_A.
+
+        Note that when P_A == 0 the above calculation simplifies into
+
+          int_A^B{Precision.dTP} = int_A^B{slope * dTP} = slope * (TP_B - TP_A)
+
+        which is really equivalent to imputing constant precision throughout the
+        first bucket having >0 true positives.
+
+        # Returns
+            pr_auc: an approximation of the area under the P-R curve.
+        """
+        dtp = self.true_positives[:self.num_thresholds -
+                                  1] - self.true_positives[1:]
+        p = self.true_positives + self.false_positives
+        dp = p[:self.num_thresholds - 1] - p[1:]
+
+        prec_slope = dtp / K.maximum(dp, 0)
+        intercept = self.true_positives[1:] - (prec_slope * p[1:])
+
+        # Logical and
+        pMin = K.expand_dims(p[:self.num_thresholds - 1] > 0, 0)
+        pMax = K.expand_dims(p[1:] > 0, 0)
+        are_different = K.concatenate([pMin, pMax], axis=0)
+        switch_condition = K.all(are_different, axis=0)
+
+        safe_p_ratio = K.switch(
+            switch_condition,
+            p[:self.num_thresholds - 1] / K.maximum(p[1:], 0),
+            K.ones_like(p[1:]))
+
+        numer = prec_slope * (dtp + intercept * K.log(safe_p_ratio))
+        denom = K.maximum(self.true_positives[1:] + self.false_negatives[1:], 0)
+        return K.sum((numer / denom))
+
+    def result(self):
+        if (self.curve == metrics_utils.AUCCurve.PR and
+                (self.summation_method ==
+                 metrics_utils.AUCSummationMethod.INTERPOLATION)):
+            # This use case is different and is handled separately.
+            return self.interpolate_pr_auc()
+
+        # Set `x` and `y` values for the curves based on `curve` config.
+        recall = K.switch(
+            K.greater((self.true_positives), 0),
+            (self.true_positives /
+                (self.true_positives + self.false_negatives)),
+            K.zeros_like(self.true_positives))
+        if self.curve == metrics_utils.AUCCurve.ROC:
+            fp_rate = K.switch(
+                K.greater((self.false_positives), 0),
+                (self.false_positives /
+                    (self.false_positives + self.true_negatives)),
+                K.zeros_like(self.false_positives))
+            x = fp_rate
+            y = recall
+        else:  # curve == 'PR'.
+            precision = K.switch(
+                K.greater((self.true_positives), 0),
+                (self.true_positives / (self.true_positives + self.false_positives)),
+                K.zeros_like(self.true_positives))
+            x = recall
+            y = precision
+
+        # Find the rectangle heights based on `summation_method`.
+        if self.summation_method == metrics_utils.AUCSummationMethod.INTERPOLATION:
+            # Note: the case ('PR', 'interpolation') has been handled above.
+            heights = (y[:self.num_thresholds - 1] + y[1:]) / 2.
+        elif self.summation_method == metrics_utils.AUCSummationMethod.MINORING:
+            heights = K.minimum(y[:self.num_thresholds - 1], y[1:])
+        else:  # self.summation_method = metrics_utils.AUCSummationMethod.MAJORING:
+            heights = K.maximum(y[:self.num_thresholds - 1], y[1:])
+
+        # Sum up the areas of all the rectangles.
+        return K.sum((x[:self.num_thresholds - 1] - x[1:]) * heights)
+
+    def reset_states(self):
+        K.batch_set_value(
+            [(v, np.zeros((self.num_thresholds,))) for v in self.variables])
+
+    def get_config(self):
+        config = {
+            'num_thresholds': self.num_thresholds,
+            'curve': self.curve.value,
+            'summation_method': self.summation_method.value,
+            # We remove the endpoint thresholds as an inverse of how the thresholds
+            # were initialized. This ensures that a metric initialized from this
+            # config has the same thresholds.
+            'thresholds': self.thresholds[1:-1],
+        }
+        base_config = super(AUC, self).get_config()
+        return dict(list(base_config.items()) + list(config.items()))
+
 
 # Aliases
 
diff --git a/keras/utils/__init__.py b/keras/utils/__init__.py
index 8cc39d5..65af329 100644
--- a/keras/utils/__init__.py
+++ b/keras/utils/__init__.py
@@ -4,6 +4,8 @@ from . import generic_utils
 from . import data_utils
 from . import io_utils
 from . import conv_utils
+from . import losses_utils
+from . import metrics_utils
 
 # Globally-importable utils.
 from .io_utils import HDF5Matrix
diff --git a/keras/utils/losses_utils.py b/keras/utils/losses_utils.py
new file mode 100644
index 0000000..617ebb7
--- /dev/null
+++ b/keras/utils/losses_utils.py
@@ -0,0 +1,177 @@
+"""Utilities related to losses."""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import numpy as np
+
+from .. import backend as K
+
+
+class Reduction(object):
+    """Types of loss reduction.
