aboutsummaryrefslogtreecommitdiff
path: root/keras-auc-optimizer.patch
diff options
context:
space:
mode:
authorShepherd on Tux022024-06-21 04:51:09 -0500
committerShepherd on Tux022024-06-21 04:51:17 -0500
commitd5aa746d3f7ecf46fcab2c527fb2d033a77c5143 (patch)
tree3b122d45d1ca6c5ba62ea8a05c2270c6e27996f2 /keras-auc-optimizer.patch
parentfe579ad20464adae86939345c214cc41028825f3 (diff)
downloadguix-bioinformatics-d5aa746d3f7ecf46fcab2c527fb2d033a77c5143.tar.gz
ratspub: remove definitions as they are replaced by genecup
Diffstat (limited to 'keras-auc-optimizer.patch')
-rw-r--r--keras-auc-optimizer.patch1133
1 files changed, 0 insertions, 1133 deletions
diff --git a/keras-auc-optimizer.patch b/keras-auc-optimizer.patch
deleted file mode 100644
index bbc6924..0000000
--- a/keras-auc-optimizer.patch
+++ /dev/null
@@ -1,1133 +0,0 @@
-From 901159da45695da24a5206125910f02fc50169ce Mon Sep 17 00:00:00 2001
-From: Efraim Flashner <efraim@flashner.co.il>
-Date: Thu, 23 Apr 2020 15:50:37 +0300
-Subject: [PATCH] add keras metrics
-
----
- keras/backend/tensorflow_backend.py | 12 +
- keras/metrics.py | 584 ++++++++++++++++++++++++++++
- keras/utils/__init__.py | 2 +
- keras/utils/losses_utils.py | 177 +++++++++
- keras/utils/metrics_utils.py | 278 +++++++++++++
- 5 files changed, 1053 insertions(+)
- create mode 100644 keras/utils/losses_utils.py
- create mode 100644 keras/utils/metrics_utils.py
-
-diff --git a/keras/backend/tensorflow_backend.py b/keras/backend/tensorflow_backend.py
-index bcb8be0..a2870f5 100644
---- a/keras/backend/tensorflow_backend.py
-+++ b/keras/backend/tensorflow_backend.py
-@@ -4453,3 +4453,15 @@ def local_conv2d(inputs, kernel, kernel_size, strides, output_shape, data_format
- else:
- output = permute_dimensions(output, (2, 0, 1, 3))
- return output
-+
-+#get_graph = tf_keras_backend.get_graph
-+
-+#def is_symbolic(x):
-+# return isinstance(x, tf.Tensor) and hasattr(x, 'op')
-+
-+def size(x, name=None):
-+# if is_symbolic(x):
-+# with get_graph().as_default():
-+# return tf.size(x)
-+ return tf.size(x, name=name)
-+
-diff --git a/keras/metrics.py b/keras/metrics.py
-index 8e3df1f..8f57910 100644
---- a/keras/metrics.py
-+++ b/keras/metrics.py
-@@ -4,8 +4,12 @@ from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
-
-+import abc
- import six
-+import types
-+
- from . import backend as K
-+from .engine.base_layer import Layer
- from .losses import mean_squared_error
- from .losses import mean_absolute_error
- from .losses import mean_absolute_percentage_error
-@@ -19,10 +23,201 @@ from .losses import binary_crossentropy
- from .losses import kullback_leibler_divergence
- from .losses import poisson
- from .losses import cosine_proximity
-+from .utils import losses_utils
-+from .utils import metrics_utils
- from .utils.generic_utils import deserialize_keras_object
- from .utils.generic_utils import serialize_keras_object
-
-
-+@six.add_metaclass(abc.ABCMeta)
-+class Metric(Layer):
-+ """Encapsulates metric logic and state.
-+
-+ Standalone usage:
-+ ```python
-+ m = SomeMetric(...)
-+ for input in ...:
-+ m.update_state(input)
-+ m.result()
-+ ```
-+
-+ Usage with the `compile` API:
-+ ```python
-+ model.compile(optimizer='rmsprop',
-+ loss=keras.losses.categorical_crossentropy,
-+ metrics=[keras.metrics.CategoricalAccuracy()])
-+ ```
-+
-+ To be implemented by subclasses:
-+ * `__init__()`: All state variables should be created in this method by
-+ calling `self.add_weight()` like: `self.var = self.add_weight(...)`
-+ * `update_state()`: Has all updates to the state variables like:
-+ self.var.assign_add(...).
-+ * `result()`: Computes and returns a value for the metric
-+ from the state variables.
-+ """
-+
-+ def __init__(self, name=None, dtype=None, **kwargs):
-+ super(Metric, self).__init__(name=name, dtype=dtype, **kwargs)
-+ self.stateful = True # All metric layers are stateful.
-+ self.built = True
-+ self.dtype = K.floatx() if dtype is None else dtype
-+
-+ def __new__(cls, *args, **kwargs):
-+ obj = super(Metric, cls).__new__(cls)
-+ update_state_fn = obj.update_state
-+
-+ obj.update_state = types.MethodType(
-+ metrics_utils.update_state_wrapper(update_state_fn), obj)
-+ return obj
-+
-+ def __call__(self, *args, **kwargs):
-+ """Accumulates statistics and then computes metric result value."""
-+ update_op = self.update_state(*args, **kwargs)
-+ return self.result()
-+
-+ def get_config(self):
-+ """Returns the serializable config of the metric."""
-+ return {'name': self.name, 'dtype': self.dtype}
-+
-+ def reset_states(self):
-+ """Resets all of the metric state variables.
-+ This function is called between epochs/steps,
-+ when a metric is evaluated during training.
-+ """
-+ K.batch_set_value([(v, 0) for v in self.weights])
-+
-+ @abc.abstractmethod
-+ def update_state(self, *args, **kwargs):
-+ """Accumulates statistics for the metric. """
-+ raise NotImplementedError('Must be implemented in subclasses.')
-+
-+ @abc.abstractmethod
-+ def result(self):
-+ """Computes and returns the metric value tensor.
-+ Result computation is an idempotent operation that simply calculates the
-+ metric value using the state variables.
