diff options
author | pjotrp | 2020-05-06 09:16:01 -0500 |
---|---|---|
committer | pjotrp | 2020-05-06 09:16:01 -0500 |
commit | a26d7f7eacefcd4c3b2339f81d99218f4b36dc69 (patch) | |
tree | 1d6a1d6b8afea9d4bb935cc0a3911d3fe9771c3e /keras-auc-optimizer.patch | |
parent | 52ba4c45ddf6fcb811e88c5efb12dca200c0bd7e (diff) | |
parent | 5390e28c3308d0f9ce7ee2b96c9c4f31e3a7861b (diff) | |
download | guix-bioinformatics-a26d7f7eacefcd4c3b2339f81d99218f4b36dc69.tar.gz |
Merge branch 'master' of http://git.genenetwork.org/guix-bioinformatics/guix-bioinformatics
Diffstat (limited to 'keras-auc-optimizer.patch')
-rw-r--r-- | keras-auc-optimizer.patch | 1133 |
1 files changed, 1133 insertions, 0 deletions
diff --git a/keras-auc-optimizer.patch b/keras-auc-optimizer.patch new file mode 100644 index 0000000..bbc6924 --- /dev/null +++ b/keras-auc-optimizer.patch @@ -0,0 +1,1133 @@ +From 901159da45695da24a5206125910f02fc50169ce Mon Sep 17 00:00:00 2001 +From: Efraim Flashner <efraim@flashner.co.il> +Date: Thu, 23 Apr 2020 15:50:37 +0300 +Subject: [PATCH] add keras metrics + +--- + keras/backend/tensorflow_backend.py | 12 + + keras/metrics.py | 584 ++++++++++++++++++++++++++++ + keras/utils/__init__.py | 2 + + keras/utils/losses_utils.py | 177 +++++++++ + keras/utils/metrics_utils.py | 278 +++++++++++++ + 5 files changed, 1053 insertions(+) + create mode 100644 keras/utils/losses_utils.py + create mode 100644 keras/utils/metrics_utils.py + +diff --git a/keras/backend/tensorflow_backend.py b/keras/backend/tensorflow_backend.py +index bcb8be0..a2870f5 100644 +--- a/keras/backend/tensorflow_backend.py ++++ b/keras/backend/tensorflow_backend.py +@@ -4453,3 +4453,15 @@ def local_conv2d(inputs, kernel, kernel_size, strides, output_shape, data_format + else: + output = permute_dimensions(output, (2, 0, 1, 3)) + return output ++ ++#get_graph = tf_keras_backend.get_graph ++ ++#def is_symbolic(x): ++# return isinstance(x, tf.Tensor) and hasattr(x, 'op') ++ ++def size(x, name=None): ++# if is_symbolic(x): ++# with get_graph().as_default(): ++# return tf.size(x) ++ return tf.size(x, name=name) ++ +diff --git a/keras/metrics.py b/keras/metrics.py +index 8e3df1f..8f57910 100644 +--- a/keras/metrics.py ++++ b/keras/metrics.py +@@ -4,8 +4,12 @@ from __future__ import absolute_import + from __future__ import division + from __future__ import print_function + ++import abc + import six ++import types ++ + from . import backend as K ++from .engine.base_layer import Layer + from .losses import mean_squared_error + from .losses import mean_absolute_error + from .losses import mean_absolute_percentage_error +@@ -19,10 +23,201 @@ from .losses import binary_crossentropy + from .losses import kullback_leibler_divergence + from .losses import poisson + from .losses import cosine_proximity ++from .utils import losses_utils ++from .utils import metrics_utils + from .utils.generic_utils import deserialize_keras_object + from .utils.generic_utils import serialize_keras_object + + ++@six.add_metaclass(abc.ABCMeta) ++class Metric(Layer): ++ """Encapsulates metric logic and state. ++ ++ Standalone usage: ++ ```python ++ m = SomeMetric(...) ++ for input in ...: ++ m.update_state(input) ++ m.result() ++ ``` ++ ++ Usage with the `compile` API: ++ ```python ++ model.compile(optimizer='rmsprop', ++ loss=keras.losses.categorical_crossentropy, ++ metrics=[keras.metrics.CategoricalAccuracy()]) ++ ``` ++ ++ To be implemented by subclasses: ++ * `__init__()`: All state variables should be created in this method by ++ calling `self.add_weight()` like: `self.var = self.add_weight(...)` ++ * `update_state()`: Has all updates to the state variables like: ++ self.var.assign_add(...). ++ * `result()`: Computes and returns a value for the metric ++ from the state variables. ++ """ ++ ++ def __init__(self, name=None, dtype=None, **kwargs): ++ super(Metric, self).__init__(name=name, dtype=dtype, **kwargs) ++ self.stateful = True # All metric layers are stateful. ++ self.built = True ++ self.dtype = K.floatx() if dtype is None else dtype ++ ++ def __new__(cls, *args, **kwargs): ++ obj = super(Metric, cls).__new__(cls) ++ update_state_fn = obj.update_state ++ ++ obj.update_state = types.MethodType( ++ metrics_utils.update_state_wrapper(update_state_fn), obj) ++ return obj ++ ++ def __call__(self, *args, **kwargs): ++ """Accumulates statistics and then computes metric result value.""" ++ update_op = self.update_state(*args, **kwargs) ++ return self.result() ++ ++ def get_config(self): ++ """Returns the serializable config of the metric.""" ++ return {'name': self.name, 'dtype': self.dtype} ++ ++ def reset_states(self): ++ """Resets all of the metric state variables. ++ This function is called between epochs/steps, ++ when a metric is evaluated during training. ++ """ ++ K.batch_set_value([(v, 0) for v in self.weights]) ++ ++ @abc.abstractmethod ++ def update_state(self, *args, **kwargs): ++ """Accumulates statistics for the metric. """ ++ raise NotImplementedError('Must be implemented in subclasses.') ++ ++ @abc.abstractmethod ++ def result(self): ++ """Computes and returns the metric value tensor. ++ Result computation is