+
+    Contains the following values:
+
+    * `NONE`: Un-reduced weighted losses with the same shape as input. When this
+        reduction type used with built-in Keras training loops like
+        `fit`/`evaluate`, the unreduced vector loss is passed to the optimizer but
+        the reported loss will be a scalar value.
+    * `SUM`: Scalar sum of weighted losses.
+    * `SUM_OVER_BATCH_SIZE`: Scalar `SUM` divided by number of elements in losses.
+    """
+
+    NONE = 'none'
+    SUM = 'sum'
+    SUM_OVER_BATCH_SIZE = 'sum_over_batch_size'
+
+    @classmethod
+    def all(cls):
+        return (cls.NONE, cls.SUM, cls.SUM_OVER_BATCH_SIZE)
+
+    @classmethod
+    def validate(cls, key):
+        if key not in cls.all():
+            raise ValueError('Invalid Reduction Key %s.' % key)
+
+
+def squeeze_or_expand_dimensions(y_pred, y_true=None, sample_weight=None):
+    """Squeeze or expand last dimension if needed.
+
+    1. Squeezes last dim of `y_pred` or `y_true` if their rank differs by 1.
+    2. Squeezes or expands last dim of `sample_weight` if its rank differs by 1
+    from the new rank of `y_pred`.
+    If `sample_weight` is scalar, it is kept scalar.
+
+    # Arguments
+    y_pred: Predicted values, a `Tensor` of arbitrary dimensions.
+    y_true: Optional label `Tensor` whose dimensions match `y_pred`.
+    sample_weight: Optional weight scalar or `Tensor` whose dimensions match
+    `y_pred`.
+
+    # Returns
+    Tuple of `y_pred`, `y_true` and `sample_weight`. Each of them possibly has
+    the last dimension squeezed, `sample_weight` could be extended by one
+    dimension.
+    """
+    if y_true is not None:
+        y_pred_rank = K.ndim(y_pred)
+        y_pred_shape = K.int_shape(y_pred)
+        y_true_rank = K.ndim(y_true)
+        y_true_shape = K.int_shape(y_true)
+
+        if (y_pred_rank - y_true_rank == 1) and (y_pred_shape[-1] == 1):
+            y_pred = K.squeeze(y_pred, -1)
+        elif (y_true_rank - y_pred_rank == 1) and (y_true_shape[-1] == 1):
+            y_true = K.squeeze(y_true, -1)
+
+    if sample_weight is None:
+        return y_pred, y_true
+
+    y_pred_rank = K.ndim(y_pred)
+    weights_rank = K.ndim(sample_weight)
+    if weights_rank != 0:
+        if weights_rank - y_pred_rank == 1:
+            sample_weight = K.squeeze(sample_weight, -1)
+        elif y_pred_rank - weights_rank == 1:
+           sample_weight = K.expand_dims(sample_weight, -1)
+    return y_pred, y_true, sample_weight
+
+
+def _num_elements(losses):
+    """Computes the number of elements in `losses` tensor."""
+    with K.name_scope('num_elements') as scope:
+        return K.cast(K.size(losses, name=scope), losses.dtype)
+
+
+def reduce_weighted_loss(weighted_losses, reduction=Reduction.SUM_OVER_BATCH_SIZE):
+    """Reduces the individual weighted loss measurements."""
+    if reduction == Reduction.NONE:
+        loss = weighted_losses
+    else:
+        loss = K.sum(weighted_losses)
+        if reduction == Reduction.SUM_OVER_BATCH_SIZE:
+            loss = loss / _num_elements(weighted_losses)
+    return loss
+
+
+def broadcast_weights(values, sample_weight):
+    # Broadcast weights if possible.
+    weights_shape = K.int_shape(sample_weight)
+    values_shape = K.int_shape(values)
+
+    if values_shape != weights_shape:
+        weights_rank = K.ndim(sample_weight)
+        values_rank = K.ndim(values)
+
+        # Raise error if ndim of weights is > values.
+        if weights_rank > values_rank:
+            raise ValueError(
+                'Incompatible shapes: `values` {} vs `sample_weight` {}'.format(
+                    values_shape, weights_shape))
+
+        # Expand dim of weights to match ndim of values, if required.