-+ """
-+ raise NotImplementedError('Must be implemented in subclasses.')
-+
-+ # For use by subclasses #
-+ def add_weight(self,
-+ name,
-+ shape=(),
-+ initializer=None,
-+ dtype=None):
-+ """Adds state variable. Only for use by subclasses."""
-+ return super(Metric, self).add_weight(
-+ name=name,
-+ shape=shape,
-+ dtype=self.dtype if dtype is None else dtype,
-+ trainable=False,
-+ initializer=initializer)
-+
-+ # End: For use by subclasses ###
-+
-+
-+class Reduce(Metric):
-+ """Encapsulates metrics that perform a reduce operation on the values."""
-+
-+ def __init__(self, reduction, name, dtype=None):
-+ """Creates a `Reduce` instance.
-+ # Arguments
-+ reduction: a metrics `Reduction` enum value.
-+ name: string name of the metric instance.
-+ dtype: (Optional) data type of the metric result.
-+ """
-+ super(Reduce, self).__init__(name=name, dtype=dtype)
-+ self.reduction = reduction
-+ self.total = self.add_weight('total', initializer='zeros')
-+ if reduction in [metrics_utils.Reduction.SUM_OVER_BATCH_SIZE,
-+ metrics_utils.Reduction.WEIGHTED_MEAN]:
-+ self.count = self.add_weight('count', initializer='zeros')
-+
-+ def update_state(self, values, sample_weight=None):
-+ """Accumulates statistics for computing the reduction metric.
-+ For example, if `values` is [1, 3, 5, 7] and reduction=SUM_OVER_BATCH_SIZE,
-+ then the value of `result()` is 4. If the `sample_weight` is specified as
-+ [1, 1, 0, 0] then value of `result()` would be 2.
-+ # Arguments
-+ values: Per-example value.
-+ sample_weight: Optional weighting of each example. Defaults to 1.
-+ """
-+ values = K.cast(values, self.dtype)
-+ if sample_weight is not None:
-+ sample_weight = K.cast(sample_weight, self.dtype)
-+ # Update dimensions of weights to match with values if possible.
-+ values, _, sample_weight = losses_utils.squeeze_or_expand_dimensions(
-+ values, sample_weight=sample_weight)
-+
-+ # Broadcast weights if possible.
-+ sample_weight = losses_utils.broadcast_weights(sample_weight, values)
-+ values = values * sample_weight
-+
-+ value_sum = K.sum(values)
-+ update_total_op = K.update_add(self.total, value_sum)
-+
-+ # Exit early if the reduction doesn't have a denominator.
-+ if self.reduction == metrics_utils.Reduction.SUM:
-+ return update_total_op
-+
-+ # Update `count` for reductions that require a denominator.
-+ if self.reduction == metrics_utils.Reduction.SUM_OVER_BATCH_SIZE:
-+ num_values = K.cast(K.size(values), self.dtype)
-+ elif self.reduction == metrics_utils.Reduction.WEIGHTED_MEAN:
-+ if sample_weight is None:
-+ num_values = K.cast(K.size(values), self.dtype)
-+ else:
-+ num_values = K.sum(sample_weight)
-+ else:
-+ raise NotImplementedError(
-+ 'reduction [%s] not implemented' % self.reduction)
-+
-+ with K.control_dependencies([update_total_op]):
-+ return K.update_add(self.count, num_values)
-+
-+ def result(self):
-+ if self.reduction == metrics_utils.Reduction.SUM:
-+ return self.total
-+ elif self.reduction in [
-+ metrics_utils.Reduction.WEIGHTED_MEAN,
-+ metrics_utils.Reduction.SUM_OVER_BATCH_SIZE
-+ ]:
-+ return self.total / self.count
-+ else:
-+ raise NotImplementedError(
-+ 'reduction [%s] not implemented' % self.reduction)
-+
-+
-+class Sum(Reduce):
-+ """Computes the (weighted) sum of the given values.
-+
-+ For example, if values is [1, 3, 5, 7] then the sum is 16.
-+ If the weights were specified as [1, 1, 0, 0] then the sum would be 4.
-+
-+ This metric creates one variable, `total`, that is used to compute the sum of
-+ `values`. This is ultimately returned as `sum`.
-+ If `sample_weight` is `None`, weights default to 1. Use `sample_weight` of 0
-+ to mask values.
-+
-+ Standalone usage:
-+ ```python
-+ m = keras.metrics.Sum()
-+ m.update_state([1, 3, 5, 7])
-+ m.result()
-+ ```
-+ """
-+
-+ def __init__(self, name='sum', dtype=None):
-+ """Creates a `Sum` instance.
-+ # Arguments
-+ name: (Optional) string name of the metric instance.
-+ dtype: (Optional) data type of the metric result.
-+ """
-+ super(Sum, self).__init__(reduction=metrics_utils.Reduction.SUM,
-+ name=name, dtype=dtype)
-+
-+
- def binary_accuracy(y_true, y_pred):
- return K.mean(K.equal(y_true, K.round(y_pred)), axis=-1)
-
-@@ -49,6 +244,395 @@ def sparse_top_k_categorical_accuracy(y_true, y_pred, k=5):
- return K.mean(K.in_top_k(y_pred, K.cast(K.flatten(y_true), 'int32'), k),
- axis=-1)
-
-+class SensitivitySpecificityBase(Metric):
-+ """Abstract base class for computing sensitivity and specificity.
-+
-+ For additional information about specificity and sensitivity, see the
-+ following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity
-+ """
-+
-+ def __init__(self, value, num_thresholds=200, name=None, dtype=None):
-+ super(SensitivitySpecificityBase, self).__init__(name=name, dtype=dtype)
-+ if num_thresholds <= 0:
-+ raise ValueError('`num_thresholds` must be > 0.')
