about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/random/mtrand.pyi
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/random/mtrand.pyi')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/random/mtrand.pyi571
1 files changed, 571 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/random/mtrand.pyi b/.venv/lib/python3.12/site-packages/numpy/random/mtrand.pyi
new file mode 100644
index 00000000..b5f60065
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/random/mtrand.pyi
@@ -0,0 +1,571 @@
+import builtins
+from collections.abc import Callable
+from typing import Any, Union, overload, Literal
+
+from numpy import (
+    bool_,
+    dtype,
+    float32,
+    float64,
+    int8,
+    int16,
+    int32,
+    int64,
+    int_,
+    ndarray,
+    uint,
+    uint8,
+    uint16,
+    uint32,
+    uint64,
+)
+from numpy.random.bit_generator import BitGenerator
+from numpy._typing import (
+    ArrayLike,
+    _ArrayLikeFloat_co,
+    _ArrayLikeInt_co,
+    _DoubleCodes,
+    _DTypeLikeBool,
+    _DTypeLikeInt,
+    _DTypeLikeUInt,
+    _Float32Codes,
+    _Float64Codes,
+    _Int8Codes,
+    _Int16Codes,
+    _Int32Codes,
+    _Int64Codes,
+    _IntCodes,
+    _ShapeLike,
+    _SingleCodes,
+    _SupportsDType,
+    _UInt8Codes,
+    _UInt16Codes,
+    _UInt32Codes,
+    _UInt64Codes,
+    _UIntCodes,
+)
+
+_DTypeLikeFloat32 = Union[
+    dtype[float32],
+    _SupportsDType[dtype[float32]],
+    type[float32],
+    _Float32Codes,
+    _SingleCodes,
+]
+
+_DTypeLikeFloat64 = Union[
+    dtype[float64],
+    _SupportsDType[dtype[float64]],
+    type[float],
+    type[float64],
+    _Float64Codes,
+    _DoubleCodes,
+]
+
+class RandomState:
+    _bit_generator: BitGenerator
+    def __init__(self, seed: None | _ArrayLikeInt_co | BitGenerator = ...) -> None: ...
+    def __repr__(self) -> str: ...
+    def __str__(self) -> str: ...
+    def __getstate__(self) -> dict[str, Any]: ...
+    def __setstate__(self, state: dict[str, Any]) -> None: ...
+    def __reduce__(self) -> tuple[Callable[[str], RandomState], tuple[str], dict[str, Any]]: ...
+    def seed(self, seed: None | _ArrayLikeFloat_co = ...) -> None: ...
+    @overload
+    def get_state(self, legacy: Literal[False] = ...) -> dict[str, Any]: ...
+    @overload
+    def get_state(
+        self, legacy: Literal[True] = ...
+    ) -> dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]: ...
+    def set_state(
+        self, state: dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]
+    ) -> None: ...
+    @overload
+    def random_sample(self, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def random_sample(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def random(self, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def random(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def beta(self, a: float, b: float, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def beta(
+        self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def exponential(self, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def exponential(
+        self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_exponential(self, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def standard_exponential(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def tomaxint(self, size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def tomaxint(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[int_]]: ...
+    @overload
+    def randint(  # type: ignore[misc]
+        self,
+        low: int,
+        high: None | int = ...,
+    ) -> int: ...
+    @overload
+    def randint(  # type: ignore[misc]
+        self,
+        low: int,
+        high: None | int = ...,
+        size: None = ...,
+        dtype: _DTypeLikeBool = ...,
+    ) -> bool: ...
+    @overload
+    def randint(  # type: ignore[misc]
+        self,
+        low: int,
+        high: None | int = ...,
+        size: None = ...,
+        dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
+    ) -> int: ...
+    @overload
+    def randint(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[int_]]: ...
+    @overload
+    def randint(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: _DTypeLikeBool = ...,
+    ) -> ndarray[Any, dtype[bool_]]: ...
+    @overload
+    def randint(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
+    ) -> ndarray[Any, dtype[int8]]: ...
+    @overload
+    def randint(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
+    ) -> ndarray[Any, dtype[int16]]: ...
