blob: 5babb92d140bde1b9be44cdb64596ac87564b233 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
# GPU Graphics Driver Set-Up
Tux02 has the Tesla K80 (GK210GL) GPU. For machine learning, we want the official proprietary NVIDIA drivers.
## Installation
* Debian 12 moved NVIDIA driver into the non-free-firmware repo. Add the following to "/etc/apt/sources.list" and run "sudo apt update":
```
deb http://deb.debian.org/debian/ bookworm main contrib non-free non-free-firmware
```
* Make sure the correct kernel headers are installed:
```
sudo apt install linux-headers-$(uname -r)
```
* Install "nvidia-tesla-470-driver"⁰ (The NVIDIA line-up of programmable "Tesla" devices, used primarily for simulations and large-scale calculations, also require separate driver packages to function correctly compared to the consumer-grade GeForce GPUs that are instead targeted for desktop and gaming usage)¹:
```
sudo apt install nvidia-tesla-470-driver nvidia-tesla-470-driver-libs
```
* Black list nouveau since it conflicts with NVIDIA's driver, and regenerate the initramfs "sudo update-initramfs -u":
```
echo "blacklist nouveau" | sudo tee /etc/modprobe.d/blacklist-nouveau.conf
echo "options nouveau modeset=0" | sudo tee -a /etc/modprobe.d/blacklist-nouveau.conf
```
* Reboot and test the nvidia drivers:
```
sudo reboot
nvidia-smi
# optional if you want to use nvidia-cuda-toolkit
sudo apt install nvidia-cuda-dev nvidia-cuda-toolkit
```
## References
=> https://us.download.nvidia.com/XFree86/Linux-x86_64/470.129.06/README/supportedchips.html ⁰ Nvidia 470.129.06 Supported Chipsets.
=> https://wiki.debian.org/NvidiaGraphicsDrivers#Tesla_Drivers ¹ Debian Tesla Drivers.
=> https://wiki.debian.org/NvidiaGraphicsDrivers/Configuration ² NVIDIA Proprietary Driver: Configuration.
|