-+ self.value = value
-+ self.true_positives = self.add_weight(
-+ 'true_positives',
-+ shape=(num_thresholds,),
-+ initializer='zeros')
-+ self.true_negatives = self.add_weight(
-+ 'true_negatives',
-+ shape=(num_thresholds,),
-+ initializer='zeros')
-+ self.false_positives = self.add_weight(
-+ 'false_positives',
-+ shape=(num_thresholds,),
-+ initializer='zeros')
-+ self.false_negatives = self.add_weight(
-+ 'false_negatives',
-+ shape=(num_thresholds,),
-+ initializer='zeros')
-+
-+ # Compute `num_thresholds` thresholds in [0, 1]
-+ if num_thresholds == 1:
-+ self.thresholds = [0.5]
-+ else:
-+ thresholds = [(i + 1) * 1.0 / (num_thresholds - 1)
-+ for i in range(num_thresholds - 2)]
-+ self.thresholds = [0.0] + thresholds + [1.0]
-+
-+ def update_state(self, y_true, y_pred, sample_weight=None):
-+ return metrics_utils.update_confusion_matrix_variables(
-+ {
-+ metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives,
-+ metrics_utils.ConfusionMatrix.TRUE_NEGATIVES: self.true_negatives,
-+ metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives,
-+ metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives,
-+ },
-+ y_true,
-+ y_pred,
-+ thresholds=self.thresholds,
-+ sample_weight=sample_weight)
-+
-+ def reset_states(self):
-+ num_thresholds = len(self.thresholds)
-+ K.batch_set_value(
-+ [(v, np.zeros((num_thresholds,))) for v in self.variables])
-+
-+
-+class SensitivityAtSpecificity(SensitivitySpecificityBase):
-+ """Computes the sensitivity at a given specificity.
-+
-+ `Sensitivity` measures the proportion of actual positives that are correctly
-+ identified as such (tp / (tp + fn)).
-+ `Specificity` measures the proportion of actual negatives that are correctly
-+ identified as such (tn / (tn + fp)).
-+
-+ This metric creates four local variables, `true_positives`, `true_negatives`,
-+ `false_positives` and `false_negatives` that are used to compute the
-+ sensitivity at the given specificity. The threshold for the given specificity
-+ value is computed and used to evaluate the corresponding sensitivity.
-+
-+ If `sample_weight` is `None`, weights default to 1.
-+ Use `sample_weight` of 0 to mask values.
-+
-+ For additional information about specificity and sensitivity, see the
-+ following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity
-+
-+ Usage with the compile API:
-+
-+ ```python
-+ model = keras.Model(inputs, outputs)
-+ model.compile(
-+ 'sgd',
-+ loss='mse',
-+ metrics=[keras.metrics.SensitivityAtSpecificity()])
-+ ```
-+
-+ # Arguments
-+ specificity: A scalar value in range `[0, 1]`.
-+ num_thresholds: (Optional) Defaults to 200. The number of thresholds to
-+ use for matching the given specificity.
-+ name: (Optional) string name of the metric instance.
-+ dtype: (Optional) data type of the metric result.
-+ """
-+
-+ def __init__(self, specificity, num_thresholds=200, name=None, dtype=None):
-+ if specificity < 0 or specificity > 1:
-+ raise ValueError('`specificity` must be in the range [0, 1].')
-+ self.specificity = specificity
-+ self.num_thresholds = num_thresholds
-+ super(SensitivityAtSpecificity, self).__init__(
-+ specificity, num_thresholds=num_thresholds, name=name, dtype=dtype)
-+
-+ def result(self):
-+ # Calculate specificities at all the thresholds.
-+ specificities = K.switch(
-+ K.greater(self.true_negatives + self.false_positives, 0),
-+ (self.true_negatives / (self.true_negatives + self.false_positives)),
-+ K.zeros_like(self.thresholds))
-+
-+ # Find the index of the threshold where the specificity is closest to the
-+ # given specificity.
-+ min_index = K.argmin(
-+ K.abs(specificities - self.value), axis=0)
-+ min_index = K.cast(min_index, 'int32')
-+
-+ # Compute sensitivity at that index.
-+ return K.switch(
-+ K.greater((self.true_positives[min_index] +
-+ self.false_negatives[min_index]), 0),
-+ (self.true_positives[min_index] /
-+ (self.true_positives[min_index] + self.false_negatives[min_index])),
-+ K.zeros_like(self.true_positives[min_index]))
-+
-+ def get_config(self):
-+ config = {
-+ 'num_thresholds': self.num_thresholds,
-+ 'specificity': self.specificity
-+ }
-+ base_config = super(SensitivityAtSpecificity, self).get_config()
-+ return dict(list(base_config.items()) + list(config.items()))
-+
-+
-+class AUC(Metric):
-+ """Computes the approximate AUC (Area under the curve) via a Riemann sum.
-+
-+ This metric creates four local variables, `true_positives`, `true_negatives`,
-+ `false_positives` and `false_negatives` that are used to compute the AUC.
-+ To discretize the AUC curve, a linearly spaced set of thresholds is used to
-+ compute pairs of recall and precision values. The area under the ROC-curve is
-+ therefore computed using the height of the recall values by the false positive
-+ rate, while the area under the PR-curve is the computed using the height of
-+ the precision values by the recall.
-+
-+ This value is ultimately returned as `auc`, an idempotent operation that
-+ computes the area under a discretized curve of precision versus recall values
-+ (computed using the aforementioned variables). The `num_thresholds` variable
-+ controls the degree of discretization with larger numbers of thresholds more
-+ closely approximating the true AUC. The quality of the approximation may vary
-+ dramatically depending on `num_thresholds`. The `thresholds` parameter can be
-+ used to manually specify thresholds which split the predictions more evenly.
-+
-+ For best results, `predictions` should be distributed approximately uniformly
-+ in the range [0, 1] and not peaked around 0 or 1. The quality of the AUC
-+ approximation may be poor if this is not the case. Setting `summation_method`
-+ to 'minoring' or 'majoring' can help quantify the error in the approximation
-+ by providing lower or upper bound estimate of the AUC.
-+
-+ If `sample_weight` is `None`, weights default to 1.
-+ Use `sample_weight` of 0 to mask values.
-+
-+ Usage with the compile API:
-+
-+ ```python
-+ model = keras.Model(inputs, outputs)
-+ model.compile('sgd', loss='mse', metrics=[keras.metrics.AUC()])
-+ ```
-+
-+ # Arguments
-+ num_thresholds: (Optional) Defaults to 200. The number of thresholds to
-+ use when discretizing the roc curve. Values must be > 1.