+            for i in range(weights_rank, values_rank):
+                sample_weight = K.expand_dims(sample_weight, axis=i)
+
+        if weights_shape is not None and values_shape is not None:
+            for i in range(weights_rank):
+                if (weights_shape[i] is not None and
+                   values_shape[i] is not None and
+                       weights_shape[i] != values_shape[i]):
+                   # Cannot be broadcasted.
+                   if weights_shape[i] != 1:
+                       raise ValueError(
+                           'Incompatible shapes: `values` {} vs '
+                           '`sample_weight` {}'.format(
+                               values_shape, weights_shape))
+                   sample_weight = K.repeat_elements(
+                       sample_weight, values_shape[i], axis=i)
+    return sample_weight
+
+
+def compute_weighted_loss(losses,
+                          sample_weight=None,
+                          reduction=Reduction.SUM_OVER_BATCH_SIZE,
+                          name=None):
+    """Computes the weighted loss.
+
+    # Arguments
+        losses: `Tensor` of shape `[batch_size, d1, ... dN]`.
+        sample_weight: Optional `Tensor` whose rank is either 0, or the same rank as
+        `   losses`, or be broadcastable to `losses`.
+        reduction: (Optional) Type of Reduction to apply to loss.
+            Default value is `SUM_OVER_BATCH_SIZE`.
+        name: Optional name for the op.
+
+    # Raises
+        ValueError: If the shape of `sample_weight` is not compatible with `losses`.
+
+    # Returns
+        Weighted loss `Tensor` of the same type as `losses`. If `reduction` is
+            `NONE`, this has the same shape as `losses`; otherwise, it is scalar.
+    """
+    Reduction.validate(reduction)
+    if sample_weight is None:
+        sample_weight = 1.0
+    with K.name_scope(name or 'weighted_loss'):
+        input_dtype = K.dtype(losses)
+        losses = K.cast(losses, K.floatx())
+        sample_weight = K.cast(sample_weight, K.floatx())
+
+        # Update dimensions of `sample_weight` to match with `losses` if possible.
+        losses, _, sample_weight = squeeze_or_expand_dimensions(
+            losses, None, sample_weight)
+
+        # Broadcast weights if possible.
+        sample_weight = broadcast_weights(losses, sample_weight)
+
+        # Apply weights to losses.
+        weighted_losses = sample_weight * losses
+
+        # Apply reduction function to the individual weighted losses.
+        loss = reduce_weighted_loss(weighted_losses, reduction)
+        # Convert the result back to the input type.
+        loss = K.cast(loss, input_dtype)
+        return loss
+
diff --git a/keras/utils/metrics_utils.py b/keras/utils/metrics_utils.py
new file mode 100644
index 0000000..e6a5bb0
--- /dev/null
+++ b/keras/utils/metrics_utils.py
@@ -0,0 +1,278 @@
+"""Utilities related to metrics."""
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+from enum import Enum
+
+from .. import backend as K
+from . import losses_utils
+
+NEG_INF = -1e10
+
+class Reduction(object):
+    """Types of metrics reduction.
+    Contains the following values:
+    * `SUM`: Scalar sum of weighted values.
+    * `SUM_OVER_BATCH_SIZE`: Scalar `SUM` of weighted values divided by
+        number of elements in values.
+    * `WEIGHTED_MEAN`: Scalar sum of weighted values divided by sum of weights.
+    """
+
+    SUM = 'sum'
+    SUM_OVER_BATCH_SIZE = 'sum_over_batch_size'
+    WEIGHTED_MEAN = 'weighted_mean'
+
+
+def update_state_wrapper(update_state_fn):
+    """Decorator to wrap metric `update_state()` with `add_update()`.
+    # Arguments
+        update_state_fn: function that accumulates metric statistics.
+    # Returns
+        Decorated function that wraps `update_state_fn()` with `add_update()`.
+    """
+    def decorated(metric_obj, *args, **kwargs):
+        """Decorated function with `add_update()`."""
+
+        update_op = update_state_fn(*args, **kwargs)
+        metric_obj.add_update(update_op)
+        return update_op
+
+    return decorated
+
+def result_wrapper(result_fn):
+    """Decorator to wrap metric `result()` with identity op.
+    Wrapping result in identity so that control dependency between
+    update_op from `update_state` and result works in case result returns
+    a tensor.
+    # Arguments
+        result_fn: function that computes the metric result.
+    # Returns
+        Decorated function that wraps `result()` with identity op.