an idempotent operation that simply calculates the ++ metric value using the state variables. ++ """ ++ raise NotImplementedError('Must be implemented in subclasses.') ++ ++ # For use by subclasses # ++ def add_weight(self, ++ name, ++ shape=(), ++ initializer=None, ++ dtype=None): ++ """Adds state variable. Only for use by subclasses.""" ++ return super(Metric, self).add_weight( ++ name=name, ++ shape=shape, ++ dtype=self.dtype if dtype is None else dtype, ++ trainable=False, ++ initializer=initializer) ++ ++ # End: For use by subclasses ### ++ ++ ++class Reduce(Metric): ++ """Encapsulates metrics that perform a reduce operation on the values.""" ++ ++ def __init__(self, reduction, name, dtype=None): ++ """Creates a `Reduce` instance. ++ # Arguments ++ reduction: a metrics `Reduction` enum value. ++ name: string name of the metric instance. ++ dtype: (Optional) data type of the metric result. ++ """ ++ super(Reduce, self).__init__(name=name, dtype=dtype) ++ self.reduction = reduction ++ self.total = self.add_weight('total', initializer='zeros') ++ if reduction in [metrics_utils.Reduction.SUM_OVER_BATCH_SIZE, ++ metrics_utils.Reduction.WEIGHTED_MEAN]: ++ self.count = self.add_weight('count', initializer='zeros') ++ ++ def update_state(self, values, sample_weight=None): ++ """Accumulates statistics for computing the reduction metric. ++ For example, if `values` is [1, 3, 5, 7] and reduction=SUM_OVER_BATCH_SIZE, ++ then the value of `result()` is 4. If the `sample_weight` is specified as ++ [1, 1, 0, 0] then value of `result()` would be 2. ++ # Arguments ++ values: Per-example value. ++ sample_weight: Optional weighting of each example. Defaults to 1. ++ """ ++ values = K.cast(values, self.dtype) ++ if sample_weight is not None: ++ sample_weight = K.cast(sample_weight, self.dtype) ++ # Update dimensions of weights to match with values if possible. ++ values, _, sample_weight = losses_utils.squeeze_or_expand_dimensions( ++ values, sample_weight=sample_weight) ++ ++ # Broadcast weights if possible. ++ sample_weight = losses_utils.broadcast_weights(sample_weight, values) ++ values = values * sample_weight ++ ++ value_sum = K.sum(values) ++ update_total_op = K.update_add(self.total, value_sum) ++ ++ # Exit early if the reduction doesn't have a denominator. ++ if self.reduction == metrics_utils.Reduction.SUM: ++ return update_total_op ++ ++ # Update `count` for reductions that require a denominator. ++ if self.reduction == metrics_utils.Reduction.SUM_OVER_BATCH_SIZE: ++ num_values = K.cast(K.size(values), self.dtype) ++ elif self.reduction == metrics_utils.Reduction.WEIGHTED_MEAN: ++ if sample_weight is None: ++ num_values = K.cast(K.size(values), self.dtype) ++ else: ++ num_values = K.sum(sample_weight) ++ else: ++ raise NotImplementedError( ++ 'reduction [%s] not implemented' % self.reduction) ++ ++ with K.control_dependencies([update_total_op]): ++ return K.update_add(self.count, num_values) ++ ++ def result(self): ++ if self.reduction == metrics_utils.Reduction.SUM: ++ return self.total ++ elif self.reduction in [ ++ metrics_utils.Reduction.WEIGHTED_MEAN, ++ metrics_utils.Reduction.SUM_OVER_BATCH_SIZE ++ ]: ++ return self.total / self.count ++ else: ++ raise NotImplementedError( ++ 'reduction [%s] not implemented' % self.reduction) ++ ++ ++class Sum(Reduce): ++ """Computes the (weighted) sum of the given values. ++ ++ For example, if values is [1, 3, 5, 7] then the sum is 16. ++ If the weights were specified as [1, 1, 0, 0] then the sum would be 4. ++ ++ This metric creates one variable, `total`, that is used to compute the sum of ++ `values`. This is ultimately returned as `sum`. ++ If `sample_weight` is `None`, weights default to 1. Use `sample_weight` of 0 ++ to mask values. ++ ++ Standalone usage: ++ ```python ++ m = keras.metrics.Sum() ++ m.update_state([1, 3, 5, 7]) ++ m.result() ++ ``` ++ """ ++ ++ def __init__(self, name='sum', dtype=None): ++ """Creates a `Sum` instance. ++ # Arguments ++ name: (Optional) string name of the metric instance. ++ dtype: (Optional) data type of the metric result. ++ """ ++ super(Sum, self).__init__(reduction=metrics_utils.Reduction.SUM, ++ name=name, dtype=dtype) ++ ++ + def binary_accuracy(y_true, y_pred): + return K.mean(K.equal(y_true, K.round(y_pred)), axis=-1) + +@@ -49,6 +244,395 @@ def sparse_top_k_categorical_accuracy(y_true, y_pred, k=5): + return K.mean(K.in_top_k(y_pred, K.cast(K.flatten(y_true), 'int32'), k), + axis=-1) + ++class SensitivitySpecificityBase(Metric): ++ """Abstract base class for computing sensitivity and specificity. ++ ++ For additional information about specificity and sensitivity, see the ++ following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity ++ """ ++ ++ def __init__(self, value, num_thresholds=200, name=None, dtype=None): ++ super(SensitivitySpecificityBase, self).