-+ curve: (Optional) Specifies the name of the curve to be computed, 'ROC'
-+ [default] or 'PR' for the Precision-Recall-curve.
-+ summation_method: (Optional) Specifies the Riemann summation method used
-+ (https://en.wikipedia.org/wiki/Riemann_sum): 'interpolation' [default],
-+ applies mid-point summation scheme for `ROC`. For PR-AUC, interpolates
-+ (true/false) positives but not the ratio that is precision (see Davis
-+ & Goadrich 2006 for details); 'minoring' that applies left summation
-+ for increasing intervals and right summation for decreasing intervals;
-+ 'majoring' that does the opposite.
-+ name: (Optional) string name of the metric instance.
-+ dtype: (Optional) data type of the metric result.
-+ thresholds: (Optional) A list of floating point values to use as the
-+ thresholds for discretizing the curve. If set, the `num_thresholds`
-+ parameter is ignored. Values should be in [0, 1]. Endpoint thresholds
-+ equal to {-epsilon, 1+epsilon} for a small positive epsilon value will
-+ be automatically included with these to correctly handle predictions
-+ equal to exactly 0 or 1.
-+ """
-+
-+ def __init__(self,
-+ num_thresholds=200,
-+ curve='ROC',
-+ summation_method='interpolation',
-+ name=None,
-+ dtype=None,
-+ thresholds=None):
-+ # Validate configurations.
-+ if (isinstance(curve, metrics_utils.AUCCurve) and
-+ curve not in list(metrics_utils.AUCCurve)):
-+ raise ValueError('Invalid curve: "{}". Valid options are: "{}"'.format(
-+ curve, list(metrics_utils.AUCCurve)))
-+ if isinstance(
-+ summation_method,
-+ metrics_utils.AUCSummationMethod) and summation_method not in list(
-+ metrics_utils.AUCSummationMethod):
-+ raise ValueError(
-+ 'Invalid summation method: "{}". Valid options are: "{}"'.format(
-+ summation_method, list(metrics_utils.AUCSummationMethod)))
-+
-+ # Update properties.
-+ if thresholds is not None:
-+ # If specified, use the supplied thresholds.
-+ self.num_thresholds = len(thresholds) + 2
-+ thresholds = sorted(thresholds)
-+ else:
-+ if num_thresholds <= 1:
-+ raise ValueError('`num_thresholds` must be > 1.')
-+
-+ # Otherwise, linearly interpolate (num_thresholds - 2) thresholds in
-+ # (0, 1).
-+ self.num_thresholds = num_thresholds
-+ thresholds = [(i + 1) * 1.0 / (num_thresholds - 1)
-+ for i in range(num_thresholds - 2)]
-+
-+ # Add an endpoint "threshold" below zero and above one for either
-+ # threshold method to account for floating point imprecisions.
-+ self.thresholds = [0.0 - K.epsilon()] + thresholds + [1.0 + K.epsilon()]
-+
-+ if isinstance(curve, metrics_utils.AUCCurve):
-+ self.curve = curve
-+ else:
-+ self.curve = metrics_utils.AUCCurve.from_str(curve)
-+ if isinstance(summation_method, metrics_utils.AUCSummationMethod):
-+ self.summation_method = summation_method
-+ else:
-+ self.summation_method = metrics_utils.AUCSummationMethod.from_str(
-+ summation_method)
-+ super(AUC, self).__init__(name=name, dtype=dtype)
-+
-+ # Create metric variables
-+ self.true_positives = self.add_weight(
-+ 'true_positives',
-+ shape=(self.num_thresholds,),
-+ initializer='zeros')
-+ self.true_negatives = self.add_weight(
-+ 'true_negatives',
-+ shape=(self.num_thresholds,),
-+ initializer='zeros')
-+ self.false_positives = self.add_weight(
-+ 'false_positives',
-+ shape=(self.num_thresholds,),
-+ initializer='zeros')
-+ self.false_negatives = self.add_weight(
-+ 'false_negatives',
-+ shape=(self.num_thresholds,),
-+ initializer='zeros')
-+
-+ def update_state(self, y_true, y_pred, sample_weight=None):
-+ return metrics_utils.update_confusion_matrix_variables({
-+ metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives,
-+ metrics_utils.ConfusionMatrix.TRUE_NEGATIVES: self.true_negatives,
-+ metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives,
-+ metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives,
-+ }, y_true, y_pred, self.thresholds, sample_weight=sample_weight)
-+
-+ def interpolate_pr_auc(self):
-+ """Interpolation formula inspired by section 4 of Davis & Goadrich 2006.
-+
-+ https://www.biostat.wisc.edu/~page/rocpr.pdf
-+
-+ Note here we derive & use a closed formula not present in the paper
-+ as follows:
-+
-+ Precision = TP / (TP + FP) = TP / P
-+
-+ Modeling all of TP (true positive), FP (false positive) and their sum
-+ P = TP + FP (predicted positive) as varying linearly within each interval
-+ [A, B] between successive thresholds, we get
-+
-+ Precision slope = dTP / dP
-+ = (TP_B - TP_A) / (P_B - P_A)
-+ = (TP - TP_A) / (P - P_A)
-+ Precision = (TP_A + slope * (P - P_A)) / P
-+
-+ The area within the interval is (slope / total_pos_weight) times
-+
-+ int_A^B{Precision.dP} = int_A^B{(TP_A + slope * (P - P_A)) * dP / P}
-+ int_A^B{Precision.dP} = int_A^B{slope * dP + intercept * dP / P}
-+
-+ where intercept = TP_A - slope * P_A = TP_B - slope * P_B, resulting in
-+
-+ int_A^B{Precision.dP} = TP_B - TP_A + intercept * log(P_B / P_A)
-+
-+ Bringing back the factor (slope / total_pos_weight) we'd put aside, we get
-+
-+ slope * [dTP + intercept * log(P_B / P_A)] / total_pos_weight
-+
-+ where dTP == TP_B - TP_A.