+    """
+    def decorated(metric_obj, *args, **kwargs):
+        result_t = K.identity(result_fn(*args, **kwargs))
+        metric_obj._call_result = result_t
+        result_t._is_metric = True
+        return result_t
+    return decorated
+
+
+def to_list(x):
+    if isinstance(x, list):
+        return x
+    return [x]
+
+
+def assert_thresholds_range(thresholds):
+    if thresholds is not None:
+        invalid_thresholds = [t for t in thresholds if t is None or t < 0 or t > 1]
+    if invalid_thresholds:
+        raise ValueError(
+            'Threshold values must be in [0, 1]. Invalid values: {}'.format(
+            invalid_thresholds))
+
+
+def parse_init_thresholds(thresholds, default_threshold=0.5):
+    if thresholds is not None:
+        assert_thresholds_range(to_list(thresholds))
+    thresholds = to_list(default_threshold if thresholds is None else thresholds)
+    return thresholds
+
+class ConfusionMatrix(Enum):
+    TRUE_POSITIVES = 'tp'
+    FALSE_POSITIVES = 'fp'
+    TRUE_NEGATIVES = 'tn'
+    FALSE_NEGATIVES = 'fn'
+
+class AUCCurve(Enum):
+    """Type of AUC Curve (ROC or PR)."""
+    ROC = 'ROC'
+    PR = 'PR'
+
+    @staticmethod
+    def from_str(key):
+        if key in ('pr', 'PR'):
+            return AUCCurve.PR
+        elif key in ('roc', 'ROC'):
+            return AUCCurve.ROC
+        else:
+            raise ValueError('Invalid AUC curve value "%s".' % key)
+
+
+class AUCSummationMethod(Enum):
+    """Type of AUC summation method.
+
+    https://en.wikipedia.org/wiki/Riemann_sum)
+
+    Contains the following values:
+    * 'interpolation': Applies mid-point summation scheme for `ROC` curve. For
+    `PR` curve, interpolates (true/false) positives but not the ratio that is
+    precision (see Davis & Goadrich 2006 for details).
+    * 'minoring': Applies left summation for increasing intervals and right
+    summation for decreasing intervals.
+    * 'majoring': Applies right summation for increasing intervals and left
+    summation for decreasing intervals.
+    """
+    INTERPOLATION = 'interpolation'
+    MAJORING = 'majoring'
+    MINORING = 'minoring'
+
+    @staticmethod
+    def from_str(key):
+        if key in ('interpolation', 'Interpolation'):
+            return AUCSummationMethod.INTERPOLATION
+        elif key in ('majoring', 'Majoring'):
+            return AUCSummationMethod.MAJORING
+        elif key in ('minoring', 'Minoring'):
+            return AUCSummationMethod.MINORING
+        else:
+            raise ValueError('Invalid AUC summation method value "%s".' % key)
+
+def weighted_assign_add(label, pred, weights, var):
+    # Logical and
+    label = K.expand_dims(label, 0)
+    pred = K.expand_dims(pred, 0)
+    are_different = K.concatenate([label, pred], axis=0)
+    label_and_pred = K.all(are_different, axis=0)
+    label_and_pred = K.cast(label_and_pred, dtype=K.floatx())
+    if weights is not None:
+        label_and_pred *= weights
+    return var.assign_add(K.sum(label_and_pred, 1))
+
+def update_confusion_matrix_variables(variables_to_update,
+                                      y_true,
+                                      y_pred,
+                                      thresholds,
+                                      top_k=None,
+                                      class_id=None,
+                                      sample_weight=None):
+    """Returns op to update the given confusion matrix variables.
+    For every pair of values in y_true and y_pred:
+    true_positive: y_true == True and y_pred > thresholds
+    false_negatives: y_true == True and y_pred <= thresholds
+    true_negatives: y_true == False and y_pred <= thresholds
+    false_positive: y_true == False and y_pred > thresholds
+    The results will be weighted and added together. When multiple thresholds are
+    provided, we will repeat the same for every threshold.
+    For estimation of these metrics over a stream of data, the function creates an
+    `update_op` operation that updates the given variables.
+    If `sample_weight` is `None`, weights default to 1.
+    Use weights of 0 to mask values.
+    # Arguments
+    variables_to_update: Dictionary with 'tp', 'fn', 'tn', 'fp' as valid keys
+      and corresponding variables to update as values.
+    y_true: A `Tensor` whose shape matches `y_pred`. Will be cast to `bool`.
+    y_pred: A floating point `Tensor` of arbitrary shape and whose values are in
+      the range `[0, 1]`.
+    thresholds: A float value or a python list or tuple of float thresholds in
+      `[0, 1]`, or NEG_INF (used when top_k is set).
+    top_k: Optional int, indicates that the positive labels should be limited to
+      the top k predictions.
+    class_id: Optional int, limits the prediction and labels to the class
+      specified by this argument.