+    @overload
+    def randint(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
+    ) -> ndarray[Any, dtype[int32]]: ...
+    @overload
+    def randint(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
+    ) -> ndarray[Any, dtype[int64]]: ...
+    @overload
+    def randint(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
+    ) -> ndarray[Any, dtype[uint8]]: ...
+    @overload
+    def randint(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
+    ) -> ndarray[Any, dtype[uint16]]: ...
+    @overload
+    def randint(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
+    ) -> ndarray[Any, dtype[uint32]]: ...
+    @overload
+    def randint(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
+    ) -> ndarray[Any, dtype[uint64]]: ...
+    @overload
+    def randint(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
+    ) -> ndarray[Any, dtype[int_]]: ...
+    @overload
+    def randint(  # type: ignore[misc]
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+        dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
+    ) -> ndarray[Any, dtype[uint]]: ...
+    def bytes(self, length: int) -> builtins.bytes: ...
+    @overload
+    def choice(
+        self,
+        a: int,
+        size: None = ...,
+        replace: bool = ...,
+        p: None | _ArrayLikeFloat_co = ...,
+    ) -> int: ...
+    @overload
+    def choice(
+        self,
+        a: int,
+        size: _ShapeLike = ...,
+        replace: bool = ...,
+        p: None | _ArrayLikeFloat_co = ...,
+    ) -> ndarray[Any, dtype[int_]]: ...
+    @overload
+    def choice(
+        self,
+        a: ArrayLike,
+        size: None = ...,
+        replace: bool = ...,
+        p: None | _ArrayLikeFloat_co = ...,
+    ) -> Any: ...
+    @overload
+    def choice(
+        self,
+        a: ArrayLike,
+        size: _ShapeLike = ...,
+        replace: bool = ...,
+        p: None | _ArrayLikeFloat_co = ...,
+    ) -> ndarray[Any, Any]: ...
+    @overload
+    def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def uniform(
+        self,
+        low: _ArrayLikeFloat_co = ...,
+        high: _ArrayLikeFloat_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def rand(self) -> float: ...
+    @overload
+    def rand(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def randn(self) -> float: ...
+    @overload
+    def randn(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def random_integers(self, low: int, high: None | int = ..., size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def random_integers(
+        self,
+        low: _ArrayLikeInt_co,
+        high: None | _ArrayLikeInt_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[int_]]: ...
+    @overload
+    def standard_normal(self, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def standard_normal(  # type: ignore[misc]
+        self, size: _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def normal(
+        self,
+        loc: _ArrayLikeFloat_co = ...,
+        scale: _ArrayLikeFloat_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_gamma(  # type: ignore[misc]
+        self,
+        shape: float,
+        size: None = ...,
+    ) -> float: ...
+    @overload
+    def standard_gamma(
+        self,
+        shape: _ArrayLikeFloat_co,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def gamma(
+        self,
+        shape: _ArrayLikeFloat_co,
+        scale: _ArrayLikeFloat_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def f(
+        self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def noncentral_f(
+        self,
+        dfnum: _ArrayLikeFloat_co,
+        dfden: _ArrayLikeFloat_co,
+        nonc: _ArrayLikeFloat_co,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def chisquare(self, df: float, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def chisquare(
+        self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def noncentral_chisquare(
+        self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_t(self, df: float, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def standard_t(
+        self, df: _ArrayLikeFloat_co, size: None = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_t(
+        self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def vonmises(
+        self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def pareto(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def pareto(
+        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def weibull(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def weibull(
+        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def power(self, a: float, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def power(
+        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def standard_cauchy(self, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def laplace(
+        self,
+        loc: _ArrayLikeFloat_co = ...,
+        scale: _ArrayLikeFloat_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def gumbel(
+        self,
+        loc: _ArrayLikeFloat_co = ...,
+        scale: _ArrayLikeFloat_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def logistic(
+        self,
+        loc: _ArrayLikeFloat_co = ...,
+        scale: _ArrayLikeFloat_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def lognormal(
+        self,
+        mean: _ArrayLikeFloat_co = ...,
+        sigma: _ArrayLikeFloat_co = ...,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def rayleigh(self, scale: float = ..., size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def rayleigh(
+        self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def wald(self, mean: float, scale: float, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def wald(
+        self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ...  # type: ignore[misc]
+    @overload
+    def triangular(
+        self,
+        left: _ArrayLikeFloat_co,
+        mode: _ArrayLikeFloat_co,
+        right: _ArrayLikeFloat_co,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    @overload
+    def binomial(self, n: int, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def binomial(
+        self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[int_]]: ...