__init__(name=name, dtype=dtype) ++ if num_thresholds <= 0: ++ raise ValueError('`num_thresholds` must be > 0.') ++ self.value = value ++ self.true_positives = self.add_weight( ++ 'true_positives', ++ shape=(num_thresholds,), ++ initializer='zeros') ++ self.true_negatives = self.add_weight( ++ 'true_negatives', ++ shape=(num_thresholds,), ++ initializer='zeros') ++ self.false_positives = self.add_weight( ++ 'false_positives', ++ shape=(num_thresholds,), ++ initializer='zeros') ++ self.false_negatives = self.add_weight( ++ 'false_negatives', ++ shape=(num_thresholds,), ++ initializer='zeros') ++ ++ # Compute `num_thresholds` thresholds in [0, 1] ++ if num_thresholds == 1: ++ self.thresholds = [0.5] ++ else: ++ thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) ++ for i in range(num_thresholds - 2)] ++ self.thresholds = [0.0] + thresholds + [1.0] ++ ++ def update_state(self, y_true, y_pred, sample_weight=None): ++ return metrics_utils.update_confusion_matrix_variables( ++ { ++ metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives, ++ metrics_utils.ConfusionMatrix.TRUE_NEGATIVES: self.true_negatives, ++ metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives, ++ metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives, ++ }, ++ y_true, ++ y_pred, ++ thresholds=self.thresholds, ++ sample_weight=sample_weight) ++ ++ def reset_states(self): ++ num_thresholds = len(self.thresholds) ++ K.batch_set_value( ++ [(v, np.zeros((num_thresholds,))) for v in self.variables]) ++ ++ ++class SensitivityAtSpecificity(SensitivitySpecificityBase): ++ """Computes the sensitivity at a given specificity. ++ ++ `Sensitivity` measures the proportion of actual positives that are correctly ++ identified as such (tp / (tp + fn)). ++ `Specificity` measures the proportion of actual negatives that are correctly ++ identified as such (tn / (tn + fp)). ++ ++ This metric creates four local variables, `true_positives`, `true_negatives`, ++ `false_positives` and `false_negatives` that are used to compute the ++ sensitivity at the given specificity. The threshold for the given specificity ++ value is computed and used to evaluate the corresponding sensitivity. ++ ++ If `sample_weight` is `None`, weights default to 1. ++ Use `sample_weight` of 0 to mask values. ++ ++ For additional information about specificity and sensitivity, see the ++ following: https://en.wikipedia.org/wiki/Sensitivity_and_specificity ++ ++ Usage with the compile API: ++ ++ ```python ++ model = keras.Model(inputs, outputs) ++ model.compile( ++ 'sgd', ++ loss='mse', ++ metrics=[keras.metrics.SensitivityAtSpecificity()]) ++ ``` ++ ++ # Arguments ++ specificity: A scalar value in range `[0, 1]`. ++ num_thresholds: (Optional) Defaults to 200. The number of thresholds to ++ use for matching the given specificity. ++ name: (Optional) string name of the metric instance. ++ dtype: (Optional) data type of the metric result. ++ """ ++ ++ def __init__(self, specificity, num_thresholds=200, name=None, dtype=None): ++ if specificity < 0 or specificity > 1: ++ raise ValueError('`specificity` must be in the range [0, 1].') ++ self.specificity = specificity ++ self.num_thresholds = num_thresholds ++ super(SensitivityAtSpecificity, self).__init__( ++ specificity, num_thresholds=num_thresholds, name=name, dtype=dtype) ++ ++ def result(self): ++ # Calculate specificities at all the thresholds. ++ specificities = K.switch( ++ K.greater(self.true_negatives + self.false_positives, 0), ++ (self.true_negatives / (self.true_negatives + self.false_positives)), ++ K.zeros_like(self.thresholds)) ++ ++ # Find the index of the threshold where the specificity is closest to the ++ # given specificity. ++ min_index = K.argmin( ++ K.abs(specificities - self.value), axis=0) ++ min_index = K.cast(min_index, 'int32') ++ ++ # Compute sensitivity at that index. ++ return K.switch( ++ K.greater((self.true_positives[min_index] + ++ self.false_negatives[min_index]), 0), ++ (self.true_positives[min_index] / ++ (self.true_positives[min_index] + self.false_negatives[min_index])), ++ K.zeros_like(self.true_positives[min_index])) ++ ++ def get_config(self): ++ config = { ++ 'num_thresholds': self.num_thresholds, ++ 'specificity': self.specificity ++ } ++ base_config = super(SensitivityAtSpecificity, self).get_config() ++ return dict(list(base_config.items()) + list(config.items())) ++ ++ ++class AUC(Metric): ++ """Computes the approximate AUC (Area under the curve) via a Riemann sum. ++ ++ This metric creates four local variables, `true_positives`, `true_negatives`, ++ `false_positives` and `false_negatives` that are used to compute the AUC. ++ To discretize the AUC curve, a linearly spaced set of thresholds is used to ++ compute pairs of recall and precision values. The area under the ROC-curve is ++ therefore computed using the height of the recall values by the false positive ++ rate, while the area under the PR-curve is the computed using the height of ++ the precision values by the recall. ++ ++ This value is ultimately returned as `auc`, an idempotent operation that ++ computes the area under a discretized curve of precision versus recall values ++ (computed using the aforementioned variables). The `num_thresholds` variable ++ controls the degree of discretization with larger numbers of thresholds more ++ closely approximating the true AUC. The quality of the approximation may vary ++ dramatically depending on `num_thresholds`. The `thresholds` parameter