+    sample_weight: Optional `Tensor` whose rank is either 0, or the same rank as
+      `y_true`, and must be broadcastable to `y_true` (i.e., all dimensions must
+      be either `1`, or the same as the corresponding `y_true` dimension).
+    # Returns
+        Update ops.
+    # Raises
+        ValueError: If `y_pred` and `y_true` have mismatched shapes, or if
+            `sample_weight` is not `None` and its shape doesn't match `y_pred`, or if
+            `variables_to_update` contains invalid keys.
+    """
+    if variables_to_update is None:
+        return
+    y_true = K.cast(y_true, dtype=K.floatx())
+    y_pred = K.cast(y_pred, dtype=K.floatx())
+    if sample_weight is not None:
+        sample_weight = K.cast(sample_weight, dtype=K.floatx())
+
+    if not any(key
+               for key in variables_to_update
+               if key in list(ConfusionMatrix)):
+        raise ValueError(
+            'Please provide at least one valid confusion matrix '
+            'variable to update. Valid variable key options are: "{}". '
+            'Received: "{}"'.format(
+                list(ConfusionMatrix), variables_to_update.keys()))
+
+    invalid_keys = [
+        key for key in variables_to_update if key not in list(ConfusionMatrix)
+    ]
+    if invalid_keys:
+        raise ValueError(
+            'Invalid keys: {}. Valid variable key options are: "{}"'.format(
+                invalid_keys, list(ConfusionMatrix)))
+
+    if sample_weight is None:
+        y_pred, y_true = losses_utils.squeeze_or_expand_dimensions(
+            y_pred, y_true=y_true)
+    else:
+        y_pred, y_true, sample_weight = (
+            losses_utils.squeeze_or_expand_dimensions(
+                y_pred, y_true=y_true, sample_weight=sample_weight))
+
+    if top_k is not None:
+        y_pred = _filter_top_k(y_pred, top_k)
+    if class_id is not None:
+        y_true = y_true[..., class_id]
+        y_pred = y_pred[..., class_id]
+
+    thresholds = to_list(thresholds)
+    num_thresholds = len(thresholds)
+    num_predictions = K.size(y_pred)
+
+    # Reshape predictions and labels.
+    predictions_2d = K.reshape(y_pred, [1, -1])
+    labels_2d = K.reshape(
+        K.cast(y_true, dtype='bool'), [1, -1])
+
+    # Tile the thresholds for every prediction.
+    thresh_tiled = K.tile(
+        K.expand_dims(K.constant(thresholds), 1),
+        K.stack([1, num_predictions]))
+
+    # Tile the predictions for every threshold.
+    preds_tiled = K.tile(predictions_2d, [num_thresholds, 1])
+
+    # Compare predictions and threshold.
+    pred_is_pos = K.greater(preds_tiled, thresh_tiled)
+    pred_is_neg = K.greater(thresh_tiled, preds_tiled)
+
+    # Tile labels by number of thresholds
+    label_is_pos = K.tile(labels_2d, [num_thresholds, 1])
+
+    if sample_weight is not None:
+        weights = losses_utils.broadcast_weights(
+            y_pred, K.cast(sample_weight, dtype=K.floatx()))
+        weights_tiled = K.tile(
+            K.reshape(weights, [1, -1]), [num_thresholds, 1])
+    else:
+        weights_tiled = None
+
+    update_ops = []
+    loop_vars = {
+        ConfusionMatrix.TRUE_POSITIVES: (label_is_pos, pred_is_pos),
+    }
+    update_tn = ConfusionMatrix.TRUE_NEGATIVES in variables_to_update
+    update_fp = ConfusionMatrix.FALSE_POSITIVES in variables_to_update
+    update_fn = ConfusionMatrix.FALSE_NEGATIVES in variables_to_update
+
+    if update_fn or update_tn:
+        loop_vars[ConfusionMatrix.FALSE_NEGATIVES] = (label_is_pos, pred_is_neg)
+
+    if update_fp or update_tn:
+        label_is_neg = K.equal(
+            label_is_pos, K.zeros_like(label_is_pos, dtype=label_is_pos.dtype))
+        loop_vars[ConfusionMatrix.FALSE_POSITIVES] = (label_is_neg, pred_is_pos)
+    if update_tn:
+        loop_vars[ConfusionMatrix.TRUE_NEGATIVES] = (label_is_neg, pred_is_neg)
+
+    for matrix_cond, (label, pred) in loop_vars.items():
+        if matrix_cond in variables_to_update:
+            update_ops.append(
+                weighted_assign_add(label, pred, weights_tiled,
+                                    variables_to_update[matrix_cond]))
+    return update_ops
+
-- 
2.26.2