-+
-+ Note that when P_A == 0 the above calculation simplifies into
-+
-+ int_A^B{Precision.dTP} = int_A^B{slope * dTP} = slope * (TP_B - TP_A)
-+
-+ which is really equivalent to imputing constant precision throughout the
-+ first bucket having >0 true positives.
-+
-+ # Returns
-+ pr_auc: an approximation of the area under the P-R curve.
-+ """
-+ dtp = self.true_positives[:self.num_thresholds -
-+ 1] - self.true_positives[1:]
-+ p = self.true_positives + self.false_positives
-+ dp = p[:self.num_thresholds - 1] - p[1:]
-+
-+ prec_slope = dtp / K.maximum(dp, 0)
-+ intercept = self.true_positives[1:] - (prec_slope * p[1:])
-+
-+ # Logical and
-+ pMin = K.expand_dims(p[:self.num_thresholds - 1] > 0, 0)
-+ pMax = K.expand_dims(p[1:] > 0, 0)
-+ are_different = K.concatenate([pMin, pMax], axis=0)
-+ switch_condition = K.all(are_different, axis=0)
-+
-+ safe_p_ratio = K.switch(
-+ switch_condition,
-+ p[:self.num_thresholds - 1] / K.maximum(p[1:], 0),
-+ K.ones_like(p[1:]))
-+
-+ numer = prec_slope * (dtp + intercept * K.log(safe_p_ratio))
-+ denom = K.maximum(self.true_positives[1:] + self.false_negatives[1:], 0)
-+ return K.sum((numer / denom))
-+
-+ def result(self):
-+ if (self.curve == metrics_utils.AUCCurve.PR and
-+ (self.summation_method ==
-+ metrics_utils.AUCSummationMethod.INTERPOLATION)):
-+ # This use case is different and is handled separately.
-+ return self.interpolate_pr_auc()
-+
-+ # Set `x` and `y` values for the curves based on `curve` config.
-+ recall = K.switch(
-+ K.greater((self.true_positives), 0),
-+ (self.true_positives /
-+ (self.true_positives + self.false_negatives)),
-+ K.zeros_like(self.true_positives))
-+ if self.curve == metrics_utils.AUCCurve.ROC:
-+ fp_rate = K.switch(
-+ K.greater((self.false_positives), 0),
-+ (self.false_positives /
-+ (self.false_positives + self.true_negatives)),
-+ K.zeros_like(self.false_positives))
-+ x = fp_rate
-+ y = recall
-+ else: # curve == 'PR'.
-+ precision = K.switch(
-+ K.greater((self.true_positives), 0),
-+ (self.true_positives / (self.true_positives + self.false_positives)),
-+ K.zeros_like(self.true_positives))
-+ x = recall
-+ y = precision
-+
-+ # Find the rectangle heights based on `summation_method`.
-+ if self.summation_method == metrics_utils.AUCSummationMethod.INTERPOLATION:
-+ # Note: the case ('PR', 'interpolation') has been handled above.
-+ heights = (y[:self.num_thresholds - 1] + y[1:]) / 2.
-+ elif self.summation_method == metrics_utils.AUCSummationMethod.MINORING:
-+ heights = K.minimum(y[:self.num_thresholds - 1], y[1:])
-+ else: # self.summation_method = metrics_utils.AUCSummationMethod.MAJORING:
-+ heights = K.maximum(y[:self.num_thresholds - 1], y[1:])
-+
-+ # Sum up the areas of all the rectangles.
-+ return K.sum((x[:self.num_thresholds - 1] - x[1:]) * heights)
-+
-+ def reset_states(self):
-+ K.batch_set_value(
-+ [(v, np.zeros((self.num_thresholds,))) for v in self.variables])
-+
-+ def get_config(self):
-+ config = {
-+ 'num_thresholds': self.num_thresholds,
-+ 'curve': self.curve.value,
-+ 'summation_method': self.summation_method.value,
-+ # We remove the endpoint thresholds as an inverse of how the thresholds
-+ # were initialized. This ensures that a metric initialized from this
-+ # config has the same thresholds.
-+ 'thresholds': self.thresholds[1:-1],
-+ }
-+ base_config = super(AUC, self).get_config()
-+ return dict(list(base_config.items()) + list(config.items()))
-+
-
- # Aliases
-
-diff --git a/keras/utils/__init__.py b/keras/utils/__init__.py
-index 8cc39d5..65af329 100644
---- a/keras/utils/__init__.py
-+++ b/keras/utils/__init__.py
-@@ -4,6 +4,8 @@ from . import generic_utils
- from . import data_utils
- from . import io_utils
- from . import conv_utils
-+from . import losses_utils
-+from . import metrics_utils
-
- # Globally-importable utils.
- from .io_utils import HDF5Matrix
-diff --git a/keras/utils/losses_utils.py b/keras/utils/losses_utils.py
-new file mode 100644
-index 0000000..617ebb7
---- /dev/null
-+++ b/keras/utils/losses_utils.py
-@@ -0,0 +1,177 @@
-+"""Utilities related to losses."""
-+from __future__ import absolute_import
-+from __future__ import division
-+from __future__ import print_function
-+
-+import numpy as np
-+
-+from .. import backend as K
-+
-+
-+class Reduction(object):
-+ """Types of loss reduction.
-+
-+ Contains the following values:
-+
-+ * `NONE`: Un-reduced weighted losses with the same shape as input. When this
-+ reduction type used with built-in Keras training loops like
-+ `fit`/`evaluate`, the unreduced vector loss is passed to the optimizer but
-+ the reported loss will be a scalar value.
-+ * `SUM`: Scalar sum of weighted losses.
-+ * `SUM_OVER_BATCH_SIZE`: Scalar `SUM` divided by number of elements in losses.
-+ """
-+
-+ NONE = 'none'
-+ SUM = 'sum'
-+ SUM_OVER_BATCH_SIZE = 'sum_over_batch_size'
-+
-+ @classmethod
-+ def all(cls):
-+ return (cls.NONE, cls.SUM, cls.SUM_OVER_BATCH_SIZE)
-+
-+ @classmethod
-+ def validate(cls, key):
-+ if key not in cls.all():
-+ raise ValueError('Invalid Reduction Key %s.' % key)
-+
-+
-+def squeeze_or_expand_dimensions(y_pred, y_true=None, sample_weight=None):
-+ """Squeeze or expand last dimension if needed.