can be ++ used to manually specify thresholds which split the predictions more evenly. ++ ++ For best results, `predictions` should be distributed approximately uniformly ++ in the range [0, 1] and not peaked around 0 or 1. The quality of the AUC ++ approximation may be poor if this is not the case. Setting `summation_method` ++ to 'minoring' or 'majoring' can help quantify the error in the approximation ++ by providing lower or upper bound estimate of the AUC. ++ ++ If `sample_weight` is `None`, weights default to 1. ++ Use `sample_weight` of 0 to mask values. ++ ++ Usage with the compile API: ++ ++ ```python ++ model = keras.Model(inputs, outputs) ++ model.compile('sgd', loss='mse', metrics=[keras.metrics.AUC()]) ++ ``` ++ ++ # Arguments ++ num_thresholds: (Optional) Defaults to 200. The number of thresholds to ++ use when discretizing the roc curve. Values must be > 1. ++ curve: (Optional) Specifies the name of the curve to be computed, 'ROC' ++ [default] or 'PR' for the Precision-Recall-curve. ++ summation_method: (Optional) Specifies the Riemann summation method used ++ (https://en.wikipedia.org/wiki/Riemann_sum): 'interpolation' [default], ++ applies mid-point summation scheme for `ROC`. For PR-AUC, interpolates ++ (true/false) positives but not the ratio that is precision (see Davis ++ & Goadrich 2006 for details); 'minoring' that applies left summation ++ for increasing intervals and right summation for decreasing intervals; ++ 'majoring' that does the opposite. ++ name: (Optional) string name of the metric instance. ++ dtype: (Optional) data type of the metric result. ++ thresholds: (Optional) A list of floating point values to use as the ++ thresholds for discretizing the curve. If set, the `num_thresholds` ++ parameter is ignored. Values should be in [0, 1]. Endpoint thresholds ++ equal to {-epsilon, 1+epsilon} for a small positive epsilon value will ++ be automatically included with these to correctly handle predictions ++ equal to exactly 0 or 1. ++ """ ++ ++ def __init__(self, ++ num_thresholds=200, ++ curve='ROC', ++ summation_method='interpolation', ++ name=None, ++ dtype=None, ++ thresholds=None): ++ # Validate configurations. ++ if (isinstance(curve, metrics_utils.AUCCurve) and ++ curve not in list(metrics_utils.AUCCurve)): ++ raise ValueError('Invalid curve: "{}". Valid options are: "{}"'.format( ++ curve, list(metrics_utils.AUCCurve))) ++ if isinstance( ++ summation_method, ++ metrics_utils.AUCSummationMethod) and summation_method not in list( ++ metrics_utils.AUCSummationMethod): ++ raise ValueError( ++ 'Invalid summation method: "{}". Valid options are: "{}"'.format( ++ summation_method, list(metrics_utils.AUCSummationMethod))) ++ ++ # Update properties. ++ if thresholds is not None: ++ # If specified, use the supplied thresholds. ++ self.num_thresholds = len(thresholds) + 2 ++ thresholds = sorted(thresholds) ++ else: ++ if num_thresholds <= 1: ++ raise ValueError('`num_thresholds` must be > 1.') ++ ++ # Otherwise, linearly interpolate (num_thresholds - 2) thresholds in ++ # (0, 1). ++ self.num_thresholds = num_thresholds ++ thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) ++ for i in range(num_thresholds - 2)] ++ ++ # Add an endpoint "threshold" below zero and above one for either ++ # threshold method to account for floating point imprecisions. ++ self.thresholds = [0.0 - K.epsilon()] + thresholds + [1.0 + K.epsilon()] ++ ++ if isinstance(curve, metrics_utils.AUCCurve): ++ self.curve = curve ++ else: ++ self.curve = metrics_utils.AUCCurve.from_str(curve) ++ if isinstance(summation_method, metrics_utils.AUCSummationMethod): ++ self.summation_method = summation_method ++ else: ++ self.summation_method = metrics_utils.AUCSummationMethod.from_str( ++ summation_method) ++ super(AUC, self).__init__(name=name, dtype=dtype) ++ ++ # Create metric variables ++ self.true_positives = self.add_weight( ++ 'true_positives', ++ shape=(self.num_thresholds,), ++ initializer='zeros') ++ self.true_negatives = self.add_weight( ++ 'true_negatives', ++ shape=(self.num_thresholds,), ++ initializer='zeros') ++ self.false_positives = self.add_weight( ++ 'false_positives', ++ shape=(self.num_thresholds,), ++ initializer='zeros') ++ self.false_negatives = self.add_weight( ++ 'false_negatives', ++ shape=(self.num_thresholds,), ++ initializer='zeros') ++ ++ def update_state(self, y_true, y_pred, sample_weight=None): ++ return metrics_utils.update_confusion_matrix_variables({ ++ metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives, ++ metrics_utils.ConfusionMatrix.TRUE_NEGATIVES: self.true_negatives, ++ metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives, ++ metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives, ++ }, y_true, y_pred, self.thresholds, sample_weight=sample_weight) ++ ++ def interpolate_pr_auc(self): ++ """Interpolation formula inspired by section 4 of Davis & Goadrich 2006. ++ ++ https://www.biostat.wisc.edu/~page/rocpr.pdf ++ ++ Note here we derive & use a closed formula not present in the paper ++ as follows: ++ ++ Precision = TP / (TP + FP) = TP / P ++ ++ Modeling all of TP (true positive), FP (false