+    @overload
+    def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def negative_binomial(
+        self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[int_]]: ...
+    @overload
+    def poisson(self, lam: float = ..., size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def poisson(
+        self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[int_]]: ...
+    @overload
+    def zipf(self, a: float, size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def zipf(
+        self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[int_]]: ...
+    @overload
+    def geometric(self, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def geometric(
+        self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[int_]]: ...
+    @overload
+    def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def hypergeometric(
+        self,
+        ngood: _ArrayLikeInt_co,
+        nbad: _ArrayLikeInt_co,
+        nsample: _ArrayLikeInt_co,
+        size: None | _ShapeLike = ...,
+    ) -> ndarray[Any, dtype[int_]]: ...
+    @overload
+    def logseries(self, p: float, size: None = ...) -> int: ...  # type: ignore[misc]
+    @overload
+    def logseries(
+        self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[int_]]: ...
+    def multivariate_normal(
+        self,
+        mean: _ArrayLikeFloat_co,
+        cov: _ArrayLikeFloat_co,
+        size: None | _ShapeLike = ...,
+        check_valid: Literal["warn", "raise", "ignore"] = ...,
+        tol: float = ...,
+    ) -> ndarray[Any, dtype[float64]]: ...
+    def multinomial(
+        self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[int_]]: ...
+    def dirichlet(
+        self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
+    ) -> ndarray[Any, dtype[float64]]: ...
+    def shuffle(self, x: ArrayLike) -> None: ...
+    @overload
+    def permutation(self, x: int) -> ndarray[Any, dtype[int_]]: ...
+    @overload
+    def permutation(self, x: ArrayLike) -> ndarray[Any, Any]: ...
+
+_rand: RandomState
+
+beta = _rand.beta
+binomial = _rand.binomial
+bytes = _rand.bytes
+chisquare = _rand.chisquare
+choice = _rand.choice
+dirichlet = _rand.dirichlet
+exponential = _rand.exponential
+f = _rand.f
+gamma = _rand.gamma
+get_state = _rand.get_state
+geometric = _rand.geometric
+gumbel = _rand.gumbel
+hypergeometric = _rand.hypergeometric
+laplace = _rand.laplace
+logistic = _rand.logistic
+lognormal = _rand.lognormal
+logseries = _rand.logseries
+multinomial = _rand.multinomial
+multivariate_normal = _rand.multivariate_normal
+negative_binomial = _rand.negative_binomial
+noncentral_chisquare = _rand.noncentral_chisquare
+noncentral_f = _rand.noncentral_f
+normal = _rand.normal
+pareto = _rand.pareto
+permutation = _rand.permutation
+poisson = _rand.poisson
+power = _rand.power
+rand = _rand.rand
+randint = _rand.randint
+randn = _rand.randn
+random = _rand.random
+random_integers = _rand.random_integers
+random_sample = _rand.random_sample
+rayleigh = _rand.rayleigh
+seed = _rand.seed
+set_state = _rand.set_state
+shuffle = _rand.shuffle
+standard_cauchy = _rand.standard_cauchy
+standard_exponential = _rand.standard_exponential
+standard_gamma = _rand.standard_gamma
+standard_normal = _rand.standard_normal
+standard_t = _rand.standard_t
+triangular = _rand.triangular
+uniform = _rand.uniform
+vonmises = _rand.vonmises
+wald = _rand.wald
+weibull = _rand.weibull
+zipf = _rand.zipf
+# Two legacy that are trivial wrappers around random_sample
+sample = _rand.random_sample
+ranf = _rand.random_sample
+
+def set_bit_generator(bitgen: BitGenerator) -> None:
+    ...
+
+def get_bit_generator() -> BitGenerator:
+    ...