-+
-+ 1. Squeezes last dim of `y_pred` or `y_true` if their rank differs by 1.
-+ 2. Squeezes or expands last dim of `sample_weight` if its rank differs by 1
-+ from the new rank of `y_pred`.
-+ If `sample_weight` is scalar, it is kept scalar.
-+
-+ # Arguments
-+ y_pred: Predicted values, a `Tensor` of arbitrary dimensions.
-+ y_true: Optional label `Tensor` whose dimensions match `y_pred`.
-+ sample_weight: Optional weight scalar or `Tensor` whose dimensions match
-+ `y_pred`.
-+
-+ # Returns
-+ Tuple of `y_pred`, `y_true` and `sample_weight`. Each of them possibly has
-+ the last dimension squeezed, `sample_weight` could be extended by one
-+ dimension.
-+ """
-+ if y_true is not None:
-+ y_pred_rank = K.ndim(y_pred)
-+ y_pred_shape = K.int_shape(y_pred)
-+ y_true_rank = K.ndim(y_true)
-+ y_true_shape = K.int_shape(y_true)
-+
-+ if (y_pred_rank - y_true_rank == 1) and (y_pred_shape[-1] == 1):
-+ y_pred = K.squeeze(y_pred, -1)
-+ elif (y_true_rank - y_pred_rank == 1) and (y_true_shape[-1] == 1):
-+ y_true = K.squeeze(y_true, -1)
-+
-+ if sample_weight is None:
-+ return y_pred, y_true
-+
-+ y_pred_rank = K.ndim(y_pred)
-+ weights_rank = K.ndim(sample_weight)
-+ if weights_rank != 0:
-+ if weights_rank - y_pred_rank == 1:
-+ sample_weight = K.squeeze(sample_weight, -1)
-+ elif y_pred_rank - weights_rank == 1:
-+ sample_weight = K.expand_dims(sample_weight, -1)
-+ return y_pred, y_true, sample_weight
-+
-+
-+def _num_elements(losses):
-+ """Computes the number of elements in `losses` tensor."""
-+ with K.name_scope('num_elements') as scope:
-+ return K.cast(K.size(losses, name=scope), losses.dtype)
-+
-+
-+def reduce_weighted_loss(weighted_losses, reduction=Reduction.SUM_OVER_BATCH_SIZE):
-+ """Reduces the individual weighted loss measurements."""
-+ if reduction == Reduction.NONE:
-+ loss = weighted_losses
-+ else:
-+ loss = K.sum(weighted_losses)
-+ if reduction == Reduction.SUM_OVER_BATCH_SIZE:
-+ loss = loss / _num_elements(weighted_losses)
-+ return loss
-+
-+
-+def broadcast_weights(values, sample_weight):
-+ # Broadcast weights if possible.
-+ weights_shape = K.int_shape(sample_weight)
-+ values_shape = K.int_shape(values)
-+
-+ if values_shape != weights_shape:
-+ weights_rank = K.ndim(sample_weight)
-+ values_rank = K.ndim(values)
-+
-+ # Raise error if ndim of weights is > values.
-+ if weights_rank > values_rank:
-+ raise ValueError(
-+ 'Incompatible shapes: `values` {} vs `sample_weight` {}'.format(
-+ values_shape, weights_shape))
-+
-+ # Expand dim of weights to match ndim of values, if required.
-+ for i in range(weights_rank, values_rank):
-+ sample_weight = K.expand_dims(sample_weight, axis=i)
-+
-+ if weights_shape is not None and values_shape is not None:
-+ for i in range(weights_rank):
-+ if (weights_shape[i] is not None and
-+ values_shape[i] is not None and
-+ weights_shape[i] != values_shape[i]):
-+ # Cannot be broadcasted.
-+ if weights_shape[i] != 1:
-+ raise ValueError(
-+ 'Incompatible shapes: `values` {} vs '
-+ '`sample_weight` {}'.format(
-+ values_shape, weights_shape))
-+ sample_weight = K.repeat_elements(
-+ sample_weight, values_shape[i], axis=i)
-+ return sample_weight
-+
-+
-+def compute_weighted_loss(losses,
-+ sample_weight=None,
-+ reduction=Reduction.SUM_OVER_BATCH_SIZE,
-+ name=None):
-+ """Computes the weighted loss.
-+
-+ # Arguments
-+ losses: `Tensor` of shape `[batch_size, d1, ... dN]`.
-+ sample_weight: Optional `Tensor` whose rank is either 0, or the same rank as
-+ ` losses`, or be broadcastable to `losses`.
-+ reduction: (Optional) Type of Reduction to apply to loss.
-+ Default value is `SUM_OVER_BATCH_SIZE`.
-+ name: Optional name for the op.
-+
-+ # Raises
-+ ValueError: If the shape of `sample_weight` is not compatible with `losses`.
-+
-+ # Returns
-+ Weighted loss `Tensor` of the same type as `losses`. If `reduction` is
-+ `NONE`, this has the same shape as `losses`; otherwise, it is scalar.
-+ """
-+ Reduction.validate(reduction)
-+ if sample_weight is None:
-+ sample_weight = 1.0
-+ with K.name_scope(name or 'weighted_loss'):
-+ input_dtype = K.dtype(losses)
-+ losses = K.cast(losses, K.floatx())
-+ sample_weight = K.cast(sample_weight, K.floatx())
-+
-+ # Update dimensions of `sample_weight` to match with `losses` if possible.
-+ losses, _, sample_weight = squeeze_or_expand_dimensions(
-+ losses, None, sample_weight)
-+
-+ # Broadcast weights if possible.
-+ sample_weight = broadcast_weights(losses, sample_weight)
-+
-+ # Apply weights to losses.
-+ weighted_losses = sample_weight * losses
-+
-+ # Apply reduction function to the individual weighted losses.
-+ loss = reduce_weighted_loss(weighted_losses, reduction)
-+ # Convert the result back to the input type.