positive) and their sum ++ P = TP + FP (predicted positive) as varying linearly within each interval ++ [A, B] between successive thresholds, we get ++ ++ Precision slope = dTP / dP ++ = (TP_B - TP_A) / (P_B - P_A) ++ = (TP - TP_A) / (P - P_A) ++ Precision = (TP_A + slope * (P - P_A)) / P ++ ++ The area within the interval is (slope / total_pos_weight) times ++ ++ int_A^B{Precision.dP} = int_A^B{(TP_A + slope * (P - P_A)) * dP / P} ++ int_A^B{Precision.dP} = int_A^B{slope * dP + intercept * dP / P} ++ ++ where intercept = TP_A - slope * P_A = TP_B - slope * P_B, resulting in ++ ++ int_A^B{Precision.dP} = TP_B - TP_A + intercept * log(P_B / P_A) ++ ++ Bringing back the factor (slope / total_pos_weight) we'd put aside, we get ++ ++ slope * [dTP + intercept * log(P_B / P_A)] / total_pos_weight ++ ++ where dTP == TP_B - TP_A. ++ ++ Note that when P_A == 0 the above calculation simplifies into ++ ++ int_A^B{Precision.dTP} = int_A^B{slope * dTP} = slope * (TP_B - TP_A) ++ ++ which is really equivalent to imputing constant precision throughout the ++ first bucket having >0 true positives. ++ ++ # Returns ++ pr_auc: an approximation of the area under the P-R curve. ++ """ ++ dtp = self.true_positives[:self.num_thresholds - ++ 1] - self.true_positives[1:] ++ p = self.true_positives + self.false_positives ++ dp = p[:self.num_thresholds - 1] - p[1:] ++ ++ prec_slope = dtp / K.maximum(dp, 0) ++ intercept = self.true_positives[1:] - (prec_slope * p[1:]) ++ ++ # Logical and ++ pMin = K.expand_dims(p[:self.num_thresholds - 1] > 0, 0) ++ pMax = K.expand_dims(p[1:] > 0, 0) ++ are_different = K.concatenate([pMin, pMax], axis=0) ++ switch_condition = K.all(are_different, axis=0) ++ ++ safe_p_ratio = K.switch( ++ switch_condition, ++ p[:self.num_thresholds - 1] / K.maximum(p[1:], 0), ++ K.ones_like(p[1:])) ++ ++ numer = prec_slope * (dtp + intercept * K.log(safe_p_ratio)) ++ denom = K.maximum(self.true_positives[1:] + self.false_negatives[1:], 0) ++ return K.sum((numer / denom)) ++ ++ def result(self): ++ if (self.curve == metrics_utils.AUCCurve.PR and ++ (self.summation_method == ++ metrics_utils.AUCSummationMethod.INTERPOLATION)): ++ # This use case is different and is handled separately. ++ return self.interpolate_pr_auc() ++ ++ # Set `x` and `y` values for the curves based on `curve` config. ++ recall = K.switch( ++ K.greater((self.true_positives), 0), ++ (self.true_positives / ++ (self.true_positives + self.false_negatives)), ++ K.zeros_like(self.true_positives)) ++ if self.curve == metrics_utils.AUCCurve.ROC: ++ fp_rate = K.switch( ++ K.greater((self.false_positives), 0), ++ (self.false_positives / ++ (self.false_positives + self.true_negatives)), ++ K.zeros_like(self.false_positives)) ++ x = fp_rate ++ y = recall ++ else: # curve == 'PR'. ++ precision = K.switch( ++ K.greater((self.true_positives), 0), ++ (self.true_positives / (self.true_positives + self.false_positives)), ++ K.zeros_like(self.true_positives)) ++ x = recall ++ y = precision ++ ++ # Find the rectangle heights based on `summation_method`. ++ if self.summation_method == metrics_utils.AUCSummationMethod.INTERPOLATION: ++ # Note: the case ('PR', 'interpolation') has been handled above. ++ heights = (y[:self.num_thresholds - 1] + y[1:]) / 2. ++ elif self.summation_method == metrics_utils.AUCSummationMethod.MINORING: ++ heights = K.minimum(y[:self.num_thresholds - 1], y[1:]) ++ else: # self.summation_method = metrics_utils.AUCSummationMethod.MAJORING: ++ heights = K.maximum(y[:self.num_thresholds - 1], y[1:]) ++ ++ # Sum up the areas of all the rectangles. ++ return K.sum((x[:self.num_thresholds - 1] - x[1:]) * heights) ++ ++ def reset_states(self): ++ K.batch_set_value( ++ [(v, np.zeros((self.num_thresholds,))) for v in self.variables]) ++ ++ def get_config(self): ++ config = { ++ 'num_thresholds': self.num_thresholds, ++ 'curve': self.curve.value, ++ 'summation_method': self.summation_method.value, ++ # We remove the endpoint thresholds as an inverse of how the thresholds ++ # were initialized. This ensures that a metric initialized from this ++ # config has the same thresholds. ++ 'thresholds': self.thresholds[1:-1], ++ } ++ base_config = super(AUC, self).get_config() ++ return dict(list(base_config.items()) + list(config.items())) ++ + + # Aliases + +diff --git a/keras/utils/__init__.py b/keras/utils/__init__.py +index 8cc39d5..65af329 100644 +--- a/keras/utils/__init__.py ++++ b/keras/utils/__init__.py +@@ -4,6 +4,8 @@ from . import generic_utils + from . import data_utils + from . import io_utils + from . import conv_utils ++from . import losses_utils ++from . import metrics_utils + + # Globally-importable utils. + from .io_utils import HDF5Matrix +diff --git a/keras/utils/losses_utils.py b/keras/utils/losses_utils.py +new file mode 100644 +index 0000000..617ebb7 +--- /dev/null ++++ b/keras/utils/losses_utils.py +@@ -0,0 +1,177 @@ ++"""Utilities related to losses.""" ++from __future__ import absolute_import ++from __future__ import division ++from __future__ import print_function ++ ++import numpy as np ++ ++from .. import backend as K ++ ++ ++class Reduction(object): ++ """Types of loss reduction. ++ ++ Contains the following values: ++ ++ * `NONE`: Un-reduced weighted losses with the same shape as input. When this ++ reduction type used with built-in Keras training loops like ++ `fit`/`evaluate`, the unreduced vector loss is passed to the optimizer but ++ the reported loss will be a scalar value. ++ * `SUM`: Scalar sum of weighted losses. ++ * `SUM_OVER_BATCH_SIZE`: Scalar `SUM` divided by number of elements in losses. ++ """ ++ ++ NONE = 'none' ++ SUM = 'sum' ++ SUM_OVER_BATCH_SIZE = 'sum_over_batch_size' ++ ++ @classmethod ++ def all(cls): ++ return (cls.NONE, cls.SUM, cls.SUM_OVER_BATCH_SIZE) ++ ++ @classmethod ++ def validate(cls, key): ++ if key not in cls.all(): ++ raise ValueError('Invalid Reduction Key %s.' % key) ++ ++ ++def squeeze_or_expand_dimensions(y_pred, y_true=None, sample_weight=None): ++ """Squeeze or expand last dimension if needed. ++ ++ 1. Squeezes last dim of `y_pred` or `y_true` if their rank differs by 1. ++ 2. Squeezes or expands last dim of `sample_weight` if its rank differs by 1 ++ from the new rank of `y_pred`. ++ If `sample_weight` is scalar, it is kept scalar. ++ ++ # Arguments ++ y_pred: Predicted values, a `Tensor` of arbitrary dimensions. ++ y_true: Optional label `Tensor` whose dimensions match `y_pred`. ++ sample_weight: Optional weight scalar or `Tensor` whose dimensions match ++ `y_pred`. ++ ++ # Returns ++ Tuple of `y_pred`, `y_true` and `sample_weight`. Each of them possibly has ++ the last dimension squeezed, `sample_weight` could be extended by one ++ dimension. ++ """ ++ if y_true is not None: ++ y_pred_rank = K.ndim(y_pred) ++ y_pred_shape = K.int_shape(y_pred) ++ y_true_rank = K.ndim(y_true) ++ y_true_shape = K.int_shape(y_true) ++ ++ if (y_pred_rank - y_true_rank == 1) and (y_pred_shape[-1] == 1): ++ y_pred = K.squeeze(y_pred, -1) ++ elif (y_true_rank - y_pred_rank == 1) and (y_true_shape[-1] == 1): ++ y_true = K.squeeze(y_true, -1) ++ ++ if sample_weight is None: ++ return y_pred, y_true ++ ++ y_pred_rank = K.ndim(y_pred) ++ weights_rank = K.ndim(sample_weight) ++ if weights_rank != 0: ++ if weights_rank - y_pred_rank == 1: ++ sample_weight = K.squeeze(sample_weight, -1) ++ elif y_pred_rank - weights_rank == 1: ++ sample_weight = K.expand_dims(sample_weight, -1) ++ return y_pred, y_true, sample_weight ++ ++ ++def _num_elements(losses): ++ """Computes the number of elements in `losses` tensor.""" ++ with K.name_scope('num_elements') as scope: ++ return K.cast(K.size(losses, name=scope), losses.dtype) ++ ++ ++def reduce_weighted_loss(weighted_losses, reduction=Reduction.SUM_OVER_BATCH_SIZE): ++ """Reduces the individual weighted loss measurements.""" ++ if reduction == Reduction.NONE: ++ loss = weighted_losses ++ else: ++ loss = K.sum(weighted_losses) ++ if reduction == Reduction.SUM_OVER_BATCH_SIZE: ++ loss = loss / _num_elements(weighted_losses) ++ return loss ++ ++ ++def broadcast_weights(values, sample_weight): ++ # Broadcast weights if possible. ++ weights_shape = K.int_shape(sample_weight) ++ values_shape = K.int_shape(values) ++ ++ if values_shape != weights_shape: ++ weights_rank = K.ndim(sample_weight) ++ values_rank = K.ndim(values) ++ ++ # Raise error if ndim of weights is > values. ++ if weights_rank > values_rank: ++ raise ValueError( ++ 'Incompatible shapes: `values` {} vs `sample_weight` {}'.format( ++ values_shape, weights_shape)) ++ ++ # Expand dim of weights to match ndim of values, if required. ++ for i in range(weights_rank, values_rank): ++ sample_weight = K.expand_dims(sample_weight, axis=i) ++ ++ if weights_shape is not None and values_shape is not None: ++ for i in range(weights_rank): ++ if (weights_shape[i] is not None and ++ values_shape[i] is not None and ++ weights_shape[i] != values_shape[i]): ++ # Cannot be broadcasted. ++ if weights_shape[i] != 1: ++ raise ValueError( ++ 'Incompatible shapes: `values` {} vs ' ++ '`sample_weight` {}'.format( ++ values_shape, weights_shape)) ++ sample_weight = K.repeat_elements( ++ sample_weight, values_shape[i], axis=i) ++ return sample_weight ++ ++ ++def compute_weighted_loss(losses, ++ sample_weight=None, ++ reduction=Reduction.SUM_OVER_BATCH_SIZE, ++ name=None): ++ """Computes the weighted loss. ++ ++ # Arguments ++ losses: `Tensor` of shape `[batch_size, d1, ... dN]`. ++ sample_weight: Optional `Tensor` whose rank is either 0, or the same rank as ++ ` losses`, or be broadcastable to `losses`. ++ reduction: (Optional) Type of Reduction to apply to loss. ++ Default value is `SUM_OVER_BATCH_SIZE`. ++ name: Optional name for the op. ++ ++ # Raises ++ ValueError: If the shape of `sample_weight` is not compatible with `losses`. ++ ++ # Returns ++ Weighted loss `Tensor` of the same type as `losses`. If `reduction` is ++ `NONE`, this has the same shape as `losses`; otherwise, it is scalar. ++ """ ++ Reduction.validate(reduction) ++ if sample_weight is None: ++ sample_weight = 1.0 ++ with K.name_scope(name or 'weighted_loss'): ++ input_dtype = K.dtype(losses) ++ losses = K.cast(losses, K.floatx()) ++ sample_weight = K.cast(sample_weight, K.floatx()) ++ ++ # Update dimensions of `sample_weight` to match with `losses` if possible. ++ losses, _, sample_weight = squeeze_or_expand_dimensions( ++ losses, None, sample_weight) ++ ++ # Broadcast weights if possible. ++ sample_weight = broadcast_weights(losses, sample_weight) ++ ++ # Apply weights to losses. ++ weighted_losses = sample_weight * losses ++ ++ # Apply reduction function to the individual weighted losses. ++ loss = reduce_weighted_loss(weighted_losses, reduction) ++ # Convert the result back to the input type. ++ loss = K.cast(loss, input_dtype) ++ return loss ++ +diff --git a/keras/utils/metrics_utils.py b/keras/utils/metrics_utils.py +new file mode 100644 +index 0000000..e6a5bb0 +--- /dev/null ++++ b/keras/utils/metrics_utils.py +@@ -0,0 +1,278 @@ ++"""Utilities related to metrics.""" ++from __future__ import absolute_import ++from __future__ import division ++from __future__ import print_function ++ ++from enum import Enum ++ ++from .. import backend as K ++from . import losses_utils ++ ++NEG_INF = -1e10 ++ ++class Reduction(object): ++ """Types of metrics reduction. ++ Contains the following values: ++ * `SUM`: Scalar sum of weighted values. ++ * `SUM_OVER_BATCH_SIZE`: Scalar `SUM` of weighted values divided by ++ number of elements in values. ++ * `WEIGHTED_MEAN`: Scalar sum of weighted values divided by sum of weights. ++ """ ++ ++ SUM = 'sum' ++ SUM_OVER_BATCH_SIZE = 'sum_over_batch_size' ++ WEIGHTED_MEAN = 'weighted_mean' ++ ++ ++def update_state_wrapper(update_state_fn): ++ """Decorator to wrap metric `update_state()` with `add_update()`. ++ # Arguments ++ update_state_fn: function that accumulates metric statistics. ++ # Returns ++ Decorated function that wraps `update_state_fn()` with `add_update()`. ++ """ ++ def decorated(metric_obj, *args, **kwargs): ++ """Decorated function with `add_update()`.""" ++ ++ update_op = update_state_fn(*args, **kwargs) ++ metric_obj.add_update(update_op) ++ return update_op ++ ++ return decorated ++ ++def result_wrapper(result_fn): ++ """Decorator to wrap metric `result()` with identity op. ++ Wrapping result in identity so that control dependency between ++ update_op from `update_state` and result works in case result returns ++ a tensor. ++ # Arguments ++ result_fn: function that computes the metric result. ++ # Returns ++ Decorated function that wraps `result()` with identity op. ++ """ ++ def decorated(metric_obj, *args, **kwargs): ++ result_t = K.identity(result_fn(*args, **kwargs)) ++ metric_obj._call_result = result_t ++ result_t._is_metric = True ++ return result_t ++ return decorated ++ ++ ++def to_list(x): ++ if isinstance(x, list): ++ return x ++ return [x] ++ ++ ++def assert_thresholds_range(thresholds): ++ if thresholds is not None: ++ invalid_thresholds = [t for t in thresholds if t is None or t < 0 or t > 1] ++ if invalid_thresholds: ++ raise ValueError( ++ 'Threshold values must be in [0, 1]. Invalid values: {}'.format( ++ invalid_thresholds)) ++ ++ ++def parse_init_thresholds(thresholds, default_threshold=0.5): ++ if thresholds is not None: ++ assert_thresholds_range(to_list(thresholds)) ++ thresholds = to_list(default_threshold if thresholds is None else thresholds) ++ return thresholds ++ ++class ConfusionMatrix(Enum): ++ TRUE_POSITIVES = 'tp' ++ FALSE_POSITIVES = 'fp' ++ TRUE_NEGATIVES = 'tn' ++ FALSE_NEGATIVES = 'fn' ++ ++class AUCCurve(Enum): ++ """Type of AUC Curve (ROC or PR).""" ++ ROC = 'ROC' ++ PR = 'PR' ++ ++ @staticmethod ++ def from_str(key): ++ if key in ('pr', 'PR'): ++ return AUCCurve.PR ++ elif key in ('roc', 'ROC'): ++ return AUCCurve.ROC ++ else: ++ raise ValueError('Invalid AUC curve value "%s".' % key) ++ ++ ++class AUCSummationMethod(Enum): ++ """Type of AUC summation method. ++ ++ https://en.wikipedia.org/wiki/Riemann_sum) ++ ++ Contains the following values: ++ * 'interpolation': Applies mid-point summation scheme for `ROC` curve. For ++ `PR` curve, interpolates (true/false) positives but not the ratio that is ++ precision (see Davis & Goadrich 2006 for details). ++ * 'minoring': Applies left summation for increasing intervals and right ++ summation for decreasing intervals. ++ * 'majoring': Applies right summation for increasing intervals and left ++ summation for decreasing intervals. ++ """ ++ INTERPOLATION = 'interpolation' ++ MAJORING = 'majoring' ++ MINORING = 'minoring' ++ ++ @staticmethod ++ def from_str(key): ++ if key in ('interpolation', 'Interpolation'): ++ return AUCSummationMethod.INTERPOLATION ++ elif key in ('majoring', 'Majoring'): ++ return AUCSummationMethod.MAJORING ++ elif key in ('minoring', 'Minoring'): ++ return AUCSummationMethod.MINORING ++ else: ++ raise ValueError('Invalid AUC summation method value "%s".' % key) ++ ++def weighted_assign_add(label, pred, weights, var): ++ # Logical and ++ label = K.expand_dims(label, 0) ++ pred = K.expand_dims(pred, 0) ++ are_different = K.concatenate([label, pred], axis=0) ++ label_and_pred = K.all(are_different, axis=0) ++ label_and_pred = K.cast(label_and_pred, dtype=K.floatx()) ++ if weights is not None: ++ label_and_pred *= weights ++ return var.assign_add(K.sum(label_and_pred, 1)) ++ ++def update_confusion_matrix_variables(variables_to_update, ++ y_true, ++ y_pred, ++ thresholds, ++ top_k=None, ++ class_id=None, ++ sample_weight=None): ++ """Returns op to update the given confusion matrix variables. ++ For every pair of values in y_true and y_pred: ++ true_positive: y_true == True and y_pred > thresholds ++ false_negatives: y_true == True and y_pred <= thresholds ++ true_negatives: y_true == False and y_pred <= thresholds ++ false_positive: y_true == False and y_pred > thresholds ++ The results will be weighted and added together. When multiple thresholds are ++ provided, we will repeat the same for every threshold. ++ For estimation of these metrics over a stream of data, the function creates an ++ `update_op` operation that updates the given variables. ++ If `sample_weight` is `None`, weights default to 1. ++ Use weights of 0 to mask values. ++ # Arguments ++ variables_to_update: Dictionary with 'tp', 'fn', 'tn', 'fp' as valid keys ++ and corresponding variables to update as values. ++ y_true: A `Tensor` whose shape matches `y_pred`. Will be cast to `bool`. ++ y_pred: A floating point `Tensor` of arbitrary shape and whose values are in ++ the range `[0, 1]`. ++ thresholds: A float value or a python list or tuple of float thresholds in ++ `[0, 1]`, or NEG_INF (used when top_k is set). ++ top_k: Optional int, indicates that the positive labels should be limited to ++ the top k predictions. ++ class_id: Optional int, limits the prediction and labels to the class ++ specified by this argument. ++ sample_weight: Optional `Tensor` whose rank is either 0, or the same rank as ++ `y_true`, and must be broadcastable to `y_true` (i.e., all dimensions must ++ be either `1`, or the same as the corresponding `y_true` dimension). ++ # Returns ++ Update ops. ++ # Raises ++ ValueError: If `y_pred` and `y_true` have mismatched shapes, or if ++ `sample_weight` is not `None` and its shape doesn't match `y_pred`, or if ++ `variables_to_update` contains invalid keys. ++ """ ++ if variables_to_update is None: ++ return ++ y_true = K.cast(y_true, dtype=K.floatx()) ++ y_pred = K.cast(y_pred, dtype=K.floatx()) ++ if sample_weight is not None: ++ sample_weight = K.cast(sample_weight, dtype=K.floatx()) ++ ++ if not any(key ++ for key in variables_to_update ++ if key in list(ConfusionMatrix)): ++ raise ValueError( ++ 'Please provide at least one valid confusion matrix ' ++ 'variable to update. Valid variable key options are: "{}". ' ++ 'Received: "{}"'.format( ++ list(ConfusionMatrix), variables_to_update.keys())) ++ ++ invalid_keys = [ ++ key for key in variables_to_update if key not in list(ConfusionMatrix) ++ ] ++ if invalid_keys: ++ raise ValueError( ++ 'Invalid keys: {}. Valid variable key options are: "{}"'.format( ++ invalid_keys, list(ConfusionMatrix))) ++ ++ if sample_weight is None: ++ y_pred, y_true = losses_utils.squeeze_or_expand_dimensions( ++ y_pred, y_true=y_true) ++ else: ++ y_pred, y_true, sample_weight = ( ++ losses_utils.squeeze_or_expand_dimensions( ++ y_pred, y_true=y_true, sample_weight=sample_weight)) ++ ++ if top_k is not None: ++ y_pred = _filter_top_k(y_pred, top_k) ++ if class_id is not None: ++ y_true = y_true[..., class_id] ++ y_pred = y_pred[..., class_id] ++ ++ thresholds = to_list(thresholds) ++ num_thresholds = len(thresholds) ++ num_predictions = K.size(y_pred) ++ ++ # Reshape predictions and labels. ++ predictions_2d = K.reshape(y_pred, [1, -1]) ++ labels_2d = K.reshape( ++ K.cast(y_true, dtype='bool'), [1, -1]) ++ ++ # Tile the thresholds for every prediction. ++ thresh_tiled = K.tile( ++ K.expand_dims(K.constant(thresholds), 1), ++ K.stack([1, num_predictions])) ++ ++ # Tile the predictions for every threshold. ++ preds_tiled = K.tile(predictions_2d, [num_thresholds, 1]) ++ ++ # Compare predictions and threshold. ++ pred_is_pos = K.greater(preds_tiled, thresh_tiled) ++ pred_is_neg = K.greater(thresh_tiled, preds_tiled) ++ ++ # Tile labels by number of thresholds ++ label_is_pos = K.tile(labels_2d, [num_thresholds, 1]) ++ ++ if sample_weight is not None: ++ weights = losses_utils.broadcast_weights( ++ y_pred, K.cast(sample_weight, dtype=K.floatx())) ++ weights_tiled = K.tile( ++ K.reshape(weights, [1, -1]), [num_thresholds, 1]) ++ else: ++ weights_tiled = None ++ ++ update_ops = [] ++ loop_vars = { ++ ConfusionMatrix.TRUE_POSITIVES: (label_is_pos, pred_is_pos), ++ } ++ update_tn = ConfusionMatrix.TRUE_NEGATIVES in variables_to_update ++ update_fp = ConfusionMatrix.FALSE_POSITIVES in variables_to_update ++ update_fn = ConfusionMatrix.FALSE_NEGATIVES in variables_to_update ++ ++ if update_fn or update_tn: ++ loop_vars[ConfusionMatrix.FALSE_NEGATIVES] = (label_is_pos, pred_is_neg) ++ ++ if update_fp or update_tn: ++ label_is_neg = K.equal( ++ label_is_pos, K.zeros_like(label_is_pos, dtype=label_is_pos.dtype)) ++ loop_vars[ConfusionMatrix.FALSE_POSITIVES] = (label_is_neg, pred_is_pos) ++ if update_tn: ++ loop_vars[ConfusionMatrix.TRUE_NEGATIVES] = (label_is_neg, pred_is_neg) ++ ++ for matrix_cond, (label, pred) in loop_vars.items(): ++ if matrix_cond in variables_to_update: ++ update_ops.append( ++ weighted_assign_add(label, pred, weights_tiled, ++ variables_to_update[matrix_cond])) ++ return update_ops ++ +-- +2.26.2 + |