-+ loss = K.cast(loss, input_dtype)
-+ return loss
-+
-diff --git a/keras/utils/metrics_utils.py b/keras/utils/metrics_utils.py
-new file mode 100644
-index 0000000..e6a5bb0
---- /dev/null
-+++ b/keras/utils/metrics_utils.py
-@@ -0,0 +1,278 @@
-+"""Utilities related to metrics."""
-+from __future__ import absolute_import
-+from __future__ import division
-+from __future__ import print_function
-+
-+from enum import Enum
-+
-+from .. import backend as K
-+from . import losses_utils
-+
-+NEG_INF = -1e10
-+
-+class Reduction(object):
-+ """Types of metrics reduction.
-+ Contains the following values:
-+ * `SUM`: Scalar sum of weighted values.
-+ * `SUM_OVER_BATCH_SIZE`: Scalar `SUM` of weighted values divided by
-+ number of elements in values.
-+ * `WEIGHTED_MEAN`: Scalar sum of weighted values divided by sum of weights.
-+ """
-+
-+ SUM = 'sum'
-+ SUM_OVER_BATCH_SIZE = 'sum_over_batch_size'
-+ WEIGHTED_MEAN = 'weighted_mean'
-+
-+
-+def update_state_wrapper(update_state_fn):
-+ """Decorator to wrap metric `update_state()` with `add_update()`.
-+ # Arguments
-+ update_state_fn: function that accumulates metric statistics.
-+ # Returns
-+ Decorated function that wraps `update_state_fn()` with `add_update()`.
-+ """
-+ def decorated(metric_obj, *args, **kwargs):
-+ """Decorated function with `add_update()`."""
-+
-+ update_op = update_state_fn(*args, **kwargs)
-+ metric_obj.add_update(update_op)
-+ return update_op
-+
-+ return decorated
-+
-+def result_wrapper(result_fn):
-+ """Decorator to wrap metric `result()` with identity op.
-+ Wrapping result in identity so that control dependency between
-+ update_op from `update_state` and result works in case result returns
-+ a tensor.
-+ # Arguments
-+ result_fn: function that computes the metric result.
-+ # Returns
-+ Decorated function that wraps `result()` with identity op.
-+ """
-+ def decorated(metric_obj, *args, **kwargs):
-+ result_t = K.identity(result_fn(*args, **kwargs))
-+ metric_obj._call_result = result_t
-+ result_t._is_metric = True
-+ return result_t
-+ return decorated
-+
-+
-+def to_list(x):
-+ if isinstance(x, list):
-+ return x
-+ return [x]
-+
-+
-+def assert_thresholds_range(thresholds):
-+ if thresholds is not None:
-+ invalid_thresholds = [t for t in thresholds if t is None or t < 0 or t > 1]
-+ if invalid_thresholds:
-+ raise ValueError(
-+ 'Threshold values must be in [0, 1]. Invalid values: {}'.format(
-+ invalid_thresholds))
-+
-+
-+def parse_init_thresholds(thresholds, default_threshold=0.5):
-+ if thresholds is not None:
-+ assert_thresholds_range(to_list(thresholds))
-+ thresholds = to_list(default_threshold if thresholds is None else thresholds)
-+ return thresholds
-+
-+class ConfusionMatrix(Enum):
-+ TRUE_POSITIVES = 'tp'
-+ FALSE_POSITIVES = 'fp'
-+ TRUE_NEGATIVES = 'tn'
-+ FALSE_NEGATIVES = 'fn'
-+
-+class AUCCurve(Enum):
-+ """Type of AUC Curve (ROC or PR)."""
-+ ROC = 'ROC'
-+ PR = 'PR'
-+
-+ @staticmethod
-+ def from_str(key):
-+ if key in ('pr', 'PR'):
-+ return AUCCurve.PR
-+ elif key in ('roc', 'ROC'):
-+ return AUCCurve.ROC
-+ else:
-+ raise ValueError('Invalid AUC curve value "%s".' % key)
-+
-+
-+class AUCSummationMethod(Enum):
-+ """Type of AUC summation method.
-+
-+ https://en.wikipedia.org/wiki/Riemann_sum)
-+
-+ Contains the following values:
-+ * 'interpolation': Applies mid-point summation scheme for `ROC` curve. For
-+ `PR` curve, interpolates (true/false) positives but not the ratio that is
-+ precision (see Davis & Goadrich 2006 for details).
-+ * 'minoring': Applies left summation for increasing intervals and right
-+ summation for decreasing intervals.
-+ * 'majoring': Applies right summation for increasing intervals and left
-+ summation for decreasing intervals.
-+ """
-+ INTERPOLATION = 'interpolation'
-+ MAJORING = 'majoring'
-+ MINORING = 'minoring'
-+
-+ @staticmethod
-+ def from_str(key):
-+ if key in ('interpolation', 'Interpolation'):
-+ return AUCSummationMethod.INTERPOLATION
-+ elif key in ('majoring', 'Majoring'):
-+ return AUCSummationMethod.MAJORING
-+ elif key in ('minoring', 'Minoring'):
-+ return AUCSummationMethod.MINORING
-+ else:
-+ raise ValueError('Invalid AUC summation method value "%s".' % key)
-+
-+def weighted_assign_add(label, pred, weights, var):
-+ # Logical and
-+ label = K.expand_dims(label, 0)
-+ pred = K.expand_dims(pred, 0)
-+ are_different = K.concatenate([label, pred], axis=0)
-+ label_and_pred = K.all(are_different, axis=0)
-+ label_and_pred = K.cast(label_and_pred, dtype=K.floatx())
-+ if weights is not None:
-+ label_and_pred *= weights
-+ return var.assign_add(K.sum(label_and_pred, 1))
-+
-+def update_confusion_matrix_variables(variables_to_update,
-+ y_true,
-+ y_pred,
-+ thresholds,
-+ top_k=None,
-+ class_id=None,
-+ sample_weight=None):
-+ """Returns op to update the given confusion matrix variables.
-+ For every pair of values in y_true and y_pred:
-+ true_positive: y_true == True and y_pred > thresholds
-+ false_negatives: y_true == True and y_pred <= thresholds
-+ true_negatives: y_true == False and y_pred <= thresholds
-+ false_positive: y_true == False and y_pred > thresholds
-+ The results will be weighted and added together. When multiple thresholds are
-+ provided, we will repeat the same for every threshold.
-+ For estimation of these metrics over a stream of data, the function creates an
-+ `update_op` operation that updates the given variables.
-+ If `sample_weight` is `None`, weights default to 1.
-+ Use weights of 0 to mask values.
-+ # Arguments
-+ variables_to_update: Dictionary with 'tp', 'fn', 'tn', 'fp' as valid keys
-+ and corresponding variables to update as values.
-+ y_true: A `Tensor` whose shape matches `y_pred`. Will be cast to `bool`.
-+ y_pred: A floating point `Tensor` of arbitrary shape and whose values are in
-+ the range `[0, 1]`.
-+ thresholds: A float value or a python list or tuple of float thresholds in
-+ `[0, 1]`, or NEG_INF (used when top_k is set).
-+ top_k: Optional int, indicates that the positive labels should be limited to
-+ the top k predictions.
-+ class_id: Optional int, limits the prediction and labels to the class
-+ specified by this argument.
-+ sample_weight: Optional `Tensor` whose rank is either 0, or the same rank as
-+ `y_true`, and must be broadcastable to `y_true` (i.e., all dimensions must
-+ be either `1`, or the same as the corresponding `y_true` dimension).
-+ # Returns
-+ Update ops.
-+ # Raises
-+ ValueError: If `y_pred` and `y_true` have mismatched shapes, or if
-+ `sample_weight` is not `None` and its shape doesn't match `y_pred`, or if
-+ `variables_to_update` contains invalid keys.
-+ """
-+ if variables_to_update is None:
-+ return
-+ y_true = K.cast(y_true, dtype=K.floatx())
-+ y_pred = K.cast(y_pred, dtype=K.floatx())
-+ if sample_weight is not None:
-+ sample_weight = K.cast(sample_weight, dtype=K.floatx())
-+
-+ if not any(key
-+ for key in variables_to_update
-+ if key in list(ConfusionMatrix)):
-+ raise ValueError(
-+ 'Please provide at least one valid confusion matrix '
-+ 'variable to update. Valid variable key options are: "{}". '
-+ 'Received: "{}"'.format(
-+ list(ConfusionMatrix), variables_to_update.keys()))
-+
-+ invalid_keys = [
-+ key for key in variables_to_update if key not in list(ConfusionMatrix)
-+ ]
-+ if invalid_keys:
-+ raise ValueError(
-+ 'Invalid keys: {}. Valid variable key options are: "{}"'.format(
-+ invalid_keys, list(ConfusionMatrix)))
-+
-+ if sample_weight is None:
-+ y_pred, y_true = losses_utils.squeeze_or_expand_dimensions(
-+ y_pred, y_true=y_true)
-+ else:
-+ y_pred, y_true, sample_weight = (
-+ losses_utils.squeeze_or_expand_dimensions(
-+ y_pred, y_true=y_true, sample_weight=sample_weight))
-+
-+ if top_k is not None:
-+ y_pred = _filter_top_k(y_pred, top_k)
-+ if class_id is not None:
-+ y_true = y_true[..., class_id]
-+ y_pred = y_pred[..., class_id]
-+
-+ thresholds = to_list(thresholds)
-+ num_thresholds = len(thresholds)
-+ num_predictions = K.size(y_pred)
-+
-+ # Reshape predictions and labels.
-+ predictions_2d = K.reshape(y_pred, [1, -1])
-+ labels_2d = K.reshape(
-+ K.cast(y_true, dtype='bool'), [1, -1])
-+
-+ # Tile the thresholds for every prediction.
-+ thresh_tiled = K.tile(
-+ K.expand_dims(K.constant(thresholds), 1),
-+ K.stack([1, num_predictions]))
-+
-+ # Tile the predictions for every threshold.
-+ preds_tiled = K.tile(predictions_2d, [num_thresholds, 1])
-+
-+ # Compare predictions and threshold.
-+ pred_is_pos = K.greater(preds_tiled, thresh_tiled)
-+ pred_is_neg = K.greater(thresh_tiled, preds_tiled)
-+
-+ # Tile labels by number of thresholds
-+ label_is_pos = K.tile(labels_2d, [num_thresholds, 1])
-+
-+ if sample_weight is not None:
-+ weights = losses_utils.broadcast_weights(
-+ y_pred, K.cast(sample_weight, dtype=K.floatx()))
-+ weights_tiled = K.tile(
-+ K.reshape(weights, [1, -1]), [num_thresholds, 1])
-+ else:
-+ weights_tiled = None
-+
-+ update_ops = []
-+ loop_vars = {
-+ ConfusionMatrix.TRUE_POSITIVES: (label_is_pos, pred_is_pos),
-+ }
-+ update_tn = ConfusionMatrix.TRUE_NEGATIVES in variables_to_update
-+ update_fp = ConfusionMatrix.FALSE_POSITIVES in variables_to_update
-+ update_fn = ConfusionMatrix.FALSE_NEGATIVES in variables_to_update
-+
-+ if update_fn or update_tn:
-+ loop_vars[ConfusionMatrix.FALSE_NEGATIVES] = (label_is_pos, pred_is_neg)
-+
-+ if update_fp or update_tn:
-+ label_is_neg = K.equal(
-+ label_is_pos, K.zeros_like(label_is_pos, dtype=label_is_pos.dtype))
-+ loop_vars[ConfusionMatrix.FALSE_POSITIVES] = (label_is_neg, pred_is_pos)
-+ if update_tn:
-+ loop_vars[ConfusionMatrix.TRUE_NEGATIVES] = (label_is_neg, pred_is_neg)
-+
-+ for matrix_cond, (label, pred) in loop_vars.items():
-+ if matrix_cond in variables_to_update:
-+ update_ops.append(
-+ weighted_assign_add(label, pred, weights_tiled,
-+ variables_to_update[matrix_cond]))
-+ return update_ops
-+
---
-2.26.2
-